

HP 1000 M/E/F-Series Computers Technical Reference Handbook

DOCUMENTATION MAP

^{*}M/E/F refers to your particular series of HP 1000 Computer.

PREFACE

This manual combines technical references for the HP 1000 family of computers in one convenient publication. The technical descriptions will be helpful in evaluating the capability of Hewlett-Packard computers, as they include programming information and detailed descriptions of the interface to the computers' Input/Output structure.

The information in this manual is intended to be used strictly as a guide and does not necessarily represent current policies and products supported by Hewlett-Packard.

Previous manuals refer to the HP 1000 family of computers as HP 21MX. The terms HP 1000 and HP 21MX are synonymous.

Further information on Hewlett-Packard computer products is available from your local Hewlett-Packard field office, one of more than 172 Sales and Service Offices throughout the world.

Part I Reference Guide | Part II I/O Interfacing Guide |

Part I

HP 1000 M/E/F-SERIES COMPUTERS reference guide

CONTENTS

Section I Page	VIS Test	5
SYSTEM FEATURES	Exchanging I/O Interfaces 2-18	5
Architecture	Halt Codes	6
User Microprogramming	Abnormal Indications 2-16	6
Self-Test Routines1-2		
Local and Remote Bootstrap Loaders 1-2	Section III Page	_
Power System	PROGRAMMING INFORMATION	е
Memory System	Data Formats	1
Input/Output System		
Software	Addressing	
Specifications	Paging	
System Expansion and Enhancement	Direct and Indirect Addressing	
	Reserved Memory Locations	
Section II Page	Nonexistent Memory 3-4	
OPERATING PROCEDURES	Base Set Instruction Formats 3-4	
	Memory Reference Instructions	
Hardware Registers	Register Reference Instructions	
A-Register	Input/Output Instructions	4
B-Register	Extended Arithmetic Memory Reference	_
M-Register	Instructions	Э
T-Register	Extended Arithmetic Register Reference	_
P-Register	Instructions	
S-Register	Extended Instructions	
Extend Register	Floating Point Instructions	
Overflow Register	Base Set Instruction Coding	
Display Register2-1	Memory Reference Instructions	
X and Y-Registers2-2	Register Reference Instructions	
Operator Panel and Power Supply Operating	Sift/Rotate Group3-	
Controls	Alter/Skip Group	
Rear Panel2-2	Input/Output Instructions 3-13	2
Internal Switches	Extended Arithmetic Memory Reference	_
Operating Procedures2-9	Instructions	3
Cold Power-Up	Extended Arithmetic Register Reference	
Loading Programs Manually2-9	Instructions	
Loading Programs from Paper Tape Reader 2-9	Extended Instruction Group 3-10	
Loading Programs from Disc Drive 2-10	Index Register Instructions	
Loading Programs from Other Loading Devices . 2-10	Jump Instructions 3-19	
Verifying Programs	Byte Manipulation Instructions	
Running Programs	Bit Manipulation Instructions 3-2	
Special Register Display Mode2-11	Word Manipulation Instructions	
X and Y (x and y) Registers	Floating Point Instructions	
DMS Map (m, t, and f) Registers2-12	Single Precision Operations	
Status (s) Register	Extended Precision Operations 3-2-	
Shutdown Procedures	Double Precision Operations	
Shutdown (Memory Sustained)	Instruction Execution Times	
Shutdown (Memory Not Sustained)	Scientific Instruction Set	
Remote Program Loading (E/F-Series only) 2-13	Execution Times and Interrupts	
Self-Test Firmware	Fast FORTRAN Instructions	
Test Descriptions	Extended Precision Operations	
Test 1	Execution Times and Interrupts	
Test 2	Double Integer Instructions	
Test 3	Execution Times	
Test Execution	Vector Instruction Set	
FPP Test	Execution Times and Interrupts	
FFP Test	Assembly Language	
SIS Test	RTE Implementation	ر5

CONTENTS (Continued)

Section IV Page DYNAMIC MAPPING SYSTEM Memory Addressing 4-1 Map Register Loading 4-1 Status and Violation Registers 4-1 Map Segmentation 4-3 Power Fail Characteristics 4-3 DMS Instruction Coding 4-3 Instruction Execution Times 4-11 Sample Map Load/Enable Routine 4-11 Additional DMS Definitions 4-11 Alternate Map 4-11	Section VI Page INTERRUPT SYSTEM 6-1 Power-Fail Interrupt 6-5 Parity Error Interrupt 6-5 Memory Protect/DMS Interrupt 6-4 Dual-Channel Port Controller Interrupt 6-5 Input/Output Interrupt 6-6 Central Interrupt Register 6-6 Interrupt System Control 6-6
Protected Mode	Appendix Page M-Series Computer Physical Layout A-5 E-Series Computer Physical Layout A-5 F-Series Computer Physical Layout A-5 Character Codes A-5
Section V Page MICROPROGRAMMING 5-1 The Microprogrammed Computer 5-1 The Microprogrammable Computer 5-1 Customized Instructions 5-1 System Speed 5-1 Memory Space and Security 5-2 Developing Microprograms 5-2 Support for the Microprogrammer 5-2 Optional Instruction Sets 5-4 Dynamic Mapping System 5-4 FPP Microprogramming 5-4 Conclusion 5-4	Octal Arithmetic A-Gotal/Decimal Conversions A-Mathematical Equivalents A-Soctal Combining Tables A-10 Instruction Codes in Octal A-11 Base Set Instruction Codes in Binary A-12 Scientific, Fast FORTRAN, and Double Integer Instruction Codes in Binary A-14 VIS Primary and Sub Opcodes in Binary A-17 Dynamic Mapping System Instruction Codes in Binary A-18 Extend and Overflow Examples A-18 Interrupt and I/O Control Summary A-20

ILLUSTRATIONS

Title Page	Title Page
HP 1000 Microprogrammable Computers1-0	Data Formats and Octal Notation
Operator Panel and Power Supply Controls	Base Set Instruction Formats
and Indicators2-2	Shift and Rotate Functions
HP 2108M and HP 2109E Rear Panel and	Examples of Double-Word Shifts and Rotates 3-15
I/O PCA Cage	Basic Memory Addressing Scheme 4-1
HP 2111F Rear Panel and I/O PCA Cage2-7	Expanded Memory Addressing Scheme 4-1
HP 2112M, HP 2113E and HP 2117F Rear Panel	Basic Word Format vs Map Register Format 4-1
and I/O PCA Cage2-8	Map Segmentation
Remote Program Load Routine2-14	Microprogram Development Cycle5-3

TABLES

Title Page	Title Page
Specifications	Typical Scientific Instruction
Options and Accessories	Set Execution Times 3-37
Operator Panel Control and Indicator	Typical Fast FORTRAN Instruction
Functions	Execution Times 3-44
HP 2108M and HP 2109E Rear Panel Features 2-6	Typical Double Integer Execution Times 3-47
HP 2111F Rear Panel Features 2-7	Typical Vector Instruction Set Execution
HP 2112M, HP 2113E and HP 2117F Rear	Times 3-54
Panel Features	Instructions and Opcodes
Starting Address vs Memory Size	MEM Status Register Format4-2
Optional Loader Selection	MEM Violation Register Format 4-2
Halt Codes	Typical DMS Instruction Execution Times 4-11
Abnormal Indicators2-17	Sample DMS Load/Enable Routine 4-14
Memory Paging	HP 2108M, HP 2109E and HP 2111F Interrupt
Reserved Memory Locations	Assignments
Shift/Rotate Group Combing Guide	HP 2112M, HP 2113E and HP 2117F Interrupt
Alter/Skip Group Combing Guide 3-10	Assignments
Typical Base Set Instruction Execution	Sample Power Fail Subroutine6-2
Times 3-28	Sample Memory Protect, Parity Error,
SIS Instruction Error Codes	and DMS Subroutine6-5

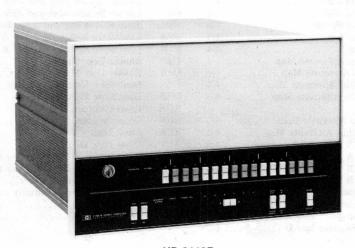
ALPHABETICAL INDEX OF STANDARD INSTRUCTIONS

Instruct	ion Page	Instruc	tion Pag	ge
ADA	Add to A	ELA	Rotate E Left with A	-9
ADB	Add to B	ELB	Rotate E Left with B	-
ADX	Add Memory to X	ERA	Rotate E Right with A	
ADY	Add Memory to Y	$_{ m ERB}$	Rotate E Right with B 3	
ALF	Rotate A Left Four	EXP	E to the Power X	
ALOG	Natural Logarithm 3-35	FAD	Floating Point Add	
ALOGT	Common Logarithm	FDV	Floating Point Divide	
ALR	A Left Shift, Clear Sign	FIX	Floating Point to Integer	
ALS	A Left Shift	FLT	Integer to Floating Point 3-:	
AND	"And" to A	FMP	Floating Point Multiply 3-2	
ARS	A Right Shift	FSB	Floating Point Subtract 3-2	
ASL	Arithmetic Shift Left (32) 3-14	HLT	Halt 3-:	
ASR	Arithmetic Shift Right (32) 3-14	INA	Increment A	11
ATAN	Arctangent	INB	Increment B	
BLF	Rotate B Left Four	IOR	"Inclusive Or" to A	-6
BLR	B Left Shift, Clear Sign	ISX	Increment X and Skip if Zero 3-:	
BLS	B Left Shift	ISY	Increment Y and Skip if Zero 3-	
BRS	B Right Shift	ISZ	Increment and Skip if Zero	
CAX	Copy A to X	JLY	Jump and Load Y	
CAY	Copy A to Y	$_{ m JMP}$	Jump 3	-6
CBS	Clear Bits	$\mathbf{J}\mathbf{P}\mathbf{Y}$	Jump Indexed by Y	20
CBT	Compare Bytes	$_{ m JSB}$	Jump to Subroutine	-6
CBX	Copy B to X	LAX	Load A Indexed by X 3-:	17
CBY	Copy B to Y	LAY	Load A Indexed by Y	18
CCA	Clear and Complement A 3-10	$_{ m LBT}$	Load Byte	20
CCB	Clear and Complement B	LBX	Load B Indexed by X	18
CCE	Clear and Complement E	LBY	Load B Indexed by Y	18
CLA	Clear A	LDA	Load A 3	-6
CLB	Clear B	LDB	Load B3	-6
CLC	Clear Control	LDX	Load X from Memory 3-:	18
CLE	Clear E	LDY	Load Y from Memory 3-3	18
CLF	Clear Flag 3-12	LIA	Load Input to A 3-:	12
CLO	Clear Overflow	$_{ m LIB}$	Load Input to B	12
CMA	Complement A	LSL	Logical Shift Left (32)3-	16
CMB	Complement B	LSR	Logical Shift Right (32) 3-:	16
CME	Complement E	MBT	Move Bytes 3-2	21
$\mathbf{C}\mathbf{M}\mathbf{W}$	Compare Words	MIA	Merge Into A	12
COS	Cosine	MIB	Merge Into B3-1	12
CPA	Compare to A	MPY	Multiply 3-:	14
CPB	Compare to B	MVW	Move Words	23
CXA	Copy X to A	NOP	No Operation3	-9
CXB	Copy X to B	OTA	Output A3-	13
CYA	Copy Y to A	OTB	Output B 3-1	
CYB	Copy Y to B	RAL	Rotate A Left	-9
DBLE	Single Floating Point to Extended	RAR	Rotate A Right 3	
	Floating Point	RBL	Rotate B Left3	
DDINT	Extended Floating Point to	RBR	Rotate B Right 3-1	
	Double Integer	RRL	Rotate Left (32)	16
DIV	Divide 3-14	RRR	Rotate Right (32)	
DLD	Double Load	RSS	Reverse Skip Sense 3-1	
DPOLY	Polynomial Evaluation	SAX	Store A Indexed by X	
DST	Double Store	SAY	Store A Indexed by Y	
DSX .	Decrement X and Skip if Zero 3-17	SBS	Set Bits	
DSY	Decrement Y and Skip if Zero 3-17	SBT	Store Byte	21
.Ton				

ALPHABETICAL INDEX OF STANDARD INSTRUCTIONS (Continued)

Instruct	ion Pag	ge	Instruct	ion Page
SBX	Store B Indexed by X 3-1	19	.DNG	Double Integer Negate 3-46
SBY	Store B Indexed by Y 3-1		.DSB	Double Integer Subtract 3-45
SEZ	Skip if E is Zero		.DSBR	Double Integer Subtract Reverse 3-45
SFB	Scan For Byte	21	ENTP	Transfer Parameter Addresses3-40
SFC	Skip if Flag Clear 3-1	13	ENTR	Transfer Parameter Addresses 3-40
SFS	Skip if Flag Set		.FIXD	
SIN	Sine			Floating Point to Double Integer 3-24
SLA	Skip if LSB of A is Zero 3-10, 3-1		.FLTD	Double Integer to Floating Point 3-24
SLB	Skip if LSB of B is Zero 3-10, 3-1	11	.FLUN	Unpack Floating Point Quantity 3-40
SNGL	Extended Floating Point to Single		.FPWR	Exponentiation
	Floating Point	38	.GOTO	Transfer Control
SOC	Skip if Overflow Clear 3-:	13	.NGL	Double Floating Point to Single
SOS	Skip if Overflow Set 3-:	13		Floating Point
SQRT	Square Root	35	.PACK	Normalize Floating Point Quantity 3-41
SSA	Skip if Sign of A is Zero 3-3	11	.PWR2	X Times 2 to the Power N
SSB	Skip if Sign of B is Zero 3-:	11	.TADD	Double Floating Point Add 3-26
STA	Store A 3	-7	.TDIV	Double Floating Point Divide 3-27
STB	Store B		.TFTD	Double Integer to Double
STC	Set Control	13		Floating Point
STF	Set Flag	13	.TFTS	Single Integer to Double
STO	Set Overflow	13		Floating Point
STX	Store X to Memory 3-3	19	.TFXD	Double Floating Point to
STY	Store Y to Memory 3-	19		Double Integer
SZA	Skip if A is Zero	11	.TFXS	Double Floating Point to
SZB	Skip if B is Zero	11		Single Integer
TAN	Tangent 3-3	34	TMPY	Double Floating Point Multiply 3-27
TANH	Hyperbolic Tangent	35	.TPWR	Exponentiation
TBS	Test Bits	22	.TSUB	Double Floating Point Subtract 3-26
XADD	Extended Floating Point Add3-	42	.XADD	Extended Floating Point Add 3-24, 3-41
XAX	Exchange A and X	19	.XCOM	Complement Extended Floating Point 3-39
XAY	Exchange A and Y		.XDIV	Extended Floating Point Divide 3-25, 3-42
XBX	Exchange B and X		XFER	Transfer Extended Floating Point 3-39
XBY	Exchange B and Y 3-		.XFTD	Double Integer to Extended
XDIV	Extended Floating Point Divide 3-4			Floating Point
XMPY	Extended Floating Point Multiply 3-4		XFTS	Single Integer to Extended
XOR	"Exclusive Or" to A			Floating Point
XSUB	Extended Floating Point Subtract 3-	43	.XFXD	Extended Floating Point to
.BLE	Single Floating Point to Double			Double Integer
	Floating Point	38	.XFXS	Extended Floating Point to
.CFER	Transfer Complex or Double			Single Integer 3-25
	Floating Point		XMPY.	Extended Floating Point Multiply 3-25, 3-42
.DAD	Double Integer Add 3		.XPAK	Normalize and Pack Extended
.DCO	Double Integer Compare 3-			Floating Point
.DDE	Double Integer Decrement3-		.XSUB	Extended Floating Point Subtract 3-25, 3-42
.DDI	Double Integer Divide 3-		DCM	Complement and Normalize Extended
.DDIR	Double Integer Divide Reverse 3-	46		Floating Point
.DDS	Double Integer Decrement and		FCM	Compliment and Normalize Single
D	Skip if Zero3-			Floating Point3-41
.DFER	Transfer Extended Floating Point 3-		MAP	Compute Array Element Address 3-40
.DIN	Double Integer Increment 3-	46	TCM	Complement and Normalize Double
.DIS	Double Integer Increment and	457	(ATDT C	Floating Point
DMD	Skip if Zero 3-		/ATLG	(1-X)/(1+X)
.DMP	Double Integer Multiply 3-	46	\$SETP	Set a Table

ALPHABETICAL INDEX OF VECTOR INSTRUCTIONS


Instruction	Page	Instruction	Page
VABS/DVABS	Vector Absolute Value 3-51	VMPY/DVMPY	Vector Multiply 3-49
VADD/DVADD	Vector Add3-48	VNRM/DVNRM	Vector Norm
VDIV/DVDIV	Vector Divide 3-49	VPIV/DVPIV	Vector Pivot
VDOT/DVDOT	Vector Dot Product 3-52	VSAD/DVSAD	Scalar-Vector Add 3-49
VMAB/DVMAB	Vector Maximum	VSDV/DVSDV	Scalar-Vector Divide 3-50
	Absolute Value	VSMY/DVSMY	Scalar-Vector Multiply 3-50
VMAX/DVMAX	Vector Maximum Value 3-52	VSSB/DVSSB	Scalar-Vector Subtract 3-50
VMIB/DVMIB	Vector Minimum	VSUB/DVSUB	Vector Subtract 3-48
	Absolute Value 3-53	VSUM/DVSUM	Vector Sum
VMIN/DVMIN	Vector Minimum Value 3-53	VSWP/DVSWP	Vector Swap
VMOV/DVMOV	Vector Move 3-54		F

ALPHABETICAL INDEX OF DYNAMIC MAPPING SYSTEM INSTRUCTIONS

Instruc	etion Page	Instru	ction Page
DJP	Disable MEM and JMP 4-3	SJP	Enable System Map and JMP 4-7
DJS	Disable MEM and JSB 4-3	SJS	Enable System Map and JSB 4-7
JRS	Jump and Restore Status 4-3	SSM	Store Status Register Into Memory 4-7
LFA	Load Fence From A 4-4	SYA	Load/Store System Map per A 4-7
LFB	Load Fence From B 4-4	SYB	Load/Store System Map per B 4-8
MBF	Move Bytes From Alternate Map 4-4	UJP	Enable User Map and JMP4-8
MBI	Move Bytes Into Alternate Map 4-4	UJS	Enable User Map and JSB 4-8
MBW	Move Bytes Within Alternate Map 4-5	USA	Load/Store User Map per A 4-8
MWF	Move Words From Alternate Map 4-5	USB	Load/Store User Map per B4-9
MWI	•	XCA	Cross Compare A
	Move Words Into Alternate Map 4-5	XCB	Cross Compare B
MWW	Move Words Within Alternate Map 4-5	XLA	Cross Load A
PAA	Load/Store Port A Map per A 4-6	XLB	Cross Load B
PAB	Load/Store Port A Map per B 4-6	XMA	Transfer Maps Internally per A 4-9
PBA	Load/Store Port B Map per A 4-6	XMB	Transfer Maps Internally per B 4-10
PBB	Load/Store Port B Map per B 4-6	XMM	Transfer Maps or Memory 4-10
RSA	Read Status Register Into A 4-6	XMS	Transfer Maps Sequentially4-10
RSB	Read Status Register Into B 4-6	XSA	Cross Store A
RVA	Read Violation Register Into A 4-7	XSB	Cross Store B
RVB	Read Violation Register Into B 4-7		

HP 2108B

HP 2112B

7700-116A,B

Figure 1-1A. HP 1000 M-Series Microprogrammable Computers

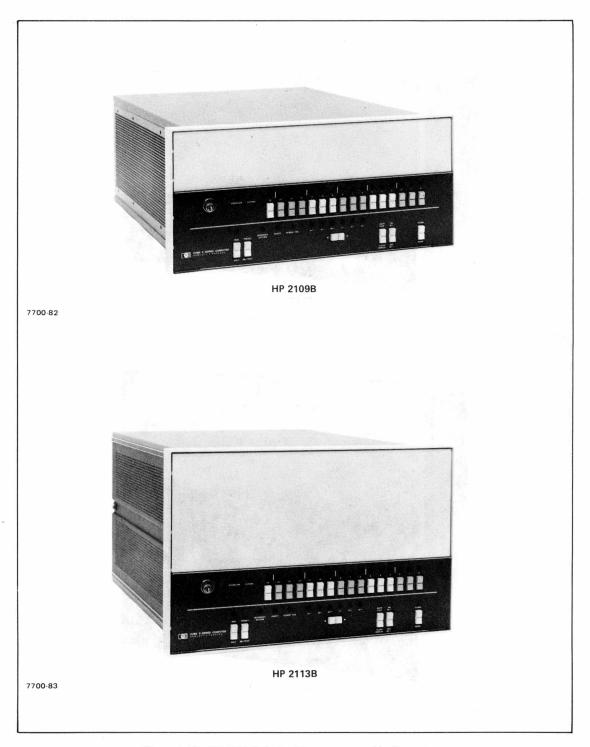


Figure 1-1B. HP 1000 E-Series Microprogrammable Computers

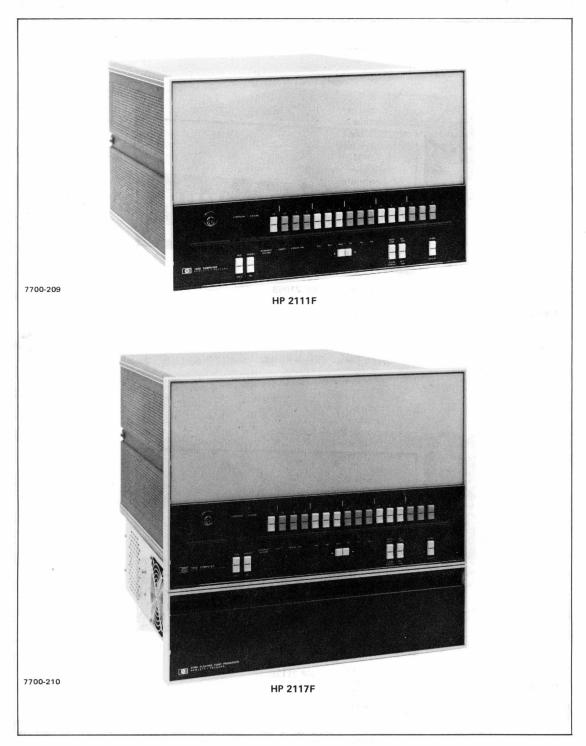


Figure 1-1C. HP 1000 F-Series Microprogrammable Computers

SYSTEM FEATURES

The HP 1000 M-Series, E-Series and F-Series computers shown in Figure 1-1 are high-performance machines designed to satisfy a wide range of computing needs. Because of a unique design philosophy, many features have been incorporated as standard in the HP 1000 M-, E- and F-Series Computers; this same philosophy allows optional features to be added at low cost. HP 1000 computers have traditional HP quality and reliability built in from the ground up and compatibility with previous Hewlett-Packard computers is maintained. HP 1000 Computers provide very cost-effective solutions to a variety of systems applications.

Throughout this manual, the term HP 1000 is used to refer to all three models (M-, E- and F-Series Computers) when the information presented pertains equally to all three. A particular series of HP 1000 Computer is referred to only if the information presented is unique to that series.

1-1. ARCHITECTURE

HP 1000 Computers have a proven architecture that features a fully microprogrammed control processor, including all arithmetic functions, input/output and operator panel control. Four general purpose registers are available, two of which may be used as index registers. There are 128 (2108M, 2112M, 2109E and 2113E), 192 (2111F) or 230 (2117F) standard instructions including index instructions, integer and floating point arithmetic instructions, input/output instructions and a full complement of instructions for logical operations as well as bit and byte manipulation. In addition, the optional HP 12824A Vector Instruction Set provides the F-Series Computer with 38 additional instructions (19 single and 19 double precision formats).

At the heart of the HP 1000 Computer is a microprogrammable control section that directs the operations of the other functional units of the computer. Microprogramming can increase system speed in several ways. Since microinstructions are executed from 5 to 10 times faster than machine language instructions, a frequently used software subroutine will execute much faster when microprogrammed. With 12 scratch pad registers available to a microprogrammer, the number of main memory accesses can be greatly reduced. This is particularly significant in real time systems which are compute-bound (i.e., systems in which the I/O is performed faster than the computation).

The HP 1000 E-Series and F-Series Computers have been optimized for performance. The control section has been speeded up over the M-Series Computer for certain operations due to a sophisticated technique of varying the microinstruction cycle time. In addition, the efficiency of the microprogrammed routines that determine the machine language operation has been increased. The result is a high-performance computer that retains compatibility with earlier Hewlett-Packard computers and the flexibility of user microprogramming. The central processor unit (CPU)-to-memory interface is totally asynchronous in E/F-Series Computers, thus assuring that faster memory speeds can be used to good advantage. The E/F-Series Computers are approximately twice as fast as the M-Series Computers.

A hardware-implemented Floating Point Processor (FPP) in the F-Series Computers provides high-speed dedicated logic for performing floating point arithmetic operations. The FPP provides exceptionally fast execution of single precision (32-bit), extended precision (48-bit) and double precision (64-bit) floating point operations. Single precision operations are accurate to at least 6 decimal places, extended precision operations are accurate to at least 11 decimal places and double precision operations are accurate to at least 16 decimal places. (For the HP 2111F, the FPP is housed within the computer mainframe; for the HP 2117F, the FPP is housed in a separate assembly cabled to the computer mainframe.)

The F-Series Computers include a powerful Scientific Instruction Set (SIS) that performs thirteen trigonometric, logarithmic, exponentiation and polynominal evaluation functions. These instructions utilize the Floating Point Processor as a powerful computing resource to achieve extremely high performance in conjunction with high accuracy.

For applications in which more performance is required, the HP 1000 standard instruction sets can be further expanded. Off-the-shelf enhancements include the Dynamic Mapping System (DMS, standard on HP 2112M, except option 013, HP 2113E, except options 012 and 013, and HP 2117F; optional on all other HP 1000 Computers). For expanded memory management, and the Fast FORTRAN Processor (standard with the HP 2111F and HP 2117F) that accelerates the execution of frequently-used FORTRAN operations. Optional enhancements for the M/E/F-Series include the DS/1000 Firmware for DS/1000 Network Communications and RTE-IV Extended Memory Area. The Vector Instruction Set firmware is an option available for the F-Series only.

1-2. USER MICROPROGRAMMING

The power and flexibility of microprogramming is made readily available to the HP 1000 Computer user through the microinstruction set of 180 (M-Series) or 211 (E-Series and F-Series) micro-orders. In addition to the 12 scratch pad registers and the other internal registers, the microprogrammer may address up to 4k (M-Series) or 16k (E-Series and F-Series), 24-bit words of control store. The E-Series and F-Series Computers also support up to three levels of nested subroutines in microprograms. Closely resembling assembly language programming in simplicity, microprogramming offers the advantages of speed and security as well as the ability to expand the instruction set to meet any computing need. Microprogramming is supported by Hewlett-Packard through software assembly and debug packages and customer training courses. User-developed microprograms may be permanently fused in programmable read-only memory (PROM) chips for mounting on the Firmware Extension Module or may be loaded into Writable Control Store (WCS) modules where they can be dynamically altered.

1-3. SELF-TEST ROUTINES

A comprehensive set of self-test routines permanently stored in Read-Only Memory (ROM) are standard in E-F-Series computers. Two of these routines, executed each time the IBL/TEST function is performed, tests the CPU and the enabled memory (up to 32k bytes for E-Series and up to 64k bytes for the F-Series) for quick verification of operating condition. A third test, executed every time the machine is powered up, tests the CPU and all installed memory. Three more tests, executed via the operator panel, test the Floating Point Processor, the Scientific Instruction Set, and the Vector Instruction Set firmware on the F-Series computers only.

For data integrity, memory parity checking is provided as a standard feature with all memory systems.

The fault control memory system provides fault-secure memory operation to the HP 1000 family of computers. The system consists of an HP 2102C (M-Series and E-Series) or an HP 2102H (E-Series or F-Series) Memory Controller and one or more check bit array boards, along with the appropriate number of memory modules. The system is capable of correcting all single-bit errors and of detecting all double-bit errors and most multiple-bit errors. The fault control system is particularly valuable in computer systems with large amounts of memory or where fault-secure operation is essential.

1-4. LOCAL AND REMOTE BOOT-STRAP LOADERS

The initial binary loading (IBL) function is easily performed on HP 1000 computers. For local bootstrap loading,

a 64-word ROM-resident IBL program is called by pushbutton switch on the operator panel. A paper tape loader ROM and a disc loader ROM are standard. One or two additional loader ROM's may be included; these programs may be purchased as accessories or may be usergenerated.

E-Series and F-Series computers at remote sites can be force-loaded from a central location through the use of the Remote Program Load (RPL) capability. All of the information normally keyed into the operator panel is set in a special set of switches on the CPU board so that the bootstrapping sequence may be initiated from a remote site.

1-5. POWER SYSTEM

HP 1000 computers are equipped with power systems designed to continue normal operations in environments where power may fluctuate widely. Input line voltages and frequencies may vary widely without affecting the operation of the computer. The optional Power Fail Recovery System provides automatic restart capability and, depending on the memory size, also provides between 1.75 and 4.25 hours of memory sustaining power in the event of complete power failure. (See Power Fail Recovery System specifications in Table 1-1).

1-6. MEMORY SYSTEMS

HP 1000 Computers are available with either of two semiconductor memory systems based on 16k-bit MOS/RAM chips that offer field-proven reliability and economy. The memory systems broken down by series, consist of the following:

- M-Series An HP 2102B Memory Controller and one or more memory modules, ranging in capacity from 64k to 128k bytes. The memory system has a system cycle time of 640 nanoseconds.
- E-Series The Standard Performance Memory System consists of an HP 2102B Memory Controller, one or more memory modules, ranging in capacity from 64k to 128k bytes and a system cycle time of 595 nanoseconds. The High Performance Memory System consists of an HP 2102E Memory Controller, one or more memory modules, ranging in capacity from 64k to 128k bytes and a memory cycle time of 350 nanoseconds.
- F-Series An HP 2102E High Performance Memory Controller and either 64k bytes (2111F) or 128k bytes (2117F) of memory.

Addressing physical memory configurations larger than 64k byte configurations is possible only through the use of the HP 12976B (M-Series) or HP 13305A (E-Series and F-Series) Dynamic Mapping System (DMS). The DMS, which is a combination of hardware and firmware, is a powerful memory management scheme that allows HP 1000 Computer users to address up to two million bytes of memory and provides read and/or write protection of each individual 2048 byte page. Four independent memory maps are provided, one for the system, one for the user and two Port Controller maps for direct memory access operations. Control of the DMS is implemented through the use of 38 instructions.

For HP 1000 Computers (except the 2105A) to which the Dynamic Mapping System has been added, memory can be expanded further with the HP 12990B Memory Extender. The extender has space for nine additional semiconductor memory modules. As much as 1152k bytes of memory can be added, depending on the memory modules used.

1-7. INPUT/OUTPUT

The input/output system for the HP 1000 computers features a multilevel vectored priority interrupt structure. There are 60 distinct interrupt levels, each of which has a unique priority assignment. Any I/O device can be selectively enabled or disabled, or the entire interrupt system (except power fail and parity error interrupts) can be enabled or disabled under program control.

Data transfer between the computer and I/O devices may take place under program control, Dual Channel Port Controller (DCPC) control, or under microprogram control. The DCPC provides two direct links between memory and I/O devices and is program assignable to any two devices. DCPC transfers occur on an I/O cycle-stealing basis not subject to the I/O priority interrupt structure. Refer to the Direct Memory Access specifications in Table 1-1 for the output transfer rates and the DCPC latency times. For applications where higher transfer rates are desirable, E-Series computers have a special microprogrammed I/O capability that will allow transfer rates of up to 3.18 million bytes per second. This capability can be attained by making simple modifications to the interface hardware and by writing a block I/O control microprogram.

The HP 2108M, HP 2109E and HP 2111F Computers have nine I/O channels in their mainframes; the HP 2112M, HP 2113E and HP 2117F computers have fourteen. The number of available channels may be increased by adding one or two HP 12979B I/O entenders, providing sixteen channels each. All I/O channels are fully buffered and bidirectional. Because of the modular design of the HP 1000 Computers, mainframe memory capacity is completely independent of I/O capacity so that either memory or I/O modules may be added without taking valuable mainframe space from the other. A full line of I/O inter-

face controllers is available with HP 1000 Computers for interfacing to any of the broad line of HP manufactured peripherals or to specialized devices.

1-8. SOFTWARE

The HP 1000 Computers maintain extensive program compatibility with earlier HP 1000 and HP 2100 series computers so that users can take advantage of many man-years of software development.

A wide range of operating system software is available. Real-time executive (RTE) systems, available in disc and main memory-resident versions, are multiprogramming systems that permit priority scheduling of several real-time programs while concurrent background processing takes place.

The memory-based RTE-M and disc-based RTE-IV operating systems can support up to 2.048 megabytes of memory, managed by DMS. Comprehensive software is also available for computer networking.

Languages supported by Hewlett-Packard operating systems include two high-level compilers: HP FORTRAN IV; and HP BASIC; plus an extended, efficient assembler that is callable by FORTRAN. Utility software includes a debugging routine, editor, and an extensive library of commonly used computational routines.

HP 1000 Computer users may also take advantage of a wide variety of thoroughly tested and documented programs that have been contributed to the Hewlett-Packard User Library.

1-9. SPECIFICATIONS

Tables 1-1A, 1-1B and 1-1C list the specifications for the HP 1000 M-Series, E-Series and F-Series computers, respectively. All HP 1000 computers have been product accepted by the Underwriters' Laboratories (UL) and the Canadian Standards Association (CSA).

1-10. SYSTEM EXPANSION AND ENHANCEMENT

Tables 1-2A, 1-2B and 1-2C list the options and accessories available to expand or enhance the HP 1000 M-Series, E-Series and F-Series computer systems, respectively.

Table 1-1A. M-Series Specifications

CENTRAL PROCESSOR

Address Space:

4,096 bytes (direct addressing)

65,536 bytes (indirect addressing)

2,097,152 bytes with Dynamic Mapping System (optional)

Word Size:

16 bits

Instruction Set:

128 standard instructions

Memory Reference: Register Reference: 14 43

Input/Output:

13 10

Extended Arithmetic:

32

Bit Byte, Word Manipulation:

10

Floating Point: Registers:

6 10

Accumulators:

Two (A and B), 16 bits each. Explicitly addressable; also addressable as memory

locations.

Index:

Two (X and Y), 16 bits each

Memory Control:

Two (T and P), 16 bits each; one (M), 15 bits. Two (Overflow and Extend), one bit each

Supplementary: Display:

One, 16 bits

CONTROL PROCESSOR

Address Space:

4,096 words (16 modules of 256 words each)

Word Size:

24 bits

Word Formats:

Four

Word Fields:

Micro-Orders

Five

Instruction Execution Time:

325 ns

Operations:

15

Operation

10

Special:

32

ALU and Conditional:

68

Store:

32

S-Bus:

32

Reverse Skip Sense:

1

INITIAL BINARY LOADERS

ROM resident; capacity of four 64-word programs callable from operator panel.

INPUT/OUTPUT

Interrupt Structure:

Multilevel vectored priority interrupt; priority determined by interrupt location.

I/O SYSTEM SIZE	HP 2108B	HP 2112B
Standard I/O Channels	9	14
With One Extender	25	30
With Two Extenders	41	46

Compatibility:

Instruction set and program compatible with HP 1000 E-Series computers (time

loop programs excepted).

Current Available for:

I/O, Memory and Accessories

MODEL	+5V	+12V	-12V	-2V
2108B	38.8A	2.5A	2.0A	4.0A
2112B	38.8A	2.5A	2.0A	4.0A

DC Required:

MODEL	+5V	-2V
12892B Memory protect	1.25A	.05A
12897B DCPC	2.4A	.05A
12731A MEM	3.9A	l —
12976B DMS	6.29A	
12977B FFP	1.66A	
12778B DMI	1.66A	_
13197A 1k WCS	2.2A	.01A
12990B Memory extender	0	
12992 Loader ROMS (each)	.13A	-
12979B I/O Ext. buffer card	2.0A	1.35A
2102B Memory controller	1.2A	0.01A
2102C Fault Memory controller	3.29A	
12779A Check Bit Array	0.52A	
12780A Check Bit Array	0.73A	
12747A 128k Byte Memory Module	0.85A	
13047A 2k UCS	7.39A ¹	_
12945A .5k UCS	2.2A ²	_
12791A Firmware Expansion Module	5.4A	_

 $^{^{1}}$ 7.15A + 0.78A for each 256 instructions; 7.39A when fully loaded. 2 1.2A + 0.525A for each of 8 blocks of instruction words; 5.4A when fully loaded.

DIRECT MEMORY ACCESS

Available only with DCPC accessory.

Number of Channels:

Two

Word Size:

16 bits

Maximum Transfer Block Size:

32,768 words

I/O Assignable:

Assignable to any two I/O channels; all logic necessary to facilitate bidirectional direct memory transfer to and from I/O is contained on DCPC (controller).

Transfer Rate:

(Any Memory)

1.23 Mbytes/s

DCPC Latency (Channel 1):

Latency is defined as the time interval between the generation of a Service Request (SRQ) signal by an I/O device through the initiation of a DCPC channel 1 cycle to the completion of the I/O data transfer to or from the I/O interface PCA. Subsequent consecutive cycles execute at a specified DCPC rate.

Input and Output Latency Times:

(Times in us)

	TYPICAL	MAXIMUM
Input	2.22	2.93
Input Output	2.54	3.25

PHYSICAL CHARACTERISTICS

Width:

42.6cm (16 3/4 in) behind rack mount; 48.3cm (19 in) front panel width on sides

Depth:

59.7cm (23 1/2 in); 58.4cm (23 in) behind rack mounting ears

MODEL	HP 2108B	HP 2112B
Height	22.2cm (8-3/4 in)	31.1cm (12-1/4 in)
Weight	20.4kg (45 lbs)	29.5kg (65 lbs)

ELECTRICAL CHARACTERISTICS

Line Voltage:

88 to 132Vac; 176 to 264 Vac

Line Frequency:

47.5 to 66 Hz

Power Dissipation:

770 watts (maximum).

Power Supply:

Sustains computer over a line loss of no greater than 8 ms at the nominal line

(mains) voltage.

Input Line Transients:

Sustains $\pm 500V$, $50\mu s$ pulse on power lines; sustains $\pm 1kV$, 100ns pulses on

power lines.

Output Protection:

All regulated voltages protected from overvoltage and overcurrent conditions.

Output Voltage Regulation:

 $\pm 5\%$ (except -2V is $\pm 10\%$, and +30V is unregulated).

Thermal Sensing:

Monitors internal temperature and automatically shuts down when computer temperature exceeds specified maximum operating temperature. Resets automatically when temperature returns to below specified maximum operating temperature.

ENVIRONMENTAL LIMITATIONS

Operating Temperature:

0° to 55°C (+32° to 131°F)

Storage Temperature:

-40° to 75°C (-40° to 167°F)

Relative Humidity:

20% to 95% at 40°C (104°F), non-condensating

Ventilation and Heat Dissipation:

Intake: left-hand side; Exhaust; right-hand side.

	MODEL	2108B	2112B
Heat dissipation	KCai/hr. max. BTU/hr. max.	538 2138	538 2138
Air flow	cubic meters /min.	5.7	7.9
	cubic feet /min.	200	280

Altitude:

Transportable to 15 300m (50 000 ft) in non-operating condition and 4500m

(15,000 ft) for operation

Vibration and Shock:

Vibration: 0.30mm (0.012 in) p-p, 10-55 Hz, 3 axis

Shock: 30g, 11 Ms, 1/2 sine, 3 axis

Contact factory for review of any application requiring operation under continuous

vibration.

MEMORY SYSTEMS

Type:

16k N-channel MOS semiconductor RAM.

Word Size:

16 bits plus parity bit

Configuration:

Controller plus multiple plug-in memory modules. Available in 32k and 128k

byte modules.

Page Size:

2,048 bytes

Address Space:

65,536 bytes without DMS; 2,097,152 bytes with DMS (2108B and 2112B)

System Cycle Time:

650ns

Volatility Protection:

Sustaining power for line loss of no greater than 8ms at the minimum line (mains)

voltage. Power fail recovery system is optional.

Parity Error Detection:

Monitors all words read from memory. Switch selectable for either halt or ignore interrupt error when detected. With memory protect or DMS accessory, interrupt on

parity error occurs.

POWER FAIL

Interrupt Priority:

Highest priority interrupt.

Power Failure:

Detects power failure and generates an interrupt to user-written power-failure routine. A minimum of 500 μs is available for the routine.

Power Fail Recovery System:

Available as an accessory. (HP 12944B or HP 12991B).

Power Restart:

Detects resumption of power and generates an interrupt to user-written automatic restart program which has been protected in memory by the sustaining battery.

Power Control and Charge Unit:

Monitors battery charge status and provides 2A maximum charging current. Type: 14 volt, 5 ampere-hours, sealed lead acid

Sustaining Battery:

Charging rate: 2A, maximum

Capacity:HP 12944B and HP 12991B will sustain memory for the period of time

shown in the graph below.

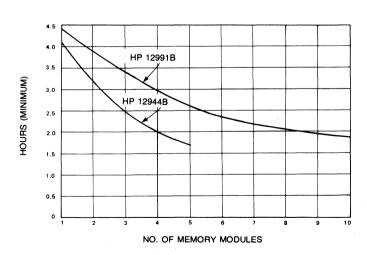


Table 1-1B. E-Series Specifications

CENTRAL PROCESSOR

Address Space: 4,096 bytes (direct addressing)

65,536 bytes (indirect addressing)

2,097,152 bytes with Dynamic Mapping System (optional)

Word Size: 16 bit

Instruction Set: 128 standard instructions

Memory Reference: 14
Register Reference: 43
Input/Output: 13
Extended Arithmetic: 10
Index: 32

Bit Byte, Word Manipulation: 10
Floating Point: 6

Registers: 10

Accumulators: Two (A and B), 16 bits each. Explicitly addressable; also addressable as memory

locations.

Index: Two (X and Y), 16 bits each

Memory Control: Two (T and P), 16 bits each; one (M), 15 bits. Supplementary: Two (Overflow and Extend), one bit each

Display: One, 16 bits

CONTROL PROCESSOR

Address Space: 16,384 words (64 modules of 256 words each)

Word Size: 24 bits
Word Formats: Four
Word Fields: Five

Instruction Execution Time: Variable; 175 nS or 280 nS

 Micro-Orders (Microinstructions):
 211

 Operations:
 15

 Special:
 32

 ALU and Conditional:
 68

 Store:
 32

 S-Bus:
 32

 Reverse Skip Sense:
 32

INITIAL BINARY LOADERS

ROM resident; capacity of four 64-word programs callable from operator panel.

Computer can be configured for forced cold loading from a remote site.

SELF-TEST Automatic tests of CPU and memory operating condition. Executed on cold power-

up and whenever operator panel IBL/TEST switch is pressed.

Table 1-1B. E-Series Specifications (Continued)

INPUT/OUTPUT

Interrupt Structure:

Multilevel vectored priority interrupt; priority determined by interrupt location.

I/O SYSTEM SIZE	M SIZE HP 2109B	
Standard I/O Channels	9	14
With One Extender	25	30
With Two Extenders	41	46

Compatibility:

Instruction set and program compatible with HP 1000 M-Series computers (time loop programs excepted).

Current Available for:

I/O, Memory and Accessories

MODEL	+5V	+12V	-12V	-2V
2109B	38.8A	2.5A	2.0A	4.0A
2113B	38.8A	2.5A	2.0A	4.0A

DC Required:

MODEL	+5V	-2V
12892B Memory protect	1.25A	.05A
12897B DCPC	2.4A	.05A
12731A MEM	3.9A	
13307A DMS	.78A	
13306A FFP	1.8A	_
13197A 1k WCS	2.2A	.01A
12990B Memory extender	0	
12992 Loader ROMS (each)	.13A	
12979B I/O Ext. buffer card	2.0A	1.35A
2102B Memory Controller	1.2A	_
2102C Fault Memory controller	3.29A	
12779A Check Bit Array	0.52A	
12780A Check Bit Array	0.73A	_
12747A 128k Byte Memory Module	0.85A	_
2102E Memory Controller	2.56A	_
13047A 2k UCS	7.39A ¹	
13304A FAB	1.8A ²	_
12791A Firmware Expansion Module	5.4 ³	_

^{11.15}A + 0.78A for each 256 instructions; 7.39A when fully loaded.
2Due to power saver circuit, this is the maximum current regardless of amount of microcode loaded on the board.

DIRECT MEMORY ACCESS

Available only with DCPC accessory.

Number of Channels:

Two

Word Size:

16 bits

Maximum Transfer Block Size:

32,768 words

I/O Assignable:

Assignable to any two I/O channels; all logic necessary to facilitate bidirectional

direct memory transfer to and from I/O is contained on DCPC (controller).

 $^{^{3}1.2}A + 0.525A$ for each 8 blocks of instruction words; 5.4A when fully loaded.

Table 1-1B. E-Series Specifications (Continued)

DIRECT MEMORY ACCESS (Continued)

Transfer Rate:

(All rates in Mbytes/s)

(Fault Control Memory)

(Standard Performance Memory)

HP 2102B	Minimum	Typical	Maximum
Input w/DMS w/o DMS	1.884	1.950	2.098
Output w/DMS	1.626	1.676	1.782
w/o DMS	1.672	1.778	1.938
2102C			
Input w/DMS w/o DMS	1.946	1.018	2.096
Output w/DMS	1.586	1.626	1.726
w/o DMS	1.670	1.724	1.780
HP 2102E	,	,	
Input w/DMS w/o DMS	2.282	2.284	2.284
Output w/DMS	2.038	2.114	2.196
w/o DMS	2.196	2.284	2.284

(High Performance Memory)

DCPC Latency (Channel 1):

Latency is defined as the time interval between the generation of a Service Request (SRQ) signal by an I/O device through the initiation of a DCPC channel 1 cycle to the completion of the I/O data transfer to or from the I/O interface PCA. Subsequent consecutive cycles execute at a specified DCPC rate.

Input and Output Latency Times:

(Times in us)

(Standard Performance Memory)

(Fault Control Memory)

(High Performance Memory)

Minimum	Typical	Maximum
2.73	2.91	3.15
2.84	3.12	3.26
3.43	3.64	3.95
3.57	3.92	4.10
2.98	3.12	3.26
3.09	3.33	3.46
3.75	3.93	4.11
3.89	4.21	4.36
,		
2.21	2.21	2.28
2.24	2.28	2.35
2.75	2.75	2.84
2.80	2.87	2.98
	2.73 2.84 3.43 3.57 2.98 3.09 3.75 3.89	2.73

DIRECT MEMORY ACCESS (Continued)

A USER MICROCODE sequence of seven consecutive reads may provide conditions to produce the absolute worst case latency time. The absolute worst case latency times are as follows:

Memory System	Input	Output
HP 2102B	4.095 us	4.935 us
HP 2102C	5.125 us	6.031 us
HP 2102E	3.050 us	3.681 us
	1	

PHYSICAL CHARACTERISTICS

Width: Depth:

42.6cm (16 3/4 in) behind rack mount; 48.3cm (19 in) front panel width on sides

59.7cm (23 1/2 in); 58.4cm (23 in) behind rack mounting ears

MODEL	HP 2109B	HP 2113B
Height	22.2cm (8-3/4 in)	31.1cm (17-1/4 in)
Weight	20.4kg (45 lbs)	29.5kg (65 lbs)

ELECTRICAL CHARACTERISTICS

Line Voltage:

88 to 132V; 176 to 264V

Line Frequency:

47.5 to 66 Hz

Power Dissipation:

770 watts (maximum).

Power Supply:

Sustains computer over a line loss of no greater than 8 ms at the nominal line

(mains) voltage.

Input Line Transients:

Sustains ± 500 V, 50μ s pulse on power lines; sustains ± 1 kV, 100ns pulses on

power lines.

Output Protection:

All regulated voltages protected from overvoltage and overcurrent conditions.

Output Voltage Regulation:

 \pm 5% (except -2V is \pm 10%, and +30V is unregulated).

Thermal Sensing:

Monitors internal temperature and automatically shuts down when computer temperature exceeds operating temperature. Resets automatically when temperature.

ature returns to operating temperature.

ENVIRONMENTAL LIMITATIONS

Operating Temperature:

 0° to 55° C (+32° to 131°F)

Storage Temperature:

-40° to 75°C (-40° to 167°F)

Relative Humidity:

20% to 95% at 40°C (104°F), non-condensating

Table 1-1B. E-Series Specifications (Continued)

ENVIRONMENTAL LIMITATIONS (Continued)

Ventilation and Heat Dissipation: Intake: left-hand side; Exhaust: right-hand side.

	MODEL	2109B	2113B
Heat dissipation	KCal/hr. max. BTU/hr. max.	538 2138	538 2138
	cubic meters /min.	6.63	9.23
Air flow			
	cubic feet /min.	200	280

Altitude:

Transportable to 15,300m (50,000 ft) in non-operating condition and 4570m

(15,000 ft) for operation

Vibration and Shock:

Vibration: .30mm (0.12 in) p-p, 10-55 Hz, 3 axis

Shock: 30q, 11 Ms, 1/2 sine, 3 axis

Contact factory for review of any application requiring operation under continuous

vibration.

MEMORY SYSTEMS

Type:

16k N-channel MOS semiconductor RAM.

Word Size:

16 bits plus parity bit

Configuration:

Controller plus multiple plug-in memory modules. Available in 32k and 128k byte

modules.

Page Size:

2,048 bytes

Address Space:

65,536 bytes without DMS; 1,835,008 bytes with DMS (2109B and 2113B)

System Cycle Times: (All cycle times in ns)

(Standard Performance Memory)

(Fault Control Memory)

(High Performance Memory)

Cycle	Minimum	Typical	Maximum
READ w/o DMS	560	595	665
READ w/DMS	595	665	700
WRITE	595	665	700
REFRESH	595	665	700
READ w/o DMS	595	630	665
READ w/DMS	630	700	730
WRITE	595	630	665
REFRESH	595	630	665
READ w/o DMS	350	350	385
READ w/DMS	385	420	455
WRITE	350	350	385
REFRESH	350	350	385

Table 1-1B. E-Series Specifications (Continued)

MEMORY SYSTEMS (Continued)

Volatility Protection:

Sustaining power for line loss of no greater than 8ms at the minimum line (mains)

voltage. Power fail recovery system is optional.

Parity Error Detection:

Monitors all words read from memory. Switch selectable for either halt or ignore

interrupt error when detected. With memory protect or DMS accessory, interrupt on

parity error occurs.

POWER FAIL

Interrupt Priority:

Highest priority interrupt.

Power Failure:

Detects power failure and generates an interrupt to user-written power-failure

Power Fail Recovery System:

routine. A minimum of 500 μs is available for the routine.

Power Restart:

Sustaining Battery:

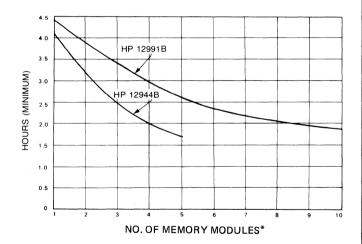
Available as an accessory. (HP 12944B or HP 12991B).

Detects resumption of power and generates an interrupt to user-written automatic

restart program which has been protected in memory by the sustaining battery.

Power Control and Charge Unit:

Jill.


Monitors battery charge status and provides 2A maximum charging current.

Type: 14 volt. 5 ampere-hours, sealed lead acid

Charging rate: 2A, maximum

Capacity: HP 12944B and HP 12991B will sustain memory for the period of time

shown in the graph below.

^{*}INCLUDES MEMORY BOARDS AND FAULT CONTROL CHECK BIT ARRAY BOARDS.

Table 1-1C. F-Series Specifications

LI A	DD	NA/A	DE	CI	IDDI	IEC

Computer Mainframe:

HP 2111F Computer mainframe

HP 2117F Computer mainframe and Floating Point Processor assembly

Memory Controller:

HP 2102E

Memory Module:

HP 2111F: Two HP 12741A modules

HP 2117F: HP 12747H module

Dynamic Mapping System:

HP 13305A (HP 2117F)

CENTRAL PROCESSOR

Address Space:

4,096 bytes (direct addressing)

65,536 bytes (indirect addressing)

2,097,152 bytes with Dynamic Mapping System

Word Size:

Instruction Set:

192 standard instructions (HP 2111F); 230 standard instructions (HP 2117F)

Memory Reference: 14 Register Reference: 43

Input/Output: 13 Extended Arithmetic: 10 32

Index:

Bit Byte, Word Manipulation: 10 Floating Point: 24

Scientific: 13 Fast FORTRAN: 21 Double Integer: 12

Dynamic Mapping:

38 (HP 2117F)

Vector (Optional):

38 (19 single and 19 double precision formats)

Registers:

Accumulators:

Two (A and B), 16 bits each. Explicitly addressable; also addressable as memory

locations.

Index:

Two (X and Y), 16 bits each

Memory Control: Supplementary:

Two (T and P), 16 bits each; one (M), 15 bits. Two (Overflow and Extend), one bit each

Display:

One, 16 bits

CONTROL PROCESSOR

Address Space:

16,384 words (64 modules of 256 words each)

Word Size:

24 bits

Word Formats:

Four

Word Fields:

Five

Instruction Execution Time:

Variable; 175 nS or 280 nS

Micro-Orders

211

Operations: Special:

15 32

ALU and Conditional:

68

Store:

32

S-Bus:

32

Reverse Skip Sense:

32

Table 1-1C. F-Series Specifications

SCIENTIFIC INSTRUCTION SET

Data Format: Accuracy:

Single precision (32-bit) floating point

RMS relative error for the various Scientific Instruction Set functions is as follows:

Function	RMS Rel. Error	Function	RMS Rel. Error
SIN	8.80E-8	SQRT	6.74E-8
cos	8.82E-8	EXP	1.38E-7
TAN	1.99E-7	ALOG	1.28E-7
ATAN	1.34E-7	ALOGT	1.39E-7
TANH	1.33E-7		

INITIAL BINARY LOADERS

ROM resident; capacity of four 64-word programs callable from operator panel. Computer can be configured for forced cold loading from a remote site.

SELF-TEST

Automatic tests of CPU and memory operating condition. Executed on cold powerup and whenever operator panel IBL/TEST switch is pressed.

INPUT/OUTPUT

Interrupt Structure:

Multilevel vectored priority interrupt; priority determined by interrupt location.

I/O SYSTEM SIZE	HP 2111F	HP 2117F
Standard I/O Channels	9	14
With One Extender	25	30
With Two Extenders	41	46

Compatibility:

Instruction set: The HP 1000 F-Series instruction set is backwards compatible with all previous 2100 Series computers.

Program: All programs written for 2100 Series computers are compatible with the

F-Series, except those with timing loop dependence.

Current Available for:

I/O, Memory and Accessories

MODEL	+5V	+12V	-12V	-2V
2111F	21.9A	2.5A	2.0A	,6.0A
2117F	28.8A	2.5A	2.0A	6.0A

Table 1-1C. F-Series Specifications

INPUT/OUTPUT (Continued)

DC Required:

MODEL	+5V	-2V
12892B Memory protect	1.25A	.05A
12897B DCPC	2.4A	.05A
12731A MEM	3.9A	_
13307A DMI	.78A	
13197A 1k WCS	2.2A	.01A
12990B Memory extender	0	_
12992 Loader ROMS (each)	.13A	
12979B I/O Ext. buffer card	2.0A	1.35A
2102E Memory Controller	2.56A	_
12747H 128k Byte Memory Module	.48A	
2102H Fault Memory Controller	3.3A	_
12779H Check Bit Array	.25A	_
12780H Check Bit Array	.3A	-
13047A 2k UCS	7.39A1	-
13304A FAB	1.8A ²	
12791A FEM	5.2 ³	_

 ^{11.15}A + 0.78A for each 256 instructions; 7.39A when fully loaded.
 2Due to power saver circuit, this is the maximum current regardless of amount of microcode loaded on the board.
 35.2 amperes fully loaded. 1.2 amperes unloaded.

DIRECT MEMORY ACCESS

Available only with DCPC accessory.

Number of Channels:

Two

Word Size:

16 bits

Maximum Transfer Block Size:

32,768 words

I/O Assignable:

Assignable to any two I/O channels; all logic necessary to facilitate bidirectional direct memory transfer to and from I/O is contained on DCPC (controller).

Transfer Rate:

(All rates in Mbytes/s)

(High Performance Memory)

	•	•	

(High Performance Fault Control Memory)

HP 2102E	Minimum	Typical	Maximum
Input w/DMS w/o DMS	2.282	2.284	2.284
Output w/DMS	2.038	2.114	2.196
w/o DMS	2.196	2.284	2.284
HP 2102H			
Input w/DMS w/o DMS	2.28	2.28	2.28
Output w/DMS	1.902	1.968	2.038
w/o DMS	2.038	2.114	2.196

DCPC Latency (Channel 1):

Latency is defined as the time interval between the generation of a Service Request (SRQ) signal by an I/O device through the initiation of a DCPC channel 1 cycle to the completion of the I/O data transfer to or from the I/O interface PCA. Subsequent consecutive cycles execute at a specified DCPC rate.

DIRECT MEMORY ACCESS (Continued)

Input and Output Latency Times:

(Times in us)

(High Performance Memory)

(High Performance Fault Control Memory)

HP 2102E	Minimum	Typical	Maximum
Input w/o DMS	2.21	2.21	2.28
w/DMS	2.21	2.28	2.35
Output w/o DMS	2.75	2.75	2.84
w/DMS	2.80	2.87	2.98
HP 2102H			
Input w/o DMS	2.31	2.42	2.52
w/DMS	2.38	2.56	2.74
Output w/o DMS	2.84	2.94	3.05
w/DMS	2.98	3.16	3.33

A USER MICROCODE sequence of seven consecutive reads may provide conditions to produce the absolute worst case latency time. The absolute worst case latency times are as follows:

3.050 us	3.681 us 4.100 us
	3.050 us 3.510 us

PHYSICAL CHARACTERISTICS

Width:

Depth:

42.6cm (16 3/4 in) behind rack mount; 48.3cm (19 in) front panel width on sides 62.2cm (24 1/2 in); 58.4cm (23 in) behind rack mounting ears

MODEL	HP 2111F	HP 2117F
Height	31.1cm (12-1/4 in)	44.5cm (17-1/2 in)
Weight	30kg (66 lbs)	50kg (110 lbs)

ELECTRICAL CHARACTERISTICS

Line Voltage:

2111F: 88-132V; 176-264V with option 015.

2117F: Computer mainframe same as 2111F; Floating Point Processor voltage selector offers choice of 90-110V, 108-132V, 198-242V, and 216-264V ranges.

Line Frequency:

47.5 to 66 Hz

Power Dissipation:

2111F: 770 watts (maximum). 2117F: 970 watts (maximum).

Table 1-1C. F-Series Specifications

ELECTRICAL CHARACTERISTICS (Continued)

Power Supply: Sustains computer over a line loss of no greater than 8 ms at the nominal line

(mains) voltage.

Input Line Transients: Sustains ±500V, 50 µs pulse on power lines; sustains ±1kV, 100ns pulses on

power lines.

Output Protection: All regulated voltages protected from overvoltage and overcurrent conditions.

Output Voltage Regulation:

 $\pm 5\%$ (except -2V is $\pm 10\%$, and +30V is unregulated).

Thermal Sensing:

Monitors internal temperature and automatically shuts down when computer temperature exceeds specified maximum operating temperature. Resets automatically when temperature returns to below specified maximum operating temperature.

ENVIRONMENTAL LIMITATIONS

Operating Temperature:

0° to 55°C (+32° to 131°F)

Storage Temperature:

-40° to 75°C (-40° to 167°F)

Relative Humidity:

20% to 95% at 40°C (104°F), non-condensating

Ventilation and Heat Dissipation:

Intake: left-hand side; Exhaust: right-hand side.

	MODEL	2111F	2117F*
Heat dissipation	KCal/hr. max. BTU/hr. max.	580 2303	752 2986
Air flow	cubic meters /min.	7.9	11
	cubic feet /min.	280	390

^{*}Includes both computer and floating point processor mainframes.

Altitude:

Transportable to 15 240m (50 000 ft) in non-operating condition and 4570m

(15 000 ft) for operation

Vibration and Shock:

Vibration: 0.30mm (0.012 in) p-p, 10-55 Hz, 3 axis

Shock: 30g, 11 Ms, 1/2 sine, 3 axis

Contact factory for review of any application requiring operation under continuous

vibration.

MEMORY SYSTEMS

Type:

16k N-channel MOS semiconductor RAM.

Word Size:

16 bits plus parity bit

Configuration:

Controller plus multiple plug-in memory modules. Available in 32k and 128k

byte modules.

Page Size:

2,048 bytes

Address Space:

65,536 bytes without DMS; 2,097,152 bytes with DMS (2111F and 2117F)

MEMORY SYSTEMS (Continued)

System Cycle Times:

(All cycle times in ns)

(High Performance Memory)

Cycle	Minimum	Typical	Maximum
READ w/o DMS	350	350	385
READ w/DMS	385	420	455
WRITE	350	350	385
REFRESH	350	350	385
READ w/o DMS	386	421	456
READ w/DMS	456	491	526
WRITE	386	421	456
REFRESH	386	421	456

(High Performance Fault Control Memory)

Volatility Protection:

Sustaining power for line loss of no greater than 8ms at the minimum line (mains)

voltage. Power fail recovery system is optional.

Parity Error Detection:

Monitors all words read from memory. Switch selectable for either halt or ignore interrupt error when detected. With memory protect or DMS, interrupt on parity

error occurs.

POWER FAIL

Interrupt Priority:

Highest priority interrupt.

Power Failure:

Detects power failure and generates an interrupt to user-written power-failure

routine. A minimum of 500 μ s is available for the routine.

Power Fail Recovery System:

Available as an accessory. (HP 12991B).

Power Restart:

Detects resumption of power and generates an interrupt to user-written automatic restart program which has been protected in memory by the sustaining battery.

Power Control and Charge Unit:

Monitors battery charge status and provides 2A maximum charging current.

Sustaining Battery:

Type: 14 volt, 5 ampere-hours, sealed lead acid

Charging rate: 2A, maximum

Capacity:HP 12991B will sustain memory for the period of time shown in the graph below.

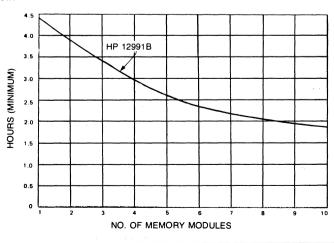


Table 1-2A. M-Series Options and Accessories

DESCRIPTION	OPTION NO.	ACCESSORY NO.
HP 2108M and HP 2112M Computers		
230V Operation	015	
Power Fail Recovery System (HP 2108B)	1	12944B
Power Fail Recovery System (HP 2112B or 12990B)	!	12991B
Memory Protect	1	12892B
Dual-Channel Port Controller (DCPC)		12897B
User ROM Control Store Board		12945A
Dynamic Mapping System		12976B
Fast FORTRAN Processor	j l	12977B
1K Writable Control Store		13197A
Slide Mounting Kit (HP 2108M, HP 12979B, HP 12990B)		12903B
Slide Mounting Kit (HP 2112M)]	12903C
Disc Loader ROM for HP 7900/01 or HP 2883		12992A
Disc Loader ROM for HP 7906/20/25	1	12992B
Loader ROM for 2644/45/48 Mini-Cartridge Tape Loader		12992C
Loader ROM for 7970 Mag Tape		12992D
Loader ROM for 9885 Flexible Disc		12992E
Disc Loader ROM for 7900/01	1	12992F
Terminal Loader ROM for HP 2644A/2645A/2648A]	12992C
		12992C 12992D
Magnetic Tape Loader ROM for HP 7970B/E 2k User Control Store Board	1	13047A
	1	
Firmware Expansion Module		12791A
HP 2102 MOS Memory System		
Memory Controller	015	2102B
64k Byte Memory Module		12746A
128k Byte Memory Module	}	12747A
Fault Control Memory Controller	·	2102C
256k Byte Check Bit Array Board		12779A
512k Byte Check Bit Array Board		12780A
128k Byte Standard Performance Memory Package	j.	12784A
256k Byte Standard Performance Memory Package		12784B
512k Byte Standard Performance Memory Package	[[12784C
1024k Byte Standard Performance Memory Package		12784D
128k Byte Std. Perf. Fault Control Memory Package		12785A
256k Byte Std. Perf. Fault Control Memory Package		12785B
512k Byte Std. Perf. Fault Control Memory Package		12785C
1024k Byte Std. Perf. Fault Control Memory Package		12785D
Input/Output Extender		12979B
230V Operation	015	.20700
Dual CPU Kit	0,0	12781A
Dual Channel Port Controller		12898A
Data Charlet Fort Controller		12030A
Memory Extender		12990B
230V Operation	015	
	1	

Table 1-2B. E-Series Options and Accessories

DESCRIPTION	OPTION NO.	ACCESSORY NO.
HP 2109B and HP 2113B Computers		
230V Operation	015	<u> </u>
Power Fail Recovery System (HP 2109E)		12944B
Power Fail Recovery System (HP 2113E or 12990B)	1	12991B
Memory Protect	1	12892B
·	1	12897B
Dual-Channel Port Controller (DCPC)		
E-Series Firmware Accessory Board	1	13304A
E-Series Dynamic Mapping System 1,2	1	13305A
E-Series Fast FORTRAN Processor ²	1	13306A
1k Writable Control Store		13197A
Slide Mounting Kit (HP 2109E, HP 12979B, HP 12990B)		12903B
Slide Mounting Kit (HP 2113E)		12903C
Dynamic Mapping Instructions	1	13307A
Memory Expansion Module	1	12731A
Loader ROM for 2644A and 2645A3		12992C
Loader ROM for 7970B/E ³		12992D
2k User Control Store		13047A
	1	100
HP 2102 MOS Memory Systems	1	
Standard Performance Memory Systems		
Memory Controller	1	2102B
64k Byte Memory Module		12746A
128k Byte Memory Module		12747A
128k Byte Memory Package	1	12786A
256k Byte Memory Package		12786B
512k Byte Memory Package		12786C
1024k Byte Memory Package		12786D
Standard Performance Fault Control Memory Systems		
Fault Control Memory Controller	1	2102C
Check Bit Array (lower half)	1	12779A
Check Bit Array (full)		12780A
128k Byte Memory Package	İ	12787A
256k Byte Memory Package		12787B
, , ,		
512k Byte Memory Package	1	12787C
1024k Byte Memory Package		12787D
High Performance Memory Systems		
Memory Controller		2102E
64k Byte Memory Module		12746H
128k Byte Memory Module	1	12747H
128k Byte Memory Package	1	12788A
256k Byte Memory Package		12788B
512k Byte Memory Package	ļ	12788C
1024k Byte Memory Package	1	12788D
High Performance Fault Control Memory Systems		
Memory Controller		2102H
Check Bit Array (lower half)		12779H
Check Bit Array (full)		12780H
64k Byte Memory Module		12746H
		12747H
128k Byte Memory Module		l .
128k Byte Memory Package		12789A
256k Byte Memory Package		12789B
512k Byte Memory Package		12789C
1024 Byte Memory Package		12789D
Input/Output Extender	015	12979B
230V Operation		-
	1	12898A
DCPC for I/O Extender	l .	
Memory Extender	015	12990B

¹Includes Memory Protect.

²Requires E-Series Firmware Accessory Board.

³See latest Loader ROM Installation Manual for a complete listing of Loader ROMs.

Table 1-2C. F-Series Options and Accessories

DESCRIPTION	OPTION NO.	ACCESSORY NO.
HP 2111F and HP 2117F Computers		
Delete standard 128k Byte memory system (2117F)	-013	_
and replace with 64k Byte memory system		
Delete standard memory when ordering alternate memory	-014	·
230V Operation	-015	
Power Fail Recovery System (HP 2111F, HP 2117F		12991B
HP 12990B)		
Memory Protect		12892B
Dual-Channel Port Controller (DCPC)		12897B
Dynamic Mapping System ¹		13305A
1K Writable Control Store		13197A
Slide Mounting Kit (HP 12979B, HP 12990B)		12903B
Slide Mounting Kit (HP 12979B, HP 12990B) Slide Mounting Kit (HP 2111F)		12903D
Dynamic Mapping Instructions		13307A
	1	12731A
Memory Expansion Module Firmware Expansion Module		12731A 12791A
· · · · · · · · · · · · · · · · · · ·		12/91A 12824A
Vector Instruction Set		
Loader ROM for 2644A and 2645 ²	1 7.1	12992C
Loader ROM for 7970B/E ²		12992D
2k User Control Store		13047A
HP 2102 MOS Memory Systems		
High Performance Memory System		·
Memory Controller	1	2102E
64k Byte Memory Module		12746H
128k Byte Memory Module		12747H
128k Byte Memory Package		12788A
256k Byte Memory Package	1	12788B
512k Byte Memory Package		12788C
1024k Byte Memory Package		12788D
High Performance Fault Control Memory System		
Memory Controller		2102H
Check Bit Array (lower half)	•	12779H
Check Bit Array (full)		12780H
64k Byte Memory Module	. I was a second	12746H
128 Byte Memory Module		12747H
128k Byte Memory Package		12789A
256k Byte Memory Package		12789B
512k Byte Memory Package		12789C
1024k Byte Memory Package		12789D
, , , , , , , , , , , , , , , , , , , ,		
Input/Output Extender		12979B
230V Operation	-015	· —
DCPC for I/O Extender		12898A
Memory Extender	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	12990B
Memory Extender		129900
230V Operation	-015	_

¹Includes Memory Protect.

²See latest Loader ROM Installation Manual for a complete listing of Loader ROMs.

OPERATING PROCEDURES

Ш

This section describes the hardware registers accessible to the programmer and the functions of the various operating controls and indicators. Also included are basic operating examples such as a cold start procedure to load a program via an input device, manually loading a short program via the operator panel, and running a program after it has been loaded into memory.

2-1. HARDWARE REGISTERS

The computer has eight 16-bit working registers which can be selected for display and modification by operator panel controls; two 1-bit registers; and one 16-bit display register. The functions of these registers are described in following paragraphs.

2-2. A-REGISTER

The A-register is a 16-bit accumulator that holds the results of arithmetic and logical operations performed by programmed instructions. This register can be addressed directly by any memory reference instruction as location 000000 (octal), thus permitting interrelated operations with the B-register (e.g., "add B to A", "compare B with A", etc.) using a single-word instruction.

2-3. B-REGISTER

The B-register is a second 16-bit accumulator, which can hold the results of arithmetic and logic operations completely independent of the A-register. The B-register can be addressed directly by any memory reference instruction as location 000001 (octal) for interrelated operations with the A-register.

2-4. M-REGISTER

The M-register holds the address of the memory cell currently being read from or written into by the CPU.

2-5. T-REGISTER

All data transferred into or out of memory is routed through the T-register. When displayed, the T-register indicates the contents of the memory location currently pointed to by the M-register. The A- or B-register contents are displayed if the M-register contents are 000000 or 000001, respectively.

2-6. P-REGISTER

The P-register holds the address of the next instruction to be fetched from memory.

2-7. S-REGISTER

The S-register is a 16-bit utility register. The S-register can be addressed as an input/output device (select code 01) and, in the run mode, it is displayed in the operator panel display register. Thus, the S-register may serve as a communication link between the computer and operator.

2-8. EXTEND REGISTER

The one-bit extend register is used by rotate instructions to link the A- and B-registers or to indicate a carry from the most-significant bit (bit 15) of the A- or B-register by an add instruction or an increment instruction. This is of significance primarily for multiple-precision arithmetic operations. If already set (logic 1), the extend bit cannot be cleared by a carry. However, the extend bit can be selectively set, cleared, complemented, or tested by programmed instructions. When the operator panel EXTEND indicator is lighted, the extend bit is set. This register can also be accessed from the operator panel by entering the special register display mode described under paragraph 2-23.

2-9. OVERFLOW REGISTER

The one-bit overflow register is used to indicate that an add instruction, divide instruction, or an increment instruction referencing the A- or B-register has caused (or will cause) the accumulators to exceed the maximum positive or negative number that can be contained in these registers. The overflow bit can be selectively set, cleared, or tested by programmed instructions. The operator panel OVERFLOW indicator will remain lighted until the overflow is cleared. This register can also be accessed from the operator panel by entering the special register display mode described under paragraph 2-23.

2-10. DISPLAY REGISTER

The display register, which is included on the operator panel, provides a means of displaying and/or modifying the contents of the eight 16-bit working registers and the special registers when the computer is in the halt mode. An illuminating indicator is located directly above each of the 16-bit switches; a lighted indicator denotes a logic 1 and an unlighted indicator denotes a logic 0. When the computer is in the run mode, the contents of the S-register are displayed automatically.

2-11. X- AND Y-REGISTERS

These two 16-bit registers, designated X and Y, are accessed through the use of 30 index register instructions and 2 jump instructions described under paragraphs 3-24 and 3-25, respectively. These registers can also be accessed from the operator panel by entering the special register display mode described under paragraph 2-23.

2-12. OPERATOR PANEL AND POWER SUPPLY OPERATING CONTROLS

The location and function of the various controls and indicators mounted on the operator panel and the power supply are illustrated in Figure 2-1 and described in Table 2-1. All operator panel controls are two-position, momentary-contact rocker switches; the status of the computer is displayed by light-emitting diodes.

2-13. REAR PANEL

The rear panels and the I/O PCA cages for the HP 2108M and HP 2109E computers are shown in Figure 2-2 and described in Table 2-2. The rear panel and I/O PCA cage for the HP 2111F are shown in Figure 2-3 and described in Table 2-3. The rear panel and I/O PCA cage for the HP 2112M, HP 2113E and HP 2117F are shown in Figure 2-4 and described in Table 2-4. The rear panel of the Floating Point Processor (FPP) is also shown in Figure 2-4 and described in Table 2-4.

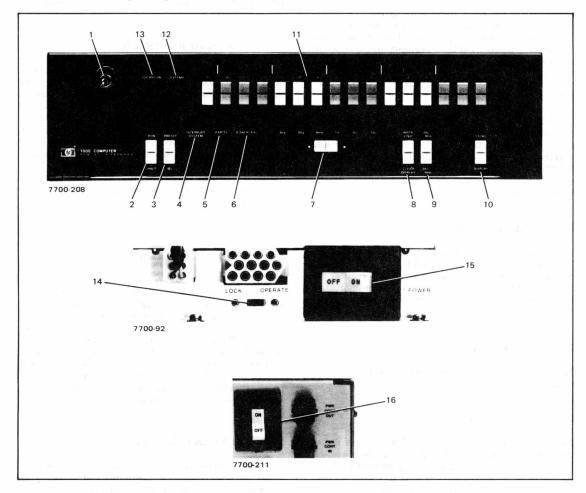


Figure 2-1. Operator Panel and Power Supply Controls and Indicators

Table 2-1. Operator Panel and Power Supply Control and Indicator Functions

FIG. 2-1, INDEX NO.	NAME			Market	FUNCTION
1	Key	Secures the operator panel when access to the $\sim\!$ POWER OFF/ON and LOCK/OPERATE switches is not desired.			
2	RUN/HALT	RUN. Starts CPU and lights the RUN indicator. All operator panel functions are disabled except Display Register, CLEAR DISPLAY, and HALT. Pressing RUN automatically causes the S-register contents to be displayed, and no other register can be selected during the run mode; thus, the Display Register effectively becomes the S-register, which may be addressed as select code 01 by the program.			
		off the RUN in	dicator	All oth	t the end of the current instruction and turns ner operator panel controls become enabled. automatically for display.
3	PRESET-IBL/TEST	PRESET. Disables the interrupt system and clears the parity indicator and overflow bit (if set). From I/O channel 06 up, clears control flip-flops and sets flags. Pressing and holding PRESET upon the restoration of power will force an ARS condition (see paragraph 6-1).			
		IBL (initial binary loader)/TEST. Causes the contents of the selected loader ROM to be written into the uppermost 64 memory locations and the automatic execution of firmware self-tests 1 and 2. (Refer to paragraph 2-31.) Bits 15 and 14 of the S-register select the desired loader ROM as follows:			
			Bľ	TS	
		's	15	14	LOADER SELECTED
		· · · · · · · · · · · · · · · · · · ·	0	0	Loader ROM 00 ₂
			1	0	Loader ROM 10₂
			0	1	Loader ROM 01 ₂
			1	1	Loader ROM 11 ₂
		Bits 6 through the loading de		he S-re	egister must be set to the octal select code of
4	INTERRUPT SYSTEM	Indicates the status of the interrupt system. When lighted, the interrupt system is enabled (Flag set); when turned off, the interrupt system is disabled (Flag clear).			
5	PARITY	Lights when a parity error occurs as a result of reading from memory. In the halt mode, the light can be turned off by pressing the PRESET switch. With the memory protect or DMS installed and the parity error interrupt enabled, the indicator is turned off automatically by a parity error interrupt and is therefore not ordinarily lighted long enough to be visible.			
6	POWER FAIL	If the power fail/automatic restart feature is enabled (i.e., internal ARS/ARS switch is set to ARS position as described in Section VI) the indicator will light when power is restored. This light can be turned off by pressing the PRESET switch in the halt mode.			

Table 2-1. Operator Panel and Power Supply Control and Indicator Functions (Continued)

FIG. 2-1, INDEX NO.	NAME	FUNCTION
7	Register Select ▶	In the halt mode, this switch allows any one of the working registers or special registers (A, B, M, T, P, S, x, y, m, t, f, or s) to be selected for display and/or modification. Pressing the left half (◀) of the switch moves the "dot" indicator left; pressing the right half (▶) of the switch moves the "dot" indicator right. The register currently selected is indicated by the appropriate indicator light.
		Note: During standard register display mode, the "dot" indicator is the lighted indicator; i.e., the selected register (A, B, M, T, P, or S) is indicated by the lighted indicator and the remaining indicators are not lighted. During special register display mode, the "dot" indicator is the unlighted indicator; i.e., the selected register (x, y, m, t, f, or s) is indicated by the indicator not lighted and the remaining indicators are lighted.
		After a programmed or manual halt, the T-register is selected automatically for display. In this case, the T-register holds the contents of the last accessed memory cell. In the case of a programmed halt, the halt instruction will be displayed.
8	INSTR STEP/CLEAR DISPLAY	INSTR STEP. Pressing and releasing this switch while in the halt mode advances the program to the next instruction. If the T-register indicator lights when the switch is released, infinite indirect addressing is indicated. Actuating this switch does not actually place the computer in the run mode. (See note for additional information.)
		CLEAR DISPLAY. In the run or halt mode, clears the Display Register; i.e., contents become 000000.
9	INC M/m-DEC M/m	INC M. In the halt mode, increments the M-register contents during standard display mode and the m-register contents during special display mode. (Refer to paragraph 2-25.)
		DEC M. In the halt mode, decrements the M-register contents during standard display mode and the m-register contents during the special display mode. (Refer to paragraph 2-25.)
		Note: Incrementing and decrementing occur even when the M- or m-register is not displayed.
10	STORE/MODE	STORE. In the halt and standard display modes, stores the contents of the Display Register into the selected working register (A, B, M, T, P, or S). If the Register Select "dot" is pointing to T and STORE is pressed, the contents of the Display Register will be loaded into memory cell m, the M-register will be incremented automatically to m + 1, and the Display Register will not be updated. This latter feature allows the same data to be stored in consecutive memory locations (e.g., halts in the trap cells, same word into a buffer, etc.). If the Register Select "dot" is pointing to any register other than T, only that one register will be updated when STORE is pressed. (Refer to paragraph 2-23 STORE functions during special register display mode.)

Table 2-1. Operator Panel and Power Supply Control and Indicator Functions (Continued)

FIG. 2-1, INDEX NO.	NAME	FUNCTION		
10	STORE/MODE	MODE. Selects either standard or special register display mode. If pressed when operating in standard register display mode, switches operator panel to special register display mode. If pressed when operating in special register display mode, switches operator panel back to standard register display mode.		
11	Display Register	In the halt mode, displays the contents of the register currently pointed to by the Register Select "dot," only the S-register is displayed during the run mode. A logic 1 is signified when the displayed bit indicator is lighted; a logic 0 is signified when the displayed bit indicator is not lighted. Pressing the upper half of the switch sets that bit to a logic 1; pressing the lower half of the switch sets that bit to a logic 0. The Display Register is cleared to all zeros when the CLEAR DISPLAY switch is pressed.		
12	EXTEND	In both the run and halt modes, continuously displays the content of the extend register. When lighted, the extend bit is set (logic 1).		
13	OVERFLOW	In both the run and halt modes, continuously displays the content of overflow register. When lighted, the overflow bit is set (logic 1).		
	Po	ower Supply Front Panel Controls		
14	LOCK/OPERATE	LOCK. The RUN and HALT switches are disabled; all other functions are enabled (within the constraints of the run/halt modes).		
		OPERATE. All switches are enabled.		
15	~ POWER ON/OFF	Two position circuit breaker. Controls application of ac line power to computer power supply and ventilating fans; provides protection against ac line power overload.		
	FPP (2117F only) Rear Panel Control			
16	~LINE ON/OFF	Two position circuit breaker. Controls application of ac line power to Floating Point Processor power supply and ventilating fans; provides protection against ac line power overload.		

NOTE

When pressing the INSTR STEP switch and performing a jump instruction while monitoring the T-, P-, or M-register, the following will be noted:

- a. The P-register will go to the operand target address.
- b. The M-register will go to the operand target minus one (M=P-1).
- c. The T-register will display the memory location prior to the current instruction to be executed.

Pressing the INSTR STEP switch will not cause an instruction step if there is a pending interrupt and the interrupt system is on; pressing PRESET or turning the interrupt system off will re-enable the INSTR STEP function.

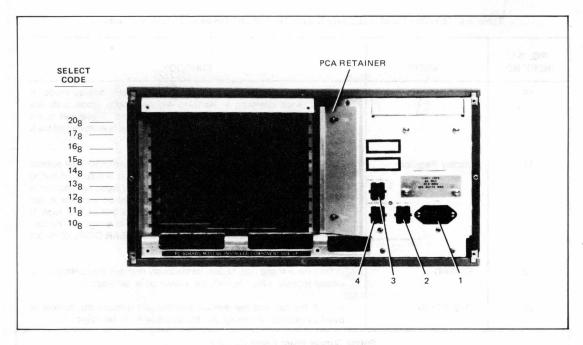
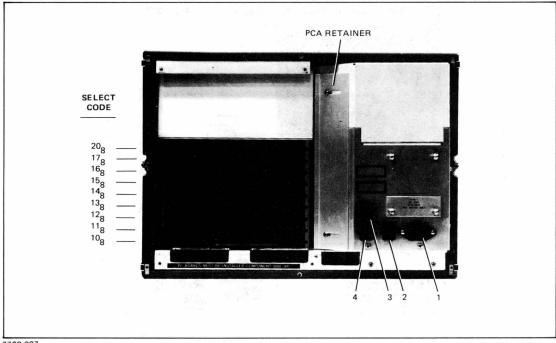



Figure 2-2. HP 2108M and HP 2109E Rear Panel and I/O PCA Cage

Table 2-2. HP 2108M and HP 2109E Rear Panel Features

FIG. 2-2, INDEX NO.	NAME	FUNCTION	
1	~LINE connector	Three-input power connector; provides means of connecting ac power to computer.	
2	BAT INPUT connector	Nine-pin connector; provides means of connecting optional battery to memory sustaining circuits.	
3	PWR CONT IN and	Two nine-pin connectors; provides means of connecting an externa memory extender, I/O extender, or satellite computer (in any combi-	
4	PWR CONT OUT connectors	nation of two units) to main computer. The power supplies in all the inter- connected units must be turned on before the CPU will start. When connected, the CPU monitors the ac and dc power in these units. An ac power failure in any one of the interconnected units will cause a power fail interrupt to be generated by the CPU and the CPU to halt. A dc power failure will cause the computer to stop. The interconnected units will remain inoperative until the failure has been corrected.	

7700-207

Figure 2-3. HP 2111F Rear Panel and I/O PCA Cage

Table 2-3. HP 2111F Rear Panel Features

FIG. 2-3, INDEX NO.	NAME	FUNCTION
1	~LINE connector	Three-input power connector; provides means of connecting ac line power to computer.
2	BAT INPUT connector	Nine-pin connector; provides means of connecting optional battery to memory sustaining circuits.
4	PWR CONT IN and PWR CONT OUT connectors	Two nine-pin connectors; provides means of connecting an external memory extender, I/O extender, or satellite computer (in any combination of two units) to main computer. The power supplies in all the interconnected units must be turned on before the CPU will start. When connected, the CPU monitors the ac and dc power in these units. An ac power failure in any one of the interconnected units will cause a power fail interrupt to be generated by the CPU and the CPU to halt. A dc power failure will cause the computer to stop. The interconnected units will remain inoperative until the failure has been corrected.

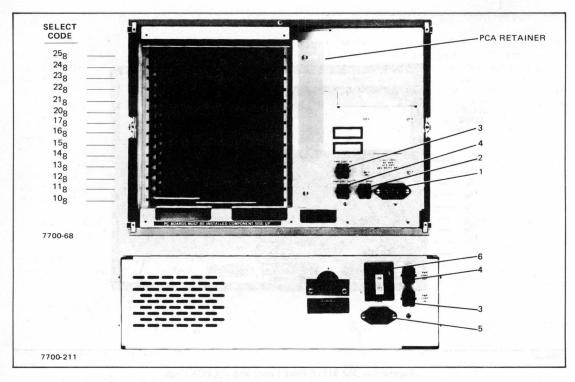


Figure 2-4. HP 2112M, HP 2113E and HP 2117F Rear Panel and I/O PCA Cage $\,$

Table 2-4. HP 2112M, HP 2113E and HP 2117F Rear Panel Features

FIG. 2-4, INDEX NO.	NAME	FUNCTION	
1-	~LINE connector	Three-input power connector; provides means of connecting ac line power to computer.	
2	BAT INPUT connector	Nine-pin connector; provides means of connecting optional battery to memory sustaining circuits.	
3	PWR CONT IN and PWR CONT OUT connectors	Two nine-pin connectors; provides means of connecting an external memory extender, I/O extender, or satellite computer (in any combination of two units) to main computer. The power supplies in all the interconnected units must be turned on before the CPU will start. When connected, the CPU monitors the ac and dc power in these units. An ac power failure in any one of the interconnected units will cause a power fail interrupt to be generated by the CPU and the CPU to halt. A dc power failure will cause the computer to stop. The interconnected units will remain inoperative until the failure has been corrected.	
5	~LINE connector	Three-input power connector; provides means of connecting ac I power to Floating Point Processor.	
6	~LINE ON/OFF	Two position circuit breaker. Controls application of ac line power Floating Point Processor power supply and ventilating fans; provide protection against ac line power overload.	

2-14. INTERNAL SWITCHES

Two toggle switches are mounted on the rear of the central processor unit (CPU) printed-circuit assembly (PCA). The setting of the ARS/ARS switch determines the action that the computer will take in the event of a primary power failure and the setting of the HLT /INT-IGNORE switch determines the action to be taken in the event of a parity error or memory protect violation. Programming considerations concerning these switches are given in Section VI.

Also mounted on the central processor unit PCA are the RPL configuration switches. These switches as used as follows:

- a. To enable RPL operation.
- b. Select one of two loader ROM's (10, and 11,).
- c. Patch in the select code of loading device.
- d. Select subchannel of loading device.

Details concerning the configuration of these switches are given in the Installation and Service Manual for your particular model of HP 1000 computer.

2-15. OPERATING PROCEDURES

The following procedures describe a cold power-up; how to load programs manually; how to load programs using punched tape, disc, magnetic tape, or other such media; how to verify and run programs; and how to enter the special register display mode.

2-16. COLD POWER-UP

Perform the cold power-up as follows:

- a. Lower operator panel. Set the ~POWER OFF/ON switch to OFF. If computer is equipped with an optional power fail recovery system, set BATTERY switch to OFF. On the Floating Point Processor (if present), set the ~LINE switch to ON.
- Set LOCK/OPERATE switch to OPERATE. Wait approximately three seconds and set ~ POWER OFF/ON switch to ON.
- c. Set BATTERY switch to ON. Raise and close the operator panel. Turn key fully counterclockwise.
- d. The diagnostic will begin execution in the E-Series and F-Series and the Display Register can be observed incrementing as each 32k (E-Series) or 64k (F-Series) byte block of memory is tested. When a cold power-up is performed, these computers automatically execute a firmware self-test that checks most of the computer registers and functions and all physical memory. (Refer to paragraphs 2-31 through 2-40 for additional firmware self-test information.) This test executes in approximately 10 seconds or less depending on memory size and clears memory upon completion.

e. Upon successful completion, the T-register will automatically be selected for display.

If a computer or memory failure is detected, the display register and all six working register indicators are lighted. In this case, refer to the pertinent HP 1000 Computer Installation and Service Manual.

2-17. LOADING PROGRAMS MANUALLY

Short programs can be loaded manually from the operator panel as follows:

- a. Press MODE switch if required to obtain standard register display mode and press left half (◀) or right half (▶) of Register Select switch to select M-register.
- b. Press CLEAR DISPLAY and set Display Register to starting address of program. Press STORE.
- c. Select T-register and change contents of Display Register to binary code of first instruction to be loaded; press STORE.
- d. Enter next instruction in Display Register and press STORE. (Pressing STORE with T-register selected automatically increments M-register.)
- e. Repeat step d until entire program has been loaded.

2-18. LOADING PROGRAMS FROM PAPER TAPE READER

Use the following steps to first load the contents of the standard paper tape loader ROM into memory and then load your program by means of a tape reader. Proceed as follows:

- a. Press MODE switch if required to obtain standard register display mode and press left half (◀) or right half (▶) of Register Select switch to select S-register.
- c. Press STORE, PRESET, and then press IBL/TEST. The paper tape loader is now loaded into the uppermost 64 locations of memory and the select code of the tape reader is patched according to the contents of the S-register. The P-register contains the address of the first instruction of the loader. (Starting addresses versus memory size are listed in Table 2-5.)
- d. A successful load is indicated if the OVERFLOW light remains off. An unsuccessful load is indicated if the OVERFLOW light is on; this will occur if the select code programmed in step b was less than 10 (octal) or if a memory hardware fault is detected.
- e. Turn on tape reader and prepare it for reading. Press PRESET and then press RUN. The program will now be read into memory and the computer will halt with the T-register selected automatically. A successful load is indicated if the Display Register contents are 102077 (octal).

If the halt code displayed is not 102077 (octal), one of two possible error condition halt codes will be displayed. If the halt code displayed is 102055 (octal), an address error is indicated; check to ensure that the proper tape was used or that the tape was not installed backwards. If the halt code displayed is 102011 (octal), a checksum error is indicated; check for a possible defective or dirty tape or tape reader.

Table 2-5. Starting Address Vs Memory Size

MEMORY SIZE (in bytes)	STARTING ADDRESS (in octal) OF THE PAPER TAPE LOADER
16k	017700
32k	037700
48k	057700
64k and up	077700

2-19. LOADING PROGRAMS FROM DISC DRIVE

Use the following steps to first load the contents of the standard disc loader ROM into memory and then load your program by means of an HP 7900A, HP 7901A, HP 7905A, HP 7906, HP 7920, or HP 7925 Disc Drive. Proceed as follows:

- a. Press MODE switch if required to obtain standard register display mode and press left half (◄) or right half (▶) of Register Select switch to select S-register.
- b. Press CLEAR DISPLAY and set bit 15 to logic 1 to select standard disc loader ROM.
- Set bits 13 and 12 as shown below to select appropriate disc drive.

BITS 13 12	DISC SELECTED
0 0	HP 7900A or HP 7901A
0 1	HP 7906, or HP 7920/7925

- d. Set bits 11 through 6 to octal select code of disc drive interface PCA.
- e. Set bits 2 through 0 as shown below to select corresponding disc subchannel.

BI	TS	
1	0	DISC LOADING DEVICE
0	0	HP 7900A (fixed disc)
0	1	HP 7900A or HP 7901A (removable disc)
0	0	HP 7906 (Head #0, top of removable disc) HP 7920/7925 (Head #0)
0	1	HP 7906 (Head #1, bottom of removable disc) HP 7920/7925 (Head #1)
1	Q	HP7906 (fixed disc) HP7920/7925 (Head #2)
1	1	HP 7920/7925 (Head #3)

- f. Press STORE, PRESET, and then IBL/TEST. The disc loader is now loaded into the uppermost 64 locations of memory and the select code of the disc drive is patched according to the contents of the S-register. The P-register contains the address of the first instruction of the loader. (Starting addresses versus memory size are listed in Table 2-4.)
- g. A successful load is indicated if the OVERFLOW light remains off. An unsuccessful load is indicated if the OVERFLOW light is on; this will occur if the select code programmed in step d was less than 10 (octal) or if a memory hardware fault is detected.
- h. Turn on and prepare disc drive for operation and then press RUN. The program will now be read into memory and the computer will halt with the T-register selected automatically. A successful load is indicated if the Display Register contents are 102077 (octal).

2-20. LOADING PROGRAMS FROM OTHER LOADING DEVICES

The following procedure is used when loading programs from a disc, magnetic tape, or other such media. The contents of the optional loader ROM, associated with the loading device, must be loaded before the program can be loaded. Locations have been provided within the computer to accommodate two optional loaders; i.e., optional loader ROM 01_2 and 11_2 . Each of these loaders is used to control the loading of programs from a particular type of loading device. It is assumed that the optional loader ROM, associated with the loading device to be used, is installed in the computer and that its location is known.

Use the following steps to first load the contents of one of the optional loader ROM's into memory and then load your program by means of a disc, magnetic tape, or other such media. The program must be in binary form and must contain absolute addresses. Assuming that the loading device has been prepared for reading, proceed as follows:

 a. Press MODE switch if required to obtain standard register display mode and press left half (◄) or right half (►) of Register Select switch to select S-register.

- b. Press CLEAR DISPLAY and set bit 6 through 11 to display octal select code of loading device.
- c. Set bits 15 and 14 as listed in Table 2-6 to select the optional loader corresponding to your loading device.
- d. Set bits 0 through 5, 12, and 13 as outlined in the instructions provided with optional loader.
- e. Press STORE and then press IBL/TEST. The optional loader is now loaded into the uppermost 64 locations of memory and the select code of the loading device is patched according to the contents of the S-register. The P-register is now pointing to the address of the first instruction of the optional loader. (Starting addresses versus memory size are listed in Table 2-4.)
- f. A successful load is indicated if the OVERFLOW light remains off. An unsuccessful load is indicated if the OVERFLOW light is on; this will occur if the select code programmed in step b was less than 10 (octal) or if a memory hardware fault is detected.
- g. Verify that the loading device is prepared for reading. Press PRESET and then press RUN. The program will now be read into memory and the computer will halt with the T-register selected automatically. A successful program load is typically indicated if the contents of the Display Register are 102077 (octal). Refer to the instructions included with each optional loader for the specific halt code used.

Table 2-6. Optional Loader Selection

ВІТ			
15	14	LOADER SELECTED	
0	.1	Loader ROM 01 ₂	
1	1	Loader ROM 11 ₂	

2-21. VERIFYING PROGRAMS

If desired, programs may be verified after loading by the following procedure:

- a. Press MODE switch if required to obtain standard register display mode and press left half (◄) or right half (▶) of Register Select switch to select M-register.
- Press CLEAR DISPLAY and set Display Register to the binary starting address of the program.
- c. Press STORE. Select T-register and verify that the binary instruction code is displayed as desired for the first program instruction.
- d. Press INC M to increment the contents of the M-register by one and verify that the binary instruc-

- tion code displayed is as desired for next programmed instruction.
- Repeat step d until all programmed instructions have been verified. Pressing DEC M permits the previous programmed instruction to be verified.

2-22. RUNNING PROGRAMS

To run a program after it has been loaded, proceed as follows:

- a. Press MODE switch if required to obtain standard register display mode and press left half (◀) or right half (▶) of Register Select switch to select P-register.
- Press CLEAR DISPLAY and set Display Register to starting address of program.
- Press STORE, PRESET, and RUN.

The RUN indicator will remain lighted as long as the program is running. If the LOCK/OPERATE switch is set to OPERATE, all operator panel controls except the Display Register, CLEAR DISPLAY, and HALT switches are disabled.

The RUN indicator will remain lighted as long as the program is running. If the LOCK/OPERATE switch is set to OPERATE, all operator panel controls except the Display Register, CLEAR DISPLAY, and HALT switches are disabled.

During the run mode, the contents of the S-register are automatically selected for display in the Display Register and none of the other registers can be selected. Therefore, the Display Register effectively becomes the S-register and it can be directly addressed as I/O select code 01 (octal) by the program.

If the LOCK/OPERATE switch is set to LOCK, the functions of the RUN/HALT switch are disabled. All other operator panel controls are enabled within the constraints of the run or halt mode of operation.

NOTE

If the computer has the Power Fail Recovery System installed, the BAT TEST switch *must not* be pressed unless the battery selector is set to INT.

2-23. SPECIAL REGISTER DISPLAY MODE

The special register display mode provides the capability of displaying and/or modifying the contents of the X- and Y-registers (paragraph 2-11), the Dynamic Mapping System (DMS) registers, the extend and overflow registers (paragraphs 2-8 and 2-9), the central interrupt register (CIR), and the interrupt system. To enter the special regis-

ter display mode, use the MODE switch as discussed in Table 2-1 and press the left half (\blacktriangleleft) or right half (\blacktriangleright) of the Register Select switch as required to move the unlighted "dot" indicator above the register (x, y, m, t, f, or s) to be displayed. It should be noted that the operator panel is switched back to the standard register display mode whenever the RUN switch is pressed. Each of the special register displays is discussed in the following paragraphs.

2-24. X- AND Y- (x and y) REGISTERS. When either of these registers is selected, the current contents of the register is indicated by the Display Register as discussed in paragraph 2-10 and Table 2-1. If the STORE switch is pressed while either x or y is selected, the contents of the display are loaded into the selected register. The display is not altered.

DMS MAP (m, t, and f) REGISTERS. The m-register is a 7-bit register that holds the current memory map register number (0 - 1778) being read from or written into by the CPU. When selected for display, bits 6 -0 indicate the memory map register number on the Display Register. The memory map register number can be incremented or decremented with the INC M/m - DEC M/m switch as discussed in Table 2-1. Any memory map can be quickly accessed when the m-register is selected for display by entering the memory map register number on the Display Register and pressing the STORE switch. To read the contents of the selected register number, select the t-register for display. The t-register is a 16-bit register that holds the selected register number contents and the read/write protect bits. When selected for display, bits 9 - 0 on the Display Register indicate the contents of the memory map register addressed by the M-register. If bit 15 is set (logic 1), the memory page is read-protected; if bit 14 is set, the memory page is write-protected. Bits 13 10 are always zero. If DMS is not installed and this register is selected for display, the display will be all 1's. To change the contents of the addressed memory map, enter the new contents on the Display Register with bit switches 9 - 0 and press the STORE switch. To read- or write-protect the memory map register, set the Display Register bit switches 15 or 14 to 1, respectively and press the STORE switch. If the INC M/m - DEC M/m switch is pressed when this register is selected for display, the contents of the next or previous memory map register address will be displayed.

The f-register is the 16-bit Memory Expansion Module status register and, when selected for display, indicates the address of the base page fence and DMS status as discussed in paragraph 4-2. If DMS is not installed and this register is selected for display, the display will be all 1's. To alter the address of the base page fence, enter the new address on the Display Register bit switches 10 - 0 and press the STORE switch. Status bits 15 - 11 cannot be altered. If Display Register bit switches 15 - 11 are changed from the original display and the STORE switch is pressed, no action takes place and the original contents of the f-register is again displayed.

2-26. STATUS (s) REGISTER. The s-register is a 16-bit status register. When selected for display, bit 15 indicates the status of the overflow register. (Refer to paragraph 2-9.) Bit 14 indicates the status of the extend register. (Refer to paragraph 2-8.) Bit 13 indicates the status of the interrupt system; a logic 1 indicates that the system is enabled. Bits 12 - 6 are always zero. Bits 5 - 0 indicate the current contents of the Central Interrupt Register (CIR) which is the octal select code of the device that last interrupted the computer. When the s-register is displayed, the overflow register bit, extend register bit, and interrupt system can be set as desired with Display Register bit switches 15, 14, and 13 respectively, and then pressing the STORE switch. The contents of CIR cannot be altered.

Bit 13 of the s-register will not display the status of the interrupt system correctly and cannot be changed if memory protect is enabled.

2-27. SHUTDOWN PROCEDURES

One of the following procedures should be used when the computer is to be shut down during periods of nonoperation. The first procedure should be used when it is necessary to sustain memory contents for a brief period (the battery is discharging whenever the computer ~ POWER switch is in the OFF position with the battery switch set to INT). The second procedure should be used when it is not necessary to sustain the contents of memory.

- 2-28. SHUTDOWN PROCEDURE (MEMORY SUSTAINED). Use the following procedure to shut down the computer when it is necessary to sustain memory during brief periods of nonoperation:
- a. The computer MUST BE equipped with the optional Power Fail Recovery system, or the contents of memory will be lost when power is removed from the computer. You must know the number of Memory Array PCA's and if your computer is equipped with a Fault Control Memory System the number of Check Bit Array PCA's to determine the amount of time that the contents of memory can be sustained. Determine the number of Memory and Check Bit Array modules installed in your computer, then refer to the sustaining battery graph in Table 1-1 to calculate the amount of time that memory can be sustained in your computer.

CAUTION

Depending on the amount of discharge the battery can take up to 16 hours to fully recharge.

b. Ensure that the BATTERY switch is set to INT. Then set the computer ~POWER ON/OFF switch to OFF, record the time and calculate the time that power must be restored to the computer to ensure that the integrity of the memory is preserved. Restore power at or before the time previously calculated.

NOTE

If the computer is housed in a system cabinet and you want power to the other system components, ensure that the cabinet power switch is ON.

2-29. SHUTDOWN (MEMORY NOT SUSTAINED).

Use the following procedure to shut down the computer when it is not necessary to sustain memory during periods of nonoperation:

- a. Set ~ POWER OFF/ON switch to OFF. If computer is equipped with optional power fail recovery system, set BATTERY switch to OFF to prevent the battery from discharging.
- b. Set computer ~ POWER OFF/ON switch to OFF, or, if the computer is housed in a system cabinet, set the system power switch to remove ac power.

All contents of memory and internal registers will be lost. When operation is to be resumed, the cold power-up procedure and program loading must be repeated.

2-30. REMOTE PROGRAM LOADING (E-SERIES AND F-SERIES ONLY)

The optional Remote Program Load (RPL) capability is a combination of hardware and firmware that allows loading and initiating execution of program to be controlled from a remote site. The hardware consists of a set of eight switches called the configuration switches mounted on the CPU board and typically, an appropriate communications interface board. (The HP 12966A or HP 12968A must be used if an HP standard interface is utilized.) The configuration switches are used to program the information normally entered into the S-register from the operator panel for Initial Binary Loader (IBL) operations. (Refer to the HP 1000 E/F-Series Computer Installation and Service manual for switch programming details.) The communications interface board provides the link through which remote devices initiate RPL operations. The firmware is a micro-routine that automatically reads the information from the configuration switches, calls the IBL routine specified by the configuration switches, and issues the RUN command from a remote computer site, a console device, or automatically when line power is applied to the computer.

The following conditions will cause execution of the RPL micro-routine if RPL is enabled and the LOCK/OPERATE switch is in the LOCK position:

a. Cold Power-up;

- b. Programmed halt instructions (106XXX, 107XXX); or
- c. Forced halts initiated via the I/O system. (This allows system consoles via their interface or remote systems via data communication links to initiate the RPL sequence.)

The following conditions will not cause execution of the RPL micro-routine, even though RPL is enabled:

- a. LOCK/OPERATE switch is in the OPERATE position;
- Auto-restart is enabled (A1S2 set to ARS), power coming up, and PRESET has not been pressed;
- Programmed halt instructions (102XXX, 103XXX); or
- d. Parity halt (A1S1 set to HALT).

A flow chart of the complete RPL sequence is shown in Figure 2-5.

2-31. SELF-TEST FIRMWARE

The standard microprogrammed base set includes three tests that are designed to conveniently and quickly test the computer and memory without supplementary diagnostics. These firmware self-tests are not designed as a substitute for more complex software diagnostics and it may frequently be the case that you require a more thorough and detailed testing than provided by these standard self-test routines. Firmware test for the scientific instruction set (SIS) and the floating point processor (FFP) can be executed via the operator panel.

2-32. TEST DESCRIPTIONS

- **2-33. TEST 1.** Test 1 tests most of the computer registers and functions. This test will not alter or destroy the contents of any working register or memory. An error condition will set all display registers, indicator bits, and the overflow register. The execution time is negligible.
- 2-34. TEST 2. Test 2 is a fast microprogrammed memory test that checks the presently enabled memory space (up to 64k bytes). The microprogram reads each memory location, complements the data and writes it back, reads it, compares it to expected data, then complements it and writes it back into memory. The execution time is negligible and is non-destructive to memory data. An error condition is usually accompanied by a parity error indication and will set all display registers and indicator bits and clear the overflow register. The A-register will contain the expected (good) data, the B-register will contain the actual (bad) data, and the M-register will contain the logical memory location of the failure. If all display indicators and display registers do not light, but the PARITY indicator on the operator panel is lit, a check bit array or a parity bit on a memory module has failed.

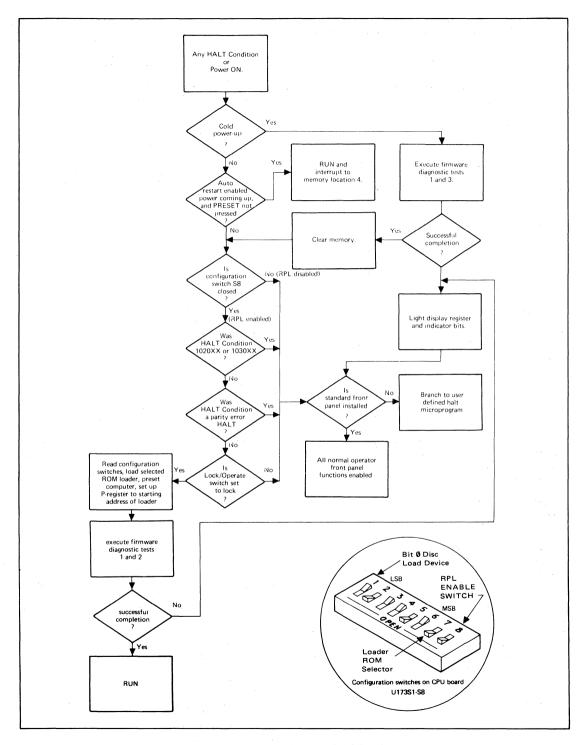


Figure 2-5. Remote Program Load Routine

2-35. TEST 3. Test 3 is a significantly more sophisticated microprogrammed memory test. All memory installed in the computer will be tested. Execution time is dependent on the amount of memory installed; approximately one second per 64k bytes. The display register will increment as memory in each 64k byte space is tested. Error reporting is the same as in Test 2 except the S-register will contain the number of the 64k byte space where the memory failure occurred. (Refer to the HP 1000 E/F-Series Computer Installation and Service Manual for additional information.)

2-36. TEST EXECUTION

On a cold power-up (paragraph 2-16), Tests 1 and 3 will each be executed once.

Pressing the IBL-TEST switch on the operator panel will not only perform the loader function as described in paragraphs 2-18 and 2-19, it will also cause the execution of Tests 1 and 2.

Tests 1 and 3 may also be executed via the operator panel as follows:

- a. Set P = 0.
- b. Set A = 100000 (octal).
- c. At the end of the diagnostic (when executed once), memory will be filled with the value in the S-register. Set the S-register if desired.
- d. Press PRESET.
- To loop the diagnostic, set the LOCK/OPERATE switch to LOCK.
- Press INSTR STEP, the diagnostic will now be executed.
- g. While the diagnostic is being executed, if S-register bit 5 is set, the S-register will display the number of executions (bit 5 = LSB).

If the LOCK/OPERATE switch is set to LOCK position, the microprogrammed diagnostic will continuously loop.

- **2-37. FPP TEST.** (F-Series only) To execute the Floating Point Processor (FPP) test proceed as follows:
- a. Store 105004 (octal) in the A-register.
- b. Store 0 in the P-register and press PRESET. If the OVFL light remains on, refer to the F-Series computer installation and service manual for troubleshooting information.
- c. Press INSTR STEP.

- d. A 102077 (octal) in the display register (S) indicates successful completion; otherwise, refer to the F-Series computer installation and service manual.
- **2-38. FFP TEST.** (F-Series only) To execute FFP firmware test, proceed as follows:
- a. Store 105200 (octal) in the A-register.
- b. Store 0 in the P-register.
- c. Press PRESET; then press INSTR STEP.

A 102077 (octal) in the display register (S) indicates successful completion; otherwise, refer to the F-Series computer installation and service manual.

- **2-39. SIS TEST.** (F-Series only) To execute the Scientific Instruction Set (SIS) firmware test, proceed as follows:
- Store 105337 (octal) in the A-register.
- b. Store 0 in the P-register.
- c. Press PRESET; then press INSTR STEP.

A 102077 (octal) in the display register (S) indicates successful completion; otherwise, refer to the F-Series computer installation and service manual.

- **2-40. VIS TEST.** (F-Series only) To execute the Vector Instruction Set (VIS) firmware test, proceed as follows:
- a. Store 105477 (octal) in the A-register.
- b. Store 0 in the P-register.
- c. Press PRESET; then press INSTR STEP.

A 102077 (octal) in the display register (S) indicates successful completion. Any other display in the S-register indicates that the VIS firmware test failed and the VIS On-Line Diagnostic, part no. 12824-16001, should be run. The diagnostic operating procedures are contained in the VIS Users Manual, part no. 12824-90001.

2-41. EXCHANGING I/O INTERFACES

Figures 2-2, 2-3 and 2-4 show the I/O PCA cages and the select codes associated with each slot. Select code 10 (octal) has the highest priority in the interrupt structure and the highest numbered select code has the lowest priority. When it becomes necessary to install a new I/O interface PCA or change the location of an existing one, proceed as follows:

CAUTION

If the computer is not equipped with an optional power fail recovery system, the contents of memory will be lost when the line (mains) voltages are off. Therefore, store any contents of memory to be saved in another medium for later retrieval; then perform steps c and e through j below

a. Check that the ~ POWER switch is set to ON.

NOTE

If the computer is equipped with a power fail recovery system, ensure that there is a place to support the battery box with it connected to the computer.

- b. Set the BATTERY switch to INT
- c. Loosen the four captive screws securing the I/O cage cover to the computer rear frame.
- d. Place the I/O cage cover with the battery box on a support so that the battery cable remains connected.
- e. Set the ~POWER switch to OFF.
- f. Loosen the two screws holding the I/O PCA retainer and slide the retainer to permit the removal or installation of the I/O PCA's.

NOTE

If the I/O PCA associated with RPL is relocated, then the internal RPL configuration switches must be reset. Details on how to configure these switches are given in the HP 1000 E-Series or F-Series Computer Installation and Service Manual.

- g. Install the new I/O interface PCA or exchange I/O interface PCA's as required. If an HP 12979B I/O Extender is to be used, install its interface PCA in the first available lowest priority I/O slot.
- Slide the I/O PCA retainer to the left and tighten the two screws.
- Apply power to the computer by setting the ~ POWER switch to ON.
- Secure the I/O cage cover with the battery box to the rear frame of the computer by fastening the four captive screws.

2-42. HALT CODES

Table 2-7 provides a quick reference to those halt codes associated with the input device loader. These halt codes are displayed in the Display Register, when the computer is in the halt mode.

2-43. ABNORMAL INDICATIONS

Table 2-8 provides a quick reference to the operator panel indications that occur when an abnormal condition exists during operation in the normal register display mode. Abnormal indications encountered during the execution of the firmware tests are discussed in paragraphs 2-31 through 2-38.

Table 2-7. Halt Codes

HALT CODE (in octal)	COMMENTS
102077	Indicates a successful program load from paper tape and typically indicates a successful program load from disc, magnetic tape, or other such media.
102055	Indicates that an address error occurred while loading from input device.
102011	Indicates that a checksum error occurred while loading from input device.

Table 2-8. Abnormal Indications

r		
INDICATION	ABNORMAL CONDITION	REMEDY
POWER FAIL light remains on.	Indicates that power has been restored after a power failure.	Press HALT; then PRESET or execute an STC 04 or CLC 04 instruction.
PARITY light is on.	Indicates that a parity error occurred while reading from memory.	Refer to HP 1000 E-Series or F-Series Installation and Service Manual.
OVERFLOW light is on after IBL/ TEST is pressed.	Indicates that:	
,	The presence of memory was not detected.	Check that memory modules are installed and programmed correctly.
	b. The programmed select code was less than 10 (octal).	b. Check that the programmed select code is within range.
	c. The memory was defective.	c. Refer to HP 1000 E-Series or F- Series Installation and Service Manual.
Operator panel indicators are ir- regular after cold power-up;	Indicates that:	
Register Select switch cannot select registers.	Power supply or CPU PCA is defective.	a. Refer to HP 1000 E-Series or F- Series Computer Installation and Service Manual.
	 b. If Power Fail Recovery System is installed, battery cable is not connected or connector 12991- 60002 is not connected to BAT INPUT connector. 	b. Connect battery cable from battery box (or connect connector 12991-60002) to BAT INPUT connector.

PROGRAMMING INFORMATION

SECTION

111

This section describes the software data formats and the base set machine-language instruction coding required to operate the computer and its associated input/output system. This section also describes the Scientific Instruction Set of the F-Series Computers as well as the Fast FORTRAN Processor instructions which are optional with the E-Series computers and standard with the F-Series Computers. Machine-language instruction coding for the Dynamic Mapping System (standard with the HP 2117F and optional with all other HP 1000 Computers) is presented in Section VI.

3-1. DATA FORMATS

As shown in Figure 3-1, the basic data format is a 16-bit word in which bit positions are numbered from 0 through 15 in order of increasing significance. Bit position 15 of the data format is used for the sign bit; a logic 0 in this position indicates a positive number and a logic 1 in this position indicates a negative number. The data is assumed to be a whole number and the binary point is therefore assumed to be to the right of the number.

The basic word can also be divided into two 8-bit bytes or combined to form a 32-bit double integer. The byte format is used for character-oriented input/output devices; packing two bytes of data into one 16-bit word is accomplished by software drivers. In I/O operations, the higher-order byte (byte 1) is the first to be transferred.

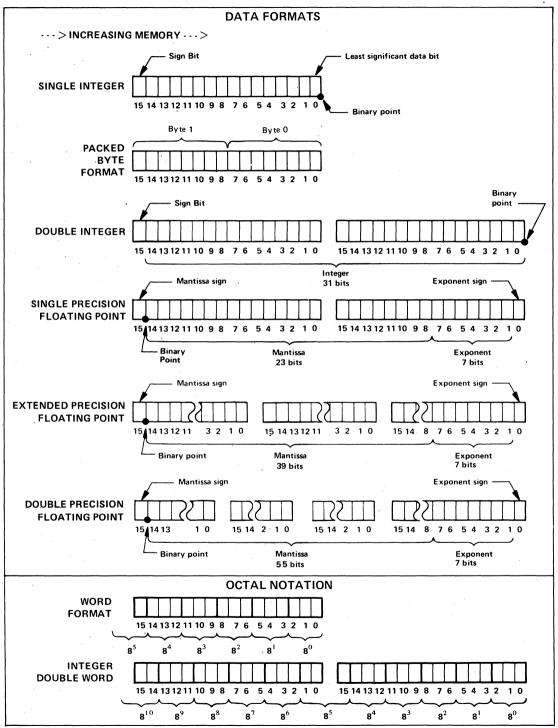
The double integer format is used for extended arithmetic in conjunction with the extended arithmetic instructions déscribed under paragraphs 3-21 and 3-22. Bit position 15 of the most-significant word is the sign bit and the binary point is assumed to be to the right of the least-significant word. The integer value is expressed by the remaining 31 bits.

The two floating point formats in Figure 3-1 are used with floating point software. Bit position 15 of the most-significant word is the mantissa sign and bit position 0 of the least-significant word is the exponent sign. Bits 1 through 7 of the least-significant word express the exponent and the remaining bits express the mantissa. A single precision floating point number is made up of a 23-bit mantissa (fraction) and sign and a 7-bit exponent and sign, thus providing six significant decimal digits in the mantissa. An extended precision floating point number is made up of a 39-bit mantissa and a 7-bit exponent and sign, thus providing 11 significant decimal digits in the mantissa. A double precision floating point number

is made up of a 55-bit mantissa and a 7-bit exponent and sign, thus providing 16 significant decimal digits in the mantissa. If either the mantissa or the exponent is negative, that part must be stored in two's complement form. The number must be in the approximate range of 10^{-38} to 10^{+38} . When loaded into the accumulators, the A-register contains the most-significant word and the B-register contains the least-significant word.

Figure 3-1 also illustrates the octal notation for both single-length (16-bit) and double-length (32-bit) words. Each group of three bits, beginning at the right, is combined to form an octal digit. A single-length (16-bit) word can therefore be fully expressed by six octal digits and a double-length (32-bit) word can be fully expressed by 11 octal digits. Octal notation is not shown for byte or floating point formats, since bytes normally represent characters and floating point numbers are given in decimal form.

The range of representable numbers for single integer data is +32,767 to -32,768 (decimal) or +77,777 to -100,000 (octal). The range of representable numbers for double integer data is +2,147,483,647 to -2,147,483,648 (decimal) or +17,777,777,777 to -20,000,000,000 (octal).


3-2. ADDRESSING

3-3. PAGING

The computer memory is logically divided into pages of 1,024 words each. A page is defined as the largest block of memory that can be directly addressed by the address bits of a single-length memory reference instruction. (Refer to paragraph 3-8.) These memory reference instructions use 10 bits (bits 0 through 9) to specify a memory address; thus, the page size is 1,024 locations (2000 octal). Octal addresses for each page, up to a maximum memory size of 32k words, are listed in Table 3-1.

Provision is made to directly address one of two pages: page zero (the base page consisting of locations 00000 through 01777) and the current page (the page in which the instruction itself is located). Memory reference instructions reserve bit 10 to specify one or the other of these two pages. To address locations on any other page, indirect addressing is used as described in following paragraphs. Page references are specified by bit 10 as follows:

- a. Logic 0 = Page Zero (Z).
- b. Logic 1 = Current Page (C).

2270-2

Figure 3-1. Data Formats and Octal Notation

Table 3-1. Memory Paging

<u> </u>	l .	
MEMORY SIZE	PAGE	OCTAL ADDRESSES
312.5		00000 to 01777
ì	0	02000 to 03777
	i i	04000 to 05777
1	2	1
	3	06000 to 07777
ĺ	4	10000 to 11777
ľ	5	12000 to 13777
	6	14000 to 15777
i	7	16000 to 17777
	8	20000 to 21777
	9	22000 to 23777
	10	24000 to 25777
	11	26000 to 27777
	12	30000 to 31777
	13	32000 to 33777
1	14	34000 to 35777
16K ▼	15	36000 to 37777
	16	40000 to 41777
	17	42000 to 43777
	18	44000 to 45777
l	19	46000 to 47777
i	20	50000 to 51777
ĺ	21	52000 to 53777
ĺ	22	54000 to 55777
	23	56000 to 57777
1	24	60000 to 61777
	25	62000 to 63777
	26	64000 to 65777
	27	66000 to 67777
1	28	70000 to 71777
ł	29	72000 to 73777
	30	74000 to 75777
1	31	76000 to 77777
	L	

34. DIRECT AND INDIRECT ADDRESSING

All memory reference instructions reserve bit 15 to specify either direct or indirect addressing. For single-length memory reference instructions, bit 15 of the instruction word is used; for extended arithmetic memory reference instructions, bit 15 of the address word is used. Indirect addressing uses the address part of the instruction to access another word in memory, which is taken as the new memory reference for the same instruction. This new address word is a full 16 bits long: 15 address bits plus another direct/indirect bit. The 15-bit length of the address permits access to any location in memory. If bit 15 again specifies indirect addressing, still another address is obtained; thus, multistep indirect addressing may be done to any number of levels. The first address obtained that does not specify another indirect level becomes the effec-

tive address of the instruction. Direct or indirect addressing is specified by bit 15 as follows:

- a. Logic 0 = Direct (D).
- b. Logic 1 = Indirect(I).

3-5. RESERVED MEMORY LOCATIONS

The first 64 memory locations of the base page (octal addresses 00000 through 00077) are reserved as listed in Table 3-2. The first two locations are reserved as addresses for the two 16-bit accumulators (the A- and B-registers). If options or input/output devices corresponding to locations 00005 through 00077 are not included in the system configuration, these locations can be used for programming purposes.

The uppermost 64 locations of memory for any given configuration are reserved for the initial binary loader. The initial binary loader is permanently resident in a read-only memory (ROM) and loaded into the uppermost 64 memory locations by a pushbutton switch on the operator panel. These 64 locations are not protected and can therefore be used for temporary storage of data, trap cells, buffers, etc.

Table 3-2. Reserved Memory Locations

MEMORY LOCATION	PURPOSE
00000	A-register address.
00001	B-register address.
00002-00003	Exit sequence if contents of A-register and B-register are used as executable words.
00004	Power-fail interrupt (highest priority).
00005	Memory parity, memory protect, and DMS interrupt.
00006	Reserved for dual-channel port controller (DCPC) channel 1.
00007	Reserved for dual-channel port controller (DCPC) channel 2.
00010-00077	Interrupt locations in decreasing order of priority; e.g., location 00010 has priority over 00011.

3-6. NONEXISTENT MEMORY

Nonexistent memory is defined as those locations not physically implemented in the machine. Any attempt to write into a nonexistent memory location will be ignored (no operation). Any attempt to read from a nonexistent memory location will return an all-zeros word (000000 octal); no parity error occurs.

3-7. BASE SET INSTRUCTION FORMATS

The base set of instructions are classified according to format. The five formats used are illustrated in Figure 3-2 and described in following paragraphs. In all cases where a single bit is used to select one of two cases (e.g., D/I), the choice is made by coding a logic 0 or logic 1, respectively.

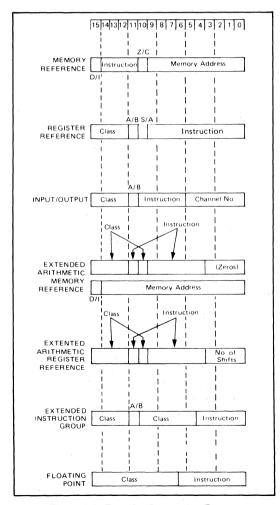


Figure 3-2. Base Set Instruction Formats

3-8. MEMORY REFERENCE INSTRUCTIONS

This class of instructions, which combines an instruction code and a memory address into one 16-bit word, is used to execute some function involving data in a specific memory location. Examples are storing, retrieving, and combining memory data to and from the accumulators (A- and B-registers) or causing the program to jump to a specified location in memory.

The memory cell referenced (i.e., the absolute address is determined by a combination of 10 memory address bits (0 through 9) in the instruction word and 5 bits (10 through 14) assumed from the current contents of the M-register. This means that memory reference instructions can directly address any word in the current page; additionally, if the instruction is given in some location other than the base page (page zero), bit 10 (Z/C) of the instruction doubles the addressing range to 2,048 locations by allowing the selection of either page zero or the current page. (This causes bits 10 through 14 of the address contained in the M-register to be set to zero instead of assuming the current contents of the M-register.) This feature provides a convenient linkage between all pages of memory, since page zero can be reached directly from any other page.

As discussed under paragraph 3-4, bit 15 is used to specify direct or indirect memory addressing. Note also that since the A- and B-registers are addressable, any single-word memory reference instruction can apply to either of these registers as well as to memory cells. For example, an ADA 0001 instruction adds the contents of the B-register (address 0001) to the contents currently held in the A-register; specify page zero for these operations since the addresses of the A- and B-registers are on page zero.

3-9. REGISTER REFERENCE INSTRUCTIONS

In general, the register reference instructions manipulate bits in the A-register, B-register, and E-register; there is no reference to memory. This group includes 39 basic instructions which may be combined to form a one-word multiple instruction that can operate in various ways on the contents of the A-, B-, and E-registers. These 39 instructions are divided into two subgroups: the shift/rotate group (SRG) and the alter/skip group (ASG). The appropriate subgroup is specified by bit 10 (S/A). Typical operations are clear and/or complement a register, conditional skips, and register increment.

3-10. INPUT/OUTPUT INSTRUCTIONS

The input/output instructions use bits 6 through 11 for a variety of I/O instructions and bits 0 through 5 to apply the instructions to a specific I/O channel. This provides the means of controlling all peripherals connected to the I/O channels and for transferring data to and from these peripherals. Included also in this group are instructions to control the interrupt system, overflow bit, and computer halt.

3-11. EXTENDED ARITHMETIC MEMORY REFERENCE INSTRUCTIONS

As the single-word memory reference instruction described previously, the extended arithmetic memory reference instructions include an instruction code and a memory address. In this case, however, two words are required. The first word specifies the extended arithmetic class (bits 12 through 15 and 10) and the instruction code (bits 4 through 9 and 11); bits 0 through 3 are not needed and are coded with zeros. The second word specifies the memory address of the operand. Since the full 15 bits are used for the address, this type of instruction may directly address any location in memory. As with all memory reference instructions, bit 15 is used to specify direct or indirect addressing. Operations performed by this class of instructions are integer multiply and divide (using double-length product and dividend) and double load and double store.

3-12. EXTENDED ARITHMETIC REGISTER REFERENCE INSTRUCTIONS

This class of instructions provides long shifts and rotates on the combined contents of the A- and B-registers. Bits 12 through 15 and 10 identify the instruction class; bits 4 through 9 and 11 specify the direction and type of shift; and bits 0 through 3 control the number of shifts, which can range from 1 to 16 places.

3-13. EXTENDED INSTRUCTIONS

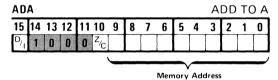
The extended instructions include index register instructions, bit and byte manipulation instructions, and move and compare instructions. Instructions comprising the extended instruction group are one, two, or three words in length. The first word is always the instruction code; operand addresses are given in the words following the instruction code or in the A- and B-registers. The operand addresses are 15 bits long, with bit 15 (most-significant bit) generally indicating direct or indirect addressing.

3-14. FLOATING POINT INSTRUCTIONS

The floating point instructions allow addition, subtraction, multiplication, and division of floating point quantities. Conversion routines are provided for transforming numerical integer representations to/from floating point representations.

3-15. BASE SET INSTRUCTION CODING

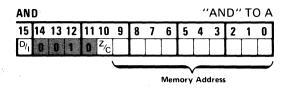
Machine language coding for the base set of instructions are provided in following paragraphs. Definitions for these instructions are grouped according to the instruction type: memory reference, register reference, input/output, extended arithmetic memory reference, and extended arithmetic register reference.

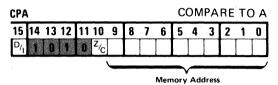

Directly above each definition is a diagram showing the machine language coding for that instruction. The light gray shaded bits code the instruction type and the dark gray shaded bits code the specific instruction. Unshaded bits are further defined in the introduction to each instruction type. The mnemonic code and instruction name are included above each diagram.

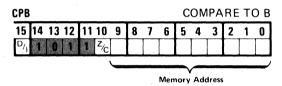
In all cases where an additional bit is used to specify a secondary function (D/I, Z/C, or H/C), the choice is made by coding a logic 0 or logic 1, respectively. In other words, a logic 0 codes D (direct addressing), Z (zero page), or H (hold flag); a logic 1 codes I (indirect addressing), C (current page), or C (clear flag).

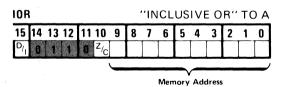

3-16. MEMORY REFERENCE INSTRUCTIONS

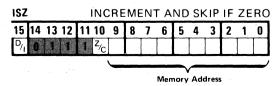
The following 14 memory reference instructions execute a function involving data in memory. Bits 0 through 9 specify the affected memory location on a given memory page or, if indirect addressing is specified, the next address to be referenced. Indirect addressing may be continued to any number of levels; when bit 15 (D/I) is a logic 0 (specifying direct addressing), that location will be taken as the effective address. The A- and B-registers may be addressed as locations 00000 and 00001 (octal), respectively.

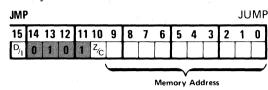

If bit 10 (Z/C) is a logic 0, the memory address is on page zero; if bit 10 is a logic 1, the memory address is on the current page. If the A- or B-register is addressed, bit 10 must be a logic 0 to specify page zero, unless the current page is page zero.

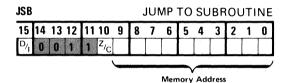

Adds the contents of the addressed memory location to the contents of the A-register. The sum remains in the A-register and the contents of the memory cell are unaltered. The result of this addition may set the extend bit or the overflow bit. (Extend and overflow examples are illustrated on page A-13.)

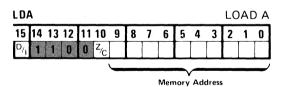

Adds the contents of the addressed memory location to the contents of the B-register. The sum remains in the B-register and the contents of the memory cell are unaltered. The result of this addition may set the extend bit or the overflow bit. (Extend and overflow examples are illustrated on page A-13.)

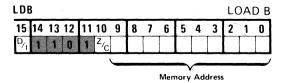

Combines the contents of the addressed memory location and the contents of the A-register by performing a logical "and" operation. The contents of the memory cell are unaltered.

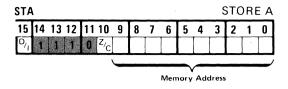

Compares the contents of the addressed memory location with the contents of the A-register. If the two 16-bit words are not identical, the next instruction is skipped; i.e., the P-register advances two counts instead of one count. If the two words are identical, the next sequential instruction is executed. Neither the A-register contents nor memory cell contents are altered.

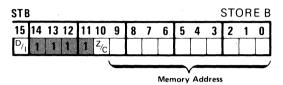

Compares the contents of the addressed memory location with the contents of the B-register. If the two 16-bit words are not identical, the next instruction is skipped; i.e., the P-register advances two counts instead of one count. If the two words are identical, the next sequential instruction is executed. Neither the B-register contents nor memory cell contents are altered.

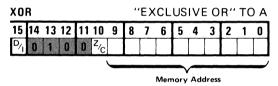

Combines the contents of the addressed memory location and the contents of the A-register by performing a logical "inclusive or" operation. The contents of the memory cell are unaltered.


Adds one to the contents of the addressed memory location. If the result of this operation is zero (memory contents incremented from 177777 to 000000), the next instruction is skipped; i.e., the P-register is advanced two counts instead of one count. If the result of this operation is not zero, the next sequential instruction is executed. In either case, the incremented value is written back into the memory cell.


Transfers control to the addressed memory location. That is, a JMP causes the P-register count to set according to the memory address portion of the JMP instruction so that the next instruction will be read from that location.


This instruction, executed in location P (P-register count), causes the computer control to jump unconditionally to the memory location (m) specified by the memory address portion of the JSB instruction. The contents of the P-register plus one (return address) is stored in memory location m, and the next instruction to be executed will be that contained in the next sequential memory location (m \pm 1). A return to the main program sequence at P \pm 1 will be effected by a JMP indirect through location m.


Loads the contents of the addressed memory location into the A-register. The contents of the memory cell are unaltered.


Loads the contents of the addressed memory location into the B-register. The contents of the memory cell are unaltered.

Stores the contents of the A-register in the addressed memory location. The previous contents of the memory cell are lost; the A-register contents are unaltered.

Stores the contents of the B-register in the addressed memory location. The previous contents of the memory cell are lost; the B-register contents are unaltered.

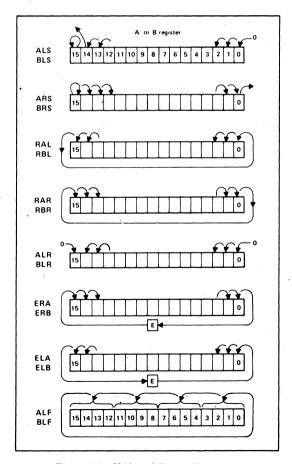
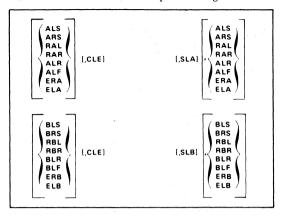
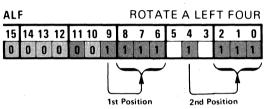
Combines the contents of the addressed memory location and the contents of the A-register by performing a logical "exclusive or" operation. The contents of the memory cell are unaltered.

3-17. REGISTER REFERENCE INSTRUCTIONS

The 39 register reference instructions execute functions on data contained in the A-register, B-register, and E-register. These instructions are divided into two groups: the shift/rotate group (SRG) and the alter/skip group (ASG). In each group, several instructions may be combined into one word. Since the two groups perform separate and distinct functions, instructions from the two groups cannot be mixed. Unshaded bits in the coding diagrams are available for combining other instructions.

- **3-18. SHIFT/ROTATE GROUP.** The 20 instructions in the shift/rotate group (SRG) are defined first; this group is specified by setting bit 10 to a logic 0. A comparison of the various shift/rotate functions are illustrated Figure 3-3. Rules for combining instructions in this group are as follows (refer to Table 3-3):
- a. Only one instruction can be chosen from each of the two multiple-choice columns.

- References can be made to either the A-register or B-register, but not both.
- c. Sequence of execution is from left to right.
- d. In machine code, use zeros to exclude unwanted microinstructions.
- e. Code a logic 1 in bit position 9 to enable shifts or rotates in the first position; code a logic 1 in bit position 4 to enable shifts or rotates in the second position.
- f. The extend bit is not affected unless specifically stated. However, if a "rotate-with-E" instruction (ELA, ELB, ERA, or ERB) is coded but disabled by a logic 0 in bit position 9 and/or position 4, the E-register will be updated even though the A- or B-register contents are not affected; to avoid this situation, code a "no operation" (three zeros) in the first and/or second positions.

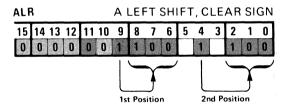
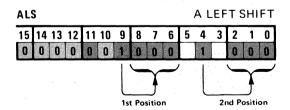
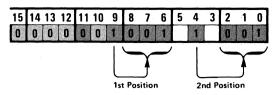
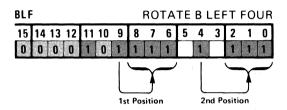

Figure 3-3. Shift and Rotate Functions

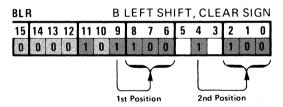
Table 3-3. Shift/Rotate Group Combining Guide

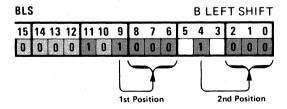


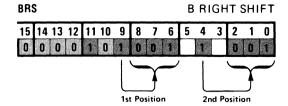
Rotates the A-register contents (all 16 bits) left four places. Bits 15, 14, 13, and 12 rotate around to bit positions 3, 2, 1, and 0, respectively. Equivalent to four successive RAL instructions.

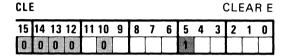

Shifts the A-register contents left one place and clears sign bit 15.


Arithmetically shifts the A-register contents left one place, 15 magnitude bits only; bit 15 (sign) is not affected. The bit shifted out of bit position 14 is lost; a logic 0 replaces vacated bit position 0.

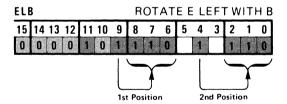

A RIGHT SHIFT

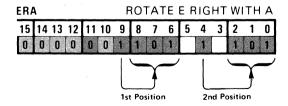

Arithmetically shifts the A-register contents right one place, 15 magnitude bits only; bit 15 (sign) is not affected. A copy of the sign bit is shifted into bit position 14; the bit shifted out of bit position 0 is lost.

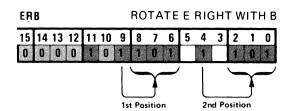

Rotates the B-register contents (all 16 bits) left four places. Bits 15, 14, 13, and 12 rotate around to bit positions 3, 2, 1, and 0, respectively. Equivalent to four successive RBL instructions.

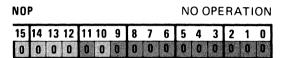

Shifts the B-register contents left one place and clears sign bit 15.

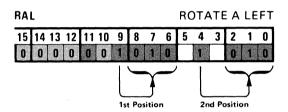
Arithmetically shifts the B-register contents left one place, 15 magnitude bits only; bit 15 (sign) is not affected. The bit shifted out of bit position 14 is lost; a logic 0 replaces vacated bit position 0.

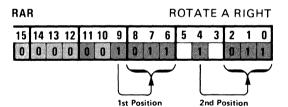

Arithmetically shifts the B-register contents right one place, 15 magnitude bits only; bit 15 (sign) is not affected. A copy of the sign bit is shifted into bit position 14; the bit shifted out of bit position 0 is lost.

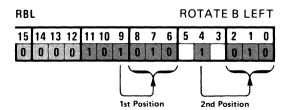

Clears the E-register: i.e., the extend bit becomes a logic 0.

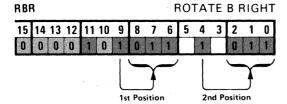

Rotates the E-register content left with the A-register contents (one place). The E-register content rotates into bit position 0; bit 15 rotates into the E-register.


Rotates the E-register content left with the B-register contents (one place). The E-register content rotates into bit position 0; bit 15 rotates into the E-register.


Rotates the E-register content right with the A-register contents (one place). The E-register content rotates into bit position 15; bit 0 rotates into the E-register.


Rotates the E-register content right with the B-register contents (one place). The E-register content rotates into bit position 15; bit 0 rotates into the E-register.

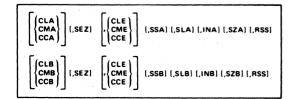

This all-zeros instruction causes a no-operation cycle.


Rotates the A-register contents left one place (all 16 bits). Bit 15 rotates into bit position 0.

Rotates the A-register contents right one place (all 16 bits). Bit 0 rotates into bit position 15.

Rotates the B-register contents left one place (all 16 bits). Bit 15 rotates into bit position 0.

Rotates the B-register contents right one place (all 16 bits). Bit 0 rotates into bit position 15.


Skips the next instruction if the least-significant bit (bit 0) of the A-register is a logic 0.

SLE	3					5	SKI	ΡI	FL	SB	OI	= B	IS	ZE	RO
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	1	0							1			

Skips the next instruction if the least-significant bit (bit 0) of the B-register is a logic 0.

- **3-19. ALTER/SKIP GROUP.** The 19 instructions comprising the alter/skip group (ASG) are defined next. This group is specified by setting bit 10 to a logic 1. Rules for combining instructions are as follows (refer to Table 3-4):
- a. Only one instruction can be chosen from each of the two multiple-choice columns.
- References can be made to either the A-register or B-register, but not both.
- c. Sequence of execution is from left to right.
- d. If two or more skip functions are combined, the skip function will occur if either or both conditions are met. One exception exists: refer to the RSS instruction.
- In machine code, use zeros to exclude unwanted instructions.

Table 3-4. Alter/Skip Group Combining Guide

CCA CLEAR AND COMPLEMENT A

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	a	1	1	1								

Clears and complements the A-register contents; i.e., the contents of the A-register become 177777 (octal). This is the two's complement form of -1.

CCB CLEAR AND COMPLEMENT B

15 14 13 12	11 10 9	8 7	6	5	4	3	2	1 0
0 0 0 0	1 1 1	1				,		

Clears and complements the B-register contents; i.e., the contents of the B-register become 177777 (octal). This is the two's complement form of -1.

CCE CLEAR AND COMPLEMENT E

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0		1			1	1						

Clears and complements the E-register content (extend bit); i.e., the extend bit becomes a logic 1.

CLA CLEAR A

15 1	1 1	3	12	11	10	9	8	7	6	5	4	3	2	1	0
0 0	1	0	0	0	1	0	1								٠,

Clears the A-register; i.e., the contents of the A-register become 000000 (octal).

CLE CLEAR B

15 14 13 12	11 10	9	8	7	6	5	4	3	2	1	0
0 0 0 0	1 1	0	1								

Clears the B-register; i.e., the contents of the B-register become 000000 (octal).

CLEAR E

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0		1			0	1					-	

Clears the E-register; i.e., the extend bit becomes a logic 0.

CMA COMPLEMENT A

_					.0										
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	1	1	0								

Complements the A-register contents (one's complement).

CMB COMPLEMENT B 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 0 0 1 1 1 0

Complements the B-register contents (one's complement).

CIVII	=									C	JIVI	PLI	E IVI	ΕN	IE
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0		1			1	0						

Complements the E-register content (extend bit).

INA											IINC	KE	IVIE	: 17	ΙA
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	1								1		

Increments the A-register by one. The overflow bit will be set if an increment of the largest positive number (077777 octal) is made. The extend bit will be set if an all-ones word (177777 octal) is incremented.

INB										IN	CRI	EME	EN.	ΤВ
15	14	-13	12	11 10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	1 1			Π	Ī				1		

Increments the B-register by one. The overflow bit will be set if an increment of the largest positive number (077777 octal) is made. The extend bit will be set if an all-ones word (177777 octal) is incremented.

RSS	3							RI	EVI	ERS	SE	SK	IP S	SE1	NSE
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0		1										1

Skip occurs for any of the following skip instructions, if present, when the non-zero condition is met. An RSS without a skip instruction in the word causes an unconditional skip. If a word with RSS also includes both SSA and SLA (or SSB and SLB), bits 15 and 0 must both be logic 1's for a skip to occur; in all other cases, a skip occurs if one or more skip conditions are met.

JLZ									2) N II	7 11		13	4 C	ηC
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0		1					1					

CE 7

Skips the next instruction if the E-register content (extend bit) is a logic $\mathbf{0}$.

SLA	١.					•	>K	וייו	דנ	.58	U	FA	15	۷Ŀ	HC
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	1							1			

Skips the next instruction if the least-significant bit (bit 0) of the A-register is a logic 0; i.e., skips if an even number is in the A-register.

SLE	}					;	SK	IP I	FL	.SB	Ol	= B	IS	ZE	RO
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	1	1		Г					1			

Skips the next instruction if the least-significant bit (bit 0) of the B-register is a logic 0; i.e., skips if an even number is in the B-register.

SSA	١				SI	KIP	İF	SI	GN	OF	A	IS	ZE	RO
15	14	13	12	11 10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0 1						1				

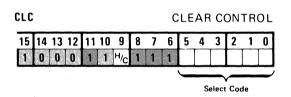
Skips the next instruction if the sign bit (bit 15) of the A-register is a logic 0; i.e., skips if a positive number is in the A-register.

SSB		SK	IP	IF	SIC	iΝ	OF	В	IS	۷Ł	RO
15 14 13 12	11 10	9	8	7	6	5	4	3	2	1	0
0 0 0 0	1 1						1				

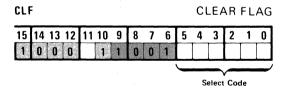
Skips the next instruction if the sign bit (bit 15) of the B-register is a logic 0; i.e., skips if a positive number is in the B-register.

SZA	١.								S	ΚII	PIF	A	İS	ZE	RO
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	1									1	

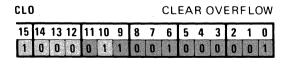
Skips the next instruction if the A-register contents are zero (16 zeros).

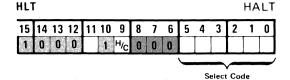

SZB	;								S	ΚI	PΠ	F B	IS	ZE	RC
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	1	1									1	

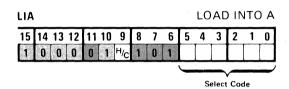
Skips the next instruction if the B-register contents are zero (16 zeros).

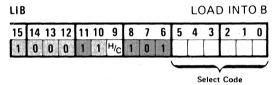

3-20. INPUT/OUTPUT INSTRUCTIONS

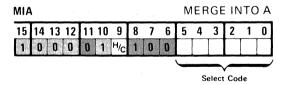
The following input/output instructions provide the capability of setting or clearing the I/O flag and control bits, testing the state of the overflow and the I/O flag bits, and transferring data between specific I/O devices and the A-and B-registers. In addition, specific instructions in this group control the vectored priority interrupt system and can cause a programmed halt.

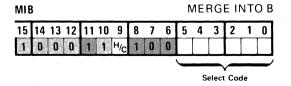

Bit 11, where relevant, specifies the A- or B-register or distinguishes between set control and clear control; otherwise, bit 11 may be a logic 0 or a logic 1 without affecting the instruction (although the assembler will assign zeros in this case). In those instructions where bit position 9 includes the letters H/C, the programmer has the choice of holding (logic 0) or clearing (logic 1) the device flag after executing the instruction. (Exception: the H/C bit associated with instructions SOC and SOS holds or clears the overflow bit instead of the device flag.) Bits 8, 7, and 6 specify the appropriate I/O instruction and bits 5 through 0 form a two-digit octal select code (address) to apply the instruction to one of up to 64 input/output devices or functions.

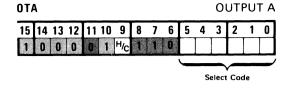

Clears the control bit of the selected I/O channel or function. This turns off the specific device channel and prevents it from interrupting. CLC 00 instruction clears all control bits from select code 06 upward, effectively turning off all I/O devices.


Clears the flag of the selected I/O channel or function. A CLF 00 instruction disables the interrupt system for all select codes except power fail (select code 04) and parity error (select code 05), which are always enables; this does not affect the status of the individual channel flags.

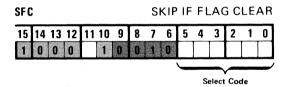

Clears the overflow bit.

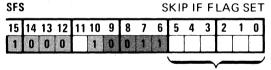

Halts the computer and holds or clears the flag of the selected I/O channel. The HLT instruction has the same effect as pressing the operator panel HALT pushbutton. The HLT instruction will be contained in the T-register, which is selected and displayed automatically when the computer halts. The P-register will contain the HLT location plus one.


Loads the contents of the I/O buffer associated with the selected device into the A-register.


Loads the contents of the I/O buffer associated with the selected device into the B-register.

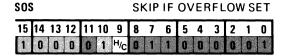
By executing a logical "inclusive or" function, merges the contents of the I/O buffer associated with the selected device into the A-register.


By executing a logical "inclusive or" function, merges the contents of the I/O buffer associated with the selected device into the B-register.

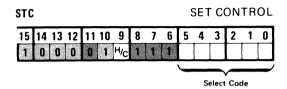

Outputs the contents of the A-register to the I/O buffer associated with the selected device. If the I/O buffer is less than 16 bits in length, the least-significant bits of the A-register are normally loaded. (Some exceptions to this exist, depending on the type of output device.) The contents of the A-register are not altered.

Outputs the contents of the B-register to the I/O buffer associated with the selected device. If the I/O buffer is less than 16 bits in length, the least-significant bits of the B-register are normally loaded. (Some exceptions to this exist, depending on the type of output device.) The contents of the B-register are not altered.

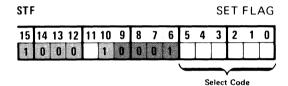
Skips the next programmed instruction if the flag of the selected channel is clear (device busy).

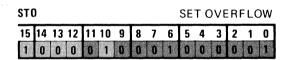


Select Code


Skips the next programmed instruction if the flag of the selected channel is set (device ready). Used with "waitfor-flag" I/O programming, usually the interrupt system is off. If used with the interrupt system on, use a CLF instruction to clear the flag and eliminate the interrupt request.

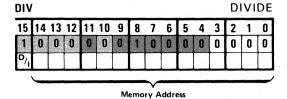
SOC	,					Sĸ	(IP	IF	ΟV	EF	l F L	.00	V C	LE	AR ——
15															
1	0	0	0	0	1	H/C	0	1	0	0	0	0	0	0	1


Skips the next programmed instruction if the overflow bit is clear. Use the H/C bit (bit 9) to either hold or clear the overflow bit following the completion of this instruction (whether the skip is taken or not).

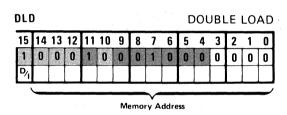

Skips the next programmed instruction if the overflow bit is set. Use the H/C bit (bit 9) to either hold or clear the overflow bit following the completion of this instruction (whether the skip is taken or not).

Sets the control bit of the selected I/O channel or function.

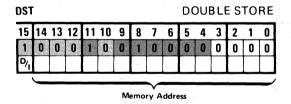
Sets the flag of the selected I/O channel or function. An STF 00 instruction enables the interrupt system for all select codes except power fail (select 04) which is always enabled and parity error (select code 05), which is selectively controllable.

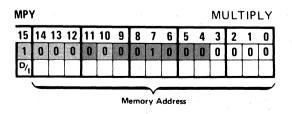


Sets the overflow bit.


3-21. EXTENDED ARITHMETIC MEMORY REFERENCE INSTRUCTIONS

The four extended arithmetic memory reference instructions provide for integer multiply and divide and for loading and storing double-length words to and from the A- and B-registers. The complete instruction requires two words: one for the instruction code and one for the address. When stored in memory, the instruction word is the first to be fetched; the address word is in the next sequential location.

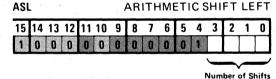

Since 15 bits are available for the address, these instructions can directly address any location in memory. As for all memory reference instructions, indirect addressing to any number of levels may also be used. A logic 0 in bit position 15 specifies direct addressing; a logic 1 specifies indirect addressing.


Divides a double-word integer in the combined B- and A-registers by a 16-bit integer in the addressed memory location. The result is a 16-bit integer quotient in the A-register and a 16-bit integer remainder in the B-register. Overflow can result from an attempt to divide by zero, or from an attempt to divide by a number too small for the dividend. In the former case (divide by zero), the division will not be attempted and the B- and A-register contents will be unchanged except that a negative quantity will be made positive. In the latter case (divisor too small), the execution will be attempted with unpredictable results left in the B- and A-registers. If there is no divide error, the overflow bit is cleared.

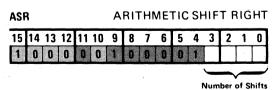
Loads the contents of addressed memory location m (and m+1) into the A- and B-registers, respectively.

Stores the double-word quantity in the A- and B-registers into addressed memory locations m (and m+1), respectively.

Multiplies a 16-bit integer in the A-register by a 16-bit integer in the addressed memory location. The resulting double-length integer product resides in the B- and


A-registers, with the B-register containing the sign bit and the most-significant 15 bits of the quantity. The A-register may be used as an operand (i.e., memory address 0), resulting in an arithmetic square. The instruction clears the overflow bit.

3-22. EXTENDED ARITHMETIC REGISTER REFERENCE INSTRUCTIONS


The six extended arithmetic register reference instructions provide various types of shifting operations on the combined contents of the B- and A-registers. The B-register is considered to be to the left (most-significant word) and the A-register is considered to be to the right (least-significant word). An example of each type of shift operation is illustrated in Figure 3-4.

The complete instruction is given in one word and includes four bits (unshaded) to specify the number of shifts (1 to 16). By viewing these four bits as a binary-coded number, the number of shifts is easily expressed; i.e., binary-coded 1=1 shift, binary-coded 2=2 shifts... binary-coded 15=15 shifts. The maximum number of 16 shirts is coded with four zeros, which essentially exchanges the contents of the B- and A-registers.

The extend bit is not affected by any of the following instructions. Except for the arithmetic shifts, overflow also is not affected.

Arithmetically shifts the combined contents of the B- and A-registers left n places. The value of n may be any number from 1 through 16. Zeros are filled into vacated low-order positions of the A-register. The sign bit is not affected, and data bits are lost out of bit position 14 of the B-register. If any one of the lost bits is a significant data bit ("1" for positive numbers, "0" for negative numbers), the overflow bit will be set; otherwise, overflow will be cleared during execution. See ASL example in Figure 3-4. Note that two additional shifts in this example would cause an error by losing a significant "1".

Arithmetically shifts the combined contents of the B- and A-registers right n places. The value of n may be any number from 1 through 16. The sign bit is unchanged and

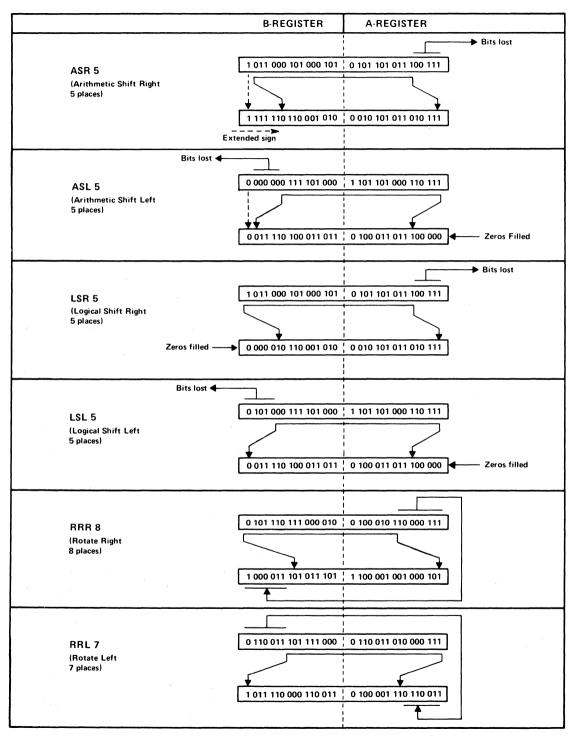
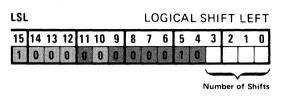
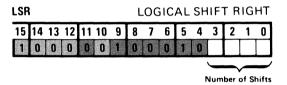
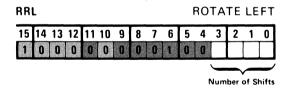
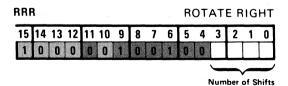




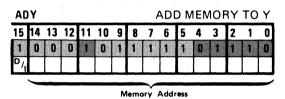
Figure 3-4. Examples of Double-Word Shifts and Rotates


is extended into bit positions vacated by the right shift. Data bits shifted out of the least-significant end of the A-register are lost. Overflow cannot occur because the instruction clears the overflow bit.


Logically shifts the combined contents of the B- and A-registers left n places. The value of n may be any number from 1 through 16. Zeros are filled into vacated low-order bit positions of the A-register; data bits are lost out of the high-order bit positions of the B-register.

Logically shifts the combined contents of the B- and A-registers right n places. The value of n may be any number from 1 through 16. Zeros are filled into vacated high-order bit positions of the B-register; data bits are lost out of the low-order bit positions of the A-register.


Rotates the combined contents of the B- and A-registers left n places. The value of n may be any number from 1 through 16. No bits are lost or filled in. Data bits shifted out of the high-order end of the B-register are rotated around to enter the low-order end of the A-register.


Rotates the combined contents of the B- and A-registers right n places. The value of n may be any number from 1 through 16. No bits are lost or filled in. Data bits shifted out of the low-order end of the A-register are rotated around to enter the high-order end of the B-register.

3-23. EXTENDED INSTRUCTION GROUP

3-24. INDEX REGISTER INSTRUCTIONS. The index registers (X and Y) are two 16-bit registers accessible by the following instructions.

Adds the contents of the addressed memory location to the contents of the X-register. The sum remains in the X-register and the contents of the memory cell are unaltered. The result of this addition may set the extend bit or the overflow bit.

Adds the contents of the addressed memory location to the contents of the Y-register. The sum remains in the Y-register and the contents of the memory cell are unaltered. The result of this addition may set the extend bit or the overflow bit.

CA	X										CO	PY	Α	ТО	<u> </u>
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	0	0	0	1	1	1	1	1	0	0	0	0	1

Copies the contents of the A-register into the X-register. The contents of the A-register are unaltered.

Copies the contents of the A-register into the Y-register. The contents of the A-register are unaltered.

Copies the contents of the B-register into the X-register. The contents of the B-register are unaltered.

CB	Y										CC	PY	′ B	TO	Y
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	0	1	0	1	1	1	1	1	0	1	0	0	1

Copies the contents of the B-register into the Y-register. The contents of the B-register are unaltered.

CX	A										<u>co</u>	PY	X.	TO	Α
				11							4	3	2	1	0
1	0	0	0	0	0	1	1	1	1	1	0	0	1	0	0

Copies the contents of the X-register into the A-register. The contents of the X-register are unaltered.

CX	В										CC	PY	<u>′ X</u>	TO	В
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	0	1	0	1	1	1	1	1	0	0	1	0	0

Copies the contents of the X-register into the B-register. The contents of the X-register are unaltered.

Copies the contents of the Y-register into the A-register. The contents of the Y-register are unaltered.

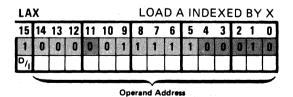
CY	В										CC)PY	/ Y	TC	В
					10										0
1	0	0	0	1	0	1	1	1	1	1	0	1	1	0	0

Copies the contents of the Y-register into the B-register. The contents of the Y-register are unaltered.

DS	X			DEC	RE	ME	N	ГΧ	A١	۱D	SK	ΙP	IF a	ZE	RO
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	0	1	0	1	1	1	1	1	1	0	0	0	1

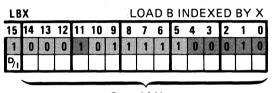

Subtracts one from the contents of the X-register. If the result of this operation is zero (X-register decremented from 000001 to 00000), the next instruction is skipped; i.e., the P-register count is advanced two counts instead of one count. If the result is not zero, the next sequential instruction is executed.

DS	Υ		D	EC	RE	ME	N٦	ΓY	A١	1D	SK	IP I	F Z	'EF	10
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	0	1	0	1	1	1	1	1	1	1	0	0	1

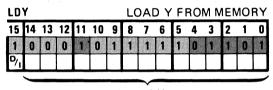

Subtracts one from the contents of the Y-register. If the result of this operation is zero (Y-register decremented from 000001 to 000000), the next instruction is skipped; i.e., the P-register count is advanced two counts instead of one count. If the result is not zero, the next sequential instruction is executed.

Adds one to the contents of the X-register. If the result of this operation is zero (X-register rolls over to 000000 from 177777), the next instruction is skipped; i.e., the P-register count is advanced two counts instead of one count. If the result is not zero, the next sequential instruction is executed

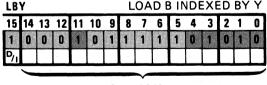
Adds one to the contents of the Y-register. If the result of this operation is zero (Y-register rolls over to 000000 from 177777), the next instruction is skipped; i.e., the P-register count is advanced two counts instead of one count. If the result is not zero, the next sequential instruction is executed.


Loads the A-register with the contents indicated by the effective address, which is computed by adding the contents of the X-register to the operand address. The effective address is loaded into the M-register; the X-register and memory contents are not altered. Indirect addressing is resolved before indexing; bit 15 of the effective address is ignored.

Loads the A-register with the contents indicated by the effective address, which is computed by adding the contents of the Y-register to the operand address. The effective address is loaded into the M-register; the Y-register and memory contents are not altered. Indirect addressing is resolved before indexing; bit 15 of the effective address is ignored.



Loads the contents of the addressed memory location into the X-register. The A- and B-registers may be addressed as locations, 000000 and 000001, respectively; however, if it is desired to load from the A- or B-register, copy instructions CAX or CBX should be used since they are more efficient.


Operand Address

Loads the B-register with the contents indicated by the effective address, which is computed by adding the contents of the X-register to the operand address. The effective address is loaded into the M-register; the X-register and memory contents are not altered. Indirect addressing is resolved before indexing; bit 15 of the effective address is ignored.

Memory Address

Loads the contents of the addressed memory location into the Y-register. The A- and B-registers may be addressed as locations 00000 and 00001, respectively; however, if it is desired to load from the A- or B-register, copy instructions CAY or CBY should be used since they are more efficient.

Operand Address

Loads the B-register with the contents indicated by the effective address, which is computed by adding the contents of the Y-register to the operand address. The effective address is loaded into the M-register, the X-register and memory contents are not altered. Indirect addressing is resolved before indexing; bit 15 of the effective address is ignored.

Stores the contents of the A-register into the location indicated by the effective address, which is computed by adding the contents of the X-register to the operand address. The effective address is loaded into the M-register; the A- and X-register contents are not altered. Indirect addressing is resolved before indexing; bit 15 of the effective address is ignored.

Operand Address

Stores the contents of the A-register into the location indicated by the effective address, which is computed by adding the contents of the Y-register to the operand address. The effective address is loaded into the M-register; the A- and Y-register contents are not altered. Indirect addressing is resolved before indexing; bit 15 of the effective address is ignored.

Operand Address

Stores the contents of the B-register into the location indicated by the effective address, which is computed by adding the contents of the X-register to the operand address. The effective address is loaded into the M-register; the B-and X-register contents are not altered. Indirect addressing is resolved before indexing; bit 15 of the effective address is ignored.

Operand Address

Stores the contents of the B-register into the location indicated by the effective address, which is computed by adding the contents of the Y-register to the operand address. The effective address is loaded into the M-register; the B-and Y-register contents are not altered. Indirect addressing is resolved before indexing; bit 15 of the effective address is ignored.

Memory Address

Stores the contents of the X-register into the addressed memory location. The A- and B-registers may be addressed as locations 00000 and 00001, respectively. The X-register contents are not altered.

Memory Address

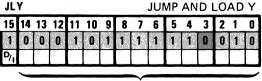
Stores the contents of the Y-register into the addressed memory location. The A- and B-registers may be addressed as locations 00000 and 00001, respectively. The Y-register contents are not altered.

XA	X						EXCHANGE A AND								
15	15 14 13 12 11 10							7	6	5	4	3	2	1	ᄀ
1	0	0	0	0	0	1	1	1	1	1	0	0	1	1	1

Exchanges the contents of the A- and X-registers.

XAY	Y					EXCHANGE A ANI									Υ
15 14 13 12 11 10							8	7	6	5	4	3	2	1	0
1	0	0	0	0	0	1	1	1	1	1	0	1	1	1	1

Exchanges the contents of the A- and Y-registers.


XBX						EXCHANGE B AND								
15 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1 0	0	0	1	0	1	1	1	1	1	0	0	1	1	1

Exchanges the contents of the B- and X-registers.

ΧE	βY							Ε	ХC	HΑ	NC	BE I	3 A	NE) Y
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	0	1	0	1	1	1	1	1	0	1	1	1	1

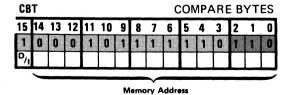
Exchanges the contents of the B- and Y-registers.

3-25. JUMP INSTRUCTIONS. The following two jump instructions involving the Y-register allow a program to either jump to or exit from a subroutine.

Memory Address

This instruction is designed for entering a subroutine. The instruction, executed in location P, causes computer con-

trol jump unconditionally to the memory location specified in the memory address. Indirect addressing may be specified. The contents of the P-register plus two (return address) is loaded into the Y-register. A return to the main program sequence at P+2 may be effected by a JPY instruction (described next). A memory protect check is performed by this instruction. The effective address may not be below the fence, including the addressable A- and B-registers.



Transfers control to the effective address, which is computed by adding the contents of the Y-register to the operand address. Indirect addressing is not allowed. The effective address is loaded into the P-register; the Y-register contents are not altered. A memory protect check is performed by this instruction. The effective address may not be below the fence, including the addressable A- and B-registers.

3-26. BYTE MANIPULATION INSTRUCTIONS.

A byte address is defined as two times the word address plus zero or one, depending on whether the byte is in the high-order position (bits 8 through 15) or low-order position (bits 0 through 7) of the word containing it. If the byte of interest is in bit positions 8 through 15 of memory location 100, for example, then the address of that byte is 2*100 + 0, or 200; the address of the low-order byte in the same location is 201 (2*100 + 1). Because of the way byte addresses are defined, 16 bits are required to cover all possible byte addresses in a 32k-word memory configuration. Hence, for byte addressing, bit 15 does not indicate indirect addressing.

Byte addresses 000 through 003 reference bytes in the Aand B-registers. These addresses will not cause memory violations. The user should, however, be careful in referencing these byte addresses; for example, storing into byte address 002 or 003 would destroy the byte address originally contained in the B-register.

Compares the bytes in string 1 with those in string 2. This is a three-word instruction where

Word 1 = Instruction code.

Word 2 = Address of word containing the string count, and

Word 3 = All-zeros word reserved for use by microcode.

The operand addresses are in the A- and B-registers. The A-register contains the first byte address of string 1 and the B-register contains the first byte address of string 2.

The number of bytes to be compared is given in the memory location addressed by Word 2 of the instruction; the number of bytes to be compared is restricted to a positive integer greater than zero. The strings are compared one byte at a time; the ith byte in string 1 is compared with the ith byte in string 2. The comparison is performed arithmetically; i.e., each byte is treated as a positive number. If all bytes in string 1 are identical with all bytes in string 2, the "equal" exit is taken. As soon as two bytes are compared and found to be different, the "less than" or "greater than" exit is taken, depending on whether the byte in string 1 is less than or greater than the byte in string 2. The three ways this instruction exits are as follows:

- a. No skip if string 1 is equal to string 2; the P-register advances one count from Word 3 of the instruction. The A-register contains its original value incremented by the count stored in the address specified in Word 2.
- b. Skips one word if string 1 is less than string 2; the P-register advances two counts from Word 3 of the instruction. The A-register contains the address of the byte in string 1 where the comparison stopped.
- Skips two words if string 1 is greater than string 2; the P-register advances three counts from Word 3 of the instruction. The A-register contains the address of the byte in string 1 where the comparison stopped.

For all three exits, the B-register will contain its original value incremented by the count stored in the address specified in Word 2. This instruction is interruptible. The interrupt routine is expected to save and restore the contents of the A- and B-registers. During the interrupt, the remaining count is stored in Word 3 of the instruction.

LB'	LBT					LOAD BY					3Y7	ГΕ			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	0	1	0	1	1	1	1	1	1	0	0	1	1

This one word instruction loads into the A-register the byte whose address is contained in the B-register. The byte is right-justified with leading zeros in the left byte. The B-register is incremented by one.

Moves bytes in a left-to-right manner; i.e., the byte having the lowest address from the source is moved first. This is a three word instruction where

Word 1 = Instruction code.

Word 2 = Address of word containing the byte count, and

Word 3 = All-zeros word reserved for use by microcode.

The operand addresses are in the A- and B-registers. The A-register contains the first byte address source and the B-register contains the first byte address destination.

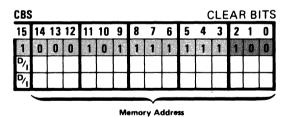
The number of bytes to be moved is given by a 16-bit positive integer greater than zero addressed by Word 2 of the instruction. The byte address in the A- and B-registers are incremented as each byte is being moved. Thus, at the end of the operation, the A- and B-registers are incremented by the number of bytes moved. Wraparound of the byte address would result from a carry out of bit position 15; therefore, if the destination became 000, 001, 002, or 003, the next byte would be moved into the A- or B-register and destroy the proper byte addresses for the move operation. For each byte move, a memory protect check is performed.

This instruction is interruptible. The interrupt routine is expected to save and restore the contents of the A- and B-registers. During the interrupt, the remaining count is stored in Word 3 of the instruction.

SB	SBT STORE BYTE											TE			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	0	1	0	1	1	1	1	1	1	0	1	0	0

Stores the A-register low-order (right) byte in the byte address contained in the B-register. The B-register is incremented by one. A memory protect check is performed before the byte is stored. The left byte in the A-register does not have to be zeros. The other byte in the same word of the stored byte is not altered.

SFB SCAN FOR BYT									ΓE.						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	0	1	0	1	1	1	1	1	1	0	1	1	1


This is a one word instruction with the operands in the Aand B-registers. The A-register contains a termination byte (high-order byte) and a test byte (low-order byte). The B-register contains the first byte address of the string to be scanned.

A string of bytes is scanned starting at the byte address given in the B-register. Scanning terminates when a byte in the string matches either the test byte or the termination byte in the A-register. The manner in which the instruction exits depends on which byte is matched first. If a byte in the string matches the test byte, the instruction will not skip upon exit; the B-register will contain the address of the byte matching the test byte. If a byte in the string matches the termination byte, the instruction will skip one word upon exit; the B-register will contain the address of the byte matching the termination byte plus one.

The scanning operation will not continue indefinitely even if neither the termination byte nor test byte exists in memory. These bytes are in the A-register with byte addresses 000 and 001, respectively. Thus, if no match is made by the time the B-register points to the last byte in memory, the B-register will roll over to zero and the next test will match the termination byte in the A-register with itself.

This instruction is interruptible. The interrupt routine is expected to save and restore the contents of the A- and B-registers.

3-27. BIT MANIPULATION INSTRUCTIONS. The following three instructions allow any number of bits in a specified memory location to be cleared, set, or tested.


Clears bits in the addressed location. This is a three-word instruction where

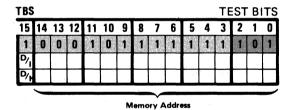
Word 1 = Instruction code,

Word 2 = Address of a 16-bit mask, and

Word 3 = Address of word where bits are to be cleared.

The bits to be cleared correspond to logic 1's in the mask. The bits corresponding to logic 0's in the mask are not affected. A memory protect check is performed prior to modifying the word in memory.

Memory Address


Sets bits in the addressed location. This is a three-word instruction where

Word 1 = Instruction code,

Word 2 = Address of a 16-bit mask, and

Word 3 = Address of word where bits are to be set.

The bits to be set correspond to logic 1's in the mask. The bits corresponding to logic 0's in the mask are not affected. A memory protect check is performed prior to modifying the word in memory.

Tests (compares) bits in the addressed location. This is a three-word instruction where

Word 1 = Instruction code.

Word 2 = Address of a 16-bit mask, and

Word 3 = Address of word in which bits are to be tested.

The bits in the addressed memory word corresponding to logic 1's in the mask are tested. If all the bits tested are 1's, the instruction will not skip; otherwise the instruction will skip one word (i.e., the P-register will advance two counts from Word 3 of the instruction).

3-28. WORD MANIPULATION INSTRUCTIONS. The following instructions facilitate the comparing and moving of word arrays.

Compares the words in array 1 with those in array 2. This is a three-word instruction where

Word 1 = Instruction code,

Word 2 = Address of word containing the word count, and

Word 3 = All-zeros word reserved for use by microcode.

The operand addresses are in the A- and B-registers. The A-register contains the first word address of array 1 and the B-register contains the first word address of array 2. Bit 15 of the addresses in the A- and B-registers are ignored; i.e., no indirect addressing allowed.

The number of words to be compared is given in the memory location addressed by Word 2 of the instruction; the number of words to be compared is restricted to a positive integer greater than zero. The arrays are compared one word at a time; the ith word in array 1 is compared with the ith word in array 2. This comparison is performed arithmetically; i.e., each word is considered a two's complement number. If all words in array 1 are equal to all words in array 2, the "equal" exit is taken. As soon as two words are compared and found to be different, the "less than" or "greater than" exit is taken, depending on whether the word in array 1 is less than or greater than the word in array 2. The three ways this instruction exits are as follows:

- a. No skip if array 1 is equal to array 2; the P-register advances one count from Word 3 of the instruction. The A-register contains its original value incremented by the word count stored in the address specified in Word 2.
- b. Skips one word if array 1 is less than array 2; the P-register advances two counts from Word 3 of the instruction. The A-register contains the address of the word in array 1 where the comparison stopped.
- c. Skips two words if array 1 is greater than array 2; the P-register advances three counts from Word 3 of the instruction. The A-register contains the address of the word in array 1 where the comparison stopped.

For all three exits, the B-register will contain its original value incremented by the word count stored in the address specified in Word 2. This instruction is interruptible. The interrupt routine is expected to save and restore the contents of the A- and B-registers. During the interrupt, the remaining count is stored in Word 3 of the instruction.

Memory Address

Moves words in a left-to-right manner; i.e., the word having the lowest address in the source is moved first. This is a three-word instruction where

Word 1 = Instruction code,

Word 2 = Address of word containing the count,

Word 3 = All-zeros word reserved for use by microcode.

The operand addresses are in the A- and B-registers. The A-register contains the first word address source and the B-register contains the first word address destination. The number of words to be moved is a 16-bit positive integer greater than zero addressed by Word 2 of the instruction. The word addresses in the A- and B-registers are incremented as each word is being moved. Thus, at the end of the operation, the A- and B-registers are incremented by the number of words moved.

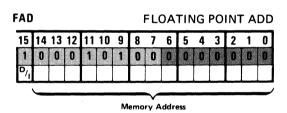
Wraparound of the word address would result from a carry into bit position 15 (i.e., at 32767). If the destination address became 000 or 001, the next word would be moved into the A- or B-register and destroy the proper word addresses for the move operation. For each word move, a memory protect check is performed.

This instruction is interruptible. The interrupt routine is expected to save and restore the contents of the A- and B-registers. During the interrupt, the remaining count is stored in Word 3 of the instruction.

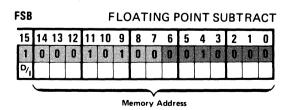
3-29. FLOATING POINT INSTRUCTIONS

The floating point instructions allow addition, subtraction, multiplication, and division of both single precision (32-bit) and extended precision (48-bit) floating point quantities, and conversion of quantities from floating point format to integer format or vice versa. Data formats are shown in Figure 3-1. Except for zero, all floating point operands must be normalized (i.e., sign of mantissa differs from most significant bit of mantissa).

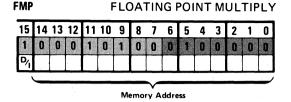
For multiple-word instructions, indirect addressing to any number of levels is permitted for the word(s) indicated as memory address. A logic 0 in bit position 15 specifies direct addressing, a logic 1 specifies indirect addressing.

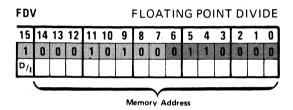

After initiating an operation in the Floating Point Processor (FPP), the floating point firmware waits for FPP

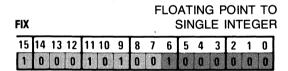
completion. If completion is not signalled by the FPP within 25 microseconds, an FPP malfunction exists. The firmware indicates this condition by creating a memory protect violation (memory protect installed), setting the overflow flag, and setting the A-register to all ones (an unnormalized number).

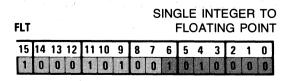

The execution times of the floating point instructions are specified under paragraph 3-32. These instructions are noninterruptible; any attempted interrupt is held off for the full execution time of the currently active floating point instruction. However, data transfer via the dual-channel port controller (DCPC) is not held off.

Information required for direct user-microprogramming utilizing the Floating Point Processor is provided in the HP 1000 E/F-Series Microprogramming Reference Manual, part no. 02109-90004.


3-30. SINGLE PRECISION OPERATIONS. Overflow for single precision operations occurs if the result lies outside the range of representable single precision floating point numbers $[-2^{127},(1-2^{-23})2^{127}]$. In such a case, the overflow flag is set and the result $(1-2^{-23})2^{127}$ is returned to the A- and B-registers. Underflow occurs if the result lies inside the range $[-2^{-129}(1+2^{-22}),2^{-129}]$. In such a case, the overflow flag is set and the result 0 is returned to the A- and B-registers.


Adds the floating point quantity in the A- and B-registers to the floating point quantity in the specified memory locations. The floating point result is returned to the A- and B-registers.


Subtracts the floating point quantity in the specified memory locations from the floating point quantity in the A- and B-registers. The floating point result is returned to the A- and B-registers.


Multiplies the floating point quantity in the A- and B-registers by the floating point quantity in the specified memory locations. The floating point result is returned to the A- and B-registers.

Divides the floating point quantity in the A- and B-registers by the floating point quantity in the specified memory locations. The floating point result is returned to the A- and B-registers.


Converts the floating point quantity in the A- and B-registers to single integer format. The integer result is returned to the A-register. If the magnitude of the floating point number is <1, regardless of sign, the integer 0 is returned. If the magnitude of the exponent of the floating point number is $>\!16$, regardless of sign, the integer 32767 (077777 octal) is returned as the result and the overflow flag is set.

Converts the single integer quantity in the A-register to single precision floating point format. The floating point result is returned to the A- and B-registers.

.FIXD (F-SERIES ONLY)*

FLOATING POINT TO DOUBLE INTEGER

Converts the floating point quantity in the A- and B-registers to double integer format. The integer result is returned to the A- and B-registers. (The A-register contains the most-significant word and the B-register contains the least-significant word.) If the magnitude of the floating point number is <1, regardless of sign, the integer 0 is returned. If the magnitude of the floating point number is ≥ 32 , regardless of sign, the integer $2^{31} - 1$ is returned as the result and the overflow flag is set.

.FLTD (F-SERIES ONLY)*

.XADD*

DOUBLE INTEGER TO FLOATING POINT

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	0	1	0	1	0	0	1	0	1	0	1	0	0

Converts the double integer quantity in the A- and B-registers to single precision floating point format. The floating point result is returned to the A- and B-registers.

3-31. EXTENDED PRECISION OPERATIONS.

(F-SERIES ONLY) Overflow for extended precision operations occurs if the result lies outside the range of representable extended precision floating point numbers $[-2^{127}, (1-2^{-39})\ 2^{-127}]$. In such a case, the overflow flag is set and $(1-2^{-39})\ 2^{127}$ is returned as the result. Underflow occurs if the result lies inside the range $[-2^{-129}\ (1+2^{-38}),\ 2^{-129}]$. In such a case, the overflow flag is set and 0 is returned as the result.

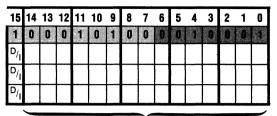
EXTENDED FLOATING POINT ADD

14 13 12 2 15 11 10 9 8 7 6 5 3 1 0 0 0 0 0 D/ D/

Memory Address

Adds two extended precision floating point quantities (augend plus addend). This is a four-word instruction where

Word 1 = Instruction code.


Word 2 = Address of result.

Word 3 = Address of augend.

Word 4 = Address of addend.

*For HP Assembly Language usage, refer to paragraph 3-43.

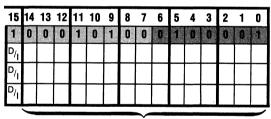
EXTENDED FLOATING POINT SUBTRACT

Memory Address

Subtracts one extended precision floating point quantity from another (minuend minus subtrahend). This is a four-word instruction where

Word 1 = Instruction code.

Word 2 = Address of result.


Word 3 = Address of minuend.

Word 4 = Address of subtrahend.

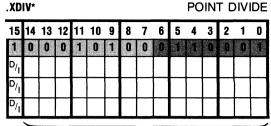
.XMPY*

.XSUB*

EXTENDED FLOATING POINT MULTIPLY

Memory Address

Multiplies one extended precision floating point quantity by another (multiplicand by multiplier). This is a fourword instruction where


Word 1 = Instruction code.

Word 2 = Address of result.

Word 3 = Address of multiplicand.

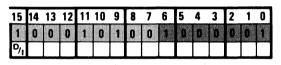
Word 4 = Address of multiplier.

EXTENDED FLOATING POINT DIVIDE

Memory Address

Divides one floating point quantity by another (dividend by divisor). This is a four-word instruction where

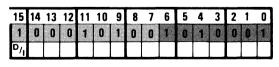
Word 1 = Instruction code.


Word 2 = Address of result.

Word 3 = Address of divident.

Word 4 = Address of divisor.

.XFXS*

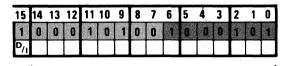

EXTENDED FLOATING POINT TO SINGLE INTEGER

Memory Address

Converts the extended precision floating point quantity in the specified memory locations to single integer format. The integer result is returned to the A-register. If the magnitude of the floating point number is <1, regardless of sign, 0 is returned as the result. If the magnitude of the exponent of the floating point number is >16, regardless of sign, the integer $2^{15}-1$ is returned as the result and the overflow flag is set.

SINGLE INTEGER TO .XFTS* EXTENDED FLOATING POINT

Memory Address

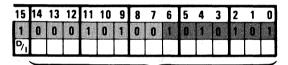

Converts the single integer quantity in the A-register to extended precision floating point format. The floating point result is returned to the specified memory locations.

^{*}For HP Assembly Language usage, refer to paragraph 3-43.

^{*}For HP Assembly Language usage, refer to paragraph 3-43.

.XFXD*

EXTENDED FLOATING POINT TO DOUBLE INTEGER

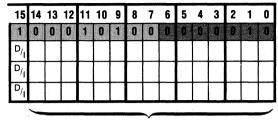


Memory Address

Converts the extended precision floating point quantity in the specified memory locations to double integer format. The integer result is returned to the A- and B-registers. (The A-register contains the most-significant word and the B-register contains the least-significant word.) If the magnitude of the floating point number is <1, regardless of sign, 0 is returned as the result. If the magnitude of the exponent of the floating point number is $\geqslant\!32$, regardless of sign, the integer $2^{31}-1$ is returned as the result and the overflow flag is set.

.XFTD*

DOUBLE INTEGER TO EXTENDED FLOATING POINT


Memory Address

Converts the double integer quantity in the A- and B-registers to extended precision floating point format. The floating point result is returned to the specified memory locations.

3-32. DOUBLE PRECISION OPERATIONS. (F-SERIES ONLY) Overflow for double precision operations occurs if the result lies outside the range of representable double precision floating point numbers $[-2^{127}, (1-2^{-55}) 2^{-127}]$. In such a case, the overflow flag is set and $(1-2^{-55}) 2^{127}$ is returned as the result. Underflow occurs if the result lies inside the range $[-2^{-129}, (1+2^{-54}), 2^{-129}]$. In such a case, the overflow flag is set and 0 is returned as the result.

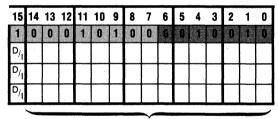
.TADD*

DOUBLE FLOATING POINT ADD

Memory Address

Adds two double precision floating point quantities (augend plus addend). This is a four-word instruction where

Word 1 = Instruction code.


Word 2 = Address of result.

Word 3 = Address of augend.

Word 4 = Address of addend.

.TSUB*

DOUBLE FLOATING POINT SUBTRACT

Memory Address

Subtracts one double precision floating point quantity from another (minuend minus subtrahend). This is a four-word instruction where

Word 1 = Instruction code.

Word 2 = Address of result.

Word 3 = Address of minuend.

Word 4 = Address of subtrahend.

^{*}For HP Assembly Language usage, refer to paragraph 3-43.

^{*}For HP Assembly Language usage, refer to paragraph 3-43.

Memory Address

Multiplies one double precision floating point quantity by another (multiplicand by multiplier). This is a four-word instruction where

Word 1 = Instruction code.

Word 2 = Address of result.

Word 3 = Address of multiplicand.

Word 4 = Address of multiplier.

DOUBLE FLOATING

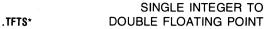
T	D	ı	۷

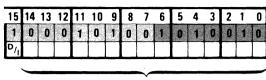
Memory Address

Divides one double precision floating point quantity by another (dividend by divisor). This is a four-word instruction where

Word 1 = Instruction code.

Word 2 = Address of result.

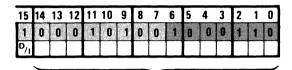

Word 3 = Address of divident.


Word 4 = Address of divisor.

DOUBLE FLOATING POINT TO SINGLE INTEGER 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 D_I

Memory Address

Converts the double precision floating point quantity in the specified memory locations to single integer format. The integer result is returned to the A-register. If the magnitude of the floating point number is <1, regardless of sign, 0 is returned as the result. If the magnitude of the exponent of the floating point number is ≥ 16 , regardless of sign, the integer $2^{15}-1$ is returned as the result and the overflow flag is set.



Memory Address

Converts the single integer quantity in the A-register to double precision floating point format. The floating point result is returned to the specified memory locations.

DOUBLE FLOATING
.TFXD* POINT TO DOUBLE INTEGER

Memory Address

Converts the double precision floating point quantity in the specified memory locations to double integer format. The integer result is returned to the A- and B-registers. (The A-register contains the most-significant word and the B-register contains the least-significant word.) If the magnitude of the floating point number is <1, regardless of sign, 0 is returned as the result. If the magnitude of the exponent of the floating point number is ≥ 32 , regardless of sign, the integer $2^{31}-1$ is returned as the result and the overflow flag is set.

DOUBLE INTEGER TO
DOUBLE FLOATING POINT

Memory Address

Converts the double integer quantity in the A- and B-registers to double precision floating point format. The floating point result is returned to the specified memory locations.

3-33. INSTRUCTION EXECUTION TIMES

Tables 3-5A, 3-5B and 3-5C list the execution times required for the various base set instructions on the M-, E- and F-Series Computers, respectively.

^{*}For HP Assembly Language usage, refer to paragraph 3-43.

^{*}For HP Assembly Language usage, refer to paragraph 3-43.

Table 3-5A. Typical Base Set Instruction Execution Times (M-Series)

INSTRUCTION	EXECUTION TIME (μS)	INSTRUCTION	EXECUTION TIME (μS)
Memory Reference Group ^{1,2}		Extended Instruction Group	
ADA/B, AND, IOR, LDA/B, XOR STA/B CPA/B (no skip)	1.94 2.27 2.27	CAX, CBX, CAY, CBY CXA, CXB, CYA, CYB XAX, XBX, XAY, XBY	2.275 3.250
(skip)	2.59	ISX, ISY, DSX, DSY	
ISZ (no skip) (skip)	2.59 2.92	LDX, LDY (direct address) (indirect address)	4.875 4.875 ^a
JMP	1.94	STX, STY	4.073
JSB	2.27	(direct address) (indirect address)	5.20 5.20 ^a
Shift/Rotate Group ³	2.59 - 2.92	LAX, LBX, LAY, LBY	4.075
Alter/Skip Group ³ No skip, no increment No skip, increment A/B Skip, no increment Skip, increment A/B	2.59 2.92 2.59 2.92	(direct address) (indirect address) SAX, SBX, SAY, SBY (direct address)	4.875 5.525 ^a 5.20 _a
Input/Output Group ⁴	2.59 - 3.89	(indirect address)	5.85 ^a
Extended Arithmetic Group ⁵		ADX, ADY (direct address) (indirect address)	4.875 4.875 ^a
ASL, ASR, LSL, LSR, RRL, RRR	3.57 - 8.43	JLY (direct address) (indirect address)	5.525 5.525 ^a
DLD	4.54	JPY	4.55
DST	4.86	LBT	4.875 avg
MPY	12.32 - 13.30	SBT	6.01 avg
DIV	15.92 - 18.20	MBT	8.775 ^{a,b,g}
Floating Point Group		MVW	7.8 ^{a,c,g}
FAD	21.78 - 53.95		8.775 ^{a,d,g}
FDV	41.2 - 75.72	CBT	7.8 ^{a,e,g}
FIX	6.50 - 12.02	CMW	
FLT	10.72 - 34.42	SFB (for test byte match) (for term. byte match)	3.575 ^{f,g} 2.275 ^{f,g}
FMP	48.10 - 56.88	CBS, SBS	7.8 ^a
FSB	22.75 - 57.20	TBS	8.125 ^a

 $^{^{1}}$ Memory refresh consumes 0.65 μS maximum no more often than every 30 μS .

 $^{^{2}}$ Add 1.3 μ S for each indirect address level.

 $^{^3}$ NOP or RSS requires 2.92 μ S whereas a JMP *+1 or JMP *+2 requires only 1.94 μ S.

⁴ Depends on which I/O time period (T2, 3, 4, 5, 6) the instruction begins.

⁵ Depends on number of shifts specified (1 to 16).

a. Add 1.3 μ S for each indirect address level.

b. Add 7.31 μ S for each byte moved or compared.

c. Add 3.25 μ S for each word moved or compared.

d. Add 8.125 μ S for each byte moved or compared.

e. Add 3.575 μ S for each word moved or compared.

f. Add 4.875 μ S for each byte moved or compared.

g. Add 7.15 μ S for each interrupt of the instruction.

Table 3-5B. Typical Base Set Instruction Execution Times¹ (E-Series)

INSTRUCTION		E	XECUTION TIM	E (us)	
	Standard Pe Memo		High Perfo		Fault Control Memory
	Non-DMS	DMS	Non-DMS	DMS	DMS
Memory Reference Group					
ADA/B,AND,IOR,LDA/B,XOR 1st Indirect Level Each Additional Level	1.190 0.595 0.630	1.330 0.665 0.665	0.910 0.455 0.630	0.910 0.455 0.630	1.400 0.700 0.700
STA/B 1st Indirect Level Each Additional Level	1.855 0.595 0.630	1.995 0.665 0.665	1.260 0.455 0.630	1.330 0.455 0.630	2.030 0.700 0.700
CPA/B (no skip) (skip) 1st Indirect Level Each Additional Level	1.225 1.715 0.595 0.630	1.330 1.855 0.665 0.665	1.085 1.435 0.455 0.630	1.085 1.435 0.455 0.630	1.400 1.925 0.700 0.700
ISZ (no skip) (skip) 1st Indirect Level Each Additional Level	2.030 2.030 0.595 0.630	2.170 2.170 0.665 0.665	1.540 1.610 0.455 0.630	1.540 1.610 0.455 0.630	2.205 2.205 0.700 0.700
JMP 1st Indirect Level 2nd Indirect Level Each Additional Level	0.735 0.595 0.595 1.190	0.735 0.665 0.665 1.330	0.735 0.350 0.560 0.805	0.735 0.420 0.490 0.875	0.735 0.700 0.700 1.400
JSB 1st Indirect Level 2nd Indirect Level Each Additional Level	1.855 0.595 0.595 1.190	1.925 0.665 0.665 1.330	1.610 0.350 0.560 0.805	1.680 0.420 0.490 0.875	2.030 0.700 0.700 1.400
Shift/Rotate Group (no skip) (skip)	1.190 1.785	1.330 1.995	0.910 1.260	0.910 1.330	1.400 2.100
Alter/Skip Group (no skip) (skip)	1.190 1.785	1.330 1.995	0.910 1.260	0.910 1.330	1.400 2.100
Input/Output Group ² SFS, SFC, SOS, SOC					
(no skip) (skip)	1.575-2.275 2.030-2.730	1.575 to 2.275 2.170 to 2.870	1.575 to 2.275 1.960 to 2.660	1.575 to 2.275 1.960 to 2.660	1.575 to 2.275 2.240 to 2.940
Extended Arithmetic Group ASL	2.065 +0.175/ shift	2.135 +0.175/ shift	.1.820 +0.175/ shift	1.890 +0.175/ shift	2.170 +0.175/ shift
ASR	1.610 +0.175/ shift	1.680 +0.175/ shift	1.470 +0.175/ shift	1.470 +0.175/ shift	1.715 +0.175/ shift

Table 3-5B. Typical Base Set Instruction Execution Times¹ (E-Series) (Continued)

INSTRUCTION	100	E	XECUTION TIM	E (us)	11
	Standard Pe		High Perfo	I	Fault Control Memory
	Non-DMS	DMS	Non-DMS	DMS	DMS
Extended Arithmetic Group (Cont.)					
LSL,LSR,RRL,RRR	1.715	1.785	1.470	1.540	1.820
	+0.175/	+0.175/	+0.175/	+0.175/	+0.175/
	shift	shift	shift	shift	shift
DLD	3.185	3.500	2.065	2.135	3.675
DST	3.710	3.990	2.695	2.765	4.060
MPY	5.740 to	5.985 to	5.320 to	5.320 to	6.125 to
	6.720	7.035	6.055	6.125	7.210
DIV	8.085 to	8.295 to	7.665 to	7.665 to	8.400 to
	9.625	9.940	9.065	9.065	10.115
Floating Point Group					
FAD	13.125 to	13.300 to	12.195 to	12.985 to	13.405 to
	27.650	27.825	27.440	27.510	27.930
FDV	34.020 to	34.195 to	33.810 to	33.880 to	34.300 to
	47.320	47.495	47.110	47.180	47.600
FIX	4.302 to	4.375 to	4.060 to	4.130 to	4.410 to
	7.595	7.665	7.350	7.420	7.700
FLT	13.825 to 29.435	14.000 to 29.610	13.615 to 29.225	13.685 to 29.295	14.105 to 29.715
FMP	25.480 to	25.655 to	25.270 to	25.340 to	25.760 to
	35.105	35.280	34.895	34.965	35.385
FSB	13.825 to	14.000 to	13.615 to	13.685 to	14.105 to
	29.435	29.610	29.225	29.295	29.715
Extended Instruction Group (Index Register Instructions)					
CAX,CBX,CAY,CBY CXA,CXB,CYA,CYB	1.435	1.505	1.295	1.295	1.540
XAX,XBX,XAY,XBY	2.065	2.170	1.925	1.925	2.240
DSX,DSY (no skip)	2.030	2.170	1.750	1.750	2.240
(skip)	2.520	2.730	1.995	2.065	2.835
ISZ,ISY (no skip)	2.030	2.170	1.750	1.750	2.240
(skip)		2.730	1.750	1.750	2.835
LDX,LDY	3.045	3.185	2.660	2.730	3.255
Each Indirect Level	1.190	1.330	0.805	0.875	1.400
STX,STY	3.430	3.570	2.940	2.940	3.605
Each Indirect Level	1.190	1.330	0.805	0.875	1.400
LAX,LBX,LAY,LBY Each Indirect Level	3.745	3.885	3.185	3.255	3.955
	1.190	1.330	0.805	0.875	1.400
SAX,SAY,SBX,SBY Each Indirect Level	3.815	3.885	3.465	3.465 0.875	3.885 1.400
ADX,ADY	1.190 2.975	1.330 3.045	0.805 2.730	2.800	3.080
Each Indirect Level JLY	1.190	1.330	0.805	0.875	1.400
	2.800	2.905	2.660	2.660	2.975
Each Indirect Level JPY	1.190	1.330	0.805	0.875	1.400
	2.625	2.835	2.275	2.275	2.940

Table 3-5B. Typical Base Set Instruction Execution Times¹ (E-Series) (Continued)

INSTRUCTION		E	XECUTION TIM	E (us)	
	Standard Pe Memo		High Perfo		Fault Control Memory
	Non-DMS	DMS	Non-DMS	DMS	DMS
Extended Instruction Group					
(Cont.)					
(Byte Manipulation Instructions)					
LBT (from high byte)	3.780	3.885	3.640	3.640	3.955
(from low byte)	3.500	3.605	3.360	3.360	3.675
SBT (to high byte)	4.830	4.970	4.340	4.410	5.005
(to low byte)	4.445	4.620	3.885	4.025	4.655
MBT	4.270	4.515	3.745	3.815	4.655
	+4.235/	+4.340/	+4.045/	+4.080/	+4.410/
	byte	byte	byte	byte	byte
Each Indirect Level	1.190	1.330	0.805	0.875	1.400
CBT	4.270	4.515	3.745	3.815	4.655
	+4.445/	+4.550/	+4.480/	+4.480/	+4.620/
	byte	byte	byte	byte	byte
Each Indirect Level	1.190	1.330	0.805	0.875	1.400
SFB (if compare exit)	2.170	2.240	1.925	1.995	2.275
(,	+2.735/	+2.770/	+2.735/	+2.735/	+2.805/
	byte	byte	byte	byte	byte
(if terminal exit)	2.590	2.660	2.450	2.450	2.695
(+2.735/	+2.770/	+2.735/	+2.735/	+2.805/
	byte	byte	byte	byte	byte
(Word Manipulation Instructions)	'	'	,	1	,
CMW	4.270	4.515	3.745	3.815	4.655
CIVITY	+2.870/	+3.010/	+2.380/	+2.520/	+3.080/
	word	word	word	word	word
Each Indirect Level	1.190	1.330	0.805	0.875	1.400
MVW		1			
MVVV	4.270	4.515	3.745 +1.680	3.815 +1.680	4.655 +1.855/
	+1.750/ word	+1.820/ word	+ 1.680 word	+1.680 word	+ 1.855/ word
		""			
Each Indirect Level	1.190	1.330	0.805	0.875	1.400
(Bit Manipulation Instructions)					
CBS,SBS	5.215	5.425	4.480	4.550	5.495
Each Indirect Level	1.190	1.330	0.805	0.875	1.400
TBS (no skip)	5.355	5.565	4.935	4.935	5.670
(skip)	5.670	5.950	4.725	4.795	6.090
Each Indirect Level	1.190	1.330	0.805	0.875	1.400

¹Semiconductor memory refresh may increase program execution times by up to 3%.

¹Depends on which I/O time period (T2,3,4,5,6) the instruction begins.

Table 3-5C. Typical Base Set Instruction Execution Times¹

	1	EXECUTIO	N TIME (us)	
INSTRUCTION		formance nory	High Perl Fault Contr	
	Non-DMS	DMS	Non-DMS	DMS
Memory Reference Group				
ADA/B,AND,IOR,LDA/B,XOR 1st Indirect Level Each Additional Level	0.910 0.455 0.630	0.910 0.455 0.630	0.910 0.455 0.630	0.980 0.490 0.630
STA/B 1st Indirect Level Each Additional Level	1.260 0.455 0.630	1.260 0.455 0.630	1,330 0,455 0,630	1.400 0.490 0.630
CPA/B (no skip) (skip) 1st Indirect Level Each Additional Level	1.085 1.435 0.455 0.630	1.085 1.435 0.455 0.630	1.085 1.435 0.455 0.630	1.120 1.505 0.490 0.630
ISZ (no skip) (skip) 1st Indirect Level Each Additional Level	1.540 1.610 0.455 0.630	1.540 1.610 0.455 0.630	1.540 1.610 0.455 0.630	1.610 1.680 0.490 0.630
JMP 1st Indirect Level 2nd Indirect Level Each Additional Level	0.735 0.350 0.560 0.805	0.735 0.350 0.560 0.875	0.735 0.350 0.560 0.875	0.735 0.385 0.595 0.980
JSB 1st Indirect Level 2nd Indirect Level Each Additional Level	1.260 0.350 0.560 0.805	1.260 0.420 0.490 0.875	1.330 0.420 0.490 0.875	1.400 0.490 0 490 0.980
Shift/Rotate Group (no skip) (skip)	0.910 1.260	0.910 1.330	0.910 1.330	0.980 1.470
Alter/Skip Group (no skip) (skip)	0.910 1.260	0.910 1.330	0.910 1.330	0.980 1.470
Input/Output Group ² SFS, SFC, SOS, SOC (no skip) (skip)	1.575 1.855	1.575 1.855	1.575 1.855	1.575 1.890
Extended Arithmetic Group ASL ASR LSL,LSR,RRL,RRR	1.820 +0.175/shift 1.470 +0.175/shift 1.470 +0.175/shift	1.890 +0.175/shift 1.470 +0.175/shift 1.540 +0.175/shift	1.890 +0.175/shift 1.470 +0.175/shift 1.540 +0.175/shift	1.960 +0.175/shift 1.505 +0.175/shift 1.610 +0.175/shift
DLD DST MPY DIV	2.520 2.695 5.320 to 6.055 7.665 to 9.065	2.590 2.695 5.320 to 6.125 7.665 to 9.065	2.590 2.765 5.320 to 6.125 7.665 to 9.065	2.765 2.905 5.425 to 6.300 7.770 to 9.205

Table 3-5C. Typical Base Set Instruction Execution Times¹ (Continued)

		EXECUTIO	N TIME (us)	
INSTRUCTION		formance mory		formance rol Memory
•	Non-DMS	DMS	Non-DMS	DMS
Extended Instruction Group	:	1		
(Index Register Instructions)				
CAX.CBX,CAY,CBY,CXA,CXB,CYA,CYB	1.295	1.295	1.295	1.330
XAX,XBX,XAY,XBY	1.925	1.925	1.925	1.960
DSX,DSY (no skip)	1.750	1.750	1.750	1.820
(skip)	1.995	2.065	2.065	2.205
ISX,ISY (no skip)	1.750	1.750	1.750	1.820
(skip)	1.995	2.065	2.065	2.205
LDX,LDY	2.660	2.730	2.730	2.835
Each Indirect Level	0.805	0.875	0.875	0.980
STX,STY	2.940	2.940	2.940	3.010
Each Indirect Level	0.805	0.875	0.875	0.980
LAX,LBX,LAY,LBY	3.360	3.430	3.430	3.535
Each Indirect Level	0.805	0.875	0.875	0.980
SAX,SAY,SBX,SBY	3.465	3.465	3.465	3.500
Each Indirect Level	0.805	0.875	0.875	0.980
ADX,ADY	2.730	2.800	2.800	2.870
Each Indirect Level	0.805	0.875	0.875	0.980
JLY	2.660	2.660	2.660	2.695
Each Indirect Level	0.805	0.875	0.875	0.980
JPY	2.275	2.275	2.275	2.345
(Byte Manipulation Instructions)				
LBT (from high byte)	3.640	3.640	3.640	3.675
(from low byte)	3.360	3.360	3.360	3.395
SBT (to high byte)	4.340	4.410	4.410	4.515
(to low byte)	3.885	4.025	4.025	4.165
MBT`	3.745	3.815	3.815	3.955
	+4.042/byte	+4.078/byte	+4.078/byte	+4.130/byte
Each Indirect Level	0.805	0.875	0.875	0.980
CBT	3.745	3.815	3.815	3.955
	+4.480/byte	+4.480/byte	+4.480/byte	+4.480/byte
Each Indirect Level	0.805	0.875	0.875	0.980
SFB (if compare exit)	1.925	1.995	1.995	2.065
, , , , , , , , , , , , , , , , , , , ,	+2.730/byte	+2.730/byte	+2.730/byte	+2.730/byte
(if terminal exit)	2.450	2.450	2.450	2.485
(With the state of	+2.730/byte	+2.730/byte	+2.730/byte	+2.730/byte
Word Manipulation Instructions)				
CMW	3.75	3.815	3.815	3.955
	+2.380/word	+2.520/word	+2.520/word	+2.660/word
Each Indirect Level	0.805	0.875	0.875	0.980
MVW	3.745	3.815	3.815	3.955
	+1.680/word	+1.680/word	+1.680/word	+1.680/word
Each Indirect Level	0.805	0.875	0.875	0.980
(Bit Manipulation Instructions)				
CBS,SBS	4.480	4.550	4.550	4.690
Each Indirect Level	0.805	0.875	0.875	0.980
TBS (no skip)	4.935	4.935	4.935	5.040
(skip)	5.005	5.075	5.075	5.250
Each Indirect Level	0.805	0.875	0.875	0.984

Table 3-5C. Typical Base Set Instruction Execution Times¹ (Continued)

	EXECUTION TIME (us)									
INSTRUCTION	High Perf Mem		High Performance Fault Control Memory							
a de la companya de la companya de la companya de la companya de la companya de la companya de la companya de	Non-DMS	DMS	Non-DMS	DMS						
Floating Point Group										
FAD	4.760 to 7.630	4.830 to 7.700	4.830 to 7.700	4.970 to 7.840						
FSB	4.760 to 7.630	4.830 to 7.700	4.830 to 7.700	4.970 to 7.840						
FMP ,	6.020 to 6.370	6.090 to 6.440	6.090 to 6.440	6.230 to 6.580						
FDV	6.020 to 9.240	6.090 to 9.310	6.090 to 9.310	6.230 to 9.450						
FIX	3.640 to 5.250	3.640 to 5.250	3.640 to 5.250	3.675 to 5.285						
FLT	3.395 to 4.550	3.395 to 4.550	3.395 to 4.550	3.430 to 4.585						
FIXD	3.465 to 6.230	3.465 to 6.230	3.465 to 6.230	3.500 to 6.265						
FLTD	3.290 to 5.705	3.290 to 5.705	3.290 to 5.705	3.325 to 5.740						
.XADD	10.220 to 13.720	10.360 to 13.860	10.430 to 13.930	10.710 to 14.21						
.XSUB	10.220 to 13.720	10.360 to 13.860	10.430 to 13.930	10.710 to 14.21						
.XMPY	12.110 to 12.915	12.250 to 13.055	12.320 to 13.125	12.600 to 13.40						
.XDIV	12.110 to 17.395	12.250 to 17.535	12.320 to 17.605	12.600 to 17.88						
.XFXS	5.600 to 6.755	5.670 to 6.825	5.670 to 6.825	5.810 to 6.965						
XFTS.	5.775 to 6.510	5.775 to 6.510	5.854 to 6.580	5.915 to 6.650						
.XFXD	6.230 to 8.645	6.300 to 8.715	6.300 to 8.715	6.440 to 8.855						
XFTD	6.475 to 8.015	6.475 to 8.015	6.545 to 8.085	6.580 to 8.120						
TADD	9.730 to 14.840	10.360 to 15.120	10.430 to 15.190	11.095 to 15.85						
.TSUB	9.730 to 14.840	10.360 to 15.120	10.430 to 15.190	11.095 to 15.85						
.TMPY	12.880 to 13.685	13.510 to 14.315	13.580 to 14.395	13.790 to 15.05						
.TDIV	12.880 to 19.670	13.510 to 20.300	13.580 to 20.370	14.245 to 21.03						
.TFXS	6.125 to 7.280	6.265 to 7.420	6.265 to 7.420	6.475 to 7.630						
TFTS	6.195 to 6.930	6.195 to 6.930	6.265 to 7.000	6.335 to 7.070						
.TFXD	6.755 to 9.170	6.895 to 9.310	6.895 to 9.310	7.105 to 9.520						
.TFTD	6.895 to 8.435	6.895 to 8.435	6.965 to 8.505	7.000 to 8.540						

Semiconductor memory refresh may increase program execution times by up to 3%.

3-34. SCIENTIFIC INSTRUCTION SET (F-SERIES ONLY)

The Scientific Instruction Set (SIS) utilizes the Floating Point Processor (FPP) to perform nine trigonometric and logarithmic functions. After initiating an operation in the FPP, the SIS firmware waits for FPP completion. If completion is not signalled by the FPP within 25 microseconds, an FPP malfunction exists. The firmware indicates this condition by creating a memory protect violation (memory protect installed), setting the overflow flag, and setting the A-register to all ones (an unnormalized number).

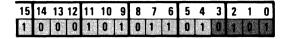
The following paragraphs provide machine language coding and definitions for the SIS instructions. Error conditions and codes are given in Table 3-6. Note that except for zero, all floating point operands must be normalized (i.e., sign of mantissa differs from most significant bit of mantissa).

IAN	-											1	ΑN	GE	:171
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	0	1	0	1	0	1	1	0	1	0	0	0	0

Calculates the tangent of the single precision floating point quantity (in radians) contained in the A- and B-registers. The result is returned to the A- and B-registers. A normal return will skip the next instruction. An error return will execute the next instruction, set the overflow bit, and return an ASCII error code in the A- and B-registers.

^{*}For HP Assembly Language usage, refer to paragraph 3-43.

SORT*


SQUARE ROOT

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	0	1	0	1	0	1	1	0	1	0	0	0	1

Calculates the square root of the single precision floating point quantity contained in the A- and B-registers. The result is returned to the A- and B-registers. A normal return will skip the next instruction. An error return will execute the next instruction, set the overflow bit, and return an ASCII error code in the A- and B-registers.

SIN*

SINE

Calculates the sine of the single precision floating point quantity (in radians) contained in the A- and B-registers. The result is returned to the A- and B-registers. A normal return will skip the next instruction. An error return will execute the next instruction, set the overflow bit, and return an ASCII error code in the A- and B-registers.

ALOG*

NATURAL LOGARITHM

					10			7	6	5	4	3	2	1	0
1	0	0	0	1	0	1	0	1	1	0	1	0	0	1	0

Calculates the natural logarithm of the single precision floating point quantity contained in the A- and B-registers. The result is returned to the A- and B-registers. A normal return will skip the next instruction. An error return will execute the next instruction, set the overflow bit, and return an ASCII error code in the A- and B-registers.

EXP*

E TO THE POWER X

15	14				10	٠,	8	7	6	5	4	3	2	1	0
1	0	0	0	1	0	1	0	1	1	0	1	0	1	1	0

Calculates e to the power x of the single precision floating point quantity contained in the A- and B-registers. The result is returned to the A- and B-registers. A normal return will skip the next instruction. An error condition will execute the next instruction, set the overflow bit, and return an ASCII error code in the A- and B-registers.

ATAN*

ARCTANGENT

				11				7	6	5	4	3	2	1	0
1	0	0	0	1	0	1	0	1	1	0	1	0	0	1	1

Calculates the arctangent of the single precision floating point quantity contained in the A- and B-registers. The result (in radians) is returned to the A- and B-registers. ALOGT*

COMMON LOGARITHM

15 14 13 12	11 10	9 8	7 6	5	4 3	2	1	0
1 0 0 0	1 0	1 0	1 1	0	1 0	1	1	1

Calculates the common logarithm of the single precision floating point quantity contained in the A- and B-registers. The result is returned to the A- and B-registers. A normal return will skip the next instruction. An error condition will execute the next instruction, set the overflow bit, and return an ASCII error code in the A- and B-registers.

COS*

COSINE


				11				7	6	5	4	3	2	1	0
1	0	0	0	1	0	1	0	1	1	0	1	0	1	0	0

Calculates the cosine of the single precision floating point quantity (in radians) contained in the A- and B-registers. The result is returned to the A- and B-registers. A normal return will skip the next instruction. An error return will execute the next instruction, set the overflow bit, and return an ASCII error code in the A- and B-registers.

*For HP Assembly Language usage, refer to paragraph 3-43.

TANH*

HYPERBOLIC TANGENT

Calculates the hyperbolic tangent of the single precision floating point quantity contained in the A- and B-registers. The result is returned to the A- and B-registers.

^{*}For HP Assembly Language usage, refer to paragraph 3-43.

DP0	LY '	K					РО	LYN	1OI	MIA	LE	V۸	LU	ATIC	NC
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	0	1	0	1	0	1	1	0	1	1	0	0	1
F	S	X	X	X	X	Х	X	X	X	Х	X	X	Х	X	Т
D/I															
D/I															
D/I															
D/I															
D/I															

Memory Address

Evaluates a polynomial or quotient of polynomials using 64-bit floating-point. This is a seven-word instruction where:

Word 1 = Instruction code.

Word 2 = Sub-opcode.

Word 3 = Address of result Y (64-bit floating).

Word 4 = Address of argument X (64-bit floating).

Word 5 = Address of coefficient P_M (64-bit floating).

Word 6 = Address of numerator order M (integer).

Word 7 = Address of denominator order N (integer).

$$\begin{array}{llll} Define \ P(Z) \ = \ P_M Z^M \ + \ P_{M-1} \ Z^{M-1} \ + \ \ldots \ + \ P_1 Z \ + P_0 \\ Q(Z) \ = \ Z^N \ + \ Q_{N-1} \ + \ \ldots \ + \ Q_1 Z \ + Q_0 \end{array}$$

The computation performed depends on the values of bits F, S, T of the sub-opcode:

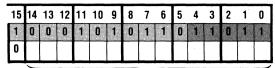
$$\begin{array}{lll} F\!=\!0; & Y = P(X)/Q(X) \\ F\!=\!1, \ S\!=\!0, \ T\!=\!1; \ Y = P(X^2)/Q(X^2) \\ F\!=\!1, \ S\!=\!1, \ T\!=\!0; \ Y = X^*P(X^2)/Q(X^2) \end{array}$$

F=1, S=1, T=1: Y=
$$P(X^2)/(Q(X^2)-P(X^2))$$
 (N>0)

 $F{=}1,\;S{=}1,\;T{=}0{:}\;\;Y\;=\;X{*}\,P(X^2)/Q(X^2){-}\,P(X^2))\ \ \, (N{>}0)$

Horner's Rule is used to evaluate the polynomial(s). The coefficients must be stored sequentially in memory, starting with P_{M} , in the order:

$$P_{M}, P_{M-1}, \ldots, P_{1}, P_{0}, Q_{N-1}, \ldots, Q_{1}, Q_{0}$$


where $Q_N=1.0$ is implied but not stored. If $N\!=\!0$, no coefficients are provided for Q and only P is evaluated. The case $N\!=\!0$ and $S\!=\!1$ is not allowed.

Any underflow or overflow which occurs invalidates the final result. M must be at least one. The A,B,X,Y and E registers are undefined after this instruction. The O register is set if any underflow or overflow occurs, else cleared.

This instruction is interruptible. Since it restarts after an interrupt, it is not recomended for very large values of (M+N).

Timing: Approximately 15+9M if N=020+9(M+N) if N>0

Memory Address

Performs the computation X = (1-X)/(1+X).

Word 1 = Instruction code.

Word 2 = Direct address of X (64-bit floating).

The A,B,X,Y,E and O registers are undefined after this instruction.

FPWR*

EXPONENTIATION

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	0	1	0	1	0	1	1	0	1	1	1	0	0
$D_{/I}$															

Memory Address

Raises a 32-bit floating-point number to an integer power. This is a two-word instruction, where:

Word 1 = Instruction code.

Word 2 = Address of base X (32-bit floating).

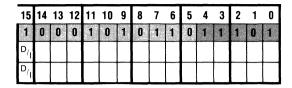
The power I is supplied in the A-register. It is unsigned and must be in the range [2,32768]. The left-to-right binary method is used to compute X^I , e.g. if $I=83_{10}=123_8=1010011$, then

$X^2 = X \star X$	10
$X^4 = X^2 \star X^2$	100
$X^5 = X^4 \star X$	101
$\mathbf{X}^{10} = \mathbf{X}^5 \star \mathbf{X}^5$	1010
$X^{20} = X^{10} \star X^{10}$	10100
$X^{40} = X^{20} \star X^{20}$	101000
$X^{41} = X^{40} \star X$	101001
$X^{82} = X^{41} \star X^{41}$	1010010
$X^{83} = X^{82} \star X$	1010011

The X,Y and E registers are undefined. The O register is set if underflow or overflow occur else cleared. The A- and B-registers contain the result.

Timing: Approximately 20 + 2.7M + 3.5N microseconds

where M = (# bits in I)N = (# bits set in I)


Maximum time non-interruptible: Approximately 32 μ s.

^{*}For HP Assembly Language usage, refer to paragraph 3-43.

^{*}For HP Assembly Language usage, refer to paragraph 3-43.

.TPWR*

EXPONENTIATION

Memory Address

Raises a 64-bit floating-point number to an integer power. This is a three-word instruction, where:

Word 1 = Instruction code.

Word 2 = Address of result (64-bit floating).

Word 3 = Address of base X (64-bit floating).

The power I is supplied in the A-register. It is unsigned and must be in the range [2,32768]. The left-to-right binary method is used.

The A,B,X,Y and E registers are undefined. The O register is set if underflow or overflow occur else cleared.

Timing: Appriximately 22 + 4.5M + 6N microseconds

where M = (# bits in I)

N = (# bits set in I)

Maximum time non-interruptible: Approximately 42 μ s.

Table 3-6. SIS Instruction Error Codes

INSTRUCTION	ERROR CODE
TAN	09OR if $ x > 32768^*\pi/4$
SQRT	03UN if $x < 0$
ALOG	02UN if $x \leq 0$
ATAN	None
cos	05OR if $ x > 32768^*\pi/4$
SIN	05OR if $ x > 32768^*\pi/4$
EXP	07OF if x > 88.029678
ALOGT	02UN if $x \leq 0$
TANH	None

Where:

OF = Integer or floating point overflow.

OR = Out of range.

UN = Undefined.

3-35. EXECUTION TIMES AND INTERRUPTS

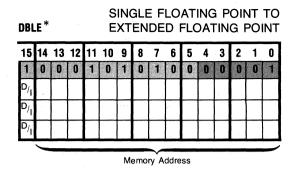
Table 3-7 lists the typical execution times required for the SIS instructions. Also listed is the maximum period of non-interruptible instruction execution. If an instruction is interrupted, its execution restarts from the beginning.

Table 3-7. Typical Scientific Instruction Set Execution Times

INSTRUCTION	EXECUTION TIME (us)	MAXIMUM NON- INTERRUPTIBLE (us)
TAN	48.4	8
SQRT	30.9	11
ALOG	43.3	8 -
ATAN	42.4	12
cos	47.9	9
SIN	47.6	8
EXP	44.7	8
ALOGT	49.4	8
TANH	57.2	9
DPOLY	See Text	
/ATLG	25	28
.FPWR	See Text	32
.TPWR	See Text	42

3-36. FAST FORTRAN INSTRUCTIONS (Standard with F-Series, Optional with M- and E-Series)

The Fast FORTRAN Processor instructions perform several frequently-used FORTRAN operations including parameter passing, array address calculations, and floating point conversion, packing, rounding and normalization operations.

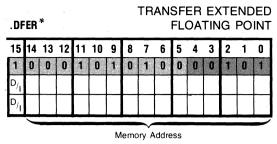

The Fast FORTRAN Processor instructions as well as the extended precision add, subtract, multiply and divide instructions are standard with the HP 1000 F-Series Computers. The extended precision add, subtract, multiply and divide instructions are included as part of the optional Fast FORTRAN Processor instructions on the M/E-Series Computers and possess different instruction codes as those in the F-Series.

For multiple-word instructions, indirect addressing to any number of levels is permitted for the word(s) indicated as a memory address. A logic 0 in bit position 15 specifies direct addressing; a logic 1 specifies indirect addressing.

The following paragraphs provide machine language coding and definitions for the fast FORTRAN instructions. Data formats are shown in Figure 3-1.

For a more detailed description of the fast FORTRAN instructions see the DOS/RTE Relocatable Library Reference Manual, HP Part No. 24998-90001.

^{*}For HP Assembly Language usage, refer to paragraph 3-43.


Converts the single precision floating point quantity in specified memory locations to an extended precision floating point quantity. The result is returned to other specified memory locations. This is a four-word instruction where

Word 1 = Instruction code.

Word 2 = Return address.

Word 3 = Address of result.

Word 4 = Address of operand.

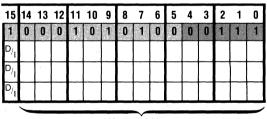
Transfers an extended precision floating point quantity (three consecutive words) from one memory location to another. The source address +3 is returned to the A-register; the destination address +3 is returned to the B-register. This is a three word instruction where

Word 1 = Instruction code.

Word 2 = Destination address.

Word 3 = Source address.

SNO	3L*						EN SIN			-				_	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	0	1	0	1	0	1	0	0	0	0	0	1	0
$D_{/}$															
$D_{/_{I}}$															
لـــــا	\vdash	<u></u>		<u>_</u>	<u></u>		emo	<u></u>	Ш	_			<u> </u>	<u> </u>	L


Converts the extended precision floating point quantity in the specified memory locations to a single precision floating point quantity. The result is placed in the A- and B-registers. This is a three word instruction where

Word 1 = Instruction code.

Word 2 = Return address.

Word 3 = Address of operand.

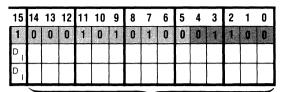
.BLE SINGLE FLOATING POINT TO DOUBLE FLOATING POINT

Memory Address

Converts the single precision floating point quantity in specified memory locations to a double precision floating point quantity. The result is returned to other specified memory locations. This is a four-word instruction where

Word 1 = Instruction code.

Word 2 = Return address.


Word 3 = Address of result.

Word 4 = Address of operand.

^{*}For HP Assembly Language usage, refer to paragraph 3-43.

^{*}For HP Assembly Language usage, refer to paragraph 3-43.

.NGL DOUBLE FLOATING POINT (F-Series Only) TO SINGLE FLOATING POINT

Memory Address

Converts the double precision floating point quantity in the specified memory locations to a single precision floating point quantity. The result is placed in the A- and B-registers. This is a three word instruction where

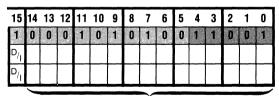
Word 1 = Instruction code.

Word 2 = Return address.

Word 3 = Address of operand.

TRANSFER EXTENDED

.XFER* FLOATING POINT


1				11		-	_	7	6	5	4	3	2	1	0
1	0	0	0	1	0	1	0	1	0	0	1	0	0	0	0

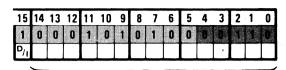
Transfers an extended precision floating point quantity (three consecutive words) from one memory location to another. The A-register must contain the source address and the B-register must contain the destination address. The source address +3 is returned to the A-register; the destination address +3 is returned to the B-register.

.CFER*

Only)

TRANSFER COMPLEX OR DOUBLE FLOATING POINT

Memory Address

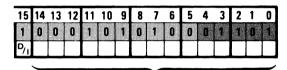

Transfers a double precision floating point quantity (four consecutive words) from one memory location to another. The source address +4 is returned to the A-register; the destination address +4 is returned to the B-register. This is a three word instruction where

Word 1 = Instruction code.

Word 2 = Destination address.

Word 3 = Source address.

NORMALIZE AND PACK EXTENDED FLOATING POINT



XPAK*

Memory Address

Normalizes, rounds, and packs with exponent the mantissa of an extended precision floating point quantity located in the specified memory locations. The value of the exponent must be in the A-register. The result is returned to the same specified memory locations.

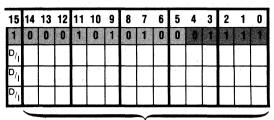
COMPLEMENT EXTENDED XCOM* FLOATING POINT ADD

Memory Address

Complements in place an unpacked extended precision floating point quantity located in the specified memory locations. The result is returned to the same specified memory locations. If the exponent is adjusted, the A-register equals 1; if not, the A-register equals 0.

DCM* COMPLEMENT AND NORMALIZE EXTENDED FLOATING POINT 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 0 0 0 1 0 1 0 1 0 0 0 1 1 0 0

Memory Address


Complements and normalizes in place an unpacked extended precision floating point quantity located in the specified memory locations. The result is returned to the same specified memory locations.

^{*}For HP Assembly Language usage, refer to paragraph 3-43.

^{*}For HP Assembly Language usage, refer to paragraph 3-43.

DDINT*

EXTENDED FLOATING POINT TRUNCATION

Memory Address

Truncates the extended precision floating point quantity in specified memory locations to an integer value. The extended precision floating point result is returned to other specified memory locations. This is a four-word instruction where

Word 1 = Instruction code.

Word 2 = Return address.

Word 3 = Address of result.

Word 4 = Address of operand.

.GOTO*

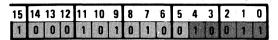
TRANSFER CONTROL

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	0	1	0	1	0	1	0	0	1	0	0	0	1

Transfers control to the location indicated by a FORTRAN computed GO TO statement: GO TO $(K1,K2,\ldots,Kn)$, J. If J<1, then result address is K1; if J>n, address is Kn; otherwise, address is KJ. The succeeding memory locations must define the return address, the value of J, and the parameters.

.. MAP*

COMPUTE ARRAY ELEMENT ADDRESS


15 14 13 12	11 10 9	8 7 6	5 4 3	2 1 0
10 17 10 12	11 10 3	0 , 0	3 7 3	
11 10 10 10	11 0 11	0 1 1 10	0 1 10	10 11 10

Computes the address of a specified element of a 2 or 3 dimensional array; returns the address to the A-register. The A-register must equal 0 for a 2 dimensional array or 1 for a 3 dimensional array. The B-register must contain the number of words per variable. Succeeding memory locations must define base address, element subscripts, and length of first (or first and second) dimension.

.ENTR*

.ENTP*

TRANSFER PARAMETER ADDRESSES

Transfers the true addresses of parameters from a calling sequence into a subroutine; adjusts return address to the true return point. A true address is determined by eliminating all indirect references.

TRANSFER PARAMETER
ADDRESSES

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	0	1	0	1	0	1	0	0	1	0	1	0	0

Transfers the true addresses of parameters from a calling sequence into a subroutine; adjusts return address to the true return point. A true address is determined by eliminating all indirect references, used for privileged or re-entrant subroutines.

.PWR2*

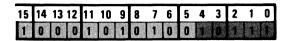
X TIMES 2 TO THE POWER N

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	0	1	0	1	0	1	0	0	1	0	1	0	1

Calculates for floating point x and integer n: $y = x^*2^n$. The floating point quantity must be in the A- and B-registers; the succeeding memory location must define integer n. The first word of the two word floating point result is returned to the A-register; the second word, to the B-register.

.FLUN*

UNPACK FLOATING POINT QUANTITY

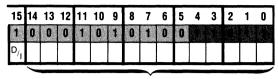

Unpacks a floating point quantity. The lower part of the floating point quantity must be in the B-register. The exponent is returned to the A-register; the lower part of the mantissa is returned to the B-register, left justified.

^{*}For HP Assembly Language usage, refer to paragraph 3-43.

^{*}For HP Assembly Language usage, refer to paragraph 3-43.

SSETP

SET A TABLE



Sets a table of increasing numbers in consecutive memory locations. The A-register must contain the initial number and the B-register must contain the initial memory address (direct only); the contents of the succeeding memory location must define the number of memory locations (count ≥ 0). Entries in the table are established by incrementing the initial address and number by one (1) for each successive entry until the last number, initial number +COUNT-1, is reached. On return, the B-register equals the initial address +COUNT.

NOTE

If the initial address +COUNT-1 results in an address which is beyond the end of logical memory, addresses within the base page are destroyed.

..TCM* COMPLEMENT AND NORMALIZE (F-Series Only) DOUBLE FLOATING POINT

Memory Address

Complements and normalizes in place a packed double precision floating point quantity located in the specified memory locations. The result is returned to the same specified memory locations.

3-37. EXTENDED PRECISION OPERATIONS.

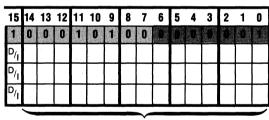
Overflow for extended precision operations occurs if the result lies outside the range of representable extended precision floating point numbers $[-2^{127},(1-2^{-39})\ 2^{-127}]$. In such a case, the overflow flag is set and $(1-2^{-39})\ 2^{127}$ is returned as the result. Underflow occurs if the result lies inside the range $[-2^{-129}(1+2^{-38}),2^{-129}]$. In such a case, the overflow flag is set and 0 is returned as the result.

.PACK*

NORMALIZE FLOATING POINT QUANTITY

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	0	1	0	1	0	1	0	0	1	1	0	0	0

Converts the signed mantissa of a floating point quantity into a normalized format. The floating point mantissa must be in the A- and B-registers. The succeeding memory location must contain the exponent. The first word of the two word floating point result is returned to the A-register; the second word, to the B-register.


..FCM* COMPLEMENT AND NORMALIZE (F-Series Only) SINGLE FLOATING POINT

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	0	1	0	1	0	1	0	0	1	1	0	1	0

Complements and normalizes in place a packed single precision floating point quantity located in the A- and B-registers. The result is returned to the A- and B-registers.

.XADD*

EXTENDED FLOATING POINT ADD

Memory Address

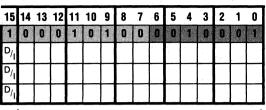
Adds two extended precision floating point quantities (augend plus addend). This is a four-word instruction where

Word 1 = Instruction code.

Word 2 = Address of result.

Word 3 = Address of augend.

Word 4 = Address of addend.


^{*}For HP Assembly Language usage, refer to paragraph 3-43.

^{*}For HP Assembly Language usage, refer to paragraph 3-43.

.XSUB*

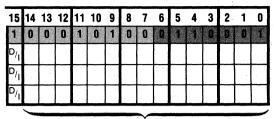
.XMPY*

EXTENDED FLOATING
POINT SUBTRACT

Memory Address

Subtracts one extended precision floating point quantity from another (minuend minus subtrahend). This is a four-word instruction where

Word 1 = Instruction code.


Word 2 = Address of result.

Word 3 = Address of minuend.

Word 4 = Address of subtrahend.

XDIV*

EXTENDED FLOATING POINT DIVIDE

Memory Address

Divides one floating point quantity by another (dividend by divisor). This is a four-word instruction where

Word 1 = Instruction code.

Word 2 = Address of result.

Word 3 = Address of dividend.

Word 4 = Address of divisor.

EXTENDED FLOATING POINT MULTIPLY

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	0	1	0	1	0	0	0	1	0	0	0	0	1
$D_{/ }$															
														,	
$D_{/ }$															

Memory Address

Multiplies one extended precision floating point quantity by another (multiplicand by multiplier). This is a fourword instruction where

Word 1 = Instruction code.

Word 2 = Address of result.

Word 3 = Address of multiplicand.

Word 4 = Address of multiplier.

XADD*

EXTENDED FLOATING POINT ADD

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	0	1	0	1	0	1	0	0	0	0	1	1	1
D,															
D,				T											
D _I															
D _I															

Memory Address

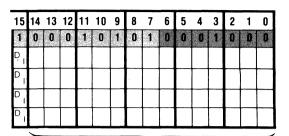
Adds two extended precision floating point quantities (augend plus addend). This is a five-word instruction where

Word 1 = Instruction code.

Word 2 = Return address.

Word 3 = Address of result.

Word 4 = Address of augend.


Word 5 = Address of addend.

^{*}For HP Assembly Language usage, refer to paragraph 3-43.

^{*}For HP Assembly Language usage, refer to paragraph 3-43.

XSUB*

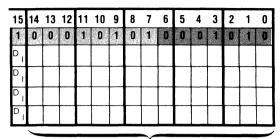
EXTENDED FLOATING POINT SUBTRACT

Memory Address

Subtracts one extended precision floating point quantity from another (minuend minus subtrahend). This is a five-word instruction where

Word 1 = Instruction code.

Word 2 = Return address.


Word 3 = Address of result.

Word 4 = Address of minuend.

Word 5 = Address of subtrahend.

XDIV*

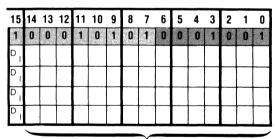
EXTENDED FLOATING POINT DIVIDE

Memory Address

Divides one extended precision floating point quantity by another (dividend by divisor). This is a five-word instruction where

Word 1 = Instruction code.

Word 2 = Return address.


Word 3 = Address of result.

Word 4 = Address of dividend.

Word 5 = Address of divisor.

XMPY*

EXTENDED FLOATING POINT MULTIPLE

Memory Address

Multiplies one extended precision floating point quantity by another (multiplicand by multiplier). This is a fiveword instruction where

Word 1 = Instruction code.

Word 2 = Return address.

Word 3 = Address of result.

Word 4 = Address of multiplicand.

Word 5 = Address of multiplier.

3-38. EXECUTION TIMES AND INTERRUPTS

Table 3-8 lists the typical execution times required for the Fast FORTRAN Processor instructions. Also listed is the maximum period of non-interruptible instruction execution time where applicable. If an instruction is interrupted, it restarts execution from the beginning.

^{*}For HP Assembly Language usage, refer to paragraph 3-43.

^{*}For HP Assembly Language usage, refer to paragraph 3-43.

Table 3-8A. Typical Fast FORTRAN Instruction Execution Times (M-Series)

INSTRUCTION	EXECUTION* TIME (us)	MAXIMUM NON- INTERRUPTIBLE (us)
.XADD	42.25 to 130.98	75.08
.XSUB	42.25 to 130.98	75.08
.XMPY	80.28 to 105.3	75.08
XDIV	107.9 to 163.15	75.08
XADD	42.25 to 130.98	75.08
XSUB	42.25 to 130.98	75.08
XMPY	80.28 to 105.3	75.08
XDIV	107.9 to 163.15	75.08
DBLE	15.28	
SNGL	20.15 to 65.0	
.DFER	9.75 to 13.33	
.XFER	9.75 to 13.33	
.SETP	7.8 +	Interruptable
	(1.95 × Count)	For Count >30
.PACK	13.33 to 52.33	
.XPACK	19.5 to 99.13	75.08
.XCOM	12.68 to 15.28	
DCM	25.35 to 104.33	75.08
DDINT	31.53 to 183.3	75.08
. GОТО	13.0	'
MAP	26.98 to 43.88	
ENTR	16.25 + (3.9 × NP)	
.ENTP	15.98 + (3.9 × NP)	
.PWR2	12.35	
.FLUN	4.23	
*Using standard p	erformance memory	

Table 3-8B. Typical Fast FORTRAN Instruction Execution Times (E-Series)

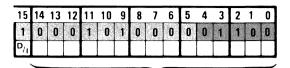
INSTRUCTION	EXECUTION* TIME (us)	MAXIMUM NON- INTERRUPTIBLE (us;
XADD	37.5 to 50.2	25.7
XSUB	37.5 to 50.2	25.7
XMPY	56.0 to 64.8	36.4
.XDIV	80.0 to 92.4	37.8
XADD	38.0 to 50.7	
XSUB	37.5 to 50.2	
XMPY	56.7 to 65.5	
XDIV	80.7 to 93.1	
DBLE	13.02	
SNGL	18.2	
DFER	12.8	
XFER	8.96 to 12.7	
.CFER	14.9	
\$SETP	6.4 + (1.2 × Count)	
		For Count >30
PACK	19.2 to 27.2	
.XPACK	18.9 to 29.5	11.6
.XCOM	11.7 to 12.1	
DCM	21.1 to 33.4	12.2
DDINT	23.9 to 58.6	30.6
.GOTO	10.6	
MAP	17.7 to 27.2	
.ENTR	13.9 + (3.7 × NP)	
.ENTP	13.6 + (3.7 × NP)	
.PWR2	8.4	
.FLUN	. 3.1	,

*Using standard performance memory.

Table 3-8C. Typical Fast FORTRAN Instruction Execution Times (F-Series)

INSTRUCTION	EXECUTION TIME (us)	MAXIMUM NON- INTERRUPTIBLE (us)
DBLE	9.3	
SNGL	14.3	
.DFER	9.0	
.BLE	9.5	
.NGL	16.0	
.XFER	8.96 to 12.7	
.XPAK	18.9 to 29.5	11.6
.XCOM	11.7 to 12.1	
DCM	22.1 to 33.4	12.2
DDINT	23.9 to 58.6	30.6
.GOTO	10.6	
MAP	17.7 to 27.2	
.ENTR	10.1 + 2.5*NP	
.ENTP	13.6 + 3.7*NP	
.PWR2	8.4	
.FLUN	3.1	
\$SETP	6.4 + 1.2*COUNT	42.4
.PACK	19.2 to 27.2	Į.
.CFER	10.3	
FCM	5.1	
TCM	9.8	
NP = number or	f parameters	

3-39. DOUBLE INTEGER INSTRUCTIONS (F-SERIES ONLY)


The double integer instructions allow arithmetic and test operations on 32-bit integer quantities. The data format for double integer values is shown in Figure 3-1. Double integer values contained in the (A,B) registers have the most significant bits in the A-register. Values stored in memory require two locations. The operand address in a double integer instruction points to the first memory location, which contains the most significant bits.

Instructions which do not return information in the extend or overflow bits will not alter the state of these flags. Operations which may return an overflow condition will clear overflow at entry.

The instructions .DMP, .DDI, and .DDIR utilize the floating point processor. If FPP completion is not signalled within 25 microseconds, an FPP malfunction exists. The firmware indicates this condition by creating a memory protect violation (memory protect installed) and setting the overflow flag.

.DAD*

DOUBLE INTEGER ADD

Memory Address

Performs the double integer operation:

$$(A,B) = (A,B) + \langle OPND \rangle$$

The contents of <OPND> are unaltered. In the event of overflow, the overflow bit is set and the returned result contains the lower 32-bits of the actual sum, in unsigned form. The extend bit will be set if an unsigned carry out of the A-register occurs.

.DSB *

DOUBLE INTEGER SUBTRACT

Memory Address

Performs the double integer operation:

$$(A.B) = (A.B) - \langle OPND \rangle$$

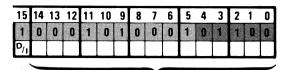
The contents of <OPND> are unaltered. In the event of overflow, the overflow bit is set and the returned result contains the lower 32-bits of the actual difference, in unsigned form. The extend bit will be set if an unsigned borrow out of the A-register occurs.

.DSBR*

DOUBLE INTEGER SUBTRACT REVERSE

Memory Address

Performs the double integer operation:


$$(A,B) = \langle OPND \rangle - (A,B)$$

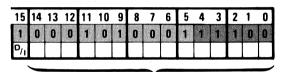
The contents of <OPND> are unaltered. In the event of overflow, the overflow bit is set and the returned result contains the lower 32-bits of the actual difference, in unsigned form. The extend bit will be set if an unsigned out of operand.

^{*}For HP Assembly Language usage, refer to paragraph 3-43.

DMP*

DOUBLE INTEGER MULTIPLY

Memory Address


Performs the double integer operation:

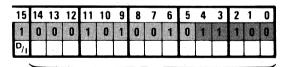
$$(A,B) = (A,B) \times \langle OPND \rangle$$

The contents of <OPND> are unaltered. If overflow occurs, the result (077777, 177777) is returned and overflow is set.

.DDI*

DOUBLE INTEGER DIVIDE

Memory Address


Performs the double integer operation:

$$(A,B) = (A,B) \div \langle OPND \rangle$$

The contents of <OPND> are unaltered. If overflow or divide by zero occurs, the result (077777, 177777) is returned and overflow is set.

.DDIR *

DOUBLE INTEGER
DIVIDE REVERSE

Memory Address

Performs the double integer operation:

$$(A,B) = \langle OPND \rangle \div (A,B)$$

The contents of <OPND> are unaltered. If overflow or divide by zero occurs, the result (077777, 177777) is returned and overflow is set.

.DNG *

DOUBLE INTEGER NEGATE

15 14 13 12	11 10 9	8 7 6	5 4 3	2 1 0
1 0 0 0	1 0 1	0 1 0	0 0 0	0 1 1


Performs the double integer operation:

$$(A,B) = - (A,B)$$

An input value of (100000, 000000) is left unchanged and overflow is set. An input value of zero will cause the extend hit to be set.

.DCO *

DOUBLE INTEGER COMPARE

Memory Address

Compares the double integers (A,B) and <OPND>

If $(A,B) = \langle OPND \rangle$ Return to P+2 If $(A,B) < \langle OPND \rangle$ Return to P+3 If $(A,B) > \langle OPND \rangle$ Return to P+4

where P is the address of the .DCO instruction. The value of both double integers and the overflow bit are unaltered.

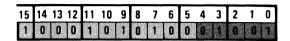
.DIN *

DOUBLE INTEGER INCREMENT

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	0	1	0	1	0	1	0	0	0	1	0	0	0

Performs the double integer operation:

$$(A,B) = (A,B) + 1$$

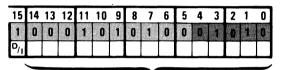

An input value of 077777, 177777) will return a result of 100000, 000000) and set overflow. An input value of (177777, 177777) will return a result of zero and cause the extend bit to be set.

^{*}For HP Assembly Language usage, refer to paragraph 3-43.

^{*}For HP Assembly Language usage, refer to paragraph 3-43.

.DDE *

DOUBLE INTEGER DECREMENT

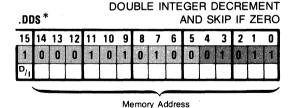


Performs the double integer operation:

$$(A,B) = (A,B) - 1$$

An input value of (100000, 000000) will return the result (077777, 177777) and set overflow. An input value of zero will return the result (177777, 177777) and cause the extend bit to be set.

DOUBLE INTEGER INCREMENT
DIS * AND SKIP IF ZERO



Memory Address

Performs the double integer operation:

$$\langle OPND \rangle = \langle OPND \rangle + 1$$

If the new value of <OPND> equals zero, the next instruction will be skipped. The value in <OPND> is treated as an unsigned number, and a carry out of the <OPND> is ignored.

Performs the double integer operation:

$$\langle OPND \rangle = \langle OPND \rangle - 1$$

If the new value of <OPND> equals zero, the next instruction will be skipped. The value in <OPND> is treated as an unsigned number, and a borrow out of the <OPND> is <OPND> is ignored.

3-40. EXECUTION TIMES

Table 3-9 lists the typical execution times for the double integer instructions.

Table 3-9. Typical Double Integer Instructions Execution Times (Microseconds)

INSTRUCTION	EXECUTION TIME
.DAD	4.6
.DSB	5.4
.DMP	15.9
.DDI	19.9
.DSBR	6.2
.DDIR	19.3
.DNG	2.2
.DIN	1.7
.DDE	2.1
.DIS	4.7
.DDS	5.0
.DCO	4.8

3-41. VECTOR INSTRUCTION SET (OPTIONAL WITH F-SERIES ONLY)

The Vector Instruction Set (VIS) performs arithmetic operations on arrays of floating point numbers. VIS utilizes the Floating Point Processor (FPP) as a computing resource and provides nineteen operations in both single and double precision formats, for a total of 38 instructions. After initiating an operation in the FPP, the VIS firmware waits for FPP completion. If completion is not signalled within 25 microseconds, an FPP malfunction exists. The firmware indicates this condition by creating a memory protect violation (memory protect installed) and setting the overflow flag. Overflow will always be cleared on a normal VIS termination.

Vector instructions require six to ten memory locations to specify parameters of the following type:

Opcode

 Specifies the microcode entry point. Bit 11, or P-bit, indicates the precision of the operation. (=0 for single precision, P=1 for double precision.)

Sub-opcode

 Specifies the arithmetic function within a class of operations. Bit 15 of the subopcode must always be zero. P-bits indicate the precision as in the opcode. Don't-care bits are indicated by "X".

The remaining parameters are addresses which may be direct or indirect, as indicated by bit 15. These include:

^{*}For HP Assembly Language usage, refer to paragraph 3-43.

Vector

Specifies the address of the first vector element to be processed. Vector elements require two (single precision) or four (double precision) memory locations. All vectors in a given instruction must be of the same precision. Note that for instructions that contain two vector operands, these operands may both specify the same vector. Similarly, the result vector may replace one of the operands.

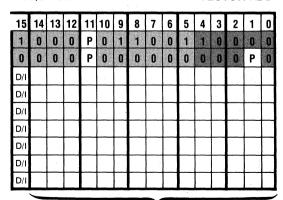
Scalar

 Specifies the address of a single floating point quantity. Scalars are used for both operands or results. The precision of the scalar must match that of the associated vectors

Integer

Specifies the address of an integer quantity in which a result is returned.

Increment


Specifies the address of an integer quantity associated with each vector. The increment indicates the spacing between vector elements to be processed. (An increment of 1 indicates that each element will be processed, an increment of 2 indicates every other element, etc.) An increment of zero will cause the first element of the vector to be used in all operations. Negative increments will step through the vector in reverse order, i.e., decreasing memory locations. Vector elements skipped over by the increment will not be modified.

#Elements

Specifies the address of an integer quantity indicating the number of vector elements to be processed. A value less than or equal to zero will result in a NOP operation.

VADD/DVADD *

VECTOR ADD

Memory Address

Performs the vector operation:

V3 = V1 + V2

This is a nine-word instruction, where

Word 1 = Instruction code.

Word 2 = Sub-opcode.

Word 3 = Address of vector V1.

Word 4 = Address of increment INCR1.

Word 5 = Address of vector V2.

Word 6 = Address of increment INCR2.

Word 7 = Address of vector V3.

Word 8 = Address of increment INCR3.

Word 9 = Address of # elements N.

VSUB/DVSUB*

VECTOR SUBTRACT

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	0	Р	0	1	1	0	0	1	1	0	0	0	0
0	0	0	0	P	0	0	0	0	0	0	1	0	0	P	0
D/I															
D/I															
D/I															
D/I															
D/I															
D/I															Γ
D/I															

Memory Address

Performs the vector operation:

V3 = V1 - V2

This is a nine-word instruction, where

Word 1 = Instruction code.

Word 2 = Sub-opcode.

Word 3 = Address of vector V1.

Word 4 = Address of increment INCR1.

Word 5 = Address of vector V2.

Word 6 = Address of increment INCR2.

Word 7 = Address of vector V3.

Word 8 = Address of increment INCR3.

Word 9 = Address of # elements N.

^{*}For HP Assembly Language usage, refer to paragraph 3-43.

^{*}For HP Assembly Language usage, refer to paragraph 3-43.

VMPY/DVMPY *

VECTOR MULTIPLY

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	0	Р	0	1	1	0	0	1	8		•	Đ	n
0	0	0	0	P	0	0	0	0	0	1	0			P	1
D/I															
D/I															
D/I															П
D/I															
D/I															
D/I															П
D/I															

Memory Address

Performs the vector operation:

$$V3 = V1 \star V2$$

This is a nine-word instruction, where

Word 1 = Instruction code.

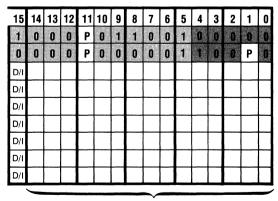
Word 2 = Sub-opcode.

Word 3 = Address of vector V1.

Word 4 = Address of increment INCR1.

Word 5 = Address of vector V2.

Word 6 = Address of increment INCR2.


Word 7 = Address of vector V3.

Word 8 = Address of increment INCR3.

Word 9 = Address of # elements N.

VDIV/DVDIV *

VECTOR DIVIDE

Memory Address

Performs the vector operation:

This is a nine-word instruction, where

Word 1 = Instruction code.

Word 2 = Sub-opcode.

Word 3 = Address of vector V1.

Word 4 = Address of increment INCR1.

Word 5 = Address of vector V2.

Word 6 = Address of increment INCR2. Word 7 = Address of vector V3.

Word 8 = Address of increment INCR3.

Word 9 = Address of # elements N.

VSAD/DVSAD *

SCALAR-VECTOR ADD

	0	a	1						5	4	3	2		
		0	Р	0	1	1	0	0	1			0	0	9
0	0	0	P	0	0	1	0	0	0	0	0	9	P	
		U U	U U U	0 0 0 P										

Memory Address

Performs the vector operation:

V2 = S + V1

This is a eight-word instruction, where

Word 1 = Instruction code.

Word 2 = Sub-opcode.

Word 3 = Address of scalar S.

Word 4 = Address of vector V1.

Word 5 = Address of increment INCR1.

Word 6 = Address of vector V2.

Word 7 = Address of increment INCR2.

Word 8 = Address of # elements N.

^{*}For HP Assembly Language usage, refer to paragraph 3-43.

^{*}For HP Assembly Language usage, refer to paragraph 3-43.

VSSB/DVSSB *

SCALAR-VECTOR SUBTRACT

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	0	P	0	1	1	0	0	1	1	0	0	0	0
0	0	0	0	Р	0	0	1	0	0	0	1	0	0	P	0
D/I															
D/I								-							
D/I															
D/I															
D/I															
D/I															

Memory Address

 $V2 = S \star V1$

This is a eight-word instruction, where

Word 1 = Instruction code.

Word 2 = Sub-opcode.

Word 3 = Address of scalar S.

Word 4 = Address of vector V1. Word 5 = Address of increment INCR1.

Word 6 = Address of vector V2.

Word 7 = Address of increment INCR2.

Word 8 = Address of # elements N.

Performs the vector operation:

$$V2 = S - V1$$

This is a eight-word instruction, where

Word 1 = Instruction code.

Word 2 = Sub-opcode.

Word 3 = Address of scalar S.

Word 4 = Address of vector V1.

Word 5 = Address of increment INCR1.

Word 6 = Address of vector V2.

Word 7 = Address of increment INCR2.

Word 8 = Address of # elements N.

VSDV/DVSDV *

SCALAR-VECTOR DIVIDE

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	0	Р	0	1	1	0	0	1	1	0	0	0	0
0	0	0	0	P	0	0	1	0	0	1	1	0	0	P	0
D/I															
D/I															
D/I															
D/I															
D/I															
D/I															

Memory Address

VSMY/DVSMY *

SCALAR-VECTOR MULTIPLY

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	0	Р	0	1	1	0	0	1	1	0	0	0	0
0	0	0	0	Ρ	0	0	1	0	0	1	0	0	0	P	0
D/I															
D/I											,				
D/I															
D/I															
D/I															
D/I															

Memory Address

Performs the vector operation:

Performs the vector operation:

V2 = S / V1

This is a eight-word instruction, where

Word 1 = Instruction code.

Word 2 = Sub-opcode.

Word 3 = Address of scalar S.

Word 4 = Address of vector V1.

Word 5 = Address of increment INCR1.

Word 6 = Address of vector V2.

Word 7 = Address of increment INCR2.

Word 8 = Address of # elements N.

^{*}For HP Assembly Language usage, refer to paragraph 3-43.

^{*}For HP Assembly Language usage, refer to paragraph 3-43.

VPIV/DVPIV *

VECTOR PIVOT

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	0	Р	0	1	1	0	0	1	1	0	0	0	1
0	X	X	X	X	X	X	X	X	X	X	X	×	X	X	X
O D/I D/I D/I															
D/I															
D/I															
D/I															
D/I															
D/I															
D/I															
D/I															

Memory Address

Performs the vector operation:

 $V3 = S \star V1 + V2$

This is a ten-word instruction, where

Word 1 = Instruction code.

Word 2 = Sub-opcode.

Word 3 = Address of scalar S.

Word 4 = Address of vector V1.

Word 5 = Address of increment INCR1.

Word 6 = Address of vector V2.

Word 7 = Address of increment INCR2.

Word 8 = Address of vector V3.

Word 9 = Address of increment INCR3.

Word 10 = Address of # elements N.

V2 = ABS(V1)

This is a seven-word instruction, where

Word 1 = Instruction code.

Word 2 = Sub-opcode.

Word 3 = Address of vector V1.

Word 4 = Address of increment INCR1.

Word 5 = Address of vector V2.

Word 6 = Address of increment INCR2.

Word 7 = Address of # elements N.

VSUM/DVSUM *

VECTOR SUM

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	0	Ρ	0	1	1	0	0	1	1	0	0	1	1
0	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
D/I															
D/I															
D/I															
D/I															
	\vdash		_					_							_

Memory Address

VABS/DVABS *

VECTOR ABSOLUTE VALUE

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	0	Р	0	1	1	0	0	1	1	0	0	-	0
0	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
D/I															
D/I															
D/I															
D/I															
D/I															

Memory Address

Performs the vector operation:

Performs the vector operation:

 $SUM = \Sigma V1$

Note that for VSUM the sum is internally accumulated in double precision; the answer is then truncated to single precision.

This is a six-word instruction, where

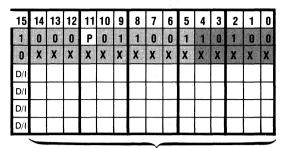
Word 1 = Instruction code.

Word 2 = Sub-opcode.

Word 3 = Address of scalar SUM.

Word 4 = Address of vector V1.

Word 5 = Address of increment INCR1.


Word 6 = Address of # elements N.

^{*}For HP Assembly Language usage, refer to paragraph 3-43.

^{*}For HP Assembly Language usage, refer to paragraph 3-43.

VNRM/DVNRM 3

VECTOR NORM

Memory Address

Performs the vector operation:

 $SUM = \Sigma ABS (V1)$

Note that for VNRM the sum is internally accumulated in double precision; the answer is then truncated to single precision.

This is a six-word instruction, where

Word 1 = Instruction code.

Word 2 = Sub-opcode.

Word 3 = Address of scalar SUM.

Word 4 = Address of vector V1.

Word 5 = Address of increment INCR1.

Word 6 = Address of # elements N.

VDOT/DVDOT *

VECTOR DOT PRODUCT

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	0	Р	0	1	1	0	0	1	1	0	1	0	1
0	X	X	X	X	X	X	X	X	X	X	X	χ	X	X	X
D/I															
D/I								,							
D/I															
D/I															
D/I															
D/I															

Memory Address

Performs the vector operation:

 $DOT = \Sigma V1 \star V2$

Note that for VDOT the product and sum is internally accumulated in double precision; the answer is then truncated to single precision.

This is a eight-word instruction, where

Word 1 = Instruction code.

Word 2 = Sub-opcode.

Word 3 = Address of scalar DOT.

Word 4 = Address of vector V1.

Word 5 = Address of increment INCR1.

Word 6 = Address of vector V2.

Word 7 = Address of increment INCR2.

Word 8 = Address of # elements N.

VMAX/DVMAX*

VECTOR MAXIMUM VALUE

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	0	Р	0	1	1	0	0	1	1	0	1	1	0
0	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
D/I															
D/I															
D/I															
D/I															

Memory Address

Performs the vector operation:

IMAX = Position (MAX(V1))

Note that IMAX is the position of the maximum of those elements that were tested, as requested by INCR1 and N. If INCR1 # 1, the position is given by:

IPOS = 1 + INCR1 * (IMAX - 1)

This is a six-word instruction, where

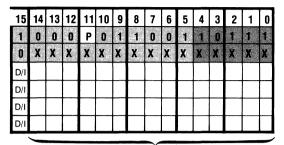
Word 1 = Instruction code.

Word 2 = Sub-opcode,

Word 3 = Address of integer IMAX.

Word 4 = Address of vector V1.

Word 5 = Address of increment INCR1.


Word 6 = Address of # elements N.

^{*}For HP Assembly Language usage, refer to paragraph 3-43.

^{*}For HP Assembly Language usage, refer to paragraph 3-43.

VMAB/DVMAB*

VECTOR MAXIMUM ABSOLUTE VALUE

Memory Address

Performs the vector operation:

IMAB = Position (MAX(ABS(V1)))

Note that IMAB is the position of the maximum absolute value of those elements that were tested, as requested by INCR1 and N. If INCR1 # 1, the position is given by:

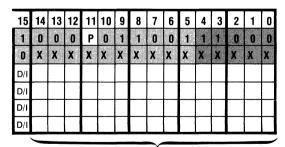
$$IPOS = 1 + INCR1 * (IMAB - 1)$$

This is a six-word instruction, where

Word 1 = Instruction code.

Word 2 = Sub-opcode.

Word 3 = Address of integer IMAB.


Word 4 = Address of vector V1.

Word 5 = Address of increment INCR1.

Word 6 = Address of # elements N.

VMIN/DVMIN*

VECTOR MINIMUM VALUE

Memory Address

Performs the vector operation:

IMIN = Position (MIN(V1))

Note that IMIN is the position of the minimum absolute value of those elements that were tested, as requested by INCR1 and N. If INCR1 # 1, the position is given by:

$$IPOS = 1 + INCR1 * (IMIN - 1)$$

This is a six-word instruction, where

Word 1 = Instruction code.

Word 2 = Sub-opcode.

Word 3 = Address of integer IMIN.

Word 4 = Address of vector V1.

Word 5 = Address of increment INCR1.

Word 6 = Address of # elements N.

VMIB/DVMIB*

VECTOR MINIMUM ABSOLUTE VALUE

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	0	Р	0	1	1	0	0	1	1	1	0	0	1
0	X	X	X	X	X	X	X	X	X	X	Х	X	X	X	X
D/I															
D/I															П
D/I															
D/I															

Memory Address

Performs the vector operation:

IMIB = Position (MIN(ABS(V1)))

Note that IMIB is the position of the minimum absolute value of those elements that were tested, as requested by INCR1 and N. If INCR1 # 1, the position is given by:

$$IPOS = 1 + INCR1 * (IMIB - 1)$$

This is a six-word instruction, where

Word 1 = Instruction code.

Word 2 = Sub-opcode.

Word 3 = Address of integer IMIB.

Word 4 = Address of vector V1

Word 5 = Address of increment INCR1.

Word 6 = Address of # elements N.

^{*}For HP Assembly Language usage, refer to paragraph 3-43.

^{*}For HP Assembly Language usage, refer to paragraph 3-43.

VMOV/DVMOV*

VECTOR MOVE

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	0	Р	0	1	1	0	0	1	1	1	0	1	0
0	X	X	X	Х	X	X	X	X	X	X	X	X	X	x	X
D/I															
D/I															
D/I															
D/I															Γ
D/I															

Memory Address

Performs the vector operation:

V2 = V1

This is a seven-word instruction, where

Word 1 = Instruction code.

Word 2 = Sub-opcode.

Word 3 = Address of vector V1.

Word 4 = Address of increment INCR1.

Word 5 = Address of vector V2.

Word 6 = Address of increment INCR2.

Word 7 = Address of # elements N.

VSWP/DVSWP *

VECTOR SWAP

_		_	_	_			_	_		_	_	_	_	,	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	0	Р	0	1	1	0	0	1	1	1	0	1	1
0	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
D/I															
D/I															
D/I															,
D/I															
D/I															

Memory Address

Performs the vector operation:

$$V1 < = = > V2$$

This is a seven-word instruction, where

Word 1 = Instruction code.

Word 2 = Sub-opcode.

Word 3 = Address of vector V1.

Word 4 = Address of increment INCR1.

Word 5 = Address of vector V2.

Word 6 = Address of increment INCR2.

Word 7 = Address of # elements N.

3-42. EXECUTION TIMES AND INTERRUPTS

Table 3-10 lists the typical execution times for the VIS instructions. VIS times are composed of two parts: a fixed time per instruction execution, and a per-element loop time. Thus the time to process 100 elements equals the fixed time plus 100 multiplied by loop time.

Also listed in Table 3-10 are the maximum periods of non-interruptable instruction execution. When a VIS instruction is interrupted, the current state of execution is stored in the sub-opcode memory location, as well as the A,B,X, and Y registers. When re-entered following the interrupt processing, the VIS instruction will resume execution from the point of suspension.

Table 3-10. Typical Vector Instruction Set Execution
Times (All times in microseconds)

INSTRUCTION	FIXED TIME	LOOP TIME	MAX. NON-INT
VADD	14.6	7.7	21
VSUB	14.6	7.7	21
VMPY	14.8	7.7	21
VDIV	16.0	7.7	21
VSAD	13.6	7.7	21
VSSB	13.6	7.7	21
VSMY	13.9	7.7	21
VSDV	14.0	7.7	21
VPIV	16.6	10.2	26
VABS	12.4	6.9	19
VSUM	19.7	5.9	23
VNRM	20.0	5.9	23
VDOT	19.7	10.5	29
VMAX	8.5	7.9	17
VMAB	7.6	8.4	17
VMIN	8.5	7.9	17
VMIB	7.6	8.4	17
VMOV	11.7	4.4	17
VSWP	11.8	7.5	20
DVADD	15.8	11.1	24
DVSUB	15.8	11.1	24
DVMPY	18.0	11.1	24
DVDIV	20.5	12.7	24
DVSAD	15.6	12.2	24
DVSSB	15.6	12.2	24
DVSMY	17.6	12.6	24
DVSDV	18.8	11.1	24
DVPIV	18.5	14.6	31
DVABS	13.3	9.4	23
DVSUM	21.1	6.1	23
DVNRM DVDOT	21.2 21.2	6.1 12.5	23 31
DVDOT	8.4	9.8	18
DVMAX	7.4	10.6	18
DVMAB	8.4	9.9	18
DVMIN	7.4	10.5	18
DVMOV	12.5	6.4	19
DVSWP	13.0	11.3	25
	L		1

^{*}For HP Assembly Language usage, refer to paragraph 3-43.

3-43. ASSEMBLY LANGUAGE

New instructions not recognized by the HP Assembler require different handling in HP Assembly Language programming. These instructions are asterisked in the preceding paragraphs and must be used in the form: JSB x, where x is the instruction. (The instruction, x, must be declared as an external at the beginning of the assembly language program.) Most of these instructions correspond to library subroutines* and must be implemented into HP RTE systems (as described in the following paragraph) to enable their execution in hardware-firmware instead of in software.

3-44. RTE IMPLEMENTATION

New instructions are implemented in an RTE-M, RTE-II, or RTE-IV system simply by changing library entry points during the parameter input phase of system generation. (Refer to the appropriate RTE manual for the system generation procedure.) Using the list of entry point opcodes given in Table 3-11, make the entry changes as indicated below:

.FAD,RP,105000 .FSB,RP,105020

.DVMOV,RP,105472 .DVSWP,RP,105473

Alternatively, entry points may be changed by loading (via LOADR) a "replacement" program when user programs are loaded. An example replacement program is shown below.

ASMB.L.R

NAM REPLA ENT .XADD, .XSUB, ..., . PACK .FAD RPL 105000B

.FSB RPL 105020B

.DVMOV RPL 105472 .DVSWP RPL 105473 END

Table 3-11. Instructions and Opcodes for RTE Implementation

INSTRUCTION	OCTAL	INSTRUCTION	OCTAL
MNEMONIC	OPCODE	MNEMONIC	OPCODE
.FAD	105000	DDINT	105217
.FSB	105020	.GOTO	105221
.FMP	105040	MAP	105222
.FDV	105060	.ENTR	105223
IFIX*	105100	.ENTP	105224
.FIXD	105104	.PWR2	105225
FLOAT*	105120	.FLUN	105226
.FLTD	105124	\$SETP	105227
.XADD	105001	.PACK	105230
XSUB	105021	.CFER	105231
.XMPY	105041	FCM	105232
.XDIV	105061	TCM	105233
.XFXS	105101	.DAD	105014
.DINT <u>*</u>	105101	.DSB	105034
.FIXD	105104	.DMP	105054
.XFXD	105105	.DDI	105074
.XFTS	105121	.DSBR	105114
.IDBL*	105121	.DDIR	105134
.FLTD	105124	.DNG	105203
.XFTD	105125	.DCO	105204
TADD	105002	.DIN	105210
.TSUB	105022	.DDE	105211
.TMPY	105042	.DIS	105212
.TDIV	105062	.DDS	105213
.TFXS	105102	.VECT†	101460
.TINT*	105102	VPIV	101461
.TFXD	105106	VABS	101462
.TFTS	105122	VSUM	101463
.ITBL*	105122	VNRM	101464
.TFTD	105126	VDOT	101465
TAN	105320	VMAX	101466
SORT	105321	VMAB	101467
ALOG	105322	VMIN	101470
ATAN	105323	VMIB	101471
cos	105324	VMOV	101472
SIN	105325	VSWP	101473
EXP	105326	.ERES†	101474
ALOGT	105327	.ESEG†	101475
TANH	105330	.VSET†	101476
DPOLY	105331	.DVCT†	105460
/CMRT†	105332	DVPIV	105461
/ATLG .	105333	DVABS	105462
.FPWR	105334	DVSUM	105463
.TPWR	105335	DVNRM	105464
DBLE	105201	DVDOT	105465
SNGL	105202	DVMAX	105466
.DFER	105205	DVMAB	105467
BLE	105207	DVMIN	105470
.NGL	105214	DVMIB	105471
XFER	105220	DVMOV	105472
.XPAK	105206	DVSWP	105473
.XCOM	105215		
DCM	105216		
*These mnemo	nics are FC	ORTRAN intrinsio	s that are

^{*}These mnemonics are FORTRAN intrinsics that are equivalenced to the appropriate opcodes.

^{*}Refer to the Relocatable Library Reference Manual, part no. 24998-90001.

[†]Not directly user callable. Used by HP 1000 software

DYNAMIC MAPPING SYSTEM

The basic addressing space of the HP 1000 Computers is 32,768 words, which is referred to as *logical* memory. The amount of MOS memory actually installed in the computer system is referred to as *physical* memory. An HP 1000 Computer with the Dynamic Mapping System (DMS) has an addressing capability for one million words of physical memory. The DMS allows logical memory to be mapped into physical memory through the use of four dynamically alterable memory maps. (The DMS is standard for the HP 2117F and optional for all other HP 1000 Computers.)

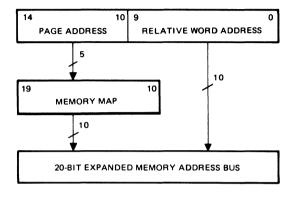


Figure 4-2. Expanded Memory Addressing Scheme

4-1. MEMORY ADDRESSING

The basic memory addressing scheme provides for addressing 32 pages of logical memory, each of which consists of 1,024 words. This memory is addressed through a 15-bit memory address bus shown in Figure 4-1. The upper 5 bits of this bus provide the page address and the lower 10 bits provide the relative word address within the page.

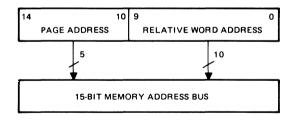
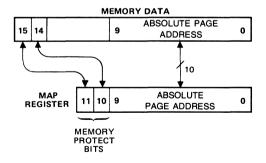



Figure 4-1. Basic Memory Addressing Scheme

The Memory Expansion Module (MEM), which is part of the DMS option, converts the 5-bit page address into a 10-bit page address and thereby allows 1,024 (210) pages to be addressed. This conversion is accomplished by allowing the original 5-bit address to identify one of the 32 12-bit registers within a "memory map." Each of these map registers contains the new user-specified 10-bit page address. This new page address is combined with the original 10-bit relative address to form a 20-bit memory address bus as shown in Figure 4-2.

4-2. MAP REGISTER LOADING

Conversion of the basic 16-bit word data format to and from the map register 12-bit word data format is shown in Figure 4-3. Bits 13 through 10 of the basic data format are not used by the memory map registers. Read and write memory protect violations are discussed in paragraph 4-3.

BIT 11 SET= READ PROTECTED PAGE BIT 10 SET= WRITE PROTECTED PAGE

Figure 4-3. Basic Word Format Vs Map Register Format

4-3. STATUS AND VIOLATION REGISTERS

The MEM also includes a status register and a violation register. As shown in Table 4-1, the MEM status register

contents enable the programmer to determine whether the MEM was enabled or disabled at the time of the last interrupt and the address of the base page fence. The MEM violation register contents enable the programmer to determine whether a fault occurred in the hardware or the software so that the proper corrective steps may be taken. Refer to Table 4-2.

Table 4-1. MEM Status Register Format

BIT	SIGNIFICANCE
15	0 = MEM disabled at last interrupt 1 = MEM enabled at last interrupt
14	0 = System map selected at last interrupt 1 = User map selected at last interrupt
13	0 = MEM disabled currently 1 = MEM enabled currently
12	0 = System map selected currently 1 = User map selected currently
11	0 = Protected mode disabled currently 1 = Protected mode enabled currently
10	Portion mapped*
9	Base page fence bit 9
8	Base page fence bit 8
7	Base page fence bit 7
6	Base page fence bit 6
5	Base page fence bit 5
4	Base page fence bit 4
3	Base page fence bit 3
2	Base page fence bit 2
1	Base page fence bit 1
0 .	Base page fence bit 0
*Bit 10	Mapped Address (M)
0	Fence \leq M $<$ 2000 ₈ 1 $<$ M $<$ Fence
	se page fence separates the reserved (map-

Note: The base page fence separates the reserved (mapped) memory from the shared (unmapped) memory. Bit 10 specifies which area is reserved (mapped). (Refer to LFA and LFB instructions contained in paragraph 4-6.)

Table 4-2. MEM Violation Register Format

ВІТ	SIGNIFICANCE
	SIGNII IOANOL
15	Read violation*
14	Write violation*
13	Base page violation*
12	Privileged instruction violation*
11	Reserved
10	Reserved
	Reserved
8	Reserved
7	0 = ME bus disabled at violation 1 = ME bus enabled at violation
6	0 = MEM disabled at violation 1 = MEM enabled at violation
5	0 = System map enabled at violation 1 = User map enabled at violation
4	Map address bit 4
3	Map address bit 3
2	Map address bit 2
4	Map address bit 1
0	Map address bit 0
*Significant wh	en associated bit is set.

Any attempt to read from a read-protected page will result in a read violation and the memory read will not occur. Any attempt to write into a write-protected page will result in a write violation and the memory will not be altered. In addition, if a page is write protected, a jump or jump indirect instruction to that page will cause a write violation and the jump will not occur. It should be noted that all violation rules are ignored for DCPC signals.

If a read or write violation occurs, the MEM signals the memory protect logic that a violation has occurred which causes the memory protect logic to generate an interrupt. As discussed in paragraph 6-3, memory violations are interrupted to select code 05 and a DMS violation can be distinguished from a memory protect violation by executing an SFS 05 instruction. If the skip occurs, DMS is in violation; if no skip occurs, memory protect is in violation.

4-4. MAP SEGMENTATION

All registers within the memory map are dynamically alterable. To maximize the system performance capability, the MEM includes four separate memory maps: the User Map, System Map, and two Dual-Channel Port Controller (DCPC) Maps. (See Figure 4-4.) These maps, which are manipulated through the use of 38 machine-language instructions, are addressed as a contiguous register block. It should be noted that the base page fence applies to both the System Map and the User Map.

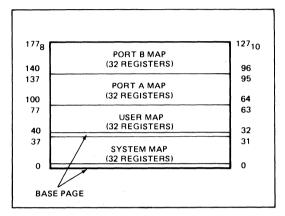
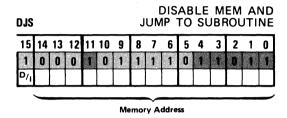


Figure 4-4. Map Segmentation

4-5. POWER FAIL CHARACTERISTICS

A power failure automatically enables the System Map, and a minimum of 500 microseconds is assured the programmer for executing a power fail routine. Since all maps are disabled and none are considered valid upon the restoration of power, the power fail routine should include instructions to save as many maps as desired.

4-6. DMS INSTRUCTION CODING


Machine language coding and definitions of the 38 Dynamic Mapping System instructions are provided on this and following pages. A sample map load and enable routine is given in paragraph 4-8.

Disables the translation and protection features of the MEM hardware. Prior to disabling, the P-register is set to the effective memory address. As a result of executing this

instruction, normal I/O interrupts are held off until the first opportunity following the fetch of the next instruction, unless three or more levels of indirect addressing are used.

This instruction will normally generate an MEM violation when executed in the protected mode. In this case, the status of the MEM is not affected and the jump will not occur; however, if the System map is enabled, the instruction is allowed.

Disables the translation and protection features of the MEM hardware. Prior to disabling, the P-register is set one count past the effective memory address (m+1) and the return address is stored in location m. As a result of executing this instruction, normal I/O interrupts are held off until the first opportunity following the fetch of the next instruction, unless three or more levels of indirect addressing are used.

This instruction will normally generate an MEM violation when executed in the protected mode. In this case, the status of the MEM is not affected and the jump will not occur; however, if the System map is enabled, the instruction is allowed.

Causes the status of the MEM to be restored. This is a three-word instruction where

Word 1 = Instruction code,

Word 2 = Status word address, and

Word 3 = Jump address.

Only bits 15 and 14 of the status word are used; the remaining bits (13-0) of the status word are ignored. Bits 15 and 14 restore the MEM status as follows:

Bit 15 = 0 = MEM will be disabled = 1 = MEM will be enabled

Bit 14 = 0 = System map will be selected = 1 = User map will be selected

As a result of executing this instruction, normal I/O interrupts are held off until after the fetch of the next instruction, unless a total of three or more levels of indirect addressing are used in Word 2 (status word address) and Word 3 (jump address). For example, if Word 2 contains one level of indirect addressing and Word 3 contains two levels of indirect addressing, interrupts will not be held off past the fetch of the next instruction.

This instruction will normally generate an MEM violation when executed in the protected mode. In this case, the status of the MEM is not affected and the jump will not occur; however, if the System map is enabled, the instruction is allowed.

LFA LOAD FENCE FROM A 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Loads the contents of the A-register into the base page fence register. Bits 9-0 of the A-register specify the address in page zero where shared (unmapped) memory is separated from reserved (mapped) memory. Bit 10 is used as follows to specify which portion is mapped:

Bit 10	Mapped Address (M)
0	Fence \leq M $< 2000_8$
1	1 < M < Fence

This instruction will normally generate an MEM violation when executed in the protected mode; however, it is allowed if the System map is enabled. When an MEM violation does occur, the fence is not altered.

LFB						١	LO.	ΑD	FE	ENG	CE	FR	OM	I B
15	14	13	12	11 1	9	8	7	6	5	4	3	2	1	0
1	0	0	0	1 0	1	1	1	1	0	1	0	1	1	1

Loads the contents of the B-register into the base page fence register. Bits 9-0 of the B-register specify the address in page zero where shared (unmapped) memory is separated from reserved (mapped) memory. Bit 10 is used as follows to specify which portion is mapped:

Bit 10	Mapped Address (M)
0	Fence \leq M $< 2000_8$
1	1 < M < Fence

This instruction will normally generate an MEM violation when executed in the protected mode; however, it is allowed if the System map is enabled. When an MEM violation does occur, the fence is not altered.

MBF MOVE BYTES FROM ALTERNATE MAP

15	14 13	12	11	10	9	8	7	6	5	4	3	2	. 1	0
1	0 0	0	1	0	1	1	1	1	0	0	0	0	1	1

Moves a string of bytes using the alternate program map for source reads and the currently enabled map for destination writes. The A-register contains the source byte address and the B-register contains the destination byte address. The initial byte addresses in the A- and B-registers must be even byte addresses. The byte in bits 15 through 8 of a word is the even byte. The X-register contains the octal number of bytes to be moved. The number of bytes to be moved is restricted to a positive integer greater than zero. If the contents of the X-register is zero, the instruction will be a NOP. If the contents of the X-register is a negative integer, a large indeterminate block of memory will be transferred. Both the source and destination must begin on word boundaries.

The instruction is interruptible on an even number of byte transfers, thus maintaining the even word boundaries in the A- and B-registers. The interrupt routine is expected to save and restore the current contents of the A-, and B-, and X-registers to allow continuation of the instruction at the next entry. When the byte string move is completed, the X-register will always be zero and the A- and B-registers will contain their original value incremented by the number of bytes moved.

This instruction can cause an MEM violation only if read or write protection rules are violated.

MBI INTO ALTERNATE MAP

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 1 0 1 1 1 1 0 0 0 0 1 0

Moves a string of bytes using the currently enabled map for source reads and the alternate program map for destination writes. The A-register contains the source byte address and the B-register contains the destination byte address. The initial byte addresses in the A- and B-registers must be even byte addresses. The byte in bits 15 through 8 of a word is the even byte. The X-register contains the octal number of bytes to be moved. The number of bytes to be moved is restricted to a positive integer greater than zero. If the contents of the X-register is zero, the instruction will be a NOP. If the contents of the X-register is a negative integer, a large indeterminate block of memory will be transferred. Both the source and destination must begin on word boundaries.

The instruction is interruptible on an even number of byte transfers, thus maintaining the even word boundaries in the A- and B-registers. The interrupt routine is expected to save and restore the current contents of the A-, B-, and X-registers to allow continuation of the instruction at the next entry. When the byte string move is completed, the X-register will always be zero and the A- and B-registers will contain their original value incremented by the number of bytes moved.

This instruction will always cause an MEM violation when executed in the protected mode and no bytes will be transferred.

MOVE BYTES

MB	W					W	ΙT	HIN	N A	LT	EF	N/	TE	M	ΙAΡ
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	0	1	0		1	1	1	0	0	0	1	0	0

Moves a string of bytes with both the source and destination addresses established through the alternate program map. The A-register contains the source byte address and the B-register contains the destination byte address. The initial byte addresses in the A- and B-registers must be even byte addresses. The byte in bits 15 through 8 of a word is the even byte. The X-register contains the octal number of bytes to be moved. The number of bytes to be moved is restricted to a positive integer greater than zero. If the contents of the X-register is zero, the instruction will be a NOP. If the contents of the X-register is a negative integer, a large indeterminate block of memory will be transferred. Both the source and destination must begin on word boundaries.

The instruction is interruptible on an even number of byte transfers, thus maintaining the even word boundaries in the A- and B-registers. The interrupt routine is expected to save and restore the current contents of the A-, B-, and X-registers to allow continuation of the instruction at the next entry. When the byte string move is completed, the X-register will always be zero and the A- and B-registers will contain their original value incremented by the number of bytes moved.

This instruction will always cause an MEM violation when executed in the protected mode and no bytes will be transferred.

MW	F						FF	RON	ΛΑ				TE	-	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	0	1	0	1	1	1	1	0	0	0	1	1	0

Moves a string of words using the alternate program map for source reads and the currently enabled map for destination writes. The A-register contains the source address and the B-register contains the destination address. The X-register contains the octal number of words to be moved.

The number of words to be moved is restricted to a positive integer greater than zero. If the contents of the X-register is zero, the instruction will be a NOP. If the contents of the X-register is a negative integer, a large indeterminate block of memory will be transferred.

The instruction is interruptible. The interrupt routine is expected to save and restore the current contents of the A-, B-, and X-registers to allow continuation of the instruction at the next entry. When the word string move is completed, the X-register will always be zero and the A- and B-registers will contain their original value incremented by the number of words moved.

This instruction can cause an MEM violation only if read and write protection rules are violated.

MW	ı						IN	ITC) A					OR E M	_
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[1	0	0	0	1	0	1	1	1	1	0	0	0	1	0	1

Moves a string of words using the currently enabled map for source reads and the alternate program map for destination writes. The A-register contains the source address and the B-register contains the destination address. The X-register contains the octal number of words to be moved. The number of words to be moved is restricted to a positive integer greater than zero. If the contents of the X-register is zero, the instruction will be a NOP. If the contents of the X-register is a negative integer, a large indeterminate block of memory will be transferred.

The instruction is interruptible. The interrupt routine is expected to save and restore the current contents of the A-, B-, and X-registers to allow continuation of the instruction at the next entry. When the word string move is conpleted, the X-register will always be zero and the A- and B-registers will contain their original value incremented by the number of words moved.

This instruction will always cause an MEM violation when executed in the protected mode and no words will be transferred.

MW	w					W	ΊT	нп	V A				W ATE		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	0	1	0	1	1	1	1	O	0	0	1	1	1

Moves a string of words with both the source and destination addresses established through the alternate program map. The A-register contains the source address and the B-register contains the destination address. The X-register contains the octal number of words to be moved.

The number of words to be moved is restricted to a positive integer greater than zero. If the contents of the X-register is zero, the instruction will be a NOP. If the contents of the X-register is a negative integer, a large indeterminate block of memory will be transferred.

The instruction is interruptible. The interrupt routine is expected to save and restore the current contents of the A-, B-, and X-registers to allow continuation of the instruction at the next entry. When the word string move is completed, the X-register will always be zero and the A- and B-registers will contain their original value incremented by the number of words moved.

The instruction will always cause an MEM violation when executed in the protected mode and no words will be transferred.

PAA LOAD/STORE PORT A MAP PER A 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 0 0 0 0 1 1 1 1 1 0 0 1 0 1 0

Transfers the 32 Port A map registers to or from memory. If bit 15 of the A-register is clear, the Port A map is loaded from memory starting from the address specified in bits 10-4 of the A-register. If bit 15 of the A-register is set, the Port A map is stored into memory starting at the address specified in bits 14-0 of the A-register. When the load/store operation is complete, the A-register will be incremented by 32 to allow multiple map instructions.

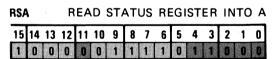
An attempt to load any map register when in the protected mode will cause an MEM violation. An attempt to store the Port A map is allowed within the constraints of write protected memory.

PAE	3		L	OA	D/9	STC	R	E F	POF	RΤ	ΑI	MΑ	Р	PER	В
														1	
1	0	0	0	1	0	1	1	1	1	0	0	1	0	1	0

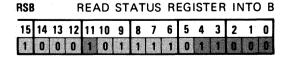
Transfers the 32 Port A map registers to or from memory. If bit 15 of the B-register is clear, the Port A map is loaded from memory starting from the address specified in bits 14-0 of the B-register. If bit 15 of the B-register is set, the Port A map is stored into memory starting at the address specified in bits 14-0 of the B-register. When the load/store operation is complete, the B-register will be incremented by 32 to allow multiple map instructions.

An attempt to load any map register when in the protected mode will cause an MEM violation. An attempt to store the Port A map is allowed within the constraints of write protected memory.

PBA	١.		L	O٨	D/	STO	DR	E F	OF	RT	В	MΑ	P P	ER	A
						9									
1	0	0	0	0	0	1	1	1	1	0	0	1	0	1	1

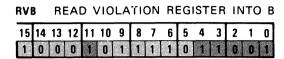

Transfers the 32 Port B map registers to or from memory. If bit 15 of the A-register is clear, the Port B map is loaded from memory starting from the address specified in bits 14-0 of the A-register. If bit 15 of the A-register is set, the Port B map is stored into memory starting at the address specified in bits 14-0 of the A-register. When the load/store operation is complete, the A-register will be incremented by 32 to allow multiple map instructions.

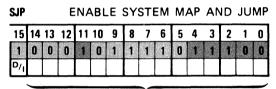
An attempt to load any map register when in the protected mode will cause an MEM violation. An attempt to store the Port B map is allowed within the constraints of write protected memory.


PBB	}		L	OA	AD/	ST	OR	E	POF	٦Т	В	MΑ	P	PEF	₹В
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	0	1	0	1	1	1	1	0	0	1	0	1	

Transfers the 32 Port B map registers to or from memory. If bit 15 of the B-register is clear, the Port B map is *loaded* from memory starting from the address specified in bits 14-0 of the B-register. If bit 15 of the B-register is set, the Port B map is *stored* into memory starting at the address specified in bit 14-0 of the B-register. When the load/store operation is complete, the B-register will be incremented by 32 to allow multiple map instructions.

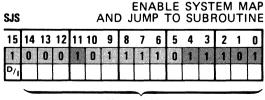
An attempt to load any map register when in the protected mode will cause an MEM violation. An attempt to store the Port B map is allowed within the constraints of the write protected memory.


Reads the contents of the MEM status register into the A-register. This instruction can be executed at any time. The format of the MEM status register is given in Table 4-1.


Reads the contents of the MEM status register into the B-register. This instruction can be executed at any time. The format of the MEM status register is given in Table 4-1.

RVA READ VIOLATION REGISTER INTO A 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 0 0 0 0 1 1 1 1 0 1 1 0 0 1

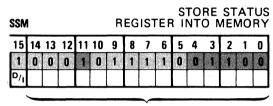
Reads the contents of the MEM violation register into the A-register. This instruction can be executed at any time. The format of the MEM violation register is given in Table 4-2.


Reads the contents of the MEM violation register into the B-register. This instruction can be executed at any time. The format of the MEM violation register is given in Table 4-2.

Memory Address

Causes the MEM hardware to use the set of 32 map registers, referred to as the System map, for translating all programmed memory references. Prior to enabling the System map, the P-register is set to the effective memory address. As a result of executing this instruction, normal I/O interrupts are held off until the first opportunity following the fetch of the next instruction, unless three or more levels of indirect addressing are used.

This instruction will normally generate an MEM violation when executed in the protected mode. In this case, the status of the MEM is not affected and the jump will not occur; however, if the System map is enabled, the instruction is allowed and effectively executes a JMP *+1,I.



Memory Address

Causes the MEM hardware to use the set of 32 map registers, referred to as the System map, for translating all

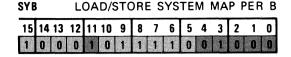
programmed memory references. Prior to enabling the System map, the P-register is set one count past the effective memory address (m + 1). After enabling the System map, the return address is stored in m. As a result of executing this instruction, normal I/O interrupts are held off until the first opportunity following the fetch of the next instruction, unless three or more levels of indirect addressing are used.

This instruction will normally generate an MEM violation when executed in the protected mode. In this case, the status of the MEM is not affected and the jump will not occur; however, if the system map is enabled, the instruction is allowed and effectively executes a JSB *+1,I.

Memory Address

Stores the 16-bit contents of the MEM status register into the address memory location. The status register contents are not altered. This instruction is used in conjunction with the JRS instruction to allow easy processing of interrupts, which always select the System map (if the MEM is enabled). The format of the MEM status register is listed in Table 4-1.

This instruction can cause an MEM violation only if write protection rules are violated.


SY	4		L	AC	D/S	STC	RE	S	YS'	TE	M I	MA	PP	ER	Α
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	Ω	0	0	0	1	1	1	1	0	0	1	n	0	0

Transfers the 32 System map registers to or from memory. If bit 15 of the A-register is clear, the System map is loaded from memory starting from the address specified in bits 14-0 of the A-register. If bit 15 of the A-register is set, the System map is stored into memory starting at the address specified in bits 14-0 of the A-register. When the load/store operation is complete, the A-register will be incremented by 32 to allow multiple map instructions.

NOTE

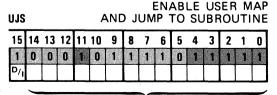
If not in the protected mode, the MEM provides no protection against altering the contents of maps while they are currently enabled.

An attempt to load any map in the protected mode will cause an MEM violation. An attempt to store the System map is allowed within the constraints of write protected memory.

Transfers the 32 System map registers to or from memory. If bit 15 of the B-register is clear, the System map is loaded from memory starting from the address specified in bits 14-0 of the B-register. If bit 15 of the B-register is set, the System map is stored into memory starting at the address specified in bits 14-0 of the B-register. When the load/store operation is complete, the B-register will be incremented by 32 to allow multiple map instructions.

NOTE

If not in the protected mode, the MEM provides no protection against altering the contents of maps while they are currently enabled.


An attempt to load any map in the protected mode will cause an MEM violation. An attempt to store the System map is allowed within the constraints of write protected memory.

UJP				E	N/	۱BL	.E	US	ER	М	ΑP	Άľ	۷D	JU	MP
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	0	1	0	1	1	1	1	0	1	1	1	1	0
$D_{/1}$															

Memory Address

Causes the MEM hardware to use the set of 32 map registers, referred to as the User map, for translating all programmed memory references. Prior to enabling the User map, the P-register is set to the effective memory address. As a result of executing this instruction, normal I/O interrupts are held off until the first opportunity following the fetch of the next instruction, unless three or more levels of indirect addressing are used.

This instruction will normally generate an MEM violation when executed in the protected mode. In this case, the status of the MEM is not affected and the jump will not occur; however, if the System map is enabled, the instruction is allowed.

Memory Address

Causes the MEM hardware to use the set of 32 map registers, referred to as the User map, for translating all pro-

grammed memory references. Prior to enabling the User map, the P-register is set one count past the effective memory address (m + 1). After enabling the System map, the return address is stored in m. As a result of executing this instruction, normal I/O interrupts are held off until the first opportunity following the fetch of the next instruction, unless three or more levels of indirect addressing are used.

This instruction will normally generate an MEM violation when executed in the protected mode. In this case, the status of the MEM is not affected and the jump will not occur; however, if the System map is enabled, the instruction is allowed.

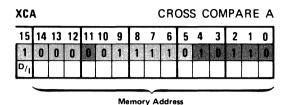
USA	١			L	IAC	D/S	TC	RE	U	SE	RI	MΑ	PF	PEF	Ι Δ
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	0	0	0	1	1	1	1	0	0	1	0	0	1

Transfers the 32 User map registers to or from memory. If bit 15 of the A-register is clear, the User map is loaded from memory starting from the address specified in bits 14-0 of the A-register. If bit 15 of the A-register is set, the User map is stored into memory starting at the address specified in bits 14-0 of the A-register. When the load/store operation is complete, the A-register will be incremented by 32 to allow multiple map instructions.

NOTE

If not in the protected mode, the MEM provides no protection against altering the contents of maps while they are currently enabled.

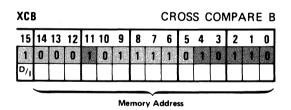
An attempt to load any map in the protected mode will cause an MEM violation. An attempt to store the User map is allowed within the constraints of write protected memory.



Transfer the 32 User map registers to or from memory. If bit 15 of the B-register is clear, the User map is loaded from memory starting from the address specified in bits 14-0 of the B-register. If bit 15 of the B-register is set, the User map is stored into memory starting at the address specified in bits 14-0 of the B-register. When the load/store operation is complete, the B-register will be incremented by 32 to allow multiple map instructions.

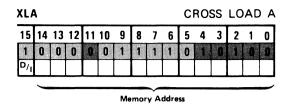
NOTE

If not in the protected mode, the MEM provides no protection against altering the contents of maps while they are currently enabled.


Any attempt to load any map in the protected mode will cause an MEM violation. An attempt to store the User map is allowed within the constraints of write protected memory.

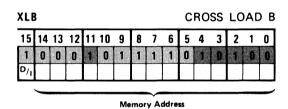
Compares the contents of the A-register with the contents of the addressed memory location. If the two 16-bit words are not identical, the next instruction is skipped; i.e., the P-register advances three counts instead of two counts. If the two words are identical, the next instruction is executed. Neither the A-register contents nor memory cell contents are altered.

This instruction uses the alternate program map to determine the addressed memory location. If the MEM is currently disabled, then a compare directly with physical memory occurs.


This instruction will cause an MEM violation only if read protection rules are violated.

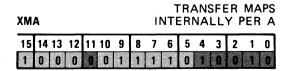
Compares the contents of the B-register with the contents of the addressed memory location. If the two 16-bit words are not identical, the next instruction is skipped; i.e., the P-register advances three counts instead of two counts. If the two words are identical, the next instruction is executed. Neither the B-register contents nor memory cell contents are altered.

This instruction uses the alternate program map to determine the addressed memory location. If the MEM is currently disabled, then a compare directly with physical memory occurs.


This instruction will cause an MEM violation only if read protection rules are violated.

Loads the contents of the specified memory address into the A-register. The contents of the memory cell are not altered.

This instruction uses the alternate program map to fetch the operand. If the MEM is currently disabled, then a load directly from physical memory occurs.


This instruction will cause an MEM violation only if read protection rules are violated.

Loads the contents of the specified memory address into the B-register. The contents of the memory cell are not altered.

This instruction uses the alternate program map to fetch the operand. If the MEM is currently disabled, then a load directly from physical memory occurs.

This instruction will cause an MEM violation only if read protection rules are violated.

Transfers a copy of the entire contents (32 map registers) of the System map or the User map to the Port A map or

the Port B map as determined by the control word in the A-register:

Bit*	Significance
15	0 = System Map 1 = User Map
0	0 = Port A Map 1 = Port B Map

^{*}Bits 14-1 are ignored.

This instruction will always generate an MEM violation when executed in the protected mode.

XM	В		•					. 11	-						APS R B	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	10000
1	0	0	0	1	0	1	1	1	1	0	1	0	0	1	0	l

Transfers a copy of the entire contents (32 map registers) of the System map or the User map to the Port A map or the Port B map as determined by the control word in the B-register:

Bit*	Significance
15	0 = System Map 1 = User Map
.0	0 = Port A Map 1 = Port B Map

^{*}Bits 14-1 are ignored.

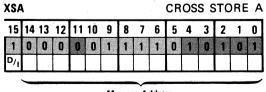
This instruction will always generate an MEM violation when executed in the protected mode.

XMI	M			T	R/	NS	FE	R	ΜÀ	PS	Ö	R N	ΛEΝ	NO.	RY
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	0	1	0	1	1	1	1	0	1	0	0	0	0

Transfers a number of words either from sequential memory locations to sequential map registers or vice versa. The A-register points to the first map register to be accessed and the B-register points to the first word of a group of words (table) in sequential memory locations. The X-register indicates the number of maps (0 to 127₁₀) to be transferred. If the content of the X-register is a positive integer, words are moved from memory to map registers; if the content is a negative integer, words are moved from map registers to memory.

Map registers are addressed as a contiguous space and a wraparound count from 127 to 0 can and will occur. It is the programmer's responsibility to avoid this error.

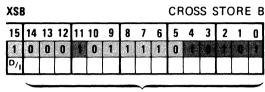
The contents of the maps are transferred in blocks of 16 registers or less. This instruction is interruptible only after each block has been completely transferred. The A-B-, and X-registers are then reset to allow reentry at a later time. The X-register will always be zero at the completion of the instruction and the A- and B-registers will be advanced by the number of registers moved.


An attempt to load any map register in the protected mode will generate an MEM violation. An attempt to store map registers is allowed within the constraints of write protected memory.

XM	S		Т	RA	NS	FE	R	MΑ	NPS	SE	Qι	JEN	NTI	ΑL	LY
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	0	1	0	1	1	1	1	0	1	0	0	0	1

Transfers a number of words to sequential map registers. The A-register points to the first register to be accessed, the B-register contains the base quantity, and the X-register indicates the number of maps (0 to 127_{10}) to be loaded. If the contents of the X-register is a positive integer, the contents of the B-register will be used as the base quantity to be loaded into the first map register. The second register will be loaded with the base quantity plus one, the third register will be loaded with the base quantity plus two, and so forth up to the number of map registers specified in the X-register. If the contents of the X-register is less than or equal to zero, an effective NOP will occur, leaving the contents of the A-, B-, and X-registers unaltered.

This instruction is interruptible after each group of 16 registers has been transferred. The A-, B-, and X-registers are then reset to allow reentry at a later time. The X-register will always be zero at the completion of the instruction and the A- and B-registers will be advanced by the number of registers moved.


An attempt to load any map register in the protected mode will generate an MEM violation.

Memory Address

Stores the contents of the A-register into the addressed memory location. The previous contents of the memory cell are lost; the A-register contents are not altered. This instruction uses the alternate program map for the write operation. If the MEM is currently disabled, then a store directly into physical memory occurs.

This instruction will always cause an MEM violation when executed in the protected mode.

Memory Address

Stores the contents of the B-register into the addressed memory location. The previous contents of the memory cell are lost; the B-register contents are not altered.

This instruction uses the alternate program map for the write operation. If the MEM is currently disabled, then a store directly into physical memory occurs.

This instruction will always cause an MEM violation when executed in the protected mode.

4-7. INSTRUCTION EXECUTION TIMES

Table 4-3 lists the execution times required for the various DMS instructions.

4-8. SAMPLE MAP LOAD/ENABLE ROUTINE

Table 4-4 provides a sample DMS map load and enable routine. This routine begins by loading 32 registers for the System map and 32 registers for the User map and continues by setting the Port A map to the area for User number one. The Port B map is then set to point into a new area where a third User's program would be loaded. Next, the Base Page Fence is set so that the System Fence value is used. Finally, the mapping functions of the DMS are enabled and program control is transferred to the System area beginning at address 1000 s.

4-9. ADDITIONAL DMS DEFINITIONS

The following paragraphs further define the terms "alternate map" and "protected mode" and contain definitive discussions for MEM violations and DCPC operation in a DMS environment.

Table 4-3A. Typical DMS Instruction Execution Times (M-Series)

INSTRUCTION	EXECUTION TIME (μs)
Dynamic Mapping System Group	
DJP, SJP	5.85ª
DJS, SJS	6.50ª
JRS	9.10 — 10.40*
LFA/B	3.57
MBF, MBI, MBW	6.50 b,c
MWF, MWI, MWW	3.25 ^b
PAA/B, SYA/B	47.125 — 47.80
PBA/B, USA/B	47.125 — 47.80
RSA/B	2.60
RVA/B	2.275
SSM	5.85ª
UJP	5.525ª
UUS	6.175*
XCA/B	6.175ª
XLA/B, XSA/B	5.525°
XMA/B	15.275 — 16.575
XMM	9.75°
XMS	8.45 ^d

- a. Add 1.3 μ s for each indirect address level.
- b. Add 2.925 μ s for each word moved.
- c. Add 3.575 μ s for last odd byte.
- d. Add $0.975 \mu s$ for each word loaded into map register.
- e. Add 1.3 μs for each word exchanged between maps and memory.

4-10. ALTERNATE MAP

If the system map is currently enabled, the user map is the alternate map. If the user map is currently enabled, the system map is the alternate map. The DCPC maps are never the alternate maps.

4-11. PROTECTED MODE

If the DMS and memory protect are enabled, the computer is in the protected mode. DMS will operate in the unprotected mode (DMS enabled, memory protect disabled), but none of the DMS safeguards will be operative.

4-12. MEM VIOLATIONS

The MEM violations are designed to safeguard DMS. The four types of violations are read protect, write protect, base page, and privileged instruction. Throughout the following paragraphs, references to logical memory refers to the memory address before mapping and references to physical memory refers to the memory address after mapping.

Table 4-3B. Typical DMS Instruction Execution Times (E-Series)

	EXECUTION TIME (μs)										
INSTRUCTION	Standard Performance Memory	High Performance Memory	Fault Control Memory								
DJP,SJP	3.745	3.290	3.850								
Each Indirect Level	1.330	0.875	1.400								
DJS,SJS	4.410	3.710	4.480								
Each Indirect Level		0.875	1.400								
JRS.	5.320 to 6.055	4.340 to 5.215	5.460 to 6.230								
Each Indirect Level	1.330	0.875	1.400								
LFA/B	2.170	2.100	2.240								
Each Indirect Level	1.330	0.875	1.400								
MBF	4.935 to 8.260	4.900 to 7.490	4.970 to 8.400								
	+1.820/byte	+ 1.680/byte	+1.855/byte								
MBI	4.760 to 8.120	4.725 to 7.385	4.795 to 8.225								
. [+ 1.820/byte	+1.680/byte	+1.855/byte								
MBW	4.935 to 7.490	4.900 to 6.965	4.970 to 7.595								
	+1.995/byte	+ 1.680/byte	+2.035/byte								
MWF	2.765	2.520	2.800								
	+1.820/word	+ 1.680/word	+1.855/word								
MWI,MWW	2.590	2.520	2.625								
	+1.820/word	+1.680/word	+1.855/word								
PAA/B (load)	50.505	42.420	51.660								
(store)	47.145	35.665	47.180								
PBA/B (load)	50.680	42.595	51.835								
(store)	47.320	35.840	47.425								
SYA/B (load)	50.330	42.245	51.485								
(store)	45.955	34.510	45.990								
RSA/B	2.170	1.715	2.240								
RVA/B	2.170	1.680	2.240								
SSM	3.710	3.360	3.710								
Each Indirect Level	1.330	0.875	1.400								
UJP	3.500	3.010	3.640								
Each Indirect Level	1.330	0.875	1.400								
UJS	4.165	3.430	4.270								
Each Indirect Level	1.330	0.875	1.400								
USA/B (load)	50.400	42.345	51.555								
(store)	46.025	34.580	46.060								
XCA/B (no skip)	3.570	3.080	3.675								
(skip)	4.235	3.500	4.375								
Each Indirect Level XLA/B	1.330 3.500	0.875	1.400								
Each Indirect Level		3.255	3.675								
XMA/B	1.330	0.875	1.400								
	28.980 to 29.750	28.735 to 29.255	29.015 to 29.855 4.200								
XMM (from memory to map)	4.165 +1.820/word	3.920 +1.575/word	+1.855/word								
	+0.175/16 words	+0.175/16 words	+0.175/16 words								
(from map to memory)	4.270	4.025	4.305								
(nom map to memory)	4.270 +1.470/word	+1.330/word	+1.505/word								
	+0.175/16 words	+0.175/16 words	+0.175/16 words								
XMS	4.095	3.850	4.130								
XIIIO	+1.330/word	+ 1.330/word	+1.330/word								
	+0.175/16 words	+0.175/16 words	+0.175/16 words								
XSA/B	3.570	3.080	3.605								
Each Indirect Level	1.330	0.875	1.400								
		1 5.070	1								

Table 4-3C. Typical DMS Instruction Execution Times (F-Series)

If the computer is in the protected mode and bit 11, the read protect bit, of a system or user map register equals 1, any attempt by the system or user to read from the associated memory page causes a read protect violation and the read does not occur. If the computer is in the unprotected mode, the read occurs. In either case, bit 15 of the MEM violation register will be set to 1. For example, suppose the computer is in the protected mode and the system or user map register 3 contains 4043₈. Any attempt by the system or user to read from page 43₈ using map register 3 (i.e., read from physical addresses in the 106000_8 range), causes a read protect violation.

If the computer is in the protected mode and bit 10, the write protect bit, of a system or user map register equals 1, any attempt by the system or user to write onto the associated memory page causes a write protect violation and the write does not occur. If the computer is in the unprotected mode, the write occurs. In either case, bit 14 of the MEM violation register will be set to 1. For example, suppose the computer is in the protected mode and the system or user map register 3 contains 2043₈. Any attempt by the system or user to write onto page 43₈ using map register 3 (i.e., write onto physical addresses in the 106000_8 range), causes a write protect violation.

If the computer is in the protected mode, any attempt by the system or user to write onto the physical base page causes a base page violation and the write does not occur. If the computer is in the unprotected mode, the write occurs. In either case, bit 13 of the MEM violation register will be set to 1. For example, suppose the computer is in protected mode, the system or user map register 0 contains 0040 s, the base page fence is set at 1000 s, and bit 10 of the MEM status register equals 1 (i.e., logical addresses below the base page fence are mapped). If the system or user attempts to write to a logical memory address of 1500₈, MEM detects that the base page addresses above the base page fence are not mapped and begins to access physical memory address 1500s. However, MEM then detects that a write to physical base page is being attempted which causes a base page violation and the write does not occur. If the computer was in the unprotected mode, the write would have occurred. In either case, bit 13 of the MEM violation register will be set to 1. If the system or user attempts to write to a logical memory address of 5008, MEM detects that addresses below the base page fence are mapped and begins to access physical memory address $100000_8 + 500_8 = 100500_8$ where the write will occur providing standard memory protect is not violated. Note that standard memory protect checks the logical address (i.e., 500₈), not the physical address (i.e., 100500₈). Reading from logical or physical base page will not generate a base page violation. From the previous discussion, it can be seen that a DMS memory space has its base page in two pieces which may or may not be contiguous. Regardless, the total base page available for any DMS memory space is 1024 locations. The part of the physical base page accessible by all memory spaces is also referred to as the unmapped or shared part of the base page. Note that the logical addresses of 0 and 1 access the A- and B-registers, respectively.

Table 4-4. Sample DMS Load/Enable Routine

LABEL	OPCODE	OPERAND	COMMENTS
DMS	NOP LDA LDB SYA USB LDA LDB PAA PBB LDA LFA SJP	S.TABL U.TABL A.TABL B.TABL FNC,I SYSTRT,I	DMS Load/Enable Routine Load address of System Map Table Load address of User Map Table Load System Map from memory Load User Map from memory Load address of Port A Map Table Load address of Port B Map Table Load Port A Map from memory Load Port B Map from memory Load Port B Map from memory Load Base Page Fence register Enable System Map and jump to operating system entry point
SYSTRT FNC S.TABL U.TABL A.TABL B.TABL SYSF SYSTEM	OCT DEF DEF DEF DEF OCT OCT OCT	1000 SYSF SYSTEM US01 US01 US03 100 0 1	Operating system begins at 1000 ₈ Points to System Fence Points to System Table Points to first User Table Points to first User Table Points to third User Table Fence for operating system System Map Table System Map Table System Map Table
US01F US01	OCT OCT OCT OCT	1000 40 41 42	Fence for first user First User Map Table First User Map Table First User Map Table
US02F US02	OCT OCT OCT OCT	2044 100 101 102	Fence for second user Second User Map Table Second User Map Table Second User Map Table
US03F US03	OCT OCT OCT	0 200 201 202	Fence for third user Third User Map Table Third User Map Table Third User Map Table Third User Map Table

If the computer is in the protected mode, any attempt by the user to load into any MEM register, except the MEM address register, will cause a privileged instruction violation and the load will not occur. Any attempt by the system to load into any of the MEM map registers will cause a privileged instruction violation and the load will not occur. If the computer is in the unprotected mode, the load occurs. In either case, bit 12 of the MEM violation register will be set to 1. The system can always load into the MEM state register or MEM fence register. Under microprogrammed control the user can always load into the MEM state register or MEM fence register. The system or user can always load into the MEM address register, and can always read the MEM map registers. All MEM violations cause an interrupt to select code 5. Instruction SFS 5 will skip only for an MEM violation,

allowing DMS interrupts to be differentiated from memory protect or parity error interrupts.

4-13. DCPC OPERATION IN A DMS ENVIRONMENT

DCPC activity disables the MEM violation logic. Therefore, the DCPC's can read or write physical memory without generating MEM violations. Note that mapping remains enabled during DCPC activity and that the base page partitioning is the same. For example, if a DCPC input transfer were aimed at logical memory addresses 0 to 77777 s, which happened to map to physical addresses 100000 s to 177777, and the conditions cited in the base page examples prevailed, then the input data would be written into physical addresses 100000 s to 100777 s, 1000 to 1777 s, and 102000 to 17777 s.

This section contains an introductory discussion of Hewlett-Packard's microprogramming techniques and development. For additional information, refer to the HP M-Series Computer Microprogramming Reference Manual. part no. 02108-90032, and the HP E/F-Series Computer Microprogramming Reference Manual, part no. 02109-90004.

THE MICROPROGRAMMED 5-1. COMPUTER

The control section of a computer is the portion of the computer that directs and controls the other sections: i.e., the memory section, input-output section, and the arithmetic-logic section. In totally hardwired computers, the control section logic is normally "spread out" physically throughout the computer. This design approach makes it impossible to enhance the computer's instruction set without redesign. In contrast, HP 1000 computers have a fully microprogrammed control section, which means that the sequence in which the control functions are performed are made programmable through the use of a technique called microprogramming.

The action taken when any one of the F-Series base set of 128 assembly language instructions is executed is determined by a microprogram associated with the assembly language instruction (these microprograms reside in a special memory called control store); the control section oversees the translation and controls the execution of the microprogram. With this design approach, instruction set enhancements can be made by changing or adding to the set of microprograms that control the machine's execution. Many computers are microprogrammed; however, Hewlett-Packard has taken the concept one step further to offer the power of microprogramming to the user.

THE MICROPROGRAMMABLE 5-2. COMPUTER

F-Series computer users can more fully take advantage of the computer's power by utilizing microprogramming. The microprogrammer has more instructions, a more flexible word format, more registers, and faster execution times to work with than does the assembly language programmer. The microinstruction word length is 24 bits which enables concurrent operations to be performed in a single instruction. Microprogrammers can access 12 scratch pad registers in addition to those available to the assembly language programmer and have up to 4096 (M-Series) or 16,384 (E/F-Series) 24-bit words of memory (termed control store) in which to store microprograms. Up to three levels of nested subroutines are possible in E- and F-Series computers. The microprogrammer works in a much faster environment than does the assembly language programmer for two reasons. One, since microinstructions have access to most of the internal parts of the computer's architecture, fewer memory fetches are required to accomplish most tasks. Two, the microinstruction execution time of 325 (M-Series) or 175 or 280 (E/F-Series) nanoseconds is much faster than the typical assembly instruction execution time of 1 to 2 microseconds.

MICROPROGRAMMING

These capabilities are easily taken advantage of by HP 1000 computer users through the extensive support provided by Hewlett-Packard. Some of the more important benefits of Hewlett-Packard's microprogramming are given in the following paragraphs.

5-3. CUSTOMIZED INSTRUCTIONS

Through the use of microprogramming, the computer's assembly language instruction set can be expanded with instructions tailored for specific applications. By adding special purpose instruction sets, the general purpose computer can be uniquely adapted for a certain job and thus become very efficient at that job. HP 1000 users can easily design their own instructions or purchase HP-supplied instruction sets such as the Dynamic Mapping System instructions. Applications that may be profitably microcoded include arithmetic calculations, I/O device driver programs, sorts and table searches, pseudo-DCPC operations, and special IBL orders.

Microprogramming is very similar to assembly language programming, although it is more powerful in many ways. Some knowledge of the internal structure of the computer is required, but once this knowledge is attained, the increased power and flexibility of microprogramming can ease the solution of many programming tasks. Microprograms are easily callable by assembly or higher level language programs. An extensive set of debugging aids, software analysis aids, and documentation is available to make microprogramming easy and efficient.

5-4. SYSTEM SPEED

Microprogramming often-used routines will typically decrease program execution time by factors of two to ten and sometimes by as much as twenty or more. Software routines can be made to execute at the hardware speeds of the microprogram environment and the additional registers available to the microprogrammer can serve to eliminate many time-consuming memory fetches.

5-5. MEMORY SPACE AND SECURITY

By converting software routines into microprograms, space in main memory that would normally be required for time-critical routines can be freed for other uses. The routines remain instantly callable, as opposed to routines stored in a peripheral device. Microprograms are also less accessible than conventional software which affords a higher degree of security to microcoded routines.

5-6. DEVELOPING MICROPROGRAMS

Developing microprograms is similar to developing assembly language programs; assembling and interactive debugging of microprograms is done with the aid of the HP Micro Assembler and Micro Debug Editor. Since the user will not normally want to microcode all of a certain program, some analysis is required to determine which segment(s) of the assembly language program can be most profitably converted to microcode. This analysis is easily done with the use of an HP contributed library program called the Activity Profile Generator (APG). The APG enables the user to determine where in a program the CPU is spending most of its time; by substituting this section of code with a microprogrammed subroutine that is callable by the assembly or higher level program, overall execution time may often be reduced.

Once the microprogrammer has determined what segment to implement in microcode, the microprogram is developed as shown in Figure 5-1. The Micro Assembler program (in main memory) is used to assemble the source microprogram into an object program. Then, the object microprogram is loaded into Writable Control Store (WCS) with the aid of the Micro Debug Editor program. Interactive debugging may be performed with the aid of the Debug Editor while the object microprogram resides in WCS.

When the microprogram is fully checked out, the user may choose to have his program reside permanently in programmable Read-Only Memory (pROM) or in WCS where it may be altered programmatically. Implementation in ROM is accomplished by programming the pROM's with a pROM writer and installing the programmed ROM's in the computer. The mask tapes shown in Figure 5-1 are required by the PROM writer and are generated by the software at the user's command. ROM-resident microprograms are permanent and do not have to be reloaded each time the computer is powered up; this implementation also prevents users from erroneously destroying the microprogram. The user who does not require such permanence for microprogram storage may execute his microcode from WCS. Microprograms used in this manner may be loaded with the WCS I/O utility routine and may be altered under program control to suit a variety of users. User-written microprograms are easily accessed by assembly or higher level programs. Once the microprogram is developed and loaded into control store, it may be called in a very similar manner to a software routine.

5-7. SUPPORT FOR THE MICROPROGRAMMER

Hewlett-Packard provides a comprehensive set of hardware and software manuals, and training courses to make user microprogramming easy to learn and implement. For permanent implementation of microprograms, programmed PROMs may be installed in the HP 12945A User ROM Control Store Board (M-Series), the HP 13304 Firmware Accessory Board (E/F-Series) or the HP 12791A Firmware Expansion Module (M/E/F-Series). The User ROM Control Store Board and the Firmware Accessory Board mount under the main CPU board of the M-Series and E/F-Series computers, respectively, and are used to house Hewlett-Packard standard or optional instruction sets such as the Dynamic Mapping System and the D/S 1000 Firmware instructions. Up to 8k 24-bit words of control store may be installed in the optional Firmware Expansion Module.

The HP 13197A 1k Writable Control Store (WCS) option provides a read-write control store module which can be used for the development and execution of user-supplied microprograms. Microprograms in WCS are executed at the same speed as those in the read-only control store. Each WCS module consists of a single card which plugs into the I/O PCA cage, thus eliminating the need for extensive cabling or an additional power supply. A WCS card contains 1,024 24-bit locations of Random-Access-Memory (RAM), including all necessary address and read/write circuits. WCS can be written into or read under computer control using standard input/output instructions. An I/O utility routine makes it possible for FOR-TRAN and ALGOL programs to write into or read from a WCS module using a conventional subroutine call. A WCS module is read at full speed by way of a flat cable connecting it to the control section of the processor.

Available microprogramming software includes the Micro Assembler and Micro Debug Editor as well as diagnostics, driver program, and I/O utility routine for use with the Writable Control Store module. These software aids operate under the Hewlett-Packard Real Time Executive (RTE) operating system.

A course is offered at HP facilities in Cupertino, California for customer training. Requiring only a knowledge of F-Series assembly language as a prerequisite, the course features in-depth coverage of microprogram development and implementation, and provides hands-on experience for the microprogrammer. The F-Series microprogrammer may also take advantage of other user-written microprograms via the HP Contributed Library, which contains many tested and documented microprograms.

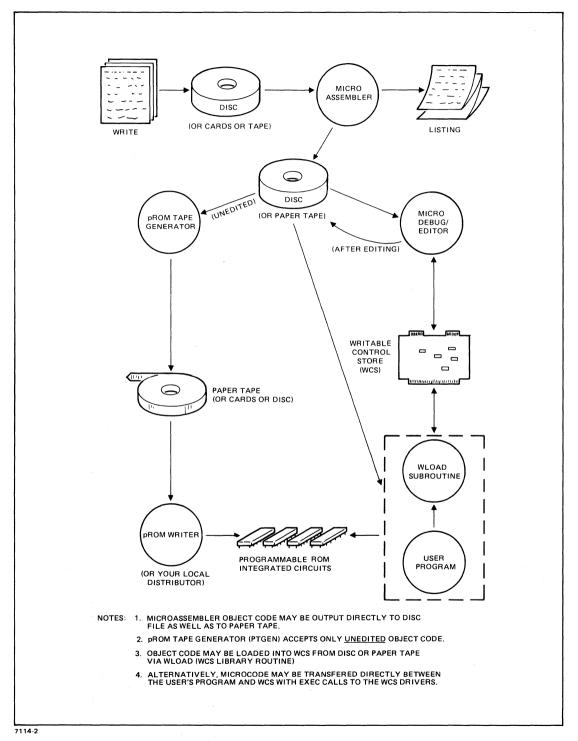


Figure 5-1. Microprogram Development Cycle

5-8. OPTIONAL INSTRUCTION SETS

5-9. DYNAMIC MAPPING SYSTEM

The Dynamic Mapping System (DMS) which is standard for the HP 2117F and optional for other HP 1000 Computers, gives the user the capability to address physical memory configurations larger than the standard 32,768 word limitation. The DMS provides a 20-bit-wide memory address bus which allows an addressing space of 1,048,576 words of main memory and allows the user to specify each 1,024-word page within physical memory to be read and/or translation maps provide isolation of system, user, DCPC channel 1, and DCPC channel 2.

The DMS consists of a Memory Expansion Module (MEM) and a Memory Protect PCA which plug into the memory PCA cage; microcode for implementing the additional 38 machine language instructions associated with the DMS is mounted in the Firmware Accessory Board.

5-10. FPP MICROPROGRAMMING (F-SERIES ONLY)

Information on directly microprogramming the Floating Point Processor (FPP) is given in the *HP E/F-Series Com-*

puter Microprogramming Reference Manual, part no. 02109-90004.

5-11. CONCLUSION

Microprogramming is a very powerful tool that gives the user many advantages in terms of speed, flexibility, and program security. Experience has shown that microprogramming once learned, is in many cases much more flexible while being just as simple in concept as assembly language programming. Microprogramming does have its limitations however, and the potential user should examine very closely the extent of support provided by the computer manufacturer. Hewlett-Packard has by far sold and supported the greatest number of microprogrammable computers in the world, and provides world-wide customer support. Customer training courses and documentation have been refined from years of customer-contributed feedback and actual implementation is made easy through extensive software support packages and inexpensive hardware tools.

INTERRUPT SYSTEM

VI

The vectored priority interrupt system has up to 60 distinct interrupt levels, each of which has a unique priority assignment. Each interrupt level is associated with a numerically corresponding interrupt location in memory.

Of the 60 interrupt levels, the two highest priority levels are reserved for hardware faults (power fail and parity error), the next two are reserved for Dual-Channel Port Controller completion interrupts, and the remaining levels are available for I/O device channels. Table 6-1 and 6-2 list the interrupt levels in priority order for the family of HP 1000 Computers.

As an example of the simplicity of the interrupt system, an interrupt request from I/O channel 12 will cause an interrupt to memory location 00012. This request for service will be granted on a priority basis higher than afforded to channel 13 but lower than that afforded to channel 11. Thus, a transfer in progress via channel 13 would be suspended to allow channel 12 to proceed. On the other hand, a transfer in progress via channel 11 cannot be interrupted by channel 12.

Any device can be selectively enabled or disabled under program control, thus switching the device into or out of the interrupt structure. In addition, the entire interrupt system, except power fail and parity error interrupts, can be enabled or disabled under program control using a single instruction.

Interrupt requests received while the computer is in the halt mode will be processed, in order of priority, when the computer is placed in the run mode. Input/output priority is covered in more detail in Section VII.

6-1. POWER-FAIL INTERRUPT

The computer is equipped with power-sensing circuits. When primary line power fails or drops below a predetermined operating level while the computer is running, an interrupt to memory location 00004 is automatically generated. This interrupt is given the highest priority in the system and cannot be turned off or otherwise disabled. Memory location 00004 is intended to contain a jump-to-subroutine (JSB) instruction referencing the entry point of a power fail subroutine; however, location 00004 may alternatively contain a halt (HLT) instruction. The interrupt capability of lower-priority operations is automatically inhibited while a power fail subroutine is in process.

A minimum of 500 microseconds is available between the detection of a power failure and the loss of usable power

Table 6-1. HP 2108M, HP 2109E and HP 2111F Interrupt Assignments

	CHANNEL (Octal)	INTERRUPT LOCATION	ASSIGNMENT
Г	04	00004	Power Fail Interrupt
	05	00005	Memory Parity/Memory Protect/ DMS Interrupt
	06	00006	DCPC Channel 1 Completion Interrupt
	07	00007	DCPC Channel 2 Completion Interrupt
	10	00010	I/O Device (highest priority)
	11 - 20	00011-00020	I/O Device (Mainframe)
	21 - 42	00021-00042	I/O Device (Extender No. 1)
	43 - 64	00043-00064	I/O Device (Extender No. 2)

Table 6-2. HP 2112M, HP 2113E and HP 2117F Interrupt Assignments

CHANNEL (Octal)	INTERRUPT LOCATION	ASSIGNMENT
04	00004	Power Fail Interrupt
05	00005	Memory Parity/Memory Protect/ DMS Interrupt
06	00006	DCPC Channel 1 Completion Interrupt
07	00007	DCPC Channel 2 Completion Interrupt
10	00010	I/O Device (highest priority)
11 - 25	00011-00025	I/O Device (Mainframe)
26 - 47	00026-00047	I/O Device (Extender No. 1)
50 - 71	00050-00071	I/O Device (Extender No. 2)

supply power to execute a power fail subroutine; the purpose of such a subroutine is to transfer the current state of the computer system into memory and then halt the computer. A sample power fail subroutine is given in Table 6-3. The optional battery will supply enough power to preserve the contents of memory for a sustained line power outage of up to 2 hours.

Table 6-3. Sample Power Fail Subroutine

LABEL	OPCODE	OPERAND	COMMENTS
PFAR	NOP		Power Fail/Auto Restart Subroutine
117,11	SFC	4B	Skip if interrupt was caused by a power-failure
	JMP	UP	Power is being restored, reset state of computer system
	OIVII	OF .	Power is being restored, reset state of computer system
DOWN	STA	SAVA	Save A-register contents
	CCA		Set switch indicating that the computer was running
	STA	SAVR	when power failed
	STB	SAVB	Save B-register contents
	ERA,ALS	:	Transfer E-register content to A-register bit 15
	SOC		Increment A-register if Overflow
	INA		is set
	STA	SAVEO	Save E- and O-register contents
	LDA ,	PFAR	Save contents of P-register at time of
	STA	SAVP	power failure
	LIA	1B	Save contents of
	STA	SAVS	S-register
*	STX	SAVX	Save contents of X-register
	STY	SAVY	Save contents of Y-register
	• (:	Insert user-written routine to save I/O
	•		device states
	CLC	4B	Turn on restart logic so computer will restart when power is restored after momentary power failure
	HLT .	4B	Shutdown
UP	LDA	SAVR	Was computer running
	SZA,RSS		when power failed?
	HLT	4B	No
	CLA		Yes, reset computer Run switch to
	STA	SAVR	initial state
	LDA	FENCE	Restore the memory protect
	OTA	5B	fence register contents
	•		Insert user-written routine to restore
	•		I/O device states
	LDA	SAVEO	Restore the contents
	CLO		of the
	SLA,ELA		E-register and
	STF	1B	O-register
	LDA	SAVS	Restore the contents of the
	OTA	1B.	S-register
	LDA	SAVA	Restore A-register contents
	LDB	SAVB	Restore B-register contents
	LDX	SAVX	Restore X-register contents
	LDY	SAVY	Restore Y-register contents
	STC	4B	Reset power fail logic for next power failure
	JMP	SAVP,I	Transfer control to program in execution at time of power failure
FENCE	ОСТ	2000	Fence address storage (must be updated each time fence is changed)
SAVEO	ОСТ	. 0	Storage for E and O
SAVA	ОСТ	0	Storage for A
SAVB	ост 🗈	· 0	Storage for B
SAVS	ОСТ	0	Storage for S
SAVX	ОСТ	0	Storage for X
SAVY	ОСТ	. 0	Storage for Y
SAVP	ОСТ	0	Storage for P
SAVR	ОСТ	0	Storage for Run switch
	**		
	L	1	

If the Dynamic Mapping System (DMS) is installed and a power failure occurs, the System Map is automatically enabled just prior to fetching the instruction in location 00004. Since all maps are disabled and none are considered valid upon the restoration of power, the power fail subroutine should include the necessary instructions to save as many maps as desired and restore them prior to enabling the DMS.

Since the computer might be unattended by an operator, the user has a switch-selectable option of what action the computer will take upon the restoration of primary power. When the switch (A1S2) is set to the ARS position, the computer will halt when power is restored regardless of whether the computer was running or halted when the failure occurred. (No operator panel indication is given.)

Note

Switch A1S2 is mounted on the CPU and is not considered an operator control. The setting of this switch is normally determined prior to or during system installation.

When A1S2 is in the ARS position, the automatic restart feature is enabled. After a built-in delay of about half a second following the return to normal power levels, another interrupt to location 00004 occurs. This time the power-down portion of the subroutine is skipped and the power-up portion begins (Refer to Table 6-3.) If the computer was not running when the power failure occurred, the computer is halted immediately. If the computer was running, those conditions existing at the time of the power fail interrupt are restored and the computer continues the program from the point of the interrupt. Alternatively, if location 00004 contains a HLT instruction instead of a JSB instruction, the computer will halt and light the POWER FAIL indicator.

To allow for the possibility of a second power failure occurring while the power-up portion of the subroutine is in process, the user should limit the combined power-down and power-up instructions to less than 1000. If the computer memory does not contain a subroutine to service the interrupt, location 00004 should contain a HLT 04 instruction (102004 octal).

A Set Control instruction (STC 04) must be given at the end of any restart routine. This instruction re-initializes the power-fail logic and restores the interrupt capability to the lower priority functions. Pressing the PRESET switch on the operator panel performs the same function as the STC 04 instruction. Pressing and holding the PRESET switch will force a halt when the LOCK/OPERATE switch is set to OPERATE.

The optional battery sustains the contents of memory when the line power is off. If the battery becomes discharged when the line power is off, the contents of memory will be lost. When power is restored, the computer will initiate a "Cold Start-up" and clear memory.

6-2. PARITY ERROR INTERRUPT

Parity checking of memory is a standard feature in the computer. The parity logic continuously generates correct parity for all words written into memory and monitors the parity of all words read out of memory. Correct parity is defined as having the total number of "1" bits in a 17-bit memory word (16 data bits plus the parity bit) equal to an odd value. If a "1" bit (or any odd number of "1" bits) is either dropped or added in the transfer process, a Parity Error signal is generated when that word is read out of memory.

The Parity Error signal may either halt the computer or cause the computer to take some other action as determined by an internal switch (AIS1) mounted on the CPU. When the switch is in the HALT position and a parity error occurs, the computer will halt and light the PARITY indicator. The PARITY indicator will remain lighted until the PRESET switch is pressed.

Note

Switch A1S1 is mounted on the CPU and is not considered an operator control. The setting of this switch is normally determined prior to or during installation or when the memory protect PCA is installed at the user's site.

If switch A1S1 is in the INT/IGNORE position, the action that the computer will take when a parity error occurs is as follows:

- a. If the memory protect PCA is installed and the parity error logic has not been disabled by a CLF 05 instruction, an interrupt to memory location 00005 is generated. This location may contain a JSB instruction referencing the entry point of a user-written memory protect subroutine, or alternatively contain a HLT instruction.
- b. If the memory protect PCA is not installed, or if the memory protect option is installed but the parity error logic has been disabled by a CLF 05 instruction, the parity error will be ignored and the PARITY indicator will light.

In conjunction with memory protect, it is possible to determine the memory address containing the parity error. The error address will be loaded automatically into the violation register of the memory protect logic and from there it is accessible to the user by programming an LIA 05 or LIB 05 instruction.

When a parity error occurs, it is recommended that the entire program or set of data containing the error location be reloaded. However, by knowing the address and the contents of the error location, the user may be able to determine what operations have taken place as a result of reading the erroneous word. For example, if the erroneous word was an instruction, several other locations may be

affected. By individually checking and correcting the contents of all affected memory locations, the user may resume running the program without the necessity of a complete reload. If software is being generated, this may also need correcting.

6-3. MEMORY PROTECT/DMS INTERRUPT

The memory protect option provides the capability of protecting a selected block of memory of any size, from a settable fence address downward, against alteration or entry by programmed instructions.

The memory protect logic, when enabled by an STC 05 instruction, also prohibits the execution of all I/O instructions (including HLT 01) except those referencing I/O select code 01 (the S-register and the overflow register). This feature limits the control of I/O operations to interrupt control only. Thus, an executive program residing in protected memory can have exclusive control of the I/O system.

The memory protect logic is disabled automatically by any interrupt (except when the interrupt location contains an I/O instruction) and must be re-enabled by an STC 05 instruction at the end of each interrupt subroutine.

The optional DMS hardware includes additional memory protect features, which are enabled or disabled simultaneous with the memory protect hardware. When enabled by an STC 05 instruction, the DMS hardware provides the capability of read/write protecting memory on a 1024-word page basis. Included in the DMS are several privileged instructions which are not allowed when the memory protect logic is enabled. Upon detection of a violation, an interrupt to location 00005 is generated. Since the DMS will set the flag on channel 05, executing either an SFS 05 or an SFC 05 instruction will permit the programmer to know whether the DMS or memory protect interrupted.

Programming rules pertaining to the use of memory protect are as follows (assuming that an STC 05 instruction has been given):

- The upper protected memory boundary address is loaded into the fence register from the A- or B-register by an OTA 05 or OTB 05 instruction, respectively. Memory addresses below but not including this addresses are protected.
- Execution will be inhibited and an interrupt to location 00005 will occur if one of the following instructions either directly or indirectly modifies or enters a location in protected memory, or if any I/O instruction is attempted (including HLT but excluding those I/O instructions addressing select code 01).

DST	ISZ	JLY	JMP	JPY	JSB
MVB	MVW	SAX	SAY	SBX	SBY
STA	STB	STX	STY		. *

- Location 00002 is normally the lower boundary of protected memory. (Locations 00000 and 00001 are the A- and B-register addresses and may be freely addressed.) JMP, JLY, and JPY instructions may not reference the A- or B-register.
- After three successive levels of indirect addressing, the memory protect logic will allow a pending I/O interrupt if the memory protect logic is installed.
- 5. Any instructions not mentioned in Step 2 of this paragraph is legal even if the instruction directly references a protected memory address. In addition, indirect addressing through protected memory by those instructions listed in Step 2 is legal provided that the ultimate effective address is outside the protected memory area.

Following a memory protect interrupt, the address of the illegal instruction will be present in the violation register. This address is made accessible to the programmer by an LIA 05 or LIB 05 instruction, which loads the address into the A- or B-register.

Since parity error and memory protect share the same interrupt location, it is necessary to distinguish which type of error is responsible for the interrupt. A parity error is indicated if, after the LIA (or LIB) 05 instruction is executed, bit 15 of the selected register is a logic 1; a memory protect violation is indicated if bit 15 is a logic 0. In either case, the remaining 15 bits of the selected register contains the logical address of the error location.

Table 6-4 illustrates a sample memory protect, DMS, and parity error subroutine. An assumption made for this example is that the location immediately following the error location is an appropriate return point. This may not always be the case, however, because it may be deemed advisable to abort the program in process and return to a supervisory program.

6-4. DUAL-CHANNEL PORT CONTROLLER INTERRUPT

The optional Dual-Channel Port Controller (DCPC) allows high-speed block transfer of data between input/output devices and memory. For the most part, the DCPC operates independently of the interrupt system in that the only time that a DCPC interrupt occurs is when the specified

Table 6-4. Sample Memory Protect, Parity Error, and DMS Subroutine

LABEL	OPERCODE	OPERAND	COMMENTS
MPEDM	NOP CLF STA STB LIA CLF SFC JMP SSA JMP JMP	OB SAVA SAVB 5B 5B 5B DMS PE MP	Memory Protect/Parity Error/DMS Subroutine Turn off interrupt system Save A-register contents Save B-register contents Get contents of violation register Turn off parity error interrupts Check flag for DMS violation If flag is set, then DMS interrupted Check bit 15 of violation register If bit 15 is set, then parity error occurred If bit 15 is clear, then memory protect interrupted
MP	— — — etc. — — JMP	REST	User's routine for memory protect violation
PE	— — — etc. — — JMP	REST	User's routine for parity error condition
DMS	 etc. JMP	REST	User's routine for DMS violation
REST	LDA LDB STF STF STC JMP	SAVA SAVB OB 5B 5B MPEDM,I	Restore A-register Restore B-register Enable interrupt system Enable parity error interrupt Turn on memory protect Exit
SAVA	ОСТ	0	Storage for A
SAVB	ост	0	Storage for B

block of data has been transferred. Since there are two DCPC channels, two interrupt locations are reserved for this purpose; location 00006 is reserved for channel 1 and location 00007 is reserved for channel 2. Channel 1 interrupt has priority over the channel 2 interrupt. Because DCPC interrupts are primarily completion signals to the programmer, and are therefore application dependent, no interrupt subroutine example is considered necessary.

6-5. INPUT/OUTPUT INTERRUPT

The remaining interrupt locations (00010 through 00077 octal) are reserved for I/O devices; this represents a total of 56 (decimal) locations, one for each I/O channel. In a typical I/O operation, the computer issues a programmed command such as Set Control/Clear Flag (STC,C) to one or more external devices to initiate an input (read) or an output (write) operation. Each device will then either put data into or accept data from an input/output buffer on its associated interface PCA. During this time, the computer may continue running a program or may be programmed into a waiting loop to wait for a specific device to complete a read or write operation. Upon the completion of a read or write operation, each device returns a Flag signal to the computer. These Flag signals are passed through a priority network which allows only one device to be serviced regardless of the number of Flag signals present at that time. The Flag signal with the highest priority generates an Interrupt signal at the end of the current machine cycle except under the following circumstances:

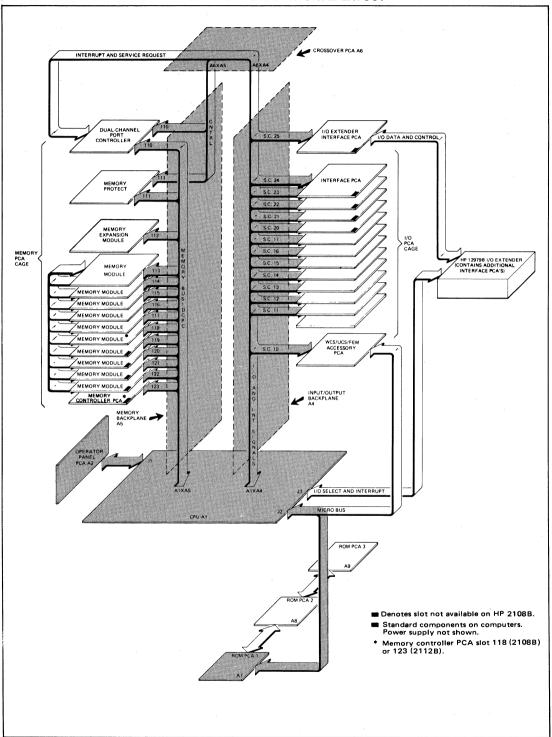
- Interrupt system disabled or interface PCA interrupt disabled.
- 2. JMP indirect or JSB indirect instruction not sufficiently executed. These instructions inhibit all interrupts except power fail or memory protect until the succeeding instruction is executed. After three successive levels of indirect addressing, the memory protect logic will allow a pending I/O interrupt if the memory protect logic is installed.
- 3. Instruction in an interrupt location not sufficiently executed, even if that interrupt is of lower priority. Any interrupt inhibits the entire interrupt system until the succeeding instruction is executed.
- Optional dual-channel port controller in the process of transferring data.

5. Current instruction is one that may affect the priorities of I/O devices; e.g., STC, CLC, STF, CLF, SFS, and SFC. The interrupt in this case must wait until the succeeding instruction is executed. The SFS instruction used with the interrupt system on produces special conditions. Since the SFS instruction holds off interrupts until the next instruction is executed, if the next instruction clears the device flag, then it should also remove the interrupt request. Therefore, a CLF instruction should be used rather than appending, C (sets bit 9 in some I/O instructions) to the instruction.

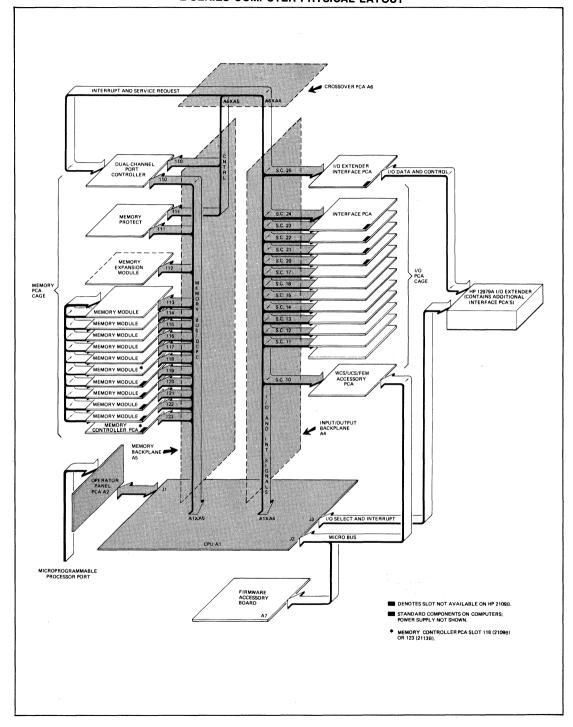
After an interface PCA has been issued a Set Control command and its Flag flip-flop becomes set, all interrupt requests from lower-priority devices are inhibited until this Flag flip-flop is cleared by a Clear Flag (CLF) instruction. A service subroutine in process for any device can be interrupted only by a higher-priority device; then, after the higher-priority device is serviced, the interrupted service subroutine may continue. In this way it is possible for several service subroutines to be in the interrupt state at one time; each of these service subroutines will be allowed to continue after the higher-priority device is serviced. All such service subroutines normally end with a JMP indirect instruction to return the computer to the point of the interrupt.

6-6. CENTRAL INTERRUPT REGISTER

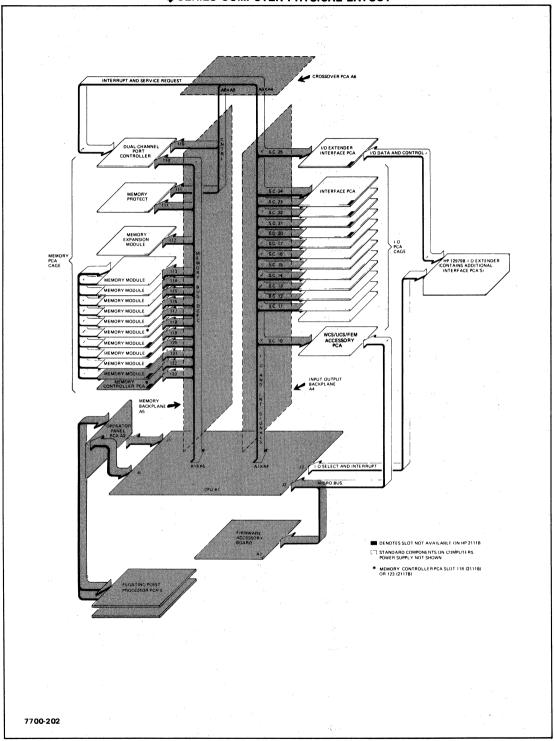
Each time an interrupt occurs, the address of the interrupt location is stored in the central interrupt register. The contents of this register are accessible at any time by executing an LIA 04 or LIB 04 instruction. This loads the address of the most recent interrupt into the A- or B-register. As described in Section II, the central interrupt register contents can be accessed from the operator panel.


6-7. INTERRUPT SYSTEM CONTROL

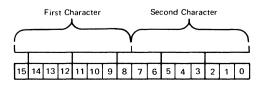
I/O address 00 is the master control address for the interrupt system. An STF 00 instruction enables the entire interrupt system and a CLF 00 disables the interrupt system. The two exceptions to this are the power fail interrupt, which cannot be disabled, and parity error interrupt, which can only be selective enabled or disabled by an STF 05 or CLF 05, respectively. Whenever power is initially applied, the interrupt system is disabled.


	ı	
APPENDIX	l	APPENDIX

Α


M-SERIES COMPUTER PHYSICAL LAYOUT

E-SERIES COMPUTER PHYSICAL LAYOUT


-SERIES COMPUTER PHYSICAL LAYOUT

CHARACTER CODES

ASCII Character	First Character Octal Equivalent	Second Character Octal Equivalent
A	040400	000101
В	041000	000102
C	041400	000103
D	042000	000104
E	042400	000105
F	043000	000106
G	043400	000107
H	044000	000110
	044400 045000	000111 000112
) ĸ	045000	000112
ì	046000	000114
M	046400	000115
N	047000	000116
0	047400	000117
P	050000	000120
α	050400	000121
Į R	051000	000122
<u> </u>	051400	000123
Ţ	052000	000124
U	052400	000125
l v	053000 053400	000126 000127
l ×	053400	000127
Î	054400	000130
ż	055000	000131
_	000000	000.02
a	060400	000141
b	061000	000142
С	061400	000143
d	062000	000144
е	062400	000145
f	063000	000146
9	063400	000147
h .	064000	000150
!	064400 065000	000151 000152
j k	065400	000152
î	066000	000153
m	066400	000155
n	067000	000156
0	067400	000157
р	070000	000160
q	070400	000161
r	071000	000162
s	071400	000163
t	072000	000164
u 	072400	000165
, w	073000 073400	000166 000167
×	074000	000170
ÿ	074400	00.0171
z	075000	000172
0	030000	000060
1	030400	000061
2	031000	000062
3	031400	000063
4	032000	000064
5	032400	000065
6	033000	000066
7	033400	000067
8	034000 034400	000070 000071
NUL	000000	000000
SOH	000400	000000
STX	001000	000001
ETX	001000	000002
EOT	002000	000004
ENQ	002400	000005
L	<u> </u>	<u> </u>

ASCII Character	First Character Octal Equivalent	Second Character Octal Equivalent
ACK	003000	000006
BEL	003400	000007
BS	004000	000010
HT	004400	000011
LF	005000	000012
VT	005400	000013
FF	006000	000014
CR	006400	000015
so	007000	000016
SI	007400	000017
DLE	010000	000020
DC1	010400	000021
DC2	011000	000022
DC3	011400	000023
DC4	012000	000024
NAK	012400	000025
SYN	013000	000026
ETB	013400	000027
CAN	014000	000030
EM	014400	000031
SUB	015000	000032
ESC	015400	000032
FS	016000	000033
GS	016400	000035
RS	017000	000035
US	017400	000037
SPACE	020000	000037
J ACL	020400	000040
.,	021000	000041
#	021400	000042
\$	021400	000043
, 3 %	022400	000044
8.	023000	000045
α,	023400	000046
(023400	000047
}	024000	000050
l '.		
i +	025000	000052
T .	025400	000053
'	026000 026400	000054
-	1	000055
j j	027000	000056
:	027400 035000	000057 000072
;	035400 036000	000073 000074
< =	036400	000074
	036400	
> ?	037000	000076 000077
e e	037400	000177
[055400	000100
1 1	056000	000133
]	056400	000134
\ \	057000	000135
1 2	057400	000130
	060000	000137
 {	075400	000173
1	076000	000173
l 's	076400	000174
_ ~'	077000	000176
DEL	077400	000176
7	077400	000177

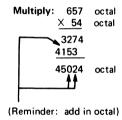
OCTAL ARITHMETIC

ADDITION

TABLE

							07
1	02	03	04	05	06	07	10
2	03	04	05	06	07	10	11
3	04	05	06	07	10	07 10 11	12
4	05	06	07	10	11	12	13
5	06	07	10	11	12	13	14
6	07	10	11	12	13	13 14	15
7	10	11	12	13	14	15	16

EXAMPLE


Add: 3677 octal + 1331 octal (111-) carries 5230 octal

MULTIPLICATION

TABLE

L	1	02	03	04	05	06	07
	2	04	06	10	12	14	16
١	3	06	11	14	17	22	25
	4	10	14	20	24	30	34
l	5	12	17	24	31	36	43
	6	14	22	30	36	44	52
	7	16	06 11 14 17 22 25	34	43	52	61

EXAMPLE

COMPLEMENT

To find the two's complement form of an octal number. (Same procedure whether converting from positive to negative or negative to positive.)

RULE

- 1. Subtract from the maximum representable octal value.
- 2. Add one.

EXAMPLE

Two's complement of 5568:

OCTAL/DECIMAL CONVERSIONS

OCTAL TO DECIMAL

TABLE

OCTAL	DECIMAL
0- 7	0-7
10-17	8-15
20-27	16-23
30-37	24-31
40-47	32-39
50-57	40-47
60-67	48-55
70-77	56-63
100	64
200	128
400	256
1000	512
2000	1024
4000	2048
10000	4096
20000	8192
40000	16384
77777	32767

EXAMPLE

Convert 463₈ to a decimal integer.

$$400_8 = 256_{10}$$

$$60_8 = 48_{10}$$

$$3_8 = 3_{10}$$

$$307 \text{ decimal}$$

DECIMAL TO OCTAL

TABLE

DECIMAL	OCTAL					
1	1					
10	12					
20	24					
40	50					
100	144					
200	310					
500	764					
1000	1750					
2000	3720					
5000	11610					
10000	23420					
20000	47040					
32767	77777					

EXAMPLE

Convert 5229₁₀ to an octal integer.

$$5000_{10} = 11610_{8}$$

$$200_{10} = 310_{8}$$

$$20_{10} = 24_{8}$$

$$9_{10} = 11_{8}$$

$$12155_{8}$$
(Reminder: add in octal)

NEGATIVE DECIMAL TO TWO'S COMPLEMENT OCTAL

TABLE

DECIMAL	2's COMP				
-1	177777				
-10	177766				
-20	177754				
-40	177730				
-100	177634				
-200	177470				
-500	177014				
~1000	176030				
-2000	174060				
-5000	166170				
-10000	154360				
-20000	130740				
-32768	100000				

EXAMPLE

Convert -629₁₀ to two's complement octal.

$$-500_{10} = 177014_{8}$$

$$-100_{10} = 177634_{8}$$

$$-20_{10} = 177754_{8}$$
 (Add in octal)
$$-9_{10} = \frac{177767_{8}}{176613_{8}}$$

For reverse conversion (two's complement octal to negative decimal):

- 1. Complement, using procedure on facing page.
- 2. Convert to decimal, using OCTAL TO DECIMAL table.

MATHEMATICAL EQUIVALENTS

2 ± n IN DECIMAL

	2^n	n	2^{-n}		65	536	16		0.00001	52587	89062	5			
	1	0	1.0		131	072	17		0.00000	76293	94531	25			
	2	1	0.5												
	4	2	0.25		262	144	18		0.00000	38146	97265	625			
					524	288	19		0.00000	19073	48632	8125			
	8	3	0.125	1	048	576	20		0.00000	09536	74316	40625			
	16	4	0.0625												
	32	5	0.03125	2	097	152	21		0.00000	04768	37158	20312	5		
				4	194	304	22		0.00000	02384	18579	10156	25		
	64	6	0.01562 5	8	388	608	23		0.00000	01192	09289	55078	125		
	128	7	0.00781 25												
	256	8	0.00390 625		777		24		0.00000	00596	04644	77539	0625		
					554		25		0.00000	00298	02322	38769	53125		
	512	9	0.00195 3125	67	108	864	26		0.00000	00149	01161	19384	76562	5	
1	024	10	0.00097 65625												
2	048	11	0.00048 82812 5			728	27	900	0.00000	00074	50580	59692	38281	25	
					435		28		0.00000	00037	25290	29846	19140	625	
4	096	12	0.00024 41406 25	536	870	912	29		0.00000	00018	62645	14923	09570	3125	
8	192	13	0.00012 20703 125												1
16	384	14	0.00006 10351 5625	1 073			30		0.00000						
				2 147			31		0.00000						
32	768	15	0.00003 05175 78125	4 294	967	296	32		0.00000	00002	32830	64365	38696	28906	25

10 ± n IN OCTAL

		10 ⁿ	n			10-	n								1	0 ⁿ		'n			10)- <i>n</i>			
		1	0	1.000	000	000	000	000	000	00				112	402	762	000	10	0.000	000	000	006	676	337	66
		12	1	0.063	146	314	631	463	146	31			1	351	035	564	000	11	0.000	000	000	000	537	657	77
		144	2	0.005	075	341	217	270	243	66			16	432	451	210	000	12	0.000	000	000	000	043	136	32
	1	750	3	0.000	406	111	564	570	651	77			221	411	634	520	000	13	0.000	000	000	000	003	411	35
2	23	420	4	0.000	032	155	613	530	704	15		2	657	142	036	440	000	14	0.000	000	000	000	000	264	11
30)3	240	5	0.000	002	476	132	610	706	64		34	327	724	461	500	000	15	0.000	000	000	000	000	022	01
3 64	11	100	6	0.000	000	206	157	364	055	37		434	157	115	760	200	000	16	0.000	000	000	000	000	001	63
46 11	3	200	7	0.000	000	015	327	745	152	75	5	432	127	413	542	400	000	17	0.000	000	000	000	000	000	14
575 36	SO -	400	8	0.000	000	001	257	143	561	06	67	405	553	164	731	000	000	18	0.000	000	000	000	000	000	01
7 346 54	15	000	9	0.000	000	000	104	560	276	41															

MATHEMATICAL EQUIVALENTS

2^x in Decimal

x	2 ^x	x	2 ^x	x	2 ^x
0.001	1.00069 33874 62581	0.01	1.00695 55500 56719	0.1	1.07177 34625 36293
0.002	1.00138 72557 11335	0.02	1.01395 94797 90029	0.2	1.14869 83549 97035
0.003	1.00208 16050 79633	0.03	1.02101 21257 07193	0.3	1.23114 44133 44916
0.004	1.00277 64359 01078	0.04	1.02811 38266 56067	0.4	1.31950 79107 72894
0.005	1.00347 17485 09503	0.05	1.03526 49238 41377	0.5	1.41421 35623 73095
0.006	1.00416 75432 38973	0.06	1.04246 57608 41121	0.6	1.51571 65665 10398
0.007	1.00486 38204 23785	0.07	1.04971 66836 23067	0.7	1.62450 47927 12471
0.008	1.00556 05803 98468	0.08	1.05701 80405 61380	8.0	1.74110 11265 92248
0.009	1.00625 78234 97782	0.09	1.06437 01824 53360	0.9	1.86606 59830 73615

n log₁₀ 2, n log₂ 10 IN DECIMAL

n	n log ₁₀ 2	n log ₂ 10	n	$n \log_{10} 2$	n log ₂ 10
.1	0.30102 99957	3.32192 80949	6	1.80617 99740	19.93156 85693
2	0.60205 99913	6.64385 61898	7	2.10720 99696	23.25349 66642
3	0.90308 99870	9.96578 42847	8	2.40823 99653	26.57542 47591
4	1.20411 99827	13.28771 23795	9	2.70926 99610	29.89735 28540
5	1.50514 99783	16.60964 04744	10	3.01029 99566	33.21928 09489

MATHEMATICAL CONSTANTS IN OCTAL SCALE

$\pi = (3.11037 552421)_{(8)}$	e =	(2.55760 521305)(8)	$\gamma = (0.44742 \ 147707)_{(8)}$
$\pi^{-1} = (0.24276 \ 301556)_{(8)}$	e ⁻¹ =	(0.27426 530661)(8)	In $\gamma = -(0.43127 \ 233602)_{(8)}$
$\sqrt{\pi}$ = (1.61337 611067) ₍₈₎	√e =	(1.51411 230704) ₍₈₎	$\log_2 \gamma = -(0.62573 \ 030645)_{(8)}$
$\ln \pi = (1.11206 \ 404435)_{(8)}$	log ₁₀ e =	(0.33626 754251)(8)	$\sqrt{2} = (1.32404 746320)_{(8)}$
$\log_2 \pi = (1.51544 \ 163223) \ (8)$	log ₂ e =	(1.34252 166245)(8)	$\ln 2 = (0.54271 \ 027760)_{(8)}$
$\sqrt{10}$ = (3.12305 407267) ₍₈₎	log ₂ 10 =	(3.24464 741136)(8)	In 10 = $(2.23273\ 067355)_{(8)}$

OCTAL COMBINING TABLES

MEMORY REFERENCE INSTRUCTIONS

Indirect Addressing

Refer to octal instruction codes given on the following page.

To combine code for indirect addressing, merge "100000" with octal instruction code,

REGISTER REFERENCE INSTRUCTIONS

Shift-Rotate Group (SRG)

- 1. select to operate A or B.
- 2. select 1 to 4 instructions, not more than one from each column.
- 3. combine octal codes (leading zeros omitted) by inclusive or.
- 4. order of execution is from column 1 to column 4.

A Operations

1	2	3	4
ALS (1000)	CLE (40)	SLA (10)	ALS (20)
ARS (1100)			ARS (21)
RAL (1200)			RAL (22)
RAR (1300)			RAR (23)
ALR (1400)			ALR (24)
ERA (1500)			ERA (25)
ELA (1600)			ELA (26)
ALF (1700)			ALF (27)

B Operations

	1	2	3		4
BLS	(5000)	CLE (4040)	SLB (4010)	BLS	(4020)
BRS	(5100)			BRS	(4021)
RBL	(5200)			RBL	(4022)
RBR	(5300)			RBR	(4023)
BLR	(5400)			BLR	(4024)
ERB	(5500)			ERB	(4025)
ELB	(5600)			ELB	(4026)
BLF	(5700)			BLF	(4027)

Alter-Skip Group (ASG)

- 1. select to operate on A or B.
- 2. select 1 to 8 instructions, not more than one from each column.
- 3. combine octal codes (leading zeros omitted) by inclusive or.
- 4. order of execution is from column 1 to column 8.

A Operations

1	2	3	4
CLA (2400) S	SEZ (2040)	CLE (2100)	SSA (2020)
CMA (3000)		CME (2200)	
CCA (3400)		CCE (2300)	
5	6	7	8
SLA (2010) I	INA (2004)	SZA (2002)	RSS (2001)

B Operations

1		2		3		4
(6400)	SEZ	(6040)	CLE	(6100)	SSB	(6020)
(7000)			CME	(6200)		
(7400)			CCE	(6300)		
5		6		7		8
(6010)	INB	(6004)	SZB	(6002)	RSS	(6001)
	(7000). (7400) 5	(7000) (7400) 5	(6400) SEZ (6040) (7000) (7400) 6	(6400) SEZ (6040) CLE (7000) CME (7400) CCE	(6400) SEZ (6040) CLE (6100) (7000) CME (6200) (7400) CCE (6300) 5 6 7	(6400) SEZ (6040) CLE (6100) SSB (7000) CME (6200) (7400) CCE (6300)

INPUT/OUTPUT INSTRUCTIONS

Clear Flag

Refer to octal instruction codes given on the following page.

To clear flag after execution (instead of holding flag), merge "001000" with octal instruction code.

	INSTRUCTION CODES IN OCTAL									
Memory Reference		Ext. Inst. Group								
ADA 04(0XX)	CMA 003000	ADX 105746	.TFXS 105102	XMPY 105211						
ADB 04(1XX)	CMB 007000		.TMPY 105042	XDIV 105212						
AND 01(0XX)	CME 002200	ADY 105756	.TSUB 105022							
CPA 05(0XX)	INA 002004	CAX 101741	.XADD 105001							
CPB 05(1XX)	INB 006004	CAY 101751	.XDIV 105061	Double Integer						
, ,	RSS 002001	CBS 105774	.XFTD 105125	.DAD 105014						
` ′	SEZ 002040	CBT 105766	.XFTS 105121	.DCO 105204						
ISZ 03(1XX)	SLA 002010	CBX 105741	.XFXD 105105	.DDE 105211						
JMP 02(1XX)	SLB 006010	CBY 105751	.XFXS 105101	.DDI 105074						
JSB 01(1XX)	SSA 002020	CMW 105776	.XMPY 105041	.DDIR 105134						
LDA 06(0XX)	SSB 006020	CXA 101744	.XSUB 105021	.DDS 105213						
LDB 06(1XX)	SZA 002002	CXB 105744		.DIN 105210						
STA 07(0XX)	SZB 006002	CYA 101754		.DIS 105212						
STB 07(1XX)	025 000002	CYB 105754	· ·	.DMP 105054						
XOR 02(0XX)		DSX 105761	Scientific Inst. Set	.DNG 105203						
Binary		DSY 105771	ALOG 105322	.DSB 105034						
Billary	Input/Output	ISX 105760	ALOGT 105327	.DSBR 105114						
	1 .	ISY 105770	ATAN 105323							
		JLY 105762	COS 105324							
	CLF 1031	JPY 105772	EXP 105326	Dynamic Mapping						
Shift-Rotate	CLO 103101	LAX 101742	SIN 105325	System						
ALF 001700	HLT 1020	LAY 101752	SQRT 105321	-						
ALR 001400	LIA 1025	LBT 105763	TAN 105320	DJP 105732						
ALS 001000	LIB 1065 MIA 1024	LBX 105742	TANH 105330	DJS 105733						
ARS 001100	MIB 1064	LBY 105752	DPOLY 105331	JRS 105715						
BLF 005700	OTA 1026	LDX 105745	/CMRT 105332†	LFA 101727						
BLR 005400	OTB 1026	LDY 105755	/ATLG 105333	LFB 105727						
BLS 005000	SFC 1022	MBT 105765	.FPWR 105334	MBF 105703						
BRS 005100	SFS 1023	MVW 105777	.TPWR 105335	MBI 105702						
CLE 000040	SOC 102201	SAX 101740		MBW 105704						
ELA 001600	SOS 102301	SAY 101750		MWF 105706						
ELB 005600	STC 1027	SBS 105773	Fast FORTRAN	MWI 105705						
ERA 001500	STF 1021	SBT 105764		MWW 105707						
ERB 005500	STO 102101	SBX 105740	DBLE 105201	PAA 101712						
NOP 000000	010 102101	SBY 105750	DDINT 105217	PAB 105712						
RAL 001200		SFB 105767	SNGL 105202	PBA 101713						
RAR 001300		STX 105743	.BLE 105207	PBB 105713						
RBL 005200	Extended	STY 105753	.CFER 105231	RSA 101730						
RBR 005300	Arithmetic	TBS 105775 XAX 101747	.DFER 105205	RSB 105730						
SLA 000010	ASL 1000(01X)-	XAX 101747 XAY 101757	.ENTP 105224	RVA 101731						
SLB 004010	ASR 1010(01X)-	XBX 101757	.ENTR 105223	RVB 105731						
	DIV 100400	XBY 105757	.FLUN 105226 .GOTO 105221	SJP 105734 SJS 105735						
	DLD 104200	7.51 100707	.NGL 105214	SJS 105735 SSM 105714						
	DST 104400		.PACK 105230	SYA 101710						
Alter-Skip	LSL 1000(10X)-		.PWR2 105225	SYB 105710						
CCA 003400	LSR 1010(10X)-	Floating Point	\$SETP 105227	UJP 105736						
CCB 007400	MPY 100200	FAD 105000	.XCOM 105215	UJS 105737						
CCE 002300	RRL 1001(00X)-	FDV 105060	.XFER 105220	USA 101711						
CLA 002400	RRR 1011(00X)	FIX 105100	.XPAK 105206	USB 105711						
CLB 006400		FLT 105120	DCM 105216	XCA 101726						
CLE 002100	Binary	FMP 105040	FCM 105232	XCB 105726						
*Assuming: no indirect a	l ddrossing	FSB 105020	MAP 105222	XLA 101724						
	· ·	.FIXD 105104	TCM 105233	XLB 105724						
	no combined instructions shifts taken in first position only		.XADD 105213	XMA 101722						
hold flag after I/O execution		.FLTD 105124 .TADD 105002	.XSUB 105214	XMB 105722						
_		.TDIV 105062	.XMPY 105203	XMM 105720						
†Not directly user callable	e.	.TFTD 105126	XDIV 105204	XMS 105721						
Used by HP software.		.TFTS 105122	XADD 105207	XSA 101725						
Refer to preceding pag		.TFXD 105106	XSUB 105210	XSB 105725						
for octal combining tab	les									

VECTOR INSTRUCTION SET OPCODES IN OCTAL

			4. **					
	Single	Precision			Double Precision	on		
		OPCODE	SUB OPCODE		OPCO	DE	SUB OPCODE	:
	VADD VDIV VDOT VMAB VMAX VMIB VMOV VMPY VNRM VPIV VSAD VSDV VSMY VSUB VSUM	101462 101460 101465 101467 101467 101466 101471 101472 101460 101464 101460 101460 101460 101460 101460 101460 101460	000000 000060 000040 000400 000460 000440 000420 000020		DVABS 10546 DVADD 10546 DVDIV 10546 DVDOT 10546 DVMAB 10546 DVMAX 10546 DVMIB 10547 DVMIN 10547 DVMOV 10547 DVMPY 10546 DVNRM 10546 DVSAD 10546 DVSAD 10546 DVSBB 10546 DVSUB 10546 DVSUB 10546	2 0 0 5 7 6 6 1 1 0 0 2 2 0 0 4 4 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	004002 004062 004042 004402 004462 004442 004422 004022	
	VSWP	101473			DVSWP 10547	3		,
							•	
-		# - 1 - 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1						
		, t						

BASE SET INSTRUCTION CODES IN BINARY

15	14	13		12	11	10	9	8		7		6	5	4	3	2	1		0
)/I	AND		001		0	Z/C	-					Mem	ory Add	ress					
D/I	XOR		010	!	0	Z/C	1												
D/I	IOR		011	- 1	0	Z/C	1												
D/I	JSB		001		1	Z/C	İ												
D/I	JMP		010	1	1	Z/C	1												
D/I	ISZ		011		1	Z/C	1												
D/I	AD.		100		A/B	Z/C													
D/I	CP.		101	l		Z/C													
D/I	LD.				A/B		1												
			110	- 1	A/B	Z/C	1												
D/I	ST.		111		A/B	Z/C	<u> </u>	,											
15	14	13		12	11	10	9	8		7		6	5	4	3	2	1		0
0	SRG		000		A/B	0	D/E	·LS			000		†CLE	D/E	‡sL*	*LS		000	
					A/B	0	D/E	*RS			001			D/E		*RS		001	
				l	A/B	0	D/E	R*L			010			D/E		R*L		010	
				-	A/B	0	D/E	R*R			011			D/E		R R		011	
	1				A/B	0	D/E	*LR			100			D/E		*LR		100	
					A/B	0	D/E	ER*			101			D/E		ER*		101	
	1			1	A/B	ō	D/E	EL.			110			D/E		EL.		110	
				l	A/B	Ö	D/E	*LF			111			D/E		*LF		111	
					NOP	000	. , _	"			000			000				000	
15	14	13		12	11	10	9	8		7		6	5	4	3	2	1		0
0	ASG		000	\dashv	A/B	1	CL.	01		CLE	·	01	SEZ	ss*		IN.	C71		RS
U	ASG	'	000	- 1		4			- 1				5E2	55	SL.	114	sz'		H5
	İ			- 1	A/B		CM*	10	1	CME		10	1			Ì			
					A/B		cc.	11		CCE	·	11							
15	14	13		12	11	10	9	8		7		6	5	4	3	2	1		0
1	IOG		000	- 1		1	H/C	HLT			000				Sele	ect Code	-		
•	1.00		000			i	0	STF			001								
	}			1		1	1	CLF			001								
	1						•												
	ļ			- 1		1	0				010								
						1	0	SFC			010								
					A /D	1	0	SFC SFS			011								
					A/B	1 1	0 H/C	SFC SFS MI*			011 100								
					A/B	1 1 1	0 H/C H/C	SFC SFS MI* LI*			011 100 101								
					A/B A/B	1 1 1	0 H/C H/C H/C	SFC SFS MI* LI* OT*			011 100 101 110								
					A/B A/B 0	1 1 1 1	0 H/C H/C H/C	SFC SFS MI* LI* OT* STC			011 100 101 110 111								
					A/B A/B	1 1 1 1 1	0 H/C H/C H/C H/C	SFC SFS MI' LI' OT' STC CLC			011 100 101 110 111 111								
					A/B A/B 0	1 1 1 1 1 1	0 H/C H/C H/C H/C	SFC SFS MI' LI' OT' STC CLC STO			011 100 101 110 111 111 001			000			001		
					A/B A/B 0	1 1 1 1 1 1 1	0 H/C H/C H/C H/C O	SFC SFS MI' LI' OT' STC CLC STO CLO			011 100 101 110 111 111 001 001			000			001		
					A/B A/B 0	1 1 1 1 1 1	0 H/C H/C H/C H/C	SFC SFS MI' LI' OT' STC CLC STO			011 100 101 110 111 111 001								
					A/B A/B 0	1 1 1 1 1 1 1	0 H/C H/C H/C H/C O	SFC SFS MI' LI' OT' STC CLC STO CLO			011 100 101 110 111 111 001 001			000			001		
15	14	13		12	A/B A/B 0	1 1 1 1 1 1 1 1	0 H/C H/C H/C H/C O 1	SFC SFS MI* LI* OT* STC CLC STO CLO SOC		7	011 100 101 110 111 111 001 001 010	6	5	000	3	2	001 001		0
15	14 EAG		000	12	A/B A/B O 1	1 1 1 1 1 1 1 1 1	0 H/C H/C H/C H/C 0 1 H/C H/C	SFC SFS MI' LI' OT' STC CLC STO CLO SOC SOS	010	7	011 100 101 110 111 111 001 001 010	6	5	000 000 000	3	2	001 001 001		0
	 			112	A/B A/B O 1	1 1 1 1 1 1 1 1 1	0 H/C H/C H/C H/C 0 1 H/C H/C	SFC SFS MI' LI' OT' STC CLC STO CLO SOC SOS	010	7	011 100 101 110 111 111 001 001 010	6	5	000 000 000 4	3	2	001 001 001		0
	 			12	A/B A/B 0 1 11 MPY	1 1 1 1 1 1 1 1 1	0 H/C H/C H/C O 1 H/C H/C 0 0 0 0 000	SFC SFS MI' LI' OT' STC CLC STO CLO SOC SOS	100	7	011 100 101 110 111 111 001 001 010	6	5	000 000 000 4 000 000	3	2	001 001 001 1		0
	 			112	A/B A/B 0 1 11 MPY** DIV**	1 1 1 1 1 1 1 1 1	0 H/C H/C H/C H/C 0 1 H/C H/C 9	SFC SFS MI' LI' OT' STC CLC STO CLO SOC SOS	100 010	7	011 100 101 110 111 111 001 001 010	6	5	000 000 000 4 000 000 000	3	2	001 001 001 1 000 000 000		0
	 			112	A/B A/B 0 1 11 MPY'' DLD'' DST''	1 1 1 1 1 1 1 1 1	0 H/C H/C H/C H/C 0 1 H/C H/C 0 0 1 000 000 100	SFC SFS MI' LI' OT' STC CLC STO CLO SOC SOS	100 010 100	7	011 100 101 110 111 111 001 001 010	6		000 000 000 4 000 000 000 000	3	2	001 001 001 1		o
	 			12	A/B A/B 0 1 11 MPY DIV DLD ASR	1 1 1 1 1 1 1 1 1	0 H/C H/C H/C 0 1 H/C H/C 0 0 0 1 000 000 100 100 001	SFC SFS MI' LI' OT' STC CLC STO CLO SOC SOS	100 010 100 000	7	011 100 101 110 111 111 001 001 010	6	0	000 000 000 4 000 000 000 000	3	2	001 001 001 1 000 000 000		0
	 			12	A/B A/B 0 1 11 MPY DIV DLD ASR ASR	1 1 1 1 1 1 1 1 1	0 H/C H/C H/C H/C 0 1 H/C H/C 9 000 000 100 100 100 001	SFC SFS MI' LI' OT' STC CLC STO CLO SOC SOS	100 010 100 000 000	7	011 100 101 110 111 111 001 001 010	6	0	000 000 000 4 000 000 000 000 1	3		001 001 001 1 000 000 000 000		0
	 			12	A/B A/B 0 1 11 MPY** DIV** DLD** DST** ASR ASL LSR	1 1 1 1 1 1 1 1 1	0 H/C H/C H/C H/C 0 1 H/C H/C 9 000 000 100 100 001	SFC SFS MI' LI' OT' STC CLC STO CLO SOC SOS	100 010 100 000 000 000	7	011 100 101 110 111 111 001 001 010	6	0 0 1	000 000 000 4 000 000 000 000 1 1	3		001 001 001 1 000 000 000 000		0
	 			12	A/B A/B 0 1 11 MPY'. DLD'. DST'. ASR ASL LSR LSR	1 1 1 1 1 1 1 1 1	0 H/C H/C H/C H/C 0 1 H/C H/C 0 0 1 000 000 100 100 001 000	SFC SFS MI' LI' OT' STC CLC STO CLO SOC SOS	100 010 100 000 000 000	7	011 100 101 110 111 111 001 001 010	6	0 0 1 1	000 000 000 4 000 000 000 000 1 1 0	3		001 001 001 1 000 000 000 000		0
	 			12	A/B A/B 0 1 11 MPY** DIV** DLD** DST** ASR ASL LSR	1 1 1 1 1 1 1 1 1	0 H/C H/C H/C H/C 0 1 H/C H/C 9 000 000 100 100 001	SFC SFS MI' LI' OT' STC CLC STO CLO SOC SOS	100 010 100 000 000 000	7	011 100 101 110 111 111 001 001 010	6	0 0 1	000 000 000 4 000 000 000 000 1 1	3		001 001 001 1 000 000 000 000		0

D/I, A/B, Z/C, D/E, H/C coded: 0/1.

**Second word is Memory Address.

‡SL*:

Only this bit is required.
Only this bit and bit 11 (A/B as

applicable) are required.

BASE SET INSTRUCTION CODES IN BINARY (CONT)

EXTENDED INSTRUCTION	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SAX/SAY/SBX/SBY	1	0	0	0	A/B	0	1	1	1	1	1	0	X/Y	0	0	. 0
		1	5 + 2		т т			T					T 1			
CAX/CAY/CBX/CBY	1	0	0	0	A/B	0	1	1	1	1	1	0	X/Y	0	0	1
1 A V / 1 A V / 1 B V / 1 B V	<u> </u>	T 0	0	0	А/В	0	1	1	1	1	1	0	X/Y			
LAX/LAY/LBX/LBY	L <u>'</u>	0			A/B			<u> </u>			L'		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0	1	<u> </u>
STX/STY	1	0	0	0	1	0	1	1	1	1	1	0	X/Y	0	1	1
	L				1						<u> </u>					
CXA/CYA/CXB/CYB	1	0	0	0	A/B	0	1	1	1	1	1	0	X/Y	1	0	0
		,			_			,			r		T T			
LDX/LDY	. 1	0	0	0	1	0	1	1	1	1	1	0	X/Y	1	0	
ADX/ADY	1	0	0	0	1	0	1	1	1	1	1	0	X/Y	1	1	0
ADA/AD1	L <u>i</u>	<u> </u>			<u> </u>				•		L <u>.</u>]^, .]	•	•	ٺ
XAX/XAY/XBX/XBY	1	0	0	0	A/B	0	1	1	1	1	1	0	X/Y	1	1	1
								L			<u> </u>					
ISX/ISY/DSX/DSY	1	0	0	0	1	0	1	1	1	1	1	1	X/Y	0	0	I/D
JUMP INSTRUCTIONS	1	0	0	0	1	0	1	1	1	1	1	1		0	1	0
												JLY JPY				
		Γ			T						1			7777	7777	7777
BYTE INSTRUCTIONS	1	0	0	0	1	0	1	1	1	1	1	1	0			
													LBT = SBT =		1 0	0
													MBT = CBT =		0 1	1 0
													SFB =		1	1 :
BIT INSTRUCTIONS	1	0	0	0	1	0	1	1	1	1	1	1	1		////	
	L	l		· · · · · · · · · · · · · · · · · · ·	1			L			L		SBS =	0	1	1
													CBS = TBS =	1	0	0 1
		I _			т						_					[7777]
WORD INSTRUCTIONS	1	0	0	0	1	0	1	1	1	1	1	1	1	1	1	<u>////</u>
															MW = VW =	

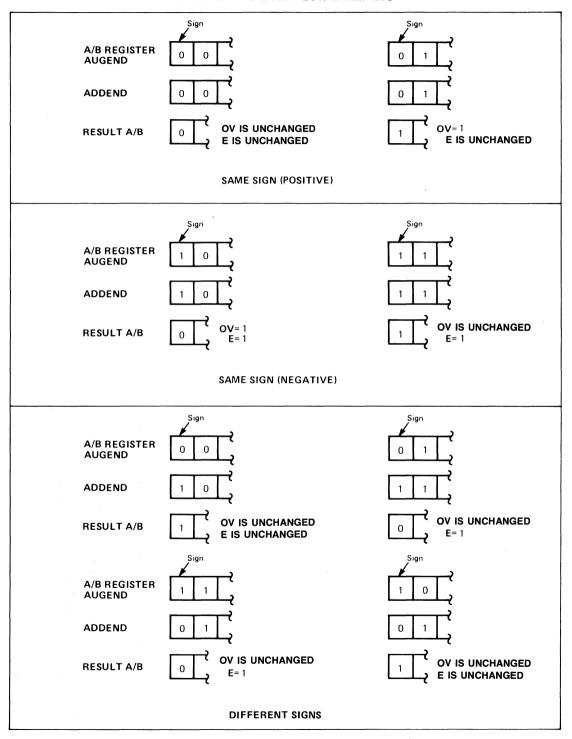
BASE SET INSTRUCTION CODES IN BINARY (CONT)

				RASE	SEI IN	ISTRU	JCTION CO	DDES I	N BINA	RY (CONT)			
15	14 1	3	12	11	10	9	8	7	6	5 4	3	2	1	0
1	FLTPT	000			101		00		FAD FSB FMP FDV FIX FLT .XADD .XSUB .XMPY .XDIV (.XFXS	(F) 001 (F) 010	0		000	
									.XFTS .TADD .TSUB .TMPY .TDIV .TFXS	101 000 001 010 011 100	l	,	010	
									.TFTS .FIXD .FLTD	101 100 101			100	
									.XFXD .XFTD .TFTD	100 101 101			101 110	
									TFXD	100				
							·							
						0.57								

SCIENTIFIC, FAST FORTRAN AND DOUBLE INTEGER INSTRUCTION CODES IN BINARY

15	14 13 12	11	10	9	8	7	6	5	4	3	2 1	0
	SCIENTIFIC INST. SET									·		
1	000		101			011		0	1	0	TAN SQRT ALOG ATAN COS SIN EXP ALOGT TANH	000 001 010 011 100 101 110 111
			···		1						DPOLY /CMRT /ATLG .FPWR .TPWR	001 010 011 100 101
15	14 13 12	11	10	9	8	7	6	5	4	3	2 1	0
1	FAST FORTRAN 000		101			010		0	0	0	DBLE SNGL XMPY (WE) XDIV (WE) .DFER XPAK .BLE (F)	001 010 011 100 101 110
		·						0	0	1	XADD (M/E) XSUB (M/E) XMPY (M/E) XDIV (M/E) XADD (M/E) XSUB (M/E) NGL (F) XCOM DCM	111 000 001 010 011 100 100 101
								0	1	0	DDINT XFER GOTOMAP ENTR ENTP PWR2 FLUN	111 000 001 010 011 100 101
	DOUBLE							0	1	1	\$SETP .PACK .CFER (E/F) FCM TCM	111 000 001 010 011
1	INTEGER 000		101			000 001 010		0 1(1 0 0	01 11 01 11 01 11 00 01		.DAD .DSB .DMP .DDI .DSBR .DDIR .DNG .DCO .DIN .DDE .DIN	100 100 100 100 100 100 011 100 000 001 010

VIS PRIMARY AND SUB OPCODES IN BINARY


The opcode specifies the microcode entry point. The sub-opcode specifies the arithmetic function within a class of operations. The P-bit specifies the precision of the operation (P=0 for single and P=1 for double precision).

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
VADD/DVADD	1	0	0	0 0	P P	0	1 0	1 0	0 0	0	1 0	1	0	0 0	0 P	0 0
VSUB/DVSUB	1 0	0	0	0	P P	0	1	1 0	0	0	1 0	1	0	0	0 P	0
VMPY/DVMPY	1 0	0	0	0	P P	0	1 0	1 0	0	0	1 1	1 0	0	0	0 P	0
VIDV/DVDIV	1 0	0	0	0	P P	0	1 0	1 0	0	0	1 1	1 1	0	0	0 P	0 0
VSAD/DVSAD	1 0	0	0	0	P P	0	1 0	1 1	0	0	1 0	1 0	0	0	0 P	0
VSSB/DVSSB	1 0	0	0	0	P P	0	1 0	1 1	0	0	1 0	1 1	0	0	0 P	0
VSMY/DVSMY	1 0	0	0	0	P P	0	1 0	1 1	0	0	1	1 0	0	0	0 P	0
VSDV/DVSDV	1 0	0	0	0	P P	0	1 0	1	0	0	1 1	1	0	0	0 P	0
VPIV/DVPIV	1 0	0 x	0 x	0 x	P x	0 x	1 X	1 x	0 x	0 x	1 x	1 x	0 x	0 x	0 x	1 x
VABS/DVABS	1 0	0 x	0 x	0 x	P X	0 x	1 x	1 x	0 x	0 x	1 x	1 x	0 x	0 x	1 x	0 x
VSUM/DVSUM	1 0	0 x	0 x	0 x	P X	0 x	1 x	1 x	0 x	0 x	1 x	1 x	0 x	0 x	1 x	1 x
VNRM/DVNRM	1 0	0 x	0 x	0 x	P x	0 x	1 x	1 x	0 x	0 x	1 x	1 x	0 x	1 x	0 x	0 x
VDOT/DVDOT	1 0	0 x	0 x	0 x	P x	0 x	1 x	1 x	0 x	0 x	1 x	1 x	0 x	1 x	0 x	1 x
VMAX/DVMAX	1 0	0 x	0 x	0 x	P x	0 x	1 x	1 x	0 x	0 x	1 x	1 x	0 x	1 x	1 x	0 x
VMAB/DVMAB	1 0	0 x	0 x	0 x	P x	0 x	1 x	1 x	0 x	0 x	1 x	1 x	0 x	1 x	1 x	1 x
VMIN/DVMIN	1 0	0 x	0 x	0 x	P x	0 x	1 x	1 x	0 x	0 x	1 x	1 x	1 x	0 x	0 x	0 x
VMIB/DVMIB	1 0	0 x	0 x	0 x	P x	0 x	1 x	1 x	0 x	0 x	1 x	1 X	1 x	0 x	0 x	1 X
VMOV/DVMOV	1 0	0 x	0 x	0 x	P	0 x	1 X	1 x	0 x	0 x	- 1 x	1 X	1 x	0 x	1 x	0 x
VSWP/DVSWP	1 0	0 x	0 x	0 x	P	0 x	1 x	. 1 x	0 x	0 x	1 x	1 x	1 x	0 x	1 x	1 x

DYNAMIC MAPPING SYSTEM INSTRUCTION CODES IN BINARY

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	7.5
DJP/DJS/UJP/UJS	1	0	0	0	1	0	1	1	1	1	0	1	1	D/U	1	P/S	
JRS	1	0	0	0	1	0	1	1	1	1	0	0	1	1	0	1	
LFA/LFB	1	0.	0	0	A/B	0	1	1	1	1	0	1	0	1	1	1	
MBI/MBF	1	0	0	0	1	0	1	1	1	1	0	0	0	0	1	I/F	
MBW	1	0	0	0	1	0	1	1	1	1	0	0	0	1	0	0	
MWF	1	0	0	0	1	0	1	1	1	1	0	0	0	1	1	0	
MWI/MWW	1	0	0	0	1	0	1	1	1	1	0	0	0	1	I/W	1	
PAA/PAB	1	0	0	0	A/B	0	1	1	1	1	0	0	1	0	1	0	
PBA/PBB	1	0	0	0	A/B	0	1	1	1	1	0	0	1	0	1	1	
RSA/RSB/RVA/RVB	1	0	0	0	A/B	0	1	1	1	1	0	1	1	0	0	S/V	ı
SJP/SJS	1	0	0	0	1	0	1	1	1	1	0	1	1	1	0	P/S	
SSM	1	0	0	0	1	0	1	1	1	1	0	0	1	1	0	0	
SYA/SYB	1	0	0	0	A/B	0	1	1	1	1	0	0	1	0	0	0	ı
USA/USB	1	0	0	0	А/В	0	1	1	1	1	0	0	1	0	0	1	
XCA/XCB/XLA/XLB	1	0	0	0	A/B	0	1	1	1	1	0	1	0	1	L/C	0	
XMA/XMB	1	0	0	0	A/B	0	1	1	1	1	0	1	0	0	1	0	
XMM/XMS	1	0	0	0	1	0	1	1	1	1	0	1	0	0	0	M/S	
XSA/XSB	1	0	0	0	A/B	0	1	1	1	1	0	0	1	1	0	1	
L																	

EXTEND AND OVERFLOW EXAMPLES

INTERRUPT AND I/O CONTROL SUMMARY

INST	S.C. 00	S.C. 01	S.C. 02	S.C. 03
STC	NOP	NOP	Prepares DCPC channel 1 to receive and store the block length in 2's complement form.	Prepares DCPC channel 2 to receive and store the block length in 2's complement form.
CLC	Clears all Control FF's from S.C. 06 and up; effectively turns off all I/O devices.	NOP	Prepares DCPC channel 1 to receive and store the direction of data flow and the starting memory address.	Prepares DCPC channel 2 to receive and store the direction of data flow and the starting memory address.
STF	Turns on interrupt system.	STO sets overflow bit.	NOP	NOP
CLF	Turns off interrupt system except power fail (S.C. 04) and parity error (S.C. 05).	CLO clears overflow bit.	NOP	NOP
SFS	Skip if interrupt system is on.	sos	NOP	NOP
SFC	Skip if interrupt system is off.	soc	NOP	NOP
LIA/B	Loads A/B register with all zeros. (Equivalent to CLA/B instruction.)	Loads display register contents into A/B register.	Loads present contents of DCPC channel 1 word count register into A/B register.	Loads present contents of DCPC channel 2 word count register into A/B register.
MIA/B	Equivalent to a NOP.	Merges display register contents into A/B register.	Merges present contents of DCPC channel 1 word count register into A/B register.	Merges present contents of DCPC channel 2 word count register into A/B register.
ОТА/В	NOP	Outputs A/B register contents into display register.	1. Outputs to DCPC channel 1 the block length in 2's complement form (previously prepared by an STC 02 instruction). 2. Outputs to DCPC channel 1 the direc-	1. Outputs to DCPC channel 2 the block length in 2's complement form (previously prepared by an STC 03 instruction). 2. Outputs to DCPC channel 2 the direct
	· .		tion of data flow and the starting memory address (previously prepared by a CLC 02 instruction).	tion of data flow and the starting memory address (previously prepared by a CLC 03 instruction).

S.C. 04	S.C. 05	S.C. 06	S.C. 07	S.C. 10-77
Re-initializes power-fail logic and restores interrupt capability to lower priority functions.	Turns on memory protect.	Sets Control FF on DCPC channel 1 (activates DMA).	Sets Control FF on DCPC channel 2 (activates DMA).	Sets PCA Control FF an turns on device on chan- nel specified by S.C.
Re-initialize power-fail logic and restores inter- rupt capability to lower priority functions.	NOP	Clears Control FF on DCPC channel 1 (reestablishes priority with STF; does not turn off DCPC).	Clears Control FF on DCPC channel 2 (reestablishes priority with STF; does not turn off DCPC).	Clears PCA Control FF a turns off device.
Flag FF sets auto- matically when power comes up. (No pro- gram control possible.)	Turns on parity error interrupt capability.	Aborts DCPC channel 1 data transfer.	Aborts DCPC channel 2 data transfer.	Sets PCA Flag FF.
Flag FF clears auto- matically when power fail occurs. (No pro- gram control possible.)	Turns off parity error interrupt capability and clears violation register bit 15.	Clears Flag FF on DCPC channel 1.	Clears Flag FF on DCPC channel 2.	Clears PCA Flag FF.
NOP	Skip if Dynamic Map- ping System (DMS) interrupt.	Tests if DCPC channel 1 data transfer is complete.	Skip if DCPC channel 2 data transfer is com- plete.	Skip if I/O channel Flag is set.
Skip if power fail has occurred.	Skip if memory pro- tect interrupt.	Tests if DCPC channel 1 data transfer is still in progress.	Skip if DCPC channel 2 data transfer is still in progress.	Skip if I/O channel Flag is clear.
Loads contents of central interrupt register (S.C. of last interrupting device) into least-significant bits of A/B register.	Loads contents of violation register into A/B register: Bit 15 = 1 = PE Bit 15 = 0 = MPV	Loads A/B register with all ones. (Equivalent to CCA/CCB instruction.)	Loads A/B register with all ones. (Equivalent to CCA/CCB instruction.)	Loads contents of PCA data buffer into A/B register.
Merges contents of central interrupt register into least-significant bits of A/B register.	Merges contents of violation register into A/B register.	Same as LIA/B 06 above.	Same as LIA/B 07 above.	Merges contents of PCA data buffer into A/B register.
NOP	Outputs first address of unprotected memory to fence register.	Outputs to DCPC channel 1 the S.C. of I/O channel. Specify STC after each word; CLC after block.	Outputs to DCPC channel 2 the S.C. of I/O channel. Specify STC after each word; CLC after block.	Outputs data from A/B register into PCA data buffer.
			·	

PART II

HP 1000 M/E/F-SERIES COMPUTERS I/O interfacing guide

CONTENTS

Section I INTRODUCTION	Page	Section IV Page COMPUTER TIMING
Introduction to Interfacing HP 1000 M-Series, E-Series, and F-Series	1-1	Control Processor Timing (HP 1000 M-Series) 4-1 Control Processor Timing (HP 1000 E-Series and
Basic Features and Differences		F-Series) 4-1
User Interface Requirements		I/O Section Timing
Levels of Hardware Interfacing		Typical Application4-9
Available Documentation	1-6	Sample Programs
Section II	Page	(DCPC) Timing 4-13
COMPUTER CHARACTERISTICS	1 age	(DOI O) Taming 10
Computer Overview	2-1	Section V Page
Control Processor Section		DESIGNING INTERFACE PCA'S
Arithmetic/Logic Section		Introduction
Main Memory Section		I/O Section Interfacing 5-1
I/O Section		I/O Interface PCA Specifications
		HP Breadboard Interface Kit5-1
		I/O Interface PCA Design 5-3
	Page	
I/O SYSTEM FUNDAMENTALS		
Purpose		Section VI Page
I/O Section Control		ADVANCED INTERFACING TECHNIQUES
General		Party-Line I/O 6-1
I/O Control Instructions		General Information 6-1
I/O Data Transfer Instructions		Principles of Operation
Interrupt Requests		Controller Hardware Design 6-3
Interface PCA's		Input Programming Using Noninterrupt Mode 6-4
I/O Timing		Output Programming Using Noninterrupt Mode . 6-5
I/O Addressing		I/O Programming Using Interrupt Mode 6-5
Interrupt System		DCPC Transfers
Interrupt Priority		Microprogrammed I/O
Priority Assignments		Microprogrammed Block I/O Transfers 6-10
Priority Network Operation		Microprogrammable Processor
Priority Continuity		Port Interfacing 6-13
Instructions Affecting Priority		
Interrupt Generation		Appendix A Page
I/O Data Transfers		INTERFAC KITS
Noninterrupt Transfers		INTERFAC RIISA-1
Interrupt Transfers		Appendix B Page
Dual-Channel Port Controller		I/O SIGNAL DEFINITIONS B-1
Duar-Channel Fort Controller	9-13	NO SIGNAL DEFINITIONS D-1

ILLUSTRATIONS

Title	Page	Title	Page
Computer Functional Sections	2-1	Duplex Register Interface PCA Simplified	
Computer Functional Block Diagram	2-2	Logic Diagram	. 4-10
HP 1000 Computers Block Diagram		Interface PCA Functional Operation Flowchart	
Input/Output System		DCPC Timing Diagram	
I/O Address Assignments		I/O Interface PCA Dimensions	
I/O Slot Connector Select Code Wiring		Flag and Interrupt Circuits Logic Diagram	
Priority Linkage		Valid Interface PCA TTL Receiver	
Interrupt Priority Network		Valid Interface PCA Driver Circuit	
Interrupt Priority Continuation		Valid Interface PCA PRL and SRQ	
Input Data Transfer (Interrupt Method)		Line Drivers	5-6
Output Data Transfer (Interrupt Method)		Remote Computer Halt Drive Circuit	
DCPC Input Data Transfer		Typical I/O Device Controller Simplified	
DCPC Output Data Transfer Method 1		Logic Diagram	6-3
Five-Word DCPC Output Transfer - Method 2		Critical DCPC Interface Design	
DCPC Control Word Formats		Microprogrammed Block I/O Input	
HP 1000 M-Series Computer Timing		Data Transfer	. 6-10
Configuration	4-2	Microprogrammed Block I/O Flow Diagram	
HP 1000 M-Series Control Processor		MBIO Timing Considerations	
Timing Diagram	. 4-3	Typical Microprogrammed Block I/O	
HP 1000 E/F Series Computers Timing		Interface Circuits	. 6-16
Configuration	. 4-4	MPP Connector Location	
HP 1000 E/F Series Control Processor		MPP Timing Diagram	
Timing Diagram	. 4-5	MPP Timing Considerations	
I/O Section Timing Diagram			

TABLES

Title Page	Title Page
HP 1000 Computers Interface Specifications 1-2	Flag and Interrupt Logic Component
HP 1000 Computers Available Current 1-6	Identification
I/O Interface Related Reference Manuals 1-7	I/O Current Availability from I/O Extender5-6
Select Code Assignments	Interface PCA Test Program5-7
Interrupt and I/O Control Summary	Interrupt Test Program5-8
Noninterrupt Transfer Routines	Command and Status Bit Assignments 6-2
DCPC Input Initialization Program	Party-Line Noninterrupt Input Routine 6-4
DCPC Output Initialization	Party-Line Noninterrupt Output Routine 6-6
Program - Method 1	Party-Line Interrupt Input Routine 6-6
DCPC Output Initialization	Master Interrupt Subroutine6-7
Program - Method 2	Specific Device Interrupt Subroutine 6-7
I/O Signal Definitions and Connector	Forming and Executing Microprogrammed
Pin Assignments 4-7	I/O Instructions
I/O Signal Pin Assignments (Alphabetical) 4-8	Block I/O Output Microprogram6-19
Sample Input and Output Programs4-11	Block I/O Input Microprogram 6-19
Sample Combined I/O Programs 4-11	High Speed MBIO Transfer6-20
Interrupt-Method Input Routine	MPP Connector J3 Signal Definitions and
Flag and Interrupt Circuit Test	Connector Pin Assignments 6-21
Point Definitions	MPP Word Burst Input Microprogram6-22

INTRODUCTION

ı

This manual is provided as an aid for design engineers and programmers to design and program special-purpose interfaces for the HP 1000 M-Series, E-Series and F-Series Computers. The content of this manual is presented as a supplement to your HP 1000 Series Computer Operating and Reference Manual. You should therefore have a thorough understanding of the applicable reference manual contents prior to reading this manual. It is also suggested you read this manual in its entirety and become completely acquainted with its contents before attempting to use the information presented in any one particular section.

Throughout this manual, the term HP 1000 is used to refer to all three models (M-, E- and F-Series Computers) when the information presented pertains equally to all three. A particular Series of HP 1000 Computer is referred to only if the information presented is unique to that Series.

1-1. INTRODUCTION TO INTERFACING

Interfacing a peripheral device with HP 1000 Computers involves both hardware and software. Except for the Microprogrammable Processor Port (MPP) interfacing discussed in Section VI, the hardware interface is accomplished by inserting one or more interface printedcircuit assemblies (PCA's) into easily accessible input/ output (I/O) slots in the computer and connecting a cable between the interface PCA(s) and the peripheral device. As discussed in Section III, the computer provides a unique channel identification and service priority interrupt for every I/O channel used. Priority levels for the peripheral devices connected to the computer can be reassigned by simply changing the position of the interface PCA's in the computer I/O slots. (Specifications for I/O-type interface PCA's are discussed in Section V.) The software interface is accomplished by updating the existing computer I/O software system which may necessitate creating a new peripheral device driver.

1-2. HP 1000 M-SERIES, E-SERIES AND F-SERIES BASIC FEATURES AND DIFFERENCES

The HP 1000 M-, E- and F-Series Computers are microprogrammable, high-performance computers. The HP 1000 E-Series (HP 2109 and HP 2113) and F-Series (HP 2111 and HP 2117) Computers are enhanced versions of the HP 1000 M-Series (HP 2105, HP 2108 and HP 2112)

Computers featuring faster system cycle and instruction execution times, faster I/O transfer rates and increased microprogram routine efficiency. The HP 1000 F-Series Computer combines the basic processing speed of the E-Series central processing unit with a hardware floating point processor, a Scientific Instruction Set and Fast FORTRAN Processor. Pertinent interfacing specifications for all three computers are presented in Table 1-1. (For more detailed specifications, refer to the applicable reference manuals listed in paragraph 1-5, Available Documentation). A discussion of control processor and I/O section timing for all three computers is contained in Section IV, Computer Timing.

The I/O systems for the HP 1000 M-, E- and F-Series Computers are generally compatible with each other. Where ver necessary, existing differences are discussed in this manual. The computer I/O system features a multilevel, vectored priority interrupt structure. There are 60 distinct interrupt levels, each of which has a unique priority assignment. Any I/O device can be selectively enabled or disabled under program control. The HP 2105 computer has four I/O channels in its mainframe; the HP 2108, HP 2109 and HP 2111 computers have nine; and the HP 2112, HP 2113 and HP 2117 have fourteen. The number of available I/O channels for the HP 1000 Computers can be increased by adding one or two HP 12979B I/O Extenders that provide 16 additional I/O channels each. All I/O channels are fully powered, buffered and bidirectional.

Data transfers between HP 1000 Computers and I/O devices can take place under program control or, for faster transfer rates, under Dual-Channel Port Controller (DCPC) control. The DCPC provides two direct links between computer memory and I/O devices and is program assignable to any two devices. DCPC data transfers occur on an I/O cycle-stealing basis and are independent of the I/O priority structure. For applications where even faster transfer rates are desirable, the HP 1000 E/F-Series Computers have special microprogrammed I/O capabilities that are discussed in Section VI, Advanced Interfacing Techniques.

1-3. USER INTERFACE REQUIREMENTS

This manual assumes that you wish to interface a device which is not a standard peripheral supplied by Hewlett-Packard along with its software I/O driver subroutine. Therefore, two objectives must be accomplished: some sort of general-purpose or special I/O interface PCA must be selected to plug into the computer and to accept the device

Table 1-1. HP 1000 Computers Interface Specifications

FEATURE

CAPABILITY

MAXIMUM MAINFRAME MEMORY SIZE IN BYTES:

(Optional HP 12990A Memory Extender can be installed to add space and power for additional memory up to 1.152M bytes)

HP 2105 To 64K

HP 2108 To 640K M-SERIES:

HP 2112 To 1.28M

E-SERIES:

HP 2109 To 640K

HP 2113 To 1,28M

F-SERIES:

HP 2111 To 640K

HP 2117 To 1.28M

WORD SIZE:

16 bits

SYSTEM MEMORY CYCLE TIMES (nS):

(Standard Performance Memory and Controller, HP 2102B)

(Standard Performance Fault Control Memory and Controller, HP 2102C)

(High Performance Memory and Controller, HP 2102E, E- and F-Series Computers only)

(High Performance Fault Control Memory and Controller, HP 2102H)

Cycle	Minimum	Typical	Maximum
READ w/o DMS	560	595	665
READ w/DMS	595	665	700
WRITE	595	665	700
REFRESH	595	665	700
READ w/o DMS	595	630	665
READ w/DMS	630	700	730
WRITE	595	630	665
REFRESH	595	630	665
READ w/o DMS	350	350	385
READ w/DMS	385	420	455
WRITE	350	350	385
REFRESH	350	350	385
READ w/o DMS	386	421	456
READ w/DMS	456	491	526
WRITE	386	421	456
REFRESH	386	421	456

INPUT/OUTPUT INSTRUCTION GROUP

EXECUTION TIME (μ S):

(Depends on which I/O time period the instruction

begins: T2, T3, T4, T5 or T6.)

M-SERIES:

2.59 To 3.89

E/F-SERIES:

158 To 2.66

INTERRUPT LATENCY (µS):*

(Non-DCPC environment)

M-SERIES:

85 (max.)

E/F-SERIES:

45 (max.)

Table 1-1. HP 1000 Computers Interface Specifications (Continued)

FEATURE CAPABILITY

DUAL-CHANNEL PORT CONTROLLER

Number of Channels:

Word Size:

Maximum Block Size:

Transfer Rate (Mbytes/sec):

2

16 bits

32,768 words (65,536 bytes)

M-SERIES: (Maximum Input) 1.23

(Maximum Output) 1.23

E/F-SERIES: (See following table; full bandwidth assumed,

refer to Section 6.13)

(Standard Performance Memory)
(Standard Performance Fault Control Memory)
(High Performance Memory)
(High Performance Fault Control Memory)

HP 2102B	Minimum	Typical	Maximum
Input w/DMS w/o DMS	1.884	1.950	2.098
Output w/DMS	1.626	1.676	1.782
w/o DMS	1.672	1.778	1.938
HP 2102C			
Input w/DMS w/o DMS	1.946	1.018	2.096
Output w/DMS	1.586	1.626	1.726
w/o DMS	1.670	1.724	1.780
HP 2102E			
Input w/DMS w/o DMS	2.282	2.284	2.284
Output w/DMS	2.038	2.114	2.196
w/o DMS	2.196	2.284	2.284
HP 2102H			
Input w/DMS w/o DMS	2.28	2.28	2.28
Output w/DMS	1.902	1.968	2.038
w/o DMS	2.038	2.114	2.196

Table 1-1. HP 1000 Computers Interface Specifications (Continued)

FEATURE		CAPABILI	T.Y	
DCPC LATENCY (CHANNEL 1, µS):**		Typical	Worst Cas	е
M-SERIES: Input Latency		2.22	2.93	
Output Latency		2.54	3.25	
E-SERIES: (See following table)			Г	г
	HP 2102B	Minimum	Typical	Maximum
(Standard Performance Memory)	Input w/o DMS	2.73	2.91	3.15
	w/DMS	2.84	3.12	3.26
	Output w/o DMS	3.43	3.64	3.95
	w/DMS	3.57	3.92	4.10
And the second second	HP 2102C			
(Standard Performance Fault Control Memory)	Input w/o DMS	2.98	3.12	3.26
	w/DMS	3.09	3.33	3.46
	Output w/o DMS	3.75	3.93	4.11
	w/DMS	3.89	4.21	4.36
	HP 2102E			
(High Performance Memory)	Input w/o DMS	2.21	2.21	2.28
	w/DMS	2.24	2.28	2.35
	Output w/o DMS	2.75	2.75	2.84
	w/DMS	2.80	2.87	2.98
	HP 2102H			
(High Performance Fault Control Memory)	Input w/o DMS	2.31	2.42	2.52
, ,	w/DMS	2.38	2.56	2.74
	Output w/o DMS	2.84	2.94	3.05
	w/DMS	2.98	3.16	3.33
	<u> </u>	·		<u> </u>
	A USER MICROC	ODE sequen	ce of seven	consecutive
No.	reads may provide			
	worst case latency			
	times are as follow			

Memory System	Input	Output
HP 2102B	4.095 us	4.935 us
HP 2102C	5.125 us	6.031 us
HP 2102E	3.050 us	3.681 us

Table 1-1. HP 1000 Computers Interface Specifications (Continued)

FEATURE CAPABILITY

MICROPROGRAMMABLE BLOCK I/O TRANSFERS (HP 1000 E-Series and F-Series only)

Input (256 words or less):

2.28 Mbvtes/sec

Output (256 words or less):

3.18 Mbvtes/sec

Burst (16 words or less):

11.4 Mbytes/sec

MICROPROGRAMMABLE PROCESSOR PORT (MPP) I/O TRANSFERS (HP 1000 E-Series only)

Burst (16 words or less):

11.4 Mbytes/sec (maximum)

Continuous:

3.18 Mbytes/sec (maximum)

NOTES: * Interrupt latency is defined as the time interval between the generation of an Interrupt Request (IRQ) signal by an I/O device and entry into the service routine.

** DCPC latency is defined as the time interval between the generation of a Service Request (SRQ) signal by an I/O device through the initiation of a DCPC channel 1 cycle to the actual completion of the I/O data transfer to or from the I/O interface PCA.

interface cable, and I/O software must be configured so that the computer can control the device. There are several possible methods of accomplishing these objectives. For hardware, the methods range from using available HP general-purpose interface PCA's to designing and building special interface PCA's from the drawingboard level. For software, writing and short assembly-language subroutine may suffice or Real-Time Executive (RTE) system drivers may have to be written. For software development information, refer to the applicable software system documentation listed in Table 1-3.

1-4. LEVELS OF HARDWARE INTERFACING

For purposes of this manual, the approaches to interfacing break down into three levels: Level 1 — Using HP General-Purpose Interface PCA's, Level 2 — Party-Line I/O, and Level 3 — Fabricating Interface PCA's.

Level 1 assumes that the specifications of off-the-shelf HP general-purpose interface PCA's are satisfactory to operate your device. These interface PCA's cover a wide range of applicability: receiving or transmitting signals with characteristics suitable for microcircuits, transistors, or relays. Appendix A of this manual contains a condensed, general description of the general-purpose interface kits available from Hewlett-Packard as of this printing. A data sheet providing the features, specifications, and a list of product support documentation and software either

supplied with or available for the applicable interface kit is available at your nearest Hewlett-Packard Sales and Service Office. (A list of Sales and Service Offices is provided at the back of this manual.) Economics in design and manufacture can frequently be achieved by using these general-purpose interfaces. If a large number of devices, or devices of a special type are required to be serviced by the computer, or if exceptionally fast transfer rates are desired, Level 2 or Level 3 may have to be considered.

Level 2 provides a party-line method of servicing a large number of I/O devices. The number of devices serviceable by party-line I/O is dependent of the addressing word format you choose. Assuming seven bits are used for command and status information, eight bits would be left to address 256 devices. (One bit must be reserved for indirect addressing.) This is a typical example, but the quantity limit can vary by factors of the powers of two (128, 256, 512, etc.). A detailed discussion of party-line I/O is contained in Section VI, Advanced Interfacing Techniques.

Level 3 is the most fundamental level; designing and building an interface that permits the computer to service special devices or, for the HP 1000 E-Series and F-Series Computers, an interface that permits the faster microprogrammed I/O capabilities. Hewlett-Packard can furnish a breadboard interface PCA with the Flag and Control logic required by the computer's I/O section to facilitate these procedures. (Refer to Sections V and VI for more information.)

Table 1-2. HP 1000 Computers Available Current

		(A Model	Power Supply	ý)		
SUPPLY VOLTAGE	2105A	210)8A	2109A	2112A	2113A
+5V	12.8A	24.	8A	24.6A	38.2A	38.0A
-2V	5.0A	4.	5A	4.5A	9.5A	9.5A
+12V	1.0A	1.	.5A	1.5A	3.0A	3.0A
-12V	-1.0A	1.	5A	1.5A	3.0A	3.0A
		(B Model	Power Supply	y)		
SUPPLY VOLTAGE	2108B	2109B	2112B	2113B	2111F	2117F
+5V	38.8A	38.8A	38.8A	38.8A	21.9A	28.8A
-2V	4.0A	4.0A	4.0A	4.0A	6.0A	6.0A
+12V	2.5A	2.5A	2.5A	2.5A	2.5A	2.5A
-12V	2.0A	2.0A	2.0A	2.0A	2.0A	2.0A

The HP 1000 E-Series Computer has provisions for two types of microprogrammed I/O data transfers: transfers via a block I/O interface PCA connected to the I/O section and transfers via an interface PCA connected to the Microprogrammable Processor Port (MPP). As an aid toward determining whether block I/O or MPP transfers are best for your particular application, the following features and limitations should be considered:

- Generally, MPP transfers are easier to microprogram and provide faster data transfer rates.
- Block I/O transfers are more difficult to microprogram because the microcode must be written to simulate I/O instructions and the data transfer rates are slower because the I/O control instructions must be synchronized to I/O Section timing.
- The MPP is totally independent on the I/O Section and, therefore, does not require the use of an I/O Section connector slot or select code.
- Since MPP transfers are affected through bus drivers and receivers, the MPP has the capability of driving cables up to six feet (1.83 metres) in length.
- Block I/O transfers do require the use of an I/O Section connector slot and do require a select code. Therefore, block I/O transfers can be used to combine the speed of microprogrammed I/O transfers with the capabilities of the interrupt system discussed in Section III, I/O System Fundamentals.

6. The MPP has no interrupt capability. Therefore, the computer must determine when the I/O device requires service by polling the device in the microprogram and then initiating the required data transfer. (Refer to Section IV, Computer Timing for more information.)

The HP 1000 F-Series Computer also has provisions for microprogrammed I/O data transfers. Because the MPP is dedicated to the floating point processor in the series of computers, the block I/O transfer method is the only one available to you for microprogrammed I/O applications.

At all levels, the user should keep in mind that Hewlett-Packard warranties and responsibilities apply only to those items produced and quality controlled by Hewlett-Packard. This manual is intended as a guide only, and the effectiveness of devices or programs created according to the recommendations outlined herein are purely the responsibility of the user.

1-5. AVAILABLE DOCUMENTATION

Supporting hardware documentation is provided with each Hewlett-Packard computer shipped to a customer. Hardware documentation is also supplied for optional and accessory add-ons as well as for off-the-shelf I/O interface PCA's. Basic hardware manuals for the HP 1000 Computers are listed in Table 1-3. Hardware manuals are also available for the I/O interface PCA's described in Appendix A of this manual. Consult your local Hewlett-Packard Sales and Service Office for additional hardware documentation related to the HP 1000 Computers. If your computer was supplied as part of an HP computer system,

Table 1-3. I/O Interface Related Reference Manuals

TITLE*	HP PART NUMBER
HARDWARE	
HP 1000 M-Series Computer Operating and Reference Manual	02108-90037
HP 1000 M-Series Computer Installation and Service Manual	02108-90035
HP 1000 E-Series Computer Operating and Reference Manual	02109-90014
HP 1000 E-Series Computer Installation and Service Manual	02109-90015
HP 1000 F-Series Computer Operating and Reference Manual	02109-90001
HP 1000 F-Series Computer Installation and Service Manual	02109-90002
MICROPROGRAMMING	
HP 1000 M-Series Computer RTE Microprogramming Reference Manual	02108-90032
HP 1000 E-Series and F-Series Computer Microprogramming Reference Manual	02109-90004
SOFTWARE	
Real-Time Executive Operating System Drivers and Device Subroutines	92200-93005
RTE-II Programming and Operating Manual	92001-93001
RTE-IV Programmer's Reference Manual	92067-90001
RTE-IVB Programmer's Reference Manual	92068-90004
RTE-M Programmer's Reference Manual	92064-90002
Driver Writing Manual	92200-93005

^{*} For the purposes of this manual, HP 1000 is synonymous with 21MX.

a complete list of related hardware documentation is contained in the *Manual and Software Record* supplied with the system.

All software supplied with any HP computer system is supported by complete user documentation. General types of software manuals include language manuals, operating system manuals, software operating procedures, user manuals, applications manuals, and small program manuals. The *Manual and Software Record* supplied with each system lists all software furnished with the original equipment and provides an index to the software

documentation. Software and software documentation supplied with standard HP I/O interface PCA's are listed in the individual data sheets. Reference manuals that contain basic information for writing system software drivers are listed in Table 1-3. Consult your local Hewlett-Packard Sales and Service Office for additional software documentation related to the HP 1000 Computers.

A complete list of microprogramming manuals available for the HP 1000 Computers is contained in Table 1-3.

COMPUTER CHARACTERISTICS

As an aid toward more successful I/O interface design, this section contains a general discussion of the HP 1000 Computer's operation and architecture. Unless otherwise specified, the contents of this section apply equally to the HP 1000 M-Series, HP 1000 E-Series and HP 1000 F-Series Computers.

2-1. COMPUTER OVERVIEW

As shown in Figure 2-1, the computer functionally consists of four major sections: a Control Processor Section, Main Memory Section, I/O Section, and Arithmetic/Logic Section. These four sections and the computer's Operator Panel are interconnected by a network of signal paths. Data processing programs and data are stored in the Main Memory Section. Parameters, status, commands, and computer results (data) are exchanged with external peripherals via the I/O Section. Mathematical functions such as add, subtract, and multiply and logical functions such as "and", "or", and shift are performed by the Arithmetic/Logic Section. The Operator Panel registers and switches provide direct operator communication. Each section operates under direction of the Control Processor

Section by means of a microprogram. The Control Processor Section interprets the user's program stored in the Main Memory Section and directs the appropriate hardware in each of the other sections to perform the required operations. Control commands (or microinstructions) spell out which signal paths the data is to follow and what modifications or tests are to be performed.

Control and data paths between the computer's major sections and add-on accessories are provided by a bus system. The structure of the bus system is shown in Figure 2-2 which illustrates the main communication paths between major computer sections and accessories. The S-bus is a 16-bit, tri-state, TTL-compatible bus and is the major data transfer bus in the computer. The T-bus is a 16-bit, bistate, TTL-compatible bus. The T-bus is a resultant data bus and is completely internal to the Arithmetic/Logic Section. The M-bus is a 16-bit, tri-state, TTL-compatible bus. The M-bus holds the address to be referenced by memory and is driven by CPU M-register or the DCPC memory address registers. The ME-bus is a 10-bit, tristate, TTL-compatible bus. The ME-bus holds the upperten bits of the 20-bit expanded memory address bus and is driven by the Memory Expansion Module. For interfacing, the select code (SC) bus, interrupt address (IA) bus, and

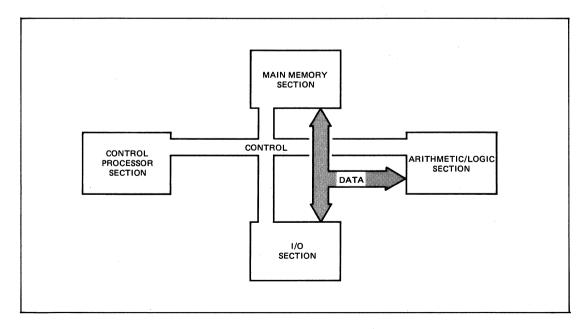


Figure 2-1. Computer Functional Sections

I/O bus are of prime importance. The select code bus is a 6-bit, CTL-compatible, control bus. The select code bus holds the select code for the I/O device being referenced by either the I/O Section or DCPC. The interrupt address bus is a 6-bit, open-collector, TTL-compatible control bus. The interrupt address bus holds the select code of any interrupt-requesting I/O interface PCA, memory protect or DCPC option. The I/O bus is a 16-bit, bi-directional, CTL-compatible, data communication bus for the I/O Section. All plug-in I/O interface PCA's transmit and receive data via the I/O bus. A more detailed discussion of the three I/O-related buses is contained in Sections III and IV of this manual. Block diagrams of the HP 1000 Computers is contained in Figure 2-3 at the end of this section.

2-2. CONTROL PROCESSOR SECTION

The Control Processor Section is the heart of the computer and contains the registers, control logic, control memory,

and timing logic required to execute microprograms and fetch and execute programs stored in the Main Memory Section. This section initializes and controls, either directly or indirectly, the other computer sections. The primary tasks of the Control Processor Section are as follows:

- a. Control the execution sequence of computer microprograms.
- b. Decode microinstruction fields.
- c. Control the computer data manipulations.
- d. Initiate I/O signal sequences.
- e. Control the Operator Panel.
- f. Communicate with Memory Protect.
- g. Provide system timing for all other computer sections.

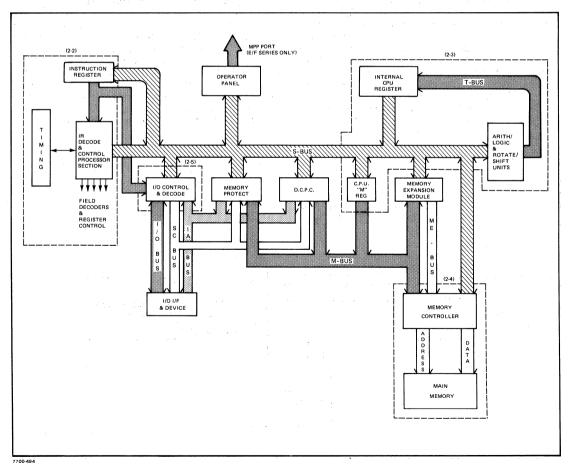


Figure 2-2. Computer Functional Block Diagram

- Provide control processor synchronization with memory and I/O timing as required.
- i. Provide effective execution of computer instructions.

2-3. ARITHMETIC/LOGIC SECTION

The Arithmetic/Logic Section contains all the computer's working registers and the necessary logic to perform arithmetic and logic operations on data. Resultant data is transferred between elements in this section via the T-bus. Data is transferred between this section and the rest of the computer via the S-bus. The primary tasks of the Arithmetic/Logic Section are as follows:

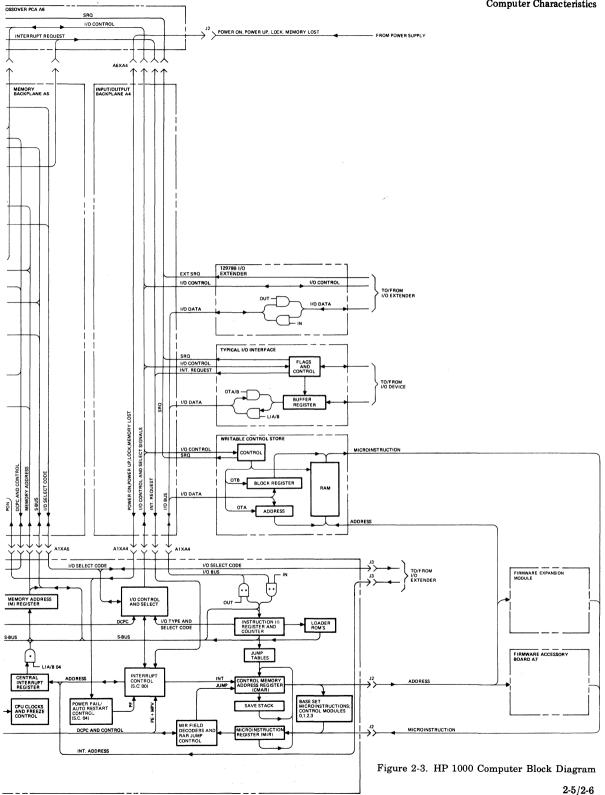
- a. Provide temporary register storage of memory data.
- Perform arithmetic and logical operations on data received from other computer registers and to modify and manipulate this data as instructed by the computer program.
- Provide status indications of computed results as an operations aid (overflow, extend, and special flags).

2-4. MAIN MEMORY SECTION

The Main Memory Section consists of a memory controller and one or more memory module boards with which the controller is designed to operate. The memory module boards contain semiconductor memory arrays that are jumper selectable to various address spaces. The memory controller is the interface to and from the Main Memory Section and responds to read/write requests, generates proper timing and enabling signals for the memory modules, and controls memory refresh timing and addressing. The primary tasks of the Main Memory Section are as follows:

a. Sustain memory data. Since dynamic semiconductor memory is used, the memory module boards must be refreshed to retain stored data. The memory controller initiates and controls the refresh cycles to fit around read/write requests and Dual-Channel Port Controller (DCPC) cycles.

- b. Respond to read and write requests. The memory controller generates the proper timing and enabling signals to perform read or write data transfers. The memory address is obtained from the M-bus and the addressed data is transferred on the S-bus.
- c. Inhibit memory cycles upon receipt of violation flags from the Memory Protect. (Memory cycles received from the DCPC are not inhibited.)


2-5. I/O SECTION

Except for the MPP (E-Series computers only), the I/O Section provides the hardware link for communication between the computer and all peripheral devices (The MPP provides direct interfacing under microprogrammed control and is discussed in more detail in Section VI of this manual.) The I/O Section contains the I/O control and select code addressing logic, I/O bus control logic, interrupt control logic, and I/O interface PCA slots required to carry out computer initiated transfer operations and I/O device interrupting transfer operations. (Refer to Section III.) The primary tasks of the I/O Section are as follows:

- a. Generate control signals for the I/O interface PCA's.
- Provide data and status paths for the I/O interface PCA's.
- Determine select codes of interrupting peripheral devices.
- d. Resolve interrupt request priority conflicts.
- Generate pending interrupt signals for the Control Section.
- Provide control interface signals for special computer accessories such as the DCPC, Memory Protect, etc.
- g. Provide communication lines for I/O extenders.

2-4,

BUFFER LOGIC

I/O SYSTEM FUNDAMENTALS

111

This section contains a general discussion of the HP 1000 Computer I/O system. Unless otherwise specified, the contents of this section apply equally to the HP 1000 M-Series, E-Series and F-Series Computers.

3-1. PURPOSE

The purpose of the I/O system is to transfer data between the computer and external peripheral devices. As shown in Figure 3-1, data is normally transferred through the A-or B-register. An input transfer of this type occurs in three distinct steps: (1) between the external device and its interface PCA in the computer, (2) between the interface PCA and the A- or B-register via the I/O bus, S-bus, and CPU, and (3) between the A- or B-register and memory via the S-bus and memory controller. This three-step process also applies to an output transfer except in reverse order. This type of transfer, which is executed under machine instruction program control, allows the computer logic to manipulate the data during the transfer process.

As shown in Figure 3-1, data may also be transferred automatically under control of the Dual-Channel Port Controller (DCPC). Once the DCPC has been initialized, no programming is involved and the transfer is reduced to a two-step process: (1) between the external device and its interface PCA in the computer and (2) between the interface PCA and memory via the I/O bus, S-bus, and memory controller. The two DCPC channels are program assignable to operate with any two device interface PCA's. Since a DCPC transfer eliminates programmed loading and storing via the accumulators, the time involved is shorter than the programmed I/O method. Also, since DCPC operates on a cycle-stealing basis, instruction execution can occur concurrently with DCPC operation. Therefore, the DCPC is normally used with high-speed external devices capable of transferring data at the rates specified in Table 1-1. Additional information on DCPC I/O transfers is contained in paragraph 3-25.

In addition, Figure 3-1 shows that data may be transferred under microprogram control in the HP 1000 E-Series and F-Series Computers. Both the E-Series and F-Series Computers allow data transfers via a user-designed block I/O interface PCA connected to the I/O bus. For these microprogrammed block I/O operations, an input transfer occurs in two steps: (1) between the external device and its interface PCA in the computer, and (2) between the interface PCA and memory via the I/O bus, S-bus and memory controller. This two-step process also applies to an output transfer except in reverse order. The E-Series Computers permit I/O data transfers via a user-designed interface PCA connected to the Microprogrammable Processor Port (MPP). Design of the MPP permits external devices to be connected directly to the CPU and interfaced under mi-

croprogram control. For these transfers, an input transfer also occurs in two steps: (1) between the external device and its interface PCA, and (2) between the interface PCA and memory via the MPP, S-bus and memory controller. This two step process also applies to an output transfer except in reverse order. Microprogrammed I/O operations can be used with exceptionally fast external devices capable of transferring data at the rates specified in Table 1-1. Additional information on microprogrammed I/O transfers is contained in Section VI, Advanced Interfacing Techniques.

3-2. I/O SECTION CONTROL

3-3. GENERAL

Functionally, the I/O Section allows the computer to select and communicate with each of the I/O device's associated interface PCA(s) through I/O control and address logic and through direct bus wiring. The structure of the I/O Section also provides a means by which I/O devices can interrupt the computer program in order to be serviced by the computer. When more than one I/O device requests an interrupt, the computer processes the requests on a priority basis. Figure 3-1 illustrates the main sections of the computer concerned with the control of I/O operations. All sections shown are contained in the computer mainframe except for the I/O devices. Although the S-bus is represented as a single line, it actually consists of 16 individual hardwired lines.

3-4. I/O CONTROL INSTRUCTIONS

The I/O instructions generate signals that are translated into appropriate control, flag test and select code signals. The control signals generated by the CLC and STC instructions clear and set the interface PCA's Control flipflop. In a similar fashion, the control signals generated by the CLF and STF instructions clear and set the interface PCA's Flag flip-flop. The flag test instructions, SFC and SFS, monitor the status of the associated I/O device flag. These control and flag test signals are routed to the appropriate I/O interface PCAs as determined by the select code signals. Each I/O slot is permanently assigned to an individual select code through the computer's hardware design. The select code bus allows each I/O interface PCA and associated I/O device to be individually addressed.

3-5. I/O DATA TRANSFER INSTRUCTIONS

Data transfer instructions initiate either an input or output data transfer between the computer and an I/O device

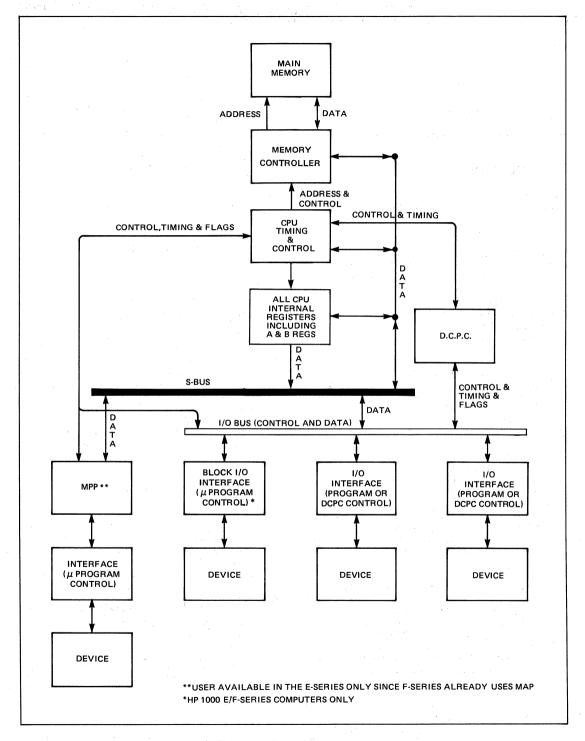


Figure 3-1. Input/Output System

by sending either an I/O Input (IOI) signal or an I/O Output (IOO) signal to the I/O interface PCA. The IOI signal clocks the appropriate interface PCA for input data as a result of a Load Into A (LIA). Load Into B (LIB), Merge Into A (MIA), or Merge Into B (MIB) instruction. Only the data from the interface PCA addressed by the select code is enabled. The data is clocked by IOI into either the A- or B-register via the I/O bus and S-bus. The IOO signal is applied to the interface PCA's as a result of an Output From A (OTA) or Output From B (OTB) instruction. This signal, when combined with the appropriate select code signal, clocks data from either the A- or B-register into the addressed interface PCA via the S-bus and I/O bus. IOI and IOO have the same function when operating under DCPC control except that both signals are generated by the DCPC hardware.

3-6. INTERRUPT REQUESTS

The instruction STF 00 enables the interrupt system. This system allows an external I/O device to request interrupt service. (The interrupt system is explained in more detail in paragraph 3-10.) To request an interrupt, the I/O device applies an Interrupt Request (IRQ) signal to the computer via its interface PCA. The I/O Section then determines the address of the interrupting device and causes an interrupt to the main computer program. The computer sets the Memory Address register (M-register) to the select code of the interrupting device. This memory location (or "trap cell") generally contains a Jump to Subroutine Indirect (JSB,I) instruction which transfers program control to the appropriate interrupt service routine. A typical interrupt service routine accepts input data from the I/O device or outputs data from the computer to the device. Upon completion of the interrupt service routine, program control is returned to the previously interrupted main program.

3-7. INTERFACE PCA'S

The interface PCA's provide data transfer channels between the computer and the external I/O devices, and provide control (via computer commands) for the I/O device's operation. The interface PCA's usually contain flag and interrupt logic circuits, and registers for temporary storage of data being transferred to or from the computer. Requirements for the use of the flag and interrupt logic circuits and the number of storage registers designed into the interface PCA depend on the type of I/O device to which it is connected. (Refer to Section V for a detailed discussion of interface PCA design.)

3-8. I/O TIMING

An I/O cycle is the time required to generate all I/O signals necessary to execute an I/O instruction. Each I/O cycle is divided into five T-periods designated T2, T3, T4, T5 and T6. The control processor provides the required timing for the I/O signals resulting from decoded I/O instructions and interrupt requests. Timing of the I/O signals

nals in relation to the I/O time periods is discussed in Section IV. Two I/O time period signals, Enable Flag (ENF) corresponding to T2 and Set Interrupt Request (SIR) corresponding to T5, provide control signals for interrupt processing. I/O time period T2 (ENF) is used during I/O operations to synchronize the interfaces PCA's Flag flip-flop with the beginning of the computer's I/O cycle. I/O time period T5 (SIR) is used during interrupt processing to synchronize the setting of the interface PCA's Interrupt Request (IRQ) flip-flop.

3-9. I/O ADDRESSING

Each interface can be uniquely addressed through the use of select codes. A select code specifies one of 64 (decimal, 77 octal) possible I/O devices or functions. Select code signals corresponding to the two-digit octal address found in the select code field of an I/O instruction are transferred to the I/O slot of the selected interface PCA. This enables the device's interface PCA to respond to commands and/or transfer data to or from the I/O device. Select codes 00 through 07 (octal) are dedicated to specific functions and select codes 10 through 77 (octal) are used to address I/O devices. Table 3-1 lists the select codes and their assignments, and indicates the interrupt location (trap cell) corresponding to each select code. Figure 3-2 illustrates the I/O slots in the computer into which interface PCAs are installed.

Each I/O slot is assigned two select codes in order to service I/O devices that may be capable of performing two distinct functions. For example, if an I/O device is capable of responding to commands as well as inputting and/or outputting data, two separate select codes may be required. Since the two select codes are hardwired to each I/O slot, each interface PCA can be designed to respond to either a lower select code (LSC) or a higher select code (HSC) or both. The interface PCA assumes the select codes of the slot into which it is inserted.

The select code field of the I/O instructions generates the Select Code Most Significant Digit (SCM) and the Select Code Least Significant Digit (SCL) signals to determine which I/O slot is to be addressed. These signals are applied to the various I/O slots in the fashion illustrated in Figure 3-3. Note that the SCM(1) signal is applied to the most-significant digit input pins on the I/O slot connectors with select codes 10 through 17 (octal) and that SCM(2) is applied to the I/O slot connectors with select codes 20 through 27 (octal), and so on. The SCM(0) and SCL(0) through SCL(7) signals are used to form select codes 00 through 07 (octal). The functions of these select codes are given in Table 3-2. It should be noted that the SCM and SCL signals are applied to the same pins on all I/O slot connectors as follows:

- a. Pin 14 lower select code, most significant digit.
- b. Pin 16 lower select code, least significant digit.

Table 3-1. Select Code Assignments

SELECT CODE (OCTAL)	INTERRUPT MEMORY LOCATION (OCTAL)	ASSIGNMENT	
00	None	Interrupt System Enable/Disable	
01	None	Display Register or Overflow	
02	None	DCPC Initialization Channel 1	
03	None	DCPC Initialization Channel 2	
04	00004	Power Fail Interrupt/Central Interrupt Register	
05	00005	Parity Error Interrupt/Memory Protect Interrupt/Dynamic Mapping System Interrupt	
06	00006	DCPC Channel 1 Completion Interrupt	
07	00007	DCPC Channel 2 Completion Interrupt	
10 thru 77	00010 thru 00077	I/O Devices	

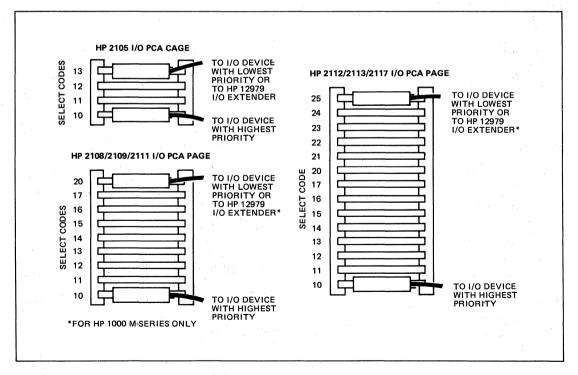
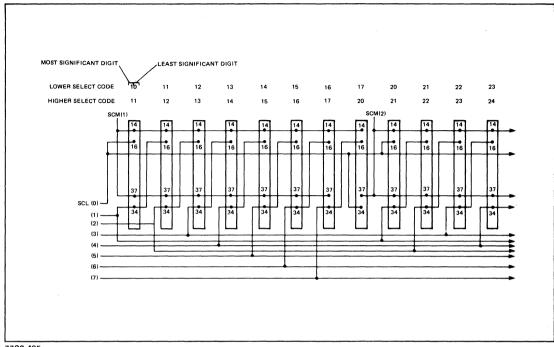



Figure 3-2. I/O Address Assignments

7700-495

Figure 3-3. I/O Slot Connector Select Code Wiring

- c. Pin 37 higher select code, most significant digit.
- d. Pin 34 higher select code, least significant digit.

3-10. INTERRUPT SYSTEM

The interrupt system provides the means for an external device to interrupt the program in progress. Generally, interrupts are used for interrupt data transfers, in which a background (main) program is interrupted when data is available for input or when additional output data can be accepted, or to signal the main program that an external event has occurred. An interrupt request occurs when the following conditions are met:

- a. The interrupt system is enabled with a STF 00 instruction,
- The specific I/O device's interface PCA Control flipflop is set,
- No instruction that affects priority (STF,CLF,STC or CLC) is in progress,
- The priority network is not disabled by gaps between interface PCAs as discussed in paragraph 3-13.,
- e. No higher priority I/O devices have met the conditions stated above, disabling the specified interface PCA, and

f. The specific I/O device's interface PCA Flag flip-flop is set.

Program control of the interrupt system is provided with the STF and CLF instructions. A Set Flag (STF) instruction with a select code of 00 (octal) enables the interrupt system. A Clear Flag (CLF) instruction with a select code of 00 (octal) disables the interrupt system. The interrupt system is disabled when power is initially applied to the computer. In addition, the Control Reset (CRS) signal is generated at power up which clears all interface PCA's Control flip-flop and the Power On Preset to I/O (POPIO) signal sets all Flag Buffer flip-flops. Therefore, to operate any device under interrupt system control, it is first necessary to clear the addressed I/O interface PCA's Flag Buffer and Flag flip-flops with a CLF sc instruction and to set the Control flip-flop with a STC sc instruction.

3-11. INTERRUPT PRIORITY

The interrupt system contains a priority network that establishes an orderly sequence of granting interrupt requests. The following paragraphs contain discussions of priority assignments, network operation, continuity, and instructions.

3-12. PRIORITY ASSIGNMENTS. A priority circuit on the I/O interface PCA's allows only one I/O device

Table 3-2. Interrupt and I/O Control Summary

INST	s.c. 00	S.C. 01	S.C. 02	S.C. 03
STC	NOP	NOP NOP		Prepares DCPC channel 2 to receive and store the block length in 2's complement form.
CLC	Clears all Control FF's from S.C. 06 and up; effectively turns off all I/O devices.	NOP	Prepares DCPC channel 1 to receive and store the direction of data flow and the starting memory address.	Prepares DCPC channel 2 to receive and store the direction of data flow and the starting memory address.
STF	Turns on interrupt system.	STO sets overflow bit.	NOP	NOP
CLF	Turns off interrupt system except power fail (S.C. 04) and parity error (S.C. 05).	CLO clears overflow bit.	NOP	NOP
SFS	Skip if interrupt system is on.	sos	NOP	NOP
SFC	Skip if interrupt system is off.	soc	NOP	NOP
LIA/B	Loads A/B register with all zeros. (Equivalent to CLA/B instruction.) Loads display register contents into A/B register.		Loads present contents of DCPC channel 1 word count register into A/B register.	Loads present contents of DCPC channel 2 word count register into A/B register.
MIA/B	Equivalent to a NOP.	Merges display register contents into A/B register.	Merges present contents of DCPC channel 1 word count register into A/B register.	Merges present contents of DCPC channel 2 word count register into A/B register.
ОТА/В	NOP	Outputs A/B register contents into display register.	1. Outputs to DCPC channel 1 the block length in 2's complement form (previously prepared by an STC 02 instruction). 2. Outputs to DCPC channel 1 the direction of data flow and	1. Outputs to DCPC channel 2 the block length in 2's complement form (previously prepared by an STC 03 instruction). 2. Outputs to DCPC channel 2 the direction of data flow and
			the starting memory address (previously prepared by a CLC 02 instruction).	the starting memory address (previously prepared by a CLC 03 instruction).

S.C. 04	S.C. 05	S.C. 06	S.C. 07	S.C. 10-77
Re-initializes power-fail logic and restores inter- rupt capability to lower priority functions.	Turns on memory protect.	Sets Control FF on DCPC channel 1 (activates DMA).	Sets Control FF on DCPC channel 2 (activates DMA).	Sets PCA Control FF and turns on device on chan- nel specified by S.C.
Re-initialize power-fail logic and restores inter- rupt capability to lower priority functions.	NOP	Clears Control FF on DCPC channel 1 (reestablishes priority with STF; does not turn off DCPC).	Clears Control FF on DCPC channel 2 (reestablishes priority with STF; does not turn off DCPC).	Clears PCA Control FF and turns off device.
Flag FF sets auto- matically when power comes up. (No pro- gram control possible.)	Turns on parity error interrupt capability.	Aborts DCPC channel 1 data transfer.	Aborts DCPC channel 2 data transfer.	Sets PCA Flag FF.
Flag FF clears auto- matically when power fail occurs. (No pro- gram control possible.)	Turns off parity error interrupt capability and clears violation register bit 15.	Clears Flag FF on DCPC channel 1.	Clears Flag FF on DCPC channel 2.	Clears PCA Flag FF.
NOP	Skip if Dynamic Map- ping System (DMS) interrupt.	Tests if DCPC channel 1 data transfer is com- plete.	Skip if DCPC channel 2 data transfer is com- plete.	Skip if I/O channel Flag FF is set.
Skip if power fail has occurred.	Skip if memory pro- tect interrupt.	Tests if DCPC channel 1 data transfer is still in progress.	Skip if DCPC channel 2 data transfer is still in progress.	Skip if I/O channel Flag FF is clear.
Loads contents of central interrupt register (S.C. of last interrupting device) into least-significant bits of A/B register.	Loads contents of violation register into A/B register: Bit 15 = 1 = PE Bit 15 = 0 = MPV	Loads A/B register with all ones. (Equivalent to CCA/CCB instruction.)	Loads A/B register with all ones. (Equivalent to CCA/CCB instruction.)	Loads contents of PCA data buffer into A/B register.
Merges contents of central interrupt register into least-significant bits of A/B register.	Merges contents of violation register into A/B register.	Same as LIA/B 06 above.	Same as LIA/B 07 above.	Merges contents of PCA data buffer into A/B register.
NOP	Outputs first address of unprotected memory to fence register.	Outputs to DCPC channel 1 the S.C. of I/O channel. Specify STC after each word; CLC after block.	Outputs to DCPC channel 2 the S.C. of I/O channel. Specify STC after each word; CLC after block.	Outputs data from A/B register into PCA data buffer.

to interrupt the computer program regardless of the number of I/O devices requesting an interrupt. The priority network assigns the highest priority to select code 04 (octal) which is reserved for power fail interrupt and decreasing priority to select codes 05 through 77 (octal) as listed in Table 3-1. The interrupt priority assignments for each I/O interface PCA connector are fixed but, since any I/O interface PCA can be inserted into any connector slot, the interrupt priority of any I/O device can be easily changed simply by inserting the device's associated I/O interface PCA into another connector slot.

3-13. PRIORITY NETWORK OPERATION.

Interrupt priority is established by a hardwired priority network on both the individual I/O interface PCA's and on each I/O connector slot. A simplified representation of the priority network is given in Figure 3-4. As illustrated, the interrupt priority decreases as the select code increases. Interrupts on select code 04 through 07 (octal) take priority over interrupts from I/O devices, with the Power Fail interrupt signal on select code 04 (octal) having the highest priority. When an I/O device requests an interrupt, the priority enable line is broken to lower priority devices.

The interrupt priority network is shown in more detail in Figure 3-5. An I/O device requests interrupt service by setting the Flag flip-flop on its associated interface PCA. If the IEN signal is asserted, the associated interface PCA's Control flip-flop is set and the priority enable line has not been broken, the device's interrupt service routine (ISR) will be executed. Figure 3-5 illustrates the operation of the priority network —

- Slot 10 passes priority (the PCA's Flag flip-flop is not set).
- Slot 11 drops priority to lower priority cards (Flag set).
- Slot 12 fulfills all conditions for an interrupt except that the priority enable line has been dropped at slot 11.
- Slot 13 contains a priority jumper PCA to continue the priority enable line to slot 14. In this case, the priority line has been previously dropped.

In this way, an interrupt service routine (ISR) for any I/O device can be interrupted by any other device with a higher priority. After the higher priority device has been serviced, the lower priority device's ISR can continue. As a result, several ISRs can be in an interrupted state at one time. Each ISR continues from its interrupted point when the next higher priority ISR is completed.

Interrupt priority can also be program controlled. Since an interrupt cannot occur unless the I/O interface PCA's Control flip-flop is set, all Control flip-flops on I/O interface PCAs with a higher priority than the one desired can be cleared by a CLC sc instruction. This prevents the higher priority I/O interface PCA's from requesting an interrupt

and establishes the desired I/O interface PCA as the highest priority device. However, the I/O interface PCA's disabled by the CLC instruction must now be monitored for service by testing the state of their Flag flip-flops or by resetting the Control flip-flops with an STC sc instruction.

3-14. PRIORITY CONTINUITY. When an I/O interface PCA requests an interrupt, the PRL signal applied to the next lower priority I/O interface PCA as PRH goes false, which prevents that I/O interface PCA from requesting an interrupt. This sequence continues from PCA to PCA until the last (lowest priority) I/O interface PCA receives a false PRH signal.

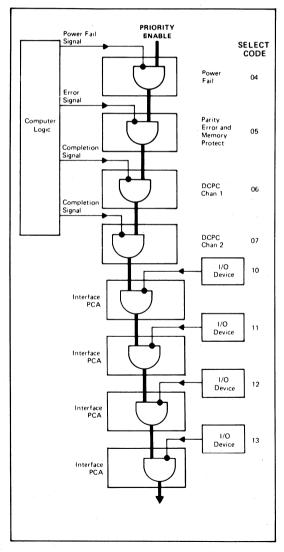
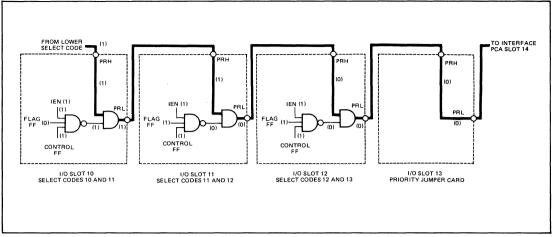



Figure 3-4. Priority Linkage

7700-496 Figure 3.5

Figure 3-5. Interrupt Priority Network

If an I/O interface PCA contains two separately addressable logic circuits such as input/output or command/data, continuity of the priority network must be ensured internally on the PCA as illustrated in Figure 3-6. There can be no gaps in the priority network if the system is to function properly. In addition, if a two-select-code PCA is used, only the higher select code of the next lower priority I/O slot is available. For example, slot 10 in Figure 3-6 contains an I/O interface PCA that uses both select codes 10 and 11. The next select code available (in slot 11) is select code 12. If the next lower priority PCA is not set up to use a higher select code (in this example 12), a jumper PCA must be inserted in slot 11 to ensure continuity of the priority network. The next lower priority PCA would be inserted into slot 12 in this example case.

3-15. INSTRUCTIONS AFFECTING PRIORI-TY. Four instructions (STC, CLC, STF, and CLF) affect the I/O interface PCA's priority network. Whether and I/O device can or cannot request an interrupt depends on whether its I/O interface PCA's Control flip-flop is set (STC) or cleared (CLC) and whether its Flag flip-flop is set (STF) or cleared (CLF). If an I/O device cannot request an interrupt, all succeeding lower priority devices assume a priority of one higher in the priority network. The four instructions (along with SFS and SFC) also inhibit all interrupts during the computer cycle in which they occur. This prevents interrupts from occuring during entry and exit from subroutines. Also, a combination of two of the four instructions is normally the next-to-last instruction in a service subroutine processing an interrupt. (The last instruction is a JMP,I instruction to return to the main program or to an address of another subroutine.) If another I/O device could interrupt the subroutine immediately after the combination of the two instructions and before the JMP,I instruction, the possibility would

exist that the first I/O device could interrupt a second time before the JMP,I instruction. In this case, the first main program address or the other service subroutine address would be destroyed, preventing a return to the main program or to the other service subroutine.

3-16. INTERRUPT GENERATION

A detailed discussion of the sequence of events that take place during an interrupt request is contained in paragraphs 4-4 through 4-8 and paragraph 5-4 of this manual.

3-17. INTERRUPT PROCESSING

Initially, during an interrupt, the computer decrements the P-register to ensure that the proper location in the main program will be returned to after the interrupt is processed. Also, the computer places the service request address (always equal to the select code of the interrupting I/O device) into the M-register. This addresses the memory location having the same number as the service request address (select code). This location in memory is referred to as the "trap cell" and is reserved for one particular I/O device. For example, an I/O device specified by select code 10 (octal) will interrupt to (i.e., cause execution of the contents of) memory location 00010. The computer fetches the instruction in the trap cell which is usually a jump to a subroutine (JSB,I) instruction. (Any legal instruction can be placed in the trap cell.) The contents of the P-register plus one are then stored in the first location (X) of the subroutine. (Since the previous contents of the first memory location are destroyed when P+1 is stored, the first instruction of the subroutine should always be a nooperation (NOP) instruction or equivalent.) Next, the location of the subroutine (X+1) is placed in the P- and

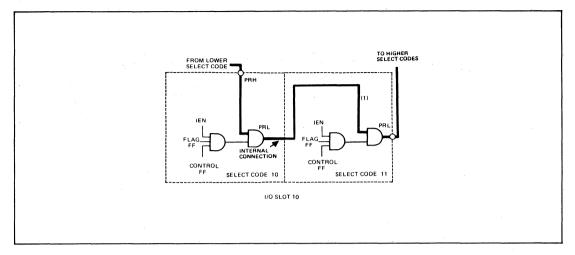


Figure 3-6. Internal Priority Continuation

M-registers and the computer resumes operation in the subroutine. Thus, the instruction stored in location X+1 is the first instruction of the subroutine to be executed. It should be noted that the contents of the working registers that were in use in the main program should be stored when entering the subroutine and restored before exiting from the subroutine. Exit from the subroutine is accomplished with a JMP,I instruction to location X. This places the address of the interrupted program instruction in the P- and M-registers and allows normal program operation to resume.

3-18. I/O DATA TRANSFERS

The following paragraphs describe how data is transferred between memory and I/O devices. A summary of I/O group instructions pertinent to the computer's interrupt and control functions is contained in Table 3-2. The sequences presented for noninterrupt and interrupt methods of data transfer are highly simplified in order to present an overall view without the involvement of software operating systems and device drivers. Certain I/O interface PCAs may require additional or different control and data transfer protocols. For additional information, refer to Sections IV through VI of this manual and to the documentation supplied with the appropriate software system or I/O subsystem.

3-19. NONINTERRUPT TRANSFERS

It is possible to transfer data without using the interrupt system. This involves a "wait-for-flag" method in which

the computer commands the device to operate and then waits for the completion response. In using this method to transfer data, it is assumed that the computer time is relatively unimportant. The programming is very simple, consisting of only four words of in-line coding as shown in the examples in Table 3-3. Each of these routines will transfer one word or character of data. It is also assumed that the interrupt system is disabled (STF 00 not previously given). The select codes used are for example purposes only.

Table 3-3. Noninterrupt Transfer Example Routines

INSTRUCTIONS	COMMENTS	
INPUT ROUTINE		
STC 12,C SFS 12 JMP *-1 LIA 12	Start device. Is input ready? No, repeat previous instruction. Yes, load input into A-register.	
OTA 13 STC 13,C SFS 13 JMP *-1 NOP	Output A-register to buffer. Start device. Has device accepted the data? No, repeat previous instruction. Yes, proceed.	

3-20. INPUT DATA. In the example in Table 3-3, operation begins with a programmed STC 12.C instruction which sets the Control flip-flop and clears the Flag flipflop on the interface PCA. The computer then goes into a waiting loop, repeatedly checking the status of the PCA Flag flip-flop. Setting the Control flip-flop causes the PCA to output a Start (Device Command) signal to the I/O device. The Start signal causes the device to output a data character and then a Done signal to the PCA which sets the PCA Flag flip-flop. (A more detailed discussion of interface PCA operations is contained in Sections IV and V.) If the Flag flip-flop is not set, the JMP*-1 instruction causes a jump back to the SFS instruction. (The *-1 operand is assembler notation for "this location minus one".) When the Flag flip-flop is set, the skip condition for SFS is met and the JMP instruction is skipped. The computer then exits from the waiting loop and the LIA 12 instruction loads the device input data into the A-register.

3-21. OUTPUT DATA. The first step, in the example in Table 3-3, which is to transfer the data to the interface PCA buffer, is the OTA 13 instruction. Then STC 13,C commands the device to operate and accept the data. The computer then goes into a waiting loop as discussed in the preceding paragraph. When the Flag flip-flop becomes set, indicating that the device has accepted the output data, the computer exits from the loop. (The final NOP is for illustration purposes only.)

3-22. INTERRUPT TRANSFERS

3-23. INPUT DATA. Figure 3-7 illustrates the sequence of events required to input data using the interrupt method. Note that some operations are under control of the computer program (programmer's responsibility) and some of the operations are automatic. Note also that the interface PCA (device controller) is installed in the slot assigned to select code 12. The operation begins (1) with the programmed instruction STC 12,C which sets the Control flip-flop and clears the Flag flip-flop on the interface PCA. Since the next few operations are under control of the hardware, the computer program may continue the execution of other instructions. Setting the Control flipflop causes the PCA to output a Start signal (2) to the device which sends out a data character (3) and then asserts the Done signal (4). (A more detailed discussion of the interface PCA operations is contained in Sections IV and V.)

The device Done signal sets the PCA Flag flip-flop which in turn generates an interrupt (5) assuming that the interrupt conditions are met; i.e., the interrupt system must be on (STF 00 previously given), no higher priority interrupt is pending, and the Control flip-flop is set (accomplished in step 1).

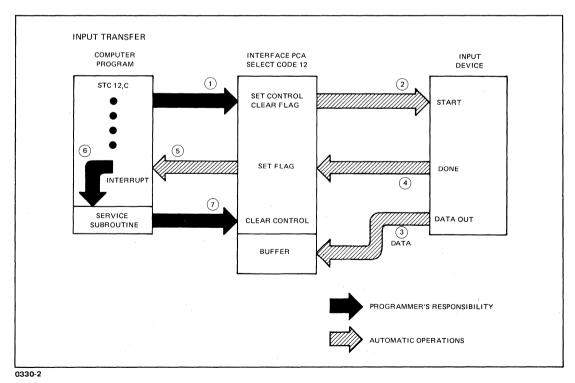


Figure 3-7. Input Data Transfer (Interrupt Method)

The interrupt causes the current computer program to be suspended and control is transferred to a service subroutine (6). It is the programmer's responsibility to provide the linkage (JSB,I) between the interrupt location (00012 in this case) and the service subroutine. It is also the programmer's responsibility to include in his service subroutine the instructions for processing the data (loading into an accumulator, manipulating if necessary, and storing into memory).

The subroutine may then issue further STC 12,C commands to transfer additional data characters. One of the final instructions in the service subroutine must be CLC or CLF 12. This step (7) restores the interrupt capability to lower priority devices and returns the interface PCA to its static "ready" condition (Control clear and Flag set). This condition is initially established by the computer at power turn-on and it is the programmer's responsibility to return the interface PCA to the same condition at the completion of each data transfer operation. At the end of the subroutine, control is returned to the interrupted program via previously established linkages.

There are some cases in which it is desirable to use the noninterrupt I/O data transfer method while the interrupt system is enabled. For example, the interrupt system remains enabled while a noninterrupt transfer is being carried out to an I/O device in a privileged interrupt environment. When a noninterrupt input transfer is used with the interrupt system enabled in an HP E-Series or F-Series computer, certain programming considerations have to be taken into account. Care must be taken as to when the device flag is cleared since all I/O control instructions (SFC, SFS, STF, CLF, STC, and CLC) hold off interrupts until the following instruction is executed. The object here is to prevent the interface PCA on which the noninterrupt transfer is occurring from causing an interrupt. The usual sequence of instructions used to handle an input data transfer are the following:

> SFS sc JMP *-1 LIA sc,C

In this example, the SFS sc instruction senses that the device flag is set but holds of interrupts until after execution of the LIA sc,C instruction. Since the device flag is cleared by the LIA sc,C instruction, the interrupting device select code is not available to the Central Interrupt Register (CIR) when it is clocked. Instead, zero is loaded into the CIR. As with normal interrupt processing, the contents of the CIR determine the main memory address where the next instruction to be executed is found. Since the CIR contains zero, the contents of the A-register will be executed. This is, of course, undesirable because the A-register may contain input data or garbage at this point instead of the usual JSB,I instruction.

Proper operation can be ensured in one of two ways. The first consists of placing a CLF sc instruction before the LIA sc instruction. This technique eliminates the interrupt altogether. For example —

SFS 12 JMP*-1 CLF 12 LIA 12

The second method involves inserting an instruction (except an I/O control instruction) between the JMP*-1 and the LIA sc,C instructions and loading the corresponding trap cell with zero. In this case, the interrupt actually occurs after the inserted instruction and before the flag is cleared but program execution immediately returns to the LIA sc,C instruction. For example—

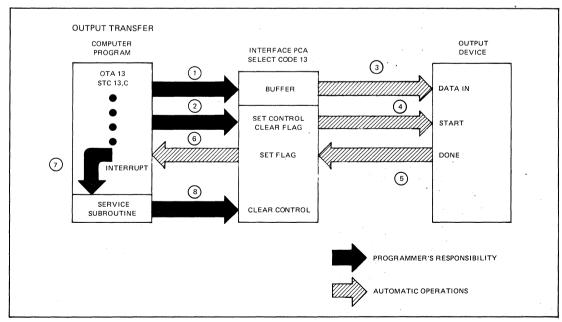
SFS 12 JMP *-1 NOP LIA 12,C

3-24. OUTPUT DATA. Figure 3-8 illustrates the sequence of events required to output data using the interrupt method. Again, note the distinction between programmed instructions and automatic operations. It is assumed that the data to be transferred has been loaded from memory into the A-register and is in a form suitable for output. The interface PCA in this example is assumed to be in the I/O slot assigned to select code 13.

The output operation begins with a programmed instruction (OTA 13) to transfer the contents of the A-register to the interface PCA buffer (1). This is followed (2) by the instruction STC 13,C which sets the Control flip-flop and clears the Flag flip-flop on the interface PCA. Since the next few operations are under control of the hardware, the computer program may continue the execution of other instructions. Setting the Control flip-flop causes the interface PCA to output the buffered data (3) followed by a Start signal (4) to the device which writes (e.g., punches, stores, etc.) the data character and asserts the Done signal (5).

The device Done signal sets the PCA Flag flip-flop which in turn, generates an interrupt (6) provided that the interrupt system is on, priority is high, and the Control flip-flop is set (accomplished in Step 2). The interrupt causes the current computer program to be suspended and control is transferred to a service subroutine (7). It is the programmer's responsibility to provide the linkage (JSB,I) between the interrupt location (00013 in this case) and the service subroutine. The detailed contents of the subroutine are also the programmer's responsibility and the contents will vary with the type of device.

The subroutine can then output further data to the interface PCA and reissue the STC 13,C command for additional data character transfers. One of the final instructions in the service subroutine must be a clear control or clear flag. This step (8) allows lower priority devices to interrupt and restores the channel to its static "ready" condition (Control clear and Flag set). At the end of the subroutine, control is returned to the interrupted program via previously established linkage.


3-25. DUAL-CHANNEL PORT CONTROLLER

The Dual-Channel Port Controller (DCPC) accessory provides a direct data path, software assignable, between memory and a high-speed peripheral device. The DCPC accomplishes this by stealing an I/O cycle instead of interrupting to a service subroutine. The DCPC logic is capable of stealing every consecutive I/O cycle and can transfer data at the rates specified in Table 1-1.

There are two DCPC channels, each of which may be separately assigned to operate with any I/O interface PCA. The two channels are capable of operating simultaneously in an interleaved fashion and, when in this mode, channel 1 has priority over channel 2. For the HP 1000 M-Series Computers, the combined maximum transfer rate for both channels operating simultaneously is 1.23 megabytes per second; the rate available on channel 2 is the rate difference between 1.23 and the actual operating rate of channel 1. For the HP 1000 E/F-Series Computers. the combined maximum transfer rate for both channels operating sinultaneously is as specified in Table 1-1 only if the channels are transferring data in the same direction. Channels transferring data in opposite directions will achieve an effective transfer rate between the specified input and output rates. Both channels do not have to be operating to achieve the full DCPC bandwidth. The DCPC hardware must steal every consecutive I/O cycle to attain the full DCPC bandwidth. The maximum transfer rates still remain at those previously mentioned. Since the memory cycle rate is somewhat faster than the I/O cycle rate, it is possible for the CPU to interleave memory cycles while the DCPC is operating.

Transfers via the DCPC are on a full-word basis: hardware packing and unpacking of bytes is not provided. The word count register is a full 16 bits in length and data transfers are accomplished in blocks. The transfer is initiated by an initialization routine and from then on the operation is under automatic control of the hardware. The initialization routine specifies the direction of the data transfer (in or out), where in memory to read or write, which I/O channel to use, and how much data to transfer. Completion of the block transfer is signaled by an interrupt to location 00006 (for channel 1) or to location 00007 (for channel 2) if the interrupt system is enabled. It is also possible to check for completion by testing the status of the flag (SFS or SFC) for select code 06 or 07, or by interrogating the word count register with an LIA/B instruction to select code 02 (for channel 1) or to select code 03 (for channel 2). A block transfer in process can be aborted with an STF 06 or 07 instruction if the DCPC hardware is not stealing every cycle.

3-26. DCPC INPUT TRANSFER. Figure 3-9 and Table 3-4 illustrates the sequence of operations for a DCPC input transfer. A comoparison with the conventional interrupt method (Figure 3-7) shows that much more of the DCPC operation is automatic. Remember that the procedure in Figure 3-7 must be repeated for each word or character. In Figure 3-9, the automatic DCPC

0330-3

Figure 3-8. Output Data Transfer (Interrupt Method)

operation will input a block of data any size limited only by the available memory space. The initialization routine sets up the control registers on the DCPC (1) and issues the first start command (e.g., STC 12,C) directly to the interface PCA. The DCPC logic is now turned on and the computer program continues with other instructions.

Setting the Control and clearing the Flag flip-flop (2) causes the interface PCA to send a Start signal to the external device (3). The device goes through a read cycle and returns with a data word (4), then a Done signal (5). The Done signal sets the PCA Flag flip-flop which, regardless of priority, immediately instructs the DCPC logic to request an I/O cycle (6) and transfer a word into memory (7). The process now repeats back to the beginning of this paragraph to transfer the next word.

After the specified number of words have been transferred, the interface PCA Control flip-flop is cleared (8) and the DCPC logic generates a completion interrupt (9). The program control is now forced to a completion routine (10), the content of which is the programmer's responsibility.

3-27. DCPC OUTPUT DATA TRANSFER. The components that make up a DCPC output transfer are the same as the DCPC input transfer: DCPC PCA, CPU memory system, CPU PCA, I/O interface PCA, and I/O device. The output transfer, however, identifies a specified block (buffer) of data in memory and transfers it to a specified I/O device.

In the case of most output transfers, full handshake protocol between the I/O interface and the I/O device is observed. This discussion assumes this protocol. Two major operations take place during each DCPC output cycle:

- One 16 bit data word is transferred from memory through the I/O interface and presented to the I/O device's input registers.
- A Device Command, initiated by a STC from the DCPC PCA through the I/O interface, is used as a "start signal" to tell the I/O device to latch the data into its input registers.

As the device completes the latching of each data word (one word per DCPC cycle), it returns a "flag" to the interface which indicates that the output process has been completed and that it is ready to accept another word. The flag from the device initiates the setting of the Flag flipflop on the interface which in turn activates the Service Request (SRQ) signal to the DCPC module, SRQ when sensed by the DCPC, is responsible for initiating a DCPC cycle which transfers one data word. This process continues until the word count register located on the DCPC becomes zero, signaling that the entire specified block of memory data has been transferred to the I/O device. The DCPC communicates this completion condition to the CPU and can be interrogated on a "skip if flag set" basis (SFS 6, or SFS 7). If the interrupt system is enabled, this completion flag from either DCPC channel causes an interrupt to the respective DCPC trap cells (memory loca-

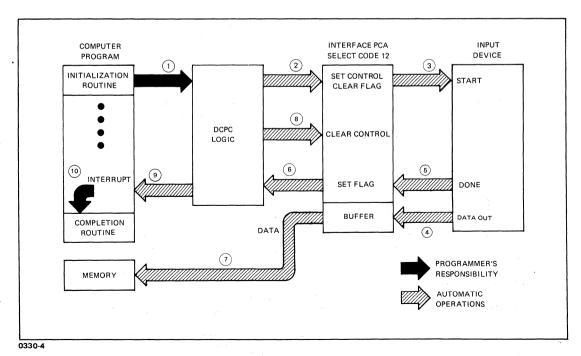


Figure 3-9. DCPC Input Data Transfer

Table 3-4. DCPC Input Initialization Program

LABEL	OPCODE	OPERAND	COMMENTS	
IN	LDA	CW1	Fetches control word 1 (CW1) from memory and loads it in A-register.	
	ОТА	6B	Outputs CW1 to DCPC Channel 1.	
MAR1	CLC	2B	Prepares Memory Address Register to receive control word 2 (CW2).	
	LDA	CW2	Fetches CW2 from memory and loads it in A-register.	
	ОТА	2B	Outputs CW2 to DCPC Channel 1.	
WCR1	STC	2B	Prepares Word Count Register to receive control word 3 (CW3).	
	LDA	СМЗ	Fetches CW3 from memory and loads it in A-register.	
	ОТА	2B	Outputs CW3 to DCPC Channel 1.	
INPUT	STC	10B,C	Start input device.	
	STC	6B,C	Activate DCPC Channel 1.	
	SFS JMP	6B *-1	Wait while data transfer takes place or, if interrupt processing is use continue program.	
	·			
	HLT		Halt	
CW1	ост	120010	Assignment for DCPC Channel 1 (ASGN1); specifies I/O channel select code address (10_B), STC after each word is transferred, and CLC after final word is transferred.	
CW2	ОСТ	100200	Memory Address Register control. DCPC Channel 1 (MAR1); specifies memory input operation and starting memory address (200 ₈).	
CW3	DEC	-50	Word Count Register control. DCPC Channel 1 (WCR1); specifies the 2's complement of the number of character words in the block of data to be transferred (50_{10}).	

tions 6 or 7). The trap cell (memory location) may contain a JSB,I (call) to the desired DCPC Service Routine.

3-28. OUTPUT TRANSFER INITIALIZATION — Method 1. Due to the backward compatable nature of the DCPC option, the timing protocol necessitates that attention be paid to the method of coding the output transfer. As stated previously, there are two major operations involved in the transfer. The STC, which results in the Device Command, is always issued before the data is presented to the device in a DCPC output transfer. There are many methods of output initialization that depend upon the type of I/O device used. Several of these methods are discussed here.

The first method involves the use of a "timing/party line" flip-flop located on the I/O interface PCA. This flip-flop is used to delay the Device Command until the end of the DCPC cycle, allowing the data to be latched into the output registers of the I/O interface and stabilize at the input registers of the I/O device. A jumper located on the HP 12566 and 12930 Interfaces is used to select this flip-flop. If you wish use this method in conjunction with a custom-designed I/O interface, this flip-flop must be included. This method allows for the standard coding illustrated in Table 3-5. Notice that the actual DCPC setup sequence is common to both output and input transfers. A description of the output sequence follows (refer to Table 3-5 and Figure 3-10):

Table 3-5. DCPC Output Initialization Program — Method 1

LABEL	OPCODE	OPERAND	COMMENTS
ASGN2	LDA	CW1	Fetches control word 1 (CW1) from memory and loads it in A-register.
,	ОТА	7B	Outputs CW1 to DCPC Channel 2.
MAR2	CLC	3B	Prepares Memory Address Register to receive control word 2 (CW2).
	LDA	CW2	Fetches CW2 from memory and loads it in A-register.
	ОТА	3B	Outputs CW2 to DCPC Channel 2.
WCR2	STC	3B	Prepares Word Count Register to receive control word 3 (CW3).
	LDA	сwз	Fetches CW3 from memory and loads it in A-register.
	ОТА	3B	Outputs CW3 to DCPC Channel 2.
OUTPT	CLC	11B,C	Turn off the interface (idle the device).
	STF	11B	Assert SRQ to DCPC.
	STC	7B,C	Activate DCPC Channel 2.
	SFS JMP	7B *-1	Wait while data transfer takes place or, if interrupt processing is used, continue program.
•	HLT		Halt
CW1	ост	100011	Assignment for DCPC Channel 2 (ASGN2); specifies I/O channel select code address (11 ₈), STC after each word is transferred, and CLC after final word is transferred.
CW2	ОСТ	000200	Memory Address Register control. DCPC Channel 2 (MAR2); specifies memory output operation and starting memory address (200 ₈).
CW3	DEC	-50	Word Count Register control. DCPC Channel 2 (WCR2); specifies the 2's complement of the number of character words in the block of data to be transferred (50_{10}).

- The common initialization routine sets up the control registers on the DCPC.
- 2. Clear Control (CLC sc) to the interface assures that the Device Command can be asserted and also serves as a method to "idle" the device.
- 3/4. Setting the Flag flip-flop (STF sc) on the interface asserts the SRQ signal to initiate the transfer of the first word. At this time, DCPC has not been enabled by the appropriate instruction, thus SRQ remains active but does not cause an official DCPC cycle to take place. On an output transfer, the initial activation of SRQ through software is the only way to signal DCPC that an I/O device is prepared to receive data. If the STC sc is used, as
- for input transfers, it may cause the I/O device to accept erroneous data which is resident on the I/O interface's output registers at the time.
- 5. Setting the Control flip-flop and clearing the Flag flip-flop (STC sc,C) on the DCPC channel activates the beginning of the output transfer from memory to the I/O device. This allows the previous asserted SRQ to be sampled by the DCPC, then the first DCPC output cycle is requested and started.
- 6. The DCPC hardware initiates a STC sc,C to the interface near the beginning of the DCPC cycle. Since the "timing/party line" flip-flop is being used on the interface, the Device Command is delayed until the end of the cycle.

- 7/8. The data word from memory is latched into the I/O interface output registers and allowed to stabilize on the input registers of the I/O device. This takes place during the middle of the DCPC cycle.
- 9. The Device Command is issued by the combination of the STC sc,C issued earlier, but preserved on the Control flip-flop output which provides the input for the timing/party line flip-flop. The end of the DCPC cycle is used to clock the "timing/party line" flip-flop; the resulting signal is the Device Command.
- 10/11. The Device Command (start) causes the device to latch or take the data that is present on its input lines and returns a Device Flag. The setting of the Flag flip-flop asserts SRQ (4), resulting in the request of another DCPC cycle. Steps 4, 6, 7, 8, 9, 10, and 11 are now repeated under the specific direction of the DCPC hardware until the entire block of data words has been transferred to the I/O device from memory. At this time, the DCPC channel Flag is set thus generating an interrupt (12) and program control is transferred to the user-written completion routine (13). The SFS or SFC instruc-

tions can also be used to test the DCPC channel Flag (select codes 6 or 7) for transfer completion.

3-29. OUTPUT TRANSFER INITIALIZATION — Method 2. The second method should be used when the I/O interface design does not permit the use of a timing/party line flip-flop. In this case the output data is still allowed to stabilize before the Device Command latches the data into the input register of the device, however, the initialization software code is changed.

This method includes the issuing of the data word prior to the Device Command. For example, the data that is latched into the I/O interface output register at DCPC cycle n is latched into the input registers of the I/O device in DCPC cycle n+1. Thus it takes two DCPC cycles to transfer one data word as shown in Figure 3-11. Note that after the initialization of DCPC, memory data word two is valid at the I/O interface during DCPC cycle one, however, the same data is not transferred to the device until the STC command at DCPC cycle two. This type of interleaving scheme allows for standard programming initialization of the DCPC Control Registers such that no loss of time or cycles occurs during the entire DCPC block transfer

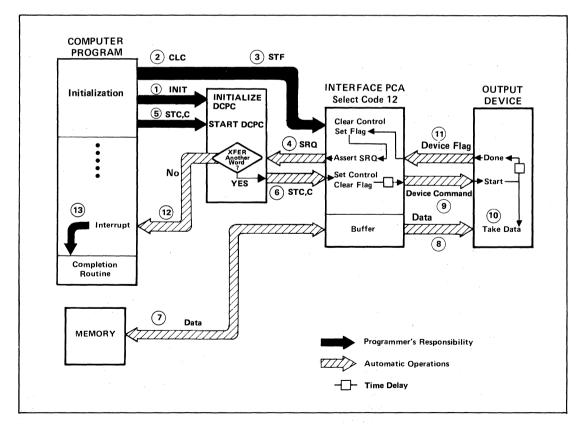


Figure 3-10. DCPC Output Data Transfer — Method 1

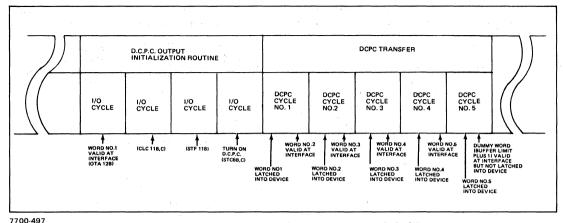


Figure 3-11. Five Word DCPC Output Transfer — Method 2

The software initialization sequence for this method includes a programmed I/O output transfer (OTA sc) to the interface prior to turning on DCPC (Figure 3-11 and Table 3-6). This transfers the first word in the memory buffer to the I/O interface so that the STC command, at the beginning the first DCPC cycle, latches the first word into the device. On the last cycle of the transfer, the STC function is the only valid DCPC operation that occurs. The data word that is issued in the last cycle is not part of the specified memory buffer and is ignored, i.e., this word is never latched into the device since the DCPC word count is zero and the DCPC hardware has stopped further output transfer operations. Care should be taken to ensure that the DCPC control register is initialized to the second word in the block to be transferred since the first word is output via programmed I/O.

3-30. DCPC INITIALIZATION. The information required to initialize the DCPC (transfer direction, memory allocation, I/O channel assignment, and block length) is given by three control words. These three words must be addressed specifically to the DCPC. Figure 3-12 illustrates the format of the three control words. Control word 1 (CW1) identifies the I/O channel to be used and provides two options selectable by the programmer:

Bit 15

1 = give STC (in addition to CLF) to I/O channel at end of each DCPC cycle (except on last cycle, if input)

0 = no STC

Bit 13

1 =give CLC to I/O channel at end of block transfer

0 = no CLC

For DCPC output transfers, the clear control option of Control Word 1 (bit 13 = 1, Figure 3-12) is I/O-card dependent. A condition might exist such that the last data word is not received by the device because the device command is not issued. This can occur if the CLC signal overrides the STC signal (Control Word 1, bit 15 = 1), consequently eliminating device command for the last word transfer. The relationship between the STC signal, the CLC signal, and the device command determines whether the CLC option can be used.

Control word 2 (CW2) gives the starting memory address for the block transfer and bit 15 determines whether data is to go into memory (logic 1) or out of memory (logic 0). Control word 3 (CW3) is the two's complement of the number of words to be transferred into or out of memory (i.e., the block length). This number can be from 1 to 32,768 although it is limited in the practical case by available memory.

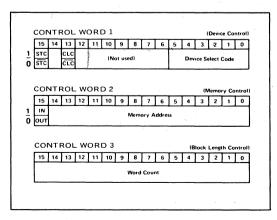


Figure 3-12. DCPC Control Word Formats

Table 3-6. DCPC Output Initialization Program — Method 2

LABEL	OPCODE	OPERAND	COMMENTS	
ASGN2	LDA	CW1	Fetches control word 1 (CW1) from memory and loads it in A-register.	
	ОТА	7B	Outputs CW1 to DCPC Channel 2.	
MAR2	CLC	3B	Prepares Memory Address Register to receive control word 2 (CW2).	
	LDA	CW2	Fetches CW2 from memory and loads it in A-register.	
	ОТА	3B	Outputs CW2 to DCPC Channel 2.	
WCR2	STC	3B	Prepares Word Count Register to receive control word 3 (CW3).	
	LDA	сwз	Fetches CW3 from memory and loads it in A-register.	
	ОТА	3B	Outputs CW3 to DCPC Channel 2.	
OUTPT	LDA	BUF1	Load A-register with first word to be transferred.	
	ОТА	12B	Output first word to I/O interface.	
	CLC	11B,C	Turn off the interface (idle the device).	
	STF	11B	Assert SRQ to DCPC.	
	STC	7B,C	Activate DCPC Channel 2.	
	SFS JMP	7B *−1	Wait while data transfer takes place or, if interrupt processing is used, continue program.	
	HLT		Halt	
CW1	ост	100011	Assignment for DCPC Channel 2 (ASGN2); specifies I/O channel select code address (11 ₈), STC after each word is transferred, and CLC after final word is transferred.	
CW2	ОСТ	000200	Memory Address Register control. DCPC Channel 2 (MAR2); specifies memory output operation and starting memory address (200 ₈).	
CW3	DEC	-50	Word Count Register control. DCPC Channel 2 (WCR2); specifies the 2's complement of the number of character words in the block of data to be transferred (50_{10}).	

Table 3-4 contains the basic program sequence for outputting the control words to the DCPC. As shown in Table 3-4, CLC 2 and STC 2 perform switching functions to prepare the logic for either CW2 or CW3. The device is assumed to be in I/O slot channel 10 and it is also assumed that its start command is STC 10B,C. The sample values of CW1, CW2, and CW3 will read a block of 50 words and store these words in locations 200 through 261 (octal). The STC 06B,C instruction starts the DCPC operation. A flag-status method of detecting the end-of-transfer is used in this example; an interrupt to location 00006 could be

substituted for this test. One important difference should be noted when doing a DCPC input operation from a disc or a drum. Due to the synchronous nature of disc or drum memories and the design of the interface PCA, the order of starting must be reversed from the order given; i.e., start the DCPC first and then start the disc or drum. Table 3-5 illustrates a DCPC output transfer. Select codes 3 and 7 are used in conjunction with a channel 2 transfer. It should be noted that either channel can be used for input or output.

COMPUTER TIMING

IV

This section contains a general discussion of the HP 1000 Computers' timing schemes. Different timing schemes are employed by the HP 1000 M-Series and HP 1000 E/F-Series Computers and will, therefore, be discussed separately in the following paragraphs. Since timing for all computers is derived from a crystal-controlled oscillator in the control processor, a basic knowledge of control processor timing is required to fully understand I/O Section timing. Timing cycles for the control processor are different from the timing cycles for other computer sections and these sections operate asynchronously until they must communicate with each other. Then, the control processor will inhibit (freeze) its operations until it is synchronized with the applicable computer section.

4-1. CONTROL PROCESSOR TIMING (HP 1000 M-SERIES)

A timing configuration diagram for the HP 1000 M-Series Computer is contained in Figure 4-1. As shown, control processor timing is derived from an 18.5-MHz crystalcontrolled oscillator that clocks a three-stage ring counter approximately every 54 nanoseconds. The counter consists of a PA flip-flop (PA FF), PB flip-flop (PB FF), and PC flip-flop (PC FF) whose states are decoded to provide six 54-nanosecond periods designated P0, P1, P2, P3, P4, and P5 as shown in Figure 4-2. These six P-periods comprise one control processor cycle (one microcycle) and represent the time duration (325 nanoseconds) required by the computer to execute one microinstruction. Some decoded timing signals are continuous-running and others can be frozen by the control processor Freeze flip-flop. (The timing signals that can be frozen are designated in Figure 4-2.) If the execution of a microinstruction is dependent on synchronization between the control processor and some other computer section, the control processor will freeze certain clock signals to prevent execution of the microinstruction until the required synchronization has been completed. A freeze inhibits designated clock signals from the end of one P2 period to the end of the next P2 period. (Only one freeze signal can be issued per microcycle.) A freeze signal performs the following functions:

- a. Prevents alteration of Arithmetic/Logic Section registers.
- b. Prevents alteration of Read-Only-Memory (ROM) Instruction Register or ROM Address Register.
- c. Prevents loading of Central Interrupt Register.
- d. Prevents alteration of Overflow, Extend, and Flag flip-flops.

- e. Isolates the control processor from the S-Bus.
- Prevents the control processor from sending Read or Write signals to the Memory Section.
- g. Prevents obtaining of data from the Memory Section.
- h. Prevents initiation of an I/O cycle.

Although there are various conditions that determine if a freeze is required, only those conditions that affect the I/O Section will be discussed. There are two conditions when synchronous operation between the I/O Section and the control processor is required: (1) to clock the select code of the interrupting device into the Central Interrupt Register in order to issue an Interrupt Acknowledge (IAK) signal to the I/O interface PCA and (2) when the computer is ready to execute an I/O instruction. To issue an IAK signal, an internal Central Interrupt Register Enable (CIREN) signal is generated which initiates the freeze condition, clocks the Central Interrupt Register, and causes the generation of the IAK signal. The trailing edge of T6 from the I/O Section removes the freeze condition and terminates the IAK signal. Prior to the execution of an I/O instruction, an internal I/O Group Special (IOGSP) signal is generated which initiates the freeze condition. The trailing edge of T2 from the I/O Section terminates this freeze condition. Figure 4-2 illustrates the effect of a freeze condition on control processor clock generation.

4-2. CONTROL PROCESSOR TIMING (HP 1000 E- AND F-SERIES)

A timing configuration diagram for the HP 1000 E/F-Series Computer is shown in Figure 4-3. As shown, control processor timing is derived from a 28.5-MHz crystal-controlled oscillator that clocks a three-stage Gray counter every 35 nanoseconds. The counter is decoded from a PA FF, PB FF, and PC FF to provide either five or eight 35-nanosecond periods designated P1, P2, P3, E1, E2, E3, P4, and P5 as shown in Figure 4-4. These periods comprise one microcycle and represent the time duration (175 or 280 nanoseconds) required by the computer to execute one microinstruction. The HP 1000 E/F-Series Computers make use of variable-length microcycles and, because the I/O Section T-periods are also variable between non-IOG cycles, no attempt should be made to use I/O Section backplane signals as basic clocks.

The shortest time duration required to execute a microinstruction is 175 nanoseconds and is termed a short microcycle. (The short microcycle is the time duration for

which the Arithmetic/Logic Section is designed to operate.) When the SHORT signal (Figure 4-3) is low, the three-stage Gray code counter and decoder generates five 35-nanosecond periods designated P1, P2, P3, P4, and P5.

Since the HP 1000 E/F-Series Computer is user microprogrammable and since certain I/O interface PCA's may not be able to function properly with a control processor cycle time of less than 190 nanoseconds, during the execution of an I/O instruction, the control processor cycle time is extended to a duration of 280 nanoseconds which is termed a long microcycle. Control memory has an access time of approximately 140 nanoseconds worst case and the Control Section's Memory Address register is loaded only at the control processor cycle time period P3. Therefore, if a branch microinstruction is to be executed, only two con-

trol processor cycle time periods (P4 and P5) would remain to access memory during a short microcycle which is an insufficient amount of time. Hence, whenever a branch microinstruction is to be executed, an internal MICRO-BRANCH signal (Figure 4-3) is generated which in turn, at time P3, generates a high SHORT signal. When the SHORT signal is high, the three-stage Gray counter and decoder generates eight 35-nanosecond periods. The 35nanosecond extend periods are designated E1, E2, and E3. Once the branch microinstruction is executed, the MICRO-BRANCH signal is terminated, the SHORT signal goes low, and the control processor cycle returns to the five-period cycle of P1 through P5. To ensure that all I/O interface PCA's have sufficient time to function properly. a high I/O Group Enable flip-flop (IOGEN FF) signal is generated during I/O operations to set the SHORT signal

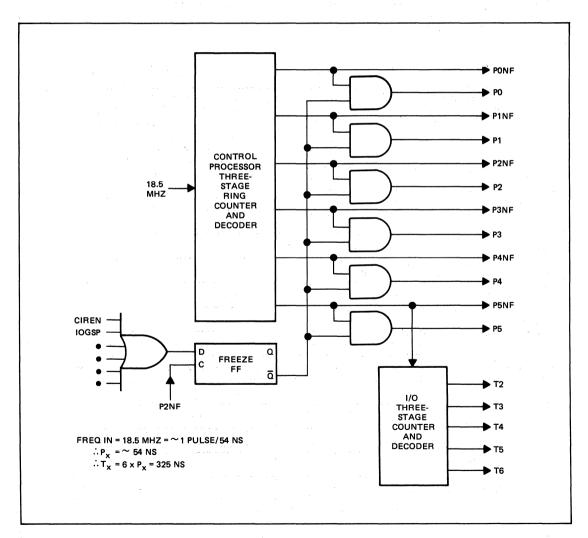


Figure 4-1. HP 1000 M-Series Computer Timing Configuration

high which, in turn, causes the three-stage Gray counter and decoder to divide by eight and produce a long microcycle of 280 nanoseconds (P1, P2, P3, E1, E2, E3, P4, and P5).

Like the HP 1000 M-Series Computers, the HP 1000 E/F-Series Computer control processor will freeze certain clock signals to prevent execution of a microinstruction until the required synchronization between the control processor and the applicable computer section has been accomplished. A freeze inhibits designated clock signals from the end of one P1 period to the end of the next P1 period. Figure 4-4 illustrates the effect of a freeze condition on control processor clock generation. Only one freeze condition can be issued per microcycle. A freeze signal performs the functions listed in paragraph 4-1(a) through

4-1(h). Although various conditions determine if a freeze is required, only those conditions that affect the I/O Section will be discussed. There are two conditions when synchronous operation between the control processor and the I/O Section is required: (1) to clock the Central Interrupt Register in order to issue an IAK signal to an I/O interface PCA and (2) when the computer is ready to execute an I/O instruction. To issue an IAK signal, an internal Interrupt Acknowledge Special (IAKSP) signal is generated which initiates the freeze condition (Figure 4-3), clocks the Central Interrupt Register, and causes the generation of the IAK signal. The trailing edge of T6 from the I/O Section removes the freeze condition and terminates the IAK signal. Prior to the execution of an I/O instruction, an internal IOGSP signal is generated which initiates the freeze condition. The trailing edge of T2 from the I/O Section terminates this freeze condition.

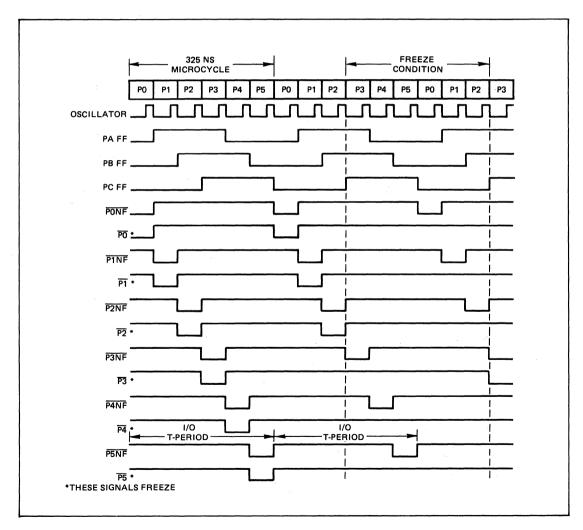


Figure 4-2. HP 1000 M-Series Control Processor Timing Diagram

In addition to the freeze condition, the HP 1000 E/F-Series Computers also employ a "pause" feature to suspend control processor timing. This feature permits asynchronous interface operations with memory. When the PAUSE signal (Figure 4-3) is high, the three-stage Gray counter and decoder operates as previously discussed. Whenever the PAUSE signal is low, however, a pause condition occurs and the microcycle is suspended at P3 period until the PAUSE signal again goes high. For example, if memory is busy (MBUSY signal high) and either the CPU or DCPC requests another memory operation, the PAUSE signal will go low at the next P3 period and the microcycle will be suspended at P3 until the memory is no longer busy and

the MBUSY signal goes low. When MBUSY goes low, the PAUSE signal goes high and the microcycle will advance to either P4 or E1 period depending on the logic level of the SHORT signal as previously discussed. Therefore, as shown in Figure 4-4, a long microcycle duration can randomly vary from 280 to 630 nanoseconds and cannot be predicted unless the precise state of the computer is known (i.e., memory cycle time, memory operation, etc.). (It should be noted that during the execution of an I/O instruction, internal computer design guarantees a long microcycle duration of 280 nanoseconds for I/O periods T3, T4, and T5.)

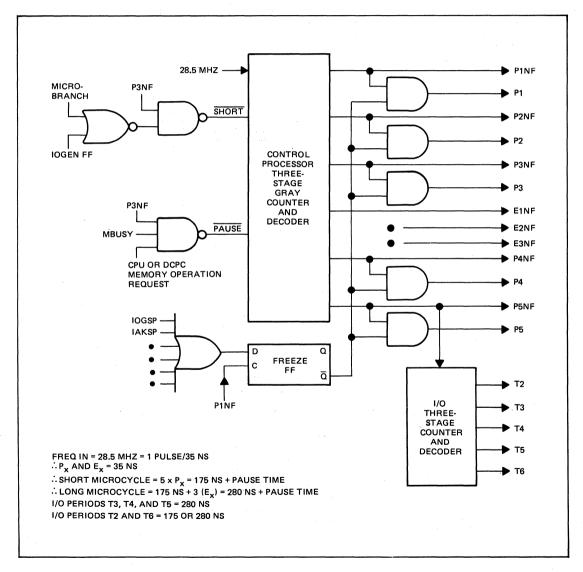


Figure 4-3. HP 1000 E/F-Series Computer Timing Configuration

4-3. I/O SECTION TIMING

As shown in Figures 4-1 through 4-4, I/O Section timing is derived from the control processor basic clock P5 nonfreezable period (P5NF) that clocks the I/O three-stage counter and decoder. The counter is decoded from a TA flip-flop (TA FF), TB flip-flop (TB FF), and TC flip-flop (TC FF) to provide five T-periods designated T2, T3, T4, T5 and T6. These five T-periods comprise one I/O cycle and represent the required time to generate all the I/O signals that are required to execute an I/O instruction. For HP 1000 M-Series Computers, all T-periods are 325 nanoseconds and therefore, the duration of one I/O cycle is always 1.625

microseconds. For HP 1000 E/F-Series Computers, T-periods T3 through T5 are 280 nanoseconds each and T2 and T6 are either 175 or 280 nanoseconds. Therefore the duration of one E/F-Series I/O cycle is from 1.19 to 1.40 microseconds. Since all computer I/O cycles begin with T2 and end with T6, and since no I/O commands are generated at time T6 except Interrupt Acknowledge (IAK), the different I/O cycle time durations do not affect I/O compatibility between the HP 1000 M-Series and HP 1000 E/F-Series Computers or with existing HP 2100 Series interfaces. When an I/O cycle occurs, the various I/O signals are generated at the T-period times illustrated in Figure 4-5. Table 4-1 briefly defines all I/O signal

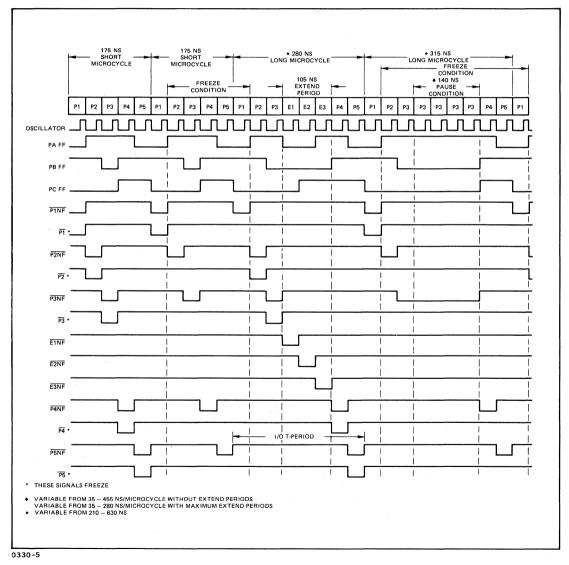


Figure 4-4. HP 1000 E/F-Series Control Processor Timing Diagram

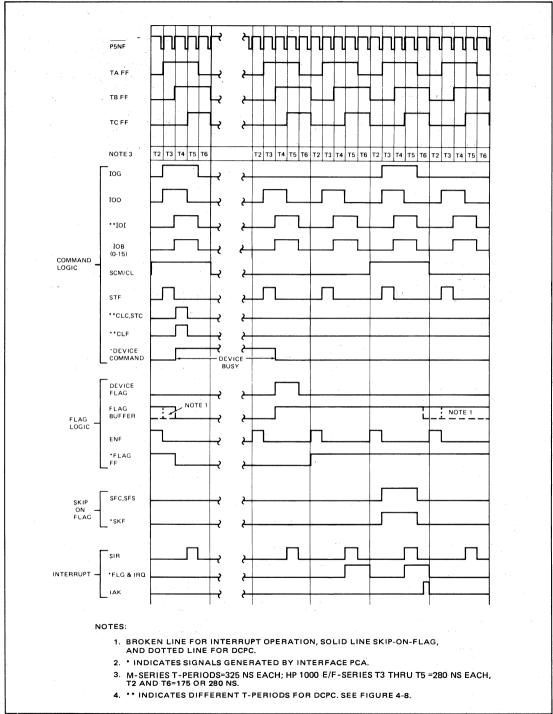


Table 4-1A. I/O Signal Definitions and Connector Pin Assignments (Numerical)

Ground Priority Low Skip if Flag is Clear Clear (reset) Flag flip-flop Set Flag flip-flop	2 4	ł	
Skip if Flag is Clear Clear (reset) Flag flip-flop Set Flag flip-flop		GND:	Ground
Clear (reset) Flag flip-flop Set Flag flip-flop		FLGL:	Flag signal, Lower Select Code
Set Flag flip-flop	6	IRQL:	Interrupt Request, Lower Select Code
Set Flag flip-flop	8	IEN:	Interrupt Enable
	10	IAK:	Interrupt Acknowledge
I/O time natical TO	12	SKF:	Skip on Flag
I/O time period T3	14		Select Code Most Significant Digit
Control Reset	14	SCM:	(Lower Address)
I/O Group	16	SCL:	Select Code Least Significant Digit
			(Lower Address)
Power On Preset to I/O	18	IOB16:	I/O Bus input, bit 16
	40	BIOG	(M-Series only)
	18	BIOS:	"Not" Block I/O Strobe
	1		(E-Series only)
Service Request	20	100:	I/O data Output signal
Clear (reset) Control flip-flop	22	STC:	Set Control flip-flop
Priority High	24	IOI:	I/O data Input signal
Skip if Flag is Set	26	IOB0:	I/O Bus input, bit 0
I/O Bus input, bit 8	28	IOB9:	I/O Bus input, bit 9
I/O Bus input, bit 1	30	IOB2:	I/O Bus input bit 2
: I/O Bus input, bit 10	32	SIR:	Set Interrupt Request
Interrupt Request,	34	SCL:	Select Code Least Significant Digit
Higher Select Code		. 001/	(Higher Address)
I/O Bus output, bit 0	36	+28V	10.5
Select Code Most Significant Digit (Higher Address)	38	IOB1:	I/O Bus output, bit 1
,	40	+5V	
I/O Bus output, bit 2	42	IOB4:	I/O Bus output, bit 4
,	44	+12V	,
I/O Bus output, bit 3	46	ENF:	Enable Flag
,, o = 30 03. p 3., 5., o	48	-2V	g
Flag signal, Higher Select Code	50	RUN:	Run
I/O Bus output, bit 5	52	IOB7:	I/O Bus output, bit 7
I/O Bus output, bit 6	54	IOB8:	I/O Bus output, bit 8
: I/O Bus output, bit 11	56	IOB0:	I/O Bus output, bit 9
: I/O Bus output, bit 12	58	IOB3.	I/O Bus output, bit 10
sed	60	IOB10.	I/O Bus input, bit 11
	62	EDT:	End Data Transfer (DCPC)
. ,		1	
sed : I/O Bus output, bit 14	64 66	IOB3: PON:	I/O Bus input, bit 3 Power On Normal
	l l		Power On Normal
sed (M-Series only) "Not" Block I/O Output	68	Not Used	
(E-Series only)		1	
	70	-12V	
sed	72	Not Used	
Skip if Flag is Set Buffered (M-Series only)	74	IOB15:	I/O Bus output, bit 15
"Not" Block I/O Input			
sed	76	Not Used	
	li .		I/O Bus input, bit 12
: I/O Bus input, bit 13	80	IOB12.	I/O Bus input, bit 5
sec	Skip if Flag is Set Buffered (M-Series only) "Not" Block I/O Input (E-Series only) I/O Bus input, bit 4	Skip if Flag is Set Buffered 72 Skip if Flag is Set Buffered 74 (M-Series only) 74 (E-Series only) 76 I/O Bus input, bit 4 78	Skip if Flag is Set Buffered (M-Series only) "Not" Block I/O Input (E-Series only) I

Table 4-1A. I/O Signal Definitions and Connector Pin Assignments (Numerical) (Continued)

PIN NO. (ODD)	SIGNAL MNEMONIC AND DEFINITION	PIN NO. (EVEN)	SIGNAL MNEMONIC AND DEFINITION
81	IOB6: I/O Bus input, bit 6	82	IOB14: I/O Bus input, bit 14
83	IOB15: I/O Bus input, bit 15	84	IOB7: I/O Bus input, bit 7
85	GND: Ground	86	GND: Ground

Notes:

- 1. The following pins are connected together in pairs on each I/O backplane connector: 1 and 2; 39 and 40; 43 and 44; 47 and 48; 69 and 70; and 85 and 86.
- 2. Corresponding IOB bit lines are connected together on each I/O backplane connector (i.e., pins 26 and 35 are connected together, pins 29 and 38 are connected together, etc.).
- Refer to Section VI of this manual for additional information on the block I/O signals on connector pins 18, 67, and 73.
- 4. Refer to Appendix B of this manual for more detailed signal descriptions.

Table 4-1B. I/O Signal Pin Assignments (Alphabetical)

PIN NO.		SIGNAL MNEMONIC AND DEFINITION	PIN NO.		SIGNAL MNEMONIC AND DEFINITION
67	BIOI:	"Not" Block I/O Input	35	IOB0:	I/O Bus Output, bit 0
		(HP 1000 E- and F-Series only)	38	IOB1:	I/O Bus Output, bit 1
73	BIOO:	"Not" Block I/O Output	41	IOB2:	I/O Bus Output, bit 2
		(HP 1000 E- and F-Series only)	45	IOB3:	I/O Bus Output, bit 3
18	BIOS:	"Not" Block I/O Strobe	42	IOB4:	I/O Bus Output, bit 4
		(HP 1000 E- and F-Series only)	51	IOB5:	I/O Bus Output, bit 5
21	CLC:	Clear (reset) Control flip-flop	- 53	IOB6:	I/O Bus Output, bit 6
7	CLF:	Clear (reset) Flag flip-flop	52	IOB7:	I/O Bus Output, bit 7
13	CRS:	Control Reset	54	IOB8:	I/O Bus Output, bit 8
62	EDT:	End Data Transfer	56	IOB9:	I/O Bus Output, bit 9
46	ENF:	Enable Flag	58	IOB10:	I/O Bus Output, bit 10
49	FLGH:	Flag Signal, Higher Select Code			
4	FLGL:	Flag Signal, Lower Select Code	60	IOB11:	I/O Bus Output, bit 11
10	IAK:	Interrupt Acknowledge	57	IOB12:	I/O Bus Output, bit 12
8	IEN:	Interrupt Enable	61	IOB13:	I/O Bus Output, bit 13
26	IOB0:	I/O Bus Input, bit 0	65	IOB14:	I/O Bus Output, bit 14
29	IOB1:	I/O Bus Input, bit 1	74	IOB15:	I/O Bus Output, bit 15
30	IOB2:	I/O Bus Input, bit 2	15	IOG:	I/O Group
64	IOB3:	I/O Bus Input, bit 3	24	IOI:	I/O Data Input Signal
77	IOB4:	I/O Bus Input, bit 4	20	100:	I/O Data Output Signal
80	IOB5:	I/O Bus Input, bit 5	33	IRQH:	Interrupt Request, Higher
81	IOB6:	I/O Bus Input, bit 6			Select Code
84	IOB7:	I/O Bus Input, bit 7	6	IRQL:	Interrupt Request, Lower
27	IOB8:	I/O Bus Input, bit 8		1	Select Code
28	IOB9:	I/O Bus Input, bit 9	66	PON:	Power On Normal
31	IOB10:	I/O Bus Input, bit 10	17	POPIO:	Power On Preset to I/O
60	IOB11:	I/O Bus Input, bit 11	23	PRH:	Priority High
78	IOB12:	I/O Bus Input, bit 12	3	PRL:	Priority Low
79	IOB13:	I/O Bus Input, bit 13	50	RUN:	Run
82	IOB14:	I/O Bus Input, bit 14	16	SCL:	Select Code Least Significant
83	IOB15:	I/O Bus Input, bit 15]	1	Digit (Lower Address)
18	IOB16:	I/O Bus Input, bit 16	34	SCL:	Select Code Least Significant
		(HP 1000 M-Series only)			Digit (Higher Address)

PIN NO.	SIGNAL MNEMONIC AND DEFINITION		PIN NO.		SIGNAL MNEMONIC AND DEFINITION
14	SCM:	Select Code Most Significant	9	STF:	Set Flag flip-flop
		Digit (Lower Address)	11	T3:	I/O Time Period T3
37	SCM:	Select Code Most Significant	1,2,85,86	GND:	Ground
	1	Digit (Higher Address)	69,70	-12V	
5	SFC:	Skip if Flag is Clear	47,48	-2V	
25	SFS:	Skip if Flag is Set	39,40	+5V	
73	SFSB:	Sip if Flag is Set Buffered	43,44	+12V	
32	SIR:	Set Interrupt Request	36	+28V	
12	SKF:	Skip on Flag	59,63,68,		
19	SRQ:	Service Request	71,72,75,	Not Use	d .
22	STC:	Set Control flip-flop	76		

Table 4-1B. I/O Signal Pin Assignments (Alphabetical) (Continued)

mnemonics and identifies I/O connector pin number assignments for each signal. A more detailed description of the I/O signals is contained in Appendix B of this manual. (It should be noted that any individual interface PCA may not necessarily use all the signals listed in Table 4-1.) Interface PCA designers should also note that three T-periods (T2, T3, and T5) are buffered directly onto the I/O backplane and are unconditionally generated on backplane connector pin numbers 46, 11, and 32 respectively, once every I/O cycle. Period T2, renamed Enable Flag (ENF), is used to set interface PCA Flag flip-flops synchronously to begin interrupt priority resolution which ensures that no flag is set in the middle of some other I/O operation. Flags are to be set only during period T2 prior to generating I/O control signals. Period T5, renamed Set Interrupt Request (SIR), is used to set the Interrupt Request flip-flop on the interface PCA with the highest priority that is ready to interrupt.

4-4. TYPICAL APPLICATION

As an aid toward a better understanding of how the I/O Section timing scheme works, a typical application using the HP 12597A 8-Bit Duplex Register Interface PCA will be discussed in the following paragraphs. (A more detailed discussion of interface PCA basic element requirements and how to design your own interface PCA is contained in Section V.) As shown in Figure 4-6, the 8-bit duplex register interface PCA contains both input and output buffer storage for up to eight bits of control information, command information, or data. It also contains control logic to provide start and/or stop commands to the I/O device and flag logic to signal the computer when the I/O device is ready to perform its function.

4-5. SAMPLE PROGRAMS


Tables 4-2 and 4-3 contain sample programs that illustrate methods of programming the interface PCA using

assembly language subroutines. (To satisfy the addressing requirements discussed in Section III, the interface PCA is arbitrarily assigned the select code of 15 octal.) The sample programs are designed only to exercise the interface PCA functions and do not apply to any specific I/O device. Table 4-2 provides sample programs for input and output operations. Table 4-3 provides a sample program for a combined input and output operation. (The use of a control word to the device and a status word from the device in Table 4-3 is for example purposes only. Data can be substituted in place of the control and/or status words without changing the programming techniques.)

4-6. FUNCTIONAL OPERATION

A flowchart illustrating the functional operation of the interface PCA during a typical I/O operation is contained in Figure 4-7. The programmed instructions shown on the flowchart are basically the same as those used in the combined I/O sample program contained in Table 4-3. The sequence of events illustrated in Figure 4-7 is as follows:

- Data or control information is transferred from the computer's A-register to the interface PCA's output data register.
- b. The I/O device is commanded to accept the data or control information and perform its function.
- c. The computer waits for the I/O device to complete its operation.
- d. The I/O device transfers a status word or data to the interface PCA's input data register and signals that its operation is complete.
- e. The status word or data is transferred from the interface PCA's input data register to the computer's B-register.

0330-7

Figure 4-6. Duplex Register Interface PCA Simplified Logic Diagram

Table 4-2. Sample Input and Output Programs

```
0001
                     ASMB, A, B, L, T
0002*
0003 00100
                           DRG 100B
                    START NOP
0004
      00100 000000
0005*
0006*
       THE FOLLOWING ROUTINES ARE SAMPLES TO SHOW THE OPERATION OF THE
       8-BIT DUPLEX REGISTER GENERAL PURPOSE INTERFACE. THE INTERFACE
0007*
       HAS BEEN ARBITRARILY ASSIGNED A SELECT CODE OF 15 OCTAL.
*8000
0009*
0010*
            INPUT ROUTINE
                              THIS ROUTINE WILL START THE DEVICE, WAIT
                              FOR THE DEVICE TO SUPPLY ONE 8-BIT WORD,
0011*
0012*
                              AND PUT THAT WORD INTO THE COMPUTER'S
0013*
                              A-REGISTER.
0014*
0015
      00101 000000
                     INPT
                           NOP
                                         ENTRY POINT.
                           STC 15B,C
0016
      00102 103715
                                        START DEVICE AND ENABLE FLAG LOGIC.
0017
      00103 102315
                           SFS 15B
                                        HAS DEVICE SUPPLIED A WORD?
0018
      00104 024103
                           JMP *-1
                                        NO. WAIT.
      00105 102515
0019
                           LIA 15B
                                        YES. PUT WORD IN A-REGISTER.
0020
      00106 124101
                           JMP INPT.I
                                        EXIT.
0021*
0022*
0023*
            OUTPUT ROUTINE THIS ROUTINE WILL WAIT FOR THE DEVICE TO
0024*
                              SIGNAL THAT IT IS NOT BUSY, TRANSFER AN
0025*
                              8-BIT WORD FROM THE A-REGISTER TO THE
0026*
                              DEVICE, AND START THE DEVICE.
0027*
0028
      00107 000000 DUTPT NOP
                                        ENTRY POINT.
0029
      00110 102315
                           SFS 15B
                                         IS DEVICE READY?
0030
      00111 024110
                           JMP *-1
                                        NO. WAIT.
0031
      00112 102615
                           OTA 15B
                                        YES. PUT WORD IN OUTPUT REGISTER.
0032
      00113 103715
                           STC 15B,C
                                        START DEVICE AND ENABLE FLAG LOGIC.
0033
      00114 124107
                           JMP DUTPT, I EXIT.
0034*
0035*
0036
                           END START
   NO ERRORS*
```

Table 4-3. Sample Combined I/O Programs

```
0001
                     ASMB, A, B, L, T
0002*
0003
      00100
                            DRG 100B
      00100 000000
0004
                    START NOP
0005*
0006*
       THE FOLLOWING ROUTINE IS A SAMPLE TO SHOW COMBINED INPUT/DUTPUT
0007*
       CAPABILITIES OF THE 8-BIT DUPLEX REGISTER INTERFACE. THE
*8000
       INTERFACE HAS BEEN ARBITRARILY ASSIGNED A SELECT CODE OF 15 OCTAL.
0009*
0010*
            THIS ROUTINE WILL TRANSFER AN 8-BIT CONTROL WORD FROM THE
            A-REGISTER TO THE DEVICE, START THE DEVICE, AND TRANSFER AN
0011*
0012*
            8-BIT STATUS WORD FROM THE DEVICE TO THE B-REGISTER WHEN
0013*
            THE DEVICE OPERATION IS COMPLETE.
0014*
0015*
0016 00101 000000
                            NOP
                                       ENTRY POINT.
                                       PUT CONTROL WORD IN OUTPUT REGISTER.
0017
      00102 102615
                           OTA 15B
     00103 103715
                            STC 15B,C
                                       START DEVICE AND ENABLE FLAG LOGIC.
0018
0019
     00104 102315
                           SFS 15B
                                       IS DEVICE OPERATION COMPLETE?
                                       NO. WAIT.
0020
     00105 024104
                           JMP *-1
                                       YES. PUT STATUS WORD IN B-REGISTER.
0021
      00106 106515
                           LIB 15B
0022
      00107 124101
                           JMP I/0,I
                                       FXIT.
0023*
0024*
0025
                           END START
** NO ERRORS*
```

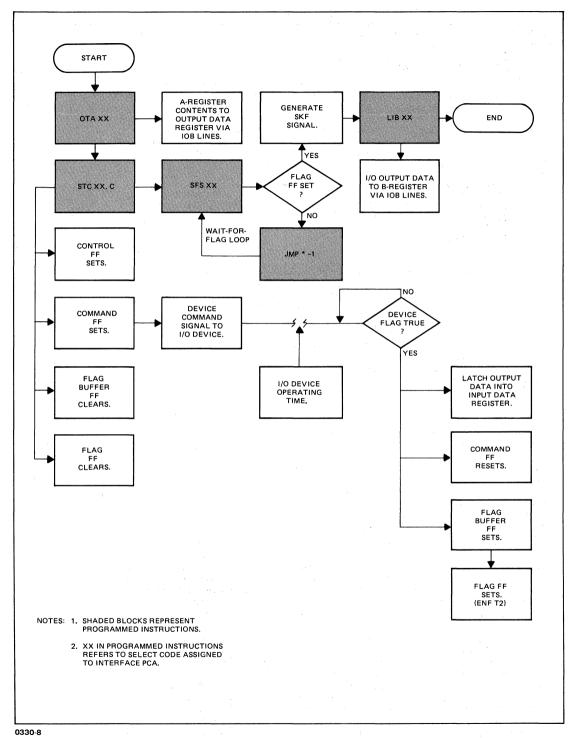


Figure 4-7. Interface PCA Functional Operation Flowchart

INPUT OPERATIONS. A combined STC and 4-7. CLF instruction (STC XX,C) from the computer addressed to the select code of the interface PCA initiates the input of an 8-bit data or status word from the I/O device. As a result of this instruction, the interface PCA receives the IOG, SCM, SCL, STC, and CLF signals at the times specified in Figures 4-5 and 4-6. As shown in Figure 4-6, the STC signal sets the Command flip-flop which applies a Device Command (start) signal to the I/O device to initiate its input operation. Simultaneously, the CLF signal resets the Flag flip-flop to prevent an interrupt signal from being sent to the computer before the I/O device has transferred data to the interface PCA. (A detailed discussion of required flag and interrupt circuits is contained in Section V.)

When the I/O device is ready to transfer data to the interface PCA, it generates a Device Flag (done) signal which resets the Command flip-flop, sets the Flag flip-flop, and latches the eight bits of Output Data into the input data register. The timing of the flag logic at this point is dependent on the timing of the I/O device and is not related to the computer's I/O Section timing. The ENF signal generated by the computer every I/O cycle at time T2 is combined with an output signal from the interface PCA's Flag Buffer flip-flop to set the Flag flip-flop. This action synchronizes the effect of the Device Flag signal by allowing the Flag flip-flop to be set only at time T2. When the Flag flip-flop is set, the interface PCA flag logic generates the SKF signal that indicates to the computer that the I/O device has completed its operation and that the Output Data is in the input data register waiting to be transferred into the computer.

If the computer is programmed to wait for the Flag flip-flop to be set (e.g., an SFS instruction followed by a JMP*-1 instruction), the resulting SFS signal gated with the set output of the Flag flip-flop generates the SKF signal as shown in Figure 4-6. It should be noted that the SKF signal can also be generated when the Flag flip-flop is reset by programming an SFC instruction. Either way, the state of the Flag flip-flop is monitored and the computer must be programmed accordingly.

If the computer interrupt system has been enabled by a programmed STF 00 instruction as listed in Table 4-4, the computer can be doing work in the program rather than waiting for the Flag flip-flop to be set. Then, when the I/O device completes its operation (Flag flip-flop set), the IEN signal is true, the Control flip-flop is set, and no device with a higher priority has requested an interrupt (the PRH signal is true), the interface PCA's IRQ flip-flop will be set at the following T5 time (SIR) which generates the FLG and IRQ signals. These signals are used by the computer to generate an interrupt request signal. After the interrupt is initiated, the next T2 time (ENF) resets the IRQ flip-flop and, if the PRH signal is still true, the following T5 time (SIR) sets it again. This time the resulting FLG and IRQ signals are used by the computer to encode the interrupt address. The interrupt address is stored in the memory address register and the IAK signal resets the interface PCA Flag Buffer flip-flop. The ENF signal resets

the IRQ flip-flop. The Flag flip-flop remains set to inhibit lower priority interrupts by providing a false PRL signal. The next I/O cycle is controlled by the instruction stored at the interrupt location in computer memory. A CLF instruction must be programmed to reset the Flag flip-flop and enable lower priority interrupts just before leaving the interrupt subroutine.

As previously discussed, the Device Flag signal latches the Output Data from the I/O device into the input data register and the interface PCA logic generates the required signals to indicate to the computer that the information is waiting to be transferred. The computer will now accept the data from the input data register by outputting a programmed LIA, LIB, MIA, or MIB instruction addressed to the select code of the interface PCA. As a result of any one of these instructions, the IOG, SCM, and SCL signals are again applied to the interface PCA along with the IOI signal. The IOI signal gates the contents of the input data register onto data lines IOB0 through IOB7 and into the computer via the I/O bus. This completes one input operation with the 8-bit data or status word supplied by the I/O device now stored in the A- or B-register.

4-8. OUTPUT OPERATIONS. Output operations are essentially the same as input operations as far as the interface PCA is concerned. The primary differences are in the sequence of events and the use of the output data register instead of the input data register. Output operations require that the Flag flip-flop first be checked to ensure that the I/O device is not busy from some previous operation. The Flag flip-flop can be monitored by the SKF signal (interrupt system not enabled), or by the FLG and IRQ signals (interrupt system enabled) in the same manner as during input operations. If the I/O device is busy, the output operation must wait until the I/O device finishes and sets the Flag flip-flop as previously discussed.

After the computer has determined that the I/O device is not busy, the output operation can be initiated by either a programmed OTA or OTB instruction addressed to the select code of the interface PCA. As a result of either of these instructions, the IOG, SCM, and SCL signals are applied to the interface PCA along with the IOO signal which latches the 8-bit data or control word from data lines IOB0 through IOB7 into the output data register. The computer program must now issue a combined STC, CLF instruction (STC XX,C) to the interface PCA. The STC instruction sets the Command flip-flop which applies the Device Command signal to the I/O device indicating that data is available for transfer. The STC instruction also sets the Control flip-flop which provides the enabling signal for the interrupt control logic. The CLF instruction resets the Flag flip-flop to prevent an interrupt signal from being sent to the computer before the I/O device has accepted the data from the output data register and performed its operations. When the I/O device finishes, it returns the Device Flag signal to the interface PCA and sets the Flag flip-flop; the interface PCA then initiates an interrupt signal to the computer indicating that the I/O device is ready to accept additional information as previously discussed. This completes the output operation.

Table 4-4. Interrupt-Method Input Routine

INSTRUCTION	FUNCTION			
STF 00 Enables interrupt system.				
STC SC,C	Clears interface PCA's Flag flip-flop and starts I/O device operation.			
JMP	JMP Initiates jump to a different subroutine or program.			
When a program interrup the I/O subroutine listed	cocurs, a JSB,I instruction in the trap cell produces a program jump to the remainder of below.	· .		
NOP	Entry point.			
LIA SC Transfers data from interface PCA into A-register.				
STA XX Transfers data from A-register into memory. (XX denotes assigned memory storage location.)				

DUAL-CHANNEL PORT CON-4-9. TROLLER (DCPC) TIMING

As discussed in Section III, the DCPC allows the user to initiate high-speed block word transfers between selected I/O devices and memory. The DCPC then controls the I/O device during the transfers, stealing memory and I/O cycles from the CPU, but not requiring CPU intervention until completion of the transfer. The DCPC is capable of stealing every consecutive I/O cycle. When the DCPC is operating, it takes priority over the CPU for both memory accesses and control of the I/O Section by generating all appropriate I/O signals. The CPU may not access memory or initiate an I/O cycle during a DCPC cycle. The DCPC data transfers are initiated by an initialization routine and then hardware controls the transfers automatically. No additional programming other than that discussed in Section III is required. Although the DCPC is designed to operate with I/O devices capable of handling high-speed data transmissions, it should be noted that it can be used with slower-speed devices if it is desirable to free these devices from program control.

DCPC timing is derived from the control processor crystal-controlled oscillator and is decoded into five T-periods designated T2, T3, T4, T5, and T6. These five T-periods comprise one DCPC cycle as shown in Figure 4-8. (For HP 1000 M-Series Computers, the duration of one DCPC cycle is 1.625 microseconds. For HP 1000 E/F-Series Computers, the duration of one DCPC cycle is typically from 0.875 to 1.16 microseconds.) Figure 4-8 provides a timing diagram for the DCPC during a DCPC cycle. The timing diagram shows both input and output control signals, but it should be noted that the operations require separate initialization routines as discussed in Section III. It should also be noted that some of the DCPC generated I/O instruction T-period times differ from standard I/O instruction times. (See Figure 4-5.) In addition to I/O instruction signals, Figure 4-8 also shows DCPC generated signals that prevent interference by the CPU and that help control data transfers when the DCPC is stealing I/O cycles. The definition and purpose of these signals are as follows:

SRQ:	"Service Request". Used to notify com-
	puter that the I/O device is ready for a
	data transfer. Initiates DCPC cycle and
	prevents any further processing of pro-
	grammed instructions by the computer

until the DCPC cycle is complete.

DMAIOI: "Direct Memory Access I/O Input". Used to gate data on the I/O bus onto the S-bus

during a DCPC input transfer.

IOG: "I/O Group". Used to enable DMA select code onto select code bus and indicates a "true" I/O instruction to the I/O

interface.

"I/O Data Input". Used to gate data from IOI: the interface PCA onto the I/O bus dur-

ing a DCPC input transfer.

DMALCH: "Direct Memory Access Latch". Used to hold data on the I/O bus through the completion of a DCPC output transfer.

Latches the I/O bus onto itself.

"Direct Memory Access I/O Output". DMAIOO:

Used to gate data on the S-bus onto the I/O bus during a DCPC output transfer.

IOO: "I/O Data Output". Used to gate data from the I/O bus to the interface PCA

during a DCPC output transfer.

EDT: "End Data Transfer". Used to notify the

I/O device that the number of words specified in the programmed block length have been transferred. Signifies

the end of a DCPC transfer.

CLF: "Clear Flag". Used to clear (reset) inter-

face PCA Flag flip-flop.

STC: "Set Control". Used to set interface PCA

Control flip-flop.

CLC: "Clear Control". Used to clear (reset)

interface PCA Control flip-flop.

SCM/SCL: "Select code most/Select code least".

Used to determine the correct address of

the I/O interface which communicates

with the I/O device.

The DCPC cycle is initiated when the selected I/O device signals that it is ready for a data transfer with an SRQ signal (Figure 4-8) from its interface PCA at time T2. During input transfers, the IOI signal gates input data

from the interface PCA onto the I/O bus and the DMAIOI signal transfers the data from the I/O bus onto the S-bus and into memory. At time T3, the CLF signal causes the SRQ signal to go false and the STC signal, if selected during initialization, restarts the I/O device for the next data transfer. The CLC signal, if selected during initialization, disables the I/O device at the end of the data block transfer. This completes the input DCPC cycle for the transfer of one block of data. During output transfers, the SRQ signal performs the same function previously discussed for input transfers. At time T3 during the DCPC cycle, the DMAIOO signal gates the data read from memory from the S-bus to the I/O bus. The DMALCH signal holds the data on the I/O bus until it is transferred to the interface PCA output data register by IOO. The CLF signal again causes the SRQ signal to go false and the STC signal, if selected during initialization, causes the I/O device to accept the data from the interface PCA. (Depending on I/O device characteristics and its associated interface PCA, the STC signal may or may not be required.) This completes the output DCPC cycle for one data word transfer. As previously discussed, the DCPC Word Count Register is incremented every DCPC cycle thereby effectively counting the number of words transferred into or out of memory. When the counted number of transferred words equals the number of words specified in the programmed block length, the Word Count Register generates a carry signal that initiates the DCPC interrupt logic which includes the generation of the EDT signal for the I/O device.

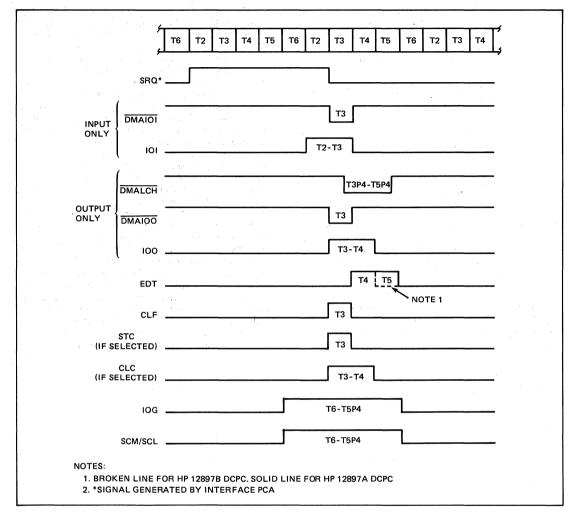


Figure 4-8. DCPC Timing Diagram

V

DESIGNING INTERFACE PCA'S

This section contains information for designing special purpose I/O interface PCA's. Unless otherwise specified, the contents of this section apply equally to the HP 1000 M-Series, E-Series and F-Series Computers.

5-1. INTRODUCTION

An I/O interface PCA must provide the circuits through which data can be transferred between the computer and an external I/O device. It must also provide the circuits required to control the I/O device from commands received from the computer. A typical interface PCA may contain as many as 16 buffers for temporary storage of data both to and from the I/O device. The number of buffers contained on a particular interface PCA depends on its associated I/O device. Some I/O devices require the capability of interrupting the computer program while for others, this capability is not necessary. Some I/O devices require control signals for the movement of tape, etc., and some require special timing signals. Some I/O devices require more than one interface PCA. There are many special cases in which unique types of controls or other criteria dictate the need to design and fabricate a special I/O interface PCA. Due to the very nature of special purpose interfacing, no detailed step-by-step procedures for the best design can be given. Only a study of the computer and I/O device mutual requirements can produce the ultimate design. Therefore, the information presented in this section should be used as guidelines around which to base your own interface design.

5-2. I/O SECTION INTERFACING

5-3. I/O INTERFACE PCA SPECIFICATIONS

The required dimension specifications for I/O interface PCA's are illustrated in Figure 5-1. The PCA shown in Figure 5-1 is a typical Hewlett-Packard interface PCA and is illustrated from the component side of the PCA. Unless otherwise specified, the dimensions shown in Figure 5-1 are symmetrical. The PCA thickness must be 0.059 ± 0.006 inch (1.50 ± 0.15 millimeters) although the computer's I/O backplane assembly connectors can accept a thickness up to 0.071 inch (1.80 millimeters). The center-to-center spacing of connector pins is 0.156 inch (3.96 millimeters).

One end of the interface PCA has 86 printed-circuit paths, 43 on each side of the PCA. This end of the PCA (usually designated P1) connects into the computer's I/O backplane

assembly connector to transfer signals to and from the computer. The circuit path pin numbers on P1 correspond to the pin numbers on each of the I/O backplane assembly connectors. Odd-numbered pins 1 through 85 are on the component side of the PCA and even-numbered pins 2 through 86 are on the other side of the PCA. Consecutively-numbered pins are directly opposite each other on the PCA; e.g., pins 1 and 2 are on opposite sides of the PCA. Pin number assignments on this end of the PCA are identical for all I/O interface PCA's to permit the placement of any I/O interface PCA in any of the I/O backplane assembly connectors. A complete list of the signals assigned to the pin numbers on this end of the PCA is contained in Table 4-1. It should be noted that Table 4-1 lists all available pin assignments and that an individual interface PCA may not necessarily use all the signals listed.

The other end of the PCA shown in Figure 5-1 is usually designated J1 and typically has 48 printed-circuit paths, 24 on each side of the PCA. (The number of circuit paths for connector J1 is determined by the number of signal lines required for the I/O device.) The hood connector of the interconnecting cable between the interface PCA and its associated I/O device connects onto this end of the PCA. The circuit-path pin number positions on J1 correspond to the pin number positions on all standard HP interface cable hood connectors. Pins 1 through 24 are on the component side of the PCA and consecutively-lettered pins A through BB (letters G, I, O, and Q are omitted) are on the other side of the PCA. Pins 1 and A are on opposite sides of the PCA and pins 24 and BB are on opposite sides of the PCA. Pin assignments and signals between this end of the PCA and its I/O device are completely open to the discretion of the PCA's designer.

5-4. HP BREADBOARD INTERFACE KIT

To facilitate I/O interface PCA design, Hewlett-Packard can furnish a breadboard interface kit that includes a breadboard-type I/O interface PCA equipped with the TTL flag and interrupt circuits required to interface unique I/O devices with the HP 1000 Computers. The breadboard interface kit also includes a connector kit for fabricating the I/O device interface cable. The supplied interface PCA provides space for sixty 14-pin or 16-pin integrated circuit components, 11 of which are occupied by the flag and interrupt circuit components. The PCA also contains 12 test points (TP1 through TP12) to monitor the operation of the flag and interrupt circuits. The test points are defined in Table 5-1. The PCA circuit path pin numbers are compatible with the computer I/O backplane connector pin numbers listed in Table 4-1. (For additional information refer to the HP 12620A Breadboard Interface Kit Operating and Service Manual, part no. 12620-90001.)

A logic diagram of flag and interrupt circuits supplied on the HP 12620A Breadboard Interface Kit's interface PCA is contained in Figure 5-2. This diagram should be used as a guide when designing any interface PCA for an I/O device that requires flag and interrupt circuits. All integrated circuit components shown in Figure 5-2 are identified by reference designators (e.g., U25). Hewlett-Packard part numbers for these components and corresponding commercially available versions are listed in Table 5-2.

The following discussion describes the operational relationship between the flag and interrupt circuits illustrated in Figure 5-2 and the computer's I/O Section timing

discussed in Section IV. The Flag Buffer flip-flop is set whenever a Device Flag signal from the I/O device is received at TP1 indicating that the device requires service. When set, the Flag Buffer flip-flop sets the Flag flip-flop when the ENF signal is received at time T2. With the Control flip-flop set by the STC signal from the computer program and the Flag flip-flop set, the Flag flip-flop disables the PRL signal to the lower priority (higher select code) devices at time T2. This prevents an interrupt by a lower priority I/O device.

If the priority at the interface is disabled by a device with higher priority via the PRH signal and if the interrupt

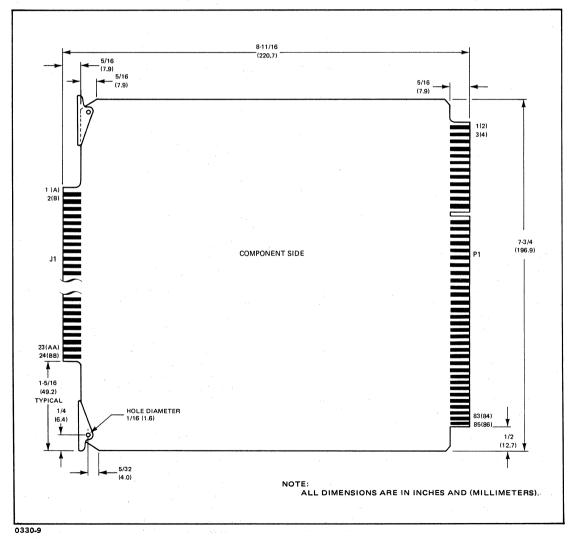


Figure 5-1. I/O Interface PCA Dimensions

Table 5-1. Flag and Interrupt Circuit Test Point Definitions

TEST POINT	FUNCTION
TP1	Device Flag signal. Input signal is ground true. A ground sets the Flag Buffer flip-flop. Signal must remain true for at least 0.20 microsecond and must not exceed 2.5 microseconds.
TP2	ENF signal. Signal is positive true during time T2 and is used to gate Flag Buffer flip-flop output into Flag flip-flop.
TP3	SIR signal. Signal is positive true during time T5 and is used to enable inputs into IRQ flip-flop.
TP4	STC signal. Signal is ground true during a Set Control instruction addressed to the select code of the PCA.
TP5	CLC signal. Signal is ground true during a Clear Control instruction addressed to the select code of the PCA.
TP6	CRS signal. Signal is ground true at power turn-on, when computer front panel PRESET switch is pressed, or when a CLC 00 instruction is executed.
TP7	Flag Flip-Flop Set signal. Signal is positive true when Flag flip-flop is set.
TP8	Flag Flip-Flop Reset signal. Signal is positive true when Flag flip-flop is reset (clear).
TP9	Decoded Address signal. Signal is positive true when I/O instruction selects the PCA.
TP10 thru TP12	Signal ground for oscilloscope ground probe.

system is enabled (IEN signal), the interface has all of the correct conditions (Control, Flag Buffer, and Flag flipflops are set) to create an interrupt to the CPU. The remaining qualifier is SIR signal at T5. The application of SIR causes the Interrupt Request (IRQ) flip-flop to be set. The FLG and IRQ interface lines (not to be confused with FLAG and IRQ flip-flop) become active as a result of the setting of the IRQ flip-flop. The CPU samples and records the FLG and IRQ line status during T5 thus setting up the proper flag conditions within the CPU control circuitry. (The only exception for the posting of the interrupt occurs during a DCPC cycle when the interrupt request from the interface would be ignored until the DCPC gives up control of memory and I/O.) The IRQ flip-flop is cleared at T2 thus remaining set for T5 and T6 only. As the CPU completes the currently executing assembly instruction or arrives at a conditional check for interrupts within the assembly instruction, the CPU Control recognizes the interrupt and issues an Interrupt Acknowledge (IAK) signal to the interface. The IAK will always be issued during the later part of T6. The minimum time for the interrupt to be recognized and acknowledged by the CPU Control is two I/O cycles as shown in Figure 4-5 in Section IV. If the interrupt is not recognized immediately due to a lengthy assembly instruction that is currently being executed, the IRQ flip-flop will continue to be set during T5/T6 by the

SIR signal and cleared by each following T2 as shown in Figure 4-5. The IRQ flip-flop is cleared from T2 through T4 to provide a method of allowing an interface with a higher priority to activate its FLG and IRQ interrupt lines and be recorded within the CPU after SIR has set its IRQ flip-flop. In any case, after the IAK is sent, the CPU control is transferred to the memory location which corresponds to the interrupting select code (FLG and IRQ lines). This memory location, also referred to as a "trap cell", should contain JSB instruction so as to transfer control to a device or service subroutine. At the end of the subroutine a JMP, I through the beginning of the same subroutine will return control to the program that was executing at the time of the interrupt.

5-5. I/O INTERFACE PCA DESIGN

5-6. INITIAL CONSIDERATIONS. The first step in designing an interface PCA is to draw a logic diagram of the PCA. Therefore, what is needed first is a list of the functions that must be present on the PCA. To make up this list, a careful study of all interface requirements is necessary. Consider questions such as the following:

Designing Interface PCA'S

- a. What kind of data registers are required? Will the register be used for output only (to I/O device), input only (from I/O device), or will two or more registers be required to handle both output and input operations? How many flip-flops will be required to store all bits? Are any registers required at all? This may be the case if, for example, the I/O device has its own storage facilities. In this case, only a row of gates with a strobe input for IOI and/or IOO may be required. In most cases, however, interface PCA storage capability is recommended for greater system flexibility.
- b. What commands are required? The flag and control logic set and clear states normally provide for a command sequence as follows: start device (Control flipflop set), device busy (Flag flip-flop clear), device operation complete (Flag flip-flop set), and stop device

(Control flip-flop clear). Is this sequence adequate? Are other commands such as tape rewind, upper/ lower-case shift, mode switching, etc., required? If so, a command register may be required to accept command words from the computer. The reverse situation of the computer being slaved to or commanded by the I/O device is also possible. In this case, an input command register may be required. Perhaps no control lines at all are required for the I/O device. On input, for example, a computer program may simply require the current value of a count-accumulating I/O device. The computer need not command the I/O device to read, and the I/O device need not have to inform the computer that data is ready for transfer. Conversely, on output, data may simply be presented to the I/O device without any accompanying commands. For example, this would be possible if the I/O device was a

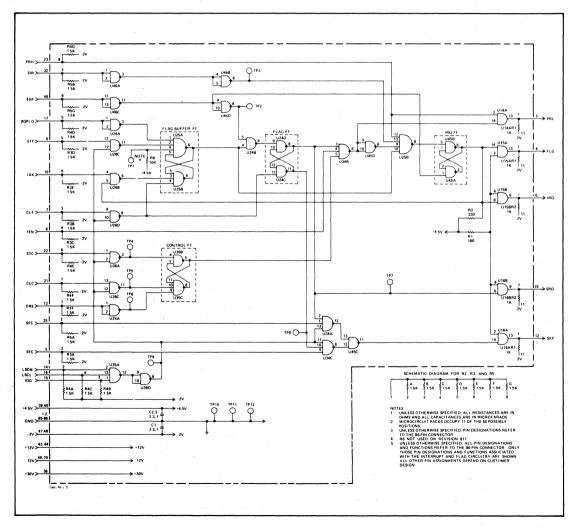


Figure 5-2. Flag and Interrupt Circuits Logic Diagram

Table 5-2.	Flag and Interrupt Logic
	Component Identification

REFERENCE DESIGNATOR	HP PART NO.	COMMERCIAL EQUIVALENT
U14 thru U16	1820-1080	Signetics 8T13
U24,26,36,45,46	1820-0054	Texas Instruments SN4342
U25	1820-0069	Sprague Electric USN7420A
U34,35	1820-0068	Texas Instruments SN7410N

display unit or a device interlocked with some other program-synchronized device (e.g., a scanner-voltmeter relationship). In most cases, the recommended approach is to have the computer and I/O device completely interlocked so that each knows exactly what the other is doing.

- c. Are multiple interface PCA's required? More than one interface PCA may be required if the involved logic is complex or if more than one address is required. It should be noted that one interface PCA can use two addresses, but to do so, the next higher I/O slot must be occupied by a priority jumper PCA.
- d. How much work should be required of the interface PCA? Perhaps it may be more efficient to use the interface PCA merely to transmit data and command information to an intermediary device for the translation of complex operations that otherwise could not be physically designed into the interface PCA.
- e. What type of logic is to be used? TTL integrated circuits are recommended for the logic design of the interface. Although the driving signals to the I/O bus require CTL characteristics they should be designed with TTL integrated circuits that exhibit CTL characteristics.
- 5-7. COMPUTER BACKPLANE ASSEMBLY REQUIREMENTS. The following paragraphs contain logic component selection rules and recommendations for designing interface PCA's.
- 5-8. Interface PCA Signal Receiving. All I/O signals from the computer backplane assembly are emitter-follower driven. A high signal state is indicated when the signal source drives current along the signal line. A low signal state is indicated when no current is driven.

A reveiw of available TTL logic families will indicate that the receiving gate cannot be a high-speed (H) or high-speed Schottky clamped (S) design because of the imposed low-value R restriction. Standard TTL receiving gates have been used for earlier I/O interface PCA designs and are still valid. However, for new designs, low-power

Schottky (LS) components are recommended. These components require less power than standard TTL and are somewhat faster. Low-power Schottky Schmitt trigger gates are also recommended for backplane buffering and greater noise immunity. An accompanying R value of 4.7K ohms will place less demand on the backplane assembly drivers and reduce backplane switching current.

A valid interface PCA receiving circuit is either a TTL 74XX or 9XXX series gate. When receiving into TTL, a resistor pull to -2V is required to prevent input low current $(I_{\rm IL})$ from the receiver from draining back onto the signal line and lifting it to a marginal logic level. (See Figure 5-3.) Compute the largest resistance value required to keep the signal line at a low potential as follows: $R=2V/I_{\rm IL}$ ($I_{\rm IL}$ obtained from manufacturers specifications). If an interface PCA is designed with multiple receiving devices in parallel, or using individual gates that have a large $I_{\rm IL}$, a small value of R is required. Like earlier HP computers, the backplane assembly drivers can only source a finite guaranteeable current; therefore, the value of R must be restricted to a value of not less than 1.5K ohms.

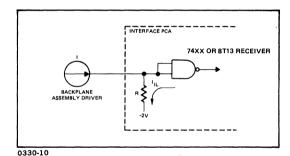


Figure 5-3. Valid Interface PCA TTL Receiver

5-9. Interface PCA Signal Driving. Signals generated on the interface PCA for the computer must be capable of sourcing current through a resistive load to a -2V supply and must deliver an input high current (I_{IR}) adequate to turn on computer high-impedance input stage drivers to a logical "1" level as shown in Figure 5-4. These

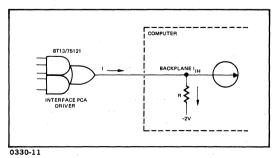
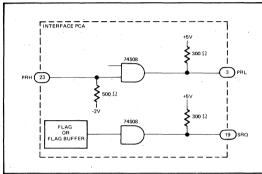
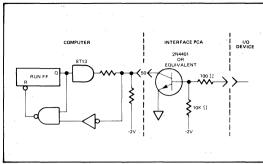



Figure 5-4. Valid Interface PCA Driver Circuit

signals are typically emitter-follower and OR-tieable, but the required current and characteristics of the line are dependent on the signal itself. CTL components (956 and 856 gates) should be avoided as drivers since these devices require high supply current (up to 70 mA per package) and have low switching thresholds (1.0V). A recommended component for signal driving is the 8T13 (HP part no. 1820-1080) or 75121 (Signetics Corp.) line drivers. These devices provide more than ample source current (greater than 60 mA) and sink current requirements are taken care of with the inclusion of a pull-down resistor to -2V (computed with the equation $R=2V/I_{\rm IL}$).



0330-12

Figure 5-5. Valid Interface PCA PRL and SRQ Line Drivers

5-10. I/O Run Signal. For HP 1000 M-Series Coomputers, the I/O backplane assembly Run signal (connector pin 50) is an emitter-follower image of the state of the computer's Run flip-flop. The signal is high when the computer-is running and low when halted. For HP 1000 E/F-Series Computers, the Run signal line is a two-way communication link that can be used for remote control of an unattended or inaccessible computer. This feature is called "remote program load" and is discussed in the HP 1000 E-Series Computer Operating and Reference Manual, part no. 02109-90001 and the HP 1000 F-Series Computer Operating and Reference Manual, part no. 02111-90001. With this capability, an I/O device can pull down on the high Run line, reset the computer's Run flip-flop, and return the computer to its halt microroutines. To achieve this hardware capability inexpensively, a circuit similar to that shown in Figure 5-6 can be designed into the interface PCA. When the transistor's base is driven, its collector must sink up to 250 mA while it is in conflict with the 8T13 driving the Run line. The computer detects this conflict and clears its Run flip-flop.

5-11. I/O Microprogram Signals. For HP 1000 E/F-Series Computers, the I/O backplane assembly has three microprogram control signal lines available on connector pin numbers 18, 67, and 73. These lines are for use in microprogrammed I/O data transfer schemes discussed in Section VI. All three lines are ground-true and TTL-compatible.

0330-13

Figure 5-6. Remote Computer Halt Driver Circuit

5-12. POWER CONSIDERATIONS. Power available for I/O interfacing is listed in Table 1-1. Care should be taken when using custom-designed interface PCA's with high current drains not to exceed specified current limits. It should be remembered that the actual current available for I/O interfacing is the maximum current listed in Table 1-1 reduced by the current drain of any options or accessories installed in the computer.

When using voltages where two pins are provided, use both pins for contact. This decreases contact resistance and increases the current capacity of the connection. Due to contact capacity, the maximum current that can be used on any one interface PCA is 5.0A at +5.0V. When measuring current, always use an extender PCA and a clip-on ammeter.

When using certain combinations of I/O devices that have high current requirements, the computer's power suppy may not be adequate. If additional power is required, the HP 12979 I/O Extender must be used. The HP 12979 I/O Extender is a self-contained unit with a regulated power supply independent of the computer's power supply. Table 5-3 lists the additional current supplied by the HP 12979 I/O Extender.

Table 5-3. I/O Current Availability From I/O Extender

SUPPLY VOLTAGE	CURRENT
+ 5V	47.0A
-2V	5.0 A
+ 12V	4.5A*
- 12V	2.5A*
+28V	.25A

^{* 2.00}A available to front and 2.5A available to rear I/O backplanes.

5-13. DEVELOPMENT CHECKLIST. The following paragraphs outline the sequence of steps that should be followed when developing an I/O interface PCA.

5-14. Draw Initial Logic Diagram. If flag and interrupt circuits are to be included on the interface PCA, use Figure 5-2 as a guide. If required, add an encoding flip-flop. For data and/or command word storage, add input receivers and storage registers and/or output storage registers and drivers. Refer to paragraphs 5-7 through 5-9 for receiver and driver selection information. For input and/or output storage register selection, the following type devices are recommended:

74LS374	Octal D-Type Register
74S374	Octal D-Type Register
74LS373	Octal D-Type Latch
74S373	Octal D-Type Latch
74LS175	Quad D-Type Register
74S175	Quad D-Type Register
74LS174	Hex D-Type Register
74S174	Hex D-Type Register

The exact logic configuration to be used of course will be determined by the associated I/O device's characteristics. To complete the logic diagram, add all required control lines and timing circuits.

5-15. Fabricate Working Model. Depending on the number of interface PCA's to be produced, the working model will be either the final product or a prototype. In either case, there are some basic considerations for layout

that must be observed. Whether using a breadboard or creating original printed-circuit artwork, always keep signal paths as short as possible. Rework the layout as often as required to achive optimum signal path lengths. Etch a ground bus around the perimeter of the PCA. Lay out the +5V power bus in a grid pattern so that each integrated circuit receives power via the shortest possible direct path from connector pin numbers 39 and 40. Use 0.01 uF ceramic bypass capacitors liberally on the +5V and -2V power busses. No more than three integrated circuit packages should be served by one capacitor and no length of unbypassed power bus should exceed 3.0 inches (76.2 mm).

Test Working Model. Initially, test the inter-5-16. face PCA circuit paths for shorts with an ohmmeter. Next, connect the interface PCA into any available computer I/O slot with an extender PCA, connect the associated I/O device to the interface PCA, and energize both the computer and I/O device. Using Table 5-4 as a guide, write a simple noninterrupt program to operate the device and signal check the interface PCA with a logic probe. Note that the program listed in Table 5-4 assumes that the interface PCA is installed in the I/O slot assigned to select code 12 and that the XYZ device is an input device. This program will read one value from the XYZ device and then halt. The value read will be in the A-register for observation. Each time the computer's RUN switch is pressed, the XYZ device will complete a cycle and then halt.

If the XYZ device and interface PCA work properly in the noninterrupt data transfer mode, the next step is to check for proper operation in the interrupt mode. Using Table 5-5 as a guide, write a program that checks the interrupt capabilities of the interface PCA. When writing this type

Table 5-4. Interface PCA Test Program

LABEL	OPCODE	OPERAND	COMMENTS
	ORG	2000B	Page 1 origin.
XYZ	EQU	12B	Select code of XYZ device.
	CLF	00	Disable interrupt system.
LOOP	STC	XYZ,C	Start input device.
	SFS	XYZ	Is device busy?
	JMP	*-1	Yes, repeat previous instruction.
	LIA	XYZ	No, load input data into A-register.
	HLT		Halt.
	JMP	LOOP	Start program again.
	END		
:			

Table 5-5. Interrupt Test Program

LABEL	OPCODE	OPERAND	COMMENTS
	ORG	12B	Set origin to 12B for JSB,I in the
	JSB	LINK,I	interrupt location.
LINK	DEF	SUBR	Interrupt subroutine address.
	ORG	2000B	Page 1 origin.
	J Ond	20005	r age r origin.
XYZ	EQU	12B	Select code of XYZ device.
START	STF	00	Enable interrupt system.
	LIB	1	Set S-register.
	SSB		Is S-register bit 15 set?
	RSS		lo o regioter bit to sot:
	JMP	*-3	No, stay in loop.
	ELB,		Yes, clear bit 15.
	CLE,		163, clear bit 13.
	ERB		
•	CMB,		Get count negative.
	INB		Get Count negative.
	1	CNITD	•
	STB	CNTR	Object insent decises
. *	STC	XYZ,C	Start input device.
	INB		Simulated program in progress. Wait
	JMP	*-1	for interrupt.
	:		Subroutine to process interrupts.
	•		
SUBR	NOP		Subroutine entry.
	LIA	· xyz	Load input character into A-register.
	CLB	/··-	Time delay.
	ISZ	1	Time delay.
	JMP	*-1	
	ISZ	CNTR	Increment counter. Finished?
	LIB	1	Get S-register.
	SSB	'	Is bit 15 set?
	JMP	* . 5	
		*+5	Yes, go to exit.
	CLC	XYZ	No, clear device.
	HLT	07.07	Halt on interrupt.
	JMP	START	Get another request.
	STC	XYZ,C	Start input device again.
	JMP	SUBR,I	Return to interrupted point.
		1	

of program, the programmer must ensure that a known good instruction is stored in the device interrupt location. Any instruction can be placed in the interrupt location with the exception of JMP. The program listed in Table 5-5 uses JSB,I to illustrate an interrupt initiated transfer of control off the base page. The program uses bit 15 of the S-register as the controlling on/off switch and the remaining bits to control the number of cycles the XYZ device will make. After bit 15 is checked, a counter is set in the interrupt processing subroutine and the device cycle is initiated. When the XYZ device cycle is complete. an interrupt will occur and the coomputer will execute the JSB LINK,I instruction stored in the interrupt location.

This instruction transfers control to the subroutine located on page 1 and loads the address of the interrupted instruction in the subroutine. The subroutine reads the data from the interface PCA into the A-register. Next, a small delay is programmed into the subroutine to allow S-register bit changes. If bit 15 is set, interrupts will be processed until the counter reaches zero at which time the simulated I/O request is satisfied. Before attempting to transfer data using the interrupt method, review the following information.

a. The interrupt system is enabled with an STF 00 instruction.

- b. The interrupt priority linkage cannot be broken. All I/O channels with higher priority than the device being tested must be occupied or a special jumper PCA installed in place of any missing interface PCA.
- c. No device with higher priority can be left with its interface PCA Control flip-flop set. This can create a problem similar to a missing interface PCA in the priority linkage. To eliminate this possibility, execute a CLC 00 instruction or manually press the computer's front panel PRESET switch.
- d. When the computer is in the halt mode, the interrupt system is disabled. Therefore, the computer cannot be single-cycled through I/O operations that use the interrupt mode.

After using programs similar to those contained in Tables 5-4 and 5-5 to test the interface PCA, write a complete

diagnostic program that will exercise every function of the interface PCA and associated I/O device. This program should test whether each function occured as commanded and report to the operator via coded halts or printed error messages whenever a function fails to occur.

5-17. Final Test and Production. Perform final checkout of the working model under all environmental conditions and, if required, update the logic diagram and layout drawing. If additional PCA's are to be produced from the working model, make final printed-circuit artwork and load new PCA's in accordance with the layout drawing. Using the diagnostic programs developed in paragraph 5-16, test each PCA with the computer and I/O device. Completely check each PCA for marginal signals and traces.

ADVANCED INTERFACING TECHNIQUES

VI

This section contains a general discussion of multiplexed and microprogrammed I/O techniques for the HP 1000 M-Series, E-Series and F-Series Computers. The method of multiplexing described in this section is party-line I/O. Two methods of microprogrammed I/O are also discussed: block I/O transfers and Microgrammable Processor Port transfers. The discussions of party-line I/O pertain to the HP 1000 M-, E- and F-Series Computers. The discussions of the microprogrammed block I/O transfers apply to the HP 1000 E- and F-Series Computers and the discussions of the Microprogrammable Processor Port transfers apply to the HP 1000 E-Series Computers only. In addition, this section contains information on the special requirements necessary to achieve high-speed DCPC transfers for the HP 1000 Computers.

6-1. PARTY-LINE I/O

If a large number of comparatively simple I/O devices are to be interfaced with the computer, it may be economically impractical to provide a separate interface PCA for each I/O device. In this case, party-line I/O provides a means of multiplexing (switching) each I/O device in turn to the computer using only those I/O signal lines normally assigned to a single I/O device. The I/O signal lines from the computer are bused to all I/O devices on the party line so that the I/O devices appear as a single device to the computer. Since the I/O signal lines are bused and identically available to all I/O devices on the party line, each I/O device must have its own controller. The controller must decode I/O device address and command information from the computer, send status information to the computer, and maintain overall control of its associated I/O device.

6-2. GENERAL INFORMATION

The party-line I/O described in the following paragraphs provides computer control for up to 256 I/O devices using only two interface PCA's. Each I/O device is connected party-line style to the interface PCA's through a user-designed controller. The number of devices that can be controlled is strictly a function of control word format. The two interface PCA's used in this technique are HP Microcircuit Interface PCA's, part no. 12566-60024. The two PCA's are identical and one each is supplied as part of an HP 12566B-001 Microcircuit Interface Kit. The 16-bit registers on the PCA's permit complete bidirectional data transfer. The I/O components on the PCA's permit the use of voltage levels in the 0 to +5V range for better noise margin and more desirable controller design by the user.

The two party-line interface PCA's plug into any two adjacent I/O slots in the computer and the remaining I/O slots

can be used to interface standard I/O devices. The I/O slot positions occupied by the two PCA's establish the priority of the party line in relation to other I/O devices interfaced with the computer. Thus, the user can establish a partyline priority which is either higher or lower than the standard I/O devices connected to the computer. Party-line operations are performed at slower rates than operations using the standard I/O channels of the computer. Transfer rates of 40 kHz are possible under a noninterrupt mode, while rates are limited to 10 to 12 kHz under the interrupt mode. The latter rates are reduced mainly by software overhead time used in decoding party-line addresses.

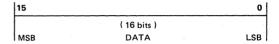
6-3. PRINCIPLES OF OPERATION

As a guide toward implementing party-line I/O, the following paragraphs describe a typical party line with the addressing capability for 256 devices. This is a completely valid example, but it should be noted that this is only one of many ways that a party line can be implemented using two microcircuit interface PCA's. Another possible configuration would be the use of only one PCA, with possibly eight bits for data and eight bits for control.

In this discussion of party-line implementation, one of the two interface PCA's will be designated as the Control PCA and the remaining PCA as the Data PCA. It is assumed that the two PCA's are mounted in two adjacent I/O slots of the computer and that an interconnecting cable is connected between each of the PCA's and all I/O devices using the party line.

CONTROL PCA FUNCTIONS. The Control 6-4. PCA contains a 16-bit input register and a 16-bit output register. For party-line applications, the register's input and output lines are connected together (bit 0 line of the input register connected to bit 0 line of the output register, etc.) with the interconnecting cable's 24-pin hood connector that mates with the PCA. Thus, both the input and output registers have access to a 16-line control bus. These lines are electrically designed to permit an "or-tie" to ground by any I/O device. Thus, any I/O device to which this bus is routed can place its signal on the bus by grounding the appropriate wires. These lines must be held at a minus voltage except during actual control information transmission. The control word format of the 16-line control bus is as shown below.

15	14 8	7 0
	(7 bits)	(8 bits)
	COMMAND & STATUS	DEVICE ADDRESS


Advanced Interfacing Techniques

The 16-line bus from the Control PCA is available to each I/O device controller on the party line. Each controller must be capable of decoding I/O device addresses and commands received from the Control PCA and of sending status information back to the computer. The eight bits used for the device address permit an addressing capability of up to 256 I/O devices. The command and status bits are used as indicated in Table 6-1.

In addition to the 16 control bus lines, the Control PCA provides the user with an Encode line which is used to alert party-line I/O devices that an action is to be taken. A Device Flag line is also provided to permit party-line I/O devices to signal the computer that an action has been taken. A typical sequence of events to obtain status information from a party-line I/O device is as follows:

- a. Load the computer A-register with a bit pattern specifying a party-line I/O device address and with bit 14 set to "1" to command the addressed I/O device to send status information back to the computer. (The I/O device address is determined by the user when the I/O device controller's address decoder is designed.)
- b. Output the contents of the A-register to the Control PCA. The bit pattern is now in the Control PCA's output register waiting to be placed on the control bus.
- c. Execute an STC XX (XX is the select code of the Control PCA). This instruction gates the bit pattern stored in the output register onto the control bus. It also initiates the Encode signal which alerts the addressed party-line I/O device to take action.
- d. The addressed I/O device's controller must now place the status of the device (bits 8 through 11) on the control bus and return the Device Flag signal to the Control PCA. The returned Device Flag signal causes the removal of the Encode signal and the address and command bits from the control bus. The Device Flag signal also causes the status bits to be gated into the Control PCA's input register.

- e. Execute an LIA XX. This instruction loads the contents of the Control PCA's input register into the computer A-register to be checked by the user program. (The status code bit patterns are also determined by the user so that the bits from the I/O device's controller correspond to that which the user program expects to receive.
- 6-5. DATA PCA FUNCTIONS. Data PCA, like the Control PCA, also contains two 16-bit registers: one for input data and one for output data. The input and output lines from these registers are also connected together by the interconnecting cable's hood connector in the same manner as those on the Control PCA. Thus, both the input register and output register have access to a 16-line data bus. The entire 16 bits on the data bus are used for data transmission in the format shown below:

Two other lines are provided by the Data PCA: (1) an Encode (send/accept data) signal which is sent to the party line and (2) a Device Flag line which receives the data ready/taken signal from the party line. An STC instruction for the Data PCA causes a Data Enable signal to gate data from the Data PCA's output register onto the data bus. During this time, the Encode signal is initiated by the Data PCA which signals all I/O devices on the party line that data is available on the data bus. The I/O device that has been addressed by the computer can now accept the data. These signals keep data from the Data PCA off the data bus except when a data transfer is actually taking place under program control. Simultaneous placement of data onto the data bus by more than one I/O device is prevented since the party-line I/O devices can place data on the data bus only when commanded to do so by bit 12 from the Control PCA. The Flag signal received by the Data PCA gates data from the data bus into the Data PCA's input register during input operations. Thus, a party-line I/O device must send a Flag signal at the same time that is places data on the data bus for the computer.

Table 6-1. Command and Status Bit Assignments

BIT	ASSIGNMENT
8-11.	Return status information from the I/O device to the computer.
12	If set to "1", the addressed I/O device is commanded to output data to the computer.
13	If set to "1", the addressed I/O device is commanded to accept data from the computer.
14	If set to "1", the addressed I/O device is commanded to output status to the computer.
15	Set to "1" under program control to indicate that the I/O device address will be used as an indirect address. (Used only during interrupt mode. The I/O device is not affected.)

6-6. PARTY-LINE OPERATION DURING INTERRUPT MODE. Party-line I/O devices can be run using the computer interrupt system. One interrupt channel is provided for the party line and its associated I/O devices. The interrupt system of the party-line I/O devices must be established by the user. Each I/O device on the party-line has access to the Control PCA's Flag flip-flop via its Flag signal which initiates a computer interrupt request. The user must implement a priority chain through the I/O device controllers attached to the partyline so that only the highest priority I/O device of those devices requesting an interrupt has access to the control bus. After the higher priority I/O device is serviced, the next highest priority device is serviced, and so on. No more than one I/O device can request an interrupt at one time or the interrupt (I/O device) address will be erroneous.

At the same time that the I/O device returns its Flag signal requesting an interrupt, it must also place its identifying address on the designated control bus lines. An interrupt routine then reads this address and transfers control to the appropriate party-line I/O device interrupt routine. (The I/O device's controller must be designed to ensure that it does not place its identifying address on the control bus simultaneously with a computer address output.)

To ensure that the Data PCA does not interrupt the computer when data is gated in with the Flag signal from the I/O device, the PCA's Control flip-flop must be reset with a CLC instruction at all times other than during an output operation when the Data Enable and Encode signals are required. This inhibits the Data PCA from initiating an interrupt request.

6-7. CONTROLLER HARDWARE DESIGN

A logic diagram of a typical controller for an I/O device capable of both input and output operations is shown in Figure 6-1. This controller contains the maximum number of I/O lines available from the computer: eight address lines, 16 data lines, four command lines, and four status lines. The controller provides overall control of the partyline I/O device upon receipt of command information from the computer. It also provides device status information for the computer, alerts the computer when the commanded action has been completed, and properly maintains its position in the priority chain among all other party-line I/O devices.

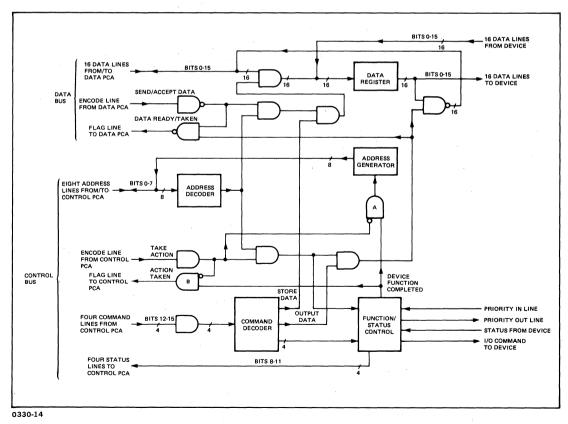


Figure 6-1. Typical I/O Device Controller Simplified Logic Diagram

As shown in Figure 6-1, an I/O operation with a party-line I/O device is initiated by a Command signal, the I/O device address, and Encode signals from both the Data and Control PCA's to the device controller. The Command Decoder informs the Function/Status Control of the action request. which then instructs the I/O device to perform its input/ output function. The controller's Data Register provides buffer storage of data from or to the party-line data bus. The Command Decoder, in conjunction with the two Encode signals, determines whether data is to be applied to the I/O device or gated out of the computer. When the Function/Status Control has determined that the I/O device has completed its function, it sends a Flag signal to the Control PCA and simultaneously activates the Address Generator if the Control PCA's Encode signal has dropped. The Flag signal initiates an interrupt request to inform the computer that the I/O device function has been performed and that the device is ready to receive another command. The Address Generator identifies the requesting I/O device by placing its address on the lower eight lines of the control bus to the computer. Note that gates "A" and "B" in Figure 6-1 require that the Encode signal be removed before the Flag signal or device address is returned to the computer. This ensures that the I/O device address from the controller and the I/O device address from the computer are not placed simultaneously on the control bus.

During a computer input operation, the Command Decoder initiates the Flag signal and applies the controller's Data Register contents to the Data PCA. The Flag signal gates the data from the controller into the Data PCA's

input register where it is available for the computer. The data bus Flag signal is not used during computer output operations. I/O device status information is obtained from the controller in the same manner as input data except that status information is sent to the Control PCA instead of the Data PCA. A Flag signal is returned to the Control PCA when status becomes available; a Flag signal is not returned to the Data PCA.

The Priority In and Priority Out lines form a simple chain running through all party-line I/O devices to establish priority when operating in the interrupt mode. When any I/O device interrupts the computer, the chain is broken and all lower priority devices are inhibited from interrupting until the original device has been serviced. Priority can be established in any manner the user desires to design the controllers, but a logical choice would be to have the highest priority devices be those requiring the highest data transfer rates.

6-8. INPUT PROGRAMMING USING NONINTERRUPT MODE

Programming a party-line I/O device noninterrupt input operation is similar to programming a noninterrupt input operation for a standard I/O device as previously discussed in Section III of this manual. A general noninterrupt input operation can be programmed as shown in Table 6-2. It should be noted that the program in Table 6-2 assumes that the I/O device is assigned a party-line address of 60 octal and that the Control and Data PCA's are installed in

LABEL	OPCODE	OPERAND	COMMENTS
	CLF	00	Disable interrupt system.
	LDB	IADR	Load device address in lower eight bits of B-register and set bit 12 to "1" to command input operation (010060B).
	ОТВ	CNTL	Output B-register contents to Control PCA.
	STC	CNTL,C	Set Control PCA Control flip-flop to initiate Encode (take action) signal. Clear Flag flip-flop in preparation for recognition of Flag (action taken) signal from device.
	SFS	CNTL	ls Control PCA Flag flip-flop set (input ready)?
	JMP	*-1	No, repeat previous instruction.
	LIA	DATA	Yes, load Data PCA input register into A-register.
IADR	ост	010060	Set IADR equal to device party-line address.
CNTL	EQU	10B	Set CNTL equal to Control PCA I/O slot select code.
DATA	EQU	11B	Set DATA equal to Data PCA I/O slot select code.

Table 6-2. Party-Line NonInterrupt Input Routine

computer I/O slots assigned to select codes 10 and 11, respectively. To perform a looping operation (i.e., load several consecutive inputs into the computer), it is not necessary to repeat the first three instructions contained in Table 6-2 each time through the loop since these instructions are for initialization only.

6-9. OUTPUT PROGRAMMING USING NONINTERRUPT MODE

A general noninterrupt output operation can be programmed as shown in Table 6-3. The program in Table 6-3 assumes the same I/O device party-line address and interface PCA select codes as in the input program discussed in paragraph 6-8.

6-10. I/O PROGRAMMING USING INTERRUPT MODE

When programming party-line I/O devices using the interrupt mode, each I/O device's controller must be capable of sending an identifying address to the computer since several devices may be running simultaneously on the party line. These I/O device addresses must then be decoded by a user program to determine which specific interrupt routine should be entered. It should be noted that the necessary software overhead time spent in decoding these addresses causes data transfer rates to be slower than when operating in the noninterrupt mode. Actual transfer rate is dependent on the length of the interrupt routine, the time required to recognize an interrupt, and the time required to decode the address and process the data.

6-11. INTERRUPT PROCESSING. To initiate an interrupt request, the party-line I/O device controller sends a Flag signal to the Control PCA. It also places the requesting I/O device's address on the lower eight lines of the control bus. When the computer recognizes the interrupt request, it executes the instruction in the memory location corresponding to the Control PCA's I/O slot select code. This instruction is always a jump subroutine to a master interrupt subroutine designed to service party-line interrupts. The master interrupt subroutine causes a jump subroutine to the memory address corresponding to the address of the interrupting party-line I/O device. This memory address contains another indirect address that specifies the particular interrupt routine to service the requesting device.

6-12. SAMPLE PROGRAM. As shown in Table 6-4, only five instructions are required to initially program a party-line I/O device to input data to the computer using the interrupt mode. The program in Table 6-4 assumes the same I/O device party-line address and interface PCA select codes as in the noninterrupt input program discussed in paragraph 6-8. The program will continue until the I/O device is ready to input data. The I/O device then interrupts the computer by setting the Control

PCA's Flag and IRQ flip-flops and placing its device address on the lower eight lines of the control bus. The computer executes the instruction in the memory location having an address corresponding to the Control PCA's I/O slot select code. This instruction is normally a jump subroutine indirect to a master interrupt subroutine designed to service all party-line interrupts. A sample master interrupt subroutine is contained in Table 6-5. It should be noted that the indirect address used in the JSB instruction of the program is actually the party-line address (60 octal) of the requesting I/O device. Thus, computer control will transfer to the address stored in memory location 60 octal. This is the actual starting place of the specific interrupt routine to service this particular I/O device. A sample specific interrupt routine for an input device is contained in Table 6-6.

6-13. DCPC TRANSFERS

As previously discussed in Sections III and IV, high-speed data transfer rates are achieved by effecting DCPC cycle steals; i.e., the DCPC channel receives a Service Request (SRQ) signal from the I/O interface PCA to request more data before the computer timing has advanced past the time period when a new DCPC cycle begins. Therefore, the time delay between the issuance of the I/O device's Flag (start) signal and the receipt of the SRQ signal by the computer is critical to effect successive I/O cycle steals. When designing an interface PCA or when selecting an HP general-purpose interface PCA for DCPC applications, particular attention must be paid to the timing of the interface PCA's flag and interrupt circuit SRQ signal (initiate DCPC cycle) and to when the I/O device's Flag signal is received.

Full DCPC bandwidth transfers assume that the DCPC option is stealing every CPU I/O cycle, that is, the Service Request (SRQ) signal is fully asserted at every consecutive sampling time on the DCPC PCA. The sampling times for the HP 1000 Computers are as follows:

M-Series: T5P1, leading edge E/F-Series: T4P4, leading edge

The DCPC transfer rates presented in Table 1-1 are given under the full bandwidth assumption. To derive the transfer rates for less than full DCPC bandwidth, the number and access times of actual memory accesses involved in the execution of normal CPU instructions during I/O cycles in which DCPC does not have control must be taken into account. Therefore, one-half bandwidth figures may not necessarily equal the full bandwidth figures divided by two.

For applications in which transfer rates of less than onehalf of the full DCPC bandwidth (approximately 616,666 bytes/second for the HP 1000 M-Series Computers and 860,000 bytes/second for the HP 1000 E/F-Series Computers) are sufficient, the flag and interrupt circuit (illustrated in Figure 5-2) will fulfill SRQ signal generation

Table 6-3. Party-Line NonInterrupt Output Routine

LABEL	OPCODE	OPERAND	COMMENTS
	CLF	00	Disable interrupt system.
	LDB "	OADR	Load device party-line address in lower eight bits of B-register and set bit 13 to "1" to command an output operation.
	ОТВ	CNTL	Output B-register contents to Control PCA.
	STC	CNTL,C	Set Control PCA Control flip-flop to initiate Encode (take action) signal. Clear Flag flip-flop in preparation for recognition of Flag (action taken) signal from device.
	LDA	BUFF,I	Load output data word into A-register.
	ОТА	DATA	Output A-register contents to Data PCA.
	STC	DATA,C	Set Data PCA Control flip-flop to gate output data onto data bus and to initiate an Encode signal.
	SFS	CNTL	Is Control PCA Flag flip-flop set (data received by device)?
	JMP	*-1	No, repeat previous instruction. Yes, continue program.
	•		res, commue program.
	•		
OADR	ОСТ	020060	Set OADR equal to device party-line address.
BUFF	DEF	BADDR	Define storage location of data word.
CNTL	EQU	10B	Set CNTL equal to Control PCA I/O slot select code.
DATA	EQU	11B	Set DATA equal to Data PCA I/O slot select code.

Table 6-4. Party-Line Interrupt Input Routine

LABEL	OPCODE	OPERAND	COMMENTS
	STF	00	Enable interrupt system.
	CLC	DATA	Clear Data PCA Control flip-flop to inhibit interrupt requests from Data PCA.
	LDB	IADR	Load device party-line address in lower eight bits of B-register and set bit 12 to "1" to command an input operation.
	ОТВ	CNTL	Output B-register contents to Control PCA.
	STC	CNTL,C	Set Control PCA Control flip-flop to initiate input operation.
IADR	ост	010060	Set IADR equal to device party-line address.
CNTL	EQU	10B	Set CNTL equal to Control PCA I/O slot select code.
DATA	EQU	11B	Set DATA equal to Data PCA I/O slot select code.

Table 6-5. Master Interrupt Subroutine

LABEL	OPCODE	OPERAND	COMMENTS
MAST	NOP		Subroutine entry point. The return to the interrupted program is stored here by the jump subroutine instruction.
	STA	T1	Store contents of A-register in memory location T1.
	LDA STA	MAST T2	Load address to which program must return after interrupt request has been received into A-register.
	LIA	CNTL	Load device party-line address from Control PCA into A-register.
	IOR	B15	Set A-register bit 15 to "1" to allow device address to be used as an indirect address.
	JSB	A,I	Jump subroutine to specific device interrupt service subroutine using address contained in A-register.
T1	ост	0	Storage location for A-register contents.
T2	ОСТ	0	Storage location for return address.
B15	ОСТ	100000	Mask to set bit 15 to "1".
Α	EQU	0	Set A equal to memory location 0 (A-register).

Table 6-6. Specific Device Interrupt Subroutine

LABEL	OPCODE	OPERAND	COMMENTS
ENTR	NOP		Subroutine entry point. The address (location T1) for return to the master interrupt subroutine is stored here by the jump (JSB) instruction in the previous program (Table 6-5).
	STA	ADDR	Store device address (presently in A-register) in location ADDR.
	LDA STA	ENTR,I T1	Use address stored in ENTR to load and store original A-register contents previously stored in master interrupt subroutine.
	ISZ	ENTR	Increment address stored in ENTR, use it to load original return address from master interrupt subroutine, and store it as this routine's return address.
	LDA STA	ENTR,I ENTR	Gather necessary addresses and original register contents from master interrupt subroutine. (Frees master interrupt subroutine for processing other interrupt requests from party-line devices.)
	LIA	DATA	Load data from Data PCA into A-register.
	STC	CNTL,C	Set Control PCA Control flip-flop to re-enable party-line interrupt requests. (Causes new operation by addressed party-line device.)
	•	;	(Routine to process data received from party-line device.)

LABEL	OPCODE	OPERAND	COMMENTS	
	LDA JMP	T1 ENTR,I	Interrupt process complete. Restore original A-register contents and jump back to interrupted main program.	
ADDR	ост	0	Storage location.	
· T1	OCT	0 ' '	Storage location.	
CNTL	EQU	10B	Set CNTL equal to Control PCA I/O slot select code.	
DATA	EQU	11B	Set DATA equal to Data PCA I/O slot select code.	

Table 6-6. Specific Device Interrupt Subroutine (Continued)

timing requirements. As shown in Figure 6-2A, this circuit generates the SRQ signal at the first T2 time following the receipt of the Device Flag signal and, as such, can only initiate data transfers at a maximum rate of every other I/O cycle (half DCPC bandwidth). This circuit (Figure 6-2A) is used with most HP general-purpose PCA's, including the breadboard interface kit.

DCPC transfer rates of greater than half DCPC bandwidth can be brought about by several methods. The most appropriate method to use depends on three considerations: the series of HP 1000 Computer used, the I/O device speed, and whether or not handshake will be used. For the purposes of this discussion, these methods are presented in two categories: handshake and nonhandshake transfers.

The first handshake method of achieving transfer rates of up to full DCPC bandwidth includes the use of an asynchronous flag circuit. The flag and interrupt circuit of Figure 6-2A can be either modified or designed similar to that shown in Figure 6-2B. This circuit generates the SRQ signal immediately upon receipt of the device flag signal, is not dependent on time T2 and, as such, can initiate data transfers at a maximum rate of up to every successive I/O cycle (full DCPC bandwidth) assuming that the I/O device is capable of generating a device flag signal that is fully asserted at the beginning of I/O cycle time T4. Propagation delays through the I/O device, the interface PCA and the cable *must* be taken into account. This method can be used with the HP 1000 M-Series Computers but must not be used with the HP 1000 E/F-Series Computers because of the shortened time duration of the I/O cycle T-periods. A buffering scheme is recommended for use with the E/ F-Series Computers.

The buffering scheme is the second method of achieving the full DCPC bandwidth using handshake. Since the data transfer rate may be less than the DCPC latency time, more than one word can be received from the device before the DCPC gains control. Therefore, a buffering scheme is required to save data words until the channel is operative. The size of the buffer can be determined by dividing the worst case DCPC latency time by the data transfer time. For example, if the worst case DCPC latency time is 6

microseconds and words are transferred at 1 microsecond intervals, a 6 word buffer would be required.

Additional words should be added for safety margin purposes.

The diagram illustrated in Figure 6-2C provides the basic control logic and data handling to achieve DCPC transfers at full bandwidth with an E-Series or F-Series Computer. The design shown can be used in either the read or write mode and may utilize either DCPC channel. The design employs asynchronous logic to handle transfers to and from a 16 word First-In/First-Out memory (FIFO). This feature allows the data transfers to occur at the highest possible speed, limited only by the internal delays of the FIFO and the speed of the device. Synchronization with the CPU is achieved via DCPC cycle requests initiated by SRQ, which the DCPC samples during T4. The DCPC, upon receipt of a machine cycle, will issue I/O signals at particular T-periods. The timing diagram of Figure 4-8 illustrates the DCPC timing sequence.

Handshake need not be used to achieve the full DCPC bandwidth. However, the preprequisite to using nonhandshake transfers is that the I/O device must be capable of transferring data at rates faster than the full DCPC bandwidth (approximately 1.23 Mbytes/sec with the HP 1000 M-Series and 2.28 Mbytes/sec with the E/F-Series Computers). The DCPC must receive a fully asserted and stable SRQ signal by P4(E/F) or P1(M) microcycle of time period T4(E/F) or T5(M) of the current I/O cycle in order to steal the next I/O cycle. In the E/F-Series, microcycle P3 of T4 can be extended for the first SRQ only. Therefore, T4 P-periods are short microcycles. Two methods of ensuring a fully asserted SRQ signal for the correct sampling times of the current I/O cycle involve either tieing SRQ high through the use of a jumper as illustrated in Figure 6-2C or tieing the Device Command signal directly back to the Device Flag line on the interface PCA. Again, both methods assume that the I/O device is capable of handling data as fast as the interface PCA can present or take it.

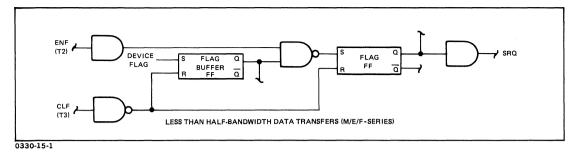


Figure 6-2A. Critical DCPC Interface Design (Half-Bandwidth)

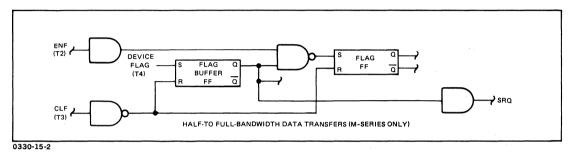


Figure 6-2B. Critical DCPC Interface Design (M-Series, Full-Bandwidth)

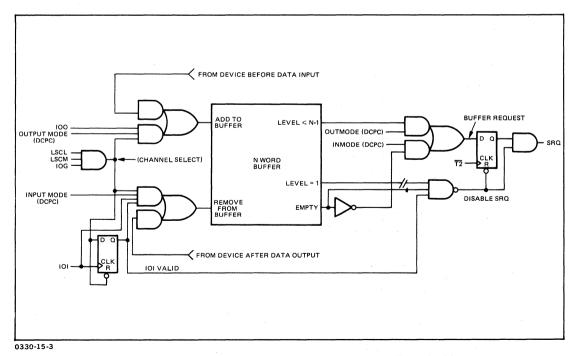
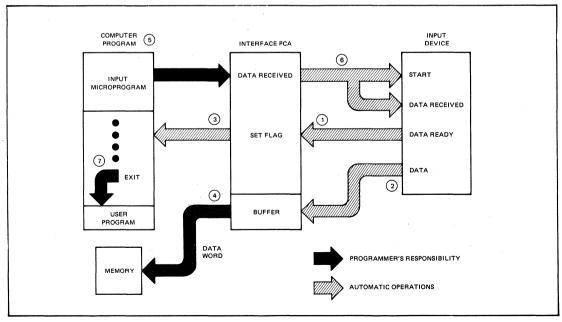


Figure 6-2C. Critical DCPC Interface Design (E/F-Series, Full-Bandwidth)

The non-handshake methods suffice for applications in which the I/O device does not generate the necessary signals to effect a complete handshake transfer. However, the buffering scheme using handshake is recommended for applications in which the I/O device does generate the signals necessary for a complete handshake.

6-14. MICROPROGRAMMED I/O


The HP 1000 Computers have a user-microprogrammable control processor which allows the user to expand the computer's instruction set so that the computer can perform specific functions more efficiently. Through the use of microprogramming, computer execution time of oftenused routines can be greatly reduced. An introduction to Hewlett-Packard's microprogramming techniques and development is contained in the HP 1000 E-Series Computer Operating and Reference Manual, part no. 02109-90001 and the HP 1000 F-Series Coomputer Operating and Reference Manual, part no. 02111-90001. Complete information on how to prepare, load and execute microprograms is contained in the HP 1000 E-Series Computer Microprogramming Reference Manual, part no. 02109-90004. A thorough understanding of the contents of these manuals must be obtained prior to attempting any microprogrammed I/O operations. Specifically, this manual contains information pertaining to microprogrammed block I/O transfers via the computer's I/O Section for both the E-Series and F-Series Computers and a general discussion of the use of the E-Series Computer's Microprogrammable Processor Port (MPP) for I/O applications.

A listing illustrating the forming and execution of microprogrammed I/O instructions is contained in Table 6-7. It should be noted that this table is provided for example purposes only to illustrate the I/O functions performed by particular microinstructions. As is evident, the sequences of microinstructions provided emulate assembly language I/O instructions. This type of microprogrammed I/O generally does not produce appreciable transfer rate increases. However, it does allow you to develope custom I/O instructions. Two types of microprogrammed I/O that do effect appreciable transfer rate increases are Microprogrammed Block I/O transfers and Microprogrammable Processor Port transfers.

6-15. MICROPROGRAMMED BLOCK I/O TRANSFERS

Microprogrammed block I/O (MBIO) transfers via the I/O Section provide the capability of high-speed data transfers between the computer and a peripheral device in an asynchronous manner (with respect to T-periods) at rates up to 1.59 million words per second as specified in Table 1-1. This capability provides a higher bandwidth than DCPC for some applications and, in addition, provides for special-purpose I/O operations such as byte packing, etc.

Figure 6-3 illustrates the sequence of operations for a MBIO input transfer. The sequence of events are as follows. The input device outputs a Data Ready signal (1) and

0330-16

Figure 6-3. Microprogrammed Block I/O Input Data Transfer

Table 6-7. Forming and Executing Microprogrammed I/O Instructions

LABEL	OP/ BRCH	SPCL	ALU/ MOD/ COND	STR	S-BUS/ OPRD/ ADDRESS	COMMENTS
CIR				L	CIR	Places the select code of the I/O device stored in the Central Interrupt Register into the L-register via the S-bus.
STC (T2) (T3) (T4) (T5) (Refer to Note1.)	IMM	L4 IOG NOP NOP NOP	CMLO IOR	S8 S8 IRCM	303B S8 S8	Generates the binary number required to form an STC 0,C and combines the STC 0,C with the select code stored in the L-register to form an STC SC,C. The CPU is frozen until the next I/O Section T2 time period and the STC SC,C is executed at the following T4 time period.
(T2) (T3) (T4) (T5)	IMM	IOG NOP NOP	CMHI IOR	S4 S4 IRCM	376B S4 S4 IOI	Generates the binary number required to form an LIA/B 0 and combines the LIA/B 0 with the select code stored in the L-register to form an LIA/B SC. The CPU is frozen until the next I/O Section T2 time period, the LIA/B is executed, and data from the selected I/O device is gated from the I/O bus into Scratch Register S5 at the following T5 time period.
OTA/B (T2) (T3) (T4) (T5)	IMM	L1 IOG NOP NOP	CMLO IOR	S9 S9 IRCM IOO IOO	77B S9 S9 S5 S5 S5	Generates the binary number required to form an OTA/B 0 and combines the OTA/B 0 with the select code stored in the L-register to form an OTA/B SC. The CPU is frozen until the next I/O Section T2 time period, the OTA/B is executed, and the data from Scratch Register S5 is gated from the S-bus to the selected I/O device at the following T4-T5 timeperiods. (Refer to Note 2.)
IAK		IAK			·	Freezes the CPU until the next I/O Section T6 time period, loads the select code of the interrupting I/O device into the Central Interrupt Register, and generates an IAK signal for the I/O device.

OP = Operation Field MOD = Modifier Field

OPRD = Operand Field

BRCH = Branch Field

COND = Condition Field

SPCL = Special Field

STR =Store Field

- NOTES: 1. Parenthetical T-periods listed in the LABEL column are for reference purposes only to illustrate the use of NOP micro-orders to synchronize the microprogram with I/O Section timing. Any non-freezable micro-order can be used in place of the NOP.
 - 2. Micro-order IOO is not the same as the I/O Section IOO signal. In order for an output transfer to be accomplished properly, micro-order IOO must be issued at I/O Section T4-T5 time period and the IOO signal must be present at T3-T4 time period.

a Data Word (2) to the interface PCA. The Data Ready signal sets the interface PCA flag and clocks the data word through the input buffer. The computer recognizes the Set Flag signal (3) generated by the interface PCA, writes the first data word (4) into the memory starting address specified in the microprogram, and immediately sends a Data Received signal (5) to the interface PCA. The interface PCA outputs the data received signal which is recognized by the input device as a Start signal (6). The process now repeats back to the beginning of this paragraph to transfer the next word. After the specified number of words (up to 256) have been transferred into memory, the microprogram (7) returns control to the next instruction.

As an aid toward a better understanding of how microprogrammed block I/O transfers can be accomplished. some typical transfer schemes will be discussed in the following paragraphs. Each of the discussed I/O transfers will use the standard I/O backplane connector signals and the three special microprogrammed block I/O signals (BIOI, BIOO, and BIOS) also available on each I/O backplane connector. (I/O backplane connector pin number assignments for all I/O signals are listed in Table 4-1.) Figure 6-4 is a flow diagram for microprogrammed block I/O transfers that illustrates which microinstructions generate the required I/O transfer signals and a typical I/O interface PCA that can be designed to use these signals to transfer data. MBIO timing diagrams are provided in Figure 6-5. It should be noted that the flag and interrupt circuit design discussed in Section V must be modified as shown in Figure 6-6 for microprogrammed block I/O transfers.

The circuits shown in Figures 6-4, 6-6A, 6-6B and 6-6C synchronize the SKF signal to decrease the probability of an oscillatory input driving the SKF signal due to inadequate set-up time at the first flip-flop. The synchronization is necessary to ensure a relatively hazard-free SKF signal for the CPU to test. Figure 6-5 illustrates the amount of time available to enable input or output data to or from the interface PCA. Any delay times in the user interface PCA must meet these specifications.

An alternate addressing scheme should be employed for MBIO transfers. Instead of addressing the card via select code signals generated by the lower six bits of the IR (Instruction Register), the state of the control flip-flop should determine addressing. The control flip-flop is set on the MBIO interface card with an STC sc,C instruction in assembly code before the microroutine is called. It is important to have the MBIO interface PCA addressed when \overline{BIOS} (P4) occurs, since \overline{BIOS} is an additional qualifier for the \overline{BIOI} and \overline{BIOO} signals. When DCPC is used in conjunction with MBIO, DCPC takes control of the select code bus at P4 (the same time that \overline{BIOS} occurs) preceding the DCPC cycle. Proper select code bus signals are not generated because the addressing qualifier is disabled when

BIOS is enabled. The alternate addressing scheme eliminates competition for the select code bus and allows proper signal generation.

Other MBIO restrictions arise due to DCPC and memory refresh. Since MBIO and DCPC share the same I/O bus. MBIO can contaminate DCPC data if a DCPC freeze occurs with an IOI or IOO micro-order in the MIR (Micro Instruction Register). In the first case, control of the S-Bus is returned to the CPU during T4 of a DCPC output cycle. The decoders are re-enabled and the BIOI signal is generated. BIOI enables data from the MBIO interface PCA onto the I/O bus at the same time that DMALCH holds DCPC output data on the I/O bus. In the second case, IOO in the store field enables the S-Bus data onto the I/O bus for the length of the DCPC input or output cycle. For both cases, the resultant data is the inclusive-OR of the two sources. This can be avoided by placing a dummy read or RJ30 micro-order one or two microinstructions before the IOI or IOO micro-orders. This prevents loading IOI or IOO microinstructions into the MIR because the read or RJ30 micro-order freezes the CPU prior to the DCPC cycle.

A microprogramming restriction arises when the \overline{BIOI} signal is used for a handshake acknowledgement or for an "increment buffer pointer" signal. Consider the following line of microcode:

WRITE PASS TAB IOI

Since this is a write micro-order, the machine freezes on this line if it concides with refresh or DCPC. Before freezing, the CPU performs the IOI into tab transfer. This transfer is performed a second time after the freeze. In the case that \overline{BIOI} is used to bump the buffer pointer, a new word is transferred and the previous word is lost. In the case that \overline{BIOI} is used for a handshake acknowledgement, there will be two acknowledgements for a one word transfer. The solution to this problem is to pass the data with IOI into a scratch pad register as shown in the following segment of microcode:

PASS S1 IOI WRITE PASS TAB S1

In addition, the CPU counter (CNTR) cannot be used as the word count register in an MBIO input transfer because the I/O bus is disabled from driving the S-Bus whenever the select code (lower 6 bits of the CNTR) is less than seven.

For example purposes, assume that a block of data from the memory of a "master" computer is to be transferred into the memory of a "slave" computer under microprogram control. First, a driver circuit similar to that shown in Figure 6-6A must be designed on an HP Breadboard Interface PCA and the PCA inserted into the "master" computer's I/O slot. Second, a receiver circuit similar

to that shown in Figure 6-6B must be designed on another HP Breadboard Interface PCA and this PCA inserted into the "slave" computer's I/O slot. Third, the two interface PCA's J1 connectors must be interconnected with a cable assembly. Fourth, a microprogrammed block I/O output

routine similar to that contained in Table 6-8 must be developed for the "master" computer and a microprogrammed block I/O input routine similar to that contained in Table 6-9 must be developed for the "slave" computer.

Table 6-8. Block I/O Output Microprogram

LABEL	OP/ BRCH	SPCL	ALU/ MOD/ COND	STR	S-BUS/ OPRD/ ADDRESS	COMMENTS
ENTRY		IOFF				Disable normal interrupts
	READ*		PASS	S11	М	Save return address
			INC	PNM	Α	Pick up buffer address
			PASS	100	В	Output word count
	JMP	CNDX	ALZ		RETURN	
LOOP	JMP	CNDX	HOI		ABORT	Test for emergency interrupt.
	READ		PASS			
	JMP	CNDX	SKPF	RJS	*-2	Flag set? Yes; process transfer output word
		PRST	INC	PNM	P	·
			PASS	100	TAB	
			DEC	В	В	
	JMP	CNDX	ALZ	RJS	LOOP	All words transferred? Yes, return.
RETURN	READ RTN	ION	INC	PNM	S11	
ABORT			•			Save word count, buffer address, etc. Set P = S11
			•			and jump to base set HORI routine.
			•			
	JMP				HORI	

^{*} Dummy read.

Table 6-9. Block I/O Input Microprogram

LABEL	OP/ BRCH	SPCL	ALU/ MOD/ COND	STR	S-BUS OPRD/ ADDRESS	COMMENTS
ENTRY	READ*	IOFF	DEC PASS PASS ALZ PASS	S11 P B	P A IOI RETURN	Disable normal interrupts Save return address Pick up buffer address and word count. Word count = 0?
LOOP	JMP JMP READ* WRITE	CNDX CNDX	HOI SKPF INC PASS PASS DEC	RJS PNM S1 TAB B	ABORT *-2 P IOI S1 B	Test for emergency interrupt. Flag set? Yes, process transfer Pick up word, Write it into memory.
RETURN	JMP READ RTN	CNDX ION	ALZ INC	RJS PNM	LOOP S11	All words transferred? Yes, return.
ABORT			•			Save word count, buffer address, etc. Set P = S11 and jump to base set HORI routine.
	JMP		-		HORI	

^{*} Dummy read.

The program listed in Table 6-8 assumes the buffer address (starting address of memory where the block of words is stored) is in the A-register and the word count is in the B-register. The output program of Table 6-8, being associated with the "master" computer, starts the data transfer. Due to the master computer's interface PCA circuitry (Figure 6-6A) the flag signal is present on entry into the microroutine to meet the SKPF condition to start the transfer. The "slave" computer fields the first transfer request, via an interrupt from the slave computer's interface PCA. The slave's input microprogram (Table 6-9) is entered with the A-register containing the buffer address. The word count is picked up from the slave's interface PCA and the data transfer loop is entered. Note that all read micro-orders marked with an asterisk (*) are dummy reads which are necessary due to possible DCPC or memory refresh interaction. Also note that the MBIO programs test for emergency interrupts (i.e., power fail and parity error) and leave the MBIO routine if an emergency interrupt occurs. If an emergency interrupt branch is taken in either computer, the other computer will hang up waiting for the failing computer's handshake signals. Therefore, when implementing MBIO transfers, this situation should be handled in either hardware or software.

The programs listed in Table 6-8 and 6-9 are capable of transferring data at 1.9 Mbytes per second for input transfers and 2.04 Mbytes per second for output transfers. Both transfer rates assume DCPC is inactive, therefore, all machine cycles are available to the CPU.

Higher transfer rates can be achieved if SKF synchronization is not required. Table 6-10 contains programs to accomplish higher transfer rates. Assuming DCPC is inactive, data transfer rates of 2.28 Mbytes for input and 3.17 Mbytes for output can be achieved.

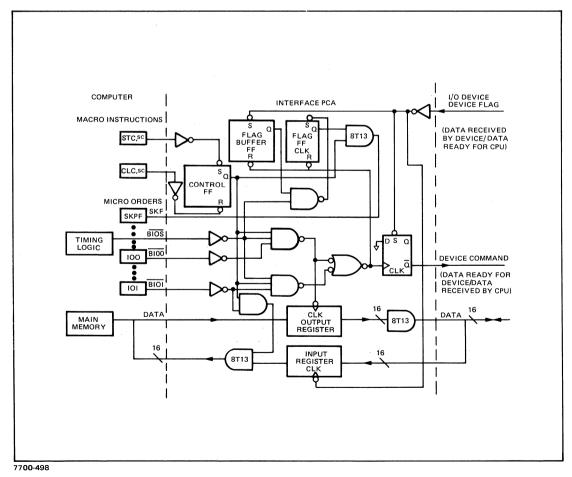


Figure 6-4. Microgrammed Block I/O Flow Diagram

Table 6-10. High Speed MBIO Transfer

LABEL	OP/ BRCH	SPCL	ALU/ MOD/ COND	STR	S-BUS/ OPRD/ ADDRESS	COMMENTS
INPUT	READ* WRITE JMP	INC DCNT CNDX	PNM PASS PASS CNT8	P S1 TAB RJS	IOI S1 INPUT	Input data word Write into memory Continue or stop.
OUTPUT	READ JMP	PRST DCNT CNDX	INC PASS CNT8	PNM IOI RJS	P TAB OUTPUT	Read next word, output present word. Continue or stop.

^{*} Dummy read.

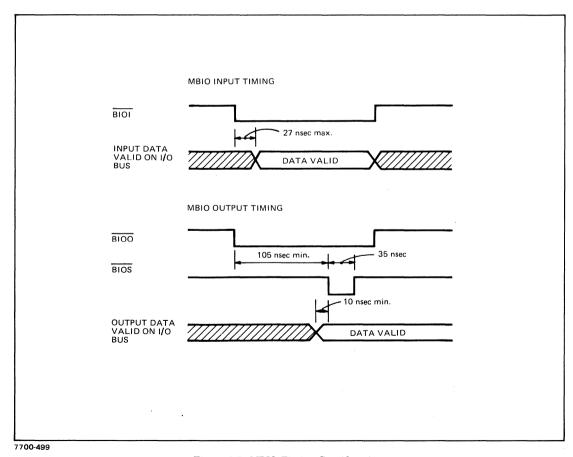


Figure 6-5. MBIO Timing Considerations

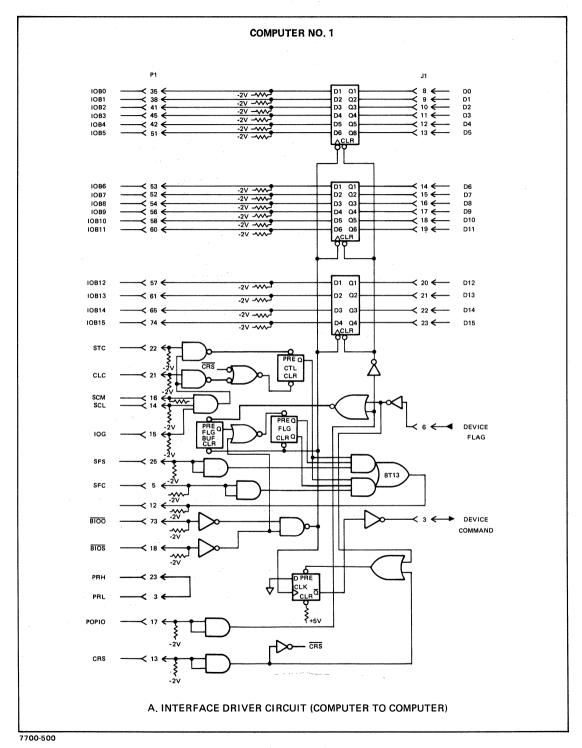


Figure 6-6A. Typical Microprogrammed Block I/O Interface Circuits

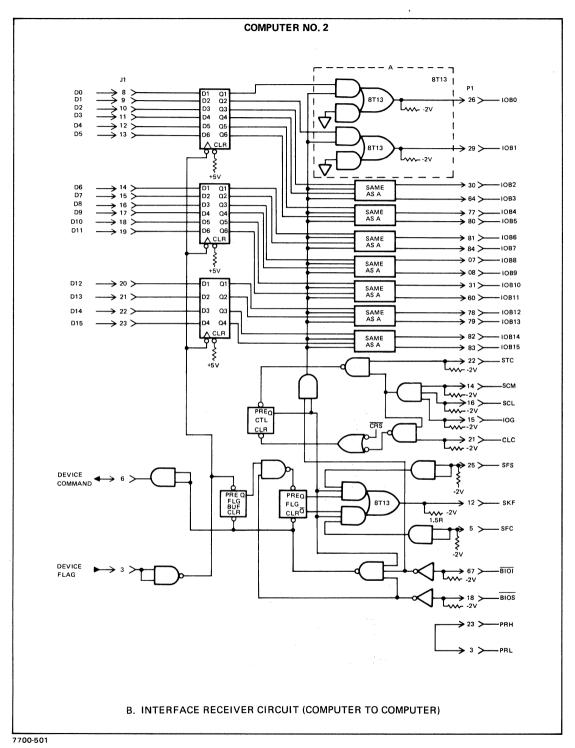


Figure 6-6B. Typical Microprogrammed Block I/O Interface Circuits

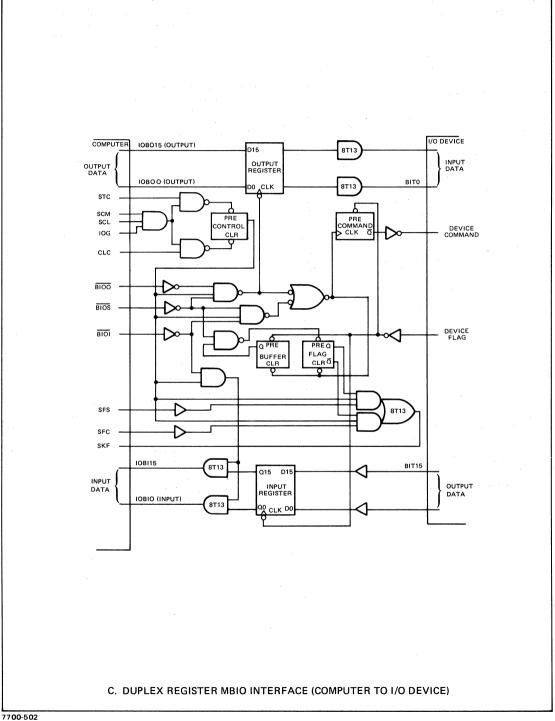


Figure 6-6C. Typical Microprogrammed Block I/O Interface Circuits

6-16. MICROPROGRAMMABLE PROCES-SOR PORT INTERFACING

Although it is not part of the computer's I/O Section, the Microprogrammable Processor Port (MPP) permits external hardware to be connected directly to the CPU of the E-Series Computer and can be interfaced under fast and direct microprogrammed control. Some typical applications with the MPP include computer-to-computer communication, adaptation of specialized performance hardware (e.g., floating point hardware), and a low-cost, high-speed or special I/O channel. Access to the computer is accomplished by fabricating an interconnecting cable assembly consisting of standard flat cable and mating connectors. This cable assembly connects between the external device or interface PCA and the computer's MPP connector J3 located behind the computer's operator panel on Operator Panel PCA A2 as shown in Figure 6-7. (Maximum interconnecting cable assembly length is restricted to 6.0 feet (1.8 meters.) It should be noted that the MPP employs tri-state logic and that compatible devices must be used for interface design. Some recommended devices are as follows:

 748240
 Octal Inverter

 748241
 Octal Buffer

 748373
 Octal Latch

 748374
 Octal Flip-Flop

Signal definitions and connector pin assignments for MPP connector J3 are contained in Table 6-10. A timing diagram for the MPP signals is contained in Figure 6-8. It should be noted that the actual use of the MPP signals must be determined by the user. When a use for a particular signal is stated in Table 6-11, it is a suggested use only and is not restrictive. As previously stated, it is imperative that the user be completely acquainted with the contents of the HP 1000 E-Series Computer Microprogramming Reference Manual, part no. 02109-90004 before attempting to use the MPP. Note that the same microprogramming restriction applies to MPP transfers that

applies to MBIO transfers. Namely, the data on the MPP must be passed into a scratchpad register and then the scratchpad register is passed into the T-register. This assures that data words are not lost and that only one handshake acknowledgement occurs per transfer.

For reference purposes, a listing illustrating how to form and execute a microprogrammed MPP I/O transfer is contained in Table 6-11. It should be noted that Table 6-11 is provided for example purposes only and that actual transfer instruction formats will vary depending on the external I/O device's specifications and the user's application.

The microprogram listed in Table 6-11 inputs data words in a burst manner via the MPP and stores the data in main memory. The listed microprogram is interruptible before the word burst begins, but is not interruptible during the burst. Any interrupts that occur during the word burst transfer will be serviced at the end of the microprogram. The listed microprogram has a maximum transfer rate of approximately 500 kilowords/second in a typical DCPC environment and of approximately 1500 kilowords/second in a non-DCPC environment. The microprogram listed in Table 6-11 assumes that the external device contains a data buffer large enough to hold the specified word burst and that the positive word count (number of words to be transferred) has been previously entered into the A-register. (In order to obtain the transfer rates specified above, the listed microprogram is limited to 256 words. Word bursts greater than 256 can be transferred; however, this requires a second word counter which requires additional microinstructions. This in turn decreases the data transfer rate.) The listed microprogram also assumes that the buffer address (starting address of memory where data is to be stored) has been previously entered into the B-register. It should be noted that it is the programmer's responsibility to precede the microprogram listed in Table 6-11 with the required main memory/ control memory linkage.

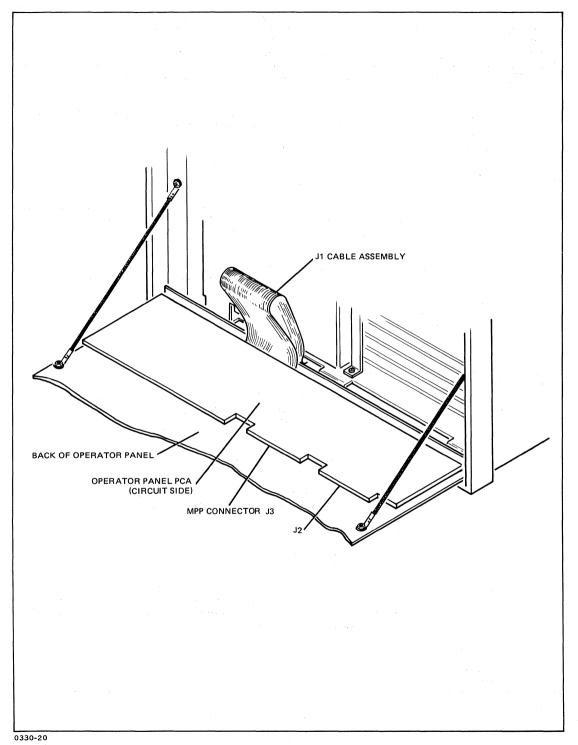


Figure 6-7. MPP Connector Location

Table 6-11. MPP Connector J3 Signal Definitions and Connector Pin Assignments

PIN NO.		SIGNAL MNEMONIC AND DEFINITIONS						
1**	STOV:	"Not" Set Overflow. This is a ground-true signal used to set the control processor's Overflow flip-flop. Processor loading is 14.0 mA.						
3*	PP5:	Processor Port P5. This is a positive-true signal derived from CPU freezeable P5 (Figure 4-4) used to synchronize data flow between the computer and the external device.						
5	MPPIO11:	Buffered S-bus bit 11. (Refer to Note 1.)						
7*	PP2SP:	Processor Port "2" Special. This is a user-defined, positive-true signal that goes high when microorder MPP2 is in the Special Field of a microinstruction. Permitted load is 6.0 mA.						
9**	MPP:	"Not" Microprogrammable Processor Port. This is a user-defined, ground-true signal that can be sensed by the control processor when micro-order MPP is in the Condition Field of a micro-instruction. This signal must be asserted throughout the microinstruction cycle. Processor loading is 2.0 mA.						
11*	PP1SP:	"Not" Processor Port "1" Special. This is a user-defined, ground-true signal that goes low when micro-order MPP1 is in the Special Field of a microinstruction. Permitted load is 6.0 mA.						
13 15 17 19 21 23 25	MPPIO12: MPPIO13: MPPIO14: MPPIO15: MPPIO08: MPPIO09: MPPIO07:	Buffered S-bus bit 12 Buffered S-bus bit 13 Buffered S-bus bit 14 Buffered S-bus bit 15 Buffered S-bus bit 8 Buffered S-bus bit 9 Buffered S-bus bit 7						
27*	MPBST:	Microprogrammable Processor Port "B" Store. This is a positive-true signal that goes high when micro-order MPPB is in the Store Field of a microinstruction. Can be used to strobe data on the S-bus into the external device. Permitted load is 6.0 mA.						
29*	PLRO:	"Not" Processor Port L-Register Bit 0. This is a ground-true signal that can be used as an address line to the external device. Permitted load is 6.0 mA. The buffered signal is true whenever LR0 (least significant bit of L-register) is true.						
31*	PIRST:	Processor Port Instruction Register Store. This is positive-true signal that goes high when microorder IRCM is in the Store Field of a microinstruction. Can be used by external device for recognition of special instructions. Permitted load is 6.0 mA.						
33 35 37 39	MPPIO06: MPPIO05: MPPIO04: MPPIO03:	Buffered S-bus bit 6 Buffered S-bus bit 5 Buffered S-bus bit 4 Buffered S-bus bit 3						
41*	MPBEN:	Microprogrammable Processor Port "B" Enable. This is a positive-true signal that goes high when micro-order MPPB is in the S-Bus Field of a microinstruction. Can be used to load data from the external device. Permitted load is 6.0 mA.						
43 45 47 49	MPPIO02: MPPIO01: MPPIO00: MPPIO10:	Buffered S-bus bit 2 Buffered S-bus bit 1 Buffered S-bus bit 0 Buffered S-bus bit 10						

NOTES: 1. All S-bus signals are bidirectional.

- 2. All even-numbered pins (2 through 50) are connected to ground.
- * Signal generated by computer for external device.
- ** Signal generated by external device for computer.

Table 6-12. MPP Word Burst Input Microprogram

				r .	I	<u> </u>
LABEL	OP/ BRCH	SPCL	ALU/ MOD/ COND	STR	S-BUS/ OPRD/ ADDRESS	COMMENTS
			•			
BURSTIN		,	DEC	S3	Р	Stores contents of P-register in Scratch Register S3 for reentry point.
	JMP	CNDX	ALZ PASS	CNTR	A DONE	Stores the positive word count in the Instruction Register.
WAIT	JMP	CNDX	ноі		INTRPT	Any interrupts pending? Yes; jump to interrupt microroutine. No; continue.
	JMP	NOP CNDX	MPP	RJS	WAIT	I/O device's data ready (i.e., MPP signal true)? No; repeat previous instruction. Yes; continue.
			INC	PNM	В	Loads starting buffer address in M-register and loads next buffer address in P-register.
BURST	WRTE	MPCK		S1 TAB	MPPB S1	Performs memory protect check of M-register address for memory protect fence or DMS violation. Strobes data from the I/O device onto the S-bus (MPBEN signal true) and writes the data into main memory address specified by contents of M-register.
		DCNT	INC	PNM	Р	Decrements the Instruction Register (word count), loads next buffer address from P-register into M-register and increments the P-register.
	JMP	CNDX -	CNT8	RJS	BURST	Word count zero? No; jump to BURST. Yes; continue.
DONE	READ	RTN	INC	B PNM A	P S3 CNTR	Begins exit routine by reading next instruction from main memory address specified in M-register (original P-register contents). B-register contains last buffer address. A-register contains all zeros indicating that the word burst is complete.
INTRPT	JMP		PASS	P	S3 6	Store microprogram reentry address into P-register and exit to Halt-Or-Interrupt Microroutine.
			•		-	
:		,				

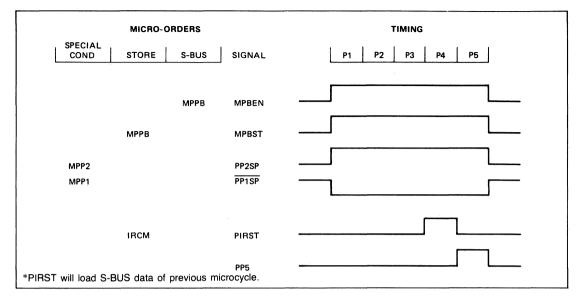


Figure 6-8. MPP Timing Diagram

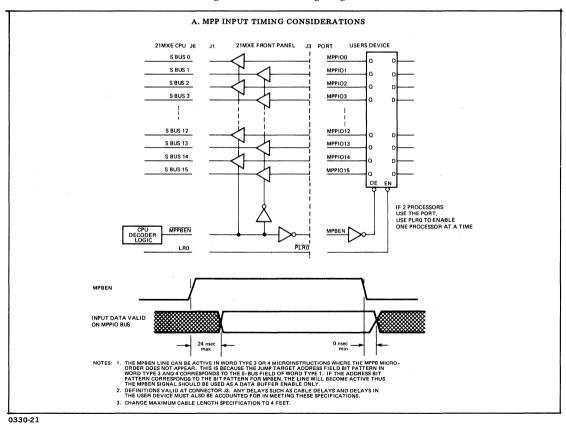


Figure 6-9. MPP Timing Considerations (Sheet 1 of 4)

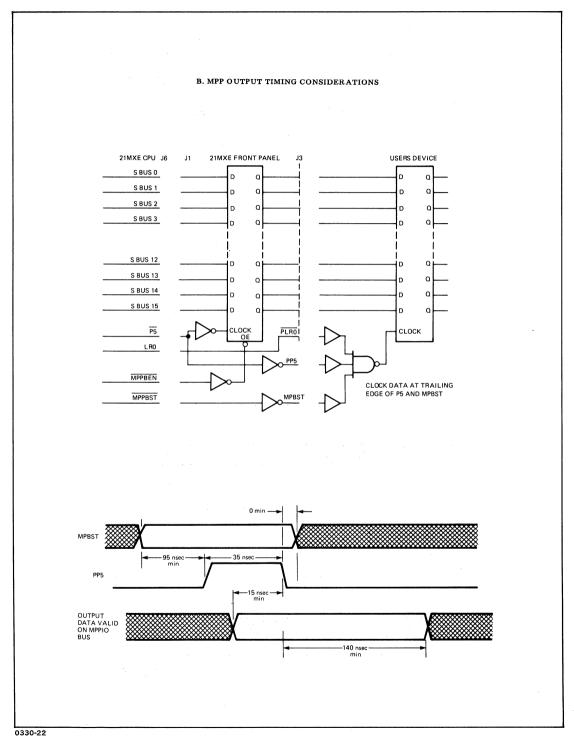


Figure 6-9. MPP Timing Considerations (Sheet 2 of 4)

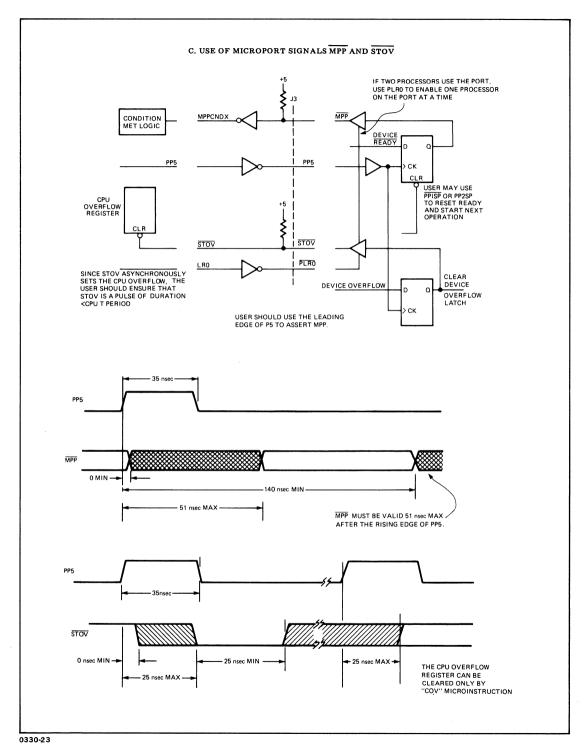


Figure 6-9. MPP Timing Considerations (Sheet 3 of 4)

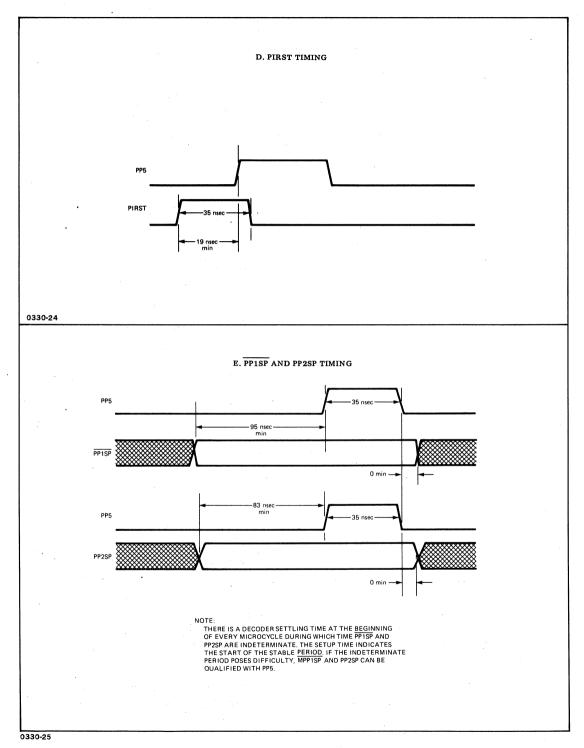


Figure 6-9. MPP Timing Considerations (Sheet 4 of 4)

HP INTERFACE KITS

This appendix contains condensed general descriptions of general-purpose interface kits currently available from Hewlett-Packard. Unless otherwise specified, the interface kits listed are compatible with the HP 1000 M-Series, E-Series and F-Series Computers. Additional information for these interface kits is available at any of the Hewlett-Packard Sales and Service Offices listed at the back of this manual

A-1. HP 12531C BUFFERED TELE-PRINTER INTERFACE KIT

The HP 12531C interfaces HP 1000 Computers to HP 2752A and HP 2754B Teleprinters using current loop signals. Optional features permit interfacing to a variety of EIA compatible devices, including Bell 103 Type data sets or equivalent (manual mode only). Five jumper-selectable data transfer rates (110, 220, 440, 880, and 1760 bits per second) are available. A second jumper permits control of the data transfer rate up to a maximum of 2400 bits per second by an external clock from the associated I/O device.

A-2. HP 12531D TERMINAL INTERFACE KIT

The HP 12531D interfaces HP 1000 Computers to a variety of terminal devices. The standard interface permits interfacing with I/O devices using current loop signals. Optional features permit interfacing to a variety of EIA compatible devices, including Bell 103 Type data sets or equivalent (manual mode only), HP 2640A Interactive Display Terminals, and HP 2644A Mini Data Stations. Five jumper-selectable data transfer rates (150, 300, 600, 1200, and 2400 bits per second) are available. A second jumper permits control of the data transfer rate up to a maximum of 9600 bits per second by an external clock from the associated I/O device.

A-3. HP 12551B RELAY REGISTER INTERFACE KIT

The HP 12551B interfaces HP 1000 Computers to external devices that require floating contact closures. The standard interface provides 16 floating contact closures that can be used to control one device or, subdivided in any combination, to control several devices. The opening and closing of each set of relay contacts is under computer program control and the voltages switched through the

relay contacts can differ from each other and from computer ground by as much as 100V peak. The relay contacts can be connected in series, parallel, or series-parallel, with or without diode isolation. An optional feature permits data to be read back into the computer from the interface's storage register.

A-4. HP 12554A 16-BIT DUPLEX REGISTER INTERFACE KIT

The HP 12554A interfaces HP 1000 Computers to a variety of digital I/O devices. The interface permits 16-bit input, output, or combined input/output operations between a computer and its associated I/O device by providing a 16-bit input storage register, a 16-bit output storage register, and all required control and interrupt logic.

A-5. HP 12555B DIGITAL-TO-ANALOG CONVERTER INTERFACE KIT (M-SERIES ONLY)

The HP 12555B interfaces HP 1000 M-Series Computers to a variety of external I/O analog devices. The interface receives 16-bit binary words from the computer, divides each 16-bit word into two 8-bit bytes, and stores these words in two 8-bit registers. Outputs from the two 8-bit registers are scaled to provide two analog output voltages that are used as the X- and Y-axis input signals to the external analog device. The magnitude of each analog output voltage is given by 10N/255, where N is the decimal value represented by the combination of bits in each group of eight bits from the computer. For conventional oscilloscopes, the analog output signals are regenerated every 20 milliseconds to refresh the display. For storage type I/O devices, an Erase signal is generated to remove a previously generated display. Positive or negative blanking signals are also generated that can be connected to the Z-axis input of the device to provide the display after the interface circuits have stabilized. The interface also accepts a Device Flag signal from the external device that indicates when the device is ready to receive new data.

A-6. HP 12556B 40-BIT OUTPUT REGISTER INTERFACE KIT (M-SERIES ONLY)

The HP 12556B interfaces with HP 1000 M-Series Computers and has a 40-bit output capacity. Its capabilities

include driving digital recorders such as the HP 5055A and HP 5050B or equivalent, driving program input lines of stimulus or measuring instruments, and driving control panel indicators or control lines. The interface's 40-bit output register offers two jumper-selectable output modes; ASCII and binary. In ASCII mode, the register assembles the BCD position of ASCII characters from six words in computer memory. In binary mode, the register assembles the output from three words in computer memory.

A-7. HP 12560A DIGITAL PLOTTER INTERFACE KIT

The HP 12560A interfaces HP 1000 Computers to the California Computer Products (CALCOMP) Model 565 or 563 Digital Incremental Plotter. The interface provides control, interrupt, and output logic circuits for computer program control of the plotter. When properly programmed, the interface accepts any combination of parallel six bits from the computer and applies these six bits to the plotter for control of the drum, pen, and pen carriage assemblies. Drive capability for either the Model 565 or 563 is jumper selectable.

A-8. HP 12566B MICROCIRCUIT INTERFACE KIT

The HP 12566B interfaces HP 1000 Computers to a variety of digital measurement devices with DTL/TTL output voltage levels. The interface permits 16-bit input and output information flow between the computer and its associated I/O device at data speeds much greater than can be achieved with discrete components.

A-9. HP 12587B ASYNCHRONOUS DATA SET INTERFACE KIT (M-SERIES ONLY)

The HP 12587B interfaces HP 1000 M-Series Computers to common carrier data transmission equipment or, as an optional feature, to a computer terminal. During transmit operations, the interface converts parallel data output from the computer into serial data that is compatible with a data set or computer terminal. During receive operations, the interface converts serial data output from a data set or computer terminal into parallel data for computer input. The interface can provide asynchronous communications at speeds up to 3110 bits per second. The data rates are jumper-selectable and programmable functions include character size, parity generation, parity checking, and the selection of one or two stop bits.

A-10. HP 12589A AUTOMATIC DIALER INTERFACE KIT (M-SERIES ONLY)

The HP 12589A interfaces the HP 1000 M-Series Computers to a Bell Auxiliary Data Set 801 Automatic Calling Unit. The automatic calling unit permits the computer to dial telephone numbers under program control to access a remote terminal for data transmission. Automatic calling can be used with either asynchronous or synchronous interface kits.

A-11. HP 12597A 8-BIT DUPLEX REGISTER INTERFACE KIT

The HP 12597A interfaces HP 1000 Computers to a variety of external I/O digital devices. The interface permits 8-bit input, output, or combined input/output operations between a computer and its associated I/O device by providing an 8-bit input storage register, an 8-bit output storage register, and all required control and interrupt logic.

A-12. HP 12604B DATA SOURCE INTERFACE KIT

The HP 12604B interfaces HP 1000 Computers to a variety of digital measurement devices. The interface provides a 32-bit capacity and, as such, can transfer up to eight BCD digits from counters, digital voltmeters, etc. to the computer. The interface employs referenced capacitive coupling to accommodate input logic voltage levels from $-100\mathrm{V}$ to $+100\mathrm{V}$.

A-13. HP 12618A SYNCHRONOUS DATA SET INTERFACE KIT (M-SERIES ONLY)

The HP 12618A interfaces HP 1000 M-Series Computers to data communication networks equipped with high-speed synchronous data sets such as the Bell 201 Type or equivalent. Using fully independent transmit and receive channels, the interface can operate in either half or full duplex mode at data transfer rates up to 9600 bits per second. Under program control, the interface also provides selection of parity generation and checking, a synchronization character, character size, and a special character recognition/interrupt capability.

A-14. HP 12620A BREADBOARD INTERFACE KIT

The HP 12620A is a single plug-in I/O interface PCA that contains the standard HP flag and interrupt circuits required by the HP 1000 Computers. The interface permits

users to design and add to the PCA special circuits required to interface unique I/O devices to HP computers.

A-15. HP 12880A TERMINAL INTERFACE KIT

The HP 12880A interfaces HP 1000 Computers to console type terminals and provides jumper-selectable data transfer rates up to a maximum of 9600 bits per second. The standard interface is supplied with a cable suitable for connecting to most EIA terminals. An optional cable permits direct connections to the HP 2640 Interactive Display Terminal and to the HP 2644A Mini Data Station.

A-16. HP 12889A HARDWIRED SERIAL INTERFACE KIT (M-SERIES ONLY)

The HP 12889A enhances the data communication capability of the HP 1000 M-Series Computers. The interface enables high-speed, asynchronous, long distance, point-to-point data transfer between two HP 1000 M-Series Computers. The interface operates in any of four data handling modes; program to program, program to DCPC, DCPC to program, and DCPC to DCPC.

A-17. HP 12920B ASYNCHRONOUS MULTIPLEXER

The HP 12920B interfaces HP 1000 Computers to provide multiplexed I/O capability for up to 16 communications devices at programmable data rates up to 2400 bits per second. The standard interface provides multiplexed I/O capability for up to 16 Bell 103 Type data sets or bit serial EIA RS232 compatible terminals such as teleprinters, card readers, or similar devices. Optional features provide for up to 16 Bell 202 Type data sets or up to eight Bell 801 Type automatic dialers. All input and output channels are independent so that full duplex and split-speed devices can be interfaced.

A-18. HP 12930A UNIVERSAL INTERFACE KIT

The HP 12930A interfaces HP 1000 Computers to a wide variety of external I/O devices. Programmable switches provide the versatility required for the interface to accommodate most I/O interface requirements. The interface's dual channel design provides the capability for transferring large blocks of data over distances up to 500 feet. Optional features provide a choice of either ground-true or positive-true TTL logic in place of the standard differential logic.

A-19. HP 12936A PRIVILEGED INTER-RUPT FENCE ACCESSORY

The HP 12936A is a single printed-circuit assembly that can be installed in one of the I/O slots in an HP 1000 Computer to provide a programmable I/O barrier between high and low priority I/O devices. It contains all required circuitry to control both the generation of interrupts and to inhibit the priority line to lower priority devices under program control.

A-20. HP 12966A BUFFERED ASYN-CHRONOUS DATA COMMUNI-CATIONS INTERFACE

The HP 12966A interfaces HP 1000 Computers to asynchronous, bit-serial, EIA RS232C compatible data sets or terminals. The interface permits the selection of parity generation and checking (even, odd, or none), selection of character size (five or eight bits), selection of number of stop bits (one or two), and a selection of data transfer rates from 50 to 9600 bits per second all under program control.

A-21. HP 12967A SYNCHRONOUS COMMUNICATIONS INTERFACE (M-SERIES ONLY)

The HP 12967A interfaces HP 1000 M-Series Computers to any EIA RS232C compatible data set and provides half-duplex, synchronous, bit-serial, data communications at transfer rates up to 20,000 bits per second. Under program control, the interface permits the selection of parity generation and checking and the ability to transfer data under either program control or DCPC control. Character size is fixed at eight bits and a switch selectable synchronization character permits automatic synchronization of incoming data.

A-22. HP 12968A ASYNCHRONOUS COMMUNICATIONS INTERFACE

The HP 12968A interfaces HP 1000 Computers to EIA RS232C compatible, asynchronous data sets and terminals and provides half-duplex, asynchronous, bit-serial data communications at transfer rates up to 9600 bits per second. The HP 12968A is an economical, low-power version of the HP 12966A and is identical in every respect to the HP 12966A except that it has a two-character buffer and no special character capability.

A-23. HP 59310B HP-IB INTERFACE KIT

The Hewlett-Packard Interface Bus (HP-IB) is Hewlett-Packard's implementation of IEEE Standard 488-1975,

Digital Interface for Programmable Instrumentation. The HP 59310B interfaces the HP 1000 Computers to the HP-IB which provides a two-way digital communications structure for one or more instruments with ASCII-compatible interfaces. The interface makes the following bus functions available to the computer: listen and talk functions, serial or parallel poll identification, controller clearing, and four types of interrupt flagging. Data transfers are byte-serial and bit-parallel (8-bit bytes). Data transfers can be accomplished under either program or DCPC control.

A-24. HP 91000A PLUG-IN 20 KHZ ANALOG-TO-DIGITAL INTERFACE SUBSYSTEM

The HP 91000A is a complete computer-controlled data aquisition subsystem that can be connected into an I/O slot of either an HP 1000 Computer. Once installed, the interface can, under program control, scan the outputs of

multiple external analog devices, convert the analog signals into 12-bit two's complement binary representation, and return the binary number to the computer for processing. Jumper selections permits the interface to be configured to accept either 8 differential or 16 single-ended analog signals in the range of +10.235 to -10.240 volts.

A-25. HP 91200B TV INTERFACE KIT

The HP 91200B interfaces HP 1000 M-Series Computers to both black-and-white and color television monitors. Under program control, the interface generates a composite video signal to provide displays that combine both graphic images and alphanumeric characters on television monitors. The interface is compatible with either American or European standard broadcast TV scan rates and, in addition, can supply non-standard scan rates to optimize its operation with television monitors operating with 60-Hz vertical rates.

В

I/O SIGNAL DEFINITIONS

This appendix contains a list of definitions for the signals available on the I/O backplane. The list is arranged in signal mnemonic, alphabetical order: Connector pin number assignments for the signals are contained in Table 4-1. The signals are generated at the T-period times illustrated in Figures 4-5 and 4-8. Program control of the signals and how they interrelate are discussed in Sections III and IV.

EDT:

End Data Transfer. Used during DCPC transfers to notify the I/O device that a data transfer is complete. The EDT signal is generated when the number of transferred words counted by the DCPC Word Count Register equals the number of words specified in the programmed block length.

Enable Flag. Used during I/O operations to

time the setting of all I/O interface PCA's

Flag flip-flops. The ENF signals is gener-

ated by a buffered T2 time signal.

BIOI:

"Not" Block I/O Input. Used to strobe data from the I/O interface PCA into the computer during microprogrammed I/O transfers. (Refer to BIOS.) The BIOI signal is true when micro-order IOI is in the S-Bus Field of a microinstruction and no micro-order IOG is in the two preceding Special Fields.

FLG:

ENF:

Flag. Used in conjunction with the addressed I/O interface PCA's IRQ signal to initiate an interrupt for an I/O device. The FLG signal is generated when the addressed I/O interface PCA receives a combination of programmed I/O control signals from the computer and a Device Flag signal from the I/O device. This signal is also used to define the SCM octal digit for the interrupt address.

BIOO:

"Not" Block I/O Output. Used to strobe data from the computer into the I/O interface PCA during microprogrammed I/O transfers. (Refer to BIOS.) The BIOO signal is true when micro-order IOO is in the Store Field of a microinstruction and no micro-order IOG is in the two preceding Special Fields.

IAK:

Interrupt Acknowledge. Used to clear the addressed I/O interface PCA's Flag Buffer flip-flop to prevent a second interrupt from occurring for the same IRQ and FLG signals. The IAK signal is generated after the computer has encoded the interrupt address and is under control of the instruction stored in the trap cell.

BIOS:

"Not" Block I/O Strobe. Used in conjunction with BIOI and BIOO signals during microprogrammed I/O transfers. During output transfers, data is valid on the I/O bus at the trailing edge of BIOS. During input transfers, data must be enabled onto the I/O bus at BIOI time. BIOI•BIOS verifies completion of the input transfer.

IEN:

Interrupt Enable. Used to enable or disable all I/O interface PCA's IRQ flip-flops. The IEN signal is controlled by STF and CLF instructions addressed to select code 00.

CLC:

Clear Control flip-flop. Used to clear addressed I/O interface PCA's Control and Command flip-flops. The CLC signal is generated by a CLC instruction.

IOG:

I/O Group. Used in conjunction with SCM and SCL signals to enable the addressed I/O interface PCA. The IOG signal is generated whenever an I/O group instruction is initiated.

CLF:

Clear Flag flip-flop. Used to clear addressed I/O interface PCA's Flag Buffer and Flag flip-flops. The CLF signal is generated by a CLF instruction.

IOI:

I/O Data Input. Used to strobe data from the addressed I/O interface PCA into the computer. The IOI signal is generated by either an LIA, LIB, MIA, or MIB instruction.

CRS:

Control Reset. Used to clear all I/O interface PCA's Control flip-flops. The CRS signal can be generated by either a CLC instruction addressed to select code 00, a false PON signal, or by pressing the Operator Panel PRESET switch.

IOO:

I/O Data Output. Used to strobe data from the computer into the addressed I/O interface PCA. The IOO signal is generated by either an OTA or OTB instruction.

IRQ:	Interrupt Request. Used in conjunction with the addressed I/O interface PCA's FLG signal to initiate an interrupt for an I/O device. The IRQ signal is generated when the addressed I/O interface PCA receives a combination of programmed I/O control signals from the computer and a Device Flag signal from the I/O device. This signal is also used to define the SCL octal digit for the interrupt address.	SCM:	Select Code Most Significant Digit. Used in conjunction with the SCL signal to determine which I/O interface PCA is to receive an I/O instruction. The SCM, SCL, and IOG signals must all be true in order to enable an I/O interface PCA. The SCM signal is generated by decoding bits 5 — 3 of an I/O instruction into an octal digit. Skip if Flag is Clear. Used in conjunction
PON:	Power On Normal. Used as a master reset signal for the entire computer and, when false, generates the CRS and POPIO signals for all I/O interface PCA's. A false PON signal is generated when power is ini-	SFS:	with the SKF signal to test if the addressed I/O interface PCA's Flag flip-flop is clear. The SFC signal is generated by an SFC instruction. Skip if Flag is Set. Used in conjunction with
POPIO:	Power On Preset to I/O. Used to set all I/O interface PCA's Flag Buffer flip-flops. The POPIO signal is generated by either a false PON signal or by pressing the Operator	Sr S.	the SKF signal to test if the addressed I/O interface PCA's Flag flip-flop is set. The SFS signal is generated by an SFS instruction.
PRH:	Panel PRESET switch. Priority High. Used in conjunction with the PRL signal to maintain the priority chain between all I/O interface PCA's. The PRH signal is high whenever no I/O interface	SIR:	Set Interrupt Request. Used during interrupt processing to time the setting of the I/O interface PCA's IRQ flip-flop. The SIR signal is generated by a buffered T5 time signal.
	PCA's with a higher priority are requesting an interrupt.	SKF:	Skip on Flag. Used in conjunction with the SFS and SFC signals to indicate the state
PRL:	Priority Low. Used in conjunction with the PRH signal to maintain the priority chain between all I/O interface PCA's. The PRL signal is high whenever the I/O interface PCA is not requesting an interrupt and no I/O interface PCA's with a higher priority		(set or clear) of the addressed I/O interface PCA's Flag flip-flop. The SKF signal is generated when the addressed I/O interface PCA's Flag flip-flop is set and the SFS signal is true or when the Flag flip-flop is clear and the SFC signal is true.
RUN:	are requesting an interrupt. Run. For HP 1000 M-Series Computers, the RUN signal reflects the state of the CPU	SRQ:	Service Request. Used during DCPC opera- tions to initiate a DCPC cycle. The SRQ signal is generated whenever the addressed I/O interface PCA's Flag flip-flop is set indi-
	Run flip-flop. For HP 1000 E-/F-Series Computers, the RUN signal can be used for remote control of an unattended or inacces-		cating that the associated I/O device is ready for a data transfer.
SCL:	sible computer. (Refer to paragraph 5-10.) Select Code Least Significant Digit. Used in conjunction with the SCM signal to determine which I/O interface PCA is to receive an I/O instruction. The SCL, SCM, and IOG	STC:	Set Control flip-flop. Used to set addressed I/O interface PCA's Control and Command flip-flops. The STC signal is generated by an STC instruction.
	an I/O interface PCA. The SCL signal is generated by decoding bits 2.—0 of an I/O	STF:	Set Flag flip-flop. Used to set addressed I/O interface PCA's Flag Buffer flip-flop. The STF signal is generated by an STF

STF signal is generated by an STF

instruction.

generated by decoding bits 2-0 of an I/O

instruction into an octal digit.

ANGOLA Telectra Empresa Técnica de Eléctricos, S.A.R.L R. Barbosa Rodrigues, 41-1°DT.° Caiva Postal 6487 Luanda Tel: 35515/6 ARGENTINA Hewlett-Packard Argentina S.A. Hewlett-Packard Argentina Santa Fe 2035, Martinez 6140 Buenos Aires Tel: 792-1239, 798-6086 Telex: 122443 AR CIGY Biotron S.A.C.I.y M. Avda. Paseo Colon 221 9 piso 9 piso 1399 **Buenos Aires** Tel: 30-4846/1851/8384 34-9356/0460/4551 Telex: (33) 17595 BIO AR

ALIGTPALIA AUSTRALIA CAPITAL TERR. Hewlett-Packard Australia Pty. Ltd. 121 Wollongong Street Fyshwick, 2609 Tel: 804244 l td

Telex: 62650 NEW SOUTH WALES Hewlett-Packard Australia Pty 31 Bridge Street

Pymble, 2073 Tel: 4496566 Telex: 21561 QUEENSLAND tt Packard Australia Ptv Ltd. 5th Floor or Irs Union Building 495-499 Boundary Street Spring Hill, 4000 Tel: 2201544

153 Greenhill Road Parkside, 5063 Tel: 2725911 Telex: 82536 VICTORIA

SOUTH AUSTRALIA

tt-Packard Australia Ptv 31-41 Joseph Stree Blackburn, 3130 Tel: 89-6351 Telex: 31024 MELB

WESTERN AUSTRALIA Hewlett-Packard Australia Pro

Ltd. 141 Stirling Highway Nedlands, 6009 Telex: 93859 AUSTRIA

Wehlistrasse 29 PO Box 7 A-1205 Vienna Tel: 35-16-21-0 Telex: 13582/135066 Hewlett-Packard Ges.m.b.H. Wehlistrasse, 29 A-1205 Wien Tel: 35-16-21 Telex: 135066

BAHRAIN Medical Only Wael Phermaco P.O. Box 648 Bahrain Tel: 54886, 56123 Telex: 8550 WAEL GJ Al Hamidiya Trading and Contracting P.O. Box 20074 Manama Tel: 259978, 259958 Telex: 8895 KALDIA GJ

BANGI ADESH The General Electric Co. of Bangladesh Ltd. Magnet House 72 Dilkusha Commercial Area Motijhell, Dacca 2 Tel: 252415, 252419

BELGIUM dett.Packard Renelux S.A./N.V. Avenue du Col-Vert, 1, (Groenkraaglaan) B-1170 Brussels Tel: (02) 660 50 50 Telex: 23-494 paloben bru RRAZII

Hewlett-Packard do Brasil I.e.C. Ltda. Alameda Rio Negro, 750 Alphaville 06400 Barueri SP Tel: 429-3222 Hewlett-Packard do Brasil

i.e.C. Ltda. Rua Padre Chagas, 32 90000-**Pôrto Alegre-**RS Tel: 22-2998, 22-5621 Hewlett-Packard do Brasil I.e.C. Ltda.

Av. Epitacio Pessoa, 4664
22471-Rio de Janeiro-RJ

Tel: 286-0237 Telex: 021-21905 HPBR-BR CANADA

ALRERTA Hewlett-Packard (Canada) Ltd. 11620A - 168th Street Edmonton TSM 2TO Tel: (403) 452-3670 TWX: 610-831-2431 Hewlett-Packard (Canada) Ltd.

210, 7220 Fisher St. S.E. Calgary T2H 2H8 Tel: (403) 253-2713 TWY: 610-821-6141

BRITISH COLUMBIA Hewlett-Packard (Canada) Ltd. 10691 Shellbridge Way Richmond V6X 2W7 Tel: (604) 270-2277

TWX: 610-925-5059 MANITORA Hewlett-Packard (Canada) Ltd. 380-550 Century St. St. James, Winnipeg R3H 0Y1 Tel: (204) 786-6701

TWY: 610-671-3531 NOVA SCOTIA Hewlett-Packard (Canada) I td P.O. Box 931 800 Windmill Road Dartmouth 83B 1L1

Tel: (902) 469-7820 TWX: 610-271-4482 ONTARIO Hewlett-Packard (Canada) I td. 1020 Morrison Dr. Ottawa K2H 8K7

Tel: (613) 820-6483 TWX: 610-563-1636 Hewlett-Packard (Canada) Ltd. 6877 Goreway Drive Mississauga L4V 1M8 Tel: (416) 678-9430 TWX: 610-492-4246

Hewlett-Packard (Canada) Ltd. 552 Newbold Street London NRF 2S5

Tel: (519) 686-9181 TWX: 610-352-1201 OUFREC Hewlett-Packard (Canada) Ltd. 275 Hymus Blvd. Pointe Claire H9R 1G7

Tel: (514) 697-4232 TWX: 610-422-3022 FOR CANADIAN

LISTED: LISTED: Contact Hewlett-Packard (Canada) Ltd. in Mississauga

CHILE Jorge Calcagni y Cia. Ltda. Arturo Burhle 065 Casilla 16475 Correo 9, Santiago Tel: 220222 Telex: JCALCAGNI

COLOMBIA Henrik A. Langebaek & Kier Carrera 7 No. 48-75

Apartado Aéreo 6287 Bogotá, 1 D.E. Tel: 269-8877 Telex: 44400 Instrumentación H.A. Langebaek & Kier S.A. Carrera 63 No. 49-A-31

Apartado 54098 Medellin Tel: 304475 COSTA RICA Cientifica Costarricense S.A. Avenida 2, Calle 5

San Pedro de Montes de Oca Apartado 10159 San José Tel: 24-38-20, 24-08-19 Telex: 2367 GALGUR CF

CABBITE

Kypronics 19 Gregorios Xenopoulos P.O. Box 1152

Nicosia Tel: 45628/29 Teley: 3018 CZECHOSLOVAKIA Hewlett-Packard Obchodni zastupitelstvi v CSSR Pisemny styk Post. schranka 27

CS 118 01 Praha 011 Vyvojova a Provozni Zakladna Vyzkumnych Ustavu v CSSR-25007 Rechaulce u

Prahy Tel: 89 93 41 Telex: 12133 Institute of Medical Bionics Vyskumny Ustav Lekarskej Bioniky

ledlova 6 CS-88346 Bratislava Kramare Tel: 44-551

Telex: 93229 DENMARK Hewiett-Packard A/S Datavej 52 DK-3460 Birkerod Tel: (02) 81 66 40 Telex: 37409 hpas dk Hewlett-Packard A/S

Navervej 1 DK-8600 Silkeborg Tel: (06) 82 71 66 Telex: 37409 hpas dk ECUADOR CYFDE Cia Ltda

Av. Eloy Alfaro 1749 Quito Tel: 450-975, 243-052 Telex: 2548 CYEDE ED Medical Only Hospitalar S.A. Casilla 3500 Robles 625

Quito

Tel: 545-250 EGYPT I.E.A. International Engineering Associates 24 Hussein Hegazi Street Tel: 23 829

Toley: 03830 SAMITRO Sami Amin Trading Office 18 Abdel Aziz Gawish Abdine-Cairo

EL SALVADOR Bulevar de los Heroes 11-48 Edificio Sarah 1148 San Salvador Tel: 252787

ETHIOPIA P.O. Box 2635 Addis Ababa Tel: 11 93 40

EINI AND Hewlett-Packard Ov Revontulentie, 7 SF-02100 Espoo 10 Tel: (90) 455 0211 Telex: 121563 hewpa sf

Hewlett-Packard France Zone d'activites de Courtaboeuf Avenue des Tropiques Boite Postale 6 91401 Orsay-Cédex Tel: (1) 907 78 25 TWX: 600048F Howlett-Packard France Chemin des Mouilles B.P. 162 69130 Ecully Tel: (78) 33 81 25 TWX: 310617F

Hewlett-Packard France 20. Chemin de La Cépière 31081 Toulouse Le Mirall-Cédex Tel: (61) 40 11 12

Howlett-Packard France GUAM GUAM Guam Medical Supply, Inc. Suite C, Airport Plaza P.O. Box 8947 Le Ligoures Place Romée de Villeneuve 13100 Aix-en-Provence Tamuning 96911 Tel: 646-4513 Hewlett-Packard France 2 Allee de la Rourgonette

Tel: (42) 59 41 02 TWX: 410770F

35100 Penne

Tel: (99) 51 42 44 TWX: 740912F

Hewlett-Packard France

Hewlett-Packard France

Immeuble péricentre rue van Gogh

Tel: (20) Q1 A1 25

TWX: 160124F

Cédex

18, rue du Canal de la Marne 67300 Schiltigheim Tel: (88) 83 08 10 TWX: 890141F

59650 Villeneuve D'Asca

Hewlett-Packard France Bâtiment Ampère Rue de la Commune de Paris

B.P. 300 93153 Le Blanc Mesnii-

Tel: (01) 931 88 50

Av. du Pdt. Kennedy

33700 Merignac Tel: (56) 97 01 81

Immeuble Lorraine

Boulevard de France

91035 Evry-Cédex Tel: 077 96 60 Telex: 692315F

23 Rue Lothaire

57000 Metz Tel: (87) 65 53 50

Hewlett-Packard France

GERMAN EEDERAL

REPUBLIC Hewlett-Packard GmbH

D-6000 Frankfurt 56

Hewlett-Packard GmbH

Herrenberger Strasse 110 D-7030 Böblingen,

Württemberg Tel: (07031) 667-1

Hewlett-Packard GmbH

Emanuel-Leutze-Str. 1

(Seestern) D-4000 Düsseldorf

Technisches Büro Düsseldorf

Tel: (0211) 5971-1 Telex: 085/86 533 hpdd d

Technisches Büro Hamburg

Kapstadtring 5 D-2000 **Hamburg** 60 Tel: (040) 63804-1 Telex: 21 63 032 hphh d

Hewlett-Packard GmbH

Tel: (0511) 46 60 01

Hewlett-Packard GmbH

Telex: 092 3259

D-8500 Milrobero

Telex: 0623 860

Fechenetrasse 5

Tel: (089) 6117-1

Telex: 0524985

D-8021 Taufkirchen

Hewlett-Packard Gmbi

Tel: (030) 24 90 86 Telex: 018 3405 hpbin d

Tal: 32 30 303/32/37 731

Kaithstrasse 2-4 D-1000 Berlin 30

Kostas Karayannis 8 Omirou Street Athens 133

GREECE

Technisches Büro Hannover Am Grossmarkt 6 D-3000 Hannover 91

Technisches Buro Nurnberg

Hewlett-Packard GmbH Technisches Büro München

Hewlett-Packard GmbH

Tel: (06011) 50041 Telex: 04 13249 hpffm d

Technisches Büro Böblingen

Berner Strasse 117 Postfach 560 140

Vertriehezentrale Erankfurt

Hewlett-Packard France

Hewlett-Packard Franci

GUATEMALA IDECA Avenida Reforma 3-48 Zona 9 Guatemala City Tel: 316627, 314786, 66471-5, ext. 9 Telev: 4192 Teletro Gu HONG KONG

Hewlett-Packard Hong Kong Ltd 11th Floor, Four Seas Bidg. 212 Nathan Rd Kowloon Tel: 3-697446 (5 lines) Telex: 36678 HX Medical/Analytical Only Schmidt & Co. (Hong Kong)

Wing On Centre, 28th Floor Connaught Road, C. Hong Kong Tel: 5-455644 Telex: 74766 SCHMX HX

INDIA

Blue Star Ltd. Sahas 414/2 Vir Savarkar Marg Prabhadevi Bombay 400 025 Tel: 45 78 87 Telex: 011-4093 Blue Star Ltd. Prabhadevi Bombay 400 025 Tel: 45 73 01 Telex: 011-3751 Blue Star Ltd. Ahmedabad 380 014 Tel: 43022 Telex: 012-234 Rive Ster I td 7 Hare Street Calcutta 700 001 Tel: 23-0131 Telex: 021-7655 Blue Star Ltd. Bhandari House 91 Nehru Place New Delhi 110 024 Tel: 682547 Telex: 031-2463 Blue Star Ltd. T.C. 7/603 'Poornima . Maruthankuzhi Trivandrum 695 013 Tel: 65799 Telex: 0884-259 Blue Star Ltd. 11 Magarath Road Bangalore 560 025 Tel: 55668 Telex: 0845-430 Blue Star Ltd. Meeakshi Mandiram

XXXXV/1379-2 Mahatma Gandhi Rd. Cochin 682 016 Tel: 32069 Telex: 085-514 Blue Star Ltd. 1-1-117/1 Sarojini Devi Road Secunderabad 500 033 Tel: 70126 Telex: 0155-459 Blue Star Ltd. 133 Kodambakkam High Road Madras 600 034 Tel: 82057 Telex: 041-379

ICELAND Elding Trading Company Inc. Hafnarnvoli - Tryggvagötu P.O. Box 895 S-Reykjavik Tel: 1 58 20/1 63 03 INDONESIA

BERCA Indonesia P.T. P.O. Box 496/Jkt Jakarta Tel: 349255, 349886 BERCA Indonesia P.T. P.O. Box 174/Sby 23 Jin. Jimerto Surabaya Tel: 42027

IRFL AND Hewlett-Packard Ltd. Kestrel House Clanwilliam Place Dublin 2, Eire Hewlett-Packard Ltd.

2C Avongberg Ind. Est. Long Mile Road Dublin 12 Tel: 514322/514224 Telex: 30439 Medical Only Cardiac Services (Ireland) Ltd. Kilmore Road

Artane
Dublin 5, Eire
Tel: (01) 315820 Medical Only Cardiac Services Co

95A Finaghy Rd. South Belfast BT10 0BY GR-Northern Ireland Tel: (0232) 625566 Telex: 747626

ISRAFL Electronics Engineering Div. of Motorola Israel Ltd.

16, Kremenetski Street P.O. Box 25016 Tel-Aviv Tel: 38973 Telex: 33569, 34164 ITALY Vowlett-Packard Italiana S.p.A. Hewlett-Packard Ita Via G. Di Vittorio, 9 20063 Cernusco Sul

Naviglio (Mi) Tel: (2) 903691 Telex: 334632 HFWPACKIT Hewlett-Packard Italiana S.p.A. Via Turazza, 14 35100 Padova Tel: (49) 664888 Telev: 430315 HEWPACKI Hewlett-Packard Italiana S.n.A. Via G. Armellini 10 1-00143 Roma Tel: (06) 54 69 61 Telex: 610514 Hewlett-Packard Italiana S.p.A.

Corso Giovanni Lanza 94 I-10133 **Torino** Telex: 221079 Hewlett-Packard Italiana S.p.A. Via Principe Nicola 43 G/C I-95126 Catania Tel: (095) 37 05 04 Telex: 970291

Hewlett-Packard Italiana S.p.A. Via Nuova san Rocco A Capadimonte, 62A 80131 Napoli Tel: (081) 710698 Hewlett-Packard Italiana S.p.A. Via Martin Luther King, 38/111 I-40132 **Bologna** Tel: (051) 402394

Teley: 511630 JAPAN Yokogawa-Hewlett-Packard I td 29-21, Takaido-Higashi 3-chome Suginami-ku, Tokyo 168

Tel: 03-331-6111 Telex: 232-2024 YHP-Tokyo Yokogawa-Hewlett-Packard Ltd Ltd.
Chuo Bldg., 4th Floor
4-20, Nishinakajima 5-chome
Yodogawa-ku, Osaka-shi
Osaka, 532

Tel: 06-304-6021 Telex: 523-3624 Yokogawa-Hewlett-Packard Ltd.
Sunitomo Seimei Nagaya Bidg.
11-2 Shimosasajima-cho,
Nakamura-ku, Nagoya, 450
Tel: 052 571-5171

Yokogawa-Hewlett-Packard Ltd. Ltd. Tanigawa Building 2-24-1 Tsuruya-cho Kanagawa-ku Yokohama, 221 Tel: 045-312-1252 lex: 382-3204 YHP YOK

Yokogawa-Hewlett-Packard Ltd. Mito Mitsui Building 105, 1-chome, San-no-maru **Mito**, Ibaragi 310 Tel: 0292-25-7470 Yokogawa-Hewlett-Packard

Lid Inoue Building 1348-3, Asahi-cho, 1-chomi Atsugi, Kanagawa 243 Tel: 0462-24-0452 Yokogawa-Hewlett-Packard

Kumagaya Asahi Hachiiuni Building 4th Floor 3-4, Tsukuba Kumagaya, Saitama 360 Tel: 0485-24-6563

JORDAN Mouasher Cousins Co. P.O. Box 1387 Amman Tel: 24907/39907 Telex: SABCO JO 1456

KENYA ADCOM Ltd., Inc. P.O. Box 30070 Nairobi Tel: 33 1955 Teley: 22639 Medical Only International Aeradio (E.A.) Ltd. P.O. Box 19012

Nairobi Airport Nairohi Tel: 336055/56 Telex: 22201/22301

Medical Only International Aeradio (E.A.) Ltd. P.O. Box 95221 Mombasa

KODEA Samsung Electronics Co., Ltd. 4759 Shingil-6-Dong Yeong Deung POU Seoul Tel: 833-4122, 4121

Telex: SAMSAN 27364 KUWAIT Contracting P.O. Box 830-Safat

Kuwait Tel: 42 4910/41 1726 Telex: 2481 Areeg k LUXEMBURG Hewlett-Packard Renelus SAMV

Avenue du Col-Vert, 1 (Groenkraaglaan) B-1170 Brussels Tel: (02) 660 5050 Telex: 23 494 MALAYSIA

(Malaysia) Sdn. Bhd. Suite 2 21/2 22 Bangunan Angkasa Raya Jalan Ampang Kuala Lumpur Tel: 483680, 485653 Protel Engineering P.O. Box 1917 Lot 259, Satok Road Kuching, Sarawak Tel: 53544

MEXICO Hewlett-Packard Mexicana, S.A. de C.V. Av. Periférico Sur No. 6501 Tepepan, Xochimilco Mexico 23, D.F. Tel: 905-676-4600 Telex: 017-74-507

Hewlett-Packard Mexicana, S.A. de C.V. Rio Volga #600 Col. Del Valle Monterrey, N.L. Tel: 78.32.10 MOROCCO

Dolbeau 81 rue Karatchi Casablanca Tel: 3041 82 Telex: 23051/22822 Geren 2, rue d'Agadir Boite Postal 156 Casablanca

A.N. Goncalves, Ltd. 162, 1° Apt. 14 Av. D. Luis Caixa Postal 107 Maputo Tel: 27091, 27114 Telex: 6-203 NEGON Mc NETHERLANDS Hewlett-Packard Benelux N.V. Van Heuven Goedhartlaan 121 P.O. Box 667

MOZAMRIQUE

1181KK Amstelveen Tel: (20) 47 20 21 Telex: 13 216 NEW ZEALAND Hewlett-Packard (N.Z.) Ltd. 4-12 Cruickshank Street Kilbirnie, Wellington 3 P.O. Box 9443 Tel: 877-199

Hewlett-Packard (N.Z.) Ltd P O Roy 26, 189 169 Manukau Road Epsom, Auckland Tel: 687-159 Analytical/Medical Only Northrop Instruments &

Systems Ltd., Sturdee House 85-87 Ghuznee Street P.O. Box 2406 Wellington Tel: 850.001 Telex: NZ 31291

Northrup Instruments & Systems Ltd. Eden House, 44 Khyber Pass Rd. P.O. Box 9682, Newmarket

Auckland 1 Tel: 794-091 Northrun Instruments & Systems Ltd.
Terrace House, 4 Oxford

Terrace P.O. Box 8388 Christchurch Tel: 64-165

NIGERIA The Electronics

Instrumentations 1 td N6B/770 Oyo Road PMR 5402 Ibadan Tel: 461577 Telex: 31231 TEIL NG The Electronics Instrumentations Ltd. 144 Agege Motor Road, Mushin P.O. Box 481 Mushin, Lagos NORWAY Hewlett-Packard Norge A/S Ostendalen 18 P O Box 34

1345 Osteress Tel: (02) 1711 80 Telex: 16621 honas n Hewlett-Packard Norge A/S Nygaardsgaten 114 P.O. Box 4210 P.O. Box 4210 5013 Nygaardsgalen, Bergen Tei: (05) 21 97 33

PANAMA Electrónico Balboa, S.A. Aparatado 4929 Panama 5 Calle Samuel Lewis Edificio "Alfa," No. 2 Cludad de Panama Tel: 64-2700 Felex: 3483103 Curundu.

PERU Compañía Electro Médica S.A. Los Flamencos 145 San Isidro Casilla 1030 lime 1

Tel: 41-4325 Telex: Pub. Booth 25424 SISIDRO PAKISTAN Mushko & Company Ltd

Oosman Chambers Abdullah Haroon Road Karachi-3 Tel: 511027, 512927

SALES OFFICES

Arranged alphabetically by country (cont.)

Mushko & Company, Ltd. 10 Bazar Rd Sector G-6/4 Islamabad

PHILIPPINES The Online Advanced Systems Corporation Amorsolo cor. Herrera Str. Legaspi Village, Makati P.O. Box 1510 Metro Manila Tel: 85-35-81, 85-34-91,

85-32-21 Telex: 3274 ONLINE RHODESIA Field Technical Sales 45 Kelvin Road North P.O. Box 3458

Telex: RH 4122 POLAND Biuro Informacji Technicznej Hewlett-Packard III Stawki 2 6P PL00-950 Warszawa Tel: 39 59 62, 39 51 87 Telev: 81 24 53

PORTUGAL Telectra-Empresa Técnica de Equipamentos Eléctricos Rua Rodrigo da Fonseca 103 P.O. Box 2531

P-Lisbon 1 Tel: (19) 68 60 72 Telex: 12598 Medical Only Mundinter Intercambio Mundial de

Comércio S a r l P O Box 2761 de Aquiar 138 P-Lisbon Tel: (19) 53 21 31/7 Telex: 16691 munter p PUERTO RICO Hewlett-Packard Inter

Americas
Puerto Rico Branch Office Calle 272 #203 Urb. Country Club Carolina 00630 Tel: (809) 762-7255 Telex: 345 0514

QATAR Nasser Trading & Contracting P.O. Box 1563 Tel: 22170 Telex: 4439 NASSER

ROMANIA Hewlett-Packard Bd.n. Balcescu 16 Bucuresti

Tel: 15 80 23/13 88 85 Telex: 10440 SAUDI ARABIA

Modern Electronic Establishment (Head Office) P.O. Box 1228, Baghdadiah Stree Jeddah Tel: 27 798 Telex: 40035 Cable: ELECTA JEDDAH

Modern Electronic Establishment (Branch) P.O. Box 2728 Riyadh Tel: 62596/66232 Telex: 202049

Modern Electronic P.O. Box 193 Al-Khobar Tel: 44678-44813 Telex: 670136 Cable: ELECTA AL-KHOBAR

SINGAPORE ackard Singapore

(Pte.) Ltd. 6th Floor, Inchcape House 450-452 Alexandra Road P.O. Box 58 Alexandra Post Office Singapore 9115 Tel: 631788 Telex: HPSG RS 21486

SOUTH AFRICA

Hewlett-Packard South Africa Private Bag Wendywood Sandton Transvaal 2144 Hewlett-Packard Centre
Daphne Street, Wendywood,
Sandton, 2144 Tel: 802-5111/25 Telex: 8-4782

Hewlett-Packard South Africa (Pty.), Ltd. P.O. Box 120 Howard Place, Cape Province 7450 Pine Park Centre, Forest Drive Pine Park Centre, Fore Pinelands, Cape Province, 7405 Tel: 53-7955 thru 9

Telex: 57-0006 Hewlett-Packard Española, S.A.

5.A. Calle Jerez 3 E-**Madrid** 16 Tel: (1) 458 26 00 (10 lines) Telex: 23515 hpe Hewlett-Packard Española S A Edificio Juban c/o Costa Brava, 13

Hewlett-Packard Española, Milanesado 21-23 E-Barcelona 17 Tel: (3) 203 6200 (5 lines)

Telex: 52603 hobe e Hewlett-Packard Española. Av Ramón y Cajal, 1 Edificio Sevilla, planta 9°

F-Seville 5 Tel: 64 44 54/58 Hewlett-Packard Española S.A. Edificio Albia II 7° B F-Bilbao 1 Tel: 23 83 06/23 82 06

Hewlett-Packard Española S.A. C/Ramon Gordillo 1 (Entio.) E-Valencia 10 Tel: 96-361.13.54/361.13.58

SRI LANKA Metropolitan Agencies Ltd. 209/9 Union Place Colombo 2 Tel: 35947 Telex: 1377METROLTD CE

SUDAN Radison Trade P.O. Box 921 Khartoum Tel: 44048 Telex: 375

SURINAM Surtel Radio Holland N.V. Grote Hofstr. 3-5 P.O. Box 155 Paramariho Tel: 72118, 77880

SWEDEN Hewlett-Packard Sverine AR Enighetsvägen 3, Faci S-161 Bromma 20 Tel: (08) 730 05 50 Cable: MEASUREMENTS Hewlett-Packard Sverige AB

Frölunda Tel: (031) 49 09 50 office

SWITZED! AND Hewlett-Packard (Sch Zürcherstrasse 20 P.O. Box 307 CH-8952 Schilleren-Zürich Tel: (01) 7305240 Telex: 53933 hpag ch Cable: HPAG CH Hewlett-Packard (Schweiz) AG Château Bloc 19 CH-1219 Le Lignon

Geneva Tel: (022) 96 03 22 UNITED ARAB Telex: 27333 hpag ch Cable: HEWPACKAG Geneva EMIRATES Emitac Ltd. (Head Office) P.O. Box 1641 Sharjah Tel: 354121/3

SYRIA General Electronic Inc. Nuri Basha-Ahnaf Ebn Kays Street

P 0 Rox 5781 Telex: 11215 ITIKAL Cable: ELECTROROS

Medical only Sawah & Co Damascus Tel: 16 367-19 697-14 268 Telex: 11304 SATACO SY Cable: SAWAH, DAMASCUS Suleiman Hilal El Mlawi P.O. Box 2528 oun Bitar Street, 56-58 Tel: 11 46 63 Telex: 11270 Cable: HILAL DAMASCUS

TAIWAN Hewlett-Packard Far East Ltd. Taiwan Branch Bank Tower, 5th Floor 205 Tun Hau North Road Taipei Tel: (02) 751-0404 (15 lines) Hewlett-Packard Far East Ltd. Taiwan Branch 68-2, Chung Cheng 3rd. Road Kaohsiung Tel: (07) 242318-Kaohsiung Analytical Only San Kwang Instruments Co., Ltd.

20 Yung Sui Road Tel: 3615446-9 (4 lines) Telex: 22894 SANKWANG TANZANIA

Medical Only International Aeradio (E.A.), Ltd. DO Boy 861 Dar es Salaam Tel: 21251 Ext. 265 Toley: 41030

THAILAND UNIMESA Co. Ltd. Elcom Research Building 2538 Sukumvit Ave. Bangchak, Bangkok Tel: 39-32-387 39-30-338

TRINIDAD & TOBAGO CARTEL Caribbean Telecoms Ltd. P.O. Box 732 69 Frederick Street Port-of-Spain Tel: 62-53068

TUNISIA Tunisie Electronique 31 Avenue de la Liberte Tunie Tel: 280 144 Corema

1 ter. Av. de Carthage Tunis Tel: 253 821 Telex: 12319 CABAM TN TURKEY TEKNIM Company Ltd.

Caddesi No. 7 Kavaklidere, Ankara Tel: 275800 Telex: 42155 Teknim Com., Ltd Barbaros Bulyari 55/12

Besikyas, Istanbul Tel: 613 546 Tel: (602) 273-8000 'ARKANSAS Telex: 23540 Medical Service Only P.O. Box 5646 E.M.A. Brady Station Little Rock 72215 Tel: (501) 376-1844 Muhendislik Kollektif Sirketi Mediha Eldem Sokak 41/6 Yüksel Caddesi Ankara

CALIFORNIA Tel: 17 56 22 1579 W. Shaw Ave Fresno 93771 Yilmaz Ozyurek Milli Mudafaa Cad 16/6 Tel: (209) 224-0582 Kizilay

Ankara

Tel: 25 03 09 - 17 80 26

Telex: 42576 OZEK TR 1430 East Orangethorpe Ave. Fullerton 92631 Tel: (714) 870-1000 5400 West Rosecrans Blvd P.O. Box 92105 World Way Postal Center

Emitac Ltd. (Branch Office) 3939 Lankershim Boulevard North Hollywood 91604 Tel: (213) 877-1282 TWX: 910-499-2671

P.O. Box 2711 **Abu Dhabi** Tel: 331370/1 UNITED KINGDOM 3200 Hillview Av Palo Alto, CA 94304 Hewlett-Packard Ltd. King Street Lane Tel: (408) 988-7000 Winnersh, Wokingham 646 W North Market Blvd Sacramento 95834 Tel: (916) 929-7222 Berkshire RG11 5AR GB-England Tel: (0734) 784774 9606 Aero Drive Telex: 84 71 78/9 P.O. Box 23333 Hewlett-Packard Ltd. San Diego 92123 Tel: (714) 279-3200 Fourier House, 257-263 High Street London Colney

363 Brookhollow Dr. Santa Ana, CA 92705 St. Albans, Herts Tel: (714) 641-0977 GB-England Tel: (0727) 24400 3003 Scott Boulevard Santa Clara 95050 Telex: 1-8952716 Tel: (408) 988-7000 Hewlett-Packard Ltd. Trafalgar House TWX: 910-338-0518 454 Carlton Court Navigation Road Altrincham So. San Francisco 94080 Tel: (415) 877-0772 Cheshire WA14 1NU GB-England Tel: (061) 928 6422 Telex: 668068 'Tarzana Tel: (213) 705-3344

Hewlett-Packard Ltd.

West Midlands R62 8SD

GB-England Tel: (021) 501 1221

Hewlett-Packard Ltd

Wedge House 799, London Road

Evaon Court

Hereward Rise

Halesowen.

Telev: 339105

Tradax House

St. Mary's Walk Maidenhead

Morley Road Staplehill

GB-England

Telex: 72682

ALABAMA

700 Century Suite 128

P.O. Box 4207

ARIZONA

Bristol BS16 40T

Hewlett-Packard Ltd.

UNITED STATES

Birmingham 35226

Tel: (205) 822-6802

8290 Whitesburg Dr. Huntsville 35802 Tel: (205) 881-4591

2336 F. Magnolia St

Phoenix 85034 Tel: (602) 273-8000

2424 East Aragon Rd

Los Angeles 90009

Tel: (213) 970-7500

TWY: 910-325-6608

Tucson 85706

Park

South Queensferry West Lothian, EH30 9TG GB-Scotland Tel: (031) 331 1188

COLORADO 5600 DTC Parkway Englewood 80110 Tel: (303) 771-3455 CONNECTICUT

47 Barnes Industrial Road Barnes Park South Wallingford 06492 Tel: (203) 265-7801 EL ORIDA

2727 N.W. 62nd Street

Et lauderdale 33300 Thornton Heath Tel: (305) 973-2600 Surrey, CR4 6XL GB-England Tel: (01) 684-0103/8 4080 Woodcock Drive #132 Brownett Building Jacksonville 32207 Telex: 946825 Tel: (904) 398-0663 Hewlett-Packard Ltd. 14 Wesley St Castleford P.O. Box 13910 Yorks WE 10 1AF Orlando 32809 Tel: (0977) 550016 TWX: 5557335 Tel: (305) 859-2900

P.O. Box 12826 Suite 5, Bldg. 1 Office Park North Hewlett-Packard Ltd. Pensacola 32575 Tel: (904) 476-8422 Berkshire, SL6 1ST GB-England 110 South Hoover Blvd Suite 120 Tampa 33609 Hewlett-Packard I Id Tel: (813) 872-0900

> GEORGIA P.O. Box 105005 450 Interstate North Parkway Atlanta 30348 TWX: 810-766-4890 Medical Service Only

*Augusta 30903 Tel: (404) 736-0592 P.O. Box 2103 1172 N. Davis Drive Warner Robins 31098 Tel: (912) 922-0449

HAWAII 2875 So. King Street Honolulu 96826 Tel: (808) 955-4455

ILLINOIS 211 Prospect Rd. **Bioomington** 61701 Tel: (309) 663-0383 5201 Toliview Dr. Rolling Meadows

60008 Tel: (312) 255-9800 TWX: 910-687-2260

INDIANA 7301 North Shadeland Ave. Indianapolis 46250 Tel: (317) 842-1000 TWX: 810-260-1797 AWOI 2415 Heinz Road

lowa City 52240 Tel: (319) 351-1020 KENTUCKY Suite 525 Louisville 40223 Tel: (502) 426-0100

LOUISIANA P.O. Box 1449 3229-39 Williams Boulevard Kenner 70062 Tel: (504) 443-6201

MARYLAND 7121 Standard Drive Hanover 21076 Tel: (301) 796-7700 TWX: 710-862-1943

2 Choke Cherry Road Rockville 20850 Tel: (301) 948-6370 TWY: 710-828-9684 MASSACHHISETTS

32 Hartwell Ave. Lexington 02173 Tel: (617) 861-8960 TWX: 710-326-6904

MICHIGAN 23855 Research Drive Farmington Hills 48024 Tel: (313) 476-6400 724 West Centre Ave. Kalamazon 49002 Tel: (616) 323-8362

MINNESOTA 2400 N. Prior Ave. St. Paul 55113 Tel: (612) 636-0700

MISSISSIPPI 322 N. Mart Plaza Jackson 39206 Tel: (601) 982-9363

MISSOURI 11131 Colorado Ave Kansas City 64137 Tel: (816) 763-8000 TWX: 910-771-2087 1024 Executive Parkway

St. Louis 63141 Tel: (314) 878-0200 NERRASKA Medical Only 7101 Mercy Road Suite 101

Omaha 68106 Tel: (402) 392-0948 NEVADA

'Las Vegas Tel: (702) 736-6610 NEW JERSEY Crystal Brook Professional Building

Route 35 Tel: (201) 542-1384 W. 120 Century Rd. Paramus 07652 Tel: (201) 265-5000 TWX: 710-990-4951 NEW MEXICO

P.O. Box 11634 Station E 11300 Lomas Blvd., N.E. Albuquerque 87123 Tel: (505) 292-1330 TWX: 910-989-1185

156 Wyatt Drive Las Cruces 88001 Tel: (505) 526-2484 TWX: 910-9983-0550

NEW YORK

6 Automation Lane Computer Park Albany 12205 Tel: (518) 458-1550 TWX: 710-444-4961 650 Perinton Hill Office Park Fairport 14450 Tel: (716) 223-9950 TWX: 510-253-0092 No. 1 Pennsylvania Plaza

55th Floor 34th Street & 8th Avenue New York 10001 Tel: (212) 971-0800 5858 East Molloy Road Syracuse 13211 Tel: (315) 455-2486 1 Crossways Park West

Woodbury 11797 Tel: (516) 921-0300 TWX: 510-221-2183 Tel: (513) 671-7400 NORTH CAROLINA

5605 Roanne Way **Greensboro** 27409 Tel: (919) 852-1800 OHIO

Medical/Computer Only 9920 Carver Road Cincinnati 45242 Tel: (513) 891-9870 16500 Sprague Road Cleveland 44130 Tel: (216) 243-7300 TWY: 810-423-9430

962 Crupper Ave. Columbus 43229 Tel: (614) 436-1041 330 Progress Rd.

Tel: (513) 859-8202 OKI AHOMA P.O. Box 32008 6301 N. Meridan Avenue Oklahoma City 73112 Tel: (405) 721-0200 9920 E. 42nd Street

Suite 121 Tules 74145 Tel: (918) 665-3300 OREGON

17890 S.W. Lower Boones Ferry Road Tualatin 97062 Tel: (503) 620-3350 PENNSYLVANIA

1021 8th Avenue King of Prussia Industrial Park King of Prussia 19406 Tel: (215) 265-7000 TWX: 510-660-2670

> 111 7ata Drive Pittsburgh 15238 Tel: (412) 782-0400 SOUTH CAROLINA

P.O. Box 6442 6941-0 N. Trenholm Road Columbia 29206 Tel: (803) 782-6493 TENNESSEE

8906 Kingston Pike Knoxville 37919 3070 Directors Roy Directors Square Memobis 38131 Tel: (901) 346-8370

Nashville Medical Service Only Tel: (615) 244-5448

TEXAS Suite C110 El Paso 79902 Tel: (915) 533-3555 P.O. Box 42816 10535 Harwin St. Houston 77036 Tel: (713) 776-6400 *Lubbock Medical Service Only

Tel: (806) 799-4472 P O Box 1270 Tel: (214) 231-6101 205 Billy Mitchell Road San Antonio 78226 Tel: (512) 434-8241

UTAH 2160 South 3270 West Street Salt Lake City 84119 Tel: (801) 972-4711

VIRGINIA P.O. Box 9669 2914 Hungary Spring Road Richmond 23228 Tel: (804) 285-3431 Computer Systems/Medical Only
Airport Executive Center

Suite 302 Suite 302 5700 Thurston Avenue Virginia Beach 23455 Tel: (804) 460-2471

WASHINGTON Bellefield Office Pk. 1203 - 114th Ave. S.E. Bellevue 98004 Tel: (206) 454-3971 TWX: 910-443-2446 P.O. Box 4010 Tel: (509) 535-0864

WEST VIRGINIA Medical/Analytical Only 4604 Mac Corkle Ave., S.E. Charleston 25304 Tel: (304) 925-0492

WISCONSIN 150 South Sunny Slope Road Brookfield 53005

FOR U.S. AREAS NOT LISTED: Contact the regional office nearest your nearest you:
Atlanta, Georgia... North
Holly-wood, California...
Rockville, Maryland...
Rolling Meadows, Illinois.
Their complete addresses
are listed above. USSR Hewlett-Packard

Representative Office Pokrovsky Boulevard 4/17-kw 12 Moscow 101000 Tel: 294.20.24

Telev: 7825 hewnak cu YUGOSLAVIA Iskra Commerce, n.sol.o Zastonstvo Hawlett-Packard

Obilicev Venac 26 YU 11000 Beograd Tel: 636-955 Telex: 11530 Iskra Commerce, n.sol.o. Zastopstvo Hewlett-Packard Miklosiceva 38/VII YU-61000 **Ljubljana** Tel: 321-674, 315-879 Telex: 31583

URUGUAY Pablo Ferrando S.A.C.el. Avenida Italia 2877 Casilla de Correo 370 Montevideo Tel: 40-3102 Telex: 702 Public Booth Para Pablo Ferrando

VENEZUELA

Hewlett-Packard de Venezuela C.A. P.O. Box 50933 Caracas 105 Los Ruices Norte 3a Transversa Edificio Segre
Caracas 107
Tel: 239-4133 (20 lines) Telex: 25146 HEWPACK

ZAMBIA R.J. Tilbury (Zambia) Ltd P.O. Box 2792

MEDITERRANEAN AND MIDDLE EAST COUNTRIES NOT SHOWN, PLEASE CONTACT: Hewiett-Packard S.A. Mediterranean and Middle East

35, Kolokotroni Street Platia Kefallariou GR-Kifissia-Athens, Greece Tel: 8080359/429 Telex: 21-6588 Cable: HEWPACKSA Athens

SOCIALIST COUNTRIES NOT SHOWN, PLEASE CONTACT: Hewlett-Packard Ges.m.b.H. Handelskai 52 P.O. Box 7 A-1205 **Vienna,** Austria Tel: (0222) 35 16 21 to 27 Cable: HEWPAK Vienna Telex: 75923 hewpak a

OTHER AREAS LISTED CONTACT: NOT Hewlett-Packard Intercontinental 3495 Deer Creek Road Palo Alto, California 9 Tel: (415) 856-1501 TWX: 910-373-1267 Cable: HEWPACK Palo Alto Telex: 034-8300, 034-8493 Hewlett-Packard S.A. 7. rue du Bois-du-Lan

P.O. Box CH-1217 Meyrin 2 - Geneva Switzerland Switzerland
Tel: (022) 82 70 00
Cable: HEWPACKSA Geneva
Telex: 2 24 86

'Service Only 2-15-80

HP 1000 SERIES NAMING HISTORY

7700-504

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATE-RIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABIL-ITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are reserved. No part of this document may be photocopied, reproduced or translated to another program language without the prior written consent of Hewlett-Packard Company.

