
,, SPECIFICATIONS AND BASIC OPERATION

VOLUME ONE

SPECIFICATIONS AND BASIC OPERATION MANUAL

02114-90398

MODEL 21148
COMPUTER

HEWLETT-PACKARD COMPANY
11000 WOLi;E ROAD, CUPERTINO, CALIFORNIA, U.S.A.

Printed: MAR 1970

2114B Contents

TABLE OF CONTENTS

Section Page

I

II

III

DOCUMENTATION DESCRIPTION
1-1. Basic Computer Manuals ..
1-3. Specifications and Basic Opera-

tion Manual
1-5. Installation and Maintenance

Manual
1-7. Input/Output System Operation

Manual
1-11. Programmer Reference Manuals
1-13. System Supplement

HP 2114B SPECIFICATIONS
2-1. Definition of Computer System
2-5. Physical Specifications
2-12. Machine Timing
2-20. Memory .
2-21. Type ...
2-23. Layout . .
2-25. Addressing
2-30. Working Registers .
2-39. Panel Controls
2-50. Protected Controls
2-53. Instructions
2-55. Formats
2-60. Memory Reference Instructions
2-78. Register Reference Instructions
2-83. Input/Output Instructions
2-105. Data Formats
2-107. Input/Output Specifications
2-108. Input/Output System Design
2-113. Interrupt Structure
2-122. Processor Options . . .
2-129. Input/Output Options
2-138. Software
2-139. General
2-143. Basic Control System
2-148. Symbolic Editor
2-150. Assembler .
2-153. FORTRAN
2-156. ALGOL . .
2-159. BASIC
2-162. Hardware Diagnostics

1-1

1-1

1-1

1-2
1-2
1-2

2-1
2-1
2-2
2-3
2-3
2-3
2-3
2-4
2-4
2-5
2-5
2-6
2-6
2-7

2-10
2-11
2-11
2-11
2-13
2~15

2-15
2-16
2-16
2-16
2-18
2-18
2-18
2-18
2-18
2-19

FUNDAMENTALS OF COMPUTER OPERATION
3-1. Introduction 3-1
3-5. Front Panel Presentation 3-1

Section

3-15.
3-23.
3-40.
3-42.
3-50.
3-59.
3-63.
3-69.
3-77.
3-80.
3-104.
3-107.
3-119.
3-133.
3-150.

Number Conversions
Arithmetic Operations

Computer Structure
The Memory Module
The Registers
The Bus System . . .
The Instruction Logic
The Input/Output System

Implementation of Instructions .
Memory Reference . . .
Register Reference . . .
Shift-Rotate Instructions
Alter-Skip Instructions
Input/Output Instructions
Interrupt Phase

Page

3.3
3.4
3-6
3-6
3-8

3-10
3-10
3-11
3-12
3-13
3.19
3.19
3-21
3-21
3-22

IV BASIC OPERATION OF HP 2114B COMPUTER
4-1. Introduction . . . 4-1
4-4. Coding 4-1
4-8. Computer Turn-On . . 4-2
4-11. Preliminary Operations 4-2
4-14. Manual Storing . . . 4-2
4-18. Programmed Storing 4-2
4-22. The Stored Program 4-3
4-26. Program Table 4-3
4-31. Program Execution 4-6
4-44. Referencing Other Pages 4-9
4-4 7. Concept of the Memory Page 4-9
4-52. Direct References . 4-10
4-55. Indirect References 4-10
4-57. Program Example . 4-10
4-63. Jumps 4-12
4-73. Introduction to Program Development. 4-13
4-78. Looping and Counting . 4-13
4-79. The Program Loop . 4-13
4-83. Counting to a Limit . . 4·14
4-87. Tallying 4-14
4-89. Initialization 4-15
4-93. Complete Program . 4-15
4-100. Special Addressing Methods . 4-16
4-104. Address Modification 4-16
4-110. Addressing the Accumulators . 4-19
4-116. Introduction to Flowcharting . 4-19
4-133. Summary 4-22

APPENDIX A REFERENCE TABLES A-1

LIST OF ILLUSTRATIONS

Figure Title Page

1-1. Basic HP 2114B Computer 1-0
1-2. HP 2114B System Documentation 1-1
2-1. HP 2114B Computer Dimensions 2-2

Figure Title

2-2. Machine Timing
2-3. Basic Instruction Formats . . .
2-4. Memory Reference Instructions

Page

2-2
2-6
2-6

i/ii

2114B Illustrations

Figure

2-5.
2-6.
2-7.
2-8.
2-9.
2-10.

2-11.

3-1.

3-2.
3-3.
3-4.
3-5.
3-6.
3-7.
3-8.
3-9.
3-10.

Table

2-1.
2-2.
2-3.
3-1.
4-1.
4-2.

4-3.
4-4.
4-5.
4-6.

LIST OF ILLUSTRATIONS (CONTINUED)

Title

Shift-Rotate Instructions
Alter-Skip Instructions
Input/Output Instructions
Basic Data Format
Input/Output Design Arrangement
Components of Typical Input/Output

Interface Cards
Input/Output Option Locations

(Top View)
HP 2114B Computer Simplified

Block Diagram
Composition of Octal Digits
Binary /Octal Conversions . .
Significance of Digits in Three Systems
Memory Block Diagram
Core Memory Module
Binary Storage in a Magnetic Core
Core Addressing, Reading, and Writing
Memory Cell Selection
Memory Bit Plane and Frame (Upper Left

Corner)

Page

2-9
2-9

2-10
2-11
2-12

2-13

2-15

3-1
3-2
3-2
3-3
3-6
3-7
3-7
3-7
3-8

3-8

LIST OF

Title Page

Logic Truth Table ... 2-7
Select Code Assignments 2-13
Standard HP Software 2-17
Shift Rotate Functions 3-20
Program Table 4-6
Program to Show Instruction, Data, and

Address Words 4-7
Single Cycle Execution of a Program 4-8
Memory Pages 4-9
Program for Interpage Referencing 4-11
Examples of Program Jumps ... 4-12

Figure

3-11.
3-12.
3-13.
3-14.
3-15.

3-16.

3-17.
3-18.
3-19.
4-1.

4-2.

4-3.
4-4.
4-5.

4-6.
4-7.

Title

Register Block Diagram
Bus System Block Diagram . . .
Instruction Logic Block Diagram
Input/Output System Block Diagram
Implementing Memory Reference

Instructions
Implementing Register Reference

Instructions
Implementing Input/Output Instructions
Register Manipulations for Indirect Jump
Register Manipulations for Indirect "And"
Coding a Memory Reference Instruction

Word
Two Methods of Storing Information in

Memory
Storing Information Manually
Storing Information by Program
Direct and Indirect References to Other

Pages
Examples of Interpage Referencing , . . .
Flowchart for Shift-Rotate Demonstration

TABLES

Table Title

4-7. Preliminary Program Development
4-8. Program to Illustrate Looping and

Counting
4-9. Program to Illustrate Special Addressing

Methods
4-10. Program to Demonstrate Shifts and

Rotates
A-1. Glossary of Terms Used in This Volume
A-2. Mnemonics and Abbreviations
A-3. Powers of Two
A-4. Consolidated Coding Table . .

Page

3-9
3-11
3-11
3-12

3-14

3-15
3-16
3-17
3-18

4-1

4-3
4-4
4-5

4-10
4-11
4-20

Page

4-16

4-17

4-18

4-22
A-2

. A-10

. A-12

. A-13

iii

Section I 2114B

• IO •••• I ' I t t • I I ' •

••
HP 21148 COMPUTER

J, . -

s s
DOCUMENTATION

EXTENDER CARD

203 8-1

Figure 1-1. Basic HP 2114B Computer

1-0

2114B Section I

SECTION I

DOCUMENTATION DESCRIPTION

1-1. BASIC COMPUTER MANUALS.

1-2. Documentation supplied with the Hewlett-Packard
2114B Computer consists of four manuals, the contents of
which are described briefly in paragraphs 1-3 through 1-12.
When the basic HP 2114B Computer (figure 1-1) is pur­
chased as part of a computer system, the system documen­
tation will include a system supplement (paragraph 1-13)
containing individual manuals for the peripheral equipment.
Figure 1-2 illustrates the organization of the documentation
supplied with a typical system.

1-3. SPECIFICATIONS AND BASIC OPERATION
MANUAL.

1-4. Volume one is the specifications and basic opera­
tion manual, which describes the basic HP 2114B Com­
puter, treated as an independent instrument operable from
the front panel. Separate sections of this manual introduce
the computer from the following standpoints:

a. Specifications: The full capabilities of the HP
2114B Computer are defined, including standard hardware
options and standard software. Information necessary for
coding machine-language instructions is listed and
described. This section is intended both as a reference for
users who are familiar with computer terminology and as a
source of detailed definitions, so that the material will be
meaningful to readers at a wide range of levels.

b. Fundamentals of Computer Operation: For users
with little or no previous experience with computers, this
section gives a brief outline of how the computer works
internally. This is not a detailed theory of operation, such
as is presented in volume two (installation and mainte­
nance) but the logic descriptions in volume two will assume
at least this basic level of understanding. Thus a thorough
reading of this section is advised before proceeding to the
installation and maintenance manual.

c. Basic Operation of HP 2114B Computer: This is a
continuation of the preceding section. Procedures for first­
time usage are detailed, using the computer front-panel
controls and indicators as an elementary input/output
device. This section is essentially an introduction to
machine-language programming. The assembler and other
programming reference manuals included in volume four
assume a basic knowledge of machine-language program­
ming, such as presented in this section.

1-5. INSTALLATION
MANUAL.

AND MAINTENANCE

1-6. Volume two gives instructions for installation and
maintenance of the main unit only (see volume three for

VOLUMES ONE AND TWO
SPECIFICATIONS AND
BASIC OPERATION

INSTALLATION AND
MAINTENANCE

VOLUME THREE

MANUAL SUPPLEMENTS

INPUT/OUTPUT SYSTEM
OPERATION

HARDWARE SYSTEM
INSTALLATION RECORD

BASIC VOLUME 3 TEXT

}
INTERFACE KIT TEXTS
AND SUPPLEMENTS

PROGRAMMER'S REFERENCE
VOLUME FOUR MANUALS

~~~~~~~~~~~-

----SOFTWARES Y STEM 

~--!IC 

} 

INSTALLATION RECORD 

STANDARD SOFTWARE 
MANUALS 

} 
LIBRARY BOUTINE 
MANUALS 
UTILITY ROUTINE 

} 
MANUALS 

HP 2114B SOFTWARE 
MANUAL SUPPLEMENTS 

SYSTEM SUPPLEMENT 

2038·2 

} 
PERIPHERAL DEVICE 
MANUAL SUPPLEMENTS 

PERIPHERAL DEVICE 
MANUALS 

Figure 1-2. HP 2114B System Documentation 

interconnection and installation of peripheral equipment). 
Contents of this volume are as follows: 

a. General Information. This section contains a general 
description of the computer. Included are descriptions of 
the purpose and contents of the manual and a general 
description of the computer. Descriptions of the various 
computer assemblies, panel controls, . and maintenance 

1-1 



Section I 

features, and a list of required test equipment are also 
included. 

b. Installation. This section contains procedures for 
installation and preparation of the unit for use. Topics 
covered include inspection, inventory, and performance 
checkout. 

c. Theory of Operation. This section contains a 
description of the overall operation of the computer and 
detailed descriptions of the various operational sections of 
the computer. Reference is made to the logic diagrams in 
the maintenance section and block diagrams and waveforms 
in the troubleshooting section. 

d. Troubleshooting. This section contains trouble­
shooting procedures for the computer. Included are pretest 
instructions, diagnostic interpretation information, logic 
equations, and timing diagrams. Procedures for running the 
diagnostic tests are contained in the Manual of Diagnostics. 
Detailed procedures for troubleshooting specific opera­
tional sections of the computer such as the central proces­
sory, memory, and power supply are also given in this 
section. 

e. Maintenance. This section contains preventive and 
corrective maintenance information for the computer. 
Included in this section are adjustment and test procedures, 
a signal index, interconnection and wiring information, and 
schematic and parts location diagrams. Also included are 
tables of replaceable parts in order of reference designations 
for each computer assembly. 

f. Replaceable Parts. This section contains informa­
tion for ordering replacement parts for the computer. All 
replaceable parts are listed in order of the HP part number. 
The total quantity of each part used, a description of the 
part, the manufacturer, and the manufacturer's part 
number are also included in this section. 

g. Appendixes. Appendixes containing explanations of 
the logic symbology used in the manual, operating charac­
teristics for the logic circuitry and backdating information 
for the manual are included following the last section of the 
manual. 

1-7. INPUT/OUTPUT SYSTEM OPERATION 
MANUAL. 

1-8. Volume three describes the input/output structure 
and provides theory of operation for the I/O control card. 
Included are sections describing the operation of the inter­
rupt and priority systems as well as the encoding and 
decoding of interrupt requests and select code addresses. 

1-9. Sections for input/output options are inserted as 
required, according to the interface kits purchased as part 
of a particular system. The information in these sections 
condenses operating procedures from the manuals of the 
individual instruments, and adds material relating specifi­
cally to operation with the HP 2114B Computer. Mainte­
nance information in these sections covers oniy the inter­
face circuits, and not the peripheral itself. Complete 
operating and service manuals for the peripheral equipment 
are furnished in the system supplement when included in a 
particular system. Manual supplements describing produc­
tion changes affecting volume three are included in the 
volume three binder. 

1-2 

2114B 

1-10. A Hardware System Installation Record at the 
front of the system supplement defines the system config­
uration as originally shipped, and provides an index to the 
supporting documents in the system supplement. Space is 
provided for noting changes and additions. 

1-11. PROGRAMMER REFERENCE MANUALS. 

1-12. Volume four consists of one or more three-ring 
binders containing documentation for each item of soft­
ware supplied with the computer. Both standard software 
programs and software specially originated for an individual 
user are fully described as to specifications and usage. A 
Software System Installation Record at the front of volume 
four lists all software furnished with the original shipment, 
and provides an index to the supporting documents in 
volume four. Space is provided for noting changes and 
additions, so that an up-to-date record can be maintained 
by the user. Programmer reference manuals normally 
included in volume four are: 

a. HP Assembler 
b. HP Symbolic Editor 
c. HP Basic Control System 
d. HP FORTRAN 
e. HP Program Library 
f. HPALGOL 
g. HPBASIC 
h. HP Standard Software Systems Operating Manual 

1-13. SYSTEM SUPPLEMENT. 

1-14. Supplementary documentation for the hardware 
system is supplied in the system supplement, which consists 
of one or more three-ring binders. Individual manuals for 
the peripheral devices in the system are included here, as 
well as manual supplements describing any special modifica­
tions made to these devices by Hewlett-Packard. 

Note 
Each 2114B Computer is identified by a 
serial number on the rear panel (for 
example 1001A00600 or 949-00599). 
The first group of digits make up a serial 
prefix used to document equipment 
changes. This prefix does not change 
unless changes to the equipment have 
been made. The last five digits form a 
serial number to identify each piece of 
equipment. The serial prefix may be 
either three or four digits in length. If the 
serial prefix contains four digits, a code 
letter will be stamped between the serial 
prefix and the serial number indicating 
the country in which the equipment was 
manufactured. If the serial prefix on your 
equipment does not agree with that 
shown on the title page of the hardware 
manuals there are differences between 
your equipment and the equipment de­
scribed in the manuals. These differences 
are described in change sheets and manual 
supplements available at the nearest HP 
Sales and Service Office. 



2114B Section II 

SECTION II 

HP 21148 SPECIFICATIONS 

2-1. DEFINITION OF COMPUTER SYSTEM. 

2-2. BASIC UNIT DESCRIPTION. The Hewlett. 
Packard 2114B Computer is a small general-purpose digital 
computer which combines performance and economy with 
small size. The computer has full compatibility with HP 
data measuring and recording instruments as well as a wide 
range of input/output devices. The computer is subject to 
rigid operational and environmental specifications. (Refer 
to paragraphs 2-6 and 2-7 .) The logic design and software 
follow conventional standards of computer usage and nota­
tion so that the computer may also be used as a free­
standing device or in other types of systems, such as process 
control, media conversion, data reduction or communica­
tion systems. The hardware and software are specially 
designed to permit interfacing of real-time devices (i.e., 
devices running asynchronously with respect to a program 
being run). The word length is 16 bits. The basic HP 2114B 
Computer includes the processor unit (mainframe) with a 
4096-word memory. All specifications in this section apply 
to the basic unit only, unless specifically denoted as an 
option specification. 

2-3. OPTIONS. Options for the HP 2114B Computer 
are of two general types: 

a. Processor Options: These options extend the mem­
ory and computation capabilities of the basic unit, and are 
identified by five digit accessory numbers. (Refer to para­
graph 2-122.) 

b. Input/Output Options: These options add input 
and/or output facilities to the basic HP 2114B Computer. 
The option, identified by an interface kit number (para­
graph 2-129), provides the circuitry, cabling, and software 
to enable the computer to operate with a specific input or 
output instrument (measuring, reading, or recording device) 
or with a series of instruments. Compatible instruments, 
not included in the interface kit, are separately available 
from Hewlett-Packard. When external devices are connected 
to the computer, the computer then becomes part of a 
computer system. (Refer to paragraph 2-4.) 

2-4. SYSTEMS. Two general types of computer 
systems are available from Hewlett-Packard. 

a. HP 2114B Computer Systems: Systems may be 
configured to individual requirements using combinations 
of standard input/output options. Nonstandard input/ 
output options, not mentioned in this section or in the 
computer data sheet, can be obtained on special order; 
these options are also designated with interface kit acces­
sory numbers. The software packages which are hardware 
dependent (basic control system and system input/output) 
will be made up in accordance with the hardware system 
configuration. 

b. Data Acquisition Systems: Systems are available in 
standard configurations which combine Hewlett-Packard 
digital scanning, measuring, and recording equipment with 
the HP 2114B Computer. In these systems, the computer is 
programmed to exercise partial or complete control over 
the data taking process and to perform computations on 
data measured by the system. A data acquisition program is 
furnished with these systems. Capabilities of available 
instruments include measurements of ac or de voltages, 
resistances, frequencies, time periods, temperatures, gas 
pressures, nuclear events, etc., from multiple inputs. (The 
functions of some instruments such as linearizers, compara­
tors, scanner programmers, and output couplers are present 
in the basic HP 2114B Computer, or may be accomplished 
by options or programming.) 

2-5. PHYSICAL SPECIFICATIONS. 

2-6. POWER REQUIREMENTS. 

a. Line voltage: 115 volts ac ± 10 percent (7 amperes) 
or 230 volts ac ± 10 percent (3.5 amperes) with a special 
transformer. 

b. Line frequency: 47 .5 to 66 hertz. 

c. Power consumption: 800 watts maximum and 500 
watts minimum (computer and teleprinter option only, for 
minimum value). 

d. Power cable: uses a standard three-prong connector. 

2-7. ENVIRONMENTAL LIMITS. 

a. Temperature: 10° to 40°C (50° to 104°F). 
b. Relative humidity: to 80 percent at 40°C. 

2-8. VENTILATION. 

a. Intake at rear and exhaust on sides. 
b. Air flow: 400 cubic feet per minute. 
c. Heat dissipation: 2200 BTU/hr, maximum. 

2-9. PHYSICAL DIMENSIONS. 

a. Width: 16-3/4 inches with adapters for standard 19 
inch rack mounting (see figure 2-1). 

b. Panel height: 12 inches. 

c. Depth: 24-3/8 inches. 

d. Recommended cable clearance at rear: 5 inches 
minimum. 

e. Recommended air exhaust clearance at sides: 2 
inches minimum. 

2-1 



Section II 

f. Net weight: 106 lb (48 kg). 

g. Shipping weight: 132 lb (59,9 kg). 

2038-3 

16-3/4 
(425,5) 

I 

••oaaamaa 

DIMENSIONS IN INCHES 
AND MILLIMETERS 

Figure 2-1. HP 2114B Computer Dimensions 

2-10. SERVICE ACCESS. 

a. The front panel opens, providing access to test 
switches and protected controls. 

b. The top panel slides back and up, permitting top 
access to input/output connectors, plug-in circuit boards, 
and wiring. 

c. The bottom panel is removable for access to back­
plane wiring. 

2-11. INPUT/OUTPUT EXTENDERS. The computer 
has two options for extending its input/output capability. 
The HP 2151A Input/Output Extender provides an added 
17 I/O slots to the basic computer. It can be quickly and 
easily installed and has its own self-contained power supply. 
The multiplexed I/O option provides up to 56 I/O channels. 
Both units make use of the computer's priority interrupt 
system. 

2-12. MACHINE TIMING. 

2-13. An internal 8-MHz timing generator automatically 
generates read/write memory cycles every 2.0 microseconds 
when running (see figure 2-2). The basic HP 2114B Com­
puter has four machine phases (fetch, indirect, execute, 

2-2 

2114B 

interrupt) of which the first three include a memory cycle. 
If the direct memory access option is installed, a fifth phase 
is possible, the suspend phase. (Refer to paragraph 2-19.) 

2-14. Phases do not occur in a fixed sequence, but rather 
are determined by conditions which occur during opera­
tion. The computer can go directly from one of the first 
three phases to certain others in the manner indicated in 
figure 2-2, and an external device can cause the computer 
to go into the interrupt phase on completion of any current 
phase. The fetch phase may be thought of as the normal 
condition; the processing of each instruction begins with a 
fetch phase, and in many cases is fully executed within that 
phase. Each phase takes 2.0 microsecon!ls with one excep­
tion: the execute phase of the ISZ (increment, and skip if 
zero) instruction takes 2.5 microseconds. 

'"'I .. ,.__---MEMORY CYCLE----.. "'il 

REAO WRITE 

EXECUTE 

FETCH 
(1 PHASE! OR 
TO INDIRECT 
OR TO EXECUTE 

TO EXECUTE 

INDIRECT 
OR, REPEAT 
INDIRECT, OR 
TO FETCH 

EXECUTE, 

EXECUTE 
THEN RETURN 
TO FETCH 
PHASE 

TO FETCH 

INTERRUPT (NO MEMORY CYCLE) PHASE (AT 
INTERRUPT 
LOCATION) 

T T T T T T 
.25 .50 .75 1.0 1.25 1.50 1.75 2.0 

2000-44 

Figure 2-2. Machine Timing 

2-15. FETCH PHASE. The contents of the currently­
addressed memory cell are read into the T-register during 
the read portion of the memory cycle, and written back 
into the memory cell during the write portion of the 
memory cycle. The information left in the T-register is 
taken as an instruction when read during the fetch phase. If 
the instruction is a memory reference instruction, and 
includes an indirect address bit (refer to paragraph 2-27), 
the computer sets the indirect phase condition. If the 
instruction does not have an indirect address bit but is a 
memory reference instruction, the computer sets the 
execute phase condition. Otherwise, the current instruction 
is fully executed at the end of the fetch phase, and the 
computer remains in the fetch state for the next memory 
cycle. An exception to these conditions is the JMP (jump) 
instruction, which is a memory reference group instruction 
but does not require an execute phase. The computer 
executes the instruction at the end of the fetch phase or the 
indirect phase and then sets the fetch phase again for the 
next memory cycle. 

2-16. INDIRECT PHASE. The contents of the memory 
cell referenced during the fetch phase are read into the 
T-register and the entire 16-bit word (15 bits of address, 
plus a new direct/indirect bit) is taken as a new memory 
reference for the same instruction. The use of 15 bits for an 
address permits addressing of maximum memory capacity. 
If the direct/indirect bit again specifies indirect addressing, 



Section II 

f. Net weight: 106 lb (48 kg). 

g. Shipping weight: 132 lb (59,9 kg). 

DIMENSIONS IN INCHES 
AND MILLIMETERS 

2038-3 

Figure 2-1. HP 2114B Computer Dimensions 

2-10. SERVICE ACCESS. 

a. The front panel opens, providing access to test 
switches and protected controls. 

b. The top panel slides back and up, permitting top 
access to input/output connectors, plug-in circuit boards, 
and wiring. 

c. The bottom panel is removable for access to back­
plane wiring. 

2-11. INPUT/OUTPUT EXTENDERS. The computer 
has two options for extending its input/output capability. 
The HP 2151A Input/Output Extender provides an added 
17 1/0 slots to the basic computer. It can be quickly and 
easily installed and has its own self-contained power supply. 
The multiplexed 1/0 option provides up to 56 1/0 channels. 
Both units make use of the computer's priority interrupt 
system. 

2-12. MACHINE TIMING. 

2-13. An internal 8-MHz timing generator automatically 
generates read/write memory cycles every 2.0 microseconds 
when running (see figure 2-2). The basic HP 2114B Com­
puter has four machine phases (fetch, indirect, execute, 

2-2 

2114B 

interrupt) of which the first three include a memory cycle. 
If the direct memory access option is installed, a fifth phase 
is possible, the suspend phase. (Refer to paragraph 2-19.) 

2-14. Phases do not occur in a fixed sequence, but rather 
are determined by conditions which occur during opera­
tion. The computer can go directly from one of the first 
three phases to certain others in the manner indicated in 
figure 2-2, and an external device can cause the computer 
to go into the interrupt phase on completion of any current 
phase. The fetch phase may be thought of as the normal 
condition; the processing of each instruction begins with a 
fetch phase, and in many cases is fully executed within that 
phase. Each phase takes 2.0 microseconds with one excep­
tion: the execute phase of the ISZ (increment, and skip if 
zero) instruction takes 2.5 microseconds. 

, .. MEMORY CYCLE .., 
READ WRITE 

EXECUTE 

FETCH 
(1 PHASE) OR 
TO INDIRECT 
OR TO EXECUTE 

TO EXECUTE 

INDIRECT 
OR, REPEAT 
INDIRECT, OR 
TO FETCH 

EXECUTE, 

EXECUTE 
THEN RETURN 
TO FETCH 
PHASE 

TO FETCH 

INTERRUPT (NO MEMORY CYCLE) PHA~E (AT 
INTERRUPT 
LOCATION) 

0 .25 .50 .75 1.0 1.25 1.60 1.75 2.0 

2000-44 

Figure 2-2. Machine Timing 

2-15. FETCH PHASE. The contents of the currently­
addressed memory cell are read into the T-register during 
the read portion of the memory cycle, and written back 
into the memory cell during the write portion of the 
memory cycle. The information left in the T-register is 
taken as an instruction when read during the fetch phase. If 
the instruction is a memory reference instruction, and 
includes an indirect address bit (refer to paragraph 2-27), 
the computer sets the indirect phase condition. If the 
instruction does not have an indirect address bit but is a 
memory reference instruction, the computer sets the 
execute phase condition. Otherwise, the current instruction 
is fully executed at the end of the fetch phase, and the 
computer remains in the fetch state for the next memory 
cycle. An exception to these conditions is the JMP (jump) 
instruction, which is a memory reference group instruction 
but does not require an execute phase. The computer 
executes the instruction at the end of the fetch phase or the 
indirect phase and then sets the fetch phase again for the 
next memory cycle. 

2-16. INDIRECT PHASE. The contents of the memory 
cell referenced during the fetch phase are read into the 
T-register and the entire 16-bit word (15 bits of address, 
plus a new direct/indirect bit) is taken as a new memory 
reference for the same instruction. The use of 15 bits for an 
address permits addressing of maximum memory capacity. 
If the direct/indirect bit again specifies indirect addressing, 



2114B 

the computer remains in the indirect state and reads 
another 16-bit address word out of memory as a continua­
tion of multiple-step indirect addressing. If the direct/ 
indirect bit specifies direct addressing, the computer sets 
the execute phase (or, in the case of a jump indirect, the 
fetch phase). 

2-17. EXECUTE PHASE. The 16-bit data word in the 
memory cell referenced during a fetch phase or an indirect 
phase is read into the T-register and is operated on by the 
current instruction (retained from the fetch phase) at the 
end of the execute phase. At the end of this phase, the 
computer sets the fetch phase again to read the next 
instruction. 

2-18. INTERRUPT PHASE. An input/output device 
requesting service at any time during one of the phases is 
acknowledged at the end of that phase, unless the interrupt 
is inhibited for any reason by the program being run. The 
computer then goes into the interrupt phase, which does 
not have a memory cycle. During this phase, the P-register 
is decremented so that no instruction in the main program 
will be skipped or executed twice. At the end of this phase, 
the interrupt address of the interrupting device is trans­
ferred into the M-register and the fetch phase is set to read 
the instruction contained in the interrupt address location. 
The interrupt phase cannot occur again until (at least) this 
instruction is completed. 

2-19. SUSPEND PHASE. When the direct memory 
access accessory kit is installed, a fifth machine phase is 
used. When the DMA option is ready to make a data 
transfer between an 1/0 device and the computer memory, 
the normal phases are suspended at the completion of the 
current machine cycle. The DMA option then uses one 
machine cycle to perform the data transfer. At the end of 
the suspend phase the computer resumes operation at the 
point of the DMA interrupt. 

2-20. MEMORY. 

2-21. TYPE. 

2-22. The HP 2114B Computer uses a ferrite core 
storage module capable of storing 4096 words or 8192 
(option 04) words, 17 bits per word (16 bits of the com­
puter word, plus a parity bit which is used by memory 
parity option 02, when included in the instrument). 

2-23. LAYOUT. 

2-24. The 4096-word module is logically divided into 
four pages of 1024 words each. A page is defined as the 
largest block of memory which can be addressed by the 
memory address bits of a memory reference instruction 
(excluding the zero/current page bit; see figure 2-3). In the 
HP 2114B Computer, memory reference instructions have 
10 bits to specify a memory address, and thus the page size 
is 1024 locations (2000 in octal notation). Octal addresses 
of the four pages of the basic module, and also the double 
module (which can be added by option 04) are therefore: 

Basic Module: 

Double Module: 

00000 to 01777 
02000 to 03777 
04000 to 05777 
06000 to 07777 

10000 to 11777 
12000 to 13777 
14000 to 15777 
16000 to 17777 

2-25. ADDRESSING. 

Section II 

2-26. ZERO/CURRENT PAGE. For direct addressing 
purposes, generally only two pages are of interest: page 
zero (the base page, consisting of locations 00000 through 
01777), and the current page (the page in which the 
instruction itself is located). All memory reference instruc­
tions include a bit (bit 10) reserved to specify one or the 
other of these two pages. To address locations in any other 
page, indirect addressing is used (paragraph 2-27). Page 
references for direct addressing of memory reference 
instructions are specified by bit 10 as follows: 

Logic 0 = Page Zero (Z) 
Logic 1 = Current Page (C) 

2-27. DIRECT/INDIRECT. All memory reference 
instructions use bit 15 to specify direct or indirect addres­
sing. Direct addressing combines the instruction code and 
the effective address into one word, permitting a memory 
reference instruction to be executed in two machine phases 
(fetch and execute). Indirect addressing uses the address 
part of the instruction word to access another word in 
memory, which is taken as a new memory reference for the 
same instruction. This new address word is a full 16 bits 
long, 15 bits of address plus another direct/indirect bit. The 
15-bit length of the address permits access to any location 
in any module. If bit 15 again specifies indirect addressing, 
still another address is obtained; this multiple-step indirect 
addressing may be done to any number of levels. The first 
address obtained in the indirect phase which does not 
specify another indirect level becomes the effective address 
for the instruction. Instructions with indirect addresses are 
therefore executed in a minimum of three machine phases 
(fetch, indirect, execute). Direct or indirect addressing is 
specified by bit 15 as follows: 

Logic 0 = Direct 
Logic 1 = Indirect 

2-28. RESERVED LOCATIONS. The first 64 memory 
locations of the base page (octal addresses 00000 through 
00077) are reserved as listed below. The first two addresses 
are the A and B flip-flop register addresses and are not core 
storage locations. Locations 5 through 77 are reserved in 
the sense that interrupt wiring is present for the priority 
order given. As long as the locations do not have actual 
interrupt assignments (as determined by the input/output 
devices included in the user's system), these locations may 
be used for normal program purposes. 

2-3 



Section II 

00000 

00001 

00002 
00003 

00004 

00005 

00006 
00007 

00010 
thru 

00077 

Address of A-register. 

Address of B-register. 

For exit sequence if A and B contents are 
used as executable words. 

Interrupt location, highest priority (re­
served for power fail interrupt). 

Reserved for memory parity interrupt. 

Reserved for direct memory access. 
Not assigned. 

Interrupt locations in decreasing order of 
priority. 

2-29. LOADER PROTECTION. The last 64 locations of 
memory (octal addresses 07700 through 07777 in the 
standard HP 2114B Computer) are reserved for the basic 
binary loader. The basic binary loader (not to be confused 
with the relocating loader program described in paragraph 
2-146) is a manually-entered program to permit reading and 
storage of binary information from punched paper tape, as 
read by an input device, such as a punched tape reader or a 
teleprinter. Absolute addresses are required in the loaded 
data. A protect switch (LOADER ENABLE), when set to 
NORMAL, protects the basic binary loader locations so 
that they cannot be altered in any way. For entering the 
basic binary loader manually into the computer this switch 
must be set to ON. For actual loading of tapes, both the 
LOAD and PRESET front panel switches must be pressed 
simultaneously. The LOADER ENABLE switch is effective 
for the last 64 locations of memory, regardless of memory 
size. Plug-in options which expand memory relocate the 
protected area automatically to the 64 highest numbered 
locations. 

2-30. WORKING REGISTERS. 

2-31. The HP 2114B Computer has seven working regis­
ters and gives continuous display of the contents of the T 
(MEMORY DATA) and M (MEMORY ADDRESS) registers 
by lights on the computer front panel. Five of these are 
16 bit flip-flop registers, and two are 1-bit flip-flop registers 
indicated by panel lighting (on or off) of the register name. 

2-32. T-REGISTER (MEMORY DATA). All data trans­
ferred into or out of memory is routed through the 16-bit 
T-register (transfer register). The T-register display there­
fore indicates exactly what information went into or out of 
a memory cell during the preceeding memory cycle. 

2-33. P-REGISTER (PROGRAM COUNTER). On com­
pletion of each instruction, the P-register indicates the 
address of the next instruction to be fetched out of mem­
ory. The P-register automatically increments by one (or 
two, when executing a skip instruction) after the execution 
of each instruction. A jump instruction (JMP or JSB) can 
set the P-register to any core location number. 

2-4 

2114B 

2-34. M-REGISTER (MEMORY ADDRESS). The M­
register holds the address of the memory cell being read or 
written into. The M-register indication will differ from the 
P-register indication when multi-phase instructions are 
being processed, since the M-register will be changed by 
memory references in the instruction (which may be several 
in the case of indirect addressing) or by an interrupt, 
whereas the P-register remains constant until completion of 
the instruction. The M-register will equal the P-register 
during the fetch phase. 

2-35. A-REGISTER (ACCUMULATOR). The A-register 
is an accumulator, holding the results of arithmetic and 
logical operations performed by programmed instructions. 
This register may be addressed by any memory reference 
instruction as location 00000, thus permitting inter-register 
operations such as "add B to A", "compare B with A", etc., 
using a single-word instruction. 

2-36. B-REGISTER (ACCUMULATOR). The B-register 
is a second accumulator, which can hold the results of 
arithmetic and logical operations completely independent 
of the A-register. The B-register may be addressed by any 
memory reference instruction as location 00001 for inter­
register operations with A. 

2-37. EXTEND. The extend bit is a one-bit (E) register, 
and is used to link the A and B registers by rotate instruc­
tions or to indicate a carry from bit 15 of the A or B 
registers by an add instruction (ADA, ADB) or increment 
instruction (INA or INB, but not ISZ) which references 
these registers. This is of significance primarily for 
multiple-precision arithmetic. If already set, the extend bit 
is not complemented by a carry. It may be cleared, com­
plemented, or tested by program instruction. The extend 
bit is set when the EXTEND panel light is on ("1") and 
clear when off (''O"). 

2-38. OVERFLOW. The overflow bit is a one-bit register 
which indicates, if on, that an add instruction (ADA, ADB) 
or an increment instruction (INA or INB, but not ISZ) 
referencing the A- or B-register has caused one of these 
accumulators to exceed the maximum positive or negative 
number which can be contained (+32767 or -32768, deci­
mal). This condition is implied by a carry (or lack of carry) 
from bit 14 to bit 15 (paragraph 3-58). By program instruc­
tions, the overflow bit may be cleared, set, or tested. The 
OVERFLOW panel light remains on until the bit is cleared 
by an instruction and is not complemented if a second 
overflow occurs before being cleared. It will not be set by 
shift or rotate instructions. 

2-39. PANEL CONTROLS. 

2-40. SWITCH REGISTER. The switch register consists 
of sixteen proximity sense switches used to enter 
manually-set information into and output data from the 
computer. The switch register (on is a "1", off is a "O") may 
be used in the following ways: 



2114B 

a. A program may load the switch register setting into 
the A- or B-register using LIA or LIB instructions with 
switch register select code 01. 

b. A program may merge the switch register setting 
(inclusive "or") into the A- or B-register using a MIA or 
MIB instruction, respectively, and a select code of 01. 

c. A program may set the switch register by an output 
from the A- or B-register using OTA or OTB, respectively, 
and a select code of 01. 

d. The switch register setting may be loaded into the 
P- and M-registers (simultaneously) by using the LOAD 
ADDRESS switch, thus directing the computer to a specific 
memory cell. 

e. The switch register setting may be entered into the 
memory cell specified by the M-register by using the LOAD 
MEMORY switch, thus permitting the user to change the 
contents of any memory cell. 

2-41. PRESET. Momentary proximity switch to preset 
the computer to the fetch phase, to turn off the interrupt 
system and all input/output control bits, to set all input/ 
output flag bits, and to reset the parity halt light located on 
the computer front panel. It also clears the power fail 
interrupt circuits. An internal pulse accomplishing the same 
functions is generated each time power is switched on or 
off. 

2-42. RUN. Momentary proximity switch to start opera­
tion at the current state of the computer. Switch is set when 
a program is running and cleared when the computer halts. 
When the RUN light is on, all front panel control switches 
except HALT, and CLEAR REGISTER are disabled. 

2-43. HALT. Momentary proximity switch to stop com­
puter operation at the end of the current phase. When the 
computer is halted, the HALT switch is lit and all front­
panel control switches are enabled. (The P-register will not 
increment if the HALT and LOAD MEMORY or HALT and 
DISPLAY MEMORY switches are touched simultaneou!.ly.) 

2-44. LOAD. Proximity switch associated with the last 
64 locations in memory; for example, octal addresses 
07700 through 07777 in 4K computers, or 17700 through 
17777 in SK computers. These locations are normally 
occupied by the basic binary loader. The LOAD switch is 
electrically coupled with the PRESET SWITCH. To load 
any absolute binary program using the last 64 locations of 
memory, clear the switch register, hold the PRESET button 
and simultaneously press LOAD. If switch register bit 0 is a 
"1", the loader program will read the tape and perform a 
checksum operation but will not alter memory. If the 
checksum is incorrect, a HLT 00 will occur; otherwise, the 
computer will go to a normal HLT 77. If bit 15 of the 
switch register is a "1", the loader program will perform a 
compare between the program tape and the stored program 
in memory but will not alter memory. If the taped program 
does not compare with the program stored in memory, a 
HLT 00 is generated; otherwise, the computer will go to a 

Section II 

normal HLT 77. If both bit 0 and bit 15 are true, the 
compare operation will take precedence over the checksum 
operation. 

2-45. LOAD MEMORY. Momentary proximity switch 
to store the contents of the switch register into the memory 
location specified by the address in the M-register. The P­
and M-registers are automatically incremented after opera­
tion of the LOAD MEMORY switch to simplify storing 
data into consecutive memory locations. (Refer to para­
graph 2-43.) The stored data remains displayed in the 
T-register, and the fetch phase is set at the end of the load 
operation. 

2-46. LOAD ADDRESS. Momentary proximity switch 
to transfer the contents of the switch register into both the 
P- and M-registers, thus directing the computer to the 
desired address. The fetch phase is set at the end of the 
operation. 

2-47. DISPLAY MEMORY. Momentary proximity 
switch to display, in the T-register, the contents of the 
location specified by the address in the M-register. The P­
and M-registers are automatically incremented after opera­
tion of the DISPLAY MEMORY switch so that consecutive 
memory locations may be displayed simply by repeated 
operation of this switch. The P- and M-registers are there­
fore one step ahead of the T-register display. (Refer to 
paragraph 2-43.) The fetch phase is set after incrementing 
the P- and M-registers. 

2-48. SINGLE CYCLE. Momentary proximity switch to 
execute one machine cycle each time the switch is pressed. 
The interrupt phase is not recognized in this mode. 

2-49. CLEAR REGISTER. Momentary proximity switch 
to reset the switch register to "O". 

2-50. PROTECTED CONTROLS. 

2-51. POWER ON/OFF switch located behind the front 
panel on the computer chassis. Contents of memory are not 
affected by switching power off and on; contents of the 
working registers, however, are lost when power goes off 
(contents random following turn-on). 

2-52. LOADER ENABLE ON/NORMAL switch located 
on the inside of front panel. The NORMAL position pro­
tects the basic binary loader (located in the last 64 
positions in memory) making it available for loading tapes. 
The ON position allows the basic binary loader program to 
be loaded or changed. 

2-53. INSTRUCTIONS. 

2-54. NUMBER. The HP 2114B Computer has 70 basic 
one-word instructions, all executable in 2.0 or 4.0 micro­
seconds (except for ISZ, which is executable in 4.5 micro­
seconds). These instructions are grouped in three types, 
described in paragraphs 2-60 through 2-104. Combinations 
of the register reference microinstructions, which are all 

2-5 



Section II 

one-word instructions, executable in 2.0 microseconds, 
extend the total of different one-word instructions to over 
1000. 

2-55. FORMATS. 

2-56. The three types of basic instructions are grouped 
according to the bit format of the instruction word. These 
types are: memory reference, register reference, and input/ 
output instructions. A comparison of the three formats is 
given in figure 2-3, and detailed binary coding is included 
with the instruction descriptions following. A consolidated 
coding table appears in the appendix of this manual. 

2 

3 

1s 14 n 12 11 10 9 e 1 s 5 4 i z 1 o 

.1 ••• 1 ••• 1 ••• 1 ••• 1 ••• 
D/.<l_ INSTRUCTION jZtcl MEMORY ADDRESS 

REG. REF. GRoupJ_ REGISTER MICROINSTRUCTIONS 

1/0 GROUP I INSTRUCTION I SELECT CODE 

1 MEMORY REFERENCE INSTRUCTIONS 
2 REGISTER REFERENCE INSTRUCTIONS 
3 INPUT /OUTPUT INSTRUCTIONS 

200G-5 

Figure 2-3. Basic Instruction Formats 

2-57. The first type comprises the memory reference 
instructions, using 10 bits (0 through 9) for a memory 
address, bit 10 to specify zero or current page, and bit 15 
for direct or indirect addressing. This leaves four bits (14, 
13, 12, 11) to encode the 14 instruction commands in this 
group. 

2-58. The other two types use four bits (15, 14, 13, 12) 
to distinguish the register reference and the input/output 
instructions. The register reference type uses bits 11 
through 0 to combine up to eight microinstructions (i.e., 
instructions formed by only 1, 2, or 3 bits), with the 
resulting multiple instruction operating on the A-, B-, or 
E-register as a single-word instruction. The input/output 
type uses bits 11 through 6 for a variety of input/output 
instructions and bits 5 through 0 to make the instruction 
apply directly to one of the input/output devices or 
functions. 

2-59. The following paragraphs describe in detail each of 
the instructions in the three type groups. 

2-6 

Note 

Functions of bits appearing in the form 
A/B, D/I, D/E, Z/C, or H/C throughout 
these specifications are obtained by 
coding "O" or "l" respectively (0/1). For 
example, A is specified by a zero-bit, and 
B by a one-bit. 

2114B 

2-60. MEMORY REFERENCE INSTRUCTIONS. 

2-61. The 14 memory reference instructions execute 
some operation involving memory locations, such as trans­
ferring information in or out of a memory cell or checking 
the memory cell contents. The cell referenced (i.e., the 
absolute address) is determined by a combination of the ten 
memory address bits in the instruction word (0 through 9) 
and five bits (10 through 14) assumed from the current 
condition of the P-register. This means that memory refer­
ence instructions can directly address any word in the 
current page; additionally, if the instruction is given in 
some location other than the base page (page zero), bit 10 
of the instruction word doubles the addressing range to 
2048 words by allowing selection of either page zero or 
current page (i.e., bits 10 through 14 of the address in the 
M-register can be reset to zero, instead of assuming the 
current indication of the P-register). This feature provides a 
convenient linkage between all pages of memory, since page 
zero can be reached directly from any other page. 

2-62. Note that since the A- and B-registers can be 
addressed (paragraphs 2-35 and 2-36), any memory refer­
ence instruction can apply to either of these registers as 
well as to memory cells. For example, ADA 0001 means 
add the contents of the B-register (its address being 0001) 
to the A-register; specify page zero for these operations, 
since the A and B register addresses are on page zero. 

2-63. Figure 2-4 gives instruction codes and mnemonics 
for all 14 memory reference instructions. All memory ref­
erence instructions take a minimum of two machine phases 
(one to read the instruction word, and one to read the 
referenced memory cell), except for JMP, which is a one­
phase instruction. Logic truth tables relating to the first 
three instructions described below are given in table 2-1. 
Note that logic operations are performed on a bit-for-bit 
basis (i.e., no carries). 

15 14 13 11 " 10 9 e 7 6 5 4 3 2 1 0 

• 1. • .1 ••• I • • • I ••• 1. • • 
lotrl INSTRUCTION IZtc I MEMORY ADDRESS 

AND 0 0 1 0 
XOR 0 1 0 0 
IOR 0 1 1 0 
JSB 0 0 1 1 
JMP 0 1 0 1 
ISZ 0 1 1 1 
ADA 1 0 0 0 
ADB 1 0 0 1 
CPA 1 0 1 0 
CPB 1 0 1 1 
LDA 1 1 0 0 
LDB 1 1 0 1 
STA 1 1 1 0 
STB 1 1 1 1 

200G-6 

Figure 2-4. Memory Reference Instructions 



2114B 

Table 2-1. Logic Truth Table 

AND XOR IOR 

A-Register 0 0 1 1 0 0 1 1 0 0 1 1 
Contents 

Memory 0 1 0 1 0 1 0 1 0 1 0 1 

Result (in 0 0 0 1 0 1 1 0 0 1 1 1 
A-Register) 

1 =True, 0 =False 

2-64. AND: "And" to A. The contents of the addressed 
location are logically "anded" to the contents of the A­
register. The contents of the memory cell are left unaltered. 

2-65. XOR: "Exclusive or" to A. The contents of the 
addressed location are combined with the contents of the 
A-register as an "exclusive or" logic operation. The con­
tents of the memory cell are left unaltered. 

2-66. IOR: "Inclusive or" to A. The contents of the 
addressed location are combined with the contents of the 
A-register as an "inclusive or" logic operation. The contents 
of the memory cell are left unaltered. 

2-67. JSB: Jump to Subroutine. This instruction, exe­
cuted in location P, causes computer control to jump 
unconditionally to the memory location (X) specified in 
the address portion of the JSB instruction word. The 
contents of the P-register plus one (return address) is stored 
in location X, and the next instruction to be executed will 
be that contained in the next location (X + 1). A return to 
the main program sequence at P + 1 may be effected by a 
jump indirect through location X. 

2-68. JMP: Jump. This instruction transfers control to 
the addressed location. That is, JMP causes the P- and 
M-registers to be set according to the memory address 
portion of the instruction word, thus addressing memory 
cell X, so that the next instruction will be read from 
location X. 

2-69. ISZ: Increment, and skip if zero. An ISZ instruc­
tion adds one to the contents of the addressed memory 
location. If the result of this operation is zero, the next 
instruction is skipped; i.e., the P- and M-registers are 
advanced by two instead of one. Otherwise, the program 
proceeds normally to the next instruction in sequence. The 
incremented value is written back into the memory cell in 
either case. An ISZ instruction referencing locations zero or 
one (A· or B-register) cannot cause setting of the extend or 
overflow bits (unlike INA and INB). 

2-70. ADA: Add to A. The contents of the addressed 
memory location are added to the contents of the A­
register, and the sum remains in the A-register. The result of 
the addition may set the extend or overflow bits (para­
graphs 2-37 and 2-38). The contents of the memory cell are 
unaltered. 

Section II 

2-71. ADB: Add to B. The contents of the addressed 
memory location are added to the contents of the B­
register, and the sum remains in the B-register. Extend or 
overflow bits may be set, as for ADA. The contents of the 
memory cell are unaltered. 

2-72. CPA: Compare to A, skip if unequal. The contents 
of the addressed location are compared with the contents 
of the A-register. If the two 16-bit words are different, the 
next instruction is skipped; i.e., the P- and M-registers are 
advanced by two instead of one. If the words are identical, 
the program proceeds normally to the next instruction in 
sequence. The contents of neither the A-register nor the 
memory cells are altered. 

2-73. CPB: Compare to B, and skip if unequal. Same as 
CPA, except comparison is made with B-register. 

2-74. LDA: Load into A. The A-register is loaded with 
the contents of the addressed location. The contents of the 
memory cell are unaltered. 

2-75. LDB: Load into B. The B-register is loaded with 
the contents of the addressed location. The contents of the 
memory cell are unaltered. 

2-76. STA: Store A. The contents of the A-register are 
stored in the addressed location. The previous contents of 
the memory cell are lost; the A-register is unaltered. 

2-77. STB: Store B. The contents of the B-register are 
stored in the addressed location. The previous contents of 
the memory cell are lost; the B-register is unaltered. 

2-78. REGISTER REFERENCE INSTRUCTIONS. 

2-7 9. The register reference instructions, in general, 
manipulate bits in the A·, B-, and E-registers. There is no 
reference to memory; thus these instructions are executed 
in only one machine phase. This type includes 39 basic 
instructions, which are combinable to form a one-word 
multiple instruction that can operate in various ways on the 
contents of the A-, B-, or E-registers. These microinstruc­
tions are divided into two subgroups, the shift-rotate group 
(SRG) and the alter-skip group (ASG ). Three instructions 
(SLA, SLB, and CLE) appear in both groups and, being 
combinable in these different contents, are counted twice 
in the total of basic instructions. Microinstructions may be 
combined under the following general rules: 

a. Instructions from the two groups cannot be mixed. 

b. References to both A and B registers cannot be 
mixed. 

c. Only one microinstruction can be chosen from each 
column of the selection tables in figure 2-5 and 2-6. 

d. Use zeros to exclude unwanted microinstruction 
bits. 

2-7 



Section II 

e. The sequence of execution is left to right in the 
selection tables (column 1, then column 2, etc.). 

f. If two (or more) skip functions are combined, the 
skip will occur if either or both conditions are met. One 
exception exists for the RSS instruction (paragraph 2-82). 

2-80. Register Reference. Instructions are recognized by 
the computer when the four most significant bits of the 
instruction word are zeros; the general format for this type 
of instruction (the dots representing variable microinstruc­
tion bits) is therefore: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 

2-81. SHIFT-ROTATE GROUP. The SRG instructions 
are specified by a zero for bit 10. (Compare figures 2-5 and 
2-6.) Figure 2-5 gives both the bit format and the selection 
table for using these instructions. Definitions for the mne­
monics used are listed below. Note that the extend bit is 
not affected by shifts or rotates unless specifically stated. 
All of the shift and rotate instructions can be executed 
either first or last in a combined instruction, or both times. 
This permits sequencing of CLE and SLA/B either before or 
after shifts and rotates. 

NOP No operation. Memory read/write cycle only. 

CLE Clear E-register. 

SLA Skip next instruction if least significant bit of 
A-register is zero (i.e., skip if an even number is 
in A-register). 

SLB Skip next instruction if least significant bit of 
B-register is zero (i.e., skip if an even number is 
in B-register). 

ALS A-register left shift one place, arithmetically (15 
bits only). A zero replaces vacated bit O; bit 
shifted out of bit 14 is lost; bit 15 (sign bit) is 
not affected. 

BLS B-register left shift one place, arithmetically (15 
bits only). A zero replaces vacated bit O; bit 
shifted out of bit 14 is lost; bit 15 (sign bit) is 
not affected. 

ARS A-register right shift one place, arithmetically. 
Bit shifted out of bit 0 is lost; copy of sign bit 
(bit 15) shifted into bit 14; bit 15 is not 
affected. 

BRS B-register right shift one plac~ arithmetically. 
Bit shifted out of bit 0 is lost; copy of sign bit 
(bit 15) shifted into bit 14; bit 15 is not 
affected. 

RAL Rotate A-register left one place, all 16 bits. Bit 
15 is rotated around to bit 0. 

2-8 

2114B 

RBL Rotate B-register left one place, all 16 bits. Bit 
15 is rotated around to bit 0. 

RAR Rotate A-register right one place, all 16 bits. Bit 
O is rotated around to bit 15. 

RBR Rotate B-register right one place, all 16 bits. Bit 
O is rotated around to bit 15. 

ALR A-register left shift one place, same as ALS, but 
clear sign bit after shift. 

BLR B-register left shift one place, same as BLS, but 
clear sign bit after shift. 

ERA Rotate E-register right with A-register, one place 
(17 bits). Bit 0 is rotated into extend-register; 
extend content is rotated into bit 15. 

ERB Rotate E-register right with B-register, one place 
(17 bits). Bit 0 is rotated into extend-register; 
extend content is rotated into bit 15. 

ELA Rotate E-register left with A-register, one place 
(17 bits). Bit 15 is rotated into extend-register; 
extend content is rotated into bit 0. 

ELB Rotate E-register left with B-register, one place 
(17 bits). Bit 15 is rotated into extend-register; 
extend content is rotated into bit 0. 

ALF Rotate A-register left four places, all 16 bits. Bits 
15, 14, 13, 12 are rotated around to bits 3, 2, 1, 
O respectively. Equivalent to four successive 
RAL instructions. 

BLF Rotate B-register left four places, all 16 bits. Bits 
15, 14, 13, 12 are rotated around to bits 3, 2, 1, 
O respectively. Equivalent to four successive RBL 
instructions. 

2-82. ALTER-SKIP GROUP. The ASG instructions 
are specified by a "l" in bit 10. Figure 2-6 gives both the 
bit format and the selection table for using these instruc­
tions. Definitions for the mnemonics are used as follows: 

CLA Clear A-register. 

CLB Clear B-register. 

CMA Complement A-register. One's complement, 
reversing the state of all 16 bits. 

CMB Co~plement B-register. Reverses state of all 16 
bits. 

CCA Clear, then complement A-register. Puts 16 ones 
in the A-register; this is the two's complement 
form of -1. 

CCB Clear, then complement B-register. Puts 16 ones 
in the B-register; this is the two's complement 
form of-1. 



2114B 

15 •4 13 12 11 10 9 e 7 6 5 4 3 2 1 0 

.1 •• ·'·. ·'· •• 1 ••• 1 ••• 
I TYPE 2 1%1°1°@=§ 1 I 21%1 3 I COL. 4 I 

c ' NOP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
CLE 0 0 0 0 0 1 
SLA 0 0 0 0 0 0 1 
SLB 0 0 0 0 1 0 1 
ALS 0 0 0 0 0 0 1 0 0 0 x xxx 
BLS 0 0 0 0 1 0 1 0 0 0 x xxx 
ARS 0 0 0 0 0 0 1 0 0 1 x xxx 
BRS 0 0 0 0 1 0 1 0 0 1 x xxx 
RAL 0 0 0 0 0 0 1 0 1 0 x xxx 
RBL 0 0 0 0 1 0 1 0 1 0 x xxx 
RAR 0 0 0 0 0 0 1 0 1 1 x xxx 
RBR 0 0 0 0 1 0 1 0 1 1 x xxx 
ALR 0 0 0 0 0 0 1 1 0 0 x xxx 
BLR 0 0 0 0 1 0 1 1 0 0 x xxx 
ERA 0 0 0 0 0 0 1 1 0 1 x xxx 
ERB 0 0 0 0 1 0 1 1 0 1 x xxx 
ELA 0 0 0 0 0 0 1 1 1 0 x xxx 
ELB 0 0 0 0 1 0 1 1 1 0 x xxx 
ALF 0 0 0 0 0 0 1 1 1 1 x xxx 
BLF 0 0 0 0 1 0 1 1 1 1 x xxx 

SELECTION TABLE 

1 2 3 4 

ALS ALS 
ARS ARS 
RAL RAL 
RAR CLE SLA 

RAR 
ALR ALR 
ERA ERA 
ELA ELA 
ALF ALF 

BLS BLS 
BRS BRS 
RBL RBL 
RBR CLE SLB 

RBR 
BLR BLR 
ERB ERB 
ELB ELB 
BLF BLF 

COMBINING GUIDE 

1. Choose up to 4 instructions, one from each 
column of the Selection Table. 

2. Use a one- bit for Bit 9 to Enable column 1 
instructions, and a one-bit for Bit 4 to Enable 
column 4 instructions. Figure above shows 
column 1 enabled (executed first) with dupli-
cate column 4 pattern (executed last) indicated 
by X's. 

3. Use a one-bit for Bit 5 to select column 2 
(CLE), or a zero-bit to exclude CLE. 

4. Use a one-bit for Bit 3 to select column 3 
(SLA/B), or a zero-bit to exclude SLA/B. 

2000-7 

Figure 2-5. Shift-Rotate Instructions 

Section II 

'5 !4 13 12 " •o 9 B 7 6 5 4 3 1 1 0 

·'·. ·'· •• 1 •• ·'· •• 1 ••• 
I TYPE 2 I A.tel • I COL I I COL. 3 I 2 I 4 I 5 I 6 I 7 I 8 I 

CLA 0 0 0 0 0 1 0 1 
CLB 0 0 0 0 1 1 0 1 
CMA 0 0 0 0 0 1 1 0 
CMB 0 0 0 0 1 1 1 0 
CCA 0 0 0 0 0 1 1 1 
CCB 0 0 0 0 1 1 1 1 
SEZ 0 0 0 0 1 1 
CLE 0 0 0 0 1 0 1 
CME 0 0 0 0 1 1 0 
CCE 0 0 0 0 1 1 1 
SSA 0 0 0 0 0 1 1 
SSB 0 0 0 0 1 1 1 
SLA 0 0 0 0 0 1 1 
SLB 0 0 0 0 1 1 1 
INA 0 0 0 0 0 1 1 
INB 0 0 0 0 1 1 1 
SZA 0 0 0 0 0 1 1 
SZB 0 0 0 0 1 1 1 
RSS 0 0 0 0 1 1 

SELECTION TABLE 

1 2 3 4 5 6 7 8 

CLA CLE 
CMA SEZ CME SSA SLA INA SZA RSS 
CCA CCE 

CLB CLE 
CMB SEZ CME SSB SLB INB SZB RSS 
CCB CCE 

COMBINING GUIDE 

1. Choose up to 8 instructions, one from each 
column of the Selection Table. 

2. Use the specified two-bit combinations of Bits 
9 and 8, plus A/B Bit 11, to encode column 1 
instructions. 

3. Use the specified two-bit combinations of Bits 
7 and 6 to encode column 3 instructions. 

4. Use a one-bit in Bits 5, 4, 3, 2, 1, plus A/B 
Bit 11, to encode column 2, 4, 5, 6, 7 in­
structions respectively. 

5. Use a one-bit for Bit 0 to encode column 8. 

2000-8 

Figure 2-6. Alter-Skip Instructions 

2-9 



Section II 

CLE Clear E-register. 

CME Complement E-register. Reverses state of the 
extend bit. 

CCE Clear, then complement E-register. Sets the 
extend bit. 

SEZ Skip the next instruction if E-register is zero. 

SSA Skip next instruction if sign bit (bit 15) of A­
register is zero; i.e., skip if the content of A is 
positive. 

SSB Skip next instruction if sign bit (bit 15) of B­
register is zero; i.e., skip if the content of B is 
positive. 

SLA Skip next instruction if least significant bit of 
A-register is zero (i.e., skip if an even number is 
in A). 

SLB Skip next instruction if least significant bit of 
B-register is zero (i.e., skip if an even number is 
in B). 

INA Increment A-register by one. Can cause setting of 
extend or overflow bits (paragraphs 2-37 and 
2-38). 

INB Increment B-register by one. Can cause setting of 
extend of overflow bits (paragraphs 2-37 and 
2-38). 

SZA Skip next instruction if A-register is zero (16 
zeros). 

SZB Skip next instruction if B-register is zero (16 
zeros). 

RSS Reverse skip sense. Skip occurs for any of the 
preceding skip instructions, if present, when the 
non-zero condition is met. RSS without a skip 
instruction in the word causes an unconditional 
skip. If a word with RSS also includes both 
SSA/B and SLA/B, bits 15 and 0 must both be 
one for skip to occur; in all other cases the skip 
occurs if either or both conditions are met. 

2-83. INPUT/OUTPUT INSTRUCTIONS. 

2-84. The HP 2114B Computer has 17 basic input/ 
output instructions, which provide the following general 
capabilities. 

a. Fix the state of the flag, control, and overflow bits. 
(These bits are described in paragraphs 2-111 and 2-38.) 

b. Test the state of the flag and overflow bits (i.e., skip 
if set or clear, as specified). 

c. Enter data from a specific device into the A- or 
B-register. 

2-10 

2114B 

d. Output data to a specific device from the A- or 
B-register. 

e. Halt the program. 

2-85. Input/output instructions are recognized by the 
computer when the four most significant bits of the instruc­
tion word are 1000 and bit 10 is a 1"l". The codes and 
mnemonics for all 17 instructions are given in figure 2-7 
(the MAC instruction is not counted as a basic instruction; 
see paragraph 2-87). All input/output instructions are 
executed in one cycle (the fetch phase). 

2-86. Note that bit 11, where relevant, specifies A- or 
B-register; otherwise it may be "1" or "O" without 
affecting the instruction, although the assembler will assign 
zeros (as shown). Bit 9, where not specified, offers the 
choice of holding (0) or clearing (1) the device flag after 
execution of the instruction. (Exception: the H/C bit asso­
ciated with the last two instructions in this list holds or 
clears the overflow bit instead of the flag bit.) Bits 8, 7, and 
6 identify the instruction; some of the instructions, how­
ever, require additional specific bits for the complete code. 
Bits 5 through 0 form select codes to make the instruction 
apply to one of up to 64 input/output devices or functions 
(see paragraph 2-107). 

2-87. The MAC instruction listed in figure 2-7 is avail­
able to provide up to 2048 entries to macroinstruction 
subroutines. Since it is used only by special options and 
special software, MAC is not counted as one of the 70 basic 
machine instructions. The basic HP 2114B will treat MAC 
as a no-operation (NOP) instruction. 

15 14 13 12 " 10 9 B 7 6 5 4 3 2 1 0 

• I. • ·'· •• 1 ••• 1 • •• 1 ••• 

I TYPE 3 jA18 j * jHtd1NSTRuCT10N I SELECT CODE I 
MAC 1 0 0 0 0 
HLT 1 0 0 0 1 0 0 0 
STF 1 0 0 0 1 0 0 0 1 
CLF 1 0 0 0 1 1 0 0 1 
SFC 1 0 0 0 1 0 0 1 0 
SFS 1 0 0 0 1 0 0 1 1 
MIA 1 0 0 0 0 1 1 0 0 
MIB 1 0 0 0 1 1 1 0 0 
LIA 1 0 0 0 0 1 1 0 1 
LIB 1 0 0 0 1 1 1 0 1 
OTA 1 0 0 0 0 1 1 1 0 
OTB 1 0 0 0 1 1 1 1 0 
STC 1 0 0 0 0 1 1 1 1 
CLC 1 0 0 0 1 1 1 1 1 
STO 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 
CLO 1 0 0 0 1 1 0 0 1 0 0 0 0 0 1 
soc 1 0 0 0 1 0 1 0 0 0 0 0 0 1 
sos 1 0 0 0 1 0 1 1 0 0 0 0 0 1 

*Identifies Macroinstructions ( 0) or 
standard Input/Output instructions (1). 

2000-9 

Figure 2-7. Input/Output Instructions 



2114B 

2-88. HLT. Halt. Stops the computer and holds or clears 
the flag (according to bit 9) of any desired input/output 
device (bits 5 through 0). The HLT instruction has the same 
effect as the HALT pushbutton: the HALT switch lights, all 
front-panel control switches are enabled, and no interrupts 
may occur. The HLT instruction will be displayed in the 
T-register, and the M-register will normally indicate the 
HALT location plus one. 

2-89. STF. Set flag. Sets the input/output flag of the 
selected device, thus causing an interrupt during the next 
machine phase if the interrupt system is enabled (paragraph 
2-113), and the corresponding control bit is set. The inter­
rupt system itself is enabled by an STF instruction with a 
select code of 6 zeros (octal 00). 

2-90. CLF. Clear flag of selected device. Resets the flag, 
thus permitting the device to present another flag when 
ready again. A CLF with a select code of 6 zeros (octal 00) 
disables the entire interrupt system; this does not affect the 
status of individual input/output flags. 

2-91. SFC. Skip if flag clear. Causes the computer to 
skip the next instruction if the flag bit of the selected 
device is zero (i.e., the device is not ready). 

2-92. SFS. Skip if flag set. The next instruction is 
skipped if the flag bit of the selected device is one (i.e., the 
device is ready). 

2-93. MIA. Merge input into A. The contents of the 
input/output buffer associated with the selected device are 
merged ("inclusive or") into the A-register. 

2-94. MIB. Merge input into B. The contents of the 
input/output buffer associated with the selected device are 
merged ("inclusive or") into the B-register. 

2-95. LIA. Load input into A. The contents of the 
input/output buffer associated with the selected device are 
loaded into the A-register. Previous contents of the A­
register are lost. 

2-96. LIB. Load input into B. The contents of the 
input/output buffer associated with the selected device are 
loaded into the B-register. Previous contents of the B­
register are lost. 

2-97. OT A. Output from A. The contents of the A­
register are loaded into the input/output buffer associated 
with the selected device. If the buffer is less than 16 bits in 
length, the least significant bits of the A-register normally 
are loaded. (Some exceptions exist, depending on the type 
of output device.) A-register contents are not altered. 

2-98. OTB. Output from B. The contents of the B­
register are loaded into the input/output buffer associated 
with the selected device. 

Section II 

2-99. STC. Set control bit of the selected device. This 
commands or prepares the device to perform its input or 
output function, and enables its flag bit to interrupt the 
program being run (provided the program is not disabling 
the interrupt system). 

2-100. CLC. Clear control bit of the selected device. 
This prevents the device from interrupting. A CLC instruc­
tion with a select code of 00 (octal) clears all control bits, 
effectively turning off all input/output devices. CLF 00 
may be combined with this to additionally turn off the 
interrupt system. 

2-101. STO. Set overflow. The overflow bit remains set 
until cleared by one of the following three instructions. 

2-102. CLO. Clear overflow. Resets the overflow register. 

2-103. SOS. Skip if overflow set. If the overflow register 
is set, the next instruction of the program is skipped. Use of 
the H/C bit will hold or clear the overflow bit following 
execution of this instruction (whether the skip is taken or 
not). 

2-104. SOC. Skip if overflow clear. If the overflow regis­
ter is clear, the next instruction of the program is skipped. 
Use of the H/C bit will hold or clear the overflow bit 
following execution of this instruction. 

2-105. DATA FORMATS. 

2-106. Data is represented in two's complement form 
internally in the computer. The basic format for arithmetic 
operations on numerical data is defined in figure 2-8. The 
data is assumed to be an integer (binary point to the right 
of bit 0), and is positive if the sign bit is "0", or negative if 
"l". The largest possible positive number (in octal) is 
+77777, or (in decimal) +32767; the largest possible nega­
tive number is -100000 (octal) or -32768 (decimal). Other 
possible formats, including packed data words, double­
length fixed point, and floating point representations, are 
defined in standard software packages. 

1 s 14 13 12 11 10 9 8 7 6 s 4 3 2 1 0 ·'·. ·'·. ·'·. ·'·. ·'· .. f MAGNITUDE f 
MAGNITUDE 

SIGN 

2000-10 

Figure 2-8. Basic Data Format 

2-107. INPUT/OUTPUT SPECIFICATIONS. 

2-108. INPUT/OUTPUT SYSTEM DESIGN. 

BINARY 
POINT 

2-109. GENERAL. Information is transferred into the 
computer from an external device, or out of the computer 

2-11 



Section II 

to an external device, by way of its input/output capability, 
termed the input/output system. A transfer of information 
is initiated by a signal from a device indicating that it is 
ready for input or output. The transfer occurs by the 
process of interrupting a running program (which could be 
either a problem-solving program, or a program specifically 
designed to transfer data). The interrupt directs the com­
puter to a location in memory uniquely associated with the 
interrupting device. This location in turn directs the com­
puter to a program routine (service routine), which must 
previously have been stored in memory, and this routine 
will contain instructions which effect the actual transfer of 
information. Since interrupts can occur at almost any time, 
including during the service routine of an earlier interrupt, a 
priority network is present in the computer to establish the 
sequence in which interrupts are serviced. As shown in 
figure 2-9, the input/output system capability (including 
the priority network and the identical hardwiring for 
optional plug-in card slots) is an integral part of the com­
puter unit. The remaining part is provided by input/output 
options (paragraph 2-129), which will include the plug-in 
interface cards and cables for specific devices and the 
appropriate software drivers and diagnostic programs. The 
interface cards may be plugged into any of the identical 
input/output slots, depending on the desired priority rating. 
Each combination of interface card and device, when 
plugged into the computer, constitutes an input/output 
channel. 

2-110. NUMBER OF CHANNELS. The coding structure 
of input/output instructions (figure 2-7) allows 6 bits for a 

I/0 CONTROL CAR1l t j 
OMA OPTION CARD 

PROCESSOR 
CIRCUITS 

7 SLOTS FOR 
PLUG-IN 

CARDS l 1 

2114B 

select code, making it possible to specify a total of 64 (26) 
channels and functions. Of this total, two select codes are 
assigned to non-interrupting functions (interrupt system 
enable/disable, and switch register overflow), two are used 
for control of the direct memory access option, two are not 
available for use with the computer, and the remaining 58 
channels and functions have an interrupt capability. Two 
interrupt assignments are reserved for internal processor 
functions (power failure interrupt, and parity error inter­
rupt). This leaves a possible 56 channels for input/output 
devices. The computer accommodates 7 of the 56 input/ 
output channels. This may be extended to a total of 24 
with the HP 2151A I/O Extender, or if the multiplexed I/O 
option is used, the entire 56 input/output channels are 
available. 

2-111. INTERFACE COMPONENTS. Each plug-in inter­
face card normally includes the following components, 
shown in figure 2-10: 

a. An input/output buffer consisting of up to 16 flip­
flops for temporary storage of data to be transferred in or 
out, so that it is not necessary to tie up a working register 
during the relatively long transfer periods. The actual 
number of buffer bits, from 1 to 16, will depend on the 
device for which the interface is intended. Data is trans­
ferred to the buffer from the A- or B-register by OTA or 
OTB instructions, and is brought in to the A- or B-register 
from the buffer by LIA, LIB, MIA, or MIB instructions. If 
the buffer is less than 16 bits in length, data is transferred 
to or from the least significant bits of the A- or B-register. 

INTERFACE l PLUG-IN INTERFACE CARDS 

2040-1 

2-12 

KITS 

;{{l~i~~ l 1----r---ir---r-----..---..--.. ~ ~ ~ ~ ~ ~ 
MODULE 

------
18 SLOTS 

CABLES 

EXTERNAL 
DEVICE 

Figure 2-9. Input/Output Design Arrangement 

EXTERNAL 
DEVICE 



2114B 

OUT 

IN 

CABLE 
FROM 

EXTERNAL 
DEVICE 

2000-12 

INTERFACE CARD 

TO 
COMPUTER 

LOGIC 
AND A/B 

REGISTERS 

Figure 2-10. Components of Typical Input/Output 
Interface Cards 

b. An input/output flag flip-flop, which will be set by a 
signal from the external device when the device has com­
pleted an operation. The flag may also be set, if desired, by 
program instruction (STF). Once set, the flag remains set 
until reset by a clear instruction (CLF or H/C bit). Provided 
it is itself not inhibited by the set flag of a higher priority 
device or otherwise disabled, the flag, when set, inhibits all 
interrupts for devices having lower priority. It will cause an 
interrupt after the current machine phase (paragraph 
2-113). Successive interrupts for one device may occur on 
receipt of a number of flag signals without executing a clear 
flag instruction, thus making it possible to inhibit lower 
priority devices indefinitely until a desired number of high­
priority transfers have been completed. The flag can be set 
and cleared even if its interrupt capability is inhibited or 
disabled, and may be tested by SFS or SFC instructions. 

c. A control flip-flop to command or enable the external 
device to perform its input or output operation. In addi­
tion, the control bit controls the interrupt capability for 
that particular device; i.e., unless the control flip-flop is set, 
a received flag cannot cause an interrupt, nor can it inhibit 
the interrupt capability of any other device in the priority 
string. Thus, the control bit, when set, effectively turns on 
the individual input/output channel. 

2-112. SELECT CODE ASSIGNMENTS. As mentioned 
previously in paragraph 2-85, bits 5 through 0 of the 
input/output instructions form a select code to specify one 
of 64 possible input/output devices or functions. Of the 64 
select codes, some are reserved for specific uses while others 
are available for assignment to any optional input/output 
device. Table 2-2 lists these assignments and gives the cor­
responding interrupt location (i.e., the location containing 
the instruction to be executed when interrupt occurs). The 
first four (octal codes 00 through 03) are reserved for 
noninterrupting functions. Note that select code 00 is the 
access to the master interrupt enable flip-flop; a STF 
instruction with this select code enables the interrupt 
system. Select code 01 is assigned to the switch register 
when using input instructions (LIA, LIB, MIA, MIB, OT A, 

Section II 

OTB), permitting the program to enter the switch register 
setting into the A- or B-register or output data to the switch 
register from the A- or B-register; when using instructions 
concerning the overflow register (STO, CLO, SOC, SOS), 
select code 01 is assigned to the overflow register. Select 
codes 02 and 06 are reserved for use by the direct memory 
access option. Select code 04 is the highest priority inter­
rupt, reserved for power failure interrupt. Select code 05 is 
the next highest priority interrupt and is reserved for the 
memory protect and parity error options. Select codes 03 
and 07 are not program accessible. The next 7 codes (10 
through 16), are used for external devices capable of 
causing an interrupt, with decreasing priority. Select codes 
20 through 77 are available only with the use of an input/ 
output extender option. 

Table 2-2. Select Code Assignments 

SELECT 
CODE INTERRUPT ASSIGNMENT 

(OCTAL) LOCATION 

00 None Interrupt System Disable/Enable 

01 None Switch Register or Overflow 

02 None DMA Initialize 

03 None Not Assigned 

04 00004 Power Fail Interrupt/Central 
Interrupt Register 

05 00005 Memory Parity Interrupt 

06 00006 DMA Completion Interrupt 

07 00007 Not Assigned 

10 00010 
thru thru 1/0 Device, highest priority 
16 00016 

17 00017 Additional 1/0 Capability Avail-
thru thru able with HP 2151A 1/0 
37 00037 Extender 

17 00017 Additional 1/0 Capability Avail-
thru thru able with HP Multiplexer 1/0 
77 00077 Options 

2-113. INTERRUPT STRUCTURE. 

2-114. OPERATION. On computer command (set control 
instruction STC), one or more external devices begin their 
read or record operation, putting data into (input) or taking 
data from (output) the input/output buffer on each indivi­
dual interface card. During this time, the computer may 
continue running a program or may be programmed into a 
waiting loop to wait for a specific device. On completion of 
the read or record operation, each device returns an opera­
tion completed signal (flag) to the computer. The flags are 
passed through a priority network (paragraph 2-119), which 
allows only one device to be serviced regardless of the 
number of flags simultaneously present. The flag with the 
highest priority causes an interrupt at the end of the cur­
rent machine phase, switching the computer into the inter­
rupt phase (paragraph 2-18), except under any of the 
following circumstances. 

2-13 



Section II 

a. Interrupt system disabled (paragraph 2-112), orde­
vice interrupt disabled. 

b. Computer in HALT mode. SINGLE CYCLE push­
button cannot step the computer into the interrupt phase. 

c. JMP indirect or JSB indirect not fully executed. 
These instructions inhibit all interrupts until the instruction 
(plus one phase of the succeeding instruction) is completed. 

d. Instruction in an interrupt location not fully exe­
cuted, even if of lower priority. Any interrupt inhibits the 
entire interrupt system until one fetch phase has been 
completed. (JMP indirect and JSB indirect are exceptions 
and will be fully executed.) 

e. Direct memory access option in process of trans­
ferring data. Exception: power failure control can interrupt 
a DMA transfer. 

f. The current instruction is one which may affect the 
priorities of input/output devices (STC, CLC, STF, CLF). 
The interrupt in this case must wait until the end of the 
succeeding machine phase. 

2-115. When interrupt occurs, the computer puts the 
select code number of the interrupting device into the 
M-register (with extra zeros to specify page zero), thus 
causing the next instruction to be read from the memory 
location having the same number as the select code. This 
location in memory is referred to as the interrupt location, 
and is reserved for that particular device. Example: a device 
specified by a select code of 10 will interrupt to (i.e., cause 
execution of the contents of) memory location 00010. The 
instruction in the interrupt location will usually be a jump 
to an input or output subroutine (JSB). 

2-116. To prevent external devices from running when 
computer power is first turned on, turn-on of the POWER 
switch automatically clears all control bits, resets the inter­
rupt enable flip-flop (disabling the interrupt system), and 
sets all device flags. Pressing the PRESET pushbutton 
accomplishes the same function when the computer is on 
(but not when running, since the control switches are 
disabled). Therefore, before any device can operate with 
the computer, it is necessary for the program to set inter­
rupt system enable and (depending on the type of device) 
clear the individual flag bit and/or set the individual control 
bit. 

2-117. INPUT INTERRUPT. The typical operation 
sequence for an input interrupt involves the following 
steps: 

a. A STC instruction, usually accompanied by CLF, 
sends a command (equivalent to a read, or encode, or reset 
command pulse) to the external device. 

b. The device reads its input, then puts the data into 
the input/output buffer on the interface card (paragraph 
2-111). 

2-14 

2114B 

c. Simultaneously the device supplies a flag signal 
(equivalent to a record or print command pulse) to the 
computer. 

d. The flag is converted to an interrupt request by the 
device interface card. 

e. The resulting interrupt causes a service subroutine 
for that device to begin, temporarily suspending operation 
of the main program. 

f. The service subroutine enters data from the buffer 
into the A- or B-register, processes the data, then returns 
control to the main program. 

2-118. OUTPUT INTERRUPT. The typical operation 
sequence for an output interrupt involves the following 
steps: 

a. An OT A or OTB instruction puts data from the A­
or B-register into the input/output buffer. 

b. STC instruction sends a command (equivalent to a 
record or print command pulse) to the external device. 

c. The device accepts (records) the data currently in 
the buffer. 

d. After the data has been accepted, the device returns 
a flag signal (equivalent to the end of a hold-off or inhibit 
command pulse) to the computer. 

e. The flag is converted to an interrupt request by the 
device interface card. 

f. The interrupt causes a service subroutine for that 
device to begin. 

g. The service subroutine loads new data into the 
buffer, repeating the sequence. 

2-119. PRIORITY. The priority network gives highest 
interrupt priority to select code 04, reserved for power 
failure control interrupt, and decreasing priority to select 
codes in order from 05 through 77. The transfer of data by 
the optional direct memory access (DMA) channel (which 
transfers data directly to and from memory by inserting a 
special memory cycle, rather than by interrupt to a service 
subroutine) effectively has a priority between select codes 
05 and 07 since it can inhibit all interrupts except power 
failure control, and parity error. When the multiplexed 
input/output option is used the priority given to any multi­
plexed device is limited by the hardwired priority of the 
I/0 slot where the multiplexer data card is installed. The 
priority between the individual multiplexed device is 
assigned by the user in his interface circuitry. 

2-120. A set flag inhibits all interrupt requests below it 
on the priority string (provided that its control flip-flop is 
also set), and once this flag is cleared, the next lower device 
can then interrupt. A service subroutine for any device can 
be interrupted by a higher priority device; then, after the 



2114B 

higher device is serviced, the subroutine may continue. In 
this way, it is possible for several service subroutines to be 
in a state of interruption at one time; each will be per­
mitted to continue when the higher priority device is ser­
viced. All service subroutines normally end with a JMP 
indirect instruction to return the computer to the point of 
interrupt. 

2-121. TRANSFER RATE. It is possible to make up to 
47 ,000 transfers per second, limited by the length of the 
service subroutine. If no subroutine is required, a maximum 
of 250,000 transfers per second may be made. 

2-122. PROCESSOR OPTIONS. 

2-123. The following options are all capable of being 
installed in the field. They consist of one or more plug-in 
cards, and in the case of option 04, a larger memory 
module as well. Other processor options are available, as 
either standard or custom modifications; consult the HP 
2114B Technical Data Sheet or a Hewlett-Packard Sales and 
Service office. 

2-124. SK MEMORY. Option 04 comprises a set of 
memory addressing cards and a replacement core module, 
expanding memory of the HP 2114B from 4096 to Sl92 
words. Cards and module are installed in the computer 
mainframe. 

2-125. MEMORY PARITY CHECK. Option 02, HP 
1259SA. Permits parity checking within memory. Odd 
parity is used. Accessory 1259SA consists of one plug-in 
card for standard 4K memory and optional SK memory. A 
parity error may either cause the machine to halt or inter­
rupt to address 05. 

2-126. POWER FAIL WITH RESTART. Option OS per­
mits the computer to store the contents of the working 
registers in memory in the event of a power failure. When 
proper power levels are restored the computer will continue 
processing the program at the point of interrupt. 

2-127. DIRECT MEMORY ACCESS. The DMA option 
HP 12607 A allows high-speed data transfers (up to 1/2 
million per second) between I/O devices and memory. The 
option provides control signals to automatically control 
Hewlett-Packard input/output devices. 

2-12S. HIGH SPEED I/O CHANNEL. The High Speed 
Channel Option, HP 12616A, allows the user to access 
computer memory at arbitrary locations at a rate of 1/2 
million transfers per second. 

2-129. INPUT/OUTPUT OPTIONS. 

2-130. Input/output options for the HP 2114B Com­
puter, identified by interface kit accessory numbers, consist 
of a combination of plug-in cards, interconnecting cables, 
and appropriate software. In many cases, an optional inter­
face kit is designed to operate with more than one kind of 

Section II 

peripheral device, or with different versions of a device. 
Also, one peripheral may be associated with more than one 
interface. A device may require one interface to transfer its 
data into the computer, and another interface to accept 
function commands from the computer. 

2-131. Most input/output options require only one card. 
This card by itself has no definite select code assignment or 
interrupt priority. Plugging the card into any of the seven 
general purpose input/output slots, each of which has a 
select code assignment, automatically gives the external 
device an interrupt priority, according to the select code of 
the slot. 

2-132. As shown in figure 2-11, each of the input/ 
output slots actually has two select codes available, 
although usually only one is used by the interface cards. 
There can be no gaps in the priority string; continuity is 
required from select code position 10 up to the last used 
select code. 

D 
nnnnnnn 
16 15 14 13 12 11 10 

17 16 15 14 13 12 11 

uuuuuuu 
MEMORY AND LOGIC l INPUT/OUTPUT 

2038-4 

Figure 2-11. Input/Output Option Locations 
(Top View) 

2-133. For more than seven input/output cards, an 
input/output extender, either the HP 2151A or the multi­
plexed I/O option is required. The HP 2151A is a separate 
unit with a self-contained power supply which can make 
available another 17 I/O channels for a total of 24. The 
multiplexed I/O option consists of a special I/O interface 
card called the multiplexer data card, which is inserted into 
one of the computer I/O slots, leaving six I/O slots in the 
mainframe of the computer available for interfacing to 
other devices. The standard 1/0 control card in the com­
puter is modified for multiplexed I/O operation. Together 
these two cards make all computer I/O address and control 
signals available to the user. The computer decodes the I/O 

2-15 



Section II 

instruction and transmits the select code (two digit octal) 
and necessary control signals to the user's interface. All 
channels have access to the computer's priority interrupt 
system. 

2-134. TELEPRINTER INPUT/OUTPUT. The simplest 
configuration of an HP 2114B Computer system is provided 
by a combination of the HP 2752A Teleprinter (modified 
Teletype ASR-33) and accessory interface kit HP 12531B. 
The teleprinter combines a typewriter, punched tape 
reader, and tape punch. Data and instructions may be 
entered from punched tape or the keyboard. Output infor­
mation is recorded on the typewriter, and may be recorded 
simultaneously on punched tape. The teleprinter operates 
at 10 characters/second for both data entry and data 
recording. Where heavy use of the teleprinter is anticipated, 
exceeding 5 hours per day or 30 hours per week, a heavy 
duty HP 2754B Teleprinter (modified ASR-35) is recom­
mended. This device uses the same interface. The HP 
2752A and HP 2754B Teleprinters perform the same func­
tions and operate at the same speed. 

2-135. HIGH-SPEED PUNCHED TAPE INPUT. For 
rapid entry of punched tape programs and data into the 
computer, a high speed tape reader is available. The HP 
27 48A Tape Reader, with its interface kit, HP 12597 A-02, 
reads punched tape at the rate of 500 characters per 
second. The HP 2758A Tape Reader-Reroller uses the same 
interface kit and has an added reroller feature that automat­
ically rerolls the punched tapes as they are processed. 

2-136. HIGH-SPEED PUNCHED TAPE OUTPUT. Data 
output of the HP 2114B Computer can be recorded (asyn­
chronously) on punched tape at 120 characters/second with 
an HP 2753A Tape Punch and HP 12597 A-03 Interface Kit. 
This device includes a tape spooler, which accepts approxi­
mately 1000 feet of tape. 

2-137. Input/Output options can be added, upgraded, or 
deleted, and service priorities changed, on a plug-in basis. 
No wiring changes to the computer are involved. For a 
complete list of input/output options available, contact 
your nearest Hewlett-Packard Sales and Service Office. 
Input/output software is modular, and a software config­
urator (paragraph 2-147) is furnished which allows the user 
to change his software operating system to handle different 
hardware configurations with minimal programming effort. 

2-138. SOFTWARE. 

2-139. GENERAL. 

2-140. The HP 2114B Computer is ~upported by a full 
range of software, normally furnished in the form of 
punched paper tape. As standard accessories, the following 
software packages are supplied with all HP computers, 
unless additions or deletions are otherwise specified. All are 
operable with the minimum HP 2114B Computer system 
configuration (i.e., 4K memory and teleprinter input/ 
output). 

2-16 

HP Basic Control System 
HP Symbolic Editor 
HP Assembler 
HP FORTRAN Compiler 
HP FORTRAN Library 
HP System Input/Output 
HP Hardware Diagnostics 

2114B 

2-141. Each of the software packages listed above con­
sists in most cases of a number of individual tapes. The 
number of tapes furnished depends on the options pur­
chased with a system; driver tapes and test tapes are 
furnished as accessories to interface options when 
purchased, either with the initial order or with field installa­
tion. Table 2-3 lists all the standard tapes furnished with a 
typical system, consisting of an HP 2752A Teleprinter, HP 
2753A Tape Punch, and HP 2748A Tape Reader. In this 
case, 28 tapes would be furnished for computers having 4K 
memories. For SK memory computers, 26 tapes would be 
furnished, since the FORTRAN compiler requires only two 
pass tapes inst~ad of four. (Note: the list of standard 
software given in table 2-3 may change from time to time; 
check with the Hewlett-Packard Sales and Service Offices 
for latest information.) In addition to these standard tapes, 
two configured tapes, incorporating actual system device 
assignments, are furnished with the initial shipment, one for 
the system input/output drivers and one for the basic 
control system. The system input/output (SIO) drivers 
primarily provide input/output capability for the assembler, 
symbolic editor, desired in user programs. The basic control 
system, on the other hand, is primarily intended to provide 
a complete software input/output system for user programs 
(paragraph 2-144). These two tapes are unique to each 
system, and do not have HP accessory numbers and are not 
listed in the software catalog. Subsequent reconfiguring of 
system input/output and the basic control system, if 
desired, is easily accomplished by the user, with the aid of 
supplied software (system input/output dump, and prepare 
control system). 

2-142. Each software tape is separately identifiable by 
description and HP accessory number, labeled on both the 
tape container and the tape itself. The letter at the end of 
the number identifies a particular version of the tape (e.g., 
B supersedes A). A detailed list of the software packed with 
the system is given in the software installation record, 
supplied with the system documentation at the front of 
volume four. When ordering new or duplicate tapes (or 
documentation), the latest applicable version will automat­
ically be furnished. Software is ordered through Hewlett­
Packard Sales and Service Offices. A fee is charged for all 
software, except for the one set of standard software tapes 
(paper only) defined in the preceding paragraphs, included 
with the computer (mylar tapes are extra cost). The fol­
lowing paragraphs, to the end of this section, give a brief 
description of the standard software packages supplied with 
the computer. 

2-143. BASIC CONTROL SYSTEM. 

2-144. The HP basic control system provides a complete 
software facility for input/output operations, so that pro-



2114B 

Table 2-3. Standard HP Software 

*Basic Control System 
Input/Output Control 
Relocating Loader 
Debug Routines 
Prepare Control System 

**BCS Teleprinter Driver 
**BCS Tape Reader Driver 
**BCS Tape Punch Driver 

Symbolic Editor 
Assembler, Basic, Non-EAU 
FORTRAN Complier (SK only): Pass 1 

Pass 2 
Pass 3 
Pass 4 

FORTRAN and ALGOL Library (8K only) 

*System Input/Output 
System Input/Output Dump 

**SIO Teleprinter Driver 
**SIO Tape Reader Driver 
**SIO Tape Punch Driver 

Hardware Diagnostics 
Alter-Skip Instruction Test 
Memory Reference Instruction Test 
Shift-Rotate Instruction Test 
Memory Address Test (Low Core) 
Memory Address Test (High Core) 
Memory Checkerboard Test (Low Core) 
Memory Checkerboard Test (High Core) 

** Teleprinter Test 
**Tape Reader Test 
**Tape Punch Test 

*A configured tape is furnished with the initial ship­
ment both for the system input/output and for the 
basic control system, in addition to the individual 
tapes listed above. These two additional tapes, 
unique to each system, do not have HP accessory 
numbers; they are identified only by system serial 
number. 

**Driver tapes and test tapes are furnished for each 
type of device in a system. The nine tapes listed 
above are for a typical system. 

grams written by the user need not include input/output 
subroutines within the program. This permits input/output 
statements in source programs to be general in nature (i.e., 
not tied to specific devices), and allows easy modification 
when input/output requirements change. When running 
relocatable programs, the basic control system will nor­
mally be present in the last page of memory, and its 
subroutines are available by call from any point in memory. 
To call input/output operations, the user programs a five­
word request in assembly language. The request includes 

Section II 

the function to be performed (read or write), the unit 
reference, a reject address (in case the unit is not available), 
a buffer address (the first location in core in which the data 
is stored or will be stored), and a buffer length (the number 
of words or characters that are to be transmitted). The 
basic control system interprets the request, initiates the 
data transfer, and returns control to the program. Inter­
rupts which occur during or on termination of the data 
transfer are processed entirely by the basic control system; 
the program need not include interrupt handling sub­
routines. 

2-145. The basic control system is modular in design, 
consisting of several programs which can be combined to 
suit the user's particular hardware configuration. In addi­
tion to the individual tapes (table 2-3), Hewlett-Packard 
furnishes with each system a complete configured tape, 
loadable by the basic binary loader and ready for use. 

2-146. For loading and running relocatable programs, 
the routines required to be present in memory are: 

a. Input/Output Control: This program supervises the 
transmission of data between the computer memory and 
input/output devices. It does this by transferring control to 
selected subroutines (input/output drivers) on request by 
the program being run. 

b. Input/Output Drivers: A driver subroutine consists 
of specific instruction sequences to operate one external 
device, and to request interrupt of the main program when 
the device is ready for servicing. Driver subroutines are 
different for each type of device. The control program 
selects which driver is to be used with a particular device 
(initially set up by prepare control system). 

c. Relocating Loader: This program is required for 
loading into memory relocatable user programs produced 
by the assembler and the FORTRAN compiler. (A reloca­
table program is one which can be shifted upward in 
memory a specified number of locations relative to location 
zero. This provides efficient loading of memory by mini­
mizing or eliminating gaps.) Features of the relocating 
loader enable it to link a number of separately assembled 
relocatable programs into an integrated unit, assign indirect 
addressing and base page references, and select and load 
referenced library subroutines. 

2-147. Routines not required for loading or running 
object programs but which are considered as part of the 
basic control system are: 

a. Debugging Routines: This is a program consisting of 
several individual routines designed to help check out a 
user-generated program. Separate routines, which are indi­
vidually selectable by typing in request statements on the 
teleprinter keyboard, enable: printing of selected areas of 
memory (memory dump); executing and printing of 
selected sections of the program (program trace); modifica­
tion of selected areas of memory; execution of a program 
and termination of the program when a specified location 
or memory reference is used; and punching of a program in 

2-17 



Section II 

an absolute binary format acceptable to the basic binary 
loader. The debugging routines program is loaded by the 
relocating loader. 

b. Prepare Control System: This is an independent 
program used only to establish or change the composition 
of the basic control system. The desired basic control 
system components are read into the computer, and the 
prepare control system instructions load the new basic 
control system into the last page of memory. The new basic 
control system is then punched out for a permanent record, 
and space occupied by the prepare control system can be 
used for other purposes. This program establishes the equip­
ment tables which input/output control uses to relate soft­
ware input/output references to specific hardware 
peripherals. 

2-14S. SYMBOLIC EDITOR. 

2-149. The HP symbolic editor is a program which 
enables use of the computer to simplify the correction or 
updating or a user's assembly language or FORTRAN lan­
guage program (or any other symbolic program), thus 
avoiding the process of manually repunching the entire 
program off line. The symbolic editor produces an updated 
tape from the source tape and change instructions. Indi­
vidual characters and entire source statements can be 
inserted, deleted or replaced. The symbolic editor will also 
provide a listing of a symbolic file, sequentially numbering 
the statements. Diagnostic messages are produced for errors 
detected in the format of the edit control statements. 
System input/output drivers (table 2-3) are required in 
order to use the symbolic editor. 

2-150. ASSEMBLER. 

2-151. The HP assembler is a program designed to con­
vert a symbolic source program into either absolute or 
relocatable binary machine instructions, optionally 
selectable by the programmer. Basically, the assembler 
provides a means of using the computer itself to relieve the 
programmer from the tedious job of coding each instruc­
tion of his source program in binary machine language. By 
reading an input prepared in symbolic form by the pro­
grammer (using the three-letter mnemonics defined under 
paragraph 2-53, plus special assembler pseudo-instructions) 
the computer can produce (assemble) the full 16-bit binary 
representation of each instruction. If a relocatable output is 
to be prepared, the programmer need not be concerned 
about actual memory addresses, since the relocating loader 
(paragraph 2-146) will assign these. 

2-152. The assembler is contained on a single spool of 
punched paper tape which, when loaded into the computer, 
resides in memory throughout the assembly process. To use 
the assembler, the teleprinter option is required (or an 
equivalent system) to read the user source program into the 
computer, punched the assembled result on tape, and print 
out error messages. System input/output drivers (table 2-3) 
are also required in .order to use the assembler. Two or 
three passes of the source tape are required, depending on 
whether or not a printed listing of the assembled program is 
desired. 

2-lS 

2114B 

2-153. FORTRAN. 

2-154. HP FORTRAN is an extended version of ASA 
(American Standards Association) basic FORTRAN; source 
programs written according to ASA basic FORTRAN speci­
fications can be compiled and executed on the HP 2114B 
Computer. FORTRAN, being a compiler language, as 
opposed to assembler language, provides even greater user 
convenience since it is still further removed from binary 
machine language. Whereas the assembler requires a state­
ment for each machine instruction, item for item, FOR­
TRAN accepts statements in a form resembling algebraic 
formulas (hence the name FORmula TRANslation). Each 
FORTRAN statement may result in a large number of 
machine instructions. 

2-155. HP FORTRAN is a four-pass system for com­
puters having 4K memory; this reduces to two passes for 
SK computers. The compiler is contained on several indi­
vidual tapes, one for each of the passes. In addition, at least 
one system input/output driver is required (table 2-3). The 
output of the compile process is a relocatable machine 
language object program which can be loaded and executed 
under control of the basic control system. 

2-156. ALGOL. 

2-157. ALGOL (ALGOrithmic Language) is a compiler­
type language that accepts as input a source program 
written in a language similar to that defined by the ALGOL 
60 Revised Report, Communications of the ACM, January, 
196S. In one pass, it produces, as an output, a relocatable 
binary object program which can be loaded and executed 
under control of the HP basic control system. 

2-15S. HP ALGOL allows the computer user to use 
familiar arithmetic conventions when formulating a pro­
gram. It also includes the additional advantages of inter­
mixing of real and integer identifiers in assignment state­
ments, all variables treated as own variables, initialization of 
variables or arrays within type declaration, values assigned 
to variables with equate declaration, logical unit designation 
in input/output statements, and HP FORTRAN format 
specifications for input/output, or free field input data. HP 
ALGOL requires SK of core memory. 

2-159. BASIC. 

2-160. BASIC is an interpretative compiler language that 
accepts a simple mathematical language which has certain 
similarities to FORTRAN and ALGOL. Syntax is checked 
as statements are entered into the computer and error 
messages are turned immediately. Compilation takes place 
in the computer memory. (BASIC does not produce an 
object tape as an output.) When successfully completed, the 
program is executed. Due to its interactive nature and its 
simplicity, BASIC is widely used by engineers. 

2-161. HP BASIC is similar to that used in the HP 
time.sharing language and has the added features of a COM 
statement (to pass information blocks from one program to 
another), a CALL statement (to use assembly language 



2114B 

subroutines and special purpose input/output device 
drivers), and a WAIT statement (to temporarily delay pro­
gram execution). HP BASIC requires SK of memory. 

2-162. HARDWARE DIAGNOSTICS. 

2-163. To assist the user in hardware troubleshooting, an 
HP hardware diagnostic package is furnished with all HP 
2114B Computers. The programs in this package are sep­
arate from the installation and maintenance manual. Opera­
ting procedures for the diagnostic programs are contained 
in the Manual of Diagnostics. The results of the diagnostic 
tests are used together with maintenance information given 
in the HP 2114B Installation and Maintenance Manual 
(Volume Two). Procedures are given in the Manual of 
Diagnostics to determine that the hardware system is 
capable of accepting and using the HP hardware diagnostics 
programs. The supplied software may then be loaded and 
run according to set procedures. Programs supplied (refer to 
table 2-3) are: 

a. Instruction Tests: These tests check out all instruc­
tion codes in groups, halting the computer when an 
instruction fails to perform its function. The first test 
program checks out a few basic instructions (alter-skip), so 
that those instructions can be used the next test program 
(memory reference), which in turn enables checking out the 
final group (shift-rotate). 

Section II 

b. Memory Address Tests: A low-core test and a high­
core test are supplied as separate test programs, so that the 
program may be loaded at the end of memory to check all 
core locations below the test block, or it may be loaded at 
the bottom of memory to check all higher locations. Each 
test checks the addressing logic of a selectable section of 
memory, and halts when an error is detected. The display 
on the computer front panel is used to identify the error. 

c. Memory Checkerboard Tests: These tests, which 
also consist of a low-core test and a high-core test, verify 
that data is correctly stored in memory, and is correctly 
transferred to and from the T-register. Like the memory 
address tests, the computer halts when an error is detected, 
and identifies the error on the front-panel display. 

d. Input/Output Tests: A separate test program is 
supplied for each type of input/output device in a user's 
hardware system. For example, the HP 2752A Teleprinter 
Test Program checks operation of the print, punch, and 
read functions with the computer. After it is determined 
that the print function is operating correctly, the program 
prints requests for data to be typed in so that the punch 
and read functions can be checked. Errors are indicated by 
a printout. (Test programs for other devices require that a 
message printing facility, such as provided by the HP 
2752A Teleprinter, be present in the hardware system.) 

2-19/2-20 



2114B Section III 

SECTION Ill 

FUNDAMENTALS OF COMPUTER OPERAT10N 

3-1. INTRODUCTION. 

3-2. This section describes how the HP 2114B Com­
puter manipulates information internally to execute the 
basic instructions defined in the preceding specifications 
section. In the interest of users without previous computer 
experience, the material in this and the following section is 
organized to begin at an elementary level, and to progress 
on the basis of previously given information, in the form of 
a training course. 

3-3. The fundamental operations described in this sec­
tion (and the following section) are in practice nearly 
always accomplished with the aid of software and input/ 
output devices. However, for simplicity it will be assumed 
that the computer is an independent instrumen.t and will be 
operated only by front panel controls. Additionally, it will 
be assumed for descriptive purposes that the computer runs 
slowly enough to observe the operations step by step. When 
running, the HP 2114B Computer usually reads and exe­
cutes each instruction in 2.0 or 4.0 microseconds. Thus, 
only the beginning and ending conditions are normally 
readable on the front panel display. (Note: It is possible to 
single-step the computer through each instruction, one 
phase at a time, by using the SINGLE CYCLE pushbutton. 
This technique will be used in section IV.) 

3-4. The computer performs its operations solely by 
instructions inserted into its memory by the user. The front 
panel controls therefore do not operate the computer, but 
rather are used for entering instructions and data into 
memory, and for initiating operation at the starting instruc­
tion. Very basically, the overall operation is: 

a. The user enters instructions and data (all manually 
set in binary coded numbers on the 16 switches of the 
SWITCH .REGISTER) into computer memory, using the 
LOAD ADDRESS and LOAD MEMORY pushbuttons. 

b. When the program of instructions is in memory and 
is ready to be run, the user enters the address of the starting 
instruction, which points the computer to the location in 
memory where this first instruction has been stored. The 
SWITCH REGISTER and LOAD ADDRESS switches are 
used for this purpose. 

c. The user presses the RUN pushbutton. 

d. The computer reads and executes the instruction 
contained in the memory cell designated by the starting 
address. 

e. The computer automatically continues to the next 
and all succeeding instructions, operating on the internally 
stored data, until reaching a halt instruction. 

f. The user, having prepared the instructions and 
knowing where the computed answer is stored, reads the 
result. (The LOAD ADDRESS and DISPLAY MEMORY 
pushbuttons may be used to display the answer on the 
front panel.) 

3-5. FRONT PANEL PRESENTATION. 

3-6. To present the material of this section in the most 
practical form from the user's point of view, the descrip­
tions will relate to the front-panel view of the computer. 
Figure 3-1 is a simplified block diagram of the computer, 
showing the relationship of the display registers. The block 
diagram, which corresponds to the physical layout of the 
panel (shaded blocks), will be used for descriptions of 
register operations later in this section. 

TIMING 

,__G_e_NE""'R""A_To_R__. I 
READ/WRITE 

2038-5 

MEMORY ADDRESS 

Figqre 3-1. HP 2114B Computer Simplified 
Block Diagram 

3-1 



Section III 

3-7. As observed from figure 1-1, information is dis­
played in rows of 16 lights, numbered 0 through 15, and 
the switch register consists of 16 switches similarly num­
bered. Each light or switch represents a bit (condensed 
from "binary digit") in the binary numbering system, 
where a light or switch off is a "0" and a light or switch on 
is a "1". In the binary system, there are only two digits, 0 
and 1, which are easily stored and manipulated by a com­
puter using bistable devices. Thus input information which 
is applied to the computer in binary form (such as by the 
switch register) is said to be in machine language since the 
computer can handle these numbers directly without con­
versions of any kind. For the user, however, binary num­
bers (such as 1011010011101000) are difficult to read and 
use, so the bits are grouped in threes for convenient nota­
tion in the octal numbering system. 

3-8. Thus it is seen at this point that before a discus­
sion of computer operation can by presented, some famili­
arity with both binary and octal numbering systems, as well 
as with conversions to and from the decimal system, is 
necessary. The remainder of this introduction (through 
paragraph 3-39) provides this basic information. 

3-9. OCTAL NOTATION. There are five three-bit 
groups in each row of panel lights and the switch register, 
with one bit remaining at the left end. Since this last bit, bit 
15, is normally used for special purposes (e.g., to indicate 
direct/indirect addressing or +/- numbers), the following 
introductory paragraphs, through paragraph 3-22, will dis­
regard this bit and will deal only with the 15 bits numbered 
0 through 14. The concept of using bit 15 for signed 
numbers is introduced later in paragraph 3-35. 

3-10. In converting each group of three bits to an octal 
digit, the binary significance of each bit is converted to its 
absolute value, which is then considered to be absent or 
present, depending on whether the bit is a "0" (light off) or 
a "1" (light on), respectively. This is shown in figure 3-2. 

REGISTER LIGHTS 

Binary Significance 

Value if On ("1 ") 

Value if Off ("0") 

2000-15 

1. 
l 
22 

4 

0 

• 
l 
21 

2 

0 

Figure 3-2. Composition of Octal Digits 

3-11. By various combinations of on and off states, eight 
digits are possible, 0 through 7. The digits 8 and 9 never 
appear in the octal numbering system. Figure 3-3 lists all 
eight binary/octal equivalents, along with some examples of 
numbers as might be read from a computer display register. 

3-2 

Binary Octal Interpretation 

000 0 

001 1 

010 2 

011 2+1 

100 4 

101 4 + 1 

110 4 +2 

111 4 +2 + 1 

EXAMPLES 

5 2 6 0 

11 0 1 Io 1 0 I 1 1 o Io 0 olo 
7 4 3 5 

11 1 1 I 1 0 o Io 1 1[10110 

7 7 7 7 

I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 11 1 

2000-16 

1 

0 1 

0 

0 0 

7 

1 1 

2114B 

Octal 

0 

1 

2 

3 

4 

5 

6 

7 

Figure 3-3. Binary/Octal Conversions 

3-12. As can be seen from the last example in figure 3-3, 
the largest possible number which can be displayed by a 
register is 77777 (all lights on). Since there are no S's or 9's 
in the octal system, this number must correspond to some 
lower value in the decimal system (specifically 32767; 
method of conversion given later under paragraph 3-18). To 
avoid confusion when numbers are written in more than 
one numbering system, a subscripted digit is attached to the 
number to identify the system used. Thus: 

1111111111111112 = 777778 = 3276710· 

3-13. The HP 2114B Computer manuals will use these 
subscripts or the word binary, octal, or decimal whenever 
such confusion may occur. 

3-14. OCTAL COUNTING. When counting in the octal 
system, the "carry" to the next more significant column 
occurs as rollover from 7 8 to 08 occurs. That is, 108 
follows 7 8. The counting sequence in octal is: 

00000 00006 
00001 00007 
00002 00010 
00003 00011 
00004 00012 
00005 etc. 



2114B 

3-15. NUMBER CONVERSIONS. 

3-16. COMPARISON OF SYSTEMS. Integral and frac­
tional parts of a number are separated by a decimal point in 
the decimal system, an octal point in the octal system, and 
a binary point in the binary system. The significance of 
digit positions in a number in any system increases by 
positive powers of the system base when going left from the 
point, and decreases by negative powers of the system base 
when going right from the point. This is shown in figure 
3-4. 

xxxx • xxx 

~~ ~~ 
Dec: Xl0 3 x102 x10 1 x10° x10·1 x10· 2 x10·3 

Oct: X8 3 X82 X8 1 X8° xs·1 xs-2 xs-3 

Bin: X2 3 x2 2 X2' x2° x2·1 x2·2 x2· 3 

2000-17 

Figure 3-4. Significance of Digits in 
Three Systems 

3-17. The information in figure 3-4 provides the basis 
for converting octal or binary to the decimal system. The 
procedure is given in paragraph 3-18. The reverse con­
version from decimal to octal or binary is given in 
paragraph 3-20. 

3-18. CONVERTING TO DECIMAL. Converting octal 
or binary numbers to the decimal system consists only of 
performing the individual multiplications indicated in figure 
3-4 (digit times its significance) for each of the digits in the 
number, and then summing the individual results. Thus the 
octal number 7654.321 has the decimal equivalent of: 

7 x g3 

6 x 8 2 

5 x 8 1 

4 x go 
3 x g-1 = 
2 x 8" 2 = 
1 x g- 3 = 

7 x 512 
6 x 64 
5xg 
4xl 
3xt\-
2 xsJr-
1 x __J_ 

512 

35g4, 
3g4_ 

40. 
4. 

.375 

.03125 

.001953125 

4012.4og203125 

3-19. Using this method, the decimal equivalent of the 
highest whole positive number which can be contained in 
the computer registers is derived as shown below. (Note: 
special constructions to represent larger, fractional, and 
negative numbers will be discussed later.) 

Section III 

1111111111111112 1 x 214 = 153g4 
1 x 213 g192 
1 x 212 4096 
1 x 211 204g 
1 x 210 1024 
1 x 29 512 
1 x 2 8 256 
1 x 2 7 12g 
1 x 2 6 64 
1 x 2 5 32 
1 x 2 4 16 
1 x 2 3 g 
1 x 2 2 4 
1 x 21 2 
1 x 2° 1 

3276710 

7 x g 4 2g572 
7 x g 3 35g4 
7 x g 2 44g 
7 x gl 56 
7 x go 7 

---
3276710 

3-20. CONVERTING FROM DECIMAL. Integral and 
fractional parts of a decimal number require separate opera­
tions when converting to the binary or octal system. 
Because of this added complexity, the ease of octal/binary 
conversion, and the large number of operations required to 
construct a 15-bit binary number, it is recommended to 
limit decimal conversions to octal only, and then to con­
struct the binary equivalent if necessary from the octal 
number. No example of decimal-to-binary conversion is 
given here, although the technique is identical to the 
decimal-to-octal conversion shown. 

3-21. Basically, the procedure for the integral part of the 
number is first to divide the new base (8, if converting to 
octal) into this part of the number, stopping at the decimal 
point. The resulting number is a whole number and a 
fractional remainder (e.g., 32767 7 8 = 4095 plus a 
remainder of 7 eights). The remainder (7) becomes the least 
significant integer of the new number being constructed 
(i.e., immediately to the left of the octal point). The whole 
portion (4095) is again divided by the base (8), and the 
process is continued until the whole portion is reduced to 
zero. 

32767-;- g = 
4095 -;- g = 
511 + g = 
63 + g 
7 + g 

7 
0 

4095 + 
511 + 

63 + 
+ 

+ 

7 

i II l 7 
~ 
7 7 7 7 7 • 8 

3-3 



Section III 

3-22. To convert the fractional part of a decimal number 
to octal, multiply by the base and use the whole portion of 
the resulting number as the first digit to the right of the 
octal point. Continue by multiplying the fractional part of 
the same resulting number by the base again, to as many 
places of accuracy as desired. Thus 0.135 decimal is 
approximately: 

0.135 0.08 0.64 0.12 0.96 

x8 x8 x8 x8 x8 

1.080 0.64 5.12 0.96 7.68 

I ~lrr= I 
0.105078 

3-23. ARITHMETIC OPERATIONS. 

3-24. Since the computer performs arithmetic opera­
tions in binary and the user reads the numbers in octal, 
familiarity with basic binary and octal arithmetic is essen­
tial. The important rule to remember when performing 
arithmetic in any numbering system is that all digits, 
whether written or carried mentally, must be smaller than 
the system's base. Thus 2 or 3 cannot appear in the binary 
system and 8 or 9 cannot appear in the octal system. 

3-25. ADDITION. In the decimal system, a carry is 
generated each time the addition in a column exceeds 9. 
Similarly, in the octal or binary systems, a carry is gen­
erated each time the addition in a column exceeds 7 or 1 
respectively. 

Decimal Octal Binary 

Carries: 111 111 111 

999 777 111 
+001 +001 +001 

ToOO 1000 1000 

Decimal Octal Binary 

11 

Carries: 222 222 1111 

789 567 111 
789 567 111 
789 567 111 

2367 2145 TcITOf 

3-26. To explain the latter octal addition, note that 
when adding the rightmost column (3 sevens), the total if 
adding decimal would be 21, which means that the base (8) 
has been exceeded twice (i.e., 16 or higher), with a remain­
der of 5. The remainder of 5 is written as the column sum 
Gust as in the decimal system) and the number of times the 
base has been reached (2) is carried to the next column 
(again, this is exactly what is done for a decimal carry). In 
the case of the latter binary addition, the first column 
(rightmost) reaches the base once (one carry), while the 
second and third columns reach the base twice (two 
carries). 

3-4 

2114B 

3-27. SUBTRACTION. Borrows from a preceding 
column have the value of the system's base. Thus a borrow 
in the decimal system is 10, in octal is 8, and in binary is 2. 

Decimal Octal Binary 

Borrows: 101010 888 202 

9123 7123 1010 
-798 -567 -101 
8325 6334 101 

3-28. MULTIPLICATION. As in addition, a carry is gen­
erated each time a product reaches a multiple of the base. 
When the multiplier has more than one digit, remember to 
perform the final addition in the same system. Carries are 
not denoted for the second set of examples below: for 
practice, the reader should work out these problems inde­
pendently to see how the answers are obtained. 

Decimal 

394 
x5 

550 
Carries: ...!!.L 

1970 

Decimal 

563 
x75 

2815 
3941 
42225 

Octal 

274 
x5 

234 

142 

1654 

Octal 

563 
x75 

3477 
5045 
54147 

Binary 

111 
xll 
111 

111 
lOOf 
11 

10101 

Binary 

1111 
xlll 

llIT 
1111 

1111 
1101001 

3-29. DIVISION. Division in the octal or binary system 
is the same as decimal division except that the intermediate 
multiplications and subtractions must be performed in the 
appropriate system. The borrows for subtraction are not 
shown in the examples below; again, the reader should 
work out every step of these problems to obtain the given 
answers. 

Decimal Octal Binary 

563 563 1111 

75 ) 42225 75 ) 54147 111 1101001 

375 461 111 -
472 604 1100 

450 556 111 

225 267 1010 

225 267 111 

111 

111 



2114B 

3-30. COMPUTER ARITHMETIC. In the basic instruc­
tions of the computer, there is an add instruction but no 
subtract, multiply, or divide. Therefore these three latter 
operations must be constructed from the add instruction or 
by some other method. Although it is possible to perform 
multiplication and division by successive addition or sub­
traction respectively, the more efficient method is by reg­
ister manipulations available through special computer 
programming. The following paragraphs deal with subtrac­
tion and the representation of negative numbers. 

3-31. To subtract, the operation is to convert the subtra­
hend (i.e., the negative number) to its true complement 
value, and then to add as if both numbers were positive. 
The result will be the true difference between the two 
numbers when the last carry digit is removed. Simple logic 
in the computer drops the excess carry, so that the user 
need not be aware of it. 

3-32. The true complement of a number in any system is 
obtained by subtracting the number from any power of the 
base large enough to allow the arithmetic to be performed. 
That is, five digits are required if four-digit numbers are 
involved, as shown below. Using the same subtraction 
examples given in paragraph 3-27, the complements for the 
negative numbers are: 

Decimal 

10000 

-798 

9202 

Octal 

10000 

-567 

7211 

10000 

-101 

1011 

3-33. Then, completing the operation by straight addi-
tion and dropping the excess carry, the answers are the 
same as obtained previously. 

Decimal Octal Binary 

9123 7123 1010 

+9202 +7211 +1011 

18325 16334 10101 

or or or 

8325 6334 101 

3-34. In computers such as the HP 2114B, it is simpler 
to use the one's complement (subtracting from l's instead 
of O's) since this is simply a matter of switching all l's to 
O's and O's to l's. This is precisely what the complement 
instructions do (CMA/B, CME, CCA/B, CCE). Adding one 
then converts the result to the true two's complement. 
One's complement in binary corresponds to nine's com­
plement in decimal and seven's complement in octal. Using 
the same examples: 

Section III 

Decimal Octal Binary 

9999 7777 1111 

-798 -567 -101 

9201 7210 1010 

Add: 1 1 1 -- --
9202 7211 1011 

3-35. Negative numbers are constructed and used in the 
computer in exactly this way. For example, if the negative 
number 070008 is wanted for some later arithmetic, this 
number is taken in positive form, one's complemented and 
incremented, and is then ready for use as a two's com­
plement negative number. Additionally, however, it is 
necessary to identify the number as negative, and this is 
done by a one-bit in the bit 15 position. In binary 
representation: 

Sign 
. i 

Positive: 0 000 111 000 000 000 
Complement: 1 111 000 111 111 111 
Increment: +1 

Negative: 1 111 001 000 000 000 

(equals 1710008 ) 

3-36. If it is now desired to perform a subtraction (for 
example 600008 - 070008 = 510008 ), the computer will 
add the positive number and the two's complement repre­
sentation of the negative number as shown below. (For 
comparison, a subtraction producing a negative answer is 
also shown.) Note that bit 15 is treated as part of the 
negative number in all arithmetic operations and, unless 
overflow occurs, it will always come up as a "O" for 
computed answers which are positive, or as a "1" for 
negative answers. Since there are only 16 bit places avail­
able to represent the total in any register, the final carry 
(17th bit, carried to the extend register) is disregarded, and 
the displayed result is the true difference. 

POSITIVE ANSWER 

Binary 

0 110 000 000 

1 111 001 000 

(1) 0 101 001 000 

NEGATIVE ANSWER 

1 010 000 000 

1 000 111 000 

1 010 111 000 

000 000 

000 000 

000 000 

000 000 

000 000 

000 000 

Octal 

(+60000) 

{-07000) 

(+51000) 

(-60000) 

(+07000) 

(-51000) 

3.5 



Section III 

3-37. Since the computer instruction list includes basic 
instructions to perform the positive-to-negative conversion 
(one's complement and increment), it is usually not nec­
essary for the user to figure the complements before 
entering them into the computer. It should also be noted 
that the reverse conversion from negative to positive is done 
in exactly the same way (one's complement, then incre­
ment). Thus if the negative number 070008 is present in 
computer memory (stored as 1710008 ), conversion back to 
positive would be: 

Negative: 
Complement: 
Increment: 

Positive: 

1 111 001 000 000 000 
0 000 110 111 111 111 

+1 

0 000 111 000 000 000 

(equals 0070008) 

3-38. It should be apparent that as the negative number 
grows larger, its representation in two's complement form 
grows smaller. The largest negative number which can be 
represented in a display register is therefore a one with 15 
zeros. This would be equivalent to a positive number of: 

Negative: 
Complement: 
Increment: 

Positive: 

1 000 000 000 000 000 
0 111 111 111 111 111 

+1 

1 000 000 000 000 000 

or 1000008 

or 3276810 

3-39. This number is one greater than the largest pos­
sible positive number (32767 10 , or 077777 8 ), as previously 
noted in paragraph 3-19), since, as shown by the preceding 
paragraph, 10000000000000002 is legitimately interpreted 
as -1000008 • 

3-40. COMPUTER STRUCTURE. 

3-41. Figure 3-1, the simplified block diagram of the HP 
2114B Computer, is the basis for the partial versions used 
to illustrate descriptions in this section. This figure will be 
reconstructed step by step as the explanations progress. The 
first step is figure 3-5, which outlines the blocks and signal 
routes mentioned in 'the following discussion of memory, 
paragraphs 3-42 through 3-49. The block diagrams make 
use of several "and" gate symbols in addition to circuit 
blocks. These gates can produce an output only when .all 
inputs are present (true). For example (referring to figure 
3-1), data on the T-bus can enter the T-register only if a 
store signal is also present at the gate leading to the T­
register input. Since the store signal is selective 
(although this is not indicated on the diagram), only 
this one gate is enabled, while the remaining four are 
disabled. Thus the data enters only the selected 
register. 

3-6 

2114B 

MEMORY ADDRESS 

TIMING 
DECODER 

GENERATOR READ/ WRITE 

y x 

MEMORY 

T-REGISTER 

M-REGISTER 

2000-18 
Figure 3-5. Memory Block Diagram 

3-42. THE MEMORY MODULE. 

3-43. A computer's memory is its information storage 
area. Information is a broad term intended to cover any­
thing which can be represented as a binary number; this 
includes instruction codes, memory addresses, and alpha­
betic codes, as well as pure numeric data. The primary 
storage of the HP 2114B Computer is a core memory, and 
is internal in the computer. Auxiliary storage for the com­
puter is available in the form of disc storage and magnetic 
tape; however, these units are accessed through the compu­
ter input/output system (paragraph 3-69) and are not 
treated as an extension of memory in this discussion. Figure 
3-6 shows the physical structure of the memory module, 
and the following paragraphs (through 3-49) describe each 
of the four components identified in the figure, beginning 
with the smallest individual component, the ferrite core. 

3-44. CORE. As explained in the introduction to this 
section, the computer handles all information in binary 
form; i.e., as a number representable by only two digits, 
zero and one. The ferrite cote, which is a small ring of 
magnetic material, has the ability to store this binary infor­
mation in that clockwise and counterclockwise magneti­
zation can be assigned digital values of one and zero. By 
threading a current-carrying wire through the core, the 
direction of core magnetization can be reversed simply by 
changing direction of the current. Since the mass of the 
core is very small (diameter of .03 inch), little magnetizing 
force is required to switch the binary state, thus permitting 
fast switching speeds (about 400 nanoseconds in the HP 
2114B Computer). The magnetic state remains indefinitely 



2114B 

PARITY BIT FRAME 

SK~:-=-=~-=:~-==-=====-:.-,• ~------------:i1: 

2000-47 

_egg~ __ Q_ _e_gqL9_ 
_ p~qe __ !_ 1- -~a_g_e __ 1 _ 
_ E.Qg~ __ 2 _ _, _i:C!le _ _? _ 
Page 3 P~e 3 

_P_a_g! __ o__ .... J.!l~l!__Q_ 
_P_a_g!_j_ 1-_P_a_g! _! _, 
_P_Cl_9~ __ 2 _ Page 2 1--------:-1 
Page 3 Page 3 

"' -/-:s: 
--::;;' BIT PLANE 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I ii 

JJ 
IJ~ 4K "!f MEMORY 

MODULE 

Figure 3-6. Core Memory Module 

after the current is removed, so that switching can be 
accomplished by bidirectional current pulses. This is shown 
in figure 3-7. 

CORE CORE 

A. STORING A "ONE" B. STORING A "ZERO" 

2038-6 

Figure 3-7. Binary Storage in a Magnetic Core 

3-45. Since it is necessary to be able to select desired 
units of information in the module, four wires are required 
to be threaded through each core, as in figure 3-8. In 
practice, the wires do not loop through the core, as shown 
for clarity in the figure, but simply pass through the center 
of a series of cores. Figure 3-8 shows how one bit of 
information is addressed and transferred to and from the 
T-register. Action is as follows: 

a. Assume that the coml'Uter is running, and that the 
program has set the M-register to a memory location num­
ber (address), de&iring access to that location. 

b. The address from the M-register, consisting of 12 
binary bits, is applied to a binary-to-octal decoder, which 
reduces the 12 binary address lines to four octal lines which 
thread, in pairs, through the selected core. For purposes of 
illustration, the diode decoding matrix is shown as four 
switches. Note that each of these switches can select one of 
eight ends of X and Y wires, thus making possible 
8x8x8x8 = 4096 combinations to address 4096 core 

M-REGISTER 

BINARY-TO-OCTAL 
DECODER 

2000-21 

Section III 

II 10 9 8 7 6 S 4 3 2 I 0 

2 2 

Figure 3-8. Core Addressing, Reading, and Writing 

locations. The second 4096-word module is selected by the 
13th bit (i.e., bit 12). 

c. At a specific time in the computer timing sequence 
(start of each memory cycle), all 16 bits of the T-register 
are reset to zero. 

d. A read pulse is then applied to the decoder. Many 
cores will receive either Y-current or X-current pulses, 
neither of which alone is sufficient to switch the state of 
the core, but only one core out of 4096 on a plane 
(paragraph 3-48) receives both Y-current and X-current 
pulses. The read current is always in the direction which 
would magnetize the core in the "0" direction. (If more 
than one module is present, module selection is accom­
plished simply by routing the read pulse to the appropriate 
module, as determined by bit 12 of the M-register.) 

e. If the core was previously magnetized in the "l" 
direction, the read current, in switching the core, causes a 
flux change which induces a current into the sense output 
line. This output is amplified and used to set the corres­
ponding bit flip-flop of the T-register (assumed as bit O 
in figure 3-8). If the core was in the "O" state, there is no 
flux change and the T-register bit remains "O" (as reset in 
step "c"). 

f. Since steps "d" and "e" destroyed the stored infor­
mation, it is necessary to write the information back. This 
information, which is now in the T-register, is connected 
back to the core via the inhibit line. Then the X and Y lines 

3-7 



Section III 

are pulsed with a write current pulse, which is of opposite 
polarity to the read pulse (i.e. , tending to magnetize in the 
"1" direction). 

g. If the inhibit current is not turned on, the core 
switches back to the "1" state. If the inhibit current is 
turned on, it cancels part of the write magnetizing force , so 
that the core cannot switch, and the core remains in the 
"O" state. 

3-46. The sequence of events in the preceding paragraph 
briefly describes the computer memory cycle. There are 
two exceptions which modify the memory cycle slightly: 
(1) during the execute phase of the store instructions (STA, 
STB, JSB), the output of the sense amplifier is inhibited, 
and instead the data to be stored is transferred into the 
T-register from the A- or B-register during the read time 
period; (2) during the execute phase of the ISZ instruction 
(increment, skip if zero), the T-register is incremented 
between the read and write time periods. 

3-47. MEMORY LOCATION. The word length of the 
HP 2114B Computer is 16 bits, only one of which is shown 
in figure 3-S. To store one 16-bit word, 16 cores are 
required, as indicated in figure 3-6. These 16 cores comprise 
a memory location, sometimes also referred to as a memory 
cell. When information is transferred into or out of a 
memory location, the information in all 16 bits must be 
transferred simultaneously. Therefore the X and Y selection 
lines will be strung through the 16 cores, causing reading 
and writing of all 16 cores simultaneously. Figure 3-9 
illustrates this, showing only three cores for simplicity. 
Note that each of these cores is on a different bit plane. 

y x 

2038-7 

Figure !3-9. Memory Cell Selection 

3-S 

2114B 

3-4S. BIT PLANE. Cores are strung on a grid of wires as 
shown in figure 3-10. There are 4096 cores on this grid, 
called a bit plane, and a 4K module consists of five frames 
(nine frames if SK) with each of the first four frames (first 
eight if SK) having four bit planes each (figure 3-6) and the 
fifth frame (ninth if SK) having only one (two if SK) bit 
plane. The last frame in both the 4K and SK module 
contain the bit plane (or planes) for the parity bit. Each bit 
position of the T-register is wired by the sense and inhibit 
lines through all 4096 cores on the corresponding bit plane. 
Since only one core on an individual bit plane is sensed 
(addressed) at a given instant of time, the sense line needs 
only to detect a flux change anywhere on the bit plane. 
Similarly, the inhibit signal is applied to the entire bit plane 
when writing, but actually affects only the selected core. 

Figure 3-10. Memory Bit Plane and Frame 
(Upper Left Corner) 

3-49. PAGE. Pages of memory are not physical divisions 
of the module. Wiring of the bit planes is symmetrical and 
does not account for page boundaries. The page boundaries 
are determined only by the bit format of memory reference 
instructions, and are shown as broken lines in figure 3-6 for 
visualizing the physical placement of memory pages. 

3-50. THE REGISTERS. 

3-51. Figure 3-11 shows the seven working registers of 
the computer. The five principal registers (T, P, M, A, B) 
are purposely shown as being independent of each other 
since, in fact, information is not transferred directly from 
register to register. Rather, information is transmitted via 
the bus system (described later under paragraph 3-59) 
under command of the instruction logic (paragraph 3-63). 
The following paragraphs, through 3-5S, explain why the 
registers are needed, not how they are operated. In essence, 
these registers are short-term information storage devices 
consisting of flip-flop circuits, with front-panel indicator 
lamps to indicate the status of each bit (M- and T-registers 
only). 



2114B 

Ht 

T-REGISTER 

P-REGISTER 

M-REGISTER 

OVERFLOW 

2000-24 
Figure 3-11. Register Block Diagram 

3-52. T-REGISTER. The T-register was briefly men­
tioned in the description of how memory operates (para­
graph 3-45). As can be assumed from that description, and 
from the front-panel engraving (MEMORY DATA), the 
T-register holds data that is read out of and written into 
memory. For the majority of operations when a computer 
is running, the principal concern is with the data read out 
of a memory cell; once a word of information is in the 
T-register, it is accessible for arithmetic operations and for 
transfers to other registers via the bus system. For the 
reverse (write) operation, the T-register is loaded by trans­
fers from other registers, and the information is stored in 
memory during the latter half of the memory cycle. 

3-53. P-REGISTER. The P-register is the computer pro­
gram counter. This means that this register goes through a 
step-by-step counting sequence and causes the computer to 
read successive memory locations, corresponding to the 
existing count. In the simplest case, the P-register would 
start at zero when the RUN pushbutton is pressed, causing 
memory location 00000 to be read into the T-register; the 
computer would act on the instruction code in the read-out 
data, then advance the P-register to one (memory location 
00001). This process of stepping through memory locations 
(at a rate of 2.0 or 4.0 microseconds per step for most 

Section III 

instructions) continues until one of the instructions read out 
is a halt, which terminates the program. Of necessity, this 
simple case is not typical. First, programs do not normally 
begin at locations lower than 00077 , since these locations 
are reserved for special purposes (paragraph 2-28). There­
fore the starting address of a program must be manually set 
into the P-register before pressing RUN. Second, the strict 
sequential stepping can be altered in the course of a 
program, either by a skip instruction (which causes the 
P-register to increment by two instead of one, thus skipping 
one memory location) or by a jump instruction (which 
transfers numbers from another register into the P-register, 
thus causing the program to continue at a different point in 
memory). 

3-54. M-REGISTER. As implied by figure 3-1, the M­
register (MEMORY ADDRESS) is the means of addressing 
specific memory locations. The addressing of memory was 
previously discussed in paragraph 3-45. The setting of the 
M-register can occqr from any of the other registers, 
depending on the effects of instructions. In the preceding 
paragraph, it could be assumed that the P-register directly 
addresses memory; in actual fact, however, the computer 
must transfer the desired address from the P-register to the 
M-register, which in turn addresses the desired memory 
location. Thus it is seen that these two registers will 
frequently contain the same number. The reason why both 
registers are needed is that it is necessary for one register 
(the P-register) to keep track of the location of the current 
instruction in case the instruction is a multiple phase type. 
In this case, the M-register may have to be changed several 
times in the course of executing an instruction. A common 
example would be when the instruction is to add the 
contents of location 1008 to the A-register (ADA 100). The 
P- and M-registers would be identical while reading this 
instruction out of memory (say the instruction is in loca­
tion 5008 ; both registers indicate this value). Then the 
M-register would have to change to 100 to get the contents 
of this location for the addition. After the addition has 
been executed, the contents of the P-register are incre­
mented by one (501 8 ). The P and M registers are then both 
set to this new value, and the computer is then ready to 
read the next instruction. 

3-55. A-REGISTER. The A-register is one of the compu­
ter's two accumulators. An accumulator in a computer 
accumulates the results of arithmetic operations. A simple 
example was given in the preceding paragraph, where one 
number from memory was added to the existing contents 
of the A-register. Assuming that the A-register previously 
held the number 10008 , and the number in location 100 
was 228 , the number left in the A-register after execution 
of the instruction would be 10228 . Other types of opera­
tions which may be done with the A-register are: boolean 
logic operations ("and", "exclusive or", "inclusive or"), 
comparison for equality with a memory word, shifting or 
rotating of bits left or right, testing the status of individual 
bits, complementing of bits, and accepting or holding data 
for transfer to and from external devices. All of these 
operations are accomplished by the instruction logic 
(paragraph 3-63). 

3-9 



Section III 

3-56. B-REGISTER. The B-register is the second of the 
two accumulators. It has the same capabilities as the A­
register, except that the three boolean logic instructions 
(AND, XOR, IOR) can apply only to the A-register. The 
main reason for having two accumulators is to provide 
faster, more flexible arithmetic than can be accomplished 
with one accumulator. This advantage will be seen later in 
programming of the computer. 

3-57. EXTEND. The extend register is shown connected 
to bit 15 (left end bit) of both A and B registers. This is to 
indicate that this one-bit register becomes set whenever 
there is a carry out of bit 15 of either accumulator; i.e., 
whenever the quantity accumulated exceeds 16 ones. This 
fact is frequently of significance. For example, ifthe quan­
tity in an accumulator is 16 ones and an ADD instruction 
adds one, the result in the accumulator will be 16 zeros. 
This answer is obviously incorrect; it is correct if the extend 
bit, which is now in the set state ("l") is temporarily 
assumed to be "bit 16". The program can be written to 
make this assumption, and it can proceed without error on 
the basis of the resulting information. To be certain that 
the extend information is valid, the extend register is nor­
mally cleared by an instruction (CLE) before the addition is 
done. Another valuable feature of the extend register, is its 
ability to link the two accumulators (effectively providing a 
single 32-bit accumulator). 

3-58. OVERFLOW. The overflow register is similar in 
purpose to the extend register. The difference is that, 
whereas the extend register indicates that the largest 16-bit 
quantity has been exceeded, the overflow register indicates 
that the largest signed quantity has been exceeded. (A 
program may work with both signed and unsigned num­
bers.) Since bit 15 is the sign bit, bit 14 (as shown in figure 
3-11) is the source of the significant carry. Having two 
possible signs ( + and - ) means that detection of overflow 
requires two different sets of conditions. For addition of 
two positive numbers, overflow occurs if there is a carry 
from bit 14 to bit 15 in one of the accumulators. For 
addition of two negative numbers (which are represented in 
two's complement form), overflow occurs if there is not a 
carry from bit 14 to bit 15. Obviously overflow cannot 
occur when adding numbers of opposing signs, since the 
resulting quantity cannot be greater than the larger of the 
two numbers. As with the extend register, the overflow 
register should be cleared before an addition. 

3-59. THE BUS SYSTEM. 

3-60. Figure 3-12 outlines the routes by which data 
travels internally from one register to another. Although 
the buses are represented by a single line in this figure, 
assume each line to be composed of 16 individual lines, one 
for each register bit. Included in the figure is an arithmetic 
logic block, which has not previously been discussed. It is 
shown here mainly to illustrate the linkage between buses. 

3-61. The HP 2114B Computer uses an R-S-T bus con­
figuration. This is a conventional notation designating a 
three-bus system which applies two input buses (R and S) 
to an arithmetic unit with output on the third bus (T). The 

3-10 

2114B 

use of two input buses permits arithmetic operations 
combining the contents of two registers. A common 
example would be the execution of the ADA 100 instruc­
tion previously used in paragraphs 3-54 and 3-55. In this 
example, the contents of location 100 is the number 228 • 

During execution of the instruction, this number (22) 
would be read into the T-register. The other number 
(10008 ) is in the A-register. Simultaneously (by a method 
described under paragraph 3-63) both the T-register and the 
A-register are read onto their respective buses (S and R). 
The two numbers are added in the arithmetic logic circuits, 
and the result (10228 ) is stored via the T-bus back into the 
A-register as the accumulated sum. 

3-62. Note that several register combinations are pos­
sible as inputs to the arithmetic logic. One point worth 

. noting is that since the A and B registers are addressable as 
memory locations, the contents of these registers can be 
transferred via the T and R buses into the T-register. From 
this point, the contents can be combined in the manner 
described above with either accumulator (including com­
bining the number with itself; e.g., add A to A). This is all 
accomplished in one instruction. 

3-63. THE INSTRUCTION LOGIC. 

3-64. Figure 3-13 shows the elements of the instruction 
logic in the HP 2114B Computer. As indicated in the figure, 
timing is essential to the operation of the instruction logic. 
The following descriptions do not detail all timing rela­
tionships, since these vary with instructions, but it should 
be understood that timing pulses are gated with each 
operation to make it occur in proper sequence. A general 
introduction to machine timing is given in paragraph 2-13 
of the specifications section. 

3-65. As shown in figure 3-13, the six most significant 
bits read out of memory during each memory cycle are 
applied to the 6-bit instruction register, which decodes the 
instruction. (Actually, the instruction register receives its 
information via the T-register; for simplicity figure 3-13 
shows a direct connection to memory.) Only during the 
fetch phase, however, are these bits recognized as an 
instruction code (as determined by a fetch phase signal 
from the timing generator). At this time, the decoded 
instruction enables three functional operations, which in 
turn will become active at specific times, depending on the 
instruction. These operations are described individually in 
the next three paragraphs. 

3-66. READ. The read signal, shown connected to the 
output gate of all five working registers, strobes the data of 
one or two registers onto their corresponding buses (R and 
S). This places the data at the inputs of the arithmetic logic 
circuits. 

3-67. FUNCTION. The function signal activates one of 
the six listed arithmetic functions. The selected function 
alters or combines the data on the R- and/or S-buses, and 
routes the resulting data out on the T-bus. 



2114B 

TIMING 
DECODER 

GENERATOR ~EAD/'/f.r~ TE~-~~~-~ 

y x 

"REGI~ 

R BUS 

S BUS 

2000-25 

Figure 3-12. Bus System Block Diagram 

3-68. STORE. The store signal, shown connected to the 
input gate of all five working registers, effectively opens the 
input of one or more of these registers to accept the data 
which appears on tke T-bus (preceding paragraph). In many 
cases, depending on the instruction, only part of the infor­
mation on the T-bus is stored into a register. 

3-69. THE INPUT/OUTPUT SYSTEM. 

3-70. Figure 3-14 shows the means by which data is 
transferred in and out of the computer. This is the input/ 
output system; all elements shown are contained within the 
mainframe. Interface arrangements are shown for only two 
external devices, one input and one output. Actually the 
arrangement has the capability to handle seven interfaces in 
the mainframe. The switch register is shown as part of the 
input/output system, and is considered to be an input/ 
output device. 

TJP,!ING 

GENERATOR 

_ _J 

T 6t;S 

ADD 
IOR 
EOR 
ANO 
COM PL. 
SHIFT 

2000-26 

Section III 

DECODER 
··~fJ/ WR! ff: 

I 
y x 

MEMORY 

t 
I-REG 

BITS 
10-1~ 

READ 

FUNCTION 

· T-REG:STER 

--1 P- REGISTER 

R BUS 

S 8JS 

Figure 3-13. Instruction Logic Block Diagram 

3-71. As indicated by figure 3-14, the input/output con­
trol logic is used to process all input/output operations. 
Input/output control operates in two ways: 

a. Processes input/output instructions. 

b. Processes service requests by peripheral devices. 

3-72. These two types of operations are separately dis-
cussed in the following paragraphs. 

3-73. PROCESSING INSTRUCTIONS. Input/output 
instructions decoded by the instruction register are routed 
to input/output control, which translates the instruction 
into appropriate driving signals. One such signal is an in 
signal, which strobes all interface positions for input (repre­
sented by two "and" gates in figure 3-14, one accepting 
data from a buffer register and one accepting data from the 

3-11 



Section III 

y 

TBUS 

SWITCH REGISTER 

R BUS 

2038-8 

Figure 3-14. Input/Output System Block Diagram 

switch register). Only one of these interface positions can 
be enabled, according to the select code (bits 0 through 5 
from the T-register), and the corresponding data is strobed 
by the in pulse onto the T-bus. From there it is transferred 
via the T-bus into the A- or B-register (as enabled by a store 
signal at the A or B input gate). 

3-7 4. Another driving signal is the out signal. This signal 
strobes all interface positions for output (one shown in 
figure 3-14). The select code from the T-register enables 

3-12 

2114B 

one interface position, and permits the out signal to strobe 
the data on the R-bus into the corresponding output buffer. 
(The data on the R-bus was read out of the A- or B-register 
by a read signal.) 

3-75. In addition to transferring data, as in the preceding 
two paragraphs, input/output control can (according to 
instruction) send out signals to test the state of control and 
flag bits (C and F) or to set or reset these bits. The select 
code determines which interface will receive the signal from 
input/output control. The control and flag bits are com­
mand signals for transferring data between the buffer and 
the peripheral device (peripheral not shown). 

3-76. PROCESSING SERVICE REQUESTS. If a specific 
instruction has at some previous time enabled the interrupt 
system (considered to be in the input/output control block 
in figure 3-14), a peripheral device may request new data 
from the computer (if output) or request to feed new data 
to the computer (if input). This request for service is done 
by setting the interface flag bit. The flag signal, via input/ 
output control, interrupts the computer's operation by 
forcing the M-register to be set (via the T-bus) to a memory 
address uniquely specified by the flag. At the same time, 
the fetch phase is set so that the computer must execute 
the instruction contained in the specified memory cell. 
Generally this instruction will be a jump to a service sub­
routine. This subroutine consists of instructions that will 
prepare or accept the new data. On completion of service, it 
is the subroutine's responsibility to return the P- and M-reg­
isters to the values they contained before being interrupted. 

3-77. IMPLEMENTATION OF INSTRUCTIONS. 

3-78. The following paragraphs, through 3-154, describe 
how the 70 basic instructions are implemented internally in 
the computer. The three illustrations on the following pages 
expand on the machine timing diagram (figure 2-2) given in 
section II, specifications. Figure 3-1, the simplified block 
diagram, is also used as a reference throughout the fol­
lowing descriptions. Most signals named can be identified in 
this figure; e.g., "read A onto R bus" is the line from the 
read block to the A-register output gate (which outputs 
onto the R bus). The block diagram should be referred to 
frequently as the discussion progresses, in order to 
visualize the bit manipulations. The right-pointing 
arrows in the figures should be read as into or onto 
(e.g., into T-register, or onto R-bus). New mnemonics 
are introduced in these descriptions which will be 
defined within the text; however the alphabetical 
listing of mnemonics in the appendix of this volume may 
also be referred to if necessary. 

3-79. The cycle of time periods shown at the top of 
figures 3-15, 3-16, and 3-17 (TO through T7} repeats con­
tinuously every 2.0 microseconds while computer power is 
on. The read/write memory cycle, although shown only 
once at the top of each of these figures, actually occurs 
once in every phase (except interrupt). It is important to 
remember this throughout the following descriptions. 



2114B 

3-80. MEMORY REFERENCE. 

3-81. By comparing figures 3-15, 3-16, and 3-17, it is 
seen that memory reference instructions are the only type 
of instructions requiring more than one machine phase to 
execute; indirect and execute phases are associated only 
with memory reference instructions. In the case of all these 
instructions except JMP, the action during the fetch and 
indirect phases (phases 1 and 2) is similar, so these phases 
are shown only once, implying that they are common to all 
memory reference instructions. The exception, JMP, is 
unique in that it does not use an execute phase; execution 
can occur in either the fetch or the indirect phase. The 
action for JMP is shown separately in figure 3-15 and is 
discussed first below. 

Note 

The descriptions for JMP and AND in­
structions are more detailed than for suc­
ceeding instructions, which are similar in 
many respects. These two should there­
fore be studied in detail before advan­
cing to the others. It should also be noted 
that the descriptions assume knowledge 
of instruction definitions, as outlined in 
the specifications (paragraph 2-60.) 

3-82. JMP. The fetch phase for all instructions, regard­
less of type, begins in exactly the same way, since at this 
time the computer logic cannot know anything about the 
instruction which is about to be read out of memory. The 
only fact known is that the word from memory will be read 
as an instruction (not data); getting an instruction from 
memory is the first function of the fetch phase. During the 
first three time periods of the fetch phase, the following 
actions occur: 

a. During TO the T-register is cleared. 

b. The read portion of the memory cycle begins to 
read the contents of the currently addressed memory cell 
into the T-register. This continues until the middle of T2. 

c. During Tl the instruction register is cleared. 

d. Bits 10 through 15 (the instruction group and code 
identification) of the T-register are transferred into the 
six-bit instruction register at the middle of T2. 

3-83. During the latter portion of T2, the functions to 
be used in implementing the JMP instruction are set up. 
This includes read and store as well as any arithmetic 
functions (none in the case of JMP). Functions are gated 
with time periods to occur in the correct sequence. 

3-84. At this point in time (end of T2), the instruction 
information is in bits 10 through 15 of the T-register, and 
in the instruction register. The memory address information 
is in bits 0 through 9 of the T-register. The next event to 
occur is to clear the P-register at time T5 if the page zero 
condition exists (i.e., if bit 10 of the instruction register is a 

Section III 

zero). This is done by a store T-bus into P function. 
Since nothing has been read onto any of the buses, the 
T-bus is in the all-zero state, and 16 zeros are therefore 
stored into the P-register. (Actually, for resetting the 
program to page zero, it is only necessary to clear bits 
10 through 14 of the P-register; however it is con­
venient to clear the entire P-register at this time.) Note 
that the 6 most significant bits of the page zero address 
are zeros (refer to paragraph 2-26); e.g., the last address on 
page zero is: 

0 000 001 111 111 111 

3-85. During time periods T6 and T7, the page zero 
indicator (if present) clears bits 10 through 15 of the 
M-register (not the entire register). The method is the same 
as described above: store T-bus in M-register, bits 10 
through 15; the T-bus is still all zeros. Thus at this time both 
the P- and M-registers point to page zero, if so coded by bit 10 
being a zero (otherwise these registers are not changed, 
leaving bits 10 through 15 at the current page indication). 

3-86. Also during T6 and T7, the direct/indirect bit (bit 
15) of the T-register is looked at, to see if the memory 
address currently in the T-register is the effective address 
(the final address being jumped to), or if another jump 
should be made from that address to whatever address is 
contained in that location (indirect addressing). Since the 
concept of indirect addressing is important and not always 
simple to grasp initially, it is treated separately in following 
paragraphs. For direct addressing, the execution is com­
pleted by the following steps: 

a. The T-register contents are read onto the S-bus, and 
appear on the T-bus. 

b. Bits 0 through 9 of the T-bus are stored in the P­
and M-registers. This directs the computer to the jump 
location. (Remember from the preceding paragraphs that 
bits 10 through 15 of the P- and M-registers either have 
been reset to zero for page zero or have been left alone for 
current page.) 

c. The phase 1 (fetch) condition remains set so that 
the contents of the jump location will be read out and 
interpreted as an instruction during the next machine 
phase. 

3-87. Basically, the indirect addressing indicator (bit 15 
of T-register being a one) tells the computer logic that the 
contents of the location being jumped to is not the next 
instruction, but rather the address for another jump. This 
additional jump is a continuation of the same instruction, 
but requires an additional phase. During T6 and T7 of 
phase 1, the T-register contents are transferred to the M­
register (not both P and M as for the direct condition). 
During T7 the phase 2 condition (PH2) is set, and the 
indirect phase begins. 

3-88. During TO, the T-register is cleared. Since the jump 
is still in progress, the instruction register is not cleared 
during Tl. The contents of the location now addressed by 

3-13 



Section III 2114B 

TIME PERIODS 

TO Tl T2 T3 T4 T5 T6 1 T7 

. 25µ Sec . 50 . 75 1. 0 1. 25 1. 50 1. 75 2.0 

PHASE 
READ (Mem to TR) WRITE (TR to Mem) - -

TR(l0-15) If Z: 0 -M (10-15) 

FETCH 1 -IR If Z: If D: TR-P,M(0-9) 
Clear Clear (Set 0 -P and set PHl 

(JMP) TR IR Functions) If I: TR -M (0-9) 
and set PH2 

If D: TR -P,M 

INDIRECT 2 and set PHl 
Clear If I: TR-M 

(JMP) TR and set PH2 

TR (10-lS) TR -M (0-9) 
FETCH 1 Clear Clear -IR If Z: 0 -M (10-15) 

TR IR (Set If I: Set PH2 
Functions) If D: Set PH3 

INDIRECT 2 Clear TR -M 
TR If I: Set PH2 

If D: Set PH3 

EXECUTE 3 Read P -R Bus 

Clear 
Read A -R Bus Read "1" -s Bus 

AND Read TR - S Bus Store T Bus (ADF) -
TR Store T Bus (ANF) -A P,M 

Set PHl 

XOR 
Clear A (EOF) TR -A P+ 1 -P,M 

TR Set PHl 

IOR Clear A (IOF) TR -A 
P+l -P,M 

TR Set PHl 

Clear TR P+l -P,M 
JSB Inhibit P+l -TR M -P 

Mem. Data 
Set PHl 

Clear 
TR+l -TR Write P+l+ Carry -P, M 

ISZ If C16: Set Carry (Add 0. 5 
TR Inhibit Write µSec) Set PHl 

Clear 
If A: A (ADF) TR -A P+l -P,M 

ADA/B If B: B (ADF) TR -B 
TR 

If Cl6: Set E 
Set PHl 

CPA/B Clear If A: A (EOF) TR -T Bus P + 1 +Carry -P,M 
TR If B: B (EOF) TR -T Bus Set PHl 

If T Bus not zero, set Carry 

LDA/B Clear If A: TR -A P+l -P,M 
TR If B: TR - B Set PHl 

Clear TR If A: A -TR P+l -P,M 
STA/B Inhibit If B: B -TR Set PHl 

Mem. Data 

2000-48 

Figure 3-15. Implementing Memory Reference Instructions 

3-14 



2114B 

FETCH 1 

SHIFT-ROTATE 
INSTRUCTIONS 

ALTER-SKIP 
INSTRUCTIONS 

2000-49 

TO Tl T2 

. 25µ Sec • 50 . 75 

READ (Mem to TR) 

~//FA 

TIME PERIODS 

T3 I T4 l T5 

1. 0 1. 25 1. 50 

WRITE (TR to Mem) 

ji///,7/.1,; '?PP w~ w-m. w.;,; ~ 

Section III 

T6 l T7 

1. 75 2.0 

Clear 
TR 

Clear 
IR 

TR (10-15) 
- IR 

: : 
-Execute-

l l 
P +1 +Carry -P, M 
Set PHl 

All Shifts and Rotates 

Read A or B - R Bus 
Shift R Bus - T Bus 
Store T Bus - A or B 

CLA/B: 

No Read (R Bus all zeros) 
Store T Bus (EOF) - A/B 

CMA/B: 
Read A/B - R Bus 
Store T Bus (CMF) -A/B 

CCA/B: 
No Read (R Bus all zeros) 
Store T Bus {CMF) - A/B 

SEZ: Set Carry if 
E = 0 and TRO = 0, or 
E = 1 and TRO = 1 

CLE: 
Reset E Flip-flop 

CME: 
Complement E Flip-flop 

CCE: 
Set E Flip-flop 

Clear E and Skips 

If TR5 = 1 - CLE 
If TR3 = 1 (SLA/B): 

Read A or B - R Bus 
If RBO=O - Set Carry 

*SSA/B: 

Read A/B - R Bus 
Set Carry if 
RB15 = 0 and TRO = 0, or 
RB15 = 1 and TRO = 1 

*SLA/B: 
Read A/B - R Bus 
Set Carry if 

RBO = 0 and TRO = 0, or 
RBO = 1 and TRO = 1 

INA/B: 
Read A/B - R Bus 
Read "1" - S Bus 
Store T Bus (ADF) - A/B 
If Cl6: Set E 

All Shifts and Rotates 

Read A or B - R Bus 
Shift R Bus - T Bus 
Store T Bus - A or B 

SZA/B: 
Read A/B - R Bus 
(IOF) - T Bus 
Set Carry if 

T Bus all zeros and 
TRO = 0, or if 

T Bus all ones and 
TRO = 1 

*Combination of SSA/B, 
SLA/B, and RSS is a 
special case; see text. 

Figure 3-16. Implementing Register Reference Instructions 

3-15 



Section III 2114B 

TIME PERIODS 

TO Tl T2 T3 T4 T5 l T6 l T7 

. 25µ Sec . 50 • 75 1. 0 1. 25 1. 50 1. 75 2.0 

READ (Mem to TR) WRITE (TR to Mem) 
PHASE ~wff/~ ~~ wff/)W ~~ 

FETCH 1 

HLT Clear Clear TR(l0-15) P+l -P,M 
TR IR -IR Reset Run FF 

STF Clear Clear TR -IR 
Set Flag: P+l -P,M 

TR IR Select Code Set PHl 

CLF Clear Clear TR -IR Set Flag: Clear Flag: P+l -P,M 
TR IR Select Code Select Code Set PHl 

SFC Clear Clear TR -IR SFC - SKF - P +1 +Carry -P,M 
TR IR Interface Carry Set PHl 

Clear Clear SFS - SKF - P+ l+Carry -P,M SFS 
TR IR 

IR -IR Interface Carry 
Set PHl 

Read A/B - R Bus 

MIA/8 Clear Clear Buffer - S Bus P+l -P,M 
TR IR 

TR -IR Store T Bus (IOF) Set PHl 

TR9: CLd 
-A/B 

Clear Clear Buffer - S Bus P+l -P,M LIA/8 TR -IR Store T Bus (IOF) 
TR IR 

-A/B 
Set PHl 

TR9: CLF l 

OTA/8 Clear Clear TR -IR Read A/B - R Bus P+l -P,M 
TR IR R Bus - Buffer Set PHl 

TR9: CLF 

STC Clear Clear TR -IR Set Control P+l -P,M 
TR IR (Sel. Code) Set PHl 

CLC 
Clear Clear 

TR -IR Clr. Control P+l -P,M 
TR IR (Sel. Code) Set PHl 

Clear Clear 
r 

STF - P+l -P,M STO 
TR IR 

TR -IR 
Overflow Set PHl 

CLO Clear Clear TR -IR CLF - P+l -P,M 
TR IR Overflow Set PHl 

soc Clear Clear TR -IR SFC - SKF P+l+Carry -P,M 
TR IR OVF Carry Set PHl 

sos Clear Clear TR -IR SFS - SKF - P+l+Carry -P,M 
TR IR OVF Carry Set PHl 

INTERRUPT 4 
!Read P -

Reset M Read P -R Bus Read P -RBus (6-15) Store T Bus (CMF) Read "1" - S Bus RBus 
StoreTBus -P Store T Bus (ADF) Store TBus (0-5) -M -P (CMF) -P 
Set PHl 

2000-50 

Figure 3-17. Implementing Input/Output Instructions 

3-16 



2114B 

the M-register are read into the T-register during the read 
memory cycle. Then, during T6 and T7 (assuming bit 15 of 
the T-register is now 0 for direct), all 16 bits of the 
T-register are transferred into the P- and M-registers in the 
usual way: read T-register onto S-bus, and store T-bus (with 
no arithmetic) in P- and M-registers. These registers now 
contain the effective address, so phase 1 is set, and the next 
machine phase will be a fetch phase, to read out the next 
instruction from that address. Note that if bit 15 of the 
T-register were again a one (for indirect) a jump would be 
made to still another location by repeating the process of 
these two paragraphs (3-87 and 3-88). 

3-89. In summary, as illustrated in figure 3-18, an 
indirect jump occurs by the following register actions: 

a. The word containing the jump instruction is read 
out of memory by a fetch phase into the T-register. 

b. The address portion of the read-out word is trans­
ferred into the corresponding portion of the M-register. 

c. The zero/current page bit of the read-out word tells 
the computer logic to clear (zero) or leave (current) the 
remaining bits (10 through 15) of the M-register. 

d. Steps "b" and "c" now comprise the address of a 
location which is read out of memory into the T-register at 
the start of the indirect phase. 

e. All bits of this new read-out word are transferred 
into the P- and M-registers. The computer is now at the 
location specified by these registers. 

T-REG 

FETCH 

M-REG 

READ MEMORY 

T-REG 

INDIRECT 

P&M-REG 

2000-31 

Figure 3-18. Register Manipulations for 
Indirect Jump 

Section III 

3-90. AND. The fetch phase for the AND instruction is 
the same as for all other memory reference instructions 
listed below it in figure 3-15, with the exception that 
different functions will be set up at T2. This phase begins in 
the same way as for JMP. The T-register is cleared at time 
TO, the read memory cycle reads the instruction word into 
the T-register, the instruction register is cleared during Tl, 
and T-register bits 10 through 15 (instruction code) are 
transferred into the instruction register at T2. At this time 
all necessary functions for this instruction are set up, to be 
used at the approriate .times. During T6 and T7, T-register 
bits 0 through 9 (memory address portion of the instruc­
tion word) are transferred into the corresponding bits of 
the M-register (via the S- and T-buses). If the zero page 
indicator is present (bit 10 of the instruction register is a 
zero), a reset M(l0-15) command clears bits 10 through 15 
of the M-register. 

3-91. Unlike the JMP instruction, an execute or an indi­
rect phase must follow the fetch phase of an AND instruc­
tion. (Execute never occurs for JMP; indirect is optional.) If 
bit 15 of the T-register is zero (for direct), phase 3 
(execute) is set. Assume an indirect phase is required (bit 
15 = 1). (If the direct condition exists, the action of the 
next paragraph would be skipped.) 

3-92. The indirect phase begins by clearing the T­
register during Tl. Then a new word is read into the T­
register from the memory location specified by the M­
register (as set up in paragraph 3-90). This word is an 
address, not data, since indirect addressing really means: 
go to another location for the data. During T6 and T7 
of the indirect phase, this address is transferred from 
the T-register to the M-register (all 16 bits). Note that it 
is possible for bit 15 to again specify indirect addressing; 
if so, phase 2 remains set and the procedure of this para­
graph is repeated, and could be repeated several times, 
When bit 15 is a zero (direct), phase 3 is set. 

3-93. The execute phase begins by clearing the T­
register. The instruction register remains unchanged, since 
the various functions are still needed. This time, the read 
portion of the memory cycle reads data from memory into 
the T-register. During T3 and T4, this data is read onto the 
S-bus and the A-register contents are read onto the R-bus. 
The "and" function (ANF) previously set up by the instruc­
tion register, now combines the data on the two buses by 
"anding". (See table 2-1 for the arithmetic resulting from 
an "and" operation.) The result on the T-bus is then stored 
into the A-register. 

3-94. To advance the computer to the next instruction, 
the P- and M-registers must be incremented by one. This is 
done during T6 and T7 of the execute phase. It is accom­
plished by reading the P-register onto the R-bus and a one 
onto the S-bus, then adding the two buses (add function: 
ADF) and storing the result into the P- and M-registers. 

3-95. In summary, as illustrated in figure 3-19, an AND 
indirect instruction is executed by the following register 
actions: 

3-17 



Section III 

T-REG 

FETCH 

M-REG 

READ llEllDRY 

T-REG 

INDIRECT 

M-REG 

READ llEllDRY 

T-REG 

15 0 EXECUTE 

2000-32 

Figure 3-19. Register Manipulations for 
Indirect "And" 

a. The word containing the AND instruction is read 
out of memory by a fetch phase into the T-register. 

b. The address portion of the read-out word is trans­
ferred into the corresponding portion of the M-register. 

c. The zero/current page bit of the read-out word tells 
the computer logic to clear (zero) or leave (current) the 
remaining bits of the M-register. 

d. Steps "b" and "c" now comprise the address of a 
location which is read out of memory into the T-register at 
the start of the indirect phase. 

e. All bits of this new read-out word are transferred 
into the M-register, thus addressing the location of the 
desired data. 

f. At the start of the execute phase, the data thus 
addressed is read into the T-register from memory. 

g. The contents of the T-register and A-register are 
"anded" together and deposited back into the A-register. 

3-18 

Note 

For the remainder of memory reference 
instructions, the fetch and indirect phases 
are the same as described above for the 
AND instruction (paragraphs 3-90 
through 3-92). The following paragraphs 
therefore describe only the execute phase 
for each instruction. 

2114B 

3-96. XOR. The execute phase of the XOR (exclusive 
or) instruction begins as usual by clearing the T-register just 
before the read portion of the memory cycle. The action 
occurring during T3 and T4 is shown in abbreviated form in 
figure 3-15, to be read as follows: the contents of the 
A-register are combined by an "exclusive or" function with 
the contents of the T-register, and stored back into the 
A-register. Actually this action consists of three steps as 
shown for the AND instruction. For XOR, these three steps 
are: 1) read T-register onto S-bus; 2) read A onto R-bus; 3) 
store T-bus (which carries the "exclusive or" combination 
of the S- and R-buses) into the A-register. The action during 
T6 and T7 is also abbreviated: add one to P, and store into 
P and M. The three steps which accomplish this are detailed 
for the AND instruction in figure 3-15. The last action is to 
reset the computer to the phase 1 (fetch) condition. 

3-97. IOR. The execute phase of the IOR (inclusive or) 
instruction is the same as XOR described in the preceding 
paragraph, except that the "inclusive or" function is used in 
place of "exclusive or". The difference in arithmetic is 
shown in table 2-1 of the specifications section. 

3-98. JSB. The principal operation of the execute phase 
for JSB (jump to subroutine) is to store the return address 
(program counter contents plus one) in the memory loca­
tion being jumped to. This is done during TO through T2. 
Since the only way into memory is through the T-register, 
the T-register must be loaded with the return address prior 
to the write portion of the memory cycle. Therefore the 
memory contents read out during the read portion of the 
memory cycle must be inhibited, and instead (during Tl 
and T2) the current contents of the P-register, plus one, is 
stored into the T-register. (Action: read P onto R-bus, read 
"l" onto S-bus, store with add function into T-register.) 
This information is then stored into memory during write. 
To complete the jump process, the contents of the M­
register (which received the jump memory address during 
the fetch or indirect phase) must be transferred into the 
P-register. This is done during T3: Read M onto S-bus, store 
T-bus in P. As usual, to advance the computer to the 
location of the next instruction both P and M registers are 
incremented by one during T6 and T7, and the fetch phase 
condition is set. 

3-99. ISZ. During the execute phase of the ISZ instruc­
tion (increment, skip if zero), the contents of the addressed 
memory cell must be altered and checked between the read 
and write portions of the memory cycle. These actions 
require more time than is normally available in this interval, 
so the write portion is delayed. Once the word read from 
memory is in the T-register (T3 and T4), it is incremented 



2114B 

by reading onto the S-bus, adding one in the arithmetic 
logic, and storing back into the T-register. If previously the 
word read out was all ones, the addition of another one 
causes a rollover to all zeros, and produces a signal (Cl6) 
which sets a carry flip-flop in the arithmetic logic. Then, at 
T5, the write portion of the memory cycle is permitted to 
begin, and two time periods (0.5 microsecond) are inserted 
at this time for writing the incremented value back into 
memory. During T6 and T7, the P-register is read onto the 
R-bus, and a one is read onto the S-bus. These are added 
together, and if the carry flip-flop is set, another one is 
added and the result is stored in the P- and M-registers. 
Thus, if the carry flip-flop was set, the P- and 
M-registers are incremented by two instead of one, 
skipping one memory location for the next fetch 
phase. (The carry flip-flop is automatically reset at the start 
of the next phase.) 

3-100. ADA/B. If bit 11 of the instruction register 
indicates A (zero), the contents of the A-register are 
combined with the T-register contents by the add function 
(ADF), and stored into the A-register. Similar action 
involving the B-register occurs during this time (T3 through 
T4) if bit 11 of the instruction register is a one. 

3-101. CPA/B. Depending on the status of bit 11 of the 
instruction register, either the A-register or the B-register is 
combined with the T-register contents by the "exclusive 
or" function. The result appears on the T-bus, but is not 
stored anywhere. Logic not shown in figure 3-1 tests the 
T-bus for a non-zero condition which, if it exists, sets the 
carry flip-flop. Then during T6 and T7 (as for ISZ), the P­
and M-registers are incremented by either one (carry FF not 
set) or two (carry FF set). 

3-102. LDA/B. During T3 and T4, the information read 
into the T-register by the read portion of the memory cycle 
is simply transferred to either the A- or B-register via the S­
and T -buses. 

3-103. STA/B. Like JSB, the STA/B instruction (store A 
or B) deposits new information into a memory cell, with no 
concern for the existing memory contents. The memory 
data read out during the read portion of the memory cycle 
is therefore inhibited while the A- or B-register contents are 
read and stored into the T-register (during Tl and T2). The 
write portion of the memory cycle deposits this 
information into memory. 

3-104. REGISTER REFERENCE. 

3-105. All register reference instructions, as shown by 
figure 3-16, are fully executed in only one phase (fetch). 
Actual execution is accomplished during time periods T3 
through T5. Actions during the other time periods are 
similar to those previously described for memory reference 
instructions: 

a. During time periods TO through T2, the T-register 
and instruction register are cleared, and bits 10 through 15 
of the instruction word read out of memory are transferred 

Section III 

to the instruction register. Unlike memory reference, the 
instruction register does not set up functions, but rather it 
provides gating signals to identify the type (register 
reference) and group (shift-rotate, or alter-skip) of 
instructions. The remaining bits of the T-register are used to 
execute the individual instructions by setting up the 
appropriate functions. Figures 2-5 and 2-6 define which bits 
encode each instruction. 

b. During time periods T6 and T7, the P-register is 
read onto the R-bus and a one is read onto the S-bus. If the 
carry flip-flop has been set by a skip condition during T3 
through T5, another one is added, and the total (P-register 
incremented by one or two) is stored into the P- and 
M-registers. This advances the computer to the next 
instruction. 

3-106. Paragraphs 3-107 through 3-132 detail the 
actions which execute all register reference instructions. 

3-107. SHIFT-ROTATE INSTRUCTIONS. 

3-108. Figure 3-16 shows that shifts and rotates can be 
executed either during T3 or T5, or both. CLE (clear 
extend) or SLA/B (skip if least significant bit of A- or 
B-register is zero) can be executed only during T4. The 
shifts and rotates are executed simply by reading A- or 
B-register onto the R-bus, applying a shift function to shift 
some or all of the bits to a different position on the T-bus, 
then storing the T-bus back into the A- or B-register. Since 
the shift function is the key to understanding how shifts 
and rotates occur, the following instruction descriptions, 
through paragraph 3-116, concentrate on this aspect (CLE 
and SLA/B are described later in paragraphs 3-117 and 
3-118). Table 3-1 is the main reference for these 
descriptions. 

3-109. A/BLS. As shown by the table 3-1 diagram for 
A/BLS (A or B left shift), the desired end result is to have 
bits 0 through 13 shifted left one place, with bit 15 
unchanged and a zero moved into bit 0. Assuming that bits 
6 through 9 of the T-register dictate an A/BLS during T3, 
an SLM (shift left magnitude) signal at this time is "anded" 
with each of the 14 R-bus bits (0 through 13), with the 
output of each "and" gate appearing on the next higher 
T-bus line. The function listed in table 3-1 for this 
instruction (SLM RB(0-13)) is therefore to be read: shift 
left magnitude "anded" with R-bus bits 0 through 13. Bit 
15 of the R-bus is routed directly out to bit 15 of the 
T-bus. Since nothing has been placed onto bit 0 of the 
T -bus, its state is "O", and therefore no deliberate 
action is necessary to ensure storing a "O" in bit 0 of 
the A- or B-register. 

3-110. A/BRS. A shift right magnitude "anded" with 
R-bus bits 1 through 15 shifts these bits to bits 0 through 
14 of the T-bus. Bit 0 of the R-bus is not recognized, and 
bit 15 (as well as moving onto bit 14 of the T-bus) also is 
routed directly to bit 15 of the T-bus. 

3-111. RA/BL. To rotate A or B left, an SLM "anded" 
with T-bus bits 0 through 13, together with a shift left bit 

3-19 



Section III 2114B 

Table 3-1. Shift Rotate Functions 

INSTRUCTION FUNCTIONS DIAGRAM 

0 

A/BLS SLM· RB(0-13) 

RB15-+TB15 15 14 13 0 

A/BRS 

RA/BL 

RA/BR 

A/BLR 

ERA/B 

ELA/B 

A/BLF 

SRM · RB(1-15) 

RB15-+TB15 

SLM · RB(0-13) 

SL14 · RB14 

RLL · TB15 

SRM · RB(1-15) 

RRS·RBO 

SLM· RB(0-13) 

SRM · RB(1-15) 

E .. TB15 

RBO-+ E 

SLM· RB(0-13) 

SL 14 · RB14 

E-+TBO 

RB15 .. E 

RL4 • RB(0-15) 

Shift Left Magnitude 
Shift Right Magnitude 

15 0 

R Bus 
T Bus 

SLM 
SRM 
RLL 
RRS 

Rotate Left to Least significant bit 
Rotate Right to Sign bit 

RB 
TB 
SL 
RL 

Shift Left 
Rotate Left 

2000-33 

14 to R-bus bit 14, move bits 0 through 14 to bit 1 through 
15 of the T-bus. Rotating bit 15 of the R,bus around to bit 
0 of the T-bus is accomplished by "anding" RLL (rotate 
left to least significant bit) with R-bus bit 15; the "and" 
gate outputs to T-bus bit 0. 

3-112. RA/BR. A shift right magnitude "anded" with 
R-bus bits 1 through 15 shifts these bits to bits 0 through 
14 of the T-bus. An RRS (rotate right to sign bit) "anded" 
with R-bus bit 0 rotates this bit to bit 15 of the T-bus. 

3-113. A/BLR. A shift left magnitude with R-bus bits 0 
through 13 shifts these bits to bits 1 through 14 of the 
T-bus. Bits 0 and 14 of the T-bus remain in the "O" state, 
since nothing is placed on these lines. 

3-20 

3-114. ERA/B. A shift right magnitude with R-bus bits 1 
through 15 causes shift to T-bus bits 0 through 14. The 
content of the extend register is transferred into bit 15 of 
the T-bus. Then, during the latter half of T3 (or T5), bit 0 
of the R-bus is transferred into the extend register. 

3-115. ELA/B. A shift left magnitude "anded" with 
R-bus bits 0 through 13, and a shift left 14 with R-bus bit 
14 shifts these bits to bits 1 through 15 of the T-bus. The 
extend content is transferred onto T-bus bit 0, and then bit 
15 of the R-bus is transferred into the extend register. 

3-116. A/BLF. A rotate left 4 "anded" with all bits of 
the R-bus shifts each bit four places to the left on the 



2114B 

T-bus. The four most significant bits are placed into the 
least significant bit positions. 

3-117. CLE. During T4, if bit 5 of the T-register is a 
"l", a reset signal is generated which clears the extend 
register. 

3-118. SLA/B. During T4, if bit 3 of the T-register is a 
"1" the A- or B-register is read onto the R-bus. (Bit 11 
determines which register is read out.) If bit 0, the least 
significant bit, is a "O", the carry flip-flop is set. This will 
cause the P- and M-registers to be incremented by two (for 
a skip) during T6 and T7. 

3-119. ALTER-SKIP INSTRUCTIONS. 

3-120. Figure 3-16 individually lists all alter-skip in­
structions. The grouping into three time periods explains 
the grouping of columns in the selection table of figure 2-6. 
That is, during T3 one instruction involving the 
accumulators can be executed (clear, complement, or 
clear-complement), and two possible instructions involving 
the extend register can be executed (skip if zero, and clear 
or complement, or clear-complement). Incrementing of 
accumulators (INA/B) effectively occurs after tests for sign 
and least significant bits (SSA/B and SLA/B, at T4), but 
before the test for zero accumulator (SZA/B, at T5). 

3-121. The alter instructions (clear, complement, and 
increment) use a store or direct transfer function. The skip 
instructions, however, simply read information onto the 
T-bus for testing; a store function is not required. If skip 
conditions are met, the carry flip-flop is set, causing the P­
and M-registers to be incremented by two during T6 and 
T7. 

3-122. CLA/B. To clear the A- or B-register, the read 
function is omitted. This means that both R- and S-buses 
are in the all-zero state. The "exclusive or" function, in 
combining zeros with zeros, can only produce zeros on the 
T-bus. Thus when the T-bus is stored into A or B, the result 
is all zeros. 

3,123. CMA/B. To complement A or B, the register is 
read onto the R-bus, the complement function (CMF) 
reverses each bit before being released to the T-bus, and the 
T-bus is stored back into the A- or B-register. 

3-124. CCA/B. The procedures of the two preceding 
paragraphs are combined to clear and complement an 
accumulator; i.e., with no read, R- and S-buses remain 
all-zero, and the complement function reverses this state to 
all ones on the T-bus. The T-bus is then stored into the A­
or B-register. 

3-125. SEZ. If bit 5 of the T-register is a one, the extend 
flip-flop and bit 0 of the T-register (reverse skip sense) are 
looked at by the computer logic, causing the carry flip-flop 
to be set if: a) both bits are zero, b) both bits are one. 
Although the next three instructions described below can 
alter the state of the e:x;tend flip-flop, the test is completed 
before the alteration. 

Section III 

3-126. CLE. If bits 6 and 7 of the T-register encode the 
clear E instruction, a reset signal is generated during the 
latter half of T3 to reset the extend flip-flop. 

3-127. CME. If bits 6 and 7 of the T-register•encode 
complement E, the state of the extend flip-flop is reversed 
during the latter half of T3. 

3-128. CCE. If bits 6 and 7 of the T-register encode clear 
and complement E, the extend flip-flop is set during the 
latter half of T3. 

3-129. SSA/B. If bit 4 of the T-register is a one, the A­
or B-register is read onto the R-bus. Bit 15 of the R-bus 
(sign bit) and bit 0 of the T-register (reverse skip sense) are 
tested. The carry flip-flop will be set if both bits are zero 
(meaning: skip if sign bit is zero), or if both bits are one 
(meaning: skip if sign bit is not zero). This is accomplished 
during T4. 

3-130. SLA/B. If bit 3 of the T-register is a one, the A­
or B-register is read onto the R-bus. Bit 0 of the R-bus 
(least significant bit) and bit 0 of the T-register (reverse skip 
sense) are tested. The carry flip-flop will be set if both bits 
are zero (meaning: skip if least significant bit is zero), or if 
both bits are one (meaning: skip if least significant bit is 
not zero). This is accomplished during T4. The 
combination of SLA/B, SZA/B, and RSS is a special 
case; refer to the RSS description in paragraph 2-82. 

2-131. INA/B. If bit 2 of the T-register is a one, the A­
or B-register is read onto the R-bus, and a "one" is read 
onto the S-bus. These are combined by an add function 
(ADF) and stored back into the A- or B-register during the 
latter half of T5. 

3-132. SZA/B. If bit 1 of the T-register is a one, the A­
or B-register is read onto the R-bus and transmitted to the 
T-bus. All bits of the T-bus are applied to an "inclusive or" 
gate. The output of this gate and bit 0 of the T-register are 
tested. The carry flip-flop will be set if both TRO and the 
gate output are zero (meaning: skip if accumulator is zero), 
or if both TRO and the gate output are one (meaning: skip 
if accumulator is not zero). 

3-133. INPUT/OUTPUT INSTRUCTIONS. 

3-134. Like the register reference instructions, input/ 
output instructions, as shown by figure 3-17, are fully 
executed in only one phase (fetch). The interrupt phase, 
shown at the bottom of figure 3-17, is not involved 
in the discussion at the end of this section (paragraph 
3-150), since it is related to input/output operations as 
describ'ed under paragraph 2-113 of the specifications. 

3-135. The following descriptions will concentrate on 
actions occurring during time periods T3, T4, and T5, since 
as can be seen from figure 3-17, the actions during other 
time periods are nearly identical from instruction to 
instruction. That is, the T-register is cleared during TO, the 
instruction register is cleared during Tl, and the P- and 

3-21 



Section III 

M-registers are incremented by one (or two, if a carry bit is 
present) during T6 and T7. The method of incrementing by 
one was described in paragraph 3-94, and the method for 
incrementing by two was described in paragraph 3-99. In all 
cases, bits 10 through 15 of the T-register are transferred to 
the instruction register during T2. 

3-136. HLT. If bits 8, 7, 6 of the T-register encode the 
halt instruction, these bits cause the run flip-flop to be reset 
during the latter half of T7. 

3-137. STF. During T3 a set flag signal is routed to all 
input/output interface cards, and will set the flag flip-flop 
of the card which is currently enabled by the select code 
(bits 0 through 5 of the T-register). 

3-138. CLF. During T4 a clear flag signal is routed to all 
input/output interface cards, and will reset the flag flip-flop 
of the card which is currently enabled by the select code. 

3-139. SFC. A skip if flag clear signal (SFC) is routed to 
the selected interface card beginning at T3. The interface 
card will return a skip flag signal (SKF) during T4 if its flag 
flip-flop is not set. This signal sets the carry flip-flop to 
cause a skip during T6 and T7. 

3-140. SFS. A skip if flag set signal (SFS) is routed to 
the selected interface card beginning at T3. The interface 
card will return a skip flag signal (SKF) during T4 if its flag 
flip-flop is set. This signal sets the carry flip-flop to cause a 
skip during T6 and T7. 

3-141. MIA/B. During T4 and T5 an IOI signal (1/0 
input control) transfers the input data from the interface 
buffer register to the S-bus. During the same time the A- or 
B-register is read onto the R-bus, and the R- and S-bus data 
is combined by the "inclusive or" function (IOF) and 
applied to the T-bus. The result (a merge, or "inclusive or") 
is stored back into the A- or B-register. If bit 9 of the 
T-register is a one, a clear flag signal (CLF) is routed to the 
flag flip-flop of the selected interface card, as described in 
paragraph 3-138. 

3-142. LIA/B. The action for LIA/B (load input into A 
or B) is the same as described for MIA/B in the preceding 
paragraph, except that nothing is read onto the R-bus. The 
"inclusive or" function therefore transmits the R-bus 
unchanged to the T-bus for storing into the A- or B-register. 
As for MIA/B, bit 9 can clear the flag flip-flop. 

3-143. OTA/B. During T4 and T5 the A- or B-register is 
read onto the R-bus, which in tum is transferred by an 
IOO signal (1/0 output control) to the interface buffer 
register. As for MIA/B, bit 9 can clear the flag 
flip-flop. 

3-144. STC. A set control signal is routed to all input/ 
output interface cards, and during T4 will set the control 
flip-flop of the interface card which is currently enabled by 
the select code (bits 0 through 5 of the T-register). 

3-22 

2114B 

3-145. CLC. A clear control signal is routed to all 
interface cards during T4, and will reset the control flip­
flop of the interface card currently enabled by the select 
code. 

3-146. STO. A set flag signal during T3, combined with 
the select code for the overflow flip-flop (01, octal), sets 
the overflow flip-flop. 

3-147. CLO. A clear flag signal during T4, combined 
with the select code for the overflow flip-flop (01, octal), 
resets the overflow flip-flop. 

3-148. SOC. During T3, a skip if flag clear signal (SFC), 
combined with the select code for overflow, tests the state 
of the overflow flip-flop. If this flip-flop is in the reset 
state, a skip flag signal (SKF) sets the carry flip-flop at T4, 
to cause a skip at T6 and T7. 

3-149. SOS. During T3, a skip if flag set signal (SFS), 
combined with the select code for overflow, tests the state 
of the overflow flip-flop. If this flip-flop is in the set state, a 
skip flag signal (SKF) sets the carry flip-flop at T4, to cause 
a skip at T6 and T7. 

3-150. INTERRUPT PHASE. 

3-151. The actions occurring during the interrupt phase 
(phase 4) are shown at the bottom of figure 3-17. Two 
operations are accomplished during the interrupt phase: 

a. The P-register is decremented. This is· done so that 
any instruction which has not been fully executed at the 
time of interrupt will be repeated. On the other hand, if the 
instruction is fully executed (which means that the P-regis­
ter has been advanced for the next instruction), it is still 
necessary to decrement. This is because the P-register is 
incremented for a second time following execution of the 
instruction contained in the interrupt location. 

b. The "interrupt address" must be transferred into 
the M-register, and phase 1 is set. This causes the instruc­
tion contained in the interrupt location to be read out of 
memory for execution during the next machine phase. Note 
that the interrupt address is not placed into the P-register. 
While the instruction in the interrupt location is being 
executed, the P-register remains at the value one lower than 
the point at which interrupt occurred. 

3-152. Decrementing the P-register is accomplished by 
complementing, incrementing, then complementing again. 
In simplified form, using only four binary digits for an 
example, this process is: 

Original Value: 
Complement: 
Increment: 
Complement: 

01102 
1001 
1010 
0101 

3-153. During Tl and T2 of the interrupt phase (re­
member that there is no read/write memory cycle), the 
P-register is read onto the R-bus. The complement function 



2114B 

(CMF) reverses all bits before application to the T-bus, and 
then the T-bus is stored back into the P-register. During T3 
and T4 the P-register is again read onto the R-bus. A one 
read onto the S-bus is combined with this by the add 
function (ADF) and the incremented result is stored back 
into the P-register. During T5, the P-register is read onto the 
R-bus for the third time, is complemented, applied to the 
T-bus, and stored back into the P-register. 

Section III 

3-154. The interrupt address is placed into the M-register 
during T7. Since no interrupt address is greater than 77 8 

(see table 2-2), M-register bits 6 through 15 are first 
reset. The interrupt address is read directly onto the 
T-bus from input/output control logic (see figure 3-1), 
and bits 0 through 5 are stored into the M­
register. Setting the phase 1 condition completes 
the interrupt phase. 

3-23/3-24 



! 
I 

2114B Section IV 

SECTION IV 

BASIC OPERATION OF HP 21148 COMPUTER 

4-1. INTRODUCTION. 

4-2. The purpose of this section is to relate the theore­
tical operations described in the preceding section to actual 
visible actions. Specific information is given for the user to 
gain familiarity with the panel controls, and to be able to 
perform basic operations on the computer, when necessary, 
without input/output devices or software aids. These purely 
manual operations are most commonly encountered in 
computer maintenance, and for loading, examining, and 
changing small sections of memory (e.g., loading the basic 
binary loader). 

4-3. Obviously manual usage of the computer is not the 
intended mode of operation for practical applications. 
Therefore this section does not attempt to teach program­
ming to the extent of practical problem solving. This aspect 
is the subject of training materials supplied with the user 
training course, which is provided by Hewlett-Packard. User 
training concentrates on the efficient use of software to 
solve problems. Instructions for usage of the computer via 
input/output devices are given in volumes three and four. 

4-4. CODING. 

4-5. This section assumes familiarity with binary and 
octal numbering systems, as outlined in the introduction to 
section III. Table A-4 (Consolidated Coding Table) in the 
appendix of this volume is used as a reference for instruc­
tion codes; if more detail is required, refer also to the 
information given under paragraph 2-53 (Instructions) in 
section II. As a reminder: a "one" is coded by a switch of 
the switch register being in the on state, and is indicated by 
the register light being on. A "zero" is coded by a switch in 
the off state, and is indicated by the register light being off. 

4-6. All numbers used for addresses or contents in this 
section are octal numbers unless otherwise specified. 
Notation of instruction codes in octal numbers is an 
operator convenience for loading and reading binary 
information. The meaning of the octal code can be 
understood only when it is broken down into its 
binary elements. For example, note the first instruc­
tion code to appear in this text, which occurs in 
paragraph 4-19 (also step 3 of figure 4-4). The in­
struction is STA 3000 (store A-register into memory 
location 003000; initial zeros of address assumed). The 
coded instruction word is 07 3000. Refer now to the 
consolidated coding table (table A-4 in the appendix) 
or to figure 2-4 in section II. Note that the code for STA 
consists of ones in bit positions 14, 13, and 12, and a zero 
in bit position 11. Since indirect addressing is not being 
used at this time, bit 15 is a zero. Bit 10 must be a one, 
since the program and all references will be on the same 

(current) memory page. (An elaboration of the page con­
cept is given later under paragraph 4-47.) This accounts for 
bits 10 through 15. See figure 4-1. The remaining bits (0 
through 9), which comprise the memory address, are simply 
the corresponding bits of the desired address. The desired 
address in this case is 003000. This breaks down in binary 
form as shown in the top row of figure 4-1. Note that all 
bits higher than bit 0 of the desired address are disregarded 
by the programmer when composing the instruction word. 
This is because these bits fall outside of the page-size limits. 
The M-register, which contains the page-designating bits, 
will hold the bits constant at execute time, as commanded 
by bit 10 of the instruction code. 

DESIRED 
ADDRESS 

15 14 13 12 II 10 9 8 7 6 5 4 3 2 I 0 

o 1o o o'o 11 10 o o 1o o oTo o o 
DISREGARDED 

(CURRENT PAGE) 

INSTRUCTION 15 14 13 12 11 10 

CODE 0 I 1 1 1 I 0 1 

l 
INSTRUCTION 0 7 3 0 0 0 

WORD 0 I 1 1 1 I 0 1 1 I 0 0 0 I 0 0 0 I 0 0 0 

2000-34 

Figure 4-1. Coding a Memory Reference 
Instruction Word 

4-7. It is evident that the octal digit 3 in the resultant 
instruction word 07 3000 is the result of three individual 
factors: bit 11 (a zero) specified the A-register, bit 10 (a 
one) specifies current page, and bit 9 (a one) is an address 
bit. This requirement of using bits having separate, 
individual meanings to compose an octal digit is frequently 
encountered. For ex~mple, suppose that it is desired to 
rotate the B-register left three places and clear the extend 
bit, all in one instruction. From the shift-rotate group 
definitions (paragraph 2-81), it is determined that a suitable 
method for a three-place rotation is to rotate the B-register 
left four places (BLF), then right one place (RBR). The 
resultant octal code for the instruction which will 
accomplish these actions (including the clearing of the 
extend bit) is 005763. The way this number was composed 
can be shown by breaking it down into its binary com­
ponents, as follows: 

4-1 



Section IV 

• ~'~! 
I 

Register 
Reference 
Instruction 
Type 

JsL BLF 
Reg 

Enablej 
this 
instruction 

CLE RBR 

Enable_j 
this 
instruction 

Note 

The ability to code instructions in octal form is 
essential to the procedures given in the re­
mainder of this section. It is therefore strongly 
recommended that the reader take the time at 
this point to study the composition of the 
above instruction code with reference to the 
consolidated coding table in the appendix. 

4-8. COMPUTER TURN-ON. 

4-9. Assuming that installation of the computer has 
been completed, power is turned on by putting the POWER 
SWITCH {located behind the front panel on the computer 
chassis) to on. This will initially light the HALT pushbutton 
and the FETCH lamp. The register lights will come on in a 
random pattern. Should one or more of these indications 
fail when turning on the computer, refer to volume two, 
the installation and maintenance manual. 

4-10. It is good practice when turning on the computer, 
to ensure that the MANUAL LOADER switch is in the 
NORMAL position. 

4-2 

CAUTION 

The following procedures, to the end of this 
section, are designed to be performed on the 
computer while reading the text. Considerable 
loading effort can be saved if the entire set of 
procedures is performed in the sequence given, 
without any interruptions which might disturb 
procedures in progress. Since these procedures 
alter memory, the operator should also be cer­
tain that he is not destroying valuable informa­
tion which may have been stored previously in 
the computer. Memory locations used in these 
procedures are: 

1001 through 1010 
1020 through 1036 
2166 through 2207 
2766 through 3036 
3777 through 4003 

2114B 

4-11. PRELIMINARY OPERATIONS . 

4-12. The first and most basic operation is to put some 
information into computer memory. The following para­
graphs, through 4-21, outline in detail two methods of 
doing this. One method is to manually store the setting of 
the switch register directly into a specified memory cell, by 
using the front-panel operating controls. The other method 
is to let the computer itself do the storing operation. The 
purpose in showing these two methods is to demonstrate 
that computer instructions are equivalent to operating 
controls. 

4-13. Figure 4-2 illustrates the two memory storing 
methods. Note that in the first case the information is 
transferred from the switch register to a location in mem­
ory. In the second case (programmed loading), the transfer 
is from the A-register. For simplicity, information will be 
put into the A-register manually from the switch register 
(broken LIA line). However, as will be seen later, this 
information could come from anywhere in memory or from 
the B-register (broken LDA lines). Note also that, for sim­
plicity, figure 4-2 omits detailed routing via the bus system 
and T-register as described in the preceding section. 

4-14. MANUAL STORING. 

4-15. First it is necessary to decide where in memory the 
information is to be stored. For illustrative purposes, an 
address in the middle of the second.. memory page has been 
selected (refer to paragraph 2-23): location 003000. To 
direct the computer to this address, set the number into the 
switch register, as shown in step 1 of figure 4-3. Then press 
the LOAD ADDRESS pushbutton (step 2). This imme­
diately transfers the setting of the switch registers into the 
P- and M-registers. This can be verified by observing the 
state of the M-register indicator lights. The computer is now 
at location 003000 (the addressed location). 

4-16. Now the operator can store any desired informa­
tion into the addressed location. An easy to recognize 
pattern of zeros and ones in alternating groups of three is 
suggested in figure 4-3 (in octal: 070707). Complete steps 3 
and 4 of figure 4-3. Note that the P- and M-registers have 
incremented to the next location (which will not be used at 
this point). The T-register indicates the information 
(070707) which went into memory. 

4-17. To verify that location 003000 does indeed con­
tain the information 070707, complete steps 5 through 8. 
Again, note that the P- and M-registers, at the conclusion of 
this procedure, are one step ahead of the information 
displayed in the T-register. This is because the P- and 
M-registers must direct the computer to the next location, 
whereas the T-register always indicates information 
resulting from previous action. 

4-18. PROGRAMMED STORING. 

4-19. For the computer to perform its own storing 
operation, it is first necessary to put into memory the 
instruction (ST A, store contents of A-register) which will 



2114B 

A, MANUAL STORING 

BIT PLANE 

--+--•• 

LOAD 
MEMORY 

'---l..__ ___ ___,J 
SWITCH REGISTER 

B. PROGRAMMED STORING 

2010-8 

BIT PLANE 

----·· 
STA •--t-------"'\ LOA ,,__ ____ __. I 

I 
1...__r------------,i-___ .I 
~ ....... ~~~~~~~~-.r---1::-, 
I A -REGISTER I 
I I LOA 

LIAi r-.1 
I 
I 
I 
I 

B-REGISTER 

'---!._ _________ _ 
SWITCH REGISTER 

Figure 4-2. Two Methods of Storing 
Information in Memory 

accomplish this. Then the computer can be directed to the 
place in memory where this instruction is located; pressing 
the RUN pushbutton will then let the computer go ahead 
and execute the instruction. After doing so, the computer 
will look for its next instruction in the following location, 
and will attempt to continue running. Since it is unknown 
what other information may be in memory, it is necessary 
to stop the computer as soon as the desired action is 
completed, simply by putting a halt (HLT) instruction in 
the immediately succeeding location. The required program 
therefore consists of two instructions: STA, HLT. 

4-20. The manual-storage procedure of paragraphs 4-14 
through 4-17 put an easy to recognize pattern (070707) 
into location 003000. It is the objective of the next para­
graph (procedure detailed in figure 4-4) to let the computer 
put a different pattern (all ones) into the same location, 
replacing the previous pattern. This new pattern is loaded 
into the A-register before the program is run. 

Section IV 

4-21. Steps 1 through 6 of figure 4-4 store the two-word 
program into memory, using the two locations immediately 
preceding the location to be altered (003000). Steps 7 
through 10 load the new pattern into the A-register. Steps 
11 through 13 verify that the old pattern is still in location 
003000. Steps 14, 15, and 16 cause the program to be run. 
The computer executes this program in 6.0 microseconds; 
therefore the computer will be back in the halt condition 
(HALT light on) faster than can be visually detected. Steps 
17 and 18 verify that the new pattern (177777) is now in 
location 003000. 

4-22. THE STORED PROGRAM. 

4-23. The preceding descriptions have demonstrated that 
internal presettable commands can control operation of the 
computer in the same manner as front-panel controls. If the 
computer were constructed like a mechanical calculator, 
there might be panel controls to add or subtract, but this 
would be defeating the design principles of a computer. The 
intent is to provide flexibility through use of internal com­
mands which can be arranged to occur in a specific 
sequence, and to limit panel controls to the minimum 
required to initiate operation. This, in essence, is the con­
cept of the stored-program computer. The following para­
graphs discuss the elements of the stored program. 

4-24. A program consists of a sequence of computer 
words, stored in memory, which control operation of the 
computer. The general term "computer words" is used 
rather than the restrictive term "instructions" since the 
stored information generally includes three types of words: 

a. The Instruction Word 
b. The Data Word 
c. The Address Word 

4-25. Although these terms are to some extent self­
explanatory, the distinction and usage requires illustration. 
For purposes of illustration, the simple program example 
used in the preceding descriptions will be expanded and 
examined in more detail, beginning at paragraph 4-31. 
Before proceeding, however, the method of writing pro­
grams in a concise, meaningful form will be presented. 
Notation of this kind becomes increasingly necessary as 
programs grow larger. 

4-26. PROGRAM TABLE. 

4-27. Table 4-1 puts into tabular form the two-word 
program previously used as an example in paragraphs 4-18 
through 4-21. The information in this table corresponds to 
steps 1 through 6 of figure 4-4. The format of the table is 
used for explanatory purposes within this volume only, but 
resembles in general arrangement the format required for 
using the assembler coding forms. Sample programs in this 
section are organized to expand on each preceding program, 
step by step. Shaded portions of the program tables 
correspond exactly to previously discussed material, and are 
therefore not described in detail. This permits the dis­
cussions to concentrate on the new (unshaded) portions of 
the sample program. 

4-3 



Section IV 

2 038-10 

4-4 

,~···,,~· · ········ 

STORE { 

CHECK { 

1. 
2. 
3. 
4. 

5. 
6. 
7. 
8. 

• • 
4 2,6 7 

Set to 003000 (0 000 011 000 000 000). 
Pres.5 LOAD ADDRESS. 
Set to 070707 (0 111 000 111 000 111). 
Pres.5 LOAD MEMORY. Photograph shows 

conditions existing at this time. 

Set to 003000. 
Pres.5 LOAD ADDRESS. 
Pres.5 DISPLAY MEMORY. 
T-register indicates contents of memory 

location 003000: 070707 (no change). 

Figure 4-3. Storing Information Manually 

2114B 

1, 3, 5 



2114B 

2038-11 

LOAD 
PROGRAM 

16 

LOAD NEW 
INFORMATION 

CHECK OLD 
INFORMATION 

RUN 
PROGRAM 

CHECK NEW 
INFORMATION 

~-
II 

4,6, 10 2, 8, 12, 15 17 

1. Set Switch Register to 002775. 
2. Press LOAD ADDRESS. 
3. Set to 073000 (STA 3000). 
4. Press LOAD MEMORY. 
5. Set to 102000 (HLT). 
6. Press LOAD MEMORY. 

{ 

7. Press CLEAR REGISTER. 
8. Press LOAD ADDRESS. 
9. Set S Register to 177777. 

10. Press LOAD MEMORY. 

~ 
11. Set to 003000. 
12. Press LOAD ADDRESS. 
13. Press DISPLAY MEMORY. T-Register indicates 

contents of memory location 003000: 
070707. 

{ 

14. Set S Register to 002775. 
15. Press LOAD ADDRESS. 
16. Press RUN. 

{ 17. Press DISPLAY MEMORY. 

18. T-Register indicates new contents of memory 
location 003000: 177777. Photograph shows 
conditions existing at this time. 

Figure 4-4. Storing Information by Program 

13, 18 

1, 3, 5, 9 
11, 14 

7 

Section IV 

4-5 



Section IV 2114B 

Table 4-1. Program Table 

ADDRESS CONTENTS 

INSTRUCTION MEMORY D/I A/B (OR DATA) REFERENCE 

002776 STA 3000 
002777 HLT 
003000 

4-28. ADDRESS. The address column of the program 
table states where in memory the program words (contents) 
are to be stored. The first listed address states where the 
program is to begin; this is termed the starting address. The 
starting address of the program shown in table 4-1 is 
002776; the program stops at the location immediately 
following (002777). Although the program never advances 
to location 003000 (the location immediately following 
002777), this address must be listed in the program table as 
a reminder that this memory location will be used by the 
program. 

4-29. CONTENTS. As explained above (paragraph 4-24), 
the stored program can consist of three types of words: 
instructions, data, or even the address of another location. 
Therefore the contents of a location specified by an address 
may take various forms in the contents column. Most 
memory locations of a program will be instructions; the 
instruction mnemonic is listed under instruction (or data) 
in the table. If the content is not an instruction (usually a 
pure number representing data or an address), it will also 
appear under this heading, as shown in table 4-2. In the case 
of memory reference instructions, the address of the 
location affected by the instruction is listed under the 
memory reference heading. For example, the first 
instruction listed in table 4-1 is a command to store the 
A-register contents into location 003000. Location 003000 
is the affected location (i.e., the memory reference). The 
D/I, A/B, and Z/C headings are also used only in the case of 
memory reference instructions. As a reminder to code a 
one-bit for I (indirect addressing), B (B-register), and C 
(current page), only these three indicators will be given in 
the tables; D (direct addresing), A (A-register), and Z (page 
zero), all coded by zero-bits, are otherwise assumed. The 
octal code column is used for the coded version of the 
desired contents. This column comprises the machine­
language program, since this is the information which is 
loaded into the computer. As far as the computer is 
concerned, these numbers are the program. Note that no 
specific contents need be loaded for address 003000, since 
the ST A 3000 instruction will destroy any information 
previously contained here. 

4-30. REMARKS. A short explanation accompanying 
each assigned address of the program is helpful in com­
municating the intent of program details to other persons, 
and also can serve as a reminder to the original programmer 
when re-examining the program at a later time. Words used 

4-6 

ZIC 

c 

REMARKS 

OCTAL 
CODE 

073000 Get pattern from A, put in 3000. 
102000 Halt. 

Reserved for answer. 

for the remarks column should be carefully chosen to 
be as concise and meaningful as possible. Under­
standing a given program can be difficult enough 
without adding confusion through vague documentation. 
For example, it would not be incorrect to say for the first 
instruction of table 4-1: store contents of A in location 
3000. However this does not say any more than the instruc­
tion word itself says (STA 3000). The remark suggested in 
table 4-1 states what is expected to be in the A-register (a 
pattern), and raises the questions of what the pattern is, 
and how it happened to get into the A-register. This leads 
the operator to look for further documentation (in this case 
the text of this manual), which tells him how to preset the 
A-register. Additional words to indicate the need for pre­
setting the A-register could be added, improving the 
message still further. Conversely, the halt in the next line 
requires no additional comment. 

4-31. PROGRAM EXECUTION. 

4-32. Table 4-2 lists the program used as an example in 
this discussion. The main purpose of the program is to show 
where and when the three types of program words (instruc­
tion, data, and address) occur. In the process of so doing, 
detailed actions for simple addition and indirect addressing 
will also be illustrated. The program adds 5 to 5, and puts 
the result (10 decimal, or 12 octal) into location 003000. 
Note that the middle three lines of the program are 
the same as the example given in table 4-1. The first 
two lines expand the program to accomplish the 
addition, and the last two lines are data and address 
words used by the program. 

4-33. LOADING THE PROGRAM. The program is 
loaded into the computer manually, using the sample 
procedure given in steps 1 through 4 of figure 4-3. 
Steps 1 and 2 need be done only once for most of 
the program, since each LOAD MEMORY operation 
automatically increments the address in the P- and 
M-registers. Specifically, the procedure is: 

a. Set the switch register to the starting address 
(002774), and press LOAD ADDRESS. 

b. Set the switch register to the first word of the 
program (063001), and press LOAD MEMORY. 



2114B Section IV 

Table 4-2. Program to Show Instruction, Data, and Address Words 

ADDRESS CONTENTS 

INSTRUCTION MEMORY 
D/I A/B 

IORDATAI REFERENCE 

002774 LDA 3001 
002775 ADA 3777 I 
002776 STA 3000 
002777 HLT 
003000 
003001 5 
003777 3001 

c. Set the switch register to the next word of the 
program, press LOAD MEMORY, and repeat this step until 
the first six words have been loaded. For the fifth word 
(which requires no contents), it is convenient to simply 
press LOAD MEMORY with the HLT code still in the 
switch register. A halt instruction in this location does no 
harm. 

d. For the seventh word, which is not in sequence with 
the other six, it is necessary to set the address (003777) 
into the switch register and press LOAD ADDRESS. Then 
set the switch register to the contents (003001), and press 
LOAD MEMORY. 

4-34. RUNNING THE PROGRAM. Again set the switch 
register to the starting address (002774) and press LOAD 
ADDRESS. Now press RUN. Immediately the computer 
switches to the halt condition, having executed the problem 
and stored the answer in location 003000 in 16.0 micro­
~conds. To verify that the computer has arrived at the 
right answer (000012), press the DISPLAY MEMORY 
pushbutton. The answer is in the T-register. This demon­
strates how fast the computer operates, but does not show 
what operations it went through to arrive at its answer. 
Therefore the following paragraphs will rerun the program 
step by step in order to show these operations. 

4-35. SINGLE CYCLE OPERATION. Table 4-3 shows 
the contents of the register following each operation of the 
SINGLE CYCLE pushbutton. The program will be 
executed in eight steps {i.e., eight machine phases). The 
following eight paragraphs describe each of these steps. The 
program is initially set up by setting the switch register to 
the starting address (00277 4) and pressing the LOAD 
ADDRESS pushbutton. The conditions now existing are 
shown in the top line of table 4-3: the P- and M-registers 
hold the starting address, and the remaining registers can be 
in any state. The FETCH phase indicator light on the 
panel is on, indicating that the first machine phase will 
be a fetch phase; this is an effect of the LOAD ADDRESS 
switch. 

ZIC 

c 
c 
c 

REMARKS 

OCTAL 
CODE 

063001 Put augend in A. 
143777 Add the addend specified by 3777. 
073000 Put answer in 3000. 

. 102000 Halt . 
- Reserved for answer. 

000005 Data. 
003001 Address of addend is 3001. 

4-36. Press the SINGLE CYCLE pushbutton (first step). 
The conditions of the registers after the computer has 
completed this first phase are shown in the step 1 line of 
table 4-3. As an additional reference, refer back to figure 
3-15 in the preceding section; the fetch phase actions for all 
memory reference instructions except JMP apply to this 
discussion. Note also the read/write memory cycle, which is 
what reads the contents of the addressed location (contents 
of 002774 is 063001) into the T-register. This is accom­
plished early in the fetch phase. The computer inter­
prets any word read out of memory during a fetch 
phase as an instruction word. It is the programmer's 
responsibility to ensure that the computer does find an 
.instruction in every location to which the P-register goes. 
This is ensured by properly filling out the program table; 
e.g., in table 4-2, the program (P-register) starts at 00277 4, 
and stops at 002777. Every one of these locations must 
have an instruction word as its contents. Later in the fetch 
phase (T6 and T7), the memory reference bits (0 through 
9) of the T-register are transferred into bits 0 through 9 of 
tbe M-register. The remaining bits of the M-register are left 
unchanged (since there is no reference to page zero), thus 
completing the memory reference address in the M-register. 
In comparing the contents of the T- and M-registers in step 
1 of table 4-3, be careful not to assume that the complete 
octal digits 3001 are transferred; the digit 3 (like the 
situation shown in figure 4-1 and explained in paragraphs 
4-6 and 4-7) is a composite of three binary bits with 
different code meanings. Also occurring at the end of the 
fetch phase is the setting of the execute (phase 3) con­
dition. The P- and A-registers are not yet affected. 

4-37. Press the SINGLE CYCLE pushbutton again (step 
2) to complete execution of the LDA 3001 instruction. 
Step 2 of table 4-3 shows register conditions existing after 
completion of the execute phase. This is the phase in which 
the computer gets the data requested by the memory 
reference, and does with it whatever is commanded by the 
instruction code. The read portion of the memory cycle 
reads the contents of the location addressed by the 
M-register (now at 003001) into the T-register. This 
information, read out of memory by the execute phase, is a 
data word. It is the programmer's responsibility to ensure 

4-7 



Section IV 2114B 

Table 4-3. Single Cycle Execution of a Program 

STEP INSTRUCTION T-REGISTER P-REGISTER M-REGISTER A-REGISTER B-REGISTER PHASE 

Any 002774 

1 LDA { 063001 002774 

2 000005 002775 

3 ~A,{ 143777 002775 

4 003001 002775 

5 000005 002776 

6 STA { 073000 002776 

7 000012 002777 

8 HLT 102000 003000 

that a data word (or an indirect address) is contained in all 
locations to which there is a memory reference (unless the 
location is to be used by the program for storage). As seen 
in table 4-2, there are three memory references; there­
fore, the table accounts for three addresses in addition 
to the four addresses assigned to the program 
instructions. One of these three is a storage location, 
one is data, and one is an indirect address. In this 
step, the information read out is the data 5. As 
shown in figure 3-15 (LDA/B), the data is transferred 
from the T-register to the A-register during the execute 
phase. Therefore the number 5 exists in both registers. At 
the end of this phase, the P- and M-registers are set to the 
address of the next instruction (002775), and the fetch 
condition is set (FETCH light on) for reading of the next 
instruction. 

4-38. Press SINGLE CYCLE (step 3). This fetches the 
next instruction (143777) out of location 002775. The 
code 143777 means: add to whatever is in the A-register 
the contents of a memory location which can be found by 
going first to location 3777 for more information. This is 
what is implied by the symbolic form: ADA 3777, indirect. 
The indirect bit (bit 15 of the word now in the T-register) 
caused the setting of the indirect phase (INDIRECT light 
on), and the memory references bits (0 through 9) have 
been transferred into the M-register. The P- and A-registers 
remain as they were. The indirect phase is ready to 
begin. 

4-39. Press SINGLE CYCLE (step 4). The computer 
always interprets information read out of memory during 
an indirect phase as an address word. This word (003001) is 
transferred to the M-register as the new memory reference 
for the current ADA instruction. Both T- and M-registers 
therefore now contain 003001. Since bit 15 of this 
word is a zero (direct address), the execute condition 

4-8 

002774 Any (Not used) FETCH 

003001 Any EXECUTE 

002775 000005 FETCH 

003777 000005 INDIRECT 

003001 000005 EXECUTE 

002776 000012 FETCH 

003000 000012 EXECUTE 

002777 000012 FETCH 

003000 000012 FETCH 

is set (EXECUTE light on). If this bit had been a one 
(indirect), the indirect condition would remain set, and 
a further memory reference would be obtained in the 
next step. However, with this example, the computer 
now knows that the addend data is located in 
003001. It happens, in this example, that this is the 
same location from which the augend was taken; 
however, the address word could just as well refer to 
any location in memory. 

4-40. Press SINGLE CYCLE (step 5). In the execute 
phase of the ADA instruction, the data in location 003001 
is read out (the number 5), and is added to the existing 
contents of the A-register (which up until now also 
contained the number 5). The T-register therefore contains 
5, and the A-register contains 12. As usual, the last 
operation for any instruction is to advance the P- and 
M-registers to the location of the next instruction (002776) 
and to set the fetch phase condition. 

4-41. Press SINGLE CYCLE (step 6). The fetch phase of 
the STA 3000 instruction reads the instruction word 
(073000) out of location 002776, transfers the memory 
reference bits to the M-register and sets the execute phase 
condition. 

4-42. Press SINGLE CYCLE (step 7). The execute 
phase puts the A-register contents (000012) into the 
memory via the T-register.' Therefore both registers indi­
cate this value. As usual, the P- and M-registers are 
advanced to the address of the next instruction (002777), 
and the fetch phase condition is set. 

4-43. Press SINGLE CYCLE (step 8). The halt instruc­
tion is read out of memory, and the computer is in the 
same state as after the running of the program in 
paragraph 4-34. As before, the DISPLAY MEMORY 



2114B 

pushbutton can now be pressed to verify that location 
003000 again has received the correct answer, 000012. 

4-44. REFERENCING OTHER PAGES. 

4-45. The procedures given in the preceding paragraphs 
used three memory reference instructions: LDA 3001; 
ADA 3777, I; and ST A 3000. All of these instructions 
were stored in the second page of memory (refer to 
paragraph 2-23); i.e., they were stored in locations 277 4, 
2775, and 2776. In addition, the addresses to which these 
instructions referred (3001, 3777, 3000) were also located 
in the second page of memory. Thus each memory refer­
ence is a current page reference; i.e., no reference is made 
to an address which is outside the page in which the 
program itself is operating. 

4-46. One program reference (ADA 3777 ,I) went to 
the page limit. This instruction could not have been ADA 
4000,I, which refers to a location just one address higher. 
Location 4000 is not on the current page. On the other 
hand, ADA 1777 (with or without I) is possible, even 
though location 1777 also is not on the current page. The 
following paragraphs, through 4-62, deal with the special 
considerations for referencing memory pages other than 
the current page. The first step is to know what consti­
tutes a page of memory. 

Section IV 

4-47. CONCEPT OF THE MEMORY PAGE. 

4-48. The necessity for dividing memory into pages 
arises in small computers, such as the HP 2114B, from 
the fundamental design concept of combining the instruc­
tion code and the memory reference into one computer 
word. This contributes to speed and efficiency in the 
computer, but also limits the number of bits available for 
the memory reference. As shown in figures 2-3 and 2-4 of 
the specifications section, bits 0 through 9 of the memory 
reference instructions are available for the memory 
reference address. Refer now to table 4-4 and note under 
the MEMORY REFERENCE BITS column that the 
possible range of numbers using these bits is (in octal) 
0000 through 1777. To form addresses any higher than 
1777 requires the addition of bits listed under the PAGE 
BITS column. 

4-49. In the computer, a reference to memory is imple­
mented by transferring bits 0 through 9 of the instruction 
word from the T-register to the M-register during the 
fetch phase (see figure 3-15). The remaining bits, during 
the fetch phase, can only stay at the value they used 
when addressing the current instruction location, before 
the fetch phase began. (Optionally, these bits can be reset 
to zero for a reference to page zero; this is relatively 
simple to accomplish internally.) Thus the programmer 
must know if these bits currently agree with the 

Table 4-4. Memory Pages 

COMPLETE BINARY ADDRESSES (M-REGISTER) 
PAGE OCTAL 

NO. ADDRESSES PAGE BITS MEMORY REFERENCE BITS 

0 00000 (*) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
01777 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 

1 02000 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
03777 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 

2 04000 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
05777 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 

3 06000 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 
07777 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 

4 10000 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
11777 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 

5 12000 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 
13777 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 

6 14000 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 
15777 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 

7 16000 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 
17777 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 

*Direct/Indirect bit does not form part of an address. 

4-9 



Section IV 

corresponding bits of the address he wishes to 
reference. To assist the programmer in this task, the 
convention is established of dividing memory into 
blocks called pages. Each block contains 2000 (octal) 
memory locations (or 1024 decimal). This block size is 
determined by the range of direct addressing capability 
(0000 through 1777), and each such block is assigned a 
page number. 

4-50. Identification of page numbers is simplified by 
considering the 5 page bits (see table 4·4) as a separate 
binary word. Thus 00000 is page O; 00001 is page 1; etc. 
Going back to the problem example in paragraph 4-46 
(where it was stated that the ADA instruction in location 
2775 could not directly reference location 4000), the 
situation can be analyzed as follows: 

a. Current address is 000 010 111111101 (02775). 

b. Page number (first five bits) is 000012 (page 1). 

c. Desired reference is 000 100 000 000 000 (04000). 

d. Page number (first five bits) is 000102 (page 2). 

4-51. The desired reference requires a page change, or, 
in other words, bits 10 through 15 of the M-register must 
be altered in addition to the usual alteration of bits 0 
through 9. To do so requires the use of a programming 
technique described under paragraph 4-55 (indirect ref­
erences). A simpler technique of addressing another page 
(limited to page zero only) is discussed first in the fol­
lowing paragraph. Figure 4-5 shows individual memory 
cells which are addressable from a location on page 1. 
This source location may be thought of as location 2775, 
the same example as in the preceding discussions. Page 1 
is the current page. 

4-52. DIRECT REFERENCES. 

4-53. The arrows going left from location 2775 in 
figure 4-5 show that, without using an indirect address, an 
instruction at this point can reference a location on either 
the current page or page 0. This doubles the range of 
possible references for instructions which are located on 
any page other than page 0. Bit 10 of the instruction 
word is reserved for distinguishing which page is 
referenced (zero for page 0, or one for current page). 
This distinction must always be considered when 
coding any memory reference instruction, or an erro­
neous reference may be made. The memory reference 
bits alone are not sufficient to identify a location. For 
example, ADA 5777 and ADA 1777 (assuming that 
the program is operating in page 2) have identical 
memory reference bits: 

ADA 5777: 0 100 01(1111111111) 
ADA 1777: 0100 00(1111111111) 

4-54. Only bit 10, the zero/current indicator, can make 
the distinction. The C in the coding table is a reminder 
that bit 10 must be coded a one when referencing current 
page. Otherwise it must be a zero for all memory 
reference instructions. Remember that bit 10 of the 

4-10 

2000-54 

01 RECT /INDIRECT 

PAGE 
0 

2 

3 

I \ 

·~- f·--
. ....L. ·-­

Z775 

• 

• 

• BIT PLANE 

Figure 4-5. Direct and Indirect References to 
Other Pages 

2114B 

instruction word is not an address bit. Its function is to 
control bits 10 through 15 of the M-register: to either 
reset these bits to zero, or leave them alone. This provides 
an easy, direct access to information on page 0 from any 
other page, thus making page 0 useful for storage of data. 
Programs are generally stored in other pages (as the 
examples in this section do) in order to reserve page 0 for 
information which may be referred to frequently. 

4-55. INDIRECT REFERENCES. 

4-56. The arrows going right from location 2775 in 
figure 4-5 show that, by using an indirect address in the 
first referenced location, any location in memory can 
then be accessed. As in the preceding paragraph, the 
initial reference (contained in the instruction word), can 
refer to a location on either the current page or page 0. 
Broken lines in figure 4-5 indicate this optional choice. 
Either way, the initial reference is simply an intermediate 
step to the final desired reference. Obviously an added 
machine operation (indirect phase) is required, as well as 
the added memory location. The means of telling the 
computer that this additional step is desired is to code a 
one in bit 15 of the instruction word. An I in the coding 
table is a reminder to do this. 

4-57. PROGRAM EXAMPLE. 

4-58. Table 4-5 lists a program illustrating both a 
direct reference to page 0 and an indirect reference to 
page 2. As before, the program itself operates approxi­
mately in the middle of page 1. This program differs from 
that of table 4-2 in that the data, instead of being stored 
on the current page (location 3001), now appears in two 
different locations: location 1001 on page 0, and location 
4000 on page 2. Figure 4-6 shows in simplified form the 
referencing accomplished by this program. 



2114B Section IV 

Table 4-5. Program for Interpage Referencing 

ADDRESS CONTENTS 

INSTRUCTION MEMORY D/I A/B (OR DATA) REFERENCE 

002774 LDA 1001 
002775 ADA 3777 I 
002776 STA 3000 
002777 HLT 
003000 
003777 4000 
004000 5 
001001 5 

4-59. LOADING THE PROGRAM. Unless memory has 
been disturbed, the program of table 4-5 can be loaded 
by making a few changes to the existing conditions of the 
computer on completion of the preceding procedures. 
(The reader, at this point in the text, should be able to 
load a complete program, given octal addresses and octal­
coded contents; refer back to paragraph 4-33 if neces­
sary.) Changes required are: 

a. Load location 002774 with contents 061001. 
b. Load location 003777 with contents 004000. 
c. Load location 004000 with contents 000005. 
d. Load location 001001 with contents 000005. 

4-60. DIRECT REFERENCE. Set the switch register to 
the starting address (002774), and press LOAD 
ADDRESS. Remembering that only bits 0 through 9 of 
the word about to be read out of memory are transferred 
to the M-register, watch bit 10 of the M-register and press 

PAGE 
0 IDATAI c;:· 001 

~I GR~lll (REF) 

• • m1J-j 2774 2775 

• 
4000 (DATA) 

2 

3 

ADD 5 INDIRECT LOAD 5 DIRECT 

l l 
A- REGISTER r o ooo 00 0 000 001 010J 

2000-55 
Figure 4-6. Examples of Interpage 

Referencing 

ZIC 

c 
c 

REMARKS 

OCTAL 
CODE 

061001 Get augend from page Zero, put in A. 
143777 Add the addend specified by 3777 •. 
073000 Put answer in 3000. 
102000 Halt. 

- Reserved for answer. 
004000 Address of addend is 4000. 
000005 Data (on Page 2). 
000005 Data (on Page O). 

SINGLE CYCLE once. Bit 10, a page bit, has changed 
from a one to a zero, thus changing pages. This situation 
is shown in figure 4-6, where the instruction word in 
location 277 4 is causing location 1001 to be addressed. 
The contents of location 1001 is known to be 5; this will 
be loaded into the A-register in the next (execute phase). 
Again watch bit 10 of the M-register and press SINGLE 
CYCLE. The page indication returns to page 1 to address 
the next instruction (in 2775), and the data (octal 5) is in 
the A-register. Referring to figure 4-6, an instruction on 
page 1 has commanded data from page 0 (by direct 
reference) to be put into the A-register. 

4-61. INDIRECT REFERENCE. Previously, in para­
graphs 4-46 and 4-50, it was pointed out that a direct 
reference from location 2775 to 4000 is not possible. 
These two paragraphs describe the indirect method for 
making this reference. Briefly, the method is to make an 
initial reference to a location on the current page, pick up 
a 15-bit address there, and use that address to reference 
location 4000 (refer to figure 4-6). Although the initial 
reference could be anywhere on the current page or page 
0, location 3777 (which is immediately adjacent to 
location 4000) has been chosen to emphasize the concept 
of page boundaries. 

4-62. Watching bits 11 and 10 of the M-register, press 
SINGLE CYCLE. These bits remain 012 (page 1) for the 
initial reference to location 3777 on the current page . 
Note that the computer has acknowledged the fact that 
indirect· addressing is desired, since the INDIRECT light is 
on; this condition was specified by a one in bit 15 of the 
instruction word (now visible in the T-register). Again 
watching bits 11 and 10 of the M-register, press 
SINGLE CYCLE. These bits change to 102 (page 2) 
for the indirect reference to location 4000. Since bit 
15 of the T-register is now a zero (not indirect), the 
EXECUTE phase condition is indicated. This means 
that the next phase will execute the instruction, and the 
M-register will return to page 1 for the next instruction. 
Watching bits 11 and 10 of the M-register, press SINGLE 
CYCLE. These bits return to 012 to address location 
2776. The remaining actions are the same as in table 4-3, 

4-11 



Section IV 

steps 6, 7, and 8. Press SINGLE CYCLE three more times 
to complete the program. 

4-63. JUMPS. 

4-64. In all previous examples, although random refer­
ences to various points in memory were made, the program 
itself (i.e., the list of instruction words) was located in a 
few consecutive locations in page 1. This strict sequential 
operation would be severely limiting for practical appli· 
cations. Therefore provision must be made for the program 
to move freely throughout available memory. The jump 
instructions (JMP and JSB) provide this capability. 

4-65. The essential difference between these two 
instructions is that the JMP (jump) instruction uncondi· 
tionally suspends operation at the currently used area of 
memory and continues operation in a new area, whereas 
JSB (jump to subroutine) provides a means of remem­
bering the location where the jump command was given, 
thus enabling a return to that point at some later time. 
Table 4-6 illustrates both kinds of jumps by treating the 
program previously developed as a subroutine (to add 
5 + 5), and adding a few preliminary instructions. These 
preliminary instructions represent the main program; for 
simplicity of illustration, several NOP (no operation) 
instructions are inserted to represent a more lengthy 
sequence of working instructions. 

4-66. The special considerations for referencing other 
pages, as covered in the preceding discussion (paragraphs 
4-44 through 4-62), apply to the jump instructions. This 
means that the program can jump directly to any location 
on either current page or page zero, or indirectly to any 
location in memory. The program example in table 4-6 

21148 

illustrates both a direct JMP and an indirect JMP, but 
only a direct JSB. An indirect JSB occurs in the same 
way as does the indirect JMP. 

4-67. LOADING THE PROGRAM. If memory remains 
undisturbed from preceding procedures, the new program 
can be loaded simply by loading the octal code contents 
into the corresponding address for those items not shaded 
in table 4-6. Otherwise it is necessary to load all 15 
addresses listed in the table. Note that LOAD ADDRESS 
must be used three times, since three separate areas of 
memory are being· loaded. 

4-68. THE JMP INSTRUCTION. Set the switch register 
to the starting address (002100) and press LOAD 
ADDRESS. Assume that a working program has been 
running sequentially up to this point (i.e., the P-register 
increments by one on completion of each instruction). 
For example, we may monitor the contents of the p. 
register by observing the contents of the M-register at the 
end of each execute phase. At this time the P-register is 
incremented and transferred to the M-register. By pressing 
the SINGLE CYCLE button the first NOP instruction is 
executed, and the P-register (also the M-register) advances 
from 002100 to 002101. In location 2101 is the instruc­
tion to jump to location 2200. Since a direct jump is a 
one-phase instruction, the jump will be completed in the 
next operation. When the SINGLE CYCLE button is 
pressed the P-register (also the M-register) does not incre­
ment by one, but rather jumps from 002101 to 002200. 
If the intervening instructions had contained instructions, 
those instructions would be omitted from the sequence of 
this program. Press SINGLE CYCLE two more times and 
note that at the end of the execute phase, the P-register 
(also the M-register) increments normally from the new 
operating point of 002200. 

Table 4-6. Examples of Program Jumps 

ADDRESS CONTENTS 

D/I A/B Z/C 
INSTRUCTION MEMORY 

(OR DATA) REFERENCE 

2200 c 

2773 c 

4-12 

OCTAL 
CODE 

REMARKS 

Program starts here (no operation). 
· Jump to 2200. 
·No o eration. 
No operation. 
Jump to 5 + 5 subroutine at 2773. 
Halt. 



2114B 

4-69. THE JSB INSTRUCTION. The P-register is now 
at the location (2202) which contains the instruction to 
jump to the subroutine which begins at location 2773. 
This subroutine, as the remarks column states, is a 
procedure to add 5 plus 5. It is desired, on completion of 
the subroutine, to return to the main program at the 
succeeding location (2203). It happens that the HLT 
instruction is located in 2203, but a program­
continuing instruction could as well be stored there, 
and the program (P-register) would advance as usual to 
2204, 2205, etc. 

4-70. The JSB instruction, unlike JMP, requires two 
phases. The first phase (fetch) only references the 
location being jumped to; i.e., the P-register does not 
change in this phase. Watch the M-register and press 
SINGLE CYCLE, noting that location 2773 is ref­
erenced. The P-register will still contain the location 
(2202) where the jump command was· given. The next 
phase will store the return address into the referenced 
location, and will complete the jump. When SINGLE 
CYCLE is pressed both the P- and M-registers will contain 
the address of the first instruction of the subroutine 
location 2774. Note also that the T-register holds the 
number 2203, the return address, which was stored into 
location 2773 during the phase just completed. This value 
is one higher than the location jumped from since 
obviously a return to location 2202 would send the pro­
gram right back into the subroutine, and it would loop 
continuously without ever reaching 2203. 

4-71. Now press the SINGLE CYCLE pushbutton 
seven more times. This executes the three instructions 
of the subroutine, which are identical to the instruc­
tions of the previous program (table 4-5). The content 
of location 2777, however, is now an indirect jump 
via location 277 3. Location 277 3, remember, contains 
the return address. Watch the M-register and press 
SINGLE CYCLE; this references location 2773. Since the 
next phase will be an indirect phase (INDIRECT light is 
on), the content of the referenced location will be in­
terpreted as an address. The indirect phase will complete 
the jump to that address. Again press SINGLE CYCLE. 
The M-register (also the P-register) now addresses loca­
tion 2203 of the main program, completing the jump 
out of the subroutine. Pressing the SINGLE CYCLE 
button will execute the HLT instruction contained in 
location 2203. 

4-72. The preceding three paragraphs show how sub­
routines are accessed. By definition, a subroutine is a 
sequence of instructions designed to perform a single 
task, with provisions included to allow entry from any 
point in a program and return to the same point. The 
contents of locations 277 3 through 2777 comprise a 
typical subroutine. The single task is an addition, and 
the entry and return requirements is guaranteed by 
storing the return address in location 277 3 (a function 
of the JSB instruction) and by including an indirect 
jump via this location at the end of the subroutine 
(programmer's responsibility). 

4-73. INTRODUCTION TO PROGRAM 
DEVELOPMENT. 

Section IV 

4-74. The program examples given in the preceding 
discussions have been simple enough that no explanations 
were offered to explain how the programs were derived. 
The main object has been to demonstrate the register 
manipulations which occur during the running of the 
program. Refer ahead to the next program example in 
table 4-8, and note that 12 lines have been added to the 
previous 15, nearly doubling the length of the program. 
Readers without previous programming experience may, at 
this point, wish to know just how this sequence of instruc­
tions was developed. For example, how was it known in 
advance that the new starting address of the program would 
be 2166? 

4-75. The answer is that preliminary development in 
rough form preceded the assigning of actual addresses. 
Temporary labels were used in place of final addresses. This 
introduces the concept of symbolic programming, which 
later becomes the exclusive means of program writing when 
software is involved. For such purposes, however, specific 
rules governing the use of labels apply, which are beyond 
the scope of this volume. This volume therefore uses a 
symbolic notation (lower case letters) unique to these dis­
cussions, with the implication that such labels are tem­
porary assignments for rough work only. The appearance of 
lower case letters in a written program provides an imme­
diate and obvious indication that the program is not 
completely developed. 

4-76. The following description of looping and counting 
includes detailed information on the development of the 
program example. Before going into details of the program, 
however, it is first necessary to decide on general techni­
ques, based on the problem to be solved. Suppose that the 
problem to be solved is: 

[5 + 3(2)] + 5 = 1610 

4-77. The previously developed program showed how to 
use a subroutine to add two numbers, both of which 
happened to be 5. For convenience, the same subroutine 
can be used by letting one of the numbers be 5, and the 
other can be the result of the 5 + 3(2) calculation. Now it is 
only necessary, at some time before going into the sub­
routine, to perform the 5 + 3(2) calculation and store the 
result in an easily referenced location. It is the object of the 
following paragraphs to show how to do this calculation 
with a simple loop. Therefore the general techniques 
decided upon are: use a loop to calculate (5 + 3(2)), and 
use the previously established subroutine to add the result 
to the number 5. 

4-78. LOOPING AND COUNTING. 

4-79. THE PROGRAM LOOP. 

4-80. To save core space (and, incidentally, to ease the 
burden on the programmer), it is frequently convenient to 
use a program loop when a sequence of instructions within 

4-13 



Section IV 

a program is to be repeated several times, with little or no 
change on each repeat. As in the present example, 
suppose it is desired to add 2+2+2 etc., any number of 
times. to the number 5. To accomplish this, it would be 
possible to put the number 5 into location z, 2 into 
location y, and then add repeatedly: 

a. LDA z 
b. ADA y 
c. ADA y 
d. ADA y, etc. 
z. 5 
y. 2 

4-81. By simply jumping back to the first add instruc­
tion immediately after it has been once completed, an 
endless program loop is created, accomplishing the same 
effect: 

a. LDA z 
Cb. ADA y 

c. JMP b 
z. 5 
y. 2 

4-82. The program starts at location a, which loads the 
contents of z (the number 5) into the A-register, then 
advances to location b, which adds the number 2 to the 
existing contents of the A-register (i.e., 5+2). Location c 
contains the instruction to jump back to location b, and 
thus add 2 again to the existing contents of the A-register 
(i.e., 5+2+2). This is the essential concept of the program 
loop. Obviously this simple sequence is not practical as it 
stands, since the loop will repeat endlessly. Some means 
must be provided for getting out of the loop after it has 
been repeated a desired number of times. This necessitates 
an instruction sequence to count each loop as it occurs, 
and then to exit from the loop when the desired count 
has been reached. The required sequence is next 
discussed. 

4-83. COUNTING TO A LIMIT. 

4-84. The ISZ instruction (increment, and skip if zero) 
is commonly used for counting to a preset limit, since its 
special features include both the counting (incrementing) 
and exit (skip) capabilities in one instruction word. A 
location in memory can be reserved for use as a counter; 
each time this location is referenced by the ISZ instruc­
tion, it is incremented by one (in the positive direction). 
If the counter location is initially set to a negative value, 
it will increment toward zero each time it is referenced. 
In the present example, if the counter is set to -3 before 
the loop is entered, the counter will go to zero on the 
third pass through the loop. This is the condition which 
causes the program to skip the next instruction. If the 
skipped instruction is the JMP instruction which causes 
the loop to repeat, the skip provides the means of getting 
out of the loop (after the third pass). This gives the 
following sequence: 

4-14 

2114B 

a. LDA z 

[Cb. 
ADA y 

d. ISZ x 
c. JMP b 

I 
STA '- ..... e. w 

z. 5 
y. 2 
x. -3 
w. reserved for subtotal 

4-85. Note that is has been necessary to insert a new 
location (labeled d) between locations b and c. Remember 
that the lower case letters are labels only; they need not 
be in alphabetic sequence. The instruction sequence here 
is a,b,d,c,e. The STA instruction in location e has been 
added to define where the program continues on exit 
from the loop. Also it has been necessary to add loca­
tion x for the counter (preset to -3), and to add 
location w to store the result of the calculation. Storage 
of the result (which is obtained in the A-register) is 
necessary since the A-register will be used for other pur­
poses in the program. 

4-86. The program begins by loading 5 into the A­
register, then advances to location b to add 2. Next, the 
ISZ instruction increments counter location x to -2. Then 
the JMP instruction causes a return to location b, where 
again 2 is added to the A-register. ISZ increments counter 
location x to -1. The JMP instruction causes a second 
return to location b, where 2 is added for the third (final) 
time to the A-register. ISZ increments counter location x 
to 0, and the program skips the JMP instruction and goes 
instead to location e. Here, the contents of the A-register 
are stored into location w, and the program continues to 
whatever instruction is next. 

4-87. TALLYING. 

4-88. Occasions arise in which it is desired simply to 
count, or produce a tally of the number of times a 
particular event occurs. This does not involve a loop or a 
skip, but again the incrementing feature of the ISZ in­
struction can be used. For example, suppose it is desired 
to know (or verify) how many passes through a loop are 
actually executed. In the present simple example of a 
program loop, the purpose of the tally would be to count 
how many times the number 2 is added to the number 5 
(loaded into the A-register before the loop begins). There­
fore an ISZ instruction, located ahead of the ADA in­
struction, can be used to increment a reserved tally loca­
tion each time ADA is about to occur. (In this simple 
example, the tally could be placed either before or after 
the addition. In more complex programs, a definite place­
ment may be dictated by the structure of the program). 
The tally, in this case should be 3 after the program has 
been run, indicating that three passes through the loop were 
made. Since the skip if zero feature of the ISZ instruction is 
not used, a NOP (no operation) instruction could follow 
ISZ, so that if the total should happen to exceed +32767 
(and thus rolls over to zero), the resulting skip will not 
affect the operation of the program. The program loop now 
consists of the following sequence: 



2114B 

a. LDA z 

C'· ISZ v 
g. NOP 
b. ADA y 
d ISZ x . 

: c. JMP f (note new reference) 
I 

STA L-.e. w 
z. 5 
y. 2 
x. -3 (Counter) 
w. reserved for subtotal 
v. 0 (Tally) 

4-89. INITIALIZATION. 

4-90. The need for initialization frequently occurs in 
programming, and is not exclusively associated with 
counting and tallying. It is introduced here as a typical 
example of the principle. Initialization enables a program 
to be repeated any number of times, by presetting to 
starting values all locations which must be in a specific 
state at the start of a program but are in a different state 
at the end of the program. This applies particularly to 
counters and tally locations. In the above examples, the 
counter starts at -3 and ends at 0, while the tally starts 
at 0 and ends at 3. To permit the program to be run a 
second time, the counter must be set back to - 3 and the 
tally must be set back to 0. This is generally done at the 
start of a program; hence the term initialization. 

4-91. Creating the two's complement form of a neg­
ative number can also be accomplished easily in the 
initialization, by using the combined register reference 
instructions CMA and INA (complement and increment 
the A-register). It is then necessary only to provide posi­
tive numbers for constants. Thus the complete initiali­
zation for both the counter and the tally would consist of 
five instructions: 

aa. LDA u } ab. CMA, INA Set counter to -3 
ac. STA x 
ad. CLA } ae. STA v Set tally to 0 
u 3 

4-92. Location u has been added to contain the posi­
tive number 3. The first instruction of the program puts 
this number into the A-register. The next instruction, in 
location ab, converts this number to -3. Then the result 
is stored in the location (x) previously established for the 
counter (paragraph 4-84). Location ad clears the A­
register (all zeros), and this value of 0 is put into the 
location (v) previously established for the tally (paragraph 
4-88). 

4-93. COMPLETE PROGRAM. 

4-94. Putting together all parts of the symbolic pro­
gram developed in paragraphs 4-78 through 4-92, and 
then combining them with the previously developed sub­
routine, the partially developed listing given in table 4-7 is 

Section IV 

obtained. Note that two of the locations assigned symbolic 
addresses (z and w) already have actual addresses assigned: 
3777, which references the addend requested by the sub­
routine, and 1001, which contains the augend (formerly the 
fixed number 5, now the subtotal produced by the loop) . 
Looking under the memory reference column, it is seen 
that four other references (u,x,v,y) require an assignment in 
t:Qe address column. These are symbolically listed at the end 
of the program as a reminder to assign specific addresses for 
these references. There can be no unassigned references. 

4-95. Now it is simply a matter of assigning actual 
addresses for the instructions by working backward from 
the first fixed address (2202), thus arriving at 2166 for the 
starting address. For ease of reference, the locations 
reserved for counters and constants are assigned locations 
on page 0, starting at the first fixed address, 1001. The 
resulting assignments for the fully developed program are 
shown in table 4-8. 

4-96. A significant change in the remarks column has 
been introduced in the transposition from table 4-7 to 
table 4-8. In the former table it is necessary to read the 
remark for every instruction in order to understand the 
intended operation. Table 4-8 simplifies the reading by 
letting one remark apply to a group of instructions, 
assuming that the reader already understands such funda­
mentals as initialization, counting, looping, and subroutine 
entry and exit. 

4-97. LOADING THE PROGRAM. If memory remains 
undisturbed from preceding procedures, the program of 
table 4-8 can be loaded simply by loading the octal code 
contents into the corresponding address for those items not 
shaded in the table. Otherwise it is necessary to load all 27 
locations in order to run the program. 

4-98. RUNNING THE PROGRAM. As before, it is pos­
sible to step through the program one phase at a time, by 
loading the new starting address and pressing SINGLE 
CYCLE for each phase. For a program of this length, 48 
operations of the SINGLE CYCLE pushbutton are neces­
sary to step through the entire program. If it is desired to 
examine in detail only the new portions of the program 
(initialization, looping, and counting), the instructions 
preceding the JSB instruction should be stepped through 
(36 operations of SINGLE CYCLE) and then press RUN to 
let the computer execute the remainder automatically. 
However, the program includes several locations which can 
be checked, after the program has been run, to verify that 
the program actually was executed in the manner pre­
scribed by the written program. Simply load the starting 
address (002166), press RUN, and check the results as in 
the following paragraph. 

4-99. First, load the answer address (003000) and press 
DISPLAY MEMORY. Since the probelm was stated to be 
5 + 3(2) + 5, the answer, obviously, must be 16 (decimal) 
or 20, octal. That is, bit 4 of the T-register must be on, and 
all others off. To verify that the required three passes 
through the loop were completed, three locations can be 
checked: the subtotal, the loop counter, and the tally. Load 

4-15 



Section IV 2114B 

Table 4-7. Preliminary Program Development 

ADDRESS CONTENTS 

D/I A/B Z/C INSTRUCTION MEMORY 
(OR DATA) REFERENCE 

aa 
ab 
ac 
ad 
ae 
a 
f 
g 
b 
d 

u 
x 
v 
y 

LDA u 
CMA, INA 
STA x 
CLA 
STA v 
LDA 3777 (z) I 
ISZ v 
NOP 
ADA y 
ISZ 
JMP 
STA 

2 

the address of the subtotal (001001) and press DISPLAY 
MEMORY. The T-register should indicate 000013 (11, 
decimal), the result of calculating 5 + 3(2). Press DISPLAY 
MEMORY to pass over the next location (a constant) and 
then once more to display the content of the loop counter. 
All T-register lights should be off (zero). Press DISPLAY 
MEMORY once more to display the tally, which should be 
000003, indicating three passes. 

4-100. SPECIAL ADDRESSING METHODS. 

4-101. Table 4-9 is the final expansion of the program 
developed in the preceding portion of this section. Two 
special addressing methods are illustrated by the added 
instructions: address modification and• inter-register ref­
erencing, in which an accumulator is referenced as though it 
were a memory location. For the purpose of illustration, 
the program is expanded to solve the following problem: 

[5 + 3(2) + (sum of 4 numbers)] -1010 

4-102. The four numbers undefined in the term sum of 
4 numbers could be subtotals from other parts of a 
complex program. Such a program could be arranged to 
store these subtotals into four consecutive locations, thus 

4-16 

c 

c 

c 
c 
c 

c 
c 
c 

OCTAL 
CODE 

REMARKS 

Start. Put 113" in A. 
Convert to -3. 
Put -3 in Loo Counter. 
Zero the A-Register. 
Put 0 in Tally. 
Put "5" in A. 
Add 1 to Tally. 
No Operation (void skip). 
Add 2 to value in A. 
Add 1 to Loop Counter. Exit if count 0. 
Repeat Loop. 
Store subtotal in w on exit from loop. 

Reserved for Loop Counter. 
Reserved for Tally. 
Data. 

making the numbers easily accessible by the programming 
technique known as address modification. This technique is 
described under paragraph 4-104. For simplicity, four fixed 
numbers will be manually loaded into four consecutive 
locations, starting at location 4000. This location was pre­
viously assigned to contain the number 5; the remaining 
three will be loaded as follows: 

4001: 218 

4002: 1408 

4003: 35708 

4-103. In the previous program, the answer was stored in 
location 3000 during the subroutine. Since the new 
problem demands an additional operation (subtract 1010), 

the new program will delay storage of the answer until this 
additional operation has been completed (after the sub­
routine). The partial answer from the subroutine w.ill be 
retained in the A-register while the B-register retains the 
number -10. Then the contents of the two accumulators 
can be combined by the inter-register operation described 
under paragraph 4-110, addressing the accumulators. 

4-104. ADDRESS MODIFICATION. 

4-105. In explaining the operation of counters under 
paragraph 4-83, it was shown that the ISZ instruction could 



2114B 

be used to advance (or modify) a number contained in a 
specific location. Since there is no restriction on the type of 
word that can be in the addressed location, the number 
could as well be an address. For example, in the subroutine 
of the program in table 4-8, location 3777 contains the 
address 4000. The corresponding remark states that the 
address of data is 4000. If an ISZ instruction, referencing 
location 3777, incremented the number to 4001, the 
applicable remark would be address of data is 4001. 
Furthermore, if a loop were used to increment loca­
tion 3777 any number of times, an entire block of 
data can be referenced with relatively few instructions. 
The basic sequence is: 

a. ADA 3777, I 
b. ISZ 3777 
c. JMP a 

4-106. Assuming that location 3777 initially contains 
the address 4000, the instruction in location a adds to the 
A-register the data whose address is contained in location 
3777 (i.e., the data in 4000 is added toA). The ISZ instruc­
tion in location b increments the contents of location 3777 
to 4001. Then the program jumps back to location a, and 
the data in location 4001 is added to the A-register. As 

Section IV 

explained under looping and counting (paragraph 4-78), 
some means must be provided for getting out of the loop. 
A common method is to compare the current reference 
with the last address of the block (in this case 4003), and 
provide an indirect jump via the return address out of the 
subroutine. Since the B-register is not in use, it can be 
used to hold the final address, for comparison purposes, 
and is therefore first loaded with 4003. Thus the com­
plete sequence for the loop (to be contained within the 
subroutine) is: 

d. LDB z 
a. ADA 3777, I 
e. CPB 3777 
f. JMP return address, I 
b. ISZ 3777 
c. JMP a 
z. 4003 

4-107. With the comparison limit in the B-register, the 
program advances to location a, where the quantity 5 (see 
table 4-9) is added to the A-register, indirectly via location 
3777 (which references 4000). Then location e compares 
the contents of 3777 (currently 4000) with the contents of 
the B-register (fixed at 4003). Since the two numbers are 

Table 4-8. Program to Illustrate Looping and Counting 

ADDRESS CONTENTS REMARKS 

INSTRUCTION MEMORY OCTAL 
(OR DATA) REFERENCE D/1 A/B Z/C CODE 

LDA 1002 061002 INITIALIZE. 
CMA,INA 003004 Set Loop Counter to -3. 
STA 1003 071003 
CLA 002400 INITIALIZE. 
STA 1004 071004 Set Tally to 0. 
LDA 3777 I c 163777 PUT 5 into A. 
ISZ 1004 035004 LOOP. 
NOP 000000 Add 2 three times to A. 
ADA 041005 Tally number of passes. 
ISZ 035003 
JMP c 026174 
STA 071001 
JSa.······ 
JJLT 

LOOP COUNTER. 
TALLY. 

2 000002 Data (on Page 0). 

4-17 



Section IV 

unequal, the terminating jump in location f is skipped (see 
CPB definition in paragraph 2-73 of specifications), and 
location b increments the contents of 3777 to 4001. 
Location c causes a jump back to the start of the loop. The 
next pass through the loop adds the quantity 21 (contents 
of 4001) to the total accumulating in the A-register. The 
comparison (4001 vs 4003) causes another repeat of the 
loop, adding the quantity 140 (contents of 4002) to the 
A-register. The next comparison (4002 vs 4003) is still 
unequal and another repeat of the loop adds 3570 (con­
tents of 4003). This time the CPB instruction finds the 
contents of 3777 and of the B-register to be equal ( 4003 vs 

2114B 

4003), and the JMP instruction in location f is taken. This 
ends the loop. 

4-108. Note that location 3777 ends with the number 
4003 in it, whereas initially it must contain 4000. As 
explained under paragraph 4-89, this condition requires 
initialization. This is accomplished prior to the start of the 
loop by getting the number 4000 into the A-register from a 
location reserved to store this number as a constant, and 
then storing it into location 3777. Thus the following 
words are added to the program: 

Table 4-9. Program to Illustrate Special Addressing Methods 

ADDRESS CONTENTS REMARKS 

INSTRUCTION MEMORY OCTAL 
IOR DATA) REFERENCE D/I A/B ZIC CODE 

002202 01 JUMP to subroutine at 
002203 B 065010 PUT -12 
002204 INB B 007004 into B. 
002205 0001 040001 ADD -12 to subroutine total. 
002206 3000 c 073000 PUT answer in 3000. 
002207 102000 HALT. 
002766 SUBROUTINE. 
002767 LDA 1006 061006 Add block of numbers in 
002770 STA 3777 c 073777 locations 4000 thru 4003 
002771 LDA 1001 061001 to subtotal in 1001. 
002772 LDB 1007 B 065007 
002773 ADA 3777 I c 143777 Add Loop. 
002774 CPB 3777 B c 0577 Check for Last Address. 
002775 JMP 2766 I c 126766 Exit. 
002776 ISZ 3777 c 037777 
002777 JMP 2773 c 026773 

4-18 



2114B 

g. LDA y 
h. STA 3777 
y. 4000 

4-109. The instruction sequences listed in the two pre­
ceding paragraphs account for all but one of the instruc­
tions for the new version of the subroutine. The one 
remaining instruction (as in the previous program) must put 
the results of the earlier subtotal (in 1001) into the A­
register before the loop begins, but after initialization. The 
resulting 10 locations for the subroutine can now be 
assigned absolute addresses and transferred into the pro­
gram table (locations 2766 through 2777). Location 2777 
is retained as the final location of the subroutine, and the 
other locations are assigned working backward from this 
point. 

4-110. ADDRESSING THE ACCUMULATORS. 

4-111. As stated in paragraphs 2-35 and 2-36 of the 
specifications section, the A-register and the B-register can 
be addressed as locations 0000 and 0001 respectively. The 
memory cells which would ordinarily be identified by these 
addresses are not available to the programmer. Thus, for 
example, an ADA 0001 instruction would add to the A­
register the contents of the B-register. Since both of these 
registers are accumulators, it is possible to perform separate 
arithmetic operations on the two accumulators, and then 
combine the two accumulated results with a single 
instruction. 

4-112. In solving the problem given in paragraph 4-101, 
the program, up to the point of coming out of the sub­
routine, has performed all the arithmetic except for the 
subtraction of the decimal number 10 (12 octal). The result 
exists in the A-register. If it were necessary to derive the 
subtrahend by some arithmetic, such as conversion from a 
positive number, this can be done in the B-register, while 
the minuend is held in the A-register. Then the instruction 
ADA 0001 (add B to A) can perform the subtraction, and 
the result (existing in the A-register) can be stored in the 
location reserved for the answer (3000). Since this com­
pletes the solution of the problem, the HLT instruction can 
follow, and the sequence of instructions which follow exit 
from the subroutine will therefore be: 

a. LDB z 
b. CMB, INB 
c. ADA 0001 
d. STA 3000 
e. HLT 
z. 12 

4-113. The instruction in location a puts the octal 
number 12 into the B-register. The combined instruction in 
location b converts this number to -12, and the instruction 
in c adds the number to the existing contents of the 
A-register. Location d stores the final answer into location 
3000, and the program halts at location e. This sequence 
can now be transferred to the program table as shown in 
table 4-9, locations 2203 through 2207, with the constant 
12 in location 1010. 

Section IV 

4-114. LOADING THE PROGRAM. If memory remains 
undisturbed from preceding procedures, the program of 
table 4-9 can be loaded simply by loading the octal code 
contents into the corresponding address for those items not 
shaded in the table. Otherwise it is necessary to load all 42 
locations in order to run the program. Five separate areas of 
memory are loaded, so be sure to set LOAD ADDRESS for 
each block. 

4-115. RUNNING THE PROGRAM. Set the starting 
address (002166) into the switch register and press LOAD 
ADDRESS and then RUN. To verify that the program 
actually was executed in the manner prescribed by the 
written program check the final answer and the subtotal. 
Load the answer address (003000) and press DISPLAY 
MEMORY. The answer to the problem stated in para­
graphs 4-101 and 4-102 is 3757 (in octal, or in decimal 
2031). Therefore the octal number 3757 must be dis­
played in the T-register. Now load the subtotal address 
(001001) and press DISPLAY MEMORY. The subtotal 
should be the same as in the previous program, octal 13. If 
the displayed subtotal is correct but the final answer is not 
correct, assume a loading error in the new portion of the 
program. If this is the case, use DISPLAY MEMORY to 
find the error. Reload the incorrect location and run the 
program again. 

4-116. INTRODUCTION TO FLOWCHARTING. 

4-117. In paragraph 4-76 it was stated that the first step 
in programming is to decide on general techniques, based 
on the problem to be solved. At this stage the programmer 
avoids thinking about the actions of specific instructions, 
but rather attempts to visualize overall operations. To assist 
the programmer in visualizing programs during develop­
ment, flowcharts are commonly used. Figure 4-7 is an 
example of a flowchart. Documentation for computer 
software uses ASA standard block symbols in flowcharts, 
only three of which are used in figure 4-7. However the 
general principles of flowcharting can be illustrated with 
these few symbols. The following paragraphs trace the 
entire process of developing a program from a stated 
problem through to actual running of the program. The 
process consists of four distinct steps: 

a. Flowcharting the program. 
b. Writing the program. 
c. Loading the program. 
d. Running the program. 

4-118. FLOWCHARTING THE PROGRAM. Suppose 
the problem is to set up a visual demonstration which will 
show, by observing the panel register lights, the action of 
shift and rotate instructions. (Such a demonstration may be 
of benefit to persons not yet well acquainted with 
computer operation.) The demonstration should be acti­
vated by pressing the RUN pushbutton (first symbol in 
figure 4-7), and should automatically terminate by a halt 
instruction at the end of the program (last symbol in figure 
4-7). The shape of these symbols identifies a terminal 
operation (start or stop). 

4-19 



Section IV 

CHANGE 

RUN 

LOAD SHIFT 
INSTRUCTION 
IN LOOP (8) 

PUT PATTERN 
INTO A 

INITIALIZE 
SHIFT 

COUNTER (9) 

INSTRUCTION M----C: 

2000-40 

( 3) 

11 

Figure 4-7. Flowchart for Shift-Rotate 
Demonstration 

2 

3 

4 

5 

6 

7 

8 

9 

10 

12 

4-119. An effective demonstration would be to put an 
easy-to-watch pattern into one of the accumulators (fourth 
block in figure 4-7), and then somehow take each of the 
shift-rotate instructions individually and . move the bits 
slowly left or right from one end of the accumulator to the 
other. One shift every two seconds might be an acceptable 
rate, and 16 such shifts (the length of the accumulator) 
should be sufficient time to observe the action. The instruc­
tion being demonstrated should therefore change after 
every 16 shifts. (For brevity, a shift is meant to apply to 
the action of either a shift or a rotate instruction.) 

4-20 

2114B 

4-120. The conditions of the preceding paragraph indi­
cate the need for a means to time 1-second intervals (block 
7), a means to determine if 16 shifts have occurred (block 
9), and lastly a means to determine if all instructions have 
been demonstrated (block 10). Note that all of these blocks 
are diamond-shaped, which identifies a decision making 
capability. Generally the input fact is applied to the top of 
the diamond, with three possible output branches, repre­
senting yes or no decisions. 

4-121. A practical means for timing and counting shifts 
would be to use counters; the check for last instruction 
could be a comparison of current instruction (block 8) with 
the code for the final instruction. Since both counters will 
go through their full count sequences several times, initiali­
zation must be provided for both (blocks 5 and 6). A means 
must also be provided (blocks 3 and 11) for inserting the 
instruction into block 8, and for changing the instruction 
for each demonstration loop. This accounts for all twelve 
blocks. It is now only necessary to arrange the program 
sequence and the internal loops. 

4-122. As usual, the first event in the program (block 2) 
is to ensure, by initializing, that the program is repeatable. 
At this time it may not be known exactly what parts of the 
program will require initialization, so no specific action is 
stated. Next (block 3), the appropriate shift instruction 
must be put into the loop. Initialization in block 2 will 
ensure that the first listed shift instruction gets put into 
the loop; address modification can be used to ensure that 
subsequent shift instructions are put into the loop for 
succeeding demonstrations. Then, (block 4), since the 
demonstration pattern will be altered or destroyed during 
execution of the program, it is necessary to put the 
pattern into the A-register, at a point in the program 
where it will be reloaded at the start of each separate 
instruction demonstration. Next the shift counter and the 
timer should be initialized. The timer should start to run 
before executing the first shift, so that the starting con­
dition of the pattern can be observed for at least two 
seconds; this is why block 7 is placed ahead of block 8. 
The timer (which is a very simple loop to check if two 
seconds have elapsed), loops back on itself for the no 
condition and proceeds to the execution block when the 
yes condition occurs. The counting of shift executions 
immediately follows block 8. Since the timer has run 
down to zero, it must be re-initialized; therefore the no 
branch for block 9 must loop. back to a point ahead of 
block 6 (initialize timer). Block 5 cannot be included in 
the loop, or the shift counter would never advance to 16. 
After 16 loops have occurred (16 shifts), the yes branch 
of block 9 advances the program to block 10. The check 
for last instruction must be placed after the shift loop, 
since it is desired to have the yes condition halt the 
program; if the check were placed before the shift loop, 
the last shift instruction would never be demonstrated. If 
the comparison is a no (more instructions to demonstrate), 
the next event is to change the instruction in block 3, and 
loop back to block 3. The entire process will then be 
repeated for the new shift instruction. 



2114B 

4-123. WRITING THE PROGRAM. By creating the flow 
chart in figure 4-7, the following elements of the program 
have already been established before writing of the program 
begins: 

a. The sequence of events. 

b. The use of counters, loops, and comparisons at 
specific points in the sequence. 

c. The number of shifts per demonstrated instruction 
(16). 

4-124. Factors which have not been established are: how 
many loops comprise two seconds of elapsed time, what 
specific instructions are to be demonstrated, and what the 
pattern will be. A waiting loop to create a time delay would 
consist of two instructions: ISZ timer, and JMP back to 
ISZ. The ISZ instruction takes 4.5 microseconds to execute 
(refer to paragraph 2-54), and JMP takes 2.0 microseconds. 
This is a total of 6.5 microseconds (.0000065 second) per 
loop. Dividing this figure into 2 seconds gives the informa­
tion that approximately 308,000 loops will provide a delay 
of the required time. Since the largest number the com­
puter can handle is 65,534 or -32,768 to +32,767 (para­
graph 2-106), the timer loop should count to 65,534 five 
times, by use of a loop within a loop: 

L. ISZ z 
b. JMP a 
c. ISZ y 
d. JMP a 
e. 
z. 0 
y. -5 

4-125. Locations a and b increment location z from 0 to 
65,534. The next increment returns the count to 0, loca­
tion b is skipped, and location c increments location y from 
-5 to -4. Then the program loops back to location a, and 
the entire process repeats. After location z has rolled over 
to zero five times, location y will go from -1 to 0, causing a 
skip out of the loop to location e. Initialization of the loop 
consists of putting 0 into location z (aa and ab), and -5 
into location y (ac through ae). 

aa. CLB 
ab. STB z 
ac. LDB x 
ad. CMB, INB 
ae. STB y 
x. 5 

4-126. The instructions to be demonstrated can be 
stored in consecutive locations in the order listed in speci­
fications (paragraph 2-81). This provides easy access by 
address modification, and also provides for convenient 
cross-reference to the text while the demonstration is in 
progress. Only the instructions which shift or rotate the 
A-register will be demonstrated, since the actions for the 
B-register are identical to those for the A-register, and since 
it is convenient to make use of the B-register during the 
program. Thus the instructions will be demonstrated in the 
following order: 

ALS Left Shift (arithmetic) 
ARS Right Shift (arithmetic) 
RAL Left Rotate (16 bits) 
RAR Right Rotate (16 bits) 
ALR Left Shift, clear sign 
ERA Rotate Right with Extend 
ELA Rotate Left with Extend 
ALF Rotate Left Four places 

Section IV 

4-127. For most of these instructions, a pattern of 
1004018 is suitable to show the movement of bits. In 
binary, this is: 

1 000 000 100 000 001 

4-128. For the ALF instruction, however, bits jump four 
places on each shift. Therefore a single one in the A-register 
would be better than 3 ones. A simple five-instruction 
sequence can be used to switch the pattern for the ALF 
instruction: 

(not ALF)[ba. 
bb. 

4 bc. 

[
bd. 
bf. 
bg. 
w. 
v. 

CPB w ::=:J 
JMP bf] 
LDA v 
JMP bg 
CLA, INA::::J 
next 
ALF 
100401 

{ALF) 

4-129. If the CPB instruction in location ba finds that 
the shift instruction which is about to be demonstrated is 
not ALF, location bb is skipped. Location be puts the 
100401 pattern into the A-register, and then a JMP instruc­
tion skips location bf. However, if the demonstration 
instruction is ALF, the program steps to location bb, where 
a jump to location bf clears the A-register, and increments 
the register to 000001 (CLA, INA). 

4-130. Finally, all the elements of the program can be 
worked into the program table, as in table 4-10. Note that, 
in this example, the remarks column corresponds directly 
to the blocks in the flowchart, figure 4-7. This is not an 
absolute rule for programming, but a close relationship 
between flowchart and written program can frequently be a 
great help to anyone studying the program. For addresses, 
two blocks of memory locations (one for program instruc­
tion, one for reference data) have been assigned which are 
adjacent to, but do not interfere with, the locations 
assigned for the previous program (table 4-9). A CLE 
instruction has been inserted to ensure that all demonstra­
tions begin with the extend light off. 

4-131. LOADING THE PROGRAM. Set the switch reg­
ister to the starting address (003001) and press LOAD 
ADDRESS. The first 29 addresses are in strict sequence 
from this starting address. Therefore memory can be loaded 
simply by setting the octal code into the switch register and 
pressing LOAD MEMORY once for each line of table 4-10. 
LOAD MEMORY automatically increments the address in 

4-21 



Section IV 2114B 

the P and M registers. Remember to press LOAD MEMORY 
once also for the reserved locations (which can be given any 
contents). After location 3037 has been loaded, set the 
switch register to 001020, press LOAD ADDRESS and load 
the remaining 15 locations. 

indicators. The total program run time is about four 
minutes. 

4-133. SUMMARY. 

4-132. RUNNING THE PROGRAM. Before running the 
program, refer to the definitions for shift and rotate 
instructions in paragraph 2-81. Set the starting address into 
the switch register, then press LOAD ADDRESS and RUN. 
Each of the eight A-register shifts and rotates will be 
demonstrated for 32 seconds, the results of the 
A-register being displayed on the switch register 

4-134. This volume has presented a basic intro· 
duction to how the HP 2114B Computer operates, with 
equal emphasis on both hardware and programming. The 
succeeding three volumes present specialized descriptions 
on each of these two aspects. Volume two describes the 
processor hardware in detail, and volume three deals with 
the input/output hardware system. Volume four provides 
detailed information for programming of the computer 
with the aid of Hewlett-Packard software. 

ADDRESS 

003001 
003002 
003003 
003004 
003005 
003006 
003007 
003010 
003011 
003012 
003013 
003014 
003015 
003016 
003017 
003020 
003021 
003022 

003023 
003024 
003025 
003026 
003027 
003030 
003031 
~ 
003033 
003034 
003035 
003036 
003037 
001020 
001021 
001022 

ooro23 
001024 
001025 

1Rr1026 
001027 
001030 
001031 
001032 
001033 
001034 
001035 
001036 

4-22 

Table 4-10. Program to Demonstrate Shifts and Rotates 

CONTENTS 

INSTRUCTION MEMORY OCTAL 
(OR DATA) REFERENCE D/I A/B ZIC CODE 

LDA 
STA 
CLE 

STB 
CPB 
JMP 
LDA 
JMP 
CLA,INA 
LDB 
CMJhINB 
STB 
CLB 
STB 
LDB 
CMB,INB 
STB 
ISZ 
JMP 
ISZ 
JMP 

OTA 
ISZ 
JMP 
LDB 
CPB 
HLT 
ISZ 
JMP 

ALS 
ARS 
RAL 
RAR 
ALR 
ERA 
ELA 
ALF 

5 

20 
100401 
LDB 

1036 
3004 

3027 
1027 
3012 
1035 
3013 

1034 

1033 

1030 
1032 

1031 
1030 
3023 
1031 
3023 

0002 
1033 
30f6 
1027 
3027 

3004 
3003 

1020 

B 
B 

B 
B 
B 
B 
B 
B 
B 
B 

B 
B 

061036 
c 073004 

002100 

c 077027 
055027 

c 027012 
061035 

c 027013 
002404 
065034 
007004 
075033 
006400 
075030 
065032 
007004 
075031 
035030 

c 027023 
035031 

c 027023 

102601 
035033 

c 027016 
065027 

c 057027 
102000 

c 037004 
c 027003 

001000 
001100 
001200 
001300 
001400 
001500 
001600 
001700 

000005 

000020 
100401 
065020 

REMARKS 

INITIALIZE 
Get first Load instruction. 

LOAD shift instruction 
into loop. 

PUT_..2attern into A. 
If ALF, use 000001. 
All others use 100401. 

INITIALIZE Shift Counter. 
Set to -16. 

INITIALIZE Timer. 
Set to lo~ for 2 seconds. 

LOOP. 
Two seconds. 

SHIFT. (Instruction loaded by 3003.) 
DISPLAY A. 
LOOP. 

16 Shifts, two per second. 
CHECK 

for last instruction. 
HALT. 
CHANGE instruction 

and r~eat demonstration. 
DEMONSTRATION instructions. 

TIMER 
Rollover counter (-5). 
Constant. 
SHIFT COUNTE...R 
Decimal 16. 
Pattern. 
First Load instruction. 

I 

_l 

l. 
i 

l 
i 



APPENDIX A 

REFERENCE TABLES 

A-1 



Appendix A 2114B 

Table A-1. Glossary of Terms Used in this Volume 

absolute - Pertaining to an address fully defined by a 
memory address number, or to a program which 
contains such addresses (as oppossed to one con­
taining symbolic addresses). 

accumulator - A register in which numbers are totaled or 
manipulated, or temporarily stored for transfers to 
and from memory or external devices. 

add - Restrictive (HP 2114B): two's complement addition 
of binary numbers. General: any arithmetic addition. 

address - A number (noun) which identifies a location in 
memory. Also (verb), the process of directing the 
computer to read a specified memory location 
(synonymous with "reference"). 

address modification - A programming technique of 
changing the address referred to by a memory ref­
erence instruction, so that each time that particular 
instruction is executed, it will affect a different mem­
ory location. 

address word - A computer word which contains only the 
address of a memory location. 

ALGOL - A programming language (or the compiler which 
translates this language) which permits programs to 
be written using common arithmetic conventions and 
terms. 

alter - A modification of the contents of an accumulator 
or extend bit; e.g., clear, complement, or increment. 

analog - Pertaining to information which can have contin­
uously variable values, as opposed to digital informa­
tion, which can be varied in degrees no smaller than 
the value of the least significant digit. 

"and" - A logical operation in which the resultant quantity 
(or signal) is true if all of the input values are true, 
and is false if at least one of the input values is false. 

A-register - One of the two HP 2114B Computer accumu­
lator registers. '.fhese registers are used for arithmetic 
operations and for information transfers to and from 
device interfaces. 

arithmetic logic - The circuitry involved in manipulating 
the information contained in a computer's 
accumulators. 

arithmetic operation - Restrictive: a mathematical opera­
tion involving fundamental arithmetic (addition, sub­
straction, multiplication, division), specifically 
excluding logical and shifting operations. General: 
any manipulation of numbers. 

A-2 

Assembler - A program for the HP 2114B Computer (or 
any computer) which converts a program prepared in 
symbolic form (i.e., using defined symbols and 
mnemonics to represent instructions, addresses, etc.) 
to binary machine language. 

base - The quantity of different digits used in a particular 
numbering system. The base in the binary numbering 
system is two; thus there are two digits (0 and 1). In 
the decimal system {base 10), there are ten digits (0 
through 9). 

base page - The lowest numbered page of computer 
memory. It can be directly addressed from any other 
page. 

BASIC - A programming language (or the compiler which 
translates this language) which permits programs to 
be written in a form that is simple and easy to learn. 

basic binary loader - A series of instructions for the HP 
2114B Computer which will load, into memory, 
programs prepared with absolute addresses, using 
defined input devices. 

basic control system - A collection of programs for the HP 
2114B Computer which direct the loading, combining, 
library searching, debugging, and input/output pro­
cedures for programs generated by the user. 

binary - Denoting the numbering system based on the 
radix two. Binary digits are restricted to the values 0 
and 1. 

binary-coded decimal - A coding method for representing 
each decimal digit (0-9) by specific combinations of 
four binary bits. For example, the 8-4-2-1 "bdc" code 
commonly used with the HP 2114B Computer repre­
sents 1as0001, and 9 as 1001. 

binary point - The fractional dividing point of a binary 
numeral; equivalent to decimal point in the decimal 
numbering system. 

binary program - A program (or its recorded form) in 
which all information is in binary machine language. 

bit - A single digit in a binary number, or in the recorded 
representation of such a number (by hole punches, 
magnetic states, etc.). The digit can have one of only 
two values, 0 or 1. 

bit density - A physical specification referring to the 
number of bits which can be recorded per unit of 
length or area. 

bit-serial - One bit at a time, as opposed to bit-parallel in 
which all bits of a character can be handled 
simultaneously. 



2114B Appendix A 

Table A-1. Glossary of Terms Used in this Volume (Continued) 

bistable - Pertaining to an electronic circuit having two 
stable states, controllable by external switching 
signals; analogous to an on-off switch. 

B-register - One of the two HP 2114B Computer accumu­
lator registers. These registers are used for arithmetic 
operations and for information transfers to and from 
device interfaces. 

buffer - A register used for intermediate storage of infor­
mation in the transfer sequence between the com­
puter accumulators and a peripheral device. In the HP 
2114B Computer, the buffer is located inside the 
computer on the device interface card. 

bus - A major electrical path connecting two or more 
electrical circuits. 

carry - A digit, or equivalent signal, resulting from an 
arithmetic operation which causes a positional digit 
to equal or exceed the base of the effective num­
bering system. 

central interrupt register - A six-bit register which holds 
the address of the last 1/0 device to send an interrupt 
signal to the computer. The contents of the CIR are 
accessible by program using a LIA instruction with a 
select code of 04. 

character - The general term to include all symbols such as 
alphabetic letters, numerals, punctuation marks, 
mathematical operators, etc. Also, the coded repre­
sentation of such symbols. 

checkerboard - An alternating pattern of zeros and ones 
stored in a computer for testing purposes. 

clear - Reset; the binary "O" condition. 

code - A system of symbols which can be used by 
machines such as a computer, and which in specific 
arrangements have a special external meaning. 

communication system - A computer system having facili­
ties for long-distance transfers of information 
between remote and central stations. 

comparator - An instrument for comparing digitized 
measurements against presettable upper and lower 
limits, and giving an indication of the comparison 
reult. 

compiler - A language translation program, used to trans­
form symbols meaningful to a human operator to 
codes meaningful to a computer. More restrictively, a 
program which translates a machine-independent 
source language into the machine language of a spe­
cific computer, thus excluding assemblers. 

computation - The processing of information within the 
computer. 

computer (digital) - An electronic instrument capable of 
accepting, storing, and arithmetically manipulating 
information, which includes both data and the con­
trolling program. The information is handled in the 
form of coded binary digits (0 and 1), represented by 
dual voltage levels, magnetic states, punched holes, 
etc. 

computer word -See "word". 

configuration - The arrangement of either hardware instru­
ments or software routines when combined to 
operate as a system. 

configurator - A computer program whose purpose is to 
combine a number of program segments into an inte­
grated whole, in a specific desired manner (config­
uration). 

contents - The information stored in a register or a mem­
ory location~ 

control bit - A signal, or the stored indication of this 
signal, which controls the transfer of information to 
and from peripheral devices associated with the HP 
2114B Computer. 

core - The smallest element of a core storage memory 
module. It is a ring of ferrite material, 0.03-inch in 
diameter in the HP 2114B Computer and can be 
magnetized in clockwise or counterclockwise direc­
tions to represent the two binary digits, 0 and 1. 

crossbar scanner - A device for sequentially connecting 
multi-wire analog signals to a digital measuring device, 
using a crossbar switch (a switch specially designed 
for accurate transfer of low-level, high-frequency, and 
high-impedance signals). 

current page - The memory page compr1smg all those 
locations which are on the same page as a given 
instruction. 

data acquisition - The transformation of raw information 
gathered by measuring or recording equipment into a 
more condensed, organized, or useful form. 

data word - A computer word consisting of a number, a 
fact, or other information which is to be processed by 
the computer. 

debug - Check for and correct errors in a program. 

decimal - Denoting the numbering system based on the 
radix ten. 

decrement - To change the value of a number in the 
negative direction. If not otherwise stated, a decre­
ment by one is usually assumed. 

device - An electronic or electromechanical instrument. 
Most commonly implies measuring, reading, or 
recording equipment. 

A-3 



Appendix A 2114B 

Table A-1. Glo~ry of Terms Used in this Volume (Continued) 

diagnostic - (adj) Relating to test programs for detection 
of errors in the functioning of hardware or software, 
or the me~ges resulting from such tests. Also 
(noun), the test program or message itself. 

digital voltmeter - An electronic voltage measuring device 
which provides a readout in digital form on the 
instrument panel, and commonly (essential for com­
puter purposes) also codes the measurement result in 
binary-coded decimal form as an electrical output. 

direct memory access - A means of transferring a block of 
information words directly between an external 
device and computer memory bypassing the need for 
repeating a service routine for each word. This 
method greatly speeds the transfer process. 

disable - A signal condition which prohibits some specific 
event from proceeding. 

disc storage - A means of storing binary digits in the form 
of magnetized spots on a rotating circular metal plate 
coated with a magnetic material. The information is 
stored and retrieved by read-write heads positioned 
over the surface of the disc. 

documentation - Manuals and other printed materials 
(tables, listings, diagrams, etc.) which provide instruc­
tive information for usage and maintenance of a man­
ufactured product, including both hardware and 
software. 

double-length word - A word, due to its length, which 
requires two computer words to represent it. Double­
length words are normally stored in two adjacent 
memory locations. 

driver - An input/output routine to provide automatic 
operation of a specific device with the computer. 

dump - To record memory contents on an external 
medium (e.g., tape). 

effective address - The address of a memory location 
ultimately affected by a memory reference instruc­
tion. It is possible for one instruction to go through 
several indirect addresses to reach the effective 
address. 

electronic counter - An electronic instrument used to 
measure physical quantities by specially controlled 
counting of electrical pulses. 

enable - A signal condition which permits some specific 
event to proceed, whenever it is ready to do so. 

"exclusive or" - A logical operation in which the resultant 
quantity (or signal) is true if at least one (but not all) 
of the input values is true and is false if the input 
values are all true or all false. 

A-4 

execute - To fully perform a specific operation, such as 
would be accomplished by an instruction or a 
program. 

execute phase - A predetermined state of the internal 
computer logic which causes the computer to inter­
pret as data the information read out of memory 
during a memory cycle. 

exit sequence - A series of instructions to conclude opera­
tion in one area of a program and to move to another 
area. 

extend - A one-bit register in the HP 2114B Computer, 
which extends the effective length of the A- or B­
register to 17 bits for certain additions and rotations. 

fetch phase - A predetermined state of the internal com­
puter logic which causes the computer to interpret as 
an instruction the information read out of memory 
during a memory cycle. 

fixed point - A numerical notation in which the factional 
point (whether decimal, octal, or binary) appears at a 
constant, predetermined position. Compare with 
floating point. 

flag bit - A signal, or the stored indication of this signal, 
which indicates the readiness of a peripheral device of 
the HP 2114B Computer to transfer information. 

flip-flop - An electronic circuit having two stable states, 
and thus capable of storing a binary digit. Its states 
are controlled by signal levels at the circuit input, and 
are sensed by signal levels at the circuit output. 

floating point - A numerical notation in which the integer 
and the exponent of a number are separately repre­
sented (frequently by two computer words), so that 
the implied position of the fractional point (decimal, 
octal, or binary) can be freely varied with respect to 
the integer digits. Compare with fixed point. 

flowchart - A diagram representing the operation of a 
computer program. 

format - A predetermined arrangement of bits or 
characters. 

Formatter - A program which provides the linkage 
between FORTRAN read/write statements and the 
basic control system input/output control program, 
with any appropriate conversions. 

FORTRAN - A programming language (or the compiler 
which translates this language) which permits pro­
grams to be written in a form resembling algebra, 
rather than in detailed instruction-by-instruction 
form (as for assemblers). 



2114B Appendix A 

Table A-1. Glossary of Terms Used in this Volume (Continued) 

FORTRAN Library - A collection of programs for the HP 
2114B Computer to provide the user with commonly 
used mathematical and formatting routines. 

gate - An electronic circuit capable of performing logical 
functions such as "and", "or", "nor", etc. 

hardware - Electronic or electromechanical components, 
instruments, or systems. 

hardware diagnostics - A collection of programs for the HP 
2114B Computer deisgned to assist in the identifica­
tion of hardware malfunctions. 

high core - Core memory locations having high-numbered 
addresses. 

"inclusive or" - A logical operation in which the resultant 
quantity (or signal) is true if at least one of the input 
values is true, and is false if the input values are all 
false. 

increment - To change the value of a number in the 
positive direction. If not otherwise stated, an incre­
ment by one is usually assumed. 

incremental magnetic tape - A form of magnetic tape 
recording in which the recording transport advances 
by small increments (e.g. 0.005 inch), stopping the 
tape advancement long enough to record one charac­
ter at the spot location under the recording head. 

indirect address - The address initially specified by an 
instruction when it is desired to use that location to 
re-direct the computer to some other location to find 
the effective address for the instruction. 

indirect phase - A predetermined state of the internal 
computer logic which causes the computer to inter­
pret as an address the information read out of mem­
ory during a memory cycle. 

information - A unit or set of knowledge represented in 
the form of discrete words, consisting of an arrange­
ment of symbols or (so far as the digital computer is 
concerned) binary digits. 

inhibit - To prevent a specific event from occurring. 

initialize - The procedure of setting various parts of a 
stored program to starting values, so that the program 
will behave the same way each time it is repeated. 
The procedures are included as part of the pro­
gram itself. 

input - Information transferred from a peripheral 
device into the computer. Also can apply to the 
transfer process itself. 

input/output - Relating to the equipment or method 
used for transmitting information into or out of 
the computer. 

input/output channel - The complete input or output 
facility for one individual device or function, in­
cluding its assigned position in the computer, the 
interface circuitry, and the external device. 

input/output control - A program of the computer basic 
control system which provides linkage between the 
input/output requests of a user program and the 
appropriate drivers. 

input/output system - The circuitry involved in trans­
ferring information between the computer accumula­
tors and its peripheral devices. 

instruction - A written statement, or the equivalent 
computer-acceptable code, which tells the computer 
to execute a specified single operation. 

instruction code - The arrangement of binary digits 
which tell the computer to execute a particular 
instruction. 

instruction logic - The circuitry involved in moving 
binary information between registers, memory, 
and buffers in prescribed manners, according to 
instruction codes. 

instruction register - An internal 6-bit register of the HP 
2114B Computer, which forms part of its instruction 
logic. The instruction register receives the 6 most 
significant bits of the T-register when each new in­
struction is read out of memory, and retains these 
bits for instruction identification. It is not usually 
considered to be a working register. 

instruction word - A computer word containing an instruc­
tion code. The code bits may occupy all or (as in the 
case of memory reference instruction words) only 
part of the word. 

interface - The connecting circuitry which links the 
central processor of a computer system to its 
peripheral devices. 

interrupt - The process, initiated by an external device, 
which causes the computer to interrupt a program in 
progress, generally for the purpose of transferring 
information between that device and the computer. 

interrupt location - A memory location whose contents 
(always an instruction) are executed upon interrupt 
by a specific device. 

interrupt phase - A predetermined state of the internal 
computer logic which causes the computer to suspend 
operation of a program in progress, and branch to a 
specific service routine. 

jump - An instruction which breaks the strict sequential 
location-by-location operation of a program, and 
directs the computer to continue at another specified 
location anywhere in memory. 

A-5 



Appendix A 2114B 

Table A-1. Glossary of Terms Used in this Volume (Continued) 

label - Any arrangement of symbols, usually alphanumeric, 
used in place of an absolute memory address in com­
puter programming. 

language - The set of symbols, rules, and conventions used 
to convey information, either at the human level or at 
the computer level. 

library routine - A routine designed to accomplish some 
commonly used mathematical function, and kept 
permanently available on a library program tape (e.g., 
HP FORTRAN Library). 

linearizer - An instrument for converting the measurements 
made by a digital voltmeter to the normal engineering 
units of the physical quantity being measured. 

load - Put information into (memory, a register, etc.). Also 
(e.g., loading tape), to put the information medium 
into the appropriate device. 

loader - A program designed to assist in transferring infor­
mation from an external device into computer's 
memory. 

location - A group of storage elements in the computer's 
memory (e.g., 17 cores in the HP 2114B memory 
module), which can store one computer word. Each 
such location is identified by a number ("address") to 
facilitate storage and retrieval of information in selec­
table locations. 

logical operation - A mathematical process based on the 
principles of truth tables; e.g., "and", "inclusive or" 
and "exclusive or" operations. 

logic diagram - A diagram that represents the detailed 
internal functioning of electronic hardware, using 
binary logic symbols rather than electronic com­
ponent symbols (see "schematic diagram"). 

logic equation - A written mathematical statement, using 
symbols and rules derived from Boolean algebra. Spe­
cifically (hardware design), a means of stating the 
conditions required to obtain a given signal. 

loop - A sequence of instructions in which the last instruc­
tion is a jump back to the first instruction. 

low core - Core memory locations having low-numbered 
addresses. 

machine - Pertaining to the computer hardware (e.g., 
machine timing, machine language). 

machine language - The form of coded information (con­
sisting of binary digits) which can be directly ac­
cepted and used by the computer. Other languages 
require translation to this form, generally with the aid 
of translation programs (assemblers and compilers). 

A-6 

machine timing -The regular cycle of events in the operation 
of internal computer circuitry. The actual events will 
differ for various processes, but the timing is constant 
through each recurring cycle. 

macroinstruction - An instruction, similar in binary coding 
to the computer's basic machine language instruc­
tions, which is capable of producing a variable num­
ber of machine language instructions. 

magnetic tape recording - A means of recording infor­
mation on a strip of magnetic coated material, such 
that binary bits can be represented by reversals of the 
direction of magnetization. 

magnitude - That portion of a computer word which 
indicates the absolute value of a number, thus 
excluding the sign bit. 

math routine - A program designed to accomplish a single 
mathematical function. 

media conversion - The transferral of recorded information 
from one recording medium (e.g., punched paper 
tape, magnetic tape, etc.) to another recording 
medium. 

memory - An organized collection of storage elements 
(e.g., ferrite cores), into which a unit of information 
consisting of a binary digit can be stored, and from 
which it can later be retrieved. Also, a device not 
necessarily having individual storage elements, but 
which has the same storage and retrieval capabilities 
(e.g., magnetic discs). 

memory cycle - That portion of the computer's internal 
timing during which the contents of one location of 
memory are read out (into the transfer register) and 
written back into that location. 

memory module - A complete segment of core storage, 
capable of storing a definable number of computer 
words (e.g., 4096 words in the HP 2114B Computer 
memory module). Computer storage capacity is fre­
quently rounded off and abbreviated as 4K (i.e., 4096 
or approximately 4000 words) or SK (8192 or 8000). 

memory protect - A means of preventing inadvertent alter­
ation of a selectable segment of memory. 

memory reference - The address of the memory location 
specified by a memory reference instruction; i.e., the 
location affected by the instruction. 

merge - "Inclusive or". 

microinstruction - An instruction which forms part of a 
larger, composite instruction. 

mnemonic - An abbreviation or arrangement of symbols 
used to assist human memory. For example, STB calls 
to mind the term "store B-register" much more 
readily than would, say, "instruction 7 4". 



2114B Appendix A 

Table A-1. Glossary of Terms Used in this Volume (Continued) 

M-register - The memory address register of the HP 2114B 
Computer; i.e., the register which controls the access 
to each memory location. 

multi-level indirect - Indirect addressing using two or more 
indirect addresses in sequence to find the effective 
address for the current instruction. 

multiple-precision - Referring to arithmetic in which the 
computer, for greater accuracy, uses two or more 
words to represent one number. 

Mylar - A DuPont trademark for a polyester film used as a 
more durable medium (in place of paper tape) for 
punched tape records, and as a base for magnetic 
tape. 

nine's complement - A number so modified that the addi­
tion of the modified number and its original value, 
plus one, will equal an even power of ten. A nine's 
complement number is obtained mathematically by 
subtracting the original value from a string of 9's. 

non-return to zero - A technique of magnetic tape record­
ing in which the recording device does not tum off 
the magnetizing flux between recording of individual 
characters. The flux is always at saturation level 
during recording, and bits are indicated by reversals 
of flux polarity. 

nuclear scaler - A system of electronic instruments used to 
detect and analyze nuclear events, such as gamma ray 
measurements. 

octal - Denoting a numbering system based on the radix 
eight. Octal digits are restricted to the values 0 
through 7. 

octal code - A notation for writing machine language 
programs with the use of octal numbers instead of 
binary numbers. 

octal point - The fractional dividing point of an octal 
numeral; equivalent to decimal point in the decimal 
numbering system. 

off line - Pertaining to the operation of peripheral equip­
ment not under control of the computer. 

one's complement - A number so modified that the addi­
tion of the modified number and its original value, 
plus one, will equal an even power of two. A one's 
complement number is obtained mathematically by 
subtracting the original value from a string of l's, and 
electronically by inverting the states of all binary bits 
in the number. 

on line - Pertaining to the operation of peripheral equip­
ment under computer control. 

output - Information transferred from the computer to a 
peripheral device. Also can apply to the transfer 
process itself. 

output coupler - An instrument which provides the inter­
connecting circuitry between a measuring instrument 
and a recording instrument. 

overflow - A one-bit register in the HP 2114B Computer, 
which indicates that the result of an addition in the 
A- or B-register has exceeded the maximum possible 
signed value (+32767 or -32768, decimal). The addi­
tion result will therefore be missing one or more 
significant bits. 

packed word - A computer word containing two or more 
independent units of information. This is done to 
conserve storage when information requires relatively 
few bits of the computer word. 

page - An artificial division of memory consisting of a 
fixed number of locations, dictated by the direct 
addressing range of memory reference instructions. 

page zero - The memory page which includes the lowest 
numbered memory addresses. 

parity bit - A supplementary bit added to an information 
word to make the total of one-bits be always either 
odd or even. This permits checking the accuracy of 
information transfers. 

pass - The complete process of reading a set of recorded 
information (one tape, one set of cards, etc.) through 
an input device, from beginning to end. 

peripheral device - An instrument or machine electrically 
connected to the computer, but which is not part of 
the computer itself. 

phase - One of several specific states of the internal com­
puter logic, usually set up by instructions being 
executed, to determine how the computer should 
interpret information read out of memory. 

photoelectric reader - An input device which senses charac­
ters (on punched tape, cards, pages, etc.) by optical 
light strobe and detection circuits. An example is the 
HP 27 48A Tape Reader. 

plane - An arrangement of ferrite cores on a matrix of 
control and sensing wires. Several planes stacked 
together form a memory module. 

power failure control - A means of sensing primary power 
failure so that a special routine may be executed in 
the finite period of time available before the regu­
lated de supplies discharge to unusable levels. The 
special routine may be used to preserve the state of a 
program in progress, or to shut down external 
processes. 

P-register - The program counter register of the HP 2114B 
Computer; i.e., the register which keeps track of (or 
"counts") the stored locations of the instructions in a 
program being executed. 

A-7 



Appendix A 2114B 

Table A-1. Glossary of Terms Used in this Volume (Continued) 

prepare control system - A program designed to assist in 
the preparation of a basic control system program, to 
a specified arrangement of input/output devices. 

priority - The automatic regulation of events so that 
chosen actions will take precedence over others in 
cases of timing conflict. 

process control - Automatic control of manufacturing 
processes by use of a computer. 

processor - The central unit of a computer system (i.e., the 
device which accomplishes the arithmetic manipula­
tions), exclusive of peripheral devices. Frequently 
(when used as adjective) also excludes interface com­
ponents, even though normally contained within the 
processor unit; thus processor options exclude inter­
face (input/output) options. 

program - A plan for the solution of a problem by a 
computer, and consisting of a sequence of computer 
instructions. 

program listing - A printed record (or equivalent binary­
output program) of the instructions in a program. 

programmer - A person who writes computer programs. 
Also (hardware), an interface card or instrument 
which sets up (or programs) the various functions of 
one measuring instrument. 

programming - The process of creating a program. 

proximity switch - A capacitance activated contact switch. 

pseudo-instruction - A symbolic statement, similar to 
assembly language instructions in general form, but 
meanfo.gful only to the program containing it, rather 
than to the computer as a machine instruction. 

punched tape - A strip of tape, usually paper, on which 
information is represented by coded patterns of holes 
punched in columns across the width of the tape. 
Commonly (as used with the HP 2114B Computer), 
there are 8 hole positions (channels) across the tape. 

quartz thermometer - An electronic temperature meas­
uring instrument using the linear temperature sensing 
properties of specially cut quartz crystals. An ex­
ample is the HP 2801A Quartz Thermometer, which 
provides a digital output usable as an input to a 
digital computer, such as the HP 2114B Computer. 

read - The process of transferring information from an 
input device into the computer. Also, the process of 
taking information out of computer memory (see 
"memory cycle"). 

real time - Time elapsed between events occurring exter­
nally to the computer. A computer which accepts and 

A-8 

processes information from one such event and is 
ready for new information before the next event 
occurs is said to operate in a real-time environment. 

reference - Shortened form of "memory reference". 

register - An array of hardware binary circuits (flip-flops, 
switches, etc.) for temporary storage of information. 
Unlike mass storage devices such as memory cores, 
registers can be wired to permit flexible control of 
the contained information, for arithmetic operations, 
shifts, transfers, etc. 

relocatable - Pertaining to programs whose instructions can 
be loaded into any stated area of memory. 

relocating loader - An HP computer program capable of 
loading and combining relocatable programs (i.e., pro­
grams having symbolic rather than absolute 
addresses). 

reset - A signal condition representing a binary "0". 

rotate - A positional shift of all bits in an accumulator 
(and possibly an extend bit as well), with those bits 
lost off one end of the accumulator rotated around to 
enter vacated positions at the other end. 

routine - A program or program segment designed to 
accomplish a single function. 

sampling - The process of taking a measurement of a signal 
existing at a measuring instrument's input during a 
short (sample) period. The length of the sample 
period is a predetermined function of the measuring 
instrument. 

scanner - A device for sequentially switching multiple 
signal sources to one measuring or recording 
instrument. 

schematic diagram - A diagram that represents the detailed 
internal electrical circuit arrangement of electronic 
hardware, using conventional electronic component 
symbols. 

select code - A number assigned to input/output channels 
for purposes of identification in information transfers 
between the computer and external devices. 

service routine - A sequence of instructions designed to 
accomplish the transfer of information between a 
particular device and the computer. 

set - A signal condition representing a binary "l". 

seven's complement - A number so modified that the addi­
tion of the modified number and its original value, 
plus one, will equal an even power of eight. A seven's 
complement number is obtained mathematically by 
subtracting the original value from a string of 7's. 



2114B Appendix A 

Table A-1. Glossary of Terms Used in this Volume (Continued) 

shift - Restrictive (arithmetic shift): to multiply or divide 
the magnitude portion of a word (bits 0 through 14 
in the HP 2114B Computer) by a power of two using 
a positional shift of these bits. General: any posi­
tional shift of bits. 

sign - The algebraic plus or minus indicator for a mathe­
matical quantity. Also, the binary digit or electrical 
polarity representing same. 

significant digit - A digit so positioned in a numeral as to 
contribute a definable degree of precision to the 
numeral. In conventional written form, the most sig­
nificant digit in a numeral is the leftmost digit, and 
the least significant digit is the rightmost digit. 

skip - An instruction which causes the computer to omit 
the instruction in the immediately following location. 
A skip is usually arranged to occur only if certain 
specified conditions are sensed and found to be true, 
thus allowing various decisions to be made. 

software - Computer programs. Also, the tapes or cards on 
which the programs are recorded. 

software package - A complete collection of related pro­
grams, not necessarily combined as a single entity. 

source program - A program (or its recorded form) written 
in some programming language other than machine 
language and thus requiring translation. The trans­
lated form is the object program. 

starting address - The address of a memory location in 
which is stored the first instruction of a given pro­
gram. 

statement - An instruction in any computer-related 
language other than machine language. 

store - To put information into a memory location, regis­
ter, or device capable of retaining the information for 
later access. 

subroutine - A sequence of instructions designed to per­
form a single task, with provisions included to allow 
some other program to cause execution of the task 
sequence as if it were part of its own program. 

symbolic address - A label assigned in place of absolute 
numeric addresses, usually for purposes of relocation 
(see relocatable). 

symbolic editor - A program for HP computers which is 
used to add, delete, or correct selectable portions of 
any symbolic program. 

symbolic file - A recorded collection of computer words, 
with a symbolic address assigned to each word. 

system - An assembly of units (e.g., hardware instruments 
or software routines), combined to work as a larger 
integrated unit having the capabilities of all the 
separate units. 

system input/output (software) - A collection of input/ 
output programs to add input/output capability to 
HP FORTRAN, assembler, and symbolic editor, and 
to some user programs. 

S-register -The switch register of the HP 2114B Computer; 
i.e., the register used to input data either manually or 
by program or to ou~put data by program control. 

time period - The smallest division of time in the HP 
2114B Computer internal timing cycle (see "machine 
timing"). 

T-register - The transfer register of the HP 2114B 
Computer; i.e., the register which directly receives 
words from memory, and directly applies words to 
memory. 

truth table - A table listing all possible configurations and 
resultant values for any given Boolean algebra 
function. 

two's complement - A number so modified that the addi­
tion of the modified number and its original value 
will equal an even power of two. Also, a kind of 
arithmetic which represents negative numbers in 
two's complement form so that all addition can be 
accomplished in only one direction (positive incre­
mentation). A two's complement number is obtained 
mathematically by subtracting the original value from 
an appropriate power of the base two (i.e., from 11 , 

102 , 1002 , etc.), and electronically by inverting the 
states of all binary bits in the number and adding one 
(complement and increment). 

updated program - A program to which additions, dele­
tions, or corrections have been made. 

user - The person or persons who program and operate a 
particular computer. 

utility routine - A standard routine to assist in the opera­
tion of the computer (e.g., device drivers, sorting 
routines, etc.) as opposed to mathematical (library) 
routines. 

waiting loop - A sequence of instructions (frequently only 
two) which are repeated indefinitely until a desired 
external event occurs, such as the receipt of a flag 
signal. 

word - A set of binary digits handled by the computer as a 
unit of information. Its length is determined by hard­
ware design; e.g., the number of cores per location, 
and the number of flip-flops per register. 

A-9 



Appendix A 2114B 

Table A-1. Glossary of Terms Used in this Volume (Continued) 

working register - A register whose contents can be modi­
fied under control of a program. Thus a register 
consisting of manually-operated switches is not con­
sidered a working register. 

write - The process of transferring information from the 
computer to an output device. Also, the process of 
storing (or restoring) information into computer 
memory (see "memory cycle"). 

Table A-2. Mnemonics and Abbreviations 

A A-register (A accumulator) BLS B left shift 
B B-register (B accumulator) BRS B right shift 
c Current page (page addressing) 
c Clear (flag or overflow) CCA Clear and complement A 

c Control (bit or signal) CCB Clear and complement B 

c Centrigrade CCE Clear and complement extend 

D Direct (addressing) CLA Clear A 

D Disable (microinstruction group) CLB Clear B 

E Extend CLC Clear control 

E Enable (microinstruction group) CLE Clear extend 

F Flag (bit or signal) CLF Clear flag 
F Fahrenheit CLO Clear overflow 

H Hold (flag or overflow) CMA Complement A 

I Indirect (addressing) CMB Complement B 

I I-register (instruction register) CME Complement extend 

K Kilo (thousand) CMF Complement function 

M M-register (memory address) CPA Compare to A 
p P-register (program counter) CPB Compare to B 

T T-register (transfer register) 
T Time periods DMA Direct memory access 

z Page zero 
ELA Rotate extend left with A 

HP Hewlett-Packard ELB Rotate extend right with B 

I/0 Input/output EOF "Exclusive or" function 

IR Instruction register ERA Rotate extend right with A 

PH Phase ERB Rotate extend right with B 

RB R-bus HLT Halt 
RL Rotate left 
SL Shift left INA Increment A 
TB T-bus INB Increment B 
TR T-register IOF "Inclusive or" function 

ADA Add to A 
IOG Input/output group 
lOR "Inclusive or" instruction 

ADB Add to B ISZ Increment, skip if zero 
ADF Add function 
ALF Rotate A left four places JMP Jump 
ALR A left shift, clear sign JSB Jump to subroutine 
ALS A left shift 
AND "And" instruction LDA Load (memory) into A 
ANF "And" function LDB Load (memory) into B 
ARS A right shift LIA Load input into A 
ASA American Standards Association LIB Load input into B 
ASG Alter-skip group 
ASR Automatic send-receive MAC Macro instruction 

MIA Merge into A 
BCS Basic control system MIB Merge into B 
BLF Rotate B left four places 
BLR B left shift, clear sign NOP No operation 

A-10 



21148 Appendix A 

Table A-2. Mnemonics and Abbreviations (Continued) 

OTA Output from A XOR "Exclusive or" instruction 
OTB Output from B 
OVF Overflow flip-flop IOIC 1/0 input control 

IOOC 1/0 output control 
RAL Rotate A left NRZI Non-return to zero, invert 
RAR Rotate A right 
RBL Rotate B left ac Alternating current 
RBR Rotate B right A Amperes 
RLL Rotate left to least significant bit bed (BCD) Binary-coded decimal 
RRS Rotate right to sign bit bin. Binary 
RSS Reverse skip sense bpi Bits per inch 

BTU/hr British thermal units, per hour 
SEZ Skip if extend is zero C16 Bit 16 carry 
SFC Skip if flag is clear Compl Complement 
SFS Skip if flag is set de Direct current 
SIO System input/output Dec. Decimal 
SKF Skip on flag (signal) e.g. For example (exempli gratia) 
SLA Skip if least significant bit of A is zero Hz Hertz (cycles per second) 
SLB Skip if least significant bit of B is zero i.e. That is (id est) 
SLM Shift left magnitude in. Inch 
soc Skip if overflow clear incl Included 
sos Skip if overflow set ips Inches per second 
SRG Shift-rotate group kg Kilograms 
SRM Shift right magnitude lb Pound 
SSA Skip if sign of A is zero mA Milliamperes 
SSB Skip if sign of Bis zero MHz Megahertz (megacycles per second) 
STA Store A ms Milliseconds 
STB Store B mV millivolts 
STC Set control oct Octal 
STF Set flag sec Seconds 
STO Set overflow sel Select (code) 
SZA Skip if A is zero v Volts 
SZB Skip if Bis zero Vac Volts (alternating current) 

A-11 



Appendix A 2114B 

Table A-3. Powers of Two 

1 0 1 0 
2 1 0 5 
4 2 0 25 
8 3 0 125 

16 4 0 062 5 
32 5 0 031 25 
64 6 0 015 625 

128 7 0 007 812 5 

256 8 0 003 906 25 
512 9 0 001 953 125 

1 024 10 0 000 976 562 5 
2 048 11 0 000 488 281 25 

4 096 12 0 000 244 140 625 
8 192 13 0 000 122 070 312 5 

16 384 14 0 000 061 035 156 25 
32 768 15 0 000 030 517 578 125 

65 536 16 0 000 015 258 789 062 5 
131 072 17 0 000 007 629 394 531 25 
262 144 18 0 000 003 814 697 265 625 
524 288 19 0 000 001 907 348 632 812 5 

1 048 576 20 0 000 000 953 674 316 406 25 
2 097 152 21 . 0 000 000 476 837 158 203 125 
4 194 304 22 0 000 000 238 418 579 101 562 5 
8 388 608 23 0 000 000 119 209 289 550 781 25 

16 777 216 24 0 000 000 059 604 644 775 390 625 
33 554 432 25 0 000 000 029 802 322 387 695 312 5 
67 108 864 26 0 000 000 014 901 161 193 847 656 25 

134 217 728 27 0 000 000 007 450 580 596 923 828 125 

268 435 456 28 0 000 000 003 725 290 298 461 914 062 5 
536 870 912 29 0 000 000 001 862 645 149 230 957 031 25 

1 073 741 824 30 0 000 000 000 931 322 574 615 478 515 625 
2 147 483 648 31 0 000 000 000 465 661 287 307 739 257 812 5 

4 294 967 296 32 0 000 000 000 232 830 643 653 869 628 906 25 
8 589 934 592 33 0 000 000 000 116 415 321 826 934 814 453 125 

17179 869184 34 0 000 000 000 058 207 660 913 467 407 226 562 5 
34 359 738 368 35 0 000 000 000 029 103 830 456 733 703 613 281 25 

68 719 476 736 36 0 000 000 000 OH 551 915 228 366 851 806 640 625 
137 438 953 472 37 0 000 000 000 007 275 957 614 183 425 903 320 312 5 
274 877 906 944 38 0 000 000 000 003 637 978 807 091 712 951 660 156 25 
549 755 813 888 39 0 000 000 000 001 818 989 403 545 856 475 830 078 125 

1 099 511 627 776 40 0 000 000 000 000 909 494 701 772 928 237 915 039 06..2 5 
2 199 023 255 552 41 0 000 000 000 000 454 747 350 886 464 118 957 519 531 25 
4 398 046 511 104 42 0 000 000 000 000 227 373 675 443 232 059 478 759 765 625 
8 796 093 022 208 43 0 000 000 000 000 113 686 837 721 616 029 739 379 882 812 5 

17 592 186 044 416 44 0 000 000 000 000 056 843 418 860 808 014 869 689 941 406 25 
35 184 372 088 832 45 0 000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 
70 368 744 177 664 46 0 000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5 

140 737 488 355 328 47 0 000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 

281 474 976 710 656 48 0 000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625 
562 949 953 421 312 49 0 000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 

1 125 899 906 842 624 50 0 000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 
2 251 799 813 685 248 51 0 000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 

4 503 599 627 370 496 52 0 000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 
9 007 199 254 740 992 53 0 000 000 000 000 000 111 022 302 462 515 654 042 363 166 809 082 031 25 

18 014 398 509 481 984 54 0 000 000 000 000 000 055 511 151 231 257 827 021 181 583 404 541 015 625 
36 028 797 018 963 968 55 0 000 000 000 000 000 027 755 575 615 628 913 510 590 791 702 270 507 812 5 

A-12 



Appendix A 2114B 

Table A-4. Consolidated Coding Table 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

MEMORY REFERENCE INSTRUCTIONS 

D/I AND 001 0 Z/C Memory Address 
D/I XOR 010 0 Z/C 
D/I IOR 011 0 Z/C 
D/I JSB 001 1 Z/C 
D/I JMP 010 1 Z/C 
D/I ISZ 011 1 Z/C 
D/I AD* 100 A/B Z/C 
D/I CP* 101 A/B Z/C 
D/I LD* 110 A/B Z/C 
D/I ST* 111 A/B Z/C 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

SHIFT-ROTATE GROUP INSTRUCTIONS 

0 SRG 000 A/B 0 D/E *LS 000 tCLE D/E t SL* *LS 000 
A/B 0 D/E *RS 001 D/E *RS 001 
A/B 0 D/E R*L 010 D/E R*L 010 
A/B 0 D/E R*R 011 D/E R*R 011 
A/B 0 D/E *LR 100 D/E *LR 100 
A/B 0 D/E ER* 101 D/E ER* 101 
A/B 0 D/E EL* 110 D/E EL* 110 
A/B 0 D/E *LF 111 D/E *LF 111 
NOP 000 000 000 000 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

ALTER-SKIP GROUP INSTRUCTIONS 

0 ASG 000 A/B 1 CL* 01 CLE 01 SEZ SS* SL* IN* SZ* RSS 
A/B 1 CM* 10 CME 10 
A/B 1 CC* 11 CCE 11 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

MAC AND INPUTlOUTPUT INSTRUCTIONS 
1 MAC 000 A/B 0 
1 IOG 000 A/B 1 H/C HLT 000 Select Code 

1 0 STF 001 
1 1 CLF 001 
1 0 SFC 010 
1 0 SFS 011 

A/B 1 H/C MI* 100 
A/B 1 H/C LI* 101 
A/B 1 H/C OT* 110 

0 1 H/C STC 111 
1 1 H/C CLC 111 

1 0 STO 001 000 001 
1 1 CLO 001 000 001 
1 H/C soc 010 000 001 
1 H/C sos 011 000 001 

Notes: 1) * ~ A or B. Use with bit 11 as 0 (A-Register) or 1 (B-Registerl. 
2) D/1, A/B, Z/C, D/E, H/C coded: 0/1. 
3) tCLE: Only this bit is required. 
4) :j: SL*: Only this bit and bit 11 (A/Bas applicable) are required. 

A-13/A-14 



HEWLETT· PACKARD f SALES AND SERVICE 

UNITED STATES 
ALABAMA 
P .o. Box 4207 
2003 Byrd Spring Road s.w. 
Huntsville 35802 
Tel. (205) 881·4591 
TWJb 810·726·2204 

ARIZONA 
3009 North Scottsdale Road 
Scottsdale 85251 
Tel. (602) 945-7601 
Twx, 910.950.1282 

5737 East Broadway 
Tucson 85716 
Teh (602) 298-2313 
TWX• 910-952-1162 

CALIFORNIA 
1430 East Orangethorpe Ave. 
Fullerton 92631 
Teh (714) 870-1000 

3939 Lankershim Boulevard 
North Hall,...ad 91604 
Tel, (213) 877-1282 
rwx, 910-499-2110 

1101 Embarcadero Road 
Palo Alto 94303 
Tel. (415) 327-6500 
Twx, 910·373-1280 

2220 Watt Ave. 
Sacramento 95825 
Tel. (916) 482-1463 
Twx, 910-367-2092 

1055 Shafter Street 
San Diego 92106 
Tel: (714) 223-8103 
Twx, 910-335-2000 

COLORADO 
7965 East Prentice 
Englewood 80110 
Tai. (303) 771-3455 
TWX• 910-935-0705 

CANADA 
ALBERTA 
Hewlett-Packard {Canada) Ltd. 
11745 Jasper Ave. 
Edmonton 
Tel, (403) 482-5561 
rwx, 610-831-2431 

CONNECTICUT 
508 Tolland Street 
East Hartford 06108 
Tel, (203) 289-9394 
rwx, 110-425-3416 

111 East Avenue 
Norwalk 06851 
Teh (203) 853-1251 
rwx, 710-468-3750 

DELAWARE 
3941 Kennett Plkl? 
Wilmington 19807 
Teh (302) 655-6161 
Twx, 510-666-2214 

FLORIDA 
P.O. Box 24210 
2806 W. Oakland Park Blvd. 
Ft. Lauderdala 33307 
Tel. (305) 731-2020 
Twx, 510-955-4099 

P.O. Box 20007 
Herndon Station 32814 
621 Commonwealth Avenue 
Orlanda 
Tai, (305) 841-3970 
rwx, 810-850-0113 

P.O. Box 8128 
Madeira Beach 33708 
410 150th Avenue 
St. Petersburg 
Tel. (813) 391-0211 
TWX• 810-863-0366 

GEORGIA 
P.O. Box 28234 
450 Interstate North 
Atlanta 30328 
Tel. (404) 436-6181 
rwx, 810-766-4890 

ILLINOIS 
5500 Howard Street 
Skokie 60076 
Tel. (312) 677-0400 
rwx, 910-223-3613 

INDIANA 
3839 Meadows Drive 
lndlanapolls 46205 
Tel, (317) 546-4891 
Twx, 810-341-3263 

BRITISH COLUMBIA 
Hewlett-Packard (Canada) Ltd. 
1037 West Broadway 
Vancouver 12 
Tel, (604) 731-5301 
Twx. 610-922-5059 

SALES Be SERVICE OFFICES 

LOUISIANA 
P.O. Box 856 
1942 Williams Boulevard 
Kanner 70062 
Teh (504) 721-6201 
rwx, 810·955-5524 

MARYLAND 
6707 Whitestone Road 
Baltimore 21207 
Tel. (301) 944-5400 
Twx, 710-862-0850 

P.O. Box 1648 
2 Choke Cherry Road 
Rockville 20850 
Tel, (301) 948-6370 
rwx, 110-828-9684 

MASSACHUSETTS 
32 Hartwell Ave. 
Lexington 02173 
Tel. (617) 861-8960 
rwx, 710-326-6904 

MICHIGAN 
24315 Northwestern Highway 
Southfield 48075 
Teh (313) 353·9100 
rwx, 810-224-4882 

MINNESOTA 
2459 University Avenue 
st. Paul 55114 
Tel. (612) 645-9461 
TWX, 910-563-3734 

MISSOURI 
11131 Colorado Ave. 
Kansas City 64137 
Tel, (816) 763-8000 
rwx, 910-111-2081 

2812 South Brentwood Blvd. 
St. Louis 63144 
Tel. (314) 962-5000 
rwx, 910-160-1610 

NEW JERSEY 
W. 120 Century Road 
Paramus 07652 
Tel. (201) 265-5000 
TWX, 110-990-4951 

MANITOBA 
Hewlett-Packard (Canada) Ltd. 
511 Bradford Ct. 
St. James 
Tel. (204) 786-7581 
Twx, 610-671-3531 

1060 N. Kings Highway 
Cherry Hiii 08034 
Tel. (609) 667-4000 
rwx, 710-892-4945 

NEW MEXICO 
P.O. Box 8366 
Station C 
6501 Lomas Boulevard N.E. 
Albuquerque 87108 
Teh (505) 265-3713 
Twx, 910-989-1665 

156 Wyatt Drive 
Las Cruces 88001 
Tel. (505) 526-2485 
rwx, 910-983-0550 

NEW YORK 
1702 Central Avenue 
Albany 12205 
Tel, (518) 869-8462 
rwx, 110-441-8210 

1219 Campville Road 
Endicott 13760 
Tai, (607) 754-0050 
rwx, 510.252-0890 

82 Washington Street 
Poughkeepsie 12601 
Tel. (914) 454-7330 
rwx, 510·248-0012 

39 Saginaw Drive 
Rochester 14623 
Tel. (716) 473-9500 
TWX• 510-253-5981 

1025 Northern Boulevard 
Roslyn, Long Island 11576 
Tel. (516) 869-8400 
rwx, 510-223-0811 

5858 East Molloy Road 
Syracuse 13211 
Tel. (315) 454-2486 
rwx, 110-541-0482 

NORTH CAROLINA 
P .o. Box 5188 
1923 North Main Street 
High Paint 27262 
Tel. (919) 885·8101 
rwx, 510·926-1516 

NOVA SCOTIA 
Hewlett-Packard (Canada) Ltd. 
2745 Dutch Village Rd. 
Suite 203 
Halllal 
Tel• (902) 455·0511 
rwx, 510-211-4482 

CENTRAL AND SOUTH AMERICA 
ARGENTINA 
Hewlett-Packard Argentina 
S.A.C.e.1 
Lavalle 1171- 3° 
Buenos Aires 
Teh 35·0436, 35-0627, 35-0431 
Telex: 012-1009 
Cable. HEWPACKARG 

BRAZIL 
Hewlett·Packard Do Brasil 
1.e.C Lida. 
Rua Coronel: Oscar Porto, 691 
Sao Paulo - 8, SP 
Telo 288-7111 
Cable: HEWPACK Sao Paulo 

Hewlett-Packard Do Brasll 
1.e.c. Ltda. 
Avenida Franklin Roosevelt 84· 
grupo 203 
Rio de Janeiro, ZC-39, GB 
Tai, 232-9733 
Cable: HEWPACK Rio de Janeiro 

CHILE 
H~fotor Calcagni y Cla, Ltda. 
Bustos, 1932-3er Plso 
Casilla 13942 
Santiago 
Tel, 4-2396 
Cable: Calcagni Santiago 

COLOMBIA 
lnstrumentacion 
Henrik A. Langebaek & Kier 

Ltda. 
Carrera 7 No. 48·59 
Apartado Aereo 6287 
Bogota, 1 D.E. 
Tel, 45-78-06, 45-55-46 
Cable: AARIS Bogota \ 
Telex: 044·400 

COSTA RICA 
lie. Alfredo Gallegos Gurd"n 
Apartado 3243 
san Jost 
Tel: 21·86·13 
Cable: GALGUR San Jod 

ECUADOR 
Laboratories de Radlo·lngenieria 
Calle Guayaquil 1246 
Post Office Box 3199 
Quito 
Tel. 12496 
Cable, HORVATH Quito 

EL SALVADOR 
Electr6nlca 
Apartado Postal 1589 
27 Avenida Norte 1133 
San Salvador 
Tel, 25-74-50 
Cable, ELECTRONICA 

San Salvador 

GUATEMALA 
Olander Associates Latin America 
Apartado Postal 1226 
Ruta 4, 6·53, Zona 4 
Gaatemala CltJ 
Teh 63958 
Cable: OLALA Guatemala City 

JAMAICA 
General Engineering Services, 

Ltd. 
27 Dunrobin Ave. 
Kingston 
Tel, 42657 
Cable: GENSERV 

MEXICO 
Hewlett-Packard Mexlcana, S.A. 
de C.V. 
Moras 439 
Col. del Valle 
Mexico 12, D.F. 
Tel: 5·75-46·49 

NICARAGUA 
Roberto Ter.tn G. 
Apartado Postal 689 
Edlflcio Ter.tn 
Managua 
Tel, 3451, 3452 
Cable: ROTERAN Managua 

OHIO 
25575 Center Ridge Road 
Clmland 44145 
Tai. (216) 835-0300 
rwx, 810-427-9129 

3460 South Dixie Drive 
Dayton 45439 
Tel. (513) 298-0351 
rwx, 810-459-1925 

1120 Morse Road 
Columbus 43229 
Teh (614) 846-1300 

OKLAHOMA 
2919 United Founders Boulevard 
Oklahoma Cit' 73112 
Teh (405) 848·2801 
Twx, 910-830-6862 

OREGON 
Westhllls Mall, Suite 158 
4475 S.W. Scholls Ferry Road 
Portland 97225 
Tel. (503) 292-9171 
rwx, 910·464-6103 

PENNSYLVANIA 
2500 Moss Side Boulevard 
Monroeville 15146 
Tel. (412) 271-0724 
TWX• 710-797-3650 

1021 8th Avenue 
King of Prussia Industrial Park 
King orPrussla 19406 
Tel. (215) 265-7000 
Twx, 510-660-2610 

RHODE ISLAND 
873 Waterman Ave. 
East Providence 02914 
Teh (401) 434-5535 
TWX, 710-381-7573 

TEXAS 
P.O. Box 1270 
201 E. Arapaho Rd. 
Richardson 75080 
Tel. (214) 231-6101 
TWX: 910·867-4723 

ONTARIO 
Hewlett-Packard (Canada) Ltd. 
880 Lady Ellen Place 
Ottawa 3 
Tel. (613) 722-4223 
TWX• 610-562-1952 

Hewlett-Packard (Canada) Ltd. 
50 Galaxy Blvd. 
Rexdale 
Tel. (416) 677-9611 
TWX: 610-492-4246 

PANAMA 
Electr6nlca Balboa, S.A. 
P.O. Box 4929 
Ave. Manuel Espinosa No. 13·50 
Bldg. Alina 
Panama City 
Tel. 30833 
Cable: ELECTRON Panama City 

PERU 
Fernando Ezeta B. 
Avenlda Petit Thouars 4719 
Miraflores 
Casilla 3061 
Lima 
Tel, 45-2335 
Cabla, FEPERU Lima 

PUERTO RICO 
san Juan Electronics, Inc. 
P.O. Box 5167 
Ponce de Leon 154 
Pda. 3·Pta. de Tierra 
San Juan 00906 
Teh (809) 725-3342 
Cable: SATRONICS San Juan 
Telex: SATRON 3450 332 

P.O. Box 22813 
6300 Westpark Drive 
Suite 100 
Houston 77027 
Tel. (713) 781-6000 
Twx, 910-881-2645 

231 Biiiy Mitchell Road 
San Antonio 78226 
Teh (512) 434-4171 
TWX, 910-811-1110 

UTAH 
2890 South Main Street 
Salt Lake City 84115 
Tel. (801) 487-0715 
rwx, 910·925-5681 

VERMONT 
P.O. Box 2287 
Kennedy Drive 
South Burlinrtan 05401 
Tel. (802) 658-4465 
rwx, 110-658-4712 

VIRGINIA 
P .0. Box 6514 
2111 Spencer Road 
Richmond 23230 
Tel. (703) 282-5451 
rwx, 110-956-0157 

WASHINGTON 
433-108lh N.E. 
Bellevue 98004 
Tel, (206) 454-3971 
TWX, 910-443-2303 

'WEST VIRGINIA 
Charleston 
Tel, (304) 768-1232 

FOR U.S. AREAS NOT 
LISTED: 
Contact the regional office near. 
est you: Atlanta, Georgia ••. 
North Hollywood, California ••. 
Paramus, New Jersey ••. Skokie, 
llllnols. Their complete ad· 
dresses are listed above. 

*Service Only 

QUEBEC 
Hewlett-Packard (Canada) Ltd. 
275 Hymus Boulevard 
Pointe Claire 
Telo (514) 697-4232 
rwx, 610-422.3022 
Telex. 01·20607 

FOR CANADIAN AREAS NOT 
LISTED: 
Contact Hewlett-Packard (Can· 
ada) Ltd. In Pointe Claire, at 
the complete address listed 
above. 

URUGUAY 
Pablo Ferrando S.A. 
Comerclal e Industrial 
Avenlda Italia 2877 
Casilla de Correo 370 
Montevideo 
Teh 40-3102 
Cable: RADIUM Montevideo 

VENE2UELA 
Hewlett-Packard De Venezuela 
C.A. 
Apartado 50933 
Caracas· 
Tel: 71.88.05, 71.88.69, 71.99.30 
Cable: HEWPACK Caracas 

FOR AREAS NOT LISTED, 
CONTACT: 
Hewlett-Packard 

INTERCONTINENTAL 
3200 Hillview Ave. 
Palo Alto, California 94304 
Teh (415) 326·7000 
rwx, 910.373.1267 
Cabla, HEWPACK Palo Alto 
Telex: 034-8461 

E 4/70 



HEWLETT· PACKARD f SALES AND SERVICE 

EUROPE 
AUSTRIA FRANCE Hewlett-Packard Vertrlebs--GmbH NETHERLANDS Atalo lngenleros SA TURKEY 
Unllabor GmbH Hewlett-Packard France Reglnfrledstrasse 13 Hewlett-Packard Benelux, N.V. Enrique Larreta 12 Telekom Engineering Bureau 
Wlssenschaftllche lnstrumente Quartler de Courtaboeuf 8 MUnclltn 9 Weerdesteln 117 Mldrld, 16 P.O. Box 376 • Galata 
Rummelhardtgasse 6/3 Bolte Postale No. 6 Teh 0811 69 59 71/75 P .o. Box 7825 Tel, 215 35 43 Istanbul 
P.O. Box 33 91 Orsay Cable: HEWPACKSA MDnchen Amsterdam, z 11 Gabl•• TELEATAIO Madrid Teh 49 40 40 
Vienna A-1095 Teh 920 88 01 Telex: 52 49 85 Tel: 020-42 7777 Telex. 2749E Cable. TELEMATION Istanbul 
Tel, (222) 42 61 81, 43 13 94 Cable: HEWPACK Orsay Cable, PALOBEN Amsterdam 
Cable• LABORINSTRUMENT Telex: 60048 GREECE Telex: 13 216 SWEDEN UNITED KINGDOM 

Vienna Hewlett-Packard France Kostas Karayannls Hewlett-Packard (Sverlge) AB Hewlett-Packard Ltd. 
Telex, 75 762 4 Quai des Etrolts 18, Ermou Street NORWAY Hagakersgatan 9C 224 Bath Road 

69 LJ9n 5~me Athens 126 Hewlett-Packard Norge A/S s 431 04 Mllndal 4 Slaugh, Bucks 
BELGIUM Tel, 42 63 45 Tel: 230301,3,5 Box 149 Teh 031 • 27 68 00 Tel, Slough 33341 
Hewlett-Packard Benelux S.A. Cable, HEWPACK Lyon Cable, RAKAR Athens Nesvelen 13 Hewlett-Packard (Sverlge) AB 

Cable. HEWPIE Slough 
348 Boulevard du Souveraln Telex. 21 59 62 RKAR GR N-1344 Haslum Telex: 84413 
Brussels 1160 Telex, 31617 

Teh 53 83 60 Svetsarviigen 7 
Hewlett-Packard Ltd. 

Teh 72 22 40 GERMANY IRE LAND Cable. HEWPACK Oslo 5171 20 Solna 1 
The Graftons 

Cable: PALOBEN Brussels Hewlett-Packard Vertrlebs-GmbH Hewlett-Packard Ltd. Telex: 6621 Tel, (08) 98 12 50 
Stamford New Road 

Telex: 23 494 Lletzenburgerstrasse 30 224 Bath Road Cable. MEASUREMENTS Altrlncham, Cheshire 
SJau1h, Bucks, England PORTUGAL Stockholm 

1 Berlin 30 Telex, 10721 Toh 061 258·8626 DENMARK (May 70) Teh Slough 753·33341 Telectra 
Hewlett-Packard A/S Teh (0811) 211 60 16 Cable. HEWPIE Slough Empresa Tecnica de USSR Telex: 18 34 05 SWITZERLAND Datavej 38 Telex: 84413 Equipamentos Hewlett Packard (Schweiz) AG Please Contact DK-3460 Blrkaroed Hewlett-Packard Vertrlebs-GmbH Electricos, S.a.r.I. Zurcherstrasse 20 Hewlett-Packard S.A. Tel, (01) 81 66 40 Herrenbergerstrasse 110 ITALY Rua Rodrigo da Fonseca 103 Rue du Bois-du-Lan 7 Cable. HEWPACK AS 703 Blbllngen, WDrttemberg Hewlett-Packard ltallana S.p.A. P.O. Box 2531 

8952 Schlleren 
1217 Meyrln 2 Geneva zurlcll Telex: 66 40 Tel, 07031-6671 Via Amerigo Vespucci 2 Llsllan 1 Teh (051) 98 18 21/24 Tel, (022) 41 54 00 

EASTERN EUROPE 
Cable, HEPAG B6bllngen 20124 Miiano Teh 68 60 72 Cable= HEWPACKAG Zurich Cable: HEWPACKSA Geneva 

Hewlett-Packard S.A. Genf. 
Telex: 72 65 739 Tel: 6251 (10 lines) Cable: TELECTRA Lisbon Telex: 53933 Switzerland 

Cable. HEWPACKIT Miian Telex: 1598 Telex: 2.24.86 Korrespondenz Bilro Filr Ost· Hewlett-Packard Vertrlebs-GmbH Telex: 32046 Achenbachstrasse 15 Hewlett Packard (Schweiz) A.G. Europa 
4 DDsseldorf 1 Hewlett-Packard ltallana S.p.A. SPAIN Rue du Bois-du-Lan 7 YUGOSLAVIA 

(Czechoslovakia, Hungary, 
Teh 68 52 58/59 Palazzo Italia Ataio lngenieros SA 1217 Meyrln 2 Geneva Belram S.A. 

Poland, DOR, Rumanla, Ganduxer 76 Teh (022) 41 54 DO 83 avenue des Mimosas 
Bulgaria) Telex: 85 86 533 Plazza Marconi 25 

Barcelana 6 Cable: HEWPACKSA Geneva Brussels 15, Belgium 00144 Rome ·Eur lnnstrasse 23 Hewlett-Packard Vertrfebs·GmbH Teh 591 2544 Teh 211-44-66 Telex: 2 24 86 Teh 34 33 32, 34 26 19 
Postfach Berliner Strasse 117 Cable. HEWPACKIT Rome Cable. TELEATAIO BARCELONA Cable: BELRAMEL Brussels 
A·l204 Vienna, Austria 6 Nleder·Eschbach/Frankfurt 58 Telex: 21790 
Teh (222) 33 66 06 Teh (0611) 50 10 64 Telex. 61514 
Cable: HEWPACK Vienna Cable: HEWPACKSA Frankfurt FOR AREAS NOT LISTED, 

Telex. 41 32 49 CONTACT: 
FINLAND Hewlett-Packard S.A. 
Hewlett-Packard Oy Hewlett-Packard Vertrlebs-GmbH Rue du Bois-du.·lan 1 
8ulevardl 26 Seim Strohhause 26 1217 Meyrln 2 Geneva 
P.O. Box 12185 2 Halllllurg 1 Switzerland 
Nelsinkl 12 Tel, 24 05 51/52 Teh (022) 41 54 00 
Toh 13-730 Cable: HEWPACKSA Hamburg Cable: HEWPACKSA Geneva 1 

Cable, HEWPACKOY-Helslnkl Telex: 21 53 32 Telex: 2.24.86 
Telex. 12·1563 

AFRICA, ASIA, AUSTRALIA 
ANGOLA CYPRUS Blue Star, Ltd. Yokogawa-Hewlett-Packard Ltd. PAKISTAN (WEST) TANZANIA 
Tefectra Empresa T6cnlca Kypronlcs 96 Park lane Ohashi Building Mushko & Company, Ltd. R. J. Tilbury Ltd. 

de Equipamentos El6ctricos 19·19D Hommer Avenue Secundarabad 3, India 59 Yoyogl !·chrome Oosman Chambers P.O. Box 2754 
SAR P.O. Box 752 Tel, 7 63 91 Shlbuya-ku, TollJO Victoria Road Suite 517/518 

Rua de Barbosa Rodrigues Nicosia Cable, BLUEFROST Tel, 370·2281/7 Karachi 3 Hotel Ambassadeur 
42-1• Teh 6282-75628 Blue Star, Ltd. Telex: 232·2024YHP Tel, 511027, 512927 Nairobi 

Box 6487 Cable. HE·l-NAMI Cable. YHPMARKET TOK 23-724 Cable: COOPERATOR Karachi Teh 25670, 26803, 68206, 58196 
Luanda 23/24 Second Line Beach 

Cable. ARJAYTEE Nairobi 
Cable: TELECTRA Luanda ETHIOPIA Madras 1, India KENYA PHILIPPINES 

African 8alespow.er & Agency Teh 2 39 55 R. J. Tiibury Lid. Electromex Inc. THAILAND 
AUSTRALIA Private Ltd., Co. Telex: 379 P. o. Box 2754 Makatl Commercial Center The International 
Hewlett-Packard Australia P. o. Box 718 Cable, BLUESTAR Suite 517/518 2129 Pasong Tamo Engineering Co., Ltd. 

Ply. Ltd. 58/59 Cunningham St. Blue Star, Ltd. Hotel Ambassadeur Makatl, Rizal D 708 P. o. Box 39 
22·28 Weir Street Addis Allaba lB Kaiser Bungalow Nairobi P.O. Box 1028 614 Sukhumvlt Road 
Glen Iris, 3146 Tel, 12285 Dlndli Road Tel, 25670, 68206, 58196 Manila Bangkok 
Victoria Cable, ASACO Addlsababa Jamshedpur, India Cable: ARJAYTEE Nairobi Tel, 89·85-01 Teh 910722 (7 lines) 
Teh 20.1371 (6 lines) Tel' 38 04 KOREA Cable: ELEMEX Manila Cable. GYSOM 
Cable: HEWPARD Melbourne HONG KONG Cable. BLUESTAR American Trading Co., Korea, ltd. TLX INTENCO BK-226 Bangkok 
Telex: 31024 Schmidt & co. (Hong Kong) Ltd. P.O. Box 1103 SINGAPORE 

P.O. Box 297 INOONESIA Dae Kyung Bldg. Mechanical and Combustion UGANDA 
Hewlett-Packard Australia 1511, Prince's Building Bah Bolon Trading Coy. N.V. Engineering Company Ltd. R. J. Tiibury Ltd. 

Pty. Ltd. 10, Chater Road 
107 Sejong Ro 9, Jalan Kllana: P.O. Box 2754 

61 Alexander Street Han1 Kon1 
DJalah Merdeka 29 Chongro Ku Singapore, 3 Suite 517/518 Bandun1 seoul Crows Nest 2065 Teh 240168, 232735 Teh 4915 51560 Tel, 75·5841 (4 lines) Teh 642361-3 Hotel Ambassadeur 

New South Wales Cable: SCHMIDTCO Hong Kong Cable, ILMU Cable: AMTRACO Seoul Cable, MECOMB Singapore Nairobi 
Teh 43.7866 Telex: 809 Teh 25670, 26803, 68206, 58196 
Cable. HEWPARO Sydney INDIA LEBANON SOUTH AFRICA Cable: ARJAYTEE Nairobi 
Telex, 21561 Blue Star Ltd. IRAN Constantin E. Macridls Hewlett Packard South Africa 

Kasturl Buildings Telecom, Ltd. Clemenceau Street (Ply.), Lid. VIETNAM 
Hewlett·Packard Australia Jamshedji Tata Rd. P.O. Box 7213 Breecastle House Peninsular Trading Inc. 

Pty, Ltd. P. 0. Box 1812 
Bombay 20BR, India 240 Kh. Saba Shoman Beirut Bree Street P.O. Box H-3 

97 Churchill Road Teh 29 50 21 Teh 220846 Cape Town 216 Hien-Vuong 
Prospect 5082 Teharan Sal1on 
South Australia Telex: 2396 Teh 43850, 48111 Cable. ELECTRONUCLEAR Beirut Tel, 3-6019, 3-6545 

Cable, BLUEFROST Cable: BASCOM Teheran Cable: HEWPACK Cape Town Teh 20.805 
Teh 65.2366 MALAYSIA Telex: 5·0006 Cable, PENINSULA Saigon 
Cablei HEWPARD Adelaide Blue Star Ltd. MECOMB Malaysia Ltd. 

Band Box House ISRAEL 2 Lorong l3/6A Hewlett Packard South Africa ZAMBIA Hewlett Packard Australia Prabhadevi Electronics & Engineering Section 13 (Ply.), Ltd. R. J. Tilbury (Zambia) Ltd. 
Ply. Ltd. Bomllay 25DD, India Div. of Motorola Israel Ltd. Petallng Jaya, 5elan1ar P.O. Box 31716 P.O. Box 2792 

2nd Floor, Suite 13 Teh 45 73 01 17 Amlnadav Street Cable: MECOMB Kuala Lumpur 30 De Beer street Lusaka Casablanca Bulldlngs Telex: 2396 Ttl·AYIV Braamtonteln, Johannesllar1 Zambia, Central Africa 
196 Adelaide Terrace Cable. BLUESTAR Tel, 36941 (3 lines) MOZAMBIQUE Teh 724-4172 724-4195 
Perth, W.A. 6000 Cable. BASTEL Tel-Aviv A. N. Goncalves, LDA. Telex. 0226 JH FOR AREAS NOT LISTED, Teh 21-3330 Blue Star Ltd. Telex: Bastel Tv 033-569 4.1 Apt 14 Av. D. Luis Cable: HEWPACK Johannesburg CONTACT: 14/40 Civil Lines P.O. Box 107 
Hewlett-Packard Australia Kanpur, India JAPAN Lourenco Marques TAIWAN REP. OF CHINA 

Hewlett-Packard 
Ply. Lid. Tel, 6 88 82 Yokogawa·Hewlett-Packard Ltd. Cable, NEGON Hwa Sheng Electronic Co., Ltd. 

INTERCONTINENTAL 
10 Woolley Street Cable, BLUESTAR 3200 Hillview Ave. 
P.O. Box 191 Nisei lbaragi Bldg. NEW ZEALAND P. o. Box 1558 Palo Alto, Caflfornla 94304 
Dickson A.C.T. 2602 Blue Star, Ltd. 2-2·8 Kasuga Hewlett-Packard (N.Z.) Lid. Room 404 Tel, (415) 326-7000 
Teh 49-8194 7 Hare Street lbaragl·Shl 32·34 Kent Terrace Chia Hsln Building rwx, 910-373-1267 
Cable: HEWPARD Canberra ACT P.O. Box 506 Osaka P.O. Box 9443 No. 96 Chung Shan Cable: HEWPACK Palo Alto 

talcutta 1, India Tel: 23·1641 Wllllna:tan, N.Z. North Road, Sec. 2 Telex: 034-8461 
CEYLON Teh 23-0131 Yokogawa-Hewlett-Packard Ltd. Tel: 56·559 Taipei 
United Electricals Ltd. Telex: 655 Ito Building Cable: HEWPACK Wellington Teh 555211 Ext. 532·539 
P.O. Box 681 Cable. BLUESTAR 

No. 59, Kotorl·cho 545936, 546076, 548661 
Yahala Building Blue Star Ltd. PAKISTAN (EAST) Cable, VICTRONIX Taipei Nakamura-ku, N11111 City Mushko & Company, ltd. Staples Street Blue Star House, Tel, 551-0215 
Colombo 2 34 Rine: Road Zlrat Chambers 
Teh 5496 LaJpat Nagar 31, Jinnah Avenue 
Gable, HOTPOINT Colombo New Delhi 24, India Dacca 

Teh 62 32 76 Teh 280058 
Telex: 463 Cable: NEWDEAL Dacca 
Cable. BLUESTAR 

E 4/70 



•••••••• • 
•••••••• 
•••••••• 
•••••••• 

02114-90398 PRINTED IN U.S.A. 


	0001
	0002
	001
	003
	1-00
	1-01
	1-02
	2-01
	2-02
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	x-01
	x-02
	xBack

