[/] 2114B COMPUTER

VOLUME

SPECI_FIVCATIONS AND BASIC OPERATION |8 ﬂ

=)

VOLUME ONE
SPECIFICATIONS AND BASIC OPERATION MANUAL

MODEL 2114B
COMPUTER

HEWLETT-PACKARD COMPANY
11000 WOLFE ROAD, CUPERTINO, CALIFORNIA, US.A.

Printed: MAR 1970

02114-90398

2114B Contents
TABLE OF CONTENTS
Section Page Section Page
I DOCUMENTATION DESCRIPTION 3-15. Number Conversions 3-3
1-1. Basic Computer Manuals 11 3-23. Arithmetic Operations 34
1-3. Specifications and Basic Opera- 3-40. Computer Structure 3-6
tionManual 11 3-42. The Memory Module 3-6
1-5. Installation and Maintenance 3-50. The Registers 3-8
Manual 11 3-59. The BusSystem 3-10
1-7. Input/Output System Operation 3-63. The Instruction Logic 3-10
Manual 1-2 3-69. The Input/Output System 3-11
1-11. Programmer Reference Manuals . . 1-2 3-77. Implementation of Instructions 3-12
1-13. System Supplement 1-2 3-80. Memory Reference 3-13
3-104. Register Reference 3-19
II HP 2114B SPECIFICATIONS 3-107. Shift-Rotate Instructions 3-19
2-1. Definition of Computer System ... 2-1 3-119. Alter-Skip Instructions 3-21
2-5. Physical Specifications 2-1 3-133. Input/Output Instructions 3-21
2-12. Machine Timing 2-2 3-150. Interrupt Phase 3-22
2-20. Memoryttt 2-3
2-21. Type 2-3 IV BASIC OPERATION OF HP 2114B COMPUTER
2-23. Layout 2-3 4-1. Introduction 4-1
2-25. Addressing 2-3 4-4. Coding 4-1
2-30. Working Registers 2-4 4-8. Computer Turn-On 4-2
2-39. PanelControls 2-4 4-11. Preliminary Operations 4.2
2-50. Protected Controls 2-5 4-14. Manual Storing 4-2
2-53. Imstructions 2-5 4-18. Programmed Storing 4-2
2-55. Formats 2-6 4-22. The Stored Program 4.3
2-60. Memory Reference Instructions . . 2-6 4-26. Program Table 4-3
2-78. Register Reference Instructions . . . 2-7 4-31. Program Execution 4-6
2-83. Input/Output Instructions 2-10 4-44. Referencing Other Pages 4.9
2-105. DataFormats 2-11 4-47. Concept of the Memory Page 49
2-107. Input/Output Specifications 2-11 4-52. Direct References 4-10
2-108. Input/Output System Design 2-11 4-55. Indirect References 4-10
2-113. Interrupt Structure 2-13 4-57. Program Example 4-10
2-122. Processor Options 2-15 463. Jumps, 4-12
2-129. Input/Output Options 2-15 4-73. Introduction to Program Development. 4-13
2-138. Software 2-16 4.78. Looping and Counting 4-13
2-139. General 2-16 4-79. The Program Loop 4-13
2-143. Basic Control System 2-16 4-83. Countingtoa Limit 4-14
2-148. Symbolic Editor 2-18 4-87. Tallying 4-14
2-150. Assembler 2-18 4-89. Injtialization 4-15
2-153. FORTRAN 2-18 4-93. Complete Program 4-15
2-156. ALGOL e e e e e 2-18 4-100. Special Addressing Methods 4-16
2-159. BASIC 2.18 4.104. Address Modification 4-16
2-162. Hardware Diagnostics 2-19 4-110. Addressing the Accumulators 4-19
4-116. Introduction to Flowcharting 4-19
III FUNDAMENTALS OF COMPUTER OPERATION 4-133. Summary 4-22
3-1. Introduction 31
3-5. Front Panel Presentation 3-1 APPENDIX A REFERENCE TABLES A-1
LIST OF ILLUSTRATIONS
Figure Title Page Figure Title Page
1-1. Basic HP 2114B Computer 1-0 2-2. Machine Timing 2-2
1-2. HP 2114B System Documentation 11 2-3. Basic Instruction Formats 2-6
2-1. HP 2114B Computer Dimensions 2-2 2-4. Memory Reference Instructions 2-6

2114B

Figure

2-5.
2-6.
2-1.
2-8.
2-9.
2-10.

2-11.

3-2.
3-3.
3-4.
3-5.
3-6.
3-7.
3-8.
3-9.
3-10.

Table

2-1.
2-2.
2-3.
3-1.
4-1.
4-2.

4-3.
4-4.
4-5.
4-6.

LIST OF ILLUSTRATIONS (CONTINUED)

Title Page

Shift-Rotate Instructions 2-9
Alter-Skip Instructions 2-9
Input/Output Instructions 2-10
Basic Data Format 2-11
Input/Output Design Arrangement 2-12
Components of Typical Input/Output

Interface Cards. 2-13
Input/Output Option Locations

(TopView) 2-15
HP 2114B Computer Simplified

Block Diagram 31
Composition of Octal Digits 3-2
Binary/Octal Conversions 3-2
Significance of Digits in Three Systems . . . 3-3
Memory Block Diagram 3-6
Core Memory Module 37
Binary Storage in a Magnetic Core 3-7
Core Addressing, Reading, and Writing . . . 3-7
Memory Cell Selection 3-8
Memory Bit Plane and Frame (Upper Left

Corner)o.vuionn 3-8

Figure

3-11.
3-12.
3-13.
3-14.
3-15.

3-16.
3-17.

3-18.
3-19.

4-1.
4-2.
4-3.
4-4.

4-6.
4-7.

LIST OF TABLES

Title Page
Logic TruthTable 2-7
Select Code Assignments 2-13
Standard HP Software 2-17
Shift Rotate Functions 3-20
Program Table 4-6
Program to Show Instruction, Data, and
AddressWords 4.7
Single Cycle Execution of a Program 4-8
Memory Pages 4-9
Program for Interpage Referencing 4-11
Examples of Program Jumps 4-12

Table

4-7.
4-8.

4-9.

4-10.

A-l.
A-2.
A-3.
A-4.

Illustrations
Title Page
Register Block Diagram 39
Bus System Block Diagram 3-11
Instruction Logic Block Diagram 3-11
Input/Output System Block Diagram 3-12
Implementing Memory Reference
Instructions 3-14
Implementing Register Reference
Instructions 3-15
Implementing Input/Output Instructions . . 3-16
Register Manipulations for Indirect Jump . . 3-17
Register Manipulations for Indirect “And” . 3-18
Coding a Memory Reference Instruction
Word 4-1
Two Methods of Storing Information in
Memoryoouu.... 4-3
Storing Information Manually 4-4
Storing Information by Program 4.5
Direct and Indirect References to Other
Pages 4-10
Examples of Interpage Referencing 4-11
Flowchart for Shift-Rotate Demonstration . 4-20
Title Page
Preliminary Program Development 4-16
Program to Illustrate Looping and
Counting 417
Program to Illustrate Special Addressing
Methods 4-18
Program to Demonstrate Shifts and
Rotates 4-22
Glossary of Terms Used in This Volume A-2
Mnemonics and Abbreviations A-10
Powersof Two A-12
Consolidated Coding Table A-13

iii

Section I

2114B

HP 2114B COMPUTER

INDEX

DOCUMENTATION

%

ity

RACK MOUNT KIT

EXTENDER CARD

AC LINE CORD

2038-1

Figure 1-1. Basic HP 2114B Computer

1-0

2114B

Section I

SECTION |

DOCUMENTATION DESCRIPTION

1-1. BASIC COMPUTER MANUALS.

1-2. Documentation supplied with the Hewlett-Packard
2114B Computer consists of four manuals, the contents of
which are described briefly in paragraphs 1-3 through 1-12.
When the basic HP 2114B Computer (figure 1-1) is pur-
chased as part of a computer system, the system documen-
tation will include a system supplement (paragraph 1-13)
containing individual manuals for the peripheral equipment.
Figure 1-2 illustrates the organization of the documentation
supplied with a typical system.

1-3. SPECIFICATIONS AND BASIC OPERATION
MANUAL.

1-4. Volume one is the specifications and basic opera-
tion manual, which describes the basic HP 2114B Com-
puter, treated as an independent instrument operable from
the front panel. Separate sections of this manual introduce
the computer from the following standpoints:

a. Specifications: The full capabilities of the HP
2114B Computer are defined, including standard hardware
options and standard software. Information necessary for
coding machine-language instructions is listed and
described. This section is intended both as a reference for
users who are familiar with computer terminology and as a
source of detailed definitions, so that the material will be
meaningful to readers at a wide range of levels.

b. Fundamentals of Computer Operation: For users
with little or no previous experience with computers, this
section gives a brief outline of how the computer works
internally. This is not a detailed theory of operation, such
as is presented in volume two (installation and mainte-
nance) but the logic descriptions in volume two will assume
at least this basic level of understanding. Thus a thorough
reading of this section is advised before proceeding to the
installation and maintenance manual.

c. Basic Operation of HP 2114B Computer: This is a
continuation of the preceding section. Procedures for first-
time usage are detailed, using the computer front-panel
controls and indicators as an elementary input/output
device. This section is essentially an introduction to
machine-language programming. The assembler and other
programming reference manuals included in volume four
assume a basic knowledge of machine-language program-
ming, such as presented in this section.

1-5. INSTALLATION AND MAINTENANCE
MANUAL.
1-6. Volume two gives instructions for installation and

maintenance of the main unit only (see volume three for

VOLUMES ONE AND TWO

SPECIFICATIONS AND
BASIC OPERATION

INSTALLATION AND
MAINTENANCE

MANUAL SUPPLEMENTS

INPUT/OUTPUT SYSTEM
OPERATION

HARDWARE SYSTEM
INSTALLATION RECORD

BASIC VOLUME 3 TEXT

VOLUME THREE

INTERFACE KIT TEXTS
AND SUPPLEMENTS

PROGRAMMER'’S REFERENCE
MANUALS

~—____SOFTWARE SYSTEM
INSTALLATION RECORD

VOLUME FOUR

STANDARD SOFTWARE
MANUALS

LIBRARY ROUTINE
MANUALS

UTILITY ROUTINE
MANUALS

HP 2114B SOFTWARE
MANUAL SUPPLEMENTS

SYSTEM SUPPLEMENT

PERIPHERAL DEVICE
MANUAL SUPPLEMENTS

PERIPHERAL DEVICE
MANUALS

2038-2
Figure 1-2. HP 2114B System Documentation

interconnection and installation of peripheral equipment).
Contents of this volume are as follows:

a. General Information. This section contains a general
description of the computer. Included are descriptions of
the purpose and contents of the manual and a general
description of the computer. Descriptions of the various
computer assemblies, panel controls, and maintenance

11

Section I

features, and a list of required test equipment are also
included.

b. Installation. This section contains procedures for
installation and preparation of the unit for use. Topics
covered include inspection, inventory, and performance
checkout.

c. Theory of Operation. This section contains a
description of the overall operation of the computer and
detailed descriptions of the various operational sections of
the computer. Reference is made to the logic diagrams in
the maintenance section and block diagrams and waveforms
in the troubleshooting section.

d. Troubleshooting. This section contains trouble-
shooting procedures for the computer. Included are pretest
instructions, diagnostic interpretation information, logic
equations, and timing diagrams. Procedures for running the
diagnostic tests are contained in the Manual of Diagnostics.
Detailed procedures for troubleshooting specific opera-
tional sections of the computer such as the central proces-
sory, memory, and power supply are also given in this
section.

e. Maintenance. This section contains preventive and
corrective maintenance information for the computer.
Included in this section are adjustment and test procedures,
a signal index, interconnection and wiring information, and
schematic and parts location diagrams. Also included are
tables of replaceable parts in order of reference designations
for each computer assembly. ,

f. Replaceable Parts. This section contains informa-
tion for ordering replacement parts for the computer. All
replaceable parts are listed in order of the HP part number.
The total quantity of each part used, a description of the
part, the manufacturer, and the manufacturer’s part
number are also included in this section.

g. Appendixes. Appendixes containing explanations of
the logic symbology used in the manual, operating charac-
teristics for the logic circuitry and backdating information
for the manual are included following the last section of the
manual.

1-17. INPUT/OUTPUT SYSTEM OPERATION
MANUAL.
1-8. Volume three describes the input/output structure

and provides theory of operation for the I/O control card.
Included are sections describing the operation of the inter-
rupt and priority systems as well as the encoding and
decoding of interrupt requests and select code addresses.

1-9. Sections for input/output options are inserted as
required, according to the interface kits purchased as part
of a particular system. The information in these sections
condenses operating procedures from the manuals of the
individual instruments, and adds material relating specifi-
cally to operation with the HP 2114B Computer. Mainte-
nance information in these sections covers only the inter-
face circuits, and not the peripheral itself. Complete
operating and service manuals for the peripheral equipment
are furnished in the system supplement when included in a
particular system. Manual supplements describing produc-
tion changes affecting volume three are included in the
volume three binder.

1-2

2114B

1-10. A Hardware System Installation Record at the
front of the system supplement defines the system config-
uration as originally shipped, and provides an index to the
supporting documents in the system supplement. Space is
provided for noting changes and additions.

1-11. PROGRAMMER REFERENCE MANUALS.

1-12. Volume four consists of one or more three-ring
binders containing documentation for each item of soft-
ware supplied with the computer. Both standard software
programs and software specially originated for an individual
user are fully described as to specifications and usage. A
Software System Installation Record at the front of volume
four lists all software furnished with the original shipment,
and provides an index to the supporting documents in
volume four. Space is provided for noting changes and
additions, so that an up-to-date record can be maintained
by the user. Programmer reference manuals normally
included in volume four are:

a. HP Assembler

b. HP Symbolic Editor

c. HP Basic Control System

d. HP FORTRAN

e. HP Program Library

f. HP ALGOL

g. HP BASIC

h. HP Standard Software Systems Operating Manual

1-13. SYSTEM SUPPLEMENT.

1.14. Supplementary documentation for the hardware
system is supplied in the system supplement, which consists
of one or more three-ring binders. Individual manuals for
the peripheral devices in the system are included here, as
well as manual supplements describing any special modifica-
tions made to these devices by Hewlett-Packard.

Note

Each 2114B Computer is identified by a
serial number on the rear panel (for
example 1001A00600 or 949-00599).
The first group of digits make up a serial
prefix used to document equipment
changes. This prefix does not change
unless changes to the equipment have
been made. The last five digits form a
serial number to identify each piece of
equipment. The serial prefix may be
either three or four digits in length. If the
serial prefix contains four digits, a code
letter will be stamped between the serial
prefix and the serial number indicating
the country in which the equipment was
manufactured. If the serial prefix on your
equipment does not agree with that
shown on the title page of the hardware
manuals there are differences between
your equipment and the equipment de-
scribed in the manuals. These differences
are described in change sheets and manual
supplements available at the nearest HP
Sales and Service Office.

2114B

Section IT

SECTION 11

HP 2114B SPECIFICATIONS

2-1. DEFINITION OF COMPUTER SYSTEM.

2-2. BASIC UNIT DESCRIPTION. The Hewlett-
Packard 2114B Computer is a small general-purpose digital
computer which combines performance and economy with
small size. The computer has full compatibility with HP
data measuring and recording instruments as well as a wide
range of input/output devices. The computer is subject to
rigid operational and environmental specifications. (Refer
to paragraphs 2-6 and 2-7.) The logic design and software
follow conventional standards of computer usage and nota-
tion so that the computer may also be used as a free-
standing device or in other types of systems, such as process
control, media conversion, data reduction or communica-
tion systems, The hardware and software are specially
designed to permit interfacing of real-time devices (i.e.,
devices running asynchronously with respect to a program
being run). The word length is 16 bits. The basic HP 2114B
Computer includes the processor unit (mainframe) with a
4096-word memory. All specifications in this section apply
to the basic unit only, unless specifically denoted as an
option specification.

2-3. OPTIONS. Options for the HP 2114B Computer
are of two general types:

a. Processor Options: These options extend the mem-
ory and computation capabilities of the basic unit, and are
identified by five digit accessory numbers. (Refer to para-
graph 2-122.)

b. Input/Output Options: These options add input
and/or output facilities to the basic HP 2114B Computer.
The option, identified by an interface kit number (para-
graph 2-129), provides the circuitry, cabling, and software
to enable the computer to operate with a specific input or
output instrument (measuring, reading, or recording device)
or with a series of instruments. Compatible instruments,
not included in the interface kit, are separately available
from Hewlett-Packard. When external devices are connected
to the computer, the computer then becomes part of a
computer system. (Refer to paragraph 2-4.)

2-4. SYSTEMS. Two general types of computer
systems are available from Hewlett-Packard.

a. HP 2114B Computer Systems: Systems may be
configured to individual requirements using combinations
of standard input/output options. Nonstandard input/
output options, not mentioned in this section or in the
computer data sheet, can be obtained on special order;
these options are also designated with interface kit acces-
sory numbers. The software packages which are hardware
dependent (basic control system and system input/output)
will be made up in accordance with the hardware system
configuration.

b. Data Acquisition Systems: Systems are available in
standard configurations which combine Hewlett-Packard
digital scanning, measuring, and recording equipment with
the HP 2114B Computer. In these systems, the computer is
programmed to exercise partial or complete control over
the data taking process and to perform computations on
data measured by the system. A data acquisition program is
furnished with these systems. Capabilities of available
instruments include measurements of ac or de voltages,
resistances, frequencies, time periods, temperatures, gas
pressures, nuclear events, etc., from multiple inputs. (The
functions of some instruments such as linearizers, compara-
tors, scanner programmers, and output couplers are present
in the basic HP 2114B Computer, or may be accomplished
by eptions or programming.)

2-5. PHYSICAL SPECIFICATIONS.
2-6. POWER REQUIREMENTS.

a. Line voltage: 115 volts ac £ 10 percent (7 amperes)
or 230 volts ac + 10 percent (3.5 amperes) with a special
transformer.

b. Line frequency: 47.5 to 66 hertz.

c. Power consumption: 800 watts maximum and 500
watts minimum (computer and teleprinter option only, for
minimum value).

d. Power cable: uses a standard three-prong connector.

2-7. ENVIRONMENTAL LIMITS.

a. Temperature: 10° to 40°C (50° to 104°F).
b. Relative humidity: to 80 percent at 40°C.

2-8. VENTILATION.
Intake at rear and exhaust on sides.

Air flow: 400 cubic feet per minute.
c. Heat dissipation: 2200 BTU/hr, maximum.

T

2-9. PHYSICAL DIMENSIONS.

a. Width: 16-3/4 inches with adapters for standard 19
inch rack mounting (see figure 2-1).

b. Panel height: 12 inches.

c. Depth: 24-3/8 inches.

d. Recommended cable clearance at rear: 5 inches
minimum.

e. Recommended air exhaust clearance at sides: 2
inches minimum.

2-1

Section II

f. Net weight: 106 Ib (48 kg).
g. Shipping weight: 132 1b (59,9 kg).

24-3/8 16-3/4
(619,1) (425,5)

12
(304,8)

880BBOBBgy

DIMENSIONS IN INCHES
AND MILLIMETERS

2114B

interrupt) of which the first three include a memory cycle.
If the direct memory access option is installed, a fifth phase
is possible, the suspend phase. (Refer to paragraph 2-19.)

2-14. Phases do not occur in a fixed sequence, but rather
are determined by conditions which occur during opera-
tion. The computer can go directly from one of the first
three phases to certain others in the manner indicated in
figure 2-2, and an external device can cause the computer
to go into the interrupt phase on completion of any current
phase. The fetch phase may be thought of as the normal
condition; the processing of each instruction begins with a
fetch phase, and in many cases is fully executed within that
phase. Each phase takes 2.0 microseconds with one excep-
tion: the execute phase of the ISZ (increment, and skip if
zero) instruction takes 2.5 microseconds.

|<-—M5umnv cvcu_——»i

2038-3

Figure 2-1. HP 2114B Computer Dimensions
2-10. SERVICE ACCESS.

a. The front panel opens, providing access to test
switches and protected controls.

b. The top panel slides back and up, permitting top
access to input/output connectors, plug-in circuit boards,
and wiring.

c. The bottom panel is removable for access to back-
plane wiring.

2-11. INPUT/OUTPUT EXTENDERS. The computer
has two options for extending its input/output capability.
The HP 2151A Input/Output Extender provides an added
17 I/O slots to the basic computer. It can be quickly and
easily installed and has its own self-contained power supply.
The multiplexed I/O option provides up to 56 I/O channels.
Both units make use of the computer’s priority interrupt
system.

2-12. MACHINE TIMING.

2-13. An internal 8-MHz timing generator automatically
generates read/write memory cycles every 2.0 microseconds
when running (see figure 2-2). The basic HP 2114B Com-
puter has four machine phases (fetch, indirect, execute,

2-2

READ WRITE
EXECUTE
(1 PHASE) OR
FETCH TO INDIRECT

OR TO EXECUTE
TO EXECUTE
OR, REPEAT

INDIRECT INDIRECT, OR
TO FETCH
EXECUTE,
THEN RETURN

EXECUTE TO FETCH
PHASE
TO FETCH
PHASE (AT

INTERRUPT (NO MEMORY CYCLE) INTERRUPT
LOCATION)
| | LB 1 I |
0 25 50 75 1.0 1.26 1.50 1.75 2.0
2000-44

Figure 2-2. Machine Timing

2-15. FETCH PHASE. The contents of the currently-
addressed memory cell are read into the T-register during
the read portion of the memory cycle, and written back
into the memory cell during the write portion of the
memory cycle. The information left in the T-register is
taken as an instruction when read during the fetch phase. If
the instruction is a memory reference instruction, and
includes an indirect address bit (refer to paragraph 2-27),
the computer sets the indirect phase condition. If the
instruction does not have an indirect address bit but is a
memory reference instruction, the computer sets the
execute phase condition. Otherwise, the current instruction
is fully executed at the end of the fetch phase, and the
computer remains in the fetch state for the next memory
cycle. An exception to these conditions is the JMP (jump)
instruction, which is a memory reference group instruction
but does not require an execute phase. The computer
executes the instruction at the end of the fetch phase or the
indirect phase and then sets the fetch phase again for the
next memory cycle.

2-16. INDIRECT PHASE. The contents of the memory
cell referenced during the fetch phase are read into the
T-register and the entire 16-bit word (15 bits of address,
plus a new direct/indirect bit) is taken as a new memory
reference for the same instruction. The use of 15 bits for an
address permits addressing of maximum memory capacity.
If the direct/indirect bit again specifies indirect addressing,

Section II

f. Net weight: 106 1b (48 kg).
g. Shipping weight: 132 1b (59,9 kg).

24-3/8 16-3/4
(425,5)

(619,1)

DIMENSIONS IN INCHES
AND MILLIMETERS

2114B

interrupt) of which the first three include a memory cycle.
If the direct memory access option is installed, a fifth phase
is possible, the suspend phase. (Refer to paragraph 2-19.)

2-14. Phases do not occur in a fixed sequence, but rather
are determined by conditions which occur during opera-
tion. The computer can go directly from one of the first
three phases to certain others in the manner indicated in
figure 2-2, and an external device can cause the computer
to go into the interrupt phase on completion of any current
phase. The fetch phase may be thought of as the normal
condition; the processing of each instruction begins with a
fetch phase, and in many cases is fully executed within that
phase. Each phase takes 2.0 microseconds with one excep-
tion: the execute phase of the ISZ (increment, and skip if
zero) instruction takes 2.5 microseconds.

|<_ MEMORY cvm.e—-»-l

2038-3
Figure 2-1. HP 2114B Computer Dimensions
2-10. SERVICE ACCESS.

a. The front panel opens, providing access to test
switches and protected controls.

b. The top panel slides back and up, permitting top
access to input/output connectors, plug-in circuit boards,
and wiring.

c. The bottom panel is removable for access to back-
plane wiring.

2-11. INPUT/OUTPUT EXTENDERS. The computer
has two options for extending its input/output capability.
The HP 2151A Input/Output Extender provides an added
17 1/O slots to the basic computer. It can be quickly and
easily installed and has its own self-contained power supply.
The multiplexed I/O option provides up to 56 1/O channels.
Both units make use of the computer’s priority interrupt
system.

2-12. MACHINE TIMING.

2-13. An internal 8-MHz timing generator automatically
generates read/write memory cycles every 2.0 microseconds
when running (see figure 2-2). The basic HP 2114B Com-
puter has four machine phases (fetch, indirect, execute,

2-2

READ WRITE
o o | EXECUTE
(1 PHASE) OR
FETCH | 7o INDIRECT
| OR TO EXECUTE
"] To ExECUTE
OR, REPEAT
INDIRECT INDIRECT, OR
TO FETCH
EXECUTE,
HEN RETURN
EXECUTE B B
PHASE
TO FETCH
PHASE (AT
INTERRUPT (NO MEMORY CYCLE) INTERRUPT
LOCATION)
I | I I I |
0 25 50 75 10 125 150 175 20
2000-44

Figure 2-2. Machine Timing

2-15. FETCH PHASE. The contents of the currently-
addressed memory cell are read into the T-register during
the read portion of the memory cycle, and written back
into the memory cell during the write portion of the
memory cycle. The information left in the T-register is
taken as an instruction when read during the fetch phase. If
the instruction is a memory reference instruction, and
includes an indirect address bit (refer to paragraph 2-27),
the computer sets the indirect phase condition. If the
instruction does not have an indirect address bit but is a
memory reference instruction, the computer sets the
execute phase condition. Otherwise, the current instruction
is fully executed at the end of the fetch phase, and the
computer remains in the fetch state for the next memory
cycle. An exception to these conditions is the JMP (jump)
instruction, which is a memory reference group instruction
but does not require an execute phase. The computer
executes the instruction at the end of the fetch phase or the
indirect phase and then sets the fetch phase again for the
next memory cycle.

2-16. INDIRECT PHASE. The contents of the memory
cell referenced during the fetch phase are read into the
T-register and the entire 16-bit word (15 bits of address,
plus a new direct/indirect bit) is taken as a new memory
reference for the same instruction. The use of 15 bits for an
address permits addressing of maximum memory capacity.
If the direct/indirect bit again specifies indirect addressing,

2114B

the computer remains in the indirect state and reads
another 16-bit address word out of memory as a continua-
tion of multiple-step indirect addressing. If the direct/
indirect bit specifies direct addressing, the computer sets
the execute phase (or, in the case of a jump indirect, the
fetch phase).

2-17. EXECUTE PHASE. The 16-bit data word in the
memory cell referenced during a fetch phase or an indirect
phase is read into the T-register and is operated on by the
current instruction (retained from the fetch phase) at the
end of the execute phase. At the end of this phase, the
computer sets the fetch phase again to read the next
instruction.

2-18. INTERRUPT PHASE. An input/output device
requesting service at any time during one of the phases is
acknowledged at the end of that phase, unless the interrupt
is inhibited for any reason by the program being run. The
computer then goes into the interrupt phase, which does
not have a memory cycle. During this phase, the P-register
is decremented so that no instruction in the main program
will be skipped or executed twice. At the end of this phase,
the interrupt address of the interrupting device is trans-
ferred into the M-register and the fetch phase is set to read
the instruction contained in the interrupt address location.
The interrupt phase cannot occur again until (at least) this
instruction is completed.

2-19. SUSPEND PHASE. When the direct memory
access accessory kit is installed, a fifth machine phase is
used. When the DMA option is ready to make a data
transfer between an I/O device and the computer memory,
the normal phases are suspended at the completion of the
current machine cycle. The DMA option then uses one
machine cycle to perform the data transfer. At the end of
the suspend phase the computer resumes operation at the
point of the DMA interrupt.

2-20. MEMORY.

2-21. TYPE.

2-22. The HP 2114B Computer uses a ferrite core
storage module capable of storing 4096 words or 8192
(option 04) words, 17 bits per word (16 bits of the com-
puter word, plus a parity bit which is used by memory
parity option 02, when included in the instrument).

2-23. LAYOUT.

2-24. The 4096-word module is logically divided into
four pages of 1024 words each. A page is defined as the
largest block of memory which can be addressed by the
memory address bits of a memory reference instruction
(excluding the zero/current page bit; see figure 2-3). In the
HP 2114B Computer, memory reference instructions have
10 bits to specify a memory address, and thus the page size
is 1024 locations (2000 in octal notation). Octal addresses
of the four pages of the basic module, and also the double
module (which can be added by option 04) are therefore:

Section II
Basic Module: 00000 to 01777
02000 to 03777
04000 to 05777
06000 to 07777
Double Module: 10000 to 11777

12000 to 13777
14000 to 15777
16000 to 17777

2-25. ADDRESSING.

2-26. ZERO/CURRENT PAGE. For direct addressing
purposes, generally only two pages are of interest: page
zero (the base page, consisting of locations 00000 through
01777), and the current page (the page in which the
instruction itself is located). All memory reference instruc-
tions include a bit (bit 10) reserved to specify one or the
other of these two pages. To address locations in any other
page, indirect addressing is used (paragraph 2-27). Page
references for direct addressing of memory reference
instructions are specified by bit 10 as follows:

Logic 0 = Page Zero (Z)
Logic 1 = Current Page (C)

2-27. DIRECT/INDIRECT. All memory reference
instructions use bit 15 to specify direct or indirect addres-
sing. Direct addressing combines the instruction code and
the effective address into one word, permitting a memory
reference instruction to be executed in two machine phases
(fetch and execute). Indirect addressing uses the address
part of the instruction word to access another word in
memory, which is taken as a new memory reference for the
same instruction. This new address word is a full 16 bits
long, 15 bits of address plus another direct/indirect bit. The
15-bit length of the address permits access to any location
in any module. If bit 15 again specifies indirect addressing,
still another address is obtained; this multiple-step indirect
addressing may be done to any number of levels. The first
address obtained in the indirect phase which does not
specify another indirect level becomes the effective address
for the instruction. Instructions with indirect addresses are
therefore executed in a minimum of three machine phases
(fetch, indirect, execute). Direct or indirect addressing is
specified by bit 15 as follows:

Logic 0 = Direct
Logic 1 = Indirect

2-28. RESERVED LOCATIONS. The first 64 memory
locations of the base page (octal addresses 00000 through
00077) are reserved as listed below. The first two addresses
are the A and B flip-flop register addresses and are not core
storage locations. Locations 5 through 77 are reserved in
the sense that interrupt wiring is present for the priority
order given. As long as the locations do not have actual
interrupt assignments (as determined by the input/output
devices included in the user’s system), these locations may
be used for normal program purposes.

2-3

Section II

00000 Address of A-register.
00001 Address of B-register.

00002 For exit sequence if A and B contents are
00003 used as executable words.

00004 Interrupt location, highest priority (re-
served for power fail interrupt).

00005 Reserved for memory parity interrupt.

00006 Reserved for direct memory access.

00007 Not assigned.

00010 Interrupt locations in decreasing order of
thru priority.

00077

2-29. LOADER PROTECTION. The last 64 locations of
memory (octal addresses 07700 through 07777 in the
standard HP 2114B Computer) are reserved for the basic
binary loader. The basic binary loader (not to be confused
with the relocating loader program described in paragraph
2-146) is a manually-entered program to permit reading and
storage of binary information from punched paper tape, as
read by an input device, such as a punched tape reader or a
teleprinter. Absolute addresses are required in the loaded
data. A protect switch (LOADER ENABLE), when set to
NORMAL, protects the basic binary loader locations so
that they cannot be altered in any way. For entering the
basic binary loader manually into the computer this switch
must be set to ON. For actual loading of tapes, both the
LOAD and PRESET front panel switches must be pressed
simultaneously. The LOADER ENABLE switch is effective
for the last 64 locations of memory, regardless of memory
size. Plug-in options which expand memory relocate the
protected area automatically to the 64 highest numbered
locations.

2-30. WORKING REGISTERS.

2-31. The HP 2114B Computer has seven working regis-
ters and gives continuous display of the contents of the T
(MEMORY DATA) and M (MEMORY ADDRESS) registers
by lights on the computer front panel. Five of these are
16 bit flip-flop registers, and two are 1-bit flip-flop registers
indicated by panel lighting (on or off) of the register name.

2-32. T-REGISTER (MEMORY DATA). All data trans-
ferred into or out of memory is routed through the 16-bit
T-register (transfer register). The T-register display there-
fore indicates exactly what information went into or out of
a memory cell during the preceeding memory cycle.

2-33. P-REGISTER (PROGRAM COUNTER). On com-
pletion of each instruction, the P-register indicates the
address of the next instruction to be fetched out of mem-
ory. The P-register automatically increments by one (or
two, when executing a skip instruction) after the execution
of each instruction. A jump instruction (JMP or JSB) can
set the P-register to any core location number.

2-4

2114B

2-34. M-REGISTER (MEMORY ADDRESS). The M-
register holds the address of the memory cell being read or
written into. The M-register indication will differ from the
P-register indication when multi-phase instructions are
being processed, since the M-register will be changed by
memory references in the instruction (which may be several
in the case of indirect addressing) or by an interrupt,
whereas the P-register remains constant until completion of
the instruction. The M-register will equal the P-register
during the fetch phase.

2-35. A-REGISTER (ACCUMULATOR). The A-register
is an accumulator, holding the results of arithmetic and
logical operations performed by programmed instructions.
This register may be addressed by any memory reference
instruction as location 00000, thus permitting inter-register
operations such as “add B to A”, “compare B with A”, etc.,
using a single-word instruction.

2-36. B-REGISTER (ACCUMULATOR). The B-register
is a second accumulator, which can hold the results of
arithmetic and logical operations completely independent
of the A-register. The B-register may be addressed by any
memory reference instruction as location 00001 for inter-
register operations with A.

2-37. EXTEND. The extend bit is a one-bit (E) register,
and is used to link the A and B registers by rotate instruc-
tions or to indicate a carry from bit 15 of the A or B
registers by an add instruction (ADA, ADB) or increment
instruction (INA or INB, but not ISZ) which references
these registers. This is of significance primarily for
multiple-precision arithmetic. If already set, the extend bit
is not complemented by a carry. It may be cleared, com-
plemented, or tested by program instruction. The extend
bit is set when the EXTEND panel light is on (“1”) and
clear when off (“0”).

2-38. OVERFLOW. The overflow bit is a one-bit register
which indicates, if on, that an add instruction (ADA, ADB)
or an increment instruction (INA or INB, but not ISZ)
referencing the A- or B-register has caused one of these
accumulators to exceed the maximum positive or negative
number which can be contained (+32767 or -32768, deci-
mal). This condition is implied by a carry (or lack of carry)
from bit 14 to bit 15 (paragraph 3-58). By program instruc-
tions, the overflow bit may be cleared, set, or tested. The
OVERFLOW panel light remains on until the bit is cleared
by an instruction and is not complemented if a second
overflow occurs before being cleared. It will not be set by
shift or rotate instructions.

2-39. PANEL CONTROLS.

2-40. SWITCH REGISTER. The switch register consists
of sixteen proximity sense switches used to enter
manually-set information into and output data from the
computer. The switch register (on is a “1”, off is a “0”’) may
be used in the following ways:

2114B

a. A program may load the switch register setting into
the A- or B-register using LIA or LIB instructions with
switch register select code 01.

b. A program may merge the switch register setting
(inclusive ‘“‘or”’) into the A- or B-register using a MIA or
MIB instruction, respectively, and a select code of 01.

c. A program may set the switch register by an output
from the A- or B-register using OTA or OTB, respectively,
and a select code of 01.

d. The switch register setting may be loaded into the
P- and M-registers (simultaneously) by using the LOAD
ADDRESS switch, thus directing the computer to a specific
memory cell.

e. The switch register setting may be entered into the
memory cell specified by the M-register by using the LOAD
MEMORY switch, thus permitting the user to change the
contents of any memory cell.

2-41. PRESET. Momentary proximity switch to preset
the computer to the fetch phase, to turn off the interrupt
system and all input/output control bits, to set all input/
output flag bits, and to reset the parity halt light located on
the computer front panel. It also clears the power fail
interrupt circuits. An internal pulse accomplishing the same
functions is generated each time power is switched on or
off.

2-42. RUN. Momentary proximity switch to start opera-
tion at the current state of the computer. Switch is set when
a program is running and cleared when the computer halts.
When the RUN light is on, all front panel control switches
except HALT, and CLEAR REGISTER are disabled.

2-43. HALT. Momentary proximity switch to stop com-
puter operation at the end of the current phase. When the
computer is halted, the HALT switch is lit and all front-
panel control switches are enabled. (The P-register will not
increment if the HALT and LOAD MEMORY or HALT and
DISPLAY MEMORY switches are touched simultaneously.)

2-44, LOAD. Proximity switch associated with the last
64 locations in memory; for example, octal addresses
07700 through 07777 in 4K computers, or 17700 through
17777 in 8K computers. These locations are normally
occupied by the basic binary loader. The LOAD switch is
electrically coupled with the PRESET SWITCH. To load
any absolute binary program using the last 64 locations of
memory, clear the switch register, hold the PRESET button
and simultaneously press LOAD. If switch register bit 0 isa
“1”, the loader program will read the tape and perform a
checksum operation but will not alter memory. If the
checksum is incorrect, a HLT 00 will occur; otherwise, the
computer will go to a normal HLT 77. If bit 15 of the
switch register is a “1”, the loader program will perform a
compare between the program tape and the stored program
in memory but will not alter memory. If the taped program
does not compare with the program stored in memory, a
HLT 00 is generated; otherwise, the computer will go to a

Section IT

normal HLT 77. If both bit 0 and bit 15 are true, the
compare operation will take precedence over the checksum
operation.

2-45., LOAD MEMORY. Momentary proximity switch
to store the contents of the switch register into the memory
location specified by the address in the M-register. The P-
and M-registers are automatically incremented after opera-
tion of the LOAD MEMORY switch to simplify storing
data into consecutive memory locations. (Refer to para-
graph 2-43.) The stored data remains displayed in the
T-register, and the fetch phase is set at the end of the load
operation.

2-46. LOAD ADDRESS. Momentary proximity switch
to transfer the contents of the switch register into both the
P- and M-registers, thus directing the computer to the
desired address. The fetch phase is set at the end of the
operation.

2-417. DISPLAY MEMORY. Momentary proximity
switch to display, in the T-register, the contents of the
location specified by the address in the M-register. The P-
and M-registers are automatically incremented after opera-
tion of the DISPLAY MEMORY switch so that consecutive
memory locations may be displayed simply by repeated
operation of this switch. The P- and M-registers are there-
fore one step ahead of the T-register display. (Refer to
paragraph 2-43.) The fetch phase is set after incrementing
the P- and M-registers.

2-48. SINGLE CYCLE. Momentary proximity switch to
execute one machine cycle each time the switch is pressed.
The interrupt phase is not recognized in this mode.

2-49. CLEAR REGISTER. Momentary proximity switch
to reset the switch register to “0”’.

2-50. PROTECTED CONTROLS.

2-51. POWER ON/OFF switch located behind the front
panel on the computer chassis. Contents of memory are not
affected by switching power off and on; contents of the
working registers, however, are lost when power goes off
(contents random following turn-on).

2-52. LOADER ENABLE ON/NORMAL switch located
on the inside of front panel. The NORMAL position pro-
tects the basic binary loader (located in the last 64
positions in memory) making it available for loading tapes.
The ON position allows the basic binary loader program to
be loaded or changed.

2-53. INSTRUCTIONS.

2-54., NUMBER. The HP 2114B Computer has 70 basic
one-word instructions, all executable in 2.0 or 4.0 micro-
seconds (except for ISZ, which is executable in 4.5 micro-
seconds). These instructions are grouped in three types,
described in paragraphs 2-60 through 2-104. Combinations
of the register reference microinstructions, which are all

2-5

Section 11

one-word instructions, executable in 2.0 microseconds,
extend the total of different one-word instructions to over
1000.

2-565. FORMATS.

2-56. The three types of basic instructions are grouped
according to the bit format of the instruction word. These
types are: memory reference, register reference, and input/
output instructions. A comparison of the three formats is
given in figure 2-3, and detailed binary coding is included
with the instruction descriptions following. A consolidated
coding table appears in the appendix of this manual.

15 1413 12 1M1 10 9 8 7 6 5 4 3 2 1 [

olooolooolooolooolooo

MEMORY ADDRESS
REGISTER MICROINSTRUCTIONS
INSTRUCTION | SELECT CODE

t [or] nstruction [Z/c]
2 [REG_REF. GROUP
3 [1ocoup

1 MEMORY REFERENCE INSTRUCTIONS
2 REGISTER REFERENCE INSTRUCTIONS
3 INPUT/QUTPUT INSTRUCTIONS

2000-5

Figure 2-3. Basic Instruction Formats

2-57. The first type comprises the memory reference
instructions, using 10 bits (0 through 9) for a memory
address, bit 10 to specify zero or current page, and bit 15
for direct or indirect addressing. This leaves four bits (14,
13, 12, 11) to encode the 14 instruction commands in this
group.

2-58. The other two types use four bits (15, 14, 13, 12)
to distinguish the register reference and the input/output
instructions. The register reference type uses bits 11
through 0 to combine up to eight microinstructions (i.e.,
instructions formed by only 1, 2, or 3 bits), with the
resulting multiple instruction operating on the A-, B-, or
E-register as a single-word instruction. The input/output
type uses bits 11 through 6 for a variety of input/output
instructions and bits 5 through 0 to make the instruction
apply directly to one of the input/output devices or
functions.

2-59. The following paragraphs describe in detail each of
the instructions in the three type groups.

Note

Functions of bits appearing in the form
A/B, D/1I, D/E, Z/C, or H/C throughout
these specifications are obtained by
coding “0” or “1” respectively (0/1). For
example, A is specified by a zero-bit, and
B by a one-bit.

2-6

2114B

2-60. MEMORY REFERENCE INSTRUCTIONS.

2-61. The 14 memory reference instructions execute
some operation involving memory locations, such as trans-
ferring information in or out of a memory cell or checking
the memory cell contents. The cell referenced (i.e., the
absolute address) is determined by a combination of the ten
memory address bits in the instruction word (0 through 9)
and five bits (10 through 14) assumed from the current
condition of the P-register. This means that memory refer-
ence instructions can directly address any word in the
current page; additionally, if the instruction is given in
some location other than the base page (page zero), bit 10
of the instruction word doubles the addressing range to
2048 words by allowing selection of either page zero or
current page (i.e., bits 10 through 14 of the address in the
M-register can be reset to zero, instead of assuming the
current indication of the P-register). This feature provides a
convenient linkage between all pages of memory, since page
zero can be reached directly from any other page.

2-62. Note that since the A- and B-registers can be
addressed (paragraphs 2-35 and 2-36), any memory refer-
ence instruction can apply to either of these registers as
well as to memory cells. For example, ADA 0001 means
add the contents of the B-register (its address being 0001)
to the A-register; specify page zero for these operations,
since the A and B register addresses are on page zero.

2-63. Figure 2-4 gives instruction codes and mnemonics
for all 14 memory reference instructions. All memory ref-
erence instructions take a minimum of two machine phases
(one to read the instruction word, and one to read the
referenced memory cell), except for JMP, which is a one-
phase instruction. Logic truth tables relating to the first
three instructions described below are given in table 2-1.
Note that logic operations are performed on a bit-for-bit
basis (i.e., no carries).

15 14 13 12 110 9 8 78 5 4 3 2 1.0

elooeleselocelocelece
PA] instruction T2z] MEMORY ADORESS]

—
wn
N
b ek ek bk ek = = O O OO OO
Pt bt b O OO OO MO
—_ I, OO M OOMOMMHO M
HOMHOMFHOMFHORMFRMHOOO

Figure 2-4. Memory Reference Instructions

2114B
Table 2-1. Logic Truth Table
AND XOR IOR

A-Register 0011 0011 0011
Contents

Memory 0101 0101 0101
Result (in 0001 0110 0111
A-Register)

1="True, 0= False

2-64. AND: “And” to A. The contents of the addressed
location are logically ‘“‘anded” to the contents of the A-
register. The contents of the memory cell are left unaltered.

2-65. XOR: “Exclusive or” to A. The contents of the
addressed location are combined with the contents of the
A-register as an ‘“‘exclusive or” logic operation. The con-
tents of the memory cell are left unaltered.

2-66. IOR: “Inclusive or” to A. The contents of the
addressed location are combined with the contents of the
A-register as an “inclusive or” logic operation. The contents
of the memory cell are left unaltered.

2-67. JSB: Jump to Subroutine. This instruction, exe-
cuted in location P, causes computer control to jump
unconditionally to the memory location (X) specified in
the address portion of the JSB instruction word. The
contents of the P-register plus one (return address) is stored
in location X, and the next instruction to be executed will
be that contained in the next location (X + 1). A return to
the main program sequence at P + 1 may be effected by a
jump indirect through location X.

2-68. JMP: Jump. This instruction transfers control to
the addressed location. That is, JMP causes the P- and
M-registers to be set according to the memory address
portion of the instruction word, thus addressing memory
cell X, so that the next instruction will be read from
location X,

2-69. ISZ: Increment, and skip if zero. An ISZ instruc-
tion adds one to the contents of the addressed memory
location. If the result of this operation is zero, the next
instruction is skipped; i.e., the P- and M-registers are
advanced by two instead of one. Otherwise, the program
proceeds normally to the next instruction in sequence. The
incremented value is written back into the memory cell in
either case. An ISZ instruction referencing locations zero or
one (A- or B-register) cannot cause setting of the extend or
overflow bits (unlike INA and INB).

2-70. ADA: Add to A. The contents of the addressed
memory location are added to the contents of the A-
register, and the sum remains in the A-register. The result of
the addition may set the extend or overflow bits (para-
graphs 2-37 and 2-38). The contents of the memory cell are
unaltered.

Section IT

2-71. ADB: Add to B. The contents of the addressed
memory location are added to the contents of the B-
register, and the sum remains in the B-register. Extend or
overflow bits may be set, as for ADA. The contents of the
memory cell are unaltered.

2-72. CPA: Compare to A, skip if unequal. The contents
of the addressed location are compared with the contents
of the A-register. If the two 16-bit words are different, the
next instruction is skipped; i.e., the P- and M-registers are
advanced by two instead of one. If the words are identical,
the program proceeds normally to the next instruction in
sequence. The contents of neither the A-register nor the
memory cells are altered.

2-73. CPB: Compare to B, and skip if unequal. Same as
CPA, except comparison is made with B-register.

2-74. LDA: Load into A. The A-register is loaded with
the contents of the addressed location. The contents of the
memory cell are unaltered.

2-75. LDB: Load into B. The B-register is loaded with
the contents of the addressed location. The contents of the
memory cell are unaltered.

2-76. STA: Store A. The contents of the A-register are
stored in the addressed location. The previous contents of
the memory cell are lost; the A-register is unaltered.

2-77. STB: Store B. The contents of the B-register are
stored in the addressed location. The previous contents of
the memory cell are lost; the B-register is unaltered.

2-78. REGISTER REFERENCE INSTRUCTIONS.

2-79. The register reference instructions, in general,
manipulate bits in the A-, B-, and E-registers. There is no
reference to memory; thus these instructions are executed
in only one machine phase. This type includes 39 basic
instructions, which are combinable to form a one-word
multiple instruction that can operate in various ways on the
contents of the A-, B-, or E-registers. These microinstruc-
tions are divided into two subgroups, the shift-rotate group
(SRG) and the alter-skip group (ASG). Three instructions
(SLA, SLB, and CLE) appear in both groups and, being
combinable in these different contents, are counted twice
in the total of basic instructions. Microinstructions may be
combined under the following general rules:

a. Instructions from the two groups cannot be mixed.

b. References to both A and B registers cannot be
mixed.

c. Only one microinstruction can be chosen from each
column of the selection tables in figure 2-5 and 2-6.

d. Use zeros to exclude unwanted microinstruction
bits.

2-7

Section II

e. The sequence of execution is left to right in the
selection tables (column 1, then column 2, etc.).

f. If two (or more) skip functions are combined, the
skip will occur if either or both conditions are met. One
exception exists for the RSS instruction (paragraph 2-82).

2-80. Register Reference. Instructions are recognized by
the computer when the four most significant bits of the
instruction word are zeros; the general format for this type
of instruction (the dots representing variable microinstruc-
tion bits) is therefore:

15114 13 12|11 10 9|8 7 6|5 4 3|21 0
010 0 O

2-81. SHIFT-ROTATE GROUP. The SRG instructions
are specified by a zero for bit 10. (Compare figures 2-5 and
2-6.) Figure 2-5 gives both the bit format and the selection
table for using these instructions. Definitions for the mne-
monics used are listed below. Note that the extend bit is
not affected by shifts or rotates unless specifically stated.
All of the shift and rotate instructions can be executed
either first or last in a combined instruction, or both times.
This permits sequencing of CLE and SLA/B either before or
after shifts and rotates.

NOP No operation. Memory read/write cycle only.
CLE Clear E-register.

SLA Skip next instruction if least significant bit of
A-register is zero (i.e., skip if an even number is
in A-register).

SLB Skip next instruction if least significant bit of
B-register is zero (i.e., skip if an even number is
in B-register).

ALS A-register left shift one place, arithmetically (15
bits only). A zero replaces vacated bit 0; bit
shifted out of bit 14 is lost; bit 15 (sign bit) is
not affected.

BLS B-register left shift one place, arithmetically (15
bits only). A zero replaces vacated bit 0; bit
shifted out of bit 14 is lost; bit 15 (sign bit) is
not affected.

ARS A-register right shift one place, arithmetically.
Bit shifted out of bit O is lost; copy of sign bit
(bit 15) shifted into bit 14; bit 15 is not
affected.

BRS B-register right shift one place; arithmetically.
Bit shifted out of bit 0 is lost; copy of sign bit
(bit 15) shifted into bit 14; bit 15 is not
affected.

RAL Rotate A-register left one place, all 16 bits. Bit
15 is rotated around to bit 0.

2114B

RBL Rotate B-register left one place, all 16 bits. Bit
15 is rotated around to bit 0.

RAR Rotate A-register right one place, all 16 bits. Bit
0 is rotated around to bit 15.

RBR Rotate B-register right one place, all 16 bits, Bit
0 is rotated around to bit 15.

ALR A-register left shift one place, same as ALS, but
clear sign bit after shift.

BLR B-register left shift one place, same as BLS, but
clear sign bit after shift.

ERA Rotate E-register right with A-register, one place
(17 bits). Bit 0 is rotated into extend-register;
extend content is rotated into bit 15.

ERB Rotate E-register right with B-register, one place
(17 bits). Bit O is rotated into extend-register;
extend content is rotated into bit 15.

ELA Rotate E-register left with A-register, one place
(17 bits). Bit 15 is rotated into extend-register;
extend content is rotated into bit 0.

ELB Rotate E-register left with B-register, one place
(17 bits). Bit 15 is rotated into extend-register;
extend content is rotated into bit 0.

ALF Rotate A-register left four places, all 16 bits. Bits
15, 14, 13, 12 are rotated around to bits 3, 2, 1,
0 respectively. Equivalent to four successive
RAL instructions.

BLF Rotate B-register left four places, all 16 bits. Bits
15, 14, 13, 12 are rotated around to bits 3, 2, 1,
0 respectively. Equivalent to four successive RBL
instructions.

2-82. ALTER-SKIP GROUP. The ASG instructions
are specified by a “1” in bit 10. Figure 2-6 gives both the
bit format and the selection table for using these instruc-
tions. Definitions for the mnemonics are used as follows:

CLA Clear A-register.
CLB Clear B-register.

CMA Complement A-register. One’s complement,
reversing the state of all 16 bits.

CMB Coinplement B-register. Reverses state of all 16
bits.

CCA Clear, then complement A-register. Puts 16 ones
in the A-register; this is the two’s complement
form of -1.

CCB Clear, then complement B-register. Puts 16 ones
in the B-register; this is the two’s complement
form of -1.

2114B

Section II

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1.0

.I...I.Q.I...I...r...

15 14 13 12 110 9 8 7 6 5 4 3 2 1 0

.]...—[...l...l.O.I.C.

COMBINING GUIDE

1. Choose up to 4 instructions, one from each
column of the Selection Table.

2. Use a one-bit for Bit 9 to Enable column 1
instructions, and a one-bit for Bit 4 to Enable
column 4 instructions. Figure above shows
column 1 enabled (executed first) with dupli-
cate column 4 pattern (executed last) indicated
by X's.

3. Use a one-bit for Bit 5 to select column 2
(CLE), or a zero-bit to exclude CLE.

4. Use a one-bit for Bit 3 to select column 3
(SLA/B), or a zero-bit to exclude SLA/B.

[rvee 2 TRgJo %] cout Jao4 3] coa] [twe2 [%]t]co Jeows]aTa]s]e]7]e]
NOP 0 000 000 000 000 000 cLA 0 000 0101
CLE 0 000 0 . CLBO 000 110 1
CMAO 000 011 0
SLA 0 000 00 1
SIB 0 000 10 . CMBO 000 111 0
A0 00O 011 1
ALS 0 000 001 000 X XXX g€500001111
BLS 0 000 101 000 X XXX She o oo 1 .
ARS 0 000 001 001 X XXX A 01
BRS 0 000 101 001 X XXX e o ooe 1 -
RAL 0 000 001 010 X XXX cob 0 000 1
RBL 0 000 101 010 X XXX o .
RAR 0 000 001 011 X XXX 8 9 006 11 .
RBR 0 000 101 011 X XXX A 0 000 o1 .
ALR 0 000 001 100 X XXX S8 0 000 11 .
BLR 0 000 101 100 X XXX
ERA O 000 001 101 X XXX igggggg‘l’} }
ERBO 000 101 101 X XXX SeA 0 000 01 .
ELA O 000 001 110 X XXX B 0 000 11 .
ELB O 000 101 110 X XXX hes 0 000 1 .
ALF 0 000 001 111 X XXX
BLF 0O 000 101 111 X XXX
SELECTION TABLE
1 2 3 4
ALS ALS
ARS ARS SELECTION TABLE
RAL RAL 1 2 3 4 5 6 7 8
RAR RAR
ALR CLE SLA ALR CLA CLE
ERA ERA CMA | SEZ |CME| SSA| SLA| INA| SZA| RSS
ELA ELA CCA CCE
ALF ALF CLB CLE
BLS BLS cMB | SEZ | cME| ssB| SLB| INB| szB| Rss
BRS BRS CCB CCE
RBL RBL
RBR RBR
BLR CLE SLB BLR
ERB ERB
ELB ELB
BLF BLF COMBINING GUIDE

1.

Choose up to 8 instructions, one from each
column of the Selection Table.

2000-7

Figure 2-5. Shift-Rotate Instructions

2. Use the specified two-bit combinations of Bits
9 and 8, plus A/B Bit 11, to encode column 1
instructions.

3. Use the specified two-bit combinations of Bits
7 and 6 to encode column 3 instructions.

4. Use a one-bit in Bits 5, 4, 3, 2, 1, plus A/B
Bit 11, to encode column 2, 4, 5, 6, T in-
structions respectively.

5. Use a one-bit for Bit 0 to encode column 8.

2000-8

Figure 2-6. Alter-Skip Instructions
29

Section II

CLE Clear E-register.

CME Complement E-register. Reverses state of the
extend bit.

CCE Clear, then complement E-register. Sets the
extend bit.

SEZ Skip the next instruction if E-register is zero.

SSA Skip next instruction if sign bit (bit 15) of A-
register is zero; i.e., skip if the content of A is
positive.

SSB Skip next instruction if sign bit (bit 15) of B-
register is zero; i.e., skip if the content of B is
positive.

SLA Skip next instruction if least significant bit of
A-register is zero (i.e., skip if an even number is
in A).

SLB Skip next instruction if least significant bit of
B-register is zero (i.e., skip if an even number is
in B).

INA Increment A-register by one. Can cause setting of
extend or overflow bits (paragraphs 2-37 and
2-38).

INB Increment B-register by one. Can cause setting of
extend of overflow bits (paragraphs 2-37 and
2-38).

SZA Skip next instruction if A-register is zero (16
Zeros).

SZB Skip next instruction if B-register is zero (16
Z€ros).

RSS Reverse skip sense. Skip occurs for any of the
preceding skip instructions, if present, when the
non-zero condition is met. RSS without a skip
instruction in the word causes an unconditional
skip. If a word with RSS also includes both
SSA/B and SLA/B, bits 15 and 0 must both be
one for skip to occur; in all other cases the skip
occurs if either or both conditions are met.

2-83. INPUT/OUTPUT INSTRUCTIONS.

2-84. The HP 2114B Computer has 17 basic input/
output instructions, which provide the following general
capabilities.

a. Fix the state of the flag, control, and overflow bits.
(These bits are described in paragraphs 2-111 and 2-38.)

b. Test the state of the flag and overflow bits (i.e., skip
if set or clear, as specified).

c. Enter data from a specific device into the A- or
B-register.

2-10

2114B

d. Output data to a specific device from the A- or
B-register.

e. Halt the program.

2-85. Input/output instructions are recognized by the
computer when the four most significant bits of the instruc-
tion word are 1000 and bit 10 is a'“1”. The codes and
mnemonics for all 17 instructions are given in figure 2-7
(the MAC instruction is not counted as a basic instruction;
see paragraph 2-87). All input/output instructions are
executed in one cycle (the fetch phase).

2-86. Note that bit 11, where relevant, specifies A- or
B-register; otherwise it may be “1” or “0” without
affecting the instruction, although the assembler will assign
zeros (as shown). Bit 9, where not specified, offers the
choice of holding (0) or clearing (1) the device flag after
execution of the instruction. (Exception: the H/C bit asso-
ciated with the last two instructions in this list holds or
clears the overflow bit instead of the flag bit.) Bits 8, 7, and
6 identify the instruction; some of the instructions, how-
ever, require additional specific bits for the complete code.
Bits 5 through 0 form select codes to make the instruction
apply to one of up to 64 input/output devices or functions
(see paragraph 2-107).

2-87. The MAC instruction listed in figure 2-7 is avail-
able to provide up to 2048 entries to macroinstruction
subroutines. Since it is used only by special options and
special software, MAC is not counted as one of the 70 basic
machine instructions. The basic HP 2114B will treat MAC
as a no-operation (NOP) instruction.

15 14 13 42 11 10 9 8 7 6 5 4 3 2 1 0
o[ooorooo—looo[ooolooo
[twee s [Mg[% [We]wstruction [serectcone]

MAC 1 000 0

HLT 1 000 1 000

STF 1 000 10 001

CLF 1 000 11 001

SFC 1 000 10 010

SFS 1 000 10 011

MIA 1 000 01 100

MIB 1 000 11 100

LIA. 1 0060 01 101

LIB 1 000 11 101

OTA 1 000 01 110

OTB 1 000 11 110

STC 1 000 01 111

CLC 1 000 11 111

STO 1 000 10 001 000 001

CLO1 000 11 001 000 001

SOC 1 000 1 010 000 0O01

SOS 1 000 1 011 000 001
*Identifies Macroinstructions (0) or
standard Input/Output instructions (1).

2000-9
Figure 2-7. Input/Output Instructions

2114B

2-88. HLT. Halt. Stops the computer and holds or clears
the flag (according to bit 9) of any desired input/output
device (bits 5 through 0). The HLT instruction has the same
effect as the HALT pushbutton: the HALT switch lights, all
front-panel control switches are enabled, and no interrupts
may occur. The HLT instruction will be displayed in the
T-register, and the M-register will normally indicate the
HALT location plus one.

2-89. STF. Set flag. Sets the input/output flag of the
selected device, thus causing an interrupt during the next
machine phase if the interrupt system is enabled (paragraph
2-113), and the corresponding control bit is set. The inter-
rupt system itself is enabled by an STF instruction with a
select code of 6 zeros (octal 00).

2-90. CLF. Clear flag of selected device. Resets the flag,
thus permitting the device to present another flag when
ready again. A CLF with a select code of 6 zeros (octal 00)
disables the entire interrupt system; this does not affect the
status of individual input/output flags.

2-91. SFC. Skip if flag clear. Causes the computer to
skip the next instruction if the flag bit of the selected
device is zero (i.e., the device is not ready).

2-92. SFS. Skip if flag set. The next instruction is
skipped if the flag bit of the selected device is one (i.e., the
device is ready).

2-93. MIA. Merge input into A. The contents of the
input/output buffer associated with the selected device are
merged (“inclusive or”’) into the A-register.

2-94. MIB. Merge input into B. The contents of the
input/output buffer associated with the selected device are
merged (“inclusive or”’) into the B-register.

2-95. LIA. Load input into A. The contents of the
input/output buffer associated with the selected device are
loaded into the A-register. Previous contents of the A-
register are lost.

2-96. LIB. Load input into B. The contents of the
input/output buffer associated with the selected device are
loaded into the B-register. Previous contents of the B-
register are lost.

2-97. OTA. Output from A. The contents of the A-
register are loaded into the input/output buffer associated
with the selected device. If the buffer is less than 16 bits in
length, the least significant bits of the A-register normally
are loaded. (Some exceptions exist, depending on the type
of output device.) A-register contents are not altered.

2-98. OTB. Output from B. The contents of the B-
register are loaded into the input/output buffer associated
with the selected device.

Section II

2-99. STC. Set control bit of the selected device. This
commands or prepares the device to perform its input or
output function, and enables its flag bit to interrupt the
program being run (provided the program is not disabling
the interrupt system).

2-100. CLC. Clear control bit of the selected device.
This prevents the device from interrupting. A CLC instruc-
tion with a select code of 00 (octal) clears all control bits,
effectively turning off all input/output devices. CLF 00
may be combined with this to additionally turn off the
interrupt system.

2-101. STO. Set overflow. The overflow bit remains set
until cleared by one of the following three instructions.

2-102. CLO. Clear overflow. Resets the overflow register.

2-103. SOS. Skip if overflow set. If the overflow register
is set, the next instruction of the program is skipped. Use of
the H/C bit will hold or clear the overflow bit following
execution of this instruction (whether the skip is taken or
not).

2-104. SOC. Skip if overflow clear. If the overflow regis-
ter is clear, the next instruction of the program is skipped.
Use of the H/C bit will hold or clear the overflow bit
following execution of this instruction.

2-105. DATA FORMATS.

2-106. Data is represented in two’s complement form
internally in the computer. The basic format for arithmetic
operations on numerical data is defined in figure 2-8. The
data is assumed to be an integer (binary point to the right
of bit 0), and is positive if the sign bit is “0”, or negative if
“1”, The largest possible positive number (in octal) is
+77777, or (in decimal) +32767; the largest possible nega-
tive number is -100000 (octal) or -32768 (decimal). Other
possible formats, including packed data words, double-
length fixed point, and floating point representations, are
defined in standard software packages.

15 14 13 12 11 10 9
.1000'000'0.0'000'00.

8 1 6 5 4 3 2 1 0

MAGNITUDE T
MAGNITUDE BINARY
SIGN POINT

2000-10
Figure 2-8. Basic Data Format

2-107. INPUT/OUTPUT SPECIFICATIONS.
2-108. INPUT/OUTPUT SYSTEM DESIGN.

2-109. GENERAL. Information is transferred into the
computer from an external device, or out of the computer

2-11

Section II

to an external device, by way of its input/output capability,
termed the input/output system. A transfer of information
is initiated by a signal from a device indicating that it is
ready for input or output. The transfer occurs by the
process of interrupting a running program (which could be
either a problem-solving program, or a program specifically
designed to transfer data). The interrupt directs the com-
puter to a location in memory uniquely associated with the
interrupting device. This location in turn directs the com-
puter to a program routine (service routine), which must
previously have been stored in memory, and this routine
will contain instructions which effect the actual transfer of
information. Since interrupts can occur at almost any time,
including during the service routine of an earlier interrupt, a
priority network is present in the computer to establish the
sequence in which interrupts are serviced. As shown in
figure 2-9, the input/output system capability (including
the priority network and the identical hardwiring for
optional plug-in card slots) is an integral part of the com-
puter unit. The remaining part is provided by input/output
options (paragraph 2-129), which will include the plug-in
interface cards and cables for specific devices and the
appropriate software drivers and diagnostic programs. The
interface cards may be plugged into any of the identical
input/output slots, depending on the desired priority rating.
Each combination of interface card and device, when
plugged into the computer, constitutes an input/output
channel.

2-110. NUMBER OF CHANNELS. The coding structure
of input/output instructions (figure 2-7) allows 6 bits for a

2114B

select code, making it possible to specify a total of 64 (26)
channels and functions. Of this total, two select codes are
assigned to non-interrupting functions (interrupt system
enable/disable, and switch register overflow), two are used
for control of the direct memory access option, two are not
available for use with the computer, and the remaining 58
channels and functions have an interrupt capability. Two
interrupt assignments are reserved for internal processor
functions (power failure interrupt, and parity error inter-
rupt). This leaves a possible 56 channels for input/output
devices. The computer accommodates 7 of the 56 input/
output channels. This may be extended to a total of 24
with the HP 2151A I/O Extender, or if the multiplexed I/O
option is used, the entire 56 input/output channels are
available.

2-111. INTERFACE COMPONENTS. Each plug-in inter-
face card normally includes the following components,
shown in figure 2-10:

a. An input/output buffer consisting of up to 16 flip-
flops for temporary storage of data to be transferred in or
out, so that it is not necessary to tie up a working register
during the relatively long transfer periods. The actual
number of buffer bits, from 1 to 16, will depend on the
device for which the interface is intended. Data is trans-
ferred to the buffer from the A- or B-register by OTA or
OTB instructions, and is brought in to the A- or B-register
from the buffer by LIA, LIB, MIA, or MIB instructions. If
the buffer is less than 16 bits in length, data is transferred
to or from the least significant bits of the A- or B-register.

PROCESSOR
HP 24948 CIRCUITS
COMPUTER

T A 7 SLOTS FOR
I/0 CONTROL CARD PLUG-IN
CARDS

DMA OPTION CARD

INTERFACE
KITS

PLUG-IN INTERFACE CARDS

CABLES

OPTIONAL
HP 2154A
EXTENDER
MODULE

18 SLOTS

EXTERNAL
DEVICE

EXTERNAL
DEVICE

2040-1

Figure 2-9. Input/Output Design Arrangement

2-12

2114B

INTERFACE CARD

INPUT/OUTPUT
FER

TO
COMPUTER
LOGIC
AND A/B

FLAG FLIP-FLOP
REGISTERS

CABLE CONTROL
FROM FLIP-FLOP
EXTERNAL I
DEVICE
7
2000-12

Figure 2-10. Components of Typical Input/Output
Interface Cards

b. An input/output flag flip-flop, which will be set by a
signal from the external device when the device has com-
pleted an operation. The flag may also be set, if desired, by
program instruction (STF). Once set, the flag remains set
until reset by a clear instruction (CLF or H/C bit). Provided
it is itself not inhibited by the set flag of a higher priority
device or otherwise disabled, the flag, when set, inhibits all
interrupts for devices having lower priority. It will cause an
interrupt after the current machine phase (paragraph
2-113). Successive interrupts for one device may occur on
receipt of a number of flag signals without executing a clear
flag instruction, thus making it possible to inhibit lower
priority devices indefinitely until a desired number of high-
priority transfers have been completed. The flag can be set
and cleared even if its interrupt capability is inhibited or
disabled, and may be tested by SF'S or SFC instructions.

c. A control flip-flop to command or enable the external
device to perform its input or output operation. In addi-
tion, the control bit controls the interrupt capability for
that particular device; i.e., unless the control flip-flop is set,
a received flag cannot cause an interrupt, nor can it inhibit
the interrupt capability of any other device in the priority
string. Thus, the control bit, when set, effectively turns on
the individual input/output channel.

2-112. SELECT CODE ASSIGNMENTS. As mentioned
previously in paragraph 2-85, bits 5 through 0 of the
input/output instructions form a select code to specify one
of 64 possible input/output devices or functions. Of the 64
select codes, some are reserved for specific uses while others
are available for assignment to any optional input/output
device. Table 2-2 lists these assignments and gives the cor-
responding interrupt location (i.e., the location containing
the instruction to be executed when interrupt occurs). The
first four (octal codes 00 through 03) are reserved for
noninterrupting functions. Note that select code 00 is the
access to the master interrupt enable flip-flop; a STF
instruction with this select code enables the interrupt
system. Select code 01 is assigned to the switch register
when using input instructions (LIA, LIB, MIA, MIB, OTA,

Section II

OTB), permitting the program to enter the switch register
setting into the A- or B-register or output data to the switch
register from the A- or B-register; when using instructions
concerning the overflow register (STO, CLO, SOC, SOS),
select code 01 is assigned to the overflow register. Select
codes 02 and 06 are reserved for use by the direct memory
access option. Select code 04 is the highest priority inter-
rupt, reserved for power failure interrupt. Select code 05 is
the next highest priority interrupt and is reserved for the
memory protect and parity error options. Select codes 03
and 07 are not program accessible. The next 7 codes (10
through 16), are used for external devices capable of
causing an interrupt, with decreasing priority. Select codes
20 through 77 are available only with the use of an input/
output extender option.

Table 2-2. Select Code Assignments

SELECT
CODE INTERRUPT ASSIGNMENT
(OCTAL) LOCATION

00 None Interrupt System Disable/Enable
01 None Switch Register or Overflow

02 None DMA Initialize

03 None Not Assigned

04 00004 Power Fail Interrupt/Central

Interrupt Register

05 00005 Memory Parity Interrupt

06 00006 DMA Completion Interrupt

07 00007 Not Assigned

10 00010
thru thru 1/0O Device, highest priority

16 00016

17 00017 Additional 1/O Capability Avail-
thru thru able with HP 2151A 1/O

37 00037 Extender

17 00017 Additional 1/O Capability Avail-
thru thru able with HP Multiplexer 1/O
77 00077 Options

2-113. INTERRUPT STRUCTURE.
2-114. OPERATION. On computer command (set control

instruction STC), one or more external devices begin their
read or record operation, putting data into (input) or taking
data from (output) the input/output buffer on each indivi-
dual interface card. During this time, the computer may
continue running a program or may be programmed into a
waiting loop to wait for a specific device. On completion of
the read or record operation, each device returns an opera-
tion completed signal (flag) to the computer. The flags are
passed through a priority network (paragraph 2-119), which
allows only one device to be serviced regardless of the
number of flags simultaneously present. The flag with the
highest priority causes an interrupt at the end of the cur-
rent machine phase, switching the computer into the inter-
rupt phase (paragraph 2-18), except under any of the
following circumstances.

2-13

Section II

a. Interrupt system disabled (paragraph 2-112), orde-
vice interrupt disabled.

b. Computer in HALT mode. SINGLE CYCLE push-
button cannot step the computer into the interrupt phase.

c. JMP indirect or JSB indirect not fully executed.
These instructions inhibit all interrupts until the instruction
(plus one phase of the succeeding instruction) is completed.

d. Instruction in an interrupt location not fully exe-
cuted, even if of lower priority. Any interrupt inhibits the
entire interrupt system until one fetch phase has been
completed. (JMP indirect and JSB indirect are exceptions
and will be fully executed.)

e. Direct memory access option in process of trans-
ferring data. Exception: power failure control can interrupt
a DMA transfer.

f. The current instruction is one which may affect the
priorities of input/output devices (STC, CLC, STF, CLF).
The interrupt in this case must wait until the end of the
succeeding machine phase.

2-115. When interrupt occurs, the computer puts the
select code number of the interrupting device into the
M-register (with extra zeros to specify page zero), thus
causing the next instruction to be read from the memory
location having the same number as the select code. This
location in memory is referred to as the interrupt location,
and is reserved for that particular device. Example: a device
specified by a select code of 10 will interrupt to (i.e., cause
execution of the contents of) memory location 00010. The
instruction in the interrupt location will usually be a jump
to an input or output subroutine (JSB).

2-116. To prevent external devices from running when
computer power is first turned on, turn-on of the POWER
switch automatically clears all control bits, resets the inter-
rupt enable flip-flop (disabling the interrupt system), and
sets all device flags. Pressing the PRESET pushbutton
accomplishes the same function when the computer is on
(but not when running, since the control switches are
disabled). Therefore, before any device can operate with
the computer, it is necessary for the program to set inter-
rupt system enable and (depending on the type of device)
clear the individual flag bit and/or set the individual control
bit.

2-117. INPUT INTERRUPT. The typical operation
sequence for an input interrupt involves the following
steps:

a. A STC instruction, usually accompanied by CLF,
sends a command (equivalent to a read, or encode, or reset
command pulse) to the external device.

b. The device reads its input, then puts the data into
the input/output buffer on the interface card (paragraph
2-111).

2-14

2114B

c. Simultaneously the device supplies a flag signal
(equivalent to a record or print command pulse) to the
computer.

d. The flag is converted to an interrupt request by the
device interface card.

e. The resulting interrupt causes a service subroutine
for that device to begin, temporarily suspending operation
of the main program.

f. The service subroutine enters data from the buffer
into the A- or B-register, processes the data, then returns
control to the main program.

2-118. OUTPUT INTERRUPT. The typical operation
sequence for an output interrupt involves the following
steps:

a. An OTA or OTB instruction puts data from the A-
or B-register into the input/output buffer.

b. STC instruction sends a command (equivalent to a
record or print command pulse) to the external device.

c. The device accepts (records) the data currently in
the buffer.

d. After the data has been accepted, the device returns
a flag signal (equivalent to the end of a hold-off or inhibit
command pulse) to the computer.

e. The flag is converted to an interrupt request by the
device interface card.

f. The interrupt causes a service subroutine for that
device to begin.

g. The service subroutine loads new data into the
buffer, repeating the sequence.

2-119. PRIORITY. The priority network gives highest
interrupt priority to select code 04, reserved for power
failure control interrupt, and decreasing priority to select
codes in order from 05 through 77. The transfer of data by
the optional direct memory access (DMA) channel (which
transfers data directly to and from memory by inserting a
special memory cycle, rather than by interrupt to a service
subroutine) effectively has a priority between select codes
05 and 07 since it can inhibit all interrupts except power
failure control, and parity error. When the multiplexed
input/output option is used the priority given to any multi-
plexed device is limited by the hardwired priority of the
I/O slot where the multiplexer data card is installed. The
priority between the individual multiplexed device is
assigned by the user in his interface circuitry.

2-120. A set flag inhibits all interrupt requests below it
on the priority string (provided that its control flip-flop is
also set), and once this flag is cleared, the next lower device
can then interrupt. A service subroutine for any device can
be interrupted by a higher priority device; then, after the

2114B

higher device is serviced, the subroutine may continue. In
this way, it is possible for several service subroutines to be
in a state of interruption at one time; each will be per-
mitted to continue when the higher priority device is ser-
viced. All service subroutines normally end with a JMP
indirect instruction to return the computer to the point of
interrupt.

2-121. TRANSFER RATE. It is possible to make up to
47,000 transfers per second, limited by the length of the
service subroutine. If no subroutine is required, a maximum
of 250,000 transfers per second may be made.

2-122. PROCESSOR OPTIONS.

2-123. The following options are all capable of being
installed in the field. They consist of one or more plug-in
cards, and in the case of option 04, a larger memory
module as well. Other processor options are available, as
either standard or custom modifications; consult the HP
2114B Technical Data Sheet or a Hewlett-Packard Sales and
Service office.

2-124. 8K MEMORY. Option 04 comprises a set of
memory addressing cards and a replacement core module,
expanding memory of the HP 2114B from 4096 to 8192
words. Cards and module are installed in the computer
mainframe.

2-125. MEMORY PARITY CHECK. Option 02, HP
12598A. Permits parity checking within memory. Odd
parity is used. Accessory 12598A consists of one plug-in
card for standard 4K memory and optional 8K memory. A
parity error may either cause the machine to halt or inter-
rupt to address 05.

2-126. POWER FAIL WITH RESTART. Option 08 per-
mits the computer to store the contents of the working
registers in memory in the event of a power failure. When
proper power levels are restored the computer will continue
processing the program at the point of interrupt.

2-127. DIRECT MEMORY ACCESS. The DMA option
HP 12607A allows high-speed data transfers (up to 1/2
million per second) between I/O devices and memory. The
option provides control signals to automatically control
Hewlett-Packard input/output devices.

2-128. HIGH SPEED I/O CHANNEL. The High Speed
Channel Option, HP 12616A, allows the user to access
computer memory at arbitrary locations at a rate of 1/2
million transfers per second.

2-129. INPUT/OUTPUT OPTIONS.

2-130. Input/output options for the HP 2114B Com-
puter, identified by interface kit accessory numbers, consist
of a combination of plug-in cards, interconnecting cables,
and appropriate software. In many cases, an optional inter-
face kit is designed to operate with more than one kind of

Section II

peripheral device, or with different versions of a device.
Also, one peripheral may be associated with more than one
interface. A device may require one interface to transfer its
data into the computer, and another interface to accept
function commands from the computer.

2-131. Most input/output options require only one card.
This card by itself has no definite select code assighment or
interrupt priority. Plugging the card into any of the seven
general purpose input/output slots, each of which has a
select code assignment, automatically gives the external
device an interrupt priority, according to the select code of
the slot.

2-132. As shown in figure 2-11, each of the input/
output slots actually has two select codes available,
although usually only one is used by the interface cards.
There can be no gaps in the priority string; continuity is
required from select code position 10 up to the last used
select code.

nnnnannNnnNAAnNNnNNnNNNNNnAn

16 15 14 13 12 11 10

J 17 16 15 14 13 12 11

Juuuuuuu

INPUT/OUTPUT

Juuuuduuuuuuuuu

MEMORY AND LOGIC |

2038-4

Figure 2-11. Input/Output Option Locations
(Top View)

2-133. For more than seven input/output cards, an
input/output extender, either the HP 2151A or the multi-
plexed I/O option is required. The HP 2151A is a separate
unit with a self-contained power supply which can make
available another 17 I/O channels for a total of 24. The
multiplexed I/O option consists of a special I/O interface
card called the multiplexer data card, which is inserted into
one of the computer I/O slots, leaving six I/O slots in the
mainframe of the computer available for interfacing to
other devices. The standard I/O control card in the com-
puter is modified for multiplexed I/O operation. Together
these two cards make all computer I/O address and control
signals available to the user. The computer decodes the I/O

2-15

Section II

instruction and transmits the select code (two digit octal)
and necessary control signals to the user’s interface. All
channels have access to the computer’s priority interrupt
system.

2-134. TELEPRINTER INPUT/OUTPUT. The simplest
configuration of an HP 2114B Computer system is provided
by a combination of the HP 2752A Teleprinter (modified
Teletype ASR-33) and accessory interface kit HP 12531B.
The teleprinter combines a typewriter, punched tape
reader, and tape punch. Data and instructions may be
entered from punched tape or the keyboard. Output infor-
mation is recorded on the typewriter, and may be recorded
simultaneously on punched tape. The teleprinter operates
at 10 characters/second for both data entry and data
recording. Where heavy use of the teleprinter is anticipated,
exceeding 5 hours per day or 30 hours per week, a heavy
duty HP 2754B Teleprinter (modified ASR-35) is recom-
mended. This device uses the same interface. The HP
2752A and HP 2754B Teleprinters perform the same func-
tions and operate at the same speed.

2-135. HIGH-SPEED PUNCHED TAPE INPUT. For
rapid entry of punched tape programs and data into the
computer, a high speed tape reader is available. The HP
2748A Tape Reader, with its interface kit, HP 12597A-02,
reads punched tape at the rate of 500 characters per
second. The HP 2758A Tape Reader-Reroller uses the same
interface kit and has an added reroller feature that automat-
ically rerolls the punched tapes as they are processed.

2-136. HIGH-SPEED PUNCHED TAPE OUTPUT. Data
output of the HP 2114B Computer can be recorded (asyn-
chronously) on punched tape at 120 characters/second with
an HP 2753A Tape Punch and HP 12597A-03 Interface Kit.
This device includes a tape spooler, which accepts approxi-
mately 1000 feet of tape.

2-137. Input/Output options can be added, upgraded, or
deleted, and service priorities changed, on a plug-in basis.
No wiring changes to the computer are involved. For a
complete list of input/output options available, contact
your nearest Hewlett-Packard Sales and Service Office.
Input/output software is modular, and a software config-
urator (paragraph 2-147) is furnished which allows the user
to change his software operating system to handle different
hardware configurations with minimal programming effort.

2-138. SOFTWARE.
2-139. GENERAL.

2-140. The HP 2114B Computer is supported by a full
range of software, normally furnished in the form of
punched paper tape. As standard accessories, the following
software packages are supplied with all HP computers,
unless additions or deletions are otherwise specified. All are
operable with the minimum HP 2114B Computer system
configuration (i.e., 4K memory and teleprinter input/
output).

2-16

2114B

HP Basic Control System
HP Symbolic Editor

HP Assembler

HP FORTRAN Compiler
HP FORTRAN Library
HP System Input/Output
HP Hardware Diagnostics

2-141. Each of the software packages listed above con-
sists in most cases of a number of individual tapes. The
number of tapes furnished depends on the options pur-
chased with a system; driver tapes and test tapes are
furnished as accessories to interface options when
purchased, either with the initial order or with field installa-
tion. Table 2-3 lists all the standard tapes furnished with a
typical system, consisting of an HP 2752A Teleprinter, HP
2753A Tape Punch, and HP 2748A Tape Reader. In this
case, 28 tapes would be furnished for computers having 4K
memories. For 8K memory computers, 26 tapes would be
furnished, since the FORTRAN compiler requires only two
pass tapes insttad of four. (Note: the list of standard
software given in table 2-3 may change from time to time;
check with the Hewlett-Packard Sales and Service Offices
for latest information.) In addition to these standard tapes,
two configured tapes, incorporating actual system device
assignments, are furnished with the initial shipment, one for
the system input/output drivers and one for the basic
control system. The system input/output (SIO) drivers
primarily provide input/output capability for the assembler,
symbolic editor, desired in user programs. The basic control
system, on the other hand, is primarily intended to provide
a complete software input/output system for user programs
(paragraph 2-144). These two tapes are unique to each
system, and do not have HP accessory numbers and are not
listed in the software catalog. Subsequent reconfiguring of
system input/output and the basic control system, if
desired, is easily accomplished by the user, with the aid of
supplied software (system input/output dump, and prepare
control system).

2-142. Each software tape is separately identifiable by
description and HP accessory number, labeled on both the
tape container and the tape itself. The letter at the end of
the number identifies a particular version of the tape (e.g.,
B supersedes A). A detailed list of the software packed with
the system is given in the software installation record,
supplied with the system documentation at the front of
volume four. When ordering new or duplicate tapes (or
documentation), the latest applicable version will automat-
ically be furnished. Software is ordered through Hewlett-
Packard Sales and Service Offices. A fee is charged for all
software, except for the one set of standard software tapes
(paper only) defined in the preceding paragraphs, included
with the computer (mylar tapes are extra cost). The fol-
lowing paragraphs, to the end of this section, give a brief
description of the standard software packages supplied with
the computer.

2-143. BASIC CONTROL SYSTEM.

2-144. The HP basic control system provides a complete
software facility for input/output operations, so that pro-

2114B

Table 2-3. Standard HP Software

*Basic Control System
Input/Output Control
Relocating Loader
Debug Routines
Prepare Control System

**BCS Teleprinter Driver
**BCS Tape Reader Driver
#**BCS Tape Punch Driver

Symbolic Editor

Assembler, Basic, Non-EAU

FORTRAN Complier (8K only): Pass 1
Pass 2
Pass 3
Pass 4

FORTRAN and ALGOL Library (8K only)

*System Input/Output
System Input/Output Dump
**%SI0 Teleprinter Driver
#*SI0 Tape Reader Driver
*#%SI0 Tape Punch Driver

Hardware Diagnostics

Alter-Skip Instruction Test
Memory Reference Instruction Test
Shift-Rotate Instruction Test
Memory Address Test (Low Core)
Memory Address Test (High Core)
Memory Checkerboard Test (Low Core)
Memory Checkerboard Test (High Core)

** Teleprinter Test

**Tape Reader Test

**Tape Punch Test

*A configured tape is furnished with the initial ship-
ment both for the system input/output and for the
basic control system, in addition to the individual
tapes listed above. These two additional tapes,
unique to each system, do not have HP accessory
numbers; they are identified only by system serial
number.

**¥Driver tapes and test tapes are furnished for each
type of device in a system. The nine tapes listed

above are for a typical system.

grams written by the user need not include input/output
subroutines within the program. This permits input/output
statements in source programs to be general in nature (i.e.,
not tied to specific devices), and allows easy modification
when input/output requirements change. When running
relocatable programs, the basic control system will nor-
mally be present in the last page of memory, and its
subroutines are available by call from any point in memory.
To call input/output operations, the user programs a five-
word request in assembly language. The request includes

Section II

the function to be performed (read or write), the unit
reference, a reject address (in case the unit is not available),
a buffer address (the first location in core in which the data
is stored or will be stored), and a buffer length (the number
of words or characters that are to be transmitted). The
basic control system interprets the request, initiates the
data transfer, and returns control to the program. Inter-
rupts which occur during or on termination of the data
transfer are processed entirely by the basic control system;
the program need not include interrupt handling sub-
routines.

2-145. The basic control system is modular in design,
consisting of several programs which can be combined to
suit the user’s particular hardware configuration. In addi-
tion to the individual tapes (table 2-3), Hewlett-Packard
furnishes with each system a complete configured tape,
loadable by the basic binary loader and ready for use.

2-146. For loading and running relocatable programs,
the routines required to be present in memory are:

a. Input/Output Control: This program supervises the
transmission of data between the computer memory and
input/output devices. It does this by transferring control to
selected subroutines (input/output drivers) on request by
the program being run.

b. Input/Output Drivers: A driver subroutine consists
of specific instruction sequences to operate one external
device, and to request interrupt of the main program when
the device is ready for servicing. Driver subroutines are
different for each type of device. The control program
selects which driver is to be used with a particular device
(initially set up by prepare control system).

c. Relocating Loader: This program is required for
loading into memory relocatable user programs produced
by the assembler and the FORTRAN compiler. (A reloca-
table program is one which can be shifted upward in
memory a specified number of locations relative to location
zero. This provides efficient loading of memory by mini-
mizing or eliminating gaps.) Features of the relocating
loader enable it to link a number of separately assembled
relocatable programs into an integrated unit, assign indirect
addressing and base page references, and select and load
referenced library subroutines.

2-147. Routines not required for loading or running
object programs but which are considered as part of the
basic control system are:

a. Debugging Routines: This is a program consisting of
several individual routines designed to help check out a
user-generated program. Separate routines, which are indi-
vidually selectable by typing in request statements on the
teleprinter keyboard, enable: printing of selected areas of
memory (memory dump); executing and printing of
selected sections of the program (program trace); modifica-
tion of selected areas of memory; execution of a program
and termination of the program when a specified location
or memory reference is used; and punching of a program in

2-17

Section II

an absolute binary format acceptable to the basic binary
loader. The debugging routines program is loaded by the
relocating loader.

b. Prepare Control System: This is an independent
program used only to establish or change the composition
of the basic control system. The desired basic control
system components are read into the computer, and the
prepare control system instructions load the new basic
control system into the last page of memory. The new basic
control system is then punched out for a permanent record,
and space occupied by the prepare control system can be
used for other purposes. This program establishes the equip-
ment tables which input/output control uses to relate soft-
ware input/output references to specific hardware
peripherals.

2-148. SYMBOLIC EDITOR.

2-149. The HP symbolic editor is a program which
enables use of the computer to simplify the correction or
updating or a user’s assembly language or FORTRAN lan-
guage program (or any other symbolic program), thus
avoiding the process of manually repunching the entire
program off line. The symbolic editor produces an updated
tape from the source tape and change instructions. Indi-
vidual characters and entire source statements can be
inserted, deleted or replaced. The symbolic editor will also
provide a listing of a symbolic file, sequentially numbering
the statements. Diagnostic messages are produced for errors
detected in the format of the edit control statements.
System input/output drivers (table 2-3) are required in
order to use the symbolic editor.

2-150. ASSEMBLER.

2-151. The HP assembler is a program designed to con-
vert a symbolic source program into either absolute or
relocatable binary machine instructions, optionally
selectable by the programmer. Basically, the assembler
provides a means of using the computer itself to relieve the
programmer from the tedious job of coding each instruc-
tion of his source program in binary machine language. By
reading an input prepared in symbolic form by the pro-
grammer (using the three-letter mnemonics defined under
paragraph 2-53, plus special assembler pseudo-instructions)
the computer can produce (assemble) the full 16-bit binary
representation of each instruction. If a relocatable output is
to be prepared, the programmer need not be concerned
about actual memory addresses, since the relocating loader
(paragraph 2-146) will assign these.

2-152. The assembler is contained on a single spool of
punched paper tape which, when loaded into the computer,
resides in memory throughout the assembly process. To use
the assembler, the teleprinter option is required (or an
equivalent system) to read the user source program into the
computer, punched the assembled result on tape, and print
out error messages. System input/output drivers (table 2-3)
are also required in order to use the assembler. Two or
three passes of the source tape are required, depending on
whether or not a printed listing of the assembled program is
desired.

2-18

2114B

2-153. FORTRAN.

2-154. HP FORTRAN is an extended version of ASA
(American Standards Association) basic FORTRAN; source
programs written according to ASA basic FORTRAN speci-
fications can be compiled and executed on the HP 2114B
Computer. FORTRAN, being a compiler language, as
opposed to assembler language, provides even greater user
convenience since it is still further removed from binary
machine language. Whereas the assembler requires a state-
ment for each machine instruction, item for item, FOR-
TRAN accepts statements in a form resembling algebraic
formulas (hence the name FORmula TRANslation). Each
FORTRAN statement may result in a large number of
machine instructions.

2-155. HP FORTRAN is a four-pass system for com-
puters having 4K memory; this reduces to two passes for
8K computers. The compiler is contained on several indi-
vidual tapes, one for each of the passes. In addition, at least
one system input/output driver is required (table 2-3). The
output of the compile process is a relocatable machine
language object program which can be loaded and executed
under control of the basic control system.

2-156. ALGOL.

2-157. ALGOL (ALGOrithmic Language) is a compiler-
type language that accepts as input a source program
written in a language similar to that defined by the ALGOL
60 Revised Report, Communications of the ACM, January,
1968. In one pass, it produces, as an output, a relocatable
binary object program which can be loaded and executed
under control of the HP basic control system.

2-158. HP ALGOL allows the computer user to use
familiar arithmetic conventions when formulating a pro-
gram. It also includes the additional advantages of inter-
mixing of real and integer identifiers in assignment state-
ments, all variables treated as own variables, initialization of
variables or arrays within type declaration, values assigned
to variables with equate declaration, logical unit designation
in input/output statements, and HP FORTRAN format
specifications for input/output, or free field input data. HP
ALGOL requires 8K of core memory.

2-159. BASIC.

2-160. BASIC is an interpretative compiler language that
accepts a simple mathematical language which has certain
similarities to FORTRAN and ALGOL. Syntax is checked
as statements are entered into the computer and error
messages are turned immediately. Compilation takes place
in the computer memory. (BASIC does not produce an
object tape as an output.) When successfully completed, the
program is executed. Due to its interactive nature and its
simplicity, BASIC is widely used by engineers.

2-161. HP BASIC is similar to that used in the HP
time-sharing language and has the added features of a COM
statement (to pass information blocks from one program to
another), a CALL statement (to use assembly language

2114B

subroutines and special purpose input/output device
drivers), and a WAIT statement (to temporarily delay pro-
gram execution). HP BASIC requires 8K of memory.

2-162. HARDWARE DIAGNOSTICS.

2-163. To assist the user in hardware troubleshooting, an
HP hardware diagnostic package is furnished with all HP
2114B Computers. The programs in this package are sep-
arate from the installation and maintenance manual. Opera-
ting procedures for the diagnostic programs are contained
in the Manual of Diagnostics. The results of the diagnostic
tests are used together with maintenance information given
in the HP 2114B Installation and Maintenance Manual
(Volume Two). Procedures are given in the Manual of
Diagnostics to determine that the hardware system is
capable of accepting and using the HP hardware diagnostics
programs. The supplied software may then be loaded and
run according to set procedures. Programs supplied (refer to
table 2-3) are:

a. Instruction Tests: These tests check out all instruc-
tion codes in groups, halting the computer when an
instruction fails to perform its function. The first test
program checks out a few basic instructions (alter-skip), so
that those instructions can be used the next test program
(memory reference), which in turn enables checking out the
final group (shift-rotate).

Section II

b. Memory Address Tests: A low-core test and a high-
core test are supplied as separate test programs, so that the
program may be loaded at the end of memory to check all
core locations below the test block, or it may be loaded at
the bottom of memory to check all higher locations. Each
test checks the addressing logic of a selectable section of
memory, and halts when an error is detected. The display
on the computer front panel is used to identify the error.

c. Memory Checkerboard Tests: These tests, which
also consist of a low-core test and a high-core test, verify
that data is correctly stored in memory, and is correctly
transferred to and from the T-register. Like the memory
address tests, the computer halts when an error is detected,
and identifies the error on the front-panel display.

d. Input/Output Tests: A separate test program is
supplied for each type of input/output device in a user’s
hardware system. For example, the HP 2752A Teleprinter
Test Program checks operation of the print, punch, and
read functions with the computer. After it is determined
that the print function is operating correctly, the program
prints requests for data to be typed in so that the punch
and read functions can be checked. Errors are indicated by
a printout. (Test programs for other devices require that a
message printing facility, such as provided by the HP
2752A Teleprinter, be present in the hardware system.)

2-19/2-20

2114B

Section III

SECTION 111
FUNDAMENTALS OF COMPUTER OPERATION

31. INTRODUCTION.

3-2. This section describes how the HP 2114B Com-
puter manipulates information internally to execute the
basic instructions defined in the preceding specifications
section. In the interest of users without previous computer
experience, the material in this and the following section is
organized to begin at an elementary level, and to progress
on the basis of previously given information, in the form of
a training course.

3-3. The fundamental operations described in this sec-
tion (and the following section) are in practice nearly
always accomplished with the aid of software and input/
output devices. However, for simplicity it will be assumed
that the computer is an independent instrument and will be
operated only by front panel controls. Additionally, it will
be assumed for descriptive purposes that the computer runs
slowly enough to observe the operations step by step. When
running, the HP 2114B Computer usually reads and exe-
cutes each instruction in 2.0 or 4.0 microseconds. Thus,
only the beginning and ending conditions are normally
readable on the front panel display. (Note: It is possible to
single-step the computer through each instruction, one
phase at a time, by using the SINGLE CYCLE pushbutton.
This technique will be used in section IV.)

3-4. The computer performs its operations solely by
instructions inserted into its memory by the user. The front
panel controls therefore do not operate the computer, but
rather are used for entering instructions and data into
memory, and for initiating operation at the starting instruc-
tion. Very basically, the overall operation is:

a. The user enters instructions and data (all manually
set in binary coded numbers on the 16 switches of the
SWITCH REGISTER) into computer memory, using the
LOAD ADDRESS and LOAD MEMORY pushbuttons.

b. When the program of instructions is in memory and
is ready to be run, the user enters the address of the starting
instruction, which points the computer to the location in
memory where this first instruction has been stored. The
SWITCH REGISTER and LOAD ADDRESS switches are
used for this purpose.

c. The user presses the RUN pushbutton.

d. The computer reads and executes the instruction
contained in the memory cell designated by the starting
address.

e. The computer automatically continues to the next
and all succeeding instructions, operating on the internally
stored data, until reaching a halt instruction.

f. The user, having prepared the instructions and
knowing where the computed answer is stored, reads the
result. (The LOAD ADDRESS and DISPLAY MEMORY
pushbuttons may be used to display the answer on the
front panel.)

3-5. FRONT PANEL PRESENTATION.

3-6. To present the material of this section in the most
practical form from the user’s point of view, the descrip-
tions will relate to the front-panel view of the computer.
Figure 3-1 is a simplified block diagram of the computer,
showing the relationship of the display registers. The block
diagram, which corresponds to the physical layout of the
panel (shaded blocks), will be used for descriptions of
register operations later in this section.

TIMING MEMORY ADDRESS)
GENERATOR | 7 DECODER
READ/WRITE llll
X v
MEMORY
I-REG
BITS
10-15
READ ~

—<4— FUNCTION

INPUT/OUTPUT -
» CONTROL > - Z
out SELECT CODE

CONTROL
AND FLAG
[c]FlsuFFER
DATA IN

Figure 3-1. HP 2114B Computer Simplified
Block Diagram

2038-5

Section III

3-7. As observed from figure 1-1, information is dis-
played in rows of 16 lights, numbered 0 through 15, and
the switch register consists of 16 switches similarly num-
bered. Each light or switch represents a bit (condensed
from “binary digit”) in the binary numbering system,
where a light or switch off is a ““0” and a light or switch on
is a “1”. In the binary system, there are only two digits, 0
and 1, which are easily stored and manipulated by a com-
puter using bistable devices. Thus input information which
is applied to the computer in binary form (such as by the
switch register) is said to be in machine language since the
computer can handle these numbers directly without con-
versions of any kind. For the user, however, binary num-
bers (such as 1011010011101000) are difficult to read and
use, so the bits are grouped in threes for convenient nota-
tion in the octal numbering system.

3-8. Thus it is seen at this point that before a discus-
sion of computer operation can by presented, some famili-
arity with both binary and octal numbering systems, as well
as with conversions to and from the decimal system, is
necessary. The remainder of this introduction (through
paragraph 3-39) provides this basic information.

3-9. OCTAL NOTATION. There are five three-bit
groups in each row of panel lights and the switch register,
with one bit remaining at the left end. Since this last bit, bit
15, is normally used for special purposes (e.g., to indicate
direct/indirect addressing or +/- numbers), the following
introductory paragraphs, through paragraph 3-22, will dis-
regard this bit and will deal only with the 15 bits numbered
0 through 14. The concept of using bit 15 for signed
numbers is introduced later in paragraph 3-35.

3-10. In converting each group of three bits to an octal
digit, the binary significance of each bit is converted to its
absolute value, which is then considered to be absent or
present, depending on whether the bit is a “0” (light off) or
a “1” (light on), respectively. This is shown in figure 3-2.

REGISTER LIGHTS I. [) [) I
Binary Significance 22 2! 20
Value if On ("'1") 4 2
Value if Off ("0") 0 0 0

2000-15

Figure 3-2. Composition of Octal Digits

3-11. By various combinations of on and off states, eight
digits are possible, 0 through 7. The digits 8 and 9 never
appear in the octal numbering system. Figure 3-3 lists all
eight binary/octal equivalents, along with some examples of
numbers as might be read from a computer display register.

3-2

2114B

Binary Octal Interpretation Octal
000 = 0 I
001 = 1 - 1
010 = 2 = 2
011 = 2 +1 -3
100 = 4 = 4
101 = 4+1 = 5
110 = 4+2 = 6
111 = 4+2 +1 = 7
EXAMPLES
5 2 6 0 1
[to1]o1o0]t10]o00]001
7 4 3 5 0
lt11/100fo11]101]000
7 7 7 7 7
[t11]111]111]111]111

2000-16

Figure 3-3. Binary/Octal Conversions

3-12. As can be seen from the last example in figure 3-3,
the largest possible number which can be displayed by a
register is 77777 (all lights on). Since there are no 8’s or 9’s
in the octal system, this number must correspond to some
lower value in the decimal system (specifically 32767,
method of conversion given later under paragraph 3-18). To
avoid confusion when numbers are written in more than
one numbering system, a subscripted digit is attached to the
number to identify the system used. Thus:

111111111111111, = 77777 = 32767, .

3-13. The HP 2114B Computer manuals will use these
subscripts or the word binary, octal, or decimal whenever
such confusion may occur.

3-14. OCTAL COUNTING. When counting in the octal
system, the “carry” to the next more significant column
occurs as rollover from 7; to Og occurs. That is, 104
follows 7. The counting sequence in octal is:

00000 00006
00001 00007
00002 00010
00003 00011
00004 00012
00005 ete.

2114B

3-15. NUMBER CONVERSIONS.

3-16. COMPARISON OF SYSTEMS. Integral and frac-
tional parts of a number are separated by a decimal point in
the decimal system, an octal point in the octal system, and
a binary point in the binary system. The significance of
digit positions in a number in any system increases by
positive powers of the system base when going left from the
point, and decreases by negative powers of the system base
when going right from the point. This is shown in figure
3-4.

XXXX o XXX

5

Dec: X10® X10° X10' X10° X10" X107? X107
Oct: X8® X8 X8 Xx8° X8' X8?% X8

Bin: X2° X2% Xx2' Xx2° X270 X2% Xx2°?

2000-17

Figure 3-4. Significance of Digits in
Three Systems

3-17. The information in figure 3-4 provides the basis
for converting octal or binary to the decimal system. The
procedure is given in paragraph 3-18. The reverse con-
version from decimal to octal or binary is given in
paragraph 3-20.

3-18. CONVERTING TO DECIMAL. Converting octal
or binary numbers to the decimal system consists only of
performing the individual multiplications indicated in figure
3-4 (digit times its significance) for each of the digits in the
number, and then summing the individual results. Thus the
octal number 7654.321 has the decimal equivalent of:

7x8% = 7x512 = 3584.

6x82 =6x64 = 384.

5x8' =5x8 = 40.
4x8°=4%x1 = 4,

3x8 =3x2 = .375
2x87=2x % = .03125
1x8 =1x_1 = .001953125

4012.408203125

3-19. Using this method, the decimal equivalent of the
highest whole positive number which can be contained in
the computer registers is derived as shown below. (Note:
special constructions to represent larger, fractional, and
negative numbers will be discussed later.)

Section III

111111111111111, = 1 x 2" = 16384
1x2% = 8192
1x 22 = 4096
1x2"" = 2048
1x2'0 = 1024
1x2° = 512
1x28 = 256
1x27 = 128
1x26 = 64
1x25 = 32
1x24 = 16
1x23 = 8
1x2?2 = 4
1x2' = 2
1x20 = 1

32767,
T, = T x 84 = 28672
7 x 83 = 3584
7x 82 = 448
7x8' = 56
7x8° = 7
32767,

3-20. CONVERTING FROM DECIMAL. Integral and
fractional parts of a decimal number require separate opera-
tions when converting to the binary or octal system.
Because of this added complexity, the ease of octal/binary
conversion, and the large number of operations required to
construct a 15-bit binary number, it is recommended to
limit decimal conversions to octal only, and then to con-
struct the binary equivalent if necessary from the octal
number. No example of decimal-to-binary conversion is
given here, although the technique is identical to the
decimal-to-octal conversion shown.

3-21. Basically, the procedure for the integral part of the
number is first to divide the new base (8, if converting to
octal) into this part of the number, stopping at the decimal
point. The resulting number is a whole number and a
fractional remainder (e.g., 32767+ 8 = 4095 plus a
remainder of 7 eights). The remainder (7) becomes the least
significant integer of the new number being constructed
(i.e., immediately to the left of the octal point). The whole
portion (4095) is again divided by the base (8), and the
process is continued until the whole portion is reduced to
Zero.

32767 +- 8 = 4095 + ki
4095 ~ 8 = 511 + ki
511 + 8 = 63 + 7
63 -~ 8 = 7 + i
7+8 = 0 + 7 1 ‘
¥
TTTT

3-3

Section III

3-22. To convert the fractional part of a decimal number
to octal, multiply by the base and use the whole portion of
the resulting number as the first digit to the right of the
octal point. Continue by multiplying the fractional part of
the same resulting number by the base again, to as many
places of accuracy as desired. Thus 0.135 decimal is
approximately:

0.135 0.08 0.64 0.12 0.96
x8 x8 x8 x8 x8

1.080 0.64 5.12 0.96 7.68

I

0.10507

3-23. ARITHMETIC OPERATIONS.

3-24. Since the computer performs arithmetic opera-
tions in binary and the user reads the numbers in octal,
familiarity with basic binary and octal arithmetic is essen-
tial. The important rule to remember when performing
arithmetic in any numbering system is that all digits,
whether written or carried mentally, must be smaller than
the system’s base. Thus 2 or 3 cannot appear in the binary
system and 8 or 9 cannot appear in the octal system.

3-25. ADDITION. In the decimal system, a carry is
generated each time the addition in a column exceeds 9.
Similarly, in the octal or binary systems, a carry is gen-
erated each time the addition in a column exceeds 7 or 1
respectively.

Decimal Octal Binary

Carries: 111 111 111
999 777 111
+001 +001 +001
1000 1000 1000
Decimal Octal Binary

11

Carries: 222 222 1111
789 567 111
789 567 111
789 567 111
2367 2145 10101

3-26. To explain the latter octal addition, note that
when adding the rightmost column (3 sevens), the total if
adding decimal would be 21, which means that the base (8)
has been exceeded twice (i.e., 16 or higher), with a remain-
der of 5. The remainder of 5 is written as the column sum
(just as in the decimal system) and the number of times the
base has been reached (2) is carried to the next column
(again, this is exactly what is done for a decimal carry). In
the case of the latter binary addition, the first column
(rightmost) reaches the base once (one carry), while the
second and third columns reach the base twice (two
carries).

3-4

2114B

3-27. SUBTRACTION. Borrows from a preceding
column have the value of the system’s base. Thus a borrow
in the decimal system is 10, in octal is 8, and in binary is 2.

Decimal Octal Binary

Borrows: 101010 888 202
9123 7123 1010

-798 -567 -101

8325 6334 101

3-28. MULTIPLICATION. As in addition, a carry is gen-
erated each time a product reaches a multiple of the base.
When the multiplier has more than one digit, remember to
perform the final addition in the same system. Carries are
not denoted for the second set of examples below: for
practice, the reader should work out these problems inde-
pendently to see how the answers are obtained.

Decimal Octal Binary
111
x11

394 274 111
x5 x5 111
550 234 1001
Carries: 142 142 11
1970 1654 10101
Decimal Octal Binary
563 563 1111
x75 xT75 x111
2815 3477 1111
3941 5045 1111
42225 54147 1111
1101001

3-29. DIVISION. Division in the octal or binary system
is the same as decimal division except that the intermediate
multiplications and subtractions must be performed in the
appropriate system. The borrows for subtraction are not
shown in the examples below; again, the reader should
work out every step of these problems to obtain the given
answers.

Decimal Octal Binary
563 563 1111

75 542225 75 ;54147 111 51101001

315 161 1
472 604 1100
450 556 111
225 267 1010
225 267 m

111
111

2114B

3-30. COMPUTER ARITHMETIC. In the basic instruc-
tions of the computer, there is an add instruction but no
subtract, multiply, or divide. Therefore these three latter
operations must be constructed from the add instruction or
by some other method. Although it is possible to perform
multiplication and division by successive addition or sub-
traction respectively, the more efficient method is by reg-
ister manipulations available through special computer
programming. The following paragraphs deal with subtrac-
tion and the representation of negative numbers.

3-31. To subtract, the operation is to convert the subtra-
hend (i.e., the negative number) to its true complement
value, and then to add as if both numbers were positive.
The result will be the true difference between the two
numbers when the last carry digit is removed. Simple logic
in the computer drops the excess carry, so that the user
need not be aware of it.

3-32. The true complement of a number in any system is
obtained by subtracting the number from any power of the
base large enough to allow the arithmetic to be performed.
That is, five digits are required if four-digit numbers are
involved, as shown below. Using the same subtraction
examples given in paragraph 3-27, the complements for the
negative numbers are:

Decimal Octal Binary
10000 10000 10000
-798 -5617 -101
9202 7211 1011

3-33. Then, completing the operation by straight addi-
tion and dropping the excess carry, the answers are the
same as obtained previously.

Decimal Octal Binary
9123 7123 1010
+9202 +7211 +1011
18325 16334 10101
or or or
8325 6334 101

3-34. In computers such as the HP 2114B, it is simpler
to use the one’s complement (subtracting from 1’s instead
of 0’s) since this is simply a matter of switching all 1’s to
0’s and 0’s to 1’s. This is precisely what the complement
instructions do (CMA/B, CME, CCA/B, CCE). Adding one
then converts the result to the true two’s complement.
One’s complement in binary corresponds to nine’s com-
plement in decimal and seven’s complement in octal. Using
the same examples:

Section III
Decimal Octal Binary
9999 7 1111
-798 -567 -101
9201 7210 1010
Add: 1 1 1
9202 7211 1011

3-35. Negative numbers are constructed and used in the
computer in exactly this way. For example, if the negative
number 070004 is wanted for some later arithmetic, this
number is taken in positive form, one’s complemented and
incremented, and is then ready for use as a two’s com-
plement negative number. Additionally, however, it is
necessary to identify the number as negative, and this is
done by a one-bit in the bit 15 position. In binary
representation:

Sign
Positive: 0 000 111 000 000 000
Complement: 1 111 000 111 111 111
Increment: +1
Negative: 1 111 001 000 000 000

(equals 1710004)

3-36. If it is now desired to perform a subtraction (for
example 600004 - 07000, = 510004), the computer will
add the positive number and the two’s complement repre-
sentation of the negative number as shown below. (For
comparison, a subtraction producing a negative answer is
also shown.) Note that bit 15 is treated as part of the
negative number in all arithmetic operations and, unless
overflow occurs, it will always come up as a “0” for
computed answers which are positive, or as a “1” for
negative answers. Since there are only 16 bit places avail-
able to represent the total in any register, the final carry
(17th bit, carried to the extend register) is disregarded, and
the displayed result is the true difference.

POSITIVE ANSWER

Binary Octal

0 110 000 000 000 000 (+60000)

1 111 001 000 000 000 (-07000)

(1) 0 101 001 000 000 000 (+51000)
NEGATIVE ANSWER

1 010 000 000 000 000 (-60000)

1 000 111 000 000 000 (+07000)

1 010 111 000 000 000 (-51000)

Section III

3-37. Since the computer instruction list includes basic
instructions to perform the positive-to-negative conversion
(one’s complement and increment), it is usually not nec-
essary for the user to figure the complements before
entering them into the computer. It should also be noted
that the reverse conversion from negative to positive is done
in exactly the same way (one’s complement, then incre-
ment). Thus if the negative number 070004 is present in
computer memory (stored as 171000), conversion back to
positive would be:

Negative: 1 111 001 000 000 000
Complement: 0 000 110 111 111 111
Increment: +1
Positive: 0 000 111 000 000 000

(equals 007000g)

3-38. It should be apparent that as the negative number
grows larger, its representation in two’s complement form
grows smaller. The largest negative number which can be
represented in a display register is therefore a one with 15
zeros. This would be equivalent to a positive number of:

Negative: 1 000 000 000 000 000

Complement: 0 111 111 111 111 111

Increment: +1

Positive: 1 000 000 000 000 000
or 1000004
or 32768] 0

3-39. This number is one greater than the largest pos-
sible positive number (32767, ,, or 077777;), as previously
noted in paragraph 3-19), since, as shown by the preceding
paragraph, 1000000000000000,, is legitimately interpreted
as -100000,.

3-40. COMPUTER STRUCTURE.

3-41. Figure 3-1, the simplified block diagram of the HP
2114B Computer, is the basis for the partial versions used
to illustrate descriptions in this section. This figure will be
reconstructed step by step as the explanations progress. The
first step is figure 3-5, which outlines the blocks and signal
routes mentioned in the following discussion of memory,
paragraphs 3-42 through 3-49. The block diagrams make
use of several “and” gate symbols in addition to circuit
blocks. These gates can produce an output only when all
inputs are present (true). For example (referring to figure
3-1), data on the T-bus can enter the T-register only if a
store signal is also present at the gate leading to the T-
register input. Since the store signal is selective
(although this is not indicated on the diagram), only
this one gate is enabled, while the remaining four are
disabled. Thus the data enters only the selected
register.

3-6

2114B
MEMORY ADDRESS)
TIMI
IMING DECODER
GENERATOR| READ/WRITE
Y X
MEMORY

| T-REGISTER I

M-REGISTER

2000-18
Figure 3-5. Memory Block Diagram

3-42., THE MEMORY MODULE.

3-43. A computer’s memory is its information storage
area. Information is a broad term intended to cover any-
thing which can be represented as a binary number; this
includes instruction codes, memory addresses, and alpha-
betic codes, as well as pure numeric data. The primary
storage of the HP 2114B Computer is a core memory, and
is internal in the computer. Auxiliary storage for the com-
puter is available in the form of disc storage and magnetic
tape; however, these units are accessed through the compu-
ter input/output system (paragraph 3-69) and are not
treated as an extension of memory in this discussion. Figure
3-6 shows the physical structure of the memory module,
and the following paragraphs (through 3-49) describe each
of the four components identified in the figure, beginning
with the smallest individual component, the ferrite core.

3-44. CORE. As explained in the introduction to this
section, the computer handles all information in binary
form; i.e., as a number representable by only two digits,
zero and one. The ferrite core, which is a small ring of
magnetic material, has the ability to store this binary infor-
mation in that clockwise and counterclockwise magneti-
zation can be assigned digital values of one and zero. By
threading a current-carrying wire through the core, the
direction of core magnetization can be reversed simply by
changing direction of the current. Since the mass of the
core is very small (diameter of .03 inch), little magnetizing
force is required to switch the binary state, thus permitting
fast switching speeds (about 400 nanoseconds in the HP
2114B Computer). The magnetic state remains indefinitely

2114B Section III
PARITY BIT FRAME
’_l _____________ Z 1M 10 9 8 7 6 5 4 3 2 1 0
) W-REGISTER
f - ' I
I : BINARY-TO-OCTAL
”|| DECODER
| Poge_0_J | Page O | TH
Page _1_| [Page 1 1! READ
[Page_ 27} [Page Z 1| ||[11h] -
Page 3 Page 3 |“| WRITE
__P_ogg__O__ __P_GQe__Q__ ::” LOCATION:
Page_1_| [Page_1] o
| Page_2 | [Page 2 | |
Page 3 Page 3 J |
- 4K
\\ // "/~ MEmMORY
MODULE
BIT PLANE
2000-47

Figure 3-6. Core Memory Module

after the current is removed, so that switching can be
accomplished by bidirectional current pulses. This is shown
in figure 3-7.

CORE CORE

SE—

B. STORING A “ZERO”

A. STORING A “ONE”

2038-6
Figure 3-7. Binary Storage in a Magnetic Core

3-45. Since it is necessary to be able to select desired
units of information in the module, four wires are required
to be threaded through each core, as in figure 3-8. In
practice, the wires do not loop through the core, as shown
for clarity in the figure, but simply pass through the center
of a series of cores. Figure 3-8 shows how one bit of
information is addressed and transferred to and from the
T-register. Action is as follows:

a. Assume that the computer is running, and that the
program has set the M-register to a memory location num-
ber (address), desiring access to that location.

b. The address from the M-register, consisting of 12
binary bits, is applied to a binary-to-octal decoder, which
reduces the 12 binary address lines to four octal lines which
thread, in pairs, through the selected core. For purposes of
illustration, the diode decoding matrix is shown as four
switches. Note that each of these switches can select one of
eight ends of X and Y wires, thus making possible
8x8x8x8 = 4096 combinations to address 4096 core

T-REGISTER

2000-21
Figure 3-8. Core Addressing, Reading, and Writing

locations. The second 4096-word module is selected by the
13th bit (i.e., bit 12).

c. At a specific time in the computer timing sequence
(start of each memory cycle), all 16 bits of the T-register
are reset to zero.

d. A read pulse is then applied to the decoder. Many
cores will receive either Y-current or X-current pulses,
neither of which alone is sufficient to switch the state of
the core, but only one core out of 4096 on a plane
(paragraph 3-48) receives both Y-current and X-current
pulses. The read current is always in the direction which
would magnetize the core in the “0” direction. (If more
than one module is present, module selection is accom-
plished simply by routing the read pulse to the appropriate
module, as determined by bit 12 of the M-register.)

e. If the core was previously magnetized in the “1”
direction, the read current, in switching the core, causes a
flux change which induces a current into the sense output
line. This output is amplified and used to set the corres-
ponding bit flip-flop of the T-register (assumed as bit 0
in figure 3-8). If the core was in the “0” state, there is no
flux change and the T-register bit remains “0” (as reset in
step “c”).

f. Since steps “d” and ‘e’ destroyed the stored infor-
mation, it is necessary to write the information back. This
information, which is now in the T-register, is connected
back to the core via the inhibit line. Then the X and Y lines

37

Section III

are pulsed with a write current pulse, which is of opposite
polarity to the read pulse (i.e., tending to magnetize in the
“1” direction).

g. If the inhibit current is not turned on, the core
switches back to the “1” state. If the inhibit current is
turned on, it cancels part of the write magnetizing force, so
that the core cannot switch, and the core remains in the
“0” state.

3-46. The sequence of events in the preceding paragraph
briefly describes the computer memory cycle. There are
two exceptions which modify the memory cycle slightly:
(1) during the execute phase of the store instructions (STA,
STB, JSB), the output of the sense amplifier is inhibited,
and instead the data to be stored is transferred into the
T-register from the A- or B-register during the read time
period; (2) during the execute phase of the ISZ instruction
(increment, skip if zero), the T-register is incremented
between the read and write time periods.

3-47. MEMORY LOCATION. The word length of the
HP 2114B Computer is 16 bits, only one of which is shown
in figure 3-8. To store one 16-bit word, 16 cores are
required, as indicated in figure 3-6. These 16 cores comprise
a memory location, sometimes also referred to as a memory
cell. When information is transferred into or out of a
memory location, the information in all 16 bits must be
transferred simultaneously. Therefore the X and Y selection
lines will be strung through the 16 cores, causing reading
and writing of all 16 cores simultaneously. Figure 3-9
illustrates this, showing only three cores for simplicity.
Note that each of these cores is on a different bit plane.

ST Tl My Y

X

INHIBIT

FROM SENSE TO
T-REG - T-REGISTER
ISTER BIT 15
BIT 15

2038-7

Figure 3-9. Memory Cell Selection

2114B

3-48. BIT PLANE. Cores are strung on a grid of wires as
shown in figure 3-10. There are 4096 cores on this grid,
called a bit plane, and a 4K module consists of five frames
(nine frames if 8K) with each of the first four frames (first
eight if 8K) having four bit planes each (figure 3-6) and the
fifth frame (ninth if 8K) having only one (two if 8K) bit
plane. The last frame in both the 4K and 8K module
contain the bit plane (or planes) for the parity bit. Each bit
position of the T-register is wired by the sense and inhibit
lines through all 4096 cores on the corresponding bit plane.
Since only one core on an individual bit plane is sensed
(addressed) at a given instant of time, the sense line needs
only to detect a flux change anywhere on the bit plane.
Similarly, the inhibit signal is applied to the entire bit plane
when writing, but actually affects only the selected core.

Figure 3-10. Memory Bit Plane and Frame
(Upper Left Corner)

3-49. PAGE. Pages of memory are not physical divisions
of the module. Wiring of the bit planes is symmetrical and
does not account for page boundaries. The page boundaries
are determined only by the bit format of memory reference
instructions, and are shown as broken lines in figure 3-6 for
visualizing the physical placement of memory pages.

3-50. THE REGISTERS.

3-51. Figure 3-11 shows the seven working registers of
the computer. The five principal registers (T, P, M, A, B)
are purposely shown as being independent of each other
since, in fact, information is not transferred directly from
register to register. Rather, information is transmitted via
the bus system (described later under paragraph 3-59)
under command of the instruction logic (paragraph 3-63).
The following paragraphs, through 3-58, explain why the
registers are needed, not how they are operated. In essence,
these registers are short-term information storage devices
consisting of flip-flop circuits, with front-panel indicator
lamps to indicate the status of each bit (M- and T-registers
only).

2114B

T-REGISTER

P-REGISTER

A-REGISTER
B-REGISTER
[T

M-REGISTER

2000-24
Figure 3-11. Register Block Diagram

3-52. T-REGISTER. The T-register was briefly men-
tioned in the description of how memory operates (para-
graph 3-45). As can be assumed from that description, and
from the front-panel engraving (MEMORY DATA), the
T-register holds data that is read out of and written into
memory. For the majority of operations when a computer
is running, the principal concern is with the data read out
of a memory cell; once a word of information is in the
T-register, it is accessible for arithmetic operations and for
transfers to other registers via the bus system. For the
reverse (write) operation, the T-register is loaded by trans-
fers from other registers, and the information is stored in
memory during the latter half of the memory cycle.

3-53. P-REGISTER. The P-register is the computer pro-
gram counter. This means that this register goes through a
step-by-step counting sequence and causes the computer to
read successive memory locations, corresponding to the
existing count. In the simplest case, the P-register would
start at zero when the RUN pushbutton is pressed, causing
memory location 00000 to be read into the T-register; the
computer would act on the instruction code in the read-out
data, then advance the P-register to one (memory location
00001). This process of stepping through memory locations
(at a rate of 2.0 or 4.0 microseconds per step for most

Section III

instructions) continues until one of the instructions read out
is a halt, which terminates the program. Of necessity, this
simple case is not typical. First, programs do not normally
begin at locations lower than 00077, since these locations
are reserved for special purposes (paragraph 2-28). There-
fore the starting address of a program must be manually set
into the P-register before pressing RUN. Second, the strict
sequential stepping can be altered in the course of a
program, either by a skip instruction (which causes the
P-register to increment by two instead of one, thus skipping
one memory location) or by a jump instruction (which
transfers numbers from another register into the P-register,
thus causing the program to continue at a different point in
memory).

3-54. M-REGISTER. As implied by figure 3-1, the M-
register (MEMORY ADDRESS) is the means of addressing
specific memory locations. The addressing of memory was
previously discussed in paragraph 3-45. The setting of the
M-register can occur from any of the other registers,
depending on the effects of instructions. In the preceding
paragraph, it could be assumed that the P-register directly
addresses memory; in actual fact, however, the computer
must transfer the desired address from the P-register to the
M-register, which in turn addresses the desired memory
location. Thus it is seen that these two registers will
frequently contain the same number. The reason why both
registers are needed is that it is necessary for one register
(the P-register) to keep track of the location of the current
instruction in case the instruction is a multiple phase type.
In this case, the M-register may have to be changed several
times in the course of executing an instruction. A common
example would be when the instruction is to add the
contents of location 1004 to the A-register (ADA 100). The
P- and M-registers would be identical while reading this
instruction out of memory (say the instruction is in loca-
tion 5004; both registers indicate this value). Then the
M-register would have to change to 100 to get the contents
of this location for the addition. After the addition has
been executed, the contents of the P-register are incre-
mented by one (501;). The P and M registers are then both
set to this new value, and the computer is then ready to
read the next instruction.

3-65. A-REGISTER. The A-register is one of the compu-
ter’s two accumulators. An accumulator in a computer
accumulates the results of arithmetic operations. A simple
example was given in the preceding paragraph, where one
number from memory was added to the existing contents
of the A-register. Assuming that the A-register previously
held the number 10004, and the number in location 100
was 224, the number left in the A-register after execution
of the instruction would be 10224. Other types of opera-
tions which may be done with the A-register are: boolean
logic operations (“and”, “exclusive or”, ‘“inclusive or”),
comparison for equality with a memory word, shifting or
rotating of bits left or right, testing the status of individual
bits, complementing of bits, and accepting or holding data
for transfer to and from external devices. All of these
operations are accomplished by the instruction logic
(paragraph 3-63).

39

Section III

3-56. B-REGISTER. The B-register is the second of the
two accumulators. It has the same capabilities as the A-
register, except that the three boolean logic instructions
(AND, XOR, IOR) can apply only to the A-register. The
main reason for having two accumulators is to provide
faster, more flexible arithmetic than can be accomplished
with one accumulator. This advantage will be seen later in
programming of the computer.

3-57. EXTEND. The extend register is shown connected
to bit 15 (left end bit) of both A and B registers. This is to
indicate that this one-bit register becomes set whenever
there is a carry out of bit 15 of either accumulator; i.e.,
whenever the quantity accumulated exceeds 16 ones. This
fact is frequently of significance. For example, if the quan-
tity in ‘an accumulator is 16 ones and an ADD instruction
adds one, the result in the accumulator will be 16 zeros.
This answer is obviously incorrect; it is correct if the extend
bit, which is now in the set state (“1”) is temporarily
assumed to be “bit 16”, The program can be written to
make this assumption, and it can proceed without error on
the basis of the resulting information. To be certain that
the extend information is valid, the extend register is nox-
mally cleared by an instruction (CLE) before the addition is
done. Another valuable feature of the extend register, is its
ability to link the two accumulators (effectively providing a
single 32-bit accumulator).

3-58. OVERFLOW. The overflow register is similar in
purpose to the extend register. The difference is that,
whereas the extend register indicates that the largest 16-bit
quantity has been exceeded, the overflow register indicates
that the largest signed quantity has been exceeded. (A
program may work with both signed and unsigned num-
bers.) Since bit 15 is the sign bit, bit 14 (as shown in figure
3-11) is the source of the significant carry. Having two
possible signs (+ and -) means that detection of overflow
requires two different sets of conditions. For addition of
two positive numbers, overflow occurs if there is a carry
from bit 14 to bit 15 in one of the accumulators. For
addition of two negative numbers (which are represented in
two’s complement form), overflow occurs if there is not a
carry from bit 14 to bit 15. Obviously overflow cannot
occur when adding numbers of opposing signs, since the
resulting quantity cannot be greater than the larger of the
two numbers. As with the extend register, the overflow
register should be cleared before an addition.

3-59. THE BUS SYSTEM.

3-60. Figure 3-12 outlines the routes by which data
travels internally from one register to another. Although
the buses are represented by a single line in this figure,
assume each line to be composed of 16 individual lines, one
for each register bit. Included in the figure is an arithmetic
logic block, which has not previously been discussed. It is
shown here mainly to illustrate the linkage between buses.

3-61. The HP 2114B Computer uses an R-S-T bus con-
figuration. This is a conventional notation designating a
three-bus system which applies two input buses (R and S)
to an arithmetic unit with output on the third bus (T). The

3-10

2114B

use of two input buses permits arithmetic operations
combining the contents of two registers. A common
example would be the execution of the ADA 100 instruc-
tion previously used in paragraphs 3-54 and 3-55. In this
example, the contents of location 100 is the number 224.
During execution of the instruction, this number (22)
would be read into the T-register. The other number
(1000;) is in the A-register. Simultaneously (by a method
described under paragraph 3-63) both the T-register and the
A-register are read onto their respective buses (S and R).
The two numbers are added in the arithmetic logic circuits,
and the result (1022,) is stored via the T-bus back into the
A-register as the accumulated sum.

3-62. Note that several register combinations are pos-
sible as inputs to the arithmetic logic. One point worth

_noting is that since the A and B registers are addressable as

memory locations, the contents of these registers can be
transferred via the T and R buses into the T-register. From
this point, the contents can be combined in the manner
described above with either accumulator (including com-
bining the number with itself; e.g., add A to A). Thisisall
accomplished in one instruction.

3-63. THE INSTRUCTION LOGIC.

3-64. Figure 3-13 shows the elements of the instruction
logic in the HP 2114B Computer. As indicated in the figure,
timing is essential to the operation of the instruction logic.
The following descriptions do not detail all timing rela-
tionships, since these vary with instructions, but it should
be understood that timing pulses are gated with each
operation to make it occur in proper sequence. A general
introduction to machine timing is given in paragraph 2-13
of the specifications section.

3-65. As shown in figure 3-13, the six most significant
bits read out of memory during each memory cycle are
applied to the 6-bit instruction register, which decodes the
instruction. (Actually, the instruction register receives its
information via the T-register; for simplicity figure 3-13
shows a- direct connection to memory.) Only during the
fetch phase, however, are these bits recognized as an
instruction code (as determined by a fetch phase signal
from the timing generator). At this time, the decoded
instruction enables three functional operations, which in
turn will become active at specific times, depending on the
instruction. These operations are described individually in
the next three paragraphs.

3-66. READ. The read signal, shown connected to the
output gate of all five working registers, strobes the data of
one or two registers onto their corresponding buses (R and
S). This places the data at the inputs of the arithmetic logic
circuits.

3-67. FUNCTION. The function signal activates one of
the six listed arithmetic functions. The selected function
alters or combines the data on the R- and/or S-buses, and
routes the resulting data out on the T-bus.

2114B

Section III

bb bbb

TBUS

t t R ous

S
-

10-15

READ > \

————{ FUNCTION
—< STORE

ADD
IOR
\,| EOR
AND
COMPL.
SHIFT

2000-25

Figure 3-12. Bus System Block Diagram

3-68. STORE. The store signal, shown connected to the
input gate of all five working registers, effectively opens the
input of one or more of these registers to accept the data
which appears on the T-bus (preceding paragraph). In many
cases, depending on the instruction, only part of the infor-
mation on the T-bus is stored into a register.

3-69. THE INPUT/OUTPUT SYSTEM.

3-70. Figure 3-14 shows the means by which data is
transferred in and out of the computer. This is the input/
output system; all elements shown are contained within the
mainframe. Interface arrangements are shown for only two
external devices, one input and one output. Actually the
arrangement has the capability to handle seven interfaces in
the mainframe. The switch register is shown as part of the
input/output system, and is considered to be an input/
output device.

2000-26

Figure 3-13. Instruction Logic Block Diagram

3-71. As indicated by figure 3-14, the input/output con-
trol logic is used to process all input/output operations.
Input/output control operates in two ways:

a. Processes input/output instructions.

b. Processes service requests by peripheral devices.

3-72. These two types of operations are separately dis-
cussed in the following paragraphs.

3-73. PROCESSING INSTRUCTIONS. Input/output
instructions decoded by the instruction register are routed
to input/output control, which translates the instruction
into appropriate driving signals. One such signal is an in
signal, which strobes all interface positions for input (repre-
sented by two “and” gates in figure 3-14, one accepting
data from a buffer register and one accepting data from the

3-11

Section III

TBUS

INPUT/OUTPUT| N L SELECT CODE J
* conTrROL | out
N
[3 MsgNFTLRAo(iL —
[c[r] surFer | [c]e] surFer |
patal IN DATAY OUT

2038-8

Figure 3-14. Input/Output System Block Diagram

switch register). Only one of these interface positions can
be enabled, according to the select code (bits O through 5
from the T-register), and the corresponding data is strobed
by the in pulse onto the T-bus. From there it is transferred
via the T-bus into the A- or B-register (as enabled by a store
signal at the A or B input gate).

3-74. Another driving signal is the out signal. This signal
strobes all interface positions for output (one shown in
figure 3-14). The select code from the T-register enables

3-12

2114B

one interface position, and permits the out signal to strobe
the data on the R-bus into the corresponding output buffer.
(The data on the R-bus was read out of the A- or B-register
by a read signal.)

3-75. In addition to transferring data, as in the preceding
two paragraphs, input/output control can (according to
instruction) send out signals to test the state of control and
flag bits (C and F) or to set or reset these bits. The select
code determines which interface will receive the signal from
input/output control. The control and flag bits are com-
mand signals for transferring data between the buffer and
the peripheral device (peripheral not shown).

3-76. PROCESSING SERVICE REQUESTS. If a specific
instruction has at some previous time enabled the interrupt
system (considered to be in the input/output control block
in figure 3-14), a peripheral device may request new data
from the computer (if output) or request to feed new data
to the computer (if input). This request for service is done
by setting the interface flag bit. The flag signal, via input/
output control, interrupts the computer’s operation by
forcing the M-register to be set (via the T-bus) to a memory
address uniquely specified by the flag. At the same time,
the fetch phase is set so that the computer must execute
the instruction contained in the specified memory cell.
Generally this instruction will be a jump to a service sub-
routine. This subroutine consists of instructions that will
prepare or accept the new data. On completion of service, it
is the subroutine’s responsibility to return the P- and M-reg-
isters to the values they contained before being interrupted.

3-77. IMPLEMENTATION OF INSTRUCTIONS.

3-78. The following paragraphs, through 3-154, describe
how the 70 basic instructions are implemented internally in
the computer. The three illustrations on the following pages
expand on the machine timing diagram (figure 2-2) given in
section II, specifications. Figure 3-1, the simplified block
diagram, is also used as a reference throughout the fol-
lowing descriptions. Most signals named can be identified in
this figure; e.g., “read A onto R bus” is the line from the
read block to the A-register output gate (which outputs
onto the R bus). The block diagram should be referred to
frequently as the discussion progresses, in order to
visualize the bit manipulations. The right-pointing
arrows in the figures should be read as into or onto
(e.g., into T-register, or onto R-bus). New mnemonics
are introduced in these descriptions which will be
defined within the text; however the alphabetical
listing of mnemonics in the appendix of this volume may
also be referred to if necessary.

3-79. The cycle of time periods shown at the top of
figures 3-15, 3-16, and 3-17 (TO through T7) repeats con-
tinuously every 2.0 microseconds while computer power is
on. The read/write memory cycle, although shown only
once at the top of each of these figures, actually occurs
once in every phase (except interrupt). It is important to
remember this throughout the following descriptions.

2114B

3-80. MEMORY REFERENCE.

3-81. By comparing figures 3-15, 3-16, and 3-17, it is
seen that memory reference instructions are the only type
of instructions requiring more than one machine phase to
execute; indirect and execute phases are associated only
with memory reference instructions. In the case of all these
instructions except JMP, the action during the fetch and
indirect phases (phases 1 and 2) is similar, so these phases
are shown only once, implying that they are common to all
memory reference instructions. The exception, JMP, is
unique in that it does not use an execute phase; execution
can occur in either the fetch or the indirect phase. The
action for JMP is shown separately in figure 3-15 and is
discussed first below.

Note

The descriptions for JMP and AND in-
structions are more detailed than for suc-
ceeding instructions, which are similar in
many respects. These two should there-
fore be studied in detail before advan-
cing to the others. It should also be noted
that the descriptions assume knowledge
of instruction definitions, as outlined in
the specifications (paragraph 2-60.)

3-82. JMP. The fetch phase for all instructions, regard-
less of type, begins in exactly the same way, since at this
time the computer logic cannot know anything about the
instruction which is about to be read out of memory. The
only fact known is that the word from memory will be read
as an instruction (not data); getting an instruction from
memory is the first function of the fetch phase. During the
first three time periods of the fetch phase, the following
actions occur:

a. During TO the T-register is cleared.

b. The read portion of the memory cycle begins to
read the contents of the currently addressed memory cell
into the T-register. This continues until the middle of T2.

c. During T1 the instruction register is cleared.

d. Bits 10 through 15 (the instruction group and code
identification) of the T-register are transferred into the
six-bit instruction register at the middle of T2.

3-83. During the latter portion of T2, the functions to
be used in implementing the JMP instruction are set up.
This includes read and store as well as any arithmetic
functions (none in the case of JMP). Functions are gated
with time periods to occur in the correct sequence.

3-84. At this point in time (end of T2), the instruction
information is in bits 10 through 15 of the T-register, and
in the instruction register. The memory address information
is in bits 0 through 9 of the T-register. The next event to
occur is to clear the P-register at time T5 if the page zero
condition exists (i.e., if bit 10 of the instruction register is a

Section III

zero). This is done by a store T-bus into P function.
Since nothing has been read onto any of the buses, the
T-bus is in the all-zero state, and 16 zeros are therefore
stored into the P-register. (Actually, for resetting the
program to page zero, it is only necessary to clear bits
10 through 14 of the P-register; however it is con-
venient to clear the entire P-register at this time.) Note
that the 6 most significant bits of the page zero address
are zeros (refer to paragraph 2-26); e.g., the last address on
page zero is:

0 000 001 111 111 111

3-85. During time periods T6 and T7, the page zero
indicator (if present) clears bits 10 through 15 of the
M-register (not the entire register). The method is the same
as described above: store T-bus in M-register, bits 10
through 15; the T-bus is still all zeros. Thus at this time both
the P- and M-registers point to page zero, if so coded by bit 10
being a zero (otherwise these registers are not changed,
leaving bits 10 through 15 at the current page indication).

3-86. Also during T6 and T7, the direct/indirect bit (bit
15) of the T-register is looked at, to see if the memory
address currently in the T-register is the effective address
(the final address being jumped to), or if another jump
should be made from that address to whatever address is
contained in that location (indirect addressing). Since the
concept of indirect addressing is important and not always
simple to grasp initially, it is treated separately in following
paragraphs. For direct addressing, the execution is com-
pleted by the following steps:

a. The T-register contents are read onto the S-bus, and
appear on the T-bus.

b. Bits 0 through 9 of the T-bus are stored in the P-
and M-registers. This directs the computer to the jump
location. (Remember from the preceding paragraphs that
bits 10 through 15 of the P- and M-registers either have
been reset to zero for page zero or have been left alone for
current page.)

c. The phase 1 (fetch) condition remains set so that
the contents of the jump location will be read out and
interpreted as an instruction during the next machine
phase.

3-87. Basically, the indirect addressing indicator (bit 15
of T-register being a one) tells the computer logic that the
contents of the location being jumped to is not the next
instruction, but rather the address for another jump. This
additional jump is a continuation of the same instruction,
but requires an additional phase. During T6 and T7 of
phase 1, the T-register contents are transferred to the M-
register (not both P and M as for the direct condition).
During T7 the phase 2 condition (PH2) is set, and the
indirect phase begins.

3-88. During TO, the T-register is cleared. Since the jump
is still in progress, the instruction register is not cleared

during T1. The contents of the location now addressed by

313

Section III 2114B
TIME PERIODS
TO T1 I T2 l T3 l T4 l T5 l T6 T7
.25 Sec .50 .75 1.0 1.25 1.50 1.75 2.0
PHASE READ (Mem to TR) WRITE (TR to Mem)
7
] 0777
TR(10-15) If Z: 0-M (10-15)
FETCH ~IR It 7: It D: TR ~P,M (0-9)
Clear Clear (Set 0 N p and set PH1
(JMP) TR IR Funetions) IfI: TR ~M (0-9)
and set PH2
If D: TR -P,M
INDIRECT and set PH1
Clear IfI: TR ~M
(JMP) TR and set PH2
TR (10-15) TR ~M (0-9)
FETCH Clear Clear - IR If Z: 0 —M (10-15)
TR IR (Set If I: Set PH2
Functions) If D: Set PH3
INDIRECT Clear TR - M
TR If I: Set PH2
If D: Set PH3
Read P =R Bus
EXECUTE
¢ Read A =R Bus Read ""1'" =S Bus
AND Cifi;r Read TR —S Bus Store T Bus (ADF) —
Store T Bus (ANF) —A P,M
Set PH1
Clear P+1 -P,M
XOR TR A (EOF) TR —A Set PH1
Clear ~ P+1 -P,M
IOR TR A (IOF) TR - A Set PH1
Clear TR -
JSB Inhibit Pil ~TR M -P o™
Mem. Data
TR+1 - TR Write
1y Clear If C16: Set Carry | (Add0.5 | ©l%carey =P,M
Inhibit Write w Sec)
If A: A (ADF) TR —~A ~
ADA/B 01Te§r If B: B (ADF) TR —B oM
If C16: Set E
CPA/B Clear If A: A (EOF) TR —T Bus P+1+Carry -P,M
TR If B: B (EOF) TR ~T Bus Set PH1
If T Bus not zero, set Carry
Clear IfA: TR —A P+1 -P,M
LDA/B TR IfB: TR -B Set PH1
Clear TR IfA: A-TR P+1 -P,M
STA/B Inhibit If B: B ~-TR Set PH1
Mem. Data
2000-48

3-14

Figure 3-15. Implementing Memory Reference Instructions

2114B Section III

= 25| Sec;r 1 Iso = ls ":;E P:EOD; 1|.25 . 1[50 = 1.75 = 2.0
FETCH |1| Clear Clear |TR (10-15) ! Execute —— ge:1p+}ciflrry -P,M

SHIFT-ROTATE
INSTRUCTIONS All Shifts and Rotates

Read A or B —~ R Bus
Shift R Bus - T Bus
Store T Bus —A or B

Clear E and Skips

If TR5=1 -CLE

If TR3 =1 (SLA/B):
Read A or B ~R Bus
If RB0=0 - Set Carry

All Shifts and Rotates

Read A or B - R Bus
Shift R Bus — T Bus
Store T Bus —Aor B

ALTER-SKIP
INSTRUCTIONS CLA/B: *SSA/B: SZA/B:

No Read (R Bus all zeros) Read A/B - R Bus ggAFd) A./]; guz Bus
Store T Bus (EOF) - A/B Set Carry if Set Carry if
RB15-0 and TRO=0, or v

- - T Bus all zeros and
RB15=1 and TRO=1 TRO = 0, or if

T Bus all ones and
CMA/B: *SLA/B: TRO = 1

Read A/B — R Bus Read A/B - R Bus

Store T Bus (CMF) -A/B Set Carry if
RBO = 0 and TRO =0, or
RBO =1 and TRO =1

CCA/B: INA/B:

No Read (R Bus all zeros)| Read A/B —R Bus

Store T Bus (CMF) —A/B| Read "1" =S Bus
Store T Bus (ADF) - A/B
If C16: Set E

SEZ: Set Carry if
E =0 and TRO =0, or
E=1and TRO=1

CLE:
Reset E Flip-flop

CME:
Complement E Flip-flop

* Combination of SSA/B,
CCE: SLA/B, and RSS is a
Set E Flip-flop special case; see text.

2000-49
Figure 3-16. Implementing Register Reference Instructions

3-15

Section III 2114B
TIME PERIODS
TO m | ot | m | m | 1w [16 7
.25y Sec .50 .75 1.0 1.25 1.50 1.75 2.0
READ (Mem to TR) WRITE (TR to Mem)
PHASE /
//////////////////// /////////////////////
FETCH
HLT Clear Clear TR(10-15) P+l -P,M
TR IR -1R Reset Run FF
Clear Clear Set Flag: P+l -P,M
STF TR IR TR ~IR |gelectCode Set PH1
Clear Clear - Set Flag: |Clear Flag: P+1 -P,M
CLF TR IR TR ~1IR Iselect CodelSelect Code Set PH1
Clear Clear ~ SFC - SKF — P +1+Carry - P,M
SFC TR IR TR ~IR Interface | Carry Set PH1
SFS - SKF -
Clear Clear - P+1+Carry -P,M
SFS TR IR IR -1IR Interface| Carry Set PHI
Read A/B —R Bus
Clear Clear Buffer —S Bus P+1 -P,M
MIA/B TR R TR ~IR Store T Bus (IOF) Set PH1
~-A/B
TRY: CLFI
Buffer - S Bus
Clear Clear P+1 -P,M
LIA/B TR IR TR ~IR Store T Bus (IOF) Set PHI
~A/B
TR9: CLF|
Clear Clear - Read A/B —R Bus P+1 -P,M
OTA/B TR IR TR ~IR R Bus - Buffer Set PH1
TR9: CLF
Clear Clear Set Control P+1 -P,M
STC TR IR TR ~IR (Sel. Code) Set PH1
Clear Clear Clr. Control P+1 -P,M
cLc TR IR TR ~IR (Sel. Code) Set PH1
r
Clear Clear STF - P+1 -P,M
sTO TR IR TR ~IR | “overtlow Set PHI
Clear Clear CLF - P+1 -P,M
cLo TR IR TR ~IR Overflow Set PH1
Clear Clear - SFC - SKF P+1+Carry - P,M
Soc TR IR TR IR | "Gyp Carry Set PH1
Clear Clear _ SFS - SKF - P+1+Carry -P,M
S0s TR IR TR =IR | "Gyp Carry Set PH1
TERRUPT
INTER Read P ~R Bus Read P ~ R Bus Read P —~ Res‘(eg_l‘l’ls)
Store T Bus (CMF) | Read "1" —S Bus R Bus Store T Bus
-P Store T Bus (ADF) Store T Bus
-P (CMF) ~P (0-5) =M
Set PH1
2000-50

3-16

Figure 3-17. Implementing Input/Output Instructions

2114B

the M-register are read into the T-register during the read
memory cycle. Then, during T6 and T7 (assuming bit 15 of
the T-register is now O for direct), all 16 bits of the
T-register are transferred into the P- and M-registers in the
usual way: read T-register onto S-bus, and store T-bus (with
no arithmetic) in P- and M-registers. These registers now
contain the effective address, so phase 1 is set, and the next
machine phase will be a fetch phase, to read out the next
instruction from that address. Note that if bit 15 of the
T-register were again a one (for indirect) a jump would be
made to still another location by repeating the process of
these two paragraphs (3-87 and 3-88). ’

3-89. In summary, as illustrated in figure 3-18, an
indirect jump occurs by the following register actions:

a. The word containing the jump instruction is read
out of memory by a fetch phase into the T-register.

b. The address portion of the read-out word is trans-
ferred into the corresponding portion of the M-register.

c. The zero/current page bit of the read-out word tells
the computer logic to clear (zero) or leave (current) the
remaining bits (10 through 15) of the M-register.

d. Steps “b” and “c” now comprise the address of a
location which is read out of memory into the T-register at
the start of the indirect phase.

e. All bits of this new read-out word are transferred
into the P- and M-registers. The computer is now at the
location specified by these registers.

T-REG
RESET FOR
PAGE ZERO FETCH
M-REG
READ MEMORY
T-REG
INDIRECT
P&M-REG
2000-31

Figure 3-18. Register Manipulations for
Indirect Jump

Section III

3-90. AND. The fetch phase for the AND instruction is
the same as for all other memory reference instructions
listed below it in figure 3-15, with the exception that
different functions will be set up at T2. This phase begins in
the same way as for JMP. The T-register is cleared at time
TO, the read memory cycle reads the instruction word into
the T-register, the instruction register is cleared during T1,
and T-register bits 10 through 15 (instruction code) are
transferred into the instruction register at T2. At this time
all necessary functions for this instruction are set up, to be
used at the approriate <imes. During T6 and T7, T-register
bits 0 through 9 (memory address portion of the instruc-
tion word) are transferred into the corresponding bits of
the M-register (via the S- and T-buses). If the zero page
indicator is present (bit 10 of the instruction register is a
zero), a reset M(10-15) command clears bits 10 through 15
of the M-register.

3-91. Unlike the JMP instruction, an execute or an indi-
rect phase must follow the fetch phase of an AND instruc-
tion. (Execute never occurs for JMP; indirect is optional.) If
bit 15 of the T-register is zero (for direct), phase 3
(execute) is set. Assume an indirect phase is required (bit
15 = 1). (If the direct condition exists, the action of the
next paragraph would be skipped.)

3-92. The indirect phase begins by clearing the T-
register during T1. Then a new word is read into the T-
register from the memory location specified by the M-
register (as set up in paragraph 3-90). This word is an
address, not data, since indirect addressing really means:
go to another location for the data. During T6 and T7
of the indirect phase, this address is transferred from
the T-register to the M-register (all 16 bits). Note that it
is possible for bit 15 to again specify indirect addressing;
if so, phase 2 remains set and the procedure of this para-
graph is repeated, and could be repeated several times,
When bit 15 is a zero (direct), phase 3 is set.

3-93. The execute phase begins by clearing the T-
register. The instruction register remains unchanged, since
the various functions are still needed. This time, the read
portion of the memory cycle reads data from memory into
the T-register. During T3 and T4, this data is read onto the
S-bus and the A-register contents are read onto the R-bus.
The “and” function (ANF) previously set up by the instruc-
tion register, now combines the data on the two buses by
“anding”. (See table 2-1 for the arithmetic resulting from
an “and” operation.) The result on the T-bus is then stored
into the A-register.

3-94. To advance the computer to the next instruction,
the P- and M-registers must be incremented by one. This is
done during T6 and T7 of the execute phase. It is accom-
plished by reading the P-register onto the R-bus and a one
onto the S-bus, then adding the two buses (add function:
ADF) and storing the result into the P- and M-registers.

3-95. In summary, as illustrated in figure 3-19, an AND
indirect instruction is executed by the following register
actions:

3-17

Section III

T-REG

FETCH

M-REG

\'4

READ MEMORY

T-REG

INDIRECT

M-REG

Vv
READ MEMORY

EXECUTE

2000-32

Figure 3-19. Register Manipulations for
Indirect “And”

a. The word containing the AND instruction is read
out of memory by a fetch phase into the T-register.

b. The address portion of the read-out word is trans-
ferred into the corresponding portion of the M-register.

c. The zero/current page bit of the read-out word tells
the computer logic to clear (zero) or leave (current) the
remaining bits of the M-register.

d. Steps “b” and ‘“‘c” now comprise the address of a
location which is read out of memory into the T-register at
the start of the indirect phase.

e. All bits of this new read-out word are transferred
into the M-register, thus addressing the location of the
desired data.

f. At the start of the execute phase, the data thus
addressed is read into the T-register from memory.

g. The contents of the T-register and A-register are
“anded” together and deposited back into the A-register.

3-18

2114B

Note

For the remainder of memory reference
instructions, the fetch and indirect phases
are the same as described above for the
AND instruction (paragraphs 3-90
through 3-92). The following paragraphs
therefore describe only the execute phase
for each instruction.

3-96. XOR. The execute phase of the XOR (exclusive
or) instruction begins as usual by clearing the T-register just
before the read portion of the memory cycle. The action
occurring during T3 and T4 is shown in abbreviated form in
figure 3-15, to be read as follows: the contents of the
A-register are combined by an “exclusive or” function with
the contents of the T-register, and stored back into the
A-register. Actually this action consists of three steps as
shown for the AND instruction. For XOR, these three steps
are: 1) read T-register onto S-bus; 2) read A onto R-bus; 3)
store T-bus (which carries the “exclusive or” combination
of the S- and R-buses) into the A-register. The action during
T6 and T7 is also abbreviated: add one to P, and store into
P and M. The three steps which accomplish this are detailed
for the AND instruction in figure 3-15. The last action is to
reset the computer to the phase 1 (fetch) condition.

3-97. IOR. The execute phase of the IOR (inclusive or)
instruction is the same as XOR described in the preceding
paragraph, except that the “inclusive or” function is used in
place of “exclusive or”. The difference in arithmetic is
shown in table 2-1 of the specifications section.

3-98. JSB. The principal operation of the execute phase
for JSB (jump to subroutine) is to store the return address
(program counter contents plus one) in the memory loca-
tion being jumped to. This is done during TO through T2.
Since the only way into memory is through the T-register,
the T-register must be loaded with the return address prior
to the write portion of the memory cycle. Therefore the
memory contents read out during the read portion of the
memory cycle must be inhibited, and instead (during T1
and T2) the current contents of the P-register, plus one, is
stored into the T-register. (Action: read P onto R-bus, read
“1” onto S-bus, store with add function into T-register.)
This information is then stored into memory during write.
To complete the jump process, the contents of the M-
register (which received the jump memory address during
the fetch or indirect phase) must be transferred into the
P-register. This is done during T3: Read M onto S-bus, store
T-bus in P. As usual, to advance the computer to the
location of the next instruction both P and M registers are
incremented by one during T6 and T7, and the fetch phase
condition is set.

3-99. ISZ. During the execute phase of the ISZ instruc-
tion (increment, skip if zero), the contents of the addressed
memory cell must be altered and checked between the read
and write portions of the memory cycle. These actions
require more time than is normally available in this interval,
so the write portion is delayed. Once the word read from
memory is in the T-register (T3 and T4), it is incremented

2114B

by reading onto the S-bus, adding one in the arithmetic
logic, and storing back into the T-register. If previously the
word read out was all ones, the addition of another one
causes a rollover to all zeros, and produces a signal (C16)
which sets a carry flip-flop in the arithmetic logic. Then, at
T5, the write portion of the memory cycle is permitted to
begin, and two time periods (0.5 microsecond) are inserted
at this time for writing the incremented value back into
memory. During T6 and T7, the P-register is read onto the
R-bus, and a one is read onto the S-bus. These are added
together, and if the carry flip-flop is set, another one is
added and the result is stored in the P- and M-registers.
Thus, if the carry flip-flop was set, the P- and
M-registers are incremented by two instead of one,
skipping one memory location for the next fetch
phase. (The carry flip-flop is automatically reset at the start
of the next phase.)

3-100. ADA/B. If bit 11 of the instruction register
indicates A (zero), the contents of the A-register are
combined with the T-register contents by the add function
(ADF), and stored into the A-register. Similar action
involving the B-register occurs during this time (T3 through
T4) if bit 11 of the instruction register is a one.

3-101. CPA/B. Depending on the status of bit 11 of the
instruction register, either the A-register or the B-register is
combined with the T-register contents by the “exclusive
or” function. The result appears on the T-bus, but is not
stored anywhere. Logic not shown in figure 3-1 tests the
T-bus for a non-zero condition which, if it exists, sets the
carry flip-flop. Then during T6 and T7 (as for ISZ), the P-
and M-registers are incremented by either one (carry FF not
set) or two (carry FF set).

3-102. LDA/B. During T3 and T4, the information read
into the T-register by the read portion of the memory cycle
is simply transferred to either the A- or B-register via the S-
and T-buses.

3-103. STA/B. Like JSB, the STA/B instruction (store A
or B) deposits new information into a memory cell, with no
concern for the existing memory contents. The memory
data read out during the read portion of the memory cycle
is therefore inhibited while the A- or B-register contents are
read and stored into the T-register (during T1 and T2). The
write portion of the memory cycle deposits this
information into memory.

3-104. REGISTER REFERENCE.

3-105. All register reference instructions, as shown by
figure 3-16, are fully executed in only one phase (fetch).
Actual execution is accomplished during time periods T3
through T5. Actions during the other time periods are
similar to those previously described for memory reference
instructions:

a. During time periods TO through T2, the T-register
and instruction register are cleared, and bits 10 through 15
of the instruction word read out of memory are transferred

Section III

to the instruction register. Unlike memory reference, the
instruction register does not set up functions, but rather it
provides gating signals to identify the type (register
reference) and group (shift-rotate, or alter-skip) of
instructions. The remaining bits of the T-register are used to
execute the individual instructions by setting up the
appropriate functions. Figures 2-5 and 2-6 define which bits
encode each instruction.

b. During time periods T6 and T7, the P-register is
read onto the R-bus and a one is read onto the S-bus. If the
carry flip-flop has been set by a skip condition during T3
through T5, another one is added, and the total (P-register
incremented by one or two) is stored into the P- and
M-registers. This advances the computer to the next
instruction.

3-106. Paragraphs 3-107 through 3-132 detail the
actions which execute all register reference instructions.
3-107. SHIFT-ROTATE INSTRUCTIONS.

3-108. Figure 3-16 shows that shifts and rotates can be
executed either during T3 or T5, or both. CLE (clear
extend) or SLA/B (skip if least significant bit of A- or
B-register is zero) can be executed only during T4. The
shifts and rotates are executed simply by reading A- or
B-register onto the R-bus, applying a shift function to shift
some or all of the bits to a different position on the T-bus,
then storing the T-bus back into the A- or B-register. Since
the shift function is the key to understanding how shifts
and rotates occur, the following instruction descriptions,
through paragraph 3-116, concentrate on this aspect (CLE
and SLA/B are described later in paragraphs 3-117 and
3-118). Table 3-1 is the main reference for these
descriptions.

3-109. A/BLS. As shown by the table 3-1 diagram for
A/BLS (A or B left shift), the desired end result is to have
bits 0 through 13 shifted left one place, with bit 15
unchanged and a zero moved into bit 0. Assuming that bits
6 through 9 of the T-register dictate an A/BLS during T3,
an SLM (shift left magnitude) signal at this time is “anded”
with each of the 14 R-bus bits (0 through 13), with the
output of each “and” gate appearing on the next higher
T-bus line. The function listed in table 3-1 for this
instruction (SLM RB(0-13)) is therefore to be read: shift
left magnitude “anded” with R-bus bits 0 through 13. Bit
15 of the R-bus is routed directly out to bit 15 of the
T-bus. Since nothing has been placed onto bit 0 of the
T-bus, its state is “0”, and therefore no deliberate
action is necessary to ensure storing a “0” in bit 0 of
the A- or B-register.

3-110. A/BRS. A shift right magnitude “anded” with
R-bus bits 1 through 15 shifts these bits to bits 0 through
14 of the T-bus. Bit 0 of the R-bus is not recognized, and
bit 15 (as well as moving onto bit 14 of the T-bus) also is
routed directly to bit 15 of the T-bus.

3-111. RA/BL. To rotate A or B left, an SLM ‘“anded”
with T-bus bits 0 through 13, together with a shift left bit

3-19

14 to R-bus bit 14, move bits 0 through 14 to bit 1 through
15 of the T-bus. Rotating bit 15 of the R-bus around to bit
0 of the T-bus is accomplished by “anding” RLL (rotate
left to least significant bit) with R-bus bit 15; the “and”
gate outputs to T-bus bit 0.

3-112. RA/BR. A shift right magnitude “anded” with
R-bus bits 1 through 15 shifts these bits to bits 0 through
14 of the T-bus. An RRS (rotate right to sign bit) “anded”
with R-bus bit 0 rotates this bit to bit 15 of the T-bus.

3-113. A/BLR. A shift left magnitude with R-bus bits 0
through 13 shifts these bits to bits 1 through 14 of the
T-bus. Bits 0 and 14 of the T-bus remain in the “0” state,
since nothing is placed on these lines.

3-20

Section III 2114B
Table 3-1. Shift Rotate Functions
INSTRUCTION FUNCTIONS DIAGRAM
A/BLS SLM - RB(0-13)
RB15~TB15 15 14 13 2 1 0
A/BRS SRM - RB(1-15)
RB15~>TB15
RA/BL SLM - RB(0-13)
SL14 - RB14
RLL-TB15
RA/BR SRM - RB(1-15)
RRS - RBO
A/BLR SLM - RB(0-13)
ERA/B SRM - RB(1-15)
E-TB15
RBO- E
ELA/B SLM - RB(0-13)
SL14 - RB14
E-»TBO
RB15-E
A/BLF RL4 - RB(0-15)
15 14 13 12 32 10
SLM Shift Left Magnitude RB R Bus
SRM Shift Right Magnitude TB T Bus
RLL Rotate Left to Least significant bit SL Shift Left
RRS Rotate Right to Sign bit RL Rotate Left
2000-33

3-114. ERA/B. A shift right magnitude with R-bus bits 1
through 15 causes shift to T-bus bits 0 through 14. The
content of the extend register is transferred into bit 15 of
the T-bus. Then, during the latter half of T3 (or T5), bit 0
of the R-bus is transferred into the extend register.

3-115. ELA/B. A shift left magnitude “anded” with
R-bus bits 0 through 13, and a shift left 14 with R-bus bit
14 shifts these bits to bits 1 through 15 of the T-bus. The
extend content is transferred onto T-bus bit 0, and then bit
15 of the R-bus is transferred into the extend register.

3-116. A/BLF. A rotate left 4 “anded” with all bits of
the R-bus shifts each bit four places to the left on the

2114B

T-bus. The four most significant bits are placed into the
least significant bit positions.

3-117. CLE. During T4, if bit 5 of the T-register is a
“1”, a reset signal is generated which clears the extend
register.

3-118. SLA/B. During T4, if bit 3 of the T-register is a
“1” the A- or B-register is read onto the R-bus. (Bit 11
determines which register is read out.) If bit 0, the least
significant bit, is a “0”, the carry flip-flop is set. This will
cause the P- and M-registers to be incremented by two (for
a skip) during T6 and T7.

3-119. ALTER-SKIP INSTRUCTIONS.

3-120. Figure 3-16 individually lists all alter-skip in-
structions. The grouping into three time periods explains
the grouping of columns in the selection table of figure 2-6.
That is, during T3 one instruction involving the
accumulators can be executed (clear, complement, or
clear-complement), and two possible instructions involving
the extend register can be executed (skip if zero, and clear
or complement, or clear-complement). Incrementing of
accumulators (INA/B) effectively occurs after tests for sign
and least significant bits (SSA/B and SLA/B, at T4), but
before the test for zero accumulator (SZA/B, at T5).

3-121. The alter instructions (clear, complement, and
increment) use a store or direct transfer function. The skip
instructions, however, simply read information onto the
T-bus for testing; a store function is not required. If skip
conditions are met, the carry flip-flop is set, causing the P-
and M-registers to be incremented by two during T6 and
T17.

3-122. CLA/B. To clear the A- or B-register, the read
function is omitted. This means that both R- and S-buses
are in the all-zero state. The “exclusive or” function, in
combining zeros with zeros, can only produce zeros on the
T-bus. Thus when the T-bus is stored into A or B, the result
is all zeros.

3-123. CMA/B. To complement A or B, the register is
read onto the R-bus, the complement function (CMF)
reverses each bit before being released to the T-bus, and the
T-bus is stored back into the A- or B-register.

3-124. CCA/B. The procedures of the two preceding
paragraphs are combined to clear and complement an
accumulator; i.e., with no read, R- and S-buses remain
all-zero, and the complement function reverses this state to
all ones on the T-bus. The T-bus is then stored into the A-
or B-register.

3-125. SEZ. If bit 5 of the T-register is a one, the extend
flip-flop and bit O of the T-register (reverse skip sense) are
looked at by the computer logic, causing the carry flip-flop
to be set if: a) both bits are zero, b) both bits are one.
Although the next three instructions described below can
alter the state of the extend flip-flop, the test is completed
before the alteration.

Section III

3-126. CLE. If bits 6 and 7 of the T-register encode the
clear E instruction, a reset signal is generated during the
latter half of T3 to reset the extend flip-flop.

3-127. CME. If bits 6 and 7 of the T-register encode
complement E, the state of the extend flip-flop is reversed
during the latter half of T3.

3-128. CCE. If bits 6 and 7 of the T-register encode clear
and complement E, the extend flip-flop is set during the
latter half of T3.

3-129. SSA/B. If bit 4 of the T-register is a one, the A-
or B-register is read onto the R-bus. Bit 15 of the R-bus
(sign bit) and bit 0 of the T-register (reverse skip sense) are
tested. The carry flip-flop will be set if both bits are zero
(meaning: skip if sign bit is zero), or if both bits are one
(meaning: skip if sign bit is not zero). This is accomplished
during T4.

3-130. SLA/B. If bit 3 of the T-register is a one, the A-
or B-register is read onto the R-bus. Bit 0 of the R-bus
(least significant bit) and bit O of the T-register (reverse skip
sense) are tested. The carry flip-flop will be set if both bits
are zero (meaning: skip if least significant bit is zero), or if
both bits are one (meaning: skip if least significant bit is
not zero). This is accomplished during T4. The
combination of SLA/B, SZA/B, and RSS is a special
case; refer to the RSS description in paragraph 2-82.

2-131. INA/B. If bit 2 of the T-register is a one, the A-
or B-register is read onto the R-bus, and a “one” is read
onto the S-bus. These are combined by an add function
(ADF) and stored back into the A- or B-register during the
latter half of T5.

3-132. SZA/B. If bit 1 of the T-register is a one, the A-
or B-register is read onto the R-bus and transmitted to the
T-bus. All bits of the T-bus are applied to an “inclusive or”
gate. The output of this gate and bit O of the T-register are
tested. The carry flip-flop will be set if both TRO and the
gate output are zero (meaning: skip if accumulator is zero),
or if both TRO and the gate output are one (meaning: skip
if accumulator is not zero).

3-133. INPUT/OUTPUT INSTRUCTIONS.

3-134. Like the register reference instructions, input/
output instructions, as shown by figure 3-17, are fully
executed in only one phase (fetch). The interrupt phase,
shown at the bottom of figure 3-17, is not involved
in the discussion at the end of this section (paragraph
3-150), since it is related to input/output operations as
described under paragraph 2-113 of the specifications.

3-135. The following descriptions will concentrate on
actions occurring during time periods T3, T4, and T5, since
as can be seen from figure 3-17, the actions during other
time periods are nearly identical from instruction to
instruction. That is, the T-register is cleared during TO, the
instruction register is cleared during T1, and the P- and

3-21

Section III

M-registers are incremented by one (or two, if a carry bit is
present) during T'6 and T7. The method of incrementing by
one was described in paragraph 3-94, and the method for
incrementing by two was described in paragraph 3-99. In all
cases, bits 10 through 15 of the T-register are transferred to
the instruction register during T2.

3-136. HLT. If bits 8, 7, 6 of the T-register encode the
halt instruction, these bits cause the run flip-flop to be reset
during the latter half of T7.

3-137. STF. During T3 a set flag signal is routed to all
input/output interface cards, and will set the flag flip-flop
of the card which is currently enabled by the select code
(bits O through 5 of the T-register).

3-138. CLF. During T4 a clear flag signal is routed to all
input/output interface cards, and will reset the flag flip-flop
of the card which is currently enabled by the select code.

3-139. SFC. A skip if flag clear signal (SFC) is routed to
the selected interface card beginning at T3. The interface
card will return a skip flag signal (SKF) during T4 if its flag
flip-flop is not set. This signal sets the carry flip-flop to
cause a skip during T6 and T7.

3-140. SFS. A skip if flag set signal (SFS) is routed to
the selected interface card beginning at T3. The interface
card will return a skip flag signal (SKF) during T4 if its flag
flip-flop is set. This signal sets the carry flip-flop to cause a
skip during T6 and T7.

3-141. MIA/B. During T4 and T5 an IOI signal (I/O
input control) transfers the input data from the interface
buffer register to the S-bus. During the same time the A- or
B-register is read onto the R-bus, and the R- and S-bus data
is combined by the “inclusive or” function (IOF) and
applied to the T-bus. The result (a merge, or “inclusive or”)
is stored back into the A- or B-register. If bit 9 of the
T-register is a one, a clear flag signal (CLF) is routed to the
flag flip-flop of the selected interface card, as described in
paragraph 3-138.

3-142. LIA/B. The action for LIA/B (load input into A
or B) is the same as described for MIA/B in the preceding
paragraph, except that nothing is read onto the R-bus. The
“inclusive or” function therefore transmits the R-bus
unchanged to the T-bus for storing into the A- or B-register.
As for MIA/B, bit 9 can clear the flag flip-flop.

3-143. OTA/B. During T4 and T5 the A- or B-register is
read onto the R-bus, which in turn is transferred by an
I00 signal (I/O output control) to the interface buffer
register. As for MIA/B, bit 9 can clear the flag
flip-flop.

3-144. STC. A set control signal is routed to all input/
output interface cards, and during T4 will set the control
flip-flop of the interface card which is currently enabled by
the select code (bits O through 5 of the T-register).

3-22

2114B

3-145. CLC. A clear control signal is routed to all
interface cards during T4, and will reset the control flip-
flop of the interface card currently enabled by the select
code.

3-146. STO. A set flag signal during T3, combined with
the select code for the overflow flip-flop (01, octal), sets
the overflow flip-flop.

3-147. CLO. A clear flag signal during T4, combined
with the select code for the overflow flip-flop (01, octal),
resets the overflow flip-flop.

3-148. SOC. During T3, a skip if flag clear signal (SFC),
combined with the select code for overflow, tests the state
of the overflow flip-flop. If this flip-flop is in the reset
state, a skip flag signal (SKF) sets the carry flip-flop at T4,
to cause a skip at T6 and T7.

3-149. SOS. During T3, a skip if flag set signal (SFS),
combined with the select code for overflow, tests the state
of the overflow flip-flop. If this flip-flop is in the set state, a
skip flag signal (SKF) sets the carry flip-flop at T4, to cause
a skip at T6 and T7.

3-150. INTERRUPT PHASE.

3-151. The actions occurring during the interrupt phase
(phase 4) are shown at the bottom of figure 3-17. Two
operations are accomplished during the interrupt phase:

a. The P-register is decremented. This is done so that
any instruction which has not been fully executed at the
time of interrupt will be repeated. On the other hand, if the
instruction is fully executed (which means that the P-regis-
ter has been advanced for the next instruction), it is still
necessary to decrement. This is because the P-register is
incremented for a second time following execution of the
instruction contained in the interrupt location.

b. The “interrupt address” must be transferred into
the M-register, and phase 1 is set. This causes the instruc-
tion contained in the interrupt location to be read out of
memory for execution during the next machine phase. Note
that the interrupt address is not placed into the P-register.
While the instruction in the interrupt location is being
executed, the P-register remains at the value one lower than
the point at which interrupt occurred.

3-152. Decrementing the P-register is accomplished by
complementing, incrementing, then complementing again.
In simplified form, using only four binary digits for an
example, this process is:

Original Value: 0110, (63)
Complement: 1001
Increment: 1010
Complement: 0101 (5g)

3-153. During T1 and T2 of the interrupt phase (re-
member that there is no read/write memory cycle), the
P-register is read onto the R-bus. The complement function

2114B

(CMF) reverses all bits before application to the T-bus, and
then the T-bus is stored back into the P-register. During T3
and T4 the P-register is again read onto the R-bus. A one
read onto the S-bus is combined with this by the add
function (ADF) and the incremented result is stored back
into the P-register. During T5, the P-register is read onto the
R-bus for the third time, is complemented, applied to the
T-bus, and stored back into the P-register.

Section III

3-154. The interrupt address is placed into the M-register
during T7. Since no interrupt address is greater than 77
(see table 2-2), M-register bits 6 through 15 are first
reset. The interrupt address is read directly onto the
T-bus from input/output control logic (see figure 3-1),
and bits 0 through 5 are stored into the M-
register. Setting the phase 1 condition completes
the interrupt phase.

3-23/3-24

2114B

Section IV

SECTION IV

BASIC OPERATION OF HP 2114B COMPUTER

41. INTRODUCTION.

4-2. The purpose of this section is to relate the theore-
tical operations described in the preceding section to actual
visible actions. Specific information is given for the user to
gain familiarity with the panel controls, and to be able to
perform basic operations on the computer, when necessary,
without input/output devices or software aids. These purely
manual operations are most commonly encountered in
computer maintenance, and for loading, examining, and
changing small sections of memory (e.g., loading the basic
binary loader).

4-3. Obviously manual usage of the computer is not the
intended mode of operation for practical applications.
Therefore this section does not attempt to teach program-
ming to the extent of practical problem solving. This aspect
is the subject of training materials supplied with the user
training course, which is provided by Hewlett-Packard. User
training concentrates on the efficient use of software to
solve problems. Instructions for usage of the computer via
input/output devices are given in volumes three and four.

44, CODING.

4.5. This section assumes familiarity with binary and
octal numbering systems, as outlined in the introduction to
section III. Table A-4 (Consolidated Coding Table) in the
appendix of this volume is used as a reference for instruc-
tion codes; if more detail is required, refer also to the
information given under paragraph 2-53 (Instructions) in
section II. As a reminder: a “one” is coded by a switch of
the switch register being in the on state, and is indicated by
the register light being on. A “zero” is coded by a switch in
the off state, and is indicated by the register light being off.

4-6. All numbers used for addresses or contents in this
section are octal numbers unless otherwise specified.
Notation of instruction codes in octal numbers is an
operator convenience for loading and reading binary
information. The meaning of the octal code can be
understood only when it is broken down into its
binary elements. For example, note the first instruc-
tion code to appear in this text, which occurs in
paragraph 4-19 (also step 3 of figure 4-4). The in-
struction is STA 3000 (store A-register into memory
location 003000; initial zeros of address assumed). The
coded instruction word is 073000. Refer now to the
consolidated coding table (table A-4 in the appendix)
or to figure 2-4 in section II. Note that the code for STA
consists of ones in bit positions 14, 13, and 12, and a zero
in bit position 11. Since indirect addressing is not being
used at this time, bit 15 is a zero. Bit 10 must be a one,
since the program and all references will be on the same

(current) memory page. (An elaboration of the page con-
cept is given later under paragraph 4-47.) This accounts for
bits 10 through 15. See figure 4-1. The remaining bits (0
through 9), which comprise the memory address, are simply
the corresponding bits of the desired address. The desired
address in this case is 003000. This breaks down in binary
form as shown in the top row of figure 4-1. Note that all
bits higher than bit 0 of the desired address are disregarded
by the programmer when composing the instruction word.
This is because these bits fall outside of the page-size limits.
The M-register, which contains the page-designating bits,
will hold the bits constant at execute time, as commanded
by bit 10 of the instruction code.

DESIRED 15 1413 12 11 1019 8 7 6 5 4 3 21 0
ADDRESS o'ooolo1(t’Tooo'0oo0o0'o0o00

DISREGARDED

(CURRENT PAGE)
INSTRUCTION 15 14 13 12 11 10‘
cooE 0l111701

v

INSTRUCTION 0 7 3 0 0 (o]
WORD o'111'011'000'000'000
2000-34

Figure 4-1. Coding a Memory Reference
Instruction Word

4-7. It is evident that the octal digit 3 in the resultant
instruction word 073000 is the result of three individual
factors: bit 11 (a zero) specified the A-register, bit 10 (a
one) specifies current page, and bit 9 (a one) is an address
bit. This requirement of using bits having separate,
individual meanings to compose an octal digit is frequently
encountered. For example, suppose that it is desired to
rotate the B-register left three places and clear the extend
bit, all in one instruction. From the shift-rotate group
definitions (paragraph 2-81), it is determined that a suitable
method for a three-place rotation is to rotate the B-register
left four places (BLF), then right one place (RBR). The
resultant octal code for the instruction which will
accomplish these actions (including the clearing of the
extend bit) is 005763. The way this number was composed
can be shown by breaking it down into its binary com-
ponents, as follows:

4-1

Section IV

005763

X

000 0 1 111 110 011
Register B- SRG BLF CLE RBR
Reference Reg
Instruction Enable__J Enable '
Type this this

instruction instruction
Note

The ability to code instructions in octal form is
essential to the procedures given in the re-
mainder of this section. It is therefore strongly
recommended that the reader take the time at
this point to study the composition of the
above instruction code with reference to the
consolidated coding table in the appendix.

4-8. COMPUTER TURN-ON.

4-9. Assuming that installation of the computer has
been completed, power is turned on by putting the POWER
SWITCH (located behind the front panel on the computer
chassis) to on. This will initially light the HALT pushbutton
and the FETCH lamp. The register lights will come on in a
random pattern. Should one or more of these indications
fail when turning on the computer, refer to volume two,
the installation and maintenance manual.

4-10. It is good practice when turning on the computer,
to ensure that the MANUAL LOADER switch is in the
NORMAL position.

CAUTION

The following procedures, to the end of this
section, are designed to be performed on the
computer while reading the text. Considerable
loading effort can be saved if the entire set of
procedures is performed in the sequence given,
without any interruptions which might disturb
procedures in progress. Since these procedures
alter memory, the operator should also be cer-
tain that he is not destroying valuable informa-
tion which may have been stored previously in
the computer. Memory locations used in these
procedures are:

1001 through 1010
1020 through 1036
2166 through 2207
2766 through 3036
3777 through 4003

2114B

4-11. PRELIMINARY OPERATIONS.

4-12. The first and most basic operation is to put some
information into computer memory. The following para-
graphs, through 4-21, outline in detail two methods of
doing this. One method is to manually store the setting of
the switch register directly into a specified memory cell, by
using the front-panel operating controls. The other method
is to let the computer itself do the storing operation. The
purpose in showing these two methods is to demonstrate
that computer instructions are equivalent to operating
controls.

4-13. Figure 4-2 illustrates the two memory storing
methods. Note that in the first case the information is
transferred from the switch register to a location in mem-
ory. In the second case (programmed loading), the transfer
is from the A-register. For simplicity, information will be
put into the A-register manually from the switch register
(broken LIA line). However, as will be seen later, this
information could come from anywhere in memory or from
the B-register (broken LDA lines). Note also that, for sim-
plicity, figure 4-2 omits detailed routing via the bus system
and T-register as described in the preceding section.

4-14. MANUAL STORING.

4.15. First it is necessary to decide where in memory the
information is to be stored. For illustrative purposes, an
address in the middle of the second memory page has been
selected (refer to paragraph 2-23): location 003000. To
direct the computer to this address, set the number into the
switch register, as shown in step 1 of figure 4-3. Then press
the LOAD ADDRESS pushbutton (step 2). This imme-
diately transfers the setting of the switch registers into the
P- and M-registers. This can be verified by observing the
state of the M-register indicator lights. The computer is now
at location 003000 (the addressed location).

4-16. Now the operator can store any desired informa-
tion into the addressed location. An easy to recognize
pattern of zeros and ones in alternating groups of three is
suggested in figure 4-3 (in octal: 070707). Complete steps 3
and 4 of figure 4-3. Note that the P- and M-registers have
incremented to the next location (which will not be used at
this point). The T-register indicates the information
(070707) which went into memory.

4-17. To verify that location 003000 does indeed con-
tain the information 070707, complete steps 5 through 8.
Again, note that the P- and M-registers, at the conclusion of
this procedure, are one step ahead of the information
displayed in the T-register. This is because the P- and
M-registers must direct the computer to the next location,
whereas the T-register always indicates information
resulting from previous action.

4.18. PROGRAMMED STORING.
4-19. For the computer to perform its own storing

operation, it is first necessary to put into memory the
instruction (STA, store contents of A-register) which will

2114B

A, MANUAL STORING
BIT PLANE
—— ¢
LOAD
MEMORY
SWITCH REGISTER
B. PROGRAMMED STORING
BIT PLANE
> O
STA o N LoA
[
|
=2
r- -~
| A -REGISTER |
' ILDA
LIA; [],__J
| B-REGISTER
|
|
|
! |
SWITCH REGISTER

2010-8

Figure 4-2. Two Methods of Storing
Information in Memory

accomplish this. Then the computer can be directed to the
place in memory where this instruction is located; pressing
the RUN pushbutton will then let the computer go ahead
and execute the instruction. After doing so, the computer
will look for its next instruction in the following location,
and will attempt to continue running. Since it is unknown
what other information may be in memory, it is necessary
to stop the computer as soon as the desired action is
completed, simply by putting a halt (HLT) instruction in
the immediately succeeding location. The required program
therefore consists of two instructions: STA, HLT.

4-20. The manual-storage procedure of paragraphs 4-14
through 4-17 put an easy to recognize pattern (070707)
into location 003000. It is the objective of the next para-
graph (procedure detailed in figure 4-4) to let the computer
put a different pattern (all ones) into the same location,
replacing the previous pattern. This new pattern is loaded
into the A-register before the program is run.

Section IV

4-21. Steps 1 through 6 of figure 4-4 store the two-word
program into memory, using the two locations immediately
preceding the location to be altered (003000). Steps 7
through 10 load the new pattern into the A-register. Steps
11 through 13 verify that the old pattern is still in location
003000. Steps 14, 15, and 16 cause the program to be run.
The computer executes this program in 6.0 microseconds;
therefore the computer will be back in the halt condition
(HALT light on) faster than can be visually detected. Steps
17 and 18 verify that the new pattern (177777) is now in
location 003000.

422. THE STORED PROGRAM.

4-23. The preceding descriptions have demonstrated that
internal presettable commands can control operation of the
computer in the same manner as front-panel controls. If the
computer were constructed like a mechanical calculator,
there might be panel controls to add or subtract, but this
would be defeating the design principles of a computer. The
intent is to provide flexibility through use of internal com-
mands which can be arranged to occur in a specific
sequence, and to limit panel controls to the minimum
required to initiate operation. This, in essence, is the con-
cept of the stored-program computer. The following para-
graphs discuss the elements of the stored program.

4-24. A program consists of a sequence of computer
words, stored in memory, which control operation of the
computer. The general term ‘“computer words” is used
rather than the restrictive term “instructions” since the
stored information generally includes three types of words:

a. The Instruction Word
b. The Data Word
c. The Address Word

4-25. Although these terms are to some extent self-
explanatory, the distinction and usage requires illustration.
For purposes of illustration, the simple program example
used in the preceding descriptions will be expanded and
examined in more detail, beginning at paragraph 4-31.
Before proceeding, however, the method of writing pro-
grams in a concise, meaningful form will be presented.
Notation of this kind becomes increasingly necessary as
programs grow larger.

4-26. PROGRAM TABLE.

4.27. Table 4-1 puts into tabular form the two-word
program previously used as an example in paragraphs 4-18
through 4-21. The information in this table corresponds to
steps 1 through 6 of figure 4-4. The format of the table is
used for explanatory purposes within this volume only, but
resembles in general arrangement the format required for
using the assembler coding forms. Sample programs in this
section are organized to expand on each preceding program,
step by step. Shaded portions of the program tables
correspond exactly to previously discussed material, and are
therefore not described in detail. This permits the dis-
cussions to concentrate on the new (unshaded) portions of
the sample program.

4-3

Section IV 2114B

Lo s sowenen

WEWLETT mAbRaRD

MENORY DATA

BE0BOBQBan

\1,3,5

Set to 003000 (0 000 011 000 000 000).

Press LOAD ADDRESS.

Set to 070707 (0 111 000 111 000 111).

Press LOAD MEMORY. Photograph shows
conditions existing at this time.

STORE

o0 I B

Set to 003000.

Press LOAD ADDRESS.

Press DISPLAY MEMORY.

T-register indicates contents of memory
location 003000: 070707 (no change).

CHECK

R oA

2038-10
Figure 4-3. Storing Information Manually

4-4

2114B

Section IV

1318

MEMGRY DATA

13,59

16

LOAD
PROGRAM

LOAD NEW
INFORMATION

CHECK OLD
INFORMATION

RUN
PROGRAM

CHECK NEW
INFORMATION

14.
15.
16.

17.
18.

. P

4,6,10 281215 17

. Set Switch Register to 002775.

Press LOAD ADDRESS.
Set to 073000 (STA 3000).
Press LOAD MEMORY.
Set to 102000 (HLT).
Press LOAD MEMORY.

Press CLEAR REGISTER.
Press LOAD ADDRESS.
Set S Register to 177777.
Press LOAD MEMORY.

. Set to 003000.
. Press LOAD ADDRESS.
. Press DISPLAY MEMORY. T-Register indicates

contents of memory location 003000:
0707017.

Set S Register to 002775.
Press LOAD ADDRESS.
Press RUN.

Press DISPLAY MEMORY.

T-Register indicates new contents of memory
location 003000: 177777. Photograph shows
conditions existing at this time.

2038-11

Figure 4-4. Storing Information by Program

4-5

Section IV

2114B

Table 4-1. Program Table

ADDRESS CONTENTS REMARKS
INSTRUCTION| MEMORY on | am OCTAL
(OR DATA) | REFERENCE CODE
002776 STA 3000 073000 Get pattern from A, put in 3000.
002777 HLT 102000 Halt.
003000 Reserved for answer.

4-28. ADDRESS. The address column of the program
table states where in memory the program words (contents)
are to be stored. The first listed address states where the
program is to begin; this is termed the starting address. The
starting address of the program shown in table 4-1 is
002776; the program stops at the location immediately
following (002777). Although the program never advances
to location 003000 (the location immediately following
002777), this address must be listed in the program table as
a reminder that this memory location will be used by the
program.

4-29. CONTENTS. As explained above (paragraph 4-24),
the stored program can consist of three types of words:
instructions, data, or even the address of another location.
Therefore the contents of a location specified by an address
may take various forms in the contents column. Most
memory locations of a program will be instructions; the
instruction mnemonic is listed under instruction (or data)
in the table. If the content is not an instruction (usually a
pure number representing data or an address), it will also
appear under this heading, as shown in table 4-2. In the case
of memory reference instructions, the address of the
location affected by the instruction is listed under the
memory reference heading. For example, the first
instruction listed in table 4-1 is a command to store the
A-register contents into location 003000. Location 003000
is the affected location (i.e., the memory reference). The
D/1, A/B, and Z/C headings are also used only in the case of
memory reference instructions. As a reminder to code a
one-bit for I (indirect addressing), B (B-register), and C
(current page), only these three indicators will be given in
the tables; D (direct addresing), A (A-register), and Z (page
zero), all coded by zero-bits, are otherwise assumed. The
octal code column is used for the coded version of the
desired contents. This column comprises the machine-
language program, since this is the information which is
loaded into the computer. As far as the computer is
concerned, these numbers are the program. Note that no
specific contents need be loaded for address 003000, since
the STA 3000 instruction will destroy any information
previously contained here.

4-30. REMARKS. A short explanation accompanying
each assigned address of the program is helpful in com-
municating the intent of program details to other persons,
and also can serve as a reminder to the original programmer
when re-examining the program at a later time. Words used

4-6

for the remarks column should be carefully chosen to
be as concise and meaningful as possible. Under-
standing a given program can be difficult enough
without adding confusion through vague documentation.
For example, it would not be incorrect to say for the first
instruction of table 4-1: store contents of A in location
3000. However this does not say any more than the instruc-
tion word itself says (STA 3000). The remark suggested in
table 4-1 states what is expected to be in the A-register (a
pattern), and raises the questions of what the pattern is,
and how it happened to get into the A-register. This leads
the operator to look for further documentation (in this case
the text of this manual), which tells him how to preset the
A-register. Additional words to indicate the need for pre-
setting the A-register could be added, improving the
message still further. Conversely, the halt in the next line
requires no additional comment.

4-31. PROGRAM EXECUTION.

4-32. Table 4-2 lists the program used as an example in
this discussion. The main purpose of the program is to show
where and when the three types of program words (instruc-
tion, data, and address) occur. In the process of so doing,
detailed actions for simple addition and indirect addressing
will also be illustrated. The program adds 5 to 5, and puts
the result (10 decimal, or 12 octal) into location 003000.
Note that the middle three lines of the program are
the same as the example given in table 4-1. The first
two lines expand the program to accomplish the
addition, and the last two lines are data and address
words used by the program.

4-33. LOADING THE PROGRAM. The program is
loaded into the computer manually, using the sample
procedure given in steps 1 through 4 of figure 4-3.
Steps 1 and 2 need be done only once for most of
the program, since each LOAD MEMORY operation
automatically increments the address in the P- and
M-registers. Specifically, the procedure is:

a. Set the switch register to the starting address
(002774), and press LOAD ADDRESS.

b. Set the switch register to the first word of the
program (063001), and press LOAD MEMORY.

2114B

Section IV

Table 4-2. Program to Show Instruction, Data, and Address Words

ADDRESS CONTENTS REMARKS
INSTRUCTION| MEMORY OCTAL
(OR DATA) REFERENCE D/l | AB | Z/C CODE
002774 LDA 3001 C 063001 Put augend in A.
0027175 ADA 3717 I C 1437717 Add the addend specified by 3777.
002776 .|| STA 3000 C 073000 Put answer in 3000.
002777 | HLT 102000 Halt.
003000 ' - Reserved for answer.
003001 5 000005 Data.
003777 3001 003001 Address of addend is 3001.
c. Set the switch register to the next word of the 4-36. Press the SINGLE CYCLE pushbutton (first step).

program, press LOAD MEMORY, and repeat this step until
the first six words have been loaded. For the fifth word
(which requires no contents), it is convenient to simply
press LOAD MEMORY with the HLT code still in the
switch register. A halt instruction in this location does no
harm.

d. For the seventh word, which is not in sequence with
the other six, it is necessary to set the address (003777)
into the switch register and press LOAD ADDRESS. Then
set the switch register to the contents (003001), and press
LOAD MEMORY.

4-34. RUNNING THE PROGRAM. Again set the switch
register to the starting address (002774) and press LOAD
ADDRESS. Now press RUN. Immediately the computer
switches to the halt condition, having executed the problem
and stored the answer in location 003000 in 16.0 micro-
seconds. To verify that the computer has arrived at the
right answer (000012), press the DISPLAY MEMORY
pushbutton. The answer is in the T-register. This demon-
strates how fast the computer operates, but does not show
what operations it went through to arrive at its answer.
Therefore the following paragraphs will rerun the program
step by step in order to show these operations.

4-35. SINGLE CYCLE OPERATION. Table 4-3 shows
the contents of the register following each operation of the
SINGLE CYCLE pushbutton. The program will be
executed in eight steps (i.e., eight machine phases). The
following eight paragraphs describe each of these steps. The
program is initially set up by setting the switch register to
the starting address (002774) and pressing the LOAD
ADDRESS pushbutton. The conditions now existing are
shown in the top line of table 4-3: the P- and M-registers
hold the starting address, and the remaining registers can be
in any state. The FETCH phase indicator light on the
panel is on, indicating that the first machine phase will
be a fetch phase; this is an effect of the LOAD ADDRESS
switch.

The conditions of the registers after the computer has
completed this first phase are shown in the step 1 line of
table 4-3. As an additional reference, refer back to figure
3-15 in the preceding section; the fetch phase actions for all
memory reference instructions except JMP apply to this
discussion. Note also the read/write memory cycle, which is
what reads the contents of the addressed location (contents
of 002774 is 063001) into the T-register. This is accom-
plished early in the fetch phase. The computer inter-
prets any word read out of memory during a fetch
phase as an instruction word. It is the programmer’s
responsibility to ensure that the computer does find an

Instruction in every location to which the P-register goes.

This is ensured by properly filling out the program table;
e.g., in table 4-2, the program (P-register) starts at 002774,
and stops at 002777. Every one of these locations must
have an instruction word as its contents. Later in the fetch
phase (T'6 and T7), the memory reference bits (0 through
9) of the T-register are transferred into bits 0 through 9 of
the M-register. The remaining bits of the M-register are left
unchanged (since there is no reference to page zero), thus
completing the memory reference address in the M-register.
In comparing the contents of the T- and M-registers in step
1 of table 4-3, be careful not to assume that the complete
octal digits 3001 are transferred; the digit 3 (like the
situation shown in figure 4-1 and explained in paragraphs
4-6 and 4-7) is a composite of three binary bits with
different code meanings. Also occurring at the end of the
fetch phase is the setting of the execute (phase 3) con-
dition. The P- and A-registers are not yet affected.

4-37. Press the SINGLE CYCLE pushbutton again (step
2) to complete execution of the LDA 3001 instruction.
Step 2 of table 4-3 shows register conditions existing after
completion of the execute phase. This is the phase in which
the computer gets the data requested by the memory
reference, and does with it whatever is commanded by the
instruction code. The read portion of the memory cycle
reads the contents of the location addressed by the
M-register (now at 003001) into the T-register. This
information, read out of memory by the execute phase, is a
data word. It is the programmer’s responsibility to ensure

4-7

Section IV 2114B
Table 4-3. Single Cycle Execution of a Program
STEP |INSTRUCTION| T-REGISTER P-REGISTER M-REGISTER A-REGISTER B-REGISTER PHASE
Any 002774 002774 Any (Not used) FETCH
1 LDA 063001 002774 003001 Any EXECUTE
2 000005 002775 002775 000005 FETCH
3 ADA, 143777 002775 003777 000005 INDIRECT
4 I 003001 002775 003001 000005 EXECUTE
5 000005 002776 002776 000012 FETCH
6 STA 073000 002776 003000 000012 EXECUTE
i 000012 002777 002777 000012 FETCH
8 HLT 102000 003000 003000 000012 FETCH

that a data word (or an indirect address) is contained in all
locations to which there is a memory reference (unless the
location is to be used by the program for storage). As seen
in table 4-2, there are three memory references; there-
fore, the table accounts for three addresses in addition
to the four addresses assigned to the program
instructions. One of these three is a storage location,
one is data, and one is an indirect address. In this
step, the information read out is the data 5. As
shown in figure 3-15 (LDA/B), the data is transferred
from the T-register to the A-register during the execute
phase. Therefore the number 5 exists in both registers. At
the end of this phase, the P- and M-registers are set to the
address of the next instruction (002775), and the fetch
condition is set (FETCH light on) for reading of the next
instruction.

4-38. Press SINGLE CYCLE (step 3). This fetches the
next instruction (143777) out of location 002775. The
code 143777 means: add to whatever is in the A-register
the contents of a memory location which can be found by
going first to location 3777 for more information. This is
what is implied by the symbolic form: ADA 3777, indirect.
The indirect bit (bit 15 of the word now in the T-register)
caused the setting of the indirect phase (INDIRECT light
on), and the memory references bits (0 through 9) have
been transferred into the M-register. The P- and A-registers
remain as they were. The indirect phase is ready to
begin.

4-39. Press SINGLE CYCLE (step 4). The computer
always interprets information read out of memory during
an indirect phase as an address word. This word (003001) is
transferred to the M-register as the new memory reference
for the current ADA instruction. Both T- and M-registers
therefore now contain 003001. Since bit 15 of this
word is a zero (direct address), the execute condition

4-8

is set (EXECUTE light on). If this bit had been a one
(indirect), the indirect condition would remain set, and
a further memory reference would be obtained in the
next step. However, with this example, the computer
now knows that the addend data is located in
003001. It happens, in this example, that this is the
same location from which the augend was taken;
however, the address word could just as well refer to
any location in memory.

4-40. Press SINGLE CYCLE (step 5). In the execute
phase of the ADA instruction, the data in location 003001
is read out (the number 5), and is added to the existing
contents of the A-register (which up until now also
contained the number 5). The T-register therefore contains
5, and the A-register contains 12. As usual, the last
operation for any instruction is to advance the P- and
M-registers to the location of the next instruction (002776)
and to set the fetch phase condition.

4-41. Press SINGLE CYCLE (step 6). The fetch phase of
the STA 3000 instruction reads the instruction word
(073000) out of location 002776, transfers the memory
reference bits to the M-register and sets the execute phase
condition.

4-42. Press SINGLE CYCLE (step 7). The execute
phase puts the A-register contents (000012) into the
memory via the T-register. Therefore both registers indi-
cate this value. As usual, the P- and M-registers are
advanced to the address of the next instruction (002777),
and the fetch phase condition is set.

4-43. Press SINGLE CYCLE (step 8). The halt instruc-
tion is read out of memory, and the computer is in the
same state as after the running of the program in
paragraph 4-34. As before, the DISPLAY MEMORY

2114B

pushbutton can now be pressed to verify that location
003000 again has received the correct answer, 000012,

444, REFERENCING OTHER PAGES.

4-45., The procedures given in the preceding paragraphs
used three memory reference instructions: LDA 3001;
ADA 3777, I, and STA 3000. All of these instructions
were stored in the second page of memory (refer to
paragraph 2-23); i.e., they were stored in locations 2774,
2775, and 2776. In addition, the addresses to which these
instructions referred (3001, 3777, 3000) were also located
in the second page of memory. Thus each memory refer-
ence is a current page reference; i.e., no reference is made
to an address which is outside the page in which the
program itself is operating.

4-46. One program reference (ADA 3777,I) went to
the page limit. This instruction could not have been ADA
4000,I, which refers to a location just one address higher.
Location 4000 is not on the current page. On the other
hand, ADA 1777 (with or without I) is possible, even
though location 1777 also is not on the current page. The
following paragraphs, through 4-62, deal with the special
considerations for referencing memory pages other than
the current page. The first step is to know what consti-
tutes a page of memory.

Section IV

4-47. CONCEPT OF THE MEMORY PAGE.

4-48. The necessity for dividing memory into pages
arises in small computers, such as the HP 2114B, from
the fundamental design concept of combining the instruc-
tion code and the memory reference into one computer
word. This contributes to speed and efficiency in the
computer, but also limits the number of bits available for
the memory reference. As shown in figures 2-3 and 2-4 of
the specifications section, bits 0 through 9 of the memory
reference instructions are available for the memory
reference address. Refer now to table 4-4 and note under
the MEMORY REFERENCE BITS column that the
possible range of numbers using these bits is (in octal)
0000 through 1777. To form addresses any higher than
1777 requires the addition of bits listed under the PAGE
BITS column.

4-49. In the computer, a reference to memory is imple-
mented by transferring bits 0 through 9 of the instruction
word from the T-register to the M-register during the
fetch phase (see figure 3-15). The remaining bits, during
the fetch phase, can only stay at the value they used
when addressing the current instruction location, before
the fetch phase began. (Optionally, these bits can be reset
to zero for a reference to page zero; this is relatively
simple to accomplish internally.) Thus the programmer
must know if these bits currently agree with the

Table 4-4. Memory Pages

COMPLETE BINARY ADDRESSES (M-REGISTER)
PAGE OCTAL
NO. ADDRESSES PAGE BITS MEMORY REFERENCE BITS
0 00000 *) 000 00]0 000 000 000
01777 000 00]1 111 111 111
1 02000 000 010 000 000 000
03777 000 0 1)1 111 111 111
2 04000 00O 1 0]0 000 000 000
05777 000 1 01 111 111 111
3 06000 000 1{0 000 000 000
07777 000 1 1(1 111 111 111
4 10000 001 0 0j0 000 000 000
11777 001 0 0j1 111 111 111
5 12000 001 0 10 000 000 000
13777 001 0 1)1 111 111 111
6 14000 001 1 0}0 000 000 000
15777 001 1 01 111 111 111
7 16000 001 1 10 000 000 000
17777 001 1 11 111 111 111
*Direct/Indirect bit does not form part of an address.

Section IV

corresponding bits of the address he wishes to
reference. To assist the programmer in this task, the
convention is established of dividing memory into
blocks called pages. Each block contains 2000 (octal)
memory locations (or 1024 decimal). This block size is
determined by the range of direct addressing capability
(0000 through 1777), and each such block is assigned a
page number.

4-50. Identification of page numbers is simplified by
considering the 5 page bits (see table 4-4) as a separate
binary word. Thus 00000 is page 0; 00001 is page 1; etc.
Going back to the problem example in paragraph 4-46
(where it was stated that the ADA instruction in location
2775 could not directly reference location 4000), the
situation can be analyzed as follows:

Current address is 000 010 111 111 101 (02775).
Page number (first five bits) is 00001, (page 1).

Desired reference is 000 100 000 000 000 (04000).
Page number (first five bits) is 00010, (page 2).

e o TP

4-51. The desired reference requires a page change, or,
in other words, bits 10 through 15 of the M-register must
be altered in addition to the usual alteration of bits 0
through 9. To do so requires the use of a programming
technique described under paragraph 4-55 (indirect ref-
erences). A simpler technique of addressing another page
(limited to page zero only) is discussed first in the fol-
lowing paragraph. Figure 4-5 shows individual memory
cells which are addressable from a location on page 1.
This source location may be thought of as location 2775,
the same example as in the preceding discussions. Page 1
is the current page.

4-52. DIRECT REFERENCES.

4-53. 'The arrows going left from location 2775 in
figure 4-5 show that, without using an indirect address, an
instruction at this point can reference a location on either
the current page or page 0. This doubles the range of
possible references for instructions which are located on
any page other than page 0. Bit 10 of the instruction
word is reserved for distinguishing which page is
referenced (zero for page 0, or one for current page).
This distinction must always be considered when
coding any memory reference instruction, or an erro-
neous reference may be made. The memory reference
bits alone are not sufficient to identify a location. For
example, ADA 5777 and ADA 1777 (assuming that
the program is operating in page 2) have identical
memory reference bits:

ADA 5777: 010001(1111111111)
ADA 1777: 0100 00(1111111111)

4-54. Only bit 10, the zero/current indicator, can make
the distinction. The C in the coding table is a reminder
that bit 10 must be coded a one when referencing current
page. Otherwise it must be a zero for all memory
reference instructions. Remember that bit 10 of the

4-10

2114B
DIRECT / INDIRECT

PAGE
0 ~*

3 (™
1 ‘_L ' "aabd

L]] o ———

2775
2 -
3
e | BIT PLANE
2000-54
Figure 4-5. Direct and Indirect References to

Other Pages

instruction word is not an address bit. Its function is to
control bits 10 through 15 of the M-register: to either
reset these bits to zero, or leave them alone. This provides
an easy, direct access to information on page 0 from any
other page, thus making page 0 useful for storage of data.
Programs are generally stored in other pages (as the
examples in this section do) in order to reserve page 0 for
information which may be referred to frequently.

4-55. INDIRECT REFERENCES.

4.56. The arrows going right from location 2775 in
figure 4-5 show that, by using an indirect address in the
first referenced location, any location in memory can
then be accessed. As in the preceding paragraph, the
initial reference (contained in the instruction word), can
refer to a location on either the current page or page 0.
Broken lines in figure 4-5 indicate this optional choice.
Either way, the initial reference is simply an intermediate
step to the final desired reference. Obviously an added
machine operation (indirect phase) is required, as well as
the added memory location. The means of telling the
computer that this additional step is desired is to code a
one in bit 15 of the instruction word. An I in the coding
table is a reminder to do this.

4-57. PROGRAM EXAMPLE.

4-58. Table 4-5 lists a program illustrating both a
direct reference to page 0 and an indirect reference to
page 2. As before, the program itself operates approxi-
mately in the middle of page 1. This program differs from
that of table 4-2 in that the data, instead of being stored
on the current page (location 3001), now appears in two
different locations: location 1001 on page 0, and location
4000 on page 2. Figure 4-6 shows in simplified form the
referencing accomplished by this program.

2114B Section IV
Table 4-5. Program for Interpage Referencing
ADDRESS CONTENTS REMARKS
INSTRUCTION [MEMORY OCTAL
(OR DATA) | REFERENCE | P/V [A/B |2/C | copE
002774 LDA 1001 061001 Get augend from page Zero, put in A.
002775 ADA 3 I C | 143777 Add the addend specified by 3777
002776 STA 3000 C | 073000 Put answer in 3000.
0027717 HLT 102000 || Halt.
003000 - Reserved for answer.
003777 4000 004000 Address of addend is 4000.
004000 5 000005 Data (on Page 2).
001001 5 000005 Data (on Page 0).

4-59. LOADING THE PROGRAM. Unless memory has
been disturbed, the program of table 4-5 can be loaded
by making a few changes to the existing conditions of the
computer on completion of the preceding procedures.
(The reader, at this point in the text, should be able to
load a complete program, given octal addresses and octal-
coded contents; refer back to paragraph 4-33 if neces-
sary.) Changes required are:

Load location 002774 with contents 061001.
Load location 003777 with contents 004000.
Load location 004000 with contents 000005.
Load location 001001 with contents 000005.

peoe

4-60. DIRECT REFERENCE. Set the switch register to
the starting address (002774), and press LOAD
ADDRESS. Remembering that only bits 0 through 9 of
the word about to be read out of memory are transferred
to the M-register, watch bit 10 of the M-register and press

PAGE
0 (DATA)

1001

1
l (PROGRAM) (REF)

LB ———'—j
2774 2775 3777
)—1

4000 (DATA)

2

_ ADD 5 INDIRECT LOAD 5 DIRECT)

A-REGISTER | 0 000 000 000 001 010]

2000-55
Figure 4-6. Examples of Interpage

Referencing

SINGLE CYCLE once. Bit 10, a page bit, has changed
from a one to a zero, thus changing pages. This situation
is shown in figure 4-6, where the instruction word in
location 2774 is causing location 1001 to be addressed.
The contents of location 1001 is known to be 5; this will
be loaded into the A-register in the next (execute phase).
Again watch bit 10 of the M-register and press SINGLE
CYCLE. The page indication returns to page 1 to address
the next instruction (in 2775), and the data (octal 5) is in
the A-register. Referring to figure 4-6, an instruction on
page 1 has commanded data from page 0 (by direct
reference) to be put into the A-register.

4-61. INDIRECT REFERENCE. Previously, in para-
graphs 4-46 and 4-50, it was pointed out that a direct
reference from location 2775 to 4000 is not possible.
These two paragraphs describe the indirect method for
making this reference. Briefly, the method is to make an
initial reference to a location on the current page, pick up
a 15-bit address there, and use that address to reference
location 4000 (refer to figure 4-6). Although the initial
reference could be anywhere on the current page or page
0, location 3777 (which is immediately adjacent to
location 4000) has been chosen to emphasize the concept
of page boundaries.

4-62. Watching bits 11 and 10 of the M-register, press
SINGLE CYCLE. These bits remain 01, (page 1) for the
initial reference to location 3777 on the current page.
Note that the computer has acknowledged the fact that
indirect- addressing is desired, since the INDIRECT light is
on; this condition was specified by a one in bit 15 of the
instruction word (now visible in the T-register). Again
watching bits 11 and 10 of the M-register, press
SINGLE CYCLE. These bits change to 10, (page 2)
for the indirect reference to location 4000. Since bit
15 of the T-register is now a zero (not indirect), the
EXECUTE phase condition is indicated. This means
that the next phase will execute the instruction, and the
M-register will return to page 1 for the next instruction.
Watching bits 11 and 10 of the M-register, press SINGLE
CYCLE. These bits return to 01, to address location
2776. The remaining actions are the same as in table 4-3,

4-11

Section IV

steps 6, 7, and 8. Press SINGLE CYCLE three more times
to complete the program.

4-63. JUMPS.

4-64. In all previous examples, although random refer-
ences to various points in memory were made, the program
itself (i.e., the list of instruction words) was located in a
few consecutive locations in page 1. This strict sequential
operation would be severely limiting for practical appli-
cations, Therefore provision must be made for the program
to move freely throughout available memory. The jump
instructions (JMP and JSB) provide this capability.

4-65. The essential difference between these two
instructions is that the JMP (jump) instruction uncondi-
tionally suspends operation at the currently used area of
memory and continues operation in a new area, whereas
JSB (jump to subroutine) provides a means of remem-
bering the location where the jump command was given,
thus enabling a return to that point at some later time.
Table 4-6 illustrates both kinds of jumps by treating the
program previously developed as a subroutine (to add
5+5), and adding a few preliminary instructions. These
preliminary instructions represent the main program; for
simplicity of illustration, several NOP (no operation)
instructions are inserted to represent a more lengthy
sequence of working instructions.

4-66. The special considerations for referencing other
pages, as covered in the preceding discussion (paragraphs
4-44 through 4-62), apply to the jump instructions. This
means that the program can jump directly to any location
on either current page or page zero, or indirectly to any
location in memory. The program example in table 4-6

2114B

illustrates both a direct JMP and an indirect JMP, but
only a direct JSB. An indirect JSB occurs in the same
way as does the indirect JMP.

4-67. LOADING THE PROGRAM. If memory remains
undisturbed from preceding procedures, the new program
can be loaded simply by loading the octal code contents
into the corresponding address for those items not shaded
in table 4-6. Otherwise it is necessary to load all 15
addresses listed in the table. Note that LOAD ADDRESS
must be used three times, since three separate areas of
memory are being loaded.

4-68. THE JMP INSTRUCTION. Set the switch register
to the starting address (002100) and press LOAD
ADDRESS. Assume that a working program has been
running sequentially up to this point (i.e., the P-register
increments by one on completion of each instruction).
For example, we may monitor the contents of the P-
register by observing the contents of the M-register at the
end of each execute phase. At this time the P-register is
incremented and transferred to the M-register. By pressing
the SINGLE CYCLE button the first NOP instruction is
executed, and the P-register (also the M-register) advances
from 002100 to 002101. In location 2101 is the instruc-
tion to jump to location 2200. Since a direct jump is a
one-phase instruction, the jump will be completed in the
next operation. When the SINGLE CYCLE button is
pressed the P-register (also the M-register) does not incre-
ment by one, but rather jumps from 002101 to 002200.
If the intervening instructions had contained instructions,
those instructions would be omitted from the sequence of
this program. Press SINGLE CYCLE two more times and
note that at the end of the execute phase, the P-register
(also the M-register) increments normally from the new
operating point of 002200.

Table 4-6. Examples of Program Jumps

ADDRESS CONTENTS REMARKS
INSTRUCTION MEMORY OCTAL
(ORDATA) | REFERENCE | P/ | A/B| Z/C| ‘copE

002100 NOP 000000 Program starts here (no operation).
002101 JMP 2200 026200 ‘Jump to 2200.
002200 NOP 000000 ‘No operation.
002201 NOP 000000 No operation.
002202 JSB 2773 016773 Jump to 5+5 subroutine at 2773.
002203 102000

7
002777

‘Return to main program via 2773

126773‘
Il “Reserved for answer.

50050

_Address of addend
|| Data (on Page 2).
- Data (on Page 0).

2114B

4-69. THE JSB INSTRUCTION. The P-register is now
at the location (2202) which contains the instruction to
jump to the subroutine which begins at location 2773.
This subroutine, as the remarks column states, is a
procedure to add 5 plus 5. It is desired, on completion of
the subroutine, to return to the main program at the
succeeding location (2203). It happens that the HLT
instruction is located in 2203, but a program-
continuing instruction could as well be stored there,
and the program (P-register) would advance as usual to
2204, 2205, etc.

4-70. The JSB instruction, unlike JMP, requires two
phases. The first phase (fetch) only references the
location being jumped to; i.e., the P-register does not
change in this phase. Watch the M-register and press
SINGLE CYCLE, noting that location 2773 is ref-
erenced. The P-register will still contain the location
(2202) where the jump command was given. The next
phase will store the return address into the referenced
location, and will complete the jump. When SINGLE
CYCLE is pressed both the P- and M-registers will contain
the address of the first instruction of the subroutine
location 2774. Note also that the T-register holds the
number 2203, the return address, which was stored into
location 2773 during the phase just completed. This value
is one higher than the location jumped from since
obviously a return to location 2202 would send the pro-
gram right back into the subroutine, and it would loop
continuously without ever reaching 2203.

4-71. Now press the SINGLE CYCLE pushbutton
seven more times. This executes the three instructions
of the subroutine, which are identical to the instruc-
tions of the previous program (table 4-5). The content
of location 2777, however, is now an indirect jump
via location 2773. Location 2773, remember, contains
the return address. Watch the M-register and press
SINGLE CYCLE; this references location 2773. Since the
next phase will be an indirect phase (INDIRECT light is
on), the content of the referenced location will be in-
terpreted as an address. The indirect phase will complete
the jump to that address. Again press SINGLE CYCLE.
The M-register (also the P-register) now addresses loca-
tion 2203 of the main program, completing the jump
out of the subroutine. Pressing the SINGLE CYCLE
button will execute the HLT instruction contained in
location 2203.

4-72. The preceding three paragraphs show how sub-
routines are accessed. By definition, a subroutine is a
sequence of instructions designed to perform a single
task, with provisions included to allow entry from any
point in a program and return to the same point. The
contents of locations 2773 through 2777 comprise a
typical subroutine. The single task is an addition, and
the entry and return requirements is guaranteed by
storing the return address in location 2773 (a function
of the JSB instruction) and by including an indirect
jump via this location at the end of the subroutine
(programmer’s responsibility).

Section IV

473. INTRODUCTION TO PROGRAM
DEVELOPMENT.

4-74. The program examples given in the preceding
discussions have been simple enough that no explanations
were offered to explain how the programs were derived.
The main object has been to demonstrate the register
manipulations which occur during the running of the
program. Refer ahead to the next program example in
table 4-8, and note that 12 lines have been added to the
previous 15, nearly doubling the length of the program.
Readers without previous programming experience may, at
this point, wish to know just how this sequence of instruc-
tions was developed. For example, how was it known in
advance that the new starting address of the program would
be 21667

4-75. The answer is that preliminary development in
rough form preceded the assigning of actual addresses.
Temporary labels were used in place of final addresses. This
introduces the concept of symbolic programming, which
later becomes the exclusive means of program writing when
software is involved. For such purposes, however, specific
rules governing the use of labels apply, which are beyond
the scope of this volume. This volume therefore uses a
symbolic notation (lower case letters) unique to these dis-
cussions, with the implication that such labels are tem-
porary assignments for rough work only. The appearance of
lower case letters in a written program provides an imme-
diate and obvious indication that the program is not
completely developed.

4-76. The following description of looping and counting
includes detailed information on the development of the
program example. Before going into details of the program,
however, it is first necessary to decide on general techni-
ques, based on the problem to be solved. Suppose that the
problem to be solved is:

[5+3(2)] + 5 = 1654

4.-77. The previously developed program showed how to
use a subroutine to add two numbers, both of which
happened to be 5. For convenience, the same subroutine
can be used by letting one of the numbers be 5, and the
other can be the result of the 5 + 3(2) calculation. Now it is
only necessary, at some time before going into the sub-
routine, to perform the 5 + 3(2) calculation and store the
result in an easily referenced location. It is the object of the
following paragraphs to show how to do this calculation
with a simple loop. Therefore the general techniques
decided upon are: use a loop to calculate (5 + 3(2)), and
use the previously established subroutine to add the result
to the number 5.

4.78. LOOPING AND COUNTING.
4-79. THE PROGRAM LOOP.

4-80. To save core space (and, incidentally, to ease the
burden on the programmer), it is frequently convenient to
use a program loop when a sequence of instructions within

4-13

Section IV

a program is to be repeated several times, with little or no
change on each repeat. As in the present example,
suppose it is desired to add 2+2+2 etc., any number of
times. to the number 5. To accomplish this, it would be
possible to put the number 5 into location z, 2 into
location y, and then add repeatedly:

LDA 1z

ADA y

ADA vy
ADA vy, etc.
5

2

GNaoTe

4-81. By simply jumping back to the first add instruc-
tion immediately after it has been once completed, an
endless program loop is created, accomplishing the same
effect:

a. LDA =z
Eb. ADA y

c. JMP b

z. 5

y. 2

4-82. The program starts at location a, which loads the
contents of z (the number 5) into the A-register, then
advances to location b, which adds the number 2 to the
existing contents of the A-register (i.e., 5+2). Location ¢
contains the instruction to jump back to location b, and
thus add 2 again to the existing contents of the A-register
(i.e., 5+2+2). This is the essential concept of the program
loop. Obviously this simple sequence is not practical as it
stands, since the loop will repeat endlessly. Some means
must be provided for getting out of the loop after it has
been repeated a desired number of times. This necessitates
an instruction sequence to count each loop as it occurs,
and then to exit from the loop when the desired count
has been reached. The required sequence is next
discussed.

4-83. COUNTING TO A LIMIT.

4-84. The ISZ instruction (increment, and skip if zero)
is commonly used for counting to a preset limit, since its
special features include both the counting (incrementing)
and exit (skip) capabilities in one instruction word. A
location in memory can be reserved for use as a counter;
each time this location is referenced by the ISZ instruc-
tion, it is incremented by one (in the positive direction).
If the counter location is initially set to a negative value,
it will increment toward zero each time it is referenced.
In the present example, if the counter is set to -3 before
the loop is entered, the counter will go to zero on the
third pass through the loop. This is the condition which
causes the program to skip the next instruction. If the
skipped instruction is the JMP instruction which causes
the loop to repeat, the skip provides the means of getting
out of the loop (after the third pass). This gives the
following sequence:

4-14

2114B

LDA
ADA
ISZ
JMP
STA
5

2

-3
reserved for subtotal

0T
€ oM< N

ExEN

4-85. Note that is has been necessary to insert a new
location (labeled d) between locations b and c. Remember
that the lower case letters are labels only; they need not
be in alphabetic sequence. The instruction sequence here
is a,b,d,c,e. The STA instruction in location e has been
added to define where the program continues on exit
from the loop. Also it has been necessary to add loca-
tion x for the counter (preset to -3), and to add
location w to store the result of the calculation. Storage
of the result (which is obtained in the A-register) is
necessary since the A-register will be used for other pur-
poses in the program.

4-86. The program begins by loading 5 into the A-
register, then advances to location b to add 2. Next, the
ISZ instruction increments counter location x to -2. Then
the JMP instruction causes a return to location b, where
again 2 is added to the A-register. ISZ increments counter
location x to -1. The JMP instruction causes a second
return to location b, where 2 is added for the third (final)
time to the A-register. ISZ increments counter location x
to 0, and the program skips the JMP instruction and goes
instead to location e. Here, the contents of the A-register
are stored into location w, and the program continues to
whatever instruction is next.

4-87. TALLYING.

4-88. Occasions arise in which it is desired simply to
count, or produce a tally of the number of times a
particular event occurs. This does not involve a loop or a
skip, but again the incrementing feature of the ISZ in-
struction can be used. For example, suppose it is desired
to know (or verify) how many passes through a loop are
actually executed. In the present simple example of a
program loop, the purpose of the tally would be to count
how many times the number 2 is added to the number 5
(loaded into the A-register before the loop begins). There-
fore an ISZ instruction, located ahead of the ADA in-
struction, can be used to increment a reserved tally loca-
tion each time ADA is about to occur. (In this simple
example, the tally could be placed either before or after
the addition. In more complex programs, a definite place-
ment may be dictated by the structure of the program).
The tally, in this case should be 3 after the program has
been run, indicating that three passes through the loop were
made. Since the skip if zero feature of the ISZ instruction is
not used, a NOP (no operation) instruction could follow
1SZ, so that if the total should happen to exceed +32767
(and thus rolls over to zero), the resulting skip will not
affect the operation of the program. The program loop now
consists of the following sequence:

2114B

a. LDA z
—f. ISZ v
g. NOP
b. ADA y
~---d. 1SZ X
‘—c¢. JMP f (note new reference)
Lee. STA W

z. 5

y. 2

X. -3 (Counter)

w. reserved for subtotal
v. 0 (Tally)

4-89. INITIALIZATION.

4-90. The need for initialization frequently occurs in
programming, and is not exclusively associated with
counting and tallying. It is introduced here as a typical
example of the principle. Initialization enables a program
to be repeated any number of times, by presetting to
starting values all locations which must be in a specific
state at the start of a program but are in a different state
at the end of the program. This applies particularly to
counters and tally locations. In the above examples, the
counter starts at -3 and ends at 0, while the tally starts
at 0 and ends at 3. To permit the program to be run a
second time, the counter must be set back to -3 and the
tally must be set back to 0. This is generally done at the
start of a program; hence the term initialization.

4-91. Creating the two’s complement form of a neg-
ative number can also be accomplished easily in the
initialization, by using the combined register reference
instructions CMA and INA (complement and increment
the A-register). It is then necessary only to provide posi-
tive numbers for constants. Thus the complete initiali-
zation for both the counter and the tally would consist of
five instructions:

aa. LDA u
ab. CMA, INA
ac. STA x
ad. CLA

ae. STA v
u 3

} Set counter to -3

} Set tally to 0

4-92. Location u has been added to contain the posi-
tive number 3. The first instruction of the program puts
this number into the A-register. The next instruction, in
location ab, converts this number to -3. Then the result
is stored in the location (x) previously established for the
counter (paragraph 4-84). Location ad clears the A-
register (all zeros), and this value of 0 is put into the
location (v) previously established for the tally (paragraph
4-88).

4-93. COMPLETE PROGRAM.

4-94. Putting together all parts of the symbolic pro-
gram developed in paragraphs 4-78 through 4-92, and
then combining them with the previously developed sub-
routine, the partially developed listing given in table 4-7 is

Section IV

obtained. Note that two of the locations assigned symbolic
addresses (z and w) already have actual addresses assigned:
37717, which references the addend requested by the sub-
routine, and 1001, which contains the augend (formerly the
fixed number 5, now the subtotal produced by the loop).
Looking under the memory reference column, it is seen
that four other references (u,x,v,y) require an assignment in
the address column, These are symbolically listed at the end
of the program as a reminder to assign specific addresses for
these references. There can be no unassigned references.

4-95. Now it is simply a matter of assigning actual
addresses for the instructions by working backward from
the first fixed address (2202), thus arriving at 2166 for the
starting address. For ease of reference, the locations
reserved for counters and constants are assigned locations
on page 0, starting at the first fixed address, 1001. The
resulting assignments for the fully developed program are
shown in table 4-8.

4-96. A significant change in the remarks column has
been introduced in the transposition from table 4-7 to
table 4-8. In the former table it is necessary to read the
remark for every instruction in order to understand the
intended operation. Table 4-8 simplifies the reading by
letting one remark apply to a group of instructions,
assuming that the reader already understands such funda-
mentals as initialization, counting, looping, and subroutine
entry and exit.

4.97. LOADING THE PROGRAM. If memory remains
undisturbed from preceding procedures, the program of
table 4-8 can be loaded simply by loading the octal code
contents into the corresponding address for those items not
shaded in the table. Otherwise it is necessary to load all 27
locations in order to run the program.

4-98. RUNNING THE PROGRAM. As before, it is pos-
sible to step through the program one phase at a time, by
loading the new starting address and pressing SINGLE
CYCLE for each phase. For a program of this length, 48
operations of the SINGLE CYCLE pushbutton are neces-
sary to step through the entire program. If it is desired to
examine in detail only the new portions of the program
(initialization, looping, and counting), the instructions
preceding the JSB instruction should be stepped through
(36 operations of SINGLE CYCLE) and then press RUN to
let the computer execute the remainder automatically.
However, the program includes several locations which can
be checked, after the program has been run, to verify that
the program actually was executed in the manner pre-
scribed by the written program. Simply load the starting
address (002166), press RUN, and check the results as in
the following paragraph.

4-99. First, load the answer address (003000) and press
DISPLAY MEMORY. Since the probelm was stated to be
5+ 3(2) + 5, the answer, obviously, must be 16 (decimal)
or 20, octal. That is, bit 4 of the T-register must be on, and
all others off. To verify that the required three passes
through the loop were completed, three locations can be
checked: the subtotal, the loop counter, and the tally. Load

4-15

Section IV

2114B

Table 4-7. Preliminary Program Development

ADDRESS CONTENTS REMARKS
INSTRUCTION | MEMORY OCTAL
(OR DATA) REFERENCE DAl | AB | z/C CODE

aa LDA u C Start. Put "3" in A.

ab CMA, INA Convert to -3.

ac STA X C Put -3 in Loop Counter.

ad CLA Zero the A-Register.

ae STA A\ C Put 0 in Tally.

a LDA 3777 (z) I C Put 5" in A.

f ISZ v C Add 1 to Tally.

g NOP No Operation (void skip).

b ADA y C Add 2 to value in A.

d 1SZ X C Add 1 to Loop Counter. Exit if count 0.

c JMP f C Repeat Loop.

e STA 1001 (w) _ Store subtotal in w on exit from loop.

- O - jfaB 2'773 e e Jump to Add subroutme at 2773
s N Reserved for return address
»1001 (w) o EiE “Get augend (subtotal), put in A.
R L0 e Add the addend specified by 3777
3000 1| Put answer in 3000.
<2713 ‘Return to main program via 2773
‘ Reserved for answer. .~

__Address of Data is 4000,
. Data {(on Page 2). :
Data (subtotal, on Page 0).
Constant.
Reserved for Loop Counter.
Reserved for Tally.
Data.

the address of the subtotal (001001) and press DISPLAY
MEMORY. The T-register should indicate 000013 (11,
decimal), the result of calculating 5 + 3(2). Press DISPLAY
MEMORY to pass over the next location (a constant) and
then once more to display the content of the loop counter.
All T-register lights should be off (zero). Press DISPLAY
MEMORY once more to display the tally, which should be
000003, indicating three passes.

4-100. SPECIAL ADDRESSING METHODS.

4-101. Table 4-9 is the final expansion of the program
developed in the preceding portion of this section. Two
special addressing methods are illustrated by the added
instructions: address modification and: inter-register ref-
erencing, in which an accumulator is referenced as though it
were a memory location. For the purpose of illustration,
the program is expanded to solve the following problem:

[5+3(2) + (sum of 4 numbers)] -10;¢

4-102. The four numbers undefined in the term sum of
4 numbers could be subtotals from other parts of a
complex program. Such a program could be arranged to
store these subtotals into four consecutive locations, thus

4-16

making the numbers easily accessible by the programming
technique known as address modification. This technique is
described under paragraph 4-104. For simplicity, four fixed
numbers will be manually loaded into four consecutive
locations, starting at location 4000. This location was pre-
viously assigned to contain the number 5; the remaining
three will be loaded as follows:

4001: 214
4002: 1404
4003: 35704

4-103. In the previous program, the answer was stored in
location 3000 during the subroutine. Since the new
problem demands an additional operation (subtract 10,),
the new program will delay storage of the answer until this
additional operation has been completed (after the sub-
routine). The partial answer from the subroutine will be
retained in the A-register while the B-register retains the
number -10. Then the contents of the two accumulators
can be combined by the inter-register operation described
under paragraph 4-110, addressing the accumulators.

4-104. ADDRESS MODIFICATION.

4-105. In explaining the operation of counters under
paragraph 4-83, it was shown that the ISZ instruction could

2114B

be used to advance (or modify) a number contained in a
specific location. Since there is no restriction on the type of
word that can be in the addressed location, the number
could as well be an address. For example, in the subroutine
of the program in table 4-8, location 3777 contains the
address 4000. The corresponding remark states that the
address of data is 4000. If an ISZ instruction, referencing
location 3777, incremented the number to 4001, the
applicable remark would be address of data is 4001.
Furthermore, if a loop were used to increment loca-
tion 3777 any number of times, an entire block of
data can be referenced with relatively few instructions.
The basic sequence is:

a. ADA 3777, 1
b. ISZ 3717
c. JMP a

4-106. Assuming that location 3777 initially contains
the address 4000, the instruction in location a adds to the
A-register the data whose address is contained in location
3777 (i.e., the data in 4000 is added toA). The ISZ instruc-
tion in location b increments the contents of location 3777
to 4001. Then the program jumps back to location a, and
the data in location 4001 is added to the A-register. As

Section IV

explained under looping and counting (paragraph 4-78),
some means must be provided for getting out of the loop.
A common method is to compare the current reference
with the last address of the block (in this case 4003), and
provide an indirect jump via the return address out of the
subroutine. Since the B-register is not in use, it can be
used to hold the final address, for comparison purposes,
and is therefore first loaded with 4003. Thus the com-
plete sequence for the loop (to be contained within the
subroutine) is:

LDB =z

ADA 3777, 1

CPB 3777

JMP return address, I
1Sz 37

JMP a

4003

NOTmoepa

4-107. With the comparison limit in the B-register, the
program advances to location a, where the quantity 5 (see
table 4-9) is added to the A-register, indirectly via location
3777 (which references 4000). Then location e compares
the contents of 3777 (currently 4000) with the contents of
the B-register (fixed at 4003). Since the two numbers are

Table 4-8. Program to Illustrate Looping and Counting

ADDRESS CONTENTS REMARKS
INSTRUCTION MEMORY OCTAL
(ORDATA) | REFERENCE | P/' [A/B| 2/C| copE
002166 LDA 1002 061002 INITIALIZE.
002167 CMA, INA 003004 Set Loop Counter to -3.
002170 STA 1003 071003
002171 CLA 002400 INITIALIZE.
002172 STA 1004 071004 Set Tally to 0.
002173 LDA 3777 I C 163777 PUT 5 into A.
002174 ISZ 1004 035004 LOOP.
002175 NOP 000000 Add 2 three times to A.
002176 ADA 1005 041005 Tally number of passes.
002177 1SZ 1003 035003
002200 JMP 2174 026174
002201 STA 1001 071001 STORE subtotal from Loop in 1001.
002202 JSB . M3 C | 016773 ,~JUMP to Add Stlbrctutme atm
- 002203 | ‘HLT e L L ' '
002773 gl St , ',SUBROUTINE
- 002774 |} LDA 1001 o] ' Add 5to snbtotal fro n Loop
002715 { ADA o 37TT7. 1 C} FoE
002716 || STA 3000 0 e O S
002777 JMP 2713 - I ol g 126773 |
003000 o e B e | N
0037771 4000 QQ:&QQ_Q i is 4
- 004000] 5 000005» *‘Data (on Page 2)
coootoor |l s || Data (subtotal, on Page 0)
001002 3 000003 Constant.
001003 - LOOP COUNTER.
001004 - TALLY.
001005 2 000002 Data (on Page 0).

4-17

Section IV

unequal, the terminating jump in location f is skipped (see
CPB definition in paragraph 2-73 of specifications), and
location b increments the contents of 3777 to 4001.
Location ¢ causes a jump back to the start of the loop. The
next pass through the loop adds the quantity 21 (contents
of 4001) to the total accumulating in the A-register. The
comparison (4001 vs 4003) causes another repeat of the
loop, adding the quantity 140 (contents of 4002) to the
A-register, The next comparison (4002 vs 4003) is still
unequal and another repeat of the loop adds 3570 (con-
tents of 4003). This time the CPB instruction finds the
contents of 3777 and of the B-register to be equal (4003 vs

2114B

4003), and the JMP instruction in location f is taken. This
ends the loop.

4-108. Note that location 3777 ends with the number
4003 in it, whereas initially it must contain 4000. As
explained under paragraph 4-89, this condition requires
initialization. This is accomplished prior to the start of the
loop by getting the number 4000 into the A-register from a
location reserved to store this number as a constant, and
then storing it into location 3777. Thus the following
words are added to the program:

Table 4-9. Program to Illustrate Special Addressing Methods

ADDRESS CONTENTS REMARKS
INSTRUCTION MEMORY OCTAL
(OR DATA) REFERENCE D/l | A/B | Z/C CODE

1y

PUT 5 into A.

2766

JUMP ine at 2766.

002203 LDB 1010 B PUT -12
002204 CMB, INB B into B.
002205 ADA 0001 ADD -12 to subroutine total.
002206 STA 3000 C PUT answer in 3000.
002207 HLT 102000 HALT.
002766 - SUBROUTINE.
002767 LDA 1006 061006 Add block of numbers in
002770 STA 3771 C 073777 locations 4000 thru 4003
0027171 LDA 1001 061001 to subtotal in 1001.
002772 LDB 1007 B 065007
002773 ADA 37717 1 C 143777 Add Loop.
002774 CPB 3777 B C 05777 Check for Last Address.
002775 JMP 2766 1 C 126766 Exit.
002776 ISZ 3717 C 037777

026773
004002
0 3

001006
001007
001010

4003

First address of Block.
Last address of Block.
Data (on Page 0).

004003
000012

4-18

2114B

g. LDA y
h. STA 3777
y. 4000

4-109. The instruction sequences listed in the two pre-
ceding paragraphs account for all but one of the instruc-
tions for the new version of the subroutine. The one
remaining instruction (as in the previous program) must put
the results of the earlier subtotal (in 1001) into the A-
register before the loop begins, but after initialization. The
resulting 10 locations for the subroutine can now be
assigned absolute addresses and transferred into the pro-
gram table (locations 2766 through 2777). Location 2777
is retained as the final location of the subroutine, and the
other locations are assigned working backward from this
point.
4-110. ADDRESSING THE ACCUMULATORS.

4-111. As stated in paragraphs 2-35 and 2-36 of the
specifications section, the A-register and the B-register can
be addressed as locations 0000 and 0001 respectively. The
memory cells which would ordinarily be identified by these
addresses are not available to the programmer. Thus, for
example, an ADA 0001 instruction would add to the A-
register the contents of the B-register. Since both of these
registers are accumulators, it is possible to perform separate
arithmetic operations on the two accumulators, and then
combine the two accumulated results with a single
instruction.

4-112. In solving the problem given in paragraph 4-101,
the program, up to the point of coming out of the sub-
routine, has performed all the arithmetic except for the
subtraction of the decimal number 10 (12 octal). The result
exists in the A-register. If it were necessary to derive the
subtrahend by some arithmetic, such as conversion from a
positive number, this can be done in the B-register, while
the minuend is held in the A-register. Then the instruction
ADA 0001 (add B to A) can perform the subtraction, and
the result (existing in the A-register) can be stored in the
location reserved for the answer (3000). Since this com-
pletes the solution of the problem, the HLT instruction can
follow, and the sequence of instructions which follow exit
from the subroutine will therefore be:

a. LDB z
b. CMB, INB
c. ADA 0001
d. STA 3000
e. HLT

z. 12

4-113. The instruction in location a puts the octal
number 12 into the B-register. The combined instruction in
location b converts this number to -12, and the instruction
in ¢ adds the number to the existing contents of the
A-register. Location d stores the final answer into location
3000, and the program halts at location e. This sequence
can now be transferred to the program table as shown in
table 4-9, locations 2203 through 2207, with the constant
12 in location 1010.

Section IV

4-114. LOADING THE PROGRAM. If memory remains
undisturbed from preceding procedures, the program of
table 4-9 can be loaded simply by loading the octal code
contents into the corresponding address for those items not
shaded in the table. Otherwise it is necessary to load all 42
locations in order to run the program. Five separate areas of
memory are loaded, so be sure to set LOAD ADDRESS for
each block.

4-115. RUNNING THE PROGRAM. Set the starting
address (002166) into the switch register and press LOAD
ADDRESS and then RUN. To verify that the program
actually was executed in the manner prescribed by the
written program check the final answer and the subtotal.
Load the answer address (003000) and press DISPLAY
MEMORY. The answer to the problem stated in para-
graphs 4-101 and 4-102 is 3757 (in octal, or in decimal
2031). Therefore the octal number 3757 must be dis-
played in the T-register. Now load the subtotal address
(001001) and press DISPLAY MEMORY. The subtotal
should be the same as in the previous program, octal 13. If
the displayed subtotal is correct but the final answer is not
correct, assume a loading error in the new portion of the
program. If this is the case, use DISPLAY MEMORY to
find the error. Reload the incorrect location and run the
program again.

4-116. INTRODUCTION TO FLOWCHARTING.

4-117. In paragraph 4-76 it was stated that the first step
in programming is to decide on general techniques, based
on the problem to be solved. At this stage the programmer
avoids thinking about the actions of specific instructions,
but rather attempts to visualize overall operations. To assist
the programmer in visualizing programs during develop-
ment, flowcharts are commonly used. Figure 4-7 is an
example of a flowchart. Documentation for computer
software uses ASA standard block symbols in flowcharts,
only three of which are used in figure 4-7. However the
general principles of flowcharting can be illustrated with
these few symbols. The following paragraphs trace the
entire process of developing a program from a stated
problem through to actual running of the program. The
process consists of four distinct steps:

Flowcharting the program.
Writing the program.
Loading the program.
Running the program.

pooTe

4-118. FLOWCHARTING THE PROGRAM. Suppose
the problem is to set up a visual demonstration which will
show, by observing the panel register lights, the action of
shift and rotate instructions. (Such a demonstration may be
of benefit to persons not yet well acquainted with
computer operation.) The demonstration should be acti-
vated by pressing the RUN pushbutton (first symbol in
figure 4-7), and should automatically terminate by a halt
instruction at the end of the program (last symbol in figure
4-7). The shape of these symbols identifies a terminal
operation (start or stop).

4-19

Section IV

RUN !

INITIALIZE 2
PROGRAM

LOAD SHIFT
| INSTRUCTION 3
IN LOOP (8)

PUT PATTERN 4
INTO A

INITIALIZE
SHIFT 5
COUNTER (9)

SHIFT LOOP

INITIALIZE
TIMER (7)

ONE
SECOND
ELAPSED
I

SHIFT A 8

16
SHIFTS

CHANGE LAST
INSTRUCTION INSTRUCTION
(3) ?

n

2000-40
Figure 4-7. Flowchart for Shift-Rotate
Demonstration
4-119. An effective demonstration would be to put an

easy-to-watch pattern into one of the accumulators (fourth
block in figure 4-7), and then somehow take each of the
shift-rotate instructions individually and move the bits
slowly left or right from one end of the accumulator to the
other. One shift every two seconds might be an acceptable
rate, and 16 such shifts (the length of the accumulator)
should be sufficient time to observe the action. The instruc-
tion being demonstrated should therefore change after
every 16 shifts. (For brevity, a shift is meant to apply to
the action of either a shift or a rotate instruction.)

4-20

2114B

4-120. The conditions of the preceding paragraph indi-
cate the need for a means to time 1-second intervals (block
), ameans to determine if 16 shifts have occurred (block
9), and lastly a means to determine if all instructions have
been demonstrated (block 10). Note that all of these blocks
are diamond-shaped, which identifies a decision making
capability. Generally the input fact is applied to the top of
the diamond, with three possible output branches, repre-
senting yes or no decisions.

4-121. A practical means for timing and counting shifts
would be to use counters; the check for last instruction
could be a comparison of current instruction (block 8) with
the code for the final instruction. Since both counters will
go through their full count sequences several times, initiali-
zation must be provided for both (blocks 5 and 6). A means
must also be provided (blocks 3 and 11) for inserting the
instruction into block 8, and for changing the instruction
for each demonstration loop. This accounts for all twelve
blocks. It is now only necessary to arrange the program
sequence and the internal loops.

4-122. As usual, the first event in the program (block 2)
is to ensure, by initializing, that the program is repeatable.
At this time it may not be known exactly what parts of the
program will require initialization, so no specific acticn is
stated. Next (block 3), the appropriate shift instruction
must be put into the loop. Initialization in block 2 will
ensure that the first listed shift instruction gets put into
the loop; address modification can be used to ensure that
subsequent shift instructions are put into the loop for
succeeding demonstrations. Then, (block 4), since the
demonstration pattern will be altered or destroyed during
execution of the program, it is necessary to put the
pattern into the A-register, at a point in the program
where it will be reloaded at the start of each separate
instruction demonstration. Next the shift counter and the
timer should be initialized. The timer should start to run
before executing the first shift, so that the starting con-
dition of the pattern can be observed for at least two
seconds; this is why block 7 is placed ahead of block 8.
The timer (which is a very simple loop to check if two
seconds have elapsed), loops back on itself for the no
condition and proceeds to the execution block when the
yes condition occurs. The counting of shift executions
immediately follows block 8. Since the timer has run
down to zero, it must be re-initialized; therefore the no
branch for block 9 must loop back to a point ahead of
block 6 (initialize timer). Block 5 cannot be included in
the loop, or the shift counter would never advance to 16.
After 16 loops have occurred (16 shifts), the yes branch
of block 9 advances the program to block 10. The check
for last instruction must be placed after the shift loop,
since it is desired to have the yes condition halt the
program; if the check were placed before the shift loop,
the last shift instruction would never be demonstrated. If
the comparison is a no (more instructions to demonstrate),
the next event is to change the instruction in block 3, and
loop back to block 3. The entire process will then be
repeated for the new shift instruction.

2114B

4-123. WRITING THE PROGRAM. By creating the flow
chart in figure 4-7, the following elements of the program
have already been established before writing of the program
begins:

a. The sequence of events.

b. The use of counters, loops, and comparisons at
specific points in the sequence.

c. The number of shifts per demonstrated instruction
(16).

4-124. Factors which have not been established are: how
many loops comprise two seconds of elapsed time, what
specific instructions are to be demonstrated, and what the
pattern will be. A waiting loop to create a time delay would
consist of two instructions: ISZ timer, and JMP back to
ISZ. The ISZ instruction takes 4.5 microseconds to execute
(refer to paragraph 2-54), and JMP takes 2.0 microseconds.
This is a total of 6.5 microseconds (.0000065 second) per
loop. Dividing this figure into 2 seconds gives the informa-
tion that approximately 308,000 loops will provide a delay
of the required time. Since the largest number the com-
puter can handle is 65,534 or -32,768 to +32,767 (para-
graph 2-106), the timer loop should count to 65,534 five
times, by use of a loop within a loop:

——=a. ISZ 4
(:b. JMP a
c. ISz y
L——d. JMP a
e. -
z. 0
y. -5
4-125. Locations a and b increment location z from 0 to

65,534. The next increment returns the count to 0, loca-
tion b is skipped, and location c increments location y from
-5 to -4. Then the program loops back to location a, and
the entire process repeats. After location z has rolled over
to zero five times, location y will go from -1 to 0, causing a
skip out of the loop to location e. Initialization of the loop
consists of putting 0 into location z (aa and ab), and -5
into location y (ac through ae).

aa. CLB

ab. STB =z
ac. LDB x
ad. CMB, INB
ae. STB vy
X. 5

4-126. The instructions to be demonstrated can be
stored in consecutive locations in the order listed in speci-
fications (paragraph 2-81). This provides easy access by
address modification, and also provides for convenient
cross-reference to the text while the demonstration is in
progress. Only the instructions which shift or rotate the
A-register will be demonstrated, since the actions for the
B-register are identical to those for the A-register, and since
it is convenient to make use of the B-register during the
program. Thus the instructions will be demonstrated in the
following order:

Section IV

ALS Left Shift (arithmetic)
ARS Right Shift (arithmetic)
RAL Left Rotate (16 bits)
RAR Right Rotate (16 bits)
ALR Left Shift, clear sign

ERA Rotate Right with Extend
ELA Rotate Left with Extend
ALF Rotate Left Four places

4-127. For most of these instructions, a pattern of
100401, is suitable to show the movement of bits. In
binary, this is:

1 000 000 100 000 001

4-128. For the ALF instruction, however, bits jump four
places on each shift. Therefore a single one in the A-register
would be better than 3 ones. A simple five-instruction
sequence can be used to switch the pattern for the ALF
instruction:

(not ALF)—ba. CPB w (ALF)
bb. JMP bf:

be. LDA v l
[:bd. JMP bg

bf. CLA,INA
[:bg. next -

w. ALF

v. 100401

4.129. If the CPB instruction in location ba finds that
the shift instruction which is about to be demonstrated is
not ALF, location bb is skipped. Location bec puts the
100401 pattern into the A-register, and then a JMP instruc-
tion skips location bf. However, if the demonstration
instruction is ALF, the program steps to location bb, where
a jump to location bf clears the A-register, and increments
the register to 000001 (CLA, INA).

4-130. Finally, all the elements of the program can be
worked into the program table, as in table 4-10. Note that,
in this example, the remarks column corresponds directly
to the blocks in the flowchart, figure 4-7. This is not an
absolute rule for programming, but a close relationship
between flowchart and written program can frequently be a
great help to anyone studying the program. For addresses,
two blocks of memory locations (one for program instruc-
tion, one for reference data) have been assigned which are
adjacent to, but do not interfere with, the locations
assigned for the previous program (table 4-9). A CLE
instruction has been inserted to ensure that all demonstra-
tions begin with the extend light off.

4-131. LOADING THE PROGRAM. Set the switch reg-
ister to the starting address (003001) and press LOAD
ADDRESS. The first 29 addresses are in strict sequence
from this starting address. Therefore memory can be loaded
simply by setting the octal code into the switch register and
pressing LOAD MEMORY once for each line of table 4-10.
LOAD MEMORY automatically increments the address in

4-21

Section IV

the P and M registers. Remember to press LOAD MEMORY
once also for the reserved locations (which can be given any
contents). After location 3037 has been loaded, set the
switch register to 001020, press LOAD ADDRESS and load
the remaining 15 locations.

4-132. RUNNING THE PROGRAM. Before running the
program, refer to the definitions for shift and rotate
instructions in paragraph 2-81. Set the starting address into
the switch register, then press LOAD ADDRESS and RUN.
Each of the eight A-register shifts and rotates will be
demonstrated for 32 seconds, the results of the
A-register being displayed on the switch register

2114B

indicators. The total program run time is about four
minutes.

4-133. SUMMARY.

4.134. This volume has presented a basic intro-
duction to how the HP 2114B Computer operates, with
equal emphasis on both hardware and programming. The
succeeding three volumes present specialized descriptions
on each of these two aspects. Volume two describes the
processor hardware in detail, and volume three deals with
the input/output hardware system. Volume four provides
detailed information for programming of the computer
with the aid of Hewlett-Packard software.

Table 4-10. Program to Demonstrate Shifts and Rotates

ADDRESS CONTENTS REMARKS
INSTRUCTION| MEMORY OCTAL
(OR DATA) | REFERENCE | P/ |A/B | Z/C| “cope

003001 LDA 1036 061036 INITIALIZE
003002 STA 3004 C 073004 Get first Load instruction.
003003 CLE 002100
003004 - LOAD shift instruction
003005 STB 3027 B C | 077027 into loop.
003006 CPB 1027 B 055027 PUT pattern into A.
003007 JMP 3012 C | 027012 If ALF, use 000001.
003010 LDA 1035 061035 All others use 100401,
003011 JMP 3013 C | 027013
003012 CLA,INA 002404
003013 LDB 1034 B 065034 INITIALIZE Shift Counter.
003014 CMB,INB B 007004 Set to -16.
003015 STB 1033 B 075033
003016 CLB B 006400 INITIALIZE Timer.
003017 STB 1030 B 075030 Set to loop for 2 seconds.
003020 LDB 1032 B 065032
003021 CMB,INB B 007004
003022 STB 1031 B 075031
003023 1SZ 1030 035030 LOOP.
003024 JMP 3023 C | 027023 Two seconds.
003025 1SZ 1031 035031
003026 JMP 3023 C | 027023 ‘
003027 - SHIFT. (Instruction loaded by 3003.) ‘
003030 || OTA 0002 102601 DISPLAY A. ;
003031 1SZ 1033 035033 LOOP.
003032 JMP 3016 C | 027016 16 Shifts, two per second. i
003033 LDB 1027 B 065027 CHECK ‘
003034 CPB 3027 B C 057027 for last instruction. ;
003035 HLT 102000 HALT.
003036 1Sz 3004 C | 037004 CHANGE instruction
003037 JMP 3003 C 027003 and repeat demonstration.
001020 ALS 001000 DEMONSTRATION instructions.
001021 ARS 001100
001022 RAL 001200
001023 RAR 001300
001024 ALR 001400
001025 ERA 001500
001026 ELA 001600 |
001027 ALF 001700
001030 - TIMER.
001031 - Rollover counter (-5).
001032 5 000005 Constant.
001033 - SHIFT COUNTER,
001034 20 000020 Decimal 16.
001035 100401 100401 Pattern.
001036 LDB 1020 065020 First Load instruction.

4-22

Appendix A

2114B

Table A-1. Glossary of Terms Used in this Volume

absolute — Pertaining to an address fully defined by a
memory address number, or to a program which
contains such addresses (as oppossed to one con-
taining symbolic addresses).

accumulator — A register in which numbers are totaled or
manipulated, or temporarily stored for transfers to
and from memory or external devices.

add — Restrictive (HP 2114B): two’s complement addition
of binary numbers. General: any arithmetic addition.

address — A number (noun) which identifies a location in
memory. Also (verb), the process of directing the
computer to read a specified memory location
(synonymous with “reference”).

address modification — A programming technique of
changing the address referred to by a memory ref-
erence instruction, so that each time that particular
instruction is executed, it will affect a different mem-
ory location.

address word — A computer word which contains only the
address of a memory location.

ALGOL — A programming language (or the compiler which
translates this language) which permits programs to
be written using common arithmetic conventions and
terms.

alter — A modification of the contents of an accumulator
or extend bit; e.g., clear, complement, or increment.

analog — Pertaining to information which can have contin-
uously variable values, as opposed to digital informa-
tion, which can be varied in degrees no smaller than
the value of the least significant digit.

“and”” — A logical operation in which the resultant quantity
(or signal) is true if all of the input values are true,
and is false if at least one of the input values is false.

A-register — One of the two HP 2114B Computer accumu-
lator registers. These registers are used for arithmetic
operations and for information transfers to and from
device interfaces.

arithmetic logic — The circuitry involved in manipulating
the information contained in a computer’s
accumulators.

arithmetic operation — Restrictive: a mathematical opera-
tion involving fundamental arithmetic (addition, sub-
straction, multiplication, division), specifically
excluding logical and shifting operations. General:
any manipulation of numbers.

A-2

Assembler — A program for the HP 2114B Computer (or
any computer) which converts a program prepared in
symbolic form (i.e., using defined symbols and
mnemonics to represent instructions, addresses, etc.)
to binary machine language.

base — The quantity of different digits used in a particular
numbering system. The base in the binary numbering
system is two; thus there are two digits (0 and 1). In
the decimal system (base 10), there are ten digits (0
through 9).

base page — The lowest numbered page of computer
memory. It can be directly addressed from any other

page.

BASIC — A programming language (or the compiler which
translates this language) which permits programs to
be written in a form that is simple and easy to learn.

basic binary loader — A series of instructions for the HP
2114B Computer which will load, into memory,
programs prepared with absolute addresses, using
defined input devices.

basic control system — A collection of programs for the HP
2114B Computer which direct the loading, combining,
library searching, debugging, and input/output pro-
cedures for programs generated by the user.

binary — Denoting the numbering system based on the
radix two. Binary digits are restricted to the values O
and 1.

binary-coded decimal — A coding method for representing
each decimal digit (0-9) by specific combinations of
four binary bits. For example, the 8-4-2-1 “bdc” code
commonly used with the HP 2114B Computer repre-
sents 1 as 0001, and 9 as 1001.

binary point — The fractional dividing point of a binary
numeral; equivalent to decimal point in the decimal
numbering system.

binary program — A program (or its recorded form) in
which all information is in binary machine language.

bit — A single digit in a binary number, or in the recorded
representation of such a number (by hole punches,
magnetic states, etc.). The digit can have one of only
two values, 0 or 1.

bit density — A physical specification referring to the
number of bits which can be recorded per unit of
length or area.

bit-serial — One bit at a time, as opposed to bit-parallel in
which all bits of a character can be handled
simultaneously.

2114B

Appendix A

Table A-1. Glossary of Terms Used in this Volume (Continued)

bistable — Pertaining to an electronic circuit having two
stable states, controllable by external switching
signals; analogous to an on-off switch.

B-register — One of the two HP 2114B Computer accumu-
lator registers. These registers are used for arithmetic
operations and for information transfers to and from
device interfaces.

buffer — A register used for intermediate storage of infor-
mation in the transfer sequence between the com-
puter accumulators and a peripheral device. In the HP
2114B Computer, the buffer is located inside the
computer on the device interface card.

bus — A major electrical path connecting two or more
electrical circuits.

carry — A digit, or equivalent signal, resulting from an
arithmetic operation which causes a positional digit
to equal or exceed the base of the effective num-
bering system.

central interrupt register — A six-bit register which holds
the address of the last I/O device to send an interrupt
signal to the computer. The contents of the CIR are
accessible by program using a LIA instruction with a
select code of 04.

character — The general term to include all symbols such as
alphabetic letters, numerals, punctuation marks,
mathematical operators, etc. Also, the coded repre-
sentation of such symbols.

checkerboard — An alternating pattern of zeros and ones
stored in a computer for testing purposes.

clear — Reset; the binary “0” condition.

code — A system of symbols which can be used by
machines such as a computer, and which in specific
arrangements have a special external meaning.

communication system — A computer system having facili-
ties for long-distance transfers of information
between remote and central stations.

comparator — An instrument for comparing digitized
measurements against presettable upper and lower
limits, and giving an indication of the comparison
reult.

compiler — A language translation program, used to trans-
form symbols meaningful to a human operator to
codes meaningful to a computer. More restrictively, a
program which translates a machine-independent
source language into the machine language of a spe-
cific computer, thus excluding assemblers.

computation — The processing of information within the
computer.

computer (digital) — An electronic instrument capable of
accepting, storing, and arithmetically manipulating
information, which includes both data and the con-
trolling program. The information is handled in the
form of coded binary digits (0 and 1), represented by
dual voltage levels, magnetic states, punched holes,
etc.

computer word — See “word”.

configuration — The arrangement of either hardware instru-
ments or software routines when combined to
operate as a system.

configurator — A computer program whose purpose is to
combine a number of program segments into an inte-
grated whole, in a specific desired manner (config-
uration).

contents — The information stored in a register or a mem-
ory locations

control bit — A signal, or the stored indication of this
signal, which controls the transfer of information to
and from peripheral devices associated with the HP
2114B Computer.

core — The smallest element of a core storage memory
module. It is a ring of ferrite material, 0.03-inch in
diameter in the HP 2114B Computer and can be
magnetized in clockwise or counterclockwise direc-
tions to represent the two binary digits, 0 and 1.

crossbar scanner — A device for sequentially connecting
multi-wire analog signals to a digital measuring device,
using a crossbar switch (a switch specially designed
for accurate transfer of low-level, high-frequency, and
high-impedance signals).

current page — The memory page comprising all those
locations which are on the same page as a given
instruction.

data acquisition — The transformation of raw information
gathered by measuring or recording equipment into a
more condensed, organized, or useful form.

data word — A computer word consisting of a number, a
fact, or other information which is to be processed by
the computer.

debug — Check for and correct errors in a program.

decimal — Denoting the numbering system based on the
radix ten.

decrement — To change the value of a number in the
negative direction. If not otherwise stated, a decre-
ment by one is usually assumed.

device — An electronic or electromechanical instrument.
Most commonly implies measuring, reading, or
recording equipment.

A-3

Appendix A

2114B

Table A-1. Glossary of Terms Used in this Volume (Continued)

diagnostic — (adj) Relating to test programs for detection
of errors in the functioning of hardware or software,
or the messages resulting from such tests. Also
(noun), the test program or message itself.

digital voltmeter — An electronic voltage measuring device
which provides a readout in digital form on the
instrument panel, and commonly (essential for com-
puter purposes) also codes the measurement result in
binary-coded decimal form as an electrical output.

direct memory access — A means of transferring a block of
information words directly between an external
device and computer memory bypassing the need for
repeating a service routine for each word. This
method greatly speeds the transfer process.

disable — A signal condition which prohibits some specific
event from proceeding.

disc storage — A means of storing binary digits in the form
of magnetized spots on a rotating circular metal plate
coated with a magnetic material. The information is
stored and retrieved by read-write heads positioned
over the surface of the disc.

documentation — Manuals and other printed materials
(tables, listings, diagrams, etc.) which provide instruc-
tive information for usage and maintenance of a man-
ufactured product, including both hardware and
software.

double-length word — A word, due to its length, which
requires two computer words to represent it. Double-
length words are normally stored in two adjacent
memory locations.

driver — An input/output routine to provide automatic
operation of a specific device with the computer.

dump — To record memory contents on an external
medium (e.g., tape).

effective address — The address of a memory location
ultimately affected by a memory reference instruc-
tion. It is possible for one instruction to go through
several indirect addresses to reach the effective
address.

electronic counter — An electronic instrument used to
measure physical quantities by specially controlled
counting of electrical pulses.

enable — A signal condition which permits some specific
event to proceed, whenever it is ready to do so.

“exclusive or”” — A logical operation in which the resultant
quantity (or signal) is true if at least one (but not all)
of the input values is true and is false if the input
values are all true or all false.

execute — To fully perform a specific operation, such as
would be accomplished by an instruction or a
program.

execute phase — A predetermined state of the internal
computer logic which causes the computer to inter-
pret as data the information read out of memory
during a memory cycle.

exit sequence — A series of instructions to conclude opera-
tion in one area of a program and to move to another
area.

extend — A one-bit register in the HP 2114B Computer,
which extends the effective length of the A- or B-
register to 17 bits for certain additions and rotations.

fetch phase — A predetermined state of the internal com-
puter logic which causes the computer to interpret as
an instruction the information read out of memory
during a memory cycle.

fixed point — A numerical notation in which the factional
point (whether decimal, octal, or binary) appears at a
constant, predetermined position. Compare with
floating point.

flag bit — A signal, or the stored indication of this signal,
which indicates the readiness of a peripheral device of
the HP 2114B Computer to transfer information.

flip-flop — An electronic circuit having two stable states,
and thus capable of storing a binary digit. Its states
are controlled by signal levels at the circuit input, and
are sensed by signal levels at the circuit output.

floating point — A numerical notation in which the integer
and the exponent of a number are separately repre-
sented (frequently by two computer words), so that
the implied position of the fractional point (decimal,
octal, or binary) can be freely varied with respect to
the integer digits. Compare with fixed point.

flowchart — A diagram representing the operation of a
computer program.

format — A predetermined arrangement of bits or
characters.
Formatter — A program which provides the linkage

between FORTRAN read/write statements and the
basic control system input/output control program,
with any appropriate conversions.

FORTRAN — A programming language (or the compiler
which translates this language) which permits pro-
grams to be written in a form resembling algebra,
rather than in detailed instruction-by-instruction
form (as for assemblers).

2114B

Appendix A

Table A-1. Glossary of Terms Used in this Volume (Continued)

FORTRAN Library — A collection of programs for the HP
2114B Computer to provide the user with commonly
used mathematical and formatting routines.

gate — An electronic circuit capable of performing logical
functions such as “and”, “or”, “nor”, etc.

hardware — Electronic or electromechanical components,
instruments, or systems.

hardware diagnostics — A collection of programs for the HP
2114B Computer deisgned to assist in the identifica-
tion of hardware malfunctions.

high core — Core memory locations having high-numbered
addresses.

“inclusive or”” — A logical operation in which the resultant
quantity (or signal) is true if at least one of the input
values is true, and is false if the input values are all
false.

increment — To change the value of a number in the
positive direction. If not otherwise stated, an incre-
ment by one is usually assumed.

incremental magnetic tape — A form of magnetic tape
recording in which the recording transport advances
by small increments (e.g. 0.005 inch), stopping the
tape advancement long enough to record one charac-
ter at the spot location under the recording head.

indirect address — The address initially specified by an
instruction when it is desired to use that location to
re-direct the computer to some other location to find
the effective address for the instruction.

indirect phase — A predetermined state of the internal
computer logic which causes the computer to inter-
pret as an address the information read out of mem-
ory during a memory cycle.

information — A unit or set of knowledge represented in
the form of discrete words, consisting of an arrange-
ment of symbols or (so far as the digital computer is
concerned) binary digits.

inhibit — To prevent a specific event from occurring.

initialize — The procedure of setting various parts of a
stored program to starting values, so that the program
will behave the same way each time it is repeated.
The procedures are included as part of the pro-
gram itself.

input — Information transferred from a peripheral
device into the computer. Also can apply to the
transfer process itself.

input/output — Relating to the equipment or method
used for transmitting information into or out of
the computer.

input/output channel — The complete input or output
facility for one individual device or function, in-
cluding its assigned position in the computer, the
interface circuitry, and the external device.

input/output control — A program of the computer basic
control system which provides linkage between the
input/output requests of a user program and the
appropriate drivers.

input/output system — The circuitry involved in trans-
ferring information between the computer accumula-
tors and its peripheral devices.

instruction — A written statement, or the equivalent
computer-acceptable code, which tells the computer
to execute a specified single operation.

instruction code — The arrangement of binary digits
which tell the computer to execute a particular
instruction.

instruction logic — The circuitry involved in moving

binary information between registers, memory,
and buffers in prescribed manners, according to
instruction codes.

instruction register — An internal 6-bit register of the HP
2114B Computer, which forms part of its instruction
logic. The instruction register receives the 6 most
significant bits of the T-register when each new in-
struction is read out of memory, and retains these
bits for instruction identification. It is not usually
considered to be a working register.

instruction word — A computer word containing an instruc-
tion code. The code bits may occupy all or (as in the
case of memory reference instruction words) only
part of the word.

interface — The connecting circuitry which links the
central processor of a computer system to its
peripheral devices.

interrupt — The process, initiated by an external device,
which causes the computer to interrupt a program in
progress, generally for the purpose of transferring
information between that device and the computer.

interrupt location — A memory location whose contents
(always an instruction) are executed upon interrupt
by a specific device.

interrupt phase — A predetermined state of the internal
computer logic which causes the computer to suspend
operation of a program in progress, and branch to a
specific service routine.

jump — An instruction which breaks the strict sequential
location-by-location operation of a program, and
directs the computer to continue at another specified
location anywhere in memory.

A5

Appendix A

2114B

Table A-1. Glossary of Terms Used in this Volume (Continued)

label — Any arrangement of symbols, usually alphanumeric,
used in place of an absolute memory address in com-
puter programming.

language — The set of symbols, rules, and conventions used
to convey information, either at the human level or at
the computer level.

library routine — A routine designed to accomplish some
commonly used mathematical function, and kept
permanently available on a library program tape (e.g.,
HP FORTRAN Library).

linearizer — An instrument for converting the measurements
made by a digital voltmeter to the normal engineering
units of the physical quantity being measured.

load — Put information into (memory, a register, etc.). Also
(e.g., loading tape), to put the information medium
into the appropriate device.

loader — A program designed to assist in transferring infor-
mation from an external device into computer’s
memory.

location — A group of storage elements in the computer’s
memory (e.g., 17 cores in the HP 2114B memory
module), which can store one computer word. Each
such location is identified by a number (“address”) to
facilitate storage and retrieval of information in selec-
table locations.

logical operation — A mathematical process based on the
principles of truth tables; e.g., “and”, “inclusive or”
and “exclusive or” operations.

logic diagram — A diagram that represents the detailed
internal functioning of electronic hardware, using
binary logic symbols rather than electronic com-
ponent symbols (see “schematic diagram”).

logic equation — A written mathematical statement, using
symbols and rules derived from Boolean algebra. Spe-
cifically (hardware design), a means of stating the
conditions required to obtain a given signal.

loop — A sequence of instructions in which the last instruc-
tion is a jump back to the first instruction.

low core — Core memory locations having low-numbered
addresses.

machine — Pertaining to the computer hardware (e.g.,
machine timing, machine language).

machine language — The form of coded information (con-
sisting of binary digits) which can be directly ac-
cepted and used by the computer. Other languages
require translation to this form, generally with the aid
of translation programs (assemblers and compilers).

machine timing — The regular cycle of events in the operation
of internal computer circuitry. The actual events will
differ for various processes, but the timing is constant
through each recurring cycle.

macroinstruction — An instruction, similar in binary coding
to the computer’s basic machine language instruc-
tions, which is capable of producing a variable num-
ber of machine language instructions.

magnetic tape recording — A means of recording infor-
mation on a strip of magnetic coated material, such
that binary bits can be represented by reversals of the
direction of magnetization.

magnitude — That portion of a computer word which
indicates the absolute value of a number, thus
excluding the sign bit.

math routine — A program designed to accomplish a single
mathematical function.

media conversion — The transferral of recorded information
from one recording medium (e.g., punched paper
tape, magnetic tape, etc.) to another recording
medium.

memory — An organized collection of storage elements
(e.g., ferrite cores), into which a unit of information
consisting of a binary digit can be stored, and from
which it can later be retrieved. Also, a device not
necessarily having individual storage elements, but
which has the same storage and retrieval capabilities
(e.g., magnetic discs).

memory cycle — That portion of the computer’s internal
timing during which the contents of one location of
memory are read out (into the transfer register) and
written back into that location.

memory module — A complete segment of core storage,
capable of storing a definable number of computer
words (e.g., 4096 words in the HP 2114B Computer
memory module). Computer storage capacity is fre-
quently rounded off and abbreviated as 4K (i.e., 4096
or approximately 4000 words) or 8K (8192 or 8000).

memory protect — A means of preventing inadvertent alter-
ation of a selectable segment of memory.

memory reference — The address of the memory location
specified by a memory reference instruction; i.e., the
location affected by the instruction.

merge — “Inclusive or”.

microinstruction — An instruction which forms part of a
larger, composite instruction.

mnemonic — An abbreviation or arrangement of symbols
used to assist human memory. For example, STB calls
to mind the term “store B-register”” much more
readily than would, say, “instruction 74”.

2114B

Appendix A

Table A-1. Glossary of Terms Used in this Volume (Continued)

M-register — The memory address register of the HP 2114B
Computer; i.e., the register which controls the access
to each memory location.

multi-level indirect — Indirect addressing using two or more
indirect addresses in sequence to find the effective
address for the current instruction.

multiple-precision — Referring to arithmetic in which the
computer, for greater accuracy, uses two or more
words to represent one number.

Mylar — A DuPont trademark for a polyester film used as a
more durable medium (in place of paper tape) for
punched tape records, and as a base for magnetic
tape.

nine’s complement — A number so modified that the addi-
tion of the modified number and its original value,
plus one, will equal an even power of ten. A nine’s
complement number is obtained mathematically by
subtracting the original value from a string of 9’s.

non-return to zero — A technique of magnetic tape record-
ing in which the recording device does not turn off
the magnetizing flux between recording of individual
characters. The flux is always at saturation level
during recording, and bits are indicated by reversals
of flux polarity.

nuclear scaler — A system of electronic instruments used to
detect and analyze nuclear events, such as gamma ray
measurements.

octal — Denoting a numbering system based on the radix
eight. Octal digits are restricted to the values O
through 7.

octal code — A notation for writing machine language
programs with the use of octal numbers instead of
binary numbers.

octal point — The fractional dividing point of an octal
numeral; equivalent to decimal point in the decimal
numbering system.

off line — Pertaining to the operation of peripheral equip-
ment not under control of the computer.

one’s complement — A number so modified that the addi-
tion of the modified number and its original value,
plus one, will equal an even power of two. A one’s
complement number is obtained mathematically by
subtracting the original value from a string of 1’s, and
electronically by inverting the states of all binary bits
in the number.

on line — Pertaining to the operation of peripheral equip-
ment under computer control.

output — Information transferred from the computer to a
peripheral device. Also can apply to the transfer
process itself.

output coupler — An instrument which provides the inter-
connecting circuitry between a measuring instrument
and a recording instrument.

overflow — A one-bit register in the HP 2114B Computer,
which indicates that the result of an addition in the
A- or B-register has exceeded the maximum possible
signed value (+32767 or -32768, decimal). The addi-
tion result will therefore be missing one or more
significant bits.

packed word — A computer word containing two or more
independent units of information. This is done to
conserve storage when information requires relatively
few bits of the computer word.

page — An artificial division of memory consisting of a
fixed number of locations, dictated by the direct
addressing range of memory reference instructions.

page zero — The memory page which includes the lowest
numbered memory addresses.

parity bit — A supplementary bit added to an information
word to make the total of one-bits be always either
odd or even. This permits checking the accuracy of
information transfers.

pass — The complete process of reading a set of recorded
information (one tape, one set of cards, etc.) through
an input device, from beginning to end.

peripheral device — An instrument or machine electrically
connected to the computer, but which is not part of
the computer itself.

phase — One of several specific states of the internal com-
puter logic, usually set up by instructions being
executed, to determine how the computer should
interpret information read out of memory.

photoelectric reader — An input device which senses charac-
ters (on punched tape, cards, pages, etc.) by optical
light strobe and detection circuits. An example is the
HP 2748A Tape Reader.

plane — An arrangement of ferrite cores on a matrix of
control and sensing wires. Several planes stacked
together form a memory module.

power failure control — A means of sensing primary power
failure so that a special routine may be executed in
the finite period of time available before the regu-
lated dc supplies discharge to unusable levels. The
special routine may be used to preserve the state of a
program in progress, or to shut down external
processes.

P-register — The program counter register of the HP 2114B
Computer; i.e., the register which keeps track of (or
“counts”) the stored locations of the instructions in a
program being executed.

AT

Appendix A

2114B

Table A-1. Glossary of Terms Used in this Volume (Continued)

prepare control system — A program designed to assist in
the preparation of a basic control system program, to
a specified arrangement of input/output devices.

priority — The automatic regulation of events so that
chosen actions will take precedence over others in
cases of timing conflict.

process control — Automatic control of manufacturing
processes by use of a computer.

processor — The central unit of a computer system (i.e., the
device which accomplishes the arithmetic manipula-
tions), exclusive of peripheral devices. Frequently
(when used as adjective) also excludes interface com-
ponents, even though normally contained within the
processor unit; thus processor options exclude inter-
face (input/output) options.

program — A plan for the solution of a problem by a
computer, and consisting of a sequence of computer
instructions.

program listing — A printed record (or equivalent binary-
output program) of the instructions in a program.

programmer — A person who writes computer programs.
Also (hardware), an interface card or instrument
which sets up (or programs) the various functions of
one measuring instrument.

programming — The process of creating a program.
proximity switch — A capacitance activated contact switch.

pseudo-instruction — A symbolic statement, similar to
assembly language instructions in general form, but
meaningful only to the program containing it, rather
than to the computer as a machine instruction.

punched tape — A strip of tape, usually paper, on which
information is represented by coded patterns of holes
punched in columns across the width of the tape.
Commonly (as used with the HP 2114B Computer),
there are 8 hole positions (channels) across the tape.

quartz thermometer — An electronic temperature meas-
uring instrument using the linear temperature sensing
properties of specially cut quartz crystals. An ex-
ample is the HP 2801A Quartz Thermometer, which
provides a digital output usable as an input to a
digital computer, such as the HP 2114B Computer.

read — The process of transferring information from an
input device into the computer. Also, the process of
taking information out of computer memory (see
“memory cycle”).

real time — Time elapsed between events occurring exter-
nally to the computer. A computer which accepts and

A-8

processes information from one such event and is
ready for new information before the next event
occurs is said to operate in a real-time environment.

reference — Shortened form of “memory reference”.

register — An array of hardware binary circuits (flip-flops,
switches, ete.) for temporary storage of information.
Unlike mass storage devices such as memory cores,
registers can be wired to permit flexible control of
the contained information, for arithmetic operations,
shifts, transfers, etc.

relocatable — Pertaining to programs whose instructions can
be loaded into any stated area of memory.

relocating loader — An HP computer program capable of
loading and combining relocatable programs (i.e., pro-
grams having symbolic rather than absolute
addresses).

reset — A signal condition representing a binary “0”’.

rotate — A positional shift of all bits in an accumulator
(and possibly an extend bit as well), with those bits
lost off one end of the accumulator rotated around to
enter vacated positions at the other end.

routine — A program or program segment designed to
accomplish a single function.

sampling — The process of taking a measurement of a signal
existing at a measuring instrument’s input during a
short (sample) period. The length of the sample
period is a predetermined function of the measuring
instrument.

scanner — A device for sequentially switching multiple
signal sources to one measuring or recording
instrument. ‘

schematic diagram — A diagram that represents the detailed
internal electrical circuit arrangement of electronic
hardware, using conventional electronic component
symbols.

select code — A number assigned to input/output channels
for purposes of identification in information transfers
between the computer and external devices.

service routine — A sequence of instructions designed to
accomplish the transfer of information between a
particular device and the computer.

set — A signal condition representing a binary “1”.

seven’s complement — A number so modified that the addi-
tion of the modified number and its original value,
plus one, will equal an even power of eight. A seven’s
complement number is obtained mathematically by
subtracting the original value from a string of 7’s.

2114B

Appendix A

Table A-1. Glossary of Terms Used in this Volume (Continued)

shift — Restrictive (arithmetic shift): to multiply or divide
the magnitude portion of a word (bits O through 14
in the HP 2114B Computer) by a power of two using
a positional shift of these bits. General: any posi-
tional shift of bits.

sign — The algebraic plus or minus indicator for a mathe-
matical quantity. Also, the binary digit or electrical
polarity representing same.

significant digit — A digit so positioned in a numeral as to
contribute a definable degree of precision to the
numeral. In conventional written form, the most sig-
nificant digit in a numeral is the leftmost digit, and
the least significant digit is the rightmost digit.

skip — An instruction which causes the computer to omit
the instruction in the immediately following location.
A skip is usually arranged to occur only if certain
specified conditions are sensed and found to be true,
thus allowing various decisions to be made.

software — Computer programs. Also, the tapes or cards on
which the programs are recorded.

software package — A complete collection of related pro-
grams, not necessarily combined as a single entity.

source program — A program (or its recorded form) written
in some programming language other than machine
language and thus requiring translation. The trans-
lated form is the object program.

starting address — The address of a memory location in
which is stored the first instruction of a given pro-
gram.

statement — An instruction in any computer-related
language other than machine language.

store — To put information into a memory location, regis-
ter, or device capable of retaining the information for
later access.

subroutine — A sequence of instructions designed to per-
form a single task, with provisions included to allow
some other program to cause execution of the task
sequence as if it were part of its own program.

symbolic address — A label assigned in place of absolute
numeric addresses, usually for purposes of relocation
(see relocatable).

symbolic editor — A program for HP computers which is
used to add, delete, or correct selectable portions of
any symbolic program.

symbolic file — A recorded collection of computer words,
with a symbolic address assigned to each word.

system — An assembly of units (e.g., hardware instruments
or software routines), combined to work as a larger
integrated unit having the capabilities of all the
separate units.

system input/output (software) — A collection of input/
output programs to add input/output capability to
HP FORTRAN, assembler, and symbolic editor, and
to some user programs.

S-register — The switch register of the HP 2114B Computer;
i.e., the register used to input data either manually or
by program or to output data by program control.

time period — The smallest division of time in the HP
2114B Computer internal timing cycle (see ‘“‘machine
timing).

T-register — The transfer register of the HP 2114B
Computer; i.e., the register which directly receives
words from memory, and directly applies words to
memory.

truth table — A table listing all possible configurations and
resultant values for any given Boolean algebra
function.

two’s complement — A number so modified that the addi-
tion of the modified number and its original value
will equal an even power of two. Also, a kind of
arithmetic which represents negative numbers in
two’s complement form so that all addition can be
accomplished in only one direction (positive incre-
mentation). A two’s complement number is obtained
mathematically by subtracting the original value from
an appropriate power of the base two (i.e., from 1,
10,, 100,, etc.), and electronically by inverting the
states of all binary bits in the number and adding one
(complement and increment).

updated program — A program to which additions, dele-
tions, or corrections have been made.

user — The person or persons who program and operate a
particular computer.

utility routine — A standard routine to assist in the opera-
tion of the computer (e.g., device drivers, sorting
routines, etc.) as opposed to mathematical (library)
routines.

waiting loop — A sequence of instructions (frequently only
two) which are repeated indefinitely until a desired
external event occurs, such as the receipt of a flag
signal.

word — A set of binary digits handled by the computer as a
unit of information. Its length is determined by hard-
ware design; e.g., the number of cores per location,
and the number of flip-flops per register.

A9

Appendix A

working register — A register whose contents can be modi-
fied under control of a program. Thus a register
consisting of manually-operated switches is not con-

Table A-1. Glossary of Terms Used in this Volume (Continued)

sidered a working register.

write — The process of transferring information from the
computer to an output device. Also, the process of
storing (or restoring) information into computer

memory (see ‘“memory cycle”).

Table A-2. Mnemonics and Abbreviations

NAHwER"T"oD=a=aEEgo0OQQQOQ W >

ADA
ADB
ADF
ALF

ALR
ALS

AND
ANF
ARS
ASA
ASG
ASR

BCS
BLF
BLR

A-register (A accumulator)
B-register (B accumulator)
Current page (page addressing)
Clear (flag or overflow)
Control (bit or signal)
Centrigrade

Direct (addressing)

Disable (microinstruction group)
Extend

Enable (microinstruction group)
Flag (bit or signal)

Fahrenheit

Hold (flag or overflow)
Indirect (addressing)

I-register (instruction register)
Kilo (thousand)

M-register (memory address)
P-register (program counter)
T-register (transfer register)
Time periods

Page zero

Hewlett-Packard
Input/output
Instruction register
Phase

R-bus

Rotate left

Shift left

T-bus

T-register

Add to A

Add to B

Add function

Rotate A left four places
A left shift, clear sign

A left shift

“And” instruction
“And” function

A right shift

American Standards Association
Alter-skip group
Automatic send-receive

Basic control system
Rotate B left four places
B left shift, clear sign

BLS
BRS

CCA
CCB
CCE
CLA
CLB
CLC
CLE
CLF
CLO
CMA
CMB
CME
CMF
CPA
CPB

DMA

ELA
ELB
EOF
ERA
ERB

HLT

INA
INB
IOF
10G
IOR
ISZ

JMP
JSB

LDA
LDB
LIA
LIiB

MAC
MIA
MIB

NOP

B left shift
B right shift

Clear and complement A
Clear and complement B
Clear and complement extend
Clear A

Clear B

Clear control

Clear extend

Clear flag

Clear overflow
Complement A
Complement B
Complement extend
Complement function
Compare to A

Compare to B

Direct memory access

Rotate extend left with A
Rotate extend right with B
“Exclusive or” function
Rotate extend right with A
Rotate extend right with B

Halt

Increment A

Increment B

“Inclusive or” function
Input/output group
“Inclusive or” instruction
Increment, skip if zero

Jump
Jump to subroutine

Load (memory) into A
Load (memory) into B
Load input into A
Load input into B

Macroinstruction
Merge into A
Merge into B

No operation

A-10

2114B Appendix A

Table A-2. Mnemonics and Abbreviations (Continued)

OTA Output from A XOR “Exclusive or” instruction
OTB Output from B
OVF Overflow flip-flop I0IC I/O input control
100C I/0 output control
RAL Rotate A left NRZI Non-return to zero, invert
RAR Rotate A right
RBL Rotate B left ac Alternating current
RBR Rotate B right A Amperes
RLL Rotate left to least significant bit bed (BCD) Binary-coded decimal
RRS Rotate right to sign bit bin. Binary
RSS Reverse skip sense bpi Bits per inch
BTU/hr British thermal units, per hour
SEZ Skip if extend is zero C16 Bit 16 carry
SFC Skip if flag is clear Compl Complement
SFS Skip if flag is set de Direct current
SIO System input/output Dec. Decimal
SKF Skip on flag (signal) eg. For example (exempli gratia)
SLA Skip if least significant bit of A is zero Hz Hertz (cycles per second)
SLB Skip if least significant bit of B is zero ie. That is (id est)
SLM Shift left magnitude in. Inch
SOC Skip if overflow clear incl Included
SOS Skip if overflow set ips Inches per second
SRG Shift-rotate group kg Kilograms
SRM Shift right magnitude Ib Pound
SSA Skip if sign of A is zero mA Milliamperes
SSB Skip if sign of B is zero MHz Megahertz (megacycles per second)
STA Store A ms Milliseconds
STB Store B mV millivolts
STC Set control oct Octal
STF Set flag sec Seconds
STO Set overflow sel Select (code)
SZA Skip if A is zero \Y% Volts
SZB Skip if B is zero Vac Volts (alternating current)

A-11

Appendix A

2114B

Table A-3. Powers of Two

1 048 576
2 097 152
4 194 304
8 388 608

16 777 216
33 554 432
67 108 864
134 217 728

268 435 456
536 870 912
1073 741 824
2 147 483 648

4 294 967 296
8 589 934 592
17 179 869 184
34 359 738 368

68 719 476 736
137 438 953 472
2714 877 906 944
549 755 813 888

1 099 511 627 776
2 199 023 255 552
4 398 046 511 104
8 796 093 022 208

17 592 186 044 416
35 184 372 088 832
70 368 744 177 664
140 737 488 355 328

281 474 976 710 656
562 949 953 421 312
1 125 899 906 842 624
2 251 799 813 685 248

4 503 599 627 370 496
9 007 199 254 740 992
18 014 398 509 481 984
36 028 797 018 963 968

OO T WM - O

[=]

07 812 5

003 906 25
001 953 125
000 976 562 5
000 488 281 25

000 244 140 625
000 122 070 312 5
000 061 035 156 25
000 030 517 578 125

000 015 258 789062 5
000 007 629 394 531 25
000 003 814 697 265 625
000 001 907 348 632 812 5

00 000 953 674 316 406 25

00 000 476 837 158 203 125
00 000 238 418 579 101 562 5
00 000 119 209 289 550 781 25

00 000 059 604 644 775 390 625

00 000 029 802 322 387 695 312 5
00 000 014 901 161 193 847 656 25
00 000 007 450 580 596 923 828 125

00 000 003 725 290 298 461 914 062 5

00 000 001 862 645 149 230 957 031 25
00 000 000 931 322 574 615 478 515 625
00 000 000 465 661 287 307 739 257 812 5

000 000 000 232 830 643 653 869 628 906 25

000 000 000 116 415 321 826 934 814 453 125
0
0

0
0
0
o
0
0
0
0
0
0
0
0

00 000 000 058 207 660 913 467 407 226 562 5
00 000 000 029 103 830 456 733 703 613 281 25

00 000 000 014 551 915 228 366 851 806 640 625

00 000 000 007 275 957 614 183 425 903 320 312 5
00 000 000 003 637 978 807 091 712 951 660 156 25
00 000 000 001 818 989 403 545 856 475 830 078 125

00 000 000 000 909 494 701 772 928 237 915 039 062 5

00 000 000 000 454 747 350 886 464 118 957 519 531 25
00 000 000 000 227 373 675 443 232 059 478 759 765 625
00 000 000 000 113 686 837 721 616 029 739 379 882 812 5

000 000 000 000 056 843 418 860 808 014 869 689 941 406 25
000 000 000 000 028 421 709 430 404 007 434 844 970 703 125
000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5
0

0

0
0
0
0

0
0
o
0

00 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25

00 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625

0 000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5

0 000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25
0 000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125

0 000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5

0 000 000 000 000 000 111 022 302 462 515 654 042 363 166 809 082 031 25

0 000 000 000 000 000 055 511 151 231 257 827 021 181 583 404 541 015 625
0 000 000 000 000 000 027 755 575 615 628 913 510 590 791 702 270 507 812 5

1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

A-12

Appendix A 2114B
Table A-4. Consolidated Coding Table
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
MEMORY REFERENCE INSTRUCTIONS
D/1 AND 001 0 Z/C | ~-— Memory Address
D/I XOR 010 0 Z/C
D/1 IOR 011 0 Z/C
D/1 JSB 001 1 zZ/C
D/1 JMP 010 1 Z/C
D/1 ISZ 011 1 z/C
D/1 AD* 100 A/B z/C
D/1 CpPx* 101 A/B zZ/C
D/1 LD* 110 A/B Z/C
D/1 ST* 111 A/B Z/C
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
SHIFT-ROTATE GROUP INSTRUCTIONS
0 SRG 000 A/B 0 D/E | *LS 000 +CLE D/E 1SL*| *LS 000
A/B 0 D/E *RS 001 D/E *RS 001
A/B 0 D/E R*L 010 D/E R*L 010
A/B 0 D/E | R*R 011 D/E R*R 011
A/B 0 D/E | *LR 100 D/E *LR 100
A/B 0 D/E ER* 101 D/E ER* 101
A/B 0 D/E | EL* 110 D/E EL* 110
A/B 0 D/E| *LF 111 D/E *LF 111
NOP 000 000 000 000
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ALTER-SKIP GROUP INSTRUCTIONS
0 ASG 000 A/B 1 CL* 01 | CLE 01| SEZ SS* SL* |IN* SZ* RSS
A/B 1 CM* 10 | CME 10
A/B 1 CC* 11 | CCE 11
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
MAC AND INPUT/OUTPUT INSTRUCTIONS
1 MAC 000 A/B 0
1 10G 000 A/B 1 H/C| HLT 000 <~———— Select Code ———»
1 0 STF 001
1 1 CLF 001
1 0 SFC 010
1 0 SFS 011
A/B 1 H/C | MI* 100
A/B 1 H/C | LI* 101
A/B 1 H/C | OT* 110
0 1 H/C | STC 111
1 1 H/C | CLC 111
1 0 STO 001 000 001
1 1 CLO 001 000 001
1 H/C | SOC 010 000 001
1 H/C | SOS 011 000 001

Notes:

1)
2)

* = A or B. Use with bit 11 as 0 (A-Register) or 1 (B-Register).

D/l, A/B, Z/C, D/E, H/C coded: 0/1.

3) tCLE: Only this bit is required.
4) ESL*: Only this bit and bit 11 (A/B as applicable) are required.

A-13/A-14

HEWLETT - PACKARD [SALES AND SERVICE

UNITED STATES

ALABAMA

P.0. Box 4207

2003 Byrd Spring Road S.W.
Huntsville 35802

Tel: (205) 881-4591

TWX: 810-726-2204

ARIZONA

3009 North Scottsdale Road
Scottsdale 85251

Tel: (602) 945-7601

TWX: 910-950-1282

5737 East Broadway
Tucson 85716

Tel: (602) 298-2313
TWX: 910-952-1162

CALIFORNIA

1430 East Orangethorpe Ave.
Fullerton 92631

Tel: (714) 870-1000

3939 Lankershim Boulevard
North Hollywood 91604
Tel: (213) 877-1282

TWX: 910-499-2170

1101 Embarcadero Road
Palo Alto 94303

Tel: (415) 327-6500
TWX: 910-373-1280

2220 Watt Ave.

Sacramento 95825
Tel: (916) 482-1463
TWX: 910-367-2092

1055 Shafter Street
San Diego 92106

Tel: (714) 223-8103
TWX: 910-335-2000

COLORADO

7965 East Prentice
Englewood 80110
Tel: (303) 771-3455
TWX: 910-935-0705

CONNECTICUT
508 Tolland Street
East Hartford 06108
Tel: (203) 289-9394
TWX: 710-425-3416

111 East Avenue
Norwalk 06851

Tel: (203) 853-1251
TWX: 710-468-3750

DELAWARE

3941 Kennett Pike

Wiimington 19807

Tel: (302) 655-6161
TWX: 510-666-2214

FLORIDA

P.0. Box 24210

2806 W. Oakland Park Blvd.
Ft. Lauderdale 33307

Tel: (305) 731-2020

TWX: 510-955-4099

P.0. Box 20007

Herndon Station 32814
621 Commonwealth Avenue
Orlando

Tel: (305) 841-3970

TWX: 810-850-0113

P.0. Box 8128
Madeira Beach 33708
410 150th Avenue

St. Petersburg

Tel: (813) 391-0211
TWX: 810-863-0366

GEORGIA

P.0. Box 28234

450 Interstate North
Atianta 30328

Tel: (404) 436-6181
TWX: 810-766-4890

ILLINOIS

5500 Howard Street
Skokie 60076

Tel: (312) 677-0400
TWX: 910-223-3613

INDIANA

3839 Meadows Drive
Indianapolis 46205
Tel: (317) 546-4891
TWX: 810-341-3263

SALES & SERVICE OFFICES

LOUISIANA

P.0. Box 856

1942 Williams Boulevard
Kenner 70062

Tel: (504) 721-6201
TWX: 810-955-5524

MARYLAND

6707 Whitestone Road
Baltimore 21207

Tel: (301) 944-5400
TWX: 710-862-0850

P.0. Box 1648

2 Choke Cherry Road
Rockville 20850
Tel: (301) 948-6370
TWX: 710-828-9684

MASSACHUSETTS
32 Hartwell Ave.
Lexington 02173
Tel: (617) 861-8960
TWX: 710-326-6904

MICHIGAN

24315 Northwestern Highway
Southfield 48075

Tel: (313) 353-9100

TWX: 810-224-4882

MINNESOTA

2459 University Avenue
St. Paul 55114

Tel: (612) 645-9461
TWX: 910-563-3734

MISSOURI

11131 Colorado Ave.
Kansas City 64137
Tel: (816) 763-8000
TWX: 910-771-2087

2812 South Brentwood Blvd.
St. Louis 63144

Tel: (314) 962-5000

TWX: 910-760-1670

NEW JERSEY

W. 120 Century Road
Paramus 07652

Tel: (201) 265-5000
TWX: 710-990-4951

1060 N. Kings Highway
Cherry Hill 08034

Tel: (609) 667-4000
TWX: 710-892-4945

NEW MEXICO

P.0. Box 8366

Station C

6501 Lomas Boulevard N.E.
Albuquerque 87108

Tel: (505) 265-3713

TWX: 910-989-1665

156 Wyatt Drive
Las Cruces 88001
Tel: (505) 526-2485
TWX: 910-983-0550

NEW YORK

1702 Central Avenue
Albany 12205

Tel: (518) 869-8462
TWX: 710-441-8270

1219 Campville Road
Endicott 13760

Tel: (607) 754-0050
TWX: 510-252-0890

82 Washington Street
Poughkeepsie 12601
Tel: (914) 454-7330
TWX: 510-248-0012

39 Saginaw Drive
Rochester 14623
Tel: (716) 473-9500
TWX: 510-253-5981

1025 Northern Boulevard
Roslyn, Long Island 11576
Tel: (516) 869-8400

TWX: 510-223-0811

5858 East Molloy Road
Syracuse 13211

Tel: (315) 454-2486
TWX: 710-541-0482

NORTH CAROLINA
P.0. Box 5188

1923 North Main Street
High Point 27262

Tel: (919) 885-8101
TWX: 510-926-1516

OHIO

25575 Center Ridge Road
Cleveland 44145

Tel: (216) 835-0300
TWX: 810-427-9129

3460 South Dixie Drive
Dayton 45439

Tel: (513) 298-0351
TWX: 810-459-1925

1120 Morse Road
Columbus 43229
Tel: (614) 846-1300

OKLAHOMA

2919 United Founders Boulevard

Oklahama City 73112
Tel: (405) 848-2801
TWX: 910-830-6862

OREGON

Westhills Mall, Suite 158
4475 S.W. Scholls Ferry Road
Portland 97225

Tel: (503) 292-9171

TWX: 910-464-6103

PENNSYLVANIA

2500 Moss Side Boulevard
Monroeville 15146

Tel: (412) 271-0724

TWX: 710-797-3650

1021 8th Avenue

King of Prussia Industrial Park
King of*Prussia 19406

Tel: (215) 265-7000

TWX: 510-660-2670

RHODE ISLAND
873 Waterman Ave.
East Providence 02914
Tel: (401) 434-5535
TWX: 710-381-7573

TEXAS

P.0. Box 1270

201 E. Arapaho Rd.
Richardson 75080
Tel: (214) 231-6101
TWX: 910-867-4723

P.0. Box 22813
6300 Westpark Drive
Suite 100

Houston 77027

Tel: (713) 781-6000
TWX: 910-881-2645

231 Billy Mitchell Road
San Antonio 78226
Tel: (512) 434-4171
TWX: 910-871-1170

UTAH

2890 South Main Street
Salt Lake City 84115
Tel: (801) 487-0715
TWX: 910-925-5681

VERMONT

P.0. Box 2287

Kennedy Drive

South Burlington 05401
Tel: (802) 658-4455
TWX: 710-658-4712

VIRGINIA

P.0. Box 6514
2111 Spencer Road
Richmond 23230
Tel: (703) 282-5451
TWX: 710-956-0157

WASHINGTON
433-108th N.E.
Bellevue 98004
Tel: (206) 454-3971
TWX: 910-443-2303

*WEST VIRGINIA
Charleston
Tel: (304) 768-1232

FOR U.S. AREAS NOT
LISTED:

Contact the regional office near-
est you: Atlanta, Georgia...
North Hollywood, California. ..
Paramus, New Jersey . . . Skokie,
lllinois. Their complete ad-
dresses are listed above.

*Service Only

CANADA

ALBERTA

Hewlett-Packard (Canada) Ltd.

11745 Jasper Ave.
Edmonton

Tel: (403) 482-5561
TWX: 610-831-2431

BRITISH COLUMBIA
Hewlett-Packard (Canada) Ltd.
1037 West Broadway
Vancouver 12

Tel: (604) 731-5301

TWX: 610-922-5059

MANITOBA

Hewlett-Packard (Canada) Ltd.
511 Bradford Ct.

St. James

Tel: (204) 786-7581

TWX: 610-671-3531

NOVA SCOTIA

Hewlett-Packard (Canada) Ltd.

2745 Dutch Village Rd.
Suite 203

Halifax

Tel: (902) 455-0511
TWX: 610-271-4482

ONTARIO

Hewlett-Packard (Canada) Ltd.

880 Lady Ellen Place
Ottawa 3

Tel: (613) 722-4223
TWX: 610-562-1952

Hewlett-Packard (Canada) Ltd.

50 Galaxy Bivd.
Rexdale

Tel: (416) 677-9611
TWX: 610-492-4246

QUEBEC

Hewlett-Packard (Canada) Ltd.
275 Hymus Boulevard

Pointe Claire

Tel: (514) 697-4232

TWX: 610-422-3022

Telex: 01-20607

FOR CANADIAN AREAS NOT
LISTED:

Contact Hewlett-Packard (Can-
ada) Ltd. in Pointe Claire, at

the complete address listed
above.

CENTRAL AND SOUTH AMERICA

ARGENTINA CHILE ECUADOR JAMAICA PANAMA URUGUAY

Hewlett-Packard Argentina Héctor Calcagni y Cia, Ltda. Laboratorios de Radio-Ingenieria General Engineering Services, Electrénica Balboa, S.A. Pablo Ferrando S.A.

S.AC.e.! Bustos, 1932-3er Piso Calle Guayaquil 1246 . P.0. Box 4929 Comercial e Industrial

Lavalle 1171 -3° Casilla 13942 Post Office Box 3199 27 Dunrobin Ave. Ave. Manuel Espinosa No. 13-50 Avenida Italia 2877

Buenos Aires Santiago Quito Kingston Bldg. Alina Casilla de Correo 370

Tel: 35-0436, 35-0627, 35-0431 Te|, 4.2396 Tel: 12496 Tel: 42657 Panama_City Montevideo

Telex: 012-1009 Cable: Calcagni Santiago Cable: HORVATH Quito Cable: GENSERV Tel: 30833 Tel: 40-3102

Cable: HEWPACKARG Cable: ELECTRON Panama City Cable: RADIUM Montevideo

COLOMBIA EL SALVADOR MEXICO)

BRAZIL Instrumentacion Electrénica Hewlett-Packard Mexicana, S.A. PERU VENEZUELA

Hewlett-Packard Do Brasil Henrik A. Langebaek & Kier Apartado Postal 1589 e C.V. Fernando Ezeta B. Hewlett-Packard De Venezuela

l.e.C Ltda. a. 27 Avenida Norte 1133 Moras 439 Avenida Petit Thouars 4719 CA.

Rua Coronel: Oscar Porto, 691 Carreré 7 No. 48-59 San Salvador Col. del Valle Miraflores Apartado 50933

Sao Paulo - 8, SP Apartado Aereo 6287 Tel: 25-74-50 Mexico 12, D.F. Casilla 3061 Caracas

Tel: 288-7111 Bogota, 1 D.E Cable: ELECTRONICA Tel: 5-75-46-49 Lima Tel: 71.88.05, 71.88.69, 71.99.30

Cable: HEWPACK Sao Paulo gota, 1 D.E. San Salvador Tel: 45-2335 Cable: HEWPACK Caracas

Hewlett-Packard Do Brasil
l.e.C. Lt

Avenida Franklin Roosevelt 84-

grupo 203
Rio de Janeiro, 2C-39, GB
Tel: 232-9733

Cable: HEWPACK Rio de Janeiro

Tel: 45-78-06, 45-55-46
Cable: AARIS Bogota
Telex: 044-400

COSTA RICA

Lic. Alfredo Gallegos Gurdidn
Apartado 3243

San José

Tel: 21-86-13
Cable: GALGUR San José

GUATEMALA

Olander Associates Latin America

Apartado Postal 1226

Ruta 4, 6-53, Zona 4
Guatemala City

Tel: 63958

Cable: OLALA Guatemala City

NICARAGUA

Roberto Terén G.
Apartado Postal 689
Edificio Terén

Managua

Tel: 3451, 3452

Cable: ROTERAN Managua

Cable: FEPERU Lima

PUERTO RICO

San Juan Electronics, Inc.
P.0. Box 5167

Ponce de Leon 154

Pda. 3-Pta. de Tierra

San Juan 00906

Tel: (809) 725-3342

Cable: SATRONICS San Juan
Telex: SATRON 3450 332

FOR AREAS NOT LISTED,

CONTACT:

Hewlett-Packard
INTERCONTINENTAL

3200 Hillview Ave.

Palo Alto, California 94304

Tel: (415) 326-7000

TWX: 910-373-1267

Cable: HEWPACK Palo Alto

Telex: 034-8461

E 4/70

HEWLETT - PACKARD [SALES AND SERVICE

EUROPE

AUSTRIA

Unilabor GmbH
Wissenschaftliche Instrumente
Rummelhavdtgnsse 6/3

P.0. Box

Vienna A- 1095

Tel: (222) 42 61 81, 43 13 94

Cable. LABORINSTRUMENT
Vienna

Telex: 75 762

BELGIUM

Hewlett-Packard Benelux S.A.
348 Boulevard du Souverain
Brussels 1160

Tel: 72 22 40

Cable: PALOBEN Brussels
Telex: 23 494

DENMARK (May 70)
Hewlett-Packard A/S
Datavej 38

DK-3460 Birkeroed
Tel: (01) 81 66 40
Cable: HEWPACK AS
Telex: 66 40

EASTERN EUROPE

Hewlett-Packard S.A. Genf.

Korrespondenz Biiro Fiir Ost-
Europa

(Czechoslovakia, Hungary,
Poland, DDR, Rumania,
Bulgaria)

Innstrasse 23

Postfach

A-1204 Vienna, Austria

Tel: (222) 33 66 06

Cable: HEWPACK Vienna

FRANCE
Hewlett-Packard France
Quartier de Courtaboeuf
Boite Postale No. 6

91 Orsay

Tel: 920 88 01

Cable: HEWPACK Orsay
Telex: 60048

Hewlett-Packard France
4 Quai des Etroits

69 Lyon 5¢me

Tel: 42 63 45

Cable: HEWPACK Lyon
Telex: 31617

GERMANY

Hewlett-Packard Vertriebs-GmbH
Lietzenburgerstrasse 30

1 Berlin 30

Tel: (0811) 211 60 16

Telex: 18 34 05

Hewlett-Packard Vertriebs-GmbH
Herrenbergerstrasse 110

703 Bihlingen, Wiirttemberg
Tel: 07031-6671

Cable: HEPAG Bblingen

Telex: 72 65 739

Hewlett-Packard Vertriebs-GmbH
Achenbachstrasse 15

4 Dilsseldorf 1

Tel: 68 52 58/59

Telex: 85 86 533

Hewlett-Packard Vertriebs-GmbH
Berliner Strasse 117

6 Nieder-Eschbach/Frankfurt 56
Tel: (0611) 50 10 64

Cable: HEWPACKSA Frankfurt
Telex: 41 32 49

Hewlett-Packard Vertriebs-GmbH
Reginfriedstrasse 13

8 Miinchen 9

Tel: 0811 69 59 71/75

Cable: HEWPACKSA Miinchen
Telex: 52 49 85

GREECE

Kostas Karayannis

18, Ermou Street

Athens 126

Tel: 230301,3,5

Cable: RAKAR Athens
Telex: 21 59 62 RKAR GR

IRELAND
Hewlett-Packard Ltd.
224 Bath Roa

Slough, Bucks, England
Tel: Slough 753-33341
Cable: HEWPIE Slough
Telex: 84413

ITALY

Hewlett-Packard Italiana S.p.A.
Via Amerigo Vespucci 2

20124 Milano

Tel: 6251 (10 lines)

Cable: HEWPACKIT Milan
Telex: 32046

Hewlett-Packard Italiana S.p.A.
Palazzo Italia

Piazza Marconi 25

00144 Rome - Eur

Tel: 591 2544

Cable: HEWPACKIT Rome
Telex: 61514

NETHERLANDS
Hewlett-Packard Benelux, N.V.
Weerdestein 117

P.0. Box 7825

Amsterdam, Z 11

Tel: 020-42 7777

Cable: PALOBEN Amsterdam
Telex: 13 216

NORWAY
Hewlett-Packard Norge A/S
Box 149

Nesveien 13

N-1344 Haslum

Tel: 53 83 60

Cable: HEWPACK Oslo
Telex: 6621

PORTUGAL

Telectra

Empresa Tecnica de
Equipamentos

Electricos, S.a.r.l.

Rua Rodrigo da Fonseca 103

P.0. Box 2531

Lishon 1

Tel: 68 60 72

Cable: TELECTRA Lisbon

Telex: 1598

SPAIN

Ataio Ingenieros SA
Ganduxer 76

Barcelona 6

Tel: 211-44-66

Cable: TELEATAIO BARCELONA

Ataio Ingenieros SA
Enrique Larreta 12
Madrid, 16

Tel: 215 35 43

Cable: TELEATAIO Madrid
Telex: 2749E

SWEDEN

Hewlett-Packard (Sverige) AB
Hagakersgatan 9C

$ 431 04 Miindal 4

Tel: 031 - 27 68 00

Hewlett-Packard (Sverige) AB

Svetsarvigen 7

$§171 20 Solna 1

Tel: (08) 98 12 50

Cable: MEASUREMENTS
Stockholm

Telex: 10721

SWITZERLAND

Hewlett Packard (Schweiz) AG
Zurcherstrasse 20

8952 Schiieren

Zurich

Tel: (051) 98 18 21/24

Cable: HEWPACKAG Zurich
Telex: 53933

Hewlett Packard (Schweiz) A.G.

Rue du Bois-du-Lan 7

1217 Meyrin 2 Geneva
Tel: (022) 41 54 00

Cable: HEWPACKSA Geneva
Telex: 2 24 86

TURKEY

Telekom Engineering Bureau
P.0. Box 376 - Galata
Isunlml

Tel: 49 40 40

Cable: TELEMATION Istanbul

UNITED KINGDOM
Hewlett-Packard Ltd.
224 Bath Road
Slough, Bucks

Tel: Slough 33341
Cable: HEWPIE Slough
Telex: 84413

Hewlett-Packard Ltd.
The Graftons
Stamford New Road
Altrincham, Cheshire
Tel: 061 258-8626

USSR

Please Contact

Hewlett-Packard S.A.

Rue du Bois-du-Lan 7

1217 Meyrin 2 Geneva

Tel: (022) 41 54 00

Cable: HEWPACKSA Geneva
Switzerland

Telex: 2.24.86

YUGOSLAVIA

Belram S.A,

83 avenue des Mimosas
Brussels 15, Belgium

Tel: 34 33 32, 34 26 19
Cable: BELRAMEL Brussels
Telex: 21790

FOR AREAS NOT LISTED,
CONTACT:

FINLAND Hewlett-Packard S.A.
Hewlett-Packard Oy Hewlett-Packard Vertriebs-GmbH Rue du Bois-du-Lan 7
Bulevardi 26 Beim Strohhause 26 1217 Meyrin 2 Geneva
P.0. Box 12185 2 Hamburg 1 Switzerland
Helsinki 12 Tel: 24 05 51/52 Tel: (022) 41 54 00
Tel: 13-730 Cable: HEWPACKSA Hamburg Cable: HEWPACKSA Geneva
Cable: HEWPACKOY-Helsinki Telex: 21 53 32 Telex: 2.24.86
Telex: 12-1563
AFRICA, ASIA, AUSTRALIA
ANGOLA CYPRUS Blue Star, Ltd. Yokogawa-Hewlett-Packard Ltd. PAKISTAN (WEST) TANZANIA
Telectra Empresa Técnica Kypronics 96 Park Lane Ohashi Building Mushko & Company, Ltd. R. J. Tilbury Ltd.

de Equipamentos Eléctricos 19-19D Hommer Avenue sacnnderalud 3, India 59 Yoyogi 1-chrome Oosman Chambers P.0. Box 2754

SAR P.0. Box 752 Tel: 7 6. Shibuya-ku, Tokyo Victoria Road Suite 517/518
Rua de Barbosa Rodrigues Nicosia Cable: BLUEFROST Tel: 370-2281/7 Karachi 3 Hotel Ambassadeur

.10 Tel: 6282-75628 Telex: 232-2024YHP Tel: 511027, 512927 Nairobi
Box 6487 Cable: HE-1-NAMI Blue Star, Ltd. 8 Cable: YHPMARKET TOK 23-724 Cable: COOPERATOR Karachi Tel: 25670, 26803, 68206, 58195
Luanda 23/24 Second Line Beach KENYA Cable: ARJAYTEE Nairobi
Gable: TELECTRA Luznda oraA Tol 23958 R. J. Tilbury Ltd Electrome. In THAILAND
African Sajesponer & RENCY pejey; 379 P. 0. Box 2754 Hectromex ine. The International

AUSTRALIA
Hewletthackard Australia
1d.

22-26 Weir Street

Glen Iris, 3146

Victoria

Tel: 20.1371 (6 lines)
Cable: HEWPARD Melbourne
Telex: 31024

Hewlett Packard Australia
Pty.

61 Alexander Street

Crows Nest 2065

New South Wales

Tel: 43.7866

Cable: HEWPARD Sydney

Telex: 21561

Hewlett-Packard Australia
Pty. Ltd.

97 Churchill Road

Prospect 5082

South Australia

Tel: 65.2366

Cable: HEWPARD Adelaide

Hewlett Packard Australia
Pty. Ltd.

y.
2nd Floor, Suite 13
Casablanca Buildings
196 Adelaide Terrace
Perth, W.A. 6000
Tel: 21-3330

Hewlett-Packard Australia
Pty. Ltd.

10 Woolley Street

P.0. Box 191

Dickson A.C.T. 2602

Tel: 49-8194

Cable: HEWPARD Canberra ACT

CEYLON

United Electricals Ltd.
P.0. Box 681

Yahala Building
Staples Street
Colomho 2

Tel: 5496
Cable: HOTPOINT Colombo

Private Ltd., Co.
P. 0. Box 718
58/59 Cunningham St.
Addis Ababa
Tel: 12285
Cable: ASACO Addisababa

HONG KONG

Schmidt & Co. (Hong Kong) Ltd.
P.0. Box 297

1511, Prince’s Building

10, Chater Road

Hong Kong

Tel: 240168, 232735

Cable: SCHMIDTCO Hong Kong

INDIA

Blue Star Ltd.
Kasturi Buildings
Jamshedji Tata Rd.
Bombay 20BR, India
Tel: 29 50 21

Telex: 2396

Cable: BLUEFROST

Blue Star Ltd.

Band Box House
Prabhadevi

Bombay 25DD, India
Tel: 45 73 01

Telex: 2396

Cable: BLUESTAR

Blue Star Ltd.
14/40 Civil Lines

cable BLUESTAR

Blue Star, Ltd.
7 Hare Street
P.0. Box 506
Calcutta 1, India
Tel: 23-0131
Telex: 655
Cable: BLUESTAR

Blue Star Ltd.

Blue Star House,
34 Ring Road
Lajpat Nagar

New Delhi 24, India
Tel: 62 32 76
Telex: 463

Cable: BLUESTAR

Cable: BLUESTAR

Blue Star, Ltd.

1B Kaiser Bungalow
Dindli Road
lamsl\ldpur, india
Tel: 38 04

cab!e BLUESTAR

INDONESIA

Bah Bolon Trading Coy. N.V.
Djalah Merdeka 29
Bandung

Tel: 4915 51560

Cable: ILMU

Telex: 809

IRAN

Telecom, Ltd.

P. 0. Box 1812

240 Kh. Saba Shomali
Teheran

Tel: 43850, 48111
Cable: BASCOM Teheran

ISRAEL

Electronics & Engineering
Div. of Motorola Israel Ltd.

17 Aminadav Street

Tel-Aviv

Tel: 36941 (3 lines)

Cable: BASTEL Tel-Aviv

Telex: Bastel Tv 033-569

JAPAN
Yokogawa-Hewlett-Packard Ltd.
Nisei Ibaragi Bldg.

2-2-8 Kasuga

Ibaragi-Shi

0Osaka

Tel: 23-1641
Yokogawa-Hewlett-Packard Ltd.
Ito Building

No. 59, Kotori-cho

Nakamura-ku, Nagoya City
Tel: 551-0215

Suite 517/518

Hotel Ambassadeur
Nairobi

Tel: 25670, 68206, 58196
Cable: ARJAYTEE Nairobi

KOREA

American Trading Co., Korea, Ltd.

P.0. Box 1103

Dae Kyung Bldg.

107 Sejong Ro

Chongro Ku

Seoul

Tel: 75-5841 (4 lines)
Cable: AMTRACO Seoul

LEBANON
Constantin E. Macridis
Clemenceau Street
P.0. Box 7213

selrut

: 220!
Cable EI.ECTRONUCLEAR Beirut

MALAYSIA

MECOMB Malaysia Ltd.

2 Lorong 13/6A

Section 13

Petaling Jaya, Selangor
Cable: MECOMB Kuala Lumpur

MOZAMBIQUE

A. N. Goncalves, LDA.
4.1 Apt. 14 Av. D. Luis
P.0. Box 107
Lourenco Marques
Cable: NEGON

NEW ZEALAND
Hewlett-Packard (N.Z.) Ltd.
32-34 Kent Terrace

P.0. Box 9443

Wellington, N.Z.

Tel: 56-559

Cable: HEWPACK Wellington

PAKISTAN (EAST)
Mushko & Company, Ltd.
Zirat Chambers

31, Jinnah Avenue

Dacca

Tel: 280058

Cable: NEWDEAL Dacca

Makati Commercial Center
2129 Pasong Tamo
Makati, Rizal D 708

P.0. Box 1028

Manila

Tel: 89-85-01

Cable: ELEMEX Manila

SINGAPORE

Mechanical and Combustion
Engineering Company Ltd.

9, Jalan Kilang

singapore, 3

Cable MEcoMB Singapore

SOUTH AFRICA

Hewlett Packard South Africa
(Pty.), Ltd.

Breecastle House

Bree Street

Cape Town

Tel: 3-6019, 3-6545

Cable: HEWPACK Cape Town

Telex: 5-0006

Hewlett Packard South Africa
(Pty.), Ltd.

P.0. Box 31716

30 De Beer Street

Braamfontein, Johannesburg

Tel: 724-4172 724-4195

Telex: 0226 JH

Cable: HEWPACK Johannesburg

TAIWAN REP. OF CHINA
Hwa Sheng Electronic Co., Ltd.
P. 0. Box 1558
Room 404
Chia Hsin Building
No. 96 Chung Shan
North Road, Sec. 2
Taipei
Tel: 555211 Ext. 532-539
545936, 546076, 548661
Cable: VICTRONIX Taipei

Engineering Co., Ltd.
P. 0. Box 39
614 Sukhumvit Road
Bangkok
Tel: 910722 (7 lines)
Cable: GYSOM
TLX INTENCO BK-226 Bangkok

UGANDA

R. J. Tilbury Ltd.

P.0. Box 2754

Suite 517/518

Hotel Ambassadeur

Nairobi

Tel: 25670, 26803, 68206, 58196
Cable: ARJAYTEE Nairobi

VIETNAM

Peninsular Trading Inc.
P.0. Box H-3

216 Hien-Vuong

Saigon

Tel: 20.805

Cable: PENINSULA Saigon

ZAMBIA

R. J. TllbU'y (Zambla) Ltd.
P.0. Box 279:

I.usalu

Zambia, Central Africa

FOR AREAS NOT LISTED,

CONTACT:

Hewlett-Packard
INTERCONTINENTAL

3200 Hillview Ave.

Palo Alto, California 94304

Tel: (415) 326-7000

TWX: 910-373-1267

Cable: HEWPACK Palo Alto

Telex: 034-8461

E 4/70

N T 8
.;mvmn*m_n>q_ozm>zmm>m_n@vmma.§,_,.

0 0 0 0 W.Mwmmmw.mmmmmwwﬁé o=l

v TV

XA LS A

Gy e e o L O 0 A
R s LT R

| N AN AL N PN PR N
N N\ /\[ebainiaiatasore
D20 $ 050 F 020 %S F-026- F- 054 . %

3000 B 50D RV B

.*.Ne«.&...w.vﬂa.m.vu.#.v".ﬂ.ﬂ.m.ﬁi. ”
. R 0T B 0%
. . . 20320405 22§05 B D% F 20§ 024
o4 "‘ Ng " 5 S = D% o

T L ok B X X
LS LN It A
SoA 04 020 8 20 A0 E TR A
R e

 02114-90398

>
%

	0001
	0002
	001
	003
	1-00
	1-01
	1-02
	2-01
	2-02
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	x-01
	x-02
	xBack

