[,9/1 2116A COMPUTER

HEWLETT PACKARD

~ VOLUME

SPECIFICATIONS AND BASIC OPERATION | ;

il

il

&

VOLUME ONE
SPECIFICATIONS AND BASIC OPERATION MANUAL

MODEL 2116 A
COMPUTER

SERIALS PREFIXED: 639- & 702-

This Manual applies directly to HP Model 2116A
erial prefixes 639 and 702.

Computers having
HP 2116A Computers having other prefix numbers
contain production changes which are documented
in a supplement to this manual.

R

X

Printed: MAR 1967

02351-2

Table of Contents Model 2116A
List of Illustrations Volume One

TABLE OF CONTENTS

Section Page Section Page
I DOCUMENTATION DESCRIPTION. 1-1 II FUNDAMENTALS OF COMPUTER
1-1. Basic Computer Manuals. 1-1 OPERATION it i i i nenn.. 3-1
1-3. Specifications and Basic 3-1 Introduction. 3-1
Operation Manual........ 1-1 3-5 Front Panel Presentation. 3-1
1-5. Installation and Maintenance 3-15 Number Conversions. 3-3
Manual............... 1-1 3-23 Arithmetic Operations. 3-4
1-17. Input/Output System Operation 3-40. Computer Structure 3-6
) Manual............... 1-2 3-42, The Memory Module. 3-6
1-11., ' Programmer's Reference 3-50. The Registers 3-9
Manuals 1-2 3-59, The Bus System 3-10
1-13. System Supplement........... 1-2 3-63. The Instruction Logic 3-11
3-69. The Input/Output System 3-12
II HP 2116A SPECIFICATIONS. 2-1 3-T1 Implementation of Instructions . .. 3-13
2-1. Definition of Computer System ... 2-1 3-80. Memory Reference......... 3-13
2-5, Physical Specifications 2-1 3-104. Register Reference. 3-19
2-6. Power Requirements. 2-1 3-107. Shift-Rotate Instructions 3-20
2-1. Environmental Limits. 2-1 3-119. Alter-Skip Instructions 3-21
2-8, Ventilation 2-1 3-133, Input/Output Instructions. 3-22
2-9, Physical Dimensions. 2-1 3-150. Interrupt Phase 3-23
2-10. Service Access 2-2
2-11, Extender Module 2-2 IV BASIC OPERATION OF HP 2116A
2-13. Machine Timing. 2-2 COMPUTERt ot ivviennnenss 4-1
2-19. MEmMOTY . . v v v vt ettt et nen 2-3 4-1, Introduction. 4-1
2-20. TYPE « v v v et et et eneoes 2-3 4-4, Coding . .o v v v v vt e it eeen e 4-1
2-22, Layouto0.0.. 2-3 4-8. Computer Turn-On........... 4-2
2-24, Addressing 2-3 4-11, Preliminary Operations. 4-2
2-28. Loader Protection 2-4 4-14. Manual Storing. 4-2
2-30. Working Registers 2-4 4-18, Programmed Storing. 4-3
2-39. PanelControls. 2-5 4-22., The Stored Program.......... 4-3
2-52. Imstructions. 2-5 4-26. Program Table 4-6
2-53. Number 2-5 4-31. Program Execution. 4-6
2-55, Formats................ 2-6 4-44, Referencing Other Pages....... 4-9
. 2-60. Memory Reference 4-47, Concept of the Memory Page .. 4-9
Instructions. 2-6 4-52. Direct References 4-10
2-178, Register Reference 4-55, Indirect References 4-10
Instructions. 2-7 4-517, Program Example 4-11
2-83. Input/Output Instructions. 2-10 4-63., JUMPS . .ttt e e 4-12
2-105. DataFormats 2-11 4-73. Introduction tc Program
2-107. Input/Output Specifications. 2-11 Development 4-13
2-108. Input/Output System Design . . . 2-11 4-178, Looping and Counting 4-14
2-113. Interrupt Structure......... 2-13 4-179, The Program Loop......... 4-14
2-122. Processor Options 2-15 4-83. Counting to a Limit. 4-14
2-127. Input/Output Options. 2-15 4-87. Tallying . . . v oo v v e e enn.. 4-14
2-145, Software............00 0. 2-19 4-89, Initialization 4-15
2-146, General00... 2-19 4-93. Complete Program......... 4-15
2-151. Assembler 2-21 4-100, Special Addressing Methods. 4-17
2-154. Fortranc00000. 2-21 4-104. Address Modification 4-17
2-1517, Symbolic Editor........... 2-21 4-110, Addressing the Accumulators. . 4-18
2-159. Basic Control System 2-21 4-116. Introduction to Flowcharting. 4-18
2-164. Hardware Diagnostics. 2-22 4-133, Summary00... 4-22

LIST OF ILLUSTRATIONS

Number Title Page Number Title Page
1-1. Basic HP 2116A Computer. 1-0 2-3 Basic Instruction Formats. 2-6
1-2. HP 2116A System Documentation. 1-1 2-4 Memory Reference Instructions 2-6
2-5., Shift-Rotate Instructions 2-9

2-1. HP 2116A Dimensions (Showing 2-6. Alter-Skip Instructions 2-9
Chassis Extended) 2-2 2-7 Input/Output Instructions. 2-10

2-2, Machine Timing. 2-2 2-8 Basic Data Format. 2-11

ii 02357-2

Model 2116A List of Illustrations
Volume One List of Tables

Appendix A
LIST OF ILLUSTRATIONS (CONT’D)
Number Title Page Number Title Page
2-9, Input/Output Design Arrangement 2-12 3-15. Implementing Memory Reference
2-10. Components of Typical Input/Output Instructions. 3-14
Interface Card. 2-13 3-16. Implementing Register Reference
2-11. Input/Output Option Locations (Front Instructions. 3-15
View). . ..o 2-19 3-17. Implementing Input/Output
Instructions. 3-16
3-1 HP 2116A Simplified Block Diagram ... 3-1 3-18. Register Manipulations for Indirect
3-2. Composition of Octal Digit.......... 3-2 Jump e e 3-117
3-3. Binary/Octal Conversions 3-2 3-19. Register Manipulations for Indirect
3-4 Significance of Digits in Three AND. . . .ot e e e e 3-18
Systems - 3-3
3-5. Memory Block Diagram. 3-6 4-1. Coding a Memory Reference
3-6 Core Memory Module 3-1 Instruction Word 4-1
3-7. Binary Storage in a Magnetic Core . . 3-1 4-2, Two Methods of Storing Information
3-8. Core Addressing, Reading, and inMemorycc00eui. 4-3
‘ Writing.o v i e 3-17 4-3, Storing Information Manually 4-4
3-9. Memory Cell Selection 3-8 4-4, Storing Information by Program 4-5
3-10. CorePlane...........0... PP 3-8 4-5. Direct and Indirect References to
3-11. Register Block Diagram 3-9 Other Pagesccuocuouu.n 4-10
3-12. Bus System Block Diagram 3-11 4-6. Examples of Interpage Referencing 4-11
3-13. Instruction Logic Block Diagram. 3-11 4-7. Flowchart for Shift-Rotate
3-14. Input/Output System Block Diagram. . .. 3-12 Demonstration. 4-20
LIST OF TABLES
Number Title Page Number Title Page
2-1. Logic Truth Tables. 2-7 4-3, Single Cycle Execution of a Program. .. 4-8
2-2. Select Code Assignments. 2-13 4-4, Memory Pages.c00tu.. 4-9
2-3. Input/Output Options. 2-16 4-5, Program for Interpage Referencing. ... 4-11
2-4, Standard HP 2116A Software. 2-20 4-6. Examples of Program Jumps 4-12
4-7., Preliminary Program Development. ... 4-15
3-1. Shift Rotate Functions e 3-20 4-8. Program to Illustrate Looping and
Counting.o vvivuunnn 4-16
4-9. Program to Illustrate Special
4-1. Program Table 4-6 Addressing Methods 4-19
4-2. Program to Show Instruction, Data, 4-10. Program to Demonstrate Shifts and
and Address Words. 4-1 Rotates. 4-22
APPENDIX A
Number Title Page
A-1. Glossary of Terms Used in This Volume ... A-2
A-2 Mnemonics and Abbreviations Used in
This Volume A-10
A-3. Powersof TWO e e A-12
A-4, Consolidated Coding Table. A-13

02357-2 iii

Section I Model 2116A
Figure 1-1 Volume One

PROCESSOR UNIT

POWER CORD
RACK MOUNT KIT

SOFTWARE

DOCUMENTATION EXTENDER CARDS

Figure 1-1. Basic HP 2116A Computer
1-0 02357-1

Model 2116A
Volume One

Section I
Paragraphs 1-1 to 1-6

SECTION |
DOCUMENTATION DESCRIPTION

1-1. BASIC COMPUTER MANUALS.

1-2. Documentation supplied with the Hewlett-
Packard Model 2116A Computer consists of four man-
uals, the contents of which are described briefly in
Paragraphs 1-3 through 1-12. When the basic HP
2116A (Figure 1-1) is purchased aspartofa computer
system, the system documentation will include a Sys-
tem Supplement (Paragraph 1-13) containing individual
manuals for the peripheral equipment. Figure 1-2
illustrates the organization of the documentation sup-
plied with a typical system.

1-3. SPECIFICATIONS AND BASIC OPERATION
MANUAL.

1-4. Volume One is the Specifications and Basic Op-
eration Manual, which describes the basic HP 2116A
Computer, treated as an independent instrument op-
erable from the front panel. Separate sections of this
manual introduce the HP 2116A from the following
standpoints.

a. Specifications. The full capabilities of the HP
2116A Computer are defined, including standard hard-
ware options and standard software. All information
necessary for coding machine-language instructionsis
listed and described. This Section is intendedboth as
a reference for users who are familiar with computer
terminology and as a source of detailed definitions, so
that the material will be meaningful to readers at a
wide range of levels.

b. Fundamentals of Computer Operation. For
users with little or no previous experience with com-
puters, this Section gives abriefoutline ofhow a com~
puter, specifically the HP 2116A, works internally.
This is not a detailed theory of operation, such as is
presented in Volume Two (Installation and Main-
tenance) but the logic descriptions in Volume Two will
assume at least this basic levelofunderstanding. Thus
a thorough reading of this Section is advised before
proceeding to the maintenance sections.

c. Basic Operation of HP 2116A Computer. This
is a continuation of the preceding Section. Procedures
for first-time usage are detailed, using the Computer
front-panel controls and indicators as an elementary
kind of input/output device. This Section is essentially
an introduction to machine-language programming.
The Assembler and other programming reference
manuals included in Volume Four assume a basic
knowledge of machine-language programming,such as
presented in this Section.

1-5. INSTALLATION AND MAINTENANCE MANUAL.,

1-6. Volume Two gives instructions for installation
and maintenance of the main unit only (see Volume
Three for interconnection and installation of peripheral
equipment). Contents of this Volume are as follows:

02357-1

VOLUME ONE & TWO

SPECIFICATIONS AND
BASIC OPERATION

INSTALLATION AND
MAINTENANCE

MANUAL SUPPLEMENTS

VOLUME THREE INPUT/OUTPUT SYSTEM OPERATION

HARDWARE SYSTEM
INSTALLATION RECORD

BASIC VOL.3 TEXT

INTERFACE KIT TEXTS
AND SUPPLEMENTS

VOLUME FOUR PROGRAMMER'S REFERENCE MANUALS

SOFTWARE SYSTEM
INSTALLATION RECORD

STANDARD. SOFTWARE
MANUALS

LIBRARY ROUTINE MANUALS
UTILITY ROUTINE MANUALS

HP 2116 A SOFTWARE
MANUAL SUPPLEMENTS

PERIPHERAL DEVICE
MANUAL SUPPLEMENTS

PERIPHERAL DEVICE
MANUALS

02116 -A-1

Figure 1-2. HP 2116A System Documentation

a. Installation. Preparation of the unit for use.

b. Performance Check. A series of test pro-
grams, read into the Computer by an input/output de-
vice, is used to assure that the main unit is operating
correctly. Information printed out or displayedon the
panel will indicate any internal logic or memory fail-
ures. This Section includes interpretive documentation

1-1

Section I :
Paragraphs 1-7 to 1-14

for these test programs (Hardware Diagnostics) to
pinpoint troubles to specific components.

c. Theory of Operation. This Section assumes
prior reading of the block-diagram description given
in the ‘‘Fundamentals of Computer Operation’’ section
of Volume One. The Theoryof Operationgiven here is
a detailed logic description with reference to the logic
diagrams. The logic description also refersto and in-
terprets a complete tabular listing of logic equations
and timing diagrams, so that component failures canbe
located in a minimum of time, without need to learn
the total operation. Explanations of logic symbology
and the use of logic diagrams are included.

d. Logic and Schematic Diagrams. A logic or
schematic diagram is given for each circuitboard (in-
cluding the boards for standard Processor Options), as
well as aphotographidentifying all replaceable compo-
nents. Wiring lists, helpfulintracing the origin and all
destinations of a particular signal, are also included.

e. Parts List. All replaceable parts are listed
in two tables: one by reference designation, to give the
description and Part Number of eachpart; the other by
Part Number, to totalize each type of partused, and to
give the manufacturer’s part number. (The latter list
is used by Hewlett-Packard to prepare lists for spare
parts kits, available for isolated use.)

1-7. INPUT/OUTPUT SYSTEM OPERATION MAN-
UAL.

1-8. Volume Three describes the input/output struc-
ture and the standard Input/Output Options (referenced
by Interface Kit numbers), which form the basis for
HP 2116A systems. Procedures are given for con-
necting, operating, and programming the following
input/output devices (typical examples).

a. HP Model 2752A and 2754A Teleprinters. (Mod-
ified Teletype ASR-33 and ASR-35 Teletypewriters.)

b. HP Model 2737A/B Punched Tape Reader.
(Modified Rheem photoelectric tape reader.)

c. HP Model 2753A Tape Punch. (Modified Tally
P-120 Tape Punch.)

d. HP Measurement Instruments. (HP 2401C and
HP 3460A Digital Voltmeters, HP 5200-series Coun-
ters, HP 2911 Guarded Crossbar Scanner, etc.)

e. Kennedy 1406 and 1506 Incremental Tape
Transports.

f. HP 2020A Magnetic Tape Unit.
g. Time Base Generator (internal plug-in card).

1-9. Sections for additional input/output options are
inserted as required, according to the Interface Kits
purchased as part of a particular system. The infor-
mation in these sections condenses operating proce-
dures from the manuals of the individual instruments,
and adds material relating specifically to operation
with the HP 2116 A Computer. Maintenance information

1-2

Model 2116A
Volume One

in these sections covers only the interface circuits, and
not the peripheral itself. Complete Operating and
Service Manuals for the peripheral equipment are fur-
nished in the System Supplement when included in a
particular system. Manual Supplements describing
production changes affecting Volume Three are in-
cluded in the Volume Three binder.

1-10, A "Hardware System Installation Record'" at the
front of Volume Three defines the system configura-
tion as originally shipped, and provides an index to
the supporting documents in the System Supplement.
Space is provided for noting changes and additions.

1-11. PROGRAMMER’S REFERENCE MANUALS.

1-12. Volume Four consists of one or more 3-ring
binders containing documentation for each item of
software supplied with the Computer. Both standard
software programs and software specially originated
for an individual user are fully described asto speci-
fications and usage. A ‘‘Software System Installation
Record’’ at the front of Volume Four lists all software
furnished with the original shipment, and provides an
index to the supporting documents in Volume Four.
Space is provided for noting changes and additions, so
that an up-to-date record can be maintained by the
user. Printedlistings for furnished standard programs
are supplied as manual supplements in this Volume.
Programmer’s Reference Manuals normally included
in Volume Four are:

HP 2116A Assembler

HP 2116A Symbolic Editor

HP 2116A Basic Control System
HP 2116A Fortran

HP 2116A Fortran Library

HP 2116A Operating Manual

A A

1-13. SYSTEM SUPPLEMENT.

1-14. Supplementary documentation for the hardware
system is supplied in the System Supplement, which
consists of one or more 3-ring binders. Individual
manuals for the peripheral devices in the system are
included here, as well as manual supplements describ-
ing any special modifications made to these devices
by Hewlett-Packard.

Note

Each HP 2116A Computer is identified by an
eight-digit (000-00000) serial number on the
rear panel. The first three digits are a se-
rial prefix number used todocument changes.
If this prefix number on the Computer does
not agree with the prefix number given on
the title page of the three hardware manuals
(Volumes One, Two, and Three), look for
Manual Changes information accompanying
each Volume.,

02357-1

Model 2116A
Volume One

Section II
Paragraphs 2-1 to 2-9

SECTION 11
HP 2116A SPECIFICATIONS

2-1. DEFINITION OF COMPUTER SYSTEM.

2-2. BASIC UNIT DESCRIPTION. The Hewlett-
Packard Model 2116A Computer is a small general-
purpose digital computer designed to add computation
capability to Hewlett-Packard data measuring and
recording systems. For full compatibility in these
systems, the HP 2116A is subject to the same rigid
environmental specifications as other Hewlett-
Packard equipment. The logical design and software
follow conventional standards of computer usage and
notation so that the HP 2116A may also be used as a
free-standing device or in other types of systems,
such as process control, media conversion, data
reduction, or communication systems. The hardware
and software are specially designed to permit inter-
facing of real-time devices (i.e., devices running
asynchronously with respect to a program being run).
The word length is 16 bits. The basic HP 2116A
Computer includes the processor unit (main frame)
with 4096-word memory. All specifications in this
Section apply to the basic unitonly, unless specifically
denoted as an Option specification.

2-3. OPTIONS. Options for the HP 2116A Computer
are of two general types:

a. Processor Options. These options extend the
memory and computation capabilities of the basic
unit, and are identified by ‘‘M’’ numbers (see Para-
graph 2-122).

b. Input/Output Options. These options add input
and/or output facilities to the basic HP 2116A Com-
puter. The option, identified by an Interface Kit number
(e.g., HP 12531A, see Paragraph 2-134), provides the
circuitry, cabling, and software to enable the Computer
to operate with a specific input or output instrument
(measuring, reading, or recording device), or with a
series of instruments. Compatible instruments, not
included in the Interface Kit, are separately available
from Hewlett-Packard. When external devices are
connected to the Computer, the HP 2116A then becomes
part of a Computer System (next paragraph).

2-4. SYSTEMS. Two general types of Computer
Systems are available from Hewlett-Packard:

a. HP 2116A Computer Systems. Systems may
be configured to individual requirements using com-
binations of ‘standard input/output options. Non-
standard input/output options, not mentioned in this
Section or in the HP 2116A data sheet, can be obtained
on special order; these options are also designated
with Interface Kit accessory numbers. The software
packages which are hardware dependent (Basic Control
System and System Input/Output, see Table 2-4) will
be made up in accordance with the hardware system
configuration.

02357-2

b. Data AcquisitionSystems. Systems are avail-
able in standard configurations (such as in the HP
2018-series), which combine Hewlett-Packard digital
scanning, measuring, and recording equipment with
the HP 2116A Computer. In these Systems the
Computer is programmed to exercise partial or
complete control over the data taking process and to
perform computations on data measured by the
System. A data acquisition program is furnished
with these Systems. Capabilities of available in-
struments include measurements of ac or dc voltages,
resistances, frequencies, time periods, temperatures,
gas pressures, nuclear events, etc., from multiple
inputs. (The functions of some instruments such as
linearizers, comparators, scanner programmers, and
output couplers are present in the basic HP 2116A,
or may be accomplished by Options or programming.)

2-5. PHYSICAL SPECIFICATIONS.

2-6. POWER REQUIREMENTS.

a. Line voltage 115 vac (15 amp.) or 230 vac
(7.5 amp.), changeable by internal jumpers. Voltage
tolerance +10%.

b. Line frequency 50 to 60 Hz.

¢. Main unit power consumption with internal
supply loaded to capacity by plug-in options: 1600
watts maximum. Minimum (with Teleprinter Option):
1000 watts.

d. Power cable: Standard 3-prong connector
(two power, one grounding).

2-7. ENVIRONMENTAL LIMITS.

a. Temperature 0°C to 55°C (32°F to 131°F).

b. Relative humidity to 95% at 40°C.

2-8, VENTILATION,

a. Intake on sides and back at bottom, exhaust
at top.

b. Air flow: 600 cubic feet per minute.

¢. Heat dissipation: 5500 BTU/hr., maximum.

2-9. PHYSICAL DIMENSIONS.

a. Width: 19 inches, for standard rack mounting.
b. Panel height: 31-1/2 inches,
c. Depth behind panel: 19-3/8 inches.

2-1

Secticn II
Paragraphs 2-10 to 2-15

d. Recommended cable clearance at rear: 5
inches minimum.

e. Recommended air exhaust clearance at top:
3 inches minimum.

f. Maximum weight: 230 lb. (104 kg); shipping
weight 330 1b. (150 kg).

2-10. SERVICE ACCESS.

a. Panel hinged at left edge (see dimensional
illustration, Figure 2-1). Permits front access to
input/output connectors, test switches, plug-in circuit
boards, and panel wiring.

b. Main chassis slides forward out of cabinet
and swings to right. Permits front access to back
plane wiring, power supply, fuses, and 115/230v
jumpers.

Note

Unstable mounting racks must not be used
to mount the HP 2116A, due to weight shift
forward when chassis is withdrawn for
service. Table-topusage or Hewlett-Packard
system cabinets are recommended.

2-11. EXTENDER MODULE.

2-12. The HP 2150A Extender Module for additional
external memory and input/output capability (see
Paragraph 2-133) is constructed in the same way as

19.750 16.750
(s01,7) {425,5)

CABINET

\<|4.500(37e‘3)

CHASSIS FRONT PANEL

=/
J 1531331
U ADIONND

PSS

16.750 ——.| DIMENSIONS IN INCHES
(425,5) AND (MILLIMETERS)

02116-8-3

Figure 2-1. HP 2116A Dimensions
(Showing Chassis Extended)

2-2

Model 2116A
Volume One

the HP 2116A main unit, and has the same physical
dimensions as given in Figure 2-1. The difference
in appearance is the blank front panel on the HP
21504, in place of the computer controls and indica-
tors. The HP 2150A Extender Module contains its
own power supply, similar to that in the Computer.

2-13. MACHINE TIMING.

2-14. An internal 10-MHz timing generator auto-
matically generates read/write memory cycles every
1.6 microseconds when running (see Figure 2-2).
The basic HP 2116A has four machine phases (Fetch,
Indirect, Execute, Interrupt), of which the first three
include a memory cycle. Phases do not occur in a
fixed sequence, but rather are determined by con-
ditions which occur during operation. The Computer
can go directly from one of the first three phases to
certain others in the manner indicated in Figure 2-2,
and an external device can cause the Computer to go
into the Interrupt phase on completion of any current
phase. The Fetch phase may be thought of as the
‘“‘normal’”’ or ‘‘home’’ condition; the processing of
each instruction begins with a Fetch phase, and in
many cases is fully executed within that phase. Each
phase takes 1.6 microseconds with one exception:
the Execute phase of the ISZ instruction (Increment,
and Skip if Zero) takes 2.0 microseconds.

————— MEMORY CYCLE ———
READ WRITE
XECUTE (1 PHASE),
R TO INDIRECT, OR
FETCH T0 EXECUTE
TO EXECUTE OR,
INDIRECT REPEAT INDIRECT,
OR TO FETCH
EXECUTE, THEN
EXECUTE RETURN TO FETCH
HASE
TO FETCH PHASE
INTERRUPT (NO MEMORY CYCLE) (AT INTERRUPT
LOCATION)
T [1 | | I
o .2 4 .6 .8 1.0 1.2 1.4 1.6

MICROSECONDS 02116-A-2

Figure 2-2. Machine Timing

2-15. FETCH PHASE. The contents of the currently-
addressed memory cell is read into the T-Register
during the Read portion of the memory cycle, and
written back into the memory cell during the Write
portion of the memory cycle. The information left in
the T-Register is taken as an instruction when read
during the Fetch phase. If the instruction includes an
‘‘indirect address bit”’ (see Paragraph 2-26), the
Computer sets the Indirect phase condition, and if
the instruction does not have an indirect address
bit but does include a memory reference (two-phase
instruction), the Computer sets the Execute phase
condition. Otherwise the current instruction is fully
executed at the end of the Fetch phase, and the
Computer remains in the Fetch state for the next
memory cycle. An exception to these conditions is

02357-2

Model 2116A
Volume One

the JMP (jump) instruction, which is a Memory
Reference instruction but does not require an Execute
phase; the Computer executes the instruction at the
end of the Fetch phase or the Indirect phase, and then
sets the Fetch phase again for the next memory cycle.

2-16. INDIRECT PHASE. The contents ofthe mem-
ory cell referenced during the Fetch phase is read
into the T-Register and the entire 16-bitword (15 bits
of address, plus a new Direct/Indirect bit) is taken as
a new memory reference for the same instruction.
The use of 15 bits for an address permits addressing
of up to eight memory modules (32,768 words). If
the Direct/Indirect bit again specifies indirect ad-
dressing, the Computer remains in the Indirect state
and reads another 16-bit address word out of memory
as a continuation of multiple-step indirect addressing.
If the Direct/Indirect bit specifies direct addressing,
the Computer sets the Execute phase (or, in the case
of a Jump Indirect, the Fetch phase).

2-17. EXECUTE PHASE. The 16-bit data word in
the memory cell referenced during a Fetch phase or
an Indirect phase is read into the T-Register and is
operated on by the current instruction (retained from
the Fetch phase) at the end of the Execute phase. At
the end of this phase, the Computer sets the Fetch
phase again to read the next instruction.

2-18. INTERRUPT PHASE. An input/output device
requesting service at any time during one of the
phases is acknowledged at the end of that phase,
unless the interrupt is inhibited for any reason by the
program being run. The computer then goes into the
Interrupt phase, which does not have a memory cycle.
During this phase the P-Register is decremented, so
that no instruction in the main program will be
skipped or executed twice. At the end of this phase,
the interrupt address of the interrupting device is
transferred into the M-Register and the Fetch phase
is set, to read the instruction contained in the inter-
rupt address location. The Interrupt phase can not
occur again until at leastthis instructionis completed.

2-19. MEMORY.
2-20. TYPE.

2-21. The HP 2116A uses a ferrite core storage
module capable of storing 4096 words, 17 bits per
word (for the 16 bits of a computer word, plus a
parity bit which is used by Memory Parity Option M2,
when included in the instrument), The addressing
capability of the HP 2116A permits use of up to seven
additional modules to expand the storage capacity to
32,768 words.

2-22. LAYOUT.

2-23. The 4096-word module is logically divided into
four pages of 1024 words each. A page is defined as
the largest block of memory which can be addressed

02357-2

Section II
Paragraphs 2-16 to 2-26

by the memory address bits of aMemory Reference
instruction (excluding the Zero/Current page bit; see
Figure 2-3). In the HP 2116A, Memory Reference
instructions have 10 bits to specify a memory address,
and thus the page size is 1024 locations (2000 in octal
notation). Octal addresses of the four pages of the
basic module, and also a second module (which can
be added by Option M4) are therefore:

00000 to 01777
02000 to 03777
04000 to 05777
06000 to 07777

Basic Module:

10000 to 11777
12000 to 13777
14000 to 15777
16000 to 17777

Second Module:

2-24. ADDRESSING.

2-25. ZERO/CURRENT PAGE. For directaddress-
ing purposes, generally only two pages are of interest:
page Zero (the base page, consisting of locations
00000 through 01777), and the Current page (the page
in which the instruction itself islocated). All Memory
Reference instructions include a bit (Bit 10) reserved
to specify one or the other of these two pages. To
address locations in any other page, indirect address-
ing is used (Paragraph 2-26). Page references for
direct addressing of Memory Reference instructions
are specified by Bit 10 as follows:

0 Page Zero (Z)

1

Current Page (C)

2-26. DIRECT/INDIRECT. All Memory Reference
instructions use Bit 15 to specify direct or indirect
addressing. Direct addressing combines the instruc-
tion code and the effective address into one word,
permitting a Memory Reference instruction to be
executed in two machine phases (Fetch and Execute).
Indirect addressing uses the address part of the
instruction word to access another word in memory
which is taken as a new memory reference for the
same instruction. This new address word is a full
16 bits long, 15 bits of address plus another Direct/
Indirect bit. The 15-bit length of the address per-
mits access to any location in any module. If Bit 15
again specifies indirect addressing, still another
address is obtained; this multiple-step indirect
addressing may be done to any number of levels.
The first address obtained in the Indirect phase which
does not specify another indirect level becomes the
effective address for the instruction. Instructions
with indirect addresses are therefore executed in a
minimum of three machine phases (Fetch, Indirect,
Execute). Direct or indirect addressing is specified
by Bit 15 as follows:

0 Direct

It

1 Indirect

Section II
Paragraphs 2-27 to 2-38

2-27. RESERVED LOCATIONS., The first 64 mem-
ory locations of the base page (octal addresses 00000
through 00077) are reserved as listed below. The
first two addresses are A and B flip-flop registers
and not core storage locations. Locations 5 through
77 are reserved in the sense that interrupt wiring is
present for the priority order given. As long as the
locations do not have actual interrupt assignments (as
determined by the input/output devices included inthe
user’s system), these locations may be used for
normal program purposes.

00000 Address of A-Register

00001 Address of B-Register

00002 For exit sequence if A and B con-
00003 tents are used as executable
00004 words
00005 Interrupt location, highest priority
(reserved for power failure in-
terrupt)
00006 Interrupt location, next lower pri-
ority
00007 Interrupt location, next lower pri-
etc. ority
thru
00077 Interrupt location, lowest priority

(reserved for Memory Protect
Option M1)

2-28. LOADER PROTECTION.

2-29. The last 64 locations of memory (octal
addresses 07700 through 07777 in the standard HP
2116A) are reserved for the Basic Binary Loader.
The Basic Binary Loader (not to be confused with the
extended Relocating Loader program described in
Paragraph 2-162) is a manually-entered program to
permit reading and storage of binary information
from punched paper tape, as read by an HP 2737A/B
Punched Tape Reader or an HP 2752A Teleprinter.
Absolute addresses are required in the loaded data.
A front-panel switch (LOADER), when set to PRO-
TECTED, disables the Basic Binary Loader locations
so that they can neither be used nor altered in any
way. For entering the Basic Binary Loader manually
into the Computer and for actual loading of tapes,
this switch must be set to ENABLED. The LOADER
switch is effective for the last 64 locations of mem-
ory, regardless of memory size. Plug-in options
which expand memory relocate the protected area
automatically to the 64 highest numbered locations.

2-30. WORKING REGISTERS.

2-31. The HP 2116A has seven working registers
and gives continuous display of the register contents
by lights on the Computer front panel. Five of these

2-4

Model 2116A
Volume One

are 16-bit flip-flop registers, and two are 1-bit
flip-flop registers indicated by panel lighting (on or
off) of the register name.

2-32. T-REGISTER (MEMORY DATA). All data
transferred into or out of memory is routed through
the 16-bit T-Register (‘‘Transfer Register’’). The
T-Register display therefore indicates exactly what
information went into or out of a memory cell during
the preceding memory cycle.

2-33. P-REGISTER (PROGRAM COUNTER). On
completion of each instruction the P-Register indi-
cates the address of the next instruction to be fetched
out of memory. The P-Register automatically incre-
ments by one (or two, when executing a skip instruc-
tion) after the execution of each instruction. A jump
instruction (JMP or JSB) can set the P-Register to
any core location number.

2-34. M-REGISTER (MEMORY ADDRESS). The M-
Register holds the address of the memory cell being
read or written into. The M-Register indication
will differ from the P-Register indication when
multi-phase instructions are being processed, since
the M-Register will be changed by memory references
in the instruction (which may be several in the case
of indirect addressing) or by an interrupt, whereas
the P-Register remains constant until completion of
the instruction.

2-35. A-REGISTER (ACCUMULATOR). The A-
Register is an accumulator, holding the results of
arithmetic and logical operations performed by pro-
grammed instructions. This register may be
addressed by any Memory Reference instruction
as location 00000, thus permitting inter-register
operations such as ‘‘add B to A’’, ‘“compare B with
A’’, etc., using a single-word instruction.

2-36. B-REGISTER (ACCUMULATOR). The B-
Register is a second accumulator, which can hold
the results of arithmetic and logical operations
completely independent of the A-Register. The B-
Register may be addressed by any Memory Reference
instruction as location 00001 for inter-register op-
erations with A,

2-37. EXTEND. The Extend bit is a one-bit (E)
register, and is used to link the A and B Registers
by rotate instructions, or to indicate a carry from
Bit 15 of the A or B Registers by an add instruction
(ADA, ADB) or increment instruction (INA or INB,
but not ISZ) which references these registers. This
is of significance primarily for multiple-precision
arithmetic. The Extend bit is not complemented by
a carry if already set. It may be cleared, comple-
mented, or tested by program instruction. The Extend
bit is set when the EXTEND panel light is on (‘‘177)
and clear when off (‘‘0”’).

2-38. OVERFLOW. The Overflow bit is a one-bit
register which indicates, if on, that an add instruction
(ADA, ADB) or an increment instruction (INA or INB,
but not ISZ) referencing the A or B registers has

02357-2

Model 2116A
Volume One

caused one of these accumulators to exceed the maxi-
mum positive or negative number which can be con-
tained (+32767 or -32768, decimal). This condition
is implied by a carry (or lack of carry) from Bit
14 to Bit 15 (see Paragraph 3-58). By program
instructions, the Overflow bit may be cleared, set,
or tested. The OVERFLOW panel light remains
on until the bit is cleared by an instruction, and
is not complemented if a second overflow occurs
before being cleared. It will not be set by shift or
rotate instructions.

2-39. PANEL CONTROLS.

2-40. SWITCH REGISTER. Sixteen toggle switches
to enter manually-set information into the Computer.
The setting of the Switch Register (up is ‘‘one’’,
down is “‘zero’’) may be transferred into the Com-
puter in the following ways.

a. By program, may be loaded into the A or B
Register using LIA or LIB instructions with the
Switch Register’s Select Code (see Select Code
assignments under Paragraph 2-112).

b. By program, may be merged (inclusive ‘‘or”’)
into the A or B Register using MIA or MIB re-
spectively.

¢. Manually, using LOAD ADDRESS switch, may
be loaded into the P and M Registers (simultaneously),
thus directing the Computer to a specific memory
cell.

d. Manually, using LOAD MEMORY switch, may
be entered into the memory cell specified by the
M-Register, thus permitting the user to change the
contents of any memory cell.

e. Manually, using LOAD A or LOAD B switches,
may be loaded into the A or B Registers.

2-41. POWER. Push-on/push-off switch for Com-
puter power on-off. Lit when regulated power is on.
Regulated power automatically goes off in case of
abnormal changes in internal power supplies. Con-
tents of memory are not affected by switching power
off and on; contents of working registers, however,
are lost when power goes off (contents random
following turn-on).

2-42. LOADER. Toggle switch associated with the
last 64 locations of memory; for example, octal
addresses 07700 through 07777 in 4K Computers, or
17700 through 17777 in 8K Computers. These loca~-
tions are normally occupied by the Basic Binary
Loader. In the ENABLED position, this block of
memory can be read or loaded; in the PROTECTED
position, this block is disabled.

2-43. PRESET. Momentary switch to preset the
Computer to the Fetch phase, to turn off the interrupt
system and all input/output Control bits, to set all
input/output Flag bits, and to reset the parity ERROR
indication (light located behind front panel whenOption
M2 is included). An internal preset pulse accomp-
lishing the same functions is generated each time
POWER is switched on or off.

02357-2

Section I
Paragraphs 2-39 to 2-54

2-44., RUN. Momentary switch to start operation
at the current state of the Computer. Switch is lit
when a program is running, and goes off when HALT
is pressed, when HLT instruction is executed, when
parity error occurs, or when an abnormal change
occurs in the internal power supplies. When the RUN
light is on, all front-panel control switches except
HALT, POWER and LOADER are disabled.

2-45. HALT. Momentary switch to stop computer
operation at the end of the current phase. When the
Computer is halted, the HALT switch is lit, and all
front-panel control switches are enabled.

2-46. LOAD MEMORY. Momentary switch to store
the contents of the Switch Register into the memory
location specified by the address in the M-Register.
P and M Registers are automatically incremented
after operation of the LOAD MEMORY switch, to
simplify storing data into consecutive memory loca-
tions. The stored data remains displayed in the
T-Register, and the Fetch phase is set at the end
of the load operation.

2-47. LOAD A. Momentary switch to transfer the
contents of the Switch Register into the A-Register.
The Computer’s phase status is not altered.

2-48. LOAD B. Momentary switch to transfer the
contents of the Switch Register into the B-Register.
The Computer’s phase status is not altered.

2-49. LOAD ADDRESS. Momentary switchto trans-
fer the contents of the Switch Register into both the
P and M Registers, thus directing the Computer to
the desired address. The Fetch phase is set at the
end of the load operation.

2-50. DISPLAY MEMORY. Momentary switch to
display, in the T-Register, the contents of the loca-
tion specified by the address in the M-Register.
P and M Registers are automatically incremented
after operation of the DISPLAY MEMORY switch, so
that consecutive memory locations may be displayed
simply by repeated operation of this switch. (P and
M Registers are therefore one step ahead of the
T-Register display.) The Fetch phase is set after
incrementing of the P and M Registers.

2-51. SINGLE CYCLE. Momentary switch to ex-
ecute one machine phase each time the switch is
pressed.

2-52. INSTRUCTIONS.
2-53. NUMBER.

2-54, The HP 2116A has 70 basic one-word in-
structions, all executable in 1.6 or 3.2 microseconds
(except for ISZ, which is executable in 3.6 micro-
seconds). These instructions are grouped in three
types, described in Paragraphs 2-60 through 2-104.

2-5

Section II
Paragraphs 2-55 to 2-63

Combinations of the Register Reference miecroin-
structions, which are all one-word instructions ex-
ecutable in 1.6 microseconds, extend the total of
different one-word instructions to over 1000.

2-55. FORMATS.

2-56. The three types of basic instructions are
grouped according to the bit format of the instruc-
tion word. These types are: Memory Reference,
Register Reference, and Input/Output instructions.
A comparison of the three formats is given in
Figure 2-3, and detailed binary coding is included
with the instruction descriptions following. A Con-
solidated Coding Table appears in the Appendix of
this manual.

15 14 13 12 11 10 9 § 7 6 5 4 3 2 1 0

1 [or] wstrucrion [2%/¢]
2 [REG. REF. GROUP
3 | 1/06ROUP

MEMORY ADDRESS
REGISTER MICROINSTRUCTIONS
INSTRUCTION] sELEcT cooe

1 MEMORY REFERENCE INSTRUCTIONS
2 REGISTER REFERENCE INSTRUCTIONS
3 INPUT/OUTPUT INSTRUCTIONS

02116-A-3

Figure 2-3. Basic Instruction Formats

2-57. The first type comprises the Memory Ref-
erence instructions, using 10 bits (0 through 9) for
a memory address, Bit 10 to specify Zero or Current
page, and Bit 15 for direct or indirect addressing.
This leaves four bits (14, 13, 12, 11) to encode the 14
instruction commands in this group.

2-58. The other two types use four bits (15, 14
13, 12) to distinguish the Register Reference and
the Input/Output instructions. The Register Reference
type uses Bits 11 through 0 to combine up to eight
‘““microinstructions’’ (i.e., instructions formed by
only 1, 2, or 3 bits), with the resulting multiple in-
struction operating on the A, B, or E Registers as
a single-word instruction. The Input/Output type
uses Bits 11 through 6 for a variety of input/output
instructions, and Bits 5 through 0 to make the
instruction apply directly to one of 64 possible input/
output devices or functions.

2-59. The following paragraphs, through 2-104, de-
scribe in detail each of the instructions in the three
type groups.

Note

Functions of bits appearing in the form
A/B, D/1, D/E, Z/C, or H/C throughout
these Specifications are invariably obtained
by coding a 0 or 1 respectively (0/1). Thus,
for example, A is specified by a zero-bit,
and B by a one-bit.

2-6

Model 2116A
Volume One

2-60. MEMORY REFERENCE INSTRUCTIONS.

2-61. The 14 Memory Reference instructions ex-
ecute some operation involving memory locations,
such as transferring information in or out of a
memory cell or checking the memory cell contents.
The cell referenced (i.e., the absolute address) is
determined by a combination of the ten memory
address bits in the instruction word (0 through 9)
and five bits (10 through 14) assumed from the
current indication of the P-Register. This means
that Memory Reference instructions can directly
address any word in the current page; additionally,
if the instruction is given in some location other than
the base page (page Zero), Bit 10 of the instruction
word doubles the addressing range to 2048 words by
allowing selection of either page Zero or Current page
(i.e., Bits 10 through 14 of the address in the M-
Register can be reset to zero, instead of assuming the
current indication of the P-Register). This feature
provides a convenient linkage between all pages of
memory, since page Zero can be reached directly
from any other page.

2-62. Note that since the A and B Registers can be
addressed (Paragraphs 2-35 and 2-36), any Memory
Reference instruction can apply to either of these
registers as well as to memory cells. For example,
ADA 0001 means add the contents of the B-Register
(its address being 0001) to the A-Register; specify
page Zero for these operations, since the A and B
Register addresses are on page Zero,

2-63. Figure 2-4 gives instruction codes and mnemo-
nics for all 14 Memory Reference instructions. All
Memory Reference instructions take a minimum of
two machine phases (one to read the instruction word,
and one to read the referenced memory cell), except
for JMP, which is a one-phase instruction. Logic
truth tables, relating to the first three instructions
described below, are given in Table 2-1. Note that
logic operations are performed on a bit-for-bit
basis (i.e., no carries).

.l...l...l......l...
[o] strucrion T2/]

MEMORY ADDRESS

AND
XOR
IOR
JSB
JMP
1SZ
ADA
ADB
CPA
CPB
LDA
LDB
STA
STB

bk ek ek ek e = = H O O OO OO
= = = OO O0OOHHOMMFRO
=~ OO OOFROFKFOKH
HOMFROMFHFOFRROMRMEMROOO

02116-A-4

Figure 2-4. Memory Reference Instructions

02357-2

~

Model 2116A
Volume One

Table 2-1. Logic Truth Tables
AND XOR IOR

A Contents 0011 0011 0011
Memory 0101 0101 0101
Result 0001 0110 0111
(in A)

1 = True, 0 = False

2-64. AND. ‘‘And’”’ to A. The contents of the

addressed location are logically ‘‘anded’” to the
contents of the A-Register. The contents of the
memory cell are left unaitered.

2-65. XOR. ‘‘Exclusive or’’ to A. The contents
of the addressed location are combined with the
contents of the A-Register as an ‘‘exclusive or’’
logic operation. The contents of the memory cell
are left unaltered.

2-66. IOR. ‘‘Inclusive or’’ to A. The contents of
the addressed location are combined with the contents
of the A-Register asan ‘‘inclusive or’’ logic operation.
The contents of the memory cell are left unaltered.

2-67. JSB. Jump to Subroutine. This instruction,
executed in location P, causes computer control to
jump unconditionally to the memory location (X)
specified in the address portion of the JSBinstruction
word. The contents of the P-Register plusone (return
address) is stored in location X, and the next instruc-
tion to be executed will be that contained in the next
location (X + 1). A return to the main program
sequence at P + 1 may be effected by a jump indirect
through location X.

2-68. JMP. Jump. This instruction transfers con-
trol to the contents of the addressed location. That
is, JMP causes the P and M Registers to be set
according to the memory address portion of the in-
struction word, thus addressing memory cell X, so
that the next instruction will be read from location X.

2-69. ISZ. Increment, and Skip if Zero. An ISZ
instruction adds one to the contents of the addressed
memory location. If the result of this operation is
zero, the next instruction is skipped; i.e., the P and
M Registers are advanced by two instead of one.
Otherwise, the program proceeds normally to the
next instruction in sequence. The incremented value
is written back into the memory cell in either case.
An ISZ instruction referencing locations zero or one
(A or B Registers) can not cause setting of the Extend
or Overflow bits (unlike INA and INB).

2-70. ADA. Add to A. The contents ofthe addressed
memory location are added to the contents of the
A-Register, and the sum remains in the A-Register.
The result of the addition may set the Extend or
Overflow bits (Paragraphs 2-37 and 2-38). The
contents of the memory cell are unaltered.

02357-2

Section I
Paragraphs 2-64 to 2-79

2-71. ADB. Add to B. The contents of the addressed
memory location are added to the contents of the
B-Register, and the sum remains in the B-Register.
Extend or Overflow bits may be set, asfor ADA. The
contents of the memory cell are unaltered.

2-72. CPA. Compare to A, skip if unequal. The
contents of the addressed location are compared with
the contents of the A-Register. If the two 16-bit
words are different, the next instruction is skipped;
i.e., the P and M Registers are advanced by two
instead of one. Ifthe words areidentical, the program
proceeds normally to the next instructionin sequence.
The contents of neither the A-Register nor the mem-
ory cells are altered.

2-73. CPB. Compare to B, and skip if unequal.
Same as CPA, except comparison is made with
B-Register.

2-74. LDA. Load into A. The A-Register is
cleared and loaded with the contents of the addressed
location. The contents of the memory cell are
unaltered.

2-75. LDB. Load into B. The B-Register is cleared

and loaded with the contents of the addressedlocation.
The contents of the memory call are unaltered.

2-76. STA. Store A. The contents of the A-Register
are stored in the addressed location. The previous
contents of the memory cell are lost; the A-Register
is unaltered.

2-77. STB. Store B. The contents of the B-Register
are stored in the addressed location. The previous
contents of the memory cell are lost; the B-Register
is unaltered.

2-78. REGISTER REFERENCE INSTRUCTIONS.

2-79. The Register Reference instructions, in gen-
eral, manipulate bits in the A, B, and E Registers.
There is no reference to memory; thus these in-
structions are executed in only one machine phase.
This type includes 39 basic instructions, which are
combinable to form a one-word multiple instruction
that can operate in various ways on the contents of
the A, B, or E Registers. These ‘‘microinstructions’’
are divided into two sub-groups, the Shift-Rotate
Group (SRG) and the Alter-Skip Group (ASG). Three
instructions (SLA, SLB, and CLE) appear in both
groups and, being combinable in these different con-
texts, are counted twice in the total of basic instruc-
tions. Microinstructions may be combined under the
following general rules:

a. Instructions from the two groups cannot be
mixed.

b. References to both A and B Registers cannot
be mixed.

c. Only one microinstruction can be chosen from
each column of the Selection Tables in Figures 2-5
and 2-6.

d. Use zeros to exclude unwanted microinstruc-
tion bits.

2-1

Section II
Paragraphs 2-80 to 2-82

e. The sequence of execution is left to right in
the Selection Tables (column 1, then column 2, ete.).

f. If two (or more) skip functions are combined,
the skip will occur if either or both conditions are
met, One exception exists: see RSS under Para-
graph 2-82.

2-80. Register Reference Instructions are recog-
nized by the Computer when the four most significant
bits of the instruction word are zeros; the general
format for this type of instruction (the dots repre-
senting variable microinstruction bits) is therefore:

0000 -

2-81. SHIFT-ROTATE GROUP. The SRG instruc-
tions are specified by a zero for Bit 10 (compare
Figures 2-5 and 2-6). Figure 2-5 gives both the bit
format and the Selection Table for using these in-
structions. Definitions for the mnemonics used are
listed below. Note that the Extend bit is not affected
by shifts or rotates unless specifically stated. All of
the shift and rotate instructions canbe executed either
first or last in a combined instruction, or both
times. This permits sequencing of CLE and SLA/B
either before or after shifts and rotates.

NOP No Operation. Memory cycle only.
CLE Clear E-Register.

SLA Skip next instruction if Least significant
bit of A-Register is zero (i.e., skip if an
even number is in A).

SLB Skip next instruction if Least significant
bit of B-Register is zero (i.e., skip if an
even number is in B).

ALS A-Register Left Shift one place, arith-
metically (15 bits only). A zero replaces
vacated Bit 0; bit shifted out of Bit 14 is
lost; Bit 15 (sign bit) is not affected.

BLS B-Register Left Shift one place, arith-
metically (15 bits only). A zero replaces
vacated Bit 0; bit shifted out of Bit 14 is
lost; Bit 15 (sign bit) is not affected.

ARS A-Register Right Shift one place, arith-
metically. Bit shifted out of Bit 0 is lost;
copy of sign bit (Bit 15) shifted into Bit 14;
Bit 15 is not affected.

BRS B-Register Right Shift one place, arith-
metically. Bit shifted out of Bit 0 is lost;
copy of sign bit (Bit 15) shifted into Bit 14;
Bit 15 is not affected.

RAL Rotate A-Register Left one place, all 16
bits. Bit 15 is rotated around to Bit 0.

RBL. Rotate B-Register Left one place, all 16
bits. Bit 15 is rotated around to Bit 0.

RAR Rotate A-Register Right one place, all 16
bits. Bit 0 is rotated around to Bit 15.

2-8

Model 2116A
Volume One

RBR Rotate B-Register Right one place, all 16
bits. Bit 0 is rotated around to Bit 15.

ALR A-Register Left shift one place, same as
ALS, but clear sign bit after shift.

BLR B-Register Left shift one place, same as
BLS, but clear sign bit after shift.

ERA Rotate E-Register Right with A-Register,
one place (17 bits). Bit 0 is rotated into
Extend Register; Extend content is rotated
into Bit 15.

ERB Rotate E-Register Right with B-Register,
one place (17 bits). Bit 0 is rotated into
Extend Register; Extend content is rotated
into Bit 15.

ELA Rotate E-Register Left with A-Register,
one place (17 bits). Bit 15 is rotated into
Extend Register; Extend content is rotated
into Bit 0.

ELB Rotate E-Register Left with B-Register,
one place (17 bits). Bit 15 is rotated into
Extend Register; Extend content is rotated
into Bit 0.

ALF Rotate A-Register Left Four places, all 16
bits. Bits 15, 14, 13, 12 are rotated
around to Bits 3, 2, 1, 0 respectively.
Equivalent to four successive RAL in-
structions.

BLF Rotate B-Register Left Four places, all
16 bits. Bits 15, 14, 13, 12 are rotated
around to Bits 3, 2, 1, 0 respectively.
Equivalent to four successive RBL in-
structions.

2-82., ALTER-SKIP GROUP. The ASG instructions
are specified by a one in Bit 10. Figure 2-6 gives
both the bit format and the Selection Table for using
these instructions. Definitions for the mnemonics
used are as follows:

CLA Clear A-Register.
CLB Clear B-Register.

CMA Complement A-Register. One’s comple-
ment, reversing the state of all 16 bits.

CMB Complement B-Register. Reverses state
of all 16 bits.

CCA Clear, then Complement A-Register. Puts
16 ones in the A-Register; this is the two’s
complement form of -1,

CCB Clear, then Complement B-Register. Puts
16 ones in the B-Register; this is the two’s
complement form of -1,

CLE Clear E-Register.

CME Complement E-Register. Reverses state
of the Extend bit.

02357-2

Model 2116A
Volume One

Section II
Figures 2-5 and 2-6

15 14 13 12 11 10. 9 8 7 6 5 4 3 2 1 0

.I...‘...I...l...l...
[tvee 2 TAplo %] cout Jafo[3] cos |-
| !

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

eleeoolooelooelooelecs
[tree2 [%]tJcout Jeos[aTas]e]7]e]

NOP 0 000 000 000 000 00O CLA 0 000 010 1
CLE 0 000 o) CLB O 000 110 1
MAO 000 011 0
SLA 0 000 00 1 C
CMBO 000 111 0
SLB 0 000 10 1 CCA 0O 000 011 1
ALS 0 000 001 000 X XXX el RO
BLS 0 000 101 000 X XXX She o oot .
ARS 0 000 001 001 X XXX O 01
BRS 0 000 101 001 X XXX e Yoo -
RAL 0 000 001 010 X XXX cuE o 000 1S
RBL 0 000 101 010 X XXX ccp o000 o .
RAR 0 000 001 011 X XXX on 0000)
RBR 0 000 101 011 X XXX S e .
ALR 0 000 001 100 X XXX s o 000 11 .
BLR 0 000 101 100 X XXX PRI .
ERA 0 000 001 101 X XXX O !
ERB 0 000 101 101 X XXX I O .
ELA O 000 001 110 X XXX Sy e 1 .
ELB O 000 101 110 X XXX s 0 000 .
ALF 0 000 001 111 X XXX
BLF 0 000 101 111 X XXX
SELECTION TABLE
1 2 3 4
ALS ALS
ARS ARS SELECTION TABLE
RAL RAL 1 2 3 4 5 6 7 8
RAR RAR
ALR CLE SLA ALR CLA CLE
ERA ERA CMA | SEZ | CME| SSA| SLA| INA| SZA| RSS
ELA ELA CCA CCE
ALF ALF CLB CLE
BLS BLS CMB | SEZ | CME| SSB| SLB| INB| SzB| RSs
BRS BRS CCB CCE
RBL RBL
RBR RBR
BIR CLE SLB CIR
ERB ERB
ELB ELB
BLF BLF COMBINING GUIDE

COMBINING GUIDE

1. Choose up to 4 instructions, one from each
column of the Selection Table.

2. Use a one-bit for Bit 9 to Enable column 1
instructions, and a one-bit for Bit 4 to Enable
column 4 instructions. Figure above shows
column 1 enabled (executed first) with dupli-
cate column 4 pattern (executed last) indicated
by X's.

3. Use a one-bit for Bit 5 to select column 2
(CLE), or a zero-bit to exclude CLE.

4. Use a one-bit for Bit 3 to select column 3
(SLA/B), or a zero-bit to exclude SLA/B.

1. Choose up to 8 instructions, one from each
column of the Selection Table.

2. Use the specified two-bit combinations of Bits
9 and 8, plus A/B Bit 11, to encode column 1
instructions.

3. Use the specified two-bit combinations of Bits
T and 6 to encode column 3 instructions.

4. Use a one-bit in Bits 5, 4, 3, 2, 1, plus A/B
Bit 11, to encode column 2, 4, 5, 6, 7 in-
structions respectively.

5. Use a one-bit for Bit 0 to encode column 8.

o2116-8-

Figure 2-5. Shift-Rotate Instructions

02357-2

02116-8-2

Figure 2-6. Alter-Skip Instructions

Section II
Paragraphs 2-83 to 2-87

CCE Clear, then Complement E-Register. Sets
the Extend bit.

SEZ Skip the next instruction if E-Register is
Zero.

SSA Skip next instruction if Sign bit (Bit 15) of
A-Register is zero; i.e., skip if the content
of A is positive.

SSB Skip next instruction if Sign bit (Bit 15) of
B-Register is zero; i.e., skip if the content
of B is positive.

SLA Skip next instruction if Least significant
bit of A-Register is zero (i.e., skip if an
even number is in A).

SLB Skip next instruction if Least significant
bit of B-Register is zero (i.e., skip if an
even number is in B).

INA Increment A-Register by one. Can cause
setting of Extend or Overflow bits (Para-
graphs 2-37 and 2-38).

INB Increment B-Register by one. Can cause
setting of Extend or Overflow bits (Para-
graphs 2-37 and 2-38).

SZA Skip next instruction if A-Register is
Zero (16 zeros).

SZB Skip next instruction if B-Register is
Zero (16 zeros).

RSS Reverse Skip Sense. Skip occurs for any
of the preceding skip instructions, if pres-
ent, when the non-zero condition is met.
RSS without a skip instruction in the word
causes an unconditional skip. If a word
with RSS also includes both SSA/B and
SLA/B, both bits (Bit 15 and Bit 0) must
be one for skip to occur; in allother cases
the skip occurs if either or both conditions
are met.

2-83. INPUT/OUTPUT INSTRUCTIONS.

2-84. The HP 2116A has 17 basic Input/Output in-
structions, which provide the following general cap-
abilities.

a. Fix the state of the Flag, Control, and Over-
flow bits. (These bits are described in Paragraphs
2-111 and 2-38.)

b. Test the state of the Flag and Overflow bits
(i.e., skip if set or clear, as specified).

c. Enter data from a specific device into the A
or B Registers.

d. Output data to a specific device from the A or
B Registers.

e. Halt the program.

2-10

Model 2116A
Volume One

2-85. Input/Output instructions are recognized by
the Computer when the four most significant bits of
the instruction word are 1000 and Bit 10 is a one.
The codes and mnemonics for all 17 instructions
are given in Figure 2-7 (the MAC instruction is not
counted as a basic instruction; see Paragraph 2-87).
All Input/Output instructions are executed in one
phase.

2-86. Note that Bit 11, where relevant, specifies A
or B Register; otherwise it may be one or zero with-
out affecting the instruction, although the Assembler
will assign zeros (as shown). Bit 9, where not
specified, offers the choice of Holding (0) or Clearing
(1) the device Flag after execution of the instruction.
(Exception: the H/C bit associated with the last two
instructions in this list Holds or Clears the Overflow
bit instead of the Flag bit.) Bits 8, 7, and 6 identify
the instruction; some of the instructions, however,
require additional specific bits for the complete code.
Bits 5 through O form Select Codes to make the in-
struction apply to one of up to 64 input/output devices
or functions (see Paragraph 2-107, Input/Output
Specifications).

2-87. The MAC instruction listed in Figure 2-7 is
available to provide up to 2048 entries to macro-
instruction subroutines. Since it is used only by
special options and special software, MAC is not
counted as one of the 70 basic machine instructions.
The basic HP 2116A will treat MAC as a No-Operation
(NOP) instruction.)

15 14 13 12 41 10 9 8 7 6 5 4 3 21 0

eleceloecolecelooncleace
[tvee s |A[> [Wic]mstrucTion | sELECT coe]

MAC 1
HLT 1
STF 1
CLF 1
SFC 1
SFS 1
MIA 1
MiB 1
LIA 1
1
1
1
1
1
1
1
1
1

OO O

LIB
OTA
OTB
STC
CLC
STO
CLO
SOC
SOSs

[eNeoNoNoNoNoNoNoNeNeNoleNoNoloNoNe o)
[eNoNoNoNoNoNoNoleNeNoloNoNolN oo ool
[eReoNeoNoNoNoNeoNoNoNeNeNoNeNoNo NNl
HOMMOHOMRO
T T L N e e e e e e e o
COOOHMMEMIMIEEMRMEHEFEROOOOO
HHEHOOMRMHEMRFHFOOOOHRMFEFOOO
SO RHRMHMHOOMRMFHFOOMRORKFHEO

[N oNoNe)
OO0
QOO O
OO OO
OO0 OO
[

* Identifies Macroinstructions (0) or
standard Input/Output instructions (1).

02116 -A-5
Figure 2-7. Input/Output Instructions

02357-2

Model 2116A
Volume One

2-88. HLT. Halt. Stops the Computer, and Holds
or Clears the flag (according to Bit 9) of any desired
input/output device (Bits 5 through 0). The HLT in-
struction has the same effects as the HALT push-
button: the HALT switch lights, all front-panel
control switches are enabled, and no interrupts may
occur. The HLT instruction will be displayed in the
T-Register, and the P-Register will normally indicate
the HALT location plus one.

2-89. STF. Set Flag. Sets the input/output Flag of
the selected device, thus causing an interrupt during
the next machine phase if the interrupt system is
enabled (see Paragraph 2-113, Interrupt Structure),
and the corresponding Control bitis set. The interrupt
system itself is enabled by an STF instruction with a
Select Code of 6 zeros (octal 00).

2-90. CLF. Clear Flag of selected device. Resets
the Flag, thus permitting the device to present another
Flag when ready again. A CLF with a Select Code of
6 zeros (octal 00) disables the entire interrupt
system; this does not affect the status of individual
input/output Flags.

2-91., SFC. Skip if Flag Clear. Causes the Com-
puter to skip the next instruction if the Flag bit of
the selected device is zero (i.e., the device is not
ready).

2-92, SFS. Skip if Flag Set. The next instruction
is skipped if the Flag bit of the selected device is one
(i.e., the device is ready).

2-93. MIA. Merge Input into A. The contents of
the Input/Output Buffer associated with the selected
device are merged (‘“inclusive or’?) into the A-
Register.

2-94. MIB. Merge Input into B. The contents of
the Input/Output Buffer associated with the selected
device are merged (‘“‘inclusive or’’) into the B-
Register.

2-95. LIA. Load Input into A. The contents of the
Input/Output Buffer associated with the selected de-
vice are loaded into the A-Register. Previous
contents of the A-Register are lost.

2-96. LIB. Load Input into B. The contents of the
Input/Output Buffer associated with the selected
device are loaded into the B-Register. Previous
contents of the B-Register are lost.

2-97. OTA. Output from A. The contents of the
A-Register are loaded into the Input/Output Buffer
associated with the selected device. If the Buffer is
less than 16 bits in length, the least significant bits
of the A-Register normally are loaded. (Some ex-
ceptions exist, depending on the type of output de-
vice.) A-Register contents are not altered.

2-98. OTB. Output from B. The contents of the
B-Register are loaded into the Input/Output Buffer
associated with the selected device.

02357-2

Section II
Paragraphs 2-88 to 2-109

2-99. STC. Set Control bit of the selected device.
This commands or prepares the device to perform
its input or output function, and enables its Flag bit
to interrupt the program being run (provided the
program is not disabling the interrupt system).

2-100. CLC. Clear Control bit of the selected de-
vice. This prevents the device from interrupting.
A CLC instruction with a Select Code of 00 (octal)
clears all Control bits, effectively turning off all
input/output devices. CLF 00 may be combined with
this to additionally turn off the interrupt system.

2-101. STO. Set Overflow. The Overflow bit re-
mains set until cleared by one of the following three
instructions.

2-102. CLO. Clear Overflow. Resets the Overflow
register.

2-103. SOS. Skip if Overflow Set. If the Overflow
register is set, the next instruction of the program
is skipped. Use of the H/C bit will Hold or Clear
the Overflow bit following execution of this instruc-
tion (whether the skip is taken or not).

2-104. SOC. Skip if Overflow Clear. If the Over-
flow register is clear, the next instruction of the
program is skipped. Use of the H/C bit will Hold
or Clear the Overflow bit following execution of this
instruction.

2-105. DATA FORMATS.

2-106. Data is represented in two’s complement form
internally in the HP 2116A. The basic format for
arithmetic operations on numerical data is defined
in Figure 2-8. The data is assumed to be an integer
(binary point to the right of Bit 0), and is positive if
the sign bit is zero, or negative if one. The largest
possible positive number (in octal) is +77777, or (in
decimal) +32767; the largest possible negative number
is -100000 (octal) or -32768 (decimal). Other possible
formats, including packed data words, double-length
fixed point, and floating point representations, are
defined in standard software packages.

15 14 13 12 14 10 9 8 7 6 5 4 3 2 1 O
0'..0'000'..0'.0.'000

MAGNITUDE T
MAGNITUDE BINARY
SIGN POINT

02116 -A-6

Figure 2-8. Basic Data Format

2-107. INPUT /OUTPUT SPECIFICATIONS.

2-108. INPUT/OUTPUT SYSTEM DESIGN.

2-109. GENERAL. Information is transferred into
the Computer from an external device, or out of the
Computer to an external device, by way of its

2-11

Section II
Paragraphs 2-110 to 2-111

Model 2116A
Volume One

PROCESSOR CIRCUITS OPTIONAL HP 2150A
BASIC EXTENDER MODULE
HP 2116A S
COMPUTE PRIORITY NETWORK -
||]||||‘l||ll||r _____ !Illl
I I I 16 SLOTS FOR PLUG-IN CARDS 32 swots
p
PLUG-IN INTERFACE CARDS
INPUT/
ouTPUT
OPTION ﬁ
CABLES
\ L 1
EXTERNAL EXTERNAL EXTERNAL
DEVICE DEVICE DEVICE

02116-A-7

Figure 2-9. Input/Output Design Arrangement

input/output capability, termed the input/output sys-
tem. A transfer of information is initiated by a
signal from a device indicating that it is ready for
input or output. The transfer occurs by the process
of interrupting a running program (which could be
either a problem-solving program, or a program
specifically designed to transfer data). The interrupt
directs the Computer to a location in memory uniquely
associated with the interrupting device. Thislocation
in turn directs the Computer to a program routine
(a ‘‘service routine’’, which must previously have
been stored in memory), and this routine will contain
instructions which effect the actual transfer of infor-
mation. Since interrupts can occur at almost any
time, including during the service routine of an
earlier interrupt, a priority network is present in the
Computer to establish the sequence in which interrupts
are serviced. As shown in Figure 2-9, the input/
output system capability is physically divided so that
part of the capability (including the priority network
and the identical hardwiring for optionalplug-incard
slots) is an integral part of the HP 2116A main unit,
The remaining part is provided by Input/Output
Options (see Paragraph 2-127), which will include the
plug-in interface cards and cables for specific de~
vices, and the appropriate software drivers and di-
agnostic programs. The interface cards may be
plugged into any of the identical input/output slots, de-
pending on the desired priority rating. Each combina-
tion of interface card anddevice, whenplugged into the
Computer, constitutes an input/output channel.

2-12

2-110. NUMBER OF CHANNELS. The coding struc-
ture of input/output instructions (Figure 2-7) allows
6 bits for a Select Code, making it possible to specify
a total of 64 channels and functions (2°). Of this total,
four Select Codes are assigned to non-interrupting
functions (Interrupt System Enable/Disable, Switch
Register/Overflow, and initialization of two Direct
Memory Access channels), and the remaining 59
channels and functions have interrupt capability.
Four interrupt assignments are reserved for in-
ternal processor functions (Power Failure, Memory
Protect, and the interrupt assignments of the two
Direct Memory Access channels), thus leaving a
possible 55 channeis for input/output devices. The
HP 2116A main unit accomodates 16 of the 55 input/
output channels. Extended capability of 48 input/output
channels is provided when an HP 2150A Extender
Module (which provides capability for 32 channels) is
used in conjunction with the HP 2116A main. unit.

2-111. INTERFACE COMPONENTS. Each plug-in
interface card normally includes the following com-
ponents, shown in Figure 2-10.

a. An Input/Output Buffer consisting of up to
16 flip-flops for temporary storage of data to be
transferred in or out, so that it is not necessary
to tie up a working register during the relatively
long transfer periods. The actual number of Buffer
bits, from 1 to 16, will depend on the device for
which the interface is intended. Data is transferred

02357-2

Model 2116A
Volume One

INTERFACE CARD

L]
INPUT/OUTPUT 7
BUFFER

TO
COMPUTER

LOGIC
P AND A/B
FLAG FLIP-FLOP ANDA/B

CONTROL
FLIP-FLOP M

CABLE
FROM
EXTERNAL
DEVICE

02116-A-8

Figure 2-10. Components of Typical Input/Output
Interface Card

to the Buffer from the A or B Registers by OTA or
OTB instructions, and is brought in to the Aor B
Registers from the Buffer by LIA, LIB, MIA, or
MIB instructions. If the Buffer is less than 16 bits
in length, data is transferred to or from the least
significant bits of the A or B Registers. (One ex-
ception: with the HP 2752A Teleprinter, the single
bit is transferred in to Bit 7 or out from Bit 0 of the
A or B Registers. Other exceptions exist.)

b. An input/output Flag flip-flop, which will be
set by a signal from the external device when the
device has completed an operation. The Flag may
also be set, if desired, by program instruction (STF).
Once set, the Flag remains set until reset by a clear
instruction (CLF or H/C bit). Provided it is itself
not inhibited by the set Flag of a higher priority
device, or otherwise disabled (c), the Flag, when set,
inhibits all interrupts for devices having lower
priority. It will cause an interrupt after the current
machine phase (see Paragraph 2-113, Interrupt Struc-
ture). Successive interrupts for one device may
occur on receipt of a number of Flag signals without
executing a Clear Flag instruction, thus making it
possible to inhibit lower priority devices indefinitely
until a desired number of high-priority transfers
have been completed. The Flag can be set and
cleared even if its interrupt capability is inhibited
or disabled, and may be tested by SFS or SFC
instructions.

c. A Control flip-flop to command or enable the
external device to perform its input or output opera-
tion. In addition, the Control bit controls the in-
terrupt capability for that particular device; i.e.,
unless the Control flip-flop is set, a received Flag
cannot cause an interrupt, nor can it inhibit the
interrupt capability of any other device in the pri-
ority string. Thus the Control bit, when set, ef-
fectively “‘turns on’’ the individual input/output
channel.

02357-2

Section II
Paragraphs 2-112 to 2-114

2-112, SELECT CODE ASSIGNMENTS. As mentioned
previously in Paragraph 2-85, Bits 5 through O of
the Input/Output instructions form a Select Code to
specify one of 64 possible input/output devices or
functions. Of the 64 Select Codes, some are reserved
for specific uses while others are available for
assignment to any optional input/output device. Table
2-2 lists these assignments, and gives the correspond-
ing interrupt location {i.e., the location containing
the instruction to be executed when interrupt ocecurs).
The first five (octal Codes 00 through 04) are re-
served for non-interrupting functions. Note that
Select Code 00 is the access to the master Interrupt
Enable flip-flop; a STF instruction with this Select
Code enables the interrupt systern, and a CLF in-
struction disables the interrupt system. Select Code
01 is assigned to the Switch Register when using
input instructions (LIA, LIB, MIA, MIB), permitting
the program to enter the Switch Register setting into
the A or B Registers; when using instructions con-
cerning the Overflow register (STO, CLO, SOC, SOS},
Select Code 01 is assigned to the Overflow register.
Select Code 05 is the highest priority interrupt,
reserved for power failure interrupt, and 02, 03, 06,
07 are reserved for use by Direct Memory Access
Option M11; interrupts to 00006 and 00007 occur
when the assigned DMA channel has completed its
block transfer in or out of memory. The next 55
Codes (10 through 76) are used for external devices
capable of causing an interrupt, with decreasing
priority. The last Select Code, 77, is reserved for
an interrupt caused by a program attempt to alter
the contents of a memory location protected by
Memory Protect Option M1l. A plug-in slot is re-
served in the HP 2116A main frame for Select
Code 77.

Table 2-2. Select Code Assignments

Select
Code | Interrupt
(Cctal)| Location Assignment
00 None Interrupt System Disable/Enable
01 None Switch Register or Overflow
02 None DMA Channel 1 Initialize
03 None DMA Channel 2 Initialize
04 None Not Assigned
05 00005 Power Failure Interrupt
06 00006 DMA Channel 1 Completion.
Interrupt
07 00007 | DMA Channel 2 Completion
Interrupt
10 00010 | I/O Device, highest priority
etc,
thru
76 00076 | I/O Device, lowest priority
i 00077 Memory Protect Interrupt

2-113. INTERRUPT STRUCTURE.

2-114. OPERATION. On Computer command (Set
Contrel instruction STC), one or more external

2-13

Section II
Paragraphs 2-115 to 2-118

devices begin their read or record operations, putting
data into (input) or taking data from (output) the
Input/Output Buffer on each individual interface card.
During this time, the Computer may continue running
a program, or may be programmed into a waiting
loop to wait for a specific device. On completion of
the read or record operations, each device returns
an ‘‘operation completed’’ signal (Flag) to the Com-
puter. The Flags are passed through a priority
network (Paragraph 2-119), which allows only one
device to be serviced regardless of the number of
Flags simultaneously present. The Flag with the
highest priority causes an interrupt at the end of the
current machine phase, switching the Computer into
the Interrupt phase (Paragraph 2-18), except under
any of the following circumstances.

a. Interrupt System disabled (Paragraph 2-112),
or device interrupt disabled.

b. Computer in HALT mode. SINGLE CYCLE
pushbutton cannot step the Computer into the In-
terrupt phase.

¢. JMP Indirect or JSB Indirect not fully ex-
ecuted. These instructions inhibit all interrupts
until the instruction (plus one phase of the succeeding
instruction) is completed.

d. Instruction in an interrupt location not fully
executed, even if of lower priority. Any interrupt
inhibits the entire interrupt system until one in-
struction (plus one phase of the succeeding instruc-
tion) has been completed. (In the case of a multi-
level indirect instruction, the interrupt system will be
re-enabled after two Indirect phases; JMP Indirect
and JSB Indirect are exceptions and will be fully
executed.)

e. Direct Memory Access Option in process of
transferring data. Exception: power failure control
can interrupt a DMA transfer.

f. The current instruction is one which may
affect the priorities of input/output devices (STC,
CLC, STF, CLF). The interrupt in this case must
wait until the end of the succeeding machine phase.

2-115. When interrupt occurs, the Computer puts the
Select Code number of the interrupting device into
the M-Register (with extra zeros to specify page
Zero), thus causing the next instruction to be read
from the memory location having the same number
as the Select Code. This location in memory is
referred to as the ‘‘interrupt location’’, and is re-
served for that particular device. Example: a
device specified by a Select Code of 10 will interrupt
to (i.e., cause execution of the contents of) memory
location 00010. The instruction in the interrupt
location will usually be a jump (JSB) to an input or
output subroutine.

2-14

Model 2116A
Volume One

2-116. To prevent external devices from running
when Computer power is first turned on, pressing the
POWER pushbutton automatically clears all Control
bits, resets the Interrupt Enable flip-flop (disabling
the interrupt system), and sets all device Flags.
Pressing the PRESET pushbutton accomplishes the
same function when the Computer is on (but not when
running, since the control switches are disabled).
Therefore, before any device can operate with the
Computer, it is necessary for the program to set
Interrupt System Enable and (depending on the type
of device) clear the individual Flag bit and/or set
the individual Control bit.

2-117, INPUT INTERRUPT. The typical operation
sequence for an input interrupt involves the following
steps.

a. A STC instruction, usually accompanied by
CLF, sends a command (equivalent to ‘‘read’’, ‘‘en-
code’’, or ‘‘reset’’ in HP digital measuring equip-
ment) to the external device.

b. The device reads its input, then puts the data
into the Input/Output Buffer on the interface card
(Paragraph 2-111).

c. Simultaneously, the device supplies a Flag
signal (equivalent to ‘‘record’”’ or “‘print’’ commands
in HP digital measuring equipment).

d. The Flag is converted to an interrupt request
by the device interface card.

e. The resulting interrupt causes a service sub-
routine for that device to begin, temporarily suspending
operation of the main program.

f. The service subroutine enters data from the
Buffer into the A or B Register, then returns control
to the main program.

2-118. OUTPUT INTERRUPT. Thetypicaloperation
sequence for an output interrupt involves the follow-
ing steps.

a. An OTA or OTB instruction puts data from the
A or B Register into the Input/Output Buffer.

b. STC instruction sends a command (equivalent
to ““record” or ‘‘print’’ commands in HP digital
recording equipment) to the external device.

c. The device accepts (records) the data cur-
rently in the Buffer.

d. After the data has been accepted, the device
returns a flag signal (equivalent to the end of a
‘‘holdoff’’ or ‘‘inhibit’’ signal in HP digital recording
equipment) to the Computer.

02357-2

Model 2116A
Volume One

e. The Flag is converted to an interrupt request
by the device interface card.

f. The interrupt causes a service subroutine for
that device to begin.

g. The service subroutine loads new data into the
Buffer, repeating the sequence.

2-119. PRIORITY. The priority network gives high-
est interrupt priority to Select Code 05, reserved for
power failure control interrupt, and decreasing pri-
ority to Select Codes in order from 06 through 77.
The transfer of data by the two optional Direct
Memory Access (DMA) channels (which transfer data
directly to and from memory by inserting a special
memory cycle, rather than by interrupt to a service
subroutine) effectively have priorities between Select
Codes 05 and 06, since they can inhibit all interrupts
except power failure control. DMA Channel 1 has
priority over DMA Channel 2.

2-120. A set Flag inhibits all Flags below it on the
priority string, and once this Flag is cleared, the
next lower can then interrupt. A service subroutine
for any device can be interrupted by a higher priority
device; then, after the higher Flag is cleared, the
subroutine may continue. In this way, it is possible
for several service subroutines to be in a state of
interruption at one time; each will be permitted to
continue when the higher priority Flag is cleared.
All service subroutines normally end with a JMP
Indirect instruction to return the Computer to the
point of interrupt.

2-121, TRANSFER RATE. Up to 60,000 transfers
per second, limited by length of service subroutine.

2-122. PROCESSOR OPTIONS.

2-123. The following Options are all capable of being
installed in the field. They consist of one or more
plug-in cards, and in the case of Option M4, an
additional memory module as well. Other processor
Options are available, as either standard or custom
modifications; consult the HP 2116A Technical Data
sheet or a Hewlett-Packard field office.

2-124. 8K MEMORY. Option M4. Comprises a set
of memory addressing cards and additional 4096-word
core module, expanding memory of the HP 2116A from
4096 to 8192 words. Cards and module are installed
in the HP 2116A main frame.

2-125. MEMORY PARITY CHECK. Option M2. Per-
mits parity checking within memory. Odd parity is
used. Option M2 consists of one plug-in card for
standard 4K memory and optional 8K memory. For
larger memories, an additional card is required for
each 8K of memory.

02357-2

Section I
Paragraphs 2-119 to 2-133

2-126. MEMORY TEST. Option M3. Enables mem-
ory to be tested independently of program control.
Consists of one plug-in card.

2-127. INPUT/OUTPUT OPTIONS.

2-128. Input/output options for the HP 2116A Com-
puter, identified by Interface Kit accessory numbers,
consist of a combination of plug-in cards, intercon-
necting cables, and appropriate software. Table 2-3
on the following two pages summarizes some of the
available standard input/output options, and the follow-
ing paragraphs briefly describe the capabilities added
by these options. More detailed information will be
found in the Input/Output System Operation Manual,
Volume Three.

2-129. In many cases, as indicated in Table 2-3, an
optional Interface Kit is designed to operate withmore
than one kind of peripheral device, or with different
versions of a device. An example is the HP 12544A
Interface Kit, for which the HP 5245L Electronic
Counter and HP 2801A Quartz Thermometer are listed
as typical devices; however, the range of compatible
devices can include other 8-digit devices of similar
output.

2-130. In some cases, one peripheral may be associ-
ated with more than one interface. An example is the
HP 2401C Integrating Digital Voltmeter, which re-~
quires one interface (HP 12541A) to transfer its data
into the Computer, and another interface (HP 12533A)
to accept function commands from the Computer.

2-131. Most Input/Output Options require only one
card. This card by itself has no definite Select Code
assignment or interrupt priority. Plugging the card
into any of the 16 general purpose input/output slots,
each of which has a Select Code assignment, auto-
matically gives the external device an interrupt
priority, according to the Select Code of the slot.

2-132. As shown in Figure 2-11, each of the input/
output slots (bottom row of cards in the Computer)
actually has two Select codes available, although
usually only one is used by the interface cards.
Some options, such as ‘“HP 12531A: Teleprinter
Input/Output’’, require two Select Codes and there-
fore require a Priority Jumper card in the adjacent
slot for continuity of the priority string. (There can
be no gaps in the priority string; continuity is re-
quired from Select Code position 10 up to the last
used Select Code.)

2-133. For more than 16 input/output cards, an HP
2150A Extender Module is required. This is a
separate rack-mount module which is similar in
physical dimensions and internal construction to the
Computer main unit, It contains its own power

2-15

Section II
Table 2-3

Model 2116A
Volume One

Table 2-3. Input/Output Options

INTERFACE ACCESSORY KIT
(Cards, Cable, Software)

OPTION FUNCTION
(Kit and Device)

HP 12531 A Interface Kit

Teleprinter Input/Output

HP 12532A Interface Kit

High- Speed Punched Tape Input

HP 12533 A Interface Kit

Digital Voltmeter Program Output for HP 2401C

HP 12534 A Interface Kit

Digital Voltmeter Program Output for HP 3460A

HP 12535A Interface Kit

Crossbar Scanner Program Output

HP 12536 A Interface Kit

High- Speed Punched Tape Output

HP 12537A Interface Kit

Incremental Magnetic Tape Output

HP 12538A Interface Kit

Magnetic Tape Input/OQutput

HP 12539A Interface Kit

Time Base Generator

HP 12540 A Interface Kit

Data- Phone Interface

HP 12541A Interface Kit

Digital Voltmeter Data Input (HP 2401C)

HP 12542A Interface Kit

Digital Voltmeter Data Input (HP 3460A)

HP 12543 A Interface Kit

Digital Voltmeter Data Input (HP 3440A)

HP 12544 A Interface Kit

Counter/ Thermometer Data Input (8 digits)

HP 12545A Interface Kit Counter Data Input (7 digits)
HP 12546 A Interface Kit Counter Data Input (6 digits)
HP 12547A Interface Kit Counter Data Input (5 digits)
HP 12548A Interface Kit Counter Data Input (4 digits)

HP 12549 A Interface Kit

General Purpose Register (16 bits)

2-16

02357-2

Model 2116A Section II
Volume One Table 2-3

Table 2-3. Input/Output Options (Cont'd.)

PERIPHERAL DEVICE

DEVICE DESCRIPTION

HP 2752A Teleprinter

HP 2754 A Teleprinter

Modified Teletype ASR-33 Automatic Send-Receive Set. Floor-
mount unit. Includes keyboard, tape reader, tape punch, and
printer. Transfer rate: 10 characters per second.

Modified Teletype ASR-35 Automatic Send-Receive Set. Same
as HP 2752A above except for heavy-duty usage.

HP 2737A Punched Tape
Reader

HP 2737B Punched Tape
Reader-Spooler

Modified Remex (Rheem) photoelectric reader. Rack-mount unit,
panel height 7 inches. Transfer rate: 300 characters per second.

Same as HP 2737A above except spooling capability is added.
Spool capacity 200 feet of 4 mil tape.

HP 2401C Integrating
Digital Voltmeter

Measures dc voltages in 5 ranges from 100 mv to 1000v full
scale, up to 50 reading per second. BCD output. Panel height 7in.

HP 3460A Digital Voltmeter

Measures dc voltages in 4 ranges from 1v to 1000v full scale, up
to 15 readings per second. BCD output. Panel height 5-1/4 in.

HP 2911 Guarded Crossbar
Scanner

Scans 200 3-wire analog channels for input to digit measuring
device. Any channel accessed in less than 30 ms under computer
control. BCD channel identification. Two units, total panel
height 14 inches.

HP 2753A Tape Punch

Modified Tally P-120 Tape Punch, with spooling capability. Re-
cords 5 through 8-level codes at 120 characters per second.
Panel height 14 inches.

Kennedy 1406 Incremental
Magnetic Tape Transport

Kennedy 1506 Incremental
Magnetic Tape Transport

Write only. Records on 1/2-inch magnetic tape. IBM compatible.
Bit density 200 bpi. Reel capacity 1200 feet. Transfer rate 4000
characters per second. Panel height 12-1/4 inches.

Same as Kennedy 1406 above, except reel capacity is 2400 feet,
panel height is 24-1/2 inches.

HP H26-2020A Magnetic
Tape Unit

HP H26-2020B Magnetic
Tape Unit

Read and write on 1/2-inch magnetic tape. Bit density 200 bpi.
Recording speed 30 ips. Transfer rate 6000 characters per sec-
ond. Three units, total panel height 42 inches. IBM compatible.

Same as HP H26-2020A above, except transport has switch-
selectable bit densities of 200 and 556 bpi.

None

Card generates real time intervals in decade steps from 0.1 ms
to 1000 sec. Used for timed interrupts.

Bell System Data Set 103A

Transmits and receives bit-serial data over telephone lines at a
rate of 10 character per second.

HP 2401C Integrating
Digital Voltmeter

See HP 2401C description above.

HP 3460A Digital Voltmeter

See HP 3460A description above.

HP 3440A Digital Voltmeter

Measures dc or ac voltages, currents and resistances with se-
lectable plug-in units, up to 5 readings per sec. Panel: 5-1/4 in.

8-digit bcd outputs

HP 5245L Electronic Counter. HP 2801A Quartz Thermometer.

T-digit bed outputs

HP 52441, 5275A Electronic Counters.

6-digit bed outputs

HP 5201/02/03L, 5232A, 5532A 5233L Electronic Counters.

5-digit bed outputs

HP 5212A, 5512A, 52141, 5223L Electronic Counters.

4-digit bed outputs

HP 5211A/B Electronic Counters.

Various

Input Device. True level: external closure to ground to draw
12 ma from Card's +12v 1K source. False level: open circuit
able to withstand +12v.

Output Device. True level: internal closure to ground, to draw
12 ma from +12v 1K source in device. False level: open circuit,
able to withstand +12v.

02357-2

2-17

Section II
Paragraphs 2-134 to 2-140

supply. Since main control logic will not be present
in the HP 2150A, all three plug-in card rows are
available for expanding either or both memory and
input/output capability. The HP 2150A alone is in-
complete as an extender, and requires one or more
of the following Options to complete the extension
facility. Options M1 and M2 are available only with
initial order; M3 can be added at any time.

a. Option M1 for the HP 2150A extends the
input/output capability of the Computer, allowing the
user to install up to 32 interface cards in the HP
2150A. (16 channels in the HP 2116A plus 32 channels
in the HP 2150A gives 48 channels total.) The Option
comprises four plug-in cards and two integral con-
necting cables.

b. Option M2 for the HP 2150A extends the
Computer’s memory capacity by adding 4K (4096
words) of memory. This, combined with 8K in the
HP 2116A, gives 12K overall. The Option comprises
a set of plug-in memory addressing cards, two
integral connecting cables, and a 4K memory module.

c. Option M3 adds a second 4K of memory to an
HP 2150A-M2. This, combined with Option M2 and
8K in the HP 2116A, gives 16K overall. The Option
comprises a set of plug-in memory addressing cards
and a 4K memory module.

2-134. TELEPRINTER INPUT/OUTPUT. The simp-
lest configuration of an HP 2116A Computer system
is provided by a combination of the HP 2752A Tele-
printer (modified Teletype ASR-33) and accessory In-
terface Kit HP 12531A. The Teleprinter combines a
typewriter, punched tape reader and tape punch. Data
and instructions may be entered from punched tape
or the keyboard. Output information is recorded on
the typewriter, and may be recorded simultaneously
on punched tape. The Teleprinter operates at 10
characters/second for both data entry and data re-
cording. Where heavy use of the Teleprinter is
anticipated, exceeding say 5 hours per day or 30
hour per week, a heavy duty HP 2754A Teleprinter
(modified Teletype ASR-35) is recommended. This
device uses the same interface. The HP 2752A and
HP 2754A Teleprinters perform the same functions
and operate at the same speed.

2-135. HIGH-SPEED PUNCHED TAPE INPUT. For
rapid entry of punched tape programs and data into
the HP 2116A Computer, a 300 characters per second
HP 2737A Punched Tape Reader, with its Interface
Kit HP 12532A, is available. The reader is equipped
with a container for the tape to be read. The same
reader, equipped with supply and take-up spools, is
available as HP 2737B.

2-136. DATA SOURCE INTERFACES. A datasource
interface card, with special cables, is available to
permit the HP 2116A to operate with virtually all
Hewlett-Packard instruments providing a digital data
output in binary or binary-coded decimal, positive or
negative-true form. This encompasses a very broad

2-18

Model 2116A
Volume One

variety of instruments, principal examples being
digital voltmeters, electronic counters, nuclear
scalers, and quartz thermometers. The same inter-
face card, which accepts 32 bits (8 bed digits), is
used with all these instruments (one card for each
instrument) but different interconnecting cables are
involved. Therefore, for simplicity in assembling a
system, the interface card coupled with the appro-
priate cable is listed as anoption for a specific group
of data sources, as Interface Kits HP 12541A through
HP 12548A (see Table 2-3). Since these instruments
require no modification to interface their data output
with the HP 2116A, they can be ordered directly from
the Hewlett-Packard catalog.

2-137. DIGITAL VOLTMETER PROGRAMMERS. In
measurement systems, when using digital voltmeters
as data inputs to the HP 2116A, the computer may
select voltmeter functions such as mode (dc/ac volts,
ohms), range, and resolution (sample period). Kit
HP 12533A comprises the interface card for this pur-
pose, together with the interconnecting cable for the
HP 2401C Integrating Digital Voltmeter. Kit HP
12534A furnishes the same card, but a different cable,
for the HP 3460A Digital Voltmeter. No additional
interface circuitry is required when these volt-
meters are used with their accessory signal amp-
lifiers and signal converters. The Digital Volt-
meter Programmer interface card provides 20 output
lines, each capable of switching 200 ma from an
external 35 volt negative supply.

2-138. CROSSBAR SCANNER PROGRAMMER. For
multiple-channel analog measurements with the HP
2116A, a scanner -is necessary to inter-connect the
signal input channels with one or more analog-to-
digital converters, as required. Any one signal path
is enabled at a time on command from the HP 21164,
which selects the input channel to be measured and
diverts it to the appropriate a-d converter. It also
initiates a ‘‘measurement delay’’ before sampling
(encoding) commences, if such is necessary for con-
verter settling. The interface card and cable for
programming an HP 2911 Guarded Crossbar Scanner
are provided under Kit HP 12535A.

2-139. MAGNETIC TAPE INPUT/OUTPUT. Inter-
face Kit HP 12538A enables the HP 2116A Computer
to record on and read from 1/2 inch, 7-channel,
NRZI, IBM-compatible magnetic tape with HP H26-
2020A and HP H26-2020B Magnetic Tape Units. The
HP H26-2020A Magnetic Tape Unit reads and records
at 200 bpi density. Tape speed is 30 ips, providing
a data transfer rate of 6000 characters/second. With
the dual-density model HP H26-2020B, the Tape Unit
operates at either 200 or 556 bpi density, switch-
selectable., Tape speed is also 30 ips, providing a
data transfer rate of 16,700 characters per second
when set to operate at 556 bpi.

2-140. HIGH-SPEED PUNCHED TAPE OUTPUT. Data
output of the HP 2116A Computer can be recorded
(asynchronously) on punched tape at 120 characters/
second with an HP 2753A Tape Punch and Interface
Kit HP 12536A. This device includes a tape spooler,
which accepts approximately 1000 feet of tape.

02357-2

)

Model 2116A
Volume One

MEMORY

LOGIC

INPUT/OUTPUT

13 1415 16 17 20 21 22 23 24 25 26 27

[

02116 —A-9

I/0 PLUG-IN OPTIONS
(with select codes)

Figure 2-11. Input/Output Option Locations
(Front View)

2-141. TIME BASE GENERATOR. The Time Base
Generator, Interface KitHP 125394, provides the com-
puter with a train of program interrupts at real time
intervals. It consists of a crystal oscillator and dec-
ade frequency dividers, contained onone I/O card. The
interval between interrupts is computer-selectable
in decade steps from 100 microseconds to 1000
seconds (approximately 16 minutes). Time-of-day,
if required, is obtained from this real time reference
by software. Accuracy is better than 1/2 second per
24-hour day, under typical operating conditions.
(aging rate <2/104 per week; temperature effect
<2/10%, +15 to 35°C.)

2-142. INCREMENTAL MAGNETIC TAPE OUTPUT.
Data output of the HP 2116A Computer canbe recorded
on 1/2 inch magnetic tape in 7-channel, NRZI, IBM-
compatible format with a Kennedy 1406 Incremental

02357-2

Section I
Paragraphs 2-141 to 2-148

Magnetic Tape Transport when used with the HP
12537A Interface Kit. No provision for tape read-
ing. Data is recorded with a density of 200 bpi, at
a speed of 400 characters/second. The Kennedy 1406
uses side-by-side 8-1/2 inch reels to economize in
panel height (12-1/4 inches). Reel capacity is 1200
feet of tape. Kennedy Model 1506, which uses the
same Interface Kit, is essentially the same transport,
but features 10-1/2 inch, 2400-fcot capacity reels.
(Panel height 24-1/2 inches.)

2-143. DATA-PHONE INTERFACE. Informationcan
be transferred in or out of the HP 2116A Computer
over the telephone system with Interface Kit HP
125404, which consists of the data interface card and
interconnecting cable to operate with a Bell Telephone
Data Set 103A. Data transfer occurs bit-serially at
a rate of 10 eight-bit characters/second.

2-144. Any of the above Input/Output Options can be
added, upgraded, or deleted, and service priorities
changed, on a plug-in basis. No wiring changes to
the Computer are involved. Input/output software
(following paragraphs) also is modular, and a soft-
ware configurator (Paragraph 2-163) is furnished
which allows the user to change his software operat-
ing system to handle different hardware configurations
with minimal programming effort.

2-145. SOFTWARE.
2-146. GENERAL.

2-147. The HP 2116A Computer is supported by a
full range of software, normally furnished in the
form of punched paper tape. Asstandardaccessories,
the following software packages are supplied with all
HP 2116A Computers, unless additions or deletions
are otherwise specified. All are operable with the
minimum HP 2116A system configuration; i.e., 4K
memory and Teleprinter input/output. Printed list-
ings of these programs are furnished as part of the
system documentation.

HP 2116A Basic Control System
HP 2116A Symbolic Editor

HP 2116A Assembler

HP 2116A Fortran Compiler

HP 2116A Fortran Library

HP 2116A System Input/Output
HP 2116A Hardware Diagnostics

2-148. Each of the software packages listed above
consists in most cases of a number of individual
tapes. The number of tapes furnished depends on
the Options purchased with a system; Driver tapes
and Test tapes are furnished as accessories to inter-
face Options when purchased, either with the initial
order or with field installation. Table 2-4 lists all
the standard tapes furnished with a typical system,
consisting of an HP 2752A Teleprinter, HP 2753A
Tape Punch, and HP 2737A Tape Reader. In this
case, 28 tapes would be furnished for Computers

2-19

Section II
Paragraph 2-149

Model 2116A
Volume One

Table 2-4. Standard HP 2116A Software

HP ACCESSORY NUMBER
TAPE DESCRIPTION
4K Systems 8K Systems
*Basic Control System
Input/Output Control HP 20000A (Same as 4K)
Relocating Loader HP 20001A "
Debug Routines HP 20002A "
Prepare Control System HP 20003A "
**BCS Teleprinter Driver HP 20004A "
**BCS Tape Reader Driver HP 20005A "
**BCS Tape Punch Driver HP 20006A "
Symbolic Editor HP 20100A "
Assembler HP 20101A "
Fortran Compiler: Pass 1 HP 20102A HP 20106A
Pass 2 HP 20103A HP 20107A
Pass 3 HP 20104A None Required
Pass 4 HP 20105A None Required
Fortran Library (Math, Floating point, HP 20200A (Same as 4K)
Formatter)
*System Input/Output
System Input/Output Dump HP 20301A (Same as 4K)
**3I0 Teleprinter Driver HP 20302A HP 20305A
**SI0 Tape Reader Driver HP 20303A HP 20306A
**8I0 Tape Punch Driver HP 20304A HP 20307A
Hardware Diagnostics
Alter-Skip Instruction Test HP 20400A (Same as 4K)
Memory Reference Instruction Test HP 20401A "
Shift-Rotate Instruction Test HP 20402A "
Memory Address Test (Low Core) HP 20403A "
Memory Address Test (High Core) HP 20404A "
Memory Checkerboard Test (Low Core) HP 20405A "
Memory Checkerboard Test (High Core) HP 20406A "
**Teleprinter Test HP 20407A "
**Tape Reader Test HP 20408A "
**Tape Punch Test HP 20409A "

* A configured tape is furnished with the initial shipment both for the System Input/Output and for the
Basic Control System, in addition to the individual tapes listed above. These two additional tapes,
unique to each system, do not have HP Accessory Numbers; they are identified only by System
Serial number.

** Driver tapes and Test tapes are furnished for each type of device in a system. The nine tapes listed
above are for a typical system.

having 4K memories. For 8K or larger memory
Computers, 26 tapes would be furnished, since the
Fortran compiler requires only two Pass tapes
instead of four. (Note: the list of Standard Software
given in Table 2-4 may change from time to time;
check the HP 2116A Software Catalog, available
from Hewlett-Packard Field Sales Offices, for latest
information.) In addition to these standard tapes,
two configured tapes, incorporating actual system
device assignments, are furnished with the initial
shipment, one for the System Input/Output Drivers
and one for the Basic Control System. The System
Input/Output (SIO) Drivers primarily provide input/
output capability for the Assembler, Symbolic Editor,
and Fortran compiler, but may also be used as
desired in user’s programs. The Basic Control
System, on the other hand, is primarily intended to

2-20

provide a complete software input/output system for
user’s programs (see Paragraph 2-159). These two
tapes are unique to each system, and do not have HP
Accessory Numbers and are not listed in the Software
Catalog. Subsequent reconfiguring of System Input/
Output and the Basic Control System, if desired, is
easily accomplished by the user, with the aid of
supplied software (System Input/Output Dump, and
Prepare Control System).

2-149. TAPE IDENTIFICATION. Eachsoftware tape
is separately identifiable by description and HP
Accessory Number, labeled on both the tape container
and the tape itself. The letter atthe end of the number
identifies a particular version of the tape (e.g., B
supersedes A). A detailed list of the software packec
with the system is given in the Software Installatior

02357-2

Model 2116A
Volume One

Record, supplied with the system documentation at
the front of Volume Four. When ordering new or
duplicate tapes (or documentation), the latest appli-
cable version will automatically be furnished. Soft-
ware is ordered through Hewlett-Packard Field Sales
Offices.

2-150. SOFTWARE CATALOG. A fee is charged
for all software, except for the one set of standard
software tapes (paper only) defined in the preceding
paragraphs, included with the Computer (mylar tapes
are extra cost). The HP 2116A Software Catalog,
which is a supplement to the HP 2116A Computer
Technical Data sheet, lists prices for all available
software, including binary tapes, source tapes, mylar
tapes, and documentation. In addition to the standard
software packages listed in Paragraph 2-147, Hewlett-
Packard maintains a constantly growing library of
HP 2116A programs, and new additions will be added
to the Software Catalog. The following paragraphs,
to the end of this Section, give a brief description of
the standard software packages supplied with the
Computer.

2-151. ASSEMBLER.

2-152. The HP 2116A Assembler is a program de-
signed to convert a symbolic source program into
either absolute or relocatable binary machine in-
structions, optionally selectable by the programmer.
Basically, the Assembler provides a means of using
the Computer itself to relieve the programmer from
the - tedious job of coding each instruction of his
source program in binary machine language. By
reading an input prepared in symbolic form by the
programmer (using the 3-letter mnemonics defined
under Paragraph 2-52, plus special Assembler pseudo-
instructions) the Computer can produce (assemble)
the full 16-bit binary representation of each instruc-
tion. If a relocatable output is to be prepared, the
programmer need not be concerned about actual
memory addresses, since the Relocating Loader
(Paragraph 2-162) will assign these.

2-153. The Assembler is contained on a single spool
of punched paper tape which, when loaded into the
Computer, resides in memory throughout the assem-
bly process. To use the Assembler, the Teleprinter
Option is required (or an equivalent system) to read
the user’s source program into the Computer, punch
the assembled result on tape, and print out Error
Messages. System Input/Output Drivers (see Table
2-4) are also required in order to usethe Assembler.
Two or three passes of the source tape are required,
depending on whether or not a printed listing of the
assembled program is desired.

2-154. FORTRAN.

2-155. HP 2116A Fortran is an extended version of
ASA (American Standards Association) Basic Fortran;
source programs written according to ASA Basic
Fortran specifications can be compiled and executed
on the HP 2116A Computer. Fortran, being a ‘‘com-
piler’”’ language, as opposed to ‘‘assembler’’language,

02357-2

Section I
Paragraphs 2-150 to 2-160

provides even greater user convenience since it is
still further removed from binary machine language.
Whereas the Assembler requires a statement for
each machine instruction, item for item, Fortran
accepts statements in a form resembling algebraic
formulas (hence the name FORmula TRANSslation).
Each Fortran statement may result in a large number
of machine instructions.

2-156. HP 2116A Fortran is a four-pass system for
Computers having 4K memory; this reduces to two
passes for 8K Computers. The compiler is contained
on several individual tapes, one for eachofthe passes.
In addition, at least one System Input/Output Driver
is required (see Table 2-4). The output of the com-
pile process is a relocatable machine language object
program which can be loaded and executed under
control of the Basic Control System.

2-157. SYMBOLIC EDITOR.

2-158. The HP 2116A Symbolic Editor is a program
which enables use of the Computer to simplify the
correction or updating of a user’s Assembly language
or Fortran language program (or any other symbolic
program), thus avoiding the process of manually re-
punching the entire program off line. The Symbolic
Editor produces an updated tape from the source
tape and change instructions. Individual characters
and entire source statements can be inserted, de-
leted, or replaced. The Symbolic Editor will also
provide a listing of a symbolic file, sequentially
numbering the statements. Diagnostic messages are
produced for errors detected in the format of the
edit control statements. System Input/OutputDrivers
(see Table 2-4) are required in order to use the
Symbolic Editor.

2-159. BASIC CONTROL SYSTEM.

2-160. The HP 2116A Basic Control System provides
a complete software facility for input/output opera-
tions, so that programs written by the user need not
include input/output subroutines within the program.
This permits input/output statements in source pro-
grams to be general in nature (i.e., not tied to
specific devices), and allows easy modification when
input/output requirements change. When running
relocatable programs, the Basic Control System will
normally be present in the last page of memory, and
its subroutines are available by call from any point in
memory. To call input/output operations, the user
programs a five-word request in Assembly language.
The request includes the function to be performed
(read or write), the unit reference, a reject address
(in case the unit is not available), a buffer address
(the first location in core in which the data is stored
or will be stored), and a buffer length (the number of
words or characters that are to be transmitted). The
Basic Control System interprets the request, initiates
the data transfer, and returns control to the program.
Interrupts which occur during or on termination of the
data transfer are processed entirely by the Basic
Control System; the program need not include interrupt
handling subroutines.

2-21

Section II
Paragraphs 2-161 to 2-165

2-161. The Basic Control System is modular in de-
sign, consisting of several programs which can be
combined to suit the user’s particular hardware
configuration. In addition to the individual tapes
(see Table 2-4), Hewlett-Packard furnishes with each
system a complete configured tape, loadable by the
Basic Binary Loader and ready for use.

2-162. For loading and running relocatable programs,
the routines required to be present in memory are:

a. Input/Output Control. This program super-
vises the transmission of data between the Computer
memory and input/output devices. It does this by
transferring control to selected subroutines (Input/
Output Drivers) on request by the program being run.

b. Input/Output Drivers. A Driver subroutine
consists of specific instruction sequences to operate
one external device, and to request interrupt of the
main program when the device is ready for servicing.
Driver subroutines are different for each type of
device in a hardware system. The Input/Output
Control program selects which Driver is to be used
with a particular device (initially set up by Prepare
Control System).

c. Relocating Loader. This programis required
for loading into memory relocatable user programs
produced by the Assembler and the Fortrancompiler.
(A ‘‘relocatable’” program is one which can be
shifted upward in memory a specified number of
locations relative to location zero. This provides
efficient loading of memory by minimizing or elimi-
nating gaps.) Features of the Relocating Loader
enable it to link a number of separately assembled
relocatable programs into an integrated unit, assign
indirect addressing and base page references, and
select and load referenced library subroutines.

2-163. Routines not required for loading or running
object programs but which are considered as part of
the Basic Control System are:

a. Debugging Routines. This is a program con-
sisting of several individual routines designed to help
check out a user-generated program. Separate
routines, which are individually selectable by typing
in request statements on the Teleprinter keyboard,
enable: printing of selected areas of memory (‘‘mem-
ory dump’’); executing and printing of selected sections
of the program (‘“program trace’’); modification of
selected areas of memory; execution of a program
and termination of the program when a specified
location or memory reference is used; and punching
of a program in an absolute binary format acceptable
to the Basic Binary Loader. The Debugging Routines
program is loaded by the Relocating Loader.

b. Prepare Control System. This is an inde-
pendent program used only to establish or change
the composition of the Basic Control System. The
desired Basic Control System components are read
into the Computer, and the Prepare Control System
instructions load the new Basic Control System into
the last page of memory. The new Basic Control

2-22

Model 2116A
Volume One

System is then punched out for a permanent record,
and space occupied by the Prepare Control System can
be used for other purposes. This program estab-
lishes the ‘‘equipment tables’” which Input/Output
Control uses to relate software input/output ref-
erences to specific hardware peripherals.

2-164. HARDWARE DIAGNOSTICS.

2-165. To assist theuser in hardware troubleshooting,
an HP 2116A Hardware Diagnostics package is fur-
nished with all HP 2116A Computers. The programs
in this package are separate and independent, and are
used in conjunction with maintenance information
given in the HP 2116A Installation and Maintenance
Manual (Volume Two) and, if available, with Memory
Test Option M3 (hardware option). Maintenance doc-
umentation gives procedures to determine that the
hardware system is capable of accepting and using
the HP 2116A Hardware Diagnostics programs. Then
the supplied software may be loaded and run according
to set procedures. Programs supplied (HP 20400A
through HP 20409A in Table 2-4) are: :

a. Instruction Tests. These tests check out all
instruction codes in groups, halting the Computer
when an instruction fails to perform its function.
The first test program checks out a few basic in-
structions (Alter-Skip), so that those instructions can
be used by the next testprogram (Memory Reference),
which in turn enables checking out the final group
(Shift-Rotate).

b. Memory Address Tests. A Low-Core Test
and a High-Core Test are supplied as separate test
programs, so that the program may be loaded at the
end of memory to check all core locations below the
test block, or it may be loaded at the bottom of mem-
ory to check all higher locations. Each Test checks
the addressing logic of a selectable section of mem-
ory, and halts when an error is detected. The display
on the Computer front panel is used to identify the
error.

c. Memory Checkerboard Tests. These Tests,
which also consist of a Low-Core Test and a High-
Core Test, verify that data is correctly stored in
memory and is correctly transferred to and from
the T-Register. Like the Memory Address Tests,
the Computer halts when an error is detected, and
identifies the error on the front-panel display.

d. Input/Output Tests. A separate test program
is supplied for each type of input/output device in a
user’s hardware system. For example, the HP 2752A
Teleprinter Test Program checks operation of the
print, punch, and read functions with the Computer.
After it is determined that the print function is
operating correctly, the program prints requests for
data to be typed in so that the punch and read functions
can be checked. Errors are indicated by a printout.
(Test programs for other devices require that a
message printing facility, such as provided by the
HP 2752A Teleprinter, be present in the hardware
system.)

02357-2

Model 2116A
Volume One

Section III
Paragraphs 3-1 to 3-6

| SECTION III
FUNDAMENTALS OF COMPUTER OPERATION

3-1. INTRODUCTION.

3-2. This Section describes how the HP 2116A Com-
puter manipulates information internally to execute the
basic instructions defined in the preceding Specifica-
tions section. In theinterestofusers without previous
computer experience, the material in this and the fol-
lowing Section is organized to begin at an elementary
level, and to progress on the basis of previously given
information, in the form of a training course.

3-3. The fundamental operations described in this
Section (and the following Section) are in practice near-
ly always accomplished with the aid of software and in-
put/output devices. However, for simplicity it will be
assumed that the Computer is an independent instru-
ment and will be operated only by front panel controls.
Additionally, it will be assumed for descriptive pur-
poses that the Computer runs slowly enough to observe
the operations step by step. When running, the HP
2116A Computer reads and executes each instruction
usually in 1.6 or 3.2 microseconds. Thusonly the be-
ginning and ending conditions are normaly readable on
the front panel display. (Note: itispossible to single-
step the Computer through each instruction, one phase
at a time, by using the SINGLE CYCLE pushbutton.
This technique will be used in Section IV.)

3-4. The Computer performs its operations solely by
instructions inserted into its memory by theuser. The
front panel controls therefore do not ‘‘operate’’ the
Computer, but rather are used for entering instructions
and datainto memory, and for initiating operation at the
starting instruction. Very basically, the overall op-
eration is:

a. The user enters instructions and data (all man-
ually set in binary coded numbersonthe 16 switches of
the SWITCH REGISTER) into the Computer’s memory,
using the LOAD ADDRESS and LOAD MEMORY push-
buttons.

b. When the program of instructions is complete in
memory andis ready to be run, the user entersthe ad-
dress of the starting instruction, which points the Com-
puter to the location in memory where this first in-
struction has been stored. The SWITCH REGISTER and
LOAD ADDRESS switches are used for this purpose.

c. The user presses the RUN pushbutton.

d. The Computer reads and executes the instruction
contained in the memory cell designated by the starting
address.

e. The Computer automatically continues to the next
and all succeeding instructions, operating on the in-
ternally stored data, until reaching a halt instruction.

f. The user, having prepared the instructions and
knowing where the computed answer is stored, reads
the result. (The LOAD ADDRESS and DISPLAY MEM-
ORY pushbuttons may be used to display the answer
on the front panel.)

02357-1

3-5. FRONT PANEL PRESENTATION.

3-6. To present the material of this Section in the
most practical form from the user’s point of view,
the descriptions will relate to the front-panel view
of the Computer. Figure 3-1 is a simplified block

MEMORY ADDRESS
TIMING DECODER
GENERATOR| READ/WRITE

A

Y X
MEMORY
-R
I-REG BITS
10-15
READ N\

————{ FUNCTION

r—<— STORE

TBUS

D
)
D
D
N

ADD
i

R
> AND
COMPL.
SHIFT

[t

S$BUS

INPUT/OUTPUT| 'N L SELECT CODE)
—* CcoNnTROL | our_
CONTROL
AND FLAG
02116-4-23 ICIF[BUFFER I rc—[F] BUFFER l
DATA | IN DATAV OuUT

Figure 3-1. HP 2116A Simplified Block Diagram

3-1

Section III
Paragraphs 3-7 to 3-14

diagram of the HP 2116A, showing the relationship
of the display registers. The block diagram, which
corresponds to the physical layout of the panel
(shaded blocks), will be used for descriptions of
register operations later in this Section.

3-7. As observed from Figure 1-1, information is
displayed in rows of 16 lights, numbered0 through 15,
and the Switch Register consists of 16 switches
similarly numbered. Each light or switch represents
a bit (condensed from “‘binary digit’’) in the binary
numbering system, where a light off or a switch down
is a ‘‘zero’’, and a light on or a switch up is a ‘‘one’’.
In the binary system, there are only two digits, 0 and
1, which are easily stored and manipulated by a
computer using bistable devices. Thus input infor-
mation which is applied to the Computer in binary
form (such as by the Switch Register) is said to be in
‘‘machine language’’ since the Computer can handle
these numbers directly without conversions of any
kind. For the user, however, binary numbers (such
as 1011010011101000) are difficult to read and use,
so the bits are grouped in threes for convenient
notation in the ‘‘octal’’ numbering system.

3-8. Thus it is seen at this point that before a dis-
cussion of computer operation can be presented, some
familiarity with both binary and octal numbering
systems, as well as with conversions to and from the
decimal system, is necessary. The remainder of
this Introduction (through Paragraph 3-39) provides
this basic information.

3-9. OCTAL NOTATION. There are five 3-bit
groups in each row of panel lights and the Switch
Register, with one bit remaining at the left end.
Since this last bit, Bit 15, is normally used for
special purposes (e.g., to indicate Direct/Indirect
addressing or +/- numbers), the following intro-
ductory paragraphs, through Paragraph 3-22, will
disregard this bit and will deal only with the 15 bits
numbered 0 through 14. The concept of using Bit 15
for signed numbers is introduced later in Paragraph
3-35.

3-10. In converting each group of 3 bits to an octal
digit, the binary significance of each bit is converted
to its absolute value, which is then considered to be
absent or present, depending on whether the bit is a
‘““zero’’ (light off) or a ‘‘one’’ (light on) respectively.
This is shown in Figure 3-2.

Model 2116A
Volume One

3-11. By various combinations of on and off states,
eight digits are possible, 0 through 7. The digits
8 and 9 never appear in the octal numbering system.
Figure 3-3 lists all eight binary/octal equivalents,
along with some examples of numbers as might be
read from an HP 2116A display register.

Binary Octal Interpretation Octal
000 = 0 - 0
001 = 1 = 1
010 = 2 -9
011 = 2 +1 = 3
100 = 4 = 4
101 = 441 - 5
110 = 442 - 6
11 = 442 +1 = 7
EXAMPLES
5 2 6 0 1
l[to1lot1o]110lo000]001
7 4 3 5 0
[t11]100]011]101]000
7 7 7 7 7
[tt11]ir1fr11fir1f111

REGISTER LIGHTS I. & ® I

Binary Significance 22 2! 20
Value if On ('"1") 4 2
Value if Off ("'0") 0 0 0

02116-4-10

Figure 3-2. Composition of Octal Digit
3-2

02116- A-11

Figure 3-3. Binary/Octal Conversions

3-12. As can be seen from the last example in
Figure 3-3, the largest possible number which can
be displayed by a register is 77777 (all lights on).
Since there are no 8’s or 9’s in the octal system, this
number must correspond to some lower value in the
decimal system (specifically 32767; method of con-
version given later under Paragraph 3-18). To avoid
confusion when numbers are written in more than one
numbering system, a subscripted digit is attached to
the number to identify the system used. Thus:

111111111111111, = 77777, = 32767,,.

3-13. The HP 2116A manuals will use these sub-
scripts or the word binary, octal, or decimal when-
ever such confusion may occur.

3-14. OCTAL COUNTING. When counting in the
octal system, the ‘‘carry’’ to the next more significant

02357-1

Model 2116A
Volume One

column occurs as rollover from 73 to Oy occurs.
That is, 104 follows 7,. The counting sequence in

octal is: .

00000

00001

00002

00003

00004

00005

00006

00007

00010

00011

00012

etec.

3-15. NUMBER CONVERSIONS.,

3-16. COMPARISON OF SYSTEMS. Integral and
fractional parts of a number are separated by a
‘‘decimal point” in the decimal system, an ‘‘octal
point’’ in the octal system, and a ‘‘binary point’’ in
the binary system. The significance of digitpositions
in a number in any system increases by positive
powers of the system’s base when going left from the
point, and decreases by negative powers of the system’s
base when going right from the point. This is shown
in Figure 3-4.

XXXX o XXX

%

Dec: X10° X10° X10' X10° X107 X107% X10°°
Oct: X8° X8 X8 Xx8° X8' X8?% X8

Bin: X2® X2% Xx2' Xx2° X271 x2% Xx27°

0216-A-12

Figure 3-4. Significance of Digits in
Three Systems

3-17. The information in Figure 3-4 provides the
basis for converting octal or binary to the decimal
system. The procedure is given in Paragraph 3-18.
The reverse conversion from decimal to octal or
binary is given in Paragraph 3-20.

3-18. CONVERTING TODECIMAL. Convertingoc-
tal or binary numbers to the decimal system consists
only of performing the individual multiplications in-
dicated in Figure 3-4 (digit times its significance)
for each of the digits inthe number, and then summing
the individual results. Thus the octal number 7654.321
has the decimal equivalent of:

02357-1

Section III
Paragraphs 3-15 to 3-21
7x8% = 7x512 = 3584.
6x82 =6x64 = 384,
5x8 =5x8 = 40.
4x%x8%=4x1 = 4,
3x8' =3x+ = .375
2x87=2x L = .03125
1x8°=1x1 = 001953125

4012.408203125

3-19. Using this method, the decimal equivalent of
the highest whole positive number which can be con-
tained in the HP 2116A’s registers is derived as
shown below. (Note: special constructions to repre-
sent larger, fractional, and negative numbers will be
discussed later.)

111111111111111, = 1 x 2" = 16384
1x2"% = 8192
1x2'2 = 4096
1x2'" = 2048
1x2'0 = 1024
1x2° = 512
1x28 = 256
1x27 = 128
1 x2¢ = 64
1x25 = 32
1x2% = 16
1x2% = 8
1x2?2 = 4
1x2 = 2
1 x20 = 1

321767,
T, = T x 84 = 28672
7 x 83 = 3584
7 x 82 = 448
7x8 = 56
7x8% = 7
32767,

3-20. CONVERTING FROMDECIMAL. Integraland
fractional parts of a decimal number require separate
operations when converting to the binary or octal
system. Because of this added complexity, the ease
of octal/binary conversion, and the large number of
operations required to construct a 15-bit binary
number, it is recommended to limit decimal con-
versions to octal only, and then to construct the
binary equivalent if necessary from the octal number.
No example of decimal-to-binary conversion is given
here, although the technique is identical to the
decimal-to-octal conversion shown.

3-21. Basically, the procedure for the integral part
of the number is first to divide the new base (8, if
converting to octal) into this part of the number,
stopping at the decimal point. The resulting number
is a whole number and a fractional remainder (e.g.,
32767+ 8 = 4095 plus a remainder of 7 eighths). The
remainder (7) becomes the least significant integer

3-3

Section III
Paragraphs 3-22 to 3-28

of the new number being constructed (i.e., immediately
to the left of the octal point). The whole portion
(4095) is again divided by the base (8), and the process
is continued until the whole portion is reduced to

zero.,
7
7
T

3-22. To convert the fractional part of a decimal
number to octal, multiply by the base and use the
whole portion of the resulting number as the first
digit to the right of the octal point. Continue by
multiplying the fractional part of the same resulting
number by the base again, to as many places of
accuracy as desired. Thus 0.135 decimal is approx-
imately:

. 135 .08 .64 .12 .96
x8 x8 x8 x8 x8

32767+ 8 = 4095 +
4095 - 8 = 511 +
511 + 8 = 63 +
63 -8 = 7 +
7+8 = 0 +

-] —]

g =3

7
\
7

1.080 0.64 5.12 0.96 7.68
L

I

- 10507,

3-23. ARITHMETIC OPERATIONS.

3-24. Since the Computer performs arithmetic
operations in binary and the user reads the numbers
in octal, fammiliarity with basic binary and octal
arithmetic is essential. The important rule to
remember when performing arithmetic in any num-
bering system is that all digits, whether written or
carried mentally, must be smaller than the system’s
base. Thus 2 or 3 cannot appear in the binary system
and 8 or 9 cannot appear in the octal system.

3-25. ADDITION. In the decimal system, a carry
is generated each time the addition in a column ex-
ceeds 9. Similarly, in the octal or binary systems,
a carry is generated each time the addition in a
column exceeds 7 or 1 respectively.

Decimal Octal Binary
Carries: 111 11 111
999 iy 111
+001 +001 +001
1000 1000 1000
Decimal Octal Binary
11
Carries: 222 222 IRRE
789 567 111
789 567 111
789 567 111
2367 2145 10101

Model 2116A
Volume One

3-26. To explain the latter octal addition, note that
when adding the rightmost column (3 sevens), the
total if adding decimal would be 21, which means that
the base (8) has been exceeded twice (i.e., 16 or
higher), with a remainder of 5. The remainder of 5
is written as the column sum (just as in the decimal
system) and the number of times the base has been
reached (2) is.carried to the next column (again, this
is exactly what is done for a decimal carry). In the
case of the latter binary addition, the first column
(rightmost) reaches the base once (one carry), while
the second and third columns reach the base twice
(two carries).

3-27. SUBTRACTION. Borrows from a preceding
column have the value of the system’s base. Thus
a borrow in the decimal system is 10, in octal is 8,
and in binary is 2.

Decimal Octal Binary

Borrows: 101010 888 202
9123 7123 1010

-798 -5617 . -101

8325 6334 101

3-28. MULTIPLICATION. As in addition, a carry
is generated each time a product reaches a multiple
of the base. When the multiplier has more than one
digit, remember to perform the final addition in the
same system. Carries are not denoted for the second
set of examples below; for practice, the reader should
work out these problems independently to see how
the answers are obtained.

Decimal Octal Binary
111
x11

394 274 111
_x 5 11
550 234 1001
Carries: 142 142 1
1970 1654 10101
Decimal Octal Binary
563 563 1111
__ X175 X175 x111
2815 34177 1111
3941 5045 1111
42225 54147 1111
1101001

02357-1

Model 2116A
Volume One

3-29. DIVISION. Division in the octal or binary
system is the same as decimal division except that
the intermediate multiplications and subtractions
must be performed in the appropriate system. The
borrows for subtraction are not shownin the examples
below; again, the reader should work outevery step of
these problems to obtain the given answers.

Decimal Octal Binary

563 563 1111

75 542225 75 554147 111 51101001

315 461 111
472 604 1100
450 556 1
225 267 1010
225 267 11
111
111

3-30. COMPUTER ARITHMETIC. In the basic in-
structions of the HP 2116A Computer, there is an
‘‘add’’ instruction but no subtract, multiply, or
divide. Therefore these three latter operations
must be constructed from the add instruction or by
some other method. Although it is possible to per-
form multiplication and division by successive addi-
tion or subtraction respectively, the more efficient
method is by register manipulations available through
special computer programming. The following para~
graphs deal with subtraction and the representation
of negative numbers.

3-31. To subtract, the operation is to convert the
subtrahend (i.e., the negative number) to its ‘‘true
complement’’ value, and then to add as if both numbers
were positive. The result will be the true difference
between the two numbers when the last carry digit
is removed. Simple logic in the Computer drops the
excess carry, so that the user neednotbe aware of it.

3-32. The true complement of a number in any sys-
tem is obtained by subtracting the number from any
power of the base large enough to allow the arithmetic
to be performed. That is, five digits are required if
4-digit numbers are involved, as shown below. Using
the same subtraction examples given in Paragraph
3-27, the complements for the negative numbers are:

Decimal Octal Binary
10000 10000 10000
-798 -567 -101
9202 7211 1011

3-33. Then, completing the operation by straight
addition and dropping the excess carry, the answers
are the same as obtained previously.

02357-1

Section III
Paragraphs 3-29 to 3-36

Decimal Octal Binary
9123 7123 1010
+9202 +7211 +1011
18325 16334 10101
or or or
8325 6334 101

3-34. In computers such as the HP 21164, it is
simpler to use the ‘‘one’s’’ complement (subtracting
from 1’s instead of 0’s) since this is simply a matter
of switching all 1’s to 0’s and 0’s to 1’s. This is
precisely what the complement instructions do (CMA/
B, CME, CCA/B, CCE). Adding one then converts
the result to the true two’s complement. One’s
complement in binary corresponds to nine’s comple-
ment in decimal and seven’s complement in octal.
Using the same examples:

Decimal Qgt_al Binary

9999 i 1111

9201 7210 1010

Add: 1 1 1
9202 7211 1011

3-35. Negative numbers are constructed and used
in the HP 2116A in exactly this way. For example, if
the negative number 070004 is wanted for some later
arithmetic, this number is taken in positive form,
one’s complemented and incremented, and is then
ready for use as a two’s complement negative number.
Additionally, however, it is necessary to identify the
number as negative, and this is done by a one-bit in
the Bit 15 position. In binary representation:

Sign

Positive: 0 000 111 000 000 O00C
Complement: 1 111 000 111 111 111
Increment: +1
Negative: 1 111 001 000 000 000

(equals 171000g)

3-36. If it is now desired to perform a subtraction
(say, 60000; - 070005 = 510004), the Computer will
add the positive number and the two’s complement
representation of the negative number as shownbelow.
(For comparison, a subtraction producing a negative
answer is also shown.) Note that Bit 15 is treated
as part of the negative number in all arithmetic
operations and, unless Overflow occurs, it will always
come up as a zero for computed answers which are
positive, or as a one for negative answers. Since

3-5

Section III
Paragraphs 3-37 to 3-43

there are only 16 bit places available to represent
the total in any register, the final carry (17th bit,
carried to the Extend Register) is disregarded, and
the displayed result is the true difference.

POSITIVE ANSWER

Binary Octal

0 110 000 000 000 000 (+60000)

1 111 001 000 000 000 (-07000)

(1) 0 101 001 000 000 000 (+51000)
NEGATIVE ANSWER

1 010 000 000 000 000 {(-60000)

1 000 111 000 000 000 (+07000)

1 010 111 000 000 000 (-51000)

3-37. Since the HP 2116A’s instruction list includes
basic instructions to perform the positive-to-negative
conversion (one’s complement and increment), it is
usually not necessary for the user to figure the com-
plements before entering them into the Computer. It
should also be noted that the reverse conversion
from negative to positive is done in exactly the same
way (one’s complement, then increment). Thus if the
negative number 070003 is present in Computer
memory (stored as 171000g), conversion back to
positive would be:

Negative: 1 111 001 000 000 000
Complement: 0 000 110 111 111 111
Increment: +1
Positive: 0 000 111 000 000 000

(equals 0070004)

3-38. It should be apparent that as the negative
number grows larger, its representation in two’s
complement form grows smaller. The largest neg-
ative number which can be represented in a display
register is therefore a one with 15 zeros. This would
be equivalent to a positive number of:

Negative: 1 000 000 000 000 000

Complement: 0 111 111 111 111 111

Increment: +1

Positive: 1 000 000 000 000 000
or 1000004
or 327681 0

3-39. This number is one greater than the largest
possible positive number (3276%,, or 077777;), as
previously noted in Paragraph 3-19), since, as shown
by the preceding paragraph, 1000000000000000, is
legitimately interpreted as -100000g.

3-6

Model 2116A
Volume One

3-40. COMPUTER STRUCTURE.

3-41, Figure 3-1, the Simplified Block Diagram of
the HP 2116A Computer, is the basis for the partial
versions used to illustrate descriptions in this Section.
This figure will be reconstructed step by step as the
explanations progress. The first step is Figure 3-5,
which outlines the blocks and signal routes mentioned
in the following discussion of memory, Paragraphs
3-42 through 3-49. The block diagrams make use of
several ‘‘and’’ gate symbols in addition to circuit
blocks. These gates can produce an output only when
all inputs are present (‘‘true’’). For example (refer-
ring to Figure 3-1), data on the T Bus can enter the
T-Register only if a Store signal is also present at
the gate leading to the T-Register input. Since the
Store signal is selective (although this is not indicated
on the diagram), only this one gate is enabled, while
the remaining four are disabled. Thus the data enters
only the selected register.

™
MEMORY ADDRESS
Timi
NS DECODER
GENERATOR| READ/WRITE

Y X

MEMORY

T-REGISTER !

I M-REGISTER ! y

02116-A-24

Figure 3-5. Memory Block Diagram

3-42. THE MEMORY MODULE.

3-43. Memory of a computer is its information
storage area. ‘‘Information’’ is a broad term in-
tended to cover anything which can be represented
as a binary number; this includes instruction codes,
memory addresses, and alphabetic codes, as well as
pure numeric data. The primary storage of the HP
2116A Computer is a ‘‘core memory’’, and is internal
in the Computer. (When more than two modules are
installed, the additional modules are housed in an
external extender unit; however, memory access is
the same as if all modules were inside the main
frame.) Auxiliary storage for the HP 2116A is avail-
able in the form of disc storage and magnetic tape;

02357-1

Model 2116A
Volume One

however, these units are accessed through the Com-
puter’s input/output system (Paragraph 3-69) and
are not treated as an extension of memory in this
discussion. Figure 3-6 shows the physical structure
of the memory module, and the following paragraphs
(through 3-49) describe each of the four components
identified in the figure, beginning with the smallest
individual component, the ferrite core.

MEMORY
LOCATION

CORE
© BRE: i
L =
i 15 —
............................. b
PAGE 3 || \
PLANE 02116-A-13

Figure 3-6. Core Memory Module

3-44., CORE. As explained in the Introduction of
this Section, the Computer handles all information
in binary form; i.e., as a number representable by
only two digits, zero and one. The ferrite core, which
is a small ring of magnetic material, has the ability
to store this binary information in that clockwise and
counterclockwise magnetization canbe assigned digital
values of one and zero. By threading a current-
carrying wire through the core, the core’s direction
of magnetization can be reversed simply by changing
direction of the current. Since the mass of the core
is very small (diameter of .03 inch), little magnetizing
force is required to switch the binary state, thus
permitting fast switching speeds (about 400 nano-
seconds in the HP 2116A). The magnetic state remains
indefinitely after the current is removed, so that
switching canbe accomplished by bidirectional current
pulses. This is shown in Figure 3-7.

CORE CORE

e e

O e

A. STORING A "ONE" B. STORING A "ZERO"

02116-A-14

Figure 3-7. Binary Storage in a Magnetic Core

02357-1

Section IIZ
Paragraphs 3-44 to 3-45

3-45. Since it is necessary to be able to select de-
sired units of information in the module, four wires
are required to be threaded through each core, as in
Figure 3-8. In practice, the wires do not ‘‘loop’’
through the core, as shown for clarity in the figure,
but simply pass through the center of a series of
cores. Figure 3-8 shows how one bit of information
is addressed and transferred to and from the T-
Register. Action is as follows:

M- REGISTER

BINARY - TO - OCTAL
DECODER

READ
—
WRITE

LOCATION :

T- REGISTER

02116-A-15

Figure 3-8. Core Addressing, Reading,
and Writing

a. Assume that the Computer is running, andthat
the program has set the M-Register to a memory
location number (address), desiring access to that
location.

b. The address from the M-Register, consisting
of 12 binary bits, is applied to a binary-to-octal de-
coder, which reduces the 12 binary address lines to
four octal lines which thread, in pairs, through the
selected core. For purposes of illustration, the diode
decoding matrix is shown as four switches. Note that
each of these switches can select one of eight ends of
X and Y wires, thus making possible 8x8x8x8 = 4096
combinations to address 4096 core locations.

c. At a specific time in the Computer’s timing
sequence (start of each memory cycle), all 16 bits of
the T-Register are reset to zero.

3-1

Section III
Paragraphs 3-46 to 3-48

d. A Read pulse is then applied to the decoder.
Many cores will receive either Y-current or X-current
pulses, neither of which alone is sufficient to switch
the state of the core, but only one core out of 4096 on
a plane (‘‘plane’’ defined in Paragraph 3-48) receives
both Y-current and X-current pulses. The Read
current is always in the direction which would
magnetize the core in the ‘“zero’’ direction. (If more
than one module is present, module selection is
accomplished simply by routing the Read pulse to the
appropriate module, as determined by Bits 12, 13, 14
of the M-Register.)

e. If the core was previously magnetized in the
‘‘one’’ direction, the Read current, in switching the
core, causes a flux change which induces a current
into the Sense output line. This output is amplified
and used to set the corresponding bit flip-flop of the
T-Register (assumed as Bit 0 in Figure 3-8). If the
core was in the ‘“zero’’ state, there is no flux change
and the T-Register bit remains zero (as reset in
step c).

f. Since steps d and e destroyed the stored in-
formation, it is necessary to ‘‘write’’ the information
back. This information, which is now in the T-
Register, is connected back to the core via the Inhibit
line. Then the X and Y lines are pulsed with a Write
current pulse, which is of opposite polarity to the
Read pulse (i.e., tending to magnetize in the ‘‘one’”’
direction).

g. If the inhibit current is not turned on, the
core switches back to the ‘‘one’’ state. If the Inhibit
current is turned on, it cancels part of the Write
magnetizing force, so that the core cannot switch,
and the core remains in the ‘‘zero’’ state.

3-46. The sequence of events in the preceding
paragraph briefly describes the HP 2116A’s ‘““memory
cycle’”. There are two exceptions which modify the
memory cycle slightly: 1) during the Execute phase
of the ‘“‘store’’ instructions (STA, STB, JSB), the out-
put of the Sense Amplifier is inhibited, and instead
the data to be storedistransferredinto the T-Register
from the A or B Register during the read time
period; 2) during the Execute phase of the ISZ in-
struction (Increment, Skip if Zero), the T-Register is
incremented between the read and write time periods.

3-47. MEMORY LOCATION. The word length of
the HP 2116A is 16 bits, only one of which is shown
in Figure 3-8. To storeone 16-bitword, 16 cores are
required, as indicated in Figure 3-6. These 16 cores
comprise a ‘‘memory location’’, sometimes also
referred to as a ‘“memory cell’”’”. When information
is transferred into or out of a memory location, the
information in all 16 bits must be transferred simul-
taneously. Therefore the X and Y selection lines will
be strung through the 16 cores, causing reading and
writing of all 16 cores simultaneously. Figure 3-9
illustrates this, showing only three cores for sim-
plicity. Note that each of these coresis on a different
‘‘plane’’ (next defined).

3-8

Model 2116A
Volume One

'

INHIBIT
FROM
T-REGISTER
BITI5

SENSE TO
T-REGISTER
BIT15

02116~-A~16

Figure 3-9. Memory Cell Selection

3-48. PLANE. Cores are strung on a grid of wires
as shown in Figure 3-10. There are 4096 cores on
this grid, called a plane, and a module consists of a
stack of 17 such planes (one for each of the 16 bits of
the computer word, plus a parity bit). Each bit
position of the T-Register is wired by the Sense and

ey,

Figure 3-10. Core Plane

02357-1

Model 2116A
Volume One

Inhibit lines through all 4096 cores on the correspond-
ing plane. Since only one core on an individual plane
is sensed (addressed) at a given instant of time, the
Sense line needs only to detect a fluxchange anywhere
on the plane. Similarly, the Inhibit signal is applied
to the entire plane when writing, but actually affects
only the selected core.

3-49. PAGE. Pages of memory are not physical
divisions of the module. Wiring of the planes is
symmetrical and does not account for page boundaries.
The page boundaries are determined only by the bit
format of Memory Reference instructions, and are
shown as broken lines in Figure 3-6 for visualizing
the physical placement of memory pages.

3-50. THE REGISTERS.

3-51. Figure 3-11 shows the seven working registers
of the HP 2116A. The five principal registers (T, P,
M, A, B) are purposely shown as being independent of
each other since, in fact, information is not transferred
directly from register to register. Rather, informa-
tion is transmitted via the Bus System (described
later under Paragraph 3-59) under command of the
Instruction Logic (Paragraph 3-63). The following
paragraphs, through 3-58, explain why the registers

; MEMORY ADDRESS

]
ING (. A—
e I CECODER
GENERATOR| BEAD/ WRITE

Y X

MEMORY

| T-REGISTER |

P-REGISTER

M-REGISTER

A-REGISTER
B-REGISTER
[{

0216-A-25

Figure 3-11. Register Block Diagram

02357-1

Section II
Paragraphs 3-49 to 3-54

are needed, not how they are operated. In essence,
these registers are short-term information storage
devices consisting of flip-flop circuits, with front-
panel indicator lamps to indicate the status of each
bit.

3-52. T-REGISTER. The T-Register was briefly
mentioned in the description of how memory operates
(Paragraph 3-45). As can be assumed from that
description, and from the front-panel engraving
(MEMORY DATA), the T-Register holds data that is
read out of and written into memory. For the majority
of operations when a computer is running, the principal
concern is with the data read out of a memory cell;
once a word of information is in the T-Register, it is
accessible for arithmetic operations and for transfers
to other registers viathe Bus System. For the reverse
(write) operation, the T-Register is loaded by transfers
from other registers, and the information is storedin
memory during the latter half of the memory cycle.

3-53. P-REGISTER. The P-Register is the Com-
puter’s Program Counter. This means that this
register goes through a step-by-step counting sequence
and causes the computer to read successive memory
locations, corresponding to the existing count. In the
simplest case, the P-Register would start at zero
when the RUN pushbutton is pressed, causing memory
location 00000 to be read into the T-Register; the
computer would act on the instruction code in the
read-out data, then advance the P-Register to one
(memory location 00001g). This process of stepping
through memory locations (at a rate of 1.6 or 3.2
microseconds per step for most instructions) con-
tinues until one of the instructions read out is a halt,
which terminates the program. Of necessity, this
simple case is not typical. First, programs do not
normally begin at locations lower than 00077g, since
these locations are reserved for special purposes
(Paragraph 2-27). Therefore the starting address of
a program must be manually set into the P-Register
before pressing RUN. Second, the strict sequential
stepping can be altered in the course of a program,
either by a skip instruction (which causes the P-
Register to increment by two instead of one, thus
skipping one memory location) or by a jump instruc-
tion (which transfers numbers from another register
into the P-Register, thus causing the program to
continue at a different point in memory).

3-54. M-REGISTER. As implied by Figure 3-1, the
M-Register (MEMORY ADDRESS) is the only means of
addressing specific memory locations. The addressing
of memory was previously discussed in Paragraph
3-45. The setting of the M-Register can occur from
any of the other registers, depending on the effects of
instructions. In the preceding paragraph, it could be
assumed that the P-Register directly addresses
memory; in actual fact, however, the computer must
transfer the desired address from the P-Register to
the M-Register, which in turn addresses the desired
memory location. Thus it is seen that these two
registers will frequently contain the same number.
The reason why both registers are needed is that it
is necessary for one register (the P-Register) to
keep track of the location of the current instruction

3-9

Section III
Paragraphs 3-55 to 3-62

in case the instruction is a multiple phase type. In
this case, the M-Register may have to be changed
several times in the course of executing an instruc-
tion. A common example would be when the instruc-
tion is to ‘‘add the contents of location 1004 to the
A-Register’” (ADA 100). The P and M Registers
would be identical while reading this instruction out
of memory (say the instruction is in location 500g;
both registers indicate this value). Then the M-
Register would have to change to 100 to get the
contents of this location for the addition. After the
addition has been executed, the contents of the P-
Register are incremented by one (5013). The P and
M Registers are then both set to this new value, and
the Computer isthenready to read the next instruction.

3-55. A-REGISTER. The A-Register is one of the
HP 2116A’s two accumulators. An accumulator in a
computer accumulates the results of arithmetic opera-~
tions. A simple example was given in the preceding
paragraph, where one number from memory was
added to the existing contents of the A-Register.
Assuming that the A-Register previously held the
number 1000g, and the number in location 100 was
224, the number left in the A-Register after execution
of the instruction would be 1022g. Other types of
operations which may be done with the A-Register are:
boolean logic operations (‘“and’’, ‘‘exclusive or’’,
‘‘inclusive or’’), comparison for equality with a
memory word, shifting or rotating of bits left or
right, testing the status of individual bits, comple-
menting of bits, and accepting or holding data for
transfer to and from external devices. All of these
operations are accomplished by the Instruction Logic
(Paragraph 3-63).

3-56. B-REGISTER. The B-Register is the second
of the two accumulators. It has the same capabilities
as the A-Register, except that the three boolean logic
instructions (AND, XOR, IOR) can apply only to the
A-Register. The main reason for having two accumu-
lators is to provide faster, more flexible arithmetic
than can be accomplished with one accumulator. This
advantage will be seen later in programming of the
HP 2116A.

3-57. EXTEND. The Extend register is shown con-
nected to Bit 15 (left end bit) of both A and B Registers.
This is to indicate that this one-bit register becomes
set whenever there is a carry out of Bit 15 of either
accumulator; i.e., whenever the quantity accumulated
exceeds 16 ones. This fact is frequently of signif-
icance. For example, ifthe quantity inan accumulator
is 16 ones and an ADD instruction adds one, the result
in the accumulator will be 16 zeros. This answer is
obviously incorrect; it is correct if the Extend bit,
which is now in the set state (‘‘1’’) is temporarily
assumed to be ‘“Bit 16’’. The program can be written
to make this assumption, and it can proceed without
error on the basis of the resulting information. To be
certain that the Extend information is valid, the
Extend register is normally cleared by an instruction
(CLE) before the addition is done. Another valuable
feature of the Extend register, is its ability to link the
two accumulators (effectively providing a single 32-
bit accumulator).

3-10

Model 2116A
Volume One

3-58. OVERFLOW. The Overflow register is sim-
ilar in purpose to the Extend register. The difference
is that, whereas the Extend register indicates that
the largest 16-bit quantity has been exceeded, the
Overflow register indicates that the largest ‘“signed’’
quantity has been exceeded. (A program may work
with both signed and unsigned numbers.) Since Bit 15
is the sign bit, Bit 14 (as shown in Figure 3-11) is
the source of the significant carry. Having two
possible signs (+ and -) means that detection of over-
flow requires two different sets of conditions. For
addition of two positive numbers, overflow occurs if
there is a carry from Bit 14 to Bit 15 in one of the
accumulators. For addition of two negative numbers
(which are represented in two’s complement form),
overflow occurs if there is not a carry from Bit 14
to Bit 15. Obviously overflow cannot occur when
adding numbers of opposing signs, since the resulting
quantity cannot be greater than the larger of the two
numbers. As with the Extend register, the Overflow
register should be cleared before an addition.

3-59. THE BUS SYSTEM.

3-60. Figure 3-12 outlines the routes by which data
travels internally from one register to another.
Although the buses are represented by a single line
in this figure, assume each line to be composed of 16
individual lines, one for each register bit. Included
in the figure is an ‘‘Arithmetic Logic’’ block, which
has not previously been discussed. It is shown here
mainly to illustrate the linkage between buses.

3-61. The HP 2116A Computer uses an ‘“R-S-T7”’
bus configuration. This is a conventional notation
designating a three-bus system which applies two
input buses (R and S) to an arithmetic unit with output
on the third bus (T). The use of two input buses per-
mits arithmetic operations combining the contents of
two registers. A common example would be the ex~
ecution of the ‘“ADA 100’’ instruction previously used
in Paragraphs 3-54 and 3-55. In this example, the
contents of location 100 is the number 22g. During
execution of the instruction, this number (22) would
be read into the T-Register. The other number
(10004) is in the A-Register. Simultaneously (by a
method described under the next paragraph heading,
Instruction Logic) both the T-Register and the A-
Register are read onto their respective buses (S and
R). The two numbers are added in the Arithmetic
Logic circuits, and the result (10224) is stored via the
T Bus back into the A-Register as the accumulated
sum.

3-62. Note that several register combinations are
possible as inputs to the Arithmetic Logic. One point
worth noting is that since the A and B Registers are
addressable as memory locations, the contents of
these registers can be transferred via the R and T
Buses into the T-Register. From this point, the
contents can be combined in the manner described
above with either accumulator (including combining
the number with itself; e.g., ‘‘add A to A’’), This is
all accomplished in one instruction.

02357-1

Model 2116A
Volume One

TIMING -—-—"{—*~
. wr DECODER I
GENERATOR| READ/ WRITE

MEMORY ADDRESS \g
i
i
i
i

.
! |
EY vy
1
Y X ; §
i
| |
MEMORY ! !
§ ;

TBUS

p— L
LE%TENQ {ovz‘m“a‘cw}
l METIC
LOGIC
!
| TR
[[R BUS)
S BUS J
02116 -A -26

Figure 3-12. Bus System Block Diagram

3-63. THE INSTRUCTION LOGIC.

3-64. Figure 3-13 shows the elements of the In-
struction Logic in the HP 2116A. As indicated in the
figure, timing is essential to the operation of the
Instruction Logic. The following descriptions do not
detail all timing relationships, since these vary with
instructions, but it should be understood that timing
pulses are gated with each operation to make it occur
in proper sequence. A generalintroductionto machine
timing is given in Paragraph 2-13 of the Specifications
section.

3-65. As shown in Figure 3-13, the six most signif-
icant bits read out of memory during each memory
cycle are applied to the 6-bit Instruction Register
(I-Reg), which decodes the instruction. (Actually, the
Instruction Register receives its information via the
T-Register; for simplicity Figure 3-13 shows a
direct connection to memory.) Only during the Fetch

02357-1

Section III
Paragraphs 3-63 to 3-67

-~
MEMORY ADDRESS

-

READ -
———<—{ FUNCTION |
—<{ STORE :
|
A - =\ 1
L) — oo
. ’ | ?
H i i
| |
. | |
i 4 i 1
| i
)
N
1
ADD
I0R
\,| EOR
AND |
COMPL.
SHIFT
LR s
¥ L R BUS
02116-A-27

Figure 3-13. Instruction Logic Block Diagram

phase, however, are these bits recognized as an
instruction code (as determined by a ‘‘Fetch Phase’’
signal from the Timing Generator). At this time, the
decoded instruction enables three functional opera-
tions, which in turn will become active at specific
times, depending on the instruction. These operations
are described individually in the next three paragraphs.

3-66. READ. The Read signal, shown connected to
the output gate of all five working registers, strobes
the data of one or two registers onto their correspond-
ing buses (R and S). Thisplaces the data at the inputs
of the arithmetic logic circuits.

3-67. FUNCTION. The Function signal activates
one of the six listed arithmetic functions. The
selected function alters or combines the data on the
R and/or S Buses, and routes the resulting data out
on the T Bus.

3-11

Section III
Paragraphs 3-68 to 3-76

3-68. STORE. The Store signal, shown connected
to the input gate of all five working registers,
effectively opens the input of one or more of these
registers to accept the data which appears on the
T Bus (preceding paragraph). In many cases, de-
pending on the instruction, only part of the informa-
tion on the T Bus is stored into a register.

3-69. THE INPUT/OUTPUT SYSTEM.

3-70. Figure 3-14 shows the means by which data is
transferred in and out of the Computer. This is the

SOR—— INPUT/OUTPUT IN L SELECT CODE r
CONTROL ouT_
CONTROL
AND FLAG
02116-A-28 Ichl BUFFER I [CIFI BUFFER J

DATA| IN DATAY OUT

Figure 3-14. Input/Output System
Block Diagram

3-12

Model 2116A
Volume One

Input/Output System; all elements shown are contained
within the main frame. Interface arrangements are
shown for only two external devices, one input and one
output. Actually the arrangement has capability for
16 interfaces in the main frame, plus 32 additional
interfaces by use of an HP 2150A Extender Module.
The Switch Register is shown as part of the Input/
Output System, and is considered to be an input
device.

3-71. As indicated by Figure 3-14, the Input/Output
Control logic is used to process all input/output
operations. Input/Output Control operates in two
ways:

a. Processes input/output instructions.

b. Processes service requests by peripheral
devices.

3-72. These two types of operations are separately
discussed in the following paragraphs.

3-73. PROCESSING INSTRUCTIONS. Input/Output
instructions decoded by the Instruction Register are
routed to Input/Output Control, which translates the
instruction into appropriate driving signals. One
such signal is an ‘‘In’’ signal, which strobes all
interface positions for input (represented by two
‘‘and’’ gates in Figure 3-14, one accepting data from
a Buffer register and one accepting data from the
Switch Register). Only one of these interface positions
can be enabled, according to the Select Code (Bits
0 through 5 from the T-Register), and the correspond-
ing data is strobed by the ‘‘In’’ pulse onto the S Bus.
From there it is transferred via the T Bus into the
A or B Register (as enabled by a Store signal at the
A or B input gate).

3-74. Another driving signal is the ‘‘Out’’ signal.
This signal strobes all interface positions for output
(one shown in Figure 3-14). The Select Code from the
T-Register enables one interface position, and permits
the ‘“‘Out’’ signal to strobe the data on the R Bus into
the corresponding output Buffer. (The data on the R
Bus was read out of the A or B Registers by a Read
signal.)

3-75. In addition to transferring data, as in the
preceding two paragraphs, Input/Output Control can
(according to instruction) send out signals to test the
state of Control and Flag bits (C and F), or to set or
reset these bits. The Select Code determines which
interface will receive the signal from Input/Output
Control. The Control and Flag bits are command
signals for transferring data between the Buffer and
the peripheral device (peripheral not shown).

3-76. PROCESSING SERVICE REQUESTS. If a
specific instruction has at some previous time en-
abled the interrupt system (considered to be in the
Input/Output Control block in Figure 3-14), a periph-
eral device may request new data from the Computer

02357-1

Model 2116A
Volume One

(if output) or request to feed new datato the Computer
(if input). This request for service is done by setting
the interface Flag bit. The Flag signal, via Input/
Output Control, interrupts the Computer’s operation
by forcing the M-Register to be set (via the T Bus) to
a memory address uniquely specified by the Flag. At
the same time, the Fetch phase is set so that the
Computer must execute the instruction contained in
the specified memory cell. Generally this instruction
will be a jump to a service subroutine. This sub-
routine consists of instructions that will prepare or
accept the new data. On completion of service, it is
the subroutine’s responsibility to return the P and
M Register to the values they contained before being
interrupted.

3-77. IMPLEMENTATION OF INSTRUCTIONS.

3-78. The following paragraphs, through 3-154, de-
scribe how the 70 basic instructions are implemented
internally in the Computer. The three illustrations
on the following pages expand on the Machine Timing
diagram (Figure 2-2) givenin SectionIl, Specifications.
Figure 3-1, the Simplified Block Diagram, is also
used as a reference throughout the following descrip-
tions. Most signals named can be identified in this
figure; e.g., ‘““Read A onto R Bus’’ is the line from
the Read block to the A-Register output gate (which
outputs onto the R Bus). The block diagram should be
referred to frequently as the discussion progresses,
in order to visualize the bit manipulations. The right-
pointing arrows in the figures should be read as
““into”’ or ‘“‘onto”’ (e.g., ““into’’ T-Register, or ‘‘onto’’
R Bus). New mnemonics are introduced in these
descriptions which will be defined within the text;
however the alphabetical listing of mnemonics in the
Appendix of this Volume may also be referred to if
necessary.

3-79. The cycle of Time Periods shown at the top
of Figures 3-15, 3-16, and 3-17 (TO through T7)
repeats continuously every 1.6 microseconds while
Computer power is on., The Read/Write memory
cycle, although shown only once at the top of each
of these figures, actually occurs once in every phase
(except Interrupt). It is important to remember this
throughout the following descriptions.

3-80. MEMORY REFERENCE.

3-81. By comparing Figures 3-15, 3-16, and 3-17,
it is seen that Memory Reference instructions are
the only type of instructions requiring more than one
machine phase to execute; Indirect and Execute phases
are associated only with Memory Reference instruc-
tions. In the case of all these instructions except
JMP, the action during the Fetch and Indirect phases
(Phases 1 and 2) is similar, so these phases are
shown only once, implying that they are common to
all Memory Reference instructions. The exception,
JMP, is unique in that it does not use an Execute
phase; execution can occur in either the Fetch or the
Indirect phase. The action for JMP is shown sep-
arately in Figure 3-15 and is discussed first below.

02357-1

Section III
Paragraphs 3-77 to 3-84

Note

The descriptions for JMP and AND instruc-
tions are more detailed than for succeeding
instructions, which are similar in many re-
spects. These two should therefore be
studied in detail before advancing to the
others. It should also be noted that the
descriptions assume knowledge of instruc-
tion definitions, as outlined in the Specifica-
tions (Paragraph 2-60).

3-82. JMP. The Fetch phase for all instructions,
regardless of type, begins in exactly the same way,
since at this time the computer logic cannot know
anything about the instruction which is about to be
read out of memory. The only fact known is that the
word from memory will be read as aninstruction (not
data); getting an instruction from memory is the first
function of the Fetch phase. During the first three
Time Periods of the Fetch phase, the following actions
oceur:

a. During TO the T-Register is cleared.

b. The Read portion of the Memory Cycle begins
to read the contents of the currently addressed mem-
ory cell into the T-Register. This continues until
the middle of T2.

c. During T1 the Instruction Register is cleared.

d. Bits 10 through 15 (the instruction group and
code identification) of the T-Register are transferred
into the 6-bit Instruction Register.

3-83. During the latter portion of T2, the functions
to be used in implementing the JMP instruction are
set up. This includes Read and Store as well as any
arithmetic functions (none in the case of JMP).
Functions are gated with Time Periods to occur in
the correct sequence.

3-84. At this point in time (end of T2), the instruc-
tion information is in Bits 10 through 15 of the T-
Register, and in the Instruction Register. The
Memory Address information is in Bits 0 through 9
of the T-Register. The next event to occur is to
clear the P-Register at time T5 if the page Zero con-
dition exists (i.e., if Bit 10 of the Instruction Register
is a zero). This is done by a “‘Store T Bus into P”’
function. Since nothing has been read onto any of the
buses, the T Bus is in the all-zero state, and 16
zeros are therefore stored into the P-Register.
(Actually, for resetting the program to page Zero, it
is only necessary to clear Bits 10 through 14 of the
P-Register; however it is convenient to clear the
entire P-Register at this time.) Note that the 6 most
significant bits of the page Zero address are zeros
(refer Paragraph 2-25); e.g. the last address on page
Zero is:

0 000 001 111 111 111

3-13

Section III

Model 2116A

Figure 3-15 Volume One
TIME PERIODS
TO | T1 | T2 | T l T5 I T6 T7
.2 Sec .4 .6 .8 1.0 1.2 1.4 1.6
PHASE READ (Mem to TR) WRITE (TR to Mem)
% 7
//////////////////, /////////////////////////////
TR(10-15) If Z: 0~M (10-15)
, If D: TR ~P,M (0-9)
FETCH -1IR If Z:
Clear Clear (Set 0 -Pp and set PH1
(JMP) TR IR Functions) IfI: TR ~M (0-9)
and set PH2
If D: TR -P,M
INDIRECT and set PH1
Clear IfI: TR ~-M
(JMP) TR and set PH2
TR (10-15) TR =M (0-9)
FETCH Clear Clear -1R If Z: 0 -M (10-15)
TR IR (Set If I: Set PH2
Functions) If D: Set PH3
INDIRECT Clear TR - M
TR If I: Set PH2
If D: Set PH3
EXECUTE Read P =R Bus
cl Read A —-R Bus Read '""1'" =S Bus
AND T‘;{ar Read TR -S Bus Store T Bus (ADF) —
Store T Bus (ANF) —A P,M
Set PH1
Clear P+1 -P,M
XOR TR A (EOF) TR —A Set PH1
Clear P+1 -P,M
IOR TR A (IOF) TR - A Set PH1 ’
Clear TR
JSB Inhibit P+1 -~ TR M -P ° oM
Mem. Data ¢
TR+1 - TR Write
ISz Clear If C16: Set Carry | (Add 0.4 g*tlg,gl‘“ ry ~P,M
Inhibit Write 1 Sec) €
If A: A(ADF) TR —A -
ADA/B Clear Ii B: B (ADF) TR - B Dl oM
If Cl6: Set E
CPA/B Clear If A: A (EOF) TR ~T Bus P+1+Carry -P,M
TR If B: B (EOF) TR —~T Bus Set PH1
If T Bus not zero, set Carry
Clear IfA: TR —A P+1 -P,il
LDA/B TR IfB: TR -B Set PH1
Clear TR IfA: A-TR P+1 -P,M
STA/B Inhibit IfB: B—-TR Set PH1
Mem. Data

3-14

Figure 3-15. Implementing Memory Reference Instructions

02116-B-4

02357-1

Model 2116A Section III
Volume One Figure 3-16
TIME PERIODS
TO l T1 T2 I T3 I T4 I T5 l T6 T7
. 2y sec .4 .6 .8 1.0 1.2 1.4 1.6

READ (Mem to TR)

WRITE (TR to Mem)

/////////////////////////////é

SHIFT-ROTATE
INSTRUCTIONS

ALTER-SKIP
INSTRUCTIONS

FETCH | 1| Clear Clear |TR (10-15) b _'_ P+1+Carry ~P,M
TR TR ~ R - Execute - Set PH1
| [
T3 T4 T5

All Shifts and Rotates

Read A or B -~ R Bus
Shift R Bus — T Bus
Store T Bus —Aor B

Clear E and Skips

If TR6 =1 -~CLE

If TR3 = 1 (SLA/B):
Read A or B -~ R Bus
If RB0=0 = Set Carry

All shifts and Rotates

Read A or B - R Bus
Shift R Bus — T Bus
Store T Bus —Aor B

CLA/B:

No Read (R Bus all zeros)
Store T Bus (EOF) —A/B

*SSA/B:

Read A/B -~ R Bus

Set Carry if

RB15=0 and TR0=0, or
RB15=1 and TRO=1

CMA/B:
Read A/B - R Bus
Store T Bus (CMF) ~A/B

*SLA/B:
Read A/B — R Bus
Set Carry if
RBO = 0 and TRO =0, or
RBO=1and TRO =1

SZA/B:
Read A/B -~ R Bus
(IOF) - T Bus

Set Carry if
T Bus all zeros and
TRO = 0, or if
T Bus all ones and
TRO =1

CCA/B:
No Read (R Bus all zeros)
Store T Bus (CMF) ~ A/B

INA/B:
Read A/B ~R Bus
Read "1 ~ S Bus
Store T Bus (ADF) - A/B
If C16: Set E

SEZ: Set Carry if
E =0 and TRO =0, or
E=1and TRO=1

CLE:
Reset E Flip-flop

CME:
Complement E Flip-flop

CCE:
Set E Flip-flop

* Combination of SSA/B,
SLA/B, and RSS is a
special case; see text.

02357-1

02116-8-5

Figure 3-16. Implementing Register Reference Instructions

3-15

Section III

Model 2116A

Figure 3-17 Volume One
TIME PERIODS
o | T | T2 ™ | 1 | 15 | 16 T7
.2u Sec .4 .6 .8 1.0 1.2 1.4 1.6
READ (Mem to TR) WRITE (TR to Mem)
PHASE V/
7 ////////////////////////////
FETCH
HLT Clear Clear TR(10-15) P+l -P,M
TR IR -IR Reset Run FF
Clear Clear Set Flag: P+l -P,M
STF TR IR TR ~IR lgelectCode Set PH1
Clear Clear - Set Flag: |Clear Flag: P+1 -P,M
CLF TR IR TR ~IR Select Code[Select Code Set PH1
Clear Clear ~ SFC — SKF - P +1+Carry = P,M
SFC TR IR TR ~IR | [rterface |Carry Set PH1
SFS - SKF -
Clear Clear - P+1+Carry =P, M
SFS TR IR IR ~-IR Interface| Carry Set PH1
Read A/B —~R Bus
Clear Clear Buffer —S Bus P+1 -P,M
MiA/B TR IR TR ~IR Store T Bus (IOF) Set PH1
—~A/B
TRY: CLFl
Buffer —S Bus
Clear Clear - P+1 -P,M
LIA/B TR R TR - IR Store T Bus (IOF) Set PHI1
~A/B
TR9: CLF|
Clear Clear - Read A/B —R Bus P+1 -P,M
OTA/B TR IR TR ~IR R Bus - Buffer Set PH1
TR9: CLF
Clear Clear Set Control P+1 -P,M
STc TR R TR ~IR (Sel. Code) Set PH1
Clear Clear Clr. Control P+1 -P,M
cLe TR IR TR ~IR (Sel. Code) Set PH1
Clear Clear - STF - P+1 -P,M
sTo TR IR TR ~IR | "5 erflow Set PH1
Clear Clear CLF - P+1 -P,M
cLo TR IR TR ~IR Overflow Set PH1
Clear Clear - SFC - SKF P+1+Carry - P, M
soc TR IR TR ~IR OVF Carry Set PH1
Clear Clear - SFS —- SKF - P+1+Carry -P,M
505 TR IR TR IR | "oyF Carry Set PH1
INTERRUPT Read P ~R Bus Read P - R Bus Read P — Res‘&‘; 1‘145)
Store T Bus (CMF) | Read "1" — S Bus R Bus st e'—I‘B
~P Store T Bus (ADF) |Store T Bus ore 1 bus
-p (CMF) —P (0-5) ~M
: Set PH1
02116-8-6
Figure 3-17. Implementing Input/Output Instructions
3-16 02357-1

Model 2116A
Volume One

3-85. During Time Periods T6 and T7, the page
Zero indicator (if present) clears Bits 10 through 15
of the M-Register (not the entire register). The
method is the same as described above: ‘‘Store T
Bus into M-Register, Bits 10 through 15’’; the T Bus
is still all zeros. Thus at this time both P and M
Registers point to page Zero, if so coded by Bit 10
being a zero (otherwise these registers are not
changed, leaving Bits 10 through 15 at the Current
page indication),

3-86. Also during T6 and T7, the Direct/Indirect bit
(Bit 15) of the T-Register is looked at, to see if the
Memory Address currently in the T-Register is the
‘‘effective address’’ (the final address being jumped
to), or if another jump should be made from that
address to whatever address is contained in that
location (indirect addressing). Since the concept of
indirect addressing is important and not always simple
to grasp initially, it is treated separately in following
paragraphs. For direct addressing, the execution is
completed by the following steps:

a. The T-Register contents are Read onto the
S Bus, and appear on the T Bus.

b. Bits 0 through 9 of the T Bus are stored into
the P and M Registers. This directs the Computer to
the ‘‘jump’’ location. (Remember from the preceding
paragraphs that Bits 10 through 15 of the P and M
Registers either have been reset to zero for page
Zero or have been left alone for Current page.)

c. The Phase 1 (Fetch) condition remains set so
that the contents of the ‘‘jump’’ location will be read
out and interpreted as an instruction during the next
machine phase.

3-87. Basically, the Indirect addressing indicator
(Bit 15 of T-Register being a one) tells the computer
logic that the contents of the location being jumped
to is not the next instruction, but rather the address
for another jump. This additional jump is a continua-
tion of the same instruction, but requires an additional
phase. During T6 and T7 of Phase 1, the T-Register
contents are transferred to the M-Register (not both
P and M as for the Direct condition). During T7 the
Phase 2 condition (PH2) is set, and the Indirect phase
begins.

3-88. During TO, the T-Register is cleared. Since
the “jump’’ is still in progress, the Instruction
Register is not cleared during T1. The contents of
the location now addressed by the M-Register are
read into the T-Register during the Read memory
cycle. Then, during T6 and T7 (assuming Bit 15 of
the T-Register is now 0 for Direct), all 16 bits of the
T-Register are transferred into the P and M Registers
in the usual way: Read T-Register onto S Bus, and
Store T Bus (with no arithmetic) into P and M Reg-
isters. These registers now contain the effective
address, so Phase 1 is set, and the next machine
phase will be a Fetch phase, to read out the next
instruction from that address. Note that if Bit 15 of
the T-Register were again a one (for Indirect) a
jump would be made to still another location by
repeating the process of these two paragraphs (3-87
and 3-88).

02357-1

Section III
Paragraphs 3-85 to 3-90

3-89. In summary, as illustrated in Figure 3-18, an
indirect jump occurs by the following register actions:

a. The word containing the jump instruction is
read out of memory by a Fetch phase into the T-
Register.

b. The address portion of the read-out word is
transferred into the corresponding portion of the
M-Register.

c. The Zero/Current page bit of the read-out
word tells the computer logic to clear (Zero) or
leave (Current) the remaining bits (10 through 15) of
the M-Register.

d. Steps b and ¢ now comprise the address of a
location which is read out of memory into the T-
Register at the start of the Indirect phase.

e. All bits of this new read-out word are trans-
ferred into the P and M Registers. The Computer is
now ‘‘at’”’ the location specified by these Registers.

T-REG

RESET FOR
PAGE ZERO FETCH

M -REG

READ MEMORY

T-REG

INDIRECT

P&M -REG

02116~ A-17

Figure 3-18. Register Manipulations
for Indirect Jump

3-90. AND. The Fetch phase for the AND instruc-
tion is the same as for all other Memory Reference
instructions listed below it in Figure 3-15, with the
exception that different functions will be set up at T2.
This phase begins in the same way as for JMP: The
T-Register is cleared at time TO0, the Read memory
cycle reads the instruction word into the T-Register,

3-17

Section III
Paragraphs 3-91 to 3-95

the Instruction Register is cleared during T1, and
T-Register Bits 10 through 15 (instruction code) are
transferred into the Instruction Register at T2, At
this time all necessary functions for this instruction
are set up, to be used at the appropriate times.
During T6 and T7, T-Register Bits 0 through 9
(memory address portion of the instruction word)
are transferred into the corresponding bits of the
M-Register (via S and T Buses). If the Zero page
indicator is present (Bit 10 of the Instruction Register
is a zero), a ‘‘Reset M(10-15)"’ command clears Bits
10 through 15 of the M-Register.

3-91, TUnlike the JMP instruction, an Execute or an
Indirect phase must follow the Fetch phase of an AND
instruction. (Execute never occurs for JMP; Indirect
is optional.) If Bit 15 of the T-Register is zero (for
Direct), Phase 3 (Execute) is set. Assume an Indirect
phase is required (Bit 15 =1). (If the Direct condition
exists, the action of the next paragraph would be
skipped.)

3-92. The Indirect phase begins by clearing the
T-Register during TO. Then a new word is read into
the T-Register from the memory locaticn specified
by the M-Register (as set up in Paragraph 3-90).
This word is an address, not data, since indirect
addressing really means: ‘‘go to another location
for the data’’. During T6 and T7 of the Indirect
phase, this addressis transferred from the T-Register
to the M-Register (all 16 bits). Note that itis
possible for Bit 15 to again specify Indirect address-
ing; if so, Phase 2 remains set and the procedure of
this paragraph is repeated, and could be repeated
several times. When Bit 15 is a zero (Direct),
Phase 3 is set.

3-93. The Execute phase begins by clearing the
T-Register. The Instruction Register remains un-
changed, since the various functions are still needed.
This time, the Read portion of the memory cycle
reads data from memory into the T-Register. During
T3 and T4, this data is read onto the S Bus and the
A-Register contents are read onto the R Bus. The
‘““and’’ function (ANF) previously set up by the
Instruction Register, now combines the data on the
two buses by ‘‘anding’’. (See Table 2-1 for the
arithmetic resulting from an ‘“and’’ operation.) The
result on the T Bus isthenstoredinto the A-Register.

3-94. To advance the computer to the next instruc-
tion, the P and M Registers must be incremented by
one. This is done during T6 and T7 of the Execute
phase. Itis accomplished by reading the P-Register
onto the R Bus and a ‘‘one’’ onto the S Bus, then
adding the two buses (Add function ADF) and storing
the result into the P and M Registers.

3-95. In summary, as illustrated in Figure 3-19, an
AND Indirect instruction is executed by the following
register actions:

a. The word containing the AND instruction is
read out of memory by a Fetch phase into the T-
Register.

3-18

Model 2116A
Volume One

T-REG
RESET FOR
PAGE ZERO FETCH
M-REG
READ MEMORY
T-REG
INDIRECT
M-REG
A4
READ MEMORY
EXECUTE
02116-A-18

Figure 3-19. Register Manipulations
for Indirect AND

b. The address portion of the read-out word is
transferred into the corresponding portion of the
M-Register.

¢. The Zero/Current page bit of the read-out
word tells the computer logic to clear (Zero) or leave
(Current) the remaining bits of the M-Register.

d. Steps b and ¢ now comprise the address of a
location which is read out of memory into the T-
Register at the start of the Indirect phase.

e, All bits of this new read~-out word are trans-
ferred into the M-Register, thus addressing the loca-
tion of the desired data.

f. At the start of the Execute phase the data thus
addressed is read into the T-Register from memory.

g. The contents of the T-Register and A-Register
are ‘‘anded’’ together and deposited back into the
A-Register.

02357-1

Model 2116A
Volume One

Note

For the remainder of Memory Reference
instructions, the Fetch and Indirect phases
are the same as described above for the AND
instruction (Paragraphs 3-90 through 3-92).
The following paragraphs therefore describe
only the Execute phase for each instruction.

3-96. XOR. The Execute phase of the XOR (‘““‘Ex-
clusive Or’’) instruction begins as usual by clearing
the T-Register just before the Read portion of the
Memory cycle. The action occurring during T3 and
T4 is shown in abbreviated form in Figure 3-15, to
be read as follows: the contents of the A-Register is
combined by an ‘‘exclusive or’’ function with the con-
tents of the T-Register, and stored back into the A-
Register. Actually this action consists of three steps
as shown for the AND instruction. For XOR, these
three steps are: 1) Read T-Register onto S Bus;
2) Read A onto R Bus; 3) Store T Bus (whichcarries
the ‘“‘exclusive or’’ combination of the S and R Buses)
into the A-Register. The action during T6 and T7 is
also abbreviated: add ‘“one’’ to P, and store into P
and M. The three steps which accomplish this are
detailed for the AND instruction in Figure 3-15. The
last action is to reset the Computer to the Phase 1
(Fetch) condition.

3-97. IOR. The Executephase oftheIOR (‘‘Inclusive
Or’’) instruction is the same as XOR described in the
preceding paragraph, except that the ‘“inclusive or’’
function is used in place of ‘‘exclusive or’’. The
difference in arithmetic is shown in Table 2-1 of the
Specifications section.

3-98. JSB. The principal operation of the Execute
phase for JSB (Jump to Subroutine) is to store the
return address (Program Counter contents plus one)
in the memory location being jumped to. This is done
during T0 through T2. Since the only way into memory
is through the T-Register, the T-Register must be
loaded with the return address prior to the Write
portion of the memory cycle. Therefore the memory
contents read out during the Read portion of the
memory cycle must be inhibited, and instead (during
T1 and T2) the current contents of the P-Register,
plus one, is stored into the T-Register. (Action:
Read P onto R Bus, Read ‘‘1’’ onto S Bus, Store with
add function into T-Register.) This information is
then stored into memory during Write. To complete
the jump process, the contents of the M-Register
(which received the ‘‘jump’’ memory address during
the Fetch or Indirect phase) must be transferred into
the P-Register. This is done during T3: Read M onto
S Bus, Store T Bus in P. As usual, to advance the
Computer to the location of the next instruction both
P and M Registers are incremented by one during T6
and T7, and the Fetch phase condition is set.

3-99. ISZ. During the Execute phase of the ISZ
instruction (Increment, Skip if Zero), the contents of
the addressed memory cell must be altered and checked
between the Read and Write portions of the memory
cycle. These actions require more time than is
normally available in this interval, so the Write
portion is delayed. Once the word read from memory

02357-1

Section III
Paragraphs 3-96 to 3-105

is in the T-Register (T3 and T4), it is incremented
by reading onto the S Bus, adding ‘‘one’’ in the arith-
metic logic and storing back into the T-Register. If
previously the word read out was all ones, the
addition of another one causes a rollover to all zeros;,
and produces a signal (C16) which sets a Carry flip-
flop in the arithmetic logic. Then, at T5, the Write
portion of the memory cycle is permitted to begin,
and two Time Periods (0.4 microsecond) are inserted
at this time for writing the incremented value back
into memory. During T6 and T7, the P-Register is
read onto the R Bus, and a ‘‘one’’ is read onto the S
Bus. These are added together, and ifthe Carry flip-
flop is set, another ‘‘one’’ is added and the result is
stored in the P and M Registers. Thus, if the Carry
flip-flop was set, the P and M Registers are incre-
mented by two instead of one, skipping one memory
location for the next Fetch phase. (The Carry flip-
flop is automatically reset at the start of the next
phase.)

3-100. ADA/B. If Bit 11 of the Instruction Register
indicates A (zero), the contents of the A-Register are
combined with the T-Register contents by the add
function (ADF), and stored into the A-Register.
Similar action involving the B-Register occurs during
this time (T3 through T4) if Bit 11 of the Instruction
Register is a one.

3-101. CPA/B. Depending on the status of Bit 11 of
the Instruction Register, either the A-Register or the
B-Register is combined with the T-Register contents
by the ‘‘exclusive or’’ function. The result appears
on the T Bus, but is not stored anywhere. Logic not
shown in Figure 3-1 tests the T Bus for a non-zero
condition which, if it exists, sets the Carry flip-flop.
Then during T6 and T7 (as for ISZ), the P and M
Registers are incremented by either one (Carry not
set) or two (Carry set).

3-102. LDA/B. During T3 and T4, the information
read into the T-Register by the Read portion of the
memory cycle is simply transferred to either the A
or B Register via the S and T Buses.

3-103. STA/B. Like JSB, the STA/B instruction
(Store A or B) deposits new information into a
memory cell, with no concern for the existing memory
contents. The memory data read out during the Read
portion of the memory cycle is therefore inhibited
while the A or B Register contents are read and
stored into the T-Register (during T1 and T2). The
Write portion of the memory cycle deposits this in-
formation intoc memory.

3-104. REGISTER REFERENCE.

3-105. All Register Reference instructions, as shown
by Figure 3-16, are fully executed in only one phase
(Fetch). Actual executionis accomplished during Time
Periods T3 through T5. Actions during the other Time
Periods are similar to those previously described
for Memory Reference instructions:

a. During Time Periods TO through T2, the T-
Register and Instruction Register are cleared, and
Bits 10 through 15 of the instruction word read out
of memory are transferred to the Instruction Reg-
ister. Unlike Memory Reference, the Instruction

3-19

Section III
Paragraphs 3-106 to 3-108

Register does not set up functions, but rather it pro-
vides gating signals to identify the type (Register
Reference) and group (Shift-Rotate, or Alter-Skip)
of instructions. The remainingbits of the T-Register
are used to execute the individual instructions by
setting up the appropriate functions. Figures 2-5 and
2-6 define which bits encode each instruction.

b. During Time Periods T6 and T7, the P-
Register is read onto the R Bus and a ‘‘one’’ is read
onto the S Bus. If the Carry flip-flop has been set
by a ‘‘skip’’ condition during T3 through T5, another
‘“one’’ is added and the total (P-Register incremented
by one or two) is stored into the P and M Registers.
This advances the Computer to the next instruction.

3-106. Paragraphs 3-107 through 3-132 detail the
actions which execute all Register Reference in-
structions.

Model 2116A
Volume One

3-107. SHIFT-ROTATE INSTRUCTIONS.

3-108. Figure 3-16 shows that shifts and rotates can
be executed either during T3 or T5, or both. CLE
(Clear Extend) or SLA/B (Skip if Least significant
bit of A or B Registers is zero) can be executed only
during T4. The shifts and rotates are executed
simply by reading A or B Registers onto the R Bus,
applying a ‘“Shift Function’’ to shift some or all of the
bits to a different position on the T-Bus, then storing
the T Bus back into the A or B Register. Since the
Shift Function is the key to understanding how shifts
and rotates occur, the following instruction descrip-
tions, through Paragraph 3-116, concentrate on this
aspect (CLE and SLA/B are described later in Para-
graphs 3-117 and 3-118), Table 3-1 is the main
reference for these descriptions.

Table 3-1. Shift-Rotate Functions

INSTRUCTION FUNCTIONS

DIAGRAMS

A/BLS SLM e RB(0-13)

RB15 - TB15

A/BRS SRM ¢ RB(1-15)

RB15 - TB15

RA/BL SLM e RB(0-13)
SL14 * RB14

RLL RB15

RA/BR SRM ¢ RB(1-15)

RRS * RBO

A/BLR SLM ¢ RB(0-13)

ERA/B SRM ¢ RB(1-15)
E - TB15

RBO —E

ELA/B SLM ¢ RB(0-13)
SL14 * RB14

E - TBO

RB15 - E

A/BLF RL4 * RB(0-15)

SLM
SRM
RLL
RRS

Shift Left Magnitude
Shift Right Magnitude

Rotate Right to Sign bit

Rotate Left to Least significant bit

RB R Bus

TB T Bus

SL Shift Left
RL Rotate Left

3-20

02116-8-7

02357-1

Model 2116A
Volume One

3-109. A/BLS. As shown by the Table 3-1 diagram
for A/BLS (A or B Left Shift), the desired end result
is to have Bits 0 through 13 shifted left one place,
with Bit 15 unchanged and a zero moved into Bit 0.
Assuming that Bits 6 through 9 of the T-Register
dictate an A/BLS during T3, an SLM (Shift Left Mag-
nitude) signal at this time is ‘‘anded’’ with each of
the 14 R Bus bits (0 through 13), with the output of
each ‘‘and’’ gate appearing on the next higher T Bus
line. The Function listed in Table 3-1 for this
instruction (SLM RB(0-13)) is therefore to be read:
Shift Left Magnitude ‘‘anded’’ with R Bus Bits 0
through 13. Bit 15 of the R Bus is routed directly
out to Bit 15 of the T Bus. Since nothing has been
placed onto Bit O of the T Bus, its state is ‘‘zero’?,
and therefore no deliberate action is necessary toen-
sure storing a zerc in Bit 0 of the A or B Register.

3-110. A/BRS. A Shift Right Magnitude ‘‘anded’
with R Bus Bits 1 through 15 shifts these bits to Bits
0 through 14 of the T Bus. Bit 0 of the R Bus is not
recognized, and Bit 15 (as well as moving onto Bit 14
of the T Bus) also is routed directly to Bit 15 of the
T Bus.

3-111. RA/BL. To rotate A or B left, an SLM
‘‘anded’”’ with R Bus Bits 0 through 13, together with
a ‘‘Shift Left bit 14’ to R Bus bit 14, move Bits 0
through 14 to Bits 1 through 150fthe T Bus. Rotating
Bit 15 of the R Bus around to Bit O of the T Bus is
accomplished by ‘‘anding’’ RLL (Rotate Left to Least
significant bit) with R Bus Bit 15; the ‘‘and’’ gate
outputs to T Bus Bit 0.

3-112., RA/BR. A Shift Right Magnitude ‘‘anded”’
with R Bus Bits 1 through 15 shifts these bits to Bits
0 through 14 of the T Bus. An RRS (Rotate Right to
Sign bit) ‘‘anded’’ with R Bus Bit 0 rotates this bit to
Bit 15 of the T Bus.

3-113. A/BLR. A Shift Left Magnitude with R Bus
Bits 0 through 13 shifts these bits to Bits 1 through 14
of the T Bus. Bits 0 and 14 of the T Bus remain in
the ‘‘zero’ state, since nothing is placed on these
lines.

3-114. ERA/B. A Shift Right Magnitude with R Bus
Bits 1 through 15 causes shift to T Bus Bits 0 through
14. The content of the Extend register is transferred
into Bit 15 of the T Bus. Then, during the latter half
of T3 (or TH), Bit 0 of the R Bus is transferred into
the Extend register,

3-115. ELA/B. A Shift Left Magnitude ‘‘anded’’ with
R Bus Bits 0 through 13, and a Shift Left 14 with R
Bus Bit 14 shifts these bits to Bits 1 through 15 of
the T Bus. The Extend content is transferred onto
T Bus Bit 0, and then Bit 15 of the R Bus is trans-
ferred into the Extend register.

3-116. A/BLF. A Rotate Left 4 ‘‘anded’’ with all bits
of the R Bus shifts each bit four places to the left on
the T Bus. The four most significant bits are placed
into the least significant bit positions.

02357-1

Section III
Paragraphs 3-109 to 3-125

3-117. CLE. During T4, if Bit 5 of the T-Registeris
a one, a reset signal is generated which clears the
Extend register.

3-118. SLA/B. During T4, if Bit 3 of the T-Register
is a one, the A or B Register is read onto the R Bus.
(Bit 11 determines which register is read out.) If Bit
0, the least significant bit, is a zero, the Carry flip~
flop is set. This will cause the P and M Registers to
be incremented by two (for a skip) during T6 and T7.

3-119. ALTER-SKIP INSTRUCTIONS.

3-120. Figure 3-16 individually lists all Alter-Skip
instructions. The grouping into three Time Periods
explains the grouping of columns in the Selection
Table of Figure 2-6. That is, during T3 one instruc-
tion involving the accumulators canbe executed (clear,
complement, or clear-complement), and two possible
instructions involving the Extend register can be
executed (skip if zero, and clear or complement or
clear-complement). Incrementing of accumulators
(INA/B) effectively occurs after tests for sign and
least significant bits (SSA/B and SLA/B, at T4), but
before the test for zero accumulator (SZA/B, at T5).

3-121. The alter instructions {(clear, complement, and
increment) use a Store or direct transfer function.
The skip instructions, however, simply read infor-
mation onto the T Bus for testing; a Store function is
not required. If skip conditions are met, the Carry
flip-flop is set, causing the P and M Registers to be
incremented by two during T6 and T7.

3-122. CLA/B. To clear the A or B Register, the
Read function is omitted. This means that both R and
S Buses are in the all-zero state. The ‘‘exclusive or”’
function, in combining zeros with zeros, can only
produce zeros on the T Bus. Thus when the T Bus is
stored into A or B, the result is all zeros.

3-123. CMA/B. To complement A or B, the register
is read onto the R Bus, the complement function
(CMPF) reverses each bit before being released to the
T Bus, and the T Bus is stored back into the A or B
Register.

3-124. CCA/B. The procedures of the two preceding
paragraphs are combined to clear and complement an
accumulator; i.e., with no Read, R and S Buses remain
all-zero, and the complement function reverses this
state to all ones on the T Bus. The T Bus is then
stored into the A or B Register.

3-125. SEZ. If Bit 5 of the T-Register is a one, the
Extend flip-flop and Bit 0 of the T-Register (Reverse
Skip Sense) are looked at by the computer logic,
causing the Carry flip-flop to be set if: a) both bits
are zero, b) both bits are one. Although the next
three instructions described below can alter the state
of the Extend flip-flop, the test is completed before
the alteration.

3-21

Section III
Paragraphs 3-126 to 3-142

3-126. CLE. If Bits 6 and 7 ofthe T-Register encode
the Clear E instruction, a reset signal is generated
during the latter half of T3 to reset the Extend
flip-flop.

3-127. CME. 1If Bits 6 and 7 of the T-Register en-
code Complement E, the state of the Extend flip-flop
is reversed during the latter half of T3.

3-128. CCE. If Bits 6 and 7 of the T-Register en-
code Clear and Complement E, the Extend flip-flop is
set during the latter half of T3.

3-129. SSA/B. If Bit 4 of the T-Register is a one,
the A or B Register is read onto the R Bus. Bit 15 of
the R Bus (sign bit) and Bit 0 of the T-Register
(Reverse Skip Sense) are tested. The Carry flip-flop
will be set if both bits are zero (meaning: ‘‘skip if
sign bit is zero”’), or if both bits are one (meaning:
‘‘skip if sign bit is not zero’’). This is accomplished
during T4.

3-130. SLA/B. 1If Bit 3 of the T-Register is a one,
the A or B Register is read onto the R Bus. Bit 0 of
the R Bus (least significant bit) and Bit O of the T-
Register (Reverse Skip Sense) are tested. The Carry
flip-flop will be set if both bits are zero (meaning:
‘“skip if least significant bit is zero’’), or if both bits
are one (meaning: ‘‘skip if least significant bit is not
zero’’). This is accomplished during T4. The combi~
nation of SLA/B, SZA/B, and RSS is a special case;
refer to the RSS description in Paragraph 2-82.

2-131. INA/B. If Bit 2 of the T-Register is a one,
the A or B Register is read onto the R Bus, and a
‘‘one’’ is read onto the S Bus. These are combined
by an add function (ADF) and storedback into the A or
B Register during the latter half of T5.

3-132, SZA/B. If Bit 1 of the T-Register is a one,
the A or B Register is read onto the R Bus and trans-
mitted to the T Bus. All bitsof the T Bus are applied
to an ““inclusive or’’ gate. The outputof this gate and
Bit 0 of the T-Register are tested. The Carry flip-
flop will be set if both TRO and the gate output are
zero (meaning: ‘‘skip if accumulator is zero’’), or if
both TRO and the gate output are one (meaning: ‘‘skip
if acecumulator is not zero?’’).

3-133. INPUT/OUTPUT INSTRUCTIONS,

3-134. Like the Register Reference instructions,
Input/Output instructions, as shown by Figure 3-17,
are fully executed in only one phase (Fetch). The
Interrupt phase, shown at the bottom of Figure 3-17,
is not involved in the execution of these instructions.
It is separately discussed at the end of this section
(Paragraph 3-150), since it is related to input/output
operations as described under Paragraph 2-113 of
the Specifications.

3-22

Model 2116A
Volume One

3-135. The following descriptions will concentrate on
actions occurring during Time Periods T3, T4, and
T5, since as can be seenfrom Figure 3-17, the actions
during other Time Periods are nearly identical from
instruction to instruction. That is, the T-Register is
cleared during TO, the Instruction Register is cleared
during T1, and the P and M Registers are incremented
by one (or two, if a Carry bit is present) during T6
and T7. The method of incrementing by one was
described in Paragraph 3-94, and the method for in-
crementing by two was described in Paragraph 3-99.
In all cases, Bits 10 through 15 of the T-Register are
transferred to the Instruction Register during T2.

3-136. HLT. If Bits 8, 7, 6 of the T-Register encode
the Halt instruction, these bits cause the Run flip-flop
to be reset during the latter half of T7.

3-137. STF. During T3 a Set Flag signal is routed
to all input/output interface cards, and will set the
Flag flip-flop of the card which is currently enabled
by the Select Code (Bits 0 through 5 of the T-Register).

3-138. CLF. During T4 a Clear Flagsignalis routed
to all input/output interface cards, and will reset the
Flag flip-flop of the card which is currently enabled
by the Select Code.

3-139. SFC. A Skip if Flag Clear signal (SFC) is
routed to the selected interface card beginning at T3.
The interface card will return a Skip Flag signal
(SKF) during T4 if its Flag flip-flop is not set. This
signal sets the Carry flip-flop to cause a skip during
T6 and T7.

3-140. SFS. A Skip if Flag Set signal (SFS) is routed
to the selected interface card beginning at T3. The
interface card will return a Skip Flag signal (SKF)
during T4 if its Flag flip-flop is set. This signal sets
the Carry flip-flop to cause a skip during T6 and T1.

3-141. MIA/B. During T4 and T5 an IOIC signal
(I/O Input Control) transfers the input data from the
interface Buffer register to the S Bus. During the
same time the A or B Register is read onto the R Bus,
and the R and S Bus data is combined by the ‘‘inclusive
or’’ function (IOF) and applied to the T Bus. The
result (a ‘““merge’’, or “inclusive or’’) is stored back
into the A or B Register. IfBit 9 of the T-Register is
a one, a Clear Flag signal (CLF) is routed to the Flag
flip-flop of the selected interface card, as described
in Paragraph 3-138.

3-142. LIA/B. The action for LIA/B (LoadInputinto
A or B) is the same as described for MIA/B in the
preceding paragraph, except that nothing is read onto
the R Bus. The ‘‘inclusive or’’ function therefore
transmits the R Bus unchanged to the T Bus for
storing into the A or B Register. As for‘MIA/ B, Bit
9 can clear the Flag flip-flop.

02357-1

Model 2116A
Volume One

3-143. OTA/B. During T4 and T5 the A or B Reg-
ister is read onto the R Bus, which in turn is trans-
ferred by an IOOC signal (I/O Output Control) to the
interface Buffer register. As for MIA/B, Bit 9 can
clear the Flag flip-flop.

3-144. STC. A Set Control signal is routed to all
input/output interface cards, and during T4 will set
the Control flip-flop of the interface card which is
currently enabled by the Select Code (Bits 0 through 5
of the T-Register).

3-145. CLC. A Clear Control signal is routed to all
interface cards during T4, and will reset the Control
flip-flop of the interface card currently enabled by
the Select Code.

3-146. STO. A Set Flag signal during T3, combined
with the Select Code for the Overflow flip~flop (01,
octal), sets the Overflow flip-flop.

3-147. CLO. A Clear Flag signal during T4, com-
bined with the Select Code for the Overflow flip-flop
(01, octal), resets the Overflow flip-flop.

3-148. SOC. During T3, a Skip if Flag Clear signal
(SFC), combined with the Select Code for Overflow,
tests the state of the Overflow flip-flop. If this flip~
flop is in the reset state, a Skip Flag signal (SKF) sets
the Carry flip-flop at T4, to cause a skip at T6 and T7.

3-149. SOS. During T3, a Skip if Flag Set signal
(SFS), combined with the Select Code for Overflow,
tests the state of the Overflow flip-flop. If this flip-
flop is in the set state, a Skip Flag signal (SKF) sets
the Carry flip-flop at T4, to cause a skip at T6 and T"7.

3-150. INTERRUPT PHASE.

3-151. The actions occurring during the Interrupt
phase (Phase 4) are shown at the bottom of Figure
3-17. Two operations are accomplished during the
Interrupt phase:

a. The P-Register is decremented. This is done
so that any instruction which has not been fully ex-
ecuted at the time of interrupt will be repeated. On
the other hand, if the instruction is fully executed

02357-1

Section III
Paragraphs 3-143 to 3-154

(which means that the P-Register has been advanced
for the next instruction), it is still necessary to
decrement. This is because the P-Register is incre-
mented for a second time following execution of the
instruction contained in the interrupt location.

b. The ‘‘interrupt address’’ must be transferred
into the M-Register, and Phase 1 is set. This causes
the instruction contained in the interrupt location to
be read out of memory for execution during the next
machine phase. Note that the interrupt addressis not
placed into the P-Register. While the instruction in
the interrupt location is being executed, the P-
Register remains at the value one lower than the
point at which interrupt occurred.

3-152. Decrementing the P-Register is accomplished
by complementing, incrementing, then complementing
again. In simplified form, using only four binary
digits for an example, this process is:

Original Value: 0110, (6g)
Complement: 1001
Increment: 1010
Complement: 0101 (5g)

3-153. During T1 and T2 of the Interrupt phase
(remember that there is no Read/Write memory
cycle), the P-Register is read onto the R Bus. The
complement function (CMF) reverses all bits before
application to the T Bus, and then the T Bus is stored
back into the P-Register. During T3 and T4 the P-
Register is again read onto the R Bus. A ‘‘one’’ read
onto the S Bus is combined with this by the add func-
tion (ADF), and the incremented result is stored back
into the P-Register. During T5, the P-Register is
read onto the R Bus for the third time, is com-
plemented, applied to the T Bus, and stored back into
the P-Register.

3-154, The interrupt address is placed into the
M-Register during T7. Since no interrupt address
is greater than 77 (see Table 2-2), M-Register Bits
6 through 15 are first reset. The interrupt address
is read directly onto the T Bus from Input/Output
Control logic (see Figure 3-1), and Bits 0 through 5
are Stored intoc the M-Register. Setting the Phase 1
condition completes the Interrupt phase.

3-23/3-24

Model 2116A
Volume One

Section IV
Paragraphs 4-1 to 4-7

SECTION IV
BASIC OPERATION OF HP 2116 A COMPUTER

4-1. INTRODUCTION.

4-2. The purpose of this Section is to relate the
‘‘theoretical’’ operations described in the preceding
section to actual visible actions. Specific information
is given for the user to gain familiarity with the panel
controls, and to be able to perform basic operations
on the Computer, when necessary, without input/output
devices or software aids. These purely manual
operations are most commonly encountered in com-
puter maintenance, and for loading, examining, and
changing small sections of memory (e.g., loading the
Basic Binary Loader).

4-3. Obviously manual usage of the Computer is not
the intended mode of operation for practical applica-
tions. Therefore this Section does not attempt to teach
programming to the extent of practical problem
solving. This aspect is the subject of training
materials supplied with the HP 2116A User Training
Course, which is provided by the Dymec Division of
Hewlett-Packard. User training concentrates on the
efficient use of software to solve problems. In-
structions for usage of the Computer via input/output
devices are given in Volumes Three and Four of the
HP 2116A manual (Input/Output System Operation
Manual, and Programmer’s Reference Manuals).

4-4. CODING.

4-5. This Section assumes familiarity with binary
and octal numbering systems, as outlined in the
Introduction to Section III. Table A-4 (Consolidated
Coding Table) in the Appendix of this Volume is used
as a reference for instruction codes; if more detail is
required, refer also to the information given under
Paragraph 2-52 (Instructions) in Specifications, Sec~
tion II, As a reminder: a‘‘one’ is coded by a switch
of the Switch Register being in the up position, and is
indicated by a register light being on. A ‘‘zero’’ is
coded by a switch in the down position, and is indi-
cated by a register light being off.

4-6. All numbers used for addresses or contents in
this Section are octal numbers unless otherwise
specified. Notation of instruction codes in octal
numbers is an operator’s convenience for loading
and reading binary information. The meaning of the
octal code can be understood only when it is broken
down into its binary elements. For example, note the
first instruction code to appear in this text, which
occurs in Paragraph 4-19 (also Step 3 of Figure 4-4).
The instruction is STA 3000 (Store A-Register into
memory location 003000; initial zeros of address
assumed). The coded instruction word is 073000.
Refer now to the Consolidated Coding Table (Table

02357-1

A-4 in the Appendix), or to Figure 2-4 in Section II,
Specifications. Note that the code for STA consists
of ones in bit positions 14, 13, and 12, and a zero in
bit position 11. Since indirect addressing is not being
used at this time, Bit 15 is a zero. Bit 10 must be a
one, since the program and all references will be on
the same (Current) memory page. (An elaboration
of the page concept is given later under Paragraph
4-47.) This accounts for Bits 10 through 15. See
Figure 4-1. The remaining bits (0 through 9), which
comprise the Memory Address, are simply the
corresponding bits of the desired address. The desired
address in this case is 003000. This breaks down in
binary form as shown in the top row of Figure 4-1.
Note that all bits higher than Bit 9 of the desired
address are disregarded by the programmer when
composing the instruction word. This is because these
bits fall outside of the page-size limits. The M-
Register, which contains the page-designating bits,
will hold the bits constant at execute time, as
commanded by Bit 10 of the instruction code.

DESIRED 15 1413 12 1 109 8 7 6 5 4 3 2 1 0
ADDRESS o'oooTo1[tToooToooToo0o
DISREGARDED

{CURRENT PAGE)
INSTRUCTION 15 14 13 12 11 10

bR N
copEe of111'01

v

INSTRUCTION o} 7 3 (0] (o] (0]
WORD o'111'011Too00'000T000

02116-A-29

Figure 4-1. Coding a Memory Reference
Instruction Word

4-7. It is evident that the octal digit ‘“3’’ in the
resultant instruction word 073000 is the result of
three individual factors: Bit 11 (a zero) specifies
the A-Register, Bit 10 (a one) specifies Currentpage,
and Bit 9 (a one) is an address bit. This requirement
of using bits having separate, individual meanings to
compose an octal digit is frequently encountered. For
example, suppose that it is desired to rotate the B-
Register left three places and clear the Extend bit,
all in one instruction. From the Shift-Rotate group

4-1

Section IV
Paragraphs 4-8 to 4-15

definitions (Paragraph 2-81), it is determined that a
suitable method for a three-place rotation is to rotate
the B-Register left four places (BLF), then right one
- place (RBR). The resultant octal code for the instruc-
tion which will accomplish these actions (including the
clearing of the Extend bit) is 005763. The way this
number was composed can be shown by breaking it
down into its binary components, as follows:

0057?\
00 011
Register B- SRG BLF CLE RBR

Reference Reg o110 Enable

!I‘.‘y*’tz‘mtm“ this _J this
p instr. i

instr.

Note

The ability to code instructions in octal form
is essential to the procedures given in the
remainder of this Section. It is therefore
strongly recommended that the reader take
the time at this point to study the composition
of the above instruction code, with reference
to the Consolidated Coding Table in the
Appendix. As an exercise, do a similar
breakdown of the following example: 003145,
which is a single-word instruction to skip if
Extend is set, clear Extend, and complement
and increment the A-Register. Five micro-
instructions are involved. Determine which
ones, from the code.

4-8. COMPUTER TURN-ON.

4-9, Assuming that installation of the Computer has
been completed, power is turnedon simply by pressing
the POWER switch., The POWER pushbutton lights
when computer power is on, and initially the HALT
pushbutton and the FETCH indication should also light.
The register lights will come on in a random pattern.
Should one or more of these indications fail when
turning on the Computer, refer to Volume Two,
Installation and Maintenance Manual.

4-10. It is good practice when turning on the Com-
puter, or when beginning any new operation, to press
the PRESET pushbutton and to ensure that the LOADER
switch is in the PROTECTED position.

4-2

Model 2116A
Volume One

CAUTION

The following procedures, to the end of this
Section, are designed to be performed on the
Computer while reading the text. Consider-
able loading effort can be saved if the entire
set of procedures is performed in the se-
quence given,without any interruptions which
might disturb procedures in progress. Since
these procedures alter memory, the operator
should also be certain that he is not destroy-
ing valuable information which may have been
stored previously in the Computer. Memory
locations used in these procedures are:

1001 through 1010
1020 through 1036
2166 through 2207
2766 through 3036
3777 through 4003

4-11. PRELIMINARY OPERATIONS.

4-12. The first and most basic operation is to put
some information into the Computer’s memory. The
following paragraphs, through 4-21, outline in detail
two methods of doing this. One methodis to manually
store the setting of the Switch Register directly into a
specified memory cell, by using the front-panel
operating controls. The other method is to let the
Computer itself do the storing operation. The pur-
pose in showing these two methods is to demonstrate
that computer ‘‘instructions’’ are equivalent to
operating controls.

4-13. Figure 4-2 illustrates the two memory storing
methods. Note that in the first case the information is
transferred from the Switch Register to a location in
memory. In the second case (Programmed Loading),
the transfer is from the A-Register. For simplicity,
information will be put into the A-Register manually
from the Switch Register (broken LOAD Aline). How-
ever, as will be seen later, this information could
come from anywhere in memory or from the B-
Register (broken LDA lines). Note also that, for
simplicity, Figure 4-2 omits detailed routing via the
Bus System and T-Register as described in the
preceding Section.

4-14. MANUAL STORING.

4-15. First it is necessary to decide where in
memory the information is to be stored. For illus-
trative purposes, an address in the middle of the
second memory page has been selected (refer to
Paragraph 2-23): location 003000. To direct the
Computer to this address, set the number into the
Switch Register, as shown in Step 1 of Figure 4-3.
Then press the LOAD ADDRESS pushbutton (Step 2).
This immediately transfers the setting of the Switch
Registers into the P and M Registers, as can be
read from the indicator lights. The Computer is now
““at’’ location 003000 (the addressed location).

02357-1

Model 2116A
Volume One

A, MANUAL STORING

i

LOAD
MEMORY

SWITCH REGISTER

B. PROGRAMMED STORING

—— =
i
STA ILDA
I
|
"y
r= =~
i A -REGISTER I
‘ ILDA
i
P F—-
LOAD A | B-REGISTER
|
|
|
N |

SWITCH REGISTER

02116-A-19

Figure 4-2. Two Methods of Storing
Information in Memory

4-16. Now the operator can store any desired in-
formation into the addressed location. An easy to
recognize pattern of zeros and ones in alternating
groups of three is suggested in Figure 4-3 (in octal:
070707). Complete Steps 3 and 4 of Figure 4-3. Note
that the P and M Registers have incremented to the
next location (which will not be used at this point).
The T-Register indicates the information (070707)
which went into memory.

4-17. To verify that location 003000 does indeed con-
tain the information 070707, complete Steps 5 through
8. Again, note that the P and M Registers, at the
conclusion of this procedure, are one step ‘‘ahead’’ of
the information displayed in the T-Register. This is
because the P and M Registers must direct the Com-
puter to the next location, whereas the T-Register
always indicates information resulting from previous
action.

02357-1

Section IV
Paragraphs 4-16 to 4-24

4-18. PROGRAMMED STORING.

4-19. For the Computer to perform its own storing
operation, it is first necessary to putinto memory the
instruction (STA, Store contents of A-Register) which
will accomplish this. Then the Computer can be
directed to the place in memory where this instruction
is located; pressing the RUN pushbutton will then let
the Computer go ahead and execute the instruction.
After doing so, the Computer will look for its next
instruction in the following location, and will attempt
to continue running. Since it is unknown what other
information may be in memory, itisnecessary to stop
the Computer as soon as the desired action is com-
pleted, simply by putting a halt (HLT) instruction in
the immediately succeeding location. The required
‘“program’’ therefore consists of two instructions:
STA, HLT.

4-20. The manual-storage procedureof Paragraphs
4-14 through 4-17 put an easy to recognize pattern
(070707) into location 003000. It is the objective of
the next paragraph (procedure detailed in Figure 4-4)
to let the Computer put a different pattern (all ones)
into the same location, replacing the previous pattern.
This new pattern is loaded into the A-Register before
the program is run.

4-21. Steps 1 through 6 of Figure 4-4 store the two-
word program into memory, using the two locations
immediately preceding the location to be altered
(003000). Steps 7 and 8 load the new pattern into the
A-Register. Steps 9 and 10 verify that the old pattern
is still in location 003000. Steps 11, 12, 13 cause the
program to be run. The Computer executes this pro-
gram in 4.8 microseconds; therefore the Computer
will be back in the halt condition (HALT light on)
faster than can be visually detected. Steps 14 and 15
verify that the new pattern (177777) is now in location
003000.

4-22. THE STORED PROGRAM.

4-23. The preceding descriptions have demonstrated
that internal presettable commands can control op-
eration of the Computer in the same manner as front-
panel controls. If the Computer were constructedlike
a mechanical calculator, there mightbe panel controls
to ““add’’ or ‘‘subtract’’, but this would be defeating
the design principles of a computer. The intent is to
provide flexibility through use of internal commands
which can be arranged to occur ina specific sequence,
and to limit panel controls to the minimum required
to initiate operation. This, in essence, is the concept
of the stored-program computer. The following
paragraphs discuss the elements of the stored
program.

4-24. A program consists of a sequence of computer
words, stored in memory, which control operation of
the Computer. The general term ‘‘computer words’’
is used rather than the restrictive term ‘‘instruc-
tions’’ since the stored information generally includes
three types of words:

a. The Instruction word
b. The Data word
c. The Address word

4-3

Section IV

Model 2116A

Figure 4-3 Volume One
| |
O st |
5
| ; ; .'. 00 5IC
uuuuwssgseguuu@w@ uu
" 1. Set to 003000 (0 000 011 000 000 000).
2. Press LOAD ADDRESS.
STORE < 3, Setto 070707 (0 111 000 111 000 111).
4. Press LOAD MEMORY. Photograph shows
N conditions existing at this time.
~ 5. Set to 003000.
6. Press LOAD ADDRESS.
CHECK < 7, Press DISPLAY MEMORY.
8. T-Register indicates contents of memory
C location 003000: 070707 (no change).
02116-A-30
Figure 4-3. Storing Information Manually
4-4 02357-1

Model 2116A Section IV
Volume One Figure 4-4
10, 15
[
8 2, 12
4, 6
13 9, 14
1, 3, 5,
7, 11
1. Set Switch Register to 002776.
2. Press LOAD ADDRESS.
LOAD 3. Setto 073000 (STA 3000).
PROGRAM 4. Press LOAD MEMORY.
5. Set to 102000 (HLT).
6. Press LOAD MEMORY.
LOAD NEW 7. Setto 1777717.
INFORMATION 8. Press LOAD A.
9. Press DISPLAY MEMORY.
CHECK OLD 10. T-Register indicates contents of memory
INFORMATION locai_:lon 003000: 070707 (from Manual
Storing Procedure). Photograph shows
conditions existing at this time.
11. Set to 002776.
3 sggGRAM 12. Press LOAD ADDRESS.
13. Press RUN.
o { 14. Press DISPLAY MEMORY.
HECK, MEW 15. T-Register indicates new contents of
il memory location 003000: 177777.
02116 -A-31
Figure 4-4. Storing Information by Program
02357-1 4-5

Section IV
Paragraphs 4-25 to 4-32

4-25. Although these terms are to some extent self-
explanatory, the distinction and usage requires illus-
tration. For purposes of illustration, the simple
program example used in the preceding descriptions
will be expanded and examined in more detail, be-
ginning at Paragraph 4-31. Before proceeding,
however, the method of writing programs in a concise,
meaningful form will be presented. Notation of this
kind becomes increasingly necessary as programs
grow larger.

4-26. PROGRAM TABLE.

4-27. Table 4-1 puts into tabular form the two-word
program previously used as an example in Paragraphs
4-18 through 4-21. The information in this table
corresponds to Steps 1 through 6 of Figure 4-4. The
format of the table is used for explanatory purposes
within this Volume only, but resembles in general
arrangement the format required for using the Assem-
bler Coding Forms. Sample programs in this Section
are organized to expand on each preceding program,
step by step. Shaded portions of the Program Tables
correspond exactly to previously discussed material,
and are therefore not described in detail. This per-
mits the discussions to concentrate on the new
(unshaded) portions of the sample program.

4-28. ADDRESS. The Address column of the Pro-
gram Table states where in memory the program
words (contents) are to be stored. The first listed
address states where the program is to begin; this is
termed the ‘‘Starting Address’’. The Starting Address
of the program shown in Table 4-1 is 002776; the
program stops at the location immediately following
(002777). Although the program never advances to
location 003000 (the location immediately following
002777), this address must be listed in the Program
Table as a reminder that this memory location will be
used by the program.

4-29. CONTENTS. As explained above (Paragraph
4-24), the stored program can consist of three types
of words: instructions, data, or even the address of
another location. Therefore the contents of alocation
specified by an address may take various forms in the
Contents column. Most memory locations of a pro-
gram will be instructions; the instruction mnemonic
is listed under “Instruction (or Data)’’ in the table.
If the content is not an instruction (usually a pure
number representing data or an address), it will also
appear under this heading, as shown in Table 4-2. In
the case of Memory Reference instructions, the

Model 2116A
Volume One

address of the location affected by the instruction is
listed under the Memory Reference heading. For
example, the first instruction listed in Table 4-1 is
a command to store the A-Register contents into
location 003000. Location 003000 is the affected
location (i.e., the Memory Reference). The D/I, A/B,
and Z/C headings are also used only in the case of
Memory Reference instructions. As a reminder to
code a one-bit for I (Indirect addressing), B (B-
Register), and C (Current page), only these three
indicators will be given in the tables; D (Direct
addressing), A (A-Register), and Z (page Zero), all
coded by zero-bits, are otherwise assumed. The
Octal Code column is used for the coded version of
the desired contents. This column comprises the
‘‘“machine-language program’’, since this is the in-
formation which is loaded into the Computer. As far
as the Computer is concerned, these numbers are
the program. Note that no specific contents need be
loaded for address 003000, since the STA 3000 in-
struction will destroy any information previously
contained here.

4-30. REMARKS. A short explanation accompany-
ing each assigned address of the program is helpful
in communicating the intent of program details to
other persons, and also can serve as a reminder to
the original programmer when re-examining the
program at a later time. Wordsused for the Remarks
column should be carefully chosen to be as concise
and meaningful as possible. Understanding a given
program can be difficult enough without adding con-
fusion through vague documentation. For example, it
would not be incorrect to say for the first instruction
of Table 4-1: ‘‘Store contents of A in location 3000.”’
However this does not say any more than the instruc-
tion word itself says (STA 3000). The remark
suggested in Table 4-1 states what is expected to be
in the A-Register (a ‘‘pattern’’), and raises the
questions of what the pattern is, and how it happened
to get into the A-Register. This leads the operator
to look for further documentation (in this case the
text of this Manual), which tells him howto preset the
A-Register. Additional words to indicate the needfor
presetting the A-Register could be added, improving
the message still further. Conversely, the simple
remark ‘‘Halt’’ in the next line requires no additional
comment.

4-31. PROGRAM EXECUTION.

4-32.
ample in this discussion.

Table 4-2 lists the program used as an ex-
The main purpose of the

Table 4-1. Program Table
ADDRESS CONTENTS REMARKS
Instruction Memory Octal
(or Data) Reference D/1|A/B|Z/C Code
002776 STA 3000 C | 073000 Get pattern from A, put in 3000.
0027717 HLT 102000 Halt.
003000 Reserved for answer.

4-6

02357-1

Model 2116A
Volume One

Section IV
Paragraphs 4-33 to 4-36

Table 4-2. Program to Show Instruction, Data, and Address Words
ADDRESS CONTENTS REMARKS
Instruction Memory Octal
(or Data) Reference D/1|A/B|Z/C Code
002774 LDA 3001 C 063001 Put augend in A.
002775 ADA 377 I C 143777 Add the addend specified by 3777.
0027176 STA 3000 C 073000 Put answer in 3000.
. 002777 HLT 102000 Halt.
003000 - Reserved for answer.
003001 5 000005 Data.
003777 3001 003001 Address of addend is 3001.

program is to show where and when the three types of
program words (instruction, data, and address) occur.
In the process of so doing, detailed actions for simple
addition and indirect addressing will also be illus-
trated. The program adds 5 to 5, and puts the result
(10 decimal, or 12 octal) into location 003000. Note
that the middle three lines of the program are the
same as the example given in Table 4-1. The first
two lines expand the program to accomplish the
addition, and the last two lines are data and address
words used by the program.

4-33. LOADING THE PROGRAM. The program is
loaded into the Computer manually, using the sample
procedure given in Steps 1 through 4 of Figure 4-3.
Steps 1 and 2 need be done only once for most of the
program, since each LOAD MEMORY operation auto-
matically increments the address in the P and M
Registers. Specifically, the procedure is:

a. Set the Switch Register to the Starting Address
(002774), and press LOAD ADDRESS.

b. Set the Switch Register to the first wordof the
program (063001), and press LOAD MEMORY.

c. Set the Switch Register to the next word of the
program, press LOAD MEMORY, and repeat this step
until the first six words have been loaded. For the
fifth word (which requires no contents), it is con-
venient to simply press LOAD MEMORY with the HL.T
code still in the Switch Register. A halt instruction
in this location does no harm.

d. For the seventh word, which is notin sequence
with the other six, it is necessary to set the address
(003777) into the Switch Register and press LOAD
ADDRESS. Then set the Switch Register to the
Contents (003001), and press LOAD MEMORY.

4-34. RUNNING THE PROGRAM. Again set the
Switch Register to the Starting Address (002774) and
press LOAD ADDRESS. Nowpress RUN. Immediately
the Computer switches to the Halt condition, having
executed the problem and stored the answer in loca-
tion 003000 in 12.8 microseconds. To verify that the
Computer has arrived at the right answer (000012),
press the DISPLAY MEMORY pushbutton. The

02357-1

answer is in the T-Register. This demonstrates how
fast the Computer operates, but does not show what
operations it went through to arrive at its answer.
Therefore the following paragraphs will re-run the
program step by step inorder to show these operations.

4-35. SINGLE CYCLE OPERATION. Table 4-3
shows the contents of each register following each
operation of the SINGLE CYCLE pushbutton. The
program will be executed in eight steps (i.e., eight
machine phases). The following eight paragraphs
describe each of these steps. The program is
initially set up by setting the Switch Register to the
Starting Address (002774) and pressing the LOAD
ADDRESS pushbutton. The conditions now existing
are shown in the top line of Table 4-3: the P and M
Registers hold the Starting Address, and the re-
maining registers can be in any state. The FETCH
phase indicator light on the panel is on, indicating
that the first machine phase will be a Fetch phase;
this is an effect of the LOAD ADDRESS switch.

4-36. Press the SINGLE CYCLE pushbutton (first
step). The conditions of the registers after the
Computer has completed this first phase are shown
in the Step 1 line of Table 4-3. As an additional
reference, refer back to Figure 3-15 in the preceding
Section; the Fetch phase actions for all Memory
Reference instructions except JMP apply to this dis-
cussion. Note also the Read/Write memory cycle,
which is what reads the contents of the addressed
location (contents of 002774 is 063001) into the T-
Register. This is accomplished early in the Fetch
phase. The Computer interprets any word read out
of memory during a Fetch phase as an instruction
word. It is the programmer’s responsibility to ensure
that the Computer does find an instruction in every
location to which the P-Register goes. This is en-
sured by properly filling out the Program Table;e.g.,
in Table 4-2, the program (P-Register) starts at
002774, and stops at 002777. Every one of these
locations must have an instruction word as its con-
tents. Later in the Fetch phase (T6 and T7), the
memory reference bits (0 through 9) of the T-Register
are transferred into Bits 0 through 9 of the M-
Register. The remaining bits of the M-Register are
left unchanged (since there is no reference to page
Zero), thus completing the memory reference address

4-1

Section IV

Paragraphs 4-37 to 4-40

Model 2116A
Volume One

Table 4-3. Single Cycle Execution of a Program
Step |Instruction T-Register | P-Register M-Register | A-Register B-Register Phase

Any 002774 002774 Any (Not used) FETCH
1 LDA 063001 002774 003001 Any EXECUTE
2 000005 002775 002775 000005 FETCH
3 ADA, 1437717 002775 003777 000005 INDIRECT
4 I 003001 0027175 003001 000005 EXECUTE
5 000005 002776 002776 000012 FETCH
6 STA 073000 002776 003000 000012 EXECUTE
7 000012 0027717 002777 000012 FETCH
8 HLT 102000 003000 003000 000012 FETCH

in the M-Register. In comparing the contents of the
T and M Registers in Step 1 of Table 4-3, be careful
not to assume that the complete octal digits ‘‘3001”’
are transferred; the digit ‘“3”’ (like the situation
shown in Figure 4-1 and explained in Paragraphs 4-6
and 4-7) is a composite of three binary bits with
different code meanings. Also occurring at the end
of the Fetch phase is the setting of the EXECUTE
(Phase 3) condition. The P and A Registers are not
yet affected.

4-37. Press the SINGLE CYCLE pushbutton again
(Step 2) to complete execution of the LDA 3001 in-
struction. Step 2 of Table 4-3 shows register con-
ditions existing after completion of the Execute phase.
This is the phase in which the Computer gets the data
requested by the memory reference, and does with it
whatever is commanded by the instruction code. The
Read portion of the memory cycle reads the contents
of the location addressed by the M-Register (now at
003001) into the T-Register. This information, read
out of memory by the Execute phase, is a data word.
It is the programmer’s responsibility to ensure thata
data word (or an indirect address) is contained in all
locations to which there is a memory reference (un-
less the location is to be used by the program for
storage). As seen in Table 4-2, there are three
memory references; therefore the table accounts for
three addresses in addition to the four addresses
assigned to the program instructions. One of these
three is a storage location, one is data, and one is an
indirect address. In this Step, the information read
out is the data‘‘5’’. As shownin Figure 3-15 (LDA/B),
the data is transferred from the T-Register to the A-
Register during the Execute phase. Therefore the
number 5 appears in both registers. At the end of
this phase the P and M Registers are set to the address
of the next instruction (002775), and the Fetch con-
dition is set (FETCH light on), for reading of the next
instruction.

4-8

4-38. Press SINGLE CYCLE (Step 3). This fetches
the next instruction (143777) out of location 002775.
The code 143777 means: add to whatever is in the
A-Register the contents of a memory location which
can be found by going first to location 3777 for more
information. This is what is implied by the symbolic
form: ADA 3777, Indirect. The Indirectbit (Bit 15 of
the word now in the T-Register) caused the setting of
the Indirect phase (INDIRECT light on), and the mem-
ory reference bits (0 through 9) have beentransferred
into the M-Register. The P and A Registers remain
as they were. The Indirect phase is ready to begin.

4-39. Press SINGLE CYCLE (Step 4). The Computer
always interprets information read out of memory
during an Indirect phase as an address word. This
word (003001) is transferred to the M-Register as the
new memory reference for the current ADA instruc-
tion. Both T and M Registers therefore now contain
003001. Since Bit 15 of this word is a zero (Direct
address), the Execute condition is set (EXECUTE
light on). If this bit had been a one (Indirect), the
Indirect condition would remain set, and a further
memory reference would be obtained in the next Step.
However, with this example, the Computer now knows
that the addend data is located in 003001. It happens,
in this example, that this is the same location from
which the augend was taken; however, the address
word could just as well refer to any location in
memory.

4-40., Press SINGLE CYCLE (Step 5). Inthe Execute
phase of the ADA instruction, the data in location
003001 is read out (the number 5), and is added to the
existing contents of the A-Register (whichupuntil now
also contained the number 5). The T-Register there-
fore contains 5, and the A-Register contains 12. As
usual, the last operation for any instruction is to
advance the P and M Registers to the location of the
next instruction (002776) and to set the Fetch phase
condition.

02357-1

Model 2116A
Volume One

4-41. Press SINGLE CYCLE (Step 6). The Fetch
phase of the STA 3000 instruction reads the instruc-
tion word (073000) out of location 002776, transfers
the memory reference bits to the M-Register and sets
the Execute phase condition.

4-42. Press SINGLE CYCLE (Step 7). The Execute
phase puts the A-Register contents (000012) into the
memory via the T-Register. Therefore both registers
indicate this value. As usual, the P and M Registers
are advanced to the address of the next instruction
(002777), and the Fetch phase condition is set.

4-43. Press SINGLE CYCLE (Step 8). The Halt in-
struction is read out of memory, and the Computer
is in the same state as after the running of the pro-
gram in Paragraph 4-34. As before, the DISPLAY
MEMORY pushbutton can now be pressed to verify
that location 003000 again has received the correct
answer, 000012.

4-44. REFERENCING OTHER PAGES.

4-45. The procedures given in the preceding para-
graphs used three Memory Reference instructions:
LDA 3001; ADA 3777, I, and STA 3000. All of these
instructions were stored in the second page of mem-
ory (refer to Paragraph 2-23); i.e., they were stored
in locations 2774, 2775, and 2776. In addition, the
addresses to which these instructions referred (3001,
3771, 3000) were also located in the second page of
memory. Thus each memory reference isa‘Current
page’’ reference; i.e., no reference is made to an

Section IV
Paragraphs 4-41 to 4-48

address which is outside the page in which the pro-
gram itself is operating.

4-46. One program reference (ADA 3777, I) went to
the page limit. This instruction could not have been
ADA 4000, I, which refers to a location just one
address higher. Location 4000 is not on the Current
page. On the other hand, ADA 1777 (with or without I)
is possible, even though location 1777 also is not on
the Current page. The following paragraphs, through
4-62, deal with the special considerations for ref-
erencing memory pages other than the Current page.
The first step is to know what constitutes a ‘‘page’’ of
memory.

4-47. CONCEPT OF THE MEMORY PAGE.

4-48. The necessity for dividing memory into pages
arises in small computers, such as the HP 2116A,
from the fundamental design concept of combining the
instruction code and the memory reference into one
computer word. This contributes to speed and
efficiency in the computer, but also limits the number
of bits available for the memory reference. As shown
in Figures 2-3 and 2-4 of the Specifications section,
Bits 0 through 9 of the Memory Reference instructions
are available for the memory reference address.
Refer now to Table 4-4 and note under the ‘“Memory
Reference Bits’”’ column that the possible range of
numbers using these bits is (in octal) 0000 through
1777. To form addresses any higher than 1777 re-
quires the addition of bits listed under the ‘‘Page
Bits’’ column.

Table 4-4. Memory Pages

Complete Binary Addresses (M-Register)
Page Octal
No. Addresses Page Bits Memory Reference Bits
0 00000 *) 000 0 0]0 000 000 000
01777 000 001 111 111 111
1 02000 000 0 1]0 000 000 000
03777 000 0 1|1 111 111 111
2 04000 000 1 00 000 000 .000
05771 000 101 111 111 111
3 06000 000 1 1|0 000 000 000
07771 000 1 1)1 111 111 111
4 10000 001 0 00 000 000 000
11777 001 00j1 111 111 111
5 12000 001 0 1]0 000 000 000
13777 001 0 11 111 111 111
6 14000 001 1 0j0 000 000 000
15777 001 101 111 111 111
7 16000 001 11)0 000 000 000
17777 001 111 111 111 111
*Direct/Indirect bit does not form part of an address.

02357-1

4-9

Section IV
Paragraphs 4-49 to 4-56

4-49. In the Computer, a reference to memory is
implemented by transferring Bits 0 through 9 of the
instruction word from the T-Register to the M-
Register during the Fetch phase (see Figure 3-15).
The remaining bits, during the Fetch phase, can only
stay at the value they used when addressing the current
instruction location, before the Fetch phase began.
(Optionally, these bits can be reset to zero for a
reference to page Zero; this is relatively simple to
accomplish internally.) Thus the programmer must
know if these bits currently agree withthe correspond-
ing bits of the address he wishes to reference. To
assist the programmer in this task, the convention is
established of dividing memory into blocks called
‘‘pages’”. Each block contains 2000 (octal) memory
locations (or 1024 decimal). This block size is
determined by the range of direct addressing capability
(0000 through 1777), and each such block is assigned
a ‘‘page number’’.

4-50. Identification of page numbersis simplified by
considering the 5 pagebits (see Table 4-4) as a sepa-
rate binary word. Thus 00000, is Page 0; 00001, is
Page 1; 00010, is Page 2; etc. Going back to the
problem example in Paragraph 4-46 (where it was
stated that the ADA instruction in location 2775 could
not reference location 4100), the situation can be ana-
lyzed as follows:

a. Current address is 000 010 111 111 101
(02775)

b. Page number (first five bits) is 00001, (Page
1)

c. Desired reference is 000 100 000 000 000
(04000)

d. Page number (first five bits) is 00010, (Page
2)

4-51. The desired reference requires apage change,
or, in other words, Bits 10 through 15 of the M-
Register must be altered, in addition to the usual
alteration of Bits 0 through 9. To do so requires use
of a programming technique described under Para-
graph 4-55 (Indirect References). A simpler tech-
nique of addressing another page (limited to page
Zero only) is discussed first in the following para-
graph. Figure 4-5 illustrates both methods, by
presenting the physical arrangement of two memory
modules, and showing individual memory cells which
are addressable from a location on Page 1. This
source location may be thought of as location 2775,
the same example as in the preceding discussions.
Page 1 is the Current page.

4-52. DIRECT REFERENCES.

4-53. The arrows going left from ‘‘location 2775’ in
Figure 4-5 show that, without using an indirect ad-
dress, an instruction at this point can reference a
location on either the Current page or Page 0. This
doubles the range of possible references for instruc-
tions which are located on any page other than Page 0.
Bit 10 of the instruction word is reserved for
distinguishing which page is referenced (zero for
Page 0, or one for Current page). This distinction

4-10

Model 2116A
Volume One

DIRECT / INDIRECT

PAGE
~— e 4
= 5
7 N> o
PAGE {
0 > 6 it
® ® — — gl
‘\ f’ N o
1 I ! (PO o 7
® A ® ——]
2775 N o
2
- SECOND
MODULE
3
>0 BASIC MODULE
021i6-4A-20

Figure 4-5. Direct and Indirect References
to Other Pages

must always be considered when coding any Mem-
ory Reference instruction, or an erroneous reference
may be made. The memory reference bits alone are
not sufficient to identify alocation. For example, ADA
5777 and ADA 1777 (assuming that the program is
operating in Page 2) have identical memory reference
bits:

ADA 5777: 0 100 01(1 111 111 111)

ADA 1777: 0 100 00(1 111 111 111)

4-54, Only Bit 10, the Zero/Current indicator, can
make the distinction. The ‘‘C’’ in the Coding Table is
a reminder that Bit 10 must be coded a one when ref-
erencing Current page. Otherwise it must be a zero
for all Memory Reference instructions. Remember
that Bit 10 of the instruction word is not an address
bit. Its function is to control Bits 10 through 15 of the
M-Register: to either reset these bits to zero, or
leave them alone. This provides an easy, direct
access to information on Page 0 from any other page,
thus making Page 0 useful for storage of data.
Programs are generally stored in other pages (as the
examples in this Section do) in order to reserve Page
0 for information which may be referred to frequently.

4-55, INDIRECT REFERENCES.

4-56. The arrows going right from ‘‘location 2775’?
in Figure 4-5 show that, by using an indirect address
in the first referenced location, any location in
memory can then be accessed. As in the preceding
paragraph, the initial reference (contained in the in-
struction word), can refer to a location on either the
Current page or Page 0. Broken lines in Figure 4-5
indicate this optional choice. Either way, the initial
reference is simply an intermediate step to the final
desired reference. Obviously an added machine

02357-1

Model 2116A
Volume One

operation (Indirect phase) is required, as well as the
added memory location. The means of telling the
Computer that this additional step is desired is to
code a one in Bit 15 of the instruction word. An “I”’
in the Coding Table is a reminder to do this.

4-57. PROGRAM EXAMPLE.

4-58. Table 4-5 lists a program illustrating both a
direct reference to Page 0 and an indirect reference
to Page 2. As before, the program itself operates
approximately in the middle of Page 1. This program
differs from that of Table 4-2 in that the data, instead
of being stored on the Current page (location 3001),
now appears in two different locations: location 1001
on Page 0, and location 4000 on Page 2. Figure 4-6
shows insimplified form the referencing accomplished
by this program.

PAGE
(DATA)

1001

1 l
(PROGRAM) (REF)

° o—!
2774 2175 3777)

4000 (DATA)

2

ADD 5 INDIRECT LOAD S DIRECT

A -REGISTER 0 000 000 000 001 010 |

0216-A-21

Figure 4-6. Examples of Interpage
Referencing

Section IV
Paragraphs 4-57 to 4-61

4-59. LOADING THE PROGRAM. Unless memory
has been distrubed, the program of Table 4-5 can be
loaded by making a few changes to the existing con-
ditions of the Computer on completion of the preceding
procedures. (The reader, at this point in the text,
should be able to load a complete program, given octal
addresses and octal-coded contents; refer back to
Paragraph 4-33 if necessary.) Changes requiredare:

a. Load location 002774
b. Load location 003777
c¢. Load location 004000

with
with
with

contents 061001.
contents 004000.
contents 000005.

d. Load location 001001 with contents 000005.
4-60. DIRECT REFERENCE. Set the Switch Reg-
ister to the Starting Address (002774), and press

LOAD ADDRESS. Remembering that only Bits 0
through 9 of the word about to be read out of memory
are transferred to the M-Register, watch Bit 10 of
the M-Register and press SINGLE CYCLE once. Bit
10, a page bit, has changed from a one to a zero, thus
changing pages. This situationis shownin Figure 4-6,
where the instruction word in location 2774 is causing
location 1001 to be addressed. The contents of location
1001 is known to be ‘“5’’; this will be loaded into the
A-Register in the next (Execute phase). Again watch
Bit 10 of the M-Register and press SINGLE CYCLE.
The page indication returns to Page 1 to address the
next instruction (in 2775), and the data (octal 5) is in
the A-Register. Referring to Figure 4-6, an instruc-
tion on Page 1 has commanded data from Page 0 (by
direct reference) to be put into the A-Register.

4-61. INDIRECT REFERENCE. Previously, in
Paragraphs 4-46 and 4-50, it was pointed out that a
direct reference from location 2775 to 4000 is not
possible. These two paragraphs describe the indirect
method for making this reference. Briefly, the method
is to make an initial reference to a location on the
Current page, pick up a 15-bit address there, and use
that address to reference location 4000 (refer to
Figure 4-6). Although the initial reference could be
anywhere on the Current page or Page 0, location
3777 (which is immediately adjacent to location 4000)
has been chosen to emphasize the concept of page
boundaries.

Table 4-5. Program for Interpage Referencing

ADDRESS CONTENTS

REMARKS

Instruction
(or Data)

Memory

Reference D/1

A/B

z/C

Octal
Code

002774 o

004000
001001

1:-:073000

: O o

061001

) Get augend from page Zero, put in A.
143777

Add the addend specified by 777
Put answer in: 3000

102000 i ;
E Reserved for answer S

Address of addend is 4000.

Data (on Page 2).

Data (on Page 0).

004000
000005
000005

02357-1

4-11

Section IV
Paragraphs 4-62 to 4-68

4-62. Watching Bits 11 and 10 of the M-Register,
press SINGLE CYCLE. These bits remain 01, (Page
1) for the initial reference to location 3777 on the
Current page. Note that the Computer has ack-
nowledged the fact that indirect addressing is de-
sired, since the INDIRECT light is on; this condition
was specified by a one in Bit 15 of the instruction
word (now visible in the T-Register). Again watching
Bits 11 and 10 of the M-Register, press SINGLE
CYCLE. These bits change to 10, (Page 2) for the
indirect reference to location 4000. Since Bit 15 of
the T-Register is now a zero (not ‘‘Indirect’’), the
EXECUTE phase condition is indicated. This means
that the next phase will execute the instruction, and
the M-Register will return to Page 1 for the next in-
struction. Watching Bits 11 and 10 of the M-Register,
press SINGLE CYCLE. These bits return to 01, to
address location 2776. The remaining actions are the
same as in Table 4-3, Steps 6, 7, and 8. Press
SINGLE CYCLE three more times to complete the
program.

4-63. JUMPS.

‘4-64. In all previous examples, although random
references to various points in memory were made,
the program itself (i.e., the list of instruction words)
was located in a few consecutive locations in Page 1.
This strict sequential operation would be severely
limiting for practical applications. Therefore pro-
vision must be made for the program to move freely
throughout available memory. The jump instructions
(JMP and JSB) provide this capability.

4-65. The essential difference between these two
instructions is that the JMP (Jump) instruction un-
conditionally suspends operation at the currently used
area of memory and continues operation in a new
area, whereas JSB (Jump to Subroutine) provides a

Model 2116A
Volume One

means of ‘‘remembering’’ the location where the jump
command was given, thus enabling a return to that
point at some later time. Table 4-6 illustrates both
kinds of jumps by treating the program previously
developed as a ‘‘subroutine’’ (to add 5+5), and adding
a few preliminary instructions. These preliminary
instructions represent the ‘‘main program’’; for
simplicity of illustration, several NOP (No Operation)
instructions are inserted to represent a more lengthy
sequence of working instructions.

4-66. The special considerations for referencing
other pages, as covered in the preceding discussion
(Paragraphs 4-44 through 4-62), apply to the jump
instructions. This means that the program can jump
directly to any location on either Current page or
page Zero, or indirectly to any location in memory.
The program example in Table 4-6 illustrates both a
direct JMP and an indirect JMP, but only a direct
JSB. An indirect JSB occurs in the same way as does
the indirect JMP.

4-67. LOADING THE PROGRAM. If memory re-
mains undisturbed from preceding procedures, the
new program can be loaded simply by loading the
‘“Octal Code’’ contents into the corresponding ‘‘Ad-
dress’’ for those items not shaded in Table 4-6.
Otherwise it is necessary to load all 15 addresses
listed in the table. Note that LOAD ADDRESS must
be used three times, since three separate areas of
memory are being loaded.

4-68. THE JMP INSTRUCTION. Set the Switch
Register to the Starting Address (002100), and press
LOAD ADDRESS. Assume that a working program
has been running sequentially up to this point (i.e.,
the P-Register increments by one on completion of
each instruction). For example, watchthe P-Register
and press SINGLE CYCLE. This causes execution of
the first NOP instruction, and advances the P-Register

Table 4-6. Examples of Program Jumps

ADDRESS CONTENTS REMARKS

Instruction Memory Octal

(or Data) Reference D/1|A/B|Z/C Code

002100 NOP 000000 Program starts here (no operation).
002101 JMP 2200 026200 Jump to 2200.
002200 NOP 000000 No operation.
002201 NOP 000000 No operation.
002202 JSB 2773 016773 Jump to 5 +5 subroutine at 2773.

,102000 At _
e B fo,rfr’,

et

1073000 ||

Put answer in 3000 R
‘Return to main program v1a 2773
Reserved for answer.

126773

001001;{f

| 000005

,004000 || . Address of addend is 4000
- Data (on Page 2). :

: Data (on Page o) ot i

000005

4-12

02357-1

Model 2116A
Volume One

from 002100 to 002101. In location 2101 is the in-
struction to jump to location 2200. Since a direct
jump is a one-phase instruction, the jump will be
completed in the next operation. Watch the P-
Register and press SINGLE CYCLE, noting that the
indication does not increment by one, but rather
‘““jumps’’ from 002101 to 002200. If the intervening
locations had contained instructions, those instruc-
tions would be omitted from the sequence of this
program. Press SINGLE CYCLE two more times, and
note that the P-Register increments normally from
the new operating point of 002200.

4-69. THE JSB INSTRUCTION. The P-Register is
now at the location (2202) which contains the instruc-
tion to jump to the subroutine which begins at location
2773. This subroutine, as the Remarks column
states, is a procedure to add 5 plus 5. It is desired,
upon completion of the subroutine, to return to the
main program at the succeeding location (2203). It
happens that the HLT instruction is located in 2203,
but a program-continuing instruction could as well be
stored there, and the program (P-Register) would
advance as usual to 2204, 2205, etc.

4-70. The JSB instruction, unlike JMP, requires two
phases. The first phase (Fetch) only references the
location being jumped to; i.e., the P-Register does
not change in this phase. Watch the M-Register and
press SINGLE CYCLE, noting that location 2773 is
referenced, but the P-Register still ‘‘remembers’’
the location (2202) where the jump command was
given. The next phase will store the return address
into the referenced location, and will complete the
jump. Watech the P and M Registers and press
SINGLE CYCLE. Both registers now address the
first instruction of the subroutine location 2774.
Note also that the T-Register indicates the number
2203, the return address, which was stored into
location 2773 in the phase just completed. This value
is one higher than the location jumped from, since
obviously a return to location 2202 would send the
program right back into the subroutine, and it would
loop continuously without ever reaching 2203.

4-71. Now press the SINGLE CYCLE pushbutton
seven more times. This executes the three instruc-
tions of the subroutine, which are identical to the
instructions of the previous program (Table 4-5).
The content of location 2777, however, is now an in-
direct jump via location 2773. Location 2773, re-
member, contains the return address. Watch the
M-Register andpress SINGLE CYCLE; this references
location 2773. Since the next phase will be an Indirect
phase (INDIRECT light is on), the content of the
referenced location will be interpreted as anaddress.
The Indirect phase will complete the jump to that
address. Watch the P and M Registers and again
press SINGLE CYCLE, These registers now address
location 2203 of the main program, completing the
jump out of the subroutine. Press SINGLE CYCLE to
execute the HLT instruction contained in location
2203.

|
4-72. The preceding three paragraphs show how sub-
routines are accessed. By definition, a subroutine
is a sequence of instructions designed to perform a

02357-1

Section IV
Paragraphs 4-69 to 4-77

single task, with provisions included to allow entry
from any point in a program and return to the same
point. The contents of locations 2773 through 2777
comprise a typical subroutine. The single task is an
addition, and the entry and return requirement is
guaranteed by storing the return address in location
2773 (a function of the JSB instruction) and by in-
cluding an indirect jump via this location at the end
of the subroutine (programmer’s responsibility).

4-73. INTRODUCTION TO PROGRAM
DEVELOPMENT.

4-74. The program examples given in the preceding
discussions have been simple enough that no expla-
nations were offered to explain how the programs were
derived. The main object has been to demonstrate the
register manipulations which occur during the running
of the program. Refer ahead to the next program ex-
ample in Table 4-8, and note that 12 lines have been
added to the previous 15, nearly doubling the length of
the program. Readers without previous programming
experience may, at this point, wish to know just how
this sequence of instructions was developed. For
example, how was it known in advance that the new
Starting Address of the program would be 21667

4-75. The answer is that preliminary development
in ““rough’’ form preceded the assigning of actual
addresses. Temporary ‘‘labels’”’ were used in place
of final addresses. This introduces the concept of
symbolic programming, which later becomes the ex-
clusive means of program writing when software is
involved. For such purposes, however, specific rules
governing the use of labels apply, which are beyond
the scope of this Volume. This Volume therefore uses
a symbolic notation (lower case letters) unique to
these discussions, with the implication that such
labels are temporary assignments for rough work
only. The appearance of lower case letters ina
written program provides an immediate and obvious
indication that the program is not completely
developed.

4-76. The following description of Looping and
Counting includes detailed information onthe develop-
ment of the program example. Before going into
details of the program, however, it is first necessary
to decide on general techniques, based on the problem
to be solved. Suppose that the problemto be solved is:
[5 + 3@)] + 5 = 16
4-77. The previously developed program showed how
to use a subroutine to add two numbers, both of which
happened to be 5. For convenience, the same sub-~
routine can be used by letting one of the numbers be
5, and the other can be the result of the 5 + 3(2) cal-
culation. Now it is only necessary, at some time
before going into the subroutine, to perform the
5 + 3(2) calculation and store the result in an easily
referenced location. It is the object of the following
paragraphs to show how to do this calculation with a
simple loop. Therefore the general techniques de-
cided upon are: use a loop to calculate (5 + 3(2)),
and use the previously established subroutine to add
the result to the number 5.

4-13

Section IV
Paragraphs 4-78 to 4-88

4-78. LOOPING AND COUNTING.

4-79. THE PROGRAM LOOP.

4-80. To save core space (and incidentally to ease
the burden on the programmer), it is frequently con-
venient to use a program loop when a sequence of
instructions within a program is to be repeated
several times, with little or no change oneach repeat.
As in the present example, suppose it is desired to
add 2+2+2 etc., any number of times to the number 5.
To accomplish this, it would be possible to put the
number 5 into location ‘‘z’’, 2 into location ‘‘y’’, and
then add repeatedly:

a. LDA z

b. ADA y

c. ADA y

d. ADA 1y, etc.
z. 5

y. 2

4-81. By simply jumping back to the first add in-
struction immediately after it has been once com-
pleted, an endless program loop is created, accom-
plishing the same effect:

a. LDA =z
Cb. ADA y

c. JMP b

z. 5

y. 2

4-82. The program starts at location a, which loads
the contents of z (the number 5) into the A-Register,
then advances to location b, which adds the number
2 to the existing contents of the A-Register (i.e.,
5+2). Location ¢ contains the instruction to jump back
to location b, and thus add 2 again to the existing
contents of the A-Register (i.e., 5+2+2). This is the
essential concept of the program loop. Obviously this
simple sequence is not practical as it stands, since
the loop will repeat endlessly. Some means must be
provided for getting out of the loop after it has been
repeated a desired number of times. This necessitates
an instruction sequence to count eachloop asit occurs,
and then to exit from the loop when the desired count
has been reached. The required sequence is next
discussed.

4-83. COUNTING TO A LIMIT.

4-84. The ISZ instruction (Increment, and Skip if
Zero) is commonly used for counting to apreset limit,
since its special features include both the counting
(incrementing) and exit (skip) capabilities in one in-
struction word. A location in memory can be re-
served for use as a ‘‘counter’’;eachtime this location
is referenced by the ISZ instruction, itisincremented
by one (in the positive direction). If the counter
location is initially set to a negative value, it will
increment toward zero each time it is referenced. In
the present example, if the counter is setto -3 before
the loop is entered, the counter will go to zero on the
third pass through the loop. This is the condition
which causes the program to skip the nextinstruction.
If the skipped instruction is the JMP instruction which
causes the loop to repeat, the skip provides the means
of getting out of the loop (after the third pass). This
gives the following sequence:

4-14

Model 2116A
Volume One

a. LDA 1z
—b. ADA y
——d. ISZ X
——c. JMP b
t=e, STA w
z. 5
y. 2
x. -3
w. reserved for subtotal

4-85. Note that it has been necessary to insert a
new location (labeled d) between locations b and c.
Remember that the lower case letters are labels
only; they need not be in alphabetic sequence. The
instruction sequence here is a,b,d,c,e. The STA in-
struction in location e has been added to define where
the program continues on exit from the loop. Also
it has been necessary to add location x for the
counter (preset to -3), and to add location w to store
the result of the calculation. Storage of the result
(which is obtained in the A-Register) is necessary
since the A-Register will be used for other purposes
in the program.

4-86. The program begins by loading 5 into the A-
Register, then advances to location b to add 2. Next,
the ISZ instruction increments counter location x to
-2. Then the JMP instruction causes a return to
location b, where again 2 is added to the A-Register.
ISZ increments counter location x to -1. The JMP
instruction causes a second return to location b,
where 2 is added for the third (final) time to the
A-Register. ISZ increments counter location x to O,
and the program skips the JMP instruction and goes
instead to location e. Here, the contents of the A-
Register are stored into location w, and the program
continues to whatever instruction is next.

4-87. TALLYING.

4-88. Occasions arise in which it is desired simply
to count, or produce a ‘‘tally’’, of the number of
times a particular event occurs. This does not in-
volve a loop or a skip, but again the incrementing
feature of the ISZ instruction can be used. For ex-
ample, suppose it is desired to know (or verify) how
many passes through a loop are actually executed.
In the present simple example of a program loop,
the purpose of the tally would be to count how many
times the number 2 is added to the number 5 (loaded
into the A-Register before the loop begins). There-
fore an ISZ instruction, located ahead of the ADA
instruction, can be used to increment a reserved
tally location each time ADA is about to occur. (In
this simple example, the tally could be placed either
before or after the addition. In more complex pro-
grams, a definite placement may be dictated by the
structure of the program)., The tally, in this case
should be 3 after the program has been run, indi-
cating that three passes through the loop were made.
Since the ‘‘skip if zero’’ feature of the ISZ instruc-
tion is not used, a NOP (No Operation) instruction
could follow ISZ, so that if the total should happen to
exceed +32767 (and thus rolls over to zero), the
resulting skip won’t affect the operation of the pro-
gram. The program loop now consists of the following
sequence:

02357-1

Model 2116A
Volume One

a. LDA z
—f, ISZ v
g. NOP '
b. ADA y
r—d, ISZ x
—c. JMP f (note new reference)
tee. STA w
z, 5
y. 2
x. -3 (Counter)
w. reserved for subtotal
v. 0 (Tally)
4-89. INITIALIZATION.
4-90. The need for initialization frequently occursin

programming, and is not exclusively associated with
counting and tallying. It is introduced here as a
typical example of the principle. Initialization enables
a program to be repeated any number of times, by
presetting to starting values all locations which must
be in a specific state at the start of a program but
are in a different state at the end of the program.
This applies particularly to counters and tally lo-
cations. In the above examples, the counter starts
at -3 and ends at 0, while the tally starts at 0 and ends
at 3. To permit the program tobe run a second time,
the counter must be set back to -3 and the tally must
be set back to 0. Thisis generally done at the start of
a program; hence the term ‘‘initialization’’.

4-91. Creating the two’s complement form of a
negative number can also be accomplished easily in

Section IV
Paragraphs 4-89 to 4-94

the initialization, by using the combined Register
Reference instructions CMA and INA (Complement
and Increment the A-Register). Itis then necessary
only to provide positive numbers for constants. Thus
the complete initialization for both the counter and
the tally would consist of five instructions:

aa. LDA u

ab. CMA, INA } Set counter to -3
ac. STA x

ad. CLA }

ae. STA v Set tally to O

u 3

4-92. Location u has been added to contain the
positive number 3. The first instruction of the pro-
gram puts this number into the A-Register. The next
instruction, in location ab, converts this number to
-3. Then the result is stored in the location (x)
previously established for the counter (Paragraph
4-84). Location ad clears the A-Register (all zeros),
and this value of 0 is put into the location (v) pre-
viously established for the tally (Paragraph 4-88).

4-93. COMPLETE PROGRAM.

4-94. Putting together all parts of the symbolic pro-
gram developed in Paragraphs 4-78 through 4-92,
and then combining them with the previously developed
subroutine, the partially developed listing given in
Table 4-7 is obtained. Note that two of the locations
assigned symbolic addresses (z and w) already have

Table 4-7. Preliminary Program Development

ADDRESS CONTENTS REMARKS
Instruction Memory Octal
(or Data) Reference D/ |A/B|Z/C Code
aa LDA u C Start. Put 3" in A.
ab CMA, INA Convert to -3.
ac STA X C Put -3 in Loop Counter.
ad CLA Zero the A-Register.
ae STA v C Put 0 in Tally.
a LDA 3777 (z) 1 C Put "5" in A.
f ISZ v C Add 1 to Tally.
g NOP No Operation (void skip).
b ADA y C Add 2 to value in A.
d 1SZ X C Add 1 to Loop Counter. Exit if count 0.
c JMP f C Repeat Loop.
€ STA 1001 (w) Store subtotal in w on exit from loop.
002202 JSB 2713 C Jump to Add subroutine at 2773.
002203 HLT Halt.
002773 Reserved for return address.
002774 LDA 1001 (w) Get augend (subtotal), put in A.
0027175 ADA 3777 I C Add the addend specified by 3777.
002776 STA 3000 C Put answer in 3000.
002777 JMP 2773 1 C Return to main program via 2773.
003000 Reserved for answer.
003777 4000 Address of Data is 4000.
004000 z 5 Data (on Page 2).
001001 w Data (subtotal, on Page 0).
u 3 Constant.
X Reserved for Loop Counter.
v Reserved for Tally.
y 2 Data.
02357-1 4-15

Section IV
Paragraphs 4-95 to 4-98

actual addresses assigned: 3777, which references
the addend requested by the subroutine, and 1001,
which contains the augend (formerly the fixed number
5, now the subtotal produced by the loop). Looking
under the Memory Reference column, it is seen that
four other references (u,x,v,y) require an assignment
in the Address column. These are symbolically
listed at the end of the program as a reminder to
assign specific addresses for these references. There
can be no unassigned references.

4-95. Now it is simply a matter of assigning actual
addresses for the instructions by working backward
from the first fixed address (2202), thus arriving at
2166 for the Starting Address. For easeof reference,
the locations reserved for counters and constants
are assigned locations on Page 0, starting at the first
fixed address, 1001. The resulting assignments for
the fully developed program are shown in Table 4-8.

4-96. A significant change in the Remarks column
has been introduced in the transposition from Table
4-7 to Table 4-8. In the former table it is necessary
to read the remark for every instruction in order to
understand the intended operation. Table 4-8 simpli-
fies the reading by letting one remark apply to a
group of instructions, assuming that the reader already
understands such fundamentals as initialization, count-
ing, looping, and subroutine entry and exit.

Model 2116A
Volume One

4-97. LOADING THE PROGRAM. If memory re-
mains undisturbed from preceding procedures, the
program of Table 4-8 can be loaded simply by loading
the ‘‘Octal Code’’ contents into the corresponding
‘‘Address’’ for those items not shaded in the table.
Otherwise it is necessary to load all 27 locations in
order to run the program.

4-98. RUNNING THE PROGRAM. As before, itis
possible to step through the program one phase at a
time, by loading the new Starting Address and pressing
SINGLE CYCLE for each phase. For a program of
this length, 48 operations of the SINGLE CYCLE
pushbutton are necessary to step through the entire
program. If it is desired to examine in detail only
the new portions of the program (initialization,
looping, and counting), the instructions preceding
the JSB instruction should be stepped through (36
operations of SINGLE CYCLE) and then press RUN
to let the Computer execute the remainder auto-
matically. However, the program includes several
locations which can be checked, after the program
has been run, to verify that the program actually was
executed in the manner prescribed by the written
program. Simply load the Starting Address (002166),
press RUN, and check the results as in the following
paragraph.

Table 4-8. Program to Ilustrate Looping and Counting
ADDRESS CONTENTS REMARKS
Instruction Memory Octal
(or Data) Reference D/1 |A/B|Z/C Code
002166 LDA 1002 061002 INITIALIZE.
002167 CMA, INA 003004 Set Loop Counter to -3.
002170 STA 1003 071003
002171 CLA 002400 INITIALIZE.
002172 STA 1004 071004 Set Tally to 0.
002173 LDA 3177 I C 163777 PUT 5 into A.
002174 ISZ 1004 035004 LOOP.
002175 NOP 000000 Add 2 three times to A.
002176 ADA 1005 041005 Tally number of passes.
002177 ISZ 1003 035003
002200 JMP 2174 C 026174
002201 STA 1001 071001 STORE subtotal from Loop in 1001.
7002202 JSB 2773 C | 016773 JUMP to Add subroutine at 2‘773
002203 HLT S 102000 HALT. ,
, : S = : SUBROUTINE et :
LDA 1001 . 061001 Add 5 to subtotal from Loop.
 ADA 3 I - C 143777 qf R
o STA 3000 - C [073000
JMP 2713 1 C 126773
L = - ANSWER
4000 004000 _Address of Data is 4000
R .| 000005 Data (on Page 2).
CER P Data (subtotal, on Page O)
3 000003 Constant.
- LOOP COUNTER.
- TALLY.
001005 2 000002 Data (on Page 0).

4-16

02357-1

Model 2116A
Volume One

4-99. First, load the Answer address (003000) and
press DISPLAY MEMORY. Since the problem was
stated to be 5 + 3(2) + 5, the answer, obviously,
must be 16 (decimal) or 20, octal. That is, Bit 4 of
the T-Register must be on, and all others off. To
verify that the required three passes through the loop
were completed, three locations can be checked: the
subtotal, the loop counter, and the tally. Load the
address of the subtotal (001001) and press DISPLAY
MEMORY. The T-Register should indicate 000013
(11, decimal), the result of calculating 5 + 3(2).
Press DISPLAY MEMORY to pass over the next
location (a constant) and then once more to display
the content of the loop counter. All T-Register lights
should be off (zero). Press DISPLAY MEMORY once
more to display the tally, which should be 000003,
indicating three passes.

4-100. SPECIAL ADDRESSING METHODS.

4-101. Table 4-9 is the final expansion of the pro-
gram developed in the preceding portion of this
Section. Two special addressing methods are illus-
trated by the added instructions: address modification
and inter-register referencing, in which an accum-
ulator is referenced as though it were a memory
location. For the purpose of illustration, the program
is expanded to solve the following problem:

[5 + 3(2) + (sum of 4 numbers)]| -10,,

4-102. The four numbers undefined in the term
‘‘sum of 4 numbers’’ could be subtotals from other
parts of a complex program. Such a program could
be arranged to store these subtotals into four con-
secutive locations, thus making the numbers easily
accessible by the programming technique known as
address modification. This technique is described
under Paragraph 4-104. For simplicity, four fixed
numbers will be manually loaded into four consecutive
locations, starting at location 4000. This location
was previously assigned to contain the number 5; the
remaining three will be loaded as follows:

4001: 214
4002: 1404
4003: 35704

4-103. In the previous program, the answer was
stored in location 3000 during the subroutine. Since
the new problem demands an additional operation
(subtract 10,,), the new program will delay storage of
the answer until this additional operation has been
completed (after the subroutine). The partial answer
from the subroutine will be retained inthe A-Register
while the B-Register obtains the number -10. Then
the contents of the two accumulators can be combined
by the inter-register operation describedunder Para-
graph 4-110, Addressing the Accumulators.

4-104. ADDRESS MODIFICATION.

4-105. In explaining the operation of counters under
Paragraph 4-83, it was shown that the ISZ instruction
could be used to advance (or modify) a number con-

02357-1

Section IV
Paragraphs 4-99 to 4-107

tained in a specific location. Since there is no
restriction on the type of word that can be in the
addressed location, the number could as well be an
address. For example, in the subroutine of the pro-
gram in Table 4-8, location 3777 contains the address
4000. The corresponding Remark states that the
‘‘Address of Data is 4000’’. If an ISZ instruction,
referencing location 3777, incremented the number
to 4001, the applicable Remark would be ‘‘Address of
Data is 4001.”” Futhermore, if a loop were used to
increment location 3777 any number of times, an
entire block of data can be referenced with relatively
few instructions. The basic sequence is:

a. ADA 3777, 1
b. ISZ 3777
c. JMP a

4-106. Assuming that location 3777 initially contains
the address 4000, the instruction in location a adds to
the A-Register the data whose address is contained
in location 3777 (i.e., the data in 4000 is added to A).
The ISZ instruction in location b increments the con-
tents of location 3777 to 4001. Then the program
jumps back to location a, and the datain location 4001
is added to the A-Register. As explained under
Looping and Counting (Paragraph 4-78), some means
must be provided for getting out of the loop. A
common method is to compare the current reference
with the last address of the block (in this case 4003),
and provide an indirect jump via the return address
out of the subroutine. Since the B-Register is not
in use, it can be used to hold the final address, for
comparison purposes, and is therefore first loaded

with 4003. Thus the complete sequence for the loop
(to be contained within the subroutine) is:

d. LDB =z

a. ADA 3777, 1

e. CPB 3777

f. JMP return address, I

b. ISZ 3777

c. JMP a

z. 4003

4-107. With the comparison limit inthe B-Register,
the program advances to location a, where the quantity
5 (see Table 4-9) is added to the A-Register, in-
directly via location 3777 (which references 4000).
Then location e compares the contents of 3777
(currently 4000) with the contents of the B-Register
(fixed at 4003). Since the two numbers are unequal,
the terminating jump in location f is skipped (see
CPB definition in Paragraph 2-73 of Specifications),
and location b increments the contents of 3777 to
4001. Location c causes a jump back to the start
of the loop. The next pass through the loop adds the
quantity 21 (contents of 4001) to the total accumulating
in the A-Register. The comparison (4001 vs 4003)
causes another repeat of the loop, adding the quantity
140 (contents of 4002) to the A-Register. The next com-
parison (4002 vs 4003) is still unequal and another re-
peat of the loop adds 3570 (contents of 4003). This time
the CPB instruction finds the contents of 3777 and of the
B-Register to be equal (4003 vs 4003), and the JMP
instruction in location f is taken. This ends the loop.

4-17

Section IV
Paragraphs 4-108 to 4-117

4-108. Note that location 3777 ends with the number
4003 in it, whereas initially it must contain 4000.
As explained under Paragraph 4-89, this condition
requires initialization. This is accomplished prior
to the start of the loop by getting the number 4000
into the A-Register from a location reserved to store
this number as a constant, and then storing it into
location 3777. Thus the following words are added to
the program:

g. LDA vy
h. STA 3777
y. 4000

4-109. The instruction sequences listed in the two
preceding paragraphs account for all but one of the
instructions for the new version of the sub-routine.
The one remaining instruction (as in the previous
program) must put the results of the earlier subtotal
(in 1001) into the A-Register before the loop begins,
but after initialization. The resulting 10 locations
for the subroutine can now be assigned absolute
addresses and transferred into the program table
(locations 2766 through 2777). Location 2777 is re-
tained as the final location of the subroutine, and the
other locations are assigned working backward from
this point.

4-110. ADDRESSING THE ACCUMULATORS.

4-111. As stated in Paragraphs 2-35 and 2-36 of the
Specifications section, the A-Register and the B-
Register can be addressed as locations 0000 and
0001 respectively. The memory cells which would
ordinarily be identified by these addresses are not
available to the programmer. Thus, for example, an
‘“ADA 0001’ instruction would add to the A-Register
the contents of the B-Register. Since both of these
registers are accumulators, it is possible to perform
separate arithmetic operations on the two accumu-
lators, and then combine the two accumulated results
with a single instruction.

4-112, In solving the problem given in Paragraph
4-101, the program, up to the point of coming out of
the subroutine, has performed all the arithmetic ex-
cept for the subtraction of the decimal number 10
(12 octal). The result exists in the A-Register. If it
were necessary to derive the subtrahend by some
arithmetic, such as conversion from a positive
number, this can be done in the B-Register, while
the minuend is held in the A-Register. Then the in-
struction ‘“ADA 0001’ (add B to A) can perform the
subtraction, and the result (existing in the A-Register)
can be stored in the location reserved for the answer
(3000). Since this completes the solution of the
problem, the HLT instruction can follow, and the
sequence of instructions which follow exit from the
subroutine will therefore be:

a. LDB z
b. CMB, INB
c. ADA 0001
d. STA 3000
e. HLT

z. 12

4-18

Model 2116.
Volume On

4-113. The instruction in location a puts the octa
number 12 into the B-Register. The combined in
struction in location b converts this number to -12
and the instruction in c adds the number to the existin
contents of the A-Register. Location d stores th
final answer into location 3000, and the program halt
at location e. This sequence can now be transferre
to the program table as shown in Table 4-9, location
2203 through 2207, with the constant 12 in locatio
1010.

4-114. LOADING THE PROGRAM. If memory re
mains undisturbed from preceding procedures, th
program of Table 4-9 can be loaded simply by loadin,
the ‘“Octal Code’’ contents into the correspondin
‘‘Address’’ for those items not shaded in the table
Otherwise it is necessary to load all 42 locations i
order to run the program. Five separate areas o
memory are loaded, so be sure to set LOAD ADDRES;
for each block.

4-115. RUNNING THE PROGRAM. Set the Starting
Address (002166) into the Switch Register and pres:
LOAD ADDRESS and then RUN. To verify that the
program actually was executed in the manner pre-
scribed by the written program check the final answe:
and the subtotal. Load the Answer address (003000
and press DISPLAY MEMORY. The answer to the
problem stated in Paragraphs 4-101 and 4-102 is
3757 (in octal, or in decimal 2031). Therefore the
octal number 3757 must be displayed in the T-Register
Now load the subtotal address (001001) and press
DISPLAY MEMORY. The subtotal should be the
same as in the previous program, octal 13. If the
displayed subtotal is correct but the final answer is
not correct, assume a loading error inthe new portior
of the program. If this is the case, use DISPLAY
MEMORY to find the error. Reload the incorrec:
location and run the program again.

4-116. INTRODUCTION TO FLOWCHARTING.

4-117. In Paragraph 4-76 it was stated that the firsi
step in programming is to decide on general tech-
niques, based on the problem to be solved. At this
stage the programmer avoids thinking about the actions
of specific instructions, but rather attempts to vis-
ualize overall operations. To assist the programmer
in visualizing programs during development, flow-
charts are commonly used. Figure 4-7 is an ex-
ample of a flowchart. Documentation for HP 21164
software uses ASA standard block symbols in flow-
charts, only three of which are used in Figure 4-7.
However the general principles of flowcharting canbe
illustrated with these few symbols. The following
paragraphs trace the entire process of developing
a program from a stated problem through to actual
running of the program. The process consists of
four distinct steps:

Flowcharting the program.
Writing the program.
Loading the program.
Running the program.

poop

02357-:

Model 2116A
Volume One

Section IV
Paragraphs 4-118 to 4-120

Table 4-9. Program to Illustrate Special Addressing Methods
ADDRESS CONTENTS REMARKS
Instruction Memory Octal
(or Data) Reference D/1|A/B|Z/C Code
002166 LDA 1002 061002 INITIALIZE.
002167 CMA, INA 003004 Set Loop Counter to -3.
002170 STA 1003 071003
002171 CLA 002400 INITIALIZE.
002172 STA 1004 071004 Set Tally to 0.
002173 LDA 1006 I 161006 PUT 5 into A.
002174 ISZ 1004 035004 LOOP.
002175 NOP 000000 Add 2 three times to A.
002176 ADA 1005 041005 Tally number of passes.
002177 182 1003 035003
002200 JMP 2174 C | 026174
002201 -STA 1001 071001 STORE subtotal from Loop in 1001.
002202 JSB 2766 C | 016766 JUMP to subroutine at 2766.
002203 LDB 1010 B 065010 PUT -12
002204 CMB, INB B 007004 into B.
002205 ADA 0001 040001 ADD -12 to subroutine total.
002206 STA 3000 C | 073000 PUT answer in 3000.
002207 HLT 102000 HALT.
002766 - SUBROUTINE.
002767 LDA 1006 061006 Add block of numbers in
002770 STA 3777 C | 0737717 locations 4000 thru 4003
002771 LDA 1001 061001 to subtotal in 1001.
002772 LDB 1007 B 065007
002773 ADA 37T 1 C 143777 Add Loop.
002774 CPB 377 B C | 057777 Check for Last Address.
002775 JMP 2766 I C 126766 Exit.
002776 ISZ 3717 C | 037777
002777 JMP 2773 C | 026773
003000 - o - ANSWER.
003777 i 5 - Reserved for Block addresses.
004000 || 5 000005 DATA BLOCK
004001 21 000021 (on Page 2).
004002 140 000140
004003 3570 003570
001001+ o - Data (subtotal, on Page 0).
001002 3 000003 Constant.
001003 | - LOOP COUNTER.
001004 , S - TALLY.
-001005 2 e 000002 Data (on Page 0).
001006 4000 004000 First address of Block.
001007 4003 004003 Last address of Block.
001010 12 000012 Data (on Page 0).
4-118. FLOWCHARTING THE PROGRAM. Suppose (fourth block in Figure 4-7), and then somehow take

the problem is to set up a visual demonstration which
will show, by observing the panel register lights, the
action of shift and rotate instructions. (Such a
demonstration may be of benefit to persons not yet
well acquainted with computer operation.) The
demonstration should be activated by pressing the
RUN pushbutton (first symbol in Figure 4-7), and
should automatically terminate by a halt instruction
at the end of the program (last symbol in Figure
4-1). The shape of these symbols identifies a
‘‘terminal operation’’ (start or stop).

4-119. An effective demonstration would be to put
an easy to watch pattern into one of the accumulators

02357-1

each of the shift-rotate instructions individually and
move the bits slowly left or right from one end of the
accumulator to the other. One shift per second
might be an acceptable rate, and 16 such shifts (the
length of the accumulator) should be sufficient time
to observe the action. The instruction being demon-
strated should therefore change after every 16 shifts.
(For brevity, a ‘“shift’”’ is meant to apply to the action
of either a shift or a rotate instruction.)

4-120. The conditions of the preceding paragraph
indicate the need for a means to time 1-second
intervals (block 7), a means to determine if 16 shifts

4-19

Section IV
Paragraphs 4-121 to 4-123

RUN 1

L

INITIALIZE
PROGRAM

LOAD SHIFT
INSTRUCTION 3
IN LOOP (8)

PUT PATTERN
INTO A

INITIALIZE
SHIFT 5
COUNTER (9)

SHIFT LOOP

.

3

INITIALIZE
TIMER (7)

ONE
SECOND
ELAPSED
B

SHIFT A 8

16
SHIFTS

NO

CHANGE NO LAST

INSTRUCTION
(3)

INSTRUCTION
?

10

n

12

o2116-a-22

Figure 4-7. Flowchart for Shift-Rotate
Demonstration

have occurred (block 9), and lastly a means to de-
termine if all instructions have been demonstrated
(block 10). Note that all of these blocks are diamond-
shaped, which, in the ASA standard, identifies a
decision making capability. Generally the input fact
is applied to the top of the diamond, with three
possible output ‘‘branches’’. The blocks in Figure 4-7
use only two output branches, representing yes or
no decisions.

4-20

Model 2116A
Volume One

4-121. A practical means for timing and counting
shifts would be to use counters; the check for last
instruction could be a comparison of current in-
struction (block 8) with the code for the final in-
struction. Since both counters will go through their
full count sequences several times, initialization
must be provided for both (block 5 and 6). A means
must also be provided (blocks 3 and 11) for inserting
the instruction into block 8, and for changing the
instruction for each demonstration loop. This accounts
for all twelve blocks. It is now only necessary to
arrange the program sequence and the internal loops.

4-122. As wusual, the first event in the program
(block 2) is to ensure, by initializing, that the program
is repeatable. At this time it may not be known ex-
actly what parts of the program will require initial-
ization, so no specific action is stated. Next (block
3), the appropriate shift instruction must be put into
the loop. Initialization in block 2 will ensure that
the first listed shift instruction gets put into the
loop; address modification can be used to ensure that
subsequent shift instructions are put into the loop for
succeeding demonstrations. Then, (block 4), since
the demonstration pattern will be altered or de-
stroyed during execution of the program, it is nec-
essary to put the pattern into the A-Register at a
point in the program where it will be reloaded at the
start of each separate instruction demonstration.
Next the Shift Counter and the Timer should be
initialized. The timer should start to run before
executing the first shift, so that the starting con-
dition of the pattern can be observed for at least
one second; this is why block 7 is placed ahead of
block 8. The timer (which is a very simple loop to
check if one second has elapsed), loops back on it-
self for the ‘‘No’’ condition and proceeds to the
execution block when the ‘‘Yes’’ condition occurs.
The counting of shift executions immediately follows
block 8. Since the timer has run down to zero, it
must be re-initialized; therefore the ‘‘No’’ branchfor
block 9 must loop back to a point ahead of block 6
(Initialize Timer). Block 5 cannot be included in the
loop, or the Shift Counter would never advance to 16.
After 16 loops have occurred (16 shifts), the ‘‘Yes’’
branch of block 9 advances the program to block 10.
The check for last instruction must be placed after
the shift loop, since it is desired to have the ‘‘Yes’’
condition halt the program; if the check were placed
before the shift loop, the last shift instruction would
never be demonstrated. If the comparison is a ‘‘No’’
(more instructions to demonstrate), the next event is
to change the instruction in block 3, and loop back to
block 3. The entire process will then be repeated for
the new shift instruction.

4-123. WRITING THE PROGRAM. By creating the
flowchart in Figure 4-7, the following elements of
the program have already been established before
writing of the program begins:

a. The sequence of events.
b. The use of counters, loops and comparisons
at specific points in the sequence.

c. The number of shifts per demonstrated in-
struction (16).

02357-1

Model 2116A
Volume One

4-124. Factors which have not been established are:
how many loops comprise one second of elapsed
time, what specific instructions are to be demon-
strated, and what the pattern will be. A waiting loop
to create a time delay would consist of two instruc-
tions: ISZ timer, and JMP back to ISZ. The ISZ in-
struction takes 3.6 microseconds to execute (see
Paragraph 2-54 in Specifications), and JMP takes 1.6
microseconds. This is a total of 5.2 microseconds
(.0000052 second) per loop. Dividing this figure into
1 second gives the information that approximately
192,000 loops will provide a delay of the required
time. Since the largest number the computer can
handle is 32,767 (Paragraph 2-106 in Specifications),
the Timer loop should count to 32,767 six times, by
use of a loop within a loop:

——=a. ISZ
= . JMP
1SZ

a
b
c.
d. JMP
e.
Z.
y.

M ® N

0
-6

4-125. Locations a and b increment location z from
0 to 32,767. The next increment returns the count to
0, location b is skipped, and location ¢ increments
location y from -6 to -5. Then the program loops
back to location a, and the entire process repeats.
After location z has rolled over to zero six times,
location y will go from -1 to 0, causing a skip out of
the loop to location e. Initialization of the loop
consists of putting 0 into location z (aa and ab), and
-6 into location y (ac through ae).

aa. CLB

ab. STB =z
ac. LDB x
ad. CMB, INB
ae. STB vy
X. 6

4-126. The instructions to be demonstrated can be
stored in consecutive locations in the order listed in
the Specifications (Paragraph 2-81). This provides
easy access by address modification, and also provides
for convenient cross-reference to the text while the
demonstration is in progress. Only the instructions
which shift or rotate the A-Register will be demon-~
strated, since the actions for the B-Register are
identical to those for the A-Register, and since it is
convenient to make use of the B-Register during the
program. Thus the instructions will be demonstrated
in the following order:

ALS Left Shift (arithmetic)
ARS Right Shift (arithmetic)
RAL Left Rotate (18 bits)
RAR Right Rotate (16 bits)
ALR Left Shift, clear sign
ERA Rotate Right with Extend
ELA Rotate Left with Extend
ALF Rotate Left Four places

02357-1

Section IV
Paragraphs 4-124 to 4-131

4-127. For most of these instructions, a pattern of
100401, is suitable to show the movement of bits. In
binary, this is:

1 000 000 100 000 001

4-128. For the ALF instruction, however, bits jump
four places on each shift. Therefore a single ‘‘one”’
in the A-Register would be better than 3 ones. A
simple five-instruction sequence can be used to
switch the pattern for the ALF instruction:

(not ALF) ba. CPB w:] (ALF)

bb. JMP bf
be. LDA v

Copd. JMP bg l
bf. CLA,INA

[:bg. next’ -
w. ALF
v. 111111

4-129. If the CPB instruction in location ba finds that
the shift instruction which is about to be demonstrated
is not ALF, location bb is skipped. Location bc puts
the 100401 pattern into the A-Register, and then a
JMP instruction skips location bf. However, if the
demonstration instruction is ALF, the program steps
to location bb, where a jump to location bf clears the
A-Register and increments the Register to 000001
(CLA, INA).

4-130. Finally, all the elements of the program can
be worked into the program table, as in Table 4-10.
Note that, in this example, the Remarks column
corresponds directly to the blocks in the flowchart,
Figure 4-7. This is not an absolute rule for pro-
gramrming, but a close relationship between flowchart
and written program can frequently be a great help to
anyone studying the program. For addresses, two
blocks of memory locations (one for program in-
struction, one for reference data) have been assigned
which are adjacent to, but do not interefere with, the
locations assigned for the previous program (Table
4-9.) A CLE instruction has been inserted to ensure
that all demonstrations begin with the Extend light
off.

4-131. LOADING THE PROGRAM. Set the Switch
Register to the Starting Address (003001) and press
LOAD ADDRESS. The first 29 addresses are in
strict sequence from this Starting Address. There-
fore memory can be loaded simply by setting the
Octal Code into the Switch Register and pressing
LOAD MEMORY once for each line of Table 4-10.
LOAD MEMORY automatically increments the address
in the P and M Registers. Remember to press LOAD
MEMORY once also for the ‘‘reserved’’ locations

4-21

Section IV
Paragraphs 4-132 to 4-134

(which can be given any contents). After location
3035 has been loaded, Set the Switch Register to
001020, press LOAD ADDRESS and load the remain-
ing 15 locations.

4-132. RUNNING THE PROGRAM. Before running
the program, refer to the definitions for shift and
rotate instructions in Paragraph 2-81. Set the
Starting Address into the Switch Register, then press
LOAD ADDRESS and RUN. Each of the eight A-
Register shifts and rotates will be demonstrated for
16 seconds, giving a total run time of about two
minutes.

Model 2116A
Volume One

4-133. SUMMARY.

4-134. This Volume has presentedabasic introduction
to how the HP 2116A Computer operates, with equal
emphasis on both hardware and programming. The
succeeding three volumes present specialized de-
scriptions on each of these two aspects. Volume Two
describes the processor hardware in detail, and
Volume Three deals with the input/output hardware
system. Volume Four provides detailed information
for programming of the HP 2116A with the aid of
Hewlett-Packard software.

Table 4-10. Program to Demonstrate Shifts and Rotates

ADDRESS CONTENTS REMARKS
Instruction Memory Octal
(or Data) Reference D/1|A/B|Z/C Code
003001 LDA 1036 061036 INITIALIZE
003002 STA 3004 C | 073004 Get first Load instruction.
003003 CLE 002100
003004 - LOAD shift instruction
003005 STB 3027 B C | 077027 into loop.
003006 CPB 1027 B 055027 PUT pattern into A.
003007 JMP 3012 C 027012 If ALF, use 000001.
003010 LDA 1035 061035 All others use 100401.
003011 JMP 3013 C | 027013
003012 CLA, INA 002404
003013 LDB 1034 B 065034 INITIALIZE Shift Counter.
003014 CMB, INB B 007004 Set to -16.
003015 STB 1033 B 075033
003016 CLB B 006400 INITIALIZE Timer.
003017 STB 1030 B 075030 Set to loop for 1 second.
003020 LDB 1032 B 065032
003021 CMB, INB B 007004
003022 STB 1031 B 075031
003023 1Sz 1030 035030 LOOP.
003024 JMP 3023 C 027023 One second.
003025 1SZ 1031 035031
003026 JMP 3023 C 027023
003027 - SHIFT. (Instruction loaded by 3003.)
003030 1Sz 1033 035033 LOOP.
003031 JMP 3016 C 027016 16 shifts, one per second.
003032 LDB 1027 B 065027 CHECK
003033 CPB 3027 B C 057027 for last instruction.
003034 HLT 102000 HALT.
003035 1SZ 3004 C 037004 CHANGE instruction
003036 JMP 3003 C 027003 and repeat demonstration.
001020 ALS 001000 DEMONSTRATION instructions.
001021 ARS 001100
001022 RAL 001200
001023 RAR 001300
001024 ALR 001400
001025 ERA 001500
001026 ELA 001600
001027 ALF 001700
001030 - TIMER.
001031 - Rollover counter (-6).
001032 6 000006 Constant.
001033 - SHIFT COUNTER.
001034 20 000020 Decimal 16.
001035 100401 100401 Pattern.
001036 LDB 1020 065020 First Load instruction.
4-22 02357-1

APPENDIX A
REFERENCE TABLES

BT

>IX

Appendix A
Table A-1

Model 2116A
Volume One

Table A-1. Glossary of Terms Used in This Volume

absolute — Pertaining to an address fully defined by a
memory address number, or to a program which
contains such addresses (as opposed to one con-
taining symbolic addresses).

accumulator — A register in which numbers are to-
taled or manipulated, or temporarily stored for
transfers to and from memory or external devices.

add - Restrictive (HP 2116A): ''two's complement"
addition of binary numbers. General: any arith-
metic addition.

address — A number (noun) which identifies one loca-
tion in memory. Also (verb), the process of di-
recting the computer to read a specified memory
location (synonymous with "reference').

address modification — A programming technique of
changing the address referred to by a Memory
Reference instruction, so that each time that par-
ticular instruction is executed, it will affect a
different memory location.

address word— A computer word which contains only
the address of a memory location.

alter — A modification of the contents of an accumu-
lator or extend bit; e.g., clear, complement, or
increment.

analog — Pertaining to information which can have
continuously variable values, as opposed to digital
information, which can be varied in degrees no
smaller than the value of the least significant digit.

‘and’ — A logical operation in which the resultant
quantity (or signal) is true if all of the input values
are true, and is false if at least one of the input
values is false.

A-Register —One of the HP 2116A Computer's two
accumulator registers. These registers are used
for arithmetic operations and for information
transfers to and from device interfaces.

arithmetic logic — The circuitry involved in mani-
pulating the information contained in a computer's
accumulators.

arithmetic operation — Restrictive: a mathematical
operation involving fundamental arithmetic (addi-
tion, subtraction, multiplication, division), speci-
fically excluding logical and shifting operations.
General: any manipulation of numbers.

Assembler — A program for the HP 2116A Computer
(or any computer, if not capitalized) which con-
verts a program prepared in symbolic form (i.e.,
using defined symbols and mnemonics torepresent
instructions, addresses, etc.) to binary machine
language.

base — The quantity of different digits used in a par-
ticular numbering system. The base in the binary
numbering system is two; thus there are two digits
(0 and 1). In the decimal system (base 10), there
are ten digits (0 through 9).

A-2

base page- The lowest numbered page of a compu-
ter's memory. It can be directly addressed from
any other page.

Basic Binary Loader — A series of instructions for
the HP 2116A Computer which will load, into mem-
ory, programs prepared with absolute addresses,
using defined input devices.

Basic Control System — A collection of programs for
the HP 2116A Computer which direct the loading,
combining, library searching, debugging, and in-
put/output procedures for programs generated by
the user.

binary — Denoting the numbering system based on the
radix two. Binary digits are restricted to the
values 0 and 1.

binary-coded decimal — A coding method for repre-
senting each decimal digit (0-9) by specific com-
binations of four binary bits. For example, the
8-4-2-1 '"bed" code commonly used with the HP
2116A Computer represents '1'" as 0001, and 9"
as 1001.

binary point— The fractional dividing point of a bi-
nary numeral; equivalent to decimal point in the
decimal numbering system.

binary program — A program (or its recorded form)
in which all information is in binary machine lan-
guage.

bit — A single digit in a binary number, or in the re-
corded representation of such a number (by hole
punches, magnetic states, etc.). The digit can
have one of only two values, 0 or 1.

bit density — A physical specification referring to the
number of bits which can be recorded per unit of
length or area.

bit-serial — One bit at a time, as opposed to bit-par-
allel inwhich all bits of a character can be handled
simultaneously.

bistable — Pertaining to an electronic circuit having
two stable states, controllable by external switch-
ing signals; analogous to an on-off switch.

B-Register —One of the HP 2116A Computer's two
accumulator registers. These registers are used
for arithmetic operations and for informationtrans-
fers to and from device interfaces.

buffer — A register used for intermediate storage of
information in the transfer sequence between the
computer's accumulators and a peripheral device.
In the HP 2116A, the buffer is located inside the
computer on the device interface card.

bus — A major electrical path connecting two or more
electrical circuits.

carry — A digit, or equivalent signal, resulting from
an arithmetic operation which causes a positional
digit to equal or exceed the base of the effective
numbering system.

02357-1

Model 2116A
Volume One

Appendix A
Table A-1

Table A-1. Glossary (Cont'd.)

character — The general term to include all symbols
such as alphabetic letters, numerals, punctuation
marks, mathematical operators, etc. Also, the
coded representation of such symbols.

checkerboard — An alternating pattern of zeros and
ones stored in a computer for testing purposes.

clear — Reset; the binary '"zero'" condition.

code — A system of symbols which can beused by ma-
chines such as a computer, and which in specific
arrangements have a special external meaning.

communicafion system — A computer system having
facilities for long-distance transfers of informa-
tion between remote and central stations.

comparator — An instrument for comparing digitized
measurements against presettable upper and lower
limits, and giving an indication of the comparison
result.

compiler — A language translation program, used to
transform symbols meaningful to a human oper-
ator to codes meaningful to a computer. More
restrictively, a program which translates a ma-
chine-independent source language into the ma-
chine language of a specific computer, thus ex-
cluding assemblers.

computation — The processing of information within
the computer.

computer (digital) — An electronic instrument capa-
ble of accepting, storing, and arithmetically ma-
nipulating information, which includes both data
and the controlling program. The information
is handled in the form of coded binary digits (0
and 1), represented by dual voltage levels, mag-
netic states, punched holes, etc.

computer word — See "'word'.

configuration — The arrangement of either hardware
instruments or software routines when combined
to operate as a system.

configurator — A computer program whose purpose is
to combine a number of program segments into an
integrated whole, in a specific desired manner
(configuration).

contents — The information stored in a register or a
memory location.

Control bit — A signal, or the stored indication of this
signal, which controls the transfer of information
to and from peripheral devices associated with the
HP 2116A Computer.

core — The smallest element of a core storage mem-
ory module. It is a ring of ferrite material, . 03"
diameter in the HP 2116A, and can be magnetized
in clockwise or counterclockwise directions to
represent the two binary digits, 0 and 1.

crossbar scanner — A device for sequentially connec-
ting multi-wire analog signals to a digital mea-
suring device, using a crossbar switch (a switch
specially designed for accurate transfer of low-
level, high-frequency, and high-impedance signals).

02357-1

Current page — The memory page comprising all those
locations which are on the same page as a given
instruction.

data acquisition— The gathering, measuring, digiti-
zing, and recording of continuous form (analog)
information.

data reduction— The transformation of raw informa-
tion gathered by measuring or recording equipment
into a more condensed, organized, or useful form.

data word— A computer word consisting of a number,
a fact, or other information which is to he pro-
cessed by the computer.

debug— Check for and correct errors in a program.

decimal — Denoting the numbering system based on
the radix ten.

decrement — To change the value of a number in the
negative direction. If not otherwise stated, a de-
crement by one is usually assumed.

device — An electronic or electromechanical instru-
ment. Most commonly implies measuring, read-
ing, or recording equipment.

diagnostic — (adj) Relating to test programs for de-
tection of errors in the functioning of hardware or
software, or the messages resulting from such
tests. Also (noun), the test program or message
itself.

digital voltmeter — An electronic voltage measuring
device which provides a readout in digital form on
the instrument panel, and commonly (essential for
computer purposes) also codes the measurement
result in binary-coded decimal form as an electri-
cal output.

direct memory access — A means of transferring a
block of information words directly between an
external device and the computer’s memory, by-
passing the need for repeating a service routine
for each word. This method greatly speeds the
transfer process.

disabie — A signal condition which prohibits some
specific event from proceeding.

disc storage — A means of storing binary digits in the
form of magnetized spots on a rotating circular
metal plate coated with a magnetic material. The
information is stored and retrieved by read-write
heads positioned over the surface of the disc.

documentation — Manuals and other printed materials
(tables, listings, diagrams, etc.) which provide
instructive information for usage and maintenance
of a manufactured product, including both hard-
ware and software.

double-length word- A word, due to its length, which
requires two computer words to represent it.
Double-length words are normally stored in two
adjacent memory locations.

driver — An input/output routine to provide automatic
operation of a specific device with the computer.
dump-— To record memory contents on an external

medium (e. g., tape).
A-3

Appendix A
Table A-1

Table A-1.

effective address — The address of amemory location
ultimately affected by a memory reference in-
struction. It is possible for one instruction to go
through several indirect addresses to reach the
effective address.

electronic counter — An electronic instrument used to
measure physical quantities by specially controlled
counting of electrical pulses.

enable — A signal condition which permits some spe-
cific event to proceed, whenever it is ready to do
so.

‘exclusive or — A logical operation in which the re-
sultant quantity (or signal) is true if at least one
(but not all) of the input values is true, and is false
if the input values are all true or all false.

execute — To fully perform a specific operation, such
as would be accomplished by an instruction or a
program.

Execute phase — A predetermined state of the internal
computer logic which causes the computer to in-
terpret as data the information read out of memory
during a memory cycle.

exit sequence — A series of instructions to conclude
operation in one area of a program and to move to
another area.

Extend — A one-bit register in the HP 2116A Com-
puter, which extends the effective length of the A
or B Registers to 17 bits for certain additions and
rotations.

Fetch phase — A predetermined state of the internal
computer logic which causes the computer to in-
terpret as an instruction the information read out
of memory during a memory cycle.

fixed point— A numerical notation in which the frac-
tional point (whether decimal, octal, or binary)
appears at a constant, predetermined position.
Compare with floating point.

Flag bit — A signal, or the stored indication of this
signal, which indicates the readiness of a peri-
pheral device of the HP 2116A Computer to trans-
fer information.

flip-flop — An electronic circuit having two stable
states, and thus capable of storing a binary digit.
Its states are controlled by signal levels at the
circuit input, and are sensed by signal levels at
the circuit output.

floating point— A numerical notation in which the in-
teger and the exponent of a number are separately
represented (frequently by two computer words),
so that the implied position of the fractional point
(decimal, octal, or binary) can be freely varied
with respect to the integer digits. Compare with
fixed point.

flowchart — A diagram representing the operation of
a computer program.

format — A predetermined arrangement of bits or
characters.

A-4

Model 2116A
Volume One

Glossary (Cont'd.)

Formatter — A program which provides the linkage
between Fortran read/write statements and the
Basic Control System's Input/Output Control pro-
gram, with any appropriate conversions,

Fortran — A programming language (or the compiler
which translates this language) which permits pro-
grams to be written in a form resembling algebra,
rather than in detailed instruction-by-instruction
form (as for assemblers).

Fortran Library — A collection of programs for the
HP 2116A Computer to provide the user with com-
monly used mathematical and formatting routines.

gate — An electronic circuit capable of performing
logical functions such as "and", "or', 'mnor", etc.

hardware — Electronic or electromechanical compo-
nents, instruments, or systems.

Hardware Diagnostics — A collection of programs for
the HP 2116A Computer designed to assist in the
identification of hardware malfunctions.

high core — Core memory locations having high-num-
bered addresses.

‘inclusive or' — A logical operation in which the re-
sultant quantity (or signal) is true if at least one of
the input values is true, and is false if the input
values are all false.

increment — To change the value of a number in the
positive direction. If not otherwise stated, an in-
crement by one is usually assumed.

incremental magnetic tape — A form of magnetic tape
recording in which the recording transport ad-
vances by small increments (e.g. 0.005"), stop-
ping the tape advancement long enough to record
one character at the spot located under the record-
ing head.

indirect address — The address initially specified by
an instruction when it is desired to use that lo-
cation to re-direct the computer to some other
location to find the '"effective address" for the
instruction.

Indirect phase — A predetermined state of the internal
computer logic which causes the computer to in-
terpret as an address the information read out of
memory during a memory cycle.

information — A unit or set of knowledge represented
in the form of discrete '"'words', consisting of an
arrangement of symbols or (so far as the digital
computer is concerned) binary digits.

inhibit — To prevent a specific event from occurring.

initialize — The procedure of setting various parts of
a stored program to starting values, so that the
program will behave the same way each time it is
repeated. The procedures are included as part of
the program itself.

input — information transferred from a peripheral de-
vice into the Computer. Also can apply to the
transfer process itself.

02357-1

Model 2116A
Volume One

Table A-1.

input/output — Relating to the equipment or method
used for transmitting information into or out of the
computer.

input/output channel-The complete input or output
facility for one individual device or function, in-
cluding its assigned position in the computer, the
interface circuitry, and the external device.

Input/Output Control- A program of the HP 2116A's
Basic Control System which provides linkage be-
tween the input/output requests of a user program
and the appropriate drivers.

Input/Output System—The circuitry involved intrans-
ferring information between the HP 2116A's accu-
mulators and its peripheral devices.

instruction — A written statement, or the equivalent
computer-acceptable code, which tells the com-
puter to execute a specified single operation.

instruction code — The arrangement of binary digits
which tell the computer to execute a particular
instruction.

instruction logic — The circuitry involved in moving
binary information between registers, memory,
and buffers in prescribed manners, according to
instruction codes.

instruction Register — An internal 6-bit register of
the HP 2116A Computer, which forms part of its
instruction logic. The Instruction Register re-
ceives the 6 most significant bits of the T-Register
when each new instruction is read out of memory,
and retains these bits for instruction identifica-
tion. It is not usually considered to be a "working
register'.

instruction word — A computer word containing an in-
struction code. The code bits may occupy all or
(as in the case of Memory Reference instruction
words) only part of the word.

interface — The connecting circuitry which links the
central processor of a computer system to its
peripheral devices.

interrupt — The process, initiated by an external de-
vice, which causes the computer to interrupt a
program in progress, generally for the purpose of
transferring information between that device and
the computer.

interrupt location — A memory location whose con-
tents (always an instruction) are executed upon in-
terrupt by a specific device.

Interrupt phase— A predetermined state of the in-
ternal computer logic which causes the computer
to suspend operation of a program in progress,
and branch to a specific service routine.

jump — An instruction which breaks the strict sequen-
tial location-by-location operation of a program,
and directs the computer to continue at another
specified location anywhere in memory.

02357-1

Appendix A
Table A-1

Glossary (Cont'd.)

label — Any arrangement of symbols, usually alpha-
numeric, used in place of an absolute memory ad-
dress in computer programming.

language— The set of symbols, rules, and conven-
tions used to convey information, either at the
human level or at the computer level.

library routine — A routine designed to accomplish
some commonly used mathematical function, and
kept permanently available on a library program
tape (e.g., HP 2116A Fortran Library).

linearizer — An instrument for converting the mea-
surements made by a digital voltmeter to the nor-
mal engineering units of the physical quantity being
measured.

load — Put information into (memory, a register,
ete.). Also (e.g., loading tape), to put the infor-
mation medium into the appropriate device.

loader — A program designed to assist intransferring
information from an external device into a com-
puter's memory.

location— A group of storage elements in the com-
puter's memory (e.g., 17 cores in the HP 2116A
memory module), which can store one computer
word. Each such location is identified by a num-
ber ("address') to facilitate storage and retrieval
of information in selectable locations.

logical operation— A mathematical process based on
the principles of truth tables; e.g. '"and'", "inclu-
sive or' and "exclusive or' operations.

logic diagram — A diagram that represents the de-
tailed internal functioning of electronic hardware,
using binary logic symbols rather than electronic
component symbols (see ''schematic diagram').

logic equation— A written mathematical statement,
using symbols and rules derived from Boolean al-
gebra. Specifically (hardware design), a means of
stating the conditions required to obtain a given
signal.

loop — A sequence of instructions in which the last
instruction is a jump back to the first instruction.

low core — Core memory locations having low-num-
bered addresses.

machine — Pertaining to the computer hardware (e. g.,
machine timing, machine language).

machine language— The form of coded information
(consisting of binary digits) which can be directly
accepted and used by the computer. Other lan-
guages require translation to this form, generally
with the aid of translation programs (assemblers
and compilers).

machine timing — The regular cycle of events in the
operation of internal computer circuitry. The
actual events will differ for various processes,
but the timing is constant through each recurring
cycle.

A-5

Appendix A
Table A-1

Model 2116A
Volume One

Table A-1. Glossary (Cont'd.)

macroinstruction — An instruction, similar in binary
coding to the computer's basic machine language
instructions, which is capable of producing a vari-
able number of machine language instructions.

magnetic tape recording- A means of recording in-
formation on a strip of magnetic coated material,
such that binary bits can be represented by rever-
sals of the direction of magnetization.

magnitude— That portion of a computer word which
indicates the absolute value of a number, thus ex-
cluding the sign bit.

Math Routine- A program designed to accomplish a
single mathematical function.

media conversion-The transferral of recorded infor-
mation from one recording medium (e. g., punched
paper tape, magnetic tape, etc.) to another re-
cording medium.

memory — Anorganized collectionof storage elements
(e. g., ferrite cores), into which a unit of infor-
mation consisting of a binary digit can be stored,
and from which it can later be retrieved. Also, a
device not necessarily having individual storage
elements, but which has the same storage and re-
trieval capabilities (e.g., magnetic discs).

memory cycle — That portion of the computer's inter-
nal timing during which the contents of one location
of memory are read out (into the Transfer Regis-
ter) and written back into that location.

memory module— A complete segment of core stor-
age, capable of storing a definable number of com-
puter words (e.g., 4096 words in the HP 2116A
memory module). Computer storage capacity is
incremental by modules, and is frequently rounded
off and abbreviated as '"4K" (i. e., 4096 or approx-
imately 4000 words), "8K'" (8192 or 8000), "16K",
etc.

memory protect — A means of preventing inadvertent
alteration of a selectable segment of memory.

memory reference — The address of the memory lo-
cation specified by a Memory Reference instruc-
tion; i. e., the location affected by the instruction.

merge — 'Inclusive Or'".

microinstruction — An instruction which forms part of
a larger, composite instruction.

mnemonic — An abbreviation or arrangement of sym-
bols used to assist human memory. For example,
"STB'" calls to mind the term "Store B-Register"
much more readily than would, say, '"Instruction
4.

M-Register — The Memory Address register of the
HP 2116A Computer; i. e., the register which con-
trols the access to each memory location.

multi-level indirect — Indirect addressing using two
or more indirect addresses in sequence to find the
effective address for the current instruction.

multiple-precision — Referring to arithmetic in which
the computer, for greater accuracy, uses two or
more words to represent one number.

A-6

Mylar — A DuPont trademark for a polyester film
used as a more durable medium (in place of paper
tape) for punched tape records, and as a base for
magnetic tape.

nine’s complement — A number so modified that the
addition of the modified number and its original
value, plus one, will equal an even power of ten.
A nine's complement number is obtained mathe-
matically by subtracting the original value from a
string of 9's.

Non-Return to Zero- A technique of magnetic tape
recording in which the recording device does not
turn off the magnetizing flux between recording of
individual characters. The flux is always at satu-
ration level during recording, and bits are indi-
cated by reversals of flux polarity.

nuclear scaler — A system of electronic instruments
used to detect and analyze nuclear events, such as
gamma ray measurements.

octal — Denoting a numbering system based on the
radix eight. Octal digits are restricted to the va-
lues 0 through 7.

octal code— A notation for writing machine language
programs with the use of octal numbers instead of
binary numbers.

octal point— The fractional dividing point of an octal
numeral; equivalent to decimal point in the decimal
numbering system.

off line— Pertaining to the operation of peripheral
equipment not under control of the computer.

one’s complement— A number so modified that the
addition of the modified number and its original
value, plus one, will equal an even power of two.
A one's complement number is obtained mathema-
tically by subtracting the original value from a
string of 1's, and electronically by inverting the
states of all binary bits in the number.

on line— Pertaining to the operation of peripheral
equipment under computer control.

output— Information transferred from the computer
to a peripheral device. Also can apply to the
transfer process itself.

output coupler- An instrument which provides the
interconnecting circuitry between a measuring in-
strument and a recording instrument.

Overflow — A one-bit register in the HP 2116A Com-
puter, which indicates that the result of anaddition
in the A or B Register has exceeded the maximum
possible signed value (+ 32767 or -32768, decimal).
The addition result will therefore be missing one
or more significant bits.

packed word-A computer word containing two or
more independent units of information. This is
done to conserve storage when information re-
quires relatively few bits of the computer word.

02357-1

Model 2116A
Volume One

Appendix A
Table A-1

Table A-1. Glossary (Cont'd.)

page - An artificial division of memory consisting
of a fixed number of locations, dictated by the
direct addressing range of memory reference
instructions.

page Zero — The memory page which includes the
lowest numbered memory addresses.

parity bit— A supplementary bit added to an informa-
tion word to make the total of one-bits be always
either odd or even. This permits checking the
accuracy of information transfers.

pass — The complete process of reading a set of re-
corded information (one tape, one set of cards,
etc.) through an input device, from beginning to
end.

peripheral device— An instrument or machine elec-
trically connected to the computer, but which is
not part of the computer itself.

phase— One of several specific states of the internal
computer logic, usually set up by instructions
being executed, to determine how the computer
should interpret information read out of memory.

photoelectric reader— An input device which senses
characters (on punched tape, cards, pages, etc.)
by optical light strobe and detection circuits. An
example is the HP 2737TA Punched Tape Reader.

plane — An arrangement of ferrite cores on a matrix
of control and sensing wires. Several planes
stacked together form a ""'memory module'.

power failure control — A means of sensing primary
power failure so that a special routine may be exe-
cuted in the finite period of time available before
the regulated dc supplies discharge to unusable
levels. The special routine may be used to pre-
serve the state of a program in progress, or to
shut down external processes.

P-Register — The Program Counter register of the
HP 2116A Computer; i.e., the register which
keeps track of (or ""counts') the stored locations of
the instructions in a program being executed.

Prepare Control System— A program designed to as-
sist in the preparation of a Basic Control System
program, to a specified arrangement of input/out-
put devices.

priority — The automatic regulation of events so that
chosen actions will take precedence over others in
cases of timing conflict.

program — A plan for the solution of a problem by a
computer, and consisting of a sequence of compu-
ter instructions.

process control — Automatic control of manufacturing
processes by use of a computer.

processor — The central unit of a computer system
(i. e., the device which accomplishes the arith-
metic manipulations), exclusive of peripheral de-
vices. Frequently (when used as adjective) also
excludes interface components, even though nor-
mally contained within the processor unit; thus
"processor' options cxclude interface ("'input/out-
put'") options.

02357-1

program listing — A printed record (or equivalent bi-
nary-output program) of the instructions in a pro-
gram.

programmer — A person who writes computer pro-
grams. Also (hardware), an interface card or
instrument which sets up (or ''programs') the
various functions of one measuring instrument.

programming — The process of creating a program.

pseudo-instruction — A symbolic statement, similar to
assembly language instructions ingeneral form, but
meaningful only to the program containing it, rather
than to the computer as a machine instruction.

punched tape A strip of tape, usually paper, on
which information is represented by coded patterns
of holes punched in columns across the width of
the tape. Commonly (as used with the HP 2116A),
there are 8 hole positions (channels) across the
tape. .

quartz thermometer— An electronic temperature
measuring instrument using the linear temperature
sensing properties of specially cut quartz crys-
tals. An example is the HP 2801A Quartz Ther-
mometer, which provides a digital output usable
as an input to a digital computer, such as the
HP 2116A.

read — The process of transferring information from
an input device into the computer. Also, the pro-
cess of taking information out of the computer's
memory (see "memory cycle").

real time— Time elapsed between events occurring
externally to the computer. A computer which
accepts and processes information from one such
event and is ready for new information before the
next event occurs is said tooperate in a''real-time
environment"'.

reference — Shortened form of "memory reference'.

register — Anarray of hardware binary circuits (flip-
flops, switches, etc.) for temporary storage of
information. Unlike mass storage devices such as
memory cores, registers can be wired to permit
flexible control of the contained information, for
arithmetic operations, shifts, transfers, etc.

relocatable— Pertaining to programs whose instruc-
tions can be loaded into any stated areaof memory.

Relocating Loader- An HP 2116A Computer program
capable of loading and combining relocatable pro-
grams (i.e., programs having symbolic rather
than absolute addresses).

reset — A signal condition representing a binary
"'zero'.

rotate — A positional shift of all bits in an accumula-
tor (and possibly an extend bit as well), with those
bits lost off one end of the accumulator ''rotated"
around to enter vacated positions at the other end.

routine— A program or program segment designed to
accomplish a single function.

A-T7

Appendix A
Table A-1

Table A-1.

sampling— The process of taking a measurement of a
signal existing at a measuring instrument's input
during a short (""'sample') period. The length of
the sample period is a predetermined function of
the measuring instrument.

scanner — A device for sequentially switching multi-
ple signal sources to one measuring or recording
instrument.

schematic diagram— A diagram that represents the
detailed internal electrical circuit arrangement of
electronic hardware, using conventional electronic
component symbols.

Select Code- A number assigned to input/output chan-
nels for purposes of identification in information
transfers between the computer and external de-
vices.

service routine— A sequence of instructions designed
to accomplish the transfer of information between
a particular device and the computer.

set — A signal condition representing a binary ''one'.

seven's complement- A number so modified that the
addition of the modified number and its original
value, plus one, will equal an even power of eight.
A seven's complement number is obtained mathe-
matically by subtracting the original value from a
string of T's.

shift — Restrictive (arithmetic shift): to multiply or
divide the magnitude portion of a word (Bits 0
through 14 in the HP 2116A) by a power of two,
using a positional shift of these bits. General:
any positional shift of bits.

sign — The algebraic plus or minus indicator for a
mathematical quantity. Also, the binary digit or
electrical polarity representing same.

significant digit- A digit so positioned in a numeral
as to contribute a definable degree of precisionto
the numeral. In conventional written form, the
most significant digit in a numeral is the leftmost
digit, and the least significant digit is the right-
most digit.

skip — An instruction which causes the computer to
omit the instruction in the immediately following
location. A skip is usually arranged to occur only
if certain specified conditions are sensed and found
to be true, thus allowing various decisions to be
made.

software — Computer programs. Also, the tapes or
cards on which the programs are recorded.

software package — A complete collection of related
programs, not necessarily combined as a single
entity.

source program— A program (or its recorded form)
written in some programming language other than
machine language and thus requiring translation.
The translated form is the 'object program'.

starting address- The address of a memory location
in which is stored the first instruction of a given
program.

A-8

Model 2116A
Volume One

Glossary (Cont'd.)

statement — An instruction in any computer-related
language other than machine language.

store — To put information into a memory location,
register, or device capable of retaining the infor-
mation for later access.

subroutine - A sequence of instructions designed to
perform a single task, with provisions included to
allow some other program to cause execution of
the task sequence as if it were part of its own
program.

symbolic addresss A label assigned inplace of abso-
lute numeric addresses, usually for purposes of
relocation (see ''relocatable’).

Symbolic Editor— A program for the HP 2116A Com-
puter which is used to add, delete, or correct se-
lectable portions of any symbolic program.

symbolic file- A recorded collection of computer
words, with a symbolic address assigned to each
word.

system — An assembly of units (e.g., hardware in-
struments or software routines), combined to work
as a larger integrated unit having the capabilities
of all the separate units.

System Input/Output (software)A collection of input
/output programs to add input/output capability to
HP 2116A Fortran, Assembler, and Symbolic Ed-
itor, and to some user programs.

Time Period — The smallest division of time in the
HP 2116A Computer's internal timing cycle (see
"machine timing").

T-Register — The Transfer Register of the HP 2116A
Computer; i.e., the register which directly re-
ceives words from memory, and directly applies
words to memory.

truth table- A table listingall possible configurations
and resultant values for any given Boolean algebra
function.

two's complement — A number so modified that the
addition of the modified number and its original
value will equal an even power of two. Also, a
kind of arithmetic which represents negative num-
bers in two's complement form so that all addition
can be accomplished in only one direction (positive
incrementation). A two's complement number is
obtained mathematically by subtracting the original
value from an appropriate power of the base two
(i.e., from 1,, 10,, 100,, etc.), and electronic-
ally by inverting the states of all binary bits in
the number and adding one (complement and in-
crement).

vpdated program- A program to which additions, de-
letions, or corrections have been made.

user — The person or persons who program and oper-
ate a particular computer.

utility routine— A standard routine to assist in the
operation of the computer (e.g., device drivers,
sorting routines, etc.) as opposed to mathematical
(""library'") routines.

02357-1

Model 2116A Appendix A
Volume One Table A-1

Table A-1. Glossary (Cont'd.)

waiting loop — A sequence of instructions (frequently working register — A register whose contents can be
only two) which are repeated indefinitely until a modified under control of a program. Thus a reg-
desired external event occurs, such as the receipt ister consisting of manually-operated switches is
of a Flag signal. not considered a working register.

word — A set of binary digits handled by the computer write — Theprocess of transferring information from
as a unit of information. Its length is determined the computer to an output device. Also, the pro-
by hardware design; e.g., the number of cores per cess of storing (or restoring) information into the
location, and the number of flip-flops per register. computer's memory (see "memory cycle").

02357-1 A-9

Model 2116A Appendix A
Volume One Table A-2
Table A-2. Mnemonics and Abbreviations Used in This Volume
A A-Register (A Accumulator) CMF Complement Function
B B-Register (B Accumulator) CPA Compare to A
' C Current page (page addressing) CPB Compare to B
C Clear (Flag or Overflow) DMA Direct Memory Access
C Control (bit or signal) ELA rotate Extend Left with A
C Centigrade ELB rotate Extend Right with B
D Direct (addressing) EOF "Exclusive Or'' Function
D Disable (microinstruction group) ERA rotate Extend Right with A
E Extend ERB rotate Extend Right with B
E Enable (microinstruction group) HLT Halt
F Flag (bit or signal) INA Increment A
F Fahrenheit INB Increment B
H Hold (Flag or Overflow) IOF "Inclusive Or' Function
I Indirect (addressing) 10G Input/Output Group
I I-Register (Instruction Register) IOR "Inclusive Or' instruction
K Kilo (thousand) 1Sz Increment, Skip if Zero
M M-Register (Memory Address) JMP Jump
P P-Register (Program Counter) JSB Jump to Subroutine
T T-Register (Transfer Register) LDA Load (memory) into A
T Time periods LDB Load (memory) into B
Z page Zero LIA Load Input into A
LIB Load Input into B
MAC Macroinstruction
HP Hewlett-Packard MIA Merge Into A
1/0 Input/Output MIB Merge Into B
IR Instruction Register NOP No Operation
PH Phase OTA Output from A
RB R Bus OTB Output from B
RL Rotate Left OVF Overflow Flip-flop
SL Shift Left RAL Rotate A Left
TB T Bus RAR Rotate A Right
TR T-Register RBL Rotate B Left
RBR Rotate B Right
RLL Rotate Left to Least
ADA Add to A significant bit
ADB Add to B RRS Rotate Right to Sign bit
ADF Add Function RSS Reverse Skip Sense
ALF rotate A Left Four places SEZ Skip if Extend is Zero
ALR A Left shift, clear sign SFC Skip if Flag is Clear
ALS A Left Shift SFS Skip if Flag is Set
AND "And" instruction SIO System Input/Output
ANF "And" Function SKF Skip on Flag (signal)
ARS A Right Shift SLA Skip if Least significant bit of
ASA American Standards Association A is zero
ASG Alter-Skip Group SLB Skip if Least significant bit of
ASR Automatic Send-Receive B is zero
BCS Basic Control System SLM Shift Left Magnitude
BLF rotate B Left Four places SOC Skip if Overflow Clear
BLR B Left shift, clear sign SOS Skip if Overflow Set
BLS B Left Shift SRG Shift-Rotate Group
BRS B Right Shift SRM Shift Right Magnitude
CCA Clear and Complement A SSA Skip if Sign of A is zero
CCB Clear and Complement B SSB Skip if Sign of B is zero
CCE Clear and Complement Extend STA Store A
CLA Clear A STB Store B
CLB Clear B STC Set Control
CLC Clear Control STF Set Flag
CLE Clear Extend STO Set Overflow
CLF Clear Flag SZA Skip if A is Zero
CLO Clear Overflow SZB Skip if B is Zero
CMA Complement A XOR "Exclusive Or" instruction
CMB Complement B
CME Complement Extend (Continued)
02357-1 A-10

Appendix A

Model 2116A

Table A-2 Volume One
Table A-2. Mnemonics and Abbreviations (Cont'd.)

I0IC I/0 Input Control

100C 1/0 Output Control

NRZI Non-Return to Zero, Invert

ac alternating current

amp. amperes

bed (BCD) binary-coded decimal

Bin. binary

bpi bits per inch

BTU/hr. British Thermal Units, per hour

C16 Bit 16 Carry

Compl. complement

de direct current

Dec. decimal

e.g. for example (exempli gratia)

Hz Hertz (cycles per second)

i.e. that is (id est)

in. inches

Incl. included

ips inches per second

kg kilograms

1b. pounds

ma milliamperes

Mem. memory

MHz Megahertz (megacycles per
second)

ms milliseconds

mv millivolts

Oct. octal

sec. seconds

Sel. Select (Code)

v volts

vac volts (alternating current)

A-11 02357-1

Model 2116A
Volume One

Appendix A
Table A-3

Table A-3. Powers of Two

1024
2 048

4 096
8 192
16 384
32 768

65 536
131 072
262 144
524 288

1 048 576
2 097 152
4 194 304
8 388 608

16 777 216
33 554 432
67 108 864
134 217 728

268 435 456
536 870 912
1073 741 824
2 147 483 648

4 294 967 296
8 589 934 592
17 179 869 184
34 359 738 368

68 719 476 736
137 438 953 472
274 877 906 944
549 755 813 888

1 099 511 627 776
2 199 023 255 552
4 398 046 511 104
8 796 093 022 208

17 592 186 044 416
35 184 372 088 832
70 368 744 177 664
140 737 488 355 328

281 474 976 710 656
562 949 953 421 312
1 125 899 906 842 624
2 251 799 813 685 248

4 503 599 627 370 496
9 007 199 254 740 992
18 014 398 509 481 984
36 028 797 018 963 968

WO JOU WO

003 906 25
001 953 125
000 976 562 5
000 488 281 25

000 244 140 625
000 122 070 312 5
000 061 035 156 25
000 030 517 578 125

000 015 258 789062 5
000 007 629 394 531 25
000 003 814 697 265 625
000 001 907 348 632 812 5

000 000 953 674 316 406 25
000 000 476 837 158 203 125
000 000 238 418 579 101 562 5
000 000 119 209 289 550 781 25

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 000 000 059 604 644 775 390 625

0 000 000 029 802 322 387 695 312 5

0 000 000 014 901 161 193 847 656 25

0 000 000 007 450 580 596 923 828 125

0 000 000 003 725 290 298 461 914 062 5

0 000 000 001 862 645 149 230 957 031 25

0 000 000 000 931 322 574 615 478 515 625
0 000 000 000 465 661 287 307 739 257 812 5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

000 000 000 232 830 643 653 869 628 906 25
000 000 000 116 415 321 826 934 814 453 125
000 000 000 058 207 660 913 467 407 226 562 5
000 000 000 029 103 830 456 733 703 613 281 25

000 000 000 014 551 915 228 366 851 806 640 625
000 000 000 007 275 957 614 183 425 903 320 312 5
000 000 000 003 637 978 807 091 712 951 660 156 25
000 000 000 001 818 989 403 545 856 475 830 078 125

000 000 000 000 909 494 701 772 928 237 915 039 062 5
000 000 000 000 454 747 350 886 464 118 957 519 531 25
000 000 000 000 227 373 675 443 232 059 478 759 765 625
000 000 000 000 113 686 837 721 616 029 739 379 882 812 5

000 000 000 000 056 843 418 860 808 014 869 689 941 406 25
000 000 000 000 028 421 709 430 404 007 434 844 970 703 125
000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5
000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25
0

0

0

0

00 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625

00 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5
00 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25
00 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125

000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5
0 000 000 000 000 000 111 022 302 462 515 654 042 363 166 809 082 031 25
0 000 000 000 000 000 055 511 151 231 257 827 021 181 583 404 541 015 625
0 000 000 000 000 000 027 755 575 615 628 913 510 590 791 702 270 507 812 5

02357-1

A-12

Model 2116A Appendix A
Volume One Table A-4
Table A-4. Consolidated Coding Table
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
D/I AND 001 0 Z/C | - Memory Address -

D/1 XOR 010 0 Z/C
D/I IOR 011 0 Z/C
D/I JSB 001 1 Z/C
D/1 JMP 010 1 Z/C
D/1 ISZ 011 1 Z/C
D/1 AD* 100 A/B Z/C
D/I CPp* 101 A/B 7/C
D/1 LD* 110 A/B Z/C
D/I ST* 111 A/B Z/C
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 SRG 000 A/B 0 D/E | *LS 000 CLE D/E SL* |*LS 000
*RS 001 *RS 001
R*L 010 R*L 010
R*R 011 R*R 011
*LR 100 *LR 100
ER* 101 ER* 101
EL* 110 EL* 110
*LF 111 *LF 111
NOP 000 000 000 000
15 14 13 12 11 i0 9 8 7 6 5 4 3 2 1 0
0 ASG 000 A/B i CL* 01 |CLE 01} SEZ SS* SL* |IN* 8Z* RSS
CM* 10 | CME 10
CC* 11 | CCE 11
15 14 13 12 11 10 9 8 7 8 5 4 3 2 1 0
1 MAC 000 A/B 0
1 10G 000 A/B 1 H/C | HLT 000 <+ Select Code —————
1 0 STF 001
1 1 CLF 001
1 0 SFC 010
1 0 SFS 011
1 H/C | MI* 100
1 H/C | LI* 101
1 H/C| OT* 110
0 1 H/C | STC 111
1 1 H/C | CLC 111
1 0 STO 001 000 001
1 1 CLO 001 000 001
1 H/C | soC 010 000 001
1 H/C | SOS 011 000 001
Notes: * = Aor B.
D/I, A/B, 7/C, D/E, H/C coded: 0/1.
A-13 02357-1

ALABAMA

P.0. Box 4207

2003 Byrd Spring Road S.W.
Huntsville 35802

Tel: (205) 881-4591

TWX: 810-726-2204

ARIZONA

3009 North Scottsdale Road
Scottsdale 85251

Tel: (602) 945-7601

TWX: 910-950-1282

5737 East Broadway
Tuscon 85716

Tel: (602) 298-2313
TWX: 910-952-1162

CALIFORNIA

3939 Lankershim Boulevard
North Hollywood $1604
Tel: (213) 877-1282

TWX: 910-499-2170

1101 Embarcadero Road
Palo Alto 94303

Tel: (415) 327-6500
TWX: 910-373-1280

2591 Carlsbad Avenue
Sacramento 95821
Tel: (316) 482-1463
TWX: 910-367-2092

1055 Shafter Street
San Diego 92106

Tel: (714) 223-8103
TWX: 910-335-2000

COLORADO

7965 East Prentice
Englewood 80110
Tel: (303) 771-3455
TWX: 910-935-0705

CONNECTICUT
508 Tolland Street
East Hartford 06108
Tel: (203) 289-9394
TWX: 710-425-3416

111 East Avenue
Norwalk 06851

Tel: (203) 853-1251
TWX: 710-468-3750

ARGENTINA
Hewlett-Packard Argentina
S.AC.e.l.

Lavalle 1171 - 3°

Buenos Aires

Lutz, Ferrando y Cia. S. A.
Florida 240 (R.5)

Buenos Aires

Tel: 46-7241, 46-1635
Cable: OPTICA Buenos Aires

BRAZIL

Hewlett-Packard Do Brasil
l.e.C. Ltda.

Rua Cel. Oscar Porto, 691
Sao Paulo - 8, SP

Tel: 71-1503

Cable: HEWPAK Sao Paulo

Hewlett-Packard Do Brasil
l.e.C. Ltda.

Avenida Franklin Roosevelt 84-
grupo 203

Rio de Janeiro, ZC-39, GB

Tel: 32-9733

Cable: HEWPAK Rio de Janeiro

ALBERTA

Hewlett-Packard (Canada) Ltd.
11745 Jasper Avenue
Edmonton

Tel: (403) 482-5561

TWX: 610-831-2431

HEWLETT - PACKARD

ELECTRONIC INSTRUMENTATION SALES AND SERVICE
UNITED STATES, CENTRAL AND SOUTH AMERICA, CANADA

DELAWARE

3941 Kennett Pike
Wilmington 19807
Tel: (302) 655-6161
TWX: 510-666-2214

FLORIDA

P.0. Box 545

Suite 106

9999 N.E. 2nd Avenue
Miami Shores 33153
Tel: (305) 758-3626
TWX: 810-848-7262

P.0. Box 20007

Herndon Station 32814
621 Commonwealth Avenue
Orlando

Tel: (305) 841-3970

TWX: 810-850-0113

P.0. Box 8128
Madeira Beach 33708
410 150th Avenue

St. Petersburg

Tel: (813) 391-0211
TWX: 810-863-0366

GEORGIA

P.0. Box 28234

2340 Interstate Parkway
Atlanta 30328

Tel: (404) 436-6181

TWX: 810-766-4890

ILLINOIS

5500 Howard Street
Skokie 60076

Tel: (312) 677-0400
TWX: 910-223-3613

INDIANA

4002 Meadows Drive
Indianapolis 46205

Tel: (317) 546-4891

TWX: 810-341-3263

LOUISIANA

P.0. Box 856

1942 Williams Boulevard
Kenner 70062

Tel: (504) 721-6201
TWX: 810-955-5524

UNITED STATES

MARYLAND

6707 Whitestone Road
Baltimore 21207

Tel: (301) 944-5400
TWX: 710-862-0850

P.0. Box 727

Twinbrook Station 20851
12303 Twinbrook Parkway
Rockville

Tel: (301) 427-7560

TWX: 710-828-9684

MASSACHUSETTS
32 Hartwell Road
Lexington 02173
Tel: (617) 861-8960
TWX: 710-332-0382

MICHIGAN

24315 Northwestern Highway
Southfield 48075

Tel: (313) 353-9100

TWX: 810-232-1532

MINNESOTA

2459 University Avenue
St. Paul 55114

Tel: (612) 645-9461
TWX: 910-563-3734

MISSOURI

9208 Wyoming Place
Kansas City 64114
Tel: (816) 333-2445
TWX: 910-771-2087

2812 South Brentwood Blvd.
St. Louis 63144

Tel: (314) 644-0220

TWX: 910-760-1670

NEW JERSEY

W. 120 Century Road
Paramus 07652

Tel: (201) 265-5000
TWX: 710-990-4951

NEW MEXICO

P.0. Box 8366

Station C

6501 Lomas Boulevard N.E.
Albuquerque 87108

Tel: (505) 255-5586

TWX: 910-989-1665

156 Wyatt Drive
Las Cruces 88001
Tel: (505) 526-2485
TWX: 910-983-0550

NEW YORK

1702 Central Avenue
Albany 12205

Tel: (518) 869-8462

TWX: 710-441-8270

1219 Campville Road
Endicott 13764

Tel: (607) 754-0050
TWX: 510-252-0890

82 Washington Street
Poughkeepsie 12601
Tel: (914) 454-7330
TWX: 510-248-0012

39 Saginaw Drive
Rochester 14623
Tel: (716) 473-9500
TWX: 510-253-5981

1025 Northern Boulevard
Roslyn, Long island 11576
Tel: (516) 869-8400

TWX: 510-223-0811

5858 East Molloy Road
Syracuse 13211

Tel: (315) 454-2486
TWX: 710-541-0482

NORTH CAROLINA
P.0. Box 5188

1923 North Main Street
High Point 27262

Tel: (919) 882-6873
TWX: 510-926-1516

OHIO0

5579 Pear! Road
Cleveland 44129
Tel: (216) 884-9209
TWX: 810-421-8500

3460 South Dixie Drive
Dayton 45439

Tel: (513) 298-0351
TWX: 810-459-1925

OKLAHOMA

2919 United Founders Boulevard
Okiahoma City 73112

Tel: (405) 848-2801

TWX: 910-830-6862

CENTRAL AND SOUTH AMERICA

CHILE

Hector Calcagni P.

Casilla 13942

Estado 215 - Oficina 1016
Santiago

Tel: 31-890, 490-505

COLOMBIA

Instrumentacion

Henrik A. Langebaek & Cia. Ltda.
Carrera 7 # 48-59

Apartado Aéreo 6287

Bogota, 1. D.E.

Tel: 45-78-06, 45-55-46

Cable: AARIS Bogota

COSTA RICA

Lic. Alfredo Gallegos Gurdién
Apartado 3243

San José

Tel: 21-86-13

Cable: GALGUR San José

ECUADOR

Laboratorios de Radio-Ingenieria
Calle Guayaquil 1246

Post Office Box 3199

Quito

Tel: 12496

Cable: HORVATH Quito

BRITISH COLUMBIA
Hewlett-Packard (Canada) Ltd.
304-1037 West Broadway
Vancouver 9

Tel: (604) 731-5301

TWX: 610-922-5059

EL SALVADOR
Electrénica

Apartado Postal 1583
27 Avenida Norte 1133
San Salvador

Tel: 25 74 50

Cable: ELECTRONICA San Salvador

GUATEMALA

Olander Associates Latin America

Apartado 1226

7a. Calle, 0-22, Zona 1
Guatemala City

Tel: 22812

Cable: OLALA Guatemala City

MEXICO
Hewlett-Packard Mexicana, S.A.
V.

de C.V.

Apartado Postal 12-832
Eugenia 408, Dept. 1
Mexico 12, D.F.

Tel: 43-03-79, 36-08-78

NICARAGUA

Roberto Terén G.
Apartado Postal 689
Edificio Teran

Managua

Tel: 3451, 3452

Cable: ROTERAN Managua

CANADA

NOVA SCOTIA
Hewiett-Packard (Canada) Ltd.
7001 Mumford Road

Suite 356

Halifax

Tel: (902) 455-0511

TWX: 610-271-4482

PANAMA

Electronica Balboa, S.A.

P.0. Box 4929

Ave. Manuel Espinosa No. 13-50
Bidg. Alina

Panama City

Tel: 30833

Cable: ELECTRON Panama City

PERU

Fernando Ezeta B.

Avenida Petit Thouars 4719
Miraflores

Casilla 3061

Lima

Tel: 50346

Cable: FEPERU Lima

PUERTO RICO

San Juan Electronics, Inc.
P.0. Box 5167

Ponce de Leon 154

Pda. 3-Pta. de Tierra

San Juan, P.R. 00906

Tel: (174) 725-3342

Cable: SATRONICS San Juan

ONTARIO

Hewlett-Packard (Canada) Ltd.
880 Lady Ellen Place

Ottawa 3

Tel: (613) 722-4223

TWX: 610-562-1952

Hewlett-Packard (Canada) Ltd.
1415 Lawrence Avenue West
Toronto

Tel: (416) 249-9196

TWX: 610-492-2382

OREGON

Westhills Mall, Suite 158
4475 S.W. Scholls Ferry Road
Portiand 97225

Tel: (503) 292-9171

TWX: 910-464-6103

PENNSYLVANIA

2500 Moss Side Boulevard
Monroeville 15146

Tel: (412) 271-0724

TWX; 710-797-3650

144 Elizabeth Street

Wast Conshohocken 19428

Tel: (215) 248-1600, 828-6200
TWX: 510-660-8715

TEXAS

P.0. Box 7166

3605 Inwood Road
Dallas 75209

Tel: (214) 357-1881
TWX: 910-861-4081

P.0. Box 22813

4242 Richmond Avenue
Houston 77027

Tel: (713) 667-2407
TWX: 910-881-2645

GOVERNMENT CONTRACT OFFICE
225 Billy Mitchell Road

San Antonio 78226

Tel: (512) 434-4171

TWX: 910-871-1170

UTAH

2890 South Main Street
Salt Lake City 84115
Tel: (801) 486-8166
TWX: 910-925-5681

VIRGINIA

P.0. Box 6514
2111 Spencer Road
Richmond 23230
Tel: (703) 282-5451
TWX: 710-956-0157

WASHINGTON
433-108th N.E.
Bellevue 38004
Tel: (206) 454-3971
TWX: 910-443-2303

FOR U.S. AREAS NOT LISTED:
Contact the regional office nearest you:
Atlanta, Georgia . . . North Hollywood, Cali-
fornia . . . Paramus, New Jersey . .. Skokie,
Hllinois. Their complete addresses are
listed above.

URUGUAY

Pablo Ferrando S.A.
Comercial e Industrial
Avenida Italia 2877

Casilla de Correo 370
Montevideo

Tel: 40-3102

Cable: RADIUM Montevideo

VENEZUELA

Hewlett-Packard De Venezuela C.A.
Edificio Arisén-0f. 4

Avda. Francisco de Miranda
Chacaito

Caracas

Tel: 71.88.05

Cable: HEWPACK Caracas

Mailing Address: Apartado del
Este 10934 Caracas

FOR AREAS NOT LISTED,
CONTACT:

Hewlett-Packard Inter-Americas
1501 Page Mili Road

Palo Alte, California 94304
Tel: (415) 326-7000

TWX: 910-373-1267

Telex: 034-8461

Cable: HEWPACK Palo Alto

QUEBEC
Hewlett-Packard (Canada) Ltd.
275 Hymus Boulevard

Pointe Claire

Tel: (514) 697-4232

TWX 610-422-3022

Telex 01-20607

FOR CANADIAN AREAS NOT LISTED:
Contact Hewlett-Packard (Canada) Ltd. in
Pointe Claire, at the complete address
listed above

JAN 68

HP 2116A COMPUTER [y
* SPECIFICATIONS AND BASIC OPERATION

V’»’ nu..mwumm»m taret
DX X sttt
KK KRt
VDK Jessstntisns
ER PP TN P P In AN
arotatatatateint
XXX DX fissssinsies s
AN NN \JHiaiaratatatoty sy
NV VIV (5L FA g g
. NN NN ek
: . .AV.AV‘A" wmmm.m«uwmwmww ¥ ¥y
PR L LA
. ;’ } »’, } VW..M.MC..W.vMA.DM..MQW.WA.D.ﬂ‘.ﬂ.WA.W‘VN#

BP0 50§ 20§00 § 50 B4

< 4‘ ‘ < DS 305 FOZOBUSFTF0T0$ 20§ %8R
D Z <L X8 IXE T T TR L XIS
20320805 § 20§05 § 0% 20§ 54

oz } N N o s bl e ot T A

T hp PACKARD

HEWLET

PRINTED IN US.A

02116-9010

	000
	001
	002
	003
	1-00
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	x-01
	xBack

