

21MX M-Series Computer HP 2108B and HP 2112B

Operating and Reference Manual

DOCUMENTATION MAP

21MX M-Series Computer HP 2108B and HP 2112B

Operating and Reference Manual

HEWLETT-PACKARD COMPANY
11000 WOLFE ROAD, CUPERTINO, CALIFORNIA, 95014

Copyright © 1977 by HEWLETT-PACKARD COMPANY

Library Index Number 21M.320.02108-90037

Printed: NOV 1977 Printed in U.S.A.

CONTENTS

Section I Page	Extended Arithmetic Register
SYSTEM FEATURES	Reference Instructions
Architecture	Extended Instructions
User Microprogramming1-1	Floating Point Instructions 3
Bootstrap Loaders1-1	Base Set Instruction Coding 3-
Power System	Memory Reference Instructions 3-
Memory Systems	Register Reference Instructions 3-
Input/Output1-2	Shift/Rotate Group
Software	Alter/Skip Group
Specifications	Input/Output Instructions
System Expansion and Enhancement1-2	Extended Arithmetic Memory
	Reference Instructions
	Extended Arithmetic Register
Section II Page	Reference Instructions
OPERATING PROCEDURES	Extended Instruction Group 3-10
Hardware Registers	Index Register Instructions
A-Register	Jump Instructions 3-19
B-Register	Byte Manipulation Instructions
M-Register	Bit Manipulation Instructions 3-2
T-Register	Word Manipulation Instructions
P-Register	Floating Point Instructions
S-Register2-1	Instruction Execution Times
Extend Register	
Overflow Register	Section IV Pag
Display Register	DYNAMIC MAPPING SYSTEM
X- and Y-Registers	Memory Addressing
Operator Panel and Power Supply Operating	Map Register Loading
Controls	Status and Violation Registers4-
Rear Panel	Map Segmentation 4-
Internal Switches	Power Fail Characteristics4-
Operating Procedures	DMS Instruction Coding4-
Cold Power-Up	Instruction Execution Times 4-1
Loading Programs Manually	Sample Map Load/Enable Routine 4-1
Loading Programs from Paper Tape Reader 2-7	Additional DMS Definitions 4-1
Loading Programs from Disc Drive for	Alternate Map4-1
Optional Disc Loader ROMS	Protected Mode4-1
Loading Programs from Other Loading Devices 2-8	MEM Violations
Verifying Programs	DCPC Operation in a DMS Environment 4-1
Running Programs	Section V Pag
Special Register Display Mode	MICROPROGRAMMING
Shutdown Procedures	The Microprogrammed Computer5-:
Shutdown (Memory Sustained)	The Microprogrammable Computer5-
Shutdown (Memory Not Sustained)	Customized Instructions5-:
Exchanging I/O Interfaces	System Speed
Abnormal Indications	Memory Space and Security 5-:
Abnormal indications	Developing Microprograms5-
	Support for the Microprogrammer5-:
Section III Page	Optional Instruction Sets
PROGRAMMING INFORMATION	Dynamic Mapping System5-
Data Formats	Fast FORTRAN Processor5-
Addressing 3-1	Conclusion 5
Paging 3-1	
Direct and Indirect Addressing	Section VI Page
Reserved Memory Locations	INTERRUPT SYSTEM
Nonexistent Memory 3-4	Power Fail Interrupt 6-2
Base Set Instruction Formats	Parity Error Interrupt6-
Memory Reference Instructions	Memory Protect/DMS Interrupt 6
Register Reference Instructions	Dual-Channel Port Controller Interrupt 6-0
Input/Output Instructions	Input/Output Interrupt 6-0
Extended Arithmetic Memory	Central Interrupt Register6-0
Reference Instructions	Interrupt System Control 6-0

CONTENTS (continued)

Section VII Page INPUT/OUTPUT SYSTEM 7-1 Input/Output Addressing 7-1 Input/Output Priority 7-1 Interface Elements 7-3 Control Bit 7-3 Flag Bit 7-3 Buffer 7-4 Input/Output Data Transfer 7-4 Input Data Transfer 7-4 Output Data Transfer 7-5 Noninterrupt Method) 7-5 Noninterrupt Data Transfer 7-5 Input 7-5 Output 7-6	Dual-Channel Port Controller DCPC Operation DCPC Initialization Appendix Computer Physical Layout Character Codes Octal Arithmetic Octal/Decimal Conversions Mathematical Equivalents Octal Combining Tables Instruction Codes in Octal Base Set Instruction Codes in Binary Dynamic Mapping System Instruction Codes in Binary Extend and Overflow Examples Interrupt and I/O Control Summary A-14
	ILLUSTRATIONS
Title Page	Title Page
HP 21MX M-Series Microprogrammable Computers	Expanded Memory Addressing Scheme 4-Basic Word Format Vs Map Register Format 4-Map Segmentation 4-EMap Segmentation 5-EMap Register Format 4-EMap Segmentation 5-EMap Register Format 4-EMap Segmentation 7-EMAP Register Format 7-EM
	TABLES
Title Page	Title Page
Specifications 1-3 Options and Accessories 1-7 Operator Panel Control and Indicator 2-3 Functions 2-6 HP 2108B Rear Panel Features 2-6 HP 2112B Rear Panel Features 2-7 Starting Address Vs Memory Size 2-8 Optional Loader Selection 2-9 Special Register Display Mode 2-12 Effects of Storing/Displaying 2-12 Effects of Storing/Displaying 2-13 Halt Codes 2-14 Abnormal Indications 2-14	Reserved Memory Locations 3-Shift/Rotate Group Combing Guide 3-Reserved Memory Combing Guide 3-Reserved Base Set Instruction Execution Times 3-28 MEM Status Register Format 4-Shift MEM Violation Register Format 4-Shift Typical DMS Instruction Execution Times 4-18 Sample DMS Load/Enable Routine 4-18 HP 2108B Interrupt Assignments 6-Shift HP 2112B Interrupt Assignments 6-Shample Power Fail Subroutine 6-Shample Memory Protect, Parity Error, and DMS Subroutine 6-Shift HP 2112B Interrupt Assignments 6-Shample Memory Protect, Parity Error, and DMS Subroutine 6-Shift HP 2112B Interrupt Assignments 6-Shample Memory Protect, Parity Error, and DMS Subroutine 6-Shift HP 2112B Interrupt Assignments 6-Shample Memory Protect, Parity Error, and DMS Subroutine 6-Shift HP 2112B Interrupt Assignments 6-Sh

ALPHABETICAL INDEX OF STANDARD INSTRUCTIONS

Instruct	tion	Page	Instruc	tion	Page
ADA	Add to A	. 3-5	JLY	Jump and Load Y	3-19
ADB	Add to B	. 3-5	JMP	Jump	
ADX	Add Memory to X		JPY	Jump Indexed by Y	3-20
ADY	Add Memory to Y		JSB	Jump to Subroutine	
ALF	Rotate A Left Four	. 3-8	LAX	Load A Indexed by X	3-17
ALR	A Left Shift, Clear Sign	. 3-8	LAY	Load A Indexed by Y	
ALS	A Left Shift	. 3-8	LBT LBX	Load Byte Load B Indexed by X	
AND	"And" to A	. 3-6	LBX	Load B Indexed by Y	3-18
ARS	A Right Shift		LDA	Load A	
ASL	Arithmetic Shift Left (32)		LDB	Load B	
ASR	Arithmetic Shift Right (32)		LDX	Load X from Memory	
BLF	Rotate B Left Four		LDY	Load Y from Memory	
BLR	B Left Shift, Clear Sign		LIA	Load Input to A	
BLS BRS	B Left Shift		LIB LSL	Load Input to B	
CAX	B Right Shift		LSL	Logical Shift Left (32) Logical Shift Right (32)	3-10 3-16
CAY	Copy A to Y		MBT	Move Bytes	
CBS	Clear Bits		MIA	Merge Into A	
CBT	Compare Bytes		MIB	Merge Into B	3-12
CBX	Copy B to X		MPY	Multiply	3-14
CBY	Copy B to Y	. 3-17	MVW	Move Words	3-23
CCA	Clear and Complement A		NOP	No Operation	
CCB	Clear and Complement B		OTA	Output A	3-13
$\begin{array}{c} \mathrm{CCE} \\ \mathrm{CLA} \end{array}$	Clear A		$egin{array}{c} ext{OTB} \ ext{RAL} \end{array}$	Output B	
CLA	Clear B		RAR	Rotate A Left	
CLC	Clear Control		RBL	Rotate B Left	
CLE		3-9,3-10	RBR	Rotate B Right	
CLF	Clear Flag		RRL	Rotate Left (32)	
CLO	Clear Overflow		RRR	Rotate Right (32)	
CMA	Complement A		RSS	Reverse Skip Sense	
CMB	Complement B		SAX	Store A Indexed by X	
CME	Complement E		SAY	Store A Indexed by Y	
CMW CPA	Compare Words		$\begin{array}{c} { m SBS} \\ { m SBT} \end{array}$	Set Bits	
CPB	Compare to B		SBX	Store B Indexed by X	
CXA	Copy X to A		SBY	Store B Indexed by Y	3-19
CXB	Copy X to B		SEZ	Skip if E is Zero	
CYA	Copy Y to A	. 3-17	SFB	Scan For Byte	3-21
CYB	Copy Y to B	. 3-17	SFC	Skip if Flag Clear	
DIV	Divide		SFS	Skip if Flag Set	3-13
DLD	Double Load		SLA	Skip if LSB of A is Zero	. 3-10,3-11
DST DSX	Double Store	. 3-14	$\begin{array}{c} \mathrm{SLB} \\ \mathrm{SOC} \end{array}$	Skip if LSB of B is Zero Skip if Overflow Clear	
DSY	Decrement Y and Skip if Zero		SOS	Skip if Overflow Clear	
ELA	Rotate E Left with A		SSA	Skip if Sign of A is Zero	
ELB	Rotate E Left with B		SSB	Skip if Sign of B is Zero	
ERA	Rotate E Right with A	. 3-9	STA	Store A	
ERB	Rotate E Right with B		STB	Store B	3-7
FAD	Floating Point Add		STC	Set Control	
FDV	Floating Point Divide		STF	Set Flag	3-13
FIX	Floating Point to Integer		STO	Set Overflow	3-13
FLT FMP	Integer to Floating Point Floating Point Multiply		$\begin{array}{c} \mathrm{STX} \\ \mathrm{STY} \end{array}$	Store X to Memory Store Y to Memory	
FSB	Floating Point Subtract		SZA	Skip if A is Zero	
HLT	Halt		SZB	Skip if B is Zero	
INA	Increment A		TBS	Test Bits	
INB	Increment B		XAX	Exchange A and X	3-19
IOR	"Inclusive Or" to A	. 3-6	XAY	Exchange A and Y	3-19
ISX	Increment X and Skip if Zero		XBX	Exchange B and X	
ISY	Increment Y and Skip if Zero		XBY	Exchange B and Y	
ISZ	Increment and Skip if Zero	. 3-6	XOR	"Exclusive Or" to A	3-7

ALPHABETICAL INDEX OF DYNAMIC MAPPING SYSTEM INSTRUCTIONS

Instruc	tion	Page	Instruc	etion	Page
DJP	Disable MEM and JMP	 . 4-3	SJP	Enable System Map and JMP	. 4-7
DJS	Disable MEM and JSB·	 . 4-3	SJS	Enable System Map and JSB	. 4-7
JRS	Jump and Restore Status		SSM	Store Status Register Into Memory	. 4-7
LFA	Load Fence From A		SYA	Load/Store System Map per A	. 4-7
LFB	Load Fence From B		SYB	Load/Store System Map per B	
MBF	Move Bytes From Alternate Map .		UJP	Enable User Map and JMP	
MBI	Move Bytes Into Alternate Map		UJS	Enable User Map and JSB	. 4-8
MBW	Move Bytes Within Alternate Map .	 . 4-5	USA	Load/Store User Map per A	
MWF	Move Words From Alternate Map .	 . 4-5	USB	Load/Store User Map per B	
MWI	Move Words Into Alternate Map .	 . 4-5	XCA	Cross Compare A	
MWW	Move Words Within Alternate Map .	 . 4-5	XCB	Cross Compare B	. 4-9
PAA	Load/Store Port A Map per A	 . 4-6	XLA	Cross Load A	. 4-9
PAB	Load/Store Port A Map per B	 . 4-6	XLB	Cross Load B	. 4-9
PBA	Load/Store Port B Map per A	 . 4-6	XMA	Transfer Maps Internally per A	. 4-9
PBB		 . 4-6	XMB	Transfer Maps Internally per B	. 4-10
RSA	Read Status Register Into A	 . 4-6	XMM	Transfer Maps or Memory	. 4-10
RSB	Read Status Register Into B	 . 4-6	XMS	Transfer Maps Sequentially	. 4-10
RVA	Read Violation Register Into A		XSA	Cross Store A	
RVR	Road Violation Register Into R		XSR	Cross Store B	4-11

System Features 21MXM

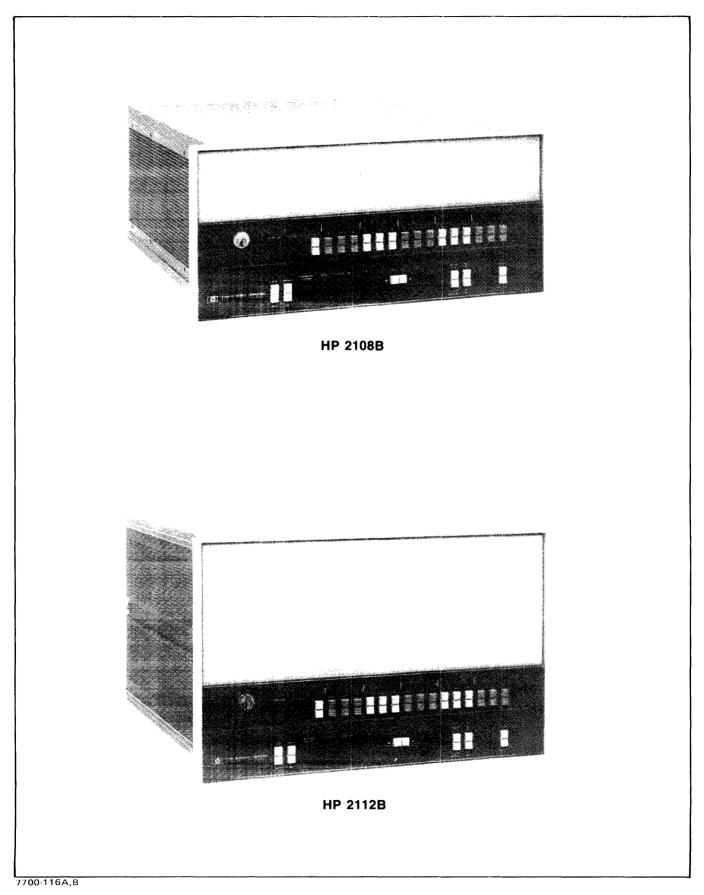


Figure 1-1. HP 21MX M-Series Microprogrammable Computers

SECTION

SYSTEM FEATURES

The HP 21MX M-Series computers HP 2108B and HP 2112B shown in figure 1-1 are high-performance machines designed to satisfy a wide range of computing needs. Because of a unique design philosophy, many features have been incorporated as standard in the M-Series; this same philosophy allows optional features to be added at low cost. M-Series computers have traditional HP quality and reliability built in from the ground up and compatibility with previous Hewlett-Packard computers is maintained. HP 21MX M-Series computers (hereafter referred to as M-Series computers) provide very cost-effective solutions to a variety of systems applications.

M-Series computers have a proven architecture that features a fully microprogrammed processor, including all arithmetic functions, input/output, and operator panel control. Four general purpose registers are available, two of which may be used as index registers. There are 128 standard instructions including index instructions, integer and floating point arithmetic instructions, input/output instructions, and a full complement of instructions for logical operations as well as bit and byte manipulation.

At the heart of the computer is a microprogrammed control section that directs the operations of the other functional units of the computer. Microprogramming can increase the system speed in several ways. Since microinstructions are executed from 5 to 10 times faster than machine language instructions, a frequently used software subroutine will execute much faster when microprogrammed. With 12 scratch pad registers available to a microprogrammer the number of main memory accesses can be greatly reduced. This is particularly significant in real time systems which are compute-bound (i.e., systems in which the I/O is performed faster than the computation).

For those applications where even the HP standard set of instructions is not enough, M-Series computer users may expand their instruction repertoire by using HP-supplied instruction sets. Off-the-shelf enhancements include the Dynamic Mapping System (DMS) for expanded memory management and the Fast FORTRAN Processor for fast handling of compiler and extended precision routines.

The power and flexibility of microprogramming is made readily available to the M-Series computer user through the microinstruction set of 180 micro-orders. In addition to the 12 special scratch pad registers and the other internal registers of the M-Series, the microprogrammer may address up to 4K, 24-bit words of control store. Closely resembling assembly language programming in simplicity, microprogramming offers the advantages of speed and security as well as the ability to expand the instruction set to meet any computing need. Microprogramming is supported by Hewlett-Packard through software assembly and debug packages and customer training courses. User-developed microprograms may be permanently fused in programmable Read-Only Memory (pROM) chips for mounting on the User Control Store Board, or may be loaded into Writable Control Store (WCS) modules where they can be dynamically altered.

The initial binary loading (IBL) function is easily performed on M-Series computers. For bootstrap loading, a 64-word ROM-resident IBL program is called by pushbutton switch on the operator panel. A paper tape loader ROM is standard. Provision is made for up to three additional loader ROM's which are available as accessories or may be user-generated.

M-Series computers are equipped with power systems designed to continue normal operations in environments where power may fluctuate widely. Input line voltages and frequencies may vary widely without affecting the operation of the computer. The optional Power Fail Recovery System provides automatic restart capability and, depending on the memory size, also provides between 1.75 and 4.25 hours of memory sustaining power in the event of complete power failure. (See Power Fail Recovery System specifications in table 1-1.)

M-Series computers are available with either of two semiconductor memory systems. The systems are based on 4k-bit and 16k-bit MOS/RAM semiconductor chips that offer field-proven reliability and economy. The memory system consists of an HP 2102B memory controller and one or more memory modules, ranging in capacity from 16k to 128k bytes. The latest 4k and 16k MOS/RAM technology combined with extensive testing assures maximum reliability. The memory system has a system cycle time of 650 nanoseconds. For data integrity, memory parity checking is provided as a standard feature.

System Features 21MXM

The fault control memory system provides fault-secure memory operation to the 21MX family of computers. The system consists of a HP 2102C memory controller and one or more check bit array boards, along with the appropriate number of memory modules (HP 12998A, HP 13187B, and HP 12747A), and is capable of correcting all single-bit errors, and of detecting all double-bit and most multiple-bit errors. The fault control system is particularly valuable in computer systems with large amounts of memory, or where fault-secure operation is essential.

Addressing physical memory configurations larger than the standard configuration is possible only through the use of the HP 12976B Dynamic Mapping System. The Dynamic Mapping System (DMS), which is a combination of hardware and firmware, is a powerful memory management scheme that allows M-Series computer users to address up to two million bytes of memory and provides read and/or write protection of each individual 2048 byte page. Four independent memory maps are provided, one for the system, one for the user, and two Port Controller maps for direct memory access operations. Control of the DMS is implemented through the use of 38 instructions.

The input/output system for M-Series computers features a multilevel vectored priority interrupt structure. There are 60 distinct interrupt levels, each of which has a unique priority assignment. Any I/O device can be selectively enabled or disabled, or the entire interrupt system (except power fail and parity error interrupts) can be enabled or disabled under program control.

Data transfer between the computer and I/O devices may take place under program control, Dual Channel Port Controller (DCPC) control, or under microprogram control. The DCPC provides two direct links between memory and I/O devices and is program assignable to any two devices. DCPC transfers occur on an I/O cycle-stealing basis not subject to the I/O priority interrupt structure. The total bandwidth through both DCPC channels is 1 233 332 bytes per second; see Direct Memory Access specifications in table 1-1 for the DCPC latency times.

The HP 2108B Computer has nine I/O channels in the mainframe; the HP 2112B Computer has fourteen. The number of available channels may be increased by adding one or two HP 12979B I/O Extenders, providing sixteen channels each. All I/O channels are fully powered, buffered, and bidirectional. Because of the modular design of the M-Series computers, mainframe memory capacity is

completely independent of I/O capacity so that either memory or I/O modules may be added without taking valuable mainframe space from the other. A full line of I/O interface controllers is available with M-Series computers for interfacing to any of the broad line of HP manufactured peripherals or to specialized devices.

The M-Series computers are fully program compatible with earlier Hewlett-Packard computers so that the user may take advantage of *many* man-years of software development.

A wide range of operating system software is available. The Real-Time Executive (RTE) systems are multiprogramming systems that permit priority scheduling of several real-time programs while concurrent background processing takes place. RTE software contains all the tools needed for dynamic control of real-time events and has an efficient file management capability for data processing applications. The most powerful version, RTE-III, supports up to 2 megabytes of memory managed by the Dynamic Mapping System.

Languages supported by Hewlett-Packard operating systems include two high-level compilers: HP FORTRAN IV; and HP BASIC; plus an extended, efficient assembler that is callable by FORTRAN. Utility software includes a debugging routine, and editor, and an extensive library of commonly used computational routines.

M-Series computer users may also take advantage of a wide variety of thoroughly tested and documented programs that have been contributed to the Hewlett-Packard User Library.

Table 1-1 lists the specifications for the HP 2108B and the HP 2112B Computers and the HP 2102 Memory System. Both computers have been product accepted by the Underwriters' Laboratories (UL) and the Canadian Standards Association (CSA).

Table 1-2 lists the options and accessories available to expand or enhance the computer system.

21MXM System Features

Table 1-1. Specifications

CENTRAL PROCESSOR

Address Space: 4,096 bytes (direct addressing)

65,536 bytes (indirect addressing)

2,097,152 bytes with Dynamic Mapping System (optional)

Word Size: 16 bits

Instruction Set: 128 standard instructions

Memory Reference:14Register Reference:43Input/Output:13Extended Arithmetic:10Index:32Bit Byte, Word Manipulation:10Floating Point:6

Accumulators: Two (A and B), 16 bits each. Explicitly addressable; also addressable as memory

locations.

Index: Two (X and Y), 16 bits each

Memory Control: Two (T and P), 16 bits each; one (M), 15 bits. Supplementary: Two (Overflow and Extend), one bit each

Display: One, 16 bits

CONTROL PROCESSOR

Registers:

Address Space: 4,096 words (16 modules of 256 words each)

Word Size: 24 bits
Word Formats: Four
Word Fields: Five
Instruction Execution Time: 325 ns

Micro-Orders180Operations:15Special:32ALU and Conditional:68Store:32S-Bus:32Reverse Skip Sense:1

INITIAL BINARY LOADERS ROM resident; capacity of four 64-word programs callable from operator panel.

INPUT/OUTPUT

Interrupt Structure: Multilevel vectored priority interrupt; priority determined by interrupt location.

HP 2108B	HP 2112B
9	14
25	30
41	46
	9

Compatibility: Instruction set and program compatible with HP 21MX E-Series computers (time

loop programs excepted).

System Features 21MXM

Table 1-1. Specifications (Continued)

Current Available for:

I/O and Accessories

MODEL	+5V	+12V	-12V	-2V
2108B	38.8A	2.5A	2.0A	4.0A
2112B	38.8A	2.5A	2.0A	4.0A

DC Required:

MODEL	+5V	-2V
12892B Memory protect	1.25A	.05A
12897B DCPC	2.4A	.05A
12731A MEM	3.9A	
12976B DMS	6.29A	_
12977B FFP	1.66A	
12978A .25k WCS	4.6A	_
12778B DMI	1.66A	
13197A 1k WCS	2.2A	.01A
12990B Memory extender	0	
12992 Loader ROMS (each)	.13A	
12979B I/O Ext. buffer card	2.0A	1.35A
2102B Memory controller	1.2A	0.01A
2102C Fault Memory controller	3.29A	
12779A Check Bit Array	0.52A	
12780A Check Bit Array	0.73A	
12747A 128k Byte Memory Module	0.85A	
12998A 16k Byte Memory Module	0.51A	_
13187B 32k Byte Memory Module	0.85A	_
13047A 2k UCS	7.39A¹	
12945A .5k UCS	2.2A	

11.15A + 0.78A for each 256 instructions; 7.39A when fully loaded.

DIRECT MEMORY ACCESS

Available only with DCPC accessory.

Number of Channels:

Two

Word Size:

16 bits

Maximum Transfer Block Size:

32,768 words

I/O Assignable:

Assignable to any two I/O channels; all logic necessary to facilitate bidirectional

direct memory transfer to and from I/O is contained on DCPC (controller).

Transfer Rate:

(Any Memory)

1.23 Mbytes/s

DCPC Latency (Channel 1):

Latency is defined as the time interval between the generation of a Service Request (SRQ) signal by an I/O device through the initiation of a DCPC channel 1 cycle to the completion of the I/O data transfer to or from the I/O interface PCA. Subsequent consecutive cycles execute at a specified DCPC rate.

--- **T**l----

Input and Output Latency Times:

(Times in us)

	TYPICAL	MAXIMUM
Input	2.22	2.93
Output	2.54	3.25

Table 1-1. Specifications (Continued)

PHYSICAL CHARACTERISTICS

Width: 42.6cm (16 3/4 in) behind rack mount; 48.3cm (19 in) front panel width on sides

Depth: 59.7cm (23 1/2 in); 58.4cm (23 in) behind rack mounting ears

MODEL	HP 2108B	HP 2112B
Height	22.2cm (8-3/4 in)	31.1cm (12-1/4 in)
Weight	20.4kg (45 lbs)	29.5kg (65 lbs)

ELECTRICAL CHARACTERISTICS

Line Voltage: 88 to 132 Vac; 176 to 264 Vac

Line Frequency: 47.5 to 66 Hz

Power Dissipation: 770 watts (maximum)

Power Supply: Sustains computer over a line loss of no less than 8 ms at the minimum line (mains)

voltage.

Input Line Transients: Sustains $\pm 500V$, $50\mu s$ pulse on power lines; sustains $\pm 1kV$, 100ns pulses on

power lines.

Output Protection: All regulated voltages protected from overvoltage and overcurrent conditions.

Output Voltage Regulation: $\pm 5\%$ (except -2V is $\pm 10\%$, and +30V is unregulated).

Thermal Sensing: Monitors internal temperature and automatically shuts down when computer

temperature exceeds specified maximum operating temperature. Resets automatically when temperature returns to below specified maximum operating temperature.

ENVIRONMENTAL LIMITATIONS

Operating Temperature: 0° to 55° C (+32° to 131°F) Storage Temperature: -40° to 75° C (-40° to 167° F)

Relative Humidity: 20% to 95% at 40°C (104°F), non-condensating

Ventilation and Heat Dissipation: Intake: left-hand side; Exhaust: right-hand side.

	MODEL	2108B	2112B
Heat dissipation	KCal/hr. max. BTU/hr. max.	538 2138	538 2138
Air flow	cubic meters /min.	5.7	7.9
	cubic feet /min.	200	280

Altitude: Transportable to 15 300m (50 000 ft) in non-operating condition and 4500m

(15 000 ft) for operation

Vibration and Shock: Vibration: 0.30mm (0.012 in) p-p, 10-55 Hz, 3 axis

Shock: 30g, 11 Ms, 1/2 sine, 3 axis

Contact factory for review of any application requiring operation under continuous

vibration.

Table 1-1. Specifications (Continued)

MEMORY SYSTEMS

Type: 4k and 16k N-channel MOS semiconductor RAM.

Word Size: 16 bits plus parity bit

Configuration: Controller plus multiple plug-in memory modules. Available in 16k, 32k, and 128k

byte modules.

Page Size: 2,048 bytes

Address Space: 65 536 bytes without DMS; 2 097 152 bytes with DMS (2108B and 2112B)

System Cycle Time: 650ns

Volatility Protection: Sustaining power for line loss of no less than 8ms at the minimum line (mains)

voltage. Power fail recovery system is optional.

Parity Error Detection: Monitors all words read from memory. Switch selectable for either halt or ignore

interrupt error when detected. With memory protect or DMS accessory, interrupt

on parity error occurs.

POWER FAIL

Interrupt Priority: Highest priority interrupt.

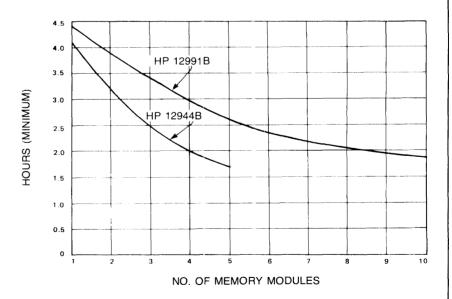
Power Failure: Detects power failure and generates an interrupt to user-written power-failure

routine. A minimum of 500 μs is available for the routine.

Power Fail Recovery Systems: Available as an accessory. (HP 12944B or HP 12991B).

Power Restart: Detects resumption of power and generates an interrupt to user-written automatic

restart program which has been protected in memory by the sustaining battery.


Power Control and Charge Unit: Monitors battery charge status and provides trickle charge.

Sustaining Battery: Type: 14 volt, 5 ampere-hours, sealed lead acid

Charging rate: 2A. maximum

Capacity: HP 12944B and HP 12991B will sustain memory for the period of time

shown in the graph below.

21MXM System Features

Table 1-2. Options and Accessories

DESCRIPTION	OPTION NO.	ACCESSORY NO.
HP 2108B and HP 2112B Computers		
230V Operation	015	
Power Fail Recovery System (HP 2108B)		12944B
Power Fail Recovery System (HP 2112B or 12990B)		12991B
Memory Protect		12892B
Dual-Channel Port Controller (DCPC)		12897B
User ROM Control Store Board	j	12945A
Dynamic Mapping System		12976B
64k Byte Memory Expansion Package		12763A
128k Byte Memory Expansion Package		12763B
192k Byte Memory Expansion Package		12763C
Fast Fortran Processor		12977B
.25k Writable Control Store		12978A
1k Writable Control Store		13197A
Slide Mounting Kit (HP 2108B, HP 12979B, HP 12990B)		12903B
Slide Mounting Kit (HP 2112B)	ł	12903C
Disc Loader ROM for HP 7900A or HP 2883		12992A
Disc Loader ROM for HP 7900A of HP 7920		12992B
		12992C
Terminal Loader ROM for HP 2644A/2645A/2648A Magnetic Tape Loader ROM for HP 7970B/E		12992D
2k User Control Store Board		13047A
HP 2102 MOS Memory System		
Memory Controller	1	2102B
16k Byte Memory Module		12998A
32k Byte Memory Module		13187B
128k Byte Memory Module		12747A
Fault Control Memory Controller	İ	2102C
256k Byte Check Bit Array Board		12779A
512k Byte Check Bit Array Board		12780A
128k Byte Fault Control Memory Package		12782A
256k Byte Fault Control Memory Package		12782B
512k Byte Fault Control Memory Package		12782C
1024k Byte Fault Control Memory Package		12782D
Input/Output Extender		12979B
230V Operation	015	
Dual CPU Kit		12781A
Dual Channel Port Controller		12898A
Memory Extender		12990B
230V Operation	015	1

OPERATING PROCEDURES

The section describes the hardware registers accessible to the programmer and the functions of the various operating controls and indicators. Also included are basic operating examples such as a cold start procedure to load a program via a punched-tape reader, manually loading a short program via the operator panel, and running a program after it has been loaded into memory.

The computer has eight 16-bit working registers which can be selected for display and modification by operator panel controls; two 1-bit registers; and one 16-bit display register. The functions of these registers are described in following paragraphs.

2-2. A-REGISTER

The A-register is a 16-bit accumulator that holds the results of arithmetic and logical operations performed by programmed instructions. This register can be addressed directly by any memory reference instruction as location 000000 (octal), thus permitting interrelated operations with the B-register (e.g., "add B to A," "compare B with A," etc.) using a single-word instruction.

2-3. B-REGISTER

The B-register is a second 16-bit accumulator, which can hold the results of arithmetic and logic operations completely independent of the A-register. The B-register can be addressed directly by any mamory reference instruction as location 000001 (octal) for interrelated operations with the A-register.

2-4. M-REGISTER

The M-register holds the address of the memory cell currently being read from or written into by the CPU.

2-5. T-REGISTER

The data transferred into or out of memory is routed through the T-register. When displayed, the T-register indicates the contents of the memory location currently pointed to by the M-register. The A- or B-register contents are displayed if the M-register contents are 000000 or 000001, respectively.

2-6. P-REGISTER

The P-register holds the address of the next instruction to be fetched from memory.

2-7. S-REGISTER

The S-register is a 16-bit utility register. The S-register can be addressed as an input/output device (select code 01) and, in the run mode, it is displayed in the operator panel display register. Thus, the S-register may serve as a communication link between the computer and operator.

2-8. EXTEND REGISTER

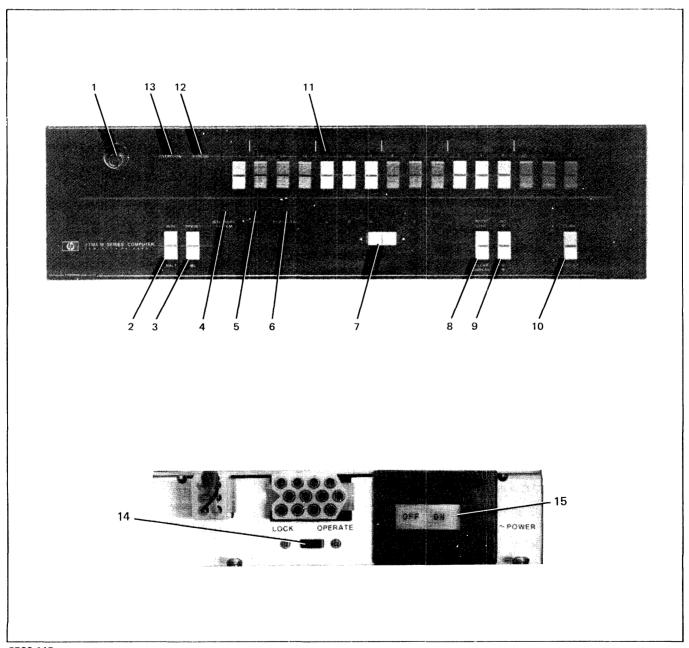
The one-bit extend register is used by rotate instructions to link the A- and B-registers or to indicate a carry from the most-significant bit (bit 15) of the A- or B-register by an add instruction or an increment instruction. This is of significance primarily for multiple-precision arithmetic operations. If already set (logic 1), the extend bit cannot be cleared by a carry. However, the extend bit can be selectively set, cleared, complemented, or tested by programmed instructions. When the operator panel EXTEND indicator is lighted, the extend bit is set. This register can also be accessed from the operator panel by entering the special register display mode described under paragraph 2-23.

2-9. OVERFLOW REGISTER

The one-bit overflow register is used to indicate that an add instruction, divide instruction, or an increment instruction referencing the A- or B-register has caused (or will cause) the accumulators to exceed the maximum positive or negative number that can be contained in these registers. The overflow bit can be selectively set, cleared, or tested by programmed instructions. The operator panel OVERFLOW indicator will remain lighted until the overflow is cleared. This register can also be accessed from the operator panel by entering the special register display mode described under paragraph 2-23.

2-10. DISPLAY REGISTER

The display register, which is included on the operator panel, provides a means of displaying and/or modifying the contents of the eight 16-bit working registers (A, B, M,


T, P, S, X, and Y) and the special registers when the computer is in the halt mode. An illuminating indicator is located directly above each of the 16-bit switches; a lighted indicator denotes a logic 1 and an unlighted indicator denotes a logic 0. When the computer is in the run mode, the contents of the S-register are displayed automatically.

from the operator panel by entering the special register display mode described under paragraph 2-23.

2-11. X- AND Y-REGISTERS

These two 16-bit registers, designated X and Y, are accessed through the use of 30 index register instructions and 2 jump instructions described under paragraphs 3-24 and 3-25, respectively. These registers can also be accessed

The location and function of the various controls and indicators mounted on the operator panel and the power supply are illustrated in figure 2-1 and described in table 2-1. All operator panel controls are two-position, momentary-contact rocker switches; the status of the computer is displayed by light-emitting diodes.

770**0**-115

Figure 2-1. Operator Panel and Power Supply Controls and Indicators

21MXM Operating Procedures

Table 2-1. Operator Panel and Power Supply Control and Indicator Functions

FIG. 2-1, INDEX NO.	NAME			FUNCTION
1	Key	Secures the operator panel when access to the $\sim\!$ POWER OFF/ON and LOCK/OPERATE switches is not desired.		
2	RUN/HALT	RUN. Starts CPU and lights the RUN indicator. All operator panel functions are disabled except Display Register, CLEAR DISPLAY, and HALT. Pressing RUN automatically causes the S-register contents to be displayed, and no other register can be selected during the run mode; thus, the Display Register effectively becomes the S-register, which may be addressed as select code 01 by the program.		
		off the RUN	indicator. A	uter at the end of the current instruction and turns All other operator panel controls become enabled. eted automatically for display.
3	PRESET-IBL	PRESET. Disables the interrupt system, clears the parity indicator and overflow bit (if set) and turns off the DMS system if installed. From I/O channel 06 up, clears control flip-flops and sets flags. Pressing and holding PRESET upon the restoration of power will force an ARS condition (see paragraph 6-1).		
		IBL (initial binary loader). Causes the contents of the selected loade ROM to be written into the uppermost 64 memory locations. Bits 15 and 14 of the S-register select the desired loader ROM as follows:		
		BITS LOADER SELECTED		LOADER SELECTED
		0	0	Standard paper tape loader ROM
		0	1	Option loader 1 ROM
		1	0	Option loader 2 ROM
		1	1	Option loader 3 ROM
		Bits 6 throug the loading		e S-register must be set to the octal select code of
4	INTERRUPT SYSTEM	Indicates the status of the interrupt system. When lighted, the interrupt system is enabled (Flag set); when turned off, the interrupt system is disabled (Flag clear).		
5	PARITY	Lights when a parity error occurs as a result of reading from memory. In the halt mode, the light can be turned off by pressing the PRESET switch. With the memory protect or DMS option installed and the parity error interrupt enabled, the indicator is turned off automatically by a parity error interrupt and is therefore not ordinarily lighted long enough to be visible.		
6	POWER FAIL	ARS switch will light whe	is set to AR en power is	atic restart feature is enabled (i.e., internal ARS/ IS position as described in Section VI) the indicator is restored. This light can be turned off by pressing the halt mode.

Operating Procedures 21MXM

Table 2-1. Operator Panel and Power Supply Control and Indicator Functions (Continued)

FIG. 2-1, INDEX NO.	NAME	FUNCTION	
7	◀Register Select▶	In the halt mode, this switch allows any one of the working registers (A, B, M, T, P, or S) to be selected for display and/or modification. Pressing the left half (◀) of the switch moves the "dot" indicator left; pressing the right half (▶) of the switch moves the "dot" indicator right. The register currently selected is indicated by the appropriate indicator light. After a programmed or manual halt, the T-register is selected automatically for display. In this case, the T-register holds the contents of the	
		last accessed memory cell. In the case of a programmed halt, the halt instruction will be displayed.	
8	INSTR STEP/CLEAR DISPLAY	INSTR STEP. Pressing and releasing this switch while in the halt mode advances the program to the next instruction. If the T-register indicator lights when the switch is released, infinite indirect addressing is indicated. Actuating this switch does not actually place the computer in the run mode. (See note for additional information.)	
		CLEAR DISPLAY. In the run or halt mode, clears the Display Register; i.e., contents become 000000.	
9	INC M/DEC M	INC M. In the halt mode, increments the M-register contents.	
		DEC M. In the halt mode, decrements the M-register contents.	
		Note: Incrementing and decrementing occur even when the M-register is not displayed.	
10	STORE/DISPLAY	STORE. In the halt and standard display modes, stores the contents of the Display Register into the selected working register (A, B, M, T, P, or S). If the Register Select "dot" is pointing to T and STORE is pressed, the contents of the Display Register will be loaded into memory cell m, the M-register will be incremented automatically to m + 1, and the Display Register will not be updated. This latter feature allows the same data to be stored in consecutive memory locations (e.g., halts in the trap cells, same word into a buffer, etc.). If the Register Select "dot" is pointing to any register other than T, only that one register will be updated when STORE is pressed. (Refer to paragraph 2-23 STORE functions during special register display mode.)	
		DISPLAY. Places the present contents of the selected register into the Display Register. Used to recall a register after the Display Register contents have been changed or to display the new contents of the T-register after STORE is pressed.	
11	Display Register	In the halt mode, displays the contents of the register currently pointed to by the Register Select "dot;" only the S-register is displayed during the run mode. A logic 1 is signified when the displayed bit indicator is lighted; a logic 0 is signified when the displayed bit indicator is not lighted. Pressing the upper half of the switch sets that bit to a logic 1; pressing the lower half of the switch sets that bit to a logic 0. The Display Register is cleared to all zeros when the CLEAR DISPLAY switch is pressed.	
12	EXTEND	In both the run and halt modes, continuously displays the content of the extend register. When lighted, the extend bit is set (logic 1).	
13	OVERFLOW	In both the run and halt modes, continuously displays the content of overflow register. When lighted, the overflow bit is set (logic 1).	

Table 2-1. Operator Panel and Power Supply Control and Indicator Functions (Continued)

FIG. 2-1, INDEX NO.	NAME	FUNCTION
	Po	wer Supply Front Panel Controls
14	LOCK/OPERATE	LOCK. The RUN and HALT switches are disabled; all other functions are enabled (within the constraints of the run/halt modes). OPERATE. All switches are enabled.
15	~ POWER ON/OFF	Two position circuit breaker. Controls application of ac line power to computer power supply and ventilating fans; provides protection agains ac line power overload.

NOTE

When pressing the INSTR STEP switch and performing a jump instruction while monitoring the T-, P-, or M-register, the following will be noted:

- a. The P-register will go to the operand target address.
- b. The M-register will go to the operand target address.
- c. The T-register will display the memory location or the current instruction to be executed.

Pressing the INSTR STEP switch will not cause an instruction step if there is a pending interrupt and the interrupt system is on; pressing PRESET or turning the interrupt system off will re-enable the INSTR STEP function.

The rear panel and the I/O PCA cage for the HP 2108B and HP 2112B Computers are shown in figures 2-2 and 2-3 and described in tables 2-2 and 2-3, respectively.

Two toggle switches are mounted on the rear of the central processor unit (CPU) printed-circuit assembly (PCA). The

setting of the ARS/ARS switch determines the action that the computer will take in the event of a primary power failure and the setting of the HLT PE INT/IGNORE switch determines the action to be taken in the event of a parity error or memory protect violation. Programming considerations concerning these switches are given in Section VI.

Details concerning the configuration of these switches are given in the *HP 21MX M-Series Computer Installation* and Service Manual, part no. 02108-90035.

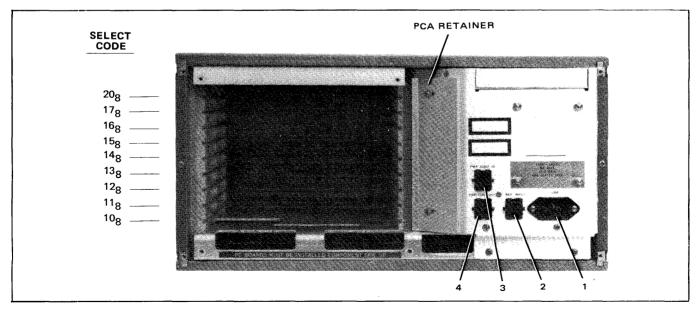


Figure 2-2. HP 2108B Rear Panel and I/O PCA Cage

Operating Procedures 21MXM

Table 2-2. HP 2108B Rear Panel Feature

FIG. 2-2, INDEX NO.	NAME	FU	TION
1	~LINE connector	Three-input power connector; power to computer.	ides means of connecting ac line
2	BAT INPUT connector	Nine-pin connector; provides memory sustaining circuits.	s of connecting optional battery to
3 4	PWR CONT IN and PWR CONT OUT connectors	Two nine-pin connectors; provimemory extender, I/O extender nation of two units) to main compounted units must be turned connected, the CPU monitors the power failure in any one of the fail interrupt to be generated by the failure will cause the computer remain inoperative until the failure.	means of connecting an external satellite computer (in any combination of the power supplies in all the interplace of the CPU will start. When and do power in these units. An acconnected units will cause a power PU and the CPU to halt. A do power stop. The interconnected units will has been corrected.

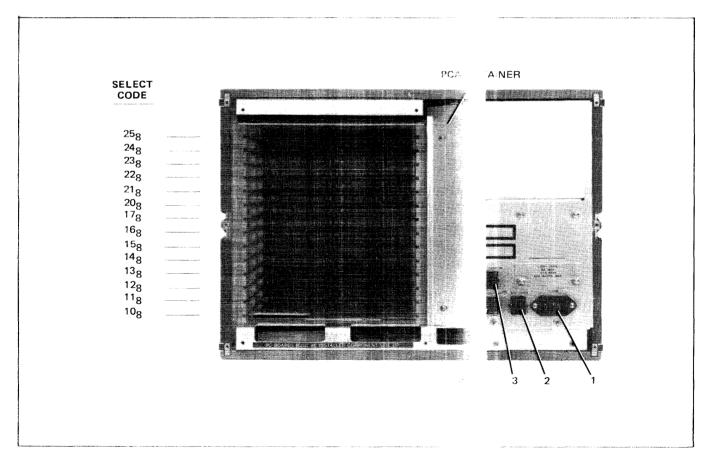


Figure 2-3. HP 2112B Rear Panel and I/O P(

age

Table 2-3. HP 2112B Rear Panel Features

FIG. 2-3, INDEX NO.	NAME	FUNCTION
1	~ LINE connector	Three-input power connector; provides means of connecting ac line power to computer.
2	BAT. INPUT connector	Nine-pin connector; provides means of connecting optional batteries to memory sustaining circuits.
3 4	PWR CONT IN and PWR CONT OUT connectors	Two nine-pin connectors; provides means of connecting an external memory extender, I/O extender, or satellite computer (in any combination of two units) to main computer. The power supplies in all the interconnected units must be turned on before the CPU will start. When connected, the CPU monitors the ac and dc power in these units. An ac power failure in any one of the interconnected units will cause a power fail interrupt to be generated by the CPU and the CPU to halt. A dc power failure will cause the computer to stop. The interconnected units will remain inoperative until the failure has been corrected.

The following procedures describe a cold power-up; how to load programs manually; how to load programs using punched tape, disc, magnetic tape, or other such media; how to verify and run programs; and how to enter the special register display mode.

2-16. COLD POWER-UP

Perform the cold power-up as follows:

- a. Lower operator panel. Set the ~POWER OFF/ON switch to OFF. If computer is equipped with an optional power fail recovery system, set BATTERY switch to OFF.
- b. Wait approximately three seconds and set ~ POWER OFF/ON switch to ON.
- c. Set BATTERY switch to INT. Set LOCK/OPERATE switch to OPERATE. Raise and close the operator panel. Turn key fully counterclockwise to close panel.
- d. Memory will be cleared and the T-register will automatically be selected for display.

2-17. LOADING PROGRAMS MANUALLY

Short programs can be loaded manually from the operator panel as follows:

 a. Press left half (◄) or right half (►) of Register Select switch to select M-register.

- Press CLEAR DISPLAY and set Display Register to starting address of program.
- c. Press STORE. Select T-register and change contents of Display Register to binary code of first instruction to be loaded; press STORE.
- d. Enter next instruction in Display Register and press STORE. (Pressing STORE with T-register selected automatically increments M-register.)
- e. Repeat step d until entire program has been loaded.

2-18. LOADING PROGRAMS FROM PAPER TAPE READER

Use the following steps to first load the contents of the standard paper tape loader ROM into memory and then load your program by means of a tape reader. Proceed as follows:

- a. Press left half (◄) or right half (▶) of Register Select switch to select S-register.
- b. Press CLEAR DISPLAY and set bits 6 through 11 to display octal select code of tape reader.
- c. Set bits 15 and 14 to zeros to select standard paper tape loader ROM.
- d. Press STORE and then press IBL. The paper tape loader is now loaded into the uppermost 64 locations of memory and the select code of the tape reader is patched according to the contents of the S-register. The P-register is now pointing to the first instruction of the loader.

Operating Procedures 21MXM

e. Turn on tape reader and prepare it for reading. Press PRESET and then press RUN. The program will now be read into memory and the computer will halt with the T-register selected automatically. A successful load is indicated if the Display Register contents are 102077 (octal).

If the halt code displayed is not 102077 (octal), one of two possible error condition halt codes will be displayed. If the halt code displayed is 102055 (octal), an address error is indicated; check to ensure that the proper tape was used or that the tape was not installed backwards. If the halt code displayed is 102011 (octal), a checksum error is indicated; check for a possible defective or dirty tape or tape reader.

Table 2-4. Starting Address Vs Memory Size

MEMORY SIZE (in bytes)	STARTING ADDRESS (in octal) OF THE PAPER TAPE LOADER
16k	017700
32k	037700
48k	057700
64k and up	077700

2-19. LOADING PROGRAMS FROM DISC DRIVE FOR OPTIONAL DISC LOADER ROMS

Use the following steps to first load the contents of the optional disc loader ROM into memory and then load your program by means of an HP 7900A, HP 7901A, or HP 7905A or HP 7920A Disc Drive. Proceed as follows:

- a. Press left half (◄) or right half (▶) of Register Select switch to select S-register.
- Press CLEAR DISPLAY and set bit 15 and 14 as required to select the optional disc loader ROM. (Refer to table 2-5.)
- Set bits 13 and 12 as shown below to select appropriate disc drive.

BITS 13 12	DISC SELECTED	
0 0	HP 7900A or HP 7901A	
0 1	HP 7905A or HP 7920A	

- d. Set bits 11 through 6 to octal select code of disc drive interface PCA.
- e. Set bits 0 and 1 as shown to select corresponding disc subchannel.

BITS	DISC LOADING DEVICE		
1 0	DISC LOADING DEVICE		
0 0	HP 7900A (fixed disc)		
0 1	HP 7900A or HP 7901A (removable disc)		
0 0	HP 7905A (Head #0, top of removable disc) HP 7920A (Head #0)		
0 1	HP 7905A (Head #1, bottom of removable disc) HP 7920A (Head #1)		
1 0	HP 7905A (fixed disc) HP 7920A (Head #2)		
1 1	HP 7920A (Head #3)		

- f. Press STORE, PRESET, and then IBL. The disc loader is now loaded into the uppermost 64 loctions of memory and the select code of the disc drive is patched according to the contents of the S-register. The P-register contains the address of the first instruction of the loader. (Starting addresses versus memory size are listed in table 2-4.)
- g. A successful load is indicated if the OVERFLOW light remains off. An unsuccessful load is indicated if the OVERFLOW light is on; this will occur if the select code programmed in step d was less than 10 (octal) or if a memory hardware fault is detected.
- h. Turn on and prepare disc drive for operation and then press RUN. The program will now be read into memory and the computer will halt with the T-register selected automatically. A successful load is indicated if the Display Register contents are 102077 (octal).

2-20. LOADING PROGRAMS FROM OTHER LOADING DEVICES

The following procedure is used when loading programs from a disc, magnetic tape, or other such media. The contents of the optional loader ROM, associated with the loading device, must be loaded before the program can be loaded. Locations have been provided within the computer to accommodate up to three optional loaders; i.e., optional loader ROM 1, 2, and 3. Each of these loaders is used to control the loading of programs from a particular type of loading device. It is assumed that the optional loader ROM, associated with the loading device to be used, is installed in the computer and that its location is known.

Use the following steps to first load the contents of one of the optional loader ROM's into memory and then load your program by means of a disc, magnetic tape, or other such media. The program must be in binary form and 21MXM Operating Procedures

must contain absolute addresses. Assuming that the loading device has been prepared for reading, proceed as follows:

- a. Press left half (◄) or right half (▶) of Register Select switch to select S-register.
- b. Press CLEAR DISPLAY and set bit 6 through 11 to display octal select code of loading device.
- c. Set bits 15 and 14 as listed in table 2-5 to select the optional loader corresponding to your loading device.
- d. Set bits 0 through 5, 12, and 13 as outlined in the instructions provided with optional loader.
- e. Press STORE and then press IBL. The optional loader is now loaded into the uppermost 64 locations of memory and the select code of the loading device is patched according to the contents of the S-register. The P-register is now pointing to the address of the first instruction of the optional loader. (Starting addresses versus memory size are listed in table 2-4.)
- f. A successful load is indicated if the OVERFLOW light remains off. An unsuccessful load is indicated if the OVERFLOW light is on; this will occur if the select code programmed in step b was less than 10 (octal) or if a memory hardware fault is detected.
- g. Verify that loading device is prepared for reading. Press PRESET and then press RUN. The program will now be read into memory and the computer will halt with the T-register selected automatically. A successful program load is typically indicated if the contents of the Display Register are 102077(octal). Refer to the instructions included with each optional loader for the specific halt code used.

Table 2-5. Optional Loader Selection

ВІТ		LOADER	
15	14	SELECTED	
0	1	Optional Loader #1	
1	0	Optional Loader #2	
1	1	Optional Loader #3	

2-21. VERIFYING PROGRAMS

If desired, programs may be verified after loading by the following procedure:

- a. Press left half (◀) or right half (▶) of Register Select switch to select M-register.
- b. Press CLEAR DISPLAY and set Display Register to the binary starting address of the program.

- c. Press STORE. Select T-register and verify that the binary instruction code is displayed as desired for the first program instruction.
- d. Press INC M to increment the contents of the M-register by one and verify that the binary instruction code displayed is as desired for next programmed instruction.
- e. Repeat step d until all programmed instructions have been verified. Pressing DEC M permits the previous programmed instruction to be verified.

2-22. RUNNING PROGRAMS

To run a program after it has been loaded, proceed as follows:

- a. Press left half (◀) or right half (▶) of Register Select switch to select P-register.
- Press CLEAR DISPLAY and set Display Register to starting address of program.
- c. Press STORE, PRESET, and RUN.

The RUN indicator will remain lighted as long as the program is running. If the LOCK/OPERATE switch is set to OPERATE, all operator panel controls except the Display Register, CLEAR DISPLAY, and HALT switches are disabled.

During the run mode, the contents of the S-register are automatically selected for display in the Display Register and none of the other registers can be selected. Therefore, the Display Register effectively becomes the S-register and it can be directly addressed as I/O select code 01 (octal) by the program.

If the LOCK/OPERATE switch is set to LOCK, the functions of the RUN/HALT switch are disabled. All other operator panel controls are enabled within the constraints of the run or halt mode of operation.

NOTE

If the computer has the Power Fail Recovery System installed, the BAT TEST switch *must not* be pressed unless the battery selector is set to INT.

2-23. SPECIAL REGISTER DISPLAY MODE

The special register display mode provides the capability of displaying and/or modifying the contents of the following: X and Y registers, scratch pads S3 through S12, overflow and extend registers, and all the optional Dynamic Mapping System (DMS) map registers. To enter the special register display mode, proceed as follows:

 a. Press left half (◄) or right half (▶) of Register Select switch to select M-register. Operating Procedures 21MXM

- b. Press CLEAR DISPLAY and set bit 15 to a logic 1 (also set bit 14 to a logic 1 if a DMS map register is to be displayed). Do not press STORE. (If STORE is pressed, bit 15 will be automatically cleared because the M-register is only 15 bits long. This prevents accidental entry into the special register display mode during normal operation.)
- c. Set low-order bits as shown in figure 2-4 to select desired register. Do not press STORE.
- d. Press right half () of Register Select switch to select T-register. The special register display mode is now entered and the contents of the desired register are displayed.

Once the special register display mode is entered, the register pointer will be displayed when "M" is selected. (The M-register is not affected in this mode.) Pressing INC M will increment the pointer by one. Pressing DEC M will decrement the low-order bits of the pointer modulo 256₁₀; e.g., if the low-order bits are all zeros, pressing DEC M will set the eight low-order bits to all ones.

When "T" is selected, pressing INC M or DEC M will increment or decrement the low-order bits of the pointer. If bits 15-14 are 11_2 , bit 6-0 are counted modulo 128_{10} (the number of DMS map registers); if bits 15-14 are 10_2 , bits 3-0 are counted modulo 16_{10} (the number of displayable registers). In either case, the unused bits are masked to zeros. These count features maintain the pointer within the range of the number of registers accessible and prevent INC M and DEC M from affecting bits 15-14 of the pointer.

Table 2-6 lists the effects that the operator panel switches have while in the special register display mode and the various ways of reentering the normal register (A, B, M, T, P, S) display mode; table 2-7 lists the various ways of selecting, displaying, and modifying the registers.

2-24. SHUTDOWN PROCEDURES

One of the following procedures should be used when the computer is shut down during periods of nonoperation. The first procedure should be used when it is necessary to sustain memory contents. The second procedure should be used when it is not necessary to sustain memory contents.

- **2-25. SHUTDOWN** (**MEMORY SUSTAINED**). Use the following procedure to shut down the computer when it is necessary to sustain memory during periods of non-operation:
- a. The computer MUST BE equipped with the optional Power Fail Recovery system, or memory will be lost when power is removed from the computer.

b. Ensure that line (mains) power is available and that the BATTERY switch is set to INT and that the computer ~ POWER ON/OFF switch is set to OFF. If the computer is housed in a system cabinet, ensure that the system power switch is set to provide power to rack-mounted units.

In the event of a power failure, the contents of memory will be sustained for a minimum of 1.6 hours by the Power Fail Recovery System.

2-26. SHUTDOWN (MEMORY NOT SUSTAINED).

Use the following procedure to shut down the computer when it is not necessary to sustain memory during periods of nonoperation:

- a. Set ~ POWER OFF/ON switch to OFF. If computer is equipped with optional power fail recovery system, set BATTERY switch to OFF to prevent the battery from discharging.
- b. Set computer ~ POWER OFF/ON switch to OFF or, if the computer is housed in a system cabinet, set the system power switch to remove ac power.

All contents of memory and internal registers will be lost. When operation is to be resumed, the cold power-up procedure and program loading must be repeated.

Figures 2-2 and 2-3 show the HP 2108B and the HP 2112B I/O PCA cages and the select codes associated with each slot. Select code 10 (octal) has the highest priority in the interrupt structure and the highest numbered select code has the lowest priority. When it becomes necessary to install a new I/O interface PCA or change the location of an existing one, proceed as follows:

CAUTION

If the computer is not equipped with an optional power fail recovery system, the contents of memory will be lost when the line (mains) voltages are off. Therefore, store any contents of memory to be saved in another medium for later retrieval; then perform steps c and e through j below.

a. Check that the ~ POWER switch is set to ON.

NOTE

If the computer is equipped with a power fail recovery system, ensure that there is a place to support the battery box with it connected to the computer.

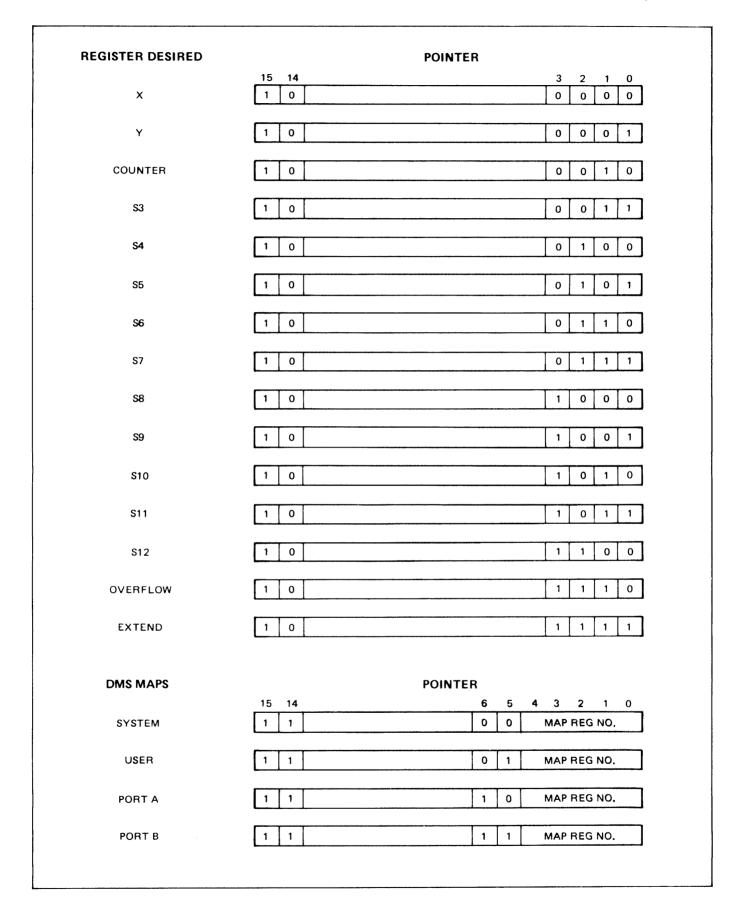


Figure 2-4. Special Register Display Mode Pointers

Operating Procedures 21MXM

Table 2-6. Special Register Display Mode Switch Operation

SELECTED FOR DISPLAY	SWITCH PRESSED	EFFECT	
Т	*•	Register Select "dot" shifts to "P". P-register contents are displayed and special register display mode is terminated.	
T	4	Register Select "dot" shifts to "M". Pointer is displayed per figure 2-4.	
Т	DISPLAY	Contents of register selected by pointer are displayed per table 2-7. Points is unchanged.	
Т	STORE	Register selected by pointer is loaded with data per table 2-7.	
T	INC M	Pointer is incremented by one. Contents of register selected by new pointer value are displayed per table 2-7.	
Т	DEC M	Pointer is decremented by one. Contents of register selected by new pointer value are displayed per table 2-7.	
Т	*PRESET	Same as for normal register display mode except display is left unaltered special register display mode is terminated. (The M-register is displayed in "M" is selected by pressing <.)	
Т	*IBL	Same as normal register display mode; special register display mode is terminated. Contents of last referenced memory address are displayed.	
Т	*INSTR STEP	Executes the next machine instruction; special register display mode is terminated. Contents of last referenced memory address are displayed.	
M	>	Register Select "dot" shifts to "T". Special register select mode is entered (only if bit 15 = 1) and contents of register selected by pointer are displayed.	
M	*4	Register Select "dot" shifts to "B" and contents of B-register are displayed Special register display mode is terminated.	
M	DISPLAY	Contents of the pointer are restored to the display. This is useful fo checking the pointer after the display has been changed by the operator	
M	*STORE	Contents of the display are stored into the M-register. Bit 15 is cleared and the special register display mode is terminated.	
M	INC M	Pointer is incremented and displayed.	
M	DEC M	Low-order bits of pointer are decremented modulo 256 ₁₀ and displayed	
M	*PRESET	Preset is performed. Special register display mode is terminated but display is unchanged. (Special register display mode may be reentered by pressing ▶.)	
M	*IBL	Same as normal register display mode except M-register contents are displayed and special register display mode is terminated.	
M or T	*RUN	Same as normal register display mode; special register display mode i terminated.	
M	*INSTR STEP	Executes the next machine instruction; special register display mode i terminated. Latest value of M-register (last referenced memory address) i displayed.	

^{*}Indicates conditions that terminate special register display mode.

21MXM Operating Procedures

Table 2-7. Effects of Storing/Displaying Special Registers

REGISTER	SELECTED BY DISPLAY, INC M, DEC M,▶	IF STORE PRESSED WHILE SELECTED
X, Y, S3-S12	Contents of selected register (16 bits) displayed.	Contents of display are loaded into selected register. The display is not altered.
Counter	Counter state is displayed modulo 256 ₁₀ in bits 7-0. Bits 15-8 are all ones.	Bits 7-0 of display are loaded into counter. The display is not altered.
Overflow and Extend	Display will be 177777 ₈ .	Set bit 0 to the desired state and press STORE. The overflow or extend register will be set equal to bit 0 of the display. The display is not altered.
DMS Map Register	The contents of the map register indicated by bits 6-0 of the pointer are displayed. Bits 9-0 of the display indicate the memory page number. If bit 15 = 1, that page is read-protected; if bit 14 = 1, that page is write-protected. If DMS is not installed, the display will be 1777778.	The contents of the display are stored into the map register indicated by bits 6-0 of the pointer in the same format as described at left. The display is not altered. Read and write protection may be set with bits 15 and 14, respectively.

- b. Set the BATTERY switch to INT.
- Remove the four captive screws securing the I/O cage cover to the computer rear frame.
- d. Place the I/O cage cover with the battery box on a support so that the battery cable remains connected.
- e. Set the ~POWER switch to OFF.
- f. Loosen the two screws holding the I/O PCA retainer and slide the retainer to permit the removal or installation of the I/O PCA's.
- g. Install the new I/O interface PCA or exchange I/O interface PCA's as required. If an HP 12979B I/O Extender is to be used, install its interface PCA in the first available lowest priority I/O slot.
- h. Slide the I/O PCA retainer to the left and tighten the two screws.

- i. Apply power to the computer by setting the $\sim\!POWER$ switch to ON.
- Secure the I/O cage cover with the battery box to the rear frame of the computer by fastening the four captive screws.

Table 2-8 provides a quick reference to those halt codes associated with the input device loader. These halt codes are displayed in the Display Register, when the computer is in the halt mode.

Table 2-9 provides a quick reference to the operator panel indications that occur when an abnormal condition exists during operation in the normal register display mode.

Table 2-8. Halt Codes

HALT CODE (in octal)	COMMENTS
102077	Indicates a successful program load from paper tape and typically indicates a successful program load from disc, magnetic tape, or other such media.
102055	Indicates that an address error occurred while loading from input device.
102011	Indicates that a checksum error occurred while loading from input device.

Table 2-9. Abnormal Indications

INDICATION	ABNORMAL CONDITION	REMEDY
POWER FAIL light remains on.	Indicates that power has been restored after a power failure.	Press HALT: then PRESET or execute an STC 04 or CLC 04 instruction.
PARITY light is on.	Indicates that a parity error occurred while reading from memory.	Refer to HP 21MX M-Series Installation and Service Manual, part no. 02108-90035.
OVERFLOW light is on after IBL	Indicates that:	
is pressed.	 a. The presence of memory was not detected. 	a. Check that memory modules are installed and programmed correctly.
	 b. The programmed select code was less than 10 (octal). 	b. Check that the programmed select code is within range.
	c. The memory was defective.	c. Refer to HP 21MX M-Series Installation and Service Manual, part no. 02108-90035.
Operator panel indicators are ir-	Indicates that:	
regular after cold power-up; Register Select switch cannot select registers.	Power supply or CPU PCA is defective.	a. Refer to HP 21MX M-Series Computer Installation and Ser- vice Manual, part no. 02108- 90035.
	 If Power Fail Recovery System is installed, battery cable is not connected or connector 12991- 60002 is not connected to BAT INPUT connector. 	b. Connect battery cable from battery box (or connect connector 12991-60002) to BAT INPUT connector.

SECTION

PROGRAMMING INFORMATION

This section describes the software data formats and the base set machine-language instruction coding required to operate the computer and its associated input/output system. Machine-language instruction coding for the optional Dynamic Mapping System is presented in Section IV

·音·马子·公司·李明·新启君 李戬

As shown in figure 3-1, the basic data format is a 16-bit word in which bit positions are numbered from 0 through 15 in order of increasing significance. Bit position 15 of the data format is used for the sign bit; a logic 0 in this position indicates a positive number and a logic 1 in this position indicates a negative number. The data is assumed to be a whole number and the binary point is therefore assumed to be to the right of the number.

The basic word can also be divided into two 8-bit bytes or combined to form a 32-bit double word. The byte format is used for character-oriented input/output devices; packing two bytes of data into one 16-bit word is accomplished by software drivers. In I/O operations, the higher-order byte (byte 1) is the first to be transferred.

The integer double-word format is used for extended arithmetic in conjunction with the extended arithmetic instructions described under paragraphs 3-21 and 3-22. Bit position 15 of the most-significant word is the sign bit and the binary point is assumed to be to the right of the least-significant word. The integer value is expressed by the remaining 31 bits. When loaded into the accumulators, the B-register contains the most-significant word and the A-register contains the least-significant word.

The floating-point double-word format is used with floating-point software. Bit position 15 of the most-significant word is the mantissa sign and bit position 0 of the least-significant word is the exponent sign. Bits 1 through 7 of the least-significant word express the exponent and the remaining bits (bits 8 through 15 of the least-significant word and bits 0 through 14 of the most-significant word) express the mantissa. Since the mantissa is assumed to be a fractional value, the binary point appears to the left of the mantissa. Software drivers convert decimal numbers to this binary form and normalize the quantity expressed (sign and leading mantissa differ). If either the mantissa or the exponent is negative, that part is stored in two's complement form.

The number must be in the appriximate range of 10^{-38} to 10^{+38} . When loaded into the accumulators, the A-register contains the most-significant word and the B-register contains the least-significant word.

Figure 3-1 also illustrates the octal notation for both single-length (16-bit) and double-length (32-bit) words. Each group of three bits, beginning at the right, is combined to form an octal digit. A single-length (16-bit) word can therefore be fully expressed by six octal digits and a double-length (32-bit) word can be fully expressed by 11 octal digits. Octal notation is not shown for byte or floating-point formats, since bytes normally represent characters and floating-point numbers are given in decimal form.

The range of representable numbers for single-word data is +32,767 to -32,768 (decimal) or +77,777 to -100,000 (octal). The range of representable numbers for double-word integer data is +2,147,483,647 to -2,147,483,648 (decimal) or +17,777,777,777 to -20,000,000,000 (octal).

· (4.7) 通用用事品中作品的

3-3. PAGING

The computer memory is logically divided into pages of 1,024 words each. A page is defined as the largest block of memory that can be directly addressed by the address bits of a single-length memory reference instruction. (Refer to paragraph 3-8.) These memory reference instructions use 10 bits (bits 0 through 9) to specify a memory address; thus, the page size is 1,024 locations (2000 octal). Octal addresses for each page, up to a maximum memory size of 32K, are listed in table 3-1.

Provision is made to directly address one of two pages: page zero (the base page consisting of locations 00000 through 01777) and the current page (the page in which the instruction itself is located). Memory reference instructions reserve bit 10 to specify one or the other of these two pages. To address locations on any other page, indirect addressing is used as described in following paragraphs. Page references are specified by bit 10 as follows:

- a. Logic 0 = Page Zero(Z).
- b. Logic 1 = Current Page (C).

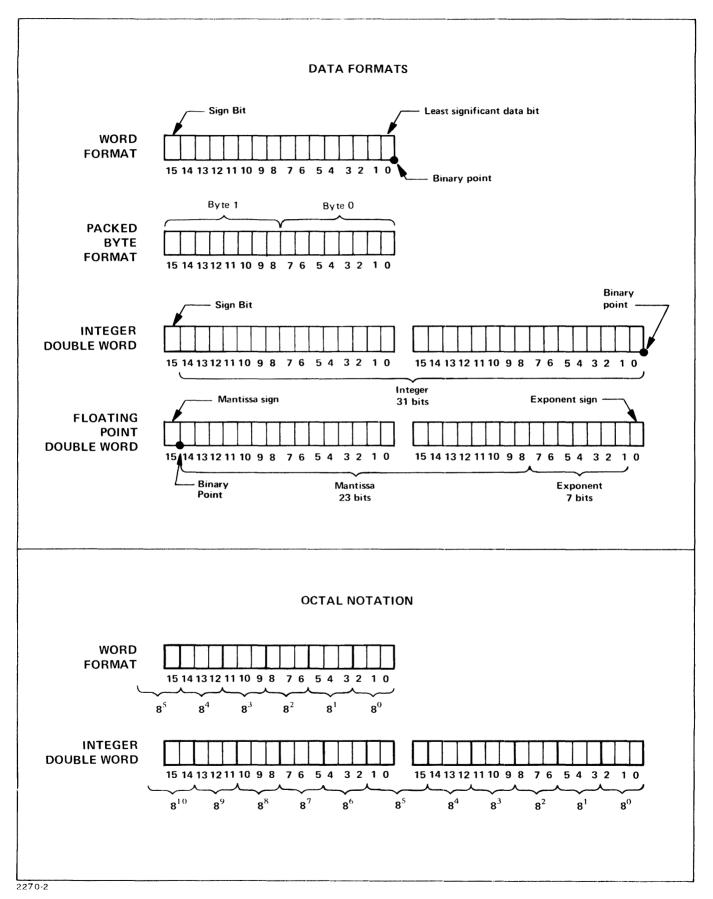


Figure 3-1. Data Formats and Octal Notation

21MXM Programming Information

Table 3-1. Memory Paging

MEMORY SIZE	PAGE	OCTAL ADDRESSES
	0	00000 to 01777
	1	02000 to 03777
	2	04000 to 05777
	3	06000 to 07777
	4	10000 to 11777
	5	12000 to 13777
	6	14000 to 15777
8K ↓	7	16000 to 17777
	8	20000 to 21777
	9	22000 to 21777
	10	24000 to 25777
	11	26000 to 27777
	''	20000 10 27777
	12	30000 to 31777
	13	32000 to 33777
	14	34000 to 35777
16K ↓	15	36000 to 37777
	16	40000 to 41777
	17	42000 to 43777
	18	44000 to 45777
	19	46000 to 47777
	20	50000 to 51777
	21	52000 to 53777
	22	54000 to 55777
24K ↓	23	56000 to 57777
<u> </u>	_	
	24	60000 to 61777
	25	62000 to 63777
	26	64000 to 65777
	27	66000 to 67777
	28	70000 to 71777
	29	72000 to 73777
,	30	74000 to 75777
32K ↓	31	76000 to 77777

3-4. DIRECT AND INDIRECT ADDRESSING

All memory reference instructions reserve bit 15 to specify either direct or indirect addressing. For single-length memory reference instructions, bit 15 of the instruction word is used; for extended arithmetic memory reference instructions, bit 15 of the address word is used. Indirect addressing uses the address part of the instruction to access another word in memory, which is taken as the new memory reference for the same instruction. This new address word is a full 16 bits long: 15 address bits plus another direct/indirect bit. The 15-bit length of the address permits access to any location in memory. If bit 15 again specifies indirect addressing, still another address is obtained; thus, multistep indirect addressing may be done to any number of levels. The first address obtained that

does not specify another indirect level becomes the effective address for the instruction. Direct or indirect addressing is specified by bit 15 as follows:

- a. Logic 0 = Direct (D).
- b. Logic 1 = Indirect (I).

3-5. RESERVED MEMORY LOCATIONS

The first 64 memory locations of the base page (octal addresses 00000 through 00077) are reserved as listed in table 3-2. The first two locations are reserved as addresses for the two 16-bit accumulators (the A- and B-registers). Locations 00004 through 00077 are reserved for priority interrupts; as long as locations 00006 through 00077 do not have actual priority interrupt assignments, as determined by the options and input/output devices included in the system configuration, these locations can be used for programming purposes.

The uppermost 64 locations of memory for any given configuration are reserved for the initial binary loader. The initial binary loader is permanently resident in a read-only memory (ROM) and loaded into the uppermost 64 memory locations by a pushbutton switch on the operator panel. These 64 locations are not protected and can therefore be used for temporary storage of data, trap cells, buffers, etc.

Table 3-2. Reserved Memory Locations

MEMORY LOCATION	PURPOSE	
00000	A-register address.	
00001	B-register address.	
00002-00003	Exit sequence if contents of A- register and B-register are used as executable words.	
00004	Power-fail interrupt (highest priority).	
00005	Memory parity, memory protect, and DMS interrupt.	
00006	Reserved for dual-channel port controller (DCPC) channel 1.	
00007	Reserved for dual-channel port controller (DCPC) channel 2.	
00010-00077	Interrupt locations in decreasing order of priority; e.g., location 00010 has priority over 00011.	

Programming Information 21MXM

3-6. NONEXISTENT MEMORY

Nonexistent memory is defined as those locations not physically implemented in the machine. Any attempt to write into a nonexistent memory location will be ignored (no operation). Any attempt to read from a nonexistent memory location will return an all-zeros word (000000 octal); no parity error occurs.

The base set of instructions are classified according to format. The five formats used are illustrated in figure 3-2 and described in following paragraphs. In all cases where a single bit is used to select one of two cases (e.g., D/I), the choice is made by coding a logic 0 or logic 1, respectively.

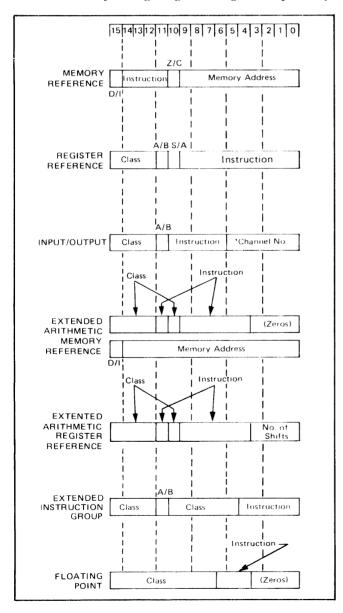


Figure 3-2. Base Set Instruction Formats

3-8. MEMORY REFERENCE INSTRUCTIONS

This class of instructions, which combines an instruction code and a memory address into one 16-bit word, is used to execute some function involving data in a specific memory location. Examples are storing, retrieving, and combining memory data to and from the accumulators (A- and B-registers) or causing the program to jump to a specified location in memory.

The memory cell referenced (i.e., the absolute address) is determined by a combination of 10 memory address bits (0 through 9) in the instruction word and 5 bits (10 through 14) assumed from the current contents of the M-register. This means that memory reference instructions can directly address any word in the current page; additionally, if the instruction is given in some location other than the base page (page zero), bit 10 (Z/C) of the instruction doubles the addressing range to 2,048 locations by allowing the selection of either page zero or the current page. (This causes bits 10 through 14 of the address contained in the M-register to be set to zero instead of assuming the current contents of the M-register.) This feature provides a convenient linkage between all pages of memory, since page zero can be reached directly from any other page.

As discussed under paragraph 3-4, bit 15 is used to specify direct or indirect memory addressing. Note also that since the A- and B-registers are addressable, any single-word memory reference instruction can apply to either of these registers as well as to memory cells. For example, an ADA 0001 instruction adds the contents of the B-register (address 0001) to the contents currently held in the A-register; specify page zero for these operations since the addresses of the A- and B-registers are on page zero.

3-9. REGISTER REFERENCE INSTRUCTIONS

In general, the register reference instructions manipulate bits in the A-register, B-register, and E-register; there is no reference to memory. This group includes 39 basic instructions which may be combined to form a one-word multiple instruction that can operate in various ways on the contents of the A-, B-, and E-registers. These 39 instructions are divided into two subgroups: the shift/rotate group (SRG) and the alter/skip group (ASG). The appropriate subgroup is specified by bit 10 (S/A). Typical operations are clear and/or complement a register, conditional skips, and register increment.

3-10. INPUT/OUTPUT INSTRUCTIONS

The input/output instructions use bits 6 through 11 for a variety of I/O instructions and bits 0 through 5 to apply the instructions to a specific I/O channel. This provides the means of controlling all peripherals connected to the I/O channels and for transferring data to and from these peripherals. Included also in this group are instructions to control the interrupt system, overflow bit, and computer halt.

21MXM Programming Information

3-11. EXTENDED ARITHMETIC MEMORY REFERENCE INSTRUCTIONS

As the single-word memory reference instruction described previously, the extended arithmetic memory reference instructions include an instruction code and a memory address. In this case, however, two words are required. The first word specifies the extended arithmetic class (bits 12 through 15 and 10) and the instruction code (bits 4 through 9 and 11); bits 0 through 3 are not needed and are coded with zeros. The second word specifies the memory address of the operand. Since the full 15 bits are used for the address, this type of instruction may directly address any location in memory. As with all memory reference instructions, bit 15 is used to specify direct or indirect addressing. Operations performed by this class of instructions are integer multiply and divide (using double-length product and dividend) and double load and double store.

3-12. EXTENDED ARITHMETIC REGISTER REFERENCE INSTRUCTIONS

This class of instructions provides long shifts and rotates on the combined contents of the A- and B-registers. Bits 12 through 15 and 10 identify the instruction class; bits 4 through 9 and 11 specify the direction and type of shift; and bits 0 through 3 control the number of shifts, which can range from 1 to 16 places.

3-13. EXTENDED INSTRUCTIONS

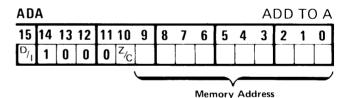
The extended instructions include index register instructions, bit and byte manipulation instructions, and move and compare instructions. Instructions comprising the extended instruction group are one, two, or three words in length. The first word is always the instruction code; operand addresses are given in the words following the instruction code or in the A- and B-registers. The operand addresses are 15 bits long, with bit 15 (most-significant bit) generally indicating direct or indirect addressing.

3-14. FLOATING POINT INSTRUCTIONS

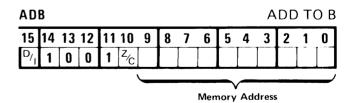
The floating point instructions allow addition, subtraction, multiplication, and division of 32-bit floating point quantities. Two conversion routines are provided for transforming numerical integer representations to/from floating point representations.

Machine language coding for the base set of instructions are provided in following paragraphs. Definitions for these instructions are grouped according to the instruction type: memory reference, register reference, input/output, extended arithmetic memory reference, and extended arithmetic register reference.

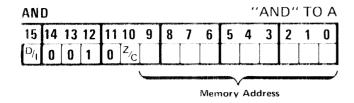
医乳结束 医乳头三周点 计超级分别 建硫苯酚醇醇酸

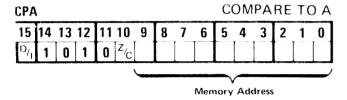

Directly above each definition is a diagram showing the machine language coding for that instruction. The gray shaded bits code the instruction type and the blue shaded bits code the specific instruction. Unshaded bits are further defined in the introduction to each instruction type. The mnemonic code and instruction name are included above each diagram.

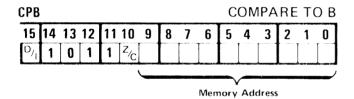
In all cases where an additional bit is used to specify a secondary function (D/I, Z/C, or H/C), the choice is made by coding a logic 0 or logic 1, respectively. In other words, a logic 0 codes D (direct addressing), Z (zero page), or H (hold flag); a logic 1 codes I (indirect addressing), C (current page), or C (clear flag).

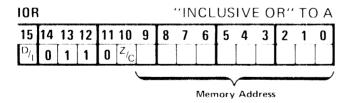

3-16. MEMORY REFERENCE INSTRUCTIONS

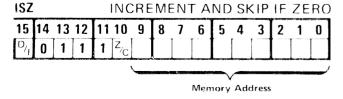
The following 14 memory reference instructions execute a function involving data in memory. Bits 0 through 9 specify the affected memory location on a given memory page or, if indirect addressing is specified, the next address to be referenced. Indirect addressing may be continued to any number of levels; when bit 15 (D/I) is a logic 0 (specifying direct addressing), that location will be taken as the effective address. The A- and B-registers may be addressed as locations 00000 and 00001 (octal), respectively.

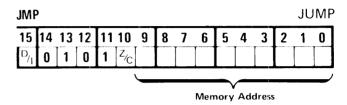

If bit 10 (Z/C) is a logic 0, the memory address is on page zero; if bit 10 is a logic 1, the memory address is on the current page. If the A- or B-register is addressed, bit 10 must be a logic 0 to specify page zero, unless the current page is page zero.

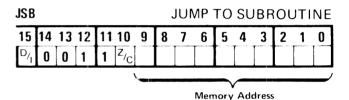

Adds the contents of the addressed memory location to the contents of the A-register. The sum remains in the A-register and the contents of the memory cell are unaltered. The result of this addition may set the extend bit or the overflow bit. (Extend and overflow examples are illustrated on page A-13.)

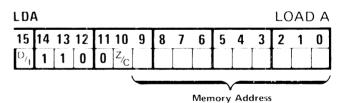

Adds the contents of the addressed memory location to the contents of the B-register. The sum remains in the B-register and the contents of the memory cell are unaltered. The result of this addition may set the extend bit or the overflow bit. (Extend and overflow examples are illustrated on page A-13.)

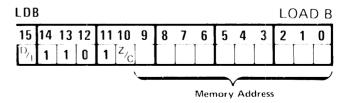

Combines the contents of the addressed memory location and the contents of the A-register by performing a logical "and" operation. The contents of the memory cell are unaltered.

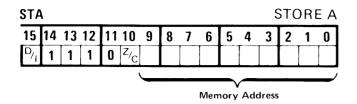

Compares the contents of the addressed memory location with the contents of the A-register. If the two 16-bit words are not identical, the next instruction is skipped; i.e., the P-register advances two counts instead of one count. If the two words are identical, the next sequential instruction is executed. Neither the A-register contents nor memory cell contents are altered.

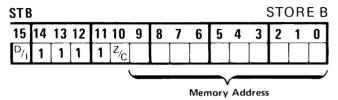

Compares the contents of the addressed memory location with the contents of the B-register. If the two 16-bit words are not identical, the next instruction is skipped; i.e., the P-register advances two counts instead of one count. If the two words are identical, the next sequential instruction is executed. Neither the B-register contents nor memory cell contents are altered.


Combines the contents of the addressed memory location and the contents of the A-register by performing a logical "inclusive or" operation. The contents of the memory cell are unaltered.


Adds one to the contents of the addressed memory location. If the result of this operation is zero (memory contents incremented from 177777 to 000000), the next instruction is skipped; i.e., the P-register is advanced two counts instead of one count. If the result of this operation is not zero, the next sequential instruction is executed. In either case, the incremented value is written back into the memory cell.


Transfers control to the addressed memory location. That is, a JMP causes the P-register count to set according to the memory address portion of the JMP instruction so that the next instruction will be read from that location.


This instruction, executed in location P (P-register count), causes the computer control to jump unconditionally to the memory location (m) specified by the memory address portion of the JSB instruction. The contents of the P-register plus one (return address) is stored in memory location m, and the next instruction to be executed will be that contained in the next sequential memory location (m + 1). A return to the main program sequence at P+1 will be effected by a JMP indirect through location m.


Loads the contents of the addressed memory location into the A-register. The contents of the memory cell are unaltered.


Loads the contents of the addressed memory location into the B-register. The contents of the memory cell are unaltered.

Stores the contents of the A-register in the addressed memory location. The previous contents of the memory cell are lost; the A-register contents are unaltered.

Stores the contents of the B-register in the addressed memory location. The previous contents of the memory cell are lost; the B-register contents are unaltered.

Combines the contents of the addressed memory location and the contents of the A-register by performing a logical "exclusive or" operation. The contents of the memory cell are unaltered.

3-17. REGISTER REFERENCE INSTRUCTIONS

The 39 register reference instructions execute functions on data contained in the A-register, B-register, and E-register. These instructions are divided into two groups: the shift/rotate group (SRG) and the alter/skip group (ASG). In each group, several instructions may be combined into one word. Since the two groups perform separate and distinct functions, instructions from the two groups cannot be mixed. Unshaded bits in the coding diagrams are available for combining other instructions.

- **3-18. SHIFT/ROTATE GROUP.** The 20 instructions in the shift/rotate group (SRG) are defined first; this group is specified by setting bit 10 to a logic 0. A comparison of the various shift/rotate functions are illustrated in figure 3-3. Rules for combining instructions in this group are as follows (refer to table 3-3):
- a. Only one instruction can be chosen from each of the two multiple-choice columns.

- b. References can be made to either the A-register or B-register, but not both.
- c. Sequence of execution is from left to right.
- d. In machine code, use zeros to exclude unwanted microinstructions.
- e. Code a logic 1 in bit position 9 to enable shifts or rotates in the first position; code a logic 1 in bit position 4 to enable shifts or rotates in the second position.
- f. The extend bit is not affected unless specifically stated. However, if a "rotate-with-E" instruction (ELA, ELB, ERA, or ERB) is coded but disabled by a logic 0 in bit position 9 and/or position 4, the E-register will be updated even though the A- or B-register contents are not affected; to avoid this situation, code a "no operation" (three zeros) in the first and/or second positions.

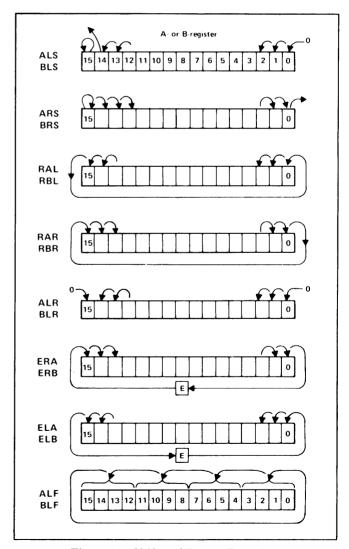
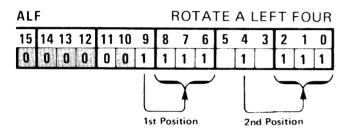



Figure 3-3. Shift and Rotate Functions

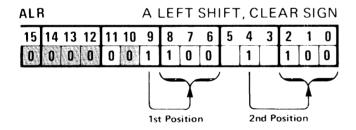
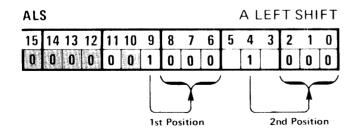
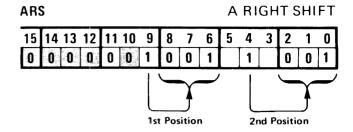
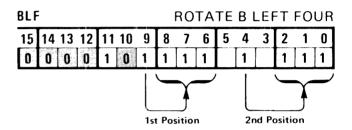
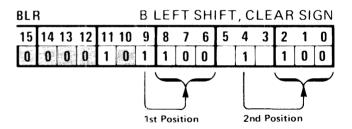

Programming Information 21MXM

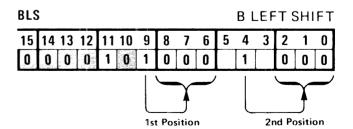
Table 3-3. Shift/Rotate Group Combining Guide

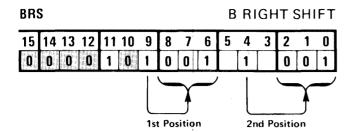


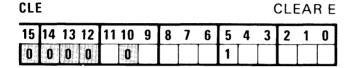

Rotates the A-register contents (all 16 bits) left four places. Bits 15, 14, 13, and 12 rotate around to bit positions 3, 2, 1, and 0, respectively. Equivalent to four successive RAL instructions.

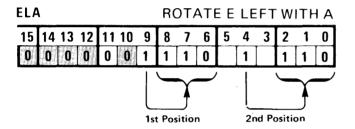

Shifts the A-register contents left one place and clears sign bit 15.

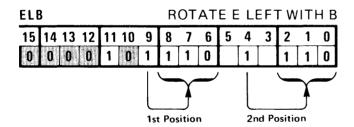

Arithmetically shifts the A-register contents left one place, 15 magnitude bits only; bit 15 (sign) is not affected. The bit shifted out of bit position 14 is lost; a logic 0 replaces vacated bit position 0.

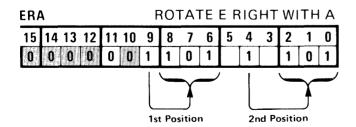

Arithmetically shifts the A-register contents right one place, 15 magnitude bits only; bit 15 (sign) is not affected. A copy of the sign bit is shifted into bit position 14; the bit shifted out of bit position 0 is lost.

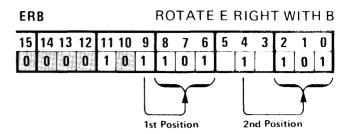

Rotates the B-register contents (all 16 bits) left four places. Bits 15, 14, 13, and 12 rotate around to bit positions 3, 2, 1, and 0, respectively. Equivalent to four successive RBL instructions.

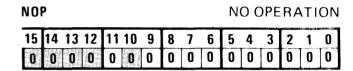

Shifts the B-register contents left one place and clears sign bit 15.

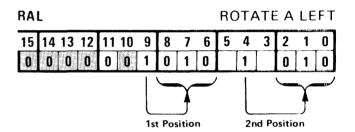

Arithmetically shifts the B-register contents left one place, 15 magnitude bits only; bit 15 (sign) is not affected. The bit shifted out of bit position 14 is lost; a logic 0 replaces vacated bit position 0.

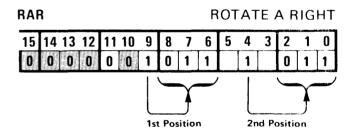

Arithmetically shifts the B-register contents right one place, 15 magnitude bits only; bit 15 (sign) is not affected. A copy of the sign bit is shifted into bit position 14; the bit shifted out of bit position 0 is lost.

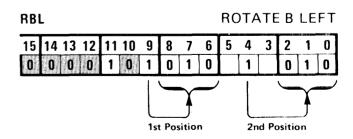

Clears the E-register; i.e., the extend bit becomes a logic 0.

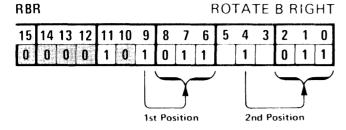

Rotates the E-register content left with the A-register contents (one place). The E-register content rotates into bit position 0; bit 15 rotates into the E-register.


Rotates the E-register content left with the B-register contents (one place). The E-register content rotates into bit position 0; bit 15 rotates into the E-register.


Rotates the E-register content right with the A-register contents (one place). The E-register content rotates into bit position 15; bit 0 rotates into the E-register.


Rotates the E-register content right with the B-register contents (one place). The E-register content rotates into bit position 15; bit 0 rotates into the E-register.


This all-zeros instruction causes a no-operation cycle.

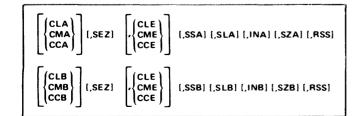

Rotates the A-register contents left one place (all 16 bits). Bit 15 rotates into bit position 0.

Rotates the A-register contents right one place (all 16 bits). Bit 0 rotates into bit position 15.

Rotates the B-register contents left one place (all 16 bits). Bit 15 rotates into bit position 0.

Rotates the B-register contents right one place (all 16 bits). Bit 0 rotates into bit position 15.

Skips the next instruction if the least-significant bit (bit 0) of the A-register is a logic 0.


SLB			,	SKI	РΙ	FL	SB.	OF	- B	IS —	ZE	RO
15 14 13 1	2 1	1 10	9	8	7	6	5	4	3	2	1	0
0 0 0	1	0							1			

Skips the next instruction if the least-significant bit (bit 0) of the B-register is a logic 0.

3-19. ALTER/SKIP GROUP. The 19 instructions comprising the alter/skip group (ASG) are defined next. This group is specified by setting bit 10 to a logic 1. Rules for combining instructions are as follows (refer to table 3-4):

- a. Only one instruction can be chosen from each of the two multiple-choice columns.
- b. References can be made to either the A-register or B-register, but not both.
- c. Sequence of execution is from left to right.
- d. If two or more skip functions are combined, the skip function will occur if either or both conditions are met. One exception exists: refer to the RSS instruction.
- e. In machine code, use zeros to exclude unwanted instructions.

Table 3-4. Alter/Skip Group Combining Guide

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	1	1	1								

Clears and complements the A-register contents; i.e., the contents of the A-register become 177777 (octal). This is the two's complement form of -1.

CCB	}				C	LE	AF	R A	ND	CC	MC	P L.E	M	EN.	ТВ
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	1	1	1	1								

Clears and complements the B-register contents; i.e., the contents of the B-register become 177777 (octal). This is the two's complement form of -1.

CCE	•				С	LE	AR	ΑI	ИD	CC	MI	PLE	ME	ENT	ΓΕ
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0		ment 32 To			1	1						

Clears and complements the E-register content (extend bit); i.e., the extend bit becomes a logic 1.

CLA	1											(CLE	ΑF	R A
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	1	0	1								

Clears the A-register; i.e., the contents of the A-register become 000000 (octal).

CLE	3											(CLE	ΞΑΙ	R B
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	1	1	0	1								

Clears the B-register; i.e., the contents of the B-register become 000000 (octal).

CLE												(CLI	EΑΙ	R E
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0.	0		1			0	1						

Clears the E-register; i.e., the extend bit becomes a logic 0.

CM	4									CC	M	PLE	EM E	ΞN	ГΑ
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	1.	1	0								

Complements the A-register contents (one's complement).

CMB COMPLEMENT B

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	1	1	1	0								

Complements the B-register contents (one's complement).

CME COMPLEMENT E

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0		1			1	0						

Complements the E-register content (extend bit).

ÎNA INCREMENT A

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0									1		

Increments the A-register by one. The overflow bit will be set if an increment of the largest positive number (077777 octal) is made. The extend bit will be set if an all-ones word (177777 octal) is incremented.

INB INCREMENT B

15 14 13 12	11 10 9	8 7	6	5	4 3	2	1	0
0 0 0 0	1 1					1		

Increments the B-register by one. The overflow bit will be set if an increment of the largest positive number (077777 octal) is made. The extend bit will be set if an all-ones word (177777 octal) is incremented.

RSS REVERSE SKIP SENSE

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0.		1.										1

Skip occurs for any of the following skip instructions, if present, when the non-zero condition is met. An RSS without a skip instruction in the word causes an unconditional skip. If a word with RSS also includes both SSA and SLA (or SSB and SLB), bits 15 and 0 must both be logic 1's for a skip to occur; in all other cases, a skip occurs if one or more skip conditions are met.

SEZ SKIP IF E IS ZERO

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0		1					1					

Skips the next instruction if the E-register content (extend bit) is a logic 0.

SLA SKIP IF LSB OF A IS ZERO

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	1							1			

Skips the next instruction if the least-significant bit (bit 0) of the A-register is a logic 0; i.e., skips if an even number is in the A-register.

SLB SKIP IF LSB OF B IS ZERO

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	1	1							1		-	

Skips the next instruction if the least-significant bit (bit 0) of the B-register is a logic 0; i.e., skips if an even number is in the B-register.

SSA SKIP IF SIGN OF A IS ZERO

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	1						1				

Skips the next instruction if the sign bit (bit 15) of the A-register is a logic 0; i.e., skips if a positive number is in the A-register.

SSB SKIP IF SIGN OF B IS ZERO

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	1	1						1				

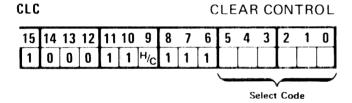
Skips the next instruction if the sign bit (bit 15) of the B-register is a logic 0; i.e., skips if a positive number is in the B-register.

SZA SKIP IF A IS ZERO

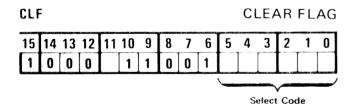
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	1									1	

Skips the next instruction if the A-register contents are zero (16 zeros).

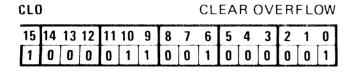
SZB SKIP IF B IS ZERO

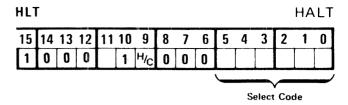

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	1	1									1	

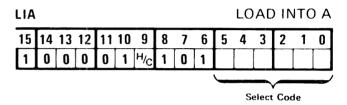
Skips the next instruction if the B-register contents are zero (16 zeros).

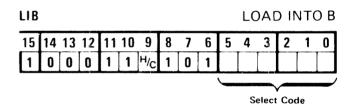

3-20. INPUT/OUTPUT INSTRUCTIONS

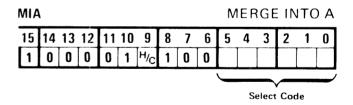
The following input/output instructions provide the capability of setting or clearing the I/O flag and control bits, testing the state of the overflow and the I/O flag bits, and transferring data between specific I/O devices and the A- and B-registers. In addition, specific instructions in this group control the vectored priority interrupt system and can cause a programmed halt.

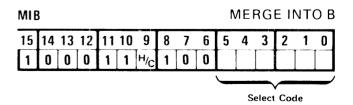

Bit 11, where relevant, specifies the A- or B-register or distinguishes between set control and clear control; otherwise, bit 11 may be a logic 0 or a logic 1 without affecting the instruction (although the assembler will assign zeros in this case). In those instructions where bit position 9 includes the letters H/C, the programmer has the choice of holding (logic 0) or clearing (logic 1) the device flag after executing the instruction. (Exception: the H/C bit associated with instructions SOC and SOS holds or clears the overflow bit instead of the device flag.) Bits 8, 7, and 6 specify the appropriate I/O instruction and bits 5 through 0 form a two-digit octal select code (address) to apply the instruction to one of up to 64 input/output devices or functions.

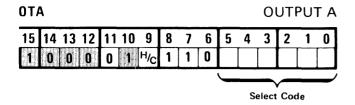

Clears the control bit of the selected I/O channel or function. This turns off the specific device channel and prevents it from interrupting. A CLC 00 instruction clears all control bits from select code 06 upward, effectively turning off all I/O devices.

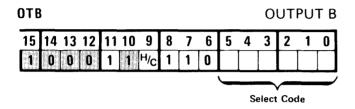

Clears the flag of the selected I/O channel or function. A CLF 00 instruction disables the interrupt system for all select codes except power fail (select code 04) and parity error (select code 05), which are always enabled; this does not affect the status of the individual channel flags.

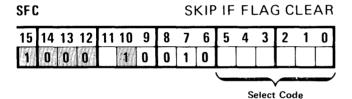

Clears the overflow bit.

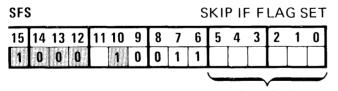

Halts the computer and holds or clears the flag of the selected I/O channel. The HLT instruction has the same effect as pressing the operator panel HALT pushbutton. The HLT instruction will be contained in the T-register, which is selected and displayed automatically when the computer halts. The P-register will contain the HLT location plus one.


Loads the contents of the I/O buffer associated with the selected device into the A-register.


Loads the contents of the I/O buffer associated with the selected device into the B-register.

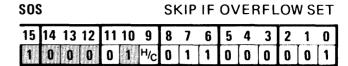

By executing a logical "inclusive or" function, merges the contents of the I/O buffer associated with the selected device into the A-register.


By executing a logical "inclusive or" function, merges the contents of the I/O buffer associated with the selected device into the B-register.

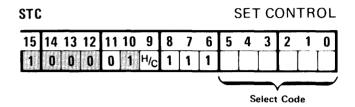

Outputs the contents of the A-register to the I/O buffer associated with the selected device. If the I/O buffer is less than 16 bits in length, the least-significant bits of the A-register are normally loaded. (Some exceptions to this exist, depending on the type of output device.) The contents of the A-register are not altered.

Outputs the contents of the B-register to the I/O buffer associated with the selected device. If the I/O buffer is less than 16 bits in length, the least-significant bits of the B-register are normally loaded. (Some exceptions to this exist, depending on the type of output device.) The contents of the B-register are not altered.

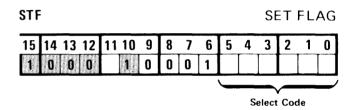
Skips the next programmed instruction if the flag of the selected channel is clear (device busy).

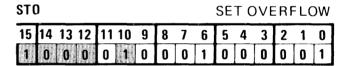


Select Code


Skips the next programmed instruction if the flag of the selected channel is set (device ready). Used with "waitfor-flag" I/O programming, usually the interrupt system is off. If used with the interrupt system on, use a CLF instruction to clear the flag and eliminate the interrupt request.

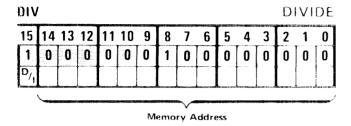
soc	;					SK	ΊP	1F	OV	'EF	RFL	.OV	V C	LE.	AR
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	0	0	1	H/C	0	1	0	0	0	0	0	0	1


Skips the next programmed instruction if the overflow bit is clear. Use the H/C bit (bit 9) to either hold or clear the overflow bit following the completion of this instruction (whether the skip is taken or not).

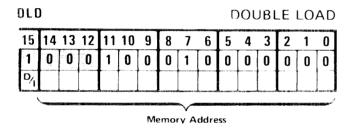

Skips the next programmed instruction if the overflow bit is set. Use the H/C bit (bit 9) to either hold or clear the overflow bit following the completion of this instruction (whether the skip is taken or not).

Sets the control bit of the selected I/O channel or function.

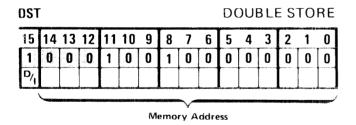
Sets the flag of the selected I/O channel or function. An STF 00 instruction enables the interrupt system for all select codes except power fail (select 04) which is always enabled and parity error (select code 05), which is selectively controllable.

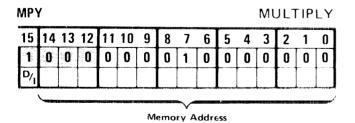


Sets the overflow bit.


3-21. EXTENDED ARITHMETIC MEMORY REFERENCE INSTRUCTIONS

The four extended arithmetic memory reference instructions provide for integer multiply and divide and for loading and storing double-length words to and from the A- and B-registers. The complete instruction requires two words: one for the instruction code and one for the address. When stored in memory, the instruction word is the first to be fetched; the address word is in the next sequential location.

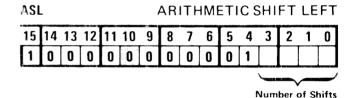

Since 15 bits are available for the address, these instructions can directly address any location in memory. As for all memory reference instructions, indirect addressing to any number of levels may also be used. A logic 0 in bit position 15 specifies direct addressing; a logic 1 specifies indirect addressing.


Divides a double-word integer in the combined B- and A-registers by a 16-bit integer in the addressed memory location. The result is a 16-bit integer quotient in the A-register and a 16-bit integer remainder in the B-register. Overflow can result from an attempt to divide by zero, or from an attempt to divide by a number too small for the dividend. In the former case (divide by zero), the division will not be attempted and the B- and A-register contents will be unchanged except that a negative quantity will be made positive. In the latter case (divisor too small), the execution will be attempted with unpredictable results left in the B- and A-registers. If there is no divide error, the overflow bit is cleared.

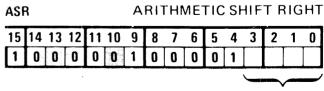
Loads the contents of addressed memory location m (and m+1) into the A- and B-registers, respectively.

Stores the double-word quantity in the A- and B-registers into addressed memory locations m (and m+1), respectively.

Multiplies a 16-bit integer in the A-register by a 16-bit integer in the addressed memory location. The resulting double-length integer product resides in the B- and


A-registers, with the B-register containing the sign bit and the most-significant 15 bits of the quantity. The A-register may be used as an operand (i.e., memory address 0), resulting in an arithmetic square. The instruction clears the overflow bit.

3-22. EXTENDED ARITHMETIC REGISTER REFERENCE INSTRUCTIONS


The six extended arithmetic register reference instructions provide various types of shifting operations on the combined contents of the B- and A-registers. The B-register is considered to be to the left (most-significant word) and the A-register is considered to be to the right (least-significant word). An example of each type of shift operation is illustrated in figure 3-4.

The complete instruction is given in one word and includes four bits (unshaded) to specify the number of shifts (1 to 16). By viewing these four bits as a binary-coded number, the number of shifts is easily expressed; i.e., binary-coded 1 = 1 shift, binary-coded 2 = 2 shifts . . . binary-coded 15 = 15 shifts. The maximum number of 16 shifts is coded with four zeros, which essentially exchanges the contents of the B- and A-registers.

The extend bit is not affected by any of the following instructions. Except for the arithmetic shifts, overflow also is not affected.

Arithmetically shifts the combined contents of the B- and A-registers left n places. The value of n may be any number from 1 through 16. Zeros are filled into vacated low-order positions of the A-register. The sign bit is not affected, and data bits are lost out of bit position 14 of the B-register. If any one of the lost bits is a significant data bit ("1" for positive numbers, "0" for negative numbers), the overflow bit will be set; otherwise, overflow will be cleared during execution. See ASL example in figure 3-4. Note that two additional shifts in this example would cause an error by losing a significant '1'.

Number of Shifts

Arithmetically shifts the combined contents of the B- and A-registers right n places. The value of n may be any number from 1 through 16. The sign bit is unchanged and

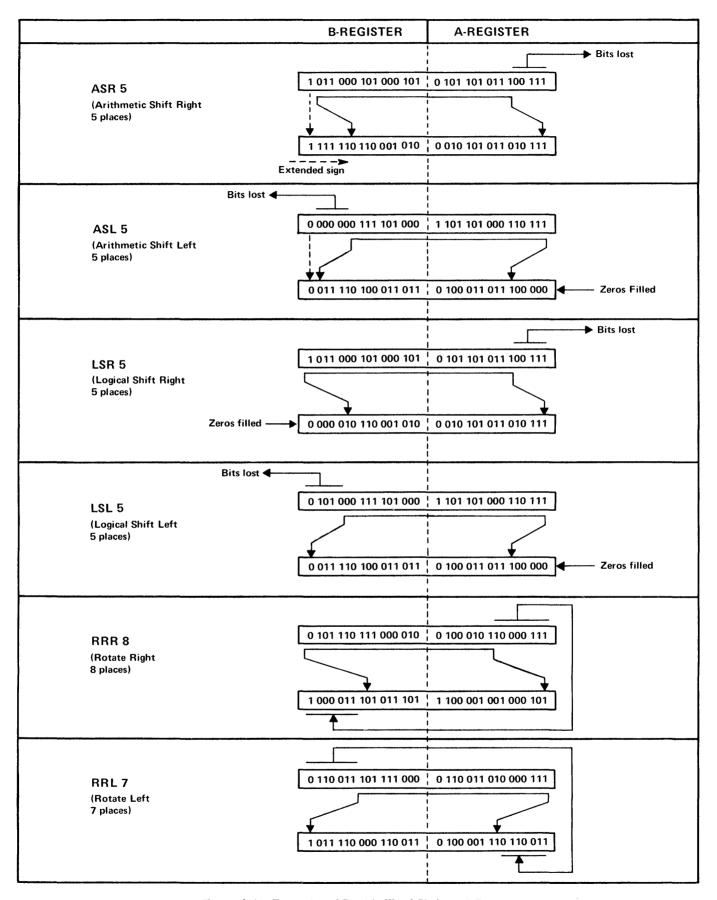
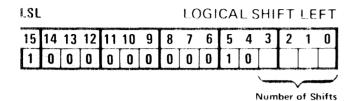
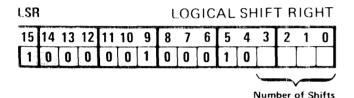
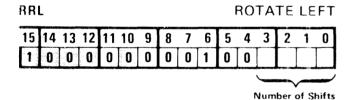
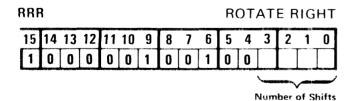
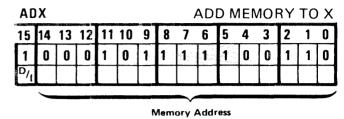




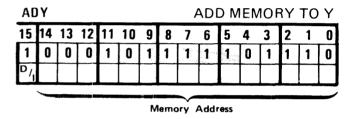
Figure 3-4. Examples of Double-Word Shifts and Rotates


is extended into bit positions vacated by the right shift. Data bits shifted out of the least-significant end of the A-register are lost. Overflow cannot occur because the instruction clears the overflow bit.


Logically shifts the combined contents of the B· and A-registers left n places. The value of n may be any number from 1 through 16. Zeros are filled into vacated low-order bit positions of the A-register; data bits are lost out of the high-order bit positions of the B-register.

Logically shifts the combined contents of the B- and A-registers right n places. The value of n may be any number from 1 through 16. Zeros are filled into vacated high-order bit positions of the B-register; data bits are lost out of the low-order bit positions of the A-register.

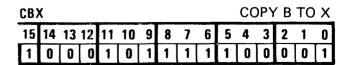

Rotates the combined contents of the B- and A-registers left n places. The value of n may be any number from 1 through 16. No bits are lost or filled in. Data bits shifted out of the high-order end of the B-register are rotated around to enter the low-order end of the A-register.


Rotates the combined contents of the B- and A-registers right n places. The value of n may be any number from 1 through 16. No bits are lost or filled in. Data bits shifted out of the low-order end of the A-register are rotated around to enter the high-order end of the B-register.

3-23. EXTENDED INSTRUCTION GROUP

3-24. INDEX REGISTER INSTRUCTIONS. The index registers (X and Y) are two 16-bit registers accessible by the following instructions.

Adds the contents of the addressed memory location to the contents of the X-register. The sum remains in the X-register and the contents of the memory cell are unaltered. The result of this addition may set the extend bit or the overflow bit.


Adds the contents of the addressed memory location to the contents of the Y-register. The sum remains in the Y-register and the contents of the memory cell are unaltered. The result of this addition may set the extend bit or the overflow bit.

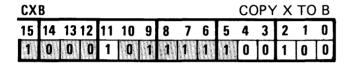
CA	X										CO	PY	Α	TO	X
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	0	0	0	1	1	1.	1	1.	0	0	0	0	1

Copies the contents of the A-register into the X-register. The contents of the A-register are unaltered.

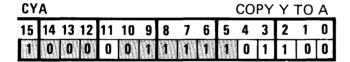
CA	Υ										CC)PY	<u> </u>	TO	·Υ
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	0	0	0	1	1	1	1	1	0	1	0	0	1

Copies the contents of the A-register into the Y-register. The contents of the A-register are unaltered.

Copies the contents of the B-register into the X-register. The contents of the B-register are unaltered.


21MXM Programming Information

CB.	Y										CC)PY	′ B	TO	Υ
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	0	1	Ó	1	1	1	1	1	0	1	0	0	1


Copies the contents of the B-register into the Y-register. The contents of the B-register are unaltered.

CX	A									(<u>co</u>	PY	X	TO	Α
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
. 19	0	0	0	0	0	1	1	1	1	1	0	0	1	0	0

Copies the contents of the X-register into the A-register. The contents of the X-register are unaltered.

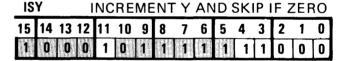
Copies the contents of the X-register into the B-register. The contents of the X-register are unaltered.

Copies the contents of the Y-register into the A-register. The contents of the Y-register are unaltered.

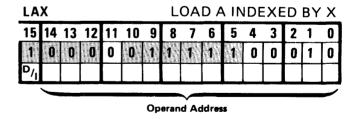
CY	В										CC)PY	<u> </u>	TO	B
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	0	1	0	1	1	1	1	1	0	1	1	0	0

Copies the contents of the Y-register into the B-register. The contents of the Y-register are unaltered.

DS	X			EC	CRE	ME	ENT	ГΧ	A۱	ND	SK	ΙP	IF Z	ZEF	₹0
					10										
1	0	0	0	1	0	1	1/2	17	1	1	1	0	0	0	1

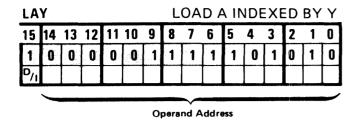

Subtracts one from the contents of the X-register. If the result of this operation is zero (X-register decremented from 000001 to 000000), the next instruction is skipped; i.e., the P-register count is advanced two counts instead of one count. If the result is not zero, the next sequential instruction is executed.

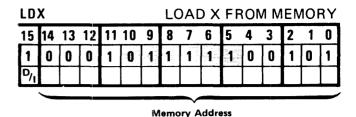
DS	Υ		D	EC	RE	ΜE	ĪΝ٦	<u> </u>	A١	1D :	SK	IP I	FZ	ZEF	0≀
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	0	1	0	1	1	1	1	1	1	1	0	0	1


Subtracts one from the contents of the Y-register. If the result of this operation is zero (Y-register decremented from 000001 to 000000), the next instruction is skipped; i.e., the P-register count is advanced two counts instead of one count. If the result is not zero, the next sequential instruction is executed.

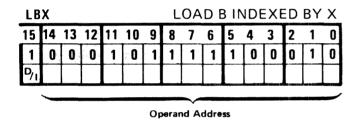
IS>	\			NC	RE	ME	ĪΝ٦	ГΧ	A١	1D S	<u> 3K</u>	IP I	IF Z	ZEF	₹O
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	0	1	0		1	1	1	1	1	0	0	0	0

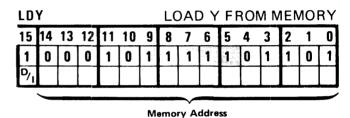
Adds one to the contents of the X-register. If the result of this operation is zero (X-register rolls over to 000000 from 177777), the next instruction is skipped; i.e., the P-register count is advanced two counts instead of one count. If the result is not zero, the next sequential instruction is executed.



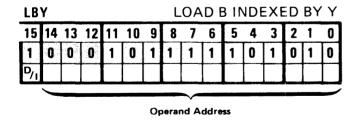

Adds one to the contents of the Y-register. If the result of this operation is zero (Y-register rolls over to 000000 from 177777), the next instruction is skipped; i.e., the P-register count is advanced two counts instead of one count. If the result is not zero, the next sequential instruction is executed.

Loads the A-register with the contents indicated by the effective address, which is computed by adding the contents of the X-register to the operand address. The effective address is loaded into the M-register; the X-register and memory contents are not altered. Indirect addressing is resolved before indexing; bit 15 of the effective address is ignored.


Programming Information 21MXM



Loads the A-register with the contents indicated by the effective address, which is computed by adding the contents of the Y-register to the operand address. The effective address is loaded into the M-register; the Y-register and memory contents are not altered. Indirect addressing is resolved before indexing; bit 15 of the effective address is ignored.


Loads the contents of the addressed memory location into the X-register. The A- and B-registers may be addressed as locations 00000 and 00001, respectively; however, if it is desired to load from the A- or B-register, copy instructions CAX or CBX should be used since they are more efficient.

Loads the B-register with the contents indicated by the effective address, which is computed by adding the contents of the X-register to the operand address. The effective address is loaded into the M-register; the X-register and memory contents are not altered. Indirect addressing is resolved before indexing; bit 15 of the effective address is ignored.

Loads the contents of the addressed memory location into the Y-register. The A- and B-registers may be addressed as locations 00000 and 00001, respectively; however, if it is desired to load from the A- or B-register, copy instructions CAY or CBY should be used since they are more efficient.

Loads the B-register with the contents indicated by the effective address, which is computed by adding the contents of the Y-register to the operand address. The effective address is loaded into the M-register; the X-register and memory contents are not altered. Indirect addressing is resolved before indexing; bit 15 of the effective address is ignored.

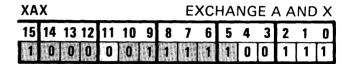
Stores the contents of the A-register into the location indicated by the effective address, which is computed by adding the contents of the X-register to the operand address. The effective address is loaded into the M-register; the A- and X-register contents are not altered. Indirect addressing is resolved before indexing; bit 15 of the effective address is ignored.

Stores the contents of the A-register into the location indicated by the effective address, which is computed by adding the contents of the Y-register to the operand address. The effective address is loaded into the M-register; the A- and Y-register contents are not altered. Indirect addressing is resolved before indexing; bit 15 of the effective address is ignored.

Operand Address

Stores the contents of the B-register into the location indicated by the effective address, which is computed by adding the contents of the X-register to the operand address. The effective address is loaded into the M-register; the B- and X_{τ} register contents are not altered. Indirect addressing is resolved before indexing; bit 15 of the effective address is ignored.

Operand Address


Stores the contents of the B-register into the location indicated by the effective address, which is computed by adding the contents of the Y-register to the operand address. The effective address is loaded into the M-register; the B- and Y-register contents are not altered. Indirect addressing is resolved before indexing; bit 15 of the effective address is ignored.

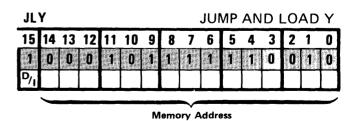
Stores the contents of the X-register into the addressed memory location. The A- and B-registers may be addressed as locations 00000 and 00001, respectively. The X-register contents are not altered.

Stores the contents of the Y-register into the addressed memory location. The A- and B-registers may be addressed as locations 00000 and 00001, respectively. The Y-register contents are not altered.

Exchanges the contents of the A- and X-registers.

XAY	Y							E)	ХC	HΑ	NG	E/	4 Δ	NE	Y
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	0	Ō	0	1	1	1	1	1	0	1	1	1	1

Exchanges the contents of the A- and Y-registers.


XBX							E	XCI	ΗАГ	٧G	E	3 A	ND	X
15 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1 0	0	0	1	0	1	1	1	1	1	0	0	1	1	1

Exchanges the contents of the B- and X-registers.

XE	3Y							Ε	ХC	HΑ	NC	BE I	3 A	ND	Y
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	0	1	0		1	1	1	1	0	1	1	1	1

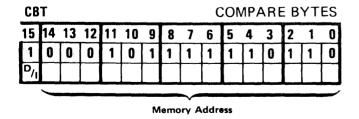
Exchanges the contents of the B- and Y-registers.

3-25. JUMP INSTRUCTIONS. The following two jump instructions involving the Y-register allow a program to either jump to or exit from a subroutine.

This instruction is designed for entering a subroutine. The instruction, executed in location P, causes computer

Programming Information 21MXM

control to jump unconditionally to the memory location specified in the memory address. Indirect addressing may be specified. The contents of the P-register plus two (return address) is loaded into the Y-register. A return to the main program sequence at P+2 may be effected by a JPY instruction (described next). A memory protect check is performed by this instruction. The effective address may not be below the fence, including the addressable A-and B-registers.


Operand Address

Transfers control to the effective address, which is computed by adding the contents of the Y-register to the operand address. Indirect addressing is not allowed. The effective address is loaded into the P-register; the Y-register contents are not altered. A memory protect check is performed by this instruction. The effective address may not be below the fence, including the addressable A- and B-registers.

3-26. BYTE MANIPULATION INSTRUCTIONS.

A byte address is defined as two times the word address plus zero or one, depending on whether the byte is in the high-order position (bits 8 through 15) or low-order position (bits 0 through 7) of the word containing it. If the byte of interest is in bit positions 8 through 15 of memory location 100, for example, then the address of that byte is 2^* 100 + 0, or 200; the address of the low-order byte in the same location is 201 (2^* 100 + 1). Because of the way byte addresses are defined, 16 bits are required to cover all possible byte addresses in a 32K-word memory configuration. Hence, for byte addressing, bit 15 does not indicate indirect addressing.

Byte addresses 000 through 003 reference bytes in the A-and B-registers. These addresses will not cause memory violations. The user should, however, be careful in referencing these byte addresses; for example, storing into byte address 002 or 003 would destroy the byte address originally contained in the B-register.

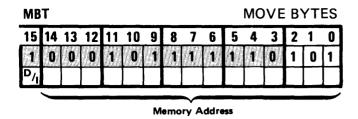
Compares the bytes in string 1 with those in string 2. This is a three-word instruction where

Word 1 = Instruction code,

Word 2 = Address of word containing the string count. and

Word 3 = All-zeros word reserved for use by microcode.

The operand addresses are in the A- and B-registers. The A-register contains the first byte address of string 1 and the B-register contains the first byte address of string 2.


The number of bytes to be compared is given in the memory location addressed by Word 2 of the instruction; the number of bytes to be compared is restricted to a positive integer greater than zero. The strings are compared one byte at a time; the ith byte in string 1 is compared with the ith byte in string 2. The comparison is performed arithmetically; i.e., each byte is treated as a positive number. If all bytes in string 1 are identical with all bytes in string 2, the "equal" exit is taken. As soon as two bytes are compared and found to be different, the "less than" or "greater than" exit is taken, depending on whether the byte in string 1 is less than or greater than the byte in string 2. The three ways this instruction exits are as follows:

- a. No skip if string 1 is equal to string 2; the P-register advances one count from Word 3 of the instruction. The A-register contains its original value incremented by the count stored in the address specified in Word 2.
- b. Skips one word if string 1 is less than string 2; the P-register advances two counts from Word 3 of the instruction. The A-register contains the address of the byte in string 1 where the comparison stopped.
- c. Skips two words if string 1 is greater than string 2; the P-register advances three counts from Word 3 of the instruction. The A-register contains the address of the byte in string 1 where the comparison stopped.

For all three exits, the B-register will contain its original value incremented by the count stored in the address specified in Word 2. This instruction is interruptible. The interrupt routine is expected to save and restore the contents of the A- and B-registers. During the interrupt, the remaining count is stored in Word 3 of the instruction.

LB	T										L	OΑ	D E	3Y7	ΓΕ
15															
1	0	0	0	1	0	1	1	1	1	1	1	0	0	1	1

This one word instruction loads into the A-register the byte whose address is contained in the B-register. The byte is right-justified with leading zeros in the left byte. The B-register is incremented by one.

Moves bytes in a left-to-right manner; i.e., the byte having the lowest address from the source is moved first. This is a three word instruction where

Word 1 = Instruction code,

Word 2 = Address of word containing the byte count, and

Word 3 = All-zeros word reserved for use by microcode.

The operand addresses are in the A- and B-registers. The A-register contains the first byte address source and the B-register contains the first byte address destination.

The number of bytes to be moved is given by a 16-bit positive integer greater than zero addressed by Word 2 of the instruction. The byte address in the A- and B-registers are incremented as each byte is being moved. Thus, at the end of the operation, the A- and B-registers are incremented by the number of bytes moved. Wraparound of the byte address would result from a carry out of bit position 15; therefore, if the destination became 000, 001, 002, or 003, the next byte would be moved into the A- or B-register and destroy the proper byte addresses for the move operation. For each byte move, a memory protect check is performed.

This instruction is interruptible. The interrupt routine is expected to save and restore the contents of the A- and B-registers. During the interrupt, the remaining count is stored in Word 3 of the instruction.

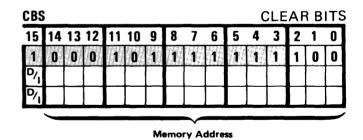
SB	T						_	-			ST	OF	RE	BY.	ΤE
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	Ó	1	0	1	1	1	1	1	1	0	1	0	0

Stores the A-register low-order (right) byte in the byte address contained in the B-register. The B-register is incremented by one. A memory protect check is performed before the byte is stored. The left byte in the A-register does not have to be zeros. The other byte in the same word of the stored byte is not altered.

SF	В									SCA	λN	FO	RE	3Y	ΓΕ
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1.	0	0	0	1	0	1	1	1	1	1	1	0	1	1	1

This is a one word instruction with the operands in the A-and B-registers. The A-register contains a termination

byte (high-order byte) and a test byte (low-order byte). The B-register contains the first byte address of the string to be scanned.

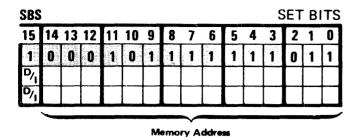

A string of bytes is scanned starting at the byte address given in the B-register. Scanning terminates when a byte in the string matches either the test byte or the termination byte in the A-register. The manner in which the instruction exits depends on which byte is matched first. If a byte in the string matches the test byte, the instruction will not skip upon exit; the B-register will contain the address of the byte matching the test byte. If a byte in the string matches the termination byte, the instruction will skip one word upon exit; the B-register will contain the address of the byte matching the termination byte plus one.

The scanning operation will not continue indefinitely even if neither the termination byte nor test byte exists in memory. These bytes are in the A-register with byte addresses 000 and 001, respectively. Thus, if no match is made by the time the B-register points to the last byte in memory, the B-register will roll over to zero and the next test will match the termination byte in the A-register with itself.

This instruction is interruptible. The interrupt routine is expected to save and restore the contents of the A- and B-registers.

3-27. BIT MANIPULATION INSTRUCTIONS.

The following three instructions allow any number of bits in a specified memory location to be cleared, set, or tested.

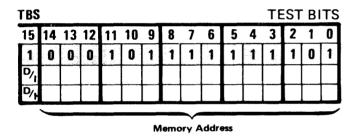

Clears bits in the addressed location. This is a three-word instruction where

Word 1 = Instruction code,

Word 2 = Address of a 16-bit mask, and

Word 3 = Address of word where bits are to be cleared.

The bits to be cleared correspond to logic 1's in the mask. The bits corresponding to logic 0's in the mask are not affected. A memory protect check is performed prior to modifying the word in memory.


Sets bits in the addressed location. This is a three-word instruction where

Word 1 = Instruction code,

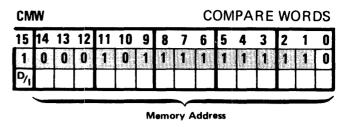
Word 2 = Address of a 16-bit mask, and

Word 3 = Address of word where bits are to be set.

The bits to be set correspond to logic 1's in the mask. The bits corresponding to logic 0's in the mask are not affected. A memory protect check is performed prior to modifying the word in memory.

Tests (compares) bits in the addressed location. This is a three-word instruction where

Word 1 = Instruction code,


Word 2 = Address of a 16-bit mask, and

Word 3 = Address of word in which bits are to be tested.

The bits in the addressed memory word corresponding to logic 1's in the mask are tested. If all the bits tested are 1's, the instruction will not skip; otherwise the instruction will skip one word (i.e., the P-register will advance two counts from Word 3 of the instruction).

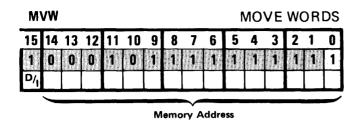
3-28. WORD MANIPULATION INSTRUCTIONS.

The following instructions facilitate the comparing and moving of word arrays.

Compares the words in array 1 with those in array 2. This is a three-word instruction where

Word 1 = Instruction code,

Word 2 = Address of word containing the word count. and


Word 3 = All-zeros word reserved for use by microcode.

The operand addresses are in the A- and B-registers. The A-register contains the first word address of array 1 and the B-register contains the first word address of array 2. Bit 15 of the addresses in the A- and B-registers are ignored; i.e., no indirect addressing allowed.

The number of words to be compared is given in the memory location addressed by Word 2 of the instruction; the number of words to be compared is restricted to a positive integer greater than zero. The arrays are compared one word at a time; the ith word in array 1 is compared with the ith word in array 2. This comparison is performed arithmetically; i.e., each word is considered a two's complement number. If all words in array 1 are equal to all words in array 2, the "equal" exit is taken. As soon as two words are compared and found to be different, the "less than" or "greater than" exit is taken, depending on whether the word in array 1 is less than or greater than the word in array 2. The three ways this instruction exits are as follows:

- a. No skip if array 1 is equal to array 2; the P-register advances one count from Word 3 of the instruction. The A-register contains its original value incremented by the word count stored in the address specified in Word 2.
- b. Skips one word if array 1 is less than array 2; the P-register advances two counts from Word 3 of the instruction. The A-register contains the address of the word in array 1 where the comparison stopped.
- c. Skips two words if array 1 is greater than array 2; the P-register advances three counts from Word 3 of the instruction. The A-register contains the address of the word in array 1 where the comparison stopped.

For all three exits, the B-register will contain its original value incremented by the word count stored in the address specified in Word 2. This instruction is interruptible. The interrupt routine is expected to save and restore the contents of the A- and B-registers. During the interrupt, the remaining count is stored in Word 3 of the instruction.

Moves words in a left-to-right manner; i.e., the word having the lowest address in the source is moved first. This is a three-word instruction where

Word 1 = Instruction code,

Word 2 = Address of word containing the count, and

Word 3 = All-zeros word reserved for use by microcode

The operand addresses are in the A- and B-registers. The A-register contains the first word address source and the B-register contains the first word address destination. The number of words to be moved is a 16-bit positive integer greater than zero addressed by Word 2 of the instruction. The word addresses in the A- and B-registers are incremented as each word is being moved. Thus, at the end of the operation, the A- and B-registers are incremented by the number of words moved.

Wraparound of the word address would result from a carry into bit position 15 (i.e., at 32767). If the destination address became 000 or 001, the next word would be moved into the A- or B-register and destroy the proper word addresses for the move operation. For each word move, a memory protect check is performed.


This instruction is interruptible. The interrupt routine is expected to save and restore the contents of the A- and B-registers. During the interrupt, the remaining count is stored in Word 3 of the instruction.

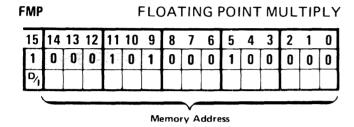
3-29. FLOATING POINT INSTRUCTIONS


The following six floating point instructions make it possible to add, subtract, multiply, and divide floating point numbers and to convert quantities from floating point format to integer format or vice versa.

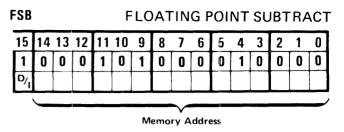
Each of the four arithmetic instructions requires two words of memory: one for the instruction code and one for the operand address. Since a full 15 bits are available for the operand address, these instructions can directly address any location in memory. As with all memory reference instructions, indirect addressing to any number of levels is permitted. A logic 0 in bit position 15 specifies direct addressing; a logic 1 specifies indirect addressing.

The execution times of the floating point instructions are specified under paragraph 3-30. These instructions are noninterruptible; any attempted interrupt is held off for the full execution time of the currently active floating point instruction. However, data transfer via the dual-channel port controller (DCPC) is not held off.

Adds the floating point quantity in the A- and B-registers to the floating point quantity in the specified memory locations. The floating point result is returned in the A- and B-registers. Overflow occurs if the result lies outside the range $[-2^{127}, (1-2^{-23}) \ 2^{127}]$. In such a case, the overflow flag is set and the result $(1-2^{-23}) \ 2^{127}$ is returned to the A- and B-registers. Underflow occurs if the result lies within the range $[-2^{-129}(1+2^{-22}), \ 2^{-129}]$. In such a case, the overflow flag is set and the result 0 is returned to the A- and B-registers.


Divides the floating point quantity in the A- and B-registers by the floating point quantity in the specified memory locations. The floating point quantity is returned to the A- and B-registers. Overflow and underflow are as described for the FAD instruction.

FIX					FL	OΑ	TI	NG	РО	IN.	ТΤ	0 1	NT	EG	ΕF	₹
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
1	0	0	0	1	0	1	0	0	1	0	0	0	0	0	0	


Converts the floating point quantity in the A- and B-registers to integer format. The integer result is returned to the A-register. If the magnitude of the floating point number is <1, regardless of sign, the integer 0 is returned. If the magnitude of the exponent of the floating point number is $\ge 2^{16}$, regardless of sign, the integer 32767 (077777 octal) is returned and the overflow flag is set.

FLT	•				IN	TE	GΕ	R T	О	FL() AC	TIN	1G	PO	ΙNΊ	
					10											
1	0	0	0	1	0	1	0	0	1	0	1	0	0	0	0	ı

Converts the integer quantity in the A-register to floating point format. The floating point result is returned to the A- and B-registers.

Multiplies the floating point quantity in the A- and B-registers by the floating point quantity in the specified memory locations. The floating point result is returned to the A- and B-registers. Overflow and underflow are as described for the FAD instruction.

Subtracts the floating point quantity in the specified memory locations from the floating point quantity in the A- and B-registers. The floating point result is returned to the A- and B-registers. Overflow and underflow are as described for the FAD instruction.

Table 3-5 lists the execution times required for the various base set instructions.

er er et allmale, dit flyde och valle

Table 3-5. Typical Base Set Instruction Execution Times

Memory Reference Group ^{1,2} ADA/B, AND, IOR, LDA/B,			TIME (μS)
ADA/B, AND, IOR, LDA/B,		Extended Instruction Group	
XOR	1.94	CAX, CBX, CAY, CBY CXA, CXB, CYA, CYB	2.275
STA/B CPA/B (no skip)	2.27 2.27		2.250
(skip)	2.59	XAX, XBX, XAY, XBY ISX, ISY, DSX, DSY	3.250
ISZ (no skip)	2.59	LDX, LDY	
(skip)	2.92	(direct address) (indirect address)	4.875 4.875 ^a
JMP	1.94	STX, STY	
JSB	2.27	(direct address)	5.20
Shift/Rotate Group ³	2.59 – 2.92	(indirect address)	5.20 ^a
Alter/Skip Group ³		LAX, LBX, LAY, LBY (direct address)	4.875
No skip, no increment	2.59	(indirect address)	5.525 ^a
No skip, increment A/B Skip, no increment	2.92 2.59	SAX, SBX, SAY, SBY	
Skip, increment A/B	2.92	(direct address) (indirect address)	5.20 5.85 ^a
Input/Output Group ⁴	2.59 - 3.89	ADX, ADY	5.05
Extended Arithmetic Group ⁵		(direct address)	4.875 4.875 ^a
ASL, ASR, LSL, LSR,	3.57 - 8.43	(indirect address)	
RRL, RRR		JLY (direct address) (indirect address)	5.525 5.525 ^a
DLD	4.54	JPY	4.55
DST	4.86		
MPY	12.32 - 13.30	LBT	4.875 avg
DIV	15.92 - 18.20	SBT	6.01 avg
Floating Point Group		MBT	8.775 ^{a,b,g}
FAD	21.78 - 53.95	MVW	7.8 ^{a,c,g}
FDV	41.2 - 75.72	CBT	8.775 ^{a,d,g}
FIX	6.50 - 12.02	CMW	7.8 ^{a,e,g}
FLT	10.72 - 34.42	SFB (for test byte match) (for term. byte match)	3.575 ^{f,g} 2.275 ^{f,g}
FMP	48.10 - 56.88	CBS, SBS	7.8 ^a
FSB	22.75 - 57.20	TBS	8.125 ^a

 $^{^{1}}$ Memory refresh consumes 0.65 μ S maximum no more often than every 30 μ S.

- a. Add 1.3 μ S for each indirect address level.
- b. Add 7.31 μ S for each byte moved or compared.
- c. Add 3.25 μ S for each word moved or compared.
- d. Add 8.125 μ S for each byte moved or compared.
- e. Add 3.575 μ S for each word moved or compared.
- f. Add 4.875 μ S for each byte moved or compared.
- g. Add 7.15 μ S for each interrupt of the instruction.

 $^{^2}$ Add 1.3 μ S for each indirect address level.

 $^{^3}$ NOP or RSS requires 2.92 μS whereas a JMP *+1 or JMP *+2 requires only 1.94 $\mu\text{S}.$

⁴ Depends on which I/O time period (T2, 3, 4, 5, 6) the instruction begins.

⁵ Depends on number of shifts specified (1 to 16).

The basic addressing space of the HP 21MX M-Series computer is 32,768 words, which is referred to as logical memory. The amount of MOS memory actually installed in the computer system is referred to as physical memory. An HP 21MX M-Series computer with the optional Dynamic Mapping System (DMS) has an addressing capability for one million words of physical memory. The DMS allows logical memory to be mapped into physical memory through the use of four dynamically alterable memory maps.

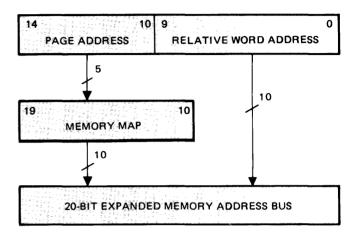


Figure 4-2. Expanded Memory Addressing Scheme

4-1. MEMORY ADDRESSING

The basic memory addressing scheme provides for addressing 32 pages of logical memory, each of which consists of 1,024 words. This memory is addressed through a 15-bit memory address bus shown in figure 4-1. The upper 5 bits of this bus provide the page address and the lower 10 bits provide the relative word address within the page.

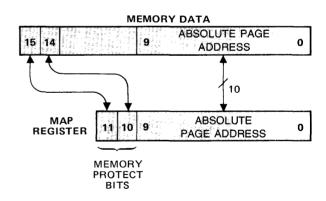

14 10 9 0 PAGE ADDRESS RELATIVE WORD ADDRESS 5 10 10

Figure 4-1. Basic Memory Addressing Scheme

The Memory Expansion Module (MEM), which is part of the DMS option, converts the 5-bit page address into a 10-bit page address and thereby allows 1,024 (210) pages to be addressed. This conversion is accomplished by allowing the original 5-bit address to identify one of the 32 12-bit registers within a "memory map." Each of these map registers contains the new user-specified 10-bit page address. This new page address is combined with the original 10-bit relative address to form a 20-bit memory address bus as shown in figure 4-2.

4-2. MAP REGISTER LOADING

Conversion of the basic 16-bit word data format to and from the map register 12-bit word data format is shown in figure 4-3. Bits 13 through 10 of the basic data format are not used by the memory map registers. Read and write memory protect violations are discussed in paragraph 4-3.

BIT 11 SET= READ PROTECTED PAGE BIT 10 SET= WRITE PROTECTED PAGE

Figure 4-3. Basic Word Format Vs Map Register Format

4-3. STATUS AND VIOLATION REGISTERS

The MEM also includes a status register and a violation register. As shown in table 4-1, the MEM status register

Dynamic Mapping System 21MXM

contents enable the programmer to determine whether the MEM was enabled or disabled at the time of the last interrupt and the address of the base page fence. The MEM violation register contents enable the programmer to determine whether a fault occurred in the hardware or the software so that the proper corrective steps may be taken. Refer to table 4-2.

Table 4-1. MEM Status Register Format

ВІТ	SIGNIFICANCE
15	0 = MEM disabled at last interrupt 1 = MEM enabled at last interrupt
14	0 = System map selected at last interrupt1 = User map selected at last interrupt
13	0 = MEM disabled currently1 = MEM enabled currently
12	0 = System map selected currently1 = User map selected currently
11	0 = Protected mode disabled currently1 = Protected mode enabled currently
10	Portion mapped*
9	Base page fence bit 9
8	Base page fence bit 8
7	Base page fence bit 7
6	Base page fence bit 6
5	Base page fence bit 5
4	Base page fence bit 4
3	Base page fence bit 3
2	Base page fence bit 2
1	Base page fence bit 1
0	Base page fence bit 0
*Bit 10	Mapped Address (M)
	0 Fence ≤ M < 2000 ₈ 1 1 < M < Fence

Note: The base page fence separates the reserved (mapped) memory from the shared (unmapped) memory. Bit 10 specifies which area is reserved (mapped). (Refer to LFA and LFB instructions contained in paragraph 4-6.)

Table 4-2. MEM Violation Register Format

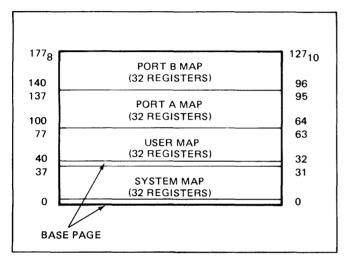
ВІТ	SIGNIFICANCE
15	Read violation*
14	Write violation*
13	Base page violation*
12	Privileged instruction violation*
11	Reserved
10	Reserved
9	Reserved
8	Reserved
7	0 = ME bus disabled at violation 1 = ME bus enabled at violation
6	0 = MEM disabled at violation 1 = MEM enabled at violation
5	0 = System map enabled at violation 1 = User map enabled at violation
4	Map address bit 4
3	Map address bit 3
2	Map address bit 2
1	Map address bit 1
0	Map address bit 0
*Signific	ant when associated bit is set.

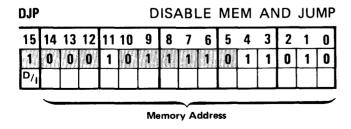
Any attempt to read from a read-protected page will result in a read violation and the memory read will not occur. Any attempt to write into a write-protected page will result in a write violation and the memory will not be altered. In addition, if a page is write protected, a jump or jump indirect instruction to that page will cause a write violation and the jump will not occur. It should be noted that all violation rules are ignored for DCPC signals.

If a read or write violation occurs, the MEM signals the memory protect logic that a violation has occurred which causes the memory protect logic to generate an interrupt. As discussed in paragraph 6-3, memory violations are interrupted to select code 05 and a DMS violation can be distinguished from a memory protect violation by executing an SFS 05 instruction. If the skip occurs, DMS is in violation; if no skip occurs, memory protect is in violation.

一: 一一点点:"以下的物质的主要。"

All registers within the memory map are dynamically alterable. To maximize the system performance capability, the MEM includes four separate memory maps: the User Map, System Map, and two Dual-Channel Port Controller (DCPC) Maps. (See figure 4-4.) These maps, which are manipulated through the use of 38 machine-language instructions, are addressed as a contiguous register block. It should be noted that the base page fence applies to both the System Map and the User Map.




Figure 4-4. Map Segmentation

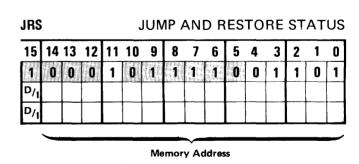
THE ROYS OF STARL COMPACTEMENTS

A power failure automatically enables the System Map, and a minimum of 500 microseconds is assured the programmer for executing a power fail routine. Since all maps are disabled and none are considered valid upon the restoration of power, the power fail routine should include instructions to save as many maps as desired.

PAGE PARTEDUCTION CODING


Machine language coding and definitions of the 38 Dynamic Mapping System instructions are provided on this and following pages. A sample map load and enable routine is given in paragraph 4-8.

Disables the translation and protection features of the MEM hardware. Prior to disabling, the P-register is set to the effective memory address. As a result of executing this


instruction, normal I/O interrupts are held off until the first opportunity following the fetch of the next instruction, unless three or more levels of indirect addressing are used.

This instruction will normally generate an MEM violation when executed in the protected mode. In this case, the status of the MEM is not affected and the jump will not occur; however, if the System map is enabled, the instruction is allowed.

Disables the translation and protection features of the MEM hardware. Prior to disabling, the P-register is set one count past the effective memory address (m+1) and the return address is stored in location m. As a result of executing this instruction, normal I/O interrupts are held off until the first opportunity following the fetch of the next instruction, unless three or more levels of indirect addressing are used.

This instruction will normally generate an MEM violation when executed in the protected mode. In this case, the status of the MEM is not affected and the jump will not occur; however, if the System map is enabled, the instruction is allowed.

Causes the status of the MEM to be restored. This is a three-word instruction where

Word 1 = Instruction code,

Word 2 = Status word address, and

Word 3 = Jump address.

Dynamic Mapping System 21MXM

Only bits 15 and 14 of the status word are used; the remaining bits (13-0) of the status word are ignored. Bits 15 and 14 restore the MEM status as follows:

Bit 15 = 0 = MEM will be disabled = 1 = MEM will be enabled Bit 14 = 0 = System map will be selected = 1 = User map will be selected

As a result of executing this instruction, normal I/O interrupts are held off until after the fetch of the next instruction, unless a total of three or more levels of indirect addressing are used in Word 2 (status word address) and Word 3 (jump address). For example, if Word 2 contains one level of indirect addressing and Word 3 contains two levels of indirect addressing, interrupts will not be held off past the fetch of the next instruction.

This instruction will normally generate an MEM violation when executed in the protected mode. In this case, the status of the MEM is not affected and the jump will not occur; however, if the System map is enabled, the instruction is allowed.

LFA LOAD FENCE FROM A

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	0	0	0	1	1	1	1	0	1	0	1	1	1

Loads the contents of the A-register into the base page fence register. Bits 9-0 of the A-register specify the address in page zero where shared (unmapped) memory is separated from reserved (mapped) memory. Bit 10 is used as follows to specify which portion is mapped:

Bit 10	Mapped Address (M)
0	Fence \leq M $<$ 2000 ₈
1	1 < M < Fence

This instruction will normally generate an MEM violation when executed in the protected mode; however, it is allowed if the System map is enabled. When an MEM violation does occur, the fence is not altered.

LOAD FENCE FROM B

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	0	1	0	1	1	1	1	0	1	0	1	1	1

Loads the contents of the B-register into the base page fence register. Bits 9-0 of the B-register specify the address in page zero where shared (unmapped) memory is separated from reserved (mapped) memory. Bit 10 is used as follows to specify which portion is mapped:

Bit 10	Mapped Address (M)
0	Fence \leq M $<$ 2000 ₈
1	1 $<$ M $<$ Fence

This instruction will normally generate an MEM violation when executed in the protected mode; however, it is allowed if the System map is enabled. When an MEM violation does occur, the fence is not altered.

MBF MOVE BYTES FROM ALTERNATE MAP

1	5	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		0	0	0	1	0	1	1	1	1	0	0	0	0	1	1

Moves a string of bytes using the alternate program map for source reads and the currently enabled map for destination writes. The A-register contains the source byte address and the B-register contains the destination byte address. The initial byte addresses in the A- and B-registers must be even byte addresses. The byte in bits 15 through 8 of a word is the even byte. The X-register contains the octal number of bytes to be moved. The number of bytes to be moved is restricted to a positive integer greater than zero. If the contents of the X-register is zero, the instruction will be a NOP. If the contents of the X-register is a negative integer, a large indeterminate block of memory will be transferred. Both the source and destination must begin on word boundaries.

The instruction is interruptible on an even number of byte transfers, thus maintaining the even word boundaries in the A- and B-registers. The interrupt routine is expected to save and restore the current contents of the A-, B-, and X-registers to allow continuation of the instruction at the next entry. When the byte string move is completed, the X-register will always be zero and the A- and B-registers will contain their original value incremented by the number of bytes moved.

This instruction can cause an MEM violation only if read or write protection rules are violated.

МВ	I						11)T() A	LT				SYT E M		
						9										
1	0	0	0	1	0	-1	1	1		0	0	0	0	1	0	

Moves a string of bytes using the currently enabled map for source reads and the alternate program map for destination writes. The A-register contains the source byte address and the B-register contains the destination byte address. The initial byte addresses in the A- and B-registers must be even byte addresses. The byte in bits 15 through 8 of a word is the even byte. The X-register contains the octal number of bytes to be moved. The number of bytes to be moved is restricted to a positive integer greater than zero. If the contents of the X-register is zero, the instruction will be a NOP. If the contents of the X-register is a negative integer, a large indeterminate block of memory will be transferred. Both the source and destination must begin on word boundaries.

The instruction is interruptible on an even number of byte transfers, thus maintaining the even word boundaries in the A- and B-registers. The interrupt routine is expected to save and restore the current contents of the A-, B-, and X-registers to allow continuation of the instruction at the next entry. When the byte string move is completed, the X-register will always be zero and the A- and B-registers will contain their original value incremented by the number of bytes moved.

This instruction will always cause an MEM violation when executed in the protected mode and no bytes will be transferred.

MB	N					W	ΊT	ни	V A	LT					IAP
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	0	1	0	1	1	(1	1	0	0	0	1.	0	0

Moves a string of bytes with both the source and destination addresses established through the alternate program map. The A-register contains the source byte address and the B-register contains the destination byte address. The initial byte addresses in the A- and B-registers must be even byte addresses. The byte in bits 15 through 8 of a word is the even byte. The X-register contains the octal number of bytes to be moved. The number of bytes to be moved is restricted to a positive integer greater than zero. If the contents of the X-register is zero, the instruction will be a NOP. If the contents of the X-register is a negative integer, a large indeterminate block of memory will be transferred. Both the source and destination must begin on word boundaries.

The instruction is interruptible on an even number of byte transfers, thus maintaining the even word boundaries in the A- and B-registers. The interrupt routine is expected to save and restore the current contents of the A-, B-, and X-registers to allow continuation of the instruction at the next entry. When the byte string move is completed, the X-register will always be zero and the A- and B-registers will contain their original value incremented by the number of bytes moved.

This instruction will always cause an MEM violation when executed in the protected mode and no bytes will be transferred.

MW	F						FF	ROM	1 4					•	RDS IAP
								7							
1	0	0	0	Mark State	0	1	1	1	1	0	0	0	1)	0

Moves a string of words using the alternate program map for source reads and the currently enabled map for destination writes. The A-register contains the source address and the B-register contains the destination address. The X-register contains the octal number of words to be moved. The number of words to be moved is restricted to a positive integer greater than zero. If the contents of the X-register is zero, the instruction will be a NOP. If the contents of the X-register is a negative integer, a large indeterminate block of memory will be transferred.

The instruction is interruptible. The interrupt routine is expected to save and restore the current contents of the A-, B-, and X-registers to allow continuation of the instruction at the next entry. When the word string move is completed, the X-register will always be zero and the A- and B-registers will contain their original value incremented by the number of words moved.

This instruction can cause an MEM violation only if read and write protection rules are violated.

MW	ŀ						IN	ITC) A	ا LT،	• • •		• •	OR M	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
100	0	0	0	1	0	1	1	1	1	0	0	0	1	0	1

Moves a string of words using the currently enabled map for source reads and the alternate program map for destination writes. The A-register contains the source address and the B-register contains the destination address. The X-register contains the octal number of words to be moved. The number of words to be moved is restricted to a positive integer greater than zero. If the contents of the X-register is zero, the instruction will be a NOP. If the contents of the X-register is a negative integer, a large indeterminate block of memory will be transferred.

The instruction is interruptible. The interrupt routine is expected to save and restore the current contents of the A-, B-, and X-registers to allow continuation of the instruction at the next entry. When the word string move is completed, the X-register will always be zero and the A- and B-registers will contain their original value incremented by the number of words moved.

This instruction will always cause an MEM violation when executed in the protected mode and no words will be transferred.

MW	W				W	/IΤ	нп	V A		••••		W ATE	•	-
15	14	13	12	11 10	9	8	7	6	5	4	3	2	1	0
1	0	0	0	1 0	1.	1	1	1	0	0	0	1	1	1

Moves a string of words with both the source and destination addresses established through the alternate program map. The A-register contains the source address and the B-register contains the destination address. The X-register contains the octal number of words to be moved. The number of words to be moved is restricted to a positive

Dynamic Mapping System 21MXM

integer greater than zero. If the contents of the X-register is zero, the instruction will be a NOP. If the contents of the X-register is a negative integer, a large indeterminate block of memory will be transferred.

The instruction is interruptible. The interrupt routine is expected to save and restore the current contents of the A-, B-, and X-registers to allow continuation of the instruction at the next entry. When the word string move is completed, the X-register will always be zero and the A- and B-registers will contain their original value incremented by the number of words moved.

This instruction will always cause an MEM violation when executed in the protected mode and no words will be transferred.

PAA	1		L	UΑ	D/	SIC)R	E P	OF	H	ΑI	MA	PF	'E F	A
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	0	0	0	1	1	1	1	0	0	1	0	1	0

Transfers the 32 Port A map registers to or from memory. If bit 15 of the A-register is clear, the Port A map is *loaded* from memory starting from the address specified in bits 14-0 of the A-register. If bit 15 of the A-register is set, the Port A map is *stored* into memory starting at the address specified in bits 14-0 of the A-register. When the load/store operation is complete, the A-register will be incremented by 32 to allow multiple map instructions.

An attempt to load any map register when in the protected mode will cause an MEM violation. An attempt to store the Port A map is allowed within the constraints of write protected memory.

PA	3		L	OA	.D/:	STO)R	E F	OF	₹T	ΑI	MΑ	P	PEF	} B	
						9			-					1	0	l
1	0	0	0	1	0	1	1	1	1	0	0	1	0	1	0	

Transfers the 32 Port A map registers to or from memory. If bit 15 of the B-register is clear, the Port A map is *loaded* from memory starting from the address specified in bits 14-0 of the B-register. If bit 15 of the B-register is set, the Port A map is *stored* into memory starting at the address specified in bits 14-0 of the B-register. When the load/store operation is complete, the B-register will be incremented by 32 to allow multiple map instructions.

An attempt to load any map register when in the protected mode will cause an MEM violation. An attempt to store the Port A map is allowed within the constraints of write protected memory.

PBA	1		L	OA	ND/	STO	DRI	E F	'OF	₹T	ВΙ	MΑ	PP	ER	Α
15															
1	0	0	0	0	0	1	1	1	1	0	0	1	0	1	1

Transfers the 32 Port B map registers to or from memory. If bit 15 of the A-register is clear, the Port B map is *loaded* from memory starting from the address specified in bits 14-0 of the A-register. If bit 15 of the A-register is set, the Port B map is *stored* into memory starting at the address specified in bits 14-0 of the A-register. When the load/store operation is complete, the A-register will be incremented by 32 to allow multiple map instructions.

An attempt to load any map register when in the protected mode will cause an MEM violation. An attempt to store the Port B map is allowed within the constraints of write protected memory.

PBB	}		L	O.A	\D/	ST	OR	E	POF	RТ	В	MΑ	P	PEF	R B
			12												
1	0	0	0	1	0	1	1	1	1	0	0	1	0	1	1

Transfers the 32 Port B map registers to or from memory. If bit 15 of the B-register is clear, the Port B map is *loaded* from memory starting from the address specified in bits 14-0 of the B-register. If bit 15 of the B-register is set, the Port B map is *stored* into memory starting at the address specified in bit 14-0 of the B-register. When the load/store operation is complete, the B-register will be incremented by 32 to allow multiple map instructions.

An attempt to load any map register when in the protected mode will cause an MEM violation. An attempt to store the Port B map is allowed within the constraints of the write protected memory.

RS	A			R	EΑ	D	STA	٩T	US	RE	EGI	ST	ER	IN	ITO	Α
					2		9							l .		
1	Ι	0	0	0	0	0	1	1	1	1	0	1	1	0	0	0

Reads the contents of the MEM status register into the A-register. This instruction can be executed at any time. The format of the MEM status register is given in table 4-1.

RSB	}		F	REA	٩D	ST	ΑT	US	RI	EG	IST	ER	١N	ITC) B	
						9										
1	0	0	0	1	0	1	1	1	1	0	1	1	0	0	0	

Reads the contents of the MEM status register into the B-register. This instruction can be executed at any time. The format of the MEM status register is given in table 4-1.

RVA READ VIOLATION REGISTER INTO A

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
100	0	0	0	0	0	-	1	1	1	0	1	1	0	0	1

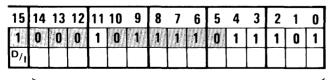
Reads the contents of the MEM violation register into the A-register. This instruction can be executed at any time. The format of the MEM violation register is given in table 4-2.

RVB READ VIOLATION REGISTER INTO B

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	0	1	0	1	1	1	1	0	1	1	0	0	1

Reads the contents of the MEM violation register into the B-register. This instruction can be executed at any time. The format of the MEM violation register is given in table 4-2.

SJP ENABLE SYSTEM MAP AND JUMP


15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	0	1	0	1	1	1	1	0	1	1	1	0	0
$D_{/1}$															

Memory Address

Causes the MEM hardware to use the set of 32 map registers, referred to as the System map, for translating all programmed memory references. Prior to enabling the System map, the P-register is set to the effective memory address. As a result of executing this instruction, normal I/O interrupts are held off until the first opportunity following the fetch of the next instruction, unless three or more levels of indirect addressing are used.

This instruction will normally generate an MEM violation when executed in the protected mode. In this case, the status of the MEM is not affected and the jump will not occur; however, if the System map is enabled, the instruction is allowed and effectively executes a JMP *+1,I.

ENABLE SYSTEM MAP
SJS AND JUMP TO SUBROUTINE

Memory Address

Causes the MEM hardware to use the set of 32 map registers, referred to as the System map, for translating all

programmed memory references. Prior to enabling the System map, the P-register is set one count past the effective memory address (m $+\,1$). After enabling the System map, the refurn address is stored in m. As a result of executing this instruction, normal I/O interrupts are held off until the first opportunity following the fetch of the next instruction, unless three or more levels of indirect addressing are used.

This instruction will normally generate an MEM violation when executed in the protected mode. In this case, the status of the MEM is not affected and the jump will not occur; however, if the system map is enabled, the instruction is allowed and effectively executes a JSB *+1.I.

STORE STATUS SSM REGISTER INTO MEMORY

Memory Address

Stores the 16-bit contents of the MEM status register into the address memory location. The status register contents are not altered. This instruction is used in conjunction with the JRS instruction to allow easy processing of interrupts, which always select the System map (if the MEM is enabled). The format of the MEM status register is listed in table 4-1.

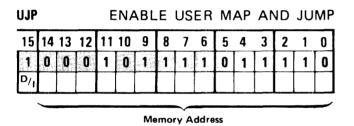
This instruction can cause an MEM violation only if write protection rules are violated.

SYA LOAD/STORE SYSTEM MAP PER A

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	0	0	0	1	1	1	1	0	0	1	0	0	0

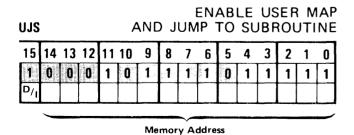
Transfers the 32 System map registers to or from memory. If bit 15 of the A-register is clear, the System map is loaded from memory starting from the address specified in bits 14-0 of the A-register. If bit 15 of the A-register is set, the System map is stored into memory starting at the address specified in bits 14-0 of the A-register. When the load/store operation is complete, the A-register will be incremented by 32 to allow multiple map instructions.

Note: If not in the protected mode, the MEM provides no protection against altering the contents of maps while they are currently enabled.


An attempt to load any map in the protected mode will cause an MEM violation. An attempt to store the System map is allowed within the constraints of write protected memory.

SYB	}		L	OA	D/9	STC	R	E S	YS	TE	ΜI	MΑ	P	PEF	≀ B
					10									1	0
4	0	0	0	1	0	1	1	1	1	0	0	1	0	0	0

Transfers the 32 System map registers to or from memory. If bit 15 of the B-register is clear, the System map is loaded from memory starting from the address specified in bits 14-0 of the B-register. If bit 15 of the B-register is set, the System map is stored into memory starting at the address specified in bits 14-0 of the B-register. When the load/store operation is complete, the B-register will be incremented by 32 to allow multiple map instructions.


Note: If not in the protected mode, the MEM provides no protection against altering the contents of maps while they are currently enabled.

An attempt to load any map in the protected mode will cause an MEM violation. An attempt to store the System map is allowed within the constraints of write protected memory.

Causes the MEM hardware to use the set of 32 map registers, referred to as the User map, for translating all programmed memory references. Prior to enabling the User map, the P-register is set to the effective memory address. As a result of executing this instruction, normal I/O interrupts are held off until the first opportunity following the fetch of the next instruction, unless three or more levels of indirect addressing are used.

This instruction will normally generate an MEM violation when executed in the protected mode. In this case, the status of the MEM is not affected and the jump will not occur; however, if the System map is enabled, the instruction is allowed.

Causes the MEM hardware to use the set of 32 map registers, referred to as the User map, for translating all pro-

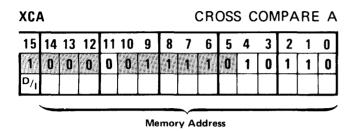
grammed memory references. Prior to enabling the User map, the P-register is set one count past the effective memory address (m+1). After enabling the System map, the return address is stored in m. As a result of executing this instruction, normal I/O interrupts are held off until the first opportunity following the fetch of the next instruction, unless three or more levels of indirect addressing are used.

This instruction will normally generate an MEM violation when executed in the protected mode. In this case, the status of the MEM is not affected and the jump will not occur; however, if the System map is enabled, the instruction is allowed.

USA	4			L	OAI	D/S	TO	RE	U	SEI	? I	ΜA	PF	ER	Α	•
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
1	0	0	0	0	0	1	1	1	1	0	0	1	0	0	1	l

Transfers the 32 User map registers to or from memory. If bit 15 of the A-register is clear, the User map is *loaded* from memory starting from the address specified in bits 14-0 of the A-register. If bit 15 of the A-register is set, the User map is *stored* into memory starting at the address specified in bits 14-0 of the A-register. When the load/store operation is complete, the A-register will be incremented by 32 to allow multiple map instructions.

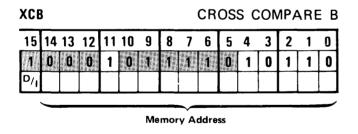
Note: If not in the protected mode, the MEM provides no protection against altering the contents of maps while they are currently enabled.


An attempt to load any map in the protected mode will cause an MEM violation. An attempt to store the User map is allowed within the constraints of write protected memory.

USB	}			L	OA	D/S	STC	DRI	Eι	JSE	R	MΑ	P	PEF	≀ B
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	0	1	0	1	a de la constante de la consta	1	4	0	0	1	0	0	1

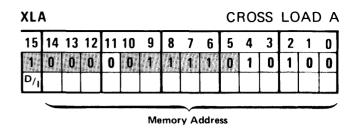
Transfer the 32 User map registers to or from memory. If bit 15 of the B-register is clear, the User map is *loaded* from memory starting from the address specified in bits 14-0 of the B-register. If bit 15 of the B-register is set, the User map is *stored* into memory starting at the address specified in bits 14-0 of the B-register. When the load/store operation is complete, the B-register will be incremented by 32 to allow multiple map instructions.

Note: If not in the protected mode, the MEM provides no protection against altering the contents of maps while they are currently enabled.


Any attempt to load any map in the protected mode will cause an MEM violation. An attempt to store the User map is allowed within the constraints of write protected memory.

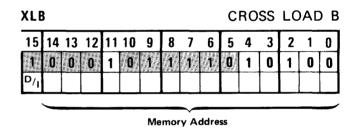
Compares the contents of the A-register with the contents of the addressed memory location. If the two 16-bit words are not identical, the next instruction is skipped; i.e., the P-register advances three counts instead of two counts. If the two words are identical, the next instruction is executed. Neither the A-register contents nor memory cell contents are altered.

This instruction uses the alternate program map to determine the addressed memory location. If the MEM is currently disabled, then a compare directly with physical memory occurs.


This instruction will cause an MEM violation only if read protection rules are violated.

Compares the contents of the B-register with the contents of the addressed memory location. If the two 16-bit words are not identical, the next instruction is skipped; i.e., the P-register advances three counts instead of two counts. If the two words are identical, the next instruction is executed. Neither the B-register contents nor memory cell contents are altered.

This instruction uses the alternate program map to determine the addressed memory location. If the MEM is currently disabled, then a compare directly with physical memory occurs.


This instruction will cause an MEM violation only if read protection rules are violated.

Loads the contents of the specified memory address into the A-register. The contents of the memory cell are not altered.

This instruction uses the alternate program map to fetch the operand. If the MEM is currently disabled, then a load directly from physical memory occurs.

This instruction will cause an MEM violation only if read protection rules are violated.

Loads the contents of the specified memory address into the B-register. The contents of the memory cell are not altered.

This instruction uses the alternate program map to fetch the operand. If the MEM is currently disabled, then a load directly from physical memory occurs.

This instruction will cause an MEM violation only if read protection rules are violated.

ΧM	Ą						U	T ITN	FRA ERN					
15	14 13	12	11	10	9	8	7	6	5	4	3	2	1	0
1/	0 0	0	0	0	1	1	1	1	0	1	0	0	1	0

Transfers a copy of the entire contents (32 map registers) of the System map or the User map to the Port A map or

Dynamic Mapping System 21MXM

the Port B map as determined by the control word in the A-register:

Bit*	Significance
15	0 = System Map 1 = User Map
0	0 = Port A Map 1 = Port B Map

^{*}Bits 14-1 are ignored.

This instruction will always generate an MEM violation when executed in the protected mode.

XMB						11	•				• • •	PER	
15 14 13		L										1	0
1 0 0	0	1	0	1	1	1	1	0	1	0	0	1	0

Transfers a copy of the entire contents (32 map registers) of the System map or the User map to the Port A map or the Port B map as determined by the control word in the B-register:

Bit*	Significance
15	0 = System Map 1 = User Map
0	0 = Port A Map 1 = Port B Map

*Bits 14-1 are ignored.

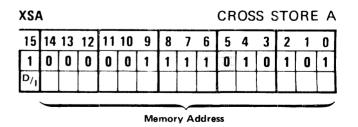
This instruction will always generate an MEM violation when executed in the protected mode.

XM	M			T	R/	NS	FE	R	MΑ	PS	01	R N	1EN	MO	RY
						9				ė.			L		0
1	0	0	0	1	0	1	1	1	1	0	1	0	0	0	0

Transfers a number of words either from sequential memory locations to sequential map registers or vice versa. The A-register points to the first map register (0 to 177_8) to be accessed and the B-register points to the first word of a group of words (table) in sequential memory locations. The X-register indicates the number of maps (0 to 128_{10}) to be transferred. If the content of the X-register is a positive integer, words are moved from memory to map registers; if the content is a negative integer, words are moved from map registers to memory.

Map registers are addressed as a contiguous space and a wraparound count from 177_8 to 0_8 can and will occur. It is the programmer's responsibility to avoid this error; and also to limit the X-register to 128.

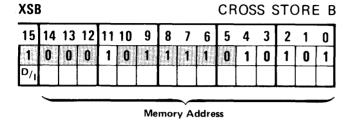
The contents of the maps are transferred in blocks of 16 registers or less. This instruction is interruptible only after each block has been completely transferred.


An attempt to load any map register in the protected mode will generate an MEM violation. An attempt to store map registers is allowed within the constraints of write protected memory.

XMS TRANSFER MAPS SEQUENTIALLY 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 0 0 0 1 0 1 1 1 1 0 1 0 0 0 1

Transfers a number of words to sequential map registers. The A-register points to the first register (0 to 177₈) to be accessed, the B-register contains the base quantity, and the X-register indicates the number of maps (0 to 128₁₀) to be loaded. If the contents of the X-register is a positive integer, the contents of the B-register will be used as the base quantity to be loaded into the first map register. The second register will be loaded with the base quantity plus one, the third register will be loaded with the base quantity plus two, and so forth up to the number of map registers specified in the X-register. If the content of the X-register is less than or equal to zero, an effective NOP will occur, leaving the contents of the A-, B-, and X-registers unaltered. The X-register must not specify a number greater than 128.

This instruction is interruptible after each group of 16 registers has been transferred. The A-, B-, and X-registers are then reset to allow reentry at a later time. The X-register will always be zero at the completion of the instruction and the A- and B-registers will be advanced by the number of registers moved.


An attempt to load any map register in the protected mode will generate an MEM violation.

Stores the contents of the A-register into the addressed memory location. The previous contents of the memory cell are lost; the A-register contents are not altered.

This instruction uses the alternate program map for the write operation. If the MEM is currently disabled, then a store directly into physical memory occurs.

This instruction will always cause an MEM violation when executed in the protected mode.

Stores the contents of the B-register into the addressed memory location. The previous contents of the memory cell are lost; the B-register contents are not altered.

This instruction uses the alternate program map for the write operation. If the MEM is currently disabled, then a store directly into physical memory occurs.

This instruction will always cause an MEM violation when executed in the protected mode.

Table 4-3 lists the execution times required for the various DMS instructions.

Table 4-4 provides a sample DMS map load and enable routine. This routine begins by loading 32 registers for the System map and 32 registers for the User map and continues by setting the Port A map to the area for User number one. The Port B map is then set to point into a new area where a third User's program would be loaded. Next, the Base Page Fence is set so that the System Fence value is used. Finally, the mapping functions of the DMS are enabled and program control is transferred to the System area beginning at address 1000_8 .

The state of the s

The following paragraphs further define the terms "alternate map" and "protected mode" and contain definitive discussions for MEM violations and DCPC operation in a DMS environment.

4-10. ALTERNATE MAP

If the system map is currently enabled, the user map is the alternate map. If the user map is currently enabled, the system map is the alternate map. The DCPC maps are never the alternate maps.

4-11. PROTECTED MODE

If the DMS and memory protect are enabled, the computer is in the protected mode. DMS will operate in the unprotected mode (DMS enabled, memory protect disabled), but none of the DMS safeguards will be operative.

4-12. MEM VIOLATIONS

The MEM violations are designed to safeguard DMS. The four types of violations are read protect, write protect, base page, and privileged instruction. Throughout the following paragraphs, references to logical memory refers to the memory address before mapping and references to physical memory refers to the memory address after mapping.

If the computer is in the protected mode and bit 11, the read protect bit, of a system or user map register equals 1, any attempt by the system or user to read from the associated memory page causes a read protect violation and the read does not occur. If the computer is in the unprotected mode, the read occurs. In either case, bit 15 of the MEM violation register will be set to 1. For example, suppose the computer is in the protected mode and the system or user map register 3 contains 4043₈. Any attempt by the system or user to read from page 43₈ using map register 3 (i.e., read from physical addresses in the 106000_8 to 107777_8 range), causes a read protect violation.

If the computer is in the protected mode and bit 10, the write protect bit, of a system or user map register equals 1, any attempt by the system or user to write onto the associated memory page causes a write protect violation and the write does not occur. If the computer is in the unprotected mode, the write occurs. In either case, bit 14 of the MEM violation register will be set to 1. For example, suppose the computer is in the protected mode and the system or user map register 3 contains 2043₈. Any attempt by the system or user to write onto page 43₈ using map register 3 (i.e., write onto physical addresses in the 106000_8 to 107777_8 range), causes a write protect violation.

If the computer is in the protected mode, any attempt by the system or user to write onto the physical base page causes a base page violation and the write does not occur. If the computer is in the unprotected mode, the write occurs. In either case, bit 13 of the MEM violation register will be set to 1. For example, suppose the computer is in protected mode, the system or user map register 0 contains 0040₈, the base page fence is set at 1000₈, and bit 10 of the MEM status register equals 1 (i.e., logical addresses below

Dynamic Mapping System 21MXM

the base page fence are mapped). If the system or user attempts to write to a logical memory address of 1500₈, MEM detects that the base page addresses above the base page fence are not mapped and begins to access physical memory address 1500s. However, MEM then detects that a write to physical base page is being attempted which causes a base page violation and the write does not occur. If the computer was in the unprotected mode, the write would have occurred. In either case, bit 13 of the MEM violation register will be set to 1. If the system or user attempts to write to a logical memory address of 500s, MEM detects that addresses below the base page fence are mapped and begins to access physical memory address $100000_8 + 500_8 = 100500_8$ where the write will occur providing standard memory protect is not violated. Note that standard memory protect checks the logical address (i.e., 500₈), not the physical address (i.e., 100500₈). Reading from logical or physical base page will not generate a base page violation. From the previous discussion, it can be seen that a DMS memory space has its base page in two pieces which may or may not be contiguous. Regardless, the total base page available for any DMS memory space is 1024 locations. The part of the physical base page accessible by all memory spaces is also referred to as the unmapped or shared part of the base page. Note that the logical addresses of 0 and 1 access the A and B registers, respectively.

If the computer is in the protected mode, any attempt by the user to load into any MEM register, except the MEM address register, will cause a privileged instruction violation and the load will not occur. Any attempt by the system to load into any of the MEM map registers will cause a privileged instruction violation and the load will not occur. If the computer is in the unprotected mode, the load occurs. In either case, bit 12 of the MEM violation register will be set to 1. The system can always load into the MEM state register or MEM fence register. Under microprogrammed control the user can always load into the MEM state register or MEM fence register. The system or user can always load into the MEM address register, and can always read the MEM map registers. All MEM violations cause an interrupt to select code 5. Instruction SFS 5 will skip only for an MEM violation, allowing DMS interrupts to be differentiated from memory protect or parity error interrupts.

4-13. DCPC OPERATION IN A DMS ENVIRONMENT

DCPC activity disables the MEM violation logic. Therefore, the DCPC's can read or write physical memory without generating MEM violations. Note that mapping remains enabled during DCPC activity and that the base page partitioning is the same. For example, if a DCPC input transfer were aimed at logical memory addresses 0 to 77777₈, which happened to map to physical addresses 100000₈ to 177777₈, and the conditions cited in the base page examples prevailed, then the input data would be written into physical addresses 100000₈ to 100777₈, 1000₈ to 17777₈, and 102000₈ to 177777₈.

Table 4-3. Typical DMS Instruction Execution Times

INSTRUCTION	EXECUTION TIME (μS)	NOTES
Dynamic Mapping System Group		
DJP, SJP	5.85 ^a	
DJS, SJS	6.50 ^a	
JRS	9.10 — 10.40 ^a	
LFA/B	3.57	
MBF, MBI, MBW	6.50 ^{b,c}	
MWF, MWI, MWW	3.25 ^b	
PAA/B, SYA/B	47.125 — 47.80	
PBA/B, USA/B	47.125 – 47.80	
RSA/B	2.60	
RVA/B	2.275	
SSM	5.85 ^a	
UJP	5.525 ^a	
UJS	6.175 ^a	
XCA/B	6.175 ^a	
XLA/B, XSA/B	5.525 ^a	
XMA/B	15.275 — 16.575	
XMM	9.75 ^e	
XMS	8.45 ^d	
,		
 a. Add 1.3 μS for each indirect a b. Add 2.925 μS for each word a c. Add 3.575 μS for last odd by a d. Add 0.975 μS for each word a register. e. Add 1.3 μS for each word excepts and memory. 	noved. te. oaded into map	

Table 4-4. Sample DMS Load/Enable Routine

LABEL	OPCODE	OPERAND	COMMENTS
DMS	NOP		DMS Load/Enable Routine
	LDA	S.TABL	Load address of System Map Table
	LDB	U.TABL	Load address of User Map Table
	SYA		Load System Map from memory
	USB		Load User Map from memory
	LDA	A.TABL	Load address of Port A Map Table
	LDB	B.TABL	Load address of Port B Map Table
	PAA		Load Port A Map from memory
	PBB		Load Port B Map from memory
	LDA	FNC,I	Load fence value
	LFA		Load Base Page Fence register
	SJP	SYSTRT,I	Enable System Map and jump to operating system entry point
SYSTRT	ОСТ	1000	Operating system begins at 1000 ₈
FNC	DEF	SYSF	Points to System Fence
S.TABL	DEF	SYSTEM	Points to System Table
U.TABL	DEF	US01	Points to first User Table
A.TABL	DEF	US01	Points to first User Table
B.TABL	DEF	US03	Points to third User Table
SYSF	ОСТ	100	Fence for operating system
SYSTEM	OCT	0	System Map Table
_	ОСТ	1	System Map Table
	ОСТ	2	System Map Table
:			
US01F	OCT	1000	Fence for first user
US01	OCT	40	First User Map Table
	OCT	41	First User Map Table
	OCT	42	First User Map Table
:			
US02F	OCT	2044	Fence for second user
US02	OCT	100	Second User Map Table
	ОСТ	101	Second User Map Table
	OCT	102	Second User Map Table
· USOSE	OCT		Fence for third user
US03F US03	OCT OCT	0	
0503		200	Third User Map Table
	OCT	201	Third User Map Table
	OCT	202	Third User Map Table
•			

MICROPROGRAMMING

V

This section contains an introductory discussion of Hewlett-Packard's microprogramming techniques and development. For additional information, refer to the HP 21MX M-Series Computer Microprogramming Reference Manual, part no. 02108-90032.

The control section of a computer is the portion of the computer that directs and controls the other sections; i.e., the memory section, input-output section, and the arithmetic-logic section. In totally hardwired computers, the control section logic is normally "spread out" physically throughout the computer. This design approach makes it impossible to enhance the computer's instruction set without redesign. In contrast, M-Series computers have a fully microprogrammed control section, which means that the sequence in which the control functions are performed are made programmable through the use of a technique called microprogramming.

The action taken when any one of the M-Series base set of 128 assembly language instructions is executed is determined by a microprogram associated with the assembly language instruction (these microprograms reside in a special memory called control store); the control section oversees the translation and controls the execution of the microprogram. With this design approach, instruction set enhancements can be made by changing or adding to the set of microprograms that control the machine's execution. Many computers are microprogrammed; however, Hewlett-Packard has taken the concept one step further to offer the power of microprogramming to the user.

TO MERCHAN

M-Series computer users can more fully take advantage of the computer's power by utilizing microprogramming. The microprogrammer has more instructions, a more flexible word format, more registers, and faster execution times to work with than does the assembly language programmer. The microinstruction word length is 24 bits which enables concurrent operations to be performed in a single instruction. Microprogrammers can access 12 scratch pad registers in addition to those available to the assembly language programmer and have up to 4096 24-bit words of memory (termed control store) in which to store microprograms. The microprogrammer works in a much faster

environment than does the assembly language programmer for two reasons. One, since microinstructions have access to most of the internal parts of the computer's architecture, fewer memory fetches are required to accomplish most tasks. Two, the microinstruction execution time of 325 nanoseconds is much faster than the typical assembly instruction execution time of 1 to 2 microseconds.

These capabilities are easily taken advantage of by M-Series computer users through the extensive support provided by Hewlett-Packard. Some of the more important benefits of Hewlett-Packard's microprogramming are given in the following paragraphs.

· 大大道, 一直到到一个人的特殊的人。

Through the use of microprogramming, the computer's assembly language instruction set can be expanded with instructions tailored for specific applications. By adding special purpose instruction sets, the general purpose computer can be uniquely adapted for a certain job and thus become very efficient at that job. M-Series users can easily design their own instructions or purchase HP-supplied instruction sets such as the Dynamic Mapping System instructions or the Fast FORTRAN Processor. Applications that may be profitably microcoded include arithmetic calculations, I/O device driver programs, sorts and table searches, pseudo-DCPC operations, and special IBL loaders.

Microprogramming is very similar to assembly language programming, although it is more powerful in many ways. Some knowledge of the internal structure of the computer is required, but once this knowledge is attained, the increased power and flexibility of microprogramming can ease the solution of many programming tasks. Microprograms are easily callable by assembly or higher level language programs. An extensive set of debugging aids, software analysis aids, and documentation is available to make microprogramming easy and efficient.

The second secon

Microprogramming often-used routines will typically decrease program execution time by factors of two to ten and sometimes by as much as twenty or more. Software routines can be made to execute at the hardware speeds of the microprogram environment and the additional registers available to the microprogrammer can serve to eliminate many time-consuming memory fetches.

Microprogramming 21MXM

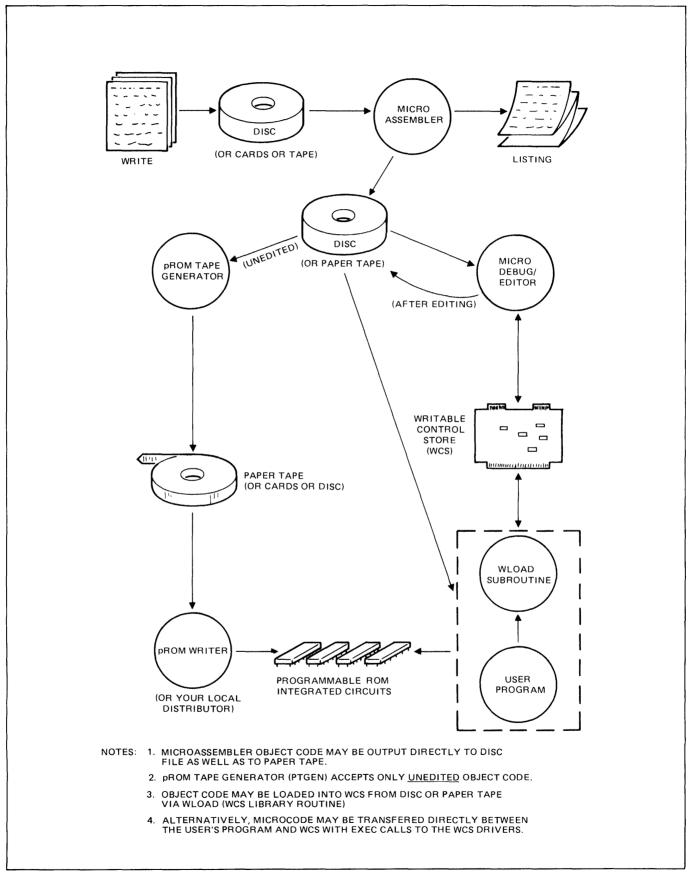
By converting software routines into microprograms, space in main memory that would normally be required for time-critical routines can be freed for other uses. The routines remain instantly callable, as opposed to routines stored in a peripheral device. Microprograms are also less accessible than conventional software which affords a higher degree of security to microcoded routines.

Developing microprograms is similar to developing assembly language programs; assembling and interactive debugging of microprograms is done with the aid of the standard HP Micro Assembler and Micro Debug Editor. Since the user will not normally want to microcode all of a certain program, some analysis is required to determine which segment(s) of the assembly language program can be most profitably converted to microcode. This analysis is easily done with the use of an HP contributed library program called the Activity Program Generator (ACP). The ACP enables the user to determine where in a program the CPU is spending most of its time; by substituting this section of code with a microprogrammed subroutine that is callable by the assembly or higher level program, overall execution time may often be reduced.

Once the microprogrammer has determined what segment to implement in microcode, the microprogram is developed as shown in figure 5-1. The Micro Assembler program (in main memory) is used to assemble the source microprogram into an object program. Then, the object microprogram is loaded into Writable Control Store (WCS) with the aid of the Micro Debug Editor program. Interactive debugging may be performed with the aid of the Debug Editor while the object microprogram resides in WCS.

When the microprogram is fully checked out, the user may choose to have his program reside permanently in programmable Read-Only Memory (pROM) or in WCS where it may be altered programmatically. Implementation in ROM is accomplished by programming the pROM's with a pROM writer and installing the programmed ROM's in the computer. The mask tapes shown in figure 5-1 are required by the pROM writer and are generated by the Debug Editor at the user's command. ROM-resident microprograms are permanent and do not have to be reloaded each time the computer is powered up; this implementation also prevents users from erroneously destroying the microprogram. The user who does not require such permanence for microprogram storage may skip the ROM burning step and execute his microcode from WCS. Microprograms used in this manner may be loaded with the WCS I/O utility routine and may be altered under program control to suit a variety of users.

User-written microprograms are easily accessed by assembly or higher level programs. Once the microprogram is developed and loaded into control store, it may be called in a very similar manner to a software subroutine.


Hewlett-Packard provides a comprehensive set of hardware manuals, software manuals, and training courses to make user microprogramming easy to learn and implement. For permanent implementation of microprograms, programmed pROM's may be installed in the HP 12945A User ROM Control Store Board or in the HP 13047A 2K User Control Store Board. The ROM Control Store Board mounts under the main CPU board of the M-Series computer and is used to house Hewlett-Packard provided optional instruction sets such as the Dynamic Mapping System and the Fast FORTRAN Processor instructions. Up to 2,048 24-bit words of control store in the form of 1K bit pROM's may be installed in the optional 2K User Control Store Board which occupies a slot in the I/O section of the computer mainframe.

The 1K Writable Control Store (WCS) option provides a read-write control store module which can be used for the development and execution of user-supplied microprograms. Microprograms in WCS are executed at the same speed as those in the read-only control store. Each WCS module consists of a single card which plugs into the I/O PCA cage, thus eliminating the need for extensive cabling or an additional power supply. A WCS card contains 1,024 24-bit locations of Random-Access-Memory (RAM), including all necessary address and read/write circuits. WCS can be written into or read under computer control using standard input/output instructions. An I/O utility routine makes it possible for FORTRAN and ALGOL programs to write into or read from a WCS module using a conventional subroutine call. A WCS module is read at full speed by way of a flat cable connecting it to the control section of the processor.

Available microprogramming software includes the Micro Assembler and Micro Debug Editor as well as diagnostics, driver program, and I/O utility routine for use with the Writable Control Store module. These software aids operate under the Hewlett-Packard Real Time Executive (RTE) operating systems.

A course is offered at HP facilities in Cupertino, California for customer training. Requiring only a knowledge of M-Series assembly language as a prerequisite, the course features in-depth coverage of microprogram development and implementation, and provides hands-on experience for the microprogrammer. The M-Series microprogrammer may also take advantage of other user-written microprograms via the HP Contributed Library, which contains many tested and documented microprograms.

21MXM Microprogramming

7114-2

Figure 5-1. Microprogram Development Cycle

Microprogramming 21MXM

5-9. DYNAMIC MAPPING SYSTEM

The Dynamic Mapping System (DMS) option gives the user the capability to address physical memory configurations larger than the standard 32,768 word limitation. The DMS provides a 20-bit-wide memory address bus which allows an addressing space of 1,048,576 words of main memory and allows the user to specify each 1,024-word page within physical memory to be read and/or write protected for program security. Separate memory translation maps provide isolation of system, user, DCPC channel 1, and DCPC channel 2.

The DMS consists of a Memory Expansion Module (MEM) and a Memory Protect PCA which plug into the memory PCA cage; microcode for implementing the additional 38 machine language instructions associated with the DMS is mounted in the ROM Control Store Board.

5-10. FAST FORTRAN PROCESSOR

The Fast FORTRAN Processor (FFP) option provides the system with 18 subroutines implemented in three control

store ROM modules. Included are ten fast FORTRAN subroutines and eight extended precision subroutines. These subroutines are executed up to 28 times faster than the same routines executed under software control.

Microprogramming is a very powerful tool that gives the user many advantages in terms of speed, flexibility, and program security. Experience has shown that microprogramming once learned, is in many cases much more flexible while being just as simple in concept as assembly language programming. Microprogramming does have its limitations however, and the potential user should examine very closely the extent of support provided by the computer manufacturer. Hewlett-Packard has by far sold and supported the greatest number of microprogrammable computers in the world, and provides world-wide customer support. Customer training courses and documentation have been refined from years of customercontributed feedback and actual implementation is made easy through extensive software support packages and inexpensive hardware tools.

INTERRUPT SYSTEM

VI

The vectored priority interrupt system has up to 60 distinct interrupt levels, each of which has a unique priority assignment. Each interrupt level is associated with a numerically corresponding interrupt location in memory.

Of the 60 interrupt levels, the two highest priority levels are reserved for hardware faults (power fail and parity error), the next two are reserved for Dual-Channel Port Controller completion interrupts, and the remaining levels are available for I/O device channels. Tables 6-1 and 6-2 list the interrupt levels in priority order for the HP 2108B and HP 2112B Computers, respectively.

Table 6-1. HP 2108B Interrupt Assignments

CHANNEL (Octal)	INTERRUPT LOCATION	ASSIGNMENT		
04	00004	Power Fail Interrupt		
05	00005	Memory Parity/Memory Protect/ DMS Interrupt		
06	00006	DCPC Channel 1 Completion Interrupt		
07	00007	DCPC Channel 2 Completion Interrupt		
10	00010	I/O Device (highest priority)		
11 - 20	00011-00020	I/O Device (Mainframe)		
21 - 42	00021-00042	I/O Device (Extender No. 1)		
43 - 64	00043-00064	I/O Device (Extender No. 2)		

Table 6-2. HP 2112B Interrupt Assignments

CHANNEL (Octal)	INTERRUPT LOCATION	ASSIGNMENT	
04	00004	Power Fail Interrupt	
05	00005	Memory Parity/Memory Protect/ DMS Interrupt	
06	00006	DCPC Channel 1 Completion Interrupt	
07	00007	DCPC Channel 2 Completion Interrupt	
10	00010	I/O Device (highest priority)	
11 - 25	00011-00025	I/O Device (Mainframe)	
26 - 47	00026-00047	I/O Device (Extender No. 1)	
50 - 71	00050-00071	I/O Device (Extender No. 2)	

As an example of the simplicity of the interrupt system, an interrupt request from I/O channel 12 will cause an interrupt to memory location 00012. This request for service will be granted on a priority basis higher than afforded to channel 13 but lower than that afforded to channel 11. Thus, a transfer in progress via channel 13 would be suspended to allow channel 12 to proceed. On the other hand, a transfer in progress via channel 11 cannot be interrupted by channel 12.

Any device can be selectively enabled or disabled under program control, thus switching the device into or out of the interrupt structure. In addition, the entire interrupt system, except power fail and parity error interrupts, can be enabled or disabled under program control using a single instruction.

Interrupt requests received while the computer is in the halt mode will be processed, in order of priority, when the computer is placed in the run mode. Input/output priority is covered in more detail in Section VII.

(1) 中国 可被**想整**要要是通過的 (中部) 计选择的 (1)

The computer is equipped with power-sensing circuits. When primary line power fails or drops below a predetermined operating level while the computer is running, an interrupt to memory location 00004 is automatically generated. This interrupt is given the highest priority in the system and cannot be turned off or otherwise disabled. Memory location 00004 is intended to contain a jump-to-subroutine (JSB) instruction referencing the entry point of a power fail subroutine; however, location 00004 may alternatively contain a halt (HLT) instruction. The interrupt cabability of lower-priority operations is automatically inhibited while a power fail subroutine is in process.

A minimum of 500 microseconds is available between the detection of a power failure and the loss of usable power supply power to execute a power fail subroutine; the purpose of such a subroutine is to transfer the current state of the computer system into memory and then halt the computer. A sample power fail subroutine is given in table 6-3. The optional battery will supply enough power to preserve the contents of memory for a sustained line power outage of up to 2 hours.

If the optional Dynamic Mapping System (DMS) is installed and a power failure occurs, the System Map is automatically enabled just prior to fetching the instruction in location 00004. Since all maps are disabled and none are considered valid upon the restoration of

Table 6-3. Sample Power Fail Subroutine

LABEL	OPCODE	OPERAND	COMMENTS
		J. LIIAND	
PFAR	NOP STF	6B	Power Fail/Auto Restart Subroutine Terminates DCPC Channel 1
	STF	7B	Terminates DCPC Channel 2
	SFC	4B	Skip if interrupt was caused by a power failure
·	JMP	UP	Power is being restored, reset state of computer system
DOWN	STA	SAVA	Save A-register contents
	CCA		Set switch indicating that the computer was running
	STA STB	SAVR	when power failed Save B-register contents
ļ	ERA,ALS	SAVB	Transfer E-register contents to A-register bit 15
	soc		Increment A-register if Overflow
1	INA		is set
	STA	SAVEO	Save E- and O-register contents
	LDA	PFAR	Save contents of P-register at time of
	STA	SAVP	power failure
	LIA STA	1B	Save contents of
	STX	SAVS SAVX	S-register Save contents of X-register
	STY	SAVX	Save contents of X-register
,		5,,,,,	Insert user-written routine to save I/O
ļ	:		device states
	CLC	4B	Turn on restart logic so computer will restart when power is restored
· ·	шт		after momentary power failure Shutdown
	HLT		
UP	LDA SZA,RSS	SAVR	Was computer running
	JMP	HALT	when power failed? No
	CLA	nali	Yes, reset computer Run switch to
1	STA	SAVR	initial state
	LDA	FENCE	Restore the memory protect
	OTA	5B	fence register contents
	:		Insert user-written routine to restore
	:	_	I/O device states
	LDA	SAVEO	Restore the contents
	CLO SLA,ELA		of the E-register and
	STF	1B	O-register
	LDA	SAVS	Restore the contents of the
,	OTA	1B	S-register
,	LDA	SAVA	Restore A-register contents
	LDB	SAVB	Restore B-register contents
	LDX	SAVX	Restore X-register contents
	LDY STC	SAVY	Restore Y-register contents Reset power fail logic for next power failure
	STC	4B 5B	Turn on memory protect
	JMP	SAVP,I	Transfer control to program in execution at time of power failure
HALT	HLT		Return computer to halt mode
FENCE	OCT	2000	Fence address storage (must be updated each time fence is changed)
SAVEO	ОСТ	0	Storage for E and O
SAVA	OCT	0	Storage for A
SAVB SAVS	OCT OCT	0	Storage for B Storage for S
SAVX	OCT	0	Storage for X
SAVY	OCT	0	Storage for Y
SAVP	OCT	0	Storage for Purposition
SAVR	ОСТ	U	Storage for Run switch

21MXM Interrupt System

power, the power fail subroutine should include the necessary instructions to save as many maps as desired and restore them prior to enabling the DMS.

Since the computer might be unattended by an operator, the user has a switch-selectable option of what action the computer will take upon the restoration of primary power. When the switch (A1S2) is set to the \overline{ARS} position, the computer will halt when power is restored regardless of whether the computer was running or halted when the failure occurred. (No operator panel indication is given.)

Note: Switch A1S2 is mounted on the CPU and is not considered an operator control. The setting of this switch is normally determined prior to or during system installation.

When A1S2 is in the ARS position, the automatic restart feature is enabled. After a built-in delay of about half a second following the return to normal power levels, another interrupt to location 00004 occurs. This time the power-down portion of the subroutine is skipped and the power-up portion begins. (Refer to table 6-3). If the computer was not running when the power failure occurred, the computer is halted immediately. If the computer was running, those conditions existing at the time of the power fail interrupt are restored and the computer continues the program from the point of the interruption. Alternatively, if location 00004 contains a HLT instruction instead of a JSB instruction, the computer will halt and light the POWER FAIL indicator.

To allow for the possibility of a second power failure occurring while the power-up portion of the subroutine is in process, the user should limit the combined power-down and power-up instructions to less than 100. If the computer memory does not contain a subroutine to service the interrupt, location 00004 should contain a HLT 04 instruction (102004 octal).

A Set Control instruction (STC 04) must be given at the end of any restart routine. This instruction re-initializes the power-fail logic and restores the interrupt capability to the lower priority functions. Pressing the PRESET switch on the operator panel performs the same function as the STC 04 instruction. Pressing and holding the PRESET switch will force a halt when the LOCK/OPERATE switch is set to OPERATE.

The optional battery sustains the contents of memory when the line power is off. If the battery becomes discharged when the line power is off, the contents of memory will be lost. When power is restored, the computer will initiate a "Cold Start-up" and clear memory.

Parity checking of memory is a standard feature in the computer. The parity logic continuously generates correct parity for all words written into memory and monitors the parity of all words read out of memory. Correct parity is defined as having the total number of "1" bits in a 17-bit memory word (16 data bits plus the parity bit) equal to an odd value. If a "1" bit (or any odd number of "1" bits) is either dropped or added in the transfer process, a Parity Error signal is generated when that word is read out of memory.

The Parity Error signal may either halt the computer or cause the computer to take some other action as determined by an internal switch (A1S1) mounted on the CPU. When the switch is in the HALT PE position and a parity error occurs, the computer will halt and light the PARITY indicator. The PARITY indicator will remain lighted until the PRESET switch is pressed.

Note: Switch A1S1 is mounted on the CPU and is not considered an operator control. The setting of this switch is normally determined prior to or during installation or when the memory protect PCA is installed at the user's site.

If switch A1S1 is in the INT/IGNORE position, the action that the computer will take when a parity error occurs is as follows:

- a. If the memory protect PCA is installed and the parity error logic has not been disabled by a CLF 05 instruction, an interrupt to memory location 00005 is generated. This location may contain a JSB instruction referencing the entry point of a userwritten memory protect subroutine, or alternatively contain a HLT instruction.
- b. If the memory protect PCA is not installed, or if the memory protect option is installed but the parity error logic has been disabled by a CLF 05 instruction, the parity error will be ignored and the PARITY indicator will light.

In conjunction with memory protect, it is possible to determine the memory address containing the parity error. The error address will be loaded automatically into the violation register of the memory protect logic and from there it is accessible to the user by programming an LIA 05 or LIB 05 instruction.

When a parity error occurs, it is recommended that the entire program or set of data containing the error location be reloaded. However, by knowing the address and the Interrupt System 21MXM

contents of the error location, the user may be able to determine what operations have taken place as a result of reading the erroneous word. For example, if the erroneous word was an instruction, several other locations may be affected. By individually checking and correcting the contents of all affected memory locations, the user may resume running the program without the necessity of a complete reload. If software is being generated, this may also need correcting.

The memory protect option provides the capability of protecting a selected block of memory of any size, from a settable fence address downward, against alteration or entry by programmed instructions.

The memory protect logic, when enabled by an STC 05 instruction, also prohibits the execution of all I/O instructions (including HLT 01) except those referencing I/O select code 01 (the S-register and the overflow register). This feature limits the control of I/O operations to interrupt control only. Thus, an executive program residing in protected memory can have exclusive control of the I/O system.

The memory protect logic is disabled automatically by any interrupt (except when the interrupt location contains an I/O instruction) and must be re-enabled by an STC 05 instruction at the end of each interrupt subroutine.

The optional DMS hardware includes additional memory protect features, which are enabled or disabled simultaneous with the memory protect hardware. When enabled by an STC 05 instruction, the DMS hardware provides the capability of read/write protecting memory on a 1024-word page basis. Included in the DMS are several privileged instructions which are not allowed when the memory protect logic is enabled. Upon detection of a violation, an interrupt to location 00005 is generated. Since the DMS will set the flag on channel 05, executing either an SFS 05 or an SFC 05 instruction will permit the programmer to know whether the DMS or memory protect interrupted.

Programming rules pertaining to the use of memory protect are as follows (assuming that an STC 05 instruction has been given):

a. The upper protected memory boundary address is loaded into the fence register from the A- or B-register by an OTA 05 or OTB 05 instruction, respectively. Memory addresses below but not including this address are protected. b. Execution will be inhibited and an interrupt to location 00005 will occur if one of the following instructions either directly or indirectly modifies or enters a location in protected memory, or if any I/O instruction is attempted (including HLT but excluding those I/O instructions addressing select code 01).

DST	ISZ	JLY	JMP	JPY	JSB
MVB	MVW	SAX	SAY	SBX	SBY
STA	STB	STX	STY		

- c. Location 00002 is normally the lower boundary of protected memory. (Locations 00000 and 00001 are the A- and B-register addresses and may be freely addressed.) JMP, JLY, and JPY instructions may not reference the A- or B-register.
- d. After three successive levels of indirect addressing, the memory protect logic will allow a pending I/O interrupt if the memory protect logic is installed.
- e. Any instruction not mentioned in step b of this paragraph is legal even if the instruction directly references a protected memory address. In addition, indirect addressing through protected memory by those instructions listed in step b is legal provided that the ultimate effective address is outside the protected memory area.

Following a memory protect interrupt, the address of the illegal instruction will be present in the violation register. This address is made accessible to the programmer by an LIA 05 or LIB 05 instruction, which loads the address into the A- or B-register.

Since parity error and memory protect share the same interrupt location, it is necessary to distinguish which type of error is responsible for the interrupt. A parity error is indicated if, after the LIA (or LIB) 05 instruction is executed, bit 15 of the selected register is a logic 1; a memory protect violation is indicated if bit 15 is a logic 0. In either case, the remaining 15 bits of the selected register contains the logical address of the error location.

Table 6-4 illustrates a sample memory protect, DMS, and parity error subroutine. An assumption made for this example is that the location immediately following the error location is an appropriate return point. This may not always be the case, however, because it may be deemed advisable to abort the program in process and return to a supervisory program.

21MXM Interrupt System

Table 6-4. Sample Memory Protect, Parity Error, and DMS Subroutine

LABEL	OPERCODE	OPERAND	COMMENTS
MPEDM MP	CLF STA SAVA SAVA Save A-reg STB LIA SB Get conten CLF SB Turn off pa SFC SB Check flag JMP DMS If flag is se Check bit JMP JMP MP If bit 15 is interrupted		Memory Protect/Parity Error/DMS Subroutine Turn off interrupt system Save A-register contents Save B-register contents Get contents of violation register Turn off parity error interrupts Check flag for DMS violation If flag is set, then DMS interrupted Check bit 15 of violation register If bit 15 is set, then parity error occurred If bit 15 is clear, then memory protect interrupted User's routine for memory protect violation
	 etc. JMP	REST	
PE		REST	User's routine for parity error condition
DMS	 etc. JMP	REST	User's routine for DMS violation
REST	LDA LDB STF STF STC JMP	SAVA SAVB OB 5B 5B MPEDM,I	Restore A-register Restore B-register Enable interrupt system Enable parity error interrupt Turn on memory protect Exit
SAVA	ОСТ	0	Storage for A
SAVB	OCT	0	Storage for B

Interrupt System 21MXM

The optional Dual-Channel Port Controller (DCPC) allows high-speed block transfer of data between input/output devices and memory. For the most part, the DCPC operates independently of the interrupt system in that the only time that a DCPC interrupt occurs is when the specified block of data has been transferred. Since there are two DCPC channels, two interrupt locations are reserved for this purpose; location 00006 is reserved for channel 1 and location 00007 is reserved for channel 2. Channel 1 interrupt has priority over the channel 2 interrupt. Because DCPC interrupts are primarily completion signals to the programmer, and are therefore application dependent, no interrupt subroutine example is considered necessary.

The remaining interrupt locations (00010 through 00077 octal) are reserved for I/O devices; this represents a total of 56 (decimal) locations, one for each I/O channel. In a typical I/O operation, the computer issues a programmed command such as Set Control/Clear Flag (STC,C) to one or more external devices to initiate an input (read) or an output (write) operation. Each device will then either put data into or accept data from an input/output buffer on its associated interface PCA. During this time, the computer may continue running a program or may be programmed into a waiting loop to wait for a specific device to complete a read or write operation. Upon the completion of a read or write operation, each device returns a Flag signal to the computer. These Flag signals are passed through a priority network which allows only one device to be serviced regardless of the number of Flag signals present at that time. The Flag signal with the highest priority generates an Interrupt signal at the end of the current machine cycle except under the following circumstances:

- Interrupt system disabled or interface PCA interrupt disabled.
- b. JMP indirect or JSB indirect instruction not sufficiently executed. These instructions inhibit all interrupts except power fail or memory protect until the succeeding instruction is executed. After three successive levels of indirect addressing, the memory protect logic will allow a pending I/O interrupt if the memory protect logic is installed.
- c. Instruction in an interrupt location not sufficiently executed, even if that interrupt is of lower priority. Any interrupt inhibits the entire interrupt system until the succeeding instruction is executed.

d. Optional dual-channel port controller in the process of transferring data.

e. Current instruction is one that may effect the priorities of I/O devices; e.g., STC, CLC, STF, CLF, SFS, and SFC. The interrupt in this case must wait until the succeeding instruction is executed. The SFS instruction used with the interrupt system on produces special conditions. Since the SFS instruction holds off interrupts until the next instruction is executed, if the next instruction clears the device flag, then it should also remove the interrupt request. Therefore, a CLF instruction should be used rather than appending, C (sets bit 9 in some I/O instructions) to the instruction.

After an interface PCA has been issued a Set Control command and its Flag flip-flop becomes set, all interrupt requests from lower-priority devices are inhibited until this Flag flip-flop is cleared by a Clear Flag (CLF) instruction. A service subroutine in process for any device can be interrupted only by a higher-priority device; then, after the higher-priority device is serviced, the interrupted service subroutine may continue. In this way it is possible for several service subroutines to be in the interrupt state at one time; each of these service subroutines will be allowed to continue after the higher-priority device is serviced. All such service subroutines normally end with a JMP indirect instruction to return the computer to the point of the interrupt.

Each time an interrupt occurs, the address of the interrupt location is stored in the central interrupt register. The contents of this register are accessible at any time by executing an LIA 04 or LIB 04 instruction. This loads the address of the most recent interrupt into the A- or B-register.

1/O address 00 is the master control address for the interrupt system. An STF 00 instruction enables the entire interrupt system and a CLF 00 disables the interrupt system. The two exceptions to this are the power fail interrupt, which cannot be disabled, and parity error interrupt, which can only be selective enabled or disabled by an STF 05 or CLF 05, respectively. Whenever power is initially applied, the interrupt system is disabled.

INPUT/OUTPUT SYSTEM

VII

The purpose of the input/output system is to transfer data between the computer and external devices. As shown in figure 7-1, data is normally transferred through the A- or B-register. An input transfer of this type occurs in three distinct steps: (1) between the external device and its interface PCA in the computer, (2) between the interface PCA and the A- or B-register via the I/O bus and CPU, and (3) between the A- or B-register and memory via the S-bus and memory controller. This three-step process also applies to an output transfer except in reverse order. This type of transfer, which is executed under program control, allows the computer logic to manipulate the data during the transfer process.

Also shown in figure 7-1, data may be transferred automatically under control of the Dual-Channel Port Controller (DCPC) option. Once the DCPC has been initialized, no programming is involved and the transfer is reduced to a two-step process: (1) between the external device and its interface PCA in the computer and (2) between the interface PCA and memory via the I/O bus, S-bus, and memory controller. The two DCPC channels are assignable to operate with any two device interface PCA's.

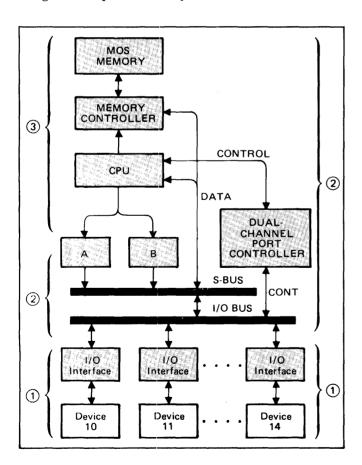


Figure 7-1. Input/Output System

Since a DCPC transfer eliminates programmed loading and storing via the accumulators, the time involved is very short. Thus, the DCPC is used with high-speed devices. Further information on the DCPC option is given under paragraph 7-13.

As shown in figure 7-2, an external device is connected by cable directly to an interface PCA located inside the computer mainframe. The interface PCA, in turn, plugs into one of the input/output slots, each of which is assigned a fixed address commonly referred to as the device select code. The computer can then communicate with a specific device on the basis of its select code.

Figure 7-2 shows an interface PCA inserted in the I/O slot having the highest priority; this channel is assigned select code 10 (octal). If it is decided that the associated device should have lower priority, its interface PCA and cable may simply be exchanged with those occupying some other I/O slot. This will change both the priority and the I/O address; however, due to priority chaining (refer to paragraph 7-2), there can be no vacant slots from select code 10 to the highest used select code (if the interrupt mode is to be used).

Only select codes 10 through 77 (octal) are available for input/output devices; the lower select codes (00 through 07) are reserved for other features. Figure 7-2 illustrates the I/O select codes available in the HP 2108B and HP 2112B Computer mainframes.

Select codes (channels) higher than those shown in figure 7-2 are available through the use of one or two I/O extenders. Each I/O extender provides an additional 16 I/O channels, which are an extension of the computer's vectored priority interrupt system. Select codes in the extender(s) operate at the same speed and with the same versatility as those in the computer mainframe.

When a device is ready to be serviced, it causes its interface PCA to request an interrupt so that the computer will interrupt the current program and service the device. Since many device interface PCA's will be requesting service at random times, it is necessary to establish an orderly sequence for granting interrupts. Secondly, it is desirable that high-speed devices should not have to wait for low-speed device transfers. Both of these requirements are met by a series-linked priority structure illustrated by

Input/Output System 21MXM

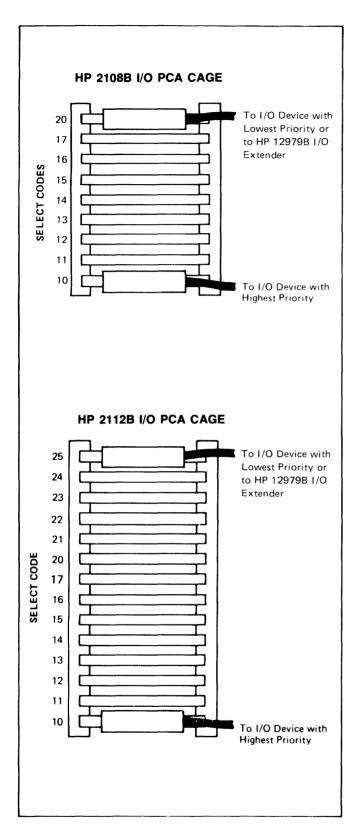


Figure 7-2. I/O Address Assignments

figure 7-3. The bold line, representing a priority enabling signal, is routed in series through each PCA capable of causing an interrupt. The PCA cannot interrupt unless this enabling signal is present at its input.

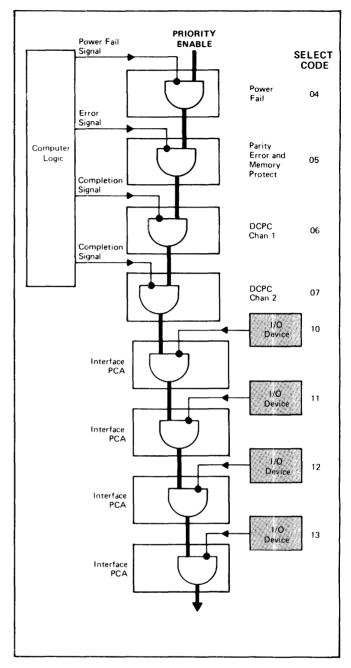


Figure 7-3. Priority Linkage

Each device (or other interrupt function) can break the enabling line when it requests an interrupt. If two devices simultaneously request an interrupt, obviously the device with the lowest select code will be the first one that can interrupt because it has broken the enable line for the higher select code. The other device cannot begin its service routine until the first device is finished; however, a still higher priority device (one with a lower select code) may interrupt the service routine of the first device. Figure 7-4 illustrates a hypothetical case in which several devices require service by interrupting a CPU program. Both simultaneous and time-separated interrupt requests are considered.

21MXM Input/Output System

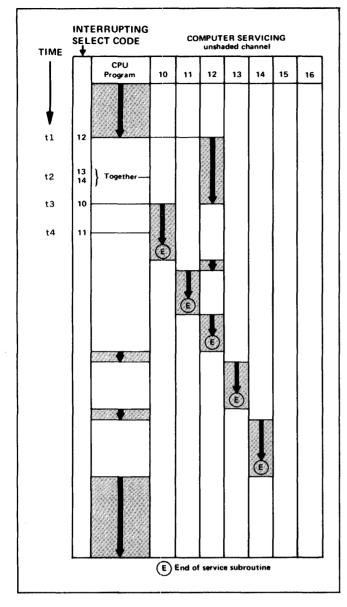


Figure 7-4. Interrupt Sequences

Assume that the computer is running a CPU program when an interrupt from I/O channel 12 occurs (at reference time t1). A JSB instruction in the interrupt location for select code 12 causes a program jump to the service routine for the channel 12 device. The JSB instruction automatically saves the return address (in a location which the programmer must reserve in his routine) for a later return to the CPU program.

The routine for channel 12 is still in progress when several other devices request service (set flag). First, channels 13 and 14 request simultaneously at t2; however, since neither one has priority over channel 12, their flags are ignored and channel 12 continues its transfer. But at t3, a higher priority device on channel 10 requests service. This request interrupts the channel 12 transfer and causes the channel 10 transfer to begin. The JSB instruction saves the return address for return to the channel 12 routine.

During the channel 10 transfer, device 11 sets the channel 11 flag (t4). Since it has lower priority than channel 10, device 11 must wait until the end of the channel 10 routine. And since the channel 10 routine, when it ends, contains a return address to the channel 12 routine, program control temporarily returns to channel 12 (even though the waiting channel 11 has higher priority). The JMP,I instruction used for the return inhibits all interrupts until fully executed. At the end of this short interval, the channel 11 interrupt request is granted.

When channel 11 has finished its routine, control is returned to channel 12, which at last has sufficient priority to complete its routine. Since channel 12 has been saving a return address in the main CPU program, it returns control to this point.

The two waiting interrupt requests from channels 13 and 14 are now enabled. Channel 13 has the higher priority and goes first. At the end of the channel 13 routine, control is temporarily returned to the CPU program. Then, the lowest priority channel (channel 14) interrupts and completes its transfer. Finally, control is returned to the CPU program, which resumes processing.

The interface PCA provides the communication link between the computer and an external device. The interface PCA includes three basic elements which either the computer or the device can control in order to effect the necessary communication. These three elements are the control bit, flag bit, and buffer.

7-4. CONTROL BIT

This is a one-bit register used by the computer to turn on the device channel. When set, the control bit generates a start command to the device, allowing it to perform one operation cycle (e.g., read or write one character or word). The interface PCA cannot interrupt unless the control bit is set. The control bit is set by an STC (set control) instruction and cleared by a CLC (clear control) instruction, both of which must be accompanied by a specific select code (e.g., STC 12 or CLC 12). The device cannot affect the control bit.

7-5. FLAG BIT

This is a one-bit register primarily used by the device to indicate (when set) that a transmission between the device and the interface PCA buffer has been completed. Computer instructions can also set the flag (STF), clear the flag (CLF), test if it is set (SFS), and test if it is clear (SFC). The device cannot clear the flag bit. If the corresponding control bit is set, priority is high, and the interrupt system is enabled, setting the flag bit will cause an interrupt to the location corresponding to the device select code.

Input/Output System 21MXM

7-6. BUFFER

The buffer register is used for intermediate storage of data. Typically, the data capacity is 8 or 16 bits, but this is entirely dependent on the type of device.

The following paragraphs describe how data is transferred between memory and input/output devices. A summary of I/O group instructions pertinent to the computer interrupt and control functions is provided in the appendix. The sequences presented for interrupt and noninterrupt methods of data transfer are highly simplified in order to present an overall view without the involvement of software operating systems and device drivers. For more detailed information, refer to the documentation supplied with the appropriate software system or I/O subsystem.

7-8. INPUT DATA TRANSFER (INTERRUPT METHOD)

Figure 7-5 illustrates the sequence of events required to input data using the interrupt method. Note that some operations are under control of the computer program (programmer's responsibility) and some of the operations are automatic. Note also that the interface PCA (device controller) is installed in the slot assigned to select code 12.

The operations begins (1) with the programmed instruction STC 12,C which sets the Control flip-flop and clears the Flag flip-flop on the interface PCA. Since the

next few operations are under control of the hardware, the computer program may continue the execution of other instructions. Setting the Control flip-flop causes the PCA to output a Start signal (2) to the device, which reads out a data character and asserts the Done signal (3).

The device Done signal sets the PCA Flag flip-flop, which in turn generates an interrupt (4) assuming that the interrupt conditions are met; i.e., the interrupt system must be on (STF 00 previously given), no higher priority interrupt is pending, and the Control flip-flop is set (done in step 1).

The interrupt causes the current computer program to be suspended and control is transferred to a service subroutine (5). It is the programmer's responsibility to provide the linkage between the interrupt location (00012 in this case) and the service subroutine. It is also the programmer's responsibility to include in his service subroutine the instructions for processing the data (loading into an accumulator, manipulating if necessary, and storing into memory).

The subroutine may then issue further STC 12,C commands to transfer additional data characters. One of the final instructions in the service subroutine must be CLC 12. This step (6) restores the interrupt capability to lower priority devices and returns the interface PCA to its static "ready" condition (Control clear and Flag set). This condition is initially established by the computer at power turn-on and it is the programmer's responsibility to return the interface PCA to the same condition on the completion of each data transfer operation. At the end of the subroutine, control is returned to the interrupted program via previously established linkages.

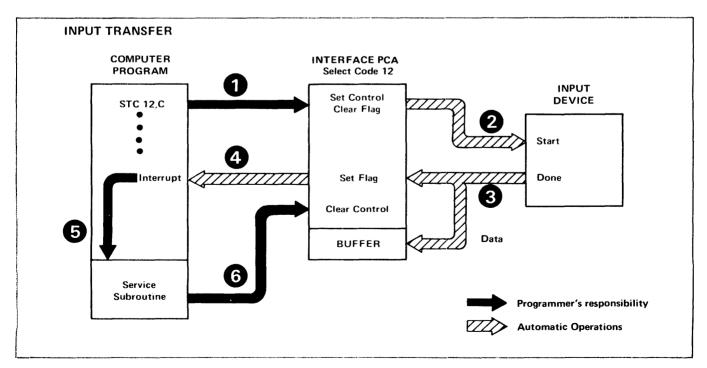


Figure 7-5. Input Data Transfer (Interrupt Method)

21MXM Input/Output System

7-9. OUTPUT DATA TRANSFER (INTERRUPT METHOD)

Figure 7-6 illustrates the sequence of events required to output data using the interrupt method. Again note the distinction between programmed and automatic instructions. It is assumed that the data to be transferred has been loaded into the A-register and is in a form suitable for output. The interface PCA in this example is assumed to be in the slot assigned to select code 13.

The output operation begins with a programmed instruction (OTA 13) to transfer the contents of the A-register to the interface PCA buffer (1). This is followed (2) by the instruction STC 13,C which sets the Control flip-flop and clears the Flag flip-flop on the interface PCA. Since the next few operations are under control of the hardware, the computer program may continue the execution of other instructions. Setting the Control flip-flop causes the PCA to output the buffered data and a Start signal (3) to the device, which writes (e.g., punches, stores, etc.) the data character and asserts the Done signal (4).

The device Done signal sets the PCA Flag flip-flop, which in turn generates an interrupt (5) provided that the interrupt system is on, priority is high, and the Control flip-flop is set (done in step 2). The interrupt causes the current computer program to be suspended, and control is transferred to a service subroutine (6). It is the programmer's responsibility to provide the linkage between the interrupt location (00013 in this case) and the service subroutine. The detailed contents of the subroutine are also the programmer's responsibility, and the contents will vary with the type of device.

The subroutine may then output further data to the interface PCA and reissue the STC 13,C command for additional data character transfers. One of the final instructions in the service subroutine must be a clear control (CLC 13). This step (7) allows lower priority devices to interrupt, and restores the channel to its static "ready" condition (Control clear and Flag set). At the end of the subroutine, control is returned to the interrupted program via previously established linkages.

7-10. NONINTERRUPT DATA TRANSFER

It is also possible to transfer data without using the interrupt system. This involves a "wait-for-flag" method in which the computer commands the device to operate and then waits for the completion response. In using this method to transfer data, it is assumed that the computer time is relatively unimportant. The programming is very simple, consisting of only four words of in-line coding as shown in table 7-1. Each of these routines will transfer, one word or character of data. It is also assumed that the interrupt system is turned off (STF 00 not previously given).

7-11. INPUT. As described under paragraph 7-8, an STC 12,C instruction begins the operation by commanding the device to read one word or character. The computer then goes into a waiting loop, repeatedly checking the status of the flag bit. If the Flag flip-flop is not set, the JMP *-1 instruction causes a jump back to the SFS instruction. (The *-1 operand is assembler notation for "this location minus one.") When the Flag flip-flop is set, the skip condition for SFS is met and the JMP instruction is skipped. The computer thus exits from the waiting loop

Figure 7-6. Output Data Transfer (Interrupt Method)

Input/Output System 21MXM

and the LIA 12 instruction loads the device input data into the A-register.

Table 7-1. Noninterrupt Transfer Routines

INPUT

INSTRUCTIONS	COMMENTS
STC 12,C	Start device
SFS 12	Is input ready?
JMP *-1	No, repeat previous instruction
LIA 12	Yes, load input into A-register

OUTPUT

INSTRUCTIONS	COMMENTS
OTA 13	Output A-register to buffer
STC 13,C	Start device
SFS 13	Has device accepted the data?
JMP *-1	No, repeat previous instruction
NOP	Yes, proceed

7-12. OUTPUT. The first step, which is to transfer the data to the interface PCA buffer, is the OTA 13 instruction. Then STC 13,C commands the device to operate and accept the data. The computer then goes into a waiting loop as described in the preceding paragraph. When the Flag flip-flop becomes set, indicating that the device has accepted the output data, the computer exits from the loop. (The final NOP is for illustration purposes only.)

7-13. DUAL-CHANNEL PORT CONTROLLER

The optional Dual-Channel Port Controller (DCPC) provides a direct data path, software assignable, between memory and a high-speed peripheral device; the DCPC accomplishes this by stealing an I/O cycle instead of interrupting to a service subroutine. The DCPC logic is capable of stealing every consecutive I/O cycle and can transfer data at rates up to 616,666 words per second; see Direct Memory Access specifications in table 1-1 for the DCPC latency times.

There are two DCPC channels, each of which may be separately assigned to operate with any I/O interface PCA, including those installed in the optional HP 12979B Input/Output Extender (assuming that the I/O extender DCPC option is installed). When both DCPC channels are operating simultaneously, channel 1 has priority over channel 2. The combined maximum transfer rate for both channels operating together is 616,666 words per second; the rate available to channel 2 is therefore the rate difference between 616,666 and the actual operating rate of channel 1.

Since the memory cycle rate is somewhat faster than the I/O cycle rate, it is possible for the CPU to interleave memory cycles while the DCPC is operating at full bandwidth.

Transfers via the DCPC are on a full-word basis; hardware packing and unpacking of bytes are not provided. The word count register is a full 16 bits in length, and data transfers are accomplished in blocks. The transfer is initiated by an initialization routine, and from then on the operation is under automatic control of the hardware. The initialization routine specifies the direction of the data transfer (in or out), where in memory to read or write, which I/O channel to use, and how much data to transfer. Completion of the block transfer is signalled by an interrupt to location 00006 (for channel 1) or to location 00007 (for channel 2) if the interrupt system is enabled. It is also possible to check for completion by testing the status of the flag for select code 06 or 07, or by interrogating the word count register with an LIA/B to select code 02 (for channel 1) or to select code 03 (for channel 2). A block transfer in process can be aborted with an STF 06 or 07 instruction.

7-14. DCPC OPERATION. Figure 7-7 illustrates the sequence of operations for a DCPC input data transfer. A comparison with the conventional interrupt method (figure 7-5) shows that much more of the DCPC operation is automatic. Remember that the procedure in figure 7-5 must be repeated for each word or character. In figure 7-7, the automatic DCPC operation will transfer a block of data of any size limited only by the available memory space. The sequence of events is as follows. (An input data transfer is illustrated; the minor differences for an output transfer are explained in text.)

The initialization routine sets up the control registers on the DCPC (1) and issues the first start command (STC 12,C) directly to the interface PCA. (If the operation is an output, the interface PCA buffer is also loaded at this time.) The DCPC logic is now turned on and the computer program continues with other instructions.

Setting the Control and clearing the Flag flip-flops (2) causes the interface PCA to send a Start signal (with a data word if it is an output transfer) to the external device (3). The device goes through a read or write cycle and returns a Done signal (with a data word if it is an input transfer). The Done signal (4) sets the PCA Flag flip-flop which, regardless of priority, immediately requests the DCPC logic to steal an I/O cycle (5) and transfer a word into (or out of) memory. The process now repeats back to the beginning of this paragraph to transfer the next word.

After the specified number of words have been transferred, the interface PCA Control flip-flop is cleared (7) and the DCPC logic generates a completion interrupt (8). The program control is now forced to a completion routine (9), the contents of which is the programmer's responsibility.

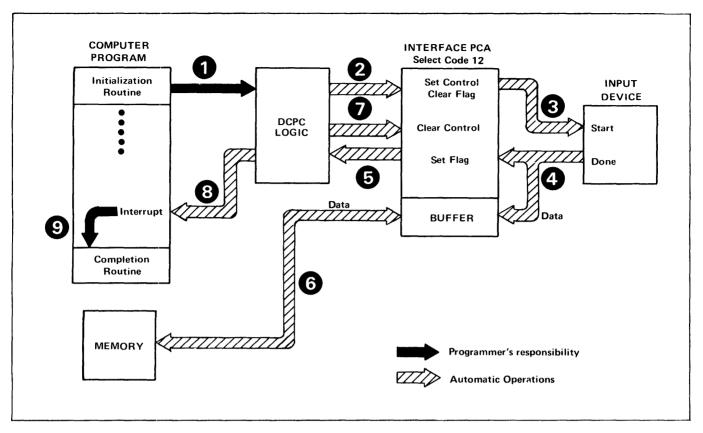


Figure 7-7. DCPC Input Data Transfer

7-15. DCPC INITIALIZATION. The information required to initialize the DCPC (direction, memory allocation, I/O channel assignment, and block length) are given by three control words. These three words must be addressed specifically to the DCPC. Figure 7-8 illustrates the format of the three control words. Control Word 1 (CW1) identifies the I/O channel to be used and provides two options selectable by the programmer:

Bit 15

1 = give STC (in addition to CLF) to I/O channel at end of each DCPC cycle (except on last cycle, if input)

0 = no STC

Bit 13

1 = give CLC to I/O channel at end of block transfer

0 = no CLC

Control Word 2 (CW2) gives the starting memory address for the block transfer and bit 15 determines whether data is to go into memory (logic 1) or out of memory (logic 0). Control Word 3 (CW3) is the two's complement of the number of words to be transferred into or out of memory (i.e., the block length). This number can be from 1 to 32,768, although it is limited in the practical case by available memory.

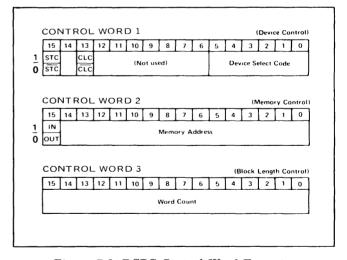


Figure 7-8. DCPC Control Word Formats

Table 7-2 gives the basic program sequence for outputting the control words to the DCPC. As shown in this table, CLC 2 and STC 2 perform switching functions to prepare the logic for either CW2 or CW3. The device is assumed to be in I/O slot channel 10, and it is also assumed that its start command is STC 10B, C. The sample values of CW1, CW2, and CW3 will read a block of 50 words and store these in locations 200 through 261 (octal). The STC 06B,C

Input/Output System 21MXM

instruction starts the DCPC operation. A flag-status method of detecting the end-of-transfer is used in this example; an interrupt to location 00006 could be substituted for this test. The program in table 7-2 could easily be changed to operate on channel 2 by changing select codes 2 to 3 and 6 to 7.

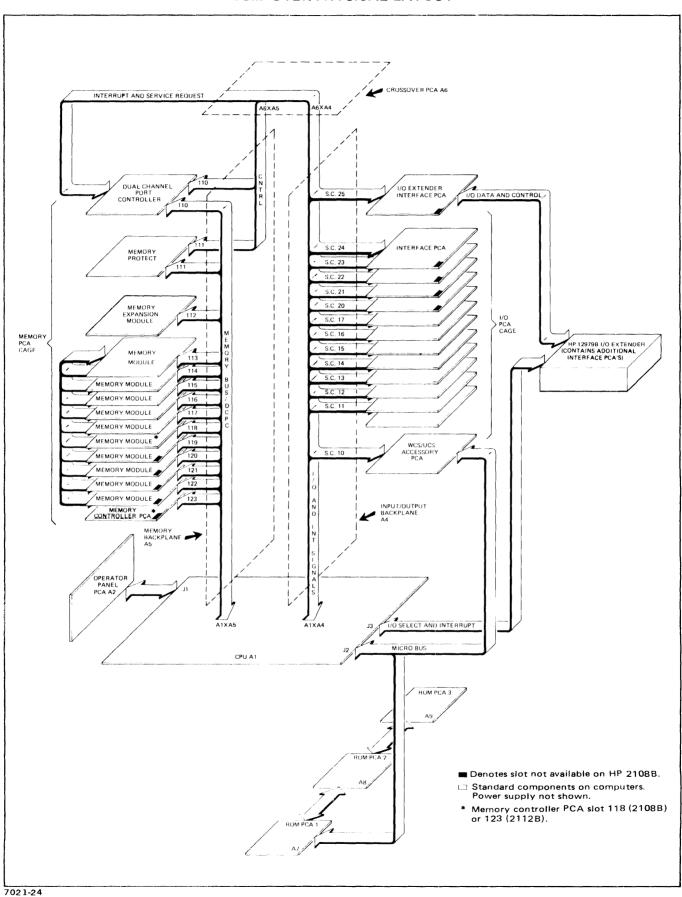
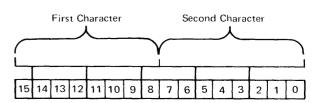

One important difference should be noted when doing a DCPC input operation from a disc or a drum. Due to the synchronous nature of disc or drum memories and the design of the interface PCA, the order of starting must be reversed from the order given; i.e., start the DCPC first and then start the disc (or drum).

Table 7-2. DCPC Initialization Program

LABEL	OPCODE	OPERAND	COMMENTS			
ASGN1	LDA	CW1	Fetches control word 1 (CW1) from memory and loads it in A-register.			
	ОТА	6B	Outputs CW1 to DCPC Channel 1.			
MAR1	CLC	2B	Prepares Memory Address Register to receive control word 2 (CW2).			
	LDA	CW2	Fetches CW2 from memory and loads it in A-register.			
	ОТА	2В	Outputs CW2 to DCPC Channel 1.			
WCR1	STC	2B	Prepares Word Count Register to receive control word 3 (CW3).			
	LDA	CM3	Fetches CW3 from memory and loads it in A-register.			
	ОТА	2B	Outputs CW3 to DCPC Channel 1.			
STRT1	STC	10B,C	Start input device.			
	STC	6B,C	Activate DCPC Channel 1.			
	SFS JMP	6B *-1	Wait while data transfer takes place or, if interrupt processing is used, continue program.			
:	÷	: :				
	HLT		Halt			
CW1	ОСТ	120010	Assignment for DCPC Channel 1 (ASGN1); specifies I/O channel select code address (10_8), STC after each word is transferred, and CLC after final word is transferred.			
CW2	OCT	100200	Memory Address Register control. DCPC Channel 1 (MAR1); specifies memory input operation and starting memory address (200 $_8$).			
CW3	DEC	- 50	Word Count Register control. DCPC Channel 1 (WCR1); specifies the 2's complement of the number of character words in the block of data to be transferred ($50_{1.0}$).			

APPENDIX


COMPUTER PHYSICAL LAYOUT

CHARACTER CODES

A 040400 000101 B 041000 000102 C 041400 000103 D 042000 000104 E 042400 000105 F 043000 000106 G 043400 000107 H 044000 000110 J 044000 000111 J 044400 000111 J 044400 000113 L 046000 000114 M 046000 000115 N 047000 000115 N 047000 000115 N 047000 000115 N 047000 000115 S 051400 000122 S 051400 000123 T 052000 000124 U 052400 000123 T 052000 000124 U 053400 000125 S 051400 000123 T 055000 000125 S 051400 000125 S 05400 000125 S 05400 000131 C 054400 000131 C 054400 000131 C 054400 000131 C 054400 000145 S 05400 000145 S 05400 000145 S 074400 000155 S 074400 000155 S 074400 000155 S 074400 000165 S 074400 000166 S 074400 000066 S 074400 000066	ASCII Character	First Character Octal Equivalent	Second Character Octal Equivalent
B	Α	040400	000101
D	В		000102
E 042400 000105 F 043000 000106 G 043400 000107 H 044000 000111 J 044000 000111 J 044000 000111 J 045000 000112 K 045000 000113 L 046000 000114 M 046400 000115 N 047000 000116 O 047400 000117 P 050000 000120 G 050400 000121 R 051000 000123 S 051400 000123 T 052000 000124 U 052400 000125 V 053000 000125 W 053400 000127 X 054400 000132 Z 055000 000127 X 054400 000132 Z 055000 000126 G 061400 000131 Z 055000 000126 G 061400 000131 J 066000 000141 D 062400 000131 D 066400 000141 D 066000 000141 D 066000 000141 D 066000 000143 D 066000 000146 D 067000 000146 D 067000 000147 D 066000 000146 D 067000 000155 D 066000 000155 D 066000 000156 D 067400 000153 D 066000 000156 D 067400 000156 D 067400 000157 D 071000 000166 D 0770000 000066 D 0770000 000066 D 0770000 000066 D 0770000 00000000000000000000000000000	c	041400	000103
F 043000 000106 G 043400 000107 H 044000 000110 J 044400 000111 J 045000 000112 K 045400 000113 L 046000 000114 M 046400 000115 N 047000 000116 O 047400 000117 P 050000 000120 C 050400 000121 R 051000 000122 S 051400 000123 T 052000 000124 U 052400 000125 V 053000 000125 V 053000 000125 V 053000 000127 X 05400 000127 X 05400 000127 Z 055000 000130 Y 054400 000131 Z 055000 000132 a 060400 000141 b 061000 000132 c 061400 000132 f 063000 000144 e 062400 000145 f 063000 000146 g 063400 000145 i 064400 000143 h 06400 000145 i 06400 000146 g 063400 000150 i 06400 000150 n 067000 000150 h 06400 000150 n 067000 000150 n 067000 000150 n 067000 000150 n 067000 000156 n 067400 000157 p 070000 000166 v 073400 000161 r 071000 000162 s 071400 000163 t 072400 000164 v 073400 000165 n 067000 000166 v 073400 000165 s 071400 000165 n 067000 000166 v 073400 000166 v 073400 000167 x 074000 000166 v 073400 000166 5 033000 00066 6 033000 00066 7 033400 00066 7 033400 00067 8 334000 000067 8 334000 000067 8 334000 000067 NUL 000000 000000 ETX 001000 000000	D	042000	000104
G 043400 000107 H 044400 000110 I 044400 000111 J 045000 000112 K 045000 000113 L 046000 000114 M 046000 000114 N 047000 000116 O 047400 000116 O 047400 000120 Q 050400 000121 R 051000 000122 S 051400 000123 T 052000 000124 U 052400 000125 V 053000 000126 W 053400 000127 X 05400 000127 X 05400 000127 X 05400 000127 X 05400 000126 G 060400 000127 A 050400 000127 A 050400 000126 G 050400 000131 G 050400 000141 G 050400 000142 G 050400 000142 G 050400 000144 G 060400 000145 G 060400 000146 G 060400 000146 G 060400 000155 G 060400 00005 G 060400 00005 G 060400 00005 G 060400 0005 G 060400 0005 G 060400 0005 G 060400 00	E	042400	000105
H 044000 000110 1 044400 000111 J 045000 000112 K 045400 000113 L 046000 000114 M 046400 000115 N 047000 000115 O 047400 000117 P 050000 000120 Q 050400 000122 S 051400 000123 T 052000 000124 U 052400 000125 V 053000 000125 V 053000 000126 W 053400 000127 X 05400 000131 Z 055000 000132 a 060400 000131 Z 055000 000132 a 060400 000144 b 061000 000142 c 061400 000144 b 061000 000144 c 06200 000144 e 062400 000145 f 063000 000146 g 063400 000146 g 063400 000146 g 063400 000147 h 06400 000145 i 06400 000145 j 065000 000150 i 064400 000151 j 065000 000150 i 064400 000151 j 065000 000152 k 065400 000155 n 067000 000155 n 067000 000155 n 067000 000155 n 067000 000165 v 073400 000165 r 071000 000165 v 073400 000165 v 073400 000165 v 073400 000165 v 073400 000165 c 074400 000065	F	043000	000106
	G	043400	000107
J	1	· ·	
K 045400 000113 L 046000 000114 M 046400 000115 N 047000 000116 O 047400 000117 P 050000 000120 G 050400 000121 R 051000 000122 S 051400 000123 T 052000 000124 U 052400 000125 V 053000 000125 V 053000 000126 W 053400 000130 Y 054400 000131 Z 055000 000132 a 060400 000131 Z 055000 000144 b 061000 000142 c 061400 000143 d 062000 000144 e 062400 000145 f 063000 000146 f 063000 000146 g 063400 000146 g 063400 000150 i 064400 000151 i 064400 000151 i 064000 000151 i 064000 000152 k 065400 000153 l 066000 000154 m 066000 000155 n 067400 000156 o 067400 000157 p 070000 000166 v 073400 000163 t 072000 000166 v 073400 000163 t 072000 000166 v 073400 000165 v 073000 000166 v 073400 000165 c 074400 000163 t 072000 000166 v 073400 000165 v 073000 000166 v 073400 000165 c 074400 000163 t 072000 000166 v 073400 000165 v 073000 000166 v 073000 000167 r 033400 000067 s 033400 000067	i i		· ·
L 046000 000114 M 046400 000115 N 047000 000116 O 047400 000117 P 050000 000120 O 050400 000121 R 051000 000122 S 051400 000123 T 052000 000124 U 052400 000125 V 053000 000126 W 053400 000137 Z 055000 000132 Z 055000 000132 S 051400 000130 Y 054400 000131 Z 055000 000144 D 061000 000131 D 060400 000143 D 060400 000143 D 060400 000144 D 060400 000145 D 060400 000145 D 060400 000145 D 060400 000145 D 060400 000155 D 060400 000150 D 060400 000151 D 060400 000150 D 060400 000151 D 060400 000150 D 070400 000150 D 070400 000160 D 070400 000161 T 070400 000161 T 070400 000162 D 070400 000163 D 070400 000164 D 070400 000165 D 070400 000165 D 070400 000165 D 070400 000163 D 070400 000163 D 070400 000164 D 070400 000165 D 070400 000166 D 070400 000166 D 070400 000167 D 070400 000167 D 070400 000167 D 070400 000167 D 070400 000165 D 070400 000165 D 070400 000166 D 070400 000165 D 070400 00016			
M 046400 000115 N 047000 000116 O 047400 000116 O 047400 000117 P 050000 000120 Q 050400 000121 R 051000 000123 T 052000 000124 U 052400 000125 V 053000 000126 W 053400 000130 Y 054400 000131 Z 055000 000132 a 060400 000131 Z 055000 000132 a 060400 000141 b 061000 000142 c 061400 000143 d 062000 000144 e 062400 000145 f 063000 000146 g 063400 000146 g 063400 000147 h 06400 000150 i 07000 000150 i 07000 000160 c 067400 000155 n 066000 000155 n 067000 000166 v 073400 000166 v 073400 000167 r 071000 000161 r 071000 000162 v 073000 000164 v 073400 000165 v 073000 000166 v 073400 000165 i 030000 000166 v 073400 000165 i 030000 000166 v 073400 000165 i 030000 000166 v 073400 000165 r 071000 000166 v 073400 000165 r 071000 000166 v 073400 000167 r 073000 00066 6 033000 000066 6 033000 000066 6 033000 000066 7 033400 000067 8 033400 000067 9 034400 000070 9 034400 000001 ETX 001400 000001 ETX 001400 000001	1		ll .
N 047000 00116 O 047400 000117 P 050000 000117 P 050000 000120 O 050400 000121 R 051000 000122 S 051400 000123 T 052000 000124 U 052400 000125 V 053000 000126 W 053400 000130 Y 054400 000131 Z 055000 000141 b 061000 000142 c 061400 000143 d 062000 000144 e 062400 000145 f 063000 000145 g 063400 000145 h 064000 000150 i 064400 000150 i 064400 000150 i 064400 000150 i 064400 000150 i 065000 000150 i 066400 000150 i 066400 000150 i 067000 000150 c 067400 000153 l 066000 000152 k 065400 000153 l 066000 000154 m 066400 000155 p 070400 000155 p 070400 000156 c 067400 000157 p 070000 000166 v 073400 000165 v 073400 000165 v 073400 000161 r 071000 000162 s 071400 000165 v 073400 000165 c 074400 000165 c 074400 000165 c 074400 000165 c 073400 000165 c 073400 000166 c 033000 00066 f 033000 000066 f 033000 000066 f 033400 000067 g 034400 000070 g 034400 000070 g 034400 000067	1		
O	1		
P 050000 000120 Q 050400 000121 R 051000 000122 S 051400 000123 T 052000 000125 U 052400 000125 V 053000 000126 W 053400 000130 Y 054400 000131 Z 055000 000132 a 060400 000132 a 060400 000132 a 060400 000132 c 061400 000144 b 061000 000144 c 062000 000144 e 062400 000144 e 062400 000145 f 063000 000146 g 063400 000147 h 064000 000155 i 064400 000151 j 065000 000152 k 065400 000153 I 066000 000155 n 066000 000155 n 066000 000155 n 066000 000155 n 066000 000156 n 067000 000166 r 071000 000166 v 073400 000163 t 072400 000163 t 072400 000163 t 072400 000163 t 073400 000163 t 073400 000165 y 073400 000166 v 073400 000165 5 071400 000165 5 071400 000165 5 073400 000165 5 074400 000165 5 074400 000165 5 074400 000165 5 074400 000165 5 074400 000165 5 074400 000165 5 074400 000165 5 032400 00066 6 033000 00066 7 033400 00066 6 033000 00066 7 033400 00066 7 033400 00066 7 033400 00066 8 034000 000067 8 034400 000067 8 034400 000067 8 034400 000067 9 0344400 000067 NUL 000000 000000 STX 001000 000000 STX 001000 000000 STX 001000 0000001 STX 0010000 0000001			
Q 050400 000121 R 051000 000122 S 051400 000123 T 052000 000124 U 052400 000125 V 053000 000126 W 053400 000127 X 054000 000130 Y 054400 000131 Z 055000 000132 a 060400 000132 a 060400 000141 b 061000 000142 c 061400 000143 d 062000 000144 e 062400 000144 e 062400 000145 f 063000 000146 g 063400 000146 g 063400 000150 i 064400 000150 i 06400 000150 i 066000 000150 i 066000 000150 o 067400 000153 I 066000 000152 k 065000 000153 I 066000 000155 o 067400 000155 o 067400 000155 o 074400 000165 r 071000 000166 r 071000 000162 s 071400 000163 t 072000 000164 u 072400 000165 v 073400 000167 x 073400 000167 x 074000 000165 o 030000 000166 c 073400 000165 o 03000 000166 o 030000 00066 f 033000 00066 f 033000 00066 f 033400 000067 g 034400 000071 NUL 00000 000000 STX 001000 000002 ETX 001400 000003	_		
R 051000 000122 S 051400 000123 T 052000 000124 U 052400 000125 V 053000 000126 W 053400 000127 X 054000 000130 Y 054400 000131 Z 055000 000131 Z 055000 000132 a 060400 000131 c 061000 000141 b 061000 000142 c 061400 000143 d 062000 000144 e 062400 000145 f 063000 000146 g 063400 000146 g 063400 000150 i 064400 000151 i 064400 000151 i 066000 000152 k 065000 000152 k 065400 000153 I 066000 000153 I 066000 000153 I 066000 000154 m 066400 000155 n 067000 000155 n 067000 000156 o 067400 000156 o 07000 000166 v 070400 000161 r 071000 000163 t 072000 000163 t 072000 000164 u 072400 000163 t 072000 000164 v 073000 000165 v 073400 000165 v 073400 000163 t 072000 000164 d 072400 000165 c 0 030000 000165 c 0 030000 000166 v 073400 000167 c 073400 000166 c 033000 000066 f 033000 000066 f 033000 000066 f 033400 000067 g 034400 0000067 g 034400 0000067 g 034400 000007 g 034400 0000000000000000000000000000000	· ·		
S			
T 052000 000124 U 052400 000125 V 053000 000126 W 053400 000127 X 054000 000130 Y 054400 000131 Z 055000 000132 a 060400 000131 Z 055000 000132 a 060400 000141 b 061000 000142 c 061400 000143 d 062000 000144 e 062400 000145 f 063000 000146 g 063400 000145 j 065000 000150 i 064400 000150 i 064400 000151 j 065000 000152 k 065400 000153 I 066000 000152 n 066400 000155 n 066400 000155 n 066400 000155 n 066400 000155 n 067400 000156 v 073400 000161 r 071000 000161 r 071000 000161 r 071000 000161 x 072400 000163 t 072400 000163 t 072400 000164 u 072400 000165 v 073400 000165 v 073400 000166 v 073400 000167 x 073400 000167 x 074400 000165 v 073400 000165 o 03000 000166 v 073400 000167 r 075000 000166 v 073400 000167 r 075000 000166 r 074400 000167 r 075000 000166 r 073400 000167 r 073400 000062 r 073400 000062	1		
U 052400 000125 V 053000 000126 W 053400 000127 X 054000 000130 Y 054400 000131 Z 055000 000132 a 060400 000141 b 061000 000142 c 061400 000143 d 062000 000144 e 062400 000145 f 063000 000145 g 063400 000147 h 064000 000150 i 064400 000151 j 065000 000152 k 065400 000153 l 066000 000154 m 066400 000153 l 066000 000154 m 066400 000155 n 06700 000156 o 067400 000157 p 070000 000	1		
V 053000 000126 W 053400 000127 X 054000 000130 Y 054400 000131 Z 055000 000132 a 060400 000141 b 061000 000142 c 061400 000143 d 062000 000144 e 062400 000145 f 063000 000146 g 063400 000147 h 064000 000150 i 064400 000151 j 065000 000153 k 065400 000153 l 066000 000154 m 066400 000155 n 067000 000156 o 067400 000157 p 070000 000160 q 070400 000161 r 071000 000162 s 071400 00	1		
W 053400 000127 X 054000 000130 Y 054400 000131 Z 055000 000132 a 060400 000141 b 061000 000142 c 061400 000143 d 062000 000144 e 062400 000145 f 063000 000145 g 063400 000150 i 064000 000151 j 065000 000152 k 065400 000153 i 066400 000153 i 066400 000155 m 066400 000156 m 066400 000156 o 067400 000156 o 067400 000157 p 070000 000160 q 070400 000161 r 071400 000162 s 071400 00	1 -		
X	1		
Y 054400 000131 Z 055000 000132 a 060400 000141 b 061000 000142 c 061400 000143 d 062000 000144 e 062400 000145 f 063000 000145 g 063400 000147 h 064000 000150 i 064400 000151 j 065000 000152 k 065400 000153 l 066000 000154 m 066000 000155 n 066000 000155 n 066400 000156 o 067400 000157 p 070000 000160 q 070400 000161 r 071400 000163 t 072000 000164 u 072400 000165 v 073000 00	1		
Z 055000 000132 a 060400 000141 b 061000 000142 c 061400 000143 d 062000 000144 e 062400 000145 f 063000 000146 g 063400 000150 i 064400 000151 j 065000 000152 k 065400 000153 l 066000 000153 l 066000 000154 m 066400 000155 n 067000 000156 o 067400 000157 p 070000 000160 q 070400 000161 r 071400 000163 t 072000 000165 v 073000 000165 v 073000 000165 v 073000 000165 v 073000 00	l		
b			
c 061400 000143 d 062000 000144 e 062400 000145 f 063000 000145 g 063400 000147 h 064000 000150 i 064400 000151 j 065000 000152 k 065400 000153 l 066000 000154 m 066400 000155 n 067000 000156 o 067400 000157 p 070000 000160 q 070400 000161 r 071400 000162 s 071400 000163 t 072000 000164 u 072400 000165 w 073400 000167 x 074000 000167 y 074400 000170 y 074400 000170 y 074000 00	1		
d 062400 000144 e 062400 000145 f 063000 000146 g 063400 000147 h 064000 000150 i 064000 000151 j 065000 000152 k 065400 000153 l 066000 000154 m 066400 000155 n 067000 000156 o 067400 000157 p 070000 000160 q 070400 000161 r 071000 000162 s 071400 000163 t 072000 000164 u 072400 000165 w 073400 000167 x 074000 000167 x 074000 000170 y 073400 000167 x 074400 000170 y 075000 00	1	i i	
e 062400 000145 f 063000 000146 g 063400 000147 h 064000 000150 i 064400 000151 j 065000 000152 k 065400 000153 l 066000 000154 m 066400 000156 n 0667000 000156 o 067400 000157 p 070000 000160 q 070400 000161 r 071000 000162 s 071400 000163 t 072400 000163 t 072400 000165 w 073400 000165 w 073400 000165 v 073000 000165 v 073000 000166 v 073400 000165 v 073000 000165 v 073000 000165 v 073000 000166 s 073400 000165 v 073400 000165 c 033000 000166 f 033000 000160 g 030000 000060 1 030400 000172 0 030000 000060 1 030000 000060 1 030000 000060 1 030000 000061 2 031400 000061 2 031400 000061 S 032400 000065 6 033000 000066 7 033400 000066 7 033400 000067 8 034400 000067 8 034400 000067 S 034400 000071 NUL 000000 000000 STX 001000 000002 ETX 001000 000002 ETX 001400 000003 EOT 000000	1		
f 063000 000146 g 063400 000147 h 064000 000150 i 064400 000151 j 065000 000152 k 065400 000153 l 066000 000153 l 066000 000154 m 066400 000155 n 067000 000156 o 067400 000157 p 070000 000160 q 070400 000161 r 071000 000162 s 071400 000163 t 072000 000163 t 072000 000164 u 072400 000165 v 073400 000165 v 073400 000167 x 074000 000167 x 074000 000167 x 074000 000167 x 074400 000167 c 075000 000172 0 0 03000 000172 0 0 03000 000060 1 03000 000061 2 031000 000062 3 031400 000063 4 032000 000064 5 032400 000065 6 033000 000066 7 033400 000067 8 034400 000067 8 034400 000067 NUL 000000 000000 SOH 000000 STX 001400 000001 STX 001000 000002 ETX 001000 000003 EOT 000000	1		· ·
g			
h 064000 000150 i 064400 000151 j 065000 000152 k 065400 000153 l 066000 000154 m 066400 000155 n 067000 000156 o 067400 000157 p 070000 000160 q 070400 000161 r 071000 000162 s 071400 000163 t 072000 000164 u 072400 000165 w 073400 000167 x 073000 000167 x 074000 000167 x 074000 000167 y 074400 000167 z 075000 000172 0 0 030000 000060 1 030400 000061 2 031000 00062 3 031400 00063 4 032000 00066 7 033400 00066 7 033400 00066 7 033400 00066 6 033000 00066 7 033400 00066 7 033400 00067 8 034000 00067 8 034000 00067 9 034400 000071 NUL 000000 000000 SOH 000400 000001 STX 001000 000002 ETX 001400 000003 EOT 002000 000004			
i	_		
j 065000 000152	1		
k 065400 000153 I 066000 000154 m 066400 000155 n 067000 000156 o 067400 000157 p 070000 000160 q 070400 000161 r 071000 000162 s 071400 000163 t 072000 000164 u 072400 000165 v 073000 000166 w 073400 000167 x 074000 000170 y 074400 000170 y 074400 000171 z 075000 000172 0 030000 000060 1 030400 000061 2 031000 000062 3 031400 000063 4 032000 00066 6 033000 00066 7 033400 0000			
Note	1		
m 066400 000155 n 067000 000156 o 067400 000157 p 070000 000160 q 070400 000161 r 071000 000162 s 071400 000163 t 072000 000164 u 072400 000165 v 073000 000166 w 073400 000167 x 074000 000170 y 074400 000171 z 075000 000172 0 030000 000060 1 030400 00061 2 031400 00062 3 031400 00063 4 032000 00066 7 033400 00066 7 033400 00066 7 033400 00066 7 033400 00066 7 033400 00066 7 033400 00066 7 033400 00066 7 033400 00066 7 033400 00066 7 033400 000067 8 034000 000067 8 034400 000067 NUL 000000 000000 SOH 000400 000001 STX 001400 000003 ETX 001400 000003 ETX 001400 000003 ETX 001400 000003			
n 067000 000156 o 067400 000157 p 070000 000160 q 070400 000161 r 071000 000162 s 071400 000163 t 072000 000164 u 072400 000165 v 073000 000166 w 073400 000170 x 074000 000170 y 074400 000171 z 075000 000172 0 030000 000060 1 030400 000061 2 031000 000062 3 031400 000063 4 032000 000064 5 032400 000065 6 033000 000066 7 033400 000067 8 034000 000070 9 034400 000070 SOH 000000			
0 067400 000157 p 070000 000160 q 070400 000161 r 071000 000162 s 071400 000163 t 072000 000164 u 072400 000165 v 073000 000166 w 073400 000167 x 074000 000170 y 074400 000171 z 075000 000172 0 030000 000060 1 030400 000061 2 031000 000062 3 031400 000063 4 032000 000064 5 032400 000065 6 033000 000066 7 033400 000067 8 034000 000071 9 034400 000071 NUL 000000 000000 SOH 000000 <t< td=""><td></td><td>· ·</td><td></td></t<>		· ·	
p 070000 000160 q 070400 000161 r 071000 000162 s 071400 000163 t 072000 000164 u 0722400 000165 v 073000 000166 w 073400 000167 x 074000 000170 y 074400 000171 z 075000 000172 0 030000 000060 1 030400 000061 2 031000 000062 3 031400 000063 4 032000 000064 5 032400 000065 6 033000 000066 7 033400 000067 8 034000 000070 9 034400 000071 NUL 000000 000000 SOH 000400 000000 ETX 001400	l I		
Q	1		
s 071400 000163 t 072000 000164 u 072400 000165 v 073000 000166 w 073400 000167 x 074000 000170 y 074400 000171 z 075000 000172 0 030000 00060 1 030400 00061 2 031000 00062 3 031400 00063 4 032000 00064 5 032400 00065 6 033000 000065 6 033000 000067 8 034000 000070 9 034400 000071 NUL 000000 000000 SOH 000400 000001 STX 001000 000003 ETX 001400 000003 EOT 002000 0000004		070400	000161
t 072000 000164 u 072400 000165 v 073000 000165 w 073400 000167 x 074000 000170 y 074400 000171 z 075000 000172 0 030000 00060 1 030400 00061 2 031000 00062 3 031400 00063 4 032000 00064 5 032400 00065 6 033000 00066 7 033400 00066 7 033400 00066 7 033400 00066 7 033400 00067 8 03400 00067 8 03400 00067 NUL 000000 000007 9 034400 000001 SOH 000400 000001 STX 001400 000002 ETX 001400 000003 EOT 002000 000004	r	071000	000162
u 072400 000165 v 073000 000166 w 073400 000167 x 074000 000170 y 074400 000171 z 075000 000172 0 030000 000060 1 030400 000061 2 031000 000062 3 031400 000063 4 032000 000064 5 032400 000065 6 033000 000066 7 033400 000067 8 034000 000070 9 034400 000071 NUL 000000 000000 SOH 000400 000001 STX 001000 000002 ETX 001400 000003 EOT 002000 000004	s	071400	000163
V 073000 000166 W 073400 000167 X 074000 000170 Y 074400 000171 Z 075000 000172 0 030000 000060 1 030400 000061 2 031000 000062 3 031400 000063 4 032000 000064 5 032400 000065 6 033000 000066 7 033400 000067 8 034000 000070 9 034400 000071 NUL 000000 000000 SOH 000400 000001 STX 001000 000002 ETX 001400 000003 EOT 002000 000004	t	072000	000164
W 073400 000167 X 074000 000170 Y 074400 000171 Z 075000 000172 0 030000 00060 1 030400 00061 2 031000 00062 3 031400 00063 4 032000 00064 5 032400 00065 6 033000 00066 7 033400 000067 8 034000 000070 9 034400 000071 NUL 000000 000000 SOH 000400 000001 STX 001000 000002 ETX 001400 000003 EOT 002000 000004	u		
X 074000 000170 Y 074400 000171 Z 075000 000172 0 030000 000060 1 030400 000061 2 031000 000062 3 031400 000063 4 032000 000064 5 032400 000065 6 033000 000066 7 033400 000067 8 034000 000070 9 034400 000071 NUL 000000 000000 SOH 000400 000001 STX 001000 000002 ETX 001400 000003 EOT 002000 000004	1		
y 074400 000171 z 075000 000172 0 030000 000060 1 030400 000061 2 031000 00062 3 031400 00063 4 032000 000064 5 032400 000065 6 033000 000067 8 034000 000070 9 034400 000071 NUL 000000 000000 SOH 000400 000001 STX 001000 000002 ETX 001400 000003 EOT 002000 000004			
z 075000 000172 0 030000 000060 1 030400 000061 2 031000 000062 3 031400 000063 4 032000 000064 5 032400 000065 6 033000 000066 7 033400 000067 8 034000 000070 9 034400 000071 NUL 000000 000000 SOH 000400 000001 STX 001000 000002 ETX 001400 000003 EOT 002000 000004	1		
0 030000 000060 1 030400 000061 2 031000 000062 3 031400 000063 4 032000 000064 5 032400 000065 6 033000 000067 8 034000 000070 9 034400 000071 NUL 000000 000000 SOH 000400 000001 STX 001000 000002 ETX 001400 000003 EOT 002000 000004			
1 030400 000061 2 031000 000062 3 031400 000063 4 032000 000064 5 032400 000065 6 033000 000066 7 033400 000067 8 034000 000070 9 034400 000071 NUL 000000 000000 SOH 000400 000001 STX 001000 000002 ETX 001400 000003 EOT 002000 000004	z	075000	000172
2 031000 000062 3 031400 000063 4 032000 000064 5 032400 000065 6 033000 000066 7 033400 000067 8 034000 000070 9 034400 000071 NUL 000000 000000 SOH 000400 000001 STX 001000 000002 ETX 001400 000003 EOT 002000 000004	1		
3 031400 000063 4 032000 000064 5 032400 000065 6 033000 000066 7 033400 000067 8 034000 000070 9 034400 000071 NUL 000000 000000 SOH 000400 000001 STX 001000 000002 ETX 001400 000003 EOT 002000 000004	J .		
4 032000 000064 5 032400 000065 6 033000 000066 7 033400 000067 8 034000 000070 9 034400 000071 NUL 000000 000000 SOH 000400 000001 STX 001000 000002 ETX 001400 000003 EOT 002000 000004			
5 032400 000065 6 033000 000066 7 033400 000067 8 034000 000070 9 034400 000071 NUL 000000 000000 SOH 000400 000001 STX 001000 000002 ETX 001400 000003 EOT 002000 000004	1		
6 033000 000066 7 033400 000067 8 034000 000070 9 034400 000071 NUL 000000 000000 SOH 000400 000001 STX 001000 000002 ETX 001400 000003 EOT 002000 000004			
7 033400 000067 8 034000 000070 9 034400 000071 NUL 000000 0000001 SOH 000400 000001 STX 001000 000002 ETX 001400 000003 EOT 002000 000004	I i		
8 034000 000070 9 034400 000071 NUL 000000 000000 SOH 000400 000001 STX 001000 000002 ETX 001400 000003 EOT 002000 000004	1		"
9 034400 000071 NUL 000000 000000 SOH 000400 000001 STX 001000 000002 ETX 001400 000003 EOT 002000 000004	1		
SOH 000400 000001 STX 001000 000002 ETX 001400 000003 EOT 002000 000004	1		
SOH 000400 000001 STX 001000 000002 ETX 001400 000003 EOT 002000 000004	NUL	000000	000000
STX 001000 000002 ETX 001400 000003 EOT 002000 000004			
ETX 001400 000003 EOT 002000 000004	1		
EOT 002000 000004			· ·
1	1		
1 =1.0 1 002.400 1 000005	ENQ	002400	000005

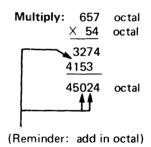
ASCII Character	First Character Octal Equivalent	Second Character Octal Equivalent
ACK	003000	000006
BEL	003400	000007
BS	004000	000010
HT	004400	000011
LF	005000	000012
VT	005400	000013
FF	006000	000014
CR	006400	000015
so	007000	000015
SI	007400	000017
DLE	010000	000017
DC1	010400	000020
DC2	011000	000021
DC3	011400	000022
DC3	012000	
NAK	012000	000024 000025
1	i e	
SYN ETB	013000 013400	000026
CAN	013400	000027
l ·		000030
EM	014400	000031
SUB	015000	000032
ESC	015400	000033
FS	016000	000034
GS	016400	000035
RS	017000	000036
US	017400	000037
SPACE	020000	000040
!	020400	000041
"	021000	000042
#	021400	000043
\$	022000	000044
%	022400	000045
&	023000	000046
,	023400	000047
(024000	000050
})	024400	000051
*	025000	000052
+	025400	000053
,	026000	000054
_	026400	000055
	027000	000056
/	027400	000057
:	035000	000072
;	035400	000073
<	036000	000074
=	036400	000075
>	037000	000076
?	037400	000077
@	040000	000100
] [055400	000133
\	056000	000134
]	056400	000135
^	057000	000136
_	057400	000137
1 ,	060000	000140
1 '.	075400	000173
	076000	000174
}	076400	000175
~	077000	000176
DEL	077400	000177
		I

OCTAL ARITHMETIC

ADDITION

TABLE

0	01	02	03	04	05	06	07
1	02	03	04	05	06	07	10
2	03	04	05	06	07	10	11
3	04	05	06	07	10	11	12
4	05	06	07	10	11	12	13
5	06	07	10	11	12	13	14
6	07	10	11	12	13	14	15
7	10	11	12	13	14	15	16


EXAMPLE

MULTIPLICATION

TABLE

1	02	03	04	05	06	07
2	04	06	10	12	14	16
3	06	11	14	17	22	25 34 43 52
4	10	14	20	24	30	34
5	12	17	24	31	36	43
6	14	22	30	36	44	52
7	16	25	34	43	52	61

EXAMPLE

COMPLEMENT

To find the two's complement form of an octal number. (Same procedure whether converting from positive to negative or negative to positive.)

RULE

- 1. Subtract from the maximum representable octal value.
- 2. Add one.

EXAMPLE

Two's complement of 5568:

OCTAL/DECIMAL CONVERSIONS

OCTAL TO DECIMAL

TABLE

OCTAL	DECIMAL
0- 7	0-7
10-17	8-15
20-27	16-23
30-37	24-31
40-47	32-39
50-57	40-47
60-67	48-55
70-77	56-63
100	64
200	128
400	256
1000	512
2000	1024
4000	2048
10000	4096
20000	8192
40000	16384
77777	32767

EXAMPLE

Convert 463₈ to a decimal integer.

$$400_8 = 256_{10}$$

$$60_8 = 48_{10}$$

$$3_8 = 3_{10}$$

$$307 \text{ decimal}$$

DECIMAL TO OCTAL

TABLE

DECIMAL	OCTAL
1	1
10	12
20	24
40	50
100	144
200	310
500	764
1000	1750
2000	.3720
5000	11610
10000	23420
20000	47040
32767	77777

EXAMPLE

Convert 5229₁₀ to an octal integer.

$$5000_{10} = 11610_8$$
 $200_{10} = 310_8$
 $20_{10} = 24_8$
 $9_{10} = 11_8$
 12155_8

(Reminder: add in octal)

NEGATIVE DECIMAL TO TWO'S COMPLEMENT OCTAL

TABLE

DECIMAL	2's COMP
-1	177777
- 10	177766
-20	177754
-40	177730
-100	177634
-200	177470
-500	177014
-1000	176030
-2000	174060
-5000	166170
-10000	154360
-20000	130740
- 32768	100000

EXAMPLE

Convert -629₁₀ to two's complement octal.

$$-500_{10} = 177014_{8}$$

$$-100_{10} = 177634_{8}$$

$$-20_{10} = 177754_{8}$$
 (Add in octal)
$$-9_{10} = \frac{177767_{8}}{176613_{8}}$$

For reverse conversion (two's complement octal to negative decimal):

- 1. Complement, using procedure on facing page.
- 2. Convert to decimal, using OCTAL TO DECIMAL table.

MATHEMATICAL EQUIVALENTS

2 ± n IN DECIMAL

		- 22											
2^n	n	2		65	536	16	0.00001	52587	89062	5			
1	0	1.0		131	072	17	0.00000	76293	94531	25			
2	1	0.5											
4	2	0.25		262	144	18	0.00000	38146	97265	625			
				524	288	19	0.00000	19073	48632	8125			
8	3	0.125	1	048	576	20	0.00000	09536	74316	40625			
16	4	0.0625											
32	5	0.03125	2	097	152	21	0.00000	04768	37158	20312	5		
			4	194	304	22	0.00000	02384	18579	10156	25		
64	6	0.01562 5	8	388	608	23	0.00000	01192	09289	55078	125		
128	7	0.00781 25											
256	8	0.00390 625	16	777	216	24	0.00000	00596	04644	77539	0625		
						25	0.00000	00298	02322	38769	53125		
512	9	0.00195 3125	67	108	864	26	0.00000	00149	01161	19384	76562	5	
024	10	0.00097 65625											
048	11	0.00048 82812 5				27	0.00000	00074	50580	59692	38281	25	
						28	0.00000	00037	25290	29846	19140	625	
096	12	0.00024 41406 25	536	870	912	29	0.00000	00018	62645	14923	09570	3125	
192	13	0.00012 20703 125											
384	14	0.00006 10351 5625				30	0.00000	00009	31322	57461	54785	15625	
						31							
768	15	0.00003 05175 78125	4 294	967	296	32	0.00000	00002	32830	64365	38696	28906	25
	4 8 16 32 64 128 256 512 024 048 096 192 384	1 0 2 1 4 2 8 3 16 4 32 5 64 6 128 7 256 8 512 9 024 10 048 11 096 12 192 13 384 14	1 0 1.0 2 1 0.5 4 2 0.25 8 3 0.125 16 4 0.0625 32 5 0.03125 64 6 0.01562 5 128 7 0.00781 25 256 8 0.00390 625 512 9 0.00195 3125 024 10 0.00097 65625 048 11 0.00048 82812 5 096 12 0.00024 41406 25 192 13 0.00012 20703 125 384 14 0.00006 10351 5625	1 0 1.0 2 1 0.5 4 2 0.25 8 3 0.125 1 16 4 0.0625 32 5 0.03125 2 64 6 0.01562 5 8 128 7 0.00781 25 256 8 0.00390 625 16 33 512 9 0.00195 3125 67 024 10 0.00097 65625 048 11 0.00048 82812 5 134 268 096 12 0.00024 41406 25 536 192 13 0.00012 20703 125 384 14 0.00006 10351 5625 1 073	1 0 1.0 131 2 1 0.5 4 2 0.25 262 8 3 0.125 1 048 16 4 0.0625 32 5 0.03125 2 097 4 194 64 6 0.01562 5 8 838 128 7 0.00781 25 256 8 0.00390 625 16 777 256 8 0.00390 625 16 777 33 554 512 9 0.00195 3125 67 108 024 10 0.00097 65625 048 11 0.00048 82812 5 134 217 268 435 096 12 0.00024 41406 25 536 870 192 13 0.00012 20703 125 384 14 0.00006 10351 5625 1 073 741	1 0 1.0 131 072 2 1 0.5 4 2 0.25 262 144 8 3 0.125 1 048 576 16 4 0.0625 32 5 0.03125 2 097 152 4 194 304 64 6 0.01562 5 8 388 608 128 7 0.00781 25 256 8 0.00390 625 16 777 216 256 8 0.00390 625 16 777 216 33 554 432 512 9 0.00195 3125 67 108 864 024 10 0.00097 65625 048 11 0.00048 82812 5 134 217 728 268 435 456 096 12 0.00024 41406 25 536 870 912 192 13 0.00012 20703 125 384 14 0.00006 10351 5625 1 073 741 824 286 483 648	1 0 1.0 131 072 17 2 1 0.5 4 2 0.25 262 144 18 8 3 0.125 1 048 576 20 16 4 0.0625 32 5 0.03125 2 097 152 21 4 194 304 22 64 6 0.01562 5 8 388 608 23 128 7 0.00781 25 256 8 0.00390 625 16 777 216 24 256 8 0.00390 625 16 777 216 24 33 554 432 25 512 9 0.00195 3125 67 108 864 26 024 10 0.00097 65625 048 11 0.00048 82812 5 134 217 728 27 268 435 456 28 096 12 0.00024 41406 25 536 870 912 29 192 13 0.00012 20703 125 384 14 0.00006 10351 5625 1 073 741 824 30 2 147 483 648 31	1 0 1.0 1.0 131 072 17 0.00000 2 1 0.5 4 2 0.25 262 144 18 0.00000 8 3 0.125 1 048 576 20 0.00000 16 4 0.0625 32 5 0.03125 2 097 152 21 0.00000 64 6 0.01562 5 2 8 38 608 23 0.00000 128 7 0.00781 25 256 8 0.00390 625 16 777 216 24 0.00000 512 9 0.00195 3125 67 16 777 216 24 0.00000 512 9 0.00195 3125 67 108 864 26 0.00000 512 9 0.00195 3125 67 108 864 26 0.00000 004 10 0.00097 65625 0048 11 0.00048 82812 5 134 217 728 27 0.00000 0096 12 0.00024 41406 25 536 870 912 29 0.00000 0096 12 0.00024 41406 25 536 870 912 29 0.00000 0096 12 0.00024 41406 25 536 870 912 29 0.00000 0096 12 0.00024 41406 25 536 870 912 29 0.00000 0096 12 0.00024 41406 25 536 870 912 29 0.00000 0096 12 0.00024 41406 25 536 870 912 29 0.00000 0096 12 0.00004 41406 25 536 870 912 29 0.00000	1 0 1.0 1.0 131 072 17 0.00000 76293 2 1 0.5 4 2 0.25 262 144 18 0.00000 19073 8 3 0.125 1 048 576 20 0.00000 09536 16 4 0.0625 32 5 0.03125 2 097 152 21 0.00000 04768 64 6 0.01562 5 8 388 608 23 0.00000 01192 128 7 0.00781 25 256 8 0.00390 625 16 777 216 24 0.00000 00192 128 7 0.00781 25 256 8 0.00390 625 16 777 216 24 0.00000 00596 33 554 432 25 0.00000 00298 512 9 0.00195 3125 67 108 864 26 0.00000 00298 512 9 0.00195 3125 67 108 864 26 0.00000 00149 024 10 0.00097 65625 048 11 0.00048 82812 5 134 217 728 27 0.00000 00074 026 435 456 28 0.00000 00074 096 12 0.00024 41406 25 536 870 912 29 0.00000 00078 192 13 0.00012 20703 125 384 14 0.00006 10351 5625 1 073 741 824 30 0.00000 00009	1 0 1.0 1.0 131 072 17 0.00000 76293 94531 2 1 0.5 4 2 0.25 262 144 18 0.00000 38146 97265 524 288 19 0.00000 19073 48632 8 3 0.125 1 048 576 20 0.00000 09536 74316 16 4 0.0625 32 5 0.03125 2 097 152 21 0.00000 04768 37158 64 6 0.01562 5 8 388 608 23 0.00000 01192 09289 128 7 0.00781 25 256 8 0.00390 625 16 777 216 24 0.00000 00596 04644 256 8 0.00390 625 16 777 216 24 0.00000 00596 04644 257 9 0.00195 3125 67 108 864 26 0.00000 00149 01161 024 10 0.00097 65625 048 11 0.00048 82812 5 134 217 728 27 0.00000 00014 01161 024 10 0.00097 65625 048 11 0.00048 82812 5 134 217 728 27 0.00000 00074 50580 096 12 0.00048 41406 25 536 870 912 29 0.00000 00018 62645 192 13 0.00012 20703 125 384 14 0.00006 10351 5625 1 073 741 824 30 0.00000 00009 31322 384 14 0.00006 10351 5625 1 073 741 824 30 0.00000 00009 31322	1 0 1.0 1.0 131 072 17 0.00000 76293 94531 25 2 1 0.5 4 2 0.25 262 144 18 0.00000 38146 97265 625 8 3 0.125 1 048 576 20 0.00000 19073 48632 8125 8 3 0.125 1 048 576 20 0.00000 09536 74316 40625 16 4 0.0625 32 5 0.03125 2 097 152 21 0.00000 04768 37158 20312 4 194 304 22 0.00000 02384 18579 10156 64 6 0.01562 5 8 8 388 608 23 0.00000 01192 09289 55078 128 7 0.00781 25 256 8 0.00390 625 16 777 216 24 0.00000 00596 04644 77539 256 8 0.00390 625 16 777 216 24 0.00000 00596 04644 77539 256 8 0.00097 65625 048 11 0.00004 82812 5 67 108 864 26 0.00000 00149 01161 19384 024 10 0.00097 65625 048 11 0.00048 82812 5 134 217 728 27 0.00000 00074 50580 59692 048 11 0.00048 82812 5 536 870 912 29 0.00000 00018 62645 14923 192 13 0.00012 20703 125 384 14 0.00006 10351 5625 1 073 741 824 30 0.00000 00009 31322 57461 2 147 483 648 31 0.00000 00004 65661 28730	1 0 1.0 1.0 1.31 072 17 0.00000 76293 94531 25 1 0.5 4 2 0.25	1 0 1.0 1.0 131 072 17 0.00000 76293 94531 25 1 0.5

10 $\pm n$ IN OCTAL

10	0^n	n			10~	$\cdot n$								1	0^n		n			10	r^{-n}			
	1	0	1.000	000	000	000	000	000	00				112	402	762	000	10	0.000	000	000	006	676	337	66
1	2	1	0.063	146	314	631	463	146	31			1	351	035	564	000	11	0.000	000	000	000	537	657	77
14	14	2	0.005	075	341	217	270	243	66			16	432	451	210	000	12	0.000	000	000	000	043	136	32
1 75	50	3	0.000	406	111	564	570	651	77			221	411	634	520	000	13	0.000	000	000	000	003	411	35
23 42	20	4	0.000	032	155	613	530	704	15		2	657	142	036	440	000	14	0.000	000	000	000	000	264	11
303 24	10	5	0.000	002	476	132	610	706	64		34	327	724	461	500	000	15	0.000	000	000	000	000	022	01
3 641 10	00	6	0.000	000	206	157	364	055	3 7		434	157	115	760	200	000	16	0.000	000	000	000	000	001	63
46 113 20	00	7	0.000	000	015	327	745	152	75	5	432	127	413	542	400	000	17	0.000	000	000	000	000	000	14
575 360 40	00	8	0.000	000	001	257	143	561	06	67	405	553	164	731	000	000	18	0.000	000	000	000	000	000	01
7 346 545 00	00	9	0.000	000	000	104	560	276	41															

MATHEMATICAL EQUIVALENTS

2^x IN DECIMAL

x	\mathbf{z}^{x}	x	\mathbf{z}^x	\boldsymbol{x}	\mathbf{z}^{x}
0.001	1.00069 33874 62581	0.01	1.00695 55500 56719	0.1	1.07177 34625 36293
0.002	1.00138 72557 11335	0.02	1.01395 94797 90029	0.2	1.14869 83549 97035
0.003	1.00208 16050 79633	0.03	1.02101 21257 07193	0.3	1.23114 44133 44916
0.004	1.00277 64359 01078	0.04	1.02811 38266 56067	0.4	1.31950 79107 72894
0.005	1.00347 17485 09503	0.05	1.03526 49238 41377	0.5	1.41421 35623 73095
0.006	1.00416 75432 38973	0.06	1.04246 57608 41121	0.6	1.51571 65665 10398
0.007	1.00486 38204 23785	0.07	1.04971 66836 23067	0.7	1.62450 47927 12471
800.0	1.00556 05803 98468	0.08	1.05701 80405 61380	8.0	1.74110 11265 92248
0.009	1.00625 78234 97782	0.09	1.06437 01824 53360	0.9	1.86606 59830 73615

n log₁₀ 2, n log₂ 10 IN DECIMAL

n	$n \log_{10} 2$	$n \log_2 10$	n	$n \log_{10} 2$	$n \log_2 10$
1	0.30102 99957	3.32192 80949	6	1.80617 99740	19.93156 85693
2	0.60205 99913	6.64385 61898	7	2.10720 99696	23.25349 66642
3	0.90308 99870	9.96578 42847	8	2.40823 99653	26.57542 47591
4	1.20411 99827	13.28771 23795	9	2.70926 99610	29.89735 28540
5	1.50514 99783	16.60964 04744	10	3.01029 99566	33.21928 09489

MATHEMATICAL CONSTANTS IN OCTAL SCALE

$\pi = (3.11037 552421)_{(8)}$	e =	(2.55760 521305) ₍₈₎	$\gamma = (0.44742 \ 147707)_{(8)}$
$\pi^{-1} = (0.24276 \ 301556)_{(8)}$	e ⁻¹ =	(0.27426 530661) ₍₈₎	In $\gamma = -(0.43127 233602)_{(8)}$
$\sqrt{\pi} = (1.61337 611067)_{(8)}$	√ e =	(1.51411 230704) ₍₈₎	$\log_2 \gamma = -(0.62573 \ 030645)_{(8)}$
$\ln \pi = (1.11206 \ 404435)_{(8)}$	log ₁₀ e =	(0.33626 754251) ₍₈₎	$\sqrt{2} = (1.32404 746320)_{(8)}$
$\log_2 \pi = (1.51544 \ 163223) \ (8)$	log ₂ e =	(1.34252 166245) ₍₈₎	$In 2 = (0.54271 \ 027760)_{(8)}$
$\sqrt{10} = (3.12305 \ 407267)_{(8)}$	log ₂ 10 =	(3.24464 741136) ₍₈₎	In 10 = $(2.23273 \ 067355)_{(8)}$

OCTAL COMBINING TABLES

MEMORY REFERENCE INSTRUCTIONS

Indirect Addressing

Refer to octal instruction codes given on the following page.

To combine code for indirect addressing, merge "100000" with octal instruction code.

REGISTER REFERENCE INSTRUCTIONS

Shift-Rotate Group (SRG)

- 1. select to operate A or B.
- 2. select 1 to 4 instructions, not more than one from each column.
- 3. combine octal codes (leading zeros omitted) by inclusive or.
- 4. order of execution is from column 1 to column 4.

A Operations

ı	1	2	3	4
	ALS (1000)	CLE (40)	SLA (10)	ALS (20)
	ARS (1100)			ARS (21)
	RAL (1200)			RAL (22)
	RAR (1300)			RAR (23)
	ALR (1400)			ALR (24)
	ERA (1500)			ERA (25)
	ELA (1600)			ELA (26)
	ALF (1700)			ALF (27)
ı				

B Operations

	1	2	3	4
BLS	(5000)	CLE (4040)	SLB (4010)	BLS (4020)
BRS	(5100)			BRS (4021)
RBL	(5200)			RBL (4022)
RBR	(5300)			RBR (4023)
BLR	(5400)			BLR (4024)
ERB	(5500)			ERB (4025)
ELB	(5600)			ELB (4026)
BLF	(5700)			BLF (4027)

Alter-Skip Group (ASG)

- 1. select to operate on A or B.
- 2. select 1 to 8 instructions, not more than one from each column.
- combine octal codes (leading zeros omitted) by inclusive or.
- 4. order of execution is from column 1 to column 8.

A Operations

1	2	3	4
CLA (2400)	SEZ (2040)	CLE (2100)	SSA (2020)
CMA (3000)		CME (2200)	
CCA (3400)		CCE (2300)	
5	6	7	8
SLA (2010)	INA (2004)	SZA (2002)	RSS (2001)

B Operations

1	2	3	4
CLB (6400)	SEZ (6040)	CLE (6100)	SSB (6020)
CMB (7000)		CME (6200)	
CCB (7400)		CCE (6300)	
5	6	7	8
SLB (6010)	INB (6004)	SZB (6002)	RSS (6001)

INPUT/OUTPUT INSTRUCTIONS

Clear Flag

Refer to octal instruction codes given on the following page.

To clear flag after execution (instead of holding flag), merge "001000" with octal instruction code.

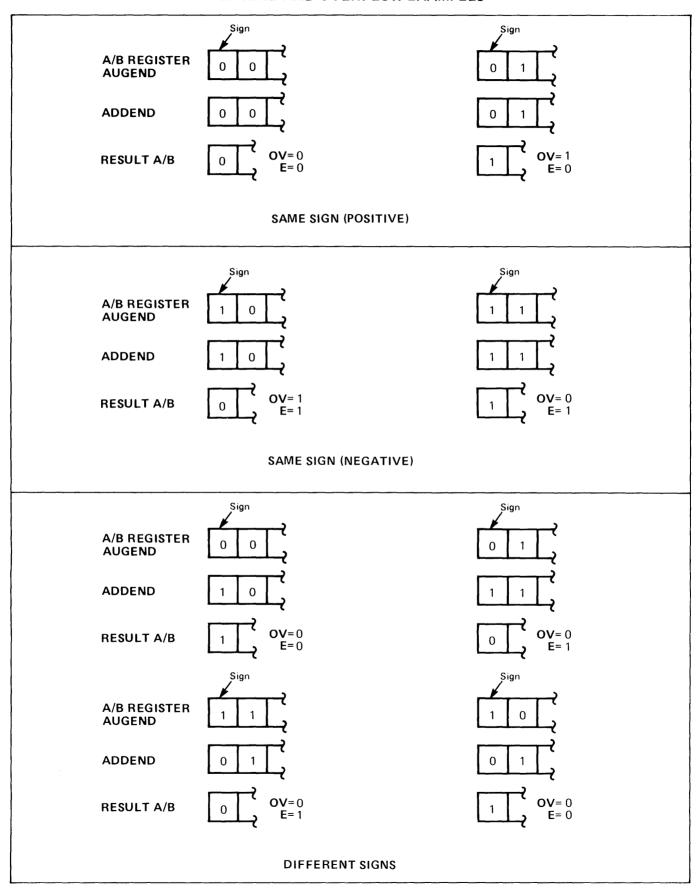
21MXM Appendix

INSTRUCTION CODES IN OCTAL

Memory Reference		Ext. Inst. Group	Dynamic Mapping System
ADA 04(0XX)	CMA 003000	ADX 105746	DJP 105732
ADB 04(1XX)	CMB 007000	ADY 105756	DJS 105733
AND 01(0XX)	CME 002200	CAX 101741	JRS 105715
CPA 05(0XX)	INA 002004	CAY 101751	LFA 101727
CPB 05(1XX)	INB 006004	CBS 105774	LFB 105727
IOR 03(0XX)	RSS 002001	CBT 105766	MBF 105703
ISZ 03(1XX)	SEZ 002040	CBX 105741	MBI 105702
JMP 02(1XX)	SLA 002010	CBY 105751	MBW 105704
JSB 01(1XX)	SLB 006010	CMW 105776	MWF 105706
LDA 06(0XX)	SSA 002020	CXA 101744	MWI 105705
LDB 06(1XX)	SSB 006020	CXB 105744	MWW 105707
STA 07(0XX)	SZA 002002	CYA 101754	PAA 101712
STB 07(1XX)	SZB 006002	CYB 105754	PAB 105712
XOR 02(0XX)		DSX 105761	PBA 101713
Binary		DSY 105771	PBB 105713
– omar y		ISX 105760	RSA 101730
	Input/Output	ISY 105770	RSB 105730
Shift-Rotate	CLC 1067	JLY 105762	RVA 101731
ALF 001700	CLF 1031	JPY 105772	RVB 105731
ALR 001400	CLO 103101	LAX 101742	SJP 105734
ALS 001000	HLT 1020	LAY 101752	SJS 105735
ARS 001100	LIA 1025	LBT 105763	SSM 105714
BLF 005700	LIB 1065	LBX 105742	SYA 101710
BLR 005400	MIA 1024	LBY 105752	SYB 105710
BLS 005000	MIB 1064	LDX 105745	UJP 105736
BRS 005100	OTA 1026	LDY 105755	UJS 105737
CLE 000040	ОТВ 1066	MBT 105765	USA 101711
ELA 001600	SFC 1022	MVW 105777	USB 105711
ELB 005600	SFS 1023	SAX 101740	XCA 101726
ERA 001500	SOC 102201	SAY 101750	XCB 105726
ERB 005500	SOS 102301	SBS 105773	XLA 101724
NOP 000000	STC 1027	SBT 105764	XLB 105724
RAL 001200	STF 1021	SBX 105740	XMA 101722
RAR 001300	STO 102101	SBY 105750	XMB 105722
RBL 005200	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	SFB 105767	XMM 105720
RBR 005300		STX 105743	XMS 105721
SLA 000010	Extended Arithmetic	STY 105753	XSA 101725
SLB 004010	ASL 1000(01X)-	TBS 105775	XSB 105725
	ASR 1010(01X)-	XAX 101747	
	DIV 100400	XAY 101757	
Alter-Skip	DLD 104200	XBX 105747	
CCA 003400	DST 104400	XBY 105757]
CCB 007400	LSL 1000(10X)-		
CCE 002300	LSR 1010(10X)-		
CLA 002400	MPY 100200	1	j
CLB 006400	RRL 1001(00X)-		1
CLE 002100	RRR 1011(00X)-		
	Ł Binary		
	,	Floating Point	1
*-		FAD 105000	
*Assuming: no indirect ad	•	FDV 105000	1
no combined		FIX 105100	1
	first position only	1	1
hold flag afte	r I/O execution		
		FMP 105040	1
Refer to preceding page for o	octal combining tables	FSB 105020	
			

BASE SET INSTRUCTION CODES IN BINARY

15	14	13		12	11	10	9	8		7		6	5	4	3	2	1		0
D/I	AND		001		0	Z/C		<u> </u>				Mem	ory Add	ress —					
D/I	XOR		010		0	Z/C	-						o. , , , au	, 000					
D/I	IOR		011		0	Z/C													
D/I D/I	JSB JMP		001 010		1	Z/C Z/C	}												
D/I	ISZ		011		i	Z/C	Į.												
D/I	AD*		100		A/B	Z/C													
D/I	CP*		101		A/B	Z/C													
D/I D/I	LD* ST*		110 111		A/B A/B	Z/C Z/C													
							<u> </u>	T					I _			Ι _			
15	14	13		12	11	10	9	8		7		6	5	4	3	2	1	······································	0
0	SRG		000		A/B	0	D/E	*LS *RS			000 001		†CLE		‡SL*	*LS *RS		000	
	}				A/B A/B	0 0	D/E D/E	R*L			010		i	D/E D/E		R*L		001 010	
	Į				A/B	0	D/E	R*R			011		}	D/E		R*R		011	
					A/B	0	D/E	*LR			100		1	D/E		*LR		100	
					A/B	O	D/E	ER*			101			D/E		ER*		101	
	1				A/B	0	D/E D/E	EL*			110		İ	D/E		EL.*		110	
					A/B NOP	0 000	<i>D</i> / <i>L</i>	*LF			111 000			D/E 000		*LF		111 000	
15	14	13	,	12	11	10	9	8		7		6	5	4	3	2	1		0
0	ASG		000		A/B	1	CL*	01		CLE		01	SEZ	SS*	SL*	IN*	sz*		RSS
					A/B		CM*	10		CME		10	ļ						
					A/B		CC*	11		CCE		11							
15	14	13		12	11	10	9	8		7		6	5	4	3	2	1		0
1	IOG		000			1	H/C	HLT			000		-		Sele	ect Code			
						1	0	STF			001								
						1 1	1 0	CLF SFC			001 010								
						1	0	SFS			011								
					A/B	1	H/C	MI*			100								
	İ				A/B	1	H/C	LI*			101		ļ						
					A/B	1	H/C H/C	OT* STC			110								
	l				0	1 1	H/C	CLC			111 111		1						
	ŀ					1	0	STO			001			000			001		
	}					1	1	CLO			001		}	000			001		
	İ					1	H/C	SOC			010		ĺ	000			001		
						1	H/C	sos			011			000		Г	001		
15	14	13		12	11	10	9	8		7		6	5	4	3	2	1		0
1	EAG		000		MPY**		000		010					000			000		
					DLD**		000 100		100 010					000			000		
					DST**		100		100					000			000		
					ASR		001		000				0	1	I				
					ASL		000		000				0	1					
					LSR LSL		001 000		000				1 1	0 0		n	umber - of —		
					RRR		000		000				0	0			bits		
				-	RRL		000		001				ō	0					·
15	14	13		12	11	10	9	8		7		6	5	4	3	2	1		0
1	FLTP	Т	000			101			00			AD SB	000		0		000		
												MP	01						
	1										1	DV	01						
											- 1	IX	100						
											F	LT	10	1					
No	tes:	* = A	or B, a	ccordi	I ing to bit 1	1.	Addison transport to the same	L				t	CLE:	Only	this bit	is reaui	ed.	·	
					, H/C cod								SL*:		this bit			B as	
		* *Sec	ond wo	ord is l	Memory A	ddress.								applic	able) ar	e requir	ed.		


BASE SET INSTRUCTION CODES IN BINARY (CONT)

EXTENDED INSTRUCTION	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
GROUP SAX/SAY/SBX/SBY	1	0	0	0	A/B	0	1	1	1	1	1	0	X/Y	0	0	0
CAX/CAY/CBX/CBY	1	0	0	0	A/B	0	1	1	1	1	1	0	X/Y	0	0	1
LAX/LAY/LBX/LBY	1	0	0	0	A/B	0	1	1	1	1	1	0	X/Y	0	1	0
STX/STY	1	0	0	0	1	0	1	1	1	1	1	0	X/Y	0	1	1
CXA/CYA/CXB/CYB	1	0	0	0	A/B	0	1	1	1	1	1	0	X/Y	1	0	0
LDX/LDY	1	0	0	0	1	0	1	1	1	1	1	0	X/Y	1	0	1
ADX/ADY	1	0	0	0	1	0	1	1	1	1	1	0	X/Y	1	1	0
XAX/XAY/XBX/XBY	1	0	0	0	A/B	0	1	1	1	1	1	0	X/Y	1	1	1
ISX/ISY/DSX/DSY	1	0	0	0	1	0	1	1	1	1	1	1	X/Y	0	0	I/D
JUMP INSTRUCTIONS	1	0	0	0	1	0	1	1	1	1	1	1	////	0	1	0
												JLY :				
BYTE INSTRUCTIONS	1	0	0	0	1	0	1	1	1	1	1	1	0			
												,	LBT = SBT = MBT = CBT = SFB =	1 1 1	1 0 0 1 1	1 0 1 0 1
BIT INSTRUCTIONS	1	0	0	0	1	0	1	1	1	1	1	1	1			
													SBS = CBS = TBS =	1	1 0 0	1 0 1
WORD INSTRUCTIONS	1	0	0	0	1	0	1	1	1	1	1	1	1	1	1	
													-		/IW =	

DYNAMIC MAPPING SYSTEM INSTRUCTION CODES IN BINARY

DJP/DJS/UJP/UJS	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 0 0 0 1 0 1 1 1 1 0 1 1 D/U 1 P/S	
JRS	1 0 0 0 1 0 1 1 1 1 0 0 1 1 0 1	
LFA/LFB	1 0 0 0 A/B 0 1 1 1 1 0 1 0 1 1 1	
MBI/MBF	1 0 0 0 1 0 1 1 1 1 0 0 0 1 I/F	
MBW	1 0 0 0 1 0 1 1 1 1 0 0 0 1 0 0	
MWF	1 0 0 0 1 0 1 1 1 1 0 0 0 1 1 0	
MWI/MWW	1 0 0 0 1 0 1 1 1 1 0 0 0 1 I/W 1	
PAA/PAB	1 0 0 0 A/B 0 1 1 1 1 0 0 1 0 1 0	
PBA/PBB	1 0 0 0 A/B 0 1 1 1 1 0 0 1 0 1 1	
RSA/RSB/RVA/RVB	1 0 0 0 A/B 0 1 1 1 1 0 1 1 0 0 S/V	
SJP/SJS	1 0 0 0 1 0 1 1 1 1 0 1 1 0 P/S	l
SSM	1 0 0 0 1 0 1 1 1 1 0 0 1 1 0 0	
SYA/SYB	1 0 0 0 A/B 0 1 1 1 1 0 0 1 0 0 0	!
USA/USB	1 0 0 0 A/B 0 1 1 1 1 0 0 1 0 0 1	
XCA/XCB/XLA/XLB	1 0 0 0 A/B 0 1 1 1 1 0 1 0 1 L/C 0	<u> </u>
XMA/XMB	1 0 0 0 A/B 0 1 1 1 1 0 1 0 0 1 0	l
XMM/XMS	1 0 0 0 1 0 1 1 1 1 0 1 0 0 M/S	
XSA/XSB	1 0 0 0 A/B 0 1 1 1 1 0 0 1 1 0 1	

EXTEND AND OVERFLOW EXAMPLES

INTERRUPT AND I/O CONTROL SUMMARY

INST	S.C. 00	S.C. 01	S.C. 02	S.C. 03	
STC NOP		NOP	Prepares DCPC channel 1 to receive and store the block length in 2's complement form.	Prepares DCPC channel 2 to receive and store the block length in 2's complement form.	
CLC	Clears all Control FF's from S.C. 06 and up; effectively turns off all I/O devices.	NOP	Prepares DCPC channel 1 to receive and store the direction of data flow and the starting memory address.	Prepares DCPC channel 2 to receive and store the direction of data flow and the starting memory address.	
STF Turns on interrupt system.		STO sets overflow bit.	NOP	- NOP	
CLF Turns off interrupt system except power fail (S.C. 04) and parity error (S.C. 05).		CLO clears overflow bit.	NOP	NOP	
SFS	Skip if interrupt system is on.	sos	NOP	NOP	
SFC	Skip if interrupt system is off.	soc	NOP	NOP	
LIA/B	Loads A/B register with all zeros. (Equivalent to CLA/B instruction.)	Loads display register contents into A/B register.	Loads present contents of DCPC channel 1 word count register into A/B register.	Loads present contents of DCPC channel 2 word count register into A/B register.	
MIA/B Equivalent to a NOP.		Merges display register contents into A/B register.	Merges present contents of DCPC channel 1 word count register into A/B register.	Merges present contents of DCPC channel 2 word count register into A/B register.	
ОТА/В	NOP	Outputs A/B register contents into display register.	1. Outputs to DCPC channel 1 the block length in 2's complement form (previously prepared by an STC 02 instruction).	1. Outputs to DCPC channel 2 the block length in 2's complement form (previously prepared by an STC 03 instruction).	
			2. Outputs to DCPC channel 1 the direction of data flow and the starting memory address (previously prepared by a CLC 02 instruction).	2. Outputs to DCPC channel 2 the direction of data flow and the starting memory address (previously prepared by a CLC 03 instruction).	

	S.C. 04	S.C. 05	S.C. 06	S.C. 07	S.C. 10-77
	Re-initializes power-fail logic and restores interrupt capability to lower priority functions.	Turns on memory protect.	Sets Control FF on DCPC channel 1 (activates DMA).	Sets Control FF on DCPC channel 2 (activates DMA).	Sets PCA Control FF and turns on device on chan- nel specified by S.C.
	Re-initialize power-fail logic and restores inter- rupt capability to lower priority functions.	NOP	Clears Control FF on DCPC channel 1 (reestablishes priority with STF; does not turn off DCPC).	Clears Control FF on DCPC channel 2 (reestablishes priority with STF; does not turn off DCPC).	Clears PCA Control FF and turns off device.
	Flag FF sets auto- matically when power comes up. (No pro- gram control possible.)	Turns on parity error interrupt capability.	Aborts DCPC channel 1 data transfer.	Aborts DCPC channel 2 data transfer.	Sets PCA Flag FF.
	Flag FF clears auto- matically when power fail occurs. (No pro- gram control possible.)	Turns off parity error interrupt capability and clears violation register bit 15.	Clears Flag FF on DCPC channel 1.	Clears Flag FF on DCPC channel 2.	Clears PCA Flag FF.
	NOP	Skip if Dynamic Map- ping System (DMS) interrupt.	Tests if DCPC channel 1 data transfer is complete.	Skip if DCPC channel 2 data transfer is com- plete.	Skip if I/O channel Flag FF is set.
	Skip if power fail has occurred.	Skip if memory protect interrupt.	Tests if DCPC channel 1 data transfer is still in progress.	Skip if DCPC channel 2 data transfer is still in progress.	Skip if I/O channel Flag FF is clear.
	Loads contents of central interrupt register (S.C. of last interrupting device) into least-significant bits of A/B register.	Loads contents of violation register into A/B register: Bit 15 = 1 = PE Bit 15 = 0 = MPV	Loads A/B register with all ones. (Equivalent to CCA/CCB instruction.)	Loads A/B register with all ones. (Equivalent to CCA/CCB instruction.)	Loads contents of PCA data buffer into A/B register.
	Merges contents of central interrupt register into least-significant bits of A/B register.	Merges contents of violation register into A/B register.	Same as LIA/B 06 above.	Same as LIA/B 07 above.	Merges contents of PCA data buffer into A/B register.
	NOP	Outputs first address of unprotected memory to fence register.	Outputs to DCPC channel 1 the S.C. of I/O channel. Specify STC after each word; CLC after block.	Outputs to DCPC channel 2 the S.C. of I/O channel. Specify STC after each word; CLC after block.	Outputs data from A/B register into PCA data buffer.
T: 00F					

SALES & SERVICE OFFICES

AFRICA, ASIA, AUSTRALIA

ANGOLA ANGOLA
Telectra
Empresa Técnica de
Equipamentos
Eléctricos, S.A.R.L.
R. Barbosa Rodrigues
Caixa Postal, 6487 .L. es. 42-1 DT Luanda Tel: 35515/6 Cable: TELECTRA Luanda

Cable TELECTRA Luanda
AUSTRALIA
Hewlelt-Packard Australia
Ply Lid
31-41 Joseph Street
Blackburn, Victoria 3130
P. 0. 80x 36
Doncaster East, Victoria 3109
Tel: 89-6351
Telex, 31-024
Cable, HEWPARD Melbourne
Hewlett-Packard Australia Hewlett-Packard Australia

Pty. Ltd.
31 Bridge Street
Pymble
New South Wales, 2073
Tel: 449-6566
Telex: 21561
Cable: HEWPARD Sydney

Cable: HEWPARD Sydney
Hewlett-Packard Australia
Pty. Ltd.
153 Greenhill Road
Parkside. S. A. 5063
Tel: 272-5911
Telex 82536 ADEL
Cable: HEWPARD ADELAID
Hewlett-Packard Australia
Pty 1 id.

Piy Ltd -141 Stirling Highway Nedlands, W. A 6009 Tel: 86-5455 Telex: 93859 PERTH Cable: HEWPARD PERTH Hewlett-Packard Australia Pty. Ltd. Hewlett-Packard Australia
Pty. Ltd
121 Wollongong Street
Fyshwick, A C T. 2609
1el: 95-2733
Telex: 62650 Canberra
Cable: HEWPARD CANBERRA

Hewlett Packard Australia Hewlett Packard Australia Pty. Ltd. 5th Floor Teachers Union Building 495-499 Boundary Street Spring Hill. 4000 Queensland Tel: 229-1544 Cable. HEWPARD Brisbane

GUAM Medical/Pocket Calculators Only Guam Medical Supply. Inc. Jay Ease Building. Room 210 P.O. Box 8947 Tamuning 96911 Tel. 646-4513 Cable: EARMED Guam

HONG KONG Schmidt & Co. (Hong Kong) Ltd P. 0. 80x 297 Connalight Gentre 39th Floor Connaught Road, Central Hong Kong Tel H-255291-5 Telex 74766 SCHMC HX Cable SCHMIDTCO Hong Kong

INDIA
Blue Star Ltd.
Kastun Buildings
Jamshedji Tata Rd
Bombay 400 020
Tel: 29 50 21
Telex 001-2156
Cable BLUEFROST
Blue Star Ltd Blue Star Ltd. Sahas 414/2 Vir Savarkar Marg Prabhadevi Prabhadevi Bombay 400 025 Tel: 45 78 87 Telex: 011-4093 Cable: FROSTBLUE

Blue Star Ltd. Band Box House Prabhadevi Band Box House Prabhadevi Bombay 400 025 Tel: 45 73 01 Telex: 011-3751 Cable: BLUESTAR Blue Star Ltd. 14/40 Civil Lines Kanpur 208 001 Tel: 6 88 82 Cable: BLUESTAR

Blue Star Ltd
7 Hare Street
P.O. Box 506
Calcutta 700 001
Tel: 23-0131
Telex: 021-7655
Cable: BLUESTAR Blue Star Ltd. 7th & 8th Floor

7th & 8th Floor Bhandari House 91 Nehru Place New Delhi 110024 Tel: 634770 & 635166 Telex: 031-2463 Cable: BLUESTAR Capie: BLUESTAR
Blue Star Ltd.
Blue Star House
11/11A Magarath Road
Bangalore 560 025
Tel: 55668
Telex: 043-430
Cable: BLUESTAR

Caole: BLUESTAR
Blue Star Ltd
Meeakshi Mandiran
xxx/1678 Mahatma Gandhi Rd.
Cochin 682 016
Tel: 32069,32161,32282
Telex: 0886-514
Cable: BLUESTAR

Blue Star Ltd. 1-1-117/1 Sarojini Devi Road

Secunderabad 500 003 Tel: 70126, 70127 Cable: BLUEFROST Telex: 015-459 Blue Star Ltd. 2/34 Kodambakkam High Road Madras 600034 Tel: 82056 Telex: 041-379 Cable: BLUESTAR

Cable: BLUESTAR
Blue Star Ltd
Nataraj Mansions
2nd Floor Bistupur
Jamshedpur 831 001
Tel: 7383
Cable: BLUESTAR
Telex: 240

INDONESIA BERCA Indonesia P T. P.O. Box 496:Jkt. JLN•Abdul Muis 62 Jakarta Tel: 40369, 49886,49255,356038 JKT,42895 Cable: BERCACON

BERCA Indonesia P t 63 JL. Raya Gubeng 63 JL. Raya Surabaya Tel: 44309

ISRAEL ISRAEL
Electronics & Engineering Div.
of Motorola Israel Ltd.
17. Kremenetski Street
P.O. Box 25016
Tel-Aviv
Tel-Aviv
Telex: 33569
Cable BASTEL Tel-Aviv

JAPAN
Yokogawa-Hewlett-Packard Ltd
Ohashi Building
59-1 Yoyogi 1-Chome
Shibuya-ku, Tokyo 151
Tel: 03-370-2281/92
Telex: 232-2024/HPP
Cable: YHPMARKET TOK 23-724 Cable YHPMARKET TOK 23-72 Yokogawa-Hewlett-Packard Ltd Chuo Bidg. 4th Floor 4-20. Nishinakajima 5-chome Yodogawa-ku. Osaka-shi Osaka. 532 Tel. 06-304-6021

Yokogawa-Hewlett-Packard Ltd. Nakamo Building 24 Kami Sasajima-cho Nakamura-ku, **Nagoya**, 450 Tel: (052) 571-5171 Tei: (052) 571-5171 2 Yokogawa-Hewlett-Packard Lid Tanigawa Building 2-24-1 Tsuruya-cho Kanagawa-1 Yokohama. 221 Tel: 045-312-1252 Telex 382-3204 YHP YOK

NEW ZEAL AND Yokogawa-Hewlett-Packard Ltd Mito Mitsu Building 105. Chome-1,San-no-maru

Mito. Ibaragi 310 Tel: 0292-25-7470 Yokogawa-Hewlett-Packard Ltd. Inoue Building 1348-3, Asahi-cho, 1-chome Atsugi, Kanagawa 243 Tel: 0462-24-0452

Tef: 0462-24-0452 Yokogawa-Hewlett-Packard Ltd. Kumagaya Asahi Hachijuni Building 4th Floor 3-4, Tsukuba Kumagaya, Saitama 360 Tel: 0485-24-6563

KENYA
Technical Engineering
Services(E.A.)Ltd..
P.O. Box 18311
Nairobi
Tel: 557726/556762
Cable: PROTON

Cable: PHOTON
Medical Only
International Aeradio(E. A.)Ltd.,
P. O. Box 19012
Nairobi Airport
Nairobi
Tel. 336055/56
Telex: 22201/22301
Cable: INTAERIO Nairobi

Cable: INTAERIO Nairobi
KOREA
Samsung Electronics Co., Ltd
20th Fl. Dongbarg Bidg, 250, 2-KF
CP.0 Box 2775
Taepyung-Ro, Chung-Ku
Seoul
Tel (23) 6811
Telex 22575
Cable: ELEKSTAR Seoul

MALAYSIA Teknik Mutu Sdn. Bhd. 2 Lorong 13/6A Section 13 Petaling Jaya. Selangor Tel. 54994/549l6 Telex: MA 37605 Protel Engineering P.O. Box 1917 Lot 259. Satok Road Kuching, Sarawak Tel: 2400 Cable. PROTEL ENG

MOZAMBIQUE MOZAMBIQUE
A N. Goncalves. Lta.
162. 1 Apt 14 Av D. Luis
Caixa Postal 107
Lourenco Marques
Tel: 27091, 27114
Telex: 6-203 NEGON Mo
Cable: NEGON

Hewlett-Packard (N.Z.) Ltd P.O. Box 9443 Courtenay Place

Wellington Tel: 877-199 Telex: NZ 3839 Cable: HEWPACK Wellington Hewlett-Packard (N.Z.) Ltd.
Pakuranga Professional Centre
267 Pakuranga Highway
Box 51092

Box 51092

Pakuranga
Tel 569-651
Cable HEWPACK, Auckland
Analytical/Medical Only
Medical Supplies N Z Ltd
Scientific Division
79 Carlton Gore Rd. Newmarket
P. 0. Box 1234
Auckland
Tel 75-289
Cable DENT AL, Auckland

Cable DENTAL Auckland Analytical/Medical Only Medical Supplies N Z Ltd. P.O. Box 1994 147-161 Tory St. Wellington Tel: 850-799 Telex: 3858 Cable: DENTAL, Wellington

Cable: DENTAL, Wellington
Analytical/Medical Only
Medical Supplies N Z Ltd.
P 0 Box 309
239 Stammore Road
Christchurch
1ct: 892-019
Cable: DENTAL, Christchurch

Analytical/Medical Only Medical Supplies N.Z. Ltd. 303 Great King Street P.O. Box 233 Dunedin Tel: 88-817 Cable: DENTAL, Dunedin

tions Ltd. 144 Agege Motor Road, Mushin P.O. Box 6645

Lagos Cable THETEIL Lagos PAKISTAN Mushko & Company. Ltd Oosman Chambers Abdullah Haroon Road Karachi-3 Tel: 511027, 512927 Telex 2894 Cable. COOPERATOR Karachi

Cable: COOPERATOR Kara Mushko & Company. Ltd 38B. Satellite Town Rawalpindi Tel: 41924 Cable: FEMUS Rawalpindi

PHILIPPINES
The Online Advanced
Systems Corporation
8th Floor, Filcapital Bldg. Ayala Avenue Makati, Metro**Manila** Tel: 85-35-81, 85-34-91 Telex: 3274 ONLINE

BHODESIA RHODESIA Field Technical Sales 45 Kelvin Road North P.O. Box 3458 Salisbury Tel: 705231 (5 lines) Telex: RH 4l22

SINGAPORE Hewlett-Packard Singapore Hewlett-Packard Singar (Pte.) Ltd. 1150 Depot Road Alexandra P.O. Box 58 Singapore 4 Tel: 270-2355 Telex HPSG RS 21486 Cable: HEWPACK, Singapore

Cable. HEWPACK. Singapore
SOUTH AFRICA.
Hewlett-Packard South Africa
(Pty.) Ltd
Private Bag Wendywood
Sandton. Transvaal 2144
Hewlett-Packard Centre
Daphne Street. Wendywood.
Sandton. Transvaal 2144
Tel 802-10408
Telex. 8-4782
Cable. HEWPACK JOHANNESBURG

Service Department Hewlett-Packard South Africa

Service Department Hewlett-Packard South Africa (Pty.). 1.td. P. 0. Box 39325 Gramley, Sandton. 2018 Gramley, Sandton. 2011 Tel 636-8188.9 Tellox. 8:2391 Tellox. 8:2391 Tellox. 8:2391 Tellox. 8:2391 Tellox. 8:2391 Tellox. 8:2391 Tellox. 8:2391 Tellox. 8:2391 Tellox. 8:2391 Tellox. 8:2391 Tellox. 8:2391 Tellox. 8:2391 Tellox. 8:2391 Tellox. 8:2391 Tellox. 8:2391 Tellox. 8:2391 Tellox. 8:2391 Tellox. 8:2391 Tellox. 9:391
TAIWAN
Hewlett-Packard Far East Ltd.
Taiwan Branch
39 Chung Hsiao West Road
Sec. 1. 7th Floor

Taipei Tel: 3819160-4 Cable HEWPACK TAIPEI Hewlett-Packard Far East Ltd Taiwan Branch 68-2. Chung Cheng 3rd. Road **Kaohsiung** Tel: (07) 242318-Kaohsiung

Tel: (07) 242318-Kaohsiung Analytical Only San Kwang Instruments Co . Etd No 20, Yung Sui Road **Taipei** Tel: 3715/17-4 (5 lines) Telex 22894 SANKWANG Cable SANKWANG TAIPEI

TANZANIA TANZANIA Medical Only International Aeradio (E.A.), Ltd P.O. Box 861 Dar es Salaam Tel: 21251 Ext 265 Telex: 41030

THAILAND UNIMESA Co., Ltd Elcom Research Building 2538 Sukunnyt Ave Bangkok Tel: 3932387, 3930338 Cable, UNIMESA Bangkok

UGANDA Medical Only International Aeradio(£.A.), Ltd P.O. Box 2577 Kampala Tel 54388 Cable INTAERIO Kampala

ZAMBIA R.J Tilbury (Zambia) Ltd P.O Box 2792 Lusaka Tel: 73793 Cable ARJAYTEE, Lusaka

OTHER AREAS NOT LISTED, CONTACT:
Howest-Packard Intercontental
300 Hillows Web
Palo Arto, Californa 94304
Tell (415) 493 1501
TWX 910-373-1267
Cable HEWPACK Palo Atto
Telex (034-800), 034-8493

CANADA

ALBERTA Hewlett-Packard (Canada) Ltd. 11620A - 168th Street Edmonton15M 3T9 Tel (403) 452-3670 IWX 610-831-2431 EDTH Hewlett-Packard (Canada) Ltd. 210,7220 Fisher St. S.E. Calgary T2H 2H8 Tel: (403) 253-2713 Twx: 610-82I-6I4I

BRITISH COLUMBIA Hewlett-Packard (Canada) Ltd 837 E. Cordova Street Vancouver V6A 3R2 Tel: (604) 254-0531 TWX: 610-922-5059 VCR

MANITOBA Hewlett-Packard (Canada) Ltd 513 Century St St. James Winnipeg R3H OL8 Tet: (204) 786-7581 TWX 610-671-3531 MANITOBA

NOVA SCOTIA Hewlett-Packard (Canada) Ltd 800 Windmill Road Dartmouth B3B 1L1 Tel: (902) 469-7820 TWX 6I0-27I-4482 HFX

ONTARIO Hewlett-Packard (Canada) Ltd 1020 Morrison Dr. Ottawa K2H 8K7 Tel: (613) 820-6483 TWX: 610-563-1636 Hewlett-Packard (Canada) Ltd 6877 Goreway Drive Mississauga £4V 1M8 Tel: (416) 678-9430 TWX. 610-492-4246

QUEBEC Hewlett-Packard (Canada) Ltd 275 Hymus Blvd Pointe Claire H9R 1G7 Tel: (514) 697-4232 TWX 610-422-3022 TLX 05-821521 HPCL

FOR CANADIAN AREAS NOT LISTED Contact Hewlett-Packard (Canada) Ltd. in Mississauga

CENTRAL AND SOUTH AMERICA

ARGENTINA Lewlett-Packard Argentina S.A. Av. Leandro N. Alem 822 - 12 1001**Buenos Aires** Tel: 31-6063,4,5,6 and 7 Telex. Public Booth N.9 Cable: HEWPACK ARG

BOLIVIA BOLIVIA Casa Kavin S.A Calle Potosi: 1130 P O Box 500 La Paz Tel: 41530.53221 Telex: CWC BX 5298.ITT 3560082 Cable: KAVLIN

BRAZII.
Hewlett-Packard do Brasil
I.e.C. Ltda.
Avenida Rio Negro, 980
Alphaville
06400Barueri SP
Tel: 429-2148/9.429-2118/9

Hewlett-Packard do Brasil Hewlett-Packard do Brasii I.e.C. Ltda. Rua Padre Chagas, 32 90000-**Pôrto Alegre**-RS Tel: (0512) 22-2998, 22-5621 Cable: HEWPACK Potto Alegre Hewlett-Packard do Brasil I.E.C. Ltda. Rua Siqueira Campos, 53 Copacabana Copacabana 20000-Rio de Janeiro Tel. 257-80-94-DDD (021) Telex: 39I-212-I905 HEWP-BR Cable: HEWPACK Rio de Janeiro

CHILE
Calcagn: y Metcalfe Ltda
Alameda 580-01. 807
Casilla 2118
Santiago. 1
Tel: 398613
Telex: 3520001 CALMET
Cable CALMET Santiago

COLOMBIA Instrumentación
Henrik A. Langebaek & Kier S.A.
Carrera 7 No. 48-75
Apartado Aéreo 6287
Bogotá, 1 D.E.
Tel: 69-88-77 Cable: AARIS Bogotá Telex: 044-400

COSTA RICA COSTA RICA
Cientifica Costarricense S A.
Calle Central, Avenidas 1 y 3
Apartado 10159
San José
Tel: 21-86-13
Cable: GALGUR San José

ECUADOR Medical Only A F Vizcaino Compañía Ltda Av. Rio Amazonas No. 239 P.O. Box 2925 P.O. Box 2925 **Quito** Tel: 242-150,247-033/034 Cable: Astor Quito

Calculators Only Computadoras y Equipos Electrónicos P.O. Box 6423 CCI Eloy Alfaro #1824.3 Piso Quito Tels: 453482 Telex: 02-2113 Sagita Ed Cable: Sagita-Quito

EL SALVADOR Instrumentacion y Procesamiento Electronico de el Salvador Bulevar de los Heroes II-48 San Salvador Tel: 252787

GUATEMALA IPESA Avenida La Reforma 3-48. Zona 9 Guatemala City Tel: 63627, 64786 Telex: 4192 Teletro Gu

MEXICO
Hewlett-Packard Mexicana,
S.A. de C.V
Torres Adalid No. 21, 11 Piso
Col. del Valle
Mexico 12, D.F
Tel: (905) 543-42-32
Telex: 017-74-507

Hewlett-Packard Mexicana, S.A. de C.V. Ave. Constitución No. 2184 Monterrey, N.L. Tel: 48-71-32, 48-71-84 Telex: 038-843

NICARAGUA Roberto Terán G Apartado Postal 689 Edificio Terán Editicio Terán Managua Tel: 25114, 23412,23454 Cable: ROTERAN Managua Calculators Only Científice Costarricewse S.A. Ciudad Jardin D-1 Managua Tel: 24108

PANAMA PANAMA
Electrónico Balboa, S.A.
P.O. Box 4929
Calle Samuel Lewis
Cuidad de Panama
Tel: 64-2700
Telex: 3431103 Curunda.
Canal Zone
Cable: ELECTRON Panama PARAGUAY
Z.J. Melamed S.R.L.
División. Aparatos y Equipos
Médicos
División. Aparatos y Equipos
Científicos y de Investigación
P.O.Box 676
Chile-482. Edificio Victoria
Asunción

Asunción Tel: 91-271, 91-272 Cable: RAMEL PERU

PERU Compañía Electro Médica S.A Los Flamencos 145 San Isidro Casilla 1030 Lima 1 Tel: 41-4325 Cable: ELMED Lima

PUERTO RICO
Hewlett-Packard Inter-Americas
Puerto Rico Branch Office
Calle 272.
No. 203 Urb. Country Club
Carolina 00924
Tel: (809) 762-7255
Telex: 345 0514

URUGUAY
Pablo Ferrando S.A.
Comercial e Industrial
Avenida Italia 2877
Casilla de Correo 370
Montevideo
Tel. 40-3102
Cable: RADIUM Montevideo

VENEZUELA Hewlett-Packard de Venezuela Hewlett-Packard de Venezi C.A P.O Box 50933 Caracas 105 Los Ruices Norte 3a Transversal Etilico Segre Caracas 107 Tel 35-00-11 (20 lines) Telex 25146 HEWPACK Cable HEWPACK Caracas

FOR AREAS NOT LISTED, CONTACT Hewlett-Packard Inter-Americas 3200 Hillview Ave Palo Atto. California 94304 Tel. (415) 493-1501 TWX 910-373-1260 Cable: HEWPACK Palo Alto Telex. 034-8300, 034-8493

EUROPE. NORTH AFRICA AND MIDDLE EAST

AUSTRIA Hewlett-Packard Ges m b H Handelskai 52 P 0 box 7 A-1205 Vienna let (0222) 351621 to 27 cable HEWPAK Vienna Telex 75923 hewpak a

BELGIUM Hewlett-Packard Benelux S.A. N.V Avenue de Col-Vert. 1. Avenue de Col-Vert. 1. |Groenkraaglaan| |B-1170 **Brussels** |Tel-(02) 672-22-40 |Cable PALOBEN Brussels |Telex-23-494 paloben bra

CYPRUS CYPRUS Kypronics 19. Gregorios & Xenopoulos Rd P.O. Box 1152 CY-Nicosia Tel 45628.29 Cabbe KYPRONICS PANDEHIS Telex 3018

CZECHOSLOVAKIA
Vyvojova a Provozni Zakladna
Vyzkumnych Ustavu v Bechovicich
CSSR-25097 Bechovice u Prahy
Fel 89 93 41
Telex 121333

Telex 121333 Institute of Medical Bionics Vyskumny Ustav Lekarskej Bioniky Jedfova 6 CS 88346 Bratislava-Kramare Tel 44 551-45-541

DDR Entwicklungslabor der TU Dresden Forschungsinstitut Meinsberg ODR-7305

Waldheim/Meinsberg Tel: 37-667 Telex: 112145 Export Contact AG Zuerich Export Consus.
Guenther Forgher Schlegelstrasse 1040 **Berlin** Fel 42-74-12 Telex 111889

OENMARK Hewlett-packard A:S Datave; 52 DK 3450 Birkerød fet (02) 81 56 40 Cable HEWPACK AS Telex 156 40 hpas Hewlett-Packard A.S. Navervej 1 OK 8600 Silkeborg Tel (06) 82 71 66 Telex 166 40 hpas Cable HEWPACK AS

FINLAND
Hewlett Packard OY
Nahkahousuntie 5
P.O. Box 6
SF 00211 Helsinki 21 Tel (90) 6923031 Cable HEWPACKOY Helsink Telex 12-1563 HEWPA SF

FRANCE
Hewlett-Packard France
Ouartier de Courtaboeuf
Botte Postale No 6
F-91401 Orsay Cedex
Tel 111,907 78 25
Cable HEWPACK Orsay
Telex 600048
Hewlett-Packard France
Agency Hégionale
Le Saquin
Chemin des Mouilles

B P 162 F-69130 Ecully Tel: (78) 33-81-25 Cable: HEWPACK Equiy Telex: 31-06-17

Cable HEWPFACK Foury
Telex 310 GA

Agence Régionale
Péricentre de la Cépière, 20

F 31300 Toulouse-Le Mirail
Telex 100 1132

Cable HEWPFACK 51957

Hewlett-Packard France
Agence Régionale
Aéroport principal de
Aéroport principal
Telex 510357

La 13/21 Marginane
La 13/21 Marginane
La 13/21 Marginane
La 13/21 Marginane
La 191 R9 17 36

Cable HEWPFACK MARGN

Tolex 410770

Flewett Packard France

Telex 410770
Hewrett Packard France
Agence Regionale
63. Avenue de Rochester
B P 1124
F 35014 Rennes Cedex
Tel (99) 36 33 21
Cable HEWPACK 74912
Telex 740912

Telex 740912 Hewlett-Packard France Agence Régionale 74 Allée de la Robertsau F-67000 **Strasbourg** Tel (88) 35 23 20.21 Telex 890141 Cable HEWPACK STRBG

Cable HEWPACK STRBI Hewlett-Packard France Agence Regionale Centre Vauban 201. rue Colbert Entrée A2 F-59000 Litle Fel (20) 51 44 14 felex 820744

telex #20744
Hewiett-Packard France
Gentre d' Affaires Paris Nord
Bătiment Ampère
Rue de La Commune de Paris
B P 300
F 93153 Le Blanc Mesnil Ceder
Let (03) 931 88 50

Tel (0): 931-88-50

GERMAN FEDERAL

HEPUBLIC

Hewlett Packard GmbH

Vertitebszentrale Frankfurt

Posttach 560-140

Posttach 560-140

Posttach 560-140

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Following Frankfurt

Follo Hewlett Packard GmbH Technisches Buero Böblingen Technisches Buero Böblingen Herrenbergerstrasse 110 0-7030 Böblingen Wurttemberg Tel (07031: 667 1 Cable HEPAK Böblingen Telex 07265739 bbr

Telex 07265739 bb: Hewlett-Packard GmbH Technisches Buero Dusseldort Emanuel-Leutze Str. 1 (Seestern) D-4000 Dusseldorf 11 Tel (0211) 59711 Telex 085 86 533 hpdd d

Hewlett-Backard GmbH Hewlett-Backard GmbH Technisches Buero Hamburg Wendenstrasse 23 D-2000 Hamburg Tel (040) 24 13 93 Cable HEWPACKSA Hamburg Telex 21 63 032 hpth d

Hewlett Packard GmbH Technisches Buero Hannove Techniscies buelo framover Am Grossmarkt 6 D-3000 **Hannover-Kleefeld 91** Tel (0511) 45 60 01 Telex 092 3259

Telex 092 3259
Hewlett Packard GmbH
Werk Groetzingen
Ohmstrasse 6
D-7500 Karlsruke 41
Tel: (0721) 69 40 06
Telex 07-825707

relex 07-825707 Hewlett-Packard GmbH Technisches Buero Nuremberg Neumeyer Str. 90 D-8500 Nuremberg Tel. (0911) 56-30-83-85 Telex 0623-860

Telex 0623 860 Hewlett-Packard GmbH Technisches Buero Muncher Unterhachinger Strasse 28 ISAR Center D 8012 Ottobrunn Fel 1089 601 30 61 7 Cable HEWPACKSA Munchen Telex 0524985 Hewlett-Packard GmbH Technisches Buero Bert

GREECE

GREECE Kostas Karayannis 18, Ermou Street GR Athens 126 Tel 3237731 Caple BAKAR Athens Telex 21 59 62 (kar gr Analytical Only INTECO: G. Papathanassiou & Co.

Marin 17 GR Athens 103 Tel 522 1915 Cable INTEKNIKA Athens Telex 21 5329 INTE GR Medical Only Technomed Helias Ltd

Technomed Helias Lto 52 Skoufa Street GR Athens 135 Tel: 362 6972 363 3830 Cable etalak athens Telex: 21-4693 ETAL GR

HUNGARY Mrsa Muszerugy: és Méréstechnikai Szolgalata Jenin Krt. 67 Tel. 42 03 38 Telex. 22 51 14

ICELAND ICELAND
Medical Only
Elding Trading Company∃nc
Hafnarhvoli Tryggvatotu
IS-Reykjavik
Tel 158 20
Cable ELDING Reykjavik

HRAN
Hewiett-Packard fran Ltd
No. 13, Fourteenth St
Mirremad Avenue
P. G. Box 41, 2419
HR-Tehran
Tel. 851082, 7
Telex. 213405 HEWP IR

IRAO lett-Packard Tradino Co Hewlett Packard Traums Mansoor City Baghdad Tel: 5517827 Telex: 2455 Hepairag ik Cable: HEWPACDAD Baghdad Iraq

IRELAND Hewlett Packard Ltd King Street Lane GB-Winnersh, Wokingham Berks RG11 5AR Tei (0734) 78 47 74 Telex 847178.848179

HALY Hewlett-Packard Italiana S p A Via Amerigo Vespuco 2 Casella postare 3645 1 20100 Milano Fel (2) 625 1 10 lines) Cable HEWPACKIT Milano Felex 32046

Felex 32046 Hewlett Packard Italiana S.p. A. Via Pietro Maroncelli 40 rang. Via Visentini I-35100 Padova Feli 449 J66 48 88 Felex. 41612 Hewpacki Medical only Hewlett Packard Italiana S o A

Hewlett Packard Italiana S.p. A. Vas d. Abhard. 17 1-55100 Pisa. 17 1-55100 Pisa. 17 1-55100 Pisa. 17 1-55100 Pisa. 17 1-55100 Pisa. 18 1-55100 Pisa. 18 1-55100 Pisa. 18 1-5510 Pisa. 18 1-55

Hewlett-Packard Italiana S p A Corso Giovanni Lanza 94 I-10130 **Torino** Tel: (011) 682245-659308 Medical Calculators Only Hewlett Packard Italiana S.p. A Via Principe Nicola 43 G/C I-95126 **Catania** Tel (095) 37 05 04

Hewlett-Packard Italiana S.p. A. Via Amerigo Vespucci. 9 I-80142 Napoli Tel. (081) 33 77 11 Hewlett-Packard Italiana S.p.A. Via E. Masi. 9/B I-40137 Bologna Tel: (051) 30 78 87

KUWAIT Al-Khaldiya Trading & Contracting Co P.O. Box 830 Kuwait Tel 42 49 10 Cable VISCOUNT

LUXEMBURG Hewlett-Packard Benelux S.A. N.V. Avenue du Col-Vert. 1. (Groenkraaglaan) B-1170 Brussels Tel. (02) 672-22-40 Cable. PALOBEN Brussels Telex. 23-494

MOROCCO Gerep 190. Blvd. Brahim Roudani Casablanca Tel 25-16-76-25-90-99 Cable Gerep-Casa Telex 23739

NETHERLANDS NETHERLANDS Hewlett-Packard Benelux N V Van Heuven Goedhartlaan 121 P 0 Box 667 NL-1134 Amstelveen Tel (020) 47 20 21 Cable PALOBEN Amsterdam Telex 13 216 hepa ol NORWAY Hewlett-Packard Norge A/S Box 149 N. 1344 Hash Tel (02) 53 83 60 Telex 16621 honas

POLAND POLAND Biuro Informacji Technicznej Hewleth Packard U1 Stawki 2, 6P 00-950Warszawa Tel 395962:395187 Telex 81 24 53 hepa pl

Telex 81 24 53 nepa pi UNIPAN Zaklad Doswiadczalny Budowy Agaratury Naukowej U1 Krajowej Rady Narodowej 51/55 00-800 Warszawa Tel 36190 Telex 81 46 48 Zakłady Naprawcze Sprzetu Medycznego Płac Komuny Paryskiej 6 90-007 Lodź Tel 334-41, 337-83

Tel: 334-41, 337-83

POPTUGAL

Telectra-Empresa Técnica de Equipamentos Eléctricos S a r1
Rus Rodrigo da Fonseca 103

P 0 Box 2531

Tel: (19) 68 60 72

Cable: TELECTRA Lisbon
Telex: 125-98

Medical cell: Medical only

Mundinter Intercambio Mundial de Comércio Sar! Av A de Aquiar 138 P 0 Box 2761 P - Lisbon Tel (19) 53 21 31:7 Cable INTERCAMBIO Lisbon

RUMANIA Hewlett-Packard Reprezentanta Bd N Balcescu 16 Bd N Baicescu 16
Bucharest
Tel 158023 13885
Telex 10440
LLR U C
Intreprinderea Pentru
Intretetinerea
Si Repararea Utilajelor de Calcul
B-dul prof Dimitire Pompei 6
Bucharest Sectorul 2
Tel 12 64 30
Telex 11716

SAUDI AFIABIA
Modern Electronic Establishment
King Abdul Azız str (Head office)
P 0 Box 1228
Jeddah
Tel 31173-332201
Cable ELECTRA

P O Box 2728 (Service center)
Riyadh
Tel 62596-56232
Cable RAOUFCO SPAIN
Hewlett-Packard Española, S A
Jerez, Calle 3
E-Madrid 16
Tel (1) 438 26 00 (10 lines)
Telex. 23515 hpe

Telex 23515 hpe
Hewlett Packard Española, S A
Milanesado 21-23
E Barcelona 17
Tel (3) 203 6200 (5 lines)
Telex 52603 hpbe e
Hewlett Packard Española, S A
Av Ramón y Cajal 1
Edifico Sevilla, planta 9.
Española 5 -Seville 5 let 64 44 54/58

Hewlett-Packard Española S A Edificio Albia II 7 B -Bilbao-1 fel: 23 83 06/23 82 06 Calculators Only Hewlett-Packard Española S A. Gran Via Fernando El Católico. E-Valencia-8 Tel: 326 67 28/326 85 55

Enighetsvågen 1-3 Fack S-161 20 Bromma 20 Tel (08) 730 05 50 Cable MEASUREMENTS Stockholm Telex 10721 Hewlett-Packard Sverige AB Ostra Vintergatan 22 S-702 40 Orebro Tel (019) 14 07 20 Hewlett-Packard Sverige AB Frotallsgatan 30 Frotallsgatan 30 Fel (031) 49 09 50 Telex 10721 Via Bromma Office SWITZERLAND

SWITZERLAND Hewlett-Packard (Schweiz) AG Zurcherstrasse 20 P 0 Box 307 CH-8952 Schlieren-Zurich Tel (01) 730 52 40/730 18 21 Cable HPAG CH Tellex. 53933 hpag ch Telex. 53933 hpag ch Hewlett-Packard (schweiz) AG Château Bioc 19 CH-1219 Le Lignon-Geneva Tel: (022) 96 03 22 Cable HEWPACKAG Geneva Telex: 27 333 hpag ch

SYRIA
Medical:Calculator only
Sawah & Co
Place Azmé
B P 2308
SYR-Damascus
Tel 16367 19697, 14268
Cable SAWAH, Damascus

TURKEY Telekom Engineering Bureau P.O. Box 437 F.O. Box 437 Beyoglu TR-I**stanbul** Tel: 49 40 40 Cable TELEMATION Istanbul Telex. 23609 Medical only E.M.A. c.m.a. Muhendislik Kollektif Sirketi Adakale Sokak 41/6 TR-Ankara Tel: 175622 Analytical only

Kizilay TR-**Ankara** Tel: 25 03 09 Telex. 42576 Ozek tr UNITED KINGDOM Hewlett-Packard Ltd King Street Lane GB-Winnersh, Wokingham Berks. RG11 5AR Tel (0734) 78 47 74 Cable: Hewpire London Telex:847178/9

Yilmaz Ozyurek Milli Mudafaa Cad No. 16/6

Hewlett-Packard Ltd Trafalger House, Navagation Road Altrincham Cheshire WA14 1NU

Tel: (061) 928 6422 Cable: Hewpie Manchester Telex: 668068

Hewlett-Packard Ltd. Lygon Court Hereward Rise Dudley Road Halesowen. West Midlands 862 8SD Tel: (021) 550 9911 Telex: 339105

Hewlett-Packard Ltd Wedge House 799, London Road GB-Thornton Heath Surrey CR4 6XL Tel: (01) 684 0103/8 Telex: 946825

Hewlett-Packard Ltd.
c/o Makro
South Serviceholesale Centre
Wear Industrial Estate
Washington
GB-New Town. County Durham
Tel. Washington 464001 ext. 57/58

Hewlett-Packard Ltd 10, Wesley St. GB-Castleford West Yorkshire WF10 1AE Tel: (09775) 50402 Telex: 557355

Hewlett-Packard Ltd 1, Wallace Way GB-Hitchin Herts Tel: (0462) 52824/56704 Telex: 825981

USSR USSR
Hewlett-Packard
Representative Office USSR
Pokrovsky Boulevard 4/17-KW 12
Moscow 101000
Tel 294-2024
Telex: 7825 hewpak su

YUGOSLAVIA Iskra-standard/Hewlett-Packard Miklosiceva 38/VII 61000 Ljubljana Tel: 31 58 79/32 16 74 Telex: 31583

SOCIALIST COUNTRIES NOT SHOWN PLEASE CONTACT: Hewlett-Packard Ges.m.b.H P.O. Box 7 A-1205 Vienna. Austria Tel. (0222) 35 16 21 to 27 Cable: HEWPAK Vienna Telex. 75923 hewpak a

Telex: 75923 newpak a
MEDITERRANEAN AND
MIDDLE EAST COUNTRIES
NOT SHOWN PLEASE CONTACT:
Hewlett Packard S A.
Mediterranean and Middle
East Kope House
Kope House
Refallarou
GR.Kifissia-Athens. Greece
Tel: 8080337/359/429
Telex: 21-658
Telex: 21-658
Telex: 21-658
Telex: 21-658
Telex: 21-658
Telex: 21-658
Telex: 21-658
Telex: 21-658
Telex: 21-658
Telex: 21-658
Telex: 21-658
Telex: 21-658
Telex: 21-658
Telex: 21-658
Telex: 21-658
Telex: 21-658
Telex: 21-658
Telex: 21-658

CADIE: HEWPACKSA Athens
FOR OTHER AREAS
NOT LISTED CONTACT
Hewlett-Packard S.A.
7, rue du Bois-du-Lan
P.O. Box
CH-1217 Meyrin 2 - Genev.
Switzeland l. Box 1217 Meyrin 2 - Geneva Switzerland Tel: (022) 82 70 00 Cable: HEWPACKSA Geneva Telex: 2 24 86

UNITED STATES

ALABAMA 8290 Whitesburg Dr., S.F. P.O. Box 4207 Huntsville 35802 Tel. (205) 881-4591

Medical Only 228 W. Valley Ave. Room 220 Birmingham 35209 fet (205) 942-2081 2

ARIZONA ARIZONA 2336 £ Magnolia St Phoenix 85034 Tel (602) 244-1361 2424 East Aragon Rd Tucson 85706 Tel (602) 294-3148

*ARKANSAS Medical Service Only P.O. Box 5646 Brady Station Little Rock 72215 Tei. (501) 376-1844

CALIFORNIA 1430 East Orangethorpe Ave Fullerton 92631 Tel (714) 870-1000 3939 Lankershim Boulevard North Hollywood 91604 Tel (213) 877-1282 TWX 910-499-2671 6305 Arizona Place **Los Angeles** 90045 Fei: (213) 649-2511 FWX: 910-328-6147

*Los Angeles Tel: (213) 776-7500 3003 Scott Boulevard Santa Clara 95050 Tel: (408) 249-7000 TWX: 910-338-0518

'Ridgecrest Tel (714) 446-6165 646 W North Market Blvd Sacramento 95834 Tel (916) 929-7222

9606 Aero Drive P.O. Box 23333 San Diego 92123 Fei. (714) 279-3200

COLORADO 5600 South Ulster Parkway Englewood 80110 Fel. (303) 771-3455

CONNECTICUT 12 Lunar Drive New Haven 06525 Tel. (203) 389-6551 TWX: 710-465-2029

FLORIDA
P () Box 24210
2806 W Oakland Park Blvd
Ft. Lauderdale 33311
fet (305) 731-2020
"Jacksonville
Medical Service only
fet (904) 398-0663 P 0 Box 13910 6177 Lake Ellenor Dr Orlando 32809 Fel: (305) 859-2900 P 0 Box 12826 **Pensacola** 32575 Fel (904) 476-8422

GEORGIA P 0 Box 105005 Atlanta 30348 Tel (404) 955-1500 TWX 810-766-4890 Medical Service Only "Augusta 30903 Tel: (404) 736-0592 P () Box 2103 Warner Robins 31098 Tel. (912) 922 0449

HAWAII PAWAII 2875 So. King Street Honolulu 96814 Tei :808) 955 4455 Telex: 723-705

ILLINOIS Bolling meadows 60008 Tel: (312) 255-9800 TWX: 910-687-2260

INDIANA 7301 North Shadeland Ave 7301 North Shadelar Indianapolis46250 Tel (317)842 1000 TWX 810-260-1797

1902 Broadway Iowa City 52240 Tel: (319) 338-9466 KENTUCKY

IOWA

Medical Only Atkinson Square 3901 Atkinson Dr Suite 207 Suite 207 Louisville 40218 Tel. (502) 456-1573

LOUISIANA

P 0 Box 840 3229-39 Williams Bo Kenner 70063 Tel (504) 443-6201 MARYLAND MARYLAND 6707 Whitestone Road Baltimore 21207 Tel: (301) 944-5400 TWX: 710-862-9157

2 Choke Cherry Road Rockville 20850 Tel: (301): 948-6370 TWX: 710-828-9684

MASSACHUSETTS 32 Hartwell Ave Lexington 02173 Tel. (617) 861-8960 TWX 710-326-6904

MICHIGAN MICHIGAN 23855 Research Drive Farmington Hills 48024 1er (313) 476-6400

MINNESOTA St. Paul 55113 let 16121 636-0700 MISSISSIPPI

"Jackson Medical Service only Tel: (601): 982-9363 MISSOURI

MISSOURI 11131 Colorado Ave Kansas City 64137 Tel (816) 763-8000 TWX 910-771-2087 1024 Executive Parkway St. Louis 63141 Tel: (314) 878-0200

NEBRASKA Medical Only 7/71 Mercy Road Suite IIO Omaha 68106 Tel: (402) 392-0948 Tel (40z) 55.

NEW JERSEY
120 Century Rd

Crystal Brook Professional Building Eatontown 07724 Tel (201) 542-1384

NEW MEXICO P 0 Box 1*634 Station E 11300 Lomas Blvd N E Albuquerque 87123 Tel (505) 292-1330 TWX 910-989-1185 156 Wyatt Drive Las Cruces 88001

NEW YORK 6 Automation Lane Computer Park Albany 12205 Tel (518) 458-1550 201 South Avenue Poughkeepsie 12601 Tel (914) 454-7330 TWX 510-253-5981

650 Perinton Hill Office Park Fairport 14450 Tel (716) 223-9950

5858 East Molloy Road Syracuse 13211 Tel: (315) 454-2486 IWX: 710-541-0482 1 Crossways Park West **Woodbury** 11797 Tel (516) 921-0300 TWX 710-990-4951

NORTH CAROLINA P.O. Box 5188 1923 North Main Street High Point 27262 Tel (919) 885-8101

OHIO 16500 Sprague Road Cleveland 44130 Tei (216) 243-7300 TWX 810-423-9430 330 Progress Rd **Dayton** 45449 Tel (513) 859-8202

1041 Kingsmill Parkway Columbus 43229 Tel: (614) 436-1041

OKLAHOMA Oklahoma City 73132 Tel: (405) 721-0200

OREGON
17890 SW Lower Boones
Ferry Road
Tualatin 97062
Tel: (503) 620-3350 PENNSYLVANIA

Tel. (412) 782-0400 1021 8th Avenue King of Prussia Industrial Park King of Prussia 19406 Tel. (215) 265-7000 TWX 510-660-2670

SOUTH CAROLINA 6941-0 N. Trenholm Columbia 29260 Tel: (803) 782-6493

TENNESSEE *Knoxville Medical Service only Tel. (615) 523-5022

3027 Vanguard Dr Director's Plaza **Memphis** 38131 Tel: (901) 346-8370

Nashville Medical Service only Tel: (615) 244-5448 TEXAS P.O. Box 1270 201 E. Arapaho Richardson 75080 Tel (214) 231-6101 10535 Harwin Dr. Houston 77036 Tel: (713) 776-6400 205 Billy Mitchell Road San Antonio 78226 Tel: (512) 434-8241

UTAH 2160 South 3270 West Street Salt Lake City 84119 Tel: (801) 972-4711

VIRGINA P.O. Box 12778 No. 7 Koger Exec. Center Suite 212 Norfolk 23502 Tel:(804) 461-4025/6 P.O. Box 9669 2914 Hungary Springs Road **Richmond** 23228 Tel: (804) 285-3431

WASHINGTON Bellefield Office Pk. 1203-114th Ave. S.E. Bellevue 98004 Tel. (206) 454-3971 TWX. 910-443-2446

*WEST VIRGINIA Medical/Analytical Only Charleston Tel: (304) 345-1640

WISCONSIN 9004 West Lincoln Ave. West Allis 53227 Tel: (414) 541-0550

FOR U.S. AREAS NOT LISTED: Contact the regional office nearest you. Atlanta, Georgia. North Hollywood. California Rockville, Maryland. Rolling Meadows, Illinois. Their complete addresses are listed above.

Service Only

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance or use of this material.

This document contains proprietary information which is protected by copyright. All rights are reserved. No part of this document may be photocopied or reproduced without the prior written consent of Hewlett-Packard Company.