
HEWLETT WP PACKARD 

21MX M-Series Computer 
HP 2108B and HP 2112B 

·Operating and Reference Manual 

-~ .. -
-~---,., .. -..... .......... t -

. ~. ~~. =-~-·. ·~. ::...-:::·.., ~~::::.. 
i,·.:.,··:·:·:-:·:0:·~\\I\'\ '·1····· ...... '\\, 



- - - -1 - -- -

129798 

129798 1/0 Extender 
Installation and Service Manual I--

12979-90016 

129798 I /0 Extender 
Operating and Reference Manual t--
12979-90014 

--
12898A Dual-Channel Port 
Controller lnsta!lat1011 Mrir1u;il t----

12898-90001 

--

21 MX M & E S1~r1es CornputP-1 
1/0 lnterfoc1nq Gu1d1~ t--
02109-90006 

I 
J 

r-··· 

-· ·- - -- - ···- ··-···· ·-····- -- -·-

129908 

129908 Memory Extender 
Install at1on and Servin~ Manual 1--

12990-90007 

Standard Performance Memory 
Module lnstallat1011 Manual 
HP 12998A, HP 131878, and 

..___ 

HP12747A 
13187 -90004 

12991 B Power Fail Recovery 
System Installation Manual t--
(for HP 129908) 
1 2991-90004 

!_ ________ _ J 

7700-114 

DOCUMEl\ITATION MAP 

---··---------
21 MX M-Series Computer 
HP 21088/HP 21128 
Operating and Reference Manual 
021 08-9003 7 

I 210881i112s 

I 

L __ 

21 MX M-Series Computer 
Installation and Service Manual 
02108-90035 

-
128978 Dual-Channel Port 
Controller Installation Manual 
12897-90005 

12892 B Mf·rnnry Protf!C! 
l11stall<Jt1on M<11111;il 
12892 900(J 7 

-
-

21028 Standa1d f'p1frn111;i11c1· 
M1~111rny Cci11troll1'1 
l11stallat1011 Ma1111;il 
02102 9000G 

--
-

'.:Jt;111rj;ircl Pt'r torrn<lr1c!' Mcrnor y 

·-

1--

1---1 

-·-

Module lnsLilldtron M.i1111.il _

1 I W 17D9BA. HP 1318 7Fl, 
.111d HP 12747/\ 
lJ 187 90004 

L-..-..-----

2102C Fault Cor1trol 
Mt'mory Systr~ITl 

--
Installation \/l;mu<JI 
02102-90011 -

12779A/12/80A F;1ult 
Control Ow·=k Bit Array t--

12779-90001 

.----·----
129448 Power Fail Recovery 
System Installation Manual 1--
(for HP 21 OBB) 
12944-90005 

-
-

12991 B Power Fail Recovery 
System Installation Manual t---1 
(for HP 2112) 
12991-90004 

129768 Dynamic Mapping 
System Installation Manual 1--
12976-90005 ,.____ _____ 

-
12992 Load1~r ROM's 
Installation lvlanual 1--1 

1 2992-9000 1 

-

l 
,...------- -1---- -

I Firmware 

I 21 MX M-Series Computer 

I RTE Microprogramming 
t--

Reference Manual 
I 02108-90032 

I 
I 

21 MX M-Series Computer 
RTE Microprogramming 

I Pocket Guide I--

I 
021 08-90034 

I 12945A User ROM Control 

I Store Board 
Installation and Service Manual t--

I 12945-90001 

I 
I 1304 7 A User Control Store Kit 

I Installation and Service Manual t-
13047 90001 

I 

I 
I 12978A Writable Control Store 

I Reference Manual t--

I 
1 2978-90007 

I 
I 13197A Writable Control Store 

I 
Referenc1~ Manual 1--
13197-90005 

I 
I 129778 Fast FORTRAN 

I Processor 
Installation Manual 

t---J 

I 12977-90008 

L ___ -- - - - -- _J 

I-A:Oe~o;;:;, - 3- -- ----
I 
I 
I 
I 
I 
I 
I 

21 MX M- & E-Ser1es Computer 
1/0 Interfacing Guide t--
021 09-90006 

21MX 
Engineering Supplement 

t--Package 
021 08-9001 7 

2000 System Diagnostic 
Configurator 

I--> 
Reference Manual 
02100-90157 

129038 Slide Mounting Kit 
Installation Instructions t--
(for HP 2108/1297!3/12990) 
12903-90002 

12903C Slide Mounti::Jg Kit 
Installation Instructions 
(for HP 2112) 
12903-90003 

-------------- _J 



21MX M-Series Computer 
HP 2108B and HP 2112B 

Operating and Reference Manual 

HEWLETT WP PACKARD 

HEWLETT-PACKARD COMPANY 
11000 WOLFE ROAD, CUPERTINO, CALIFORNIA, 95014 

MANUAL PART NO. 02108-90037 

Copyright© 1977 by HEWLETT-PACKARD COMPANY 

Library Index Number 
21M.320.02108-90037 

Printed: NOV 1977 
Printed In U.S.A. 



[CONTENTS 

Section I Page 
SYSTEM FEATURES 
Architecture ...................................... 1- I 
User Microprogramming .......................... 1- l 
Bootstrap Loaders ................................ 1-1 
Power System .................................... 1-2 
Memory Systems ................................. 1-1 
Input/Output ..................................... 1-2 
Software ......................................... 1--2 
Specifications ..................................... 1-2 
System Expansion and Enhancement .............. 1-2 

Section II Page 
OPERATING PROCEDURES 
Hardware Registers ............................... 2-1 

A-Register ..................................... 2-1 
8-Register ..................................... 2-1 
M-Register ..................................... 2-1 
T-Register ..................................... 2-1 
IP-Register ..................................... 2-1 
S-Register ..................................... 2-1 
Extend Register ................................ 2-1 
Overflow Register .............................. 2-1 
Display Register ............................... 2-1 
X- and Y-Registers ............................. 2-2 

Operator Panel and Power Supply Operating 
Controls .......................................... 2-2 
Rear Panel ....................................... 2-5 
Internal Switches ................................. 2-5 
Operating Procedures ............................. 2-7 

Cold Power-Up ................................. 2-7 
Loading Programs Manually .................... 2-7 
Loading Programs from Paper Tape Reader ...... 2-7 
!Loading Programs from Disc Drive for 
Optional Disc Loader ROMS .................... 2-8 
Loading Programs from Other Loading Devices .. 2-8 
Verifying Programs ............................ 2-9 
Running Programs ............................. 2-9 
Special Register Display Mode .................. 2-9 

Shutdown Procedures ............................ 2-10 
Shutdown (Memory Sustained) ................. 2-10 
Shutdown (Memory Not Sustained) ............. 2-10 

Exchanging I/O Interfaces ........................ 2-10 
Halt Codes ...................................... 2-13 
Abnormal Indications ............................ 2-13 

Section III Page 
PROGRAMMING INFORMATION 
Data Formats .................................... 3-1 
Addressing ....................................... 3-1 

Paging ........................................ 3-1 
Direct and Indirect Addressing .................. 3-:3 
Reserved Memory Locations .................... 3-:3 
Nonexistent Memory ........................... 3-4 

Base Set Instruction Formats ...................... 3-4 
Memory Reference Instructions ............. _ ... 3-4 
f~egister Reference Instructions ................. 3-4 
Input/Output Instructions ....................... 3-4 
Extended Arithmetic Memory 
Reference Instructions .......................... 3-5 

ii 

Extended Arithmetic Register 
Reference Instructions .......................... 3-5 
Extended Instructions .......................... 3-5 
Floating Point Instructions ..................... 3-5 

Base Set Instruction Coding ....................... 3-5 
Memory Reference Instructions ................. 3-5 
Register Reference Instructions ................. 3-7 

Shift/Rotate Group ........................... 3-7 
Alter/Skip Group ........................... 3-10 

Input/Output Instructions ...................... 3-12 
Extended Arithmetic Memory 
Reference Instructions ......................... 3-13 
Extended Arithmetic Register 
Reference Instructions ......................... 3-14 
Extended Instruction Group ................... 3-16 

Index Register Instructions .................. 3-16 
.Jump Instructions .......................... 3-19 
Byte Manipulation Instructions .............. 3-20 
Bit Manipulation Instructions ............... 3-21 
Word Manipulation Instructions ............. 3-22 

Floating Point Instructions .................... 3-23 
Instruction Execution Times ...................... 3-24 

Section IV Page 
DYNAMIC MAPPING SYSTEM 
Memory Addressing ............................... 4-1 
Map Register Loading ............................. 4-1 
Status and Violation Registers .................... 4-1 
Map Segmentation ................................ 4-3 
Power Fail Characteristics ........................ 4-3 
DMS Instruction Coding .......................... 4-3 
Instruction Execution Times ...................... 4-11 
Sample Map Load/Enable Routine ................ 4-11 
Additional DMS Definitions ...................... 4-11 

Alternate Map ................................ 4-11 
Protected Mode ............................... 4-11 
MEM Violations ............................... 4-11 
DCPC Operation in a DMS Environment ....... 4-12 

Section V 
MICROPROGRAMMING 

Page 

The Microprogrammed Computer .................. 5-1 
The Microprogrammable Computer ................ 5-1 
Customized Instructions ........................... 5-1 
System Speed ..................................... 5-1 
Memory Space and Security ....................... 5-2 
Developing Microprograms ........................ 5-2 
Support for the Microprogrammer ................. 5-2 
Optional Instruction Sets .......................... 5-4 

Dynamic Mapping System ...................... 5-4 
Fast FORTRAN Processor ...................... 5-4 

Conclusion ....................................... 5-4 

Section VI 
INTERRUPT SYSTEM 

Page 

Power Fail Interrupt .............................. 6-1 
Parity Error Interrupt ............................ 6-3 
Memory Protect/DMS Interrupt .................... 6-4 
Dual-Channel Port Controller Interrupt ............ 6-6 
Input/Output Interrupt ............................ 6-6 
Central Interrupt Register ........................ 6-6 
Interrupt System Control .......................... 6-6 



r--- CONTENTS (continued) L__, _____ ____. 
Section VII 
INPUT/OUTPUT SYSTEM 

Page 

Input/Output Addressing .......................... 7-·1 
Input/Output Priority ............................. 7-1 
Interface Elements ................................ 7-3 

Control Bit .................................... 7-·3 
Flag Bit ....................................... 7-3 
Buffer ......................................... 7-·4 

Input/Output Data Transfer ....................... 7-·4 
Input Data Transfer 
(Interrupt Method) ............................. 7-·4 
Output Data Transfer 
(Interrupt Method) ............................. 7-5 
Noninterrupt Data Transfer .................... 7-5 

Input ....................................... 7-5 
Output ...................................... 7-6 

Title Page 

HP 21MX M-Series Microprogrammable 
Computers ..................................... 1-0 

Operator Panel and Power Supply Controls and 
Indicators ...................................... 2-2 

HP 2108B Rear Panel and I/O PCA Cage .......... 2-5 
HP 2112B Rear Panel and I/O PCA Cage .......... 2-6 
Special Register Display Mode Pointers ........... 2-11 
Data Formats and Octal Notation ................. 3-2 
Base Set Instruction Formats ...................... 3-4 
Shift and Rotate Functions ........................ 3-7 
Examples of Double-Word Shifts and Rotates ...... 3-15 
Basic Memory Addressing Scheme ................. 4-1 

Title Page 

Specifications ..................................... 1-3 
Options and Accessories ........................... 1-7 
Operator Panel Control and Indicator 

Functions ...................................... 2-3 
HP 2108B Rear Panel Features .................... 2-6 
HP 2112B Rear Panel Features .................... 2-7 
Starting Address Vs Memory Size ................. 2-8 
Optional Loader Selection ......................... 2-9 
Special Register Display Mode 

Switch Operation ............................. 2-12 
Effects of Storing/Displaying 

Special Registers .............................. 2-13 
Halt Codes ...................................... 2-14 
Abnormal Indications ............................ 2-14 
Memory Paging ................................... 3-3 

Dual-Channel Port Controller ..................... 7-6 
DCPC Operation ............................... 7 -6 
DCPC Initialization ............................ 7-7 

Appendix Page 
Computer Physical Layout ........................ A-2 
Character Codes .................................. A-3 
Octal Arithmetic ................................. A-4 
Octal/Decimal Conversions ........................ A-5 
Mathematical Equivalents ........................ A-6 
Octal Combining Tables .......................... A-8 
Instruction Codes in Octal ........................ A-9 
Base Set Instruction Codes in Binary ............. A-10 
Dynamic Mapping System Instruction 
Codes in Binary ................................. A-12 
Extend and Overflow Examples .................. A-13 
Interrupt and I/O Control Summary .............. A-14 

ILLUSTRATIONS j 
Title Page 

Expanded Memory Addressing Scheme ............. 4-1 
Basic Word Format Vs Map Register Format ....... 4-1 
Map Segmentation ................................ 4-3 
Microprogram Development Cycle ................. 5-3 
Input/Output System .............................. 7-1 
I/O Address Assignments .......................... 7-2 
Priority Linkage .................................. 7-2 
Interrupt Sequences ............................... 7-3 
Input Data Transfer (Interrupt Method) ............ 7-4 
Output Data Transfer (Interrupt Method) .......... 7-5 
DCPC Input Data Transfer ........................ 7-7 
DCPC Control Word Formats ...................... 7-7 

TABLES] 

Title Page 

Reserved Memory Locations ....................... 3-3 
Shift/Rotate Group Combing Guide ................ 3-8 
Alter/Skip Group Combing Guide ................. 3-10 
Typical Base Set Instruction Execution Times ..... 3-25 
MEM Status Register Format ..................... 4-2 
MEM Violation Register Format ................... 4-2 
Typical DMS Instruction Execution Times ........ 4-13 
Sample DMS Load/Enable Routine ................ 4-14 
HP 2108B Interrupt Assignments .................. 6-1 
HP 2112B Interrupt Assignments .................. 6-1 
Sample Power Fail Subroutine .................... 6-2 
Sample Memory Protect, Parity Error, 

and DMS Subroutine ........................... 6-5 
Noninterrupt Transfer Routines ................... 7-6 
DCPC Initialization Program ...................... 7-8 

iii 



ALPHABETICAL INDEX OF STANDARD INSTRUCTIONS 

Instruction Page Instruction Page 

ADA Add to A . ;J-5 .JLY Jump and Load Y . 3-19 
ADB Add to B . 3-5 JMP Jump . 3-6 
ADX Add Memory to X . 3-16 JPY Jump Indexed by Y . . 3-20 
ADY Add Memory to Y . 3-16 JSB Jump to Subroutine . . 3-6 
ALF Rotate A Left Four . 3-8 LAX Load A Indexed by X . 3-17 

ALR A Left Shift, Clear Sign . 3-8 LAY Load A Indexed by Y . 3-18 

ALS A Left Shift . 3-8 
LBT Load Byte . 3-20 

AND "And" to A . :3-6 
LBX Load B Indexed by X . 3-18 
LBY Load B In~2xed by Y . 3-18 

ARS A Right Shift . 3-8 LDA Load A . 3-6 
ASL Arithmetic Shift Left ( 32) . 3-14 LDB Load B . 3-6 
ASR Arithmetic Shift Right ( 32) . 3-14 LDX Load X from Memory . 3-18 
BLF Rotate B Left Four . 3-8 LDY Load Y from Memory . 3-18 
BLR B Left Shift, Clear Sign . 3-8 LIA Load Input to A . 3-12 
BLS B Left Shift . 3-8 LIB Load Input to B . 3-12 
BRS B Right Shift . 3-9 LSL Logical Shift Left (32) . 3-16 
CAX Copy A to X . 3-16 LSR Lo~~ical Shift Right (32) . 3-16 
CAY Copy A to Y . :3-16 MBT Move Bytes . 3-21 
CBS Clear Bits . 3-21 MIA Merge Into A . 3-12 
CBT Compare Bytes . 3-20 MIB Merge Into B . 3-12 
CBX Copy B to X . 3-16 MPY Multiply . 3-14 
CBY Copy B to Y . 3-17 MVW Move Words . 3-23 
CCA Clear and Complement A . 3-10 NOP No Operation . 3-9 
CCB Clear and Complement B . 3-10 OTA Output A . 3-13 
CCE Clear and Complement E . 3-10 OTB Output B . 3-13 
CLA Clear A . 3-10 RAL Ro Late A Left . . 3-9 
CLB Clear B . 3-10 RAR Rotate A Right . 3-9 
CLC Clear Control . 3-12 RBL Rotate B Left . . 3-9 
CLE Clear E 3-9,3-10 RBR Rotate B Right . 3-10 
CLF Clear Flag . 3-12 RRL Rotate Left (32) . 3-16 
CLO Clear Overflow . 3-12 RRR Rotate Right (32) . 3-16 
CMA Complement A . :no RSS Reverse Skip Sense . 3-11 
CMB Complement B . :3-11 SAX Store A Indexed by X . 3-18 
CME Complement E . :3-11 SAY Store A Indc>xed by Y . 3-19 
CMW Compare Words . 3-22 SBS Set Bits . . 3-22 
CPA Compare to A . . :3-6 SBT Store Byte . 3-21 
CPB Compare to B . :3-6 SBX Store B Indexed by X . 3-19 
CXA Copy X to A . 3-17 SBY Store B Indexed by Y . 3-19 
CXB Copy X to B . :n 1 SEZ Skip if E is Zero . 3-11 
CYA Copy Y to A . 3-17 SFB Scan For Byte . 3-21 
CYB Copy Y to B . 3-17 SFC Skip if Flag Clear . 3-13 
DIV Divide . :3-14 SFS Skip if Flag Set . 3-13 
DLD Double Load . 3-14 SLA Skip if LSB of A is Zero 3-10,3-11 
DST Double Store . :3-14 SLB Skip if LSB of B is Zero 3-10,3-11 
DSX Decrement X and Skip if Zero . :3-17 soc Skip if Overflow Clear . 3-13 
DSY Decrement Y and Skip if Zero . :3-17 sos Skip if Overflow Set . 3-13 
ELA Rotate E Left with A . :3-9 SSA Skip if Sign of A is Zero . 3-11 
ELB Rotate E Left with B . :3-9 SSB Skip if Sign of B is Zero . 3-11 
ERA Rotate E Right with A . 3-9 STA Store A . 3-7 
ERB Rotate E Right with B . :3-9 STB Store B . 3-7 
FAD Floating Point Add . 3-2:3 STC Set Control . 3-13 
FDV Floating Point Divide . 3-2:3 STF Set Flag . 3-13 
FIX Floating Point to Integer . :3-2:3 STO Set Overflow . 3-13 
FLT Integer to Floating Point . :3-24 STX Store X to Memory . 3-19 
FMF Floating Point Multiply . 3-24 STY Store Y to Memory . 3-19 
FSB Floating Point Subtract . :3-24 SZA Skip if A is Zero . 3-11 
HLT Halt . :3-12 SZB Skip if B is Zero . 3-11 
£NA Increment A . ;3.11 TBS Test Bits . 3-22 
lNB Increment B . :3-11 XAX Exchange A and X . 3-19 
IOR "Inclusive Or" to A . :3-6 XAY Exchange A and Y . 3-19 
ISX Increment X and Skip if Zero . :3-17 XBX Exchange B and X . 3-19 
ISY Increment Y and Skip if Zero . 3-17 XBY Exchange B and Y . 3-19 
ISZ Increment and Skip if Zero . :3-6 XOR "Exclusive Or" to A . 3-7 

iv 



ALPHABETICAL INDEX OF DYNAMIC MAPPING SYSTEM INSTRUCTIONS 

Instruction Page Instruction Page 

DJP Disable MEM and JMP • 4-3 SJP Enable System Map and JMP . • 4-7 
DJS Disable MEM and JSB · . . 4-3 SJS Enable System Map and JSB . . 4-7 
JRS Jump and Restore Status • 4-3 SSM Store Status Register Into Memory . • 4-7 
LFA Load Fence From A • 4-4 SYA Load/Store System Map per A . 4-7 
LFB Load Fence From B • 4-4 SYB Load/Store System Map per B . 4-8 
MBF Move Bytes From Alternate Map • 4-4 UJP Enable User Map and JMP . 4-8 
MBI Move Bytes Into Alternate Map . • 4-4 UJS Enable User Map and JSB . 4-8 
MBW Move Bytes Within Alternate Map • 4-5 USA Load/Store User Map per A . 4-8 
MWF Move Words From Alternate Map • 4-5 USB Load/Store User Map per B . 4-9 
MWI Move Words Into Alternate Map • 4-5 XCA Cross Compare A . 4-9 
MWW Move Words Within Alternate Map • 4-5 XCB Cross Compare B . 4-9 
PAA Load/ Store Port A Map per A • 4-6 XLA Cross Load A . . 4-9 
PAB Load/Store Port A Map per B • 4-6 XLB Cross Load B • 4-9 
PBA Load/Store Port B Map per A . 4-6 XMA Transfer Maps Internally per A . 4·-9 
PBB Load/Store Port B Map per B • 4-6 XMB Transfer Maps Internally per B . 4-10 

RSA Read Status Register Into A • 4-6 XMM Transfer Maps or Memory . . 4-10 
RSB Read Status Register Into B • 4-6 XMS Transfer Maps Sequentially • 4-10 
RVA Read Violation Register Into A • 4-7 XSA Cross Store A . 4-10 
RVB Read Violation Register Into B . 4-7 XSB Cross Store B . . 4-11 

v 



System Features 21MXM 

HP 21088 

HP 21128 

7700-116A,B 

Figure 1-1. HP 21MX M-Series Microprogrammable Computers 

1-0 



The HP 21MX M-Series computers HP 2108B and HP 
2112Bshown in figure 1-1 are high-performance machines 
designed to satisfy a wide range of computing needs. Be­
cause of a unique design philosophy, many features have 
been incorporated as standard in the M-Series; this same 
philosophy allows optional features to be added at low 
cost. M-Series computers have traditional HP quality and 
reliability built in from the ground up and compatibility 
with previous Hewlett-Packard computers is maintained. 
HP 21MX M-Series computers (hereafter referred to as 
M-Series computers) provide very cost-effective solutions 
to a variety of systems applications. 

M-Series computers have a proven architecture that fea­
tures a fully microprogrammed processor, including all 
arithmetic functions, input/output, and operator panel 
control. Four general purpose registers are available, two 
of which may be used as index registers. There are 128 
standard instructions including index instructions, in­
teger and floating point arithmetic instructions, input/ 
output instructions, and a full complement of instructions 
for logical operations as well as bit and byte manipulation. 

At the heart of the computer is a microprogrammed con­
trol section that directs the operations of the other func­
tional units of the computer. Microprogramming can 
increase the system speed in several ways. Since 
microinstructions are executed from 5 to 10 times faster 
than machine language instructions, a frequently used 
software subroutine will execute much faster when mi­
croprogrammed. With 12 scratch pad registers available 
to a microprogrammer the number of main memory acces­
ses can be greatly reduced. This is particularly significant 
in real time systems which are compute-bound (i.e., sys­
tems in which the I/O is performed faster than the 
computation). 

For those applications where even the HP standard set of 
instructions is not enough, M-Series computer users may 
expand their instruction repertoire by using HP-supplied 
instruction sets. Off-the-shelf enhancements include the 
Dynamic Mapping System (DMS) for expanded memory 
management and the Fast FORTRAN Processor for fast 
handling of eompiler and extended precision routines. 

The power and flexibility of microprogramming is made 
readily available to the M-Series computer user through 
the microinstruction set of 180 micro-orders. In addition to 
the 12 special scratch pad registers and the.ot._her internal 

l

lU@h 
SYSTEM FEATURES .I 1 I 

registers of the M-Series, the microprogrammer mf>cy ad­
dress up to 4K, 24-bit words of control store. Closely re­
sembling assembly language programming in simplicity, 
microprogramming offers the advantages of speed and 
security as well as the ability to expand the instruction set 
to meet any computing need. Microprogramming is sup­
ported by Hewlett-Packard through software assembly 
and debug packages and customer training courses. 
User-developed microprograms may be permanently fused 
in programmable Read-Only Memory (pROM) chips for 
mounting on the User Control Store Board, or may be 
loaded into Writable Control Store (WCS) modules where 
they can be dynamically altered. 

The initial binary loading (IBL) function is easily per­
formed on M-Series computers. For bootstrap loading, a 
64-word ROM-resident IBL program is called by pushbut­
ton switch on the operator panel. A paper tape loader 
ROM is standard. Provision is made for up to three 
additional loader ROM's which are available as acces­
sories or may be user-generated. 

M-Series computers are equipped with power systems de­
signed to continue normal operations in environments 
where power may fluctuate widely. Input line voltages 
and frequencies may vary widely without affecting the 
operation of the computer. The optional Power Fail Recov­
ery System provides automatic restart capability and, de­
pending on the memory size, also provides between 1. 75 
and 4.25 hours of memory sustaining power in the event of 
complete power failure. (See Power Fail Recovery System 
specifications in table 1-1.) 

M-Series computers are available with either of two 
semiconductor memory systems. The systems are based on 
4k-bit and 16k-bit MOS/RAM semiconductor chips that 
offer field-proven reliability and economy. The memory 
system consists of an HP 2102B memory controller and 
one or more memory modules, ranging in capacity from 
16k to 128k bytes. The latest 4k and 16k MOS/RAM 
technology combined with extensive testing assures 
maximum reliability. The memory system has a system 
cycle time of 650 nanoseconds. For data integrity, memory 
parity checking is provided as a standard feature. 

1-1 



System Features 

The fault control memory system provides fault-secure 
memory operation to the 21MX family of computers. The 
system consists of a HP 2102C memory controller and one 
or more check bit array boards, along with the appropriate 
number of memory modules (HP 12998A, HP 13187B, and 
HP 127 47 A), and is capable of correcting all single-bit 
errors, and of detecting all double-bit and most multiple­
bit errors. The fault control system is particularly valu­
able in computer systems with large amounts of memory, 
or where fault-secure operation is essential. 

Addressing physical memory configurations larger than 
the standard configuration is possible only through the 
use of the HP 12976B Dynamic Mapping System. The 
Dynamic Mapping System (DMS), which is a combination 
of hardware and firmware, is a powerful memory man­
agement scheme that allows M-Series computer users to 
address up to two million bytes of memory and provides 
read and/or write protection of each individual 2048 byte 
page. Four independent memory maps are provided, one 
for the system, one for the user, and two Port Controller 
maps for direct memory access operations. Control of the 
DMS is implemented through the use of 38 instructions. 

The input/output system for M-Series computers features 
a multilevel vectored priority interrupt structure. There 
are 60 distinct interrupt levels, each of which has a unique 
priority assignment. Any I/O device can be selectively 
enabled or disabled, or the entire interrupt system (except 
power fail and parity error interrupts) can he enabled or 
disabled under program control. 

Data transfer between the computer and I/O devices may 
take place under program control, Dual Channel Port 
Controller (DCPC) control, or under microprogram con­
trol. The DCPC provides two direct links between memory 
and I/O devices and is program assignable to any two 
devices. DCPC transfers occur on an 1/0 cycle-stealing 
basis not subject to the 1/0 priority interrupt structure. 
The total bandwidth through both DCPC channels is 1 233 
:332 bytes per second; see Direct Memory Access specifica­
tions in table 1-1 for the DCPC latency times. 

The HP 2108B Computer has nine 1/0 channels in the 
mainframe; the HP 2112B Computer has fourteen. The 
number of available channels may be increased by adding 
one or two HP 12979B I/O Extenders, providing sixteen 
channels each. All 1/0 channels are fully powered, buf­
fered, and bidirectional. Because of the modular design of 
the M-Series computers, mainframe memory capacity is 

1-2 

21MXM 

completely independent of 1/0 capacity so that either 
memory or I/O modules may be added without taking 
valuable mainframe space from the other. A full line ofl/O 
interface controllers is available with M-Series computers 
for interfacing to any of the broad line of HP manufac­
tured peripherals or to specialized devices .. 

The M-Seriles computers are fully program compatible 
with earlier Hewlett-Packard computers so that the user 
may take advantage of many man-years of software 
development. 

A wide range of operating system software is available. 
The Real-Time Executive (RTE) systems are multipro­
gramming systems that permit priority scheduling of sev­
eral real-time programs while concurrent background 
processing takes place. RTE software contains all the tools 
needed for dynamic control of real-time events and has an 
efficient file management capability for data processing 
applications. The most powerful version, RTE-III, sup­
ports up to 2 megabytes of memory managed by the 
Dynamic Mapping System. 

Languages supported by Hewlett-Packard operating sys­
tems include two high·-level compilers: HP FORTRAN IV; 
and HP BASIC; plus an extended, efficient assembler that 
is callable by FORTRAN. Utility software includes a de­
bugging routine, and editor, and an extensive library of 
commonly used computational routines. 

M-Series computer users may also take advantage of a 
wide variety of thoroughly tested and documented pro­
grams that have been contributed to the Hewlett-Packard 
User Library. 

Table 1-1 lists the specifications for the HP 2108B and the 
HP 21128 Computers and the HP 2102 Memory System. 
Both computers have been product accepted by the Un­
derwriters' Laboratories (UL) and the Canadian Stand­
ards Association CCSAL 

Table 1-2 lists the options and accessories available to 
expand or enhance the computer system. 



21MXM 

CENTRAL PROCESSOR 

Address Space: 

Word Size: 

Instruction Set: 
Memory Reference: 
Register Reference: 
In put/Output: 
Extended Arithmetic: 
Index: 
Bit Byte, Word Manipulation: 
Floating Point: 

Registers: 
Accumulators: 

Index: 
Memory Control: 
Supplementary: 
Display: 

CONTROL PROCESSOR 

Address Space: 

Word Size: 

Word Formats: 

Word Fields: 

Instruction Execution Time: 

Micro-Orders 
Operations: 
Special: 
ALU and Conditional: 
Store: 
S-Bus: 
Reverse Skip Sense: 

INITIAL BINARY LOADERS 

INPUT/OUTPUT 

Interrupt Structure: 

Compatibility: 

System Features 

Table 1-1. Specifications 

4,096 bytes (direct addressing) 
65,536 bytes (indirect addressing) 
2,097, 152 bytes with Dynamic Mapping System (optional) 

16 bits 

128 standard instructions 
14 
43 
13 
10 
32 
10 
6 

10 
Two (A and B), 16 bits each. Explicitly addressable; also addressable as memory 

locations. 
Two (X and Y), 16 bits each 
Two (T and P), 16 bits each; one (M), 15 bits. 
Two (Overflow and Extend), one bit each 
One, 16 bits 

4,096 words (16 modules of 256 words each) 

24 bits 

Four 

Five 

325 ns 

180 
15 
32 
68 
32 
32 
1 

ROM resident; capacity of four 64-word programs callable from operator panel. 

Multilevel vectored priority interrupt; priority determined by interrupt location. 

1/0 SYSTEM SIZE HP 21088 HP 21128 

Standard 1/0 Channels 9 14 
With One Extender 25 30 
With Two Extenders 41 46 

Instruction set and program compatible with HP 21 MX E-Series computers (time 
loop programs excepted). 

1-3 



System Features 

Current Available for: 

DC Required: 

DIRECT MEMORY ACCESS 

Number of Channels: 

Word Size: 

Maximum Transfer Block Size: 

1/0 Assignable: 

Transfer Rate: 

(Any Memory) 

DCPC Latency (Channel 1): 

Input and Output Latency Times: 
(Times in us) 

1-4 

Table 1-1. Specifications (Continued) 

1/0 and Accessories 

MODEL +sv 
--+--· 

21088 38.8A 
21128 38.8A 

MODEL 
!--------------··· 

12892B Memory protect 
128978 DCPC 
12731A MEM 
129768 OMS 
12977B FFP 
12978A .25k WCS 
127788 DMI 
13197A 1k WCS 
129908 Memory extender 
12992 Loader ROMS (each) 
129798 1/0 Ext. buffer card 
2102B Memory controller 
2102C Fault Memory controller 
12779A Check Bit Array 
12780A Check Bit Array 

+12V 

2.5A 
2.5A 

12747A 128k Byte Memory Module 
12998A 16k Byte Memory Module 
13187B 32k Byte Memory Module 
13047A 2k UCS 
12945A .5k UCS 

21MXM 

-12V -2V 

2.0A 4.0A 
2.0A 4.0A 

+sv 

1.25A 
2.4A 
3.9A 
6.29A 
1.66A 
4.6A 
1.66A 
2.2A 

0 
.13A 

2.0A 
1.2A 
3.29A 
0.52A 
0.73A 
0.85A 
0.51A 
0.85A 
7.39A1 

2.2A 

-2V 

.05A 

.05A 

.01A 

1.35A 
0.01A 

1 1. 15A + 0. 7BA for each 256 instructions; 7. 39A when fully loaded. 

Available only with DCPC accessory. 

Two 

16 bits 

32, 768 words 

Assignable to any two 1/0 channels; all logic necessary to facilitate bidirectional 
direct memory transfer to and from 11/0 is contained on DCPC (controller). 

1.23 Mbytes/s 

Latency is defined as the time interval between the generation of a Service Request 
(SRQ) signal by an 1/0 device through the initiation of a DCPC channel 1 cycle to the 
completion of the 1/0 data transfer to or from the 1/0 interface PCA. Subsequent 
consecutive cycles execute at a specified DCPC rate. 

--1-n~p-u_t-,_-_-_,,,_-__ ------T-Y·-:-.~-:_A_L _______ M_A_:_.~_:_u_M_~, 

Output 2.54 3.25 J 



21MXM 

PHYSICAL CHARACTERISTICS 

Width: 

Depth: 

ELECTRICAL CHARACTERISTICS 

Line Voltage: 

Line Frequency: 

Power Dissipation: 

Power Supply: 

Input Line Transients: 

Output Protection: 

Output Voltage Regulation: 

Thermal Sensing: 

ENVIRONMENTAL LIMITATIONS 

Operating Temperature: 

Storage Temperature: 

Relative Humidity: 

Ventilation and Heat Dissipation: 

Altitude: 

Vibration and Shock: 

System Features 

Table 1-1. Specifications (Continued) 

42.6cm (16 3/4 in) behind rack mount; 48.3cm (19 in) front panel width on sides 

59.7cm (23 1/2 in); 58.4cm (23 in) behind rack mounting ears 

MODEL 

Height 

Weight 

88 to 132 Vac; 176 to 264 Vac 

47.5 to 66 Hz 

770 watts (maximum) 

HP 21088 HP 21128 

22.2cm 31.1cm 
(8-3/4 in) (12-1/4 in) 

20.4kg 29.5kg 
(45 lbs) (65 lbs) 

Sustains computer over a line loss of no less than 8 ms at the minimum line (mains) 
voltage. 

Sustains ±500V, 50µ,s pulse on power lines; sustains ±1 kV, 1 OOns pulses on 
power lines. 

All regulated voltages protected from overvoltage and overcurrent conditions. 

±5% (except -2V is ±10%, and +30V is unregulated). 

Monitors internal temperature and automatically shuts down when computer 
temperature exceeds specified maximum operating temperature. Resets automat­
ically when temperature returns to below specified maximum operating temperature. 

0 ° to 55 °C ( + 32 ° to 131 °F) 

-40 ° to 75 °C ( - 40 ° to 1 67°F) 

20% to 95% at 40°C (104 °F), non-condensating 

Intake: left-hand side; Exhaust: right-hand side. 

MODEL 21088 

Heat KCal/hr. max. 538 
dissipation BTU/hr. max. 2138 

Air flow cubic meters 5.7 
/min. 

cubic feet 200 
/min. 

21128 

538 
2138 

7.9 

280 

Transportable to 15 300m (50 000 ft) in non-operating condition and 4500m 
(15 000 ft) for operation 

Vibration: 0.30mm (0.012 in) p-p, 10-55 Hz, 3 axis 

Shock: 30g, 11 Ms, 1 /2 sine, 3 axis 
Contact factory for review of any application requiring operation under continuous 
vibration. 

1-5 



System Features 

MEMORY SYSTEMS 

Type: 

Word Size: 

Configuration: 

Page Size: 

Address Space: 

System Cycle Time: 

Volatility Protection: 

Parity Error Detection: 

POWER FAIL 

Interrupt Priority: 

Power Failure: 

Power Fail Recovery Systems: 

Power Restart: 

Power Control and Charge Unit: 

Sustaining Battery: 

l-6 

21MXM 

Table 1-1. Specifications (Continued) 

4k and 16k N-channel MOS semiconductor RAM. 

1 6 bits plus parity bit 

Controller plus multiple plug-in memory modules. Available in 16k, 32k, and 128k 
byte modules. 

2,048 bytes 

65 536 bytes without OMS; 2 097 152 bytes with OMS (21088 and 21128) 

650ns 

Sustaining power for line loss of no less than 8ms at the minimum line (mains) 
voltage. Power fail recovery system is optional. 

Monitors all words read from memory. Switch selectable for either halt or ignore 
interrupt error when detected. With memory protect or OMS accessory, interrupt 
on parity error occurs. 

Highest priority interrupt. 

Detects power failure and generates an interrupt to user-written power-failure 
routine. A minimum of 500 µ,s is available for the routine. 

Available as an accessory. (HP 129448 or HP 129918). 

Detects resumption of power and generates an interrupt to user-written automatic 
restart program which has been protected in memory by the sustaining battery. 

Monitors battery charge status and provides trickle charge. 

Type: 14 volt, 5 ampere-hours, sealed lead acid 
Charging rate: 2A, maximum 
Capacity: HP 129448 and HP 12991 B will sustain memory for the period of time 
shown in the graph below. 

4.5 

4.0 

3.5 

~ 3.0 
::::> 
~ 
z 2.5 

~ 
(/) 2.0 a: 
::::> 
0 1 .5 
I 

1.0 

0.5 -+-·---+---- ---

L-----'----1...----'-------''-----~---'----"'--·-- -·-
10 

NO. OF MEMORY MODULES 



21MXM System Features 

Table 1-2. Options and Accessories 

DESCRIPTION OPTION NO. ACCESSORY NO. 

HP 2108B and HP 2112B Computers 
230V Operation 015 
Power Fail Recovery System (HP 2108B) 12944B 
Power Fail Recovery System (HP 2112B or 12990B) 12991B 
Memory Protect 12892B 
Dual-Channel Port Controller (DCPC) 12897B 
User ROM Control Store Board 12945A 
Dynamic Mapping System 12976B 
64k Byte Memory Expansion Package 12763A 
128k Byte Memory Expansion Package 12763B 
192k Byte Memory Expansion Package 12763C 
Fast Fortran Processor 12977B 
.25k Writable Control Store 12978A 
1 k Writable Control Store 13197A 
Slide Mounting Kit (HP 2108B, HP 12979B, HP 12990B) 12903B 
Slide Mounting Kit (HP 2112B) 12903C 
Disc Loader ROM for HP 7900A or HP 2883 12992A 
Disc Loader ROM for HP 7905 or HP 7920 12992B 
Terminal Loader ROM for HP 2644A/2645A/2648A 12992C 
Magnetic Tape Loader ROM for HP 7970B/E 12992D 
2k User Control Store Board 13047A 

HP 2102 MOS Memory System 
Memory Controller 2102B 
16k Byte Memory Module 12998A 
32k Byte Memory Module 13187B 
128k Byte Memory Module 12747A 
Fault Control Memory Controller 2102C 
256k Byte Check Bit Array Board 12779A 
512k Byte Check Bit Array Board 12780A 
128k Byte Fault Control Memory Package 12782A 
256k Byte Fault Control Memor)t Package 12782B 
512k Byte Fault Control Memory Package 12782C 
1 024k Byte Fault Control Memory Package 12782D 

Input/Output Extender 12979B 
230V Operation 015 
Dual CPU Kit 12781A 
Dual Channel Port Controller 12898A 

Memory Extender 12990B 
230V Operation 015 

-----' 

1-7/1-8 



l
lUlll.!ii OPERATING PROCEDURES! 11 J 

The section describes the hardware registers accessible to 
the programmer and the functions of the various 
operating controls and indicators. Also included are basic 
operating examples such as a cold start procedure to load a 
program via a punched-tape reader, manually loading a 
short program via the operator panel, and running a pro­
gram after it has been loaded into memory. 

The computer has eight 16-bit working registers which 
can be selected for display and modification by operator 
panel controls; two 1-bit registers; and one 16-bit display 
register. The functions of these registers are described in 
following paragraphs. 

2-2. A-REGISTER 

The A-register is a 16-bit accumulator that holds the re­
sults of arithmetic and logical operations performed by 
programmed instructions. This register can be addressed 
directly by any memory reference instruction as location 
000000 (octal), thus permitting interrelated operations 
with the B-register (e.g., "add B to A," "compare B with 
A," etc.) using a single-word instruction. 

2-3. B-REGISTER 

The B-register is a second 16-bit accumulator, which can 
hold the results of arithmetic and logic operations com­
pletely independent of the A-register. The B-register can 
be addressed directly by any mamory reference instruc­
tion as location 000001 (octal) for interrelated operations 
with the A-register. 

2-4. M-REGISTER 

The M-register holds the address of the memory cell 
currently being read from or written into by the CPU. 

2-5. T-REGISTER 

The data transferred into or out of memory is routed 
through the T-register. When displayed, the T-register 
indicates the contents of the memory location currently 
pointed to by the M-register. The A- or B-register contents 
are displayed if the M-register contents are 000000 or 
000001, respectively. 

2-6. P-REGISTER 

The P-register holds the address of the next instruction to 
be fetched from memory. 

2-7. S-REGISTER 

The S-register is a 16-bit utility register. The S-register 
can be addressed as an input/output device (select code 01) 
and, in the run mode, it is displayed in the operator panel 
display register. Thus, the S-register may serve as a com­
munication link between the computer and operator. 

2-8. EXTEND REGISTER 

The one-bit extend register is used by rotate instructions 
to link the A- and B-registers or to indicate a carry from 
the most-significant bit (bit 15) of the A- or B-register by 
an add instruction or an increment instruction. This is of 
significance primarily for multiple-precision arithmetic 
operations. If already set (logic 1), the extend bit cannot be 
cleared by a carry. However, the extend bit can be selec­
tively set, cleared, complemented, or tested by pro­
grammed instructions. When the operator panel EXTEND 
indicator is lighted, the extend bit is set. This register can 
also be accessed from the operator panel by entering the 
special register display mode described under paragraph 
2-23. 

2-9. OVERFLOW REGISTER 

The one-bit overflow register is used to indicate that an 
add instruction, divide instruction, or an increment in­
struction referencing the A- or B-register has caused (or 
will cause) the accumulators to exceed the maximum posi­
tive or negative number that can be contained in these 
registers. The overflow bit can be selectively set, cleared, 
or tested by programmed instructions. The operator panel 
OVERFLOW indicator will remain lighted until the over­
flow is cleared. This register can also be accessed from the 
operator panel by entering the special register display 
mode described under paragraph 2-23. 

2-10. DISPLAY REGISTER 

The display register, which is included on the operator 
panel, provides a means of displaying and/or modifying 
the contents of the eight 16-bit working registers (A, B, M, 

2-1 



Operating Procedures 

T, P, S, X, and Y) and the special registers when the 
computer is in the halt mode. An illuminating indicator is 
located directly above each of the 16-bit switches; a lighted 
indicator denotes a logic 1 and an unlighted indicator 
denotes a logic 0. When the computer is in the run mode, 
the contents of the S-register are displayed automatically. 

2-11. X- AND Y-REGISTERS 

These two 16-bit registers, designated X and Y, are acces­
sed through the use of 30 index register instructions and 2 
jump instructions described under paragraphs 3-24 and 
3-25, respectively. These registers can also be accessed 

13 12 11 

2 3 4 5 6 

14 

7700-115 

7 

21MXM 

from the operator panel by entering the special register 
display mode described under paragraph 2-·23. 

The location and function of the various controls and indi­
cators mounted on the operator panel and the power sup­
ply are illustrated in figure 2-1 and described in table 2-1. 
All operator panel controls are two-position, momentary­
contact rock.er switches; the status of the computer is dis­
played by light-emitting diodes. 

8 9 10 

15 

B"'igure 2-1. Operator Panel and Power Supply Controls and Indicators 

2-2 



21MXM 

FIG. 2-1, 
INDEX NO. 

2 

3 

4 

5 

6 

Operating Procedures 

Table 2-1. Operator Panel and Power Supply Control and Indicator Functions 

NAME 

Key 

RUN/HALT 

PRESET-ISL 

INTERRUPT SYSTEM 

PARITY 

POWER FAIL 

FUNCTION 

Secures the operator panel when access to the ~POWER OFF/ON 
and LOCK/OPERATE switches is not desired. 

RUN. Starts CPU and lights the RUN indicator. All operator panel 
functions are disabled except Display Register, CLEAR DISPLAY, and 
HALT. Pressing RUN automatically causes the S-register contents to be 
displayed, and no other register can be selected during the run mode; 
thus, the Display Register effectively becomes the S-register, which 
may be addressed as select code 01 by the program. 

HALT. Halts the computer at the end of the current instruction and turns 
off the RUN indicator. All other operator panel controls become enabled. 
The T-register is selected automatically for display. 

PRESET. Disables the interrupt system, clears the parity indicator and 
overflow bit (if set) and turns off the OMS system if installed. From 1/0 
channel 06 up, clears control flip-flops and sets flags. Pressing and 
holding PRESET upon the restoration of power will force an ARS 
condition (see paragraph 6-1 ). 

IBL (initial binary loader). Causes the contents of the selected loader 
ROM to be written into the uppermost 64 memory locations. Bits 15 and 
14 of the S-regisler select the desired loader ROM as follows: 

BITS LOADER SELECTED 
15 14 

0 0 Standard paper tape loader ROM 

0 1 Option loader 1 ROM 

1 0 Option loader 2 ROM 

1 1 Option loader 3 ROM 

Bits 6 through 11 of the S-register must be set to the octal select code of 
the loading device. 

Indicates the status of the interrupt system. When lighted, the interrupt 
system is enabled (Flag set); when turned off, the interrupt system is 
disabled (Flag clear). 

Lights when a parity error occurs as a result of reading from memory. 
In the halt mode, the light can be turned off by pressing the PRESET 
switch. With the memory protect or OMS option installed and the parity 
error interrupt enabled, the indicator is turned off automatically by a parity 
error interrupt and is therefore not ordinarily lighted long enough to be 
visible. 

If the power fail/automatic restart feature is enabled (i.e., internal ARS/ 
ARS switch is set to ARS position as described in Section VI) the indicator 
will light when power is restored. This light can be turned off by pressing 
the PRESET switch in the halt mode. 

2-3 



Operating Procedures 21MXM 

Table 2-1. Operator Panel and Power Supply Control and Indicator Functions (Continued) 

- --r----·----···--···------··-·····--···· 

FIG. 2-1, 
INDEX NO. NAME 

7 <11111 Register Select..,. 

------
8 INSTR STEP/CLEAR 

DISPLAY 

9 INC M/DEC M 

t-----

10 STORE/DISPLAY 

-
11 Display Register 

12 EXTEND 

13 OVERFLOW 

-- '------·--·---·---····--···-------·---"··--·. ····---

2-4 

FUN CTI ON 
-----··--·--··-------,----· 

In the halt mode, this switch allows ny one of the working registers a 
d 
tc 
ch 
ca 

(A, B, M, T, P, or S) to be selecte for display and/or modification. 
Pressing the left half ( <11111) of the swi h moves the "dot" indicator left; 
pressing the right half (..,.) of the swit moves the "dot" indicator right. 
The register currently selected is indi ted by the appropriate indicator 
light. 

After a programmed or manual halt, t T-register is selected automati-
cally for display. In this case, the T-

he 
re 
se 

gister holds the contents of the 
last accessed memory cell. In the ca . of a programmed halt, the halt 
instruction will be displayed. 

1----·----·- ·-
INSTR STEP. Pressing and releasing th 

str 
nite 
lly 

ma 

is switch while in the halt mode 
advances the program to thie next in uction. If the T-register indicator 
lights when the switch is released, infi indirect addressing is indicated. 
Actuating this switch does not actua place the computer in the run 
mode. (See note for additional infor tion.) 

CLEAR DISPLAY. In the run or halt mo de, clears the Display Register; 
i.e., contents become 000000. 

·······--~---

INC M. In the halt mode, increments th e M-register contents. 

DEC M. In the halt mode, decremen ts the M-register contents. 

Note: Incrementing and decrementing 0 ccur even when the M-register is 
not displayed. 

-----··-··-----"""_W_h_O 
STORE. In the halt and standard dis pla y modes, stores the contents of 
the Display Register into the selected w 

nt 
wi 
to 

orking register (A, B, M, T, P, or 
S). If the Register Select "dot" is poi ing to T and STORE is pressed, 
the contents of the Display !Register II be loaded into memory cell m, 
the M-register will be incremented au matically to m + 1, and the Dis-
play Register will not be updated. This tter feature allows the same data 
to be stored in consecutive memory lo 

la 
ca 
Re 
on 
ap 

tions (e.g., halts in the trap cells, 
same word into a buffer, etc.). If the gister Select "dot" is pointing to 
any register other than T, only that e register will be updated when 
STORE is pressed. (Refer to paragr h 2-23 STORE functions during 
special register display mode.) 

DISPLAY. Places the present conten of the selected register into the 
Display Register. Used to recall a r ister after the Display Register 
contents have been changed or to d play the new contents of the T-

ts 
eg 
is 

register after STORE is pressed. 

In the halt mode, displays the content so f the register currently pointed to 
by the Register Select "dot;" only the -register is displayed during the 
run mode. A logic 1 is signified when t displayed bit indicator is lighted; 
a logic 0 is signified when the displaye bit indicator is not lighted. Press-

s 
he 
d 
th ing the upper half of the switch sets at bit to a logic 1; pressing the 

lower half of the switch sets that bit t oa 
RD cleared to all zeros when the CLEA 

logic 0. The Display Register is 
ISPLA Y switch is pressed. 

In both the run and halt modes, conti nu 
te extend register. When lightEid, the ex 

In both the run and halt modes, co 

ously displays the content of the 
nd bit is set (logic 1 ). 

nuously displays the content of 
overflow register. When lighted, the 

nti 
ov erflow bit is set (logic 1 ). 

~··•••·--•••--·--··•---•··-·--•··-·--'••••--·-·--·-·-•-•d•m-••••-.--•••• ., ___ ,, __ , 



21MXM Operating Procedures 

Table 2-1. Operator Panel and Power Supply Control and Indicator Functions (Continued) 

FIG. 2·1, 
INDEX NO. NAME FUNCTION 

Power Supply Front Panel Controls 

14 LOCK/OPERATE LOCK. The RUN and HALT switches are disabled; all other functions are 
enabled (within the constraints of the run/halt modes). 

OPERATE. All switches are enabled. 

15 - POWER ON/OFF Two position circuit breaker. Controls application of ac line power to 
computer power supply and ventilating fans; provides protection against 
ac line power overload. 

NOTE 

When pressing the INSTR STEP switch and performing a jump instruction while monitoring the T-, P-, or M-register, the 
following will be noted: 

a. The P-register will go to the operand target address. 
b. The M-register will go to the operand target address. 
c. The T-register will display the memory location or the current instruction to be executed. 

Pressing the INSTR STEP switch will not cause an instruction step if there is a pending interrupt and the interrupt system is 
on; pressing PRESET or turning the interrupt system off will re-enable the INSTR STEP function. 

The rear panel and the 1/0 PCA cage for the HP 2108B 
and HP 2112B Computers are shown in figures 2-2 and 2-3 
and described in tables 2-2 and 2-3, respectively. 

Two toggle switches are mounted on the rear of the central 
processor unit (CPU) printed-circuit assembly (PCA). The 

SELECT 
CODE 

setting of the ARS/ ARS switch determines the action that 
the computer will take in the event of a primary power 
failure and the setting of the HLT PE INT/IGNORE 
switch determines the action to be taken in the event of a 
parity error or memory protect violation. Programming 
considerations concerning these switches are given in 
Section VI. 

Details concerning the configuration of these switches are 
given in the HP 21MX M-Series Computer Installation 
and Service Manual, part no. 02108-90035. 

PCA RETAINER 

~ ©f 

I 

4 3 2 

Figure 2-2. HP 2108B Rear Panel and 1/0 PCA Cage 

2-5 



Operating Procedures 

Table 2-2. HP 2108B Rear Parn~l Ff•atL 

FIG. 2-2, 
INDEX NO. NAME Fl 

--------------------·--·--.. ----·----
~LINE connector Three-input power connector; 

power to computer. 
!-------------· ----·-·- ... -... --------1---·--·-------"·-·- ..... _________ .. __ 

2 BAT INPUT connector Nine-pin connector; provides rn 

memory sustaining circuits. 
1--------------------------------------------

3 

4 

PWR CONT IN 
and 

PWR CONT OUT 
connectors 

Two nine-pin connectors; prov1 
memory extender, 1/0 extende1 
nation of two units) to main com~ 
connected units must be turne1 
connected, the CPU monitors th' 
power failure in any one of the 1 

fail interrupt to be generated by ti 
failure will cause the computer 
remain inoperative until the failL: 

21MXM 

TION 

ides means of connecting ac line 

s of connecting optional battery to 

means of connecting an external 
satellite computer· (in any combi­

._ The power supplies in all the inter-
1 before the CPU will start. When 
and de power in these units. An ac 

connected units will cause a power 
PU and the CPU to halt. A de power 
stop. The interconnected units will 
:as been corrected. 

PC' A NER 

2-6 

SELECT 
CODE 

25g 

24g 

238 
228 

21g 

208 
118 
16g 

158 
148 

138 
12g 
11 g 
108 

3 2 

Figure 2-3. HP 2112B Rear Panel and 1/0 P~ :age 



21MXM Operating Procedures 

Table 2-3. HP 2112B Rear Panel Features 

--
FIG. 2-3, 

INDEX NO. NAME FUNCTION 
··--i 

1 ~LINE connector Three-input power connector; provides means of connecting ac line 
power to computer. 

2 BAT. INPUT connector Nine-pin connector; provides means of connecting optional batteries to 
memory sustaining circuits. 

------1 

3 PWR CONT IN Two nine-pin connectors; provides means of connecting an external 
and memory extender, 1/0 extender, or satellite computer (in any combi-

4 PWR CONT OUT nation of two units) to main computer. The power supplies in all the inter-
connectors connected units must be turned on before the CPU will start. When 

connected, the CPU monitors the ac and de power in these units. An ac 
power failure in any one of the interconnected units will cause a power 
fail interrupt to be generated by the CPU and the CPU to halt. A de power 
failure will cause the computer to stop. The interconnected units will 
remain inoperative until the failure has been corrected. 

The following procedures describe a cold power-up; how to 
load programs manually; how to load programs using 
punched tape, disc, magnetic tape, or other such media; 
how to verify and run programs; and how to enter the 
special register display mode. 

2-16. COLD POWER-UP 

Perform the cold power-up as follows: 

a. Lower operator panel. Set the "'POWER OFF/ON 
switch to OFF. If computer is equipped with an op­
tional power fail recovery system, set BATTERY 
switch to OFF. 

b. Wait approximately three seconds and set"' POWER 
OFF/ON switch to ON. 

c. Set BATTERY switch to INT. Set LOCK/OPERATE 
switch to OPERATE. Raise and close the operator 
panel. Turn key fully counterclockwise to close panel. 

d. Memory will be cleared and the T-register will 
automatically be selected for display. 

2-17. LOADING PROGRAMS MANUALLY 

Short programs can be loaded manually from the operator 
panel as follows: 

a. Press left half ( <11111) or right half (..,.. ) of Register Select 
switch to select M-register. 

-··--' 

b. Press CLEAR DISPLAY and set Display Register to 
starting address of program. 

c. Press STORE. Select T-register and change contents 
of Display Register to binary code of first instruction 
to be loaded; press STORE. 

d. Enter next instruction in Display Register and press 
STORE. (Pressing STORE with T-register selected 
automatically increments M-register.) 

e. Repeat step d until entire program has been loaded. 

2-18. LOADING PROGRAMS FROM 
PAPER TAPE READER 

Use the following steps to first load the contents of the 
standard paper tape loader ROM into memory and then 
load your program by means of a tape reader. Proceed as 
follows: 

a. Press left half ( <11111) or right half (..,..) of Register Select 
switch to select S-register. 

b. Press CLEAR DISPLAY and set bits 6 through 11 to 
display octal select code of tape reader. 

c. Set bits 15 and 14 to zeros to select standard paper 
tape loader ROM. 

d. Press STORE and then press IBL. The paper tape 
loader is now loaded into the uppermost 64 locations 
of memory and the select code of the tape reader is 
patched according to the contents of the S-register. 
The P-register is now pointing to the first instruction 
of the loader. 

2-7 



Operating Procedures 

e. Turn on tape reader and prepare it for reading. Press 
PRESET and then press RUN. The program will now 
be read into memory and the computer will halt with 
the T-register selected automatically. A successful 
load is indicated if the Display Register contents are 
102077 (octal). 

If the halt code displayed is not 102077 (octal), one of two 
possible error condition halt codes will be displayed. If the 
halt code displayed is 102055 (octal), an address error is 
indicated; check to ensure that the proper tape was used or 
that the tape was not installed backwards. If the halt code 
displayed is 102011 (octal), a checksum error is indicated; 
check for a possible defective or dirty tape or tape reader. 

Table 2-4. Starting Address Vs Memory Size 

.---------r-------·-·----··---·--------·--"""_"_""_"" __ 

MEMORY 
SIZE 

(in bytes) 

16k 

32k 

48k 

64k and up 

STARTING ADDRESS (in octal) 
OF THE PAPER TAPE LOADER 

017700 

037700 

057700 

077700 
'--------'--------------·--·--··---""""-""' 

2-19. LOADING PROGRAMS FROM DISC 
DRIVE FOR OPTIONAL DISC 
LOADER ROMS 

Use the following steps to first load the contents of the 
optional disc loader ROM into memory and then load your 
program by means of an HP 7900A, HP 7901A, or HP 
7905A or HP 7920A Disc Drive. Proceed as follows: 

a. Press left half ( ~) or right half ( ... ) of Register Select 
switch to select S-register. 

b. Press CLEAR DISPLAY and set bit 15 and 14 as 
required to select the optional disc loader ROM. (Refer 
to table 2-5.) 

c. Set bits 13 and 12 as shown below to select appropri­
ate disc drive. 

BITS DISC SELECTED 1---
13 12 

t--

0 0 HP 7900A or HP 7901A 

0 1 HP 7905A or HP 7920A 
------·-----

d. Set bits 11 through 6 to octal select code of disc drive 
interface PCA. 

e. Set bits 0 and 1 as shown to select corresponding disc 
subchannel. 

2-8 

21MXM 

BITS DISC LOADING DEVICE 
1 0 

0 0 HP 7900A (fixed disc) 

0 1 HP 7900A or HP 7901A (removable disc) 

0 0 HP 7905A (Head #0, top of removable disc) 
HP 7920A (Head #0) 

0 1 HP 7905A (Head #1, bottom of removable 
disc) 

HP 7920A (Head #1) 

1 0 HP 7905A (fixed disc) HP 7920A (Head #2) 
-

1 1 HP 7920A (Head #3) 

f. Press STORE, PRESET, and then IBL. The disc 
loader is now loaded into the uppermost 64 loctions of 
memory and the select code of the disc drive is patched 
according to the contents of the S-register. The 
P-register contains the address of the first instruction 
of the loader. (Starting addresses versus memory size 
are listed in table 2-4.) 

g. A successful load is indicated ifthe OVERFLOW light 
remains off. An unsuccessful load is indicated if the 
OVERFLOW light is on; this will occur if the select 
code programmed in step d was less than 10 (octal) or 
if a memory hardware fault is detected .. 

h. Turn on and prepare disc drive for operation and then 
press RUN. The program will now be read into mem­
ory and the computer will halt with the T-register 
selected automatically. A successful load is indicated 
if the Display Register contents are 102077 (octal). 

2-20. LOADING PROGRAMS FROM OTHER 
LOADING DEVICES 

The following procedure is used when loading programs 
from a disc, magnetic tape, or other such media. The con­
tents of the optional loader ROM, associated with the 
loading device, must be loaded before the program can be 
loaded. Locations have been provided within the computer 
to accommodate up to three optional loaders; i.e., optional 
loader ROM 1, 2, and 3. Each of these loaders is used to 
control the loading of programs from a particular type of 
loading device. It is assumed that the optional loader 
ROM, associated with the loading device to be used, is 
installed in the computer and that,its location is known. 

Use the following steps to first load the contents of one of 
the optional loader ROM's into memory and then load 
your program by means of a disc, magnetic tape, or other 
such media. The program must be in binary form and 



21MXM 

must contain absolute addresses. Assuming that the load­
ing device has been prepared for reading, proceed as 
follows: 

a. Press left half ( <1111) or right half ( IJll>) of Register Select 
switch to select S-register. 

b. Press CLEAR DISPLAY and set bit 6 through 11 to 
display octal select code of loading device. 

c. Set bits 15 and 14 as listed in table 2-5 to select the 
optional loader corresponding to your loading device. 

d. Set bits 0 through 5, 12, and 13 as outlined in the 
instructions provided with optional loader. 

e. Press STORE and then press IBL. The optional loader 
is now loaded into the uppermost 64 locations of mem­
ory and the select code of the loading device is patched 
according to the contents of the S-register. The 
P-register is now pointing to the address of the first 
instruction of the optional loader. (Starting addresses 
versus memory size are listed in table 2-4.) 

f. A successful load is indicated ifthe OVERFLOW light 
remains off. An unsuccessful load is indicated if the 
OVERFLOW light is on; this will occur if the select 
code programmed in step b was less than 10 (octal) or 
if a memory hardware fault is detected. 

g. Verify that loading device is prepared for reading. 
Press PRESET and then press RUN. The program 
will now be read into memory and the computer will 
halt with the T-register selected automatically. A 
successful program load is typically indicated if the 
contents of the Display Register are 102077(octal). 
Refer to the instructions included with each optional 
loader for the specific halt code used. 

Table 2-5. Optional Loader Selection 

BIT 
LOADER 

15 14 SELECTED 

0 1 Optional Loader #1 

1 0 Optional Loader #2 

1 1 Optional Loader #3 

2-21. VERIFYING PROGRAMS 

If desired, programs may be verified after loading by the 
following procedure: 

a. Press left half ( "'4) or right half (IJll>) of Register Select 
switch to select M-register. 

b. Press CLEAR DISPLAY and set Display Register to 
the binary starting address of the program. 

Operating Procedures 

c. Press STORE. Select T-register and verify that the 
binary instruction code is displayed as desired for the 
first program instruction. 

d. Press INC M to increment the contents of the 
M-register by one and verify that the binary instruc­
tion code displayed is as desired for next programmed 
instruction. 

e. Repeat step d until all programmed instructions have 
been verified. Pressing DEC M permits the previous 
programmed instruction to be verified. 

2-22. RUNNING PROGRAMS 

To run a program after it has been loaded, proceed as 
follows: 

a. Press left half ( <1111) or right half ( IJll> ) of Register SP-lect 
switch to select P-register. 

b. Press CLEAR DISPLAY and set Display Register to 
starting address of program. 

c. Press STORE, PRESET, and RUN. 

The RUN indicator will remain lighted as long as the 
program is running. If the LOCK/OPERATE switch is set 
to OPERATE, all operator panel controls except the Dis­
play Register, CLEAR DISPLAY, and HALT switches are 
disabled. 

During the run mode, the contents of the S-register are 
automatically selected for display in the Display Register 
and none of the other registers can be selected. Therefore, 
the Display Register effectively becomes the S-register 
and it can be directly addressed as I/O select code 01 (octal) 
by the program. 

If the LOCK/OPERATE switch is set to LOCK, the func­
tions of the RUN/HALT switch are disabled. All other 
operator panel controls are enabled within the constraints 
of the run or halt mode of operation. 

2-23. 

NOTE 

If the computer has the Power Fail Re­
covery System installed, the BAT TEST 
switch must not be pressed unless the 
battery selector is set to INT. 

SPECIAL REGISTER DISPLAY MODE 

The special register display mode provides the capability 
of displaying and/or modifying the contents of the follow­
ing: X and Y registers, scratch pads 83 through 812, over­
flow and extend registers, and all the optional Dynamic 
Mapping System (DMS) map registers. To enter the spe­
cial register display mode, proceed as follows: 

a. Press left half ( <1111) or right half ( IJll> ) of Register Select 
switch to select M-register. 

2-9 



Operating Procedures 

b. Press CLEAR DISPLAY and set bit 15 to a logic 1 
(also set bit 14 to a logic 1 if a DMS map register is to 
be displayed). Do not press STORE. (If STORE is 
pressed, bit 15 will be automatically cleared because 
the M-register is only 15 bits long. This prevents 
accidental entry into the special register display mode 
during normal operation.) 

c. Set low-order bits as shown in figure 2-4 to select 
desired register. Do not press STORE. 

d. Press right half (..,.) of Register Select switch to select 
T-register. The special register display mode is now 
entered and the contents of the desired register are 
displayed. 

Once the special register display mode is entered, the 
register pointer will be displayed when "M" is selected. 
(The M-register is not affected in this mode.) Pressing INC 
M will increment the pointer by one. Pressing DEC M will 
decrement the low-order bits of the pointer modulo 256 10; 

e.g., if the low-order bits are all zeros, pressing DEC M 
will set the eight low-order bits to all ones. 

When "T" is selected, pressing INC M or DEC M will 
increment or decrement the low-order bits of the pointer. 
If bits 15-14 are 112 , bit 6-0 are counted modulo 128 10 (the 
number of DMS map registers); if bits 15-14 are lO:z, bits 
3-0 are counted modulo 1610 (the number of displayable 
registers). In either case, the unused bits are masked to 
zeros. These count features maintain the pointer within 
the range of the number of registers accessible and pre­
vent INC Mand DEC M from affecting bits 15-14 of the 
pointer. 

Table 2-6 lists the effects that the operator panel switches 
have while in the special register display mode and the 
various ways of reentering the normal register (A, B, M, T, 
P, S) display mode; table 2-7 lists the various ways of 
selecting, displaying, and modifying the registers. 

2-24. SHUTDOWN PROCEDURES 

One of the following procedures should be used when the 
computer is shut down during periods of nonoperation. 
The first procedure should be used when it is necessary to 
sustain memory contents. The second procedure should be 
used when it is not necessary to sustain memory contents. 

2-25. SHUTDOWN (MEMORY SUSTAINED). Use 
the following procedure to shut down the computer when 
it is necessary to sustain memory during periods of non­
operation: 

a. The computer MUST BE equipped with the optional 
Power Fail Recovery system, or memory will be lost 
when power is removed from the computer. 

2-10 

21MXM 

b. Ensure that line (mains) power is available and that 
the BATTERY switch is set to INT and that the com­
puter --POWER ON/OFF switch is set to OFF. If the 
computer is housed in a system cabinet, ensure that 
the system power switch is set to provide power to 
rack-mounted units. 

In the event of a power failure, the contents of memory 
will be sustained for a minimum of 1.6 hours by the Power 
Fail Recovery System. 

2-26. SHUTDOWN (MEMORY NOT SUSTAINED). 
Use the following procedure to shut down the computer 
when it is not necessary to sustain memory during periods 
of nonoperation: 

a. Set ~POWER OFF/ON switch to OFF. If computer is 
equipped with optional power fail recovery system, set 
BATTERY switch to OFF to prevent the battery from 
discharging. 

b. Set computer ~POWER OFF/ON switch to OFF or, if 
the computer is housed in a system cabinet, set the 
system power switch to remove ac power. 

All contents of memory and internal registers will be lost. 
When operation is to be resumed, the cold power-up proce­
dure and program loading must be repeated. 

Figures 2-2 and 2-3 show the HP 2108B and the HP 2112B 
1/0 PCA cages and the select codes associated with each 
slot. Select code 10 (octal) has the highest priority in the 
interrupt structure and the highest numbered select code 
has the lowest priority. When it becomes necessary to 
install a new 1/0 interface PCA or change the location of 
an existing one, proceed as follows: 

[CAUTION I 
lf the computer is not equipped with an 
optional power fail recovery system, the 
contents of memory will be lost when the 
line (mains) voltages are off. Therefore, 
store any contents of memory to be saved 
in another medium for later retrieval; 
then perform steps c and e through j 
below. 

a. Check that the -- POWER switch is set to ON. 

NOTE 

If the computer is equipped with a power 
fail recovery system, ensure that there is 
a place to support the battery box with it 
connected to the computer. 



21MXM Operating Procedures 

REGISTER DESIRED POINTER 

15 14 3 2 1 0 

x I 1 I 0 I I 0 I o I o I o I 
y I 1 I 0 I I 0 I o I o ! 1 I 

COUNTER I 1 I 0 I I 0 I 0 I 1 I 0 I 
S3 I 1 I 0 I I 0 I o I 1 11 I 
S4 I 1 I 0 I I 0 I 1 I o I a I 
S5 I 1 I 0 I I 0 I , I o I 1 I 
S6 I 1 I 0 I I 0 I , I 1 I 0 I 
S7 I , I 0 I I o I , I 1 I , I 
S8 I 1 I 0 I I 1 I o I a I o I 
S9 I , I 0 I I 1 I o I a I , I 
S10 I 1 I 0 I I 1 I a I , I o I 
S11 I , I 0 I I , I o I 1 I 1 I 
S12 I , I 0 I I 1 l 1 I 0 I 0 I 

OVERFLOW I , I 0 I I 1 I 1 I 1 I 0 I 
EXTEND I 1 I 0 I I 1 I 1 I , , , I 

OMS MAPS POINTER 

15 14 6 5 4 3 2 1 0 

SYSTEM I 1 I , I I 0 I 0 I MAP REG NO. 

USER I 1 I 1 I I a I 1 I MAP REG NO. 

PORT A I 1 I 1 I I , I 0 I MAP REG NO. 

PORT B I 1 I 1 I I 1 I 1 I MAP REG NO. 

Figure 2-4. Special Register Display Mode Pointers 

2-11 



Operating Procedures 21MXM 

Table 2-6. Special Register Display Mode Switch Operation 
·-·--·--·-·--.. ·····--··-·-·--·-··--- -~-·------- .. -· ... - .. ----·····-------·"'""'"""'-~--.. •··•·· ........................ . ............... ·-·--· ,,.,_, ...... - ...... -.... ---···. ·"-"""''"" .................... ,_, ......... ________________ ,,,_.,,, __________ ,, ____ , __ ,, __ ,_,_, 

SELECTED FOR 
DISPLAY 

SWITCH 
PRESSED 

EFFECT 
l---------·----1-----------·------------+-----------------· ________ ,, ______ ,, _______ , ________________ ........... 

T Register Select "dot" shifts to "P". P-register contents are displayed and 
special register display mode is terminated. 

1-------------+---------.. ---- --·-· .. ·---------·---------·--·---------------------
T .,. Register Select "dot" shifts to "M". Pointer is displayed per figure 2-4. 

1--------------+------------ b--·-·-....... ___ .. _ .. _ .. ,_, ______ .. ___ _ 

T DISPLAY Contents of register selected by pointer are displayed per table 2-7. Pointer 
is unchanged. 

1------------------+----------~-··-·---------·--·-------.. -------------·-----------·-------' 
T STORE Register selected by pointer is loaded with data per table 2-7. 

1--··--------------+------------+------.. ----·-·-------·-·-·-----·----.. ·-

T I NC M Pointer is incremented by one. Contents of register selected by new pointer 
value are displayed per table 2-7. 

~------------ ·--·----.......... - ............ ,_. ________ ,,,_,.,,_+-......... , ____ ........... - ........... _ ....... _, ___ . _______________ ._ ... _______________ --I 

T DEC M Pointer is decremented by one. Contents of register selected by new pointer 
value are displayed per table 2-7. · 

1-------------+-·---·--·-----·---+---"-"-""' _________ .. ,_. _____________________________ ----t 

T *PRESET 

T *IBL 

Same as for normal register display mode except display is left unaltered; 
special register display mode is terminated. {The M-register is displayed if 
"M" is selected by pressing ... ) 

Same as normal register display mode; special register display mode is 
terminated. Contents of last referenced memory address are displayed. 

!---------------·-- ·--------------+--------.. --···------------------- --------' 
T *INSTR STEP Executes the next machine instruction; special register display mode is 

terminated. Contents of last referenced memory address are displayed. 
I-------·------""'-"' __ .. ______ ,,, .. , __ .......... ,.,_, ............. __ .. _,_ .. ,.+-............ - ............ __ ,, .. ____ ,.._,, .... _,, ___________ ... ___ .. 

M Ill> Register Select "dot" shifts to "T". Special register select mode is entered 
{only if bit 15 = 1) and contents of register selected by pointer are 
displayed. 

!.------·-·-----·-.. ---·-·-----·-"""'_ .. ____ !--·-.... --------·------------·-.. - .. _____________________ _ 

M *.,. Register Select "dot" shifts to "B" and contents of B-register are displayed. 
Special register display mode is terminated. 

-·--.. --------·----+---·--·-.. -·-----.. ·--·----.. ----.. -·-·t--...... - ........ _____ _ 

M DISPLAY Contents of the pointer are restored to the display. This is useful for 
checking the pointer after the display has been changed by the operator. 

1-------------+----------·---+------·---------------------·----------·-----
M .. STO RE Contents of the display are stored into the M-register. Bit 15 is cleared and 

the special register display mode is terminated. 
1---------·-----·---+-------.. ····-------·-.. --.. - · l----.. ·--·--.. -····-··"·-----------.. ---------------------1 

M INC M Pointer is incremented and displayed. 
__ .. ,_,,, ___ , ___________________ .. , __ ,, ___ ,, .. ,_ .. ,_ ... ._. ............ _ .......... _ .. , ___________ , ----------------------------1 

M DEC M Low-order bits of pointer are decremented modulo 256 10 and displayed. 

M *PRESET Preset is performed. Special register display mode 1s terminated but dis­
play is unchanged. {Special register display mode may be reentered by 
pressing llil>.) 

·-·------·---· -----...... -----+--·-·---·---------·---·--··---------------------! 
M "'IBL Same as normal register display mode except M-register contents are dis-

played and special register display mode is terminated. 
!-------------+-----------.. --.-.---------------------------------------

Mor T *RUN 

M "INSTR STEP 

Same as normal register display mode; special register display mode is 
terrrn n ated. 

Executes the next machine instruction; special register display mode is 
terminated. Latest value of M-register {last referenced memory address) is 
displayed. 

------- ------'--··--·-----·-·--- __ ,, ..... ,_._ .. ___ , ______ ,,,,, ___ ._., __________________________ _ 
'Indicates conditions that terminate special register display mode . 

....................... --.. -- .. - .................... , ___ , ......... ___ ,,,, __ .. _ .. __ ,, __ ,,_,,,,,_, __ ,, _________ ..... _. _____ ,,_, ....... - ......... --···---·-----... ___ , ... _______ .. ··----·-... ·--.. ---··-----------------

2-12 



21MXM Operating Procedures 

Table 2-7. Effects of Storing/Displaying Special Registers 

REGISTER 
SELECTED BY IF STORE PRESSED 

DISPLAY, INC M, DEC M,IJll> WHILE SE LE CT ED 

X, Y, S3-S12 Contents of selected register (16 bits) dis- Contents of display are loaded into selected 
played. register. The display is not altered. 

Counter Counter state is displayed modulo 256 1 0 in bits Bits 7-0 of display are loaded into counter. The 
7-0. Bits 15-8 are all ones. display is not altered. 

Overflow Display will be 1777778 • Set bit 0 to the desired state and press STORE. 
and Extend The overflow or extend register will be set equal 

to bit 0 of the display. The display is not 
altered. 

DMS Map The contents of the map register indicated by The contents of the display are stored into the 

Register bits 6-0 of the pointer are displayed. Bits 9-0 of map register indicated by bits 6-0 of the pointer 
the display indicate the memory page number. in the same format as described at left. The dis-
If bit 15 = 1, that page is read-protected; if bit play is not altered. Read and write protection 
14 = 1, that page is write-protected. If DMS is may be set with bits 15 and 14, respectively. 
not installed, the display will be 1777778 . 

b. Set the BATTERY switch to INT. 

c. Remove the four captive screws securing the I/O cage 
cover to the computer rear frame. 

d. Place the I/O cage cover with the battery box on a 
support so that the battery cable remains connected. 

e. Set the ~POWER switch to OFF. 

f. Loosen the two screws holding the I/O PCA retainer 
and slide the retainer to permit the removal or 
installation of the I/O PCA's. 

g. Install the new I/O interface PCA or exchange I/O 
interface PCA's as required. If an HP 12979B I/O 
Extender is to be used, install its interface PCA in the 
first available lowest priority I/O slot. 

h. Slide the I/O PCA retainer to the left and tighten the 
two screws. 

i. Apply power to the computer by setting the ~POWER 
switch to ON. 

j. Secure the I/O cage cover with the battery box to the 
rear frame of the computer by fastening the four 
captive screws. 

Table 2-8 provides a quick reference to those halt codes 
associated with the input device loader. These halt codes 
are displayed in the Display Register, when the computer 
is in the halt mode. 

Table 2-9 provides a quick reference to the operator panel 
indications that occur when an abnormal condition exists 
during operation in the normal register display mode. 

2-13 



Operating Procedures 21MXM 

.--

Table 2-8. Halt Codes 

~-·------------~-----

HALT CODE 
(in octal) COMMENTS 

- -·-------·- -
102077 Indicates a successful program load from paper tape and typically indicates a successful program load 

from disc, magnetic tape, or other such media. 

102055 Indicates that an address error occurred while loading from input device. 
---------- --

102011 Indicates that a checksum error occurred while loading from input device. 

INDICATION 

POWER FAIL light remains on. 

PARITY light is on. 

OVERFLOW light is on after IBL 
is pressed. 

Operator panel indicators are ir­
regular after cold power-up; Regis­
ter Select switch cannot select 
registers. 

--

Table 2-9. Abnormal Indications 

ABNORMAL 
CONDITION 

Indicates that power has been re­
stored after a power failure. 

Indicates that a parity error occurred 
while reading from memory. 

Indicates that: 

a. The presence of memory was not 
detected. 

b. The programmed select code was 
less than 10 (octal). 

c. The memory was defective. 

Indicates that: 

a. Power supply or CPU PCA is 
defective. 

b. If Power Fail Recovery System is 
installed, battery cable is not 
connected or connector 12991-
60002 is not connected to BAT 
INPUT connector. 

REMEDY 

Press HALT: then PRESET or exe­
cute an STC 04 or CLC 04 instruction. 

Refer to HP 21 MX M-Series Instal­
lation and Service Manual, part no. 
02108-90035. 

a. Check that memory modules are 
installed and programmed correctly. 

b. Check that the programmed select 
code is witt1in range. 

c. Refer to HP 21 MX M-Series Instal­
lation and Service Manual, part no. 
02108-90035. 

a. Refer to HP 21 MX M-Series 
Computer Installation and Ser­
vice Manual, part no. 02108-
90035. 

b. Connect battery cable from bat­
tery box (or connect connector 
12991-60002) to BAT INPUT 
connector. 

- .. -·---·-----·----·-.. ···---------··-·~--·-----------------" 

2-14 



This section describes the software data formats and the 
base set machine-language instruction coding required to 
operate the computer and its associated input/output sys­
tem. Machine-language instruction coding for the op­
tional Dynamic Mapping System is presented in Section 
IV. 

As shown in figure 3-1, the basic data format is a 16-bit 
word in which bit positions are numbered from 0 through 
15 in order of increasing significance. Bit position 15 of the 
data format is used for the sign bit; a logic 0 in this 
position indicates a positive number and a logic 1 in this 
position indicates a negative number. The data is assumed 
to be a whole number and the binary point is therefore 
assumed to be to the right of the number. 

The basic word can also be divided into two 8-bit bytes or 
combined to form a 32-bit double word. The byte format is 
used for character-oriented input/output devices; packing 
two bytes of data into one 16-bit word is accomplished by 
software drivers. In I/O operations, the higher-order byte 
(byte 1 ) is the first to be transferred. 

The integer double-word format is used for extended 
arithmetic in conjunction with the extended arithmetic 
instructions described under paragraphs 3-21 and 3-22. 
Bit position 15 of the most-significant word is the sign bit 
and the binary point is assumed to be to the right of the 
least-significant word. The integer value is expressed by 
the remaining 31 bits. When loaded into the .ac­
cumulators, the B-register contains the most-significant 
word and the A-register contains the least-significant 
word. 

The floating-point double-word format is used with 
floating-point software. Bit position 15 of the most­
significant word is the mantissa sign and bit position 0 of 
the least-significant word is the exponent sign. Bits 1 
through 7 of the least-significant word express the 
exponent and the remaining bits (bits 8 through 15 of the 
least-significant word and bits 0 through 14 of the most­
significant word) express the mantissa. Since the mantissa 
is assumed to be a fractional value, the binary point 
appears to the left of the mantissa. Software drivers 
convert decimal numbers to this binary form and 
normalize the quantity expressed (sign and leading 
mantissa differ). If either the mantissa or the exponent is 
negative, that part is stored in two's complement form. 

11u11ru1 INFORMATIONI Ill I 

The number must be in the appriximate range of 10- 3 s to 
10+3 s. When loaded into the accumulators, the A-register 
contains the most-significant word and the B-register con­
tains the least-significant word. 

Figure 3-1 also illustrates the octal notation for both 
single-length ( 16-bit) and double-length (32-bit) words. 
Each group of three bits, beginning at the right, is 
combined to form an octal digit. A single-length ( 16-bit) 
word can therefore be fully expressed by six octal digits 
and a double-length (32-bit) word can be fully expressed by 
11 octal digits. Octal notation is not shown for byte or 
floating-point formats, since bytes normally represent 
characters and floating-point numbers are given in decimal 
form. 

The range of representable numbers for single-word data is 
+32,767 to -32,768 (decimal) or +77,777 to -100,000 (octal). 
The range of representable numbers for double-word 
integer data is +2,147,483,647 to -2,147,483,648 (decimal) 
or +17,777,777,777 to -20,000,000,000 (octal). 

3-3. PAGING 

The computer memory is logically divided into pages of 
1,024 words each. A page is defined as the largest block of 
memory that can be directly addressed by the address bits 
of a single-length memory reference instruction. (Refer to 
paragraph 3-8.) These memory reference instructions use 
10 bits (bits 0 through 9) to specify a memory address; 
thus, the page size is 1,024 locations (2000 octal). Octal 
addresses for each page, up to a maximum memory size of 
32K, are listed in table 3-1. 

Provision is made to directly address one of two pages: 
page zero (the base page consisting of locations 00000 
through 01777) and the current page (the page in which 
the instruction itself is located). Memory reference 
instructions reserve bit 10 to specify one or the other of 
these two pages. To address locations on any other page, 
indirect addressing is used as described in following 
paragraphs. Page references are specified by bit 10 as 
follows: 

a. Logic 0 Page Zero (Z). 

b. Logic 1 Current Page (C). 

3-1 



Programming Information 21MXM 

.----------·---------"-"""'_, ___ ,,_,, .. ,,, __ ,_ ......... ____ ............ _,_,,,, .... , ... _, __ ..... _ ... ___ .. ,_ ..... - .... -.. ----·--------·---·--·-----·--------

WORD 
FORMAT 

PACKED 
BYTE 

FORMAT 

INTEGER 
DOUBLE WORD 

FLOATING 
POINT 

DOUBLE WORD 

DATA FORMATS 

h S;gn s;t r Lea« ,;gn;fkant data b;t 

I 11 11 11 11 I 11 11 l 
15 14 13 12 11 10 9 8 1 6 5 4 3 2 1 0 \... 

~ Binary point 

Byte 1 Byte 0 

I I I I I I I I I I I I I I I I I 
15 14 1312 11 10 9 8 1 6 5 4 3 2 1 0 

Binary 111 s;gn s;t po;nt ~ 

1=1111111111111w1111111111111v 
15 14 131211 10 9 8 1 6 5 4 3 2 1 0 1514 1312 11 10 9 8 1 6 5 4 3 2 1 0 

Integer fD Mant;,,. ,;gn 31 b;., Exponent ,;gn li 
I lllllllllllllmlllllllllll I 
15[ 13 12 11 10 9 a 1 G s • 3 :_1_0 __ 1_5_1_4 __ 1_3_12_11_1_0_9_8--..._1_6_5_4 . ..--3-2 __ 1 o 

Binary Mantissa Exponent 
Point 23 bits 1 bits 

~---------------·-·--·---

WORD 
FORMAT 

INTEGER 
DOUBLE WORD 

OCTAL NOTATION 

I I I I I I I I I I I I I I I I I 
15141312111098 76 54 32 10 

11111111111111111m11111111111111 
15141312111098 76 54 3210 15 141312 1110 9 8 1 6 5 4 3 2 1 0 

------------------·--·-·-·--·------
2270-2 

Figure ;3 .. 1. Data Formats and Octal Notation 



21MXM 

Table 3-1. Memory Paging 

MEMORY OCTAL 

3-4. 

SIZE PAGE ADDRESSES 

0 00000 
1 02000 
2 04000 
3 06000 

4 10000 
5 12000 
6 14000 

8K + 7 16000 

8 20000 
9 22000 
10 24000 
11 26000 

12 30000 
13 32000 
14 34000 

16K + 15 36000 

16 40000 
17 42000 
18 44000 
19 46000 
20 50000 
21 52000 

24K + 22 54000 
23 56000 

24 60000 
25 62000 
26 64000 
27 66000 
28 70000 
29 72000 
30 74000 

32K + 31 76000 

DIRECT AND INDIRECT 
ADDRESSING 

to 01777 
to 03777 
to 05777 
to 07777 

to 11777 
to 13777 
to 15777 
to 17777 

to 21777 
to 23777 
to 25777 
to 27777 

to 31777 
to 33777 
to 35777 
to 37777 

to 41777 
to 43777 
to 45777 
to 47777 
to 51777 
to 53777 
to 55777 
to 57777 

to 61777 
to 63777 
to 65777 
to 67777 
to 71777 
to 73777 
to 75777 
to 77777 

All memory reference instructions reserve bit 15 to specify 
either direct or indirect addressing. For single-length 
memory reference instructions, bit 15 of the instruction 
word is used; for extended arithmetic memory reference 
instructions, bit 15 of the address word is used. Indirect 
addressing uses the address part of the instruction to 
access another word in memory, which is taken as the new 
memory reference for the same instruction. This new 
address word is a full 16 bits long: 15 address bits plus 
another direct/indirect bit. The 15-bit length of the 
address permits access to any location in memory. If bit 15 
again specifies indirect addressing, still another address is 
obtained; thus, multistep indirect addressing may be done 
to any number of levels. The first address obtained that 

Programming Information 

does not specify another indirect level becomes the 
effective address for the instruction. Direct or indirect 
addressing is specified by bit 15 as follows: 

a. Logic 0 Direct (D). 

b. Logic 1 Indirect (I). 

3-5. RESERVED MEMORY LOCATIONS 

The first 64 memory locations of the base page (octal 
addresses 00000 through 00077) are reserved as listed in 
table 3-2. The first two locations are reserved as addresses 
for the two 16-bit accumulators (the A- and B-registers). 
Locations 00004 through 00077 are reserved for priority 
interrupts; as long as locations 00006 through 00077 do 
not have actual priority interrupt assignments, as deter­
mined by the options and input/output devices included in 
the system configuration, these locations can be used for 
programming purposes. 

The uppermost 64 locations of memory for any given 
configuration are reserved for the initial binary loader. The 
initial binary loader is permanently resident in a read-only 
memory (ROM) and loaded into the uppermost 64 memory 
locations by a pushbutton switch on the operator panel. 
These 64 locations are not protected and can therefore be 
used for temporary storage of data, trap cells, buffers, etc. 

Table 3-2. Reserved Memory Locations 

MEMORY 
LOCATION 

00000 

00001 

00002-00003 

00004 

00005 

00006 

00007 

00010-0007 7 

PURPOSE 

A-register address. 

B-register address. 

Exit sequence if contents of A­
register and B-register are used as 
executable words. 

Power-fai I interrupt (highest priority). 

Memory parity, memory protect, and 
OMS interrupt. 

Reserved for dual-channel port con­
troller (DCPC) channel 1. 

Reserved for dual-channel port con­
troller (DCPC) channel 2. 

Interrupt locations in decreasing 
order of priority; e.g., location 00010 
has priority over 00011. 

::~-3 



Programming Information 

3-6. NONEXISTENT MEMORY 

Nonexistent memory is defined as those locations not 
physically implemented in the machine. Any attempt to 
write into a nonexistent memory location will be ignored 
(no operation). Any attempt to read from a nonexistent 
memory location will return an all-zeros word (000000 
octal); no parity error occurs. 

The base set of instructions are classified according to 
format. The five formats used are illustrated in figure 3-2 
and described in following paragraphs. In all cases where a 
single bit is used to select one of two cases (e.g., D/I), the 
choice is made by coding a logic 0 or logic 1, respectively. 

i 15l14l13l12l11 l1019 I s I 1161 51 4131 2 I 1 I o I 
1 I I I I 
: I I I I 
1 I ZIC I I I 

MEMORY .. -- -, 
REFERENCE I llnstruct1onl J ____ Memc~-~-Add~~---__J 

D/1 1 I I 

: I 
I 
I I 
I I I 
I A/BS/A I 

REGISTER •c~~,-- l" ·11 ·· ·- Instruction - ·1 
REFERENCE L - --------------'-

! I 

I 
I 
I 
I 

1 'AtB I I I 

IN PUT /0 UTPUT CC}~~=-r1-l~~~~-~~~~:c~::J-~(~-~~~,-,_~~,;~J 

EXTENDED 
ARITHMETIC 

MEMORY 
REFERENCE 

EXTENTED 
ARITHMETIC 

REGISTER 
REFERENCE 

I I I I I 
I I I I I 
: Class I I lnstruft1on I 
I I I I 

I I I 
I I __ I_····· 

(Zr•rosl 

[L ___ Memory Add~~-~~---- ___ ] 

D/1; I I I I 

I I I I 
1
ciass 

1 
I lnstruc

1
t1on 

I I 
I 
I 
I 

,___ __ _.__.._..__ ______ _J _ ~;{~~] 
I 
I 
I 
I 

:A/B I 
EXTENDED ~ 

INSTRUCTION c _c_1a_s_s _._I _,_I _c~'l_as_s ___ ~-~'.:_'.~~'._'__J 
GROUP -

I 
I 
I 

I I I 

FLOATING 
POINT 

I ··-'-···-------~! -~--~..---'"--·-··-~ 
Cclass ___ ...._ ___ __._ ___ __. 

Figure 3-2. Base Set Instruction Formats 

3-8. MEMORY REFERENCE 
INSTRUCTIONS 

21MXM 

This class of instructions, which combines an instruction 
code and a memory address into one 16-bit word, is used to 
execute some function involving data in a specific memory 
location. Examples are storing, retrieving, and combining 
memory data to and from the accumulators (A- and 
R-registers) or causing the program to jump to a specified 
location in memory. 

The memory cell referenced (i.e., the absolute address) is 
determined by a combination of 10 memory address bits (0 
through 9) in the instruction word and 5 bits (10 through 
11) assumed from the current contents of the M-register. 
This means that memory reference instructions can 
directly address any word in the current page; 
additionally, if the instruction is given in some location 
other than the base page (page zero), bit 10 (Z/C) of the 
instruction doubles the addressing range to 2,048 locations 
by allowing the selection of either page zero or the current 
page. (This causes bits 10 through 14 of the address 
contained in the M-register to be set to zero instead of 
assuming th1~ current contents of the M-register.) This 
feature provides a convenient linkage between all pages of 
memory, since page zero can be reached directly from any 
other page. 

As discussed under paragraph 3-4, bit 15 is used to specify 
direct or indirect memory addressing. Note also that since 
the A- and B-registers are addressable, any single-word 
memory reference instruction can apply to either of these 
registers as well as to memory cells. For example, an ADA 
0001 instruction adds the contents of the B-register 
(address 0001) to the contents currently held in the 
A-register; specify page zero for these operations since the 
addresses of the A- and B-registers are on page zero. 

3-9. REGISTER REFERENCE 
INSTRUCTIONS 

In general, the register reference instructions manipulate 
bits in the A-register, B-register, and E-register; there is 
no reference to memory. This group includes 39 basic 
instructions which may be combined to form a one-word 
multiple instruction that can operate in various ways on 
the contents of the A-, B-, and E-registers. These 39 in­
structions are divided into two subgroups: the shift/rotate 
group (SRGl and the alter/skip group (ASG). The appro­
priate subgroup is specified by bit 10 (S/A). Typical opera­
tions are clear and/or complement a register, conditional 
skips, and register increment. 

3-10. INPUT/OUTPUT INSTRUCTIONS 

The input/output instructions use bits 6 through 11 for a 
variety of 1/0 instructions and bits 0 through 5 to apply 
the instructions to a specific 1/0 channel. This provides 
the means of controlling all peripherals connected to the 
l/O channels and for transferring data to and from these 
peripherals. Included also in this group are instructions to 
control the interrupt system, overflow bit, and computer 
halt. 



21MXM 

3-11. EXTENDED ARITHMETIC MEMORY 
REFERENCE INSTRUCTIONS 

As the single-word memory reference instruction described 
previously, the extended arithmetic memory reference 
instructions include an instruction code and a memory 
address. In this case, however, two words are required. 
The first word specifies the extended arithmetic class 
(bits 12 through 15 and 10) and the instruction code (bits 4 
through 9 and 11); bits 0 through 3 are not needed and are 
coded with zeros. The second word specifies the memory 
address of the operand. Since the full 15 bits are used for 
the address, this type of instruction may directly address 
any location in memory. As with all memory reference 
instructions, bit 15 is used to specify direct or indirect 
addressing. Operations performed by this class of 
instructions are integer multiply and divide (using 
double-length product and dividend) and double load and 
double store. 

3-12. EXTENDED ARITHMETIC REGISTER 
REFERENCE INSTRUCTIONS 

This class of instructions provides long shifts and rotates 
on the combined contents of the A- and B-registers. Bits 
12 through 15 and 10 identify the instruction class; bits 4 
through 9 and 11 specify the direction and type of shift; 
and bits O through 3 control the number of shifts, which 
can range from 1 to 16 places. 

3-13. EXTENDED INSTRUCTIONS 

The extended instructions include index register instruc­
tions, bit and byte manipulation instructions, and move 
and compare instructions. Instructions comprising the ex­
tended instruction group are one, two, or three words in 
length. The first word is always the instruction code; 
operand addresses are given in the words following the 
instruction code or in the A- and B-registers. The operand 
addresses are 15 bits long, with bit 15 (most-significant 
bit) generally indicating direct or indirect addressing. 

3-14. FLOATING POINT INSTRUCTIONS 

The floating point instructions allow addition, subtrac­
tion, multiplication, and division of 32-bit floating point 
quantities. Two conversion routines are provided for 
transforming numerical integer representations to/from 
floating point representations. 

Machine language coding for the base set of instructions 
are provided in following paragraphs. Definitions for these 
instructions are grouped according to the instruction type: 
memory reference, register reference, input/output, 
extended arithmetic memory reference, and extended 
arithmetic register reference. 

Directly above each definition is a diagram showing the 
machine language coding for that instruction. The gray 

Programming Information 

shaded bits code the instruction type and the blue shaded 
bits code the specific instruction. Unshaded bits are 
further defined in the introduction to each instruction 
type. The mnemonic code and instruction name are m­
cluded above each diagram. 

In all cases where an additional bit is used to specify a 
secondary function (D/I, ZIC, or H/C ), the choice is made 
by coding a logic 0 or logic 1, respectively. In other words, 
a logic 0 codes D (direct addressing), Z (zero page), or H 
(hold flag); a logic 1 codes I (indirect addressing), C 
(current page), or C (clear flag). 

3-16. MEMORY REFERENCE 
INSTRUCTIONS 

The following 14 memory reference instructions execute a 
function involving data in memory. Bits 0 through 9 
specify the affected memory location on a given memory 
page or, if indirect addressing is specified, the next 
address to be referenced. Indirect addressing may be 
continued to any number of levels; when bit 15 (D/I) is a 
logic 0 (specifying direct addressing), that location will be 
taken as the effective address. The A- and B-registers may 
be addressed as locations 00000 and 00001 (octal), 
respectively. 

If bit 10 (Z/C) is a logic 0, the memory address is an page 
zero; if bit 10 is a logic 1, the memory address is on the 
current page. If the A- or B-register is addressed, bit 10 
must be a logic 0 to specify page zero, unless the current 
page is page zero. 

ADA ADD TO A 

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 

Memory Address 

Adds the contents of the addressed memory location to the 
contents of the A-register. The sum remains in the 
A-register and the contents of the memory cell are 
unaltered. The result of this addition may set the extend 
bit or the overflow bit. (Extend and overflow examples are 
illustrated on page A-13.) 

ADB ADD TO B 

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 
D;I 1 0 0 21c 

Memory Address 

Adds the contents of the addressed memory location to the 
contents of the B-register. The sum remains in the 
B-register and the contents of the memory cell are 
unaltered. The result of this addition may set the extend 
bit or the overflow bit. (Extend and overflow examples are 
illustrated on page A-13.) 

3-5 



Programming Information 

AND "AND" TO A 

~1._-: ....... 103 ....... 11 ........ 2 ...... ~1 ........ ~m-rfilri1~ 
\,,,,, llRIH!IRP- .1111\,,_ _____ _ 

Memory Address 

Combines the contents of the addressed memory location 
and the contents of the A-register by performing a logical 
"and'' operation. The contents of the memory cell are 
unaltered. 

CPA COMPARE TO A 

15 14 13 12 1110 9 8 7 6 

D/1 1 0 1 0 Z;C 

5 4 3 2 1 0 

Memory Address 

Compares the contents of the addressed memory location 
with the contents of the A-register. If the two IG-bit words 
are not identical, the next instruction is skipped; i.e., the 
P-register advances two counts instead of one count. If the 
two words are identical, the next sequential instruction is 
executed. Neither the A-register contents nor memory cell 
contents are altered. 

CPB 
15 14 13 12 1110 9 8 7 6 

COMPARE TO B 

5 4 3 2 ~ 
D;I 0 1 1 Z;C 

Memory Address 

Compares the contents of the addressed memory location 
with the contents of the B-register. If the two 16-bit words 
are not identical, the next instruction is skipped; i.e., the 
P-register advances two counts instead of one count. If the 
two words are identical, the next sequential instruction is 
executed. Neither the B-register contents nor memory cell 
contents are altered. 

IOR 

15 14 13 12 1110 9 
[\ 0 1 1 0 Z;C 

"INCLUSIVE OR" TO A 

8 7 6 54 3 21 0 

Memory Address 

Combines the contents of the addressed memory location 
and the contents of the A-register by performing a logical 
"inclusive or" operation. The contents of the memory cell 
are unaltered. 

ISZ 

15 14 13 12 

1\ 0 

INCREMENT AND SKIP IF ZERO 

11 !O 9 _LB 7 6 5 4 3 -2-·~l1D~----
1c 

!!..... ....... ~...._ ........ -..i..._ ........ __,. __ , ' -

Memory Address 

21MXM 

Adds one tu the contents of the addressed memory 
location. If the result of this operation is zero (memory 
contents incremented from 177777 to 000000), the next 
instruction is skipped; i.e., the P-register is advanced two 
counts instead of one count. If the result of this operation 
is not zero, the next sequential instruction is executed. In 
either case. the incremented value is written back into the 
memory cell. 

JMP JUMP 

Memory Address 

Transfers control to the addressed memory location. That 
is, a .JMP causes the P-register count to set according to 
the memory address portion of the JMP instruction so 
that the next instruction will be read from that location. 

JSB JUMP TO SUBROUTINE 

15 14 13 12 1110 9 8 7 6 54 3 21 0 
D;I 0 0 Zic 

Memory Address 

This instruction, executed in location P (P-register count), 
causes the computer control to jump unconditionally to 
the memory location ( m) specified by the memory address 
portion of the JSB instruction. The contents of the 
P-register plus one (return address) is stored in memory 
location m, and the next instruction to be executed will be 
that contained in the next sequential memory location 
(rn + 1 ). A return to the main program sequence at P + 1 
will he effected by a JMP indirect through location m. 

LDA 

v­
Memory Address 

LOAD A 

Loads the contents of the addressed memory location into 
t.he A-regist•~r. The contents of the memory cell are 
unaltered. 

LOB LOAD B 

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 
[);I 1 1 (]! Z;C 

Memory Address 

Loads the contents of the addressed memory location into 
Uw B-register. The contents of the memory cell are 
unaltered. 



21MXM 

STA STORE A 

15 14 13 12 1110 9 8 7 6 5 4 3 2 0 

Memory Address 

Stores the contents of the A-register in the addressed 
memory location. The previous contents of the memory 
cell are lost; the A-register contents are unaltered. 

STB STORE B 

15 14 13 12 1110 9 8 7 6 5 4 3 2 0 
1 

Memory Address 

Stores the contents of the B-register in the addressed 
memory location. The previous contents of the memory 
cell are lost; the B-register contents are unaltered. 

XOR "EXCLUSIVE OR" TO A 

15 14 13 12 1110 9 8 7 6 54 3 21 0 

Memory Address 

Combines the contents of the addressed memory location 
and the contents of the A-register by performing a logical 
"exclusive or" operation. The contents of the memory cell 
are unaltered. 

3-17. REGISTER REFERENCE 
INSTRUCTIONS 

The 39 register reference instructions execute functions 
on data contained in the A-register, B-register, and E­
register. These instructions are divided into two groups: 
the shift/rotate group (SRG) and the alter/skip group 
(ASG). In each group, several instructions may be com­
bined into one word. Since the two groups perform sepa­
rate and distinct functions, instructions from the two 
groups cannot be mixed. Unshaded bits in the coding diag­
rams are available for combining other instructions. 

3-18. SHIFT/ROTATE GROUP. The 20 instruc­
tions in the shift/rotate group (SRG) are defined first; this 
group is specified by setting bit 10 to a logic 0. A compari­
son of the various shift/rotate functions are illustrated in 
figure 3-3. Rules for combining instructions in this group 
are as follows (refer to table 3-3): 

a. Only one instruction can be chosen from each of the 
two multiple-choice columns. 

Programming Information 

b. References can be made to either the A-register or 
B-register, but not both. 

c. Sequence of execution is from left to right. 

d. In machine code, use zeros to exclude unwanted 
microinstructions. 

e. Code a logic 1 in bit position 9 to enable shifts or 
rotates in the first position; code a logic 1 in bit 
position 4 to enable shifts or rotates in the second 
position. 

f. The extend bit is not affected unless specifically stated. 
However, if a "rotate-with-E" instruction (ELA, ELB, 
ERA, or ERB) is coded but disabled by a logic O in bit 
position 9 and/or position 4, the E-register will be 
updated even though the A- or B-register contents are 
not affected; to avoid this situation, code a "no 
operation" (three zeros) in the first and/or second 
positions. 

ALS 
BLS 

ARS 
BRS 

RAL 
RBL 

RAR 
RBR 

ALR 
BLR 

ERA 
ERB 

ELA 
ELB 

ALF 
BLF 

A· or B-req1ster 
0 

W??1 I I I I I I I I er·,. I Joi 

CTff 1 I I I I I I I I I ffi~ 

@??1 I I I I I I I I I ff~_D 
0

~·1?21 I I I I I I I I 
fff.10 

[871 I I I ~I I I I ilJID 
Qfi I I I 1.Q I I I I 1?iill 
~~ 

Figure 3-3. Shift and Rotate Functions 

3-7 



Programming Information 

Table 3-3. Shift/Rotate Group Combining Guide 

j 
ALS (, 
AAS 
RAL 
AAA 
ALA ~ [.CLE] 
ALF 
ERA 

\ELA 

j 
BLS 
BAS 
RBL 
RBR ~ I.CLE! 

BLR ~ BLF 
ERB 

' ELB 

[.SLA] 

[.SLBI 

~
' ALS ( 

AAS 
RAL 

·1 =~~~ ALF 
ERA 

.. ELA 

l BLS ! BAS 
RBL 
RBR 
BLR 
BLF 
ERB 

, ELB 

..__ _______________ ... __ ·-·--·--· 

ALF ROTATE A LEFT FOUR 

15 14 13 12 1110 9 8 7 6 5 3 2 0 
... --~ 

_ti; _O, o. O 

LJ L __ _T 
1st Position 2nd Position 

Rotates the A-register contents (all 16 bits) left four 
places. Bits 15, 14, 13, and 12 rotate around to bit 
positions 3, 2, 1, and 0, respectively. Equivalent to four 
successive RAL instructions. 

ALR A LEFT SHIFT, CLEAR SIGN 

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 
.. a~ ~:a::~ ... o- ::·(f. 1 a-·- ·a o ·a 

1st Position 2nd Position 

Shifts the A-register contents left one place and clears sign 
bit 15. 

ALS ALEFTSHIFT 

7 6 5 4 3 

0 0 1 

1st Position 2nd Position 

Arithmetically shifts the A-register contents left one 
place, 15 magnitude bits only; bit 15 (sign) is not affected. 
The bit shifted out of bit position 14 is -lost; a logic 0 
replaces vacated bit position 0. 

:3-8 

21MXM 

ARS A RIGHT SHIFT 

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 

0 0 -0 0 0 0 0 0 1 0 0 

1st Position 2nd Position 

Arithmetically shifts the A-register contents right one 
place, 15 magnitude bits only; bit 15 (sign) is not affected. 
A copy of the sign bit is shifted into bit position 14; the bit 
shifted out of bit position 0 is lost. 

BLF ROTATE B LEFT FOUR 

15 14 13 12 1110 9 8 7 6 5 4 3 2 0 

0 0 0 0 1 ·O 

1st Position 2nd Position 

Rotates the B-register contents (all 16 bits) left four 
places. Bits 15, 14, 1:3, and 12 rotate around to bit 
positions 3, 2, 1, and 0, respectively. Equivalent to four 
successive RBL instructions. 

B LEFT SHIFT, CLEAR SIGN 

1110 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 0 

1st Position 2nd Position 

Shifts the B-register contents left one place and clears sign 
bit 15. 

BLS B LEFT SHIFT 

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 1 • 0 0 0 1 0 0 0 

1st Position 2nd Position 

Arithmetically shifts the B-register contents left one place, 
15 magnitude bits only; bit 15 (sign) is not affected. The 
bit shifted out of bit position 14 is lost; a logic 0 replaces 
vacated bit position 0. 



21MXM 

BRS BRIGHT SHIFT 

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 

0. 0 0 ·O 1 0. 0 0 0 0 1 

1st Position 2nd Position 

Arithmetically shifts the B-register contents right one 
place, 15 magnitude bits only; bit 15 (sign) is not affected. 
A copy of the sign bit is shifted into bit position 14; the bit 
shifted out of bit position 0 is lost. 

Clears the E-register; i.e., the extend bit becomes a logic 0. 

ELA ROTATE E LEFT WITH A 

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 
o ~o o o·:. o · o~ o 1 1 o 

LJ·I~ 
1st Position 2nd Position 

Rotates the E-register content left with the A-register 
contents (one place). The E-register content rotates into 
bit position O; bit 15 rotates into the E-register. 

ELB ROTATE E LEFT WITH B 

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 

Jr :;d;l ·-~er:-~~:· 1 Jtt· 1 1 o 1 1 1 o 

1st Position 2nd Position 

Rotates the E-register content left with the B-register 
contents (one place). The E-register content rotates into 
bit position 0; bit 15 rotates into the E-register. 

ERA ROTATE E RIGHT WITH A 

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 
·o:· · · o ··,I\· : 1•: • o ·o· · 1 o 1 o 1 ... · .·,· ~ ;\Ji: ~-- .: 

1st Position 2nd Position 

Rotates the E-register content right with the A-register 
contents (one place). The E-register content rotates into 
bit position 15; bit 0 rotates into the E-register. 

Programming Information 

ERB ROTATE E RIGHT WITH B 

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 

0 1 
-

1. 0 0 0 1 0 1 1 0 1 

LJ LY 
1st Position 2nd Position 

Rotates the E-register content right with the B-register 
contents (one place). The E-register content rotates into 
bit position 15; bit 0 rotates into the E-register. 

NOP NO OPERATION 

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 
----- ·---·--

0 ·o· o· o o ·:o o o o o o o o o o o 

This all-zeros instruction causes a no-operation cycle. 

RAL ROTATE A LEFT 

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 
-·- - - ---

o. ·o ·o ·:o· o :o 1 o 1 o o 1 o 

LJLJ 
1st Position 2nd Position 

Rotates the A-register contents left one place (all 16 bits). 
Bit 15 rotates into bit position 0. 

RAR ROTATE A RIGHT 

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 

·:tr·.~.· ··o:··:';O_: o ::o.-: 1 o 1 1 1 o 1 1 

LJ LY 
1st Position 2nd Position 

Rotates the A-register contents right one place (all 16 
bits). Bit 0 rotates into bit position 15. 

RBL ROTATE B LEFT 

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 

ior: :'JJ::;_;o.: ·:ot 1 l~'. 1 o 1 o 1 o 1 o 

LJ l_Y 
1st Position 2nd Position 

Rotates the B-register contents left one place (all 16 bits). 
Bit 15 rotates into bit position 0. 

:1-9 



Programming Information 

RBR 

15 14 13 12 1110 9 
0 0 o: 0, 1 0 1 0 1 1 

ROTATE BRIGHT 

7 6 5 4 -~-fu±ilil 0 
._..._ ...... __ ....._...__. __ ....._...__. __ ...._....___.. __ ......... 

LJ L_'T 
1st Position 2nd Position 

Rotates the B-register contents right one place (all 16 
bits). Bit 0 rotates into bit position 15. 

SLA SKIP IF LSB OF A IS ZERO 

iffi1 1:11:l~1 1 1:1~21~t5 J4 r+P-2·~ 
Skips the next instruction if the least-significant bit (bit 0) 
of the A-register is a logic 0. 

SLB SKIP IF LSB OF BIS ZERO 

~U19fY1~l5T-rlff1~ 
Skips the next instruction if the least-significant bit (bit 0) 
of the B-register is a logic 0. 

:J-19. ALTER/SKIP GROUP. The 19 instructions 
comprising the alter/skip group (ASG) are defined next. 
This group is specified by setting bit 10 to a logic 1. Rules 
for combining instructions are as follows (refer to table 
:3-4): 

a. Only one instruction can be chosen from each of the 
two multiple-choice columns. 

b. References can be made to either the A-register or 
B-register, but not both. 

c. Sequence of execution is from left to right. 

d. If two or more skip functions are combined, the skip 
function will occur if either or both conditions are met. 
One exception exists: refer to the RSS instruction. 

e. In machine code, use zeros to exclude unwanted 
instructions. 

Table 3-4. Alter/Skip Group Combining Guide 

[ rn~:}] l.SEZJ [{ ~m] I.SSA) J.SLA I (.INA) I.SZAi I.ASS) 

[rn~:)] (.SEZ) [{~~m I.SSS) l.SLBI [.INBJ l.SZB) I.ASS) 

3-10 

21MXM 

CCA CLEAR AND COMPLEMENT A 

15 14 13 12 ,1110 9

1

8 , 6

1

5 4 ~m 
o o o o 0!1J1 1! 1 IT 

Clears and complements the A-register contents; i.e., the 
contents of the A-register become 177777 (octal). This is 
the two's complement form of -1. 

CCB CLEAR AND COMPLEMENT B 

1110 9 8 7 6 5 4 3 2 1 0 

1 1 

Clears and complements the B-register contents; i.e., the 
contents of the B-register become 177777 (octal). This is 
the two's complement form of -1. 

CCE CLEAR AND COMPLEMENT E 

15,14131211110 918 7 615 4 jl2 1 01 
lo -ojoJo !1] [1 [1 I I I I 

Clears and complements the E-register content (extend 
bit); i.e., the extend bit becomes a logic 1. 

CLA CLEAR A 

15 14 13 n~ 1110 g s 1 s s 4 J 2 1 o 
0 0 0 0 0 1 0 1 

Clears the A-register; i.e., the contents of the A-register 
become 000000 (octal). 

CLB 

1110 9 8 7 6 
1 1 0 1 

CLEAR B 

5 4 3 2 1 0 

Clears the B-register; i.e., the contents of the B-register 
become 000000 (octal). 

CLE CLEAR E 

15 14 13 12 I 11 1 o 9 I 8 , 6 I ~ 4 3f 1 o I 
o o o o r 1 l Io l 1 II l l 

Clears the E-iregister; i.e., the extend bit becomes a logic 0. 

CMA COMPLEMENT A 

1514131211110 918 7 61~ 4 312 1 01 
o o o o o l 1 ! 1 o I I II I 1 

Complements the A-register contents (one's complement). 



21MXM 

CMB COMPLEMENT B 

9 8 7 6 54 3 21 0 
1 0 

Complements the B-register contents (one's complement). 

CME COMPLEMENT E 

8 7 6 54 3 21 0 

1 0 

Complements the E-register content (extend bit). 

lNA INCREMENT A 

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 
:e< _, o- lr: o J=: 

Increments the A-register by one. The overflow bit will be 
set if an increment of the largest positive number (077777 
octal) is made. The extend bit will be set if an all-ones 
word (177777 octal) is incremented. 

INB INCREMENT B 

Increments the B-register by one. The overflow bit will be 
set if an increment of the largest positive number (077777 
octal) is made. The extend bit will be set if an all-ones 
word (177777 octal) is incremented. 

ASS REVERSE SKIP SENSE 

1110 9 8 7 6 5 4 3 2 1 0 
,;f: 1 

Skip occurs for any of the following skip instructions, if 
present, when the non-zero condition is met. An RSS 
without a skip instruction in the word causes an 
unconditional skip. If a word with RSS also includes both 
SSA and SLA (or SSB and SLB), bits 15 and 0 must both 
be logic 1 's for a skip to occur; in all other cases, a skip 
occurs if one or more skip conditions are met. 

SEZ SKIP IF EIS ZERO 

1
1:t;'J1::i::l1111

:3 
9

1
8 
I 7 I 61 ~ I 4 I 3 I 21

1 
I 
0 I 

Skips the next instruction if the E-register content (extend 
bit) is a logic 0. 

Programming Information 

SLA SKIP IF LSB OF A IS ZERO 

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 
--_9:: ::it ~:a:: ':«t, o ~}:, 1 

Skips the next instruction if the least-significant bit (bit 0) 
of the A-register is a logic O; i.e., skips if an even number is 
in the A-register. 

SLB SKIP IF LSB OF BIS ZERO 

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 

:1f :»:J=tfr:Q:: 1 ::f, 

Skips the next instruction if the least-significant bit (bit 0) 
of the B-register is a logic 0; i.e., skips if an even number is 
in the B-register. 

SSA SKIP IF SIGN OF A IS ZERO 

1110 9 8 7 6 5 4 3 2 1 0 
0 _::ff 

Skips the next instruction if the sign bit (bit 15) of the 
A-register is a logic O; i.e., skips if a positive number is in 
the A-register. 

SSB SKIP IF SIGN OF B IS ZERO 

1110 9 8 7 6 5 4 3 2 1 0 

1 

Skips the next instruction if the sign bit (bit 15) of the 
B-register is a logic 0; i.e., skips if a positive number is in 
the B-register. 

SZA SKIP IF A IS ZERO 

15 14 13 12 1110 9 8 7 6 5 4 3 

::0:: ::iE :»L-=a:: o ':'f 

Skips the next instruction if the A-register contents are 
zero (16 zeros). 

SZB SKIP IF B IS ZERO 

,~}f;i]J~:.1 111 1 1~ I 91
8

1

7 
I 61 J\3l21t1~ 

Skips the next instruction if the B-register contents are 
zero ( 16 zeros). 



Programming Information 

3-20. INPUT/OUTPUT INSTRUCTIONS 

The following input/output instructions provide the 
capability of setting or clearing the 1/0 flag and control 
bits, testing the state of the overflow and the 1/0 flag bits, 
and transferring data between specific 1/0 devices and the 
A· and B-registers. In addition, specific instructions in 
this group control the vectored priority interrupt system 
and can cause a programmed halt. 

Bit 11, where relevant, specifies the A- or B-register or 
distinguishes between set control and clear control; 
otherwise, bit 11 may be a logic 0 or a logic 1 without 
affecting the instruction (although the assembler will 
assign zeros in this case). In those instructions where bit 
position 9 includes the letters H/C, the programmer has 
the choice of holding (logic 0) or clearing (logic 1 ) the 
device flag after executing the instruction. (Exception: the 
H/C bit associated with instructions SOC and SOS holds 
or clears the overflow bit instead of the device flag.) Bits 8, 
'7, and 6 specify the appropriate 1/0 instruction and bits 5 
through 0 form a two-digit octal select code (address) to 
apply the instruction to one of up to 64 input/output 
devices or functions. 

CLC CLEAR CONTROL 

_15-104 ...... 1_:_10_2 _1_1 _\o ..... H_~c-~----6-5{ [3 =iil 
Select Code 

Clears the control bit of the selected I/O channel or func­
tion. This turns off the specific device channel and pre­
vents it from interrupting. A CLC 00 instruction clears all 
control bits from select code 06 upward, effectively turning 
off all I/O devices. 

CLF CLEAR FLAG 

1: ~ 1: 1: 11 ,,0 ___ ""9""""""-&.-":""""""~"""~"""""---··6·"-""_. 5 4 ?fifl 
,,,._ ____ -.... ______ _.,. 

Select Code 

Clears the flag of the selected 1/0 channel or function. A 
CLF 00 instruction disables the interrupt system for all 
select codes except power fail (select code 04) and parity 
error (select code 05), which are always enabled; this does 
not affect the status of the individual channel flags. 

CLO 

15 14 13 12 1110 9 

1 0 0 0 0 1 

Clears the overflow bit. 

3-12 

8 7 

0 0 

CLEAR OVERFLOW 

6 ~ : : }11IE 

21MXM 

HLT HALT 

15 14 13 12 1110 9 8 7 6 5 4 3 2 0 

1 0 0 0 1 H/c 0 0 0 

Select Code 

Halts the computer and holds or clears the flag of the 
selected 1/0 channel. The HLT instruction has the same 
effect as pressing the operator panel HALT pushbutton. 
The HL T instruction will be contained in the T-register, 
which is selected and displayed automatically when the 
computer halts. The P-register will contain the HLT loca­
tion plus one. 

LIA LOAD INTO A 

15 14 13 12 1110 9 8 7 6 5 4 3 2 0 
0 0 0 0 1 H/c 1 0 1 

Select Code 

Loads the contents of the 1/0 buffer associated with the 
selected device into the A-register. 

LIB LOAD INTO B 

15 14 13 1:2 1110 9 8 7 6 5 4 3 2 0 
1 0 0 0 1 H/c 0 

Select Code 

Loads the contents of the 1/0 buffer associated with the 
selected device into the B-register. 

MIA MERGE INTO A 

15 14 13 12 1110 9 8 7 6 5 4 3 2 0 
1 0 0 0 0 1 H;C 0 0 

Select Code 

By executing a logical "inclusive or" function, merges the 
contents of the 1/0 buffer associated with the selected 
device into the A-register. 

MIB MERGE INTO B 

15 14 13 12 1110 9 8 7 6 5 4 3 2 0 

1 0 0 0 1 H;C 0 0 

Select Code 

By executing a logical "inclusive or" function, merges the 
contents of the 1/0 buffer associated with the selected 
device into the B-register. 



21MXM 

OTA OUTPUT A 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
1 :'o'.';;o:::A' 0 ::t::, H/c 1 1 0 

Select Code 

Outputs the contents of the A-register to the 1/0 buffer 
associated with the selected device. If the 1/0 buffer is less 
than 16 bits in length, the least-significant bits of the 
A-register are normally loaded. (Some exceptions to this 
exist, depending on the type of output device.) The 
contents of the A-register are not altered. 

OTB OUTPUT B 

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 
1' tL 9 : ij '. 1 f H/c 1 0 

Select Code 

Outputs the contents of the B-register to the 1/0 buffer 
associated with the selected device. If the 1/0 buffer is less 
than 16 bits in length, the least-significant bits of the 
B-register are normally loaded. (Some exceptions to this 
exist, depending on the type of output device.) The 
contents of the B-register are not altered. 

SFC SKIP IF FLAG CLEAR 

15 14 13 12 1110 9 8 7 6 5 4 3 2 0 
-,,_ :'ttJf :cf· ':f-: o o o 

.._ __ ,v_. ___ _..., 

Select Code 

Skips the next programmed instruction if the flag of the 
selected channel is clear (device busy). 

SFS SKIP IF FLAG SET 

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 
f Jt<~a<e -'f" o o 1 

Select Code 
Skips the next programmed instruction if the flag of the 
selected channel is set (device ready). Used with "wait­
for-flag" I/O programming, usually the interrupt system is 
off. If used with the interrupt system on, use a CLF in­
struction to clear the flag and eliminate the interrupt 
request. 

soc SKIP IF OVERFLOW CLEAR 

9 8 7 6 54 3 21 0 

10000 0 0 

Skips the next programmed instruction if the overflow bit 
is clear. Use the H/C bit (bit 9) to either hold or clear the 
overflow bit following the completion of this instruction 
(whether the skip is taken or not). 

Programming Information 

sos SKIP IF OVERFLOW SET 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
- ·-

T ;~tF:a: · :~,:, 0 J':,Hfc 0 1 1 0 0 0 0 0 1 

Skips the next programmed instruction if the overflow bit 
is set. Use the H/C bit (bit 9) to either hold or clear the 
overflow bit following the completion of this instruction 
(whether the skip is taken or not). 

STC SET CONTROL 

7 6 5 4 3 2 1 0 
0 ::t.,H/c 1 1 

Select Code 

Sets the control bit of the selected 1/0 channel or function. 

STF SET FLAG 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
'1:, 'If :1r :'. :::: x v" 

:~:', :l1i: 0 0 0 1 

Select Code 

Sets the flag of the selected I/O channel or function. An 
STF 00 instruction enables the interrupt system for all 
select codes except power fail (select 04) which is always 
enabled and parity error (select code 05), which is selec­
tively controllable . 

STO 

15 14 13 12 1110 9 8 7 
j:i :, ·}:::o;: o -~~:: o o o 

Sets the overflow bit. 

SET OVERFLOW 

6 54 3 21 0 

0 0 0 0 0 1 

3-21. EXTENDED ARITHMETIC MEMORY 
REFERENCE INSTRUCTIONS 

The four extended arithmetic memory reference in­
structions provide for integer multiply and divide and for 
loading and storing double-length words to and from the 
A- and B-registers. The complete instruction requires two 
words: one for the instruction code and one for the 
address. When stored in memory, the instruction word is 
the first to be fetched; the address word is in the next 
sequential location. 

Since 15 bits are available for the address, these 
instructions can directly address any location in memory. 
As for all memory reference instructions, indirect 
addressing to any number of levels may also be used. A 
logic 0 in bit position 15 specifies direct addressing; a logic 
1 specifies indirect addressing. 

3-13 



Programming Information 

DIV DIVIDE 

................... -........... :~r~-TI!ttl 
MP.rnory Addres..s 

I >ivides a double-word integer in the combined B- and 
/\-registers by a 16-bit integer in the addressed memory 
location. The result is a 16-bit integer quotient in the 
Aregister and a 16-bit integer remainder in the B-register. 
Overflow can result from an attempt to divide by zero. or 
from an attempt to divide by a number too small for the 
dividend. In the former case (divide by zero), the division 
will not be attempted and the B- and A-register contents 
will b1~ unchanged except that a negative quantity will be 
made positive. In the latter case (divisor too small). the 
execution will be attempted with unpredictable results left 
in the H· and A-registers. If there is no divide error. the 
overflow hit is cleared. 

OLD 

11 10 9 

1 0 0 

Memory Address 

OOUBLE LOAD 

Loads the contents of addressed memory location m 
(and m + 1) into the A- and B-registers, respectively. 

OST DOUBLE STORE 

11 10 9 8 7 
0 0 0 ! fff ·. _ii[~·l·.j 

-----· , ____ ....... _ ................. _ ................. _........._,. - J._. 
Memory Address 

Stores the double-word quantity in the A- and B-registers 
into addressed memory locations m (and m + l ). 
respectively. 

MPV MULTIPLY 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 

~l 
1 0 0 0 0 0 0 0 1 0 0 0 

!---' r-...... t---· ...... __, 1--""" ······-···· 

"~~~ -~"~:~"- : 
o;, 

Memory AddrE-ss 

Multiplies a 16-bit integer in the A-register by a 16-bit 
integer in the addressed memory location. The resulting 
double-length integer product resides in the B- and 

:J-14 

21MXM 

A-registers, wi[th the B-register containing the sign bit and 
Lhe most-significant 15 bits of the quantity. The A-register 
may be used as an operand (i.e., memory address 0), 
resulting in an arithmetic square. The instruction clears 
the overflow bit. 

EXTENDED ARITHMETIC REGISTER 
REFERENCE INSTRUCTIONS 

The six extended arithmetic register reference instructions 
provide vanous types of shifting operations on the 
combined contents of the B- and A-registers. The 
B-register is considered to be to the left (most-significant 
word) and the A-register is considered to be to the right 
(least-significant word). An example of each type of shift 
operation is illustrated in figure 3-4. 

The complete instruction is given in one word and includes 
four bits (unshaded) to specify the number of shifts 
( 1 to 16). Hy viewing these four bits as a binary-coded 
number, the number of shifts is easily expressed; 
i P., binary-coded l = l shift, binary-coded 2 = 2 shifts ... 
binary-coded 15 = 15 shifts. The maximum number of 16 
shifts is coded with four zeros, which essentially 
exchanges the contents of the B- and A-registers. 

The extend hit is not affected by any of the following 
instructions. Except for the arithmetic shifts, overflow 
<:1lso is not affected. 

/\SL ARITHMETIC SHIFT LEFT 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
1 0 0 0 0 0 0 0 0 0 0 

Number of Shifts 

Arithmetically shifts the combined contents of the B- and 
A-registers left n places. The value of n may be any 
number from 1 through 16. Zeros are filled into vacated 
luw-order positions of the A-register. The sign bit is not 
affected, and data bits are lost out of bit position 14 of the 
H-register. If any one of the lost bits is a significant data 
hit (" l" for positive numbers, "O" for negative numbers), 
the overflow bit will be set; otherwise, overflow will be 
cleared during execution. See ASL example in figure 3-4. 
Note that two additional shifts in this example would 
muse an error by losing a significant 'l '. 

ASA ARITHMETIC SHIFT RIGHT 

15 14 13 12 1110 9 8 7 6 5 4 3 2 0 
1000001 0 0 0 0 1 

Number of Shifts 

Arithmetically shifts the combined contents of the B- and 
A-registers right n places. The value of n may be any 
number from l. through 16. The sign bit is unchanged and 



21MXM 

ASR 5 
(Arithmetic Shift Right 
5 places) 

ASL 5 
(Arithmetic Shift Left 
5 places) 

LSR 5 
(Logical Shift Right 
5 places) 

LSL 5 
(Logical Shift Left 
5 places) 

RRR 8 
(Rotate Right 
8 places) 

RRL 7 
(Rotate Left 
7 places) 

Programming Information 

B-REGISTER A-REGISTER 

_J_-----•• Bits lost 

1 011000101000101 0101 101011100111 
I r----~~~-~-1-~-----. 
I 
I 
I 

+ 
1111110110001 010 

-----> 
Extended sign 

Bits lost .. 41.,.._ ___ J___, 

0 000 000 111 101 000 1 101 101 000 110 111 

1 0 100 011 011 100 000 +---- Zeros Filled 

_J_.-----.. Bits lost 

1 0 11 000 101 000 101 I 0 1 01 1 01 011 1 00 111 

Zeros filled---+ O 000 010 110 001 010 

Bits lost~ 

0 101 000 111 101 000 1 101 101 000 110 111 

0 100 011 011 100 000 ..,. __ Zeros filled 

0 101 110 111 000 010 0 100 010 110 000 111 

1 000 011 101 011 101 

L._----;-------1 

0 110 011 101 111 000 I 0 110 011 010 000 111 

0 1 00 001 11 0 11 0 011 

Figure 3-4. Examples of Double-Word Shifts and Rotates 

3-15 



Programming Information 

is extended into bit positions vacated by the right shift. 
Data bits shifted out of the least-significant end of the 
/\-register are lost. Overflow cannot occur because the 
instruction clears the overflow bit. 

tSL lOGICAL SHIFT LEFT 

\~ 1: ~-¥ ~1 ~H ~ -~- f 5 : 3_ Yil 
"-v-1 
Number of Shifts 

Logically shifts the combined contents of the B · and 
A-registers left n places. The value of n may be any 
number from 1 through 16. Zeros are filled into vacated 
low··order bit positions of the A-register; data bits are lost 
out of the high-order bit positions of the B-register. 

tSR 

15 14 13 12 11 10 9 

1 0 0 0 0 0 

8 

LOGICAL SHIFT RIGHT 

76543G:IJ 
ooo o--IIJ 

'-~ 
Number of Shifts 

Logically shifts the combined contents of th1~ B- and 
A-·registers right n places. The value of n may be any 
number from 1 through 16. Zeros are filled into vacated 
high-order bit positions of the B-register; data bits are lost 
out of the low-order bit positions of the A-register. 

RRL ROTATE LEFT 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
-·- -I .. 0 0 0 0 0 0 0 0 0 0 

~ 
Number of Shifts 

Rotates the combined contents of the B- and A-registers 
left n places. The value of n may be any number from 1 
through 16. No bits are lost or filled in. Data bits shifted 
out of the high-order end of the B-register are rotated 
around to enter the low-order end of the A-register. 

ARR ROTATE RIGHT 

-

1-5 ...... 14--13---12 ......... 11 ..... 1_0....._9 ............ a ...__..__6 ..__A,,,,._04"""""'-_~ ..... - ..... -2.-I-] :fil_o 
1 0 0 0 0 0 1 .,lJ 

"-v--" 
Number of Shifts 

Rotates the combined contents of the B- and A-registers 
right n places. The value of n may be any number from 1 
through 16. No bits are lost or filled in. Data bits shifted 
·rmt of the low-order end of the A-register are rotated 
around to enter the high-order end of the B-register. 

21MXM 

3-23. EXTENDED INSTRUCTION GROUP 

:1-24. INDEX REGISTER INSTRUCTIONS. The 
index registers (X and Y) are two 16-bit registers accessi­
hl1~ by the following instructions. 

ADX ADD MEMORY TO X 

15 14 13 12 11 10 9 8 7 6 5 4 J 2 1 0 

1 0 0 0 1 0 1 1 1 1 1 0 0 1 1 0 o,, 

Memory Address 

Adds the contents of the addressed memory location to the 
contents of the X-register. The sum remains in the 
X-register and the contents of the memory cell are 
unaltered. The result of this addition may set the extend 
bit or the overflow bit. 

ADY ADD MEMORY TOY 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
1 0 0 0 1 0 1 1 1 1 1 0 1 1 1 0 

D; 
I 

Memory Address 

Adds the contents of the addressed memory location to the 
contents of the Y-register. The sum remains in the 
Y-register and the contents of the memory cell are 
unaltered. The result of this addition may set the extend 
bit or the overflow bit. 

CAX COPY A TO X 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

100000111 1 1 0 0 0 0 1 

Copies the contents of the A-register into the X-register. 
The contents of the A-register are unaltered. 

CAY COPY A TOY 

151413121110 9 8 7 6 5 4 3 2 1 0 

1000001111 1 0 1 0 0 1 

Copies the contents of the A-register into the Y-register. 
The contents of the A-register are unaltered. 

CBX COPY B TO X 

15 14 1312 1110 9 8 7 654321 0 
10001011 1 11000 0 1 

Copies the contents of the B-register into the X-register. 
The contents of the B-register are unaltered. 



21MXM 

CBY COPY B TOY 

5 4 3 2 1 0 

;1: 0 1 0 0 1 

Copies the contents of the B-register into the Y-register. 
The contents of the B-register are unaltered. 

CXA COPY X TO A 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
1 11 ··o;··o o ·0···1~:1:,: 1 1~,:··1~·,r o o 1 o o 

~ ;, ,h'* ~ h ~« .y «,.->' 

Copies the contents of the X-register into the A-register. 
The contents of the X-register are unaltered. 

CXB COPY XTO B 

14 1312 11 10 9 8 7 6 5 4 3 2 1 0 
,,o,: j)'. 1 ::1r, %;t::·.1~:.;:F :J: 0 0 1 O 0 
h ~ • ~ • y .., , ~ ~ h • h »- $ .. ;:;. . 'i. y ~ .,, 

Copies the contents of the X-register into the B-register. 
The contents of the X-register are unaltered. 

CYA COPY Y TO A 

5 4 3 2 1 0 
':~'.'.,'. 0 1 1 0 0 

Copies the contents of the Y-register into the A-register. 
The contents of the Y-register are unaltered. 

CYB COPY Y TO B 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

t· :o ~ .. o··: )J. 1 ,Jf ::f .:f: .:J; .~l~ ~.t: o 1 1 o o 

Copies the contents of the Y-register into the B-register. 
The contents of the Y-register are unaltered. 

osx DECREMENT X AND SKIP IF ZERO 

0 0 0 1 

Subtracts one from the contents of the X-register. If the 
result of this operation is zero (X-register decremented 
from 000001 to 000000), the next instruction is skipped; 
i.e., the P-register count is advanced two counts instead of 
one count. If the result is not zero, the next sequential 
instruction is executed. 

Programming Information 

DSY DECREMENT Y AND SKIP IF ZERO 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
.:1:' ,:0:;·:11;:1: 1 ':·IL~t; :~1·:··i"\f .;f 1 1 o o 1 
~0«~ ".-~y ,-~.·~ • ::-~<'· _.,~ ~ • ~A«' -:::.~ 

Subtracts one from the contents of the Y-register. If the 
result of this operation is zero (Y-register decremented 
from 000001 to 000000), the next instruction is skipped; 
i.e., the P-register count is advanced two counts instead of 
one count. If the result is not zero, the next sequential 
instruction is executed. 

INCREMENT X AND SKIP IF ZERO 

10 9 8 7 6 5 4 3 2 1 0 
o·::.]· ·r :1 1 ,, 1 0 0 0 0 

Adds one to the contents of the X-register. If the result of 
this operation is zero (X-register rolls over to 000000 from 
177777), the next instruction is skipped; i.e., the P-register 
count is advanced two counts instead of one count. If the 
result is not zero, the next sequential instruction is 
executed. 

ISY INCREMENT Y AND SKIP IF ZERO 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
,:1:: ~i'.:::f~.:',I\ 1 ·:Q·::'.f ~f .. :1 ·r :1 1 1 o o o 

Adds one to the contents of the Y-register. If the result of 
this operation is zero (Y-register rolls over to 000000 from 
177777), the next instruction is skipped; i.e., the P-register 
count is advanced two counts instead of one .count. If the 
result is not zero, the next sequential instruction is 
executed. 

LAX LOAD A INDEXED BY X 

3 2 1 0 

0 0 1 0 

Operand Address 

Loads the A-register with the contents indicated by the 
effective address, which is computed by adding the 
contents of the X-register to the operand address. The 
effective address is loaded into the M-register; the 
X-register and memory contents are not altered. Indirect 
addressing is resolved before indexing; bit 15 of the 
effective address is ignored. 

3-17 



Programming Information 

LAY LOAD A INDEXED BY Y 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 0 0 0 0 0 1 1 1 1 1 0 1 0 1 0 
o,, 

Operand Address 

Loads the A-register with the contents indicated by the 
effective address, which is computed by adding the 
contents of the Y-register to the operand address. The 
effective address is loaded into the M-register; the 
Y-register and memory contents are not altered. Indirect 
addressing is resolved before indexing; bit 15 of the 
effective address is ignored. 

LBX LOAD B INDEXED BY X 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 0 0 0 1 0 1 1 1 1 1 0 0 0 1 0 
o,, 

Operand Address 

Loads the B-register with the contents indicated by the 
effective address, which is computed by adding the 
contents of the X-register to the operand address. The 
effective address is loaded into the M-register; the 
X-register and memory contents are not altered. Indirect 
addressing is resolved before indexing; bit 15 of the 
effective address is ignored. 

LBY LOAD B INDEXED BY Y 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 0 0 0 1 0 1 1 1 1 1 0 1 0 1 0 
o,, 

Operand Address 

Loads the B-register with the contents indicated by the 
effective address, which is computed by adding the 
contents of the Y-register to the operand address. The 
effective address is loaded into the M-register; the 
X-register and memory contents are not altered. Indirect 
addressing is resolved before indexing; bit l5 of the 
effective address is ignored. 

3-18 

21MXM 

LOX LOAD X FROM MEMORY 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 0 0 0 1 0 1 1 1 1 1 0 0 1 0 1 
o,, 

Memory Address 

Loads the contents of the addressed memory location into 
the X-register. The A- and B-registers may be addressed 
as locations 00000 and 00001, respectively; however, if it is 
desired to load from the A- or B-register, copy instructions 
CAX or CBX should be used since they are more efficient. 

LOY LOAD Y FROM MEMORY 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 0 0 0 1 0 1 1 1 1 1 0 1 1 0 1 
01, 

Memory Address 

Loads the contents of the addressed memory location into 
the Y-register. The A- and B-registers may be addressed as 
locations 00000 and 00001, respectively; however, if it is 
desired to load from the A- or B-register, copy instructions 
CAY or CBY should be used since they are more efficient. 

SAX STORE A INDEXED BY X 

15 14 13 12 11 10 9 8 7 6 5 4 J 2 1 0 

1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 
o,, 

Operand Address 

Stores the contents of the A-register into the location 
indicated by the effective address, which is computed by 
adding the contents of the X-register to the operand 
address. Thie effective address is loaded into the 
M-register; the A- and X-register contents an~ not altered. 
Indirect addressing is resolved before indexing; bit 15 of 
the effective address is ignored. 



21MXM 

SAY STORE A INDEXED BY Y 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
·. 1·-= ,:''"" ,_ ... ~ o· .'if.< o 1 o o o - : -~~;~.:u_: · ,;9;: 

Operand Address 

Stores the contents of the A-register into the location 
indicated by the effective address, which Is computed by 
adding the contents of the Y-register to the operand 
address. The effective address is loaded into the 
M-register; the A- and Y-register contents are not altered. 
Indirect addressing is resolved before indexing; bit 15 of 
the effective address is ignored. 

SBX STORE B INDEXED BY X 

Operand Address 

Stores the contents of the B-register into the location 
indicated by the effective address, which is computed by 
adding the contents of the X-register to the operand 
address. The effective address is loaded into the 
M-register; the B- and X,register contents are not altered. 
Indirect addressing is resolved before indexing; bit 15 of 
the effective address is ignored. 

SBY STORE B INDEXED BY Y 

15 14 13 12 11 10 9 8 4 3 2 1 0 
·-,· ·.' .';9::~-Q';. ;;»i','. 1 0. 1 0 .0 0 '· ~ :,A ~ '.... , ::::-'U::-.f- . - _ -

, ,. . . . , ., , , 1 v""'. ~ 

Operand Address 

Stores the contents of the B-register into the location 
indicated by the effective address, which is computed by 
adding the contents of the Y-register to the operand 
address. The effective address is loaded into the 
M-register; the B- and Y-register contents are not altered. 
Indirect addressing is resolved before indexing; bit 15 of 
the effective address is ignored. 

STX STORE XTO MEMORY 

Memory Address 

4 3 2 1 0 

0 0 'O 1 1 

Stores the contents of the X-register into the addressed 
memory location. The A- and B-registers may be 
addressed as locations 00000 and 00001, respectively. The 
X-register contents are not altered. 

Programming Information 

STY STOREY TO MEMORY 

98 7 6 54 3 2 1 0 
J£;• 0 1 0 1 1 

Memory Address 

Stores the contents of the Y-register into the addressed 
memory location. The A- and B-registers may be 
addressed as locations 00000 and 00001, respectively. The 
Y-register contents are not altered. 

XAX EXCHANGE A AND X 

Exchanges the contents of the A- and X-registers. 

Exchanges the contents of the A- and Y-registers. 

EXCHANGE BAND X 

Exchanges the contents of the B- and X-registers. 

XBY EXCHANGE BANDY 

4 3 2 1 0 

0 1 1 1 1 

Exchanges the contents of the B- and Y-registers. 

3-25. JUMP INSTRUCTIONS. The following two 
jump instructions involving the Y-register allow a pro­
gram to either jump to or exit from a subroutine. 

Memory Address 

This instruction is designed for entering a subroutine. The 
instruction, executed in location P, causes computer 

3-19 



Programming Information 

control to jump unconditionally to the memory location 
specified in the memory address. Indirect addressing may 
be specified. The contents of the P-register plus two 
(return address) is loaded into the Y-register. A return to 
the main program sequence at P + 2 may be effected by a 
.JPY instruction (described next). A memory protect check 
is performed by this instruction. The effective address 
may not be below the fence, including the addressable A­
and B-registers. 

JPY JUMP INDEXED BY Y 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 0 0 0 1 0 1 1 1 1 1 1 1 0 1 0 

0 

Operand Address 

Transfers control to the effective address, which is 
computed by adding the contents of the Y-register to the 
operand address. Indirect addressing is not allowed. The 
effective address is loaded into the P-register; the 
Y-register contents are not altered. A memory protect 
check is performed by this instruction. The effective 
address may not be below the fence, including the 
addressable A- and B-registers. 

3-26. BYTE MANIPULATION INSTRUCTIONS. 
A byte address is defined as two times the word address 
plus zero or one, depending on whether the byte is in the 
high-order position (bits 8 through 15) or low-order posi­
tion (bits 0 through 7) of the word containing it. lfthe byte 
of interest is in bit positions 8 through 15 of memory 
location 100, for example, then the address of that byte is 
2* 100 + 0, or 200; the address of the low-order byte in the 
same location is 201 (2* 100 + 1). Because of the way byte 
addresses are defined, 16 bits are required to cover all 
possible byte addresses in a 32K-word memory configura­
tion. Hence, for byte addressing, bit 15 does not indicate 
indirect addressing. 

Byte addresses 000 through 003 reference bytes in the A­
and B-registers. These addresses will not cause memory 
violations. The user should, however, be careful in 
referencing these byte addresses; for example, storing into 
byte address 002 or 003 would destroy the byte address 
originally contained in the B-register. 

CBT COMPARE BYTES 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
1 0 0 0 1 0 1 1 1 1 1 1 0 1 1 0 

D/i 

Memory Address 

Compares the bytes in string 1 with those in string 2. This 
is a three-word instruction where 

3-20 

Word 1 

Word 2 

Word 3 

21MXM 

Instruction code, 

Address of word containing the string 
count, and 

All-zeros word reserved for use by 
microcode. 

The operand addresses are in the A- and B-registers. The 
A-register contains the first byte address of string 1 and 
the B-register contains the first byte address of string 2. 

The number of bytes to be compared is given in the mem­
ory location addressed by Word 2 of the instruction; the 
number of bytes to be compared is restricted to a positive 
integer greater than zero. The strings are compared one 
byte at a time; the ith byte in string 1 is compared with 
the ith byte in string 2. The comparison is performed 
arithmetically; i.e., each byte is treated as a positive 
number. If all bytes in string 1 are identical with all bytes 
in string 2, the "equal" exit is taken. As soon as two bytes 
are compared and found to be different, the "less than" or 
"greater than" exit is taken, depending on whether the 
byte in string 1 is less than or greater than the byte in 
:;;tring 2. The three ways this instruction exits are as 
follows: 

a. No skip if string 1 is equal to string 2; the P-register 
advances one count from Word 3 of the instruction. 
The A-register contains its original value incremented 
by the count stored in the address specified in Word 2. 

b. Skips one word if string 1 is less than string 2; the 
P-register advances two counts from Word 3 of the 
instruction. The A-register contains the address of the 
byte in string 1 where the comparison stopped. 

c. Skips two words if string 1 is greater than string 2; the 
P-register advances three counts from Word 3 of the 
instruction. The A-register contains the address of the 
byte in string 1 where the comparison stopped. 

For all three exits, the B-register will contain its original 
value incremented by the count stored in the address 
specified in Word 2. This instruction is interruptible. The 
interrupt routine is expected to save and restore the 
contents of the A- and B-registers. During the interrupt, 
the remaining count is stored in Word 3 of the instruction. 

LBT LOAD BYTE 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
1000 101 t 1 1 1 1 0 0 1 1 

This one word instruction loads into the A-register the 
byte whose address is contained in the B-register. The 
byte is right~ustified with leading zeros in the left byte. 
The B-register is incremented by one. 



21MXM 

MBT MOVE BYTES 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
· f ·:o~;~•~ ::Q·.· .·:(: .. ;:.~:l J ~~·'i.'.:f ·J·:· :t;: .. 1 .. ·>.01: 1 o 1 
o,, 

Memory Address 

Moves bytes in a left-to-right manner; i.e., the byte having 
the lowest address from the source is moved first. This is a 
three word instruction where 

Word 1 

Word 2 

Word 3 

Instruction code, 

Address of word containing the byte 
count, and 

All-zeros word reserved for use by 
microcode. 

The operand addresses are in the A- and B-registers. The 
A-register contains the first byte address source and the 
B-register contains the first byte address destination. 

The number of bytes to be moved is given by a 16-bit 
positive integer greater than zero addressed by Word 2 of 
the instruction. The byte address in the A- and B-registers 
are incremented as each byte is being moved. Thus, at the 
end of the operation, the A- and B-registers are incre­
mented by the number of bytes moved. Wraparound of the 
byte address would result from a carry out of bit position 
15; therefore, if the destination became 000, 001, 002, or 
003, the next byte would be moved into the A- or 
B-register and destroy the proper byte addresses for the 
move operation. For each byte move, a memory protect 
check is performed. 

This instruction is interruptible. The interrupt routine is 
expected to save and restore the contents of the A- and 
B-registers. During the interrupt, the remaining count is 
stored in Word 3 of the instruction. 

SBT STORE BYTE 

6 54 321 0 

Stores the A-register low-order (right) byte in the byte 
address contained in the B-register. The B-register is 
incremented by one. A memory protect check is performed 
before the byte is stored. The left byte in the A-register 
does not have to be zeros. The other byte in the same word 
of the stored byte is not altered. 

SFB SCAN FOR BYTE 

15 1413121110 9 8 7 6 5 4 3 2 1 0 

:1t: ;·:o·,::(:.~: :'JJ!::~·:,.:1:~': J:i·1:·:'JJ;' !t.!~HO~: 1 1 1 

This is a one word instruction with the operands in the A­
and B-registers. The A-register contains a termination 

Programming Information 

byte (high-order byte) and a test byte (low-order byte). 
The B-register contains the first byte address of the string 
to be scanned. 

A string of bytes is scanned starting at the byte address 
given in the B-register. Scanning terminates when a byte 
in the string matches either the test byte or the 
termination byte in the A-register. The manner in which 
the instruction exits depends on which byte is matched 
first. If a byte in the string matches the test byte, the 
instruction will not skip upon exit; the B-register will 
contain the address of the byte matching the test byte. If a 
byte in the string matches the termination byte, the 
instruction will skip one word upon exit; the B-register 
will contain the address of the byte matching the 
termination byte plus one. 

The scanning operation will not continue indefinitely even 
if neither the termination byte nor test byte exists in 
memory. These bytes are in the A-register with byte 
addresses 000 and 001, respectively. Thus, if no match is 
made by the time the B-register points to the last byte in 
memory, the B-register will roll over to zero and the next 
test will match the termination byte in the A-register with 
itself. 

This instruction is interruptible. The interrupt routine is 
expected to save and restore the contents of the A- and 
B-registers. 

3-27. BIT MANIPULATION INSTRUCTIONS. 
The following three instructions allow any number of bits 
in a specified memory location to be cleared, set, or tested. 

CBS CLEAR BITS 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

t. o· ·,o.: ·.;0.r ·f. ·,o 't; ,. .1 .1 1 1 1 1 0 0 
D/ 

I 

D;I 

Memory Address 

Clears bits in the addressed location. This is a three-word 
instruction where 

Word 1 

Word 2 

Word 3 

Instruction code, 

Address of a 16-bit mask, and 

Address of word where bits are to be 
cleared. 

The bits to be cleared correspond to logic l's in the mask. 
The bits corresponding to logic O's in the mask are not 
affected. A memory protect check is performed prior to 
modifying the word in memory. 

3-21 



Programming Information 

SBS SET BITS 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 0 o· 1·0 1 0 1 1 1 1 1 1 1 0 1 1 
o,, 

-o,, 

Memory Addr .. 

Sets bits in the addressed location. This is a three-word 
instruction where 

Word 1 Instruction code, 

Word 2 Address of a 16-bit mask, and 

Word 3 Address of word where bits are to be set. 

The bits to be set correspond to logic 1 's in the mask. The 
bits corresponding to logic O's in the mask are not affected. 
A memory protect check is performed prior to modifying 
the word in memory. 

TBS TEST BITS 

15 14 13 12 11 10 9 8 1 6 5 4 3 2 1 0 

1 0 0 0 1 0 1 1 1 1 1 1 1 1 0 1 
o, 

.. ~ --""""" 1---' -·- 1--·-1--r--.... 
D~ 

Memory Address 

Tests (compares) bits in the addressed location. This is a 
three-word instruction where 

Word 1 

Word 2 

\Vord 3 

Instruction code, 

Address of a 16-bit mask, and 

Address of word in which bits are to be 
tested. 

The bits in the addressed memory word corresponding to 
logic 1 's in the mask are tested. If all the bits tested are 
l's, the instruction will not skip; otherwise the instruction 
will skip one word (i.e., the P-register will advance two 
counts from Word 3 of the instruction). 

3-28. WORD MANIPULATION INSTRUCTIONS. 
The following instructions facilitate the comparing and 
moving of word arrays. 

:3-.22 

21MXM 

CMW COMPARE WORDS 

15 ~4 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
1 0 0 0 1 Oi; l ff[t:: ·f: :1. ·1, .. >J:: ;:1 ] 0 o,, 1·· ..... ,,., ... ;: ..... 

Memory Address 

Compares the words in array 1 with those in array 2. This 
is a three-word instruction where 

Word Instruction code, 

Word 2 = Address of word containing the word 
count, and 

Word 3 All-zeros word reserved for use by 
microcode. 

The operand addresses are in the A- and B-registers. The 
A-register contains the first word address of array 1 and 
the B-registe:r contains the first word address of array 2. 
Bit 15 of the addresses in the A- and B-registers are 
ignored; i.e., no indirect addressing allowed. 

The number of words to be compared is given in the 
memory location addressed by Word 2 of the instruction; 
the number of words to be compared is restricted to a 
positive integer greater than zero. The arrays are com­
pared one word at a time; the ith word in array 1 is 
compared with the ith word in array 2. This comparison is 
performed arithmetically; i.e., each word is considered a 
two's complement number. If all words in array 1 are 
equal to all words in array 2, the "equal" exit is taken. As 
soon as two words are compared and found to be different, 
the "less than" or "greater than" exit is taken, depending 
on whether the word in array 1 is less than or greater 
than the word in array 2. The three ways this instruction 
exits are as follows: 

a. No skip if array 1 is equal to array 2; the P-register 
advances one count from Word 3 of the instruction. 
The A-register contains its original value incremented 
by the word count stored in the address specified in 
Word 2. 

b. Skips one word if array 1 is less than array 2; the 
P-register advances two counts from Word 3 of the 
instruction. The A-register contains the address of the 
word in array 1 where the comparison stopped. 

c. Skips two words if array 1 is greater than array 2; the 
P-register advances three counts from Word 3 of the 
instruction. The A-register contains the address of the 
word in array 1 where the comparison stopped. 

For all three exits, the B-register will contain its original 
value incremented by the word count stored in the address 
specified in Word 2. This instruction is interruptible. The 
interrupt routine is expected to save and restore the 
contents of the A- and B-registers. During the interrupt, 
the remaining count is stored in Word 3 of the instruction. 



21MXM 

MVW MOVE WORDS 

15 14 13 12 11 10 9 

Memory Address 

Moves words in a left-to-right manner; i.e., the word 
having the lowest address in the source is moved first. 
This is a three-word instruction where 

Word 1 

Word 2 

Word 3 

Instruction code, 

Address of word containing the count, 
and 

All-zeros word reserved for use by 
microcode. 

The operand addresses are in the A- and B-registers. The 
A-register contains the first word address source and the 
B-register contains the first word address destination. The 
number of words to be moved is a 16-bit positive integer 
greater than zero addressed by Word 2 of the instruction. 
The word addresses in the A- and B-registers are incre­
mented as each word is being moved. Thus, at the end of 
the operation, the A- and B-registers are incremented by 
the number of words moved. 

Wraparound of the word address would result from a carry 
into bit position 15 (i.e., at 32767). If the destination 
address became 000 or 001, the next word would be moved 
into the A- or B-register and destroy the proper word 
addresses for the move operation. For each word move, a 
memory protect check is performed. 

This instruction is interruptible. The interrupt routine is 
expected to save and restore the contents of the A- and 
B-registers. During the interrupt, the remaining count is 
stored in Word 3 of the instruction. 

3-29. FLOATING POINT INSTRUCTIONS 

The following six floating point instructions make it 
possible to add, subtract, multiply, and divide floating 
point numbers and to convert quantities from floating 
point format to integer format or vice versa. 

Each of the four arithmetic instructions requires two 
words of memory: one for the instruction code and one for 
the operand address. Since a full 15 bits are available for 
the operand address, these instructions can directly 
address any location in memory. As with all memory 
reference instructions, indirect addressing to any number 
of levels is permitted. A logic 0 in bit position 15 specifies 
direct addressing; a logic 1 specifies indirect addressing. 

Programming Information 

The execution times of the floating point instructions are 
specified under paragraph 3-30. These instructions are 
noninterruptible; any attempted interrupt is held off for 
the full execution time of the currently active floating 
point instruction. However, data transfer via the dual­
channel port controller (DCPC) is not held off. 

FAD FLOATING POINT ADD 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
~f "'(f::a,, ,:rr i:~~ 

,,-,,: 
~: :-. '»~. ~1'-t::>: ~~ ..... .,,, , $-<:;-

'; l -$ 

)"'·~.~ :~ ~. ~· ,.; ~ :: :.L -~·/' b , 
~;f 0 
'""''»-:::> 

0 0 0 0 0 0 0 0 
o, 

I 

Memory Address 

Adds the floating point quantity in the A- and B-registers 
to the floating point quantity in the specified memory 
locations. The floating point result is returned in the A­
and B-registers. Overflow occurs if the result lies outside 
the range [ - 2127

, (1- 2-23
) 2127]. In such a case, the over­

flow flag is set and the result (1- 2-2
:
1
) 2127 is returned to 

the A- and B-registers. Underflow occurs if the result lies 
within the range [ - 2- 129(1+2-22

), 2- 129
]. In such a case, 

the overflow flag is set and the result 0 is returned to the 
A- and B-registers. 

FDV FLOATING POINT DIVIDE 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
'l, jf :'O: ::P:: ::E ·:(I:: ':l' 0 0 0 1 1 0 0 0 0 
o,, 

Memory Address 

Divides the floating point quantity in the A- and 
B-registers by the floating point quantity in the specified 
memory locations. The floating point quantity is returned 
to the A- and B-registers. Overflow and underflow are as 
described for the FAD instruction. 

FIX FLOATING POINT TO INTEGER 

15 14 13 12 11 10 9 8 7 6 5 4 J 2 1 0 
:f' : o:_: H'f ,_:::,t: :f , .r1r : -1:r 0 0 0 0 0 0 0 0 

Converts the floating point quantity in the A- and 
B-registers to integer format. The integer result is 
returned to the A-register. If the magnitude of the floating 
point number is <1, regardless of sign, the Integer 0 is 
returned. If the magnitude of the exponent of the floating 
point number is ~ 216 , regardless of sign, the integer 
32767 (077777 octal) is returned and the overflow flag is 
set. 

3-23 



Programming Information 

FLT INTEGER TO FLOATING POINT 

15 14 13 12 1110 g 8 7 6 5 4 3 2 1 0 
. -"-"" """" ""-----~-~--~-~-" 
100010 100 010000 

Converts the integer quantity in the A-register to floating 
point format. The floating point result is returned to the 
A- and B-registers. 

FMP FLOATING POINT MULTIPLY 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
1 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 
D;I 

Memory Address 

Multiplies the floating point quantity in the A- and 
B-registers by the floating point quantity in the specified 
memory locations. The floating point result is returned to 
the A- and B-registers. Overflow and underflow are as 
described for the FAD instruction. 

3-24 

21MXM 

FSB FLOATING POINT SUBTRACT 

15 14 13 12 11 10 g 8 7 6 5 4 3 2 1 0 
1 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 

D;I 

"'----------------...-------------------~ Memory Addre~; 

Subtracts the floating point quantity in the specified 
memory locations from the floating point quantity in the 
A- and B-registers. The floating point result is returned to 
the A- and B-registers. Overflow and underflow are as 
described for the FAD instruction. 

Table 3-5 lists the execution times required for the various 
base set instructions. 



Programming Information 21MXM 

Table 3-5. Typical Base Set Instruction Execution Times 

INSTRUCTION 
EXECUTION 

INSTRUCTION EXECUTION 
TIME (µS) TIME(µ$) 

Memory Reference Group 1 
•
2 Extended Instruction Group 

ADA/B, AND, IOR, LDA/B, 1.94 CAX,CBX,CAY,CBY 2.275 
XOR CXA, CXB, CYA, CYB 
STAIB 2.27 
CPA/B (no skip) 2.27 XAX,XBX,XAY,XBY 3.250 

(skip) 2.59 ISX, ISY, OSX, OSY 

ISZ (no skip) 2.59 LOX, LOY 
(skip) 2.92 (direct address) 4.875 

(indirect address) 4.875a 
JMP 1.94 

STX, STY 
JSB 2.27 (direct address) 5.20 

(indirect address) 5.20a 
Shift/Rotate Group3 2.59 - 2.92 

LAX, LBX, LAY, LBY 
Alter/Skip Group3 (direct address) 4.875 

No skip, no increment 2.59 (indirect address) 5.525a 
No skip, increment A/B 2.92 
Skip, no increment 2.59 SAX, SBX, SAY, SBY 
Skip, increment A/B 2.92 (direct address) 5.20 

(indirect address) 5.85a 
Input/Output Group4 2.59 - 3.89 

ADX,ADY 
Extended Arithmetic Group5 (direct address) 4.875 

(indirect address) 4.875a 
ASL,ASR, LSL,LSR, 3.57 - 8.43 
RRL, RRR JL Y (direct address) 5.525 

(indirect address) 5.525a 
OLD 4.54 

JPY 4.55 
.DST 4.86 

LBT 4.875 avg 
MPV 12.32 - 13.30 

SBT 6.01 avg 
DIV 15.92 - 18.20 

8.775a,b,g MBT 
Floating Point Group 

7 .8a,c,g MVW 
FAD 21.78 - 53.95 

8.775a,d,g CBT 
FOV 41.2 - 75.72 

CMW 7 .8a,e,g 
FIX 6.50 - 12.02 

3.575f,g SFB (for test byte match) 
FLT 10. 72 - 34.42 (for term. byte match) 2.275f,g 

FMP 48.10 - 56.88 CBS,SBS 7.8a 

FSB 22. 75 - 57 .20 TBS 8.125a 

1 Memory refresh consumes 0.65 µS maximum no more a. Add 1.3 µS for each indirect address level. 
often than every 30 µS. b. Add 7 .31 µS for each byte moved or compared. 

2 Add 1.3 µS for each indirect address level. 
c. Add 3.25 µS for each word moved or compared. 3 NOP or RSS requires 2.92 µS whereas a JMP *+1 or 

JMP * +2 requires only 1.94 µS. d. Add 8.125 µS for each byte moved or compared. 
4 Depends on which 1/0 time period (T2, 3, 4, 5, 6) the e. Add 3.575 µS for each word moved or compared. 

instruction begins. f. Add 4.875 µS for each byte moved or compared. 
5 Depends on number of shifts specified ( 1 to 16). g. Add 7 .15 µS for each interrupt of the instruction. 

3-25/3-26 



[ DYNAMIC ··MAPPING SYSTEM l~U~!.!I, 

The basic addressing space of the HP 21MX M-Series 
computer is 32,768 words, which is referred to as logical 
memory. The amount of MOS memory actually installed 
in the computer system is referred to as physical memory. 
An HP 21MX M-Series computer with the optional 
Dynamic Mapping System (DMS) has an addressing capa­
bility for one million words of physical memory. The DMS 
allows logical memory to be mapped into physical memory 
through the use of four dynamically alterable memory 
maps. 

MEMORY ADDRESSING 

The basic memory addressing scheme provides for addres­
sing 32 pages of logical memory, each of which consists of 
1,024 words. This memory is addressed through a 15-bit 
memory address bus shown in figure 4-1. The upper 5 bi ts 
of this bus provide the page address and the lower 10 bits 
provide the relative word address within the page. 

14 10 9 0 

PAGE ADDRESS RELATIVE WORD ADDRESS 

5 10 
y y 
~ ~ 

15-Brf MEMORY ADDRESS BUS 

Figure 4-1. Basic Memory Addressing Scheme 

The Memory Expansion Module (MEM), which is part of 
the DMS option, converts the 5-bit page address into a 
10-bit page address and thereby allows 1,024 (21°) pages to 
be addressed. This conversion is accomplished by allowing 
the original 5-bit address to identify one of the 32 12-bit 
registers within a "memory map." Each of these map re­
gisters contains the new user-specified 10-bit page ad­
dress. This new page address is combined with the original 
10-bit relative address to form a 20-bit memory address 
bus as shown in figure 4-2. 

14 10 9 0 

PAGE ADDRESS RELATIVE WORD ADDRESS 

5 
~ • 10 

19 10 ~ 
MEMORY MAP 

10 
y 
.. , • 

20·BIT EXPANDED MEMORY ADDRESS BUS 

Figure 4-2. Expanded Memory Addressing Scheme 

4-2. MAP REGISTER LOADING 

Conversion of the basic 16-bit word data format to and 
from the map register 12-bit word data format is shown in 
figure 4-3. Bits 13 through 10 of the basic data format are 
not used by the memory map registers. Read and write 
memory protect violations are discussed in paragraph 4-3. 

MAP 
REGISTER 

MEMORY DATA 

MEMORY 
PROTECT 

BITS 

g ABSOLUTE PAGE 
ADDRESS 

10 

ABSOLUTE 
PAGE ADDRESS 

BIT 11 SET= READ PROTECTED PAGE 
BIT 10 SET= WRITE PROTECTED PAGE 

0 

0 

Figure 4-3. Basic Word Format Vs Map Register Format 

4-3. STATUS AND VIOLATION 
REGISTERS 

The MEM also includes a status register and a violation 
register. As shown in table 4-1, the MEM status register 

4-1 



Dynamic Mapping System 

contents enable the programmer to determine whether the 
MEM was enabled or disabled at the time of the last 
interrupt and the address of the base page fence. The 
MEM violation register contents enable the programmer 
to determine whether a fault occurred in the hardware or 
the software so that the proper corrective steps may be 
taken. Refer to table 4-2. 

Table 4-1. MEM Status Register Format 

BIT 

15 

14 

13 

12 

11 

10 

9 

8 

7 

6 

5 

4 

3 

2 

1 

0 

*Bit 10 

0 

1 

---·-·----·----·--·----

SIGNIFICANCE 

0 = MEM disabled at last interrupt 
1 = M EM enabled at last interrupt 

0 = System map selected at last interrupt 
1 = User map selected at last interrupt 

0 = MEM disabled currently 
1 = MEM enabled currently 

0 = System map selected currently 
1 = User map selected currently 

0 = Protected mode disabled currently 
1 = Protected mode enabled currently 

Portion mapped* 

Base page fence bit 9 

Base page fence bit 8 

Base page fence bit 7 

Base page fence bit 6 

Base page fence bit 5 

Base page fence bit 4 

Base page fence bit 3 

Base page fence bit 2 

Base page fence bit 1 

Base page fence bit 0 

Mapped Address (M) 

Fence::;;; M < 20008 

1 < M <Fence 

Note: The base page fence separates the reserved 
(mapped) memory from the shared (un­
mapped) memory. Bit 10 specifies which 
area is reserved (mapped). (Refer to LFA 
and LF B instructions contained in para­
graph 4-6.) 

'------------------·---------·--------·-···---·----------

4-2 

21MXM 

Table 4-2. MEM Violation Register Format 

BIT 

15 

14 

SIGNIFICANCE 

Read violation* 

Write violation* 

13 Base page violation* 

12 Privileged instruction violation* 

11 

10 

Reserved 

Reserved 

9 Reserved 

8 Reserved 

7 0 = ME bus disabled at violation 
1 = ME bus enabled at violation 

6 0 = MEM disabled at violation 
1 = MEM enabled at violation 

5 0 = System map enabled at violation 
1 = User map enabled at violation 

4 Map address bit 4 

3 Map address bit 3 

2 Map address bit 2 

1 

0 

Map address bit 1 

Map address bit 0 

""Significant when associated bit is set. 

Any attempt to read from a read-protected page will result 
in a read violation and the memory read will not occur. 
Any attempt to write into a write-protected page will 
result in a write violation and the memory will not be 
altered. In addition, if a page is write protected, a jump or 
jump indirect instruction to that page will cause a write 
violation and the jump will not occur. It should be noted 
that all violation rules are ignored for DCPC signals. 

ff a read or write violation occurs, the MEM signals the 
memory protect logic that a violation has occurred which 
causes the memory protect logic to generate an interrupt. 
As discussed in paragraph 6-3, memory violations are 
interrupted to select code 05 and a DMS violation can be 
distinguished from a memory protect violation by execut­
ing an SFS 0.5 instruction. If the skip occurs, DMS is in 
violation; if no skip occurs, memory protect is in violation. 



21MXM 

All registers within the memory map are dynamically 
alterable. To maximize the system performance capabil­
ity, the MEM includes four separate memory maps: the 
User Map, System Map, and two Dual-Channel Port Con­
troller (DCPC) Maps. (See figure 4-4.) These maps, which 
are manipulated through the use of 38 machine-language 
instructions, are addressed as a contiguous register block. 
It should be noted that the base page fence applies to both 
the System Map and the User Map. 

140 
137 

100 
77 

40 
37 

0 z v 
BASE PAGE 

PORT B MAP 
(32 REGISTERS) 

PORT A MAP 
(32 REGISTERS) 

USER MAP 
(32 REGISTERS) 

SYSTEM MAP 
(32 REGISTERS) 

Figure 4-4. Map Segmentation 

12710 

96 
95 

64 
63 

32 
31 

0 

A power failure automatically enables the System Map, 
and a minimum of 500 microseconds is assured the pro­
grammer for executing a power fail routine. Since all 
maps are disabled and none are considered valid upon the 
restoration of power, the power fail routine should include 
instructions to save as many maps as desired. 

Machine language coding and definitions of the 38 
Dynamic Mapping System instructions are provided on 
this and following pages. A sample map load and enable 
routine is given in paragraph 4-8. 

DJP DISABLE MEM AND JUMP 

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 
0 1 0 

Memory Address 

Disables the translation and protection features of the 
MEM hardware. Prior to disabling, the P-register is set to 
the effective memory address. As a result of executing this 

Dynamic Mapping System 

instruction, normal I/O interrupts are held off until the 
first opportunity following the fetch of the next 
instruction, unless three or more levels of indirect 
addressing are used. 

This instruction will normally generate an MEM violation 
when executed in the protected mode. In this case, the 
status of the MEM is not affected and the jump will not 
occur; however, if the System map is enabled, the 
instruction is allowed. 

DJS 

15 14 13 12 11 10 

1'' ·O· o,- 0 1 .fQ·.·. 
o;, 

9 

1 

DISABLE MEM AND 
JUMP TO SUBROUTINE 

8 7 6 5 4 3 2 1 0 

t 1 1 0 1 1 0 1 1 

Memory Address 

Disables the translation and protection features of the 
MEM hardware. Prior to disabling, the P-register is set 
one count past the effective memory address (m + 1) and 
the return address is stored in location m. As a result of 
executing this instruction, normal I/O interrupts are held 
off until the first opportunity following the fetch of the 
next instruction, unless three or more levels of indirect 
addressing are used. 

This instruction will normally generate an MEM violation 
when executed in the protected mode. In this case, the 
status of the MEM is not affected and the jump will not 
occur; however, if the System map is enabled, the 
instruction is allowed. 

JRS JUMP AND RESTORE STATUS 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

.f . :.:g .:0,: 0. 1 Q' . · 1 1 1 1 0 0 1 1 0 1 
o,, 

+----1 o,, 

Memory Address 

Causes the status of the MEM to be restored. This is a 
three-word instruction where 

Word 1 = Instruction code, 

Word 2 = Status word address, and 

Word 3 = Jump address. 

4-3 



Dynamic Mapping System 

Only bits 15 and 14 of the status word are used; the 
remaining bits ( 13-0) of the status word are ignored. Bits 
15 and 14 restore the MEM status as follows: 

Bit 15 = 0 = MEM will be disabled 
= I = MEM will be enabled 

Bit 14 = 0 = System map will be selected 
= 1 = User map will be selected 

As a result of executing this instruction, normal I/O inter­
rupts are held off until after the fetch of the next instruc­
tion, unless a total of three or more levels of indirect 
addressing are used in Word 2 (status word address) and 
Word 3 (jump address). For example, if Word 2 contains 
one level of indirect addressing and Word 3 contains two 
levels of indirect addressing, interrupts will not be held off 
past the fetch of the next instruction. 

This instruction will normally generate an MEM violation 
when executed in the protected mode. In this case, the 
status of the MEM is not affected and the jump will not 
occur; however, if the System map is enabled, the instruc­
tion is allowed. 

LFA LOAD FENCE FROM A 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

0 00 00 0 0 

Loads the contents of the A-register into the base page 
fence register. Bits 9-0 of the A-register specify the 
address in page zero where shared (unmapped) memory is 
separated from reserved (mapped) memory. Bit 10 is used 
as follows to specify which portion is mapped: 

Bit 10 

0 

Mapped Address ( M) 

Fence~ M < 2000 8 

1 < M <Fence 

This instruction will normally generate an MEM violation 
when executed in the protected mode; however, it is al­
lowed ifthe System map is enabled. When an MEM viola­
tion does occur, the fence is not altered. 

LFB LOAD FENCE FROM B 

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 

1000101 1 1 0 1 0 1 1 1 

Loads the contents of the B-register into the base page 
fence register. Bits 9-0 of the B-register specify the address 
in page zero where shared (unmapped) memory is 
separated from reserved (mapped) memory. Bit 10 is used 
as follows to specify which portion is mapped: 

Bitw.. 0 Mapped Address (M) 
·- ----·--"-•-•M•~-·~·--d"-"""'•-··--··-·-

0 Fence ~ M < 2000 8 
1 l < M <Fence 

4-4 

21MXM 

This instruction will normally generate an MEM violation 
when executed in the protected mode; however, it is al­
lowed ifthe System map is enabled. When an MEM viola­
tion does occur, the fence is not altered. 

MBF MOVE BYTES FROM ALTERNATE MAP 

15 1413 12 1110 9 8 7 6 5 4 3 2 0 

1 0 0 0 1 0 1 1 1 0 0 0 0 1 1 

Moves a string of bytes using the alternate program map 
for source reads and the currently enabled map for desti­
nation writes. The A-register contains the source byte 
address and the B-register contains the destination byte 
address. The initial byte addresses in the A- and 
B-registers must be even byte addresses. The byte in bits 
15 through 8 of a word is the even byte. The X-register 
contains the octal number of bytes to be moved. The 
number of bytes to be moved is restricted to a positive 
integer greater than zero. If the contents of the X-register 
i:.;; zero, the instruction will be a NOP. If the contents of the 
X-register is a negative integer, a large indeterminate 
block of memory will be transferred. Both the source and 
destination must begin on word boundaries. 

The instruction is interruptible on an even number of byte 
transfers, thus maintaining the even word boundaries in 
the A- and B-registers. The interrupt routine is expected to 
save and restore the current contents of the A-, B-, and 
X-registers to allow continuation of the instruction at the 
next entry. When the byte string move is completed, the 
X-register will always be zero and the A- and B-registers 
will contain their original value incremented by the 
number of bytes moved. 

This instruction can cause an MEM violation only if read 
or write protection rules are violated. 

MBI 

15 14 13 12 11 10 9 

100010 1 

MOVE BYTES 
INTO ALTERNATE MAP 

8 7 
1 1 

6 5 
1 0 

4 

0 
3 

0 
2 

0 
1 

1 
0 

0 

Moves a string of bytes using the currently enabled map 
for source reads and the alternate program map for desti­
nation writes. The A-register contains the source byte 
address and the B-register contains the destination byte 
address. The initial byte addresses in the A- and 
B-registers must be even byte addresses. The byte in bits 
15 through 8 of a word is the even byte. The X-register 
contains the octal number of bytes to be moved. The 
number of bytes to be moved is restricted to a positive 
integer greater than zero. If the contents of the X-register 
is zero, the instruction will be a NOP. If the contents of the 
X-register is a negative integer, a large indeterminate 
block of memory will be transferred. Both the source and 
destination must begin on word boundaries. 



21MXM 

The instruction is interruptible on an even number of byte 
transfers, thus maintaining the even word boundaries in 
the A- and B-registers. The interrupt routine is expected to 
save and restore the current contents of the A-, B-, and 
X-registers to allow continuation of the instruction at the 
next entry. When the byte string move is completed, the 
X-register will always be zero and the A- and B-registers 
will contain their original value incremented by the 
number of bytes moved. 

This instruction will always cause an MEM violation when 
executed in the protected mode and no bytes will be 
transferred. 

MBW 
MOVE BYTES 

WITHIN ALTERNATE MAP 

7 6 5 4 3 2 1 0 

0 0 1 0 0 

Moves a string of bytes with both the source and destina­
tion addresses established through the alternate program 
map. The A-register contains the source byte address and 
the B-register contains the destination byte address. The 
initial byte addresses in the A- and B-registers must be 
even byte addresses. The byte in bits 15 through 8 of a 
word is the even byte. The X-register contains the octal 
number of bytes to be moved. The number of bytes to be 
moved is restricted to a positive integer greater than zero. 
If the contents of the X-register is zero, the instruction will 
be a NOP. If the contents of the X-register is a negative 
integer, a large indeterminate block of memory will be 
transferred. Both the source and destination must begin 
on word boundaries. 

The instruction is interruptible on an even number of byte 
transfers, thus maintaining the even word boundaries in 
the A- and B-registers. The interrupt routine is expected to 
save and restore the current contents of the A-, B-, and 
X-registers to allow continuation of the instruction at the 
next entry. When the byte string move is completed, the 
X-register will always be zero and the A- and B-registers 
will contain their original value incremented by the 
number of bytes moved. 

This instruction will always cause an MEM violation when 
executed in the protected mode and no bytes will be 
transferred. 

MWF 
MOVE WORDS 

FROM ALTERNATE MAP 

8 7 6 3 2 1 0 
0 '1 1 0 

Moves a string of words using the alternate program map 
for source reads and the currently enabled map for desti­
nation writes. The A-register contains the source address 
and the B-register contains the destination address. The 
X-register contains the octal number of words to be moved. 

Dynamic Mapping System 

The number of words to be moved is restricted to a positive 
integer greater than zero. If the contents of the X-register 
is zero, the instruction will be a NOP. If the contents of the 
X-register is a negative integer, a large indeterminate 
block of memory will be transferred. 

The instruction is interruptible. The interrupt routine is 
expected to save and restore the current contents of the 
A-, B-, and X-registers to allow continuation of the 
instruction at the next entry. When the word string move 
is completed, the X-register will always be zero and the A­
and B-registers will contain their original value 
incremented by the number of words moved. 

This instruction can cause an MEM violation only if read 
and write protection rules are violated. 

MWI 

15 14 13 12 11 10 9 
j~~: 

,, 
\»~~ ti)'~ 1 ::o::::r :;Q;::;' 

MOVE WORDS 
INTO AL TERr'JATE MAP 

8 7 6 5 4 3 2 1 0 
J:::t-:1, :g, 0 0 1 0 1 

Moves a string of words using the currently enabled map 
for source reads and the alternate program map for desti­
nation writes. The A-register contains the source address 
and the B-register contains the destination address. The 
X-register contains the octal number of words to be moved. 
The number of words to be moved is restricted to a positive 
integer greater than zero. If the contents of the X-register 
is zero, the instruction will be a NOP. If the contents of the 
X-register is a negative integer, a large indeterminate 
block of memory will be transferred. 

The instruction is interruptible. The interrupt routine is 
expected to save and restore the current contents of the A-, 
B-, and X-registers to allow continuation of the instruction 
at the next entry. When the word string move is com­
pleted, the X-register will always be zero and the A- and 
B-registers will contain their original value incremented 
by the number of words moved. 

This instruction will always cause an MEM violation 
when executed in the protected mode and no words will be 
transferred. 

MWW 
MOVE WORDS 

WITHIN ALTERNATE MAP 

3 2 1 0 
0 1 1 1 

Moves a string of words with both the source and destina­
tion addresses established through the alternate program 
map. The A-register contains the source address and the 
B-register contains the destination address. The 
X-register contains the octal number of words to be moved. 
The number of words to be moved is restricted to a positive 

4-5 



Dynamic Mapping System 

integer greater than zero. If the contents of the X-register 
is zero, the instruction will be a NOP. If the contents of the 
X-register is a negative integer, a large indeterminate 
block of memory will be transferred. 

The instruction is interruptible. The interrupt routine is 
expected to save and restore the current contents of the 
A-. B-. and X-registers to allow continuation of the 
instruction at the next entry. When the word string move 
is completed, the X-register will always be zero and the A­
and B-registers will contain their original value 
incremented by the number of words moved. 

This instruction will always cause an MEM violation when 
executed in the protected mode and no words will be 
transferred. 

PAA LOAD/STORE PORT A MAP PER A 

15 1413 12 1110 9 8 7 6 5 4 3 2 
....--t---..~.,..--+-.....---.--~~....---'""'"T'"~-+--.-

10 0 000 1 00 0 

1 0 
1 0 

Transfers the 32 Port A map registers to or from memory. 
If bit 15 of the A-register is clear, the Port A map is loaded 
from memory starting from the address specified in bits 
14-0 of the A-register. If bit 15 of the A-register is set, the 
Port A map is stored into memory starting at the address 
specified in bits 14-0 of the A-register. When the 
load/store operation is complete, the A-register will be 
incremented by 32 to allow multiple map instructions. 

An attempt to load any map register when in the protected 
mode will cause an MEM violation. An attempt to store 
the Port A map is allowed within the constraints of write 
protected memory. 

PAB LOAD/STORE PO RT A MAP PER B 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
1 0 0 0 1 0 1 1 1 0 0 1 0 0 

Transfers the 32 Port A map registers to or from memory. 
If bit 15 of the B-register is clear, the Port A map is loaded 
from memory starting from the address specified in bits 
14-0 of the B-register. If bit 15 of the B-register is set, the 
Port A ni.ap is stored into memory starting at the address 
specified in bits 14-0 of the B-register. When the load/store 
operation is complete. the B-register will be incremented 
by 32 to allow multiple map instructions. 

An attempt to load any map register when in the protected 
mode will cause an MEM violation. An attempt to store 
the Port A map is allowed within the constraints of write 
protected memory. 

4-6 

21MXM 

PBA LOAD/STORE PORT B MAP PER A 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 
1000001 1 1 1 0 0 0 

Transfers the 32 Port B map registers to or from memory. 
If bit 15 of the A-register is clear, the Port B map is loaded 
from memory starting from the address specified in bits 
14-0 of the A-register. If bit 15 of the A-register is set, the 
Port B map is stored into memory starting at the address 
specified in bits 14-0 of the A-register. When the 
load/store operation is complete, the A-register will be 
incremented by 32 to allow multiple map instructions. 

An attempt to load any map register when in the protected 
mode will cause an MEM violation. An attempt to store 
the Port B map is allowed within the constraints of write 
protected memory. 

PBB LOAD/STORE PORT B MAP PER B 

15 1413 12 1110 9 

1000101 
8 

1 

7 

1 

6 

1 

5 4 

0 0 
3 2 1 0 

~--_.. 

0 1 1 

Transfers the 32 Port B map registers to or from memory. 
If bit 15 of the B-register is clear, the Port B map is loaded 
from memory starting from the address specified in bits 
14-0 of the B-register. If bit 15 of the B-register is set, the 
Port B map is stored into memory starting at the address 
specified in bit 14-0 of the B-register. When the load/store 
operation is complete, the B-register will be incremented 
by 32 to allow multiple map instructions. 

An attempt to Joad any map register when in the protected 
mode will cause an MEM violation. An attempt to store 
the Port B map is allowed within the constraints of the 
write protected memory. 

RSA READ STATUS REGISTER INTO A 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 0 1 0 1 1 0 0 0 

Reads the contents of the MEM status register into the 
A-register. This instruction can be executed at any time. 
The format of the MEM status register is given in table 
4-1. 

RSB READ STATUS REGISTER INTO B 

1 5 14 13 12 11 1 0 9 8 7 6 5 4 3 2 1 0 
1 0 0 0 1 0 1 1 1 0 1 0 0 0 

Reads the contents of the MEM status register into the 
B-register. This instruction can be executed at any time. 
The format of the MEM status register is given in table 
4-1. 



21MXM 

RVA READ VIOLATION REGISTER INTO A 

15 1413 12 1110 9 8 7 6 5 4 3 2 1 0 

1 ::-u_:::o~j;: o ;irfjf>;(_ ':f::::I~ 1 1 o o 

Reads the contents of the MEM violation register into the 
A-register. This instruction can be executed at any time. 
The format of the MEM violation register is given in table 
4-2. 

RVB READ VIOLATION REGISTER INTO B 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
1- 'O: ''._O":O,: 1 :0:-:T: ~;li' 't,_· 1::' ,-0:'- 1 1 0 0 1 

Reads the contents of the MEM violation register into the 
B-register. This instruction can be executed at any time. 
The format of the MEM violation register is given in table 
4-2. 

SJP ENABLE SYSTEM MAP AND JUMP 

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 

1 1 0 0 

Memory Address 

Causes the MEM hardware to use the set of 32 map 
registers, referred to as the System map, for translating all 
programmed memory references. Prior to enabling the 
System map, the P-register is set to the effective memory 
address. As a result of executing this instruction, normal 
1/0 interrupts are held off until the first opportunity 
following the fetch of the next instruction, unless three or 
more levels of indirect addressing are used. 

This instruction will normally generate an MEM violation 
when executed in the protected mode. In this case, the 
status of the MEM is not affected and the jump will not 
occur; however, if the System map is enabled, the 
instruction is allowed and effectively executes a JMP 
*+ 1,1. 

ENABLE SYSTEM MAP 
SJS AND JUMP TO SUBROUTINE 

1,5 ~4 ::: ~2; 1,1 ,~ .. ~,i: .~·"11: .. : ~ ~ ~ ~ ~ 
01, I 

Memory Address 

Causes the MEM hardware to use the set of 32 map regis­
ters, referred to as the System map, for translating all 

Dynamic Mapping System 

programmed memory references. Prior to enabling the 
System map, the P-register is set one count past the effec­
tive memory address (m + 1 ). After enabling the System 
map, the return address is stored in m. As a result of 
executing this instruction, normal 1/0 interrupts are held 
off until the first opportunity following the fetch of the 
next instruction, unless three or more levels of indirect 
addressing are used. 

This instruction will normally generate an MEM violation 
when executed in the protected mode. In this case, the 
status of the MEM is not affected and the jump will not 
occur; however, if the system map is enabled, the 
instruction is allowed and effectively executes a JSB 
*+ 1,1. 

SSM 
STORE STATUS 

REGISTER INTO MEMORY 

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 

1 1 0 0 

Memory Address 

Stores the 16-bit contents of the MEM status register into 
the address memory location. The status register contents 
are not altered. This instruction is used in conjunction 
with the JRS instruction to allow easy processing of 
interrupts, which always select the System map (if the 
MEM is enabled). The format of the MEM status register 
is listed in table 4-1. 

This instruction can cause an MEM violation only if write 
protection rules are violated. 

SYA LOAD/STORE SYSTEM MAP PER A 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

'·f-' -------~-~ff ''l: 0 '-b''-f, ~~ ~-i::.~~. , ): J ·:1: 0 0 1 0 0 0 

Transfers the 32 System map registers to or from memory. 
If bit 15 of the A-register is clear, the System map is 
loaded from memory starting from the address specified in 
bits 14-0 of the A-register. If bit 15 of the A-register is set, 
the System map is stored into memory starting at the 
address specified in bits 14-0 of the A-register. When the 
load/store operation is complete, the A-register will be 
incremented by 32 to allow multiple map instructions. 

Note: If not in the protected mode, the MEM 
provides no protection against altering 
the contents of maps while they are 
currently enabled. 

An attempt to load any map in the protected mode will 
cause an MEM violation. An attempt to store the System 
map is allowed within the constraints of write protected 
memory. 

4-7 



Dynamic Mapping System 

SYB LOAD/STORE SYSTEM MAP PER B 

15 14 13 12 11 10 9 8 7 6 5 4 3 
~--~~~---~~~~.__~~---e---...-

1 0 0 ::o 1 0 1 1 1 1 0 0 

Transfers the 32 System map registers to or from memory. 
If bit 15 of the B-register is clear, the System map is 
loaded from memory starting from the address specified in 
bits 14·0 of the B-register. If bit 15 of the B-register is set, 
the System map is stored into memory starting at the 
address specified in bits 14·0 of the B-register. When the 
load/store operation is complete. the B-register will be 
incremented by 32 to allow multiple map instructions. 

Note: If not in the protected mode, the MEM 
provides no protection against altering 
the contents of maps while they are 
currently enabled. 

An attempt to load any map in the protected mode will 
cause an MEM violation. An attempt to store the System 
map is allowed within the constraints of write protected 
memory. 

UJP ENABLE USER MAP AND JUMP 

15 14 13 12 1110 8 7 6 54 3 2 1 0 
-....--r---tr--...--· ------· 

1 ·:0010 111011 10 
o;, 

Memory Address 

Causes the MEM hardware to use the set of 32 map 
registers, referred to as the User map, for translating all 
programmed memory references. Prior to enabling the 
User map, the P-register is set to the effective memory 
address. As a result of executing this instruction, normal 
VO interrupts are held off until the first opportunity 
following the fetch of the next instruction, unless three or 
more levels of indirect addressing are used. 

This instruction will normally generate an MEM violation 
when executed in the protected mode. In this case, the 
status of the MEM is not affected and the jump will not 
occur; however, if the System map is enabled, the 
instruction is allowed. 

UJS 

15 14 13 12 11 .,. o:: I ;:o 1 
o;, 

ENABLE USER MAP 
AND JUMP TO SUBROUTINE 

10 9 8 7 6 5 4 3 2 1 0 

0 1 1 1 1 0 1 1 1 1 1 

·'-

Memory Address 

Causes the MEM hardware to use the set of ~32 map regis­
ters, referred to as the User map. for translating all pro-

4-8 

21MXM 

grammed memory references. Prior to enabling the User 
map, the P-register is set one count past the effective 
memory address (m + 1). After enabling the System map, 
the return address is stored in m. As a result of executing 
this instruction, normal I/O interrupts are held off until 
the first opportunity following the fetch of the next in­
struction, unless three or more levels of indirect address· 
i ng are used. 

This instruction will normally generate an MEM violation 
when executed in the protected mode. In this case, the 
status of the MEM is not affected and the jump will not 
occur; however, if the System map is enabled, the 
instruction is allowed. 

USA LOAD/STORE USER MAP PER A 

15 14 13 12 11 10 9 8 7 4 3 2 1 0 

1 0 0 .o 0 .0 .1 .l 1· 0 1 0 0 1 

Transfers the 32 User map registers to or from memory. If 
bit 15 of the A-register is clear, the User map is loaded 
from memory starting from the address specified in bits 
14-0 of the A-register. If bit 15 of the A-register is set, the 
User map is stored into memory starting at the address 
specified in bits 14-0 of the A-register. When the 
load/store operation is complete, the A-register will be 
incremented by 32 to allow multiple map instructions. 

Note: If not in the protected mode, the MEM 
provides no protection against altering 
the contents of maps while they are 
currently enabled. 

An attempt to load any map in the protected mode will 
cause an MEM violation. An attempt to store the User 
map is allowed within the constraints of write protected 
memory. 

USB LOAD/STORE USER MAP PER B 

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 
0 0 

Transfer the 32 User map registers to or from memory. If 
bit 15 of the B-register is clear, the User map is loaded 
from memory starting from the address specified in bits 
L4-0 of the B-register. If bit 15 of the B-register is set, the 
User map is stored into memory starting at the address 
specified in bits 14-0 of the B-register. When the load/store 
operation is complete, the B-register will be incremented 
by 32 to allow multiple map instructions. 

Note: If not in the protected mode, the MEM 
provid1es no protection against altering 
the contents of maps while they are 
currently enabled. 



21MXM 

Any attempt to load any map in the protected mode will 
cause an MEM violation. An attempt to store the User 
map is allowed within the constraints of write protected 
memory. 

XCA CROSS COMPARE A 

3 2 1 0 
0 1 1 0 

Memory Address 

Compares the contents of the A-register with the contents 
of the addressed memory location. If the two 16-bit words 
are not identical, the next instruction is skipped; i.e., the 
P-register advances three counts instead of two counts. If 
the two words are identical, the next instruction is 
executed. Neither the A-register contents nor memory cell 
contents are altered. 

This instruction uses the alternate program map to 
determine the addressed memory location. If the MEM is 
currently disabled, then a compare directly with physical 
memory occurs. 

This instruction will cause an MEM violation only if read 
protection rules are violated. 

XCB CROSS COMPARE B 

4 3 2 1 0 

1 0 1 1 0 

Memory Address 

Compares the contents of the B-register with the contents 
of the addressed memory location. If the two 16-bit words 
are not identical, the next instruction is skipped; i.e., the 
P-register advances three counts instead of two counts. If 
the two words are identical, the next instruction is 
executed. Neither the B-register contents nor memory cell 
contents are altered. 

This instruction uses the alternate program map to 
determine the addressed memory location. If the MEM is 
currently disabled, then a compare directly with physical 
memory occurs. 

This instruction will cause an MEM violation only if read 
protection rules are violated. 

Dynamic Mapping System 

XLA CROSS LOAD A 

3 2 1 0 

0 1 0 0 

Memory Address 

Loads the contents of the specified memory address into 
the A-register. The contents of the memory cell are not 
altered. 

This instruction uses the alternate program map to fetch 
the operand. If the MEM is currently disabled, then a load 
directly from physical memory occurs. 

This instruction will cause an MEM violation only if read 
protection rules are violated. 

XLB 

Memory Address 

CROSS LOAD B 

4 3 2 1 0 

1 0 1 0 0 

Loads the contents of the specified memory address into 
the B-register. The contents of the memory cell are not 
altered. 

This instruction uses the alternate program map to fetch 
the operand. If the MEM is currently disabled, then a load 
directly from physical memory occurs. 

This instruction will cause an MEM violation only if read 
protection rules are violated. 

XMA 
TRANSFER MAPS 

INTERNALLY PER A 

5 4 3 2 1 0 

1 0 

Transfers a copy of the entire contents (32 map registers) 
of the System map or the User map to the Port A map or 

4-9 



Dynamic Mapping System 

the Port B map as determined by the control word in the 
A-register: 

Bit* Significance 

15 System Map 
User Map 

O Port A Map 
Port B Map 

*Bits 14-1 are ignored. 

This instruction will always generate an MEM violation 
when executed in the protected mode. 

XMB 
TRANSFER MAPS 

INTERNALLY PER B 

15 14 13 12 11 10 9 

1 0 0 0 1 0 

8 7 

1 

6 5 

0 

4 

1 

3 2 1 0 
"""""" .. """--"-•-·"·······~ 
0 0 1 0 

Transfers a copy of the entire contents (32 map registers) 
of the System map or the User map to the Port A map or 
the Port B map as determined by the control word in the 
8-register: 

Bit* Significance 

15 0 System Map 
User Map 

0 0 Port A Map 
Port B Map 

*Bits 14-1 are ignored. 

This instruction will always generate an MEM violation 
when executed in the protected mode. 

XMM TRANSFER MAPS OR MEMORY 

15 14 13 12 1110 9 8 7 6 

100010111 

Transfers a number of words either from sequential mem­
ory locations to sequential map registers or vice versa. The 
A-register points to the first map register (0 to 1771,) to be 
accessed and the B-register points to the first word of a 
group of words (table) in sequential memory locations. The 
X-register indicates the number of maps (0 to 128 10 ) to be 
transferred. If the content of the X-register is a positive 
integer, words are moved from memory to map registers; if 
the content is a negative integer, words are moved from 
map registers to memory. 

4-10 

21MXM 

Map registers are addressed as a contiguous space and a 
wraparound count from 177 8 to 08 can and will occur. It is 
the programmer's responsibility to avoid this error; and 
also to limit the X-register to 128. 

The contents of the maps are transferred in blocks of 16 
registers or less. This instruction is interruptible only after 
each block has been completely transferred. 

An attempt to load any map register in the protected mode 
will generate an MEM violation. An attempt to store map 
registers is allowed within the constraints of write 
protected memory. 

XMS TRANSFER MAPS SEQUENTIALLY 

15 1413 12 1110 9 8 7 6 5 4 3 2 0 
1000101 1 1 1 0 1 0 0 0 

Transfers a number of words to sequential map registers. 
The A-register points to the first register (0 to 177 8) to be 
accessed, the B-register contains the base quantity, and 
the X-register indicates the number of maps (0 to 12810) to 
be loaded. If the contents of the X-register is a positive 
integer, the contents of the B-register will be used as the 
base quantity to be loaded into the first map register. The 
second register will be loaded with the base quantity plus 
one, the third register will be loaded with the base quan­
tity plus two, and so forth up to the number of map regis­
ters specified in the X-register. If the content of the 
X-register is less than or equal to zero, an effective NOP 
will occur, leaving the contents of the A-, B-, and 
X-registers unaltered. The X-register must not specify a 
number greater than 128. 

This instruction is interruptible after each group of 16 
registers has been transferred. The A-, B-, and X-registers 
are then reset to allow reentry at a later time. The 
X-register will always be zero at the completion of the 
instruction and the A- and B-registers will be advanced by 
the number of registers moved. 

An attempt to load any map register in the protected mode 
will generate an MEM violation. 

XSA CROSS STORE A 

15 14 13 12 11 10 9 8 7 6 5 4 J 2 1 0 
1 0 0 0 0 0 1 1 1 1 0 1 0 1 0 1 

·-+--
D;I 

Memory Address 

Stores the contents of the A-register intO the addressed 
memory location. The previous contents of the memory 
cell are lost; the A-register contents are not altered. 



21MXM 

This instruction uses the alternate program map for the 
write operation. If the MEM is currently disabled, then a 
store directly into physical memory occurs. 

This instruction will always cause an MEM violation when 
executed in the protected mode. 

XSB CROSS STORE B 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
1 ·o :i ·:o· 1 r::tl' 1 :, u :J· J ·.O: 1 0 1 0 1 o,, 

Memory Address 

Stores the contents of the B-register into the addressed 
memory location. The previous contents of the memory 
cell are lost; the B-register contents are not altered. 

This instruction uses the alternate program map for the 
write operation. If the MEM is currently disabled, then a 
store directly into physical memory occurs. 

This instruction will always cause an MEM violation when 
executed in the protected mode. 

Table 4-3 lists the execution times required for the various 
DMS instructions. 

Table 4-4 provides a sample DMS map load and enable 
routine. This routine begins by loading 32 registers for the 
System map and 32 registers for the User map and con­
tinues by setting the Port A map to the area for User 
number one. The Port B map is then set to point into a new 
area where a third User's program would be loaded. Next, 
the Base Page Fence is set so that the System Fence value 
is used. Finally, the mapping functions of the DMS are 
enabled and program control is transferred to the System 
area beginning at address 10008. 

The following paragraphs further define the terms "alter­
nate map" and "protected mode" and contain definitive 
discussions for MEM violations and DCPC operation in a 
DMS environment. 

Dynamic Mapping System 

4-10. ALTERNATE MAP 

If the system map is currently enabled, the user map is the 
alternate map. If the user map is currently enabled, the 
system map is the alternate map. The DCPC maps are 
never tl:ie alternate maps. 

4-11. PROTECTED MODE 

If the DMS and memory protect are enabled, the computer 
is in the protected mode. DMS will operate in the unpro­
tected mode (DMS enabled, memory protect disabled), but 
none of the DMS safeguards will be operative. 

4-12. MEM VIOLATIONS 

The MEM violatiun.s are designed to safeguard DMS. The 
four types of violations are read protect, write protect, 
base page, and privileged instruction. Throughout the fol­
lowing paragraphs, references to logical memory refers to 
the memory address before mapping and references to 
physical memory refers to the memory address after 
mapping. 

If the computer is in the protected mode and bit 11, the 
read protect bit, of a system or user map register equals 1, 
any attempt by the system or user to read from the as­
sociated memory page causes a read protect violation and 
the read does not occur. If the computer is in the unpro­
tected mode, the read occurs. In either case, bit 15 of the 
MEM violation register will be set to 1. For example, 
suppose the computer is in the protected mode and the 
system or user map register 3 contains 4043H. Any attempt 
by the system or user to read from page 43 8 using map 
register 3 (i.e., read from physical addresses in the 
1060008 to 107777 8 range), causes a read protect violation. 

If the computer is in the protected mode and bit 10, the 
write protect bit, of a system or user map register equals 1, 
any attempt by the system or user to write onto the as­
sociated memory page causes a write protect violation and 
the write does not occur. If the computer is in the unpro­
tected mode, the write occurs. In either case, bit 14 of the 
MEM violation register will be set to 1. For example, 
suppose the computer is in the protected mode and the 
system or user map register 3 contains 20438. Any attempt 
by the system or user to write onto page 43H using map 
register 3 (i.e., write onto physical addresses in the 
1060008 to 1077778 range), causes a write protect 
violation. 

If the computer is in the protected mode, any attempt by 
the system or user to write onto the physical base page 
causes a base page violation and the write does not occur. 
If the computer is in the unprotected mode, the write 
occurs. In either case, bit 13 of the MEM violation register 
will be set to 1. For example, suppose the computer is in 
protected mode, the system or user map register 0 contains 
00408, the base page fence is set at 10008, and bit 10 of the 
MEM status register equals 1 (i.e., logical addresses below 

4-11 



Dynamic Mapping System 

the base page fence are mapped). If the system or user 
attempts to write to a logical memory address of 1500H, 
MEM detects that the base page addresses above the base 
page fence are not mapped and begins to access physical 
memory address 1500H. However, MEM then detects that a 
write to physical base page is being attempted which 
causes a base page violation and the write does not occur. 
If the computer was in the unprotected mode, the write 
would have occurred. In either case, bit 1;3 of the MEM 
violation register will be set to 1. If the system or user 
attempts to write to a logical memory address of 500H, 
MEM detects that addresses below the base page fence are 
mapped and begins to access physical memory address 
I OOOOOH +- 500H = 100500~ where the write will occur 
providing standard memory protect is not violated. Note 
that standard memory protect checks the logical address 
! i.e., 5008 ), not the physical address ! i.e., 100500,.J. Read­
ing from logical or physical base page will not generate a 
base page violation. From the previous discussion, it can 
be seen that a OMS memory space has its base page in two 
pieces which may or may not be contiguous. Regardless, 
the total base page available for any DMS memory space 
is 1024 locations. The part of the physical base page acces­
sible by all memory spaces is also referred to as the un­
mapped or shared part of the base page. Note that the 
logical addresses of 0 and 1 access the A and B registers, 
respectively. 

If the computer is in the protected mode, any attempt by 
the user to load into any MEM register, except the MEM 
address register, will cause a privileged instruction viola-

4-12 

21MXM 

tion and the load will not occur. Any attempt by the 
system to lond into any of the MEM map registers will 
cause a privileged instruction violation and the load will 
not occur. If the computer is in the unprotected mode, the 
load occurs. In either case, bit 12 of the MEM violation 
register will be set to 1. The system can always load into 
the MEM state register or MEM fence register. Under 
microprogrammed control the user can always load into 
the MEM state register or MEM fence register. The sys­
tem or user can always load into the MEM address regis­
ter, and can always read the MEM map registers. All 
MEM violations cause an interrupt to select code 5. In­
struction SFS 5 will skip only for an MEM violation, 
allowing DMS interrupts to be differentiated from mem­
ory protect or parity error interrupts. 

UCPC OPERATION IN A DMS 
ENVIRONMENT 

DCPC activity disables the MEM violation logic. There­
fore, the DCPC's can read or write physical memory with­
out generating MEM violations. Note that mapping 
remains enabled during DCPC activity and that the base 
page partitioning is the same. For example, if a DCPC 
input transfer were aimed at logical memory addresses 0 
t.o 77777 K, which happened to map to physical addresses 
I 00000,, to 177777.,, and the conditions cited in the base 
page examples prevailed, then the input data would be 
written into physical addresses lOOOOOK to 100777 8, 10008 
to 1777 K, and 102000K to 177777 H· 



21MXM Dynamic Mapping System 

Table 4-3. Typical DMS Instruction Execution Times 

--
INSTRUCTION EXECUTION 

NOTES TIME (µS) 

Dynamic Mapping System Group 

DJP, SJP 5.85a 

DJS,SJS 6.5oa 

JRS 9.10 - 10.40a 

LFA/B 3.57 

MBF, MBI, MBW 6.50b,c 

MWF, MWI, MWW 3.25b 

PAA/B, SY A/B 47.125 - 47.80 

PBA/B, USA/B 47.125-47.80 

RSA/B 2.60 

RVA/B 2.275 

SSM 5.85a 

UJP 5.525a 

UJS 6.175a 

XCA/B 6.175a 

XLA/B, XSA/B 5.525a 

XMA/B 15.275 - 16.575 

XMM 9.75e 

XMS 8.45d 

a. Add 1.3 µS for each indirect address level. 
b. Add 2.925 µS for each word moved. 
c. Add 3.575 µS for last odd byte. 
d. Add 0.975 µS for each word loaded into map 

register. 
e. Add 1 .3 µS for each word exchanged between 

maps and memory. 

4-13 



Dynamic Mapping System 

--·--~--···h--h 

LABEL 

OMS 

SY ST RT 

FNC 

S.TABL 

U.TABL 
A.TABL 

B.TABL 

SYSF 
SYSTEM 

US01F 

US01 

US02F 

US02 

US03F 
US03 

4-14 

--·-·--------------···--

OPCODE 

NOP 

LOA 

LOB 

SYA 

USB 
LOA 

LOB 
PAA 

PBB 

LOA 
LFA 

SJP 

OCT 
DEF 

DEF 

DEF 
DEF 

DEF 

OCT 
OCT 

OCT 

OCT 

OCT 

OCT 

OCT 

OCT 

OCT 

OCT 

OCT 

OCT 

OCT 

OCT 
OCT 

OCT 

- -~--

21MXM 

Table 4-4. Sample DMS Load/Enable Routine 

OPERAND COMMENTS 

OMS Load/Enable Routine 

S.TABL Load address of System Map Table 

U.TABL Load address of User Map Table 

Load System Map from memory 

Load User Map from memory 

A.TABL Load address of Port A Map Table 

B.TABL Load address of Port B Map Table 

Load Port A Map from memory 

Load Port B Map from memory 

FNC,I Load fence value 

Load Base Page Fence register 
SYSTRT,I Enable System Map and jump to operating system entry point 

1000 Operating system begins at 10008 

SYSF Points to System Fence 

SYSTEM Points to System Table 

US01 Points to first User Table 

US01 Points to first User Table 

US03 Points to third User Table 

100 Fence for operating system 

0 System Map Table 

1 System Map Table 

2 System Map Table 

1000 Fence for first user 
40 First User Map Table 

41 First User Map Table 

42 First User Map Table 

2044 Fence for second user 

100 Second User Map Table 

101 Second User Map Table 

102 Second User Map Table 

0 Fence for third user 

200 Third User Map Table 

201 Third User Map Table 

202 Third User Map Table 



I 

IUllI.111 
~~~~~~M-IC_R_OP_R_O_GR_A_M_M_IN_G~I v I 

This section contains an introductory discussion of 
Hewlett-Packard's microprogramming techniques and 
development. For additional information, refer to the HP 
21MX M-Seri.es Computer Microprogramming Reference 
Manual, part no. 02108-90032. 

The control section of a computer is the portion of the 
computer that directs and controls the other sections; i.e., 
the memory section, input-output section, and the 
arithmetic-logic section. In totally hardwired computers, 
the control section logic is normally "spread out" 
physically throughout the computer. This design 
approach makes it impossible to enhance the computer's 
instruction set without redesign. In contrast, M-Series 
computers have a fully microprogrammed control section, 
which means that the sequence in which the control func­
tions are performed are made programmable through the 
use of a technique called microprogramming. 

The action taken when any one of the M-Series base set of 
128 assembly language instructions is executed is deter­
mined by a microprogram associated with the assembly 
language instruction (these microprograms reside in a 
special memory called control store); the control section 
oversees the translation and controls the execution of the 
microprogram. With this design approach, instruction set 
enhancements can be made by changing or adding to the 
set of microprograms that control the machine's execution. 
Many computers are microprogrammed; however, 
Hewlett-Packard has taken the concept one step further to 
off er the power of microprogramming to the user. 

M-Series computer users can more fully take advantage of 
the computer's power by utilizing microprogramming. The 
microprogrammer has more instructions, a more flexible 
word format, more registers, and faster execution times to 
work with than does the assembly language programmer. 
The microinstruction word length is 24 bits which enables 
concurrent operations to be performed in a single instruc­
tion. Microprogrammers can access 12 scratch pad regis­
ters in addition to those available to the assembly 
language programmer and have up to 4096 24-bit words of 
memory (termed control store) in which to store micro­
programs. The microprogrammer works in a much faster 

environment than does the assembly language pro­
grammer for two reasons. One, since microinstructions 
have access to most of the internal parts of the computer's 
architecture, fewer memory fetches are required to 
accomplish most tasks. Two, the microinstruction execu­
tion time of 325 nanoseconds is much faster than the 
typical assembly instruction execution time of 1 to 2 
microseconds. 

These capabilities are easily taken advantage of by 
M-Series computer users through the extensive support 
provided by Hewlett-Packard. Some of the more important 
benefits of Hewlett-Packard's microprogramming are 
given in the following paragraphs. 

Through the use of microprogramming, the computer's 
assembly language instruction set can be expanded with 
instructions tailored for specific applications. By adding 
special purpose instruction sets, the general purpose com­
puter can be uniquely adapted for a certain job and thus 
become very efficient at that job. M-Series users can easily 
design their own instructions or purchase HP-supplied 
instruction sets such as the Dynamic Mapping System 
instructions or the Fast FORTRAN Processor. Applica­
tions that may be profitably microcoded include arithme­
tic calculations, I/O device driver programs, sorts and 
table searches, pseudo-DCPC operations, and special IBL 
loaders. 

Microprogramming is very similar to assembly language 
programming, although it is more powerful in many ways. 
Some knowledge of the internal structure of the computer 
is required, but once this knowledge is attained, the in­
creased power and flexibility of microprogramming can 
ease the solution of many programming tasks. Micropro­
grams are easily callable by assembly or higher level 
language programs. An extensive set of debugging aids, 
software analysis aids, and documentation is available to 
make microprogramming easy and efficient. 

Microprogramming often-used routines will typically de­
crease program execution time by factors of two to ten and 
sometimes by as much as twenty or' more. Software 
routines can be made to execute at the hardware speeds of 
the microprogram environment and the additional regis­
ters available to the microprogrammer can serve to elimi­
nate many time-consuming memory fetches. 

5-1 



Microprogramming 

By converting software routines into microprograms, 
space in main memory that would normally be required 
for time-critical routines can be freed for other uses. The 
routines remain instantly callable, as opposed to routines 
stored in a peripheral device. Microprograms are also less 
accessible than conventional software which affords a 
higher degree of security to microcoded routines. 

Developing microprograms is similar to developing as­
sembly language programs; assembling and interactive 
debugging of microprograms is done with the aid of the 
standard HP Micro Assembler and Micro Debug Editor. 
Since the user will not normally want to microcode all of a 
certain program, some analysis is required to determine 
which segment(s) of the assembly language program can 
be most profitably converted to microcode. This analysis is 
easily done with the use of an HP contributed library 
program called the Activity Program Generator (ACP). 
The ACP enables the user to determine where in a pro­
gram the CPU is spending most of its time; by substituting 
this section of code with a microprogrammed subroutine 
that is callable by the assembly or higher level program, 
overall execution time may often be reduced. 

Once the microprogrammer has determined what segment 
to implement in microcode, the microprogram is developed 
as shown in figure 5-1. The Micro Assembler program (in 
main memory) is used to assemble the source micropro­
gram into an object program. Then, the object micropro­
gram is loaded into Writable Control Store <WCS) with the 
aid of the Micro Debug Editor program. Interactive de­
bugging may be performed with the aid of the Debug 
Editor while the object microprogram resides in WCS. 

When the microprogram is fully checked out, the user may 
choose to have his program reside permanently in pro­
grammable Read-Only Memory (pROMl or in WCS where 
it may be altered programmatically. Implementation in 
ROM is accomplished by programming the pROM's with a 
pROM writer and installing the programmed ROM's in 
the computer. The mask tapes shown in figure 5-1 are 
required by the pROM writer and are generated by the 
Debug Editor at the user's command. ROM-resident 
microprograms are permanent and do not have to be re­
loaded each time the computer is powered up; this im­
plementation also prevents users from erroneously de­
stroying the microprogram. The user who does not require 
such permanence for microprogram storage may skip the 
HOM burning step and execute his microcode from WCS. 
Microprograms used in this manner may be loaded with 
the WCS I/O utility routine and may be altered under 
program control to suit a variety of users. 

5-2 

21MXM 

User-written microprograms are easily accessed by as­
sembly or higher level programs. Once the microprogram 
is developed and loaded into control store, it may be called 
in a very similar manner to a software subroutine. 

Hewlett-Packard provides a comprehensive set of 
hardware manuals, software manuals, and training 
courses to make user microprogramming easy to learn and 
implement. For permanent implementation of mi­
croprograms,. programmed pROM's may be installed in the 
HP 12945A User ROM Control Store Board or in the HP 
13047 A 2K User Control Store Board. The ROM Control 
Store Board mounts under the main CPU board of the 
M-Series computer and is used to house Hewlett-Packard 
provided optional instruction sets such as the Dynamic 
Mapping System and the Fast FORTRAN Processor in­
structions. Up to 2,048 24-bit words of control store in the 
form of lK bit pROM's may be installed in the optional 2K 
User Control Store Board which occupies a slot in the 1/0 
section of the computer mainframe. 

The lK Writable Control Store (WCS) option provides a 
read-write control store module which can be used for the 
development and execution of user-supplied micropro­
grams. Microprograms in WCS are executed at the same 
speed as those in the read-only control store. Each WCS 
module consists of a single card which plugs into the l/O 
PCA cage, thus eliminating the need for extensive cabling 
or an additional power supply. A WCS card contains 1,024 
24-bit locations of Random-Access-Memory (RAM), in­
cluding all necessary address and read/write circuits. 
WCS can be written into or read under computer control 
using standard input/output instructions. An 1/0 utility 
routine makes it pos~ible for FORTRAN and ALGOL pro­
grams to write into or read from a WCS module using a 
conventional subroutine call. A WCS module is read at 
full speed by way of a flat cable connecting it to the control 
section of the processor. 

Available microprogramming software includes the Micro 
Assembler and Micro Debug Editor as well as diagnostics, 
driver program, and 1/0 utility routine for use with the 
Writable Control Store module. These software aids oper­
ate under the Hewlett-Packard Real Time Executive 
(RTE) operating systems. 

A course is offered at HP facilities in Cupertino, California 
for customer training. Requiring only a knowledge of 
M-Series assembly language as a prerequisite, the course 
features in-depth coverage of microprogram development 
and impleme·ntation, and provides hands-on experience 
for the microprogrammer. The M-Series microprogram­
mer may also take advantage of other user-written micro­
programs via the HP Contributed Library, which contains 
many tested and documented microprograms. 



21MXM 

7114 2 

~--@j-
.... ..-_ (OR CARDS OR TAPE) 

WRITE 

I 
~~~ 

LISTING 

~Ol~v·~ 
1,,0~ (OR PAPER TAPE) 

~ 
(AFTER EDITING) 

WRITABLE 
CONTROL CJ 

STORE 
CJ 

CJ 

(WCS) CJ 

111111uu11 111 11111t111 

PAPER TAPE 
(OR CARDS OR DISC) 

I ---

(OR YOUR LOCAL 
DISTRIBUTOR) 

NOTES: 1. MICROASSEMBLER OBJECT CODE MAY BE OUTPUT DIRECTLY TO DISC 
Fl LE AS WELL AS TO PAPER TAPE. 

--

2. pROM TAPE GENERATOR (PTGEN) ACCEPTS ONLY UNEDITED OBJECT CODE. 

3. OBJECT CODE MAY BE LOADED INTO WCS FROM DISC OR PAPER TAPE 
VIA WLOAD (WCS LIBRARY ROUTINE) 

4. ALTERNATIVELY, MICROCODE MAY BE TRANSFERED DIRECTLY BETWEEN 
THE USER'S PROGRAM AND WCS WITH EXEC CALLS TO THE WCS DRIVERS. 

Figure 5-1. Microprogram Development Cycle 

Microprogramming 

I 
I 
I 
I 
I 
I 
I 

_J 

5-3 



Microprogramming 

5-9. DYNAMIC MAPPING SYSTEM 

The Dynamic Mapping System (DMSl option gives the 
user the capability to address physical memory configura­
tions larger than the standard 32,768 word limitation. The 
DMS provides a 20-bit-wide memory address bus which 
allows an addressing space of 1,048,576 words of main 
memory and allows the user to specify each 1,024-word 
page within physical memory to be read and/or write pro­
tected for program security. Separate memory translation 
maps provide isolation of system, user, DCPC channel 1, 
and DCPC channel 2. 

The DMS consists of a Memory Expansion Module (MEM) 
and a Memory Protect PCA which plug into the memory 
PCA cage; microcode for implementing the additional 38 
machine language instructions associated with the DMS 
is mounted in the ROM Control Store Board. 

5-10. FAST FORTRAN PROCESSOR 

The Fast FORTRAN Processor CFFP) option provides the 
system with 18 subroutines implemented in three control 

fi-4 

21MXM 

store ROM modules. Included are ten fast FORTRAN sub­
routines and eight extended precision subroutines. These 
subroutines are executed up to 28 times faster than the 
same routines executed under software control. 

Microprogramming is a very powerful tool that gives the 
user many advantages in terms of speed, flexibility, and 
program security. Experience has shown that micropro­
gramming once learned, is in many cases much more flex­
ible while being just as simple in concept as assembly 
language programming. Microprogramming does have its 
limitations however, and the potential user should 
examine very closely the extent of support provided by the 
computer manufacturer. Hewlett-Packard has by far sold 
and supported the greatest number of microprogrammable 
computers in the world, and provides world-wide cus­
tcnner support. Customer training courses and documen­
tation have been refined from years of customer­
c.:ontributed feedback and actual implementation is made 
easy through extensive sonware support packages and 
inexpensive hardware tools. 



1111111.111 INTERRUPT SYSTEM ·
1 

vi I 

The vectored priority interrupt system has up to 60 
distinct interrupt levels, each of which has a unique 
priority assignment. Each interrupt level is associated 
with a numerically corresponding interrupt location in 
memory. 

Of the 60 interrupt levels, the two highest priority levels 
are reserved for hardware faults (power fail and parity 
error), the next two are reserved for Dual-Channel Port 
Controller completion interrupts, and the remaining 
levels are available for 1/0 device channels. Tables 6-1 and 
6-2 list the interrupt levels in priority order for the HP 
2108B and HP 2112B Computers, respectively. 

Table 6-1. HP 2108B Interrupt Assignments 

CHANNEL INTERRUPT ASSIGNMENT 
(Octal) LOCATION 

04 00004 Power Fail Interrupt 

05 00005 Memory Parity/Memory Protect/ 
OMS Interrupt 

06 00006 DCPC Channel 1 Completion 
Interrupt 

07 00007 DCPC Channel 2 Completion 
Interrupt 

10 00010 1/0 Device (highest priority) 

11 - 20 00011-00020 1/0 Device (Mainframe) 

21 - 42 00021-00042 1/0 Device (Extender No. 1) 

43 - 64 00043 -00064 1/0 Device (Extender No. 2) 

Table 6-2. HP 2112B Interrupt Assignments 

CHANNEL INTERRUPT ASSIGNMENT 
(Octal) LOCATION 

04 00004 Power Fail Interrupt 

05 00005 Memory Parity /Memory Protect/ 
DMS Interrupt 

06 00006 DCPC Channel 1 Completion 
Interrupt 

07 00007 DCPC Channel 2 Completion 
Interrupt 

10 00010 1/0 Device (highest priority) 

11 - 25 00011-00025 1/0 Device (Mainframe) 

26 - 47 00026-0004 7 1/0 Device (Extender No. 1) 

50 - 71 00050-00071 1/0 Device (Extender No. 2) 

As an example of the simplicity of the interrupt system, an 
interrupt request from I/O channel 12 will cause an 
interrupt to memory location 00012. This request for 
service will be granted on a priority basis higher than 
afforded to channel 13 but lower than that afforded to 
channel 11. Thus, a transfer in progress via channel 13 
would be suspended to allow channel 12 to proceed. On the 
other hand, a transfer in progress via channel 11 cannot be 
interrupted by channel 12. 

Any device can be selectively enabled or disabled under 
program control, thus switching the device into or out of 
the interrupt structure. In addition, the entire interrupt 
system, except power fail and parity error interrupts, can 
be enabled or disabled under program control using a 
single instruction. 

Interrupt requests received while the computer is in the 
halt mode will be processed, in order of priority, when the 
computer is placed in the run mode. Input/output priority 
is covered in more detail in Section VII. 

The computer is equipped with power-sensing circuits. 
When primary line power fails or drops below a 
predetermined operating level while the computer is 
running, an interrupt to memory location 00004 is 
automatically generated. This interrupt is given the 
highest priority in the system and cannot be turned off or 
otherwise disabled. Memory location 00004 is intended to 
contain a jump-to-subroutine (JSB) instruction refer­
encing the entry point of a power fail subroutine; however, 
location 00004 may alternatively contain a halt ( HLT) 
instruction. The interrupt cabability of lower-priority 
operations is automatically inhibited while a power fail 
subroutine is in process. 

A minimum of 500 microseconds is available between the 
detection of a power failure and the loss of usable power 
supply power to execute a power fail subroutine; the 
purpose of such a subroutine is to transfer the current 
state of the computer system into memory and then halt 
the computer. A sample power fail subroutine is given in 
table 6-3. The optional battery will supply enough power 
to preserve the contents of memory for a sustained line 
power outage of up to 2 hours. 

If the optional Dynamic Mapping System (DMS) is 
installed and a power failure occurs, the System Map is 
automatically enabled just prior to fetching the 
instruction in location 00004. Since all maps are disabled 
and none are considered valid upon the restoration of 

6-1 



21MXM 

6-2 

LABEL 

PFAR 

DOWN 

UP 

HALT 

FENCE 
SAVEO 
SAVA 
SAVB 
SAVS 
SAVX 
SAVY 
SAVP 
SAVR 

OPCODE 

NOP 
STF 
STF 
SFC 
JMP 

STA 
CCA 
STA 
STB 

ERA,ALS 
soc 
INA 
STA 
LOA 
STA 
LIA 
STA 
STX 
STY 

CLC 

HLT 

LOA 
SZA,RSS 

JMP 
CLA 
STA 

LOA 
OTA 

LOA 
CLO 

SLA,ELA 
STF 
LOA 
OTA 
LOA 
LOB 
LOX 
LOY 
STC 
STC 
JMP 

HLT 

OCT 
OCT 
OCT 
OCT 
OCT 
OCT 
OCT 
OCT 
OCT 

Interrupt System 

Table 6-3. Sample Power Fail Subroutine 

OPERAND 

6B 
78 
4B 

UP 

SAVA 

SAVR 
SAVB 

SAVEO 
PFAR 
SAVP 

1B 
SAVS 
SAVX 
SAVY 

4B 

SAVR 

HALT 

SAVR 

FENCE 
5B 

SAVEO 

1B 
SAVS 

1B 
SAVA 
SAVB 
SAVX 
SAVY 

4B 
58 

SAVP,I 

2000 
0 
0 
0 
0 
0 
0 
0 
0 

COMMENTS 

Power Fail/Auto Restart Subroutine 
Terminates DCPC Channel 1 
Terminates DCPC Channel 2 
Skip if interrupt was caused by a power failure 
Power is being restored, reset state of computer system 

Save A-register contents 
Set switch indicating that the computer was running 

when power failed 
Save B-register contents 
Transfer E-register content to A-register bit 15 
Increment A-register if Overflow 

is set 
Save E- and 0-register contents 
Save contents of P-register at time of 

power failure 
Save contents of 

S-register 
Save contents of X-register 
Save contents of Y-register 
Insert user-written routine to save 1/0 

device states 
Turn on restart logic so computer wil I restart when power is restored 

after momentary power failure 
Shutdown 

Was computer running 
when power failed? 

No 

Yes, reset computer Run switch to 
initial state 

Restore the memory protect 
fence register contents 

Insert user-written routine to restore 
1/0 device states 

Restore the contents 
of the 
E-register and 
0-register 

Restore the contents of the 
S-register 

Restore A-register contents 
Restore B-register contents 
Restore X-register contents 
Restore Y-register contents 
Reset power fail logic for next power failure 
Turn on memory protect 
Transfer control to program in execution at time of power failure 

Return computer to halt mode 

Fence address storage (must be updated each time fence 'is changed) 
Storage for E and 0 
Storage for A 
Storage for B 
Storage for S 
Storage for X 
Storage for Y 
Storage for P 
Storage for Run switch 

.. -·········--·-········--'··-··--------·······---·-·-- ---·---"""" ------·-····------------ . --·--------------- ---------------- ______ .. 



21MXM 

power, the power fail subroutine should include the 
necessary instructions to save as many maps as desired 
and restore them prior to enabling the DMS. 

Since the computer might be unattended by an operator, 
the user has a switch-selectable option of what action the 
computer will take upon the restoration of primary power. 
When the switch (A1S2) is set to the ARS position, the 
computer will halt when power is restored regardless of 
whether the computer was running or halted when the 
failure occurred. (No operator panel indication is given.) 

Note: Switch A1S2 is mounted on the CPU and 
is not considered an operator control. The 
setting of this switch is normally 
determined prior to or during system 
installation. 

When AlS2 is in the ARS position, the automatic restart 
feature is enabled. After a built-in delay of about half a 
second following the return to normal power levels, 
another interrupt to location 00004 occurs. This time the 
power-down portion of the subroutine is skipped and the 
power-up portion begins. (Refer to table 6-3). If the 
computer was not running when the power failure 
occurred, the computer is halted immediately. If the 
computer was running, those conditions existing at the 
time of the power fail interrupt are restored and the 
computer continues the program from the point of the 
interruption. Alternatively, if location 00004 contains a 
HLT instruction instead of a JSB instruction, the 
computer will halt and light the POWER FAIL 
indicator. 

To allow for the possibility of a second power failure 
occurring while the power-up portion of the subroutine is 
in process, the user should limit the combined power-down 
and power-up instructions to less than 100. If the 
computer memory does not contain a subroutine to service 
the interrupt, location 00004 should contain a HLT 04 
instruction ( 102004 octal). 

A Set Control instruction (STC 04) must be given at the 
end of any restart routine. This instruction re-initializes 
the power-fail logic and restores the interrupt capability 
to the lower priority functions. Pressing the PRESET 
switch on the operator panel performs the same function 
as the STC 04 instruction. Pressing and holding the PRE­
SET switch will force a halt when the LOCK/OPERATE 
switch is set to OPERATE. 

The optional battery sustains the contents of memory 
when the line power is off. If the battery becomes dis­
charged when the line power is off, the contents of memory 
will be lost. When power is restored, the computer will 
initiate a "Cold Start-up" and clear memory. 

Interrupt System 

Parity checking of memory is a standard feature in the 
computer. The parity logic continuously generates correct 
parity for all words written into memory and monitors the 
parity of all words read out of memory. Correct parity is 
defined as having the total number of "1" bits in a 17-bit 
memory word ( 16 data bits plus the parity bit) equal to an 
odd value. If a "1" bit (or any odd number of "l" bits) is 
either dropped or added in the transfer process, a Parity 
Error signal is generated when that word is read out of 
memory. 

The Parity Error signal may either halt the computer or 
cause the computer to take some other action as deter­
mined by an internal switch (AlSl) mounted on the CPU. 
When the switch is in the HALT PE position and a parity 
error occurs, the computer will halt and light the PARITY 
indicator. The PARITY indicator will remain lighted until 
the PRESET switch is pressed. 

Note: Switch AlSl is mounted on the CPU and 
is not considered an operator control. The 
setting of this switch is normally 
determined prior to or during installation 
or when the memory protect PCA is 
installed at the user's site. 

If switch AlSl is in the INT/IGNORE position, the action 
that the computer will take when a parity error occurs is as 
follows: 

a. If the memory protect PCA is installed and the par­
ity error logic has not been disabled by a CLF 05 
instruction, an interrupt to memory location 00005 
is generated. This location may contain a JSB in­
struction referencing the entry point of a user­
written memory protect subroutine, or alternatively 
contain a HLT instruction. 

b. If the memory protect PCA is not installed, or if the 
memory protect option is installed but the parity 
error logic has been disabled by a CLF 05 instruc­
tion, the parity error will be ignored and the 
PARITY indicator will light. 

In conjunction with memory protect, it is possible to 
determine the memory address containing the parity error. 
The error address will be loaded automatically into the 
violation register of the memory protect logic and from 
there it is accessible to the user by programming an LIA 
05 or LIB 05 instruction. 

When a parity error occurs, it is recommended that the 
entire program or set of data containing the error location 
be reloaded. However, by knowing the address and the 

6-3 



Interrupt System 

contents of the error location, the user may be able to 
determine what operations have taken place as a result of 
reading the erroneous word. For example, if the erroneous 
word was an instruction, several other locations may be 
affected. By individually checking and correcting the 
contents of all affected memory locations, the user may 
resume running the program without the necessity of a 
complete reload. If software is being generated, this may 
also need correcting. 

The memory protect option provides the capability of 
protecting a selected block of memory of any size, from a 
settable fence address downward, against alteration or 
entry by programmed instructions. 

The memory protect logic, when enabled by an STC 05 
instruction, also prohibits the execution of all 1/0 in­
structions (including HLT 01) except those referencing 
[/0 select code 01 (the S-register and the overflow regis­
ter). This feature limits the control of 1/0 operations to 
interrupt control only. Thus, an executive program re­
siding in protected memory can have exclusive control of 
the 1/0 system. 

The memory protect logic is disabled automatically by any 
interrupt (except when the interrupt location contains an 
I/O instruction) and must be re-enabled by an STC 05 
instruction at the end of each interrupt subroutine. 

The optional DMS hardware includes additional memory 
protect features, which are enabled or disabled simul­
taneous with the memory protect hardware. WhPn enabled 
by an STC 05 instruction, the DMS hardware provides the 
capability of read/write protecting memory on a 
1024-word page basis. Included in the DMS are several 
privileged instructions which are not allowed when the 
memory protect logic is enabled. Upon detection of a 
violation, an interrupt to location 00005 is generated. 
Since the DMS will set the flag on channel 05, executing 
either an SFS 05 or an SFC 05 instruction will permit 
the programmer to know whether the DMS or memory 
protect interrupted. 

Programming rules pertaining to the use of memory 
protect are as follows (assuming that an STC 05 
instruction has been given): 

a. The upper protected memory boundary address is 
loaded into the fence register from the A- or 
B-register by an OTA 05 or OTB 05 instruction, 
respectively. Memory addresses below but not in­
cluding this address are protected. 

6-4 

b. 

21MXM 

Execution will be inhibited and an interrupt to loca­
tion 00005 will occur if one of the following instruc­
tions either directly or indirectly modifies or enters 
a location in prot{~cted memory, or if any I/O instruc­
tion is attempted (including HLT but excluding 
those 1/0 instructions addressing select code 01). 

DST ISZ ,JLY JMP JPY ,JSB 

MVB MVW SAX SAY SBX SBY 

STA STB STX STY 

c. Location 00002 is normally the lower boundary of 
protected memory. (Locations 00000 and 00001 are 
the A- and B-register addresses and may be freely 
addressed.) JMP, JLY, and JPY instructions may 
not reference the A- or B-register. 

d. After three successive levels of indirect addressing, 
the memory protect logic will allow a pending 1/0 
interrupt if the memory protect logic is installed. 

e. Any instruction not mentioned in step b of this 
paragraph is legal even if the instruction directly 
references a protected memory address. In addition, 
indirect addressing through protected memory by 
those instructions listed in step b is legal provided 
that the ultimate effective address is outside the 
protected memory area. 

Following a memory protect interrupt, the address of the 
illegal instruction will be present in the violation register. 
This address is made accessible to the programmer by an 
LIA 05 or LIB 05 instruction, which loads the address into 
the A- or B-register. 

Since parity error and memory protect share the same 
interrupt location, it is necessary to distinguish which 
type of error is responsible for the interrupt. A parity error 
is indicated if, after the LIA (or LIB) 05 instruction is 
executed, bit 15 of the selected register is a logic 1; a 
memory prote~ct violation is indicated if bit 15 is a logic 0. 
[n either case, the remaining 15 bits of the selected 
register contains the logical address of the error 
location. 

Table 6-4 illustrates a sample memory protect, DMS, 
and parity error subroutine. An assumption made for 
this example is that the location immediately following 
the error location is an appropriate return point. This 
may not always be the case, however, because it may be 
deemed advisable to abort the program in process and 
return to a supervisory program. 



21MXM Interrupt System 

Table 6-4. Sample Memory Protect, Parity Error, and DMS Subroutine 

LABEL OPERCODE OPERAND COMMENTS 

MPEOM NOP Memory Protect/Parity Error/OMS Subroutine 

CLF OB Turn off interrupt system 

STA SAVA Save A-register contents 

STB SAVB Save B-register contents 

LIA 5B Get contents of violation register 

CLF SB Turn off parity error interrupts 

SFC 5B Check flag for OMS violation 

JMP OMS If flag is set, then OMS interrupted 

SSA Check bit 15 of violation register 

JMP PE If bit 15 is set, then parity error occurred 

JMP MP If bit 15 is clear, then memory protect 

interrupted 

MP - User's routine for memory protect violation 

-
-

etc. 
-

-

JMP REST 

PE - User's routine for parity error condition 

-

-

etc. 
-

-
JMP REST 

OMS - User's routine for OMS violation 

-

-
etc. 

-

-
JMP REST 

REST LOA SAVA Restore A-register 

LOB SAVB Restore B-register 

STF OB Enable interrupt system 

STF 5B Enable parity error interrupt 

STC 5B Turn on memory protect 

JMP MPEOM,I Exit 

SAVA OCT 0 Storage for A 

SAVB OCT 0 Storage for B 

--

6-5 



Interrupt System 

The optional Dual-Channel Port Controller ( DCPC) allows 
high-speed block transfer of data between input/output 
devices and memory. For the most part, the DCPC 
operates independently of the interrupt system in that the 
onlv time that a DCPC interrupt occurs is when the 
spf:~:ified block of data has been transferred. Since there 
are two DC PC channels, two interrupt locations are 
reserved for this purpose; location 00006 is reserved for 
channel 1 and location 00007 is reserved for channel 2. 
Channel 1 interrupt has priority over the channel 2 
interrupt. Because DCPC interrupts are primarily 
completion signals to the programmer, and are therefore 
application dependent, no interrupt subroutine example is 
considered necessary. 

The remaining interrupt locations (()0010 through 00077 
octal) are reserved for l/O devices; this represents a total 
of 56 (decimal) locations, one for each I/O channel. In a 
typical I/O operation, the computer issues a programmed 
command such as Set Control/Clear Flag ( STC,C) to one 
or more external devices to initiate an input (read) or an 
output (write) operation. Each device will then either put 
data into or accept data from an input/output buffer on its 
associated interface PCA. During this time, the computer 
may continue running a program or may be programmed 
int~~ a waiting loop to wait for a specific device to complete 
a read or write operation. Upon the completion of a read or 
write operation, each device returns a Flag signal to the 
computer. These Flag signals are passed through a 
priority network which allows only one device to be 
serviced regardless 0f the number of Flag signals present 
at that time. The Flag signal with the highest priority 
generates an Interrupt signal at the end of the current 
machine cycle except under the following circumstances: 

a. Interrupt system disabled or interface PCA inter­
rupt disabled. 

b. ,JMP indirect or JSB indirect instruction not suffi­
ciently executed. These instructions inhibit all in­
terrupts except power fail or memory protect until 
the succeeding instruction is executed. After three 
Huccessive levels of indirect addressing, the memory 
protect logic will allow a pending 1/0 interrupt if the 
memory protect logic is installed. 

c. Instruction in an interrupt location not sufficiently 
executed, even if that interrupt is of lower priority. 
Any interrupt inhibits the entire interrupt system 
until the succeeding instruction is executed. 

6-6 

d. 

21MXM 

Optional dual-channel port controller in the process 
of transferring data. 

e. Current instruction is one that may effect the 
priorities of 1/0 devices; e.g., S'I'C, CLC, STF, CLF, 
SFS, and SFC. The interrupt in this case must wait 
until the succeeding instruction is executed. The SFS 
instruction used with the interrupt system on pro­
duces special conditions. Since the SFS instruction 
holds off interrupts until the next instruction is exe­
cuted, if the next instruction clears the device flag, 
then it should also remove the interrupt request. 
Therefore, a CLF instruction should be used rather 
than appending, C (sets bit 9 in some I/O instructions) 
to the instruction. 

After an interface PCA has been issued a Set Control 
command and its Flag flip-flop becomes set, all interrupt 
requests from lower-priority devices are inhibited until 
this Flag flip-flop is cleared by a Clear Flag (CLF) 
instruction. A service subroutine in process for any device 
can be interrupted only by a higher-priority device; then, 
after the higher-priority device is serviced, the interrupted 
service subroutine may continue. In this way it is possible 
for several s,ervice subroutines to be in the interrupt state 
at one time; each of these service subroutines will be 
allowed to continue after the higher-priority device is 
serviced. All such service subroutines normally end with a 
.JM P indirect instruction to return the computer to the 
point of the interrupt. 

Each time an interrupt occurs, the address of the interrupt 
location is ~:tored in the central interrupt register. The 
contents of this register are accessible at any time by 
1'xccuting an LIA 04 or LIB 04 instruction. This loads the 
address of the most recent interrupt into the A- or 

B-register. 

I /0 address 00 is the master control address for the 
interrupt system. An STF 00 instruction enables the entire 
interrupt system and a CLF 00 disables the interrupt 
system. The two exceptions to this are the power fail 
interrupt, which cannot be disabled, and parity error 
interrupt, which can only be selective enabled or disabled 
by an STF 05 or CLF 05, respectively. Whenever power is 
initially applied, the interrupt system is disabled. 



l
lUllM11 

INPUT/OUTPUT SYSTEM .I vu I 

The purpose of the input/output system is to transfer data 
between the computer and external devices. As shown in 
figure 7-1, data is normally transferred through the A- or 
B-register. An input transfer of this type occurs in three 
distinct steps: ( 1) between the external device and its 
interface PCA in the computer, (2) between the interface 
PCA and the A- or B-register via the I/O bus and CPU, 
and (3) between the A- or B-register and memory via the 
S-bus and memory controller. This three-step process also 
applies to an output transfer except in reverse order. This 
type of transfer, which is executed under program control, 
allows the computer logic to manipulate the data during 
the transfer process. 

Also shown in figure 7 -1, data may be transferred 
automatically under control of the Dual-Channel Port 
Controller (DCPC) option. Once the DCPC has been 
initialized, no programming is involv~d and the transfer is 
reduced to a two-step process: . ( 1) between the external 
device and its interface PCA in the computer and (2) 
between the interface PCA and memory via the I/O bus, 
S-bus, and memory controller. The two DCPC channels are 
assignable to operate with any two device interface PCA's. 

@ 

Device 
10 

CONTROL 

Device 
14 

Figure 7-1. lnput/Oµtput System 

CD 

Since a DCPC transfer eliminates programmed loading 
and storing via the accumulators, the time involved is 
very short. Thus, the DCPC is used with high-speed de­
vices. Further information on the DCPC option is given 
under paragraph 7-13. 

As shown in figure 7-2, an external device is connected by 
cable directly to an interface PCA located inside the 
computer mainframe. The interface PCA, in turn, plugs 
into one of the input/output slots, each of which is 
assigned a fixed address commonly referred to as the 
device select code. The computer can then communicate 
with a specific device on the basis uf its select code. 

Figure 7-2 shows an interface PCA inserted in the 1/0 slot 
having the highest priority; this channel is assigned select 
code 10 (octal). If it is decided that the associated device 
should have lower priority, its interface PCA and cable 
may simply be exchanged with those occupying some 
other 1/0 slot. This will change both the priority and the 
I/O address; however, due to priority chaining (refer to 
paragraph 7-2), there can be no vacant slots from select 
code 10 to the highest used select code (if the interrupt 
mode is to be used). 

Only select codes 10 through 77 (octal) are available for 
input/output devices; the lower select codes (00 through 
07) are reserved for other features. Figure 7-2 illustrates 
the 1/0 select codes available in the HP 2108B and HP 
2112B Computer mainframes. 

Select codes (channels) higher than those shown in figure 
7-2 are available through the use of one or two 1/0 exten­
ders. Each 1/0 extender provides an additional 16 1/0 
channels, which are an extension of the computer's vec­
tored priority interrupt system. Select codes in the exten­
der(s) operate at the same speed and with the same ver­
satility as those in the computer :mainframe. 

When a device is ready to be serviced, it causes its 
interface PCA to request an interrupt so that the computer 
will interrupt the current program and service the device. 
Since many device interface PCA's will be requesting 
service at random times, it is necessary to establish an 
orderly sequence for granting interrupts. Secondly, it is 
desirable that high-speed devices should not have to wait 
for low-speed device transfers. Both of these requirements 
are met by a series-linked priority structure illustrated by 

7-1 



Input/Output System 

Cl) 
w 
0 
0 
(.) 

..... 
(.) 
w 
..J 
w 
Cl) 

w 
0 
0 
(.) 

I-
(.) 
w 
..J 
w 
Cl) 

20 

17 

16 

15 

14 

13 

12 

11 

10 

25 

24 

23 

22 

21 

20 

17 

16 

15 

14 

13 

12 

11 

10 

HP 21088 1/0 PCA CAGE 

HP 21128 1/0 PCA CAGE 

To 1/0 Device with 

Lowest Priority or 

to HP 129798 I /0 
Extender 

...... To 1/0 Device with 

Lowest Priority or 

to HP 129798 I /0 

Extender 

..._ _________________________ ., ____ _ 
Figure 7-2. 1/0 Address Assignments 

figure 7-3. The bold line, representing a priority enabling 
signal, is routed in series through each PCA capable of 
causing an interrupt. The PCA cannot interrupt unless 
this enabling signal is present at its input. 

'l-2 

PRIORITY 
Power Fail ENABLE 

..-----.~S_ig~n_al _______ --. 

Computer 
Logic 

Error 
Signal 

Completion 
Si\Jnal ----------

Interface 
PCA 

Interface 
PCA 

lnterf ace 
PCA 

Interface 
PCA 

Power 
Fail 

Parity 
Error and 
Memory 
Protect 

OCPC 
Chan 1 

DCPC 
Chan 2 

Figure 7-3. Priority Linkage 

21MXM 

SELECT 
CODE 

04 

05 

06 

07 

10 

11 

12 

13 

Each device lor other interrupt function) can break the 
enabling line when it requests an interrupt. If two devices 
simultaneously request an interrupt, obviously the device 
with the lowest select code will be the first one that can 
interrupt because it has broken the enable line for the 
higher select code. The other device cannot begin its 
service routim~ until the first device is finished; however, a 
still higher priority device (one with a lower select code) 
may interrupt the service routine of the first device. 
Figure 7-4 illustrates a hypothetical case in which several 
devices require service by interrupting a CPU program. 
Both simultaneous and time-separated interrupt requests 
are considered. 



21MXM 

TIME 

j 
t1 

t~ 

t3 

t4 

INTERRUPTING 
SELECT CODE 

CPU 
Program 

13 } 
14 Together 

10 

COMPUTER SERVICING 
unshaded channel 

11 12 13 14 15 

@ End of service subroutine 

Figure 7-4. Interrupt Sequences 

16 

Assume that the computer is running a CPU program 
when an interrupt from 1/0 channel 12 occurs (at reference 
time t1 ). A JSB instruction in the interrupt location for 
select code 12 causes a program jump to the service 
routine for the channel 12 device. The JSB instruction 
automatically saves the return address (in a location which 
the programmer must reserve in his routine) for a later 
return to the CPU program. 

The routine for channel 1~~ is still in progress when several 
other devices request service (set flag). First, channels 13 
and 14 request simultaneously at t2; however, since 
neither one has priority over channel 12, their flags are 
ignored and channel 12 continues its transfer. But at t3, a 
higher priority device on channel 10 requests service. This 
request interrupts the channel 12 transfer and causes the 
channel 10 transfer to begin. The JSB instruction saves 
the return address for rnturn to the channel 12 routine. 

Input/Output System 

During the channel 10 transfer, device 11 sets the channel 
11 flag ( t4 ). Since it has lower priority than channel 10, 
device 11 must wait until the end of the channel 10 routine. 
And since the channel 10 routine, when it ends, contains a 
return address to the channel 12 routine, program control 
temporarily returns to channel 12 (even though the 
waiting channel 11 has higher priority). The JMP,I 
instruction used for the return inhibits all interrupts until 
fully executed. At the end of this short interval, the 
channel 11 interrupt request is granted. 

When channel 11 has finished its routine, control is 
returned to channel 12, which at last has sufficient priority 
to complete its routine. Since channel 12 has been saving a 
return address in the main CPU program, it returns 
control to this point. 

The two waiting interrupt requests from channels 13 and 
14 are now enabled. Channel 13 has the higher priority and 
goes first. At the end of the channel 13 routine, control is 
temporarily returned to the CPU program. Then, the 
lowest priority channel (channel 14) interrupts and 
completes its transfer. Finally, control is returned to the 
CPU program, which resumes processing. 

The interface PCA provides the communication link 
between the computer and an external device. The 
interface PCA includes three basic elements which either 
the computer or the device can control in order to effect the 
necessary communication. These three elements are the 
control bit, flag bit, and buffer. 

7-4. CONTROL BIT 

This is a one-bit register used by the computer to turn on 
the device channel. When set, the control bit generates a 
start command to the device, allowing it to perform one 
operation cycle (e.g., read or write one character or word). 
The interface PCA cannot interrupt unless the control bit 
is set. The control bit is set by an STC (set control) 
instruction and cleared by a CLC (clear control) 
instruction, both of which must be accompanied by a 
specific select code (e.g., STC 12 or CLC 12). The device 
cannot affect the control bit. 

7-5. FLAG BIT 

This is a one-bit register primarily used by the device to 
indicate (when set) that a transmission between the device 
and the interface PCA buffer has been completed. 
Computer instructions can also set the flag ( STF ), clear 
the flag (CLF), test if it is set (SFS), and test if it is clear 
(SFC). The device cannot clear the flag bit. If the 
corresponding control bit is set, priority is high, and the 
interrupt system is enabled, setting the flag bit will cause 
an interrupt to the location corresponding to the device 
select code. 

7-3 



lnput/Output System 

7-6. BUFFER 

The buffer register is used for intermediate storage of 
data. Typically, the data capacity is 8 or 16 bits, but this is 
entirely dependent on the type of device. 

The following paragraphs describe how data is transferred 
between memory and input/output devices. A summary of 
1/0 group instructions pertinent to the computer interrupt 
and control functions is provided in the appendix. The 
sequences presented for interrnpt and noninterrupt 
methods of data transfer are highly simplified in order to 
present an overall view without the involvement of 
software operating systems and device drivers. For more 
detailed information, refer to the documentation supplied 
with the appropriate software system or 1/0 subsystem. 

7-8. INPUT DATA TRANSFER (INTERRUPT 
METHOD) 

Figure 7-5 illustrates the sequence of events required to 
input data using the interrupt method. Note that some 
operations are under control of the computer program 
(programmer's responsibility) and some of the operations 
are automatic. Note also that the interface PCA (device 
controller) is installed in the slot assigned to select 
code 12. 

The operations begins ( l) with the programmed 
instruction STC 12,C which sets the Control flip-flop and 
clears the Flag flip-flop on the interface PCA. Since the 

21MXM 

next few operations are under control of the hardware, the 
computer program may continue the execution of other 
instructions. Setting the Control flip-flop causes the PCA 
to output a Start signal (2) to the device, which reads out a 
data character and asserts the Done signal (3 ). 

The device Done signal sets the PCA Flag flip-flop, which 
in turn generates an interrupt (4) assuming that the 
interrnpt conditions are met; i.e., the interrupt system 
must be on (STF 00 previously given), no higher priority 
interrupt is pending, and the Control flip-flop is set (done 
in step l ). 

The interrupt causes the current computer program to be 
suspended and control is transferred to a service 
subroutine (Ei). It is the programmer's responsibility to 
provide the linkage between the interrupt location (00012 
in this case) and the service subroutine. It is also the 
programmer's responsibility to include in his service 
subroutine the instructions for processing the data 
(loading into an accumulator, manipulating if necessary, 
and storing into memory). 

The subroutine may then issue further STC 12,C 
commands to transfer additional data characters. One of 
the final instructions in the service subroutine must be 
CLC 12. This step (6) restores the interrupt capability to 
lower priority devices and returns the interface PCA to its 
static "ready" condition (Control clear and Flag set). This 
condition is initially established by the computer at power 
turn-on and it is the programmer's responsibility to return 
the interface PCA to the same condition on the completion 
of each datai transfer operation. At the end of the 
subroutine, control is returned to the interrupted program 
via previously established linkages. 

---------------------·~-·-~-·--- .. ·---.. --·----·----·---- -----------------------

7-4 

INPUT TRANSFER 

COMPUTER 
PROGRAM 

STC 12,C 

• • • • 
Interrupt 

Service 
Subroutine 

0 
INTERFACE PCA 

Select Code 12 

Set Control 
Clear Flag 

Set Flag 

Clear Control 

BUFFER 

INPUT 
DEVICE 

Start 

Done 

~ Programmer's responsibility 

E:22Z;> Automatic Operations 

Figure 7-5. Input Data Transfer (Interrupt Method) 



21MXM 

7-9. OUTPUT DATA TRANSFER (INTERRUPT 
METHOD) 

Figure 7-6 illustrates the sequence of events required to 
output data using the interrupt method. Again note the 
distinction between programmed and automatic in­
structions. It is assumed that the data to be transferred 
has been loaded into the A-register and is in a form 
suitable for output. The interface PCA in this example is 
assumed to be in the slot assigned to select code 13. 

The output operation begins with a programmed 
instruction (OT A 13) to transfer the contents of the 
A-register to the interface PCA buffer (1 ). This is followed 
(2) by the instruction STC 13,C which sets the Control 
flip-flop and clears the Flag flip-flop on the interface PCA. 
Since the next few operations are under control of the 
hardware, the computer program may continue the 
execution of other instructions. Setting the Control 
flip-flop causes the PCA to output the buffered data and a 
Start signal (3) to the device, which writes (e.g., punches, 
stores, etc.) the data character and asserts the Done 
signal (4). 

The device Done signal sets the PCA Flag flip-flop, which 
in turn generates an interrupt (5) provided that the 
interrupt system is on, priority is high, and the Control 
flip-flop is set (done in step 2). The interrupt causes the 
current computer program to be suspended, and control is 
transferred to a service subroutine (6). It is the 
programmer's responsibility to provide the linkage 
between the interrupt location (00013 in this case) and the 
service subroutine. The detailed contents of the subroutine 
are also the programmer's responsibility, and the contents 
will vary with the type of device. 

OUTPUT TRANSFER 

Input/Output System 

The subroutine may then output further data to the 
interface PCA and reissue the STC 13,C command for 
additional data character transfers. One of the final 
instructions in the service subroutine must be a clear 
control (CLC 13). This step (7) allows lower priority 
devices to interrupt, and restores the channel to its static 
"ready" condition (Control clear and Flag set). At the end 
of the subroutine, control is returned to the interrupted 
program via previously established linkages. 

7-iO. NONINTERRUPT DATA TRANSFER 

It is also possible to transfer data without using the 
interrupt system. This involves a "wait-for-flag" method 
in which the computer commands the device to operate 
and then waits for the completion response. In using this 
method to transfer data, it is assumed that the computer 
time is relatively unimportant. The programming is very 

simple, consisting of only four words of in-line coding as 
shown in table 7 -1. Each of these routines will transfer, 
one word or character of data. It is also assumed that the 
interrupt system is turned off (STF 00 not previously 
given). 

7-11. INPUT. As described under paragraph 7-8, an 
STC 12,C instruction begins the operation by commanding 
the device to read one word or character. The computer 
then goes into a waiting loop, repeatedly checking the 
status of the flag bit. If the Flag flip-flop is not set, the 
JMP *-1 instruction causes a jump back to the SFS 
instruction. (The *-1 operand is assembler notation for 
"this location minus one.") When the Flag flip-flop is set, 
the skip condition for SFS is met and the JMP instruction 
is skipped. The computer thus exits from the waiting loop 

COMPUTER INTERFACE PCA 
PROGRAM 

OTA 13 
STC 13,C 

• • • 
• 
Interrupt 

0 

Service 
Subroutine 

0 Select Code 13 

BUFFER 

Set Control 
Clear Flag 

Set Flag 

Clear Control 

Figure 7 -6. Output Data Transfer (Interrupt Method) 

OUTPUT 
DEVICE 

Start 

Done 

Programmer's responsibility 

Automatic Operations 

7-5 



Input/Output System 

and the LIA 12 instruction loads the device input data into 
the A-register. 

Table 7-1. Noninterrupt Transfer Routines 

INPUT 

INSTRUCTIONS 

STC 12,C 

SFS 12 
JMP *-1 

LIA 12 

COMMENTS 
---------·----

Start device 
Is input ready? 
No, repeat previous instruct;on 

Yes, load input into A register 
~--------~-----···--···-·---·--·-····-·-·····-·--·--

OUTPUT 

INSTRUCTIONS COMMENTS 
I---· 

OTA 13 Output A-register to buffor 

STC 13,C Start device 

SFS 13 Has device accepted the d;ita? 

JMP * -1 No, repeat previous instruction 

NOP Yes, proceed 

7-12. OUTPUT. The first step, which is to transfer the 
data to the interface PCA buffer, is the OTA 1:3 
instruction. Then STC 13,C commands the device to 
operate and accept the data. The computer then goes into 
a waiting loop as described in the preceding paragraph. 
When the Flag flip-flop becomes set, indicating that the 
device has accepted the output data, the computer exits 
from the loop. (The final NOP is for illustration purposes 
only.) 

7-13. DUAL-CHANNEL PORT CONTROLLER 

The optional Dual-Channel Port Controller iDCPC) pro-­
vides a direct data path, software assignable, between 
memory and a high-speed peripheral device; the DCPC 
accomplishes this by stealing an 1/0 cycle instead of inter­
rupting to a service subroutine. The DCPC logic is capable 
of stealing every consecutive I/O cycle and can transfer 
data at rates up to 616,666 words per second; see Direct 
Memory Access specifications in table 1-1 for the DCPC 
latency times. 

There are two DGPC channels, each of which may be 
separately assigned to operate with any I/O interface 
PCA, including those installed in the optional HP 12979B 
Input/Output Extender (assuming that the I/O extender 
DCPC option is installed). When both DCPC channels are 
operating simultaneously, channel 1 has priority over 
channel 2. The combined maximum transfer rate for both 
channels operating together is 616,666 words per second; 
the rate available to channel 2 is therefore the rate differ­
ence between 616,666 and the actual operating rate of 
channel 1. 

7-6 

21MXM 

Since the memory cyde rate is somewhat faster than the 
UO cycle rate, it is possible for the CPU to interleave 
memory cycles while the DCPC is operating at full 
bandwidth. 

Transfers via the DCPC are on a full-word basis; hardware 
packing and unpacking of bytes are not provided. The 
word count register is a full 16 bits in length, and data 
transfers are accomplished in blocks. The transfer is 
initiated by an initialization routine, and from then on the 
operation is under automatic control of the hardware. The 
initialization routine specifies the direction of the data 
transfer (in or out), where in memory to read or write, 
which 1/0 channel to use, and how much data to transfer. 
Completion of the block transfer is signalled by an 
interrupt to location 00006 (for channel 1) or to location 
00007 (for channel 2) if the interrupt system is enabled. It 
is also possible to check for completion by testing the 
status of the flag for select code 06 or 07, or by 
interrogating the word count register with an LIA/B to 
select code 02 (for channel 1 ) or to select code 03 (for 
channel 2). A block transfer in process can b€~ aborted with 
an STF 06 or 07 instruction. 

7-14. DCPC OPERATION. Figure 7-7 illustrates the 
sequence of operations for a DCPC input data transfer. A 
comparison with the conventional interrupt method 
(figure 7-5) shows that much more of the DCPC operation 
i8 automatic. Remember that the procedure in figure 7-5 
must be repE!ated for each word or character. In figure 7-7, 
the automatic DCPC operation will transfer a block of data 
of any size limited only by the available memory space. 
The sequence of events is as follows. (An input data 
transfer is illustrated; the minor differences for an output 
transfer are explained in text.) 

The initialization routine sets up the control registers on 
thP DCPC (1) and issues the first start command 
(STC 12,C) directly to the interface PCA. (If the operation 
is an output, the interface PCA buffer is also loaded at this 
time.) The DCPC logic is now turned on and the computer 
program continues with other instructions. 

Setting the Control and clearing the Flag flip-flops (2) 
causes the interface PCA to send a Start signal (with a 
data word if it is an output transfer) to the external device 
( :)). The device goes through a read or write cycle and 
returns a Done signal (with a data word if it is an input 
transfer). The Done signal (4) sets the PCA Flag flip-flop 
which, regardless of priority, immediately requests the 
DCPC logic to steal an 1/0 cycle (5) and transfer a word 
into (or out of) memory. The process now repeats back to 
the beginning of this paragraph to transfer the next word. 

After the specified number of words have been transferred, 
the interface PCA Control flip-flop is cleared (7) and the 
DCPC logic generates a completion interrupt (8). The 
program control is now forced to a completion routine (9), 
the contents of which is the programmer's responsibility. 



21MXM Input/Output System 

COMPUTER INTERFACE PCA 
PROGRAM 0 Select Code 12 

Initialization Set Control INPUT 
Routine Clear Flag DEVICE 

• • DCPC 

• LOGIC Clear Control Start 

• • Set Flag Done 

0 
Interrupt 

BUFFER 

Completion 
Routine 

MEMORY 
Programmer's responsibility 

Automatic Operntions 

Figure 7-7. DCPC Input Data Transfer 

7-15. DCPC INITIALIZATION. The information re­
quired to initialize the DCPC (direction, memory 
allocation, 1/0 channel assignment, and block length) are 
given by three control words. These three words must be 
addressed specifically to the DCPC. Figure 7-8 illustrates 
the format of the three control words. Control Word 1 
(CWl) identifies the 1/0 channel to be used and provides 
two options selectable by the programmer: 

Bit 15 
l give STC (in addition to CLF) to 1/0 

channel at end of each DCPC cycle (except 
on last cycle, if input) 

O no STC 

Bit 13 
give CLC to 1/0 channel at end of block 
transfer 

O = no CLC 

Control Word 2 (CW2) gives the starting memory address 
for the block transfer and bit 15 determines whether data 
is to go into memory (logic 1) or out of memory (logic O). 
Control Word 3 (CW:3) is the two's complement of the 
number of words to be transferred into or out of memory 
(i.e., the block length). This number can be from 1 to 
32,768, although it is limited in the practical case by 
available memory. 

CONTROL WORD 1 (Device Control) 

14 12 11 10 9 6 5 

(Not used) 

CONTROL WORD 2 !Memory Control) 

13 12 11 10 9 5 4 

Mt!mory Address 

CONTROL WORD 3 (Block Length Controll 

15 14 13 12 11 10 9 5 4 

Word Count 

Figure 7-8. DCPC Control Word Formats 

Table 7-2 gives the basic program sequence for outputting 
the control words to the DCPC. As shown in this table, 
CLC 2 and STC 2 perform switching functions to prepare 
the logic for either CW2 or CW3. The device is assumed to 
be in 1/0 slot channel 10, and it is also assumed that its 
start command is STC lOB, C. The sample values of CWl, 
CW2, and CW3 will read a block of 50 words and store 
these in locations 200 through 261 (octal). The STC 06B,C 

7-7 



Input/Output System 21MXM 

instruction starts the DCPC operation. A flag-status 
method of detecting the end-of-transfer is used in this 
example; an interrupt to location 00006 could be 
substituted for this test. The program in table 7-2 could 
easily be changed to operate on channel 2 by changing 
select codes 2 to 3 and 6 to 7. 

One important difference should be noted when doing a 
DCPC input operation from a disc or a drum. Due to the 
synchronous nature of disc or drum memories and the 
design of the interface PCA, the order of starting must be 
reversed from the order given; i.e., start the DCPC first 
and then start the disc (or drum). 

LABEL OPCODE 

ASGN1 LOA 

OTA 

MAR1 CLC 

LOA 

OTA 

WCR1 STC 

LOA 

OTA 

STRT1 STC 

STC 

SFS 

JMP 

HLT 

CW1 OCT 

CW2 OCT 

CW3 DEC 

Table 7-2. DCPC Initialization Program 

OPERAND 

CW1 

68 

28 

CW2 

28 

28 

CW3 

28 

108,C 

68,C 

68 
*-1 

120010 

100200 

-50 

COMMENTS 

Fetches control word 1 (CW1) from memory and loads it in A-register. 

Outputs CW1 to DCPC Channel 1. 

Prepares Memory Address Register to receive control word 2 (CW2). 

Fetches CW2 from memory and toads it in A-register. 

Outputs CW2 to DCPC Channel 1. 

Prepares Word Count Register to receive control word 3 (CW3). 

Fetches CW3 from memory and loads it in A-register. 

Outputs CW3 to DCPC Channel 1. 

Start input device. 

Activate DCPC Channel 1. 

Wait while data transfer takes place or, if interrupt processing is used, 

continue program. 

Halt 

Assignment for DCPC Channel 1 (ASGN 1); specifies 1/0 channel select 

code address ( 108 ), STC after each word is transferred, and CLC after 

final word is transferred. 

Memory Address Register control. DCPC Channel 1 (MAR 1); specifies 

memory input operation and starting memory address (2008 ) .. 

Word Count Register control. DCPC Channel 1 (WCR 1); specifies the 

2's complement of the number of character words in the block of data 

to be transferred (50 1 0 ). 

-----~-------------· '------ ···---··-·----·-··---·· ··--' ·------.-.---------····--·---·-·---·-······--·-·-·---------·----------------' 

7-8 



APPENDIX I 

A-1 



Appendix 

MEMORY 
PCA 
CACJF-

,/OPERATOR 
y· PANEL 

PCA A2 

I 
I 

~~;~~~HL:Nr _..,,. : 
A5 

I 
I 
I 
J_ 
I 

n I 
I/ 
v 

COMPUTER PHYSICAL LAYOUT 

----------, 

/ 

/ 
/ 

/ 
/ 

/ 

I 
I 

) 

,.£__. ____ ,_j__ __ 

I 
I / 
t/ 

() 

A 

/ 
/ 

I / 
G / 
N 

/ 
/ 

I 
I 
I 
I 
I 
I Jt!" 
I 

) 

INPU f /OUTPIJ l 
BACKPLANE 
A4 

A ------······-----.... 

L 
s 

. 1 .. -- ......... - ............. ···---

21MXM 

AlXAS A1XA4 110 SELECT AND INTERRUPT 

CPU AT 

•Denotes slot not available on HP 21088. 

J_:::l Standard components on computers. 
Power supply not shown. 

* Memory controller PCA slot 118 (2108 B) 
or 123 (21128). 

---·------... ··-·--·-.. ·--·-----.. -· .... ·-·--·--.. --·----·-----------------------------------------------' 
7021-24 

A-2 



21MXM Appendix 

CHARACTER CODES 

ASCII First Clharacter Second Character ASCII First Character Second Character 
Character Octal Equivalent Octal Equivalent Character Octal Equivalent Octal Equivalent 

A 040400 000101 ACK 003000 000006 
B 041000 000102 BEL 003400 000007 
c 041400 000103 BS 004000 000010 
D 042000 000104 HT 004400 000011 
E 042400 000105 LF 005000 000012 
F 043000 000106 VT 005400 000013 
G 043400 000107 FF 006000 000014 
H 044000 000110 CR 006400 000015 
I 044400 000111 so 007000 000016 
J 045000 000112 SI 007400 000017 
K 045400 000113 OLE 010000 000020 
L 046000 000114 DC1 010400 000021 
M 046400 000115 DC2 011000 000022 
N 047000 000116 DC3 011400 000023 
0 047400 000117 DC4 012000 000024 
p 050000 000120 NAK 012400 000025 
Q 050400 000121 SYN 013000 000026 
R 051000 000122 ETB 013400 000027 
s 05'1400 000123 CAN 014000 000030 
T 052000 000124 EM 014400 000031 
u 052400 000125 SUB 015000 000032 
v 053000 000126 ESC 015400 000033 
w 053400 000127 FS 016000 000034 
x 054000 000130 GS 016400 000035 
y 054400 000131 RS 017000 000036 
z 055000 000132 us 017400 000037 

SPACE 020000 000040 
a 060400 000141 ! 020400 000041 
b 061000 000142 " 021000 000042 
c 061400 000143 # 021400 000043 
d 062000 000144 $ 022000 000044 
e 062400 000145 % 022400 000045 
f 063000 000146 & 023000 000046 
g 063400 000147 023400 000047 
h 064000 000150 ( 024000 000050 
i 064400 000151 ) 024400 000051 
j 065000 000152 * 025000 000052 
k 065400 000153 + 025400 000053 
I 066000 000154 026000 000054 

m 066400 000155 - 026400 000055 
n 067000 000156 027000 000056 
0 067400 000157 I 027400 000057 
p 070000 000160 : 035000 000072 
q 070400 000161 ; 035400 000073 
r 071000 000162 < 036000 000074 
s 071400 000163 = 036400 000075 
t 072000 000164 > 037000 000076 
u 072400 000165 ? 037400 000077 
v 073000 000166 @ 040000 000100 
w 073400 000167 [ 055400 000133 
x 074000 000170 \ 056000 000134 
y 074400 000171 l 056400 000135 
z 075000 000172 /\ 057000 000136 

- 057400 000137 
0 030000 000060 
1 o:W400 000061 { 060000 000140 

075400 000173 
2 0:31000 000062 I 076000 000174 
3 0:31400 000063 } 076400 000175 
4 0:32000 000064 - 077000 000176 
5 0:32400 000065 DEL 077400 000177 
6 0:33000 000066 
7 033400 000067 
8 0:34000 000070 
9 0:34400 000071 

First Character Second Character 
NUL 000000 000000 
SOH 000400 000001 
STX 001000 000002 
ETX 001400 000003 
EOT 002000 000004 
ENO 002400 000005 

A A 
(-~~ y ----, 

;,5114113!12l111rn191s;1Isl5141312 I 1 I a; 
A-3 



Appendix 

ADDITION 

TABLE 

0 01 02 03 04 

1 02 03 04 05 

2 03 04 05 06 

3 04 05 06 07 

4 05 06 07 10 

5 06 07 10 11 

6 07 10 11 12 

7 10 11 12 13 

MULTIPLICATION 

TABLE 

1 02 03 04 05 

2 04 06 10 12 

3 06 11 14 17 

4 10 14 20 24 

5 12 17 24 31 

6 14 22 30 36 

7 16 25 34 43 

COMPLEMENT 

05 06 

06 07 

07 10 

10 11 

11 12 

12 13 

13 14 

14 15 

06 07 

14 16 

22 25 

30 34 

36 43 

44 52 

52 61 

OCTAL ARITHMETIC 

07 

10 

11 

12 

13 

14 

15 

16 

EXAMPLE 

Add: 3677 octal 
+ 1331 octal 

(111-) carries 

5230 octal 

EXAMPLE 

Multiply: 657 
x 54 

octal 
octal 

octal 

(Reminder: add in octal) 

To find the two's complement form of an octal number. (Same procedure whether converting 

from positive to negative or negative to positive.) 

RULE 

1. 

2. 

Subtract from the maximum represen­
table octal value. 

Add one. 

'----------------------· 
A-4 

EXAMPLE 

Two's complement of 5568 : 

177777 
- 000556 

177221 
+ 1 

1772228 

21MXM 



21MXM 

OCTAL/DECIMAL CONVERSIONS 

OCTAL TO DECIMAL 

TABLE 

DECIMAL TO OCTAL 

TABLE 

NEGATIVE DECIMAL TO TWO'S COMPLEMENT OCTAL 

TABLE 
'• · ... - .. 

EXAMPLE 

Convert 4638 to a decimal integer. 

4008 25610 

608 4810 

38 ~ 

307 decimal 

EXAMPLE 

Convert 522910 to an octal integer. 

500010 

20010 

2010 

910 

EXAMPLE 

116108 

3108 

248 

118 

121558 

t 
(Reminder: add in octal) 

Appendix 

. •1: 

. ~10'······ .• 

. -.20 

·1:71.rtn···· 
:177706 

Convert -62910 to two's complement octal. 

-50010 1770148 

-10010 1776348 

-2010 1777548 (Add in 

-910 1777678 octal) 

1766138 

.. 't711P4 
177730 

i~~· 
c{~~g~g>• 

~11> 

. ~.40• 

For reverse conversion (two's complement octal to negative decimal): 

1. Complement, using procedure on facing page. 
2. Convert to decimal, using OCTAL TO DECIMAL table. 

A-5 



Appendix 

1 

2 
4 

8 

16 

32 

64 
128 

?56 

512 
1 024 
·7 048 

4 096 

8 192 
16 384 

32 768 

fl 

0 

1 

2 

3 
4 

5 

6 

7 

8 

9 
10 
11 

12 
13 
14 

15 

12 
144 

1 750 
23 420 

303 240 
3 641 100 

46 113 200 
575 360 400 

n 
0 

1 

2 

3 
4 

5 
6 

7 

8 

21MXM 

MATHEMATICAL EQUIVALENTS 

r-n 
1.0 
0.5 

0.25 

0.125 

0.0625 

0.03125 

0.01562 5 

0.00781 25 
0.00390 625 

0.00195 3125 
0.00097 65625 
0.00048 82812 5 

0.00024 41406 25 
0.00012 20703 125 
0.00006 10351 5625 

0.00003 05175 78125 

10-n 

2 + n IN DECIMAL 

65 536 16 
131 072 17 

262 144 18 

524 288 19 
1 048 576 20 

2 097 152 21 
4 194 304 22 
8 388 608 23 

16 777 216 24 
33 554 432 25 
67 108 864 26 

134 217 728 27 
268 435 456 28 
536 870 91 2 29 

1 073 741 824 30 
) 147 483 648 31 
4 294 967 296 32 

10 ± n IN OCTAL 

0.00001 52587 89062 5 
0.00000 76293 94531 25 

0.00000 38146 97265 625 

0.00000 19073 48632 8125 
0.00000 09536 74316 40625 

0.00000 04768 37158 20312 5 
0.00000 02384 18579 10156 25 

0.00000 01192 09289 55078 125 

0.00000 00596 04644 77539 0625 
0.00000 00298 02322 38769 53125 
0.00000 00149 01161 19384 76562 5 

0.00000 00074 50580 59692 38281 25 
0.00000 00037 25290 29846 19140 625 
0.00000 00018 62645 14923 09570 3125 

0.00000 00009 31322 57461 54785 15625 
0.00000 00004 65661 28730 77392 57812 5 
0.00000 00002 32830 64365 38696 28906 25 

rnn n 10-n 

1.000 000 000 000 000 000 00 

0.063 146 314 631 463 146 31 

0.005 075 341 217 270 243 66 
0.000 406 111 564 570 651 77 
0.000 032 155 613 530 704 15 

112 402 762 000 

1 351 035 564 000 
16 432 451 210 000 

221 411 634 520 000 
2 657 142 036 440 000 

10 0.000 000 000 006 676 337 66 

11 0.000 000 000 000 537 657 77 
12 0.000 000 000 000 043 136 32 
13 0.000 000 000 000 003 411 35 

14 0.000 000 000 000 000 264 11 

0.000 002 476 132 610 706 64 34 327 724 461 500 000 
0.000 000 206 157 364 055 37 434 157 115 760 200 000 
0.000 000 015 327 745 152 75 5 432 127 413 542 400 000 

0.000 000 001 257 143 561 06 67 405 553 164 731 000 000 

15 0.000 000 000 000 000 022 01 
16 0.000 000 000 000 000 001 63 
17 0.000 000 000 000 000 000 14 
18 0.000 000 000 000 000 000 01 

7 346 545 000 9 0.000 000 000 104 560 276 41 

A-6 



21MXM Appendix 

MATHEMATICAL EQUIVALENTS 

2x IN DECIMAL 

x :r x 2X x 2X 

0.001 1.00069 33874 62581 0.01 1.00695 55500 56719 0.1 1.07177 34625 36293 
0.002 1.00138 72557 11335 0.02 1.01395 94797 90029 0.2 1 .14869 83549 97035 
0.003 1 .00208 16050 79633 0.03 1.02101 21257 07193 0.3 1.23114 44133 44916 
0.004 1.00277 64359 01078 0.04 1.02811 38266 56067 0.4 1.31950 79107 72894 
0.005 1.00347 17485 09503 0.05 1.03526 49238 41377 0.5 1.41421 35623 73095 
0.006 1.00416 75432 38973 0.06 1.04246 57608 41121 0.6 1.51571 65665 10398 
0.007 1 .00486 38204 23785 0.07 1.04971 66836 23067 0.7 1.62450 47927 12471 
0.008 1.00556 05803 98468 0.08 1.05701 80405 61380 0.8 1.74110 11265 92248 
0.009 1 .00625 78234 97782 0.09 1.06437 01824 53360 0.9 1.86606 59830 73615 

n log10 2, n log2 10 IN DECIMAL 

n n 109102 n 1092 10 n n 10910 2 n 1092 10 
1 0.30102 99957 3.32192 80949 6 1 .80617 99740 19.93156 85693 

2 0.60205 99913 6.64385 61898 7 2. 10720 99696 23.25349 66642 

3 0.90308 99870 9.96578 42847 8 2.40823 99653 26.57542 47591 

4 1.20411 99827 13.28771 23795 9 2.70926 99610 29.89735 28540 

5 1.50514 99783 16.60964 04744 10 3.01029 99566 33.21928 09489 

MATHEMATICAL CONSTANTS IN OCTAL SCALE 

1T - (3.11037 552421) (8) e (2.55760 521305)(8) 'Y = (0.44742 147707)(8) 

1T -1 = (0.24276 301556)(8) e-1 (0.27426 530661) (8) In 'Y = - (0.43127 233602)(8) 

,./TT = (1.61337 611067)(8) ~= (1.51411 230704)(8) 1092 'Y = - (0.62573 030645)(8) 

In 1T = ( 1.11206 404435) (8) log10 e = (0.33626 754251 )(8) ..fi = (1.32404 746320)(8) 

log2 1T = (1.51544 163223) (8) log2 e ( 1.34252 166245) (8) In 2 (0.54271 027760)(8) 

v'10 = (3.12305 407267)(8) log2 10 (3.24464 741136) (8) In 10 (2.23273 067355) (8) 

A-7 



Appendix 21MXM 

OCTAL COMBINING TABLES 
------------------ -·--------------------------------------

MEMORY REFERENCE INSTRUCTIONS 

Indirect Addressing 

Refer to octal instruction codes given on the following page. 
To combine code for indirect addressing, merge "100000" with octal instruction code. 

REGISTER REFERENCE INSTRUCTIONS 

Shift-Rotate Group (SRG) 

1. select to operate A or B. 

2. select 1 to 4 instructions, not more than one 
from each column. 

3. combine octal codes (leading zeros omitted) 
by inclusive or. 

4. order of execution is from column 1 to column 4. 

A Operations 

1 2 3 

ALS (1000) CLE (40) SLA (10) 

ARS (1100) 

RAL (1200) 

RAR (1300) 

ALR (1400) 

ERA (1500) 

ELA (1600) 

ALF (1700) 

B Operations 

1 2 3 

BLS (5000) CLE (4040) SLB (4010) 

BRS (5100) 

RBL (5200) 

RBR (5300) 

BLR (5400) 

ERB (5500) 

ELB (5600) 

BLF (5700) 

INPUT/OUTPUT INSTRUCTIONS 

Clear Flag 

4 

ALS (20) 

ARS (21) 

RAL (22) 

RAR (23) 

ALR (24) 

ERA (25) 

ELA (26) 

ALF (27) 

4 

BLS (4020) 

BRS (4021) 

RBL (4022) 

RB R (4023) 

BLR (4024) 

ERB (4025) 

ELB (4026) 

BLF (4027) 

Alter-Skip Group (ASG) 

1. select to operate on A or B. 

2. select 1 to 8 instructions, not more than one 
from each column. 

3. combine octal codes (leading zeros omitted) 
by inclusive or. 

4. ordei- of execution is from column 1 to column 8. 

A Operations 

1 2 3 4 

CLA (2400) SEZ (2040) CLE (2100) SSA (2020) 

CMA (3000) CME (2200) 

CCA (3400) CCE (2300) 

5 6 7 8 

SLA (2010) INA (2004) SZA (2002) RSS (2001) 

B Operations 

1 2 3 4 

CLB (6400) SEZ (6040) CLE (6100) SSB (6020) 

CMB (7000I CME (6200) 

CCB (7400) CCE (6300) 

5 6 7 8 

SLB (60101 INB (6004) SZB (6002) RSS (6001) 

Refer to octal instruction codes given on the following page. 
To clear flag after execution (instead of holding flag), merge "001000" with octal instruction code. 

----·--·--··----·----·-··---·---··---·--------··------··--------·-----------·----··--------

A-8 



21MXM Appendix 

INSTRUCTION CODES IN OCTAL 

Memory Reference Ext. Inst. Group Dynamic Mapping System 

ADA 04(0XX)--- CMA 003000 ADX 105746 DJP 105732 
ADB 04(1 XX)--- CMB 007000 ADY 105756 DJS 105733 
AND 01 (OXX)--- CME 002200 CAX 101741 JRS 105715 
CPA 05(0XX)--- INA 002004 CAY 101751 LFA 101727 
CPB 05(1 XX)--- INB 006004 CBS 105774 LFB 105727 
IOR 03(0XX)--- RSS 002001 CBT 105766 MBF 105703 
ISZ 03(1 XX)--- SEZ 002040 CBX 105741 MBI 105702 
JMP 02(1 XX)--- SLA 002010 CBY 105751 MBW 105704 
JSB 01 (1 XX)--- SLB 006010 CMW 105776 MWF 105706 
LDA 06(0XX)--- SSA 002020 CXA 101744 MWI 105705 
LDB 06(1 XX)--- SSB 006020 CXB 105744 MWW 105707 
STA 07(0XX)--- SZA 002002 CYA 101754 PAA 101712 
STB 07(1 XX)--- SZB 006002 CYB 105754 PAB 105712 
XOR 02(0XX)--- DSX 105761 PBA 101713 

l Binary 
DSY 105771 PBB 105713 
ISX 105760 RSA 101730 

Input/Output ISY 105770 RSB 105730 
Shift-Rotate CLC 1067-- JLY 105762 RVA 101731 

ALF 001700 CLF 1031-- JPY 105772 RVB 105731 

ALR 001400 CLO 103101 LAX 101742 SJP 105734 

ALS 001000 HLT 1020-- LAY 101752 SJS 105735 

ARS 001100 LIA 1025-- LBT 105763 SSM 105714 

BLF 005700 LIB 1065-- LBX 105742 SYA 101710 

BLR 005400 MIA 1024-- LBY 105752 SYB 105710 

BLS 005000 MIB 1064-- LOX 105745 UJP 105736 

BRS 005100 OTA 1026-- LOY 105755 UJS 105737 

CLE 000040 OTB 1066-- MBT 105765 USA 101711 

ELA 001600 SFC 1022-- MVW 105777 USB 105711 

ELB 005600 SFS 1023-- SAX 101740 XCA 101726 

ERA 001500 soc 102201 SAY 101750 XCB 105726 

ERB 005500 sos 102301 SBS 105773 XLA 101724 

NOP 000000 STC 1027-- SBT 105764 XLB 105724 

RAL 001200 STF 1021-- SBX 105740 XMA 101722 

RAR 001300 STO 102101 SBY 105750 XMB 105722 

RBL 005200 SFB 105767 XMM 105720 

RBR 005300 STX 105743 XMS 105721 

SLA 000010 Extended Arithmetic STY 105753 XSA 101725 

SLB 004010 ASL 1000(01 X)- TBS 105775 XSB 105725 

ASR 1010(01 X)- XAX 101747 

DIV 100400 XAY 101757 

Alter-Skip OLD 104200 XBX 105747 

CCA 003400 DST 104400 XBY 105757 

CCB 007400 LSL 1000(10X)-
CCE 002300 LSR 1010(10X)-
CLA 002400 MPV 100200 
CLB 006400 RRL 1001 (OOX)-
CLE 002100 RRR 1011 (OOX)-

leinary 

Floating Point 

*Assuming: no indirect addressing FAD 105000 

no combined instructions FDV 105060 

shifts taken in first position only FIX 105100 

hold flag after 1/0 execution FLT 105120 
FMP 105040 

Refer to preceding page for octal combining tables FSB 105020 

A-9 



Appendix 21MXM 

BASE SET INSTRUCTION CODES IN BINARY 
-------··-,...--

I I I ,=q 15 14 13 12 11 10 9 8 7 6 5 4 3 2 

Oii AND 001 0 ZIC Memory Address 

Dll XOR 010 0 ZIC 
Dll IOR 011 0 ZIC 
Oii JSB 001 1 ZIC 
Dll JMP 010 1 ZIC 
Oii ISZ 011 1 ZIC 
Oii AD* 100 AIB ZIC 
Dll CP* 101 AIB ZIC 
Dll LO* 110 AIB ZIC 
Oii ST* 111 AIB ZIC 

- ---I 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 SRG 000 A/B 0 D/E *LS 000 tCLE D/E tSL* *LS 000 

A/B 0 D/E *RS 001 D/E *RS 001 

A/B 0 D/E R*L 010 D/E R*L 010 

A/B 0 D/E R*R 011 D/E R*R 011 

A/B 0 D/E *LR 100 D/E *LR 100 

A/B 0 D/E ER* 101 0/E ER* 101 

A/B 0 D/E EL* 110 D/E EL* 110 

A/B 0 D/E *LF 111 0/E *LF 111 
NOP 000 000 000 000 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 ASG 000 A/B 1 CL' 01 CLE 01 SEZ SS* SL* IN* SZ* ASS 
A/B CM* 10 CME 10 
A/B CC' 11 CCE 11 

--
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 IOG 000 1 HIC HLT 000 Select Code 
1 0 STF 001 
1 1 CLF 001 
1 0 SFC 010 
1 0 SFS 011 

A/B 1 HIC Ml* 100 
A/B 1 HIC LI• 101 
A/B 1 H/C OT' 110 

0 1 HIC STC 111 
1 1 HIC CLC 111 

1 0 STO 001 000 001 
1 1 CLO 001 000 001 
1 HIC soc 010 000 001 
1 HIC sos 011 000 001 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 EAG 000 MPY*' 000 010 000 000 
DIV** 000 100 000 000 
OLD'' 100 010 000 000 
DST'* 100 100 000 000 

ASR 001 000 0 1 
ASL 000 000 0 1 
LSR 001 000 1 0 number 
LSL 000 000 1 0 of 
ARR 001 001 0 0 bits 

RRL 000 001 0 0 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
1----·-· t--·--·-

1 FLT PT 000 101 00 FAD 000 0 000 
FSB 001 
FMP 010 
FDV 011 
FIX 100 
FLT 101 

__ ___._ __________________________ ._ __ --
Notes: . - A or B, according to bit 11. tCLE: Only this bit is required . 

D/I, A/B, ZIC, D/E, H/C coded 0/1. tSL': Only this bit and bit 11 (AIB as 
**Second word is MP.mory Address. applicable) are required. 

.____,,,_, ____________________________ 
---------····---------- --- - ----------·--~------------------------------------------

__ __. 

A-10 



21MXM Appendix 

BASE SET INSTRUCTION CODES IN BINARY (CONT) 

EXTENDED INSTRUCTION 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

GROUP I IA/Bl 1 I 11 lxivl SAX/SAY /SBX/SBY 1 0 0 0 0 1 1 1 0 0 0 0 

CAX/CAY /CBX/CBY 1 I 0 0 0 IA/Bl 0 1 I 1 I 1 0 I xiv I 0 0 1 I 
LAX/LAY /LBX/LBY 1 

I 
0 0 0 

IA/0 1 0 1 11 1 1 I 1 0 lxivl 0 1 0 
I 

STX/STY 1 I 0 0 0 11 0 1 I 1 1 1 0 lx1vl 0 1 1 
I 

CXA/CY A/CXB/CYB I 1 I 0 0 0 IA/0 1 0 1 1 1 1 11 0 lx1vl 1 0 0 I 
LOX/LOY 

I 
1 

I 
0 0 0 

I 
1 0 1 I 1 1 1 11 0 lxivl 1 0 1 I 

ADX/ADY 
I 1 I 0 0 0 11 0 1 11 1 1 I 1 0 !xivl 1 1 0 I 

XAX/XA Y /XBX/XBY 
I 1 I 0 0 0 IA/Bl 0 1 

I 
1 1 1 11 0 lx1vl 1 1 1 I 

ISX/ISY /DSX/DSY I 1 I 0 0 0 
I 

1 0 1 I 1 1 1 I 1 1 lx1vl 0 o 1110 I 

JUMP INSTRUCTIONS 1 0 0 0 0 1 1 1 I 1 1 WA 0 1 0 

JLY = 0 
JPY = 1 

BYTE INSTRUCTIONS 1 0 0 0 I 1 0 1 I 1 1 1 I 1 1 0 ~ 
LBT = 0 1 1 
SBT = 0 0 
MBT= 0 1 

CBT = 1 0 
SFB = 1 1 

BIT INSTRUCTIONS 1 0 0 0 I 1 0 1 i 1 1 1 I 1 1 1~ 
SBS ~ 0 1 1 
CBS = 1 0 0 
TBS = 1 0 

WORD INSTRUCTIONS 1 I 0 0 0 I 1 0 1 1 1 1 i 1 1 1 11 1 WA 
CMW= 0 
MVW= 1 

A-11 



Appendix 21MXM 

DYNAMIC MAPPING SYSTEM INSTRUCTION CODES IN BINARY 
~·~·------·----····~·----------·--

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

DJP I DJS/UJP /UJS I 1 I 0 0 0 I 1 0 I I 0 lo1ul I P/S I 
JRS I I 0 0 0 I 1 0 1 I 1 1 I 0 0 ~ 

LFA/LFB I 1 I 0 0 0 IA/Bl 0 1 I 1 1 I 0 0 1 I 
MBl/MBF I 1 I 0 0 0 J 1 0 1 I I 0 0 0 I 0 ~ 

MBW I 1 I 0 0 0 I 0 1 I 1 1 I 0 0 0 I 0 0 

MWF I I 0 0 0 ( 1 0 I 1 1 I 0 0 0 I ~ 
MWl/MWW I I 0 0 0 I 1 0 1 I 1 1 I 0 0 0 I~ 

PAA/PAB I 1 I 0 0 0 IA/Bl 0 1 I I 0 0 0 ~ 
PBA/PBB I 1 I 0 0 0 IA/Bl 0 , I , I 0 0 , I 0 ~ 

RSA/RSB/RVA/RVB , , I 0 0 0 I A/Bl 0 1 I 1 , I 0 , I 0 ~ 
SJP/SJS I , I 0 0 0 J 1 0 1 J 1 , I 0 I 1 ~ 

SSM I , I 0 0 0 I 1 0 , I I 0 0 I 1 0 0 

SYA/SYB [ , I 0 0 0 IA/Bl 0 1 I 1 , I 0 0 0 ~ 
USA/USB , , I 0 0 0 IA/BI 0 1 I 1 , I 0 0 0 0 

XCA/XCB/XLA/XLB I 1 I 0 0 0 IA/BI 0 1 J 1 , I 0 0 IL/CI 0 

XMA/XMB [, I 0 0 0 IA/BI 0 1 I 1 I 0 0 0 0 

XMM/XMS J 1 I 0 0 0 ( 1 0 1 J 1 , I 0 0 I 0 0 IM/SI 

XSA/XSB I , I 0 0 0 IA/BI 0 1 I 1 , I 0 0 1 I 1 ~ 
!\-12 



21MXM Appendix 

EXTEND AND OVERFLOW EXAMPLES 

A/B REGISTER fu ~ AUGE ND 

ADDEND GEC ~ 
RESULT A/B g OV=O g OV=1 

E=O E=O 

SAME SIGN (POSITIVE) 

A/B REGISTER fu & AUGE ND 

ADDEND ~ ~ 
RESULT A/B g OV=1 g OV=O 

E= 1 E= 1 

SAME SIGN (NEGATIVE) 

A/B REGISTER fu fu AUGE ND 

ADDEND ~ ~ 
RESULT A/B g OV=O 

E=O 
g OV=O 

E= 1 

A/B REGISTER ~ fu AUGE ND 

ADDEND ~ ~ 
RESULT A/B g OV=O g OV=O 

E= 1 E= 0 

DIFFERENT SIGNS 

A-13 



Appendix 21MXM 

INTERRUPT AND 1/0 CONTROL SUMMARY 

INST s.c. 00 s.c. 01 s.c. 02 s.c. 03 

STC NOP NOP Prepares DCPC channel Prepares DCPC channel 

1 to receive and store 2 to receive and store 
the block length in 2's the block length in 2's 
complement form. complement form. 

-

CLC Clears all Control FF's NOP Prepares DCPC channel Preparies DCPC channel 
from S.C. 06 and up; 1 to receive and store 2 to receive and store 
effectively turns off the direction of data the direction of data 
all 1/0 devices. flow and the starting flow and the starting 

memory address. memory address. 

STF Turns on interrupt STO sets overflow bit. NOP - NOP 
system. 

1---------+--- --- ~·"-~ 

CLF Turns off interrupt CLO clears overflow bit. NOP NOP 
system except power 
fail (S.C. 04) and 

parity error (S.C. 05). 

SFS Skip if interrupt system sos NOP NOP 
is on. 

SFC Skip if interrupt system soc NOP NOP 
is off. 

--
LIA/B Loads A/B register with Loads displ<.1y register Loads present contents Loads present contents 

dll zeros. (Equivalent to contents into A/B of DCPC channel 1 of DCPC channel 2 
CLA/B instruction.) register. word count register word count register 

into A/B register. into A/13 register. 

MIA/B Equivalent to a NOP. Merges display register Merges present contents Merges present contents 

conten~ into A/B of DCPC channel 1 of DCPC channel 2 

reg1 ste r. word count register into word count register into 
A/B register. A/B register. 

OTA/B NOP Outputs A/B register 1. Outputs to DCPC 1. Outputs to DCPC 
contents into display channel 1 the block channel 2 the block 
register. length in 2's com- length in 2's com-

plement form plement form 
(previously prepared (previously prepared 
by an STC 02 by an STC 03 
instruction). in~truction). 

2. Outputs to DCPC 2. Outputs to DCPC 
channel 1 the direc- channel 2 the direc-

tion of data flow and tion of data flow and 

the starting memory the starting memory 
address (previously address (previously 

prepared by a prepared by a 
C LC 02 instruction). CLC 03 instruction). 

·-·-----··--·----1...-..... 
______ ___,___ __ 

A-14 



21MXM Appendix 

·--~· 

- S.C.04 S.C.05 S.C.06 s.c. 07 s.c. 10-77 

Re-initializes power-fail Turns on memory Sets Control FF on Sets Control FF on Sets PCA Control FF and 
logic and restores inter- protect. OCPC channel 1 OCPC channel 2 turns on device on chan-
rupt capability to lower (activates OMA). (activates DMA). nel specified by S.C. 
priority functions. 

Re-initialize power-fail NOP Clears Control FF on Clears Control FF on Clears PCA Control FF and 
logic and restores inter- DCPC channel 1 OCPC channel 2 turns off device. 
ruptcapability to lower (reestablishes priority (reestablishes priority 
priority fu ncti ans. with STF; does not turn with STF; does not turn 

off OCPC). off OCPC). 

Flag FF sets auto- Turn::; on parity error Aborts DCPC Aborts DCPC Sets PCA Flag FF. 

matically when power interrupt capability. channel 1 data channel 2 data 
comes up. (No pro- transfer. transfer. 
gram control 

possible.) 

Flag FF clears auto- Turns off parity error Clears Flag FF on OCPC Clears Flag FF on OCPC Clears PCA Flag FF. 

matical ly when power interrupt capability channel 1. channel 2. 

fail occurs. (No pro- and clears violation 
gram control register bit 15. 
possible.) 

NOP Skip if Dynamic Map- Tests if OCPC channel 1 Skip if DCPC channel 2 Skip if 1/0 channel Flag FF 
ping System (OMS) data transfer is com- data transfer is com- is set. 
interrupt. plete. plete. 

~ 

Skip if power fail Skip if memory pro- Tests if DCPC channel 1 Skip if DCPC channel 2 Skip if 1/0 channel Flag FF 

has occurred. tect interrupt. data transfer is still in data transfer is still in is clear. 

progress. progress. 

Loads contents of Loads contents of Loads A/B register with Loads A/B register with Loads con ten ts of PCA 

central interrupt violation register into all ones. (Equivalent to all ones. (Equivalent to data buffer into A/B 

register (S.C. of last A/B register: CCA/CCB instruction.) CCA/CCB instruction.) register. 

interrupting device) Bit 15 = 1 = PE 

into least-significant Bit 15 = 0 = MPV 

bits of A/B register. 

Merges contents of Merges contents of Same as LI A/B 06 Same as LI A/B 07 Merges contents of PCA 

central interrupt violation register into above. above. data buffer into A/B 

register into least- A/B register. register. 
significant bits of A/B 

register. 

NOP Outputs first address Outputs to DCPC Outputs to DCPC Outputs data from A/B 

of unprotected memory channel 1 the S.C. of channel 2 the S.C. of register into PCA data 

to fence register. 1/0 channel. Specify 1/0 channel. Specify buffer. 

STC after each word; STC after each word; 

CLC after block. CLC after block. 

,. 

A-15 



HEWLETT.PACKARD 

SALES & SERVICE OFFICES 
AFRICA, ASIA, AUSTRALIA 

ANGOLA 
Telectra 
Empresa Tecn1ca de 

Equ1pamentos 
Electncos. s A A.L 

.A Barbosa Rodrigues. 42·1 DT 
Caixa Postal. 6487 
Luanda 
Tel 3551516 
Cable TELECTAA Luanda 

AUSTRALIA 
Hewlett-Packard Australia 

Ply Ltd 
31·41 Joseph Street 
Blackburn. Victoria 3130 
P 0 Box 36 
Doncaster East. Victoria 3109 
Tel 89·6351 
Telex 31·024 
Cable HEWPAAD Melbourne 
Hewlett-Packard Australia 

Ply Ltd 
31 Bridge Street 
Pymble 
New South Wales. 2073 
Tel. 449-6566 
Telex 21561 
Cable. HEWPAAD Sydney 
Hewlett-Packard Australia 

Pty Ltd 
153 Greenhill Road 
Parkside. SA 5063 
Tel 272-591t 
Telex 82536 ADEL 
Cable HEWPAAD ADELAID 
Hewlett·Packard Australia 

P1y Lid 
t41 Stirling Highway 
Nedlands. W A 6009 
Tel 86·5455 
Telex 93859 PERTH 
Cable HEWPAAD PERTH 
Hewlett-Packard Australia 

Ply Ltd 

~~~~~:~~g~ng f'r~~b9 
Tel 95·2733 
Telex 62650 Canberra 
Cable HEWPAAD CANBERRA 
Hewlett Packard Australia 

5t:~ooLr'd 
Teachers Union Bu1ld1ng 
495·499 Boundadt Street 
T~r%i ~~~4 40 O Queensland 

Cable HEWPAAD Brisbane 

GUAM 
Medical/Pocket Calculators Only 
Guam Medical Supply. Inc 
Jay Ease Building. Room 2t0 
P 0 Box 8947 

i~'1~~i~~1~69t t 
Cable EAAMED Guam 

CANADA 
ALBERTA 

\1f~~b~·Pa1c~[~ ~?rae~~dal Ltd 

EdmontonT5M 3T9 
Tel (403) 452·3670 
TWX 610-831·243t EDTH 

~fo1~~':;cia{,~~~r Wta~dt 1 
Ltd 

fe~ 1 ~:0~) TJ5H3 
22~~ 3 

Twx 610·821·6141 

HONG KONG 
Schmidt & Co (Hong Kong) Ltd 
P 0 Box 297 
Connalight Centre 
391h Floor 
Connaught Road. Central 

~efn~-2~~~~t -5 
Telex 74766 SCHMC HX 
Cable SCHMIDTCO Hong Kong 

INDIA 
Blue Star Ltd 
Kasturi Buildings 
Jamshed11 Tata Ad 
Bombay 400 020 
Tel 29 50 2t 
Telex 001-2156 
Cable BLUEFROST 
Blue Star Ltd 
Sahas 
4t412 Vir Savarkar Marg 
Prabhadev1 
Bombay 400 025 
Tel 45 78 87 
Telex. 011-4093 
Cable FAOSTBLUE 
Blue Star Ltd 
Band Box House 
Prabhadev1 
Bombay 400 025 
Tel 45 73 01 
Telex 011-3751 
Cable BLUESTAR 
Blue Star Ltd 
14140 C1v1I Lines 
Kanpur 208 OOt 
Tel 6 88 82 
Telex 292 
Cable. BLUESTAA 
Blue Star Ltd 
7 Hare Street 
P 0 Box 506 
Calcutta 700 001 
Tel 23·0131 
Telex 021-7655 
Cable BLUESTAA 
Blue Star Ltd 
7th & 8th Floor 
Bhandari House 
91 Nehru Place 
New Delhi 110024 
Tel 634770 & 635t66 
Telex. 031·2463 
Cable BLUESTAR 
Blue Star Ltd 
Blue Star House 
1t111 A Magarath Road 

~e~n~t~~;e 560 025 

Telex. 043·430 
Cable BLUESTAA 
Blue Star Ltd 
Meeakshi Mandiran 
xxx/1678 Mahatma Gandhi Ad 
Cochin 682 016 
Tel 32069.32161.32282 
Telex 0885·514 
Cable BLUESTAR 
Blue Star Ltd 
1·1-117/1 
Saro11ni Devi Road 

BRITISH COLUMBIA 
Hewlett-Packard (Canada) Ltd 
837 E Cordova Street 
Vancouver V6A 3R2 
Tel (604) 254·053t 
TWX 6t0-922·5059 VCR 

Secunderabad 500 003 
Tel 70t26. 70127 
Cable BLUEFROST 
Telex 015-459 
Blue Star Ltd 
2134 Kodambakkam High Road 
Madras 600034 
Tel 82056 
Telex· 041-379 
Cable BLUESTAR 
Blue Star Ltd 
Natara1 Mansions 
2nd Floor B1stupur 
Jamshedpur 831 001 
Tel 7383 
Cable BLUESTAR 
Telex 240 

INDONESIA 
BERGA Indonesia P T 
P 0 Box 496,Jkt 
JLNoAbdul Mu1s 62 
Jakarta 
Tel 40369. 49886.49255.356038 
JKT 42895 
Cable BERCACON 
BER CA I ndones1a P t 
63 JL Raya Gubeng 

Te~r:~~i9a 
ISRAEL 
Electronics & Engineering Div 

ol Motorola Israel Ltd 
t7. Kremenetsk1 Street 
P 0 Box 250t6 
Tel-Aviv 
Tel 38973 
Telex 33569 
Cable BASTEL Tel Aviv 

JAPAN 
Yokogawa-Hewlett·Packard Ltd 
Ohashi Building 
59· t Yoyog1 1 ·Chorne 
Sh1buya·ku. Tokyo 151 
Tel 03-370-228t 192 
Telex 232·2024YHP 
Cable YHPMARKET TOK 23· 724 
Yokogawa-Hewlett·Packard Ltd 
Chuo Bldg 4th Floor 
4-20. N1sh1naka11ma 5-chome 
Yodogawa-ku Osaka·sh1 
Osaka.532 
Tel 06·304-602 t 
Yokogawa-Hewlett·Packard Ltd 
Nakamo Building 
24 Karn1 Sasa11rna-cho 
Nakarnura-ku. Nagoya 450 
Tel (052) 571-5171 
Yokogawa-Hewlett·Packard Ltd 
Tanigawa Building 
2-24·1 Tsuruya·cho 
Kanagawa-ku 
Yokohama. 22t 
Tel 045·312-1252 
Telex 382·3204 YHP YOK 
Yokogawa-Hewlett·Packard Ltd 
M1to M1tsu Building 
t05. Chome-t .San·no-rnaru 

MANITOBA 
Hewlett-Packard (Canada) Ltd 
513 Century St 
St James 

~~n~i64Jg7~l~5~~8 

TWX 610-67t·3531 

CENTRAL AND SOUTH AMERICA 

ARGENTINA 
Hewlett-Packard Argentina 
SA 
Av Leandro N Alem 822 · 12 
1001 Buenos Aires 
Tel 3t·6063.4.5.6 and 7 
Telex Public Booth N 9 
Cable HEWPACK AAG 

BOLIVIA 
Casa Kavlin S.A 
Calle Potosi· t 130 
P 0 ltox 500 
La Paz 
Tel 41530.53221 
Telex ewe BX 5298.ITI 3560082 
Cable KAVLIN 

BRAZIL 
Hewlett-Packard do Brasil 
l.e.C Lida 
Avenida Rio Negro. 980 
Alphav1lle 
06400Barueri SP 
Tel 429-214819.429-2t 1819 

Hewlett-Packard do Brasil 
I e C Lida 
Rua Padre Chagas. 32 
90000·P6rto Alegre-RS 
Tel (05t2) 22-2998, 22-5621 
Cable. HEWPACK Porto Alegre 
Hewlett-Packard do Brasil 
IE C Lida 
Rua S1que11a Campos. 53 
Copacabana 
20000·Rio de Janeiro 
Tel 257·80·94·DDD (02t) 
Telex. 391-212-1905 HEWP·BR 
Cable HEWPACK 

RID de Jane110 

CHILE 
Calcagni y Metcalfe Lida 
Alameda 580-0f 807 
Casilla 2118 
Santiago. t 
Tel 398613 
Telex 3520001 CALMET 
Cable CALMET Santiago 

COLOMBIA 
lnstrurnentac1dn 
Henrik A. Langebaek & Kier S A 
Carrera 7 No 48·75 
Apartado Aereo 6287 
Bogota, IDE 
Tel 69·88·77 
Cable AAAIS Bogota 
Telex 044-400 

COSTA RICA 
C1ent11ica Costarncense S A 
Calle Central. Avenidas t y 3 
Apartado 10159 
San Jose 
Tel 2t·86·13 
Cable· GALGUA San Jose 

ECUADOR 
Medical Only 
A F V1Zcaino Compai\ia Lida 
Av Rio Amazonas No 239 
P 0 Box 2925 
Quito 
Tel 242·t50.247·0331034 
Cable Astor Quito 

Milo. lbarag1 310 
Tel 0292·25·7470 
Yokogawa·Hewlett·Packard Ltd 
Inoue Building 
t348·3. Asah1·cho. 1·chome 
Atsugi. Kanagawa 243 
Tel 0462·24·0452 
Yokogawa·Hewlett·Packard Ltd 
Kurnagaya Asahi 
Hach11un1 Bu1ld1ng 
4th Floor 
3·4. Tsukuba 

fe~"3:~rn~6~a5r 360 

KENYA 
Technical Engineering 

Serv1ces(E A )Ltd 
P 0. Box 1831 t 
Nairobi 
Tel 5577261556762 
Cable PROTON 
Medical Only 
International Aerad1o(E A )Lid 
PO Box 19012 
Nairobi Airport 
Nairobi 
Tel 336055156 
Telex 2220112230t 
Cable INTAERIO Nairobi 

Wellington 
Tel 877-t99 
Telex NZ 3839 
Cable HEWPACK Wellington 
Hewlett-Packard (N Z ) Ltd 
Pakuranga Professional Centre 
267 Pakuranga Highway 
Box 51092 

fe~k~£~'m 
Cable HEWPACK.Auckland 
Analyt1cal/Med1cal Only 
Medical Supplies NZ Ltd 
Sc1ent1hc D1v1s1on 
79 Carlton Gore Ad . Newmarket 
P.O Box 1234 
Auckland 
Tel 75-289 
Cable DENTAL Auckland 
Analyt1cal/Med1cal Only 
Medical Supplies N Z Ltd 
P 0 Box 1994 
147·161 Tory St 
Wellington 
Tel 850·799 
Telex 3858 
Cable. DENTAL. Wellington 
Analyt1cal1Med1cal Only 
Medical Supplies NZ Ltd 
P 0 Box 309 
239 Stanmore Road 
Christchurch 
Tel. 892·019 
Cable DENTAL. Christchurch 
Analyt1cal1Med1cal Only 

KOREA Medical Supplies N Z Ltd 
Samsung Electronics Co . Ltd 303 Great King Street 

tO~h JI B~~nm~1g Bldg 250. 2 Kt 6~n!J:n 233 

Taepyung·Ao. Chung-Ku Tel 88·817 
Seoul Cable DENTAL. Dunedin 
Tel (23) 68t t NIGERIA 
Telex 22575 The Electronics 
Cable ELEKSTAR Seoul Instrumentations Ltd 
MALAYSIA N6Bl770 Oyo Road 
Tekn1k Mutu Sdn Bhd Oluseun House 
2 Lorong 1316A P M.B. 5402 
Section t 3 Ibadan 
Petal1 ng Jay a. Sela ngor Tel 615 77 
Tel 54994154916 Telex 31231 TEil Nigeria 
Telex MA 37605 Cable· THETEIL Ibadan 

ProtelEngineering 
P 0 Box 1917 
Lot 259. Satok Road 
Kuch1ng. Sarawak 
Tel 2400 
Cable PROTEL ENG 

MOZAMBIQUE 
AN Goncalves. Lia 
t62. 1 Apt 14 Av D Luis 
Caixa Postal 107 
Lourenco Marques 
Tel 27091. 271 t4 
Telex 6-203 NEGON Mo 
Cable NEGON 

NEW ZEALAND 
Hewlett-Packard (N Z ) Ltd 
P 0 Box 9443 
Courtenay Place 

NOVA SCOTIA 
Hewlett-Packard (Canada) Ltd 
800 W1ndm1ll Road 
Dartmouth B3B 1 Lt 
Tel (902) 469· 7820 
TWX 610·271-4482 HFX 

Calculators Only 
Computadoras y Equ1pos 
Electrdn1cos 
P 0 Box 6423 CCI 
Eloy Alfaro #1824.3 P1so 
Quito 
Tel 453482 
Telex 02·2113 Sag1ta Ed 
Cable Sagita-Qu1to 

EL SALVADOR 
lnstrumentac1on y Procesam1ento 

Electron1co de el Salvador 
Bulevar de los Heroes 11·48 
San Salvador 
Tel 252787 

GUATEMALA 
IPESA 
Avenida La Aeforma 3·48. 
Zona 9 
Guatemala City 
Tel 63627. 64786 
Telex 4192 Teletro Gu 

MEXICO 
Hewlett-Packard Mex1cana. 
S.A de CV 
Torres Adalid No. 21. 11 P1so 
Col. del Valle 
Mexico 12. D.F 
Tel (905) 543-42-32 
Telex 017-74·507 

The Electronics lnstrumenta· 
lions Ltd 

144 Agege Motor Road Mush1n 
P 0 Box 6645 
Lagos 
Cable THETEIL Lagos 

PAKISTAN 
Mushko & Company. Ltd 
Oosman Chambers 
Abdullah Haroon Road 
Karachi·3 
Tel 5t 1027. 5t2927 
Telex 2894 
Cable COOPERATOR Karachi 
Mushko & Company. Ltd 
38B. Satellite Town 

fe~w4~1~~~di 
Cable· FEMUS Rawalpindi 

ONTARIO 
Hewlett-Packard (Canada) Ltd 
1020 Morrison Dr 
Ottawa K2H 8K7 
Tel (613) 820·6483 
TWX 6 t O· 563· t 636 
Hewlett-Packard (Canada) Ltd 
6877 Goreway Drive 

fe:sm~m:i44fo 1 
Ma 

TWX 610·492·4246 

Hewlett-Packard Mex1cana. 
S.A de CV 
Ave Constituc1dn No 2184 
Monterrey. N L 
Tel. 48·7t·32. 48-71·84 
Telex 038·843 

NICARAGUA 
Roberto Teran G 
Apartado Postal 689 
Ed1tic10 Teran 
Managua 
Tel 25114. 23412.23454 
Cable ROTEAAN Managua 
Calculators Only 
C1ent1f1ce Costarncewse S A 
C1udad Jardin D·1 
Managua 
Tel 24108 

PANAMA 
Electrdnico Balboa. SA 
P 0. Box 4929 
Calle Samuel Lewis 
Cuidad de Panama 
Tel 64·2700 
Telex 3431103 Curunda. 

Canal Zone 
Cable. ELECTRON Panama 

PHILIPPINES 
The Online Advanced 

Systems Corporation 
8th Floor. F1lcap1tal Bldg 
Ayala Avenue 
Makat1. MetroManila 
Tel 85·35·8t. 85·34·9t 
Telex 3274 ONLINE 

RHODESIA 
Field Technical Sales 
45 Kelvin Road Nortll 
P 0 Box 3458 
Salisbury 
Tel 705231 (5 lines) 
Telex RH 4122 

SINGAPORE 
Hewlett-Packard Singapore 

!Pie I Ltd 
1150 Depot Road 
Alexandra P. 0 Box 58 

T~1n~m3e5~ 
Telex HPSG AS ?t486 
Cable HEWPACK. Singapore 

SOUTH AFRICA 
Hewlett-Packard South Af11ca 

(Ply I Ltd 

~~,~~:~nBaf r~;~~Xt2°t0~4 
Hewlett-Packard Centre 
Daphne Street. Wendywood 
Sandton. Transvaal 2144 
Tel 802· 10408 
Telex 8·4782 
Cable HEWPACK JOHANNESBURG 
Service Department 
Hewlett-Packard South Africa 

(Ply). Ltd 
P 0 Box 39325 
Gramley. Sandton. 20t8 
45t Wynberg Extension 3. 
Sandton. 2001 
Tel 636·818819 
Telex 8·2391 

Taipei 
Tel 3819160-4 
Cable HEWPACK TAIPEI 
Hewlett-Packard Far East Ltd 
Taiwan Branch 
68·2. Chung Cl1eng 3rd Road 
Kaohsiung 
Tel (07) 242318·Kaohs1ung 
Analytical Only 
San Kwang Instruments Co Lid 
No 20. Yung Sui Road 
Taipei 
Tel 3715171·4 (5 lines1 
Telex 22894 SANKWANG 
Cable SANKWANG TAIPEI 

TANZANIA 

~~edr'~;~,~nn~y Aerad10 1E A 1 Ltd 
P 0 Box 86t 
Dar es Salaam 
Tel 21251 Ext 265 
Telex 41030 

THAILAND 
UNI MESA Co . Ltcl 
Elcom Research Building 
2538 Sukumv1t Ave 
Bangkok 
Tel 3932387. 3930338 

Hewlett-Packard South Alnca Cable UNIMESA Bangkok 

P tid~ ~~~ UGANDA 
Howard Place. Cape Province. 7450 Medical Only 
Pine Park Centre. Forest Drive. International Aerad1o(l A I Ltd 
Pinelands. Cape Province. 7405 PD Box 2577 
Tel 53· 7955 thu 9 Kampala 

Telex 57·0006 g61;4(JfAEAIO Kampala 
Service Department 
Hewlett-Packard South Africa 

(Ply) Ltd 
P 0 Box 37099 
Overport Durban 4067 
Braby House 
64t Ridge Road 
Durban. 4001 
Tel 88·7478 
Telex 6·7954 

TAIWAN 
Hewlett-Packard Far East Ltd 
Taiwan Branch 
39 Chung Hsiao West Road 
Sec t. 7th Floor 

QUEBEC 
Hewlett-Packard (Canada) Ltd 
275 Hymus Blvd 
Pointe Claire H9A t G7 
Tel (514) 697-4232 
TWX 610·422-3022 
TLX 05·821521 HPCL 

PARAGUAY 
Z J Melamed S A L 
01v1s1dn Aparatos y Equ1pos 

Medicos 
D1v1s1dn Aparatos y Equ1pos 

C1entit1cos y de lnvest1gac1dn 
P 0.Box 676 
Chile-482. Ed1f1c10 Victoria 
Asuncion 
Tel 91·27t. 9t·27? 
Cable RAMEL 

PERU 
Compai\ia Electro M!!d1ca S A 
Los Flamencos t45 
San Isidro Casilla t 030 
Lima t 
Tel 4t·4325 
Cable. ELMED Lima 

PUERTO RICO 
Hewlett-Packard Inter-Americas 
Puerto Rico Branch Office 
Calle 272. 
No. 203 Urb Country Club 
Carolina 00924 
Tel (809) 762·7255 
Telex 345 0514 

ZAMBIA 
A J Tilbury (Zamb1a1 Ltd 
P 0 Box 2792 
Lusaka 
Tel 73793 
Cable ARJA YTEE. Lusaka 

OTHER AREAS NOT LISTED, CONTACT 
Hewlett-Packard Intercontinental 
3200 H1llv1ew Ave 
Palo Atto. Calitorn1a 94304 
Tel (4t5) 493-1501 
TWX 9t0·373-1267 
Cable HEWPACK Palo Atto 
Telex 034-8300. 034·8493 

FOR CANADIAN AREAS NOT LISTED· 
Contact Hewlett-Packard (Canarla) 
Ltd 1n M1ss1ssauga 

URUGUAY 
Pablo Ferrando SA 
Comerc1al e Industrial 
Aven1da Italia 2877 
Casilla de Correo 370 
Montevideo 
Tel 40-3102 
Cable RADIUM Montevideo 

VENEZUELA 
Hewlett-Packard de Venezuela 
C.A 
P 0 Box 50933 
Caracas 105 
Los Ru1ces Norte 
3a Transversal 
Ed1l1c10 Segre 
Caracas 107 
Tel 35-00·t 1 (20 lines) 
Telex 25t 46 HEWPACK 
Cable HEWPACK Caracas 

FOR AREAS NOT LISTED, CONTACT 
Hewlett-Packard 
Inter-Americas 
3200 H1llv1ew Ave 
Palo Alto. California 94304 
Tel (415) 493-1501 
TWX 910·373·t260 
Cable HEWPACK Palo Alto 
Telex 034-8300 034·8493 



EUROPE, NORTH AFRICA AND MIDDLE EAST 
AUSTRIA 
Hewlett-Packard Ges rn tJ H 
HandP.lska1 52 
P IJ hox 7 
A 1 ?05 Vienna 
lei 10222! 351621 to 21 
cabie HEWPAK Vu~11na 
Telex 75923 t1ewpak a 

BELGIUM 
Hewlett- P<!ckard Bern~lux 
SA NV 
Avenue oe Col-Vert 1 

1Groenkraag1.ianJ 
A ' t 70 Brussels 
lei 1021 672 22 40 
Collie PALOBEN Brussels 
Telex 13 4g4 palohen bri: 

CYPRUS 
Kypron1cs 
19 Gre4or10~ & Xenopnulos Hd 
I' 0 Box 1152 
CY· Nicosia 
Tei 4'i628 29 
CJIJ•O KYPRONIC~; PANOFHIS 
Telex 3018 

CZECHOSLOVAKIA 

B P 16? 
I f,9130 Ecully 
I e I ! 7 8 l 11 8 1 ? ~ 1 

Cable HFWPACK Fr:u1v 
Telex 31 06 17 

Hewlett Packarr1 France 
Aqence Heq1onale 
Pt!ricentre de la CP.p1e1e 
C11emm de la Cep1€re. 20 
I 11300 Toulouse-Le Mirail 
rei 1611 40 11 12 
Cable lllWPACK !i1%7 
Telex 510957 
Hewlett-Prir:k;mJ f-rrtnu 
Agence RP.q1onale 
Aeronort rmnc1na1 fle 
MJ1:;e1lle Mar1gnane 
r 1J7(1Marignane 
Tel (911 89 1? 36 
Cable HEWPACK MAf1GN 
fr!lex 410770 

HewrP.tt P;ickarr1 f·r;rncr. 
Agence Heq1onale 
63 Avenue (je f~ocl1e~,tP.r 
BI' 1124 
F '.l5014 Rennes Udex 

Hewlett PiiCkdrr'. 
f8cl1n1:;chest3ue10 
tur; Gro~srn,Hkl 6 
ll :JOOO Hannover-Kleefeld 91 
lei 10b11 l 4h fiO 01 
Yell" 092 3?59 
Hewiert ~ack,.J.r~l (;mbH 
WerK GroetL1nqe11 
Ot1mstrasse fi 
IJ- i'iOO Karlsruke 41 
Tel 107?1 I fig 40 06 
Telex 07 825707 

Hewlett Pack.ml GmbH 
Technisclles Buero Nurembi~rq 
Neurneyr.r Str go 
0 8500 Nuremberg 
Tel 109 1 11 5fi 30 83 85 
'elex Ob23 81i0 
llewletl Pack.HO GmbH 
Ter:nn;sches Bueru Muncher' 
Unterhachinqr" SJrasse 28 
ISAR Center 
IJ Bll12 Ottobrunn 
re1 r089i 601 30 61 7 
Cable HEWPACKSA Munche1 
Te!<>X 0524985 

~vvo1ova a Provozni lakladn<> Tel 1991 :l6 3'.l 21 
vy1kumnyr:h Ustavu v 8ect1ovic1ch Cable HEWPACK 7 491? 
CSSR 25097 Bechov1ce u Prahy felex 74091? ' ' · 

Hewlett Pnckarrl Gmt>H 
Teclrn1~ct1e~ l3uero Berlin 
1<.e1tt1 Strasse 2 4 

1"1 89 93 41 
T1,11,, 1213:n 

institute of Medical H1on1cs 
Vy•;kU'nny Ustav Lekc11ske1 81on1ky 
.Jedlov<"I G 
CS 88346 Bratislava-Kramare 
fel '1<!55145541 

DOR 
[ntw1cklunqslabor der TU Dresden 
lorschungsinst1tut Me1nsberq 
1)()11 7105 

Waldheim/Meinsberg 
r,,1 ·17 667 
Telex 112145 

1·.xpor1 Contact AG Zuern:h 
r;uenttierForqber 
Sc11Jr,gelstrasse 1~ 
11140 Berlin 
T"1 •t?741? 
fole> 111B89 

DENMARK 

~j:~~~;,~ -g~ckard A S 

!lK 3460 Birkerod 
'e! ;O?; 81 66 40 
C.i!Jle liEWPACK AS 
'elex 166 40 hpas 

H1~wlett Packarrl A S 
N,iVerve1 1 
i)K 8600 Silkeborg 
Tr.r •.Olit 82 71 56 

t':~';1~ ~,~6w~~~~"1s 
FINLAND 
HewleM Packarr1 OY 
Ndl1kaho1Jsunt1e) 
P 0 Box 6 
SF 00211 Helsinki 21 
lei r90; 6923031 
C.rtM HEWPACKOY Helsinki 
'"''" I? 1o63 HEWPA Sf 

FRANCt 
Hewlett-Pac\.',ard France 
Duart1er de Courtahnr.uf 
Bo1te P11stale No 6 
r 91-101 Orsay Ce1Jex 
fol i1 l 907 78 25 
Cabli' HEWPACK Orsay 
relex !i00048 

Hewlett Pao:.c1rcJ ~ranci~ 

Au1~r1 cf! Reg1onJle 

fl 1000 Berlin :JO 
!el ilUfl'> 24 'JO 86 
: e i !~ x 1 8 3 4 O'.i ~1 p b I n d 

74 Allee r1c la Robertsai, GREECE 

:e77fs0g1 ~rn~~u{r ~gsr~~m~;~:"~;',','.~'.:' 
Telex 890141 GR Athens 12fi 
Cable HEWPACK STRHG Tel :l/31731 
Hewlett··Pack<1rr1 ~ranee Caolf~ RAKAH At11en~ 
Aqence Heqrnnale r P.lt!X ? 1 J9 !)( rka1 qr 
Centre Vaub;in An;ilyt1cal Only 
?01 rue Colbert INTFCO G f)apatt1r1nr1ss101J & Co 
tntree A2 M;.irni 1? 
I ·59000 Lille (;11 Athens 103 
f el 1201 ~,1 44 14 Tei .1?? 191 S 
lelex 820744 Cable INTEKNIKA Athens 
Hewletl Packal(J Tel"x ?1 53?'l IN II GR 
Centre fl Aflaire~ Med1cn.1 Only 
BJt1ment Arnp~re T r.ctrnomed H1~ll,1s l tel 
Hue rle La Cornrnurw dr. P,Hl'.J 52 Skoula St1eet 
B P 300 Gil Athens 130 
r 'l'l153 Le Blanc Mesnil Cedex Tel l6? 6972 363 38'.lO 
T~I roi I 11:~1 88 c,r) CitJll~ etal;:1k .-itllP.flS 

GERMAN FEDERAL 
REPUBLIC 
Hewlett PackJrd GrnbH 
Vertriebszentrale Frankfurt 
Bernr.rstrasse 117 
Pu,;t1ach 560 140 
D 6000 Frankfurt 55 
fel 10611; 50 04 1 
Callie HEWPACKSA F1<1nkl11r1 
.el 106111 50 04 1 
Callie HEWPACKSA Franklu11 
r.,rex 0·1 13?49 ilpllm11 

Hewlett Packaid GmbH 
r t~r:hn 1schcs Buero 80bl1 nqi~n 
Herrenberqerstrasse 110 
0 7010 BOblingen Wur1tr~mberq 
Tel 107031' 657 1 
Calile HFPAK BOIJl1nqe<• 
Telex 07?65739 IJIH• 
Hewlett-Pao:arcl GrnbH 
Techn1scllr.s Huero Dusseldor-1 
~ n1anuel-Leut1e Str 1 1Sr.esternl 
D 4000 Ousseldorf 11 
Tel 102111 )9111 
Telex 085 86 533 hpr11J '1 
Hewlett·Packarcl 
Ter:hn1sr.hr,s Burro 
WP.rH1enstrdsse?3 
D· 2000 Hamburg 1 
lei 10401 ?4 13 93 
Cable HEWPACKSA Hamb111q 
T11ir~x 71 G3 O'P 11phh r1 

T•,lex 21 469'l FTAI GR 

HUNGARY 
M1A 
Musleruqy1 r.., Mer~stectrn1ka1 
SzolQalala 
U~n1n Krt f)l 
Tel 420338 
Tel11x ??5111 

IC ELAND 
MerJ1cal Only 
Eld1nq Trad1nq Company Inc 
Hafn..uhvol1 lryqgvatotu 
IS Reykjavik 
Tel 1 58 20 
Cable ELDIN(; H"yk1av1k 

!RAN 
Hewle1t-Packar111ran Lid 
Ne 1 '.1 I our1 r~1~nth St 
Mirernad AventJf! 
P 0 Bux 41 ?419 
IH Tehran 
Tel ll!i111827 
Telex 213405 HEWP IR 

!RAO 
Hewlett Packard Tra<11nq Co 
M<l11SOOI City 
Baqhdad 
Tel 1J5178?7 
lr~l(~x 24~b Hf~p.-11rdq 1k 
Cat1le HEWPACDAD 

Baqhrln.d lr,-Hl 

UNITED STATES 

ALABAMA 
ll290 W1!1tesbu1 q IJ1 S F 
P ll Box 4207 
Huntsvilfe 30802 
re1 12051 881 4591 
Mer11cal Only 
!:ill W Volley Ave 
Hoom ?20 
Birmingham :l5209 
rf'I 1?05i9422081? 

ARIZONA 
?136 f: Magnolia SI 
Phoenix 850J4 
'el 16021 244 1:161 
?4'.'·1 fasl Aragon Rd 
Tucson 85706 
Tel 1!)021 294-3148 

'ARKANSAS 
Med1:.a1 Service Only 
P !l Bex 5646 
Br,uly Stlltlon 
Little Rock 7?215 
lei 1!i01! 376 1844 

CALIFORNIA 
14:l0 fast Orangethorpe Ave 
Fullerton 92631 
tel 1714! 870 1000 
·ig3g Lankersh1m Boulevarr1 
North Holfywood 91604 
Tel r213! 877 728? 
twx 9tO 499 2671 
6:105 Arizona Plt1ce 
Los Angeles 9004) 
'"' 1?1.11 549.2511 
tWX 9J0-3?8·n147 

"Los Angeles 
:1,, [?13) 776 1500 

rn03 Scott Boulevard 
Santa Clara 95050 
r,,, 1-10il1 249 iOOO 
JWX g10 3:l8-0o18 

:~1 1 ~~~~:~~;, lilli!J 

!i46 W No1J11 Market Blvrl 
Sacramento 90834 
Tel 19161 9?9-12;>;' 
9006 Aero Dr1v1~ 
'' 0 Box 23333 
San Diego 9? I ?3 
r e1 r: 1.11 / .-~.1 J:!Otl 

COLORADO 
16011 Soul11 IJl<;ler ParKw<>v 
Englewood 8011 O 
lei 13031 : ;13,i11 

CONNECTICUT 
1/ Luflar Drive 
New Haven 06525 
Tel 12031 389-6551 
TWX 110-465-?029 

FLORIDA 
P IJ Box 24210 
2806 W 0<1klann Park lllvli 
Ft. Lauderdale 33311 
lei !3051 731.2020 

·Jacksonville 

rer1~~4~e3~~el)~~~ 
P 0 Rox 13910 
61/1 Lake l:.llenor Ur 
Orlando 32809 
fr.I 1'l051 859-2900 
P 0 Rox 1?826 
Pensacola 325 7:) 
Ir.I 19041 416-842? 

GEORGIA 
P 0 Box 10500~ 
Atlanta 30348 
11~1 \404) CVi~J-1SOO 
rwx 1110. 7611-4890 
Medical Service Only 
-Augusta 3090'.l 
Tp1 ,.:H)4l 7'!D·O~q; 

11 ll Hox (!1(U 
Warner Robins J1098 
11'1 .~12; 92? !1449 

HAWAII 
287'.) So King Stn~e1 
Honolulu 96814 
Tt~i :8081 955 ·W)5 
Tel1~x 17J 70:) 

ILLINOJS 
5201 fnllVleW ()1 
Rolling meadows 60008 

~~x13~~6 m~~~g 
INOIANA 
1301 Nol1h SIH<lelann Ave 
lndianapolis462o0 
Tel r:ll 7)842 1000 
TWX 810 260 !/97 

IOWA 
1902 il1oar1way 
Iowa City 52?·\0 
Tei '319; 338·9466 

KENTUCKY 
Mer11Cdl Only 
Atkin';nn :iquau~ 
.l901 Aik1nson 111 
Suite ?01 
Louisville 40? 111 
Tel 110?) 456 1173 

LOUISIANA 
P !) Box 840 
32?9 39 Williams 1louleva1r1 
Kenner 70063 
Tel 15041 443·fi?OI 

MARYLAND 
6707 Whitestone Roa(J 
Baltimore 21?01 

f~PYi6 'fii~ !1~98 
? Chok.r. Cherry r~on.rl 
Rockville 208:)0 
1e1 1:rn11 q48 fi:llO 
TWX 71!) 828 %8·1 

JRELAND 
Hewletl Par:kal(l I trl 
King Street Larw 
GH Winnersh.Wok1nqharn 
Be1ks HGl 1 SAR 
Tel 107341 78 4i 74 
telex 841178 848179 

ITALY 
Hewlett Packdrd 1tal1ann S p A 
Via Amerigo Vespucci? 
Casella poslate 3645 
I ?0100 Milano 
fe1 1?1 5251 110 lines1 
Cable Hf WPACKIT Milano 
felex 3?045 
Hewle!1 Packard 1tal1ana S p A 
Via Pietro Maroncell1 40 
r,rng Via V1sent1ri1 
I :is 100 Padova 
Tel 1491 66 48 88 
felex 41612 Hewoack1 
Mer11cal only 
Hewlett Packard ltal1ana S p A 
V1r1 rl Agh1,ud1 7 
156100 Pisa 
Tel 1050) 2 32 04 
Telex 32046 via Milano 
HewleM-Packair1 ltal1ana S p A 
V1.i G Arrnelhn1 10 
1-00143 Roma 
Tel 1061 54 69 61 
Telex 61514 
Cal1le HEWPACK1T 11oma 
Hewletl Packar<I llaliana S p A 
Corso GHJv<lnni L.rn1a 94 
I 101'.lO Torino 
Tel 1011168?24!J659308 
MecJ1crtl Cdlcu!ators Only 
HewleM Packa1r1 ltahana S p A 
Via Princ1pP. Nicola 43 G C 
I 95126 Catania 
Tel 10951 37 05 04 
Hewletl Packarr1 ltal1ana S p A 
Via Amerigo Vespucci 9 
I 80142 Napoli 
Tel !0811 33 17 11 
Hewletl Packaid ltal1ana S p A 
Via E Masi 9 B 
I 40137 Bologna 
Tei 1os11 :io 78 111 

KUWAIT 
Al Khalr11ya 

P r\ 0~~~C~!~8 
Kuwait 
Tel 42 49 10 
Cable VISCOUNT 

LUXEMBURG 
Hewlett PilckarrJ HenP.lux 
SA NV 
Avenui~ rlt1 Col-Vert 1 
IG1oenkraaglaan) 
B 11 70 Brussels 
Tel 1021 612?? 40 
Cable PALOBEN ll1ussels 
Telex 23494 

MOROCCO 
Gerr.p 
190 Blvd Hrril11n1 Rnurlani 
Casablanca 
lei ?~i161625'l099 
Cdt)le Gerep-Ca~a 
Telex ?Tl:l'l 

NETHERLANDS 
Hewlell· Pack.i"I Benelux N V 
Van Heuven Goedtlarll1:1an 1?1 
P 0 Box 667 
NI I 1'.l4 Amstelveen 
Tel 10201 41 20 ?1 
Catile PAL.OBEN Amstwlam 
Tr.1ex 11 ?10 liep;i nl 

MASSACHUSETIS 
32 Hartwell Ave 
Lexington IJ2t 13 
fol 16171 861 896C 
TWX llO<l?f,-li90,1 

MICHIGAN 
23855 Researct1 IJ11ve 
Farmington Hills 48024 
lei r3131 416-6400 

MINNESOTA 
2400 N f'111ir Ave 
St. Paul )5113 
lei •fil?· fi:lo-0100 

MISSISSIPPI 
'Jackson 
Me(J1cal ()erv1u~ only 
lei 1fiOl 1 98? 9363 

MISSOURI 
11131 Color,ido Avf:' 

\<e~nl~~~SJ~ ~~!ir 
TWX 910 7/1-2081 

10?4 Fw:u11ve Parkway 
St. Louis 63141 
Tel 13141 878-0?00 

NEBRASKA 

~~f 1~~r~/:11Aoacl 
Suite 110 
Omaha 68105 
Tel 14021 39?-0948 

NEW JERSEY 
W 120 Century Hrl 
Paramus IJ 7n5? 
Tel 12011 265·5000 
TWX 710·990-4901 
Crystal Amok Profe~s1onal 

R1i1!<1mq 
Eatontown 077?4 
Tel 1701, 'i42 1384 

NORWAY 
He.wletl Packard Norqe A:S Hewlett-Packard Espanola S A 
Nesve1en 13 Ed1f1c10 Albia If 7 B 
Box 149 E-Bilba<>-t 
N t344 Haslum Tel 23 83 06/23 82 06 

} ~:e; 0~W1 s;P~~s n Calculators Only 
HewleM-Packard Espanola S A 

POLAND Gran Via Fernando El Catdhco. 67 
Biuro lnforT1aCJ1 Techn1czne1 E-Valencia-8 
HewleM Packard Tel 326 67 281326 85 55 

~ci-~J~~~;sz6:wa SWEDEN 
Tel 39596:' 395187 ~~~~~:~~~~~~r~ -~venge AB 
Telex 81 ?4 53 hepa pl Fack 
UNIPAN S-161 20 Bromma 20 
laklad Dosw1adczalny Tel (08) 730 05 50 
Budowy A,aratury Naukowe1 Cable MEASUREMENTS 
U1 Kra1owe1 Rady Narodowe1 51 '5~ Stockholm 
00-800 Warszawa telex 10721 

~~:e:6~il046 48 8~~~e~;~tae~~~~~ns~~nge AB 

Za~~Jy~z~~r~~cze Spr1e1u f~io[o{g) ~~e~!~o 
~6a~i\<7~~'d'/aryskie1 6 Hewlett-Packard Svenge AB 

Tel 334 41. 337 83 ~r~t;\'s~nn.,;~ra Frolunda 

~e?e~;:-au~r~p~esa Tecrnca r1e i~:e~ 0mif 31~ ~~omma Office 

Equ1pamen'.OS Electncos s a r I SWITZERLAND 
~uo RBoo~ri~~3~a Fonseca 103 Hewlett-Packard (Schwe11) AG 
p Lisbon 1 Zurcherstrasse 20 
Tel 119) 611 60 72 P 0 Box 307 
Cable TELECTRA Lisbon CH-8952 Schlieren-Zurich 
Telex 125!<8 Tel (01) 730 52 40/730 18 21 

~~~1J1~1~1n1y ¥:1~: ~jg~~ ~~ag ch 

lntercamb10 Muncl1al de Comerc10 Hewlett-Packard (schwe11) AG 
Sa r 1 ChMeau 81oc 19 
Av A A r1e Aguiar 138 CH-12t9 Le Lignon-Geneva 

~ 0 L~;~~,;61 t~1br~0W0~A02Ki~ Geneva 
Tel (19) 5:1 21 31 •7 Telex 27 333 hpag ch 
Cable INHRCAMBJO Lisbon SYRIA 

RUMANIA. Med1cal1Calculator only 
HewleM Packard Repre;entanta Sawah & Co 
Bel N Balci,scu 16 Place Azrne 
Bucharest B P ?308 
t et 158023 138885 SYR-Damascus 
Telex 10440 Tel 16367 t9697 14268 
J 1 R U C Cable SA WAH. Damascus 

lntrepnnde1ea Penlru TURKEY 
lntrel1ne1ea felekom Eng1neenng Bureau 

S1 Repa1 area Ut1la1elor de Calcul P 0 Box 437 
B·dul prol D1m1tne Pompei 6 Beyoglu 
Bucharest-Sectorul 2 TR-Istanbul 
Tel 12 64 30 Tel 49 40 40 
telex 11716 Cable TELEMATION Istanbul 

SAUDI AFIABIA Telex 23609 
Modern Electronic Establ1shme111 Medrcal only 

~iig ~~~u~ :~21~1 str (Head offiC1'i ~;;:,:nd1sl1k Kollekt1f Sirket1 
Jeddah Adakale Sokak 4116 
Tel 31113-332201 TR-Ankara 
Cable ELECTRA Tel 175622 

P O Box 2 .'28 (Serv1Ce center} Analytical only 
Riyadh Y1lmaz Ozyurek 
Tel 62596-66232 Milli Mudalaa Cad No 16/6 
Cable RAOIJFCO K1Zrlay 

TR-Ankara 
SPAIN Tel 25 03 09 
Hewlett Packard Espanola SA Telex 42576 Ozek tr 
Jerez. Calle 3 
E· Madrid '6 UNITED KINGDOM 
Tel 111 4~>8 26 oo 110 1111csl Hewlet1-Packard Ltd 

Telex 23515 hpe ~1~_gvJit~~!r~a~.e Wokmgham 
Hewlett Packard E spa riot a S A Berks RG 1 t 5AR 

~ 1~~~~~1i~1{~ ii Tel (0734) 78 47 74 

fel (31 203 6200 15 lines) ~:1~1: 8~~~f~~9London Telex 52603 hpbe e 
Hewlett Pac•ard Espanola S A 
Av Ramr1n y Ca1al 1 
Er111ic10 Sevilla. planta 9 
F-Seville 5 
Tel 54 44 !:.4'58 

NEW MEXICO 
I' lJ Box 1 ·534 
Station E 
11300 Lomas Blvd NE 
Albuquerque 8 7123 
Tel i505t 292 1330 
TWX 910 989 1185 
156Wyatt fl11ve 
Las Cruce·s 88001 
Tel i50'iJ 'i?fi-2484 
TWX 910-9983-0550 

NEW YORK 
6 Autornatton Lane 
Compute1 Park 
Albany 12'05 
Tel 1518) 458 1550 

20 I Sout11 lwenue 
Poughkeepsie 12601 
Tel 19141 454 7330 
TWX 510·253-5981 

650 Perinton Hill Office Park 

f ~irf?~~I j~j5~950 
5858 East Molloy Road 
Syracuse 13211 
Tel i3t5) 454 2486 
I WX 110- 541-0482 
1 Crossway·; Park Wes1 

¥':,1°~~1~~r~2 ~ \f i~o 
TWX 710-9904951 

NORTH C,ii,ROLINA 
P 0 Box 5188 
1923 North Marn Sireet 
High Point 2726? 
Tel (919) 885-8101 

OHIO 
16500 Spraque Roar1 
Cleveland 44130 
Tel (2161 243-7300 
TWX Bt 0-423-9430 

330 P1ogre's Rd 
Dayton 45.149 
Tel 10111 85g-820? 

Hewfetl-Packard Ltd 
Tralalger House. 
Navagat1on Road 
Altrincham 
Cheshire WA14 1NU 

1041 Kingsm1ll Parkway 
Columbus 43229 
Tel (614) 436-1041 

OKLAHOMA 
P 0 Box 32008 
Oklahoma City 73t32 
Tel (405) 721-0200 

OREGON 
17890 SW Lower Boones 

Ferry Road 
Tualatin 97062 
Tel ( 503 ! 620-3350 

PENNSYLVANIA 
111 Zeta Dnve 
Pittsburgh 15238 
Tel (412) 782-0400 

1021 8th Avenue 
King of Prussia Industrial Park 

~~1"Y2 ~~t26't%aoci 9406 

TWX 510-660-2670 

SOUTH CAROLINA 
6941-0 N Trenholm Road 
Columbia 29260 
Tel (803) 782-6493 

TENNESSEE 
"Knoxville 
Medical Service only 
Tel (615) 523-5022 

3027 Vanguard Dr 
Director's Plaza 

~f'(,fo~i)s 3~i1 ~i 70 

Nashville 
Medical Service only 
Tel (6t5) 244-5448 

TEXAS 
P 0 Box 1270 
201 E Arapaho Rd 
Richardson 75080 
Tel (?141 23t-6101 

Tel (061)9286422 
Cable Hewp1e Manchester 
Telex 668068 

Hewlett-Packard Ltd 
Lygon Court 
Hereward Rise 
Dudley Road 
Halesowen. 
West Midlands B62 BSD 
Tel (021) 550 99t 1 
Telex 339105 

Hewlett-Packard Ltd 
Wedge House 
799. London Road 
GB-Thornton Heath 
Surrey CR4 6XL 
Tel (01i 684 010318 
Telex 946825 

Hewlett-Packard Ltd 
c/o Makro 
South Servicehofesafe Centre 
Wear Industrial Eslate 
Washington 
GB-New Town. County Durham 
Tel Washrngton 464001 ext. 57/58 

Hewlett-Packard Ltd 
10. Wesley St 
GB-Castleford 
West Yorksh11e WF10 1AE 
Tel (09775) 50402 
Telex· 557355 

HewleM-Packard Ltd 
1, Wallace Way 
GB-Hitchin 
Herts 
Tel (041i2) 52824/56704 
Telex· 825981 

USSR 
HewleM-Packard 
Representative Office USSR 
Pokrovsky Boulevard 4/17-KW 12 
Moscow 101000 
Tel 294-2024 
Telex. 71l25 hewpak su 

YUGOSLAVIA 
Iskra-standard/Hewlett-Packard 
Mikfosiceva 38Nll 
61000 Ljubljana 
Tel. 31 58 79/32 t 6 7 4 
Telex· 31583 

SOCIALIST COUNTRIES 
NOT SHOWN PLEASE 
CONTACT: 
Hewlett-Packard Ges.m b.H 
P.O. Box 7 
A-1205 Vienna. Austna 
Tel (0222) 35 16 21 to 27 
Cable. HEWPAK Vienna 
Telex. 75923 hewpak a 

MEDITFRRANEAN AND 
MIDDLE EAST COUNTRIES 
NOT SHOWN PLEASE CONTACT; 
Hewlett-Packard S A 
Mediterranean and Middle 
East Operatrons 
35. Kolokotron1 Street 
Platra Kefalfanou 
GR-Krfrssia-Athens. Greece 
Tel 8080337/359/429 
Telex. 21-6588 
Cable HEWPACKSA Athens 

FOR OTHER AREAS 
NOT LISTED CONTACT 
Hewlett-Packard SA 
7. rue du Bois-du-Lan 
P 0 Box 
CH·1217 Meynn 2 ·Geneva 
Switzerland 

~~1b1~0~M~fc°Kg~ Geneva 
Telex 2 24 86 

10535 Harwin Dr 
Houston 77036 
Tel (713t 776-6400 

205 Brlly Mitchell Road 
San Antonio 78226 
Tel (5121 434-8241 

UTAH 
2160 South 3270 West StreeJ 
Salt Lake City 84119 
Tel (8011 972-471 t 

VIRGINA 
P 0 Box 12778 
No 7 Koger Exec Center 
Surte 212 
Norfolk 23502 
Tel (804) 461-4025/6 
P 0 Box 9669 
2914 Hungary Spnngs Road 
Richmond 23228 
Tel (804) 285-3431 

WASHINGTON 
Bellefield Office Pk 
1203-114th Ave SE 
Bellevue 98004 
Tel (206) 454-3971 
TWX 910-443-2446 

·wEST VIRGINIA 
Med1cal/Analytrcal Only 
Charleston 
Tel (304) 345- 1640 

WISCONSIN 
9004 We~;t Lrncoln Ave 
West Allis 53227 
Tel (414) 541-0550 

FOR U.S. AREAS NOT LISTED: 
Contact t11e regional office 
nearest you Atlanta, Georgia 
North Hollywood. California 
Rockville. Maryland .Rolling Meadows. 
lllrno1s.Their complete 
addresses are lrsted above 

·service Only 

8177 



NOTICE 

The information contained in this document is subject to change without notice. 

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATER­
IAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY 
AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors 
contained herein or for incidental or consequential damages in connection with the furnishing, perfor­
mance or use of this material. 

This document contains proprietary information which is protected by copyright. All rights are reserved. 
No part of this document may be photocopied or reproduced without the prior written consent of 
Hewlett-Packard Company. 




	0001
	0002
	001
	002
	003
	004
	005
	1-00
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	5-01
	5-02
	5-03
	5-04
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	x-01
	x-02
	x-03
	xBack

