
RTE-IV Programmer's
Reference Manual

HEWLETT f P PACKARD

PART NO. 92067-90001

RTE-IV Programmer's

Reference Manual

(This manual reflects information that is compatible with
software revision code 1826.)

HEWLETT WP PACKARD

HEWLETT-PACKARD COMPANY
11000 WOLFE ROAD, CUPERTINO, CALIFORNIA, 95014

Library Index Number
2RTE.320.92067-90001

Printed In U.S.A. 6/78

PUBLICATION NOTICE

Information in this manual describes the RTE-IV operating system software. Changes in text to document software
updates subsequent to the initial release are supplied in manual update notices and/or complete revisions to the manual.
The history of any changes to this edition of the manual is given below under "Publication History." The last change
itemized reflects the software currently documented in the manual.

Any changed pages supplied in an update package are identified by a change number adjacent to the page number.
Changed information is specifically identified by a vertical line (revision bar) on the outer margin of the page.

ii

PUBLICATION HISTORY

First Edition June 78 (Software Rev. Code 1826)

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATER­
IAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the furnishing, perfor­
mance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is
not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are reserved.
No part of this document may be photocopied, reproduced or translated to another program language
without the prior written consent of Hewlett-Packard Company.

Copyright © 1978 by HEWLETT-PACKARD COMPANY

1>0CUMENTATION MAP

•

92067 A RTE-IV
Software Numbering
Catalog
92067-90004

I +
RTE-IV On-Line
Generator Reference
Manual
92067-90002

+

c START

___ __._... RTE-IV Programmer's

Reference Manual
92067-90001

,, ,,
RTE Interactive Batch-Spool RTE Utility

Programs Editor Reference
Manual
92060-90014

7700-141

Monitor
Reference Manual Reference

92060-90013 Manual
92060-90017

Individual
Driver Manuals,
as appropriate

ROM Loader
Manual
12992-90001

21 MX-M Serles
Operator's Manual
02108-90004

or
21 MX-E Serles
Operator's Manual
02109-90001

I
RTE-IV EMA Firmware
Installation Manual
92067-90006

and

RTE-IV EMA Firmware
Diagnostic Manual
92067-90007

~
RTE Operating
System Driver
Writing Manual
92200-93005

l_
RTE-IV
Debug
Subroutine
Manual
92067-90005

DS/1000
Programmer's
Reference
Manual
91740-90002

I-+

_ .. --,..

~

~-

DOS/RTE
Relocatable
Library Reference
Manual
24998-90001

RTE
FORTRAN IV
Reference Manual
92060-90023

RTE-IV
ASSEMBLER
Reference
Manual
92067-90003

BASIC/1000D
Multi-User
Real-Time BASIC
Reference Manual
92060-90016

IMAGE/1000
Data Base
Management System
Reference Manual
92063-90001

Decimal String
Arithmetic
Routines
02100-90140

HP 21 MX-E Series
Computer
Microprogramming
Reference Manual

L..l. 02109-90004
.... -~ 11""~ or

HP 21 MX-M Series
Computer
Microprogramming
Reference
Manual
02108-90032

iii/iv

i--t---------------------t
I I PREFACE I
l I I
+--+---------------------+

This manual describes the features and functions of the RTE-IV
operating system for HP 1000 Computers and Computer Systems. The
manual is the primary reference source for those who will be writing
or maintaining computer software, or who are otherwise involved in the
design and operation of an RTE-IV operating system.

The purpose of the manual is describe the functions and requirements
for utilizing all available system services for developing and
executing programs in a real-time environment: i.e., use of operator
commands, I/O procedures, memory allocation, hardware and software
interface, system procedures, program scheduling, on-line I/O and
memory reconfiguration, and various utility programs and relocatable
library subroutines.

It is assumed that readers of this manual already have a working
knowledge of one of the three programming languages available to
RTE-IV users (RTE FORTRAN-IV, RTE-IV Assembly Language or BASIC/10000)
and that they have a general understanding of the appropriate
Operators Manual for thefr HP computer system.

Some available manuals offering other levels of information that may
be directly relevant to system operation and user applications are
briefly summarized below:

* Batch Spool Monitor Reference Manual

Describes the uses and requirements of the Batch Spool Monitor
subsytem for those who wish to use the batch spooling feature. Of
particular relevance for all applications users is this manual's
descriptions and formats of the File Manager (FMGR) commands.

* RTE Interactive Editor Reference Manual

*

Describes the format and function of the RTE Editor (EDITR) program
commands and procedures for on-line editing services. The manual is
of particular relevance for those involved in editing source
programs or updating existing programs.

RTE Utility Reference Manual

Describes the functions and requirements for using a collection of
uitility programs, including: WHZAT (current system status
information), Disc Back-Up (copy from disc-to-disc or disc to other
device), KEYS and KYDUMP (creates softkey command string sets),
LGTAT (logs and displays system and auxiliary disc status), etc.

v

* DOS/RTE Relocatable Library Reference Manual

Describes a set of utility subroutines that are primarily used by
FORTRAN-IV and Assembly Language programs.

* RTE-IV Debug Subroutine Manual

Describes the use and formats of the interactive Debug {DBUGR)
subroutine commands that can be used in checking for logical errors
in a program. A subset of the most frequently-used DBUGR commands
are also described in a separate section of the RTE-IV Programmer's
Reference Manual.

* RTE-IV On-Line Generator Reference Manual

Describes detailed, "cookbook" procedures for generating a new
RTE-IV operating system without shutting down the existing RTE-IV
system. Complete examples of each phase and heavily annotated
worksheets are provided. Manual is primarily intended for system
managers and system programmers who are involved in the design and
rnaintanence of total system configurations.

* RTE-IV Software Numbering Catalog

A cross-referenced directory of all RTE-IV software files located
on supplied distribution media. D~scribes for users who have a file
number or part number for an RTE-IV software part how to find the
part number on the medium {or media) on which the part is
distributed. Manual is primarily intended for system managers and
others involved in generating new systems or reconfiguring existing
systems. Optional software supplied with other products is listed
in separate Software Numbering Catalogs distributed with those
products.

* Appropriate Driver Manuals

Individual manuals that aid users in determining the particular
drivers required for site-specific combinations of devices. Manuals
describe the criteria for configuring the various drivers into an
operating system. The manuals are primarily intended for those in
configuration design and generation.

* RTE-IV Operating System Driver Writing Manual

Describes the system considerations, requirements and constraints
in creating user-written drivers for specialized applications not
covered by supplied standard device drivers.

Other manuals that may be of particular interest, includin~ language
manuals, will be found listed in the Documentation Map in this manual.

vi

+--+
I I
I TABLE OF CONTENTS I
I I
+----··•"4-• , , ~···· ------------------·--·----------------------------+

Foreword Page
Glossary

Section I

G E N E R A L
Real-Time Executive
Sys tern Hardware

D E

System Software .••
.Memory Management.
Multiprogramming ••

s c H

Input/Output Processing
Resource Management •••••
Executive Communication ••
Operator Commands •••
System Configuration
Multi-Terminal Operations.
System Utility Programs •••

I p 'I'

Relocating Loader (LOADR)
File Management Package (FMP)
Interactive Editior (EDITR)
Batch Spool lY!Onitor (BSM)
WH~A·r.

DBUGR.
On-Line Generator
SW 1I'CH •••••••

((RT4GEN)

Disc Backup •••••
Disc Update •••••
KEYS and KDUMP.
LG 'I'AT •••••••••••

Programming Languages.
RTE FORTRAN IV ••••••
R~rE Assembler •••••••
RTE Micro-Assembler.
Real-Time BASIC/10000.
QUERY ••••••••• ••••••

RTE-IV System Summary.

Section II

. .

S T A N D A R D B 0 0 T U P
Boot Loaders and Boot Extension.

Disc Loader ROM •••••••••••
Bootstrap Loader ••••••••

Boot Extension Execution ••
. .

I 0 N

.
••• . .

. . . .
.

P R 0 C E D U R E S

• •

1-1
1-2
1-3
1-J
1-3
1-4
1-4
1-5
1-6
1-ti
1-7
1-7
1-8
1-8
1-8
1-8
1-8
1-9
1-9
1-9
1-9
1-9
1-10
1-10
1-10
1-10
1-10
1-10
1-11
1-11
1-11

2-1
2-1
2-3
2-3

vii

Section III
0 P E R A T 0 R C 0 M M A N D S
Introduction ••••
Command Structure •••••••••
Command Conventions •••••••
RTE-IV Operator Commands ••

AB
AS
BL
BR
DN
EQ
EQ
FL
GO
I 1r
LG
LS
LU
LU
OF
ON
PR
RT
RU
SS
ST

(abort) ••••••••••••
(assign partition)
(bu f f e r 1 i mi ts)
(break) ••
(down) •••
(status)
(bu f f e r i ng)
(flush) ••••
(reschedule)
(Interval Timer).
(LG tracks) ••
(source file) ••
(assignment) •••
(re ass ig nrnen t)
(terminate)
(schedule).
(priority) •
(release tracks)
(run) ••••••••••••
(operator suspend)
(status) •••••••

SZ (assignment) •••
SZ (reassignment)

'rM
'l10
UP

(ti me) •••••
(set clock)
(t i me-o u t) •
(make available)

.

. . .
UR (release reserved

Operator Command Error
partition)
.Messages •••

Section
E X E C

IV
C A L L S

Introduction ••••••••••••••
Assembly Language Format ••
FOR~RAN IV Format •••••••
EXEC Call Error Returns ••.
EXEC Call Summary •••••••
Standard Function Calls.

READ/v'IRITE
I /0 CON'l'lWL.
I/0 Srl1ATU S
DISC TRACK ALLOCArION
PROGRAH
GLOBAL
PROGRAM
PROGRAM
PROGRAM

viii

DISC TRACKS REL EASE
DISC TRACKS RBLEASE.

C0£'1PL ET I ON ••••
SUSPCNO •••••••
SEGMEN'r LOAD.

.

. .

TABLE OF CONTENTS

.

....
..

..

.. ..
.. ..

.

..

3-1
3-1
3-1
3-5
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
3-13
3-15
3-16
3-17
3-18
3-19
3-20
3-21
3-23
3-24
3-25
3-27

.3-28
3-30
3-31
3-33
3-34
3-35
3-36
3-37
3-38

4-1
4-1
4-2
4-4
4-6
4-9
4-9
4-12
4-16
4-19
4-21
4-22
4-24
4-27
4-28

PROGRAM SCHEDULE ••
1rHlE REUUES 1r ••••
S'I'RING PASSAGE.
TIMED EXECUTION (Initial Offset)
TIMED EXECUTION (Absolute Start Time)
PROGRAM SWAPPING CONTROL ••
PARTITION STATUS •••
MEMORY SIZE •••••••••

Class I/O EXEC Calls.
Class I/O READ/WRITE ••
Class I/O GET •••••••••
Class I /0 C ON'f ROL •••••

. . . .
Class I/O Applications Examples.
Resource Numbers and Logical Unit
Executive Error Messages ••••••

Memory Protect Violations •••
Dynamic Mapping Violations ••
Dispatching Errors •• . .
EX Errors ••••••••••• . .
Unexpected OM and MP Errors.
TI, RE and RU Errors.
Parity Errors •••••••••
Other EXEC Errors •••••
Disc Allocation 8rror Messages ••
Schedule Call Error Codes •••••••
I/O Ca 11 Error Codes ••••••••••••
Program Management Error Codes ••
Log ica 1 Uni. t Loe k Error Codes.
Executive Halt Errors •••••••••

Section V
I N p u T I 0 u T p u T
Software I/O Structure ••
Equipment '11ab1 e • • • • • • . • •
Device Reference Table ••
Log i ca 1 U n i t N um be rs • • • •
Interrupt Table •••••••••
System Base .Page Interrupt Locations •••
Driver Mapping 1I1able ••••••••••••
I/O Processor General Operation.

Standard I/O Calls ••
Power Fail ••••••••••
I/O Controller Time-Out.

Privileged Interrupt Processing.

Section VI
MEMORY M.
Addressing ••••
Memory Maps.
Phys ica 1 Memory.
Log ica 1 Memory ••
Base Page •••••••

A

. .

. .

N A G E M E N T

. .

. .

. ...

1rABLE OF CUN'rI:::.:J.'fi1S

. .

.
.

. .

. '• ..

.

4-29
4-33
4-34
4-36
4-38
4-41
4-42
4-44
4-46
4-50
4-52
4-55
4-56
4'-63
4-71
4-72
4-72
4-7 '1.
4-73
4-73
4-74
4-74
4-7 5
4-76
4-76
4-76
4-77
4-77
4-77

5-1
5-2
5-7
5-~

5-10
5-11
5-12
S-14
S-14
5-15
5-16
5-17

6-1
6-2
6-3
6-7
6-9

ix

COMMON Areas ••••••
Memory Protection •••
Partitions ••••••••
Partition Lists •••
Partition Assignment and Reservation.
.tv10tner Partitions.
Subpar ti tions •••••••••••••••••
Extended Memory Area ••••••••••
Memory Management Subroutines.

• &VlAP ••••
• EMIO.

MMAP •••
EMA ST.

Section
R EL 0

VII
C A T I N G L 0

R'rE Relocating Loader •••••
RU,LOADR Command Options.
Program Relocation ••
On-Line Mod i f i ca ti on •
Segmented Programs ••
Adding New Programs.
Program Replacement.

A D E R

Addition or Replacement Limitations ••
Program Deletion ••••
COMMON Allocations ••
Program rrypes •••••••
Loader Operation ••••
Additional Opcode Parameters ••
Loading the Binary Code.
Loader Command File.

SEARCH ••••••••••
SEARCH <namr> •••
RELOCATE <namr >.
E'ORCE •••••
DISPLAY ••
ECHO ••••
END •••
/A• • • •
*
AS,xx.
SZ,<yy> ••
LL,<namr>.
OP, <opcode>.
FM, <format>.

Loading From a Logical Unit.
Loading Segmented Pro.1rams ••
Reducing Segmented Program Load
DBUGR Library Subroutine ••
LOADR Error Reporting.
LOADR Error Codes •••••

x

Time

'rABLE

. . . .

. .

OF CONTEN'rS

..
. . . .

. . ..

. . . .

. .

. .

. .

. .

. .

6-10
6-10
6-12
6-12
6-12
6-13
6-13
6-14
6-19
6-19
6-22
6-23
6-24

7-1
7-2
7-2
7-3
7-4
7-4
7-5
7-5
7-6
7-6
7-7
7-8
7-12
7-13
7-14
7-14
7-14
7-14
7-14
7-14
7-14
7-14
7-14
7-15
7-15
7-15
7-15
7-15
7~15
7-16
7-16
7-19
7-20
·1-20
7-21

rrABLE UF CONTEN'rS

Section VIII
S E G M E N T E D P R 0 G R A M S

RTE FORTRAN-IV Segmentation
RTE Assembler Segmentation ••••

Section IX
M U L T I - T E R M I N A L
System Configuration ••••••••
Multipoint Initialization •••
Logical Unit Number Assignment ••
Operation •••••••••••••••••••••••
Available MTfv'.i Services ••••• ~ ••••
Automatic Scheduling of FMGxx •••

I ..

F:>1Gxx Execution •••••••••••••••••
BREAK and ABOR'r Command variations ••
Automatic Program Renaming ••••
Creating ~rogram Copies •••
Proq ram· Swapping ••••••••••••

Section
H'l'E- IV

x
s Y s ·r E M L I B R A R y

Introduction ••••••••••••••••••••••
Calling System Library suoroutines •••
Reentrant Subroutine Structure ••
Reentrant Subroutine Format •••••
Privileged Subroutine Structure.
Privileged Subroutine Format ••
Memory Resident Library •••••••
Utility Subroutine Structure ••
System Library Subroutines ••••
REIO - Reentrant I/O Subroutine.

..

R

BINRY - Disc Read/write Subroutine ••••
RNRQ - Resource Management Subroutine •••
LURQ - Logical Un it Loe k ••••••••••••••
$PARS - f>arse Subroutine ••••••••••••••••
INPRS - Buffer Conversion Subroutine ••••

. .

. .

. .
$CVT3, $CVT1, CNUMD, CNUMO, KCVT Binary to ASCII

Subroutines ••••••••••••••••••••••••••••••••••
MESSS - Message Processor Interface Subroutine ••
EQLU - Interrupting LU Query ••••••••••••••
PTRN, PTRM - Parameter Return Subroutines.
.DRCT - Indirect Address Subroutine •••••••••
IFBRK - Breakflag Test Subroutine •••••••••

..

..

..

. .

. .

. . ..

COR.A, COR.B - First word Available Memory Subroutine •••
IDGET Retrieve Program's ID Segment Address.

Current Time Subroutine •••••••••••••••••••••••••
Recover Parameter String ••••••••••••••••••••••••

..

TM.VAL
GE'rST
IF 1rTY
LOG LU

Query Whether Logical Unit is Interactive or Not ••
Re tu r n s Lu of Te rm i na 1 •r hat Sch e du 1 e d Pr og r am.

• EMAP, .EMIO, MMAP, EMAST Subroutines •••••••••••••••••••••

. .

..

b-2
8-3

~-1

9-1
9-3
9-3
9-4
Y-4
9-4
9-5
Y- 7
Y-8
9-~

lU-1
10-1
10-2
10-3
lU-3
10-4
10-4
10-S
10-5
10-6
10-6
10-7
10-11
10-13
lU-14

10-14
10-15
10-lb
10-16
10-18
10-18
10-19
10-20
10-21
10-21
10-22
10-22
10-2 3

xi

TABLE OF CONTENTS

Section XI
DE BU GR I N 1' E
Calling DBUGR •••••••
Entering DBUGR ••
DBUGR Commands ••••

. .
R A c ••

T I V E D E B u G G I N G

• •
• ••••••••••••••••••••••• ill ill ill ill ill ill ill ill •••• ill ill

D BUGR Modes •••••••••
Expressions and Terms... •••
Examine Memory........ • • • • • • • • • • • • • •
Modify Memory •••••
Examine Registers.
set tin•;, a Label.
Execute Program.
Breakpoints •••••
Tracing •••••••••
DBUGR Error Messages ••
DBUGR Example •••••••••

Section XII

• • ill •
....

M E M 0 R Y A
Schedulin·;] the
Scheduling the

N D I/O R E C 0 N F I G U R A T I
Configurator From Disc I.Dader ROM ••
Conf igurator From Bootstrap Loader.

Configurator Program ••••••••••••••••••••
Configurator Halts and Error Messages •••
Reconfiguration Procedures ••••••••
I/O Reconfiguration Steps •••••••••
Memory Reconfiguration Procedures.
Excluding Bad Pages •••••••••••••
SAM Extension Reconfiguration ••••• .. Changing Partition Definitions ••••
Changing Program Partition Assignments •••
Program Partition Assignments •••••
Reconfiguration Example •••••••••••
Boot-Up and Reconfiguration Halts.
Configurator Error Messages •••••••

Appendix A

...

..

0 N

. . . .
..

.

11-1
11-2
11-3
11-3
11-4
11-5
11-6
11-6
11-7
11-7
11-8
11-11
11-12
11-13

12-1
12-3
12-3
12-4
12-4
12-5
12-8
12-9
12-9
12-10
12-14
12-15
12-16
12-19
12-21

HP CHARACTER SET •••• •••••••••••••• •••••• •••••••••••••••••••••••• A-1

Appendix B
SYSTEM COMMUNICATION AREA AND
System Communication Area.
Program ID Segment •••••••••••• . . ID Segment Extensions •••••
Short ID Segments •••••••••
Memory Allocation Table Entry.
RTE-IV System Disc Layout •••••

Appendix C
RECORD FORMATS
Source Record Formats.
NAM Record •••••••.••••

xii

..

SYSTEM TABLES

........

• •

. .

.

B-1
B-4
B-8
B-9
B-9
B-11

C-1
C-3

'rABLE OF CONTENTS

ENT Record. C-4
EXT Record. c-~
DBL Record. C-6
EMA Record. C-7
END Record. C-7
Absolute 'rape Format •• C-8

Appendix D
Rr .. CE-IV VERSUS R'fE-II I. D-1
Logical User Map •••••• D-1
Driver Partitions ••••• D-1
'l'ype 2, 3 and 4 Programs •• D-1
Extended Memory P..r eas ••• •• 0"1"2
Memory Resident Library. D-2
File Input/Output ••••••• D-2
Parity Error •••••••••••• . D-2
Memory and I/O Reconfiguration •• l D-2
Appendix E
TABLE AREA I AND I I ENTRY POIN'rS •••••••••••••••••••••••••••••••• E-1

Appendix F
RTE-IV PROGRAM TYPES •••••••••••••• •••••••••••••••••• •••• •••••• •• F-1

Appendix E
ERROR MESS.!\GES INDEX •• C-1

I L L U S T R ~ T I 0 N S

Readh·Jrite (conwd) Format •••••••••
I/O Control (conwd) Format •••••••• . . Partition Status Parameter Return.
Partition Current Status Example •••••
Class Number (ICLAS) Format •••••••
Class I/O Multiple Terminal Input Example.
Dispatching Input to Subtasks for Processing
"Deadly Embrace" Examples •••••••••••••••
B::iuipment 1rable Entry Format ••••••••••••
CO~WD word (EQT Entry word 6) Expanded ••
Device Reference Table Entry Format.
Device Reference Table ••
Driver Mapping Table ••••••
R1rE-IV Address

. .

. .

. .
Physical Memory
R'rE-IV 3 2 K v~o rd

Scheme •••
Allocations.
Loq i ca 1 Memory Configurations.

Base Pa·ge Structure •••••••••••
Memory Protect :t•'ence Locations for Programs
EMA and MSEG Structure ••••••••
Multiple Data Arrays Organization.

Using COMMON ••

4-10
4-13
4-44
4-46
4-51
4-58
4-62
4-68
5-3
5-6
5-7
5-8
~-13
6-2
6-5
o-8
6-~

G-11
6-16
6-18

xiii

Segmented Program Example.
Segmented Pro~rams ••••••
Ma in Calling Segment ••••
Segment Calling Segment.
Segment to Main Jumps •••
RNRQ Control \\0 rd Format ••
Reconfiguration Example.
ID Segment Format •••••••

. .

..

. ID Segment Extension ••••
t-iernory Allocation ·rable Entry
R~E-IV System Disc Layout.
Source Record Formats

Format.

T A B L E S

summary •••••••••••• Opera tor Command
Operator Command
uperator Command

Syntax Conventions ••
Error Messages •••••

R'I'E EXEC Calls ••••••••••••••••••••••
I/O Status Word (ISTA1/ISTA2)
EQT word 5 Status Table •••

Format.

Class Input/Output Terms ••
EXEC Call Error summary.
Loader Error Codes ••••••••
DBUGR Error Messages ••••••

.
System Boot-Up and Reconfiguration Halts ••
I/O and Memory Reconfiguration Error Codes ••
System Communication Area Locations.. ••
R11 E- IV Program Types ••••••••••••••••

xiv

. . . .

.

. .

·rABLE OF' cowrEL·H3

..
. .

. .

. .

.

. .

. . . .
.
..

.

.

. .

.. . .

.

7-16
8-2
8-3
8-4
d-4
10-9
12-16
cl-5
B-8
B-~

B-11
C-1

3-2
3-4
3-38
4-7
4-18
4-19
4-48
4-79
7-22
11-12
12-20
12-22
B-2
F-1

+--+---------------------+ I I I
I I GLOSSARY OF TERMS I
I I I
+--+---------------------+

ABSOLUTE PROGRAM - A program that has been relocated and is capable of
being loaded into main memory for subsequent execution. An "absolute
programu is synonymous with "relocated program."

ABSOLUTE SYSTEM - 'l1he binary memory image of an RTE system (stored on
Logical Unit 2).

ADDRESS SPACE - see ~OGICAL MEMORY or PHYSICAL MEMORY.

ASYNCHRONOUS DEVICE ~ A device that can perform I/O operations that
are independent of time considerations but operates simultaneously
with program execution. Interaction with tne computer is through
request/response circuitry.

AUXILIARY DISC SUBCHANNEL - An optional subchannel that is treated as
a logical extension of the system disc subchannel, Logical Unit 2. If
used, it is assigned t~ Logical Unit 3. The binary memory image of
RTE-IV may not reside on the auxiliary subchannel.

BACKGROUND (BG) - An arbitrary name for one of two types of partitions
in R'fE 1 generally used for lower priority programs whose responses to
interrupts are not time-critical.

BASE PAGE - A 1024-word area of memory corresponding to logical page
O. It contains the system's communication area, driver links, trap
cells for interrupt processing, and system and/or user program links.

BASE PAGE FENCE - A hardware register that divides a logical base page
into a portion containing the user's base page and a portion of the
system's base page.

BG - See BACKGROUND.

BLOCK
bytes.

Two logical disc sectors of 128 bytes each, totaling a 256

BOOT EXTENSION An absolute program that resides on the first two
sectors of logical track 0 of the system subchannel. The Boot
Extension itself is first loaded into memory by the Bootstrap Loader
or ROM Loader.

BOOT FILE - An optional file to which the Bootstrap Loader produced by
the on-Line Generator is stored. This may be a disc file or a logical
unit (e.g., a mini-cartridge).

1

GLOSSARY OF TERMS

BOOTSTRAP LOADER - A loader produced by the Generator and stored in
the boot file. The Bootstrap Loader loads the Boot Extension into
memory and then transfers control to the Boot Extension.

BOOT-UP - The process of bringing the Bootstrap Loader or ROM Loader
contents into memory. Control is then transferred to the Boot
Extension to begin the initializatrion process.

BUFFER An area of memory (main-memory, mass memory or local
peripheral memory) used to temporarily store data.

CLASS I/O A means of buffering data between devices and user
programs, and between programs themselves, that permits a user program
to continue execution concurrently with its own I/O. The term "I/O
without program wait" is a more commonly used term.

CLOSE FILE - A method of terminating a program's access to a file so
that no further read/write operations may be performed on the file.

COMMON - An area of memory that can be accessed by a program and its
subprograms. usually used to pass data from a program to a subprogram.
In R'rE, system COMMON may be used to pass data fr om one program to
another.

CONFIGURA·roR A two-part pro13ram that allows reconfiguration of an
R'rE system's 1/0 and physic al memory structures without going through
a new system generation. The configurator is initiated as an option
during the startup process.

CURRENT PAGE - The memory page in which the executing instruction is
located. Some 21MX memory reference instructions can only directly
reference locations in two pages: current page and base page.

DATA CON'rROL BLOCK (DCB) - A table within an executable program that
contains information used by the File Management Package (FMP) in
performing disc accesses. (See the RTE Batch Spool Monitor Reference
Manual.)

OCPC - see Dual Channel Port Controller

DEVICE DOWN Relates to the state of a peripheral device or I/O
controller. When the device is down, it is no longer available for use
by the system. The term also refers to the DN operator command.

DEVICE INDEPENDENCE - Refers to the ability of a program to perform
I/O without knowing which physical device is being accessed (see also
Logical Unit Number) •

2

GLOSSARY OF TERMS

DEVICE REFERENCE TABLE (ORT) A table created during system
generation corresponding to Logical Units 1 through 63. The contents
of the Device Reference Table include a pointer to the associated EQT
entry, subchannel number of the device, and information as to whether
or not the device is locked. The table may be modified by the user
through an LU command.

DEVICE
device.
response
assumed
prevent
response

TIMEOUT A time interval associated with a specific I/O
If the system expects a response from such a device and this
does not occur within the timeout period, the device is

to be inoperative by the system. This feature is necessary to
a program from getting "hung up" because it is waiting for a
from a non-functioning peripheral device.

DIRECT MEMORY ACCESS - See Dual Channel Port Controller.

DIRECTORY A list of programs and files currently stored on a disc
subchannel that can be displayed by the user~

DISC Strictly speaking, the term means the platter(s) with the
storage medium only; however the term is also loosely used to mean the
entire peripheral including the drive.

DISC-BASED - Refers to an operating system using a disc storage device
as an integral part of the operating system.

DISC FORMATTING The process by which physical track and sector
addresses are written in the preamble of each disc track sector. Disc
formatting may be performed by the appropriate disc diagnostic. After
formatting is completed, the SWTCH program and Disc Backup utility may
perform subchannel initialization.

DISC-RESIDENT A term applied to programs in executable form
(absolute) that are stored on disc and brought into main memory for
execution by the system in response to a program or operator request,
time-of-day schedule or an I/O interrupt.

DISC ROM BOOT A loader residing in Read-Only Memory that loads
(off-line) the Boot Extension from disc storage and transfers control
to the Boot Ex tension. (See also BOOT EX 1rENS ION and STAR'rUP.)

DISPATCHER An RTE system module that selects, from the scheduled
list, the highest priority program to be executed next. The dispatcher
module loads the program into memory from disc (if the program is not
already in memory) and transfers control to the program.

OMA - See Dual Channel Port Controller

OMS - See Dynamic Mapping System

DORMANT PROGRAM A dormant program is one that is "sleeping" or
inactive. More specifically, in RTE it is a program that is neither
executing, suspended nor scheduled.

3

GLOSSARY OF TERMS

DOWN
use.

Status of a device controller EQT that is not available for

DRIVER - A software module that interfaces a device and its controller
to an operating system. Drivers specified by EQT definitions will go
into either a driver partition or into the System Driver area of
memory.

DRIVER PARTITION A block of memory that contains one or more
drivers. In RTE-IV, all drivers are in physical memory: however, only
the driver partition containing the driver currently being used is
included (mapped) in the logical address space.

DRT - See DEVICE REFERENCE TABLE

DUAL CHANNEL PORT CONTROLLER (DCPC) A hardware accessory that
permits an I/O process to transfer data to or from memory directly, or
access memory, thus providing a much faster transfer of data. The
operating system controls access to the DCPC channels.

DYNAMIC BUFFER SPACE - Additional buffer space allocated to a program
after the program code itself. The additional size is determined by
the user. Typically used only by assembly language program.

DYNAMIC MAPPING SYSTEM - A hardware accessory allowing partitioned
memory systems to address memory configurations larger than 32K words
of physical memory.

EMA - See Extended Memory Area

EQT - See Equipment Table

EQT EXTENSION - A method for increasing the size of an Equipment Table
entry's buffer space, during system generation, that gives the
specified I/O driver more words of storage space than are available in
the EQT temporary storage area.

EQUIPMENT TABLE (EQT) - A table in memory associating each physical
I/O device controller with a particular software processing routine
(driver). For a given device, the EQT provides status information,
temporary storage and parameter passing services (see also Device
Reference Table and Interrupt Table).

EXEC - One of the RTE system modules that interfaces user programs to
the operating sys~em.

EXTENDABLE FILE An FMP file that is automatically extended in
response to a write request to points beyond the range of the
currrently defined file. An extent is created with the same name and
size as the main, and the access is continued.

4

GLOSSARY OF TERMS

EXTENDED MEMORY AREA (EMA) An area of physical memory that may
extend beyond the user's logical address space and is used for large
data arrays. Its size is limited only by the amount of physical memory
available. An entire array is resident in physical memory although
the entire array is not currently in the logical address space.

EXTERNAL REFERENCE A reference to a declared symbolic name not
defined in the software module in which the reference occurs. An
external reference is satisfied by another module that defines the
reference name by an entry point definition.

FILE - A defined section of memory on a storage device used to store
data or programs.

FILE EXTENTS - See EXTENDABLE FILE

FILE MANAGEMENT The operating system functions associated with
maintaining disc files (translating file names to physical disc memory
areas1 maintaining a directory1 checking for security codes1 etc.).

FILE MANAGEMENT PACKAGE (FMP) - A collection of subprograms used to
access, control and maintain files.

FILE MANAGER (FMGR) A program that provides FMP file creation,
access and manipulation services through FMGR commands entered by the
user.

FMGR - See File Manager

FMP - See File Management Package

FOREGROUND A purely arbitrary name for one of the two types of
partitions in RTE1 generally used for higher-priority programs. The
"foreground" area is synonymous with the real-time area.

GLOBAL TRACKS - Global tracks are a subset of system tracks and are
accounted for in the track assignment table. Any program can
read/write or release a global track (i.e., programs can share glcbal
tracks).

HP-IB The Hewlett-Packard version of the IEEE standard 488-1975
Digital Interface for Programmable Instrumentation. The HP-IB provides
two-way communication between instruments and/or between computers,
instruments, or peripherals.

ID SEGMENT - A block of words, associated with each resident program,
that is used by the system to keep track of the program's name,
software priority field, current scheduling status and other
characteristics. Every program must have its own ID segment.

5

GLOSSARY OF TERMS

ID SEGMENT EXTENSION A method for increasing the size of an ID
segment to save additional information about its associated program.
The extensions are used only for EMA programs (see EMA). ID segment
extensions are automatically allocated by the generator or loader, but
only if sufficient ID segment extensions were specified during system
generation.

INTERRUPT The process (usually initiated by an I/O device
controller) that causes the computer to signal an executing program,
in an orderly fashion, for the purpose of transferring information
between a device and the computer.

INTERRUPT LOCNrION - A sing le memory location whose con tents (always
an instruction) are executed upon interrupt by an I/O device
controller (same as trap cell).

INTERRUPT TABLE (INT) - A table that associates interrupt links with
the octal select codes of peripheral devices to specific EQT entries
or programs.

I/O - A general term referring to any activity between a computer and
its peripheral devices.

I/O CONTROLLER - A combination of interface card(s), cable, and (for
some devices) controller box used to control one or more I/O devices.

I/O DEVICE - A physical unit defined by an EQT entry (I/O controller)
and subchannel.

I/O WITHOUT viAIT - See Class I/O.

KEYWORD TABLE - A table of ID segment addresses

LG AREA - A <~roup of tracks used to temporarily store relocatable code
that can be accessed by the File Manager.

LIBRARY A collection of relocatable subroutines that perform
commonly-used (e.g., mathematical) functions. Subroutines are appended
to referencing programs or are placed in the memory resident library
for access by memory resident programs.

LOADER - A program that converts the relative addresses of relocatable
progra~s to absolute addresses compatible with the memory layout of a
particular system.

LOCAL COMJ.'40N An area of COMMON appended to the beginning of a
program and accessible only by that program, its subroutines or
segments. This type of COMMON can be specified only during on-line
relocation by the loader (LOADR).

LOCKED DEVICE - See Logical Unit Lock.

LOCKED FILE - A file opened exclusively to one program and therefore
not currently accessible to any other program.

6

GLOSSARY OF TERMS

LOGICAL MEMORY Logical memory is the 32K-word (maximum) address
space described by the currently enabled memory map. If the System Map
is enabled, it describes those areas of physical memory necessary for
the operation of RTE-IV. When the User Map is enabled, it describes
those areas needed by the currently executing program. DCPC maps
des er ibe the address space to/from which the transfer is taking place.

LOGICAL UNIT LOCK - A mechanism for temporar i.ly acquiring exclusive
use of an I/O device or devices by a program, to ensure its I/O
completion before being preempted by a another program.

LOGICAL UNIT NUMBER (LU) - A number used by a program to refer to an
I/0 device. Programs do not refer directly to the physical I/O device
select code number, but rather through the LU number that has a
cross-reference to the device.

LU - See LOGICAL UNIT NUMBER

MAILBOX I/O A Class I/O term applied to a protected buffer that
keeps track of the "sender" and "receiver" program for each block of
data in the buffer used in program-to program communication.

MAIN PROGRAM The main body of a user program (as opposed to the
whole program, which may include subroutines or segments).

MAP - Applied to 21MX or XE machines, the term applies to a set of 32
registers that point to 32 pages of physical memory defining a
32K-word logical address space.

MAPPING SEGMENT (MSEG) The area of an EMA that is cuurently
accessible within the user program's logical address space.

MEMORY PROTECT - A hardware accesory that allows an address (memory
protection fence) to be set so that when in protected mode, the
locations below that address cannot be accessed by writes or JSB/JMP
instructions.

MEMORY-RESIDENT LIBRARY A collection of reentrant or privileged
library routines available only to memory resident programs (in
RTE-IV). These routines are included in the disc-resident relocatable
library for appending to disc-resident programs.

MEMORY-RESIDENT PROGRAM - A program that executes from a designated
area in physical memory and remains in memory, as opposed to a
disc-resident program that may be swapped out to the disc or leaded
from the disc to another area in memory. Memory resident programs are
loaded during system generation (only), and usually are high priority
programs with shott execution times.

7

GLOSSARY OF TERMS

MOTHER PARTITION A partition that may be larger than the maximum
logical address space and which may consist of a group of
subpartitions. The subpartitions allow many smaller programs to use
the memory when the mother partition is not active.

MSEG - See Mapping Segment

MULTIPROGRAMMING A technique whereby two or more routines or
programs may be executed concurrently by an interleaving process,
using the same computer. Multiprogramming is an attempt to improve
equipment efficiency by building a queue of demands for resources,
achieved by having available in main memory more than one task waiting
for resource usage. The concurrent tasks are then multiplexed among
each other's wait time intervals.

MULTI-TERMINAL MONITOR - A system software module that provides for
interactive program development and editing in a multi-terminal
environment controlled by a single computer.

OFF-LINE Refers to use of the computer and/or I/O devices by
resources other than the RTE operating system or subsystems.

ON-LINE - Refers to software or I/O devices recognized and controlled
by the main operating system at the time they are being used.

ON-LINE GENERATOR A program that permits use of an existing RTE
operating system's services to generate a new system from relocatable
software modules found in the File Manager Area. System control can
then be transferred to the new operating system through use of a
program called SWTCH. (See RTE-IV On-Line Generator Reference Manual.)

ON-LINE LOADING The relocation of programs through use of the
Relocating Loader (see RELOCATION).

OPEN FILE - A method of gaining access to a specific file to perform a
read/write instruction.

OPERATOR'S CONSOLE - see SYSTEM CONSOLE

OPERATING SYSTEM An organized collection of programs designed to
optimize the usage of a computer system. It provides the means by
which user programs interact with hardware and other software. (See
also REAL-TIME EXECUTIVE.)

OVERLAYS - Also called segments,these are routines that share the same
portion of main memory and are called into memory by the program
itself (see SEGMENTED PROGRAMS).

PAGE - The largest block of memory
addressed by the address field
instruction.

8

(1024 words) that can be directly
of a one-word memory reference

GLOSSARY OF TERMS

PARTITION - A predefined block of memory with a fixed number of pages
(redefinable at system boot-up) located in the disc resident program
area of memory. The user may divide the disc resident program area
into as many as 64 partitions that can be classified as a mixture of
real-time and background, all real-time, or all background.
Disc-resident programs run in partitions and at least one partition of
sufficient size must be defined during system generation to run disc
resident programs.

PERIPHERAL DISC SUBCHANNEL - A disc subchannel available to the user
for read/write operations but for which RTE-IV does not manage nor
maintain a tr a ck assignment table. It is the user's responsibility to
manage these tracks; however, the File Manager may be used to manage
peripheral subchannel tracks. A peripheral subchannnel must have a
103ical unit number assignment greater than 6.

PHYSICAL MEMORY Physical memory is the total amount of memory
defined at generation or reconfiguration time. It refers to the actual
memory in the computer; e.g., page 67 of physical memory is associated
with a certain block of actual hardware, whereas the same page might
be referred to as "page 5" in a particular block of logical memory.

POWER FAIL/AUTO-RESTART The ability for a computer to save the
current state of the system in permanent memory when power is lost,
and to restore the system to defined conditions when power returns.

PRIORITY A regulation of events allowing certain actions to take
precedence over others in case of timing conflicts.

PRIVILEGED DRIVERS - I/O drivers whose interrupts are not processed by
the RTE operating system. Such drivers offer improved response time
but must perform their own internal housekeeping; i.e., saving status
upon interrupt ..

PRIVILEGED INTERRUPTS Interrupts that by-pass normal interrupt
processing to achieve optimum response time for interrupts having the
greatest urgency. Privileged interrupts are handled by privileged I/O
drivers.

PRIVILEGED SUBROUTINE A privileged subroutine executes with the
interrupt system off (and therefore py-passes the operating system).
It allows high-speed processing at the cost of losing use of operating
system housekeeping services and real-time response.

PROGRAM STATE - Refers to the status of an executable program at any
given time. A user program is always in one of four possible states:
executing, scheduled, suspended or dormant.

9

GLOSSARY OF TERMS

PROORAM SWAPPING - see Swapping

PURGE - Refers to the act of instructing an operating system to delete
a file or program from its directory. Usually used with reference to
disc files.

REAL-TIME (RT) An arbitrary name for one of the two types of
partitions in RTE; generally used for higher-priority programs. The
real-time area is synonymous with the "foreground" area.

REAL-TIME EXECUTIVE - A collection of software modules comprising the
total operating system; e.g., EXEC, SCHED, R.TIOC, I/0 drivers and
various tables. For all practical purposes, Real-Time Executive,
operating system and RTE are synonymous terms.

RECORD A logical subdivision of a file that contains zero or more
words, and is terminated by an end-of-record mark.

REENTRANT Refers to a routine that can be shared by a number of
programs simultaneously; i.e., one program can be interrupted in its
usage of the routine to permit a higher-priority program to utilize
the routine. The first program can then reenter the routine at the
point where it was interrupted.

RELOCATABLE LIBRARIES - A collection of commonly-used subroutines in
relocatable format. For example:

System Library - subroutines that are appended to each user program
and that are unique to the operating system. This allows a user to
write programs using operating system routines but which are
independent of the operating system for subroutine execution.

DOS/RTE Relocatable Library - a collection of utility subroutines
that are primarily accessed by FORTRAN and Assembly Language
i;>rogr ams.

FORTRAN Formatters - format subroutines for FORTRAN I/O operations
and other programming languages.

RELOCATING LOADER (LOADR) A HP-supplied program that sets up
load module from a

relocated program in
and loader commands

communications links and forms an absolute
relocatable program. LOADR creates the
conformance with current system constraints
entered by the user.

RESOURCE MANAGEMENT A feature that allows the user to manage a
specific resource shared by a particular set of cooperating programs.

10

GLOSSARY OF TERMS

RESPONSE TIME - The total amount of time required to bring a real-time
program or routine into execution in response to an interrupt,
interval timer, call from another program or operator call. Response
time is usually measured in microseconds to milliseconds.

RO~ BOOT - A loader residing in Read-Only Memory that on-line loads
the Boot Extension from disc storage and transfers control to the Boot
Extension. The Boot Extension must reside on the disc physical unit
O, track O, sector O. (See also Boot Extension and Startup
definitions.)

RTE - See REAL-TIME EXECUTIVE

SAM - See System Available Memory

SCHEDULING Entering a program in the schedule list for execution,
either at the next entry into the dispatcher, or at the appropriate
time when the program's priority is high enough.

SEGMENTED PROGRAM - A technique for accommodating programs larger than
the available 1031.cal memory. "Segment" refers to tho'se slices of the
program that are brought into main memory as required, and overlay the
previous segment.

SELEC'r CODE An octal number (10 through 77) that specifies the
address of an I/O device interface card.

SIMULTANEOUS PERIPHERAL OPERATIONS ON-LINE (SPOOL) - An RTE feature
generally associated with batch operations. There is both in-spooling
and out-spooling • In-spooling consists of a program and data being
first read in from some peripheral device and placed on the disc.
Program reads are translated to disc reads instead of reads from the
peripheral device. Program writes are also translated to disc writes
instead of peripheral device writes, so that program output is on
disc. Out-spooling is the process of taking the program's output from
disc to the appropriate peripheral device.

STARTUP The startup process is initiated by the Boot Extension.
During the startup process, the tables, registers and pointers
required by the system are established. Control is then transferred
to the Configurator.

SUBCHANNEL - One of a group of I/O devices connected to a single I/O
controller. For example, RTE driver DVR23 can operate more than one
magnetic tape drive through subchannel assignments. In the case of
moving head discs, contiguous groups of tracks are treated as separate
subchannels. For example, a 7905 disc platter may be divided into four
subchannels. Each subchannel is referenced by an LU number.

SUBCHANNEL INITIALIZATION - The process of preparing a disc subchannel
for use by the RTE operating system.

11

GLOSSARY OF TERMS

SUBCHANNEL NUMBERS Decimal numbers (0-31) associated with the LU
numbers of devices with multiple functions on the same device. Each
subchannel number is associated with a specific subchannel: e.g., a
2645A terminal could have four subchannels: one for the keyboard, one
each for the right and left tape channels, and one for an optional
line printer.

SUBPARTITIONS - Partitions that are optional subdivisions of a mother
partition. Subpar ti tions have the same type (RT or BG) as the mother
partition. Subpartitions are treated like other partitions except that
they cannot be used while the mother partition contains an executing
program.

SUBSYSTEM GLOBAL AREA (SSGA) - An area of memory that consists of all
Type 30 modules loaded at generation time. The area is included in the
system address space and in the address spaces of programs that access
it (Types 17-20, and 'rypes 2 5-28) • The area may be used for data
(i.e., COMMON) •

SWAPPING - A technique whereby an executing program is suspended and
transferred to mass storage (because another program needing the same
portion of memory has been scheduled). When the interrupting program
has terminated, becomes suspended, or becomes eligible to be swapped
out, the previously swapped program may be reloaded into memory and
resumes execution at the point where it was suspended.

SWTCH PROGRAM A system utility program that transfers an RTE-IV
operating system to a specific disc area from which it can be booted
up.

SYNCHRONOUS DEVICE - Devices that perform I/O operations in a fixed
timing sequence, regardless of the readiness of the computer.

SYSTEM AVAILABLE MEMORY (SAM) - A temporary storage area used by the
system for class I/O, reentrant I/O, automatic buffering and parameter
string passing.

SYSTEM COMMON - An area of memory that is sharable by programs.

SYSTEM CONSOLE The interactive console or terminal (LUl) that
controls system operation and from which all system and utility error
messages are issued. In a multi-terminal environment, a system console
is distinguished from "user consoles" from which users develq:>
programs.

SYSTEM DISC SUBCHANNEL - The disc subchannel assigned to Logical Un it
2 that contains the memory image of the RrE-IV system.

12

GLOSSARY OF TERMS

SYS'rEM DRIVER AREA An area for privileged drivers, very large
drivers, drivers that do their own mapping or drivers not included in
driver partitions. It is included in the system's address space, in
the address space of RT and Type 3 BG programs, and optionally in the
address space of memory resident programs.

SYSTEM MAP - The 32K-word address space used by the operating system
during its own exectuion.

SYSTEM TRACKS - All subchannel tracks assigned to RTE-IV for which a
contiguous track assignment table is maintained. These tracks are
located on Logical Unit 2 (system), and 3 (auxiliary).

'rABLE
spaces
·rable,
points.

AREA I An area of memory that is included in all address
and which includes the EQrrs, Device Reference Table, Interrupt
Track Map Table, all Type 15 modules, and some system entry

TABLE AREA II - An area of memory that contains the system tables, ID
segments, all Type 13 modules, and some system table and entry points.
Table Area II is included in the address space of the system,
real-time programs, Type 3 background programs, and (optionally)
memory resident programs.

TIME BASE GENERATOR (TBG) - A hardware module (real-time clock) that
generates an interrupt in 10 millisecond intervals. It is used to
trigger execution of time-scheduled user programs at pre-determined
intervals and for device time-outs.

TIME-OUT Relating to the state of a peripheral device. When the
device has timed-out, it is no longer available for system use (down).
Also (noun) the parameter itself~ the amount of time RTE will wait for
the device to respond to an I/O transfer command before making the
device unavailable.

TIME SCHEDULING - The process of automatically scheduling a program
for execution at pre-determined time intervals. Program scheduling is
established throu~h use of the IT command, and requires that the Time
Base Generator be installed in the CPU.

UP - See Device Up

USER MAP - The 32K-word address space used by a user program during
its execution.

13

+-~------~---------------------~~--~~-----~----+---------------------+ I I I
I GENERAL DESCRIPTION I SECTION I I
I I I
+--+---------------------+

1-1. REAL-TIME EXECUTIVE

The Real-Time Executive is the major control element and
communications link within the RTE-IV operating system. It supervises
and coordinates all program calls or operator requests for system
services. In a typical real-time environment, the Executive handles
all decision making and scheduling unless overridden by operator
inter ven ti on •

A disc-based system, RTE-IV provides for real-time program execution
concurrent with full program development services. RTE-IV features
multiprogramming, dynamic memory mapping, access to more than one
million words of main memory, and an Extended Memory Area (EMA) scheme
that offers access to data arrays that are larger than a program's
logical address space.

The memory management and mapping provisions allow the central
processor unit (CPU) to access from 48K to 1024K words of "physical
memory." Physical memory refers to all of memory actually available to
the user through the memory management and mapping scheme. "Logical
memory" refers to the actual 32K-word address space imposed by the
15-bit address length used in HP 21MX-series computers that is
addressable by user programs. RTE-IV automatically handles all
addressing and mapping of memory for the user.

Most programs previously written to execute under RTE-M, RTE-II or
RTE-III systems are upward compatible with and will successfully
operate under RTE-IV. Differences in features between operating
systems are itemized in Appendix E.

Significant new features built into RTE-IV include the following:

*

*

*

*

*

Improved user interface - reduced
system processes (i.e., Relocating
etc.) •

Program preparation using files.

user interaction for scheduling
Loader, FORTRAN IV, Assembler,

Assignment of programs to partitions via operator command.

Interactive Relocating Loader.

Greater reliability - hardware parity error recovery, additional
checks on operator scheduling command input, improved error
messages, and on-line removal of defective pages. Defective pages
are those in which parity errors have been detected.

I-1

GENERAL DESCRIPTION

* Reconfiguration of I/O and/or main memory during system boot-up
without the necessity of regenerating the entire system. Defective
pages of memory can be by-passed during the memory reconfiguration
process. (Defective pages are those in which parity errors have
been detected.)

* Increased user code area of up to 27K words.

* A memory management scheme that a ccomodates unusually large data
arrays. Implementation is through an easy-to-use Extended Memory
Area (EMA). Using EMA, data arrays as large as physical memory may
be mapped into the user's logical address space, as required.
Typical applications where EMA arrays are particularly useful afe
as follows:

a. Systems with large amounts of data storage, acquisition and
processing. Data access within EMA airays is rapid, requiring no
disc accesses as in virtual memory schemes.

b. Data acquisition and storage from fast devices at real-time
rates.

c. Processes involving data access from random locations (e.g.,
sorting) •

d. Scientific applications
inverting a ma tr ix) •

involving 1 a r g e ma tr ices (e • g • ,

e. Applications requiring extremely large buffer areas.

1-2. SYSTEM HARDWARE

The RTE-IV system operates with the following minimum hardware
configuration:

*

*

*

*

*

*

*

HP 21MX Series Computer with a m1n1mum 48K words of memory (64K is
highly recommended for improved memory utilization).

Time Base Generator

Dual Channel Port Controller (DCPC)*

Dynamic Mapping System

Memory Protect

System Console Device

High Speed Disc Storage

* Firmware Accessory Board (FAB) (21MX-E series only)

I-2

GENERAL DESCRIPTION

* Either an HP Mini-Cartridge Subsystem or High Speed Paper Tape
Reader.

1-3. SYSTEM SOFTWARE

The complete set of currently available RTE-IV operating system
modules and standard subsystems is listed in the RTE-IV Software
Numbering Catalog. Optional subsystem modules can be found in the
various subsystem Software Numbering Catalogs.

1-4. MEMORY MANAGE~IBNT

The Dynamic Mapping System (OMS) provides the capability of addressing
memory configuratidns larger than 32K words. Up to 1024K words of
physical memory can be addressed by the user. The following brief
explanation of the mapping and addressing process provides a general
overview of system operation. For a more detailed description, refer
to the 21MX Series Computer Reference Manual and information given in
the "Memory Organization and Managment" section of this text.

Addressing more than 32K words is accomplished by translating memory
addresses through one of four "memory maps". A memory map is defined
as a set of 32 hardware registers that provide the interface between
the 32K logical and physical memory. All memory map addressing is
performed internally by the system and is transparent to the user.
The four memory maps managed by the system consist of a system map
that defines the system's logical address space, a user map that
defines the user's logical address space, and two Port maps that
define a caller's I/O buffer in a DCPC transfer.

1-5. MULTIPROGRAMMING

RTE-IV is a multiprogramming system that allows several programs to be
active concurrently. Each program executes during the unused central
processor time of the others. Scheduling/dispatching modules decide
when to execute programs that are competing for system resources.
These modules swap disc-resident programs in and out of partitioned
memory in accordance with availability of system resources, program
priority and time scheduling criteria. The programs may be scheduled
by pre-determined time intervals, an external event, operator command
or by another program. A scheduled list maintained by the system is
automatically scanned every 10 milliseconds or whenever a change is
made to the list by a new entry.

Up to 254 programs may be defined by ID segments at one time (an ID
segment is a table that describes the program; refer to Appendix A for
more information). Additional programs may be relocated and then saved
as files by using the File Manager. Thus, the number of readily
accessible programs can be increased to the limits of available disc
storage.

I-3

GENERAL DESCRIPTION

1-6. INPUT/OUTPUT PROCESSING

All I/O and interrupt processing is controlled by the system with the
single exception of privileged interrupts (privileged interrupts
circumvent the system for faster response time). Input/output
operations are performed concurrently with program execution; some
programs execute while others are receiving I/0 services.

Requests for I/O services are made by EXEC function calls coded into
the calling program. The EXEC calls specify the type of transfer
(Read, Write, Control) and the desired device. I/O requests for a
particular program are queued to the controller I/0 list according to
the calling program's priority. Automatic buffering for write
op~rations is provided if specified.

In addition to the standard I/O scheduling processes described above,
there are a number of other I/O functions available that can improve
system performance in a multiprogramming environment:

*

*

*

*

*

Device Time-Out sets a time-out value for a device to prevent
indefinite program suspension because of a malfunctioning device.

I/O Buffering automatic buffering on slower devices allows a
calling program to initiate an output operation (only) without
waiting for completion before resuming execution. A read without
wait operation is a function of Class I/O (see below).

Reentrant I/O allows a disc resident program to be swapped out
from a memory partition and into disc storage when it is suspended
for I/O. This, in turn, permits any program to use the partition.
The previous status of the swapped program is maintained so that,
when it once again achieves highest priority on the scheduled list,
it can resume execution and I/O processing at the point of
interruption.

Logical Unit Lock assigns a logical unit exclusively to a
specific program, thus preventing any other program from accessing
it until it is unlocked.

Class I/O -- a special set of I/O calls that provide a method for
buffering data between devices and user programs and also between
programs (mailbox I/O). Class I/O permits a user program to
continue execution concurrently with its own I/O (I/O without
wait) •

1-7. RESOURCE MANAGMENT

Resource management is a user-determined method for cooperating
~rograms to share a common resource in an orderly manner. A

resource" may be anything so defined by the user programs accessing
it; an I/O device, a file, subroutine, or a memory location
containing volatile data are typical examples.

I-4

GENERAL DESCRIPTION

This sublevel of resource sharing is initially implemented during
system generation by defining the number of concurrent resources to be
shared. A table of these numbers is set up and maintained by the
system. An example of resource sharing would be the updating of
commonly-shared data by one program. It would lock the associated
resource number to prevent premature access by other programs until
the data was updated. See Section IV for a complete description.

1-8. EXECUTIVE COMMUNICATION

EXEC calls are the line of communication between an executing program
and system services. The required calls are coded into a program
during its development phase. The calls have a structured format plus
a number of parameter options that further define the specific
operation to be performed.

When an executing program makes a call to EXEC, it attempts to execute
a jump subroutine (JSB) to that portion of the system located in the
protected area of memory. This causes a memory protect violation
interrupt that is then processed by the system. If the call is legal,
the system processes the request.

The following is a partial list of system services available to an
executing program via EXEC calls:

* Perform input and output operations

* Allocate and release disc space

* Terminate or suspend itself

* Load its segment

* Schedule other programs

* Recover scheduling strings

* Obtain the time of day

* Time-schedule program execution

* Obtain status information on partitions

See Section IV of this manual for complete descriptions and format
considerations of EXEC calls.

I-5

GENERAL DESCRIPTION

1-9. OPERATOR COMMANDS

The operator maintains final control of RTR-IV system operation
through commands entered via the system console. These commands and
their parameter options enable the operator to monitor current system
status and/or modify system operation. The following is a partial
list of operator control functions:

* Turn programs on and off

* Suspend and restart programs

* Examine the status of any partition, program, I/O device or
controller

* Schedule programs to execute at specified times

* Change the priority of programs

* Declare I/O controllers or devices up or down

* Dynamically alter
designations

the logical I/O structure and buffering

*

*

*

*

*

*

*

Delete temporarily-loaded disc resident programs from memory

Examine and dynamically alter an I/O device's time-out parameter

Release tracks assigned to dormant programs

Initialize the real-time clock and display the time

Change program size (dynamic buffer area)

Assign programs to partitions

Remove reserved status of partition

See Section III of this manual for descriptions and parameter options
of all operator commands.

1-10. SYSTEM CONFIGURATION

Memory resident and disc resident user programs, system modules,
library routines, device drivers and Real-Time Executive modules are
incorporated into a configured RTE System. The RTE software is modular
and flexible enough to permit user programs and I/O device drivers to
be configured into a real-time system that is tailored to an
installation's exact requirements.

I-6

GENERAL DESCRIPTION

Using the Real-Time On-Line Generator (RT4GN) and SWTCH, the
relocatable software modules and user programs are converted into a
configured real-time system in memory-image binary format. The
configured system is then loaded (bootstrapped) into the computer from
the system area of the disc. Any remaining disc storage is dynamically
allocated by the configured system to user programs or is utilized by
the scheduler for swapping operations.

1-11. MULTI-TERMINAL OPERATIONS

The Multi-Terminal Monitor (MTM) provides concurrent management of
multiple user consoles. Each user is provided with his own File
Manager for command input. Individual copies of user programs are
created whenever they are initiated at MTM consoles thus allowing
concurrent execution of Assemblers, Editors, Generators, etc. See
Section IX of this manual for a detailed discussion of MTM operation.

1-12. SYSTEM UTILITY PROGRAMS

Standard system utilities are on-line programs that run under the RTE
operating system and are called by the user to perform various program
preparation, system status and housekeeping processes. The presence of
any utility program in the system is optional, depending upon
site-specific requirements. The programs available are:

* Relocating Loader (LOADR)

* File Management Package (FMP)

* Interactive Editor (EDITR)

* Batch Spool Monitor (BSM)

* On-Line Generator (RT4GN)

* Disc Bae kup

* Disc Update

* System Status Program (WHZAT)

* KEY s and KYDMP Programs

* Track Assignment Table Log Program (LGTAT)

* Debug Subroutine (DBUGR)

I-7

GENERAL DESCRIPTION

1-13. RELOCA'r ING LOADER

The Relocating Loader program accepts user-written relocatable
programs and outputs absolute load modules in conformance with loader
control command parameter options specified by the user. Other command
parameters cause the loader to list system status information: i.e.,
currently available programs: or purge unwanted, permanently loaded
programs from the system. See Section VII of this manual for a
detailed discussion of LOADR operation.

1-14. FILE MANAGEMENT PACKAGE (FMP)

The File Managment Package is a set of programs (FMGR and D.RTR) and
subroutines that provide disc file housekeeping services. Service may
be acquired either programatically or through interactive user
commands. Files may be created, renamed, copied, purged, listed,
concatenated or otherwise manipulated on disc tracks under control of
the File Management Package. See the Batch Spool Monitor Reference
Manual, Sections II and III for complete information regarding use of
FMP.

1-15. INTERACTIVE EDITOR

The Editor (EDITR) program is used to create and/or edit (modify)
lines of text in a source file under development or in a data file in
ASCII format. See the RTE Interactive Editor Reference Manual for
further information.

1-16. BATCH SPOOL MONITOR

The
used
be
the
BSM
the
more

Batch Spool Monitor is a set of programs and subroutines that are
to perform disc-based job processing. That is, jobs or data can

input from a disc file and data can be output on a disc, with all
necessary I/O being performed independently of batch processing.
also provides a means for input and output spooling of data. See
Batch Spool Monitor Reference Manual, Section IV through VII, for
in forrna ti on.

1-17. WHZAT

The WHZAT program provides status information regrading the current
system environment. Two different types of information can be
displayed: a list of all active program and their current status, or a
list of all partitions with their sizes and current status (occupied
or non-occupied). See the RTE Utility Programs Reference Manual for
more information.

I-8

GENERAL DESCRIPTION

1-18. DBUGR

The DBUGR subroutine can be appended to a user program through use of
the Relocating Loader. It can then aid the user in checking for
logical errors in a program through interactive control commands.
Debugging is performed at the Assembly Language level. See the subset
of DBUGR control commands described in the DBUGR--Interactive
Debugging section of this manual or the DBUGR Reference Manual for a
complete description of all DBUGR functions.

1-19. ON-LINE GENERATOR

The On-Line Generator permits use of an existing RTE-IV system to
configure a new RTE-IV system according to user specifications.
Generation can be directed from an answer file, logical input unit or
operator console. See the RTE-IV On-Line Generator Reference Manual
for more information.

1-20. SvJirCH

The SWTCH program permits a user to transfer an RTE-IV operating
system file created by the On-Line Generator to a specific area of a
disc from which it can be booted up. See Section V of the RTE-IV
On-Line Generator Manual for more information.

1-21. DISC BACKUP

The Disc Backup programs can be used either on-line or off-line to
transfer data from disc to magnetic tape or vice versa, copy data from
disc to disc, verify successful transfers or copy operation, and to
initialize a disc cartridge. See the RTE Utility Programs Reference
Manual for more information.

1-22. DISC UPDATE

The Disc Update process can be used to replace disc cartridge files
with files stored on an HP mini-cartridge tape. rrhe primary purpose is
to update master software discs with either HP software distributed on
mini-cartridges or user-written program modifications. See the RTE
Utility Programs Reference Manual for more information.

I-9

GENERAL DESCRIPTION

1-23. KEYS AND KY DMP

The KEYS and KYDMP programs are used to create user-defined command
sets for programming the soft keys on the HP 2645A Display Station.
Softkeys provide the capability to enter entire sequences of commands
with a single keystroke. The advantages are speed of entry and a
significant reduction in operator errors during terminal entry
sessions. See the RTE Utility Programs Reference Manual for more
information.

1-24. LGTAT

The LGTAT program logs and displays the status of the system and
auxiliary (only) disc tracks. See the RTE Utility Programs Reference
Manual for more information.

1-25. PROGRAMMING LANGUAGES

The language translators available for user program development under
the RTE system are RTE FORTRAN IV, RTE Assembler, HP Micro Assembler
and BASIC 1000/D.

RTE FORrRAN-IV

RTE FORTRAN IV is a problem oriented p ro9r amming language that is
translated by a compiler. The fOR1rRAN IV compiler executes in RTE and
accepts source programs from either an input device or PMGR file. 'rhe
resultant relocatable object programs and listed output files are
stored in FMGR files or output to specified devices. For further
information, see the R'rE FORTRAN-IV Programmer's Reference Manual.

RTE-IV ASSEMBLER

The RTE-IV Assembly Language is a machine-oriented programming
language. Source programs written in this language are accepted by the
Assembler from either input devices or disc files and translated into
absolute or relocatable object programs. Absolute code is output in
binary records suitable for execution on systems other than RTE-IV.
For further information, see the RTE-IV Assembler Reference Manual.

RTE MICRO-ASSEMBLER

The Micro-Assembler is part of an optional support package for on-line
users of special microprogrammed instructions. The Micro-Assembler
translates source code into object microprograms. For further
information, see the Micro-Assembler Reference Manual.

I-10

GENERAL DESCRIPTION

REAL-TIME BASIC/10000

Real-Time BASIC is an optional, conversational programming language
that is easily learned, even by users without previous programming
experience. Each statement entered by the user is immediately checked
for correct syntax by the Real-Time BASIC Interpreter. No separate
compilations or assembly operations are involved. A partly completed
program can be run at any time to confirm that it executes as the user
intended. See the Multi.-User Real-Time BASIC Reference Manual.

QUERY

QUERY is an English-like language used to access the HP data base
management subsystem called IMAGE/1000. IMAGE/1000 is itself an
optional subsystem that can be ordered for RTE-IV system applications
involved with large data base considerations. In addition to the use
of QUERY, the data base can also be accessed through RTE-IV FORTRAN,
Assembler or Real-Time BASIC applications programs. See the IMAGE/1000
Reference Manual for further information.

1-26. RTE-IV SYSTEM SUMMARY

The HP Real-Time Executive IV software system is a multiprogramming,
multi-user and multi-partitioned system that provides priority
scheduling, interrupt handling and program preparation capabilities.

With multiprogramming, a number of data acquisition systems or test
stands can be operated simultaneously on a 24-hour a day basis. Data
reduction and report preparation functions can be scheduled to execute
in the background area during times when real-time activities permit.
The same computer can also be used by the programming group for
ongoing development work with R'fE background compilers for FORTRAN IV,
and with the HP Assembler, Editor, and other auxiliary programs.
Programs can be added to the system on-line. For system protection,
new programs can be debugged while the memory protect fence and the
Dynamic Mapping System maintains the integrity of the system area and
other user programs.

Scheduling of all programs is based on priority. External events can
interrupt current operations to schedule programs for execution, or a
program can be scheduled by an operator request, a program request, or
on a real-time clock basis. Priorities are assigned by the user during
generation or on-line loading, and may be changed by an operator
request.

I-11

GENERAL DESCRIPTION

The system controls I/O processing through a central routine that
directs requests and interrupts to the appropriate device driver
subroutine. For efficiency, programs awaiting I/Oare suspended to let
other programs use the computer. Outputs to slow devices can be
buffered. For processes that cannot tolerate ordinary system overhead,
a privileged interrupt option lets a device contact its driver
directly without going throu<3h the Executive. Program-to-program
communication is provided through a mailbox (Class I/0) scheme.

The operator retains final control of system operation via commands
entered through the system console. The operator can turn on programs,
make status checks or perform other operations.

Configuration is efficient. System generation is performed on-line
using interactive operator dialog or pre-built answer files. This
results in an operating system configured for a specific hardware
system.

I-12

1--t---------------------t
I STANDARD BOOT-UP PROCEDURES I SECTION II I
I I I
+--+---------------------+
System boot-up is the process of loading the operating system software
into memory so that it is ready for execution. Boot-up begins by using
either the Disc Loader ROM or Bootstrap Loader to load the Boot
Extension into memory from track O, sector 0 of the system disc
subchannel. The Boot Extension, in turn, loads the operating system
into memory.

At this point, the user has the option of either completing a
"standard" system boot-up procedure as described in this section, or
reconfiguring the current I/O and memory assignments as described in
Section XII, "Memory and I/O Reconfiguration." In a standard boot-up,
the operating system immediately completes the rest of the
initialization process as follows:

1. Displays a SET TIME message.

2. Executes a startup program (optional).

3. Passes control to the File Manager (FMGR), which tries to execute
a procedure file named WELCOM. If the WELCOM file does not exist
on the system, the FMGR displays a FMGR -006 error message.

If memory and/or I/O reconfiguration are to be performed during system
boot-up, completion is delayed and an interactive Configurator program
is scheduled via s-register settings to make the new memory and I/O
assignments. At the end of the reconfiguration process, control is
returned to the system to complete the boot-up procedure as described
above.

use the procedures described below to perform a
boot-up. Use the procedures described in Section
boot-up with I/O and memory reconfiguration.

2-1. BOOT LOADERS AND BOOT EXTENSION

standard system
XII to perform a

The Disc Boot Extension can be loaded into memory from the disc using
either the Disc Loader ROM or Bootstrap Loader.

2-2. DISC LOADER ROM

The Disc Loader ROM can be used to load the Boot Extension if the Boot
Extension resides on physical track O, sector 0 of the system disc.
Refer to the HP 12992 Loader ROM's Installation Manual (12992-90001)
for a description of the s-register setting to load the Boot Extension
into memory.

II-1

STANDARD BOOT-UP PROCEDURES

An example of a standard system boot-up using the 129928
RPL-compatible 7905/7906/7920 Disc Loader ROM is as follows:

1. Select the s-register for display on the computer front panel.

2. Press CLEAR DISPLAY.

3. Set the s-register bits as follows:

Bits

0-2

3-4

5

6-11

12

13

14-15

Enter:

Surface number of the disc where the
RTE-IV system subchannel starts (surface
numbers start at 0).

0 (reserved)

0 for standard boot-up

Octal select code of the disc.

1 to indicate a manual boot from
the s-register.

0 (reserved)

Loader ROM selection (number of the
ROM cell containing the Disc Boot
Loader) •

4. Press PRESET, IBL and PRESET (again) to load contents of Disc
Loader ROM. A successful load is indicated if the OVERFLOW
indicator does not light up.

5. Pr es s RUN.

EXAMPLE:

II-2

1. Assume a standard boot-up from ROM #2, with a 7906 in select
code 21 and surface O.

2. Set the S-register = 112100.

3. Press PRESET, IBL I PRESET (again) and RUN.

STANDARD BOOT-UP PROCEDURES

2-3. BOOTSTRAP LOADER

The Bootstrap Loader is used to load the Boot Extension into memory if
the Boot Extension does not reside on the physical track 0, sector 0
of the system disc, or if the Disc Loader ROM is not available. The
procedure is as follows:

1. Select the s-register for display on the computer front panel.

2. Press CLEAR DISPLAY.

3. Set the s-register bits as follows:

Bits:

0-5

6-11

12-15

Enter:

0

Octal select code of input
device (e.g., photoreader)

0

4. Press PRESET, !BL and PRESET (again) to load the Bootstrap Loader.
A successful load is indicated if the OVERFLOW indicator does not
light up.

5. Press RUN.

When the HLT 77B occurs, clear the s-register, set the P-register to
octal 100 and press RUN to continue.

2-4. BOOT EXTENSION EXECUTION

The disc Boot Extension uses the s-register to communicate with the
configurator program (see Section XII). Do NOT change the s-register
contents until the system boot-up procedure is completed and the SET
TIME message is displayed.

II-3

+--+---------------------+ I I I
I OPERATOR COMMANDS I SECTION III I
I I I
+--+---------------------+

3-1. INTRODUCTION

user control of an RTE operating system and the monitoring of system
status are performed through a two-way dialog between the system and
user. The system displays various status or error messages that may or
may not require human intervention. The user communicates with the
system through operator requests entered at the user console. Using
these commands and their various parameter options, an operator may
interrupt RTE at any time to determine current system status, correct
error conditions or modify system performance. The operator commmands
and their function are summarized in Table 3-1: complete descriptions
are given later in the section.

3-2. COMMAND STRUCTURE

The operator first gets system attention by pressing any key on the
system console (LU!). On the system console, RTE responds with an
asterisk (*) prompt to indicate system attention. The user then types
a command which is a two-character request word (e.g., ON, UP, etc.),
followed by the appropriate parameters separated by commas.

Each command is parsed or resolved by a central routine that accepts
certain conventions. Command syntax is described in Table 3-2. This
syntax and the command conventions described below must be followed
exactly to satisfy system requirements.

3-3. COMMAND CONVENTIONS

* When a command is entered, the items outside the brackets are
required symbols. Items inside the brackets are optional.

* Two commas in sequence defaults a parameter to zero.

* Each command entered must be completed with an end-of-record
terminator (RETURN key on a CRT or TTY system input device).

III-1

OPERATOR COMMANDS

*

*

An error made while entering a command parameter can be corrected
by using the BACK SPACE key on a CRT system input device (the
CONTROL and A keys struck simulataneously will delete the last
character entered on TTY input devices). To delete an entire line,
use the DEL key (RUBOUT key on TTY devices). Corrections to a
command must be made before the RETURN key is pressed or the system
will issue an error return. Note that line feed is supplied by the
system.

Whenever the operating system is rebooted, parameters changed by
user command will be restored to their original values established
during system generation.

Table 3-1. Operator Command Summary

+---------+---+-----+
I Command I ISee I
I Format I Function I Page I
+---------+---!-----+

I
AB Aborts current batch program. 3-5 I

AS

BL

BR

DN

EQ

FL

GO

rr

LG

LS

LU

Assigns program to a partition.

Examines and sets buffer limits.

Sets a break flag in named program's ID segment.

Declares an I/O controller or device unavailable.

Examines status of any I/O device, and dynamically
alters device buffering assignments.

Buffer flush command used in conjuction with
Multiple Terminal Monitor (MTM) only.

Restarts programs in an operator suspension state
(there several other suspension states).

Sets time intervals for programs.

Allocates LG area.

Sets LS area pointer.

Examines and alters device Logical Unit
assignments.

3-6

3-7

3-8

3-9

3-10
3-11

3-12

3-13

3-15

3-16

3-17

3-18
3-19

I

+---------+---+-----+

III-2

OPERATOR COMMANDS

Table 3-1. Operator Command Summary (cont'd)

+---------+---+-----+
I Command I ISee I
I Format I Function !Page I
+---------+---+-----+

I I
OF I Terminates program execution. 3-201

I I
ON I Schedules a program for execution. 3-211

I
PR Cllanges the priority of programs. 3-231

RT Releases program's disc tracks. 3-24

RU

SS

ST

sz

TI

TM

TO

UP

UR

Schedules a program for immediate execution.

Operator suspends a program.

Examines the status of a program or partition.

Examines or changes program size.

Prints the current time.

Sets the real-time clock.

Examines and dynamically alters an I/O
controller's time-out parameter.

Declares an I/O controller and associated devices
as available.

Unreserves a previously reserved partition.

3-25

3-27

3-28

3-30

3-33

3-34

3-35

3-36

3-37

I

+---------+---+-----+

III-3

OPERATOR COMMANDS

Table 3-2. Operator Command Syntax Conventions

+--------------------+--+
I I tern I Meaning I
+--------------------+--+

UPPER CASE ITALICS

lower case italics

[,item]

I , i tern 1 I
I , i tern 2 I
I , item 3 I

,item 1
, i tern 2
, i tern 3

••• (row of dots)

These words are literals and must be
specified as shown.

Symbolic representations indicating what
type of information is to be supplied. When
used in text, the italics distinguishes them
from other textual words.

Items with brackets are optional. However, if
item is not supplied, its position must be
accounted for with a comma; this causes item
to automatically default.

Indicates that exactly one item may be
specified.

Indicates that there is a choice of entries
for the parameter, but one parameter must be
specified.

This notation means "and so on."

I

+--------------------+--+

III-4

OPERATOR COMMANDS

3-4. RTE-IV OPERATOR COMMANDS

All operator commands are described below in alphabetical sequence. A
carriage return to terminate a command entry is not illustrated, but
is assumed in every case.

+---+
AB (abort)

Aborts the current program running under batch. Since FMGR (not a
copy of FMGR) is the Batch Spool Monitor, the command applies only
to "sons" of FMGR. The format is

I, o \
AB

\,1 I

where:

0 is the default case. It terminates and removes from the time
list the current batch program that is executing, scheduled,
or operator suspended. It also terminates batch programs that
are I/O, memory or disc suspended the next time they are
scheduled. Disc tracks are not released.

1 immediately terminates the batch program and removes it from
the time list, and releases all disc tracks. If suspended for
I/O, a system generated CLEAR request is issued to the driver.

When the File Manager is waiting on a program it is running (e.g.,
ASMB), the AB command functions like the command

OF,name

If the File Manager is dormant or non-existent in the system, the
AB command causes the error message ILLEGAL STATUS to be printed.
If the File Manager is not dormant and is not running a program,
AB functions like the command

BR,FMGR

Note that an AB command from an MTM terminal functions differently
and has a different meaning. See the MTM section of this manual.

I.
I
I
I
I
I
I
I
I
I
I
I
I
I
I

+---+

III-5

OPERATOR COMMANDS

+---------~~--~----~---~+
AS (assign partition)

Assigns a program to a partition. The partition does not have to
be reserved. The format is

AS,xxxxx,yy

where:

xxxxx = the program name
yy = the partition number (1-64)

Program xxxxx will be assigned to partition yy. If yy = O, the
program will be unassigned and can be dispatched to any partition
of the proper type large enough to run the program.

If the program is not dormant or is still resident in any
partition (i.e., saving resources, operator suspended or serially
resuable), the error 'ILLEGAL STATUS~ will be returned and the
input ignored. Partition yy must also be large enough to run
program xxxxx. If not, the error 'ILLEGAL PART'N' will be
returned. Trying to assign a program to an undefined partition
will also generate the 'ILLEGAL PART'N' message.

If the program named xxxxx cannot be found, a "NO SUCH PROG"
error message will be issued.

+---+

III-6

OPERATOR COMMANDS

+---+
BL (buffer limits)

Examines or modifies current buffer limits. The format is

BL[lower limit, upper limit]

where:

BL without parameters displays previously set upper and
lower limits.

lower limit is the lower limit number.

upper limit is the upper limit number.

Setting upper and lower memory limits with this command can
prevent an inoperative or slow I/O device from monopolizing
System Available Memory. Each time a buffered I/O request is
made (Class I/O requests are buffered), the system adds up
all the words in the I/O requests queued to that entry and
compares the number to the upper limit set by this command (or
during generation). If the sum is less than the upper limit, the
new request is added to the queue. If the sum is larger than the
upper limit,the requesting program is suspended in the general
wait (STNrus = 3) list.

When a buffered I/O request completes, the system adds up the
remaining words in the I/O requests queued to the EQT entry and
compares the number to the lower limit set by the command (or
during generation). When the sum is less than the lower limit,
any programs suspended for exceeding the buffer limits on this
EQT are rescheduled.

Any program with a priority of 1 through 40 will not be suspended
for buffer limit, so that alarm messages, etc., are not inhibited.

+---+

III-7

OPERATOR COMMANDS

+---+
BR (break)

Sets an attention flag in a program s ID segment. The format is

BR, name

where name is the name of the program.

The BR command allows an operator to break the execution of a
program if the program requests this via the IFBRK system
subroutine. When BR is executed, a break flag in the named user
program's ID segment is set • The user's program can call the
HP-supplied subfunction that will test the break flag and then act
accordingly. The calling sequence of the subfunction is:

I=IFBRK (IDUMY)

where IDUMY is a dummy parameter to make the call appear as a
function (IDUMY need not be supplied in Assembly Language). The
returned value will be negative if the break flag is set, and
positive if it is not. If the flag is set, it will be cleared by
IFBRK. See the Multi-Terminal Monitor section for variations to
the BR command for operation under MTM.

+---+

III-8

OPERATOR COMMANDS

+---+
DN (down)

Declares an I/O controller or device down (i.e., unavailable for
use by the RTE system). The format is

where:

/,eqt\
DN

\,,lu/

eqt is the EQT entry number of the I/O controller to be
set down.

lu is the LU entry number of the I/O device to be set
down.

Setting an I/O controller (EQT entry) down effectively sets all
devices connected to the I/O channel down by blocking any I/O
operations on the select code. The state of the devices (LQ's)
associated with the select code are unchanged.

Setting the I/O device (LU) down will make only the specific
device unavailable. However, all other Lu's pointing to the
device will also be set down. Other devices using the device's
I/O select code are unaffected.

The I/O controller or I/O device remains unavailable until the
I/O controller is set up by the UP command. The operator might
set a device down because of equipment problems, tape change, etc.

+---+

III-9

OPERATOR COMtl~NDS

+---+
EQ (status)

Prints the description and status of an I/O controller, as
recorded in the EQT entry. The format is

EQ ,eqt

where:

eqt is the EQT entry number of the I/O controller.

The status information is printed as:

select code DV.nn D B Unn status

where:

select code is the I/O select code number.

DV.nn

D

B

Unn

status

is the driver routine.

is D if is OMA required: 0 if not.

is B if automatic output buffering is used: 0 if
not.

is the last subchannel addressed.

i s the 1 og i ca 1 s ta tu s :

0 = available
1 = I/O controller unavailable (down)
2 = I/O controller unavailable (busy)
3 = waiting for OMA assignment

Note that if eqt is 0, it is a bit bucket, as is any associated
LU.

+---+

III-10

OPERATOR COMMANDS

+---+
FJ Q (buffering)

Changes the automatic output buffering designation for a
particular I/O controller. The format is

where:

eqt

UNbuffer

BUffer

/,UNbuffer\
EQ,eqt

\,BUf fer I

is the EQT entry number of the I/O controller.

turns off buffering.

turns on buffering.

When the system is rebooted from the disc, all buffering
designations are reset to the values originally specified
during generation.

+---+

III-11

OPERATOR COMMANDS

+---+
FL (flush)

Eliminates buffered output to an I/O device. The format is

lu>FL

where:

lu is the Logical Unit Number of the interrupting user console.

The FLush command can only be used in conjunction with the
Multi-Terminal Monitor (MTM), and is illegal if entered from the
system console (LUl).

Other methods for clearing the buffer are using the EXEC call:

CALL EXEC (3,23B,lu)

or the File Manager command:

:ON,FMGR
:CN,lu,23B

+---+

III-12

OPERATOR COMMANDS

+---+
I
I
I
I
I
I
I
I
I
I

GO (reschedule)

Reschedules a program previously suspended by the SS command or
a Suspend EXEC Call. The format is

/GO \
,name

\GOI H/
[I pl [I • • • [IP 5]]]]]

I where:
I

name

pl ••• pS

is the name of a suspended program to be scheduled
for execution.

is a list of parameters to be passed to name only
when name has suspended itself (see suspend EXEC
Call in Section IV). The parameters are ignored
if name was suspended with the SS command.

The GO command is illegal if the program has not been suspended
previously by the operator or has not suspended itself.

Parameters pl through pS can be entered in ASCII or numeric form.
Octal numbers are designated by the "B" suffix and negative
numbers by a leading minus sign. For example:

GO,name,FI,LE,31061B

+---+

I II-13

OPERATOR COMMANDS

+--------~---+
GO (reschedule) ••• cont'd

Note that only two ASCII characters per parameter will be returned
by a RMPAR subroutine call: if one is given, the second
character is passed as a blank (blank = 40B). If the first
parameter is ASCII "NO" it must then be repeated (the system
interprets it as "NOW" in the GO commmand). For example:

GO,name,NO,NO,FI,3,4,5

is interpreted as shown below. NO (NOW) is not used except to
push out the parameters.

NO
FI
3
4
5

After a program has suspended itself and is restarted with the GO
command, the address of the parameters passed by GO is in the
B-register. An immediate call to the library subroutine RMPAR
retrieves the parameters (see Section IV, Suspend EXEC Call). If
the program has not suspended itself, the a-register is restored
to its value before suspension and the parameters are ignored.

The program may also recover the ASCII command string (up to 80
characters typed after the prompt) that scheduled it by using the
String Passage EXEC call (see Section IV). If the program was
rescheduled with a GOIH (inhibit string passage) or if the program
has not suspended itself, the command string is not passed.

+---+

II I-14

OPERATOR COMMANDS

+---+
IT (Interval Timer) I

I
Sets time values for a program so that it automatically executes I
at selected times when scheduled with the ON command. The format
is

where:

name

res

mpt

hr
min
sec
ms

IT,name [res,mpt[,hr,min[,sec[,ms]]]]

is the name of the program.

is the resolution code:

1 - tens of milliseconds
2 - seconds
3 - minutes
4 - hours

is a number from 0 to 4095 and is used with res
to give the actual time interval for scheduling
(see below).

hours
minutes
seconds
tens of ms.

sets an initial start time.

The resolution code (res) is the units in time to be multiplied
by the execution interval value (mpt) to get the total
time interval. Thus, if res=2 and mpt=lOO, name would be
scheduled every 100 seconds. If hr,min,sec and ms are present,
the first execution occurs at the initial start time specified
by these parameters (the program must be initialized with the ON
command.) If the parameters are not present (e.g., IT,name), the
program's time values are set to zero and the program is removed
from the time list. The program can still be called by another
program or started with the ON,name,NOW or RU command.

When the system is rebooted from the disc, time values set by the
IT command are lost, and the original time values set at original
load time are reinstated.

The IT command is similar to the Execution Time EXEC Call (See
Section IV). For example:

I The commands
I
I
I
I

IT,WHZAT,2,5
ON,WHZAT,NO

I will cause WHZAT to execute every five seconds, starting now.
+---+

III-15

OPERATOR COMMANDS

+---+
I
I
I
I
I

LG (LG tracks)

Allocates or releases a group of disc tracks for the LG area. LG
tracks may be used as temporary storage for relocatable code in
FMGR operations. The format is

where:

numb=O

numb>O

LG,numb

(zero) releases the allocated LG arear.

release currently allocated LG tracks and then
allocate numb contiguous tracks for an LG area.

Enough LG tracks for storing relocatable code must be allocated
before storing into this area. Insufficient tracks cause the
program to abort and one of the following diagnostics to be
displayed on the system console:

1006 -
1009 -

LG area not defined.
LG area overflow.

An LG request should not be used while anyone is using the LG
tracks. Doing so may result in the message

LGO IN USE

being displayed on the system console, and no change in the
current number of LG tracks. In most cases, however, the attempt
to do so results in an 1006 error being issued.

+---+

III-16

OPERATOR COMMANDS

+---+
I
I
I
I
I

LS (source file)

Designates the disc Logical Unit number and starting track
number of source code stored in the track pool prior to an EDITR
operation on the code. The format is

where:

disc lu

trk numb

LS,disc lu,trk numb

is the Logical Unit number of the disc containing
the source file.
2 or 3 = system or auxiliary disc units.
0 = eliminate the current source file

designation.

is the starting track number (decimal) of the source
code.

LS replaces any previous declarations with the current source code
area. Only one area may be declared at a time.

+---+

I II-17

OPERATOR COMMANDS

+---+

LU (assignment)

Prints the EQT entry number, device subchannel number, and I/O
device status associated with a Logical Unit number. The format is

LU,lu

where lu is a Logical Unit number from 1 to 63.

Example:
LU i 7 = El2 S 1 D

I I
Logical Unit number -------+ I I

I I
EQT number----------------------+ I I

I I
subchannel number--------------------+ I

I
I/O device status (down in this case)--+

If the Logical Unit's device is unavailable (down), a Dis printed
I as the status; otherwise the position is left blank.
I
+---+

III-18

OPERATOR COMMANDS

+---+
I

LU (reassignment) I

Changes a Logical Unit number assignment. The format is

where:

lu

eqt

eqt

/,eqt[,subch numb]\
LU ,lu

\,o I

is a Logical Unit number from 1 to 63 (decimal).

is an EQT entry number to assign lu.

if zero (0) lu becomes the bit bucket.

subch numb is a subchannel number (0 to 31) to assign to lu.

The restrictions on changing Logical Unit assignments are:

a. LUl (system console) must be an interactive
console device. Note that if LUl is changed,
the new console will print a double asterisk (**).

b. LU2 (system disc) and LU3 (auxiliary disc)
cannot be changed to another EQT entry number.

c. An LU cannot be changed to point at the same
device as LU2 or LU3.

When an irrecoverable problem occurs on an I/O device, the
operator can bypass the downed device for future requests by
reassigning the Logical Unit number to an operable device on
another select code.

When the system is rebooted from the disc, all LU assignments
are reset to those originally established during generation.

Section v, Input/Output, explains Logical Unit numbers, equipment
table entry numbers, and subchannel numbers in detail.

+---+

III-19

OPERATOR COMMANDS

+---+
OF (terminate)

Terminates a program or removes a disc resident program that was
loaded temporarily on-line into memory but not permanently
incorporated onto the protected system disc. For options 1 and 8
below, the message "name ABORTED" will appear for programs (but
NOT segments) after the command is executed. The format is

where:

name

0

I, o \
OF ,name , l

\,8 I

is the name of the program.

terminates and removes the named program from the time list
the next time it is scheduled. The program's disc tracks
are not released.

l immediately terminates the named program, removes it from
the time list, and releases all disc tracks. If suspended
for I/O, a system-generated request to clear the device is·
issued to the driver.

8 immeuiately terminates the named program. If the program
is temporary program loaded on-line, it is removed from the
system (see the Relocating Loader section of this manual).

For programs with segments, the OF, name, 8 command must be
used on the segments as well as the main.

Of,name,8 will not remove permanently loaded programs,
since their ID segments on the disc are not altered by this
request. A permanently loaded program is defined as a
program loaded during generation, or on-line with the LOADR
and with a copy of its ID segment in both memory and on the
disc. For temporary programs loaded on-line, the ID segment
is blanked to make it available for use by another program
loaded with the LOADR.

The tracks (if system tracks) containing the program are
released. If the program had been stored on File Manager
tracks,those tracks remain as File Manager tracks and are
not returned to the system.

If the program is I/O suspended, a system generated clear
request is issued to the driver. The OF,name,8 command must
then be entered a second time to permanently remove the
program from the system.

A permanently loaded disc resident program may only be removed
permanently with the LOADR as described in Section VII.

+---+
III-20

OPERATOR COMMANDS

+---+

I

ON (schedule)

Schedules a program for execution. Up to five parameters and the
command string may be passed to the program. The format is

where:

name

NOW

pl ••• p5

/ON \
, name [,NOW 1 [, pl [, ••• [, p51 1 1 1 l

\ONIH/

is the name of a program.

schedules a program immediately that is normally
scheduled by the system clock (see IT).

are parameters passed to the program when it is
scheduled.

Parameters pl through p5 are the ones passed by RMPAR as described
under Comments in the Program Schedule EXEC Call in Section IV.
Refer also to XTEMP words 1 through 5 in the program's ID segment
(see Appendix B). Note that any parameters not entered as part of
the ON command will be returned as zeros by a call to RMPAR.

Parameters pl through p5 can be entered in ASCII or numeric form.
Octal numbers are designated by the "B" suffix and negative
numbers by a leading minus sign. For example:

ON,name,FI,LE,31061B

Note that only two ASCII characters per parameter will be returned
by a RMPAR subroutine call; if only one is given, the second
character is passed as a blank. (blank = 40B). If the first
parameter is ASCII "NO" then it must be repeated (the system
interprets it as "NOW" in the ON command). For example:
For example:

ON,name,NO,NO,FI,3,4,5

I is interpreted as
I NO
I FI
I 3
I 4
I s
I
I The program can recover the ASCII command string (u~ to 80
I characters typed after the prompt) by using the String Passage
I EXEC call (see Section IV). The ONIH command inhibits the passage
I of the command string.
+---+

III- 21

OPERATOR COMMANDS

+---+
ON (schedule) ••• cont'd

String Passage Example:

ON, name, FIL El, FIL E2, MI SCI NFOSTRING, ••• , 3

If the resolution code in the ID segment of the program is not
zero, RTE places the program in the time list for execution at
specified times (unless NOW appears~ in which case, the program
is scheduled and put into the time list immediately). The
resolution may be non-zero as a result of:

a. Generation

1. With a resolution code in the name record

2. Entry of a resolution code during parameter
input phase.

b. The IT command.

c. Scheduling the program with absolute start time
or offset by some program in the system (see EXEC
calls in Section IV).

Note that if there is no partition large enough to run the
program, or if the program is assigned to a partition that is too
small or does not exist, the error message 'SIZE ERROR' will be
reported. Conditions under which the error message could be output
when attempting to run are:

:SP,xxx
reboot and reconfigure memory to remove partitions large enough
for this program.

:RP,xxx
: RU, xxx

+---+

III-22

OPERATOR COMMANDS

+---+
PR (priority)

Changes the priority of a program. The format is

PR,name,numb

where:

name is the name of the program.

numb is the new priority.

One (1) is the highest priority, and 32767 is the lowest. When the
system is restarted from the disc, the priority of name resets to
the value set by the generator or LOADR.

+---+

III-23

OPERATOR COMMANDS

+---+
RT (release tracks)

Releases all disc tracks assigned to a program. The format is

RT,name

where:

name is the program whose tracks are to be released.

The RT command is illegal if the named program is not dormant.
If the program is dormant, all tracks assigned to the program
are released.

Any tracks released as a result of this command cause all
programs in disc track allocation suspension to be rescheduled.
More information on disc tracks may be obtained from the system
program LGTAT, described in the RTE Utility Programs Reference
Manual.

+---+

III-24

OPERATOR COMMANDS

+---+
I
I
I
I
I

RU (run)

Immediately schedules a program without affecting its entry in the
time list. Up to five parameters and the command string may be
passed to the program. The format is

where:

name

pl ••• p5

/RU \
, name [,pl [, ••• [, p5]]]]]

\RUI H/

is the name of a program.

are parameters passed to the program when it is
scheduled.

The RU command is used when the operator desires to run a program
without affecting its entry in the time list.

Parameters pl through p5 are passed by RMPAR as described in the
the Program Schedule EXEC Call in Section IV.

Note that any parameters not entered as part of the RU command
will be returned as zeros by a call to RMPAR.

Parameters pl through p5 can be entered in ASCII or numeric form.
Octal numbers are designated by the "B" suffix and negative
numbers by a leading minus sign. For example:

RU,name,FI,LE,31061B

+---+

III-25

OPERATOR COMMANDS

+---+
RU {run) •••• cont'd

Note that only two ASCII characters per parameter will be returned
by a RMPAR subroutine call; if only one is given, the second
character is passed as a blank (blank = 40B). If the first
parameter is ASCII "NO" then it must be repeated (the system
interprets it as "NOW" in the RU command). For example:

RU,name,NO,NO,FI,3,4,5

is interpreted as shown below. NO(NOW) is not used except to push
the parameters out:

NO
FI
3
4
5

The program can recover the ASCII command string (up to 80
characters typed after the prompt) by using the String Passage
EXEC call (see Section IV). The RUIH command inhibits the passage
of the command string. If there are no characters past name, the
command string is not transmitted.

String Passage Example:

RU,name,STRINGWHATEVER,12345,ANOTHERONE,6789

Note that if there is no partition large enough to run the
program, or if the program is assigned to a partition that is too
small or does not exist, a 'SIZE ERROR' message will be reported.
Conditions causing this error message could be as follows:

:SP, xxx
reboot and reconfigure memory to remove partitions large
enough for this program.
:RP,xxx
: RU, xxx

+---+

III-26

OPERATOR COMMANDS

+---+
SS (operator suspend)

Operator suspends a non-dormant program. The format is

SS,name

where name is the name of the program to be suspended.

The SS command places the program in the operator suspended list
immediately if the program is executing or scheduled. The request
is illegal if the program is dormant. If the program is suspended
for I/O memory, disc or is in the time list, RTE waits until the
current state is ended and then operator-~uspends the program.

The SS command is similar to the Program suspend EXEC call (see
Section IV).

+---+

III-27

OPERATOR COMMANDS

+---+
ST (status)

Requests the status (priority, currrent list, time values) of a
named program, or to determine the name and partition number of
the program currently occupying memory, or print the name of the
program occupying a specified partition. The formats are as
follows:

Program Status:

ST,name

Name and Partition Number of Current Program:

ST,0

Name of Program in Specified Partition:

where:

name

0

part
numb

ST,part numb

is the name of the program whose status is to be printed.

causes the system to print the name and partition number of
the program currently executing. If none, 0 is printed.

is a partition number that causes the system to print the
name of the program in part numb. If the partition is
empty, O is printed. If part numb is wrong, NO SUCH PROGRAM
is printed.

The status of a program is printed on one line in a fixed format:

pr s res mpt hre min sec ms T

where:

pr is the priority (a decimal value from 1 to 32767).

s is the current state of the program:

0 = Dormant
1 = Scheduled
2 = I/O suspend
3 = General wait
4 = Unavailable memory suspend
5 = Disc allocation suspend
6 = Operator suspend or programmed suspend (EXEC 7 call)
9 = Background segment

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

+---+
III-28

OPERATOR COMMANDS

+---+
ST (status) ••• (continued)

res, mpt, hr, min, sec and ms are all zero (0) unless the program
is scheduled by the clock (see the IT command in this section for
the meaning of these terms).

The letter "T" appears when the program is currently in the time
list as a result of an ON command.

A program is placed in the general wait list (status = 3)
whenever:

a. It is waiting for a Resource Number (RN) to clear or
become available. This includes Logical Unit (LU) locks and
attempts to use a locked LU.

b. A schedule request is made with !CODE= 23 or 24 (queue
schedule), and the program being called is busy.

c. A request is made to an I/O device that is down. This
differs from a request to an I/O device that is busy.

d. A Class I/O GET call is made and the Class Queue is
empty.

e. A program is waiting for another program to complete as
a result of an EXEC 9 or 23 call.

f. A program is waiting on a Buffer Limit (see the BL
command in this section).

Programs will be removed from the general wait list when the
action waited for takes place or when the program is aborted.

When the format ST,O is used, the status is printed as:

where:

name

part
numb

name part numb

is the name of the program currently residing in partition
number part numb.

is the partition number.

When the format ST,part numb is used, the status is printed as:

name

I
I
I
I

' I I
I
I
I
I

+---+

III-29

OPERATOR COMMANDS

+---+
SZ (assignment)

Causes program size information to be printed. The format is

sz,xxxxx

where xxxxx is the program name. The output will be formatted as:

AAAAA BB CCCC DD
where:

AAAAA = the last word plus 1 of the user's program. If the program
is segmented, AAAAA is the last word, plus 1 of the J
largest segment. r

I
BB = minimum required size of the program. For non-EMA programs!

this includes the program code size plus any optional I
dynamic buffer space. For EMA programs, this also includes!
the EMA s i z e • I

I
NOTE: If the program is an EMA program whose EMA size I

was defaulted and that program had not been prev- I
iously dispatched, the EMA size "CCCC" will be I
reported as "111

• I

CCCC = the program's EMA size. Printed for EMA programs only.

DD= the program's MSEG size. This will only be printed if the
program is of EMA type.

+---+

III-30

OPERATOR COMMANDS

+---+
I
I
I
I
I
I
I
I
I
I
I
I

SZ (reassignment)

Allows the user to increase the page requirements of a program.
Certain programs such as compilers, assemblers, loaders and
generator use memory after the end of the program for symbol table
or data space. The sz command modifies the size of the additional
memory used by the program. An alternate form of the command
increases both program page requirements and EMA size requirements
The format is

SZ,name,Pl
or

SZ,name,Pl,P2

for non-EMA programs

for EMA programs

where:

name is the program name

Pl is the new required program size in pages for non-EMA
programs; that is, the program code size plus any dynamic
buffer space.

For EMA programs, Pl is the new EMA size.

P2 is the new MSEG size for the EMA program referenced.

The program must be dormant and not currently resident in a
partition (i.e., it must not have terminated with save-resources
or serially reusable conditi.on), and there must be at least one
partition large enough to run the program at its new size.

The following conditions will be flagged as errors and the error
'SIZE ERROR' reported:

FOR NON-EMA PROGRAMS:

1. An attempt to make Pl larger than 32K word program address
space.

2. An attempt to make Pl larger than any currently existing
partitions.

3. If the program is assigned, and attempt to make Pl larger than
the partition size.

4. An attempt to make Pl smaller than the actual code of the
program.

' I
I

I

+---+

III-31

OPERATOR COMMANDS

+---+
I
I sz (reassignment) ••• cont'd

FOR EMA PROGRAMS:

1. An attempt to set Pl such that the program size plus the EMA
size is larger than the largest partition in the system.

2. If the program is assigned to a partition, an attempt to set
Pl such that the program size plus the EMA size is larger than
that par ti ti on.

3. An attempt to set Pl less than 1.

4. An attempt to set P2 such that the program size plus P2 exceeds
maximum program address space.

5. An attempt to set P2 less than 1.

EMA size changes are only allowed for those programs where no
EMA size was specified within the program itself; that is, the
default was taken. An attempt to increase or decrease the EMA
size in a program where the EM.A size was specified within the
program causes a 'SIZE ERROR' message to be issued. MSEG changes
may be made for any EMA type program. All FTN4 programs have I
specified EM..~ sizes. Note that it is not possible to increase or I
decrease the dynamic buffer space for EMA programs vi.a the SZ I
command. This can be done only by reloading the program. I

+---+

III-32

OPERATOR COMMANDS

+---+
I
I
I
I
I
I
I
I
I
I
l
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

'rI (time)

Prints the current year, day and time, as recorded in the
real-time clock. The format is

TI

rrhe computer prints out the year, day and time in the format

where:

yyyy

ddd

hh,mm,ss

yyyy ddd hh mm ss

is the four-digit year.

is the three-digit day of the year (see Table 2-3
at the end of this section for day-of-year
conversion) •

is the time on a 24-hour clock in hour, minutes and
seconds.

The TI command is similar to the Time Request EXEC Call (see
Section IV) •

I
I
I
I
I
I
I
I
I
I
I
I
j
I
I
I
I
I
I
I
I
I
I
I
I
I

+---+

I I I-3 3

OPERATOR COMMANDS

+---+
TM (set clock)

Sets the real-time clock. The format is

where:

YYYY

ddd

hh,mm,ss

TM,yyyy,ddd[,hh,mm,ss]

is a four-digit year.

is a three-digit day of the year (see Table 2-3 at
the end of this section).

is the current time of a 24-hour clock in hours,
minutes and seconds.

The TM command is entered in response to the message

SET rrIME

which is displayed when the RTE system is booted from disc.

Enter a time value ahead of real-time. When real-time equals the
entered value, press RETURN key. The system is now synchronized
with the time of day.

NOTE

The real-time clock is automatically started
from 8:00 on the system release date each
time the system is loaded into memory.

+---+

III-34

OP ERA'I10R COMMANDS

+---+

I

rro (time out)

Prints or changes the time-out value of an I/O controller. The
format is

where:

eqt

numb

TO , eg t [, numb]

is the EQT entry number of the I/O controller.

is the number of 10 ms intervals to be used as the
time-out value (numb cannob be less than 500 (5 sec)
for the system input device driven by DVR00/05).

The time-out value is calculated using numb time-base generator
interrupts (the time-base generator interrupts once every 10 ms).
For example, numb = 100 sets a time-out value of one second:
100 * 10 ms = 1 second. When the system is rebooted from the disc,
time-out values set by TO are reset to the values originally set
during generation.

If numb is absent, the time-out value of eqt is printed in the
format

I TO #10 = 100
I
I and means EQT entry number 10 has a time-out value of 100
I ten-millisecond intervals or one second.
I
I If a device has been initiated and it does not interrupt within
I the interval set by the time-out parameter, the following events
I place:
I
I a. The calling program is rescheduled and a zero transmission
I log is returned to it.
I
I b. The device is set to the down status and bit 11 in the
I fourth word of the device's EQT entry is set to 1. An error
I message is printed: e.g.,
I
I I/O TO L #x E #y S #z
I
I c. The system issues a CLC to the device's I/O select code(s)
I through the EQT number located in the Interrupt Table.
I Table.
I
I See also the discussion of I/O controller time-out in the
I Input/Out section of this manual and "Driver Time-Out Processing"
I in the RTE Operating System Driver Writing Manual.
l
+---+

III-35

OPERATOR COMMANDS

+---+
UP (make available)

Declares an I/O controller and all associated devices as up (i.e.,
available for use by the RTE system). The format is

UP,eqt

where eqt is the EQT entry number of the I/O controller to be
re-enabled.

When the operator has previously set an I/O controller or device
down for some reason, the condition should be corrected before
using the UP command to declare the item available again. If the
problem is irrecoverable, the LU command can be used to switch
the Logical Unit number assignment to another device for further
requests (see the LU command in this section). Previous requests
made to this device are switched to the new device. To prevent
indefinite I/O suspension on a downed device, time-out is used.
Refer to the TO command in this section and "I/O Device Tim~Out"
in Section v.

The UP command places all downed devices (LU's) and the I/O
controller (EQT entry) in the available state. Any I/O operations
associated with downed devices are queued on the EQT entry for
processing. If a device's problem has not been corrected, it will
be reset down and an error message will be printed:

I/O NR L ilu E #eqt S #sub

+---+

III-36

OPERATOR COMMANDS

+---+
UR (release reserved partition)

Releases a partition previously reserved during generation or slow
boot.

The format is

UR,xx

where xx is the number of the partition to be released.

Once the command is entered, any program that fits into the
partition may run in it. Note that although partitions may be
released on-line, they may not be reserved on-line, since such
action could prevent a currently swapped-out program from
regaining use of its system-assigned partition when it was again
scheduled.

+---+

III-37

OPERATOR COMMANDS

3-5. OPERATOR COMMAND ERROR MESSAGES

When an operator command is entered incorrectly
conditions prevent honoring the command, RTE may
and issue one of the messages listed in Table
should either enter the command correctly or take
and enter the command again.

or current system
reject the command
3-3. The operator
appropriate acti-on

Table 3-3. Operator Command Error Messages.

+---+
I I
I Message I Meaning Action
1---------------- ------------------------------- --------------------
1 OP CODE ERROR
I
I
I NO SUCH PROG
I
I
I
I INPUT ERROR
I
I
I ILLEGAL S'rA'rus
I
I
I
I
I
I
I
I c~m IGNORED-
1 NO MEM
I
I
I
I ILLEGAL PART 'N
I
I
I
I SIZE ERROR
I
I
I
I

Illegal operator request word.

The name entered is not a main
program in the system.

A parameter is illegal.

Program is already scheduled.

Not enough system Available
Memory exists for storing the
program's command string.

Partition does not match
command request.

I
I
I
I
I
I
I

Illegal program size specified!
or size of program specified I
larger than its assigned I
partition or any partition. I

I

Enter correct
opcode

Enter correct
pro•3r am name or
load program

Enter command with
correct parameter

Check status with
ST cmd. Ei thee
wait until program
terminates itself
or off it with OF
command and reenter
RU command

Reenter the command
(RU,ON,GO) or enter
the inhibit form
(IH) of the cmd.

Reenter command
with correct
parameter number

Reenter command
with correct size
or adjust program
size with sz cmd.

+---+

III-38

OPERATOR COMMANDS

Other errors may occur when an I/O device times out because of an
inoperable state. For example, assume the line printer is in the
OFF-LINE condition (or the operator has failed to engage the paper
tape reader clutch). In this case, the system will print one of the
following error messages and suspend the program:

I/O NR L ilu E ieqt S #sub

I/O TO L #lu E ieqt S #sub

After the device problem has been corrected, simply enter the command

UP ,eq t

where eqt is the downed device's Equipmentt •rable entry number (same
number given in the I/O error message). The program is automatically
rescheduled and the desired I/O operation takes place.

An alternate method of handling the same problem would be to use the
LU command to change the referenced device to anothe.r device that is
operational.

Another example of time-out is running out of paper when a program is
printing a long listing on the line printer. In this case, it is
possible to switch Lu's and continue the listing without interruption,
as shown below:

I/O TO L ilu E #eqt S isub
LU, lu ,eqt

The error message says that the device at LU number lu, EQT number
eqt, subchannel number sub has timed out and has been set down by the
system. The operator switches logical units (with the LU command). The
listing will continue on the new device.

I I I-3 9

+--+---------------------+ I I I
I EXEC CALLS I SECTION IV I
I I I
+--+---------------------+

4-1. INTRODUCTION

An executing program may request various system services through EXEC
calls coded into the program. An EXEC call is a block of words
consisting of a subroutine call to EXEC with a list of parameters that
define the request. Execution of the subroutine call causes a memory
protect violation interrupt and transfers control into the EXEC
module. EXEC then determines the type of request (from the parameter
list) and initiates processing if the request was legally specified.

In RTE FORTRAN IV, EXEC calls are coded as standard CALL statements.
In Assembly Language, EXEC calls are coded as JSB EXEC, followed by a
series of parameter definitions. For any particular call, the object
code generated for the f'ORTRAN CALL statement is equivalent to the
corresponding Assembly Language object code.

4- 2. ASSEMBLY LANGUAGE FORMA'r

The general format for an EXEC call in Assembly Language is as
follows:

EXT EXEC

JSB EXEC

DEF *+n+l

DEF pl

used to link program to RTE.

Transfer control to RTE.

Defines a point of return from RTE (must be immediately
after the last parameter), where n is the number
of parameters and may not be an indirect address.

Define addresses of parameters that may occur anywhere
in program; may be multi-level indirect.

IV-1

EXEC CALLS

DEF pn
return point Continue execution of program.

pl - pl = !CODE = Request Code l<pl< 26.

Actual parameter values

pn -

The example below illustrates a Read request (ICODE=l), with the read
being performed on LUS:

NEXT -

JSB
DEF
DEF
DEF
DE1'.,
DEF

EXEC
NEX 1r
Dl
LU
IBUFR
I BU FL

D1 DEC 1
LU DEC 5
IBUFL DEC 10
IBUFR BSS 100

Address of return point and call delimiter.
Address of EXEC code.
Address of LU number.
Buffer address.
Address of number of words to read.

This is ICODE: !=read.
LU number is 5.
Buffer length to read is 10 words.
This is the buffer where the data is placed.

The above sample request reads 10 words from LU5 and places the words
into the first 10 words of the 100-word buffer called IBUFR.

4-3. FORTRAN IV FORMAT

In FORTRAN IV, the Executive can be called through a CALL statement or
as a function. The function is used when the user wishes the A and B
registers to be returned in a variable.

IV-2

CALL Statement Example:

CALL EXEC (!CODE, p2, ••• , pn)

where !CODE and p2 through pn are either integer values or integer
variables defined elsewhere in the program.

Function Example:

DIMENSION IREG(2)
EQUIVALENCE (REG(l),IA,IREG) ,(IREG(2),IB)

REG=EXEC (ICODE,p2 ••• ,pn)

The A-register is returned in IA and the a-register in IB.

As a further example of using calls in FORTRAN, the Assembly Language
example given previously in paragraph 4-2 could be performed in two
different ways in FORTRAN-IV:

1. As a call:

DIMENSION IBUFR(lOO)

LU=S
IBUFL=lO
CALL EXEC(l,LU,IBUFR,IBUFL)

2. As a function:

DIMENSION IBUFR(l00)

.
LU=S
IBUFL=lO
REG=EXEC(l,LU,IBUFR,IBUFL)

These two FOR'fRAN examples and the Assembly Language call all perform
the same function.

IV-3

EXEC CALLS

4-4. EXEC CALL ERROR RETURNS

EXEC calls that are in error will cause the offending program to be
aborted if the error is severe enough. The following errors are
considered to be sufficiently catastrophic to cause a program abort:

Error Code: Error Type:

MP
DM
RQ
DP
RE
PE

Memory Protect
Dynamic Mapping
Request Code
Dispatching
Reentrancy
Parity

If an error is not severe, it will either abort the program or, at the
user's option, report the error to the program itself and allow the
program to continue execution. Non-severe error codes include the
fol lowing:

Error Code: Error Type:

SC
LU
IO
DR
RN

Scheduling
LU Lock
Input/Output Error
Disc Allocation
Resource Number

A detailed explanation of EXEC call error messages is given at the end
of this $ection.

The
EXEC
on
the
the
line

nno-abort" option is set up by altering the return point of the
call. This error return is established by setting bit 15 to "l"

the request code word (!CODE). This causes the system to execute
first line of code (it must be a one-word instruction) following

CALL EXEC if there is an error. If there is no error, the second
of code following the CALL EXEC is extended.

The special error return will also return control to the calling
program on a disc parity error on the system disc or auxilliary disc.
In this case, the a-register will be set to -1 instead of the
transmission log, and the return will be to the normal return point.
If there is an error, the A-register will be set to the ASCII error
type (LU,SC,IO,DR,RN) and the a-register set to the ASCII error
numbers normally displayed on the system console.

IV-4

EXEC CALLS

The following excerpts from a sample FORTRAN program demonstrates use
of the special error return:

CALL EXEC (ICODE+lO OOOOB ,LU, IBUFR, IBUFL)
Error Return-> GO TO 100
No Error Re turn->

Only the GO TO statement should be entered after a no-abort EXEC call:
any other FORTRAN command would cause error type information to be
lost (see below). The GO TO statement also must not reference the very
next statement: thus, the following sequence is illegal:

100

CALL EXEC(ICODE+lOOOOOB,LU,IBUFR,IBUFL)
GO TO 100

This is illegal because FORTRAN produced code tries to optimize the
two statements and will not produce a jump if the jump destination is
the very next executable statement. Therefore, the GO TO would be
ignored.

As mentioned previously, if an error return is made to a program, the
A and B registers contain the ASCII error code. The A-register
contains the error type (SC,LU,IO,DR,RN), and the B-register contains
the error number (ASCII 01,02,03,etc.).

The A-register can be easily examined in Assembly Language calls.
Examination is slightly more complex in FORTRAN-IV, but the A and B
registers can be fetched in the following way:

CALL EXEC(ICODE+lOOOOOB, •••)
GO TO 100

100 CALL ABREG(IA,IB)

ABREG is an HP-supplied subroutine that returns the A-register in the
first parameter (IA) and the a-register in the second parameter (IB).
Since the contents of A and B are now available; the user may examine
the the error and take appropriate action.

CAUTION
Note that the no-abort option should not be used when the EXEC call is
made as a function: that is~ the following should not be used:

REG=EXEC{ICODE+lOOOOOB •••••)
GO TO 100

IV-5

EXEC CALLS

The reason is that REG forces the A and B re9ister to be treated as a
REAL subroutine instead of on integer subroutine.

4-5. EXEC CALL SUMMARY

Table 4-1 summarizes the available RTE EXEC calls, their function and
order of appearance in this section. The error mesaages associated
with the calls are listed at the end of this section.

IV-6

EXEC CALLS

Table 4-1. RTE EXEC Calls

+----------------------+-------+---------------------------------+----+
I I I I I
I Call I Request I Function I Page I
----------------------+-------+---------------------------------+----!

Read, Write

I/O Control

I/O Status

Disc Track Allocation
Program
Global

Disc Track Release
Program
Glob al

Program Completion

Program Sus pend

Program Segment Load

Program Schedule

1,2

3

13

4
15

5
16

6

7

8

9
10
23
24

I I
Transfers information to and froml 4-91
an external I/O device. I I

Performs various I/O control
opera ti.ans.

I I
I I
14-121
I I
I I

Requests information about a
device.

4-161
I
I

Assigns a specific number of disc 4-191
tracks for data storage. I

Release assigned disc tracks.
4-21
4-22

Logically terminates execution of 4-24
a calling program.

Suspends calling program
execution.

Loads a program segment into
background area.

4-27

4-28

execution 4-29 Schedules a program for
Immediate with wait.
Immediate without wait.
Queue with wait.
Queue without wait.

I
I
I
I
I

+----------------------+-------+---------------------------------+----+

IV-7

EXEC CALLS

Table 4-1. RTE EXEC Calls (cont'd)

+----------------------+-------+---------------------------------+----+
I I I I I
I Call I Request I Function I Pagel
+----------------------+-------+---------------------------------+----+

Time Request

String Passage

Timed Execution
Initial Offset
Absolute start

Program swapping
Control

Partition Status

Memory Status

11

14

12
12

22

25

26

Requests current time.

Re tr ie ves program's command
string or passes string to
program's "Father."

Schedules a program for execution
After an initial offset.
At a specified time.

Allows a program to lock itself
Ii nto memory.

Provides information about a
specified partition.

4-33

4-34

4-36
4-38

4-41
I

4-42
I
I

Allows a program to obtain 14-44
information about its own address!
space. I

I
Class I/O Read,Write 17,18, Starts a no-wait I/O request 14-50

I 20 that results in an information I
I transfer to and from an external I
I I/O device or program. I
I I

Class I/O Control I 19 Performs various no-wait control 14-55
I operations. I
I I

I Class I/O Get I 21 Completes the data transfer 14-52
I I initiated by the Class I/O I
I I request (17,18, 19, 20) . I
+----------------------+-------+---------------------------------+----+

IV-8

EXEC CALLS

4-6. S'£ANDARD FUNCTION CALLS

4-7. READ/WRITE CALL

Transfers information to or from an I/O device. For a Read request or
for writes to unbuffered devices, the program is placed in the I/O
suspend list until the operation is complete. RTE then reschedules the
program.

Assembly Language:

EXT EXEC

I CODE
ICNWD
I BU FR
I BU FL
IPRMl

IPRM2

FORTRAN

JSB
DEF
DEF1

DEF
DEF
DEF
DEF

DEF

return

DEC
OCT
BSS
DEC
DEC

DEC

EXEC
RTN
I CODE
ICNWD
I BU FR
IBUFL
IPRMl

IPRM2

point

Transfer control to RTE
Return address
Request code (l=read; 2=write)
Control information
Buffer location
Buff er length
Optional parameter (track number if disc
transfer)
Optional parameter (sector number if disc
transfer)
Continue execution (A=status, B=transmission
log. If buffered Write, A and Bare
meaning less.)

1 (or 2) l=Read; 2=Wr i te
conwd
n
n(or -2n)
f

q

conwd is described in Comments
Buff er of n words
Sarne n; words (+) or characters (-)
Optional parameter or decimal track number
if disc transfer
Optional parameter or decimal sector number
if disc transfer

DIMENSION IBUFR(n) Set up buffer
IBUFL = n Buffer length
!CODE = 2 Request code (l=Read; 2=Write)
ICNWD = conwd Set Control Word
REG=EXEC (!CODE, ICNWD, IBUFR,IBUFL, IPRMl, IPRM2)

IV-9

EXEC CALLS

4-8. READ/WRITE COMMENTS

Parameters IPRMl and IPRM2 are optional except in disc transfers. If
the data transfer involves a disc, IPRMl is the disc track number and
IPRM2 is the disc sector number. These parameters may have further
uses in calls to other I/O devices. In some cases, IPRMl and IPRM2 may
be used to pass an additional control buffer to the driver {see Z-bit
below).

CONTROL WORD

Figure 4-1 shows the format of the control word (conwd) required in
the Read/Write calling sequence. Function codes for DVR00/05 driven
devices are given as an example. See the appropriate driver manual for
other device function codes.

+---1---1---1---1---1---1---1---1---1---1---1---1---1---1---1---+
115 114 13 12 Ill 10 9 I 8 7 6 I 5 4 3 I 2 1 o I
+---1-----------1-----------1-----------1-----------1 -----------+

0 0 0 Z 0 I X A K V M I Logical I
I I Unit
I Function Code I
+-------------------+ TPRTE-3

Figure 4-1. Read/Write (conwd) Format

where:

Logical Unit = the logical unit number of the devices to/from which
the I/O transfer is to be sent.

Note that if the logical unit is specified as zero {the bit bucket),
the call is executed but no data is transfered.

z = When set, designates that IPRMl is the address of a control buffer
and IPRM2 is the length of that buffer in positive words or
negative character (useable only when the call is to a non-disc
device). The Z-bit is passed through to the driver.

Bits 11 and 13-15 are received for usage by the system and should be
set to zero by the caller.

Function code bits for DVR00/05 devices are as follows:

M = 0 for ASCII.

M = 1 for binary.

IV-10

EXEC CALLS

V = 1, and M = 1, causes the length of punched tape input to be
determined by the word count in the first non-zero character read
from the tape.

V = 1 for the line printer will cause it to print column one.

V = 0, and M = 1, the length of the punched tape input is determined
by the buffer length specified in the EXEC call.

K = 1 causes keyboard input to be printed as received. If K=O, input
from the keyboard is not printed.

A = 1 designates punching (without printing) ASCII charactters on the
teleprinter (M = 0). (If A = 0, M determines mode of transfer.)
This bit is effective on devices that recognize ths control
function.

X = When paper tape devices are used, "X" in combination with "M" and
"V" will indicate an honesty mode that is defined as follows:

On input, if "X", "M", and "V" are set, absolute binary tape
format is expected and handled. If "X" and "M" are set, and "V" is
not, leader is not skipped and the specified number of words are
read. On output the record terminator (usually four feed frames)
is not punched.

On input, if "X" is set and "M" is not, ASCII tape format is
expected. Leader is not skipped, bit 8 is stripped, but otherwise,
all characters are passed to the user's buffer. The only exception
is line-feed, which terminates the record. On output, carriage
return and line-feed are suppressed; any trailing left arrow is
not (i.e., left arrow is transmitted but carriage return/line feed
is not).

A AND B REGISTER RETURNS

End-of-operation information ·for reads and unbuffered writes is
transmitted to the program in the A- and B- registers. The A-register
contains word 5 (status word) of the device EQT entry with bits 14 and
15 indicating the end-of-operation status as defined by the driver
completion code. •rhis will be either 00 (up) or 01 (down).

The a-register contains a positive number that is the number of words
or characters (depending upon program specification) actually
transmitted. Thus, the user can find the number of words entered on
any input request by getting the contents of the a-register.

IV-11

EXEC CALLS

If the input buffer length was a negative number of characters, the
contents of the B-register will be equal to the positive number of
characters entered. If the requested buffer length was a positive
number of words, the B-register contents will be equal to the positive
number of words entered.

When a REAL array is transmitted, the buffer length must still be the
total number of words required (i.e., two times REAL array length, or
three times double-precision array length).

The registers are meaningless in output requests to a buffered devic~.

I/O AND SWAPPING

Disc resident programs performing I/O are swappable under any one of
the following conditions:

a. The buffer is not in the partition (i.e., it is in system
COMMON) •

b. The device is buffered, the request is for output, and enough
SAM was allocated for buffering the record to be transferred.

c. The input or output buffer is wholly contained in the Temporary
Data Block (TDB) reentrant routine, and enough SAM was
allocated to hold the TDB.

Only the f i rs t bu f fer of a two-bu f f e r request (see z -bi t a bov e) i s
checked to determine program swappability. It is the user's
responsibility to put the second buffer in an area that implies
swappability if conditions "a" or "c" are true. The system handles
case "b".

REENTRANT I/O

use of reentrant I/O allows a program to be swapped if the read
request is made via a call to the REIO subroutine. REIO is a utility
library subroutine and is more fully described under Section x.

4-9. I/O CONTROL CALL

Carries out various I/O control operations, such as backspace, write
end-of-file, rewind, etc. If the I/O device is not buffered, the
pr0i3ram is placed in the I/O suspend list until the control operation
is complete.

IV-12

EXEC CALLS

Assembly Language:

EXT EXEC

JSB EXEC Transfer control to RTE
DEF RTN Return address
DEF I CODE Request code (3=control)
DEF ICNWD Control information
DEF I PRAM Optional parameter

RTN re turn point Continue execution (A = status, B meaning less.
A and B are both meaningless if the call is
bufferred) •

I CODE DEC 3 Request code = 3
ICNWD OCT conwd See Control Word
I PRAM DEC n Required for some control functions; see

Control Word

FORTRAN:

Use the FORTRAN statements or an EXEC call sequence.

!CODE = 3 Request code
ICNWD = conwd
!PRAM= x Optional; see Control Word
REG = EXEC (!CODE, ICNWD, !PRAM)

CONTROL WORD

Figure 4-2 shows the format of the control word (conwd) required in
the I/O control calling sequence.

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
1151141131121111101 91 81 71 61 51 41 31 21 11 01
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

0 O 0 0 01 I Logical Unit No.
+- Function -+

Code

Figure 4-2. I/0 Control (conwd) Format

IV-13

EXEC CALLS

The following are general function codes:

Function Code (Octal)

00

01

02

03

04

05

06*

07

10

11

12

13

14

15

Action

Clear device

write end-of-file (magnetic tape)

Backspace one record (magnetic tape)

Forword space one record (magnetic tape)

Rewind (magnetic tape)

Rewind standby (magnetic tape)

Dynamic status (magnetic tape)

Set end-of-paper tape--leader skipped on next
input request

Generate paper tape leader

List output line spacing

Write inter-record gap (magnetic tape)

Forward space file (magnetic tape)

Backward space file (magnetic tape)

Conditional form feed (see Line Printer Driver
manual).

+--+
!*FOOTNOTE: The dynamic status request (06) is unbuffered by RTIOC sol
I that the caller receives the true status of any device. This causesl
I the caller to wait for previous requests it (and lower priority I
I programs) has made to be processed. I
+--+

IV-14

EXEC CALLS

The following functions are defined for DVR00/DVR05 (see the driver
manual) :

Function Code:

20

21

22

23

24

Action:

Enable terminal - allows terminal to schedule
its program when any key is struck.

Disable terminal - inhibits scheduling of
terminal's program.

Set timeout - the optional parameter is set
as the new timeout interval.

Ignore all furthe~ action requests until:

a. the device queue is empty
b. an input request is encountered in the

queue

c. a restore control request is received.

Restore output processing
usually not needed).

(this request is

The following functions are defined for the 264x cartridge tape units
(CTU). (Function codes 01, 02, 03, 04, 06, 13, and 14 have the same
meaning for CTU as for magnetic tape.)

Function Code:

05

10

26

27

Action:

Rew ind.

Write end-of-file if not just previously
written or not at load point.

Write end-of-data.

Locate file number !PRAM (less than 256).

IV-15

EXEC CALLS

Function code octal 11 (list output line spacing), requires the
optional parameter !PRAM which designates the number of lines to be
spaced on the specified logical unit as shown below:

I PRAM Teleprinter Line Printer
----- ----------- -----_ ___

+n space n lines space n lines

-n space n lines top of form

0 no line feed no line feed

4-10. I/O STATUS CALL

Requests information (status condition and device type) about the
device assigned to a Logical Unit number.

Assembly Language:

RTN

I CODE
ICNWD
I ST Al
ISTA2
ISTA3

FORTRAN:

IV-16

EXT EXEC

•
JSB
DEF
DEF
DEF
DEF
DEF
DEF
return

DEC
DEC
NOP
NOP
NOP

EXEC
RTN
I CODE
ICNWD
I ST Al
ISTA2
ISTA3
point

13
n

Transfer control to RTE
Return address
Request code (13=status)
Control information
Status word 1
Stat us word 2 -- optional
Status word 3 -- optional
Continue execution

Request code = 13
Log ica 1 Unit number

(A and B are meaningless)

Word 5 of EQT entry returned here
Word 4 of EQT entry returned here, optional
LU status returned here, optional

!CODE = 13 Request code
ICNWD = nn nn is the logical unit number
CALL EXEC (ICODE,ICNWD,ISTA1,ISTA2,ISTA3)

EXEC CALLS

4-11. I/O S'rATUS COMMENTS

•rhe calling program is not suspended when the call is made. Equipment
Table entry (EQT entry) words 5 and 4 (optional) are returned in ISTAl
and IS'I1A2 and are defined as shown in Table 4-2. The STATUS portion of
EQT entry word 5 for moving head discs is further broken down and is
shown in Table 4-3. Refer to the appropriate driver manual for the
format for other drivers.

The status of the specified LU i.s returned in ISTA3. Bit 15 indicates
whether the device (LU) is up (0) or down (1). Bits 4-0 give the
subchannel associated with the device.

IV-17

WORD

4

5

ISTA2

ISTAI

IV-l8

T

15 14

D B

AV

D

B

p

s

T

Unit

Channel

AV

Table 4-2 1/0 Status Word (IST Al/ISTA2) Format

13

p

CONTENTS
T T -.-

9 I 8

T T T , I .
12 11 IO 7 6 5 4 3 2

l s T 1 Unit# Channel#

EQUIP. TYPE CODE I STATUS (see Table 3-4)

= 1 if DMA required.

= 1 if automatic output buffering used.

= 1 if driver is to process power fail.

= I if driver is to process time-out.

= I if device timed out (system sets to zero before each 1/0 request).

= Last sub-channel addressed.

= 1/0 select code for device (lower number if a multi-board interface).

= 1/0 controller availability indicator:

0 = available for use.

1 =disabled (down); for UP/DOWN status of LU see ISTA3.

2 =busy (currently in operation).

3 = waiting for an available DMA channel.

1

EQUIP. TYPE CODE = type of device. When this number is linked with "DVR." it identifies the
device's software driver routine:

00 to 07 8 = paper tape devices (or system control devices)

00 =teleprinter (or system keyboard control device)

0 I = photo-reader

02 = paper tape punch

05 sub channel 0 = interactive keyboard device (or system
keyboard control devices)

subchannel 1,2 = HP mini-cartridge device
07 subchannel 4 multi-drop driver

10 to 1 7 = unit record devices

10 = plotter

11

12

15

20 to 37

31

32

33

= card reader

= line printer

= mark sense card reader

= magnetic tape/mass storage devices

= 7900 moving head disc

= 7905 moving head disc

= flexible disc

40 to 77 = instruments

T

STATUS = the actual physical status or simulated status at the end of each operation.
For paper tape devices, two status conditions are simulated: Bit 5 = 1
means end-of-tape on input, or tape supply low on output.

0

EXEC CALLS

TABLE 4-3. EQT WORD 5 STNrus ·rABLE

Device ~ Status 7 6 5 4 3 2 1 0

7900 Moving Head Disc
NR EOT AE FC SC DE EE

DVR31

7905 /7906/7920
Moving Head Disc PS FS HF FC SC NR DB EE

DVR32

Where:
(See appropriate driver manual for status bits of other devices)

DE = Data Error NR =Not Ready
DB= Device Busy HF= Hardware Fault
SC = Seek Check PS = Protected Switch Set
FC = Flagged Track (protected) FS =Drive Format Switch is set
AE = Address Error EE = Error exists
EQT = End of Tape/Track

4-12. DISC TRACK ALLOCATION CALL

Requests that the system assign a specific number of contiguous disc
tracks for data storage. The tracks are either assigned to the calling
program or assigned globally.

IV-19

EXEC CALLS

Assembly Language:

R'l'N

!CODE

I'rRAK

IS'rRK

ID I SC

I SECT

FORTRAN:

EX'!' EXEC

JSB
DEF
DEF
DEF
DEF'
DEF
DEF
return

DEC

DEC

NOP

NOP

NOP

EXEC
R'l'N
I CODE
I'rRAK
ISTRK
I DISC
ISEC'r
point

4 or 15

n

Transfer control to RTE
Return address
Request code (4=local track~lS=global track)
Number of contiguous tracks required
Start track number
Disc logical unit number
Number of 64 word sectors/track
Continue execution (A and B are meaningless)

4 = allocate track to program
15 = allocate track globally
n = number of contiguous tracks within the
same disc unit requested. If bit 15 of
ITRAK = 1 the program is not suspended if
tracks are not available: if bit 15 = 0,
the program is suspended until the tracks
are available.
System stores starting track number here,
or -1 if the tracks are not available.
System stores Logical Unit number (2 or 3)
here.
System stores number of 64 word
sectors/track here.

Example (with no suspension):

!CODE = 4
ITRAK = lOOOOOB + n
CALL EXEC (ICODE,ITRAK,ISTRK,IDISC,ISECT)

Example (with suspension until tracks available):

IV-20

!CODE = 4
ITRAK = n
CALL EXEC (ICODE,ITRAK,ISTRK,IDISC,ISECT)

EXEC CALLS

4-13. DISC TRACK ALLOCA'rION COMMEN'fS

RTE supplies only whole tracks within one disc. When writing or
reading from the tracks (see Read/Write EXEC call), RTE does not
provide automatic track switching: when using this call, the user
program is completely responsible for track management. RTE will
prevent other programs from writing on program-assigned tracks but not
from reading them.

The program retains the tracks until released by itself, the operator,
or if the program is aborted. Glcbally assigned tracks are available
to any program for READ, WRITE, or release. The user is completely
responsible for their management. R'I'E will not prevent other programs
from writing on globally assigned tracks or from releasing them.

4-14. PROGRAM DISC TRACKS RELEASE CALL

Releases some contiguous disc tracks previously assigned to a program
(see Disc Allocation EXEC call).

Assembly Language:

EXT EXEC

R'rN

IC ODE
IT RAK

ISTRK
I DISC

JSB
DEE'
DEF
DEF
DEP
DEF'
return

DEC
DEC

DEC
DEC

EXE:C
RTN
I CODE
ITRAK
IS'rRK
I DISC
point

5
n

m
p

Transfer control to RTE
Return address
Request code (S=release local tracks)
Number of contiguous tracks, or -1
Starting track number
Disc 1ogica1 unit = 2 or 3
Continue execution (A and B are meaningless)

Release
,

tracks program s
If n = -1, release all tracks assigned to
program: IS'I'RK and I DISC are unnecessary.
O the rw ise, n is the number of contiguous
tracks to be released star ting at ISTRK.
star ting track number
Disc logical unit

IV-21

EXEC CALLS

FORTRAN:

Release of n contiguous tracks starting at m on LU p:

!CODE = 5
ITRAK = n
ISTRK = m
!DISC = p
CALL EXEC (ICODE,ITRAK,ISTRK,IDISC)

Release all tracks allocated to the program.

!CODE = 5
I'fRAK = -1
CALL EXEC (I CODE, I'I1RAK)

4-15. PROGRAM TRACKS REL EASE COMMENTS

Any suspended program waiting for tracks is rescheduled when enough
tracks are released to honor the request.

4-16. GLOBAL DISC TRACKS RELEASE CALL

Releases a specified number of contiguous disc tracks that were
previously assigned globally (see Disc Allocation EXEC call).

Assembly Language:

RTN

!CODE
ITRAK

IS'l1RK
ID I SC

IV-22

EXT EXEC

JSB
DEF
DEF
DEF
DEF
DEF
return

DEC
DEC

DEC
DEC

EXEC
RTN
I CODE
I'fRAK
I8'I1RK
I DISC
point

16
n

m
p

Transfer control to RTe
Return address
Request code (16=release global track)
Number of contiguous tracks
Starting track number
Disc logical unit
Continue execution (A = track release
status, B meaningless)

Release global tracks
'11he number of contiguous tracks to be
released starting at ISTRK
star ting track number
Disc logical unit

EXEC CALLS

FORTRAN:

Release of n contiguous global tracks starting at m on LU p:

I CODE = 16
IT RAK = n
ISTRK = m
!DISC = p
REG = EXEC (ICODE,ITRAK,ISTRK,IDISC)

4-17. GLOBAL DISC TRACK RELEASE COMMENTS

If any one of the tracks to be released is either not assigned
globally or is currently in use (i.e., some program is queued to read
or write on the track at the time of the release request), none of the
tracks are released.

The requesting program is rescheduled after the request with the
A-Register set as follows:

A=O The tracks have been released.

A=-1 No tracks have been released (at least one track was in use).

A=-2 No tracks have been released (one or more tracks was not
assigned globally).

IV-23

EXEC CALLS

4-18. PROGRAM COMPLE"rION CALL

Notifies RTE that the calling program wishes to terminate itself or
another pro·3r am.

Assembly Language:

EXT EXEC

RTN

!CODE

!NAME

JSB
DEF
DEF
DEF
DEF
DEF

DEF
return

DEC
DEC

or

EXEC
R·rN
!CODE
!NAME
!NUMB
IPRMl

IPRMS
point

6
0

Transfer control to RTE
Re tu r n add res s
Request code (6=terminate)
Name of program to be terminated (optional)
Type of completion (optional)

Up to five optional parameters

Continue execution (A =as it was; B = as
it was or parameter address)

Request code = 6
Terminate this program

ASC 3,name name = Name of subordinate program to be

!NUMB DEC n

IV-24

terminated.

name = 0 if terminating itself.

n = 0, Normal completion

n = -1, Serial Reusability Completion.
When rescheduled, program is
not reloaded into memory if it
is still resident.

n = 1, Save Resources Completion. Make
program dormant but save
current suspension point anq
save all resources the program
has; that is, any system
resource the program asked for
but did not itself release is
retained.

IPRMl

IPRM5

r"'ORTRAN: DIMENSION
!CODE = 6
!NUMB = 0
INA ME (1) =
!NAME (2) =
!NAME (3) =
REG = EXEC

EXEC CALLS

n = 2, Terminates and removes from the
time list the named program. If
the program is I/O suspended,
the system waits until the I/O
completes before setting the
program dormant1 however, this
call does not wait. The
program's disc tracks are not
released. CALL EXEC (6, O, 2 or
3) is equivalent to issuing an
OF,name,O or 1 command
(respectively) and therefore is
treated like an abnormal
termination.

n = 3, Immediately terminates the
named program, removes it from
the time list, and rel~ases all
disc tracks. If suspended for
I/O, a system generated clear
request is issued to the
driver. An abort message is
printed on the system console.
CALL EXEC (6, 0, 2 or 2) is
equivalent to issuing an
Of,name, 0 or 1 command
(respectively) and therefore is
treated as an abnormal
condition.

These parameters are saved in the
terminating program's ID segment and
thus may be picked up by a call to
RMPAR when the program next executes.
In this manner a terminating program
may retain parameters for all future
executions.

!NAME (3) See !NAME above

see I NUMB above
2Hcc First two characters
2Hcc Second two
2Hc Last character in upper eight bits
(!CODE, !NAME, !NUMB)

IV-25

EXEC CALLS

4-19. PROGRAM COMPLETION COMMMENTS

The optional parameters in this call makes it possible to selectively
terminate programs that only the user has scheduled. That is, if PROGl
("Father") schedules PROG2 ("Son") to run, and PROG2 later schedules
PROG3, then PROG2 becomes the "Father" to PROG3 (a "son"). In this
case, only the following calls for Program Completion are legal:

*
*
*

PROGl terminates itself or PROG2
PROG2 terminates itself or PROG3
PROG3 terminates itself only.

Option -1 (INUMB=-1) should be used only for programs that are
serially reusable: that is, disc resident programs that can initialize
their own buffers or storage locations. ~vhe·n INUMB=-1, the program is
reloaded from disc only if it has been overlaid by another program.
The program must be able to maintain the integrity of its data in
memory.

Option 1 (INUMB=l) is nearly identical to the Program Suspend EXEC
call (see below), and also functions similarly to the SS operator
command. When INUMB=l, the program starts from its point of suspension
with all resources saved. Unless the program terminated itself in this
manner, it could only be restarted by the program that scheduled it
("r"'ather") or through the ON or RUN operator commands. If the program
terminated itself (INAME=O), it may be restarted by any normal run
stimulus (i.e., schedule, ON, RUN, TIME and interrupt).

IPRMl through IPRMS are optional parameters that are passed back to
the Program when it is next scheduled. They are passed only when
INAME=O, and may be recovered by a call to RMPAR when the program next
executes. This permits a program in the time list to run with the same
parameters each time.

Note that the FORTRAN compiler automatically generates a Program
Completion EXEC call when it compiles an END statement.

Note also that a father may either terminate a son normally or with
the son saving resources.

IV-26

EXEC CALLS

4-20. PROGRAM SUSPEND CALL

Suspends execution of the calling program until it is restarted by a
GO operator request.

Assembly Language:

EXT EXEC

RTN

!CODE

JSB
DEI4"'
DEF'
return

DEC

EXEC
RTN
!CODE
point

7

4-21. PROGRAM SUSPEND COMMENTS

Transfer control to RTE
Return address
Request code (?=suspend)
Continue execution (A=as it was; B=as
it s or parameter address)

Request code = 7

The FORTRAN library subroutine PAUSE, which is automatically called by
a PAUSE statement, generates the Program suspend EXEC call. In
addition, it logs the pause and any supplied number on the system
console.

It is illegal to suspend a program running under batch with the
Program Suspend call. This results in a SCOO error return.

The Program suspend call is similar in function to the SS operator
command. When a program is suspended either by this call or by the SS
operator command, both the A- and B-registers are saved and the
program is placed in the operator suspension list. When the program
is restarted via a GO command without parameters, all registers are
restored to the same status they had at the point of suspension and
the program resumes execution.

IV-27

EXEC CALLS

When the program is restarted via a GO command with parameters, the
B-register contains the address of a five-word array set by the GO
command. In a FORTRAN program, a call to the RMPAR library subroutine
can lead these parameters, providing the RMPAR call occurs immediately
following the Program Suspend call. However, it should be noted that
when &."1PAR is used, parameters MUST accompany the GO command.
Otherwise, RMPAR will use the restored B-register as an address to
parameters that do not exist. When it is suspected that there might
not be any parameters, the following example shows how to allow for
it:

DIMENSION I(5),IREG(2)
EQUIVALENCE (IREG,REG), (IREG(2) ,IB)
REG=O.O
REG= EXEC (7)
IF (IB) 20,20,10
10 CALL RMPAR (I)

20 CON'I'INU E

Suspend

Return point; get
parameters
Return point; no
parameters

4-22. PROGRAM SEGMENT LOAD CALL

Loads a calling program's background segment from disc into the
background segment area and transfers control to the segmen~'s entry
point. (See "Segmented Programs" in the Program Preparation section of
this manual for information on segmented programs.)

Assembly Language:

EXT EXEC

JSB EXEC Transfer control to RTE
DEF RTN Return address
DEF I CODE Request code
DEF I NAME Segment name
DEF IPRMl \

\
> Up to five optional par arne te rs

I
DEF IPRMS I

R'£N return point Control is transfer red to the segment.
(A = segment ID seg. address; B = as
it was or parameter address.)

I CODE DEC 8 Request code = 8
!NAME ASC 3,name name is the segment name

IV-28

FORTRAN:

DIMENSION NAME (3)
ICODE=8
INAME(l)=2Hcc First two characters
INAME(2)=2Hcc Second two characters
INAME(3)=2Hc Last character in bits 8-15
CALL EXEC (ICODE,INAME,IPRMl ••• IPRMS)

4-23. PROGRAM SEGMENT LOAD COMMENTS

On segment entry the registers are set as follows:

A = Segment ID segment address.

EXEC CALLS

B = As it is unless parameters are passed, in which case it is the
address of parameter list address (see RMPAR).

If the segment loaded does not exist, an seas error results.

4-24. PROGRAM SCHEDULE CALL

Schedules a program for execution and passes up to five parameters and
a buffer to the program.

I V.-2 9

EXEC CALLS

Assembly Language:

EXT EXEC

JSB
DEF
DEF
DEF
DEF

DEF
DEF
DEF

RTN re turn

I CODE DEC

I NAME ASC

IPRMl

IP RMS

IBUFR BSS n
n (or-2n)

EXEC
RTN
I CODE
I NAME
IPRMl \

\
>

I
IP RMS I
IBUFR
IBUJ:o"'L
point

numb

3 ,name

'rr ansfe rs control to RTE
Return address
Request code
Name of program to schedule

Up to five optional parameters

Optional buffer address
Optional buffer length
Continue execution (A=progr am status;
B=as it was or parameter address)

9= immediate schedule with wait
lO=immediate schedule with no wait
23=queue schedule with wait
24 =queue schedule with no wait
name is the named program to schedule

Up to five optional parameters

Optional buffer of n words IBUFL DEC
Same n; words (+) or characters (-)

FORTRAN:

DIMENSION INAME(3) ,IBUFR(n) IBUFL = n
Set buffer length !CODE = numb See
!CODE above INAME(l) = 2Hcc First two
characters INAME(2) = 2Hcc Second two
characters INAME(3) = 2Hc Last character
CALL= EXEC(ICODE,INAME,IPRMl, ••• IPRMS,IBUFR,IBUFL)

4-25. PROGRAM SCHEDULE COMMENTS

The !CODE parameter determines whether or not the calling program will
wait, and whether the calling program's schedule request will be
queued until the currently scheduled program becomes dormant.

IV-30

EXEC CALLS

When a program is scheduled, a pointer is placed in its ID segment
that will:

a. Point back to the program that scheduled it.

b. Be set to 0 if the program was scheduled by the operator,
from an interrupt or from the time list.

The pointer is cleared when the program terminates or is aborted. Note
that the pointer established the program performing the scheduling as
the "Father" and the program being scheduled as the "Son".

When a program that had been scheduled with wait completes, the Father
may recover the system's copy of optional parameter 1 to determine
whether or not the Son terminated normally.

Abnormal termination of the Son is caused by any of the following
conditions:

a. System abort of program.

b. An OF operator command.

c. Self-termination
(6,0,3).

via CALL EXEC (6,0,2) or CALL EXEC

Abnormal termination causes the system's copy of optional parameter 1
to be set to lOOOOOB. This occurs even if the son attempted or
planned to pass back parameters via PRTN. The Father can recover the
system's copy of optional parameter 1 by calling RMPAR.

If the Son terminated normally and no parameters were passed back via
PRTN, the value of optional parameter 1 returned by RMPAR will then
be equal to its original value. Alternately, it will be the value set
up in the Son's PRTN call. The PRTN subroutine allows Sons to pass
parameters back to Fathers.

!CODE = 9 OR 10

If a program to be scheduled is dormant, it is scheduled and a zero
is returned to the calling program in the A-register. If the program
to be scheduled is not dormant, it is not scheduled by this call and
its status (some non-zero value) is returned to the calling program
in the A-register. If the program to be scheduled is a Son that was
suspended with the EXEC 6 call, some high bits may be set in the
A-register. Only the least four-bits should be checked for zero in
this case.

IV:-31

EXEC CALLS

A schedule with wait (ICODE=9) call causes RTE to put the "Father" in
a wait status by setting the wait bit in the status word of the
Father's ID segment. If required, the Father may be swapped by the
system to make way for a program that needs to run. The "Son" runs at
its own priority, which may be greater than, less than or equal to
that of the calling program. Only when the Son terminates does RTE
resume execution of the Father at the point immediately following the
Program Schedule call.

A disc resident program may schedule another disc resident program
with wait, since disc resident programs are swapped according to
their priority when they are in conflict over use of their memory
area.

A Program Schedule call without wait (ICODE=lO) causes the specified
program to be scheduled for execution according to its priority. The
Father program continues at its own priority without wait. Again note
that !CODES of 9 and 10 will not schedule the program if the program
to be scheduled is busy (i.e., not dormant).

IC ODE = 2 3 o r 2 4

These requests are identical to 9 and 10 except that the system
places the "Father" in a queue if the "Son" is not dormant. The
Father's request will then be honored when the Son becomes available.
Note that status will not be available in the A-register and the
Father will be impeded until the request is honored. The queue means
that if the Son is not dormant, the potential Father is suspended
until the Son may be scheduled by this Father. When the potential Son
can be scheduled, the request is reissued and execution precedes as
EXEC 9 and 10 described above.

OPTIONAL PARAMETERS

When the Son begins executing, the B-register contains the address of
a a five-word parameter list from the Father (parameters = 0 as the
default). A call to the RMPAR library subroutine, as the first
executable statement of a called program, transfers these parameters
to a specified five-word array within the called program. For
example:

PROGRAM XQF
DIMENSION !PRAM (5)
CALL RMPAR (!PRAM)

Note that !PRAM must be a minimum dimension of five words.

IV-32

EXEC CALLS

If the optional buffer is included in the Father's scheduling call,
the buffer is moved to System Available Memory and assigned to the
Son. The Son can recover the string by using the GETST library
routine or the String Passage call. The Father is memory suspended if
there is not enough System Available Memory to currently hold the
buffer but there will be in the future. The Father is aborted and an
SClO error is returned if there never be enough System Available
Memory for the buffer. The Father will not abort if the no-abort bit
(bit 15 in !CODE) is set. The length of the string is limited only by
the amount of usable System Available Memory.

For schedule with wait requests (!CODE = 9 or 23), the Son may pass
back five words to the Father by calling the PRTN library routine;
for example:

PROGRAM SCHED
DIMENSION !BACK (5)
CALL PRTN (!BACK)
CALL EXEC (6)

The EXEC (6) call (termination call) must immediately follow the PRTN
call. The Father may recover these parameters by calling RMPAR
immediately after the Son call. The Son may pass back a buffer to the
Father (see the String Passage call).

The Program Schedule call is similar in function to the RUN operator
command.

4-26. TIME REQUEST CALL

Requests the current time as recorded in the real-time clock.

Assembly Language:

EX'£ EXEC

RTN

I CODE
I'rIME
I YEAR

JSB
DEF
DEF
DEF
DEF
return

DEC
BSS
BSS

EXEC
RTN
I CODE
I TIME
I YEAR
point

11
5
1

Transfer control to RTE
Return address
Request code (ll=time request)
Time value array
Optional year parameter
Continue execution (A=meaningless; B=as

it was)

Request code = 11
Time value array
Year (optional)

IV-33

EXEC CALLS

FORTRAN:

DIMENSION ITIME(5),IYEAR(l)
ICODE=ll
CALL EXEC (ICODE,ITIME,IYEAR)

4-27. TIME REQUEST COMMEN~S

The time value array contains the time
year in an optional parameter, when RTE
f OU r d i g i ts (e • g • I 19 7 8) •

Assembler FORTRAN

on a 24-hour clock, with the
returns. The year is a fuil

!TIME or ITIME(l) = Tens of milliseconds
ITIME+l or ITIME(2) = Seconds
ITIME+2 or ITIME(3) = Minutes
ITIME+3 or ITIME(4) = Hours
ITIME+4 or ITIME(5} = Day of tne year

Another method of obtaining the current time is through a double-word
load from the $TIME Table Area II entry point. $TIME contains the
double-word integer of the current time of day. If this double-word
is passed to the TMVAL library subroutine, then TMVAL returns
milliseconds, seconds, minutes and hours. Refer to the Library
Subroutine section of this manual for more information.

The Time Request call is similar in function to the 'rI operator
command.

4-28. STRING PASSAGE CALL

Retrieves the command string that scheduled the program or passes a
buffer back to the "Father" program.

IV-34

EXEC CALLS

Assembly Language:

R'rN

I CODE
IRCOD

IBUFR
I BU FL

FORTRAN:

EXT EXEC

JSB
DEF
DEF
DEF
DEF
DEF
return

DEC
DEC

BSS
DEC

EXEC
RTN
!CODE
IRCOD
I BU FR
IBUF'L
point

Transfer control to RTE
Return address
Request code (14=string passage)
Retrieve/write code
Buffer location (string location)
Buffer length (string length)
Continue execution (A = status; B =
positive number of words/characters)

14 Request code
1 or 2 1 = retrieve parameter string

2 = write buffer to "Father"
n Buffer of n words
n(or -2n) Sarne n; words (+) or characters (-)

DIMENSION IBUFR(n)
IBUFL = n
!CODE = 14
IRCOD = 1
REG = EXEC(ICODE,IRCOD,IBUFR,IBUFL)

4-29. STRING PASSAGE COMMENTS

The command string retrieved is exactly like the string used in
scheduling the program via RU, ON, GO commands, or EXEC 9, 10, 23, or
24. The block of System Available Memory used to store the command
string (buffer) is released by this call or when the calliing program
goes dormant. Any parsing of the returned string is left to the
calling program. The RTE system library routine GETST can be used to
recover the parameter string portion of the command string.

Upon return from a retrieve operation, the A-Register contains status
information: 0 if the operation was successful or l if no string was
found. The a-Register is a positive number giving the number of words
(or characters) transmitted. If the string is longer than IBUFL, only
IBUFL words are transmitted. If an odd number of characters are
requested in a retrieve operation, the right half of the last word is
undefined.

If the write parameter string option is used, the call returns any
block of system available memory associated with the "Father" and
allocates a new block for the "Father" into which the string will be
stored.

IV-35

EXEC CALLS

If no memory is currently available, the calling program is memory
suspended.

If there will never be enough memory and bit 15 of !CODE is not set,
the calling program is aborted with an SClO error.

If there is no "Father," execution continues at the return point with
the A-register equal to 1. If the write parameter operation was
successful, the A-register is set to O.

Example:

RU,PROGX,ABCDSTRING

Where RU, PROGX,ABCOS'I'RING is returned by EXEC (14, •••) and ABCDS'rRING
is returned by GETST.

Be careful when writing a buffer to
a "Father" when the Father scheduled
the "Son" without wait (EXEC 10 or 24).
It is the user's responsibility to
ensure synchronization of the Son's
write and the Father's read.

4-30. TIMED EXECUTION CALL (Initial Offset)

Schedules a program for execution at specified time intervals,
starting after an initial offset time. RTE places the specified
program in the time list and returns to the calling program.

IV-36

Assembly Language:

RTN

I CODE

IPROG

IRESL

M.TPLE
IOFS'r

FORTRAN:

EXT EXEC

JSB EXEC
DEF RTN
DEF I CODE
DEF IP ROG
DEF IRESL
DEF MTPLE
DEF IOFsrr
return point

•
DEC 12
DEC 0

or
ASC 3,name

DEC x

DEC y
DEC -z

DIMENSION IPROG(3)
IPROG(l) = 2Hcc
IPROG (2) = 2Hcc
IPROG(3) = 2Hc
!CODE = 12
IRESL = x
MRPLE = y
IOFST = -z

Transfer control to RTE
Return address

EXEC CALLS

Request code (12=initial offset schedule
Program to put in time list
Resolution code
Execution multiple (0-4095)
Initial time offset
Continue execution (A=meaningless;
B as it was)

Request code = 12
Put calling program in time list

name is the program to put in the
time list
Resolution code
(1=10's/ms;2=ses;3=mins;4=hrs)
Execution multiple
z (units set by x) gives the initial
offset

See IPROG above
First two characters
Second two
Last character in upper 8 bits

(1 = 10 ' s/ ms ; 2 = secs; 3 =m ins ; 4 =hr s)
(0-4095)
z (units set by x) gives the initial
offset

CALL EXEC (ICODE,IPROG,IRESL,MTPLE,-IOFST)

IV-37

EXEC CALLS

4-31. INITIAL OFFSET COMMENTS

The Execution Time EXEC call is similar to the IT Operator request
(see section II). However, the EXEC call places the program in the
time list whereas r·r does not. This call can schedule a program to
execute in one of three ways as described in the following
paragraphs:

1. RUN ONCE

After a time offset and the program to be scheduled is dormant, the
program will execute once and then be made dormant. This is
accomplished as shown in the following exail\ple:

IRESL = 3 (specifies minutes)

MTPLE = O (specifies run once)

IOFST = -45 (specifies run after 45 minutes have elapsed from
current time)

2. RUN REPEATEDLY

After a time offset and the program to be scheduled is dormant, the
program will execute, go dormant, and then re-execute at specified
intervals. This is accomplished as shown in the following example.

IRESL = 3 (specifies minutes)

MTPLE = 60 (specifies run every 60 minutes)

IOFST = -30 (specifies run after 30 minutes have elapsed from
current time)

3. GO DORMANT~ THEN RUN

If IPROG=O, the current/calling program is made dormant, but the
point of suspension is retained. The program is then placed in the
time list for rescheduling from the point of suspension after a
delay. When the program is rescheduled, it can be either to run once
or repeatedly.

4-32. TIMED EXECUTION CALL (Absolute Start Time)

Schedules a program for execution at specified time intervals,
starting at a particular absolute time. RTE places the specified
program in the time list and returns to the calling program.

IV-38

EXEC CALLS

Assembly Language:

RTN

I CODE

IPROG

IRESL

MTPLE
IHRS
MINS
I SECS
MSEC

FORTRAN:

EXT EXEC

JSB
DEF
DEF

DEF
DEF
DEF
DEF
DEF
DEF
DEF
return

DEC
DEC

ASC

DEC

DEC
DEC
DEC
DEC
DEC

or

EXEC
R'rN
I CODE

IPROG
IRESL
MTPLE
!HRS
MINS
I SECS
MSECS
point

12
0

3,narne

x

y
a
b
c
d

Transfer control to RTE
Return address
Request code (12=absolute start
time sched.)
Program to put in time list
Resolution code
Execution multiple
Hours
Minutes
Seconds
Tens of milliseconds
Continue execution (A = meaningless,
B as it was)

Request code = 12
Putting calling program in time list

name is the program to put in the
time list
Resolution code
(1=10's/ms;2=secs;3=mins;4=hrs)
Execution multiple
Absolute starting time
In hours, minutes, seconds
and tens of milliseconds
on a 24-hour clock

IPROG=O or
IPROG(l) =
IPROG(2) =
IP ROG (3) =
!CODE = 12
IRESL = x
MTPLE = y
!HRS = h
MINS = m

DIMENSION IPROG(3)

!SECS = s
MSECS = ms

2Hcc First two characters
2Hcc Second two
2Hc Last character in upper 8 bits

(1=10's/ms;2=secs;3=mins;4=hrs)
(0-4095)

CALL EXEC (ICODE,IPROG,IRESL,MTPLE,IHRS,MINS,ISECS,MSECS)

IV-39

EXEC CALLS

4-3 3. ABSOLUTE S'rART TIME COMMEWI'S

The Execution Time EXEC call is similar to the IT operator request
(see Section II). However, the EXEC call places the program in the
time list whereas IT does not. This call differs from the Initial
Offset version in that a future starting time is specified instead of
an offset. For example, if the current time is 1400 hours and you
wish the program to run at 1545 hours the parameters would be as
follows:

!HRS
MINS
!SECS
MSECS

= 15
= 45
= 0
= 0

This call can schedule a program to execute in one of two ways as
described in the following paragraphs:

l.· RUN ONCE

After a time offset and the program to be scheduled is dormant, the
program will execute once and then be made dormant. This is
accomplished as shown in the following example.

IRESL = 3
MTPLE = 0
!HRS = h
MINS = m
!SECS = s
MSECS = ms

2. RUN REPEATEDLY

(specifies minutes)
(specifies run once)

(specifies absolute start-time)

After a time offset and the program to be scheduled is dormant, the
program will execute, go dormant, and then re-execute at specified
intervals. This is accomplished as shown in the following example:

IRESL = 3 (specifies rn inu tes)
MTPLE = 60 (specifies run every 60 minutes)
!HRS = h
MINS = m (specifies absolute start-time)
I SECS = s
MSECS = ms

IV-40

.EXEC CALLS

4-34. PROGRAM SWAPPING CONTROL CALL

Allows a program to lock itself into memory (real-time or background)
if the ability to perform a memory lock was specified during
generation.

Assembly Language:

EXT EXEC

JSB EXEC
DEF RTN
DEF !CODE
DEF IOPTN

Transfer control to RTE
Return address
Request code
Control information

RTN return point Continue execution (A=meaningless:

I CODE
IOPTN

FOR'rRAN:

DEC
DEC

22
numb

!CODE = 22
IOPTN = numb

B= as it was)

Request code = 22
0 = program may be swapped
1 = program may not be swapped

CALL EXEC (ICODE,IOPTN)

4-35. PROGRAM SWAPPING CONTROL COMMEN'rS

This call allows a programmer to lock a program into memory so it
cannot be swapped out for a program of higher priority.

+---+
I NOTE I
I I
I The program cannont be locked into memory I
I if the memory lock bits (base page word I
I 1736B, bits 2 and 3) are not set (SC07 I
I error results). The bits are set during I
I generation. I
I I
+---+

IV-41

EXEC CALLS

The program's memory lock bit {IOPTN = 0 or 1) is set or cleared by
the request {refer to ID segment word 15, bit 6 in Table A-1). This
bit is also cleared {making the program swappable) if the program
aborts or terminates except on the Save Resources Program Completion
EXEC call.

4-36. PARTITION STA'rUS CALL

Returns status information about any specified partition.

Assembly Language:

!CODE
!PAGE
NPGS
IPS'r

FOR'rRAN:

EX'I' EXEC

JSB
DE1',
DEF
DEF

DEF
DEF

DEF

DEC
NOP
NOP
NOP

EXEC
RTN
!CODE
IPAR·r

I PAGE
NPGS

!PST

25

·rransfer control to R'£E
Return address
Request code (25=partition status)
Partition no. that information is desired

about
Returned no. of starting page for partition
Returned no. of pages in partition {includes

Base Page)
Partition status word (defined below)

CALL EXEC{25,IPART,IPAGE,INPGS,IPST)

IV-42

EXEC CALLS

4-37. PAR'rPrION srrATUS COMMENTS

The format of PSTAT is as follows:

15 14 13 12 11 8 7 0
1---1---1---1---1---1---------------1----------------------1
IRS IRT I M I S I C 1-------0------ I ID Seg. no. I
1---1---1---1---1---1---------------1----------------------1

where

RS =
RT =
M =
s =
~ = \,,...

1
l
l
1
1

if partition reserved.
if partition is real time.
if partition is a mother partition.
if partition is subpartition of a mother partition.
if chain is in effect; that is, if subpartition is
locked because Mother partition is active.

ID Seg. no. is the ordinal number (i.e., counting from l)of the ID
segment for the program that occupies the partition. If ID Seg. no. =
O, the partition is unoccupied.

The values returned for number of pages and starting page number will
be identical to those displayed by the WHZAT system program.

If the partition number is illegal (i.e., undefined or illegal), a -1
will be returned in the number of pages word and a 0 returned to the
page number word.

The interaction between physical memory and logical memory for the
partition status is illustrated in Figure 4-3. Note that the Table
Ar ea in the illustrated user Map is the system-supplied space that
contains the necessary software to enable the user to communicate with
the system.

IV-43

EXEC CALLS

I
I

NPGS
(part. length)

I
I
v

---IP AGE--->

start physical
page of
partition

Phys i ca 1 Memory

+----------------+
I
I Partition n
I
I
I
I
1----------------
1 Base Page n

1----------------
1
I
I
1----------------
1 Partition l
I

Logical Memory
(User Map)

+-----------------+
I I
I Partition 1 I
I I

-----> I I
I I
I I
I I
1-----------------1
I I
I System Table I

1->I Area I
I I I

\ I 1-----------------1
I 1---> I Base Page I
I I I +-----------------+
\--- I I
I I I
I I I
I I I

----------------1/ I I
Base Page 1 1-------- I

----------------1 I ----------------1 I
System Table 1----------

Area I
----------------1

Operating I
System I

I
I

+----------------+
Figure 4-3. Partition Status Parameter Return

4-38. ME~DRY SIZE CALL

Returns current memory limits of the partition in which the calling
program is executing.

IV-44

Assembly Language:

I CODE
IFPG
ILMEM
NPGS
IMAP

EXT EXEC

J'SB
DEF
DEF
DEF

DEF

DEF

DEF

DEC
NOP
NOP
NOP
BSS

EXEC
RTN
!CODE
IFPG

ILMEM

NPGS

IMAP

26

32

Transfer control to RTE
Return Address
Request Code (26=meory size)

EXEC CALLS

First available word address behind the
program (i.e.,last word of program+ largest
segment + 1)

Number of words available between end of
program and end of program's address space.

Length of current partition in pages (includes
base page)

Return copy of current user map (optional).
IMAP must be a 32-word buffer address.

CALL EXEC (26, IFPG,ILMEM,NPGS, IMAP)

4-39. MEMORY SIZE COMMENTS

•rhe number of words of 103ical memory (ILMEM) is calculated by
subtracting IFPG, the program's high main plus one (including its
largest segment), from the last word of the program's logical address
space. The 10.3 ical address space, which may be smaller than the
partition, is determined at load time and may be greater than (if size
override option taken) or equal to the program size.

For EMA program, ILMEM is the number of words between the end of the
program and the start of MSEG. This includes any dynamic buffer area
requested at load time.

IV-45

EXEC CALLS

The manner in which the current status of the partition is calculated
is illustrated in Figure 4-4. Sample data is provided.

Logical User Map

+-----------------+
I I
I Unused I
I Partition I

Last word of I Space or I
address space I MSEG I
(47777)------------->I -----------------1

A 1/////////////////1
--->I- - - - - - - - -I

I I I
IFPG----------1--- I
46537 I I
(last 15 Pages
word+l I XYZ Program
of I

program) I
v

COMMON area

Base Page

+-----------------+

v

ILMEM

I
I
I
I
I
I
I
I
I

26 Pages (NPGS)
(includes base page)

I
I
I
I
v

I
l---ILMEM=47777-46537=1240

Figure 4-4. Partition Current Status Example

4-40. CLASS I/O EXEC CALLS

The Class I/O feature consists of a special set of I/O EXEC calls that
give user programs a level of I/O independence beyond that provided by
standard I/O. use of the Class I/O scheme can provide the following
benefits:

a. A program doing an input operation can proceed with execution even
though the data is not yet ready (I/O without wait).

b. Program-to-program communication with controlled access via a
mailbox scheme.

c. Synchronized program-to-program data passing that avoids
processing of incomplete or non-updated data. A calling program
can put itself to sleep until it receives a signal that updated
data processed by another program is available for further
processing.

IV-46

EXEC CALLS

Implementation of Class I/O is based on use of a buffer with an
exclusive access key, thus avoiding the possibility of unplanned
alteration of existing data or access to incomplete data. ose of such
keyed buffers or "classes" is exclusive of system or local COMMON
resources utilized in standard program-to-program data passing.

A definition of the term "class" and other terms unique to Class I/O
considerations is given in Table 4-4.

The maximum number of classes is established during system generation
as a value between 1 and 255. Once the numbers are established, the
system keeps track of them and assigns them (if available) to the
calling program when a Class I/O call is made and the Class Number
parameter is set to zero. Once the number has been allocated, the user
can keep it as long as desired and use it to make multiple Class I/O
Calls. When the user is finished with the number, it must be returned
to the system for use by some other class user.

The system allocates a buffer from System Available Memory (SAM) when
a user program issues a Class I/O call. 'rhe "key" is also issued to
the calling program in the form of a Class Number, which is the only
mechanism by which a calling program may thereafter access the buffer.
Note that there may be more than one buffer associated with a single
Class Number (key) and that a user program may have more than one
Class Number allocated to itself.

For "I/O without wait" operations, data can be read from or written to
an I/O device by first transferring the data to the buffer. The user
program can thus either continue execution of other tasks without
waiting for the I/O transfer to complete, or can suspend or terminate
itself (releasing system services to other waiting programs) until the
data transfer is completed.

The user program recovers the results of
issuing a Class I/O Get call. If the
caller either can wait or return to
re-issuing the Class Get call.

its Class I/O call by later
results are not present, the
execute more code before

A sin~le example of I/O without wait would be a program that issues a
Class I/O READ call in its code, followed by a series of other coded
operations. While these following operations were being executed, the
system simultaneously would be reading the data into the allocated
keyed buffer. The calling program would issue a Class I/O GET call to
fetch the data from the buffer. A more detailed example of I/O
without wait is given later in this section.

IV-47

EXEC CALLS

Table 4-4. Class Input/Output Terms

+---+ I Term Description I
+---+ I Class
I
I
!Class Number
I
!Class users
I
!Class Request
I
I
I Class Members
I
I

' I I
I
I
!Class Queue (pending)
I
IClass Queue (completed)
I
I

An account owned by one program that may be
used by a group of programs.

The account number referred to above.

Programs that use the Class Number.

An access to a Logical Unit number with a
class number.

Logical Unit numbers that are currently
being accessed in behalf of a class.
Completion of access removes the association
between class number and Logical Unit number
(completion of access is defined as when
the driver completes the request).

The set of uncompleted class requests.

The set of all completed class requests. The
structure is first- in- first-out.

+---+
The system handles a Class I/O call in the following manner:

a. When the class user issues a Class I/O call (and the call is
received), the system allocates a buffer from System Available
Memory and puts the call in the header (first eight words) of the
buffer. The call is placed in the pending Class Queue and the
system returns control to the class user.

b. If this is the only call pending on the EQT, the driver is called
immediately; otherwise, the system returns control to the class
user and queues the request according to program priority.

c. If buffer space is not available, the class user is memory
suspended unless bit 15 ("no wait") is set. If the "no wait" bit
is set, control is returned to ihe class user with the A-register
containing a -2, indicating no memory available. If the program is
suspended, no memory will be granted to lower priority programs
until this program's Class I/O request is satisfied.

a. If too much memory was asked
Available Memory) the program
return.

IV-48

for (more
is aborted

than all
with an

of Sy stern
1004 error

EXEC CALLS

e. If the Class Number is not available or the I/O device is down,
the Class user is placed in the general wait list (status = 3)
until the condition changes.

f. If the call is successful, the A-register will contain zero on
return to the program.

The buffer area furnished by the system is filled with the caller's
data if the request is either a WRITE, or a WRITE/READ call. The
buffer is then queued (pending) on the EQT entry specified by the
Logical Unit Number.

After the driver receives the Class I/O call (in the form of a
standard I/O call) and completes, the system will:

a. Release the buffer portion of the request if a WRITE. The header
is retained for the GET call.

b. Queue the header portion of the buffer in the Completed Class
Queue.

c. If a GET call is pending on the Class Number, reschedule the
calling progr~m. ('I'his means that if the user issues a Class GE'l'
call or examines the completed Class Queue before the driver
completes, the user has effectively beat the system to the
completed Class Queue.) Note that the program that issued the
Class I/O call and the program that issued the Class GET call do
not have to be the same program.

d. If there is no GET call outstanding, the system continues and the
driver is free for other calls.

When the user issues the GET call, the completed Class Queue is
checked and only one of the following paths is taken:

a. If the driver has completed, the header of the buffer is returned
(plus the data). The user (calling program) has the option of
leaving the I/O request in the completed Class Queue so as not to
lose the data. In this case a subsequent GET call will obtain the
same data. Or,the user can dequeue the request and release the
header and buffer, and can also release the Class Number back to
the system.

IV-49

EXEC CALLS

b. If the driver has not yet completed (GET is issued before the
Class I/O operation is completed), the calling program is
suspended in the general wait list (status = 3) and a marker so
stating is entered in the completed Class Queue header. If
desired, the program can set the "no wait" bit to avoid
suspension. In any case, when the driver completes, any program
waiting in the general wait list for this class is automatically
rescheduled. Note that only one program can be waiting for any
given class at any instant. If a second program attempts a GET
call on the same Class Number before the first one has been
satisfied, it will be aborted (I/O error !010).

4-41. CLASS I/O - WRITE/READ CALL

Transfers information to or from an external (non-disc) I/O device or
another program. Depending upon parameter specifications, the calling
program will not be suspended while the call completes.

Assembly Language:

EXT EXEC

IV-50

RTN

!CODE
ICNWD
IBUFR
IBUFL
IPRMl
IPRM2
I CLAS

JSB
DEF
DEF

DEF
DEF
DEF
DEF
DEF
DEF
return

DEC
OCT
BSS
DEC
DEC
DEC
OCT

EXEC
RTN
I CODE

ICNvm
I BU FR
IBUFL
IPRMl
IPRM2
!CLAS
point

numb
conwd
n
n(or-2n)
f
g
class

Transfer control to RTE
Return address
Request code (17=Read;l8=Write;

20=W rite/Read)
Control information
B u f f e r 1 oca t ion
Buffer length
Optional parameter
Optional parameter
Class word
Continue execution (A=zero or status; B
meaning less)

17=Read; 18=Write; 20=Write/Read
conwd is described in Figure 4-1
Buffer of n words
Same n; words (+) or characters (-)
Optional parameter
Optional parameter
Class is described in comments

EXEC CALLS

FOR'rRAN:

DIMENSION IBUFR
IBUFL = n
!CODE = numb
I CNWD = conwd
!CLAS = class
CALL=EXEC (ICODE,ICNWD,IBUFR,IBUFL,IPRMl,IPRM2,ICLAS)

4-42. CLASS I/O WRITE/READ COMMENTS

For a combination Class Write/Read call, the driver should expect
control data in the buffer IBUFR. The system will treat the request as
a Class Write in that the buffer must be moved prior to the driver
call, and as a Class Read in that the buffer must be saved after
driver completion. Note that the driver will receive a standard Read
request (ICODE = 1) on this request.

Refer back to Figure 4-2 for the format of the control word (conwd)
required in the Class I/O Write/Read calling sequence.

IPRMl and IPRM2 are required as place holders in this request. They
may also be used to pass information through to the Class GET call to
aid in processing the request.

Figure 4-5 shows the format of the class word (ICLAS) required in the
ca 11 ing sequence. rro ob ta in a Class number fr om the system, the cl ass
portion (bits 12-0) of the word is set to zero. This causes the system
to allocate a Class Number (if one is available) to the calling
program. •rhe number is returned in the !CLAS parameter when the call
completes and the user must specify this parameter (unaltered) when
u sing i t for 1 ate r ca 11 s • Bi t 15 i s the " no-w a i t" bi. t • When set the
calling program does not memory suspend if memory (or a class number)
is not available. The A-register value when the program returns is as
follows:

"A" Value

0
-1
-2

OK-request done
No class number

Reason

No memory now or buffer limit exceeded.

1---1---1---1---1---1---1--1--1--1--1--1--1--1--1--1--1
115 114 13 12 Ill 10 9 18 7 6 15 4 3 12 1 o I
1---1 ---1---1---1----------1--------1--------1--------1

A A A

I
No Wait

I I
1-------------Class Number----------------1

Figure 4-5. Class Number (ICLAS) Format

IV-51

EXEC CALLS

When the user's program issues a Class I/O call the system allocates a
buffer from System Available Memory and puts the call in this buffer.
The call is queued and the system returns control to the user's
program. If memory is not available, three possible conditions exist:

1. The program is requesting more memory space than will ever be
available. In this case, the program is aborted with a I004 error.

2. The program is requesting a reasonable amount of memory but the
system must wait until memory is returned before it can satisfy
the calling program. The program is suspended unless the "no wait"
bit is set, in which case a return is made with the A-register set
to -2.

3. If the buffer limit is exceeded, the program will be suspended
until this condition clears. If the "no wait" bit is set, the
program is not suspended and the A-register is set to -2.

4-43. CLASS I/O - GET CALL

Completes the data transfer between the system and user program tnat
was previously initiated by a class request.

Assembly Language:

EXT EXEC

IV-52

RTN

I CODE
I CLAS
IBUFR
IBUFL
IRTNl
IRTN2
IRTN3

JSB
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
return

DEC
NOP
BSS
DEC
NOP
NOP
NOP

EXEC
RTN
!CODE
I CLAS
IBUFR
IBUFL
I R'fNl
IRTN2
IRTN3
address

21

n
n (or -2n)

Transfer control to RTE
Return address
Request code
Class word
Bu ff e r 1 oca t ion
Buffer length
Optional parameter status word
Optional parameter status word
Optional parameter class word
Continue execution (A=status;

B =Transmission L03)

21 = class GET call
class is described below
Buffer of n words
Same n; words (+) or characters (-)
Location for IPRMl from Write/Read call
Location for IPRM2 from Write/Read call
Request code passed to driver or initial

Read or Write call

FORTRAN:

DIMENSION I BU FR (n)
!CODE = 21
IBUf~L = n
!CLAS = xO

EXEC CALLS

REG = EXEC (I CODE, !CLAS, IBUFR, IBUFL, IRTN 1, IR'l'N2, I RTN3)

4-44. CLASS I/O - GET CALL COMMENTS

One of the features of' the GE'r call is that one or more user programs
waiting for system resources can suspend themselves without CPU
overhead or program overhead such as polling. A program can perform a
deliberate GET on a Class Number associated with a device or another
program and put itself to sleep. The program will only be awakened
when there is something to process. The desired data will be resident
in the program's buffer. After the data is processed, the program can
put itself to sleep again with another GET.

When the calling program issues a Class GET call, the program is
telling the system that it is ready to accept returned data from a
Class READ call or remove a completed Class WRITE or CONTROL call from
the completed class 1 ist. If the driver has not yet completed (GE'r
call got to the completed class before the system), the calling
program is suspended in the general wait list (status = 3) and a
marker so stating is entered in the Class Queue header. When the
driver completes, the program is automatically rescheduled. If
desired, the program can set the "no wait" bit to avoid suspension.

Figure 4-5 shows the format of the class word (!CLAS) required in a
class GET call. Bits 12-0 represent the Class Number and security code
that the GET call is seeking. This Class Number is obtained (in
unaltered form) from the original Class I/O READ, WRITE, CONTROL or
WRITE/READ call.

Bit 15 is the "no wait" bit. When set, the calling program does not
suspend if the class request has not yet completed.

Bit 14 is the "save" bit. When set, the buffer is not released:
therefore, a subsequent GET call will return the same the same data.

Bit 13 is the "de-allocate" bit. When set, the Class Number is not
returned to the system. If bit 13 is zero and no requests are left in
the Pend i ng C 1 ass Queue , and no class r eq u es ts for th i s c 1 as s a r e
waiting for driver processing, the class is returned to the system.

It is possible for the call to return the Class Number and data, or no
no data, depending on whether or not there is one class call left.

Bits 14 and 13 work in conjunction with each other. If bit 14 is set,
then the buffer will not be released. Therefore you cannot deallocate
the Class Number. rrhat is, the Class Number cannot be released
because there is still an outstanding request against it.

IV-5 3

EXEC CALLS

Only when the GET call gets the last class request on a class, or on
an empty class queue (completed and pending) can the user release the
Class Number by clearing bit 13 in the !CLAS word.

Three parameters in the call are return locations: that is, values
from the system are returned to the calling program in these
locations. Optional parameters IPRMl and IPRM2 from the Class I/O
WRITE/READ or CONTROL calls are returned in IRTNl and IRTN2. These
words are protected from modification by the driver. The original
request code received by the driver is returned in IRTN3, as follows~

Original Request Code

17/20(READ,WRITE/REAO)

18 (WRITE)

19 (CONTROL)

Value Returned in IRTN3

1

2

3

IRTN3 is typically used by a program that performs Class I/O with one
Class Number to devices (such as slow consoles) to ensure that input
and output are buffered and so that input (IRTN3=1) and output
(IR,-rN3=2) are processed along separate paths.

BUFFER CONSIDERATIONS

There are several buffer considerations in using the Class I/O GET
call:

a. The number of words returned to the user's buffer is the
minimum of the requested number and the number in the
Completed Class queue element being returned (that was
specified in the initial Read/Write in the READ/WRITE call).

b. If the orig in al request was made with the "Z" bit set in the 1
control word, then IPRMl returned by this call will be
meaning less.

c. The "Z" buffer will be returned if there is room for it (see
"a" above) only if the original request was a READ or
WRITE/READ (i.e., for WRITE requests no data is returned in
the buffer area) •

d. The remaining words in the user buffer (of any) past the
number ,of words indicated by the transmission log count (in
the a-register) are undefined. If a "Z" buffer is used, the
words remaining in the buffer past the end of the z buffer are
undefined. Users should not initialize a buffer before doing
a GET call, but should clear out the unused words according to
the count returned by the transmission log or other parameters
returned by the driver.

IV-54

EXEC CALLS

A AND B REGISTER RE'IURNS

The A and B registers are set as follows after a Class I/0 GET call:

A-Register

Al5 = 0 then A = status

Al5 = 1 then A = -(numb+l)

B-Register

B = transmission log (positive words
or characters depending on original
request)

B = meaningless

On return with data, bit 15 is set to zero and the rest of the
A-register contains the status word (EQT5). If a return is made
without data (the 0 no wait bit" was set in the class word) then bit 15
is set to one and the A-register contains the number of requests numb
made to the class bit not yet serviced by the driver (i.e., pending
class requests).

4-45. CLASS I/O - CONTROL CALL

Carries out various I/O control operations such as backspace, write
end-of-file, rewind, etc. The calling program does not wait for the
function to be completed.

Assembly Language:

EXT EXEC

JSB EXEC '11ransfer control to RTE
DEF RTN Return address
DEF I CODE Request code
DEF ICNWD Control information
DEF I PRAM Optional parameter
DEF I CLAS Class word
DEF IPRMl Optional parameter
DEF IPRM2 Optional parameter

RTN return point Continue execution (A=C lass number; B
meaning less)

I CODE DEC 19 Request code = 19
ICNWD ocr conwd See Control Word
I PRAM DEC n Required for some control functions;

see Control word
I CLAS OCT class class is described in Comments
IPRMl DEC f Optional parameter passed to GET call
IPRM2 DEC g Optional parameter passed to GET call

IV-55

EXEC CALLS

FORTRAN:

Use the FORTRAN I/O statements or an EXEC call sequence.

I CODE = 19 Request code
ICNWD = conwd See Control Word format in Figure 4-2
IP RAM = x See Control Word format in Figure 4-2
I CLAS = y Class Word
REG = EXEC(ICODE,ICNWD,IPRAM,ICLAS)

4-46. CLASS I/O CON'rROL COMMENTS

Refer to Figure 4-2 for the format of the control word (conwd) required
in the Class I/O Control calling sequence.

Note that this call, with the exception of the ICLAS, IPRMl and IPRM2
parameters, is the same as the standard I/O Control call. Also refer to
the Class I/O GET call for additional information.

4-4 7. CLASS I/O APPLICA'£IONS EXAMPLES

One example of using Class I/O is p rogr am-to-program (mailbox)
communication. The sequence of events that occur are described below,
and the calling sequence is illustrated in Figure 4-6.

The range of possible areas where Class I/O could be used to improve
applications program performance is too wide and varied to show "typical"
examples. The two examples given below are intended only to demonstrate
some of the considerations and procedures used in designing specific
applications.

IV-56

EXEC CALLS

EXAMPLE l. MULTIPLE TERMINALS WITH A SINGLE APPLICATIONS PROGRAM

In the following example, any one of many users could be providing input
to the program:

I
I

---/
I

I
I

I
I

---/
I

\
\

\
\

\
+---------------+
I I
I I
I R rr E I
I I
+---------------+

I
I

I \
I \

I
I

I

I \
I \

\ I
I
I
I

\

\

\
\---

1

\
\---

1

\
\
\---

1

Assume an order-entry situation in which there are several operators
but only one program. If standard I/0 was used, it would be possible
to read from only one terminal at a time. However, by using Class I/O,
the program perm its all aper a tors to enter data seemingly at once. R1rE
handles all queueing so that the program operates on a single
transaction at a time, thus simplifying the programming while giving
the appearance of simultaneous processing on all transactions.

IV-57

EXEC CALLS

The flowchart for such an application is illustrated in Figure 4-6.
Note that although operators and terminal devices are shown, the input
could be received from any one of a series of indentical devices.

+--------+
I I
I START I
I I
+--------+

I
v

+---+
I Issue Class I/O READ on each
I terminal:
I
I !CLAS = 0
I DO 10 I = l,NLU
I
I
I
I 10 CALL EXEC(l7,LUTYS(I)+400B,IBUFR,IBUFL,
I LUTYS(I),0,ICLAS)

+---+

+------+
I WAIT I

I
v

+---------------------------+
I Specify for the GET call I
I that Class Number is to I
I be kept: I
I !CLAS = IOR(ICLAS,200008) I
+---------------------------+

I
+------+----------------> v

~ +-------------------------------------+

IV-58

Wait for any terminal to input data
(operator enters data followed by
RETURN key):

CALL EXEC (21, I CLAS, I BU FR, LEN, LUTERM) I
CALL AB REG (I A , I B) I

I
Program will now be put to sleep. I
Will be woke up when there is data I
to process. I

+-------------------------------------+
I
I
v

+---------------+
I Process Input I
I I
+---------------+

I

Notes:

IBUFL contains negative
no. of characters
allowed for input.

LUTYS is an array of LU
numbers. NLU is the
total number of
terminals.

LEN contains maximum
length of I BUFR.

On return, IA = status
(e.g., bit 7 or bit 5
will be set for EOF or
EOT respectively).
IB = no. of characters
input (will be positive).
LUTERM will be the LU
that responded.

v

+-------------------------+
I Print reply on terminal I
I (Logical Unit contained I
I in LUTERM) I
+-------------------------+

I
v

+--------------------------------------+
I Issue another Class READ on that I
I term ina 1: I
I I
I CALL EXEC (I7 ,LUTERM+400B, IBUFR, IBUFL, I
I LUTERM,O,ICLAS) I
I I
I Program again puts itself to sleep. I

+--------------------------------------+
I

+ I - - - - - - - - - - -,
v

EXEC CALLS

Figure 4-6. Class I/O Multiple Terminal Input Example

In some applications, it may be necessary to maintain contextual
information for each operator; for example, a code indicating the type
of input expected next, or the operator's name to be used in friendly
dialog, etc. This information can be kept in a two-dimensional array
that is indexed by the terminal LU number.

For simplicity's sake, let's assume that all terminals have
consecutive Logical Unit numbers, starting from 15. The index of the
array can then be calculated by subtracting 14 from the LU.

IV-59

EXEC CALLS

EXAMPLE 2. MAILBOX COMMUNCIATION BETWEEN PROGRAMS

Program-to-program communication involves a "mailbox" scheme to pass
data buffers back and forth in the most expeditious manner. Instead of
implementing one large program to process all user inputs, it is often
more efficient to separate these into subtasks that are processed by
separate programs. In the example below, the program given in the
previous example is still used as the "main control," but it now
sends user inputs to the appropriate processor by using mailbox I/O.
This separation allows the the various processors to be given
different priorities, with the highest priority being assigned to
those items that are most urgently needed. An added benefit is that
the separation reduces the partition size requirements.

Assume that the
involved several
categories:

a. Order entry

box labeled "Process Input"
programs, one each for

b. Inventory quantity look-up

c. Report generation

in Figure 4-6 actually
a number of general

d. Display of status or recent history of several critical
real-time activities.

The program illustrated in Figure 4-6 might then serve only as a
keyboard entry controller that checks input for legality and calls on
other programs to process operator commands. Many operators could now
enter commands, with the applications software relying on RTE to queue
the commands according to the priority of the category.

The real-time display program might have the highest priority, perhaps
follONed by order entry, inventory quantity lcok-up, and report
generation last.

Other orderings are possible, depending upon the application. Some
management summary reports might be considered most important, or
categories may be ordered so that those involving the least processing
may have the highest priority to minimize waiting time for users with
"short jobs."

The significant point to note is that RTE's priority-driven scheduling
functions can be used to process commands according to priority. This
is done through the simple means of separating the processes of those
commands into separate programs that run at different priority levels,
and coordinating the processing via Class I/O.

IV-60

EXEC CALLS

Figure 4-7 below provides a revised version of the sample program
given in Example 1 (Figure 4-6). In this new version, Class Numbers
must be allocated for each of the process subprograms and these
subprograms must be scheduled. This is performed in the
initialization section of the original program as follows:

DO 20 I=l ,NSUBP
JCLAS=O
CALL EXEC(l8,0,IBUFR,0,0,0,JCLAS)
J'CLAS=IOR (JCLAS, 200008)
CALL EXEC(21,JCLAS,IBUFR,0)
CALL EXEC(lO,<processing program name>,JCLAS)

20 ISUBCL(I)=JCLAS

+---+
NOTES:

Every Class I/O WRITE, READ, WRITE/READ and CONTROL call
issued must ALWAYS be matched with a corresponding GET call
issued at some point in the calling sequence. The time
sequence is not important (GET's can be issued before
Class calls) but there must be a GET for every Class call.
Failure to do so will tie up system resources (the Class
Number and the system buffer memory) that other programs
may need.

When a program is finished with a Class Number, it should
explicitely release it with a GET call in which Class
Number bits 13 and 14 are cleared and bit 15 is set. Repeat
until all buffers are released. The system does NOT release
a Class Number when the allocating program terminates.

+---+
Programs that issue Class I/O calls may be thought of as
"manufacturers," with programs that issue GET calls being thought of
as "consumers. 11 It should be clear fr om the analO<JY why Class I/O and
GET calls must be issued in equal numbers.

IV-61

EXEC CALLS

The "Process Input" box previously illustrated Figure 4-6 can then be
expanded as illustrated in Figure 4-7 below.

v

+------------------+
I Determine input I
I command legality I
I and type I
+------------------+

I
v

+-----------------------------+
I Determine Class Number from ·I
I input command type (JCLAS) I
+-----------------------------+

I
v

+---+
Send input buffer to processing program
for that command, with terminal's LU
and Class Number for use by the
processing program:

CALL EXEC (20, 0, I BU FR, I BU FL, LUrl'ERM, I CLAS, I
JC LAS) I

+---+
I

v
+----- ---- -+
I continue I
+----------+

Figure 4-7. Dispatching Input to Subtasks tor Processing

Since no devices are involved in mailbox I/O, the CNTWD (second
parameter) of the request is zero. For this case, it is usually
desirable to let the processing program print an acknowledgement or
error return and then issue another Class READ on the terminal. 'rhe
Class Number to use for this purpose is placed in the second optional
parameter. For this reason, in the original example (Figure 4-6), the
last two boxes for "printing a reply" and "issueing another Class
READ" are deleted and included in the processing programs.

IV-62

EXEC CALLS

The processing programs obtain the Class Number to use for the above
procedure by calling the RMPAR subroutine, as follows:

CALL RMPAR(IPRAM(l)
MYCLAS = IPRAM(l)

(Initialization code may go here)
Waits for processing input

100 CALL EXEC(21,MYCLAS,IBUFR,MAXLEN,LUTERM,ITRMCL)

Process input

WRITE(LUTERM,1100)
1100 FORMAT (<acknowledgement or error message>)

200 CALL EXEC(l7,LUTERM+400B,IBUF,IBUFL,0,ITRMCL)
GO ·ro loo

The processing programs now issue another Class READ to ITRMCL and
return to line 100 to reissue the Class GET on MYCLAS, putting
themselves to sleep until other transactions are available for the
programs to process.

4-48. RESOURCE NU~IBERS AND LOGICAL UNIT LOCKS

Although Resource Numbering and Logical Unit locking services are not
implemented through EXEC calls, their discussion logically fits in
this section because their ability to synchronize use of system
services between cooperating programs is closely associated with Class
I/O capabilities. (See the RNRQ subroutine call in the Relocatable
Libraries section of this manual.)

Like Class Numbers, the number of Resource Numbers available to the
on-site RTE system is determined during system generation. Resource
Numbers provide the capability of synchronizing programs that access
the same resource. The resource might be a device (locking a Logical
Unit requires a Resource Number), a table in memory, a file or even
another program or subroutine.

IV-63

EXEC CALLS

The use of Resource Numbers is only required when:

a. TWO or more programs use the same device, or CHANGE the
contents of a memory location or disc file.

b. ONE or more programs make decisions based upon the contents of
a data item that can be modified by at least one other program.

'ro relate the Resource Number mechanism to applications
considerations, assume the following "problem" conditions:

PROGRAM A
COMMON J
IF (J • E Q • 2) J =J + 1

PROGRAM B
COMMON J
IF(J.EQ.2) J=J+3

Assume Programs A and B are both scheduled memory-resident programs
and that J, which they share through System COMMON, is initially 2.
Further assume Program A executes the IF statement but before it can
execute J=J+l, Program B gets scheduled (with B having the highest
priority).

Program B sets J to J+3 (making it 5), perhaps performing other tasks,
and then terminates.

Program A then increments J, making it 6. Notice that Program A
running alone would leave J=3. Program B running alone would leave
J=S. Programs A and B running together might leave J=3, 5 or 6.

Now assume that J is a table of tasks to be executed and that there
are several programs scanning the table. Also assume the tasks are
sufficiently I/O bound that the applications software has several
identical programs, each of which may select any task. Without
synchronization via Resource Numbers, two or more of these programs
might select the same task to work on.

Such "race conditions" r:an be defined as any code that will execute
unexpectedly, depending upon when other programs execute relative to
the code. These conditions - are an elusive form of software bug,
causing unusual errors that can seldan be successfully repeated.
Consequently, these errors are much harder to locate and identify.

IV-64

EXEC CALLS

Standard program priority cannot be relied upon to solve the described
problems. Under the dynamics of real-time aplications, there are too
many other conditions under which a .lower priority program
occasionally may run when a higher priority program is scheduled.

A high priority program may have to be swapped because a still higher
priority disc resident program has been scheduled, and it either has
been assigned to the same partition, or the partition is the smallest
that the highest priority program will fit into. Meanwhile, the lower
priority program may be running in another partition while the other
programs are being swapped.

The proper way to avoid race conditions is to assign a Resource Number
to all data accesses that are updated byt more than one program, or
updated by one program and read by others. However, it is extremely
important to note and remember three items:

1. The association between a Resource Number (RN) and a shared data
area is created through the user's software design. RTE's only
role is to make RN's available for allocation, locking, clearing
and releasing, and the system will suspend any program that
attempts to lock an RN that is already locked. RTE will reschedule
the program only when the RN is cleared.

2. All programs that access the same resource MUST cooperate with
each other in controlling "simultaneous" access; that is, an RN
must be allocated for each resource when RTE is booted up. An RN
may be saved anywhere that the cooperating programs can find it.
SSGA and COMMON are typical. Programs must lock the RN locally
before accessing the associated data base and clear the RN when
finished with it.

3 • RTE automatically clears all RN's locked
locking program is aborted or terminates
saving resources).

EXAMPLE 1. TWO PROGRAMS UPDATING A DISC FILE

locally whenever the
(unless it terminated

In this example the file may be either an FMP file or an area in the
system track pool on LU 2 or 3. In the first case, the file must be
opened non-exclusively (shared) • Note that FMP files are normally
opened for exclusive use and therefore are NOT sharable. No FN's are
neccessary to control exclusively opened files. In the second case,
the disc tracks must be allocated globally. In either case, the RN
must be kept in some area common to all programs (COMMON, SSGA or in
the file itself).

IV-65

EXEC CALLS

It is poor practice to assume the RN's will always be allocated in the
same order; changes in initialization sequences or different RTE
generations may change the RN's allocated. When RTE is booted up, an
initialization program should be run automatically that will allocate
all required RN's and store them where required.

You might possibly choose to use one RN to control access to all data
bases. Although this practice consumes the least number of RN's, it is
inefficient when several programs need to update different files.

Increasing the number of RN's so that each controls a smaller number
of files or area of memory increases the probability that the RN will
be clear when the associated resource is required. More RN's
therefore reduces the probability of incurring a delay. The number of
RN's allowed is limited to 255.

The application
depending upon
limit. However,
updated together.

itself may limit the minimum area of control,
the circumstances. Typically, one RN per file is the
one RN should control the set if several files are

EXAMPLE 2. DEVICE CONTROL

Programs using a device that many other programs also use (e.g., line
printer) should usually lock it first. The Batch/Spool Monitor system
provides users with this exclusive control and therefore LU locking is
not required. Whenever any other program attempts to access the LU,
the calling program will be suspended until the locking program
unlocks the LU, terminates or aborts. Note that in this case,
cooperation among programs is not required because RTE performs the
LU/RN association.

However, when two or more pro·~rams employ LU locking, a condition
known as "the Deadly Embrace" can sometimes occur.

"THE DEADLY EMBRACE"

This potential lock-up condition can occur when programs attempt to
lock more than one resource in separate calls. For example, assume the
following situation:

a. Programs PROGA and PROGB are running. PROGA locks the line printer
and then begins to output to it, causing PROGA to be suspended.

IV-66

EXEC CALLS

n. PROGB runs, locks the magnetic tape unit and outputs to it,
causing PROGB to be suspended.

c. Now assume that PROGA is rescheduled and attempts to use or locK
the magnetic tape unit. Since it is already locked by PROGB, ~ROGA
gets suspended.

d. If PROGB attempts to use or lock the line printer, then it also
will be suspended.

e. PROGA and PROGB each now requires a resource the other currently
"owns," and so neither can proceed and will stay "locked-up"
together forever unless an operator intervenes.

Figures 4-8A through 4-8C illustrate a typical "deadly embrace"
condition. Programs LOCKA and LOCKB share the same COMMON. Program
LOCKA allocates and locks LOCK!, and then waits one minute while the
operator schedules the LOCKB program. Program LOCKB allocates and
locks LOCK2 and then waits one minute.

When program LOCKA runs again, it attempts to lock LOCK2 and is
suspended. Program LOCKB attempts to lock LOCKl and is also suspended.

Figure 4-BC shows a printout by the WHZAT program of this lock-up
condition.

IV-67

PAGE lit0101 FTN. 8 H17 AM THU.' 5 JAN. I 197A

~OJV11 FTN4,L
~~~2 PROGRAM LOCKA(3,90l 
~~~3 COMMON ~OCKt,LOCK2 

~0~4 lCODF•tlB
~005 CALL RNRQClCOO~,LO~Kl,ISTAT)
~0~6 WRITE(7,l) !STAT
~007 t fORMATC"LnCKAZSTATUS LOCK # t•"I5)
0008 CALL ~XEC(12,~,3,~,-1)
~~09 ICOOE~ • 1
~010 CALL MNRQ(lCOUE21LnCK2,ISTATl
~011 WMITE(7,2) !STAT
~CH2 2 FGRMAT("LOCKA:STATUS L,.OCKtt2•"15)
0013 ENr)

** NO ~AHNINGS •~ NO ERRORS **

Figure 4-8A. "Deadly Embrace" Example

IV-68

PAGE ~001 FTN. a:m7 AM THU., 5 JAN., t976

IHHH FTN4,L
~~~2 PROGRAM LOCKB(3,90) 
00'3 COMMON LOCKl1LOCK2 
~~~4 lCOOE•t10 
0005 CALL WNRQ(ICODE,LOCK2,ISTAT)
~~06 WRITEC7,1} ISTAT
00~7 t FORMATC"LOCKA:STATUS LOCK # 1•"15)
~~08 CALL EXECC12,~,J,0,•1)
~0~9 ICODE2 = 1
0010 CALL MNRQ(ICODE21LOCK1,ISTAT)
0011 WRITE(7,2) ISTAT
il.1012 2 F'ORMATC"LOCKB:STATUS LnCK#?•"l5)
0013 END

FTN4 COMPILER: HP9~060•1R~92 REV. 18~5 (78~113)

** NO WARNlNGS ** NO ERRO~S ** P~OGRAM = ~0081

Figure 4-8B .. "Deadly Embrace" Example

IV-69

·-~ ··- 8: Al ~?:48~
-''**
-~~PT SZ PRGRM,T ,PRIOR•DRMT*SCHD•IIO •WAIT•MEMV•DISC•OPER * NEXT TIME *
''~*****************······~·················••••*************************
''' 0 ** R.PN•1 •0~01~ *************** 3,CL ~32
''' 0 ** ~HZAT•1 •0~~~1 ***** l
·-- 1 7 rMG~7•3 *0~~90 *******•******* 3,WHZAT
''' 2 4 ~OCKA•3 •~0~9~ *************** 3,RN ~28 1 LKPRG=LOCKR
~,-. 3 4 LOCK6•3 •0~~90 *************** J,RN ~29,LKPRG~lOCKA
~~-*************************~**
·~~DOWN LU'S
.,~**
«Df,OO~N EQT'S
''~**********•************•••••••**
"f>fl 8: RI 2:54~

··-

Figure 4-8C. "Deadly Embrace" WHZAT Example

IV-70

EXEC CALLS

In the case of devices, this condition can be avoided by locking all
devices that may be required at once in the same call. The program
will be suspended until all devices are available.

In the case of Resource Numbers, the condition can generally be
avoided by increasing the "area of control" of the Resource Numbers so
that a program requiring simultaneous and exclusive access to two
files (for instance) merely locks one RN, rather than one for each
file. If an applications problem does not allow this solution, then
the user should attempt to lock all RN's required without suspension
(bit 15 of I CODE is set) •

If a lock cannot be granted, attempt the following steps:

1. DO NOT update any of the related files: post whatever has already
been processed (ONLY for those files to which exclusive access has
already been obtained) •

2. Release all RN's that are locked and re-attempt to lock the last
RN, this time with suspension.

3. When the lock is granted, re-lock all the previous RN's and
continue. Note that RTE will allON a program to locally lock an RN
that it has already locked locally.

In summary, if a program MUST lock more than one resource and finds
one or more of these resources already in use, the program should
"back off," release all RN's it has already locked (if any), wait for
the resource it wanted to become available, and then re-attempt to
lock all RN's it needs. The program must NOT fully or partially update
any files, unless it has all the RN's locked that control access to
the file and any related files that must be updated simultaneously.

4-49. EXECUTIVE ERROR MESSAGFS

When RTE-IV discovers an Executive error, it normally terminates the
program, releases any disc tracks assigned to the program, issues an
error message to the system console and proceeds to execute the next
program in the scheduled list.

The user may specify the non-abortion of a program for some Executive
error conditions. See Section 4-4 for a detailed discussion of this
option.

The error messages described below are those that may occur while
accessing the Executive. They are grouped according to type. Table
4-2 contains a summary of all possible errors associated with EXEC
calls.

IV-71

EXEC CALLS

4-50. MEMORY PROTECT VIOLATIONS

The RTE-IV operating system is protected by a hardware memory protect.
Consequently, any user program that illegally tries to modify or jump
to the operating system will cause a memory protect interrupt. ·rhe
operating system intercepts the interrupt and determines its legality.
If the memory protect is illegal, the program is aborted and the
following message is displayed on the system console:

MP INST = xxxxxx
ABE pppppp qqqqqq r
XYO PPPPPP qqqqqq r
MP yyyyy zzzzz
YYYYY ABOHTED

(offending octal instruction code)
(contents of A, B and E registers at abort)
(contents of X, Y and O registers at abort)
(yyyyy=program name; zzzzz=violation address)

4-51. DYNAMIC MAPPING VIOLA'l1 IONS

A dynamic mapping violation occurs when an illegal read or write
occurs to a protected page of memory. This may happen when a user
program tries to write beyond its own address space to non-existant
memory or to some other program's memory. In this case, the program is
aborted and the following message is issued:

OM VIOL = wwwww
OM INST = xxxxxx
ABE PPPPPP qqqqqq r
XYO PPPPPP qqqqqq r
DM yyyyy zzzzz
YYYYY ABORTED

(contents of OMS violation register)
(offending octal instruction code)
(contents of A, B and E registers at abort)
(contents of X, Y and O registers at abort)
(yyyyy=program name; zzzzz=violation address)

4-52. DISPATCHING ERRORS

It is possible for programs to be scheduled and discover at a later
time that there is no partition large enough to dispatch the program.
This could occur if a parity error downed a partition and that
partition was the largest of its type (i.e., BG, RT, or E~~). If this
occurs, the program will be aborted with a DP error. The format of
the error message is:

ABE PPPPPP qqqqqq r
XYO PPPPPP qqqqqq r
DP yyyyy zzzzz
yyyyy aborted

IV-72

(contents of A,B, and E registers at abort)
(contents of X,Y, and O registers at abort)
(yyyyy = program name; zzzzz = violation address)

EXEC CALLS

4-53. EX ERRORS

It is possible to execute in the privileged mode; that is, with the
interrupt system off. Therefore, the user may not make EXEC calls in
this mode because the memory protect, which is the access vehicle to
EXEC, is off. An attempt to make an EXEC call with the interrupt
system off causes the calling program to be aborted and the following
message issued:

ABE PPPPPP qqqqqq r
XYO PPPPPP qqqqqq r
EX yyyyy zzzzz
YYYYY ABORTED

(contents of A,B and E registers at abort)
(contents of X,Y and O registers at al:x::>rt)
(yyyyy=program name; zzzzz=violation address)

4-54. UNEXPECTED OM AND MP ERRORS

The operating system handles all DM and MP violations. Some of these
violations are legal; others are not. In any case, the operating
system associates these violations with program activity. A OM or MP
violation occuring when no program is active is an unexpected
violation. Since no program is present there is no program to abort.
In such a case, one of the following messages will be issued:

OM VIOL = wwwwww
DM INS'r = xxxxxx
ABE PPPPPP qqqqqq r
XYO PPPPPP qqqqqq r
DM <INT> 0

or

MP INST = xxxxxx
ABE PPPPPP qqqqqq r
XYO PPPPPP qqqqqq r
MP <IN'r> 0

(contents of OMS violation register)
(offending octal instruction code)
(contents of A, B and E registers at abort)
(contents of X, Y and O registers at abort)

(offending octal instruction code)
(contents of A, B and E registers at abort)
(contents of x, Y and o registers at abort)

Both of the above messages specify <INT> as the program name to signal
the user that an unexpected memory protect or dynamic mapping
violation error has occured. Either is a serious violation of the
operating system integrity. Usually, it indicates that user-written
software (driver, privileged subroutine, etc.) has damaged the
operating system integrity or has inadequetly performed required
(driver) system house I< eeping. However, it could al so mean that the

CPU has failed and that the operating system detected the failure in
time to prevent a system crash.

If this error occurs, it is recommended that all users on the system
save whatever they were doing (i.e., finish up editing, etc.) and
reboot the system. If only HP modules are present in the operating
system, CPU failure is a highly likely cause of the error and CPU
diagnostics should be run prior to rebootin3.

IV-73

EXEC CALLS

4-55. TI, RE AND RQ ERRORS

The following errors have the same format as the MP and DM error
returns except that the register contents are not reported:

Error

TI

RE

RQ

Meaning

Batch program exceeds allowed time.

Reentrant subroutine attempted recursion.

Illegal request code is not between 1 and 26, or
(in text) an RQOO means that the address of a returned
parameter is below the memory protect fence.

An RQOO error means that the address of a returned
parameter is below the memory protect fence.

4-56. PARITY ERRORS

Upon detecting a "hard" parity error (i.e., one that is reproducible).
RTE will abort the program that encountered the parity error and the
following message will be issued:

PE PG# nnnnn BAD
ABE aaaaa bbbbb e
XYO xxxxx yyyyy 0

PE PPP PP mmmrnm
PP PPP ABORTED

where:

nnnnn = physical page number where the parity error was detected (page
number counting starts at 0).

ABE = contents of the A, B, and E-registers respectively when the
parity error was detected.

XYO =contents of the x, Y, and a-registers respectively when the
parity error was detected.

PPPPP = program name.

mmmmrn =logical memory address of parity error.

If the program was disc resident, the following message will be
issued:

IV-74

PART 'N xx DOWN
PART 'N yy DOWN

where:

xx= the partition the program was running in.

yy = the mother partition program if any are affected

Alternately, if xx is a mother partition, then yy is a subpartition
iliat contained the parity error. In either case, partition xx and yy
will no longer be available for running user programs until the system
is next booted up.

Upon detecting a "soft" parity error (i.e., one that is not
reproducible), RTE is not able to locate the physical page number of
the parity error. The following message is then issued:

PE @ mmmmm
DMS STAT = zzzzz

where:

mmmmm = logical address of parity error.

zzzzz = DMS status register.

A parity error occuring within the operating system itself, a driver
or system table area causes the system to execute a HLT 102005,

where:

A-register = physical page number where the parity error was detected
(page number counting starts at 0).

B-register = logical memory address of the parity error.

A parity error occuring in a DCPC transfer when the operating system
is executing in the System Map causes the system to execute a BLT
103005, where the A and B-registers are as above.

4-57. OTHER EXEC ERRORS

The general format for the following errors is

type name address

where:

type = a four-character error code (DR, SC, IO, RN, LU)

name = the program that made the call.

address = the location of the call (equal to the exit point if the
error is detected after the program suspertds).

IV-75

EXEC CALLS

4-58. DISC ALLOCATION ERROR MESSAGES

DROl

DR02

= Not enough parameters

=Number of tracks zero, illegal logical unit, or number of
tracks to release is zero or negative.

DR03 =Attempt to release track assigned to another program.

4-59. SCHEDULE CALL ERROR CODES

SCOO = Batch program attempted to suspend (EXEC (7)).

SCOl = Missing parameter.

SC02 = Illegal parameter.

SC03 = Program cannot be scheduled.

SC03 INT = Occurs when an external interrupt attempts to schedule a
program that is already scheduled. RTE-III ignores the
interrupt and returns to the point of interruption.

SC04

seas

SC06

SC07

SC08

SC09

SClO

4-60.

IOOO

IV-76

= name is not a subordinate (or "son") of the program
issuing the completion call.

= Program given is not defined.

= No resolution code in Execution Time EXEC Call (not 1, 2,
3, or 4).

= Prohibited memory lock attempted.

=

=

=

The program just scheduled is assigned to partition
smaller than the program itself or to an undefined
partition. Unassign the program or reassign the ~rogram
to a partition that is as large or larger tfan the
program. I

I

The program just scheduled is too large for any pa,tition
of the same type. For example, trying to schedul a 23K
backgro. und program when the largest background pa titian
is only 21K.

I

Not enough system available memory for string passrge.

I/O CALL ERROR. CODES I
Illegal call number. Outside table, not allocated ,I or bad
security code. I

=

EXEC CALLS

!001 = Not enough parameters.

I003

I004

!005

!006

1007

1008

!009

1010

IOll

X bit set.

= Illegal EQT referenced by LU in I/O call (Select code=O).

= Illegal user buffer. Extends beyond RT/BG area or not
enough system available memory to buffer the request.

= Illegal disc track or sector.

= Reference to a protected track: or using LG tracks before
assigning them (see LG, Section III).

= Driver has rejected call.

= Disc transfer longer than track boundary.

= Overflow of LG area.

= Class GET call issued while one call already outstanding.

= Type 4 program made an unbuffered I/O request to a driver
that did not do its own mapping.

4-61. PROGRAM MANAGEMENT ERROR CODES

RNOO = No option bits set in call.

RNOl = Not used.

RN02 = Resource Number not defined.

RN03 = Unauthorized attempt to clear a LOCAL Resource Number.

4-62. LOGICAL UNIT LOCK ERROR CODES

LUOl

LU02

LU03

= Program has one more logical units locked and is trying
to LOCK another with wait.

= Illegal logical unit reference (greater than maximum
number) •

= Not enough parameters furnished in the call. LCXJ ical unit
reference less than one. Logical unit not locked to
caller.

4-63. EXECUTIVE HALT ERRORS

IV-77

EXEC CALLS

There are several HLT instructions included in the RTE operating
system that indicate a serious violation of the integrity of the
operating system. Usually, these errors indicate that the CPU or one
of its subsystems (DCPC, Memory Protect, etc.) has failed. However,
they could indicate that user-written software (driver, priveleged
subroutine, etc.) has damaged the operating system integrity or has
inadequately performed required (driver) system housekeeping. If
these HLT's occur, it is recommended that the user check out his
hardware with the appropriate diagnostics.

HLT 0 Located in Table Area I

HVr 2 Located in location 2 of the system map

HLT 3 Located in location 3 of the system map

HLT 6 System tried to remove a partition fr om a list and the
partition was not found the re.

Other system HLT's exist for which there is some corrective action:

HLT 4

HLT 5

Powerfail occured and the powerfail/autorestart subsystem was
not installed.

Parity error in system map.
this section.

See Parity Error discussion in

HLT 5,C Parity error in a DCPC transfer when operating system was
executing in the system map. See Parity Error discussion in
this section.

HLT 10 At startup, the system discovered that there was no partition
large enough to execute FMGR or D.RTR.

A summary of EXEC call error messages is provided in Table 4-5.

IV-78/79

ERROR MEANING

Not Enough Parameters
I. Less than 4 parameters.

DROl 2. Less than l parameter.
3. Number= -1.

DR02

1000

1001

1002

1003

1004

1005

4. Less than 3 (not -1).

Illegal Track Number or
Logical Unit Number.
I. Track number = 0.
2. Logical Unit not 2 or 3.
3. Dealocate 0 or less Tracks.

Illegal Oass Number
I. Outside Table.
2. Not allocated.
3. Bad Security Code.

Not Enough Parameters.
I. Zero parameters.
2. Less than 3 parameters.
3. Less than 5/disc.
4. Less than 2 parameters.
5. Oass word missing.

Illegal Logical Unit
I. 0 or maximum.
2. Oass request on disc LU.
3. Less than 5 parameters and

X-bit set.

Illegal EQT command by LU in
1/0 call; delete code= 0

lllegal User Buffer.
I. Extends beyond "RT/BG area.
2. Not enough system memory to

buffer the request.

Illegal Disc Track or Sector
I. Track number maximum.
2. Sector number

0 or maximum

Attempted to WRlH. to LU2/3
and track not assigned to user

1006 or globally, or not to next
load-and-go sector. Illegal

1007

1008

WRITE to a FMP track.
Attempted lo use copy of loader
to make permanent load or <lelcte

Driver has rejected request
and request is not buffered.

Disc transfer implies tra<.:k
switch (LU2/3)

1009 Overflow of LG area

1010 Class (;ET and one call already
outstanding

IO 11 Illegal User Map request for
System Driver area

IV-80

Table 4-5 EXEC Call Error Summary

READ WRITE CONTROL PROGRAM PROGRAM
TRACK

RELEASl.

PROGRAM
COMPLETION

PROGRAM
SLISPl:ND

x x

x

x x

x x

x

x x

x

x

x

TRACK
ALLOCATE

x

5

PROGRAM
SEGMENT

LOAD

8

PROGRAM
SCHEDULE

W/WAIT

PROGRAM TIME
SCHEDULE REQUEST
WO/WAIT

10 11

Table 4-5 EXEC Call Error Summary (Cont.)

l'ROCRAM
1/0 STRING

GLOBAL CLOIJAL CLASS CLASS CLASS CLASS CLASS l'ROGRA:VI PROGRAM PROGRAM
SClllDULI· TRACK TRACK 1/0 1/0 1/0 1/0 1/0 SWAPPING SUILD QUE UL scm:D QUFUI·: RNRQ LURQ

Tl~!I·
STATUS PASSM;I

ALLOCATF Rl:LEASF READ IVRITL CONTROL WRITF/READ (;l·T CONTROL W/WAIT WO/WAIT
12 13 14 15 16 17 18 19 20 21 22 23 24

x x x x x x

)(

IV-81

UHWR

Ll/01

LU02

LU03

RQOO

RQ

RNOO

RNOI

RN02

RN03

SCCJO

SCOI

\!LANING

Program has one or more logi<:al
units locked and is trying to
LOCK another with WAIT.

Illegal logical unit reference
(J!rcatcr than maximum number).

Not enough parameters furnished
in the call. Illegal logical unit ref­
erence (less than one). Logical
unit not locked to caller.

Return buffer below memory pro­
tect fence.

EXEC call contains an illegal re­
quest code.
I. Return address indicates less

than one or more than scvt.•n
parameters.

2. Parameter address indirect
throu~h A- or H-Rcgistcr.

3. Request code not defined or
not loaded.

No option bi ts sc l.

Nol used.

Resource number not in Table
(undefined).

Unauthorized altcmpt to dear a
LOCAL Resource Number.

Hatch program t.:annot suspend.

\..fissing Parameter.
l. Se!!mcnt name missinj!.
J Not 4 or 7 parameters in Time

Call.
3. Not 4 parameters in Strin~ Pas.s-

aae Call or partition status call.

Illegal Parameter
I. Option word is missing or not

SC02 0, I, 2, or 3.

SC03

SC04

SC05

SC06

SC07

scos

SC09

SCIO

IV-82

2. Read/write word in Sirinµ Pass­
age Call is not I or 2.

Pro)!ram Cannot Uc SL'hc<lulcd.
I. Not a segment.
2. ls a scµmen t.

Attempted to l'ontrol a prof!r:.Jlll
that is not a "Son." ,

Program GivL'll is Not Ucfincd.
I. No scµmcnt.
2. No pro)!rarn.
3. "Son" not found.

Resolution not I, 2, 3, or 4.

Prohibited con· .memory lock

attempted.

Assigned partition is too
small for program

Program too large for any
partition of same type

Not enough system available
memory for string passage.

READ WRITF

-1 .1.

x

x x

Table 4-5 EXEC Call Error Summary (Cont.)

PROGRA\1 PROGRA\I
l'ROGRA\I PROl;RA\I

PROCIC\\I l'llo<;R .. \\I l'RU<dl.\\I
11\ll

CONTROL TRACK TRACK SH;\llNI SClll l>l"ll Sllll Ill 11

ALLOCATF RI· LFASI·
COMPLl.TION Sl!SPI NIJ

LOAI> II 1\.\11 ll"Ul\.\11
IU l)l I ~I

...1. ...i.s_ .£. 1_ I{_ <L ...1J.J.. ...LL

x

x x x x x x

x

x x

x x

x x

Table 4-5 EXEC Call Error Summary (Cont.)

PROGRAM
1/0 STRING

GLOIJAL GLOBAL CLASS CLASS CLASS CLASS CLASS PIWGRA~1 l'R()(;R..\\I l'RU<;H .. \\I
SCllEDULE TRACK TRACK 1/0 1/0 l,'O 1/0 liO SllAPPINt; S<lll IJ <Jl'I l'I ~(Ill D <)l 11 I H'-1<<.I 1 l 1<1,1

TIMI-.
STATUS PASSAGE

ALLOCATI RELEASE READ WRIT!·. CONTROL llRIJl./RI ..\IJ t;11 CONTHOI II 1\.\11 \\()11\.\ll
12 _U _H_ -1.i -1.6. _u JJl _li lli " ~I ~ 'l 2~

x x x

x x x x x)t x

x

l(

x

x

IV-83/84

+---+--------------------+ I I I
I INPUT/OUTPUT I SECTION V I
I I I
+--~----+--------------------+

In the Real-Time Executive System, centralized control and logical
referencing of I/O operations effect simple, device-independent
programming. Each I/O device is interfaced to the computer through an
I/O controller associated with one or more I/O select codes that are
hardware-linked to corresponding memory locations for interrupt
processing. By means of several user-defined I/O tables,
self-contained multi-device drivers and program EXEC calls, RTE
relieves the programmer of many I/O processing details.

For details on the hardware input/output organization, consult the
appropriate computer manuals (refer to the documentation map at the
beginning of this manual). For details on writing drivers, see the RTE
Driver Writing Reference Manual.

For a full understanding of the software I/0 characteristics of RTE as
described in this manual section, the user should be familiar with two
hardware-related terms:

1. I/O Controller - a combination of I/0 card, cable and, for some
devices, a controller box used to control one or more I/O devices
on a computer I/O select code.

2. I/O Device - a physical unit (or portion of a unit) identified in
the operating system by means of an Equipment ·rable (EQT) entry
and a subchannel assignment.

Each I/O device is interfaced to the computer through an I/O
controller that is associated with one or more of the computer I/O
select codes. Interrupts from controllers on specific select codes are
directed to specific computer memory locations for system processing.

5-1. SOFTWARE I/O STRUCTURE

This description of the I/O software is primarily intended for those
who will be using I/O EXEC calls for standard programming
applications. users who will be writing their own drivers or who may
otherwise require a more detailed knowledge of the I/O internal
structure should consult the RTE Driver Writing Reference Manual.

The I/O structure is made up of two general types of software:

V-1

INPUT/0U'I1PU11

1. The system I/O processor (RTIOC) and various device drivers.

2. A number of I/O tables, including: Equipment
Reference Table, Interrupt Table, Driver Mapping
Base Page Communications area.

'l'able, De vice
Table, plus a

These tables and areas are used for communication between the system
and the drivers, and for control of the many I/O operations that can
be in progress simultaneously.

An Equipment Table entry records each controller's I/O select code,
driver, DCPC, buffering and time-out specifications. A Device
Reference Table assigns one or more Logical Unit numbers to each
device and points each device to the appropriate Equipment Table
entry. This allows the programmer to reference changeable logical
units instead of fixed physical units.

An Interrupt Table directs the system's action when an interrupt
occurs on any select code. RTE can call a driver that is responsible
for initiating and continuing operations on all devices' controllers
of an equivalent type, schedule a specified pro3ram, or handle the
interrupt itself.

The programmer requests I/O by means of an EXEC call that specifies
the logical unit, control information, buffer location, buffer length,
and type of operation. Some subsystems may require additional
parameters.

5-2. EQUIPMENT TABLE

The Equipment Table (EQT) is used to maintain a list of all the I/O
equipment in the system. The table consists of a number of EQT
entries, with one EQT entry for each I/O controller defined in the
system at generation time. Each EQT entry contains all of the
information required by the system and associated driver to operate
the device, including:

* I/O select code in which the controller is interfaced with the
computer.

* Driver type.

* various driver or controller requirements and specifications, such
as DCPC, buffering, time-out, power fail, etc.

These 15-word EQT entries reside in the system and have the format
illustrated in Figures 5-1 and 5-2. Note that some ~nformation in an
EQT entry is static; other parts are dynamic. Information marked <A>
is fixed at generation time or during I/O reconfiguration at booi-up
time and never changes during on-line system operation. Words marked
 are also fixed during generation or I/O reconfiguration but can be
changed on-line through operator commands. Information marked <C>, <D>
and <E> are driver considerations. <F> is maintained by the system.

V-2

INPUT/OUTPUT

+------ --+
word Contents

------ ----l----l---1---1----1---1--1---l--1--1---1--1--1---1--1---
15 I 14 13 12 I 11 10 9 I a 7 6 I s 4 3 I 2 1 o

------ ----1------------1-----------1---------1---------1----------
1 R I I/O Request List Pointer <C>

------ ----1---
2 R I Driver Initiation Section Address <A >

------ ----1---
3 R I Driver Continuation/Completion Section Address <A>

------ ----1----1---1----1---1----------------1--------------~-----
4 D I B I P I S I T I Subchannel I I/O Select Code i

<A> l l<E>l<E> l<C>I <C> I <A>
------ ·----1----1---1----1---1----------1-----1-------·-------------

5 AV I EQUIPMENT TYPE CODE I STATUS
<F> I <A> I <E>

1------ ----1----1-----------------------1-----------~--------------
6 CONWD (Current I/O Request word) <C>

7 Request Buffer Address <C>

8 Request Buffer Length <C>

9 Temporary Stor~ge <D> or Optional Parameter <C>

10 Temporary Storage <D> or Optional Parameter <C>

11 Temporary Storage for Driver <D>

12

13

Temporary Storage
for Driver <D>

Temporary Storage
for Driver <D>

or

or

14 Device Time-Out Reset Value

15 Device Time-Out Clock <C>

EQT Extension Size,
any .<A>

EQ'r Extension Star ting
Address, if any <A>

+---~---------------------+

Figure 5-1. Equipment Table Entry Format

where:

R = reserved for system use.

V-3

INPU'r/OUTPUT

1/0 Request
List Pointer = points to list of requests queued up on this

EQT entry. First entry in list is current

V-4

request in progress (zero if no request).

D = 1 if DCPC required.

B = 1 if automatic OU tput buffering used.

p = 1 if driver is to process power fail.

s = 1 if driver is to process time-out.

T = 1 if device timed out (system sets to zero before
each I/O request) •

Subchannel :ti: = last subchannel addressed.

I/O Select =
Code#

I/O select code for the I/O controller
(lower number if a multi-board interface).

AV= I/O controller availability indicator:

0 = available for use.

EQUIPMEWr
'1"1YPE CODE

1 = disabled (down).
2 = busy (currently in operation).
3 = waiting for an available DCPC channel.

= type of device on this controller. When this octal
number is linked with "DVy," it identifies the
device's software driver routine. Some standard driver
numbers are:

00 to 07 = paper tape devices or consoles

00 = teleprinter or keyboard control device

01 = photoreader

02 = paper tape punch

05 = 264x-series terminals

07 = rnul ti-point devices

INPUT /OUTPUT

10 to 17 = unit record devices

10 = plotter

11 = card reader

12 = line printer

15 = mark sense card reader

20 to 37 = magnetic tape/mass storage devices

23 = 9-track magnetic tape

31 = 7 900 moving head disc

32 = 7905/06/ 20 moving head disc

33 = flexible disc drives

36 = writable control store

37 = HPIB

40 to 77 = instruments

STATUS = actual physical status or simulated status at the
end of each operation.

CONWD = combination of user control word and user request code
word in the I/O EXEC call (see Section IV; see also
Figure 5-2 below) •

and where the letters in brackets (<>) indicate the nature of each
data item as follows:

<A> = fixed at generation or reconfiguration time; never
changes

 = fixed at generation or reconfiguration time; can be
changed on-line

<C> = set up or modified at each I/O initialization

<D> = available as temporary storage by driver

<E> = can be set driver

<F> = maintained by system

v-s

INPU'l'/OUrrPUT

+---l----1----1----1----1----1---1---1---l---1---l---l---1---l---1---1
I 151 14 I 13 I 12 I 11 I 10 I 9 I 8 I 7 I 6 I 5 I 4 I 3 I 2 I 1 I O I

1---1----1----1----1----1----1---1---1---1---1---1---1---1---1---1---1

I Status I
1---1----1

I

00 - standard call
10 - buffered call
11 - Class call

I Subf unction I
1---------1----------1

I

00000 = clear controller
(if function = 11 =
CONTROL call)

Other subfunctions are
driver specific and may
or may not be defined

Function
1---1---1

I

01-READ call
10-WRITE call
11-CONTROL call

Figure 5-2. CONWD word (EQT Entry word 6) Expanded

When RTE initiates or continues an I/O operation (except for
privileged driver constructions), it places the address of the EQT
entry for the device's controller into the Base Page Communications
area before calling the driver routine.

All Equipment Table entries are located sequentially in memory,
beginning with EQT entry number 1. The address of the first entry and
the total number of entries in the table can be found in the Base Page
Communications area.

V-6

INPUT/OUTPUT

5-3. DEVICE REFERENCE TABLE

The Device Reference Table (DRT) is part of the mechanism by which
Logical Unit numbers for I/O are implemented (see Logical Unit Numbers
below). users request I/O by specifying a Logical Unit (LU) number.
The DRT translates this Logical unit number into a physical device as
specified by an EQT entry number and subchannel. The ORI' is also used
to queue requests for I/0 on an unavailable (down) device. The request
list for available (up) devices originates from word 1 of the EQT
entry, as illustrated in Figure 5-1.

Each ORT entry is two words long (see Figure 5-3). '!'here is one entry
for each Logical Unit number defined at generation time, beginning
with Logical Unit 1.

The first word of each entry includes the EQT entry number of the
controller assigned to the logical unit and the subchannel number of
the specific device on that controller to be referenced.

The second word of each DRT entry contains the current status of the
logical unit: up (available) or down (unavailable). If the device is
down, word 2 also contains a pointer to the list of requests waiting
to access the LU. Figure 5-3 illustrates the format of a Device
Reference Table entry, and Figure 5-4 illustrates the Device
Reference Table.

+-------------------1-------------------1-----------------------+
I Subchannel No. I (Reserved) I EQT Entry Number I
1---1---1---1---1---1---1---1---1---1---1---1---1---1---1---1---1
115 114 13 12 Ill 10 9 I 8 7 6 I s 4 3 2 1 o I word 1
1---1-----------1-----------1-----------1-----------------------1 I F I Downed I/O Request List Pointer I word 2

+---1---+
where:

F (up/down flag) = 0 if device is up
= 1 if device is down

Figure 5-3. Device Reference Table Entry Format

V-7

INPUT/OUTPUT

+---+

+--+
I I
I LUl I
!--!
I I
I LU2 I
!--!
I I
I LU3 I
+-----------------------~----------------+

+---------------------------------------~+
I I
I LUn I
!--!
I I
I LUl I
1--1
I I
I LU2 I
+--+

+--+
I I
I LUn I
+--+
Where:

n = number of logical units in system

I
I
I

word 1 of
each DR!'
entry

I word 2 of
I -- ea ch D RI'
I entry
I
I
I

+---+
Figure 5-4. Device Reference Table

Note that there are separate tables for words 1 and 2, with the word 2
table being located in memory immediately following the word l table.
The starting address and length of the word l table are recorded in
the base page.

V-8

INPU'r/OUTPU'r

5-4. LOGICAL UNIT NUMBERS

Logical Unit numbers provide Rrl1 E users with the capability of
logically addressing the physical devices defined by the Equipment
Table. Logical Unit numbers are used by executing programs to specify
on which device I/O transfers are to be carried out. In an I/O EXEC
call, the program simply specifies an LU number and does not need to
know which physical device or which I/O controller handles the
transfer.

Although many devices such as line printers are addressed by a single
LU number, others such as disc drives have subchannels, with each
subchannel addressed by a different LU number.

If on-line changes to existing LU assignments become necessary or
desirable, this can be achieved through use of the LU operator
command. LU numbers are maintained by the Device Reference Table (see
above).

Logical Unit nurnoers are decimal integers. The functions of Logical
Units 0 through 6 are predefined in the RTE-IV system as follows:

U bit bucket (null device~ no entry in Device Reference Table)

1 system console

2 reserved for system (system disc subchannel)

3 reserved for system (auxiliary disc subchannel)

4 standard output device

5 standard input device

6 standard list device

Logical Unit 8 is recommended to be the magnetic tape device, if one
is present on the system. Peripheral discs must be assigned logical
units greater than 6. Additional 103ical units may be assigned for any
function desired.

V-9

5-5. INTERlWPrr '£ABLE

'I1h e I nte rr upt
generation time,
entry is equal to
interrupt occurs
Central Interrupt

Table contains an entry, established at system
for each I/O select code in the computer. If the

O, the select code is undefined in the system. If an
on one of these select codes and is processed by the
Controller (CIC), RTE outputs the message

ILL INT xx

where xx is the octal I/O select code number. RTE-IV then clears the
interrupt flag on the channel and returns to the point of
interruption.

The ILL INT message is also issued if the driver completes and the
system cannot find the processed I/O request queued to tne EQT entry.

If the content of the entry is positive, the entry contains the
address of the EQT entry for the I/O controller on the channel (refer
to the EQT option for the Interrupt Table entry during system
generation).

If the content of the entry is negative, the entry contains tne
negated ID segment address of a program to be scheduled. If the
program is not dormant when an interrupt occurs on that I/O select
code, the following message is output on the system console:

SCU3 INT xxxxx

where xxxxx is the program name. The interrupt flag is then cleared
for that channel and control is returned to the point of interruption.
(Refer to the PRG option for the Interrupt 'rable entry in tne RTE-IV
On-Line Generator Reference Manual.)

V-10

INPUT/OUTPUT

5-6. SYSTEM BASE PAGE INTERRUPT LOCATIONS

When an interrupt is received, the computer transfers control to one
of a group of memoty locations, known as trap cells, in the system
base page. The I/O select code of the interrupting controller
determines the location of the transfer. For instance, interrupts from
select code 12 cause a transfer to memory location 12: interrupts from
select code 13 cause a transfer to location 13, et cetera. Memory
locations from octal 4-77 comprise the entire set of interrupt trap
cells, where

4 = powerfail

5 = memory protect/OMS/parity error

6 = DCPC Port 1

7 = DCPC Port 2

10-77 = I/O slots

Transferring control to an interrupt trap cell causes tne instruction
located there to be executed. E'or all devices operating under control
of the Central Interrupt Controller (CIC), this instruction is a JSB
LINK, I, where LINK contains the address of the entry point to CIC.
This instruction is initially set up at generation time and is reset
each time the system is rebooted. There are three different ways that
interrupts are serviced, according to the contents of the trap cell
and the Interrupt 'rable:

Generation
Entry (examples)

12,EQT,l

12,PRG,name

12, EN'r, entry

Interrupt 'rable
Contents

Ear entry address

Negative ID
segment address

0

Trap Cell
Contents

JSB LINK,!

JSB LINK, I

J'SB entry,!

JSB LINK, I trap cells are processed by CIC. JSH entry,! trap cells
by-pass the Interrupt Table and CIC for time-critcal events such as
Power Fail and privileged interrupts.

V-11

INPUT/OUTPUT

5-7. DRIVER .MAPPING 'rABLE

Each EQT entry has an associated two-word Driver Mapping table entry
that indicates whether the driver for that EQT entry is in the System
Driver Area (SDA) or a driver partition; and whether or not the driver
(if it is in SDA) performs its own mapping. If the driver is in a
partition, the entry contains the physical starting page number of the
partition. This page number is used to map the driver into the
appropriate System Map or User Map.

The second word of each entry is set up when I/O is started on the
corresponding driver. The sign bit of the second word indicates
whether or not I/O is being performed for a memory resident program.
The word is 0 for system I/O. The low 10 bits contain the page number
of the user's physical base page if it is a partition resident
program. This word is used to save time on setting up the proper map
on processing interrupts.

The format of the Driver Map Table is illustrated in Pigure 5-5.

V-12

WORD1
OF DMT
ENTRY
FOR
EQT
ENTRY:

WORD2
OF DMT
ENTRY
FOR
EQT
ENTRY:

2

3

N

2

N

WHERE:

SD

SD

MR

MR

N

0

0

15 14 13 12 11 10 9 8 7 6 5 4 3 2

SD

SD

SD

SD

MR

MR

(RESERVED) M

(RESERVED) M

(RESERVED) M

•

•

•

(RESERVED) M

(RESERVED) p

(RESERVED) p

•

•

•

(RESERVED) p

IMPLIES DRIVER RESIDES IN A DRIVER PARTITION, AND
M =STARTING PAGE NUMBER OF PARTITION IN BITS 0-9

IMPLIES DRIVER RESIDES IN SYSTEM DRIVER AREA, AND
M = 0 IMPLIES DRIVER NOT DOING ITS OWN MAPPING
M = 1 IMPLIES DRIVER DOING ITS OWN MAPPING

IMPLIES THAT THE 1/0 REQUEST BUFFER IS LOCATED IN
A MEMORY RESIDENT PROGRAM.
(P VALUE NOT SIGNIFICANT - RESERVED FOR FUTURE USE)

IMPLIES THAT THE 1/0 REQUEST BUFFER IS NOT LOCATED
IN A MEMORY RESIDENT PROGRAM. BUFFER LOCATION IS
INDICATED BY THE VALUE OF P, AS FOLLOWS:
P = 0 IMPLIES BUFFER IS IN THE SYSTEM AREA
P NOT ZERO IMPLIES BUFFER IS LOCATED IN A DISC

RESIDENT PROGRAM. P IS THE PHYSICAL
PAGE NUMBER OF THE PROGRAM'S BASE PAGE

NUMBER OF EQT ENTRIES IN SYSTEM

Figure 5-5. Driver Mapping Table

0

5-13

INPUT/OUTPUT

5-8. I/O PROCESSOR GENERAL OPERATION

5-9. s·rANDARD I/O CALLS

A user program makes an EXEC call to initiate I/O transfers. If the
device's controller is not buffered or the I/O transfer is for input,
the calling user program is suspended until the transmission is
completed (see Class I/O, Section IV for exceptions). The next lower
priority program is allocated execution time during the suspension of
a higher priority program.

An I/O request (i.e.' READ' WRITE' COWI'ROL) is channeled to R1r1oc by
the executive request processor. After the necessary legality checks
are made, the request is linked into the request list corresponding to
the referenced I/O controller.

If the device's controller is available (i.e., no prior requests were
pending), preparation is made to enter the driver's initiation
section. The parameters from the request are set in the temporary
storage area of the EQT entry.

The proper mapping registers are set up if the Driver Mapping Table
indicates they are needed. The decision to choose the user Map or the
System Map is decided by the type of I/O request. All system I/O,
class I/O, and buffered user I/O requests require the use of the
System Map.

Unbuffered user requests require the user Map. N:>te that in the case
of a driver located in the System Driver Area making unbuffered
requests, the program must be Type 2 or 3.

If the disc resident program's user Map needs to be modified to map in
a partition resident driver, the User Map is saved in the program's
physical base page. The second word of the driver's mapping table
entry is modified to record the type of map needed and if it is a disc
resident program's map the physical base page number is also kept.
This second word is used to save time on setting up the map registers
for a subsequent continuation interrupt. The initiation section
initializes the device's controller and starts the data transfer or
control function.

If the
section
returns
program.

device's controller is busy upon return from the initiation
or else a required DCPC channel is not available, RTIOC
to the scheduling module to execute the next lower-priority

I-f the device's controller (EQT entry) or the device (LU) is down, the
·calling program is automatically suspended in the general wait list
(status=3). While in this list, the program is swappable. If any LU or
EQT entry is set UP, the program is automatically rescheduled. Refer
to the ST command in Section III for more information on the general
wait list.

V-14

INPUT/OUTPUT

Interrupts from the device's controller cause the Central Interrupt
Control (CIC) module of R'l'IOC to call the continuation/completion
section of the driver. RTIOC sets up the correct map before entering
the driver. This is done by checking the Driver Mapping Table entry
associated with the EQT entry. If a User Map is being reset, its
contents are obtained from the program's physical base page. At the
end of the operation, the driver returns to CIC and consequently to
RTIOC.

RTIOC causes the requesting program to be placed back into the
schedule list and checks for an I/O stacked request. If there are no
stacked requests, RTIOC exits to the dispatching module : otherwise,
the initiation section is called to begin the next operation before
returning.

5-10. POWER FAIL

Power Fail is an optional hardware/software feature that saves all
system status and context up to the point at which the computer
signals a power failure. If generated into the system, the Power Fail
routine performs the following steps:

1. When power fails, it saves all registers, stops DCPC transfers and
saves maps. If not enough time was available, Power Fail issues a
HLT 4.

2. When power comes on, it restarts the real-time clock, sets up a
time-out entry (TO) back to its EQT entry, and then returns to the
Power Fail interrupt location so that it can do more recovery type
work after the power fail system and operating system are
reenabled.

3. When the EQT entry times-out, the Power Fail routine checks EQT
entry word 5, bits 14 and 15 of each I/O controller. The status of
bi ts 14 and 15 will indicate whether the I/O controller is "down"
or "busy." The routine also checks bit 13 of EQT entry word 4 (set
by driver), which indicates if the driver is to process the power
failure.

4. If the I/O controller was busy when the power failed and the power
fail bit was set when power resumed, the Power Fail routine calls
the driver. The proper map is set up, according to the Driver
Mapping Table entry and the driver is entered at Ixnn with its EQT
entry unchanged. If the power fail bit was not set, the Power Fail
routine calls the IOC module to set the controller and all downed
LU's "up", reinitializes the EQT entry, and enters the driver at
Ixnn.

V-15

INPUT/OUTPUT

To summarize, assuming the controller was reading or writing data
when power failure occurred (and the driver is designed to handle
power fail), the controller driver will perform the power fail
recovery when power resumes. If the controller was busy when power
failure occurred and the controller driver cannot handle power
failure, the routine attempts to restart the I/O operation.

5. If the controller or device was down when the power failed and the
power fail bit is set or not set, the system "ups" the controller
(EQT entry) and associated Lu's, resets the EQT entry and enters
the driver at Ixnn when power resumes.

6. An HP-supplied program called AUTOR will be scheduled. AUTOR sends
the time of power failure to all teletypes on the system (which
reenables all terminals). AUTOR is written in FORTRAN, with the
source program supplied to the user so that the program may easily
be modified to meet on-site requirements.

5-11. I/O CONTROLLER TIME-OUT

Each I/O controller may have a time-out clock to prevent indefinite
I/O suspension. Indefinite I/O suspension can occur when a program
initiates I/O and the device's controller fails to return a flag
(possible hardware malfunction or improper program encoding). Without
the controller time-out, the program that made the I/O call would
remain in I/O suspension indefinitely, awaiting the "ope ration done"
indication from the device's controller.

For privileged drivers, the time-out parameter must be long enough to
cover the period from I/O initiation to transfer completion.

EQT entry words 14 and 15 in the EQT entry for each I/O controller
function as a controller time-out clock. EQT entry word 15 is the
actual working clock. Before each I/O transfer is initiated, it is set
to a value m, where m is a negative number of 10 ms time intervals
stored in EQT entry word 14. If the controller does not interrupt
within the required time interval, it is to be considered as having
"timed out." The EQT 15 clock word for each controller can be
individually set by three methods:

1. The system inserts the contents of EQT entry word 14 into EQT
entry word 15 before a driver (initiation or completion section)
is entered. EQT entry word 14 can be preset to m by entering (T=)
at generation time.

2. By use of the TO operator command (see Section III).

3. By driver •

V-16

INPUT /OU 'l'PU'I'

5-12. PRIVILEGED INTERRUPT PROCESSING

Privileged interrupt processing provides access to specific elements
for more rapid operations than are possible in standard I/O
processing. I/O transfers are performed directly rather than going
through the Central Interrupt Control module and other standard system
services.

Including a special I/O interface card is the means by which RTE
allows a class of privileged interrupts to be processed independently
of system operation. The presence and location of the special I/O card
is determined at system generation time. Its actual hardware location
is stored in the word DUMMY in the Base Page Communication Area (or,
if the card is not preset, zero). See the RTE-IV On-Line Generator
Reference Manual for the exact specification procedure.

The special I/O card physically separates the higher priority
privileged interrupts from the regular system-controlled interrupts.
When an interrupt occurs, the card has its flag set which enables the
card to hold off non-privileged, lower priority interrupts. This means
that the system does not operate with the interrupt system disabled,
but in a hold-off state. Furthermore, the privileged interrupts are
always enabled when RTE is running and can interrupt any proces·s
taking place. See the RTE Operating System Driver Writing Manual for
further details on writing privileged drivers.

V-17

+--+---------------------+
I I I
I MEMORY MANAGEMENT I SECTION VI I
I I I
+--+---------------------+

R'rE uses the Dynamic Mapping System (OMS) of 21MX-series computers to
address memory configurations larger than 32K words. The user can
address up to 1024K words of physical memory using the OMS feature.
This is accomplished by translating memory addresses through one of
four "memory maps". A memory map is defined as 32 hardware registers
that provide the interface between the 32K words of logical memory and
physical memory. All memory map addressing is done internally by the
system and is transparent to the user.

The following brief explanation of the addressing and mapping process
provides a general understanding of the overall operation of the
system~ for a more detailed description of the Dynamic Mapping System,
refer to the appropriate 21MX Series Computer Reference 'Manual.

6-1. ADDRESSING

The basic addressing scheme of the computer uses a 15-bit number that
describes a location in memory numbered 0 to 32767 (see Figure 6-1).
The 32768 (32K word) locations are grouped into 32 pages, with each
page containing 1024 (lK) words. OMS takes the 15-bit address and
splits it into two parts. The upper five bits (bits 10-14), become
the logical page number, an index pointing to one of the 32 registers
within a memory map (only one ~f the four maps can be enabled at a
time). The lower 10 bits point to a relative address (or offset)
within the destination page and do not require translation.

When the address is converted, the index is used to determine which of
the 32 registers of the currently enabled map has the 10-bit physical
page address. This page address is then concatenated to the relative
address to provide the ultimate 20-bit address in physical memory.

VI-1

MEMORY MANAGEMENT

0 = DIA.ECT
1 = INDIRECT

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LOGICAL PAGE
ADDRESS

ENABLED MAP REGISTER

10-BITS

PHYSICAL PAGE
ADDRESS

OFFSET WITHIN
DESTINATION PAGE

20-BIT MEMORY ADDRESS BUS

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 6-1.

ONE WORD OUT OF
ONE MILLION

RTE-IV Address Scheme

6-2. MEMORY MAPS

There are four memory maps managed by the system: the user Map for
describing current user programs, the System Map for describing the
system and System Available Memory (SAM), and two Dual Channel Port
Controller (DCPC) maps called Port A Map and Port B Map for defining
the memory space of the DCPC transfer.

At any one instant, only one memory map is enabled. This map defines
the 32K words of logical address space currently being used. Either
the System or user Map will be enabled. A DCPC transfer is handled
under the appropriate Port Map, and once intitiated, is essentially
transparent to the user.

SYSTEM MAP. This map is automatically enabled whenever an interrupt
occurs and is loaded by the system during system initialization. It is
changed only to map different driver partitions. It describes the
logical address space used for the operating system and its base page,
COMMON, Subsystem Global Area, System Driver Area, Table Areas I and
II, driver partition, and System Available Memory.

USER MAP.
of pages

VI-2

Associated with each disc resident program is a unique set
that describe the logical address space for the program.

MEMORY MANAGEMENT

These pages define the memory occupied by Table Area I, driver
partition, optional Table Area II and optional System Driver Area,
COMMON (if the program uses it), the program's base page, and the
program.

All memory resident programs use a common set of pages that define the
mem0ry------o-c'cuple-a--·-·-oy--Tabl-e·-r~..a.-1, driver pa~ ti tion, COMMON, opt_~onal
T~ble Area II and System Driver Area, base page, the memory resident
ribrar~che memory resident program area.

Each time a new memory or disc resident program is dispatched, the
system reloads the user Map with the appropriate set of pages. The
User Map, therefore, provides the interface between logical memory and
physical memory.

PORT A MAP. DCPC transfers are a software assignable direct data path
between memory and a high speed peripheral device. This function is
provided by the 21MX series Dual Channel Port Controller (DCPC). There
are two DCPC channels, each of which may be assigned to operate with
an I/0 device. The Port A Map is automatically enabled when a transfer
on DCPC channel 1 takes place.

The Port Map must be reloaded by the system each time the channel is
assigned for a new I/O call so that the data buffer is mapped in.
Having separate maps for DCPC facilitates multiprogramming, since DCPC
may be accessing one program's buffer while another program (in a
different area of physical memory) is using the CPU under the User Map
(i.e., when one program is using DCPC, another program can be
executing).

PORT B MAP. This map is handled in the same way the Port A Map is
handled except that it applies to DCPC channel 2.

6-3. PHYSICAL ME MORY

At generation time, the user plans the physical memory allocations as
illustrated in Figure 6-2 and then loads the system components and
drivers for the most efficient configuration. The user determines the
size of System Available Memory, (SAM), the number and size of each
partition, the size of COMMON, and the size and composition of the
resident library and memory resident program area.

VI-3

MEMORY MANAGEMENT

The areas shown in Figure 6-2 are used as follows:

* System Base Page - contains system communication area and is used
by the system to define request parameters, I/O tables, scheduling
lists, pointers, operating parameters, memory bounds, etc. System
links and trap cells are also located on the system base page.

VI-4

The base page links for memory resident library and memory
resident programs are only in the memory resident base page and
are not accessible by disc resident programs. The Table Area,
SSGA and driver links, and the system communication area are
accessible to all programs. Partition base pages, used for disc
resident program links, are described below with partitions. For
all practical purposes, the memory resident programs are in a
single partition separate (protected) from all other partitions.

+-----------------------------+
User Partition M(l<M<64)

user Partition l(& user BP)

SAM Extension

Memory Resident Programs

Resident Library

Memory Resident Base Page _____________________________ ,
Driver Partition n I

-----------------------------!
I
I
I

-----------------------------!
Driver Partition 2 I

-----------------------------!
System Available Memory I _____________________________ ,
Operating System

Table Area II

System Driver Area

Background

Real-'r ime

Subsystem Global Area

l-----------------------------1
I Driver Partition 1 I
1-----------------------------1
I System Available Memory l
1-----------------------------1 I Table Area I I
1-----------------------------1
I System Base Page I
1-----------------------------l

\
\

\
COMMON

I
I

I

MEMORY ~ANAGEMENT

Figure 6-2. Physical Memory Allocations

VI-5

MEMORY MANAGEMENT

* Table Area I - Contains the Equipment Table entries, Driver Mapping
Table, Device Reference Table, Interrupt Table, the Disc Track Map
Table, some system entry points and all Type 15 modules.

* Driver Partition - An area set aside at generation time containing
one or more drivers. All driver partitions ate the same length, and
only one is included in a 32K-word address space at any one point
in time. The minimum partition size i~ two pages but may be
increased.

* System Driver Area - An area for privileged drivers, large drivers,
or drivers that do their own mapping. The drivers that go into this
area are specified during the EQT definition phase of system
generation. The System Driver Area (SDA) is included in the lcgical
address space of both the system and Type 2 and 3 programs. It ii
included in the memory resident program area (if requested) at
generation time.

* System
(e.g.,

Contains the absolute code of
RTIOC, SCHED, EXEC).

the Type 0 system modules

* Memory Resident Library Contains the reentrant or privileged
library routines (Type 6) that are used by the memory resident
programs, or which are force loaded at generation time (Type 14).
It is accessible only by memory resident programs. All routines
loaded into the resident library also go into the relocatable
library for appending to disc resident programs that require them.

* COMMON This area is divided into three subareas: The Subsystem
Global Area (SSGA), the Real-time COMMON area, and the Background
COMMON area. SSGA is used by some Hewlett-Packard software
subsystems for buffering and communications. The Real-time and
Background sub-areas {system COMMON) are reserved for user-written
programs that declare COMMON. All programs relocated during
generation time that declare COMMON will reference this system
COMMON. Programs relocated on-line with LOADR may choose to
reference system COMMON or use local COMMON.

* Memory Resident Programs - This area contains all Type 1 programs
that were relocated durin~ generation.

* Table Area II Contains the Memory Protect Fence Table, ID
segments, Keyword Table, ID Segment Extensions, Class Table, RN
'rable, LU switch '!'able, .Memory Resident Map, and a number of entry
points for system pointers. This area has entry points that are
created by the generator and some that are defined by Type 13
modules.

* System Available Memory - This is a temporary storage area used by
the system for buffered and Class I/O reentrant I/O (refer to
Section IV), and parameter string passing.

VI-6

MEMORY MANAGEMENT

* Partition This is an area set aside by the user for a disc
resident program to run. Each partition has its own base page that
describes the linkages for the program running in the partition. Up
to 64 partitions are allowed, within the constraints of available
phy si ca 1 memory.

All of the above areas are established during system generation.

6-4. LOGICAL MEMORY

Logical memory is the 32K word (maximum) address space described by
the currently enabled memory map. If the System Map is enabled,
logical memory includes the operating system and its base page, Table
Areas I and II, System Driver Area, driver partition and System
Available Memory. It also includes COMMON and Subsystem Global Area.

If the User Map is enabled for a disc resident program, logical memory
includes Table Area I, a driver partition, optional Table Area II,
optional System Driver Area, COMMON (if used), and the currently
executing program and its base page.

The logical memory of a memory resident program includes the memory
resident program area and base page, Table Area I, a driver partition,
COMMON, optional Table Area II and System Driver Area.

Port Maps are used DCPC transfers and describe the logical memory
containing a data buffer. A Port map will be the same as either the
System Map or the map of the program being serviced, depending on type
of I/O call.

Figure 6-3 shows the four configurations of the 32K word logical
address space. The first configuration illustrates how this space
appears under control of the System Map. Note that there is always a
total of 32 pages to be divided up: however, the particular boundaries
shown for the various parts are examples only, and a user's system
could be larger or smaller.

The second configuration illustrates how the logical address space
appears under control of the user Map when a memory resident program
is executing.

The third configuration illustrates how the logical address space
appears under control of the user Map when either an RT or 'fype 3 (BG)
disc resident program is executing.

The fourth configuration illustrates how the logical address space
space appears under control of the User Map when a Type 4 (BG) disc
resident programs is executing.

Many programs will not require a full 32K of space, and unneeded pages
will be READ/WRITE protected as illustrated in the user Map given in
Figure 6-3, configuration 3.

VI-7

DESCRIBED BY
SYSTEM MAP

SYSTEM

SAM EXTENSION

SAM

SYSTEM

TABLE AREA II

SYSTEM DRIVER
AREA

BG COMMON

I
I
lw

J_

I
lw
I
I

I
I
I
,w
I
I

T

'w I
I
I
lw
I

_1

I
t-------------1

RT COMMON 1 W
~-------------,

SSGA I

DRIVER PARTITION

SAM ._,.. ____________
TABLE AREA I

SYSTEM BASE PAGE

(1)
!::. PAGE BO UN DARI ES
W WRITE PROTECT

MEMORY RESIDENT

MEMORY RESIDENT
PROGRAMS

1
MEMORY I

RESIDENT LIBRARY I W

T
I

TABLE AREA II lw
I

J_

I
SYSTEM DRIVER lw

AREA I
I

BG COMMON ._,.. _____________
RT COMMON

~-------------
SSGA

DRIVER PARTITION

SAM
!------------- -

TABLE AREA I

MEMORY RESIDENT
BASE PAGE

(2)

0 MEMORY PROTECT FENCE SETTINGS

THREE POSSIBLE CONFIGURATIONS DESCRIBED
BY USER MAP

0

0

!::.

0
""O

::!
0
z
)>
r

t..

~1 :;;
c
en
m

0 06

RT AND BG
DISC RESIDENT

REAL-TIME (TYPE 2)
AND BACKGROJJND (TYPE 3)

DISC RESIDENT
PROGRAMS

T

TABLE AREA II
I
1W
l
I

SYSTEM DRIVER lw
AREA I

I
BG COMMON

r-------------
RT COMMON !--------------

SSGA

DRIVER PARTITION

SAM
I- - - - --------

TABLE AREA I

DISC RESIDENT
BASE PAGE

(3)

0

LARGE BG
DISC RESIDENT

LARGE
BACKGROUND(TYPE4)

DISC RESIDENT
PROGRAMS

BG COMMON
~------- - ---

RT COMMON !--------------
SSGA

DRIVER PARTITION

SAM
-- - -- --------

TABLE AREA I

DISC RESIDENT
BASE PAGE

(4)

Figure 6-3. RTE-IV 32K WORD LOGICAL MEMORY CONFIGURATIONS

: } i
0 0

MEMORY MANAGEMENT

6-5. BASE PAGE

The system area, memory resident program area and each disc resident
program have their own logical base pages, as follows:

a. The system base page contains the system communication area,
system links, driver links, SSGA links, table area links and trap
cells for interrupt processing.

b. The disc resident program base page contains the system
communication area, driver links, SSGA links, table area links and
disc resident program links.

c. The memory resident base page has the memory resident program
1 inks, resident 1 i brary links, System Communication area, table
area links, SSGA links, and driver links.

The Base Page Communications area (see Appendix B), driver linKs, SSGA
and table area links located in physical page 0 will be common to all
base pages. Base page structures are illustrated in in Figure 6-4.

1rhe 13ase Page Fence (refer to the 21MX and 21MX E-series Operating and
Reference Manual) is automatically set by the system for all user oase
pages so that the bottom portion of the base page will contain the
user program links.

SYSTEM'S PHYSICAL

BASE PAGE (PAGE 0)

SYSTEM

COMMUNICATION

DRIVER/SSGA,

TABLE AREA LINKS

SYSTEM LIN KS

1/0 TRAP CELLS

Figure 6-4. Base Page Structure

UNMAPP~
PORTIONV

USER LOGICAL

BASE PAGE

SYSTEM

COMMUNICATION

DRIVER/SSGA,

TABLE AREA LINKS

USER BASE PAGE

KMAPPED
PORTION

USER PROGRAM'S

PHYSICAL BASE PAGE

COPY OF THE
USER MAP

(32 WORDS)

RESERVED

USER BASE PAGE

VI-9

MEMORY .MANAGE.MEN'I'

6-6. COMMO~ AREAS

rn1e real-time and bacKground COMMON, along with Subsystem Global Area
occupy a contiguous area in ~emery and are treated as a single group
for mapping purposes {refer to Figure 6-2). The use of COMMON is
optional on a program basis~ that is, any program may use real-time
COMMON, background COM.MON or no COMMON. If the program declares COMMON
and the user chooses not to use local COMMON, both COMMON areas and
the Subsystem Global Area will be included in the User Map. If the
Type 4 program does not use COMMON it is not included in the User Map,
thereby possibly {if SSGA, COMi10N is not empty) providing the user a
larger program area in the 32K of logical address space.

REAL-TIME AND BACKGROUND COMMON. If a program declares at least one
word of COMMON, the use of real- time or background COMMON is selected
by program type {at generation) or parameters with the on-line loader.
Program types are summarized in Appendix E. Note that the memory
protect fence protects areas below the selected COMMON.

These system COMMON areas are not to oe confused with tne local COMMON
area that may be specified for programs loaded on-line. The system
COMMON areas are sharable by programs operating in different
partitions, whereas the local COMMON area is appended to the program
{i.e., it will be in its partition) and is accessible only to that
program, its subroutines and segments.

SUBSYS'l1EtliJ. GLOBAL AREA. ·rhe Subsystem Global Area consists of all 1rype
30 modules input to the generator. Accessed by entry point (using EXT
statements) rather than COMMON declarations, SSGA provides multiple
communication and buffer areas for Hewlett-Packard subsystems. SSGA
access is authorized by program type at generation or through special
parameters during on-line loading. Programs authorized for SSGA access
have the COMMON area included in their maps and have the memory
protect fence set below SSGA.

6-7. MEMORY PRO'rEC'rION

Memory protection between disc resident program partitions and between
disc and memory resident programs is provided by the Dynamic Mapping
System. Protection between the program and the operating system is
handled by memory protect. A program cannot access a page not included
in its logical memory, either directly or through a OMA transfer.
Since many programs do not use all of the possible 32K word logical
area, unused logical pages above the program are READ/WRITE protected1
it is possible for a user to read from system logical memory via
cross-map reads but the system is write protected.

A different form of protection is required for the driver partition,
Table Area I, and (optionally) System Driver Area, Table Area II, and
COMMON. The memory protect fence provides this protection by
preventing stores and jumps to locations below a specified address.
All possible fence positions are illustrated in Figure 6-3.

VI-10

MEMORY MANAGEMEN'r

The memory protect fence applies to the logical address space where
aadresses are compared to the fence before translation. If a disc
resident program does not use any of the COMMON areas, tne memory
protect fence is set at the bottom of the program area. Similarly, for
a memory resident program not using COMMON, the memory protect fence
is set at the base of the entire memory resident area.

For programs using COMMON, all of logical memory including COMMON is
mapped and the fence is set at one of three possible locations,
depending on the portion of COMMON being used. A hierarchy of
protection is thereby established within COMMON due to their physical
locations. Background COMMON is the least protected (any program using
any common can modify it) and SSGA is the most protected (only
programs authorized for SSGA access can modify it). Figure 6-5 expands
the COMMON area and shows these three fence settings as a, b, and c
re spec ti ve ly.

t--- - - ----;-+-- PAGE BOUNDARY

@
BG COMMON

HIGHER PHYSICAL

®
RT COMMON MEMORY

SSGA

0 PAGE BOUNDARY

Figure 6-5. Memory Protect Fence Locations for Programs using COMMON

VI-11

MEMORY MANAGEMENT

6-8. PARTITIONS

Partitions are blocks of physical memory that are reserved for disc
resident programs. Program partitions are defined during system
generation and ordinarily are not changed. However the partitions may
be redefined during the reconfiguration process at system boot-up (see
Section XI I) •

The number of partitions depends on the amount of available physical
memory. Partition types can be specified as a mixture of real-time and
background, all real-time, or all background. A program can Qe
assigned at load time to run in any partition large enough to
accommodate it. Several programs can be assigned to the same
partition, but only one program can run in that partition at a time.
If a program is not assigned to a partition, then by default,
real-time programs will run in real-time partitions, background
programs in background partitions, and EMA programs will run in Mother
partitions. If only one type of partition is defined, all programs
will run in that type partition.

6-9. PARTITION LISTS

The system generator links all partitions into one of three free
lists: BG, RT or mother partitions. During system initialization,if
one of the free lists is empty, it is substituted by one of the other
non-empty lists. For example, if no RT partitions were generated into
a system, RT programs will be dispatched in BG partitions by default.

6-10. PARTITION ASSIGNMEN'f AND RESERVATION

Disc resident programs may be assigned to specific partitions during
system generation, memory reconfiguration at system boot-up, or during
on-line program relocation. A program may be unassigned or reassigned
via an AS operator command.

A program assigned to a specific partition may only be dispatched to
that partition. Program contention for a partition may be minimized by
careful assignment of programs to partitions, especially if the
partitions are reserved. A reserved partition may be used only to
dispatch programs that are assigned to the partition. Programs not
assigned to the reserved partition will not be able to use it as a
default, even if no other partitions are available. A partition's
reserved status may be removed by the UR operator command.

A disc resident program may be assigned to any partition large enough
to accomodate it, regardless of type. For example, an RT program may
be assigned to a BG partition even though both RT and BG partitions
are available. Although this type of assignment is not recommended
because of potential partition contention, it may be necessary when
there are no partitions of sufficient size within the same partition
type as the program.

VI-12

MEMORY MANAGEMENT

6-11. MOTHER PARTITIONS

Mother partitions are large partitions that may be defined for
executing large programs or EMA programs. When a mother partition is
not in use, the memory may be used by programs executing in the
subp ar ti tions chained to the mother (see 11 Subpar ti tions 11 below) • EMA
programs that are not assigned to a partition use the largest mother
partition by default.

When an EMA program needs to run in a mother partition or when an RT
or BG program is assigned to a mother partition, more handling is
involved than is the case with RT or BG partitions. If a mother
partition is available in the free list, each subpartition is checked.
If all subpartitions are either free or occupied by swappable
p(ograms, the subpartitions are marked as being used for a mother
partition and all the programs in the subpartitions are swapped out.
'rhe subpartitions are then removed from all partition free lists. Note
that the swapped-out programs may go back into any other partition
large enough to accept them.

It is now apparent that when a mother partition is required and its
subpartitions are in use, there may be a delay before the program can
be dispatched in the mother partition. A subpartition cannot be made
available by swapping if any one of the subpartitions has a
memory-locked program, contains a program that is performing I/0 in
its own area, or contains a scheduled program of higher priority.
There may be additional delay when the mother partition is checked (if
not assigned to a specific one) or until the program in the
subpartition becomes swappable.

If a mother partition is needed to dispatch a program and the
partition is already allocated, the current occupant must be swapped
out if the occupant's priority and status permit it. If the program to
be swapped out is an EMA program, the program's code and E:Ml\ data must
both be swapped. The EMA area is swapped out in large blocks equal in
size to the maximum logical address space in the User Map (up to a
maximum of 28K words). Each block is mapped and written to the swap
tracks on the disc until all of the EMA area is swapped. Because of
the many disc accesses that may be needed to swap out an EMA program,
caution should be exercised when assigning ANY program to a mother
par ti ti on.

6-12. SUBPARTITIONS

Subpartitions are not available for dispatching programs when the
mother partition is in use (chain mode is in effect) by an active
program. When a program in a mother partition terminates normally or
is aborted, the subpartitions are released from chain mode and again
become available. The mother partition occupant is swapped only under
the following conditions:

VI-13

MEMORY MANAGEMENT

1. The occupant is swappable and another program needs the same
mother partition.

2. rr·he occupant is dormant (terminated with the save-resources
option, operator-suspended or serially reuasable), and a
subpartition is needed for another program.

3. A higher-priority program is assigned to a subpartition and the
mother partition occupant is in a swappable state.

when an R1r or BG program is scheduled and is not assigned to a
partition, a search is made for a partition of the same type that is
large enough to accomodate the program. If none can be found in the
free list, dormant list, nor in the allocated list (or it contains
non-swappable programs), then the dormant mother partition list will
be searched for one with a subpartition of the correct type and size.
If a suitable subpartition can be found, the dormant program in the
mother partition will be swapped out.

6-13. EXTENDED MEMORY AREA

The Extended Memory Area (EMA) is a large area of memory within a
partition, limited only by the size of the physical memory. An EMA can
extend well beyond a program's maximum logical addressable space. A
section of the EMA must be included within the program's logical
address space before data within that section can be addressed.
Because an EMA area is in a program's partition, it is not accessible
by other programs (EMA is not shared between programs). 'rhe maximum
number of pages of the EMA that can be included in the logical address
space is called the mapping segment (MSEG) •

The philosophy behind the mapping segment function is quite similar to
page faulting in a virtual memory system. If an EMA element needs to
be accessed and is not within the currently mapped mapping segment, a
fault occurs and the appropriate segment of the EMA contatning the
element is mapped into the program's logical address space. This
mapping is very fast since no disc swaps are required. The entire EMA
is divided into sections of the length of MSEG. They are numbered
sequentially starting from O. Mapping segments are then referred to by
using these mapping segment numbers. When a program is first
dispatched, none of the EMA is mapped in the user's logical address
space until a call is made to .EMAP, .EMIO or MMAP.

System library routines .EMAP and .EMIO
location of the element within the EMA
appropriate pages.

can be used to determine the
to be accessed and to map the

The .EMAP routine is used to resolve the address of an element in an
array. .EMAP insures that the referenced element is mapped into the
current logical address space and returns its logical address.

VI-14

MEMORY MANAGEMENT

The .EMIO routine is used to access a buffer within the EMA and also
ensure that the entire buffer will be included in the logical address
at one time. This buffer must be of the same length or smaller than
the mapping segment size. The EMAST routine in the system library may
be used to determine the standard MSEG size and EMA size for default
EMA •

• EMIO checks to see if the upper and lower bounds of the buffer are
completely included within a standard mapping segment. If so, .EMIO
maps the appropriate MSEG into the program's logical address space. If
the bounds of this buffer do not fit completely within a standard
mapping segment, .EMIO will then map in the necessary pages to ~nclude
the entire buffer. A flag is set to indicate that a standard mapping
segment is not in the current MSEG.

The MMAP routine, with the help of EMAS'r, can be used independently to
do MSEG mapping. This may be needed if the array handling procedure
for a given application differs from the array handling tools provided
by .EMAP and .EMIO. (See the .EMAP, .EMIG, MMAP and EMAS'I1 subroutine
description at the end of this section for more detailed information.)

Figure 6-6 illustrates the structure of Etv!A.'s and tviSEG's.

VI-15

MEMORY MANAGEMENT

PROGRAM'S
PARTITION

VI-16

EMA

~ -

MSEG #3

MSEG #2

MSEG #1

MSEG #0

- - --

PROGRAM

"' ' '\ '\
'\

~
'\

'\

' '\ '\ '\ '\ '\

' .. ' \ El
' : t

} MSEG '\
'\

...
..

11(

--

. .
D . .
D
D . . .

PROGRAM
AREA

PROGRAMS
LOGICAL
ADDRESS
SPACE

L DMS REGISTERS FDR USER MAP

Figure 6-6. EMA and MSEG Structure

MEMORY .MANAGEMENT

One extra page above the MSEG size is always mapped. This allows for
overflow of elements containing more than one word per element, and
for overflow of records for the formatter beyond the last page of the
r'1S EG.

Only one extended memory area is allowed to be defined per program. An
EMA is declared in an Assembly Language program by using the pseudo
instruction:

label EMA ml ,m2

where label is the E~~ label and must be defined, ml is the·EMA size
in pages,· and m2 is the mapping segment size in pages. rrhe EMA size
can vary fr om 0 to 10 23 pages. The MSEG size must be less than J2
pages. 1rhe default case on either EMA size, MSEG size or both, can be
taken by specifying 0 as their values. If a default is taken on the
MSEG size, its size is determined at load time as the program's
maximum logical address space - the program size-1. The EMA size is
determined at the time of the first dispatch as the program's
partitions size minus program size. EMA or MSEG size can be modified
on-line only if the default was taken.

An E.MA may be .further subdivided into more than one data array. 'l'his
is accomplished through use of optional offset parameters supplied in
assembly language programs to the .EMAP and .EMIO routines. ·rhe offset
is defined as the number of words from the start of tne Extended
Memory Area to the start of the particular array, and consists of a
positive value that is 20 bits wide and is contained in two successive
memory locations. The general memory structure for multiple data
arrays is illustrated in Figure 6-7.

VI-17

I
I
I
I
I
I
I
I
I
I
I

EMA
I
I
I
I
I

Program I
Partition I

I
I
v

v

- - -+----------------------------+----
M I I A
s I I R
E I I R
G I I A
3 I I 'i.

-I - - - - - - - - - - - - - I 2
M 1---
S I I A

E I I R I
G I I R I
2 I I A 0 ff set 2

- - -I - - - - - - - - - - - - - I Y I
M I I 1 I
s !----------------------------!----------- I
E I I A I
G I I R I
1 I I R I

-I - - - - - - - - - - - - - I A Offset 1 I
M I I Y I I
s I 0 I I
E I I
G I I
0 v v

- - - - - - - - - - - - - - - - +-----------------
-- Page Boundary

user

Program

+----------------------------+

Figure 6-7. Multiple Data Arrays Organization

Locations within an EMA cannot be accessed using the EMA label with an
offset, nor can EMA labels be referenced indirectly. External routines
and segments can use EMA by declaring EMA as an external. For further
information on using EMA as a pseudo-instruction, see the RrE IV
Assembler Reference Manual.

VI-18

MEMORY ~~NAGEMENT

Since EMA's can extend well beyond a program's 32K logical address
space, they snould be managed by defining several dimensions over
them. The .EJYIAP or .EMIO routnes can then be used to resolve the
address of a specified element by using subscripts for each dimension,
thus making the array addressing and mapping procedures transparent to
the user.

Standard FORTRAN I/O and array accesses using subscripts are handled
without any special user action. In FORTRAN, EMA's are used like any
other array. Refer to the RrE FORfRAN IV Reference Manual for further
in format ion.

A segmented program may use EMA. This allows many separate operations
to be performed on the same EMA; e.g., one segment reads the data, a
second processes the data, and a third saves the results.

6-14. MEMORY MANAGEMENT SUBROUTINES

Pour subroutines implement the Extended Memory Area (EMA) capability
in the R'rE-IV Operating System. These are: .E.MAP, .EMIO, MMAP, and
EMAST. Although the software versions of these subroutines are
actually part of the system library described in Section X of this
manual, they are described here because they are an integral part of
memory management.

Firmware versions of .EMAP, .EMIO, and MMAP exist for use on the
21MX-E series computer. The firmware version of .EMAP operates
slightly differently than the software version, as described in the
following discussion of .EMAP.

6-15 •• ElvtAP SUBROUTINE (Resolves Array Element Addresses)

The .EMAP subroutine resolves an address for an element in both EMA
and non-EMA arrays. .EMAP returns the address of the referenced
element in the current logical address space.

'rhe software version of • EMAP calls on MMAP (if necessary) to map the
appropriate mapping segment into the logical address space of the user
program. The firmware version of .EMAP always maps two pages into the
logical address space of the program, the first of which contains the
referenced element.

+---+
I CAU'rION I
I I
I rrhe firmware version of .EMAP maps in the page containing the I
I element and the following page (if the following page is in the EMA I
I area). Therefore, a call to the firmware version of .EMAP will not I
I ensure that an entire MSEG is mapped •• EMIO can be used to ensure I
I this if necessary. I
+---+

VI-19

ME~ORY MANAGEMENT

The calling sequence is:

EXT • EMAP
JSB • Ett.il\P
DEF R'l'L'J
DEF ARRAY
DEF 'fABLE
DEF' An
DEF An-1

DEF A2
DEF Al

R'ri.-J error return
normal return

address of the start of the array
address of table containing array paramete~s
address of nth subscript value
address of (n-1) subscript value

address of 2nd subscript value
address of 1st subscript value

ERROR RETURN On an error return, the A-register equals 15 (ASCII) and
and the a-register equals EM (ASCII). If the relocatable library
subroutine ERRO is called to handle the error, the following message
will be displayed on the console:

name 15-EM @ address

where name is the name of the program executing when the error
occurred, and address is the address from which ERRO was called •

• EMAP maKes an error return under any of the following conditions:

* one of the subscript values is less than the lower bound of its
dimension.

* the size of a dimension d(i) is negative.

* the number of words per element is specified as negative.

* the double precision offset is specified as negative.

* the number of dimensions is specified as negative.

* the element address for an EMA variable does not fall within the
Extended Memory Area bounds.

* for a non-EMA array, the displacement is larger than 32767
words.

NORMAL RETURN On a
l~ical address of
meaning less.

VI-20

normal return, the a-register contains the
the element referenced. The A-register is

MEMORY NANAGEMENT

ARRAY is the starting address of the array in which the element
address is to be resolved. If EMA is declared in the calling program
and the element address specified is greater than or equal to the
logical start address of EMA, the array is assumed to be an E~~ array.
In this case, the start address actually used by .EMAP is the logical
start address of EMA.

TABLE is a table of array parameters containing the number of
dimensions in the array; the negative of the lower bounds for every
dimension; the number of elements in every dimension (upper
bound-lower bound+ l); and the number of words per element.

For EMA arrays only, a two-word offset value is required at the end of
the table. '!'he use of this off set enables several arrays to be defined
in the same EMA by allowing the array origin to be hiqher than the
logical start of the EMA. The offset is a double precision integer
value with the low 16 bits (bits 15-0) in offset word 1 and the high
16 bits (bits 31-16) in word 2. This value must be positive.

The lower bound must be between -32767 and +32767.

The number of words per element must be between 1 and 1024.

The content and structure of TABLE is as follows:

where:

Number of Dimensions
-L (n)
d(n-1)
-L(n-1)
d(n-2)

-L (2)
d(l)
-L(l)
number of words per element
offset word 1 (bits 15-0)
offset word 2 (bits 31-16)

(used for EMA only)
(used for E~~ only)

L(i) is the lower bound of the ith dimension.

d(i) is the number of elements in the ith dimension.

The .EM.AP subroutine assumes the array is stored in column-major order
(the left subscript varies the quickest).

VI-21

MEMORY MANAGEMEN'r

6-16. • EMIO SUBROUTINE (EMA I/O)

.EMIO is a subroutine used only in an EMA environment to ensure that a
buffer to be accessed is entirely within the logical address space of
the program. It will call MMAP (if appropriate) to alter the logical
address space to contain the Duffer, or if this is impossible it will
return with an error •

• EMIO first checks whether the buffer fits in a standard mapping
segment. If so, the standard ma9ping segment is mapped into the
logical address space and .EMIO returns the logical address of the
start of the buffer. If the buffer does not fall within a standard
mapping segment, then .EMIO alters the mapping segment boundaries to
contain the buffer.

The number of pages mapped in this special mapping segment is normally
equal to the number of pages in the standard mapping segment. When
this mapping segment starts within an MSEG size from the end of the
EMA, all those pages up to the end of the EMA are mapped. The rest of
the pages are read-write protected.

The buffer length plus the offset between the start of the buffer and
its page boundary must be less than or equal to the mapping segment
size. To ensure this, it is recommended that the buffer length be less
than or equal to (MSEG size - 1) pages •

• EMIO maps the special mapping segment if necessary and returns with
the logical address of the start of the buffer.

The calling sequence is:

EXT .EMIO
JSB .EMIO
DEF RTN
DEF BUFL
DEF 'rABLE
DEF An
DEF An-1

DEF A2
DEF Al

ffrN error return
normal return

where:

address for error-return
number of words in the buffer
table containing array parameters
subscript value for nth dimension
subscript value for (n-l)st dimension

subscript value for 2nd dimension
subscript value for 1st dimension

TABLE is as defined in .E~~P description

VI-22

MEMORY MANAGEMENT

ERROR RETURN .EMIO makes an error return at location RTN with the
A-register containing 16 (ASCII) and the B-register containing EM
ASCII). If the relocatable subroutine ERRO is called to handle the
error, the following message is displayed on the console:

name 16-EM @ address

where name is the name of the program and address is the location from
which ERRO was called •

• EMIO makes an error return under any of the following conditions:

1. One of the subscript values is less than the lower bound of its
dimension.

2. The size of a dimension d (i) is negative.

3. The number of words per element is negative.

4. The double precision off set word is negative.

s. 'I1he number of dimensions is negative.

6. The buffer length is negative.

7. An EMA is not declared in the calling program.

8. The buffer length plus the page offset of the start of the buffer
is greater than the mapping segment size.

9. '£he entire buffer does not fall within EMA bounds.

NORMAL RETURN When .EMIO
contains the logical address
A-register are meaningless.

makes
of

a normal return, the B-register
the element. The contents of the

6-17. MMAP SUBP.OU'I'INE (Maps Physical Memory Into Logical Memory)

MMAP is a subroutine that maps a sequence of physical pages into the
mapping segment area of the logical address space of a pro9r am. It is
callable from both Assembly Language and FORTRAN programs.

rrhe Assembly Language calling sequence is:

EXT MI.VI.AP
JSB .MMAP
DEF R'l1N
DEF IPGS

DEF NPGS
R11 N return point

Page displacement fr om the start of Et-~A to the
start of the segment to be mapped.

Number of pages to be mapped.

VI-23

MEMORY MANAGE.M.EN'l'

The R'rE FOR'I'RAN IV callling sequence is:

CALL MMAP (IPGS ,NPGS)

Upon return:

A-register = 0 if normal return
= -1 if an error occurred.

MMAP returns an error under any of the following conditions:

1. IPGS or NPGS is negative.

2. NPGS is greater than MSEG size.

3. All NPGS to be mapped do not fall witnin E~A bounds.

4. EMA was not declared in the calling program.

5. IPGS is greater than or equal to EMA size.

If NPGS is less than the standard mapping segment size, the number of
pages actually mapped will normally be equal to the standard mapping
segment size. The number of pages mapped will be less than this if the
starting page of the segment to be mapped lies within an MSEG size of
the end of E~~. In this case, the number of pages mapped will include
all pages from the starting page to the end of EMA.

MMAP maps one more page than the size of the mapping segment if the
end of the EMA is not reached. This is done to prevent dynamic mapping
system (OMS) errors in case a multiple word element or a buffer for an
I/O transfer crosses the end of the last mapping segment page.

6-18. Ei•lASrr SU3ROUTINE (Returns Inf or ma tion on E!V'.A)

EMAS'I' is a subroutine that returns information
memory area (E.MA) of the calling program. It
Assembly Language and FORTRAN programs.

The Assembly Language calling sequence is:

Exrr EM.A S'I1

JSB EM.AS'l1
DEF R'rN
DEF NEMA (returned) 'rota! size of EMA

about the extended
is callable from

DEF NMSEG (returned) Total size of mapping segment (MSEG)
DEF IMSEG (returned) Starting logical page MSEG

R'rN return point

VI-24

MEMORY t-/ANAGEMENT

The RTE FORTRAN IV calling sequence is:

CALL EMASrr (NEMA,NMSEG, IMSEG) •

Upon return:

A-register = 0 if normal return
= -1 if error occurred

An error return is made if an EMA is not defined in the callinq program.

VI-25

+--+---------------------+ I I I
I RELOCATING LOADER I SECTION VII I
I I I
+--+

7-1. RTE RELOCATING LOADER

The Relocating Loader (LOADR) reads relocatable code from any input
device or FMP file, and produces an absolute load module that is ready
for execution. The loader automatically sets up the linkage between
the program and any required library files. That is, the user does
not have to specify library searches during the load process. The
program may be relocated as a background disc resident program,
foreground disc disc resident program or optionally have a debug
routine appended.

In addition to its linking functions, the LOADR's command parameter
options may also be used to list program names and blank ID segments,
purge permanent programs from the system and add or replace permanent
programs.

The Relocating Loader has the following features:

* Can be operated under control of the File Manager in batch mode.

* Is swappable and can be operated in either real-time or background
disc-resident areas.

* Allavs programs declaring COMMON to reference either a system
COMMON area (shared with other programs) or a local COMMON area
(not shared with other programs).

* Can relocate programs from relocatable files (Type 5 files).

* Can scan and relocate from user library files.

* Allows a program to be permanently added or deleted from the
system. Only the loader can be used to purge a permanent program.
(The OF, name, 8 command will not remove a permanent program from
the system.)

* Can read LOADR commands from a command file to control the loa.d
* process. Allows temporary loads into either the real-time or

background area for execution with an optional debug routine.

* Allows a program to reference absolute and code replacement type
ENT macros.

* uses system area disc tracks left vacant by deleted programs.

VII-1

RELOCATING LOADER

* uses a short ID segment when loading a background program segment
(when available; see "On-Line Modification below).

7-2. RU,LOADR COMMAND OPTIONS

Parameter options are available in the RU,LOADR statement that permit
user specification of the following items:

1. Command file name.

2. File or the logical unit number of the input device for
relocatable code.

3. File or the Logical Unit number of the list destination.

4. An operation code that allows Subsystem Global Area (SSGA) flag ·
access together with COMMON type and program type.

5. A program format code that includes temporary loads with DBUGR
features.

6. Listing characteristics.

A detailed description of the RU,LOADR statement is given under Loader
operation in this section.

At load time, the user need not know the actual address of the
partition in which the program will run because each partition appears
to be within the first 32K words of memory. The location at which a
program area appears to begin is a logical address, and the program is
relocated with respect to this logical address. Logical memory address
space configurations are illustrated in Section VI, Figure 6-3. It is
not nec.essary to dee lar e the partition number that a program will
execute in, since a program will run in any partition large enough to
accornodate it.

7-3. PROGRAM RELOCATION

During loading, programs are relocated to start at the beginning of
the disc-resident program area of logical memory. If COMMON is
declared, the program will be preceded. by the COMMON area. The logical
address of the ~rogram location always begins at a page boundary. The
first two words of the program location are allocated for saving the
contents of the X and Y registers whenever the program is suspended.
Once relocated, the program is linked to external references such as
EXEC or the Relocatable Library.

Any program segments will overlay the memory area immediately
following the main program and its subroutines.

VII-2

RELOCATING LOADER

The loader stores the absolute version of the program, its subroutines
and linkages on a disc track or a group of contiguous disc tracks and
then assigns the disc tracks to the system.

The program, together with its subroutines and its largest segment,
may be as large as the largest partition of the same type. If a
program is assigned to a partition, it must not be larger than the
partition or an Ll7 error results (see Loader Error Messages). COMMON
may be allocated in one of several areas according to the needs of the
programmer (see the optional parameter list for the RU,LOADR request).

7-4. ON-LINE MODIFICATION

The operator can use the loader to permanently modify the set of disc
resident programs previously loaded during generation. The loader adds
new disc-resident real-time or background programs, and also replaces
dis~resident programs with updated versio~s having the same name. A
program to be replaced must have all the following conditions present:

* Must be dormant

* Not currently occupying a partition

* Not in the time list

* Have a zero point of suspension.

The OF,xxxxx,8 operator command deletes disc-resident programs or
segments that were loaded temporarily into the system by the loader.
The OF command cannot delete programs or segments that were
permanently added on-line using the loader, or stored during
generation using the On-Line Generator (RT4GN).

The on-Line Generator stores disc-resident programs on disc in an
absolute, packed format. Each main program is identified and located
~ a 33-word ID segment. The ID segments are stored in the ID segment
area of the system disc area and brought into main memory when the
system is started up. For disc-resident programs, the program's disc
location as well as its main memory and base page addresses are kept
in the ID segment. When a main program and segments are loaded, the
segments are identified and located by a nine-word short ID segment.
When a main program declares an External Memory Area, three-word ID
extension is allocated. See Appendix B for the ID segment and
extension format.

RT4GN can create a number of blank 33-word and 9-word ID segments so
that the loader can later add new programs and segments to the
permanent system. It can also create blank ID extensions. The addition
or replacement of a program involves the conversion of relocatable
programs into an absolute unit, finding space on the disc to store it,
and recording information in the ID segment.

VII-3

RELOCATING LOADER

The loader always attempts to use the short ID segment for identifying
a program segment. However, a standard 33-word ID segment is used if
short ID segment is not available.

A program declaring an EMA cannot be loaded if an ID extension does
not exist for the program.

When replacing a program, the new pr03ram may overlay the old
program's disc space only if the length of the new program (plus base
page linkages) does not exceed the disc space formerly occupied by the
previous program. A track or group of tracks is allocated for program
storage when adding a program or if space requirements of a
replacement program exceed those of the old. These newly allocated
tracks are software-protected but not hardware-protected. Memory
resident programs can neither be added nor replaced in the system.

When performing an on-line modification, the disc hardware protect
must be physically disabled prior to the loading (and then enabled
afterwards) unless the protection is always kept disabled. RTE
provides additional software protection for any tracks containing
system programs or user programs.

7-5. SEGMENTED PROGRAMS

Segmented modules can be added and replaced in any order provided that
the main program is always entered first. Permanent replacement of a
permanent program or main segment programs will not necessarily result
in the main and segments being stored on contiguous tracks.

When replacing segmented program modules, the operator must either
replace every segment with a new segment having the same name, or else
remove the original segments permanently from the system.

Note that a main and all its segments must be relocated at the same
time (see "Loading Segmented Programs" later in this section).

7-6. ·,.ADDING NEW PROGRAMS

A new program to be added to the system is stored on a complete d~sc
track or several contiguous tracks. A blank ID segment is allocated
to record the program's memory and disc boundaries, name, type,
priority, assigned partition, and time values. The loader attempts to
use available disc space in the system before allocating new full
tracks. If new tracks must be allocated, they are assigned to the
system and are software-protected.

VII-4

RELOCATING LOADER

7-7. PROGRAM REPLACEMENT

When replacing one program with another, the following sequence of
events take place as appropriate to the current conditions:

1. The new program is first relocated onto scratch disc tracks.

2. The new program will use the same ID segment as the old program
but will only use the same disc space if the length of the code
and base page does not exceed the old program size.

3. If the new program cannot be fitted into the disc area of the
replaced program, the loader then looks for another area of
appropriate size if one was previously freed by the user through
deleting a program incorporated during generation. In this case,
the deleted program's ID segment had its name blanked but its disc
space was retained. That disc spac~ is given to the new program.

4. If neither condition exists (items 2 and 3), the scratch tracks on
which the new program was generated become system protected and
the old ID segment is retained.

7-8. ADDITION OR REPLACEMENT LIMI'rA'I'IONS

Several limitations may prohibit the final addition or replacement of
disc-resident programs:

1. System or reverse COMMON is requested but the program's COMMON
length exceeds that of the COMMON area.

2. Local COMMON is requested and COMMON is not declared by the first
relocatable module encountered by the loader, even though the
module is a dummy module that contains no executable code.

3. The base page linkages exceed the corresponding linkage are for
disc-resident programs established by the system during
generation.

4. The length of the absolute program unit exceeds the area
available.

5. Disc space is not available to store the program.

6. A blank ID segment is not available for adding a program (program
previously loaded can be deleted to create a blank ID segment) or
its segments.

7. An ID extension is not available for adding a program with an EMA.

VII-5

RELOCATING LOADER

7-9. PROGRAM DELETION

A temporary program is deleted from the system with the OF,name,8
command. A permanent program (i.e., a program loaded during
generation, or on-line with the loader as a permanent addition or
replacement load) is deleted with the loader. When usini:3 the loader to
delete a permanent program, the opcode parameter is set to PU, which
blanks the program's ID segment and makes it available for loading
another program.

The tracks containing the program are released unless they are system
tracks. If the program had been saved through the File Manager on FMP
tracks, the tracks are not released to the system but remain as FMP
tracks.

Any time a temporary or permanent program is deleted from the system,
all its segments must also be deleted. ihis is required since
segments may have occupied tracks that were released by deleting the
ma in p ro19r am.

+--+
I I
I NOTE I
I I
I Only the LOADR may perform permanent loads or deletes. I
I Copies of LOADR may peform temporary loads but will be I
I aborted with an I006 error return if the attempt is I
I made to perform permanent loads or purges. I
I I
+--+

7-10. COMl~ON ALLOCATIONS

Tnree options can be specified wnen allocating a COMMON area for a
program:

SYS11 EM COMMON. This imf)lies a background pro9ram with COMMON in the
background system COMMON area, or a real-time program with COHMON in
the real-time COM.MON area. System COMMON is established when tt1e
system is generated.

LOCAL COMMON. rrhe local COMMON area for a program is estaolished at
the beginning of the background program's area. The COMMON area will
be swapped together with the program. It is necessary for the first
COM~ON allocation to be the largest declared. RTE FORTRAN IV named
COMrvlON is handled the same as local COMMON.

REVERSE COM.MON. This implies a background program with its COMMON in
the real-time COMMON area. Conversely, a real-time program can
reference and use the background system COMMON area. Reverse COMMON is
establishea when the system is generated.

VII-6

RELOCATING LOADER

7-11. PROGRAM TYPES

When a program is assembled or compiled, it may be assigned to a
program type that is kept in the NAM record. The type information is
used by the On-Line System Generator and, in some cases, by the
Relocating Loader. (Refer to the RTE-IV On-Line Generator Reference
Manual for information on program types handled by the generator.)

The Relocating Loader handles Type 6, 7, 8 and 14 modules as though
they were normal subroutines (Type 7) to be appended to the program
making reference to them. The loader SE command (see below) will
relocate these types of modules if an entry point in a module
satisfies a previous exzternal reference.

The loader opcodes corresponding to module's NAM types are as follows:

NAM Type LOADR Opcode

where NAM Types:

2, 3, 4 and 0

'rype 2 programs

Type 3 programs

Type 4 programs

2
3
4
0

RT
BG
LB
BG (default)

are main programs (NAM Type 5 is a program segment)

are real-time programs that are relocated with
access to Table Area II (see (3) of Figure 6-3,
Section VI) •

are background programs that are relocated with
access to ·rable Area II (see (3) of Figure 6-3,
Section VI).

are background programs that require a larger
logical address space for the program. A larger
address space can be acquired, since Table Area II
and the System Driver area are not included in the
program's address space.

Other information regarding program types is provided in Appendixes o
and F of this manual.

VII-7

RELOCATING LOADER

7-12. LOADER OPERATION

The loader is scheduled for execution with the RU or ON operator
command in the format

RU,LOADR,command[,input[,list[,opcode[,format[,partition
[,size]]]]]]

where:

command

input

list

VII-8

The command file structure must be used for loads when
more than one relocatable file is required. The <command>
parameter specifies:

1. A command file <namr>.

2. An interactive input device from which commands may be
entered. When commands are entered interactively on such
device, a /LOADR: prompt is displaced when the loader is
ready for a new command.

3. A non-interactive input device, such as a tape
cassette, from which commands may be entered. No prompt
is issued by the loader to solicit new commands.

If this and all other parameters are omitted, command
entry defaults to the Logical Unit number of the user's
terminal.

The file name of the relocatable main program or the
Logical Unit number of the relocatable input. There is no
default case.

List output device. The default setting is the Logical
Unit number specified in the <command> parameter. If the
<command> parameter is a file or is not interactive, the
default is Logical Unit 6. Refer to the <opcode>
parameter below for list options. 'I'he list device is
locked for the duration of the load if the LU is not
interactive and is not a file.

Alternately, a list file <namr> may be specified. The
listing will then go to a file. The file named must not
already exist. The loader must create the file. The one
exception to this is if the specified file name has an
apostrophe as its first character; for example:

name

In this case, the loader will create the file if it does
not exist, or simply open the file if it does exist.

opcode

RELOCATING LOADER

Mnemonic operation code. The parameter defines the
program type, COMMON type, and whether or not the program
requires the Subsystem Global Ar ea (SSGA). •ro determine
the operation code mnemonic, select one or more (or none)
from each of the following columns:

Program
Type

BG
R'r
LB

where:

BG = Background program
RT = Real-Time program

COMMON
'I1ype

SC
RC
NC
SS

LB = La r g e b ac kg r ou n d p rog r am
SC = System COMMON
RC = Reverse COMMON
NC = N 0 COMMON (or 1oca1 COMMON)

Load
Type

PE
TE
RP

SS = use Subsystem Global (SSGA). SS may also be
used with other elements in its same column.

PE = Permanent Program
TE = Temporary program
RP = Replace permanent program (do not also

specify PE).

The default setting is BGNCTE.

The elements of the selected mnemonic code may be
specified in any order with no intervening commas or
blanks. For example, PEBGSS will be interpreted the same
as SSBGPE, which specifies a background program using
Subsystem Global to be made a permanent program. One, two
or all three parameters may be specified.

VII-9

RELOCATING LOADER

format

partition

size

VII-10

Mnemonic format code. This actually is an extension of
the opcode that was filled. The parameter defines the
format for the program load operation. To determine the
format code, select one or none from each of the
following columns:

DEBUG
Append

DB

where:

List
Options

LE
NL

DB = append DBUGR subroutine to the program
LE = list entry points
NL = no listing desired

File
Scan

RS

RS = reverse scan. RS changes the order of loading for
segmented programs. The default is load segment,
rescan file and load system library routines.
However, when RS is specified, rescan of the file is
performed only if undefined external references
remain after a library search. Selection of this
option can significantly speed up segment loading.
See "Loading Segmented Programs" later in this
section.

Do not specify RS if a system library routine is to
be replaced by a user routine.

Format and opcode parameters may be intermixed and
intermingled in any order. For instance, SSBGRT will
relocated as a real-time program using SSGA. Note
that later specifications will override earlier
specifications.

The specific partition number in which program is to be
executed. If not specified, the program will execute in
any available partition of sufficient size. This is the
same as using the AS operator command.

Allows a logical address space larger than the program
size. Permits use of a dynamic buffer at the end of the
p roqr am for use as a data array, symbol table space,
etc., when the program requires such space. If the
pro<;Jram is an EMA program, the EMA area immediately
follows the dynamic buffer area.

RELOCATING LOADER

The <opcode> and <format> parameter mnemonics can intermingled in any
order. That is, .<opcode> mnemonics can be mixed with <format>
mnemonics, and vice versa. A comma must be included as a 9arameter
position marker if:

1. The character count within the parameter exceeds six, or

2. Subsequent parameters such as <partition> are to be specified.

The following examples show typical usage of the <opcode> and <format>
parameters:

*RU, LOADR,PROGl, , ,R'l'DBSS,NL

" "

I I 1------------ <format/opcode> parameter
I I 1----------- <opcode/format> parameter
I 1------------- <list output> parameter position
I 1----------- <input> parameter position
1----------- <command> parameter

*RU , LO AD R , , , , RP , , 7

I I 1--------------- <partition> parameter
I I 1------------ <format/opcode> parameter position
I 1---------- <opcode/format> parameter I 1----------- <list output> parameter position I 1------------ <input> parameter position 1---------- <command> parameter position

If a track allocation cannot be made for a relocation, the loader
displays the message WAI'rING FOR DISC SPACE. rrhe loader repeats the
disc request and is suspended until space becomes available.

F o 11 ow i ng the r e 1 oc at ion of a p r og r am th a t has i ts ex t e r n a 1 r e fer e n ce s
satisfied, the loader terminates with one of the following messages:

ww PAGES RELOCATED
or

xx PAGES REQ'D NO PAGES EMA NO PAGES MSEG

ww PAGES HELOCA'rED
or

xx PAGES HEQ'D 08.F AULT zz PAGES MSEG

ww PAGES REIJOCA 1I'ED
/LOADR name READY

xx PAGES REQ· 'D yy PAGES EMA zz PAGES HSEG

/LOADR:$END

where:

ww = the number of pages occupied by the relocated code
(i n c 1 u d es ba s e p ag e.

xx = size in pages of the partition required by the program

VI I-11

RELOCATING LOADEF

yy = the EMA size in pages (for EMA programs only)

zz =the MSEG size in pages (for EMA programs only)

name = name of main program. The loader terminates and the program is
ready to run.

If a new program is loaded bearing the same name as a main program
already defined in the system, the following message is displayed:

DUPLICATE PROG NAME -<nnnnn>

where <nnnnn> is the duplicated program name. the loader automatically
attempts to create a unique program name by replacing the first two
characters of the new program's name with period characters (••). If
successful, the loading process continues and when completed, the ng
followimessages are displayed:

/LOADR: < •• nnn> READY
/LOADR: $END

where < •• nnn> is the modified program name.

If unsuccessful; that is, a program named < •• nnn> already exists, the
loader is aborted and the appropriate error message is displayed.

vv·nenever the loader completes a successful or unsuccessful load, it
returns five words of information about the load to the prograro that
schedul ed it, via the PRTN system subroutine. The returned
can be information accessed via RMPPJR. For example, when the loader
File Ma is run from the nager, FMGR picks up the information in
4P and parameters lP, 2P, 3P, SP (this is also the FMGR lOG). A
followi successful load gives the ng:

1P,2P,3P =program name

See the Batch-Spool Monitor Reference Manual for a description of global
parameters. If an unsuccessful load occured, the following information
would be returned:

lP, 2P, 3P = 0
4P = L-
5 P = loader error return

7-13. ADDI 1rIONAL OPCODE P P,RAMETERS

The loader's <opcode> parameter has two other uses. Entering LI or PU
?auses the loader to, respectively, list all currently active programs
in the system, or purge a permanent program. Opcodes LI and PU may be
used inthe interactive mode but may not be entered in batch mode or
from a command file.

The syntax for the list option is as follows:

VII-12

RELOCATING LOADER

RU,LOADR,,,lu,LI

In this case, a list of all active programs in the system is tted to
transmithe specified Logical Unit. 'l1he list will include the name,
programtype, priority, low and high main program addresses, low h Base
and higPage addresses, and partition number if the program is d to a
assignepartition. Each blank ID segment available for use by the is
loader noted by <long blank ID> or by <short blank ID> if the ID is a
segmentnine-word program segment ID segment.

It is printed as a table in the form:

NAME 1rYPE PRIORITY LO MAIN
PART' N

HI MAIN LO BP HI BP SIZE EMA MSEG

An alternate form of the request is:

RU I LOADF I I PROG I LUtt I LI

This will list all of the above information only for the program named
PROG.

If the opcode is PU, the message

/LOADR: PNAME?

is output on the assigned Logical Unit device. Entering a program name
following the prompt causes the loader to permanently purge the ced
referenprogram from the system. Enterinq a /A will prevent any
purge operation and terminate the loader.

The LI and PU opcodes may also be entered in the interactive mode but
may not be entered during program relocation. The PU command may not
entered be from a command file or under batch mode.

7-14. LOADING THE BINARY CODE

The RTE-IV loader will accept binary relocatable code from any FMP
on any file disc cartridge. The file <namr> of the main may be
the RUNincluded in statement. If all Segments and all subroutines are
file <nin the input amr>, then no further information is needed.
and subHowever, segments routines will frequently be in several files
system,throughout the and in this case, additional commands to the
The addLOADR are required. itional commands may be specified through a
interaccommand file, an tive or non-interactive Logical Unit. The file
specifi<namr> or LU is ed in the first loader RUN parameter.

In the interactive mode the loader prompt /LOADR: is issued:

/LOADR:

VII-13

RELOCATING LOADER

7-15. LOADER COMMAND FILE

The loader will load all relocatable input found in the file specified
by the RUN statement. However, subroutines or segments will often be
located in other files. In order to facilitate loading of a program
broken up in this manner, the loader will take input from a command
file. The command file syntax and meaning are described below. Note
that only the first two characters of any command are required unless
otherwise specified.

SEARCH

SEARCH,<namr>

Searches the system disc library for undefined
externals.

Searches the file <namr> for undefined externals.
Only the first two characters of this command need
be specified for a single-pass search of the named
file. If more than two characters are used in the
command; that is, SExxxxx,NAMR instead of SE,NAMR,
the file is searched multiple times to ensure that
backward references are satisfied. Tne SE,NAMR form
is faster but will not satisfy backward references.

RELOCATE,<narnr> Loads file <namr> as part of the program. The
<namr> specified may be a program, subroutine or
segment.

FORCE

DISPLAY

ECHO
(see footnote)

END

/A

VI I-14

Force loads a program and/or program segment.
Undefined externals will be ignored.

Causes a list of undefined exxternals to be printed
on the list device, or in the interactive mode, on
the interactive command device. Note that the
undefined externals listed are tnose referenced by
the module being loaded; that is, undefined
externals in the main of a segmented program will
not be listed if the current module being relocated
is a segment.

Causes the input commands from a file to be echoed
on the list device as they are encountered. This is
useful for debugging loader command files. The
command is ignored if the commands are coming from
an interactive device.

End of command input. Signals the loader to exit
the command mode and finish up the load. If
undefined externals exist at this time, an
automatic scan of the system library is performed.

Aborts the loader immediately. A clean termination
of the load operation is performed.

RELOCATING LOADER

Denotes a comment line when entered as the first
character of an entry line. The loader ignores the
entire line. Comments may also follow a command and
be in the same entry line as the command, providing
two commas appear in the line. For example:

SE,,SEARCH THE LIBRARY
RE, XTABS, LOAD PROGRAfJ} NAM~D XTABS
DI,,DISPLAY UNSATISFIED EXT REFS

AS,xx Assigns the relocated program to partition xx.
(see footnote)

sz, yy
(footnote)

LL,<namr>
(see footnote)

OP, <opcode>
(see footnote)

FM,<format>
(see footnote)

This command allows the user to request more memory
for the program than tthe actual program code
requires. The extra space is called dynamic buffer
area. YY is the number of the pages of memory for
the program and dynamic buffer area. For EMA
programs, the EMA area will immediately follow the
dynamic buffer area. Note that this dynamic buffer
area may be changed on-line for ,non-E:MA programs
with the sz operator command.

Specifies the list Logical Unit number or file
name. if the 1 is ting is to go to a f i 1 e. I f a f i 1 e
name is specified, the file must not already exist
unless its name begins with an apostrophe (').

Specifies an <opcode> parameter where <opcode> is
as defined previously. Note that opcodes LI or PU
are illegal in a file, but are legal in the
interactive mode.

Specifies a <format> parameter, where <format> is
as defined previously.

At the end of every segment load, main load, and at the end of a
command file, the system library is searched for undefined externals.
If undefined externals still exist and the commands come from a file,
then the undefined externals will be 1 isted and the loader will abort.

The loader prints the message:
UNDEFINED EX'rS

The external references are listed, one per line.

+--+
l FOOTNOTE: I
I Specification of these commands must precede specification of any I
I RELOCATE or SEARCH command. Otherwise, the control command will be I
I ignored if entered from an interactive device, or cause errors if I
I entered from a file. These commands may be entered either within the I
I RU command or from a command file. Note that RU command parameters I
I will be overridden by any commands subsequently entered from a I
I command file. I
+--+

VII-15

RELOCATING LOADER.

Note that during the load process, undefined externals are allowed in
the main of a segmented program because they might be satisfied in a
segment. When the user specified the end of the loading process, the
main is then checked for undefined externals. If undefined externals
exist, the following error message is issued:

MAINS
UNDEPINED EXT

and the loader will then abort unless the FORCE option is in effect.

The loader will not allow undefined externals in a segment because one
segment's entry points may not satisfy another segment's externals.
This is because only one segment may be in memory at a given time. The
DISPLAY command will list undefined externals. Note that the list
refers only to the main or current segment being loaded.

The abort may be prevented by the FORCE command. The FORCE command
will force load a program and/or program segment.

7-16. LOADING FROM A LOGICAL UNIT

Relocatable code from a Logical Unit can be accepted by the
RU,LOADR,,<lu> command or interactively with the RELOCATE,<lu>
command. If more than one tape is to be mounted for the load, the
interactive mode must be used and the RELOCATE,<lu> command reentered
for each tape.

7-17. LOADING SEGMENTED PROGRAMS

The loading of segmented programs requires special loader processing.
The loading speed of such programs can be increased if the load
process is understood and the suggestions given below are followed.
Generally, all the relocatable code will be in one file or several
files scattered throughout the system.

Assume the following program:

A program has three segments and seven subroutines located in one
file, as illustrated in Figure 7-1.

+---+
I I SISI IS I I I SISISISI
I I u I u I I u I I I u I u I u I u I
I Main I B I B I SEGl I B I SEG2 I SEG3 I B I B I B I B I
I I 1121 I 31 I 141516 I 71
+---+

Figure 7-1. Segmented Program Example

VI I-16

RELOCATING LOADER

The loader would relocate this program as follows:

1. Load MAIN program.

2. Load SUBl and then SUB2.

3. If there are undefined externals references, search entire file
for subroutines required by the M.AIN.

4. If any subroutines are loaded in Step 3, repeat Step 3 to satisfy
backward external references (i.e., assume SUB6 is loaded and it
references SUB3).

5. If there any undefined external references, search the system
library and relocatable library.

6. If there are still undefined externals, continue loading (they may
be satisfied by a segment).

7. Load SEGl.

8. Scan any subroutines following this segment
segment for undefined externals (i.e., SUB3)
necessary.

and before next
and load them if

9. If there are undefined externals, search the entire file for
referenced subroutines.

10. If any subroutines are loaded in Step 9, repeat Step 9 to satisfy
backward external references.

11. If there are undefined external references, search the system and
relocatable libraries.

12. If there are still undefined externals, abort the load.

13. Continue Steps 7 through 12 for each segment.

The loading sequence described above has several implications for the
user when preparing a segment load:

a. A subroutine called by many segments need only appear once in the
file.

b. Subroutines referenced in the MAIN are loaded with the MAIN and
are thus sharable by all segments. Subroutines loaded with the
MAIN are not loaded with segments.

c. Any subroutines located before the first segment are relocated
with the MAIN.

d. Any subroutines located after the first segment in a file are
loaded only with those segments that reference them.

VI I-17

RELOCATING LOADER

What the above basically implies is that subroutines may appear
anywhere in the file, even as a library concatenated at the end of a
file. This provides optimal loading in terms of program size, but does
not necessarily provide optimal loading speed. To optimize loading
speed, subroutines that are referenced by a segment should be located
directly behind that segment.

When a relocatable program is contained in several files, a command
file should be used to load the program. Typically, the MAIN program
would be in one file, each segment in a separate file, and perhaps a
file of subroutines that are referenced by some of the segments. The
command file for loading such a segmented program might consist of the
following:

File Resulting
Entry Command Ac ti on
----- _.,. _____ ------ --

a. RE,MAIN Relocates program named MAIN

b. SE ,LIBRY Searches library named LIB RY

c. HE ,S EGl Relocates segment named SEGl

d. SE,LIBRY Searches library named LIB RY

e. RE,SEG2 Relocates segment named SEG2

f. SE,LIBRY Searches library named LIBRY

When the loader encounters the command in file entry c, it recognizes
the program as segmented. Before SEGl is loaded, LOADR searches the
system and relocatable libraries for undefined external references.
Undefined externals are still permitted at this point, since they
might be satisfied in a segment.

VI I-18

RELOCATING LOADER

However, at file entry e, undefined externals remaining after the
system and relocatable libraries are searched will cause LOADR
execution to be aborted. This is because a segment may not satisfy an
undefined external reference through another segment. (The FORCE
option may be specified to force load the code and prevent an abort
condition.) Upon completion of the loading process, any remaining
undefined external references in the MAIN program would result in the
loader being aborted and display of the following messages:

/LOADR: MAINS
/LOADR: UNDEi"INED EXTERNALS
/LOADR: <list of MAIN program's undefined externals>

7-18. REDUCING SEGMENTED PROGRAM LOAD TIME

There are several ways to increase segmented program loading speed.
Those described below are suggestive only, and are not to be
considered as required procedures:

1. Place any referenced subroutine with the
This eliminates unecessary file scans in
that will be relocated with a segment.

segment that calls it.
search of a subroutine

2. Place subroutines into files in the sequence in which they are
called. That is, if SUBl calls SUB2, place SUBl in the file before
SUB2, etc. For example, assume these subroutines are in a library
file to be searched by the loader and that the loader is looking
for SUBl. Ideally, the loader would pick up SUBl and create SUB2
as an undefined external reference. The loader would then continue
the file search; if SUB2 was then encountered, it would be picked
up on the same pass. However, if SUB2 was located in front of
SUBl, an additional file search would then be necessary.

3. If all the relocatable code is within the same file, place the
subroutines in the sequence suggested in Item 2.

4. If several segments reference the same subroutine, place that
subroutine immediately following the MAIN program. Segments may
share subroutines that are loaded together with the MAIN program.

VII-19

RELOCATING LOADER

5. When all the relocatable program code is within the same file and
the file has been organized as described in Item 2, use the RS
operation code when the loader is scheduled. RS informs the loader
that all subroutines have been sequenced as suggested above, and
that the system and relocatable libraries are to be searched
before a file scan. That is, in the loading steps previously
described for the segmented program load example, Step 5 would be
placed between Steps 2 and 3, and Step 11 would be placed between
Steps 8 and 9. Another scan of the file will occur if undefined
external references remain following a scan of the system and
relocatable libraries.

Caution should be exercised in using the RS mnemonic, since it changes
the loading sequence so that the HP relocatable library is searched
before a scan of the file is made. It is therefore possible that a
relocatable library subroutine might be loaded instead of a user's
subroutine. However, this could only occur if the subroutine had the
same entry point name as a relocatable library routine (i.e., SIN,
TAN, ARCTAN, etc.) and if the user's subroutine was not included at
the end of the segment or main that called it.

7-19. DBUGR LIBRARY SUBROUTINE

DBUGR is a utility subroutine distributed with the RTE-IV operating
systems. It is appended to the end of a use.r's program by the loader
when the opcode parameter in the RO,LOADR command is DB. DBUGR allows
the user to debug a program by means of Trace, Break Point and other
features. Permanent loads are not allowed with DBUGH. A summary of
DBUGR commands, is given in Section XI of this manual. For a detailed
description of DBUGR commands, see the RTE-IV Debug Subroutine Manual.

7-20. LOADER ERROR REPORTING

All loader errors are reported to the list device. The list device may
be specifically declared in the ON or RU scheduling command, or
def a ul te d • Th e de fa u 1 t 1 i st de vice is spec if ie d u nd e r " LI s T = "
earlier in this section.

The error codes are displayed on the list device in the following
form:

/LOADR:<error code>

For some non-recoverable error conditions, LOADR aborts execution and
displays the error report as follows:

/LOADR:<error code>
/LOADR:LOADR ABORTED

VII-20

RELOCATING LOADER

At times, the user may wish to abort a load while the load is going on.
Entering a BR,LOADR command will cause the loader to abort a load and
perform a clean and orderly termination. This is greatly preferable to
using an OF,LOADR command during a load process, which may leave files
open.

For some error codes, the name of the program module and the entry
point name of the subroutine being relocated are displayed prior to
the error code display line, as follows:

/LOADR:<module name> /LOADR:<entry point name> /LOADR:<error code>

7-21. LOADER ERROR CODES

All loader error codes, their meaning and possible recovery action are
listed in Table 7-1 below. Note that the asterisks following some
diagnostics have the following meaning:

* = module name printed BEFORE diagnostic

** = entry point name printed AFTER module name

The asterisks would not actually appear in the displayed error code.
All error codes are prefixed by L- characters.

Note that numbered items in the "Recovery Action" column indicate
possible alternatives, as appropriate, rather than sequential steps.

VII-21

RELOCATING LOADER

Table 7-1. Loader Error Codes

+-------+---------------------------+---------------------------------+
I Error I Meaning I Recovery Action I
I Code I I I
I +---------------------------+---------------------------------+
I L- : I I
+-------+---------------------------+---------------------------------+

01*

0 2*

03*

04 *

I
I Checksum error. (Was it a
I relocatable file?)
I
I
I
I
I
I
I

Loader found an entry
that was not a NAM, ENT,
EXT, DBL, E~A or END
record. Did the compiler
emit bad records? was
it a relocatable file?

Program code and system
tables exceeded 32K or
user-specified max. size.
(Program size + MSEG size
is too large.)

BP linkage overflow. The
program requires more
BP links than system has.

05* Symbol table overflow.
(Loader does not have
enough room to relocate.)

06* COMMON block error (was
first COPJ.10N declaration
the largest?).

07* ** Duplicate entry points
encountered or two
subroutines with the same
name.

Specify correct relocatable file
or recompile. Give loader the
correct file.

Recompile. Give loader the
correct file.

1. Segment program (see Sect.8).
2. Do NOT specify a size; make
it a lype 4 program if possible.
3. Move data to E.MA area if
possible; otherwise, make
program smaller.

1. Rearrange subroutines.
2. Rearrange order of loading
modules.
3. Recode to decrease number of
references across page
boundaries.

1. use sz operator command to
expand size for loader.
2. use SE loader command to
reduce loader fix-up table size.
3. Break up code into subrs. in
separate files and use SE cmd
after relocating each file.

Make largest COMMON declaration
the first declaration the loader
encounters.

Remove one of the duplicate
routines or rename one.

+-------+---------------------------+---------------------------------+

VII-22

RELOCATING LOADER

Table 7-1. Loader Error Ccxles (continued)

+-------+---------------------------+---------------------------------+
I Error I Meaning I Recovery Action I
I Code I I I
I +---------------------------+---------------------------------+
I L- : I I
+-------+---------------------------+---------------------------------+
I 08
I
I
I
I
I
I
I
I 09*
I
I
I
I
I 10
I
I
I
I

11

14*

16

17

18

No transfer address (only
subroutines were loaded;
no main was found).

Record out of sequence
(Probably attempted to
relocate from improperly
positioned tape.)

Illegal parameter in RU
statement or in statement
prior to a RELOCATE
statement.

Attempted to replace a
memory resident program
with a program having the
same name.

Assembler produced illegal
relocatable module. A DBL
record was produced that
referred to an undefined
external; i.e., it should
have been found in the
program's symbol table
but was not.

Illegal partition number
or corrupt map table.
Partition specified does
exist or is down due to a
parity error.

I
I
I

1. If program was written in
Assembly Language, put a label
on the END statement. The label
is where the program starts.
2. If program was written in
FORTRAN, relocate the module
with the 'PROGRAM' statement.

Rewind tape and start over.

Start over. Make certain the
run string is proper.

Rename program with a different
name, recompile and reload. It
is impossible to replace a
memory resident program. The
loader will not even rename it.

Recompile and try again. This
could also be an Assembler or
FORTRAN compiler bug.

Either specify a different
partition or no partition.

Number of pages required I Either specify a different
exceeds partition size. I partition or no partition.

I
Specified program size tool Either specify a smaller size or
large for partition. I no size. See also error code 03
(Exceeds 32 pages.) I other recovery alternatives

+-------+---------------------------+---------------------------------+

VII-23

RELOCATING LOADER

Table 7-1. Loader Error Codes (continued)

+-------+---------------------------+---------------------------------+
I Error I Meaning I Recovery Action I
I Code I I I
I +---------------------------+---------------------------------+
I L- : I I
+-------+---------------------------+---------------------------------+

I
19 (1) EMA declared twice (2) I Specify the EMA in the main and

EMA declared in a program I load the main first. An EMA must
segment, (3) reference to I be declared in the main and any
the Et-'lA label before label I segments or subroutines that
was declared EMA, (4) an I reference that EMA must be
attempt was made to I loaded after the main.
declare the same label as I
EN'r record (i.e., I
duplicate ENT) • I

I
20 No ID extensions available! Either abort other EMA programs

21

24**

25

26

27

for the EMA program. I to release required ID

Program's EMA size too
large for current system
partitions.

Attempted to access an
SSGA entry point but SSGA
access was not declared
at beginning of load.

Attempted to purge a
program under batch, or
attempted to use LI or PU
commands within a file.
LI or PU may only be used
int e r ac ti v e 1 y •

Not enough long and short
ID segments to finish
load.

Attempted to access an
E~~ external with offset
or indirect.

extensions, or regenerate and
specify more ID extensions.

Either reconfigure system at
boot-up to give more EMA space,
or declare less EMA in program.

Restart the load, specifying
the SS mnemonic; i.e., OP,SS or
FM,SS.

Do not put LI or PU commands in
a LOADR command file.

Off or purge all Io's created,
free up additional ID segments,
and restart load.

use HP-supplied .EMAP and .EMIO
subroutines to access EMA arrays

+--

VII-24

t---t---------------------t
I SEGMENTED PROGRAMS I SECTION VIII I
I I I
+---+---------------------+

Real-time or background disc-resident programs may be structured into
a main program and several segments to save memory space during
program execution. A segmented program is first separated by the
programmer during the coding process. Once the program is relocated,
the segments are then called into memory only as they are needed for
execution. The program can run in a smaller partition than its total
size, since only parts of the executable code are in memory at any one
time.

When the code in one of the segments is required for execution, the
currently executing program uses an EXEC call to request the operating
system to make a segment overlay. RTE loads the segment from the disc
into a memory block following the end of the main program, overlaying
whatever was previously there. Control is then passed to the entry
point of the segment and execution proceeds within the segment (see
Figure 8-1). Note that a segment is not allowed to overlay the main
program: segments may only overlay one another.

While a segment is in memory, it can freely access subroutines and
data areas in the main program, and vice-versa. The main program and
its segment effectively operate as a single program. When another
segment is required, either the main program or the segment can make
the EXEC call to request another segment overlay. The operating system
will then load the new segment into memory and pass control to it.

VI II-1

SEGMENTED PROGRAMS

DISC
RESIDENT
AREA

MAIN PROGRAM

SEGMENT 1

SEGMENT

OVERLAY

AREA

t----------
MAIN PROGRAM

-.... LOGICAL MEMORY -''-

DISC MEMORY

MAIN PROGRAM

NOTE TRACK. SEGMENT.
ANO GAP SIZES ARE
EXAGGERA TEO

TPRTE-8

Figure 8-1. Segmented Programs

Segments may be of any size but need not necessarily be of equal
length. The entire program requires a partition large enough to hold
the main program plus the size of the largest segment.

8-1. RTE FORTRAN IV SEGMENTATION

RTE FORTRAN IV programs can be segmented if certain conventions are
followed. The main program must be Type 2,3, or 4, and the segment
must be specified as Type 5 in its PROGRAM statement. The segment must
be initiated using the Program Segment Load EXEC call from the main
program or another segment.

VI II-2

SEGMENTED PROGRAMS

If the program is to loaded by the generator, each segment must make a
non-executable dummy call to the main program. This ensures that the
generator establishes the proper linkage between the main program and
its segments. For example:

•

CALL MAIN
END

where MAIN is the name of the main program. This dummy call is not
required if the program is loaded by the Relocating loader.

Chaining of segments is uni-directional. Once a segment is loaded,
execution is transferred to it. The segment, in turn, may call another
segment but a segment written in FORTRAN cannot easily return to the
main program. Segments can call any subroutine attached to the main
program. Communication between the main ptogram and segments may be
through COMMON.

8-2. RTE ASSEMBLER SEGMENTATION

The main program must be Type 2,3, or 4 and the segments must be Type
5. One external reference from each segment to its main program is
required for the generator to link the segments and main program. If
the main program accesses an external symbol that will be satisfied in
a segment, the symbol may appear in only one segment. Otherwise, the
generator or the loader may link the segments and the main program
incorrectly.

Figure 8-2 shows how an executing main program may use the JSB EXEC
call to bring in any of its segments from the disc. Note that although
control is passed to the transfer point of the segment, the main
itself is not suspended.

DISC MEMORY

NAM MAIN
EXT EXEC

JS8 EXEC

SVSTEM
TABLES

i
I SEGMENT OVER LAV

AREAi

•
!MAIN PROGRAM

AREAi

l

LOGICAL MEMORY

DISC RESIDENT
PARTITION AREA

Figure 8-2. Main Calling Segment

An executing segment may itself call in another of the main program s
segments by using the same "JSB EXEC" request (see Figure 8-3).

VIII-3

+-----~--+---------------------+
I I I
I MULTIPLE TERMINAL MONITOR I SECTION IX I
I I I
+--+---------------------+

The Multi-Terminal Monitor (MTM) is a software package used to service
multiple terminals in an RTE operating system. Included in the
description given below are several special considerations applicable
to the optional multipoint subsystem operations.

9-1. SYSTEM CONFIGURATION

Multiple terminal operation requires that routines PRMPT and RPN be
configured into the operating system during generation. By default,
they are memory resident and should be included in the system during
the generation Program Input Phase.

Configuring
Interrupt
required:

a terminal for
Table portion of

sc,PRG,PRMPT

MTM serv1c1ng is
generation. The

performed during the
following entry is

where sc is the select code of the terminal being configured. This
will cause interrupts to those select codes to be handled by program
PRMPT.

After the RTE system is initialized and running, each terminal must be
initialized with a control request either through an FMGR command:

:CN,lu,20B

or an EXEC request:

CALL EXEC(3,2000B+lu)

where lu is the Logical Unit number of the terminal being enabled.

9-2. MULTIPOINT INITIALIZATION

Configuring a terminal for multipoint operation is performed during
the Interrupt Table portion of generation. Refer to the HP 91730A
Multipoint Terminal Interface User's Guide (91730-9 0002) for a
complete description of multipoint operations. The following entry
should be made for each communication line:

scl,PRG,PRMPT

where scl is the select code of the line being configured. This will
cause interrupts to that select code to be handled by program PRMPT.

IX-1

MULTIPLE TERMINAL MONITOR

Each terminal also requires a dummy F,quipment Table entry (EQT).
Number 77 is a good choice. This same EQT can be used for all
terminals. The following entry is then required for each terminal:

sct,ABS,O

where set is the dummy select code that has been assigned to the
terminals.

After the RTE system is initialized and running, both the
communication lines and the terminals must be initialized. Ea ch line
is enabled with a control request through either an FMGR command:

:CN,llu,20B,100000B+ICW

or through an EXEC request:

CALL EXEC(3,2000B+llu,100000+ICW)

where:

llu is the Logical Unit number for the line

!CW is the control word and has the following bit
configuration:

llSl14ll3112lllllOI 09I08I07106IOSI04103I02IOllOOI
!---!
I 11 XX I TOVAL I XX I LN I

where:

bit 15 is 1 to designate this as a line initiation

TOVAL is the timeout value in hundreds of milliseconds

LN is the logical line number

IX-2

MULTIPLE TERMINAL M)NITOR

After the line has been initialized, each terminal on the line must be
enabled. This is done using either of the following commands:

:CN, ilu,20B,ICW

or:

CALL EXEC(3,2000B+ilu,ICW)

where:

ilu is the Logical Unit number of the terminal.

ICW is the control word and has the following bit specification~

ll5ll4ll3ll2lllllOI 09I08I07I06I05lq4103I02IOllOOI
1---1
I 0 I LN I GID I DID I

where:

bit 15 is 0 to designate this as a terminal initialization.

LN is the Logical Line Number as specified in the
Line Initiation control word.

GID is the Group Identification character as specified
on the terminal's communication card.

DID is the Device 'Identification character as specified
on the terminal's communication card.

9-3. LOGICAL UNIT NUMBER ASSIGNMENT

A cartridge tape with (CTU) on a 264x terminal (non-multipoint) must
have a Logical Unit number either different than the Logical Unit
number of the associated display (CR'!'). It is suggested that the CRT's
and CTU's be assigned LU numbers between 09 and 63, inclusive.

9-4. OPERATION

MTM will perform several services for the user in conjunction with a
terminal's copy of FMGR. A terminal with Logical Unit number xx has
its own copy of FMGR if a program exists named FMGxx. For example, the
copy of FMGR for Logical Unit 09 would be FMG09. The paragraph
entitled "Creating Program Copies" (see below) explains how to make
copies of a program.

IX-3

MULTIPLE TERMINAL MONITOR

If a copy of FMGR named FMGxx does not exist for a terminal, the
standard MTM prompt (xx>) will be issued and the user will be
conversing with the RTE operating system. The remainder of this manual
section assumes that the terminal has its own copy of FMGR named
FMGxx.

9-5. AVAILABLE MTM SERVICES

In an MTM environment, a user terminal with its own copy of FMGR has
access to four services:

1. Automatic scheduling of FMGxx when the user terminal interrupts
the operating system.

2. Variations of the BReak and ABort commands.

3. Automatic renaming of user programs scheduled from FMGxx.

4. Automatic execution of transfer file named HI.

9-6. AUTOMATIC SCHEDULING OF FMGxx

If a copy of FMGR called FMGxx exists for the terminal, striking a key
on the terminal causes FMGxx to be scheduled for execution. One of tw~
actions will then be taken, depending on whether or not FMGxx is
available for execution. Normally, FMGxx is available, since it
"belongs" to the terminal. If it is not available, the MTM variations
of the BReak and ABort commands may be used to make it available as
described below.

9-7. FMGxx EXECUTION

If the terminal's copy of FMGR is available for execution (not busy or
suspended), three events will occur:

First, the prompt

xx>FMGxx

will be issued to the terminal.

Second, an

:LL, xx

is executed automatically (but is not displayed) on behalf of the user
terminal to make its LU the list ftevice.

Third, control is transferred to a file name HI, which must exist on
LU 2, the system disc.

IX-4

MULTIPLE TERMINAL MONITOR

The HI file is a procedure file usually written by the system manager
and placed on Logical Unit 2. Although the file may be empty, it must
nevertheless exist or an FMGR -006 error will result. When the end of
the HI file is reached, control is transferred to the interrupting
terminal. The user is now conversing with the terminal's copy of FMGR.

The system manager or other user can define many useful functions to
be performed in the HI file:

* Since the FMGxx global parameter OG always equals the turn-on LU
number, the HI file can be made sensitive to the turn-on terminal.

* The HI file can schedule programs for execution using the RU
command.

* Commands can also be passed directly to the operating system using
the SY command.

Refer to the Batch-Spool Monitor Reference Manual for a complete
description of FMGR commands.

9-8. BREAK AND ABORT COMMAND VARIATIONS

Program FMGxx sometimes will be busy when the operating system
attempts to schedule it to the interrupting terminal. In this case,
the operating system will issue the standard MTM prompt

xx>

and the user will be conversing with the operating system. In addition
to the standard BReak and ABort operator commands, two variations of
the commands will be accepted. These variations apply only when
entered from an MTM terminal other than the system console, and only
if program FMGxx exists.

Throughout the remainder of this discussion, the term "father" will be
used to indicate a program that has scheduled another program and is
waiting for the scheduled program to complete before resuming its own
execution. The term "son" refers to the program that the father has
scheduled. This form of program scheduling is commonly called
" sch e du 1 e w it h w a i t" •

IX-5

MULTIPLE TERMINAL MONITOR

1. MTM BREAK COMMAND - The MTM command BR issued at terminal xx will
set the break bit of the last son of FMGxx. The following example
illustrates the interaction:

user hits a key
xx>FMGxx

:RU,PROGA PROGA runs, and assume
PROGA schedules PROGB·

user hits a key
xx> BR no program name specified

The BR command will set the break bit in program PROGB, since it
is the last son of FMGxx.

'!'he command

BR,PROGX

will still set the break bit in PROGX and have no effect on FMGxx
or any of its sons. For more information on breaking programs,
refer to the IFBRK system library subroutine and the BR operator
command.

If FMGxx has no sons, the break bit will be set in FMGxx itself.
Whenever a FMGR program finds its break bit set, it issues the
response

FMGR 000

at the turn-on terminal and prompts for the next input.

+--+ I NOTE I
I I
I The BReak command entered from the system console must I
I still have the program name specified as the first I
I parameter. I
I I
+--+

2. MTM ABORT COMMAND The MTM AB command issued at terminal xx

IX-6

where FMGxx exists performs the same function as the BR command
except that the last son of FMGxx is aborted. Considerable care
should be exercised in using this command. If F.MGxx has no sons,
then the break bit of FMGxx is set and the program is not aborted.

MULTIPLE TERMINAL MONITOR

+---+
I NOTE I
I I
I The batch abort command (AB) may only be entered I
l from the system console. l
I I
+---+

9 -9. AUTOMATIC PROGRAM RENAMING

MTM manages ID segments so that each user can have his own copy of a
program. If the user wishes to run a program with FMGxx as the father
(i.e. :RU,PROGX but not :SYRU,PROGX), then in certain circumstances,, a
copy of the program will be created belonging to the particular
terminal and run for the user at the terminal.

MTM will perform this action whenever the program to be run is a son
of FMGxx, and the program is a Type 6 FMGR file. A copy of the program
will be created with the last two characters being xx, and be
scheduled for execution to terminal xx.

For example, if the EDITR is loaded on-line as a temporary load and
saved as a Type 6 file, the command:

: RU, EDI 1rR

will create a program named EDixx and schedule it to terminal xx. When
EDixx is finished, the ID segment will automatically be returned to
the system.

The advantage of processing the ID segments in this way is that all
terminals can run the same program but each user gets a personal copy
of the program. Therefore, a user does not have to wait for other
users to finish with a program before gaining access to it.

The above procedure will work even if the program to be run has been
previously restored using the RP command. In fact, the program will be
created more quickly, since there would be no disc search time before
the program could be run.

If desired, the automatic renaming feature of MTM may be circumvented
by using a copy of FMGR that does not "belong" to the terminal at
which the user is operating. In this case, none of the features
described for MTM apply, and the AB and BR commands will revert to
their normal usage.

The program renaming feature of MTM may also be temporarily inhibited
when running a program by using the following form of the RU command:

: RU, PROGX: I H

IX-7

MULTIPLE TERMINAL MONITOR

In this case, the actual program named PROGX will be run rather than a
copy.

This capability is especially useful when loading permanent programs.
The program named LOADR is the only program that can load, replace or
purge programs permanently in the system. A copy of LOADR cannot
perform these functions. Therefore, if the user is operating from
FMGxx at terminal xx, the following command can be used to load a
permanent program:

: RU, LOADR: I H,
All proqrams in Type 6 files (whether RP'ed or not) will be renamed.
Permanent programs will not be renamed. A freshly-loaded temporary
program will not be renamed until it has been first SP'ed, OF'ed and
then at the user's discretion, is RP'ed.

The following example shows how to make a freshly-loaded program
eligible for program renaming:

:RU,LOADR,,&ABCDE,6,TE
: SP ,ABCDE
: OF, ABCDE, 8
: RP, ABCDE
:RU,ABCDE

loads program ABCOE temporarily
saves ABCDE as a Type 6 file
gets rid of the loaded copy
restores program for faster access
program ABCXX

9-10. CREATING PROGRAM COPIES

The following example shows how to rename the FMGR program to give it
several different names. The commands given assume that FMGR has been
previously saved with the FMGR SP command:

: RN, FMGR, FMGO 1
: RP, FMGOl
:RN,FMG01,FMG07
: RP, FMG07
:RN, FMG07, FMG14
: RP, FMG14

: RP, FMGxx
:RN,FMGxx,FMGR

rename the file
res tore FMGOl from file
rename file again
restore FMG07 from file
rename file again
restore FMG14 from file

restore program FMGxx
rename file back to FMGR
for future use (i.e., on next entry into
this procedure file).

A similar procedure can be followed to make multiple copies of other
programs.

IX-8

MULTIPLE TERMINAL MONITOR

Note that the above commands can be put in a file that will be run
each time that the system is booted up. This relieves the user of the
responsibility of renaming all programs for MTM use if the system went
down and had to be rebooted. The last RN command restores the file's
original name for future use.

It is recommended that a copy of FMGR be renamed for each terminal in
the MTM environment to take advantage of the automatic scheduling
capability of MTM.

For example, assume a key on the terminal with Logical Unit number 7
is struck. The terminal issues the following prompt:

07>FMG07
(HI file gets executed here)

The user is now conversing with FMG07 and the default list device is
Logical Unit 7. The HI file has been executed and any legal FMGR
command may now be issued.

9-11. PR(X;RAM SWAPPING

In an MTM environment, there are times when a number of users could be
concurrently running copies of the same program, each from their own
terminal. If more programs than partitions exist, the system will try
to service all users by forcing programs to share partitions; that is,
it will force programs to swap. When the program being run at each
terminal is interactive, it is then in the best interest of all users
to code the input routines to be swappable.

All output to terminals normally is buffered, and thus a program can
be swapped. However, terminal input through EXEC calls (CALL
EXEC(l,LU, IBUFR,ILENGTH)) normally is NOT buffered and the program
therefore is locked into its partition until the user decides on the
keyboard response, types it in, and presses the RETURN key. During
this time, no other program may use the partition.

If there are more interactive programs than partitions large enough to
accomodate them, some users are needlessly forced to wait for others
to input their data. This form of system inefficiency can be avoided
by codi~ all terminal input to use the reentrant System Library REIO
routine. The calling sequence is identical to the EXEC call for input:

CALL REIO(l,LU,IBUFR,ILENGTH)

This call allows terminal input to be buffered and ensures maximum
system efficiency. See the RTE-IV Library Subroutines Section for
further information regarding the use of REIO.

IX-9

MULTIPLE TERMINAL MONITOR

Note that the FORTRAN-IV Formatter uses REIO for all input READ
requests to ensure that a FORTRAN-IV user's input is always buffered.

IX-10

+--+---------------------+ I I I
I RTE-IV LIBRARY SUBROUTINES I SECTION X I
I I I
+--+---------------------+

10-1. IN'rRODUCTION

RTE-IV operating systems are delivered with a collection of
relocatable subroutines that comprise the system library. This groµp
of subroutines are specific to RTE-IV operating systems and are used
to interface user programs with system services.

Other collections of H-P relocatable subrobltines for more general use
are also available as options, and are described in the DOS/RTE
Relocatable Library Reference Manual. They have been grouped into the
following libraries according to function:

Library Mnemonic Library Name

RLIB.N
FF4. N

DOS/RTE Relocatable Library
FORTRAN IV Formatter

RLIB.N contains mathematical and utility subroutines such as SIN,COS,
BINRY, etc. The formatter libraries contain subroutines that perform
formatted data transfers, interpretation of formats, unformatted
input/output of binary data~ free field input, and buffer to buffer
conversions. In addition, may RTE subsystems (i.e., Batch/Spool
Monitor) include subroutines that may be of general use. See the
appropriate subsystem manual for more information.

10-2. CALLING LIBRARY SUBROUTINES

Library subroutines are called by user programs and are linked to the
caller either at generation or load time. These subroutines can be
called either by disc-resident or memory-resident programs.

Subroutines referenced by disc-resident programs
end of the calling program and linked to it
(LOADR) or On-Line Generator.

are appended to the
either by the loader

Subroutines referenced by memory-resident programs will be placed in
the memory-resident library by the generator. These subroutines must
either be reentrant or privileged. Several memory-resident programs
can then share one subroutine, which can save considerable space in
the memory-resident area. Disc-resident programs cannot access
routines in the memory-resident library; thererfore, copies of these
subroutines will be appended to these programs.

X-1

RTE-IV LIBRARY SUBROUTINES

If only one memory-resident program is to access a subroutine, it is
advantageous to make it a Type 7 subroutine to force it to be appended
onto the calling program. A Type 7 subroutine is not placed iri the
memory-resident library and therefore need not be privileged or
reentrant. This results in faster execution, since the subroutine will
not incur the overhead associated with reentrant or privileged
subroutines.

10-3. REENTRANT SUBROUTINE STRUCTURE

A subroutine must meet two criteria to be reentrant:

1. It must not modify any of its own instructions.

2. It must save all temprorary results if it is to be called again
before completing its current task.

A subroutine saves temporary results in a Temporary Data Buffer (TDB)
that the operating system ensures is unique to each program. For
example, assume PROGA is executing a reentrant subroutine that is
interrupted by PROGB. If PROGB then begins execution of the same
subroutine, the system saves PROGA's TDB until PROGA resumes
execution, at which time it restores the proper TDB.

Each time
length of
the entry
execution,
point $LIBX

a reentrant subroutine begins executing, the address and
data block are transferred to RTE-IV through

in order to save the data. At the end of
its temporary
point $LIBR
the re-entrant
to restore any

subroutine again calls RTE-IV through entry
previous temporary data.

The reentrant subroutine structure is used for subroutines with an
execution time exceeding one milli-second. However, for shorter
execution times, the overhead time the system uses in saving and
restoring temporary data makes reentrant structure unreasonable.
Faster subroutines can be structured as privileged.

+--+
I NOTE I
I I
I A library (Type 6) subroutine can only call I
I another library subroutine or Table Area I I
I or, optionally, Table Area II entry points. I
I I
+--+

X-2

RTE-IV LIBRARY SUBROUTINES

10-4. REENTRANT SUBROUTINE FORMAT

The format and calling sequence for reentrant subroutines is as
follows:

NAM
EXT

EN'rRY NOP
JSd
DEF

EXIT JSB
DEF
DEC

·ros NOP
DEC
NOP

BSS

K

xxxxx,6
$LIBR, $LIBX

$LIBR
TDB

$LIBX
TDB
N

K-3

Entry point of subroutine
Tell system to protect TDB
Address of temporary data

Subroutine instructions go here

Tell system reentrant run is finished
Address of temporary data
Return adjustment

(Return po in t=N +EN'I'RY)

System-supplied link to previous TDB
Total length of current TDB in words
System-supplied return address to

calling program

Temporary data (K-3 words)

10-5. PRIVILEGED SUBROUTINE STRucrruRE

Privileged subroutines execute with the interrupt system turned off.
rrhis feature allows many memory resident programs to use a single
privileged subroutine without incurring reentrant overhead. As a
result, privileged subroutines need not save temporary data blocks but
must execute very rapidly to minimize the time that the interrupt
system is disabled.

Since privileged subroutines disable the interrupt system, EXEC calls
are illegal within a privileged subroutine. If one is attempted, the
calling program will be aborted with an EX error (See Section III).

X-3

RTE-IV LIBRARY SUBROUTINES

10- 6. PRIVILEGED SUBROUTINE FORMNr

The format and calling sequence for privileged s~broutines is as
fol lows:

NAM
EXT

EN'l1RY NOP
JSB

NOP

xxxx,6
$LIBR, $LIBX

$LIBR

EXIT JSB $LIBX

EXIT! DEF ENTRY

Entry point to the routine
Call the system to disable the
Interrupt system and memory

protect fence
Denotes privileged format

Call the system to return to calling
program, and to enable interrupts
and memory protect fence

Return address

It is also possible to go privileged in a block of in-line code, as
follows:

JSB $LIBR
NOP

JSB $LIBX
DEF *+l

DEfi' *+l

10-6A. MEMORY RESIDENT LIBRARY

Go privileged
Denotes privileged format
First instruction

Leave privileged status
Both DEF's are required

The memory resident library area in RTE-IV contains only Type 6
subroutines that are referenced by memory resident programs and Type
14 subroutines forced into the memory resident library at generation
time.

Reentrant and privileged subroutines may be placed in the memory
resident library during generation by either of the following methods:

X-4

RTE-IV LIBRARY SUBROUTINES

1. If the routine is declared as an external (called) by a memory
resident (Type i) program, or is called by another memory
resident library subroutine, the subroutine will be
automatically placed in the memory resident library by the
generator.

2. The routine can be changed to a Type 14 subroutine during the
Parameter Input phase of generation (it also could have been
assembled as a Type 14 subroutine).

+-----------------------------------~----------------------------+
I NOTE I
I I
I After the relocation of the resident library and all I
I memory resident programs, all Type 6 routines are I
I converted to ·rype 7 (utility) rtou tines. I
I I
+--+
Not all subroutines referenced by memory resident programs are loaded
into the memory-resident library. By declaring the subroutine to be
Type 7, the user can ensure that the subroutine will be loaded with
the program. rrhen if .ZRNT and .ZPRV are used instead of $LIBR, the
subroutine will execute faster since the system does not need to do
the reentrant or privileged processing prior to executing the
subroutine.

10-7. UTILITY SUBROUTINE STRUCTURE

Utility subroutines are subroutines that cannot be shared by several
programs because of internal design or I/O operations. Therefore, a
copy of a utility subroutine is appended to every program that calls
for it. The PAUSE subroutine and the library subroutines FRMTR (FF.N),
and FMTIO (F4D.N) are typical examples of utility subroutines.

\'Vhen the R'rE system is gene rated, al 1 library subroutines other than
Type 8 subroutines are converted to Type 7 utility subroutines
following the relocation of memory resident programs. All required
utility suoroutines are then relocated immediately following each user
program that references them during program relocation.

10-8. S YS'rEM LIBRARY SUBROUTINES

All system library subroutines are described below with the exception
of .EMAP, .EMIO, M.MAP and EMAST. These four subroutines are the direct
concern of memory management considerations and are therefore
described in the Memory Management section of this manual.

X-5

Wl1E- IV LIBRARY SUBROUT·INES

10-9. REIO (Reentrant I/O)

The REIO subroutine permits user programs to perform reentrant I/O and
disc resident programs to be swappable. REIO is a utility type library
subroutine and has within its structure a reentrant routine that is
appended to each program that calls its. Tne calling sequence for REIO
is:

CALL REIO (I CODE, I CNWD, Il3UFR, IBU FL)

where the parameters are described in the Read/Write EXEC call in
Section IV of this manual. Note that REIO can only be used with
Read/Write calls and that the optional parameters available in those
calls are not allowed in the REIO call. REIO will always perform the
requested I/O; however, it will do reentrant I/O only if the buffer is
less than 130 words (to save system memory), and the buffer address is
at least five words above the current fence address. If the sign bit
is set on ICODE, the same error options available with the EXEC call
are in effect (i.e. error return followed by normal return). REIO
returns the same values in the A- and B-Registers as the standard EXEC
call.

A reentrant subroutine may perform I/O using the standard EXEC
requests. If the buffer is in the temporary data block (TDB) of
either itself or another reentrant routine that called it, the calling
program is swappable. If the buffer is in the user area, the program
is not swappable (i.e., if the buffer is not in the TDB or user COMMON
area, the program is not swappable).

10-10. BINRY (Disc Read/Write)

FORTRAN programs can call the BINRY subroutine, to transfer
information to or from the disc. The call must specify a non-EMA
buffer array, the array length in words, the disc Logical Unit number,
track number, sector number, and offset in words within the sector.
(If the offset equals O, the transfer begins on the sector boundary;
if the offset equals n, the transfer then skips n words into the
sector before starting.) BINRY has two entry points: BREAD for read
operations and B\rJRIT for write operations.

For example:

Where:

X-6

CALL BWRIT (ARRAY,N,IDISC,ITRK,ISECT,IOFST)
CALL BREAD (ARRAY,N,IDISC,ITRK,ISECT,IOFST)

ARRAY
N
I DISC
ITRK
ISEC 1r
IOFST

= Address of the first element
= Number of words
= Disc logical unit number
= Starting track number
= Starting sector number
= Number of words offset within a sector

HrrE.-IV LIBRARY SUBROUrrINES

There are three basic ways that data can be written on the disc in
relation to sector boundaries. Care must be used in planning the WRITE
statement in two of the cases to avoid losing existing data:

1. Offset=n (i.e., transfer begins within a sector), and less than
the sector is written, or the data transfer ends on a sector
boundary. The entire first sector is initially read into an
internal buffer, the data is modifed according the BWRIT
statement, and the entire sector is then rewritten on the disc
with no data loss. No special precautions are required in this
instance.

2. Offset=O (i.e., transfer begins on a sector boundary), and less
than the sector is written. The remaining data in the sector will
be lost if the following precaution is not taken. The entire
existing sector on the disc can first be read into a user's buffer,
modified to reflect the desired changes, and then rewritten on the
disc as a full sector.

3. Offset=O or n, and a sector boundary is crossed in the data
transfer. The remaining data in the final sector will be lost if
the following precaution is not taken:

'!he entire final sector (of the data transfer) on the disc should
be read into a user's buffer, modifed to reflect the desired
changes, and then rewritten on the disc as a full sector.

10-11. RNRQ (Resource Management)

Allows cooperatin·g programs a method of efficiently utilizing resources
through a resource number~ng scheme. A detailed discussion of resource
managment considerations is provided following the Class I/O description
in the EXEC Call section of this manual.

X-7

RTE-IV LIBRARY SUBROUTINES

The calling sequence for RNRQ is:

ICODE=numb
CALL RNRQ(ICODE,IRN,ISTAT)

where:

I CODE

IRN

!STAT

defines how the resource number is to be used. (See
Figure 10- 1.)

the resource number is returned in IRN.

status return word.

0 - normal deallocate re turn

1 - RN is clear (unlocked)

2 - RN is locked locally to caller

3 - RN is locked globally

4 - no RN available now

6 - RN locked locally to other program

7 - RN was locked globally when request was made

A resource number is used when one program wishes to use a resource
exclusively with the cooperation of other programs in the system. This
resource could be a physical device (see subroutine Logical Unit Lock)
or the system itself. Using an RN prevents a low priority program from
being interrupted by a higher priority program when executing.

All programs must agree that a certain RN will be used as a lock or
busy indicator for a given device.

X-8

RTE-IV LIBRARY SUBROUTINES

Figure 10-1 illustrates the format of the control word required in the
calling sequence.

+---------+--------+-----+-----+-----+-----+-----+-----+
I 15 I 14 I s I 4 I 3 I 2 I 1 I o I

I I I I I I I I I
+---------+--------+-----+-----+-----+-----+-----+-----+
I WAIT I I ALLOCATE I SET I
I OPTION I I OPTION I DISPLAY I
+---------+--------+-----+-----+-----+-----+-----+-----+
I NO I NO I C I G I L I C I G I L I

I I I I I I I I I

I W I A I L I L I 0 I L I L I o I

I I I I I I I I I

I A I B I E I o I C I E I O I C I

I I I I I I I I I

I I I o I A I B I A I A I B I A I

I I I I I I I I I
I T I R I R I A I L I R I A I L I

I I I I I I I I I
I I T I I L I I I L I I
+---------+--------+-----+-----+-----+-----+-----+-----+

Figure 10-1. RNRQ Control Word Format

If more than one bit is set in the control word, the following order
of execution is used:

1. local allocate (skip step 2 if done)

2. global allocate

3. deallocate (exit if done)

4. local set (skip step 5 if done)

5. global set

6. clear

The system has a certain quantity of resource numbers (RNs) that are
specified during generation. If a resource number is not available,
the program is suspended until one is free, unless the 'no wai~' bit
is set. If the 'no wait' bit is set, the IRN location is set to zero.
If the RN allocation is successful, the value returned in IRN is set
by the system. It has no meaning to the user but must be specified
(through IRN) when a lock is requested or the IRN is cleared or
deallocated.

X-9

RTE-IV LIBRARY SUBROUTINES

The no abort bit is used to alter the error return point of the call
as shown in the following example:

CALL RNRQ(ICODE ••••)
GO TO error routine
normal return point

The above special error return is established by setting bit 14 to 1
in the request code word (!CODE). This causes the system to execute
the GO TO statement following CALL RNRQ if there is an error, or skip
the GO TO statement if there is no error.

10-12. RNRQ ALLOCATE OPTIONS

LOCAL - Allocate an RN to the calling program. The number is returned
in the IRN parameter. The number is automatically released on
termination of the calling progarn, and only the calling program can
deallocate the number.

GLOBAL - Allocate an RN globally. The number is released by a request
from any program.

CLEAR - Deallocate the specified number.

10-13. RNRO SET OPTIONS

LOCAL Lock the specified RN
specified in the IRN parameter.
released on termination of the
program can clear the number.

to the calling program. The RN is
The local lock is automatically

calling program. Only the calling

GLOBAL - Lock the specified RN globally. The RN is specified in the
!RN parameter and the calling program can globally lock this number
more than once. The number is released by a request from any program.

CLEAR - Release the specified number.

If the RN is already locked to someone else, the calling program is
suspended (unless the no wait bit is set) until the RN is cleared. If
more than one program is attempting to lock an RN, the program with
the highest priority is given precedence. A single call can both lock
and clear an RN.

If a program makes this call with the clear bit set, in addition to
either the global or local set bits, the program will wait (in the
general wait list) until the RN is cleared by another program and then
continue with the RN clear.

X-10

RTE-IV LIBRARY SUBROUTINES

An entry point is provided for drivers or privileged subroutines of
Type 3 programs that wish to clear a global (and only global) RN:

LDA RN
JSB $CGRN
return point

An example on how to use !CODE follows:

Assume you wish to get an RN assigned so that any program can access
it. You also want an alternate return point in case of error. Bits 4
and 14 would then be set as follows:

100 000 000 010 000 = 100208

10-14. LURQ (Logical Unit Lock)

Allows a program to exclusively dominate (lock) an input/output
device. The calling sequence is:

DIMENSION LUARY(n)
IOPTN=numo
NOLU=aa
CALL LURQ(IOPTN,LUARY,NOLU)

Parameters

IOPTN control parameter (an octal nurnbe~)
OxOOOO-unlock specified LUs
lxOOOO-unlock all LUs the program currently has locked
OxOOOl-lock with wait specified LUs
lxOOOl-lock without wait specified LUs
x (bit 14) is the no abort bit. x=4 to set, else x=O.

LU ARY an array of n LUs to be locked or unlocked.

NOLD number of LUs to be locked or unlocked.

This request ternporar ily assigns a logical unit to the calling program. It
prevents a higher priority program from interrupting a program's use of
the device until the device is unlocked by the program that locked it.

The Logical Unit Lock request allows up to 31 programs to exclusively
dominate (lock) an input/output device. Any other program attempting
to use or lock a locked LU will be suspended until the original program
unlocks the LU or terminates.

X-11

RTE-IV LIBRARY SUBROUTINES

NO ABORT BIT

'rhe no abort bit is used to alter the error return point of this call
as shown in the following example:

CALL LURQ(IOPTN •••)
GO TO error routine

normal return point

The above special error return is established by setting the 'x' in
IOPTN to 4 which sets bit 14.
This causes the system to execute the GO TO statement
follcwing the CALL LURQ if there is an error, or to skip the GO TO statement
if there is no error.

UNLOCK

To unlock all owned LUs, the LUARY array is not used but still must be
coded; the program will not abort.

Any LUs the pro·:~rarn has locked will be unlocked when the program:

1. Performs a standard termination

2. Performs a serial reusability termination.

3. Abar ts

Note that LUs will not be unlocked when the program performs a save
resources' termination.

This subroutine calls the program management subroutine (RNRQ) for a
resource number (RN) allocation; that is, the system locks an RN
locally to the ca 11 i ng p r og r am • 'f here fore , before the l og i ca 1 uni t
lock subroutine can be used, a resource number must have been defined
during generation. Only the first 31 RNs can be used for LU locks.

If the no-wait option is coded, the A-register will contain the
following information on return:

O - LU lock successful

-1 - no RN avalable at this time

1 - one or more of the LUs is already locked.

X-12

RTE-IV LIBRARY SUBROUTINES

Note that the calling program may not have LUs locked at the time of
the call unless the no-wait option is used. All LUs locked by the
calling program are locked to the same RN.

10-15. $PARS (Parse)

Allows a program to parse an ASCII string.

The calling sequence is:

LDA
LOB
EXT
JSB
DEF

I BU FA
I CO UN
$PARS
$PARS
IRBUF

-return-

Buffer address
Character count

where IRBUF is 33 words long. The result of the parse of the ASCII
string at IBUFA is stored in IRBUF using 4 words per parameter that
are set as follows:

WORD ENTRY

1 FLAG WORD

2 VALUE (1)

3 VALUE (2)

4 VALUE(3)

0 = NULL
1 = NUMERIC
2 = ASCII

0 If NULL; Value if Numeric; first
2 characters if ASCII.

0 If NULL or numeric else the 3rd
and 4th characters.

0 If NULL or numeric else the 5th and 6th
characters.

ASCII parameters are separateo from numeric parameters by examination
of each character. One or more non-digit characters {except a
trailing "B" or leading"-") makes a parameter ASCII. This subroutine
can parse up to eight parameters.

IRBUF is initialized to 0 before parsing the string IBUFA.

The 33rd word of IRBUF will be set to the number of parameters in the
string.

X-13

RTE-IV LIBRARY SUBROUTINES

The Parse routine ignores all blanks and uses commas to delimit
parameters. ASCII parameters are padded to six characters with blanks
or, if more than 6 characters, the left most 6 are kept. Numbers may
be negative (leading "-") and/or octal (trailing "B").

FORTRAN interface with $PARS is provided with the following calling
sequence:

CALL PARSE (IBUFA,ICONN,IRBUF)

where the parameters are as described for the Assembly Language call
above.

10-16. INPRS (Buffer Conversion)

This routine converts a buffer of data back into its original ASCII
form. The user passes the routine a buffer (IRBUF), plus the number of
parameters in the buffer, that looks like the buffer returned by the
PARSE routine. INPRS then reformats the buffer into an ASCII string
that is syntactically equivalent (under the rules of PARSE) to a
buffer that may have been passed to PARSE to form IRBUF. The length of
the ASCII string in characters will be eight times the number of
parameters. The FORTRAN calling sequence is:

CALL INPRS(IRBUF,IRBUF(33))

where:

IRBUF is the buffer containing the parsed string
IRBUF(33) is the number of parameters parsed

10-17. $CVT3,$CVT1,CNUMD,CNUMO,KCVT
(Binary to ASCII Conversion Subroutines)

Converts a positive integer binary number to ASCII.

The calling sequence is:

LDA numb
CLE or CCE (see text)
EX'Il $CVT3
JSB $CVT3

-return-

Upon return:

E- reg ister=l
A-register=address of result
B-register=value at invocation

X-14

RTE-IV LIBRARY SUBROUTINES

$CVT3 converts a positive binary number in the A-Register to ASCII,
suppressing leading zeros, in either OCTAL (E=O) or decimal (E=l). On
return, the A-Register contains the address of a three word array
ontaining the resultant ASCII string.

$CVT1 has the same calling sequence as $CVT3 except that on return,
the A-Register contains the least-two characters of the converted
number. The number to be converted must be positive.

The FORTRAN interface with $CVT3 is provided by the following calling
sequence:

(decimal)
(octal)

DIMENSION I ARRAY{ 3)
CALL CNUMD {binary numb,IARRAY)
CALL CNUMO {binary numb,IARRAY)

where binary numb is the positive binary number to be converted and
!ARRAY is a three word array (6 ASCII characters). Leading zeros are
suppressed.

The following subroutine converts a positive number to ASCII base 10
and returns the least two digits in "I". The FORTFAN calling sequence
is:

I=KCVT {J)

10-18. MESSS (Message Processor Interface)

Processes all operator commands (see Section III).

The FORTRAN call to the system message processor is provided by the
following calling sequence:

I = MESSS {IBUFA,ICOUN,LU)

where IBUFA contains the ASCII command. ICOUN is an integer containing
the character count. LU is optional.

The value on return will be zero if there is no response, or the
negative of the character count if there is a message. Any message
will be in IBUFA.

If the request is RU or ON (starting in first column) and the first
parameter is zero or absent, then the first parameter will be replaced
by LU. LU is optional. If it is not supplied, no replacement occurs.

X-15

RTE-IV LIBRARY SUBROUTINES

10-19. EQLU (Interrupting LU Query)

A calling sequence is provided to find the Logical Unit number of an
interrupting device from the address of word four of its equipment
table entry. The address of word 4 is placed in the B-Register by the
driver and used in the following sequence:

LDB EQT4

This is not necessary if the address of EQT4 has already been placed
into the B-register by the driver or by another program/subroutine.

The Assembly Language calling sequence is:

EXT EQLU
JSB EQLU
DEF RTN
DEF LUSDI (optional)

RTN return point

EQLU will return with:

A-Register = 0 if an LU referring to the EQT was not found.

= LU if the LU was found.

B-Register =ASCII "00" or the LU number in ASCII e.g. "16"

LUSDI = (optional parameter) value is returned to this
parameter as well as in the A-Register.

This subroutine may be called from FORTRAN using the following calling
sequence:

LU=EQLU (LUSD I)

10-20. PRTN,PRTM (Parameter Return)

These two routines are used to pass
scheduled the caller with wait. The
these parameters with RMPAR.

parameters to the program that
scheduling program may recover

The PRTN routine passes five parameters and
This means that the caller should terminate
call.

X-16

clears the wait flag.
immediately after the

RTE-IV LIBRARY SUBROUTINES

The Assembly Language calling sequence is:

EXT EXEC,PRTN
JSB PRTN
DEF *+2
DEF I PRAM
JSB EXEC
DEF *+2
DEF SIX

!PRAM BSS 5
SIX DEC 6

Parameter buffer
Program termination code

Note that the Program Termination EXEC c~ll must immediately follow
the PR'rN call.

The FORTRAN calling sequence is:

DIMENSION IPRAM(S)

CALL PRl'N (IP RAM)
CALL EXEC (6)

The PRTM routine passes four parameters and
flag. When the parameters are recovered
parameter is meaningless.

The Assembly Language calling sequence is:

EXT PRrI1M
JSB PR1rM
DEF *+2
DEF I PRAM

!PRAM BSS 4

does not clear the wait
with RMPAR, the first

X-17

R'rE-IV LIBRARY SUBROU'I'INES

10- 21. • DRCT (Indirect Address Subroutine)

Resolves an indirect address within the calling program's map.

The Assembly Language calling sequence is:

EX'l1
• D RCT

JSB .DRC'r
DEF ADDH
-return-

The routine returns with the A-Register set to the direct address of
ADDR, the B-Register unaltered, and the E-Register lost. This routine
is usually used when ADDR is external.

10-22. I.F'BRK (Breakf lag Test)

This routine tests the break flag and clears it if it is set. See the
BK command in Section IX.

The FORTRAN calling sequence is:

IF (IF B RK (I DM Y)) 10 , 2 0

where:

10 = branch taken if the break flag is set.
cleared.

20 = branch taken if the break flag is not set.

The flag will be

IDMY must be used to inform the FORTRAN compiler that an external
function is being called.

The Assembly Language calling sequence is:

JSB IfBRK
DEF *+l
-return-

The A-Register will = -1 if the break flag is set and =O if not. The
break flag will always be cleared if set.

X-18

RTE-IV LIBRARY SUBROUTINES

10-23. COR.A, COR.B (First word Available Memory)

COR.A finds the address of the first word of available memory for a
given ID segment.

The Assembly Language calling sequence is:

EX'r COR .A
LDA IDSEG
JSB COR.A
-return-

The ID segment address is loaded into the A-Register and the routine
is called. On return the A-Register contains the first word of
available memory (MEM2 from ID). Note that on entry into a segment,
the A-Register contains the segment's ID segment address.

COR.B finds the high address +l (first word of available memory) for
main programs. This address is the same as that returned by COR.A for
non-segmented programs. For segmented programs, this address is the
high address + 1 of the largest segment. The ID segment address of
only a main program must be passed to COR.B in the A-register.

The Assembly Language calling sequence is:

EXT COR.B
LDA IDSEG
JSB COR .B
-return-

Upon return:

ID segment address of a main program

A-register = O if normal return -1 if an error return, tne B
= register is meaningless

B-register = high address of main program (if it is not
segmented) or the largest segment +l.

COR.B makes an error return if the ID segment address passed to it is
that of a short ID segment (i.e., a segmented program).

X-19

RTE-IV LIBRARY SUBROUTINES

10-24. IDGET (Retrieve Program's ID Segrr.ent Address)

Retrieves the ID segment address of a specified program.

The FORTRAN calling sequence is:

IDSEG = IDGET(NAME)

where:

IDSEG will be set by the subroutine to the referenced program's ID
segment or to 0 if the program does not exist.

NAME is a three-word (five-character) buffer with the program name
in it.

The Assernoly Language calling sequence is:

JSB IDGET
DEF *+2
DEF NAME

NAME ASC 3,PROG Set aside three words of storage
containing ASCII equivalent of
PROGbb.

On return, the following registers are set as indicated:

A-register = IO segment address, or 0 if not found

E-register = O if program found, or 1 if not found

B-register = O

X-20

RTE-IV LIBRARY SUBROUTINES

10-25. TMVAL (Current Time)

Reformats and returns the time in milliseconds, seconds, minutes,
hours, and the day.

The FORTRAN calling sequence is:

CALL TMVAL (ITM, I'l'MAR)

where:

!TM is the two-word negative time in tens of milliseconds. Th~s
double-word integer can be obtained from the system entry
point $TIME or the time values in the ID segment.

ITMAR. is a five-word array to receive the time. The array is set
up as:

tens of milliseconds
seconds
minutes
hours
current system cay of year (not related to call values)

10-26. GETST (Recover Parameter String)

'I'he routine GETST recovers the parameter string from a program's
command string storage area. The parameter string is defined as all
the characters following the second comma in the command string (third
comma if the first two characters in the first parameter are NO).

The Assembly Language calling sequence is:

IBUFR
I BU FL
!LOG

JSB GE'I'ST
DEP R'rN
DEF IBUFR
DEF' IBUFL
DEF !LOG
return point

BSS n
DEC n (or -2n)
NOP

Call to subroutine
Return address
Buffer Location
Buffer Length
Transmission Log
Continue execution

Buffer of n words
Same n; words (+) or characters (-)
Error information

X-21

RTE-IV LIBRARY SUBROUTINES

Upon return, ILOG contains a positive integer giving the number of
words (or characters) transmitted. The A- and B-Registers may be
modified by GETST. Note that if RMPAR is used, it must be called
be fore GE11 s·r.

When an odd number of characters is specified, an extra space is
transmitted in the right half of the last word.

This subroutine performs a function similar to an EXEC 14 call.

10- 2 7 • IF TTY (Log i ca 1 Un it i s or i s Not Int e r a ct iv e)

Ascertains whether a logical unit is interactive or not.

The calling sequence in Assembly Language is:

EXT IFTTY
JSB IFTTY
DEF RTN
DEF LU Logical unit being tested

RTN return point

The FORTRAN IV calling sequence is:

INT=IF'rTY (LU)

where LU is the logical unit being tested.

Upon return:

INT=A-r eg iste r

I
B-register<

\

= -1 if logical unit LU is interactive
= O if logical unit LU is non-interactive
= upper byte is the driver type (word 5 of

table entry, bits 8-13)
= lower byte is the subchannel numbeL

10-28. LOGLU (Returns LU of Terminal that Scheduled Program)

EQT

LOGLU is a subroutine that returns the logical unit number (LU) of the
terminal at which the currently executing program was scheduled.

X-22

RTE-IV LIBRARY SUBROUTINES

The calling sequence in Assembly Language is:

EXT LOGLU
JSB LOGLU
DEF R'rN
DEF IDUMY

RTN return point

The calling sequence in RTE Fortran IV is:

LU=LOGLU (!SES)

Upon return:

LU=A-register = LU number of device at which program was scheduled

B-register = ASCII LU number

!SES = This word will be modified by the subroutine, its
value .is reserved for future use by HP.

Comments:

Note that LOGLU must be called as a function. LOGLU will return the LU
number of the console from which the currently executing program was
scheduled. 'I1his LU number is passed down from the Father program to
the Son program when one program schedules another program for
execution. If the program was scheduled by interrupt or from the time
list, the scheduling LU will be LU 1, the system console.

10-29. .EMAP, .EMIO, MMAP, EMAST (Extended Memory Area (EMA))s

The subroutines .. EMAP, .EMIO, MMAP, and EMAST are system library
subroutines that handle Extended Memory Areas. A complete description
of these subroutines is provided in the Memory Management section of
this manua 1.

X-23

+--+---------------------+
I I I
I DBUGR--INTERACTIVE DEBUGGING I SECTION XI I
I I I
+--+---------------------+

DBUGR is a Hewlett-Packard utility subroutine used to interactively
check programs for logical errors during execution. using DBUGR, the
user may examine and modify memory, examine and modify registers, set
a breakpoint and trace instruction execution. DBUGR can only be used
with consoles using drivers DVROO and DVR05. Multipointed consoles
using DVR07 will not work using DBUGR. In the following discussion,
only the most frequently used DBUGR functions are described; refer to
the RTE-IV DBUGR Reference Manual for the complete range of DBUGR
capabilities.

11-1. CALLING DBUGR

DBUGR can be automatically appended to a program at load time by
calling the LOADR with the following command parameters:

*RU,LOADR,,filename,,DB

where DB instructs the LOADR to append DBUGR onto the relocatable
code in file filename. Refer to the LOADR section in this manual for
more information on the LOADR parameters. This command will also
handle segmented programs, though there are some special procedures
involving breakpoints in segmented programs. These are explained in
the section on breakpoints.

When a program with appended DBUGR is subsequently run with the
command:

*RU,prograrn

DBUGR will be entered and the user will be able to give any legal
DBUGR command. DBUGR calls the system subroutine LOGLU to obtain the
logical unit from which the program was scheduled. It then uses this
logical unit for all I/O. Refer to the Multi-Terminal Monitor section
in this manual for more information.

XI-1

DBUGR INTERACTIVE DEBUGGING

DBUGR is also callable from Assembly Language and FORTRAN programs.
The Assembly Language calling sequence is:

NAM prog
EXT DBUGR

JSB DBUGR
DEF RTN
DEF LU

RTN -return point-

LU BSS 1

call to DBUGR
address of return point
optional pointer to LU number

interactive LU,DBUGR will use for I/O

The FORTRAN calling sequence is:

CALL DBUGR(LU)

or

CALL DBUGR

according to whether the optional LU is passed in as a parameter.

In either Assembly Language or FORTRAN, if the optional LU is not
passed in, DBUGR calls the system library subroutine LOGLU to
determine the interactive LU to use for I/O. LOGLU returns to DBUGR
the LU number of the user's interactive log device. If none exists, LU
number 1 is returned specifying that the system console is to be used.

11-2. ENTERING DBUGR

When DBUGR is entered, it prints the following message on the
appropriate LU:

START DBUGR

The user is now conversing with DBUGR and any legal command may be
entered.

All DBUGR operations are conducted at the assembly language level. A
load map and an Assembly language listing of the program is essential.
An assembly language listing of the program is also necessary if
debugging a program written in a high level language.

XI-2

DBUGR INTERACTIVE DEBUGGING

11-3. DBUGR COMMANDS

The following paragraphs give a concise explanation of the main
features of DBUGR. Throughout these paragraphs, the conventions
described in Table 11-1 apply. DBUGR supports the RUBOUT key but not
the backspace key for deleting a typing mistake.

Table 11-1. DBUGR Command Conventions

+----------+---+ I I I
I SYMBOL I MEANING I
+----------+---+
I I I
I \ I Escape key (altmode key) I
I I I
+----------+---+
I I I
I I current position of the cursor I
I I I
+----------+---+
I I I
I [CR] I carriage return I
I I I
+----------+---+
I I I
I [LF] I line feed (control-J on some terminals) I
I I I
+----------+---+
I I I
I italics I words and numbers to be supplied by the user I
I I I
+----------+---+

11-4. DBUGR MODES

DBUGR operates in one of four modes - symbolic, constant,ASCII, or
address. DBUGR uses symbolic mode when it is first entered.

In symbolic mode, the contents of memory are inverse-assembled and
displayed as an opcode and a memory reference (if it is a memory
reference instruction). The user types "escape S" to enter symbolic
mode as follows:

\S

XI-3

DBUGR INTERACTIVE DEBUGGING

In constant
constants.
follows:

\C

mode, the contents of
The user types "escape

memory
C" to

are displayed
enter constant

as octal
mode as

In ASCII mode, the contents of memory are displayed as two ASCII
characters. The user types "escape H" to enter ASCII mode as follows:

\H

In address mode, the contents of memory are displayed as an offset to
a previously defined label. DBUGR will use any label that precedes the
the contents by less than octal 11, or any single character label
otherwise. The user types "escape A" to enter address mode as follows:

\A

When DBUGR is in a particular mode, the mode can be temporarily
switched when examining a memory location. The contents of the memory
location will then be immediately displayed again in the temporary
mode. With the cursor still on the displayed line of the memory
location being examined, type one of the following symbols to
temporarily enter the particular mode desired:

exclamation point - temporary symbolic mode

= equals sign - temporary constant mode

single quote - temporary ASCII mode

underscore - temporary address mode

11-5. EXPRESSIONS AND TERMS

Expressions are used to specify memory locations to be examined. An
expression consists of one or more terms combined with operators as in
the following example:

AA+lO

A term may be a previously defined symbol, a number, or certain
special symbols preceded by an escape key (denoted in the text by a
reverse slash (\)). The following examples are all terms:

XI-4

ABC
SYMBOL
-32768
1005
\M

Legal operators are the following:

+
blank

'

plus operator
alternate plus operator
subtract operator
comma - inclusive or

11- 6 • EXAM! NE ME MORY

DBUGR INTERACTIVE DEBUGGING

To examine the contents of a memory location, simply type in an
expression that evaluates to the memory location to be examined
followed by a delimiting slash(/). For example, one way to examine
memory location 50234 is:

50232+2/

DBUGR will print out on the same line the contents of the specified
memory location in either octal or symbolic form. The example above
might display:

50232+2/ LOA 50277

informing the user that location 50234 contains an LOA instruction
referencing memory location 50277.

To examine the next sequential memory location, simply press the line
feed (LF) key or control J. Continuing the above example, an LF is
used to display the contents of memory location 50235:

50232+2/ LOA 50277 [LF] 50 235/ ADA 50400

XI-5

DBUGR INTERACTIVE DEBUGGING

11-7. MODIFY MEMORY

To modify the contents of a memory location, the user must first open
the memory location by examining it. After DBUGR displays the contents
of the memory location, it is ready to insert new contents into the
memory location examined. If an assembly language instruction is now
typed in, DBUGR will assemble it and insert it into the memory
location. If an octal constant is entered, DBUGR will insert it
directly into the memory location. For example, to modify the contents
of location 50234:

50234/ LDA 50277

50234/ CCA

50235/ ADA 50400

50235/ 100

CCA[CR]Display location 50234, chan9e to
CCA instruction

[LF] Display new contents of 50234, use
line feed to examine 50235

lOO[CR]Change contents of 50235 to 100 octal

Display new contents of location 50235

11-8. EXAMINE REGISTERS

The A and B registers are addressed as memory locations 0 and 1,
respectively. The overflow register, the extend register, and the X
and Y registers require special procedures for examination.

Memory location M+l may be thought of as containing the overflow
register and the extend register, each of which is one bit in length.
These bits may be examined by typing "escape M+l/" as follows:

\M+l/

DBUGR will respond on the same line with an octal digit between 0 and
3 that is the status word. This octal digit may be broken down into
two binary bits (EO) which are interpreted as follows:

E (bit l of \M+l) = 0 extend register is clear
1 extend register is set

O (bit 0 of \M+l) = 0 overflow register is clear
1 overflow register is set

The user may modify these bits immediately after examining them by
typing in the new octal digit to replace the status word.

XI-6

DBUGR INTERACTIVE DEBUGGING

Memory locations M+3 and M+4 may be thought of as containing the X and
Y registers. Tl1e x-register may be examined by typing "escape M+3/"
as follows:

\M+3/

The Y-register may be examined by typing "escape M+4/" as follows:

\M+4/

DBUGR prints out the contents of the X or Y registers on the same
line. They may then be modified if desired. Note that the X and Y
registers are a full 16 bits wide. For example:

0/

\M+l/

\M+3/

\M+4/

000010

7

677

50

11-9. SETTING A LABEL

[CR] user types 0/ to examine A-register

6[CR] user clears the overflow register

O[CR] examine and clear the x-register

-l[CR] change the Y-register from octal
50 to 177777 (two's complement of -1)

DBUGR can reference memory locations relative to a label. A label
consists of one to six alphanumeric characters, the first of which
must be alphabetic. To equate a label to a particular memory location,
the user must first examine the memory location. After DBUGR has
displayed the contents of the memory location, the label is entered
followed by a colon (:). DBUGR then equates the label with the
examined address. For example, the label S is equated with memory
location 50234 as follows:

50234/ LOA 50277 S: [CR]

Location 50237 may now be referenced by typing:

S+3/

11-10. EXECUTE PROGRAM

To proceed with execution of the user program when DBUGR has control,
the user types "escape P":

\P

Upon initial entry to DBUGR, execution proceeds at the transfer
address of the program. When a breakpoint is encountered, execution
resumes at the instruction where the breakpoint was set.

XI-7

DBUGR INTERACTIVE DEBUGGING

When proceeding from a breakpoint, the user has the option of typing:

n\P

DBUGR will then execute the breakpoint octal n times before it will
break at it.

If the proceed instruction is given and there is no breakpoint in the
program, DBUGR displays the following message before control returns
to the executing program:

END DBUGR

The user may instruct DBUGR where to resume execution of the program
by typing the address of the instruction to be executed, followed by
"escape G". For example, to resume program execution at location
50 234, type:

50234\G

11-11. BREAKPOINTS

When an instruction with a breakpoint is encountered, control is
transferred to DBUGR immediately prior to the execution of the
instruction with the breakpoint. DBUGR displays information about the
state of the machine, and the user may then enter any legal DBUGR
command.

A breakpoint
followed by
type:

50 234\B

is set at an address by entering the octal address
"escape B". For example, to set a breakpoint at 50234,

Only one breakpoint is allowed at a time.

A breakpoint that has been set is cleared either by resetting it to a
new memory location, or by typing "escape B" at the beginning of a
line:

\B

XI-8

DBUGR INTERACTIVE DEBUGGING

If the executing program reaches a breakpoint, control returns to
DBUGR. DBUGR then displays the following information about the state
of the machine:

ADDRESS(INSTRUCTION) A-REG B-REG X-REG Y-REG STATUS -

where:

ADDRESS is the address of the breakpoint

INSTRUCTION is the contents of the ADDRESS

A-REG,B-REG,X-REG,Y-REG are the contents of the registers

STATUS is the status of the extend and overflow bits

For example:

50234\B

\P

as explained in the section on examining registers

set breakpoint at 50234

proceed with execution

50234(LDA 50277) 77 11 177776 3 3 \P
breakpoint information displayed, user types \P to proceed

50234 (LDA 50277) 77 0 177776 3 3 [CR]
breakpoint encountered again1 B-REG has changed to 0

1/

\P

0 ll[CR] change B-REG to octal 11

proceed

When a segmented program has been loaded with the command:

*RU,LOADR,,filename,,DB

use the following commands to control the setting of breakpoints
within segments:

["A]\B

["N]\B

[seg]\B

break at entry to all segments

break at entry to no segments

break at entry to seg

XI-9

DBUGR INTERACTIVE DEBUGGING

To set a breakpoint within a segment, enter the following command:

addr [seg] \B

where:

addr is the address within the segment at which the breakpoint
is set.

seg is the name of the segment in which the breakpoint is set.

The breakpoint will be set when the segment is loaded into memory.
Therefore the current breakpoint will remain in effect until the
segment is loaded. If seg is in memory at the time that the segment
break command is entered, the current breakpoint is cleared
immediately.

When a segment load clears a breakpoint, DBUGR will break at the start
of the new segment and print the following message:

SEGMENT seg BREAK
--BREAKPOINT INFORMATION--

addr BREAKPOINT REMOVED

where:

seg is the name of the new segment

BREAKPOINT INFORMATION is the normal breakpoint information

addr is the address at which the old
breakpoint was removed

DBUGR does not check the validity of the segment name. The segment
name may not begin with the two characters quote A ("A) or quote N
("N). This is to avoid confusion in setting the breaks in segment
entry points as explained above.

DBUGR will not allow breakpoints below the memory protect fence or
outside the user's partition. An attempt to set such a breakpoint will
cause a memory protect ("MP?") or a dynamic mapping ("DM?") error
message to be printed.

There are certain legal instructions that DBUGR cannot execute without
causing memory protect (MP) or dynamic mapping (DM) errors. The
instructions "JSB EXEC" and "JSB $LIBR" are two typical examples. When
such a situation arises, DBUGR will not allow execution of the
instruction, and prints out a message of "DM?" or "MP?" depending on
the error that execution of the instruction would cause. To execute
the instruction, simply move the breakpoint and proceed.

XI-10

DBUGR INTE.RACTIVE DEBUGGING

11-12. TRAC ING

When DBUGR has control, the instructions of a program can be traced
(single-stepped) by typing "escape T". After each instruction is
executed, the same information about the state of the machine will be
displayed as after a breakpoint. For example:

50234\B

\P

set a breakpoint at 50234

proceed

50234(LDA 50277) 77 11 177776 3 7 \T
breakpoint information displayed, start trace

50235(ADA 50101) 100 11 177776 3 7 \T
breakpoint information displayed, continue trace

50236(LDB 50282) 107 11 177776 3 7

A specified number of instructions can also be traced by specifying an
octal number before the trace command. Type:

n\T

to trace octal n instructions and halt.

When DBUGR attempts to trace ~n instruction that will cause a memory
protect or dynamic mapping violation, an "MP?" or "DM?" error will be
printed. If the instruction is legal, put a breakpoint on the
instruction to which control will return and then proceed.

Note: Privileged routines (see the RTE-IV Subroutines Library, Section
X) cannot be traced.

XI-11

DBUGR INTERACTIVE DEBUGGING

11-13. DBUGR ERROR MESSAGES

DBUGR recognizes certain errors and prints an error message. Table
11-2 lists the errors and their meanings.

Table 11-2. DBUGR Error Messages

+---+
I I

Error I Meaning I

X The user pressed the RUBOUT key to erase a typing
mistake DBUGR ignores any prior partial expression.

? The user entered an unassigned control. Any prior
expression is ignored.

u The symbol last used is undefined, and a definition is
required. The entire preceding expression is ignored.

P? Page error. A memory reference instruction referenced an
address not in the current page or the base page. The
expression is ignored. DBUGR's conception of the "current
page" can be changed by examining any location in the
desired page.

MP? There is a breakpoint or trace set for an instruction
that if executed by DBUGR would cause a memory-protect
violation to occur. Move the breakpoint and proceed.

IN? There is a breakpoint or trace set for an instruction
from which DBUGR cannot proceed. Move the breakpoint
and proceed.

DM? DBUGR is attempting to access a memory location that is
not within the user's partition.

TP?
I
I
I
I

DBUGR is attempting to overload, trace, or set a
breakpoint within DBUGR.

+---+

XI-12

DBUGR INTERACTIVE DEBUGGING

11-14. DBUGR EXAMPLE

The following example demonstrates a typical session with DBUGR.

*RU,PROG (Execute program loaded with DBUGR.)

STAR'r DBUGR

16002/ CCA

23456/ NOP

S+5\B
\P

M:

S:

SEGMENT SEGl BREAK
s (0) 17542 5608 17702 22 6
S+5 BREAKPOINT REMOVED

S + 5 [S EG 2] \B

\P

SEGMENT SEG2 BREAK
S+5 (0) 17542 5606 45 22 4

examine location 16002 in the main
program: equate 16002 to M.
examine location 23456 in the
segment: equate 23456 to S.
use escape B to set a breakpoint
and proceed

since a breakpoint was removed,
a break is executed upon entry
to the segment

set a breakpoint within SEG2

proceed

break at S+S in SEG2.

M+50\B set a breakpoint within the main

S+l0[SEG4]\B set a future breakpoint in SEG4

\P proceed

M+50 (LDA M+700) 0 2234 54 72 5 break in main

M 700/ ALF,ALF = 1727 1777[LF] examine location M+700, temporary
octal display,change contents
to 1777

M+701/ 0 [CR] next location automatically displayed

M+700/ ALF,CLE,SLA,ALF [CR] re-examine location M+700

2\T trace two instructions

M+SO (LDA M+700) 0 2234 54 72 5 breakpoint instruction is executed

M+51 (STA M+701) 1777 2234 54 72 5 \P next instruction is
executed: proceed with execution

XI-13

DBUGR INTERACTIVE DEBUGGING

SEGMENT SEG4 BREAK
s (0) 17445 5562 7422 3322 5
M+50 BREAKPOINT REMOVED

\P

a segment breakpoint was removed, so
break upon entry to the segment

S+lO (JSB 112,I) 24 0 177777 55 6 Break at S+lO in SEG4.

["N] \B

\P

END DBUGR

XI-14

clear segment breakpoint

proceed

+--+---------------------+ I I I
I ME."'iORY AND I/O RECONFIGURATION I SECTION XII I
I I I
+--+---------------------+

The ability to reconfigure the I/O and memory assignments during
system boot- up without going through a complete, new system generation
is a feature of the RTE-IV operating system. The reconfiguration
option is exercised during system boot-up through s-register settings
(described below) in order to postpone completion of the boot-up
process and schedule an interactive Conf igurator program that performs
the desired I/O and/or memory reconfiguration.

I/O reconfiguration is performed by user resassignment of I/0 devices
to octal select codes other than those assigned at system generation
time.

Memory reconfiguration includes changing the size of the System
Available Memory (SAM) extension, redefining user partitions,
modifying program page requirements and assigning programs to
partitions. Defective pages in memory (pages with parity errors) can
be avoided by using the Conf igurator to redefine the SAM extension and
user partitions around the defective pages.

I/O and memory reconfigurations (either or both) can be made permanent
by changing the system on the disc.

12-1. SCHEDULING THE CONFIGURATOR FROM DISC LOADER ROM

If a disc loader ROM is used to load the boot-extension into memory
during system boot-up, the Configurator can be scheduled by setting
bit 5 of the s-register, in addition to the s-register settings for
the disc loader ROM. The example given below assumes the system
boot-up will be performed using the 12992B RPL-compatible
7905/7906/7920 Disc Loader ROM, and that the Boot Extension resides on
physical track 0, sector 0 of the system disc.

XII-1

MEMORY AND I/O RECONFIGURATION

Begin the boot-up by performing the following steps:

1. Select the S-register for display on the computer front panel.

2. Press CLEAR DISPLAY

3. Set the s-register bits for the disc loader ROM. In addition, set
bit 5 of the s-register for I/O or memory reconfiguration:

Bits

0-2

3-4

5

6-11

12

13

14-15

Enter

Surface number of the disc where the
RTE-IV system subchannel starts (surface
numbers start at 0).

0 (reserved).

1 to specify reconfiguration is to be
performed. A HLT 77B will be issued at
the end of the load.

Octal select code of the disc.

1 to indicate a manual boot from
the S-·reg iste r.

0 (reserved) •

Loader ROM selection (number of the
ROM cell containing the Disc Boot
Loader).

4. Press PRESET, IBL, PRESET (again) and RUN to load the contents of
the Disc Loader ROM. A successful load will be indicated when the
HLT 77B occurs.

XII-2

MEMORY AND I/O RECONFIGURATION

5. Following the HLT 77B, set the S-register as follows:

Bits

0-5

6-11

Enter

System console octal select code if either
the select code or device type is different
from generation specification: otherwise, 0.

System disc octal select code if different
from generation specification: otherwise, 0.

0 (reserved) 12-14

15 1 to specify reconfiguration of I/O (including disc
and console, above) and/or memory assignments.

6. Press RUN to perform reconfiguration processes.

12-2. SCHEDULING THE CONFIGURATOR FROM BOOTSTRAP LOADER

If the Bootstrap Loader is used to load the Boot Extension into
memory, set the s-register as decribed above in Step 5 when the HLT
77B occurs.

Set the P -r e g i st e r
reconfiguration.

to

12-3. CONFIGURATOR PROGRAM

100 octal and press RUN to perform

The Configurator works interactively with the user to make specified
changes to the current I/O and memory configurations. Reconfiguration
is performed in accordance with user responses to a series of
Conf igurator prompts and queries output on the system console. When
reconfiguration is completed, the Configurator queries whether it is
to be made permanent. Boot-up of the RTE-IV system is then completed
in accordance with the user's reply.

The Configurator is divided into two programs: $CNFG and $CNFX. $CNFG
is a module located at the end of the system modules. After
configuration has completed, the memory area occupied by $CNFG is
allocated to SAM. $CNFX is used to reconfigure memory and is a Type 3
disc resident program, brought into the user partition area from disc
by the $CNFG program. $CNFG changes $CNFX's program name to",,,,,"
and therefore $CNFX cannot be executed on-line.

XII-3

MEMORY AND I/O RECONFIGURATION

The Configurator program first checks the contents of the s-register.
If bit 15 is set, I/O and memory reconfiguration are performed. The
system is reconfigured in accordance with any specified new disc and
console select codes. Entering invalid disc and console select codes
in the s-register will cause the system not to function properly. The
Configurator then loads the driver partitions, memory resident library
and memory resident programs (if they are defined for the system) into
memory.

If bit 15 is not set in the s-register, control is given to the
operating system.

Reconfiguration is performed interactively by using the system console
and list device. Note that the standard method of getting system
attention by pressing any key on the system console will not work
during reconfiguration, since the system is not yet completely
initialized. ~e bootup procedure must therefore be restarted if any
equipment I/O errors occur (e.g., a device not ready or a parity
error).

12-4. CONFIGURATOR HALTS AND ERROR MESSAGES

various halts and Configurator error messages may occur during system
boot-up or reconfiguration that require corrective action by the
operator. Halts are displayed on the computer front panel. System
boot-up and configuration HLTs, their meaning and required operator
action are itemized in Table 12-1 at the end of this section.

Whenever the user enters an invalid response to a Conf igurator prompt
or query, the Conf igurator will issue an error message in the form

CONFIG ERR xx

where xx is a Conf igurator error code as defined in Table 12-2 at the
end of this section. Following the error message, the Configurator
will usually repeat the prompt or query and the user need only enter
the correct response. In the reconfiguration procedures given below,
only error recovery procedures requiring further action will be
described in text.

12-5. RECONFIGURATION PROCEDURES

The Conf igurator begins
displaying the message

START RECONFIGURATION

the reconfiguration process by first

on the system console, and followed by a set of queries to which the
user enters responses on the console keyboard. The Configurator will
redisplay a query if the user response is not what was expected.

XII-4

MEMORY AND I/O RECONFIGURATION

The Conf igurator next displays the query

LIST DEVICE LU#?

Enter a Logical Unit number to which the Conf igurator can direct
listings or press the space bar and RETURN key on the console keyboard
for the default case, which is the system console. Entering a list
device other than the system console causes the Conf igurator to
display the following message:

LIST DEVICE SELECT CODE#?

Enter a list device select code or press the space bar and RETURN key
for the default case, where the default is the list device select code
configured into the system.

If the entered list device was not the system console, the
Conf igurator displays the query

ECHO? (YES/NO)

Enter YES to have all output to the list device echoed on the system
console.

12-6. I/O RECONFIGURATION STEPS

I/0 reconfiguration is performed by assigning the Interrupt Table and
trap cell values for the current select code to the corresponding
entries for the new select code.

The Configurator first prompts for I/O reconfiguration by displaying a
list of the current I/O configuration, beginning with octal select
code 10 for the operating system, in the format:

CURRENT I/O CONFIGURATION:

+-- --+
EQTyy I PNAME I

SELECT CODE xx = TBG [,TYPE nn I
PRIV I/O I nnnnnn I

+-- --+

XII-5

MEMORY AND I/O RECONFIGURATION

where:

xx =octal select code number ranging from 10 to 77.

EQTyy = EQT entry number

TBG = Time Base Generator

PRIV I/O = privileged I/O card

TYPE nn = equipment type code

PNAME = name of program to be automatically scheduled

nnnnnn = absolute instruction to be executed upon interrupt: for
example, a JSB LINK,! where LINK contains the entry
point address.

The CURRENT I/O CONFIGURATION data is automatically displayed to
provide a basis on which to make decisions regarding reconfiguration.
If the system disc, system console or the list device were assigned to
a new select code, they have already been configured in memory and
must NOT be reconfigured during I/O reconfiguration.

The list does not include the select codes previously configured to
the system disc, system console, or list device that have been
reconfigured via the SWITCH register at bootup. However, these
previously-occupied select codes are still available for reassignment.
Also, those devices formerly occupying the select codes now
reconfigured to the system disc, console, or list device may be
reassigned if referenced by their old select code.

Following display of the current configuration, the Configurator then
displays the query

I/O RECONFIGURATION?(YES/NO)

Enter NO to bypass I/O reconfiguration. The Conf igurator will skip all
further I/O reconfiguration prompts and begin prompting for memory
configuration entries (see below).

XII-6

MEMORY AND I/O RECONFIGURATION

Enter YES if I/O is to be reconfigured. The Configurator program will
then display the message

CURRENT SELECT CODE#,NEW SELECT CODE#?(/E TO END)

where the hyphen (-) prompts entry of the current and new select code
pairs. The current and new select codes response must be in octal and
must vary between 10 and 77 octal, in the form

xx,yy

followed by a carriage return, where xx is the current select code
number and yy is the new select code number. The Configurator's hyphen
prompt will be repeated after each successful entry until a /E is
entered to terminate the list.

A privileged I/O card's assignment can be removed by entering the
current select code number of the privileged I/O card followed by
zero, in the form

xx,O

where select code 0 is only used to remove the privileged I/O card's
assignment. A new value of 0 will be assigned to the privileged I/O
card.

+---------------------------------------+
I CAU'l.1 I ON I
I I
I A privileged driver will not work I
I correctly if the privileged I/O card I
I has been removed from the system. I
+---------------------------------------+

A privileged I/O card can be added to a system that does not have one
by entering the specification

xx,PI

where xx is the specified select code in octal, and PI assigns the
privileged I/O card to select code xx.

If a /R is entered, I/O reconfiguration is restarted with display of
the CURRENT SELECT CODE#, NEW SELECT CODE#?(/E TO ENO) query.

If the current select code number entry is repeated in more than one
response, the last entry is taken as valid and the previous entries
are ignored.

XII-7

MEMORY AND I/O RECONFIGURATION

Following entry of a
Configurator prints a

/E to terminate select code changes, the
list of the NEW I/O CONFIGURATION. The next

query· displayed is:

NEW I/O CONFIGURATION PERMANENT?(YES/NO)

Enter YES to modify the system on the disc to the new I/O
configuration. Enter NO otherwise. If it is desirable to restart I/O
reconfiguration for any reason, enter the request

/R

and I/O reconfiguration will restart by another display of the list

CURRENT I/O RECONFIGURATION:

The list will contain what the I/O configuration was changed to during
the reconfiguration just completed.

CAUTIONS:

1. It is strongly recommended that the system subchannel of the disc
be backed up before making I/O reconfiguration permanent.

2. If a select code has been given a new assignment and its current
I/O device has not been reassigned, the I/O device cannot be added
to the system at a later date if the new I/O configuration is made
permanent.

3. If a device has multiple select codes, make sure that all select
codes are moved and kept in the same relative order.

4. Reassigning some devices to empty I/O slots may cause unexpected
results.

12-7. MEMORY RECONFIGURATION PROCEDURES

After the I/O reconfiguration phase is either bypassed or terminated,
the Conf igurator will display the following statement and query:

CURRENT PHYSICAL MEM SIZE: xxxx PAGES
MEM RECONFIGURATION?(YES/NO)

Enter NO
will then
the message

if memory reconfiguration is not desired. The Conf igurator
transfer control to the operating system after displaying

RECONFIGURATION COMPLETED

XII-8

MEMORY AND I/O RECONFIGURATION

Enter YES if memory is to be reconfigured. The Configurator will then
display the query

PHYSICAL MEM SIZE?(#PAGES)

Enter the desired total number of memory pages, between 48 and 1024
(decimal) •

12-8. EXCLUDING BAD PAGES

The Configurator program can be used to redefine the SAM extension and
user partitions to exclude any bad pages {pages containing parity
errors) within these areas. Each user partition must be a contiguous
block of memory~ therefore, user partitions must be defined on blocks
of memory between the bad pages. Bad pages in the system area, driver
partitions and the memory resident area cannot be avoided.

The Conf igurator displays the query

DEFINE BAD PAGES BEGINNING AT PAGE xxxx (/E TO END)

where the hyphen (-) prompts for the decimal number of a bad memory
page. The hyphen is repeated after acceptance of each entry until a /E
or 100 bad page numbers are entered, terminating the list. (The
Configurator will accept up to 100 bad memory page entries.) The bad
page specifications entered can range from xxxx to the maximum page
number in physical memory and must be entered in an increasing order.

If /R is entered in reponse to the hyphen prompt, the Configurator
will redisplay the query

DEFINE BAD PAGES BEGINNING AT PAGE xxxx (/E TO END)

and the entire list of bad pages must be re-entered.

When a /E is entered either to terminate bad page entries or bypass
the entire phase, the Configurator displays the following information:

CURRENT SIZE OF SAM DEFAULT: xxxxx WORDS EXTENSION: yy PAGES
SAM EXTENSION STARTS AT PHYSICAL PAGE xx MAX PAGES AVAIL FOR
SAM EXTENSION: xx

The number of words displayed for default SAM are the decimal number
of words assigned to the first block of SAM.

XII-9

MEMORY AND I/O RECONFIGURATION

12-9. SAM EXTENSION RECONFIGURATION

The Configurator next prompts for any desired change in the size of
SAM extension by displaying the query

CHANGE SAM EXTENSION? (i PAGES/" " CR)

Press the space bar and RETURN key (the default case) if no change is
desired.

Enter the decimal number of pages desired if the SAM extension is to
be changed. The number of pages can vary from 0 (which removes SAM
extension) to the maximum pages available for the SAM extension. Note
that this count must not include any bad pages that fall within the
SAM extension (see above).

The Configurator sets up the System Map to avoid bad pages in the SAM
extension regard1ess of whether or not a change was requested.

If the specified
memory because of
displays the message

SAM extension extends beyond the size of physical
bad pages within this area, the Configurator

CONFIG ERR 12
CHANGE SAM EXTENSION?(# PAGES/" " CR)

Enter a smaller number of pages for SAM extension size. The
Conf igurator allows SAM extension to be divided up into a maximum of
five blocks of memory between bad pages. If the number of pages in SAM
extension requires division into more than five blocks, the
Confi9urator displays the message

CONFIG ERR 22

and the query is redisplayed. Enter a smaller size of SAM extension.

12-10. CHANGING PARTITION DEFINITIONS

The Configurator next displays a list of current partition definitions
is displayed in the format

CURRENT PART'N DEFINITIONS:

+-- --+ +-- --+
I , RT I I I

PART'N nn = pp PAGES I ,BG I I ,R I
I ,s I I I
+-- --+ +-- --+

XII-10

where

MEMORY AND I/O RECONFIGURATION

nn = the partition number

pp = is the number of pages in partition nn

RT = a real-time partition

BG = a background partition

s = a subpartition

R = a reserved partition

Following the definition list, the Configurator next displays a list
of current partition requirements in the form

where

CURRENT PART'N REQMTS:
REALTIME
PNAME XX PAGES [E] [PART 'N=nn]

BACKGROUND
PNAME XX PAGES [*] [E) [PART 'N= nn)

PNAME = the real-time or background program name

E = indicates an EMA (Extended Memory Area) program

* = indicates the background program does not include Table Area 1:
(i . e • , a •ry pe 4 p rag r am)

nn = is the number of the partition into which program PNAME is
assigned.

XI I-11

MEMORY AND I/O RECONFIGURATION

The Conf igurator then displays the following information:

where

MAX PROGRAM SIZE:
W/OUT COMMON: xx PAGES
W/COMMON: xx PAGES
W /TABLE I I : xx PAGES
MAX i OF PART'NS: xx
PAGES REMAINING: xx
DEFINE PART'NS FOR xxxx PAGES
#PAGES,RT/BG/S(,R)
PAR1r'N x?

MAX PROGRAM SIZE = maximum logical space a program may occupy.

MAX # OF PARrr 'NS

PAGES REMAINING

:#PAGES , Rr /BG/s (, R)

PART'N x?

However, the partition size may be larger
than the stated maximum if the partition
will be used for EMA program execution.

= decimal number of partitions that can be
defined in memory.

= decimal number of pages available for
defining user partitions (including bad
pages that may have been listed earlier).

= indicates the required format for user
entries in response to the PART'N x? prompt
des er i bed be 1 ow.

= Configurator program prompt asking the user
for the size (in pages) and format for the
next partition to be defined.

If the maximum number of partitions was defined as 0 during genera.tion
time, the Configurator skips the rest of memory reconfiguration and
displays the query

NEW MEMORY CONFIGURATION PERMANENT?

Since partitions must be defined contiguously, they must be within the
section of memory between the bad pages. If a section of memory
between bad pages has a size of one page, it is skipped by the
Configurator. The Configurator will prompt for a partition definition
after each accepted entry until partitions have been defined for all
xxxx pages in this section of memory.

XI I-12

MEMORY AND I/O RECONFIGURATION

As each entry is accepted, the Conf igurator will reissue the prompt
with a consecutively increasing partition number for the next
partition. If the number of pages entered for a partition is greater
than the maximum logical address space, the Configurator displays the
message

SUBPARTITIONS?(YES/NO)

Enter a NO if the configurator is to ignore subpartition
considerations and proceed with the normal partition definitions.

Enter a YES if subpartitions are to be defined. Subpartition
definitions are specified by using the following format in response to
the prompt:

iPAGES,S(,R)

where s specifies a subpartition and the optional R specifies the
subpartition is to be reserved.

The memory space allocated for subpartitions is the same area occupied
by the "mother" partition. Subpartition definition will end as soon as
an R'I' or BG partition is defined, or can be terminated by entering a
/E.

When an attempt is made to end the subpartition definition phase by
defining an RT or BG partition and there are no more pages left in
this section of memory, an ERR 13 will be displayed. In this case,
either enter a /E to terminate subpartition definitions and continue
partition definitions for the next block of memory, or enter /R to
restart the partition definition phase.

The total number of pages defined for subpartitions must not exceed
the size of the mother partition or an error code will be issued and
the last subpartition must be redefined.

The Configurator analyzes each partition definition for possible
errors as soon as it is entered. Any error code issued will be
followed by a prompt to redefine the last partition displayed. If /R
is, entered instead of a partition description, the partition
definition phase is restarted from the first partition definition.

XI I-13

MEMORY AND I/O RECONFIGURATION

Partitions defined for each section of memory between bad pages must
be defined for all pages available within the section. A running total
is maintained of the number 0£ pages currently defined within a
section of good memory. The Configurator will then take one of five
possible courses of action, depending upon the prevailing memory
structure and size:

1. If the remaining total equals the number of pages available, the
Conf igurator automatically requests partition definitions for the
next section of good memory.

2. If the number of pages remaining to be defined is one, the
Conf igurator increments the last defined partition by one page and
then requests partition definitions for the next block of good
memory.

3. If the running total exceeds the number of available pages defined
within the memory block, the Configurator displays an error
message and prompts for the last partition to be redefined.

4. If the number of partitions already defined is equal to the
maximum number of partitions allowed and more undefined good pages
remain, the Conf igurator displays an error message and all user
partitions must be redefined. The Configurator will then prompt
for naw partition definitions and repeat the prompt after each
accepted entry.

5. If the running total is less than the number of pages in the block
of memory, definition for next partition is requested.

A 1 ist of NEW PART 'N DEFINITIONS will be issued to the list device
when all partitions have been defined.

12-11. CHANGING PROGRAM PARTITION ASSIGNMENTS

The Conf igurator performs a
assigned to a partition fits
unassigned if the program size
the partition: number does
Configurator will issue a list

UNASSIGNED PROGS

followed by the query

check to ensure that every program
its partition size. A program will be
is larger than the partition size or if
not exist. Following the check, the
under the heading

MODIFY PROG PAGE REQMTS? (/E TO END)
PNAME, #PAGES

XII-14

MEMORY AND I/O RECONFIGURATION

Enter the specifications for any disc resident programs whose page
requirements must be changed, using the format

program name,xx

where the number of pages entered for each program must include the
base page. The number of pages must be greater than or equal to the
program relocation size, and less than or equal to the maximum address
space for the program. The program may only be Type 2, 3 or 4.

The hyphen prompt will be repeated after acceptance of each entry
until a /E is entered to terminate the list.

Note that the page requirements for an EMA program cannot be modified.

12-12. PROGRAM PARTITION ASSIGNMENTS

The Configurator now asks if any programs need to be assigned to
partitions by displaying the query and prompt

ASSIGN PROG PART'NS?(/E TO END)
PNAME, PART 'N #

where the hyphen prompt will be repeated after each accepted entry
until a /E is entered to terminate the list.

Enter each desired program partition assignment in the form

program name,xx

where xx is the partition number to which the program is to be
assigned. If xx is O, the program is unassigned and can be dispatched
to any partition of the proper type large enough to run the program.
The program must be a Type 2, 3 or 4. When a /E is entered to
terminate the list, the Configurator issues the query

NEW MEMORY CONFIGURATION PERMANENT? (YES/NO)

Enter a YES to a change the appropriate tables and locations on the
disc resident system. The Configurator then issues the message

RECONFIGURATION COMPLETED

and turns control over to the operating system.

If a /R is entered in response to the prompt instead of YES, memory
reconfiguration is restarted from the query

PHYSICAL MEM SIZE?(iPAGES)

and the system is in the state it was changed to during the earlier
reconfiguration.

XI I-15

MEMORY AND I/O RECONFIGURA'fION

12-13. RECONFIGURATION EXAMPLE

The sample reconfiguration illustrated in Figure 12-1 assumes that
reconfiguration was requested by setting the switch register as
described at the beginning of this section of the manual. In the
example, the shaded portion identifies a user response.

STARrr RECON1''IGURATION
LIST DEVICE LU#?
21
LIST DEVICE SELECT CODEI?
20
ECHO?(YES/NO)
~SS
CURRENT I/O CONFIGURATION:
SELECT CODE 10= TBG
SELECT CODE 1.3= EQT l,'l1YPE 32
SELEC'f CODE 14= EQ'r 6 ,'fYPE 0
SELECT COD~ l~= EQT 7,TYPE 1
SELECT CODE 16= EQr 3,TYPE ~3
SELECT CODE 17= E~T J,TYPE 23
SELECT CODE 20= EQT 5,TYPE 12
SELECT CODE 22= EUT 4,TYPE 2
SELECT COD~ 25= EUT 2,TYPE 5
I/O RECONF IGURA'rION? (YES/NO)

*SPECIFY A LIST DEVICE.

*SPECIFY LIST DEVICE'S SECLECT CODE.

*ECHO OU1rPU 1r ON LIST DEVICE.
*CURRENT I/O CONFIGURATION
* IS DISPLAY ED.

~':IS *SPECIFY' I/O RECONFIGURATION.
CURRENT SELECT CODE#,NEW SELECfr CODEiF?(/E ·ro END)

IQ#l.J4

14 tii5

1s1a::a

t6X126

J7~21

2z~liI

XI I-16

* RECONE'IGURE SELECT CODES.

Figure 12-1. Reconfiguration Example

MEMORY AND I/O RECONFIGURA'rION

NEW I/O CONFIGURATION: *NEW I/O CONFIGURATION
SELEC'r CODE 13= EQ'r l,iriYPE 32 * IS DISPLAYED.
SELECT COUE 14= TBG
SELECT CODE 15= EUT 6,TYPE 0
SELECT COD£ 16= EQT 7,TYPE 1
SELECT CODE 17= EQT 4,TYPE 2
SEL EC'r CODE 20= EQ'f 5, ·rYPE 12
SELECT CODE 23= EQT 3,TYPE 23
SELECT CODE 24= EQT 3,TYPE 23
SELECT CODE 25= EQT 2,TYPE 5
NEW I/O CONFIGURATION PERMANEN 1r? (YES/NO)
II *SPECIFY NONPERMANEwr.
CURRENT PHYSICAL MEM SIZE: 48 PAGES
· ... ·.·.~ ·.·.· EM ... ·.···.········.·.·.·.···.·.··.··· RECONt,IGURAT·ION? (YES/NO) Ill *SPECIFY MEMORY RECON FIGURA'I'ION.
PHYSICAL MEM SIZE?(#PAGES)
Ill *SPECU,Y AN INCREASE IN MEMORY SIZE.
DEF'INE BAD PAGES BEGINNING A1"' PAGE 28 (/E ·ro END)

CURRENT SIZE OF SAM:
DEFAULT: 3802 WORDS
EXTENSION: 0 PAGES

*SPECIFY TWO HAD PAGES.

SAM EXrl'ENSION S1rAR'l1 S A'l' PHYSICAL PAGE
MAX PA\.JES AVAIL l4"'0R SAM EX1'ENSION: 12
CHANGE SAM EXTENSION? (#PAGES/" "CR)

CURREN'r PAR1r 'N DEFINI 1l 1 IONS:
PAR1l1'N 1 = 20 PAGES ,BG
CURRENT PART'N REQMTS:
REAVrIME
BACKGROUND
$CNFX 3 PAGES
E DITR 16 PAGES
ASMB 16 PAGES
XREF 16 PAGES
LOADR 16 PAGES
WH ZA1f 3 PAGES
1'"'MGR 7 PAGES
RT4GN 20
SWTCH 11
SAVE 16
RS'I10R 16
COPY 16

PAGES
PAGES
PAGES
PAGES
PAGES

VERFY 16 PAGES

*INCREASE SIZE OF SAM.
*CURRENT PARTITION DEFINITIONS
* ARE DISPLAYED.
*CURREN 1r l'AR'l'I 1rION REQUIREMEN'l1S
* FOR VARIOUS PROGRA~S ARE
* DISPLAYED.

Figure 12-1. Reconfiguration Example (continued)

XI I-1 7

MEMORY AND I/O RECONFIGURATION

MAX PROGRAM SIZE:
w;ou·r COMMON: 29 PAGES
W/ COMMON: 29 PAGES
\v/ TABLE II: 2 7 PAGES
MAX # OF PART'NS: 15
PAGES REMAINING: 222
DEF I NE p AR'r, NS r"'OR 10 p AGES :
iPAGES, R1r/BG/S (,R)
PART 'N l.?
1(1 ..•••••. B.':I
DEFINE PAR'r'NS FOR 79 PAGES:
#PAGES,RT/BG/S(,R)
PART' N 2?
11;11•• ..
SUBPARTITIONS? (YES/NO)
RI
PART'N 3?
~1~11.t'I
PAR'I1 'N 4?

D EF'INE P AR'l' 'NS FOR 131 PAGES:
#PAGES ,RT /BG/S (, R)
PART'N 5?

SUBPARTITIONS? (YES/NO)
II~.
PART'N 6?
llil
PART'N 7?
.i9ci·1·
PAR1r 'N 8?

·1;1•·••jl
PART'N 9?

PAR'r 'N 10?

NEW PART'N DEFINITIONS:
PART'N 1 = 10 PAGES,RT
PART'N 2 = 49 PAGES,RT
PART'N 3 = 27 PAGES,RT,R
PART'N 4 = 3 PAGES,RT,R
PART'N 5 = 115 PAGES,BG
PART'N 6 = 48 PAGES,S
PART'N 7 = 29 PAGES,S
PART'N 8 = 29 PAGES,S
PART'N 9 = 9 PAGES,S
PART'N 10 = 16 PAGES,BG

*MAXIMUM PARTI'rION SIZES POR
* VARIOUS PROGRAM TYPES ARE
* DISPLAYED.

*R'r PAR'l1 I'rION TO 'l1HE fi'IRS'r BAD PAGE.

*RT PARTITION WITH NO SUHPARTITIONS.

*RT PARTITION WHICH IS RESERVED.

*.RT PAR1rITION 'wHICH IS RESERVED.

*BG MOTHER PARTITION BEGINS
* AFTER SECOND BAD PAGE.

*SUBPARTI'rION LARGER THAN 32K WORDS.

*SECOND SUBPARTITION.

*THIRD SUBPARTITION.

* F'OURTH SUBPART I'r ION.

*BG PAR11 ITION.
*NE\'V PARTITION DEFINITIONS
* ARE DISPLAYED.

Figure 12-1. Reconfiguration Example (continued)

XII-18

MEMORY AND I/0 RECONFIGURATION

UNASSIGNED PROGRAMS:
MODIFY PROG PAGE REQMTS?(/E TO END)
PNAME,iPAGES *SPECIFY NEW PROGRAM PAGE REQUIREMENTS.

RT4GN,27

ASMB,27

/E
ASSIGN PROG PART'NS?(/E TO END)
PNAME, PAR'r 'N # *ASSIGN PROGRAMS TO PARTITIONS.

RT4GN, 3

WHZAT,4

/E
NEW MEM CONFIGURATION PERMANENT?(YES/NO)
NO *DO NOT MAKE MEMORY CHANGES PERMANENT.

SET TIME
:SV, 4

TE,*****
TE,*****
TE,*****
TE,*****
TE,*****

*END OF I/O AND MEMORY RECONFIGURATION.
*SYSTEM WILL NOW ATTEMPT TO BOOTUP.

92067A R1rE-IV 7905 7906 7920 DISC CARTRIDGE
HP 92067-13101 (7905/7906)
HP 92067-13201 (7920)

Figure 12-1. Reconfiguration Example (continued)

12-14. BOOT-UP AND RECONFIGURATION HALTS

During either system boot-up or reconfiguration, various HLTS (of the form
1 0 20 xx) may be
issued on the computer front panel. The meaning of these halts and
any required opeator action are given in Table 12-1.

XII-19

MEMORY AND I/O RECONFIGURATION

Table 12-1. system Boot-up and Reconfiguration Halts
+------+-··------------~--------------------+---------------------------+
I HLT I Meaning I User Action I
+------+--------------~--------------------+---------------------------!

4 I Powerfail occurred and powerfail Restart system boot-up I

5

!OB

118

2213

30B

31B

SSB

automatic restart is enabled. procedure. I

Memory protect switch was set and
memory parity error occurred.

·.E\v1GR or D .R'l'R cannot be scheduled
at startup because there is not a
large enough partition (issued
by the system) .

Attempt was made to re-execute a
non-RPL compatible ROM Loader Part
129~2A, or Bootstrap Loader.

One of the following conditions
was encountered:
1. $CNFG cannot find an ID segment!
for Conf igurator extension $CNFX. I
2 . $CN F X i s not a Ty p e 3 p rog r am. I
3. A contiguous memory block of I
three good pages cannot be found I
in the user partition area. I

I
I

Error was encountered in the disc I
i/O process by one of the RPL-com-1
pa tible ROM L aader s Part # 12 99 2B & I
12992F. If the disc is a 7900 the I
disc status is displayed in the A-
register. If the disc is a 7905/20
the disc status word 1 is dis­
played in the B-register and disc
status word 2 in the A-register.

Error encountered in the disc I/O
process by the Boot Extension. If
the disc is a 7900, the disc
status is displayed in the A-
registe r. If the disc is 7905 or
7920, the disc status word 1 is
displayed in the a-register and
disc status word 2 is displayed
in the A-register.

An EQT with the equipment type
code of console cannot be found.

Re3tart system boot-up
procedure.

I
I
I
I

Restart system boot- up I
and redefine memory to I
include a partition large I
enough for FMGR and D.RTRI

Reload the ROM Loader or
Bootstrap Loader before
re-executing.

Restart system boot-up
procedure·. If memory
reconfiguration is desired
$CNFX must be permanently
loaded as a Type 3 program
and there must be at least
3 good pages of contiguous
memory in the user parti­
tion area.

Retry the system boot-up
procedure.

Re try the sys tern boot- up
procedure.

Restart boot-up procedure
with a console for which
an EQ'r is generated in
the system.

+------+-----------------------------------+---------------------------+
XII-20

MEMORY AND I/O RECONFIGURATION

12-15. CONFIGURATOR ERROR MESSAGES

Whenever a user response to a Configurator prompt is illegal or
inappropriate, the Conf igurator issues a CONFIG ERR message and
prompts for a correct entry. All possible Configurator error codes are
listed sequentially in ·rable 12-2. Locate the appropriate code and
take the described action.

XI I-21

MEMORY AND I/O RECONFIGURATION

Table 12-2. I/O and Memory Reconfiguration Error Codes

+------------+-------------------------------+--------------------------+
I CONFIG ERR I Meaning I User Action I
!------------+-------------------------------+--------------------------
' 1 I Invalid LU number or a bit Enter valid logical unit
I bucket LU. number.
I

2

3

10

11

12

13

Illegal select c-0de number.

New select code entered is
identical to new select code
assigned to disc, system
console or list device, or
else the current select code
entered is identical to the
old select code for disc,
system console or list device
(i.e., do not reconfigure that
which was already done via the
SWITCH register).

Specif led total number of
pages outside the range.

I Invalid bad page number.

Specified SAM extension entry
beyond physical memory size
due to bad pages.

Current running total exceeds
available pages in block of
good memory or exceeds size
of mother partition.

Enter valid number that
must be between 10 and
77 octal.

Enter different select
code.

Enter valid number in the
range 48-1024 for
physical memory size and
between 0 and maximum
pages available for SAM
ex tension.

Enter valid number
greater than the previous
entry and less than the
physical memory size, or
enter /E to terminate the
list.

Enter smaller number of
pages for SAM extension.

Redefine last partition
or subpartition size. If
there are no more pages
available in the block of
memory to be defined, /E
or /R are the only
responses accepted.

+------------+-------------------------------+--------------------------+

XII-22

MEMORY AND I/0 RECONFIGURATION

Table 12-2. I/O and Memory Reconfiguration Error Codes (cont'd)

+---------·---+-------------------------------+--------------------------+
I I I
I CONFIG ERR I Meaning I User Action
------------+-------------------------------+--------------------------14 Second parameter of partition Reenter definition with

15

16

17

18

19

20

21

22

definition entry other than correct parameter.
RT, BG or s, or else s was
entered when a subpartition
definition was ~ot expected.

Third parameter of partition
definition entry other than
R.

No such program, or the name
of a segment was entered or
invalid ~ype was entered for
partition assignment.

Invalid partition number.

Program does not fit in the
assigned partition.

Invalid number of pages was
entered for program size.

Number of defined partitions
already equal to allowed
maximum number and more un­
defined pages remain.

Page requirements of an EMA
program cannot be modified.

Number of pages in SAM exten­
sion requires division into
more than five blocks.

Reenter definition with
R as third parameter if
partition is to be
reserved.

Reenter assignment with
correct program naroe or
type or /E to end this
sequence.

Enter valid number or /E
to end this sequence.

Assign program to larger
partition if available,
or continue without
as s i g n in g the p r og r am .

Enter valid number of
pages for program, be­
tween the size of the
program at load time and
the maximum logical
address space for the
program.

Redefine all partitions

Entry is skipped.

Enter a smaller size of
SAM ex tension

+------------+-------------------------------+--------------------------+

XII-23

I

MUMI
~~~~~~-H_P_C_H_AR_A_CT_E_R_S_ET~.1 A I 

9206- 1 A 

b1 b 
6b5 

BITS 

b4 b3 b2 b1 

0 0 0 0 

0 0 0 1 

0 0 1 0 

0 0 1 1 

0 1 0 0 

0 1 0 1 

0 1 1 0 

0 1 1 1 

1 0 0 0 

1 0 0 1 

1 0 1 0 

1 0 1. 1 

1 1 0 0 

1 1 0 1 

1 1 1 0 

1 1 1 1 

Effect of Control key • 

r- ~ 
1-4-ooo-037B __...1-4- 040-077B__..r---100-137B-.1-4-140-111B-..j 

00 
0 

00 
1 

01 
0 

01 
1 

1o 
0 

1o 
1 

11 
0 

11 
1 

~ 0 1 2 3 4 5 6 7 
ROW t 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

NUL OLE 

SOH DC1 

STX DC2 

ETX DC3 

EOT DC4 

ENO NAK 

ACK SYN 

BEL ETB 

BS CAN 

HT EM 

LF SUB 

VT ESC 

FF FS 

CA GS 

so RS 

SI us 

32 CONTROL 
CODES 

SP 0 

I 1 
,, 

2 

# 3 

$ 4 

% 5 

& 6 
I 

7 

( 8 

) 9 . : 

+ ; 

< 
- = 

> 
I ? 

@ 

A 

B 

c 
D 

E 

F 

G 

H 

I 

J 

K 

L 

M 

N 

0 

p 

a 
A 

s 
T 

u 
v 
w 
x 
y 

z 
[ 

\ 
1 

/\ 

-

Upshifted 
Lower Case 

.......__ 64 CHARACTER SET -----1 

\ 

p 

a q 

b r 

c s 

d t 

e u 

f v 

g w 

h x 

i y 

j z 

k { 

I I 
I 

m } 

n 
,.._, 

0 DEL 

.,.__ 96 CHARACTER SET --------~ 
1 .... -------~128CHARACTEASET~---------~ 

EXAMPLE: The representation for the character "K" (column 4, row 11) is. 

BINARY 

OCTAL 

t>., b5 b5 b4 b3 b2 b1 

0 0 1 0 1 1 .__.. .__.. 
3 

• Depressing the Control key while typing an upper case letter produces 
the corresponding control code on most terminals. For example, 
Control- H is a backspace. 

A-1 



Decimal 
Value 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

127 

9206- 1 B 

Octal Values 

HEWLETT-PACKARD CHARACTER SET FOR COMPUTER SYSTEMS 

This table shows HPs 1mplementat1ori of ANS X3 4-1968 (USASCll) and ANS X3.32-1973 Some devices may substitute 
alternate characters from those shown 1n this chart (for example. Line Drawing Set or Scandanav1an font) Consult the manual 
for your device 

The left and right byte columns show the octal patterns 1n a 16 brt word when the character occupies bits 8 to 14 (left byte) or O 
to 6 (right byte) and the rest of the bits are zero To find the pattern of two characters in the same word. add the two values. For 
example. "AB produces the octal pattern 040502 (The parity bits are zero in this chart.) 

The octal values 0 through 37 and 1 77 are control codes The octal values 40 through 176 are character codes 

Octal Values 
Mnemonic Graphic 1 Meaning Decimal Character 

Left Byte Right Byte Value Left Byte Right Byte 

000000 000000 NUL ~ Null 32 020000 000040 

000400 000001 SOH ~ Start of Heading 33 020400 000041 I 

001000 000002 STX 5.ic Start of Text 34 021000 000042 " 
001400 000003 ETX EX End of Text 35 021400 00004~ # 

002000 000004 EOT ~ End of Transmission 36 022000 000044 $ 

002400 000005 ENO Ea Enquiry 37 022400 000045 % 

003000 000006 ACK '1< Acknowledge 38 023000 000046 & 

003400 000007 BEL 0 Bell. Attention Signal 39 023400 000047 
, 

004000 000010 BS ~ Backspace 40 024000 000050 ( 

004400 000011 HT ~ Horizontal Tabulation 41 024400 000051 ) 

005000 000012 LF LF Line Feed 42 025000 000052 • 
005400 000013 VT 

"'" 
Vertical Tabulation 43 025400 000053 + 

006000 000014 FF FF Form Feed 44 026000 000054 . 
006400 000015 CR ~ Carnage Return 45 026400 000055 -
007000 000016 so ~ Shilt Out } Alternate 
007400 000017 SI SI Shift In Character Set 

46 027000 000056 

47 027400 0~57 I 

010000 000020 OLE q_ Data Link Escape 48 030000 000060 0 

010400 000021 DC1 01 Device Control 1 (X-ON) 49 030400 000061 1 

011000 000022 DC2 02 Device Control 2 (TAPE) 50 031000 000062 2 

011400 000023 DC3 03 Device Control 3 (X-OFF) 51 031400 000063 3 

012000 000024 DC4 04 Device Control 4 (TAPE') 52 032000 000064 4 

012400 000025 NAK ~ Negative Acknowledge 53 032400 000065 5 

013000 000026 SYN ~ Synchronous Idle 54 033000 000066 6 

013400 000027 ETB E"a End of Transmission Block 55 033400 000067 7 

014000 000030 CAN ~ Cance! 56 034000 000070 8 
014400 000031 EM '1-., End of Medium 57 034400 000071 9 

015000 000032 SUB ~ Substitute 58 035000 000072 : 

015400 000033 ESC ~ Escape2 59 035400 000073 : 
016000 000034 FS FS File Separator 60 036000 000074. < 
016400 000035 GS ~ Group Separator 61 036400 000075 = 

017000 000036 RS Fils Record Separator 62 037000 000076 > 

017400 000037 us ~ Unit Separator 63 037400 000077 - ? 

077400 000177 DEL • Delete. Rubout3 

Meaning 

Space. Blank 

Exclamation Point 

Quotation Mark 

NlJfrlQer Sign, Pound Sig_n 

Dollar Sign 

Percent 

Ampersand. And Sign 

Apostrophe, Acute Accent 

Left (opening) Parenthesis 

Right (closing) Parenthesis 

Asterisk. Star 

Plus 

COmma. Cedilla 

Hyphen. Minus. Dash 

Period, Decimal Point 

Slash. Slant 

Digits. Numbers 

Colon 

Semicolon 

Less Than 

Equals 

Greater Than 

Question Mark 



Decimal 
Octal Values 

Value Left Byte Right Byte 

64 040000 000100 

65 040400 000101 

66 041000 000102 

67 041400 000103 

68 042000 000104 

69 042400 000105 

70 043000 000106 

71 043400 000107 

72 044000 000110 

73 044400 000111 

74 045000 000112 

75 045400 000113 

76 046000 00011'4 

77 046400 000115 

78 047000 000116 

79 047400 000117 

80 050000 000120 

81 050400 000121 

82 051000 000122 

83 051400 000123 

84 052000 000124 

85 052400 000125 

86 053000 000126 

87 053400 000127 

88 054000 000130 

89 054400 000131 

90 055000 000132 

91 055400 000133 

92 056000 000134 

93 056400 000135 

94 057000 000136 

95 057400 000137 

9206- 1C 

Character Meaning Decimal 
Octal Values 

Character Meaning 
Value Left Byte Right Byte 

@ Commercial At 96 060000 000140 \ Grave Accents 

A 97 060400 000141 a 

B 98 061000 000142 b 

c 99 061400 000143 c 

D 100 062000 000144 d 

E 101 062400 000145 e 

F 102 063000 000146 f 

G 103 063400 000147 g 

H 104 064000 000150 h 

I 105 064400 000151 I 

J 106 065000 000152 J 

K 107 065400 000153 k 

L 108 066000 000154 I 

M 109 066400 000155 m 

N 
Upper Case Alphabet. 

110 067000 000156 n Lower Case Letterss 

0 
Capital Letters 

111 067400 000157 0 

p 112 070000 000160 p 

Q 113 070400 000161 q 

R 114 071000 000162 r 

s 115 071400 000163 s 

T 116 072000 000164 t 

u 117 072400 000165 u 

v 118 073000 000166 v 

w 119 073400 000167 w 

x 120 074000 000170 x 

y 121 074400 000171 y 

z 122 075000 000172 z 

[ Left (opening) Bracket 123 075400 000173 { Left (opening) Braces 

" 
Backslash. Reverse Slant 124 076000 000174 I Vertical Lines 

I 

l Right (closing) Bracket 125 076400 000175 } Right (closing) Braces 

I\ r Caret, Circumflex; Up Arrow4 126 077000 000176 - Tilde. Overl1nes 

- - Underline; Back Arrow• 

Notes: 1This is the standard display representation. The software and hardware 1n your system determine 1f the control code 1s 
displayed. executed. or ignored. Some devices display all control codes as "@··.or space 

2Escape is the first character of a special control sequence For example. ESC followed by "J" clears the display on a 2640 
terminal. 

3Delete may be displayed as "-" "@", or space 

4Normally, the caret and underline are displayed. Some devices suhst1tute the up arrow and back arrow 

5Some devices upsh1ft lower case letters and symbols (' through - ) to the corresponding upper case character (@ through 
11. ). For example, the left brace would be converted to a left bracket 



RTE SPECIAL CHARACTERS 

Mnemonic 

SOR (Control A) 

EM (Control Y) 

BS (Control H) 

EOT (Control D) 

9206-lD 

A-4 

Octal Value 

1 

31 

10 

4 

Use 

Backspace (TTY) 

Backspace (2600) 

Backspace (TTY, 2615, 2640, 2644, 
2645) 

End-of-file (TTY 2615, 2640, 2644, 
2645) 



1----------------------------------------------t---------------------i 
I SYSTEM COMMUNICATION AREA AND SYSTEM TABLES I APPENDIX B I 
I I I 
+----------------------------------------------+---------------------+ 

This apppendix contains information about the following topics: 

* 

* 

* 

* 

SYSTEM COMMUNICATIONS AREA - Base page locations of area used for 
system communications. 

PROGRAM ID SEGMENT MAP - Format of ID segments kept in system area 
for user programs, ID segment extension, and short ID segments. 

MEMORY ALLOCATION TABLE (MA 1r) ENTRY FORMAT 

DISC LAYOUT - Allocation of disc space for an RTE-IV system. 

Other system tables relating to I/0 
Equipment Table, Device Reference Table 
des er i bed in Section V , 11 I n pu t /out. 11 

considerations, such as the 
and Driver Mapping Table are 

B-1. S YS'l'EM COMMUN! CATION AREA 

This area is a blocK of storage in the system base page, starting at 
location 1645 octal, that is used by RTE-IV to define request 
parameters, I/O tables, scheduling lists, operating parameters, memory 
bounds, etc. The RTE-IV Assembler allows relocatable programs to 
reference this area by absolute addresses 1645 through 1777 octal. 
user programs can read information from this area but cannot alter it 
because of the memory protect feature. 

The contents and description of each location in this area are listed 
in Table B-1. 

8-1 



SYSTEM COMMUNICATION AREA AND SYSrrEM 'rABLES 

'I'able B-1. System Communications Area Locations 

+---------------------------------------------------------------------+ 
I Octal Location I Contents I Description 

1----------------1 ----------1-----------------------------------------
1 SYSTEM TABLE DEFINITION 

1----------------1---------- -----------------------------------------! 01645 I XIDEX Address of current program's ID 
I extension 

01646 I XMATA Address of current program's MAT entry 
01647 I XI Address of index register save area 
01650 I EQrrA FWA of Equipment Table 
01651 I EQT# Number of EQT entries 
01652 I oR·r F1tiA of Device Reference -rable 
01653 I LUMAX Number of logical units in ORT 
01654 I INTBA F~A of Interrupt Table 
01655 I INTLG Number of Interrupt ·rable Entries 
016 56 I '11A'l' F~'/A of 'l'r acK Assignment '£able 
01657 I KEYWD F~A of keyword block 

----------------1---------- -----------------------------------------
1/0 MODULE/DRIVEH COMi.'"iUNICATIQ[~ 

----------------1----------1-----------------------------------------
01660 I EQTl \ I 
O 16 61 I EQ'r 2 I I I 
01662 I EQT3 I I 
01663 I EQT4 I I 
01664 I EQTS \ 
01665 I EQT6 I 
01666 I EQT7 I 
01667 I EQT8 I 
01670 I EQT9 I 
01671 I EQTlO I 
01672 I EQTll I 

I 

Addresses of first 11 words of 
current EQT entry (see 01771 for 
last four words) 

01673 I CHAN Current DCPC channel number 
01674 I TBG I/O address of time-base card 
01675 I SYSTY EQT entry address of system console 

1----------------1---------- -----------------------------------------
SYSTEM REQUES 1r PROCESSOR/EXEC COMMUNICATION 

----------------!---------- ----------------------------~------------
01676 I R~CNT Number of request parameters -1 
01677 I RQR'rN Return point address 

I 
01700 I RQPl \ 
01701 I RQP2 I 
01702 I RQP3 I 
01703 I RQP4 \ 
01704 I RQPS I 
0 17 0 5 I RQP 6 I 
01706 I RQP7 I 
01707 I RQP8 I 
01710 I RQP9 I 

Addresses of request parameters (set 
for a maximum of nine parameters) 

----------------!---------- -----------------------------------------

B-2 



SYS'I'EM COMMUNICATION AREA AND SYS'I'EM 1rABLES 

Table B-1. System Communication Area Locations (continued) 

+----------------+----------+-----------------------------------------+ 
I Octal Location I Contents I Description I 
1-----------------1----------1----------------------------------------1 
I SYSTEM LISTS ADDRESSES I 
1----------------1----------1-----------------------------------------1 
I 01711 I SKEDD I Schedule list header I 
I 01713 I SUSP2 I Wait Suspend list header I 
I 01714 I SUSP3 I Available Memory list header I 
I 01715 I SUSP4 I Disc Allocation list header I 
I 01716 I SUSPS I Operator Suspend list header I 
1----------------1 ----------1-----------------------------------------1 
I PROGRAM ID SEGMENT DEFINITION I 
1-----------~----1----------1-----------------------------------------1 
I 01717 I XEQT I ID segment address of current program I 
I 01720 I XLINK I Linkage address I 
I 01721 I XTEMP I Temporary addresses (five words) I 
I 01726 I XPRIO I Priority word address I 
I 01727 I XPENT I Primary entry point address I 
I 01730 I XSUSP I Point of suspension address I 
I 01731 I XA I A-register at suspension address I 
I 01732 I XB I B-register at suspension address I 
I 01733 I XEO I E and overflow register suspension 
I I I address 

1----------------1----------1-----------------------------------------
1 SYSrl'EM MODULE COMMUNICA'rION FLAGS 

1----------------1----------1-----------------------------------------
1 01734 I OPATN I Operator/keyboard attention flag 
I 01735 I OPFLG I Operator communication flag 
I 01736 I SWAP I RT disc resident swapping flag 
I 01737 I DUMlY1Y I I/O address of privileged interface card 
I 01740 I IDSDA I Disc address of first ID segment 
I 01741 I IDSDP I Position within disc sector of first 
I I I ID segment 

1----------------1----------1-----------------------------------------
1 MEMORY ALLOCATION BASES DEFINI'rION 

1----------------1----------1-----------------------------------------
01742 I BPAl I FWA user base page link area I 
01743 I BPA2 I LWA user base page link area I 
01744 I BPA3 I FWA user base page link I 
01745 I LBORG I FWA of resident library area I 
01746 I R'l1 0RG I FWA of real-time COMMON I 
0174 7 I R'I1COM I Length of real-time COMMON I 
01750 D I RrrDRA I F'WA of real-time partition I 
01751 D I AVMEM I LWA+l of real-time partition I 
017 52 I BGORG I FWA of background COMMON I 
01753 I BGCOM I Length of background COMMON I 
01754 D I BGDRA I FWA of background partition I 

----------------1----------1-----------------------------------------1 

B-3 



SYSTEM COMMUNICA'rION AREA AND SYSTEM TABLES 

Table B-1. System Communications Area Locations (continued) 

+----------------+----------+-----------------------------------------+ 
I Octal Location I Contents I Description I 

1----------------1----------1-----------------------------------------1 I UTILITY PARAMETERS I 
---------------- ----------1-----------------------------------------1 

01755 TATLG I Negative length of track assignment I 

01756 
01757 
01760 
01761 

01762 

01763 

01764 
01765 

01766 

01767 

01770 

01771 
01772 
01773 
01774 

TATSO 
SEC'r2 
SEC'r3 
DSCLB 

DSCLN 

SYSLS 

I SYSLN 
I LGOTK 
I 
I 
I LGOC 
I 
I SFCUN 
I 
I MPTFL 
I 
I 
I 
I 
I 
I 

EQrr 12 \ 
EQT13 \ 
EQT14 I 
EQT15 I 

I table I 
I Numoer of tracks on system disc I 
I Number of sectors/track on LU2 (system) I 
I Number of sectors/track on LU3 (aux.) I 
I Disc address of user available library I 
I entry points I 
I Number of user available library entry I 
I points. I 
I Disc address of system library entry I 
I points I 
I Number of system library entry points I 

LG Area: LU#, starting track, number of I 
tracks (same format as ID segment word I 
27) I 

Current LG Area track/sector address I 
(same format as ID segment word 26) 

LS: LUi and disc address (same format 
as ID segment word 26) 

Memory protect ON/OFF flag (0/1) 

Address of last four 
words of current EOT 

01775 D I FENCE Memory protect fence address 
I 01777 I BGLWA LWA memory background par tit ion 

1---------------------------------------------------------------------
1 D letter indicates the contents of the location are set dynamically 
I by the dispatcher. 
+---------------------------------------------------------------------+ 
B-2. PROGRAM ID SEGMEN'r 

Each user program has a 33-word ID segment located in Table Area II 
that contains static and dynamic information defining the properties 
of the program. The static information is set during generation time 
or when the program is loaded on-line. The dynamic information is 
maintained by the operating system Executive. 

B-4 



SYSTEM COMMUNICATION AREA AND SYSTEM TABLES 

The number of ID segments contained in a system is established during 
system generation, and is directly related to the number of programs 
that can be in main memory at any given time. If all the ID segments 
are in use, no more programs can be added on-line unless some other 
existing program is first "OFFed" (removed from the system) to recover 
an ID segment. 

The format of the ID segment is illustrated in Figure B-1. Each ID 
segments's address is located in the Keyword Table (see location 01657 
octa 1) • 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
+--1--1--1--1--1--1--1--1--1--1--1--1--1--1--1--+ 
I List Linkage 
1-----------------------------------------------
1 TEMP 1 
I TEMP 2 
I TEMP 3 
I TEMP 4 
I TEMP 5 
!-----------------------------------------------
! Priority 
I Primary Entry Point 
!-----------------------------------------------! Point of Suspension 
I A-Register 
I a-Register 
I EC-Registers 
1-----------------------1-----------------------
1 Name 1 I Name 2 
I Name 2 I Name 4 
I 1--1--1-- 1--1-----------
1 Name 3 ITMIMLl//ISSI Type 
1--1--1--1--1--1--1--1--1--1--1--1--1----------­
INAl//INPI WI Al//I Ol//I RI Dl/////I Status 
1--1--1--1--1--1--1--1--1--1--1-----1-----------

Tirne List Linkage 
--------1--1-----------------------------------

RES I TI Multiple I 
--------1--1---------------~-------------------I 

Low Order 16 Bits of Time I 
-----------------------------------------------1 High Order 16 Bits of Time I 
--1--1--1--1--1--1--1--1-----------------------1 
BAIFWI MIATIRMIREIPWIRNI Father ID Segment No. I 
--1--1--1--1--1--1--1--1--1--1-----------------1 
RPl#pgs. (no BP) I MPFI 1//1 Partition No. -11 
--1--------------1--------1--1-----------------1 

Low Main Address I 
-----------------------------------------------1 

Figure B-1. ID Segment Format 

Word 0 \ 

1 
2 
3 
4 
5 

6 
7 * 

8 
9 

10 
11 I 

I Memory 
12 *\ Resident 
13 */ Programs 

14 * 

15 

16 

17 

18 

19 

20 

21 

22 * 

B-5 



SYSTEM COMMUNICATION AREA AND SYSTEM TABLES 

!-----------------------------------------------! 
I High Main Address + 1 I 
1-----------------------------------------------1 I Low Base Page Address I 
1-----------------------------------------------1 
I High Base Page Address + 1 I 
1--1-----------------------1--------------------1 
I LU I Program: rrr ack I Sector I 
1--1-----------------------1--------------------1 LUI Swap: Track I No. Tracks 
1--1--------------1--------1--------------------
l ID Extension No. I EMA Size 

1-----------------1 -----------------------------
1 High Address + 1 of Largest Segment 
1-----------------------------------------------
1 Reserved 
1-----------------------------------------------
1 Reserved 

1-----------------------------------------------
1 Negative MTM LU number 
!-----------------------------------------------

where: 

23 *I 
I 

24 *I 
I 

25 */ 

26 * 
27 

28 

29 

30\ 

31 
\Memory 

/Residents 
32/ 

* = words used in short ID segments for program segments 

TM = temporary load (copy of IO segment is not on the disc) 

ML = memory lock (program may not be swapped) 

SS = short segment (indicates a nine-word ID segment) 

Type = specified program type (1-5) 

B-6 

NA = no abort (instead, pass abort errors to program) 

NP = no parameters allowed on reschedule 

w = wait bit (waiting for program whose ID segment address is 
in word 2) 

A = abort on next list entry for this program 

O = operator suspend on next schedule attempt 

R = resource save (save resources when setting dormant) 

D = dormant bit (set dormant on next schedule attempt) 

Figure B-1. ID Segment Format (continued) 



SYSTEM COMMUNICATION AREA AND SYS'rEM TABLES 

Status = current program status 

T = time list entry bit (program is in the time list) 

BA =batch (program is running under batch) 

FW = father is waiting (father scheduled with wait) 

M = Multi-Terminal Monitor bit 

AT = attention bit (operator has requested attention) 

RM = reentrant memory must be moved before dispatching program 

RE = reentrant routine now has control 

PW =program wait (some other program wants to schedule this one) 

RN = Resource Number either owned or locked by this program 

RP= reserved partition (only for programs that request it) 

MPFI = memory protect fence index 

Figure B-1. ID Segment Format (continued) 

B-7 



SYSTEM COMMUNICATION AREA AND SYSTEM TABLES 

B-3. ID SEGMENT EXTENSIONS 

Each EMA program requires a 3-word ID segment extension in addition to 
its 33-word ID segment. The program's ID segment word 28 will point to 
its ID segment extension. The number of ID extensions contained in the 
system is set at generation time, and if all are in use, no more EMA 
programs can be added on-line. The format of the ID segment is 
illustrated in Figure B-2. 

+--------------------------------------------------------------------+ 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
+--1--1--1--1--1--1--1--1--1--1--1--1--1--1--1-+ 
I I I I 
INSI Current MSEG No. I # Pages MSEGI 
1--1-----------1--1--------------1-------------1 
I MSEG Start IDEI (Physical) EMA Sta~t I 
I Page (logic.) I I Page I 
1--1-----------1--1----------------------------1 
1/////////////////1 # Tracks for EMA Swap I 
1/////////////////1 I 
+-----------------1 ----------------------------+ 
where: 

word O 

word 1 

Word 2 

NS = 0 if the MSEG is pointing to a standard segment of 
the EMA (set up by • EMAP) 

= 1 if the MSEG is pointing to a non-standard segment 
(set up by .EMIO or • EMAP) 

DE = 0 if the EMA size was specified by the user 

= 1 if the EMA size is allowed to default to the 
maximum size available to the system 

+--------------------------------------------------------------------+ 

Figure B-2. ID Segment Extension 

B-8 



SYSTEM COMMUNICATION AREA AND SYSTEM TABLES 

B-4. SHORT ID SEGMENTS 

Short ID segments requiring nine words are used only for background 
program segments. A short ID segment is required for each segment of a 
segmented program. If no empty short ID segments are available during 
an on-line load, a standard 33-word ID segment will be used. 

B-5. MEMORY ALLOCATION TABLE ENTRY 

Each partition defined by the user during generation contains an entry 
in the Memory Allocation Table (MAT). This table starts at the system 
entry point $MATA and extends upward toward high memory. Each entry is 
seven words long, arranged as illustrated in Figure B-5. 

+---------------------------------------------------------------------* 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
*--l--l--l--l--1--1--1--l--l--l--l--l--l--l--I--* 

MAT Link Word I 
I 

-----------------------------------------------1 
Partition Occupant's Priority I 

I 
-----------------------------------------------1 

ID Segment Address of Occupant I 
I 

--1--1--1--------1-----------------------------1 
MI 11 I DI 1111I11 I I Physical Start Page of I 

1111 1111111111 Partition I 
--1--1--1--------1-----------------------------1 

R I c I I I I I I I I I I I I I N um be r pages in Par tit ion I 
I 1111111111111 (exclude Base Page) I 

--1--1-----------1--------------------1--------1 
RTllllllllllllllllllllllllllllllllll/11 S I 

lllllllllllllllll/1111111111111111111 I 
--1-----------------------------------1--------1 
Subpartition Link Word I 

I 
+-----------------------------------------------+ 

word 

0 

1 

2 

3 

4 

5 

6 

+---------------------------------------------------------------------+ 
Figure B-5. Memory Allocation Table Entry Format 

B-9 



SYSTEM COMMUNICATION AREA AND SYSTEM TABLES 

+---------------------------------------------------------------------+ 
where: 

MAT Link Word = -1 if partition not defined either during 
system generation or by parity error 

= 0 if end of list 

M = 1 if MAT entry is for a mother partition 

o = 1 if program is dormant after save-resource 

R 

c 

RT 

s 

or serially reusability termination 

= 1 if partition is reserved 

= 1 if partition is in use as part of a chained 
partition 

= 1 if MAT entry is for real-time partition 
, 
s dispatching status = program 

= 0 - program being loaded 
1 - program is in memory 
2 - segment is being loaded or swapped out 
3 - program is swapped out 
4 - subpartition swap-out started for mother 

par tit ion 
5 - subpartition completed. Mother partition 

cleared. 

Subpartition Link Word 

= 0 if MAT entry is not a subpartition or a mother 
partition 

= next subpartition address if saubpartition 
= mother partition MAT address if this entry 

is the last partition. 

I 
I 
I 
I 
I 
I 
I 

' I 
I 
I 
I 
I 

+---------------------------------------------------------------------+ 
Figure B-3. Memory Allocation Table Entry Format 

B-6. RTE-IV SYSTEM DISC LAYOUT 

Figure B-4 illustrates how disc space is allocated when an RTE-IV 
when an RTE-IV system is generated. 

B-10 



DISC PROTECT 
BOUNDARY ... 

/:,. 

b. 

/:,. 

/:,. 

/:,. 

/:,. 

/:,. 

/:,. 

/:,. 

/:,. 

t. 

/:,. 

/:,. 

/:,. 

/:,. 

/:,. 

AVAILABLE DISC SPACE 

LIBRARY ENTRY POINTS LIST * 

RELOCATABLE LIBRARY AND UTILITIES 

BASE PAGE LINKS 
BACKGROUND DISC RESIDENT 

BASE PAGE LINKS 
REAL-TIME DISC RESIDENT 

MEMORY RESIDENT BASE PAGE 
MEMORY RESIDENT PROGRAMS 
MEMORY RESIDENT LIBRARY 

PARTITION RESIDENT DRIVERS 

SYSTEM 

TYPE 13 MODULES 
TRACK ALLOCATION TABLE 
$MATA,$ MRMP, $ MPFT TABLES 
KEYWORD TABLE, ID SEGMENTS 
ID EXTENSIONS,$ IDEX TABLE 
$CLAS,$ LUSW, $ kNTB, $ LUAV TABLES 

SYSTEM DRIVER AREA 

BACKGROUND COMMON 
REAL-TIME COMMON 
SSGA 

PARTITION #1 RESIDENT DRIVERS 

TYPE 15 MODULES 
INT 
ORT 
$ DVMP TABLE 
EQT, EQT EXTENSIONS 
TRACK MAP TABLE$ TB3X 

SYSTEM COMMUNICATION AREA 
UPPER BASE PAGE LINKS 
SYSTEM LINKS 
TRAP CELLS 

BOOT EXTENSION 

6 SECTOR BOUNDARIES 

*INCLUDES ONE SYSTEM-RESERVED TRACK 

Figure B-4. RTE-IV System Disc Layout 

} 

l 
INCLUDES ONE TRACK 
RESERVED FOR SYSTEM USE 

REPEATED FOR ALL BG DISC 
RESIDENTS AND SEGMENTS 

REPEATED FOR ALL RT DISC 
RESIDENTS AND SEGMENTS 

} TABLE AREA II 

} COMMON 

} TABLE AREA I 

} SYSTEM SASE PAGE 

B-11 



+-----------------------------------------------+--------------------+ 
I I I 
I RECORD FORMA'fS I APPENDIX C I 
I I I 
+-----------------------------------------------+--------------------+ 

C-1. SOURCE RECORD t"'ORMATS 

The source format used for the disc records in the LS area by the 
system program EDITR and FMGR is given in Figure C-1. All records are 
packed ignoring sector boundaries. Binary records are packed directly 
onto the disc. After an END record, a zero word is written and the 
rest of the sector is skipped. If this zero word is the first word of 
the sector, it is not written. Binary files are always contiguous so a 
code word is not required. 

I 
\ 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

15 8 7 0 

WORD1 L ZERO 

WHERE LIS THE RECORD LENGTH IN WORDS EXCLUDING 
WORD1 

WORD2 CHAR1 

IF WORD 1 = 0 THEN END OF TAPE 
IF WORD 1 = -1 THEN END OF FILE 

CHAR2 

ODD CHARACTERS ARE PADDED WITH BLANKS TO MAKE A FULL WORD. 
THE LAST WORD ON ANY GIVEN TRACK IN A MULTI-TRACK FILE IS A 
CODE WORD THAT POINTS TO THE NEXT TRACK IN THE FILE. 

CODE WORD FORMAT 

15 7 0 

LU# TRACK 

WHERE LU# IS EITHER 2 (SYSTEM) OR 3 (AUXILIARY) DEPENDING ON 
WHICH PLATTER THE TRACK IS ON. 

C-1. SOURCE RECORD FORMATS 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

C-1 



RECORD FORMATS 

The following describes the formats of relocatable and absolute 
records produced as object code for a given source program. The 
relocatable records are generated by compilers or by the assembler for 
a relocatable assembly. These records are stored in a relocatable 
file. The generator or the loader processes these relocatable records 
to produce an absolute module which has all program links resolved and 
the program is relocated and ready to run. 

The absolute records are produced by the assembler for an absolute 
assembly. The module of records thus produced requires no processing 
by the generator or loader. Absolute programs must be loaded into 
memory and run off-line. 

C-2 



NAM RECORD 

15 

15 

[ 

RECORD 
LENGTH 

WORD1 

8,7 

s 

I 
WORD 4 

y 

15, 14 

LENGTH OF 

I~ MAIN PROGRAM 
(, 

SEGMENT 
(OR ZERO) 

WOAD 7 

15 015 

PROGRAM 
TYPE 

WORD10 

15 0,15 

HOURS 

WORD 14 

15 8,7 

CONTENT 

0,15 

I 
M 

0,15 

PRIORITY 

WORD 11 

MINUTES 

WOAD15 

0 

COMMENT 
CHAR 1 

COMMENT 
CHAR 2 

WORD18 

0 

CHECKSUM 

WORD 2 WORD 3 

EXPLANATION 

RECORD LENGTH = 9-60 WORDS 

IDENT = 001 

CHECKSUM: ARITHMETIC 
TOTAL OF ALL WORDS 
IN RECORD EXCLUDING 
WORDS 1 AND 3. 

8,7 0, 15 8,7 0 SYMBL: FIVE CHARACTER 
NAME OF PROGRAM 

I 
B 

I 
L 

WORD 5 WORD 6 

0,15 

LENGTH OF LENGTH OF 

BASE PAGE COMMON 

SEGMENT SEGMENT 
(OR ZERO) l (OR ZERO) 

WORD 8 WOAD 9 

015 015 

RESOLUTION EXECUTION 
CODE 

WORD12 

0,15 

SECONDS 

WOAD16 

15 

MULTIPLE 

WOAD 13 

0,15 

TENS OF 
Ml LLISECONDS 

COMMENT 
CHAR :2n-1 

WOAD 17 

8,7 

COMMENT 
CHAR 2n 

WORD n 
(n < 60) 

0 A/C: BINARY TAPE PRECESSION 

0 

0 

0 

0 IF ASSEMBLER 
PRODUCED OR LENGTH 
IS EXACT 
1 IF COMPILER 
PRODUCED, AND 
LENGTH IS UNKNOWN 

HATCH-MARKED AREAS SHOULD BE ZERO-FILLED 
WHEN THE RECORDS ARE GENERATED 

~ CROSS-HATCH-MARKED AREAS SHOULD BE 
~ SPACE-FILLED WHEN THE RECORDS ARE 

GENERATED 

C-3 



ENT RECORD 

15 

15 

15 

RECORD 

LENGTH 

WORD 1 

8,7 

s I 
WORD4 

UNRELOCATED 
ADDRESS 

y 

FOR SYMBL OR 

CONTENT 

0, 15 13,12 

0,15 

I M 

0,15 

s 
REPLACEMENT INSTRUCTION 

VALUE 

WORD 7 

15 

L 

WORD10 

C-4 

WORD 2 

8,7 

I 
WORD 5 

8 7 

WORD 8 

4,3 

B 

y 

E 
N 
T 
R 
! 
E 
s 

0,15 0 

CHECKSUM 

WORD 3 

0,15 8,7 3,2 0 

I L ~RI 
WORD 6 

0 15 8 7 0 

M B 

WORD 9 

0,15 0 

UNRELOCATED 
ADDRESS 

FOR SYMBL OR 
REPLACEMENT INSTRUCTION 

VALUE 

WORD 59 

EXPLANATION 

RECORD LENGTH= 7-59 WORDS 

!DENT = 010 

ENTRIES: 1 TO 14 ENTRIES 
PER RECORD: EACH ENTRY 
IS FOUR WORDS LONG. 

SYMBL 5 CHARACTER ENTRY 
POINT SYMBOL 

R: RELOCATION INDICATOR 

= 0 IN PROGRAM RELOCATABLE 
= 1 IF BASE PAGE RELOCATABLE 

2 IF COMMON RELOCATABLE 
= 3 IF ABSOLUTE 

~ 4 INSTRUCTION REPLACEMENT 

WORDS 4 THROUGH 7 ARE 
REPEATED FOR EACH 

ENTRY POINT SYMBOL. 



EXT RECORD 

15 

15 

I 

15 

I 

8,7 

RECORD 
LENGTH 

WORD1 

8,7 

s 

I 
WORD4 

8,7 

s 

I 
WORD 7 

CONTENT 

0,15, 13,12 

0,15 

y 

I 
M 

0,15 

y 

I 

WORD 2 

8,7 

I 
WORD 5 

l~ 

5,4 

B 

E 
N 
T 
R 
I 
E 
s 

0,15 

CHECKSUM 

WORD 3 

0,15 8,7 

I 
L 

I 
SYMBOL 
1.D. NO. 

WORD 6 

0,15 8,7 

I I 
L 

SYMBOL 
l.D. NO. 

WORD 60 

0 

0 

I 

0 

I 

EXPLANATION 

RECORD LENGTH = 6-60 WORDS 

IDENT = 100 

ENTRIES: 1 TO 19 PER 
RECORD; EACH ENTRY 
IS THREE WORDS LONG 

SYMBL: 5 CHARACTER 
EXTERNAL SYMBOL 

SYMBOL ID. NO.: NUMBER 
ASSIGNED TO SYMBL FOR 
USE IN LOCATING 
REFERENCE IN BODY 
OF PROGRAM. 

WORDS 4 THROUGH 6 REPEATED 
FOR EACH EXTERNAL 
SYMBOL (MAXIMUM OF 
19 PER RECORD). 

C-5 



DBL RECORD 

CONTENT EXPLANATION 

15 8,7 0,15,13,12 8,76,5 0,15 0 RECORDLENGTH•6-60WORDS 
..-~~~~..::.;..,....,.............,......,......,,......,,......:,,,......;.~:.-,,..~.,.....-r-n--;.;r---~~--'T--~~~~~~~~~--, IDENT•011 

15 

RECORD 
LENGTH 

WORD1 

UNRELOCATED 
LOAD 

ADDRESS 

WORD4 

15 14 I 

l D/1 

15-BIT PROGRAM 
RELOCATABLE 

VALUE 

INSTRUCTION WORD 
R = 001 

Z NO. OF 
t; INST. 

WORDS 

WORD2 

0 15 13 12 10 9 7 ,6 4,3 1,0 15 
v 
v v 

R R R R R v v 
~ 

WORD5 

CHECKSUM. 

WORDJ 

ABSOLUTE 
VALUE 

INSTRUCTION WORD 
R = 000 

0 15 14 , 0 15, 14 , 

D/I 

15-BIT BASE PAGE 
RELOCATABLE 

VALUE 

INSTRUCTION WORD 
R = 010 

l_ 

15-BIT COMMON 
RELOCATABLE 

VALUE 

D/1 
INSTRUCTION WORD 

R = 011 

0 

0 

Z/C: RELOCATION OF LOAD 
ADDRESS 
• 0 FOR BASE PAGE 
• 1 FOR PROGRAM 
• 2 FOR ABSOLUTE 
• 3 FOR COMMON 

NO. OF INST. WORDS: 1 TO 45 
LOADABLE INSTRUCTION 
WORDS PER RECORD 

RELOCATABLE LOAD ADDRESS: 
STARTING ADDRESS FOR 
LOADING THE INSTRUCTIONS 
WHICH FOLLOW; 

R's: RELOCATION INDICATORS: 
000 =ABSOLUTE 
001 = 15-BIT PROGRAM 

RELOCATABLE 
010 = 15-BIT BASE PAGE 

RELOCATABLE 
011 = 15-BIT COMMON 

RELOCATABLE 
100 =EXTERNAL REFERENCE 
101 =MEMORY REFERENCE 
110 =BYTE REFERENCE 

R1 IS RELOCATION INDICATOR 

FOR INSTRUCTION WORD1; R2, 
FOR INSTRUCTION WORD2; ETC. 

8 7 2,1,0, 15 O D/I: INDIRECT ADDRESSING 
,....:.;._;___:_...:...r.;,..:-,.......;.;-•~~~~_:.,,........;..-:-~-.:.,.,...r-~~~~--:..,-'--'-r-~~~~~~~~~---, 

15 

C-6 

EXTERNAL 
SYMBOL 
1.D. NO. 

D/1 
INSTRUCTION WORD 

R = 100 

12 11 21015 

1 I 
I I M 

TYPE 
I I R 

I I 
l l 

EXTERNAL UNRELOCATED O =DIRECT 
SYMBOL M VALUE 1 =INDIRECT 
1.D. NO. R OR 

- - MEMORY REFERENCE INSTRUC--OR­
ZERO 

RELOCATABLE 
BYTE 

ADDRESS 

INSTRUCTION WORD 
R = 101 

0 

OFFSET TIONS USE TWO WORDS, WITHIN 

THE TWO-WORD GROUI'], "MR" 
INDICATES RELOCATABILITY OF 
OPERAND SPECIFIED IN SECOND 
WORDS: 

00 =PROGRAM RELOCATABLE 
01 =BASE PAGE RELOCATABLE 
10 =COMMON RELOCATABLE 
11 = ABSOLUTE 

INSTRUCTION WORD R = 110 TODS-17 



EMA RECORD 

15 8,7 015 1312 109 

15 

RECORD 
LENGTH 

WORD1 

8 7. 

s 

WORD4 

015 

y M 

15 5 4 0 

mr~1 
WORD4 

END RECORD 

15 

RECORD 
LENGTH 

8,7 

WORD1 

15,14 

RELOCATABLE 
TRANSFER 
ADDRESS 

WORD4 

CONTENT 

0, 15 13, 12 

0 

WORD 2 

87 

WORD5 

WORD 2 

EMA 
SIZE 

B 

015 

015 

3, 2, 1, 0, 15 

R T 

L 

CHECKSUM 

WORD 3 

8 

SYMBOL 
l.D. NO. 

WORD6 

CHECKSUM 

WORD 3 

0 

0 

Tape Formats 

EXPLANATION 

RECORD LENGTH = 7 WORDS 
IDENT = 110 

SYMBOL l.D. NO.: NUMBER 
ASSIGNED TO SYMBOL FOR 
USE IN LOCATING REFERENCE 
IN COPY OF PROGRAM. 

7700-189 

EXPLANATION 

RECORD LENGTH= 4 WORDS 
IDENT = 101 

R: RELOCATION INDICATOR 
FOR TRANSFER ADDRESS 

= 0 IF PROGRAM RELOCATABLE 
= 1 IF BASE PAGE RELOCATABLE 
= 2 IF COMMON RELOCATABLE 
= 3 IF ABSOLUTE 

T: TRANSFER ADDRESS 
INDICATOR 

= 0 IF NO TRANSFER 
ADDRESS IN RECORD 

= 1 IF TRANSFER ADDRESS 
PRESENT 

TODS-18 

C-7 



C-8 

ABSOLUTE TAPE FORMAT 

15 

15 

RECORD 
LENGTH 

87 

WORD 1 

CONTENT 

01514 

0 15 

ABSOLUTE 
LOAD 

ADDRESS 

WORD 2 

INSTRUCTION 
WORD. 

I 

WORD n-1 

015 

0 15 

INSTRUCTION 
WORD 1 

WORD 3 

CHECKSUM 

WORD n 

0 

0 

tOn paper tape, each word represents two frames arranged as follows: 

Bit 8 - Bit 0 

Feed Holes 

Bit 15 - - Bit 7 

EXPLANATION 

RECORD LENGTH= NUMBER OF 
WORDS IN RECORD EXCLUDING 
WORDS 1 ANO 2 AND THE 
LAST WORD. 

ABSOLUTE LOAD ADDRESS: 
STARTING ADDRESS FOR 
LOADING THE INSTRUCTIONS 
WHICH FOLLOW 

INSTRUCTION WORDS: 
ABSOLUTE INSTRUCTIONS 
OR DATA 

CHECKSUM: ARITHMETIC 
TOTAL OF ALL WORDS 
EXCEPT FIRST AND LAST 



+----------------------------------------------+---------------------+ I I I 
I RTE-IV AND RTE-III DIFFERENCES I APPENDIX D I 
I AND COMPARISONS l l 
I l l 
+----------------------------------------------+---------------------+ 

For existing installations that are upgrading from a previous RTE-III 
operating system to an RTE-IV software configuration, the RTE-IV 
features and enhancements described below are significant changes in 
design philosophy and the utilization of system services. 

D-1. LOGICAL USER MAP 

The operating system code and nearly all drivers are removed from the 
logical user map, thus allowing larger programs in RTE-IV than was 
possible in RTE-III. In RTE-IV, the user map is saved in the upper 32 
words of the unmapped portion of the user's physical base page so that 
it is merely restored after being interrupted, rather than being 
rebuilt as in RTE-III (see Memory Management Section). 

D-2. DRIVER PAR'fITIONS 

A System Driver Area is available for privileged drivers, large 
drivers or those drivers that perform their own mapping. Driver 
partitions and the System Dr iv er Area did not exist in R'rE-III. 

Driver partitions allow many drivers to be resident in physical memory 
but they share only one portion of the logical address space~ that is, 
one driver partition is mapped only at the time it is needed. In 
contrast to RTE-III, RTE-IV driver partitions reduce the amount of 
address space used up by the driver in the user map (see Memory 
Management and I/O Sections) • 

D-3. TYPE 2, 3 AND 4 PROGRAMS 

Type 2 (real-time) and Type 3 
Areas I and II and the System 
space. 

(background) programs have both Table 
Driver area included in their address 

Type 4 (background) programs, have only Table Area I included in their 
address space, although external references to Table Area II entry 
points will be resolved for access by cross-map instructions. 

External references to system entry points (in Type 0 modules) will be 
resolved for Type 3 background programs only, and cross-map 
instructions must be u.sed to access locations in the System Map. 

D-1 



RTE-IV ANO RTE-III DIFFERENCES AND COMPARISONS 

Type 4 background programs did not exist in RTE-III. 

Types 2, 3, and 4 programs may be segmented in RTE-IV. Only type 3 
programs could be segmented in lUE-III. 

D-4. EXTENDED MEMORY AREAS 

This feature allows R·rE-IV programs to address memory arrays (similar 
to virtual memory arrays) that are beyond the standard 32K address 
limit. EMA arrays can be declared in both RTE-IV Assembly Language and 
FORTRAN-IV programs (see the Memory Management Section). 

D- 5. ME1V10RY RES ID ENT LIBR~RY 

Reentrant or privileged library routines .located in the memory 
resident library can be accessed only by memory resident programs. All 
Type 6 and 14 library routines are treated as Type 7 utility routines 
when referenced outside of the memory resident area: that is, they are 
appended to the calling program and are placed in the disc resident 
relocatable library as Type 7 routines. 

D~6. FILE INPUT/OUTPUT 

The loader (LOADR), FORTRAN-IV compiler and RTE-IV Assembler can 
perform I/O to or from FMP files in RTE-IV configurations. 

D-7. PARITY ERROR 

If a parity error is detected in a user pro~ram that is running in a 
partition, the error will be reported and the partition removed from 
system use. Parity errors detected in the System Map will still halt, 
as in RTE-III configurations (see the EXEC Section). 

D-8. MEMORY AND I/O RECONFIGURATION 

Memory and I/O specifications may be redefined during system boot-up 
to meet new on-site requirements, rather than going through a complete 
system generation. Partitions may be redefined to eliminate pages 
with parity errors, and devices may be reassigned to different I/0 
slots (see the I/O and Memory Reconfiguration Section). 

D-2 



+----------------------------------------------+-------------------M-+ 
I I I 
I TABLE AREAS I AND II ENTRY POINTS I APPENDIX & I 
I I I +------..... 4 ........................... _________ ... ________ ·----------+---------------------+ 

TABLE AREA I ENTRYPOINTS 

EXEC 
$CIC 
$ERAB 
$IDLE 
$IDNO 
$LIBR 
$LIBX 
$LIS'l' 
$MESS 
$MEU 
$M'l'M 
$0PSY 
$PVCN 
$SC03 
$1rBXX* 
$UCON 
$UIN 
$ULLU 
$Ul?IO 
$WORK 
$XCIC 
$XDMP 
$XD.MP 
$XEDQ 
$XEQ 
$YCIC 

TABLE AREA I I EN'fRYPOI N'l1S 

$BA1rM 
$BGFR 
$CFR 
$CLAS* 
$CMST 
$COML 
$DLP 
$DVrH 
$DVMP 
~DVP'l' 
$EMRP 
$ENDS 
$IDEX 
$LUAV* 
$LUSW* 
$MNl1 A 
$MBGP 
$MCHN 
$MNP 
$MPF'T 
$MPSA 
$MPSZ 
$MRMP 
$MRTP 
$PLP 
$RLB 
$RLN 
$RNTB* 
$TRFR 
$SBr.rB 
$SDA 
$so·r2 
$TIME 

* built by the generator where 'xx' = 31 for a 7900 system 
= 32 for a 7905/06/20 system 

E-1 



1amMo RTE-IV PROGRAM TYPES :I F I 

Table F-1 provides a list of the default program types of the libraries and programs distributed 
with the RTE-IV operating system. The default program type is listed in the first column, and 
the remaining columns list the additional available program types. Each row of the table lists 
a program name or a library file name and indicates whether or not the corresponding 
program types available are allowed for that respective program or library (a "YES" meaning 
that the listed type is allowed, a "NO" meaning that the listed type is not allowed). 

Note that several of the listed spool modules require SSGA access. 

Table F-1. RTE-IV PROGRAM TYPES 

PROGRAM OR LIBRARY DEFAULT 
FILE NAME TYPE 

LOA DR 3 
PAM PT 1 
RSPNS 1 
AUTO A 2 
$CNFX 3 
WHZAT 1 
LGTAT 3 
RT4GN 3 
SWTCH 3 
FMGR 3 
D.RTR 2 
EDITA 3 
XREF 3 
FTN4 3 
ASMB 3 
KEYS 3 
KYDMP 3 

#EMA 3 

SAVE 3 
RETOR 3 
VER FY 3 
COPY 3 
MSAFD 3 

JOB 2 
GASP 3 
SMP 18 
EXTND 17 
SPOUT 17 

RUB (RTE/DOS 
Relocatable Library) 

BMUB (Batch Monitor Lib.) 
(Spool Library) 

CUB (Compiler Library) 
DECAR (Decimal String 

Library) 
DBUGR (Debug 

Subroutine) 
SYUB (System Library) 

TYPE 1 
without 

TA II 

NO 
YES 
YES 
YES 
NO 

YES 
YES 
NO 
NO 
NO 

YES 
NO 
NO 
NO 
NO 

YES 
YES 

NO 

NO 
NO 
NO 
NO 
NO 

NO 
NO 
NO 
NO 
NO 

YES 

YES 
NO 
NO 

YES 

NO 

YES 

TYPE 1 
with 
TA II 

NO 
YES 
YES 
YES 
NO 

YES 
YES 
NO 
NO 
NO 

YES 
NO 
NO 
NO 
NO 

YES 
YES 

NO 

NO 
NO 
NO 
NO 
NO 

NO 
NO 

YES 
YES 
YES 

YES 

YES 
YES 
NO 

YES 

NO 

YES 

*Add 16 to the desired program type to obtain SSGA access. 

SSGA 
TYPE 2 TYPE 3 TYPE 4 REQUIRED* 

YES YES NO NO 
YES YES YES NO 
YES YES YES NO 
YES YES YES NO 
NO YES NO NO 

YES YES YES NO 
YES YES YES NO 
YES YES NO NO 
YES YES YES NO 
YES YES NO NO 
YES YES YES NO 
YES YES NO NO 
YES YES NO NO 
YES YES NO NO 
YES YES NO NO 
YES YES YES NO 
YES YES YES NO 

YES YES YES NO 

YES YES NO NO 
YES YES NO NO 
YES YES NO NO 
YES YES NO NO 
YES YES NO NO 

YES YES NO NO 
NO YES NO NO 

YES YES NO YES ( 
YES YES NO YES r-
YES YES NO YES ) 

YES YES YES NO 

YES YES YES NO 
YES YES NO NO 
YES YES NO NO 
YES YES YES NO 

YES YES YES NO 

YES YES YES NO 

F-1 



+----------------------------------------------+---------------------+ 
I I I 
I ERROR MESSAGES INDEX I APPENDIX G I 
I I I 
+----------------------------------------------+---------------------+ 

ERROR TYPE 
========== 

Operator Command Errors 
Executive Error Messages 
Memory Protect Violations 
Dynamic Mapping Violations 
Dispatching Errors 
EX Errors 
Unexpected OM and MP Errors 
TI, RE and RQ Errors 
Parity Errors 
Other EXEC Errors 
Disc Allocation Error Messages 
Schedule Call Error Codes 
I/O Call Error Codes 
Program Management Error Codes 
Logical Unit Lock Error Codes 
Executive Halt Errors 
Relocating Loader Error Codes 
DBUGR Error Messages 
Boot-Up and Reconfiguration Halts 
Configuration Error Messages 

MANUAL SECTIONS 
== == == == == ==.= = = 

3-5 
4-49 
4-50 
4-51 
4-52 
4-5 3 
4-54 
4-55 
4-56 
4-57 
4-58 
4-59 
4-60 
4-61 
4-62 
4-63 
7-21 

11-13 
12-14 
12-15 

G-1 



READER COMMENT SHEET 

92067-90001 

RTE-IV PROGRAMMER'S 
Reference Manual 

June 1978 

We welcome your evaluation of this manual. Your comments and suggestions help us improve our publications. 
Please use additionalpages if necessary. 

Is this manual technically accurate? 

Is this manual complete? 

Is this manual easy to read and use? 

Other comments? 

FROM: 

Name 

Company 

Address 



FOLD 

FOLD 

BUSINESS REPLY MAIL 

No Postage Necessary if Mailed in the United States Postage will be paid by 

Hewlett-Packard Company 
Data Systems Division 
11000 Wolfe Road 
Cupertino, California 95014 
ATTN: Technical Marketing Dept. 

FIRST CLASS 
PERMIT N0.141 

CUPERTINO 
CALIFORNIA 

FOLD 

FOLD 



PART NO. 92067-90001 
Rev. Code 1826 
Printed in U.S.A. 6/78 

HEWLETT,PPACKARD 
Sales and service from 172 offices in 65 countries. 

11000 Wolfe Road. Cupertino, California 95014 


	000000
	000001
	000002
	000003
	000005
	000006
	000007
	000008
	000009
	000010
	000011
	000012
	000013
	000014
	0001_Glossary
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	02-01
	02-02
	02-03
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	03-30
	03-31
	03-32
	03-33
	03-34
	03-35
	03-36
	03-37
	03-38
	03-39
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32
	04-33
	04-34
	04-35
	04-36
	04-37
	04-38
	04-39
	04-40
	04-41
	04-42
	04-43
	04-44
	04-45
	04-46
	04-47
	04-48
	04-49
	04-50
	04-51
	04-52
	04-53
	04-54
	04-55
	04-56
	04-57
	04-58
	04-59
	04-60
	04-61
	04-62
	04-63
	04-64
	04-65
	04-66
	04-67
	04-68
	04-69
	04-70
	04-71
	04-72
	04-73
	04-74
	04-75
	04-76
	04-77
	04-78
	04-79
	04-80
	04-81
	04-82
	04-83
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	08-01
	08-02
	08-03
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	12-17
	12-18
	12-19
	12-20
	12-21
	12-22
	12-23
	A-01
	A-02
	A-03
	A-04
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	D-01
	D-02
	E-01
	F-01
	G-01
	replyA
	replyB
	xBack

