HEWLETT w PACKARD

RTE-IV Programmer’s

Reference Manual

1t
15y

ol

ijif
(3¢

!

RTE-IV Programmer’s

Reference Manual

(This manual reflects information that is compatible with

software revision code 1826.)

HEWLETT W‘, PACKARD

HEWLETT-PACKARD COMPANY
11000 WOLFE ROAD, CUPERTINO, CALIFORNIA, 95014

Library Index Number
2RTE.320.92067-90001
' Printed In U.S.A. 6/78

PART NO. 92067-90001

PUBLICATION NOTICE

Information in this manual describes the RTE-IV operating system software. Changes in text to document software
updates subsequent to the initial release are supplied in manual update notices and/or complete revisions to the manual.
The history of any changes to this edition of the manual is given below under “Publication History.” The last change
itemized reflects the software currently documented in the manual.

Any changed pages supplied in an update package are identified by a change number adjacent to the page number.
Changed information is specifically identified by a vertical line (revision bar) on the outer margin of the page.

PUBLICATION HISTORY

First Edition....................ccoviiiiunn... June 78 (Software Rev. Code 1826)

NOTICE
The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATER-
IAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the furnishing, perfor-
mance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is
not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are reserved.
No part of this document may be photocopied, reproduced or translated to another program language
without the prior written consent of Hewlett-Packard Company.

Copyright © 1978 by HEWLETT-PACKARD COMPANY

ii

DOCUMENTATION MAP

DOS/RTE
Relocatable
Library Reference
Manual
24998-90001

RTE

FORTRAN IV
Reference Manual
92060-90023

RTE-IV
ASSEMBLER
Reference
Manual
92067-90003

BASIC/1000D
Multi-User
Real-Time BASIC
Reference Manual
92060-90016

IMAGE/1000
Data Base

. Management System

Reference Manual
92063-90001

Decimal String
Arithmetic
Routines
02100-90140

START
92067A RTE-IV ROM Loader
Software Numbering Manual
Catalog y
92067-90004 12992-90001
RTE-IV On-L
G;rnerator nﬂe:::ence RTE-IV Programmer’s A MX-MlSerles
Manual Reference Manual Operator’s Manual
[— X 02108-90004
92067-90002 92067-90001 o
21MX-E Series
Operator’s Manual
02109-90001
RTE-1V EMA Firmware
Installation Manual
92067-90006
and
RTE-1IV EMA Firmware
Diagnostic Manual
92067-90007
g " ¥ ¥ ¥
RTE Interactive Batch-Spool RTE Utility RTE Operating i FD‘TE'W
Editor Reference Monitor Programs System Driver cbug .
Manual Reference Manual “Rneferelnce Writing Manual fnl;brot;tme
- 92060-90013 anua 92200-93005 nua
92060-90014 92060-90017 92067-90005
Individual
Driver Manuals,
as appropriate
DS/1000
Programmer’s
Reference
Manual
91740-90002
7700-141

HP 21MX-E Series
Computer
Microprogramming
Reference Manual
02109-90004

or
HP 21MX-M Series
Computer
Microprogramming
Reference
Manual
02108-90032

iii/iv

This manual describes the features and functions of the RTE-1V
operating system for HP 1000 Computers and Computer Systems. The
manual 1is the primary reference source for those who will be writing
or maintaining computer software, or who are otherwise involved in the
design and operation of an RTE-1V operating system.

The purpose of the manual is describe the functions and requirements
for wutilizing all available system services for developing and
executing programs in a real-time environment; i.e., use of operator
commands, I/0 procedures, memory allocation, hardware and software
interface, system procedures, program scheduling, on-line 1I/C and
memory reconfiguration, and various utility programs and relocatable
library subroutines.

It is assumed that readers of this manual already have a working
knowledge of one of the three programming languages available to
RTE-1IV users (RTE FORTRAN-IV, RTE-IV Assembly Language or BASIC/1000D)
and that they have a general understanding of the appropriate
Operators Manual for their HP computer system.

Some available manuals offering other 1levels of information that may
be directly relevant to system operation and user applications are
briefly summarized below:

* Batch Spool Monitor Reference Manual

Describes the uses and requirements of the Batch Spool Monitor
subsytem for those who wish to wuse the batch spooling feature. Of
particular relevance for all applications users is this manual’s
descriptions and formats of the File Manager (FMGR) commands.

* RTE Interactive Editor Reference Manual

Describes the format and function of the RTE Editor (EDITR) program
commands and procedures for on-line editing services. The manual is
of particular relevance for those involved in editing source
programs or updating existing programs.

* RTE Utility Reference Manual

Describes the functions and requirements for using a collection of

uitility programs, including: WHZAT (current system status
information), Disc Back-Up (copy from disc-to-disc or disc to other
device), KEYS and KYDUMP (creates softkey command string sets),

LGTAT (logs and displays system and auxiliary disc status), etc,

* DOS/RTE Relocatable Library Reference Manual

Describes a set of utility subroutines that are primarily used by
FORTRAN-IV and Assembly Language programs.

* RTE-IV Debug Subroutine Manual

Describes the use and formats of the interactive Debug (DBUGR)
subroutine commands that can be used in checking for logical errors
in a program. A subset of the most frequently-used DBUGR commands
are also described in a separate section of the RTE-IV Programmer’ s
Reference Manual,

* RTE-IV On-Line Generator Reference Manual

Describes detailed, "cookbook" procedures for generating a new
RTE-IV operating system without shutting down the existing RTE-IV
system. Complete examples of each phase and heavily annotated
worksheets are provided. Manual is primarily intended for system
managers and system programmers who are involved in the design and
maintanence of total system configurations.

* RTE-1IV Software Numbering Catalog

A cross~referenced directory of all RTE-IV software files located
on supplied distribution media. Describes for users who have a file
number or part number for an RTE-IV software part how to find the
part number on the medium (or media) on which the part is
distributed. Manual is primarily intended for system managers and
others involved in generating new systems or reconfiguring existing
systems. Optional software supplied with other products is listed
in separate Software Numbering Catalogs distributed with those
products.

* Appropriate Driver Manuals

Individual manuals that aid users in determining the particular
drivers required for site-specific combinations of devices. Manuals
describe the criteria for configuring the various drivers into an
operating system. The manuals are primarily intended for those in
configuration design and generation.

* RTE-IV Operating System Driver Writing Manual
Describes the system considerations, requirements and constraints
in creating user-written drivers for specialized applications not
covered by supplied standard device drivers.

Other manuals that may be of particular interest, including language
manuals, will be found listed in the Documentation Map in this manual.

vi

| TABLE OF CONTENTS

Foreworad
Glossary

Section I

GENEZRAL DESCRTIPTION
Real~-Time EXeCULIVEe +tiireeverensesconeos
System HArAWare .. uveeeeeceeveooocoecnoese
System SOfEWaAre .. vt et eeeeseoscosesennas
Memory Management..oeeeesescoseososesecs
Multiprogramming.e.oeeesesecsososcesessos
Input/Output Processing seeeeesosecesess
Resource Management..seeerereoacoscsceoe
Executive Communication..eesceeeeeoone oo
Operator COMMANGS .t eseevoceceosononsnne
System Configuration teeeeeececececeosos
Multi~Terminal OperationNsS..ceeecece cose s
System Utility ProgramS..escecececcesos oo
Relocating Loader (LOADR) .ceavesooosne
File Management Package (FMP).eeoeoeee
Interactive Editior (EDITR) ¢eeeeoecoess
Batch Spool MONitor (BSM) ceeeeeosseeos
WHZAT o oo oo b ne ettt eocecscosessssssoese
DBUGR ¢ 6o veeevesesecosasscevsenossscenseans
On~Line Generator ((RT4GEN) ceeoeeeoesos
SWICH . e te sse oo osseseosssoscecoosnnensan
DiSC BACKUDP 4 eeeeveeeceessosoasoeceoess
DiSC UPdate.iseeeeoeecesesocococeceosas
KEYS and KDUMP.eeeorsooeerssoroocenecscs
LG T AT ¢ ¢ o e0 oo esonesoecsscanssesoscssnse
Programming LanNguUAJeS.eeeeeevoesosossese
RTE FORTRAN IV.eeeeeceoesenosonccosncncane
RTE Assembler..eceessecsessoceonceonne
RTE Micro-Assembler..cceeseecoescscess
Real~-Time BASIC/1000D. e eeeoseoesoasos

QUERYOQ..000.00..000'0.....'.....DO...

S 060 00 a8 00 00 00 00 0 0

e o 0 0

® o0 o

* o e o

“ s 0 @

LI I)

e o0 o

e o0 0

LI]

e o s o

e oo o

e o 0o o

* o0 0

» o0 0

e 60 60 00 80 00 0 00

@ 00 060 00 00 00 00 00

® o0 o0 0

¢ e e 00 s

o o0 00 0

e o8 0 00

® o0 00 s

s 00 80 0o

e o0 00 o8

® 00 s 06 00

e o0 00 oo

e oo 00 s

® o0 00 o0

* 50 o0 o

® o0 00 o0

® o5 00 o0

® o0 00 s s

e 00 s 0 00

® o0 00 00

¢ 50 00 00

0 s 00 00

o 00 00 00

o 065 o8 00

o o0 00 0

® 060 00 0

5 060 00 o o

RII‘E—IV System Summary..'.oooaooooo00.00..'0000000000 e e o

Section II

STANDARD BOOT-UP PROCEDURES

Boot Loaders and BoOt EXteNSiON..cececeososcccscscosssoncs
DiSC LOAACYE ROM: e o eevsoersvsososososssssoscssscocscoseass
BOOtStrap LOAAEr icveessesessossssssososssccscssncessnscs

Boot EXtension EXeCUtiON .. eeeeeeceseocscceorsssacosssossosssssonsess

.

.

3

*

.

® s 0 06 00
. & & 0 0 0
e« ® o o o
e & o & o 0
.« o & 0 o0
® e o0 0
* 6 00 >
e o o & o 0
* e o 0 o 0
® ® o 5 & 0
* ® o o 00
® e o 0 20
. 6 & 0 2 0
® 8 &0 &0
* 0o & o o0
e e o 0 00
* e 0 0 0
e0 0 00
e o & & o 0
® 06 8 & 0 0
e 0 0
® e 00 o 0
e o0 o
®e e o0 o0
* o o o0
. o & s ¢ 0
e o 8 0 o0

o 00 00

* o 00 00

oo o0 00

* s 00 o0

1~

1

ST NS SN
!
W

vii

TABLE OF CONTENTS

Section III
OPERATOR COMMANDS
Introduction.'.-"..0.'."00..00..O‘00C..00...00“..0.0.‘......0
CoOMMANd SELUCEULE . e e oveooeosescesecssosssososcscssessosesscscecsss
Command Conventions..........0.....0..‘..00......00....000.0..0‘
RTE"'IV Operator Commandsooooono.ooooooc.ooo.o.oooooooooooooooooo
AB (abort).-.o...................-.......-...........-...oo.o-
AS (asSsign pPartitioN) cueecececcesseossecsoccsosscssasscssesconsa
BL (buffer limitS).....-............................o..ooo....

BR (break).-.n..oooooocooooot‘.0.o.0o.o'oo..oo.lcooouooooooooo

t vt

[|

1
8 QO U

!
—
— o

DN (down).o'oooootoao.oc.oaqoooo-oloo-onao.oooooooioo.o..o’tﬁ'

!

EQ (Status)0...0.0.0.....0'0.0.lbl....‘0.‘000.0..0.00"00..‘..

EC (DUEL@IrING) ¢ or oeeceosceossosesecoossosececsessscssescssecscecs
FL (flUSh).......-.-.. 3"12
GO (reschedule) ieeeecececeocccssooseososacsocsososcscscsoscossecnss 3—13
IT (Interval Timer)eeeeeeeooesoososseoesscssessoscscersosessssese 3—15
LG (LG traCKS) eeeeeeeocesescososscossossssssossosssssssssscsessssse 3—16
LS (SOUrCe f£il@)iseeesoeooceososcsesssosssscsosscscssssscnsecsss 3=17
LU (QSSIigNMENt) ¢ eueeoecoososoecsososcscsssssssossosscsncssssssese 3—18
LU (FreasSSignmeNnt) «eeeecececoosececsosasosesscesscsoscsoscssassssssss 3—-19
OF (terMinate) e eeeeeesocecesesecsoscesesocsnassscossncsassascsse 320
ON (SChedULle) et eeeeeoseeoeososossoscscssecsssanscssssssenesnses 3—21

pR (priority)oouoocclo'0.0oootoo.loooooooo000'0.0'000.0..-0.oo 3~23
RT (felease tracks)uooooo"ootooo'00000.0.01'0-000.00.00000000 3‘-24

RU (FUN) 4eeeooocoosocososscscssesscossescsscsssscsnesocssncnsssecsss 3~25
SS (Operator SUSPENA) ceeeeeosevoscscssossvssssosssssossesssesecssce 327
ST (SELALUS) teeeeoecesosososescsosssossssesnsosnsosssnsssssosessssses3—28
SZ (ASSIgNMENL) ¢ oevesscecsosoesrsosssssscscsassscssoscssssscesscees 330
SZ (reassignNment) ceeeececeeosssasnscevesosvssascsossssscscsscssosses 3-31
TI (CIME) e eveeooeosossossosososcsesonscsossossossecscesoscsssocscassecs 333
TM (SE€Lt CLlOCK) e eeveeseceosesssssoscscscssscsssssescsosscsscassseses 3-34
TO (Lime=0UL) s oeversooesctssoceossososssascscsossesesssssscncscesss 335
UP (Make avallable) .eeeeeoeeceeeosesoeososcosccsasososssscscsssse 3=36
UR (release reserved partition) cceeeeeeecsecocssscsesosccsscosees 3—37
Operator Command ErrOr MESSAJES.: eeoseeessesssssvssssssssssosocscscs 3-38

CWwhwwWwwwwww
{

Section IV

E X EC CALLS

INErOdUCELION 4t et eoeeeooeoscoesasassecscsesoscssscsosnsssocsssonssnas

Assembly Language FOIMAtT..eeeeceossosecesssosscscoscssosocsossssossceass

FORTRAN IV FOIMAEL. e e tnoeeeoesesssecsossssscocsossssssssossosoes

EXEC Call ErroOr ReEtUINS.ee et eeeectsscoesosococesscsssssossessscsss

EXEC Call SUMMAIL Y. ot teusesonsansososossecsosscsasosenssossssossoseas

Standard Function CallS. .. e eeteeececoososoosoncoosscecssssscecsss
READ/WRITE o oo ¢e e6 06 06eoscssssseecscsosecesocscscssssscssscsssscsaos
L/0 CONTROL G ¢ e cooeooosceceossssccecesosssesssssscssosssssscsscoes
I/G0 S TATUS ¢ o oo seoeeeoesosecsossssssesoscsscesscssscscsosssones
DISC TRACK ALLOCATION oo oo osoeessenesetssccsescesesssosssecscsss
PROGRAM DISC TRACKS RELEASE 4t eetocoeososcecevscsossssossncssscss
GLOBAL DISC TRACKS RELEASE ¢ cos oo eo 0o eeoocsscscessscssssssescsas
PROGRAM COMPLETION . ¢ e e o v eesososoeososscecscscssosescssescsscsneeses 4—24
PRUOGRAM SUSPEND . e ¢ s eoeeecoeocecessoeccssesecesesscscsssasssessse 4=27
PROGRAM SEGHMENT LOAD . e ev ce et osesooesososssosoccscosossosssccssoneossss 4=28

1
.

t

t

S N N S N N o . L, "
Pt !
N
L o

!
N
]

viii

PROGRAIA SCHEDULE.0.0'.'....'..‘00.00.0

'I'Ille I{BQ‘UES'P"..0..0..'.0000..'.0.'..

S'I'RING PASSAGE.ooooooooo:oooooooo.ooou
TIMED EXECUTION (Initial Offset)......

TIMED EXECUTION (Absolute Start Time)
PROGRAM SWAPPING CONTROL et eeesesoecon
PARTITION STATUS i eeeveooctosonoessnsse
MEMORY SIZE..eeeeeersececccosoocsonscas
Class I/0 EXEC CallS.ceeeceesvecncccecas

*

Class I/O RBAD/WRI'I‘E'.....‘..‘..‘.....

class I/O GET.0.0.'OQ.O...'.'Q0..'...
Class I/O COIQ‘-[‘ROL. ® 6 6 0 0 0 00 00 00 e 6O 4 oo
Class I/0 Applications ExampleS..ecese.

.

.

Resource Numbers and Logical Unit Locks.

Executive Error MeSSageS..esessesessoes
Memory Protect ViolationS..seeeeosoes
Dynamic Mapping ViolationS..eeeseesee
DIiSpPAtcnNing ErrOrS..ceececoscesoocesss
EX EIXLOCLS eueeeeocsoscscnonanssoossnscss
Unexpected DM and MP ErrOCS.cececsces
TI, KE and RQ EfrOrS..eeessesocecocnse
PAarity ErrOCLS.eeescccssossescsoscocsos
Other EXEC ErfOLSciececessorsasossonss
Disc Allocation Brror MessageS..eees.
Schedule Call Error CodeS.eeceosos oo
I/0 Call Error COUESe e oo eocossssoeocna
Program Management Error (odeS...ees.
Logical Unit Lock Error CodesS..e.eees
Executive Halt ErrOrS..ceceecsasncosas

Section V
INPUT/OUTPUT
Software I/0 SEruUCtULC . e eeeeosncsossons
Bquipment Table. .o ceertececeseasseceses
Device Reference Table...ieeeecoooosoes
Logical Unit NUMDEILS. e cevaerersosensnns
Interrupt Table.ceeeceoeeroconcevonsnaa
System 3ase Page Interrupt Locations...
Driver Mapping Table..ieseeecerersenscns
I/0 Processor General OperationN.eeceese
Standard I/0 CallSieeeeevsnscosaccnnas
Power Fall.eeeeeoeoeveososonsenecoses
I/0 Controller Time~OUt..eeeeeoocceoes
Privileged Interrupt ProcessSinNg.eeeeees

Section VI
M EMORY MANAGEMENT
Addressing....".0...0.0.0.0.0..0.0'0'..

3

o0

[‘Ze[“ory ylapstcbotoooboo 6 6 06 060 00 060 a0 00 006 00 s 00 0
Physical Memory.-o00ooo.ooooo.oo00000000000000000.o.t.oQO
LOgical Mel“ory..qoooooo'ootooooo00000'00000000.0000000000

Base Pa\’_}eooso'ooatoctootooooooooocooo-o.ooooo.o.co.oo.o.o

o o0

.

TABLE OF

® o0 00 00 00

o o0 060 00 00

® s 0 00 00

o e 20 o0

® 00 00 00

¢ o0 00 o0

¢ o0 o0 00

® o0 00 0o

® 00 00 e

® 60 o0 00

o0 090 0o

o 00 00 o0

® o0 00 00

¢ o0 00 00

e a0 00 0o

¢ 00 00 0o

e o0 ¢ 0 00

® 00 00 oo

® 00 00 0o

® o0 o0 00

® o6 00 o0

® 00 o0 o0

® o0 00 0 0

* 20 00 00

¢ o0 o v o0

o o0 00 00

® 00 00 00

o o0 00 0 0

® 00 00 00

® o0 00 00

e 60 0 o

¢ e 0 o0 o0

® o0 0o o 0

® o0 00 0

.

.

.

* o o o

.

.

CONTENTS

s o0 oo

o o0 00 00

® 0o e 00 00

e o0 20 00

4-29
4~33
4~-34
4-36
4-38
4-41
4-42
4-44
4-4¢
4=50
4~52
4-55
4~56
4-63
4~71
4=72
4~72
4=72
4-73
4~73
4~174
4~74
4-175
4-76
4-76
4~76
4~77
4=77
4=77

(6 BN ARG SO O NG G A O B G U]

[S S S S S A T S R |
S
wo BN O

TABLE OF CONTENTS

CObl‘}'1ON AreasooQ..Qo.ooo.oo-oooolnooooonn.ooooooo.oooooooooooo!.0
b’lemory Protectionoouoooauoouo.aotuoo-ooaoooooo'.oooo.o.00.0000!0
Partitions...o....-..-.-.-...............-o

Partition Lists..OQIOOO'OOCDOC.OOQ..I.OQO...

Partition Assignment and ReservationN.......

MOther PartitionS.ieeeerersccecsosccescans
SubpartitionsS..eeeeecessssessssecssansns
Extended MemMOrY Al CA..sesscocscossoccsosce
Memory Management SubroutinesS......eee..

'ELWAP.OQO.'..0.Q..IOD.'IO.....'.OO..I
.EMIO...0.0.'o.ooo-o-oana-oco.ooa.o-o

MMAP..Q.O.'oo.ooooooo..ooooboo..Qo.ct

EMAST.ol.o‘.oc.ooo..ot.noooooo..ooooa

Section VII
RELOCATTING LOADEHTR
RTE Relocating LOader. coeecsoevocscosses
RU,LOADR Command OptiONS. . cesesssocoeceos
Program ReloCatiON.eeeescenosscscscnaess
On~Line ModificationN..eeseeeeeoecocscess
Segmented ProgramS..eecsoeoosscecscsocsca
Adding New ProgramS..scececcscsssssasceos
Program Replacement..ceevecocescososcene
Addition or Replacement Limitations.....
Program DeletioN.cieeceseoscecsececoscocnscs
COMMON AllocCationS..seeseescosscosesonse
Program TyYPeS.eessssosscsscsssosscacesesn
Loader OperatioON.issiseesecsccececcscscsonsns
Additional Opcode ParametersS...ceeesee s
Loading the Binary Code.ieeesececscsceses
Loader Command File..eceeeeecocosooooosaes
SEARCH ¢ oo oo seoesesscssocasssscasacnnasae
SEARCH <NAMIL >, coeooeosescsosasvcssennse
RELOCATE <NaAGMIL . co ceeoenvocoococscscssa

FORCE-.......oo..o....................

20 o

e e o

L

DISPLAY.J...00-0.0000*00.0.:.50'Dccbtlo

ECHO..Q.'....0".'0.".'.'.0.....00..'
END....otooto..o'ocl'voo..olooooooooo.
/A.‘O.....OQ..OO..Q.OQ....'.Q.Q.Q.CI.'
*

® 5 0 20 00 0 500 80 00 00 VO 0L L0 G600 s 08 00 00 e

AS'XXQQQ.Q.000ooooot.tuin-oon.ocoooaoo

SZ YYD eeensoeoseensoecsasososnsososes
LL,<NAMED> ¢ se e evsevscsassnssssasnansess
OP,<0PCOAC Y. ts eessvesssssssssecsassccas
FM,<EOrmat> . aeieeeereesnssccscsocsosas

Loading From a Logical Unit...ceeeecscecs

Loading Segmented ProOJgramS..ceeeeececese

Reducing Segmented Program Load Time....

DBUGR Library Subroutine...ceecececeoees

LOADR Error RepOrting..ceevececececsccoss

LOADR Error COO@S.ieeseceoecsascesecscace

X

® 60 060 060 0606 060 00 080600 00 00

® 0 8.0 00 00 50 00 08 90 00 v
® 6@ 006 00 00 00 00 00 00 00 o0
@ 06 20 00 0" 00 00 s e 00 0o
® © 2 08 0 ° 00 00 00 00 0 00 00
S 00 00 00 00 00 s 00 0 00 00
® 0 6 0605 20 00 80 060 00 00 080 00
® 5 0 068 5 0 00 0N 6O 00 o o e
® 0 0 060 00 00 00 s 00 00 00 000
® 6 2 06 8 8 0 60 00 50 00 s 00 e

® 0 0 00 00 00 00 00 00 s e e

S 606 00 20 086 00 0606 00 00 00 00
® 006 00 00 006 0 00 s SN s 0
S 60 00 00 00 00 00 00 00 00 e
® 20 060 00 00 00 00 00 00 00 00
® 806 0 00 00 09 20 00 00 s e
® 6 8 060 00 00 20 00 00 s 00 0
® 066 00 00 60 060 00 00 00 0 0
® 00 006 60 00 00 060 0000 20 e
® 060 060 060 006 00 00 008 08 00 00
® 8 5 00 ¢ 5 060 00 00 00 08 00 0
® 00 060 60 006 ¢ 20 00 00 s s
® 0 0 60 00 00 00 00 00 00 s e
® 00 060 00 00 00 00 00 000 b 00
® 0 06060 26 00 00 00 00 00 b 0
. ® 606 060 066 00 80 00 00 00 00
® 060 0606 06 00 00 20 060 00 00 00
. ® 00 68 00 00 00 00 00 00 00
. ® € 0 006 00 00 00 00 00 20 00
® 060 00 00 00 00 00 00 00 00
® 00 060 060 00 20 08 00 00 00 b0
® 0606 060 00 00 00 ¢ 0 00 00 0 0
® © 8 060 06 060 00 60 00 00 00 e
® 6 ¢ 060 00 00 00 00 606 00 06 00
® 00 086 00 060 060 206 0606 058 000 0o
® 60 068 00 &0 00 26 00 2o 0 0
® 60 00 00 00 00 00 00 00 00 b0
® 0606 060 00 00 56 00 00 00 00 00

® 606 606 060 00 008 00 00 00 00 0

® 8 20 20 00 50 006 20 00 00 00 00

® 90 00 00 00 00 00 00 s 0 e

® 55 00 00 00 60 00 00 00 00 0

@ 60 00 00 00 00 060 00 00 090 000

606 00 00 00 00 00 00 00 00 0

® 60 00 06 06 00 00 00 0606 00 00

@ 0606 0 0600 00 00 s 00 00 00 00 00

6-10
6-10
6~-12
6-12
6-12
6-13
6-13
6-14
6-19
6-19
6~22
6-23
6-24

[S S T A

!

t

NNN NN NNNNSNNNNN NN
!

t
HFRHRHHFONGOAU U &R WNN
s W N

7-14
7-14
7-14
7-14
7-14
7-14
7-15
7-15
7-15
7~15
7-15
7-15
7-16
7-16
7-19
7-20
1=20
7-21

Section VIII

S EGHME

NTED |

ROGRAMS

TABLE GF CONTENTS

R‘I‘E FORTRAN—IV Se(grnentationooooooooooboooaoooo00000000.0000000.0
R‘I’E Assembler Segi’nentationoocootol.ooo-oo.noo.oooooocoooo&oo.noa

Section IX

MuULTI

- TEBRMI

NAL MOCNTITOR

System Configurationoouoooooono.ooooco0000000-.0o-ooooooooo'uooo

Multipoint Initialization..eeeeceecocsven

® 0 600 00 005 00 08 00 s 0l 0 s

Logical Unit Wumber ASSignment...ceecesseecccoscsscsosessascsonos

Operation..lO...l‘.l00.0....00...0...0..
Available MTM SErVICES.eeeessecscscocssces
Automatic Scheduling OL FMGXXeeseeosoeos

FIAGXX EXeCUL1ON et et eeesvosscscocscsosonne
ABORT Command VariationsS.:.e..e...
Automatic Program ReNaminNgee.eeoeeeoeseoeos
Creating Program COPieS.ieeesvecsosssosoesne
Program SwWapPiNgeeeeesoesssseossoessssasas

BREAK and

Section X
RTE~IV 8§

YSTEM

LIBRARY

INEroduCtioN se e es eoosconsoscasonsossens
Calling System Library sSuproutines......
Reentrant Subroutine StruCture....ecoees
Reentrant Subroutine FOrmMate.eeececeoses oo
Privileged Subroutine Structure...eeeeo.
Privileged Subroutine Format....eeeeaese
Memory Resident LibDrary.eecscseccscscecess
Utility Subroutine Structure...eeceseees
System Library SubroutinesS...eeeeececess

RETO -

Reentrant I/0 Subroutine....ceoe..

BINRY - Disc Read/write Subroutine......
RNRyY =~ Resource Management Subroutine...
LURQ =~ Logical Unit LOCKeeeeessooessssososs
SPARS ~ Parse SUDILOULINE .t it eeeecessessossosssscscsssensssacsose
INPRS ~ Buffer Conversion SUDIOULINE. . ceee eooooocossoscossossos

$CVT3,

* e 0

oo 0

o 0o 0

oo 0

oo o

e o o

e o 0

LI I

L)

® ® 68 00 060 00 00 80 00 00

® 80 00 00 060 00 00 00 00 o0

.

6 060 00 00 00 80 00 00 80

® 9 08 00 00 26 00 00 00

0 00 00 00 000 00 e 0

® 0 00 060 060 00 00 00 00 0

e e 00 00 00 S 00 00 0P 0

e 00 20 00 2 0 20 00 0

0 20 060 00 00 0 0 0o e

0 00 00 00 00 86 00 00 00

® 0 00 00 00 50 00 060 00 00

®® 20 00 08 00 00 008 00 00

e 606 060 00 00 00 00 008 o

o8 060 00 00 00 00 00 009 00

® 0 06 00 66 60 60 s 00 00

e 6 00 20 ¢ 50 00 00 00 0

@0 00 00 00 00 00 00 00 o0

e 00 00 00 0 20 00 00 0

2@ 00 00 00 00 00 00 00 0

e 0@ 00 00 50 00 00 00 00

5CVTl, CNUMD, CNUMO, KRCVIT =- Binary to ASCII

SUDPLOULINES . e seveseeosccroecasssosssasssssossssssssscssensaos
MESSS ~ Message Processor Interface Subroutine....eceeeceecees
EQLU = Interrupting LU QUeCY .cesoeceoscsososesccsesssscsoscsss
PTRN, PTRM ~ Parameter Return SUDIOULINES.ceteeeoocrsosoncssece
Indirect Address SUDIOULINE .. seeerocosoooscasvsscsossns
IFBRK — Breakflag Test SUDIrOUtiNE.cs ceeeeecesevsoosvscacscnscess
COR.A, COR.B —~ First Word Available Memory Subroutin€.........
IDGET ~ Retrieve Program’s ID Segment AddreSS......eeeeseseees
TMVAL —~ Current Time SUDIOULINE . e teesovecsessssvesrsossvoesese
Recover Parameter StriNg.ecieeceecccsccsosocsscsssscsceas
IFTTY -~ Query Whether Logical Unit is Interactive or Not......
Returns LU of Terminal That Scheduled Progral...ssocee.
EMAST SUDIOUELINES . e esecessessscsssossscocssos

« DRCT -

GETST -

LOGLU -
.EMAP,

.EMIO, MMAP,

8=—2

ot

t

r vt
O ~wlUids b

(=R VRNt R VAN o
!

oL
Lt

TABLE OF CONTENTS

Section XI

DEBUGR INTERACTTIVE DEBUGGING

Calling DBUGqu-.-oaq--q~qoaqnnc.a.qq-o.cqq--onaqagnoo.uoqn.;goq ll-l
Entering DBUGR--...n--.-ua.n-n-n.nua.ncnanan-qoqaouol-.o-o-.ao-- 11“2
DBUGR Commands..!i.lllQQQOQ.I...lQ.Q..l‘...‘..dl.lQQ...Q.QIOQQ.Q ll~3
DBUGR MOdeS..-...-.. 11_3
EXPressions and T erMScueeeacsasasaocascaonansssccasannnsaaansasae 11-4
EXQMiIiNe MEMOIY cu acacuanaaceaceanasenecesecaasacancscacssssanacsce 11-5
MOAify MEMOIY uue ecaaneneaaasansaacaaasasaacscaccancsnsonnasaasansaa 116
Examine RegiSterS..cuaeascaaanacccacasuscsaausanaannsannanansesss 11-6
Setting a Label...uciceeacccacacnunaccancasaacsanasoscansnnsnccnanass 11=7
EXeCUte PrOJraAM..ccecececcencacascaaascsnscscacscanacsasanaansscnscancasa 11-7
BreakpointS.ceeeeccieaacencncacsacccancncnnans esscscssscnsancacaa 11-8
Tracing..a.. P B £
DBUGR Error MESSAJECS.wacscccesosasssasascsascsnssaancnssusancsnsess 11-12
DBUGR EXaMPle..csececeeensccccancncancascncsescsssnscscssnsansssssnsasnsse 11-13

Section XII

MEMORY AND I/O RECONFIGURATTION

Scheduling the Configurator From Disc Loader ROM..cceeseccecacsse 12-1

Scheduling the Configurator From Bootstrap Loade€r....eecsoveessss 12-3

Configurator PrOgram...eceececrescocecovoosvsorvevrsvrorsovevevsse 123

Configurator Halts and Error MesSSageS...vevevevoossoosresenrnoess 1L2-4

Reconfiguration ProceduresS....cevevesesovessssvececscennsesssess 12-4

I/0 Reconfiguration StepPS....ecevecesessoecscrcecosscsosonssosves 12=5

Memory Reconfiguration ProcedureS......eveeecovesssssssesovevsss 12-8

Excluding Bad PageS....eeeeeveoecrsoossoscecrcoosoensosssnsossnsss 12=9

SAM Extension Reconfiguration.....eeveeeveceeeorsonsossoossesonss 12=9

Changing Partition DefinitionsS....veeeveveeevecscecocecssooconsss 12-10
Changing Program Partition AssignmentsS.......eeevevesossnroooeesess 12~14
Program Partition AssignmentS....ceeeervecececcecsssovenscocsosss 12-15
Reconfiguration EXample....eeesevsvseosvesesooooscssscscsssssones 12-16
Boot-Up and Reconfiguration HaltS...eveeeoveevocovococeseosesevees 12-19
Configurator Error MeSSageS....ceeceoroooenreonvoseosessssnocosses 12=21

Appendix A
HP CPIARACTER SE‘I‘.OOO.'O..P.'I.DO...D.D"..0......0‘0.00.0.".... A-l

Appendix B

SYSTEM COMMUNICATION AREA AND SYSTEM TABLES

System Communication Area....ecoeeesssveeseossssncssnsssssesscsse B

Program ID Segment.. ..oeeeevsvcvecsvrocrosvssososecsssssssossssesrsce DB

ID Segment EXtensSiONS..ceeeeescocccososcrosseososssososcscsccsess B—
Short ID SegmentsS. .sceeevreeeorovsecosseosrsscsosssssssscessssssesce B

Memory Allocation Table ENtry..eeceevecoseesesesssscoscsnossssvses B

RTE-IV System DiSC LayOUt..veeeereseresoovsssvscrcecossosescnceee B

Appendix C

RECORD FORMATS

SOUECe Record Formats.ooovo-oo-ruootoco.oo.oooo-ooooooooooo-toto C-l
NAM Recotd....................--...........-...........-........ C"'3

xii

ENT Record.
EXT Record.
DBL Record.
EMA Record.
END Record.

L

*

TABLE OF CONTENTS

T O 00 20 00 20 20 00 PO OO PN PO L I EO L EN PG CE PO PSSO PSIEEOE OO

© 0 0.0 00 40 00 0 0N 0L GO LOL L L EL LS EI OO L PL L EOE OGS OEELIEOCOIE OISO

® 5 08 00 00 00 00 PP EE O P Pe e L e

® 6 00 20 00 00 00 00 000 s e G0 e s

® & 00 060 0 00 0 00 s 0 e 0 e s

Absolute Tape FOrMateeeeeseececososseooes

Appendix D

RTE~IV VERSUS RIE~IIT.eccecceocosscecsonne
Logical USer MaADesseesssoevsocoscsseoesns
Driver PartitionS.seeeeeeecececncoceoees
Type 2, 3 and 4 ProyramS.eeesccoesceecees
Extended MEmMOILY BArea8S.ceescscerosoecsoesee
Memory Resident Library..eeecececececees
File INPUt/OUtPUL. e et e oevocssonscecseos
PArity EIrOr...eseeececscsccsscscevosess
Memory and I/0 Reconfiguration....eeceee

Appendix E

TABLE AREA I AND IT ENTRY POINTS .esee sees

Appendix F

RTE~IV PROG.RAM TYPES..oqoo'ooo-ooo.aoooo

Appendix E

ERROR MESSAGES INDEX. eee oo eooecococscsos

ILLUSTRATTIORNS

Read/wWrite
I/0 Control

(conwd) FOrmateeecececsseoceos

(COan) FOrmat.'....."...O.

Partition Status Parameter RetUrN...oeee
Partition Current Status EXampPle..eeeses
(ICLAS) FOrMAt.eecevocecoscocs
Class I/0 Multiple Terminal Input ExampPle..cieeeeceeersecrssoooseas
Dispatching Input to Subtasks £Or ProCesSiNng .veeessecesscsesocecs
"Deadly Embrace" EXamMDLleS..eeseesececsoososossescsescssoscosssscsss
Equipment Table ENtry FOIrMaC..seeeeveessesesrsossoosscosssosossssess
(EQT Entry wWord 6) Expanded. ceeeesscecsoscccsossoccsss
Device Reference Table Entry FOrmat...eeeeeeeseseeccococoocoocoocesse
Device ReferencCe Table..ieeeessesseesesosossoscnsossoscsossanosssss
Driver Mapping Table .. oo eeeesecscessosossssssssosssssossssosscsscess
RTE~IV AdAress SCREeMEe. s estotesssossssssssssesossssscscssssssssns
Physical Memory AlloCatiONS.eeesessesessoscoscrsessssnsesscscscancs
RTE~IV 32K wWord Logical Memory ConfigurationS..eeessereecoceoeos
Base Page SErUCLUIC. eu evsvsosssessassscsosossesssssssssnassasssass
Memory Protect Fence Locations for Programs Using COMMON...eee e
BELUCKEULE 44 et seseoonssossocscsecssnssosoocssnsasonsosssoceas

Multiple Data Arrays OrganizationN.eeceecesesscesecsososscscsscnsss

Class Number

CONWD Word

EMA and MBEG

*

L

® 60 00 00 00 006 00 00600 00 00
® 00 ¢ 0 060 00 00 00 00 00 00 0
® 0 060 0006 00 00 00 00 00 00 00

® 60 006 060 00 006 ¢ 0000 00 00

® S 0 6.6 0 0 00 0% S50 40 e e 0
® 0 0600 00 00 00 00 00 00 0 0o
¢ 0 0 00 00 0O 00 P 0N e b 0
® 50 060 00 00 00 00 00 000 00 0
® 6 068 060 006 00 00 00 00 00
® 0 56 0606 00 @0 00 00 0 s

o0
LN J
® 0 6 0 006 00 50 00 b 0e 00 o
® 6 0 0 0 6 00 6 00 SO 00 90 00
LN]

® 0 & 0 00 00 0 0 00 00 00
® 00 006 60 00 00 00 5 00 00 s
® @ 00000 060 060 060 06000090 00

® 00 00 00 60 24 se 20 00 90 0

® 00 00 O 0 B0 00 s e 0 s
® o e 00 00 60 00 20 00 00 00 0o
@ & ¢ 06 00 O 9N S P 0o e 0o
® 0 0 00 00 66 00 00 00 04 0 e

® 8 6 00 60 00 00 s e s e

t ottt

UUU??UUUU
SR N SN SN SR ol ol ol

E-1

F-1

E~-1

!

'U"UTL{?U'iU'l

<
!
[

l
FHEHCE RGN W

[oaN >R oh il o 2N e T @ b}
!
O

xiii

TABLE OF CONTENTS

BB W R

Segmented Program EXamMDLl e . cueeseseeeeosoecsooosossssossocscssscsos
Segmented PrOJL AMS. « ee oo eoseeeosooesesoscececoscscseossssssecess
Main Calling SegeNET .. ce seeeeseoaooscssecsvsesocscesoscasccsosseaos
Segment Calling SegmeNt..eeesceesscsoesesersesascsssssssscscsssese
Segment tO MAIN JUMPS . ccensoooosascsessosossosanssesesssnssossssessos
RNRQ Control WOrd FOIMAEL. s eeeeoroeosssoonsssssececssssscossssscess
Reconfiguration EXAamDle . eecessesseseoscscssssssesscsscsscsocsocscens
ID Segment FOILMAL. eeeoseseoosnosasosssossoseoscsssscssscsscscscsscocsaon
ID Segment EXTeNSiON.eeeeeeecssessoscossecsssosscsoscrsossssnsssssess
Memory Allocation Table Entry FOrmat..eeeeeceoscesscscossosossess
RIE-IV System DisSC LayOULeeeersesceoscesececeoooesossecnosssscsosos
Source ReCOrd FOIMAELS e eeeeeressrscesscscsscsocecsscsssssssocsssscs

I 11
[=)]

ll\3<t.‘:-
= \O
o

f@ N vl vl enil v RN Tl e S e ol e R
’._4

t
ARV R

TABLES

Operator Command SUMMALY ¢ eveosseoesoascesososesacscscscssoscscsos 3
Operator Command Syntax CoOnvVeNntiONS..eeeseseseeececccscssoocsesce 3
Uperator Command ErrOr MESSA0eS . es eeoecseossevscsssssossosssssssse I3
RTE EXEC CallsS..eeeeeevsescssssescsesessssscsssscsscscsessscsosce 4
I/0 Status Word (ISTAL/ISTAZ2) FOIMAL .ecseoesessoosesccscocncosase 4
EQT Word 5 Status Table.eeeeeesevecesocesocoscsssoecssosssecssssssce &
Class Input/Cutput T erMS.eeeeseeseooescasevecocsssssscscsascscsse 4—48

EXEC Call Error SUMMALY.seeoeoosossosocesecssccrescsscscssscscsce 4=79

Loader ErXrOr COGE€S .. essoesssessscosessososssssssosssssssscscscace 1=22
DBUGR EIrrOr MeSSaJEeS.eecesesessscscsoscsssasssssssessssssssssssess 11-12
System Boot-Up and Reconfiguration HaltS..eeeseesceosecsocnsoees 12~20
I/0 and Memory Reconfiguration Error COdeS.eeeeesosscossssoseeess 1222
System Communication Area LOCAtiONS..eeeeeessosccssoscscsssesssese B2

RIYE~IV Program TyYPEeS.eesoseecesoscssscscessssoscoccossscssacssssscess F—1

xiv

i

[| GLOSSARY OF TERMS |
I
+

ABSOLUTE PROGRAM - A program that has been relocated and is capable of
being loaded into main memory for subseguent execution. An “"absolute
program” is synonymous with "relocated program."

ABSOLUTE SYSTEM - The binary memory image of an RTE system (stored on
Logical Unit 2).

ADDRESS SPACE - see LOGICAL MEMORY or PHYSICAL MEMORY.

ASYNCHRONOUS DEVICE =+~ A device that can perform I/0 operations that
are independent of time considerations but operates simultaneously
with program execution. Interaction with thne computer 1is through
request/response circuitry.

AUXILIARY DISC SUBCHANNEL - An optional subchannel that is treated as
a logical extension of the system disc subchannel, Logical Unit 2. If
used, it 1is assigned tq Logical Unit 3. The binary memory image of
RTE-IV may not reside on the auxiliary subchannel.

BACKGROUND (BG) - An arbitrary name for one of two types of partitions
in RTE; generally used for lower priority programs whose responses to
interrupts are not time-critical.

BASE PAGE - A 1024-word area of memory corresponding to logical page
0. It contains the system’s communication area, driver links, trap
cells for interrupt processing, and system and/or user program links.

BASE PAGE FENCE - A hardware register that divides a logical base page
into a portion containing the user’s base page and a portion of the
system s base page.

BG - See BACKGROUND.

BLOCK - Two 1logical disc sectors of 128 bytes each, totaling a 256
bytes.
BOOT EXTENSION - An absolute program that resides on the first two

sectors of 1logical track 0 of the system subchannel. The Boot
Extension itself is first loaded into memory by the Bootstrap Loader
or ROM Loader.

BOOT FILE - An optional file to which the Bootstrap Loader produced by
the On-Line Generator is stored. This may be a disc file or a logical
unit (e.g., a mini-cartridge).

GLOSSARY OF TERMS

BOOTSTRAP LOADER - A loader produced by the Generator and stored in
the boot file. The Bootstrap Loader loads the Boot Extension into
memory and then transfers control to the Boot Extension.

BOOT-UP =~ The process of bringing the Bootstrap Loader or ROM Loader
contents 1into memory. Control is then transferred to the Boot
Extension to begin the initializatrion process.

BUFFER - An area of memory (main-memory, mass memory or local
peripheral memory) used to temporarily store data.

CLASS I/0 - A means of buffering data between devices and user
programs, and between programs themselves, that permits a user program
to continue execution concurrently with its own I/0. The term "I/O
without program wait" is a more commonly used term.

CLOSE FILE - A method of terminating a program’s access to a file so
that no further read/write operations may be performed on the file,

COMMON - An area of memory that can be accessed by a program and its
subprograms, Usually used to pass data from a program to a subprogram.
In RTE, system COMMON may be used to pass data from one program to
another.

CONFIGURATOR - A two-part program that allows reconfiguration of an
RTE system’s 1/0 and physical memory structures without going through
a new system generation. The configurator 1is initiated as an option
during the startup process.

CURRENT PAGE - The memory page in which the executing instruction is
located. Some 21IMX memory reference instructions can only directly
reference locations in two pages: current page and base page.

DATA CONTROL BLOCK (DCB) - A table within an executable program that
contains information used by the File Management Package (FMP) in
performing disc accesses. (See the RTE Batch Spool Monitor Reference
Manual.)

DCPC - see Dual Channel Port Controller

DEVICE DOWN - Relates to the state of a peripheral device or 1/0
controller. When the device is down, it is no longer available for use
by the system. The term also refers to the DN operator command.

DEVICE INDEPENDENCE - Refers to the ability of a program to perform
I/0 without knowing which physical device is being accessed (see also
Logical Unit Number).

GLOSSARY OF TERMS

DEVICE REFERENCE TABLE (DRT) - A table created during system
generation corresponding to Logical Units 1 through 63. The contents
of the Device Reference Table include a pointer to the associated EQT
entry, subchannel number of the device, and information as to whether
or not the device is locked. The table may be modified by the user
through an LU command.

DEVICE TIMEOUT -~ A time interval associated with a specific 1/0
device. If the system expects a response from such a device and this
response does not occur within the timeout period, the device is
assumed to be inoperative by the system., This feature is necessary to
prevent a program from getting "hung up" because it is waiting for a
response from a non-functioning peripheral device.

DIRECT MEMORY ACCESS - See Dual Channel Port Controller.

DIRECTORY - A list of programs and files currently stored on a disc
subchannel that can be displayed by the user:

DISC =~ Strictly speaking, the term means the platter(s) with the
storage medium only; however the term is also loosely used to mean the
entire peripheral including the drive.

DISC-BASED - Refers to an operating system using a disc storage device
as an integral part of the operating system,

DISC FORMATTING - The process by which physical track and sector
addresses are written in the preamble of each disc track sector. Disc
formatting may be performed by the appropriate disc diagnostic. After
formatting is completed, the SWICH program and Disc Backup utility may
perform subchannel initialization.

DISC-RESIDENT - A term applied to programs in executable form
(absolute) that are stored on disc and brought into main memory for
execution by the system in response to a program or operator request,
time-of-day schedule or an I/0 interrupt.

DISC ROM BOOT - A loader residing in Read-Only Memory that loads
(off-line) the Boot Extension from disc storage and transfers control
to the Boot Extension. (See also BOOT EXTENSION and STARTUP.)

DISPATCHER - An RTE system module that selects, from the scheduled
list, the highest priority program to be executed next. The dispatcher
module 1loads the program into memory from disc (if the program is not
already in memory) and transfers control to the program.

DMA - See Dual Channel Port Controller
DMS - See Dynamic Mapping System
DORMANT PROGRAM - A dormant program is one that is "sleeping" or

inactive., More specifically, in RTE it is a program that is neither
executing, suspended nor scheduled.

GLOSSARY OF TERMS

DOWN - Status of a device controller EQT that is not available for
use.

DRIVER - A software module that interfaces a device and its controller
to an operating system. Drivers specified by EQT definitions will go
into either a driver partition or into the System Driver area of
memory .

DRIVER PARTITION - A block of memory that contains one or more
drivers. In RTE-1IV, all drivers are in physical memory; however, only
the driver partition containing the driver currently being used is
included (mapped) in the logical address space.

DRT - See DEVICE REFERENCE TABLE

DUAL CHANNEL PORT CONTROLLER (DCPC) - A hardware accessory that
permits an I/0 process to transfer data to or from memory directly, or
access memory, thus providing a much faster transfer of data. The
operating system controls access to the DCPC channels.

DYNAMIC BUFFER SPACE - Additional buffer space allocated to a program
after the program code itself. The additional size is determined by
the user. Typically used only by assembly language program.

DYNAMIC MAPPING SYSTEM - A hardware accessory allowing partitioned
memory systems to address memory configurations larger than 32K words
of physical memory.

EMA - See Extended Memory Area
EQT - See Equipment Table

EQT EXTENSION - A method for increasing the size of an Equipment Table
entry’s buffer space, during system generation, that gives the
specified I/0 driver more words of storage space than are available in
the EQT temporary storage area.

EQUIPMENT TABLE (EQT) - A table in memory associating each physical
I/0 device controller with a particular software processing routine
(driver). For a given device, the EQT provides status information,
temporary storage and parameter passing services (see also Device
Reference Table and Interrupt Table).

EXEC =~ One of the RTE system modules that interfaces user programs to
the operating system.

EXTENDABLE FILE -~ An FMP file that is automatically extended in
response to a write request to points beyond the range of the
currrently defined file. An extent is created with the same name and
size as the main, and the access is continued.

GLOSSARY OF TERMS

EXTENDED MEMORY AREA (EMA) ~ An area of physical memory that may
extend beyond the user’s logical address space and is used for large
data arrays. Its size is limited only by the amount of physical memory
available, An entire array is resident in physical memory although

the entire array is not currently in the logical address space.

EXTERNAL REFERENCE -~ A reference to a declared symbolic name not
defined in the software module in which the reference occurs. An
external reference 1is satisfied by another module that defines the
reference name by an entry point definition.

FILE -~ A defined section of memory on a storage device used to store
data or programs.

FILE EXTENTS -~ See EXTENDABLE FILE

FILE MANAGEMENT ~ The operating system functions associated with
maintaining disc files (translating file names to physical disc memory
areas; maintaining a directory; checking for security codes; etc.).

FILE MANAGEMENT PACKAGE (FMP) -~ A collection of subprograms used to
access, control and maintain files.

FILE MANAGER (FMGR) - A program that provides FMP file creation,
access and manipulation services through FMGR commands entered by the

user.
FMGR ~ See File Manager
FMP ~ See File Management Package

FOREGROUND - A purely arbitrary name for one of the two types of
partitions in RTE; generally used for higher-priority programs. The
"foreground" area is synonymous with the real-time area.

GLOBAL TRACKS - Global tracks are a subset of system tracks and are
accounted for in the track assignment table. Any program can
read/write or release a global track (i.e., programs can share glcbal
tracks).

HP-IB -~ The Hewlett-Packard version of the IEEE standard 488-1975
Digital Interface for Programmable Instrumentation. The HP-IB provides
two-way communication between instruments and/or between computers,
instruments, or peripherals.

ID SEGMENT ~ A block of words, associated with each resident progranm,
that is used by the system to keep track of the program’s name,
software priority field, current scheduling status and other
characteristics. Every program must have its own ID segment.

GLOSSARY OF TERMS

ID SEGMENT EXTENSION -~ A method for increasing the size of an ID
segment to save additional information about its associated program.
The extensions are used only for EMA programs (see EMA). ID segment
extensions are automatically allocated by the generator or loader, but
only 1if sufficient ID segment extensions were specified during system
generation.

INTERRUPT - The process (usually initiated by an 1I/0 device
controller) that causes the computer to signal an executing program,
in an orderly fashion, for the purpose of transferring information
between a device and the computer.

INTERRUPT LOCATION ~ A single memory location whose contents (always
an instruction) are executed upon interrupt by an I/0 device
controller (same as trap cell).

INTERRUPT TABLE (INT) - A table that associates interrupt links with
the octal select codes of peripheral devices to specific EQT entries
or programs.

I/0 - A general term referring to any activity between a computer and
its peripheral devices.

I/0 CONTROLLER - A combination of interface card(s), cable, and (for
some devices) controller box used to control one or more I/0 devices.

I/0 DEVICE =~ A physical unit defined by an EQT entry (I/0 controller)
and subchannel.

I/0 WITHOUT WAIT - See Class I/0.
KEYWORD TABLE - A table of ID segment addresses

LG AREA -~ A group of tracks used to temporarily store relocatable code
that can be accessed by the File Manager.

LIBRARY - A collection of relocatable subroutines that perform
commonly-used (e.g., mathematical) functions. Subroutines are appended
to referencing programs or are placed 1in the memory resident library
for access by memory resident programs.

LOADER - A program that converts the relative addresses of relocatable
programs to absolute addresses compatible with the memory layout of a
particular system.

LOCAL COMMON - An area of COMMON appended to the beginning of a
program and accessible only by that program, its subroutines or
segments. This type of COMMON can be specified only during on-line
relocation by the loader (LOADR).

LOCKED DEVICE -~ See Logical Unit Lock.

LOCKED FILE - A file opened exclusively to one program and therefore
not currently accessible to any other program.

GLOSSARY OF TERMS

LOGICAL MEMORY -~ Logical memory is the 32K~word (maximum) address
space described by the currently enabled memory map. If the System Map
is enabled, it describes those areas of physical memory necessary for
the operation of RTE-IV. When the User Map is enabled, it describes
those areas needed by the currently executing program. DCPC maps
descr ibe the address space to/from which the transfer is taking place.

LOGICAL UNIT LOCK -~ A mechanism for temporarily acquiring exclusive
use of an 1I/0 device or devices by a program, to ensure its I/0
completion before being preempted by a another program.

LOGICAL UNIT NUMBER (LU) - A number used by a program to refer to dn
I1/0 device. Programs do not refer directly to the physical I/0 device
select code number, but rather through the LU number that has a
cross~reference to the device,

LU -~ See LOGICAL UNIT NUMBER

MAILBOX I/0 -~ A Class I/0 term applied to a protected buffer that
keeps track of the "sender" and "receiver" program for each block of
data in the buffer used in program to program communication.

MAIN PROGRAM ~ The main body of a user program (as opposed to the
whole program, which may include subroutines or segments).

MAP =~ Applied to 21MX or XE machines, the term applies to a set of 32
registers that point to 32 pages of physical memory defining a
32K-word logical address space.

MAPPING SEGMENT (MSEG) -~ The area of an EMA that is cuurently
accessible within the user program’s logical address space.

MEMORY PROTECT -~ A hardware accesory that allows an address (memory
protection fence) to be set so that when in protected mode, the
locations below that address cannot be accessed by writes or JSB/JMP
instructions.

MEMORY~RESIDENT LIBRARY -~ A collection of reentrant or privileged
library routines available only to memory resident programs (in
RTE~IV). These routines are included in the disc-resident relocatable
library for appending to disc~resident programs,

MEMORY-RESIDENT PROGRAM ~ A program that executes from a designated
area in physical memory and remains in memory, as opposed to a
disc~resident program that may be swapped out to the disc or loaded
from the disc to another area in memory. Memory resident programs are
loaded during system generation (only), and usually are high priority
programs with short execution times.

GLOSSARY OF TERMS

MOTHER PARTITION - A partition that may be larger than the maximum
logical address space and which may consist of a group of
subpartitions. The subpartitions allow many smaller programs to use
the memory when the mother partition is not active.

MSEG -~ See Mapping Segment

MULTIPROGRAMMING =~ A technique whereby two or more routines or
programs may be executed concurrently by an interleaving process,
using the same computer. Multiprogramming is an attempt to improve
equipment efficiency by building a queue of demands for resources,
achieved by having available in main memory more than one task waiting
for resource usage. The concurrent tasks are then multiplexed among
each other s wait time intervals.

MULTI-TERMINAL MONITOR =~ A system software module that provides for
interactive program development and editing in a multi-terminal
environment controlled by a single computer.

OFF-LINE =~ Refers to use of the computer and/or I/0 devices by
resources other than the RTE operating system or subsystems.

ON-LINE - Refers to software or 1I/0 devices recognized and controlled
by the main operating system at the time they are being used.

ON-LINE GENERATOR - A program that permits use of an existing RTE
operating system’s services to generate a new system from relocatable
software modules found in the File Manager Area. System control can
then be transferred to the new operating system through use of a
program called SWTCH. (See RTE-IV On-Line Generator Reference Manual.)

ON-LINE LOADING - The relocation of programs through use of the
Relocating Loader (see RELOCATION).

OPEN FILE - A method of gaining access to a specific file to perform a
read/write instruction.

OPERATOR 'S CONSOLE ~ see SYSTEM CONSOLE

OPERATING SYSTEM -~ An organized collection of programs designed to
optimize the usage of a computer system. It provides the means by
which wuser programs interact with hardware and other software. (See

also REAL-TIME EXECUTIVE.)

OVERLAYS - Also called segments,these are routines that share the same
portion of main memory and are called into memory by the program
itself (see SEGMENTED PROGRAMS).

PAGE - The largest block of memory (1024 words) that can be directly
addressed by the address field of a one-word memory reference
instruction.

GLOSSARY OF TERMS

PARTITION - A predefined block of memory with a fixed number of pages
(redefinable at system boot-up) located in the disc resident program
area of memory. The user may divide the disc resident program area
into as many as 64 partitions that can be classified as a mixture of
real-time and background, all real-time, or all background.
Disc-resident programs run in partitions and at least one partition of
sufficient size must be defined during system generation to run disc

resident programs.

PERIPHERAL DISC SUBCHANNEL ~ A disc subchannel available to the user
for read/write operations but for which RTE-IV does not manage nor
maintain a track assignment table. It is the user’s responsibility to
manage these tracks; however, the File Manager may be used to manage
peripheral subchannel tracks. A peripheral subchannnel must have a
logical unit number assignment greater than 6.

PHYSICAL MEMORY -~ Physical memory is the total amount of memory
defined at generation or reconfiguration time. It refers to the actual
memory in the computer; e.g., page 67 of physical memory is associated
with a certain block of actual hardware, whereas the same page might
be referred to as "page 5" in a particular block of logical memory.

POWER FAIL/AUTO-RESTART ~ The ability for a computer to save the
current state of the system in permanent memory when power is lost,
and to restore the system to defined conditions when power returns.

PRIORITY ~ A regulation of events allowing certain actions to take
precedence over others in case of timing conflicts.

PRIVILEGED DRIVERS -~ I/0 drivers whose interrupts are not processed by
the RTE operating system. Such drivers offer improved response time
but must perform their own internal housekeeping; i.e., saving status
upon interrupt.

PRIVILEGED INTERRUPTS - Interrupts that by-pass normal interrupt
processing to achieve optimum response time for interrupts having the
greatest wurgency. Privileged interrupts are handled by privileged 1/0
drivers.

PRIVILEGED SUBROUTINE ~ A privileged subroutine executes with the

interrupt system off (and therefore by-passes the operating system).
It allows high-speed processing at the cost of losing use of operating

system housekeeping services and real-time response.

PROGRAM STATE - Refers to the status of an executable program at any
given time, A user program is always in one of four possible states:
executing, scheduled, suspended or dormant.

GLOSSARY OF TERMS

PROGRAM SWAPPING -~ see Swapping

PURGE -~ Refers to the act of instructing an operating system to delete
a file or program from its directory. Usually used with reference to
disc files.

REAL-TIME (RT) - An arbitrary name for one of the two types of
partitions in RTE; generally used for higher-priority programs. The
real-time area is synonymous with the "foreground" area.

REAL~-TIME EXECUTIVE - A collection of software modules comprising the
total operating system; e.g., EXEC, SCHED, RTIOC, 1I/0 drivers and
various tables., For all practical purposes, Real-Time Executive,
operating system and RTE are synonymous terms.

RECORD - A logical subdivision of a file that contains zero or more
words, and is terminated by an end-of-record mark.

REENTRANT - Refers to a routine that can be shared by a number of
programs simultaneously; i.e., one program can be interrupted in its
usage of the routine to permit a higher-priority program to utilize
the routine. The first program can then reenter the routine at the
point where it was interrupted.

RELOCATABLE LIBRARIES - A collection of commonly-used subroutines in
relocatable format. For example:

System Library -~ subroutines that are appended to each user program
and that are unique to the operating system. This allows a user to
write programs using operating system routines but which are
independent of the operating system for subroutine execution.

DOS/RTE Relocatable Library - a collection of utility subroutines
that are ©primarily accessed by FORTRAN and Assembly Language
progr ams.

FORTRAN Formatters - format subroutines for FORTRAN I/0 operations
and other programming languages.

RELOCATING LOADER (LOADR) -~ A HP-supplied program that sets up
communications links and forms an absolute 1load module from a
relocatable program. LOADR creates the relocated program 1n

conformance with current system constraints and loader commands
entered by the user. '

RESOURCE MANAGEMENT -~ A feature that allows the user to manade a
specific resource shared by a particular set of cooperating programs.

10

GLOSSARY OF TERMS

RESPONSE TIME -~ The total amount of time required to bring a real-time
program or routine into execution in response to an interrupt,
interval timer, call from another program or operator call. Response
time is usually measured in microseconds to milliseconds.

ROM BOOT - A loader residing in Read-Only Memory that on-~line loads
the Boot Extension from disc storage and transfers control to the Boot
Extension. The Boot Extension must reside on the disc physical unit
0, track 0, sector 0. (See also Boot Extension and Startup

definitions.)
RTE -~ See REAL-TIME EXECUTIVE
SAM - See System Available Memory

SCHEDULING -~ Entering a program in the schedule list for execution,
either at the next entry into the dispatcher, or at the appropriate
time when the program’s priority is high enough.

SEGMENTED PROGRAM ~ A technique for accommodating programs larger than
the available logical memory. "Segment" refers to those slices of the
program that are brought into main memory as required, and overlay the
previous segment.

SELECT CODE -~ An octal number (10 through 77) that specifies the
address of an I/0 device interface card.

SIMULTANEOUS PERIPHERAL OPERATIONS ON-LINE (SPOOL) -~ An RTE feature
generally associated with batch operations. There is both in-spooling
and out-spooling . 1In-spooling consists of a program and data being
first read in from some peripheral device and placed on the disc.
Program reads are translated to disc reads instead of reads from the
peripheral device. Program writes are also translated to disc writes
instead of peripheral device writes, so that program output is on
disc. Out-spooling is the process of taking the program’s output from
disc to the appropriate peripheral device.

STARTUP -~ The startup process is initiated by the Boot Extension.
During the startup process, the tables, registers and pointers
required by the system are established. Control is then transferred
to the Configurator.

SUBCHANNEL -~ One of a group of 1/0 devices connected to a single I/0
controller. For example, RTE driver DVR23 can operate more than one
magnetic tape drive through subchannel assignments. 1In the case of
moving head discs, contiguous groups of tracks are treated as separate
subchannels. For example, a 7905 disc platter may be divided into four
subchannels. Each subchannel is referenced by an LU number.

SUBCHANNEL INITIALIZATION ~ The process of preparing a disc subchannel
for use by the RTE operating system.

11

GLOSSARY OF TERMS

SUBCHANNEL NUMBERS - Decimal numbers (0-31) associated with the LU
numbers of devices with multiple functions on the same device. Each
subchannel number 1is associated with a specific subchannel; e.g., a
2645A terminal could have four subchannels: one for the keyboard, one
each for the right and left tape channels, and one for an optional

line printer.

SUBPARTITIONS -~ Partitions that are optional subdivisions of a mother
partition. Subpartitions have the same type (RT or BG) as the mother
partition., Subpartitions are treated like other partitions except that
they cannot be used while the mother partition contains an executing
program,

SUBSYSTEM GLOBAL AREA (SSGA) ~ An area of memory that consists of all
Type 30 modules loaded at generation time. The area is included in the
system address space and in the address spaces of programs that access
it (Types 17-20, and Types 25-28). The area may be used for data
(i.e., COMMON) .

SWAPPING - A technique whereby an executing program is suspended and
transferred to mass storage (because another program needing the same
portion of memory has been scheduled). When the interrupting program
has terminated, becomes suspended, or becomes eligible to be swapped
out, the previously swapped program may be reloaded into memory and
resumes execution at the point where it was suspended.

SWTCH PROGRAM - A system utility program that transfers an RTE-IV
operating system to a specific disc area from which it can be booted

up .

SYNCHRONOUS DEVICE - Devices that perform I/0 operations in a fixed
timing sequence, regardless of the readiness of the computer.

SYSTEM AVAILABLE MEMORY (SAM) - A temporary storage area used by the
system for class I/0, reentrant I/0, automatic buffering and parameter
string passing.

SYSTEM COMMON - An area of memory that is sharable by programs.

SYSTEM CONSOLE -~ The interactive console or terminal (LUl) that
controls system operation and from which all system and utility error
messages are issued. In a multi-terminal environment, a system console
is distinguished from "user consoles" from which users develop

programs.

SYSTEM DISC SUBCHANNEL - The disc subchannel assigned to Logical Unit
2 that contains the memory image of the RTE-IV system.

12

GLOSSARY OF TERMS

SYSTEM DRIVER AREA - An area for privileged drivers, very large
drivers, drivers that do their own mapping or drivers not included in
driver partitions. It is included in the system’s address space, in
the address space of RT and Type 3 BG programs, and optionally in the
address space of memory resident programs.

SYSTEM MAP - The 32K-word address space used by the operating system
during its own exectuion,

SYSTEM TRACKS - All subchannel tracks assigned to RTE-IV for which a
contiguous track assignment table 1is maintained. These tracks are
located on Logical Unit 2 (system), and 3 (auxiliary).

TABLE AREA I - An area of memory that 1is included in all address
spaces and which includes the EQTs, Device Reference Table, Interrupt
Table, Track Map Table, all Type 15 modules, and some system entry
points.

TABLE AREA II - An area of memory that contains the system tables, ID
segments, all Type 13 modules, and some system table and entry points.
Table Area 1II is included 1in the address space of the system,
real-time programs, Type 3 background programs, and (optionally)
memory resident programs.

TIME DBASE GENERATOR (TBG) = A hardware module (real-time clock) that
generates an interrupt in 10 millisecond intervals. It is used to
trigger execution of time-scheduled user programs at pre-determined
intervals and for device time-outs.

TIME-OUT =~ Relating to the state of a peripheral device. When the
device has timed-out, it is no longer available for system use (down).
Also (noun) the parameter itself; the amount of time RTE will wait for
the device to respond to an I/0 transfer command before making the

device unavailable.

TIME SCHEDULING - The process of automatically scheduling a program
for execution at pre-determined time intervals. Program scheduling 1is
established through use of the IT command, and requires that the Tine
Base Generator be 1nstalled in the CPU.

UP - See Device Up

USER MAP - The 32K-word address space used by a user program during
its execution.

13

o ot o e e e o i e A e e 2t o o o T o

| GENERAL DESCRIPTION

+ ———
wn
=
Q
A
-
Q
=z
~—

o e e e e e e e i o e o o o e e e

1-1. REAL-TIME EXECUTIVE

The Real-Time Executive is the major control element and
communications 1link within the RTE-IV operating system. It supervises
and coordinates all program calls or operator requests for system
services., In a typical real-time environment, the Executive handles
all decision making and scheduling unless overridden by operator
intervention.

A disc-based system, RTE-1IV provides for real-time program execution
concurrent with full program development services. RTE-IV features
multiprogramming, dynamic memory mapping, access to more than one
million words of main memory, and an Extended Memory Area (EMA) scheme
that offers access to data arrays that are larger than a program’s
logical address space.

The memory management and mapping provisions allow the central
processor unit (CPU) to access from 48K to 1024K words of "physical
memory." Physical memory refers to all of memory actually available to
the wuser through the memory management and mapping scheme. "Logical
memory" refers to the actual 32K-word address space imposed by the
15-bit address length wused in HP 21MX-series computers that is
addressable by user programs. RTE-IV automatically handles all
addressing and mapping of memory for the user.

Most programs previously written to execute under RTE-M, RTE-II or
RTE~III systems are upward compatible with and will successfully
operate under RTE-IV. Differences in features between operating
systems are itemized in Appendix E.

Significant new features built into RTE-IV include the following:

* Improved user interface - reduced wuser interaction for scheduling
system processes (i.e., Relocating Loader, FORTRAN IV, Assembler,
etc.) .

* Program preparation using files.

* Assignment of programs to partitions via operator command.

* 1Interactive Relocating Loader.

* Greater reliability -~ hardware parity error recovery, additional
checks on operator scheduling command input, improved error

messages, and on-line removal of defective pages. Defective pages
are those in which parity errors have been detected.

I-1

GENERAL DESCRIPTION

* Reconfiguration of I/0 and/or main memory during system boot-up
without the necessity of regenerating the entire system. Defective
pages of memory can be by-passed during the memory reconfiguration
process. (Defective pages are those in which parity errors have
been detected.)

* TIncreased user code area of up to 27K words.

* A memory management scheme that accomodates unusually large data
arrays. Implementation 1is through an easy=-to-use Extended Memory
Area (EMA). Using EMA, data arrays as large as physical memory may
be mapped into the user’s logical address space, as required.
Typical applications where EMA arrays are particularly useful are
as follows:

a. Systems with 1large amounts of data storage, acquisition and

processing. Data access within EMA arrays is rapid, requiring no
disc accesses as in virtual memory schemes.

b. Data acquisition and storage from fast devices at real-time
rates.

C. Processes 1involving data access from random locations (e.g.,
sorting).

d. Scientific applications involving large matrices (e.g.,
inverting a matrix).

e. Applications requiring extremely large buffer areas.

1-2. SYSTEM HARDWARE

The RTE-IV system operates with the following minimum hardware
configuration:

* HP 21MX Series Computer with a minimum 48K words of memory (64K is
highly recommended for improved memory utilization).

* Time Base Generator

* Dual Channel Port Controller (DCPC)*
* Dynamic Mapping System

* Memory Protect

* System Console Device

* High Speed Disc Storage

* Firmware Accessory Board (FAB) (21MX-E series only)

GENERAL DESCRIPTION

* Either an HP Mini-Cartridge Subsystem or High Speed Paper Tape
Reader.

1-3. SYSTEM SOFTWARE

The complete set of currently available RTE-IV operating system
modules and standard subsystems is 1listed in the RTE-IV Software
Numbering Catalog. Optional subsystem modules can be found in the
various subsystem Software Numbering Catalogs.

1-4. MEMORY MANAGEMENT

The Dynamic Mapping System (DMS) provides the capability of addressing
memory configurations larger than 32K words. Up to 1024K words of
physical memory can be addressed by the user. The following brief
explanation of the mapping and addressing process provides a general
overview of system operation. For a more detailed description, refer
to the 21MX Series Computer Reference Manual and information given in
the "Memory Organization and Managment" section of this text.

Addressing more than 32K words is accomplished by translating memory
addresses through one of four "memory maps". A memory map is defined
as a set of 32 hardware registers that provide the interface between
the 32K logical and physical memory. All memory map addressing is
performed internally by the system and is transparent to the user.
The four memory maps managed by the system consist of a system map
that defines the system’s 1logical address space, a user map that
defines the wuser’s logical address space, and two Port maps that
define a caller’s I/0 buffer in a DCPC transfer.

1-5. MULTIPROGRAMMING

RTE-IV is a multiprogramming system that allows several programs to be
active concurrently. Each program executes during the unused central
processor time of the others. Scheduling/dispatching modules decide
when to execute programs that are competing for system resources.
These modules swap disc-resident programs in and out of partitioned
memory in accordance with availability of system resources, program
priority and time scheduling criteria. The programs may be scheduled
by pre-determined time intervals, an external event, operator command
or by another program. A scheduled list maintained by the system is
automatically scanned every 10 milliseconds or whenever a change is
made to the list by a new entry.

Up to 254 programs may be defined by ID segments at one time (an ID
segment is a table that describes the program; refer to Appendix A for
more information). Additional programs may be relocated and then saved
as files by wusing the File Manager. Thus, the number of readily
accessible programs can be increased to the limits of available disc
storage.

GENERAL DESCRIPTION

1-6. INPUT/OUTPUT PROCESSING

All 1I/0 and interrupt processing is controlled by the system with the
single exception of privileged interrupts (privileged interrupts
circumvent the system for faster response time). Input/output
operations are performed concurrently with program execution; some
programs execute while others are receiving I/0 services.

Requests for 1I/0 services are made by EXEC function calls coded into
the calling program, The EXEC calls specify the type of transfer
(Read, Write, Control) and the desired device. 1I/0 requests for a
particular program are queued to the controller I/0 list according to
the calling program’s priority. Automatic buffering for write
operations is provided if specified.

In addition to the standard I/0 scheduling processes described above,
there are a number of other 1I/0 functions available that can improve
system performance in a multiprogramming environment:

* Device Time-Out =-- sets a time-out value for a device to prevent
indefinite program suspension because of a malfunctioning device.

* I/0 Buffering -- automatic buffering on slower devices allows a
calling program to initiate an output operation (only) without
waiting for completion before resuming execution. A read without
wait operation is a function of Class I/0 (see below).

* Reentrant I/0 -- allows a disc resident program to be swapped out
from a memory partition and into disc storage when it is suspended
for 1/0. This, in turn, permits any program to use the partition.
The previous status of the swapped program is maintained so that,
when it once again achieves highest priority on the scheduled list,
it can resume execution and I/0 processing at the point of
interruption.

* Logical Unit Lock -- assigns a logical unit exclusively to a
specific program, thus preventing any other program from accessing
it until it is unlocked.

* C(Class 1/0 -- a special set of 1I/0 calls that provide a method for
buffering data between devices and user programs and also between
programs (mailbox 1I/0). Class I/0 permits a wuser program to
continue execution concurrently with its own I/0 (I/0 without
wait) .

1-7. RESOURCE MANAGMENT

Resource management is a user-determined method for cooperating

programs to share a common resource in an orderly manner. A
resource" may be anything so defined by the user programs accessing
it; an I1/0 device, a file, subroutine, or a memory location

containing volatile data are typical examples,

GENERAL DESCRIPTION

This sublevel of resource sharing is initially implemented during
system generation by defining the number of concurrent resources to be
shared. A table of these numbers is set up and maintained by the
system. An example of resource sharing would be the updating of
commonly-shared data by one program. It would 1lock the associated
resource number to prevent premature access by other programs until
the data was updated. See Section IV for a complete description.

1-8. EXECUTIVE COMMUNICATION

EXEC calls are the line of communication between an executing program
and system services. The required calls are coded into a program
during its development phase. The calls have a structured format plus
a number of parameter options that further define the specific
operation to be performed.

When an executing program makes a call to EXEC, it attempts to execute
a jump subroutine (JSB) to that portion of the system located in the
protected area of memory. This causes a memory protect violation
interrupt that is then processed by the system. If the call is legal,
the system processes the request.

The following is a partial list of system services available to an
executing program via EXEC calls:

* Perform input and output operations

* Allocate and release disc space

* Terminate or suspend itself

* Load its segment

* Schedule other programs

* Recover scheduling strings

* Obtain the time of day

* Time-schedule program execution

* Obtain status information on partitions

See Section IV of this manual for complete descriptions and format
considerations of EXEC calls,

GENERAL DESCRIPTION

1-9. OPERATOR COMMANDS

The operator maintains final control of RTE-IV system operation
through commands entered via the system console. These commands and
their parameter options enable the operator to monitor current system
status and/or modify system operation. The following is a partial
list of operator control functions:

* Turn programs on and off

* Suspend and restart programs

* Examine the status of any partition, program, I/0 device or
controller

* Schedule programs to execute at specified times
* Change the priority of programs
* Declare I/0 controllers or devices up or down

* Dynamically alter the logical 1I/0 structure and buffering
designations

* Delete temporarily-loaded disc resident programs from memory

* Examine and dynamically alter an I/O device’s time-out parameter

* Release tracks assigned to dormant programs

* Initialize the real-time clock and display the time

* Change program size (dynamic buffer area)

* Assign programs to partitions

* Remove reserved status of partition

See Section III of this manual for descriptions and parameter options
of all operator commands.

1-10. SYSTEM CONFIGURATION

Memory resident and disc resident wuser programs, system modules,
library routines, device drivers and Real-Time Executive modules are
incorporated into a configured RTE System. The RTE software is modular
and flexible enough to permit user programs and I/0 device drivers to

be configured 1into a real-time system that 1is tailored to an
installation’s exact requirements.

I-6

GENERAL DESCRIPTION

Using the Real-Time On-Line Generator (RT4GN) and SWTCH, the
relocatable software modules and user programs are converted into a
configured real-time system in memory-image binary format. The
configured system is then loaded (bootstrapped) into the computer from
the system area of the disc. Any remaining disc storage is dynamically
allocated by the configured system to user programs or is utilized by
the scheduler for swapping operations.

1-11. MULTI-TERMINAL OPERATIONS

The Multi-Terminal Monitor (MTM) provides concurrent management of
multiple user consoles. Each wuser 1is provided with his own File
Manager for command input. Individual copies of user programs are
created whenever they are initiated at MTM consoles thus allowing
concurrent execution of Assemblers, Editors, Generators, etc. See
Section IX of this manual for a detailed discussion of MTM operation.
1-12., SYSTEM UTILITY PROGRAMS

Standard system utilities are on-line programs that run under the RTE
operating system and are called by the user to perform various program
preparation, system status and housekeeping processes. The presence of
any utility program in the system 1is optional, depending upon
site-specific requirements. The programs available are:

* Relocating Loader (LOADR)

* File Management Package (FMP)

* Interactive Editor (EDITR)

* Batch Spool Monitor (BSM)

* On-Line Generator (RT4GN)

* Disc Backup

* Disc Update

* System Status Program (WHZAT)

* KEYS and KYDMP Progr ams

* Track Assignment Table Log Program (LGTAT)

* Debug Subroutine (DBUGR)

GENERAL DESCRIPTION

1-13. RELOCATING LOADER

The Relocating Loader program accepts user-written relocatable
programs and outputs absolute load modules in conformance with loader
control command parameter options specified by the user. Other command
parameters cause the loader to 1list system status information; i.e.,
currently available programs; or purge unwanted, permanently loaded
programs from the system. See Section VII of this manual for a
detailed discussion of LOADR operation.

1-14. FILE MANAGEMENT PACKAGE (FMP)

The File Managment Package is a set of programs (FMGR and D.RTR) and
subroutines that provide disc file housekeeping services. Service may
be acquired either programatically or through interactive user
commands. Files may be created, renamed, copied, purged, listed,
concatenated or otherwise manipulated on disc tracks under control of
the File Management Package. See the Batch Spool Monitor Reference
Manual, Sections II and III for complete information regarding use of
FMP,

1-15. INTERACTIVE EDITOR

The Editor (EDITR) program is used to create and/or edit (modify)
lines of text in a source file under development or in a data file in
ASCII format. See the RTE Interactive Editor Reference Manual for
further information.

1-16. BATCH SPOOL MONITOR

The Batch Spool Monitor is a set of programs and subroutines that are
used to perform disc-based job processing. That is, jobs or data can
be input from a disc file and data can be output on a disc, with all
the necessary I/0 being performed independently of batch processing.
BSM also provides a means for input and output spooling of data. See
the Batch Spool Monitor Reference Manual, Section IV through VII, for
more information.

1-17. WHZAT

The WHZAT program provides status information regrading the current
system environment. Two different types of information <can be
displayed: a list of all active program and their current status, or a
list of all partitions with their sizes and current status (occupied
or non-occupied). See the RTE Utility Programs Reference Manual for
more information.

GENERAL DESCRIPTION

1-18. DBUGR

The DBUGR subroutine can be appended to a user program through use of
the Relocating Loader. It <can then aid the user in checking for
logical errors in a program through interactive control commands.
Debugging 1is performed at the Assembly Language level. See the subset
of DBUGR control commands described in the DBUGR--Interactive

Debugging section of this manual or the DBUGR Reference Manual for a
complete description of all DBUGR functions,

1-19. ON-LINE GENERATOR

The On-Line Generator permits use of an existing RTE-IV system to
configure a new RTE-IV system according to wuser specifications.
Generation can be directed from an answer file, logical input unit or

operator console. See the RTE-IV On~Line Generator Reference Manual
for more information.

1-20. SWTCH

The SWTCH program permits a user to transfer an RTE-IV operating
system file created by the On-Line Generator to a specific area of a
disc from which it can be booted up. See Section V of the RTE-IV
On-Line Generator Manual for more information.

1-21. DISC BACKUP

The Disc Backup programs can be used either on-line or off-line to
transfer data from disc to magnetic tape or vice versa, copy data from
disc to disc, verify successful transfers or copy operation, and to
initialize a disc cartridge., See the RTE Utility Programs Reference
Manual for more information.

1-22. DISC UPDATE

The Disc Update process can be used to replace disc cartridge files
with files stored on an HP mini-cartridge tape. The primary purpose is
to update master software discs with either HP softwdre distributed on
mini- cartridges or user-written program modifications. See the RTE
Utility Programs Reference Manual for more information,

I-9

GENERAL DESCRIPTION

1-23. KEYS AND KYDMP

The KEYS and KYDMP programs are used to create user-defined command
sets for programming the soft keys on the HP 2645A Display Station.
Softkeys provide the capability to enter entire sequences of commands
with a single keystroke. The advantages are speed of entry and a
significant reduction 1in operator errors during terminal entry
sessions. See the RTE Utility Programs Reference Manual for more
information.

1-24. LGTAT

The LGTAT program logs and displays the status of the system and

auxiliary (only) disc tracks. See the RTE Utility Programs Reference
Manual for more information.

1-25. PROGRAMMING LANGUAGES

The language translators available for user program development under
the RTE system are RTE FORTRAN IV, RTE Assembler, HP Micro Assembler
and BASIC 1000/D.

RTE FORTRAN-IV

RTE FORTRAN IV 1is a problem oriented programming language that is
translated by a compiler. The FORTRAN IV compiler executes in RTE and
accepts source programs from either an input device or FMGR file. The
resultant relocatable object programs and listed output files are
stored in FMGR files or output to specified devices, For further
information, see the RIE FORTRAN-IV Programmer’'s Reference Manual.

RTE-IV ASSEMBLER

The RTE-IV Assembly Language 1is a machine-oriented programming
language. Source programs written in this language are accepted by the
Assembler from either input devices or disc files and translated intc
absolute or relocatable object programs. Absolute code is output in
binary records suitable for execution on systems other than RTE-IV.
For further information, see the RTE-IV Assembler Reference Manual.

RTE MICRO-ASSEMBLER

The Micro-Assembler is part of an optional support package for on-line
users of special microprogrammed instructions. The Micro-Assembler
translates source code into object microprograms, For further
information, see the Micro-Assembler Reference Manual.

GENERAL DESCRIPTION

REAL-TIME BASIC/1000D

Real-Time BASIC 1is an optional, conversational programming language
that 1is easily learned, even by users without previous progr amming
experience. Each statement entered by the user is immediately checked
for correct syntax by the Real-Time BASIC Interpreter. No separate
compilations or assembly operations are involved. A partly completed
program can be run at any time to confirm that it executes as the user
intended. See the Multi-User Real-Time BASIC Reference Manual.

QUERY

QUERY 1is an English-like language used to access the HP data base
management subsystem called IMAGE/1000. IMAGE/1000 1is itself an
optional subsystem that can be ordered for RTE-IV system applications
involved with large data base considerations. 1In addition to the use
of QUERY, the data base can also be accessed through RTE-IV FORTRAN,
Assembler or Real-Time BASIC applications programs. See the IMAGE/1000
Reference Manual for further information.

1-26. RTE-IV SYSTEM SUMMARY

The HP Real-Time Executive IV software system is a multiprogr amming,
multi-user and multi-partitioned system that provides priority
scheduling, interrupt handling and program preparation capabilities.

With multiprogramming, a number of data acquisition systems or test
stands can be operated simultaneously on a 24-hour a day basis. Data
reduction and report preparation functions can be scheduled to execute
in the background area during times when real-time activities permit.
The same computer can also be wused by the programming group for
ongoing development work with RTE background compilers for FORTRAN 1V,
and with the HP Assembler, FEditor, and other auxiliary programs.
Programs can be added to the system on-line., For system protection,
new programs can be debugged while the memory protect fence and the
Dynamic Mapping System maintains the integrity of the system area and
other user programs,

Scheduling of all programs is based on priority. External events can
interrupt current operations to schedule programs for execution, or a
program can be scheduled by an operator request, a program request, or
on a real-time clock basis. Priorities are assigned by the user during
generation or on-line 1loading, and may be changed by an operator
request.

GENERAL DESCRIPTION

The system controls I/0 processing through a c¢entral routine that
directs requests and interrupts to the appropriate device driver
subroutine. For efficiency, programs awaiting I/0 are suspended to let
other programs use the computer. Outputs to slow devices can be
buffered. For processes that cannot tolerate ordinary system overhead,
a privileged interrupt option lets a device <contact 1its driver
directly without going through the Executive. Program to-program
communication is provided through a mailbox (Class I/0) scheme.

The operator retains final control of system operation via commands
entered through the system console. The operator can turn on programs,
make status checks or perform other operations.

Configuration 1is efficient. System generation 1is performed on-line
using interactive operator dialog or pre-built answer files. This
results 1in an operating system configured for a specific hardware
system.

System boot-up is the process of loading the operating system software
into memory so that it is ready for execution. Boot-up begins by using
either the Disc Loader ROM or Bootstrap Loader to load the Boot
Extension into memory from track 0, sector 0 of the system disc
subchannel. The Boot Extension, in turn, loads the operating system
into memory.

At this point, the wuser has the option of either completing a
"standard" system boot-up procedure as described in this section, or
reconfiguring the current I/0 and memory assignments as described in
Section XII, "Memory and I/0 Reconfiguration." In a standard boot-up,
the operating system immediately completes the rest of the
initialization process as follows:

l. Displays a SET TIME message.
2. Executes a startup program (optional).

3. Passes control to the File Manager (FMGR), which tries to execute
a procedure file named WELCOM. If the WELCOM file does not exist
on the system, the FMGR displays a FMGR -006 error message.

If memory and/or I/0 reconfiguration are to be performed during system
boot-up, completion is delayed and an interactive Configurator program
is scheduled via S-register settings to make the new memory and I/0
assignments, At the end of the reconfiguration process, control is
returned to the system to complete the boot-up procedure as described
above,

Use the procedures described below to perform a standard system
boot-up. Use the procedures described in Section XII to perform a

boot-up with I/O and memory reconfiguration.

2-1., BOOT LOADERS AND BOOT EXTENSION

The Disc Boot Extension can be locaded into memory from the disc using
either the Disc Loader ROM or Bootstrap Loader.

2-2. DISC LOADER ROM

The Disc Loader ROM can be used to load the Boot Extension if the Boot
Extension resides on physical track 0, sector 0 of the system disc.
Refer to the HP 12992 Loader ROM's Installation Manual (12992-90001)
for a description of the S-register setting to load the Boot Extension
into memory.

I1-1

STANDARD BOOT-UP PROCEDURES

An example of a standard system boot-up using the 12992B
RPL-~compatible 7905/7906/7920 Disc Loader ROM is as follows:

1. Select the S~register for display on the computer front panel.
2. Press CLEAR DISPLAY.

3. Set the S~-register bits as follows:

Bits Enter:

- - - — - -

0-2 Surface number of the disc where the
RTE-IV system subchannel starts (surface
numbers start at 0).

3-4 0 (reserved)

5 0 for standard boot-up
6-11 Octal select code of the disc.
12 1 to indicate a manual boot from

the S-register.

13 0 (reserved)
14-15 Loader ROM selection (number of the
ROM cell containing the Disc Boot
Loader) .

4. Press PRESET, IBL and PRESET (again) to load contents of Disc
Loader ROM. A successful 1load is indicated if the OVERFLOW
indicator does not light up.

5. Press RUN.

EXAMPLE:

1. Assume a standard boot-up from ROM #2, with a 7906 in select
code 21 and surface 0.

2, BSet the s-register = 112100.

3. Press PRESET, IBL , PRESET (again) and RUN.

I1-2

STANDARD BOOT-UP PROCEDURES

2-3. BOOTSTRAP LOADER

The Bootstrap Loader is used to load the Boot Extension into memory if
the Boot Extension does not reside on the physical track 0, sector 0
of the system disc, or if the Disc Loader ROM is not available. The
procedure is as follows:

l. Select the S-register for display on the computer front panel.

2. Press CLEAR DISPLAY.

3. Set the S-register bits as follows:

Bits: Enter:
0-5 0
6-11 Octal select code of input

device (e.g., photoreader)

12-15 0

4, Press PRESET, IBL and PRESET (again) to load the Bootstrap Loader.
A successful load 1is indicated if the OVERFLOW indicator does not
light up.

5. Press RUN.

When the HLT 77B occurs, clear the S-register, set the P-register to
octal 100 and press RUN to continue,

2-4., BOOT EXTENSION EXECUTION

The disc Boot Extension uses the S-register to communicate with the

configurator program (see Section XII). Do NOT change the S-register
contents until the system boot-up procedure is completed and the SET

TIME message is displayed.

I1-3

o e e e e e o o o s i 2 e o o

+
| |
| OPERATOR COMMANDS | SECTION III |
|
+

o e e e e e e e e e e o e e i e e e S e e e e e

3-1. INTRODUCTION

User control of an RTE operating system and the monitoring of system
status are performed through a two-way dialog between the system and
user. The system displays various status or error messages that may or
may not require human intervention. The wuser communicates with the
system through operator requests entered at the user console. Using
these commands and their various parameter options, an operator may
interrupt RTE at any time to determine current system status, correct
error conditions or modify system performance, The operator commmands
and their function are summarized in Table 3-1; complete descriptions
are given later in the section.

3-2. COMMAND STRUCTURE

The operator first gets system attention by pressing any key on the
system console (LUl). On the system console, RTE responds with an

asterisk (*) prompt to indicate system attention. The user then types
a command which is a two-character request word (e.g., ON, UP, etc.),
followed by the appropriate parameters separated by commas.

Each command is parsed or resolved by a central routine that accepts
certain conventions. Command syntax is described in Table 3-2. This

syntax and the command conventions described below must be followed
exactly to satisfy system requirements.

3-3. COMMAND CONVENTIONS

* When a command 1is entered, the items outside the brackets are
required symbols. Items inside the brackets are optional.

* Two commas in sequence defaults a parameter to zero.

* FEach command entered must be completed with an end-of-record
terminator (RETURN key on a CRT or TTY system input device).

I11-1

OPERATOR COMMANDS

An error made while entering a command parameter can be corrected
by using the BACK SPACE key on a CRT system input device (the
CONTROL and A keys struck simulataneously will delete the last
character entered on TTY input devices). To delete an entire line,
use the DEL key (RUBOUT key on TTY devices). Corrections to a
command must be made before the RETURN key is pressed or the system

will issue an error return. Note that line feed is supplied by the
system.

Whenever the operating system is rebooted, parameters changed by

user command will be restored to their original values established
during system generation.

Table 3~1, Operator Command Summary

L Tt F e e e e —— e e o +
Command | ISee |
Format | Function IPage |

o e e e e e e e e e e e e e s e e e e e e e e e e e o et e s e e | ————— +

| l |
AB | Aborts current batch program. | 3-5 :
I |
AS | Assigns program to a partition. | 3-6 |
| | |
BL | Examines and sets buffer limits. | 3-7 |
I | I
BR | sets a break flag in named program’s ID segment. | 3-8 :
| I
DN | Declares an I/0 controller or device unavailable. : 3-9 :
|
EQ | Examines status of any I/O device, and dynamically | 3~10|
| alters device buffering assignments. | 3-11}
| | |
FL | Butfer flush command used in conjuction with | 3-12]
| Multiple Terminal Monitor (MTM) only. | |
| | I
GO | Restarts programs in an operator suspension state | 3-13]|
| (there several other suspension states). % g
|
IT | Sets time intervals for programs. | 3-151
I I |
LG | Allocates LG area. : 3—16:
I
LS | Sets LS area pointer. | 3-17|
| | |
LU | Examines and alters device Logical Unit | 3-18|
| assignments. % 3-19:
|
I | |
e TeTE - e e e e e e e e e e e e e e e e e e e o e +

II11-2

e e e e
| Command
| Format

OF
ON
PR
RT
RU
SSs
ST
SZ
TI
™™

TO

UupP

OPERATOR COMMANDS

Table 3-1. Operator Command Summary (cont’d)

o e e e et e et e e e e e e e e s e a0 2 e 20 e 2 e 2 22 e e e e e e e e e e . +
| Isee |
| Function |IPage |
o e e e e e e e e o et e e e e e e e e 20 s e e o 2 e e e e e e e e o +
| | |
| Terminates program execution. : 3-20:
|
| Schedules a program for execution. | 3-21|
| | I
| Changes the priority of programs. | 3-23]|
| I |
| Releases program’s disc tracks. | 3-241
Schedules a program for immediate execution.	3-25
Operator suspends a program.	3-271
I	
Examines the status of a program or partition.	3-281
	I
Examines or changes program size.	3-30]
	I
Prints the current time,	3-33]
l	
Sets the real-time clock.	3-341
Examines and dynamically alters an I/0	3-35]
controller’ s time-out parameter.	
Declares an I/0 controller and associated devices	3-361
as available.	
: Unreserves a previously reserved partition.	3-371
o e e e e e e et et e e e e et e e e ot ot e e e e e e e o +

ITI-3

OPERATOR COMMANDS

Table 3-2. Operator Command Syntax Conventions

gy g gy gy S S S SO 8

| Item

Meaning

o e e o e e e o e o e o e 2 S S e e A i o

I
UPPER CASE ITALICS

lower case italics
[,item]

| ,item 1 |
| ,item 2 |
| ,item 3 |

— -

Jitem 1
yitem 2
(l1tem 3
«.. (row of dots)

I
I
I
l
I
I
I
I
I
|
I
[
| == -
|
I
I
|
I
I
I
I
|
I
|

e ————————

IT11-4

These words are literals and must be
specified as shown.

Symbolic representations indicating what
type of information is to be supplied. When

used in text, the italics distinguishes them
from other textual words.

Items with brackets are optional. However, if
item is not supplied, its position must be
accounted for with a comma; this causes item
to automatically default.

Indicates that exactly one item may be
specified.

Indicates that there is a choice of entries
for the parameter, but one parameter must be

specified.

This notation means "and soc on."

I

I
I
[
I
I
I
I
I
I
I
I
I
I
|
!
|
[
I
|
|
I
|
I
I

OPERATOR COMMANDS

3-4. RTE-IV OPERATOR COMMANDS

All operator commands are described below in alphabetical sequence. A
carriage return to terminate a command entry is not illustrated, but
is assumed in every case.

- —— v W AR o — A = S A A S, N D D —E G L - - - . ——— - - ——— - -

AB (abort)
Aborts the current program running under batch. Since FMGR (not a

copy of FMGR) is the Batch Spool Monitor, the command applies only
to "sons" of FMGR. The format is

/410 \
B
\r1/

A

where:

0 is the default case. It terminates and removes from the time
list the current batch program that is executing, scheduled,
or operator suspended. It also terminates batch programs that
are I/0, memory or disc suspended the next time they are
scheduled. Disc tracks are not released.

1 immediately terminates the batch program and removes it from
the time list, and releases all disc tracks. If suspended for
I1/0, a system generated CLEAR request is issued to the driver.

When the File Manager is waiting on a program it is running (e.g.,
ASMB), the AB command functions like the command

OF ,name
If the File Manager is dormant or non-existent in the system, the
AB command causes the error message ILLEGAL STATUS to be printed.
If the File Manager is not dormant and is not running a program,
AB functions like the command

BR,FMGR

Note that an AB command from an MTM terminal functions differently
and has a different meaning. See the MTM section of this manual.

ITI-5

- - - - - Y T T — = ——+

OPERATOR COMMANDS

AS (assign partition)

Assigns a program to a partition. The partition does not have to
be reserved. The format is

AS,XXXXX,VY
where:

Xxxxx = the program name
Yy = the partition number (1-64)

Program xxxxx will be assigned to partition yy. If yy = 0, the
program will be unassigned and can be dispatched to any partition
of the proper type large enough to run the program.

If the program is not dormant or is still resident in any
partition (i.e., saving resources, operator suspended or serially
resuable), the error 'ILLEGAL STATUS will be returned and the
input ignored. Partition yy must also be large enough to run
program xxxxx. If not, the error 'ILLEGAL PART N’ will be
returned. Trying to assign a program to an undefined partition
will also generate the ‘ILLEGAL PART N’ message.

If the program named xxxxx cannot be found, a "NO SUCH PROG"
error message will be issued.

e e - e . G - W D S D N D D D D GE D G D G GEP G D VS G D W SED GED S D G WD G G G W S P D D W S I G D D Y WS D RGN IS D) W A W e

ITII-6

OPERATOR COMMANDS

BL (buffer limits)

Examines or modifies current buffer limits. The format is
BL{lower 1limit, upper limit]
where:

BL without parameters displays previously set upper and
lower limits,

lower limit is the lower limit number.
upper limit is the upper limit number.

|

|

|

|

|

|

|

!

|

|

|

|

|

|

|
Setting upper and lower memory limits with this command can |
prevent an inoperative or slow I/0 device from monopolizing |
System Available Memory. Each time a buffered I/0 request is |
made (Class I/0 requests are buffered), the system adds up]
all the words in the I/0 requests queued to that entry and |
compares the number to the upper limit set by this command (or |
during generation). If the sum is less than the upper limit, the |
new request is added to the queue. If the sum is larger than the |
upper limit,the requesting program is suspended in the general |
wait (STATUS = 3) list. I
|

|

|

|

|

|

|

|

|

I

|

I

+

When a buffered I/0 request completes, the system adds up the
remaining words in the I/0 requests queued to the EQT entry and
compares the number to the lower limit set by the command (or
during generation). When the sum is less than the lower limit,
any programs suspended for exceeding the buffer limits on this

EQT are rescheduled.

Any program with a priority of 1 through 40 will not be suspended
for buffer limit, so that alarm messages, etc., are not inhibited.

III-7

OPERATOR COMMANDS

o o e e e e e i e e e e e e i S S B e i e e e e e

BR (break)

Sets an attention flag in a program’s ID segment. The format is

BR, name

where name is the name of the program.

|

|

|

I

|

|

|

I

|

| The BR command allows an operator to break the execution of a
| program if the program requests this via the IFBRK system

| subroutine. When BR is executed, a break flag in the named user
| program’s ID segment is set . The user’s program can call the
|
|
|
I
|
|
|
|
I
I
I
+

accordingly. The calling sequence of the subfunction is:

I=IFBRK (IDUMY)

where IDUMY is a dummy parameter to make the call appear as a
function (IDUMY need not be supplied in Assembly Language). The
returned value will be negative if the break flag is set, and
positive if it is not. If the flag is set, it will be cleared by
IFBRK. See the Multi-Terminal Monitor section for variations to
the BR command for operation under MTM.

|
|
|
|
|
|
|
|
|
|
I
I
|
HP-supplied subfunction that will test the break flag and then act |
|
|
|
I
I
|
|
|
|
I
+

III-8

o ———— e —————

OPERATOR COMMANDS

DN (down)
Declares an I/0 controller or device down (i.e., unavailable for
use by the RTE system). The format is
/ reqt\
DN
\s,lu/
where:
eqt is the EQT entry number of the I/O controller to be
set down.
1u is the LU entry number of the I/0 device to be set
down,

Setting an I/0 controller (EQT entry) down effectively sets all
devices connected to the I/0 channel down by blocking any 1/0
operations on the select code. The state of the devices (LU s)
associated with the select code are unchanged.

Setting the I/0 device (LU) down will make only the specific
device unavailable. However, all other LU s pointing to the
device will also be set down. Other devices using the device’s

I/0 select code are unaffected,

The I/0 controller or I/0 device remains unavailable until the
I1/0 controller is set up by the UP command. The operator might
set a device down because of equipment problems, tape change, etc.

e 4

- D - A —— — - ——— - — - — — ————— - — ——— — . ——o G W . - — ——— . — - ——— - -

III-9

OPERATOR COMMANDS

o e e o i e e > " — " o " > =
|

| EQ (status)

|

| Prints the description and status of an I/0 controller, as

| recorded in the EQT entry. The format is

|

: EQ,eqt

| where:

|

| eqt is the EQT entry number of the I/0 controller.

I

| The status information is printed as:

|

| select code DV.nn D B Unn status

|

| where:

|

| select code is the I/0 select code number.

|

| DV.nn is the driver routine.

|

| D is D if is DMA required; 0 if not.

|

| B is B if automatic output buffering is used; 0 if
| not.

|

| Unn is the last subchannel addressed.

|

| status is the logical status:

|

| 0 = available

| 1l = I/0 controller unavailable (down)

| 2 = I/0 controller unavailable (busy)

| 3 = waiting for DMA assignment

I

| Note that if eqt is 0, it is a bit bucket, as is any associated
l LU.

|

o e e e e e e e e e e e e - e - - = = = = -~ — — " " = " o

ITI1-10

— ———— ——— e —— ——_——_—— e . ——— e ———_—— —————_——_————— e — 4

OPERATOR COMMANDS

+——————-—-—————-————— - S D D G T i =, CED P G W SIS D D W D G W T G- - —— - ———— — —— ——+

BEQ (buffering)

Changes the automatic output buffering designation for a
particular I/0 controller. The format is

/ +UNbuffer\
EQ,eqt
\,BUf fer [/
where:
egt is the EQT entry number of the 1/0 controller.
UNbuffer turns off buffering.
BUffer turns on buffering.

When the system is rebooted from the disc, all buffering
designations are reset to the values originally specified
during generation,

G . G S — — - - W W D A NGNS D WSS TG . G W G N I D N AR S G - GH AER G T G CED G R S W -——————— - -

ITI-11

OPERATOR COMMANDS

o o e e i o o o
: FL. (flush)

: Eliminates buffered output to an I/0 device. The format is

: 1u>FL

= where:

: lu is the Logical Unit Number of the interrupting user console.

: The FLush command can only be used in conjunction with the

| Multi-Terminal Monitor (MIM), and is illegal if entered from the

| system console (LUl).

l Other methods for clearing the buffer are using the EXEC call:

: CALL EXEC (3,23B,1lu)

: or the File Manager command:

: sON, FMGR

| :CN,1lu,23B

e e e e

IT1I-12

OPERATOR COMMANDS

o e e e e e e e e e e e e}

GO (reschedule)

Reschedules a program previously suspended by the SS command or
a Suspend EXEC Call. The format is

/GO \
(name [,pl [,...[,pP5]]1]]]
\GOI H/
where:
name is the name of a suspended program to be scheduled
for execution.
Pl ... p5 is a list of parameters to be passed to name only

Call in Section IV). The parameters are ignored
if name was suspended with the SS command.

The GO command is illegal if the program has not been suspended
previously by the operator or has not suspended itself.
Parameters pl through p5 can be entered in ASCII or numeric form.

Octal numbers are designated by the "B" suffix and negative
numbers by a leading minus sign. For example:

| |
| I
| |
| I
| |
| I
| |
| I
| I
| I
| |
| |
I I
| |
| I
| I
| when name has suspended itself (see Suspend EXEC |
| |
| |
I I
| I
| |
| I
| |
| |
| I
| |
| I
| |
| GO,name,FI,LE,31061B :
|

I |

III-13

OPERATOR COMMANDS

e e e e e e ————————— ——— e = e e -

GO (reschedule)...cont’d

Note that only two ASCII characters per parameter will be returned
by a RMPAR subroutine call: if one is given, the second

character is passed as a blank (blank = 40B). If the first
parameter is ASCII "NO" it must then be repeated (the system
interprets it as "NOW" in the GO commmand). For example:

GO ,name,NO,NO,FI1,3,4,5

is interpreted as shown below. NO (NOW) is not used except to
push out the parameters.

NO
FI
3
4
5

After a program has suspended itself and is restarted with the GO
command, the address of the parameters passed by GO is in the
B-register. An immediate call to the library subroutine RMPAR
retrieves the parameters (see Section IV, Suspend EXEC Call). If
the program has not suspended itself, the B-register is restored
to its value before suspension and the parameters are ignored.

The program may also recover the ASCII command string (up to 80
characters typed after the prompt) that scheduled it by using the
String Passage EXEC call (see Section IV). If the program was
rescheduled with a GOIH (inhibit string passage) or if the program
has not suspended itself, the command string is not passed.

— . —— — —— —— — — — —— — ———— — —. o— ——— ———— — —— oo— —— o— o S— —— — i
— —— — — —— — —— — —— St p— — — o —— | ——— e g — . i, — — i — e,

IT1I-14

OPERATOR COMMANDS

IT (Interval Timer)
Sets time values for a program so that it automatically executes
at selected times when scheduled with the ON command. The format
is

IT,name [res,mpt([,hr,min[,sec[,ms]]]]

where:

name is the name of the program.

res is the resolution code:
1l - tens of milliseconds
2 - seconds
3 - minutes
4 - hours

mpt is a number from 0 to 4095 and is used with res
to give the actual time interval for schedul ing
(see below).

hr hours

min minutes sets an initial start time.

sec seconds

ms tens of ms.

The resolution code (res) is the units in time to be multiplied
by the execution interval value (mpt) to get the total

time interval. Thus, if res=2 and mpt=100, name would be
scheduled every 100 seconds. If hr,min,sec and ms are present,
the first execution occurs at the initial start time specified
by these parameters (the program must be initialized with the ON
command.) If the parameters are not present (e.g., IT,name), the
program’s time values are set to zero and the program is removed
from the time list. The program can still be called by another
program or started with the ON,name,NOW or RU command.

When the system is rebooted from the disc, time values set by the
IT command are lost, and the original time values set at original

load time are reinstated,

The IT command is similar to the Execution Time EXEC Call (See
Section 1IV). For example:

The commands

IT,WHZAT,2,5
ON,WHZAT,NO

will cause WHZAT to execute every five seconds, starting now.

e e ——— e —— ¢

OPERATOR COMMANDS

o = " " - " . - - - - o - -

LG (LG tracks)

Allocates or releases a group of disc tracks for the LG area. LG
tracks may be used as temporary storage for relocatable code in

FMGR operations. The format is

LG, numb
where:
numb=0 (zero) releases the allocated LG area.
numb> 0 release currently allocated LG tracks and then

allocate numb contiguous tracks for an LG area.

Enough LG tracks for storing relocatable code must be allocated
before storing into this area. Insufficient tracks cause the
program to abort and one of the following diagnostics to be

displayed on the system console:

I006 - LG area not defined.
1009 - LG area overflow.

An LG request should not be used while anyone is using the LG
tracks. Doing so may result in the message

LGO IN USE

being displayed on the system console, and no change in the
current number of LG tracks. In most cases, however, the attempt

to do so results in an 1006 error being issued.

— T — e s . attre S . e s — . s, T, — . — — . s st i e e e, e et e s S e s
——— e —— —— —— o S— s st — — —— . — — — — —— ——— a—— o— o— — —

I11-16

OPERATOR COMMANDS

e o e e e 0 e e e 2 S 2 2 O i e i o s e

LS (source file)
Designates the disc Logical Unit number and starting track

number of source code stored in the track pool prior to an EDITR
operation on the code. The format is

LS,disc lu,trk numb

where:

disc lu is the Logical Unit number of the disc containing
the source file.
2 or 3 = system or auxiliary disc units.
0 = eliminate the current source file

designation.

trk numb is the starting track number (decimal) of the source

code.

LS replaces any previous declarations with the current source code
area., Only one area may be declared at a time.

s e e e — — . —— s . . s et e,

II1I-17

OPERATOR COMMANDS

+———-- - S D G I A - P TR S D G D T) G G D - S G W S, S A G G S G et ———————+

LU (assignment)

Prints the EQT entry number, device subchannel number, and 1/0
device status associated with a Logical Unit number. The format is

LU, 1lu

where 1lu is a Logical Unit number from 1 to 63.

Example:
I I .
Logical Unit number ------- + I ||
EQT number-----=--—-——ceecaaao— i : :
subchannel number--=--===cce-ceco-—o- i :
.

I/0 device status (down in this case)--

If the Logical Unit’s device is unavailable (down), a D is printed
as the status; otherwise the position is left blank.

gy
[@)
=+
d
1]
3]
l—l
N
2]
—
»O

I11-18

OPERATOR COMMANDS

+-————- - - G — - —— —— - . T T D S D WY ——mS D - - Y -——-+

LU (reassignment)

Changes a Logical Unit number assignment. The format is

/eeqt[,subch numb]\

LU, 1lu
\,0 /
where:
lu is a Logical Unit number from 1 to 63 (decimal).
eqt is an EQT entry number to assign 1lu.
egqt if zero (0) lu becomes the bit bucket.

subch numb is a subchannel number (0 to 31) to assign to lu.

The restrictions on changing lLogical Unit assignments are:

a. LUl (system console) must be an interactive
console device. Note that if LUl is changed,
the new console will print a double asterisk (**).

b. LU2 (system disc) and LU3 (auxiliary disc)
cannot be changed to another EQT entry number.

c. An LU cannot be changed to point at the same
device as LU2 or LU3.

When an irrecoverable problem occurs on an I/0 device, the
operator can bypass the downed device for future regquests by
reassigning the Logical Unit number to an operable device on

another select code.

When the system is rebooted from the disc, all LU assignments
are reset to those originally established during generation.

Section V, Input/Output, explains Logical Unit numbers, equipment
table entry numbers, and subchannel numbers in detail.

|
|
I
|
l
I
|
I
I
I
I
|
I
l
[
I
I
I
I
I
I
l
I
I
I
|
|
I
|
I
I
|
I
I
I
I
I
I
I
|
I
I

I11-19

OPERATOR COMMANDS

A ——— D G0 W Y - T —— —— ———————— — — ——— ——— " - - —— PN - e - W Ghe — - — . W . G S W S GAD Sy G e AN S e S

OF (terminate)

Terminates a program or removes a disc resident program that was
loaded temporarily on-line into memory but not permanently
incorporated onto the protected system disc. For options 1 and 8

below,

the message "name ABORTED" will appear for programs (but

NOT segments) after the command is executed. The format is

where:

name

/+0 \
OF ,name ,1

\.,8 /

is the name of the program.

terminates and removes the named program from the time list
the next time it is scheduled. The program’s disc tracks

are not released,

immediately terminates the named program, removes it from
the time list, and releases all disc tracks. If suspended
for I/0, a system-generated request to clear the device is-
issued to the driver.

immediately terminates the named program. If the program
is temporary progr am loaded on-line, it is removed from the

system (see the Relocating Loader section of this manual).

For programs with segments, the OF, name, 8 command must be
used on the segments as well as the main.

Of,name,8 will not remove permanently loaded programs,
since their ID segments on the disc are not altered by this
request. A permanently loaded program is defined as a
program loaded during generation, or on-line with the LOADR
and with a copy of its ID segment in both memory and on the
disc. For temporary programs loaded on-line, the ID segment
is blanked to make it available for use by another program
loaded with the LOADR.

The tracks (if system tracks) containing the program are
released. If the program had been stored on File Manager

tracks,those tracks remain as File Manager tracks and are
not returned to the system.

If the program is 1/0 susgended, a system generated clear
request is issued to the driver. The OF,name,8 command must

then be entered a second time to permanently remove the
program from the system.

A permanently loaded disc resident program may only be removed
permanently with the LOADR as described in Section VII.

—— — e ———— — —— —_——
+ —_— —— . — — —— e — e —— — ——_ s . —— . o o o o s e e e e e ot o e e

—— e = e . — —— — — — —— — —— ——— ———— t— — t— — ——— — —— — — —" o—— o— — —— —— d——— oo ot oo o s St e e, oo ampn. e .

OPERATOR COMMANDS

- —_— o T - - — - - —— - G N W M G . A TS W S W —— ——— MR G > o — . S G W i - —

ON (schedule)

Schedules a program for execution. Up to five parameters and the
command string may be passed to the program. The format is

/ON \
(name[,NOW] [,pPl[,...[,P5]1]11]]
\ONIH/
where:
name is the name of a program.
NOW schedules a program immediately that is normally
scheduled by the system clock (see IT).
pl ... p5 are parameters passed to the program when it is

scheduled.

Parameters pl through p5 are the ones passed by RMPAR as described
under Comments in the Program Schedule EXEC Call in Section 1IV.
Refer also to XTEMP words 1 through 5 in the program’s ID segment
(see Appendix B). Note that any parameters not entered as part of
the ON command will be returned as zeros by a call to RMPAR.

Parameters pl through p5 can be entered in ASCII or numeric form.
Octal numbers are designated by the "B" suffix and negative
numbers by a leading minus sign. For example:

ON,name,FI,LE,31061B

Note that only two ASCII characters per parameter will be returned
by a RMPAR subroutine call; 1if only one is given, the second
character is passed as a blank. (blank = 40B). 1If the first
parameter is ASCII "NO" then it must be repeated (the system
interprets it as "NOW" in the ON command). For example:

For example:

ON,name,NO,NO,FI, 3,4,5

is interpreted as
NO
FI
3
4
5

The program can recover the ASCII command string (up to 80
characters typed after the prompt) by using the String Passage

EXEC call (see Section 1IV). The ONIH command inhibits the passage
of the command string.

- — . - v A W M - W S S G M A M G S S o . GED N G G ER D GES S W A A AN NN WS D D G W D A . W - - . ——0 =" -

T — s, o — — — — — e, e —— et it e e S e s o i WO i, g W .t g, e . s, S ey it s, W st e, O e S s e S — s —

OPERATOR COMMANDS

ON (schedule) ...cont’d

String Passage Example:
ON,name,FILEl,FILE2,MISCINFOSTRING,e+s,3

If the resolution code in the ID segment of the program is not
zero, RTE places the program in the time list for execution at
specified times (unless NOW appears; in which case, the program
is scheduled and put into the time list immediately). The
resolution may be non-zero as a result of:

a. Generation

l. With a resolution code in the name record

+

| |
| I
I |
| |
| I
I I
| I
I |
I I
[|
I |
| |
I |
I I
| |
I I
I |
I |
| 2, Entry of a resolution code during parameter |
| input phase. |
I |
} b. The IT command. %
| c. Scheduling the program with absolute start time |
| |
| I
I I
| |
| I
I |
I I
I I
| I
| I
I |
| |
| |
| I
I |
+

or offset by some program in the system (see EXEC
calls in Section 1IV).

Note that if there is no partition large enough to run the
program, or if the program is assigned to a partition that is too
small or does not exist, the error message 'SIZE ERROR’ will be
reported. Conditions under which the error message could be output
when attempting to run are:

:SP, XXX
reboot and reconfigure memory to remove partitions large enough
for this progranm.

:RP,XxXx

s RU, xxx

II11-22

PR (priority)

Changes the priority of a program. The format is

PR, name,numb
where:
name is the name of the program,
numb is the new priority.

One (1) is the highest priority, and 32767 is the lowest. When the
system is restarted from the disc, the priority of name resets to

the value set by the generator or LOADR.

——— - ——— —— - —————

OPERATOR COMMANDS

I1I1-23

OPERATOR COMMANDS

+-—-————————-—— - —— . - - - N W > G W . - -

RT (release tracks)

Releases all disc tracks assigned to a program. The format is
RT ,name

where:

name is the program whose tracks are to be released.

The RT command is illegal if the named program is not dormant.
If the program is dormant, all tracks assigned to the program
are released,

Any tracks released as a result of this command cause all
programs in disc track allocation suspension to be rescheduled.
More information on disc tracks may be obtained from the system
progrim LGTAT, described in the RTE Utility Programs Reference
Manual.

I |
I I
I I
I I
I I
I I
I |
I I
I I
l |
| |
I I
I [
[I
I I
I I
I I
I I
| I
I |
I I

IT1-24

OPERATOR COMMANDS

e e e e e e}

RU (run)

Immediately schedules a program without affecting its entry in the
time list, Up to five parameters and the command string may be

passed to the program. The format is

/RU \
name[,pll,e.. [,p51111]
\RUIH/
where:
name is the name of a program.
pl ... p5 are parameters passed to the program when it is

The RU command is used when the operator desires to run a program
without affecting its entry in the time list.

Parameters pl through p5 are passed by RMPAR as described in the
the Program Schedule EXEC Call in Section 1IV.

Note that any parameters not entered as part of the RU command
will be returned as zeros by a call to RMPAR.

Parameters pl through p5 can be entered in ASCII or numeric form.
Octal numbers are designated by the "B" suffix and negative

numbers by a leading minus sign. For example:

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
scheduled. |
|
|
|
|
|
|
|
|
|
|
I
I
|
RU,name,FI,LE,31061B |
|

ITI-25

OPERATOR COMMANDS

o o e e o o o o i e e o i o o e o e o o o e

RU (run)....cont’d

Note that only two ASCII characters per parameter will be returned

by a RMPAR subroutine call; if only one is given, the second

character is passed as a blank (blank = 40B). 1If the first

parameter is ASCII "NO" then it must be repeated (the system

interprets it as "NOW" in the RU command). For example:
RU,name,NO,NO,FI,3,4,5

is interpreted as shown below. NO(NOW) is not used except to push
the parameters out:

NO

FI

3

4

5

The program can recover the ASCII command string (up to 80
characters typed after the prompt) by using the String Passage
EXEC call (see Section 1IV). The RUIH command inhibits the passage
of the command string. If there are no characters past name, the
command string is not transmitted.

String Passage Example:
RU,name, STRINGWHATEVER,12345,ANOTHERONE ,67869

Note that if there is no partition large enough to run the
program, or if the program is assigned to a partition that is too
small or does not exist, a 'SIZE ERROR’ message will be reported.
Conditions causing this error message could be as follows:

tSP, Xxx

reboot and reconfigure memory to remove partitions large
enough for this program,

tRP, XXX

:RU, xxx

ITI-26

I
I
I
|
|
I
[
I
I
|
|
I
l
|
I
I
I
|
|
I
I
I
|
I
|
I
I
I
I
I
I
|
|
I
I
I
|
l

OPERATOR COMMANDS

S8 (operator suspend)
Operator suspends a non-dormant program. The format is

SS ,name
where name is the name of the program to be suspended.
The SS command places the program in the operator suspended list
immediately if the program is executing or scheduled. The request
is illegal if the program is dormant. If the program is suspended
for 1/0 memory, disc or is in the time list, RTE waits until the
current state is ended and then operator-suspends the program.

The SS command is similar to the Program Suspend EXEC call (see
Section 1IV).

I11-27

— — — —— i e S e — . — e S i it st

OPERATOR CCMMANDS

ST (status)

Requests the status (priority, currrent list, time values) of a
named program, or to determine the name and partition number of
the program currently occupying memory, or print the name of the
program occupying a specified partition. The formats are as
follows:

Program Status:
ST, name

Name and Partition Number of Current Program:
sT,0

Name of Program in Specified Partition:

ST,part numb

where:
name is the name of the program whose status is to be printed.

0 causes the system to print the name and partition number of
the program currently executing. If none, 0 is printed.

|

|

|

|

I

I

|

I

|

|

|

|

|

|

|

|

I

|

|

|

|

|

I

I

|

|

|

|

| part is a partition number that causes the system to print the
| numb name of the program in part numb. If the partition is

| empty, 0 is printed. If part numb is wrong, NO SUCH PROGRAM
I is printed.

|
I
I
|
I
|
|
I
|
|
|
|
|
|
|
I
|
I
|
|
+

The status of a program is printed on one line in a fixed format:
pPr s res mpt hre min sec ms T

where:

pPr is the priority (a decimal value from 1 to 32767).

S is the current state of the program:

Dormant

Scheduled

I/0 suspend

General wait

Unavailable memory suspend

Disc allocation suspend

Operator suspend or programmed suspend (EXEC 7 call)
Background segment

wnonon

O d WO

- ———— - ——— - - — - ——_——— - - - —— - — - - —————— -—— - — - ——— - - —— ——— - - ———— -

OPERATOR COMMANDS

- —— - o —— - — ———— - —— - . - - ————— - —— - — - —————— —— — - — —— — —— -— -

ST (status) ...(continued)

res, mpt, hr, min, sec and ms are all zero (0) unless the program
is scheduled by the clock (see the IT command in this section for
the meaning of these terms).

The letter "T" appears when the program is currently in the time
list as a result of an ON command.

A program is placed in the general wait list (status = 3)
whenever :

a. It is waiting for a Resource Number (RN) to clear or
become available. This includes Logical Unit (LU) locks and
attempts to use a locked LU.

b. A schedule request is made with ICODE = 23 or 24 (queue
schedule), and the program being called is busy.

c. A request is made to an I/0 device that is down. This
differs from a request to an I/0 device that is busy.

d. A Class 1I/0 GET call is made and the Class Queue is
empty.

e. A program is waiting for another program to complete as
a result of an EXEC 9 or 23 call.

f. A program is waiting on a Buffer Limit (see the BL
command in this section).

Programs will be removed from the general wait list when the
action waited for takes place or when the program is aborted.

Wwhen the format ST,0 is used, the status is printed as:
name part numb
where:

name is the name of the program currently residing in partition
number part numb.

part is the partition number.
numb

When the format ST,part numb is used, the status is printed as:
name

- — - — - -—— —— ————— - —— " —— - -~ > - - - - — - — - —— - - —— -

ITI-29

OPERATOR COMMANDS

Causes program size information to be printed. The format is

whe

where:

I11I-30

re

BB

l
|
!
I
l
I
I
l
I
|
l
I
: AAAAA
I
l
l
[
|
|
|
|
I
|
I

3Z (assignment)

SZ ,XXXXX
xXxxxx is the program name. The output will be formatted as:

AAAAA BB CCCC DD

the last word plus 1 of the user’s program., If the program|

is segmented, AAAAA is the last word, plus 1 of the f
largest segment.
|

minimum required size of the program. For non-EMA programs|
this includes the program code size plus any optional |
dynamic buffer space. For EMA programs, this also includes|
the EMA size.

!
I
NOTE: 1If the program is an EMA program whose EMA size |
was defaulted and that program had not been prev- I
iously dispatched, the EMA size "CCCC" will be |
reported as "1". I

the program’s EMA size. Printed for EMA programs only.

|
|
the program’s MSEG size. This will only be printed if the |
program is of EMA type. ‘

OPERATOR COMMANDS

e e e e e e e e s e e e e e e e 2 e o o e e e o e e 7 e e 2 0 2 0 2 +
| |
| SZ (reassignment) |
| |
| Allows the user to increase the page requirements of a program. |
| Certain programs such as compilers, assemblers, loaders and |
| generator use memory after the end of the program for symbol table |
| or data space. The SZ command modifies the size of the additional |
| memory used by the program. An alternate form of the command |
| increases both program page requirements and EMA size requirements |
| fThe format is :
|
| SZ,name, Pl for non-EMA progr ams |
| or |
| SZ ,name,Pl,P2 for EMA programs :
|
| where: :
|
| name is the program name :
|
| Pl is the new required program size in pages for non-EMA |
| programs, that is, the program code size plus any dynamic |
| buffer space. |
|
| For EMA programs, Pl is the new EMA size. |
|
| P2 is the new MSEG size for the EMA program referenced. |
| |
| The program must be dormant and not currently resident in a I
| partition (i.e., it must not have terminated with save-resources |
| or serially reusable condition), and there must be at least one |
: partition large enough to run the program at its new size. :
| The following conditions will be flagged as errors and the error |
| ’SIZE ERROR’ reported: |
| |
| FOR NON-EMA PROGRAMS : |
| |
| 1. An attempt to make Pl larger than 32K word program address |
| space. I
| |
| 2. An attempt to make Pl larger than any currently existing |
| partitions. |
| |
| 3. 1If the program is assigned, and attempt to make Pl larger than |
| the partition size. |
| |
| 4. An attempt to make Pl smaller than the actual code of the |
% program. |
|
o o e e e e e e e e e e e e e e e e e e 0 e e e 8 e e e e e e e e e e e —————— +

IT1I-31

OPERATOR COMMANDS

SZ (reassignment) ... cont’d

FOR EMA PROGRAMS:

1. An attempt to set Pl such that the program size plus the EMA
size is larger than the largest partition in the system.

2. If the program is assigned to a partition, an attempt to set
Pl such that the program size plus the EMA size is larger than
that partition.

3. An attempt to set Pl less than 1.

maximum program address space.
5. An attempt to set P2 less than 1.

EMA size changes are only allowed for those programs where no

EMA size was specified within the program itself; that is, the
default was taken. An attempt to increase or decrease the EMA
size in a program where the EMA size was specified within the
program causes a SIZE ERROR® message to be issued. MSEG changes
may be made for any EMA type program. All FTN4 programs have
specified EMA sizes. Note that it is not possible to increase or
decrease the dynamic buffer space for EMA programs via the 82

I
|
|
|
|
|
[
|
|
I
l
|
|
|
| 4. An attempt to set P2 such that the program size plus P2 exceeds
|
I
|
|
I
|
|
I
|
|
I
|
| command. This can be done only by reloading the program.

III-32

OPERATOR COMMANDS

. ————— —— - W - —— —— - - ——— D - —— " - =~ - - - ——— - - —— - - -

TI (time)

Prints the current year, day and time, as recorded in the
real-time clock. The format is

TI
The computer prints out the year, day and time in the format

yyyy ddd hh mm ss

where:

YYYY is the four-digit year.

ddd is the three-digit day of the year (see Table 2-3
at the end of this section for day-of-year
conversion).

hh,mm,ss is the time on a 24-hour clock in hour, minutes and

seconds.

The TI command is similar to the Time Request EXEC Call (see
Section IV).

- — —— - ———— - — - - _—— - - "~ - - - —— - - - " -~ -

I11-33

T T T T T T e T e T T e ———— . ———— —

OPERATOR COMMANDS

o e e e e - - o o

™™ (set clock)

Sets the real-time clock. The format is

M, yYyy.ddd[,hh,mm,ss]

where:

YYYY is a four-digit year.

ddd is a three-digit day of the year (see Table 2-3 at
the end of this section).

hh,mm,ss is the current time of a 24-hour clock in hours,

minutes and seconds.

The TM command is entered in response to the message
SET TIME
which is displayed when the RTE system is booted from disc.
Enter a time value ahead of real-time. When real-time eguals the
entered value, press RETURN key. The system is now synchronized
with the time of day.
NOTE
The real-time clock is automatically started

from 8:00 on the system release date each
time the system is loaded into memory.

——— -~ ——— - — - - - - - — ———— - ——— - — - - - - -

IT1-34

——— ——— — e A — ey — ot g it o . St s — o g s, —
—— ———— — o

OPERATOR COMMANDS

o e e - - — o o o~ o o o

TO (time out)

Prints or changes the time-out value of an I/0 controller. The
format is

TO,eqgt[, numb]

wheres
eqt is the EQT entry number of the I/0 controller.
numb is the number of 10 ms intervals to be used as the

time-out value (numb cannot. be less than 500 (5 sec)
for the system input device driven by DVR0O0/05).

I

|

|

|

|

|

|

|

|

|

|

I

|

|

|

|
The time-out value is calculated using numb time-base generator |
interrupts (the time-base generator interrupts once every 10 ms). |
For example, numb = 100 sets a time-out value of one second; |
100 * 10 ms = 1 second. When the system is rebooted from the disc, |
time-out values set by TO are reset to the values originally set |
during generation. :
|

|

|

|

|

|

|

|

I

|

|

|

|

I

|

If numb is absent, the time-out value of eqt is printed in the
format

TO #10 = 100

and means EQT entry number 10 has a time-out value of 100
ten-millisecond intervals or one second.

If a device has been initiated and it does not interrupt within
the interval set by the time-out parameter, the following events
place:

a. The calling program is rescheduled and a zero transmission
log is returned to it.

b. The device is set to the down status and bit 11 in the

fourth word of the device’ s EQT entry is set to 1. An error
message is printed; e.qg.,

I/0 TO L #x E #y S #z

thrgugh the EQT number located in the Interrupt Table.
Table.

See also the discussion of I/0 controller time-out in the
Input/Out section of this manual and "Driver Time-Out Processing”

|
|
|
|
|
|
c. The system issues a CLC to the device’s I/0O select code(s) |
|
|
|
|
|
in the RTE Operating System Driver Writing Manual. |

|

OPERATOR COMMANDS

UP (make available)

Dec;ares an I/0 controller and all associated devices as up (i.e.,
available for use by the RTE system). The format is

UP,eqt

where eqt 1is the EQT entry nﬁmber of the I/0 controller to be
re-enabled.

When the operator has previously set an I/O controller or device
down for some reason, the condition should be corrected before
using the UP command to declare the item available again. If the
problem is irrecoverable, the LU command can be used to switch
the Logical Unit number assignment to another device for further
requests (see the LU command in this section). Previous requests
made to this device are switched to the new device. To prevent
indefinite I/0O suspension on a downed device, time-out is used.
Refer to the TO command in this section and "I/0 Device Time-Qut"
in Section V.

The UP command places all downed devices (LU’'s) and the I/0
controller (EQT entry) in the available state. Any I/0 operations

associated with downed devices are queued on the EQT entry for
processing. If a device’s problem has not been corrected, it will

be reset down and an error message will be printed:

I1/0 NR L #lu E #eqt S #sub

ITI-36

e . —— . T ——— e ————————

OPERATOR COMMANDS

- —— - - - - ——— - - — - - -~ — " - ——— - — - ——— — - — - -——— -

UR (release reserved partition)

Releases a partition previously reserved during generation or slow
boot.

The format is

UR, xx
where xx is the number of the partition to be released.

Once the command is entered, any program that fits into the
partition may run in it. Note that although partitions may be
released on-line, they may not be reserved on-line, since such
action could prevent a currently swapped-out program from
regaining use of its system-assigned partition when it was again

scheduled.

e e

- ———— " - —— —— ————— ———— - — -~ Y - - - ——— .~ ————— - - -

I11-37

OPERATOR COMMANDS

3-5. OPERATOR COMMAND ERROR MESSAGES

command is entered incorrectly
conditions prevent honoring the command, RTE may
and 1issue one of the messages listed in Table
should either enter the command correctly or take
and enter the command again.

When an operator

Table 3-3, Operator Command Error Mess

- —— - - —— - - - - - - - - - - - - - - -

Message

- . - ———— - — -

The name entered is not a main
program in the system.

INPUT ERROR A parameter is illegal.

ILLEGAL STATUS Program is already scheduled.

CMD IGNORED-
NO MEM

Not enough System Available
Memory gxists for storing the
program s command string.

Partition does not match
command request.

ILLEGAL PART’N

SIZE ERROR Iliegal program size specified
or size of program specified
larger than its assigned

partition or any partition.

A ——— — —— — — — —— — — — — —— {— —— ————. — —— —— — — — —— ——— o — 2ttt ot i

- - ——— ————— - -~ ———— —— —— - " - >

II1I-38

or current system
reject the command
3-3. The operator
appropriate action

ages.

- - - - = -

S p—— |

Enter correct
opcode

Enter correct
program name or
load program

Enter command with
correct parameter

Check status with
ST cmd. Either
wait until program
terminates itself
or off it with OF
command and reenter|
RU command }
Reenter the command|
(RU.,ON,GO) or enter|
the inhibit form
(IH) of the cmd.

l
|
|
|
|
\
(
|
|
I
|
I
I
|
|

Reenter command
with correct
parameter number

Reenter command

with correct size
or adjust program
size with 82 cmd.

- ——— o ———— -

OPERATOR COMMANDS

Other errors may occur when an I/0 device times out because of an
inoperable state. For example, assume the line printer is in the
OFF-LINE condition (or the operator has failed to engage the paper
tape reader clutch). In this case, the system will print one of the
following error messages and suspend the program:

I/O NR L #1lu E #eqt S #sub
I/O TO L #lu E $egt S #sub

After the device problem has been corrected, simply enter the command
UP,eqt

where eqt 1is the downed device’s Equipment Table entry number (same
number given in the I/0 error message). The program is automatically
rescheduled and the desired I/0 operation takes place.

An alternate method of handling the same problem would be to use the
LU command to change the referenced device to another device that is
operational.

Another example of time~out is running out of paper when a program is
printing a 1long 1listing on the line printer, In this case, it is
possible to switch LU’s and continue the listing without interruption,
as shown below:

I/0 TO L #lu E #eqt S #sub
LU, lu,eqt

The error message says that the device at LU number lu, EQT number
egt, subchannel number sub has timed out and has been set down by the
system. The operator switches logical units (with the LU command). The
listing will continue on the new device.

IT1I-39

T __
| EXEC CALLS

+ ———+
w
]
Q
M
L]
c
2
e
<

o o o o " - 7 " o o ot o2

4-1. INTRODUCTION

An executing program may request various system services through EXEC
calls coded into the program. An EXEC call is a block of words
consisting of a subroutine call to EXEC with a list of parameters that
define the request. Execution of the subroutine call causes a memory
protect violation interrupt and transfers control 1into the EXEC
module. EXEC then determines the type of request (from the parameter
list) and initiates processing if the request was legally specified.

In RTE FORTRAN 1V, EXEC calls are coded as standard CALL statements.
In Assembly Language, EXEC calls are coded as JSB EXEC, followed by a
series of parameter definitions. For any particular call, the object
code generated for the FORTRAN CALL statement is equivalent to the
corresponding Assembly Language object code.

4-2. ASSEMBLY LANGUAGE FORMAT

The general format for an EXEC <call in Assembly Language is as
follows:

EXT EXEC Used to link program to RTE.

JSB EXEC Transfer control to RTE.
DEF *4n 4+l Defines a point of return from RTE (must be immediately

after the last parameter), where n is the number
of parameters and may not be an indirect address.

DEF pl Define addresses of parameters that may occur anywhere
in program; may be multi-level indirect.

Iv-1

EXEC CALLS

DEF

Pn

return point

pl - -

pn - -

Continue execution of program.

pl = ICODE = Request Code 1l<pl< 26,

Actual parameter values

The example below illustrates a Read request (ICODE=l), with the read
being performed on LUS5:

JSB
DEF
DEF
DEF
DEF
DEF
NEXT - .
D1 DEC
LU DEC
IBUFL DEC
IBUFR BSS

EXEC
NEXT
D1l

LU
IBUFR
IBUFL

1
5

10
100

Address of return point and call delimiter.
Address of EXEC code.

Address of LU number.

Buffer address.

Address of number of words to read.

This is ICODE; l=read.
LU number is 5.

Buffer length to read is 10 words.
This is the buffer where the data is placed.

The above sample request reads 10 words from LU5 and places the words
into the first 10 words of the 100-word buffer called IBUFR.

4-3. FORTRAN IV FORMAT

In FORTRAN 1V,
as a function.

the Executive can be called through a CALL statement or
The function is used when the user wishes the A and B

registers to be returned in a variable.

|
[

IV

CALL Statement Example:

CALL EXEC (ICODE, p2, ...,pn)

where ICODE and p2 through pn are either integer values or integer
variables defined elsewhere in the program.

Function Example:

DIMENSION IREG(2)
EQUIVALENCE (REG(1l),IA,IREG), (IREG(2),1IB)

L d

REG=EXEC (ICODE,p2...,pn)
The A-register is returned in IA and the B-register in IB.

As a further example of using calls in FORTRAN, the Assembly Language
example given previously in paragraph 4-2 could be performed in two
different ways in FORTRAN-IV:

1. As a call:

DIMENSION IBUFR(100)
LU=5

IBUFL=10
CALL EXEC(1l,LU,IBUFR,IBUFL)

2. As a function:

DIMENSION IBUFR(100)

LU=5
IBUFL=10
REG=EXEC(1,LU,IBUFR,IBUFL)

These two FORTRAN examples and the Assembly Language call all perform
the same function.

IvV-3

EXEC CALLS

4-4, EXEC CALL ERROR RETURNS

EXEC <calls that are in error will cause the offending program to be
aborted if the error 1is severe enough. The £following errors are
considered to be sufficiently catastrophic to cause a program abort:

Error Code: Error Type:
MP Memory Protect
DM Dynamic Mapping
RQ Request Code
DP Dispatching
RE Reentrancy
PE Parity

If an error is not severe, it will either abort the program or, at the
user’s option, report the error to the program itself and allow the
program to continue execution. Non-severe error codes include the
following:

Error Code: Error Type:
SC Scheduling
LU LU Lock
10 Input/Output Error
DR Disc Allocation
RN Resource Number

A detailed explanation of EXEC call error messages is given at the end
of this section.

The "no-abort" option is set up by altering the return point of the
EXEC call. This error return is established by setting bit 15 to "1"
on the request code word (ICODE). This causes the system to execute
the first line of code (it must be a one-word instruction) following
the CALL EXEC if there is an error. If there is no error, the second
line of code following the CALL EXEC is extended.

The special error return will also return control to the calling
program on a disc parity error on the system disc or auxilliary disc.
In this case, the B-register will be set to -1 instead of the
transmission 1log, and the return will be to the normal return point.
If there is an error, the A-register will be set to the ASCII error

type (LU,SC,IO,DR,RN) and the B-register set to the ASCII error
numbers normally displayed on the system console.

Iv-4

EXEC CALLS

The following excerpts from a sample FORTRAN program demonstrates use
of the special error return:

CALL EXEC(ICODE+100000B,LU,IBUFR,IBUFL)

Error Return-> GO TO 100
No Error Return-> .

L]

Only the GO TO statement should be entered after a no-abort EXEC call;
any other FORTRAN command would cause error type information to be
lost (see below). The GO TO statement also must not reference the very

next statement; thus, the following sequence is illegal:

CALL EXEC(ICODE+100000B,LU, IBUFR, IBUFL)
GO TO 100
100

.
.

This is 1illegal because FORTRAN produced code tries to optimize the
two statements and will not produce a jump if the jump destination is
the very next executable statement. Therefore, the GO TO would be
ignored.

As mentioned previously, if an error return is made to a program, the
A and B registers contain the ASCII error code. The A-register
contains the error type (SC,LU,I0,DR,RN), and the B-register contains
the error number (ASCII 01,02,03,etc.).

The A-register can be easily examined in Assembly Language calls.
Examination is slightly more complex in FORTRAN-IV, but the A and B

registers can be fetched in the following way:

CALL EXEC(ICODE+100000B,...)
GO TO 100

100 CALL ABREG(IA,IB)

ABREG 1is an HP-supplied subroutine that returns the A-register in the
first parameter (IA) and the B-register in the second parameter (IB).
Since the contents of A and B are now available, the user may examine

the the error and take appropriate action.

CAUTION
Note that the no-abort option should not be used when the EXEC call is
made as a function; that is, the following should not be used:

REG=EXEC(ICODE+100000B.)
GO TO 100

IV-5

EXEC CALLS

The reason is that REG forces the A and B register to be treated as a
REAL subroutine instead of on integer subroutine,

4-5, EXEC CALL SUMMARY

Table 4-1 summarizes the available RTE EXEC calls, their function and

order of appearance in this section. The error mesaages associated
with the calls are listed at the end of this section.

IV-6

EXEC CALLS

Table 4-1. RTE EXEC Calls

T Bt Bt e e B B e NS Gt WP W Bre Gt Bt Bk B Bt ot Bk W Bt

Read,Write

I/0 Control
I/0 Status

|
|
|
|
I
I
|
I
|
|
|
Disc Track Allocationl
Progr am |
Global |

|

Disc Track Release |
Progr am |
Global |

|

Program Completion |
|

|

Program Suspend]
|

|

|

|

|

|

I

|

|

|

|

+

Program Segment Load

Program Schedule

+
{
{
t
!
t
t
1
!
t
t
t
t
t
!
{
!
!
{
t
!
{
t

- —— - -

o e e e e e e e e e e e e e e e e ot
| | |
| Function | Pagel
e e e e e e et e e e e e e e e e e e e e P
I |
ITransfers information to and from| 4-9
lan external I/0 device. |

| |

| |
|IPperforms various I/0 control |4-12
loperations., }

| Requests information about a l4-16

|device,

ltracks for data storage.
I

I
|Release assigned disc tracks.
I
I
|

I
|
[
|
I
|
|
I
I
|
|
la calling program, I
| I
Isuspends calling program |
Iexecution. I
| Loads a program segment into |
| background area. :
|
|
|
|
|
|
I
+

Immediate with wait.
Immediate without wait.
Queue with wait.

|
|
|
| Queue without wait.
|
+

B B Bt Gt Tt Ot Bt Ge Mns e Bt B Ut B W B B h Bt e B Y B Gt e B e S B e o

V-7

EXEC CALLS

Table 4~1. RT

Time Request

String Passage

Timed Execution

Iv-8

-— e 0o o e s

E EXEC Calls (cont’d)

e e e e e e e e e e e e e e e e ot
| | I
I Function | Pagel
o e e e e e e e e e e e e e e e S
| | |
| I I
| Requests current time. %4~33:
|

|IRetrieves program’s command 14~-34|

Istring or passes string to
lprogram’s "Father."
|

|schedules a program for execution

+

|

|

+
I |
| |
| |
I |
| |
| | | |
| | | I
| | I |
| I I |
| Initial Offset 12 I After an initial offset,. |4-36]
I Absolute Start | 12 | At a specified time. |4-38]
| | I I I
| Program Swapping | 22 IAllows a program to lock itself |4-41]|
| Control | linto memory. I |
! | | | |
| | | | |
| Partition Status | 25 |Provides information about a |4-42|
| | | specified partition. } :
| | |
| Memory Status I 26 IAllows a program to obtain l4-44]
| | linformation about its own address]| l
		space.	
	I I		
Class I/0 Read,Write 117,18,	Starts a no-wait I/0 request 14-50		
	20	that results in an information	I
	transfer to and from an external	I	
		I/0 device or program. = :	
I			
Class I/0 Control	19	Performs various no-wait control	4-55
		operations.	
I	I I		
Class 1/0 Get	21	Completes the data transfer	4-52]
	finitiated by the Class 1/0	1	
		request (17,18,19,20). I	
o et et et e e o

EXEC CALLS

4~-6. STANDARD FUNCTION CALLS

4-7. READ/WRITE CALL

Transfers

for writes

program.

information to or from an I/0 device., For a Read request or

to unbuffered devices, the program is placed in the 1/0
suspend list until the operation is complete. RTE then reschedules the

Assembly Language:

EXT

RTN

ICODE
ICNWD

IBUFR
IBUFL
IPRM1

IPRM2

FORTRAN

EXEC

JSB EXEC Transfer control to RTE

DEF RTN Return address

DEF ICODE Request code (l=read; 2=write)

DEF ICNWD Control information

DEF IBUFR Buffer location

DEF IBUFL Buffer length

DEF IPRM1 Optional parameter (track number if disc
transfer)

DEF IPRM2 Optional parameter (sector number if disc
transfer)

return point Continue execution (A=status, B=transmission
log. If buffered Write, A and B are
meaningless.)

DEC 1 (or 2) 1=Read;2=Write

ocCT conwd conwd is described in Comments

BSS n Buffer of n words

DEC n(or -2n) Same n; words (+) or characters (-)

DEC £ Optional parameter or decimal track number

if disc transfer
DEC q Optional parameter or decimal sector number
if disc transfer

DIMENSION IBUFR(n) Set up buffer

IBUFL = n Buffer length

ICODE = 2 Request code (l=Read; 2=Write)

ICNWD = conwd Set Control Word

REG=EXEC (ICODE, ICNWD, IBUFR,IBUFL,IPRM]l,IPRM2)

Iv-9

EXEC CALLS

4-8. READ/WRITE COMMENTS

Parameters IPRM1 and IPRM2 are optional except in disc transfers. If
the data transfer involves a disc, IPRM1 is the disc track number and
IPRM2 1is the disc sector number. These parameters may have further
uses in calls to other I/0 devices. In some cases, IPRMl and IPRM2 may

be used to pass an additional control buffer to the driver (see Z-bit
below).

CONTROL WORD

Figure 4-1 shows the format of the control word (conwd) required in
the Read/Write calling sequence. Function codes for DVR00/05 driven

devices are given as an example. See the appropriate driver manual for
other device function codes.

e et B B e B B e B B B B L B e

(15 114 13 12 |11 10 9 | 8 7 6 | 5 4 3 2 1 0 |

|
0 0 0 2 0| X A K v M | Logical
| | i
| Function Code |
it TPRTE-3

Figure 4-1. Read/Write (conwd) Format

where:

Logical Unit = the 1logical wunit number of the devices to/from which
the I/0 transfer is to be sent.

Note that if the logical unit is specified as zero (the bit bucket),
the call is executed but no data is transfered.

Z = When set, designates that IPRM1 is the address of a control buffer
and IPRM2 is the length of that buffer in positive words or
negative character (useable only when the call is to a non-disc
device). The 2Z-bit is passed through to the driver.

Bits 11 and 13-15 are received for usage by the system and should be
set to zero by the caller.

Function code bits for DVR00/05 devices are as follows:

M

It

0 for ASCII.

M

1 for binary.

IvV-10

EXEC CALLS

v=1l, and M = 1, causes the length of punched tape input to be
determined by the word count in the first non-zero character read
from the tape.

V = 1 for the line printer will cause it to print column one.

V=0, and M = 1, the length of the punched tape input is determined
by the buffer length specified in the EXEC call.

K = 1 causes keyboard input to be printed as received. If K=0, input
from the keyboard is not printed.

>
H

1 designates punching (without printing) ASCII charactters on the
teleprinter (M = 0). (If A = 0, M determines mode of transfer.)
This bit 1is effective on devices that recognize ths control

function.

X = When paper tape devices are used, "X" in combination with "M" and
"V" will indicate an honesty mode that is defined as follows:

On input, if "x", *"M", and "V" are set, absolute binary tape
format is expected and handled. If "X" and "M" are set, and "V" is
not, leader is not skipped and the specified number of words are
read., On output the record terminator (usually four feed frames)
is not punched.

On input, if "X" is set and "M" is not, ASCII tape format is
expected. Leader is not skipped, bit 8 is stripped, but otherwise,

all characters are passed to the user’s buffer. The only exception
is 1line-feed, which terminates the record. On output, carriage
return and line-feed are suppressed; any trailing left arrow is

not (i.e., left arrow is transmitted but carriage return/line feed
is not).

A AND B REGISTER RETURNS

End-of-operation information for reads and unbuffered writes is
transmitted to the program in the A- and B- registers. The A-register
contains word 5 (status word) of the device EQT entry with bits 14 and
15 indicating the end-of-operation status as defined by the driver

completion code. This will be either 00 (up) or 01 (down).

The B-register contains a positive number that is the number of words
or characters (depending upon program specification) actually

transmitted. Thus, the user can find the number of words entered on
any input request by getting the contents of the B-register.

IV-11

EXEC CALLS

If the 1input buffer length was a negative number of characters, the
contents of the B-register will be equal to the positive number of
characters entered. If the requested buffer length was a positive

number of words, the B-register contents will be equal to the positive
number of words entered.

When a REAL array is transmitted, the buffer length must still be the
total number of words required (i.e., two times REAL array length, or
three times double-precision array length).

The registers are meaningless in output requests to a buffered device'.

I1/0 AND SWAPPING

Disc resident programs performing I/0 are swappable under any one of
the following conditions:

a. The buffer 1is not 1in the partition (i.e., it is in system
COMMON) .

b. The device is buffered, the request 1is for output, and enough
SAM was allocated for buffering the record to be transferred.

c. The input or output buffer is wholly contained in the Temporary
Data Block (TDB) reentrant routine, and enough SAM was
allocated to hold the TDB.

Only the first buffer of a two-buffer request (see Z-bit above) %S
checked to determine program swappability. It 1is the user’s

responsibility to put the second buffer in an area that implies
swappability if conditions "a" or "c¢" are true. The system handles
case "b".

REENTRANT 1/0

Use of reentrant 1I/0 allows a program to be swapped if the read
request 1is made via a call to the REIO subroutine, REIO is a utility
library subroutine and is more fully described under Section X.

4-9, I/0 CONTROL CALL

Carries out various I/0 control operations, such as backspace, write
end-of-file, rewind, etc. If the 1I/0 device is not buffered, the

program is placed in the I/0 suspend list until the control operation
is complete.

Iv-12

EXEC CALLS

Assembly Language:

EXT EXEC
JSB EXEC Transfer control to RTE
DEF RTN Return address
DEF ICODE Request code (3=control)
DEF ICNWD Control information
DEF IPRAM Optional parameter
RTN return point Continue execution (A = status, B meaningless,
. A and B are both meaningless if the call is
. bufferred).
ICODE DEC 3 Request code = 3
ICNWD oct conwd See Control Word
IPRAM DEC n Required for some control functions; see

Control Word

FORTRAN:

Use the FORTRAN statements or an EXEC call sequence.

ICODE = 3 Request code
ICNWD = conwd
IPRAM = X Cptional; see Control Word

REG = EXEC (ICODE,ICNWD,IPRAM)

CONTROL WORD

Figure 4-2 shows the format of the control word (conwd) required in
the I/0 control calling sequence.

R e T et e e A St T T T TS
115114 1131121111101 9} 81 71 61 51 41 31 2| 1| o0l
R B e R s B Rt T s et bt
0O 0 o 0o ol | Logical Unit No.
+- Punction -+
Code

Figure 4-2. I/0 Control (conwd) Format

Iv-13

EXEC CALLS

The following are general function codes:

Function Code (Octal) Action

00 Clear device

01 Write end-of-file (magnetic tape)

02 Backspace one record (magnetic tape)

03 Forword space one record (magnetic tape)

04 Rewind (magnetic tape)

05 Rewind standby (magnetic tape)

06* Dynamic status (magnetic tape)

07 Set end-of-paper tape--leader skipped on next
input request

10 Generate paper tape leader

11 List output line spacing

12 Write inter-record gap (magnetic tape)

13 Forward space file (magnetic tape)

14 Backward space file (magnetic tape)

15 Conditional form feed (see Line Printer Driver
manual) .

|*FOOTNOTE: The dynamic status request (06) is unbuffered by RTIOC so]
| that the caller receives the true status of any device. This causes]|
| the caller to wait for previous requests it (and lower priority |
| programs) has made to be processed.

Iv-14

The following functions
manual) :

Function Code:

20
21

22

23

24

EXEC CALLS

are defined for DVROO/DVRO5 (see the driver

Enable terminal - allows terminal to schedule
its program when any key is struck.

Disable terminal =~ inhibits scheduling of
terminal ‘s program.

Set timeout - the optional parameter is se€t
as the new timeout interval.

Ignore all further, action requests until:

a. the device queue is empty

b. an input request is encountered in the
queue

C. a restore control request is received.

Restore output processing (this request is
usua lly not needed).

The following functions are defined for the 264x cartridge tape units
(CTU). (Function codes 01, 02, 03, 04, 06, 13, and 14 have the same
meaning for CTU as for magnetic tape.)

Function Code:

05
10

26
27

Action:

- v - ——

Rewind.

Write end-of-file if not Jjust previously
written or not at load point.

Write end-of-data.

Locate file number IPRAM (less than 256).

Iv-15

EXEC CALLS

Function code octal 11 (list output 1line spacing), requires the
optional parameter IPRAM which designates the number of lines to be
spaced on the specified logical unit as shown below:

IPRAM Teleprinter Line Printer
+n space n lines space n lines
-n space n lines top of form

0 no line feed no line feed

4-10. I/O0 STATUS CALL

Requests information (status condition and device type) about the
device assigned to a Logical Unit number.

Assembly Language:

EXT EXEC
JSB EXEC Transfer control to RTE
DEF RTN Return address
DEF ICODE Request code (l3=status)
DEF ICNWD Control information
DEF IsTAl Status word 1
DEF ISTAZ2 Status word 2 -~ optional
DEF ISTA3 Status word 3 -- optional
RTN return point Continue execution (A and B are meaningless)
ICODE DEC 13 Request code = 13
ICNWD DEC n Logical Unit number
ISTAL NOP Word 5 of EQT entry returned here
ISTA2 NOP Word 4 of EQT entry returned here, optional
ISTA3 NOP LU status returned here, optional
FORTRAN:
ICODE = 13 Request code
ICNWD = nn nn is the logical unit number

CALL EXEC (ICODE,ICNWD,ISTAl,ISTA2,ISTA3)

IvV-1l6

EXEC CALLS

4-11. I/0 STATUS COMMENTS

The calling program is not suspended when the call is made. Equipment
Table entry (EQT entry) words 5 and 4 (optional) are returned in ISTAl
and ISTA2 and are defined as shown in Table 4-2. The STATUS portion of
EQT entry word 5 for moving head discs is further broken down and is
shown 1in Table 4-3, Refer to the appropriate driver manual for the
format for other drivers.

The status of the specified LU is returned in ISTA3. Bit 15 indicates

whether the device (LU) 1is wup (0) or down (l). Bits 4-0 give the
subchannel associated with the device.

Iv-17

Table 4-2 I/O Status Word (ISTA1/ISTA2) Format

WORD CONTENTS

¥ L Al L] L] LI ¥ LJ L] L]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

4 D B P S T Unit # Channel #
5 AV EQUIP. TYPE CODE STATUS (see Table 3-4)
ISTA2 D = 1 if DMA required.
B = 1 if automatic output buffering used.
P = 1 if driver is to process power fail.
S = 1 if driver is to process time-out.
T = 1 if device timed out (system sets to zero before each 1/O request).
Unit = Last sub-channel addressed.
Channel = [/O select code for device (lower number if a multi-board interface).
ISTAI AV = [/O controller availability indicator:

0 = available for use.
1 = disabled (down); for UP/DOWN status of LU see ISTA3.
2 = busy (currently in operation).

3 = waiting for an available DMA channel.

EQUIP. TYPE CODE type of device. When this number is linked with “DVR.” it identifies the

device’s software driver routine:

00 to 075 = paper tape devices (or system control devices)

00 = teleprinter (or system keyboard control device)

01 = photo-reader

02 = paper tape punch

05 subchannel 0 = interactive keyboard device (or system

keyboard control devices)
subchannel 1,2 = HP mini-cartridge device

07 subchannel 4 multi-drop driver
10 to 17 = unit record devices
10 = plotter
11 = card reader
12 = line printer
15 = mark sense card reader
20to 37 = magnetic tape/mass storage devices
31 = 7900 moving head disc
32 = 7905 moving head disc
33 = flexible disc
40to 77 = instruments
STATUS = the actual physical status or simulated status at the end of each operation.

For paper tape devices, two status conditions are simulated: Bit 5= 1
means end-of-tape on input, or tape supply low on output.

Iv-18

EXEC CALLS

TABLE 4-3., EQT WORD 5 STATUS TAELE
Device \ Status 7 6 5 4 3 2 1 0
7900 Moving Head Disc
DVR31 NR EOT AE FC SC DE EE
7905/7906/7920
Moving Head Disc PS FS HF FC SC NR DB EE
DVR32

Where:

DE = Data Error

DB = Device Busy

SC = Seek Check

FC = Flagged Track (protected)
AE = Address Error

EOT = End of Tape/Track

NR = Not Ready
HF = Hardware Fault

PS = Protected Switch Set

(See appropriate driver manual for status bits of other devices)

FS = Drive Format Switch is set
EE = Error exists

4-12. DISC TRACK ALLOCATION CALL

Requests that the system assign a
tracks for data storage. The tracks are either assigned to the calling
program or assigned globally,

specific number of contigquous disc

IV-19

EXEC CALLS

Assembly Language:

RTN

ICODE

ITRAK

ISTRK
IDISC

ISECT

FORTRAN:

EXT

JSB
DEF
DEF
DEF
DEF
DEF
DEF
return

DEC

DEC

NOP
NOP

NOP

EXEC

EXEC
RTN
ICODE
ITRAK
ISTRK
IDISC
ISECT
point

4 or 15

Example (with no suspension):

ICODE
ITRAK

Transfer control to RTE

Return address

Request code (4=local track;l5=global track)
Number of contiguous tracks required

Start track number

Disc logical unit number

Number of 64 word sectors/track

Continue execution (A and B are meaningless)

4 = allocate track to program

15 = allocate track globally

n = number of contiguous tracks within the
same disc unit requested. If bit 15 of
ITRAK = 1 the program is not suspended if
tracks are not available; if bit 15 = 0,
the program is suspended until the tracks
are available.

System stores starting track number here,
or -1 if the tracks are not available.
System stores Logical Unit number (2 or 3)
here.

System stores number of 64 word
sectors/track here.

100000B + n

CALL EXEC (ICODE,ITRAK,ISTRK,IDISC,ISECT)

Example (with suspension until tracks available):

Iv-20

ICODE

ITRAK = n
CALL EXEC (ICODE,ITRAK,ISTRK,IDISC, ISECT)

EXEC CALLS

4-13. DISC TRACK ALLOCATION COMMENTS

RTE supplies only whole tracks within one disc. When writing or
reading from the tracks (see Read/Write EXEC call), RTE does not
provide automatic track switching; when using this call, the user
program 1is completely responsible for track management. RTE will

prevent other programs from writing on program-assigned tracks but not
from reading them.

The program retains the tracks until released by itself, the operator,
or 1if the program is aborted. Gldbally assigned tracks are available
to any program for READ, WRITE, or release. The user is completely
responsible for their management. RTE will not prevent other programs
from writing on globally assigned tracks or from releasing them.

4-14, PROGRAM DISC TRACKS RELEASE CALL

Releases some contiguous disc tracks previously assigned to a program
(see Disc Allocation EXEC call).

Assembly Language:

EXT EXEC
JSB EXEC Transfer control to RTE
DEF RTN Return address
DEF ICODE Request code (5=release local tracks)
DEF ITRAK Number of contiguous tracks, or -1
DEF ISTRK Starting track number
DEF IDISC Disc logical unit = 2 or 3
RTN return point Continue execution (A and B are meaningless)
ICODE DEC 5 Release program’s tracks
ITRAK LEC n If n = ~1, release all tracks assigned to
program; ISTRK and IDISC are unnecessary.
Otherwise, n is the number of contiguous
tracks to be released starting at ISTRK.
ISTRK DEC m Starting track number
IDISC DEC P Disc logical unit

Iv-21

EXEC CALLS

FORTRAN:
Release of n contiguous tracks starting at m on LU p:

ICODE
ITRAK
ISTRK
IDISC
CALL EXEC (ICODE,ITRAK,ISTRK,IDISC)

ftnunn
U a s,

Release all tracks allocated to the program.

ICODE 5
ITRAK -1
CALL EXEC (ICODE, ITRAK)

Hn

4-15. PROGRAM TRACKS RELEASE COMMENTS

Any suspended program waiting for tracks is rescheduled when enough
tracks are released to honor the request.

4-16. GLOBAL DISC TRACKS RELEASE CALL

Releases a specified number of contiguous disc tracks that were
previously assigned globally (see Disc Allocation EXEC call).

Assembly Language:

EXT EXEC
JsB EXEC Transfer control to RTe
DEF RTN Return address
DEF ICODE Request code (lé6=release global track)
DEF I'TRAK Number of contiguous tracks
DEF ISTRK Starting track number
DEF IDISC Disc logical unit
RTN return point Continue execution (A = track release
status, B meaningless)
ICODE DEC 16 Release global tracks
ITRAK DEC n The number of contiguous tracks to be
released starting at ISTRK
ISTRK DEC m Starting track number
IDISC DEC p Disc logical unit

Iv=-22

EXEC CALLS

FORTRAN:

Release of n contiguous global tracks starting at m on LU p:

ICODE = 16
ITRAK = n
ISTRK = m
IDISC =

P
REG = EXEC (ICODE,ITRAK,ISTRK,IDISC)

4-17. GLOBAL DISC TRACK RELEASE COMMENTS

If any one of the tracks to be released is either not assigned
globally or is currently in use (i.e., some program is queued to read
or write on the track at the time of the release request), none of the
tracks are released.

The requesting program is rescheduled after the request with the
A-Register set as follows:

=0 The tracks have been released.
A=-1 No tracks have been released (at least one track was in use).

A=-2 No tracks have been released (one or more tracks was not
assigned globally).

Iv-23

EXEC CALLS

4-18. PROGRAM COMPLETION CALL

Notifies RTE that the calling program wishes to terminate itself or
another program,

Assembly Language:

EXT EXEC
JSB EXEC Transfer control to RTE
DEF RTN Return address
DEF ICODE Request code (6=terminate)
DEF INAME Name of program to be terminated (optional)
DEF INUMB Type of completion (optional)
DEF IPRM1
. Up to five optional parameters
DEF IPRM5
RTN return point Continue execution (A = as it was; B = as
. it was or parameter address)
ICODE DEC 6 Request code = 6
DEC 0 Terminate this program
INAME or
ASC 3,name name = Name of subordinate program to be
terminated.
name = { if terminating itself.
INUMB DEC n n = 0, Normal completion
n = -1, Serial Reusability Completion.

When rescheduled, program is
not reloaded into memory if it
is still resident,

n =1, Save Resources Completion. Make
program dormant but save
current suspension point and
save all resources the program
has; that is, any system
resource the program asked for

but did not itself release is
retained.

IV-24

IPRMS

FORTRAN:

DIMENSION INAME (3)

ICODE = 6
INUMB = O
INAME (1) =
INAME (2) =
INAME (3) =
REG = EXEC

2Hcc
2Hcc
2Hc

EXEC CALLS

2, Terminates and removes from the
time list the named program. If
the program is 1I/0 suspended,
the system waits until the I/O
completes before setting the
program dormant; however, this
call does not wait. The
program’s disc tracks are not
released. CALL EXEC (6, 0, 2 or
3) 1s equivalent to issuing an

OF,name, 0 or 1 command
(respectively) and therefore is
treated like an abnormal

termination.,

"

3, Immediately terminates the
named program, removes it from
the time list, and releases all
disc tracks. If suspended for
I/0, a system generated clear
request is issued to the
driver. An abort message is
printed on the system console,
CALL EXEC (6, 0, 2 or 2) is

equivalent to issuing an
Of,name, 0 or 1 command
(respectively) and therefore is
treated as an abnormal
condition,

These parameters are saved in the
terminating program’s ID segment and
thus may be picked up by a call to
RMPAR when the program next executes,
In this manner a terminating program

may retain parameters for all future
executions,

See INAME above

See INUMB above

First two characters

Second two

Last character in upper eight bits

(ICODE, INAME , INUMB)

Iv-25

EXEC CALLS

4-19. PROGRAM COMPLETION COMMMENTS

The optional parameters in this call makes it possible to selectively
terminate programs that only the user has scheduled. That is, if PROG1
("Father") schedules PROG2 ("Son") to run, and PROG2 later schedules
PROG3, then PROG2 becomes the "Father" to PROG3 (a "son"). In this
case, only the following calls for Program Completion are legal:

* PROGl terminates itself or PROG2
* PROG2 terminates itself or PROG3
* PROG3 terminates itself only.

Option -1 (INUMB=-1) should be used only for programs that are
serially reusable; that is, disc resident programs that can initialize
their own buffers or storage locations. When INUMB=-1, the program is
reloaded from disc only if it has been overlaid by another program.

The program must be able to maintain the integrity of its data in
memory .

Option 1 (INUMB=1l) 1is nearly identical to the Program Suspend EXEC
call (see below), and also functions similarly to the SS operator
command. When INUMB=l, the program starts from its point of suspension
with all resources saved. Unless the program terminated itself in this
manner, it could only be restarted by the program that scheduled it
("Father") or through the ON or RUN operator commands. If the program
terminated itself (INAME=0), it may be restarted by any normal run
stimulus (i.e., schedule, ON, RUN, TIME and interrupt).

IPRM1 through IPRM5 are optional parameters that are passed back to
the Program when it 1is next scheduled. They are passed only when
INAME=0, and may be recovered by a call to RMPAR when the program next
executes. This permits a program in the time list to run with the same
parameters each time.

Note that the FORTRAN compiler automatically generates a Program
Completion EXEC call when it compiles an END statement.

Note also that a father may either terminate a son normally or with
the son saving resources.

EXEC CALLS

4-20. PROGRAM SUSPEND CALL

Suspends execution of the calling program until it is restarted by a
GO operator reqguest,

Assembly Language:

EXT EXEC
JSB EXEC Transfer control to RTE
DEF RTN Return address
DEF ICODE Reguest code (7=suspend)
RTN return point Continue execution (A=as it was; B=as
it s or parameter address)
ICODE DEC 7 Request code = 7

4-21. PROGRAM SUSPEND COMMENTS

The FORTRAN library subroutine PAUSE, which is automatically called by
a PAUSE statement, generates the Program suspend EXEC call. In
addition, it 1logs the pause and any supplied number on the system
console,

It is 1illegal to suspend a program running under batch with the
Program Suspend call. This results in a SC00 error return.

The Program Suspend call is similar in function to the S$S operator
command. When a program is suspended either by this call or by the 88
operator command, both the A~ and B-registers are saved and the
program 1is placed in the operator suspension list, When the program
is restarted via a GO command without parameters, all registers are
restored to the same status they had at the point of suspension and
the program resumes execution.

1v-27

EXEC CALLS

When the program is restarted via a GO command with parameters, the
B-register contains the address of a five-word array set by the GO
command. In a FORTRAN program, a call to the RMPAR library subroutine
can locad these parameters, providing the RMPAR call occurs immediately
following the Program Suspend call. However, it should be noted that
when RMPAR 1is used, parameters MUST accompany the GO command.
Otherwise, RMPAR will use the restored B-register as an address to
parameters that do not exist. When it is suspected that there might
not be any parameters, the following example shows how to allow for
it:

DIMENSION I(5),IREG(2)

EQUIVALENCE (IREG,REG), (IREG(2),IB)

REG=0.0

REG=EXEC (7) Suspend

IF (1IB) 20,20,10

10 CALL RMPAR (I) Return point; get
parameters

20 CONTINUE Return point; no
parameters

4-22., PROGRAM SEGMENT LOAD CALL

Loads a calling program’s background segment from disc into the
background segment area and transfers control to the segment’s entry
point. (See "Segmented Programs" in the Program Preparation section of

this manual for information on segmented programs.)

Assembly Language:

EXT EXEC
JSB EXEC Transfer control to RTE
DEF RTN Return address
DEF ICODE Request code
DEF INAME Segment name
DEF IPRM1 \
. \
. > Up to five optional parameters
. /
DEF IPRMS /
RIN return point Control is transferred to the segment,.
. (A = segment ID seg. address; B = as
. it was or parameter address.)
ICODE DEC 8 Request code = 8
INAME ASC 3,name name is the segment name

Iv-28

EXEC CALLS

FORTRAN:
DIMENSION NAME (3)
ICODE=8
INAME (1) =2Hcc First two characters
INAME (2)=2HccC Second two characters
INAME (3) =2Hc Last character in bits 8-15

CALL EXEC (ICODE,INAME,IPRMl...IPRMS)

4-23. PROGRAM SEGMENT LOAD COMMENTS

On segment entry the registers are set as follows:

A

H

Segment ID segment address.

B

i

As it is unless parameters are passed, in which case it is the
address of parameter list address (see RMP2R).

If the segment loaded does not exist, an SC05 error results,
4-24, PROGRAM SCHEDULE CALL

Schedules a program for execution and passes up to five parameters and
a buffer to the program,

Iv-29

EXEC CALLS

Assembly Language:

EXT EXEC
JSB EXEC Transfers control to RTE
DEF RTN Return address
DEF ICODE Request code
DEF INAME Name of program to schedule
DEF IPRML \
- \
. > Up to five optional parameters
DEF IPRMS /
DEF IBUFR Cptional buffer address
DEF IBUFL Optional buffer length
RTN return point Continue execution (A=program status;
. B=as it was or parameter address)
ICODE DEC numb 9=immediate schedule with wait
l0=immediate schedule with no wait
23=queue schedule with wait
24=queue schedule with no wait
INAME ASC 3 ,name name is the named program to schedule
IPRM1
. Up to five optional parameters
IPRMS
IBUFR BSS n Optional buffer of n words IRBUFL DEC
n (or-2n) Same n; words (+) or characters (-)
FORTRAN:
DIMENSION INAME (3) , IBUFR(n) IBUFL = n
Set buffer 1length ICODE = numb See
ICODE above INAME(1l) = 2Hcc First two
characters INAME(2) = 2Hcc Second two
characters INAME(3) = 2Hc Last character

CALL = EXEC(ICODE,INAME,IPRMl,...IPRM5,IBUFR,IBUFL)

4-25. PROGRAM SCHEDULE COMMENTS

The ICODE parameter determines whether or not the calling program will
wait, and whether the calling program s schedule request will be
gqueued until the currently scheduled program becomes dormant.

Iv-30

EXEC CALLS

When a program 1is scheduled, a pointer is placed in its ID segment
that will:

a. Point back to the program that scheduled it.

b, Be set to 0 if the program was scheduled by the operator,
from an interrupt or from the time 1list.

The pointer is cleared when the program terminates or is aborted. Note
that the pointer established the program performing the scheduling as
the "Father" and the program being scheduled as the "Son".

When a program that had been scheduled with wait completes, the Father
may recover the system’s copy of optional parameter 1 to determine
whether or not the Son terminated normally.

Abnormal termination of the Son is caused by any of the following
conditions:

a. System abort of program,
b. An OF operator command.

Cc. Self-termination via CALL EXEC (6,0,2) or CALL EXEC
(6,0,3).

Abnormal termination causes the system’s copy of optional parameter 1
to be set to 100000B. This occurs even if the Son attempted or
planned to pass back parameters via PRTN. The Father can recover the
system’s copy of optional parameter 1 by calling RMPAR.

If the Son terminated normally and no parameters were passed back via
PRTN, the value of optional parameter 1 returned by RMPAR will then
be equal to its original value., Alternately, it will be the value set
up in the Son’s PRTN call. The PRTN subroutine allows Sons to pass
parameters back to Fathers.

ICODE = 9 OR 10

If a program to be scheduled is dormant, it is scheduled and a zero
is returned to the calling program in the A-register. If the program
to be scheduled is not dormant, it is not scheduled by this call and
its status (some non-zero value) is returned to the calling program
in the A-register. If the program to be scheduled is a Son that was
suspended with the EXEC 6 call, some high bits may be set in the
A-register. Only the least four-bits should be checked for zero in
this case.

IvV-31

EXEC CALLS

A schedule with wait (ICODE=9) call causes RTE to put the "Father" in
a wait status by setting the wait bit in the status word of the
Father’s ID segment. If required, the Father may be swapped by the
system to make way for a program that needs to run. The "Son" runs at
its own priority, which may be greater than, less than or equal to
that of the calling program. Only when the Son terminates does RTE
resume execution of the Father at the point immediately following the
Program Schedule call,

A disc resident program may schedule another disc resident program
with wait, since disc resident programs are swapped according to
their priority when they are in conflict over use of their memory
area.

A Program Schedule call without wait (ICODE=10) causes the specified
program to be scheduled for execution according to its priority. The
Father program continues at its own priority without wait. Again note
that ICODES of 9 and 10 will not schedule the program if the program
to be scheduled is busy (i.e., not dormant).

ICODE = 23 or 24

These requests are identical to 9 and 10 except that the system
places the "Father" in a gqueue if the "Son" 1is not dormant. The
Father s request will then be honored when the Son becomes available.
Note that status will not be available in the A-register and the
Father will be impeded until the request is honored. The queue means
that if the Son is not dormant, the potential Father is suspended
until the Son may be scheduled by this Father. When the potential Son
can be scheduled, the request is reissued and execution procedes as
EXEC 9 and 10 described above.

OPTIONAL PARAMETERS

When the Son begins executing, the B-register contains the address of
a a five-word parameter list from the Father (parameters = 0 as the
default)., A <call to the RMPAR library subroutine, as the first
executable statement of a called program, transfers these parameters
to a specified five-word array within the <called program. For
example:

PROGRAM XQF
DIMENSION IPRAM (5)
CALL RMPAR (IPRAM)

Note that IPRAM must be a minimum dimension of five words.

Iv-32

EXEC CALLS

If the optional buffer is included in the Father’s scheduling call,
the buffer is moved to System Available Memory and assigned to the
Son. The Son can recover the string by using the GETST library
routine or the String Passage call. The Father is memory suspended if
there 1is not enough System Available Memory to currently hold the
buffer but there will be in the future. The Father is aborted and an
SCl0 error 1is returned if there never be enough System Available
Memory for the buffer. The Father will not abort if the no-abort bit
(bit 15 in ICODE) is set. The length of the string is limited only by
the amount of usable System Available Memory.

For schedule with wait requests (ICODE = 9 or 23), the Son may pass
back five words to the Father by calling the PRTN library routine;
for example:

PROGRAM SCHED
DIMENSION IBACK (5)
CALL PRTN (IBACK)
CALL EXEC (6)

The EXEC (6) call (termination call) must immediately follow the PRTN
call. The Father may recover these parameters by calling RMPAR
immediately after the Son call. The Son may pass back a buffer to the
Father (see the String Passage call).

The Program Schedule call is similar in function to the RUN operator
command,

4-26. TIME REQUEST CALL

Requests the current time as recorded in the real-time clock.

Assembly Language:

EXT EXEC
JSB EXEC Transfer control to RTE
DEF RTN Return address
DEF ICODE Request code (ll=time request)
DEF ITIME Time value array
DEF IYEAR Optional year parameter
RTN return point Continue execution (A=meaningless; B=as
. it was)
ICCDE DEC 11 Request code = 11
ITIME BSS 5 Time value array
IYEAR BSS 1 Year (optional)

Iv-33

EXEC CALLS

FORTRAN:

DIMENSION ITIME(5),IYEAR(1)
ICODE=11
CALL EXEC (ICODE,ITIME, IYEAR)

4-27. TIME REQUEST COMMENTS
The time value array contains the time on a 24-hour clock, with the

year 1in an optional parameter, when RTE returns. The year is a full
four digits (e.g., 1978).

Assembler FORTRAN

ITIME or ITIME(l) = Tens of milliseconds
ITIME+1l or 1ITIME(2) = Seconds

ITIME+2 or ITIME(3) = Minutes

ITIME+3 or 1ITIME(4) = Hours

ITIME+4 or ITIME(S5) Day of the year

Another method of obtaining the current time is through a double-word
load from the S$TIME Table Area II entry point. $TIME contains the
double-word integer of the current time of day. If this double-word
is passed to the TMVAL 1library subroutine, then TMVAL returns
milliseconds, seconds, minutes and hours. Refer to the Library
Subroutine section of this manual for more information.

The Time Request call 1is similar in function to the TI operator
command.

4-28. STRING PASSAGE CALL

Retrieves the command string that scheduled the program or passes a
buffer back to the "Father" program.

IV-34

EXEC CALLS

Assembly Language:

EXT EXEC
JSB EXEC Transfer control to RTE
DEF RTN Return address
DEF ICODE Request code (l4=string passage)
DEF IRCOD Retrieve/write code
DEF IBUFR Buffer location (string location)
DEF IBUFL Buffer length (string length)
RTN return point Continue execution (A = status; B =
. positive number of words/characters)
ICODE DEC 14 Request code
IRCOD DEC lor 2 1l = retrieve parameter string
2 = write buffer to "Father"
IBUFR BSS n Buffer of n words
IBUFL DEC n(or -2n) Same n; words (+) or characters (-)

FORTRAN:
DIMENSION IBUFR (n)
IBUFL = n
ICODE = 14
IRCOD =1

REG = EXEC(ICODE,IRCOD,IBUFR,IBUFL)

4-29. STRING PASSAGE COMMENTS

The command string retrieved 1is exactly like the string used in
scheduling the program via RU, ON, GO commands, or EXEC 9, 10, 23, or
24, The block of System Available Memory used to store the command
string (buffer) is released by this call or when the calliing program
goes dormant. Any parsing of the returned string 1is left to the
calling program. The RTE system library routine GETST can be used to
recover the parameter string portion of the command string.

Upon return from a retrieve operation, the A-Register contains status
information: 0 if the operation was successful or 1 if no string was
found. The B-Register is a positive number giving the number of words
(or characters) transmitted. If the string is longer than IBUFL, only
IBUFL words are transmitted. If an odd number of characters are
requested in a retrieve operation, the right half of the last word is
undefined.

If the write parameter string option is used, the call returns any
block of system available memory associated with the "Father" and
allocates a new block for the "Father" into which the string will be

stored.

Iv-35

EXEC CALLS

I1f no memory is currently available, the calling program is memory
suspended.

If there will never be enough memory and bit 15 of ICODE is not set,
the calling program is aborted with an SCl0 error.

If there is no "Father," execution continues at the return point with
the A-register equal to 1. If the write parameter operation was
successful, the A-register is set to 0.

Example:
RU, PROGX, ABCDSTRING
Where RU, PROGX,ABCDSTRING is returned by EXEC (14,...) and ABCDSTRING
is returned by GETST.
NOTE
Be careful when writing a buffer to
a "Father" when the Father scheduled
the "Son" without wait (EXEC 10 or 24).
It is the user’s responsibility to

ensure synchronization of the Son’s
write and the Father s read.

4-30. TIMED EXECUTION CALL (Initial Offset)
Schedules a program for execution at specified time intervals,

starting after an initial offset time. RTE places the specified
program in the time list and returns to the calling program.

Iv-36

EXEC CALLS

Assembly Language:

EXT EXEC
JSB EXEC Transfer control to RTE
DEF RTN Return address
DEF ICODE Request code (l2=initial offset schedule
DEF IPROG Program to put in time list
DEF IRESL Resolution code
DEF MTPLE Execution multiple (0-4095)
DEF IOFST Initial time offset
RTN return point Continue execution (A=meaningless;
. B as it was)
ICODE DEC 12 Request code = 12
DEC 0 Put calling program in time list
IPROG or
ASC 3,name name is the program to put in the
time list
IRESL DEC X Resolution code
(1=10"s/ms; 2=ses; 3=mins; 4=hrs)
MTPLE DEC y Execution multiple
IOFST DEC -2 z (units set by x) gives the initial
offset
FORTRAN:
DIMENSION IPROG (3) See IPROG above
IPROG (1) = 2Hcc First two characters
IPROG(2) = 2Hcc Second two
IPROG(3) = 2Hc Last character in upper 8 bits
ICODE = 12
IRESL = x (1=10"s/ms;2=secs;3=mins; 4=hrs)
MRPLE = y (0-4095)
IOFST = -z z (units set by x) gives the initial
offset

CALL EXEC (ICODE,IPROG, IRESL,MTPLE,-IOFST)

IV-37

EXEC CALLS

4-31, INITIAL OFFSET COMMENTS

The Execution Time EXEC call is similar to the IT Operator request
(see Section 1II). However, the EXEC call places the program in the
time 1list whereas IT does not. This call can schedule a program to
execute in one of three ways as described in the following
paragraphs:

1. RUN ONCE
After a time offset and the program to be scheduled is dormant, the

program will execute once and then be made dormant. This is
accomplished as shown in the following example:

IRESL = 3 (specifies minutes)
MTPLE = 0 (specifies run once)
IOFST = -45 (specifies run after 45 minutes have elapsed from

current time)

2. RUN REPEATEDLY

After a time offset and the program to be scheduled is dormant, the
program will execute, go dormant, and then re-execute at specified
intervals. This is accomplished as shown in the following example.

IRESL = 3 (specifies minutes)
MTPLE = 60 (specifies run every 60 minutes)
IOFST = -30 (specifies run after 30 minutes have elapsed from

current time)

3. GO DORMANT; THEN RUN

If IPROG=0, the <current/calling program is made dormant, but the
point of suspension is retained. The program 1is then placed in the
time 1list for rescheduling from the point of suspension after a

delay. When the program is rescheduled, it can be either to run once
or repeatedly.

4-32. TIMED EXECUTION CALL (Absolute Start Time)

Schedules a program for execution at specified time intervals,
starting at a particular absolute time., RTE places the specified
program in the time list and returns to the calling program.

Iv-38

EXEC CALLS

Assembly Language:

EXT EXEC
JSB EXEC Transfer control to RTE
DEF RTN Return address
DEF ICODE Request code (l2=absolute start
time sched.)
DEF IPROG Program to put in time list
DEF IRESL Resolution code
DEF MTPLE Execution multiple
DEF I HRS Hours
DEF MINS Minutes
DEF ISECS Seconds
DEF MSECS Tens of milliseconds
RTN return point Continue execution (A = meaningless,
. B as it was)
ICODE DEC 12 Request code = 12
DEC 0 Putting calling program in time list
IPROG or
ASC 3,name name is the program to put in the

time list
Resolution code
(1=10"s/ms; 2=secs;3=mins;4=hrs)

IRESL DEC

E

MTPLE DEC vy Execution multiple
IHRS DEC a Absolute starting time
MINS DEC b In hours, minutes, seconds
ISECS DEC C and tens of milliseconds
MSEC DEC d on a 24-hour clock
FORTRAN:
IPROG=0 or DIMENSION IPROG(3)
IPROG (1) = 2Hcc First two characters
IPROG (2) = 2Hcc Second two
IPROG(3) = 2Hc Last character in upper 8 bits
ICODE = 12
IRESL = X (1=10 "s/ms;2=secs;3=mins;4=hrs)
MTPLE = y (0-4095)
IHRS = h
MINS = m
ISECS = s
MSECS = ms

CALL EXEC (ICODE,IPROG,IRESL,MTPLE,IHRS,MINS,ISECS,MSECS)

Iv-39

EXEC CALLS

4-33, ABSOLUTE START TIME COMMENTS

The Execution Time EXEC call is similar to the IT operator request
(see Section 1II). However, the EXEC call places the program in the
time 1list whereas 1IT does not. This call differs from the Initial
Offset version in that a future starting time is specified instead of
an offset. For example, if the current time 1is 1400 hours and you
wish the program to run at 1545 hours the parameters would be as

follows:

IHRS = 15
MINS = 45
ISECS = 0
MSECS = 0

This call can schedule a program to execute in one of two ways as
described in the following paragraphs:

1. RUN ONCE

After a time offset and the program to be scheduled is dormant, the
program will execute once and then be made dormant. This Iis
accomplished as shown in the following example.

IRESL = 3 (specifies minutes)

MTPLE = 0 (specifies run once)

I4RS = h

MINS = m (specifies absolute start-time)
ISECS = s

MSECS = ms

2, RUN REPEATEDLY

After a time offset and the program to be scheduled is dormant, the
program will execute, go dormant, and then re-execute at specified
intervals, This is accomplished as shown in the following example:

IRESL = 3 (specifies minutes)

MTPLE = 60 (specifies run every 60 minutes)
IHRS = h

MINS = m (specifies absolute start-time)
ISECS = s

MSECS = ms

IV-40

EXEC CALLS

4-34, PROGRAM SWAPPING CONTROL CALL

Allows a program to lock itself into memory (real-time or background)
if the ability to perform a memory lock was specified during
generation.

Assembly Language:

EXT EXEC
JsB - EXEC Transfer control to RTE
DEF RTN Return address
DEF ICODE Reguest code
DEF IOPTN Control information
RTN return point Continue execution (A=meaningless;
B=as it was)
ICODE DEC 22 Request code = 22
IOPTN DEC numb 0 = program may be swapped
1l = program may not be swapped
FORTRAN:

ICODE = 22
IOPTN = numb
CALL EXEC (ICODE,ICPTN)

4-35. PROGRAM SWAPPING CONTROL COMMENTS

This call allows a programmer to lock a program into memory so it
cannot be swapped out for a program of higher priority.

o e e e e e e ot e e o e e o 2

NOTE

|
|
The program cannont be locked into memory |
if the memory lock bits (base page word |
1736B, bits 2 and 3) are not set (8C07 |
error results). The bits are set during |
generation. |

I

1v-41

EXEC CALLS

The program’s memory lock bit (IOPTN = 0 or 1) is set or cleared by
the request (refer to ID segment word 15, bit 6 in Table A-1l). This
bit 1is also cleared (making the program swappable) if the program

aborts or terminates except on the Save Resources Program Completion
EXEC call.
4-36. PARTITION STATUS CALL

Returns status information about any specified partition.

Assembly Language:

EXT EXEC

JSB EXEC Transfer control to RTE

DEF RTN Return address

DEF ICODE Request code (25=partition status)

DEF IPART Partition no. that information is desired
about

DEF IPAGE Returned no. of starting page for partition

DEF NPGS Returned no. of pages in partition (includes
Base Page)

DEF IPST Partition status word (defined below)

ICODE DEC 25

IPAGE NOP

NPGS NOP

IPST NCP
FORTRAN:

CALL EXEC(25,IPART,IPAGE, INPGS,IPST)

IV-42

EXEC CALLS

4-37, PARTITION STATUS COMMENTS

The format of PSTAT is as follows:

15 14 13 12 11 8 7]
R Rt I B e fm e e e e e e e |
IRS IRT | M | 8§ | C |=mmmw—m R | ID Seg. no. |
e e B B B I s | e e e e e e e e e e e e e |
where

RS = 1 1if partition reserved.

RT =1 if partition is real time.
M =1 1if partition is a mother partition.
S =1 |if partition is subpartition of a mother partition.
C =1 1if chain is in effect; that is, if subpartition is

locked because Mother partition is active.

ID Seg. no. is the ordinal number (i.e., counting from l)of the ID
segment for the program that occupies the partition. If ID Seg. no, =
0, the partition is unoccupied.

The values returned for number of pages and starting page number will
be identical to those displayed by the WHZAT system program.

If the partition number is illegal (i.e., undefined or illegal), a -1
will be returned in the number of pages word and a 0 returned to the
page number word,

The interaction between physical memory and logical memory for the
partition status is illustrated in Fiqure 4-~3., Note that the Table
Area in the illustrated User Map is the system~supplied space that
contains the necessary software to enable the user to communicate with
the system.

IV-43

EXEC CALLS

Physical mMemory Logical Memory
(User Map)

|
I
i |
| |
I |
| ——— e e | I |
: Base Page n I I : ————————————————— :
e e e e e | |
| . | | | System Table |
I . | | | =>1 Area |
| . I I (I |
—-—- | e e e e |\ | | | e e I
- | Partition 1 'V | |--=>| Base Page
| | T N ittt +
| | b \=== | |
NPGS | \/ I
(part. length) | I (.
| I b (I
I | e |/ I
v | Base Page 1 R I
~=~IPAGE~=~> |~==m—mmmmmmmeme | |
R A | I
Start physical | System Table |-===c—m=~-
page of | Area |
partition | mom e e e e e |
| Operating |
| System |
| |
| |
o e e +

Figure 4-3, Partition Status Parameter Return

4-38. MEMORY SIZE CALL

Returns current memory limits of the partition in which the calling
program 1is executing.

IV-44

Assembly Language:

EXT
JSB
DEF
DEF
DEF

DEF

DEF

DEF

ICODE DEC
IFPG NOP
ILMEM NOP
NPGS NOP
IMAP BSS

FORTRAN:

EXEC

EXEC
RTN
ICODE
IFPG

ILMEM

NPGS

IMAP

26

32

EXEC CALLS

Transfer control to RTE

Return Address

Request Code (26=meory size)

First available word address behind the
program (i.e.,last word of program + largest
segment + 1)

Number of words available between end of
program and end of program’s address space.
Length of current partition in pages (includes

base page)

Return copy of current user map (optional).
IMAP must be a 32-word buffer address.

CALL EXEC (26,IFPG,ILMEM,NPGS, IMAP)

4-39, MEMORY SIZE COMMENTS

The number of

subtracting IFPG,

words

the

logical memory (ILMEM) is calculated by

program’s high main plus one (including its

largest segment), from the last word of the program’s logical address

space. The logical
partition, is determined at load time and may be greater than (if size
override option taken) or equal to the program size.

For EMA program,

requested at load time.

address space, which may be smaller than the

ILMEM is the number of words between the end of the
program and the start of MSEG. This includes any dynamic buffer area

IV~-45

EXEC CALLS

The

manner in which the current status of the partition is calculated

is illustrated in Figure 4-4., Sample data is provided.

Logical User Map

R SO U + e
| | h
I Unused | |
| Partition | | |
Last word of | Space or | | |
address space | MSEG | v |
(47777) =mmmmem e e e e) [T Ees— |
; l/////////////////: ILMEM :
I | | "
IFPGm——m— e - | | 26 Pages (NPGS)
46537 | | | (includes base page)
(Last 15 Pages | | |
word+1l | | XYZ Program |
of | | |
program) | I |
\Y | |

!
l
l
l
|
!
]
t
1
!
1
I
1
i
t
!
t
]
t
1
1
i
t

- e e s s e

~-~ILMEM=47777-46537=1240

]
1
<l |
o |
w1
@1
|
o
o |
Qi
® 1
1
i
!
l
{
!

Figure 4-4, Partition Current Status Example

4-40. CLASS I/0 EXEC CALLS

The

Class I/0 feature consists of a special set of I/0 EXEC calls that

give user programs a level of I/0 independence beyond that provided by

standard I/0. Use of the Class I/0 scheme can provide the following
benefits:

a.

b.

A program doing an input operation can proceed with execution even
though the data is not yet ready (I/0 without wait).

Program~-to-program communication with controlled access via a
mailbox scheme.

Synchronized progr am-to-progr am data passing that avoids
processing of incomplete or non-updated data. A calling program
can put 1itself to sleep until it receives a signal that updated
data processed by another program 1is available for further
processing.

IV-46

EXEC CALLS

Implementation of Class I/0 is based on use of a buffer with an
exclusive access key, thus avoiding the possibility of unplanned
alteration of existing data or access to incomplete data. Use of such
keyed buffers or ‘“"classes" 1is exclusive of system or local COMMON
resources utilized in standard program-to-program data passing.

A definition of the term "class" and other terms unique to Class I/O
considerations is given in Table 4-4,

The maximum number of classes is established during system generation
as a value between 1 and 255. Once the numbers are established, the
system Keeps track of them and assigns them (if available) to the
calling program when a Class I/0 call is made and the Class Number
parameter is set to zero. Once the number has been allocated, the user
can keep it as long as desired and use it to make multiple Class I/0
Calls. WwWhen the user is finished with the number, it must be returned
to the system for use by some other class user.

The system allocates a buffer from System Available Memory (SAM) when
a user program issues a Class I1/0 call. The "key" is also issued to
the «calling program in the form of a Class Number, which is the only
mechanism by which a calling program may thereafter access the buffer.
Note that there may be more than one buffer associated with a single
Class Number (key) and that a user program may have more than one
Class Number allocated to itself.

For "I/0 without wait" operations, data can be read from or written to
an 1I/0 device by first transferring the data to the buffer. The user
program can thus either continue execution of other tasks without
waiting for the I/O0 transfer to complete, or can suspend or terminate
itself (releasing system services to other waiting programs) until thne
data transfer is completed.

The user program recovers the results of its Class I/0 call by later
issuing a Class I/0 Get call., If the results are not present, the
caller either <can wait or return to execute more code before
re~issuing the Class Get call.

A simple example of I/0 without wait would be a program that issues a
Class 1I/0 READ call in its code, followed by a series of other coded
operations, Wwhile these following operations were being executed, the
system simultaneously would be reading the data into the allocated
keyed buffer. The calling program would issue a Class I/0 GET call to
fetch the data from the buffer. A more detailed example of I/0
without wait is given later in this section.

IV-47

EXEC CALLS

Table 4-4, Class Input/Output Terms

IClass

|

|

IClass Number
|

|Class Users

|

IClass Request

|
|

IClass Members

An account owned by one program that may be
used by a group of programs,

The account number referred to above.
Programs that use the Class Number.

An access to a Logical Unit number with a
class number.

|

|

|

|

|

|

|

|

|

|

| Logical Unit numbers that are currently
| | being accessed in behalf of a class.
| | Completion of access removes the association
] | between class number and Logical Unit number
| | (completion of access is defined as when
| | the driver completes the request).
| |
| |
IClass Queue (pending) | The set of uncompleted class requests,
| |
IClass Queue (completed) | The set of all completed class requests. The
| structure is first-in- first-out.
|

The system handles a Class I/0 call in the following manner:

a. When the <class wuser 1issues a Class I/0 call (and the call is
received), the system allocates a buffer from System Available
Memory and puts the call in the header (first eight words) of the
buffer, The <call 1is placed in the pending Class Queue and the
system returns control to the class user.

b. If this is the only call pending on the EQT, the driver is called
immediately; otherwise, the system returns control to the class
user and queues the request according to program priority.

c. If buffer space 1is not available, the <class user 1is memory
suspended unless bit 15 ("no wait") is set. If the "no wait" bit
is set, control is returned to the class user with the A~register
containing a -2, indicating no memory available. If the program is
suspended, no memory will be granted to lower priority programs

until this program’s Class I/0O reguest is satisfied.

d. If too much memory was asked for (more than all of System
Available Memory) the program is aborted with an 1I004 error
return.

Iv-48

e e — 4+

EXEC CALLS

e. If the C(Class Number is not available or the I/0 device is down,
the Class User 1is placed in the general wait list (status = 3)
until the condition changes.

f. If the <call 1is successful, the A-register will contain zero on
return to the program.

The buffer area furnished by the system is filled with the caller’s
data 1if the request 1is either a WRITE, or a WRITE/READ call. The
buffer is then queued (pending) on the EQT entry specified by the
Logical Unit Number.

After the driver receives the Class 1I/0 <call (in the form of a
standard I/0 call) and completes, the system will:

a. Release the buffer portion of the request if a WRITE. The header
is retained for the GET call.

b. Queue the header portion of the buffer 1in the Completed Class
Queue.

c. If a GET call 1is pending on the Class Number, reschedule the
calling program. (This means that if the user issues a Class GET
call or examines the completed Class Queue before the driver
completes, the user has effectively beat the system to the
completed Class Queue.) Note that the program that issued the

. Class I/0O call and the program that issued the Class GET call do

not have to be the same program,

d., If there is no GET call outstanding, the system continues and the
driver is free for other calls.

When the user 1issues the GET call, the completed Class Queue is
checked and only one of the following paths is taken:

a. If the driver has completed, the header of the buffer is returned

(plus the data). The wuser (calling program) has the option of
leaving the I/0 request in the completed Class Queue so as not to

lose the data. In this case a subsequent GET call will obtain the

same data. Or,the user can dequeue the request and release the
header and buffer, and can also release the Class Number back to

the system.

I1V-49

EXEC CALLS

b. If the

Class

stating
desired,

driver
1/0
suspended

in

has

operation
the general wait list (status = 3) and a marker so

the completed C(Class Queue header,

is entered 1in

the

suspension. 1In

waliting
rescheduled.
class

given

call on
satisfied,

the

program
any case,
in the general wait list
only one program can
any instant. If a second program attempts a GET
Class
it will be aborted (I/0 error I1010).

Note
at
s ame

that

not yet completed (GET
is

when the

completed), the calling program

is issued before the
is

If
can set the "no wailt" bit to avoid

driver completes, any program
for this class is automatically
be waiting for any

Number before the first one nas been

4-41. CLASS 1/0 - WRITE/READ CALL

Transfers

another program. Depending upon parameter specifications,

program will not be suspended while the call completes.

Assembly Language:

RTN

ICODE
ICNWD
IBUFR
IBUFL
IPRM1
IPRM2
ICLAS

Iv-50

EXT

JSB
DEF
DEF

DEF
DEF
DEF
DEF
DEF
DEF
return

DEC
ocT
BSS

DEC
DEC

DEC
ocCT

EXEC

EXEC
RTN
ICODE

ICNWD
IBUFR
IBUFL
IPRM1
IPRM2
ICLAS

point

numb
conwd

n(or-2n)

class

Transfer control to KRTE

Return address

Request code (l7=Fkead; 18=Write;
20=Write/Read)

Control information

Buffer location

Buffer length

Optional parameter

Optional parameter

Class word

Continue execution (A=zero or status;
meaningless)

l7=Read; 1l8=Write; 20=Write/Read
conwd is described in Figure 4-1
Buffer of n words

Same n; words (+) or characters (=)
Optional parameter

Optional parameter

Class is described in comments

information to or from an external (non-disc) I/0O device or
the calling

B

EXEC CALLS

FORTRAN:
DIMENSION IBUFR
IBUFL = n
ICODE = numb
ICNWD = conwd
ICLAS = class

CALL=EXEC (ICODE,ICNWD,IBUFR,IBUFL,IPRM1l,IPRMZ,ICLAS)

4-42. CLASS 1/0 WRITE/READ COMMENTS

For a combination Class Write/Read call, the driver should expect
control data in the buffer IBUFR., The system will treat the request as
a Class Write 1in that the buffer must be moved prior to the driver
call, and as a Class Read in that the buffer must be saved after
driver completion. Note that the driver will receive a standard Read
request (ICODE = 1) on this request.

Refer back to Figure 4-2 for the format of the control word (conwd)
required in the Class I/0 Write/Read calling sequence.

IPRM1 and IPRM2 are required as place holders in this request. They
may also be used to pass information through to the Class GET call to
aid in processing the request.

Figure 4-5 shows the format of the class word (ICLAS) required in the
calling sequence. To obtain a Class number from the system, the class
portion (bits 12-0) of the word is set to zero. This causes the system
to allocate a Class Number (if one is available) to the calling
program. The number is returned in the ICLAS parameter when the call
completes and the user must specify this parameter (unaltered) when
using it for later calls. Bit 15 is the "no~wait" bit, When set the
calling program does not memory suspend if memory (or a class number)
is not available. The A-register value when the program returns is as
follows:

"A" Vvalue Reason
0 OK~request done
-1 No class number
~2 No memory now or buffer limit exceeded.

Jmmm| | | | | e | m | o | | | e || = | =]

[15 |14 13 12 j11 10 9 I8 7 6 I5 4 3 12 1 0|

| m] e | o | e | e | e | e | e e e e |

~ ~

| | |
No Wait | e e e eeClaSS NUMbE == mm e e e e |

Figure 4~5. Class Number (ICLAS) Format

Iv-51

EXEC CALLS

When the user’s program issues a Class I/0 call the system allocates a
buffer from System Available Memory and puts the call in this buffer.
The call 1is queued and the system returns control to the user’s
program. If memory is not available, three possible conditions exist:

1. The program is requesting more memory space than will ever be
available. In this case, the program is aborted with a I004 error.

2, The program 1is requesting a reasonable amount of memory but the
system must wait until memory is returned before it can satisfy
the calling program. The program is suspended unless the "no wait"
bit is set, in which case a return is made with the A-register set
to -2.

3. If the buffer 1limit is exceeded, the program will be suspended
until this «condition clears. If the "no wait" bit is set, the
program is not suspended and the A-register is set to -2,

4-43, CLASS I/0 - GET CALL

Completes the data transfer between the system and user program tnat
was previously initiated by a class request.

Assembly Language:

EXT EXEC

JSB EXEC Transfer control to RTE

DEF RTN Return address

DEF ICODE Request code

DEF ICLAS Class word

DEF IBUFR Buffer location

DEF IBUFL Buffer length

DEF IRTN1 Optional parameter status word

DEF IRTN2 Optional parameter status word

DEF IRTN3 Optional parameter class word
RTN return address Continue execution (A=status;

. B=Transmission Log)

ICODE DEC 21 21 = class GET call
ICLAS NOP class is described below
IBUFR BSS n Buffer of n words
IBUFL DEC n (or -2n) Same n; words (+) or characters (-)
IRTN1 NOP Location for IPRM1l from Write/Read call
IRTNZ2 NOP Location for IPRM2 from wWrite/Read call
IRTN3 NOP Request code passed to driver or initial

Read or Write call

IV-52

EXEC CALLS

FORTRAN:
DIMENSION IBUFR (n)
ICODE = 21
IBUFL = n
ICLAS = x0

REG = EXEC(ICODE,ICLAS,IBUFR,IBUFL,IRTN1,IRTN2,IRTN3)

4-44. CLASS I/0 - GET CALL COMMENTS

One of the features of the GET call is that one or more user programs
waiting for system resources can suspend themselves without CPU
overhead or program overhead such as polling. A program can perform a
deliberate GET on a Class Number associated with a device or another
program and put itself to sleep. The program will only be awakened
when there is something to process. The desired data will be resident
in the program’s buffer. After the data is processed, the program can
put itself to sleep again with another GET.

When the calling program issues a Class GET call, the program is
telling the system that it is ready to accept returned data from a
Class READ call or remove a completed Class WRITE or CONTROL call from
the completed class 1list. If the driver has not yet completed (GET
call got to the completed class before the system), the calling
program 1is suspended 1in the general wait list (status = 3) and a
marker so stating is entered in the Class Queue header, When the
driver completes, the program 1is automatically rescheduled. IEf
desired, the program can set the "no wait" bit to avoid suspension.

Figure 4-5 shows the format of the c¢lass word (ICLAS) required in a
class GET call. Bits 12-0 represent the Class Number and security code
that the GEI' call 1is seeking. This Class Number 1is obtained (in
unaltered form) from the original Class I/0 READ, WRITE, CONTROL or
WRITE/READ call.

Bit 15 1is the "no wait" bit. When set, the calling program does not
suspend if the class request has not yet completed.

Bit 14 is the "save" bit. When set, the buffer is not released;
therefore, a subseguent GET call will return the same the same data.

Bit 13 1is the "de-allocate" bit, When set, the Class Number is not
returned to the system. If bit 13 is zero and no requests are left in
the Pending Class Queue, and no class requests for this class are
waiting for driver processing, the class is returned to the system.

It is possible for the call to return the Class Number and data, or no
no data, depending on whether or not there is one class call left.

Bits 14 and 13 work in conjunction with each other. If bit 14 is set,
then the buffer will not be released. Therefore you cannot deallocate
the Class Number. That 1is, the Class Number cannot be released
because there is still an outstanding request against it.

Iv-53

EXEC CALLS

Only when the GET call gets the last class request on a class, or on
an empty class queue (completed and pending) can the user release the
Class Number by clearing bit 13 in the ICLAS word.

Three parameters in the call are return locations: that is, values
from the system are returned to the «calling program in these
locations. Optional parameters IPRMl1 and IPRM2 from the Class 1/0
WRITE/READ or CONTROL calls are returned in IRTNl and IRTN2. These
words are protected from modification by the driver. The original
request code received by the driver is returned in IRTN3, as follows:

Original Request Code Value Returned in IRTN3
17/20 (READ, WRITE /READ) 1l
18 (WRITE) 2
19 (CONTROL) 3

IRTN3 1is typically used by a program that performs Class I/0 with one
Class Number to devices (such as slow consoles) to ensure that input
and output are buffered and so that input (IRTN3=1) and output
(IRTN3=2) are processed along separate paths,.

BUFFER CONSIDERATIONS

There are several buffer considerations in using the Class I/0 GET
call:

a. The number of words returned to the user’s buffer is the
minimum of the reguested number and the number in the
Completed Class queue element being returned (that was
specified in the initial Read/Write in the READ/WRITE call).

b. If the original request was made with the "2" bit set in the 1
control word, then IPRM1 returned by this call will be
meaningless.

c. The "Z" buffer will be returned if there is room for it (see
"a" above) only if the original request was a READ or
WRITE/READ (i.e., for WRITE requests no data is returned in
the buffer area).

d. The remaining words in the user buffer (of any) past the
number .of words indicated by the transmission log count (in
the B-register) are undefined., If a "2" buffer is used, the
words remaining in the buffer past the end of the Z buffer are
undefined. Users should not initialize a buffer before doing
a GET call, but should clear out the unused words according to
the count returned by the transmission log or other parameters
returned by the driver.

IV-54

EXEC CALLS

A AND B REGISTER RETURNS

The A and B registers are set as follows after a Class I/0O GET call:

A-Register B-Register
Al5 = 0 then A = status B = transmission log (positive words
or characters depending on original
regquest)

Al5 = 1 then A

- (numb+1) B = meaningless

On return with data, bit 15 1is set to zero and the rest of the
A-register contains the status word (EQT5). If a return is made
without data (the "no wait bit" was set in the class word) then bit 15
is set to one and the A-register contains the number of requests numb
made to the class bit not yet serviced by the driver (i.e., pending
class requests).

4-45. CLASS I1/0 - CONTROL CALL
Carries out various I/0 control operations such as backspace, write
end-of-file, rewind, etc. The calling program does not wait for the

function to be completed.

Assembly Language:

EXT EXEC
JSB EXEC Transfer control to RTE
DEF RTN Return address
DEF ICODE Request code
DEF ICNWD Control information
DEF IPRAM Optional parameter
DEF ICLAS Class word
DEF IPRM1 Optional parameter
DEF IPRM2 Optional parameter
RTN return point Continue execution (A=Class number; B
. meaningless)
ICODE DEC 19 Request code = 19
ICNWD ocr conwd See Control Word
IPRAM DEC n Required for some control functions;
see Control word
ICLAS ocCT class class is described in Comments
IPRM1 DEC f Optional parameter passed to GET call
IPRM2 DEC g Optional parameter passed to GET call

IV-55

EXEC CALLS

FORTRAN:

Use the FORTRAN I/0 statements or an EXEC call sequence.

ICCDE = 19 Fequest code

ICNWD = conwd See Control Word format in Figure 4-2
IPRAM = x See Control Word format in Figure 4-2
ICLAS = y Class Word

REG = EXEC(ICODE,ICNWD,IPRAM,ICLAS)

4-46. CLASS I/0 CONTROL COMMENTS

Refer to Figure 4~2 for the format of the control word (conwd) required
in the Class I/0 Control calling sequence.

Note that this call, with the exception of the ICLAS, IPRM1 and IPRM2
parameters, is the same as the standard I/0 Control call. Also refer to
the Class I/0 GET call for additional information.

4-47. CLASS I/0 APPLICATIONS EXAMPLES

One example of using Class I/0 is program—-to-~program (mailbox)
communication. The sequence of events that occur are described below,
and the calling sequence is illustrated in Figure 4-6.

The range of possible areas where Class I/0 could be used to improve
applications program performance is too wide and varied to show "typical"
examples. The two examples given below are intended only to demonstrate
some of the considerations and procedures used in designing specific
applications,

IV-56

EXEC CALLS

EXAMPLE 1. MULTIPLE TERMINALS WITH A SINGLE APPLICATIONS PROGRAM

In the following example, any one of

many users could be providing input
to the program:

| I\
/ | I\
-— | I \---
| I\ /| |
_______ \ / ———————
\ /
\ /
\ /
-~ e e -
/ | | | I\
/v _ [| __ I\
-/ | | RTE | | \---
I | | | I |
........ o e e e - —
/ \
/ \
/ \
- / \ P
/| AN AN
/ | PN
T T

- - - -, - - — -

Assume an order-entry situation in which there are several operators
but only one program. If standard I/0 was used, it would be possible
to read from only one terminal at a time. However, by using Class I/0,
the program permits all operators to enter data seemingly at once. RTE
handles all queueing so that the program operates on a single
transaction at a time, thus simplifying the programming while giving
the appearance of simultaneous processing on all transactions.

IvV=-57

EXEC CALLS

The flowchart for such an application is illustrated in Figure 4-6.
Note that although operators and terminal devices are shown, the input
could be received from any one of a series of indentical devices.

WS +
| i
: START :
o +
I
v
e o e e e e +
Issue Class I/O READ on each
terminal:
ICLAS = 0
DO 10 I = 1,NLU

10 CALL EXEC(17,LUTYS(I)+400B,IBUFR,IBUFL,
LUTYS(1),0,ICLAS)

o o e e e e e et e e e e e e e e +
|
v
e e e e e e e Notes:
| Specify for the GET call |
| that Class Number is to | IBUFL contains negative
| be kept: I no. of characters
| ICLAS = IOR(ICLAS,20000B) | allowed for input.
+ o o e e e e e +
| WAIT | | LUTYS is an array of LU
tom tom e ———— e e > v numbers. NLU is the

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + total number of
Wait for any terminal to input data terminals,
(operator enters data followed by
RETURN key): LEN contains maximum
length of IBUFR.

|

|

|

|

I

CALL ABREG (IA,IB) | On return, IA = status
| (e.g., bit 7 or bit 5

] will be set for EOF or

| EOT respectively).

| IB = no. of characters

+ 1input (will be positive).

| LUTERM will be the LU

! that responded,

Program will now be put to sleep.
Will be woke up when there is data
to process,

" )t D s ot T G B s P S Sy St B P P Pl D B R M O i Tt B T o B B Bl i S

+
|
|
I
|
| CALL EXEC(21,ICLAS,IBUFR,LEN,LUTERM)
|
|
|
|
I
+



EXEC CALLS

i e e e e e +
| Print reply on terminal |
| (Logical Unit contained |
l

in LUTERM) |
e e e e e e s e +
|
v
o e e e e et e et e i e +
Issue another Class READ on that
terminal:

| |
| |
| |
| CALL EXEC(I7,LUTERM+400B,IBUFR,IBUFL, |
| LUTERM, 0, ICLAS) :
|

| |

e —————— e —

e . e e Gaee Gen s wee e

Figure 4-6., Class I/0 Multiple Terminal Input Example

In some applications, it may be necessary to maintain contextual
information for each operator; for example, a code indicating the type
of input expected next, or the operator’s name to be used in friendly
dialog, etc. This information can be kept in a two-dimensional array
that is indexed by the terminal LU number.

For simplicity’s sake, let’s assume that all terminals have

consecutive Logical Unit numbers, starting from 15. The index of the
array can then be calculated by subtracting 14 from the LU.

IV-59



EXEC CALLS

EXAMPLE 2, MAILBOX COMMUNCIATION BETWEEN PROGRAMS

Program- to-program communication involves a "mailbox" scheme to pass
data buffers back and forth in the most expeditious manner, Instead of
implementing one large program to process all user inputs, it is often
more efficient to separate these into subtasks that are processed by
separate programs. In the example below, the program given in the
previous example is still wused as the "main control," but it now
sends user inputs to the appropriate processor by using mailbox I/O.
This separation allows the the various processors to be given
different priorities, with the highest priority being assigned to
those items that are most urgently needed. An added benefit is that
the separation reduces the partition size requirements,

Assume that the box labeled "Process Input" in Figure 4-6 actually
invol ved several programs, one each for a number of general
categories:

a. Order entry
b. Inventory gquantity look-up
c. Report generation

d. Display of status or recent history of several critical
real~time activities,

The program illustrated in Figure 4-6 might then serve only as a
keyboard entry controller that checks input for legality and calls on
other programs to process operator commands, Many operators could now
enter commands, with the applications software relying on RTE to gueue
the commands according to the priority of the category.

The real-time display program might have the highest priority, perhaps

followed by order entry, inventory gquantity look-up, and report
generation last.

Other orderings are ©possible, depending upon the application. Some
management summary reports might be considered most important, or
categories may be ordered so that those involving the least processing
may have the highest priority to minimize waiting time for users with
"short jobs."

The significant point to note is that RTE’s priority-driven scheduling
functions can be used to process commands according to priority. This
is done through the simple means of separating the processes of those
commands into separate programs that run at different priority levels,
and coordinating the processing via Class I/0.

Iv-60



EXEC CALLS

F@gure 4-7 below provides a revised version of the sample program
given in Example 1 (Figure 4-6). In this new version, Class Numbers
must be allocated for each of the process subprograms and these
subprogr ams must be scheduled. This is performed 1in the
initialization section of the original program as follows:

pDC 20 I=1,NSUBP

JCLAS=0

CALL EXEC(18,0,IBUFR,0,0,0,JCLAS)

JCLAS=IOR (JCLAS,20000B)

'CALL EXEC(21,JCLAS,IBUFR,0)

CALL EXEC(10,<processing program name>,JCLAS)
20 ISUBCL(I)=JCLAS

Every Class I/0 WRITE, READ, WRITE/READ and CONTROL call
issued must ALWAYS be matched with a corresponding GET call
issued at some point in the calling sequence. The time
sequence 1is not important (GET's can be issued before
Class calls) but there must be a GET for every Class call.
Failure to do so will tie up system resources (the Class
Number and the system buffer memory) that other programs
may need.

Wwhen a program is finished with a Class Number, it should
explicitely release it with a GET <call in which C(Class
Number bits 13 and 14 are cleared and bit 15 is set. Repeat
until all buffers are released, The system does NOT release
a Class Number when the allocating program terminates.

—— —— — — —— — — v —— —— e e e e, s st

Pr ogr ams that issue Class I/0 <calls may be thought of as

"manufacturers," with programs that issue GET calls being thought of
as ‘"consumers." It should be clear from the analogy why Class I/0 and
GET calls must be issued in equal numbers.

Iv-61



EXEC CALLS

The "Process Input" box previously illustrated Figure 4-6 can then be
expanded as illustrated in Figure 4-7 below.

| Determine input |
| command legality |
| and type

| Determine Class Number from
| input command type (JCLAS) |

Send input buffer to processing program |
for that command, with terminal’s LU I
and Class Number for use by the |
processing program: :

CALL EXEC(20,0,IBUFR,IBUFL,LUTERM,ICLAS,|
JCLAS) |
o e et e e e o e et e e e et o 0 e ot e o o

l
v

o ——————

| continue |

Ty

Figure 4-~7. Dispatching Input to Subtasks for Processing

Since no devices are involved in mailbox 1/0, the CNTWD (second
parameter) of the request 1is zero. For this case, it is usually
desirable to let the processing program print an acknowledgement or
error return and then issue another Class READ on the terminal., The
Class Number to use for this purpose is placed in the second optional
parameter. For this reason, in the original example (Figure 4-6), the
last two boxes for ‘"printing a reply" and "issueing another Class
READ" are deleted and included in the processing programs.

IV-62



EXEC CALLS

The processing programs obtain the Class Number to use for the above
procedure by calling the RMPAR subroutine, as follows:

CALL RMPAR(IPRAM(1)
MYCLAS = IPRAM(1)

(Initialization code may go here)
Waits for processing input

100 CALL EXEC(21,MYCLAS,IBUFR,MAXLEN,LUTERM, ITRMCL)

. Process input

WRITE (LUTERM,1100)
1100 FORMAT (<acknowledgement or error message>)

200 CALL EXEC(17,LUTERM+400B, IBUF, IBUFL, 0, ITRMCL)
GO TO 100

The processing programs now issue another Class READ to ITRMCL and
return to 1line 100 to reissue the Class GET on MYCLAS, putting
themselves to sleep until other transactions are available for the
programs to process,

4-48. RESOURCE NUMBERS AND LOGICAL UNIT LOCKS

Although Resource Numbering and Logical Unit locking services are not
implemented through EXEC calls, their discussion logically fits in
this section because their ability to synchronize use of system
services between cooperating programs is closely associated with Class
I/0 capabilities. (See the RNRQ subroutine call in the Relocatable
Libraries section of this manual.)

Like Class Numbers, the number of Resource Numbers available to the
on-site RTE system is determined during system generation., Resource
Numbers provide the capability of synchronizing programs that access
the same resource. The resource might be a device (locking a Logical
Unit requires a Resource Number), a table in memory, a file or even
another program or subroutine.

IV-63



EXEC CALLS

The use of Resource Numbers is only required when:

a. TWO or more programs use the same device, or CHANGE the
contents of a memory location or disc file.

b. ONE or more programs make decisions based upon the contents of
a data item that can be modified by at least one other program.

To relate the Resource Number mechanism to applications
considerations, assume the following "problem" conditions:

PROGRAM A PROGRAM B

COMMON J COMMON J

IF(J.EQ.2) J=J+1 IF(J.EQ.2) J=J+43

. .
. .

Assume Programs A and B are both scheduled memory-resident programs
and that J, which they share through System COMMON, is initially 2.
Further assume Program A executes the IF statement but before it can
execute J=J+1, Program B gets scheduled (with B having the highest
priority).

Program B sets J to J+3 (making it 5), perhaps performing other tasks,
and then terminates.

Program A then increments J, making it 6. Notice that Program A
running alone would 1leave J=3. Program B running alone would leave
J=5. Programs A and B running together might leave J=3, 5 or 6.

Now assume that J is a table of tasks to be executed and that there
are several programs scanning the table. Also assume the tasks are
sufficiently I/0 bound that the applications software has several
identical programs, each of which may select any task. Without
synchronization via Resource Numbers, two or more of these programs
might select the same task to work on.

Such "race conditions" can be defined as any code that will execute
unexpectedly, depending upon when other programs execute relative to
the code. These conditions are an elusive form of software bug,
causing wunusual errors that can seldom be successfully repeated.
Consequently, these errors are much harder to locate and identify.

IV-64



EXEC CALLS

Standard program priority cannot be relied upon to solve the described
problems. Under the dynamics of real-time aplications, there are too
many other conditions under which a lower ©priority program
occasionally may run when a higher priority program is scheduled.

A high priority program may have to be swapped because a still higher
priority disc resident program has been scheduled, and it either has
been assigned to the same partition, or the partition is the smallest
that the highest priority program will fit into. Meanwhile, the lower
priority program may be running in another partition while the other
programs are being swapped.

The proper way to avoid race conditions is to assign a Resource Number
to all data accesses that are updated by ' more than one program, or
updated by one program and read by others. However, it is extremely
important to note and remember three items:

1. The association between a Resource Number (RN) and a shared data
area 1is created through the user’s software design. RTE s only
role 1is to make RN's available for allocation, locking, clearing
and releasing, and the system will suspend any program that
attempts to lock an RN that is already locked. RTE will reschedule
the program only when the RN is cleared.

2., All programs that access the same resource MUST cooperate with
each other in controlling "simultaneous" access; that is, an RN
must be allocated for each resource when RTE is booted up. An RN
may be saved anywhere that the cooperating programs can find it.
SSGA and COMMON are typical. Programs must lock the RN locally
before accessing the associated data base and clear the RN when
finished with it. '

3. RTE automatically clears all RN’s locked locally whenever the
locking program is aborted or terminates (unless it terminated
saving resources).

EXAMPLE 1. TWO PROGRAMS UPDATING A DISC FILE

In this example the file may be either an FMP file or an area in the
system track pool on LU 2 or 3. In the first case, the file must be
opened non-exclusively (shared). Note that FMP files are normally
opened for exclusive use and therefore are NOT sharable. No RN s are
neccessary to control exclusively opened files. 1In the second case,
the disc tracks must be allocated globally. 1In either case, the RN

must be kept in some area common to all programs (COMMON, SSGA or in
the file itself).

IV-65



EXEC CALLS

It is poor practice to assume the RN's will always be allocated in the
same order; changes in initialization sequences or different RTE
generations may change the RN's allocated. When RTE is booted up, an
initialization program should be run automatically that will allocate
all required RN's and store them where required.

You might possibly choose to use one RN to control access to all data
bases. Although this practice consumes the least number of RN's, it is
inefficient when several programs need to update different files.

Increasing the number of RN's so that each controls a smaller number
of files or area of memory increases the probability that the RN will
be <clear when the associated resource 1is required. More RN's
therefore reduces the probability of incurring a delay. The number of
RN ‘s allowed is limited to 255.

The application itself may 1limit the minimum area of control,
depending wupon the circumstances. Typically, one RN per file is the
limit., However, one RN should control the set if several files are
updated together.

EXAMPLE 2. DEVICE CONTROL

Programs using a device that many other programs also use (e.g., line
printer) should usually lock it first. The Batch/Spool Monitor system
provides users with this exclusive control and therefore LU locking is
not required. Whenever any other program attempts to access the LU,
the calling program will be suspended until the locking program
unlocks the LU, terminates or aborts. Note that 1in this case,
cooperation among programs is not required because RTE performs the
LU/RN association.

However, when two or more projgrams employ LU locking, a condition
known as "the Deadly Embrace" can sometimes occur.

"THE DEADLY EMBRACE"

This potential lock-up condition can occur when programs attempt to
lock more than one resource in separate calls. For example, assume the

following situation:

a. Programs PROGA and PROGB are running. PROGA locks the line printer
and then begins to output to it, causing PROGA to be suspended.

IV-66



EXEC CALLS

b. PROGB runs, 1locks the magnetic tape unit and outputs to it,
causing PROGB to be suspended.

c. Now assume that PROGA is rescheduled and attempts to use or lock
the magnetic tape unit. Since it is already locked by PROGEB, PROGA
gets suspended.

d., If PROGB attempts to use or lock the line printer, then it also
will be suspended.

e, PROGA and PROGB each now requires a resource the other currently
"owns," and so neither can proceed and will stay "locked-up"
togyether forever unless an operator intervenes,

Figures 4~-8A through 4-8C illustrate a typical "deadly embrace"
condition. Programs LOCKA and LOCKB share the same COMMON. Program
LOCKA allocates and locks LOCKl, and then waits one minute while the
operator schedules the LOCKB program. Program LOCKB allocates and
locks LOCKZ and then waits one minute.

when program LUOCKA runs again, it attempts to lock LOCKZ2 and is
suspended. Program LOCKB attempts to lock LUCK1l and is also suspended.

Figure 4-8C shows a printout by the WHZAT program of this lock-up
condition,

IvV-067



PAGE 2p@i

AG0n)
Anne
ANA3
ABQ4
ApGl
AN
naaz
apnsg
AARQ
ARt
4ant1l
Anl2
an1l

FTN, 817 AM THU,, 5 JAN,, 1978

PROGRAM LOCKAC3,94)

COMMON LLOCK1,LNCK2

ICODF=(1B

CALL RNRO(CICNDE,LOCKL,ISTAT)
WRITE(7,1) ISTAT
FORMAT("LNCKASSTATUS LNCK & 1=2"T15)
CALL txgcciaoﬂlSv@n"l)

ICODE2 = 3

CALL RNRU(ICODER2,LOCKZ2,ISTAT)
WRITE(7,2) ISTAT
FUGRMAT("ILOQCKASSTATUS LOCK#2z"15)
END

FINA COMPILERS HPY2p60=-16092 REV, 1875 (787113)

LR

Iv-68

NO WARMINGS x&  NO ERRORS % PROGRAM = nA®81

Figure 4-8A.“Deadly Embrace’ Example

COMMON = pagag



PAGE n2@1 FTN, 83107 AM THU,, & JAN,, 1978

2001 FTING,L

nNpne PROGRAM LOCKBC(3,90)

apey COMMON LOCKY,LNECK2

A0QA 4 ICODE=118B

Anas CALL RNRACICODE,LLOCK2, ISTAT)
APNE WRITE(7,1) ISTATY

apaz 1 FURMAT("I,OCKBISTATUS LOCK & 1="158)
aAnna CALL EXEC(12,2,3,2,=1)

Aaag ICODER = 1

A1 CALL RNRQCICQDEZ,LOCKL1,ISTAT)
ApL WRITE(7,2) ISTAT

an12 2 FORMAT (" OCKAISTATUS LNCKH22"]H)
2013 END

FTNA COMPILER: HPORnEaA=16n92 REV, 188 (782113)

wx  ND WARNINGS x%x  ND ERRORS »# PROGRAM = nAQARY COMMON = AAAR2

Figuré 4-8B. “Deadly Embrace” Example
IV-69



f0e

o668 83 Al 2:480

GO B dede e ek e dede kel de Rk Rtk Nkl kW N R RN AR RN IR IR ARk N AR kN RN R kAR kR kRN AW
868PT 857 PRGRM,T JPRICRRDAMTHSCHDHT/0 whAITKkMEMYRDISCAOPER % NEXT TIME «
BOO ke hh e deode sk de ko dk A g d o kRt Nl R R ek kR R Rk R kN R R R R kAR kR AR Rk kR kW
668 ) *k REPNEw] *PSD1A wuwkkkkkkhknksn 3,0, 132

P06 0N ww WHZATR] sABAA] wrwndn |

$0e 1 7 FMGUZ %3 %xPBANQD wkwkkhkkdnkkkkke 3,WHZAT

€68 2 A LOCKAw3 *QRAQ0M wankkkknkkxrknk I,RN 028, KPRG=| OCKR

600 3 4 LOCKB*3 *xAUAQQA wkwkkkkkkkknknen 3,RN 0229, KPRGSLOCKA

B0 e ok Ak Wk e ok e ok ke o e o oy ok o e e ok e gk e ok o vl ok e e i o ok e o e ok el ok e ol ok ke o o ok e o O ok ok ok R ok ok
8OQDOWN LU'S

@ @ e e e e ok ek e e ok ok i e ok e e ot e e e ke ok e ok o vl ke v ok ok v ok o e o o ok o A ok ke ok o o O e ok Rk ok o kR
peeR0WN EQTS

O O ® It g dr ek el e ke ke v e el e e ek o o ok o e o e ok e o e ke e o e Rk ok o e o ok o e ek ok ok o ek R Rk
66® B: ARI 231541

ees

Figure 4-8C. “Deadly Embrace” WHZAT Example
IvV-70



EXEC CALLS

In the case of devices, this condition can be avoided by locking all
devices that may be required at once in the same call. The program
will be suspended until all devices are available.

In the case of Resource Numbers, the condition can generally be
avoided by increasing the "area of control" of the Resource Numbers so
that a program requiring simultaneous and exclusive access to two
files (for instance) merely locks one RN, rather than one for each
file. If an applications problem does not allow this solution, then

the user should attempt to lock all RN's required without suspension
(bit 15 of ICODE is set).

If a lock cannot be granted, attempt the following steps:

1. DO NOT update any of the related files; post whatever has already
been processed (ONLY for those files to which exclusive access has
already been obtained).

2. Release all RN's that are locked and re-attempt to lock the last
RN, this time with suspension.

3. When the lock is  granted, re-lock all the previous RN's and
continue. Note that RTE will allow a program to locally lock an RN
that it has already locked locally.

In summary, if a program MUST lock more than one resource and finds
one or more of these resources already in use, the program should
"back off," release all RN's it has already locked (if any), wait for
the resource it wanted to become available, and then re-attempt to
lock all RN's it needs. The program must NOT fully or partially update
any files, unless it has all the RN’'s locked that control access to
the file and any related files that must be updated simultaneously.

4-49. EXECUTIVE ERROR MESSAGES

When RTE-IV discovers an Executive error, it normally terminates the
program, releases any disc tracks assigned to the program, issues an
error message to the system console and proceeds to execute the next
program in the scheduled list.

The wuser may specify the non-abortion of a program for some Executive
error conditions. See Section 4-4 for a detailed discussion of this
option.

The error messages described below are those that may occur while
accessing the Executive. They are grouped according to type. Table
4-2 contains a summary of all possible errors associated with EXEC
calls.

Iv-71



EXEC CALLS

4-50. MEMORY PROTECT VIOLATIONS

The RTE-IV operating system is protected by a hardware memory protect.
Consequently, any user program that illegally tries to modify or jump
to the operating system will cause a memory protect interrupt. The
operating system intercepts the interrupt and determines its legality.
If the memory protect 1is 1illegal, the program 1is aborted and the
following message is displayed on the system console:

MP INST = XXXXXX (offending octal instruction code)

ABE ppppppP 4d4agdqq r (contents of A, B and E registers at abort)
XYO pppPpPP 49Qugqq r (contents of X, Y and O registers at abort)
MP yyvyyy 22222 (yYyyy=program name; zzzzz=violation address)

yyyyy ABORTED

4-51. DYNAMIC MAPPING VIOLATIONS

A dynamic mapping violation occurs when an illegal read or write
occurs to a protected page of memory. This may happen when a user
program tries to write beyond its own address space to non-existant
memory or to some other program’s memory. In this case, the program is
aborted and the following message is issued:

DM VIOL = wWwwww (contents of DMS violation register)

DM INST = XXXXXX (offending octal instruction code)

ABE ppppppP Q94dgqg r (contents of A, B and E registers at abort)
XYO pppppp dgdadq r (contents of X, Y and O registers at abort)
DM yyYYYY zzzzz (yyyyy=program name; zzzzz=violation address)

YYYYY ABORTED

4-52. DISPATCHING ERRORS

It 1is possible for programs to be scheduled and discover at a later
time that there is no partition large enough to dispatch the program.
This could occur if a parity error downed a partition and that
partition was the largest of its type (i.e., BG, RT, or EMA). If this
occurs, the program will be aborted with a DP error. The format of
the error message is:

ABE pppppp 494qdqqq r (contents of A,B, and £ registers at abort)

XYO pppppp 99dgad r (contents of X,Y, and O registers at abort)

DP YYYYY 2zzzz (yyyyy = program name; zzzzz = violation address)
yYyyy aborted

Iv-72



EXEC CALLS

4-53. EX ERRORS

It 1is possible to execute in the privileged mode; that is, with the
interrupt system off. Therefore, the user may not make EXEC calls in
this mode because the memory protect, which is the access vehicle to
EXEC, 1is off. An attempt to make an EXEC call with the interrupt
system off causes the calling program to be aborted and the following
message issued:

ABE pppppp 499ddqq r (contents of A,B and E registers at abort)
XYO pppppp 49Ug4qyq r (contents of X,Y and O registers at abort)
EX YYYYY 2z2zzz (yyyyy=program name; zzzzz=violation address)

yyyyy ABORTED

4-54. UNEXPECTED DM AND MP ERRORS

The operating system handles all DM and MP violations. Some of these
violations are 1legal; others are not. In any case, the operating
system associates these violations with program activity. A DM or MP
violation occuring when no program is active is an unexpected
violation. Since no program is present there is no program to abort.
In such a case, one of the following messages will be issued:

DM VIOL = wwwwww (contents of DMS violation register)
DM INST = XXXXXX (offending octal instruction code)
ABE pppppp 499999q (contents of A, B and E registers at abort)

~

XYO PPPPPP qgqggqggy r (contents of X, Y and O registers at abort)
DM <INT> 0

or
MP INST = XXXXXX (offending octal instruction code)
ABE pppppp 4999449g r (contents of A, B and E registers at abort)
XYO pppppp 9999yq r (contents of X, Y and O registers at abort)

MP <INT> 0

Both of the above messages specify <INT> as the program name to signal
the wuser that an unexpected memory protect or dynamic mapping
violation error has occured. Either is a serious violation of the
operating system integrity. Usually, it indicates that user-written
software (driver, privileged subroutine, etc.) has damaged the
operating system integrity or has inadequetly performed required
(driver) system housekeeping., However, it could also mean that the
CPU has failed and that the operating system detected the failure in
time to prevent a system crash.

If this error occurs, it is recommended that all users on the system
save whatever they were doing (i.e., finish wup editing, etc.) and
reboot the system., If only HP modules are present in the operating
system, CPU failure 1is a highly likely cause of the error and CPU
diagnostics should be run prior to rebooting.

Iv-73



EXEC CALLS

4-55. TI, RE AND RQ ERRORS

The following errors have the same format as the MP and DM error
returns except that the register contents are not reported:

Error Meaning

TI Batch program exceeds allowed time.

RE Reentrant subroutine attempted recursion.

RQ Illegal request code is not between 1 and 26, or

(in text) an RQO0 means that the address of a returned
parameter is below the memory protect fence,

An RQOO0 error means that the address of a returned
parameter is below the memory protect fence.

4-56 . PARITY ERRORS

Upon detecting a "hard" parity error (i.e., one that is reproducible).
RTE will abort the program that encountered the parity error and the
following message will be issued:

PE PG# nnnnn BAD
ABE aaaaa bbbbb e
XYO XXXXX YYYYY ©
PE ppppp mmmmm
PPPPp ABORTED

where:

nnnnn = physical page number where the parity error was detected (page
number counting starts at 0).

ABE = contents of the A, B, and E-registers respectively when the
parity error was detected.

XYO = contents of the X, Y, and 0O-registers respectively when the
parity error was detected.

PpPPpPp = program name.

mmmmm = logical memory address of parity error.

I1f the program was disc resident, the following message will be
issued:

PART ‘N xx DOWN
PART ‘N yy DOWN

I1v-74



where:

XX the partition the program was running in.

the mother partition program if any are affected

Yy

Alternately, if xx 1s a mother partition, then yy is a subpartition
that contained the parity error. In either case, partition xx and yy
will no longer be available for running user programs until the system

is next booted up.

Upon detecting a "soft" parity error (i.e., one that 1is not
reproducible), RTE is not able to locate the physical page number of
the parity error. The following message is then issued:

PE @ mmmmm
DMS STAT = zzzzz

where:
mmmmm = logical address of parity error.
zzzz2 = DMS status register.

A parity error occuring within the operating system itself, a driver
or system table area causes the system to execute a HLT 102005,

where:

A-register = physical page number where the parity error was detected
(page number counting starts at 0).

B~register = logical memory address of the parity error.

A parity error occuring in a DCPC transfer when the operating system
is executing in the System Map causes the system to execute a HLT
103005, where the A and B~registers are as above.

4-57. OTHER EXEC ERRORS
The general format for the following errors is

type name address

where:

type = a four~character error code (DR, SC, I0, RN, LU)

name = the program that made the call.

address = the location of the call (equal to the exit point if the

error is detected after the program suspends).

IvV~-75



EXEC CALLS

4-58. DISC ALLOCATION ERROR MESSAGES

DRO1 = Not enough parameters

DRO2 = Number of tracks zero, illegal logical unit, or number of
tracks to release is zero or negative.

DRO3 = Attempt to release track assigned to another program.

4-59., SCHEDULE CALL ERROR CODES

SC00 = Batch program attempted to suspend (EXEC (7)).

SC01 = Missing parameter.

SC02 = Illegal parameter.

SCO3 = Program cannot be scheduled.

SC03 INT = Occurs when an external interrupt attempts to schedule a
program that is already scheduled., RTE-III ignores the
interrupt and returns to the point of interruption.

SCo04 = name 1is not a subordinate (or "son") of the program
issuing the completion call.

SCO05 = Prodgram given is not defined.

SC06 = No resolution code in Execution Time EXEC Call (not 1, 2,
3, or 4).

SCO07 = Prohibited memory lock attempted.

SC08 = The program just scheduled 1is assigned to partition
smaller than the program itself or to an undefined
partition. Unassign the program or reassign the program
to a partition that 1is as 1large or 1larger than the
progr am.

|

SC09 = The program just scheduled is too large for any pattition
of the same type. For example, trying to schedule a 23K
background program when the largest background partition
is only 21K.

SC10 = Not enough system available memory for string passage.

4-60. 1I/0 CALL ERROR CODES

1000 = Illegal call number. Outside table, not allocated, or bad
security code.

IV-76



I001

1003

1004

I005

1006

1007
1008
I009
I010

1011

4-61.

RNOO
RNO1

RNO 2

RNO3

4-62.

LU0l

LU02

LUO03

4-63.

]

[l

EXEC CALLS

Not enough parameters,
X bit set.
Illegal EQT referenced by LU in I/0 call (Select code=0).

Illegal wuser buffer. Extends beyond RT/BG area or not
enough system available memory to buffer the request.

Illegal disc track or sector,

Reference to a protected track; or using LG tracks before
assigning them (see LG, Section III).

Dr iver has rejected call.

Disc transfer longer than track boundary.

Overflow of LG area.

Class GET call issued while one call already outstanding.

Type 4 program made an unbuffered I/0 request to a driver
that did not do its own mapping.

PROGRAM MANAGEMENT ERROR CODES

No option bits set in call.
Not used.
Resource Number not defined.

Unauthorized attempt to clear a LOCAL Resource Number.

LOGICAL UNIT LOCK ERROR CODES

Program has one more logical units locked and is trying
to LOCK another with wait.

Illegal 1logical wunit reference (greater than maximum
number).

Not enough parameters furnished in the call. Logical unit
reference less than one. Logical unit not locked to
caller.

EXECUTIVE HALT ERRORS

IvV=-77



EXEC CALLS

There are several HLT instructions included in the RTE operating
system that indicate a serious violation of the integrity of the
operating system., Usually, these errors indicate that the CPU or one
of 1its subsystems (DCPC, Memory Protect, etc.) has failed. However,
they could indicate that user-written software (driver, priveleged
subroutine, etc.) has damaged the operating system integrity or has
inadequately performed required (driver) system housekeeping. If
these HLT’s occur, it is recommended that the user check out his
hardware with the appropriate diagnostics.

HLT O Located in Table Area I

HLT 2 Located in location 2 of the system map

HLT 3 Located in location 3 of the system map

HLT 6 System tried to remove a partition from a 1list and the

partition was not found there.
Other system HLT s exist for which there is some corrective action:

HLT 4 Powerfail occured and the powerfail/autorestart subsystem was
not installed.

HLT 5 Parity error in system map. See Parity Error discussion in
this section.

HLT 5,C Parity error in a DCPC transfer when operating system was
executing 1in the system map. See Parity Error discussion in
this section.

HLT 10 At startup, the system discovered that there was no partition
large enough to execute FMGR or D.RTR.

A summary of EXEC call error messages is provided in Table 4-5.

Iv-78/79






Table 4-5 EXEC Call Error Summary

ERROR

MEANING

READ

WRITE

CONTROL

PROGRAM
TRACK
ALLOCATE
4

PROGRAM
TRACK
RELEASE

5

PROGRAM
COMPLETION

PROGRAM
SUSPEND

PROGRAM
SEGMENT
LOAD

8

PROGRAM
SCHEDULE
W/WAIT

9

PROGRAM
SCHEDULE
WO/WAIT
10

TIME
REQUEST

11

DRO1 3

Not Enough Parameters

1. Less than 4 parameters.
2. Less than 1 parameter.
. Number = -1.

4. Less than 3 (not-1).

DRO2

Illegal Track Number or
Logical Unit Number.

1. Track number = 0.

2. Logical Unit not 2 or 3.

3. Dealocate 0 or less Tracks.

w e

DRO03

Attempt to release Track
assigned to another program.

1000

Illegal Class Number
1. Outside Table.

2. Not allocated.

3. Bad Security Code.

1001

Not Enough Parameters.

. Zero parameters.

. Less than 3 parameters.
. Less than 5/disc.

. Less than 2 parameters.
. Class word missing.

o —

wo—

1002

=loswo—

Hegal Logical Unit

0 or maxtmum.

. Class request on disc LU.

. Less than 5 parameters and
X-bit set.

W=

1003

Itegal EQT command by LU in
1/O call; delete code = 0

1004

Illegal User Buffer.

1. Extends beyond RT/BG area.

2. Not cnough system memory to
buffer the request.

1005

Illegal Disc Track or Sector
1. Track number maximum.
2. Sector number

0 or maximum

1006

Attempted to WRITE to LU2/3
and track not assigned to user

or globally, or not to next
load-and-go sector. lllegal
WRITE to a FMP track.
Attempted (o use copy of loader
to make permanent load or delete

1007

Driver has rejected request
and request is not buffered.

1008

Disc transfer implies track
switch (LU2/3)

1009

Overflow of LG area

1010

Class GET and one call already
outstanding

1011

Hlegal User Map request for
System Driver area

IV-80




Table 4-5 EXEC Call Error Summary (Cont.)

PROGRAM o STRING | GLOBAL GLOBAL JCLASS JCLASS | CLASS CLASS CLASS |PROGRAM [} PROGRAM PROGRAM
SCHEDULE | [,ASS.M"] TRACK TRACK 110 170 110 110 1/0 | SWAPPING || SCHED QUEUE | SCHED QUEUE | RNRQ | LURQ
TIME: DEATEE AT ALLOCATE | RELEASE | READ JWRITE JCONTROL } WRITE/READ | GET | CONTROL ! W/WAIT WO/WAIT
12 13 14 15 16 17 18 19 20 21 22 ! 23 24
1
3
4
1
2
1 1 1 1 1
2 2 2 2 2
3 3 3 3 3
1 1 1 1 t
2 2 2
4
5 5 5 5
1 1 1 1 1
2 2 2 2
3 3 3 3
X X X X X X
1
2 2 2 2
X

Iv-81



Table 4-5 EXEC Call Error Summary (Cont.)

ERROR

MEANING

READ

WRITE

CONTROL

3

PROGRAM
TRACK

ALLOCATE
4

PROGRAM
TRACK
RELFASE

5

PROGRAM
COMPLEETION

A,

PROGRAM
SUSPEND
1

PROGRAM
SEGMENT
LOAD
K

PROGRAM
SCHIDULE
Wowalt
]

PROGRAM

SCHEDULL

WO WALL
1

1ML
REQUINI

il

Luo1

Program has one or more logical
units locked and is trying to
LOCK another with WAIT.

Luoz

illegal fogical unit reference
(greater than maximum number).

LU03

Not enough parameters furnished
in the call. Hlegal logical unit ref-
erence (less than one). Logical
unit not locked to caller,

RQOO

Return buffer below memory pro-
tect fence.

RQ

EXEC call contains an itlegal re-

quest code,

. Return address indicates less
than one or inore than seven
parameters.

. Parameter address indirect
through A- or B-Register.

. Request code not defined or
not loaded.

~

w

RNOU

No option bits set.

RNOIL

Not used.

RNO2

Resource number not in Table
(undefined).

RNO3

Unauthorized attempt to clear a
LOCAL Resource Number.

SCo0

Batch program cannot suspend.

8Co1

Missing Parameter.

L. Segment name missing.

2. Not 4 or 7 parameters in Time
Call.

3. Not 4 parameters in String Passe
age Call or partition - status call.

SC02

[legal Parameter

. Option word is missing or not
0,1,2,0r3.

. Reud/write word in String Pass-
age Callis not 1 or 2.

~

§Co3

Program Cannot Be Scheduled.
1. Not a segment,
2. Isa segment,

(o

sCo4

Attempted to control a program
that is not a “Son.™ |

$C05

Program Given is Not Defined.
1. No segment,

2. No program.

3. “Son” not found.

~

S5C06

Resolution not 1, 2, 3, or 4,

SCo7

Prohibited core memory lock
attempted.

sCo8

Assigned partition is too
small for program

SC09

_ partition of same type

Program too large for any

sClo

Not enough system available
memory for string passage,

Iv-82




Table 4-5 EXEC Call Error Summary (Cont.)

PROGRAM Vo STRING GLOBAL GLOBAL | CLASS | CLASS | CLASS CLASS CLASS | PROGRAM PROGRAM PROGRAM
SCHEDULE | o e | passacE: TRACK TRACK 170 110 110 110 O [ SWAPPING | SCHED QUIUT | SCHIDQUELT | RARO | 1L RO
TIML ALLOCATE | RELEASE | READ | WRITE | CONTROL | WRITI/READ | GI1 CONTROL. WoWAlLl WOM AL
12 13 14 15 16 1z 18 19 20 22 22 23 24
X
X
X
X X X X X X
X X X X X X X ¥ X X X X X
X
X
X
2
3
1
2
2 2
) )
X
X X

IvV-83/84



+
|
| INPUT/OUTPUT | SECTION V |
I
o e e ——_——_———————— +

In the Real-Time Executive System, centralized control and logical
referencing of I/0 operations effect simple, device-independent
programming. Each I/0 device is interfaced to the computer through an
I/0 controller associated with one or more I/0 select codes that are
hardware-1linked to corresponding memory locations for interrupt
processing. By means of several user-defined I/0 tables,

self-contained multi-device drivers and program EXEC calls, RTE
relieves the programmer of many I/0 processing details.

For details on the hardware input/output organization, consult the
appropriate computer manuals (refer to the documentation map at the
beginning of this manual). For details on writing drivers, see the RTE

Driver Writing Reference Manual.

For a full understanding of the software I/0 characteristics of RTE as
described in this manual section, the user should be familiar with two
hardware-related terms:

1. I/0 Controller - a combination of I/0 card, cable and, for some
devices, a controller box used to control one or more I/0 devices
on a computer I/0 select code,

2. 1I/0 Device - a physical unit (or portion of a unit) identified in
the operating system by means of an Equipment Table (EQT) entry
and a subchannel assignment.

Each I/0 device 1is interfaced to the computer through an I/O
controller that 1is associated with one or more of the computer I/O

select codes. Interrupts from controllers on specific select codes are
directed to specific computer memory locations for system processing.

5-1., SOFTWARE I/0 STRUCTURE

This description of the I/0 software is primarily intended for those
who will be using I/0 EXEC <calls for standard programming
applications. Users who will be writing their own drivers or who may
otherwise require a more detailed knowledge of the 1I/0 internal
structure should consult the RTE Driver Writing Reference Manual.

The I/0 structure is made up of two general types of software:



INPUT/OUTPUT

1. The system I/O processor (RTIOC) and various device drivers.

2. A number of I/0 tables, including: Equipment Table, Device
Reference Table, 1Interrupt Table, Driver Mapping Table, plus a
Base Page Communications area.

These tables and areas are used for communication between the system
and the drivers, and for control of the many I/0 operations that can
be in progress simultaneously.

An Equipment Table entry records each controller’s I/0 select code,
driver, DCPC, buffering and time-out specifications. A Device
Reference Table assigns one or more Logical Unit numbers to each
device and points each device to the appropriate Equipment Table
entry. This allows the programmer to reference changeable logical

units instead of fixed physical units.

An Interrupt Table directs the system’s action when an interrupt
occurs on any select code. RTE can <call a driver that is responsible
for initiating and continuing operations on all devices’ controllers
of an equivalent type, schedule a specified program, or handle the
interrupt itself.

The programmer requests I/0 by means of an EXEC call that specifies
the logical unit, control information, buffer location, buffer length,
and type of operation. Some subsystems may regquire additional
parameters.

5-2. EQUIPMENT TABLE

The Equipment Table (EQT) is used to maintain a list of all the I/0
equipment in the system, The table consists of a number of EQT
entries, with one EQT entry for each 1I/0 controller defined in the
system at generation time. Each EQT entry contains all of the
information required by the system and associated driver to operate
the device, including:

* I/0 select code in which the controller 1is interfaced with the
computer.

* Driver type.

* Various driver or controller requirements and specifications, such
as DCPC, buffering, time-out, power fail, etc.

These 15-word EQT entries reside in the system and have the format
illustrated 1in Figures 5-1 and 5-2. Note that some information in an
EQT entry is static; other parts are dynamic. Information marked <A>

is fixed at generation time or during I/0 reconfiguration at boot-up
time and never changes during on-1liné system operation., Words markead

<B> are also fixed during generation or I/0 reconfiguration but can be
changed on-line through operator commands. Information marked <C>, <D>
and <E> are driver considerations. <F> is maintained by the system.

V-2



INPUT/OUTPUT

tom———— | e e e e e e +
| word | Contents |
|= - e e e e R Bl el B B I e e el el el Bl
| | 15 | 14 13 12 ] 11 10 9|8 7 615 4 3] 2 1 I
|====== | —===| === == mm e | =~ | === | ==—=—me——- |
| 1 | R | I/0 Request List Pointer <C> |
| ===~ I |
| 2 | R | Driver Initiation Section Address <A > |
|—===-- R e ittt Db b Sl b D L Dbt I
I 3 | R | Driver Continuation/Completion Section Address <A> I
e ] el el e el e o
| 4 I D I B | P| S | T | Subchannel | I/0 Select Code # |
| | <A> [<B> |<E>|<E> |<C>| <C> | <A I
| === | === == | | | m e | ====- | mm—m e |
I 5 [ AV | EQUIPMENT TYPE CODE | STATUS |
| I <F> | <A> | <E> |
=== == | e | e e |
| 6 | CONWD (Current I/O Request Word) <C> I
== | e e e e e et e — s — e — e |
|7 | Request Buffer Address <C> I
| === | = o e e o e e n
I 8 | Request Buffer Length <C> I
| === R Rttt sttt b |
| 9 | Temporary Storage <D> or Optional Parameter <C> |
| ~====- | = m = mm m e e e e e l
I 10 | Temporary Storage <D> or Optional Parameter <C> |
| == === | e e e e e e n
| 11 | Temporary Storage for Driver <D> |
|===—=- | === e e e |
| 12 | Temporary Storage or EQT Extension Size, |
I | for Driver <D> any <A> |
| === | = e e e e s e m e e I
| 13 | Temporary Storage or EQT Extension Starting |
| | for Driver <b> Address, if any <a> |
|- ———- e D ettt |
| 14 | Device Time-QOut Reset Value <B> |
| =====- e ettt R it it Dl
| 15 | Device Time-Out Clock <C> |
o e e e e e e e e e e e e e +
Figure 5-1, Egquipment Table Entry Format
where:

R = reserved for system use,



INP

1/
Li

UT/OUTPUT

O Request
st Pointer

D

B

P

S

T

Subchannel#

I/0 Select
Code#

AV

EQUIPMENT

TYPE CODE

points to list of requests queued up on this
EQT entry. First entry in list is current
request in progress (zero if no request).

1 if DCPC required.

1 if automatic output buffering used.

1 if driver is to process power fail.

1 if driver is to process time-out.

1l if device timed out (system sets to zero before
each I/0 request),

last subchannel addressed.

I/0 select code for the I/0 controller
(lower number if a multi-board interface).

I/0 controller availability indicator:

available for use.

disabled (down).

busy (currently in operation).

waiting for an available DCPC channel.

WO
]

type of device on this controller. When this octal
number is linked with "DVy," it identifies the
device s software driver routine. Some standard driver
numbers are:

00 to 07 = paper tape devices or consoles
00 = teleprinter or keyboard control device

01

photoreader
02 = paper tape punch
05 = 264x-series terminals

07 = multi-point devices



STATUS

CCNWD

INPUT /OUT PUT

10 to 17 unit record devices

10 = plotter

1l = card reader
12 = line printer
15 = mark sense card reader

20 to 37 = magnetic tape/mass storage devices
23 = 9-track magnetic tape
31 = 7900 moving head disc
32 = 7905/06/20 moving head disc

flexible disc drives

w
5}
]

36 = writable control store

37 HPIB

40 to 77 = instruments

actual physical status or simulated status at the
end of each operation.

combination of user control word and user request code
word in the I/0 EXEC call (see Section IV; see also
Figure 5-2 below).

and where the letters in brackets (<>) indicate the nature of each
data item as follows:

<A>

<B>

<C>

<D>

<E>

<F>

fixed at generation or reconfiguration time; never
changes

fixed at generation or reconfiguration time; can be
changed on-1line

set up or modified at each I/O initialization
avalilable as temporary storage by driver
can be set driver

maintained by system

V-5



INPUT/OUTPUT

i e B B Bt e B B e R e R e P P P

j 151 14 | 13 | 12 | 11 | 104191 817161514131 211101
B et e B B B B RS B P PR P P Py

| Status | | Subfunction | Function
=== === | | m—mm e | | === | ===

| | |
00 - standard call 00000 = clear controller 01-READ call
10 - buffered call (if function = 11 = 10-WRITE call
11 - Class call CONTROL call) 11-CONTROL call

Other subfunctions are
driver specific and may
or may not be defined

Figure 5-2. CONWD Wword (EQT Entry Word 6) Expanded

When RTE 1initiates or continues an 1I/0 operation (except for
privileged driver constructions), it places the address of the EQT
entry for the device’s controller into the Base Page Communications
area before calling the driver routine.

All Equipment Table entries are located sequentially in memory,
beginning with EQT entry number 1. The address of the first entry and
the total number of entries in the table can be found in the Base Page
Communications area.



INPUT/OUTPUT

5-3. DEVICE REFERENCE TABLE

The Device Reference Table (DRT) is part of the mechanism by which
Logical Unit numbers for I/0 are implemented (see Logical Unit Numbers

below). Users request I/0 by specifying a Logical Unit (LU) number.
The DRT translates this Logical Unit number into a physical device as
specified by an EQT entry number and subchannel. The DRT is also used
to qgueue requests for I/0 on an unavailable (down) device. The request
list for available (up) devices originates from word 1 of the EQT

entry, as illustrated in Figure 5-1,

Each DRT entry is two words long (see Figure 5-3). There is one entry
for each Logical Unit number defined at generation time, beginning
with Logical Unit 1.

The first word of each entry includes the EQT entry number of the
controller assigned to the logical unit and the subchannel number of
the specific device on that controller to be referenced,

The second word of each DRT entry contains the current status of the
logical unit; up (available) or down (unavailable). If the device is
down, word 2 also contains a pointer to the list of requests waiting
to access the LU. Figure 5-3 1illustrates the format of a Device
Reference Table entry, and Figure 5-4 illustrates the Device
Reference Table.

e T - | = m e e e +
| Subchannel No. | (Reserved) | EQT Entry Number |

| ===l ===| === m==| = ==| == | === | o= | === | === | == == | === | === | === | === |

115 114 13 12 |11 10 91 8 7 6 | 5 4 3 2 1 0 | word 1

| F | Downed I/0 Request List Pointer | word 2

0 if device is up
1 if device is down

F (up/down flag)

[T

Figure 5-3. Device Reference Table Entry Format



INPUT/OUTPUT

o o o o o e " 2 2 2 " 2 2 o o e o e

e e r e — . - = —— - ————— - - —— -}

| I
| |
I |
| I
| | LUl | | |
| et ettt e et | | |
| | | | I
| | LU2 | | |
| | == e | | word 1 of |
| I I | =- each DRT |
| | Lu3 I | entry |
I bt + | I
l L d l l
I . | |
| . | I
| e e e e e e e, ——— - e+ | | |
| I | --- |
| | LUn | |
| | — e e e et e e e e e I |
I I | === I
I | Lul | | I
| ittt D T ittt | | I
I | | | I
| | Lu2 I | word 2 of I
| o e e ———— + | == each DRT I
I . | entry |
| . | I
| . | I
I e bttty + I
| | | === |
| | LUn | I
| e e + I
| I
} Where: :
| n = number of logical units in system :
|

e e e e e e ———————— +

Figure 5-4. Device Reference Table

Note that there are separate tables for words 1 and 2, with the word 2
table being located in memory immediately following the word 1 table.
The starting address and length of the word 1 table are recorded in
the base page.



INPUT/OUTPUT

5-4. LOGICAL UNIT NUMBERS

Logical Unit numbers provide RTE users with the capability of
logically addressing the physical devices defined by the Equipment
Table. Logical Unit numbers are used by executing programs to specify
on which device I/0 transfers are to be carried out. In an I/0 EXEC
call, the program simply specifies an LU number and does not need to
know which physical device or which I/0 controller handles the
transfer.

Although many devices such as line printers are addressed by a single
LU number, others such as disc drives have subchannels, with each
subchannel addressed by a different LU number.
If on-line changes to existing LU assignments become necessary or
desirable, this can be achieved through use of the LU operator
command. LU numbers are maintained by the Device Reference Table (see
above) .
Logical Unit numbers are decimal integers. The functions of Logical
Units 0 through 6 are predefined in the RTE-IV system as follows:

U -- bit bucket (null device; no entry in Device Reference Table)

1l -- system console

2 -- reserved for system (system disc subchannel)

3 -- reserved for system (auxiliary disc subchannel)

4 -- standard output device

5 =~ standard input device

6 -- standard list device

Logical Unit 8 is recommended to be the magnetic tape device, if one
is present on the system. Peripheral discs must be assigned logical
units greater than 6. Additional logical units may be assigned for any
function desired.



INPUT/OUTPUT

5-5. INTERRUPT TABLE

The Interrupt Table contains an entry, established at system
generation time, for each 1I/0 select code in the computer. If the
entry is equal to 0, the select code is undefined in the system. If an
interrupt occurs on one of these select codes and is processed by the

Central Interrupt Controller (CIC), RTE outputs the message
ILL INT xx

where xx is the octal I/0 select code number. RTE-IV then clears the
interrupt flag on the <channel and returns to the point of

interruption.

The ILL INT message 1s also issued if the driver completes and the
system cannot find the processed I/0 request gueued to the EQT entry.

If the content of the entry is positive, the entry contains the
address of the EQT entry for the I1/0 controller on the channel (refer
to the EQT option for the 1Interrupt '"Table entry during system
generation).

If the <content of the wentry 1is negative, the entry contains the
negated ID segment address of a program to be scheduled. If the
program 1is not dormant when an interrupt occurs on that I/0 select
code, the following message is output on the system console:

SCU3 INT XxXXxx

where xxxxx 1s the program name. The interrupt flag is then cleared
for that channel and control is returned to the point of interruption.
(Refer to the PRG option for the Interrupt Table entry in the RTE~-IV
On-Line Generator Reference Manual.)

v-10



INPUT/OUTPUT

5-6. SYSTEM BASE PAGE INTERRUPT LOCATIONS

When an interrupt is received, the computer transfers control to one
of a group of memory locations, known as trap cells, in the system
base page. The 1I/0 select ocode of the interrupting controller
determines the location of the transfer. For instance, interrupts from
select code 12 cause a transfer to memory location 12; interrupts from
select code 13 cause a transfer to location 13, et cetera. Memory
locations from octal 4-77 comprise the entire set of interrupt trap
cells, where

4 = powerfail
5 = memory protect/DMS/parity error

o DCPC Port 1

[}

7 = DCPC Port 2

10-77 = 1/0 slots

Transferring control to an interrupt trap cell causes the instruction
located there to be executed. For all devices operating under control
of the Central Interrupt Controller (CIC), this instruction is a JSB
LINK,I, where LINK contains the address of the entry point to CIC.
This instruction is initially set up at generation time and is reset
each time the system is rebooted. There are three different ways that
interrupts are serviced, according to the contents of the trap cell
and the Interrupt Table:

Generation Interrupt Table Trap Cell
Entry (examples) Contents Contents

12,EQT,1 EGT entry address JSB LINK,I
12, PRG, name Negative ID JSB LINK,I

segment address

12,ENT,entry 0 JSB entry,I

JSB LINK,I trap cells are processed by CIC. JSB entry,I trap cells
by-pass the Interrupt Table and CIC for time-critcal events such as
Power Fail and privileged interrupts.



INPUT/OUTPUT

5-7. DRIVER MAPPING TABLE

Each EQT entry has an associated two-word Driver Mapping table entry
that 1indicates whether the driver for that EQT entry is in the System
Driver Area (SDA) or a driver partition; and whether or not the driver
(if it 1is in 8DA) performs its own mapping. If the driver is in a
partition, the entry contains the physical starting page number of the
partition. This page number 1is used to map the driver into the
appropriate System Map or User Map.

The second word of each entry is set up when I/0O is started on the
corresponding driver. The sign bit of the second word indicates
whether or not I/0 is being performed for a memory resident program.
The word is 0 for system I/0. The low 10 bits contain the page number
of the wuser’s physical base page if it is a partition resident
program. This word is used to save time on setting up the proper map
on processing interrupts.

The format of the Driver Map Table is illustrated in Figure 5-5.

v-12



WORD 1
OF DMT
ENTRY
FOR
EQT
ENTRY:

WORD 2
OF DMT
ENTRY
FOR
EQT
ENTRY:

WHERE:

SD

SD

MR

MR

il

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0
sD (RESERVED) M
SD (RESERVED) M
sD (RESERVED) M
L
L]
[
SD (RESERVED) » M
MR (RESERVED) P
MR (RESERVED) P
.
[ ]
L]
MR (RESERVED) P

IMPLIES DRIVER RESIDES IN A DRIVER PARTITION, AND
M = STARTING PAGE NUMBER OF PARTITION IN BITS 0-9

IMPLIES DRIVER RESIDES IN SYSTEM DRIVER AREA, AND
M = 0 IMPLIES DRIVER NOT DOING ITS OWN MAPPING
M =1 IMPLIES DRIVER DOING ITS OWN MAPPING

IMPLIES THAT THE /O REQUEST BUFFER IS LOCATED IN
A MEMORY RESIDENT PROGRAM.
(P VALUE NOT SIGNIFICANT — RESERVED FOR FUTURE USE)

IMPLIES THAT THE 1/O REQUEST BUFFER IS NOT LOCATED

IN A MEMORY RESIDENT PROGRAM. BUFFER LOCATION IS

INDICATED BY THE VALUE OF P, AS FOLLOWS:

P=0 IMPLIES BUFFER IS IN THE SYSTEM AREA

P NOT ZERO IMPLIES BUFFER IS LOCATED IN A DISC
RESIDENT PROGRAM. P IS THE PHYSICAL
PAGE NUMBER OF THE PROGRAM'S BASE PAGE

NUMBER OF EQT ENTRIES IN SYSTEM

Figure 5-5. Driver Mapping Table

5-13



INPUT/OUTPUT

5-8. 1I/0 PROCESSOR GENERAL OPERATION

5-9. STANDARD I/O CALLS

A user program makes an EXEC call to initiate I/0 transfers. If the
device’s controller is not buffered or the I/0 transfer is for input,
the <calling wuser program is suspended until the transmission is
completed (see Class I/0, Section IV for exceptions). The next lower
priority program is allocated execution time during the suspension of
a higher priority program.

An I/0 request (i.e., READ, WRITE, CONTROL) is channeled to RTIOC by
the executive request processor. After the necessary legality checks
are made, the request is linked into the request list corresponding to
the referenced I/0 controller.

If the device’s controller is available (i.e., no prior requests were
pending), preparation is made to enter the driver’s initiation
section. The parameters from the request are set in the temporary
storage area of the EQT entry.

The proper mapping registers are set up if the Driver Mapping Table
indicates they are needed. The decision to choose the User Map or the
System Map 1is decided by the type of 1I/0 request. All system 1/0,
class I/0, and buffered user 1I/0 requests require the use of the
System Map.

Unbuffered user requests require the User Map. Note that in the case
of a driver 1located in the System Driver Area making unbuffered
requests, the program must be Type 2 or 3.

If the disc resident program’s User Map needs to be modified to map in
a partition resident driver, the User Map 1is saved in the program’s
physical base page. The second word of the driver’s mapping table
entry is modified to record the type of map needed and if it is a disc
resident program’s map the physical base page number is also kept.
This second word is used to save time on setting up the map registers
for a subsequent continuation interrupt. The initiation section
initializes the device’s controller and starts the data transfer or
control function.

If the device’s controller is busy upon return from the initiation
section or else a required DCPC channel is not available, RTIOC
returns to the scheduling module to execute the next lower-priority
progr am. -

If the device’s controller (EQT entry) or the device (LU) is down, the
calling program 1is automatically suspended in the general wait list
(status=3). While in this list, the program is swappable. If any LU or
EQT entry is set UP, the program is automatically rescheduled. Refer
to the ST command in Section III for more information on the general
wait list,



INPUT/OUTPUT

Interrupts from the device’s controller cause the Central Interrupt
Control (CIC) module of RTIOC to call the continuation/completion
section of the driver. RTIOC sets up the correct map before entering
the driver., This is done by checking the Driver Mapping Table entry
associated with the EQT entry. If a User Map 1is being reset, its
contents are obtained from the program’s physical base page. At the
end of the operation, the driver returns to CIC and conseqguently to
RTIOC.

RTIOC causes the requesting program to be placed back 1into the
schedule 1list and checks for an I/0 stacked request. If there are no
stacked requests, RTIOC exits to the dispatching module ; otherwise,
the 1initiation section is called to begin the next operation before
returning.

5-10. POWER FAIL

Power Fail 1is an optional hardware/software feature that saves all
system status and context up to the point at which the computer
signals a power failure. If generated into the system, the Power Fail
routine performs the following steps:

1. Wwhen power fails, it saves all registers, stops DCPC transfers and
saves maps. If not enough time was available, Power Fail issues a
HLT 4.

2. When power comes on, it restarts the real-time clock, sets up a
time-out entry (TO) back to its EQT entry, and then returns to the
Power Fail interrupt location so that it can do more recovery type
work after the power fail system and operating system are
reenabled.

3. When the EQT entry times-out, the Power Fail routine checks EQT
entry word 5, bits 14 and 15 of each 1/0 controller., The status of
bits 14 and 15 will indicate whether the I/0 controller is "down"
or "busy." The routine also checks bit 13 of EQT entry word 4 (set

by driver), which indicates if the driver is to process the power
failure.

4, 1If the I/0 controller was busy when the power failed and the power
fail bit was set when power resumed, the Power Fail routine calls
the driver., The proper map is set up, according to the Driver
Mapping Table entry and the driver is entered at Ixnn with its EQT
entry unchanged. If the power fail bit was not set, the Power Fail
routine calls the I0OC module to set the controller and all downed

LU’s "up", reinitializes the EQT entry, and enters the driver at
Ixnn.



INPUT/OUTPUT

To summarize, assuming the controller was reading or writing data
when power failure occurred (and the driver is designed to handle
power fail), the controller driver will perform the power fail
recovery when power resumes, If the controller was busy when power
failure occurred and the controller driver cannot handle power
failure, the routine attempts to restart the I/0 operation.

5. 1If the controller or device was down when the power failed and the
power fail bit is set or not set, the system "ups" the controller
(EQT entry) and associated LU s, resets the EQT entry and enters
the driver at Ixnn when power resumes,

6. An HP-supplied program called AUTOR will be scheduled. AUTOR sends
the time of power failure to all teletypes on the system (which
reenables all terminals). AUTOR is written in FORTRAN, with the
source program supplied to the user so that the program may easily
be modified to meet on-site requirements.

5-11., I/0 CONTROLLER TIME-QUT

Each 1I/0 controller may have a time-out clock to prevent indefinite
I/0 suspension. Indefinite I/0 suspension can occur when a program
initiates I/0 and the device’s controller fails to return a flag
(possible hardware malfunction or improper program encoding). Without
the controller time-out, the program that made the I/0 call would
remain in I/O suspension indefinitely, awaiting the "operation done"
indication from the device’s controller.

For privileged drivers, the time-out parameter must be long enough to
cover the period from I/0 initiation to transfer completion.

EQT entry words 14 and 15 in the EQT entry for each I/0 controller
function as a controller time-out clock. EQT entry word 15 is the
actual working clock. Before each I/0 transfer is initiated, it is set
to a value m, where m is a negative number of 10 ms time intervals
stored 1in EQT entry word 14, If the controller does not interrupt
within the required time interval, it is to be considered as having
"timed out." The EQT 15 clock word for each controller can be
individually set by three methods:

1. The system inserts the <contents of ECT entry word 14 into EQT
entry word 15 before a driver (initiation or completion section)
is entered. EQT entry word 14 can be preset to m by entering (T=)
at generation time.

2. By use of the TO operator command (see Section III).

3. By driver,

v-16



INPUT/OUTPUT

5-12. PRIVILEGED INTERRUPT PROCESSING

Privileged interrupt processing provides access to specific elements
for more rapid operations than are possible in standard 1I/0
processing. I/0 transfers are performed directly rather than going
through the Central Interrupt Control module and other standard system
services,

Including a special 1I/0 interface <card is the means by which RTE
allows a class of privileged interrupts to be processed independently
of system operation. The presence and location of the special I/0 card
is determined at system generation time. Its actual hardware location
is stored in the word DUMMY in the Base Page Communication Area (or,
if the card 1is not preset, zero). See the RTE-IV On-Line Generator
Reference Manual for the exact specification procedure.

The special 1I/0 card physically separates the higher priority
privileged interrupts from the regular system-controlled interrupts.
When an interrupt occurs, the card has its flag set which enables the
card to hold off non-privileged, lower priority interrupts. This means
that the system does not operate with the interrupt system disabled,
but in a hold-off state. Furthermore, the privileged interrupts are
always enabled when RTE 1is running and can interrupt any process
taking place. See the RTE Operating System Dr iver Writing Manual for
further details on writing privileged drivers.



RTE uses the Dynamic Mapping System (DMS) of 21MX-series computers to
address memory configurations larger than 32K words. The user can
address up to 1024K words of physical memory using the DMS feature,
This is accomplished by translating memory addresses through one of
four "memory maps". A memory map 1is defined as 32 hardware registers
that provide the interface between the 32K words of logical memory and
physical memory. All memory map addressing is done internally by the
system and is transparent to the user.

The following brief explanation of the addressing and mapping process

provides a general upderstandipg of the overall. operation of the
system; for a more detailed description of the Dynamic Mappling System,
refer to the appropriate 21MX Series Computer Reference Manual.

6-1. ADDRESSING

The basic addressing scheme of the computer uses a 15-bit number that
describes a location in memory numbered 0 to 32767 (see Figure 6-1).
The 32768 (32K word) locations are grouped 1into 32 pages, with each
page containing 1024 (1K) words. DMS takes the 15-bit address and
splits it into two parts. The upper five bits (bits 10-14), become
the 1logical page number, an index pointing to one of the 32 registers
within a memory map (only one of the four maps can be enabled at a
time). The 1lower 10 bits point to a relative address (or offset)

within the destination page and do not require translation.

When the address is converted, the index is used to determine which of

the 32 registers of the currently enabled map has the 10-bit physical
page address., This page address is then concatenated to the relative

address to provide the ultimate 20-bit address in physical memory.

vVi-1



MEMORY MANAGEMENT

0 = DIRECT
{'1 = INDIRECT
L L] L T T T T R T T
1514 13 12§11 10 9|8 7 6|5 4 3|2 1 o]
| | ]
| |
LOGICAL PAGE OFFSET WITHIN
ADDRESS DESTINATION PAGE

ENABLED MAP REGISTER

10-BITS

|
PHYSICAL PAGE
ADDRESS

v

' 20-BIT MEMORY ADDRESS BUS

f 1 T T T Ll Ll T T L

15(14 13 1211 10 9{8 7 616 4 3{({2 1 0

ONE WORD OUT OF
ONE MILLION

Figure 6-1. RTE-IV Address Scheme

6-2. MEMORY MAPS

There are four memory maps managed by the system: the User Map for

describing current user programs, the System Map for describing the
system and System Available Memory (SAM), and two Dual Channel Port

Controller (DCPC) maps called Port A Map and Port B Map for defining
the memory space of the DCPC transfer.

At any one instant, only one memory map is enabled. This map defines

the 32K words of logical address space currently being used. Either
the System or User Map will be enabled. A DCPC transfer is handled

under the appropriate Port Map, and once intitiated, is essentially
transparent to the user,.

SYSTEM MAP. This map is automatically enabled whenever an interrupt
occurs and is loaded by the system during system initialization. It is
changed only to map different driver partitions. It describes the
logical address space used for the operating system and its base page,
COMMON, Subsystem Global Area, System Driver Area, Table Areas I and
11, driver partition, and System Available Memory.

USER MAP. Associated with each disc resident program is a uniqgue set
of pages that describe the logical address space for the program.

VIi-2



MEMORY MANAGEMENT

These pages define the memory occupied by Table Area I, driver
partition, optional Table Area II and optional System Driver Area,
COMMON (if the program uses it), the program’s base page, and the
program.,

All memory resident programs use a common set of pages that define the
memory ~OccUpied ~by Table Afea I, driver partition, COMMON, optional
Table Area II and System Driver Area, base page, the memory resident

library,—and €the memory resident program area.

Each time a new memory or disc resident program is dispatched, the
system reloads the User Map with the appropriate set of pages. The
User Map, therefore, provides the interface between logical memory and
physical memory. .

PORT A MAP. DCPC transfers are a software assignable direct data path
between memory and a high speed peripheral device. This function is
provided by the 21MX series Dual Channel Port Controller (DCPC). There
are two DCPC channels, each of which may be assigned to operate with
an I/0 device. The Port A Map is automatically enabled when a transfer
on DCPC channel 1 takes place.

The Port Map must be reloaded by the system each time the channel is
assigned for a new 1I/0 call so that the data buffer is mapped in.
Having separate maps for DCPC facilitates multiprogramming, since DCPC
may be accessing one program’'s buffer while another program (in a
different area of physical memory) is using the CPU under the User Map

(i.e., when one program 1is using DCPC, another program can be
executing).

PORT B MAP. This map is handled in the same way the Port A Map is
handled except that it applies to DCPC channel 2,

6-3. PHYSICAL MENORY

At generation time, the user plans the physical memory allocations as
illustrated in Figure 6-2 and then loads the system components and
drivers for the most efficient configuration. The user determines the
size of GSystem Available Memory, (SAM), the number and size of each
partition, the size of COMMON, and the size and composition of the
resident library and memory resident program area.

VI-3



MEMORY MANAGEMENT

The areas shown in Figure 6-2 are used as follows:

*

System Base Page - contains system communication area and is used
by the system to define request parameters, I1/0 tables, scheduling
lists, pointers, operating parameters, memory bounds, etc., System
links and trap cells are also located on the system base page.

The base page 1links for memory resident 1library and memory
resident programs are only in the memory resident base page and
are not accessible by disc resident programs. The Table Area,
SSGA and driver 1links, and the system communication area are
accessible to all programs. Partition base pages, used for disc
resident program links, are described below with partitions. For
all practical purposes, the memory resident programs are in a
single partition separate (protected) from all other partitions.



o e e e

| User Partition M(1l<M<64) :

| Resident Library |

| = e |

| Memory Resident Base Page |

| = e e e e e |
Driver Partition n |

———— e e e e e e o e e |

I
|
I . l
|
I

| System Available Memory |

T ettt |

| Operating System |
| I

|

| Table Area II |

|_______-_-_____-_-_____-__---|

| System Driver Area I

Background
Real-T ime .

Subsystem Global Area

. —— - - - aun . -~ - o -

Driver Partition 1

| |
| |
| |
| - - - - -
| |
| |
| |

| System Base Page |

L e e |

\

COMMON

/

\

/

\
/

MEMORY MANAGEMENT

Figure 6-2. Physical Memory Allocations

VI-5



MEMORY MANAGEMENT

* Table Area I - Contains the Equipment Table entries, Driver Mapping
Table, Device Reference Table, Interrupt Table, the Disc Track Map
Table, some system entry points and all Type 15 modules.

* Driver Partition - An area set aside at generation time containing
one or more drivers, All driver partitions are the same length, and
only one is included in a 32K-word address space at any one point

in time. The minimum partition size 1is two pages but may be
increased.

* GSystem Driver Area - An area for privileged drivers, large drivers,
or drivers that do their own mapping. The drivers that go into this
area are specified during the EQT definition phase of system
generation. The System Driver Area (SDA) is included in the logical
address space of both the system and Type 2 and 3 programs. It is
included in the memory resident program area (if requested) at
generation time.

* System - Contains the absolute code of the Type 0 system modules
(e.g., RTIOC, SCHED, EXEC).

* Memory Resident Library - Contains the reentrant or privileged
library routines (Type 6) that are used by the memory resident
programs, or which are force loaded at generation time (Type 14).
It 1is accessible only by memory resident programs. All routines
loaded into the resident 1library also go into the relocatable
library for appending to disc resident programs that require them.

*  COMMON This area is divided into three subareas: The Subsystem
Global Area (SSGA), the Real-time COMMCN area, and the Background
COMMON area. SSGA 1is wused by some Hewlett-Packard software
subsystems for buffering and communications. The Real-time and
Background sub-areas (system COMMON) are reserved for user-written
progr ams that declare COMMON. All programs relocated during
generation time that declare COMMON will reference this system
CCMMON. Programs relocated on-line with LOADR may choose to
reference system COMMON or use local COMMON.

* Memory Resident Programs - This area contains all Type 1 programs
that were relocated durind generation.

* Table Area II - Contains the Memory Protect Fence Table, ID
segments, Keyword Table, 1ID Segment Extensions, Class Table, RN
Table, LU Switch Table, Memory Resident Map, and a number of entry
points for system pointers. This area has entry points that are
created by the generator and some that are defined by Type 13
modules.

* gystem Available Memory - This is a temporary storage area used by

the system for buffered and Class I/0 reentrant 1I/0 (refer to
Section IV), and parameter string passing.

VIi-6



MEMORY MANAGEMENT

* Partition - This 1is an area set aside by the user for a disc
resident program to run. Each partition has its own base page that
describes the linkages for the program running in the partition. Up
to 64 partitions are allowed, within the constraints of available
physical memory.

All of the above areas are established during system generation.

6-4. LOGICAL MEMORY

Logical memory 1is the 32K word (maximum) address space described by
the currently enabled memory map. If the System Map is enabled,
logical memory includes the operating system and its base page, Table
Areas 1 and 1II, System Driver Area, driver partition and System

Available Memory. It also includes COMMON and Subsystem Global Area.

If the User Map is enabled for a disc resident program, logical memory
includes Table Area I, a driver partition, optional Table Area II,
optional ©System Driver Area, COMMON (if used), and the currently
executing program and its base page.

The logical memory of a memory resident program includes the memory
resident program area and base page, Table Area I, a driver partition,
COMMON, optional Table Area II and System Driver Area.

Port Maps are used DCPC transfers and describe the logical memory
containing a data buffer. A Port map will be the same as either the
System Map or the map of the program being serviced, depending on type
of 1/0 call.

Figure ©6-3 shows the four configurations of the 32K word logical
address space., The first configuration illustrates how this space
appears under control of the System Map. Note that there is always a
total of 32 pages to be divided up; however, the particular boundaries
shown for the various parts are examples only, and a user’ s system

could be larger or smaller.

The second configuration 1illustrates how the 1logical address space
appears under control of the User Map when a memory resident program
is executing.

The third configuration illustrates how the 1logical address space
appears under control of the User Map when either an RT or Type 3 (BG)
disc resident program is executing.

The fourth configuration illustrates how the 1logical address space
space appears under control of the User Map when a Type 4 (BG) disc
resident programs is executing.

Many programs will not require a full 32K of space, and unneeded pages
will be READ/WRITE protected as illustrated 1in the User Map given in
Figure 6-3, configuration 3.

vVIi-7



8- 1A

DESCRIBED BY
SYSTEM MAP

A

SYSTEM

THREE POSSIBLE CONFIGURATIONS DESCRIBED

BY USER MAP
N

MEMORY RESIDENT

SAM EXTENSION , w
A —r—
| MEMORY RESIDENT
SAM | w PROGRAMS
|
[
|
| ]
I MEMORY |
SYSTEM
| W RESIDENT LIBRARY | W
| 1
L
T ]
|
TABLE AREAIl | W TABLE AREA 11 : w
' —
| I
SYSTEMDRIVER | SYSTEM DRIVER |
AREA | AREA |
2 — '
BG COMMON = BG COMMON
b = e = = e — e — — — e o — e e — e — e — ——
RT COMMON | W RT COMMON
SSGA : SSGA
A
DRIVER PARTITION DRIVER PARTITION
A
SAM SAM
____________ — e —— e e e e - e o e a—— o
TABLE AREA | TABLE AREA |
A
SYSTEM BASE PAGE MEMORY RESIDENT
BASE PAGE
(1) (2)
A = PAGE BOUNDARIES
W = WRITE PROTECT :
0 = MEMORY PROTECT FENCE SETTINGS

)0

v
AYNOILJO

3sn di

RT AND BG
DISC RESIDENT

REAL-TIME (TYPE 2)
AND BACKGRQUND (TYPE 3)
DISC RESIDENT
PROGRAMS

LARGE BG
DISC RESIDENT

TABLE AREA I

SYSTEM DRIVER
AREA

BG COMMON

LARGE
BACKGROUND (TYPE 4)
DISC RESIDENT
PROGRAMS

BG COMMON

DRIVER PARTITION

SAM

—— — - = — - - —— —

TABLE AREA |

DISC RESIDENT

TABLE AREA |

DISC RESIDENT
BASE PAGE

BASE PAGE

(3)

4)

asasn Ji

Figure 6-3. RTE-IV 32K WORD LOGICAL MEMORY CONFIGURATIONS




MEMORY MANAGEMENT

6-5. BASE PAGE

The system area, memory resident program area and each disc resident
program have their own logical base pages, as follows:

a. The system base page contains the system communication area,
system 1links, driver links, SSGA links, table area links and trap
cells for interrupt processing.

b. The disc resident program base page contains the system
communication area, driver links, SSGA links, table area links and
disc resident program links.

c. The memory resident base page has the memory resident program
links, resident 1library links, System Communication area, table
area links, SSGA links, and driver 1links$s.

The Base Page Communications area (see Appendix B), driver links, SSGA
and table area links located in physical page 0 will be common to all
base pages. Base page structures are illustrated in in Figure 6-4.

The Base Page Fence (refer to the 21MX and 21MX E-series Operating and
Reference Manual) is automatically set by the system for all user base
pages so that the bottom portion of the base page will contain the
user program links,

Figure 6-4. Base Page Structure

SYSTEM'S PHYSICAL USER LOGICAL USER PROGRAM'S
BASE PAGE (PAGE 0) BASE PAGE PHYSICAL BASE PAGE
COPY OF THE
USER MAP
SYSTEM SYSTEM (32 WORDS)
COMMUNICATION COMMUNICATION
UNMAPPED N
PORTION
RESERVED
DRIVER/SSGA, DRIVER/SSGA,
TABLE AREA LINKS TABLE AREA LINKS

MAPPED
PORTION

SYSTEM LINKS

1/0 TRAP CELLS USER BASE PAGE

USER BASE PAGE

VIi-9



MEMORY MANAGEMENT

6-6. COMMON AREAS

The real-time and background COMMON, along with Subsystem Global Area
occupy a contiguous area in memory and are treated as a single group
for mapping purposes (refer to Figure 6-2). The use of COMMON is
optional on a program basis; that is, any program may use real-time
COMMON, background COMMON or no COMMON. IEf the program declares COMMON
and the user chooses not to use 1local COMMON, both COMMON areas and
the Subsystem Global Area will be included in the User Map. If the
Type 4 program does not use COMMON it is not included in the User Map,
thereby possibly (if SSGA, COMMON is not empty) providing the user a
larger program area in the 32K of logical address space.

REAL-TIME AND BACKGROUND COMMON., If a program declares at least one
word of COMMON, the use of real-time or background COMMON is selected
by program type (at generation) or parameters with the on-line loader,
Program types are summarized in Appendix E. Note that the memory
protect fence protects areas below the selected COMMON.

These system COMMON areas are not to be confused with the local COMMON
area that may be specified for programs loaded on-line., The system
COMMON areas are sharable by programs operating in different
partitions, whereas the local COMMON area 1is appended to the program
(i.e., it will be in its partition) and 1is accessible only to that
program, its subroutines and segments,

SUBSYSTEM GLOBAL AREA. The Subsystem Global Area consists of all Type
30 modules input to the generator. Accessed by entry point (using EXT
statements) rather than COMMON declarations, SSGA provides multiple
communication and buffer areas for Hewlett-Packard subsystems. SSGA
access 1is authorized by program type at generation or through special
parameters during on-line lcading. Programs authorized for S3GA access
have the COMMON area included in their maps and have the memory
protect fence set below SSGA. '

6-7. MEMORY PROTECTION

Memory protection between disc resident program partitions and between
disc and memory resident programs is provided by the Dynamic Mapping
System. Protection between the program and the operating system is
handled by memory protect. A program cannot access a page not included
in its logical memory, either directly or through a DMA transfer.
Since many programs do not use all of the possible 32K word logical
area, unused logical pages above the program are READ/WRITE protected;
it is possible for a wuser to read from system logical memory via
cross-map reads but the system is write protected.

A different form of protection is required for the driver partition,
Table Area I, and (optionally) System Driver Area, Table Area II, and
COMMON . The memory protect fence provides this protection by
preventing stores and jumps to locations below a specified address.
All possible fence positions are illustrated in Figure 6-3.

VIi-10



MEMORY MANAGEMENT

The memory protect fence applies to the logical address space where
addresses are compared to the fence before translation. If a disc
resident program does not use any of the COMMON areas, the memory
protect fence is set at the bottom of the program area, Similarly, for
a memory resident program not using COMMON, the memory protect fence
is set at the base of the entire memory resident area.

For programs using COMMON, all of logical memory including COMMON 1is
mapped and the fence 1is set at one of three possible locations,
depending on the portion of COMMON being used. A hierarchy of
protection is thereby established within COMMON due to their physical
locations. Background COMMON is the least protected (any program using
any common can modify it) and SSGA is the most protected (only
programs authorized for SSGA access can modify it). Figure 6-5 expands
the COMMON area and shows these three fence settings.as a, b, and c
respectively.

PAGE BOUNDARY

—— —— —-=«— PAGE BOUNDARY
[ A
BG COMMON
@ HIGHER PHYSICAL
RT COMMON MEMORY
@ SSGA

Figure 6-5. Memory Protect Fence Locations for Programs using COMMON

Vi-l1l



MEMORY MANAGEMENT

6-8. PARTITIONS

Partitions are blocks of physical memory that are reserved for disc
resident programs. Program partitions are defined during system
generation and ordinarily are not changed. However the partitions may
be redefined during the reconfiguration process at system boot-up (see

Section XII).

The number of partitions depends on the amount of available physical
memory. Partition types can be specified as a mixture of real-time and
background, all real-time, or all background. A program can be
assigned at load time to run in any partition large enough to
accommodate it. Several programs can be assigned to the same
partition, but only one program can run in that partition at a time.
If a program is not assigned to a pdrtition, then by default,
real-time programs will run in real-~time partitions, background
programs in background partitions, and EMA programs will run in Mother
partitions. If only one type of partition 1is defined, all programs
will run in that type partition.

6~-9. PARTITION LISTS

The system generator links all partitions into one of three free
lists: BG, RT or mother partitions. During system initialization,if
one of the free lists is empty, it is substituted by one of the other
non-empty lists. For example, if no RT partitions were generated into
a system, RT programs will be dispatched in BG partitions by default.

6~10. PARTITION ASSIGNMENT AND RESERVATION

Disc resident programs may be assigned to specific partitions during
system generation, memory reconfiguration at system boot-up, or during
on-line program relocation. A program may be unassigned or reassigned
via an AS operator command.

A program assigned to a specific partition may only be dispatched to
that partition. Program contention for a partition may be minimized by
careful assignment of programs to partitions, especially if the
partitions are reserved. A reserved partition may be used only to
dispatch programs that are assigned to the partition. Programs not
assigned to the reserved partition will not be able to use it as a
default, even if no other partitions are available. A partition’s
reserved status may be removed by the UR operator command.

A disc resident program may be assigned to any partition large enough
to accomodate it, regardless of type. For example, an RT program may
be assigned to a BG partition even though both RT and BG partitions
are available. Although this type of assignment is not recommended
because of potential partition contention, it may be necessary when
there are no partitions of sufficient size within the same partition
type as the program.

VIi-12



MEMORY MANAGEMENT

6-11. MOTHER PARTITIONS

Mother partitions are 1large partitions that may be defined for
executing large programs or EMA programs. When a mother partition is
not in use, the memory may be used by programs executing in the
subpartitions chained to the mother (see "Subpartitions" below). EMA
programs that are not assigned to a partition use the largest mother
partition by default.

When an EMA program needs to run in a mother partition or when an RT
or BG program 1s assigned to a mother partition, more handling is
involved than 1is the <case with RT or BG partitions. If a mother
partition is available in the free list, each subpartition is checked.
If all subpartitions are either free or occupied by swappable
programs, the subpartitions are marked as being used for a mother
partition and all the programs in the subpartitions are swapped out.
The subpartitions are then removed from all partition free lists. Note
that the swapped-out programs may go back into any other partition
large enough to accept them.

It 1is now apparent that when a mother partition is required and its
subpartitions are in use, there may be a delay before the program can
be dispatched in the mother partition. A subpartition cannot be made
available by swapping if any one of the subpartitions has a
memory-locked program, contains a program that is performing I/0 in
its own area, or contains a scheduled program of higher priority.
There may be additional delay when the mother partition is checked (if
not assigned to a specific one) or until the program 1in the
subpartition becomes swappable.

If a mother partition is needed to dispatch a program and the
partition 1is already allocated, the current occupant must be swapped
out if the occupant’s priority and status permit it. If the program to
be swapped out is an EMA program, the program’s code and EMA data must
both be swapped. The EMA area is swapped out in large blocks equal in
size to the maximum logical address space in the User Map (up to a
maximum of 28K words). Each block is mapped and written to the swap
tracks on the disc until all of the EMA area is swapped. Because of
the many disc accesses that may be needed to swap out an EMA program,
caution should be exercised when assigning ANY program to a mother
partition.

6~-12. SUBPARTITIONS

Subpartitions are not available for dispatching programs when the
mother partition 1is in use (chain mode is in effect) by an active
program. When a program in a mother partition terminates normally or

is aborted, the subpartitions are released from chain mode and again
become available. The mother partition occupant 1s swapped only under
the following conditions:

vVi-13



MEMORY MANAGEMENT

1. The occupant 1is swappable and another program needs the same
mother partition.

2. The occupant 1is dormant (terminated with the save-resources
option, operator-suspended or serially reuasable), and a
subpartition is needed for another program.

3. A higher-priority program is assigned tc a subpartition and the
mother partition occupant is in a swappable state.

when an RT or BG program 1is scheduled and is not assigned to a
partition, a search is made for a partition of the same type that is
large enough to accomodate the program. If none can be found in the
free 1list, dormant 1list, nor in the allocated list (or it contains
non-swappable programs), then the dormant mother partition list will
be searched for one with a subpartition of the correct type and size.
If a suitable subpartition can be found, the dormant program in the
mother partition will be swapped out.

6-13. EXTENDED MEMORY AREA

The Extended Memory Area (EMA) is a large area of memory within a
partition, limited only by the size of the physical memory. An EMA can
extend well beyond a program’s maximum logical addressable space. A
section of the EMA nmust be included within the program’s logical
address space before data within that section can be addressed.
Because an EMA area is in a program s partition, it is not accessible
by other programs (EMA is not shared between programs). The maximum
number of pages of the EMA that can be included in the logical address
space is called the mapping segment (MSEG).

The philosophy behind the mapping segment function is quite similar to
page faulting in a virtual memory system. If an EMA element needs to
be accessed and is not within the currently mapped mapping segment, a
fault occurs and the appropriate segment of the EMA containing the
element is mapped into the program’s logical address space. This
mapping 1is very fast since no disc swaps are required. The entire EMA
is divided into sections of the length of MSEG. They are numbered
sequentially starting from 0. Mapping segments are then referred to by
using these mapping segment numbers. When a program 1is first
dispatched, none of the EMA is mapped in the user’s logical address
space until a call is made to .EMAP, .EMIO or MMAP,

System library routines .EMAP and .EMIO can be used to determine the
location of the element within the EMA to be accessed and to map the
appropriate pages.

The .EMAP routine is used to resolve the address of an element in an
array. .EMAP insures that the referenced element is mapped into the
current logical address space and returns its logical address.

Vi-14



MEMORY MANAGEMENT

The LEMIO routine is used to access a buffer within the EMA and also
ensure that the entire buffer will be included in the logical address
at one time. This buffer must be of the same length or smaller than
the mapping segment size. The EMAST routine in the system library may
be used to determine the standard MSEG size and EMA size for default
EMA,

.EMIO checks to see if the upper and lower bounds of the buffer are
completely included within a standard mapping segment. If so, .EMIO
maps the appropriate MSEG into the program’s logical address space. If
the bounds of this buffer do not fit completely within a standard
mapping segment, .EMIO will then map in the necessary pages to include
the entire buffer. A flag is set to indicate that a standard mapping
segment is not in the current MSEG.

The MMAP routine, with the help of EMAST, can be used independently to
do MSEG mapping. This may be needed 1if the array handling procedure
for a given application differs from the array handling tools provided
by .EMAP and .EMIO. (See the .EMAP, .EMIO, MMAP and EMAST subroutine
description at the end of this section for more detailed information.)

Figure 6-6 illustrates the structure of EMA s and MSEG’s.

Vi-15



MEMORY MANAGEMENT

EMA

PROGRAM’S
PARTITION

VIi-16

MSEG #3
%
N
MSEG #2 N
\
A 3 \\
N\ \
MSEG #1 AN \
\ \
|
MSEG #0 N f MSEG
______ - ¥] .
- <
PROGRAM : + PROGRAM

AREA

] .

-0

o

PROGRAMS
LOGICAL,
ADDRESS
SPACE

L— DMS REGISTERS FOR USER MAP

Figure 6-6. EMA and MSEG Structure



MEMORY MANAGEMENT

Une extra page above the MSEG size 1is always mapped. This allows for
overflow of elements containing more than one word per element, and
for overflow of records for the formatter beyond the last page of the
MSEG.

Only one extended memory area is allowed to be defined per program. An

EMA 1s declared in an Assembly Language program by using the pseudo
instruction:

label EMA ml,m2

where 1label is the EMA label and must be defined, ml is the ‘EMA size
in pages, and m2 is the mapping segment size in pages. The EMA size
can vary from 0 to 1023 pages. The MSEG size must be less than 32
pages., The default case on either EMA size, MSEG size or both, can be
taken by specifying 0 as their values. If a default is taken on the
MSEG size, 1its size is determined at load time as the program’s
maximum logical address space - the program size-l. The EMA size is
determined at the time of the first dispatch as the program’s
partitions size minus program size. EMA or MSEG size can be modified
on-line only if the default was taken.

An EMA may be further subdivided into more than one data array. This
is accomplished through use of optional offset parameters supplied in
assembly language programs to the .EMAP and .EMIO routines. The offset
is defined as the number of words from the start of the Extenaed
Memory Area to the start of the particular array, and consists of a
positive value that is 20 bits wide and is contained in two successive
memory locations. The general memory structure for multiple data
arrays is illustrated in ¥igure 6-7.

VI-17



MEMORY MANAGEMENT

—-— - - = admmmecccmcr e e — e ———————- I
- - M I A
I I S | R
| I E | I R
I | G | | A
| I 3 1 | ¥
I | e I T T T | 2
| ! R e et o=
| | s | | A
! I E | | R |
I I G | I R I
I | 2 | | A Offset 2
I | - - -] - - - - - - - - - - - - | Y |
l EMA M| | 1 |
I | I B et | == mm e I
I | E | I A |
| I G | | R | [
I | 1 1 I R | |
| e e o] = e e e m e - - i A Offset 1 |
Program I M| Iy | I
Partition | s | i 0 I I
| E | i | |
| | G | | | I
| v 0 | | v v
| -— - - =] = - - - - - | fr e —— e
I | I
| | I -- Page Boundary
| I User |
| | |
| I program |
I | I
| | |
| I I
v | |
-— ey e +

Figure €¢-7. Multiple Data Arrays Organization

Locations within an EMA cannot be accessed using the EMA label with an
offset, nor can EMA labels be referenced indirectly. External routines
and segments can use EMA by declaring EMA as an external. For further
information on using EMA as a pseudo-instruction, see the RTE IV
Assembler Reference Manual.

VI-18



MEMORY MANAGEMENT

Since EMA’s can extend well beyond a program’s 32K logical address
space, they snhould be managed by defining several dimensions over
them, The .EMAP or L.EMIO routnes can then be used to resolve the
address of a specified element by using subscripts for each dimension,

thus making the array addressing and mapping procedures transparent to
the user.

Standard FORTRAN I/0 and array accesses using subscripts are handled
without any special user action. In FORTRAN, EMA ‘s are used like any

other array. Refer to the RIE FORIRAN IV Reference Manual for further
information.

A segmented program may use EMA. This allows many separate operations
to be performed on the same EMA; e.g., one segment reads the data, a
second processes the data, and a third saves the results.

6-14 ., MEMORY MANAGEMENT SUBROUTINES

Four subroutines implement the Extended Memory Area (EMA) capability
in the RTE-IV Operating System. These are: .EMAP, .EMIO, MMAP, and
EMAST. Althougnh the software versions of these subroutines are
actually part of the system library described in Section X of this
manual, they are described here because they are an integral part of
memory management,

Firmware versions of J(EMAP, JEMIO, and MMAP exist for use on the
21MX-E series computer. The firmware version of LEMAP operates
slightly differently than the software version, as described in the
following discussion of .EMAP.

6-15. .EMAP SUBROUTINE (Resolves Array Element Addresses)

The .EMAP subroutine resolves an address for an element in both EMA
and non-EMA arrays. .EMAP returns the address of the referenced
element in the current logical address space.

The software version of .EMAP calls on MMAP (if necessary) to map the
appropriate mapping segment into the logical address space of the user
program. The firmware version of .EMAP always maps two pages into the
logical address space of the program, the first of which contains the
referenced element.

CAUTION

|

l

| The firmware version of .EMAP maps in the page containing the
| element and the following page (if the following page is in the EMA
| area). Therefore, a call to the firmware version of .EMAP will not
| ensure that an entire M™MSEG 1is mapped. .EMIO can be used to ensure
| this if necessary.



MEMORY MANAGEMENT

The calling sequence is:

EXT .EMAP

JSB .EMAP

DEF RTN

DEF ARRAY address of the start of the array

DEF TABLE address of table containing array parameters
DEF An address of nth subscript value

DEF An-1 address of (n-1) subscript value

DEF A2 address of 2nd subscript value

DEF Al address of 1lst subscript value

RTN error return
normal return

ERROR RETURN On an error return, the A-register equals 15 (ASCII) and
and the B-register equals EM (ASCII). If the relocatable library
subroutine ERRO is called to handle the error, the following message
will be displayed on the console:

name 15-EM @ address

where name 1s the name of the program executing when the error
occurred, and address is the address tfrom which ERR0 was called.

.EMAP makes an error return under any of the following conditions:

* one of the subscript values is less than the lower bound of its
dimension.

* the size of a dimension d(i) is negative.

* the number of words per element is specified as negative.
* the double precision offset is specified as negative.

* the number of dimensions is specified as negative.

* the element address for an EMA variable does not fall within the
Extended Memory Area bounds.

* for a non-EMA array, the displacement is 1larger than 32767

words.,

NORMAL RETURN On a normal return, the B-register contains the
logical address of the element referenced. The A-register |is
meaningless.,

VIi-20



MEMORY MANAGEMENT

ARRAY is the starting address of the array 1in which the element
address is to be resolved. If EMA 1is declared in the calling progranm
and the element address specified is greater than or equal to the
logical start address of EMA, the array is assumed to be an EMA array.
In this case, the start address actually used by .EMAP is the logical
start address of EMA.

TABLE 1s a table of array parameters containing the number of
dimensions in the array; the negative of the lower bounds for every
dimension; the number of elements in every dimension (upper
bound- lower bound + 1); and the number of words per element.

For EMA arrays only, a two-word offset value is required at the end of
the table. The use of this offset enables several arrays to be defined
in the same EMA by allowing the array origin to be higher than the
logical start of the EMA. The offset 1is a double precision integer
value with the low 16 bits (bits 15-0) in offset word 1 and the high
16 bits (bits 31-16) in word 2. This value must be positive.

The lower bound must be between -32767 and +32767.
The number of words per element must be between 1 and 1024.
The content and structure of TABLE is as follows:

Number of Dimensions
-L(n)

d(n-1)

-L(n=-1)

d(n-2)

-L(2)

d(l)

-L(L1) :

number of words per element

offset word 1 (bits 15-0) (used for EMA only)
offset word 2 (bits 31-16) (used for EMA only)

where:

L(i) is the lower bound of the ith dimension.
d(i) is the number of elements in the ith dimension.

The .EMAP subroutine assumes the array is stored in column-major order
({the left subscript varies the quickest).

vIi-21



MEMORY MANAGEMENT

6-16. .EMIO SUBROUTINE (EMA I/O)

LEMIO is a subroutine used only in an EMA environment to ensure that a
buffer to be accessed is entirely within the logical address space of
the program. It will call MMAP (if appropriate) to alter the logical
address space to contain the puffer, or if this is impossible it will
return with an error.

.EMIO first <checks whether the buffer fits in a standard mapping
segment., If so, the standard mapping segment is mapped into the
logical address space and .EMIO returns the 1logical address of the
start of the buffer. If the buffer does not fall within a standard
mapping segment, then .EMIO alters the mapping segment boundaries to
contain the buffer.

The number of pages mapped in this special mapping segment is normally
equal to the number of pages in the standard mapping segment. When
this mapping segment starts within an MSEG size from the end of the
EMA, all those pages up to the end of the EMA are mapped. The rest of
the pages are read-write protected.

The buffer length plus the offset between the start of the buffer and
its page boundary must be less than or equal to the mapping segment
size. To ensure this, it is recommended that the buffer length be less
than or equal to (MSEG size - 1) pages.

.EMIO maps the special mapping segment if necessary and returns with
the logical address of the start of the buffer.

The calling sequence is:

EXT .EMIO

JSB .EMIO

DEF RTN address for error-return

DEF BUFL number of words in the buffer

DEF TABLE table containing array parameters

DEF An subscript value for nth dimension

DEF An-1 subscript value for (n-1l)st dimension
DEF A2 subscript value for 2nd dimension

DEF Al subscript value for 1lst dimension

RI'N error return
normal return

where:

TABLE is as defined in .EMAP description

VI-22



MEMORY MANAGEMENT

ERROR RETURN .EMIO makes an error return at location RTN with the
A-register «containing 16 (ASCII) and the B-register containing EM
ASCII). If the relocatable subroutine ERRO is called to handle the
error, the following message is displayed on the console:

name 16-EM @ address
where name is the name of the program and address is the location from
which ERRO was called.

.EMIO makes an error return under any of the following conditions:

1. One of the subscript values is less than the lower bound of its
dimension.

2. The size of a dimension d(i) is negative.

3. The number of words per element is negative.
4. The double precision offset word is negative.
5. The number of dimensions is negative.

6. The buffer length is negative.

7. An EMA 1is not declared in the calling program.

8. The buffer length plus the page offset of the start of the buffer
is greater than the mapping segment size.

9. The entire buffer does not fall within EMA bounds.

NORMAL RETURN When LEMIO makes a normal return, the B-register
contains the 1logical address of the element. The contents of the
A-register are meaningless.

6-17. MMAP SUBROUTINE (Maps Physical Memory Into Logical Memory)

MMAP 1is a subroutine that maps a sequence of physical pages into the
mapping segment area of the logical address space of a program. It is

callable from both Assembly Language and FORTRAN programs.

The Assembly Language calling sequence is:

EXT MMAP

JSB MMAP

DEF RTN

DEF IPGS Page displacement from the start of EMA to the
start of the segment to be mapped.

DEF NPGS Number of pages to be mapped.

RTN return point

VIi-23



MEMORY MANAGEMENT

The RTE FORTRAN IV callling sequence is:
CALL MMAP (IPGS,NPGS)
Upon return:

A-register = 0 if normal return
= -1 if an error occurred.

MMAP returns an error under any of the following conditions:
1. 1IPGS or NPGS 1is negative.
2. NPGS is greater than MSEG size.

3. All NPGS to be mapped do not fall within EMA bounds.
4, EMA was not declared in the calling program.
5. IPGS is greater than or egual to EMA size.

If NPGS is less than the standard mapping segment size, the number of
pages actually mapped will normally be equal to the standard mapping
segment size. The number of pages mapped will be less than this if the
starting page of the segment to be mapped lies within an MSEG size of
the end of EMA. In this case, the number of pages mapped will include
all pages from the starting page to the end of EtA.

MMAP maps one more page than the size of the mapping segment if the
end of the EMA is not reached. This is done to prevent dynamic mapping
system (DMS) errors in case a multiple word element or a buffer for an
I/0 transfer crosses the end of the last mapping segment page.

6-18. EMAST SUBROUTINE (Returns Information on EMA)

EMAST 1is a subroutine that returns information about the extended
memory area (EMA) of the <calling program. It 1is callable from
Assembly Language and FORTRAN programs.

The Assembly Language calling sequence is:

EXT EMAST
JSB EMAST
DEF RTN
DEF NEMA (returned) Total size of EMA
DEF NMSEG (returned) Total size of mapping segment (MSEG)
DEF IMSEG (returned) Starting logical page MSEG
RTN return polnt

VIi-24



MEMORY MANAGEMENT

The RTE FORTRAN IV calling sequence is:
CALL EMAST (NEMA,NMSEG, IMSEG) .
Upon return:

0 if normal return
-1 if error occurred

A-register

o

An error return is made if an EMA is not defined in the calling program.

VI-25



7-1. RTE RELOCATING LOADER

The Relocating Loader (LOADR) reads relocatable code from any input
device or FMP file, and produces an absolute load module that is ready
for execution. The loader automatically sets up the linkage between
the program and any required library files. That is, the user does
not have to specify library searches during the load process. The
program may be relocated as a background disc resident program,
foreground disc disc resident program or optionally have a debug

routine appended.

In addition to its linking functions, the LOADR s command parameter
options may also be used to list program names and blank ID segments,
purge permanent programs from the system and add or replace permanent
programs,

The Relocating Loader has the following features:
* Can be operated under control of the File Manager in batch mode.

* Is swappable and can be operated in either real-time or background
disc-resident areas.

* Allows programs declaring COMMON to reference either a system
COMMON area (shared with other programs) or a local COMMON area
(not shared with other programs).

* Can relocate programs from relocatable files (Type 5 files).
* Can scan and relocate from user library files.

* Allows a program to be permanently added or deleted from the
system. Only the loader can be used to purge a permanent program.
(The OF, name, 8 command will not remove a permanent program from
the system.)

* Can read LOADR commands from a command file to control the laad
* process. Allows temporary 1loads into either the real-time or
background area for execution with an optional debug routine.

* Allows a program to reference absolute and code replacement type
ENT macros.

* Uses system area disc tracks left vacant by deleted programs,

VII-1



RELOCATING LOADER

* Uses a short ID segment when loading a background program segment
(when available; see "On-Line Modification below).

7-2. RU,LOADR COMMAND OPTIONS

Parameter options are available in the RU,LOADR statement that permit
user specification of the following items:

l. Command file name,

2. File or the 1logical unit number of the input device for
relocatable code.

3. File or the Logical Unit number of the list destination.

4, An operation code that allows Subsystem Global Area (SSGA) flag
access together with COMMON type and program type.

5. A program format code that includes temporary loads with DBUGR
features.

6. Listing characteristics.

A detailed description of the RU,LOADR statement is given under Loader
operation in this section.

At load time, the user need not know the actual address of the
partition in which the program will run because each partition appears
to be within the first 32K words of memory. The location at which a
program area appears to begin is a logical address, and the program is
relocated with respect to this logical address. Logical memory address
space configurations are illustrated in Section VI, Fiqure 6-3. It is
not necessary to declare the partition number that a program will
execute 1in, since a program will run in any partition large enough to
accomodate it.

7-3. PROGRAM RELOCATION

During loading, programs are relocated to start at the beginning of
the disc-resident program area of logical memory. If COMMON is
declared, the program will be preceded by the COMMON area. The logical
address of the program location always begins at a page boundary. The
first two words of the program 1location are allocated for saving the
contents of the X and Y registers whenever the program is suspended.
Once relocated, the program is linked to external references such as
EXEC or the Relocatable Library.

Any program segments will overlay the memory area immediately
following the main program and its subroutines.

VII-2



RELOCATING LOADER

The loader stores the absolute version of the program, its subroutines
and linkages on a disc track or a group of contiguous disc tracks and
then assigns the disc tracks to the system.

The program, together with its subroutines and its largest segment,
may be as large as the largest partition of the same type. If a
program is assigned to a partition, it must not be larger than the
partition or an L17 error results (see Loader Error Messages). COMMON
may be allocated in one of several areas according to the needs of the
programmer (see the optional parameter list for the RU,LOADR reguest).

7-4. ON-LINE MODIFICATION

The operator can use the loader to permanently modify the set of disc
resident programs previously loaded during generation., The loader adds
new disc-resident real-time or background programs, and also replaces
disc-resident programs with updated versions having the same name. A
program to be replaced must have all the following conditions present:

* Must be dormant

* Not currently occupying a partition
* Not in the time list

* Have a zero point of suspension.

The OF,xxxXxxXxxXx,8 operator command deletes disc-resident programs or
segments that were loaded temporarily into the system by the loader.
The OF command cannot delete programs or segments that were
permanently added on-line wusing the loader, or stored during
generation using the On-Line Generator (RT4GN).

The On-Line Generator stores disc-resident programs on disc in an
absolute, packed format. Each main program is identified and located
by a 33-word ID segment. The ID segments are stored in the ID segment
area of the system disc area and brought into main memory when the
system is started up. For disc-resident programs, the program’s disc
location as well as its main memory and base page addresses are kept
in the 1ID segment. When a main program and segments are loaded, the
segments are identified and located by a nine-word short ID segment.
When a main program declares an External Memory Area, three-word ID
extension 1is allocated. See Appendix B for the 1ID segment and
extension format.

RT4GN can create a number of blank 33-word and 9-word ID segments so
that the loader can later add new programs and segments to the
permanent system. It can also create blank ID extensions. The addition

or replacement of a program involves the conversion of relocatable
programs into an absolute unit, finding space on the disc to store 1it,

and recording information in the ID segment.

VIii-3



RELOCATING LOADER

The loader always attempts to use the short ID segment for identifying
a program segment. However, a standard 33-word ID segment is used if
short ID segment is not available.

A program declaring an EMA cannot be 1loaded if an ID extension does
not exist for the program.

When replacing a program, the new program may overlay the old
program’s disc space only if the length of the new program (plus base
page linkages) does not exceed the disc space formerly occupied by the
previous program. A track or group of tracks is allocated for program
storage when adding a program or if space requirements of a
replacement program exceed those of the o0ld. These newly allocated
tracks are software-protected but not hardware-protected. Memory
resident programs can neither be added nor replaced in the system.

when performing an on-line modification, the disc hardware protect
must be physically disabled prior to the 1loading (and then enabled
afterwards) wunless the protection 1is always kept disabled. RTE
provides additional software protection for any tracks containing
system programs Or user programs.

7-5. SEGMENTED PROGRAMS

Segmented modules can be added and replaced in any order provided that
the main program is always entered first. Permanent replacement of a
permanent program or main segment programs will not necessarily result
in the main and segments being stored on contiguous tracks.

When replacing segmented program modules, the operator must either
replace every segment with a new segment having the same name, or else
remove the original segments permanently from the system.

Note that a main and all its segments must be relocated at the same
time (see "Loading Segmented Programs" later in this section).

7-6. *ADDING NEW PROGRAMS

A new program to be added to the system is stored on a complete disc
track or several contiguous tracks. A Dblank ID segment is allocated
to record the program’s memory and disc boundaries, name, type,
priority, assigned partition, and time values. The loader attempts to
use available disc space in the system before allocating new full
tracks. If new tracks must be allocated, they are assigned to the
system and are software-protected.

VII-4



RELOCATING LOADER

7-7. PROGRAM REPLACEMENT

When replacing one program with another, the following sequence of
events take place as appropriate to the current conditions:

1. The new program is first relocated onto scratch disc tracks.

2, The new program will use the same ID segment as the old program
but will only use the same disc space 1if the length of the code

and base page does not exceed the old program size.

3. If the new program cannot be fitted into the disc area of the

replaced program, the loader then 1looks for another area of
appropriate size if one was previously freed by the user through
deleting a program incorporated during generation. In this case,
the deleted program’s ID segment had its name blanked but its disc
space was retained. That disc space is given to the new program.

4, If neither condition exists (items 2 and 3), the scratch tracks on

which the new program was generated become system protected and
the old ID segment is retained.

7-8. ADDITION OR REPLACEMENT LIMITATIONS

Several limitations may prohibit the final addition or replacement of
disc-resident programs:

1. System or reverse COMMON is requested but the program’s COMMON
length exceeds that of the COMMON area.

2. Local COMMON is requested and COMMON is not declared by the first
relocatable module encountered by the loader, even though the
module is a dummy module that contains no executable code.

3. The Dbase page linkages exceed the corresponding linkage are for
disc-resident progr ams established by the system during
generation.

4., The length of the absolute program unit exceeds the area
available.

5. Disc space is not available to store the program.
6. A Dblank ID segment is not available for adding a program (program
previously loaded can be deleted to create a blank ID segment) or

its segments.

7. An ID extension is not available for adding a program with an EMA.

VII-5



RELOCAT ING LOADER

7-9. PROGRAM DELETION

A temporary program 1is deleted from the system with the OF,name,8
command. A permanent program (i.e., a program loaded during
generation, or on-line with the loader as a permanent addition or
replacement load) is deleted with the loader. when using the loader to
delete a permanent program, the opcode parameter is set to PU, which

blanks the program’s 1ID segment and makes it available for loading
another program.,

The tracks containing the program are released unless they are system
tracks. If the program had been saved through the File Manager on FMP

tracks, the tracks are not released to the system but remain as FMP
tracks.

Any time a temporary or permanent program is deleted from the system,
all its segments must also be deleted. This is required since
segments may have occupied tracks that were released by deleting the
main program.,

NOTE

Only the LOADR may perform permanent loads or deletes.
Copies of LOADR may peform temporary loads but will be
aborted with an I006 error return if the attempt is
made to perform permanent loads or purges,

7-10. COMMON ALLOCATIONS

Three options can be specified when allocating a COMMON area for a
program:

SYSTEM COMMON. This implies a background program with COMMON in the
background system COMMON area, or a real-time program with COMMON in
the real-time COMMON area. System COMMON is established when the
system is generated.

LOCAL COMMON. The local COMMON area for a program is estapblished at
the beginning of the background program’s area. The COMMON area will
be swapped together with the program. It is necessary for the first

COM#ON allocation to be the largest declared. RTE FORTRAN IV named
COMMON 1s handled the same as local COMMON.

REVERSE COMMON. This implies a background program with its COMMON in
the real-time COMMON area. Conversely, a real-time program can
reference and use the background system COMMON area. Reverse COMMON is
establisheda when the system is generated.

VII-6



RELOCATING LOADER

7-11. PROGRAM TYPES

When a program 1is assembled or compiled, it may be assigned to a
program type that is kept in the NAM record. The type information is
used by the On-Line System Generator and, in some cases, by the
Relocating Loader. (Refer to the RTE-IV On-Line Generator Reference
Manual for information on program types handled by the generator.)

The Relocating Loader handles Type 6, 7, 8 and 14 modules as though
they were normal subroutines (Type 7) to be appended to the program
making reference to them. The loader SE command (see below) will
relocate these types of modules if an entry point in a module
satisfies a previous exzternal reference,.

The loader opcodes corresponding to module’s NAM types are as follows:

NAM Type LOADR Opcode
2 RT
3 BG
4 LB
0 BG (default)

where NAM Types:
2,3,4 and 0 are main programs (NAM Type 5 is a program segment)

Type 2 programs are real-time programs that are relocated with
access to Table Area II (see (3) of Figure 6-3,
Section VI).

Type 3 programs are background programs that are relocated with
access to Table Area II (see (3) of Figure 6-3,
Section VI).

Type 4 programs are background programs that require a larger
logical address space for the program. A larger
address space can be acquired, since Table Area II
and the System Driver area are not included in the
program’s address space.

Other information regarding program types is provided in Appendixes D
and F of this manual.

VII-7



RELOCATING LOADER

7-12.

The loader

LOADER OPERATION

is scheduled for execution with the RU or ON operator

command in the format

RU,LOADR,command(, input{, list[,opcode|[, format|[,partition
[,size]]]]]]

where:

command

input

list

VII-8

The command file structure must be used for loads when
more than one relocatable file is required. The <command>
parameter specifies:

l. A command file <namr>.

2. An interactive input device from which commands may be
entered. When commands are entered interactively on such
device, a /LOADR: prompt is displaced when the loader is
ready for a new command,

3. A non-interactive input device, such as a tape
cassette, from which commands may be entered. No prompt
is issued by the loader to solicit new commands.

If this and all other parameters are omitted, command
entry defaults to the Logical Unit number of the user’s
terminal.

The file name of the relocatable main program or the
Logical Unit number of the relocatable input. There is no
default case.

List output device. The default setting is the Logical
Unit number specified in the <command> parameter. If the
<command> parameter is a file or is not interactive, the
default is Logical Unit 6. Refer to the <opcode>
parameter below for 1list options. The 1list device is
locked for the duration of the load if the LU is not
interactive and is not a file.

Alternately, a 1list file <namr> may be specified. The
listing will then go to a file. The file named must not
already exist. The loader must create the file. The one
exception to this is if the specified file name has an
apostrophe as its first character; for example:

*name

In this case, the loader will create the file if it does
not exist, or simply open the file if it does exist.



opcode

RELOCATING LOADER

Mnemonic operation code. The parameter defines the
program type, COMMON type, and whether or not the program
requires the Subsystem Global Area (SSGA). To determine
the operation code mnemonic, select one or more (or none)
from each of the following columns:

Progr am COMMOCN Load

Type Type Type

BG 5C PE

RT RC TE

LB NC RP

586
where:
BG = Background program
RT = Real-Time programn
LB = Large background program
SC = System COMMON
RC = Reverse COMMON
NC = No COMMOM (or local COMMON)
SS = Use Subsystem Global (58GA). SS may also be
used with other elements in its same column.

PE = Permanent Program
TE = Temporary program
RP = Replace permanent program (do not also

specify PE).
The default setting is BGNCTE.

The elements of the selected mnemonic code may be
specified 1in any order with no intervening commas or
blanks. For example, PEBGSS will be interpreted the same
as SSBGPE, which specifies a background program using

Subsystem Global to be made a permanent program. One, two
or all three parameters may be specified.

VII-9



RELOCATING LOADER

format

partition

size

VII-10

Mnemonic format code. This actually 1is an extension of
the opcode that was filled. The parameter defines the
format for the program load operation. To determine the

format code, select one or none from each of the
following columns:

DEBUG List File

Append Options Scan

DB LE RS

NL

where:
DB = append DBUGR subroutine to the program
LE = list entry points
NL = no listing desired
RS = reverse scan. RS changes the order of loading for

segmented programs. The default is 1load segment,
rescan file and 1load system 1library routines.
However, when RS is specified, rescan of the file is
performed only 1if undefined external references
remain after a library search. Selection of this
option can significantly speed up segment loading.
See "Loading Segmented Programs" later 1in this
section.

Do not specify RS if a system library routine is to
be replaced by a user routine.

Format and opcode parameters may be intermixed and
intermingled in any order. For instance, SSBGRT will
relocated as a real-time program using SSGA. Note
that later specifications will override earlier
specifications.

The specific partition number in which program is to be
executed. TIf not specified, the program will execute in
any available partition of sufficient size, This is the
same as using the AS operator command.

Allows a logical address space larger than the program
size. Permits use of a dynamic buffer at the end of the
program for use as a data array, symbol table space,
etc., when the program requires such space. If the
program 1is an EMA program, the EMA area immediately
follows the dynamic buffer area.



RELOCATING LOADER

The <opcode> and <format> parameter mnemonics can intermingled in any
order, That 1is, <opcode> mnemonics can be mixed with <format>
mnemonics, and vice versa. A comma must be included as a parameter
position marker if:

1. The character count within the parameter exceeds six, or
2. Subsequent parameters such as <partition> are to be specified.

The following examples show typical usage of the <opcode> and <tormat)>
parameters:

*RU, LOADR, PROG1, , ,RTDBSS,NL

b | | e e e e e <format/opcode> parameter
| | == e COpcode/format> parameter

| |====e=—eweee— <list output> parameter position
[ <input> parameter position

|~ e e e e <command> parameter

*RU,LOADR, , , ,RP, ,7

I i f====meemeeeme (partition> parameter

I T I i Lt <format /opcode> parameter position
I} | =~===w==—- <opcode/format> parameter

| | | ~=ememeee—e <list output> parameter position

| | =——mmeme———- <input)> parameter position

|~ e <cOommand> parameter position

I? a track allocation cannot be made for a relocation, the loader
displays the message WAITING FOR DISC SPACE. The loader repeats the
disc request and is suspended until space becomes available.

Following the relocation of a program that has its external references
satisfied, the loader terminates with one of the following messages:

ww PAGES RELOCATED xx PAGES REQ'D NO PAGES EMA NO PAGES MSEG
or
ww PAGES RELOCATED xx PAGES REQ'D DEFAULT zzZ PAGES MSEG
or
ww PAGES RELOCATED xx PAGES REQ'D yy PAGES EMA zz PAGES MSEG
/LOADR name READY

/LOADR: SEND

where:

ww = the number of pages occupied by the relocated code
(includes base page.

Xxx = size in pages of the partition required by the program

VIii-11



RELOCATING LOADEER

]

Yy the EMA size in pages (for EMA programs only)

i

zz the MSEG size in pages (for EMA programs only)
name = name of main program. The loader terminates and the program is
ready to run.

If a new program is loaded bearing the same name as a main program
already defined in the system, the following message is displayed:

DUPLICATE PROG NAME -<nnnnn>

where <nnnnn> is the duplicated program name. the locader automatically
attempts to create a unique program name by replacing the first two
characters of the new program’s name with period characters (..). If
successful, the loading process continues and when completed, the ng
followimessages are displayed:

/LOADR: <..nnn> READY
/LOADR: SEND

where <..nnn> is the modified program name.

If unsuccessful; that is, a program named <..nnn> already exists, the
loader is aborted and the appropriate error message is displayed.

Whenever the loader completes a successful or unsuccessful load, it
returns five words of information about the 1load to the program that
schedul ed it, via the PRTN system subroutine. The returned
can be information accessed via RMPAR. For example, when the loader
File Ma is run from the nager, FMGR picks up the information in
4P and parameters 1P, 2P, 3P, 5P (this is alsc the FMGR 10G). A
followi successful load gives the ng:

1P,2F,3P = program name
See the Batch-Spool Monitor Reference Manual for a description of global

parameters. If an unsuccessful load occured, the following information
would be returned:

1P, 2P,3P = 0
4p = L~
5Pp = loader error return

7-13. ADDITIONAL OPCODE PARAMETERS

The loader’s <opcode> parameter has two other uses. Entering LI or PU

causes the loader to, respectively, list all currently active programs
in the system, or purge a permanent program. Opcodes LI and PU may be
used inthe interactive mode but may not be entered in batch mode or
from a command file.

The syntax for the list option is as follows:

VII-12



RELOCATING LOADER

RU,LOADR,,,1lu,LI

In this case, a list of all active programs in the system is tted to
transmithe specified Logical Unit. The list will include the name,
programtype, priority, low and high main program addresses, low h Base
and higPage addresses, and partition number if the program is d to a
assignepartition. Each blank ID segment available for use by the is
loader noted by <long blank ID> or by <short blank ID> if the ID is a
segmentnine-word program segment ID segment.

It is printed as a table in the form:

NAME TYPE PRIORITY LO MAIN HI MAIN LO BP HI BP SIZE EMA MSEG
PART N

An alternate form of the request is:
RU, LOADR, ,PROG,LU%,LI

This will list all of the above information only for the program named
PROG,

If the opcode is PU, the message
/LOADR: PNAME?

is output on the assigned Logical Unit device. Entering a program name
following the prompt causes the lcader to permanently purge the ced
referenprogram from the system. Entering a /A will prevent any
purge operation and terminate the loader.

The LI and PU opcodes may also be entered in the interactive mode but
may not be entered during program relocation. The PU command may not
entered be from a command file or under batch mode.

7-14. LOADING THE BINARY CODE

The RTE-IV loader will accept binary relccatable code from any FMP
on any file disc cartridge. The file <namr> of the main may be
the RUNincluded in statement. If all gSegments and all subroutines are
file <nin the input amr>, then no further information is needed.
and subHowever, segments routines will frequently be in several files
system, throughout the and in this case, additional commands to the
The addLOADR are required. itional commands may be specified through a
interaccommand file, an tive or non-interactive Logical Unit. The file
specifi<namr> or LU is ed in the first loader RUN parameter,

In the interactive mode the locader prompt /LOADR: is issued:

/LOADR:

VII-13



RELOCATING LOADER

7-15. LOADER COMMAND FILE

The loader will load all relocatable input found in the file specified
by the RUN statement. However, subroutines or segments will often be
located 1in other files. In order to facilitate loading of a program
broken wup in this manner, the loader will take input from a command
file. The command file syntax and meaning are described below. Note

that only the first two characters of any command are required unless
otherwise specified.

SEARCH Searches the system disc 1library for undefined
externals,

SEARCH, <namr> Searches the file <namr> for undefined externals.
Only the first two characters of this command need
be specified for a single-pass search of the named
file. If more than two characters are used in the
command; that is, SExxxxx,NAMR instead of SE,NAMR,
the file is searched multiple times to ensure that
backward references are satisfied. The SE,NAMR form
is faster but will not satisfy backward references.

RELOCATE ,<namr> Loads file <namr> as part of the program. The
<namr> specified may be a program, subroutine or
segment.

FORCE Force 1loads a program and/or program segment,
Undefined externals will be ignored.

DISPLAY Causes a list of undefined exxternals to be printed
on the list device, or in the interactive mode, on
the interactive command device. Note that the
undefined externals listed are those referenced by
the module being loaded; that 1is, undefined
externals in the main of a segmented program will
not be listed if the current module being relocated
is a segment.

ECHO Causes the input commands from a file to be echoed
(see footnote) on the list device as they are encountered. This is
useful for debugging loader command files. The

command 1is ignored if the commands are coming from
an interactive device.

END End of command input. Signals the loader to exit
the command mode and finish up the 1load. 1If
undefined externals exist at this time, an

automatic scan of the system library is performed.

/A Aborts the loader immediately. A clean termination
of the load operation is performed.

VIIi-14



RELOCATING LOADER

Denotes a comment line when entered as the first
character of an entry line. The loader ignores the
entire line. Comments may also follow a command and
be in the same entry line as the command, providing
two commas appear in the line. For example:

SE, ,SEARCH THE LIBRARY

RE, XTABS,LOAD PROGRAM NAMED XTABS

DI,,DISPLAY UNSATISFIED EXT REFS

AS, XX Assigns the relocated program to partition xx.

(see footnote)

SZ2, yyY This command allows the user to request more memory
(footnote) for the program than ,the actual program code

requires. The extra space is called dynamic buffer
area. YY is the number of the pages of memory for
the program and dynamic buffer area. For EMA
programs, the EMA area will immediately follow the
dynamic buffer area. Note that this dynamic buffer
area may be changed on-line for non-EMA programs
with the SZ operator command.

LL,<namr> Specifies the 1list Logical Unit number or file

(see footnote) name. if the listing is to go to a file. If a file
name 1is specified, the file must not already exist
unless its name begins with an apostrophe (7).

OP, <opcode> Specifies an <opcode> parameter where <opcode> is

(see footnote) as defined previously. Note that opcodes LI or PU
are illegal in a file, but are 1legal 1in the
interactive mode.

M, <format> Specifies a <format> parameter, where <format> is
(see footnote) as defined previously.

At the end of every segment load, main lcad, and at the end of a
command file, the system library is searched for undefined externals.
If undefined externals still exist and the commands come from a file,
then the undefined externals will be listed and the loader will abort.

The loader prints the message:
UNDEFINED EXTS
The external references are listed, one per line.

| FOOTNOTE:

| Specification of these commands must precede specification of any
| RELOCATE or SEARCH command. Otherwise, the control command will be
| ignored if entered from an interactive device, or cause errors if
| entered from a file. These commands may be entered either within the
| Rq command or from a command file. Note that RU command parameters
| will be overridden by any commands subsequently entered from a
| command file.



RELOCATING LOADER

Note that during the load process, undefined externals are allowed in
the main of a segmented program because they might be satisfied in a
segment. When the user specified the end of the loading process, the
main 1is then checked for undefined externals, If undefined externals
exist, the following error message is issued:

MAINS
UNDEFINED EXT

and the loader will then abort unless the FORCE option is in effect.

The loader will not allow undefined externals in a segment because one
segment ‘s entry points may not satisfy another segment’s externals.
This is because only one segment may be in memory at a given time. The
DISPLAY command will 1list wundefined externals. Note that the list
refers only to the main or current segment being loaded.

The abort may be prevented by the FORCE command. The FORCE command
will force load a program and/or program segment.

7-16. LOADING FROM A LOGICAL UNIT

Relocatable code from a Logical Unit can be accepted by the
RU,LOADR, ,<1lu> command or interactively with the RELOCATE,<lu>
command. If more than one tape is to be mounted for the load, the
interactive mode must be used and the RELOCATE,<lu> command reentered
for each tape.

7-17. LOADING SEGMENTED PROGRAMS
The 1loading of segmented programs requires special loader processing.
The loading speed of such programs can be increased if the load

process is wunderstood and the suggestions given below are followed.
Generally, all the relocatable code will be 1in one file or several

files scattered throughout the system.
Assume the following program:

A program has three segments and seven subroutines located in one
file, as illustrated in Figqure 7-1.

- S - N S . S - — - R T W D D ) — P - - T T G - — T G - . NS M) S WA G W NS R AD A - — =

Figure 7-1. Segmented Program Example

VII-16



The

1.

10.

11.

12,
13.

The

RELOCATING LOADER

loader would relocate this program as follows:
Load MAIN program.
Load sUBl and then SUB2.

If there are undefined externals references, search entire file
for subroutines required by the MAIN.

If any subroutines are loaded in Step 3, repeat Step 3 to satisfy
backward external references (i.e., assume SUB6 is loaded and it
references SUB3).

If there any undefined external references, search the system
library and relocatable library.

If there are still undefined externals, continue loading (they may
be satisfied by a segment).

Load SEG1.

Scan any subroutines following this segment and before next
segment for undefined externals (i.e., SUB3) and load them if
necessary.

If there are undefined externals, search the entire file for
referenced subroutines.

If any subroutines are locaded in Step 9, repeat Step 9 to satisfy
backward external references,

If there are undefined external references, search the system and
relocatable libraries.

If there are still undefined externals, abort the load.

Continue Steps 7 through 12 for each segment.

loading sequence described above has several implications for the

user when preparing a segment load:

a.

b.

A subroutine called by many segments need only appear once in the
file,

Subroutines referenced 1in the MAIN are 1loaded with the MAIN and
are thus sharable by all segments. Subroutines loaded with the
MAIN are not loaded with segments.

Any subroutines located before the first segment are relocated
with the MAIN.

Any subroutines located after the first segment in a file are
loaded only with those segments that reference them.

VII-17



RELOCATING LOADER

What the above basically implies is that subroutines may appear
anywhere 1in the file, even as a 1library concatenated at the end of a
file. This provides optimal loading in terms of program size, but does
not necessarily provide optimal loading speed. To optimize loading

speed, subroutines that are referenced by a segment should be located
directly behind that segment.

When a relocatable program is contained 1in several files, a command
file should be used to load the program. Typically, the MAIN program
would be in one file, each segment in a separate file, and perhaps a
file of subroutines that are referenced by some of the segments. The

command file for loading such a segmented program might consist of the
following:

File Resulting

Entry Command Action
a. RE,MAIN Relocates program named MAIN
b. SE,LIBRY Searches library named LIBRY
c. RE,SEG1l Relocates segment named SEGL
d. SE,LIBRY Searches library named LIBRY
e. RE,SEG2 Relocates segment named SEGi
f. SE,LIBRY Searches library named LIBRY

When the loader encounters the command in file entry c, it recognizes
the program as segmented. Before SEGl is loaded, LOADR searches the
system and relocatable libraries for undefined external references.
Undefined externals are still permitted at this point, since they
might be satisfied in a segment.

VIiI-18



RELOCATING LOADER

However, at file entry e, undefined externals remaining after the
system and relocatable 1libraries are searched will cause LOADR
execution to be aborted. This is because a segment may not satisfy an
undefined external reference through another segment., (The FORCE
option may be specified to force load the code and prevent an abort
condition,) Upon completion of the loading process, any remaining
undefined external references in the MAIN program would result in the
loader being aborted and display of the following messages:

/LOADR: MAINS
/LOADR: UNDEFINED EXTERNALS
/LOADR: <list of MAIN program’s undefined externals>

7-18. REDUCING SEGMENTED PROGRAM LOAD TIME

There are several ways to increase segmented program loading speed.
Those described below are suggestive only, and are not to be
considered as required procedures:

l. Place any referenced subroutine with the segment that calls it.
This eliminates unecessary file scans in search of a subroutine
that will be relocated with a segment.

2., Place subroutines into files in the sequence in which they are
called. That is, if 3SUBl calls SUB2, place SUBl in the file before
SUBZ2, etc. For example, assume these subroutines are in a library
file to be searched by the loader and that the loader is looking
for suUBl. Ideally, the loader would pick up SUBl and create SUB2
as an undefined external reference. The loader would then continue
the file search; if SUB2 was then encountered, it would be picked
up on the same pass. However, if SUB2 was located in front of
SUBl, an additional file search would then be necessary.

3. If all the relocatable code is within the same file, place the
subroutines in the sequence suggested in Item 2.

4, If several segments reference the same subroutine, place that

subroutine immediately following the MAIN program. Segments may
share subroutines that are loaded together with the MAIN progran.

VII-19



RELOCATING LOADER

5. when all the relocatable program code is within the same file and
the file has been organized as described in 1Item 2, use the RS
operation code when the loader is scheduled. RS informs the loader
that all subroutines have been sequenced as suggested above, and
that the system and rélocatable 1libraries are to be searched
before a file scan. That 1is, in the 1loading steps previously
described for the segmented program load example, Step 5 would be
placed between Steps 2 and 3, and Step 11 would be placed between
Steps 8 and 9. Another scan of the file will occur if undefined

external references remain following a scan of the system and
relocatable libraries.

Caution should be exercised in using the RS mnemonic, since it changes
the loading sequence so that the HP relocatable library is searched
before a scan of the file is made. It is therefore possible that a
relocatable library subroutine might be loaded 1instead of a user’s
subroutine. However, this could only occur if the subroutine had the
same entry point name as a relocatable library routine (i.e., SIN,
TAN, ARCTAN, etc.) and if the user’s subroutine was not included at
the end of the segment or main that called it.

7-19. DBUGR LIBRARY SUBROUTINE

DBUGR is a utility subroutine distributed with the RTE-IV operating
systems. It is appended to the end of a user’s program by the loader
when the opcode parameter in the RU,LOADR command is DB. DBUGR allows
the wuser to debug a program by means of Trace, Break Point and other
features. Permanent loads are not allowed with DBUGR. A summary of
DBUGR commands, is given in Section XI of this manual. For a detailed
description of DBUGR commands, see the RTE-IV Debug Subroutine Manual.

7-20. LOADER ERROR REPORTING

All loader errors are reported to the list device. The list device may
be specifically declared in the ON or RU scheduling command, or
defaulted. The default list device 1is specified under "LIST = "
earlier in this section.

The error codes are displayed on the list device in the following
form:

/LOADR:<error code>

For some non-recoverable error conditions, LOADR aborts execution and
displays the error report as follows:

/LOADR:<error code>
/LOADR:LOADR ABORTED

VII-20



RELOCATING LOADER

At times, the user may wish to abort a load while the load is going on.
Entering a BR,LOADR command will cause the loader to abort a load and
perform a clean and orderly termination. This is greatly preferable to
using an OF,LOADR command during a load process, which may leave files
open.

For some error codes, the name of the program module and the entry
point name of the subroutine being relocated are displayed prior to
the error code display line, as follows:

/LOADR:<module name> /LOADR:<entry point name> /LOADR:<error code>

7-21. LOADER ERROR CODES

All loader error codes, their meaning and possible recovery action are
listed in Table 7-1 below. Note that the asterisks following some
diagnostics have the following meaning:

*

1]

module name printed BEFORE diagnostic

* %

entry point name printed AFTER module name

The asterisks would not actually appear in the displayed error code.
All error codes are prefixed by L- characters.

Note that numbered items in the "Recovery Action" column indicate
possible alternatives, as appropriate, rather than sequential steps.

Vii-21



RELOCATING LOADER

02*

03*

04*

05*

Ve*

07* **

b e e e ———— ——— ———— —_—— e ——_—— e —————— e ———— —

VIIi-22

Table 7-1.

Checksum error. (Was it a
relocatable file?)

Loader found an entry
that was not a NAM, ENT,
EXT, DBL, EMA or END
record, Did the compiler
emit bad records? was

it a relocatable file?

Program code and system
tables exceeded 32K or
user-specified max. size.
(Program size + MSEG size
is too large.)

BP linkage overflow. The
program requires more

BP links than system has.

Symbol table overflow.
(Loader does not have
enough room to relocate.)

COMMON block error (was
first COMMON declaration
the largest?).

Duplicate entry points
encountered or two
subroutines with the same
name.

Loader Error Codes

Specify correct relocatable file|

or recompile. Give loader the |
correct file,

Recompile. Give loader the
correct file.

l. Segment program (see Sect.8).
2. Do NOT specify a size; make
it a Type 4 program if possible.|
3. Move data to EMA area if
possible; otherwise, make
program smaller.

!
I
[
I
[
I
l
|
!
I
I

!

|

I
1. Rearrange subroutines, I
2. Rearrange order of loading |
modules. I
3. Recode to decrease number of |
references across page |
boundaries. |
|
1. Use SZ operator command to I
expand size for loader, |
2. Use SE lcader command to |
reduce loader fix-up table size.l|
3. Break up code into subrs. in |
separate files and use 3E cmd I
after relocating each file. }
|

|

|

|

|

|

I

|

|

Make largest COMMON declaration
the first declaration the lcader
encounters.

Remove one of the duplicate
routines or rename one.



e e —— e ————

RELOCATING LOADER

Table 7-1. Loader Error Codes (continued)

pm—————— e ettt e bttt et +
Error | Meaning | Recovery Action |
Code | | |

et e e e +
L- : | |
------- b i S
08 | No transfer address (only | 1. If program was written in |
| subroutines were loaded; | Assembly Language, put a label |
| no main was found). | on the END statement,., The label |
| | is where the program starts. |
| | 2. If program was written in |
| | FORTRAN, relocate the module |
I | with the PROGRAM® statement. :
I |
09* | Record out of sequence | Rewind tape and start over, |
| (Probably attempted to | |
| relocate from improperly | |
| positioned tape.) | |
| | |
10 | Illegal parameter in RU | Start over. Make certain the |
| statement or in statement | run string is proper. |
| prior to a RELOCATE | |
| statement. | |
| I I
11 | Attempted to replace a | Rename program with a different |
| memory resident program | name, recompile and reload. It |
| with a program having the | is impossible to replace a |
| same name. | memory resident program. The |
| | loader will not even rename it. |
I | |
14+ | Assembler produced illegal| Recompile and try again. This |
| relocatable module. A DBL | could also be an Assembler or |
| record was produced that | FORTRAN compiler bug. |
| referred to an undefined | |
| external; i.e., it should | |
| have been found in the | |
| program’s symbol table | |
| but was not. | |
| I |
16 | Illegal partition number | Either specify a different |
| or corrupt map table. | partition or no partition. |
| Partition specified does | |
| exist or is down due to a | |
| parity error. | |
| | |
17 | Number of pages required | Either specify a different |
{ exceeds partition size. { partition or no partition. :
18 | Specified program size too| Either specify a smaller size or|
| large for partition. | no size. See also error code 03 |
| (Exceeds 32 pages.) | other recovery alternatives |
------- o e e e e e e e e o e o e

VII-23



RELOCATING LOADER

20

21

24%*

25

26

27

VII-24

—_————— e, e e ——— b —— +

Table 7-1. Loader Erro

- " T ——— - — —— g o — G w— . an. — -

- - — — T — —— t— - ————— = ————— - -

(L) EMA declared twice (2)
EMA declared in a program
segment, (3) reference to
the EMA label before label
was declared EMA, (4) an
attempt was made to
declare the same label as
ENT record (i.e.,
duplicate ENT).

No ID extensions available
for the EMA program.

Program’s EMA size too
large for current system
partitions.

Attempted to access an
SSGA entry point but SSGA
access was not declared
at beginning of load.

Attempted to purge a
program under batch, or
attempted to use LI or PU
commands within a file.
LI or PU may only be used
interactively.

Not enough long and short
ID segments to finish
load.

Attempted to access an
EMA external with offset
or indirect.

r

+——+

———— e —— e —— . ——— e ————— ¢

Codes (continued)

-y . — —— ane e WS G UL G Sy . — . - — - w5

Specify the EMA in the main and
load the main first. An EMA must
be declared in the main and any
segments or subroutines that
reference that EMA must be
loaded after the main.

Either abort other EMA progr ams
to release required 1D
extensions, or regenerate and
specify more ID extensions.

Either reconfigure system at
boot-up to give more EMA space,
or declare less EMA in program.

Restart the load, specifying
the 88 mnemonic; i.e., OP,SS or
FM, SS.

Do not put LI or PU commands in
a LOADR command file.

created,
segments,

|
|
l
|
I
I
I
I
|
|
|
|
|
|
|
|
|
I
|
I
I
I
|
I
|
I
|
|
|
|
I
|
Off or purge all ID’s |
free up additional ID I
and restart load. :
and .EMIO |
EMA arrays]|

Use HP-supplied .EMAP
subroutines to access



Real-time or background disc-resident programs may be structured into
a main program and several segments to save memory space during
program execution. A segmented program is first separated by the
progr ammer during the coding process. Once the program is relocated,
the segments are then called into memory only as they are needed for
execution, The program can run in a smaller partition than its total
size, since only parts of the executable code are in memory at any one

time.

When the <code in one of the segments is required for execution, the
currently executing program uses an EXEC call to request the operating

system to make a segment overlay. RTE loads the segment from the disc
into a memory block following the end of the main program, overlaying
whatever was previously there., Control is then passed to the entry

point of the segment and execution proceeds within the segment (see
Figure 8-1). ©Note that a segment is not allowed to overlay the main

program; segments may only overlay one another.

While a segment is in memory, it can freely access subroutines and
data areas in the main program, and vice-versa. The main program and
its segment effectively operate as a single program. When another
segment 1is required, either the main program or the segment can make
the EXEC call to request another segment overlay. The operating system
will then load the new segment into memory and pass control to it.

VIII-1



SEGMENTED PROGRAMS

-+ T

.
DISC
RESIDENT < SEGMENT
AREA OVERLAY

AREA
MAIN PROGRAM
.
~~ LOGICAL MEMORY
SEGMENT 3
SEGMENT 2
MAIN PROGRAM SEGMENT 1

SEGMENT 1 MAIN PROGRAM

NOTE TRACK, SEGMENT,
AND GAP SIZES ARE
EXAGGERATED

TPRTE-8

DISC MEMORY

Figure 8-1. Segmented Programs

Segments may be of any size but need not necessarily be of equal
length. The entire program requires a partition large enough to hold

the main program plus the size of the largest segment.

8-1l. RTE FORTRAN IV SEGMENTATION

RTE FORTRAN 1V programs can be segmented if certain conventions are
followed. The main program must be Type 2,3, or 4, and the segment
must be specified as Type 5 in its PROGRAM statement. The segment must
be initiated wusing the Program Segment Load EXEC call from the main

program or another segment.

VIII-2



SEGMENTED PROGRAMS

If the program is to loaded by the generator, each segment must make a
non-executable dummy call to the main program, This ensures that the
generator establishes the proper linkage between the main program and
its segments. For example:

-

CALL MAIN
END

where MAIN is the name of the main program. This dummy call is not
required if the program is loaded by the Relocating loader.

Chaining of segments is uni-directional. Once a segment is loaded,
execution is transferred to it. The segment, in turn, may call another
segment but a segment written in FORTRAN cannot easily return to the
main program. Segments can call any subroutine attached to the main
program. Communication between the main ptogram and segments may be

through COMMON.

8-2. RTE ASSEMBLER SEGMENTATION

The main program must be Type 2,3, or 4 and the segments must be Type
5. One external reference from each segment to its main program is
required for the generator to link the segments and main program. If
the main program accesses an external symbol that will be satisfied in
a segment, the symbol may appear in only one segment, Otherwise, the
generator or the loader may link the segments and the main program
incorrectly.

Figure 8-2 shows how an executing main program may use the JSB EXEC
call to bring in any of its segments from the disc. Note that although
control is passed to the transfer point of the segment, the main
itself is not suspended.

— —

SEGMENT 2

-t NAM SEG1

SEGMENT 1 EXT EXEC

(SEGMENT OVERLAY
AEA}
]

=y e g S

- 5B EXEC
DISC RESIDENT
« NAM MAIN PARTITION AREA
S EXT EXEC
25 .
] . (MAIN PROGRAM
R . AREAI
e L— JSB EXEC
MAIN PROGRAM
DISC MEMORY
SYSTEM
I TABLES

— p

LOGICAL MEMORY
Figure 8-2, Main Calling Segment

An executing segment may itself call in another of the main program’s
segments by using the same "JSB EXEC" request (see Figure 8-3).

VIII-3



o e e e i e o e e o e s +

| MULTIPLE TERMINAL MONITOR SECTION IX |

+ o———

e +

The Multi-Terminal Monitor (MTM) is a software package used to service
multiple terminals in an RTE operating system. Included 1in the
description given below are several special considerations applicable
to the optional multipoint subsystem operations.

9-1. SYSTEM CONFIGURATION

Multiple terminal operation requires that routines PRMPT and R$PN$ be
configured 1into the operating system during generation., By default,
they are memory resident and should be included in the system during
the generation Program Input Phase.

Configuring a terminal for MTM servicing is performed during the
Interrupt Table portion of generation. The following entry is
required:

sc, PRG, PRMPT

where sc 1is the select code of the terminal being configured. This
will cause interrupts to those select codes to be handled by program
PRMPT.

After the RTE system is initialized and running, each terminal must be
initialized with a control request either through an FMGR command:

tCN,1lu,20B
or an EXEC request:
CALL EXEC(3,2000B+1lu)

where 1lu is the Logical Unit number of the terminal being enabled.

9-2. MULTIPOINT INITIALIZATION

Configuring a terminal for multipoint operation is performed during
the Interrupt Table portion of generation. Refer to the HP 91730A

Multipoint Terminal 1Interface User’s Guide (91730-90002) for a
complete description of multipoint operations. The following entry

should be made for each communication line:

scl,PRG, PRMPT

where scl is the select code of the line being configured. This will
cause interrupts to that select code to be handled by program PRMPT.

IX-1



MULTIPLE TERMINAL MONITOR

Each terminal also requires a dummy Equipment Table entry (EQT).
Number 77 1is a good choice. This same EQT can be used for all
terminals. The following entry is then required for each terminal:

sct,ABS,0

where sct 1is the dummy select code that has been assigned to the
terminals,

After the RTE system is initialized and running, both the

communication 1lines and the terminals must be initialized. Each line
is enabled with a control request through either an FMGR command:

:CN,11u,208B,100000B+ICW
or through an EXEC request:
CALL EXEC(3,2000B+11u,100000+1ICW)
where:
1llu is the Logical Unit number for the line

ICW is the control word and has the following bit
configuration:

————— . S = — - —— T - - = — T - — . ——— - - - S w -

[15/14113112/11110/09/08}/07106105/04103/02]01| 00}

Y |

| 1| XX | TOVAL | XX | LN |

- —— - ——  ——— - — —— - - ——_— —— —— - —— - ——— ——— W — > -

where:
bit 15 is 1 to designate this as a line initiation
TOVAL is the timeout value in hundreds of milliseconds

LN is the logical line number

IX-2



MULTIPLE TERMINAL MONITOR

After the line has been initialized, each terminal on the line must be
enabled. This is done using either of the following commands:

tCN, ilu,20B,ICW
or:
CALL EXEC(3,2000B+ilu,ICW)
where:
ilu is the Logical Unit number ofrthe terminal.

ICW is the control word and has the following bit specification?

- - V. G A G G Sy S W G 4 D . e . G W W S S ————— — ———

bit 15 is 0 to designate this as a terminal initialization.

LN is the Logical Line Number as specified in the
Line Initiation control word.

GID is the Group Identification character as specified
on the terminal s communication card.

DID is the Device 'Identification character as specified
on the terminal’s communication card.

9-3. LOGICAL UNIT NUMBER ASSIGNMENT

A cartridge tape with (CTU) on a 264x terminal (non-multipoint) must
have a Logical Unit number either different than the Logical Unit
number of the associated display (CRT). It is suggested that the CRT' s
and CTU s be assigned LU numbers between 09 and 63, inclusive.

9-4, OPERATION

MTM will perform several services for the user in conjunction with a
terminal’s copy of FMGR. A terminal with Logical Unit number xx has
its own copy of FMGR if a program exists named FMGxx. For example, the
copy of FMGR for Logical Unit 09 would be FMG09. The paragraph
entitled "Creating Program Copies" (see below) explains how to make

copies of a program.



MULTIPLE TERMINAL MONITOR

If a copy of FMGR named FMGxx does not exist for a terminal, the
standard MTM prompt (xx>) will be issued and the user will be
conversing with the RTE operating system. The remainder of this manual
section assumes that the terminal has its own copy of FMGR named
FMGXX.

9-5. AVAILABLE MTM SERVICES

In an MTM environment, a user terminal with its own copy of FMGR has
access to four services:

1. Automatic scheduling of FMGxx when the user terminal interrupts
the operating system,

2. Variations of the BReak and ABort commands.

3. Automatic renaming of user programs scheduled from FMGxX.

4, Automatic execution of transfer file named HI.

9-6. AUTOMATIC SCHEDULING OF FMGxx
If a copy of FMGR called FMGxx exists for the terminal, striking a key

on the terminal causes FMGxx to be scheduled for execution. One of two
actions will then be taken, depending on whether or not FMGxx 1is
available for execution. Normally, FMGxx 1is available, since it
"belongs" to the terminal. If it is not available, the MTM variations
of the BReak and ABort commands may be used to make it available as

described below.
9-7. FMGxXx EXECUTION

If the terminal’s copy of FMGR is available for execution (not busy or
suspended) , three events will occur:

First, the prompt

Xx>FMGxXx
will be issued to the terminal.
Second, an

:LL,xx

is executed automatically (but is not displayed) on behalf of the user
terminal to make its LU the list device.

Third, control is transferred to a file name HI, which must exist on
LU 2, the system disc.

IX-4



MULTIPLE TERMINAL MONITOR

The HI file is a procedure file usually written by the system manager
and placed on Logical Unit 2. Although the file may be empty, it must
nevertheless exist or an FMGR =006 error will result., When the end of
the HI file 1is reached, control is transferred to the interrupting
terminal. The user is now conversing with the terminal’s copy of FMGR.

The system manager or other user can define many useful functions to
be performed in the HI file:

* Since the FMGxx global parameter 0G always equals the turn-on LU
number, the HI file can be made sensitive to the turn-on terminal.

* The HI file can schedule programs for execution wusing the RU
command.

* Commands can also be passed directly to the operating system using
the SY command.

Refer to the Batch-Spool Monitor Reference Manual for a complete
description of FMGR commands.

9-8. BREAK AND ABORT COMMAND VARIATIONS

Program FMGxx sometimes will be busy when the operating system
attempts to schedule it to the interrupting terminal. In this case,
the operating system will issue the standard MTM prompt

XX>

and the user will be conversing with the operating system. In addition
to the standard BReak and ABort operator commands, two variations of
the commands will be accepted. These variations apply only when
entered from an MTM terminal other than the system console, and only
if program FMGxx exists,

Throughout the remainder of this discussion, the term "father" will be
used to indicate a program that has scheduled another program and is
waiting for the scheduled program to complete before resuming its own
execution. The term "son" refers to the program that the father has

scheduled. This form of program scheduling is commonly called
"schedule with wait".

IX-5



MULTIPLE TERMINAL MONITOR

1.
set

MTM BREAK COMMAND -~ The MTM command BR issued at terminal xx will
the break bit of the last son of FMGxx. The following example

illustrates the interaction:

IX-6

user hits a key
Xx>FMGxx

+RU,PROGA PROGA runs, and assume

PROGA schedules PROGB
user hits a key

xXx> BR no program name specified

The BR command will set the break bit in program PROGB, since it
is the last son of FMGxX.

The command
BR, PROGX

will still set the break bit in PROGX and have no effect on FMGxx

or any of its sons. For more information on breaking programs,
refer to the IFBRK system library subroutine and the BR operator

command.,

If FMGxx has no sons, the break bit will be set in FMGxx itself.

Whenever a FMGR program finds its break bit set, it issues the
response

FMGR 000

at the turn-on terminal and prompts for the next input.

+
| I
| I
| The BReak command entered from the system console must |
| still have the program name specified as the first |
| |
I I

+

parameter.

MTM ABORT COMMAND - The MTM AB command issued at terminal xx
where FMGxx exists performs the same function as the BR command

except that the last son of FMGxx is aborted. Considerable care
should be exercised in using this command. If FMGxx has no sons,

then the break bit of FMGxx is set and the program is not aborted.



MULTIPLE TERMINAL MONITOR

o o e e e e e e e e et e e e e e e e o e e e

NOTE ‘ l

! |
| The batch abort command (AB) may only be entered |
| from the system console. |
|
+

e . i o 2R A i e o e T e i e e i e et o e

9-9. AUTOMATIC PROGRAM RENAMING

MTM manages ID segments so that each user can have his own copy of a
program. If the user wishes to run a program with FMGxx as the father
(i.e. :RU,PROGX but not :SYRU,PROGX), then in certain circumstances,. a
copy of the program will be created belonging to the particular
terminal and run for the user at the terminal.

MTM will perform this action whenever the program to be run is a son
of FMGxx, and the program is a Type 6 FMGR file. A copy of the program

will be <created with the 1last two characters being xx, and be
scheduled for execution to terminal xxX.

For example, if the EDITR is loaded on-line as a temporary load and
saved as a Type 6 file, the command:

:RU,EDITR

will create a program named EDIxx and schedule it to terminal xx. When
EDIxx 1is finished, the ID segment will automatically be returned to
the system.

The advantage of processing the ID segments in this way is that all
terminals can run the same program but each user gets a personal copy
of the program. Therefore, a user does not have to wait for other
users to finish with a program before gaining access to it.

The above procedure will work even if the program to be run has been
previously restored using the RP command. In fact, the program will be
created more quickly, since there would be no disc search time before
the program could be run.

If desired, the automatic renaming feature of MTM may be circumvented
by using a copy of FMGR that does not "belong" to the terminal at
which the wuser 1is operating. In this case, none of the features
descr ibed for MTM apply, and the AB and BR commands will revert to
their normal usage.

The program renaming feature of MTM may also be temporarily inhibited
when running a program by using the following form of the RU command:

:RU, PROGX:1H

IX-7



MULTIPLE TERMINAL MONITOR

In this case, the actual program named PROGX will be run rather than a
copyY.

This capability is especially useful when loading permanent programs.
The program named LOADR is the only program that can load, replace or
purge programs permanently in the system. A copy of LOADR cannot
perform these functions. Therefore, if the user 1is operating from
FMGxx at terminal xx, the following command can be used to locad a
permanent programs: '

tRU,LOADR:IH, ecceeuss

All programs in Type 6 files (whether RP‘ed or not) will be renamed.
Permanent programs will not be renamed. A freshly-loaded temporary
program will not be renamed until it has been first SP°ed, OF ‘ed and
then at the user’s discretion, is RP ‘ed.

The following example shows how to make a freshly-loaded program
eligible for program renaming:

: RU,LOADR, ,&ABCDE, 6, TE loads progr am ABCDE temporarily
:SP,ABCDE saves ABCDE as a Type 6 file

:OF ,ABCDE, 8 gets rid of the loaded copy
:RP,ABCDE restores program for faster access
:RU,ABCDE program ABCXX

9-10. CREATING PROGRAM COPIES

The following example shows how to rename the FMGR program to give it
several different names. The commands given assume that FMGR has been
previously saved with the FMGR SP command:

: RN, FMGR,FMGO1 rename the file

:RP, FMGO1 restore FMGO1l from file
:RN, FMGO1,FMGO7 rename file again

: RP, FMGO7 restore FMGO07 from file
:RN, FMGO7, FMG14 rename file again

: RP, FMG14 restore FMGl4 from file
¢t RP, FMGXxX restore program FMGxx
:RN, FMGxx, FMGR rename file back to FMGR

for future use (i.e., on next entry into
this procedure file).

A similar procedure can be followed to make multiple copies of other
programs.

IX-8



MULTIPLE TERMINAL MONITOR

Note that the above commands can be put in a file that will be run

each time that the system is booted up. This relieves the user of the
responsibility of renaming all programs for MTM use if the system went

down and had to be rebooted, The last RN command restores the file’s
original name for future use.

It 1is recommended that a copy of FMGR be renamed for each terminal in
the MTM environment to take advantage of the automatic scheduling
capability of MTM.

For example, assume a key on the terminal with Logical Unit number 7
is struck. The terminal issues the following prompt:

07>FMGO07
(HI file gets executed here)

L
.

The user is now conversing with FMGO7 and the default list device is
Logical Unit 7. The HI file has been executed and any legal FMGR

command may now be issued,

9-11. PROGRAM SWAPPING

In an MTM environment, there are times when a number of users could be
concurrently running copies of the same program, each from their own
terminal. If more programs than partitions exist, the system will try
to service all users by forcing programs to share partitions; that is,

it will force programs to swap. When the program being run at each

terminal is interactive, it is then in the best interest of all users
to code the input routines to be swappable.

All output to terminals normally is buffered, and thus a program can
be swapped. However, terminal input through EXEC <calls (CALL

EXEC(1l,LU, 1IBUFR,ILENGTH)) normally is NOT buffered and the program

therefore 1is locked into its partition until the user decides on the
keyboard response, types it in, and presses the RETURN key. During

this time, no other program may use the partition.

If there are more interactive programs than partitions large enough to
accomodate them, some users are needlessly forced to wait for others

to input their data. This form of system inefficiency can be avoided
by coding all terminal input to use the reentrant System Library REIO

routine., The calling sequence is identical to the EXEC call for input:
CALL REIO(1,LU,IBUFR,ILENGTH)

This call allows terminal input to be buffered and ensures maximum
system efficiency. See the RTE-IV Library Subroutines Section for

further information regarding the use of REIO.

IX-9



MULTIPLE TERMINAL MONITOR

Note that the FORTRAN-IV Formatter uses REIO for all input READ
requests to ensure that a FORTRAN-IV user’s input is always buffered.

IX-10



o o o = - -
[

| RTE-IV LIBRARY SUBROUTINES

| .
A e i e o i e e o e > S i S o A S o 2 o o

+ ———+
0
t
Q
|
-
o
Z
>

10-1. INTRODUCTION

RTE-IV operating systems are delivered with a collection of
relocatable subroutines that comprise the system library. This group
of subroutines are specific to RTE-IV operating systems and are used
to interface user programs with system services,

Other <collections of H-P relocatable subroutines for more general use
are also available as options, and are described in the DOS/RTE
Relocatable Library Reference Manual. They have been grouped into the
following libraries according to function:

Library Mnemonic Library Name
RLIB.N DOS/RTE Relocatable Library
FF4.N FORTRAN 1V Formatter

RLIB.N contains mathematical and utility subroutines such as SIN,COS,
BINRY, etc. The formatter libraries contain subroutines that perform
formatted data transfers, interpretation of formats, unformatted
input/output of binary data, free field input, and buffer to buffer
conversions. In addition, may RTE subsystems (i.e., Batch/Spool
Monitor) include subroutines that may be of general use. See the
appropriate subsystem manual for more information.

10-2. CALLING LIBRARY SUBROUTINES

Library subroutines are called by user programs and are linked to the

caller either at generation or load time. These subroutines can be
called either by disc-resident or memory~-resident programs.

Subroutines referenced by disc-resident programs are appended to the
end of the calling program and linked to it either by the loader
(LOADR) or On-Line Generator.

Subroutines referenced by memory-resident programs will be placed in
the memory-resident library by the generator. These subroutines must
either be reentrant or privileged, Several memory-resident programs
can then share one subroutine, which can save considerable space in
the memory-resident area. Disc-resident programs cannot access
routines in the memory-resident library; thererfore, copies of these
subroutines will be appended to these programs.



RTE-IV LIBRARY SUBROUTINES

If only one memory-resident program is to access a subroutine, it is
advantageous to make it a Type 7 subroutine to force it to be appended
onto the calling program. A Type 7 subroutine 1is not placed in the
memory-resident 1library and therefore need not be privileged or
reentrant, This results in faster execution, since the subroutine will
not incur the overhead associated with reentrant or privileged
subroutines.

10-3. REENTRANT SUBROUTINE STRUCTURE
A subroutine must meet two criteria to be reentrant:
1. It must not modify any of its own instructions.

2. It must save all temprorary results if it is to be called again
before completing its current task.

A subroutine saves temporary results in a Temporary Data Buffer (TDB)
that the operating system ensures is unique to each program. For
example, assume PROGA 1is executing a reentrant subroutine that is
interrupted by PROGB. If PROGB then begins execution of the same

subroutine, the system saves PROGA’s TDB until PROGA resumes
execution, at which time it restores the proper TDB.

Each time a reentrant subroutine begins executing, the address and
length of its temporary data block are transferred to RTE-IV through
the entry point SLIBR 1in order to save the data. At the end of
execution, the re-entrant subroutine again calls RTE-IV through entry
point SLIBX to restore any previous temporary data.

The reentrant subroutine structure is used for subroutines with an
execution time exceeding one milli-second. However, for shorter
execution times, the overhead time the system uses in saving and
restoring temporary data makes reentrant structure unreasonable.
Faster subroutines can be structured as privileged.

A library (Type 6) subroutine can only call
another library subroutine or Table Area I
or, optionally, Table Area II entry points.



RTE-IV LIBRARY SUBROUTINES

10-4., REENTRANT SUBROUTINE FORMAT

The format and calling sequence for reentrant subroutines is as
follows:

NAM XXXXX,06
EXT SLIBR,SLIBX

ENTRY NOP Entry point of subroutine
JS  SLIBR Tell system to protect TDB
DEF TDB Address of temporary data
. Subroutine instructions go here
EXIT JSB S$LIBX Tell system reentrant run is finished
DEF TDB Address of temporary data
DEC N Return adjustment
(Return point=N+ENTRY)
TDB NOP System—-supplied link to previous TDB
DEC K Total length of current TDB in words
NOP System-supplied return address to

calling program

BSS K-3

- Temporary data (K-3 words)

1U-5, PRIVILEGED SUBROUTINE STRUCTURE

Privileged subroutines execute with the interrupt system turned off.
This feature allows many memory resident programs to use a single
privileged subroutine without incurring reentrant overhead. As a
result, privileged subroutines need not save temporary data blocks but

must execute very rapidly to minimize the time that the interrupt
system is disabled.

Since privileged subroutines disable the interrupt system, EXEC calls
are 1illegal within a privileged subroutine. 1If one is attempted, the
calling program will be aborted with an EX error (See Section III).



RTE-IV LIBRARY SUBROUTINES

10-6. PRIVILEGED SUBROUTINE FORMAT

The format and calling sequence for privileged subroutines is as
fol lows:

NAM XXxx,6
EXT SLIBR,SLIBX -
ENTRY NOP Entry point to the routine
JSB SLIBR Call the system to disable the
Interrupt system and memory
protect fence
NOP Denotes privileged format

EXIT JSB SLIBX Call the system to return to calling
program, and to enable interrupts

andé memory protect fence
EXIT1 DEF ENTRY Return address

It 1is also possible to go privileged in a block of in-line code, as
follows:

JSB SLIBR Go privileged
NOP Denotes privileged format
- First instruction

JSB SLIBX Leave privileged status
DEF *+1 Both DEF’s are required
DEF *+1

10-6A. MEMCRY RESIDENT LIBRARY

The memory resident 1library area in RTE-IV contains only Type 6

subroutines that are referenced by memory resident programs and Type
14 subroutines forced into the memory resident library at generation

time.

Reentrant and privileged subroutines may be placed in the memory
resident library during generation by either of the following methods:



RTE-IV LIBRARY SUBROUTINES

1. If the routine is declared as an external (called) by a memory
resident (Type 1) program, or is called by another memory
resident library subroutine, the subroutine will be
automatically placed in the memory resident library by the
generator.

2. The routine <can be changed to a Type 14 subroutine during the
Parameter 1Input phase of generation (it also could have been
assembled as a Type 14 subroutine).

NOTE
After the relocation of the resident library and all

memory resident programs, all Type 6 routines are
converted to Type 7 (utility) routines.

Not all subroutines referenced by memory resident programs are lcaded
into the memory-resident library. By declaring the subroutine to be
Type 7, the user can ensure that the subroutine will be loaded with
the program. Tnen if .ZRNT and .ZPRV are used instead of SLIBR, the
subroutine will execute faster since the system does not need to do
the reentrant or privileged processing prior to executing the
subroutine, :

10-7. UTILITY SUBROUTINE STRUCTURE

Utility subroutines are subroutines that cannot be shared by several
programs because of internal design or 1I/0 operations. Therefore, a
copy of a utility subroutine is appended to every program that calls
for it. The PAUSE subroutine and the library subroutines FRMTR (FF.N),
and FMTIO (F4D.N) are typical examples of utility subroutines.

When the RTE system is generated, all library subroutines other than
Type 8 subroutines are converted to Type 7 utility subroutines
following the relocation of memory resident programs. All required
utility subroutines are then relocated immediately following each user
program that references them during program relocation.

l0-8. SYSTEM LIBRARY SUBROUTINES

All system library subroutines are described below with the exception
of .EMAP, .EMIO, MMAP and EMAST. These four subroutines are the direct
concern of memory management considerations and are therefore
described in the Memory Management section of this manual.



RTE-IV LIBRARY SUBROUTINES

10-9. REIO (Reentrant 1/0)

The REIO subroutine permits user programs to perform reentrant I/O and
disc resident programs to be swappable. REIO is a utility type library
subroutine and has within its structure a reentrant routine that is
appended to each program that calls its. The calling sequence for REIO
is:

CALL REIO(ICODE,ICNWD,IBUFR,IBUFL)

where the parameters are described in the Read/Write EXEC call in
Section IV of this manual. Note that REIC can only be used with
Read/Write <calls and that the optional parameters available in those
calls are not allowed in the REI0O call. REIO will always perform the
requested I/0; however, it will do reentrant I/0 only if the buffer is
less than 130 words (to save system memory), and the buffer address is
at least five words above the current fence address. If the sign bit
is set on ICODE, the same error options available with the EXEC call
are in effect (i.e. error return followed by normal return). REIO
returns the same values in the A- and B-Registers as the standard EXEC
call.

A reentrant subroutine may perform I/0 wusing the standard EXEC
requests. If the buffer 1is 1in the temporary data block (TbB) of
either itself or another reentrant routine that called it, the calling
program is swappable. If the buffer is 1in the user area, the program
is not swappable (i.e., if the buffer is not in the TDB or user COMMON
area, the program is not swappable).

10-10. BINRY (Disc Read/Write)

FORTRAN progr ams can call the BINRY subroutine, to transfer
information to or from the disc. The call must specify a non-EMA
buffer array, the array length in words, the disc logical Unit number,
track number, sector number, and offset in words within the sector.
(If the offset equals 0, the transfer begins on the sector boundary;
if the offset equals n, the transfer then skips n words into the
sector before starting.) BINRY has two entry points: BREAD for read
operations and BWRIT for write operations.

For example:

CALL BWRIT (ARRAY,N,IDISC, ITRK,ISECT,IOFST)
CALL BREAD (ARRAY,N,IDISC,ITRK,ISECT,IOFST)

where:
ARRAY = Address of the first element
N = Number of words
IDISC = Disc logical unit number
ITRK = Starting track number
ISECT = Starting sector number
IOFST = Number of words offset within a sector



RTE-IV LIBRARY SUBROCUTINES

There are three basic ways that data can be written on the disc in
relation to sector boundaries. Care must be used in planning the WRITE
statement in two of the cases to avoid losing existing data:

l. Offset=n (i.e., transfer begins within a sector), and less than
the sector 1is written, or the data transfer ends on a sector
boundary. The entire first sector is initially read into an
internal buffer, the data 1is modifed according the BWRIT
statement, and the entire sector is then rewritten on the disc
with no data loss. No special precautions are required in this
instance.

2. Offset=0 (i.e., transfer begins on a sector boundary), and less
than the sector is written. The remaining data in the sector will
be 1lost 1if the following precaution 1is not taken. The entire
existing sector on the disc can first be read into a user s buffer,
modified to reflect the desired changes, and then rewritten on the
disc as a full sector.

3. Offset=0 or n, and a sector boundary is crossed 1in the data
transfer. The remaining data in the final sector will be lost if
the following precaution is not taken:

The entire final sector (of the data transfer) on the disc should
be read into a wuser’s buffer, modifed to reflect the desired
changes, and then rewritten on the disc as a full sector.

10-11. RNRQ (Resource Management)

Allows cooperating programs a method of efficiently utilizing resources
through a resource numbering scheme. A detailed discussion of resource
managment considerations is provided following the Class I/0 description
in the EXEC Call section of this manual.



RTE-IV LIBRARY SUBROUTINES

The calling sequence for RNRQ is:

ICODE=numb
CALL RNRQ(ICODE,IRN,ISTAT)
where:
ICODE defines how the resource number is to be used. (See
Figure 10-1.)
IRN the resource number is returned in IRN.
ISTAT status return word.
0 - normal deallocate return
1 - RN is clear (unlocked)
2 -— RN is locked locally to caller
3 - RN is locked globally
4 - no RN available now
6 - RN locked locally to other program
7 - RN was locked globally when request was made

A resource number is used when one program wishes to use a resource
exclusively with the cooperation of other programs in the system. This
resource could be a physical device (see subroutine Logical Unit Lock)
or the system itself., Using an RN prevents a low priority program from
being interrupted by a higher priority program when executing.

All programs must agree that a certain RN will be used as a lock or
busy indicator for a given device. '



RTE~IV LIBRARY SUBROUTINES

Figure 10-1 illustrates the format of the control word reguired in the
calling sequence.

o tm——————— e Gttt tm———— e te———- te———— +
| 15 | 14 i 5 1 4 | 3 | 2 | 1 | 0 |
| | | | | | | | |
te———————— fm——————— fom———— Fom——— tom e - te——— to———— +
| wWAIT | | ALLOCATE | SET |
| OPTION | | OPTION I DISPLAY I
Fmm e e e ———— Fom——— tm———— tmm——— tom—— Fm———— tom———— +
| NO | NO | ¢ I ¢ | L | ¢ | G | L | |
| | | | | | | | |
| W | A ' . | L | o | | L | o |
| | | | | | | | |
| A I B /| B | o | ¢ | E | o | ¢ |
I | | | | | ! | |
| I | 0 /| a | B | A | A | B | a |
| | | | | | | | |
| T | R f R | A | L | R | A | L |
| | | | | I | I I
I | T I | L | | | L | I
o ——— e ————— Fm———— dom——— Fm———— Fo———— tom——— Fomm——— +

Figure 10-1. RNRQ Control Wword Format

If more than one bit is set 1in the control word, the following order
of execution is used:

1. local allocate (skip step 2 if done)
2, global allocate

3. deallocate (exit if done)

4. local set (skip step 5 if done)

5. global set

6. clear

The system has a certain quantity of resource numbers (RNs) that are
specified during generation. If a resource number is not available,
the program is suspended until one is free, unless the ‘no wait’ bit
is set. If the "'no wait’ bit is set, the IRN location is set to zero.
If the RN allocation is successful, the value returned in IRN is set
by the system. It has no meaning to the user but must be specified

(through IRN) when a 1lock 1is requested or the 1IRN is cleared or
deallocated.



RTE-IV LIBRARY SUBROUTINES

The no abort bit is used to alter the error return point of the call
as shown in the following example:

CALL RNRQ(ICODE....)
GO TO error routine
normal return point

The above special error return is established by setting bit 14 to 1
in the request code word (ICODE). This causes the system to execute
the GO TO statement following CALL RNRQ if there is an error, or skip

the GO TO statement if there is no error.

10-12. RNRQ ALLOCATE OPTIONS

LOCAL - Allocate an RN to the calling program., The number is returned
in the IRN parameter. The number 1is automatically released on
termination of the calling progam, and only the calling program can
deallocate the number.

GLOBAL - Allocate an RN globally. The number is released by a request
from any program.

CLEAR - Deallocate the specified number.

10-13. RNRQ SET OPTIONS

LOCAL - Lock the specified RN to the calling program, The RN is
specified in the IRN parameter., The 1local lock 1is automatically
released on termination of the calling program. Only the calling
program can clear the number,

GLOBAL - Lock the specified RN globally. The RN is specified in the
IRN parameter and the calling program can globally lock this number
more than once. The number is released by a request from any program,

CLEAR - Release the specified number.

If the RN is already locked to someone else, the calling program is
suspended (unless the no wait bit is set) until the RN is cleared. If
more than one program is attempting to lock an RN, the program with
the highest priority is given precedence. A single call can both lock
and clear an RN.

If a program makes this call with the c¢lear bit set, in addition to
either the global or local set bits, the program will wait (in the
general wait list) until the RN is cleared by another program and then
continue with the RN clear.

X-10



RTE-IV LIBRARY SUBROUTINES

An entry point is provided for drivers or privileged subroutines of
Type 3 programs that wish to clear a global (and only global) RN:

LDA RN
JsB SCGRN
return point

An example on how to use ICODE follows:

Assume vyou wish to get an RN assigned so that any program can access
it. You also want an alternate return point in case of error. Bits 4
and 14 would then be set as follows:

100 000 000 010 000 = 100208

10-14. LURQ (Logical Unit Lock)

Allows a program to exclusively dominate (lock) an input/output
device. The calling seguence is:

DIMENSION LUARY(n)
IOPTN=nump

NOLU=aa

CALL LURQ (IOPTN, LUARY,NOLU)

Parameters

IOPTN control parameter (an octal number)
0x0000-unlock specified LUs
1x0000-unlock all LUs the program currently has locked
0x0001-lock with wait specified LUs
1x0001-1lock without wait specified LUs
X (bit 14) is the no abort bit. x=4 to set, else x=0.

LUARY an array of n LUs to be locked or unlocked.

NOLU number of LUs to be locked or unlocked.

This request temporarily assigns a logical unit to the calling program. It
prevents a higher priority program from interrupting a progran’s use of
the device until the device is unlocked by the program that locked it.

The Logical Unit Lock request allows up to 31 programs to exclusively

dominate (lock) an input/output device. Any other program attempting
to use or lock a locked LU will be suspended until the original program

unl ocks the LU or terminates.



RTE-IV LIBRARY SUBROUTINES

NO ABORT BIT

The no abort bit is used to alter the error return point of this call
as shown in the following example:

CALL LURQ(IOPTN...)
GO TO error routine
normal return point

The above special error return is established by setting the ‘x’ in
IOPTN to 4 which sets bit 14.
This causes the system to execute the GO TO statement
following the CALL LURQ if there is an error, or to skip the GO TO statement
if there is no error.
UNLOCK

To unlock all owned LUs, the LUARY array is not used but still must be
coded; the program will not abort.

Any LUs the program has locked will be unlocked when the program:
1. Performs a standard termination
2. Performs a serial reusability termination.
3. Aborts

Note that LUs will not be unlocked when the program performs a  save
resources’ termination.

This subroutine calls the program management subroutine (RNRQ) for a
resource number (RN) allocation; that is, the system locks an RN
locally to the calling program. Therefore, before the logical unit
lock subroutine can be used, a resource number must have been defined
during generation. Only the first 31 RNs can be used for LU locks.

If the no-wait option is coded, the A-register will contain the
following information on return:

0 - LU lock successful
-1 - no RN avalable at this time

1 - one or more of the LUs is already locked.

>
|

12



RTE-IV LIBRARY SUBROUTINES

Note that the calling program may not have LUs locked at the time of
the call unless the no-wait option is used. All LUs locked by the
calling program are locked to the same RN.

10-15. S$PARS (Parse)

Allows a program to parse an ASCII string.

The calling sequence 1is:

LDA IBUFA Buffer address
LDB ICOUN Character count

EXT S$PARS
JSB $PARS
DEF IRBUF
-return-

where IRBUF is 33 words long. The result of the parse of the ASCII

string at IBUFA is stored in IRBUF using 4 words per parameter that
are set as follows:

WORD ENTRY
1 FLAG WORD 0 = NULL
1 = NUMERIC
2 = ASCII
2 VALUE (1) 0 If NULL; Value if Numeric; first
2 characters if ASCII.
3 VALUE (2) 0 If NULL or numeric else the 3rd
and 4th characters.
4 VALUE (3) 0 If NULL or numeric else the 5th and 6th

characters.

ASCII parameters are separated from numeric parameters by examination
of each character. One or more non-digit characters (except a
trailing "B" or leading "-") makes a parameter ASCII. This subroutine

can parse up to eight parameters.
IRBUF is initialized to 0 before parsing the string IBUFA.

The 33rd word of IRBUF will be set to the number of parameters in the
string.



RTE-IV LIBRARY SUBROUTINES

The Parse routine ignores all blanks and uses commas to delimit
parameters. ASCII parameters are padded to six characters with blanks
or, if more than 6 characters, the left most 6 are kept. Numbers may
be negative (leading "-") and/or octal (trailing "B").

FORTRAN interface with $PARS is provided with the following calling
sequence:

CALL PARSE (IBUFA,ICONN,IRBUF)

where the parameters are as described for the Assembly Language call
above.

10-16. INPRS (Buffer Conversion)

This routine converts a buffer of data back into its original ASCII
form. The user passes the routine a buffer (IRBUF), plus the number of
parameters in the buffer, that looks 1like the buffer returned by the
PARSE routine. INPRS then reformats the buffer into an ASCII string
that 1s syntactically equivalent (under the rules of PARSE) to a
buffer that may have been passed to PARSE to form IRBUF. The length of
the ASCII string in characters will be eight times the number of
parameters. The FORTRAN calling sequence is:

CALL INPRS (IRBUF,IRBUF(33))

where:

IRBUF is the buffer containing the parsed string
IRBUF(33) is the number of parameters parsed

10-17. sSCvT3,$CVTl,CNUMD,CNUMO, KCVT
(Binary to ASCII Conversion Subroutines)
Converts a positive integer binary number to ASCII.

The calling sequence is:

LDA numb
CLE or CCE (see text)
EXT $CVT3
JSB $CVT3
-return-

Upon return:
E-register=1

A-register=address of result
B-register=value at invocation

X-14



RTE-IV LIBRARY SUBROUTINES

SCVT3 converts a positive binary number in the A-Register to ASCII,
suppressing leading zeros, in either OCTAL (E=0) or decimal (E=1). On
return, the A-Register contains the address of a three word array
ontaining the resultant ASCII string.

SCVT1 has the same calling sequence as $CVT3 except that on return,
the A-Register contains the least-two characters of the converted
number. The number to be converted must be positive.

The FORTRAN interface with $CVT3 is provided by the following calling
seqguence:

DIMENSION IARRAY(3)
(decimal) CALL CNUMD (binary numb,IARRAY)
(octal) CALL CNUMO (binary numb, IARRAY)

where binary numb is the positive binary number to be converted and
IARRAY 1is a three word array (6 ASCII characters). Leading zeros are
suppressed.

The following subroutine converts a positive number to ASCII base 10
and returns the least two digits in "I". The FORTRAN calling sequence
is:

I=KCVT (J)

10-18. MESSS (Message Processor Interface)
Processes all operator commands (see Section III).

The FORTRAN call to the system message processor is provided by the
following calling sequence:

I = MESSS (IBUFA,ICOUN,LU)

where IBUFA contains the ASCII command. ICOUN is an integer containing
the character count. LU is optional.

The value on return will be zero if there 1is no response, or the
negative of the character count if there 1is a message. Any message
will be in IBUFA.

If the request is RU or ON (starting in first column) and the first
parameter is zero or absent, then the first parameter will be replaced
by LU. LU is optional. If it is not supplied, no replacement occurs.,



RTE-IV LIBRARY SUBROUTINES

10-19. EQLU (Interrupting LU Query)

A calling sequence is provided to find the Logical Unit number of an
interrupting device from the address of word four of its equipment

table entry. The address of word 4 is placed in the B-Register by the
driver and used in the following sequence:

LDB EQT4

This 1is not necessary if the address of EQT4 has already been placed
into the B-register by the driver or by another program/subroutine.

The Assembly Language calling sequence is:

EXT ECLU

JSB EQLOU

DEF RTN

DEF LUSDI (optional)
RTN return point

EQLU will return with:

A-Register 0 if an LU referring to the EQT was not found.

LU if the LU was found.

ASCII "00" or the LU number in ASCII e.g. "16"

B-Register

LUSDI

(optional parameter) value is returned to this
parameter as well as in the A-Register,

This subroutine may be called from FORTRAN using the following calling
seguence :

LU=EQLU (LUSDI)

10-20. PRTN,PRTM (Parameter Return)

These two routines are used to pass parameters to the program that
scheduled the <caller with wait. The scheduling program may recover
these parameters with RMPAR.

The PRTN routine passes five parameters and clears the wait flag.

This means that the <caller should terminate immediately after the
call.

X-16



RTE-IV LIBRARY SUBROUTINES

The Assembly Language calling sequence is:

EXT EXEC, PRTN
JSB PRTN

DEF *+2

DEF IPRAM
JSB EXEC

DEF *+2

DEF SIX

IPRAM BSS 5 Parameter buffer
SIX DEC 6 Program termination code

Note that the Program Termination EXEC cdll must immediately follow
the PRTN call.

The FORTRAN calling sequence 1is:

DIMENSION IPRAM(5)

CALL PRTN(IPRAM)
CALL EXEC(6)

The PRTM routine passes four parameters and does not clear the wait
flag. When the parameters are recovered with RMPAR, the first
parameter is meaningless.

The Assembly Language calling sequence is:

EXT PRTM
JSB PRTM
DEF *+2

DEF IPRAM

IPRAM BSS 4



RTE-IV LIBRARY SUBROUTINES

10-21. .DRCT (Indirect Address Subroutine)
Resolves an indirect address within the calling program’s map.
The Assembly Language calling sequence is:
EXT .DRCT
JSB .DRCT
DEF ADDEK
~-return-
The routine returns with the A-Register set to the direct address of

ADDR, the B-Register unaltered, and the E-Register lost. This routine
is usually used when ADDR 1s external.

10-22. IFBRK (Breakflag Test)

This routine tests the break flag and clears it if it is set. See the
BK command in Section IX.

The FORTRAN calling sequence is:

IF (IFBRK(IDMY)) 10,20

where:
10 = branch taken 1if the break flag is set. The flag will be
cleared.
20 = pranch taken if the break flag is not set.

IDMY must be wused to inform the FORTRAN compiler that an external
function is being called.

The Assembly Language calling sequence is:
JSB IFBRK
DEF *+1

-return-

The A-Register will = -1 if the break flag is set and =0 if not. The
break flag will always be cleared if set.



RTE-IV LIBRARY SUBROUTINES

10-23. COR.A, COR.B (First word Available Memory)

COR.A finds the address of the first word of available memory for a
given ID segment.

The Assembly Language calling sequence is:

EXT COR.A
LDA IDSEG
JSB COR.A
-return-

The ID segment address is loaded 1into the A-Register and the routine
is called. On return the A-Register contains the first word of
available memory (MEM2 from ID). Note that on entry into a segment,
the A-Register contains the segment’s ID segment address.

COR.B finds the high address +1 (first word of available memory) for
main programs. This address is the same as that returned by COR.A for
non-segmented programs. For segmented programs, this address is the
high address + 1 of the largest segment. The ID segment address of
only a main program must be passed to COR.B in the A-register.

The Assembly Language calling sequence is:

EXT COR.B
LDA IDSEG ID segment address of a main program
JSB COR.B
-return-

Upon return:

A-register 0 if normal return -1 if an error return, the B

register is meaningless

B-register high address of main program (if it is not

segmented) or the largest segment +1.

COR.B makes an error return if the ID segment address passed to it is
that of a short ID segment (i.e., a segmented program).

X-19



RTE-IV LIBRARY SUBROUTINES

10-24. IDGET (Retrieve Program’s ID Segment Address)
Retrieves the ID segment address of a specified program.
The FORTRAN calling seqguence is:

IDSEG = IDGET (NAME)
where:

IDSEG will be set by the subroutine to the referenced program’s ID
segment or to 0 if the program does not exist.

NAME is a three-word (five-character) buffer with the program name
in it.

The Assempbly Language calling sequence is:

JSB IDGET

DEF *+2
DEF NAME
NAME ASC 3,PROG Set aside three words of storage
containing ASCII equivalent of
PROGDD.

On return, the following registers are set as indicated:

A-register ID segment address, or 0 if not found

0 if program found, or 1 if not found

E-register

0

B-register



RTE-IV LIBRARY SUBROUTINES

10-25. TMVAL (Current Time)

Reformats and returns the time in milliseconds, seconds, minutes,
hours, and the day.

The FORTRAN calling sequence is:
CALL TMVAL(ITM,ITMAR)
where:

ITv is the two-word negative time in tens of milliseconds. This
double-word integer can be obtained from the system entry
point $TIME or the time values in the ID segment.

ITMAR is a five-word array to receive the time. The array is set
up as:

tens of milliseconds

seconds

minutes

hours

current system day of year (not related to call values)

10-26. GETST (Recover Parameter String)

The routine GETST recovers the parameter string from a program’s
command string storage area. The parameter string is defined as all
the characters following the second comma in the command string (third
comma if the first two characters in the first parameter are NO).

The Assembly Language calling sequence is:
EXT GETST

JsB GETST Call to subroutine
DEF RTN Return address
DEF IBUFR Buffer Location
DEF IBUFL Buffer Length
DEF ILOG Transmission Log
RTN return point Continue execution
IBUFR BSS n Buffer of n words
IBUFL DEC n (or -2n) Same n; words (+) or characters (=)
ILOG NOP BError information

X-21



RTE-IV LIBRARY SUBROUTINES

Upon return, ILOG contains a positive integer giving the number of
words (or <characters) transmitted. The A- and B-Registers may be
modified by GETST. Note that if RMPAR is used, 1t must be called
before GETST.

when an odd number of characters is specified, an extra space is
transmitted in the right half of the last word.

This subroutine performs a function similar to an EXEC 14 call.

10-27. IFTTY (Logical Unit is or is Not Interactive)
Ascertains whether a logical unit is interactive or not.
The calling sequence in Assembly Language is:
EXT IFTTY
JSB IFTTY
DEF RTN
DEF LU Logical unit being tested
RTN return point
The FORTRAN IV calling seguence 1is:
INT=IFTTY(LU)
where LU is the logical unit being tested.
Upon return:
INT=A-register -1 if logical unit LU is interactive
0 if logical unit LU is non-interactive
/ upper byte is the driver type (word 5 of EQT

B-register< table entry, bits 8-13)
\ lower byte is the subchannel number

W

10-28. LOGLU (Returns LU of Terminal that Scheduled Program)

LOGLU is a subroutine that returns the logical unit number (LU) of the
terminal at which the currently executing program was scheduled.

X-22



RTE~-IV LIBRARY SUBROUTINES

The calling sequence in Assembly Language is:

EXT LOGLU

JSB LOGLU

DEF RTN

DEF IDUMY
RTN return point

The calling sequence in RTE Fortran IV is:
LU=LOGLU (ISES)

Upon return:

LU=A~register LU number of device at which program was scheduled

ASCII LU number

B~register

This word will be modified by the subroutine, its
value is reserved for future use by HP.

ISES

Comments:

Note that LOGLU must be called as a function. LOGLU will return the LU
number of the console from which the currently executing program was
scheduled. This LU number is passed down from the Father program to
the Son program when one program schedules another program for
execution., If the program was scheduled by interrupt or from the time
list, the scheduling LU will be LU 1, the system console.

10-29. .EMAP, .EMIO, MMAP, EMAST (Extended Memory Area (EMA))s

The subroutines ,EMAP, .EMIO, MMAP, and EMAST are system library
subroutines that handle Extended Memory Areas. A complete description
of these subroutines is provided in the Memory Management section of
this manual.



e e e e —————————— e~ o~ o o e 2
I

| DBUGR--INTERACTIVE DEBUGGING

I

o o e e e = o e e e e o

+———+
w
£
Q
H
—t
o
Z
3
-

DBUGR 1is a Hewlett-Packard utility subroutine used to interactively
check programs for logical errors during execution. Using DBUGR, the
user may examine and modify memory, examine and modify registers, set
a breakpoint and trace instruction execution. DBUGR can only be used
with consoles using drivers DVRO0O and DVRO5. Multipointed consoles
using DVRO7 will not work using DBUGR. In the following discussion,
only the most frequently used DBUGR functions are described; refer to

the RTE-IV DBUGR Reference Manual for the complete range of DBUGR
capabilities.

11-1. CALLING DBUGR

DBUGR can be automatically appended to a program at load time by
calling the LOADR with the following command parameters:

*RU,LOADR, ,filename, ,DB

where DB instructs the LOADR to append DBUGR onto the relocatable
code in file filename. Refer to the LOADR section in this manual for
more information on the LOADR parameters. This command will also
handle segmented programs, though there are some special procedures

involving breakpoints in segmented programs. These are explained in
the section on breakpoints.

When a program with appended DBUGR 1is subsequently run with the
command:

*RU,program

DBUGR will be entered and the user will be able to give any legal
DBUGR command. DBUGR calls the system subroutine LOGLU to obtain the
logical wunit from which the program was scheduled. It then uses this
logical wunit for all I/0. Refer to the Multi-Terminal Monitor section
in this manual for more information.

X1-1



DBUGR INTERACTIVE DEBUGGING

DBUGR is also callable from Assembly Language and FORTRAN programs.
The Assembly Language calling sequence is:

NAM prog

EXT DBUGR

JSB DBUGR call to DBUGR

DEF RTN address of return point

DEF LU optional pointer to LU number

RTN ~return point-

LU Bés 1 interactive LU DBUGR will use for I/0
The FORTRAN calling sequence is:
CALL DBUGR (LU)
or
CALL DBUGR
according to whether the optional LU is passed in as a parameter,

In either Assembly Language or FORTRAN, if the optional LU is not
passed in, DBUGR <calls the system 1library subroutine LOGLU to
determine the interactive LU to use for 1I/0. LOGLU returns to DBUGR
the LU number of the user’s interactive log device. If none exists, LU
number 1 is returned specifying that the system console is to be used.

11-2. ENTERING DBUGR

When DBUGR 1is entered, it prints the following message on the
appropriate LU:

START DBUGR

The wuser 1is now conversing with DBUGR and any legal command may be
entered.

All DBUGR operations are conducted at the assembly language level. A
load map and an Assembly language listing of the program is essential.
An assembly language 1listing of the program is also necessary if
debugging a program written in a high level language.

XI1-2



DBUGR INTERACTIVE DEBUGGING

11-3. DBUGR COMMANDS

The following paragraphs give a concise explanation of the main
features of DBUGR. Throughout these paragraphs, the conventions
described in Table 11l-1 apply. DBUGR supports the RUBOUT key but not
the backspace key for deleting a typing mistake.

Table 11-1. DBUGR Command Conventions

tmm e —— o e e e e e e e e e e e +
| | |
| SsyMBOL | MEANING l
fom———————— o e e e e +
| I |
| \ | Escape key (altmode key) |
| | |
fmm e ————— o e o e e i e e e e e e e o e +
| | |
| ] current position of the cursor ‘
| - |

trmm—————— el +
| | : |
| [CR] | carriage return |
| | |
o ————— o o e e e e e ot S o i e e i +
| | |
| [LF] | line feed (control-J on some terminals) |
| | |
e F o e e e i e i e e o e +
| | I
| italics | words and numbers to be supplied by the user |
| | I
e o e e i e e et e e e e e e e e o e e e +
11-4. DBUGR MODES

DBUGR operates in one of four modes - symbolic, constant,ASCII, or

address. DBUGR uses symbolic mode when it is first entered.

In symbolic mode, the contents of memory are inverse-assembled and

displayed as an opcode and a memory reference (if it is a memory
reference instruction). The user types "escape S" to enter symbolic
mode as follows:

\s -

XI1-3



DBUGR INTERACTIVE DEBUGGING

In constant mode, the contents of memory are displayed as octal
constants. The user types "escape C" to enter constant mode as
follows:

\C -

In ASCII mode, the contents of memory are displayed as two ASCII
characters. The user types "escape H" to enter ASCII mode as follows:

\H -

In address mode, the contents of memory are displayed as an offset to
a previously defined label. DBUGR will use any label that precedes the
the contents by less than octal 11, or any single character label
otherwise. The user types "escape A" to enter address mode as follows:

\A -

When DBUGR 1is in a particular mode, the mode can be temporarily
switched when examining a memory location. The contents of the memory
location will then be immediately displayed again in the temporary
mode. With the cursor still on the displayed line of the memory
location being examined, type one of the following symbols to
temporarily enter the particular mode desired:

! exclamation point - temporary symbolic mode
= equals sign - temporary constant mode

single quote - temporary ASCII mode

- underscore - temporary address mode

11-5. EXPRESSIONS AND TERMS

Expressions are used to specify memory locations to be examined. An
expression consists of one or more terms combined with operators as in
the following example:

AA+10

A term may be a previously defined symbol, a number, or certain

special symbols preceded by an escape key (denoted in the text by a
reverse slash (\)). The following examples are all terms:

ABC
SYMBOL
-32768
1005



DBUGR INTERACTIVE DEBUGGING

Legal operators are the following:

+ plus operator

blank alternate plus operator
- subtract operator

’ comma - inclusive or

11-6. EXAMINE MEMORY

To examine the contents of a memory location, simply type in an
expression that evaluates to the memory 1location to be examined
followed by a delimiting slash (/). For example, one way to examine
memory location 50234 is:

50232+2/

DBUGR will print out on the same 1line the contents of the specified
memory location in either octal or symbolic form. The example above
might display:

50232+2/ LDA 50277 -

informing the wuser that location 50234 contains an LDA instruction
referencing memory location 50277.

To examine the next sequential memory location, simply press the line
feed (LF) key or control J. Continuing the above example, an LF is
used to display the contents of memory location 50235:

50232+2/ LDA 50277 [LF] 50235/ ADA 50400 -

XI-5



DBUGR INTERACTIVE DEBUGGING

11-7. MODIFY MEMORY

To modify the contents of a memory location, the user must first open
the memory location by examining it. After DBUGR displays the contents
of the memory location, it is ready to insert new contents into the
memory location examined. If an assembly lahguage instruction is now
typed 1in, DBUGR will assemble it and insert it 1into the memory
location. If an octal constant 1is entered, DBUGR will insert it
directly into the memory location. For example, to modify the contents
of location 50234:

50234/ LDA 50277 CCA[CR]Display location 50234, change to
CCA instruction
50234/ CCA [LF] Display new contents of 50234, use
line feed to examine 50235
50235/ ADA 50400 100 [CR]Change contents of 50235 to 100 octal
50235/ 100 Display new contents of location 50235

11-8. EXAMINE REGISTERS

The A and B registers are addressed as memory locations 0 and 1,
respectively. The overflow register, the extend register, and the X
and Y registers require special procedures for examination.

Memory 1location M+l may be thought of as containing the overflow
register and the extend register, each of which is one bit in length.
These bits may be examined by typing "escape M+l/" as follows:

\M+1/
DBUGR will respond on the same line with an octal digit between 0 and

3 that 1is the status word. This octal digit may be broken down into
two binary bits (EO) which are interpreted as follows:

E (bit 1 of \M+1)

0 extend register is clear
1 extend register is set

O (bit 0 of \M+1)

]

0 overflow register is clear
1l overflow register is set

The wuser may modify these bits immediately after examining them by
typing in the new octal digit to replace the status word.



DBUGR INTERACTIVE DEBUGGING

Memory locations M+3 and M+4 may be thought of as containing the X and
Y registers. The X-register may be examined by typing “escape M+3/"
as follows:

\M+3/

The Y-register may be examined by typing "escape M+4/" as follows:
\M+4/

DBUGR prints out the contents of the X or Y registers on the same

line. They may then be modified if desired. Note that the X and Y
registers are a full 16 bits wide. For example:

0/ 000010 [CR] user types 0/ to examine A-register
\M+1/ 7 6 [CR] user clears the overflow register
\M+3/ 677 O0[CR] examine and clear the X-register
\M+4/ 50 -1[CR] change the Y-register from octal

50 to 177777 (two’'s complement of -1)
11-9, SETTING A LABEL

DBUGR can reference memory locations relative to a label. A label
consists of one to six alphanumeric characters, the first of which
must be alphabetic. To equate a label to a particular memory location,
the wuser must first examine the memory location. After DBUGR has
displayed the contents of the memory location, the label is entered
followed by a colon (:). DBUGR then equates the 1label with the
examined address. For example, the label S 1is equated with memory
location 50234 as follows:

50234/ LDA 50277 S: [CR]
Location 50237 may now be referenced by typing:

S+3/

11-10. EXECUTE PROGRAM

To proceed with execution of the user program when DBUGR has control,
the user types "escape P":

\P

Upon initial entry to DBUGR, execution proceeds at the transfer
address of the program. When a breakpoint is encountered, execution
resumes at the instruction where the breakpoint was set.



DBUGR INTERACTIVE DEBUGGING

When proceeding from a breakpoint, the user has the option of typing:
n\P

DBUGR will then execute the breakpoint octal n times before it will
break at it.

If the proceed instruction is given and there is no breakpoint in the
program, DBUGR displays the following message before control returns
to the executing program:

END DBUGR

The user may instruct DBUGR where to resume execution of the program
by typing the address of the instruction to be executed, followed by
"escape G". For example, to resume program execution at location
50234, type:

50234\G

11-11. BREAKPOINTS

Wwhen an instruction with a breakpoint is encountered, control is
transferred to DBUGR immediately prior to the execution of the
instruction with the breakpoint. DBUGR displays information about the
state of the machine, and the user may then enter any legal DBUGR
command.

A breakpoint is set at an address by entering the octal address
followed by "escape B". For example, to set a breakpoint at 50234,
type:

50234\B
Only one breakpoint is allowed at a time,.
A breakpoint that has been set is cleared either by resetting it to a
new memory location, or by typing "escape B" at the beginning of a

line:

\B

XI-8



DBUGR INTERACTIVE DEBUGGING

If the executing program reaches a breakpoint, control returns to
DBUGR. DBUGR then displays the following information about the state

of the machine:

ADDRESS (INSTRUCTION) A-REG B-REG X-REG Y-REG STATUS -
where:

ADDRESS is the address of the breakpoint

INSTRUCTION is the contents of the ADDRESS

A-REG,B-REG, X-REG,Y-REG are the contents of the registers

STATUS is the status of the extend and overflow bits
as explained in the section on examining registers

For example:

50234\B set breakpoint at 50234
\P proceed with execution
50234 (LDA 50277) 77 11 177776 3 3 \P

breakpoint information displayed, user types \P to proceed
50234 (LDA 50277) 77 0 177776 3 3 [CR]

breakpoint encountered again; B-REG has changed to 0
1/ 0 11 {CR] change B-REG to octal 11
\P proceed

When a segmented program has been loaded with the command:

*RU,LOADR,,filename, ,DB

use the following commands to control the setting of breakpoints
within segments:

["A]I\B break at entry to all segments
["N]\B break at entry to no segments
[seg]\B break at entry to seg



DBUGR INTERACTIVE DEBUGGING

To set a breakpoint within a segment, enter the following command:
addr [seg]\B

where:

addr is the address within the segment at which the breakpoint
is set.

seg 1is the name of the segment in which the breakpoint is set.

The breakpoint will be set when the segment is loaded into memory.
Therefore the «current breakpoint will remain in effect until the
segment 1is loaded. If seg is in memory at the time that the segment
break command is entered, the current breakpoint 1is cleared
immediately.

When a segment load clears a breakpoint, DBUGR will break at the start
of the new segment and print the following message:

SEGMENT seg BREAK
-—-BREAKPOINT INFORMATION--

addr BREAKPOINT REMOVED
where:
seg is the name of the new segment

BREAKPOINT INFORMATION is the normal breakpoint information

addr is the address at which the old
breakpoint was removed

DBUGR does not check the validity of the segment name. The segment
name may not begin with the two characters quote A ("A) or quote N
("N). This 1is to avoid confusion in setting the breaks in segment
entry points as explained above.

DBUGR will not allow breakpoints below the memory protect fence or
outside the user’s partition. An attempt to set such a breakpoint will
cause a memory protect ("MP?") or a dynamic mapping ("DM?") error
message to be printed.

There are certain legal instructions that DBUGR cannot execute without
causing memory protect (MP) or dynamic mapping (DM) errors. The
instructions "JSB EXEC" and "JSB S$LIBR" are two typical examples. When
such a situation arises, DBUGR will not allow execution of the
instruction, and prints out a message of "DM?" or "MP?" depending on
the error that execution of the instruction would cause. To execute
the instruction, simply move the breakpoint and proceed.

XI-10



DBUGR INTERACTIVE DEBUGGING

11-12. TRACING

When DBUGR has control, the instructions of a program can be traced
(single-stepped) by typing ‘“"escape T". After each instruction is
executed, the same information about the state of the machine will be
displayed as after a breakpoint. For example:

50234\B set a breakpoint at 50234
\P proceed
50234 (LDA 50277) 77 11 177776 3 17 \T

breakpoint information displayed, start trace

50235 (ADA 50101) 100 11 177776 3 7 \T
breakpoint information displayed, continue trace

50236 (LDB 50282) 107 11 177776 3 7 -

A specified number of instructions can also be traced by specifying an
octal number before the trace command. Type:

m\ T
to trace octal n instructions and halt.
Wwhen DBUGR attempts to trace an instruction that will cause a memory
protect or dynamic mapping violation, an "MP?" or "DM?" error will be
printed. If the instruction 1is legal, put a breakpoint on the
instruction to which control will return and then proceed.

Note: Privileged routines (see the RTE-IV Subroutines Library, Section
X) cannot be traced.

X1-11



DBUGR INTERACTIVE DEBUGGING

11-13. DBUGR ERROR MESSAGES

DBUGR recognizes certain errors and prints an error message. Table
11-2 lists the errors and their meanings.

Table 11-2, DBUGR Error Messages

| X | The user pressed the RUBOUT key to erase a typing |
| | mistake DBUGR ignores any prior partial expression. |

| ? | The user entered an unassigned control. Any prior |
| | expression is ignored. |

1
|
|
1
|
i
i
|
]
[}
[
I
|
[}
1
|
|
I
|
|
[
|
|
1
I
|
|
|
i
|
|
|
|
I
|
i
|
|
|
|
1
1
|
|
|
|
|
|
I
|
]
]
|
|
I
I
}
1
[
1
1
|
|
i
|
}
|
i
|

|
U | The symbol last used is undefined, and a definition is
| required. The entire preceding expression is ignored.

- I L - A - —— - G W S e T D G G D AN S SR SR G D WL WD NS R G GG N Y GOR D G G G SES GRS G W G D . ——

| Page error. A memory reference instruction referenced an
| address not in the current page or the base page. The

| expression is ignored. DBUGR s conception of the "current
| page" can be changed by examining any location in the

| desired page.

MP? | There is a breakpoint or trace set for an instruction
| that if executed by DBUGR would cause a memory-protect
| violation to occur. Move the breakpoint and proceed.

IN? | There is a breakpoint or trace set for an instruction
| from which DBUGR cannot proceed. Move the breakpoint
| and proceed.,

|
DM? | DBUGR is attempting to access a memory location that is

| not within the user’s partition,

TP? | DBUGR is attempting to overload, trace, or set a
| breakpoint within DBUGR.

I
I
I
|
I
I
I
|
I
I
|
|
I
I
I
o e e e e e e e e e o e e e o |
I
I
[
I
|
I
I
|
I
|
I
|
l
+

I
|
I
I
I
I
I
I
|
I
I
I
I
I
I
I
I I
|
I
I
|
[
I
|
I
l
|
I
I
+

XI1-12



DBUGR INTERACTIVE DEBUGGING

11-14. DBUGR EXAMPLE
The following example demonstrates a typical session with DBUGR.
*RU,PROG (Execute program loaded with DBUGR.)

START DBUGR

16002/ cCcCA Me examine location 16002 in the main
program; equate 16002 to M.

23456/ NOP S: examine location 23456 in the
segment; equate 23456 to S.

S+5\B use escape B to set a breakpoint

\P and proceed

SEGMENT SEG1l BREAK since a breakpoint was removed,

] (0) 17542 5608 17702 22 6 a break is executed upon entry

S+5 BREAKPOINT REMOVED to the segment

S+5[SEG2] \B set a breakpoint within SEG2

\P proceed

SEGMENT SEG2 BREAK break at S+5 in SEG2.

S+5 (0) 17542 5606 45 22 4

M+50\B set a breakpoint within the main

S+10 [SEG4]\B set a future breakpoint in SEG4

\P proceed

M+50 (LDA M+700) 0 2234 54 72 5 break in main

M 700/ ALF,ALF = 1727 1777 [LF] examine location M+700, temporary
octal display,change contents
to 1777
M+701/ O [CR] next location automatically displayed
M+700/ ALF,CLE,SLA,ALF {[CR] re-examine location M+700
2\T trace two instructions

M+50 (LDA M+700) 0 2234 54 72 5 breakpoint instruction is executed

M+51 (STA M+701) 1777 2234 54 72 5 \P next instruction is
executed; proceed with execution

XI-13



DBUGR INTERACTIVE DEBUGGING

SEGMENT SEG4 BREAK a segment breakpoint was removed, so
S (0) 17445 5562 7422 3322 5 break upon entry to the segment

M+50 BREAKPOINT REMOVED

\P

5+10 (JsB 112,1I) 24 0 177777 55 6 Break at S+10 in SEGA.

["NI\B clear segment breakpoint

\P proceed

END DBUGR

XI-14



o e e e o o s e e o e e o o e e o o e e

+
|
| MEMORY AND I/0 RECONFIGURATION | SECTION XII |
|
+

o o e e e e e e e e e e e e

The ability to reconfigure the 1I/0 and memory assignments during
system boot-up without going through a complete, new system generation
is a feature of the RTE-IV operating system. The reconfiguration
option 1is exercised during system boot-up through S-register settings
(described below) in order to postpone completion of the boot-up
process and schedule an interactive Configurator program that performs
the desired I/0 and/or memory reconfiguration.

I/0 reconfiguration is performed by user resassignment of I/O devices
to octal select codes other than those assigned at system generation
time.

Memory reconfiguration includes changing the size of the System
Available Memory (8AM) extension, redefining user partitions,
modifying program page requirements and assigning programs to
partitions. Defective pages in memory (pages with parity errors) can
be avoided by using the Configurator to redefine the SAM extension and
user partitions around the defective pages.

I/0 and memory reconfigurations (either or both) can be made permanent
by changing the system on the disc.

12-1. SCHEDULING THE CONFIGURATOR FROM DISC LOADER ROM

If a disc loader ROM is used to load the boot-extension into memory
during system boot-up, the Configurator can be scheduled by setting
bit 5 of the S-register, in addition to the S-register settings for
the disc 1loader ROM. The example given below assumes the system
boot-up will be performed using the 12992B RPL-compatible
7905/7906/7920 Disc loader ROM, and that the Boot Extension resides on
physical track 0, sector 0 of the system disc.

XIIi-1



MEMORY AND I/O RECONFIGURATION

Begin the boot-up by performing the following steps:
1. Select the S-register for display on the computer front panel.
2. Press CLEAR DISPLAY

3. Set the S-register bits for the disc loader ROM. In addition, set
bit 5 of the S-register for I/0 or memory reconfiguration:

Bits Enter

0-2 Surface number of the disc where the
RTE-IV system subchannel starts (surface
numbers start at 0).

3-4 0 (reserved).

5 1 to specify reconfiguration is to be
performed. A HLT 77B will be issued at
the end of the load.

6-11 Octal select code of the disc.

12 1l to indicate a manual boot from
the S-register.

13 0 (reserved).
14-15 Loader ROM selection (number of the
ROM cell containing the Disc Boot
Loader).

4., Press PRESET, IBL, PRESET (again) and RUN to load the contents of
the Disc Loader ROM. A successful load will be indicated when the
HLT 77B occurs.

XI1-2



MEMORY AND I/O RECONFIGURATION

5. Following the HLT 77B, set the S-register as follows:

Bits Enter

0-5 System console octal éelect code if either
the select code or device type is different
from generation specification; otherwise, 0.

6-11 System disc octal select code if different
from generation specification; otherwise, 0.
12-14 0 (reserved)
15 1 to specify reconfiguration of I/0 (including disc

and console, above) and/or memory assignments.

6. Press RUN to perform reconfiguration processes.

12~-2, SCHEDULING THE CONFIGURATOR FROM BOOTSTRAP LOADER

If the Bootstrap Loader is used to load the Boot Extension into
memory, set the S-register as decribed above in Step 5 when the HLT

77B occurs,

Set the P-register to 100 octal and press RUN to perform
reconfiguration.

12-3. CONFIGURATOR PROGRAM

The Configurator works interactively with the user to make specified
changes to the current I/0 and memory configurations., Reconfiguration
is performed in accordance with user responses to a series of
Configurator prompts and gqueries output on the system console. When
reconfiguration 1is completed, the Configurator queries whether it is
to be made permanent. Boot~up of the RTE-IV system is then completed
in accordance with the user’s reply.

The Configurator is divided into two programs: SCNFG and $CNFX. SCNFG
is a module 1located at the end of the system modules. After
configuration has completed, the memory area occupied by $CNFG is
allocated to SAM. SCNFX is used to reconfigure memory and is a Type 3
disc resident program, brought into the user partition area from disc

by the SCNFG program. SCNFG changes $CNFX’'s program name to ",,,,,"
and therefore S$CNFX cannot be executed on-line.

XII1-3



MEMORY AND I/O RECONFIGURATION

The Configurator program first checks the contents of the S-register.
If bit 15 is set, I/0 and memory reconfiguration are performed. The
system 1is reconfigured in accordance with any specified new disc and
console select codes. Entering invalid disc and console select codes
in the S-register will cause the system not to function properly. The
Configurator then loads the driver partitions, memory resident library
and memory resident programs (if they are defined for the system) into
memory.

If bit 15 1is not set in the S-register, control 1is given to the
operating system.

Reconfiguration is performed interactively by using the system console
and list device. Note that the standard method of getting system
attention by pressing any key on the system console will not work
during reconfiguration, since the system 1is not yet completely
initialized. The bootup procedure must therefore be restarted if any
equipment I/0 errors occur (e.g., a device not ready or a parity
error).

12-4. CONFIGURATOR HALTS AND ERROR MESSAGES

various halts and Configurator error messages may occur during system
boot-up or reconfiguration that require corrective action by the
operator. Halts are displayed on the computer front panel. System
boot-up and configuration HLTs, their meaning and required operator
action are itemized in Table 12-1 at the end of this section.

Whenever the user enters an invalid response to a Configurator prompt
or query, the Configurator will issue an error message in the form

CONFIG ERR XX

where xx is a Configurator error code as defined in Table 12-2 at the
end of this section, Following the error message, the Configurator
will wusually repeat the prompt or query and the user need only enter
the correct response. In the reconfiguration procedures given below,
only error recovery procedures requiring further action will be
described in text.

12-5. RECONFIGURATION PROCEDURES

The Configurator begins the reconfiguration process by first
displaying the message

START RECONFIGURATION

on the system console, and followed by a set of queries to which the
user enters responses on the console keyboard. The Configurator will
redisplay a query if the user response is not what was expected.

XI1I-4



MEMORY AND I/O RECONFIGURATION

The Configurator next displays the query
LIST DEVICE LU#?

Enter a Logical Unit number to which the Configurator can direct
listings or press the space bar and RETURN key on the console keyboard
for the default case, which is the system console. Entering a list
device other than the system console causes the Configurator to
display the following message:

LIST DEVICE SELECT CODE#?
Enter a list device select code or press the space bar and RETURN key
for the default case, where the default is the list device select code
configured into the system.

If the entered 1list device was not the system console, the
Configurator displays the query

ECHO? (YES/NO)

Enter YES to have all output to the list device echoed on the system
console,

12-6. I/0 RECONFIGURATION STEPS

I1/0 reconfiguration is performed by assigning the Interrupt Table and
trap cell wvalues for the current select code to the corresponding
entries for the new select code.

The Configurator first prompts for I/0 reconfiguration by displaying a
list of the «current I/0 configuration, beginning with octal select
code 10 for the operating system, in the format:

CURRENT I/0 CONFIGURATION:

- -—t

EQTyy I PNAME I

SELECT CODE xx = TBG [,TYPE nn |
PRIV I/0 | nnnnnn |

+-- -—+

XII-5



MEMORY AND I/0O RECONFIGURATION

where:

Xxx = octal select code number ranging from 10 to 77.

EQTyy = EQT entry number

TBG = Time Base Generator

PRIV I/0 = privileged I/0 card

TYPE nn = equipment type code

PNAME = name of program to be automatically scheduled

nnnnnn = absolute instruction to be executed upon interrupt; for

example, a JSB LINK,I where LINK contains the entry
point address.

The CURRENT I/0 CONFIGURATION data 1is automatically displayed to
provide a basis on which to make decisions regarding reconfiguration.
If the system disc, system console or the list device were assigned to
a new select code, they have already been configured in memory and
must NOT be reconfigured during I/0 reconfiguration.

The 1list does not include the select codes previously configured to
the system disc, system console, or 1list device that have been
reconfigured via the SWITCH register at bootup. However, these
previously-occupied select codes are still available for reassignment.
Al so, those devices formerly occupying the select codes now
reconfigured to the system disc, console, or list device may be
reassigned if referenced by their old select code.

Following display of the current configuration, the Configurator then
displays the query

1/0 RECONFIGURATION? (YES/NO)
Enter NO to bypass I/0 reconfiguration. The Configurator will skip all

further I/0 reconfiguration prompts and begin prompting for memory
configuration entries (see below).

XII-6



MEMORY AND I/0 RECONFIGURATION

Enter YES if I/0 is to be reconfigured. The Configurator program will
then display the message

CURRENT SELECT CODE#,NEW SELECT CODE#? (/E TO END)

-~

where the hyphen (-) prompts entry of the current and new select code
pairs. The current and new select codes response must be in octal and
must vary between 10 and 77 octal, in the form

XX, YY

followed by a <carriage return, where xx is the current select code
number and yy is the new select code number. The Configurator’s hyphgn
prompt will be repeated after each successful entry until a /E is

entered to terminate the list,

A privileged 1I1I/0 card’s assignment can be removed by entering the
current select code number of the privileged 1I/0 card followed by
zero, in the form

xx,0

where select code U is only used to remove the privileged I/0 card’s
assignment. A new value of 0 will be assigned to the privileged I1I/0
card.

CAUTION

orrectly if the privileged 1I/0 card

|
. |
privileged driver will not work |
I
as been removed from the system. I

o> Q>

A privilgged I1/0 card can be added to a system that does not have one
by entering the specification

XX,PI

whgrg xx 1is the specified select code in octal, and PI assigns the
privileged I/0 card to select code xx.

If a /R is entered, I/0 reconfiguration is restarted with display of
the CURRENT SELECT CODE#, NEW SELECT CODE#? (/E TO END) query.

If the current select code number entry 1is repeated in more than one

response, the last entry is taken as valid and the previous entries
are ignored.

XI11-7



MEMORY AND I/O RECONFIGURATION

Following entry of a /E to terminate select code changes, the
Configurator prints a 1list of the NEW I/0 CONFIGURATION. The next
query displayed is:

NEW I/0 CONFIGURATION PERMANENT? (YES/NO)

Enter YES to modify the system on the disc to the new 1I/0
configuration. Enter NO otherwise. If it 1is desirable to restart I/0
reconfiguration for any reason, enter the request

/R
and I1/0 reconfiguration will restart by another display of the list
CURRENT I/0 RECONFIGURATION:

The list will contain what the I1/0 configuration was changed to during
the reconfiguration just completed.

CAUTIONS:

1. It 1is strongly recommended that the system subchannel of the disc
be backed up before making I/0 reconfiguration permanent.

2. If a select code has been given a new assignment and its current
I/0 device has not been reassigned, the I/0 device cannot be added
to the system at a later date if the new I/0 configuration is made
permanent,

3. If a device has multiple select codes, make sure that all select
codes are moved and kept in the same relative order.

4. Reassigning some devices to empty I/0 slots may cause unexpected
results.

12-7. MEMORY RECONFIGURATION PROCEDURES

After the I/O reconfiguration phase is either bypassed or terminated,
the Configurator will display the following statement and query:

CURRENT PHYSICAL MEM SIZE: xxxx PAGES
MEM RECONFIGURATION? (YES/NO)

Enter NO if memory reconfiguration is not desired. The Configurator
will then transfer control to the operating system after displaying
the message

RECONF IGURATION COMPLETED

XII-8



MEMORY AND I/O RECONFIGURATION

Enter YES if memory is to be reconfigured. The Configurator will then
display the query

PHYSICAL MEM SIZE? (#PAGES)

Enter the desired total number of memory pages, between 48 and 1024
(decimal).

12-8. EXCLUDING BAD PAGES

The Configurator program can be used to redefine the SAM extension and
user partitions to exclude any bad pages (pages containing parity
errors) within these areas. Each user partition must be a contiguous
block of memory; therefore, user partitions must be defined on blocks
of memory between the bad pages, Bad pages in the system area, driver
partitions and the memory resident area cannot be avoided.

The Configurator displays the query

DEFINE BAD PAGES BEGINNING AT PAGE xxxx (/E TO END)

where the hyphen (~) prompts for the decimal number of a bad memory
page. The hyphen is repeated after acceptance of each entry until a /E
or 100 bad page numbers are entered, terminating the list. ( The
Configurator will accept up to 100 bad memory page entries.) The bad
page specifications entered can range from xxxx to the maximum page
number in physical memory and must be entered in an increasing order.

If /R is entered in reponse to the hyphen prompt, the Configurator
will redisplay the query

DEFINE BAD PAGES BEGINNING AT PAGE xxxx (/E TO END)

-

and the entire list of bad pages must be re-entered.

When a /E is entered either to terminate bad page entries or bypass
the entire phase, the Configurator displays the following information:

CURRENT SIZE OF SAM DEFAULT: xxxXx WORDS EXTENSION: yy PAGES
SAM EXTENSION STARTS AT PHYSICAL PAGE xx MAX PAGES AVAIL FOR
SAM EXTENSION: xx

The number of words displayed for default SAM are the decimal number
of words assigned to the first block of SAM.

XII-9



MEMORY AND I/0 RECONFIGURATION

12-9, SAM EXTENSION RECONFIGURATION

The Configurator next prompts for any desired change in the size of
SAM extension by displaying the query

CHANGE SAM EXTENSION?(# PAGES/" " CR)

Press the space bar and RETURN key (the default case) if no change is
desired.

Enter the decimal number of pages desired if the SAM extension is to
be changed. The number of pages can vary from 0 (which removes SAM
extension) to the maximum pages available for the SAM extension. Note
that this count must not include any bad pages that fall within the
SAM extension (see above).

The Configurator sets up the System Map to avoid bad pages in the SAM
extension regardless of whether or not a change was requested.

If the specified SAM extension extends beyond the size of physical
memory because of bad pages within this area, the Configurator
displays the message

CONFIG ERR 12
CHANGE SAM EXTENSION?(# PAGES/" " CR)

Enter a smaller number of pages for SAM extension size. The
Configurator allows SAM extension to be divided up into a maximum of
five blocks of memory between bad pages. If the number of pages in SAM
extension requires division into more than five blocks, the
Configurator displays the message

CONFIG ERR 22

and the query is redisplayed. Enter a smaller size of SAM extension.

12-10. CHANGING PARTITION DEFINITIONS

The Configurator next displays a list of current partition definitions
is displayed in the format

CURRENT PART N DEFINITIONS:

+—e —-——t = -—t
| LRT | | |
PART'N nn = pp PAGES| ,BG | | ,R |
| ,S I |
t-= ——t e -t

XI1-10



MEMORY AND I/O RECONFIGURATION

where
nn = the partition number
pp = is the number of pages in partition nn
RT = a real-time partition
BG = a background partition

S

a subpartition

R

a reserved partition

Following the definition list, the Configurator next displays a list
of current partition requirements in the form

CURRENT PART N REQMTS:
REALTIME ,
PNAME XX PAGES [E] [PART ‘N=nn]

BACKGROUND
PNAME XX PAGES [*][E][PART ‘N=nn]

where

PNAME

the real-time or background program name
E = indicates an EMA (Extended Memory Area) program

* = indicates the background program does not include Table Area I:
(L.e., a Type 4 program)

nn = is the number of the partition into which program PNAME is
assigned.

XII-11



MEMORY AND I/O RECONFIGURATION

The Configurator then displays the following information:

MAX PROGRAM SIZE:

W/OUT COMMON: xx PAGES
W/COMMON: Xxx PAGES
W/TABLE II: xx PAGES

MAX # OF PART'NS: xx

PAGES REMAI@ING: XX

DEFINE PART ‘NS FOR xxxX PAGES
#PAGES, RT/BG/S (+R)

PART N x?

where

MAX PROGRAM SIZE = maximum logical space a program may OCCupy.
However, the partition size may be larger
than the stated maximum if the partition
will be used for EMA program execution,

MAX ¥ OF PART'NS

decimal number of partitions that can be
defined in memory.

PAGES REMAINING

[}

decimal number of pages available for
defining user partitions (including bad
pages that may have been listed earlier).
#PAGES ,RT/BG/S(,R) indicates the required format for user
entries in response to the PART N x? prompt
described below.

[}

PART ‘N x? = Configurator program prompt asking the user
for the size (in pages) and format for the
next partition to be defined.

If the maximum number of partitions was defined as 0 during generation
time, the Configurator skips the rest of memory reconfiguration and
displays the query

NEW MEMORY CONFIGURATION PERMANENT?

Since partitions must be defined contiguously, they must be within the
section of memory between the bad pages. If a section of memory
between bad pages has a size of one page, it 1is skipped by the
Configurator. The Configurator will prompt for a partition definition
after each accepted entry until partitions have been defined for all
XXXX pages in this section of memory.

XII-12



MEMORY AND I/0O RECONFIGURATION

As each entry is accepted, the Configurator will reissue the prompt
with a consecutively increasing partition number for the next
partition. If the number of pages entered for a partition is greater
than the maximum logical address space, the Configurator displays the
message

SUBPARTITIONS? (YES/NO)

Enter a NO if the configurator is to 1ignore subpartition
considerations and proceed with the normal partition definitions.

Enter a YES 1if subpartitions are to be defined. Subpartition
definitions are specified by using the following format in response to
the prompt:

#PAGES,S(,R)

where S specifies a subpartition and the optional R specifies the
subpartition is to be reserved.

The memory space allocated for subpartitions is the same area occupied
by the "mother" partition. Subpartition definition will end as soon as
an RT or BG partition is defined, or can be terminated by entering a

/E.

When an attempt is made to end the subpartition definition phase by
defining an RT or BG partition and there are no more pages left in
this section of memory, an ERR 13 will be displayed. In this case,
either enter a /E to terminate subpartition definitions and continue
partition definitions for the next block of memory, or enter /R to
restart the partition definition phase.

The total number of pages defined for subpartitions must not exceed
the size of the mother partition or an error code will be issued and
the last subpartition must be redefined.

The Configurator analyzes each partition definition for possible
errors as soon as it 1s entered. Any error code issued will be
followed by a prompt to redefine the last partition displayed. If /R
is . entered instead of a partition description, the partition
definition phase is restarted from the first partition definition.

XII-13



MEMORY AND I/O RECONFIGURATION

Partitions defined for each section of memory between bad pages must
be defined for all pages available within the section. A running total
is maintained of the number of pages currently defined within a
section of good memory. The Configurator will then take one of five
possible courses of action, depending upon the prevailing memory
structure and size:

l. If the remaining total equals the number of pages available, the
Configurator automatically requests partition definitions for the
next section of good memory.

2. If the number of pages remaining to be defined 1is one, the
Configurator increments the last defined partition by one page and
then requests partition definitions for the next block of good
memory .

3. If the running total exceeds the number of available pages defined
within the memory block, the Configurator displays an error

message and prompts for the last partition to be redefined.

4, If the number of partitions already defined is equal to the
maximum number of partitions allowed and more undefined good pages
remain, the Configurator displays an error message and all user
partitions must be redefined. The Configurator will then prompt
for new partition definitions and repeat the prompt after each
accepted entry.

5. If the running total is less than the number of pages in the block
of memory, definition for next partition is requested.

A list of NEW PART'N DEFINITIONS will be issued to the list device
when all partitions have been defined.

12-11. CHANGING PROGRAM PARTITION ASSIGNMENTS

The Configurator performs a check to ensure that every progranm
assigned to a partition fits its partition size. A program will be
unassigned if the program size is larger than the partition size or if
the partition: number does not exist. Following the check, the
Configurator will issue a list under the heading

UNASSIGNED PROGS

followed by the query

MODIFY PROG PAGE REQMTS? (/E TO END)
PNAME, # PAGES

XI1-14



MEMORY AND I/O RECONFIGURAT ION

Enter the specifications for any disc resident progr ams whose page
requirements must be changed, using the format

program name,xXx

where the number of pages entered for each program must include the
base page. The number of pages must be greater than or equal to the
program relocation size, and less than or equal to the maximum address
space for the program. The program may only be Type 2, 3 or 4.

The hyphen prompt will be repeated after acceptance of each entry
until a /E is entered to terminate the list.

Note that the page requirements for an EMA program cannot be modified.

12-12. PROGRAM PARTITION ASSIGNMENTS

The Configurator now asks if any programs need to be assigned to
partitions by displaying the gquery and prompt

ASSIGN PROG PART 'NS?(/E TO END)
PNAME, PART 'N#%

where the hyphen prompt will be repeated after each accepted entry
until a /E is entered to terminate the list.

Enter each desired program partition assignment in the form

progr am name,xx
where xx is the partition number to which the program 1is to be
assigned. If xx is 0, the program is unassigned and can be dispatched
to any partition of the proper type large enough to run the program.
The program must be a Type 2, 3 or 4. When a /E is entered to
terminate the list, the Configurator issues the query

NEW MEMORY CONFIGURATION PERMANENT? (YES/NO)

Enter a YES to a change the appropriate tables and locations on the
disc resident system. The Configurator then issues the message

RECONFIGURATION COMPLETED
and turns control over to the operating system.

If a /R is entered in response to the prompt instead of YES, memory
reconfiquration is restarted from the query

PHYSICAL MEM SIZE?(#PAGES)

and the system is in the state it was changed to during the earlier
reconfiguration.

XII1-15



MEMORY AND I/0 RECONFIGURATION

12-13. RECONFIGURATION EXAMPLE

The sample reconfiquration illustrated in Figure 12-1 assumes that
reconfiguration was requested by setting the switch register as
described at the beginning of this section of the manual. 1In the
example, the shaded portion identifies a user response,.

START RECONFIGURATION
LIST DEVICE LU#?

20 *SPECIFY A LIST DEVICE.
LIST DEVICE SELECT CODE#? ,
20 *SPECIFY LIST DEVICE S SECLECT CODE.

O’(YLb/NO)
. *ECHO OUTPUT ON LIST DEVICE.
CURRENT I/0 CONFIGURATION: *CURRENT I/0 CONFIGURATION
SELECT CODE 1lU= TBG * Is DISPLAYED.

SELECT CODE 13= EQT 1,TYPE 32
SELECT CODE 1l4= EQT 6,TYPE U
SELECT CODE 1b= BQT 7,TYPE 1
SELECT CODE lé6= EQr 3,TYPE 23
SELECT CODE 17= E(r J3,TYPE 23
SELECT CODE 20= EQT 5,TYPE 12
SELECT COBDE 22= EYT 4,TYPE 2
SELECT CODE 25= BT 2,TYPE 5
I/0 RECONFIGURATION? (YES/NO)
'ﬁ i *bPhLIEY I/O RELONFIGURATION.

*RECONFIGURE SELECT CODES.

Figure 12-1. Reconfiguration Exampie

XII-1l6



MEMORY AND I/O RECONFIGURATION

NEW I/0 CONFIGURATION: *NEW I/0 CONFIGURATION
SELECT CODE 13= EQT 1,TYPE 32 * Is5 DISPLAYED.
SELECT COLE 14= T8G

SELECT CODE 15= EQT 6,TYPE O

SELECT CODE le= EQT 7,TYPE 1

SELECT CODE 17= EQT 4,TYPE 2

SELECT CODE 20= EQT 5,TYPE 12

SELECT COLE 23= EQT 3,TYPE 23

SELECT CODE 24= EQT 3,TYPE 23

SELECT CODE 25= EQT 2,TYPE 5

NEW I/0 CONFIGURATION PERMANENT? (YES/NO)

NO *SPECIFY NONPERMANENT.
CURRENT PHYSICAL MEM SIZE: 48 PAGES

MEM RECONFIGURATION? (YES/NO)

XES *SPECIFY MEMORY RECONFIGURATION.
PHYSICAL MEM SIZE?(#PAGES)
| *SPECIFY AN INCREASE IN MEMORY SIZE.
DEFINE BAD PAGES BEGINNING AT PAGE 28 (/E TO END)

*SPECIFY TWO BAD PAGES.

CURRENT SIZE OF SAM:

DEFAULT: 3802 WORDS

EXTENSION: 0 PAGES

SAM EXTENSION STARYTS Al PHYSICAL PAGE 28

MAX PAGES AVAIL FOR SAM EXTENSION: 14

CHANGE SAM EXTENSION? (#PAGES/" "CR)

* INCREASE SIZE OF SAM.

CURRENT PART N DEFINITIONS: *CURRENT PARTITION DEFINITIONS
PART'N 1 = 20 PAGES,BG * ARE DISPLAYED.

CURRENT PART N REQMTS: *CURRENT PARTITION REQUIREMENTS
REALTIME *  FOR VARIOUS PROGRAMS ARE
BACKGROUND * DISPLAYED.

SCNFX 3 PAGES

EDITR 16 PAGES

ASMB 16 PAGES

XREF 16 PAGES

LOADR 16 PAGES

WH ZAT 3 PAGES

FMGR 7 PAGES

RT4GN 20 PAGES
SWTCH 11 PAGES

SAVE le PAGES
RSTOR 16 PAGES
COPY 16 PAGES

VERFY le PAGES

Figure 12-1. Reconfiguration Example (continued)

XII-17



MEMORY AND I/0 RECONFIGURATION

MAX PROGRAM SIZE: *MAXIMUM PARTITION SIZES FOR
W/0UT COMMON: 29 PAGES3 *  VARIOUS PROGRAM TYPES ARE
W/ COMMON: 29 PAGES * DISPLAYED,

W/ TABLE II: 27 PAGES

MAX # OF PART 'NS: 15

PAGES REMAINING: 222
DEFINE PART NS FOR 10 PAGES:
#PAGES,RT/BG/S (,R)

PART ‘N 1?

z *RT PARTITION TO THE FIRST BAD PAGE.
DEFINE PART NS FOR 79 PAGES:
# PAGES ,RT/BG/S (,R)

PART'N  2?
‘ T
ARTITIONS? ( YES/NO)

*RT PARTITION WITH NO SUBPARTITIONS.

SUBP

*RT PARTITION WHICH IS RESERVED.

3,R1,R *RT PARTITION WHICH IS RESERVED.
DEFINE PART NS FOR 131 PAGES:
$#PAGES,RT/BG/S (,R)

PART'N 52

*BG MOTHER PARTITION BEGINS

* AFTER SECOND BAD PAGE.
*SUBPARTITION LARGER THAN 32K WORDS.
*SECOND SUBPARTITION.

*THIRD SUBPARTITION.

*FOURTH SUBPARTITION.

*BG PARTITION.

N DEFINITIONS: *NEW PARTITION DEFINITIONS
PART N 1 = 10 PAGES,RT * ARE DISPLAYED.
PART “N 2 = 4Y PAGES,RT
PART'N 3 = 27 PAGES,RT,R
PART ‘N 4 = 3 PAGES,RT,R
PART ‘N 5 = 115 PAGES,BG
PART 'N 6 = 48 PAGES,S
PART ‘N 7 = 29 PAGES,S
PART ‘N 8 = 29 PAGES,S
PART N 9 = 9 PAGES,S
PART'N 10 = 16 PAGES,BG

Figure 12-1, Reconfiguration Example (continued)

XII-18



MEMORY AND I/0 RECONFIGURATION

UNASSIGNED PROGRAMS:

MODIFY PROG PAGE REQMTS?(/E TO END)
PNAME, # PAGES - *GPECIFY NEW PROGRAM PAGE REQUIREMENTS.

RT4GN, 27
ASMB, 27

/E
ASSIGN PROG PART ‘NS?(/E TO END)
PNAME , PART "N # *ASSIGN PROGRAMS TO PARTITIONS.

RT4GN, 3
WHZAT, 4

/E
NEW MEM CONFIGURATION PERMANENT?(YES/NO)
NO *DO NOT MAKE MEMORY CHANGES PERMANENT.

*END OF I/0O AND MEMORY RECONFIGURATION.
*SYSTEM WILL NOW ATTEMPT TO BOOTUP.

SET TIME
28V, 4
TE,*****
TE,***** 92067A RTE-IV 7905 7906 7920 DISC CARTRIDGE
TE,**k*kx* HP 92067-13101 (7905/7906)

TE,::*** HP 92067-13201 (7920)
TE, *****

3
.

Figure 12-1. Reconfiguration Example (continued)

12-14., BOOT-UP AND RECONFIGURATION HALTS

During either system boot-up or reconfiguration, various HLTS (of the form

%OZOxx) may be
issued on the computer front panel. The meaning of these halts and
any required opeator action are given in Table 12-1.

XII-19



MEMORY AND I/O RECONFIGURATION

Table 12~1. System Boot-up and Reconfiguration Halts
Fom e o e e o e e e e o e e e e e +

was encountered: procedure, If memory

reconfiguration is desired|
SCNFX must be permanently |
loaded as a Type 3 programl
and there must be at least]
3 good pages of contiguous|
memory in the user parti- |
tion area.

1. SCNFG cannot find an ID segment
for Configurator extension S$CHFX.
2. SCHNFX is not a Type 3 program.
3. A contiguous memory block of
three good pages cannot be found
in the user partition area.

| HLT | Meaning I User Action I
e o e e e e e e e e e e e e e e e e e e e e e e e e e |
4 Powerfail occurred and powerfail | Restart system boot-up |
automatic restart is enabled. | procedure. %

I
5 Memory protect switch was set and | Restart system boot-up |
memory parity error occurred. : procedure., =
10B FMGR or D.RIR cannot be scheduled | Restart system boot-up |
at startup because there is not a | and redefine memory to |
largye enough partition (issued | include a partition large |
by the system). | enougn for FMGR and D.RTRI'

' 1

118 Attempt was made to re-execute a | Reload tne ROM Loader or |
non-RPL compatible RUM Loader Part| Bootstrap Loader before |
# 129927, or Bootstrap Loader. % re—executing. :
228 One of the following conditions | Restart system boot-up |
| |

|

|

I

I

I

|

I

I

I

I/0 process by one of the RPL-com-| procedure.
patible ROM Loaders Part #12992B &l
12992F. If the disc is a 7900 the |
disc status is displayed in the A-|
register. If the disc is a 7905/20]|
the disc status word 1 is dis- |
played in the B-register and disc |
status word 2 in the A-register. |

I
Error encountered in the disc I/0 | Retry the system boot-up
process by the Boot Extension. If | procedure.
the disc is a 7900, the disc |
status is displayed in the A- I
register. If the disc is 7905 or |
7920, the disc status word 1 is I
displayed in the B-register and |
disc status word 2 is displayed I
in the A-register. :

|

|

|

I

+

An EQT with the equipment type
code of console cannot be found.

Restart boot—-up procedure

with a console for which
an EQT is generated in
the system.

— oo @ s

| I
| |
I |
I |
I |
| |
I I
| I
I I
I I
I I
| I
I |
| I
| |
I |
I |
I |
I I
| |
I |
I |
| i
I |
I |
| 30B | Error was encountered in the disc Retry the system boot-up
| I
I I
| |
| I
| |
l |
I I
| |
I |
| |
I I
| |
| |
| |
! |
| |
I |
I I
I |
I I
I I
I !
| I
+ +

el I Py e A R ek L R T S P e Y T



MEMORY AND I/O RECONFIGURATION

12-15. CONFIGURATOR ERROR MESSAGES

Whenever a wuser response to a Configurator prompt 1is illegal or
inappropriate, the Configurator issues a CONFIG ERR message and
prompts for a correct entry. All possible Configurator error codes are

listed sequentially in Table 12-2. Locate the appropriate code and
take the described action.

XII-21



MEMORY AND I/O RECONFIGURATION

Table 12-2.

10

11

12

13

XII1-22

Invalid LU number or a bit
bucket LU.

New select code entered is
identical to new select code
assigned to disc, system
console or list device, or
else the current select code
entered is identical to the
old select code for disc,
system console or list device
(i.e., do not reconfigure thatl|
which was already done via thel
SWITCH register).

+
|
+
I
|
|
Illegal select code number. I
|
|
|
|
[
|
I
I
|
|
|

Specified total number of
pages outside the range.

Invalid bad page number.

Specified SAM extension entry
beyond physical memory size
due to bad pages.

Current running total exceeds
available pages in block of
good memory or exceeds size
of mother partition.

+ A —— — — —— —— — — — —— ——— ——— —— —— — —, — —— g

- S TS W - - " -y T D U S ) B Sl D T YD B B U} e W B

I1/0 and Memory Reconfiguration Error Codes

Enter valid logical unit
number.,

|
|
|
Enter valid number that |
must be between 10 and |
77 octal. :
Enter different select |
code.

Enter valid number in the
range 48-1024 for
physical memory size and
between 0 and maximum
pages available for SaAM
extension,

greater than the previous
entry and less than the
physical memory size, or
enter /E to terminate the
list,

Enter smaller number of
pages for SAM extension.

Redefine last partition
or subpartition size. If
there are no more pages
available in the block of
memory to be defined, /E
or /R are the only

!
I
|
|
|
|
|
I
|
|
|
|
|
|
I
|
|
|
Enter valid number |
|
I
|
I
|
|
|
|
|
]
|
|
|
|
I
|
responses accepted. |



MEMORY AND I/0O RECONFIGURATION

Table 12-2. 1/0 and Memory Reconfiguration Error Codes (cont’d)

For e e e F o e e e e e e e e e e e e e e e +
| I I |
| CONFIG ERR | Meaning | User Action I
| o e o e e e e e e e e e e e e e e e e e e s e e e oo e |
| 14 | Second parameter of partition | Reenter definition with |
| | definition entry other than | correct parameter. I
| | RT, BG or 8, or else S was | |
| | entered when a subpartition I I
| | definition was not expected. | |
I I ‘ | ' I
| 15 | Third parameter of partition | Reenter definition with |
| | definition entry other than | R as third parameter if |
| | R. | partition is to be |
| I | reserved. |
I I | |
I 16 | No such program, or the name | Reenter assignment with |
I | of a segment was entered or | correct program name or |
| | invalid type was entered for | type or /E to end this |
| | partition assignment. | sequence. %
I | |

| 17 | Invalid partition number. | Enter valid number or /E |
| | | to end this sequence. |
| | | I
I 18 | Program does not fit in the | Assign program to larger |
| | assigned partition. | partition if available, |
I | | or continue without |
I | | assigning the program. |
| | | |
| 19 | Invalid number of pages was | Enter valid number of |
I | entered for program size. | pages for program, be- |
| | | tween the size of the I
I | | program at load time and |
| I | the maximum logical |
[ | | address space for the [
I | | program. I
| I I I
| 20 | Number of defined partitions | Redefine all partitions |
I | already equal to allowed I I
| | maximum number and more un- I I
| | defined pages remain. | :
I | |

I 21 | Page requirements of an EMA | Entry is skipped. |
| | program cannot be modified, | :
| | I

| 22 | Number of pages in SAM exten- | Enter a smaller size of |
| | sion requires division into | SAM extension |
I | more than five blocks. | |
I | I |
Fom e —————— P P e e e e e e e e e +

XII1-23



HP CHARACTER SET

Effect of Control key * L
TN /

|«— 0000378 —»|<— 040-0778 —#-|4—100-1378 —|a—140-1 78—

b,BGT—_——_——— : 000 001 010 011 100 101 1»10 111

BITS w 0 1 2 3 4 5 6 7
bg by by by] ROW ¢
ololo]o 0 NUL | DLE sp 0 @ P p
o{ofo]1 1 SOH | DC1 ! 1 A a a q
o{o|1]0 2 STX DC2 " 2 B R b r
ojoj1]1 3 ETX | DC3 3 c s c s
o|1]|0]o0 4 EOT | DC4 $ 4 D T d t
oj1|o]1 5 ENQ | NAK % 5 E U e u
ol1|1]o0 6 ACK | SYN & 6 F v f v
of1]1]1 7 BEL ETB ' 7 G w 9 w
1|ojolo 8 BS CAN ( 8 H X h x
1]ofo]1 9 HT EM ) 9 | Y i y
1{o{1]o 10 LF | sus . J z i 2
1lol1]1 1 vT EsC + ; K [ K {
1(1{0(0 12 FF FS \ < L \ ! !
1(1/0]1 13 CR GS - = M ] m }
1{1]1]0 14 so RS . > N A n ~
111{1]1 15 sl us / ? o) _ o DEL
Ne———
" ones e
[«@—— 64 CHARACTER SET ~———]
<—— 96 CHARACTER SET >
- 128 CHARACTER SET >

EXAMPLE: The representation for the character “K'* {column 4, row 11) is.

by bg bg bg b3 by by
BINARY 1.0 0 1 0 1 1
—— o e——

octAL 1 1 3

* Depressing the Control key while typing an upper case letter produces
the corresponding control code on most terminals. For example,
Control-H is a backspace.
9206- 1A



¢V

for your device

HEWLETT-PACKARD CHARACTER SET FOR COMPUTER SYSTEMS

This table shows HP's implementation of ANS X3 4-1968 (USASCII) and ANS X3.32-1973. Some devices may substitute
alternate characters from those shown in this chart (for example. Line Drawing Set or Scandanavian font) Consuit the manual

The left and nght byte columns show the octal patterns in a 16 bit word when the character occupies bits 8 to 14 (left byte) or 0
to 6 (nght byte) and the rest of the bits are zero. To find the pattern of two characters in the same word, add the two values. For
example, "AB” produces the octal pattern 040502 (The parity bits are zero in this chart.)

The octal values 0 through 37 and 177 are control codes The octal values 40 through 176 are character codes

Octal Values Octal Values
Decimal Mnemonic | Graphic! Meaning Decimal Character Meaning
Value Left Byte | Right Byte Value Left Byte | Right Byte
0 000000 000000 NUL N, Null 32 020000 000040 Space, Blank
000400 000001 SOH EW Start of Heading 33 020400 000041 Exclamation Point
2 001000 000002 STX S Start of Text 34 021000 000042 - Quotation Mark
3 001400 000003 ETX % End of Text 35 021400 000043 #* Number Sign, Pound Sign
4 002000 000004 EOT & End of Transmission 36 022000 000044 $ Dollar Sign
5 002400 000005 ENQ % Enquiry 37 022400 000045 % Percent
6 003000 000006 ACK A Acknowledge 38 023000 000046 & Ampersand, And Sign
7 003400 000007 BEL fal Bell, Attention Signal 39 023400 000047 ’ Apostrophe, Acute Accent
8 004000 000010 BS & Backspace 40 024000 000050 ( Left (opening) Parenthesis
9 004400 000011 HT He Horizontal Tabulation 41 024400 000051 ) Right (closing) Parenthesis
10 005000 000012 LF Le Line Feed 42 025000 000052 . Asterisk, Star
1 005400 000013 VT A Vertical Tabulation 43 025400 000053 + Plus
12 006000 000014 FF Fe Form Feed 44 026000 000054 , Comma, Cedilla
13 006400 000015 CR R Carriage Return 45 026400 000055 - Hyphen, Minus, Dash
14 007000 000016 SO % Shift Out Alternate 46 027000 000056 . Period, Decimal Point
15 007400 000017 SI 5, Shift In Character Set a7 027400 OQOOST / Slash, Slant
16 010000 000020 DLE g Data Link Escape 48 030000 000060 0
17 010400 000021 DC1 D,_ Dewvice Control 1 (X-ON) 49 030400 000061 1
18 011000 000022 DC2 b, Dewvice Control 2 (TAPE) 50 031000 000062 2
19 011400 000023 DC3 >N Device Control 3 (X-OFF) 51 031400 000063 3
20 012000 000024 DC4 0, Device Control 4 (TAPE) 52 032000 000064 4
21 012400 000025 NAK Ne Negative Acknowledge 53 032400 000065 5 Digits, Numbers
22 013000 000026 SYN 9 Synchronous die 54 033000 000066 6
23 013400 000027 ETB > End of Transmission Block 55 033400 000067 7
24 014000 000030 CAN S Cance! 56 034000 000070 8
25 014400 000031 EM & End of Medium 57 034400 000071 9
26 015000 000032 SuB 5\3 Substitute 58 035000 000072 Colon
27 015400 000033 ESC E Escape? 59 035400 000073 H Semicolon
28 016000 000034 FS Fg File Separator 60 036000 000074 < Less Than
29 016400 000035 GS Gy Group Separator 61 036400 000075 = Equals
30 017000 000036 RS Ry Record Separator 62 037000 000076 > Greater Than
31 017400 000037 us Y% Unit Separator 63 037400 000077 -7 Question Mark
127 077400 000177 DEL L ] Delete. Rubout?

9206- 18




gV

Decimal Octal Values Character Meaning Decimal Octal Values Character Meaning
Value | Left Byte | Right Byte Value | Left Byte | Right Byte
64 040000 000100 @ Commercial At 96 060000 000140 A Grave Accent®
65 040400 000101 A 97 060400 000141 a
66 041000 0001Q2 B 98 061000 000142 b
67 041400 000103 Cc 99 061400 000143 c
68 042000 000104 D 100 062000 000144 d
69 042400 000105 E 101 062400 000145 e
70 043000 000106 F 102 063000 000146 f
7 043400 000107 G 103 063400 000147 g
72 044000 000110 H 104 064000 000150 h
73 044400 000111 | 105 064400 000151 i
74 045000 000112 J 106 065000 000152 ]
75 045400 000113 K 107 065400 000153 k
76 046000 000114 L 108 066000 000154 |
77 046400 000115 M 109 066400 000155 m
78 047000 000116 N Upper Case Alphabet, 110 067000 000156 n U Lower Case Letters®
79 047400 000117 0 Capital Letters 111 067400 000157 o
80 050000 000120 P 112 070000 000160 p
81 050400 000121 Q 113 070400 000161 q
82 051000 000122 R 114 071000 000162 r
83 051400 000123 S 115 071400 000163 s
84 052000 000124 T 116 072000 000164 t
85 052400 000125 U 17 072400 000165 u
86 053000 000126 \ 118 073000 000166 v
87 053400 000127 W 119 073400 000167 w
88 054000 000130 X 120 074000 000170 X
89 054400 000131 Y 121 074400 000171 y
90 055000 000132 Z 122 075000 000172 b4
91 055400 000133 [ Left (opening) Bracket 123 075400 000173 { Left (opening) Brace®
92 056000 000134 AN Backslash, Reverse Slant 124 076000 000174 ' Vertical Line’
93 056400 000135 1 Right (closing) Bracket 125 076400 000175 } Right (closing) Brace®
94 057000 000136 At Caret, Circumfiex; Up Arrow* 126 077000 000176 ~ Tilde. Overline®
95 057400 000137 N Underline; Back Arrow*
9206- 1C Notes: 'This is the standard display representation. The software and hardware in your system determine if the control code is

displayed, executed, or ignored. Some devices display all control codes as ||, "@". or space

2Escape is the first character of a special control sequence. For example, ESC followed by "J” clears the display on a 2640
terminal.

3Delete may be displayed as "__". "@". or space
“Normally, the caret and underline are displayed. Some devices suhstitute the up arrow and back arrow

5Some devices upshift lower case letters and symbols ( \-thiough ~ ) to the corresponding upper case character (@ through
A ). For example, the left brace would be converted to a left bracket



RTE SPECIAL CHARACTERS

Mnemonic Octal Value
SOH (Control A) 1
EM (Control Y) 31
BS (Control H) 10
EOT (Control D) 4

9206-1D

A-4

Use

Backspace (TTY)
Backspace (2600)

Backspace (TTY, 2615, 2640, 2644,
2645)

End-of-file (TTY 2615, 2640, 2644,
2645)



This apppendix contains information about the following topics:

* SYSTEM COMMUNICATIONS AREA - Base page locations of area used for
system communications.,

*  PROGRAM ID SEGMENT MAP - Format of ID segments kept in system area
for user programs, ID segment extension, and short ID segments.

* MEMORY ALLOCATION TABLE (MAT) ENTRY FORMAT
* DISC LAYOUT - Allocation of disc space for an RTE-IV system,

Other system tables relating to 1I/0 considerations, such as the
Equipment Table, Device Reference Table and Driver Mapping Table are
described in Section VvV, "Input/Out."

B-1l. SYSTEM COMMUNICATION AREA

This area is a block of storage 1in the system base page, starting at
location 1645 octal, that 1is wused by RTE-IV to define request
parameters, I/0 tables, scheduling lists, operating parameters, memory
bounds, etc. The RTE~IV Assembler allows relocatable programs to
reference this area by absolute addresses 1645 through 1777 octal.
User programs can read information from this area but cannot alter it
because of the memory protect feature.

The contents and description of each location in this area are listed
in Table B-1.



SYSTEM COMMUNICATION AREA AND SYSTEM TABLES

Table B-1l. System Communications Area Locations

| Octal Location | Contents | Description

| == mm e m e | == mmmm e R |
| SYSTEM TABLE DEFINITION

|

| 01645 | XIDEX | Address of current program’'s ID
| | | extension
| 0l646 | XMATA | Address of current program’s MAT entry
| 01647 | XI | Address of index register save area
! 01650 | EQTA | FWA of Equipment Table
| 01651 | EQT# | Number of EQT entries
| 01652 | DRT | FWA of Device Reference Table
| 01653 | LUMAX | Number of logical units in DRT
| 01654 | INTBA | FWA of Interrupt Table
| 01655 | INTLG | Number of Interrupt Table Entries
| 01656 | TAT | PFWA of Track Assignment Table
| 01657 | KEYWD | FAA of keyword block

I

I

| Ule660 | BEQT1 \ |

I 01661 | EQT2 | |

| 01662 I EQT3 | |

| 01663 | EQT4 | |

[ Ule64 | EQT5 \ | Addresses of first 11 words of

| 01665 | EQT6 / | current EQT entry (see 01771 for

| 01666 | EQT7 | | last four words)

| 0lee67 | EQT8 | [

I 01670 | EQT9 | |

| 0l671 | EQT10 | |

| 01672 | EQT11l / |

| | I

| 01673 | CHAN | Current DCPC channel number

| 01674 | TBG | I/0 address of time-base card

| 01675 | SYSTY | EQT entry address of system console
|

ettt ettt
———— e [ s e - ————

| 0l676 I RQCNT | Sumber of request parameters -1
| 01677 | RQRTN | Return point address
| | I
I 01700 | ROQP1 \ I
I 01701 | RQP2 | I
| 01702 | RQP3 | | Addresses of request parameters (set
| 01703 | RQP4 \ | for a maximum of nine parameters)
| 01704 | RQP5 / I
| 01705 | ROP6 | |
| 01706 | RQP7 | |
| 01707 | RQP8 | |
I 01710 | RQPY / I
|



SYSTEM COMMUNICATION AREA AND SYSTEM TABLES

Table B~1l. System Communication Area Locations (continued)

o e e ot o e e e o e e e e o e o e e o e e e S e e s e ot o e B e e e o +
| Octal Location | Contents | Description I

| e e e e e e e e e | e e e i e | e e e e e e e o e

|

| 01711 | SKEDD | schedule list header |
[ 01713 | susp2 | Wait Suspend list header |
| 01714 | SUSP3 | Available Memory list header |
| 01715 | susp4 | Disc Allocation list header |
| 01716 | SUSP5 | Operator Suspend list header |

|

|

| PROGRAM ID SEGMENT DEFINITION
| e e | | oo o o o e e i e e e |

01717 XEQT ID segment address of current program
01720 XLINK Linkage address
01721 XTEMP Temporary addresses (five words)
01726 XPRIO Priority word address

y XPENT

01731 XA A-register at suspension address
01732 XB B~register at suspension address
01733 XEO E and overflow register suspension

I | l
i I [
| I I
I | |
I | Primary entry point address I
01730 | XSUSP | Point of suspension address |
| I (
[ I [
| | l
I I I
I

address

Operator/keyboard attention flag
Operator communication flag
RT disc resident swapping flag

|

OPFLG |
I

I1/0 address of privileged interface cardl
I

|

|

| |

| |

| | Swap
| 01737 | DUMMY
| ( | IDSDhA Disc address of first ID segment
| | IDSDP Position within disc sector of first
| |

ID segment

N
l
l
I
|
[
l
l
l
(

| MEMORY ALLOCATION BASES DEFINITION l
l
|
l
l
[
|
|
|
l
[
[
[

| 01742 | BPAl FWA user base page link area |
| 01743 | BPAZ LWA user base page link area |
| 01744 | BPA3 FWA user base page link I
I 01745 | LBORG FWA of resident library area |
| 01746 | RTORG FWA of real-time COMMON I
| 01747 | RTCOM Length of real-time COMMON I
| 01750 D | RTDRA FWA of real-~time partition |
| 01751 D | AVMEM LWA+1l of real-time partition I
I 01752 | BGORG FWA of background COMMON |
I 01753 | BGCOM Length of background COMMON I
] 01754 D | BGDRA FWA of background partition |

]

[ o e e e e | e e e | e e e e e e e e e e e e e e e e e



SYSTEM COMMUNICATION AREA AND SYSTEM TABLES

Table B~1l. System Communications Area Locations (continued)

o ——————— o e e e e e e e +
| Octal Location | Contents | Description I
| e e e e | e e e e e e e e e e e e s e e e |
: UTILITY PARAMETERS |
~~~~~~~~~~~~~~~~ | e e | e e e e e e e e e e e e |
| 01755 | TATLG | Negative length of track assignment |
| I | table I
| 01756 | TATSD | Numpber of tracks on system disc |
| 01757 | SECT2 | Number of sectors/track on LUZ2 (system) |
| 01760 | SECT3 | Number of sectors/track on LU3 (aux.) |
I 01761 | DSCLB | Disc address of user available library |
| I | entry points |
| 01762 | DSCLN | Number of user available library entry |
I] | points. |
| 01763 | SYSLB | Disc address of system library entry |
| | | points I
| 01764 | SYSLN | Number of system library entry points |
| 01765 | LGOTK | LG Area: LU#%, starting track, number of |
| | | tracks (same format as ID segment word |
| I I 27) |
| 01766 | LGOC | Current LG Area track/sector address |
| | | (same format as ID segment word 26) |
| 01767 | SFCUN | LS: LU# and disc address (same format |
| | | as ID segment word 26)]
| 01770 | MPTFL | Memory protect ON/CFF flag (0/1) :
I | |
I 01771 | EQT12 \ | l
| 01772 | EQT13 \ | Address of last four |
| 01773 | EQT14 / | words of current EQT |
: 01774 : EQT1S / : :
| 01775 D | FENCE | Memory protect fence address |
| 01777 | BGLWA | LWA memory background partition |

| D letter indicates the contents of the location are set dynamically |
| by the dispatcher. |

B~2. PROGRAM ID SEGMENT

Each user program has a 33-word ID segment located in Table Area II
that contains static and dynamic information defining the properties
of the program. The static information 1is set during generation time

or when the program is loaded on-line. The dynamic information is
maintained by the operating system Executive.

SYSTEM COMMUNICATION AREA AND SYSTEM TABLES

The number of ID segments contained in a system is established during
system generation, and is directly related to the number of programs
that can be in main memory at any given time. If all the ID segments
are 1in use, no more programs can be added on-line unless some other
existing program is first "OFFed" (removed from the system) to recover
an ID segment.

The format of the ID segment is illustrated in Figure B-1l. Each ID

segments’s address is located in the Keyword Table (see location 01657
octal).

151413 121110 9 8 7 6 5 4 3 2 1 0

: List Linkage | Word 0 \
--- | |
| TEMP 1 | 1 |
| TEMP 2 l 2 |
| TEMP 3 | 3 |
| TEMP 4 | 4 |
| TEMP 5 | 5 |
| == e e e | |
| Priority | 6 |
| Primary Entry Point | 7 *|
[mm e e e - | |
| Point of Suspension | 8 |
| A-Register I 9 |
| B-Register | 10 |
| EO-Registers | 11 |
| = e e | = e - | | Memory
| Name 1 | Name 2 | 12 *\ Resident
| Name 2 | Name 4 | 13 */ Programs
| [==lm=] === | =] | | | | | |
| Name 3 T™mIMLI//I8S| Type | 14 *|
|==l==l==l==l==l==| ==l ==| == | ==] == | = | = o o = | |
INnal//Inpl wl Al//1 Ol//) RI DI/////]1 Status | 15 |
|=—=l==l==| =] == === == == == | === | I |
| Time List Linkage | 16 |
| = —————— Rl D e ettt DT | |
| RES | Tl Multiple | 17 |
fmm e B e | |
| Low Order 16 Bits of Time | 18 |
| = e e e e e e e | |
| High Order 16 Bits of Time | 19 |
R e e e e e e e e e | |
IBAIFW| MIATIRM|IRE|IPW|RN| Father ID Segment No. | 20 |
|==] == == === =] === = || e | |
IRP|#pgs. (no BP) | MPFI |//| Partition No. -1| 21 |
=== e e | || e e | |
| Low Main Address | 22 *|
|

Figure B~l. ID Segment Format

SYSTEM COMMUNICATION AREA AND SYSTEM TABLES

| High Base Page Address + 1

| == | === mm e e e e e

|LUI Program: Track | Sector

LUl sSwap: Track | No. Tracks

| ID Extension No. | EMA Size

%*

23

*

*
N — ———

24

25

26 *

27

28

29

30\
\Memory

31

/Residents
32/

* = words used in short ID segments for program segments

TM = temporary load (copy of ID segment is not on the disc)

ML = memory lock (program may not be swapped)

SS = short segment (indicates a nine-word ID segment)
Type = specified program type (1-5)

NA = no abort (instead, pass abort errors to program)

NP = no parameters allowed on reschedule

W = wait bit (waiting for program whose ID segment address is

in word 2)

A = abort on next list entry for this program

O = operator suspend on next schedule attempt

R = resource save (save resources when setting dormant)

D = dormant bit (set dormant on next schedule attempt)

Figure B-1.

ID Segment Format (continued)

Status

T
BA

FW

PW

RN

RP

MPF I

SYSTEM COMMUNICATION AREA AND SYSTEM TABLES

= current program status

time list entry bit (program is in the time list)

batch (program is running under batch)

father is waiting (father scheduled with wait)
Multi-Terminal Monitor bit

attention bit (operator has requested attention)
reentrant memory must be moved before dispatching program
reentrant routine now has control

program wait (some other program wants to schedule this one)
Resource Number either owned or locked by this program
reserved partition (only for programs that reguest it)

memory protect fence index

Figure B-l. ID Segment Format (continued)

B-7

SYSTEM COMMUNICATION AREA AND SYSTEM TABLES

B-3. ID SEGMENT EXTENSIONS

Each EMA program requires a 3-word ID segment extension in addition to
its 33-word ID segment. The program’s ID segment word 28 will point to
its ID segment extension, The number of ID extensions contained in the

system 1s set at generation time, and if all are in use,

programs can be added on-line. The format of the
illustrated in Figure B-2.

no more EMA

ID segment is

+
|
i
|
|
i
|
|
|
|
|
|
|
|
|
|
|
|
|
i
1
|
1
1
|
}
|
|
|
I
I
|
|
|
]
|
|
|
I
|
I
|
!
|
|
|
|
|
)
|
|
|
|
|
|
I
|
i
|
1
!
|
|
]
I
|
|
I
|
-+

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 O

T—-}-—I-—I-—I--I--I-—I—-l--I--I-—I--I--l-—I--I-T
!NSI Current MSEG No. | # Pages MSEG]
| —————— |==] = e e e e e |
| MSEG Start IDEl (Physical) EMA Start |
| Page (logic.)I | Page |
| == mmmmmm e | == [= e e e e |
|/////////////////l 4 Tracks for EMA Swap I
I/////////////////|I I
e e e | e e e +
where:

the EMA (set up by .EMAP)

(set up by .EMIO or .EMAP)

DE = 0 if the EMA size was specified by the user

[}
-

maximum size available to the system

Figure B-2., 1ID Segment Extension

word O

NS = 0 if the MSEG is pointing to a standard segment of

=1 if the MSEG is pointing to a non-standard segment

if the EMA size is allowed to default to the

SYSTEM COMMUNICATION AREA AND SYSTEM TABLES

B-4. SHORT ID SEGMENTS

Short 1ID segments requiring nine words are used only for background
program segments. A short ID segment is required for each segment of a
segmented program. If no empty short ID segments are available during
an on-line load, a standard 33-word ID segment will be used.

B-5. MEMORY ALLOCATION TABLE ENTRY

Each partition defined by the user during generation contains an entry
in the Memory Allocation Table (MAT). This table starts at the system
entry point S$MATA and extends upward toward high memory. Each entry is
seven words long, arranged as illustrated in Figure B-5.

A e e e ot e e o e o o 2 0 o o e o i 2 2 2 S . o . o o o o . o o o o o o o S o o e
|

| 15 14 13 121110 9 8 7 6 5 4 3 2 1 0 word
| R e e e e e I e e R e Il e el bl Rl

| | MAT Link Word | 0
| | |

| | e e e e e e e o |

| | Partition Occupant’s Priority I 1
| | |

| | mm e e e e |

| | ID Segment Address of Occupant : 2
| |

| | == ||| mm | e e e e l

I | ml//\ pl////////| Physical start Page of | 3
: { ‘//: :////////: Partition :

| \ Rl Cl/////7//7////) Number pages in Partition | 4
: = : :///////////: (exclude Base Page)‘ :

| \RCV//////7/77777777/7/7777/7/7/77/77777) S | 5
: : i///////////////////////////////////: :

| | Subpartition Link wWord | 6
| | |

| e o e et

I

I

b o e e e o 1 e 2 e e P 2 0 S o o o P . o 2 o o S 2 e 2 2 S A ot . 2o e e o o o 2 o o o ot o o e o o o e

Figure B-5. Memory Allocation Table Entry Format

———— . . s G . e e — e it — — | S i, o i e s e

SYSTEM COMMUNICATION AREA AND SYSTEM TABLES

where:

-1 if partition not defined either during
system generation or by parity error

MAT Link Word

=0 if end of list

M = 1 if MAT entry is for a mother partition

or serially reusability termination
R = 1 if partition is reserved

C = 1 if partition is in use as part of a chained
partition

|

|

|

I

I

I

|

I

|

| D = 1 if program is dormant after save-resource
|

|

|

I

|

I

|

| RT = 1 if MAT entry is for real-time partition
|

- program being loaded

-~ program is in memory

segment is being loaded or swapped out

~ program is swapped out

~ subpartition swap-out started for mother
partition

- subpartition completed. Mother partition
cleared.

(9;] W= o
}

Subpartition Link Word

0 if MAT entry is not a subpartition or a mother
partition

next subpartition address if saubpartition
mother partition MAT address if this entry

is the last partition.

- S D " D B > B Gy T D T B D s e D T D D T G VD Tl Bl S B s o e Bl WY) D B Sl S D S A G U@ Ut B G S e B il e B Bl o B Mt D Bl D s B e s o B

[
l
I
|
I
I
l
|
I
|
l
|
I
I
|
l
l
|
|
I
I s = program’s dispatching status :
|
| I
l |
| |
| [
| l
| I
I I
| |
| |
| I
| |
| |
I |
| |
| I
| |
+ +

Figure B~3. Memory Allocation Table Entry Format

B~6. RTE-IV SYSTEM DISC LAYOUT

Figure B-4 illustrates how disc space is allocated when an RTE~IV
when an RTE~IV system is generated.

B~10

DISC PROTECT
BOUNDARY

>>> D> D> > D>

>

AVAILABLE DISC SPACE

LIBRARY ENTRY POINTS LIST *

RELOCATABLE LIBRARY AND UTILITIES

BASE PAGE LINKS
BACKGROUND DISC RESIDENT

BASE PAGE LINKS
REAL-TIME DISC RESIDENT

MEMORY RESIDENT BASE PAGE
MEMORY RESIDENT PROGRAMS
MEMORY RESIDENT LIBRARY

PARTITION RESIDENT DRIVERS

SYSTEM

TYPE 13 MODULES

TRACK ALLOCATION TABLE

$ MATA, $ MRMP, $ MPFT TABLES
KEYWORD TABLE, ID SEGMENTS

ID EXTENSIONS, $ IDEX TABLE

$ CLAS, $ LUSW, $ KNTB, $ LUAV TABLES

SYSTEM DRIVER AREA

BACKGROUND COMMON
REAL-TIME COMMON
SSGA

PARTITION #1 RESIDENT DRIVERS

TYPE 15 MODULES

INT

DRT

$ DVMP TABLE

EQT, EQT EXTENSIONS
TRACK MAP TABLE $ TB3X

SYSTEM COMMUNICATION AREA
UPPER BASE PAGE LINKS
SYSTEM LINKS

TRAP CELLS

BOQT EXTENSION

A SECTOR BOUNDARIES

*INCLUDES ONE SYSTEM-RESERVED TRACK

INCLUDES ONE TRACK
RESERVED FOR SYSTEM USE

REPEATED FOR ALL BG DISC
RESIDENTS AND SEGMENTS

REPEATED FOR ALL RT DISC
RESIDENTS AND SEGMENTS

TABLE AREA I

COMMON

TABLE AREA |

SYSTEM BASE PAGE

Figure B-4. RTE-IV System Disc Layout

vs)
1

11

| RECORD FORMA'TS | APPENDIX C |

C-1. SOURCE RECORD FORMATS

The source format used for the disc records in the LS area by the
system program EDITR and FMGR is given in Figure C-1l. All records are
packed ignoring sector boundaries. Binary records are packed directly
onto the disc. After an END record, a zero word is written and the
rest of the sector is skipped. 1If this zero word is the first word of

the sector, it 1is not written. Binary files are always contiguous soO a
code word is not required,.

15 8 7 0

WORD 1 L ZERO

WHERE L IS THE RECORD LENGTH IN WORDS EXCLUDING
WORD 1

WORD 2 CHAR1 CHAR2

IF WORD 1 =0 THEN END OF TAPE
IF WORD 1 =—1THEN END OF FILE

ODD CHARACTERS ARE PADDED WITH BLANKS TO MAKE A FULL WORD.
THE LAST WORD ON ANY GIVEN TRACK IN A MULTI-TRACK FILE IS A
CODE WORD THAT POINTS TO THE NEXT TRACK IN THE FILE,

CODE WORD FORMAT

15 7 0

LU# TRACK

WHERE LU# 1S EITHER 2 (SYSTEM) OR 3 (AUXILIARY) DEPENDING ON
WHICH PLATTER THE TRACK 1S ON,

RECORD FORMATS

The following describes the formats of relocatable and absolute
records produced as object code for a given source program. The
relocatable records are generated by compilers or by the assembler for
a relocatable assembly. These records are stored in a relocatable
file. The generator or the locader processes these relocatable records
to produce an absolute module which has all program links resolved and
the program is relocated and ready to run.

The absolute records are produced by the assembler for an absolute
assembly. The module of records thus produced requires no processing
by the generator or loader. Absolute programs must be loaded into
memory and run off-line.

NAM RECORD

CONTENT EXPLANATION
15 87 0,15 13,12 0.15 0 RECORD LENGTH =9-60 WORDS
7 %
/ 5 // IDENT = 001
RECORD E
LENGTH N CHECKSUM CHECKSUM: ARITHMETIC
001 / TOTAL OF ALL WORDS
‘A / IN RECORD EXCLUDING
WORDS 1 AND 3.
WORD 1 WORD 2 WORD 3
15 8,7 0,15 8,7 0,15 8,7 0 SYMBL: FIVE CHARACTER
NAME OF PROGRAM
S % M B L
WORD 4 WORD 5 WORD 6
15,14 0,15 0,15 0 A/C: BINARY TAPE PRECESSION
LENGTH OF = 0IF ASSEMBLER
o LENGTH OF LENGTH OF PRODUCED OR LENGTH
MAIN PROGRAM BASE PAGE COMMON IS EXACT
SEGMENT SEGMENT SEG:/IENT = 1 IF COMPILER
(OR ZERO) (OR ZERO) {OR ZERO) PRODUCED, AND
LENGTH IS UNKNOWN
WORD 7 WORD 8 WORD 9
15 0,15 0,15 0,15 0
PROGRAM PRIORITY RESOLUTION EXECUTION
TYPE CODE MULTIPLE
WORD 10 WORD 11 WORD 12 WORD 13
15 0,15 0,15 0,15 0
HOURS MINUTES SECONDS TENS OF
MILLISECONDS
WORD 14 WORD 15 WORD 16 WORD 17
15 8,7 0 15 8,7 0
COMMENT COMMENT COMMENT | COMMENT
CHAR 1 CHAR 2 CHAR i2n-1 CHAR 2n
WORD 18 WORD n
(n < 60)

HATCH-MARKED AREAS SHOULD BE ZERO-FILLED
WHEN THE RECORDS ARE GENERATED

GENERATED

CROSS-HATCH-MARKED AREAS SHOULD BE
SPACE-FILLED WHEN THE RECORDS ARE

ENT RECORD

CONTENT EXPLANATION
15 8,7 0,15 13,12 43 0,15
7 E RECORD LENGTH = 7-59 WORDS
0
RECORD E R CHECKSUM IDENT = 010
LENGTH ? ;
/ 010 / 5 ENTRIES: 1 TO 14 ENTRIES
PER RECORD; EACH ENTRY
WORD 1 WORD 2 WORD 3 IS FOUR WORDS LONG.
15 8,7 0,15 8,7 0.15 8,7 32 0

SYMBL: 5 CHARACTER ENTRY
POINT SYMBOL

R: RELOCATION INDICATOR
=0 IN PROGRAM RELOCATABLE
=11F BASE PAGE RELOCATABLE
=2 IF COMMON RELOCATABLE
WORD 4 WORD 5 WORD 6 =3 |F ABSOLUTE

= 4 INSTRUCTION REPLACEMENT

S
N

15 0,15 8.7 0,15 8,7 0
UNRELOCATED
ADDRESS
FOR SYMBL OR S Y M B
REPLACEMENT INSTRUCTION.
VALUE
WORD 7 WORD 8 WORD 9 LWORDS4THROUGH7ARE
REPEATED FOR EACH
ENTRY POINT SYMBOL.
15 8,7 3,20 15 0,15 0
UNRELOCATED
ADDRESS
L R FOR SYMBL OR
REPLACEMENT INSTRUCTION
A VALUE

WORD 10 WORD 59

C-4

EXT RECORD

CONTENT
15 8,7 0,15, 13,12 5,4 0,15
! E
/]} 7/ E
RECORD E T
LENGTH N T CHECKSUM
T / L
,4Q100 /) s
WORD 1 WORD 2 WORD 3
15 8,7 0,15 8,7 0,15 8,7
SYMBOL
s M B 1.D. NO.
WORD 4 WORD 5 WORD 6
15 8,7 0,15 0,15 8,7
s SYMBOL
1.0. NO.
WORD 7 WORD 60

EXPLANATION
RECORD LENGTH = 6-60 WORDS
IDENT = 100

ENTRIES: 1 TO 19 PER
RECORD; EACH ENTRY
IS THREE WORDS LONG

SYMBL: 5 CHARACTER
EXTERNAL SYMBOL

SYMBOL I1D. NO.: NUMBER
ASSIGNED TO SYMBL FOR
USE IN LOCATING
REFERENCE IN BODY
OF PROGRAM.

WORDS 4 THROUGH 6 REPEATED
FOR EACH EXTERNAL
SYMBOL (MAXIMUM OF
19 PER RECORD).

C-5

DBL RECORD

CONTENT
15 8,7 0,15, 13,12 8,7 6,5 0,15 0
7 [
RECORD // b / Z | No.OF
E €| InsT. CHECKSUM.
LENGTH N
/ N / WORDS
7, 7.
WORD 1 WORD 2 WORD 3
15 0.15 13,12 109 76 43 1015 0
[
UNRELOCATED ; ABSOLUTE
LOAD RIRIRIRIRD VALUE
ADDRESS %
]
WORD 4 WORD 5 INSTRUCTION WORD
R = 000
15,14 0,15,14 0,15,14 0
15-BIT PROGRAM 15-81T BASE PAGE 15-BIT COMMON
RELOCATABLE RELOCATABLE RELOCATABLE
VALUE VALUE VALUE
D/1 L D/l LD/I
INSTRUCTION WORD INSTRUCTION WORD INSTRUCTION WORD
R = 001 R =010 R =011
15,14 11,10 8,7 0,15,14 11,109 2,1,0,15 0
i i
N U N | EXTERNAL
s ¢ EXTERNAL $¢ ﬂ symsoL | UNRS;?S:TED
A D / S'YDMBN%L 5 D § 1.D. NO. R OR—
.D.NO. —OR-
OFFSET
¢ U § W zero
D/l D/1 4
INSTRUCTION WORD INSTRUCTION WORD
R =100 R =101
15 12 11 21015 0
. y
I I
| | m RELOCATABLE
TYPE | | R BYTE
| | ADDRESS
] 1
INSTRUCTION WORD R =110

C-6

EXPLANATION

RECORD LENGTH = 6-60 WORDS
IDENT =011

Z/C: RELOCATION OF LOAD
ADDRESS
=0 FOR BASE PAGE
=1 FOR PROGRAM
=2 FOR ABSOLUTE
=3 FOR COMMON
NO. OF INST. WORDS: 1t TO 45
LOADABLE INSTRUCTION
WORDS PER RECORD

RELOCATABLE LOAD ADDRESS:
STARTING ADDRESS FOR
LOADING THE INSTRUCTIONS
WHICH FOLLOW;

R’s: RELOCATION INDICATORS:

000 = ABSOLUTE

001 = 15-BIT PROGRAM
RELOCATABLE

010 = 15-BIT BASE PAGE
RELOCATABLE

011 = 156-BIT COMMON
RELOCATABLE

100 = EXTERNAL REFERENCE

101 = MEMORY REFERENCE

110 = BYTE REFERENCE

R4 IS RELOCATION INDICATOR
FOR INSTRUCTION WORD1; Ro,
FOR INSTRUCTION WORD2; ETC.

D/t: INDIRECT ADDRESSING

0 = DIRECT
1 = INDIRECT

MEMORY REFERENCE INSTRUC-
TIONS USE TWO WORDS, WITHIN
THE TWO-WORD GROUP?, “MR"
INDICATES RELOCATABILITY OF
OPERAND SPECIFIED IN SECOND
WORDS:

00 = PROGRAM RELOCATABLE
01 = BASE PAGE RELOCATABLE
10 = COMMON RELOCATABLE
11 = ABSOLUTE

TODS—17

Tape Formats

EMA RECORD
15 8,7 015 1312 109 015 0
|
RECORD g EMA CHECKSUM
LENGTH N SIZE
// T /
WORD 1 WORD 2 WORD 3 EXPLANATION
RECORD LENGTH = 7 WORDS
IDENT = 110
15 87 015 87 015 8
| | | SYMBOL I.D. NO.: NUMBER
| [I ASSIGNED TO SYMBOL FOR
S | v y B SYMBOL USE IN LOCATING REFERENCE
' I 1.D.NO. IN COPY OF PROGRAM.
| | |
|] 1
WORD 4 WORD & WORD 6
15 54 0
M
S s
E |
G z
% E
WORD 4
7700-189
END RECORD
CONTENT
185 8,7 0,15 13,12 3,2,1,0,15 0
|
RECORD £
£ CHECKSUM
LENGTH N RIT
' %
WORD 1 WORD 2 WORD 3 EXPLANATION
RECORD LENGTH = 4 WORDS
IDENT = 101
1514 R: RELOCATION INDICATOR
‘ 0 FOR TRANSFER ADDRESS
Q RELOCATABLE = 0 IF PROGRAM RELOCATABLE
% TRANSFER =1 IF BASE PAGE RELOCATABLE
2 ADDRESS - 2 IF COMMON RELOCATABLE
f - 3 IF ABSOLUTE
WORD 4 T: TRANSFER ADDRESS

INDICATOR

=0 I1F NO TRANSFER
ADDRESS IN RECORD

=11F TRANSFER ADDRESS
PRESENT

TODS—18

C-7

C-8

ABSOLUTE TAPE FORMAT

CONTENT EXPLANATION
15 87 01514 015 0
/ RECORD LENGTH = NUMBER OF
’ ABSOLUTE WORDS IN RECORD EXCLUDING
RECORD LOkD INSTRUCTION mC;';D\ASIC;RgND 2 AND THE
LENGTH j ADDRESS WORD, .
ABSOLUTE LOAD ADDRESS:
/ STARTING ADDRESS FOR
LOADING THE INSTRUCTIONS
WORD 1 WORD 2 WORD 3 WHICH FOLLOW
INSTRUCTION WORDS: °
1 ABSOLUTE INSTRUCTIONS
5 015 015 0 OR DATA
'Nsvfl'gjg'o"' CHECKSUM
i CHECKSUM: ARITHMETIC
TOTAL OF ALL WORDS
EXCEPT FIRST AND LAST
WORD n-1 WORD n

1 On paper tape, each word represents two frames arranged as follows:
Bit 8 — -— Bit0
<« Feed Holes

Bit 15 - «— Bit 7

D — D S D T . e - G G D T S - D - ——— - - — - - e —— - ————— ————— —— —— —— —— -

+ +
| |
| RTE-IV AND RTE-III DIFFERENCES |
| AND COMPARISONS ‘
|

+ +

- - — - ———— D - - - gy . D A ————— - - - ——————— ————— — ———— - — - —

For existing installations that are upgrading from a previous RTE-III
operating system to an RTE-IV software confiquration, the RTE-IV
features and enhancements described below are significant changes in
design philosophy and the utilization of system services.

D-1. LOGICAL USER MAP

The operating system code and nearly all drivers are removed from the
logical wuser map, thus allowing larger programs in RTE-IV than was
possible in RTE-III. In RTE-IV, the user map is saved in the upper 32
words of the unmapped portion of the user’s physical base page so that
it is merely restored after being interrupted, rather than being
rebuilt as in RTE-III (see Memory Management Section).

D-2., DRIVER PARTITIONS

A System Driver Area 1is available for privileged drivers, large
drivers or those drivers that perform their own mapping. Driver
partitions and the System Driver Area did not exist in RTE-III.

Driver partitions allow many drivers to be resident in physical memory
but they share only one portion of the logical address space; that is,
one driver partition is mapped only at the time it is needed. In
contrast to RTE-III, RTE-IV driver partitions reduce the amount of
address space used up by the driver in the user map (see Memory
Management and I/0 Sections).

D-3. TYPE 2, 3 AND 4 PROGRAMS

Type 2 (real-time) and Type 3 (background) programs have both Table

Areas I and II and the System Driver area included in their address
space.

Type 4 (background) programs, have only Table Area I included in their
address space, although external references to Table Area II entry
points will be resolved for access by cross-map instructions.

External references to system entry points (in Type C modules) will be

resolved for Type 3 background programs only, and cross-map
instructions must be used to access locations in the System Map.

RTE~IV AND RTE-III DIFFERENCES AND COMPARISONS

Type 4 background programs did not exist in RTE-III.

Types 2, 3, and 4 programs may be segmented in RTE-IV. Only type 3
programs could be segmented in RTE-III.

D-4. EXTENDED MEMORY AREAS

This feature allows RTE-IV programs to address memory arrays (similar
to wvirtual memory arrays) that are beyond the standard 32K address
limit, EMA arrays can be declared in both RTE-IV Assembly Language and
FORTRAN-IV programs (see the Memory Management Section).

D-5. MEMORY RESIDENT LIBRARY

Reentrant or privileged library routines located in the memory
resident library can be accessed only by memory resident programs. All
Type 6 and 14 library routines are treated as Type 7 utility routines
when referenced outside of the memory resident area; that is, they are
appended to the calling program and are placed in the disc resident
relocatable library as Type 7 routines,

D-6. FILE INPUT/OUTPUT

The loader (LOADR), FORTRAN-IV compiler and RTE-IV Assembler can
perform 1I/0 to or from FMP files in RTE-IV configurations,

D-7. PARITY ERROR

If a parity error is detected in a user program that is running in a
partition, the error will be reported and the partition removed from
system use. Parity errors detected in the System Map will still halt,
as in RTE-III configurations (see the EXEC Section).

D-8. MEMORY AND I/O RECONFIGURATION

Memory and I/0 specifications may be redefined during system boot-up
to meet new on-site requirements, rather than going through a complete
system dgeneration. Partitions may be redefined to eliminate pages
with parity errors, and devices may be reassigned to different I/0
slots (see the 1/0 and Memory Reconfiguration Section).

TABLE AREA I ENTRYPOINTS TABLE AREA II ENTRYPOINTS

EXEC SBATM
$CIC SBGFR
SERAB SCFR
SIDLE SCLAS*
$IDNO SCMST
SLIBR $COML
SLIBX SDLP
SLIST SDLTH
SMESS SDVME
$MEU SDVPT
SMI'M SEMRP
SOPSY SENDS
SPVCN SIDEX
$SCD3 SLUAV*
$STBXX* SLUSW*
SUCON SMATA
SUIN SMBGP
SULLU SMCHN
SUPIO SMNP
$WORK SMPFT
$XCIC SMPSA
S XDMP SMPSZ
SXDMP SMRMP
$SXED(SMRTP
SXEQ SPLP
$YCIC SRLB
$RLN
SRNTB*
STRFR
$SSBTH
$SDA
$SDr2
STIME

* puilt by the generator where

txxo

31 for a 7900 system
32 for a 7905/06/20 system

RTE-IV PROGRAM TYPES

Table F-1 provides a list of the default program types of the libraries and programs distributed
with the RTE-IV operating system. The default program type is listed in the first column, and
the remaining columns list the additional available program types. Each row of the table lists
a program name or a library file name and indicates whether or not the corresponding
program types available are allowed for that respective program or library (a “YES” meaning
that the listed type is allowed, a “NO” meaning that the listed type is not allowed).

Note that several of the listed spool modules require SSGA access.

Table F-1. RTE-IV PROGRAM TYPES

TYPE 1 TYPE 1
PROGRAM OR LIBRARY | DEFAULT without with SSGA
FILE NAME TYPE TA TA N TYPE 2 | TYPE3 | TYPE 4 | REQUIRED*
LOADR 3 NO NO YES YES NO NO
PRMPT 1 YES YES YES YES YES NO
RSPNS 1 YES YES YES YES YES NO
AUTOR 2 YES YES YES YES YES NO
$CNFX 3 NO NO NO YES NO NO
WHZAT 1 YES YES YES YES YES NO
LGTAT 3 YES YES YES YES YES NO
RT4GN 3 NO NO YES YES NO NO
SWTCH 3 NO NO YES YES YES NO
FMGR 3 NO NO YES YES NO NO
D.RTR 2 YES YES YES YES YES NO
EDITR 3 NO NO YES YES NO NO
XREF 3 NO NO YES YES NO NO
FTN4 3 NO NO YES YES NO NO
ASMB 3 NO NO YES YES NO NO
KEYS 3 YES YES YES YES YES NO
KYDMP 3 YES YES YES YES YES NO
#EMA 3 NO NO YES YES YES NO
SAVE 3 NO NO YES YES NO NO
RETOR 3 NO NO YES YES NO NO
VERFY 3 NO NO YES YES NO NO
COPY 3 NO NO YES YES NO NO
MSAFD 3 NO NO YES YES NO NO
JOB 2 NO NO YES YES NO NO
GASP 3 NO NO NO YES NO NO
SMP 18 NO YES YES YES NO YES (
EXTND 17 NO YES YES YES NO YES /
SPOUT 17 NO YES YES YES NO YES
RLIB (RTE/DOS YES YES YES YES YES NO
Relocatable Library)
BMLIB (Batch Monitor Lib.) YES YES YES YES YES NO
(Spoo! Library) NO YES YES YES NO NO
CLIB (Compiler Library) NO NO YES YES NO NO
DECAR (Decimal String YES YES YES YES YES NO
Library)
DBUGR (Debug NO NO YES YES YES NO
Subroutine)
SYLIB (System Library) YES YES YES YES YES NO
*Add 16 to the desired program type to obtain SSGA access.

F-1

-—— e e o -
EEEss==s=s==

Operator Command Errors
Executive Error Messages
Memory Protect Violations
Dynamic Mapping Violations
Dispatching Errors

EX Errors

Unexpected DM and MP Errors
TI, RE and RQ Errors

Parity Errors

Other EXEC Errors

Disc Allocation Error Messages
Schedule Call Error Codes

I1/0 Call Error Codes

Program Management Error Codes
Logical Unit Lock Error Codes
Executive Halt Errors
Relocating Loader Error Codes
DBUGR Error Messages

Boot-Up and Reconfiguration Halts
Configuration Error Messages

SoE======T======x

READER COMMENT SHEET

RTE-IV PROGRAMMER’S
Reference Manual

92067-90001 June 1978

We welcome your evaluation of this manual. Your comments and suggestions help us improve our publications.
Please use additional pages if necessary.

Is this manual technically accurate?

Is this manual complete?

Is this manual easy to read and use?

Other comments?

FROM:

Name

Company

Address

— e e e - - - - - - ——— —— — o —— —— . . ot . - o = - - — - — -t — — ——— — — —

FIRST CLASS
PERMIT NO.141

CUPERTINO
CALIFORNIA

BUSINESS REPLY MAIL

No Postage Necessary if Mailed in the United States Postage will be paid by

Hewlett-Packard Company

Data Systems Division

11000 Wolfe Road

Cupertino, California 95014

ATTN: Technical Marketing Dept.

HEWLETT W PACKARD

PART NO. 92067-90001
Rev. Code 1826 Sales and service from 172 offices in 65 countries.
Printed in U.S.A. 6/78 11000 Wolfe Road, Cupertino, Cafifornia 95014

	000000
	000001
	000002
	000003
	000005
	000006
	000007
	000008
	000009
	000010
	000011
	000012
	000013
	000014
	0001_Glossary
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	02-01
	02-02
	02-03
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	03-30
	03-31
	03-32
	03-33
	03-34
	03-35
	03-36
	03-37
	03-38
	03-39
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32
	04-33
	04-34
	04-35
	04-36
	04-37
	04-38
	04-39
	04-40
	04-41
	04-42
	04-43
	04-44
	04-45
	04-46
	04-47
	04-48
	04-49
	04-50
	04-51
	04-52
	04-53
	04-54
	04-55
	04-56
	04-57
	04-58
	04-59
	04-60
	04-61
	04-62
	04-63
	04-64
	04-65
	04-66
	04-67
	04-68
	04-69
	04-70
	04-71
	04-72
	04-73
	04-74
	04-75
	04-76
	04-77
	04-78
	04-79
	04-80
	04-81
	04-82
	04-83
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	08-01
	08-02
	08-03
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	12-17
	12-18
	12-19
	12-20
	12-21
	12-22
	12-23
	A-01
	A-02
	A-03
	A-04
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	D-01
	D-02
	E-01
	F-01
	G-01
	replyA
	replyB
	xBack

