RTE Operating System

Driver Writing Manual

This manual reflects information that is compatible with

software revision code 1805.

HEWLETT hp; PACKARD

HEWLETT-PACKARD COMPANY

11000 WOLFE ROAD, CUPERTINO, CALIFORNIA, 95014

Library Index Number
2RTE.340.92200-93005

Printed in U.S.A. 10/78

PART NO. 92200-93005

PUBLICATION NOTICE

Information in this manual describes RTE driver writing techniques. Changes in text to document software updates
subsequent to the initial release are supplied in manual update notices and/or complete revisions to the manual. The
history of any changes to this edition of the manual is given below under “Publication History.” The last change itemized
reflects the software currently documented in the manual.

Any changed pages supplied in an upﬁabe package are identified by a change number adjacent to the page number.
Changed information is specifically identified by a vertical line (revision bar) on the outer margin of the page.

PUBLICATION HISTORY

Third Edition May 78 (Software Rev. Code 1805)
Change 1 it Oct 78 (Software Rev. Code 1805)

NOTICE
The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATER-
IAL. INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the furnishing, perfor-
mance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is
not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are reserved.
No part of this document may be photocopied, reproduced or translated to another program language
without the prior written consent of Hewlett-Packard Company.

Copyright © 1978 by HEWLETT-PACKARD COMPANY

ii

DOCUMENTATION MAP

RTE-IV Programmer’s
Reference Manual
92067-90001

or

RTE-Ill Programming
and Operating Manual

92060-90004
RTE Operating '
System Driver or
Writing Manual >u
92200-93005

RTE-!l Programming
and Operating Manual
92001-93001

or
21MX M-Series and

E-Series Computers RTE-M Programmer’s
1/0 Interfacing Guide Reference Manual
02109-90006 92064-90002

(Refer to the Documentation Map
in the appropriate operating system
manual for a complete list of
related manuals.)

CONTENTS

iv Change 1

Section I Page Returning DCPC Channels to RTE 3-15
INTRODUCTION ; Handling the DCPC Interrupt 3-15
PUrposeoooie 1-1 Intermixed DCPC and Non-DCPC Operations .. 3-17
SCope .o 1-1 Driver Automatic “Up” 3-17
Supporting Documentation 1-1 Power Fail Processing 3-18
Power Down Sequence e 3-18
- Section II , Page Power Up Sequencecccovvviinnn.. 3-18
RTE INPUT/OUTPUT STRUCTURE Restart /O Sequence....................... ... 3-19
Introduction........... e 2-1 Program Scheduling by Drivers 3-20
Software I/O Structure........ S 2-1 Determination of Operating System ‘
Input/Output Device Drivers 2-1 Environmentviiiinininaann. ... 322
System I/O Processor...................... 2-2 Subroutines for Special Mapping Functions
Base Page Communications Area 2-2 (DMS Systems Only)coiiiiiiiin.. 3-24
Equipment Table 24 Mapping in RTE-III and RTE-M/III 3-24
Logical Unit Numbers 2-7 Mapping in RTE-IV 3-26
Device Reference Table 2-7 Sample Standard RTE Driver 3-28
Computer Interrupt Mechanism 2-10
Interrupt Table 2-11
Driver Mapping Table (RTE-IV only) 2-13 Section IV Page
General Operation of RTE VO 2-15 WRITING PRIVILEGED RTE DRIVERS
O Imitiation 2-17 Introduction il 4-1
I/O Continuation.......................... 2-17 General Privileged Driver Structure and Operation 4-3
VO Completion 2-17 Initiation Section 44
Privileged Section 4-6
Section III Page Completion Section0.............. ol 4-9
WRITING STANDARD RTE DRIVERS Privileged Driver Design Considerations 4-9
Introduction................................. 3-1 Communication With User Programs
General Driver Structure and Operation 3-1 (DMS Systems Only)oooiiiit. 4-10
Driver Naming Requirements 3-2 Discussion of Sample DMS Privileged Driver 4-10
Initiation Section 3-2 Initiation Section 4-10
Functions of the Initiation Section 3-3 Privileged Section e 4-11
Continuation/Completion Section 3-6 Completion Section 4-11
Device Clear on Program Abort 3-9 Time-Out Values for Privileged Drivers 4-12
/O Controller Time-Out 3-10 Subroutines for Special Mapping Functions
Driver Processing of Time-Out............. 3-10 (DMS Systems Only)oooin.n. 4-12
System Processing of Time-Out B 3-11 Mapping in RTE-III and RTE-M/IIT 4-13
DCPC Processingcoovviiiinnn.... 3-12 Mapping in RTE-IV.............. 4-15
RTE Control of DCPC Assignment......... 3-12 Sample DMS Privileged Driver 4-16A
DCPC Assignment by RTE 3-13 Sample Non-DMS Privileged Driver 4-16A
ILLUSTRATIONS
Title Page Title Page
Equipment Table Entry Format 2-5 Unbuffered 1/O Read Request 2-16
Expansion of CONWD (EQT Entry I/0 Driver Initiation Section....................... 3-4
Word 6) ... 2-6 I/0 Driver Continuation/Completion Section 3-7
Device Reference Table Entry Format.............. 2-9 DCPC Channel Assignment Words 3-13
Device Reference Table 2-9 Standard RTE Driver Example 3-29
Interrupt Table 2-12 DMS Privileged RTE Driver Example............. 4-17
Driver Mapping Table 2-14 Non-DMS Privileged RTE Driver Example 4-25

TABLES

Title Page

Base Page Communications Area — I/O Operations . 2-3

Title

$OPSY Word Format

INTRODUCTION

1-1. PURPOSE

The RTE Operating System Driver Writing Manual is a reference for those users who wish to
develop their own device drivers. A device driver provides the software interface between a
peripheral device and the RTE operating system. Many drivers for HP peripherals have
already been written and are available from HP. Users who wish to interface peripherals that
are not supported by HP will require specialized drivers. The information in this manual will
aid the user in the development of such routines.

Note that it is not the purpose of the manual to describe the various HP-supplied drivers in any
detail. Each of these is described in a separate manual specific to the driver.

1-2. SCOPE

The manual first provides the reader with a general description of the input/output (I/O)
characteristics of the RTE family of operating systems. The techniques and requirements for
developing device drivers are then presented in subsequent sections.

Since all of the RTE operating systems have the same general I/O structure, the manual can be
used to develop general purpose drivers for use in any of these RTE systems. There are some
areas where differences between operating systems may affect driver structure and operation;
these areas are clearly pointed out in the text with notations such as “RTE-IV only” or
“RTE-III only.” Phrases such as “RTE-III only” should be interpreted as referring to both
RTE-III (disc-based system) and RTE-M/III (memory-based equivalent of RTE-III).

1-3. SUPPORTING DOCUMENTATION

To use this manual effectively, the reader should be thoroughly familiar with HP Assembly
Language and with the Programming and Operating Manual for the RTE system in which the
driver is to be used. Refer to the Documentation Map at the front of this manual for informa-
tion on these and other available manuals. For specific information on an HP supplied driver,
refer to the appropriate driver manual.

1-1

RTE INPUT/OUTPUT STRUCTURE

2-1. INTRODUCTION

In RTE, centralized control and logical referencing of input and output (I/O) operations effect
simple device-independent programming. By means of several user-defined I/O tables, I/O
drivers, and program EXEC calls, the programmer is relieved of most I/O problems. To
understand the software I/O characteristics of RTE, the user should be familiar with two
hardware related terms used in this manual:

I/O Controller A combination of I/O card, cable, and (for some devices) controller box used
to control one or more I/O devices on a computer I/O select code.

1/0 Device A physical unit (or portion of a unit) identified in the RTE operating system
by means of an Equipment Table entry and a subchannel assignment.

Each I/O device is interfaced to the computer through an I/O controller. This controller is
associated with one or more of the computer I/O select codes. Interrupts from controllers on
specific select codes are directed to specific memory locations in the computer for system
processing.

It is also important to note the difference between a synchronous device and a non-
synchronous device. An interrupt from a synchronous device controller must be processed
within a specified time period, or the data will be lost. Examples of synchronous devices are
moving-head disc drives and nine-track magnetic tape drives. Non-synchronous devices have
no such requirement, and interrupts from these device controllers can be serviced whenever
the computer is able to do so. Examples of non-synchronous devices include paper tape punches
and readers.

2-2. SOFTWARE 1/O0 STRUCTURE

The RTE 1/O structure is made up of two general types of software (the system I/O processor
and the various device drivers) and a number of I/O tables and a communications area (the
Equipment Table, the Device Reference Table, the Interrupt Table, the Driver Mapping Table
(RTE-IV only), and the Base Page Communications Area). These tables and areas are used for
communication between the system and the drivers, and for control of the many I/O operations
that can be in progress simultaneously. Each component of the I/O structure is discussed
individually in this subsection. A summary of the overall I/O process is given in the next
subsection.

INPUT/OUTPUT DEVICE DRIVERS

Input/output device drivers provide the software interface between peripheral I/0 devices and
the operating system. Drivers are responsible for the initiation, continuation, and completion
of all data transfers between an I/O device and the computer. Drivers communicate with the
system directly via parameter passing, and indirectly through the various tables and com-
munications areas (particularly the Equipment Table and the Base Page Communications
Area) that are discussed later in this subsection.

2-1

There are two types of drivers; standard and privileged. Standard drivers are simpler and can
be used for most asynchronous devices and some high speed and synchronous devices (if DCPC
transfers are used); these drivers are discussed in Section III. Privileged drivers are more
complex and are generally used for high speed and synchronous devices that require driver
interaction on each data word transferred (i.e., DCPC transfers cannot be used); these drivers
are discussed in Section IV.

SYSTEM I/0 PROCESSOR

The system I/O processor (RTIOC) provides the software interface between user programs that
perform I/O and the drivers that actually handle the I/O operations. RTIOC checks user 1/O
calls for validity, suspends programs while their I/O is in progress (if necessary), calls drivers
to initiate the I/O data transfers, directs controller interrupts to the appropriate drivers, and
restarts programs suspended for I/O. The mechanism for communication between RTIOC and
user programs is the EXEC call and its associated parameters. Communication between
RTIOC and drivers is handled directly via parameters and indirectly through the various I/O
tables discussed in this section.

Two general areas within RTIOC are discussed in this manual; IOC and CIC. The Input/
Output Control module (IOC) is entered when a user program makes an I/O request. IOC is
responsible for initiating the I/O transfer by calling the appropriate driver. The Central
Interrupt Control module (CIC) is entered when a device controller interrupt is detected. CIC
is responsible for calling the correct driver to handle the interrupt.

BASE PAGE COMMUNICATIONS AREA

A block of storage in base page contains the system’s communications area and is used by RTE
to define request parameters, I/O tables, scheduling lists, operating parameters, memory
bounds, etc. The RTE Assembler allows absolute references to addresses less than octal 2000 so
that user programs can read information from the base page. Programs cannot alter the base
page, however, because of the memory protect feature of RTE. Table 2-1 illustrates the portion
of the Base Page Communications Area that pertains to I/O operations. The meaning and use
of the various words illustrated in the table will become clear in subsequent sections of this
manual. (For a complete description of the Base Page Communications Area, refer to the
appropriate RTE System Programming and Operating Manual.)

2-2

Table 2-1. Base Page Communications Area — I/O Operations

OCTAL
LOCATION CONTENTS DESCRIPTION
01650 EQTA Address of Equipment Table (EQT)
01651 EQT# Number of EQT entries
01652 DRT Address of Device Reference Word 1 Table
01653 LUMAX Number of logical units (in Device Reference Table)
01654 INTBA Address of Interrupt Table
01655 INTLG Number of Interrupt Table entries
01656 TAT Address of Track Assignment Table (disc-based systems only)
01657 KEYWD Address of keyword block
01660 EQT1
01661 EQT2
01662 EQT3
01663 EQT4
01664 EQT5 Addresses of first 11 words of current EQT entry
01665 EQT6 (see location of 01771 for last 4 words)
01666 EQT7
01667 EQTS8
01670 EQT9
01671 EQT10
01672 EQT11
01673 CHAN Current DCPC Select Code (6 or 7)
01717 XEQT ID segment address of current program
01737 DUMMY I/O channel of privileged interrupt card (O if none)
01770 MPTFL Memory Protect On/Off (0/1) flag.
01771 EQT12
01772 EQT13
01773 EQT14 Addresses of last 4 words of current EQT entry
01774 EQT15

2-3

EQUIPMENT TABLE

The Equipment Table (EQT) is used to maintain a list of all the I/O equipment in the system.
This table consists of a number of EQT entries, with one EQT entry for each I/O controller
defined in the system at generation time. The EQT entry contains all of the information
required by the system and the associated driver to operate the equipment, including: the I/O
select code in which the controller is interfaced to the computer, the driver type, and the
various requirements and specifications of the controller or driver (e.g., DCPC, buffering,
time-out, power fail, etc.). To distinguish between multiple I/O devices connected to a single
controller, the system also inserts the subchannel number of the device being referenced into
the EQT entry before calling the driver.

The format of each EQT entry is illustrated in Figure 2-1. Some information in the EQT entry
is static; other parts are dynamic. Information marked <A> is fixed at generation time (or, for
RTE-IV, at reconfiguration time) and never changes during on-line operation of the system.
Words marked are also fixed at generation time (or, for RTE-IV, at reconfiguration time)
but can be changed on-line via operator commands. Information marked <C> is modified or
set up for the driver prior to each I/O initialization; it informs the driver of the nature of the
request. Words marked <D> are not used by the system and are therefore available to the
driver for use as temporary storage for the duration of each I/O request.

WORD CONTENTS
T T
15 |14 13 1211 10" e JeT7Te[sT aT 32T 1Ty
1 R 1/0 REQUEST LIST POINTER <C>
2 R DRIVER “INITIATION SECTION ADDRESS <A>
3 R DRIVER “CONTINUATION/COMPLETION” SECTION ADDRESS <A>
<A>| { <E>| <E>| <C>
4 D B p s T SUBCHANNEL #<C> 1/0 SELECT CODE # <A>
5 AV <F> | EQUIPMENT TYPE CODE <A> STATUS <E>
6 CONWD (CURRENT 1/0 REQUEST WORD) <C>
7 REQUEST BUFFER ADDRESS <C>
8 REQUEST BUFFER LENGTH <C>
9 TEMPORARY STORAGE <D > OR OPTIONAL PARAMETER <C>
10 TEMPORARY STORAGE <D> OR OPTIONAL PARAMETER <C>
11 TEMPORARY STORAGE FOR DRIVER <D >
12 TEMPORARY STORAGE ;o EQT EXTENSION SIZE,
FOR DRIVER <D> IF ANY <A>
13 TEMPORARY STORAGE g EQT EXTENSION STARTING
FOR DRIVER <D> ADDRESS, IF ANY <A>
14 DEVICE TIME-OUT RESET VALUE
15 DEVICE TIME-OUT CLOCK <C>

WHERE THE LETTERS IN BRACKETS (<>) INDICATE THE NATURE OF EACH DATA ITEM, AS FOLLOWS:

<A> = FIXED AT GENERATION TIME (OR, FOR RTE-IV, AT RECONFIGURATION TIME);
NEVER CHANGES.

 = FIXED AT GENERATION TIME (OR, FOR RTE-V, AT RECONFIGURATION TIME);
CAN BE CHANGED ON-LINE.

<C> = SET UP OR MODIFIED AT EACH 1/0 INITIALIZATION.

<D> = AVAILABLE FOR USE AS TEMPORARY STORAGE BY DRIVER.

<E> = CAN BE SET BY DRIVER.

<F> = MAINTAINED BY SYSTEM.

AND WHERE:

1/0 REQUEST LIST POINTER

R (RESERVED FOR SYSTEM USE)

POINTER TO LIST OF REQUESTS QUEUED UP ON THIS EQT

ENTRY. FIRST ENTRY IN LIST IS CURRENT REQUEST IN
PROGRESS; ZERO IF NO REQUESTS.

= 1 IF DCPC REQUIRED

= 1 IF AUTOMATIC OUTPUT BUFFERING USED
1 IF DRIVER IS TO PROCESS POWER FAIL

= 1 IF DRIVER IS TO PROCESS TIME-OUT

= 1 IF DEVICE TIMED OUT (SYSTEM SETS TO ZERO
BEFORE EACH 1/O REQUEST)

]

- » U W O
1

SUBCHANNEL # = LAST SUBCHANNEL ADDRESSED

Figure 2-1. Equipment Table Entry Format (Sheet 1 of 2)

2-5

1/O SELECT CODE #

EQUIPMENT TYPE CODE

NUMBER IF A MULTI-BOARD INTERFACE)

1/0 SELECT CODE FOR THE 1/0 CONTROLLER (LOWER

AV = 1/O CONTROLLER AVAILABILITY INDICATOR:
0 = AVAILABLE FOR USE
1 = DISABLED (DOWN)
2 = BUSY (CURRENTLY IN OPERATION)
3 = WAITING FOR AN AVAILABLE DCPC CHANNEL

IN GENERAL, INDICATES TYPE OF DEVICE ON THIS CON-

TROLLER. WHEN THIS OCTAL NUMBER IS LINKED WITH
“DVY”, IT IDENTIFIES THE DEVICE'S SOFTWARE DRIVER

ROUTINE. SOME STANDARD EQUIPMENT TYPE CODES

ARE:

00 TO 07 = PAPER TAPE DEVICES OR CONSOLES
00 = TELEPRINTER (OR KEYBOARD

CONTROL DEVICE)

01 = PHOTOREADER
02 = PAPER TAPE PUNCH
05 = 264X SERIES TERMINALS
07 = MULTI-POINT DEVICES

10 TO 17 = UNIT RECORD DEVICES
10 = PLOTTER
11 = CARD READER
12 = LINE PRINTER
16 = MARK SENSE CARD READER

20 TO 37 = MAGNETIC TAPE/MASS STORAGE DEVICES
23 = 9 TRACK MAGNETIC TAPE
31 = 7900 MOVING HEAD DISC
32 = 7905/06/20 MOVING HEAD DISC
33 = FLEXIBLE DISC DRIVES
36 = WRITABLE CONTROL STORE
37 = HPIB

40 TO77 = INSTRUMENTS

STATUS = ACTUAL PHYSICAL STATUS OR SIMULATED STATUS AT THE END
OF EACH OPERATION.
CONWD = COMBINATION OF USER CONTROL WORD AND USER REQUEST
CODE WORD IN THE 1/0 EXEC CALL (SEE BELOW).
Figure 2-1. Equipment Table Entry Format (Sheet 2 of 2)
T T T T | | T T T T
1514 13 12|11 10 9|8 7 6|85 4 3|2 1 o0
L——‘—l L— susruncTion —— L FUNCTION -
00 = STANDARD CALL 00000 = CLEAR CONTROLLER 01 = READ CALL
01 = BUFFERED CALL (IF FUNCTION = 11 = CONTROL CALL) 10 = WRITE CALL

11

CLASS CALL

OTHER SUBFUNCTIONS ARE DRIVER SPECIFIC
AND MAY OR MAY NOT BE DEFINED.

CONTROL CALL

2-6

Figure 2-2. Expansion of CONWD Word (EQT Entry Word 6)

If the number of words marked <D> does not provide sufficient temporary storage for the
driver, additional space can be allocated at generation time by specifying that an EQT entry
extension is needed for a particular EQT entry. This space can only be used to extend the
referenced EQT entry and therefore should only be allocated for drivers that need the addi-
tional space. When an EQT entry extension is specified, EQT entry words 12 and 13 are used to
identify the location and length of the extension (since the extension does not immediately
follow the EQT entry) and therefore should not be modified by the driver. Otherwise, these
words are available as temporary storage.

For programming convenience, the addresses of each word in the current EQT entry (except for
words in the extension, if an extension exists) are placed in the Base Page Communications
Area by the system before calling the driver to initiate or continue an I/O operation. A driver
should use these addresses instead of computing them from the EQT entry number and the
start of the Equipment Table. In this way, the driver can remain independent of the actual
organization of the Equipment Table in memory.

All Equipment Table entries are located sequentially in memory beginning with EQT entry
number 1. The address of the first entry and the total number of entries in the table can be
found in the Base Page Communications Area.

LOGICAL UNIT NUMBERS

Logical unit numbers (LU’s) provide the RTE user with the capability of logically addressing
the physical devices defined by the Equipment Table. LU numbers are maintained by the
Device Reference Table (see below), and their definition can be changed on-line by the LU
operator request. This scheme allows the programmer to reference changeable logical units
instead of fixed physical units.

The function of Logical Units 0 through 6 are predefined in the RTE system as follows:

— “bit bucket” (null device, no entry in Device Reference Table)

— system console

— reserved for system (system disc subchannel in disc-based systems)
reserved for system (auxiliary disc subchannel in disc-based systems)
— standard output device

— standard input device

S O W N - O
I

— standard list device

Logical Unit 8 is recommended for the magnetic tape device, if one is present in the system.
Peripheral discs must be assigned logical units greater than 6. Additional logical units may be
assigned for any functions desired.

DEVICE REFERENCE TABLE

The Device Reference Table (DRT) is part of the mechanism by which logical unit numbers for
I/O are implemented. RTE users request I/O by specifying a logical unit number. The DRT is
used to translate this logical unit number into a physical device, as specified by an EQT entry
number and subchannel. The DRT is also used to queue requests for I/O on a device when it is

2-7

unavailable (down). (The DRT is not used to queue requests when the device is up. The request
list for available (i.e., up) devices originates from word 1 of the EQT entry as illustrated in
Figure 2-1.)

Each DRT entry is two words long. There is one entry for each logical unit number defined at
generation time, beginning with logical unit 1. The format of each entry is illustrated in
Figure 2-3. The first word of the entry contains several items, including: 1) the EQT entry
number of the controller assigned to the logical unit, and 2) the subchannel number of the
specific device on that controller to be referenced. The second word of each entry contains the
status of the logical unit: up (available) or down (unavailable). If the device is down, word two
also contains a pointer to the list of requests waiting to access the LU.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 BITNO.
SUBCHANNEL NO. (RESERVED) EQT ENTRY NUMBER WORD 1
F DOWNED 1/0 REQUEST LIST POINTER WORD 2
F (UP/DOWN FLAG) = 0 IF DEVICE IS UP

= 1 IF DEVICE IS DOWN
Figure 2-3. Device Reference Table Entry Format
LU 1 -
LU 2
LU 3
FIRST WORD
® L OF EACH
DRT ENTRY
[]
e
LUN |
LU 1 —
LU 2
[]
SECOND WORD
- OF EACH
. DRT ENTRY
[]
LU N —

WHERE:

N = NUMBER OF LOGICAL UNITS IN SYSTEM

Figure 2-4. Device Reference Table

The DRT table is actually split into two separate parts. The first part contains word 1 of each
DRT entry, and the second part contains word 2 of each DRT entry. This format is illustrated
in Figure 2-4. The starting address and length of part one of the table can be found in the Base
Page Communications Area. Part two is located in memory immediately following part one
and has the same length as part one.

COMPUTER INTERRUPT MECHANISM

When a device controller interrupts RTE, the computer transfers control to one of a group of
memory locations on base page known as the interrupt trap cells. The I/O select code of the
interrupting controller determines the location of the transfer. For example, interrupts from
select code 12 cause a transfer to memory location 12. Interrupts from select code 13 cause a
transfer to memory location 13, and so on. Select code numbers range from 4 to 77 (octal).
Thus, the group of memory locations from 4 to 77 (octal) comprises the entire set of interrupt
trap cells.

Transferring control to an interrupt trap cell causes the instruction located there to be
executed. For all devices operating under the control of CIC, this instruction is a JSB LINK,I,
where LINK is a base page link containing the address of the entry point to CIC. This
instruction is initially set up by the RTE generator, and is reset into the trap cell each time the
system is rebooted. The fact that the JSB instruction references an indirect address causes the
computer to hold off any further interrupts for one instruction after the JSB. This gives CIC a
chance to issue a CLF 0 instruction (which disables the interrupt system entirely) to prevent
further interrupts from occurring while the current one is being processed.

Since CIC is entered at the same location for all device controller interrupts under its control, a
method is needed by which the select code of the interrupting device controller can be
determined. CIC obtains the interrupting select code number by accessing the contents of the
computer’s Central Interrupt Register via an LIA 4 instruction. CIC can then use this
information to index into the Interrupt Table (see next subsection) to determine how to process
the interrupt.

The interrupt trap cells are not limited to containing a JSB LINK,I instruction (where LINK
contains the address of CIC). Other instructions can be placed in a trap cell by the generator or
by a system routine. However, the trap cell should not contain any instruction other than a
HALT instruction or a JSB indirect to an interrupt processing routine (such as CIC or a
user-written routine) that saves the state of the machine on entry and restores it to its original
state on exit. This includes saving and restoring the registers, state of the memory protect
fence, etc.

Specifically, I/O instructions and NOP instructions must not be put into trap cells because they
do not provide any way to restore the system to its original state. Microcode macro’s (i.e., jumps
to microcoded routines) may be used if a microcoded driver is used to process the interrupts.

Note that if a JSB instruction is placed in the interrupt trap cell, it must reference an indirect
address. The indirect address keeps the interrupt system suppressed for one instruction after
the JSB, as explained above. This allows the interrupt processing routine to issue a CLF 0
instruction to prevent further interrupts from occurring while the state of the machine is being
saved. (Note that the generator automatically provides a base page link for all JSB instruc-
tions it places in the interrupt trap cells. A JSB indirect instruction is created whenever an
“ENT,” “PRG,” or “EQT” entry is specified during generation.)

2-10

Systems without the power fail/automatic restart feature have a HALT 4 instruction inserted
by the generator into the power fail interrupt trap cell (memory location 4). As a result, the
computer will halt when a power fail interrupt occurs. An example of a JSB to a user-written
interrupt processing routine is discussed later in the “Writing Privileged Drivers” section of
this manual.

INTERRUPT TABLE

The Interrupt Table directs CIC’s action when an interrupt occurs on any I/O select code that
contains a JSB LINK,I instruction (where LINK contains the address of CIC). CIC can call a
driver, schedule a specified program, or handle the interrupt itself.

There is one Interrupt Table entry for each I/O select code from 6 up to the highest select code
defined in the system at generation. (Systems with I/O reconfiguration ability at boot-up (e.g.,
RTE-IV) always include Interrupt Table entries for all select codes, even if some select codes
were not defined in the initial generation.) Each Interrupt Table entry is one word long and
can have three possible values: zero, positive, or negative.

1. If the entry is zero, the select code is undefined in the Interrupt Table. Any interrupts on
this select code are illegal and cause the following message to be printed:

ILL INT xx

where xx is the octal I/O select code number. RTE then clears the interrupt flag on the
select code and returns to the suspended process at the point of interruption. (Note that an
Interrupt Table entry can also be zero if interrupts on the associated select code are
handled by a special routine instead of by CIC and a driver. Refer to the “Writing
Privileged Drivers” section later in this manual for more information on this subject.)

2. If the contents of the entry are positive, the entry contains the address of the EQT entry
associated with the controller on the select code.

3. If the contents are negative, the entry contains the negative of the address of the ID
segment of the program to be scheduled whenever an interrupt occurs on the select code. If
such a program is not dormant when an interrupt occurs on the select code, the following
message is output to the system console:

SC03 INT xxxxx

where xxxxx is the program name. RTE then clears the interrupt flag on the select code
and control is returned to the suspended process at the point of interruption.

All Interrupt Table entries are located sequentially in memory beginning with the entries for
I/O select codes 6 and 7 (DCPC). This format is illustrated in Figure 2-5. There are no entries
for 1/O select codes 4 and 5 because the system is able to process interrupts from these select
codes (power fail interrupts, memory protect violations, etc.) without the need for an Interrupt
Table entry. The address of the first word of the table and the number of entries in the table
can be found in the Base Page Communications Area.

2-11

NOTE

The reader should not confuse the interrupt trap cell area of
the computer, which is located on base page, with the Interrupt
Table of RTE, which is located elsewhere. The interrupt trap
cells are those memory locations (4 to 77 octal) to which control
is transferred when an interrupt occurs. The Interrupt Table,
on the other hand, is merely a convenient way for RTE to
record what action CIC should take when an interrupt occurs
on a select code under CIC’s control.

WORD 1 ENTRY FOR 1/O SELECT CODE 6

WORD 2 ENTRY FOR 1/0O SELECT CODE 7

WORD 3 ENTRY FOR 1/O SELECT CODE 10

WORD 4 ENTRY FOR 1/O SELECT CODE 11

WORD N-4 ENTRY FOR 1/0 SELECT CODE N-1

WORD N-5 ENTRY FOR 1/O SELECT CODE N
WHERE:

N = THE HIGHEST 1/O SELECT CODE KNOWN TO THE SYSTEM.

Figure 2-5. Interrupt Table

2-12

DRIVER MAPPING TABLE (RTE-IV ONLY)

In the RTE-IV Operating System, drivers can be placed in one of two areas: in the System
Driver Area (SDA) or in one of the driver partitions. Most standard drivers are placed in driver
partitions. The SDA is primarily used for privileged drivers, drivers that do their own
mapping, and very large drivers. (For more information on driver placement, refer to the
appropriate operating system reference and/or generation manual.)

The Driver Mapping Table (DMT) is used to record where a driver resides in physical memory
and other static and dynamic information about the driver and the location of the I/O request
buffer.

There is one DMT entry associated with each EQT entry defined at generation time. Each
entry is two words long, as illustrated in Figure 2-6. Word 1 is set up at generation time and its
contents are never changed. It indicates whether the driver resides in the System Driver Area
(SDA) or in a driver partition. If it is in the SDA, it also indicates whether or not the driver is
doing its own memory mapping. (See the “Subroutines for Special Mapping Functions” subsec-
tion later in this manual.) If the driver is in a partition, word 1 also indicates the starting
physical memory page number of the driver partition in which it is located.

Word 2 of the DMT entry is dynamic in nature and is set up at each /O initialization of the
associated EQT entry. This word indicates whether the I/O request buffer is located within a
disc resident program, memory resident program, or system area. If a disc resident program is
making the request and the I/O request buffer is located within the program (i.e., an unbuf-
fered request), word 2 also indicates the physical memory page number of the disc resident
program’s base page. This information is used to save time on setting up the proper map when
processing interrupts handled by the driver.

2-13

WORD 1
OF DMT
ENTRY
FOR
EQT
ENTRY:

WORD 2
OF DMT
ENTRY
FOR
EQT
ENTRY:

WHERE:

SD

SD

MR

MR

15 14 13 12 11 10

SD (RESERVED)

SD (RESERVED)

SD (RESERVED)

SD (RESERVED)

MR (RESERVED)

MR (RESERVED)
[]
[)
[]

MR (RESERVED) P

IMPLIES DRIVER RESIDES IN A DRIVER PARTITION, AND
M = STARTING PAGE NUMBER OF PARTITION IN BITS 0-9

IMPLIES DRIVER RESIDES IN SYSTEM DRIVER AREA, AND
M = 0 IMPLIES DRIVER NOT DOING ITS OWN MAPPING
M =1 IMPLIES DRIVER DOING ITS OWN MAPPING

IMPLIES THAT THE 1/0 REQUEST BUFFER IS LOCATED IN
A MEMORY RESIDENT PROGRAM.
(P VALUE NOT SIGNIFICANT — RESERVED FOR FUTURE USE)

IMPLIES THAT THE 1/0 REQUEST BUFFER IS NOT LOCATED

IN A MEMORY RESIDENT PROGRAM. BUFFER LOCATION IS

INDICATED BY THE VALUE OF P, AS FOLLOWS:

P=0 IMPLIES BUFFER IS IN THE SYSTEM AREA

P NOT ZERO IMPLIES BUFFER IS LOCATED IN A DISC
RESIDENT PROGRAM. P IS THE PHYSICAL
PAGE NUMBER OF THE PROGRAM'’S BASE PAGE

NUMBER OF EQT ENTRIES IN SYSTEM

2-14

Figure 2-6. Driver Mapping Table

2-3. GENERAL OPERATION OF RTE I/O

Input/Output transfers in RTE can be conveniently broken into three parts for discussion:
initiation, continuation, and completion. A user program is involved only in the initiation and
completion phases; the system I/O processor and the device drivers are involved in all three
phases. The following is a simplified discussion of each phase. (As an aid to understanding this
explanation, the general flow of events for an unbuffered 'O READ request is illustrated in
Figure 2-7.)

2-15

91-¢

sembay QVHY O/I peieynqu) “L-g 9and1g

DRT EQT ENTRY OMT (RTE-IV ONLY)
L SUBCHANNEL, A cat entry 4
FUNCTION, NUMBER
ADDRESS,
LENGTH
. "0 . EQT ENTRY DRIVER DRIVER MAP
JEXEC CALL o eat NUMBER INITIATION SETUP
Lu, q F
USER PROGRAM FUNCTION, FUNCTION, SUBCHANNEL p AoORESS INFORMATION
ADDRESS, ADDRESS,
FTNAL LENGTH) LENGTH)
> L
c .
C MAKE READ CALL EXEC “INITIATE 1/0
TRANSFER"
CALL EXEC (1,LU,IBUFR,LEN) DRIVER
- 10Cc INITIATION
<% SECTION
“INITIATED
oK™
“START"
A SCHED
RESCHEDULE “TRANSFER
COMPLETE" Y
A ADDRESS OF EQT
y ENTRY WORDS
“TRANSFER BASE PAGE
COMPLETE" COMMUNICATIONS AREA
ADDRESSES OF EQT
ENTRY WORDS INTERRUPT
INTERRUPT TABLE TRAP CELLS
INTERRUPTING
SELECT CODE
QT ENTRY | :
ADDRESS
h . “START"
EQT ENTRY “INTERRUPT . . . ____’
ADDRESS DETECTED" INTERRUPT’
. » cic < JSB $CIC,I ‘— CONTROLLER ‘— DEVICE
ORIVER “DATA READY"
CONTINUATION/ .
COMPLETION
ADDRESS
EQT ENTRY
EQT ENTRY
NUMBER
»
DRIVER MAP
SETUP
DMT (RTE-IV ONLY) INFORMATION N
“TRANSFER “CONTINUE “INTERRUPT
COMPLETE" TRANSFER" DETECTED”
“RESTART"
A —’
DRIVER CONTINUATION/
COMPLETION SECTION <
“DATA" “DATA"
7700-140

I/O INITIATION

A user program makes an EXEC call to initiate I/O transfers. Parameters passed along with
this call specify the logical unit, control information, buffer location, buffer length, and type of
request (READ, WRITE, or CONTROL) to be made. The user request is channelled to the IOC
(Input/Output Control) module of the system by the RTE request processor. The request is
checked for legality and rejected if any errors are found. If there are no errors, the logical unit
number supplied is used to index into the DRT (Device Reference Table) to determine which
I/O controller (EQT entry number) and device (subchannel) are actually being referenced. The
I/O request is then linked into the request list for the referenced controller.

If the device controller is available (i.e., no prior requests are pending), the parameters of the
request are put into the associated EQT entry, the addresses of the EQT entry words are set
into the Base Page Communications Area for convenience, the proper map (System or User) is
enabled (performed in systems with Dynamic Mapping only), and the “initiation” section of the
driver is called. This section initializes the device controller, starts the data transfer or control
function, and returns to I0C.

IOC then returns to the system’s dispatching module to begin execution of the highest priority
scheduled program. If the operation was successfully initiated by the driver, the data transfer
is now under way.

I/O CONTINUATION

When the device controller finishes transferring a data word, or block of words, it interrupts
the computer. This causes a transfer to one of the interrupt locations in the computer’s
memory, and the instruction located there is executed. For most I/O devices, this instruction is
a JSB LINK,I (where LINK contains the address of the entry point to CIC). Execution of this
instruction causes control to be transferred to CIC, the Central Interrupt Control module of the
system. CIC obtains the number of the interrupting select code from the computer’s Central
Interrupt Register and uses it to index into the Interrupt Table.

For those I/0 processes operating under the control of CIC and a driver, the Interrupt Table
tells CIC which EQT entry is associated with the interrupting select code. CIC looks at the
EQT entry, determines which driver is responsible for handling the interrupt, enables the
correct map (System or User) in systems with Dynamic- Mapping, and calls the driver’s
“continuation/completion” section to process the interrupt. The driver either accepts the data
from the device (read operation) or sends more data to the device (write operation) and restarts
the device. Return is then made to CIC with a code indicating that more interrupts are
expected. This process (interrupt, CIC, driver, CIC) is repeated once for each word or block of
words transferred until the entire transfer is complete.

I/0 COMPLETION

Eventually the driver will determine that the required amount of data has been transferred
and that the I/O process is now complete. The driver then returns to CIC with a special code
indicating that the I/O operation is complete and can be terminated; no more interrupts are
expected.

2-17

CIC, in turn, transfers control back to IOC to terminate the I/O process. IOC causes the
program that made the initial I/O request to be placed back into the scheduled list and checks
to see if there are any other I/O requests pending for this controller. If at least one request is
pending, the initiation section of the driver is again called to begin the next operation. IOC
then returns control to the system’s dispatching module to begin execution of the highest
priority scheduled program.

WRITING STANDARD RTE DRIVERS

3-1. INTRODUCTION

This section describes in detail the structure, operation, and design of standard RTE drivers.
Standard drivers are fairly simple in structure and can generally be used to control most
asynchronous devices. They can also be used to control synchronous and high-speed devices if
these devices are driven under DCPC control. DCPC processing is also described in this
section.

An alternate method for controlling synchronous and high-speed devices is to employ the more
complex privileged driver. Section IV of this manual describes the differences in the design of
privileged drivers versus standard drivers. Thus, if the user wishes to design a privileged
driver, the material in this section should be read and understood before continuing with the
privileged driver discussion in Section IV.

Note that the operation of RTE requires that synchronous and high-speed devices be driven
either by a standard driver utilizing DCPC transfers, or by a privileged driver. This is
necessary to ensure that interrupts from such devices are serviced within the required re-
sponse time. The reader should keep this requirement in mind when deciding upon the type of
driver to be written.

3-2. GENERAL DRIVER STRUCTURE AND OPERATION

An I/0O driver, operating under control of the Input/Output Control (I0C) and Central Inter-
rupt Control (CIC) modules of RTE, is responsible for all data transfers between an I/O device
controller and the computer. Each driver is written in two functional sections: an initiation
section and a continuation/completion section. The initiation section is responsible for starting
up the device and initiating the first data transfer. The continuation/completion section is
responsible for processing each interrupt generated by the device under its control. This
involves accepting data from the device (read operation), sending more data to the device
(write operation), and then restarting the device to continue the transfer. Eventually, the
continuation/completion section determines that a sufficient amount of data has been trans-
ferred and terminates the I/O operation.

A standard RTE driver operates with the interrupt system disabled (or effectively disabled, if
the system contains a Privileged Interrupt card. Refer to the “Writing Privileged Drivers”
section of this manual.) This means that once a driver is entered to process an interrupt, no
other interrupts (except privileged interrupts) can be serviced until the driver completes its
operation and returns to CIC. (CIC turns the interrupt system back on to allow other inter-
rupts to occur.) Drivers should therefore be coded as efficiently as possible to minimize the
amount of time that the interrupt system is disabled and the processing of other interrupts is
delayed.

3-1

3-3. DRIVER NAMING REQUIREMENTS

To facilitate the identification of driver programs and entry points, the following naming
scheme has been devised. This scheme must be incorporated into the design of all RTE drivers
so that the RTE system generator programs can identify the drivers and relocate them in the
proper memory area of the operating system.

a. Driver names must be five characters in length, beginning with the characters “DV” and
ending with a two-digit octal number (known as the equipment type code of the device).

b. The initiation and continuation/completion sections must have entry points whose names
are four characters in length, beginning with the character “I” or “C” respectively, and
ending with the same two-digit octal number used in the driver name.

Thus, if “nn” is the octal equipment type code, Ixnn and Cxnn are the entry point names of the
initiation and continuation/completion sections respectively. DVynn is the driver name.

The user is allowed some flexibility in the choice of the “x” (in Ixnn and Cxnn) and “y” (in
DVynn) characters referred to above. This flexibility allows several drivers with the same
octal equipment type code to have unique names and entry points. The rules for the choice of

u bH ee 9y

and “y” are:
U ” et ” (() ey
If “y” is “R” then ="
If t(”» lS not ((R” then ((b3 — (Qy”

Using the above rules, a driver named DVR07 has entry points 1.07 and C.07. A driver named
DVAO7 has entry points IA07 and CAO07.

The octal equipment type code (nn) can be any octal number between 00 and 77. A table of
“standard” type codes is given in Figure 2-1. Care should be taken to choose the type code
and/or “x” and “y” characters so that new driver names and entry points do not conflict with
those of any standard HP drivers or other user written drivers present in the system.

3-4. INITIATION SECTION

The IOC module of RTE calls the driver initiation section when an I/O transfer is initiated.
Prior to actually entering the driver, it sets up all the information needed by the driver to
process the call in the associated EQT entry and in the Base Page Communications Area, as
follows:

a. Locations EQT1 through EQT15 in the Base Page Communications Area are set to contain
the addresses of each word of the EQT entry associated with the call. Base page word EQT1
is set to contain the address of EQT entry word 1, base page word EQT2 is set to contain the
address of EQT entry word 2, and so on. If the driver uses DCPC (that is, if bit 15 of EQT
entry word 4 is set), IOC also assigns a DCPC channel to the driver and stores the DCPC
select code number in base page word CHAN.

3-2 Change 1

b. Words 6 through 10 of the EQT entry pointed to by the Base Page Communications Area
are set to contain the request parameters from the user’'s EXEC call (request code,
subfunction, buffer address, buffer length, and optional parameters, if present). Note that
EQT entry word 6 (CONWD) contains the CONWD from the user’s EXEC call, modified to
contain the request code in bits 0 and 1 in place of the logical unit. The subchannel being
referenced by the call is placed into bits 6 through 10 of EQT entry word 4.

c. CIC also sets up and enables the correct map (Sysfem or User) needed by the driver to
process the call. (This step is performed in systems with Dynamic Mapping only.)

After performing these tasks, IOC enters the driver directly via a jump subroutine to the
initiation entry point Ixnn (JSB Ixnn). Upon entry, the A-register contains the I/0 select code
of the controller being referenced in the call. (This same information is present in bits 0
through 5 of EQT entry word 4.) Later, when the driver has completed (or rejected, if
necessary) the initialization procedure, it must return to IOC via a jump indirect through the
Ixnn entry point (JMP Ixnn,I).

Once entered, the driver is free to use EQT entry words 6 through 13 in any way, but words 1
through 4 and 14 must not be altered. If an EQT entry extension was specified at generation,
the space in the extension is also available to the driver. In this case words 12 and 13 (which
define the extension) must not be modified. The driver can also update the status field in word
5, if appropriate, but this must be done without altering the rest of word 5. Finally, EQT entry
word 15 may be modified, if desired, to set a time-out value for the device. (Refer to the “I/O
Controller Time-Out” subsection in this manual.)

FUNCTIONS OF THE INITIATION SECTION

As part of the general I/O structure of RTE, the initiation section of a standard driver performs
the functions illustrated in Figure 3-1. A more detailed description of the initiation section
functions is given below.

3-3

*|F A=4SET B = TRANSMISSION LOG

Ixnn

CONFIGURE 1/0
INSTRUCTIONS

FOR DEVICE'S
CONTROLLER
POWER YES DO POWER
FAIL > FAIL
RECOVERY > RECOVERY
?
REQUEST NO (A)=10R 2
CODE LEGAL » REJECT
? CODES
YES
DEVICE &
(A) =3,
CONTROLLER _N© N RE’JECT
OPERABLE & > copE

INITIALIZE
OPERATING
CONDITIONS
FLAGS, ETC.

v

SET BUFFER
ADDRESS,
LENGTH, MODE,
ETC. FOR
TRANSFER

ACTIVATE
DEVICE’'S
CONTROLLER

y

OPTIONALLY
SET DEVICE'S
CONTROLLER
TIME-OUT
CLOCK (EQT 15)

v

(A) REGISTER
= RETURN CODE*

V‘

RETURN
TO
10C

7700-126

Figure 3-1. I/O Driver Initiation Section

3-4

Checks for power fail/automatic restart entry by examining bit 15 of EQT entry word 5,
which is set to 1 only on this type of entry. If bit 15 is set, the appropriate power
fail/automatic restart processing should be done. This check need only be made by drivers
that are designed to process power fail interrupts (as described in the “Power Fail Process-
ing” subsection of this manual).

Rejects the request by following the procedure described in step “g” if:
1. A status check of the device or controller indicates that it is inoperable, or
2. The request code or other parameters are illegal.

Configures all I/O instructions in the driver to reference the specific I/O select code (and
DCPC channel, if used) of the device controller.

Initializes DCPC, if used. (Refer to the “DCPC Processing” subsection of this manual.)

Initializes software flags and activates the device controller. All variable information
pertinent to the transmission must be saved in the EQT entry associated with the control-
ler because the driver may be called for another controller before the first operation is
complete.

Optionally sets the device controller time-out clock (EQT entry word 15) to modify the
time-out value inserted there by the system. (Refer to the “I/O Controller Time-Out”

subsection of this manual.)

Returns to IOC (via JMP Ixnn,I) with the A-register set to indicate initiation or rejection
(and the cause of the rejection) as follows:

IfA =0 the operation was initiated successfully.
IfA =123 The operation was rejected, where:
1 = read or write illegal for device

2 = control request illegal or undefined,
3 = equipment malfunction or not ready

IfA =14 the operation was immediately completed. This means that the driver
was able to completely satisfy the request without the need of a
subsequent interrupt and that the program making the I/O call can
be rescheduled immediately. The B-register should be set to the
number of words or characters (depending upon which the user
specified) transferred. This value is known as the transmission log.

If A =5 a DCPC channel is required but none was assigned by IOC. This can
only occur when the “DCPC channel required” bit is not set in the
EQT entry, and the driver decides that it needs a DCPC channel to
process this specific call. (Refer to the “DCPC Processing” subsection
of this manual.)

3-5

IfA=6-99

the program making the I/O request is aborted (unless the no-abort
bit was set in the call), and an I/O error message is printed on the
system console. (Note that this return can be used for unbuffered user
I/0 requests only. This therefore excludes the use of return codes 6
through 99 on any Class, buffered or system I/O request.) The error
message has the following format:

10xx yyyyy
NNNNN ABORTED

where: xx = the return code from the driver (decimal 06 to
decimal 99),

yyyyy = the address of the aborted I/O request in program
NNNNN, and

NNNNN = the name of the program that made the I/O
request.

This type of return can be used by drivers to generate their own I/O
error messages at the system console. Note that certain codes are
reserved for system use, as follows:

Return Code Reserved for
6 - 59 HP system modules and
drivers
60 - 99 user written drivers

3-5. CONTINUATION/COMPLETION SECTION

The CIC module of RTE calls the continuation/completion section of a driver whenever an
interrupt is recognized on an I/O controller associated with the driver. Before calling the driver
to process the interrupt, CIC issues a clear flag instruction (CLF) to the interrupting select
code, sets the addresses of the associated EQT entry into the Base Page Communications Area,
and sets the interrupt source code (I/O select code of interrupting controller) into the
A-register. (The interrupting I/O select code address is also available in EQT entry word 4.)

CIC also sets up and enables the correct map (System or User) needed by the driver to process
the call. (This step is performed in systems with Dynamic Mapping only.) The driver is then
entered with the correct map enabled by executing a jump subroutine to the continuation/
completion section of the driver at entry point Cxnn (JSB Cxnn). This call has the following

format:

Location

P+1
P+2

3-6

Action

(Set A-register equal to interrupt source code)
JSB Cxnn

Completion return from Cxnn

Continuation return from Cxnn

The return points from Cxnn to CIC indicate whether the transfer is continuing (i.e., further
interrupts are expected from the device controller) or has been completed.

The continuation/completion section of the driver is flowcharted in Figure 3-2 and performs
the following functions. Note that steps “a” through “e” are always executed whenever the
driver is entered at Cxnn. Then, dépending on whether the I/O operation is now complete or is
still continuing, the driver executes either step “f’ (completion return) or step “g” (continua-
tion return) respectively.

Cxnn

OFF-LINE

TO READY

INTERRUPT
H

NO

CONFIGURE /0

INSTRUCTIONS SET EQT 15
FOR DEVICE'S 20
CONTROLLER
YES TIME-QUT
< ENTRY
>
v
DEVICE
DO TIME CONTROLLER TRANSFER
ouT INTERRUPT BY DCPC
PROCESSING REQUIRED ?
YES ERROR
< N
TRANSFER
?
)4
NO
RETRY NO ‘ YES £ND OF
RFQUIRED »Te OPERATION
; ?
Y
\ 4
YES UPDATE NO
STATUS IN
EQT (5)
(B) ==
WORDS OR
CHARACTERS
TRANSFERRED
A
* TRANSFER NEXT
DATA ITEM;
AE-INITIALIZE UPDATE
CONDITIONS (A) = INDEXES;
COMPLETION FLAGS, ETC.
CODE :
() 'i v OPTIONALLY
SET DEVICE'S
OPTIONAL LY CONTROLLER
SET DEVICE'S DCE’ E‘ASS TIME-OUT
CONTROLLER vic CLOCK (EQT 15)
TIME-OUT CONTROLLER
CLOCK (EQT 15) CONTROL T
—
RETURN RETURN RETURN
T0 TO TO
P2 P+ P+2

7700-127

Figure 3-2. I/O Driver Continuation/Completion Section

3-7

3-8

Checks whether bits 14 - 0 of EQT entry word 1 (the controller I/O request list pointer)
equal zero. If so, a spurious interrupt has occurred (i.e., no I/O operation was in progress on
the controller). The driver ignores the interrupt, sets EQT entry word 15 (the time-out

clock) to zero to prevent time-out, and makes a continuation return as described in step “g
below.

If the interrupt is valid (i.e., bits 14 - 0 of word 1 are non-zero), the driver configures all I/O
instructions in the continuation/completion section to reference the interrupting select
code.

Checks to see if a time-out has occurred on the device by checking bit 11 of EQT entry word
4. If this bit is set, the device has timed-out, and any required time-out processing should
be done. Note that this check need only be made by drivers that are designed to process
time-out interrupts (as described in the “I/O Controller Device Time-Out” subsection of
this manual). Drivers not processing time-out are not entered on device time-out.

If both the DCPC and the device controller interrupts are expected, but only the device
controller interrupt is significant, the DCPC interrupt can be ignored by making a
continuation return to CIC as described in step “g” below. (Refer to the “DCPC Processing”
subsection of this manual for a method to suppress the DCPC interrupt entirely.)

Performs the input or output of the next data item if the device is driven under program

control. One of three possible actions is then taken:

1. If the transfer is not complete, the driver follows the procedure described in step “g”
below to make a continuation return.

2. If the transfer is complete, the driver follows the procedure described in step “f” below
to make a completion return.

3. If the driver detects a transmission error, it can reinitiate the transfer and attempt a
retransmission. A counter for the number of retry attempts can be kept in the EQT
entry. After initiating each retry, the driver makes a continuation return to CIC as
described in step “g” below.

(Completion Return.) At the end of a successful transfer or after completing the retry
procedure, the driver performs the following steps before returning to CIC:

1. Sets the actual or simulated device controller status into bits 7 through 0 of EQT entry
word 5 without altering the rest of word 5.

2. Sets the number of words or characters (depending on which the user requested)
transmitted into the B-register. This value is known as the transmission log.

3. Clears the device controller (and DCPC if used).

4. Sets the A-register to indicate successful or unsuccessful completion and the reason, as
follows:

IfA=0 the operation was successfully completed.

IfA=1234 the operation was not completed, where:

1 = device or controller malfunction or not ready
2 = end-of-tape or end-of-information

3 = transmission parity error

4 = device time-out

5. Return to CIC at P+1 (JMP Cxnn,I).

g. (Continuation return.) When the driver wishes to continue the transfer (i.e., additional
interrupts are expected), the driver performs the following steps before returning to CIC at
P+2:

1. Sets the device controller (and DCPC if used) for the next transfer or retry.

2. Optionally sets the device time-out clock (EQT entry word 15) to modify the value
inserted there by the system. (Refer to the “I/O Controller Time-Out” subsection of this
manual.)

3. Returns to CIC at P+2 as follows (the registers are not significant):

ISZ Cxnn
JMP Cxnn,lI

3-6. DEVICE CLEAR ON PROGRAM ABORT

If an I/O suspended program is aborted while waiting for a controller, the system attempts to
clear the controller by issuing a clear control request to the driver (i.e., request code 3,
subfunction code 00, as indicated in EQT entry word 6). All drivers written for use in RTE
must be prepared to handle this request even if no other control requests are supported for the
controller.

If the controller can be cleared without interrupt (i.e., immediately), the driver should perform
the clear operation and return to IOC with the A-register equal to 2 (control request illegal) or
4 (immediate completion). Either return is sufficient in this case; they are both treated
equivalently by the system.

If an interrupt is required, the driver should return with the A-register equal to 0. In this case,
the system forces a one second time-out for the controller. When the device controller inter-
rupts, the driver should complete the clear operation and make a successful completion return
(A-register = 0) to CIC at P+ 1. However, if the interrupt does not occur within the one second
time-out, the system itself issues a clear control command (CLC) to the controller’s select
code(s). Note that in this case the driver is not entered to process the time-out even if it had
previously set the “driver processes time-out” bit in EQT entry word 4. (Refer to the “I/O
Controller Time-Out” subsection in this manual.)

3-9

3-7. 1/0 CONTROLLER TIME-OUT

Each I/O controller can have a time-out clock to prevent indefinite I/O suspension. Indefinite
I/0 suspension can occur when a program initiates I/0, and the device controller fails to return
a flag indicating that the transfer is complete. This can occur as the result of either a hardware
malfunction or improper program encoding. Without the controller time-out, the program
making the I/O call would remain in I/O suspension indefinitely, awaiting the completion
indication from the device controller.

EQT entry words 14 and 15 function as an I/O controller’s time-out clock. EQT entry word 15 is
the actual working clock. Prior to each call to the driver, word 15 is set to a value “m,” where
“m” is a negative number of ten millisecond time intervals. Thereafter, this counter is
incremented by one at each ten millisecond tick of the system’s real-time clock. If the control-
ler does not interrupt within the required time interval (i.e., before the counter in EQT entry

word 15 goes to 0), it is considered as having “timed-out.”

The EQT entry word 15 clock for each controller can be individually set by either of the
following two methods:

a. The system always inserts the contents of EQT entry word 14 (a negative number) into
EQT entry word 15 before the initiation or continuation/completion section of a driver is
entered. Word 14 can be preset to “m” by entering a time-out value during the EQT entry
phase of generation, or it can be set or modified on-line with the TO operator request.

b. When the driver initiates I/O and expects to be entered due to a subsequent interrupt, the
driver itself can set the value “m” into EQT entry word 15 just before it exits. The value
“m” can either be coded permanently into the driver or can be passed to the driver as an I/O
request parameter.

NOTE

The system always inserts the contents of EQT entry word 14
into EQT entry word 15 before entering a driver, with the
following exception: if an initiation call is being made and
word 15 is already non-zero, it is not reset. In any case, a
time-out value inserted by the driver directly into word 15
overrides any value previously set by the system.

A time-out value of zero is equivalent to not using the time-out feature for a particular
controller. If a time-out parameter is not entered, its value remains zero and time-out is
disabled for the controller.

DRIVER PROCESSING OF TIME-OUT

When a controller times-out, a driver has the option of performing its own time-out processing,
or of letting the system handle it entirely. A driver that processes its own time-outs indicates
this to the system by setting bit 12 of EQT entry word 4. Since the system never clears this bit,
it needs to be set only once. When bit 12 is set, the following action takes places upon controller
time-out:

3-10

Bit 11 in EQT entry word 4 is set by the system.

The driver is entered at Cxnn with the A-register set to the I/0 select code of the controller
that timed-out. (The same information is available in EQT entry word 4.)

The driver recognizes that the entry is for time-out by examining bit 11 of EQT entry word
4. When bit 11 is set, a time-out has occurred, and the driver should perform whatever
processing is necessary. This can involve completing the operation in progress or restart-
ing the device and continuing the operation. If the latter option is taken, the driver should
clear bit 11 prior to exiting in case it is entered again prior to completion of the operation.
This enables the driver to distinguish between a normal continuation entry (bit 11 = 0)
and another time-out entry (bit 11 = 1). Note that IOC only clears bit 11 prior to entering
the driver at Ixnn on an initiation call.

The driver may decide to continue (i.e., restart the device) or complete (i.e., terminate) the
operation, as follows:

1. If the driver decides to complete the operation, it sets the A-register equal to 4 (to
indicate that a time-out has occurred), sets the B-register equal to the transmission
log, and returns to CIC at P+1. This causes CIC to set the LU down and to print the
following message:

VO TO L #x E #y S #z
where:

#x is the LU number being set down,

#y is the number of the EQT entry associated with this LU, and

#z is the subchannel associated with this LU.
It is also possible to complete the operation without having a message printed. To do
this, the driver simply makes a normal completion return (A-register = 0, B-register =

transmission log) to CIC at P+1.

In either case (A = 4 or A = 0), CIC reschedules the calling program and passes it the
transmission log returned by the driver.

2. Ifthe driver decides to continue the operation, it makes a normal continuation return
to CIC at P+2.

SYSTEM PROCESSING OF TIME-OUT

When a time-out occurs and bit 12 of EQT entry word 4 is not set, the system handles the
interrupt itself in the following way:

a.

The program that made the initial I/O request is rescheduled and a zero transmission log is
returned to it.

3-11

b. The LU is set down and the following message is printed:
I'O TO L #x E #y S #:z
where:
#x is the LU being set down,
#y is the number of the EQT entry associated with this LU, and
#z is the subchannel associated with this LU.

c. A clear control (CLC) instruction is issued to the controller’s select code(s) through the
EQT entry number located in the Interrupt Table.

Note that the driver is never entered for time-out processing when bit 12 of EQT entry word 4
is zero. This means that only those drivers that set bit 12 to indicate that they are to process
time-out need to check for a time-out entry.

Since the system issues a CLC instruction to the controller’s select code(s), each controller
interface card requires an entry in the Interrupt Table during generation. Otherwise, the
system would not be able to issue the CLC instruction when a controller timed-out.

3-8. DCPC PROCESSING

The Dual Channel Port Controller (DCPC) feature of the HP 21XX series of computers can be
used to transfer blocks of data between I/O devices and the computer at high data transfer
rates. The DCPC transfers are initiated in software, but the actual word-by-word transfer is
handled under hardware control. Words are transferred to or from the computer via a “cycle
stealing” technique that operates concurrently with the normal execution of programs. This
design eliminates the overhead associated with driver processing of individual interrupts and
allows synchronous and high-speed devices to be controlled by standard RTE drivers.

This subsection discusses some of the aspects of DCPC transfers in the RTE operating systems.
It is assumed that the reader is already familiar with the general techniques of DCPC
programming as described in the appropriate computer reference manual.

RTE CONTROL OF DCPC ASSIGNMENT

RTE controls the allocation of the two DCPC channels available via the first two words of the
Interrupt Table. Interrupt Table entry word 1 records the current assignment of DCPC
channel 1, and word 2 records the current assignment of DCPC channel 2. This arrangement is
illustrated in Figure 3-3. This figure also illustrates the format of each individual DCPC
Assignment Word. (Note that DCPC channels 1 and 2 generate interrupts on I/O select codes 6
and 7, respectively, and hence are often referred to as DCPC channels 6 and 7.)

3-12

R Interrupt Table Word 1
DC tW
)CPC Channel 1 Assignment Word (1/O Select Code 6)

Interrupt Table Word 2
(1/0 Select Code 7)

DCPC Channel 2 Assignment Word

Where each DCPC Channel Assignment Word has the format:

15 14 13 12 11 10 9 38 7 6 5 4 3 2 1 0 BitNo.

F Address

Where:

il
|

= 1, if the driver assigned to the channel needs the
DCPC completion interrupt (set only in systems
with a privileged interrupt card).

0, otherwise

Address = the address of the EQT entry of the driver to which
the DCPC channel is assigned.

0, if the DCPC channel is currently not assigned.

Figure 3-3. DCPC Channel Assignment Words

Each DCPC Channel Assignment Word in the Interrupt Table can be in one of two states;
assigned or unassigned. If the entire word is zero, the respective DCPC channel is unassigned,
and is therefore available for use. A non-zero word implies that the DCPC channel is currently
assigned. Bits 0 through 14 contain the address of the EQT entry (which in turn points to the
driver) to which the DCPC channel has been allocated. Once a DCPC channel is allocated, a
driver can set bit 15 in the appropriate DCPC Channel Assignment Word as a flag to the
operating system. Use of this flag is fully explained later in this subsection.

DCPC ASSIGNMENT BY RTE

Before a driver can initiate a DCPC transfer, it must be assigned by RTE the exclusive use of a
DCPC channel. This prevents simultaneous access to the channel by several drivers. A driver
can be assigned a DCPC channel in the following two ways:

PREFERRED METHOD

If the driver’s EQT entry had a “D” specified at generation time, the “DCPC channel required”
bit is permanently set in the EQT entry (EQT entry word 4, bit 15). In this case, the system
always assigns a DCPC channel to the driver at each I/O initiation. The assigned DCPC
channel number can be found (at initiation only) in the Base Page Communications Area word
CHAN. It should then be saved in one of the temporary storage words of the EQT entry since it
is not available in CHAN on later entries to the driver for the same I/O request.

3-13

ALTERNATE METHOD

If a driver needs a DCPC channel only for a certain subset of the functions that it performs, it
can dynamically ask the system to assign it a DCPC channel as required. In this case, the
DCPC option is not selected for the driver’'s EQT entry at generation time, and hence the
“DCPC channel required” bit is not set in the EQT entry. Thus, the driver is entered without a
DCPC channel being assigned on I/O initiation. The driver must analyze the request and
determine if a DCPC channel is required. If so, the driver requests a DCPC channel from I0C
by returning via a jump indirect through Ixnn (JMP Ixnn,I) with the A-register equal to 5.
I0C then assigns a DCPC channel and recalls the driver.

However, IOC does not differentiate between the initial call to the driver and the recall with
the DCPC channel assigned. The EQT entry is set up identically in both cases, and the driver
is entered at Ixnn. Furthermore, it is possible that the driver may never be recalled with the
DCPC channel assigned for a particular I/O request. For example, this can occur if the
program making the request is aborted before IOC has a chance to assign the DCPC channel. If
the program is aborted, the driver will not be entered again until another program requests
I/O for a device under the driver’s control. '

Thus, a driver can never know from the calling parameters or from its past history whether it
is being called for the first time for an I/O request (i.e., no DCPC channel is assigned) or
whether it is being recalled with a DCPC channel now assigned. The only way the driver can
distinguish between these two cases is to access the two DCPC Channel Assignment Words (in
the Interrupt Table) to determine whether a DCPC channel is currently assigned to the driver.

If the value in either DCPC Channel Assignment Word is equal to the address of the EQT
entry currently being serviced by the driver, that DCPC channel is currently assigned to the
driver. The driver can then assume that it has been recalled with a DCPC channel assigned,
and can initiate the transfer on that DCPC channel. If neither value matches, no DCPC
channel is assigned to the driver, and it must return to IOC to request that one be assigned.
(Note that in this case the driver cannot use Base Page Communications Area word CHAN as
an indication of whether or not it has been assigned a DCPC channel. This is because CHAN
indicates only which channel was last assigned to any driver; not to whom it was assigned.)

The following code illustrates the DCPC assignment check technique. In reviewing this and
subsequent examples, remember that the Base Page Communications Area word INTBA
contains the address of the Interrupt Table, and that base page word EQT1 contains the
address of the EQT entry currently being serviced by the driver.

CHDCP EQU * Execute this code if DCPC required

DLD INTBA,I Access DCPC Channel Assignment Words
CPA EQT1 Is DCPC channel 1 assigned to this driver?
JMP CHI1 Yes, configure and initiate transfer on channel 1
CPB EQT1 Is DCPC channel 2 assigned to this driver?
JMP CH2 Yes, configure and initiate transfer on channel 2
LDA =B5 No. A DCPC channel is not assigned. Set
JMP Ixnn,I A = 5 to request one from IOC, and return.

Note that if a driver obtains a DCPC channel in this way, a special procedure must also be
followed to return the DCPC channel to RTE. The return procedure is discussed in the
“Returning DCPC Channels to RTE” subsection.

3-14

This method of obtaining a DCPC channel is more complex and should only be used by drivers
that: 1) process a mixture of DCPC and non-DCPC operations, and 2) cannot afford to tie up a
DCPC channel during the non-DCPC operations.

Regardless of the method used to obtain a DCPC channel, RTE records the assignment by
putting the address of the EQT entry being assigned the DCPC channel into the appropriate
DCPC Channel Assignment Word in the Interrupt Table.

If a DCPC channel is not available, the requesting EQT is set into a “waiting for DCPC” state.
As soon as another driver releases a DCPC channel, the lowest-numbered EQT waiting for
DCPC is assigned the DCPC channel, and its I/O request is initiated.

RETURNING DCPC CHANNELS TO RTE

As soon as a driver completes a DCPC transfer and the associated I/O request, the DCPC
channel must be returned to the available pool so that it can be used by other drivers. This
occurs in two different ways, depending on how the DCPC channel was assigned:

1. If the DCPC channel was assigned automatically (PREFERRED METHOD discussed
above), the DCPC channel is returned automatically by RTE when the driver makes its
completion return to CIC. No special driver processing is required.

2. If the DCPC channel was assigned as the result of a specific request by the driver
(ALTERNATE METHOD discussed above), the driver must explicitly inform RTE of this
fact when the I/O request is completed. This is done by setting the sign bit in the A-register
on the completion return to CIC. This bit may be set at all times — even when the driver
has not been assigned a DCPC channel. However, some extra system overhead is created if
the sign bit is set when not required. Note that the sign bit is set in addition to the normal
completion code, as illustrated below:

LDA COMCD Set A = completion code determined earlier
IOR =B100000 Set sign bit to indicate dynamic DCPC assignment
JMP Cxnn,I Return to CIC

In either of the above cases, RTE implements the return of the DCPC channel by clearing the
appropriate DCPC Channel Assignment Word in the Interrupt Table. DCPC Channel 1
Assignment Word (Interrupt Table word 1) is cleared if DCPC channel 1 was assigned to the
driver; DCPC Channel 2 Assignment Word (Interrupt Table word 2) is cleared if DCPC
channel 2 was assigned to the driver. No action is taken if a DCPC channel was not assigned to
the driver.

HANDLING THE DCPC INTERRUPT

An end-of-operation interrupt is generated by the DCPC hardware when a DCPC transfer is
complete. Depending upon the nature of the device under control, the associated driver may or
may not wish to recognize the DCPC interrupt.

3-15

If the driver does not require or use the DCPC completion interrupt, it can be disabled by
issuing a clear control instruction (CLC) to the DCPC select code (6 or 7) after initializing the
DCPC transfer. No further special processing is necessary.

If the driver uses the DCPC completion interrupt, some special processing must be included in
the driver to ensure that the completion interrupt occurs only at the correct time in systems
using a Privileged Interrupt card. (These systems are described more fully in Section IV.)

The following potential problem exists: In systems using a Privileged Interrupt card, the
interrupt system is always ON, even when a driver is executing. It is therefore possible that a
driver using DCPC could start the DCPC transfer and be interrupted by its own DCPC
completion interrupt before it had a chance to complete the initiation procedure and return to
10C.

To eliminate this problem, a scheme has been designed to hold off the DCPC completion
interrupt until the standard driver using DCPC completes the initiation procedure and
returns to IOC. This scheme requires the cooperation of the standard driver utilizing DCPC
and of both RTE and any privileged drivers present in the system, as follows: After disabling
the interrupt system and initializing the DCPC transfer, the standard driver clears control on
the DCPC select code (6 or 7) to inhibit the completion interrupt while the standard driver
completes the initiation procedure. The standard driver also sets a flag to inform RTE that the
standard driver actually needs the interrupt, and that RTE should reenable the interrupt
later, after the driver returns to IOC.

The flag is also used by privileged drivers. A privileged driver disables the DCPC completion
interrupts upon entry so that the privileged driver will not be interrupted while processing the
privileged interrupt. A privileged driver will reenable a DCPC completion interrupt before
exiting only if it is needed by a standard driver (as indicated by the flag being set).

Bit 15 of each DCPC Channel Assignment word in the Interrupt Table is used as the flag for
the respective DCPC channel. If this flag is set, RTE and the privileged drivers will reenable
the DCPC interrupt on the correct DCPC channel at the appropriate time. No action is taken if
the flag is not set.

The section of code listed below illustrates the special processing required when a standard
driver uses the DCPC completion interrupt. Note that although this processing must be
included in all drivers using DCPC, it need only be executéd when the driver is operating in a
privileged system. The type of system in which a driver is operating can be determined by
examining base page word DUMMY. If DUMMY is 0, the system is non-privileged (i.e., no
Privileged Interrupt card is present); otherwise the system is privileged (i.e., a Privileged
Interrupt card is present).

3-16

CLF 0 Disable the interrupt system

STC DCPC,C Initiate transfer on DCPC channel
CLA Bypass section below if
CPA DUMMY DUMMY = 0 (non-privileged system)
JMP X and special processing not needed.
CLC DCPC W Clear DCPC control to inhibit DCPC
LDB INTBA interrupt. Set B = address of the appropriate
LDA CHAN > DCPC Channel Assignment word in the
CPA =D7 Interrupt Table
INB
)

LDA B,I Set bit 15 of DCPC channel assignment entry
IOR =B100000 L equal to 1 as flag to system to turn DCPC
STA B,I interrupts back on later. Reenable the
STF 0 interrupt system.

X EQU * Continue processing.

INTERMIXED DCPC AND NON-DCPC OPERATIONS

Occasionally a driver may have a special requirement to intermix a series of non-DCPC
operations with DCPC operations during the same I/O request. If it is necessary or desirable to
retain assignment of the DCPC channel throughout the non-DCPC operation, the following
special processing is required: the software flag in bit 15 of the appropriate DCPC channel
assignment word should be cleared prior to beginning the non-DCPC operations. This prevents
the system from reenabling the DCPC completion interrupt when it is not desired. Note that
this processing need only be done if the flag was previously set under the conditions discussed
in the preceeding paragraphs.

3-9. DRIVER AUTOMATIC “UP”

A driver has the capability of automatically returning its EQT entry and all associated LU’s to
the “up” state through a JMP instruction. For example, if a driver makes a not ready, parity
error, end-of-information, or time-out return to the system, the system sets the associated LU
and EQT entry into the “down” state. If the driver subsequently detects an interrupt (or
time-out) entry that signals that the controller is now ready, it may return the EQT entry and
associated LU’s to the “up” state as follows:

JMP $UPIO

The device controller’s EQT entry and all associated LU’s are reset to the up (available) state
by $UPIO. If an I/O request is pending, $UPIO restarts the request by entering the driver at
the initiation entry point Lxnn.

3-17

3-10. POWER FAIL PROCESSING

When an RTE system is generated, the user has the option of including DVP43, the power
fail/automatic restart driver, and AUTOR, the automatic restart program. If DVP43 is not
included, the system executes a HALT 4 when power is restored to the computer.

If the power fail/automatic restart modules are included in the generation, they enable the
system to recover automatically from a power failure. Power fail/automatic restart processing
can be divided into three parts:

a. The power down sequence.

b. The power up sequence.

¢. The sequence required to restart any I/O transfers that were in progress when the power

fail occurred. (A driver has the option of restarting its own I/O, or of letting the system
restart it from the beginning of the request. These two alternatives are discussed below.)

POWER DOWN SEQUENCE

When a power fail occurs, a power fail interrupt is generated and DVP43 is entered to process
the interrupt. In the brief period of time available before the system becomes completely
inoperable, DVP43 performs the following steps to save the state of the machine:

a. Stops all DCPC transfers.

b. Saves all user accessible registers (A,B,E,O . . .).

c. Saves the status of the memory protect fence. Also saves the status of the Dynamic
Mapping System (DMS) in systems which include the DMS feature.

d. Saves all map registers (System Map, User Map, and the two DCPC maps). This step is
performed in systems with Dynamic Mapping only.

DVP43 then executes a HALT 4 instruction before power fails completely.

POWER UP SEQUENCE

When power is restored to the computer, an interrupt is generated and DVP43 is reentered to
process the interrupt. DVP43 performs the following steps to restart the system:

a. Sets a software flag to prevent resaving the state of the machine if a subsequent power
failure occurs before the system is completely restored.

b. Reenables the power fail hardware.

c. Restores the state of the memory protect fence. Also restores all map registers and the
status of the Dynamic Mapping System in systems which include the DMS feature.

d. Saves the time of the power fail.

3-18

Finds the power fail EQT entry (i.e., the EQT entry associated with DVP43) and sets up a
very short time out on this EQT entry by setting EQT entry word 15 (the time-out clock) to
—1. This causes DVP43 to be reentered after one tick of the real-time clock. DVP43 can
then begin to restart any I/O transfers that were in progress at the time of the power
failure.

Restarts the real-time clock.
Restores all user-accessible registers.

Clears the software flag that was set in step “a”, so that the state of the machine will be
saved as usual on any subsequent power failures.

Returns to the suspended process (i.e., the process that was in operation when the power
fail occurred) at the point of interruption.

RESTART 1/0 SEQUENCE

As soon as the power fail EQT entry times-out, DVP43 is entered again since it previously set
the “driver process power fail” bit. DVP43 now attempts to restart any I/O transfers that were
in progress at the time of the power fail by performing the following steps:

a.

Makes the following checks for each I/O controller:

1. Checks bits 14 and 15 of EQT entry word 5. The value of bits 14 and 15 indicate
whether the I/O controller was “down” or “busy” at the time of the power failure.

2. Checks bit 13 of EQT entry word 4 to see if the driver associated with the EQT entry is
prepared to process a power fail/automatic restart entry. Drivers that are prepared to
process power fail/automatic restart entries will have previously set bit 13 to one.
Otherwise, this bit is zero. (Note that the system never clears bit 13, so a driver only
needs to set it once.)

3. Checks to see if any EQT entries are currently waiting for a DCPC channel.

Depending upon the above information, one of the following three actions is taken for each
controller or device in the system:

Case 1. Controller (EQT entry) busy and “driver processes time-out” bit set:

If the controller was reading or writing data when the power fail occurred and the
driver is designed to handle power fail, the driver has the responsibility to recover
from the power fail in the best possible manner. The system simply sets bit 15 of
EQT entry word 5 to 1 to indicate that a power fail has occurred, and enters the
driver at the initiation entry point Ixnn.

Case 2. Controller waiting for a DCPC channel.

If the controller was waiting for a DCPC channel when the power failure occurred,
no action is taken. The I/O transfer will be initiated as usual when a DCPC
channel is released by another driver.

Change1l 3-19

Case 3. All other EQT entries

For all EQT entries not falling under Case 1 or Case 2 above, DVP43 makes a call
to $UPIO to up the EQT entry and all associated LU’s. (See the “Driver Automatic
Up” subsection of this manual.) $UPIO restarts any I/0 requests that were in
progress (i.e., EQT entry was busy) or pending (i.e., EQT entry or LU was down) at
the time of the power failure. This is done by resetting the parameters of the

original call into the EQT entry and reentering the driver at the initiation point
Ixnn.

After the above action is taken for each I/O controller in the system, an HP-supplied program
called AUTOR (auto-restart) is scheduled. AUTOR sends the time of power failure to all user
consoles on the system (thereby reenabling all terminals).

AUTOR is written in FORTRAN, with the source tape supplied so that it can be easily
modified for site-specific applications.

3-11. PROGRAM SCHEDULING BY DRIVERS

Occasionally some I/O applications may require that a driver schedule a program to perform a
certain task. The system list processor, $LIST, has several calls available that provide drivers
with this capability. These calls are illustrated below. All of these calls cause a program to be

scheduled. They differ only in the format of the calling sequence, and in the type of information
~ that each call may specify is to be stored in the ID segment of the program to be scheduled.

Method 1. (Used to put five parameters in the ID segment and then schedule the program.)

EXT S$LIST
JSB S$LIST
OCT 701
DEF RTN Return point. (Must be immediately after the call)
DEF PNAME Address of three word array containing program name
DEF P1 Addresses of up to five optional parameters to be
DEF P2 placed in program’s ID segment
DEF P3
DEF P4
DEF P5
RTN . Return point. Must be located immediately after call.

(See below for error status return in A & B-registers)

PNAME ASC 3,XXXXX Name of program to be scheduled

P1 OCT A Up to five optional parameters to be placed in
P2 OCT B program’s ID segment (temporary storage area)
P3 OCT C prior to scheduling it.

P4 OCT D

P5 OCT E

3-20

Method 2.

RTN

P1
P2
P3
P4
P5

Method 3.

This call causes the system to place whatever number (0-5) of optional parameters
are supplied into the temporary storage area of the ID segment of the program
whose ASCII name is contained in the variable PNAME. The system then
schedules the program to run at its own priority.

(Same as Method 1, except that the ID segment address rather than the program
name is supplied. Note that in some RTE systems a driver may not be able to
search the ID Segment Table for a program’s ID segment address. It is therefore
recommended that drivers scheduling programs do so by specifying the program’s
name (function code 701 call to $LIST), rather than the ID segment address.)

EXT S$LIST
JSB S$LIST
OCT o001
DEF RTN Return point. (Must be immediately after call.)
OCT IDADR ID segment address of program to be scheduled.
DEF P1 Address of up to five optional parameters to be
DEF P2 placed in program’s ID segment
DEF P3
DEF P4
DEF P5
Return point. Must be located immediately after call.
(See below for error status return in A & B-registers)
OCT A Up to five optional parameters to be placed in
OCT B program’s ID segment (temporary storage area)
OCT C prior to scheduling it.
OCT D
OCT E

This call causes the system to place whatever number (0-5) of optional parameters
are supplied into the temporary storage area of the ID segment specified by
IDADR. The system then schedules the program associated with the ID segment to
run at its own priority.

(Used to put a value into the “B-register at suspension” word in the ID segment
and then schedule the program. This call can be used to set the B-register to point
to a scheduling parameter storage area. The scheduled program can then recover
the parameters via a call to subroutine RMPAR. The driver should make sure that
the parameters are placed in a memory area that is mapped with the user
program.)

3-21

EXT S$LIST

JSB S$LIST

OCT 601

OCT IDADR ID segment address of program to be scheduled.

OCT BVAL Value to be put into “B-register at suspension” word
RTN . Return is always made to here by $LIST

(See below for error status return in A & B-registers)

This call causes the system to place the value BVAL into the “B-register at
suspension” word of the ID segment specified by IDADR. If this value is an
address that points to a set of scheduling parameters, the program can recover
the parameters by making a call to subroutine RMPAR. The system then
schedules the program associated with the ID segment to run at its own priority.

Error Conditions:

When $LIST returns from any of the program schedule calls described above, the A and
B-registers indicate whether or not the program was successfully scheduled, as follows:

IfA=0 the program was successfully scheduled. (The
B-register contains the ID segment address of

the scheduled program.)

If A is non-zero the program could not be scheduled. The B-reg-
ister indicates the reason, as follows:

B

3 Illegal status (program not dormant)

B=25 No such program.

3-12. DETERMINATION OF OPERATING SYSTEM
ENVIRONMENT

There are times when it may be necessary for a driver to know the operating system within
which it is executing. The system entry point $OPSY provides this and other information in
the form of one-word table, as illustrated in Table 3-1.

3-22

Table 3-1. $OPSY Word Format

$SOPSY Bit 15 Bit 3 Bit 2 Bit 1 Bit 0
Value*
System
1=RTE Type 0=RTE-M 0=No DMS 0 =64 Word Disc
1=RTE 1=DMS 1=128 Word Disc
RTE-M/I -7 1 1 0 0 1
RTE-M/1I -15 1 0 0 0 1
RTE-M/III -5 1 1 0 1 1
RTE-II -3 1 1 1 0 1
RTE-III -1 1 1 1 1 1
RTE-IV -9 1 0 1 1 1

*Note: All unspecified bits are set to 1.

$OPSY can be referenced simply by loading it into a register and testing the appropriate bits.
This technique is illustrated below:

EXT $OPSY

LDA $OPSY Access $OPSY information
AND MASK Isolate appropriate bits

Take appropriate action

In Dynamic Mapping Systems ($OPSY bit 1 = 1), it may also be necessary to determine
whether the System Map or User Map is currently enabled. This can be done in a driver by
accessing the status of the Dynamic Mapping System via an RSA instruction, and looking at
bit 12. Bit 12 is 0 if the System Map is enabled, and 1 if the User Map is enabled. The following
code illustrates this procedure:

RSA Access Dynamic Mapping System Status
ALF Position Bit 12 into Bit 0
SLA System Map Enabled?

JMP USER No, User Map Enabled.
JMP SYSTM Yes, System Map Enabled

3-23

3-13. SUBROUTINES FOR SPECIAL MAPPING FUNCTIONS
(DMS SYSTEMS ONLY)

By using the Dynamic Mapping System (DMS) feature of the 21MX series of computers, RTE
provides the capability for addressing memory configurations larger than 32K words. This is
accomplished by translating memory addresses through one of four “memory maps.” A mem-
ory map consists of a set of hardware registers. These registers provide the interface between
memory addresses used by programs (logical memory addresses) and actual memory addresses
(physical memory addresses). There are four distinct maps: the System Map, the User Map,
and the two DCPC maps. The DCPC maps are loaded (i.e., set up) by the system as necessary to

describe the logical memory configuration required by the currently executing program or
DCPC transfer.

Prior to entering a driver to process an I/O request, the system loads and enables the correct
map (System or User) needed to describe the buffer of the request. However, when a driver is
entered with the System Map enabled (e.g., when the buffer is in System Available Memory),
it may also need to reference a second buffer located in the user program. Subroutine $XDMP
can be called by standard drivers to reload the User Map to describe the desired program. The
driver can then access the second buffer. After all accesses have been made, the driver restores
the User Map to its original contents and continues with its normal operation under the
System Map. The recommended procedure for using $XDMP is somewhat different in RTE-III
and RTE-IV, and each of these procedures is discussed in a separate section below.

NOTE

Subroutine $XDMP can be called by standard RTE drivers
only. Privileged drivers wishing to perform the same function
must use subroutine $PVMP, which is described in Section IV
of this manual.

MAPPING IN RTE-IIT AND RTE-M/III

Any standard driver operating in RTE-III may use subroutine $XDMP to perform the memory
map switching discussed above. The driver first saves the current state of the User Map
registers and the Dynamic Mapping System, and then calls $XDMP to reload the User Map
registers to describe the user program. The driver can then switch to operation under this map
and access the memory described by it. After all accesses have been made, the driver reenables
the System Map and restores the original state of the User Map registers before continuing
with its normal processing under the System Map.

3-24

Note that subroutine $XDMP need only be used to reload the User Map registers when the
driver is entered with the System Map enabled. The calling sequence is as follows:

CONT

NXT

MAPAD
MAP
SIGN
IDADR
DMSST

EXT $XDMP

RSA
ALF
SLA
JMP USER

RSA
RAL,RAL
STA DMSST

LDA MAPAD
IOR SIGN
USA

LDA IDADR
JSB $XDMP
SZA, RSS

JMP ERROR

UJP CONT

LDA MAPAD
USA

JRS DMSST NXT

DEF MAP
BSS 32
OCT 100000
BSS 1

BSS 1

Get Dynamic Malping System (DMS) status
Position bit 12 into bit 0

Is System Map Enabled?

No, so do not need to execute code below

Normal driver processing under System Map

Get Dynamic Mapping System (DMS) status
Position current status in upper bits
Save status for later.

Set A = address of User Map storage area
Set sign bit indicating STORE Map in memory
Save current User Map in memory for later.

Get ID address of program that contains buffer
Call $XDMP to set up User Map for this program
Check for error return

Error exists, go handle it

No errors. Enable new User Map and continue
Process buffer under new User Map

Access address of User Map storage area

Restore original contents of User Map

Restore original DMS status (i.e., System Map)

Proceed with normal processing under System Map

Addrees of User Map storage area
User Map storage area

Storage for ID segment address
Temporary storage for DMS status

When called, $XDMP checks to see if the referenced program is resident in memory. If it is not,
the User Map registers are not reloaded and the A-register is zero on return. If the program is
resident in memory, the User Map registers are reloaded to describe the program and the

A-register is non-zero on return.

3-25

Remember that any driver using this routine must save the original contents of the User map
and the DMS status before calling $XDMP. It must also restore the original User Map and
DMS status before continuing with its normal operation under the System Map. The example
above illustrates this procedure.

NOTE

The driver could also access the buffer in the user program
through a series of cross-map loads and stores without actually
enabling the User Map. This is in fact is the recommended
procedure for using $XDMP in an RTE-IV system, and use of it
by a driver would allow the same driver to be used in either
type of system.

MAPPING IN RTE-IV

Drivers that do their own mapping in RTE-IV must have the “M” (“driver does its own
mapping”) option specified at generation time (during the EQT entry definition phase).
Selection of the “M” option causes the driver to be placed in the System Driver Area (SDA) of
memory and sets the “M” bit in the driver’'s DMT (Driver Mapping Table) entry. Drivers for
which the “M” bit is set are always entered with the System Map enabled, regardless of the
location of the buffer specified in the I/O request. If such a driver needs to access a buffer
within the calling program, it can call subroutine $XDMP to reload the User Map registers to
describe the program.

The procedure for using $XDMP is as follows: The driver first saves the current contents of the
User Map registers, and then calls $XDMP to reload the User Map to describe the calling
program. The driver can then use a series of cross-map loads and stores to access the buffer
described by the User Map. Note that the User Map should not be enabled since drivers in the
SDA are not necessarily included in all users’ maps. After all accesses have been made, the
driver restores the original state of the User Map registers before continuing with its normal
processing.

Note that subroutine $XDMP need only be used when the driver is entered with the System
Map enabled but needs to access a buffer in a user program. Furthermore, $XDMP can only be
called by drivers resident in the System Driver Area of an RTE-IV system. The following
example assumes that both of these conditions are true.

3-26

MAPAD
MAP
SIGN
IDADR

When called, $XDMP checks to see if the referenced program is resident in memory and
whether or not the driver making the call resides in the System Driver Area (SDA). if either
condition is not met, the User map registers are not reloaded and the A-register is zero on
return. If the program is resident in memory and the driver is in the SDA, the User Map

EXT $XDMP

LDA MAPAD
IOR SIGN
USA

LDA IDADR
JSB $XDMP
SZA, RSS

JMP ERROR

LDA MAPAD
USA

DEF MAP
BSS 32
OCT 100000
BSS 1

Normal SDA driver processing under System Map

Set A = address of User Map storage area
Set sign bit indicating STORE Map in memory
Save current User Map in memory for later

Get ID address of program that contains buffer
Call $XDMP to set up User Map for this program
Check for error return

Error exists, go handle it

No errors. Access buffer via series of
cross-map loads and stores, since System

Map is still enabled

Access address of User Map storage area
Restore original contents of User Map

Proceed with normal processing under System Map
Address of User Map storage area
User map storage area

Storage for ID segment address

registers are reloaded to describe the program and the A-register is non-zero on return.

Remember that the driver using this routine must save the current contents of the User Map
registers before calling $XDMP, and must restore the registers to their original value after all

accesses have been made to the buffer. The example above illustrates this procedure.

NOTE

Before a standard driver in the SDA is entered to process a user
program I/O request, the system automatically reloads the
User Map registers to describe the calling program. This is
done regardless of whether the driver is entered under the
System Map or the User Map. Thus, if the driver is entered
under the System Map, and if the second buffer that the driver
wishes to access is located within the calling program, some
processing time can be saved by not calling $XDMP to reload
the User Map registers. A call to $XDMP is not needed in this
case since the system has already reloaded the User Map regis-
ters with the correct information.

3-27

3-14. SAMPLE STANDARD RTE DRIVER

The sample driver illustrated in Figure 3-4 demonstrates some of the principles involved in
writing a standard I/O driver for the RTE operating system. Note that this driver is for tutorial
purposes only and is not one of the drivers supplied with the system.

3-28

PAGE

Gt

2003

GOGd*
OGS
VEVEE

GOO7*
GioB*
GOCIx
00 10%
0011x*
0012x%
0G13x%
0014x%
00 15%
O¢lex*
0017%
0618
GO019%
G20
0021 %
O0Z2x%
G023 %
GO24%
0G25x%
G026 %
OO27 %
G028 %
0029%
GG2¢x*
G031
GGI2x
[R
GGT4x
VSR]
0036%*
0037 x
0GIBx*
0629%
0040 %
O041 %
0042 %
0G43 %
0044x%
G045 %
G046 %
DO47 %
0048 %
0049%
0050%
0651 %
0U52%*
0053 *
OG54
COSSx
G056 *
0057 *

0O0G2 #G1 *+ STANDARD RTE DRIVER EAAMPLE »»

ASHE ., L
GOOGo NAM CYR7 G ¥ STANCARD RTE DRIVER EXAMPLE x*¢

ENT 1.70,C.70

DRIVER 70 OPERATES UNDER THE CONTROL OF THE T/0 CORTROL (IOC)
AND THE CENTRAL INTERRUPT CONTROL (CIC)> MODULES OF RTE.

THIS DRIYER IS RESPONSIBLE FOR CONTROLLING DUTPUT
TRANSHISSION TD A 16 BIT EXTERNAL DEVICE.

1.7¢ IS THE ENTRY POINY FOR THE *INITIATION* SECTION

AND C.70¢ IS THE ENTRY POINT FOR THE *CONTINUATION/COMPLETION®
SECTION.

NOTE THAT THIS DRIVER DOES NOT PROCESS TIME-OUTS OR
POWER FAIL. THESE PROCEDURES ARE LEFT ENTIRELY UP TO
THE SYSTEM.

REMEMBER THAT RTE SETS THE ADDRESSES OF EARCH WORD OF

THE 15 WORD EQT ENTRY FOR THE DEVICE BEING SERVICED INTO
THE BASE PAGE COMMUNICATIONS AREAR ON EACH ENTRY TO THE
DRIVER.

THIS DRIVER REFERENCES THESE ADURESSES THROUGH VARIARBLES
EQT1 THROUGH E@T1S.

XAk EEREE kR Rk kF ok kk ok K

* ITNITIATION SECTION =
A K K Rk Kk Rk R K K K K

THE INITIATION SECTION IS CALLED FROM I/0 CONTROL C(IOC» TO
INITIALIZE & DEVICE AND INITIATE AN QUTPUT ODPERATION

THE CALLING SEQUENCE FOR THE INITIATION SECTION IS:
(SET A = SELECT £ODE OF I/D DEVICE)D
P J5B 1.7¢
P+1 C(RETURHN POINT)

ON RETURN, A REGISTER INDICATES STATUS, AS FOLLOWS:

& = 0, OPERATION SUCCESSFULLY INITIARTED

A NOT ¢, DPERATION REJECTED FOR THE FOLLOWING
REASON:
A 1 ILLEGAL READ REQUEST

non
wou

A 2 ILLEGAL CONTROL REQUEST

CNDTE, HDWEVER, THAT A "CLEAR"™ CONTROL REQUEST FROM THE
SYSTEM WILL BE PROCESSED BY THE DRIVER, AS REQUIRED.)

ke kkkokkokkokkokkkok b kokkkkokkkkokkokk kkk k&

* CONTIHURTION/COMPLETION SECTION
ek ko ok ok R ok ok o ok ok ok Kk kK Rk R R kR K R kK

THE CONTINUATION/COMPLETION SECTION IS CARLLED BY CENTRAL

Figure 3-4. Standard RTE Driver Example
3-29

PAGE

0638 %
YS9
GOEG*
0GBl *x
GOL2%
OGe3x
V0G4
(PSR
GUBH*
VG67x
ODGEBx®
0069 %
GO70%
0071x
GO72x
GG?73x
G074
075 %
GO76%
GO77x%
0078x%
GO79%
OOBG*
0081 %
00532 *
0083
0084

0603 401 %% STANDARL RTE DRIVER EXANWNPLE =*»
INTERRUPT CONTROL <CIC)> TO CONTINUE OR COMPLETE AN OPERATION WHEN
AN INTERRUPT IS DETECTED ON THE DEVICE
THE CALLING SEQUEMNCE FOR THE COMPLETION SECTION IS:
(SET A = SELECT CODE OF I/0 DEVICE?

P J5B €.7¢

P+1i LCOMPLETIOHN RETURN

P+2 CONTINUATION RETURN

OH RETURN, A % B REGISTERS INDICATE STATUS, AS FOLLOWS:

ON & COMPLETION RETURN:

A = 0, SUCCESSFUL COMPLETION, WITH
B = HUMBER OF WORDS TRANSMITTED
A = 2, TRANSMISSION ERROR DETECTED

ON & CONTIMUATION RETURN, THE REGISTERS ARE
MEANINGLESS

RECORD FORMAT:

THIS DRIVER PROVIDES A té BIT BINARY WORD
TRANSFER ONLY.

3-30

Figure 3-4. Standard RTE Driver Example (Continued)

PAGE

0086%
2087 %
G088
0Q89x
0096
0091
Q02 %
0693
0G0%4x%
0095
G09¢
G097 x%
0098
0029
0160
BRI
OLg2%
CLo3*
O1o4x*
G165%
oi¢e
0107
¢G1o8
6169
O1i0x%
o1t
0112
0112
01i4x*
611s
0116
0117
G118
G119%
otze
et2t
0122
0123
0124
01295
0126
0127
G128
0129
G130
0131x%
d132%
0133
0134
G139
¢136x%
0137
3138
6139x%

0004 #01 *x% STANDAR

GOG00 0060000 1.70¢
Q0001 016100R

00G02 161665
600063 012115R

00004 032116R
GO00S 126000R
GO00e OG32117R
GOGO7 G26017R

CONTROL REQUEST. CHE
IF S0, ASSUME IT WAS

6e010 161665
0oGtt 012120R
0¢ei2 002002
00613 026015R

00014 106700 1.0

D DRIVER - INITIATION SECTION #*#

ke ok ok ok ok ok K ok & ok Ak Kk ok ok ok Xk ok k

* INITIATION SECTION =*
Hokkok ok ok kk ok Rk Rk E Kk Rk K

NOP

JSB SETIO
LDA EQT6.,I
AND =B3
CPA =B1
JMP T .70.1
CP& =B2
JMP DXt

CK IF IT IS A

ENTRY FROM 10C
CONFIGURE I/0 INSTRUCTIONS FOR DEVICE

GET CONTROL WORD ODF REQUESTY, AND
ISOLATE THE RERUEST TYPE

IF REQUEST IS FOR IRNPUT

THEN REJECT IT (A4 =t = ILLEGAL READ)
IF REQUEST IS FOR DUTPUT

THEN GO PROCESS WRITE REQUEST

"CLEAR®" CODRTROL REQUEST

ISSUED BY SYSTEM, CLEAR DEVICE, AND RETURH

LOR EQT6.,1I
AND =83700
S2h

JHP REJCT

CLC s¢C

ACCESS CONTROL HWORD

ISOLATE SUBFUNCTION

“CLEAR®" REQUEST?

ND, 50 REJECT REQUEST AS ILLEGAL

YES, CLEAR DEVICE AKD RETURN

REQUEST ERROR - LAUSE REJECT RETURKR TO I0C

00¢15 062117R REJCT
000l 126000R

HRITE REQUESY PROCES

Go¢1? letsee DXt
60626 17162¢

00621 1616067

00022 003004

06023 171671

00024 002002

00625 026031R
00026 062121R
Q0027 0046400

C0630 126000R

LbAa =B2
JHP 1.70,1

SING

LDR ERT?,I
STA EQGTY.I
LDA EQTS.,I
CHA, INA

STA EQTiO, 1
§2Z4

JMP D K3
LDA =B4

CLe

JHUP T .70,1

SET & = 2 FOR ILLEGAL CONTROL REQUEST
AND RETURN (& = 2 = TLLEGAL CONT. RE®.D

GET REQUEST BUFFER ADDRESS

AND SET IT A4S CURRENT ADDRESS

GET REQUEST BUFFER LENGTH

MAKE HEGATIVYE AND

AND SAVE AS REMAINING BUFFER LENGTH

IS BUFFER LENGTH = 0?

NO., PROCESS A4S USUAL

YES, SO0 MAKE IMMEDIATE COMPLETION RETURR
SET TRAMSMISSION LOG = ¢ INTO B

AND RETURN (A = 4 = IHMED. COMPLETION)

CALL THE CONTINUATION/COMPLETION SECTION TO WRITE FIRST WORD

00031 062114R D .43
00032 072036R
000633 0256047R

00034 002400 ITEXIT
00635 126000R

LbAa P2
STA €. 70
JHP D X2

CLa
JHP I.70,1

ADJUST RETURN ADDRESS SO WILL
RETURN HERE (INITIATION SECTION?}
GO TO COMPLETION SECTION

HOW RETURN TD IO0C MITH
CPERATION INITIATED (& = ¢ = 0K)

Figure 3-4. Standard RTE Driver Example (Continued)

3-31

PAGE

0141
1142%
0143
0144x%
0145%
G146
G147 %
0148
G149%
0150
0151
0152
6133
0154x
[+B 3-3:)
0156
0157
0158%*
0159
0166
016l
0162x%
0163
G164
0165
¢166
0167
0168
01e9x
0170
0171
G172%
0173
0174
¢0175%
G176%
0172%
0178
0179
0180
0181
o182
0133
0184
0185%
186
0ig?
c138
OrB9x
0190
0191 %
0192
133
194
0195=*

0065 #o01

** STANDARD DRIVER -

ke kkkdkrk kb kb kR kb kb ek k kA kR KK Kk E

* CONTINUATIOR/COMPLETION SECTION =
EREF R KT R KRR AR R R AR R AR AR KR RN AR Ak E Kk

CONTINUATION/COMPLETION SECTION *x

00036 000000 € .70 NAOP

00037 Giai00R 4S8 SETIO
00046 161660 Lba EQTL,I
00041 012122R AND =B?7777
00042 002002 4]

00043 026047R JHP D X2
00044 171774 STa ERQTIS,I
00045 0360G36R 1€2 €.70
00046 126036R JMP £ .70,1
00647 0062400 D X2 CLA

000506 151671 CPA EQTLO,I
60051 026Ge3R JUP 1.3
00052 165670 LDB EQTY.,I
00053 1356720 1SZ EQT9,1
00654 160001 LoA 8.1
00635 135671 I1SZ EQT16, 1
00656 000000 NOP

Go0G57 102600 1.1 0Ta SC
00060 103700 1.2 §TC sC.C
606Kl 036036R Is2 €.72¢0
00662 126036R JHP C.20,1

STATUS AND COMPLETION SECTION

00063 1062500 1.3 LIa SC

00Ged 0E2123R - AND =B77
GOGBS 070001 STa B

00066 161664 LDA EQRTS,I
00667 C12124R AND =B177400
00070 036001 I0R B

00071 171664 STR EQRTS.I
00072 002400 CLA

06073 056121R CPE =B4
00074 062117R LDA =B2
00075 165667 LDbB EQTB,I

00076 106700 1.4 CLE §C

000?27 126036R JHP €. 70,1

CONTINUATION/COMPLETION ENTRY POINT
CONFIGURE I/0 INSTRUCTIONS

CHECK FOR SPURIOUS INTERRUPT

ISOLATE I/0 REQUEST LIST PTR (15 BITS)
IS A REQUEST IN PROGRESS?

YES, GO PROCESS REQUEST

NO, SPURIODUS INTERRUPT-ZERO TINE-OUT CLK
ADJUST RETURN TO P+2 (CONTINUATION)D
MAKE CONTIHUATION RETURN 7O CIC

IF CURRENT BUFFER LEKRGTH = ¢,
THEN GO 7O STATUS
SECTION. (I .E., TRANSFER DONE HON)

GET CURRENY BUFFER ADDRESS

ADD 1 FOR NEXTY WORD

GET WORD TO BE WRITTEN YO0 DEVICE
INCREMENT WORD COUNT alLSD

IGNORE P+1 SKIP IF LAST WORD

CUTPUT WORD TO INTERFACE
TURN DEVICE ON

ADJUST RETURN TO P+2 (CONTINUATION?
MAKE CONTINUATION RETURN

GET STATUS WORD FROM DEVICE
STRIP OFF UNUSED BITS

SAYE IN B TEMPORARILY
REMOYE PREVIODNS STATUS

BITS IK EQT WORD 5

OR IN NEW BITS

AND RESET INTO EQY WORD S

SET & = ¢ = 0K RETURR CODE
ERROR STATUS BIT ON?

YES, SET A = 2 = ERROR RETURH
SET B = TRANSMISSION LOG
CLEAR DEYICE CONTROLLER

MAKE COMPLETION RETURK TO CIC

3-32

Figure 3-4. Standard RTE Driver Example (Continued)

PRGE

0197
2198%
0199x%
0200x%
0201 %
0202
0263 %
0204
02065
0206
0207
G208%
0209
¢21¢
0211
6212
G213
0214x
0215
0216
6217
0218%
0219
0220%

6006 #01 ** STANDARD DRIVER - SUBROUTINE SETIO =«

Rk ke khkkkkkkkks

* SUBROUTINE SETIOD »
KRR AE R AR KT R KRR kK k&

SUBROUTINE <(SETIO) CONFIGURES ALL I/0 INSTRUCTIONS IN DRIVER

00100 (00000 SETIO HOP ENTRY POINT

00101 032112R IOR LIA COMBIHE LIa WITH I/0

00102 0720663R §Ta 1.3 SELECT CODE AND SET IN COCE
00102 042125R ADR =B100 CONSTRUCY OTa INSTRUCTION
00164 072037R STh 1.1

001GS ©42126R ADAR =B110¢ CONSTRUCT STC,C INSTRUCTION
00106 072060R ST I.2

001¢7 0321278 I0R =B4060 CONSTRUCT CLC INSTRUCTION
00110 072014R STR I.9¢

00111 072076R STA 1.4

00112 126100R JHP SETIO,I RETURHN

Figure 3-4. Standard RTE Driver Example (Continued)
3-33

PAaG

6222
4223
6224
4225
6226
6227
0228
$229
¢230
231
(232
6233
G234
0235
6236
023?
G238
¢¥239
0240
G241
0242
0243
0244
06245
G246
G247
0248
y249
G250
¢ast
0as2
0253
0254
02sS
0256

0as?
*x

E 0007 #01 **x STANDARD DRIVER - DAT
*®
* %Rk kb okokok ok & ok kok
* * DATA AREA =
* * %ok k& ok ok K ok ok ok kR
*
* CONSTANT AND STORAGE AREA
*
00006 & EQU o
[(RLXv1 B EQU 1
*
G00Go sSC EQU ¢
60113 102500 LIA LIA ©
00114 GOOGIIR P2 DEF TEXIT-t
*
* xx BASE PAGE COMMUMICATIONS AREA D
*
¢165¢0 EQU 16508
*
61660 E@T1I EQU .+8
gléet EQ@T2 EQU .+9
61662 E@GT3I EQU .+19
¢leed EGT4 ERQU .+11
Gl1664 EQGTS EQU .+12
61665 EQTe EQU .+13
61666 EQT? ERU .+14
6l667 EQRTE ERQY .+15
01670 EQTS® ERU .+16
¢Gle?t EQTI¢ EQU .+17
®1672 EGTI1 EQU .+18
61771 EQTLI2 EQU .+81
1772 EQTII EQU .+82
01773 EGTI4 EQU .+83
¢1774 EGTIS EQU .+84

*
sk

60113 0060063

601l 006G001

6ot17 ¢000Q2

00120 063700

00121 000004

00122 6777707

00123 000077

00124 177400

00125 000100

00126 001100

00127 004000

END

NO ERRORS *TODTAL **RTE ASME 760924«

R AREA *x

A-REGISTER
B-REGISTER

bumMMY I/0 SELECT CODE HUMBER
CODE FOR LIA INSTRUCTION
RETURN POINT IN INITIATION SECTION

EFINITIONS *x*

3-34

Figure 3-4. Standard RTE Driver Example (Continued)

WRITING PRIVILEGED
RTE DRIVERS || v

4-1. INTRODUCTION

Peripheral devices that are synchronous in nature, or that generate interrupts at very high
rates, need special attention in an RTE system. Such devices cannot be controlled by standard
RTE drivers on a word-by-word transfer basis, because this method cannot guarantee that the
interrupts generated by such device controllers will be processed within the required response
time. There are two reasons why the response time may be exceeded:

1. An interrupt is not recognized immediately by RTE if the interrupt system is disabled at
the time the interrupt occurs. For example, this happens if the interrupt occurs while a
standard driver is processing a previous interrupt, or while RTE itself is executing.

2. Once an interrupt is recognized, the system overhead required to direct the interrupt to the
appropriate driver for processing may be too long.

One way to guarantee a fast interrupt response time is to utilize DCPC transfers for synchron-
ous and high speed devices. The special DCPC hardware allows the transfer to occur simul-
taneously with other RTE operations, thereby eliminating the above problems.

However, DCPC transfers do not allow the driver to perform any processing that might be
required on each data word as it is transferred. For example, it might be necessary to check a
parity bit on each word as it is received from the device. Thus, a special interrupt processing
method is needed for any high speed or synchronous device that requires driver interaction on
each data word transferred. This interrupt processing method must have the following
properties:

a. The ability to recognize interrupts immediately, regardless of what other RTE operation is
in progress.

b. A means to eliminate the system overhead associated with processing an interrupt.
c. Driver interaction on each data word transferred.

Privileged interrupt processing was specifically designed to meet these criteria. This method
requires that a special I/O card, known as the Privileged Interrupt card, be present in the
system. The Privileged Interrupt card is inserted in the computer such that it physically
separates the I/O cards into two groups. All devices whose I/O cards are in lower-numbered
(i.e., higher priority) select codes are known as privileged devices; these are the high speed and
synchronous devices that require driver interaction on each word transferred. The I/O cards of
all other devices in the system are placed in higher-numbered (i.e., lower priority) select codes
and are known as non-privileged devices.

Systems with Privileged Interrupt cards are referred to as privileged systems, and a special
type of RTE driver (known as a privileged driver) is required for each privileged controller
present in the system. Standard RTE drivers are used for the remaining non-privileged
devices.

4-1

The Privileged Interrupt card can be any standard I/O card that contains the normal control
and flag flip-flop circuitry. Because of the position of the Privileged Interrupt card in the I/O
priority chain, setting of the control flip-flop on the card holds off all interrupts from the
non-privileged device controllers, while at the same time allowing the privileged device
controllers to interrupt.

When a Privileged Interrupt card is present in the system and a non-privileged interrupt
occurs (or when the system is requested to perform some function via an EXEC call or operator
request), RTE performs the following functions before entering the standard driver (or system
routine) to process the interrupt:

a. Disables the interrupt system and saves the state of the machine.

b. Sets the control flip-flop on the Privileged Interrupt card to hold off any further non-
privileged interrupts.

c. Disables the DCPC completion interrupts. These interrupts are not held off by the
Privileged Interrupt card since the DCPC completion interrupts occur on the highest
priority select codes (6 and 7).

d. Reenables the interrupt system and enters the driver to process the interrupt.

The above means that a privileged system processes standard (i.e., non-privileged) interrupts
and requests for system functions with the interrupt system in a hold-off state, rather than
with the interrupt system disabled (as it does in non-privileged systems). The privileged
interrupts are always enabled and can interrupt any process taking place and be serviced
almost immediately.

When servicing of the non-privileged interrupt is completed, RTE clears the control flip-flop on
the Privileged Interrupt card and reenables the DCPC completion interrupts if they are
needed by the standard driver using DCPC. This returns the system to a state where any
interrupt (privileged or non-privileged) can occur and be recognized almost immediately.

To eliminate the system overhead associated with processing interrupts, the contents of the
interrupt trap cells for the privileged device controllers are changed from a JSB LINK,I
instruction (where LINK contains the address of the entry point to CIC), to a JSB $JPNN,I
instruction (where $JPNN contains the address of the entry point of the privileged interrupt
routine). When a privileged interrupt occurs, the privileged routine is entered directly, rather
‘than from CIC. This eliminates the system overhead. The tradeoff is that the privileged driver
must be somewhat more complex than a standard driver, since it must perform some of the
housekeeping duties normally handled by CIC.

RTE records a system as privileged by storing at generation time (or, for RTE-IV, at reconfig-
uration time) the I/O select code address of the Privileged Interrupt card in Base Page
Communications Area word DUMMY. Systems without a Privileged Interrupt card have a
zero in base page word DUMMY.

In general, privileged drivers are very similar to standard drivers; thus most of the material
presented in Section III for standard drivers also applies to privileged drivers. Since only the
differences are pointed out in this section, the reader should be familiar with the material
presented in Section III before continuing with the privileged driver considerations described
below.

4-2

4-2. GENERAL PRIVILEGED DRIVER STRUCTURE AND
OPERATION

Privileged drivers are responsible for the initiation, continuation, and completion of all I/O
requests for privileged devices. Since privileged drivers operate independently of RTE, there
are several additional requirements and restrictions that must be followed to ensure the
integrity of the operating system and the proper operation of the driver. These restrictions and
requirements are described in subsequent subsections.

Privileged drivers are generally designed in three sections: 1) an initiation section, 2) a
privileged section, and 3) a completion section. The driver must have a name in the form
DVynn, and the initiation and completion entry points must have names in the forms Lxnn
and Cxnn respectively. The rules for the choice of “x,” “y” and “nn” are the same as those given
previously for standard drivers. There are no special rules for the entry point name of the
privileged section. For consistency with Ixnn and Cxnn, it is suggested that a name such as
Pxnn be chosen, where “x” and “nn” agree with the characters chosen for Ixnn and Cxnn.

I0C calls the initiation section of a privileged driver when an I/O request for a privileged
device is made. This call has the same format as the call to the initiation section of a standard
driver (see Section III of this manual).

The privileged section of a privileged driver is somewhat similar to the continuation section of
a standard driver. The privileged section is entered on each interrupt from the privileged
device controller and is responsible for reading or writing the next data word and restarting
the device. Since the privileged section is entered directly from the trap cell on interrupt
(rather than from CIC), it must save and restore the state of the computer on entry and exit.
(These tasks are performed by CIC for standard drivers.)

The completion section of a privileged driver has an entry point named Cxnn, and is responsi-
ble for returning to RTE when the I/O transfer is complete.

The overall operation of a privileged I/O request from initiation to completion is summarized
below:

a. The privileged driver is called by a standard EXEC /O call.

b. If the request is being made by a user program and the call is not buffered, the calling
program is placed into I/O suspension.

c. The interrupt trap cell for the privileged device controller is changed by the privileged
driver from a JSB LINK,I instruction (where LINK contains the address of the entry point
to CIC) to a JSB $JPNN,I instruction (where $JPNN contains the address of the privileged

section entry point, Pxnn).

d. Each time the device controller interrupts, the system overhead is circumvented because
the privileged section Pxnn is entered directly.

e. After each interrupt, if another data transfer is still required to satisfy the buffer length,
the device controller is restarted and the privileged section is exited.

f. When the entire data buffer has been filled, the driver needs a way to inform RTE that the

4-3

transfer is complete. This is accomplished by allowing the driver to time-out, which causes
I0C to reenter the driver at Cxnn.

g. Cxnn returns the transmission log (via the B-register) and a successful completion indica-
tion (via the A-register) to IOC.

h. IOC then reschedules the program that made the I/O request.

4-3. INITIATION SECTION

The initiation section of a privileged driver performs the functions listed below. The list is
similar to the one given earlier for standard drivers with the exception that no DCPC
processing can be done by privileged drivers. (See the “Privileged Driver Design Considera-
tions” subsection of this manual.)

a. Checks for power fail/automatic restart entry by examining bit 15 of EQT entry word 5,
which is set to 1 only on this type of entry. If bit 15 is set, the appropriate power
fail/automatic restart processing should be done. This check need only be made by drivers
that are designed to process power fail interrupts (as described in the “Power Fail Process-
ing” subsection of this manual).

b. Configures all I/O instructions in the driver to reference the specific I/O select code of the
device controller. This step is done only on the first entry to the driver since there is one
privileged driver for each privileged device controller in the system. (See the “Privileged
Driver Design Considerations” subsection of this manual.)

c. Clears bit 12 in EQT entry word 4 if time-outs are to be handled by the system. This bit
will be reset to 1 by the privileged section when it sets up to complete the call.

d. Rejects the request and follows the procedure described in step “f’ if:

1. A status check of the device or controller indicates that it is inoperable, or
2. The request code or other parameters are illegal.

e. Initializes software flags and activates the device controller. All variable information
pertinent to the transmission can be saved in the EQT entry associated with the controller,
providing that the driver saves the addresses of the EQT entry internally in the driver
itself at initiation. These addresses are not available on base page on subsequent entries to

the driver. (See the “Privileged Driver Design Considerations” subsection of this manual.)

f. Returns to IOC (via JMP Ixnn, I) with the A-register set to indicate initiation or rejection
(and the cause of the rejection) as follows:

IfA=0 the operation was initiated successfully.
IfA =123 the operation was rejected, where:
= read or write illegal for device

control request illegal or undefined,
= equipment malfunction or not ready

1
2
3

4-4

IfA =4 the operation was immediately completed. This means that the driver
was able to completely satisfy the request without the need of a sub-
sequent interrupt and that the program making the I/O call can be
rescheduled immediately. The B-register should be set to the number of
words or characters (depending upon which the user specified) trans-
ferred. This value is known as the transmission log.

IfA=5 this return must NOT be used by privileged drivers.

If A =6 - 99 the program making the I/O request is aborted (unless the no-abort bit
was set in the call) and an I/O error message is printed on the system
console. (Note that this return can be used for unbuffered I/O requests
only. This therefore excludes the use of return codes 6 through 99 on any
Class, buffered or system I/O request.) The error message has the follow-
ing format:

10xx yyyyy
NNNNN ABORTED

where: xx = the return code from the driver (decimal 06 to decimal
99),

yyyyy = the address of the aborted I/O request in program
NNNNN, and

NNNNN = the name of the program that made the I/O request.
This type of return can be used by drivers to generate their own I/O error

messages at the system console. Note that certain codes are reserved for
system use, as follows:

Return Code Reserved for
6 - 59 HP system modules and
drivers
60 - 99 user written drivers

Before returning to IOC, the initiation section modifies the trap cell for the privileged device
controller to contain a JSB $JPNN,I instruction, where $JPNN contains the address of the
privileged section entry point Pxnn. This causes all interrupts from the privileged device
controller to be directed immediately to the privileged section of the driver. The driver needs to
perform this step only once since the contents of the trap cell are not modified by any other
program or system routine.

In setting up the trap cell, the driver must be sure that it is operating with the System Map
enabled so that it has access to the trap cells. This can be ensured by having the calling
program reference a buffer in SYSTEM COMMON when making the I/O request to the driver.
(See the “Communication with User Programs” subsection later in this manual.)

An alternative method of setting up the trap cell is to point the trap cell directly at the
privileged section entry point when the system is generated. This is done by entering

4-5

s¢,ENT,Pxnn (where “sc” is the select code of the privileged controller) during the Interrupt
Table definition phase of the generation. When the generator detects an entry of this form it
places a JSB $JPNN,I instruction (where $JPNN contains the address of Pxnn) into the
appropriate interrupt trap cell. The generator also places a zero in the corresponding Interrupt
Table entry to indicate that interrupts on the select code are not handled by RTE. This method
requires that the privileged section entry point, Pxnn, be declared as an entry point in the
privileged driver (via the ENT pseudo-instruction).

4-4. PRIVILEGED SECTION

When a privileged interrupt occurs, the operation currently in progress is suspended, and the
privileged section of the driver is entered directly via the JSB $JPNN,I instruction in the trap
cell. In addition to the normal tasks associated with continuing the data transfer, the
privileged section is required to perform several housekeeping functions that are normally
performed by CIC. This includes saving and restoring the state of the computer on entry and
exit and disabling the DCPC completion interrupts so that the driver’s operation is not
interrupted.

The privileged section of a privileged driver performs the following functions:
a. Executes the following tasks done by CIC for standard drivers:

1. Disables the entire interrupt system with a CLF 0 instruction so that the driver is not
interrupted while performing the housekeeping functions.

2. Disables the DCPC completion interrupts by issuing a CL.C 6 instruction and a CLC 7
instruction. The DCPC completion interrupts are associated with I/O select codes 6 and
7, and therefore precede the Privileged Interrupt card in the I/O priority chain.
Interrupts from these device controllers are not held off by the Privileged Interrupt
card and must be disabled to prevent an interrupt from occurring while the privileged
driver is executing.

3. Saves the current contents of all program accessible registers (A,B,E,O, and, if present,
X and Y) in a local buffer. These registers must be restored to their original contents
before exiting the driver.

4. Saves the previous state of the memory protect fence. When an interrupt occurs, the
memory protect fence (if ON) is automatically turned off. The driver can determine the
previous state of the memory protect fence (which is the state to which it should be
restored after processing the interrupt) by examining Base Page Communications
Area word MPTFL. If MPTFL equals zero, memory protect was ON when the
privileged interrupt occurred and the privileged section must turn the fence back on
before exiting. If MPTFL is non-zero, memory protect was OFF, and the privileged
section must not restore the memory protect fence.

5. Sets base page word MPTFL to 1 to indicate that the memory protect fence is now OFF.
6. Saves the status of the Dynamic Mapping System so that it can be restored to its

original state before returning to the point of interruption. This is done by executing
an SSM instruction. (Applicable to systems with Dynamic Mapping only.)

7.

Reenables the interrupt system by executing an STF 0 instruction. This allows a
higher priority privileged controller (if one exists) to interrupt the driver. All non-
privileged interrupts are held off because the flag is still set on the card that caused the
privileged interrupt.

b. Checks whether bits 0 - 14 of EQT entry word 1 (the controller I/O request list pointer)
equal zero. If so, a spurious interrupt has occurred (i.e., no I/O operation was in progress at
the time of the interrupt). The driver ignores the interrupt as follows:

1.

3.

Disables the interrupt system via a CLF O instruction so that the driver is not
interrupted while clearing the controller.

Clears the control and flag flip-flops on the controller (usually via a CLC DEVIC,C
instruction).

Proceeds to step “e-3” below to restore the computer to its original state before exiting.

c. Performs the input or output of the next data item. One of the following three actions is
then taken:

e

If the transfer is not complete, the driver follows the procedure described in step “e
below to return to the suspended process at the point of interruption.

If the transfer is complete, the driver follows the procedure described in step “d” below
to set up for a completion return to IOC.

If the driver detects a transmission error, it may reinitiate the transfer and attempt a
retransmission. A counter for the number of retry attempts can be kept in the EQT

entry. After initiating each retry, the driver follows the procedure described in step “e
below to return to the suspended process at the point of interruption.

d. Once the transfer is complete, the driver needs a way to indicate this fact to RTE so that
the program that made the I/O request can be rescheduled. This is accomplished by letting
the driver time-out. To do this, the driver performs the following steps:

1.

Disables the interrupt system with a CLF O instruction so that no interruptions occur
while the time-out is being set up and the computer is being restored to its original
state.

Turns off the device controller to prevent further interrupts (usually with a CLC
instruction).

Sets the time-out clock (EQT entry word 15) to —1 to cause a time-out of the privileged
device controller at the next tick of the real time clock. This will cause the completion

section of the driver to be entered from IOC so that a normal completion return can be
made to RTE.

Sets the “driver processes time-out” bit in EQT entry word 4 to one so that the driver
will be reentered when the time-out occurs.

Follows the procedure described in step “e-3” below to restore the computer to its
original state before exiting.

4-7

e.

4-8

Before returning to the point of interruption, the privileged section performs the following
steps to restore the computer to its original state upon entry:

1.

Disables the interrupt system so that no interruptions occur while the computer is
being restored to its original state.

Encodes the device controller to initiate the next data transfer, usually via a STC
DEVIC,C instruction. Note that the device controller must not be encoded until the
interrupt system is disabled and the driver is about to return to the point of interrup-
tion. If the device controller were encoded earlier, the driver might be reentered at
Pxnn by the next interrupt before completely servicing the previous interrupt. Clear-
ing of the flag on the privileged device controller’s I/O card will also reallow any lower
priority interrupts to be recognized by the system when the interrupt system is
reenabled.

Checks to see if either of the DCPC completion interrupts needs to be reenabled, as
follows:

If the memory protect fence was initially OFF, the driver must not reenable the DCPC
completion interrupts. If the memory protect fence was initially OFF, the privileged
driver interrupted the operation of the system or another privileged driver. These
routines operate with the DCPC completion interrupts disabled and assume that the
completion interrupts will remain disabled if they are interrupted.

If the memory protect fence was initially ON, the DCPC completion interrupts are
turned back on only if the standard driver currently using the DCPC channel needs
the interrupt. Standard drivers that need the DCPC completion interrupt set bit 15 of
the appropriate DCPC Assignment Control Word (in the Interrupt Table) to 1 as a flag.
(See the “DCPC Processing” subsection earlier in this manual.) If bit 15 is set, a
privileged driver must reenable the appropriate DCPC completion interrupt by issuing
a STC 6 or STC 7 instruction. If bit 15 is not set, the privileged driver must not
reenable the interrupt.

Restores all saved registers to their original values.

Restores base page word MPTFL to its original value. (This word is used to indicate the
current status (ON/OFF) of the memory protect fence).

Turns the interrupt system back on via a STF 0 instruction to allow other interrupts to
occur.

Turns the memory protect fence back on via a STC 5 instruction if the fence was ON
initially.

Performs one of the following actions depending on whether or not the system includes
the Dynamic Mapping feature:

i. Restores the Dynamic Mapping System to its original value at interrupt and
returns to the suspended process at the point of interruption by executing a jump
and restore status (JRS) instruction indirect through the entry point Pxnn. (Per-
formed only in systems with the Dynamic Mapping feature.)

ii. Returns to the suspended process at the point of interruption via a jump indirect
through the entry point Pxnn. (Performed only in systems without the Dynamic
Mapping feature.)

NOTE

If the memory protect fence was turned on in step 7, execution
of the JRS instruction (in step 8) to restore DMS status can
only be performed if the System Map is currently enabled. An
attempt to execute it with the User Map enabled will result in
a DMS violation. Thus, if the driver switches to operation
under the User Map for any reason, the System Map must be
reenabled before executing the JRS instruction. The explana-
tion of map switching given in the “Subroutines for Special
Mapping Functions” subsection of this manual illustrates this
procedure.

4-5. COMPLETION SECTION

When the time-out set up by the privileged section occurs, IOC enters the continuation section
of the privileged driver at entry point Cxnn. The continuation section sets the A-register equal
to the appropriate completion code and the B-register equal to the transmission log. It then
returns to IOC via a jump indirect through the entry point Cxnn (JMP Cxnn,I). The return
point (P+1) and allowable completion codes (0 - 4) are the same as those described earlier for
the completion section of a standard driver.

4-6. PRIVILEGED DRIVER DESIGN CONSIDERATIONS

Privileged drivers operate independently of RTE. In fact, the operation of the RTE operating
system itself may be suspended while a privileged interrupt is being serviced. As a result, the
writer of a privileged driver must adhere to the following design requirements:

a. Privileged drivers must not use any of the features or request calls of RTE. Calling a
system process might involve entering RTE while it is processing another request. This
cannot be allowed because RTE is not reentrant.

b. Privileged drivers cannot use either DCPC channel because it is very difficult to coordi-
nate the use of DCPC with the operating system and other drivers that may be using
DCPC.

c. If a privileged driver wishes to use the EQT entry for temporary storage, the initiation
section must read the EQT entry addresses from the Base Page Communications Area and
save them internally in the driver. These addresses are not available in base page on
subsequent interrupts since the privileged driver is entered directly from the trap cell
instead of from CIC. (CIC is the module that places these addresses into the base page
before calling a standard RTE driver to process an interrupt.)

d. Since privileged drivers are required to keep information relating to the I/O request
internally (see “c” above), a separate privileged driver is required for each privileged

4-9

device controller present in the system. For each additional controller of the same type, an
additional copy of the privileged driver must be generated into the system. Each copy of
the driver must have unique names for DVynn, Ixnn, Pxnn, and Cxnn.

4-7. COMMUNICATION WITH USER PROGRAMS (DMS
SYSTEMS ONLY)

Privileged drivers are automatically entered with the System Map enabled when a privileged
interrupt occurs. If the I/O request buffer for the privileged call is located in a user program,
the driver will have to switch maps before it can access the buffer. Any privileged driver in a
DMS system should therefore be designed for user communication through SYSTEM COM-
MON or the Subsystem Global Area (SSGA) to avoid the overhead of map switching. These
areas can be specified at generation to be included in both the System Map and User Map, and
hence can be accessed directly by both user programs and privileged drivers without any map
switching.

Otherwise, if the I/O request buffer is located in a user program, some map switching will have
to be done before the privileged driver can access the buffer. This map switching procedure is
described in detail in the “Subroutines for Special Mapping Functions” subsections of this
manual.

4-8. DISCUSSION OF SAMPLE DMS PRIVILEGED DRIVER

The following discussion describes Figure 4-1, an example of a privileged driver written
specifically for use in a system with the Dynamic Mapping feature. (Figure 4-2 shows a similar
driver written specifically for a system that does not include the Dynamic Mapping feature.)

For the purposes of the discussion, this driver has been given the generalized name of
DVYNN.

The device controller transfers one word of data each time it interrupts, and the data is stored
in a buffer passed to the driver via the call parameters. Note that the design of the DMS
privileged driver assumes that the I/O request buffer is located in SYSTEM COMMON for two
reasons: 1) it ensures that the driver’s initiation section is entered with the System Map
enabled. This is necessary for the proper operation of the trap cell modification technique used
in that section; 2), it allows the driver to place data values directly in the I/O request buffer
without any map switching.

Note that the driver does not process power fail interrupts nor does it process any time-outs,
except for the time-out it creates as a means to complete the I/O request and return to IOC.

INITIATION SECTION

Refer to the partial listing of the sample privileged driver in Figure 4-1 (or 4-2). A standard I/O
call to input from the device causes the calling program to be I/O suspended and the driver to
be entered at Ixnn.

Since this driver can control just one device controller, there is no need to configure the I/O
instructions more than once. Therefore, the driver is configured the first time it is entered, and

4-10

the switch at “FIRST” is set so that the configuration code is not executed on any subsequent
entry to the driver. The initiation section also saves the addresses of those EQT entry words
that will be used by the privileged section since these addresses will not be available in base
page on subsequent interrupts.

The modification of the trap cell is also performed just once (as part of the configuring routine)
and is not modified again on any later entries into the initiation section. The trap cell is
altered so that the device controller interrupts are channelled to the privileged section of the
driver (Pxnn) instead of to CIC. The JSB $JPNN,I instruction (where $JPNN contains the
address of Pxnn) is established by coding a JSB instruction on the base page (see listing).

The request code is checked for validity. All write requests and control requests (except a
“clear” control request from the system) are rejected. For read requests, a counter is estab-
lished for the number of readings to be taken, and the buffer address for the storage of the data
is saved. The “driver processes time-out” bit in EQT entry word 4 is cleared so that any
unexpected time-outs are handled by the system. This bit is later reset to 1 by the privileged
section when it sets up a time-out as a means of returning to IOC at the end of the I/O request.
Finally, the initiation section sets up and encodes the device controller to begin a read
operation and returns to I0C.

PRIVILEGED SECTION

When the device controller interrupts, the privileged section (Pxnn) is entered directly as a
result of the controller’s trap cell modification.

Because entry is made directly into Pxnn, Pxnn must do the housekeeping that is normally
done by CIC when a standard interrupt occurs. Thus, before Pxnn can turn the interrupt
system back on to allow higher priority privileged interrupts to be recognized, Pxnn must
ensure that the DCPC channels cannot interrupt, save the user-programmable registers, save
the old memory protect status, and set its new status. For systems with Dynamic Mapping,
Pxnn must also save the Dynamic Mapping System status at the time of interrupt.

Pxnn then loads and stores the data in the next unfilled buffer word. If there is yet another
data point to be taken, Pxnn sets up the device controller for the next reading, disables the
interrupt system, encodes the device controller, restores memory protect status and its flag,
restores the user programmable registers, turns the interrupt system back on, and exits. For
systems with Dynamic Mapping, Pxnn must also restore the Dynamic Mapping System status
to its original value. All of this basically resets the system to its state before Pxnn was entered.

When the last reading is taken, Pxnn disables the interrupt system, turns off the device
controller, and sets up the privileged controller’s EQT so that a time-out will occur at the next
tick of the real-time clock. Pxnn then resets the system to its original state and returns to the
suspended process at the point of interruption.

COMPLETION SECTION

The status of the device controller and the driver is now unchanged until the Time Base
Generator (TBG) interrupts. The TBG causes a time-out of the privileged controller (because a
—1 was set into EQT entry word 15), which in turn causes IOC to pass control to the completion

4-11

section at Cxnn. The completion section simply sets the A- and B-registers to the status and
transmission log, respectively, and returns to IOC. IOC then reschedules the calling program

and initiates any remaining requests for the controller as if it were a standard (non-privileged)
controller.

4-9. TIME-OUT VALUES FOR PRIVILEGED DRIVERS

If the user wishes to specify a time-out value for the privileged controller (to prevent indefinite
suspension in the event that the controller malfunctions), the time-out value must be long
enough to cover the entire period from I/O initiation to completion. This is different from the
time-out value for a standard driver, which is normally only long enough to cover the expected
time between interrupts from the standard device controller.

Each time IOC or CIC enters a standard driver to initiate or continue an I/O request, it resets
the time-out clock (EQT entry word 15) to the value specified at generation. However, since
privileged drivers are not entered from CIC on interrupt, the time-out value is inserted into
the privileged controller’s time-out clock only at initiation. If this value is not long enough to
cover the entire I/O transfer period, a time-out will occur while the data transfer is still in
progress, and the transfer will be prematurely terminated. This can be prevented by specifying
a suitably long time-out value, or by specifying a time-out value of zero (which disables the
time-out feature entirely).

The time-out value set by the user to prevent indefinite suspension should not be confused
with the time-out set up by the privileged driver to complete the call and return to IOC. In the
latter case, the driver overrides the user-specified time-out by inserting its own value (—1)
directly into the time-out clock before returning.

4-10. SUBROUTINES FOR SPECIAL MAPPING FUNCTIONS
(DMS SYSTEMS ONLY)

DMS privileged drivers normally communicate with user programs via SYSTEM COMMON
or SSGA. If it is necessary to access a buffer within the user program, the privileged driver will
have to reload the User Map to describe the desired program before making the access.
Subroutine $PVMP can be called by privileged drivers to perform this type of map switching.
The driver can then access the second buffer. After all accesses have been made, the driver
restores the User Map to its original state and continues with its normal operation under the
System Map. The recommended procedure for using $PVMP is somewhat different in RTE-III
and RTE-IV, and each of these procedures is discussed in a separate section below.

NOTE

Subroutine $PVMP can be called by privileged RTE drivers
only. Standard drivers wishing to perform the same function
must use subroutine $XDMP, which is described in Section III
of this manual.

4-12

MAPPING IN RTE-III AND RTE-M/III

Before entering the initiation or continuation section of a privileged driver, IOC enables the
correct map needed to process the call, as follows:

a. When the /O request buffer is located in SYSTEM COMMON (or System Available
Memory), IOC enables the System Map before entering the driver.

b. When the I/O request buffer is located in the calling program, IOC enables the User Map
before entering the driver.

However, the System Map is always enabled upon entry to the privileged section, since the
privileged section is entered directly from the interrupt trap cell. The I/O request buffer should
therefore be located in SYSTEM COMMON so that the privileged section of the driver can
access the buffer directly without switching maps. In the general case, the buffer may be
located either in the User Map (program not swappable) or may be in the System Map. A
technique is presented below to identify which map is needed.

The procedure for using $PVMP is as follows: The driver first saves the current state of the
User Map registers and Dynamic Mapping System. After the driver has determined that the
User Map is being used and not the System Map, it calls $PVMP to reload the user Map
registers to describe the calling program. (Note that the ID segment address of this program
must have been saved previously by the initiation section, since this information is not
available on base page on subsequent interrupts.) The driver can then switch to operation
under this map and access the memory described by it. After all accesses have been made, the
driver reenables the System Map and restores the original state of the User Map registers
before continuing with its normal processing under the System Map.

EXT $PVMP
IXNN NOP Initiation Section entry point
(System Map or User Map enabled depending on location of
I/O request buffer.)
CLA
STA IDADR Clear IDADR signifying System Map used
RSA Access Dynamic Mapping System Status
ALF Position bit 12 into bit 0
SLA,RSS System Map enabled?
JMP PROCD Yes, System map enabled
* No, user map enabled
LDA XEQT Access address of program making request
STA IDADR Save for use of Privileged Section later

PROCD NOP

Change 1 4-13

JMP IXNN,I

Return to IOC

PXNN NOP Privileged Section entry point (System Map Enabled)
. Normal driver processing under System Map.
RSA Get Dynamic Mapping System (DMS) status
RAL,RAL Position current status in upper bits
STA DMSST Save status for later
LDA MAPAD Set A = address of User Map storage area
IOR SIGN Set sign bit indicating Store Map in memory
USA Save current User Map in memory for later
LDA IDADR Access IDADR to determine if User or System Map used
SZA,RSS System Map used?
JMP CONT Yes, System Map used
* No, User Map used
JSB $PVMP Call $PVMP to set up User Map for this program
SZA,RSS Check for error return
JMP ERROR Error exists, go handle it
UJP CONT No, errors. Enable new User Map and continue.
CONT .
. Process buffer under new User Map.
'~ LDA IDADR Determine if System or User Map is used
SZA,RSS System Map used?
JMP NXT Yes, System Map used
* No User Map used
v SJP NEXT
NEXT LDA MAPAD Access address of User Map storage area
USA Restore original contents of User Map
JRS DMSSTNXT Restore original DMS status (i.e., System Map)
NXT . Enable Interrupt System.
. Proceed with normal processing under System Map
MAPAD DEF MAP Address of User Map storage area
MAP BSS 32 User Map storage area
SIGN OCT 100000
IDADR BSS1 ID segment address saved by initiation section
DMSST BSS1 Temporary storage for DMS status

When called, $PVMP checks to see if the referenced program is resident in memory. If the
program is not resident, the User Map registers are not reloaded and the A-register is zero
on return. If the program is resident in memory, the User Map registers are reloaded to
describe the program and the A-register is non-zero on return.

Remember that any driver using this routine must save the original contents of the User Map
registers and the DMS status before calling $PVMP. It must also restore the original User

4-14 Change 1

Map and DMS status after all accesses to the buffer have been made. The example above
illustrates this procedure.

NOTE

The privileged driver could also access the buffer in the user
program through a series of cross-map loads and stores without
actually enabling the User Map. This is in fact the recom-
mended procedure for using $PVMP in an RTE-IV system,
and use of it by a privileged driver would allow the same
privileged driver to be used in either type of system.

MAPPING IN RTE-IV

Privileged drivers in RTE-IV must have the “M” (driver does its own mapping) option specified
at generation time (during the EQT entry definition phase). This causes the driver to be placed
in the System Driver Area (SDA) of memory and causes the “M” bit to be set in the driver’s
DMT (Driver Mapping Table) entry. It also implies that an RTE-IV privileged driver is always
entered with the System Map enabled, because:

a. When an interrupt occurs, the System Map is automatically enabled, and the privileged
section of the driver is entered directly from the trap cell.

b. The initiation and completion sections of drivers for which the “M” option was selected are
always entered from IOC with the System Map enabled, regardless of the location of the
I/O buffer of the request.

The I/O request buffer should therefore be located in SYSTEM COMMON, so that the
privileged section of the driver can access the buffer directly without switching maps. If the
design of the driver is such that the privileged section must access a buffer in the calling
program, subroutine $PVMP must be called to reload the User Map registers to describe the
desired program.

The procedure for using $PVMP is as follows: The driver first saves the current contents of the
User Map registers and then calls $PVMP to reload the User Map registers to describe the
calling program. The driver can then use a series of cross-map loads and stores to access the
buffer described by the User Map. Note that the User Map should not be enabled since drivers
in the SDA are not necessarily included in all users’ maps. After all accesses have been made,
the driver restores the original state of the User Map registers before continuing with its
normal processing under the System Map.

The following code illustrates the use of subroutine $PVMP in an RTE-IV system:

EXT $PVMP

IXNN NOP Initiation Section entry point (System Map Enabled)

4-15

LDA XEQT Access address of program making request
STA IDADR Save for use of Privileged Section later
JMP IXNN,I Return to I0C
PXNN NOP Privileged Section entry point (System Map Enabled)
Normal privileged driver processing under System Map
LDA MAPAD Set A = address of User Map storage area
IOR SIGN Set sign bit indicating STORE Map in memory
USA Save current User Map in memory for later
LDA IDADR Get ID address of program that contains buffer
JSB $PVMP Call $PVMP to set up User Map for this program
SZA, RSS Check for error return
JMP ERROR Error exists, go handle it
No errors. System Map is still enabled. Access
buffer via a series of cross-map loads and
stores since SDA drivers are not included
in all User Maps.
LDA MAPAD Access address of User Map storage area
USA Restore original contents of User Map
Proceed with normal processing under System Map
MAPAD DEF MAP Address of User Map storage area
MAP BSS 32 User Map storage area
SIGN OCT 100000
IDADR BSS 1 ID segment address saved by initiation section

When called, $PVMP checks to see if the referenced program is resident in memory. If the
program is not resident, the User Map registers are not reloaded and the A-register is zero on
return. If the program is resident in memory, the User Map registers are reloaded to describe
the program and the A-register is non-zero on return.

Remember that any driver using this routine must save the original contents of the User Map

registers before calling $PVMP and must restore the registers to their original value after all
accesses to the buffer have been made. The example above illustrates this procedure.

4-16

4-11. SAMPLE DMS PRIVILEGED DRIVER

The sample driver illustrated in Figure 4-1 demonstrates some of the principles involved in
writing a privileged I/O driver for use in an RTE system with Dynamic Mapping. Note that
this driver is for tutorial purposes only and is not one of the drivers supplied with the system.

4-12. SAMPLE NON-DMS PRIVILEGED DRIVER

The sample driver illustrated in Figure 4-2 demonstrates some of the principles involved in
writing a privileged I/O driver for use in an RTE system without Dynamic Mapping. Note that
this driver is for tutorial purposes only and is not one of the drivers supplied with the system.

4-16A

PRGE 0002 #01 »% RTE DMS PRIVILEGED ODRIYVYER EXAMPLE *»

[LEVEVRY ASMB.,L

JOO3 %

0004 00000 NAM DVYNN **% RTE DMS PRIVILEGED DRIVER EXAMPLE #x
00065 SuUp

0006 %

G007 ENT IXNH,CXHH

GO0B*

O G (O o ok ko ok ok ok A ok Rk ok ok ok ok ok ok ok R R B R R K R ok ok e ek o Kok ko ok K koK ok K K ok K
0010% SAMPLE RTE PRIVILEGED DRIVYER DVYNN - FOR DMS SYSTEMS =
DR Ry Ty S Y R i L]
0012

0013» HANDLES USER PROGRAM REBUESTS TO READ FROM & PRIVILEGED
0014 DONTROLLER

GOoiS=

0016% USER PROGRAM CALLING SEQUENCE:

0017*

0018 458 EXEC Call EXEC

0019% LEF *+5 RETURN POINT

G020% DEF RCODE REQUEST CODE (MUSYT BE READ REQUEST)
0021 DEF CONWD COKTROL WORD

0022%* DEF BUFFR ADDRESS OF BUFFER (MUST BE IN SYSTEM COMMON)
6023 DEF LENTH LENGTH OF BUFFER

0024

G025% CARUTION:

0026 %

6027* THIS DRIVER WILL NOT WORK WITH MORE THAN ONE PRIVILEGED
9028 CONTROLLER. IF MORE THAN ONE PRIVILEGED CONTROLLER
002%% EXISTS IN A SYSTEM, DVYNN MUST BE

0030*% RE-ASSEMBLED WITH ALL HAMES CONTAINING "NMH* CHANGED SO
0031* THAT EACH COPY OF THE DRIVER HAS UNIQUE ENTRY POIHTS.
0032% THEN ONHE DRIVER PER CONTROLLER HMUST BE PUT

0073% INTOD THE SYSTEM AT GENERATION TIME.

0034x%

0035% NOTE:

LR R

0037+ 1.5 THE DESIGHN OF THIS DRIVER ASSUMES THAT THE 1/0
G0I8x% BUFFER BEING PROCESSED IS LOCATED IN SYSTEM COMMON.
GO39 THIS CAUSES THE DRIVER TO BE ENTERED WITH THE

0040% SYSTEM MAP ENABLED. THIS IS NECESSARRY FOR THE
FG41x CORRELCT DPERATION OF THE TRAP CELL MODIFICATION
0042 TECHNIGUE ILLUSTRATED BELOW. IN ADDITION., THE
G043 BUFFER IN SYSTEM COMMON ALLOWS THE DRIVER TO PUT THE
GO44x% DATA VALUES DIRECTLY INTO THE BUFFER, WITHOUT

G045% THE NEED FOR MAP SMITCHING

04 x

GO47% 2.y THIS DRIVER DOES NOT PROCESS POWER FAIL INTERRUPTS.
3048 *
o049% 3.y THIS DRIVER DOES NOT PROCESS ANY TIME-OUTS EXCEPT

005G FOR THE TIME-OUT THAT IT CREATES AS A MEANS TO
0G5t * COMPLEYE THE T/0 REQUEST AND RETURN TO IOC
0052%

Figure 4-1. DMS Privileged RTE Driver Example
4-17

PAGE

GO94*
JO55%
Ga56x*
GOo5?%
0058
0059
06¢e0
0061x*
0062
0063
0064
DGES*
OOk *
GOh?*
006D
00B9Ix%
H070x%
0071
G072 %
0073x%
GGT74x%
90075
G676
0077%
OO78*
0079
0080
oa8t
[VX:3: ¥
0083
0084
0085
GOBe %
0as?
0088
G089x%
G020
0091 %
0092
0093
0094
0095
0096 %
0097 %
G098=x
G099
010¢
0101
0162
0103
0104
01065
b5106%
0107
0108
0109

0063 801

00000
60001

00602
66003
00004

0006006
072200R

066203R
00002
026020R

CONFIGURE IVO

00405

032217R

*% DMS PRIVYILEGED DRIVER - INITIATION SECTION ==

Kok ok ok ok o ok oKk ok ok kK ok
* THITIATION SECYION =

kkk kG kR ek hkkkk kg ks

IXNN NOP
STA SCODE

LDB FIRST

$Z8B

JMP OINIT
INSTRUCTIONS

I0R LIA

MODIFY TRAP CELL

00006
C0Go7

0600008
1722200R

LDA $JSB
ST SCODE. I

SAYE EQT ADDRESSES

00010
0001t
00012
00613
006014
060195

60016
00017

CLEAR

0002¢
0002t
60622

CHECK

00023
00024
00025
06026

00627
06630

0063t
00632

061774
0?2215R
061663
07221 4R
061660
072213R

002404
072203R

LDA EQTLS
STA EQ@IS
LDA EQT4
STa EOQ4
LDA EQTH
STh EQ1

CLA,INAR
STA FIRST

INITIATION SECTION ENTRY POINT
SAYE SELECT CODE OF CONTROLLER

ACCESS FIRSY TIME THROUGH FLAG

IS THIS THE FIRST TIME THRU?
NO, SO0 SKIP CONFIGURATION CODE

CREATE LIA INSTRUCTION

SET TRAP CELL TO
JSB $JPHN,I ($JPNN = ADDR OF PXNN)

SAYE EQT1S
ERT 4

AND ERQTH
4#DDRESSES

SET FLAG TO PREVENT CONFIGURING OH
SUBSEQUENT INITIATIONS

THE “DRIVER PROCESSES TIME-OUT" BIT T0 ALLOW
NORMAL TIME-OUT OPERATION

161663
012221R
171663

INIT LD& EQT4.,I
AND =B1g7777

STA EQT4.I

THE REQUEST CODE

161665

012222R
092223R
026041R

632222R
026033R

0024604
126000R

LDA EQT6.,I
AND =83
CPA =81
JMP PROC

crPa =83
JMP CHTRL

CLA,INR
JHP IHANN,I

ACCESS EQT WORD ¢
CLEAR BIT 12
AND RESET EQT WORD 4

ACCESS REQUEST CODE

ISOLATE REQUEST TYPE

READ REQUEST?

YES, GO PROCESS READ REQUEST

CONTROL REQUEST?
YES, GD PROCESS CONTROL REQUEST

N0, SO REJELT AS JLLEGAL WRITE REQUEST

4-18

Figure 4-1. DMS Privileged RTE Driver Example (Continued)

PAGE

0110%
It
¢112%
0113
114
0115
Gite
0117%
0118%*
0119=*
Gr20x*
0tr21x
otr22
0123
0124x
0125+
Gt2ex*
G127
otz
6129
0130
0131
0132
0133
0134%
01325#
O130%
0137
0128
0139
0140
G141 %
C142%
0143
Cld4x
0145%
0146
C147%
G148

0004 #01

CONTROL REQUEST. CHECK If IT IS A

IF SO,

00633
00634
000635
00638

0oe37
00646

** DMS PRIVILEGED DRIVER - INITIATION SECTION *¢

"CLEAR" CONTROL REQUEST

RSSUME [T WAS ISSUED BY SYSTEW, CLEAR DEVICE, AND RETURN

161665
012224R
002002
026037R

062225R
126000R

CNTRL LDA EQTSH.I

ARD =B3700
S2a
dMP REJCT

REJCT LDA =B2
JHP I ANN.I

SET UP FOR THE DATA TRANSFER

00041
060042
00042
06044
50045
0004
00647

161667
063004
072201R
02021
026037R
161666
072202R

PROC LDA EQTSB.I
CHa, INA
ESTR CYCTR
SSA,RSS
JMP REJCT
LDa EQT7.1
STa DAPTR

INITIATE & READ AND RETURH

0065¢
00051
000652

0160633R
163700
126000R

JSB READ
I.1 §TC sC.C
JMP INNN,I

SUBROUTINE TO0 INITIATE A READ

006653

060054

600G00Q

126G353R

READ NOP

SHP READ,I

ACCESS CONTROL HORD
ISOLATE SUBFUNCTION
“CLEAR" REQUEST?

NO, SO0 REJECT AS ILLEGAL CONTROL REGQUEST

EXECUTE COBE TO CLEAR CONTROLLER

REJECT AS ILLEGAL CORTROL REQUEST

ACCESS & OF CONVERSIONS REQUIRED
NEGATE FOR CONYERSIOR COUNTER
AND SAVE

REJECT IF

NUMBER <¢

SAYE DATA BUFFER ADDRESS

FOR PXHNH

START A READ
ENCODE DEVICE
RETURN TO I0C

ROUTINE CONTAINIKNG
CONFIGURED IO
INSTRUCTIODNS 1O

SET UP THE DEVICE

TO IRITIATE OHE READING

Figure 4-1. DMS Privileged RTE Driver Example (Continued)

4-19

PAGE

CL50%
J151 %
S eh52%
0153
0154%
61r55%*
Ci56%
0157
0158
0159
GLeGx*
Glet
0162
0163
0164
G165
0166
¢ie?
Gle8
0169
0170
6171
0172
0173*
0174
0175
0176
0177
0178%
0179
0rBO*
G181
0182
0183
0184
[B%:3]
0186
0L87 %
0138
0189
G19¢
0191
0f92%
6193x%
¢194
0195%
G196x%
01e?x
0198%
0199
0200
6201
d202
0203%
0204
0205

0065 %01 x* DMS PRIVILEGED DRTVYER - PRIVILEGED SECTION ==

Kk kkk Rk kR Tk ek khk k&

* PRIVILEGED SECTION »
KR AKEAERKRARRKRKERKERE

SAYE STHTE OF COMPUTER AT INTERRUPT

00095 600000 FANN NOP

00656 103109 CLF ¢
00057 106766 CLC 6
00650 106707 cLe 7
Co0el 0722¢4R STA ASY
00662 076205R STB BSY
00063 061520 ERA.ALS
00064 102201 s0¢

00065 00206064 INA

000666 072206R STA EOSY
00067 105743 STX Xs¥
00071 105753 STY Ysv
00073 105714 SEM DMSTS
00075 061770 LDA MPTFL
006076 072212R STA MPFSY
000677 602404 CLA,IHA
00100 071720 SThA HPTFL
00101 102100 STF ¢
CHECK FOR SPURIOUS INTERRUPT
00102 1622112R LDh EQ1,I
00103 ¢12226R AND =B77777
00104 002002 sZa

00103 ¢26111R JHP PREAD
00106 103100 CLF ¢
0olo7 107700 1.2 cLe sc.c
00110 026121R JHP EXIT
PROCESS READ REGUEST

o0t it PREAD EQU =
0011t 172202R STRA DAPTR,I
00112 03620¢1R ISZ CVYLTR
00113 002001 RSS

00114 026164R JHP DONE
00115 036202R 1SZ DAPIR
00116 016033R 4S8 READ

PRIVILEGED SECTION ENTRY POINT
TURN OFF IHNTERRUPT SYSTEM

TURN OFF DCPC COMPLETION INTERRUPTS

SAVE REGISTERS

SAYE X REGISTER
SAYY Y REGISTER
SAVE DYNAMIC MAPPING SYSTEM STATUS

SAYE OLD MEMORY PROTECT FLAG

SET MEMORY PROTECT FLAG TO OFF
SINCE MEMORY PROTECT IS NOW OFF

TURN INTERRUPT SYSTEM BACK OH

ACCESS REQUESY LIST POINTER WORD
ISOLATE REBUEST LIST POINTER

IS A REQUEST IN PROGRESS?

YES, GO PROCESS INTERRUPT

NO, TURHM OFF INTERRUPT SYSTEH
RESET CONTROLLER., AND
IGNORE SPURIGUS INTERRUPT BY RETURNIHNG

LOAD IN DATA FROM DEVICE
VYIA CONFIGURED I/0 INSTRUCTIONS

STORE WORD IN DATA BUFFER

IS THIS THE LASTY COWVERSION?

NO

YES, GO SET UP TO TERMINATE CALL

NO, SET UP FOR MNEXT CONVERSION
INITIARTE IV

4-20

Figure 4-1. DMS Privileged RTE Driver Example (Continued)

PAGE

¢G206%
Y207 x%
0208%
G209
G210%
0211
0212
6213
0214
02185
6216%
6217
6218
0219
6220
6221
G222
0223
¢224
0225%
¢226
06227
0228
0229
6230
6231
0232
6233%
0234
06235
236
G237
¢238%
6239
0240
0241
0242
G243
G244
0245
G246
247
G248%
6249%
0250
¢ast
¢as2
6253
0254%
02595%
¢a3%56x*
¢as7
3258
0259
6260
0261

0006 #01

** DMS PRIVILEGED DRIVER - PRIVILEGED SECTION #*#

RESTORE WMACHINE TO ORIGINAL STATE ON INTERRUPT

00117
00120

oot2t
006122
00123

00124
00125
00126
00127
00130
00131
00132
00133

00134
00133
00136
00137
00146
60141
00143

GG145
00146
60147
001356

00151
00152
60153
00154

00157
00160
6otél

103100 CLF ¢
1637006 1.3 $TC 8C.,C

062212R EXIT LDA MPFSY

TURH OFF INTERRUPT SYSTEM TEMPORARILY
ENCODE DEVICE

RCCESS PREVIDUS STATE OF MEMORY PROTECT

002002 SZa WAS MEMORY PROTECT ON?

026134R SHP EXITHL NO, SO DO NOT TURN ON DCPC INTERRUPTS
065654 LDB INTBA YES, TURN DCPC COMPLETION INTERRUPTS
160001 Lba 8,1 BACK ON IF THEY WERE ON INITIALLY.
602020 §SA ON/OFF STATUS IS INDICATED BY BIT 1S
1027¢6 STC ¢ OF EACH DCPC ASSIGHWENT WORD IN THE
606004 INB INTERRUPT TABLE

160001 LbA B, I

00202¢ SSA

1027¢7 §TC 7

062206R EXITI LDR EOSY RESTORE £ AMD O REGISTERS

103101 cLo

000036 SLA ELA

102101 STF 1

0662G5R LDB BSV RESTORE B-REGISTER

105745 LDR KSV RESTORE X REGISTER

105755 LDY YSV RESTORE Y REGISTER

062212R Loa HPFSY RESTORE MEMORY PROTECT FLAG

071772¢ STR HPTFL IN BASE PAGE

soaee2 SZA $AS MEMORY PROTECT ON AT INTERRUPT?
026157R JUP EXITZ2 KO

062204R LDA ASY YES, RESTORE A-REGISTER

102100 STF ¢ TURN ON INTERRUPT SYSTEH

102765 §TC 5 SET MEMORY PROTECT OM

105715 JRS DHMSTS FXHNH,I RESTORE DMS STATUS aHD RETURN

0622¢4R EAIT2 LDA ASY
102100 STF o

(NOTE: EXECUTION OF A *JRS*
INSTRUCTION AFTER TURNIKG THE
MEMORY PROTECT FENCE OK IS
ALLDWED OKLY IF THE SYSTEM NaP
IS CURRENTLY ENABLED. THIS
DRIVER HAS BEEN DESIGHED SUCH
THAT THIS IS ARLWAYS THE CASE.

NO,RESTORE A-REGISTER
THRN ON INTERRUPTS

105715 JRS DHMSTS PXNN.I RESTORE DMS STATUS AKD RETURN

THIS CODE SETS UP THE TIME OUT TO COMPLETE THE CALL

00164
0016S
0016
00te7?
0017¢

10210¢ DANE CLF 0
1667200 1.4 ciLc sC

003400 CCa
1722158 SThR EQIS5,I
16221 4R LDA EQ4.,1I

TURN OFF THE INTERRUPT SYSTEM
TURN OFF PRIVILEGED DEVICE
SET TIME OUT FOR

ONE TICK AND SET

BITi2 IN EQT4 SO

Figure 4-1. DMS Privileged RTE Driver Example (Continued)

4-21

PAGE 0007 #01 *+ DMS PRIVILEGED DRIVYER - PRIVILEGED SECTION =«

0262 00171 032216R IOR BIT12 RTIOC WILL
3263 00172 172214R STR EB4.,1 CALL CHNN OR TIME-OUT
0264 00173 026121R JHMP EXIT GO TO EXIT ROUTINE

Figure 4-1. DMS Privileged RTE Driver Example (Continued)
4-22

PAGE

0266
3267
0268
0269%
0270%
0271
0272%
06273
6274
0275
0276

0008 #6061 *+ ONS PRIVILEGED DRIVER - COMPLETION SECTION *+

AR RAREE R KRR AR E R RN K&
* COMPLETION SECTION ¢
ARRERARE KK E R AR KRR KR KK
GO174 000000 CANN HNOP COMPLETION SECTION ENTRY POINT
00175 002400 CLA SET A = ¢ = NORMAL RETURN
0¢17¢ 165667 LDB EQTSB,I SET B = TRANSMISSION LOG
00177 126174R JHMP CHNN,I RETURN TO IOC

Figure 4-1. DMS Privileged RTE Driver Example (Continued)

4-23

PAGE

0278
327%9%
G280x%
0231
6282
02833
G284%
6285
0286
6227
0288
6289
06290
6291
292
46293
0294
3299
296
0297
6298
299
0360
6361 %
0302%
0303
6304
6305
6306
6307
6308
0369
031¢
631t
0312
0313*
0314
6315*
6316
0317
6318
0319
6320
6321

0002 &0t T3

CONSTANY A&ND

0000606
00001
00060

00200
60201
¢0202
Q0203
00204
60265
00206
00207
00210
00211
40212
00213
00214
00219
00216
06217

000000
006000
0006000
000000
000000
000060
000000
600000
60060060
G00000
066660
0008000
000000
006000
016000
102500

GMS PRIVILEGED DRIVER - DATA AREA **

STORAGE ARER

a
B
SC

SCODE
CYCTR
DAPTR
FIRST
RSV
BSY
EQSVY
LR
Ysv
bHSTS
MPFEY
EQl
EG4
EQ1S
BITI2
Lia

EQU
EQU
EQU

BSS
BSS
BSS
BSS
BSS
BSS
BSS
BSS
BSS
BSS
BSS
BSS
BSS
BSS
oLy
LIA

O -

DUMMY T/0 SELECT CODE NUMBER

0000

= S R o I I e e

BASE PAGE COMMUNICATIONS AREA DEFINITION

0ies5¢
01654
01660
01663
01665
0166
01667
01774
viv7¢

IRTBA
EGT1
EGT4
EQTH
EQT?
EaTe
E@TIS
HPTFL

EQU
4*1i]
EQU
£ay
EQU
EQU
EQU
EQy
EqU

16508
.4
.+8
C+id
.+13
.ti4
.+18
.+84
.¥90

CODE TO SET UP JSB $JPHHN,I INSTRUCTION ON BASE PAGE

00220 0000SS5R $JPRN DEF PRANN PRIV. SECTION ENTRY POINT ADDR

00000

00000 116220R $45B

ORB
J 8B

END

RESET LOCATION COUNTER TO BASE PAGE
$JPHN, I JSB INSTR. 7O PRIV. SECTION., INDIRECT

*% N0 ERRORS *TOTAL **RTE ASMB 760924x=%

4-24

Figure 4-1. DMS Privileged RTE Driver Example (Continued)

PAGE ¢G0G2 #01 *% RTE NOH-DMS PRIVILEGED DRIVER EXAMPLE *»

0001 ASHB ., L

2003 %

00¢4 000G NAM DVYNN *x RTE NON-DMS PRIVILEGED DRIVER EXAMPLE =
GO0S %

%006 ENT IXNHN.,CXNN

G007 * .

QOGBRRE R R bR R ARk A R AR I R KRR AR AR AR KRR AR AR AT kI hk ke kR Rk kR Rk k&
00¢9*x SAMPLE RTE PRIVILEGED DRIVER DVYHN - FOR HNON-DMS SYSTENS »
QOTOREE bR kR AR AR R R AR A KRR AR R KRR R KAk R LR KRR AR AR R R E R AR kR Rk A&k k R
0011*

G012+ HANDLES USER PROGRAM REQUESTS T0O READ FROM & PRIVILEGED
0013x CONTROLLER

0014x%

0015* USER PROGRAM CALLING SEQUENCE:

0016%*

0017 4S8 EXEC CALL EXEC

[XVE%:E] DEF %x+5 RETURN POINT

0019x% DEF RCODE REQUEST CODE (MUSY BE READ REQUEST)
GOZO* GEF CONWD CONTROL WORD

GOo21x DEF BUFFEK ADDRESS OF BUFFER (MUST BE IN COMMON)
Q022x* DEF LENTH LENGTH OF BUFFER

0023x

GQ24% CAHUTIAON:

G023x*

0026 THIS DRIVER WILL NOT WODORK WITH MORE THAN ONE PRIVILEGED
0027* CONTROLLER. IF MORE THAN ONE PRIVILEGED CONTROLLER
0028x% EXISTS IN A SYSTEM, DVYYNN MUST BE

$029*% RE-ASSEMBLED WITH ALL HAMES CONTAINING °*NN" CHANGED SO
0030x THAT EACH COPY OF THE DRIVER HAS UNIGUE ENTRY POINTS.
¢031» THEN ONE DRIVER PER CONTROLLER MUST BE PUT

0G32% INTD THE SYSTEM AT GSENERATION TIME.

G033 x%

G034% NOTE:

GG3I5%

60376% 1.} THIS DRIVER DOES NOT PROCESS POWER FAIL INTERRUPTS.
GG3I?x

GG2Bx 2. THIS GRIVER DOES NOT PROCESS ANY TIME-OUTS EXCEFTY
RS EY FOR THE TIME-DUT THAT IT CREATES A5 A MEANS TO
GG40% COMPLETE THE T/0 REQUESY AND RETURN TO IDC

Go41

Figure 4-2. Non-DMS Privileged RTE Driver Example
4-25

PAGE

0043 %
3044
G045x%
GO46%
0047 %
0048
6049
GOS0
0651
0052
0053
0054
0055
0056
0657
6058%
0G5 %
QOEO*
0061 %
0062*
0063
00e4
0865
0066x
0067 x%
0068
0069
00720
0071
0072
0073
0074
G075
0076
G077
0078%*
0079x%
0080%
Go81i*
¢082
0083
0024
0085%
008ex*
COB7x
0088
0089
0090
0091
0092x
0093
0024
6095%
0096
0097
6098

00603 #0601 *x NON-DMS PRIVILEGED DRIVER -~ INITIATION SECTION *=x

00060
60601

00002
00003
00004
CONFI

G0005

060000
6?2162R

066165R
066002
026020R

GURE I/0

032176R

L2 R X2 2R RS RS R LRSS RS RS

* INITIATION SECTION =
EERERKE A RERERRCRE AR KRS

IXNN NOP
STR

LDB
4]
JMP

SCODE
FIRST

INIT

INSTRUCTIONS

I0R

MODIFY TRAP CELL

LIA

INITIATION SECTION ENTRY POIRT
SAVYE SELECY CODE OF CONTROLLER

ACCESS FIRST TIME THROUGH FLAG

16 THIS THE FIRST TIME THRU?
NO, S0 SKIP CONFIGURATION CODE -

CREATE LIA INSTRUCTION

SET TRAP CELL TO
JSB $JPHNN.,I C(S$JPHN = ADDR OF PXHNN)

SAVE EQTiIS
EQT4

AND EQTIH
ADDRESSES

SET FLAG TO PREVENT CONFIGURING ON
SUBSEQUENT INITIATIONS

THE “DRIVER PROCESSES TIME-QOUT® BIT TO ALLOW

00006 0600008 Lba $458
00007 172162R STh SCODE.I
SAYE EQT ADDRESSES

00010 061774 LDA EQTIS
00611 072174R STa EQIS
00012 061663 LDA EQTH
00013 072173R STh EQ4
00014 061660 LDa EGTH
00015 072172R STA EQ1L
00016 002404 CLA,/INA
00017 ¢72165R STA FIRST
CLEAR

HORMAL TIME-OUT OPERATION
00026 161663 INIT LDA EGT4.I
00021 012200R AND =Biev?77
00022 171663 STA EQT4.I
CHECK THE REGQUEST .CODE

00023 161665 LDA EQTE.I
000624 0122¢1R AND =B3
00625 032202R CPa =Bt
00026 026041R JMP PROC
00027 052201tR CPR =B3
00030 ©26033R JMP CHTRL
00031 602404 CLA,INA
000632 126000R JMP IHHNN,I

ACCESS EQT WORD 4
CLEAR BIT 12 N
AND RESET EQT WORD ¢

ACCESS REQUEST COOE

ISOLATE REQUEST TYPE

READ REQUEST?

YES, GO PROCESS REARD REQUEST

CONTROL REQUEST?
YES, GO PROCESS CONTROL REQUEST

NO, SO REJECT AS ILLEGAL WRITE REQUESY

4-26

Figure 4-2. Non-DMS Privileged RTE Driver Example (Continued)

PAGE

G099
Y100
0101 %
0102
0103
0104
0105
0106
¢107x%
0108x
0109
0110%
ottt
0112
G113x*
0114x
0115%
0lie
0117
0118
0119
6120
¢rat
6122
0123»
C124x%
0125
6126
0127
o128
0r29x*
G130%*
0L3tx
0132
0133
0134
0135«
G136
G137

0004 &01

CONTROL REQUEST. CHECK IF IT IS A

IF S0,

00033
00034
06035
00036

000637
00040

** NON-DMS PRIVILEGED DRIVER - INITIATION SECTION ==

"CLEAR"™ CONTROL REQUEST

ASSUME IT WAS ISSUED BY SYSTEM, CLEAR DEVICE, AND RETUYRN

1616695
012263R
002002
026037R

062204R
126000R

CNTRL LDR EQT6.I

AND =B3700
SZA
JHP REJCT

REJCT LDA =82
JHP INNN,I

SEY UP FOR THE DATA TRANSFER

00041
000642
00043
06044
00045
00046
00047

iei6067
003004
0?2163R
602021
026037R
161666
0721 64R

PROC LDA EQTB.I
CHA,INA
STA CVCTR
8SA.,RSS
JHP REJCT
LDA EQT7.,1I
STA DAPTR

INITIATE & READ AND RETURH

00650
00051
06032

016633R
103700
126000R

4S8 READ
I.1 §TC SC.C
JHP IXNN.I

SUBROUTINE TO INITIARTE A READ

00033

06054

000000

126633R

READ NOP

JHP READ,I

ACCESS CONTROL WORD

ISOLATE SUBFUNCTION

“"CLEAR" REQUEST?

NO, SO0 REJECT AS ILLEGAL CONTROL REQUEST

EXECUTE CODE TO CLEAR CONTROLLER

REJECT AS TLLEGAL CONTROL REQUEST

ACCESS # OF CONYERSIONS REQUIRED
HEGATE FQR CONYERSION COUNTER
AND SAVYE

REJECT IF

NUMBER <0

SAYE DATA BUFFER ADDRESS

FOR PXNN

START A READ
ENCODE DEVICE
RETURN TO IOC

ROUTINE CONTAININWG
CONFIGURED I/0
INSTRUCTINDNS TO

SET UP THE OEVICE

TO INITIATE ONE READING

Figure 4-2. Non-DMS Privileged RTE Driver Example (Continued)

4-27

PAGE

0139«
2140%
G141
0142%
0143
0144x
0145%
0146
0147%
0148
0149
o150
0151
orS2x
053
0154
0159
0136
0157
658
0b59%
¢169
0161
0162
6163
Clodx
01695
Gleb*
0Le7 %
0168x
0169
6170
0171
0172
0173
0174
0175
0176
0177%
0178x%
0179%
0180
0181x
orges
0183
0L 84x
0185
0186
0187
0138
0189
¢19¢
191
0192%
0193«
0194 x%

00035 #01 =% NON-DMS PRIVILEGED DRIVER - PRIVILEGED SECTION *¢

EEKEEFERERRBREE KRR EE KK
* PRIVILEGED SECTION =

ke kkk bk kkkkk Rtk kR kkx &S

SAYE STATE OF COMPUTER AT INTERRUPT

00055 00660600 PRNN HNOP PRIVILEGED SECTION ENTRY POINT
00056 163100 CLF ¢ TURN OFF IHTERRUPT SYSTEM
00057 1066706 CLC ¢ TURH OFF DCPC COMPLETION INTERRUPTS
000606 106707 cLe 7
0006l 072166R SThA ASY SAVE REGISTERS
00662 ¢76167R STE BSV
000663 601520 ERA,ALS
00064 102201 sSoc
00065 002004 INA
00066 072170R STA EOSY
00067 061720 Lba MPTFL SAYE OLD MEMORY PROTECT FLAG
0007¢ 072171R STA MPFSY
00671 $024¢4 CLA/INA SET HMEMORY PROTECT FLAG TO OFF,
00072 0721770 STA MPTFL SINCE MEMORY PROTECT IS HOW OFF
00073 102100 STF ¢ TURN INTERRUPT SYSTEM BACK ON
CHECK FOR SPURIOUS INTERRUPY
06074 162172R Lba EQ1L,I ACCESS REQGUEST LISY POINTER WORD
000675 0122¢5R AKD =B77777 ISOLATE REQUEST LIST POIRTER
00076 002002 $2A IS & REQUEST IN PROGRESS?
00077 0261G3R JHP PREAD YES, GO PROCESS INTERRUPT
00166 103100 CLF ¢ HO, TURW OFF IHTERRUPT SYSTEM
0010t 167700 .2 CLC sC.¢C RESET CONHTROLLER, AND
001602 026113R JHP EXIT IGHNORE SPURIOUS INTERRUPT BY RETURKNING
PROCESS READ REQUEST
¢0i03 PREAD EQU =

LOAD IN DATA FROM DEVICE

YIa CONFIGURED I/0 INSTRUCTIONS
60103 172164R STA DAPTR, I STORE WORD IN DATA BUFFER
00104 036163R 1S§Z CYLCTR IS THIS THE LAST CONVERSIOWN?
00165 002001 RSS NO
00106 026146R JMP DONE YES, GO SET UP TO TERMINATE CALL
00107 036164R 1S2 DAPTR NO, SET UP FOR KREXT CONVERSIONW
001106 016033R JSB READ IHITIATE IT
RESTORE MACHIWE TO ORIGINAL STATE ON INTERRUPY

4-28

Figure 4-2. Non-DMS Privileged RTE Driver Example (Continued)

PAGE

0195
Y196
0197
Cf9I8%
0199
0260
0201
0202%
0203
0204
06205
0206
0207
0208
0209
0210
0211w
0212
0213
0214
0215
¢21¢
0217%
0215
0219
0220
9221
6222»
0223
0224
6225
0226
0227
0223
0229
0230
0231%
0232x%
0233%
0234
0235
0236
0237
0228
0223
0244
0241

0006 #01

CXDREY
00it2

00113
00114
00115

6oite
00117
00120
o012t
oo122
60123
00124
00125

00126
00127
00130
00131
ed132

0133
0C124
006135
00136

00137
00140
0014}
60142

00142
00144
00145

062166R
102100
126655R

**x NON-DMS PRIVILEGED DRIVER -

163100

1637200 I.

065654
160001
002029
1027266
006004
160001
602020
1022¢7

G621 71R
e ard
602002
G261 42R

0E2166R
102100
102743
126053R

3

062171R EXIT
602002
026126R

0621720R EXITH
10316t
000036
1602101
06E61ATR

EXIT2

CLF ¢
§TC scC.C

LDA MPFSY
SZa
JHP EXITH

LDB INTBAR
LbA 8.1
SSA

STC ¢

INB

LDA B, 1
S5

sTC ?

LDA EOSY
cLo

SLA ELA
STF
LDB BSY

LDA MPFSV
STR HPTFL
SZA

JHP EXIT2

LD& ASY
S1fF ¢

§1C 5

JMP PHEEH. T

LDbAa ASY
STF ¢
JHP PRNH, I

THIS CODE SETS UP THE TIHE 0UT

00t4e
00147
60156
00151
00152
00153
001954
60155

103109
106700 1
GG3400
172174R
162173R
0221 75R
172173k
026113k

DOKNE
.4

CLF ¢

cLC s©
CCA
STh
LDR
10R
STR
JHP

EQ1S.,1
E@4.,1
Bivi2
E94.1
EXIT

T0

"RETURHK T0 POINT OF

PRIVILEGED SECTION *x

TURN OFF INTERRUPT SYSTEM TEMPORARILY
EHCODE DEVICE

RCCESS PREVIOUS STATE OF MEMORY PROTECY
WAS MEMORY PROTECT ON?

NO, SO DO HOT TURN ON DCPC IHTERRUPTS
YES, TURN DCPC COMPLETION INTERRUPTS
BACK ON IF THEY WERE ON INITIALLY.
ON/OFF STATUS IS INDICATED BY BIT 135
OF EACH DCPC ASSIGNMENT WORD IN THE
INTERRUPT TABLE

RESTORE E AND O REGISTERS

RESTNRE B-REGISTEFR

RESTORE MEMORY PROTECY FLRS

IN BASE PRGE

WAS MEMORY PROYECT ON AT INTERRUPT?
ND

YES, RESTORE A-REGISTER

YUEN OR INTERRUPT SYSTEM

SET HWEMORY PROYECT ON

RETURN 1O POINT OF INTERRUPTION

ND,RESTORE R-REGISTER

TURN ON INTERRUPT SYSTEM
INTERRUPTION
COMPLETE THE Call
TURN OFF
TURNH OFF
SET TIHE
ONE TICK
BITi2 IN EQ14 SO
RYIDC WILL

CALL CHNN ON TINE-QUTY
GO T EXIT ROUTINE

THE INTERRUPY SYSTEN
PRIVILEDED DEVICE
BUT FOR

AND SET

Figure 4-2. Non-DMS Privileged RTE Driver Example (Continued)

4-29

0243%
3244
0245
0246
0247%
0248
0249 %
6250
0251
0252

0007 401

00156

00157
00166
Geind

000000

0062400
HEST XN
12615ek

CARNN

k¢ NON-DMS PRIVILEGED DRIVER - COMPLETION SECTION #x

I ZEEARSEEEZESE RS R RS RS

* COMPLETION SECTION &
Aok ok %k b b ok b ok R kb b

NOP

CLa
LDB EDT8,I
JMP CHNN,I

COMPLETION SECYION ENTRY POINT

ND, SET & = 6 = NORMAL RETURN
SET B = TRANSMISSION L0
MAKE COWPLETION RETURN CFe+t) 70

1010

4-30

Figure 4-2. Non-DMS Privileged RTE Driver Example (Continued)

PRGE

0254%
Y255%
0256
0257
0258
0259
0260*
0261
0262
0263
0264
0265
0266
0267
0268
0269
6270
0z?1
02?2
0273
0274 %
0275%
0276%
02?7
027?28
027?29
0289
6281
02382
0233
0234
062835
0286 %
G287%
02588%
028%
029dx%
0291
6292
0293x%

6294

x% NO ERRORS *TOTAL *#»RTE ASHB 760924x#

0008 401 %

COHNSTANT AND

00600
000t
00060

00162
00162
00164
60165
0016¢
00167
06179
o0t?d
001?72
001723
00174
00175
00iTe

BASE PAGE COMMUNICATIONS AREAR DEFINITION

0i650
01654
01660
01662
01665
01666
¢clee?
o1r74
G1770

CODE TN SEY UP 4SB $J4PNN,1 TNSTRUCTION ON BASE PAGE

Vo177

00000
00000

00200
00201
00202
00203
00204
00205

006000
GU0000
900000
QOGO00
CO0600
¢G00000
000090
060000
BHOGO0
GOGHOG
QB0G0OQ
VR R R
102500

NON-DMS PRIVILEGED DRIYER - DRTA ARER #*»

STARAGE AREA

[« b o3

C

SCODE
CVLTR
DRPTR
FIRS?
Sy
BSV
EOSV
HFFSY
EQ
EQ4
EQLS
g1viz2
Lin

INTBA
EQT!
EQT4
EQTe
EQT?
EQTS
EQTES
HPTFL

EQy
EQy
Eay

BSS
BSS
BSS

ao
Y

BSS
BSS
BSS
Bss
BsS
esStE
BSS
ooy
L18

Eay
Eau
£l
ERy
EQu
EQy
EQUy
EQy
EQU

=

o ek e ek A b b Rl A eh A e

16508

. +4

4R

L1l
.+13
.+14
.+15
.+ 84
. +890

COGOS5R $JFPHNN DEF PARN

116177R $J58B

16?7777
000063
6a0001
003700
000002
0?7?7e?

oRRB

JSB $JPHN, 1

ERD

DuUMMY 1/0 SELECY CODE HWUMBER

PRIV. SECTION ENTRY POINYT ADDR

RESET LOCATION COUNTER TO BASE PAGE
JSB INSTR. 7D PRIV SECTION, INDIRECY

Figure 4-2. Non-DMS Privileged RTE Driver Example (Continued)

4-31

READER COMMENT SHEET

RTE Operating System
Driver Writing Manual

92200-93005 May 1978

We welcome your evaluation of this manual. Your comments and suggestions help us improve our publications.
Please use additional pages if necessary.

Is this manual technically accurate?

Is this manual complete?

Is this manual easy to read and use?

Other comments?

FROM:

Name

Company

Address

FIRST CLASS
PERMIT NO.141

CUPERTINO
CALIFORNIA

BUSINESS REPLY MAIL

No Postage Necessary if Mailed in the United States Postage will be paid by

Hewlett-Packard Company

Data Systems Division

11000 Wolfe Road

Cupertino, California 95014

ATTN: Technical Marketing Dept.

PART NO. 92200-93005
Rev. Code 1805
Printed in U.S.A. 5/78

HEWLETT W PACKAR

Sales and service from 172 offices in 65 count
11000 Wolfe Road, Cupertino, California 95014

	001
	002
	003
	004
	005
	006
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-16a
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	replyA
	replyB
	xBack

