
PART NO. 92200-93005

RTE Operating Systeill

Driver Writing Manual

This manual reflects information that is compatible with
software revision code 1805.

HEWLETT ?P PACKARD

HEWLETT-PACKARD COMPANY

11000WOLFE ROAD, CUPERTINO, CALIFORNIA, 95014

Library Index Number
2RTE.340.92200-93005

Printed in U.S.A. 10/78

PUBLICATION NOTICE

Information in this manual describes RTE driver writing techniques. Changes in text to document software updates
subsequent to the initial release are supplied in manual update notices and/or complete revisions to the manual. The
history of any changes to this edition of the manual is given below under "Publication History." The last change itemized
reflects the software currently documented in the manual.

Any changed pages supplied in an update package are identified by a change number adjacent to the page number.
Changed information is specifically identified by a vertical line (revision bar) on the outer margin of the page.

11

PUBLICATION HISTORY

Third Edition May 78 (Software Rev. Code 1805)
Change 1 Oct 78 (Software Rev. Code 1805)

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATER­
IAL. INCLUDING. BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the furnishing, perfor­
mance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is
not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are reserved.
No part of this document may be photocopied, reproduced or translated to another program language
without the prior written consent of Hewlett-Packard Company.

Copyright@ 1978 by HEWLETT-PACKARD COMPANY

DOCUMENTATION MAP

RTE Operating
..... -

System Driver
Writing Manual
92200-93005

A

•
21 MX M-Series and
E-Series Computers
1/0 Interfacing Guide
02109-90006

RTE-IV Programmer's
Reference Manual
92067-90001

or

RTE-II I Programming
and Operating Manual
92060-90004

or

RTE-I I Programming
and Operating Manual
92001-93001

or

RTE-M Programmer's
Reference Manual
92064-90002

(Refer to the Documentation Map
in the appropriate operating system
manual for a complete list of
related manuals.)

Ill

CONTENTS -~ ..._____ ________ __J

Section I
INTRODUCTION

Page

Purpose . 1-1
Scope . 1-1
Supporting Documentation . 1-1

Section II Page
RTE INPUT/OUTPUT STRUCTURE
Introduction . 2-1
Software I/O Structure........................... 2-1

Input/Output Device Drivers 2-1
System I/O Processor . 2-2
Base Page Communications Area 2-2
Equipment Table . 2-4
Logical Unit Numbers . 2-7
Device Reference Table . 2-7
Computer Interrupt Mechanism 2-10
Interrupt Table 2-11
Driver Mapping Table (RTE-IV only) 2-13

General Operation of RTE I/O 2-15
I/O Initiation 2-17
I/O Continuation 2-17
I/O Completion 2-17

Section III Page
WRITING STANDARD RTE DRIVERS
Introduction. 3-1
General Driver Structure and Operation 3-1
Driver Naming Requirements . 3-2
Initiation Section . 3-2

Functions of the Initiation Section 3-3
Continuation/Completion Section 3-6
Device Clear on Program Abort 3-9
I/O Controller Time-Out 3-10

Driver Processing of Time-Out 3-10
System Processing of Time-Out 3-11

DCPC Processing 3-12
RTE Control of DCPC Assignment 3-12
DCPC Assignment by RTE 3-13

ILLUSTRATIONS

Title Page

Equipment Table Entry Format 2-5
Expansion of CONWD (EQT Entry

Word 6) 2-6
Device Reference Table Entry Format 2-9
Device Reference Table 2-9
Interrupt Table 2-12
Driver Mapping Table 2-14

iv Change 1

Returning DCPC Channels to RTE 3-15
Handling the DCPC Interrupt 3-15
Intermixed DCPC and Non-DCPC Operations .. 3-17

Driver Automatic "Up" 3-17
Power Fail Processing 3-18

Power Down Sequence 3-18
Power Up Sequence 3-18
Restart I/O Sequence 3-19

Program Scheduling by Drivers 3-20
Determination of Operating System
Environment 3-22
Subroutines for Special Mapping Functions
(DMS Systems Only) 3-24

Mapping in RTE-III and RTE-M/III 3-24
Mapping in RTE-IV 3-26

Sample Standard RTE Driver 3-28

Section IV Page
WRITING PRIVILEGED RTE DRIVERS
Introduction. 4-1
General Privileged Driver Structure and Operation 4-3
Initiation Section . 4-4
Privileged Section . 4-6
Completion Section . 4-9
Privileged Driver Design Considerations 4-9
Communication With User Programs
(DMS Systems Only) 4-10
Discussion of Sample DMS Privileged Driver 4-10

Initiation Section 4-10
Privileged Section 4-11
Completion Section 4-11

Time-Out Values for Privileged Drivers 4-12
Subroutines for Special Mapping Functions
(DMS Systems Only) 4-12

Mapping in RTE-III and RTE-M/III 4-13
Mapping in RTE-IV 4-15

Sample DMS Privileged Driver 4-16A I
Sample Non-DMS Privileged Driver 4-16A

Title Page

Unbuffered l/O Read Request 2-16
1/0 Driver Initiation Section 3-4
l/O Driver Continuation/Completion Section 3-7
DCPC Channel Assignment Words 3-13
Standard RTE Driver Example 3-29
DMS Privileged RTE Driver Example 4-17
Non-DMS Privileged RTE Driver Example 4-25

TABLES

Title Page Title Page

Base Page Communications Area - 1/0 Operations . 2-3 $0PSY Word Format 3-23

v

l
lJHIMll

______ 1N_T_Ro_o_u_c1_1o_N___._I 1 1

1-1. PURPOSE

The RTE Operating System Driver Writing Manual is a reference for those users who wish to
develop their own device drivers. A device driver provides the software interface between a
peripheral device and the RTE operating system. Many drivers for HP peripherals have
already been written and are available from HP. Users who wish to interface peripherals that
are not supported by HP will require specialized drivers. The information in this manual will
aid the user in the development of such routines.

Note that it is not the purpose of the manual to describe the various HP-supplied drivers in any
detail. Each of these is described in a separate manual specific to the driver.

1-2. SCOPE

The manual first provides the reader with a general description of the input/output (I/0)
characteristics of the RTE family of operating systems. The techniques and requirements for
developing device drivers are then presented in subsequent sections.

Since all of the RTE operating systems have the same general I/O structure, the manual can be
used to develop general purpose drivers for use in any of these RTE systems. There are some
areas where differences between operating systems may affect driver structure and operation;
these areas are clearly pointed out in the text with notations such as "RTE-IV only" or
"RTE-III only." Phrases such as "RTE-III only" should be interpreted as referring to both
RTE-III (disc-based system) and RTE-M/111 (memory-based equivalent of RTE-Ill).

1-3. SUPPORTING DOCUMENTATION

To use this manual effectively, the reader should be thoroughly familiar with HP Assembly
Language and with the Programming and Operating Manual for the RTE system in which the
driver is to be used. Refer to the Documentation Map at the front of this manual for informa­
tion on these and other available manuals. For specific information on an HP supplied driver,
refer to the appropriate driver manual.

1-1

RTE INPUT/OUTPUT STRUCTURE llUllMil
~-------------1.1 II I
2-1. INTRODUCTION

In RTE, centralized control and logical referencing of input and output (l/0) operations effect
simple device-independent programming. By means of several user-defined I/O tables, I/O
drivers, and program EXEC calls, the programmer is relieved of most I/O prob1'~ms. To
understand the software I/O characteristics of RTE, the user should be familiar with two
hardware related terms used in this manual:

I/O Controller

I/O Device

A combination of I/O card, cable, and (for some devices) controller box used
to control one or more I/O devices on a computer I/O select code.

A physical unit (or portion of a unit) identified in the RTE operating system
by means of an Equipment Table entry and a subchannel assignment.

Each I/O device is interfaced to the computer through an I/O controller. This controller is
associated with one or more of the computer I/O select codes. Interrupts from controllers on
specific select codes are directed to specific memory locations in the computer for system
processing.

It is also important to note the difference between a synchronous device and a non­
synchronous device. An interrupt from a synchronous device controller must be processed
within a specified time period, or the data will be lost. Examples of synchronous devices are
moving-head disc drives and nine-track magnetic tape drives. Non-synchronous devices have
no such requirement, and interrupts from these device controllers can be serviced whenever
the computer is able to do so. Examples of non-synchronous devices include paper tape punches
and readers.

2-2. SOFTWARE 1/0 STRUCTURE

The RTE I/O structure is made up of two general types of software (the system I/O processor
and the various device drivers) and a number of I/O tables and a communications area (the
Equipment Table, the Device Reference Table, the Interrupt Table, the Driver Mapping Table
(RTE-IV only), and the Base Page Communications Area). These tables and areas are used for
communication between the system and the drivers, and for control of the many I/O operations
that can be in progress simultaneously. Each component of the I/O structure is discussed
individually in this subsection. A summary of the overall I/O process is given in the next
subsection.

INPUT/OUTPUT DEVICE DRIVERS

Input/output device drivers provide the software interface between peripheral I/O devices and
the operating system. Drivers are responsible for the initiation, continuation, and completion
of all data transfers between an I/O device and the computer. Drivers communicate with the
system directly via parameter passing, and indirectly through the various tables and com­
munications areas (particularly the Equipment Table and the Base Page Communications
Area) that are discussed later in this subsection.

2-1

There are two types of drivers; standard and privileged. Standard drivers are simpler and can
be used for most asynchronous devices and some high speed and synchronous devices (ifDCPC
transfers are used); these drivers are discussed in Section III. Privileged drivers are more
complex and are generally used for high speed and synchronous devices that require driver
interaction on each data word transferred (i.e., DCPC transfers cannot be used); these drivers
are discussed in Section IV.

SYSTEM I/O PROCESSOR

The system 1/0 processor (RTIOC) provides the software interface between user programs that
perform 1/0 and the drivers that actually handle the 1/0 operations. RTIOC checks user 1/0
calls for validity, suspends programs while their 1/0 is in progress (if necessary), calls drivers
to initiate the 1/0 data transfers, directs controller interrupts to the appropriate drivers, and
restarts programs suspended for 1/0. The mechanism for communication between RTIOC and
user programs is the EXEC call and its associated parameters. Communication between
RTIOC and drivers is handled directly via parameters and indirectly through the various 1/0
tables discussed in this section.

Two general areas within RTIOC are discussed in this manual; IOC and CIC. The Input/
Output Control module (IOC) is entered when a user program makes an 1/0 request. IOC is
responsible for initiating the 1/0 transfer by calling the appropriate driver. The Central
Interrupt Control module (CIC) is entered when a device controller interrupt is detected. CIC
is responsible for calling the correct driver to handle the interrupt.

BASE PAGE COMMUNICATIONS AREA

A block of storage in base page contains the system's communications area and is used by RTE
to define request parameters, 1/0 tables, scheduling lists, operating parameters, memory
bounds, etc. The RTE Assembler allows absolute references to addresses less than octal 2000 so
that user programs can read information from the base page. Programs cannot alter the base
page, however, because of the memory protect feature of RTE. Table 2-1 illustrates the portion
of the Base Page Communications Area that pertains to 1/0 operations. The meaning and use
of the various words illustrated in the table will become clear in subsequent sections of this
manual. (For a complete description of the Base Page Communications Area, refer to the
appropriate RTE System Programming and Operating Manual.)

2-2

Table 2-1. Base Page Communications Area - I/O Operations

OCTAL CONTENTS DESCRIPTION LOCATION

. . .
01650 EQTA Address of Equipment Table (EQT)

01651 EQT# Number of EQT entries

01652 ORT Address of Device Reference Word 1 Table

01653 LU MAX Number of logical units (in Device Reference Table)

01654 INTBA Address of Interrupt Table

01655 INTLG Number of Interrupt Table entries

01656 TAT Address of Track Assignment Table (disc-based systems only)

01657 KEYWD Address of keyword block

01660 EQT1 '
01661 EQT2
01662 EQT3
01663 EQT4
01664 EQT5 > Addresses of first 11 words of current EQT entry
01665 EQT6 (see location of 01771 for last 4 words)
01666 EQT?
01667 EQT8
01670 EQT9
01671 EQT10
01672 EQT11

01673 CHAN Current DCPC Select Code (6 or 7)

. . .
01717 XEQT ID segment address of current program

. . .
01737 DUMMY 1/0 channel of privileged interrupt card (0 if none)

. . .
01770 MPTFL Memory Protect On/Off (0/1) flag.

01771 EQT12

} 01772 EQT13 Addresses of last 4 words of current EQT entry
01773 EQT14
01774 EOT15

2-3

EQUIPMENT TABLE

The Equipment Table (EQT) is used to maintain a list of all the I/O equipment in the system.
This table cons.ists of a number of EQT entries, with one EQT entry for each I/O controller
defined in the system at generation time. The EQT entry contains all of the information
required by the system and the associated driver to operate the equipment, including: the I/O
select code in which the controller is interfaced to the computer, the driver type, and the
various requirements and specifications of the controller or driver (e.g., DCPC, buffering,
time-out, power fail, etc.). To distinguish between multiple I/O devices connected to a single
controller, the system also inserts the subchannel number of the device being referenced into
the EQT entry before calling the driver.

The format of each EQT entry is illustrated in Figure 2-1. Some information in the EQT entry
is static; other parts are dynamic. Information marked <A> is fixed at generation time (or, for
RTE-IV, at reconfiguration time) and never changes during on-line operation of the system.
Words marked are also fixed at generation time (or, for RTE-IV, at reconfiguration time)
but can be changed on-line via operator commands. Information marked <C> is modified or
set up for the driver prior to each I/O initialization; it informs the driver of the nature of the
request. Words marked <D> are not used by the system and are therefore available to the
driver for use as temporary storage for the duration of each I/O request.

2-4

WORD CONTENTS

15 14 l" 13 T 12 I 11T10 T 9 I 8 l" 7 l" 6 1 5 T 4 T 3 T 2 T 1 1 0

1 R 1/0 REQUEST LIST POINTER <C>

2 R DRIVER "INITIATION" SECTION ADDRESS <A>

3 R DRIVER "CONTINUATION/COMPLETION" SECTION ADDRESS <A>

<A>
<;>I <~>l ~>l SUBCHANNEL #<c> I 4 D B 1/0 SELECT CODE # <A>

5 AV <F> EQUIPMENT TYPE CODE <A> 1 STATUS <E>

6 CONWD (CURRENT 1/0 REQUEST WORD) <C>

7 REQUEST BUFFER ADDRESS <C>

8 REQUEST BUFFER LENGTH <C>

9 TEMPORARY STORAGE< D > OR OPTIONAL PARAMETER <c >

10 TEMPORARY STORAGE <D > OR OPTIONAL PARAMETER <c >

11 TEMPORARY STORAGE FOR DRIVER <D>

12
TEMPORARY STORAGE

OR EQT EXTENSION SIZE,
FOR DRIVER <D> IF ANY <A>

13
TEMPORARY STORAGE OR EQT EXTENSION STARTING
FOR DRIVER <D> ADDRES~IF ANY <A>

14 DEVICE TIME-OUT RESET VALUE

15 DEVICE TIME-OUT CLOCK <C>

WHERE THE LETTERS IN BRACKETS(<>) INDICATE THE NATURE OF EACH DATA ITEM, AS FOLLOWS:

<A> = FIXED AT GENERATION TIME (OR, FOR RTE-IV, AT RECONFIGURATION TIME);
NEVER CHANGES.

 = FIXED AT GENERATION TIME (OR, FOR RTE-IV, AT RECONFIGURATION TIME);
CAN BE CHANGED ON-LINE.

<C> = SET UP OR MODIFIED AT EACH 1/0 INITIALIZATION.

<D> = AVAILABLE FOR USE AS TEMPORARY STORAGE BY DRIVER.

<E> = CAN BE SET BY DRIVER.

<F> = MAINTAINED BY SYSTEM.

AND WHERE:

R = (RESERVED FOR SYSTEM USE)

1/0 REQUEST LIST POINTER = POINTER TO LIST OF REQUESTS QUEUED UP ON THIS EQT
ENTRY. FIRST ENTRY IN LIST IS CURRENT REQUEST IN
PROGRESS; ZERO IF NO REQUESTS.

D = 1 IF DCPC REQUIRED

B = 1 IF AUTOMATIC OUTPUT BUFFERING USED

p = 1 IF DRIVER IS TO PROCESS POWER FAIL

s = 1 IF DRIVER IS TO PROCESS TIME-OUT

T = 1 IF DEVICE TIMED OUT (SYSTEM SETS TO ZERO
BEFORE EACH 1/0 REQUEST)

SUBCHANNEL # = LAST SUBCHANNEL ADDRESSED

Figure 2-1. Equipment Table Entry Format (Sheet 1 of 2)

2-5

1/0 SELECT CODE# 1/0 SELECT CODE FOR THE 1/0 CONTROLLER (LOWER
NUMBER IF A MULTI-BOARD INTERFACE)

AV 1/0 CONTROLLER AVAILABILITY INDICATOR:

0 AVAILABLE FOR USE
1 DISABLED (DOWN)
2 BUSY (CURRENTLY IN OPERATION)
3 WAITING FOR AN AVAILABLE DCPC CHANNEL

EQUIPMENT TYPE CODE = IN GENERAL, INDICATES TYPE OF DEVICE ON THIS CON·

00
01
11

2-6

STATUS

CONWD

TROLLER. WHEN THIS OCTAL NUMBER IS LINKED WITH
"DVY", IT IDENTIFIES THE DEVICE'S SOFTWARE DRIVER
ROUTINE. SOME STANDARD EQUIPMENT TYPE CODES
ARE:

00 TO 07

00

01

02

05

07

10 TO 17

10

11

12

15

20 TO 37

23

31

32

33

36

37

40 TO 77

PAPER TAPE DEVICES OR CONSOLES

TELEPRINTER (OR KEYBOARD
CONTROL DEVICE)

PHOTOREADER

PAPER TAPE PUNCH

264X SERIES TERMINALS

MULTI-POINT DEVICES

UNIT RECORD DEVICES

PLOTTER

CARD READER

LINE PRINTER

MARK SENSE CARD READER

MAGNETIC TAPE/MASS STORAGE DEVICES

9 TRACK MAGNETIC TAPE

7900 MOVING HEAD DISC

7905/06/20 MOVING HEAD DISC

FLEXIBLE DISC DRIVES

WRITABLE CONTROL STORE

HPIB

INSTRUMENTS

ACTUAL PHYSICAL STATUS OR SIMULATED STATUS AT THE END
OF EACH OPERATION.

COMBINATION OF USER CONTROL WORD AND USER REQUEST
CODE WORD IN THE 1/0 EXEC CALL (SEE BELOW).

Figure 2-1. Equipment Table Entry Format (Sheet 2 of 2)

15 14 13 12

STANDARD CALL
BUFFERED CALL
CLASS CALL

11 10 9 8 7 6 5

L_ SUBFUNCTION -----'

00000 = CLEAR CONTROLLER
(IF FUNCTION = 11 z CONTROL CALLI

OTHER SUBFUNCTIONS ARE DRIVER SPECIFIC
AND MAY OR MAY NOT BE DEFINED.

4 3

01
10
11

2 0

LFUNCTION ..J
i'

READ CALL
WRITE CALL
CONTROL CALL

Figure 2-2. Expansion of CONWD Word (EQT Entry Word 6)

If the number of words marked <D> does not provide sufficient temporary storage for the
driver, additional space can be allocated at generation time by specifying that an EQT entry
extension is needed for a particular EQT entry. This space can only be used to extend the
referenced EQT entry and therefore should only be allocated for drivers that need the addi­
tional space. When an EQT entry extension is specified, EQT entry words 12 and 13 are used to
identify the location and length of the extension (since the extension does not immediately
follow the EQT entry) and therefore should not be modified by the driver. Otherwise, these
words are available as temporary storage.

For programming convenience, the addresses of each word in the current EQT entry (except for
words in the extension, if an extension exists) are placed in the Base Page Communications
Area by the system before calling the driver to initiate or continue an 1/0 operation. A driver
should use these addresses instead of computing them from the EQT entry number and the
start of the Equipment Table. In this way, the driver can remain independent of the actual
organization of the Equipment Table in memory.

All Equipment Table entries are located sequentially in memory beginning with EQT entry
number 1. The address of the first entry and the total number of entries in the table can be
found in the Base Page Communications Area.

LOGICAL UNIT NUMBERS

Logical unit numbers (LU's) provide the RTE user with the capability of logically addressing
the physical devices defined by the Equipment Table. LU numbers are maintained by the
Device Reference Table (see below), and their definition can be changed on-line by the LU
operator request. This scheme allows the programmer to reference changeable logical units
instead of fixed physical units.

The function of Logical Units 0 through 6 are predefined in the RTE system as follows:

0 - "bit bucket" (null device, no entry in Device Reference Table)

1 system console

2 reserved for system (system disc subchannel in disc-based systems)

3 - reserved for system (auxiliary disc subchannel in disc-based systems)

4 - standard output device

5 standard input device

6 standard list device

Logical Unit 8 is recommended for the magnetic tape device, if one is present in the system.
Peripheral discs must be assigned logical units greater than 6. Additional logical units may be
assigned for any functions desired.

DEVICE REFERENCE TABLE

The Device Reference Table (DRT) is part of the mechanism by which logical unit numbers for
I/Oare implemented. RTE users request I/Oby specifying a logical unit number. The DRT is
used to translate this logical unit number into a physical device, as specified by an EQT entry
number and subchannel. The DRT is also used to queue requests for 1/0 on a device when it is

2-7

unavailable (down). (The DRT is not used to queue requests when the device is up. The request
list for available (i.e., up) devices originates from word 1 of the EQT entry as illustrated in
Figure 2-1.)

Each DRT entry is two words long. There is one entry for each logical unit number defined at
generation time, beginning with logical unit 1. The format of each entry is illustrated in
Figure 2-3. The first word of the entry contains several items, including: 1) the EQT entry
number of the controller assigned to the logical unit, and 2) the subchannel number of the
specific device on that controller to be referenced. The second word of each entry contains the
status of the logical unit: up (available) or down (unavailable). If the device is down, word two
also contains a pointer to the list of requests waiting to access the LU.

2-8

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 BIT NO.

SUBCHANNEL NO. I (RESERVED) 1 EQT ENTRY NUMBER

Fl DOWNED 1/0 REQUEST LIST POINTER

WORD 1

WORD 2

F (UP/DOWN FLAG) 0 IF DEVICE IS UP
1 IF DEVICE IS DOWN

Figure 2-3. Device Reference Table Entry Format

LU 1

LU 2

LU 3

FIRST WORD • OF EACH
ORT ENTRY

•
•

LU N

LU 1

LU 2

• SECOND WORD
OF EACH

• ORT ENTRY

•

LU N

WHERE:

N NUMBER OF LOGICAL UNITS IN SYSTEM

Figure 2-4. Device Reference Table

2-9

The DRT table is actually split into two separate parts. The first part contains word 1 of each
DRT entry, and the second part contains word 2 of each DRT entry. This format is illustrated
in Figure 2-4. The starting address and length of part one of the table can be found in the Base
Page Communications Area. Part two is located in memory immediately following part one
and has the same length as part one.

COMPUTER INTERRUPT MECHANISM

When a device controller interrupts RTE, the computer transfers control to one of a group of
memory locations on base page known as the interrupt trap cells. The I/O select code of the
interrupting controller determines the location of the transfer. For example, interrupts from
select code 12 cause a transfer to memory location 12. Interrupts from select code 13 cause a
transfer to memory location 13, and so on. Select code numbers range from 4 to 77 (octal).
Thus, the group of memory locations from 4 to 77 (octal) comprises the entire set of interrupt
trap cells.

Transferring control to an interrupt trap cell causes the instruction located there to be
executed. For all devices operating under the control of CIC, this instruction is a JSB LINK,I,
where LINK is a base page link containing the address of the entry point to CIC. This
instruction is initially set up by the RTE generator, and is reset into the trap cell each time the
system is rebooted. The fact that the JSB instruction references an indirect address causes the
computer to hold off any further interrupts for one instruction after the JSB. This gives CIC a
chance to issue a CLF 0 instruction (which disables the interrupt system entirely) to prevent
further interrupts from occurring while the current one is being processed.

Since CIC is entered at the same location for all device controller interrupts under its control, a
method is needed by which the select code of the interrupting device controller can be
determined. CIC obtains the interrupting select code number by accessing the contents of the
computer's Central Interrupt Register via an LIA 4 instruction. CIC can then use this
information to index into the Interrupt Table (see next subsection) to determine how to process
the interrupt.

The interrupt trap cells are not limited to containing a JSB LINK,I instruction (where LINK
contains the address of CIC). Other instructions can be placed in a trap cell by the generator or
by a system routine. However, the trap cell should not contain any instruction other than a
HALT instruction or a JSB indirect to an interrupt processing routine (such as CIC or a
user-written routine) that saves the state of the machine on entry and restores it to its original
state on exit. This includes saving and restoring the registers, state of the memory protect
fence, etc.

Specifically, I/O instructions and NOP instructions must not be put into trap cells because they
do not provide any way to restore the system to its original state. Microcode macro's (i.e., jumps
to microcoded routines) may be used if a microcoded driver is used to process the interrupts.

Note that if a JSB instruction is placed in the interrupt trap cell, it must reference an indirect
address. The indirect address keeps the interrupt system suppressed for one instruction after
the JSB, as explained above. This allows the interrupt processing routine to issue a CLF 0
instruction to prevent further interrupts from occurring while the state of the machine is being
saved. (Note that the generator automatically provides a base page link for all JSB instruc­
tions it places in the interrupt trap cells. A JSB indirect instruction is created whenever an
"ENT," "PRG," or "EQT" entry is specified during generation.)

2-10

Systems without the power fail/automatic restart feature have a HALT 4 instruction inserted
by the generator into the power fail interrupt trap cell (memory location 4). As a result, the
computer will halt when a power fail interrupt occurs. An example of a JSB to a user-written
interrupt processing routine is discussed later in the "Writing Privileged Drivers" section of
this manual.

INTERRUPT TABLE

The Interrupt Table directs CIC's action when an interrupt occurs on any I/O select code that
contains a JSB LINK,I instruction (where LINK contains the address of CIC). CIC can call a
driver, schedule a specified program, or handle the interrupt itself.

There is one Interrupt Table entry for each I/O select code from 6 up to the highest select code
defined in the system at generation. (Systems with I/O reconfiguration ability at boot-up (e.g.,
RTE-IV) always include Interrupt Table entries for all select codes, even if some select codes
were not defined in the initial generation.) Each Interrupt Table entry is one word long and
can have three possible values: zero, positive, or negative.

1. If the entry is zero, the select code is undefined in the Interrupt Table. Any interrupts on
this select code are illegal and cause the following message to be printed:

ILL INT xx

where xx is the octal I/O select code number. RTE then clears the interrupt flag on the
select code and returns to the suspended process at the point of interruption. (Note that an
Interrupt Table entry can also be zero if interrupts on the associated select code are
handled by a special routine instead of by CIC and a driver. Refer to the "Writing
Privileged Drivers" section later in this manual for more information on this subject.)

2. If the contents of the entry are positive, the entry contains the address of the EQT entry
associated with the controller on the select code.

3. If the contents are negative, the entry contains the negative of the address of the ID
segment of the program to be scheduled whenever an interrupt occurs on the select code. If
such a program is not dormant when an interrupt occurs on the select code, the following
message is output to the system console:

SC03 INT xxxxx

where xxxxx is the program name. RTE then clears the interrupt flag on the select code
and control is returned to the suspended process at the point of interruption.

All Interrupt Table entries are located sequentially in memory beginning with the entries for
I/O select codes 6 and 7 (DCPC). This format is illustrated in Figure 2-5. There are no entries
for I/O select codes 4 and 5 because the system is able to process interrupts from these select
codes (power fail interrupts, memory protect violations, etc.) without the need for an Interrupt
Table entry. The address of the first word of the table and the number of entries in the table
can be found in the Base Page Communications Area.

2-11

WORD 1

WORD 2

WORD 3

WORD 4

WORD N-4

WORD N-5

2-12

NOTE

The reader should not confuse the interrupt trap cell area of
the computer, which is located on base page, with the Interrupt
Table of RTE, which is located elsewhere. The interrupt trap
cells are those memory locations (4 to 77 octal) to which control
is transferred when an interrupt occurs. The Interrupt Table,
on the other hand, is merely a convenient way for RTE to
record what action CIC should take when an interrupt occurs
on a select code under CIC's control.

ENTRY FOR 1/0 SELECT CODE 6

ENTRY FOR 1/0 SELECT CODE 7

ENTRY FOR 1/0 SELECT CODE 10

ENTRY FOR 1/0 SELECT CODE 11

ENTRY FOR 1/0 SELECT CODE N-1

ENTRY FOR 1/0 SELECT CODE N

WHERE:

N THE HIGHEST 1/0 SELECT CODE KNOWN TO THE SYSTEM.

Figure 2-5. Interrupt Table

DRIVER MAPPING TABLE (RTE-IV ONLY)

In the RTE-IV Operating System, drivers can be placed in one of two areas: in the System
Driver Area (SDA) or in one of the driver partitions. Most standard drivers are placed in driver
partitions. The SDA is primarily used for privileged drivers, drivers that do their own
mapping, and very large drivers. (For more information on driver placement, refer to the
appropriate operating system reference and/or generation manual.)

The Driver Mapping Table (DMT) is used to record where a driver resides in physical memory
and other static and dynamic information about the driver and the location of the 1/0 request
buffer.

There is one DMT entry associated with each EQT entry defined at generation time. Each
entry is two words long, as illustrated in Figure 2-6. Word 1 is set up at generation time and its
contents are never changed. It indicates whether the driver resides in the System Driver Area
(SDA) or in a driver partition. Ifit is in the SDA, it also indicates whether or not the driver is
doing its own memory mapping. (See the "Subroutines for Special Mapping Functions" subsec­
tion later in this manual.) If the driver is in a partition, word 1 also indicates the starting
physical memory page number of the driver partition in which it is located.

Word 2 of the DMT entry is dynamic in nature and is set up at each 1/0 initialization of the
associated EQT entry. This word indicates whether the 1/0 request buffer is located within a
disc resident program, memory resident program, or system area. If a disc resident program is
making the request and the 1/0 request buffer is located within the program (i.e., an unbuf­
fered request), word 2 also indicates the physical memory page number of the disc resident
program's base page. This information is used to save time on setting up the proper map when
processing interrupts handled by the driver.

2-13

WORD 1
OFDMT
ENTRY
FOR
EQT
ENTRY:

WORD2
OF DMT
ENTRY
FOR
EQT
ENTRY:

2-14

2

3

N

2

N

WHERE:

SD 0

SD

MR

MR 0

N

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

SD (RESERVED) M

SD (RESERVED) M

SD (RESERVED) M

•

•

•

SD (RESERVED) M

MR (RESERVED) p

MR (RESERVED) p

•

•

•

(RESERVED) p

IMPLIES DRIVER RESIDES IN A DRIVER PARTITION, AND
M =STARTING PAGE NUMBER OF PARTITION IN BITS 0-9

IMPLIES DRIVER RESIDES IN SYSTEM DRIVER AREA, AND
M = 0 IMPLIES DRIVER NOT DOING ITS OWN MAPPING
M = 1 IMPLIES DRIVER DOING ITS OWN MAPPING

IMPLIES THAT THE 1/0 REQUEST BUFFER IS LOCATED IN
A MEMORY RESIDENT PROGRAM.
(P VALUE NOT SIGNIFICANT - RESERVED FOR FUTURE USE)

IMPLIES THAT THE 1/0 REQUEST BUFFER IS NOT LOCATED
IN A MEMORY RESIDENT PROGRAM. BUFFER LOCATION IS
INDICATED BY THE VALUE OF P, AS FOLLOWS:
P = 0 IMPLIES BUFFER IS IN THE SYSTEM AREA
P NOT ZERO IMPLIES BUFFER IS LOCATED IN A DISC

RESIDENT PROGRAM. P IS THE PHYSICAL
PAGE NUMBER OF THE PROGRAM'S BASE PAGE

NUMBER OF EQT ENTRIES IN SYSTEM

Figure 2-6. Driver Mapping Table

2-3. GENERAL OPERATION OF RTE 1/0

Input/Output transfers in RTE can be conveniently broken into three parts for discussion:
initiation, continuation, and completion. A user program is involved only in the initiation and
completion phases; the system I/O processor and the device drivers are involved in all three
phases. The following is a simplified discussion of each phase. (As an aid to understanding this
e~planation, the general flow of events for an unbuffered 1/0 READ request is illustrated in
Figure 2-7 .)

2-15

DRT EQT ENTRY DMT (RTE-IV ONLY)

LU. ~~~~~~;~EL,+
ADDRESS.

EQT ENTRY .+.
NUMBER

LENGTH

"1/0 CALL
EQT ENTRY DRIVER DRIVER MAP

"EXEC CALL' NUMBER INITIATION SETUP
(LU. ILU, + SUBCHANNEL .• ADDRESS _y INFORMATION USER PROGRAM FUNCTION. FUNCTION, -ADDRESS, ADDRESS,

FTN4,L LENGTH) LENGTH) _..J
-T

c
c MAKE READ CALL EXEC "INITIATE 1/0

c
CALL EXEC (l,LU,IBUFA,LEN)

TRANSFER_:t... DRIVER

IOC i..... INITIATION

~'INITIATED
SECTION

OK"

~ ~
"START"

..... RESCHEDULE
SCHED

''TRANSFER
COMPLETE" ... • ADDRESS OF EQT J ENTRY WORDS

"TRANSFER BASE PAGE J=;A COMPLETE" COMMUNICATIONS AREA

ADDRESSES OF EQT
INTERRUPT

INTERRUPT TABLE
ENTRY WORDS

TRAP CELLS • INTERRUPTING

"""1._ELECT CODE

....
~

EQT ENTRY---,...
ADDRESS

.ol "START" ---1lt.

..... EQT ENTRY HINTERAUPT

ADDRESS ~TECTEO" "INTERRUPT" ... _..
CIC JSB SCIC,I i. CONTROLLER I. DEVICE

DRIVER
... ,..-

"DATA READY"
CONTINUATION/
COMPLETION

EQT ENTRY
ADDRESS

EQT ENTRY

i..._ NUMBER

.... __..
DAIVERMA;r
SETUP

I • DMT (RTE-IV ONLY) INFORMATION
"TRANSFER "CONTINUE "INTERRUPT
COMPLETE" TRANSFER" DETECTED"

A~
''RESTART''

DRIVER CONTINUATION/
COMPLETION SECTION

~ "DATA" "DATA"

7700-140

I/O INITIATION

A user program makes an EXEC call to initiate I/O transfers. Parameters passed along with
this call specify the logical unit, control information, buffer location, buffer length, and type of
request (READ, WRITE, or CONTROL) to be made. The user request is channelled to the IOC
(Input/Output Control) module of the system by the RTE request processor. The request is
checked for legality and rejected if any errors are found. If there are no errors, the logical unit
number supplied is used to index into the DRT (Device Reference Table) to determine which
I/O controller (EQT entry number) and device (subchannel) are actually being referenced. The
I/O request is then linked into the request list for the referenced controller.

If the device controller is available (i.e., no prior requests are pending), the parameters of the
request are put into the associated EQT entry, the addresses of the EQT entry words are set
into the Base Page Communications Area for convenience, the proper map (System or User) is
enabled (performed in systems with Dynamic Mapping only), and the "initiation" section of the
driver is called. This section initializes the device controller, starts the data transfer or control
function, and returns to roe.

roe then returns to the system's dispatching module to begin execution of the highest priority
scheduled program. If the operation was successfully initiated by the driver, the data transfer
is now under way.

1/0 CONTINUATION

When the device controller finishes transferring a data word, or block of words, it interrupts
the computer. This causes a transfer to one of the interrupt locations in the computer's
memory, and the instruction located there is executed. For most I/O devices, this instruction is
a JSB LINK,I (where LINK contains the address of the entry point to CIC). Execution of this
instruction causes control to be transferred to CIC, the Central Interrupt Control module of the
system. CIC obtains the number of the interrupting select code from the computer's Central
Interrupt Register and uses it to index into the Interrupt Table.

For those I/O processes operating under the control of CIC and a driver, the Interrupt Table
tells CIC which EQT entry is associated with the interrupting select code. CIC looks at the
EQT entry, determines which driver is responsible for handling the interrupt, enables the
correct map (System or User) in systems with Dynamic· Mapping, and calls the driver's
"continuation/completion" section to process the interrupt. The driver either accepts the data
from the device (read operation) or sends more data to the device (write operation) and restarts
the device. Return is then made to CIC with a code indicating that more interrupts are
expected. This process (interrupt, CIC, driver, CIC) is repeated once for each word or block of
words transferred until the entire transfer is complete.

I/O COMPLETION

Eventually the driver will determine that the required amount of data has been transferred
and that the I/O process is now complete. The driver then returns to CIC with a special code
indicating that the I/O operation is complete and can be terminated; no more interrupts are
expected.

2-17

CIC, in turn, transfers control back to IOC to terminate the I/O process. IOC causes the
program that made the initial I/O request to be placed back into the scheduled list and checks
to see if there are any other I/O requests pending for this controller. If at least one request is
pending, the initiation section of the driver is again called to begin the next operation. IOC
then returns control to the system's dispatching module to begin execution of the highest
priority scheduled program.

I WRITING STANDARD RTE DRIVERS

3-1. INTRODUCTION

111111M:1
I 111 I

This section describes in detail the structure, operation, and design of standard RTE drivers.
Standard drivers are fairly simple in structure and can generally be used to control most
asynchronous devices. They can also be used to control synchronous and high-speed devices if
these devices are driven under DCPC control. DCPC processing is also described in this
section.

An alternate method for controlling synchronous and high-speed devices is to employ the more
complex privileged driver. Section IV of this manual describes the differences in the design of
privileged drivers versus standard drivers. Thus, if the user wishes to design a privileged
driver, the material in this section should be read and understood before continuing with the
privileged driver discussion in Section IV.

Note that the operation of RTE requires that synchronous and high-speed devices be driven
either by a standard driver utilizing DCPC transfers, or by a privileged driver. This is
necessary to ensure that interrupts from such devices are serviced within the required re­
sponse time. The reader should keep this requirement in mind when deciding upon the type of
driver to be written.

3-2. GENERAL DRIVER STRUCTURE AND OPERATION

An I/O driver, operating under control of the Input/Output Control (IOC) and Central Inter­
rupt Control (CIC) modules of RTE, is responsible for all data transfers between an I/O device
controller and the computer. Each driver is written in two functional sections: an initiation
section and a continuation/completion section. The initiation section is responsible for starting
up the device and initiating the first data transfer. The continuation/completion section is
responsible for processing each interrupt generated by the device under its control. This
involves accepting data from the device (read operation), sending more data to the device
(write operation), and then restarting the device to continue the transfer. Eventually, the
continuation/completion section determines that a sufficient amount of data has been trans­
ferred and terminates the I/O operation.

A standard RTE driver operates with the interrupt system disabled (or effectively disabled, if
the system contains a Privileged Interrupt card. Refer to the "Writing Privileged Drivers"
section of this manual.) This means that once a driver is entered to process an interrupt, no
other interrupts (except privileged interrupts) can be serviced until the driver completes its
operation and returns to CIC. (CIC turns the interrupt system back on to allow other inter­
rupts to occur.) Drivers should therefore be coded as efficiently as possible to minimize the
amount of time that the interrupt system is disabled and the processing of other interrupts is
delayed.

3-1

3-3. DRIVER NAMING REQUIREMENTS

To facilitate the identification of driver programs and entry points, the following naming
scheme has been devised. This scheme must be incorporated into the design of all RTE drivers
so that the RTE system generator programs can identify the drivers and relocate them in the
proper memory area of the operating system.

a. Driver names must be five characters in length, beginning with the characters "DV" and
ending with a two~digit octal number (known as the equipment type code of the device).

b. The initiation and continuation/completion sections must have entry points whose names
are four characters in length, beginning with the character "I" or "C" respectively, and
ending with the same two-digit octal number used in the driver name.

Thus, if"1111" is the octal equipment type code, Ixn11 and Cxnn are the entry point names of the
initiation and continuation/completion sections respectively. DV.1Jnn is the driver name.

The user is allowed some flexibility in the choice of the "x" (in Ixnn and Cxnn) and ".I/" (in
DV.1J11n) characters referred to above. This flexibility allows several drivers with the same
octal equipment type code to have unique names and entry points. The rules for the choice of
"x" and ".I/" are:

If ".IJ" is "R" then "x" = " "

If "ll" is not "R" then "x" = "ll"

I Using the above rules, a driver named DVR07 has entry points 1.07 and C.07. A driver named.
DV A07 has entry points IA07 and CA07.

The octal equipment type code (nn) can be any octal number between 00 and 77. A table of
"standard" type codes is given in Figure 2-1. Care should be taken to choose the type code
and/or "x" and ".I/" characters so that new driver names and entry points do not conflict with
those of any standard HP drivers or other user written drivers present in the system.

3-4. INITIATION SECTION

The IOC module of RTE calls the driver initiation section when an I/O transfer is initiated.
Prior to actually entering the driver, it sets up all the information needed by the driver to
process the call in the associated EQT entry and in the Base Page Communications Area, as
follows:

a. Locations EQTl through EQT15 in the Base Page Communications Area are set to contain
the addresses of each word of the EQT entry associated with the call. Base page word EQTl
is set to contain the address of EQT entry word 1, base page word EQT2 is set to contain the
address of EQT entry word 2, and so on. If the driver uses DCPC (that is, if bit 15 of EQT
entry word 4 is set), IOC also assigns a DCPC channel to the driver and stores the DCPC
select code number in base page word CHAN.

3-2 Change 1

b. Words 6 through 10 of the EQT entry pointed to by the Base Page Communications Area
are set to contain the request parameters from the user's EXEC call (request code,
subfunction, buffer address, buffer length, and optional parameters, if present). Note that
EQT entry word 6 (CONWD) contains the CONWD from the user's EXEC call, modified to
contain the request code in bits 0 and 1 in place of the logical unit. The subchannel being
referenced by the call is placed into bits 6 through 10 of EQT entry word 4.

c. CIC also sets up and enables the correct map (System or User) needed by the driver to
process the call. (This step is performed in systems with Dynamic Mapping only.)

After performing these tasks, roe enters the driver directly via a jump subroutine to the
initiation entry point Ixnn (JSB Ixnn). Upon entry, the A-register contains the I/O select code
of the controller being referenced in the call. (This same information is present in bits 0
through 5 of EQT entry word 4.) Later, when the driver has completed (or rejected, if
necessary) the initialization procedure, it must return to roe via a jump indirect through the
Ixnn entry point (JMP Ixnn,I).

Once entered, the driver is free to use EQT entry words 6 through 13 in any way, but words 1
through 4 and 14 must not be altered. If an EQT entry extension was specified at generation,
the space in the extension is also available to the driver. In this case words 12 and 13 (which
define the extension) must not be modified. The driver can also update the status field in word
5, if appropriate, but this must be done without altering the rest of word 5. Finally, EQT entry
word 15 may be modified, if desired, to set a time-out value for the device. (Refer to the "I/O
Controller Time-Out" subsection in this manual.)

FUNCTIONS OF THE INITIATION SECTION

As part of the general I/O structure of RTE, the initiation section ofa standard driver performs
the functions illustrated in Figure 3-1. A more detailed description of the initiation section
functions is given below.

3-3

*IF A= 4 SET B =TRANSMISSION LOG

7700-126

lxnn

CONFIGURE 1/0
INSTRUCTIONS
FOR DEVICE'S
CONTROLLER

INITIALIZE
OPERATING

CONDITIONS
FlAGS, ETC.

SET BUFFER
ADDRESS,

LENGTH, MODE,
ETC. FOR

TRANSFER

OPTIONALLY
SET DEVICE'S
CONTROLLER

TIME-OUT
CLOCK (EQT 15)

(A) REGISTER
=RETURN CODE*

RETURN
TO
IOC

YES

NO

NO

Figure 3-1. I/O Driver Initiation Section

3-4

DO POWER
FAil

RECOVERY

(A)= 1 OR 2
REJECT
CODES

(A)= 3,
REJECT
CODE

a. Checks for power fail/automatic restart entry by examining bit 15 of EQT entry word 5,
which is set to 1 only on this type of entry. If bit 15 is set, the appropriate power
fail/automatic restart processing should be done. This check need only be made by drivers
that are designed to process power fail interrupts (as described in the "Power Fail Process­
ing" subsection of this manual).

b. Rejects the request by following the procedure described in step "g" if:

1. A status check of the device or controller indicates that it is inoperable, or

2. The request code or other parameters are illegal.

c. Configures all 1/0 instructions in the driver to reference the specific 1/0 select code (and
DCPC channel, if used) of the device controller.

d. Initializes DCPC, if used. (Refer to the "DCPC Processing" subsection of this manual.)

e. Initializes software flags and activates the device controller. All variable information
pertinent to the transmission must be saved in the EQT entry associated with the control­
ler because the driver may be called for another controller before the first operation is
complete.

f. Optionally sets the device controller time-out clock (EQT entry word 15) to modify the
time-out value inserted there by the system. (Refer to the "1/0 Controller Time-Out"
subsection of this manual.)

g. Returns to roe (via JMP Ixnn,I) with the A-register set to indicate initiation or rejection
(and the cause of the rejection) as follows:

If A =0

If A = 1,2,3

If A= 4

If A =5

the operation was initiated successfully.

The operation was rejected, where:

1 = read or write illegal for device
2 = control request illegal or undefined,
3 = equipment malfunction or not ready

the operation was immediately completed. This means that the driver
was able to completely satisfy the request without the need of a
subsequent interrupt and that the program making the I/O call can
be rescheduled immediately. The B-register should be set to the
number of words or characters (depending upon which the user
specified) transferred. This value is known as the transmission log.

a DCPC channel is required but none was assigned by roe. This can
only occur when the "DCPC channel required" bit is not set in the
EQT entry, and the driver decides that it needs a DCPC channel to
process this specific call. (Refer to the "DCPC Processing" subsection
of this manual.)

3-5

If A= 6 - 99 the program making the I/O request is aborted (unless the no-abort
bit was set in the call), and an 1/0 error message is printed on the
system console. (Note that this return can be used for unbuffered user
1/0 requests only. This therefore excludes the use of return codes 6
through 99 on any Class, buffered or system I/O request.) The error
message has the following format:

IOxx yyyyy
NNNNN ABORTED

where: xx = the return code from the driver (decimal 06 to
decimal 99),

yyyyy = the address of the aborted 1/0 request in program
NNNNN, and

NNNNN = the name of the program that made the I/O
request.

This type of return can be used by drivers to generate their own I/O
error messages at the system console. Note that certain codes are
reserved for system use, as follows:

Return Code

6 - 59

60 - 99

Reserved for

HP system modules and
drivers

user written drivers

3-5. CONTINUATION/COMPLETION SECTION

The CIC module of RTE calls the continuation/completion section of a driver whenever an
interrupt is recognized on an I/O controller associated with the driver. Before calling the driver
to process the interrupt, CIC issues a clear flag instruction (CLF) to the interrupting select
code, sets the addresses of the associated EQT entry into the Base Page Communications Area,
and sets the interrupt source code (I/0 select code of interrupting controller) into the
A-register. (The interrupting 1/0 select code address is also available in EQT entry word 4.)

CIC also sets up and enables the correct map (System or User) needed by the driver to process
the call. (This step is performed in systems with Dynamic Mapping only.) The driver is then
entered with the correct map enabled by executing a jump subroutine to the continuation/
completion section of the driver at entry point Cxnn (JSB Cxnn). This call has the following
format:

3-6

Location

p

P+l
P+2

Action

(Set A-register equal to interrupt source code)
JSB Cxnn
Completion return from Cxnn
Continuation return from Cxnn

The return points from Cxnn to CIC indicate whether the transfer is continuing (i.e., further
interrupts are expected from the device controller) or has been completed.

The continuation/completion section of the driver is flowcharted in Figure 3-2 and performs
the following functions. Note that steps "a" through "e" are always executed whenever the
driver is entered at Cxnn. Then, depending on whether the 1/0 operation is now complete or is
still continuing, the driver executes either step "f' (completion return) or step "g" (continua­
tion return) respectively.

7700-127

DOTIM[
OUT

i'f-lOCESS!NG

VE5

Rl·INITIAllZE
CONDITIONS

OPTIONALLY
SET DEVICE'S
CONTROL l ER

TIME-OUT
CLOC:K (EQT 15l

RETURN
TO

P•2

NO

NO

UPDATE
STATUS IN

EQT (5)

[B) =-;:;

WORDS OR
CHARACTERS

TRANSFERRED

(A)~

COMPLETION
CODE

CLEAR
DEVICE'S

CONTROLLER
CONTROL

RETURN
TO

p"

YES

Cxnn

CONFIGURE 110
INSTRUCTIONS
FOR DEVICE'S
CONTROLLER

NO

TRANSFER NEXT
DATA ITEM;

UPDATE
INDEXES;

FLAGS, ETC.

OPTIONALLY
SET DEVICE'S
CONTROLLER

TIME-OUT
CLOCK (EQT 15)

RETURN
TO

"'

SET EQT 15
~ 0

Figure 3-2. 1/0 Driver Continuation/Completion Section

fUPIO

3-7

a. Checks whether bits 14 - 0 of EQT entry word 1 (the controller I/O request list pointer)
equal zero. If so, a spurious interrupt has occurred (i.e., no I/O operation was in progress on
the controller). The driver ignores the interrupt, sets EQT entry word 15 (the time-out
clock) to zero to prevent time-out, and makes a continuation return as described in step "g"
below.

b. If the interrupt is valid (i.e., bits 14 - 0 of word 1 are non-zero), the driver configures all I/O
instructions in the continuation/completion section to reference the interrupting select
code.

c. Checks to see if a time-out has occurred on the device by checking bit 11 of EQT entry word
4. If this bit is set, the device has timed-out, and any required time-out processing should
be done. Note that this check need only be made by drivers that are designed to process
time-out interrupts (as described in the "I/O Controller Device Time-Out" subsection of
this manual). Drivers not processing time-out are not entered on device time-out.

d. If both the DCPC and the device controller interrupts are expected, but only the device
controller interrupt is significant, the DCPC interrupt can be ignored by making a
continuation return to CIC as described in step "g" below. (Refer to the "DCPC Processing"
subsection of this manual for a method to suppress the DCPC interrupt entirely.)

e. Performs the input or output of the next data item if the device is driven under program
control. One of three possible actions is then taken:

1. If the transfer is not complete, the driver follows the procedure described in step "g"
below to make a continuation return.

2. If the transfer is complete, the driver follows the procedure described in step "f' below
to make a completion return.

3. If the driver detects a transmission error, it can reinitiate the transfer and attempt a
retransmission. A counter for the number of retry attempts can be kept in the EQT
entry. After initiating each retry, the driver makes a continuation return to CIC as
described in step "g" below.

f. (Completion Return.) At the end of a successful transfer or after completing the retry
procedure, the driver performs the following steps before returning to CIC:

3-8

1. Sets the actual or simulated device controller status into bits 7 through 0 of EQT entry
word 5 without altering the rest of word 5.

2. Sets the number of words or characters (depending on which the user requested)
transmitted into the B-register. This value is known as the transmission log.

3. Clears the device controller (and DCPC if used).

4. Sets the A-register to indicate successful or unsuccessful completion and the reason, as
follows:

If A= 0 the operation was successfully completed.

If A = 1,2,3,4 the operation was not completed, where:

1 = device or controller malfunction or not ready
2 = end-of-tape or end-of-information
3 = transmission parity error
4 = device time-out

5. Return to CIC at P+ 1 (JMP Cxnn,I).

g. (Continuation return.) When the driver wishes to continue the transfer (i.e., additional
interrupts are expected), the driver performs the following steps before returning to CIC at
P+2:

1. Sets the device controller (and DCPC if used) for the next transfer or retry.

2. Optionally sets the device time-out clock (EQT entry word 15) to modify the value
inserted there by the system. (Refer to the "1/0 Controller Time-Out" subsection of this
manual.)

3. Returns to CIC at P+2 as follows (the registers are not significant):

ISZ Cxnn
JMP Cxnn,I

3-6. DEVICE CLEAR ON PROGRAM ABORT

If an 1/0 suspended program is aborted while waiting for a controller, the system attempts to
clear the controller by issuing a clear control request to the driver (i.e., request code 3,
subfunction code 00, as indicated in EQT entry word 6). All drivers written for use in RTE
must be prepared to handle this request even if no other control requests are supported for the
controller.

If the controller can be cleared without interrupt (i.e., immediately), the driver should perform
the clear operation and return to IOC with the A-register equal to 2 (control request illegal) or
4 (immediate completion). Either return is sufficient in this case; they are both treated
equivalently by the system.

If an interrupt is required, the driver should return with the A-register equal to 0. In this case,
the system forces a one second time-out for the controller. When the device controller inter­
rupts, the driver should complete the clear operation and make a successful completion return
(A-register= 0) to CIC at P+ 1. However, ifthe interrupt does not occur within the one second
time-out, the system itself issues a clear control command (CLC) to the controller's select
code(s). Note that in this case the driver is not entered to process the time-out even if it had
previously set the "driver processes time-out" bit in EQT entry word 4. (Refer to the "1/0
Controller Time-Out" subsection in this manual.)

3-9

3-7. 1/0 CONTROLLER TIME-OUT

Each I/O controller can have a time-out clock to prevent indefinite I/O suspension. Indefinite
I/O suspension can occur when a program initiates I/O, and the device controller fails to return
a flag indicating that the transfer is complete. This can occur as the result of either a hardware
malfunction or improper program encoding. Without the controller time-out, the program
making the I/O call would remain in I/O suspension indefinitely, awaiting the completion
indication from the device controller.

EQT entry words 14 and 15 function as an I/O controller's time-out clock. EQT entry word 15 is
the actual working clock. Prior to each call to the driver, word 15 is set to a value "m," where
"m" is a negative number of ten millisecond time intervals. Thereafter, this counter is
incremented by one at each ten millisecond tick of the system's real-time clock. If the control­
ler does not interrupt within the required time interval (i.e., before the counter in EQT entry
word 15 goes to 0), it is considered as having "timed-out."

The EQT entry word 15 clock for each controller can be individually set by either of the
following two methods:

a. The system always inserts the contents of EQT entry word 14 (a negative number) into
EQT entry word 15 before the initiation or continuation/completion section of a driver is
entered. Word 14 can be preset to "m" by entering a time-out value during the EQT entry
phase of generation, or it can be set or modified on-line with the TO operator request.

b. When the driver initiates I/O and expects to be entered due to a subsequent interrupt, the
driver itself can set the value "m" into EQT entry word 15 just before it exits. The value
"m" can either be coded permanently into the driver or can be passed to the driver as an I/O
request parameter.

NOTE

The system always inserts the contents of EQT entry word 14
into EQT entry word 15 before entering a driver, with the
following exception: if an initiation call is being made and
word 15 is already non-zero, it is not reset. In any case, a
time-out value inserted by the driver directly into word 15
overrides any value previously set by the system.

A time-out value of zero is equivalent to not using the time-out feature for a particular
controller. If a time-out parameter is not entered, its value remains zero and time-out is
disabled for the controller.

DRIVER PROCESSING OF TIME-OUT

When a controller times-out, a driver has the option of performing its own time-out processing,
or of letting the system handle it entirely. A driver that processes its own time-outs indicates
this to the system by setting bit 12 of EQT entry word 4. Since the system never clears this bit,
it needs to be set only once. When bit 12 is set, the following action takes places upon controller
time-out:

3-10

a. Bit 11 in EQT entry word 4 is set by the system.

b. The driver is entered at Cxnn with the A-register set to the 1/0 select code of the controller
that timed-out. (The same information is available in EQT entry word 4.)

c. The driver recognizes that the entry is for time-out by examining bit 11 of EQT entry word
4. When bit 11 is set, a time-out has occurred, and the driver should perform whatever
processing is necessary. This can involve completing the operation in progress or restart­
ing the device and continuing the operation. If the latter option is taken, the driver should
clear bit 11 prior to exiting in case it is entered again prior to completion of the operation.
This enables the driver to distinguish between a normal continuation entry (bit 11 = 0)

and another time-out entry (bit 11 = 1). Note that IOC only clears bit 11 prior to entering
the driver at Ixnn on an initiation call.

d. The driver may decide to continue (i.e., restart the device) or complete (i.e., terminate) the
operation, as follows:

1. If the driver decides to complete the operation, it sets the A-register equal to 4 (to
indicate that a time-out has occurred), sets the B-register equal to the transmission
log, and returns to CIC at P+ 1. This causes CIC to set the LU down and to print the
following message:

1/0 TO L #x E #y S #z

where:

#xis the LU number being set down,

#y is the number of the EQT entry associated with this LU, and

#z is the subchannel associated with this LU.

It is also possible to complete the operation without having a message printed. To do
this, the driver simply makes a normal completion return (A-register= 0, B-register =
transmission log) to CIC at P+ 1.

In either case (A = 4 or A = 0), CIC reschedules the calling program and passes it the
transmission log returned by the driver.

2. If the driver decides to continue the operation, it makes a normal continuation return
to CIC at P+2.

SYSTEM PROCESSING OF TIME-OUT

When a time-out occurs and bit 12 of EQT entry word 4 is not set, the system handles the
interrupt itself in the following way:

a. The program that made the initial I/O request is rescheduled and a zero transmission log is
returned to it.

3-11

b. The LU is set down and the following message is printed:

1/0 TO L #x E #y S #z

where:

#xis the LU being set down,

#y is the number of the EQT entry associated with this LU, and

#z is the subchannel associated with this LU.

c. A clear control (CLC) instruction is issued to the controller's select code(s) through the
EQT entry number located in the Interrupt Table.

Note that the driver is never entered for time-out processing when bit 12 of EQT entry word 4
is zero. This means that only those drivers that set bit 12 to indicate that they are to process
time-out need to check for a time-out entry.

Since the system issues a CLC instruction to the controller's select code(s), each controller
interface card requires an entry in the Interrupt Table during generation. Otherwise, the
system would not be able to issue the CLC instruction when a controller timed-out.

3-8. DCPC PROCESSING

The Dual Channel Port Controller (DCPC) feature of the HP 21XX series of computers can be
used to transfer blocks of data between I/O devices and the computer at high data transfer
rates. The DCPC transfers are initiated in software, but the actual word-by-word transfer is
handled under hardware control. Words are transferred to or from the computer via a "cycle
stealing" technique that operates concurrently with the normal execution of programs. This
design eliminates the overhead associated with driver processing of individual interrupts and
allows synchronous and high-speed devices to be controlled by standard RTE drivers.

This subsection discusses some of the aspects ofDCPC transfers in the RTE operating systems.
It is assumed that the reader is already familiar with the general techniques of DCPC
programming as described in the appropriate computer reference manual.

RTE CONTROL OF DCPC ASSIGNMENT

RTE controls the allocation of the two DCPC channels available via the first two words of the
Interrupt Table. Interrupt Table entry word 1 records the current assignment of DCPC
channel 1, and word 2 records the current assignment ofDCPC channel 2. This arrangement is
illustrated in Figure 3-3. This figure also illustrates the format of each individual DCPC
Assignment Word. (Note that DCPC channels 1 and 2 generate interrupts on I/O select codes 6
and 7, respectively, and hence are often referred to as DCPC channels 6 and 7.)

3-12

DCPC Channel 1 Assignment Word Interrupt Table Word 1
(1/0 Select Code 6)

Interrupt Table Word 2
(1/0 Select Code 7)

DCPC Channel 2 Assignment Word

Where each DCPC Channel Assignment Word has the format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 Bit No.

Where:

Address

F 1, if the driver assigned to the channel needs the
DCPC completion interrupt (set only in systems
with a privileged interrupt card).

= 0, otherwise

Address = the address of the EQT entry of the driver to which
the DCPC channel is assigned.

= 0, if the DCPC channel is currently not assigned.

Figure 3-3. DCPC Channel Assignment Words

Each DCPC Channel Assignment Word in the Interrupt Table can be in one of two states;
assigned or unassigned. If the entire word is zero, the respective DCPC channel is unassigned,
and is therefore available for use. A non-zero word implies that the DCPC channel is currently
assigned. Bits 0 through 14 contain the address of the EQT entry (which in turn points to the
driver) to which the DCPC channel has been allocated. Once a DCPC channel is allocated, a
driver can set bit 15 in the appropriate DCPC Channel Assignment Word as a flag to the
operating system. Use of this flag is fully explained later in this subsection.

DCPC ASSIGNMENT BY RTE

Before a driver can initiate a DCPC transfer, it must be assigned by RTE the exclusive use ofa
DCPC channel. This prevents simultaneous access to the channel by several drivers. A driver
can be assigned a DCPC channel in the following two ways:

PREFERRED METHOD

If the driver's EQT entry had a "D" specified at generation time, the "DCPC channel required"
bit is permanently set in the EQT entry (EQT entry word 4, bit 15). In this case, the system
always assigns a DCPC channel to the driver at each I/O initiation. The assigned DCPC
channel number can be found (at initiation only) in the Base Page Communications Area word
CHAN. It should then be saved in one of the temporary storage words of the EQT entry since it
is not available in CHAN on later entries to the driver for the same I/O request.

3-13

ALTERNATE METHOD

If a driver needs a DCPC channel only for a certain subset of the functions that it performs, it
can dynamically ask the system to assign it a DCPC channel as required. In this case, the
DCPC option is not selected for the driver's EQT entry at generation time, and hence the
"DCPC channel required" bit is not set in the EQT entry. Thus, the driver is entered without a
DCPC channel being assigned on I/O initiation. The driver must analyze the request and
determine if a DCPC channel is required. If so, the driver requests a DCPC channel from IOC
by returning via a jump indirect through lxnn (JMP lxnn,I) with the A-register equal to 5.
IOC then assigns a DCPC channel and recalls the driver.

However, IOC does not differentiate between the initial call to the driver and the recall with
the DCPC channel assigned. The EQT entry is set up identically in both cases, and the driver
is entered at lxnn. Furthermore, it is possible that the driver may never be recalled with the
DCPC channel assigned for a particular I/O request. For example, this can occur if the
program making the request is aborted before IOC has a chance to assign the DCPC channel. If
the program is aborted, the driver will not be entered again until another program requests
I/O for a device under the driver's control.

Thus, a driver can never know from the calling parameters or from its past history whether it
is being called for the first time for an I/O request (i.e., no DCPC channel is assigned) or
whether it is being recalled with a DCPC channel now assigned. The only way the driver can
distinguish between these two cases is to access the two DCPC Channel Assignment Words (in
the Interrupt Table) to determine whether a DCPC channel is currently assigned to the driver.

If the value in either DCPC Channel Assignment Word is equal to the address of the EQT
entry currently being serviced by the driver, that DCPC channel is currently assigned to the
driver. The driver can then assume that it has been recalled with a DCPC channel assigned,
and can initiate the transfer on that DCPC channel. If neither value matches, no DCPC
channel is assigned to the driver, and it must return to roe to request that one be assigned.
(Note that in this case the driver cannot use Base Page Communications Area word CHAN as
an indication of whether or not it has been assigned a DCPC channel. This is because CHAN
indicates only which channel was last assigned to any driver; not to whom it was assigned.)

The following code illustrates the DCPC assignment check technique. In reviewing this and
subsequent examples, remember that the Base Page Communications Area word INTBA
contains the address of the Interrupt Table, and that base page word EQTl contains the
address of the EQT entry currently being serviced by the driver.

CHDCP EQU * Execute this code if DCPC required
DLD INTBA,I Access DCPC Channel Assignment Words
CPA EQTl Is DCPC channel 1 assigned to this driver?
JMP CHI Yes, configure and initiate transfer on channel 1
CPB EQTI Is DCPC channel 2 assigned to this driver?
JMP CH2 Yes, configure and initiate transfer on channel 2
LDA =B5 No. A DCPC channel is not assigned. Set
JMP lxnn,I A = 5 to request one from IOC, and return.

Note that if a driver obtains a DCPC channel in this way, a special procedure must also be
followed to return the DCPC channel to RTE. The return procedure is discussed in the
"Returning DCPC Channels to RTE" subsection.

3-14

This method of obtaining a DCPC channel is more complex and should only be used by drivers
that: 1) process a mixture of DCPC and non-DCPC operations, and 2) cannot afford to tie up a
DCPC channel during the non-DCPC operations.

Regardless of the method used to obtain a DCPC channel, RTE records the assignment by
putting the address of the EQT entry being assigned the DCPC channel into the appropriate
DCPC Channel Assignment Word in the Interrupt Table.

If a DCPC channel is not available, the requesting EQT is set into a "waiting for DCPC" state.
As soon as another driver releases a DCPC channel, the lowest-numbered EQT waiting for
DCPC is assigned the DCPC channel, and its 1/0 request is initiated.

RETURNING DCPC CHANNELS TO RTE

As soon as a driver completes a DCPC transfer and the associated 1/0 request, the DCPC
channel must be returned to the available pool so that it can be used by other drivers. This
occurs in two different ways, depending on how the DCPC channel was assigned:

1. If the DCPC channel was assigned automatically (PREFERRED METHOD discussed
above), the DCPC channel is returned automatically by RTE when the driver makes its
completion return to CIC. No special driver processing is required.

2. If the DCPC channel was assigned as the result of a specific request by the driver
(ALTERNATE METHOD discussed above), the driver must explicitly inform RTE of this
fact when the 1/0 request is completed. This is done by setting the sign bit in the A-register
on the completion return to CIC. This bit may be set at all times - even when the driver
has not been assigned a DCPC channel. However, some extra system overhead is created if
the sign bit is set when not required. Note that the sign bit is set in addition to the normal
completion code, as illustrated below:

LDA COMCD Set A = completion code determined earlier
IOR = BlOOOOO Set sign bit to indicate dynamic DCPC assignment
JMP Cxnn, I Return to CIC

In either of the above cases, RTE implements the return of the DCPC channel by clearing the
appropriate DCPC Channel Assignment Word in the Interrupt Table. DCPC Channel 1
Assignment Word (Interrupt Table word 1) is cleared if DCPC channel 1 was assigned to the
driver; DCPC Channel 2 Assignment Word (Interrupt Table word 2) is cleared if DCPC
channel 2 was assigned to the driver. No action is taken if a DCPC channel was not assigned to
the driver.

HANDLING THE DCPC INTERRUPT

An end-of-operation interrupt is generated by the DCPC hardware when a DCPC transfer is
complete. Depending upon the nature of the device under control, the associated driver may or
may not wish to recognize the DCPC interrupt.

3-15

If the driver does not require or use the DePe completion interrupt, it can be disabled by
issuing a clear control instruction (eLe) to the DePe select code (6 or 7) after initializing the
DePe transfer. No further special processing is necessary.

If the driver uses the DePe completion interrupt, some special processing must be included in
the driver to ensure that the completion interrupt occurs only at the correct time in systems
using a Privileged Interrupt card. (These systems are described more fully in Section IV.)

The following potential problem exists: In systems using a Privileged Interrupt card, the
interrupt system is always ON, even when a driver is executing. It is therefore possible that a
driver using DePe could start the DePe transfer and be interrupted by its own DePe
completion interrupt before it had a chance to complete the initiation procedure and return to
roe.

To eliminate this problem, a scheme has been designed to hold off the DePe completion
interrupt until the standard driver using DePe completes the initiation procedure and
returns to roe. This scheme requires the cooperation of the standard driver utilizing DePe
and of both RTE and any privileged drivers present in the system, as follows: After disabling
the interrupt system and initializing the DePe transfer, the standard driver clears control on
the DePe select code (6 or 7) to inhibit the completion interrupt while the standard driver
completes the initiation procedure. The standard driver also sets a flag to inform RTE that the
standard driver actually needs the interrupt, and that RTE should reenable the interrupt
later, after the driver returns to roe.

The flag is also used by privileged drivers. A privileged driver disables the DCPC completion
interrupts upon entry so that the privileged driver will not be interrupted while processing the
privileged interrupt. A privileged driver will reenable a DCPC completion interrupt before
exiting only if it is needed by a standard driver (as indicated by the flag being set).

Bit 15 of each DCPC Channel Assignment word in the Interrupt Table is used as the flag for
the respective DCPC channel. If this flag is set, RTE and the privileged drivers will reenable
the DCPC interrupt on the correct DCPC channel at the appropriate time. No action is taken if
the flag is not set.

The section of code listed below illustrates the special processing required when a standard
driver uses the DePe completion interrupt. Note that although this processing must be
included in all drivers using DCPC, it need only be executed when the driver is operating in a
privileged system. The type of system in which a driver is operating can be determined by
examining base page word DUMMY. If DUMMY is 0, the system is non-privileged (i.e., no
Privileged Interrupt card is present); otherwise the system is privileged (i.e., a Privileged
Interrupt card is present).

3-16

CLF 0 Disable the interrupt system

STC DCPC,C Initiate transfer on DCPC channel

CLA

}
Bypass section below if

CPA DUMMY DUMMY = 0 (non-privileged system)
JMP X and special processing not needed.

CLC DCPC

l
Clear DCPC control to inhibit DCPC

LDB INTBA interrupt. Set B = address of the appropriate
LDA CHAN DCPC Channel Assignment word in the
CPA =D7 Interrupt Table
INB

LDA B,I

l
Set bit 15 of DCPC channel assignment entry

IOR =BlOOOOO equal to 1 as flag to system to turn DCPC
STA B,I interrupts back on later. Reenable the
STF 0 interrupt system.

x EQU * Continue processing.

INTERMIXED DCPC AND NON-DCPC OPERATIONS

Occasionally a driver may have a special requirement to intermix a series of non-DCPC
operations with DCPC operations during the same 1/0 request. Ifit is necessary or desirable to
retain assignment of the DCPC channel throughout the non-DCPC operation, the following
special processing is required: the software flag in bit 15 of the appropriate DCPC channel
assignment word should be cleared prior to beginning the non-DCPC operations. This prevents
the system from reenabling the DCPC completion interrupt when it is not desired. Note that
this processing need only be done if the flag was previously set under the conditions discussed
in the preceeding paragraphs.

3-9. DRIVER AUTOMATIC "UP"

A driver has the capability of automatically returning its EQT entry and all associated LU's to
the "up" state through a JMP instruction. For example, if a driver makes a not ready, parity
error, end-of-information, or time-out return to the system, the system sets the associated LU
and EQT entry into the "down" state. If the driver subsequently detects an interrupt (or
time-out) entry that signals that the controller is now ready, it may return the EQT entry and
associated LU's to the "up" state as follows:

JMP $UPIO

The device controller's EQT entry and all associated LU's are reset to the up (available) state
by $UPIO. If an 1/0 request is pending, $UPIO restarts the request by entering the driver at
the initiation entry point lxnn.

3-17

3-10. POWER FAIL PROCESSING

When an RTE system is generated, the user has the option of including DVP43, the power
fail/automatic restart driver, and AUTOR, the automatic restart program. If DVP43 is not
included, the system executes a HALT 4 when power is restored to the computer.

If the power fail/automatic restart modules are included in the generation, they enable the
system to recover automatically from a power failure. Power fail/automatic restart processing
can be divided into three parts:

a. The power down sequence.

b. The power up sequence.

c. The sequence required to restart any I/O transfers that were in progress when the power
fail occurred. (A driver has the option of restarting its own I/O, or of letting the system
restart it from the beginning of the request. These two alternatives are discussed below.)

POWER DOWN SEQUENCE

When a power fail occurs, a power fail interrupt is generated and DVP43 is entered to process
the interrupt. In the brief period of time available before the system becomes completely
inoperable, DVP43 performs the following steps to save the state of the machine:

a. Stops all DCPC transfers.

b. Saves all user accessible registers (A,B,E,O ...).

c. Saves the status of the memory protect fence. Also saves the status of the Dynamic
Mapping System (DMS) in systems which include the DMS feature.

d. Saves all map registers (System Map, User Map, and the two DCPC maps). This step is
performed in systems with Dynamic Mapping only.

DVP43 then executes a HALT 4 instruction before power fails completely.

POWER UP SEQUENCE

When power is restored to the computer, an interrupt is generated and DVP43 is reentered to
process the interrupt. DVP43 performs the following steps to restart the system:

a. Sets a software flag to prevent resaving the state of the machine if a subsequent power
failure occurs before the system is completely restored.

b. Reenables the power fail hardware.

c. Restores the state of the memory protect fence. Also restores all map registers and the
status of the Dynamic Mapping System in systems which include the DMS feature.

d. Saves the time of the power fail.

3-18

e. FindH the power fail EQT entry li.e., the EQT entry aHHociated with DVP4:iJ and sets up a
very short time out on this EQT entry by setting EQT entry word 15 !the time-out clock) to
-1. This causes DVP4:3 to be reentered after one tick of the real-time clock. DVP43 can
then begin to restart any 110 tranHfers that were in progress at the time of the power
failure.

f. Restarts the real-time clock.

g. Restores all user-accessible registers.

h. Clears the software flag that was set in step "a", so that the state of the machine will he
saved as usual on any subsequent power failures.

1. Returns to the suspended process (i.e., the process that was in operation when the power
fail occurred) at the point of interruption.

RESTART 1/0 SEQUENCE

As soon as the power fail EQT entry times-out, DVP43 is entered again since it previously set I
the "driver process power fail" bit. DVP43 now attempts to restart any I/O transfers that were
in progress at the time of the power fail by performing the following steps:

a. Makes the following checks for each 1/0 controller:

1. Checks bits 14 and 15 of EQT entry word 5. The value of bits 14 and 15 indicate
whether the 1/0 controller was "down" or "busy" at the time of the power failure.

2. Checks bit 13 of EQT entry word 4 to see ifthe driver associated with the EQT entry is
prepared to process a power fail/automatic restart entry. Drivers that are prepared to
process power fail/automatic restart entries will have previously set bit 13 to one.
Otherwise, this bit is zero. (Note that the system never clears bit 13, so a driver only
needs to set it once.)

3. Checks to see if any EQT entries are currently waiting for a DCPC channel.

b. Depending upon the above information, one of the following three actions is taken for each
controller or device in the system:

Case 1. Controller (EQT entry) busy and "driver processes time-out" bit set:

If the controller was reading or writing data when the power fail occurred and the
driver is designed to handle power fail, the driver has the responsibility to recover
from the power fail in the best possible manner. The system simply sets bit 15 of
EQT entry word 5 to 1 to indicate that a power fail has occurred, and enters the
driver at the initiation entry point Ixnn.

Case 2. Controller waiting for a DCPC channel.

If the controller was waiting for a DCPC channel when the power failure occurred,
no action is taken. The I/O transfer will be initiated as usual when a DCPC
channel is released by another driver.

Change 1 3-19

Case 3. All other EQT entries

For all EQT entries not falling under Case 1 or Case 2 above, DVP43 makes a call
to $UPIO to up the EQT entry and all associated LU's. (See the "Driver Automatic
Up" subsection of this manual.) $UPIO restarts any 1/0 requests that were in
progress (i.e., EQT entry was busy) or pending (i.e., EQT entry or LU was down) at
the time of the power failure. This is done by resetting the parameters of the
original call into the EQT entry and reentering the driver at the initiation point
Ixnn.

After the above action is taken for each 1/0 controller in the system, an HP-supplied program
called AUTOR (auto-restart) is scheduled. AUTOR sends the time of power failure to all user
consoles on the system (thereby reenabling all terminals).

AUTOR is written in FORTRAN, with the source tape supplied so that it can be easily
modified for site-specific applications.

3-11. PROGRAM SCHEDULING BY DRIVERS

Occasionally some 1/0 applications may require that a driver schedule a program to perform a
certain task. The system list processor, $LIST, has several calls available that provide drivers
with this capability. These calls are illustrated below. All of these calls cause a program to be
scheduled. They differ only in the format of the calling sequence, and in the type of information
that each call may specify is to be stored in the ID segment of the program to be scheduled.

Method 1. (Used to put five parameters in the ID segment and then schedule the program.)

RTN

PNAME
Pl
P2
P3
P4
P5

:3-20

EXT $LIST

JSB $LIST
OCT 701
DEF RTN
DEF PNAME
DEF Pl
DEF P2
DEF P3
DEF P4
DEF P5

ASC 3,XXXXX
OCT A
OCT B
OCT c
OCT D
OCT E

Return point. (Must be immediately after the calll
Address of three word array containing program name
Addresses of up to five optional parameters to be
placed in program's ID segment

Return point. Must be located immediately after call.
(See below for error status return in A & B-registers)

Name of program to be scheduled
Up to five optional parameters to be placed in
program's ID segment (temporary storage areal
prior to scheduling it.

This call causes the system to place whatever number (0-5) of optional parameters
are supplied into the temporary storage area of the ID segment of the program
whose ASCII name is contained in the variable PN AME. The system then
schedules the program to run at its own priority.

Method 2. (Same as Method 1, except that the ID segment address rather than the program
name is supplied. Note that in some RTE systems a driver may not be able to
search the ID Segment Table for a program's ID segment address. It is therefore
recommended that drivers scheduling programs do so by specifying the program's
name (function code 701 call to $LIST), rather than the ID segment address.)

RTN

Pl
P2
P3
P4
P5

EXT $LIST

JSB $LIST
OCT 001
DEF RTN
OCT IDADR
DEF Pl
DEF P2
DEF P3
DEF P4
DEF P5

OCT A
OCT B
OCT C
OCT D
OCT E

Return point. (Must be immediately after call.)
ID segment address of program to be scheduled.
Address of up to five optional parameters to be
placed in program's ID segment

Return point. Must be located immediately after call.
(See below for error status return in A & B-registers)

Up to five optional parameters to be placed in
program's ID segment (temporary storage area)
prior to scheduling it.

This call causes the system to place whatever number (0-5) of optional parameters
are supplied into the temporary storage area of the ID segment specified by
IDADR. The system then schedules the program associated with the ID segment to
run at its own priority.

Method 3. (Used to put a value into the "B-register at suspension" word in the ID segment
and then schedule the program. This call can be used to set the B-register to point
to a scheduling parameter storage area. The scheduled program can then recover
the parameters via a call to subroutine RMPAR. The driver should make sure that
the parameters are placed in a memory area that is mapped with the user
program.)

3-21

EXT $LIST

JSB $LIST
OCT 601
OCT IDADR
OCT BVAL

RTN

ID segment address of program to be scheduled.
Value to be put into "B-register at suspension" word
Return is always made to here by $LIST
(See below for error status return in A & B-registers)

This call causes the system to place the value BV AL into the "B-register at
suspension" word of the ID segment specified by IDADR. If this value is an
address that points to a set of scheduling parameters, the program can recover
the parameters by making a call to subroutine RMP AR. The system then
schedules the program associated with the ID segment to run at its own priority.

Error Conditions:

When $LIST returns from any of the program schedule calls described above, the A and
B-registers indicate whether or not the program was successfully scheduled, as follows:

If A= 0

If A is non-zero

the program was successfully scheduled. (The
B-register contains the ID segment address of
the scheduled program.)

the program could not be scheduled. The B-reg­
ister indicates the reason, as follows:

B 3 Illegal status (program not dormant)

B 5 No such program.

3-12. DETERMINATION OF OPERATING SYSTEM
ENVIRONMENT

There are times when it may be necessary for a driver to know the operating system within
which it is executing. The system entry point $0PSY provides this and other information in
the form of one-word table, as illustrated in Table 3-1.

3-22

Table 3-1. $0PSY Word Format

$0PSY Bit 15 Bit 3 Bit 2 Bit 1 Bit 0
Value•

System
1=RTE Type O=RTE-M O=No OMS 0 =64 Word Disc

1=RTE 1=DMS 1 =128 Word Disc

RTE-M/I -7 1 1 0 0 1
RTE-M/11 -15 1 0 0 0 1
RTE-M/111 -5 1 1 0 1 1
RTE-II -3 1 1 1 0 1
RTE-Ill -1 1 1 1 1 1
RTE-IV -9 1 0 1 1 1

*Note: All unspecified bits are set to 1.

$0PSY can be referenced simply by loading it into a register and testing the appropriate bits.
This technique is illustrated below:

EXT $0PSY

LDA $0PSY
AND MASK

Access $0PSY information
Isolate appropriate bits

Take appropriate action

In Dynamic Mapping Systems ($0PSY bit 1 = 1), it may also be necessary to determine
whether the System Map or User Map is currently enabled. This can be done in a driver by
accessing the status of the Dynamic Mapping System via an RSA instruction, and looking at
bit 12. Bit 12 is 0 ifthe System Map is enabled, and 1 ifthe User Map is enabled. The following
code illustrates this procedure:

RSA
ALF
SLA
JMP USER
JMP SYSTM

Access Dynamic Mapping System Status
Position Bit 12 into Bit 0
System Map Enabled?
No, User Map Enabled.
Yes, System Map Enabled

3-23

3-13. SUBROUTINES FOR SPECIAL MAPPING FUNCTIONS
(OMS SYSTEMS ONL V)

By using the Dynamic Mapping System (DMS) feature of the 21MX series of computers, RTE
provides the capability for addressing memory configurations larger than 32K words. This is
accomplished by translating memory addresses through one of four "memory maps." A mem­
ory map consists of a set of hardware registers. These registers provide the interface between
memory addresses used by programs (logical memory addresses) and actual memory addresses
(physical memory addresses). There are four distinct maps: the System Map, the User Map,
and the two DCPC maps. The DCPC maps are loaded (i.e., set up) by the system as necessary to
describe the logical memory configuration required by the currently executing program or
DCPC transfer.

Prior to entering a driver to process an 1/0 request, the system loads and enables the correct
map (System or User) needed to describe the buffer.of the request. However, when a driver is
entered with the System Map enabled (e.g., when the buffer is in System Available Memory),
it may also need to reference a second buffer located in the user program. Subroutine $XDMP
can be called by standard drivers to reload the User Map to describe the desired program. The
driver can then access the second buffer. After all accesses have been made, the driver restores
the User Map to its original contents and continues with its normal operation under the
System Map. The recommended procedure for using $XDMP is somewhat different in RTE-III
and RTEcIV, and each of these procedures is discussed in a separate section below.

NOTE

Subroutine $XDMP can be called by standard RTE drivers
only. Privileged drivers wishing to perform the same function
must use subroutine $PVMP, which is described in Section IV
of this manual.

MAPPING IN RTE-III AND RTE-M/III

Any standard driver operating in RTE-III may use subroutine $XDMP to perform the memory
map switching discussed above. The driver first saves the current state of the User Map
registers and the Dynamic Mapping System, and then calls $XDMP to reload the User Map
registers to describe the user program. The driver can then switch to operation under this map
and access the memory described by it. After all accesses have been made, the driver reenables
the System Map and restores the original state of the User Map registers before continuing
with its normal processing under the System Map.

3-24

Note that subroutine $XDMP need only be used to reload the User Map registers when the
driver is entered with the System Map enabled. The calling sequence is as follows:

CONT

EXT $XDMP

RSA
ALF
SLA
JMPUSER

RSA
RAL,RAL
STA DMSST

LDAMAPAD
IOR SIGN
USA

LDAIDADR
JSB $XDMP
SZA,RSS
JMPERROR

UJP CONT

Get Dynamic Malping System (DMS) status
Position bit 12 into bit 0
Is System Map Enabled?
No, so do not need to execute code below

Normal driver processing under System Map

Get Dynamic Mapping System (DMS) status
Position current status in upper bits
Save status for later.

Set A = address of User Map storage area
Set sign bit indicating STORE Map in memory
Save current User Map in memory for later.

Get ID address of program that contains buffer
Call $XDMP to set up User Map for this program
Check for error return
Error exists, go handle it

No errors. Enable new User Map and continue

Process buffer under new User Map

LDA MAPAD Access address of User Map storage area
USA Restore original contents of User Map
JRS DMSST NXT Restore original DMS status (i.e., System Map)

NXT
Proceed with normal processing under System Map

MAPAD DEF MAP
MAP BSS 32
SIGN OCT 100000
IDADR BSS 1
DMSST BSS 1

Addrees of User Map storage area
User Map storage area

Storage for ID segment address
Temporary storage for DMS status

When called, $XDMP checks to see ifthe referenced program is resident in memory. Ifit is not,
the User Map registers are not reloaded and the A-register is zero on return. If the program is
resident in memory, the User Map registers are reloaded to describe the program and the
A-register is non-zero on return.

3-25

Remember that any driver using this routine must save the original contents of the User map
and the DMS status before calling $XDMP. It must also restore the original User Map and
DMS status before continuing with its normal operation under the System Map. The example
above illustrates this procedure.

NOTE

The driver could also access the buffer in the user program
through a series of cross-map loads and stores without actually
enabling the User Map. This is in fact is the recommended
procedure for using $XDMP in an RTE-IV system, and use of it
by a driver would allow the same driver to be used in either
type of system.

MAPPING IN RTE-IV

Drivers that do their own mapping in RTE-IV must have the "M" ("driver does its own
mapping") option specified at generation time (during the EQT entry definition phase).
Selection of the "M" option causes the driver to be placed in the System Driver Area (SDA) of
memory and sets the "M" bit in the driver's DMT (Driver Mapping Table) entry. Drivers for
which the "M" bit is set are always entered with the System Map enabled, regardless of the
location of the buffer specified in the 1/0 request. If such a driver needs to access a buffer
within the calling program, it can call subroutine $XDMP to reload the User Map registers to
describe the program.

The procedure for using $XDMP is as follows: The driver first saves the current contents of the
User Map registers, and then calls $XDMP to reload the User Map to describe the calling
program. The driver can then use a series of cross-map loads and stores to access the buffer
described by the User Map. Note that the User Map should not be enabled since drivers in the
SDA are not necessarily included in all users' maps. After all accesses have been made, the
driver restores the original state of the User Map registers before continuing with its normal
processing.

Note that subroutine $XDMP need only be used when the driver is entered with the System
Map enabled but needs to access a buffer in a user program. Furthermore, $XDMP can only be
called by drivers resident in the System Driver Area of an RTE-IV system. The following
example assumes that both of these conditions are true.

3-26

MAP AD
MAP
SIGN
IDADR

EXT $XDMP

LDAMAPAD
IOR SIGN
USA

LDAIDADR
JSB $XDMP
SZA,RSS
JMPERROR

LDAMAPAD
USA

DEF MAP
BSS 32
OCT 100000
BSS 1

Normal SDA driver processing under System Map

Set A = address of User Map storage area
Set sign bit indicating STORE Map in memory
Save current User Map in memory for later

Get ID address of program that contains buffer
Call $XDMP to set up User Map for this program
Check for error return
Error exists, go handle it

No errors. Access buffer via series of
cross-map loads and stores, since System
Map is still enabled

Access address of User Map storage area
Restore original contents of User Map

Proceed with normal processing under System Map

Address of User Map storage area
User map storage area

Storage for ID segment address

When called, $XDMP checks to see if the referenced program is resident in memory and
whether or not the driver making the call resides in the System Driver Area (SDA). if either
condition is not met, the User map registers are not reloaded and the A-register is zero on
return. If the program is resident in memory and the driver is in the SDA, the User Map
registers are reloaded to describe the program and the A-register is non-zero on return.

Remember that the driver using this routine must save the current contents of the User Map
registers before calling $XDMP, and must restore the registers to their original value after all
accesses have been made to the buffer. The example above illustrates this procedure.

NOTE

Before a standard driver in the SDA is entered to process a user
program 1/0 request, the system automatically reloads the
User Map registers to describe the calling program. This is
done regardless of whether the driver is entered under the
System Map or the User Map. Thus, if the driver is entered
under the System Map, and ifthe second buffer that the driver
wishes to access is located within the calling program, some
processing time can be saved by not calling $XDMP to reload
the User Map registers. A call to $XDMP is not needed in this
case since the system has already reloaded the User Map regis­
ters with the correct information.

3-27

3-14. SAMPLE STANDARD RTE DRIVER

The sample driver illustrated in Figure 3-4 demonstrates some of the principles involved in
writing a standard 1/0 driver for the RTE operating system. Note that this driver is for tutorial
purposes only and is not one of the drivers supplied with the system.

3-28

PAGE 0002 101 ** STANDARD RTE DRIVER EXAMPLE **

(Ji,)•) 1 ASMB,L
)0C•3 OOC!<)O NAM C•l/R7C• ** STANDARD RTE DRIVER EXAKPLE ••
0<)04 *
()()C)5*

<) 0 <)6 ENT I.70,C.70
<)(ic)7*

<)<)C•B*
00~9* DRIVER 70 OPERATES UHOER THE CONTROL OF THE I/O CONTROL <IOCI
0010* AHO THE CENTRAL INTERRUPT CONTROL <CIC) MODULES OF RTE.
0011* THIS DRIVER IS RESPONSIBLE FOR COHTROLLIHG OUTPUT
0012• TRAHS"ISSION TO A 16 BIT EXTERHAL DEVICE.
0013• I .70 IS THE EHTRV POINT FOR THE •IHITIATIOH• SECTION
<)¢14• AHO C.70 IS THE EHTRV POINT FOR THE •COHTIHUATIOH/COKPLETIOH•
0015* SECTION.
I) 0 16 *
0017• NOTE THAT THIS DRIVER DOES HOT PROCESS TIKE-OUTS OR
0019* POWER FAIL. THESE PROCEDURES ARE LEFT ENTIRELY UP TO
0019• THE SYSTEM.
0<>20•
0021• REMEMBER THAT RTE SETS THE ADDRESSES OF EACH WORD OF
00~2* THE 15 WORD EQT ENTRY FOR THE DEVICE BEING SERVICED IHTO
0023• THE SASE PAGE COMMUHICATIOHS AREA OH EACH EHTRV TO THE
0<)2·4* DRIVER.
0025• THIS DRIVER REFERENCES THESE ADDRESSES THROUGH VARIABLES
0026• EQT1 THROUGH EQT15.
0<)27•
0029• **********************
0029• * INITIATION SECTIOH •
0030• **********************
0()31 •
0032• THE IHITIATIOH SECTION IS CALLED FROM IIO CONTROL <IOC> TO
0033• INITIALIZE A DEVICE AND INITIATE AH OUTPUT OPERATION
OOH*
0035•
0036•
<)<)37*

0038•
<)<)39•

0040•
<)041*
0042•
0043•
0044•
0<>45•
()046*
<)<)47 •
0048•
0049•
0050•
0051•
()052•

THE CALLING SEQUENCE FOR THE INITIATION SECTION IS:

<SET A = SELECT CODE OF f/O DEVICE>
P .JSB I.70
P+1 <RETURN POINT>

OH RETURN, A REGISTER INDICATES STATUS, AS FOLLOWS:

A = O, OPHATION SUCCESSFULLY INITIATED
A HOT o, OPERATION REJECTED FOR THE FOLLOWIHG

REASON:

A = 1 = ILLEGAL REAi> REQUEST
A = 2 = ILLEGAL CONTROL REQUEST

<HOT£, HOWEYER, THAT A •CLEAR" CONTROL REQUEST FROM THE
SVSTEl'I WILL BE PROCESSED BV THE DRIVER, AS REQUIRED.>

0053• ***********************************
0054• * COHTIHUATIOH/COMPLETIOH SECTION •
OOSS* ***********************************
0 <) 56.
0057• THE COHTIHUATIOH/CO"PLETIOH SECTION IS CALLED BY CENTRAL

Figure 3-4. Standard RTE Driver Example

3-29

PAGE 0003 101 ** STANDARD RTE DRIVER EXAMPLE **

0058'1<
)059•
OHO•
0061 *
OcH2•
<)cH3•
<)<.164•
0065•
0066•
<)<.16?•
0068•
0069•
0070•
0<>71•
0072•
OH3•
0074•
0075•
0076•
0077•
0078*
1)079•
0 !) so*
0081•
0 () 82 *
0083•
<)()84•

3-30

INTERRUPT CONTROL <CIC> TO CONTINUE OR COMPLETE AH OPERATION WHEN
AH INTERRUPT IS DETECTED OH THE DEYICE

THE CALLING SEQUENCE FOR THE COMPLETION SECTION IS:

<SET A = SELECT CODE OF f/0 DEYICE>
P JSBC.70
P+1 COMPLETION RETURN
P+2 CONTINUATION RETURN

OH RETURN, A ~ B REGISTERS INDICATE STATUS, AS FOLLOWS:

RECORD FORMAT:

ON A COMPLETION RETURN:

A = <), SUCCESSFUL COMPLETION, WITH
B = HUMBER OF WORDS TRAHSHITTED

A = 2, TRANSMISSION ERROR DETECTED

ON A CONTINUATION RETURN, THE REGISTERS ARE
HEAN IHGLESS

THIS DRIYER PROYIDES A 16 BIT BINARY WORD
TRANSFER OHLY.

Figure 3-4. Standard RTE Driver Example (Continued)

PAGE 0004 i01 ** STANDARD DRIVER - IHITlATIOH SECTION ••

0086•
)087• ••••••••••••••••••••••
0088• * IHITIATIOH SECTION *
0089• **********************
0090•

C) 0000 000000 I . 70 HOP EHTR'1' FROl'I I OC 0 0 91
0092•
<)093
0094•
0095
00%
O(>'H*
0098
00~9

00001 01b100R J SB SE Tl 0 CONFIGURE I/O IHSTRUCTIOHS FOR DEVICE

00002 161665 LDA EQT6,I GET CONTROL IJO RD OF REQUEST, AHD
00003 01211SR A HD =83 ISOLATE THE REQUEST TYPE

00004 OS2116R CPA = 8 1 IF REQUEST IS FOR IHPUT
(J•'.> 1)05 i26<)<)0R J MP I . 7 0 , I THEN REJECT I T < A = 1 = ILLEGAL

<) 1 C) <)

(/1 <) 1
01<:.2•

C• 00 <)6
00007

<)52117R
Co26017R

CPA =82
J MP I) . x 1

IF REQUEST IS FOR 0 UT P IJ T
THEH co PROCESS WR I TE REQUEST

0103• CONTROL REQUEST. CHECK IF IT IS A "CLEAR" CONTROL REQUEST
0104• IF SO, ASSUME IT WAS ISSUED BY SYSTEM, CLEAR DEVICE, AHO RETURH
0105•
<) 1 06
0107
010>3
i) 1 09
0 110 *
0 1 11
0 112.
0 113 *
0 114 *

00010 161665 LDA EQT6,I ACCESS CONTROL Iii 0 RD
0 00 11 012120R A HD =83700 ISOLATE SIJBFIJHCT I OH
00(•12 002002 SZA "CLEAR" REQUEST?
00013 <>2601SR J MP RE JCT HO, so RE.JECT REQIJEST

00014 106700 .0 CLC SC VES, CLEAR DE\/ ICE AHD

REQUEST ERROR - CAUSE REJECT RETURH TO IOC

AS ILLEGAL

RE TU RH

RE AD)

<) 115
<) 116

00015 062117R REJCT LDA =B2
00016 126000R JMP I 70,I

SET A = 2 FOR ILLEGAL COHTROL REQUEST
AHD RETURN <A= 2 = ILLEGAL COHT. REQ. >

0 117 *
0118• WRITE REQUEST PROCESSING
<) 119 *
0 120
0121
0122
0123
0124
01'25
0126
<>127
<) 1"28
0129
(It 30•
0131•
<) 1 32 *
0 13.3
0134
0135
Ot36•
0 13 7
,) 1 38
c)139•

C) 00 1 7
()0020
<)0021
<)0022
00023
00024
oons
00026
00027
00030

CALL

00031
00<)32
00033

00034
00035

161666 D . X 1 LDA E@T7, I
1716?(• STA EQH,I
161667 LDA EQT8,I
003004 Cf'IA,IHA
171671 STA EQTlO,I
002002 S ZA
026031R J MP D. X3
062121R L DA =:B4
00,,,4<>0 CLB
126000R ,J MP I . 70, I

THE CQHTIHUATIOH/COMPLETIOH

062114R D . X3 LDA P2
072036R STA c. 70
026047R JMP D.X2

<)02400 I EXIT CLA
126000R Jl'tP I . 70 I I

GET REQUEST BUFFER ADDRESS
AHD SET rT AS CURREHT ADDRESS
GET REQUEST BUFFER LE HG TH
f'IAKE HEGATIYE AHD
AHD SAYE AS REl'IAllHHC SUFFER LE HG TH
IS BUFFER LEHCTH = O?
HO, PROCESS AS USUAL
v Es I so HAKE IMMEDIATE COf'IPLETIOH RETURN
SET TRANSMISSIOH LOG = 0 IHTO 8
AND RETLIRN (A = 4 = Il'1MED. COMPLETIOH>

SEC TI OH TO WR I TE FIRST WORD

ADJUST RETURH ADDRESS so WILL
RE TU RH HERE UHITIATIOH SECTIOH>
GO TO COMPLETION SECT I OH

NOIJ RETURN TO IOC IJ I TH
OPERATION fHITIATED (A = 0 = OK >

Figure 3-4. Standard RTE Driver Example (Continued)

3-31

PAGE 0005 101 ** STANDARD DRIYER - COHTIHUATION/COMPLETIOH SECTION **

0141•
)142•
Q 143•
0144•
0 145•
01'46
0147 *
0148
0149*
01· 50
01- 51
01-52
0153
01'54•
01>55
Qt.Sb
01-57
01'58•
01·5~
0160
0161
0162•
0163
0 164•
0165
016'
QH,7
0168
0169•

00036 000000

00037 016100R

00040 161660
00041 012122R
00042 002002
00043 026047R

00044 171774
00045 036036R
00046 126036R

00047 0(}2400
00050 151671
00051 026063R

001)52 165'70

00053 1356?0
001)54 1601)01
00055 135671
00056 000000

c. 70

D.X2

<>170 00057 102600 I.1
0171 00060 103700 I.2

00061 036036R
00062 126036R

* COHTINUATION/COl'IPLETION SECTION *

HOP

JSB SETIO

LDA EQT1.I
AND =B77777
SZA
J MP D. X2

STA EQT15, I
ISZ C.70
JMP C.70.I

CLA
CPA EQT10, I
J MP I . 3

LDBEQH,I

ISZ EQT9.I
LIHc B .I
ISZ EQT10d
HOP

OTA SC
STC SC,C

ISZ C.70
Jl'IP C.70,I

COHTIHUATION/COKPLETIOH ENTRY POINT

CONFIGURE I/O IHST~UCTIONS

CHECK FOR SPURIOUS INTERRUPT
ISOLATE ?/O REQUEST LIST PTR (15 BITS>
IS A REQUEST IH PROGRESS?
YES, GO PROCESS REQUEST

HO, SPURIOUS INTERRUPT-ZERO Til'IE-OUT CLK
ADJUST RETURN TO P+2 <CONTINUATION>
KAKE CONTINUATION RETURN TO CIC

IF CURRENT BUFFER LENGTH = o,
THEN GO TO STATUS
SECTION. <I.E., TRANSFER OOHE HOY>

GET CURRENT BUFFER ADDRESS

ADD 1 FOR NEXT WORD
GET WORD TO BE WRITTEN TO DEYICE
INCREMENT WORD COUNT ALSO
IGNORE P+l SKIP IF LAST WORD

OUTPUT WORD TO INTERFACE
TURN OEYICE OH

ADJUST RETURN TO P+2 <CONTINUATION>
MAKE CONTINUATION RETURN

0172*
0173
0174
0175•
017€1*
0177•
01 78
0179
01:80
0181
0182

STATUS AND COl'IPLETIOH SECTION

0 t83
Ot84
01:85•
0 t86
0187
ores
01:89•
Ot90
ot~1 *
0 t 92
;,tH•
0 t94
Ot95•

3-32

00063 102500 I. 3
00064 012123R
00065 0?0001
00066 161664
00067 012124R
00070 030001
00071 171664

00072 002400
00073 056121R
00074 062117R

00075 165667

00076 106700 I.4

00077 126036R

LIA SC
AHO =877
STA B
LOA EQT5.I
AHO =8177400
IOR 8
STA EQTS ,J

CLA
C PB = B 4
Ll>A =82

LDB EQT8d

CLC SC

Jl'IP C.70,I

GET STATUS WORD FROM OEYICE
STRIP OFF UNUSED BITS
SAYE IN B TEMPORARILY
REMOYE PREVIOUS STATUS
BITS IH EQT WORD 5
OR lN NEY BITS
AND RESET INTO EQT WORD 5

SET A = 0 = OK RETURN CODE
ERROR STATUS BIT OH?
VES, SET A = 2 = ERROR RETURN

SET B = TRANS"ISSIOH LOG

CLEAR DEVICE CONTROLLER

"AKE CO"PLETION RETURN TO CIC

Figure 3-4. Standard RTE Driver Example (Continued)

'·

PAGE 0006 101 ** STANDARD DRIYER - SUBROUTINE SETIO **

0197•
H 98.
<)19'1*
0200•
0201•

• •••••••••••••••••••
* SUBROUTIHE SETIO *

0202• SUBROUTINE <SETIO> COHFIGURES ALL IIO INSTRUCTIONS IH DRIYER
0203•
0204
<>2 05 *
<) 206
<)207
02 v8•
02c.3
0210
<) 2 11 *
() 2 12
0 2 t 3
<)2 l·h
c) 2 15
0 2 16
<12 1 7
<)21>3•
<) 2 19
022<>•

001<)0 000000

00101 032113R
001<)2 072<>63R

001<)3 042125R
00104 0720S7R

001<)5 042126R
00106 072<)6¢R

00107 032127R
00110 072014R
00111 072076R

0¢112 126100R

SETIO HOP

IOR LIA
STA I . 3

ADA =8101)
STA I . 1

AC•A =81100
STA I. 2

IOR =84000
STA I. o
STA I. 4

Jl'IP SETIO, I

EHTRV POINT

COMBINE LIA WITH IIO
SELECT CODE AHD SET IH CODE

CONSTRUCT OTA INSTRUCTION

CONSTRUCT STC,C IHSTRUCTIOH

COHSTRUCT CLC IHSTRUCTIOH

RETURN

Figure 3-4. Standard RTE Driver Example (Continued)

3-33

PAGE 0007 101 ** STANDARD DRIYER - DATA AREA **

0222•
)223• *************
0224• * DATA AREA *
0225* *************
0226•
()227 * CONSTANT AH I> STORAGE AREA
0228•
0229 00000 A EQU (I A-REGISTER
0230 00001 B E QU l 8-REGISTER
!)231 *
C• 2 32 0000!) SC E QU !) DUMMY I/O SELECT CODE HIJMBER
C/233
0234
o::BS•
0236•
0237•
0238
02 3'h
0240
() 2 41
02 42
<)2 43
0244
0245
0246
0247
0248
.12 49
!) 2 51)
0251
0252
0253
0254
oass•
0256•

00113 1C/2SOO
00114 000033R

** BASE PAGE

01650

<) 1660
c) 1661
01'62
01663
01H4
01665
01666
!) 166 7
OH70
01671
!)1672
0 1771
01772
01773
01774

00115 000003
00116 000001
00117 000002
!)0121) 003700
00121 000004
00122 ()77777
00123 000077
00124 177400
00125 000 I 00
0<>126 001100
0<>127 <)()40(1(1

LIA LIA 0
P2 DEF IEXIT-1

COMMUNICATIONS AREA

EQU 16508

EQT1 EQU .+8
EQT2 EQU .+9
EQT3 EQU .+10
EQ T4 EQU . + 11
EQT5 EQU .+12
EQ T6 EQU .+13
EQT? EQU .+14
EQTS EQU .+15
EQH EQU .+16
EQT10 EQU .+17
EQT 11 EQU .+18
EQ T12 EQU .+81
EQT13 EQU .+82
EQT14 EQU .+83
EQT15 EQU . +84

0657 END

CODE FOR LI A
RE TU RH POI HT

DEFINITIONS **

** HO ERRORS *TOTAL **RTE ASHB 760~24**

INSTRUCTION
1H INITIATION

Figure 3-4. Standard RTE Driver Example (Continued)

3-34

SECTION

WRITING PRIVILEGED 11#@.Jll
._____ ______ RT_E_D_R_IV_E_RS--"-'~ .1 IV I

4-1. INTRODUCTION

Peripheral devices that are synchronous in nature, or that generate interrupts at very high
rates, need special attention in an RTE system. Such devices cannot be controlled by standard
RTE drivers on a word-by-word transfer basis, because this method cannot guarantee that the
interrupts generated by such device controllers will be processed within the required response
time. There are two reasons why the response time may be exceeded:

1. An interrupt is not recognized immediately by RTE if the interrupt system is disabled at
the time the interrupt occurs. For example, this happens if the interrupt occurs while a
standard driver is processing a previous interrupt, or while RTE itself is executing.

2. Once an interrupt is recognized, the system overhead required to direct the interrupt to the
appropriate driver for processing may be too long.

One way to guarantee a fast interrupt response time is to utilize DCPC transfers for synchron­
ous and high speed devices. The special DCPC hardware allows the transfer to occur simul­
taneously with other RTE operations, thereby eliminating the above problems.

However, DCPC transfers do not allow the driver to perform any processing that might be
required on each data word as it is transferred. For example, it might be necessary to check a
parity bit on each word as it is received from the device. Thus, a special interrupt processing
method is needed for any high speed or synchronous device that requires driver interaction on
each data word transferred. This interrupt processing method must have the following
properties:

a. The ability to recognize interrupts immediately, regardless of what other RTE operation is
in progress.

b. A means to eliminate the system overhead associated with processing an interrupt.

c. Driver interaction on each data word transferred.

Privileged interrupt processing was specifically designed to meet these criteria. This method
requires that a special I/O card, known as the Privileged Interrupt card, be present in the
system. The Privileged Interrupt card is inserted in the computer such that it physically
separates the I/O cards into two groups. All devices whose I/O cards are in lower-numbered
(i.e., higher priority) select codes are known as privileged devices; these are the high speed and
synchronous devices that require driver interaction on each word transferred. The I/O cards of
all other devices in the system are placed in higher-numbered (i.e., lower priority) select codes
and are known as non-privileged devices.

Systems with Privileged Interrupt cards are referred to as privileged systems, and a special
type of RTE driver (known as a privileged driver) is required for each privileged controller
present in the system. Standard RTE drivers are used for the remaining non-privileged
devices.

4-1

The Privileged Interrupt card can be any standardI/O card that contains the normal control
and flag flip-flop circuitry. Because of the position of the Privileged Interrupt card in the I/O
priority chain, setting of the control flip-flop on the card holds off all interrupts from the
non-privileged device controllers, while at the same time allowing the privileged device
controllers to interrupt.

When a Privileged Interrupt card is present in the system and a non-privileged interrupt
occurs (or when the system is requested to perform some function via an EXEC call or operator
request), RTE performs the following functions before entering the standard driver (or system
routine) to process the interrupt:

a. Disables the interrupt system and saves the state of the machine.

b. Sets the control flip-flop on the Privileged Interrupt card to hold off any further non­
privileged interrupts.

c. Disables the DCPC completion interrupts. These interrupts are not held off by the
Privileged Interrupt card since the DCPC completion interrupts occur on the highest
priority select codes (6 and 7).

d. Reenables the interrupt system and enters the driver to process the interrupt.

The above means that a privileged system processes standard (i.e., non-privileged) interrupts
and requests for system functions with the interrupt system in a hold-off state, rather than
with the interrupt system disabled (as it does in non-privileged systems). The privileged
interrupts are always enabled and can interrupt any process taking place and be serviced
almost immediately.

When servicing of the non-privileged interrupt is completed, RTE clears the control flip-flop on
the Privileged Interrupt card and reenables the DCPC completion interrupts if they are
needed by the standard driver using DCPC. This returns the system to a state where any
interrupt (privileged or non-privileged) can occur and be recognized almost immediately.

To eliminate the system overhead associated with processing interrupts, the contents of the
interrupt trap cells for the privileged device controllers are changed from a JSB LINK,I
instruction (where LINK contains the address of the entry point to CIC), to a JSB $JPNN,I
instruction (where $JPNN contains the address of the entry point of the privileged interrupt
routine). When a privileged interrupt occurs, the privileged routine is entered directly, rather
than from CIC. This eliminates the system overhead. The tradeoffis that the privileged driver
must be somewhat more complex than a standard driver, since it must perform some of the
housekeeping duties normally handled by CIC.

RTE records a system as privileged by storing at generation time (or, for RTE-IV, at reconfig­
uration time) the I/O select code address of the Privileged Interrupt card in Base Page
Communications Area word DUMMY. Systems without a Privileged Interrupt card have a
zero in base page word DUMMY.

In general, privileged drivers are very similar to standard drivers; thus most of the material
presented in Section III for standard drivers also applies to privileged drivers. Since only the
differences are pointed out in this section, the reader should be familiar with the material
presented in Section III before continuing with the privileged driver considerations described
below.

4-2

4-2. GENERAL PRIVILEGED DRIVER STRUCTURE AND
OPERATION

Privileged drivers are responsible for the initiation, continuation, and completion of all I/O
requests for privileged devices. Since privileged drivers operate independently of RTE, there
are several additional requirements and restrictions that must be followed to ensure the
integrity of the operating system and the proper operation of the driver. These restrictions and
requirements are described in subsequent subsections.

Privileged drivers are generally designed in three sections: 1) an initiation section, 2) a
privileged section, and 3) a completion section. The driver must have a name in the form
DVynn, and the initiation and completion entry points must have names in the forms Ixnn
and Cxnn respectively. The rules for the choice of"x," "y" and "nn" are the same as those given
previously for standard drivers. There are no special rules for the entry point name of the
privileged section. For consistency with Ixnn and Cxnn, it is suggested that a name such as
Pxnn be chosen, where "x" and "nn" agree with the characters chosen for Ixnn and Cxnn.

IOC calls the initiation section of a privileged driver when an I/O request for a privileged
device is made. This call has the same format as the call to the initiation section of a standard
driver (see Section III of this manual).

The privileged section of a privileged driver is somewhat similar to the continuation section of
a standard driver. The privileged section is entered on each interrupt from the privileged
device controller and is responsible for reading or writing the next data word and restarting
the device. Since the privileged section is entered directly from the trap cell on interrupt
(rather than from CIC), it must save and restore the state of the computer on entry and exit.
(These tasks are performed by CIC for standard drivers.)

The completion section of a privileged driver has an entry point named Cxnn, and is responsi­
ble for returning to RTE when the I/O transfer is complete.

The overall operation of a privileged I/O request from initiation to completion is summarized
below:

a. The privileged driver is called by a standard EXEC I/O call.

b. If the request is being made by a user program and the call is not buffered, the calling
program is placed into I/O suspension.

c. The interrupt trap cell for the privileged device controller is changed by the privileged
driver from a JSB LINK,I instruction (where LINK contains the address of the entry point
to CIC) to a JSB $JPNN,I instruction (where $JPNN contains the address of the privileged
section entry point, Pxnn).

d. Each time the device controller interrupts, the system overhead is circumvented because
the privileged section Pxnn is entered directly.

e. After each interrupt, if another data transfer is still requireq to satisfy the buffer length,
the device controller is restarted and the privileged section is exited.

f. When the entire data buffer has been filled, the driver needs a way to inform RTE that the

4-3

transfer is complete. This is accomplished by allowing the driver to time-out, which causes
IOC to reenter the driver at Cxnn.

g. Cxnn returns the transmission log (via the B-register) and a successful completion indica­
tion (via the A-register) to IOC.

h. IOC then reschedules the program that made the I/O request.

4-3. INITIATION SECTION

The initiation section of a privileged driver performs the functions listed below. The list is
similar to the one given earlier for standard drivers with the exception that no DCPC
processing can be done by privileged drivers. (See the "Privileged Driver Design Considera­
tions" subsection of this manual.)

a. Checks for power fail/automatic restart entry by examining bit 15 of EQT entry word 5,
which is set to 1 only on this type of entry. If bit 15 is set, the appropriate power
fail/automatic restart processing should be done. This check need only be made by drivers
that are designed to process power fail interrupts (as described in the "Power Fail Process­
ing" subsection of this manual).

b. Configures all I/O instructions in the driver to reference the specific I/O select code of the
device controller. This step is done only on the first entry to the driver since there is one
privileged driver for each privileged device controller in the system. (See the "Privileged
Driver Design Considerations" subsection of this manual.)

c. Clears bit 12 in EQT entry word 4 if time-outs are to be handled by the system. This bit
will be reset to 1 by the privileged section when it sets up to complete the call.

d. Rejects the request and follows the procedure described in step "f' if:

1. A status check of the device or controller indicates that it is inoperable, or

2. The request code or other parameters are illegal.

e. Initializes software flags and activates the device controller. All variable information
pertinent to the transmission can be saved in the EQT entry associated with the controller,
providing that the driver saves the addresses of the EQT entry internally in the driver
itself at initiation. These addresses are not available on base page on subsequent entries to
the driver. (See the "Privileged Driver Design Considerations" subsection of this manual.)

f. Returns to IOC (via JMP Ixnn, I) with the A-register set to indicate initiation or rejection
(and the cause of the rejection) as follows:

If A= 0

If A= 1,2,3

4-4

the operation was initiated successfully.

the operation was rejected, where:

1 = read or write illegal for device
2 = control request illegal or undefined,
3 = equipment malfunction or not ready

If A = 4 the operation was immediately completed. This means that the driver
was able to completely satisfy the request without the need of a sub­
sequent interrupt and that the program making the I/O call can be
rescheduled immediately. The B-register should be set to the number of
words or characters (depending upon which the user specified) trans­
ferred. This value is known as the transmission log.

If A = 5 this return must NOT be used by privileged drivers.

If A = 6 - 99 the program making the I/O request is aborted (unless the no-abort bit
was set in the call) and an I/O error message is printed on the system
console. (Note that this return can be used for unbuffered I/O requests
only. This therefore excludes the use of return codes 6 through 99 on any
Class, buffered or system I/O request.) The error message has the follow­
ing format:

IOxx yyyyy
NNNNN ABORTED

where: xx = the return code from the driver (decimal 06 to decimal
99),

yyyyy = the address of the aborted I/O request in program
NNNNN, and

NNNNN = the name of the program that made the I/O request.

This type of return can be used by drivers to generate their own I/O error
messages at the system console. Note that certain codes are reserved for
system use, as follows:

Return Code

6 - 59

60 - 99

Reserved for

HP system modules and
drivers

user written drivers

Before returning to IOC, the initiation section modifies the trap cell for the privileged device
controller to contain a JSB $JPNN,I instruction, where $JPNN contains the address of the
privileged section entry point Pxnn. This causes all interrupts from the privileged device
controller to be directed immediately to the privileged section of the driver. The driver needs to
perform this step only once since the contents of the trap cell are not modified by any other
program or system routine.

In setting up the trap cell, the driver must be sure that it is operating with the System Map
enabled so that it has access to the trap cells. This can be ensured by having the calling
program reference a buffer in SYSTEM COMMON when making the I/O request to the driver.
(See the "Communication with User Programs" subsection later in this manual.)

An alternative method of setting up the trap cell is to point the trap cell directly at the
privileged section entry point when the system is generated. This is done by entering

4-5

sc,ENT,Pxnn (where "sc" is the select code of the privileged controller) during the Interrupt
Table definition phase of the generation. When the generator detects an entry of this form it
places a JSB $JPNN,I instruction (where $JPNN contains the address of Pxnn) into the
appropriate interrupt trap cell. The generator also places a zero in the corresponding Interrupt
Table entry to indicate that interrupts on the select code are not handled by RTE. This method
requires that the privileged section entry point, Pxnn, be declared as an entry point in the
privileged driver (via the ENT pseudo-instruction).

4-4. PRIVILEGED SECTION

When a privileged interrupt occurs, the operation currently in progress is suspended, and the
privileged section of the driver is entered directly via the JSB $JPNN,I instruction in the trap
cell. In addition to the normal tasks associated with continuing the data transfer, the
privileged section is required to perform several housekeeping functions that are normally
performed by CIC. This includes saving and restoring the state of the computer on entry and
exit and disabling the DCPC completion interrupts so that the driver's operation is not
interrupted.

The privileged section of a privileged driver performs the following functions:

a. Executes the following tasks done by CIC for standard drivers:

4-6

1. Disables the entire interrupt system with a CLF 0 instruction so that the driver is not
interrupted while performing the housekeeping functions.

2. Disables the DCPC completion interrupts by issuing a CLC 6 instruction and a CLC 7
instruction. The DCPC completion interrupts are associated with 1/0 select codes 6 and
7, and therefore precede the Privileged Interrupt card in the 1/0 priority chain.
Interrupts from these device controllers are not held off by the Privileged Interrupt
card and must be disabled to prevent an interrupt from occurring while the privileged
driver is executing.

3. Saves the current contents of all program accessible registers (A,B,E,O, and, if present,
X and Y) in a local buffer. These registers must be restored to their original contents
before exiting the driver.

4. Saves the previous state of the memory protect fence. When an interrupt occurs, the
memory protect fence (if ON) is automatically turned off. The driver can determine the
previous state of the memory protect fence (which is the state to which it should be
restored after processing the interrupt) by examining Base Page Communications
Area word MPTFL. If MPTFL equals zero, memory protect was ON when the
privileged interrupt occurred and the privileged section must turn the fence back on
before exiting. If MPTFL is non-zero, memory protect was OFF, and the privileged
section must not restore the memory protect fence.

5. Sets base page word MPTFL to 1 to indicate that the memory protect fence is now OFF.

6. Saves the status of the Dynamic Mapping System so that it can be restored to its
original state before returning to the point of interruption. This is done by executing
an SSM instruction. (Applicable to systems with Dynamic Mapping only.)

7. Reenables the interrupt system by executing an STF 0 instruction. This allows a
higher priority privileged controller (if one exists) to interrupt the driver. All non­
privileged interrupts are held off because the flag is still set on the card that caused the
privileged interrupt.

b. Checks whether bits 0 - 14 of EQT entry word 1 (the controller I/O request list pointer)
equal zero. If so, a spurious interrupt has occurred (i.e., no I/O operation was in progress at
the time of the interrupt). The driver ignores the interrupt as follows:

1. Disables the interrupt system via a CLF 0 instruction so that the driver is not
interrupted while clearing the controller.

2. Clears the control and flag flip-flops on the controller (usually via a CLC DEVIC,C
instruction).

3. Proceeds to step "e-3" below to restore the computer to its original state before exiting.

c. Performs the input or output of the next data item. One of the following three actions is
then taken:

1. If the transfer is not complete, the driver follows the procedure described in step "e"
below to return to the suspended process at the point of interruption.

2. If the transfer is complete, the driver follows the procedure described in step "d" below
to set up for a completion return to IOC.

3. If the driver detects a transmission error, it may reinitiate the transfer and attempt a
retransmission. A counter for the number of retry attempts can be kept in the EQT
entry. After initiating each retry, the driver follows the procedure described in step "e"
below to return to the suspended process at the point of interruption.

d. Once the transfer is complete, the driver needs a way to indicate this fact to RTE so that
the program that made the I/O request can be rescheduled. This is accomplished by letting
the driver time-out. To do this, the driver performs the following steps:

1. Disables the interrupt system with a CLF 0 instruction so that no interruptions occur
while the time-out is being set up and the computer is being restored to its original
state.

2. Turns off the device controller to prevent further interrupts (usually with a CLC
instruction).

3. Sets the time-out clock (EQT entry word 15) to -1 to cause a time-out of the privileged
device controller at the next tick of the real time clock. This will cause the completion
section of the driver to be entered from IOC so that a normal completion return can be
made to RTE.

4. Sets the "driver processes time-out" bit in EQT entry word 4 to one so that the driver
will be reentered when the time-out occurs.

5. Follows the procedure described in step "e-3" below to restore the computer to its
original state before exiting.

4-7

e. Before returning to the point of interruption, the privileged section performs the following
steps to restore the computer to its original state upon entry:

4-8

1. Disables the interrupt system so that no interruptions occur while the computer is
being restored to its original state.

2. Encodes the device controller to initiate the next data transfer, usually via a STC
DEVIC,C instruction. Note that the device controller must not be encoded until the
interrupt system is disabled and the driver is about to return to the point of interrup­
tion. If the device controller were encoded earlier, the driver might be reentered at
Pxnn by the next interrupt before completely servicing the previous interrupt. Clear­
ing of the flag on the privileged device controller's I/O card will also reallow any lower
priority interrupts to be recognized by the system when the interrupt system is
reenabled.

3. Checks to see if either of the DCPC completion interrupts needs to be reenabled, as
follows:

If the memory protect fence was initially OFF, the driver must not reenable the DCPC
completion interrupts. If the memory protect fence was initially OFF, the privileged
driver interrupted the operation of the system or another privileged driver. These
routines operate with the DCPC completion interrupts disabled and assume that the
completion interrupts will remain disabled if they are interrupted.

If the memory protect fence was initially ON, the DCPC completion interrupts are
turned back on only if the standard driver currently using the DCPC channel needs
the interrupt. Standard drivers that need the DCPC completion interrupt set bit 15 of
the appropriate DCPC Assignment Control Word (in the Interrupt Table) to 1 as a flag.
(See the "DCPC Processing" subsection earlier in this manual.) If bit 15 is set, a
privileged driver must reenable the appropriate DCPC completion interrupt by issuing
a STC 6 or STC 7 instruction. If bit 15 is not set, the privileged driver must not
reenable the interrupt.

4. Restores all saved registers to their original values.

5. Restores base page word MPTFL to its original value. (This word is used to indicate the
current status (ON/OFF) of the memory protect fence).

6. Turns the interrupt system back on via a STF 0 instruction to allow other interrupts to
occur.

7. Turns the memory protect fence back on via a STC 5 instruction if the fence was ON
initially.

8. Performs one of the following actions depending on whether or not the system includes
the Dynamic Mapping feature:

1. Restores the Dynamic Mapping System to its original value at interrupt and
returns to the suspended process at the point of interruption by executing a jump
and restore status (JRS) instruction indirect through the entry point Pxnn. (Per­
formed only in systems with the Dynamic Mapping feature.)

ii. Returns to the suspended process at the point of interruption via a jump indirect
through the entry point Pxnn. (Performed only in systems without the Dynamic
Mapping feature.)

NOTE

If the memory protect fence was turned on in step 7, execution
of the JRS instruction (in step 8) to restore DMS status can
only be performed if the System Map is currently enabled. An
attempt to execute it with the User Map enabled will result in
a DMS violation. Thus, if the driver switches to operation
under the User Map for any reason, the System Map must be
reenabled before executing the JRS instruction. The explana­
tion of map switching given in the "Subroutines for Special
Mapping Functions" subsection of this manual illustrates this
procedure.

4-5. COMPLETION SECTION

When the time-out set up by the privileged section occurs, IOC enters the continuation section
of the privileged driver at entry point Cxnn. The continuation section sets the A-register equal
to the appropriate completion code and the B-register equal to the transmission log. It then
returns to IOC via a jump indirect through the entry point Cxnn (JMP Cxnn,I). The return
point (P+ 1) and allowable completion codes (0 - 4) are the same as those described earlier for
the completion section of a standard driver.

4-6. PRIVILEGED DRIVER DESIGN CONSIDERATIONS

Privileged drivers operate independently of RTE. In fact, the operation of the RTE operating
system itself may be suspended while a privileged interrupt is being serviced. As a result, the
writer of a privileged driver must adhere to the following design requirements:

a. Privileged drivers must not use any of the features or request calls of RTE. Calling a
system process might involve entering RTE while it is processing another request. This
cannot be allowed because RTE is not reentrant.

b. Privileged drivers cannot use either DCPC channel because it is very difficult to coordi­
nate the use of DCPC with the operating system and other drivers that may be using
DCPC.

c. If a privileged driver wishes to use the EQT entry for temporary storage, the initiation
section must read the EQT entry addresses from the Base Page Communications Area and
save them internally in the driver. These addresses are not available in base page on
subsequent interrupts since the privileged driver is entered directly from the trap cell
instead of from CIC. (CIC is the module that places these addresses into the base page
before calling a standard RTE driver to process an interrupt.)

d. Since privileged drivers are required to keep information relating to the I/O request
internally (see "c" above), a separate privileged driver is required for each privileged

4-9

device controller present in the system. For each additional controller of the same type, an
additional copy of the privileged driver must be generated into the system. Each copy of
the driver must have unique names for DVynn, Ixnn, Pxnn, and Cxnn.

4-7. COMMUNICATION WITH USER PROGRAMS (OMS
SYSTEMS ONLY)

Privileged drivers are automatically entered with the System Map enabled when a privileged
interrupt occurs. If the 1/0 request buffer for the privileged call is located in a user program,
the driver will have to switch maps before it can access the buffer. Any privileged driver in a
DMS system should therefore be designed for user communication through SYSTEM COM­
MON or the Subsystem Global Area (SSGA) to avoid the overhead of map switching. These
areas can be specified at generation to be included in both the System Map and User Map, and
hence can be accessed directly by both user programs and privileged drivers without any map
switching.

Otherwise, ifthe 1/0 request buffer is located in a user program, some map switching will have
to be done before the privileged driver can access the buffer. This map switching procedure is
described in detail in the "Subroutines for Special Mapping Functions" subsections of this
manual.

4-8. DISCUSSION OF SAMPLE OMS PRIVILEGED DRIVER

The following discussion describes Figure 4-1, an example of a privileged driver written
specifically for use in a system with the Dynamic Mapping feature. (Figure 4-2 shows a similar
driver written specifically for a system that does not include the Dynamic Mapping feature.)
For the purposes of the discussion, this driver has been given the generalized name of
DVYNN.

The device controller transfers one word of data each time it interrupts, and the data is stored
in a buffer passed to the driver via the call parameters. Note that the design of the DMS
privileged driver assumes that the 1/0 request buffer is located in SYSTEM COMMON for two
reasons: 1) it ensures that the driver's initiation section is entered with the System Map
enabled. This is necessary for the proper operation of the trap cell modification technique used
in that section; 2), it allows the driver to place data values directly in the 1/0 request buffer
without any map switching.

Note that the driver does not process power fail interrupts nor does it process any time-outs,
except for the time-out it creates as a means to complete the 1/0 request and return to IOC.

INITIATION SECTION

Refer to the partial listing of the sample privileged driver in Figure 4-1 (or 4-2). A standard 1/0
call to input from the device causes the calling program to be 1/0 suspended and the driver to
be entered at Ixnn.

Since this driver can control just one device controller, there is no need to configure the 1/0
instructions more than once. Therefore, the driver is configured the first time it is entered, and

4-10

the switch at "FIRST" is set so that the configuration code is not executed on any subsequent
entry to the driver. The initiation section also saves the addresses of those EQT entry words
that will be used by the privileged section since these addresses will not be available in base
page on subsequent interrupts.

The modification of the trap cell is also performed just once (as part of the configuring routine)
and is not modified again on any later entries into the initiation section. The trap cell is
altered so that the device controller interrupts are channelled to the privileged section of the
driver (Pxnn) instead of to CIC. The JSB $JPNN,I instruction (where $JPNN contains the
address of Pxnn) is established by coding a JSB instruction on the base page (see listing).

The request code is checked for validity. All write requests and control requests (except a
"clear" control request from the system) are rejected. For read requests, a counter is estab­
lished for the number ofreadings to be taken, and the buffer address for the storage of the data
is saved. The "driver processes time-out" bit in EQT entry word 4 is cleared so that any
unexpected time-outs are handled by the system. This bit is later reset to 1 by the privileged
section when it sets up a time-out as a means of returning to IOC at the end of the 1/0 request.
Finally, the initiation section sets up and encodes the device controller to begin a read
operation and returns to IOC.

PRIVILEGED SECTION

When the device controller interrupts, the privileged section (Pxnn) is entered directly as a
result of the controller's trap cell modification.

Because entry is made directly into Pxnn, Pxnn must do the housekeeping that is normally
done by CIC when a standard interrupt occurs. Thus, before Pxnn can turn the interrupt
system back on to allow higher priority privileged interrupts to be recognized, Pxnn must
ensure that the DCPC channels cannot interrupt, save the user-programmable registers, save
the old memory protect status, and set its new status. For systems with Dynamic Mapping,
Pxnn must also save the Dynamic Mapping System status at the time of interrupt.

Pxnn then loads and stores the data in the next unfilled buffer word. If there is yet another
data point to be taken, Pxnn sets up the device controller for the next reading, disables the
interrupt system, encodes the device controller, restores memory protect status and its flag,
restores the user programmable registers, turns the interrupt system back on, and exits. For
systems with Dynamic Mapping, Pxnn must also restore the Dynamic Mapping System status
to its original value. All of this basically resets the system to its state before Pxnn was entered.

When the last reading is taken, Pxnn disables the interrupt system, turns off the device
controller, and sets up the privileged controller's EQT so that a time-out will occur at the next
tick of the real-time clock. Pxnn then resets the system to its original state and returns to the
suspended process at the point of interruption.

COMPLETION SECTION

The status of the device controller and the driver is now unchanged until the Time Base
Generator (TBG) interrupts. The TBG causes a time-out of the privileged controller (because a
-1 was set into EQT entry word 15), which in turn causes IOC to pass control to the completion

4-11

section at Cxnn. The completion section simply sets the A- and B-registers to the status and
transmission log, respectively, and returns to IOC. IOC then reschedules the calling program
and initiates any remaining requests for the controller as ifit were a standard (non-privileged)
controller.

4-9. TIME-OUT VALUES FOR PRIVILEGED DRIVERS

If the user wishes to specify a time-out value for the privileged controller (to prevent indefinite
suspension in the event that the controller malfunctions), the time-out value must be long
enough to cover the entire period from I/O initiation to completion. This is different from the
time-out value for a standard driver, which is normally only long enough to cover the expected
time between interrupts from the standard device controller.

Each time IOC or CIC enters a standard driver to initiate or continue an I/O request, it resets
the time-out clock (EQT entry word 15) to the value specified at generation. However, since
privileged drivers are not entered from CIC on interrupt, the time-out value is inserted into
the privileged controller's time-out clock only at initiation. If this value is not long enough to
cover the entire I/O transfer period, a time-out will occur while the data transfer is still in
progress, and the transfer will be prematurely terminated. This can be prevented by specifying
a suitably long time-out value, or by specifying a time-out value of zero (which disables the
time-out feature entirely).

The time-out value set by the user to prevent indefinite suspension should not be confused
with the time-out set up by the privileged driver to complete the call and return to IOC. In the
latter case, the driver overrides the user-specified time-out by inserting its own value (-1)

directly into the time-out clock before returning.

4-10. SUBROUTINES FOR SPECIAL MAPPING FUNCTIONS
(OMS SYSTEMS ONLY)

DMS privileged drivers normally communicate with user programs via SYSTEM COMMON
or SSGA. Ifit is necessary to access a buffer within the user program, the privileged driver will
have to reload the User Map to describe the desired program before making the access.
Subroutine $PVMP can be called by privileged drivers to perform this type of map switching.
The driver can then access the second buffer. After all accesses have been made, the driver
restores the User Map to its original state and continues with its normal operation under the
System Map. The recommended procedure for using $PVMP is somewhat different in RTE-III
and RTE-IV, and each of these procedures is discussed in a separate section below.

4-12

NOTE

Subroutine $PVMP can be called by privileged RTE drivers
only. Standard drivers wishing to perform the same function
must use subroutine $XDMP, which is described in Section III
of this manual.

MAPPING IN RTE-III AND RTE-M/III

Before entering the initiation or continuation section of a privileged driver, IOC enables the
correct map needed to process the call, as follows:

a. When the I/O request buffer is located in SYSTEM COMMON (or System Available
Memoryl, IOC enables the System Map before entering the driver.

b. When the I/O request buffer is located in the calling program, IOC enables the User Map
before entering the driver.

However, the System Map is always enabled upon entry to the privileged section, since the
privileged section is entered directly from the interrupt trap cell. The I/O request buffer should
therefore be located in SYSTEM COMMON so that the privileged section of the driver can
access the buffer directly without switching maps. In the general case, the buffer may be
located either in the User Map (program not swappable) or may be in the System Map. A
technique is presented below to identify which map is needed.

The procedure for using $PVMP is as follows: The driver first saves the current state of the
User Map registers and Dynamic Mapping System. After the driver has determined that the
User Map is being used and not the System Map, it calls $PVMP to reload the user Map
registers to describe the calling program. (Note that the ID segment address of this program
must have been saved previously by the initiation section, since this information is not
available on base page on subsequent interrupts.) The driver can then switch to operation
under this map and access the memory described by it. After all accesses have been made, the
driver reenables the System Map and restores the original state of the User Map registers
before continuing with its normal processing under the System Map.

IXNN

*

EXT $PVMP

NOP

CLA
STA IDADR
RSA

ALF
SLA,RSS
JMPPROCD

LDA XEQT
STA IDADR

PROCD NOP

Initiation Section entry point
(System Map or User Map enabled depending on location of
I/O request buffer.)

Clear IDADR signifying System Map used
Access Dynamic Mapping System Status

Position bit 12 into bit 0
System Map enabled?
Yes, System map enabled
No, user map enabled

Access address of program making request
Save for use of Privileged Section later

Change 1 4-13

PXNN

*

CONT

*

NEXT

NXT

JMP IXNN,I
NOP

RSA
RAL,RAL
STA DMSST

LDAMAPAD
IOR SIGN
USA

LDAIDADR
SZA,RSS
JMP CONT

JSB $PVMP
SZA,RSS
JMPERROR

UJP CONT

LDAIDADR
SZA,RSS
JMP NXT

SJP NEXT
LDAMAPAD
USA

JRS DMSST NXT

MAPAD DEF MAP
MAP
SIGN
IDADR
DMSST

BSS 32
OCT 100000
BSS 1
BSS 1

Return to IOC
Privileged Section entry point (System Map Enabled)

Normal driver processing under System Map.

Get Dynamic Mapping System (DMS) status
Position current status in upper bits
Save status for later

Set A = address of User Map storage area
Set sign bit indicating Store Map in memory
Save current User Map in memory for later

Access IDADR to determine if User or System Map used
System Map used?
Yes, System Map used
No, User Map used

Call $PVMP to set up User Map for this program
Check for error return
Error exists, go handle it

No, errors. Enable new User Map and continue.

Process buffer under new User Map.

Determine if System or User Map is used
System Map used?
Yes, System Map used
No User Map used

Access address of User Map storage area
Restore original contents of User Map

Restore original DMS status (i.e., System Map)
Enable Interrupt System.

Proceed with normal processing under System Map

Address of User Map storage area
User Map storage area

ID segment address saved by initiation section
Temporary storage for DMS status

When called, $PVMP checks to see if the referenced program is resident in memory. If the
program is not resident, the User Map registers are not reloaded and the A-register is zero
on return. If the program is resident in memory, the User Map registers are reloaded to
describe the program and the A-register is non-zero on return.

Remember that any driver using this routine must save the original contents of the User Map
registers and the DMS status before calling $PVMP. It must also restore the original User

4-14 Change 1

Map and OMS status after all accesses to the buffer have been made. The example above
illustrates this procedure.

NOTE

The privileged driver could also access the buffer in the user
program through a series of cross-map loads and stores without
actually enabling the User Map. This is in fact the recom­
mended procedure for using $PVMP in an RTE-IV system,
and use of it by a privileged driver would allow the same
privileged driver to be used in either type of system.

MAPPING IN RTE-IV

Privileged drivers in RTE-IV must have the "M" (driver does its own mapping) option specified
at generation time (during the EQT entry definition phase). This causes the driver to be placed
in the System Driver Area (SDA) of memory and causes the "M" bit to be set in the driver's
DMT (Driver Mapping Table) entry. It also implies that an RTE-IV privileged driver is always
entered with the System Map enabled, because:

a. When an interrupt occurs, the System Map is automatically enabled, and the privileged
section of the driver is entered directly from the trap cell.

b. The initiation and completion sections of drivers for which the "M" option was selected are
always entered from IOC with the System Map enabled, regardless of the location of the
I/O buffer of the request.

The I/O request buffer should therefore be located in SYSTEM COMMON, so that the
privileged section of the driver can access the buffer directly without switching maps. If the
design of the .driver is such that the privileged section must access a buffer in the calling
program, subroutine $PVMP must be called to reload the User Map registers to describe the
desired program.

The procedure for using $PVMP is as follows: The driver first saves the current contents of the
User Map registers and then calls $PVMP to reload the User Map registers to describe the
calling program. The driver can then use a series of cross-map loads and stores to access the
buffer described by the User Map. Note that the User Map should not be enabled since drivers
in the SDA are not necessarily included in all users' maps. After all accesses have been made,
the driver restores the original state of the User Map registers before continuing with its
normal processing under the System Map.

The following code illustrates the use of subroutine $PVMP in an RTE-IV system:

EXT $PVMP

IXNN NOP Initiation Section entry point (System Map Enabled)

4-15

LDAXEQT
STA IDADR

JMP IXNN,I

PXNN NOP

LDA MAPAD
IOR SIGN
USA
LDAIDADR
JSB $PVMP
SZA,RSS
JMPERROR

LDAMAPAD
USA

MAPAD DEF MAP
MAP BSS 32
SIGN OCT 100000
IDADR BSS 1

Access address of program making request
Save for. use of Privileged Section later

Return to IOC

Privileged Section entry point (System Map Enabled)

Normal privileged driver processing under System Map

Set A = address of User Map storage area
Set sign bit indicating STORE Map in memory
Save current User Map in memory for later
Get ID address of program that contains buffer
Call $PVMP to set up User Map for this program
Check for error return
Error exists, go handle it

No errors. System Map is still enabled. Access
buffer via a series of cross-map loads and
stores since SDA drivers are not included
in all User Maps.

Access address of User Map storage area
Restore original contents of User Map

Proceed with normal processing under System Map

Address of User Map storage area
User Map storage area

ID segment address saved by initiation section

When called, $PVMP checks to see if the referenced program is resident in memory. If the
program is not resident, the User Map registers are not reloaded and the A-register is zero on
return. If the program is resident in memory, the User Map registers are reloaded to describe
the program and the A-register is non-zero on return.

Remember that any driver using this routine must save the original contents of the User Map
registers before calling $PVMP and must restore the registers to their original value after all
accesses to the buffer have been made. The example above illustrates this procedure.

4-16

4-11. SAMPLE OMS PRIVILEGED DRIVER

The sample driver illustrated in Figure 4-1 demonstrates some of the principles involved in
writing a privileged I/O driver for use in an RTE system with Dynamic Mapping. Note that
this driver is for tutorial purposes only and is not one of the drivers supplied with the system.

4-12. SAMPLE NON-OMS PRIVILEGED DRIVER

The sample driver illustrated in Figure 4-2 demonstrates some of the principles involved in
writing a privileged I/O driver for use in an RTE system without Dynamic Mapping. Note that
this driver is for tutorial purposes only and is not one of the drivers supplied with the system.

4-16A

PAGE 0002 iOl ** RTE DHS PRIVILEGED DRIVER EXA11PLE **

0001
)003•
0004 00000
0005

HA11 DVYHN
SUP

** RTE Dl1S PRIVILEGED DRIVER EXA~PLE **

(H) <)6 *
0007 EHT IXHH,C:itHH
OO!Hl•
0009•***
0010• SA11PLE RTE PRIVILEGED DRIVER DVYHN - FOR Dl1S SYSTEMS •

0011••·· <) 0 12.
0013• HANDLES USER PROGRAM REQUESTS TO READ FROl1 A PRIVILEGED
0014• CONTROLLER
0015•
<)016• USER PROGRAM CALLING SEQUENCE:
001?•
0018•
001'1•
0020•
0021•
0022•
0023•
0024•

.JSB EXEC
C•EF *+5
l>EF RC ODE
DEF COHWD
DEF BUHR
DEF LENTH

CALL EXEC
RETURN POINT
REQUEST CODE <MUST BE READ REQUEST>
CONTROL WORD
ADDRESS OF BUFFER Cl1UST BE IH SYSTE11 C011110H)
LENGTH OF BUFFER

OQ25• CAUTION:
0026•
002?• THIS DRIVER WILL HOT WORK WITH HORE THAH ONE PRIVILEGED
~028• CONTROLLER. IF KORE THAN ONE PRIVILEGED CONTROLLER
002'1• EXISTS lH A SYSTE11, DVYHN HUST BE
0030• RE-ASSEMBLED WITH ALL NAMES CONTAINING "NN" CHANGED SO
0031• THAT EACH COPY OF THE DRIVER HAS UNIQUE ENTRY POINTS.
0032• THEN ONE DRIYER PER CONTROLLER HUST BE PUT
0033• INTO THE SYSTEM AT GENERATION TIME.
0034•
0035• NOTE:
0036*
0017* 1.)
0038•
() 0 3'1 *
004!)*
<)0-41"'
00 42•
0043•
0044•
0045•
<)<)46•

THE DESIGN OF THIS DR!YER ASSUMES THAT THE I/O
BUFFER BEIHG PROCESSED IS LOCATED IH SYSTEM COMl10H.
THIS CAUSES THE DRIVER TO BE ENTERED WITH THE
SYSTEH MAP ENABLED. THIS IS NECESSARY FOR THE
CORRECT OPERATION OF THE TRAP CELL HODIF!CAT!OH
TECHNIQUE ILLUSTRATED BELOW. IH ADDITION, THE
BUFFER IH SYSTEM COMHOH ALLOWS THE DRIYER TO PUT THE
DATA VALUES DIRECTLY rHTO THE BUFFER, WITHOUT
THE HEED FOR HAP SWITCHING

004?• 2. >THIS DRIVER DOES HOT PROCESS POWER FAIL INTERRUPTS.
9048•
9049• 3.) THIS DRIYER DOES HOT PROCESS AHY TIME-OUTS EXCEPT
0050• FOR THE TI11E-OUT THAT IT CREATES AS A HEAHS TO
0051• COMPLETE THE !/O REQUEST AND RETURN TO IOC
0052•

Figure 4-1. DMS Privileged RTE Driver Example

4-17

PAGE 0003 101 •• DMS PRIVILEGED DRIYER - fHITIATIOH SECTION ••

0054•
)055• ••••••••••••••••••••••
0056• * INITIATION SECTION *
0057• ••••••••••••••••••••••
0058•
0059
OHO
1)061 *
0062
OH3
0064
<)IH5•
OOH•
<)067•

0 0 0 ()() ()() 00 () 0
00001 072200R

00002 <>H2o3R
00003 006002
() 00 04 026020R

CONFIGURE I/O

0068 00005 032217R
00&9•
1)()7()•

0071*

I)(NH HOP
STA SC ODE

LDB FIRST
SZB
JKP IN IT

INSTRUCTIONS

IOR LIA

f'IOOIFV TRAP CELL

00006 0600008 LDA fJSB

INITIATION SECTION ENTRY POINT
SAYE SELECT CODE OF CONTROLLER

ACCESS FIRST TIME THROUGH FLAG
IS THIS THE FIRST Tl"E THRU?
HO, SO SKIP CONFIGURATION CODE

CREATE LIA INSTRUCTION

SET TRAP CELL TO

0072•
0073•
00 74•
()() 75
1)()7, 000()7 1i'220oR STA SCO!>E, I JSB $J PHH I I <fJPHH • Al>DR OF Pl<HH)
()07?•
0078•
0079•
o oeo
0081
0082
0083
0084
0085
0086•
0087
ooes
0089•

SAYE EQT ADDRESSES

00010 Of.t 7 74
00011 07221-5R
00012 061663
00<)13 072214R
I) 1)1) 14 061ii60
00015 072213R

00016 0024 04
00017 072203R

LDA EQT15 SAYE EQT15
STA EQ15
LDA EQT4 EQT 4
STA EQ4
LDA EQT1 AHO EQT 1
STA EQ1 ADDRESSES

CLA,IHA SET FLAG TO PREVENT CONFIGURING
STA FlRST SUBSEQUENT IN IT I ATI OHS

0090• CLEAR THE 'DRIYER PROCESSES TIME-OUT" BIT TO ALLOW
0091• HOR"AL TIME-OUT OPERATION
009~•
0093
OOH
0095
00%•
0097•
0()98•
0099
() 11) ()
0101
0102
01-03•
0104
01(15

1)0020
00021
OOC.22

CHECK

00023
00024
00025
00(12£

00027
00030

1616'3 IH IT Ll>A
012221R AHi>
1716,3 STA

THE REQUEST CODE

1616,5 Ll>A
012222R AHO
052223R CPA
02'04 tR JKP

052222R CPA
026033R JKP

EQT4.1 ACCESS EQT WORD 4
=.B 1£7777 CLEAR BIT 12
EQT4, I AHi> RESET EQT WORD 4

EQH I I ACCESS REQUEST CODE
=BJ ISOLATE REQUEST TYPE
•Bl REAi> REQUEST?
PROC YES, GO PROCESS READ REQUEST

=83 CONTROL REQUEST?
CHTRL VES, GO PROCESS CONTROL REQUEST

OH

61 ()6 *
0 1()7
() 1 08
0 1«)9 *

00031 002404 CLA.IHA HO, SO REJECT.AS JLLEGAL WRITE REQUESf
00032 12£000R JKP lltHH.I

Figure 4-1. DMS Privileged RTE Driver Example (Continued)

4-18

PAGE 0004 101 •• OKS PRIYILEGED ORTYER - IHITIATIOH SECTION ••

011h
.) 111 *
0112•
0113
0 114
0115
011b
0 117 •
0118•
0119•
Ot20•
01"21 •
01'22
Ot23
Ot24•
Ot25•
01'26•
0127
Ot28
ot29
0130
0 1 31
0132
0133
0134•
() 135 *
<Hlh
0137
0 138
0139
0140•
0141 *
01 42•
0 1 43
0144•
() 145•
0146•
() 147•
() 1 48

COHTROL REOUEST. CHECK IF IT IS A •cLEAR• CONTROL REQUEST
IF SO, ASSUKE IT WAS ISSUED BY SYSTEft, CLEAR DEY ICE, AHO RETURN

CNTRL LOA EGT6,I
AHO =83700
SZA

ACCESS CONTROL WORD
ISOLATE SUBFUHCTIOH
•cLEAR• REQUEST'?

00033 1b1H15
00034 012224R
00035 002002
00036 02'037R JftP REJCT HQ, SO REJECT AS ILLEGAL CONTROL REQUEST

00037 062225R REJCT LOA =82
00040 126000R JftP I~HH,I

SET UP FOR THE DATA TRANSFER

00041 1£1667 PROC
00042 003004
00043 072201R
00044 002021
00045 02'037R
00()46 1b 16'6
00047 072202R

LOA EQT8,I
Cl1A,IHA
STA CYCTR
SSA,RSS
Jl1P REJCT
LOA EQT?,I
STA OAPTR

INITIATE A READ AHO RETURN

00050 01'053R
OQOS1 1()3700 I.1
00052 126000R

JSB READ
STC SC,C
JftP IlCHHd

SUBROUTINE TO INITIATE A READ

00053 000000 READ HOP

Q0054 t26053R Jl1P READ,I

EXECUTE CODE TO CLEAR CONTROLLER

REJECT AS ILLEGAL CONTROL REQUEST

ACCESS I OF COHYERSIOHS REQUIRED
NEGATE FOR CONYERSIOH COUNTER
AHO SAYE
REJECT IF
NUftBER <o
SAYE DATA BUFFER ADDRESS
FOR PKHH

START A READ
ENCODE DEVICE
RETURN TO IOC

ROUTINE CONTAINING
C OHF I CURED I /0
INSTRUCTIONS TO
SET UP THE DEVICE
TO INITIATE OHE READING

Figure 4-1. DMS Privileged RTE Driver Example (Continued)

4-19

PAGE 0005 101 ** D"S PRIVILEGED DR!VER - PRIVILEGED SECTION **

0 t.50•
H51•

. 01'52•
01:53•
01·54•
0 1· 55 *
0~56•
01-57
Qt.Sh
1)1. 59
OiEih
0161
I) 1,62
Ot,3•
()1b4
01'5
01 '6
0167
0168
ot'9
0170
0171
0172
01 73•
() 1 74
0175
01 76
0177
01 78•
01 79
OUO•
0 t 81 *
ot82•
0 t83
01"84
OtSS
01'86
Ot87•
01:88
01"89
0190
0191•
0192•
0 t93•
01"94
Ot95•
01"96•
0 t 97•
ot98*
0 t 99
0200
0201
no2
0203•
0204
1)2 05

4-20

* PRIVILEGED SECTION *

SAYE STATE OF ca"PUTER AT INTERRUPT

00055 000000 P~HH HOP

00056 103100

00057 106706
00060 106707

OO<H1 0722HR
00062 07b205R
00063 001520
00064 102201
00065 002004
0006£ 07220U
00067 105743
00071 105753
00073 105714

00075 061770
0007£ 072212R
00077 (11)2404
1)0100 0717?0

00101 102100

CLF 0

CLC i
CLC 7

STA ASY
STB BSY
ERA,ALS
soc
INA
STA EOSY
S Tl< KSV
STY YSY
SS" l>"STS

Ll>A "PTFL
STA "P.FSY
CLA, ntA
STA "PTFL

STF 0

CHECK FOR SPURIOUS INTERRUPT

00102 Ui2213R
00103 012226R
00104 002002
00105 026111R

0010£ 103100
0(1107 107700 I. 2
00110 026121R

PROCESS REAi> REQUEST

Ll>AEQt,I
AND =877777
SZA
J"P PREAD

CLF 0
CLC SC,C
Jl'IP El< IT

() 0 l 11 PREAD EQU *

00111 l 72202R
00112 03b201R
00113 002001
00114 026164R

00115 036202R
Ht 1' 016053R

STA DAPTR, I
ISZ CYCTR
RSS
JMP DONE

ISZ DAPTR
JSB REAi>

PRIVILEGED SECTION ENTRY POINT

TURN OFF INTERRUPT SYSTEM

TURN OFF DCPC CO"PLETION INTERRUPTS

SAYE REGISTERS

SAYE X REGISTER
SAYY Y RECIST'ER
SAYE DVHA"IC MAPPING SVSTE" STATUS

SAYE OLD "EHORY PROTECT FLAG

SET ME"ORY PROTECT FLAG TO OFF
SINCE MEMORY PROTECT IS HOW OFF

TURN INTERRUPT SYSTE" BACK OH

ACCESS REQUEST LIST POINTER WORD
ISOLATE REQUEST LIST POINTER
IS A REQUEST IH PROGRESS?
YES, GO PROCESS INTERRUPT

HO, TURN OFF INTERRUPT SYSTEft
RESET CONTROLLER, AND
IGNORE SPURIOUS INTERRUPT BY RETURNING

LOAD IN DATA FROM DEVICE
YtA CONFIGURED 110 INSTRUCTIONS

STORE WORD IH DAT~ BUFFER
IS THIS THE LAST CONYERSIOH?
HO
YES, GO SET UP TO TER"INATE CALL

HO, SET UP FOR NEXT CONYERSION
INITIATE IT

Figure 4-1. DMS Privileged RTE Driver Example (Continued)

PAGE 0006 101 ** D"S PRI\IILEGED DRI\IER - PRI\IILEGED SECTION ••

0206•
)207•
0208•
0209
<)210•
0 2 11
0212•
0213
0 2 14
0215
0216•
0217
0218
0219
0220
0221
0222
0223
0224
0225•
C:-226
0227
0228
0229
0230
0 2 31
0232
0233•
0234
0235
<>236
0237
0238*
0239
0240
0241
02 42
0243•
0244•
o:H5•
02H•
024?•
<)248•
<)249•
0250•
oa51
0252
0253
t) 2 54 *
0255•
0256•
0257
~258

0259
<) 2E.<)

0 2 61

RESTORE MACHIHE TO ORIGINAL STATE OH INTERRUPT

00117 103100

00120 103700 I 3

00121 062212R EXIT
00122 002002
00123 026134R

00124 065654
00125 160001
C)0126 002020
00127 102706
<)0130 006004
00131 160001
00132 002020
00133 102707

00134 062206R EXIT1
00135 103101
00136 000036
00137 102101
00140 066205R
00141 105745
00143 105755

OC•145
00146
00147
00150

00151
00152
00153
00154

062212R
0717?0
002002
026157R

062204R
102100
102705
10571·5

CLF 0

STC SC,C

LDA "PFSY
SZA
.JMP EXITl

LDB IHTBA
L DA B, I
SSA
STC 6
IHB
LDA B, I
SSA
S TC 7

LDA EOSY
CLO
SLA,ELA
S TF 1
LCB BS\/
LDX XS\/
LDY YS\I

LOA 11PFSV
STA l'IPTFL
SZA
J 11P EX IT 2

LOA AS\/
STF 0
STC S
JRS Dl1STS

TURN OFF INTERRUPT SYSTEM TE"PORARILY

ENCODE DEVICE

ACCESS PREVIOUS STATE OF l'IE"ORV PROTECT
WAS MEMORY PROTECT OH?
HO, SO DO HOT TURH OH DCPC INTERRUPTS

YES, TURH DCPC C011PLETIOH INTERRUPTS
BACK OH IF THEY WERE OH INITIALLY.
OH/OFF STATUS IS INDICATED BY BIT 15
OF EACH DCPC ASSIGH"EHT WORD IH THE
INTERRUPT TABLE

RESTORE E AH{) 0 REGISTERS

RESTORE B-REGISTER
RESTORE X REGISTER
RESTORE Y REGISTER

RESTORE "El10RY PROTECT FLAG
IH BASE PACE
WAS 11E"ORV PROTECT OH AT INTERRUPT?
HO

YES, RESTORE A-REGISTER
TURN OH INTERRUPT SYSTE"
SET "E"ORY PROTECT OH

PXHH,I RESTORE Dl1S STATUS AHO RETURH
<HOTE: EXECUTION OF A "JRS"
IHSTRUCTIOH AFTER TURHIHG THE
11EKORY PROTECT FEHCE OH IS
ALLOWED OHLY IF THE SVSTE" KAP
IS CURREHTLY EHABLED. THIS
DRIYER HAS BEEH DESIGNED SUCH
THAT TH IS IS ALWAYS THE CASE.

00157 062204R EXIT2 LDA ASY HO.RESTORE A-REGISTER
00160 102100 STF 0 TURH OH !HTERRUPTS
00161 105715 JRS DKSTS PXHH.I RESTORE OKS STATUS AH{) RETURN

THIS CODE SETS UP THE TIKE OUT TO COMPLETE THE CALL

00164 103100 DONE
00165 106700 I.4
00166 003400
00167 17221-SR
001 7() 162214R

CLF 0
CLC SC
CCA
STA EQ1S,I
LDA EQ4, I

TURH OFF THE IHTERRUPT SYSTEK
TURH OFF PRIYILEGED DEYICE
SET Tl11E OUT FOR
OHE TICK AHD SET
BIT12 IH EQT4 SO

Figure 4-1. DMS Privileged RTE Driver Example (Continued)

4-21

PAGE 0007 101 •* D"S PRIVILEGED DRfYER - PRIYILEGED SECTION **

4-22

00171 032216R
00172 172214R
00173 021f.121R

IOR 8IT12
STA EQ4, I
Jl1P EXIT

RTIOC WILL
CALL CMHN OH TI11E-OUT
GO TO EXIT ROUTINE

Figure 4-1. DMS Privileged RTE Driver Example (Continued)

PAGE 0008 101 ** D"S PRIVILEGED DRIYER - CO"PLETIOH SECTIOH **

03196•
)267• ••••••••••••••••••••••
0268• • COMPLETION SECTIOH •
0269• ••••••••••••••••••••••
<)270•
0271 00174 000000 C~HH HOP
02 72•
<) 2 73
0274
02 75
0276•

00175 00241)0
<)01 n H5H7
00177 126174R

CLA
LDB EQTS,I
Jl'IP C~HH,I

COMPLETION SECTIOH EHTRY P01HT

SET A = 0 = NORMAL RETURH
SET B • TRAHS"ISSIOH LOG
RE TURH TO I OC

Figure 4-1. DMS Privileged RTE Driver Example (Continued)

4-23

PAGE 0009 101 ** D"S PRIYILEGED DRfYER - DATA AREA **

0278•
)279• CONSTANT AND STORAGE AREA
0280*
0281
0282
0283
0284•
0285
<>286
0287
<>2S8
<>289
OHO
0291
0 2 '32
0293
0294
0295
0296
0297
0298
1)2')9
03¢0
0301 *

001)00
0 01)01
00000

00200
00201
00202
00203
00204
<)0205
00206
00207
()0210
<) 0211
<)0212
00213
00214
00215
()0216
00217

00000()
0()0000
000000
000()00
000000
000000
000000
000000
000000
000000
01)1)000
000000
000000
000000
010000
102500

A
B
SC

SC ODE
CYCTR
DAPTR
FlRST
ASV
BSY
EOSY
!<SY
VSY
l>l't ST S
KPFSY
EQ1
EQ4
EQ15
BI T12
LlA

EQU 0
EQU 1
EQU O

BSS
BSS
BSS
BSS
BSS
BSS
BSS
SSS
BSS
BSS
BSS
BSS
BSS
BSS
OCT
LIA

1
1
1
1
1
1
1
1
1
1
1
1
1
1
10000
(I

DU""v r10 SELECT CODE HUftBER

0302• BASE PAGE CO"HUHICATIOHS AREA DEFIHITIOH
1)3¢3•
<}3¢4

()305
<}J 06
1)307
03¢8
0309
1)310
03 t1
1)312
0313•

01650
01654
01660
01663
I) 1665
016§6
01667
01774
01770

IHTBA
EQTt
EQT4
EQH
EQf7
EQT9
EQT15
MPTFL

EQU
EQU
EQU
£QU
EQU
EQU
EQU
EQU
EQU

16508
.+4
. +8
.+11
.+13
.+14
.+15
.+84
. +80

Q314• CODE TO SET UP JSB $JPHN,I INSTRUCTION OH BASE PAGE
0315•
Q316 00220 000o55R $JPHH DEF PXHH
1)317•
0318 00000 ORB
0319 00000 116220R $JSB JSB $JPHN,t
0320•
0321 ENO
** HO ERRORS •TOTAL ••RTE AS"B 760924**

PRIY. SECTION EHTRV POINT ADOR

RESET LOCATION COUNTER TO BASE PAGE
JSB IHSTR. TO PRIY. SECTION, INDIRECT

Figure 4-1. DMS Privileged RTE Driver Example (Continued)

4-24

PAGE 0002 101 ** RTE NOH-DMS PRIVILEGED DRIVER EXAMPLE **

)0 03 *
OH•4 00000
(1(,)05•

NAl1 DVYHH ** RTE HOH-DMS PRIVILEGED DRIVER E~AMPLE *
0006 EHT l:>!HH,CXHN
0007•

0008••·· 0009• SAMPLE RTE PRIVILEGED DRIVER DVYHH - FOR HOH-D11S SYSTE"S •

0010••·· 0011•
0012• HAHDLES USER PROGRAM REQUESTS TO READ FROM A PRIVILEGED
0013• CONTROLLER
OOlh
0015•
0<)16•
0017• 0018•
0019•
Oc)2()*

USER PROGRAM CALL[NG SEQUENCE:

0021* 0022•
0023•

.JSB EXEC
DEF •+5
DEF RCO()E
DEF COHWD
DEF BUFFR
DEF LEHTH

0024• CAUTION:
0025•

CALL EXEC
RETIJRH POINT
REQUEST CODE <MUST BE READ REQUEST>
COHTROL WORD
ADDRESS OF BUFFER CMUST BE lH COl1110H)
LENGTH OF BUFFER

0026• THIS DRIVER WILL HOT WORK WITH MORE THAM ONE PRIVILEGED
0027• CONTROLLER. IF MORE THAM OHE PRIVILEGED CONTROLLER 0028• EXISTS IN A SYSTEM, DYYHM MUST BE
0029• RE-ASSEMBLED WITH ALL HAl1ES CONTAINING •NN" CHANGED SO
0030• THAT EACH COPY OF THE DRIVER HAS UNIQUE ENTRY POINTS.
0031• THEN ONE DRIVER PER CONTROLLER MUST BE PUT
0032• INTO THE SYSTEM AT GENERATION TIME.

0035•
0016• 1.) THIS DRIVER DOES HOT PROCESS POWER FAIL INTERRUPTS.
(1037•
0038• 2.) THIS DRIYER DOES HOT PROCESS AHY TI"E-OUTS EXCEPT
0039* FOR THE TIME-OUT THAT IT CREATES AS A MEANS TO
0040• COMPLETE THE I/O REQUEST AND RETURN TO IOC
0041*

Figure 4-2. Non-DMS Privileged RTE Driver Example

4-25

PAGE 0003 101 •• HOH-O"S PRIVILEGED DRIYER - INITIATION SECTIOH ••

0043•
~04 ...
0045•
1)046•
0047•
1)048
0049
0050•
0()51
0052
0()53
OOS•h
1)055•
005,.
0()57
0058•
0059•
0060•
01>'1 •
0062•
OOEi3•
0064
0()65
00'6•
0061•
006h
0069
0070
00 71
0072
0073
0074
0075•
0076
0077
0078•
0079•
0080•
0081 •
0082
0083
0084
0085•
008,.
0067•
0088
0089
0090
0091
0092•
0093
0094
1)095•
009'
0097
0098*

4-26

• •••••••••••••••••••••
* IHITIATIOH SECTION •
••••••••••••••••••••••

00000 000000 IMHN HOP
00001 0721'2R STA SCODE

00002 .0'61'5R
00003 006002
00004 026020R

Ll>8 FIRST
SZ8
J"P IHlT

CONFIGURE I/O IHSTRUCTIOHS

00005 0321 ?bR

1101> IFY TRAP CELL

0000, 0600008
00007 1721,2R

SAYE EQT Al>l>RESSES

00011) 0'1774
00011 012174R
00012 0,16'3
00013 012173R
00014 0,16'0
00015 072172R

00016 002404
00017 0721,5R

I OR LI A

LOA $JSB
STA SCOOE, I

LOA EQT15
STA EQ15
LDA EQT4
STA EQ4
LDA EQTt
STA EQ1

CLA.IHA
STA FIRST

INITIATION SECTION ENTRY POINT
SAYE SELECT COl>E OF CONTROLLER

ACCESS FIRST Tt"E THROUGH FLAG
IS THIS THE FIRST TI"E THRf?
HO~ SO SKIP COHFlGURAiIOH CODE

CREATE LIA INSTRUCTION

SET TRAP CELL TO
JSB $JPHH,I ($JPHH • Al>DR OF PXHN>

SAYE EQT15

EQT4

AHi> EQT1
ADDRESSES

SET FLAG TO PREYEHT CONFIGURING ON
SUBSEQUENT INITIATIONS

CLEAR THE ~DRIYER PROCESSES TI"E-OUT" BIT TO ALLOV
HORNAL TIKE-OUT OPERATION

00020 161663 IHIT
00021 012200R
00022 1716'3

LDA EQT4 .I
AND =816 7777
STA EQT4,I

CHECK THE REQUEST COD£

00023 1616'5
00024 012201R
00025 052202R
0002' 02'041R

00027 052201R
00030 02,033R

00031 002404
00032 126000R

LDA EQT6,I
AND =83
CPA •Bl
JNP PROC

CPA =Bl
Jl'IP CHTRL

CLA,IHA
JftP IMHH, I

ACCESS EQT WORD 4
CLEAR BIT 12
ANO RESET EQT WORD 4

ACCESS REQUEST CODE
ISOLATE REQUEST TYPE
RE AO REQUEST'?
YES, en PROCESS READ REQUEST

CONTROL REIWEST?
YES, GO P,ROCESS CONTROL REQUEST

HO, SO REJECT AS ILLEGAL WRITE REQUEST

Figure 4-2. Non-DMS Privileged RTE Driver Example (Continued)

PAGE 0004 101 •• HOH-DKS PRIVILEGED DRIVER - IHITIATIOH SECTION **

009'h
)1'00•
01' 01 *
0102

CONTROL REQUEST. CHECK IF IT IS A "CLEAR" CONTROL REQUEST
IF SO, ASSUKE IT WAS ISSUED BY SYSTE"' CLEAR DEVICE, AHD RETURN

CHTRL LDA EQH, I
AHi> =83700
SZA

ACCESS CONTROL WORD
ISOLATE SUBFUHCTIOH
"CLEAR" REQUEST?

0 103
0104
0105
01- 06.
0107•
01'08•
0 1'09.
0 1t0.
0 1 11
0 112

00033
00034
00035
00036

161665
0122C<3R
002002
026037R HIP REJCT HO, SO REJECT AS ILLEGAL CONTROL REQUEST

00037 062204R REJCT LDA =82
00040 126000R J"P I)IHH,I

0 1t3.
0114• SET UP FOR THE DATA TRANSFER
0 115.
0 116
0 11 7
O 11 B
0119
Ot20
0 t21
Ot22
0 t23•
0 t24*
Ot25•
.:. t 26
0127
Ot2B
Ot29•
0130•
Ot31•
0132
0133•
0134*
0135•
0136•
0137

<>0041 161667 PROC
00042 003004
00043 072163R
00044 002021
00045 026037R
00046 161666
00047 Oi'21HR

LDA EGITB, I
Cl'IA.IHA
STA ClfCTR
SSA,RSS
Jl'IP REJCT
LOA EQT?, I
STA DAPTR

INITIATE A READ AND RETURN

00050 0160S3R
00051 103700 I .1
00052 126000R

JSB READ
STC SC,C
Jl'IP IXHH.I

SUBROUTINE TO INITIATE A READ

00053 000000 READ HOP

00054 12bOS3R Jl'IP READ.I

EXECUTE CODE TO CLEAR CONTROLLER

REJECT AS ILLEGAL CONTROL REQUEST

ACCESS I OF CONVERSIONS REQUIRED
HECATE FOR COHVERSIOH COUNTER
AHD SAYE
REJECT IF
HUl'IBER <O
SAYE DATA BUFFER ADDRESS
FOR PXHH

START A READ
ENCODE DEVICE
RETURN TO IOC

ROUTINE CONTAINING
COHFIGURED t/O
INSTRUCTIONS TO
SET UP THE DEVICE
TO INITIATE OHE READIHG

Figure 4-2. Non-DMS Privileged RTE Driver Example (Continued)

4-27

PAGE 0005 101 •• HOH-D"S PRIVILEGED DRIVER - PRIVILEGED SECTION ••

Ot3 1h
)140•
0141 •
0142•
01·43•
0144•
0145•
OlH
0147•
0148
0149•
0~50

01i 51
01'52•
01'53
0!54
01i55
01i 56
0 1· 57
01:58
01>59•
0160
OHl
0162
011i3
0 ib·h
Qt.65
Q 11ih
0167•
011i8•
<>169
0170
0171
01 72
0173•
0 1 74
0175
01 76
01 77•
0178•
Q 1 79•
OtSO
01:s1 *
<) t 82 *
0 t83•
Ot>H•
0 Hi5
<HS6
01'87
01' 88
0 1: 89 *
0 i: 90
.)t 91
01'92•
<)1:93•
0 t'H•

4-28

* PRIVILEGED SECTION *
••••••••••••••••••••••

SAYE STATE OF COMPUTER AT INTERRUPT

00055 000000 PXHH HOP

00056 103100

00057 106706
00060 106?07

OOOlil 0?21HR
00062 0761HR
00063 0¢1520
00064 102201
00065 002004
00066 0721 l'OR

O()<>b7 061710
0()070 0721?1R
00071 002404
0()072 071770

00073 102100

CLF 0

Cl,.C 6
CLC 7

STA ASY
STB BSY
ERA.ALS
soc
INA
STA EOSV

ll>A 11PTFL
STA 11PFSV
CLA,INA
STA 11PTFL

STF o

CHECK FOR SPURIOUS INTERRUPT

00074 1621 ?2R
00075 012205R
00076 01)2002
000 77 02'103R

00100 103100
00101 107700 I. 2
00102 026113R

PROCESS READ REQUEST

LDA EQ1.I
AHi) =877777
SZA
Jl'IP PREAD

CLF 0
CLC SC.C
Jl'IP £)(IT

00103 PREAD EQU *

001¢3 172164R
00104 036163R
001¢5 002001
00106 026146R

00107 036164R
00110 016053R

STA l>APTR, I
ISZ CYCTR
RSS
HIP DONE

ISZ l>APTR
JSB READ

PRIVILEGED SECTION ENTRY POINT

TURN OFF INTERRUPT SYSTEM

TURN OFF DCPC COl1PLETION INTERRUPTS

SAYE REGISTERS

SAYE OLD "El10RY PROTECT FLAG

SET 11E"ORY PROTECT FLAG TO OFF,
SINCE 11EHORY PROTECT IS HOW OfF

TURN IMTERRUPT SVSTEft BACK Off

ACCESS REQUEST LIST POIHTER WORD
ISOLATE REQUEST LIST POINTER
IS A R£GUEST tH PROGRESS?
YES, GO PROCESS INTERRUPT

NO, TURN OFF INTERRUPT SYSTEft
RESET CONTROLLER. AKI>
IGHORE SPURIOUS INTERRUPT BY RETURNING

LOAD IN l>ATA FROM DEVICE
VIA CONFIGURED I/O INSTRUCTIONS

STORE WORD IH DATA BUFFER
IS THIS THE LAST CONYERSIOH?
HO
YES, GO SET UP TO TERMINATE CALL

NO. SET UP FOR HEXT COHVERSIOff
INITlftTE IT

RESTORE 11ACH!HE TO ORIGINAL STATE OH INTERRUPT

Figure 4-2. Non-DMS Privileged RTE Driver Example (Continued)

PAGE 0006 101 ** HOH-D"S PRIVILEGED DRIYER - PRIVILEGED SECTIOH **

0 t,5
) t'6•
'o t:'7
Of.98•
019'
021)0
0201
0202•
0203
0204
0205
0206
0207
0208
020,
0210
0211 •
0212
0213
0214
0215
0216
0217•
0 2 18
0219
0220
() 2 21
1)222•
0223
0224
0225
0226
0227*
0220
0229
0230
0231•

00111 11)3100

00112 103700 I. 3

00113 062171R EXIT
00114 002002
00115 OU.12U

00116 065654
00117 16000 t
00120 002020
00121 102106
00122 01)6004
00123 1'0001
00124 002020
00125 102707

00126 062110R EXITt
00127 103101
00130 000036
OQ131 102101
OC-1.32 06616?R

0¢133 062171R
00134 Oi'l??O
00135 00:?002
00136 026143R

00137 062166R
00140 102100
00141 !O:?i'05
00142 126055R

CLF 0

STC SC,C

Ll>A "PFSV
SZA
J"P EXITl

LDB IHTBA
Ll>A B.I
SSA
STC 6
lHB
L l)A BI I
SSA'
STC 7

LOA EOSV
CLO
s LA I £1.;ll
STF t
LD9 BSY

LDA MPFSY
SlA 11PTFL
S2A
JllP EXIT2

LOA ASY
s 1F 0
SlC 5
JlllP Pi!iifi,J

00143 062166R EX1T2 LDA ASY
00144 102100 STF 0
00145 126055R JllP PXHH,I

TURH OFF INTERRUPT SYSTE" TE"PORARlLY

EHCODE DEVICE

ACCESS PREYIOUS STATE OF "E"ORY PROTECT
WAS "E"ORY PROTECT OH?
HO, SO l>O HOT TURH OH DCPC INTERRUPTS

YES, TURN DCPC CO"PLETIOH INTERRUPTS
BACK ON IF THEY IERE ON INITIALLY.
OH/OFF STATUS IS INDICATED BY BIT 15
OF EACH DCPC ASSICH"EHT WORD IN TME
INTERRUPT TABLE

RESTORE E AND 0 REGISTERS

RESTOPE S-REGJSTFR

RESTORE 11EllORV PROTECT FLAG
IH BASE PAGE
WAS "EMORY PROTECT OH Al INTERRUPT?
HO

YES, RESTORE A-REGISTER
TURN OH IHlERRUPl SYSTEM
SEl 11El10R¥ PR01ECT OH
RElURH TO POlHl OF IHlERRUPTION

HO.RESTORE A-REGISTER
TURN OH INTERRUPT SVSTE"
RElURH TO POIH1 OF "IHlERRUPTtOH

0232• THIS CODE SFTS UP THE Tl"E OUT TO COMPLETE THE CALL
023311<
0234
0235
0236
0237
0230
0239
0240
0241

00146 103100 DOHE
0¢147 106i'OO l.4
00150 0034')0
oe·1 s1 1 i'2174R
00152 !62173R
00153 032175R
00154 1i'2173R
00155 <)26113R

C LF 0
CLC SC
CCA
STA EQ15,l
LDA EQ4, I
JOR 91112
STA EQ4, I
Jl'IP EXIT

TURN OFF lHE INTERRUPT SYSTEl1
TURH OFF PRIVILEGED DEVICE
SET TltlE OUT FOR
OHE TICK AHi> SET
Bll12 JH EQ14 SO
RTIOC WILL
CALL CMHH OH TlllE-OUl
GO TO EXIT ROUTINE

Figure 4-2. Non-DMS Privileged RTE Driver Example (Continued)

4-29

PAGE 000? 101 •• HOH-DMS PRIVILEGED DRIVER - COMPLfTIOH SECllOH ••

0243•
nH*
0245•
0 2 41:..
024?>1<
0248
0249*
0250
0251
0252

4-30

00156 000000

00157 002400
0016!) 165667
H161 12615IOR

C:i!HH

•••••••••••••••••••••• * COKPLETJOH SECTION •
·······•••******•*****

HOP

CUI
LDB CQTS,I
Jl'IP OHH ,J

COMPLETION SECTION ENTRY POINT

HO, SEl A = 0 • NORMAL RETURN
SET 8 = TRAHSMISSIOH LOG
"AKE COliPi..EilOH ~'ET URN <P+l :• 10 IOG

Figure 4-2. Non-DMS Privileged RTE Driver Example (Continued)

PAGE 0008 tOl ** HOH-D"S PRIYILEGED DRIVER - DATA AREA ••

02 54.
>255•
025b*
0257
0258
0259
02H•
0261
0262
0263
OH.4
0265
0266
0267
0268
026<}
02 70
0 2 71
0272
0273
0 2 74.
0275•
0276*
0277
0278
027<)
0281)
o 2e1
0282
0283
0284
0285
0286•
02>37•
02>38•
0 2 8<)
0291)•
0291
02'32
0293*

COHSTAHT AHD STORAGE AREA

0 00 ()()
0 0 0 <) 1
00000

00162 000000
00163 000000
00164 000000
00165 ~1()0000

00166 i:tl)0!)00
00167 C.00000
00170 000000
00! 71 000000
00172 001)00<>
001?3 C•OOl'/00
<)01 74 (,H)OOOO
00175 010000
<101 i'ii. 1<)?5lh'

A
B
SC

EQU 0
EQU 1
E QU 0

SCODE BSS
CYCTR BSS
DAPH BSS
F ! RS 1
ASV
BSY
E OSY
f1PFSY
E Q 1
EQ4
EiU5
BITl2
LI A

BSS
BSS
BSS
BSS
BSS
BSS
BSS
OCT 10000
L I A C•

DUM"Y I/O SELECT CODE HUMBER

BASE PAGE COMMUHICATIOHS AREA DEFIHITIOH

01650
01654
<)166<)

01663
01665
0166£
01667
0 t 7 74
01771)

EQU 16508
IHTBA EQIJ . +4
EQT! EQU +8
EQT 4 E QU • + 11
EQT6 EQU .+13
EQT? EQU .+14
EQT8 EQU .+15
EQTIS EQU .+84
KP TFL EQU . +80

CODE TO SET UP JSB $JPHN,I lHSTRUClIOH OH BASE PAGE

00177 00005SR $JPHH DEF PXHH

00000 ORB
00000 t1617?R $JSB JSB $JPHH,I

0(/2<)0 1677?7
00201 000003
00202 0<)0001
00203 003700
00204 0<)00¢2
00205 077777

PR!¥. SECTION ENTRY POJHT ADDR

RESET LOCATION COUNTER TO BASE PAGE
JSB INSTR. TO PRIY SECTION, IHOlRFCT

0294 EHD
** HO ERRORS •TOTAL ••RTE ASMB ?60924••

Figure 4-2. Non-DMS Privileged RTE Driver Example (Continued)

4-31

READER COMMENT SHEET

92200-93005

RTE Operating System
Driver Writing Manual

May 1978

We welcome your evaluation of this manual. Your comments and suggestions help us improve our publications.
Please use additional pages if necessary.

Is this manual technically accurate?

Is this manual complete?

Is this manual easy to read and use?

Other comments?

FROM:

Name

Company

Address

FOLD

FOLD

BUSINESS REPLY MAIL
No Postage Necessary if Mailed in the United States Postage will be paid by

Hewlett-Packard Company
Data Systems Division
11 000 Wolfe Road
Cupertino, California 95014
ATTN: Technical Marketing Dept.

FIRST CLASS
PERMIT N0.141

CUPERTINO
CALIFORNIA

FOLD

FOLD

PART NO. 92200-93005
Rev. Code 1805
Printed in U.S.A. 5/78

HEWLETT"' PACKAR

Sales and service from 172 offices in 65 count
11000 Wolfe Road, Cupertino, California 95014

	001
	002
	003
	004
	005
	006
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-16a
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	replyA
	replyB
	xBack

