RTF-IV.

?rogmmmfr’s
Reference

nual

Tntermediate
@mff ‘

yojrE 70 SE (CAASS

st

/%W““/
aewww;ﬂwﬁ

DOCUMENTATION MAP

DOS/RTE
Relocatable

—P4 Library Reference

Manual
24998-90001

RTE

FORTRAN IV
Reference Manual
92060-90023

RTE-IV
ASSEMBLER

P Reference

Manual
92067-90003

BASIC/1000D
Muiti-User

9 Real-Time BASIC

Reference Manual
92060-90016

IMAGE/1000
Data Base

-9 Management System

Reference Manual
92063-90001

Decimal String
Arithmetic
Routines
02100-90140

HP 21MX-E Series
Computer
Microprogramming
Reference Manual

START
92067A RTE-IV
Software Numbering ::mal;'o ader
QC;:;;’?W 12992-90001
RTE-IV On-Line .
| RTE-IV Programmer’s 21 MX-M Series
Ref
x:z!‘;tor ererence Reference Manual gz”:"’“"“ Manual
92067-90002 | 92067-90001 o8 °9r°°° '
21MX-E Series
Operator’s Manual
02109-90001
RTE-IV EMA Firmware
Installation Manual
92067-90006
and
RTE-IV EMA Firmware
Diagnostic Manual
92067-90007
g ¥ ¢ ¥ 3
RTE Interactive Batch-Spool RTE Utility RTE Operating SZE"V
Editor Reference Monitor Programs System Driver bug !
Manual Reference Manual ::f:r elnce Writing Manual Sh:abr‘"‘;""e
92060-90014 92060-90013 ua 92200-93005 nua
92060-90017] 92067-90005
A 4
Individual
Driver Manuals,
as appropriate
- DS/1000
Programmer's
Reference
Manual
91740-90002
7700-141

yy7.

L) 02109-90004

or

HP 21MX-M Series
Computer
Microprogramming
Reference’

Manual
02108-90032

£ »

Foreword Page
Glossary .

Section I

GENERAL DESCRIPTTION
Real-Time EXeCULIVEecivieeensenscecoscecsaasosssscscsnncsnsss
System HArdWareceeececcesoscovsscossoscsosesssssscscascsnsccsocs
System SOEtWare..iv e et eeeeeeeseetossssessssosncososssscssccscnss
Memory Management.coeeeeoessscecososscacssoscosassosssssasannsss
MUltiprOgramming. cc e eeeeeeoeceeosossassescoceososososscsossasscsnssssses
Input/Output ProCeSSINg ...ceeeeececocsasscoccscocacsessscsssssaccces
Resource Management.....ccceeeeeceocoosrsssosoccsoscasssssncsssossssssae
Executive COMMUNICAtION. . et eeteacaeeossesoscasacocsscaoasncncss
Operator COMMANA S . eeeeceseracecceocecsceosccesosssscsssocssosess
System Configurationieieeeeeeeeeeeeeeceacscacoonennonns
Multi-Terminal OperationNS. ..ceeeeeeeeeecsoscososossacssassosnsanass
System Utility PrOgraAmMS..ceeececesesccsscccscccossssasscssasnsaccsas
Relocating Loader (LOADR) ¢ v eeceecccccssccccococesacccsocsscssase
File Management Package (FMP)..eveeeeaceccaoosasosassacncnansnos
Interactive Editior (EDITR) cuevececeacoccccsoosscsensanoncesscas
Batch SpPOOl MONIitOr (BSM) eeeeeeeoeaeeencocssasosscennsssscocssss

WHZAT....-.....---.-.....-.---..--.-.....-.-..-.o----o...-....

DBUGR.'.O‘Ql."‘l"‘.'!.‘llQ.0..‘..”..'.I.....OOC0.0"...0.0.
On—Line Generator ((RT4GEN)000000..0.0"0000!.‘0...'0.'..-0‘00

SWTCH‘I"....CQ..'.'Q'OII.“OOO.Q.Q.QO.'.l..‘.....'ll"l."".

DiSC Backupooc.oo.ooooouo‘ootCoc"oooo-o..n...‘..00!"0000‘00.
DlSC Update.-ooo.oacov‘ooooaoc.nooo-o.-uo-..o..no--ocooo‘oo‘.l

KEYS AnNd KDUMP.sueeeeeeeesesceoceaosnoocsscsasescasccscnsssesscs
LG AT . s st ceeseesscecsscsossosossssssssscsssessscsascscscssosossssssss
Programming LanNQUaAgeS...eeeeeeeceeccoecoonsocesnoccocsnssosasncesss
RTE FORTRAN IV.iueeeeeeceeseocscvoocssnasososcoccscsssscsssnsossess 1=10
RTE Assembler....eeeeeeceeecsceccosscssaoscososcsscsssoscsscsscssosse 1-10
RTE MIiCrO-ASSemMDler . iuuieeecececsceecaocncsccsocsoccsessessesses 1=10
Real~Time BASIC...ceeeeeacecsaccscoccscoscscoscscsascscsssessssse 1=10

QUERY.-..ooo..o---coo‘.'o.--...oco.oo--oo--:.--.vooo....voc.'. l-ll

RTE=IV System SUMMALY..eeceoecsocsacscescsscscsssoscsscscsascsoscassase 1=11

il el el ol el el el el el o
-0 COOWWE®PEOPPIJN DU DD WWWN

Section II

SYSTEM BOOT-~-U@P P ROCEDURES

Boot Loaders and BoOt EXteNSiON......ceeeveecceconcsscccssconsssscs
DisSC LOAAEr ROM.:.eseceooceccasaoscoceesscsoccsocnscscansscsscoseses
BOOtsStrap LOAAer...ceeeceseccacsscscccsscsscsssssocscsassscsssscss

Boot Extension EXeCUtion.....eeceeeecsoscocscoscsocoscsssocsccccsass

YERY
w W

Section III

OPERATOR COMMANDS

INtroQUCEION. s ccecece cascvcsscsscsacsscscscososcocscsscsecscssoscsoscsssscsosccscs
Command StrUCEUYC..cecececsscsscoscscsncsosossocsesscsoscsssecscssccscss
Command CONVeENtiONS..ceeeeeeeoooeosscsocecssosesscsncssossasessssssscsnscs
RTE-IV Operator COMMANAS . ccecocecococccecssascccscscscessosccsasssossscss

AB
AS
BL
BR
DN
EQ
EQ
FL
GO
IT
LG
LS
LU
LU
OF
ON
PR
RT
RU
SS
SZ
Sz
TI
™
TO
up
UR

(abort)o.-cooooooc0...-..Q-oloooo.0.0‘...000‘CC‘.Q.OOO.C.I'

(assign partition)o.o.o-...out-o'.ooo..o.o.....’..o....coo.
(bUffer limits).oo.ooolo.‘.0.00-....oonooloolUQOQOUQOOOOODO

(break)oc.o---.oo-oo-o-ooocoo-ooooooo--oooooo-oo-ooc-o-oot.

1
OOV -

(down)ooo‘o.0.0...0000.0o.Ooocoouo0'...ooccoc.cca.couo‘oo..

(StatUS)....-......----.o....-o....-.....o..-.-............

(bUffering)......-....-.......-.-o..-o.-.oo.o.-....¢c-..-.

.
|

(flUSh).‘ilnnaoo-.-o-..o‘.oo.-..o.o....n-.....-o.o"oocsno'

(resChedule) s ceeeenesecesscsoassecccsoscecsossssssscssssscsocscss
(INterval TiMer) uueeeceececeeacecscsoosssassscsocscscsssscss
(LG traACKS)eueeeeeeeececceaeeoscsasosocsssscssososscssascncscsaccsaos
(SOULCEe f1l@)..euueeeeeeeceosososcoscosocossscsssscsoasosssasscssssss
(ASSIgNMENt) e e v veeccseceseosossossssoscsosacsosassassscsasasscass
(reasSignmeNt) v v ueeveeerecccocacsecosooscecsssssosossssssssass
(terminate) coeeecececsscecscscscsacoscncsccascsssscsssssscsssss
(SChedUle) iiceveceeesocscosscesssossoenscscsoscsossscsasscssscsccsse
(PLLlOFitY) ceeeeccosecosososcsocossosccasscccsscossscsssccsassscscs
(release tracCkS) .ceeeeeeeceeacsscecossssosossoscsascsssscsscsos
(FUN) ¢ e evoevceocscaosassasocsossssosonssososcsscsscsscsscsssscsssssscse
(operator SUSPENA) ¢ cceecesvesssscsssscccsacscsscsccsnsscossse
(2SSigNMENt) v v eeceesovcsscscscscsscscoscscscscsasososscssosccsse
(reassSignNmMent) cveceeeecccacsosescesassssossescsscsascsosssscscssss
(LiMe) v eveveeeeeososasavaceoscosssoescscsnsscsscsssossassasascesse
(St ClOCK) e veeeeeecesooocsososcsssssssscsssscesoessascsccsssssscas 3—30
(time=0Ut) ceveveececcasscecsceoccocsoccsanscsossssocscsscssesnsses 3—31
(make available) ceeceeeeeeeecscacacoscacsassscccsosscssasscscncas 3—32
(release reserved partition)..cceeceecececsccescecsccccccossceaess 333

WWWWWWWWWwwwwww
|

[3 . L] L]
w
1)
- o ol
[o <] WwWN

¢« o o o
w
!
N
(o]

.
w
|
w
o

Operator Command Error MeSSAJeS..eecscvsccecssccossccscoccssanssassss 3—33

Section 1V
E X E C CALLS

INtrodUCEION. e eeeeeecoeccoscscssssssssacescsocscsssscsssssasssssscsas
Assembly Language FOIrmMaAt...eecececscacacecsccsccsscscsscssccancncss
FORTRAN IV FOIMAt..cceesccereacecsnascooscccecscscsoscscsosscsosacssscsocsocss
EXEC Call Error RetUINS..cceseescscsccessccsccsosscsscssccsscssascssnse
EXEC Call SUMMAILY.eeeeeeeseossscsnsscsvocsscsacsssssoscscacsscsscsssssss
Standard Function CallS...eeeeecveecescsacscccscscossaseassacsssssncasss
READ/WRITE ¢ eeecsccoccsososcsossscsscssancssosscascsasasscsacscsascsssesse
I/0 CONTROL . v eeeecesosccscacacssonassooosescsscsscscsocssscsscscsssnscacecss
I/0 ST ATUS . ceeeeeceeccesecscsssocscssaseassscssocssssacsssscsescss
DISC TRACK ALLOCATION .ciccececsvseacsosscocsscsscssssscsescsscssassss
PROGRAM DISC TRACKS RELEASE i ceeccecccececcssscsossscsnsosaccocos
GLOBAL DISC TRACKS RELEASE. ¢t eecescocsososscsscsecescssosscecss

|
== OO D N

N

i
N

P Y A I I -
| i
-
~

I
N
O 0

PROGRA&“ COMPLE’I‘IONQ.ooo.ocoon..o.-.o-oooooo-oo.-oo.ot"ot.o.oo 4-21
PROGRAM SUSPENDQ‘.-....'.'.0'..0'l...‘.!‘.l.l."l".QCOQCC.... 4-‘23-A

PROGRAM SEGMENT LOAD

® © 0 9 000 50 GO LP P OO OO OC O GO O CP 6O S e SE GO e 4-25

PROGRA‘K‘A SCHEDuLEl......OOQOl.."".IIl'...‘..‘Q.'...l"’....'. 4-26
TIME REQUEST.'ll.0.I'.l.!l."....l.....‘..'.......'.Q...Q.l.lﬂ 4‘30

STRING PASSAGE

LR AR A L B LB R R I I I R I I R R R R R R 4—31

TIMED EXECUTIO!\I (Initial Offset)0...'..'.....“O..O....I....I' 4-33
TIpdED EXECUTION (Absolute Start Time) ® & S 0 00 00 88 09 0O B e e O e 0w v e 4-35

v—

PROGRAL“ SWAPPING COL“TROL...-:...o.o.‘.o-co.o.lo‘Q..lloo...-CCa

PARTITION STATUS. cececececscsesoscsoscsssossscssscssascaassssscsosssosscce
MEMORY SIZE .. cccocecccsvcccssoscssccsscsscscsssscecsscscssoessosscscooss
Class I/0 EXEC CaAllS.ceeeeccocessssoosscsoscsscscnsscsasescscscsncsssase
Class I/0 READ/WRITE ..ceeceececsseocscoscesosssseaossssssssacsccsssss
Class I/0 GETeceeeecccccasscsossasssossssscsssacsossscsscssscsscsscsns
Class I/0 CONTROL...cveceecasoocossscocscocssoscscsssscsscscscsscscs
Class I/0 Applications EXampleS....eceececeseccsccsscsassacssasconse
Resource Numbers and Logical Unit LOCKS..:ceececescocsccccccncans
EXEC Call ErrOr MESSAJEeSeeceeccscccscscscescescssscssssssscsssssscss
Memory Protect ViolatiOnS...ciceeececscecscesosascsscsascsosnssce
Dynamic Mapping Violations....... ceocsvassescsscscsessesrsesstinane
EX EIrOrS.:ceceeecscecsscssccssscscssosscsscesscscscssscosesscsssssssse
Unexpected DM and MP EIrOrS...ccceccscsscscceasscasscsacssssssscscse
PAritY EIrOrS..ueeeeecesscacscansnacscsssscacssecsessoscsccsccsess
Error Codes for Disc Allocation CallS....eeececcecccosnsocoancsce
Error Codes for Schedule CallS...cceececccccosocsecccscccaccosns
Error Codes fOr I/0 CaAllSiceeeecesccscesococsosocsocacscccccncscss

Section V
INPUT/OUTPUT
Software I/0 StIUCEUCE. .. .ieeeeeeccsccssccsscsccscssosssscscscssasnss
EQUIPMENt Table. ..o ceeeenceeeoeoscosscasosecscassoscsscsscssscssancss
Device Reference Table......eieeeeeeceeecsooocsesocossanscosaceses
Logical Unit NUMDEIrS. .u.e.ceeeeacsccccssasscocscssccnscccccsocsnes
Interrupt TaAble..ueeeeeeeeecovsecoocccscssasossscscossosscosccosssssssces
System Base Page Interrupt LOCAtiONS.cceceececccocccccocoscscccsse
Driver Mapping Table. ...c.ceeeecccscocsccscscsssocsscsccccsccscsssscscss
I/0 Processor General OperatiON..cceeecceececccccscccscscasssccss
Standard I/0 CaAllS. ceceeeacececsscoscosooecsosssscsoscscscscsscsssssscs
POWEIr Fall..ieeeeeeeeoeassccncescacccssoscscsssassncsossscssscscnsssssse
I/0 Controller Time-=OUt..cceceeeececcccossoscascscscscscssassssscscss
Privileged Interrupt ProCessSing...cceceecceccccccecsscsascossosscssocss

Section VI
MEMORY MANAGEMENT
AQArESSINgeeeeeeecacecocsecsssccocssssoscscsocsscsscsssssscsscsssssscssss
MEMOXY MBPSeeeeeseeooscscasoscsesssscasssscessesscsscsssossscsanascscscaes
PhySiCa@l MeMOIY...eveeeesacoeecsosssoscsaccacscsoscasacssseaccsssscscsss
LOGiCaAl MEeMOI Y. ueuseeeeeeaoosoacsscosasosasosccccscesoscscsacecssesnses
BASE PAJEC.c.iceeececccscsscscscsosscoscocsccsesssasnscsscssonssasocsnsscss
COMMON ArYCOS:cesssesccescsssscsosossasoscsssscsasscsossscesscsncscssssosass
MEMOrY PrOteCtiON..iveevececeesvecescssscscsacssscossoccssscsnsssssce
PArtitiONS. siueeeeesaceescsasososcsconcscosasscssosasesecsascscscasssss
PArtition LiStS.eieeeeeeeesessossossscsscsscsossssssscscncsosocscscss
Partition Assignments and ReServatiONS....eceeceoeccecscsssscscsss
Mother PartitionS....eceieeeeeeeeeeeeceeeesasacosasesnsesansnnssa
SUDPAILIitiONS . teeteesesesasesecencssccecocncsscsossasssscsnsssssss
Extended MEMOILY ArC@. ccesecesesessesscsesosocscasscscssccssssscss
Memory Management SUDIOULINES....eeeeseocsesscacscscnsascsossosnes
B L
eEMIO . et teeesocececoceassvossscssssencsanessenssasssoessssnssssscsssae
MMAP ., soeevresesanssssscsosssssscssscssssssssssssssnsssesssssssssns

EMAsT""IQ'.."‘.'...OI.I‘O.‘....".'...‘OO.I..‘I..".'.O..'

e

Can

4-38
4-38
4-40
4-42
4-44
4-46
4-49
4-50
4-55
4-58
4-58
4-58
4-58
4-59
4-60
4-61
4-61
4-62

Section VII
RELOCATTING L OADER

RTE Relocating Loaderooon-ooo-oo'o..."..o-...c..‘onto...‘ot-'o'

RU,LOADR Command OptiONS....eeeseessessssssesassssssas
Program ReloCatiON..e.eesseseesesensssnssnsanssnsansnss
On-Line Modification...eseeeeesesscssososensssssssssssosns
Segmented PrOgramS. csesssssseessssssssossssssssssnscss
AAding NeW PrOgramMS...eeessssscsssssssncsscsscsssssnssessss
Program Replacement. .. ceesesscesessosssoscscssscssscncss
Addition or Replacement LimitatioOnS....ceeeececocecssnses
Program DeletiOn. cceeeieesescoeccscnssosssscsscnsscecss
COMMON All0CaAtiONS..vseessssssscssassssossssosasossnsnesnss
Loader OperatiON..eeesccccscsossossscscsssssssssnscssss
Additional Opcode ParameterS...ceceeceesessssscossssaascs
Loading the Binary CoOde...ieeececsssoccccssasssssssscssss
Loader Command File..:.eeeseoesssccncssososcssssnnncsssss
SEARCH . s e veseoessosssssossssssssosssssensssnssssosnsssss
SEARCH <NaAmMID .. ccessssssoscssansannssssssnsossesnssss
RELOCATE <NAGMIL> . s veeseosssovsosssnsssssssssosssssssss
FORCE., csevsveessssssssssssscsssssosssscsssssssssssssscs
DISPLAY o vesosocnsssssssssssvsesssossssscsssscsssssssse
ECHO.'O.'...l.".‘.OOOOlODOOOQDOOQ.'...‘.'.I..ll...l
ENDOOUODQ.‘0......0‘.0...."..I.'...'".'.00.0'....'
/A.OUQOO'!D..I."0.00.."00.0...'0.'..OIO....OI.O.QO
*l.lcti.OQQO."Q.'.Ol.l'....'l“l'.l'.......‘......'
AS,XX..........-......-'...'...-...........o.o'-.---
SZ'<YY>‘..l...‘..'.OO..'0‘00....‘...0..0‘.........'..

LL'<namr>."..‘.Q"‘.I".'l’..‘....O.....'..........

OP,<OPCOdE> . st esessssssocscsssssssosonsssssssoscssossss

FM,(format)..'..‘"O.QO'.'O.'....I.....OO..O0.0.'.'.
Loading From a Logical Unit.seeeeseescscsescccccssocnsnss
Loading Segmented PrOgramS..scesececccscssoossssssocss
Reducing Segmented Program Load TiMe...eeeecsosccccscss
DBUGR Library Subroutine....eeeeecscscescssccssssscssss
LOADR Error RepPOILtinG..eeeesecesessssosessssossanssones
LOADR Errr COG€S, sssesessosssssssossssssossnsnsssssssse

Section VIII
SEGMENTETD PROGURAMS

R.rE FORTRAN-IV segmentationﬁi..0.0..'O....l"“.."...
RTE Assembler segmentation.'......'OO'..."...l...'...

Section IX

MULTI-TERMINAL MONTITOR

System ConfiguratioN.eeeecsesocesssoscsosesscssssososnes
Multipoint InitializZatiON..seeesecocosssocosocssscnscoes

®® 900 00 ¢ 0

e 9 0 9 9O O

® ® % o9 8 " 9SO

® 8 e 009 00 00

® % 6 9 09 ° 00

® 8 e 99 50 000

e * 2 % 90 98 s

e 009 099

% e 99 00 000

® o8 00 00 000

® ® ® 09 00 9 00

® & 9 90 00 0 90

® o e o9 %8 O 0@

® o ® %0 0" 00 0

® 9 @ 0 00 0 00

® ® 9 9 09 90 0

® 9 ® %0 0 0 00

® 0000 090 000

900 0990 00

® 99 60 00 00

® & 0 99 99 0 0

% 0 00 9 00

® ¢ o0 00 s 0

® 6 0 00 0000

® 0 o 90 90 90

*® e 0 00 0P O

Logical Unit NUMbEr ASSigNMeNt....ceeeececesenocoescossoescssnseoss
OperatlonO'.COIO'...0Q'.C..O.Q.ll"'..'.'.l..'."'...!...".....
AVailable MTM SerViCeS..eieeoececosesosoesossescsssessessssssossss
Automatic SCheduling Of FMGX X ueeeeeeesoonosenoecsssensssoesssssss
FMG Available fOr EXECULIONa . .eveeeeeessscssosesoseossessosonsss
BREAK and ABORT COMMANAS . e e oeossseesecesensoesesossssssssssssesss

‘-

s

|
HEOAANOMULS & WN N

1
b
o O

NN NNNNNNNSNNNNNNSS
!

oom??www
B W W W W

Automatic User Program RENAMING..ceeesoceccsnscsscsscsssssssosos
Creating Ptograln Copiesvl.t.'D"..l.i'.."...‘."."'.!OO.'...'.

Section X
RTE-IV S YSTEM LI BRARY
INtroduCtion. v eeeeeeesosesssesesosssscsssscsosssnssssssssssssssonsoes
Calling System Library SubroutinesS...ceecescescsssssossssnscss
Reentrant Subroutine StrUCLUCE..ceeveesseoscosscssssassssscssnssse
Reentrant Subroutine FOrmat.eeeseceeesecsesscossocssossssssonsnss
Privileged Subroutine StruUCtUI€...ecesesesssscsssssosssssssscocs
Privileged Subroutine FOIMaAt..eessesssessasssssosscsossscnscss
Utility Subroutine StruCtuUre€....eeeeeeesescscsssssnsssescnnsssss
System Library SubroutinesS....eeecesecssesscsccsccscssecssssasocs
REIO - Reentrant I/O SubrOutine.a............-................
BIt\lRY - DiSC Read/write Suhroutine-ooooo.oo.'oooo-'o'ocooooooo
RNRQ - Resource Management SUDroutine.....ccecoccececccccsccssns
LURQ— Logical Unit Lock.0..'I..'.......OO'....".O"."O.'...
$PARS - Parse Subroutine.....eeeeeesesscessesessssssssssesssnsss
INPRS - Buffer Conversion SuUbroutin@...ieeececescecosssscccscnns
$SCVT3, SCVTl, CNUMD, CNUMO, KCVT - Binary to ASCII
subroutinESl'00.'....'.‘O.CO'OOD'OOQ...'.'..IO'..'.'...‘..O
MESSS - Message Processor Interface Subroutin€..cesveeeecesssss
EQLU - Interrupting LU QUEIY..eeeessecsossosossssssscsoasonsssss
PTRN, PTRM - Parameter Return SUbroutineS...ceeceseccosoocssces
.DRCT - Indirect Address Subroutine......................--..o
IFBRK - Breakflag Test SUbDIroutin€..cesecsececescssssssssssssosna
COR.A, COR.B - First wWord Available Memory Subroutin€....eee..
TMVAL - Current Time Subroutine........;...a...o'.--...‘-....‘
GETST - Recover Parameter String..............'..-...-o.o-....
IFTTY -~ Query Whether Logical Unit is Interactive or Not......

LOGLU - Returns LU of Terminal That Scheduled Program....ssss
.EMAP' 'EMIO' MMAP' EMAST Subroutines.'oo.ooooo-oooo.-oo.'ooo

Section XI

DEBUGR INTEUZRACTTIVE DEBUGGING

Calling DBUGR. ceeseoeesososssssssssssesssnssossssscssssssssssssones
Entering D«BUGR.'..OC'...0.0.'.....0'....0.'..'0...0..l'.."'.'.
DBUGR COMMANAS e e e esssseseoscsosssssvesnssssssssssssssssosssssssss
DBUGR ModeSQ....'DOIOl'..“.‘"'..’...l.'.....“l0‘...0!0.'...'.
ExpreSSionS and Termst ® ® © 9 9 P 9 S O 0 T S TP VP PO OO SO OO OGP SO SO SO PO OO OO OO
Setting @ Label.:.ieeeeeeseesoscscsccsssosssssossseasonssssnsssscsasscsse
Examine MemOrYO'.'..'.'.OQIIOOt'..l‘...I.O".'O.I...'..‘.l."“‘
MOdify Memory"..'.0...0"...'..O.i.'..l..‘.."'..."'......O.O.
Examine RegisterS..'.'..Q‘.O..".'.0.0'.I..O....'....I.OOOCIOOI‘
Execute Program"..."."...O'0......0........i"..‘....."‘."'

BteakPOIntsO."'.'0'....."..'C"...."'....'.‘.'...‘..'.'..I...

.

L d

Traclng.".""'...OO'.'......I........O'......-O...0.00‘O'.....

DBUGR Error Messages....'."..0'..'....'.'....".'Q...'.'.......
DBUGR Example.l......"......'........‘.‘.O"..O'..'...""..’..

Section XII

MEMORY AND I/JO RECONFIGURATION
Scheduling the Configurator From ROM. .eeeeesssscecsosccossssssscscs
Bootstrap Loadero,.'.O...l..'.l"'.."...'....Q"..O.l'......"'

///

A

11-1
11-2
11-2
11-3
11-4
11-4
11-4
11-5
11-5
11-6
11-7
11-9
11-9
11-10

N

C

Configurator Program......‘......-......-.._.....................
Configurator Halts and Error MeSSAgde@S..sseecccssscscsssscssssensnce
Reconfiguration ProceduresS, .ccsseeesscssscssssscosssssssssssssscs
I/0 Reconfiguration StepPS..ecssssssccessossssssossssscssssssssscss
Memory Reconfiguration ProcedUreS..cecsscsssscesscoscssssscssssssss
EXCluding Bad PageS.eeesssssssssssssosesscossesssssssssssassnssssss
SAM Extension‘....ttt01000QOOOO.‘O".O'...Q'.....O"."I.Q.'.CO.
Changing Partition DefinitionS..ceeeececececsscssesssccccosnssossss
Changing Program Partition ASSignNMeNtS..cececescoscccceccscsnsassss
Program Partition ASSigNmMENtS..ceceesesccssssssosssssscnsssssssss
Reconfigquration EXampPle..ccessssessessossssssesssssssccscssssnsse
Boot-Up and Reconfiguration HaltS..eeeeeeoeesesaosessccssssessoss
Configurator ErrOr MeSSAgeS..seseseescsscssscssssssssesns sesssoes

Appendix A
HP CHARAC’I‘ER SETIQQ‘..0.0'.""0.000...l.'00..."....0.....0.00'

Appendix B

SYSTEM COMMUNICATION AREA AND SYSTEM TABLES

System CommuNication Ar€a@..eeceeescesssscsosscssssncssscsssssscssss
Program ID segment..O..'.0."l..!O'.‘.l’l..'......."..C'O...O.Q
Equipment Table ® 0 9 0 O 9 P O OO OO OO OO O P SO OO OO 0T O P OO O P GO OO OO OSSOSO
Device Reference Table...eessescessssssosssessscesssscsssssssssns
Memory Allocation Table (MAT) cceecoesosecssscsscscscscsssesssssosssses
Driver Mapping Table’..'.........‘...'.....‘.."““.‘...""'..
Disc Layout Of an RTE=IV SYSteM.uwecesccssesssscssscscssssssscnsses
Source Record Formats'."O..."...'0......0..'....O.......O...OO

Appendix C
RECORD FORMATS
Source Record Formats.O.OO"O.'.....OI.Q.'.....‘O'...O..‘.".'.'

NAM Recordo.Oo.‘.o.oo-o-o-a-..'0..0.000"!0.0.0..UQQCOOOOOOOOOQQ
EXT Record‘..I.O.C...'....'.".....'.'0.0'.'.O‘.....O"O"......

DBL Resord'QQQOOIl'00-c'.0.0000".’..0.0000."..0....00‘.00.0'0'

EMA Record'".....'..'..'0..'..'.."..O...'.'.0’.'.........’...'

END Record.O.'.....'.....0.."’.00..'.'.‘.'..0.....'.."..".’.'

AbSOlute Tape Formatooooto-t.oovqo"ootooooo.-oo-ooooooo'coooto'

Appendix D
RTE_IV VERSUS RTE-III...‘O.‘..'..."...l...‘..'.."...'....'....

Appendix E
TABLE AREASIAND II ENTRY POINTS."..00'."..00.0.'0.0.."'0'.'

Appendix F
RTE-IV PROGRAM TYPES"..‘O...."..'....'.".OO".‘.O..".."O.C‘

Appendix E

ERROR MESSAGE SUMMARY0.00'...i.......'.0.00......0...'...0'..'.0
Operator Command ErrOr MeSSAgES.ceeeeescecsosassscssssessosssess
EXEC Call ErILOr MESSAT @S st s eeesssscesosossossssosesosssssssosensss

<

'

12-2
12-3
12-3
12-4
12-7
12-7
12-8
12-8
12-11
12-12
12-13
12-13
12-14

B-1
B-2
B-6
B-6
B-8
B-9
B-10

Input/Output Error Messages.

Parity ErrorSQQOQQ..O.Qt."Q
Configurator Error Messages.
FORTRAN Compiler Errors.....

Assembler ErrorSeeecececcee
Relocating Loader Errors..

Additional MessageS.......
System HaltS¢0oooon--oo-o-

-

.

-

O

GLOSSARY OF TERMS

ABSOLUTE PROGRAM - A program that has been relocated and is capable
of being loaded into main memory for subsequent execut.on. An
"absolute prcgram" is synonymous with "relocated program."”

ABSOLUTE SYSTEM - The binary memory image of an RTE system (stored
on Logical Unit 2).

ADDRESS SPACE - see LOGICAL MEMORY or PHYSICAL MEMORY.

ASYNCHRONOUS DEVICE - A device that can perfcrm I/0 operations that
are independent of time considerations but operates simultaneously
with prcgram execution. Interaction with the computer is through
request/response circuitry.

AUXILIARY DISC SUBCHANNEL - An optional subchannel that is treated as
a logical extension of the system disc subchannel, LU2. If used, it
is assigned to Logical Unit 3. The binary memory image of RTE-IV may
not reside on the auxiliary subchannel.

BACKGROUND (BG) - An arbitrary name for one of two types of partitions
in RTE; generally used for lower priority programs whose responses
tc interrupts are not time-critical.

BASE PAGE - A 1024-word area of memory corresponding to logical
page 0. It contains the system’s communication area, driver links,

trap cells for interrupt processing, and system and/or user program
links.

BASE PAGE FENCE - A hardware register that divides a logical base
page into a portion containing the user s base page and a portion
of the system’s base page.

BG - See BACKGROUND.

BLOCK - Two logical disc sectors of 128 bytes each, totaling a
256 bytes.

BOOT EXTENSION - An absolute program that resides on the first two
sectors of logical track 0 of the system subchannel. The Boot

Extension itself is first loaded into memory by the Bootstrap Loader
or ROM Loader.

BOOT FILE - An optional file to which the Bootstrap Loader produced
by the On-Line Generator is stored. This may be a disc file or a
logical unit (e.g., a mini-cartridge).

BOOTSTRAP LOADER - A loader produced by the Generator and stored in

%

the boot file. The Bootstrap Loader loads the Boot Extension into
memory and then transfers control to the Boot Extension.

BOOT-UP - The process of bringing the Bootstrap Loader or ROM Loader -
contents into memory. Control is then transferred to the Boot 3
Extension to begin the initializatrion process. p g

BUFFER - An area of memory (main-memory, mass memory or local
peripheral memory) used to temporarily store data.

CLASS I/O - A means of buffering data between devices and user
programs, and between programs themselves, that permits a user
program to continue execution concurrently with its own I/O. The
term "I/O without program wait" is a more commonly used term.

CLOSE FILE - A method of terminating a program’s access to a file so
that no further read/write operations may be performed on the file.

COMMON - Ap 5rea of memory that can be accessed by a program and its
subprograms. Usually used to pass data from a program to a subprogram.
In RTE, system COMMON may be used to pass data from one program

to another.

CONFIGURATOR - A two-part program that allows reconfiguration of
an RTE system’s I/0 and physical memory structures without going
through a new system generation. The configurator is initiated
as an option during the startup process.

CURRENT PAGE - The memory page in which the executing instruction is
located. Some 21MX memory reference instructions can only directly
reference locations in two pages: current page and base page.

DATA CONTROL BLOCK (DCB) - A table within an executable program that
contains information used by the File Management Package (FMP) in

performing disc accesses. (See the RTE Batch Spool Monitor Reference
Manual.)

DCPC - see Dual Channel Port Controller

DEVICE DOWN - Relates to the state of a periphergal device or I/O
controller. When the device is down, it is no longer available for
use by the system. The term also refers to the DN operator command.

DEVICE INDEPENDENCE - Refers to the ability of a program to perform
I/0 without knowing which physical device is being accessed (see
also Logical Unit Number).

DEVICE REFERENCE TABLE (DRT) - A table created during system
generation corresponding to Logical Units 0 through 63. The contents
of the Device Reference Table include a pointer to the associated EQT
entry, subchannel number of the device, and information as to whether
or not the device is locked. The table may be modified by the user
through an LU command.

DEVICE TIMEOUT - A time interval associated with a specific I/0

device. If the system expects a response from such a device and i;;'
this response does not occur within the timeout period, the

v

A

device is assumed to be inoperative by the system. This feature is
necessary to prevent a program from getting "hung up" because i§
is waiting for a response from a non-functioning peripheral device.

DIRECT MEMORY ACCESS - See Dual Channel Port Contrcller.

DIRECTORY - A list of programs and files currently stored on a disc
subchannel that can be displayed by the user.

DISC - Strictly speaking, the term means the platter(s) with the
storage medium only; however the term is also loosely used to mean
the entire peripheral including the drive.

DISC-BASED - Refers to an operating system using a disc storage
device as an integral part of the operating system.

DISC FORMATTING - The process by which physical track and sector
addresses are written in the preamble of each disc track sector.
Disc formatting may be performed by the appropriate disc diagnostic.
After formatting is completed, the SWTCH program and Disc Backup
utility may perform subchannel initialization.

DISC-RESIDENT - A term applied to programs in executable form
(absolute) that are stored on disc and brought into main memory for
execution by the system in response to a program or operator
request, time-of-day schedule or an I/0 interrupt.

DISC ROM BOOT - A loader residing in Read-Only Memory that loads
(off-1line) the Boot Extension from disc storage and transfers control
to the Boot Extension. (See also BOOT EXTENSION and STARTUP.)

DISPATCHER - An RTE system module that selects, from the scheduled
list, the highest priority program to be executed next. The
dispatcher module loads the program into memory from disc (if the

program is not already in memory) and transfers control to the
program.

DMA - See Dual Channel Port Controller
DMS - See Dynamic Mapping System

DORMANT PROGRAM - A dormant program is one that is "sleeping" or
inactive. More specifically, in RTE it is a program that is neither

executing, suspended nor scheduled.

DOWN - Status of a device controller EQT that is not available for
use.

DRIVER - A software module that interfaces a device and its
controller to an operating system. Drivers specified by EQT
definitions will go into either a driver partition or into
the System Driver area of memory.

DRIVER PARTITION - A block of memory that contains one or more
drivers. In RTE-IV, all drivers are in physical memory; however,
only the driver partition containing the driver currently being
used is included (mapped) in the logical address space.

LA A

/)lxu-//

DRT - See DEVICE REFERENCE TABLE

DUAL CHANNEL PORT CONTROLLER (DCPC) - A hardware accessory that
permits an I/O process to transfer data to or from memory directly,
or access memory, thus providing a much faster transfer of data.
The operating system controls access to the DCPC channels.

DYNAMIC MAPPING SYSTEM - A hardware accessory allowing partitioned
memory systems to address memory configurations larger than 32K
words of physical memory.

EMA - See Extended Memory Area
EQT - See Equipment Table

EQT EXTENSION - A method for increasing the size of an Equipment
Table entry s buffer space, during system generation, that gives
the specified I/0O driver more words of storage space than are
available in the EQT temporary storage area.

EQUIPMENT TABLE (EQT) -.A table in memory associating each physical
I/0 device controller with a particular software processing routine
(driver). For a given device, the EQT provides status information,
temporary storage and parameter passing services (see also Device
Reference Table and Interrupt Table).

EXEC - One of the RTE system modules that interfaces user
programs to the operating system.

EXTENDABLE FILE - An FMP file that is automatically extended in
response to a write request to:points beyond the range of the

currrently defined file. An extent is created with the same name
and size as the main, and the access is continued.

EXTENDED MEMORY AREA (EMA) - An area of physical memory that may

ex tend beyond the user s logical address space and is used for
large data arrays. Its size is limited only by the amount of
physical memory available. An entire array is resident in physical
memory although the entire array currently is not in the logical
address space.

EXTERNAL REFERENCE - A reference to a declared symbolic name not

defined in the software module in which the reference occurs. An
external reference is satisfied by another module that defines
the reference name by an entry point definition.

FILE - A defined section of memory on a storage device used to
store data or programs.

FILE EXTENTS - See EXTENDABLE FILE

FILE MANAGEMENT - The operating system functions associated with
maintaining disc files (translating file names to physical disc

memory areas; maintaining a directory; checking for security codes;
etc.).

/,

e

®

FILE MANAGEMENT PACKAGE (FMP) - A collection of subprograms used to

~access, control and maintain files.

FILE MANAGER (FMGR) - A program that provides FMP file creation,

access and manipulation services through FMGR commands entered by
the user.

FMGR - See File Manager
FMP - See File Management Package

FOREGROUND - A purely arbitrary name for one of the twou types of
partitions in RTE; generally used for higher-priority programs.
The "foreground" area is synonymous with the real-time area.

GLOBAL TRACKS - Global tracks are a subset of system tracks and are

accounted for in the track assignment table. Any program can
read/write or release a global track (i.e., programs can share
global tracks).

HP-IB - The Hewlett-Packard version of the IEEE standard 488-1975
Digital Interface for Programmable Instrumentation. The HP-IB
provides two-way communication between instruments and/or

between computers, instruments, or peripherals.

ID SEGMENT - A block of words, associated with each resident
program, that is used by the system to keep track of the program’s
name, software priority field, current scheduling status and other
characteristics. Every program must have its own ID segment.

ID SEGMENT EXTENSION - A method for increasing the size of an ID
segment to save additional information about its associated program.
The extensions are used only for EMA programs (see EMA). ID segment
extensions are automatically allocated by the generator or loader,

but only if sufficient ID segment extensions were specified during
system generation.

INTERRUPT - The process- (usually initiated by an I/0 device
controller) that causes the computer to signal an executing program,
in an orderly fashion, for the purpose of transferring information
between a device and the computer.

INTERRUPT LCCATION - A single memory location whose contents (always
an instruction) are executed upon interrupt by an I/0 device
contrcller (same as trap cell).

INTERRUPT TABLE (INT) - A table that associates interrupt links the

octal select codes of peripheral devices to specific EQT entries or
programs. _

I/0 - A general term referring to any activity between a computer
and its peripheral devices.

I/0 CONTROLLER - A combination of interface card(s), cable, and

(for some devices) controller box used to control one or more I1/0
devices.

A

I/0 DEVICE - A physical unit defined by an EQT entry (I/O controller)
and subchannel.

I/0 WITHOUT WAIT - See Class I/0.
KEYWORD TABLE - A table of EQT addresses.

LG AREA - A group of tracks used to temporarily store relocatable
code that can be accessed by the File Manager.

LIBRARY - A collection of relocatable subroutines that perform
commonly-used (e.g., mathematical) functions. Subroutines are
appended to referencing programs or are placed in the memory
resident library for access to memory resident programs.

LOADER - A program that converts the relative addresses of relocatable

programs to absolute addresses compatible with the memory layout
of a particular system.

LOCAL COMMON - An area of COMMON appended to the beginning of a
program and accessible only by that program, its subroutines or
segments. This type of COMMON can be specified only during on-line
relocation by the loader (LOADR).

LOCKED DEVICE - See Logical Unit Lock.

LOCKED FILE - A file opened exclusively to one program and therefore
not currently accessible to any other program.

LOGICAL MEMORY - Logical memory is the 32K-word (maximum) address space
described by the currently enabled memory map. If the System Map is
enabled, it describes those areas of physical memory necessary for

the operation of RTE-IV. When the User Map is enabled, it describes
those areas needed by the currently executing program. DCPC maps
describe the address space to/from which the transfer is taking place.

LOGICAL UNIT LOCK - A mechanism for temporarily acquiring exclusive
use of an I/0 device or devices by a program, to ensure its I/0
completion before being preempted by a another program.

LOGICAL UNIT NUMBER (LU) - A number used by a program to refer to an
I/0 device. Programs do not refer directly to the physical I/0 device

select code number, but rather through the LU number that has a
cross-reference to the device.

LU - See LOGICAL UNIT NUMBER

MAILBOX I/O - A Class I/0 term applied to a protected buffer that
keeps track of the "sender" and "receiver" program for each block
of data in the buffer used in program-to program communication.

MAIN PROGRAM - The main body of a user program (as opposed to the
whole program, which may include subroutines or segments).

MAP - Applied to 21MX or XE machines, the term applies to a set of

32 registers that point to 32 pages of physical memory defining a
32K-word logical address space.

-

,7&1r¥’

MAPPING SEGMENT (MSEG) - The area of an EMA that is cuurently
accessible within the user program’s logical address space.

MEMORY PROTECT - A hardware accesory that allows an address (memory
protection fence) to be set so that when in protected mode, the
locations below that address cannot be accessed by writes or
JSB/JMP instructions.

MEMORY-RESIDENT LIBRARY - A collection of reentrant or privileged
library routines available only to memory resident programs (in RTE-IV).
These routines are included in the disc-resident re10uutable library
for appending to disc-resident programs. -

MEMORY-RESIDENT PROGRAM - A program that executes from a designated
area in physical memory and remains in memory, as opposed to a
disc-resident program that may be swapped out to the disc or loaded
from the disc to another area in memory. Memory resident programs are
loaded during system generation (only), and usually are high priority
programs with short execution times.

MOTHER PARTITION - A partition that may be larger than the maximum
logical address space and which may consist of a group of
subpartitions. The subpartitions allow many smaller programs to use
the memory when the mother partition is not active.

MSEG - See Mapping Segment

MULTIPROGRAMMING - A technique whereby two or more routines or
programs may be executed concurrently by an interleaving process,
using the same computer. Multiprogramming is an attempt to improve
equipment efficiency by building a queue of demands for resources,
achieved by having available in main memory more than one task waiting
for resource usage. The concurrent tasks are then multiplexed among
each other s wait time intervals.

MULTI-TERMINAL MONITOR - A system software module that provides for
interactive program development and editing in a multi-terminal
environment contrclled by a single computer. -

OFF-LINE - Refers to use of the computer and/or I/0 devices by
resources other than the RTE operating system or subsystems.

ON-LINE - Refers to software or I/0 devices recognized and controlled
by the main operating system at the time they are being used.

ON-LINE GENERATOR - A program that permits use of an existing. RTE
operating system’s services to generate a mew system from relocatable
software modules found in the File Manager Area. System control can
then be transferred to the new operating system through use of a
program called SWTC@TI(See RTE-IV On-Line Generator Reference Manual.)

ON-LINE LOADING - The relocation of programs through use of the
Relocating Loader (see RELOCATION) .

OPEN FILE - A method of gaining access to a specific file to perform
a read/write instruction.

' e

pr

OPERATOR'S CONSOLE - see SYSTEM CONSOLE

OPERATING SYSTEM - An organized collection of programs designed to

optimize the usage of a computer system. It provides the means by EA“
which user programs interact with hardware and other software. (See _M ;

also REAL-TIME EXECUTIVE.)

OVERLAYS - Also called segments,these are routines that share the
same portion of main memory and are called into memory by the
program itself (see SEGMENTED PROGRAMS).

PAGE - The largest block of memory (1024 words) that can be directly

addressed by the address field of a one-word memory reference
instruction.

PARTITION - A predefined block of memory with a fixed number of
pages (redefinable at system boot-up) located in the disc resident
program area of memory. The user may divide the disc resident
program area into as many as 64 partitions that can be classified
as a mixture of real-time and background, all real-time, or all
background. Disc-resident programs run in partitions and at least
one partition of sufficient size must be defined during system
generation to run disc resident programs.

PERIPHERAL DISC SUBCHANNEL - A disc subchannel available to the user
for read/write operations but for which RTE-IV does not manage nor
maintain a track assignment table. It is the user’ s responsibility
to manage these tracks; however, the File Manager may be used to
manage peripheral subchannel tracks. A peripheral subchannnel must

have a logical unit number assignment greater than 6 o

PHYSICAL MEMORY - Physical memory is the total amount of memory
defined at generation or reconfiguration time. It refers to the
actual memory in the computer; e.g., page 67 of physical memory is
associated with a certain block of actual hardware, whereas the
same page might be referred to as "page 5" in a particular block
of logical memory.

POWER FAIL/AUTO-RESTART - The ability for a computer to save the
current state of the system in permanent memory when power is

lost, and to restore the system to defined conditions when power
returns.

PRIORITY - A regqulation of events allowing certain actions to take
precedence over others in case of timing conflicts.

PRIVILEGED DRIVERS - I/0 drivers whose interrupts are not processed
by the RTE operating system. Such drivers offer improved response

time but must perform their own internal housekeeping; i.e., saving
status upon interrupt.

PRIVILEGED INTERRUPTS - Interrupts that by-pass normal interrupt
processing to achieve optimum response time for interrupts having
the greatest urgency. Privileged interrupts are handled by

privileged I/0 drivers. ﬁj\:

PRIVILEGED SUBROUTINE - A privileged subroutine executes with the
interrupt system off (and therefore by-passes the operating system).
It allows high-speed processing at the cost of losing use of
operating system housekeeping services and real-time response.

PROGRAM STATE - Refers to the status of an executable program at
any given time. A user program is always in one of four possible
states: executing, scheduled, suspended or dormant.

PROGRAM SWAPPING - see Swapping

PURGE - Refers to the act of instructing an operating cystem to
delete a file or program from its directory. Usually used with
reference to disc files.

REAL-TIME (RT) - An arbitrary name for one of the two types of
partitions in RTE; generally used for higher-priority programs.
The real-time area is synonymous with the "foreground" area.

REAL-TIME EXECUTIVE - A collection of software modules comprising
the total operating system; e.g., EXEC, SCHED, RTIOC, I/0 drivers
and various tables. For all practical purposes, Real-Time Executive,
operating system and RTE are synonymous terms.

RECORD - A logical subdivision of a file that contains zero or more
words, and 1is terminated by an end-of-file mark.

REENTRANT - Refers to a routine that can be shared by a number of
programs simultaneously; i.e., one program can be interrupted in
its usage of the routine to permit a higher-priority program to
utilize the routine. The first program can then reenter the
routine at the point where it was interrupted.

RELOCATABLE LIBRARIES - A collection of commonly-used subroutines
in relocatable format. For example:

System Library - subroutines that are appended to each user
program and that are unique to the operating system. This allows
a user to write programs using operating system routines but
which are independent of the operating system for subroutine
execution.

DOS/RTE Relocatable Library - a collection of utility subroutines

that are primarily accessed by FORTRAN and Assembly Language
programs.

FORTRAN Formatters - format subrcutines for FORTRAN I/O operations
and other prcgramming languages.

RELOCATING LOADER (LOADR) - A HP-supplied program that sets up
communications links and forms an absolute load module from a
relocatable program. LOADR creates the relocated program in

conformance with current system constraints and loader commands
entered by the user.

RESOURCE MANAGEMENT - A feature that allows the user to manage a
specific resource shared by a particular set of cooperating

l

AN

programs.

RESPONSE TIME - The total amount of time required to bring a
real-time program or routine into execution in response to an

interrupt, interval timer, call from another program or ope

call. Response time is usually measured in microseconds to milliseconds.

ROM BOOT - A loader residing in Read-Only Memory that on-1li
the Boot Extension from disc storage and transfers control

Boot Extension. The Boot Extension must reside on the disc
unit 0, track 0, sector 0. (See also Boot Extension and Sta

definitions.)
RTE - See REAL=TIME EXECUTIVE

SAM - See System Available Memory

rator

ne loads
to the
physical
rtup

SCHEDULING - Entering a program in the schedule list for execution,

either at the next entry into the dispatcher, or at the app
time when the program’s priority is high enough.

SEGMENTED PROGRAM - A technique for accommodating programs larger than

the available logical memory. "Segment" refers to those sli

ropriate

ces of the

program that are brought into main memory as required, and overlay

the previous segment.

SELECT CODE - An octal number (10 through 77) that specifie
address of an I/0 device interface card.

SIMULTANEOUS PERIPHERAL OPERATIONS ON-LINE (SPOOL) - An RTE
generally associated with batch operations. There is both
in-spooling and out-spooling . In-spooling consists of a p

s the

feature

rogram

and data being first read in from some peripheral device and placed

on the disc. Program reads are translated to disc reads ins
reads from the peripheral device. Program writes are also

translated to disc writes instead of peripheral device writ
that program output is on disc. Out-spooling is the process
the program’s output from disc to the appropriate periphera

STARTUP - The startup process is initiated by the Boot Exte
During the startup process, the tables, registers and point

required by the system are established. Control is then tr
to the Configurator. -

SUBCHANNEL - One of a group of I/0 devices connected to a s
controller. For example, RTE driver DVRXX can operate more
magnetic tape drive through subchannel assignments. In the
moving head discs, contiguous groups of tracks are treated
separate subchannels. For example, a 7905 disc platter may
into four subchannels. Each subchannel is referenced by an

SUBCHANNEL INITIALIZATION - The process of preparing a disc
subchannel for use by the RTE operating system.

SUBCHANNEL NUMBERS - Decimal numbers (0-31) associated with
numbers of devices with multiple functions on the same devi
subchannel number is associated with a specific subchannel;

tead of

es, SO
of taking
1 device.

nsion.
ers
ansferred

ingle 1/0
than one
case of

as

be divided
LU number.

the LU
ce. Each
e.g., a

N

\W)

2645A terminal could have four subchannels: one for the keyboard, one
each for the right and left tape channels, and one for an optional
line printer. .

SUBPARTITIONS ~ Partitions that are optional subdivisions of a mother
partition. Subpartitions have the same type (RT or BG) as the mother
partition. Subpartitions are treated like other partitions except
that they cannot be used while the mother partition contains an
executing program.

SUBSYSTEM GLOBAI AREA (SSGA) - An area of memory that consists of
all Type 30 modules loaded at generation time. The area is included
in the system address space and in the address spaces c¢f programs
that access it (Types 17-20, and Types 25-28). The area may be

used for data (i.e., COMMON).

SWAPPING - A technique whereby an executing program is suspended and
transferred to mass storage (because another program needing the
same portion of memory has been scheduled). When the interrupting
program has terminated, becomes suspended, or becomes eligible to be
swapped out, the previously swapped program may be reloaded into
memory and resumes execution at the point where it was suspended.

SWTCd PROGRAM - A system utility program that transfers an RTE-IV
operating system to a specific disc area from which it can be booted up.

SYNCHRONOUS DEVICE - Devices that perform I/0 operatiocns in a fixed
timing sequence, regardless of the readiness of the computer.

SYSTEM AVAILABLE MEMORY (SAM) - A temporary storage area used by the
system for class 1/0, reentrant I/0, automatic buffering and
parameter string passing. In logical memory, SAM exists as one
contiguous block within the system map.

SYSTEM COMMON - An area of memory that is sharable by programs
operating partitions of main memory.

SYSTEM CONSOLE - The interactive console or terminal (LUl) that
controls system operation and from which all system and utility
error messages are issued. In a multi-terminal environment, a system
console is distinguished from "user consoles" from which users
develop programs.

SYSTEM DISC SUBCHANNEL - The disc subchannel assigned to Logical
Unit 2 that contains the memory image of the RTE-IV system.

SYSTEM DRIVER AREA - An area for privileged drivers, very large
drivers, drivers that do their own mapping or drivers not included
in driver partitions. It is included in the system’s address space,

in the address space of RT and Type 3 BG programs, and optionally in
the address space of memory resident programs.

SYSTEM MAP - The 32K-word address space used by the operating
system during its own exectuion.

SYSTEM TRACKS - All those subchannel tracks assigned to RTE-IV for
which a contiguous track assignment table is maintained. These

i

tracks are located on Logical Unit 2 (system), and 3 (auxiliary).

TABLE AREA I - An area of memory that is included in all address
spaces and which includes the EQTs, Device Reference Table, Interrupt
Table, Track Map Table, all Type 15 modules, and some system entry
points.

TABLE AREA II - An area of memory that contains the system tables,
ID segments, all Type 13 modules, and some system table and entry
points. Table Area II is included in the address space of the
system, real-time programs, Type 3 background programs, and
(optionally) memory resident programs.

TIME BASE GENERATOR (TBG) - A hardware module (real-time clock)
that generates an interrupt in 10 millisecond intervals. It

is used to trigger execution of time-scheduled user programs at
pre-determined intervals and for device time-outs.

TIME-OUT - Relating to the state of a peripheral device. When the
device has timed-out, it is no longer available for system use
(down). Also (noun) the parameter itself; the amount of time RTE
will wait for the device to respond to an I/0 transfer command
before making the device unavailable. 2

TIME SCHEDULING - The process of automatically scheduling a program
for execution at pre-determined time intervals. Program scheduling is
established through use of the IT command, and requires that the

Time Base Generator be installed in the CPU.

UP - See Device Up

USER MAP - The 32K-word address space used by a user program during
its execution.

Arf A

AN

L I TTTTmmTTeT T R e e

| GENERAL DESCRIPTION | SECTION I :
I I

1-1. REAL-TIME EXECUTIVE

Tne Real-Time Executive is the major control element and
communications link within the RTE-IV operating system. It supervises
and coordinates all program calls or operator requests for system
services. In a typical real-time environment, the Executive handles
all decision making and scheduling unless overridden by operator
intervention.

A disc-pased system, KTE-IV provides for real-time program execution
concurrent with full program development services. RTE-IV features
multiprogramming, dynamic memory mapping, access to more than one
million words of main memory, and an Extended Memory Area (EMA) scheme
that offers access to data arrays that are larger than a program’s
logical address space.

The memory management and mapping provisions allow the central
processcr unit (CPU) to access from 48K to 1024K words of "physical
menory." ¢hysical memory refers to all of memory actually available to
the wuser through the memory management and mapping scheme. "Logical
memory" retfers to the actual 32K-word address space imposed by the
15-0it address lenagth used in &P 21MX-series computers that is
addressable py user programs. RTE-IV automatically handles all
aadressing and mapping of memory fcr the user.

most prograns previously written to execute under RTE-V, RTE-II or
RTu=-II1 systeas are upward compatible with and will successfully

operate under RrRTE-IV. T©ifferences 1in features opetween operating
systems are itewmized in Appendix .

Significant new features built into RTE~IV include the following:

* Improved user interface - reduced user interaction for scheduling
system processes (i.e., Relocating Loader, FORTRAKR IV, Assembler,
etc.).

* Program preparaticn using files.

* hssignmeﬁt of programs to partitions via operator command.

* Interactive xelocating Loader.

* (reater reliability - hardware parity error recovery, additional
checks on operator scheduling command 1input, improved error

messages, and on-line removal of defective pages. Defective pages
are those in which parity errors have been detected.

GENERAL DESCRIPTION

* Reconfiguration of I/0 and/or main memory during system boot-up
without the necessity of regenerating the entire systen.
"Defective" of memory can be by-passed during the memory
reconfiguration process. (Bad memory pages are those in which
parity errors have neen detected.)

* Increased user code area of up to 28K words.

* A memory management scheme that accomodates unusually large data
arrays. Implementaticn 1is through an easy-to-use Extended Memory
Area (EMA). Using EMA, data arrays as large as physical memory may
be mapped 1intc the wuser’s 1logical address space, as required.

Typical applications where EMA arrays are particularly useful are
as follows:

a. Systems with large amounts of data storage, acquisition and
processing. TData access within EMA arrays is rapid. Requiring
no disc accesses as in virtual memory schemes.

b. Data acquisiticn and storage from fast devices at real-time
rates.

c. Processes involving data access from random locations (e.g.,
sorting).

d. Scientific applications involving large matrices (e.qg.,
inverting a matrix).

e. Applications requiring extremely large buffer areas.

1-2. 53Y5TEM HARDWARE

The KTE-IV system operates with the following minimum hardware
conf iguration:

* P 21¥¥ Series Computer with a minimum 48K words of memory (64K is
highly recommended for improved memory utilization).

* Time 3ase Generator

* Dual Channel Port Controller (DCPC)*
* Dynamic Mapping System

* pMemory Protect

* System Console Device

* High Speed Disc Storage

* Firmware Accessory Board (FAB) (21MX-E series only)

I-2

GENERAL DESCRIPTION

* pither an uP “ini-Cartridge Subsystem or High GSpeed Paper Tape
Feadeoer,

1-3. 5YSTEM SOFTWARE

The complete set of currently availanle PTE-IV operating system
modules and standard subsystems 1is listed in thke RTE-IV Software
Numbering Catalcog. Owvtional sunsystem modules can hbe found in the
various subsystem Software Mumbering Catalogs.

1-4. WMEMORY SANAGEMENT

The Cynamic Mapping System (DMS) provides the capability of addressing
memory configurations larger than 32K words. Up to 1024K words of
nhysical memory can be addressed by the user. The following brief
explanation of the mapping and addressing process provides a general
overview of system opveration. For a more detailed description, refer
to the 21MX Series Computer Reference Manual and information given in
the "Memory Organization and Managment" section of this text.

Addressing more than 32K words 1is accomplished by translating memory
addresses through one of four "memory maps". A memory map is defined
as a set of 32 hardware registers that provide the interface between
the 32K 1logical and physical memory. All memory map addressing is
performed internally by the system and is transparent to the user.
The four memory maps managed by the system consist of a system map
that defines the system’s logical address space, a user map that
defines the user’s 1logical address space, and two Port maps that
define a caller’s I/0 buffer in a DCPC transfer.

1-5. MULTIPROGRAMMING

RTE-IV is a multiprogramming system that allows several programs to be
active concurrently. Each program executes during the unused central
processor time of the others. Scheduling/dispatching modules decide
when to execute programs that are competing for system resources.

‘These modules swap disc-resident programs in and out of partitioned

memory in accordance with availability of system resources, program
priority and time scheduling criteria. The programs may be scheduled
by pre-determined time intervals, an external event, operator command
or by another program. A scheduled list maintained by the system is
automatically scanned every 10 milliseconds or whenever a change is
made to the list by a new entry.

Up to 254 programs may be defined oy ID segments at one time (an ID
seqgnent is a table that describes the program; refer to Appendix A for
more informaticn). Additional programs may be relocated and then saved
as files by wusing the File Manager. Thus, the number of readily
accessible programs can pe increased to the limits of available disc
storage.

I-3-

GENERAL DESCRIPTION

1-6. INPUT/QUTPUT PROCESSING

All I/0 and interrupt processing is contrclled oy the system with the
single exception of privileged interrupts (privileged interrupts
circunvent the system for faster response time). Input/output
operations are performed concurrently with program execution; some
programs execute while others are receiving I/0 services.

Requests for I/0 services are made by EXEC function calls cocded into
the calling program. The EXEC calls specify the type of transfer
(Read, Write, Control) and the desired device. 1I/0 requests for a
particular prograim are queued to the controller I/0 list according to
the calling program’s priority. Automatic buffering for write
operations is provided if specified.

In addition to the standard I/0 scheduling processes described‘above,
there are a number of other 1I/0 functions available that can improve
system nerformance in a multiprogramming environment:

* Device Time-Qut -- sets a time-out value for a device to prevent
indefinite program suspension because of a malfunctioning device.

* I/0 Buffering -- automatic buffering on slower devices allows a
calling program to initiate an output operation (only) without
waiting for completion before resuming execution. A read without
wait cperation is a function of Class I/0 (see below).

* Reentrant I/0 -- allows a disc resident program to be swapped out
from a memory partition and into disc storage when it is suspended
for I/u. This, in turn, permits any program to use the partition.
The previous status of the swapped program is maintained so that,
when it once again achieves highest priority on the scheduled list,
it can resume execution and I/0 processing at the point of
interruption.

* Logical Unit Lock == assigns a logical unit exclusively to a
specific program, thus preventing any other program from accessing
it until it is unlocked.

* (Class 1I/0 -- a special set of I/0 calls that provide a method for
buffering data petween devices and user programs and also between
programs (mailbox I/0). Class I/0 permits a user program to

continue executicn concurrently with its own I/0 (I/O without
wait).

1-7. RESOUEKCE MANAGMENT

Resource management 1is a user-determined method for cooperating

programs to share a common resource in an orderly manner. A
"resource” may be anything so defined by the user programs accessing
it; an I1/0 device, a file, subroutine, or a memory location

containing volatile data are typical examples.

o

GENEPRAL, DESCRIPTION

fhis sublevel of resource sharing ie initially implemented during
system generation by defining the numnber of concurrent resources to be
shared. A table of these numbers is set up and maintained by the
systeii. An examole of resource sharing would pe the updating of
commonly-shared data by one orogram. It would lock the associated
resource nuaber to prevent premature access by other programs until
the data was updated. See Section IV for a coaplete description.

JUED 7 1-8. EALCUTIVE COMMUNICATION

EXCC calls are the line of communication vetween an executing program
and systemn services. The required calls are coded into a program
during its aevelouvwent phase. The calls have a structured format plus
a nuuaper of parameter ptions that further define the specific
cperation to pe performed.

when an executing wrojramn makes a call to EXRC, it attenpts to execute
a -jump subroutine (J38) to that portion of the system located in the
orotectea area of memory. This causes a memory protect violation
interrupt that 1s then processed by the system. If the call is legal,
the systew processes the reguest.

The following 1is & partial list of system services availadble to an
executing program via FXEC calls:

* perform input and output operations
* Allccate and release disc space

* Teraminate cr suspend itself

* Load its segment

* S3chedule other prograns

* Recover scheduling strings

* Obtein the tire of day

* Tine-schedule program execution

* Optain status information on partitions

See Section v of this manual for complete descriptions and format
considerations of GXEC calls.

GENERAL DESCRIPTION

1-9. OPERATOR CUMMANDS

The operator maintains final control of RTE-IV system operation
through commands entered via the system console. These commands and
their parameter options enable the operator to monitor current system
status and/or wodify system operation. The following is a partial
list of operator control functions:

* Turn programs on and off

* Suspend and restart programs

* FExamine the status of any partition, program, I/0 device or
controller

* Schedule programs to execute at specified times
* (Change the priority of programs
* peclare 1/0 controllers or devices up or down

* Dynamically alter the logical 1I/0 structure and buffering
designations

* pelete temporarily-loaded disc resident programs from memory

* Examine and dynamically alter an I/0 device’s time-out parameter
* Release tracks assigned to dormant programs

* Initialize the real-time clock and display the time

* Change program size (dynamic buffer area)

* Assign programs to partitions‘

* Remove reserved status of partition

See Section III of this manual for descriptions and parameter opflons
of all operator commands.

1-10. SYSTEM CONFIGURATION

Hemory resident and disc resident user programs, system modules,
library routines, device drivers and Real-Time Executive modules are
incorporated into a configured RTE System. The RTE software is modular
and flexible enough to permit user programs and I/0 device drivers to
be configured into a real-time system that is tailored to an
installation’s exact requirements.

I-6

GENEKAL DESCRIPTION

Using the keal-Time Cn-Line Generator (RT4GN) and SWICH, the
relocatanle software wmodules and user programs are converted into a
contfigured real-time system in memory-image Dbinary format. The

configured system is then loaded (bootstrapped) intoc the computer from
the system area of the disc. Any remaining disc stor-~ge is dynamically
alloccated by the confiqured system to user programs or 1s utilized by
the scheduler for swapping operatiocns.

1-11. MULTI-TERMIMNAL OFERATIONS

The ™Multi-Terminal Honitor (MTHM) provides concurrent nanagement of
multiple wuser consoles. Fach user 1is provided with his own File
Manager for command input. Individual copies of user programs are
created whenever they are initiated at MTM consoles thus allowing
concurrent execution of Assemblers, &Sditors, Generators, etc. See
Section IX of this manual for a detailed discussion of MTH operation.
1-12. SYSTEN UTILITY PROGRAME

S5tandard system utilities are on-line programs that run under the RTE
operating system and are called py the user to perform various program
preparation, system status and housekeeplng processes. The presence of
any utility orogram in the system 1s optional, depending upon
site-specific reguirements. The programs available are:

* Relocating Loader (LOADR)

* [Pile Management Package (I'MP)

¥ 1Interactive Editor (FDITK)

* [Batch Spool sonitor (K3¥)

* On-Line CGenerator (KT4GN)

* pisc ackup

* Disc Update

* System Status Program (WHZAT)

* KEYS and KYDMP Frograms

* Track Assignment Taole Log Progras (LGTAT)

* Depug Subroutine (DLUGR)

/-7

GENERAL DESCRIPTION

1-13. RELOCATING LOADER

The Relccating Loader program accepts user-written relocatable
prograims and outputs absolute load modules in conformance with loader
control command specified by the user. Other comrand parameters cause
the loader to 1list system status information; 1i.e., currently
available programs; or purge unwanted, permanently loaded programs
from the system. See Section VII of this manual for a detailed
discussion of LOADR operation.

1-14. FILE MANAGEMENT PACKAGE (FMP)

The File Managment Package is a set of programs (FMGR and D.RTR) and
subroutines that provide disc file housekeeping services. Service may
be acquired either programatically or through interactive user
commands. Files may be created, renamed, copied, purged, listed,
concatenated or otherwise manipulated on disc tracks under control of
the File Management Package. See the Batch Spool Monitor Reference

Manual, Sections II and III for complete information regarding use of
FMP.

1-15. INTERACTIVE EDITOR

The Editor (EDITKR) program 1is used to create and/or edit (modify)
lines of text in a source file under development or in a data file in

ASCII format. See the RTE Interactive Editor Reference Manual for
further information.

1-16. BATCH SPOOL MONITOR

The Batch Spool Monitor is a set of programs and subroutines that are
used to perform disc-based job processing. That is, jobs or data can
be input from a disc file and data can be output on a disc, with all
the necessary I/0 being performed independently of batch processing.
BSM also provides a means for input and output spooling of data. See
the Batch Spool Monitor Reference Manual, Section IV through vII, for
more information.

1-17. WHZAT

The WHZAT program provides status information regrading the current
system environment. Two different types of information can be

displayed: a list of all active program and their current status, or a
list of all partitions with their sizes and current status (occupied

or non-occupied). See the RTE Utility Programs Reference Manual for
more information.

/-7

GENERAL DESCRIPTION

1-18. DBUGR

The DBUGR subroutine can be appended to a user program through use of
the Relocating Loader. It can then aid the user in checking for
logical errors in a program through interactive control commands.
Debugging 1is performed at the Assembly Language level. See the subset
of DBUGR control commands described in the Relocatin - Loader section
of this manual or the DBUGR Reference Manual for a complete
description of all DBUGR functions.

1-19. ON-LINE GENERATOR

The On-Line Generator permits use of an existing RTE-IV system to
configure a new RTE-IV system according to user specifications.
Generaticon can oe directed from an answer file, logical input unit or
operator conscle. See the RTE-IV On-Line Generator Reference Manual
for more information.

1-20. SWTCH

The SWICH orogram perimits a user to transfer an RTE-IV operating
system file created by the On-Line Generator to a specific area of a
disc froa which it «can be booted up. See Secticn V of the RTE-IV
On~Line Generator kanual for more information.

1-21. 0DIBC BACRUR

The Disc Backug programs can be used either on-line or off-1line to
transfer data from disc to magnetic tape or vice versa, copy data from
disc to disc, verify successful transfers or copy operation, and to
initialize & dJisc cartridge. 3ee the RTE Utility Programs Feference
anual for wmore information.

1-22. DI3C UPLATE

The isc Update nrocess can e used to replace disc cartridge files
with files stored on an P mini-cartridge tape. The primary purpose is
to update wmaster software discs with either HP software distributed on
mini-cartridges or user-written wprogram modifications. See the RTE
utility Programs rReference 'lanual for more information.

1-23. KEY3 As €YDWP

he FKiEY3 and KYDSP programs are used to create user-defined command

ts for prograwming the soft keys on the P 23453 Display Station.
Softkeys orevide the capability to enter entire sequences of commandes
with a single keystroke. The advantages are speed of entry and a
sign@ficant reduction in operator errcrs Jduring terminal entry
sessions. GSee the RTE Utility Programs Reference Manual for more

GENERAL DESCRIPTION
information.

1-24. LGTAT

The LGTAT program logs and displays the status of the system and

auxiliary (only) disc tracks. See the RTE Utility Programs Reference
ltanual for more information.

95

1-¥%" PROGRAMMING LANGUAGES

The language translators available for user program development under
the RYE system are RI'E FORTRAN IV, RTE Assembler, HP Micro Assembler
and BASIC 1600/D.

RTE FORTRAN-IV

RTE FORTRAWN IV is a problem oriented programming language that is
translated by a compiler. The FORTRAN IV compiler executes in RTE and
accepts source programs from either an input device or FMGR file. The
resultant relocatable object programs and listed output files are
stored in FMGR files or output to specified devices. For further
information, see the RTE FORTRAN-IV Programmer s Reference Manual. ”

RTE-IV ASSEMBLEK

The RTE-IV Assembly Tanguage 1s a machine-oriented programming
language. Source programs written in this language are accepted by the
Assembler from either input aevices or disc files and translated into
absolute or relocatable object programs. Absolute code is output in
binary records suitable for execution on systems other than RTE-1IV.
For further information, see the RTE-IV Assembler Reference lMManual.

RTE MICRO-ASSEMBLER

The Micro-Assembler is part of an optional support package for on-line

users of special microprogramwmed instructions. The Micro-Assembler
translates source code into object microprograms. See the
Micro-Assemnbler keference lianual.

REAL-TIME BASIC/1000D

Real-Time BASIC 1s an opticnal, conversational programming language

that 1s easily learned, even by users without previous programming 3
experience. Each statement entered by the user is immediately checked 4:\\y
for <correct syntax by the Real-Time BASIC Interpreter. No separate 7
compilations or assembly operations are involved. A partly completed

program can be run at any time to confirm that it executes as the user ;
intended. See the Multi-User Real-Time BASIC Reference Manual. /_"/0

GENERAL DESCRIPTION

QUERY 1is an Englisb-like language usec¢ to access the P data base
managenent suosystem called IMAGE/1000. IMAGE/1000 1is 1itself an
optional subsystem that can be ordered for RTE-IV svstem applications
involved with large Jdata base considerations. In addition to the use
of (QULRY, the data base can also be accessed through RTE-IV FORTRAN
Assemeler or Real-Time 3ASIC applications programs. See the IYMAGE/1000
Reference Manual for further information.

-2l

1-f9. RTE-IV SYSTEM SULMARY

The P Real-Time Executive IV software system is a multiprogramming,
multi-user and multi-partitioned system that provides priority
scheduling, interrupt handling and program preparation capabilities.

Wwith multiprogramming, a number of data acguisition systems or test
stands can be operated simultaneously cn a 24-hour a day basis. Lata
reduction and report preparation functions can pe scheduled to execute
in the backgrcound area during times when real-time activities permit.
The sane computer can also pe used by the programmning group for
ongoing development work with KRTE background compilers for FORTRAN IV,
and with the HP Assembler, Bditor, and other auxiliary programs

Programs can be added to the system on-line. For system protection,
new programs can be debugged while the memory protect fence and the
Dynamic (lapping System wmaintains the integrity of the system area
other user programs.

Scneduling of all programs is pbased on priority. External events can
interrunt current operations to schedule programs for execution, or a
projran can oe sciheduled by an operator reguest, a program request, or
on a real-time clock pasis. Priorities are assigned by the user during
generation or on-line loading, and may be changed by an operator
request.

The system contrcls 1/0 prccessing through a central routine that
directs reguests and interrupts to the appropriate device driver
subroutine. ¥ror efficiency, programs awaiting I/0 are suspended to let
other wvnrograms use the computer. OQutputs to slow devices can be
puffered. For processes that cannot tolerate ordinary system overhead,
a privileged interrupt option 1lets a device to contact its driver
directly without going through the Executive. Program-to-program
communication is provided throuagh a mailbox (Class I/O) scheme.

The operator retains final control of system operation via commands

entered through the system console. The operator can turn on programs,
make status checks or perform other operations.

Configuration 1is efficient. System generation 1is performed on-line

using interactive operator dialog or pre-built answer files. This
results 1in an operating system configured for a specific hardware

system. / ’//

{\%\1 e /

C

System boot-up is the process of loading the operating system software
into memory so that it is ready for execution. Boot-up begins by using
either the Disc Loader ROM or Bootstrap Loader to 1load the Boot
Extension into memory from track 0, sector 0 of the system disc
subchannel. The Boot Extension, in turn, 1loads the operating system
into memory.

At this point, the user has the option of either completing a
"standard" system boot-up procedure as described in this section, or
reconfiguring the current I/0 and memory assignments as described in
Section 1IX,"Memory and I/0 Reconfiguration." 1In a standard boot-up,

the operating system immediately completes the rest of the
initialization process as follows:

1. Displays a SET TIME message.
2. Executes a startup program (optional).

3. Passes control to the File Manager (FMGR), which tries to execute
a procedure file named WELCOM. If the WELCOM file does not exist
on the system, the FMGR displays a FMGR =006 error message.

If memory and 1I/0 reconfiguratiocn is to be performed during system
poct-up, completion ‘is delayed and an interactive Configurator gprogram
is schreduled via S-rejgister settings tc make the new memory and I/0
assignments. At the end of the reccnfiguration process, control is

returneda to the systeiw to complete the boot-up procedure as described
avove.

Use the procecdures described velow to perform a standarc system
poot-up. ULse the procedures described 1in Section IX to perform a
poot-up with I/0 and wemory reconfiguration.

2-1. BOOL LOALERSE ANT E00T EXTENSION

The ©lsc poot Extension can pe loaded into memory from the disc using
either the Disc Loader RUM or Bootstrap Loader.

2=2. ISC LOADER ROM

The Disc Loader ROF can be used to load the Boot Extension if the Boot
bxtension resides on physical track 0, sector © of the system disc.
kefer tc the P 12992 Loader ROM s Installetion Manual (12992-90001)

for a description of the 3-register setting to load the Boot Extension
into menory.

I1-1

An example of a standard system boot-up using the 129928
KPL-compatinle 7905/7906/7920 Disc L.oader ROM is as follows:

1. Select the 3-register for display on the computer front panel.
2. Press CLEAR DISPLAY.
3. Set the S-register bits as follows:

Bits Enter:

0-2 Surface nuwpber of the disc where the

RTE-IV system subchannel starts (surface
numnoers start at 0).

3-4 0 (reserved)
5 0 for standard oboot-up
6-11 Cctal select code of the disc.
12 1l to indicate a manual boot from
the S-reqgister.
13 0 (received)served)
14-15 Loader ROM selection (number of the
KO¥ cell containing the Disc Boot
Loader) .

4. Press PRESET, IBL and PRESET (again) to 1load contents of Disc

Loader ROM. A successful locad 1is indicated if the OVEPRFLOW
indicatcer does not light up.

5. Press RUN.

EXAMPLE:

1. Assume a stanaard poot-up from ROM #2, with a 7905 in select
code 21 and surface 0. :

2. GSet the S-register = 112100.

3. Press PRESEYT, IBL , PRESET (again) and RUMN.

I1-2

C

STANDARD BOQT-UP PROCEDURES

2-3. SUNTOSTRAP LOALER

The doctstrap Loader is used to load the oot Extension into memory if
thie oot Lztencion dues not reside cn the vhysical track 0, sector 0
of the system disc, or if the Uisc Loader RO# 1s not available. The
procedure is as follows:

l. Select the 3-register for aisplay on the computer front vanel.

2. Press CLEAR LISPLAY.

3. Set the S-register cits as follows:

Bits: fnter:
0-5 0
6-11 Gctal select code of input

device (e.g., phctoreader)

12-15 0
4. Press PRESET, IBL and PRESET (again) to load the Bootstrap Lcader.
& successful load 1s indicated if the OVERFLOW indicator does not
light up.
5. Press RUN.
Wnen tne d4L1 775 occurs, clear the S-register, set the F-register to
octal 10U and press KUN tc continue.
2=-4, BOOT EXTENEION CXECUTIOHN
The disc oot Extension uses the S-register to communicate with the
configuratocr program (see Section IX). Do NOT change the S-register

contents until the system boot-uv procedure is completed and the SET
TIME messaygye is displayed.

I1-3

3-1. INTRODUCTION

User control of an RTE operating system and the mon.-oring of system
status are performed through a two-way dialog between the system and
user, The system displays various status or error messages that may or
may not require human intervention. The user communicates with the
system through operator requests entered at the user console. Using
these commands and their various parameter options, an operator may
interrupt RTE at any time to determine current system status, correct
error conditions or modify system performance. The operator commmands
and their function are summarized in Table 3-1; complete descriptions
are given later in the section.

3-2. COMMAND STRUCTURE

The operator first gets system attention by pressing any key on the
system console (LUl). On the system console, RTE responds with an
asterisk (*) prompt to indicate system attention. The user then types
a command which is a two-character request word (e.g., ON, UP, etc.),
followed by the appropriate parameters separated by commas.

Each command is parsed or resolved by a central routine that accepts
certain conventions. Command syntax is described in Table 3-2. This

syntax and the command conventions described below must be followed
exactly to satisfy system requirements.

3-3. COMMAND CONVENTIONS

* When a command 1is entered, the items outside the brackets are
required symbols. Items inside the brackets are optional.
* Two commas in sequence defaults a parameter to zero.

* Each command entered must be completed with an end-of-record
terminator (RETURN key on a CRT or TTY system input device).

IT1I-1

OPERATOR COMMANDS

———————— e —— ¢

+
|

An error made while entering a command parameter can be corrected
by using the BACK SPACE key on a CRT system input device (the
CONTROL and A Kkeys struck simulataneously will delete the last
character entered on TTY input devices). To delete an entire line,
use the DEL key (RUBOUT key on TTY devices). Corrections to a
command must be made before the RETURN key is pressed or the system

will issue an error return. Note that line feed is supplied by the
system.

Whenever the operating system is rebooted, parameters changed by
user command will be restored to their original values established
during system generation.

Table 3-1. Operator Command Summary

.. +
Command | Isee |
Format | Function | Page |
-------- dm e —————————————————| ——————
| | |
AB | Aborts current batch program. | |
] | |
AS | Assigns program to a partition. : |
I |
BL | Examines and sets buffer limits. | |
| | |
BR | Sets a break flag in named program’s ID segment. | |
I ‘ | |
DN | Declares an I/0 controller or device unavailable. | |
| | |
EQ | Examines status of any I/0 device, and dynamically | |
| alters device buffering assignments. : :
|
FL | Buffer flush command used in conjuction with | |
| Multiple Terminal Monitor (MTM) only. | |
| | |
GO | Restarts programs in an operator suspension state | !
| (there several other suspension states). | |
| | |
1T | Sets time intervals for programs. I |
I | |
LG : Allocates LG area. : :
LS | Sets LS area pointer. | |
| | |
LU | Examines and alters device Logical Unit | |
assignments.	
-------- o e e —————————————————}

III-2

OPERATOR COMMANDS

Table 3-1. Operator Command Summary (cont’d)

fmmm— e e ccmmmm— e mm e - $mm———— +
+ Command | ISee
+ Format | Function |Page
fmm—————— T R R S —
| | |

| OF | Terminates program execution. !

I I |

| ON | Schedules a program for execution. l

| | |

| PR | Changes the priority of programs. I

| | I

| RT | Releases program’s disc tracks. |

| | |

| RU | Schedules a program for immediate execution. |

| | |

| Ss | Operator suspends a program. |

I | |

I ST | Examines the status of a program or partition. |

| | |

| Sz | Examines or changes program size. |

| | |

| TI | Prints the current time. |

| | \ |

| ™ | Sets the real-time clock. I

| | I

| TO | Examines and dynamically alters an I/0 I

| | controller s time-out parameter. |

| | I

I UP | Declares an I/0 controller and associated devices I

I | as available. |

| | |

| UR | Unreserves a previously reserved partition. |

| I |

o e o e e e = o = = = = e = o = o

ITI-3

OPERATOR COMMANDS

Table 3-2.

Operator Command Syntax Conventions

o e o e s " - — T Y - - - - - - - - - - - -

Item

UPPER CASE

lower case

[,item]

l,item 1 |
| ,item 2 |
| ,item 3 |

yitem 1
item 2
citem 3

... (row of

IT11-4

ITALICS

italics

Meaning

- — - ———— - —— - T G WD D D . - - - G . P G CED W G, WD W G W G WD G G D S R G - S - -

These words are literals and must be
specified as shown.

Symbolic representations indicating what
type of information is to be supplied. When
used in text, the italics distingu.shes them
from other textual words.

Items with brackets are optional. However, if
item is not supplied, its position must be
accounted for with a comma; this causes item
to automatically default.

Indicates that exactly one item may be
specified.

Indicates that there is a choice of entries
for the parameter, but one parameter must be
specified.

This notation means "and so on."

N - —— - - - - - - — - - G W G G > S T - - - - .- - —— W — P > W G GE W= G . - = —. G G2 =

T e S — — — — e —— ————— — " — —— — ol o—

OPERATOR COMMANDS

3-4, RTE-IV OPERATOR COMMANDS
All operator commands are described below in alphabetical sequence. A

carriage return to terminate a command entry is not illustrated, but
is assumed in every case.

> — —————— - — - —— - ——— ——-— - —— — - ——— = - G - —-— —— = —— — - — - — . - - - e e

AB (abort)
Aborts the current program running under batch. Since FMGR (not a

copy of FMGR) is the Batch Spool Monitor, the command applies only
to "sons" of FMGR. The format is

/40 \
B
\,1/

A

where:

+
|

I

|

|

|

|

|

|

I

|

|

|

|

! .

I 0 is the default case. It terminates and removes from the time
| list the current batch program that is executing, scheduled,
| or operator suspended. It also terminates batch programs that
| are 1/0, memory or disc suspended the next time they are
I scheduled. Disc tracks are not released.

|

|

|

|

|

|

|

|

|

I

|

|

|

|

|

|

|

|

|

I

I

1 immediately terminates the batch program and removes it from
the time list, and releases all disc tracks. If suspended for
I1/0, a system generated CLEAR request is issued to the driver.

When the File Manager is waiting on a program it is running (e.g.,
ASMB) , the AB command functions like the command

OF , name

If the File Manager is dormant or non-existent in the system, the
AB command causes the error message ILLEGAL STATUS to be printed.
If the File Manager is not dormant and is not running a program,

AB functions like the command
BR, FMGR

Note that an AB command from an MTM terminal functions differently
and has a different meaning. See the MTM section of this manual.

I11-5

—— —— — — —— — — — —— — — — — ——— — — — ——— ey — —— o— o— T o ——— ——— o — — — —

OPERATOR COMMANDS

o o e e e e e o e e e e e e e S o T e e p——
AS (assign partition)
Assigns a program to a partition. The partition does not have to
be reserved. The format is
AS ,XXXXX,YY
where:
XXXXX the program name

yy = the partition number (1-64)

program will be unassigned and can be dispatched to any partition
of the proper type large enough to run the program.

If the program is not dormant or is still resident in any
partition (i.e., saving resources, operator suspended or serially
resuable), the error "ILLEGAL STATUS will be returned and the
input ignored. Partition yy must also be large enough to run
program xxxxx. If not, the error 'ILLEGAL PART N’ will be
returned. Trying to assign a program to an undefined partition
will also generate the 'ILLEGAL PART N’ message.

If the program named xxxxx cannot be found, a "NO SUCH PROG"

|
|
|
|
|
|
|
|
|
|
|
|
|
: Program xxxxxXx will be assigned to partition yy. If yy = 0, the
|
|
|
|
|
|
|
|
|
|
|
| error message will be issued.
|

III-6

o e e — —— ——— oy o — e o o o — i e o

O

OPERATOR COMMANDS

BL (buffer limits)
Examines or modifies current buffer limits. The format is
BL[lower limit, upper limit]
where:

BL without parameters displays previousl, set upper and
lower limits.

lower limit 1is the lower limit number.
upper limit is the upper limit number.

Setting upper and lower memory limits with this command can
prevent an inoperative or slow I/0 device from monopolizing
System Available Memory. Each time a buffered 1/0 request is
made (Class I/0 requests are buffered), the system adds up

all the words in the 1/0 requests queued to that entry and
compares the number to the upper limit set by this command (or
during generation). If the sum is less than the upper limit, the
new request is added to the queue. If the sum is larger than the
upper limit,the requesting program is suspended in the general
wait (STATUS = 3) list.

When a buffered I/0 request completes, the system adds up the
remaining words in the I/0 requests queued to the EQT entry and
compares the number to the lower limit set by the command (or
during generation). When the sum is less than the lower 1limit,
any programs suspended for exceeding the buffer limits on this
EQT are rescheduled.

Any program with a priority of 1 through 40 will not be suspended
for buffer limit, so that alarm messages, etc., are not inhibited.

——— —— — — — — — —— — ——— — —— — — — o — — —— o—— —— — o — — — — —— — ——— o— i st st

C

I11-7

+——-— —— — —— —— ———— — — — — — —— ——— — —— —— a— —— e ewst w— ———-—_.—-———-—‘-+

OPERATOR COMMANDS

- - - - - - — T WP W W S G U W S G D S D G S G VS N GIR G GIY IR W G GES S D W GED A T GES WS G A S G M T G W8 >

BR (break)
Sets an attention flag in a program’s ID segment. The format is

BR, name
where name is the name of the program.

program if the program requests this via the IFBRK system
subroutine. When BR is executed, a break flag in the named
program’s ID segment is set . The user’s program can call the
HP-supplied subfunction that will test the break flag and then act
accordingly. The calling sequence of the subfunction is:

I=IFBRK(IDUMY)

where IDUMY is a dummy parameter to make the call appear as a
function (IDUMY need not be supplied in Assembly Language). The
returned value will be negative if the break flag is set, and
positive if it is not. If the flag is set, it will be cleared by
IFBRK. See the Multi-Terminal Monitor section for variations to

+
|

|

|

|

|

|

|

|

|

|

: The BR command allows an operator to break the executicn of a
|

|

|

|

|

|

|

|

|

|

|

|

| the BR command for operation under MTM.

ITI-8

/

EN
/

— — -—————————_+

—— —— — — — ———— — o— — — — —— —— ——— —— — — —— —— —— o— — — ——

OPERATOR COMMANDS

- — - . - —— - - — - —— - - - - - - - - - - - - — - - - ——— G G G G G- - -

DN (down)

Declares an I/0 controller or device down (i.e., unavailable for
use by the RTE system). The format is

/ reqt\
DN
\s,1lu/
where:
eqgt is the EQT entry number of the I/O controller to be
set down.
lu is the LU entry number of the I/0 device to be set
down.

Setting an I/0 controller (EQT entry) down effectively sets all
devices connected to the I1/0 channel down by blocking any I/0
operations on the select code. The state of the devices (LU’s)
associated with the select code are unchanged.

Setting the I/0 device (LU) down will make only the specific
device unavailable. However, all other LU's pointing to the
device will also be set down. Other devices using the device’s
I1/0 select code are unaffected.

The I/0 controller or I1/0 device remains unavailable until the
I/0 controller is set up by the UP command. The operator might
set a device down because of equipment problems, tape change, etc.

IT1-9

——— e e — T e e e e e e —— —— — o — e, — o

OPERATOR COMMANDS

------------------ --‘—‘----—--_”*
o o e e o o o e e e e
I |
| EQ (status) :
l .
| Prints the description and status of an I/O controller, as |
| recorded in the EQT entry. The format is :
|
| EQ,eqt |
| |
| where: |
| |
| eqt is the EQT entry number of the I/0 controiler. :
|
| The status information is printed as: %
|
| select code DV.nn D B Unn status :
|
| where: %
]
| select code is the 1/0 select code number. |
| |
| DV.nn is the driver routine. |
| |
| D is D if is DMA required; 0 if not. |
| I
| B is B if automatic output buffering is used; 0 if |
I not.]
| |
| Unn is the last subchannel addressed. |
| |
| status is the logical status: |
| |
| 0 = available |
| 1 = I/0 controller unavailable (down) I
| 2 = I1/0 controller unavailable (busy) I
| 3 = waiting for DMA assignment %
|
| Note that if eqt is 0, it is a bit bucket, as is any associated |
| LU. |
| |
+ -- T G G S W GNP TS R S SN G R - — +

ITI-10

BN
S

— . — — — — — — — —— — — s . s it e, s

OPERATOR COMMANDS

- - - —— W Gh W G S G S G G G G . G D W G SIS N GH W W R W AL W G S G - - — - -

EQ (buffering)

Changes the automatic output buffering designation for a
particular I/0 controller. The format is

/ ,UNbuffer\
EQ,eqt
\,BUffer /
where:
eqt is the EQT entry number of the I/O controller.
UNbuf fer turns off buffering.
BUffer turns on buffering.

When the system is rebooted from the disc, all buffering
designations are reset to the values originally specified
during generation.

- G - —— - - - — — - —— — —— —— - W - - - - — - — - - -

- — . — - -

I11-11

— —— T — ot ——— — —— —— — ——— — —— — — —— —

OPERATOR COMMANDS | | .

o e e e e e e e o e e ————— -+
l ‘ |
| FL (flush) | (?\
| _] e

| Eliminates buffered output to an 1/0 device. The format is :

' , . ,

| 1u>FL | ‘
| |

| where: ‘

|

| lu is the Logical Unit Number of the interrupting user console. :

| | |
| The FLush command can only be used in conjunction with the | J
| Multi-Terminal Monitor (MTM), and is illegal if entered from the |

| system console (LUl). ;

|

| Other methods for clearing the buffer are using the EXEC call: |

| !

| CALL EXEC (3,23B,1lu) I

I |

| or the File Manager command: :

s

| :ON,FMGR |

| :CN,1lu,23B :

|

Frm e e r s e c e e mcccc e e c e cc e c s e c— e e e c— e e e e e e e ——— +

s
\

I11-12 h

OPERATOR COMMANDS

GO (reschedule)

Reschedules a program previously suspended by the SS command or
a Suspend EXEC Call. The format is

/GO \
(name [,pl [,...[,P5]111]]
\GOIH/
where:
name is the name of a suspended program to be scheduled
for execution.
pl ... p5 is a list of parameters to be passed to name only

when name has suspended itself (see Suspend EXEC
Call in Section 1IV). The parameters are ignored
if name was suspended with the SS command.

The GO command is illegal if the program has not been suspended
previously by the operator or has not suspended itself.
Parameters pl through p5 can be entered in ASCII or numeric form.

Octal numbers are designated by the "B" suffix and negative
numbers by a leading minus sign. For example:

GO, name,FI,LE,31061B

ITI-13

OPERATOR COMMANDS

GO (reschedule)...cont’d

Note that only two ASCII characters per parameter will be returned
by a RMPAR subroutine call: if one is given, the second

character is passed as a blank (blank = 40B). If the first
parameter is ASCII "NO" it must then be repeated (the system
interprets it as "NOW" in the GO commmand). For example:

GO,name,NO,NO,FI,3,4,5

is interpreted as shown below. NO (NOW) is not used except to
push out the parameters.

+

|

|

|

|

|

|

|

I

|

|

|

|

|

|

| NO
| FI
I 3
I 4
I 5
I

|

I

I

|

|

|

I

|

|

|

|

|

|

After a program has suspended itself and is restarted with the GO
command, the address of the parameters passed by GO is in the
B-register. An immediate call to the library subroutine RMPAR
retrieves the parameters (see Section IV, Suspend EXEC Call). If
the program has not suspended itself, the B-register is restored
to its value before suspension and the parameters are ignored.

The program may also recover the ASCII command string (up to 80
characters typed after the prompt) that scheduled it by using the
String Passage EXEC call (see Section 1IV). If the program was
rescheduled with a GOIH (inhibit string passage) or if the program
has not suspended itself, the command string is not passed.

CIII-14

—_————— - —¢

O

OPERATOR COMMANDS

IT (Interval Timer)
Sets time values for a program so that it automatically executes
at selected times when scheduled with the ON command. The format
is
IT,name [res,mpt(,hr,min[,sec[,ms]]]]
where:
name is the name of the program.
res is the resolution code:
1l - tens of milliseconds
2 - seconds
3 - minutes
4 - hours
mpt is a number from 0 to 4095 and is used with res
to give the actual time interval for scheduling
(see below).
hr hours
secC seconds
ms tens of ms.

The resolution code (res) is the units in time to be multiplied
by the execution interval value (mpt) to get the total

time interval. Thus, if res=2 and mpt=100, name would be
scheduled every 100 seconds. If hr,min,sec and ms are present,
‘the first execution occurs at the initial start time specified
by these parameters (the program must be initialized with the ON
command.) If the parameters are not present (e.g., IT,name), the
program’s time values are set to zero and the program is removed
from the time list. The program can still be called by another
program or started with the ON,name,NOW or RU command.

When the system is rebooted from the disc, time values set by the
IT command are lost, and the original time values set at original
load time are reinstated.

The IT command is similar to the Execution Time EXEC Call (See
Section IV). For example: \

The commands

IT,WHZAT,2,5

+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| min minutes sets an initial start time.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
l ON,WHZAT, NO
|

—————— | — ——— — ——— — ey " s w — i — — —— — — —— —— — —— — ———— — ———— ————— —— — —— — — —
-

will cause WHZAT to execute every five seconds, starting now.

-— —-—
- - D S o e e s G (- - — - — = —— - - - - ——— -~ - -~ o — - - o

OPERATOR COMMANDS

G o e —— e — e . — e —— — — ———— o —

I1I-16

|
1
|
]
[
1
|
|
|
i
[
!
i
1}
]
!
1
[}
i
'
[
|
]
i
]
i
]
[}
I
i
i
]
i
|
[}
]
[}
!
[}
[}
1
]
1
i
i
i
|
1
]
[}
1
|
]
!
1
1
]
i
[}
1
i
]
1
!
]
t
1
i
]

LG (LG tracks)

Allocates or releases a group of disc tracks for the LG area. LG
tracks may be used as temporary storage for relocatable code in
FMGR operations. The format is

LG,numb
where:
numb=0 (zero) releases the allocated LG area.
numb>0 release currently allocated LG tracks and then

allocate numb contiguous tracks for an LG area.

Enough LG tracks for storing relocatable code must be allocated
before storing into this area. Insufficient tracks cause the
program to abort and one of the following diagnostics to be
displayed on the system console: ' ‘

1006 - LG area not defined.

- 1009 - LG area overflow.

An LG request should not be used while anyone is using the LG
tracks. Doing so may result in the message

LGO IN USE

5

 being displayed on the system console, and no change in the

current number of LG tracks. In most cases, however, the attempt
to do so results in an I006 error being issued.

|
|
i
)
|
!
|
i
i
[
]
!
]
i
|
|
|
|
i
!
|
i
i
!
i
[}
I
|
|
|
1
[}
[
[}
!
|
|
]
[}
|
1
!
I}
[
i
i
]
]
[
|
]
|
|
1
|
|
|
1
i
|
1
|
[}
|
I
|
!
[
i

AN

A

=

-

OPERATOR COMMANDS

- " ————— - — — - ——— ——— — . - - —— - - O V> _——— WO - —— -

LS (source file)
Designates the disc Logical Unit number and starting track

number of source code stored in the track pool prior to an EDITR
operation on the code. The format is

LS,disc 1lu,trk numb

where:
disc 1lu is the Logical Unit number of the disc containing
the source file.
2 or 3 = system or auxiliary disc units.
0 = eliminate the current source file
designation.
trk numb is the starting track number (decimal) of the source

code.

LS replaces any previous declarations with the current source code
area. Only one area may be declared at a time.

o —— . ——— N - ———— — ————— - —— -~ - - — -~ - —— - — - —— - — —— - - - — -~

I11-17

— s —— —— — —— —— — — — ——— — — — — ——— —— — et

- OPERATOR COMMANDS

LU (assignment)

Prints the EQT entry number, device subchannel number, and I/0
device status associated with a Logical Unit number. The format is

where 1lu is a Logical Unit number from 1 to 63.

LU # 7 =El2 S

~

bl ol
O

+
|
|
|
|
|
|
LU, 1lu :
|
|
|
|
|
|
|
|

| | I

Logical Unit numbe
| I |

EQT numb
subchannel number| | I

I/0 device status (down in this cas

as the status; otherwise the position is left blank.

+

|

|

|

|

|

|

|

|

I

|

|

|

: Example:

|

|

|

|

|

|

|

|

|

| |

| |

: If the Logical Unit’s device is unavailable (down), a D is printed |
|

I |

ITII-18

— ‘/l

— — — — — —— — —— s e it it .t s s e —— oot s s e, . s e s e et e e it it st ottt e s e e e et

- ———— o~ - . -~ T N > S G G . - . W et - G . e G m S WA W G S L W S G T G G S G S G G G S G e Cms sl g s

LU (reassignment)
Changes a Logical Unit number assignment. The format is

/,eqt[,subch numb]\

LU, 1lu
\,0 /
where: |
lu is a Logical Unit number from 1 to 63 (decimal).
egt A is an EQT entry number to assign lu.
eqgt if zero (0) lu becomes the bit bucket.

subch numb is a subchannel number (0 to 31) to assign to 1lu.

The restrictions on changing Logical Unit assignments are:

a. LUl (system console) must be an interactive
console device. Note that if LUl is changed

the new console will print a double asterisk (**).
print a double asterisk (**).

b. LU2 (system disc) and LU3 (auxiliary disc)
cannot be changed to another EQT entry number.

c. An LU cannot be changed to point at the same
device as LU2 or LU3.

When an irrecoverable problem occurs on an I1/0 device, the

operator can bypass the downed device for future requests by
reassigning the Logical Unit number to an operable device on
another select code.

When the system is rebooted from the disc, all LU assignments
are reset to those originally established during generation.

Section -, Input/Output, explains Logical Unit numbers, equipment
table entry numbers, and subchannel numbers in detail.

————— —— o — — - —————— - — - - - —— - - —— - - —— - —— - . — - — - - —— o -

ITI-19

OPERATOR COMMANDS

~~~~~ OF (terminate)

Terminates a program or removes a disc resident program that was

loaded temporarily on-line into memory but not permanently

incorporated onto the protected system disc. For options 1 and 8

below, the message "name ABORTED" will appear for programs, (but

NOT segments), after the command is executed. The format is

/+0 \
OF ,name ,1
\.,8 /

where:

name is the name of the program.

0 terminates and removes the named program from the time list
the next time it is scheduled. The program’s disc tracks
are not released.

1 immediately terminates the named program, removes it from
the time list, and releases all disc tracks. If suspended
for 1/0, a system-generated request to clear the device is
issued to the driver.

is temporary program loaded on-line, it is removed from the
system (see the Relocating Loader section of this manual).

For programs with segments, the OF, name, 8 command must be
used on the segments as well as the main.

Of ,name,8 will not remove permanently loaded programs,
since their ID segments on the disc are not altered by this
request. A permanently loaded program is defined as a
program loaded during generation, or on-line with the LOADR
and with a copy of its ID segment in both memory and on the
disc. For temporary programs loaded on-line, the ID segment
is blanked to make it available for use by another program
loaded with the LOADR.

The tracks (if system tracks) containing the program are

released. If the program had been stored on File Manager

tracks,those tracks remain as File Manager tracks and are
not returned to the system.

If the program is I/0 suspended, a system generated clear
request is issued to the driver. The OF,name,8 command must
then be entered a second time to permanently remove the

+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
I
I
|
I
|
: 8 immediately terminates the named program. If the program
|
I
|
I
I
|
|
|
|
|
I
I
I
I
|
|
|
|
|
|
|
|
I program from the system.
|
|
|

permanently with the LOADR as described in Section

A permanently loaded disc resident program may only be remoEed
+ --------------------- —“--‘_‘.—“_"-"‘-—--‘-— -------------- P--ﬁ -------

III1-20

o e e e e e  —— ————————— ————

,R\ 4

D

~
.



OPERATOR COMMANDS

CN (schedule)

Schedules a program for execution. Up to five parameters and the
command string may be passed to the program. The format is

/ON \
»name [,NOW] [,pl([,...[,pP5]]1]1]

\ONIH/
where:
name is the name of a program.
NOW schedules a program immediately that is normally

scheduled by the system clock (see IT).

pl ... p5 are parameters passed to the program when it is

scheduled.

Parameters pl through p5 are the ones passed by RMPAR as described
under Comments in the Program Schedule EXEC Call in Section 1V.
Refer also to XTEMP words 1 through 5 in the program’s ID segment
(see Appendix _). Note that any parameters not entered as part of
the ON command will be returned as zeros by a call to RMPAR.

Parameters pl through p5 can be entered in ASCII or numeric form.
Octal numbers are designated by the "B" suffix and negative
numbers by a leading minus sign. For example:

ON,name,FI,LE,31061B

Note that only two ASCII characters per parameter will be returned
by a RMPAR subroutine call; 1if only one is given, the second
character is passed as a blank. (blank = 40B). If the first
parameter is ASCII "NO" then it must be repeated (the system
interprets it as "NOW" in the ON command). For example:

For example:

ON, name,NO,NO,FI,3,4,5

is interpreted as
NO
FI
3
4
5

The program can recover the ASCII command string (up to 80

characters typed after the prompt) by using the String Passage
EXEC call (see Section IV). The ONIH command inhibits the passage
of the command string.

ITI-21

|
|
|
|
[
|
[
|
I
|
|
|
|
|
|
|
|
|
I
|
I
|
|
|
|
|
|
|
|
|
|
I
|
I
|
I
|
l
|
|
I
|
|
|
|
|



OPERATOR COMMANDS

I1I-22



C

o —— . . —— —_— o —_—  ——— — —— — ———— e —— e ——

OPERATOR COMMANDS

- —— - — - - - — - - - - - - WD S P P S SR S W D W D GE G W S W D W S A A G WA GO R S W U S S M D M D S S 5 G i s es

ON (schedule) ...cont’'d

String Passage Example:
ON,name,FILEl,FILE2,MISCINFOSTRING,...,3

If the resolution code in the ID segment of the program is not
zero, RTE places the program in the time list for e.ecution at
specified times (unless NOW appears; in which case, the program
is scheduled and put into the time list immediately). The
resolution may be non-zero as a result of:

a. Generation
1. With a resolution code in the name record

2. Entry of a resolution code during parameter
input phase.

b. The IT command.

c. Scheduling the program with absolute start time
or offset by some program in the system (see EXEC
calls in Section 1IV).

Note that if there is no partition large enough to run the
program, or if the program is assigned to a partition that is too
small or does not exist, the error message "SIZE ERROR’ will be
reported. Conditions under which the error message could be output
when attempting to run are:

:SP,xxXx
reboot and reconfigure memory to remove partitions large enough
for this program.

:RP,xxx

:RU, xxx

|
|
i
]
|
i
|
|
|
|
i
i
i
[}
I
|
|
I
[
i
|
|
|
[
|
1
i
]
i
[}
|
i
1
|
i
i
|
t
1
[
]
i
i
|
|
i
]
|
|
|
[}
|
|
|
i
i
]
[}
[}
]
|
t
|
I
|
I
t
[}
[

I11-23

e T e e e e e e —— — — . ———_—— ———— —— —— | — ———— e o



OPERATOR COMMANDS

One (1) is the highest priority, and 32767 is the lowest. When the
system is restarted from the disc, the priority of name resets to
the value set by the generator or LOADR.

o o e e e e e e 0 e
|

| PR (priority)

|

| cChanges the priority of a program. The format is
|

] PR,name, numb

|

| where:

|

| name is the name of the program.

|

|  numb is the new priority.

|

|

|

|

|

III-24

e

D

"/



— — — —— —— — — —— o— p— — ——— —— — —— — — — o——

OPERATOR COMMANDS

- —— e S e G - . S —— . " = — . G W e GNP SO G W G GGS S wun W W, G G G WS G Ver Gma S GE O NN W W W e U NS W W N W G WE TP SME MR e M e

RT (release tracks)

Releases all disc tracks assigned to a program. The format is
RT ,name

where:
name is the program whose tracks are to be released.
The RT command is illegal if the named program is not dormant.
If the program is dormant, all tracks assigned to the program
are released.
Any tracks released as a result of this command cause all
programs in disc track allocation suspension to be rescheduled.
More information on disc tracks may be obtained from the system

program LGTAT, described in the RTE Utility Programs Reference
Manual.

. S - W - — - — —— - G G - — - —— - > — .~ ——————— - —— > W - - - —— - t— -

ITII-25

— . — — —— — — — — ——— —— —— — — _— e, e st




OPERATOR COMMANDS

RU (run)

Immediately schedules a program without affecting its entry in
time list. Up to five parameters and the command string may be
passed to the program, The format is

/RU \
(name[,pl[,...[,p5]1111]]
\RUIH/
where:
name is the name of a program.
Pl ... p5 are parameters passed to the program when it is
scheduled.

e o - = - — 0% T G S S T G - G W GAs S W G T GI WS G G G e G WY SN G U G G G G G G G SHE G G T GO W G UGN o G L M G T GE S G S S G0 v o

the

The RU command is used when the operator desires to run a program

without affecting its entry in the time list.

Parameters pl through p5 are passed by RMPAR as described in the

the Program Schedule EXEC Call in Section IV.

Note that any parameters not entered as part of the RU command
will be returned as zeros by a call tc RMPAR.

Parameters pl through p5 can be entered in ASCII or numeric form.

Octal numbers are designated by the "B" suffix and negative
numbers by a leading minus sign. For example:

RU ,name,FI,LE,31061B

ITI-26



OPERATOR COMMANDS

RU (run)....cont’'d

Note that only two ASCII characters per parameter will be returned

by a RMPAR subroutine call; if only one is given, the second
character is passed as a blank (blank = 40B). If the first
parameter is ASCII "NO" then it must be repeated (*he system
interprets it as "NOW" in the RU command). For example:

RU ,name,NO,NO,FI,3,4,5

is interpreted as shown below. NO(NOW) is not used except to push
the parameters out:

NO

FI

3

4

5

The program can recover the ASCII command string (up to 80
characters typed after the prompt) by using the String Passage
EXEC call (see Section IV). The RUIH command inhibits the passage
of the command string. If there are no characters past name, the
command string is not transmitted.

String Passage Example:
RU, name, STRINGWHATEVER, 12345, ANOTHERONE , 6789

Note that if there is no partition large enough to run the
program, or if the program is assigned to a partition that is too
small or does not exist, a "SIZE ERROR  message will be reported.

Conditions causing this error message could be as follows:

:SP, XxXxX

reboot and reconfigure memory to remove partitions large
enough for this program.

tRP,xxx

tRU, xxX

- - —————— - —— — - T . —  — - ——— - — - ——— - - - - - - e IV - - ——— - - " -

I11-27



— — —— — o— — — ——— — —— — — — —— — — —— — —— — — — — o—

SS (operator suspend)
Operator suspends a non-dormant program. The format is
SS,name
where name is the name of the program to be suspended.
The SS command places the program in the operator suspenied list
immediately if the program is executing or scheduled. The request

is illegal if the program is dormant. If the program is suspended
for 1/0 memory, disc or is in the time list, RTE waits until the

"current state is ended and then operator-suspends the program.

The SS command is similar to the Program Suspend EXEC call (see
Section 1IV).

—— - ————— ———— ———— —— —— —— - > T ——— - ———————————— - — . — - W D W - ——— — - — - -—

- ——— ——— — - - — ——— S —— ——————— — - - —— — — — —— - — — - - —— - - —— - — —— S W . —— — G w— -

SZ (assignment)

Causes program size information to be printed. The format is
SZ ,XXXXX

where xxxxx is the program name. The output will be formatted as:
AAAAA BB CCCC DD

where:

AAAAA

is segmented, AAAAA is the last word, plus the last
address plus 1 of the largest segment.

BB = minimum required partition size of the program. If the

program is of EMA type, BB equals the program code size
plus its EMA size.

CCcc

the program’s EMA size. Printed for EMA programs only.

DD = the program’s MSEG size. This will only be printed if the
program is of EMA type.

D - ——— - - ———— — - ——— ——— - —— . ——————— — — ——— - — — — - - —————— —— - — - —_——  ——— — —_ w—

$-28

the last word plus 1 of the user’s program. If the program

e ———————— — — — 4

— . ——— . T — —— — —— s s s o e o

P
A



— —— - - - - . S - G - W W GhS WS VER W WES . . G IS W G WD WD TS S GRS GED WD N D GO W G GHS W T G W S MM G W S G - ——— -

SZ (reassignment)

Allows the user to increase the page requirements of a program.
Certain programs such as compilers, assemblers, loaders and
generator use memory after the end of the program for symbol table
or data space. The SZ command modifies the size of the additional
memory used by the program. An alternate form of the command
increases both program page requirements and EMA size requirements.
The format 1is

SZ ,name, Pl for non-EMA programs
or
SZ,name,Pl,P2 for EMA programs
where:

name is the program name

Pl is the new required program size in pages for non-EMA
programs. For EMA programs, Pl is the new EMA size.

P2 is the new MSEG size for the EMA program referenced.

The following conditions will be flagged as errors with a "SIZE
ERROR *~ message reported:

NON-EMA PROGRAM ERROR CONDITIONS:

a. Attempted to make Pl larger than 32K program
address space.

b. Attempted to make Pl larger than any currently
existing partition.

c. Attempted to make Pl larger than an assigned
program’'s partition size.

d. Attempted to make Pl smaller than the actual code
of the program.

EMA PROGRAM ERROR CONDITIONS:

a. Attempted to set Pl with a program size plus EMA size
that is larger than the largest partition.

b. Attempted to set Pl with an assigned program’s size
plus EMA size that is larger than the assigned partition.

C

————— s St — — — — — — o, o— o — — oncn. o o S g i s oo wn  wainn e S—0 o o—— oy s ot e o e e o e, g o . —

c. Attempted to set Pl less than 1.

3-39

e e e e — —
e e e e e e —— e —— e e ——— . ——— — e — e e —— e —— — — +



d. Attempted to set P2 with the program size plus P2
that exceeds the maximum program address space.

e. Attempted to set P2 less than 1.

EMA size changes are only allowed for those programs where no EMA
size was specified within the program itself; that is, the default
was taken. An attempt to increase or decrease the EMA size in a
program where the EMA size was specified within the program causes
a "SIZE ERROR’ message to be issued. MSEG changes may be made

for any EMA type program. All FTN4 programs have specified EMA
sizes.

o e e e e e e e e e e e e e e e e e e
TI (time)
Prints the current year, day and time, as recorded in the
real-time clock. The format is
TI

The computer prints out the year, day and time in the format

yyyy ddd hh mm ss

where:

YYYY is the four-digit year.

ddd is the three-digit day of the year (see Table 2-3
at the end of this section for day-of-year
conversion).

hh,mm, ss is the time on a 24-hour clock in hour, minutes and

seconds.

The TI command is similar to the Time Request EXEC Call (see
Section 1IV).

——.—-—-———-——-———————-—u———_——-—-—.——-—.}

O S - ————— - - —— - —— — — - — — - — - ——— ——— - — - _ . . I G " . G e G - G - - - —— - - -

T™ (set clock)
Sets the real-time clock. The format is

T™,YYyyY,ddd[,hh, mm, ss]

where:

yyyy is a four-digit year.

)
%
Q

AN

e ——— e ————— e ——— —}



——— o —— e — e o e o — e = e e e o o e e e e

ddd is a three-digit day of the year (see Table 2-3 at

the end of this section).

hh, mm, ss is the current time of a 24-hour clock in hours,
minutes and seconds.

The TM command is entered in response to the message
SET TIME
which is displayed when the RTE system is booted f om disc.

Enter a time value ahead of real-time. When real-ti..2 equals the

entered value, press RETURN key. The system is now synchronized
with the time of day.

NOTE

The real-time clock is automatically started
from 8:00 on the system release date each
time the system is loaded into memory.

- ————— — —— - w— - - — — - — - — - - > - —— —— — - - - - —— - W W G W - - — - — — —— -

TO (time out)

Prints or changes the time-out value of an I/0 controller. The
format is

TO,eqt| ,numb]

where:
eqt is the EQT entry number of the I/O controller.
numb is the number of 10 ms intervals to be used as the

time-out value (numb cannot be less than 500 (5 sec)

for the system input device driven by DVR00/05).

The time-out value is calculated using numb time-base generator

interrupts (the time-base generator interrupts once every 10 ms).

For example, numb = 100 sets a time-out value of one second;

100 * 10 ms = 1 second. When the system is rebooted from the disc,

time-out values set by TO are reset to the values originally set
during generation.

If numb is absent, the time-out value of eqt is printed in the
format

TO #10 = 100

and means EQT entry number 10 has a time-out value of 100
ten-millisecond intervals or one second.

2-3/

— . — —— T . e e S o o o S, s e ST e e s o S e o

— —— — — — —— — — — —— — — — — — o — —

+



—— — — ——— —— ——— — — —— — —— ——— ——— —— —

— —— —— . — —— — — — — — — — —— — — — — — — — — — — — v cm—

If a device has been initiated and it does not intertugt within
the interval set by the time-out parameter, the following events
place:

a. The calling program is rescheduled and a zero transmission
log is returned to it.

b. The device is set to the down status and bit 11 in the
fourth word of the device’s EQT entry is set to 1. An error
message is printed; e.g.,

I/OTO L #x E #y S #z

c. The system issues a CLC to the device’s I/0 select code(s)

through the EQT number located in the Interrupt Table.
Table.

See also the discussion of I/0 controller time-out in the
Input/Out section of this manual and "Driver Time-Out Processing"
in the RTE Operating System Driver Writing Manual.

- - - - . - — - — T W — — ——— — " —— — - —— ——— — - G— - — — - W N .S G W G . - G - — — . - — — - ——— -

- ———— - ——— - - —— - — — — — S - — - W - . T - . - - - — —— - — — " — —— - - -

UP (make available)

Declares an I/0 controller and all associated devices as up (i.e.,
available for use by the RTE system). The format is

UP,eqt

where eqt 1is the EQT entry number of the I/O controller to be
re-enabled.

When the operator has previously set an I/O controller or device
down for some reason, the condition should be corrected before
using the UP command to declare the item available again. If the
problem is irrecoverable, the LU command can be used to switch
the Logical Unit number assignment to another device for further
requests (see the LU command in this section). Previous requests
made to this device are switched to the new device. To prevent
indefinite 1/0 suspension on a downed device, time-out is used.
Refer to the TO command in this section and "I/0 Device Time-Out"
in Section V.

The UP command places all downed devices (LU s) and the I1/0
controller (EQT entry) in the available state. Any I/O operations
associated with downed devices are queued on the EQT entry for

processing. If a device s problem has not been corrected, it will
be reset down and an error message will be printed:

I/0 NR L #lu E #egt S #sub

7

+

——— . —— — —— — — —— — ———— — — — S o————— . W s ot s o

N
\J .



UR (release reserved partition)

Releases a partition previously reserved during generation or slow
boot.

The format is
UR,X X
where xx 1s the number of the partition to be released.

Once the command is entered, any program that fits into the
partition may run in it. Note that although partitions may be
released on-line, they may not be reserved on-line, since such
action could prevent a currently swapped-out program from
regaining use of its system-assigned partition when it was again
scheduled.

— — — — — — —— — —— — — — — — — — —

3-5. OPERATOR COMMAND ERROR MESSAGES

When an operator command is entered incorrectly or current system
conditions prevent honoring the command, RTE may reject the command and
issue one of the messages listed in Table 3-4. The operator should
either enter the command correctly or take appropriate action and enter
the command again.

Table 3-4. Operator Command Error Messages.

————— —————————— -

OP CODE ERROR

Illegal operator request word.| Enter correct

opcode
NO SUCH PROG The name entered is not a main
program in the system.

|
|
|
I
|
|
| Enter correct
| program name or
| load program
I
INPUT ERROR A parameter is illegal. |
|
I
I
I
|
|

correct parameter
ILLEGAL STATUS Program is already scheduled. Check status with

ST command. Either
wait until program

terminates itself

|
|
|
|
|
|
|
Enter command with |
|
|
|
|
|
|

773



or off it with OF |
command and reenterl!
RU command :
Reenter the command|
(RU,ON,GO) or enterl
the inhibit form
(IH) of the

command.

CMD IGNORED-
NO MEM

Not enough System Available
Memory exists for storing the
program’s command string.

|

|

|

|
Reenter command |
command request, with correct 1
parameter number |
|

|

|

|

]

|

|

SIZE ERROR Illegal program size specified

or size of program specified
larger than its assigned
partition or any partition.

Reenter command
with correct size
or adjust program
size with the 52
command.

|
|
|
|
|
I
I
|
|
I
ILLEGAL PART’'N : Partition does not match
I
I
I
|
|
|
I
I

—— — ———— — — — — — — —— —— —— —— — — —— —

Other errors may occur when an I/0 device times out because of an
inoperable state. For example, assume the line printer is in the
OFF-LINE condition (or the operator has failed to engage the paper tape
reader clutch). In this case, the system will print one of the following
error messages and suspend the program:

I/O NR L #lu E #egt S #sub
I1/0 TO L #lu E $eqt S #sub

After the device problem has been corrected, simply enter the command
UP,eqt

where eqt is the downed device s Equipment Table entry number (same
number given in the I/O error message). The program is automatically
rescheduled and the desired I/0 operation takes place.

An alternate method of handling the same problem would be to use the LU
command to change the referenced device to another device that is
operational.

Another example of time-out is running out of paper when a program is
printing a long listing on the line printer. 1In this case, it is
possible to switch LU’s and continue the listing without interruption,
as shown below:

I/O TO L #lu E #eqt S #sub
LU, 1lu,eqt

The error message says that the device at LU number lu, EQT number eqt,

subchannel number sub has timed out and has been set down by the system.
The operator switches logical units (with the LU command). The listing

5-3¢



will continue on the new device.

395



@



4-1. INTRODUCTION

An executing program may reguest various system servic2s through EXEC
calls coded into the program. An EXEC call is a block of words
consisting of a subroutine call to EXEC with a list of parameters that
define the request. Execution of the subroutine call causes a memory
protect violation interrupt and transfers control into the EXEC
module. EXEC then determines the type of request (from the parameter
list) and initiates processing if the request was legally specified.

In RTE FORTRAN IV, EXEC calls are coded as standard CALL statements.
In Assembly Language, EXEC calls are coded as JSB EXEC, followed by a
series of parameter definitions. For any particular call, the object
code generated for the FORTRAN CALL statement is equivalent to the
corresponding Assembly Language object code.

4-2. ASSEMBLY LANGUAGE FORMAT

The general format for an EXEC call in Assembly Language is as,
follows: '

EXT EXEC Used to link program to RTE.

JSB EXEC Transfer control to RTE.

DEF *+n+l Defines a point of return from RTE (must be immediately
after the last parameter), where n 1is the number
of parameters and may not be an indirect address.

DEF pl Define addresses of parameters that may occur anywhere
in program; may be multi-level indirect.

Iv-1



EXEC CALLS

DEF

return point

pl - -

pn -

The example below
being performed on

JSB
DEF
DEF
DEF
DEF
DEF
NEXT - .
D1 - DEC
LU DEC
IBUFL DEC
IBUFR BSS

pn

EXEC
NEXT
Dl

LU
IBUFR
IBUFL

1

5
10
100

Continue execution of program.

pl = ICODE = Request Code 1<pl< 26.

Actual parameter values

illustrates a Read request (I€ODE=1l), with the
LU5:

Address of return point and call delimiter.
Address of EXEC code.

Address of LU number.

Buffer address.

Address of number of words to read.

This is ICODE; l=read.

LU number 1is 5.

Buffer length to read is 10 words.

This is the buffer where the data is placed.

read

The above sample request reads 10 words from LU5 and places the words
into the first 10 words of the 100-word buffer called IBUFR.

4-3. FORTRAN IV FORMAT

In FORTRAN IV, the Executive can be called'through a CALL statement or

as a function. The function is used when

registers to be returned in a variable.

V-2

the user wishes the A and B

-

L

AN
N ;,/"’



EXEC CALLS

CALL Statement Example:

CALL EXEC (ICODE, p2, ...,pn)

where ICODE and p2 through pn are either integer values or integer
variables defined elsewhere in the program.

Function Example:

DIMENSION IREG(2)
EQUIVALENCE (REG(1l) ,IA,IREG), (IREG(2),IB)

REG=EXEC (ICODE,p2...,pn)
The A-register is returned in IA and the B-register in IB.

As a further example of using calls in FORTRAN, the Assembly Language

example given previously in paragraph 4-2 could be performed in two
different ways in FORTRAN-IV:

l. As a call:

DIMENSION IBUFR(100)

LU=5
- IBUFL=10
CALL EXEC(1,LU,IBUFR,IBUFL)

2. As a function:

DIMENSION IBUFR(100)

LU=5
IBUFL=10
REG=EXEC(1,LU,IBUFR,IBUFL)

These two FORTRAN examples and the Assembly Language call all perform
the same function.

Iv-3



EXEC CALLS

4-4, EXEC CALL ERROR RETURNS

EXEC calls that are in error will cause the offending program to be
aborted if the error 1is severe enough. The following errors are
considered to be sufficiently catastrophic to cause a program abort:

Error Code: Error Type:
MP Memory Protect
DM Dynamic Mapping
RQ Request Code
RE Reentrancy
PE Parity

If an error is not severe, it will either abort the program or, at the
user’'s option, report the error to the program itself and allow the

program to continue execution. Non-severe error codes include the
following:

Error Code: Error Type:
SC Scheduling
LU LU Lock
10 Input/Output Error
DR Disc Allocation
RN Resource Number

A detailed explanation of EXEC call error messages is given at the end
of this section.

The "no-abort" option is set up by altering the return point of the
EXEC call. This error return is established by setting bit 15 to "1"
on the request code word (ICODE). This causes the system to execute
the first line of code (it must be a one-word instruction) following
the CALL EXEC if there is an error. If there is no error, the second
line of code following the CALL EXEC is extended.

The special error return will also return control to the calling
program on a disc parity error on the system disc or auxilliary disc.
In this case, the B-register will be set to -1 1instead of the
transmission log, and the return will be to the normal return point.
If there 1is an error, the A-register will be set to the ASCII error
type (LU,SC,I0,DR,RN) and the B-register set to the ASCII error
numbers normally displayed on the system console.

IV-4

=N



EXEC CALLS

The following excarpts from a sample FORTRAN program demonstrates use
of the special error return: :

CALL EXEC(ICODE+100008,LU,IBUFR,IBUFL)
Error Return-> GO TO 100
NO Error Return-> .

.

Only the GO TO statement should be entered after a no-abort EXEC call;
any other FORTRAN command would cause error type iunformation to be
lost (see below). The GO TO statement also must not reference the very
next statement; thus, the following seguence is illegal:

CALL EXEC(ICODE+10000B,LU,IBUFR,IBUFL)
GO TO 100
100

This 1is 1illegal because FORTRAN produced code tries to optimize the
two statements and will not produce a jump if the jump destination is
the very next executable statement. Therefore, the GO TO would be
ignored.

As mentioned previously, if an error return is made to a program, the
A and B8 registers contain the ASCII error code. The A-register
contains the error type (SC,LU,IO,DR,RN), and the B-register contains
the error number (ASCII 01,02,03,etc.).

The A-register <can be easily examined in Assembly Language calls.

Examination 1is slightly more complex in FORTRAN-IV, but the A and B
regyisters can be fetched in the following way:

CALL EXEC(ICODE+100000B,...)
GO TO 100

100 CALL ABREG(IA,IB)

ABREG 1is an HP-supplied subroutine that returns the A-register in the
first parameter (IA) and the B-register in the second parameter (IB).
Since the contents of A and B are now available, the user may examine
the the error and take appropriate action.

CAUTION
Note that the no-abort option should not be used when the EXEC call is
made as a function; that is, the following should not be used:

REG=EXEC(ICODE+1000000B.+...)
GO TO 100

IvV-5



EXEC CALLS
The reason is that REG forces the A and B register to be treateed as a
REAL subroutine instead of on integer subroutine.

4-5. EXEC CALL SUMMARY

Table 4-1 summarizes the available RTE EXEC calls, their function and
order of appearance in this section. The error mesaages associated
with the calls are listed at the end of this section.

IV-6

N
(s;
\



EXEC CALLS

Table 4-1. RTE EXEC Calls

Read,Write

I/0 Control
1/0 Status

|

|

|

|

|

|

|

|

|

|

I

| Disc T'rack Allocation
I Program

| Global

|

| Disc Track Release

| Program

| Global

|
|
I
I
I
|
I
|
I
|
I
I
I
I
|
I

Program Completion
Program Suspend
Program Segment Load

Program Schedule

b mm———— e e tm et
I | I |
|Request | Function |Page |
te————— Fm -]
| | I I
| 1,2 |Transfers information to and from| |
| |an external I/0 device. | |
| | I |
I l | I
| 3 |performs various 1/0 control | |
| |operations. | |
I | | |
| 13 |[Requests information about a | |
| |device. I I
| I | I
| IAssigns a specific number of disc| |
| 4 ltracks for data storage. I |
| 15 | I I
| | | |
i iRelease assigned disc tracks. | |
I 5 I | |
| 16 I I I
I I I |
| 6 | Logically terminates execution of| |
| la calling program. | I
| I I I
| 7 | Suspends calling program | |
I |execution. | I
I | l I
| 3 | Loads a program segment into | |
| |background area. | |
I i I I
| |Schedules a program for execution| |
| 9 | Immediate with wait. I I
| 10 | Immediate without wait. | |
| 23 | Queue with wait. | |
| 24 |  Queue without wait. I |
I | | I
tmm————— o e fm———t

Iv-7



EXEC CALLS

Table

Time Request

String Passage

Timed Execution
Initial Offset
Absolute Start

Program Swapping
Control

Partition Status

Memory Status

Class I/0 Read,Write

Class I/0 Control

Class I/0 Get

4-1. RTE EXEC Calls (cont’d)

|Schedules a program for execution

o ——— o ——————————————_—————— e fn s
| I | |
| Request | Function |Page|
tm—————— e —— Fm———
| | |
I l I
| 11 |Requests current time. |
| | |
| 14 |Retrieves program’s commarnd string
| lor passes string to program’s |
| | "Father." |
| I
I |
| 12 | After an initial offset. |
| 12 | At a specified time. |
I | |
| 22 |[Allows a program to lock itself |
i |into memory. |
| l [
| I
25 |Provides information about a |
| specified partition. |
I I
26 |[Allows a program to obtain |
|information about its own address|
| space. |

|
|
|
|
|
|
|
| | |
|17,18,20|Starts a no-wait I/O request that
| |results in an information transfer
| |to and from an external I/0 device
| |lor program. |
| | |
| 19 |[Performs various no-wait control |
I |operations. |
| | |
| 21 |Completes the data transfer |
I linitiated by the Class I/O I
| | request (17,18,19,20). |
fm—————— e +

4-6. STANDARD FUNCTION CALLS

IV-8

£
L



EXEC CALLS

4-7. READ/WRITE CALL

Transfers information to or from an I/0 device. For a Read request or
for writes to unbuffered devices, the program is placed in the I1/0
suspend list until the operation is complete. RTE then reschedules the
program,

Assembly Language:

EXT EXEC

JSB EXEC Transfer control to RTE

DEF RTN Return address

DEF ICODE Request code (l=read; 2=write)

DEF ICNWD Control information

DEF IBUFR Buffer location

DEF IBUFL Buffer length

DEF IPRM1 Optional parameter (track number if disc
transfer)

DEF IPRM2 Optional parameter (sector number if disc
transfer)

RTN return point Continue execution (A=status, B=transmission
log. If buffered Write, A and B are
meaningless.)

ICODE DEC 1l (or 2) 1=Read;2=Write

ICNWD OCT conwd conwd 1is described in Comments

IBUFR BSS n Buffer of n words

IBUFL DEC n(or -2n) Same n; words (+) or characters (-)

IPRM1 DEC f Optional parameter or decimal track number

if disc transfer

IPRM2 DEC g Optional parameter or decimal sector number

if disc transfer
FORTRAN
DIMENSION IBUFR(n) Set up buffer
IBUFL = n Buffer length
ICODE = 2 Request code (l=Read; 2=Write)
ICNWD = conwd Set Control wWord

REG=EXEC (ICODE,ICNWD,IBUFR,IBUFL,IPRMl,IPRM2)

IVv-9



EXEC CALLS

4-8. READ/WRITE COMMENTS

Parameters IPRMl and IPRM2 are optional except in disc transfers., If
the data transfer involves a disc, IPRMl is the disc track number and
IPRM2 1is the disc sector number. These parameters may have further
uses in calls to other I/0 devices. In some cases, IPRM1 and IPRM2 may

be used to pass an additional control buffer to the driver (see Z-bit
below) .

CONTROL WORD

Figure 4-1 shows the format of the control word (conwd) required in
the Read/Write calling sequence. Function codes for DVR00/05 driven

devices are given as an example. See the appropriate driver manual for
other device function codes.

Limiutd Aatied Bttdl Bl Bned sl Bt Bt Bt Betid Eedid Betotdl Bl Besball Bt Bt s
115 {14 13 12 |11 10 9 1 8 7 6 | 5 4 31 2 1 0 |
Mt Bttt | - | == | === | === +
0 0 0 z 0] X A K V M |_ Logical |
I | Unit
I l

e e + TPRTE-3
Figure 4-1. Read/Write (conwd) Format
Logical ©Unit = the logical unit number of the devices to/from which

the I/0 transfer is to be sent.

Note that if the logical unit is specified as zero (the bit bucket)
the call is executed but no data is transfered.

72 = When set, designates that IPRM1l is the address of a control buffer
and IPRM2 1is the 1length of that buffer in positive words or
negative character (useable only when the call is to a non-disc
device). The Z-bit is passed through to the driver.

Bits 11 and 13-15 are received for wusage by the system and should be
set to zero by the caller.

Function code bits for DVR00/05 devices are as follows:

M = 0 for ASCII.
M = 1 for binary.
V=1, and M = 1, causes the length of punched tape input to be

determined by the word count in the first non-zero character read
from the tape.

IV-10



EXEC CALLS

V =1 for the line printer will cause it to print column one.

V=20, and M = 1, the length of the punched tape input is determined
by the buffer length specified in the EXEC call.

K = 1 causes keyboard input to be printed as received. If K=0, input
from the keyboard is not printed.

A = 1 designates punching (without printing) ASCII charactters on the
teleprinter (M = 0). (If A = 0, M determines mode of transfer.)
This bit 1is effective on devices that recogn.ze ths control
function.

X = When paper tape devices are used, "X" in combination with "M" and
"V" will indicate an honesty mode that is defined as follows:

On input, if "X", "M", and "V" are set, absolute binary tape
format is expected and handled. If "X" and "M" are set, and "V" is
not, leader is not skipped and the specified number of words are
read. On output the record terminator (usually four feed frames)
is not punched.

On input, if "X" is set and "M" is not, ASCII tape format is
expected. Leader is not skipped, bit 8 is stripped, but otherwise,
all characters are passed to the user’s buffer. The only exception
is 1line-feed, which terminates the record. On output, carriage
return and line-feed are suppressed; any trailing left arrow is

not (i.e., left arrow is transmitted but carriage return/line feed
is not). :

A AND B REGISTER RETURNS

End-of-operation information for reads and unbuffered writes 1is
to ttransmitted he program in the A-B and registers. The A-register
(stacontains word 5 tus word) of the device EQT entry with bits 14 and
the 15 1indicating end-of-operation status as defined by the driver
Thiscompletion code. will be either 00 (up) or 01 (down).

The B-register contains a positive number that is the number of words
charor acters (depending upon program specification) actually
Thustransmitted. , the user can tind the number of words entered on
by gany input request etting the contents of the B-register.

If the input buffer length was a negative number of characters, the
contents of the B-register will be equal to the positive number of
characters entered. 1If the requested buffer length was a positive

of wnumber ords, the B-register contents will be equal to the positive
wordnumber of s entered.

When a REAL array is transmitted, the buffer length must still be the
total number of words required (i.e., two times REAL array Jength, or
three times double-precision array length).

Iv-11



EXEC CALLS
The registers are meaningless in output requests to a buffered device.

I/0 AND SWAPPING

Disc resident programs performing I/0 are swappable under any one of
follthe owing conditions: ‘

a. The buffer is not in the partition (i.e., it is in system
COMMON) .

b. The device 1is buffered, the request 1is for output, and
enough SAM was allocated for buffering the record to be
transferred.

c. The 1input or output buffer is wholly contained in the
Temporary Data Block (TDB) reentrant routine, and enough
SAM was allocated to hold the TDB.

Only the first buffer of a two-buffer request (see Z-bit above) is

detechecked to rmine program swappability. It is the user’s

secoresponsibility to put the nd buffer 1in an area that implies

are swappability if conditions "a" or "c¢" true. The system handles
case "b".

REENTRANT I/0

Use of reentrant I/0 allows a program to be swapped if the read
is mrequest ade via a call to the REIO subroutine. REIO is a utility
subrlibrary outine and is more fully described under Section X.

4-9. 1I/0 CONTROL CALL

Carries out various I/0 control operations, such as backspace, write

end-of-file, rewind, etc. If the 1I/0 device is not buffered, the

placprogram is ed in the I1/0 suspend list until the control operation
is complete.

IvV-12

\{ %

i T



EXEC CALLS

Assembly Lanjuage:

( EXT EXEC

JSB EXEC Transfer control to RTE
DEF RTN Return address
DEF ICODE Reguest code (3=control)
DEF ICNWD Control information
DEF IPRAM Optional parameter
RTN return point Continue execution (A = status, B meaningless.
. A and B are both meaningless if the call is
. bufferred).
ICODE DEC 3 Request code = 3
ICNWD ocT conwd See Control wWord
IPRAM DEC n Required for some control functions; see

Control wWord

FORTRAN:

Use the FORTRAN statements or an EXEC call sequence.

ICODE = 3 Request code
ICNWD = conwd
= IPRAM = X Optional; see Control word
(i) REG = EXEC (ICODE,ICNWD,IPRAM)

CONTROL WORD —WﬁéAAO

ows the format of the control word (conwd) required iﬂﬂ
cl/calling seguence.

1o iy />

bsp4i312b110'9[8'7'515'4'3]271r;1

0O 0 0 0 o l-—Funcuon Code;L__LOglcal |

Unit =

kp

Figure 4-4. I/0 Control (conwd) Format

Iv=-13



EXEC CALLS

The following are general function codes: , P
O
Function Code (Octal) Action
00 Clear device
01 Write end-of-file (magnetic tag.)
02 Backspace one record (magnetic tape)
03 Forword space one record (magnetic tape)
04 Rewind (magnetic tape)
05 Rewind étandby (magnetic tape)
Op* Dynamic status (magnetic tape)
07 Set end-of-paper tape--leader skipped on next
input request
10 Generate paper tape leader
11 List output line spacing N
12 write inter-record gap (magnetic tape) q”)
13 , Forward space file (magnetic tape)
14 Backward space file (magnetic tape)
15 Conditional form feed (see Line Printer Driver
manual) .
i T e +

|* FOOTNOTE: The dynamic status reguest (06) is unbuffered by RTIOC so that|
|the caller receives the true status of any device. This causes the caller |
|to wait for previous requests it (and lower priority programs) has made to]

|be processed. (::
o o o e e e e e e e o e e o o e o e o e o e e o e {

Iv-14




The following
manual) :

functions

Function Code:

23.

24

The
(CTU) . (Function
meaning for CTU as for may

Functicn Code:

following functions are defined for the 264X
codes 01,

EXEC CALLS

are defined for DVRUV/DVRUS (see the driver

Enable terminal - allows terminal to schedule
its program when any key is struck.

Disable terminal - inhibits scheduling of
terminal’s proygram.
3et timeout - the optional parameter is set

as the new timeout interval.
Ignore all further action reguests until:

a. the device gueue 1is empty
1,

b. an input request is encountered in the
queue

C. a restore control reqguest is received.

Restore output processing
usually not needed).

(this request is

cartridge tape units
02, 03, 04, and 14 have the same

netic tape.)

06, 3,

Action:
Rewind.
Write end-of-file if not Jjust previously
written or not at load point.

Write end-ocf-data.

Locate file number IPRAM (less than 256).

IV-15



EXEC CALLS

Function code occtal 11  (list output 1line spacing), requires the
optional parameter IPRAM which designates the number of lines to be
spaced on the specified logical unit as shown below:

I1PRAM Teleprinter Line Printer
+n space n lines space n lines
-n space n lines top of form

0 no line feed no line feed

4-10. 1/0 STATUS CALL

Requests information (status condition and device type) about the
device assigned to a Logical Unit number.

Assembly Language:

EXT EXEC
JsB BXEC Transfer control to RTE
DEF RTWN Return address
DEF ICODE Regquest code (l3=status)
DEF ICNWD Control information
DEF ISTAlL Status word 1
DEF ISTA2 Status word 2 -- optional
DEF ISTA3 Status word 3 -- optional
RTN return point Continue execution (A and B are meaningless)
ICODE DEC 13 Regquest code = 13
CNWD DEC n Logical Unit number
ISTAL NOP Word 5 of EQT entry returned here
ISTAZ NOP Word 4 of EQT entry returned here, optional
ISTA3 NOP LU status returned here, optional
FORTRAN:
ICODE = 13 Request code
ICNWD = nn nn is the logical unit number
CALL EXEC (ICODE,ICNWD,ISTAl,ISTA2,ISTA3)
Iv-16

A

;



RTE-H
/- = |
"l'uhlc‘;“-}. 1/0 Status Word (ISTA1/ISTA2) Format

WORD CONTENTS
. ¥ L Al T T T T 1 T T
R 1Is 14 13 2fp 1 10 9 ¢(8 7 6115 4 302 1 0
4 D B p S T Unit # Channel #
5 AV EQUIP. TYPE CODE STATUS (see Table 34)
ISTA2 D = | if DMA required.
B = | if automatic output buffering used.
p = 1 if driver is to process power fail.
S = 1 if driver is to process time-out.
T = 1 if device timed out (system sets to zero before each 1/O request).
Unit = Last sub-channel addressed.
Channel = 1/0 select code for device (lower number if a multi-board interface).
ISTAL AV = availability indicator:
0 = available for use.
1 = disabled (down).
2 = busy (currently in operation).
) 3 = waiting for an available DMA channel.
— N EQUIP. TYPE CODE = type of device. When this number is linked with “*DVR.” it identifies the
device’s software driver routine:
00 to 075 = paper tape devices (or system control devices)
00 = teleprinter (or system keyboard control device)
01 = photo-reader
02 = paper tape punch
05 subchannel 0 = interactive keybourd device (or system
keyboard control devices)
O 7 subchynnel 1.2 = jﬂ’ mini-cartridge device . -
Ceninett Py Fh. :'4& . N Al
10 to 17 = unit record dcvices}/ /’7"“’{5 "'"'41;} R
10 = plotter , ‘ (_j
1 Cond / Luwc//”
12 = line printer
) = murk sense card reader
20 to 37 = magnetic tape/ mass storage devices
31 = 7900 moving head disc
32 = 7905 movipg head gisc /7920 .
.'é i = . ’ P /) 4
1070 77 = mslrm\"yu{"’(( ‘{,(/v'o
— STATUS = the actual physical status or simulated status at the end of each operation.
( i For paper tape devices, two status conditions are simulated: Bit 5 = 1
N means end-of-tape on input, or tape supply low on output.

316 /“/’/l



o7 -7

Exec Calls

s Tuble &=t EQT Word 5. STATUS Table.

o .
I)uM§ o~ M’” 6 5 4 2 | / &
Telepg cr(s)" d _ End of i /
Pho#lireader(s) X 1l 1o %8 STL TEN
beneh(es) . 5 Tape &

,1@&' RO0 A 3
/ TEN {
LCA CWP EOD CNf/DB

7210 Pl “"'tcr
AVRI0

\, 38‘)[( ard Re: l(l(.l'A.v /
1)\/}3{1

%

J’7()7 Line Piy
l)\{k 12 ;‘

e
LCF

Lcp~T

X

/T\Vllto

K
79 28%)()5,,\1(\)%";; Head Disc
JVR32

3()()7 'n‘i{’rintcr X
j page
’ eject
DV 2 f
"7*61 Qand Rea PF ; RNR
42701 Mark Se ¢ PF - RNR
: Readey® Mﬁ*
DVRIS A
3030 MagHape EOF | sT || EOT | T JOR || ~nW PE DB/OL
7970 '
DVR22 b —.
7900 Moving Head Dise NR EOT AE FC SC DE EE
DVR3I ,
PS FS HEF FC sC NR DB EE

’A‘[ = PILI\I ail
DE = “I(d Firor

t\mp nrc)‘?x

l T 7Brgk
[)B = Device Busy
b0 ")m( ¥ i

m) L}v(r)i:

| ORejett )

SC = Seek Check

FC = Flagged Track (protected)
AE = Address Error

I:OT = End of Tape

NR Not Ready

HE = Hardware Fault
'S = Protect Switch Set

ES = Drive Format Switch is set
EE = Error exists

)}

RE ¢

'TI=

‘, ! 5!: »,“‘ g
Yt f 2/ /
e Wl{::;ofteued

omn‘\'a?é A ()rted

Tape at Load Pomt

L Py

3-17

gz .



EXEC CALLS

4-11, I1,/0 STATUS TOMMENTH

The c¢alling program is not suspended when the call is made. Equipment
Table entcy (EQT entry) words 5 and 4 (optional) are returned in ISTAlL
and ISTA2 and are defined as shown in Table 4-2. The STATUS portion of
EUT entry word 5 for moving head discs is further broken down and is
shown in ‘Table 4-3. Refer to the appropriate driver manual for the

fcrimat for other drivers.

The status of the specified LU is returned in ISTA3. Bit 15 indicates
whether the device (LU) 1is up (0) or down (l). Bits 4-0 give the
subchannel associated with the device.

Insert Table 4-2 here

Insert Table 4-3 here

4-12. DISC TRACK ALLCCATION CALL

Requests that the system assign a specific number of contiguous disc

tracks for data storage. The tracks are either assigned to the calling
program or assigned globally.

Iv-17



EXEC CALLS

Assembly Language:

O

EXT EXEC
JSB EXEC Transfer control to RTE
DEF RTN Return address
DEF ICODE Request code (4=local track;l5=global track)
DEF ITRAK Number of contiguous tracks required
DEF ISTRK Start track number
DEF IDISC Disc logical unit number
DEF ISECT Number of 64 word sectors/track
RTN return point Continue execution (A and B are meaningless)
ICODE DEC 4 or 15 4 = allocate track to program
15 = allocate track globally
ITRAK DEC n n = number of contiguous tracks within the
same disc unit requested. If bit 15 of
ITRAK = 1 the program is not suspended if
tracks are not available; if bit 15 = 0,
program is suspended until the tracks are
available.
ISTRK NOP System stores starting track number here, or
-1 if the tracks are not available. -
IDISC NOP System stores Logical Unit number (2 or 3) he
ISECT NOP System stores number of 64 word sectors/track% .
here.
FORTRAN :
Example (with no suspension):
ICODE = 4
ITRAK = 100000B + n

CALL EXEC (ICODE,ITRAK,ISTRK,IDISC,ISECT)
Example (with suspension until tracks available):

ICODE = 4
ITRAK = n
CALL EXEC (ICODE,ITRAK,ISTRK,IDISC,ISECT)

4-13. DISC TRACK ALLOCATION COMMENTS

RTE supplies only whole tracks within one disc. When writing or
reading from the tracks (see Read/Write EXEC call), RTE does not
provide automatic track switching; when using this call, the user
program 1is completely responsible for track management. RTE will
orevent other programs from writing on program-assigned tracks but not
from reading them.

IvV-18



EXEC CALLS

Toe program retins the tracks until released by ttself, the operatov,

(r7 or  if the srogram oo aborted.  Jlotatly ansitgned tvacks ate avat table
- to ary  odroagram tor READ, WRLITE, o1 teloase, The wser s completaly
responsible for thein moaoogement o REE will ool prevenl obhier praguaws

frem writing on globally assigned tracks or releasiag them.

4-14. PROGRAM DiISC TRACKS RELEASE CALL

Releases 3ome contiguous disc tracks previously assicned to a program
{see Lisc Allocation EXEC call).

Assenmbly Tanjuage:

EXT EXEC
JsB EXEC Transfer control to RTE
DEF RTN Return address
DEF ICODE Reguest ccde (5=release local tracks)
DEF ITRAK Number of contigucus tracks, or -1
DEF ISTERK Starting track number
DEFV IDISC Disc logical unit = 2 or 3
RTA return noint Continue execution (A and B are meaningless)

O

ICONE DRC 5 Release program’ s tracks

ITRAK DEC n If n = -1, release all tracks assigned to
program; ISTRK and IDISC are unnecessary.
Otherwise, n is the nuuwber of contiguous

. tracks to be released starting at ISTRK.
ISTRK DECT A Starting track number
IDISC DEC P Disc logical unit
FORTRAN ¢

Relcase of n coantiguous tracks starting at m on LU p:

ICODE = 35
ITRAK = n
ISTRK = m

IDIBC =
CALIL EXEl

o)

p]

(ICODE ,ITRAK,ISTRK,IDISC)

Release all tracks allocated to the program.

ICODE = 5
ITRAK = -1
CATT, EXREC (TCODE,ITRAK)

IvV-19



EXEC CALLS

4-15, PROGRAM TRACKS RELFEASE COMMENTS

A

Any suspended program waiting for tracks is rescheduled when enough A\
tracks are released to honor the request.
4-16. GLOBAL DISC TRACKS RELEASE CALL
Releases a specified number of contiguous disc tracks that were
previously assigned globally (see Disc Allocation EXEC cail).
Assembly Language:
EXT EXEC
JSB EXEC Transfer control to RTe
DEF RTN Return address
DEF ICODE Request code (l6=release global track)
DEF ITRAK Number of contiguous tracks
DEF ISTRK Starting track number
DEF IDISC Disc logical unit
RT'N return point Continue execution (A = track release status,
B meaningless)
ICODE DEC 16 Release global tracks k~/
ITRAK DEC n The number of contiguous tracks to be released

starting at ISTRK
ISTRK DEC Starting track number
IDISC DEC p Disc logical unit

=

FORTRAN:

Release of n contiguous global tracks starting at m on LU p:

ICODE = 16

ITRAK = n '
ISTRK = m

IDISC = p

REG = EXEC (ICODE,ITRAK,ISTRK,IDISC)

4-17. GLOBAL DISC TRACK RELEASE COMMENTS

If any one of the tracks to be released is either not assigned
globally or is currently in use (i.e., some program is queued to read
or write on the track at the tlme of the release request), none of the
tracks are released.

IVv-20




\\/

EXEC CALLS

The reaauesting program 18 reschedulea after tne request with the
A-Tegister wan n T lYoews:

A=1) Y'he tracks pave b2en released.,

=-1 o tracks have been released {ot least one track was in use).

A=-7 Jo tracks have  been released (one oI WO

assigned globally) .

F}

tracks was not

=
(

4-13. PROGRAY COMPLETION CALT,

Notifies RTE that the calling prograa wishes to terminate itself or
another program.

Assembly Languoaqge:

RXT TXEC
JS3 FARC Transfer control to RTE
DER RTN Return address
DREF LCODR Recuest code (6=terminate)
DEF IHAME Name of prograwm to be terminated (optional)
DEF FHUMB Tyve of completicn (optioral)
DEF IPRMI
. Up to five optional parzmetars
DEF TPRMS
RTN returi point Continue executior (A = as it was; B = as it
was or parameter address)
TCODA DEC o Request code = 6
g e Terminate this program
INAME or
ASC 3,nhame name = Name of subordinate program to be
terminated.
name = 0 if terminsting itself.

Tv=-21



EXEC

IV-22

CALLS

INUMB

I

i3]

(@}

n

n

n

n

-1,

1,

Normal completion

Serial reusability
completion. When rescheduled,
program is not reloaded into
nemory if it is still
resident.

Save Resoutrces Completion.
Make program dormant but save
current suspensiou point and
save all resources the
program has; that 1is, any
system resource the program
asked for but did not itself
release is retained.

Terminates and removes from
the time list the named
program, If the program is
1/0 suspended, the system
waits until the I/0O completes
vefore setting the program
dormant; however, this call
does not wait. The progran’s
disc tracks are not released.
CALL EXEC (6, 0, 2 or 3) is

eguivalent to issuing an
OF,name, 0 or 1 command
(respect- ively) and

therefore 1is treated like an
aknormal termination.

Immediately terminates the
named program, removes it
from the time 1list, and
releases all disc tracks. If
suspended for I/0, a system
generated clear request 1is
issued to the driver. An
abort message is printed on
the system console. CALL EXEC
(6, 0, 2 or 2) is equivalent
to issuing an Of ,name, 0 or 1
comma nd (respectively) and
therefore 1is treated as an
abnormal condition.



IPRM1

IPRM5

FORTRAN:

DIMENSION INAME(3)

ICODE = 6
INUMB = 0
INAME (1) =
INAME (2) =
INAME (3) =
REG = EXEC

EXEC CALLS

These parameters are saved 1in the
terminat ing  program’s ID seament aad
thug may be picked up by a wall to
RMPAR when the program next exevules,
In this manner a terminating program
may retain parameters for all future
executions. to caller when next
scheduled (INAME = 0).

See INAME above

See INUMB above

2Hcc First two characters

2Hcc Second two

2Hc Last character in upper eight bits
(ICODE,INAME,INUMB)

- IV-23



O

/("\\\



EXEC CALLS

4-19. PROGRAM COMPLETIUwN COMMMENTS

The optional parameters in this call makes it possible to selectively
terminate programs that only the user has scheduled. That is, if PROG1
("Father") schedules PROG2 ("Son") to run, and PROG2 later schedules
PROG3, then PROG2 becomes the "Father" to PROG3 (a "son"). In this
case, only the following calls for Program Completion are legal:

*  PROGl terminates itself or PROG2
* PROGZ terminates itself or PRUOG3
* PROG3 terminates itself only.

Option -1 (INUMB=-1) should be wused only for programs that are
serially reusable; that is, disc resident programs that can initialize
their own buffers or storage locations. When INUMB=-1, the program is
reloaded from disc only if it has been overlaid by another program.
The program must be able to maintain the integrity of its data in
memory.

Option 1 (INUMB=1l) 1is nearly identical to tne Program Suspend EXEC
call (see below), and also functions similarly to the SS operator
command. when INUMB=1, the program starts from its point of suspension
with all resources saved. Unless the program terminated itself in this
manner, it could only be restarted by the program that scheduled it
("Father") or through the ON or RUN operator commands. If the program
terminated itself (INAME=0), 1t may be restarted by any normal run
stimulus (i.e., schedule, ON, RUN, TIME and interrupt).

IPRM1L through IPRM5 are optional parameters that are passed back to
the Program when 1t 1s next scheduled. They are passed only when
INAME=0, and may be recovered by a call to RMPAR when the program next
executes. This permits a program in the time list to run with the same
parameters each time.

Note that the FORTRAN compiler automatically generates a Program
Completion EXEC call when it compiles an END statement.

Note also that a father may either terminate a son normally or with
the son saving resources.

4-20. PROGRAM SUSPEND CALL

Suspends execution of the calling program until it is restarted by a
GO operator reguest.

13—A

1V-23



EXEC CALLS

Assembly Language:

EXT EXEC
JSB EXEC Transfer control to RTE
DEF RTiN Return address
DEF ICODE Request code (7=suspend)

RTN return point Continue execution (A=as it was; B=as it

was or parameter address)
ICODE DEC 7 Request code =7

4-21. PROGRAM SUSPEND COMMENTS

The FORTRAN library subroutine PAUSE, which is automatically called by

a PAUSE
addition
console.

It 1is

statement, generates the

Program suspend EXEC call. In

, 1t 1logs the pause and any supplied number on the system

illegal to suspend a progr

am running under - batch with the

Program Suspend call. This results in a SC00 error return.

The Program Suspend call is similar in function to the SS operator

command.
operator
program

is restarted

restored
the prog

1V-24

When a program is suspended

either by this call or by the SS

command, both the A- and B-registers are saved and the

i3 placed in the operator su

to the same status they had
ram resumes execution.

spension list. When the program

via a GO command without parameters, all registers are

at the point of suspension and

{ |
\%\ //




.

EXEC CALLS

Wwhen the program is restarted via a &0 cowwand with parswmetevs, the
B-register contains  the  addres: ot a4 Tave word arttay aet by the OO
command, In a FORTRAN program, a call to the RMPAR library subroutine
can load these parameters, providing the RMPAR call occurs immediately
following the Program Suspend call., However, it shculd be noted that
when RMPAR is used, parameters MUST accompany the GO command.
Otherwise, RMPAR will wuse the restored B-register as an address to
parameters that do not exist. When it is suspected that there might

not be any paraweters, the following example shows how tc allow for
it:

DIMENSION I(5),.IREC(2)

FQUIVALENCE (IREG,REG), (IREG(2),IB)

REG=0.0

REG=BXEC (7) suspend

IF (IB) 20,20,10

10 CALL RMPAR (1) Return point; get
parameters

20 CONTINUE Return point; no
parame ters

4-22. PROGRAM SEGMENT LCAD CALL

Loads a cealling program’s background segment from disc into the
background segment area and transfers control to the segment’ s entry
point. (See "Segmented Programs" in the Program Preparation section of
this manuval for information on segmented programs.)

Assembly Language:

EXT EXEC
Js3 EXEC Transfer control toc RTE
EF RTN Return address
DEF ICODE Request code
DEF INAME Segment name
DEF IPRM1
. > Up to five optional parameters
DEF IPRM5 /
RTH return point Control is transferred to the segment.
. (A = segment ID seg. address; B = as
. it was or parameter address.)
ICODE DEC 8 Request code = 8
INAME ASC 3 ,name name is the segment name

TV-25



EXEC CALLS

FORTRAN :

a

DIMENSION NAME (3)

ICCDE=8

INAME (1) =2Hcc First two characters
INAME (2) =2Hcc - - Second two characters

INAME (3) =2Hc Last character in bits 8-15

CALL EXEC (ICODE,INAME,IPRMl...IPRMS)

4-23. PROGRAM SEGMENT LOAD COMMENTS

On seygment entry the registers are set as follows:

A Segment ID segment address.

B

As it is unless parameters are passed, in which case it is the address
of parameter list address (see RMPAR).

If the segment loaded does not exist, an SC05 error results.
4-24., PROGRAM SCHEDULE CALL

Schedules a program for execution and passes up to five parameters and a
buffer to the program.

IV-26




Assembly Language:

RTN

ICODE

INAME

IPR#L

TPRMS

EXT
JsB
DEF
DEF
LEF
DEF

DEF
DEF
DEF
return

ASC

IBUFR BSS n
IBUFL DEC an (or-2n)

FORTRAN :

4-25. PROGRAM

EXEC

EXEC
RTN
ICOBE
INAME
IPRM1

|

EXEC CALLS

Transfers control tc RTE
Return address

Reguest code

Name of program to schedule

> Up to five cptional parameters

/
IPRM5 /
IBUFR
IBUFL
point

numb

Optional buffer address

Optional buffer length

Continue execution (A=program status;
B3=as it was or parameter address)

9=immediate schedule with wait
l0=immediate schedule with no wait
23=queue schedule with wait

24=yueue schedule with no wait
name i3 the named program to schedule

Up to five optional parameters

Optional buffer of n words
Same n; words (+) or characters (=)

DIMENSTON INAME(3) ,IBUFR(n)

IBUFL =

ICODE

n
niaD

IwaME(l) = 2Hcce

INAME (2)

2ilcc

INAME(3) = 2Hc
CALL = EXBC(1CODE,INAME,IPRM1,...IPRM5,IBUFR,IBUFL)

Tne ICODE parameter

wait, and

whether

SCHEDULE COMMENTS

Set buffer length

See TCODE above

First two characters
Second two characters
Last character

determines whether or not the calling gprogram will
the calling prograwm’s schedule reguest will be
gquaued until the currently scheduled program becomes dormant.

v-27



EXEC CALLS

When a prograim 1is scheduled, a pointer is placed in its ID segment
that will:

a. Point back to the program that scheduled it.

b. Be set to 0 if the program was scheduled by the operator,
from an interrupt or from the time list.

The pointer is cleared when the program terminates or is iborted. Note

that the pointer established the program performing the scheduling as
the "Father" and the program being scheduled as the "Son".

When a program that had been scheduled with wait completes, the Father
may recover the system’s copy of optional parameter 1 to determine
whether or not the Son terminated normally.

Abnormal termination of the Son is caused by any of the following
conditions:

a. System abort of prograw.
b. An OF operator cominand.

c. Self-termination via CALL EXEC (6,0,2) or CALL EXEC
(6,0,3).

Abnormal termination causes the system’s copy of optional parameter 1
to be sent to 100000B. This occurs even if the Son attempted or
planned to pass back parameters via PRTN. The Father can recover the
system’s copy of optional parameter 1 by calling RMPAR.

If the Son terminated normally and no parameters were passed back via
PRTN, the value of optional parameter 1 returned by RMPAR will then
be equal to its original value. Alternately, it will be the value set
up in the Son’s PRTN call. The PRTN subroutine allows Sons to pass
parameters back to Fathers.

ICODE = 9 OR 10

If a program to be scheduled is dormant, it is scheduled and a zero
is returned to the calling program in the A-register. If the program
to be scheduled is not dormant, it is not scheduled by this call and
its status (some non-zero value) is returned to the calling program
in the A-register. If the program to be scheduled is a Son that was
suspended with the EXEC 6 call, some high bits may be set in the

A-register. Only the least four-bits should be checked for zero in
this case.

IV-28




EXEC CALLS

A schedule with wait (ICODE=9) call causes RTE to put the “Father" in
a wait status by setting the wait bit in the status word of the
Father's 1ID segment. If required, the Father may be swapped by the
system to make way for a program that needs to run. The "Son" runs at
its -own priority, which may be greater than, less than or equal to
that of the calling program. Only when the Son terminates does RTE

resume execution of the Father at the point immediately following the
Program Schedule call.

A disc resident program may schedule another disc resident program
with wait, since disc resident programs are swapi2d according to

their priority when they are in conflict over use of their memory
area.

A Program Schedule call without wait (ICODE=10) causes the specified
program to be scheduled for execution according to its priority. The
Father program continues at its own priority without wait. Again note
that ICODES of 9 and 10 will not schedule the program if the program
to be scheduled is busy (i.e., not dormant).

ICODE = 23 or 24

These requests are identical to 9 and 10 except that the system
places the "Father" in a queue if the "Son" 1is not dormant. The
Father s request will then be honored when the Son becomes available.
Note that status will not be available in the A-register and the
Father will be impeded until the request is honored. The queue means
that if the Son is not dormant, the potential Father is suspended
until the Son may be scheduled by this Father. when the potential Son

can be scheduled, the request is reissued and execution procedes as
EXEC 9 and 10 described above.

OPTIONAIL PARAMETERS

When the Son begins executing, the B-register contains the address of
a a five-word parameter list from the Father ( parameters = 0 as the
default). A call to the RMPAR library subroutine, as the first
executable statement of a called program, transfers these parameters
to a specified five-word array within the called program. For
example: ‘

PROGRAM XQF
DIMENSION IPRAM (5)
CALL RMPAR (IPRAM)

Note that IPRAM must be a minimum dimension of five words.

Iv-29



EXEC CALLS

If the optional buffer is included in the Father’s scheduling call,
the buffer is moved to 3ystem Available Memory and assigned to the
Son, The Son can recover the string by using the GETST library
routine or the Strinjy Passage call. The Father is memory suspended if
there is not enough System Available Memory to currently hold the
buffer but there will be in the future. The Father is aborted and an
5C10 error 1is returned 1if there never be enough System Available
Memory for the buffer. The Father will not abort if the no-abort bit
(bit 15 in ICODE) is set. The length of the string is limited only by
the amount of usable System Available Memory.

For schedule with wait regquests (ICODE = 9 or 23), the Son may pass
back five words to the Father by calling the PRTN library routine;
for example:

PROGRAM SCHED
DIMENSION IBACK (5)
CALL PRTN (IBACK)
CALI, EXEC (6)

The EXEC (o) call (termination call) must immediately follow the PRTN
call. The Father may recover these parameters by calling RMPAR
imnediately after the Son call. The Son may pass back a buffer to the
Father (see the Strinj Passage call).

The Program Schedule call is similar in function tc the RUN operator
command.
4-26. TIME REQUEST CALL

Reguests the current time as recorded in the real-time clock.

Assembly Language:

EXT EXEC
Jsi EXEC Transfer control to RTE
DEF RTN Return address
DEF 1CODE Reguest code (ll=time reguest)
DEF ITIME Time value array
DEF IYEAR Optional year parameter
RTN return point Continue execution (A=meaningless; B=as
. it was)

ICODE DEC 11 Request code = 11
ITIME BSS 5 Time value array
IYEAR BSS ] Year (optional)

V=30

(/



C

EXEC CALLS

FORTRAN:

DIMENSION ITIME(5) ,IYEAR(1)
ICODE=11
CALL EXEC (ICODE,ITIME,IYEAR)

4-27. TIME REQUEST COMMENTS

The time wvalue array contains the time on a 24-hour clock, with the
year in an optional parameter, when RTE returns. The year is a full
four digits (e.g., 1978).

Assempler FORTRAN

ITIMF or ITIME(l) = Tens of milliseconds
ITIME+1 or ITIME (2) = Seconds

ITIME+2 or ITIME(3) = Minutes

ITIME+3 or ITIME(4) = Hours

ITIME+4 or ITIME(5) Day of the year

Another method of obtaining the current time is through a double-word
load from the $TIME Table Area II entry point. S$TIME contains the
double-word integer of the current time of day. If this double-word
is passed to the TMVAL library subroutine, then TMVAL returns
milliseconds, seconds, minutes and hours. Refer to the Library
Subroutine section of this manual for more information.

The Time Request call 1is similar in function to the TI operator
ccmmand.

4-28. STRING PASSAGE CALL

Retrieves the command string that scheduled the program or passes a
buffer back to the "Father" program.

IV-31



EXEC CALLS

Assembly Language: >
A NV
EXT EXEC
JSB EXEC Transfer control to RTE
DEF RTN Return address
DEF ICODE Request code (l4=string passage)
DEF IRCOD Retrieve/write code
DEF IBUFR Buffer location (string location)
DEF IBUFL Buffer length (string length)
RTN return point Continue execution (A = status; B =
. positive number of words/characters)
ICODE DEC 14 Request code
IRCOD DEC 1 or 2 1 = retrieve parameter string
2 = write buffer to "Father"
IBUFR BSS n Buffer of n words _
IBUFL DEC n(or -2n) Same n; words (+) or characters (-)
FORTRAN :

DIMENSION IBUFR(n)

IBUFL = n ! .
ICODE = 14 e
IRCOD = 1

REG = EXEC(ICODE,IRCOD,IBUFR,IBUFL)

4-29. STRING PASSAGE COMMENTS

The command string retrieved 1is exactly like the string used in
scheduling the program via RO, ON, GO commands, or EXEC 9, 10, 23, or
24. The block of System Available Memory used to store the command
string (buffer) is released by this call or when the calliing program
goes dormant. Any parsing of the returned string 1is left to the
calling program. The RTE system library routine GETST can be used to
recover the parameter string portion of the command string.

Upon return from a retrieve operation, the A-Register contains status
information: 0 if the operation was successful or 1 if no string was
found. The B-Register is a positive number giving the number of words
(or characters) transmitted. If the string is longer than IBUFL, only
IBUFL words are transmitted. If an odd number of characters are

requested in a retrieve operation, the right half of the last word is
undef ined.

If the write parameter string option is used, the call returns any
block of system available memory associated with the "Father" and {::

allocates a new block for the "Father" into which the string will be
stored.

IvV-32



EXEC CALLS

If no memory is currently available, the calling program is memory
suspended.

If there will never be enough memory and bit 15 of ICODE is not set,
the calling program is aborted with an SCl0 error.

If there i3 no "Father," execution continues at the return poipt with
the A-register egual to 1. If the write parameter operation was
successful, the A-register is set to 0.

Example:
RU, PROGX , ABCDSTRING

Where RU,PROGX;ABCDSTRING is returned by EXEC (14,...) and ABCDSTRING
is returned by GETST.

NOTE

Be careful when writing a buffer to

a "Father" when the Father scheduled
the "Son" without wait (EXEC 10 or 24).
1t is the user’s responsibility to
ensure synchronization of the Son’s
write and the Father’s read.

4-30. TIMFD EXECUTION CALL (Initial Offset)
Schedules a program for execution at specified time intervals,

starting after an 1initial offset time. RTE places the specified
program in the time list and returns to the calling program.

IV-33



2XEC CALLS

Assembly Language:

ICODE

IPROG

TRESL

MTPLE
TOFST

FORTRAN :

EXT

JSB
DEF
DEF
BR
DEF
DEF
DEF
return

or

ASC

DEC

DEC
DEC

DIMENSION TPROG (3)

IPROG (
TPROG (
TPROG (
ICODE
IRESL
MRPLE
IOFST

1)
2)
3)

EX®EC

“XEC
RTN
ICODE
TPROG
IRESL
MIPLE
I0OFST
point

3, name

x

LI

N

2Hcc
2Hcc
2Hc

—
N

A X

Z

o
W/

Transfer control to RTE

Return address

Request code (l2=initial offset schedule)
Program to put in time 1:ist

Resolution code

Execution multiple (0-4095)

Initial time offset

Cont inue execution (A=meaningless;

B as it was) '

Request code = 12
Put calling program in time list

name is the program to put in the
time list

Resolution code
(L=10"s/ms;2=ses;3=mins;4=hrs)
Execution multiple

z (units set by x) gives the initial

:/ \
offset &¥/

See IPROG above

First two characters

Second two

Last character in upper 8 bits

(1=10"s/ms;2=secs;3=mins;4=hrs)

z (units set by x) gives the initial
offset

CALL EXEC (ICODE,IPROG,IRESL,MTPLE,-IOFST



EXEC CALLS

4-31. INITIAL OFFSET COMMENTS

The Execution Time EXFC call is siwmilar to the IT Operator tequest
(see Section 1II). However, the EXEC call places the program in the
time list whercas IT does not. This <call can schedule a program to
execute in one of three ways as described in the following
paragraphs:

1. RUN ONCE

After a time offset and the program to be scheduled is dormant, the
program will execute once and then be made dormant. This is
accomplished as shown in the following example:

IRESL = 3 (specifies minutes)
MTPLE = 0 (specifies run once)
IOFST = -45 (specifies run after 45 minutes have elapsed from

current time)

2. RUN REPEATEDLY

After a time offset and the program to be scheduled is dormant, the
program will execute, go dormant, and then re-execute at specified
intervals. This is accomplished as shown in the following example.

IRESL = 3 (specifies minutes)
MTPLE = 60 (specifies run every 60 minutes)
IOFST = -30 (specifies run after 30 minutes have elapsed from

current time)

3. GO DORMANT; THEN RUN

If IPROG=0, the «current/calling program is made dormant, but the
point of suspension is retained. The program is then placed in the
time 1list for rescheduling from the point of suspension after a

delay. When the program is rescheduled, it can be either to run once
or repeatedly.

4-32. TIMED EXECUTION CALL (Absolute Start Time)

Schedules a program for execution at specified time intervals,
starting at a particular absolute time. RTE places the specified
program in the time list and returns to the calling program.

Iv-35




EXEC CALLS

Assembly Language:

RTN

ICODE

IPROG

IRESL
MTPLE
IHRS
MINS

ISECS
MSEC

FORTRAN :

Iv-36

EXT EXEC

JsB EXEC Transfer control to RTE

DEF RTN Return address

DEF ICODE Request code (l2=absolute start
time sched.)

DEF IPROG Program to put in time list

DEF IRESL Resolution code

DEF MTPLE Execution multiple

DEF IHRS Hours

DEF MINS Minutes

DEF ISECS Seconds

DEF - MSECS Tens of milliseconds

return point Continue execution (A = meaningless,

. B as it was)
DEC 12 Request code = 12
DEC 0 Putting calling program in time list
or

ASC 3, name name is the program to put in the
time list

DEC X Resolution code
(1=10 "s/ms;2=secs;3=mins;4=hrs)

DEC y Execution multiple

DEC a Absolute starting time

DEC b In hours, minutes, seconds

DEC c and tens of milliseconds

DEC d on a 24-hour clock

IPROG=0 or DIMENSION IPROG (3)

IPROG(1l) = 2Hcc First two characters
IPROG(2) = 2Hcc Second two
IPROG(3) = 2Hc Last character in upper 8 bits
ICODE = 12
IRESL = X (1=10"s/ms;2=secs;3=mins;4=hrs)
MTPLE = y (0-4095)
IHRS = h
. MINS = m
ISECS = s
MSECS = ms

CALL EXEC (ICODE,IPROG,IRESL,MTPLE,IHRS,MINS,ISECS,MSECS)

O



EXEC CALLS

4-33. ABSOLUTE START TIME COMMENTS

The Execution Time EXEC call is similar to the IT operator request
(see Section 1II). However, the EXEC call places the program in the
time 1list whereas IT does not. This call differs from the Initial
Of fset version in that a future starting time is specified instead of
an offset. For example, if the current time 1is 1400 hours and you
wish the program to run at 1545 hours the parameters would be as
follows:

IHRS = 15
MINS = 45
ISECS = 0
MSECS = 0

This call can schedule a program to execute 1in one of two ways as
described in the following paragraphs:

l. RUN ONCE

After a time offset and the program to be scheduled is dormant, the
program will execute once and then be made dormant. This 1is
accomplisned as shown in the following example.

IRESL = 3 (specifies minutes)

MTPLE = 0 (specifies run once)

IHRS = h ‘

MINS = m (specifies absolute start-time)
ISECS = s

MSECS = ms

2. RUN REPEATEDLY

After a time offset and the program to be scheduled is dormant, the
program will execute, go dormant, and then re-execute at specified
intervals. This is accomplished as shown in the following example:

IRESL = 3 (specifies minutes)

MTPLE = 60 (specifies run every 60 minutes)
IHRS = h

MINS = m (specifies absolute start-time)
ISECS = s

MSECS = ms

1v-37



S

4-34. PROGRAM SWAPPING CONTROL CALL

Allows a program to lock itself into memory (real-time or background) if the
ability to perform a memory lock was specified during generation.

— AN
AN

Assembly Language:

EXT EXEC
JSB EXEC Transfer control to RTE
DEF RTN Return address
DEF ICODFE Request code
DEF IOPTN Control information

RTN return point Continue execution (A=meaningless; B as it

. was)
ICODE DEC 22 Request code = 22
ICPTN DEC numo 0 = program may be swapped
1 = program may not be swapped
FORTRAN:

ICOBDE = 22 .
IOPTN = numb (
CALL EXEC (ICODE,IOPTN) -

4-35. PROGRAM SWAPPING CONTROL COMMENTS

This call allows a programmer to lock a program into memory so it cannot
be swapped out for a program of higher priority.

|
I
The program cannot be locked into memory |
if the memory lock bits (base page word I
1736E, bits 2 and 3) are not set (SC07 |
error results). The bits are set during I
generation. :

The program’s memory lock bit (IOPTH = 0 or 1) is set or cleared by the
request (refer to ID segment word 15, bit 6 in Table A-1l). This bit is also
cleared (making the program swappable) if the program aborts or terminates
except on the Save Resources Program Completion EXEC call.

4-36. PARTITION STATUS CALL dlz‘ ,,,,,

Returns status information about any specified partition.

#-38



Assembly'Lanquage:

EXT

JSB
DEF
CEF
DEF
DEF
DEF

DEF

FORTRAN:

EXEC
EXEC Transfer control to RTE
RTN Return address
ICODE Request code (25=partition status)
IPART Partition no. that information is desired about
IPAGE Returned no. of starting paje for partition
NPGS Returned no. of pages in partition (includes Base
Page)
IPST Partition status word (defined below)

CALL EXEC(25,IPART,IPAGE,INPGS,IPST)

4-37. PARTITION STATUS COMMENTS

The format of PSTAT is as follows:

if
if
if
if
if
is

NN w
=]

mwononn

(S =

partition reserved.

partition is real time.

partition is a mother partition.

partition is subpartition of a mother partition.
chain is in effect; that is, if EMA type program
currently active in that subpartition.

ID Seg. no. is the ordinal number of the ID segment for the program
that occupies the partition. If ID Seg. no. = 0, the partition is

unoccupied.

The values returned for number of pages and starting page number will be
identical to those displayed by the WHZAT system program.

If the partition number is illegal (i.e., undefined or illegal), a -1
will be returned in the number of pages word and a 0 returned to the

page number word
o

The interaction
partiticn status
Area in the 1illu
contains the nec

between physical memory and logical memory for the

is illustrated in Figure 4-4. Note that the Table
strated User Map is the system~supplied space that
essary software to enable the user to communicate with

4-39




the system.

C
Logical Memory

Physical Memory

(User Map)
fmmm e ———————— + frm e —————————— +
l | | |
| Partition n : ‘ Partition 1 ;
|
I | [=———- > | I
| | | | |
| I | | |
| e I ! | |
| Lase Page | ! | mmm e I
e e EE | | | |
| . I | | Table Area |
| . | | [=>1 |
| . I | [ |
-—— R e it T I\ I | e e |
" |  Partition 1 I 1 | |I--->] Base Page
| I I et +
| | I \=== | |
FGS | I/ Lo
(part.lenath) | I .
| | b I
I e kb Dt T L L/ [
v | Base Page et
~==IPAGE===> |=mmmmemm—m e | | \ o
= e | | W
Start physical | Table Area | mmmm e -
page of e ettt |
partition |  Operating |
| System |
| |
| |
Fmm e —————————— +
Figure 4-4. Partition Status Parameter Return
4-38. MOMCRY SIZE CALL
Returns current memory limits of the partition in which the calling program
is executing.
Assembly Language:
BEXT EXEC
JSB  EXEC Transfer control to KTE
DEF RTN Return Address .
DEF ICCDE Fejquest Code (26=meory size) (;;
DEF IFPG First available word address behind the program (i.e., -
‘ last word + 1 of program + largest segment + 1)
DEF ILMEM Wuwcer of words available between end of program and

H-40



end of program’s address space.

DEF NPGS Length of current partition in pages (1ncludeS'
base page)
DEF  IMAP Return copy of current user map (optional), IMAP muet

pe a 32-word buffer address.
FORTRAN ¢

CALL EXEC (26,IFPG,ILMEM,NPGS,IHMAP)

4-39. MEMORY SIZE COHMMENTS

ILMEM = last word address space minus IFPG to give the amount of room for
dynamic buffer space.

The number of words of logical memory (ILMEM) is calculated by subtracting
IFPG, the prograin’s high main plus one (including its largest segment),

from the last word of the program’s logical address space. The logical
address space, which may be smaller than the partition, is determined at
load time and may pe yreater than (if size override option taken) or equal
to the program size.

For EMA program, ILMEM is the number of words between the end of the
program and the start of MSEG.

The manner in which the current status of the partition is calculated is
illustrated in Figure 4-5. Sample data is provided.

Logical User Map

e + meem————
| | -
I Unused | |
| Partition | | |
Last word of | Space or | I |
address space | MSEG | v
(47777) === mmmom Pl e | === |
" ll/////////////////l ILMENM |'
......) - wm em am em wm em wm e | e e em -
I I -
IFPG-==mmmm = | === | 26 Pages (NPGCS)
(address | (includes base page)
46537) 15 '

XYZ Program

av
< ——— 0 ——— —
[te}
(0]
wn

| Base Page |

Yy



Figure 4-5. Partition Current Status Example

4-40. CLASS I/0 EXEC CALLS

The Class I/0 feature consists of a speciel set of I/0 EXEC calls that
give user programs a level of I/0 independence beyond that provided by
standard I/0. Use of the Class I/0 scheme can provide the fo'lowing
benefits:

a. A program doing an input operation can proceed with execution even
thcuagh the data is not yet ready (I/0 without wait).

b. Program-to-program communicaticn with controlled access via a mailbox
scheme.

c. Synchrenized program-to-program data passing that avoids processing . of
incomplete or non-updated data. A calling program can put itself to
sleep until it receives a signal that updated data processed by another
program is available for further processing.

Implementatior of Class I/0 is based on use of a buffer with an exclusive
access key, thus avoiding the possibility of unplanned alteration of
existing data or access to incomplete data. Use of such keyed buffers or
"classes" 1is exclusive of system or local COMMON resources utilized in ,
stancard program-tc-program data passing. g

A definition of the term "class" and other terms unique to Class I/0
considerations is given in Table 4-5.

The maximum number of classes is established during system generation. The
generator asks how many Class Numbers are to be established and the operator
responds with a number between 0 and 255. Once the numbers are established
the system keeps track of them and assigns them (if available) to the calling
program when a Class I/0 call is made and the Class Number parameter is set tc
zero. Once the number has been allocated, the user can keep it as long as

desired and use it to make multiple Class I/0 Calls. When the user is finishe«
with the number it can be returned to the system for use by some other class
user.

The system allocates a buffer from System Available Memory (SAM) when a

user program issues a Class I/0 call. The "key" is also issued to the calling
program in the form of a Class Number, which is the only mechanism by which

a calling program may thereafter access the buffer. Note that there may be
more than one buffer associated with a single Class Number (key) and that a
user program may have more than one Class MNumber allocated to itself.

For "I/O without wait" operations, dats can be read from or written to an
I/0 device by first transferring the data to the buffer. The user program ,
can thus either continue execution of other tasks without waiting for the g::w
I1/0 transfer to complete, or can suspend or terminate itself (releasing '
non-ccnflicting system services to other waiting programs) until the data

transfer is completed.
H-92




A csimple example of I/0 without wait would be a program that issues a
Class I/C READ call in its code, followed by a series of other coded
operations. While these following operations were being executed, the
system simultaneously would be reading the data into the allocated keyed
buffer. The calling program would issue a Class I/0 GET call to fetch the
data from the buffer. A more detailed example of I/O without wait is
given later in this section.

Table 4-5. Class Input/Cutput Terms

o o e e e e e e et e e o o et e o o e e o 2 e o o 2o e e e e o o o o o o o o e e o o o o e o P e S S o o
I Term I Description

o ot e o o o e o o S o o o e o o e e o o o o o o S o o 0 o e o S o 22
| Class | An account owned by one program that may be

| | used oy a group of programs.

| |

| Class Nuaber | The account number referred to above.

| |

| Class Users | Programs that use the Class Number.

I " | '

| Class Request | An access to a Lecgical Unit number with a

| : | class number.

| I

| Class Members | Logical Unit numbers that are currently being
| | accessed in behalf of a class. Completion of

| | access removes the association between class

| | number and Logical Unit number (completion of
I | access is defined as when the driver completes
I | the request).

| I

| Class Queue (pending) | The set cf uncompleted class requests.

I |

| Class Gueue (completed) | The set of all completed class requests. The

| | structure is first-in- first-out.

| |

o e e e e e e e e o o o 2 e o e S S . o o o = - o o o o o o o T S 2 o e

The system handles a Class I/0 call in the following manner:

a. When the class user issues a Class I/0 call (and the call is received),
the system allocates a buffer from System Available Memory and puts the
call in the header (first eight words) of the buffer. The call is placed in
the pending Class Queue and the system returns control to the class user.

b. If this is the only call pending on the EQT, the driver is called
immediately; otherwise, the system returns control to the class user and
queues the request according to program priority.

c. If buffer space is not available, the class user is memory suspended
unless bit 15 ("no wait") is set. If the "no wait" bit is set, control is

returned to the class user with the A-register containing a -2 indicating
no memory available.

d. If tco much merory was asked for (more than all of System Available

H~43



Mewmory) the program is aborted with an I004 error return.

e. If the Class kumber is not available or the I/0 device 1is @own, the ¢«
Class User is placed in the general wait list (status = 3) until the (:;
ccndition changes.

f. If the call is successful, the A-register will contain zero on return to,
the program. ‘

The buffer area furnished by the system is filled with the caller’s data if
the request is either a WRITE, or a WRITE/READ call. The buff:r is then queuec
(pending) on the EQT entry specified by the Logical Unit Number.

After the driver receives the Class I/0 call (in the form of a standard I1/0
call) and completes, the system will:

a. Release the buffer portion of the request if a WRITE. The header is
retained for the GET call.

b. Cueue the header portion of the buffer in the Completed Class Queue.

c. If a GET call is pending on the Class Number, reschedule the calling
program. (This means that if the user issues a Class GET call or examines
the completed Class Queue before the driver completes, the user has
effectively peat the system to the completed CLass Queue.) Note that the
program that issued the Class I/0 call and the program that issued the
Class GET call do not have tc be the same program.

d. If there is no GET call outstanding, the system continues and the (“\
driver is free for other calls. @

When the user issues the GET call, the completed Class Queue is checked
and cne of the following paths is taken:

a. If the driver has completed, the header of the buffer is returned
(plus the data). The user (calling program) has the option of leaving

the I/0 request in the completed Class Queue sO as not to lose the data.
In this case a subseguent GET call will obtain the same data. Or,the user
can dequeue the request and release the Class Number, and can also
release the Class Numder back to the system.

b. If the driver has not yet coiipleted (SET call beat system to the
conpleted Class Cueue), the calling program is suspended in the general
wait list (status = 3) and a marker so stating 1s entered in the completed
Class Queue header. If desired, the program can set the "no wait" bit to
avoid suspension. In any case, when the driver completes, any program
waiting in the gencral wait list for this class is automatically
rescheduled. wWote that only one program can be waiting for any given
class at any instant. If a second program attempts a GET call on the

same Class Number before thc first one has been satisfied, it will be
aborted (I/0 error IOLl0).

4~4'. CLASS 1/0 - READ/WRITE CALL

Transfers information tc or from an external (non-disc) I/0 device or
another program. Depending upon parameter specifications, the calling

=



¢

C

program will not pe suspended while the call completes.

Assembly Language:

RTN

ICCDE
ICNWD
IBUFR
IBUFL
IPRM]
IFRM2
ICLAS

FORTRAN:

4-421

For a combination Class Write/Read call,

EXT

JsB
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
return

DEC
ocT
BSss
DEC
DEC
DEC
ocT

L¥ed

EXEC
RTH
ICODE
ICNWD
IBUFR
IBUFL
IPRML1
IPRM2
ICLAS
point

numb
conwd
n

n or-2
f

g
class

DIMENSION IBUFR

IBUFL
ICODE
ICNWD
ICLAS

wonn

Transfer control tc RTE

Return address

Request code (l7=Read;l&=Write;20=Write/Read)
Control information
Buffer location

Buf fer length
Optional parameter
Optional parameter
Class word

Continue execution
meaningless)

(A=zero or status; B

17=Read; 18=Write;
conwd is described
Buffer of n words

Same n; words (+) or characters (-)
Optional parameter

Optional parameter

Class is described in comments

20=Write/Read
in Figure 4-1

CALL=EXEC (ICODE,ICNWD,IBUFR,IBUFL,IPRM1,IPRM2,ICLAS)

CLASS I/0 READ/WRITE COMMENTS

the driver should expect control

data in the buffer IBUFR. The system will treat the request as a Class

Write in that the buffer must be moved prior to the driver call,

and as a

Class Reéad in that the buffer must be saved after driver completion. Note

that the driver will receive a standard Read request (ICODE =

reguest.

1) on this

Refer back to Figure 4-2 for the format of the control word (conwd)
required in the Class I/0 Read/Write calling sequence.

IPRM1 and IPRM2 are required as place holders in this request. They may
also be used to pass information through to the Class GET call to aid in
processing the request.

W44~



Figure 4-6 shows the format of the class word (ICLAS) required in the

calling sequence. To obtain a Class number from the system the class portion @hx;s
(bits 12-0) of the word is set to zero. This causes the system to allocate )
a Class Number (if one is available) to the calling program. The number is
returned in the ICLAS parameter when the call completes and the user must

specify this parameter (unaltered) when using it for later calls. Bit 15 is

the "no-wait" bit. When set the calling program does not memory suspend if

memory (or a class number) is not available. A-register value when the prograr
returns is as follows: ‘

"A" Value Reason " @
_______________ j
0 OK-request done
-1 No class number ?
-2 No memory now or buffer limit exceeded.

15]14 13 12!11 10 9]8I7'6[5l4'3[2'l'0
|
No I '
Wait

Class Number

TPRTE-4

Figure 446. Class Number (ICLAS) Format here

Wwhen the user’s program issues a Class I/0 call the system allocates a : (i )
buffer from System Available Memory and puts the call in this buffer. The -
call is queued and the system returns contrcl to the user’s program. If

memory is not available, three possible conditions exist:

1. The program is requestinjy more memory space than will ever be available.
In this case, the program is aborted with a I004 error.

2. The program i3 requesting a reasonable amount of memory but the system
must walit until memory is returned before it can satisfy the calling '
program. The program is suspended unless the "no wait" bit is set, in ’
which case a return is made with the A-register set to -2.

3. If the buffer limit is exceeded, the program will be suspended until

this condition clears. If the “"no wait" pbit is set, the program is not ]
suspended and the A-register is set to =-2.

4-£3. CLASS 1/0 - GET CALL | ?

Completes the data transfer between the system and user program that was
previously initiated by a class request.

Assembly Language:

EXT EXEC , ((\ |
. i i
,.,7

7~4¢



JSB EXEC Transfer control to RTE

DEF RN Return address
DEF ICCDhL Request code
DEF ICLAS Class word
DEF IGURR Buffer location
DEF IBUFL Buffer length
DEF IRTN1 Cptional parameter status word
DEF IRTNZ2 Optional parameter status word
DEF IRTN3 Optional parameter class word
RTH return address Continue execution (A=status;B=Transmission
. log)
ICODRE DEC 21 21 = class GET call
ICLAS NOP class is described below
IBUFR BSS n Buffer of n words
IBUPFL DEC n (or -2n) Same n; words (+) or characters (-)
IRTN1 NOP Location for IPRM1 from READ/WRITE call
IRTNZ NOP Location for IPRM2 from READ/WRITE call
IRTNS NOP Request cocde passed to driver or initial
Read or Write call
FORTRAN:
DIMENSION IBUFR (n)
ICODE = 21
IBUFL = n
ICLAS = x0

REG = EXEC(ICODE,ICLAS,IBUFR,IBUFL,IRTN1,IRTN2,IRTN3)

4—44[ CLASS 1/C GET CALL COMMENTS

One of the features of the GET call is that cne or more user programs
waiting for system resources can suspend themselves without CPU

overhead or program overhead such as polling. A program can perform

a deliberate GET on a Class Number associated with a device or another
program and put itself to sleep. The program will only be awakened when
there is something to process. The desired data will be resident in the
program’s buffer. After the data is processed, the program can put itself
to sleep again with another GET.

When the calling program issues a Class GET call, the program is telling
the system that it is ready to accept returned data from a Class READ call
or remove a completed Class WRITE or CONTROL call from the completed class
list., If the driver has not yet completed (GET call got to the completed
class before the system), the calling program is suspended in the general
wait list (status = 3) and a marker so stating is entered in the Class
Queue header. VWhen the driver completes, the program is automatically

rescheduled. If desired, the program can set the "no wait" bit to avoid
suspension.

Figure 4-6 shows the format of the class word (ICLAS) required in a class Gi
call. Bits 12-0 represent the Class Number and security code that the GET
call is seeking. This Class Number is obtained (in unaltered form) from

the original Class I/0 READ, WRITE, CONTROL or WRITE/READ call. Bit 15 is
the "no wait" bit. When set, the calling program does not suspend if the

Y47



class request has not yet completed. Lit 14 is the "save" bit. When set, the
buffer is not released; therefore, a subseguent GET call will return the same

the same data. Pit 13 is the "de-allocate" bit. When set, the Class Number £
is not returnec¢ to the system. If bit 13 is zero and no requests are left L
in the Pending Class ueue, and no class requests for this class are

waiting for driver processing, the class is returned to the system.

It is possiole for the call to return the Class Number and data, or no
nc data, depending on whether or not there is one class call left.

Bite 14 and 13 work in conjunction with each other. If bit 14 is set,
then the buffer will not Le released. Therefore you cannot deallocate
the Class dJdumber. That is, the Class Number cannot pe released
because there is still an outstanding reguest against it.

Only when the GET call gets the last class request on a class, or on an empty
class gueue (completed and pending) can the user release the Class Number
by clearing bit 13 in the ICLAS word.

Three parameters in the call are return locations: that is, values from the
system are returned to the calling program in these locations. Optional
parameters IPRM1 and IPRM2 from the Class I/0 WRITE/READ or CONTROL calls
are returned in IRTN1 and IRTN2. These words are protected from modification
by the driver. The original request code received by the driver is returned-
in IRTN3, as follows:

Original Reguest Code Value Returned in IRTN3

—— ———— ————— W —— ———— - - . - - —— ——————— - ————— ——

((\
e

H-4%



C

17/20(READ,WRITE /READ) 1
12 (WRITE) 2

19 (CONTROL) 3

BUFFER CONSIDERATIONS

There are several buffer considerations in using the Class I/0 GET call:
a. The number of words returned to the user’s buffer is the minimum
of the requested number and the number in the Completed Class queue
element being returned (that was specified in the initial Read/Write
in the READ/WRITE call).

b. If the original request was made with the "Z2" bit set in the control
word, then IPRM1l returned by this call will be meaningless.

c. The "2" buffer will be returned if there is room for it (see "a"

above) only if the original request was a READ or WRITE/READ (i.e., for
WRITE requests no data is returned in the buffer area).

A AND B REGISTER RETURNS

The A and B registers are set as follows after a Class I/0 GET call:

A-Register B-Register
Al5 = 0 then A = status B = transmission log (positive words or
characters depending on original request)
Al5 = 1 then A = - (nuab+l) B = meaningless

On return with data, bit 15 is set to zero and the rest of the A-register
contains the status word (EQT5). If a return is made without data (the "no
walt pit" was set in the class word) then bit 15 is set to one and the
A-register contains the number of requests numb made to the class bit

not yet serviced by the driver (i.e., pending class requests).

4—45T/ CLASS I/0 - CONTROL CALL

Carries out various I/0 control operaticns such as backspace, write
end-of-file, rewind, etc. The calling program does not wait for the
function to be completed.

Assenply Language:

EXT EXEC

A1



JSR EXEC Transfer control to RTE

DEF RTHN Return address
DEF ICOLE Request code A
CEF ICNAWD Control information '
DEF IPRAM Optional parameter
DLF ICLAS Class word
DR IPRML Optional parameter
DEF IPRI2 Optional parameter
RTN return point Continue execution (A=Class number; B
. ' meaningless)
ICODE DEC 19 Request code = 19
ICNWD ocCT conwil See Control Word
IPRAM DEC n Required for some controcl functions; see
Control Word
ICLAS ocT class class is described in Comments
IPRM1 DEC £ Cptional parameter passed to GET call
IPRIM2 DEC g Optional parameter passed to GET call
FORTRAN:

Use the FORTRAN 1/0 statements or an EXEC call seguence.

ICODE = 19 Reguest code

ICNWE = conwd See Control Word format in Figure 4-2

IPRAM = X See Control Word format in Figure 4-2 -
ICLAS = y Class Word )
REG = EXEC(ICODE,ICNWD,IPRAM,ICLAS) NS

4—4‘; CLASS I/0 CONTROL COUMENTS

Refer to Figure 4-2 for the format of the control word (conwd) reguired in
the Class I/0 Contrcel calling sequence.

Jdote that this call, with the exception of the ICLAS, IPRMland IPRM2
parameters, is the same as the standard I/O0 Control call. Also refer to
the Class I/0 GET call for additional information.

Cne example of using Class I/0 1is programn-to-program (mailbox) communication.
The sequence of events that occur are described below, and the calling
sequence is illustrated in Figure 4-7.

4—47. CLASS I/0 APPLICATIONS EXAMPLES
The range of possible areas where Class I/0O could be used to improve
applications program performance is too wide and varied to show "typical"

examples. The two examples given below are intended only to demonstrate some
of the consideraticns and procedures used in designing on-site applications.

C

EXAMPLE 1. MULTIPLE TERMINALS WITH A SINGLE APPLICATIOWS PROCERAM

4 -5



In the following example, any one of many users could be providing input
to the program:

/ | I\
/] I\
-— | | \---
| I\ / | |
_______ \ / - e o -
\ /
\ /
\ /
- e A + -
/ | I | I\

/ | _ I | I\
-—=/ | - - - - 7 | R TE | - - - - - == | \---
| | | | | |
________ e —————} - - o s

/ \
/ \
/ \
- / \ -
/ \ I\
/ | I\
--=/ | | \---
| |

Assume an order-entry situation in which there are several operators but
only one program. If standard 1/0 was used, it would be possible to read
from only one terminal at a time. However, by using Class I/0, the program
permits all operators to enter data seemingly at once. RTE handles all
queueing so that the program operates on a single transaction at a time,
thus simplifying the programming while giving the appearance of simul-
taneous processing on all transactions.

The flowchart for such an application is illustrated in Figure 4-7. Note
that although operators and terminal devices are shown, the input could
‘be received from any one o a series of indentical devices.

| Issue Class I/0 REAL on each
| terminal:
|
|

ICLAS = 0

4 -5/



DO 10 I = 1,NLU =
. : | A
. ‘ N
10 CALL EXEC(17 LUTIYS (1)+40013,I3U¢R,ISUFL, |

LUTYS (I),0,ICLAS) |

L

o e +
|
v
R e e ettt + Notes:
| Specity that Class Number |
| is to be kept: | IBUFL contains negative
| | no. of characters allowed
| ICLAS = IOR(ICLAS,2000B) | input.
fomm———t o ——————————————————— +
I wAIT | l LUTYS contains the Logical
Fm————— Frm e —————————— > v Unit of each terminal.
" et ittt + NLU contains number of
| wait for any terminal to input data | terminal.
| (operator enters data followed by |
| RETURH key): | LEN contains max. length
I |  of IBUFR. ,
| CALL EXEC(21,ICLAS,IRUFR,IEN,LUTERM) |
| CALL ARREG(IA,IB) | On return, IA = status
e + (e.g., bit 7 or pit 5
| will be set for EOF or
v EOT respectively).
fmm————————————— + I2 = no. of characters -
| Process input | input (will be positive). [
tm——— e - + N
|
v

| Print reply on terminal |
| (Logical Unit contained |
| in LUTORI) [

CALL EALC(I7,LUTERN+400B,I3UFR,ISUFL, |
LUTERY,0,ICLAS) |

— e e e wws e s e Sew  ome

Figure 4-7. (Class I/0 Multiple Terminal Input Example

In some applications, it may be necessary to maintain contextual

information for each operator; for example, a code indicating the type

of input expected next, or the operator’'s name to be used in friendly d;T
dialoy, etc. This informastion can be kept in a two-dimensional array s
that is indexed by the terminal LU number.

H-57




For simplicity s sake, let’s assume that all terminals have consecutive

Logical Unit numbers, starting from 15. The index cof the array can then

be calculated by sudbtracting 14 from the LU.

EXAMPLE 2. MATILBRBOX COMIMUNCIATICN BETWEEN PROGRAMS

Frogran—to-program conmunication involves a "mailbox" scheme to pass data
buffers back and forth in the most expeditious manner. One method of
implementation might be to separate a given task into a number of subtasks
in order toc provide prioritized processing for differ~ 1t tasks (the most
urgent tasks being processed at the highest priority), or to minimize
program partition size requirements.

For example, assume in Figure 4-7, illustrated in Example 1, that the box
labeled "Process Input" actually involved several programs, one each for
a numpber of general categories:

a. Order entry
b. Inventory quantity lcok-up
c. Report generation

d. Display of status or recent history of several
critical real-time activities.

The program illustrated in Figure 4-7 might then serve only as a keyboard
entry controller that checks input for legality and calls on other
programs to process operator commands. Many operators could now enter
commands, with the applications software relying on RTE to qgueue the
commands according to the priority of the category.

The real-time display program might have the highest priority, perhaps

followed by order entry, inventory quantity look-up, and report
generation last.

Other orderings are possible, depending upon the application. Some
management summary reports might be considered most important, or
categories may be ordered so that those involving the least processing

may have the highest priority to minimize waiting time for users with
"short jobs."

The significant point to note is that RTE s priority-driven scheduling
functions can be used to process commands according to priority. This is
done through the simple expedient of separating the processes of those

commands into separate programs that run at different priority levels,
and coordinating the processing via Class 1/0.

In continuation with Figure 4-7 in Example 1, Class Numbers must be
allocated for each of the process subprograms and is performed in the
initialization section as follows:

DO 20 I=1,NSUBP

JCLAS=0

CALL EXEC(18,0,IBUFR,0,0,0,JCLAS)
JCLAS=IOR (JCLAS,20000B)

H-52



CALL EXEC(21,JCLAS,IBUFR,O0)
CALL EXEC(23,<processing program name>,JCLAS)

20 ISUBCL(I)=JCLAS A

NOTE :

|
|
Every Class 1I/0 WRITE, READ, WRITE/READ and |
CONTROL call issued must ALWAYS be matched |
with a corresponding GET call issued at somrel
point in the calling secquence. The time |
seguence 1s not important (GET s can be |
issued before (Class calls) but there must bel
a GSET for every Class call. Failure to do |
sc will tie un system resources (the Class |
Number and the system puffer memory) that |
other programs may need. :

Programs that issue Class I/0 calls may be thought of as "manufacturers,"”
with programs that issue GiiT calls being thought of as "consumers." It
shculd be clear from the analogy why Class I/0 and GET calls nmust be
issued in egual nuirbers.

The "Process Input" box of Figure 4-7 illustrated in Example 1 can then .
be expanded as illustrated in Figure 4-3 below. 4

| Determine input |
| command legality |

| Determine Class Number from |
| input commend type (JCLAS) |

Send input buffer to processing program |
for that coasmand, with LU for use by |
processing program: |
I
|
|

CALL BXEC(20,0,IBUFR,IBUFL,LUTERY,ICLAS,
JCLAS)

S s b e ST



fiqure 4-%. Cperater Command Subtask Division

Since no devices are involved in mailbox I/0, the CHNTWD (second parameter)
of the request is zeroc. For this case, it is usually desirable to let

the processing prograir print an acknowledgement or error return and then
issue ancther Class RIAD on the terminal. The Class Nuiber to use for this
purpose is pleced in the second opticnal parameter.

The processing program optains the Class Number to use for the above
procedure by calling the RMPAR subroutine, as follows:

CALL BMPAR(IPRAM(L)
MYCLAS = IPRAM(1)
. Waits for processing input
. (Initialization code may go here)

100 CALL EXEC(21,YCLAS,IBUFR,MAXLEN,LUTERM, ITRMCL)

. Process input

WRITE (LUTERYM,1100)
1100 FORMAT (<acknowledgement oOr error message>)

The program issues a Class READ on the terminal and then "goes to sleep"
until ancther transaction is available for it to process.

Mote that althouuh this wailbox example has discussed only one program
with many users, other programs cculd be involved in the process. The
basic concepts presented could be expanded considerably, limited only by
the number of programs allowed in the system, the number of Class Numbers
availakle, and the amcunt of available buffer memory.

4—43. RES0URCE WUMDERS AND LOGICAL UNIT LOCKS

Althcugh Resource HKuwmicering and Logical Unit locking services are not
implemented through EXZC calls, their discussion logically fits in this
section because their apility to synchronize use of system services
between cooperating programs is closely associated with Class I/0
capabilities. (See the RNRQ subroutine call in the System Library
Subroutines section of this manual.)

Like Class Humbers, the number of Rescurce Numbers available on the
on-site RTL system is determined during system generation. Resource
Numbers provide the capability of synchronizing programs that access the
same resource. The rescurce might be a device (locking a Logical Unit
reguires a Resource GHumber), a table in memory, a file or even another
prograin or subroutine.

The use of Pescurce Wupmoners is only reguired when:

45 4




a. TWO or more prograis use the same device, or CHANGE the contents
of a memory location or disc file. Py
i -y . . X ‘ . \ ] /’,/'
b. ONE or more programs make decisions based upon the contents ol o A
data item that can pe modified by at least one other program.

To relate the Resource Number mechanism to applications considerations,
assume the following "problem" conditions:

PROGRAY A PROGRAM B
couMoON J COMMON J
IF(J.EQ.2) J=J+1 IF(JT.EQ.2) J=J+3

Assume Programs A and B are both scheduled memory-resident programwms and
that J is initially 2. Further assume Program A executes the IF statement
but wefore it can execute J=J+1, Program B gets scheduled (with B having
the highest priority).

Program B sets J to J+3 (wsking it 5), perhaps performing other tasks, and
then terminates.

Program A then increments J, making it 6. KNotice that Program A running
alone would leave J=3. Program B running alone would leave J=5. Under N
rare conditions, Programs A and B running tcgether would leave J=6. \

Now assume that J is 3 table of tasks to be executed and that there are
several programs scanning the table. Also assume the tasks are sufficiently
1/0 bound that the applications software has several identical programs,
each of which may select any task. Without synchronization via Resource
Numbers, twc or more of these programs might select the same task to work
on.

Such "race conditions" can be defined as any code that will execute
unexpectedly, depending upon when other programs execute relative to the

code. These conditions are an illusive form of software bug, causing
unusual errors that can seldom be successfully repeated. Consequently,

P
)

these errors are much harder to locate and, identify.

You cannct rely siamply on program priority to solve the described
problems. uUnder the dynamice of real-time aplications, there are too many
other conditions under which a lower priority program occasionally may

run when a higher priority grogram is scheduled. The high priority
program mey heave tu be swapped because a still higher priority program
has been scheduled, and it either has teen assigned to the same partition,
or the partition is the swallest that the highest priority program will
fit into. l"eanwhile, the lower priority srcgram may be running in another
partition while the other programs are being swapped. Now, let’s look at
scme solutions.

The proper way to avoid race conditions is to assign a Resource Number to q:/
all data accesses that are updated by more than one grogram, or updated

-5 6



by one program and read oy others. However, it is extremely important to
note and remember three items:

1. The association betwoen a Resource dumocer (BN) and a shared data
areca is created throuyh the user’s software design. RTE's only role
is to maxke Lil's available for allocation, locking, clearing and
releasing, and the system will suspend any cooperating program that
atteapts tc lock an RN that is already locked. RTE will reschedule
the program only when the Ry is cleared.

2. ALL programs that access the sawme resource MUST 'coperate with each
other in controlling "simultaneous" access; that is, an R must be
allocated for each resource when RIE is booted up. An RN may be
saved in COMMOW or SSGA. Programs must lock the RN locally before
accessing the associated data base, and clear the RN when finished
with it.

3. RTE automatically clears all Rii’s locked locally whenever the
locking program is aborted or terminates (unless it terminated
saving resources).

DXAVMPLE 1. TWC FROGRANS UPULATING & DISC FILE

In this example the file may be either an FMP file or an area in the
system track pool on LU 2 or 3. In the first case, the file must be
opened non-exclusively (shared). Note that FMP files are normally opened
for exclusive use and therefore are NOT sharable. Therefore, no RN's are
necessary tc contrcl them. In the second case, the disc trcks must be
allocated globally. In either case, the RN must be kept in some area
common to all preograms (COUMOK, SSGA or in the file itself.

It is poor practise to always assume the RN's will always be the same;
changes in initialization seguences or different RTE generations may
change the ki’s allocated. When RTE is booted up, an initialization
program should be run automatically that will allocate all required RN’s
and stcre them where required.

Prior tc updating any record, the RN for the file is locked.

You might possibly choose to use one RN to control access to all data
bases. Although this practise consumes the least number of RN's, it is
inefficient when several programs need tc update different files (no two
files are the same). Increasing the number of RN s so that each controls

a smmaller number of files or area of memory increases the probability that

the RN will be clear when the associated resource is required. The number
of KiN’'s5 allowed is limited to 255.

The applicaticn itself iney still further limit the minimum area of control,

depending upon the circumstances. Typically, one RN per file is the limit.
If several files are updated together, one RN should ccntrol the set.

EXAMPLE 2. LINE PRINTER CONTROL

The line printer is a commonly used resource, and therefore, programs that

4-57



generate output to it should lock it first. Note that the Batch Spool

Monitcr system provides the users with this exclusive control and therefore

LU locking is not required. (This is true for any device shared by programs
that may run concurrently.) Whenever any other program attempts to access Q&
the LU, the calling program will be suspended until the locking orograw =
unlocks the LU, terminates or aborts. Note that in this case, cooperation

among programs is not regquired because RTE performs the LU/RN association.

- o ] 0 1 g 3
4-4f. EXEC CALL ERROR /ILSSAGES &Mw ,{,&W WKMMM

)
4o b DM ppasdeytes ,{; depicto . d ""’”“7“”&
445~ MEMORY PROTECT '\/IOL;’-\TIO'NSﬂ EYEGMM ' JW

The RTE-IV operating system is protected by & hardware memor t ct’l
Conseguently, any user program that illegally tries to modify or jump
to the operating system will cause a memory protect interrupt. The
operating system intercepts the interrupt and determines its legality.
If the memory protect is illegal, the program is aborted and the
following message is displayed on the system conscle:

MP INST = XXXXXX (XXXX%XX = offending cctal instruction code)
ABE PPPPPP QQOOQG K (contents of A, B and E registers at abort)
XYO FEPPPPP DQCZOC R (contents of X, ¥ and O registers at abort)
MP OYYYYY 222772 (YYYYY = program name; Z7Z272Z7 = violaticn address)

YYYYY ABCRTED

s/

4-49. DYNAMIC HMAPPING VIOLATIONS

A dynamic mapping violaticn occurs when an illegal read or write occurs
tc a protected page cf memory. This may happen when a user program tries
tc write beyond its own address space to non-existant memory or to sonme
other program’s memory. In thig case, the program is aborted and the
following nessage is issued:

00l VIOL = WWWiWW (WWiWii = contents of DMS violation register)

Ly IMNST = WXEXXX (XXX%XX = offending octel instructicn code)

ARE FPPPPP (JQ0QUQ R (contents ¢f A, B and I registers at abort)

XYO PPPBBP g0u~gg N (contents cf X, Y and O reglsters at abort)

Db YYYYY LLLYE (YYYYY = prograir name; 222Z7Z = violation address)

YYYYY ABJRTEU

4-53'. EX LRRORS

It is possible to execute in the privileged mode; that is, with the
interrupt system off. Therefore, the user may not make EXFEC calls in this
mede because the memory protect is the access vehicle to EXEC. An attempt
to make an EXEC call with the interrupt system off causes the calling
program to be aborted and the following mescage issued:

EX YYYYY 72727 (YYYYY = program name; %%%%27 = violation address) _ .
EX ABORTED A { b

/5%



4'-5?. UNBXPECTED 017 AND MP ERRCRS

The operating systea handles all Di1 and MP violations. Some of these
vioclations are lejal; others are not. In any case, the operating system
associates these viclations with program activity., A DM or MP violatien
occuring when no program is active is an unexpected violation. Since no
program is present there is no precgram tc abort. In such a case, one of
the fcllowing messages will be issued:

DM VIOL = WWWWWW (contents of DMS viclation register)

DM INST = XXAXXX (X%%XXXX = offending octal ir truction code)

ABE PPPPPP QOLQOQO R (contents of A, B and E registers at abort)

XYO PPPPPP QQOQQQ R (contents of X, Y and C regist.rs at abort)

D1 <INT> 0 (<INT> = system-designated name for program)

or

MP INST = XXXX%XX (XX¥XXX = offending octal instruction code)

ABE PPPPPP 0QQ0QQ R (contents of A, B and E registers at abort)

¥YO PPPPPP QOQGCOQQ R (contents of ¥, ¥ and O registers at abort)

1P <INT> 0 (<INT> = system-designated name for program)

Either of the above messages specify <INT> as the program name to signal
the user that an unexpected memory protect or dynamic mapping violation
error has occured. Either is a serious violation of the operating system
integrity. Usually, it indicates that user-written software (driver,
privileged subroutine, etc.) has damaged the operating system integrity
or has inadequetly performed required (driver) system housekeeping.
However, it could also mean that the CPU has failed and that the
operating system detected the failure in time to prevent a system crash.

If this error occurs, it is recommended that all users on the system save
whatever they were doing (i.e., finish up editing, etc.) and reboot the
system. If only HP modules are present in the operating system, CPU
failure is a highly likely cause of the error and CPU diagnostics should
be run prior to rebooting.

The following errors have the same format as the MP and DM error returns
except that the register contents are not reported:

Error Meaning

TI Batch program exceeds allowed time.

RE Reentrant subroutine attempted recursion.

RQ Illegal request code is not between 1 and 26, or

(in text) an RQO0 means that the address of a returned
parameter is below the memory protect fence.

The general format for other errors is

type name address

4-571




Where:
type
narnie

address

g
-4g. - PARITY

a four-character error code

e
[4)]

is the program that made the call

is the location of the call (equal to the exit point if the
error is detected after the program suspends).




y-5%

 4=48., PARITY LRRORS

, Upon detecting a parity error in memory, RTE will abort the program that
(j‘\ encountered the parity error and the message will be printed:

PE ppppp nn
AdE=aaaaaa bbbbbb e
XYO=XXXXXX YYYYVYY O

where:
ppprpp = the program name
nn = physical page number where the parity error was detected
(page number counting starts at 0).
ABE = the contents of the A, B and E registers respectively when
the parity error was detected.
XYO = the contents of the %, ¥ and O registers respectively when

the parity error was detected.
If the progrram was disc resident, the following message will be printed:

PART "N xx DOWN
PART ‘N yy DOWN

where:
(i> XX 1s the partition the program was executing in.
_yy 1is the dother partition program.
Alternately, if xx is a Fkother Partition, then yy is the subpartition that
contained the parity error. In either case, partition xx and yy will no longer
oe available to the user until the system is next booted up.
A parity error occuring within the operating system itself, a driver or
system table area causes the system to execute a HLT 102005. The A-register

will contain the physical page number and the B-register will contain the
logical address of the error.

4-4%, FERROI CODES FCR DISC ALLOCATION CALLS

DRO1 = Not enough parameters.

DRO2 = Number of tracks zero, illejal logical unit; or number
: of tracks tc release is zero or negative.

DRO3 = Attempt to release track assigned to another program.

(:\‘ 4-50. ERROK CODES FOR SCHEDULE CALLS

1-¢/



SCO3 INT

ECO07 =

sCo8 =

4-51.,  E®RROR

1603 =

ICc04 =

1005 =

ICCH =

IG07 =

Ico08 =

-

Missing parameter.
Illeqgal parameter.

Prograin cannot be scheduled.

Uccurs when an external interrupt attempts to schedule a

program that is alreacdy scheduled. RTE-III ignores the
interrupt and returns to the point of interruption.

name 1s not a supordinate (or "son") of the program

issuing the completion cell.

Program given is not defined.

o resclution code in Execution Time EXEC Call
(not 1, 2, 3, or 4).

Frohibited memory lock atteapted.

The prograr just scheduled is assigned to partition
smaller thean the prograim itself. Unassign the program
or reassign the program to a partition that is as
large or larger than the program.

The program just scheduled is too large for any partition
cf the sawe type. For example, trying to schedule a 23K
background program when the largest background partition

is only 2177,

Not enouyh system available memory for string passage.

COLES FOR I/C CALLS

Illegal call number. Outside table, not allocated,
or vad security code.

sot encugh parameters.

X blt set.

\

Illegal 0T referenced by LU in I/0 call (Select code=0).

Illegel user bpuffer. Extends beyond RT/BG area or not
enough system available memory to buffer the request.

Illegal disc track or sector.

Feference to a protected track; or using LG tracks
befcre assigning themn (see LG, Section II).

Driver has rejected call.

Disc trensfer longer than track boundary.

C

16>



I009

1010

1011

i

1]

il

Overflcw of 26 area.
Class Gi'l call issued while one call already outstanding,

Type 4 program wmade an unbutfered 1/0 request to a driver
that di¢ nct do its own aapping.



RTE-I

Table Swim-Susaagsmaal EXEC Call Error
. (

1 KROR MEANING

READ | WRITE

CONTROL

PROGRAM

TRACK TRACK
ALLOCATY RELEASE
3 4 §

PROGRAM

PROGRAM
COMPLETION

6

PROGRAM
SUSPEND

7

PROGRAM
SLGMENT
LOAD
¥

PROGRAM
SCHEDULE
W/WAIT

9

PROGRAM
SCHEDULE
WO/WAIT

10

TIME
REQUEST

Not Fnough Parameters

1. Less than 4 parametens,

2 lewthan | meter.
DRO1 Y patamete

3. Number = -1

4. Lessthan Y inot -1)

fllegal Track Number or

Logcat Uit Number,
DRO2 ! Frack number = 0,

2. Lopaal Umt not 2 or 3.

)

Dealocate 0 orlew Tracks,

Attempt to release Track

DRO3

asipned to another program.

Iegad Qlass Number

1 Outside lable
1000 2. Notaliocated

1 Had Secunty Code

NotFnough Parameters

1. Zero parameters.

Y. Less than 3 parameters,
3. Lews than S/die

4 Less than 2 parameters,
5 Class word missing.

1001

-
-~

Miegal Logea Unit
1 0o maximum,

1002

N-bit set

2 Class request on dise LU
1. Less than S parameters and )

Wegal User Butfer
1
1004

butter the request,

I'atends beyond RT/:BG

Not ¢nough system memory to 1

K

X

egal D Track or Sector

2 Sector number
O e manimum

1. lesck number munimum
1005 ,

9 -
~

1006

or globally | ur not to next

Attempted to WRITE to LU2/3
and track not assigned to user

load-and-go sector Illcgulé
WRITT to 4 | MP track

Drver has repedted request

1007

and request s not butfered.

Dise transter imphes track

1008 vy

1009 Overflow of

——+t6—area
_IOIO Class GET

one call al-
ready out-

standj

&

F

'\__________—-/

I011

legal User (X | X [X
Map request
for System

. Driver Are ;

oot

340

-

¢

AN



Exec Calls

PROGRAM Vo strinG | Gtosat GLOBAL [CLASS |crass | crass CLASS CLASS |PROGRAM PROGRAM PROGRAM
SCHEDELL STATUS P»\SSA('; TRACK TRACK 1o 1O 1o /0 1o SWAPPING SCHED QUEUE SCHED QUEUE RNRQ | LURQ
1EME 4 ) ! ALLOCATE Rt LEASE | READ | WRITL JCONTROL WRITE/READ GLT CONTROL WIWAIT WO/WAIT
12 13 14 [ 16 17 18 19 20 21 22 23 24
1
3
4
1
2
)
1 1 1 1 1
2 2 2 2 2
3 3 3 3 3
1 1 1 1 1
2 2 2
.
$ 5 N 5
1 1 i 1 1
2 2 2 2
3 3 3 3
X KRR
1
/\ 2 2 2 2 ~
-



RTE Il

| RROKR

MEANING

READ

WRITEH

CONTROL

1.

PROGRAM
TRACK
ALLOCATE
r'y

PROGRAM
TRACK
RILEASE

A,

PROGRAM
COMPLI FION

A

PROGRAM
SUSPLND

4

PROGRAM
SEGMENT
LOAD

A

PROGRAM
SCI b
WM
A

PRUGRAM
sanoue
WOWALL
1),

i
RLQUISE

Al

Program has one or more logical
umits locked and s trvang to
LOCK another with WAIT,

o

Iegal logical unit reference
(ereater than maximum number),

[N¥IR)

Nt enough parameters farmshed
w the call, Wegal logicsl wat rel-
erence tess than oned, Fogical
umt oot locked to caller,

Ripm

Return butter helow memory pro-

ot tenee,

RO

EXEC call contains an illegal se-

quest code

1. Return address indicates bess
than ane o more than sewen
parameters,

2. Parameter address indirect
through A- or B-Register.

3. Request code not defined or
not losded

R\ON

Nov option bits set

(N1

Notused,

R0

Resouree number not in Fable
tndetined)

RN

Unauthorized attempt to clear o
LOCAL Resource Number

SCon

Hatch program cannot suspend

Sonl

Missing Paraneter

b Sepment naine mssing

2. Notd or 7 parameters i bine
Calk

3 Notd paametens i String
Passaee Call

Nt

Niegal Patameter
1 Option word s imissing or not
(% PR U]

3 Read wate word i Stung Pass.

ave Callivnot 1o 2

Sl

Program Cannot Be Scheduled
1 Not g sepment,
2 Iva segment,

o

SCod

Attempted to conteol o program
that s nota “Son ™

SCus

Program Given is Not Detined
I Noowepiment,

2 No program,

3 USon" not tound

Nt

Resofution net 1,2, 3 or 4

Sen?

Proibited core MEMOTY

ock

att

Fmp te

S

Not enouph sy stem avalable
MmOy Lor stang passape

SCp8

Assigned Partitio
is too small for

program

SCP9 Program too large|

for any partition

’I%WW

3-42



Exec Calls

PROGRAM 1o STRING GLOBAL | GLOBAL |CLASS | CLASS | CLASS CLASS CLASS | PROGRAM PROGRAM PROGRAM
st |0 o | passace | TRACK TRACK | WO 10 1:0 10 10 | SWAPPING | SCHEDQULUI | SCHIDQUEUE | RNRO | LURY
Mk ALLOCATE | RELEASE | READ | WRITE | CONTROL | WRITE/READ | GET | CONTROL W/WALT WO/W AIT
12 I 14 15 16 17 18 19 20 21 22 2 Yy
X
X
X
X X x X X X
X X X X X X b3 X X X X X X
X
X
X
3
3
i
N
2 2
2 2 2
X
\ N X

A

67

pL






C

| | SECTION V |

| | = e ===
b | INPUT /OUTPUT |

In the Real-Time Executive System, centralized control and logical
referencing of 1/0 operations effect simple, device-independent
programming. Each I/0 device is interfaced to the computer through an
I/0 controller associated with one or more I/0 select codes that are
hardware-linked to corresponding memory locations for i -terrupt
processing. By means of several user-defined 1/0 tables, self-contained
multi-device drivers and program EXEC calls, RTE relieves the
programmer of many I/0 processing details.

For details on the hardware input/output organization, consult the
appropriate computer manuals (refer to the documentation map at the
beginning of this manual). For details on writing drivers, see the RTE
Driver Writing Reference Manual.

For a full understanding of the software I/0 characteristics of RTE as
described in this manual section, the user should be familiar with two
hardware-related terms:

1. I/0 Controller - a combination of 1/0 card, cable and, for some
devices, a controller box used to control one or more 1/0 devices
on a computer I/O select code.

2. 1/0 bevice - a physical unit (or portion of a unit) identified in
the operating system by means of an Equipment Table (EQT) entry and
a subchannel assignment.

Each I/0 device is interfaced to the computer through an I/0 controller
that is associated with one or more of the computer I/0 select codes.
Interrupts from controllers on specific select codes are directed to
specific computer memory locations for system processing.

5-1. SOFTWARE I/0 STRUCTURE

This description of the I/0 software is primarily intended for those
who will be using I/0 EXEC calls for standard programming applications.

Users who will be writing their own drivers or who may otherwise
require a more detailed knowledge of the I/0 internal structure should
consult the RTE Driver Writing Reference Manual.

The I/0 structure is made up of two general types of software:

1. The system I/0 processor (RTIOC) and various device drivers.

2. A number of 1/0 tables, including: Equipment Table, Device Reference
Table, Interrupt Table, Driver Mapping Table, plus a Base Page
Communications area.

These tables and areas are used for communication between the system

5~



and the drivers, and for control of the many 1/0 operations that can be
in progress simultaneously.

An Equipment Table entry records each controller’s I/0 select code,
driver, DCPC, buffering and time-out specifications. A Device Reference
Table assigns one or more Logical Unit numbers to each device and
points each device to the appropriate Equipment Table entry. This

allows the programmer to reference changeable logical units instead of
fixed physical units.

An Interrupt Table directs the system’s action when an interrupt occurs
on any select code. RTE can call a driver that is responsible for
initiating and continuing operations on all devices’ controliers of an

equivalent type, schedule a specified program, or handle the interrupt
itself.

The programmer requests I/0 by means of an EXEC call that specifies the
logical unit, control information, buffer location, buffer length, and

type of operation. Some subsystems may require additional parameters.

5-2. EQUIPMENT TABLE

The Equipment Table (EQT) is used to maintain a list of all the I/O
equipment in the system. The table consists of a number of EQT entries,
with one EQT entry for each I/0 controller defined in the system at

generation time. Each EQT entry contains all of the information required

by the system and associated driver to operate the device, including:

* TI/0 select code in which the controller is interfaced with the

computer.

* Driver type.

Various driver or controller requirements and specifications,
such as DCPC, buffering, time-out, power fail, etc.

These 15-word EQT entries reside in the system and have the format
illustrated in Figures 5-1 and 5-2. Note that some information in an
EQT entry is static; other parts are dynamic. Information marked <A> is
fixed at generation time or during I1/0 reconfiguration at boot-up time
and never changes during on-line system operation. Words marked <B> are

also fixed during generation or I/O reconfiguration but can be changed
on-line through operator commands. Information marked <C>, <D> and <E>
are driver considerations. <F> is maintained by the system.

¥ SR f s e e e +
| word | Contents |

D] Kot [y Py PRy Uy DUy PRPNSY PRy Py Py Py PRy pRpmy sy Py

] | 15114 13 12 |11 10 918 7 615 4 312 1 0 |
------------ [P PN (N J——

| |
I 1 | R | I/0 Request List Pointer <C> |
= e e e et e e L e P L D L Tt |
I 2 | R | Driver Initiation Section Address <A > |
| = R D e e e |
I3 | R | Driver Continuation/Completion Section Address <A> |

-2

AT

N/



| | | | | |

| 4 I D I B | P11 S | T | Subchannel | I/0 Select Code # |
| [<A> 1<B> I<E>I<KE> [<C>| <C> | <A> |
| == e e e e I | === e itttk bl |
I 5 | AV | EQUIPMENT TYPE CODE | STATUS |
| | <F> | <A> I <E> |
| == el e B et R D |
| 6 | CONWD (Current I/O Request Word) <C> |
| =—— R ettt e e il |
I 7 | Request Buffer Address <C> l
| == e et e ittt |
| 8 | Request Buffer Length <C> !
| = ——— R T et E L T L L P e P e T et L em——— ——————— |
I 9 | Temporary Storage <D> or Optional Parameter <C> |
=~ R D i e e et Db DO DD DL DD Dl D |
] 10 | Temporary Storage <D> or Optional Parameter <C> |
| == et et D Dl Dl DDt Dbt B |
I 11 | Temporary Storage for Driver <D> |
| = | e I
| 12 | Temporary Storage or EQT Extension Size, |
I | for Driver <D> any <A> I
| == R et et T L Lt D |
| 13 | Temporary Storage or EQT Extension Starting I
| | for Driver <D> Address, if any <A> |
| m— e J=—————————_——————————————— e |
| 14 | Device Time-Out Reset Value <B> |
| == R T e -]
| 15 | Device Time-Out Clock <C> l
S g S S S +
Figure 5-1. Equipment Table Entry Format
where:

R = reserved for system use.

I/0 Request

List Pointer = points to list of requests queued up on this
EQT entry. First entry in list is current
request in progress (zero if no request).

D =1 if DCPC required.

B =1 if automatic output buffering used.
P =1 if driver is to process power fail.
S = 1 if driver is to process time-out.

T =1 if device timed out (system sets to zero before
each I/0 request).

Subchannel# = last subchannel addressed.

I/0 Select = I/0 select code for the I/0 controller
Code# (lower number if a multi-board interface).

5-3



AV

EQUIPMENT
TYPE CODE

STATUS

CONWD

"

I1/0 controller availability indicator:

available for use.

disabled (down).

busy (currently in operation).

waiting for an available DCPC channel.

WN O

type of device on this controller. When this octal
number is linked with "DVy," it identifies the
device’s software driver routine. Somé standard driver
numbers are:

00 to 07 = paper tape devices or consoles

00 = teleprinter or keyboard control device

01 = photoreader
02 = paper tape punch
05 = 264x-series terminals
07 = multi-point devices
10 to 17 = unit record devices
10 = plotter
11 = card reader
12 = 1line printer
15 = mark sense card reader
20 to 37 = magnetic tape/mass storage devices
23 = 9-track magnetic tape
31 = 7900 moving head disc

32 = 7905/06/20 moving head disc

33 = flexible disc drives
36 = writable control store
37 = HPIB

40 to 77 = instruments

actual physical status or simulated status at the
end of each operation.

combination of user control word and user request code
word in the I/0 EXEC call (see Section 1V; see also

Figure 5-2 below).
S -1




and where the letters in brackets (<>) indicate the nature of each
data item as follows:

<A> = fixed at generation or reconfiguration time; never
changes

<B> = fixed at generation or reconfiguration time; can be
changed on-line

<C> = set up or modified at each I/0 initialization
<D> = available as temporary storage by driv-r
<E> = can be set driver

<F> = maintained by system

] D [ P e B B B B b e Rl PRl IRy Py Py

| 151 14 | 13 1 12 f 121101 9181 7161514131 2111°0]

Y RSy PRI DUV IS PRI PR g PRy PR R S R e e

| sStatus | | Subfunction | Function
=] === e | mmm e e | | ~== ===

| | |
00 - standard call 00000 = clear controller 01-READ call
10 - buffered call (if function = 11 = 10-WRITE call
11 - Class call CONTROL call) 11-CONTROL call

Other subfunctions are
‘driver specific and may
or may nct be defined

Figure 5-2. CONWD Word (EQT Entry Word 6) Expanded

When RTE initiates or continues an I/0 operation (except for privileged
driver constructions), it places the address of the EQT entry for the

device’s controller into the Base Page Communications area before
calling the driver routine.

All Equipment Table entries are located sequentially in memory,
beginning with EQT entry number 1. The address of the first entry and

the tctal number of entries in the table can be found in the Base Page
Communications area.

5-3. DEVICE REFERENCE TABLE
The Device Reference Table (DRT) is part of the mechanism by which

Logical Unit numbers for 1/0 are implemented (see Logical Unit Numbers
below). Users request 1/0 by specifying a Logical Unit (LU) number.

5-5



The DRT translates this Logical Unit number into a physical device

as specified by an EQT entry number and subchannel. The DRT is also
used to queue requests for I/0 on an unavailable (down) device. The
request list for available (up) devices originates from word 1 of the
EQT entry, as illustrated in Figure 5-1.

Each DRT entry is two words long (see Figure 5-3). There is one entry

for each Logical Unit number defined at generation time, beginning with
Logical Unit 1.

The first word of each entry includes the EQT entry number of the
controller assigned to the logical unit and the subchannel number of
the specific device on that controller to be referenced.

The second word of each DRT entry contains the current status of the
logical unit; up (available) or down (unavailable). If the device is
down, word 2 also contains a pointer to the list of requests waiting to
access the LU. Figure 5-3 illustrates the format of a Device Reference
Table entry, and Figure 5-4 illustrates the Device Reference Table.

N S SRR | e o et e e U +

| Subchannel No. |  (Reserved) | EQT Entry Number |

e e e el e [ B B e e e e e e T T | *
j15 114 13 12 |11 10 9 | 8 7 6 | 5 4 3 2 1 0 | word 1
e et e | mmmmm e e |

| F Downed 1/0 Request List Pointer | word 2
e et ettt s +

. ‘ —\\‘j
where: C;//

F (up/down flag) 0 if device is up

1 if device is down

Figure 5-3. Device Reference Table Entry Format

| |
| I
| o —————— + |
| | | ——- |
| | LUl I | |
| R e et | | |
I I | | |
| I LU2 I I : |
I = e e I I Word 1 of |
‘ l | | -- each DRT |
| I LU3 I I entry I |
e + | l
I . I | i
I . I | 1
I . | | (\ :
I o e + I I e
| | | ——- |
I I LUn I |

o
NN



| I
| |
| | |
| | |
| | |
I I : LU2 | | Word 2 of I
I o e e e + |-~ each DRT |
| . | entry |
I . | |
I . | |
| et D ety + I |
| | | == |
| I LUn I |
I o e + |
| |
[ Where: ‘
|

I n = number of logical units in system |
! |
e ——————— +

Figure 5-4. Device Reference Table

Note that there are separate tables for words 1 and 2, with the word 2
table being located in memory immediately following the word 1 table.
The starting address and length of the word 1 table are recorded in
the base page.

5-4. LOGICAL UWIT NUMBERS

Logical Unit numbers provide RTE users with the capability of logically
addressing the physical devices defined by the Equipment Table. Logical
Unit numbers are used by executing programs to specify on which device
I/0 transfers are to be carried out. In an I/0 EXEC call, the program
simply specifies an LU number and does not need to know which physical
device or which I/0 controller handles the transfer.

Although many devices such as line printers are addressed by a single
LU number, others such as disc drives have subchannels, with each
subchannel addressed by a different LU number.

If on-line changes to existing LU assignments become necessary oOr
desirable, this can be achieved through use of the LU operator command.
LU numbers are maintained by the Device Reference Table (see above).

Logical Unit numbers are decimal integers. The functions of Logical
Units 0 through 6 are predefined in the RTE-IV system as follows:

0 -- bit bucket (null device; no entry in Device Reference Table)

1l -- system console

2 -- reserved for system (system disc subchannel)

5-7



3 -- reserved for system (auxiliary disc subchannel)

4 -- standard output device
5 -- standard input device

6 -- standard list device

Logical Unit 8 is recommended to be the magnetic tape device, if one is
present on the system. Peripheral discs must be assigned iogical units

greater than 6. Additional logical units may be assigned fo- any
function desired.

5-5. INTERRUPT TABLE

The Interrupt Table contains an entry, established at system generation
time, for each I1/0 select code in the computer. If the entry is equal
to 0, the select code is undefined in the system. If an interrupt
occurs on one of these select codes and is processed by the Central
Interrupt Controller (CIC), RTE outputs the message

ILL INT xx

where xx is the octal I/0 select code number. RTE-IV then clears the
interrupt flag on the channel and returns to the point of interruption.

The ILL INT message is also issued if the driver completes and the
system cannot find the processed 1/0 request queued to the EQT entry.

If the content of the entry is positive, the entry contains the address
of the EQT entry for the I/0 controller on the channel (refer to the
EQT option for the Interrupt Table entry during system generation).

If the content of the entry is negative, the entry contains the negated
ID segment address of a program to be scheduled. If the program is not
dormant when an interrupt occurs on that I/0 select code, the following
message is output on the system console:

SCO03 INT XXXXX

where xxxxx is the program name. The interrupt flag is then cleared for
that channel and control is returned to the point of interruption.

(Refer to the PRG option for the Interrupt Table entry in the RTE-IV
On-Line Generator Reference Manual.)

5-6. SYSTEM BASE PAGE INTERRUPT LOCATIONS

When an interrupt is received, the computer transfers control to one of
a group of memory locations, known as trap cells, in the system base
page. The I/0 select code of the interrupting controller determines the
location of the transfer. For instance, interrupts from select code 12
cause a transfer to memory location 12; interrupts from select code 13

53

S

N
)
&



C

cause a transfer to location 13, et cetera. Memory locations from octal
4-77 comprise the entire set of interrupt trap cells, where

4 = poweifail

5 = memory protect/DMS/périty error
6 = DCPC Port 1

7 = DCPC Port 2

10-77 = 1/0 slots

Transferring control to an interrupt trap cell causes the instruction
located there to be executed. For all devices operating under control
of the Central Interrupt Controller (CIC), this instruction is a

JSB LINK,I, where LINK contains the address of the entry point to CIC.
This instruction is initially set up at generation time and is reset
each time the system is rebooted. There are three different ways that
interrupts are serviced, according to the contents of the trap cell and
the Interrupt Table: ‘

Generation Interrupt Table Trap Cell
Entry (examples) Contents Contents

12,EQT,1 EQT entry address JSB LINK,I
12,PRG,name Negative ID JSB LINK,I

segment address

12 ,ENT,entry 0 JSB entry,I

JSB LINK,I trap cells are processed by CIC. JSB entry,I trap cells

by-pass the Interrupt Table and CIC for time-critcal events such as
Power Fail and privileged interrupts.

5-7. DRIVER MAPPING TABLE

Each EQT entry has an associated two-word Driver Mapping table entry
that indicates whether the driver for that EQT entry is in the System
Driver Area (SDA) or a driver partition; and whether or not the driver
(if it is in SDA) performs its own mapping. If the driver is in a
partition, the entry contains the physical starting page number of the
partition. This page number is used to map the driver into the
appropriate System Map or User Map.

The second word of each entry is set up when I/O is started on the
corresponding driver. The sign bit of the second word indicates whether

‘or not I/0 is being performed for a memory resident program. The word

is 0 for system I/O. The low 10 bits contain the page number of the
user s physical base page if it is a partition resident program. This
word is used to save time on setting up the proper map on processing

457



interrupts.

The format of the Driver Map Table is illustrated in Figure 5-5.

e

Insert Figure 5-5. Driver Mapping Table here (full page)

5-8. I/0 PROCESSCK GENERAL OPERATION
5-9. STANDARD I/0 CALLS

A user program makes an LXEC call to initiate I/O transfers. If the
device’s controller is not buffered or the I/0 transfer is for input,
the calling user program is suspended until the transmission is
completed (see Class 1/0, Section IV for exceptions). The next lower

priority program is allocated execution time during the suspension of
a higher priority program.

An I/0 request (i.e., READ, WRITE, CONTROL) is channeled to RTIOC by
the executive request processor. After the necessary legality checks
are made, the request is linked into the request list corresponding to
the referenced 1/0 controller.

If the device’ s controller is available (i.e., no prior requests were
pending), preparation is made tc enter the driver’s initiation section.

The parameters from the request are set in the temporary storage area
of the EQT entry.

The proper mapping registers are set up if the Driver Mapping Table
indicates they are needed. The decision to choose the User Map or the
System Map is decided by the type of I/0 request. All system I/0, class
I1/0, and buffered user I/0 requests require the use of the System Map.

Unbuffered user requests require the User Map. Note that in the case of
a driver located in the System Driver Area making unbuffered requests,
the program must be Type 2 or 3.

If the disc resident program’s User Map needs to be modified to map in
a partition resident driver, the User Map is saved in the program’s
physical base page. The second word of the driver’s mapping table entry
is modified to record the type of map needed and if it is a disc
resident program’s map the physical base page number is also kept. This
second word is used to save time on setting up the map registers for a

- subsequent continuation interrupt. The initiation section initializes
the device’s controller and starts the data transfer or control
function.

If the device’s controller is busy upon return from the initiation
section or else a required DCPC channel is not available, RTIOC returns
to the scheduling module to execute the next lower-priority program.

If the device’s controller (EQT entry) or the device (LU) is down, the

calling program is automatically suspended in the general wait list
(status=3). while in this list, the program is swappable. If any LU or

5-/0



EQT entry is set UP, the program is automatically rescheduled. Refer
to the ST command in Section III for more information on the general
wait list.

Interrupts from the device’s controller cause the Central Interrupt
Control (CIC) module of RTIOC to call the continuation/completion
section of the driver. RTIOC sets up the correct map before entering
the driver. This is done by checking the Driver Mapping Table entry
associated with the EQT entry. If a User Map is being reset, its
contents are obtained from the program’s physical base page. At the end
of the operation, the driver returns to CIC and conseguently to RTIOC.

RTIOC causes the requesting program to be placed back irto the schedule
list and checks for an 1/0 stacked request. If there are no stacked
requests, RTIOC exits to the dispatching module ; otherwise, the
initiation section is called to begin the next operation before
returning.

5-10. POCWER FAIL

Power Fail is an optional hardware/software feature that saves all
system status and context up to the point at which the computer signals
a power failure. If generated intc the system, the Power Fail routine
performs the following steps:

1. When power fails, it saves all registers, stops DCPC transfers and

saves maps. If not enough time was available, Power Fail issues a
HLT 4.

2. When power comes on, it restarts the real-time clock, sets up a
time-out entry (TO) back to its EQT entry, and then returns to the
Power Fail interrupt location so that it can do more recovery type
work after the power fail system and operating system are reenabled.

3. When the EQT entry times-out, the Power Fail routine checks EQT
entry word 5, bits 14 and 15 of each I/0 controller. The status of
bits 14 and 15 will indicate whether the I1/0 controller is "down"
or "busy." The rcutine also checks bit 13 of EQT entry word 4 (set
by driver), which indicates if the driver is to process the power
failure.

4. If the I/0 controller was busy when the power failed and the power
fail bit was set when power resumed, the Power Fail routine calls
the driver. The proper map is set up, according to the Driver
Mapping Table entry and the driver is entered at Ixnn with its EQT
entry unchanged. If the power fail bit was not set, the Power Fail
routine calls the IOC module to set the controller and all downed

LU's "up", reinitializes the EQT entry, and enters the driver at
Ixnn,

To summarize, assuming the controller was reading or writing data
when power failure occurred (and the driver is designed to handle
power fail), the controller driver will perform the power fail
recovery when power resumes. If the controller was busy when power
failure occurred and the controller driver cannot handle power
failure, the routine attempts to restart the I/0 operation.

5y



5. If the controller or device was down when the power failed and the
power fail bit is set or not set, the system "ups" the controller
(EQT entry) and associated LU's, resets the EQT entry and enters . ) e
the driver at Ixnn when power resumes.

6. An HP-supplied program called AUTOR will be scheduled. AUTOR sends
the time of power failure to all teletypes on the system (which
reenables all terminals). AUTOR is written in FORTRAN, with the
source program supplied to the user so that the program may easily
be modified to meet on-site reguirements.

5-11. I/0 CONTROLLER TIME-OUT

Each I/0 controller may have a time-out clock to prevent indefinite I/O
suspension. Indefinite I/0 suspension can occur when a program initiates
I/0 and the device’s controller fails to return a flag (possible
hardware malfunction or improper program encoding). Without the
controller time-out, the program that made the I/0 call would remain

in I/0 suspension indefinitely, awaiting the "operation done"

indication from the device’s controller.

For privileged drivers, the time-out parameter must be long enough to
cover the period from I/0 initiation to transfer completion.

EQT entry words 14 and 15 in the EQT entry for each I/O0 controller
function as a controller time-out clock. EQT entry word 15 is the ‘ )
actual working clock. Before each I/0 transfer is initiated, it is set P
to a value m, where m is a negative number of 10 ms time intervals

stored in EQT entry word 14. If the controller does not interrupt

within the required time interval, it is to be considered as having

"timed out." The EQT 15 clock word for each controller can be

individually set by three methods:

1. The system inserts the contents of EQT entry word 14 into EQT entry
word 15 pefore a driver (initiation or completion section)
is entered. EQT entry word 14 can be preset to m by entering (T=)
at generation time.

2. By use of the TO operator command (see Section III).

3. By driver.

5-12. PRIVILEGED INTERRUPT PROCESSING

Privileged interrupt processing provides access to specific elements
for more rapid operations than are possible in standard I/O processing.
I1/0 transfers are performed directly rather than going through the
Central Interrupt Control module and other standard system services.

Including a special I/0 interface card is the means by which RTE allows (;
a class of privileged interrupts to be processed independently of system
operation. The presence and location of the special 1/0 card is

determined at system generation time. Its actual hardware location is

B/2

o



stored in the word DUMMY in the Base Page Communication Area (or, if
the card is not preset, zero). See the RTE-IV On-Line Generator
Reference Manual for the exact specification procedure.

The special I/O card physically separates the higher priority privileged
interrupts from the regular system-controlled interrupts. When an
interrupt occurs, the card has its flag set which enables the card to -
hold off non-privileged, lower priority interrupts. This means that the
system does not operate with the interrupt system disabled, but in a
hold-off state. Furthermore, the privileged interrupts are always
enabled when RTE is running and can interrupt any process taking place.

See the RTE Operating System Driver Writing Manual for further details
on writing privileged drivers.



O



RTE uses the Dynamic Mapping System (DMS) of 21MX-series computers to
address memory configurations larger than 32K words. The user can
address up to 1024%X words of physical memory using the DMS feature. This
is accomplished by translating memory addresses through o..e of four
"memory maps". A memory map is defined as 32 hardware registers that
provide the interface between the 32K words of logical memory and

physical memory. All memory map addressing is done internally by the
system and is transparent to the user.

The following brief explanation of the addressing and mapping process
provides a general understanding of the overall operation of the system;
for a more detailed description of the Dynamic Mapping System, refer to
the appropriate 21MX Series Computer Reference Manual.

6-1. ADDRESSING

The basic addressing scheme of the computer uses a 15-bit number that
describes a location in memory numbered 0 to 32767 (see Figure 6-1). The
32768 (32K word) locations are grouped into 32 pages, with each page
containing 1024 (1K) words. DMS takes the 15-bit address and splits it
into two parts. The upper five bits (bits 10-14), become the logical
page number, an index pointing to one of the 32 registers within a
memory map (only one of the four maps can be enabled at a time). The
lower 10 bits point to a relative address (or offset) within the
destination page and dc not require translation.

When the address is converted, the index 1is used to determine which of
the 32 registers of the currently enabled map has the 10-bit physical
page address. This page address is then concatenated to the relative
address toc provide the ultimate 20-bit address in physical memory.



Insert Figure 6-1. RTE-IV Address Scheme here

6-2. MEMORY MAPS

There are four memory maps managed by the system: the User Map for
describing current user programs, the System Map for describing the
system and System Available Memory (SAM), and two Dual Channel Port
Controller (DCPC) maps called Port A Map and Port B Map for defining
the memory space of the DCPC transfer.

At any one instant, only one memory map is enabled. This map defines
the 32K words of logical address space currently being used. Either the
System or User Map will be enabled. A DCPC transfer is handled under

the appropriate Port Map, and once intitiated, is essentially transparent

to the user.

SYSTEM MAP. This map is automatically enabled whenever an interrupt
occurs and is loaded by the system during system initialization. It is
changed only to map different driver partitions. It describes the
logical address space used for the operating system and its base page,
COMMON, Subsystem Global Area, System Driver Area, Table Areas I and II,
driver partition, and System Available

Memory.

USER MAP. Associated with each disc resident program is a unique set of
pages that describe the logical address space for the program. These
pages define the memory occupied by Table Area I, driver partition,
optional Table Area II and optional System Driver Area, COMMON (if the
program uses it), the program’s base page, and the program.

All memory resident programs use a common set of pages that define the
memory occupied by Table Area I, driver partition, COMMON, optional

Table Area II and System Driver Area, base page, the memory resident
library, and the memory resident program area.

Each time a new memory or disc resident program is dispatched, the
system reloads the User Map with the appropriate set of pages. The User
Map, therefore, provides the interface between logical memory and
physical memory.

PORT A MAP. DCPC transfers are a software assignable direct data path
between memory and a high speed peripheral device. This function is

provided by the 21MX series Dual Channel Port Controller (DCPC). There
are two DCPC channels, each of which may be assigned to operate with an

1/0 device. The Port A Map is automatically enabled when a transfer on
DCPC channel 1 takes place.

The Port Map must be reloaded by the system each time the channel is
assigned for a new I/0 call so that the data buffer is mapped in. Having

L- >



L

-

[

'DIRECT

0
1 INDIRECT

L] ¥ LA L T L L LS v ¥

15114 13 12§11 10 918 7 6|5 4 3|12 1 O

l I

| !
LOGICAL PAGE OFFSET WITHIN
ADDRESS DESTINATION PAGE

4 <

ENABLED MAP ﬂMﬂﬁ//v

3

L —eds

4

PHYSICAL PAGE
ADDRESS

¥

®

20-BIT MEMORY ADDRESS BUS

e

15

T I T L] L 1] L T ) v Ll

14 13 12111 10 9|8 7 6|5 4 3|2 1 O

ONE WORD OUT OF
ONE MILLION

g 6=/

(—2




separate maps for DCPC facilitates multiprogramming, since DCPC may be
accessing one program’s buffer while another program (in a different
area of physical memory) is using the CPU under the User Map (i.e., when
one program is using DCPC, another program can be executing).

PORT B MAP. This map is handled in the same way the Port A Map is
handled except that it applies to DCPC channel 2.

6-3. PHYSICAL MEMORY

At generation time, the user plans the physical memory allo ations as
illustrated in Figure 6-2 and then loads the system components and
drivers for the most efficient configuration. The user determines the
size of System Available Memory, (SAM), the number and size of each
partition, the size of COMMON, and the size and composition of the
resident library and memory resident program area.

The areas shown in Figure 6-2 are used as follows:
* System Base Page - contains system communication area and is used by
the system to define request parameters, I/0 tables, scheduling lists,
pointers, operating parameters, memory bounds, etc. System links and
"trap cells are also located on the system base page.

The base page links for memory resident library and memory resident
programs are only in the memory resident base page and are not
accessible by disc resident programs. The Table Area, SSGA and
driver links, and the system communication area are accessible to
all programs. Partition base pages, used for disc resident program
links, are described below with partitions. For all practical
purposes, the memory resident programs are in a single partition
separate (protected) from all other partitions.

-4

£



| System Driver Area |

e e I\

| Background o\

I - - - - - - - I \

| Real-Time | COMMON
I - - - - - - - | /

| Subsystem Global Area I/

= e I/

Figure 6-2. Physical Memory Allocations

Table Area I - Contains the Equipment Table entries, Driver Mapping
Table, Device Reference Table, Interrupt Table, the Disc Track Map
Table, some system entry points and all Type 15 modules.

Driver Partition - An area set aside at generation time containing
one or more drivers. All driver partitions are the same length, and
only one is included in a 32F-word address space at any one point 1in

time. The minimurm partition size is two pages but may be increased.

System Driver Area - An area for privileged drivers, large drivers,
or drivers that dc their own mapping. The drivers that go into this
area are specified during the EQT definition phase of system
generation. The System Driver Area (SDA) is included in the lcgical
address space c¢f both the system and Type 2 and 3 programs. It is
included in the memory resident program area (if requested) at
generation time.

System - Contains the absolute code of the Type 0 system modules
(e.g., RTIOC, SCHED, EXEC).

Memory Resident Library - Contains the reentrart or privileged

[~ 5




library routines (Type 6) that are used by the memory resident
programs, or which are force loaded at generation time (Type 14). It
is accessible only by memory resident programs. All routines loaded
into the resident library also go intc the relocatable library for
appending to disc resident programs that require them.

* COMMCN - This area is divided into three subareas: The Subsystem
Global Area (SSGA), the Real-time COMMON area, and the Background
COMMON area. SSGA is used by some Hewlett-Packard software subsystems
for buffering and communications. The Real-time and Background
sub-areas (system COMMON) are reserved for user-written programs
that declare COMMON. All programs relocated during generction time
that declare COMMON will reference this system COMMON. Programs

relocated on-line with LOADR may choose to reference system COMMON
or use local COMMON.

Memory Resident Programs - This area contains all Type 1 programs
that were relocated during generation.

Table Area II - Contains the Memory Protect Fence Table, ID
segments, Keyword Table, ID Segment Extensions, Class Table, RN
Table, LU Switch Table, Memory Resident Map, and a number of entry
points for system pointers. This area has entry points that are

created by the generator and some that are defined by Type 13
modules.,

System Available Memory - This is a temporary storage area used by

the system for buffered and Class I/0 reentrant I/O (refer to
Section IV), and parameter string passing.

Partition - This is an area set aside by the user for a disc
resident program to run. Each partition has its own base page that
describes the linkages for the program running in the partition. Up
to 64 partitions are allowed, within the constraints of available
physical memory.

All of the above areas are established during system generation.

6-4. LCGICAL MEMORY

Logical memory is the 32K word (maximum) address space described by the

currently enabled memory map. If the System Map is enabled, logical
memory includes the operating system and its base page, Table Areas I

and II, System Driver Area, driver partition and System Available Memory.
It also includes COMMON and Subsystem Global Area.

If the User Map is enabled for a disc resident program, logical memory
includes Table Area 1, a driver partition, optional Table Area II,
optional System Driver Area, COMMON (if used), and the currently

executing program and its base page.

The logical memory of a memory resident program includes the memory
resident program area and pbase page, Table Area I, a driver partition,
COMMON, optional Table Area II and System Driver Area.

Port Maps are used DCPC transfers and describe the logical memory

¢ -



contaihihg a data buffer. A Port map will be the same as either the
System Map or the map of the program being serviced, depending on type
of 1/0 call.

Figure 6-3 shows the four configurations of the 32K word logical address
svace. The first configuration illustrates how this space appears under
control of the System Map. lNote that there is always a total of 32 pages
to be divided up; however, the particular bgundaries shown for the
various parts are exanmnples only, and a user s system could be larger or
smaller.

The second configuration illustrates how the logical address space
appears under control of the User Map when a memory res.dent program is
executing.

The third configuration illustrates how the logical address space
appears under ccntrol of the User Map when either an RT or Type 3 (BG)
disc resident program is executing.

The fourth configuration illustrates how the logical address space
space appears under control of the User Map when a Type 4 (BG) disc
resident programs is executing.

Many programs will not require a full 32K of space, and unneeded pages
will be READ/WRITL protected as illustrated in the User Map given in
Figure 6-3, configuration 3.

( FULL PAGE )

Figure 6-3. RTE-IV 32K Word Logical Memory Configurations

6-5. BASE PAGE

The system area, memory resident program area and each disc resident
program have their own logical base pages, as follows:

a. The system base page contains the system communication area, system
links, driver links, SSGA links, table area links and trap cells for
interrupt processing.

b. The disc resident program base page contains the system communication

area, driver links, SSGA links, table area links and disc resident
program links.

c. The memory resident base page has the memory resident program links,
resident library links, System Communication area, table area links,
SSGA links, and driver links.

The Base Page Communications area (see Appendix B), driver links, SSGA
and table area links located in physical page 0 will be common to all
base pages. Base page structures are illustrated in in Figure 6-4.

The Base Page Fence (refer to the 21MX and 21MX E-series Operating and
Reference Manual) is automatically set by the system for all user base
pages so that the bottom portion of the base page will contain the user

6-7




DESCRIBED BY

THREE POSSIBLE CONFIGURATIONS DESCRIBED

SYSTEM MAP BY USER MAP
— _—
h A} (4 Al
RT AND BG LARGE BG
SYSTEM MEMORY RESIDENT DISC RESIDENT DISC RESIDENT
|
SAM EXTENSION ; w
A 4
| MEMORY RESIDENT
SAM I w PROGRAMS REAL-TIME (TYPE 2)
I AND BACKGROUND (TYPE 3)
L DISC RESIDENT
PROGRAMS
: A — 0 v LARGE
| MEMORY l BACKGROUND (TYPE 4)
SYSTEM W W DISC RESIDENT
: A RESIDENT LIBRARY Tl o PROGRAMS
i 1. |
TABLE AREAIl | W ' TABLE AREA Il : w 2 TABLE AREAIl | W .
-
| —(¢ }
SYSTEMDRIVER | SYSTEM DRIVER | > SYSTEMDRIVER | .
AREA | AREA | AREA |
A } A I J A | v
BG COMMON ; . BG COMMON ol = BG COMMON BG COMMON
e e e e e e o e — —-— ] e emem e e e e e o e e N e = e e oam e e e e - fe e et e e o — o — —
RTCOMMON | W RT COMMON ol & RT COMMON c | AT COMMON )
o o= a8 = — e . e ‘ —————————————— (7] e e T T o —— N [T e e e e e e e -1
SSGA SSGA iy SSGA m §SGA
A l A o/ ©a o
DRIVER PARTITION DRIVER PARTITION DRIVER PARTITION DRIVER PARTITION
A 4 a .
SAM SAM SAM SAM
e - w - o - o - - @ - — e - - — - e - = - e — o oo o emm W e e e Sm e E— e bae e e w> e cee e e - - o - o]
TABLE AREA | TABLE AREA | TABLE AREA | TABLE AREA |
A a A
SYSTEM BASE PAGE MEMORY RESIDENT DISC RESIDENT DISC RESIDENT
BASE PAGE BASE PAGE “ ASE PAGE
i) - 2) (3) (4)
A = PAGE BOUNDARIES
W = WRITE PROTECT
0 = MEMORY PROTECT FENCE SETTINGS

a3asn i

" Figurg2-8) RTE-IV 32K WORD LOGICAL MEMORY CONFIGURATIONS




Systen's physieal

Pase page—
“(page 0)

logical user
Base page

_system
communication

-
-

driverfSSGA, Table
2y
Iinks

System Links.
1/0 Trap Cells

_system
communication

—

iver{SSGA, Table

links
~
z

user program's

phiysical base page
s 2z =

]
Copy of the User Map

(32 Words)

_user
“base page

—

user .
“base page
—— —
= =




program links.

6-6. . COMMON AREAS

The real-time and background COMMON, along with Subsystem Global Area
occupy a contiquous area in memory and are treated as a single group for
mapping purposes (refer to Figure 6-2). The use of COMMON is optional on
a program basis; that is, any program may use real-time COMMON,
background COMMON or no COMMON. If the program declares COMMON and the
user chooses not ta use local COMMON, both COMMON areas and the
Subsystem Global Area will be included in the User Map. If *the Type 4
program does not use COMMON it is not included in the User Map, thereby
possibly (if SSGA, COMMON is not empty) providing the user a larger
program area in the 32K of logical address space.

REAL-TIME AND BACKGROUND COMMON. If a program declares at least one
word of COMMON, the use of real-time or background COMMON is selected
by preogram type (at generation) or parameters with the on-line loader.
Program types are summnarized in Appendix E. Note that the memory
protect fence protects areas below the selected COMMON.

These system COMMON areas are not to be confused with the local COMMON
area that may be specified for programs loaded on-line. The system
COMMON areas are sharable py programs operating in different partitions,
whereas the local COMMON area is appended to the program (i.e., it will
be in its partition) and is accessible only to that program, its
subroutines and segments.

SUBSYSTEM GLOBAL AREA. The Subsystem Global Area consists of all Type
30 modules input to the generatcr. Accessed by entry point (using EXT
statements) rather than COMMON declarations, SSGA provides imultiple
communication and buffer areas for Hewlett-Packard subsystems. SSGA
access is authorized by program type at generation or through special
parameters during on-line loading. Programs authorized for SSGA access
have the COMMON area included in their maps and have the memory protect
fence set below SSGA.

6-7. MEMORY PROTECTION

Memory protection between disc resident program partitions and between
disc and memory resident programs is provided by the Dynamic Mapping
System. Protection between the program and the operating system 1is
handled by memory protect. A program cannot access a page not included
in its logical memory, either directly or through a DMA transfer. Since
many programs do not use all of the possible 32K word logical area,
unused logical pages above the program are READ/WRITE protected; it is
possible for a user to read from system logical memory via cross-map
reads but the system is write protected.

A different form cf protection is required for the driver partition,
Table Area I, and (optionally) System Driver Area, Table Area II, and
COMMON. The memory protect fence provides this protection by preventing
stores and jumps to locations below a specified address. All possible
fence positions are illustrated in Figure 6-3.

b0

{:;

C
\
/



The memory protect fence applies to the logical address space where
addresses are compared to the fence before translation. If a disc
resident program does not use any of the COMMOWN areas, the memory
protect fence is set at the bottom of the program area. Similarly, for a
memory resident program not using COMMON, the memory protect fence is
set at the base of the entire memory resident area.

For programs using COMMON, all of logical memory including COMMON is
mapped and the fence is set at one of three possible locations,
depending on the portion of COMMON being used. A hierarchy of protection
is thereby established within COMMON due to their physical locations.
Background COMMON is the least protected (any program using any common
can modify it) and SSGA is the most protected (only programs authorized
for SSGA access can modify it). Figure 6-5 expands the COMMON area and
shows these three fence settings as a, b, and ¢ respectively.

Figure 6-5. Memory Protect Fence Locations for Programs using COMMON

6-8. PARTITIONS

Partitions are blocks of physical memory that are reserved for disc
resident programs and drivers. Program partitions are defined during
system generation and ordinarily are not changed. However the partitions

may be redefined during the reconfiguration process at system boot-up
(see Section XII).

The number of partitions depends on the amount of available physical
memory. Partition types can be specified as a mixture of real-time and
background, all real-time, or all background. A program can be assigned
at load time to run in any partition large enough to accommodate it.
Several programs can be assigned to the same partition, but only one
program can run in that partition at a time. If a program is not
assigned to a partition, then by default, real-time programs will run
in real-time partitions, background programs in background partitions,
and EMA programs will run in Mother partitions. If only one type of
partition is defined, all programs will run in that type partition.

6-10. PALRTITION LISTS

The system generator links all partitions intc one of three free lists:
BG, R1T or mother partitions. Curing system initialization,if one of the
free lists is empty, it is substituted by one of the other non-empty
lists, For example, if no RT partitions were generated into a system,
RT programs will be dispatched in BG partitions by default.

(—~/



P ct— o ao—

8G COMMON
©
. RT COMMON
-SSGA
®

5

~— PAGE BOUNDARY

HIGHER PHYSICAL
MEMORY

Page Boundary

Figuriq. Memory Protect Fence Locations for Programs

using Common.

—
N

AN



6-11. PARTITION ASSIGNMENT ANLC RESERVATION

Disc resident programs may de assigned to specific partitions during
system gencration, memory reconfiguration at system boot-up, or during
on-line program relocation. A program may be unassigned or reassigned
via an AS operatcr command.

A prograr assigned to a specific partition may only be dispatched to
that partition. Program contention for a partition may be minimized by
careful assignient of programs to partiticns, especially if the
partiticne are reserved. A reserved partition may be used only to
dispatch prograirs that are assigned to the partition. Prhgrams not
assigned to the reserved partition will not be able to use it as a
default, even if no other partitions are available. A partition’s
reserved status may be removed by the UR operator command.

A disc resident program may be assigned to any partition large enough
to accomodate it--regardless of type. For example, an RT program may

be assigned to a BG partition even though bcth RT and BG partitions are
available. Although this type of assignment is not recommended because

of potential partition contention, it may be necessary when there are no

partitions of sufficient size within the same partition type as the
program.

6-12., MOTHER PARTITIONS

Mother partitions are large partitions that may be defined for executing
large programs or EMA programs. When a mother partition is not in use,
the memory may be used by programs executing in the subpartitions
chained to the mother (see "Subpartitions" below). EMA programs that are
not assigned to a partition use the largest mother partition by default.
The general structure and organization of a mother partition and its
subpartitions is illustrated in Figure 6-6.

When an EMA program needs tc run in a mother partition or when an RT or
BG program is assignec¢ to a mother partition, more handling is involved
than is the case with RT or BEG partitions. If a mother partition is
available in the free list, each subpartition is checked. If all
subpartitions are either free or occupied by swappable programs, the
subpartitions are marked as being used for a mother partition and all
the programs in the subpartitions are swapped out. The subpartitions are

then removed from all partition free lists. Note that the swapped-out

programs may go pack into any other partition large enough to accept
them.

It is now apparent that when a mother partition is required and its
subpartitions are in use, there may be a delay before the program can be
dispatched in the mother partition. A subpartition cannot be made
availaole oy swapping if any one of the subpartitions has a memory-locked
program, contains & prcgram that is performing I/0 in its own area, or
contains a scheduled program of higher priority. There may be additional
delay when the mother partition is checked (if not assigned to a

specific one) or until the program in the subpartition becomes swappable.

If a mother partiticn is needed to dispatch a program and the partition
is already allocated, the current occupant must be swapped out if the

612



occupant’s priority and status permit it. If the program to be swapped
cut is an EMA program, the program’s code and EMA data must both be
swapped. The EMA area is swapped out in large blocks equal in size to
the maximum logical address space in the User Map (up to a maximum of
28K words). Each block is mapped and written to the swap tracks on the
disc until all of the EMA area is swapped. Because of the many disc
accesses that may be needed toc swap out an EMA program, caution should
be exercised when assigning ANY program to a mother partition.

6-13. SUBPARTITIONS

Subpartitions are not available for dispatching programs when the mother
partition is in use (chain mode is in effect) by an active program. When
a program in a mother partition terminates normally or is aborted, the
subpartitions are released from chain mode and again become available.

The mother partition occupant is swapped only under the following
conditicns:

1. The occupant is swappable and another program needs the same
mother partition.

2. The occupant is dormant (terminated with the save-resources option,

operator-suspended or serially reuasable), and a subpartition is
needed for another program. :

3. A higher-priority program is assigned to a subpartition and the
mother partition occupant is in a swappable state.

When an RT or BG program is scheduled and is not assigned to a
partition, a search is made for a partition of the same type that is
large enough to accomodate the program. If none can be found in the free
list, dormant list, nor in the allocated list (or it contains
non-swappable programs), then the dormant mother partition list will be
searched for one with a subpartition of the correct type and size. If a
suitable subpartition can be found, the dormant program in the mother
partition will be swapped out.

6-14. FEXTENDED MEMORY AREA

The Extended iemory Area (EMA) is a large area of memory within a
partition, limited only by the size of the physical memory. An EMA can
extend well beyond a program’s maximum logical addressable space. A
section of the EMA must be included within the program’s logical address
space before data within that section can be addressed. Because an EMA
area is in a program’s partition, it is not accessible by other programs
(EMA is not shared between programs). The maximum number of pages of the

EMA that can be included in this segment is called the mapping segment
(MSEG) .

The philosophy behind the mapping segment function is quite similar to
page faulting in a virtual memory system. If an EMA element needs to be
accessed and is not within the currently mapped mapping segment, a fault
occurs and the appropriate segment of the EMA containing the element is
mapped in the program’s logical address space. This mapping is very fast
since no disc swaps are required. The entire EMA is divided into

(=7



secticns of the length of MSEG. They are numbered seguentially starting
from 0. Yapping segments are then referred to by using these mapping
segment nuncers. When a program is first dispatched, none of the EMA is
mapped in’ the user’ s logical address space until a call is made to
LEMAP, (EMIO or MEAP.

System linrary rcutinesz (EMAP and .LENMIO can be used to determine the
location of the element within the EMA to pe accessed and to map the
appropriate mapping segment. The .EMAP routine is used to map the
standard napping segment if necessary. See the .FMAP and .EMIO subroutine
descriptions at the end of this section for more detailed information.

The .LHMIO routine is used to access a buffer within the “MA and also
ensure that the entire buffer will be included in the logical address
at one tiine. This buffer must pbe of the same length or smaller than the
mapping segment size. The EMAST routine in the system library may be
used to determine the standard MSEG size and EMA size for default EMA.

.EMIO checks to see if the upper and lower bounds of the buffer are
completely included within a standard mapping seguent. If so,

.EMIO functions like .EMAP and maps the appropriate MSEG into the
precgram’s logical address space. If the bounds of this buffer do not fit
completely within a standard mapping segment, .EMIC will then map in the
necessary pages to include the entire buffer. A flag is set tc indicate
that a standard mapping segment is not in the current MSEG. The constraint
in using .EMIO, as opposed to .EMAP, is that for the next EMA access the
MSEG has to be re-mapped.

The MMAP routine, with the help of EMAST, can be used independently to
do HMSEG mapping. This may be needed if the array handling procedure for
a given application differs from the array handling tools provided by
.EMAP and .BMIO.

Figure 6-7 illustrates the structure of EMA s and MSEGC’s.

FULL PAGE ILLUSTRATICHN

Insert Figure 6-~7. EMA and MSEG Structure here.

One extra page above the MSEG size is always mapped. This allows for
overflcw of elements containing more than one word per element, and for
overflow of records for the formatter beyond the last page of the MSEG.

Only cne extended memory area is allowed to be defined per program. An
EMA 1s declared in an Assembly Language program by using the pseudo
instruction: ’

label EMA wml,m2

where label is the EMA label and must be defined, ml is the EMA size
in pages, and m2 is the mapping segment size in pages. The EMA size can
vary from 0 to 1024 pages. The MSEG size must be less than 32 pages.
The default case on either EMA size, MSEG size or both, can be taken

‘ 675



MSEGE 2 |\

{

I

i
AN

MY sence

. ', v . ) . . ' . . . . . ..:’—‘ ! -1 .‘ e E '
A T DS nepisTonn Lo

| ) | 17U URER Mpp
/—/v/%/mwfﬁéamﬂ MseC St P




by specifying 0 as their values. If a default is taken on the MSEG size,
its size is determined at load time as the program’s maximum logical
address space (the program size-l). The EMA size is determined at
-, the time of the first dispatch as the program’s partitions size minus
(j program size. .EMA or HSEC size can he modified on-line only if the
default was taken.

An EMA may bhe further subdivided into more than one data array. This is
accomplished through use of optional offset parameters supplied in
assembly language programs to the .EMAP and .EMIO routines. The offset is
defined as the number of words from the start of the Extended Memory Area
to the start of the particular array, and consists of a positive value
that is 20 bits wide and is contained in two successive memory locations.
The general memory structure for multiple data arrays is illustrated in
Figure o</ ‘

-— —_—— o e e e e e o e o o e e Fom———
- - a -
| | € | | R
| I B | R
| | G | | A
| | 3 | 4
| | e T T | 2
| | S
I | s | | A -
| | E | | R |
I | G | | R |
| | 2 | | A Offset 2
(i) | | T B I I Y |
‘ | EMA Mo I 1 |
| | S leememmrr e e | | | |
| | E | | A © |
| | G | | R | |
| | 1 | I R | |
I e B I Of fset 1 |
Program I Mo | Y | |
Partition | s | | 0 | |
| E | | | ' |
| | S | _ _ o ___ | <-- | |
| v 0o | | | v v
| -—— - = =] - - .- - .- - - - - - - R B ettt Lt
| | | |
| I a -- Page Boundary
| | User |
| | |
I I Program |
| | |
| | |
| | |
v I |
—— _ o e e +

(ij Figure &%; Multiple Data Arrays Organization

6-/7



Locations within an DtlA cannot be accessed using the EMA label with an
cffset, nor can E#A labels be referenced indirectly. External routines
and segments can use EMA by declaring EMA as an external. For further
information on using E!MA as a pseudo-instruction, seec the RTE IV
Assembler Reference Manual. S

Since EMA s can extend well beyond a program’s 32K logical address
space, they should oe managed by defining several dimensions over them.
The .EMAP or .EMIO routnes cap then be used to resolve the address of a
specified element by using subscripts for each dimension, thus making
the array addressing and mapping procedures transparent to the user.

Standard FCRTRAN I/0 and array accesses using subscripts are handled
withcut any special user action. In FCRTRAN, EMA s are used like any

other array. Refer tc the RTE FORTRAN IV Reference Manual for further
information.

A segmented program may use EMA. This allows many separate operations to

be performed on the same EMA; e€.9., oOne segment reads the data, a second
processes the data, and a third saves the results.

6-14. MEMORY MAWNAGEMENLT SUBROUTINES

Four subroutines implement the Extended lMemory Area (EMA)

capability in the RTE-IV Operating System. These are: .LCMAP, .EMIO,
MMAP, and EMAST. Although the software versions

of these subroutines are actually part of the

system library described in Section of this manual, they are
described here because they are an integral part of memory management.

Microcoded versions of .EMAP, .EMIO, and MMAP exist for use on the
214X-E series computer. The microcoded version of .EMAP operates
slightly differently than the software version, as described in
the following discussion of .EMAP.

6-15. .EMAP SUBROUTINE (Resolves Array Element Adcdresses)

The .EMAP subroutine resolves an address for an element in both ENMA

and ncn-EMA arrays. .EMAP returns the address of the referenced
element in the current logical address space.

The software version of .EMAP calls on MMAP (if necessary)
tc map the appropriate mapping segment intc the logical address
space of the user program. The microcoded version of .EMAP always

maps two pages into the logical address space of the program, the
first of which contains the referenced element.

CAUTION

The microcoded version of .EMAP maps in the page containing the
element and the following paye (if the following page is in the EMA
area). Therefore a call to the firmware version of .ENMAP will not
ensure that an entire HSEG is mapped. .EMIO can be used to ensure

678



| this if necessary. |

o e ———————— +
(T. The calling seguence is:
EXT .LEMAP
JSB .EMAP
OEF RTN
DEF ARRAY address of the start of the array
DEF TABLE address of table containing array parameters
DEF An address of nth subscript value
DEF An-1 address of (n-1) subscript value
DEF A2 address of 2nd subscript value
DEF Al address of lst subscript value

RTN error return
normal return

ERROFR RETURK On an error return, the A-register eguals 15 (ASCII) and
and the B-register equals EM (ASCII). If the relocatable library
subrcutine ERR0O is called to handle the error, the following message
will be displayed on the console:

name 15-EM @ address

(i> where name is the name of the program executing when the error occurred,
and address is the address from which ERR0O was called.

.EMAP makes an error return under any of the following conditions:

* one of the subscript values is less than the lower bound

of its dimension.
* the size of a dimension d(i) is negative.
* the number of words per element is specified as negative.
* the double precision cffset is specified as negative.
* the number of dimensions is specified as negative.

* the element address for an EMA variable does not fall within
the Extended Menory Area bounds.

* for a non-EMA array, the displacement is larger than 32767
words.

NORMAL RETURN On a normal return, the B-register contains the logical
address of the element referenced. The A-register is meaningless.

(ii‘ ARRAY 1is the starting address of the array in which the element address

is tc be resolved. If EMA is declared in the calling program and the
element address specified is greater than or equal to the logical start

(7



address of EVA, the array is asssumed to be an EMA array. In this case,
the start address actually used by .EMAP is the logical start address
of EBHMA.

TABLE 1s a table of arrey parameters containing the number of
dimensions in the array; the negatlve of the lower bounds for every
dimension; the number of elements in every dimension (upper bound,
minugs lower bcund, plus 1l); and the number of words per element.

For EMA arrays only, a two-word offset value is required at the end of
the table. The use of this cffset enables several arrays tc be defined
in the same EMA by allowing the array origin to be higher than the
logical start of the EMA. The offset is a double precision integer
value with the low 16 bits (bits 15-0) in offset word 1 and the high
16 bits (bits 31-16) in word 2. This value must be positive.

The lower bound must be between -32767 and +32767.
The number of words per element must be between 1 and 1024.
The content and structure cf TABLE is as follows:

Number of Dimensions
-L(n)

d(n-1)

-L(n-1)

d(n-2)

-L(2)

d(l)

-L(1)

number of words per element

offset word 1 (bits 15-0) (used for EMA only)

offset word 2 (bits 31-16) (used for EMA only)
where:

L(i) is the lower bound of the ith dimension.

d(i) is the number of elements in the ith dimension.

The .EMAP subroutine assumes the array is stored in column-major order
(the left subscript varies the quickest).

6-16. .EMIO SUBROUTINE (EBEMA I/0)

.EMIC is a subroutine used only in an EMA environment to ensure that a
buffer to be accessed is entirely within the logical address space of
the program. It will call MMAP (if appropriate) to alter the logical

address space to contain the buffer, or if this is impossible it will
return with an error.

.EMIO first checks whether the buffer fits in a standard mapping
segment. If so, the standard mapping segment is mapped into the

( =0

|
L



logical address space and .FMIO returns the logical address of the
start of the buffer. If the buffer does not fall within a standard
Tapping segment, then .ENIC alters the mapping segment boundaries to
contain the buffer.

The number of pages mapped in this special mapping segment is normally

equal to the number of pages in the standard mapping segment. When this
mapping segment starts within an MSEG size from the end of the EMA, all
those pages up to the end of the EMA are mapped. The rest of the pages

are read-write protected.

The buffer length plus the offset between the start of the buffer and
its page boundary must be less than or equal to the mapping segment
size. To ensure this, it is recommended that the buffer length be less
than or egqual to (MSEG size - 1) pages.

.EMIO maps the special mapping segment if necessary and returns with
the lcgical address of the start of the buffer.

The calling sequence is:

EXT .EMIO

JSB JEMIO

DCF RTN address for error-return

DEF BUFL number of words in the buffer

DEF TABRLE table containing array parameters

DEF An subscript value for nth dimension

DEF An-1 subscript value for (n-1)st dimension
DEF A2 subscript value for 2nd dimension

DEF Al supbscript value for 1lst dimension

RTN error return
normal return

where:
TAELE is as defined in .EMAP description

ERROR RETURHN .BEMI0 makes an error return at location RTN with the
A-register containing 16 (ASCII) and the B-register containing EM
ASCII). If the relocatable subroutine ERRO is called to handle the

error, the following message is displayed on the console:

name 16-EM @8 address

where name is the name of the program and address is the location
from which ERRC was called.

-EMTIO makes an error return under any of the following conditions:

1. One of the suoscriot values is less than the lower bound of its

dimension.
=y



2. The size of a dimension 4 (i) is negative.

3. The number of words per element is negative.
4. The double precision offset werd is negative.
5. The number of dimensions is negative.

6. The buffer length is negative.

7. An EMA is not declared in the calling progranm.

8. The buffer length plus the page offset of the start of thne buffer
is greater than the mapping segment size.

9. The entire buffer dces not fall within EMA bounds.

NORMAL RETURN When .EMIO makes a normal return, the B-register
contains the logical address of the element. The contents of the
A-register are meaningless.

6-17. MMAP SUBROUTIME (Maps Physical Memory Into Logical Memory)
MMAP is a subroutine that maps a sequence of physical pages into the
mapping segment area of the logical address space of a program. It
is callable from both Assembly Language and FORTRAN programs.

The Assembly Language calling sequence is:

EXT MMAP

JSB MMAP

CEF RTN

DEF IPCS Page displacement from the start of EMA to the
: start of the segment to be mapped.

.DEF NPGS Number of pages to be mapped.
RTN return point »

The RTE FORTRAN IV callling sequence is:
- CALL MMAP (IPGS,NPGS)
Upon return:

0 if normal return
-1 if an error occurred.

1

A-register

1]

“MAP returns an error under any of the fcllowing conditions:
1. 1IPGS or HPGS is negative.
2. NPGS is greater than MSEG size.
3. All NPGS to be mapped dc not fall within EMA bounds.

4. EMA was not declared in the calling program.

(—2>F

{: |
| |
/

o e, oo e



O

5. IPGS is greater than or equal to EMA size.

If NPGS is less than the standard mapping segment size, the number of
pages actually mapped will normally be equal to the standard mapping
segment size. The number of pages mapped will be less than this if
the starting page of the segment to be mapped lies within an MSEG
size of the end of EMA. In this case, the number of pages mapped will
include all pages from the starting page tc the end of EMA.

MMAP maps one more page than the size of the mapping segment if the
end of the EMA is not reached. This is done to prevent cdynamic mapping
system (DrS) errors in case a multiple word element or a buffer for

an I1/0 transfer crosses the end of the last mapping segment page.

6-18. EMAST SUBROUTINE (Returns Information on EMA)
EMAST 1is a subrcutine that returns information about the extended
memory area (EMA) of the calling program. It is callable from Assembly
Language and FORTRAN programs.
The Assembly Languaye calling sequence is:
EXT EMAST
JS3 EMAST
DEF RTN
CEF NEMA (returned) Total size of EMA
DEF NMSEG (returned) Total size of mapping segment (MSEG)
DEF IMSEGC (returned) Starting locgical page MSEG
RTN return point
The RTE FORTRAN IV calling seguence 1is:
CALL EMAST(WEMA,NMSEG,IMSEG).

Upon return:

A-register = 0 if normal return
= -1 if error occurred

An error return is made if an EMA is not defined in the calling program.






7-1. RTE RELOCATING LOADER

The Relocating Loader (LOADR) reads relocatable code from any input
device or FMP file, and produces an absolute load module that is ready
for execution. The loader automatically sets up the linrage between the
program and any reguired library files. That is, the user does not have
to specify library searches during the load process. The program may

be relocated as a background disc resident program, foreground disc

disc resident program or optionally have a debug routine appended.

In addition to its linking functions, the LOADR’s command parameter
options may also be used to list program names and blank ID segments,
purge permanent programs from the system and add or replace permanent
programs.

The Relocating Loader has the following features:
* Can be operated under control of the File Manager in batch mode.

* 1Is swappable and can pe operated in either real-time or background
disc-resident areas.

* Allows programs declaring COMMON to reference either a system COMMON
area (shared with other programs) or a local COMMON area (not shared
with other programs).

* Can relocate programs from relocataole files (Type 5 files).
* Can scan and relocate from user library files.

* Allows a program to be permanently added deleted from the system.
Only the loader can be used to purge a permanent program. The

the OF, name, 8 command will not remove a permanent program from
the system.

* (Can read LOADR commands from a command file to control the load
process.

* Allows temporary loads into either the real-time or background area
for execution with an optional debug routine.

Allows a program to reference absolute and code replacement type ENT
macros.

Uses system area disc tracks left vacant by deleted programs.

Uses a short ID segment when loading a basckground program segment
(when available; see "On-Line Modification below).

7=/



7-2. RU,LOADR COMMAND OPTIONS

Parameter options are available in the RU,LOADR statement that permit
user specification of the following items:

1. Command file name.

2. File or the logical unit number of the input device for relocatable
code.

3. Logical unit number of the list device.

4, An operation code that allows Subsystem Global Area (SSGA) flag
access together with COMMON type and program type.

5. A program format code that includes temporary loads with DBUGR
features.

6. Listing characteristics.

A detailed description of the RU,LOADR statement is given under Loader
operation in this section.

At load time, the user need not know the actual address of the
partition in which the program will run because each partition appears
to be within the first 32K words of memory. The location at which a

- program area appears tc begin is a logical address, and the program is
relocated with respect to this logical address. Logical memory address
space configurations are illustrated in Section IV, Figure __. It is
not necessary to declare the partition number that a program will

execute in, since a program will run in any partition large enough to
accomodate it.

7-3. PROGRAM RELOCATION

During loading, programs are relocated to start at the beginning of the
disc-resident program area of logical memory. If COMMON is declared, the
program will be preceded by the COMMON area. The logical address of the
program location always begins at a page boundary. The first two words

of the program location are allocated for saving the contents of the
X and Y registers whenever the program is suspended. Once relocated, the

program is linked to external references such as EXEC or the Relocatable
Library.

Any program segments will overlay the memory area immediately following
the main program and its subroutines.

The loader stores the absolute version of the program, its subroutines
and linkages on a disc track or a group of contiguous disc tracks. It
then assigns the disc tracks to the system (that is, they are not
available as scratch or assigned to the program. The program, together
with its subroutines.and its largest segment, may be as large as the
largest partition of the same type. If a program is assigned to a
partition, it must not be larger than the partition or an L17 error

72

A ™
N

A
‘
\/



recsults (see Loader Error Messages). COMMON may be allocated in one of
several areas according to the needs of the programmer (see the
optional parameter list for the RU,LOADR request).

7-4. ON-LINE MOLDIFICATION

The operator can use the loader to permanently modify the set of disc
resident programs previously loaded during generation. The loader adds
new disc-resident real-time or background programs, and also replaces
disc-resident prcgrams with updated versions having the same name. A
program to be replaced must have all the following conaitions present:

* Must be dormant

* Not currently occupying a partition

* Not in the time list
* Have a zero point of suspension.

The OF,xxxxx,8 operator command deletes disc-resident programs or
segments that were loaded temporarily intc the system by the loader.
The OF command cannct delete programs or segments that were permanently
added on-line using the loader, or stcred during generation using the
On-Line Generator (RT4GN).

The On-Line Generator stores disc-resident programs on disc in an
absolute, packed format. Each main program is identified and located
by @ 33-word ID segment. The ID segments are stored in the ID segment
area of the system disc area and brought into main memory when the
system is started up. For disc-resident programs, the program’s disc
location as well as its main memory and base page addresses are kept
in the ID segment. When a main program and segments are loaded, the
segments are identified and located by a nine-word short ID segment.
When a main prcgram declares an External Memory Area, three-word 1D
extension is allocated. See Appendix ég for the ID segment and
extension format.

RT4GN can create a number of blank 33-word and 9-word ID segments so
that the loader can later add new programs and segments to the permanent
system. It can also create blank ID extensions. The addition or
replacement of a program involves the conversion of relocatable programs
into an absolute unit, finding space on the disc to store it, and
recording information in the ID segment.

The loader always attempts to use the short ID segment for identifying
a program segment. However, if a short ID segment is not available, a
standard 33-word ID segment is used.

A program declaring an EMA cannot be loaded if an ID extension does not
exist for the program.

When replacing a program, the new program may overlay the old program’s
disc space only if the length of the new program (plus base page
linkages) does not exceed the disc space formerly occupied by the
previous program. A track or group of tracks is allocated for program

-3



storage when adding a program or if space requirements of a replacement
program exceed those of the old. These newly allocated tracks are
software-protected but not hardware-protected. Memory resident programs
can neither be added nor replaced in the system.

when performing an on-line modification, the disc hardware protect must
be physically disabled prior to the loading (and then enabled
afterwards) unless the protection is always kept disabled. RTE provides
additional software protection for any tracks containing system programs
or user programs.

7-5. SEGMENTED PROGRAMS

Segmented modules can be added and replaced in any order provided that
the main program is always entered first. Permanent replacement of a
permanent program or main segment programs will not necessarily result
in the main and segments being stored on contiguous tracks.

When replacing segmented modules that were incorporated into the system
at generation time, the operator must either replace every segment with

a new segment having the same name, or else remove the original segment
permanently from the system.

Note that a main and all its segments must be relocated at the same
time (see "Loading Segmented Programs" later in this section).

7-6. ADDING NEW PROGRAMS

A new program to be added to the system is stored on a complete disc
track or several contiguous tracks. A blank ID segment is allocated to
record the program’s memory and disc boundaries, name, type, priority,
assigned partition, and time values. The loader attempts to use
available disc space in the system before allocating new full tracks.

If new tracks must be allocated, they are assigned to the system and are
software-protected.

7-7. PROGRAM REPLACEMENT

When replacing one program with another, the following sequence of
events take place as appropriate to the current conditions:

1. The new program is first generated onto scratch disc tracks.

2. The new program will use the same ID segment as the old program but
will only use the same disc space if the length of the code and
base page does not exceed the old program size.

3. If the new program cannot be fitted into the disc area of the
replaced program, the loader then looks for another area of
appropriate size if one was previously freed by the user through
deleting a program incorporated during generation. In this case,
the deleted program’s ID segment had its name blanked but its disc
space was retained. That disc space is given to the new program.

/7

‘

A



4. If neither condition exists (items 2 and 3), the scratch tracks on
which the new program was generated become system protected and the
old ID segment is retained.

7-8. ADDITION OR REPLACEMENT LIMITATIONS

Several limitations may prohibit the final addition or replacement of
disc-resident programs:

1. System or reverse COMMON is reqguested but the program’s COMMON
length exceeds that of the COMMON area.

2. Local COMMON is requested and COMMON is not declared by the first
relocatable module encountered by the loader, even though the
module is a dummy module that contains no executable code.

3. The base page linkages exceed the corresponding linkage are for
disc-resident programs established by the system during generation.

4, The length of the absolute program unit exceeds the area available.
5. Disc space is not available to store the program.

6. A olank ID segment is not available for adding a program (program
previously loaded can be deleted to create a blank ID segment) or
its segments.

7. An ID extension is not available for adding a program with an EMA.

7-9. PROGRAM DELETION

A temporary program is deleted from the system with the OF,name,8
command. A permanent program (i.e., a program loaded during generation,
or on-line with the loader as a permanent addition or replacement load)
is deleted with the loader. When using the loader to delete a permanent
program, the opcode parameter is set to PU, which blanks the program’s
ID segment and makes it available for loading another program.

The tracks containing the program are released, unless they are system
tracks. If the program had been saved through the File Manager on FMP
tracks, the rracks are not released to the system but remain as FMP
tracks.

NOTE

|
I
|
| Only the LOADR may perform permanent loads or deletes.
| Copies of LOADR may peform temporary loads but will be
|
I
I

aborted with an I006 error return if the attempt is
made to perform permanent loads or purges.

————— ———t



7-10. COMMON ALLOCATIONS

Three options can be specified when allocating a COMMON area for a

programs wa

SYSTEM COMMON. This implies a background program with CCOMMON in the
background system COMMON area, or a real-time program with COMMON in
the real-time COMMON area. System COMMON is established when the system
is generated.

LOCAL COMMON. The local COMMON area for a program is established at

the beginning of the background program’s area. The COMMON area will be
swapped together with the program. It is necessary for the first COMMON
allocation to be the largest declared. RTE FORTRAN IV named COMMON is
handled the same as local COMMON.

REVERSE COMMON. This implies a background program with its COMMON in
the real-time COMMON area. Conversely, a real-time program can
reference and use the background system COMMON area. Reverse COMMON is
established when the system is generated. This allows background and
real-time programs to share the same COMMON.

6-11. LOADER OPERATION

The loader is scheduled the loader for execution with the RU or ON
operator command in the format

RU,LOADR,command[,input[,list[,opcode[,format[,partition [,size]]]]]] qu
-

where:

command The command file structure must be used for loads when

more than one relocatable file is required. The <command>
parameter specifies:

l. A command file <namr>.

2. An interactive input device. Commands may be entered from
a TTY type device. When commands are entered interactively
on such a device, a /LOADR: prompt is displaced when the
loader is ready for a new command.

3. A non-interactive input device, such as a tape cassette,
from which commands may be entered. No prompt is issued by
the loader tc solicit new commands.

If this and all other parameters are omitted, command

entry defaults to the Logical Unit number of the user’s
terminal.

input The file name of the relocatable main program or the
Logical Unit number of the relocatable input. There is no

default case. 4::3

list List output device. The default setting is the Logical

7-¢



Unit number specified in the <command> parameter. If the
<command> parameter is a file or is not interactive, the
default is Logical Unit 6. Refer tc the <opcode> parameter
below for list options. The list device is locked for the
duration of the load if the LU is not interactive and is
nct a file.

Alternately, a list file <namr> may be specified. The
listing will then go to a file. The file named must not
already exist. The loader must create the file. The one
exception to this is if the specified file name has an
apostrophe as its first character; for examgle:

‘naie

In this case, the loader will create the file if it does
nct exist, or simply open the file if it does exist.

opcode Mneircnic operation code. The parameter defines the program
type, COMMON type, and whether or not the program requires
the Subsystem Gloval Area (SSGA). To determine the
operation code mnemonic, select one or more (or none) from
each of the following columns:

Program CCMMON Load
Type Type Type
BG sC PE
KT RC TE
LB NC RP
SS
where:
BEG = Background program
RT = Real-Time program
LB = Large background program
SC = System COMMON
RC = Reverse CCMMON
NC = No COMMON (or local COMMON)
S8 = Use Subsystem Global (SSGA). S5 may also
used with other elements in its same column.
PE = Permanent Program
TE = Temporary program
RP = Replace permanent program (do not also

specify PE).
The default setting is BGNCTE.

The elements of the selected mnemonic code may be
specified in any order with no intervening commas or
blanks. For example, PEBGSS will be interpreted the same as
5SBGPE, which specifies a background program using Subsystem
Global tc be made a permanent program. One, two or all three
parameters may be specified.

7-7



format Mnemonic format code. This actually an extension of the op
code that was filled. The parameter defines the format for
the program load operation. To determine the format code, (i:
select one or none from each of the following columns:

DEBUG List File
Append Options Scan

DB LE RS
NL

where:

DB
LE
NL
RS

append DBUGR subroutine to the program

list entry points

no listing desired

reverse scan. RS changes the order of loading for
segmented programs. The default is load segment,
rescan file and load system library routines. However,
when RS is specified, rescan of the file is performed
only if undefined external references remain after a
library saearch. Selection of this option can
significantly speed up segment loading. See "Loading
Segmented Programs" later in this section.

Do not specify RS if a system library routine is to be
replaced by a user routine.

A

Format and opcode parameters may be intermixed and
intermingled in any order. For instance, SSBGRT will
relocated as a real-time program using SSGA. Note that
later specifications will override earlier
specifications.

partition The specific partition number in which program is to be
executed. If not specified, the program will execute in
any available partition of sufficient size. This is the
same as using the AS operator command.

size Allows a logical address space larger than the program
size. Permits use of a dynamic buffer at the end of the

program for use as a data array, symbol table space, etc.,
when the program requires such space.

The <opcode> and <format> parameter mnemonics can intermingled in any
order. That is, <opcode> mnemonics can be mixed with <format>

mnemonics, and vice versa. A comma must be included as a parameter
position marker if:

1. The character count within the parameter exceeds six, or

2. Subsequent parameters such as <partition> are to be specified. (‘\

The following examples show typical usage of the <opcode> and <format>

75



C

T
\
/

parameters:

*RU,LOADR, PROGl, , ,RTDCBSS,NL

~ ~ ~ ~ ~

I | e <format/opcode> parameter
| | e e <opcode/format> parameter
e ettt <list output> parameter position
= <input> parameter position

R <command> parameter

*RU,LOADR, , , ,RP, ,7

| e T <partition> parameter

I <format/opcode> parameter position
| e <opcode/format> parameter

| = <list output> parameter position

| = <input> parameter position

| mm e <command> parameter position

If a track allocation cannot be made for a relocation, the loader
displays the message WAITING FOR DISC SPACE. The lcader repeats the
disc request and is suspended until space becomes available.

Following the relocation of a program that has its external references
satisfied, the loader terminates with the following messages:

XX PAGES RELOCATED xx PAGES REQ'D NO PAGES EMA NO PAGES MSEG
/LOADR name READY

/LOADR: SEND

where name is the main program name. The loader terminates and the
program is ready to run.

If a new program is loaded bearing the same name as a main program
already defined in the system, the following message is displayed:

DUPLICATE PROG NAME -<nnnnn>

where <nnnnn> is the duplicated program name. the loader automatically
attempts to create a unique program name by replacing the first two
characters of the nedw program’s name with period characters (..). If
successful, the lcading process continues and when completed, the
following inessages are displayed:

/LOADR: <..nnn> READY
/LOADR: SEND

where <..nnn> is the modified program name.



If unsuccessful; that is, a program named <..nnn> already exists, the
loader is aborted and the appropriate error message is displayed.

Whenever the loader completes a successful or unsuccessful load, it NS
returns five words of information about the load to the program that

scheduled it, via the PRTN system subroutine. The returned information
can be accessed via RMPAR. For example, when the loader is run from the
File Manager, FMGR picks up the information in parameters 1P, 2P, 3P,
4P and 5P (this is also the FMGR 10G). A successful load gives the
following:

1p,2P,3P = program name

If an unsuccessful load occured, the following information would be
returned:

1p,2P,3P
4p
5p

0
L..
loader error return

7-12. ADDITIONAL OPCODE PARAMETERS

The loader’s <opcode> parameter has two other uses. Entering LI or PU
causes the loader to, respectively, list all currently active programs
in the system, or purge a permanent program. Opcodes LI and PU may be
used in the interactive mode but may not be entered in batch mode or
from a command file.

The syntax for the list option is as follows: : NS

s

RU,LOADR,,,1lu,LI

In this case, a list of all active programs in the system is
transmitted to the specified Logical Unit. The list will include the
program name, type, priority, low and high main program addresses, low
and high Base Page addresses, and partition number if the program is
assigned to a partition. Each blank ID segment available for use by the
loaderis noted by <long blank ID> or by <short blank ID> if the ID
segment is a nine-word program segment ID segment.

It is printed as a table in the form:
NAME TYPE PRIOCRITY LO MAIN HI MAIN LO BP HI BP SIZE EMA MSEG PART'N
An alternate form of the request is:

RU,LOADR, ,PROG,LU#,LI

This will list all of the above information only for the program named
PROG -

If the opcode is PU, the message

/LOADR: PNAME? ‘ {;/

770



is output on the assigned Logical Unit device. Entering a program name
following the prompt causes the loader to permanently purge the
referenced program from the system. Entering a /A will prevent any
purge operation and terminate the loader.

The LI and PU opcodes may also be entered in the interactive mode but
may not be entered during program relocation. The PU command may not be
entered from a command file or under batch mode.

7-13. LOADING THE BIMARY CODE

The RTE-IV loader will accept binary relocatable code fr-m any FMP file
on any disc cartridge. The file <namr> of the main may be included in
the RUN statement. If all segments and all subroutines are in the input
file <namr>, then no further information is needed. However, segments
and subroutines will fregquently be in several files throughout the
system, and in this case, additional commands to the LOADR are required.
The additional commands may be specified through a command file, an
interactive or non-interactive Logical Unit. The file <namr> or LU is
specified in the first loader RUN parameter.

In the interactive mode the loader prompt /LOADR: is issued:

/LOADR:

7-14. LOADER COMMAND FILE

The loader will load all relocatable input found in the file specified
by the RUN statement. However, subroutines or segments will often be
located in other files. In order to facilitate lcading of a program
broken up in this manner, the loader will take input from a command
file. The command file syntax and meaning are described below. Note
that only the first two characters of any command are required unless
otherwise specified.

SEARCH Searches the system disc library for undefined
externals.

SEARCH,<namr> Searches the file <namr> for undefined externals.
Only the first two characters of this command need be

specified for a single-pass search of the named file.
If more than two characters are used in the command;
that is, SExxxxx,NAMR instead of SE,NAMR, the file

is searched multiple times to ensure that backward
references are satisfied. The SE,NAMR form is faster
but will not satisfy backward references.

RELOCATE,<namr> Loads file <namr> as part of the program. The <namr>
specified may be a program, subroutine or segment.

FORCE Force loads a program and/or program segment.
Undefined externals will be ignored.

DISPLAY Causes a list of undefined exxternals to be printed

70/



ECHO
(see footnote)

END

/A

AS,Xx
(see foctnote)

Sz ,<yy>
(see footncte)

LL, <namr>
(see footnote)

OP, <opcode>
(see footnote)

FM,<format>
(see foctncte)

Footnote:

on the list device, or in the interactive mode, on
the interactive command device. Note that the
undefined externals listed are those referenced by
the module being loaded; that is, undefined externals
in the main of a segmented program will not be listed
if the current module being relocated is a segment.

Causes the input commands from a file to be echoed on
the list device as they are encountered. This is
useful for debugging loader command files. The
command is ignored if the commands are coming from

an interactive device.

End of command input. Signals the loader to exit the
command mode and finish up the load. If undefined

externals exist at this time, an automatic scan of the

system library is performed.

Aborts the loader immediately. A clean termination of
the load operation is performed.

Denotes a comment line when entered as the first
character of an entry line. The loader ignores the
entire line. Comments may also following a command
and be in the same entry line as the command,
providing two commas appear in the line. For example:

SE, ,SEARCH THE LIBRARY
RE, XTABS ,LCAD PROGRAM NAMED XTABS
DI, ,DISPLAY UNSATISFIED EXT REFS

Assigns the relocated program to partition xx.

Specifies the size of the program. The program will
only execute in partitions of size yy or larger.
The value of <yy> must be greater than or equal to
the size of the largest partition available.

Specifies the list Logical Unit number or file name.
if the listing is to go to a file. If a file name is
specified, the file must not already exist unless its
name begins with an apostrophe (7).

Specifies an <opcode> parameter where <opcode> is as
definec¢ previously. Note that opcodes LI or PU are
illegal in a file, but are legal in the interactive
mode.

Specifies a <format> parameter, where <format> is as
definecd previously.

o ———————————— - —_— - - "— T - —— — ————— —— . Goy = — G G ———— - - — o

\\
fﬁ



"\\

C

Specification of these commands must precede specification of any
KELOCATE or SEARCH command. Otherwise, the control command will be
ignored if entered from an interactive device, or cause errors if
entered from a file. These commands may be entered either within the RU
commandor from a command file. Note that RU command parameters will be
overridden by any commands subsequently entered from a command file.

- — o ———— - —- — i —— " 7_— — T ———_— — A S A - O AW GG - =, T T o G — - i A - - A TR Wi G W G G - - S

At the end of every segment load, main load, and at the end of a

command file, the system library is searched for undefiiied externals.
If undefined externals still exist and the commands come from a file,
then the undefined externals will be listed and the loader will abort.

The loader prints the message:

UNDEFINED EXTS
The external references are listed, cne per line.

Not that during the load process, undefined externals are allowed in the
main of a segmented program pecause they might be satisfied in a segment.
When the user specified the end of the loading process, the main is then
checked for undefined externals. If undefined externals exist, the
fcllowing error message is issued

MAINS
UNDEFINED EXT

and the loader will then abort unless the FORCE option is in effect.

The loader will nct allow undefined externals in a segment, because one
segment ‘s entry points may not satisfy another segment’s externals. This
is because only one segment may be in memory at a given time. The DISPLAY
command will list undefined externals. Note that the list refers only to
the main or current segment being loaded.

The abort may be prevented by the FORCE command. The FORCE command will
force load a program and/or program segment.

7-15. LOADING FROM A LOGICAL UNIT

Relocatable code from a Logical Unit can be accepted by the
RU,LCADR, ,<1lu> command or interactively with the RELOCATE,<lu> command.

If more than one tape is to be mounted for the load, the interactive
mode must be used and the RELCCATE,<lu> command reentered for each tape.

7-16. LOCADING SEGMEKNTED PROGRAMS

The loading of segmented programs requires special loader processing.
The loading speed of such programs can be increased if the load process
is understood and the suggestions given below are followed. Generally,

all the relocatable code will be in one file or several files scattered
throughout the system.

7-/3



Assume the following program:

A program has three segments and seven subroutines located in one file,
as illustrated in Figure 7-1.

__________________________________________________________________ +
I s | s | I s | l ' sl sl s | s

v Ul I U | | lfulultulul

Main I B 1 B | SEG1 | B | SEG2 | SEG3 I BI BI B I B |
11 2| I 3 1 I I 4-1 5161 71
__________________________________________________________________ +

Figure 7-1. Segmented Program Example

The loader would relocate this program as follows:

10.

ll.

12.

13.

Load MAIN program.
Load SUB1 and then SUB2.

If there are undefined externals references, search entire file
for subroutines required by the MAIN.

If any subroutines are loaded in Step 3, repeat Step 3 to satisfy
backward external references (i.e., assume SUB6 is loaded and it
references SUB3).

If there any undefined external references, search the system
library and relocatable library.

If there are still undefined externals, continue loading (they may
be satisfied by a segment).

Load SEG1.
Load any subroutines (i.e., SUB3).

If there are undefined externals, search the entire file for
referenced subroutines.

If any subroutines are loaded in Step 9, repeat Step 9 to satisfy
backward external references.

If there are undefined external references, search the system and
relocatable libraries.

If there are still undefined externals, abort the load.

Continue Steps 7 through 12 for each segment.

The loading sequence described above has several implications for the
user when preparing a segment load:

7-14



a. A subroutine called by many segments need only appear once in the
file.

b. Subroutines loaded with the MAIN may be shared by all segments.

c. Any subroutines residing in the file after a MAIN or a segment, but
before another segment (or end-of-file), are relocated together with
the preceding MAIN or segment.

It follows that care should be exercised in the ordering of the
relocatable modules. A subroutine should be placed only after a segment
that references the subroutine. Subroutines should never be collected
together and placed at the end of the file. Doing so wotld result in
all subroutines being relocated with the last segment, whether or not
that segment referenced any of the subroutines.

When a relocatble program is contained in several files, a command file
should be used to load the program. Typically, the MAIN program would
be in one file, each segment in a separate file, and perhaps a file of
subroutines that are referenced by some of the segments. The command
file for loading such a segmented program might consist of the
following:

File

Entry Resulting

Number Comma nd Action
1. RE,MAIN Relocates program named MAIN
2. SE,LIBRY Searches library named LIBRY
3. RE, SEG1 Relocates segment named SEGL
4, SE,LIBRY Searches library named LIBRY
5. RE,SEG2 Relocates segment named SEG2
6. SE,LIBRY Searches library namecé¢ LIBRY

When the loader encounters the command in file entry 3, it recognizes
the prcgram as segmented. Before SEGl is loaded, LOADR searches the
system and relccatable libraries for undefined external references.

Undefined externals are still permitted at this point, since they might
be satisfied in a segment.

However, at file entry number 5, undefined externals remaining after
the system and relocatable libraries are searched will cause LOADR
execution to be aborted. This is because a segment may not satisfy an
undefined external reference through another seqment. (The FORCE option
may be specified to force load the code and prevent an abort condition.)
Upon completion of the loading process, any remaining undefined

T-r5"




external references in the MAIN program would result in the loader
being aborted and display of the following messages:

/LOADR: MAINS C
/LOADR: UNDEFINED EXTERNALS '
/LOADR: <list of MAIN program’s undefined externals>

7-18. REDUCING SEGMENTED PROGRAM LOAD TIME

There are several ways to increase segmented program loading speed.
Those described below are suggestive only, and are not to be considered
as required procedures:

1. Place any referenced subroutine with the segment that calls it. This

eliminates unecessary file scans in search of a subroutine that will be
relocated with a segment.

2. Place subroutines into files in the sequence in which they are
called. That is, if SUB1 calls SuB2, place SUB1l in the file before SUB2,
etc. For example, assume these subroutines are in a library file to

be searched by the loader and that the loader is looking for SUBl.
Ideally, the loader would pick up SUBl and create SUB2 as an undefined
external reference. The loader would then continue the file search; if
SUB2 was then encountered, it would be picked up on the same pass. -
However, if SUB2 was located in front of SUBl, an additional file g:}
search would then be necessary.

3. If all the relocatable code is within the same file, place the
subroutines in the sequence suggested in Item 2.

4. If several segments reference the same subroutine, place that
subroutine immediately following the MAIN program. Segments may share
subroutines that are loaded together with the MAIN program.

5. When all the relccatable program code is within the same file and

the file has been organized as described in Item 2, use the RS operation
code when the loader is scheduled. RS informs the loader that all
subroutines have been sequenced as suggested above, and that the system
and relocatable libraries are to be searched before a file scan. That is,
in the loading steps previously described for the segmented program load
example, Step 5 would be placed between Steps 2 and 3, and Step 11 would
be placed petween Steps 8 and 9. Another scan of the file will occur if
undefined external references remain following a scan of the system and
relocatable libraries.

Caution should pe exercised in using the RS mnemonic, since it changes

the loading sequence so that the HP relocatable library is searched

before a scan of the file is made. It is therefore possible that a

relocatable library subroutine might be loaded instead of a user’s

subroutine. However, this could only occur if the subroutine had the Q:f‘
same entry point name as a relocatable library routine (i.e., SIN, TAN, -
ARCTAN, etc.) and if the user’s subroutine was not included at the end

7-/6



cf the segment or main that called it.

7-1Y. DBUGK LIBRAKY SUEROUTINE

DBUGR 1is a utility subroutine of the RTE Relocatable Library. It is
appended to the end of a user’ s program by the loader when the opcode
parameter in the RU,LOADR command is DB. DBUGR allows the user to debug
a program py means of Trace, bBreak Point and other features. Permanent
loads are not allowed with DBUGR.

7-20. LOADER ERROR REPORTING

All loader errors are reported to the list device. The list device may
be specifically declared in the ON or RU scheduling command, or
defaulted. The default list device is specified under "LIST = " earlier
in this section

The error codes are displayed on the list device in the following form:

/LOADR:<error code>

For some non-recoverasle error conditions, LOADR aborts execution and
displays the error report as follows:

/LOADR:<error code>
/LOADR:LOADR ABORTED

At times, the user may wish to apbort a load while the load is going on.
Entering a BR,LOADR command will cause the loader to abort a load and
perform a clean and orderly termination. This is greatly preferable to
using an OF,LOADR command during a load process, which may leave files
open.

For some error codes, the name of the program module and the entry poin

name of the subroutine being relocated are displayed prior to the error
code display line, as follows:

/LOADR: <module name>

/LOADR:<entry point name>
/LOADR:<error code>

7-21. LOADER ERROR CODES

All loader error codes, their meaning and possible are listed in Table

below. Note that the asterisks following some diagnostics have the
following meaning:

*

module name printed BEFORE diagnoistic

* %

1]

entry point name printed AFTER module name

The asterisks would not actually appear in the displayed error code.
All error codes are prefixed by L- characters.

7—/7

t



Note that numbered items in the "Recovery Action" column indicate
possible alternatives, as appropriate, rather than sequential steps.

Taple 7-1.

04*

05*

06*

07*% *x%

08

Lcader Error Codes

———————— " —— ———————— t—— - — = . = Sep AN Gam G M > NS W G . S S . G G G ——— D S — - - ————— o =

—— - ——————— - ———————— —— ————— - ——

Checksum error. (Was it a
relocatable file?)

Loader found an entry
that was not a KAM, ERT,
EXT, DBL, ENMA or END
record. Did the computer
emit bad records? Was

it a relocatable file?

Progyram code and system
tables exceeded 32K or
user-specified max. size.
(Program size + MSEG size
is toco large.)

BP linkage overflow. The
program reguires more
BP links than system has.

Symbol table overflow.
(Loader does not have
enough room to relocate.)

CCHMMON block error (was
first COMMON declaration
the largest?).

Duplicate entry points
encountered. (Subroutine
entered twice.)

No transfer address (only
subroutines were loaded;
no main was found).

Recompile. Cive loader the
correct file,

Recompile. Give loader the
correct file,

l. Segment program.
2. Do NOT specify a
it a Type 4 program
3. Move data tc EMA area if
possible; otherwise, make
program smaller.

size; make
if possible.

1. Rearrange subroutines.

2. Rearrange order of loading
modules.

3. Recode to decrease number of
references across page
bcundaries.

l. Use
expand

SZ operator command to
size for loader.

2. Use SE loader ccmmand to
reduce loader fix-up table size.

3. Break up code into subrs. in
separate files and use SE cmd
after relocating each file.

Make largest COMMON declaration
the first declaration the loader
encounters.

Remove one of the duplicate
routines.

1. If program was written in
Assembly Language, put a label
on the END statement. The label

I
I
|
!
I
I
[
|
I
!
I
|
I
I
|
I
I
I
I
I
!
!
|
|
I
I
I
I
I
|
I
|
|
I
|
I
I
I
I
I
I
!
l
I

7-r9

O



09*

10

11

14%*

156

17

18

19

20

Record out cf seguence
(Probably attempted to
relocate from improperly
positioned tape.)

Illegal parameter in RU
statement or in statement
prior to a RELOCATE
statement.

Attempted to replace a
memory resident program
with a program having the
same name,

Assembler produced illegal
relocatable module. A DBL
record was produced that
referred to an undefined
external; i.e., it should
been found in program’s
symbol table but was not.

|

|

|

|

I

|

I

|

I

|

|

I

|

|

I

I

|

I

|

|

|

|

I
Illegal partition number |
or corrupt map table. I
Partition specified does |
exist or is down due to a |
parity error. |
I

Numwber of pages required |
exceeds partition size. |
|

I

!

!

|

I

I

I

I

I

I

|

|

I

I

|

|

I

|

I

Specified program size too
large for partition.
(Exceeds 32 pages.)

(1) EMA declared twice (2)
EMA declared in a program
segment, (3) reference to
the EMA label before label
was declared EMA, (4) an
attempt was made to
declare the same label as
ENT record (i.e.,
duplicate ENT).

No ID extensions available
for the EMA program.

is where the program starts.
2. If program was written in
FORTRAN, relocate the module
with the PROGRAM® statement.

Rewind tape and start over.

Start over. Make certain the
run string is proper.

Rename program with a different
name, recompile and reload. It
is impossible to replace a
memory resident program. The
loader will not even rename it.

Recompile and try again. This
could also be an Assembler or
FORTRAN compiler bug.

Either specify a different
partition or no partition.

Either specify a different
partition or no partition.

Either specify a smaller size or
no size. See also error code 03
other recovery alternetives

Specify the EMA in the main and

load the main first. An EMA must

be declared in the main and any
segments or subroutines that
reference that EMA must be
loaded after the main.

Either abort other EMA programs
to release required ID
extensions, or regenerate and
specify more ID extensions.

719

|
|
|
!

|
|
|
|
I

|
|
|
|
!
|
|
I
|
|
|
|
|
|
I
|
|
|
|
|
I
I
|
I
I
I
I
|
!
!
I
|
I
I
I
|
I
I
|
I
I
I
|
I
|
|
I
|



— —— — —— — — — — — — — o — — — o ——. — o — — — —

EMA external with offset

subroutines to access EMA arrays
or indirect.

————————— - t— - — — o~ - S " —-— Vo ——— Ao — o ———— - -~ ———— — N ———"_ - No" S wan w———— - — ———— - — - — . -

21 | Program’s EMA size too | Either reconfigure system at 1
| large for current system | boot-up to give more EMA space, |
| partitions. | or declare less EMA in program. |
| , I |

24** | Attempted to access an | Restart the load, specifying I
| SSGA entry point but SSGA | the SS mnemonic; i.e., OP,SS or |
| access was not declared | FM,SS. l
| at beginning of load. | |
I I |

25 | Attempted to purye a | Do not put LI or PU commands in |
| program under batch, or | a File Menager file. I
| attempted to use LI or PU | !
| commands within transfer | |
| file. LI or PU may only I |
| be used interactively. I I
| | I

26 | Not enough long and short | Off or purge all ID’s created, |
| ID segments to finish | free up additional ID segments, |
| load. | and restart load. |
| | |

27 | Attempted to access an | Use HP-supplied .EMAP and .EMIO |
| | |
| | |
I | |



Real-time or wvackground disc-resident nrograms may be structured into

a main program and sevearal segments to save memory space during program
execution. A segmented program is first separated by the programmer
during the coding process. Once the program is relocated, the segments
are then called into memory only as they are needed for execution.

The program can run in a smaller partition than its total size, since
only parts of the executable code are in memory at any one time.

When the code in one of the segments is required for execution, the

currently executing program uses an EXEC call to request the operating
system to make a segment overlay. RTE loads the segment from the disc

into a memory block following the end of the main program, overlaying
whatever was previously there. Control is then passed to the entry
point cf the segment and execution proceeds within the segment (see
Figure 8-1). Note that a segment is not allowed to overlay the main
program; segments may only overlay one another.

While a segient is in memory, it can freely access subroutines and data
areas in the main program, and vice-versa. The main program and its
segment effectively operate as a single program. When another segment
is required, either the main program or the segment can make the EXEC
call to reguest ancther segment overlay. The operating system will then
load the new segment into meimory and pass control tc it.

" (INSERT FIGURE 3-1)



secgments may be of any size, but need not necessarily be of equal
length. The entire precgram reqguires a partition large enough to hold
the main program plus the size of the largest segment.

3-1. RTE FORTRAN IV SEGMENTATION

RTL FORTLAN IV programs can be segmented if certain conventinns are .
fcllowed. The main projram must be Type 2,3, or 4, and the segment must
be specified as Type 5 in its PRUGRAM statement. The segment must be
initiated using the Prograin Segment Load EXEC call from the main program
cr another segment.

Each segment must make a non-executable dummy call to the main program.

This ensures that the proper linkage is established between the main
program and its segments. For example:

CALL MAIN
END

where MAIN 1s the name of the meln prograi.

Chaining of segments is uni-directional. Once a segment is loaded,
execution is transferred to it. The segment, in turn, may call another
segment but a seyment written in FORTRAN cannot easily return to the
imain program. Seyments can call any subroutine attached tc the main
progyram. Communication between the main program and segments may be
through COMMON.

8-2. KIE ASSEMBLER SEGMENTATION

The main program must be Type 2,3, or 4 and the segments must be Type
5. One external reference from each segment to its main program is

reguired for the generator to link the segments and main program. If
the main program accesses an external symbocl that will be satisfied in
a segment, the symbol may appear in only one segment. Otherwise, the

generator or the loader may link the segments and the mein program
incorrectly.

Figure 8-2 shcws how an executing mein program may use the JSB EXEC
call to bring in any of its segments from the disc. Note that althcugh

control is passed tc the transfer point of the segment, the main itself
is not suspended.

4-2

A ™
N



T T
,
disc resident 4 SEGMENT
area . OVERLAY
AREA

MAIN PROGRAM

Lo real 1
A GORE=MEMORY

SEGMENT 3
SEGMENT 2
SEGMENT 1

MAIN PROGRAM

SEGMENT 1 MAIN PROGRAM

NOTE TRACK, SEGMENT,

AND GAP SIZES ARE
P EXAGGERATED.
DISC MEMORY TPRTE-8

v

o
Figure 42, Segmented Programs




-

(INSERT FIGUKRF 8-2 on HAIN CALLING SEGMENT) ) e

An executing segment may itself call in anocther of the main program’s
segments by using the same "JSB EXEC" reqguest (see Figure 8-3).

INSERT FIGURE £-3 SEGHMENT CALLING SEGKMENT

A mein program and segment operate as a single program when they are
resident in memcry. Juisps from a segment to the main program (or
vice-versa) can be programmed by declaring an external symbol and
referencing it via a JMP instruction (see Figure 8-4). A matching entry
symbcl must be defined at the destinaticn in the the other program.

The gerneratcr and the loader associate the main program and its
segments by replacing the svmbolic linkage with actual absclute
addresses (i.e. a jump into a segment is executed as a jump to a specific

address). The prograrmer should be sure that the correct segment is in .
memory before the JMP into it is executed. 4:

§4

7



SEGMENT 2

- NAM SEGT
EXT EXEC
.

SEGMERT ¥

ISEGMENT QVERLAY
AREA)
. maExec -
(“‘ _________ ——— . |
DISC RESIDENT
” NAM MAIN PARTITION AREA |
134 €XT EXEC '
2= b
- g . IMAIN PROGRAM
2% . AREA)
¢ — 58 EXEC
MAIN PROGRAM
DISC MEMORY

LOGICAL MEMORY

Figure % Main Calling Segment

Z- o

SEGMENT 2 - T.
L NamsEG?
EXT EXEC ISEGMENT OVERLAY
* AREAY
........ 4
NAM MA LN DISC RESIOENT
EXT EXEC PARTITION AREA

IMAIN PROGRAM
AREA)

}

MAIN PROGRAM

DISC_MEMORY

(CALL FROM SEGY)

e A

L.OGICAL MEMORY ' -

g->

Figureg?egmént Calling Segment




4 S1

b o o - - —

4 JMP St

(7} [

EXT M1
ENT S1
JMP M1

(Segments)

EXT St
ENT M1

<

MAIN PROGRAM

-

Figure

MEMORY -

. Main-to-Segment Jumps

i
|
|
|
. w(_\\)
|
|
|
i
|
i
|
1
|
|
E lj’ i
. X . I
14
1
14
t
§



| | MULTIPLE TERMINAL MONITOR |

The Multi-Terminal Yonitor (MTM) is a software package developed by
flewlett-Packard to service multiple terminals in an RTE operating
system. Included in this this description are several special
conciderations applicable to multivoint operations.

9-1. SY3TEM CONFIGURATION

Multiple terminal operation requires that routines PRMPT and R$PNS be
configured into the operating system during generation. By default,

they are memory resident and should oe included in the system during the

generation Program Input Phase.

Configuring a terminal for MTM servicing is performed during the
Interrupgt Table portion of generation. The following entry is regquired:

sc,PRG,PRMPT

where sc 1is the select code of the terminal being configured. This will
causc interrupts to those select codes to be handled by program PRMPT.

After the RTE system is initialized and running, each terminal must be
initialized with a control request either through an FMGR command:

:CN,1u,20B
or an EXEC request:

CALL EXEC(3,2000B+1u)

9-2. MULTIPOINT INITIALIZATION

Configuring a terminal for multipoint operation is performed during the
Interrupt Table portion of generation. Refer to the HP 91730A Multipoint
Terminal Interface User s Guide (91730-90002) For a complete

description of multipoint operations. The following entry should be

made for each communication line:

scl,PRG, PRMPT

where scl is the select code of the line being configured. This will
cause interrupts to that select code to be handled by program PRMPT.

Eacp terminal also requires a dummy Equipment Table entry (EQT). Number
77 is a good choice. This same EQT can be used for all terminals. The
following entry is then required for each terminal:

sct,ARS,0

q-1



where

sct is the dummy select code that has been assigned to the

terminals.

After the RTE system is initialized and running, both the communication
lines and the terminals must be initialized. Each line is enabled with
& control request through either an FMGR command:

:CN,11u,20B,100000B+ICW

or through an EXEC request:

where:
11lu

ICW

CALL EXEC(3,2000B+11u,100000+ICW)

is the Logical Unit number for the line

is the contrcl word and has the following bit
configuration:

—— v ——————————— ———— —— - - - ———— T — - - —— —— " G- —— -

——————— - —— o — " — " t— S —— A ——— —— — _— . —— G — - W —— - —————— ————

where:

bit 15 is 1 tc designate this as a line initiaticn

TOVAL is the timeout value in hundreds of milliseconds

N 1is the logical line number

After the line has been initialized, each terminal on the line must be
enabled. This is done using either of the following commrands:

where:

ilu

ICW

:CN,ilu,20B,1ICW
or:

CALL EXEC(3,20008+1ilu,ICW)

is the lcgical unit number of the terminal.

is the control word and has the following bit specification:

T ——— ————— - ———— - — o~ ——— - - —— - . ———————— ——— —— — Y ———

—— - ———— - o —— o v ———— - — o ——— o ——— " w_———— —— —————

&

()
_



wher

1]

it 15 is 0 te desgignate this as a terminal initialization.

L i1e the Logical Line Munmber as specified in the
L.line Initiaticn control word.

CIL is the Group Identification character as specified
on the terminal’s communication card.

DI is the Device Identification character as specified
on the terwinal’s ccamunication card.

9-3. LCGICAL UKRIT NUMBER ASSIGHMERT

A cartridge tape unit (CTU) on a 264x terminal may have a Logical Unit
number either less than or greater than the Logical Unit number of the
associatecd disnlay (CET). It is suggestecd that the CRI ‘s and CTU s be
ascigned LU numpners netween 0¢ and 63, inclusive.

9-4, OFEFATION

MTM will perform seversl services fcr the user in conjunction with a
terminal s copy of FMGkK. A terminal with Logical Unit number xx has its
own copy of FUCR if a program exists named FNGxx. For example, the copy
of FIIGR for Logical Unit 07 would be FYGO07. The paragraph entitled
"Cresting Program Copies" (see below) explains how to make copies of a
Prograti.

If a copy of FUGK named FliCxx does not exist for a terminal, the
stancard RTL prompt will be issued and the user will be conversing with
the RTE Operating System. The remainder of this manual secticon assumes
that the terminel has its own copy of FiGR named FMGXX.

9-5. AVAILABLE ¢Ti« SERVICES

In an iT! environment, a user terminal with its own copy of FMGE has
access tc four servicecs:

1. Autocmatic scheduling of FMGxx when the user terminal interrupts
the operating system.

2. Variations of the BReak and APort commands.
3. Automatic renaming of user programs.

4. Automatic execution of transfer file named HI.

9-6. AUTOMATIC SCHEDULING OF FMGxX

(ii’ If a copy of FMGR callec FMUxx exists for the terminal, striking a key

on the terminal causes FHixx to be scheduled for execution. One of two

7-3



actions will then be taken, depending on whether or not FMCxx is
available for executiocn. Normally, FMGxx is available, since it
"belongs" tc the terminal. If it is not available, the MTM variations
of the BReak and ABort commands may be used tc make it available as
described below.

9-7. FMGxx AVAILABLE FOR EXECUTION

If the terminal’s copy of FMGR is available for execution (not
busy or suspended), three events will occur:

First, the prompt

XX>FMGR X
will be issuec¢ to the terminal.
Second, an

:LL,xx

is made automatically on behalf of the user terminal to make its
LU the list device.

Third, control is transferred tc a file name HI, which must exist on
LU 2, the system disc.

The HI file is a procedure file usuvally written by the system manager
and placed on Logical Unit 2. Although the file may be empty, it must
nevertheless exist or an FMGR =006 error will result. When the end of
the HI file is reached, control is transferred to the interrupting

terminal. The user is now convercing with the terminal’s copy of FMGR.

The system manager or other user can define many useful functions to
be performed in the HI file:

* Since the FMGxx global parameter 0G always eguals the turn-on LU
number, the HI file can be made sensitive to the turn-on terminal.

The HI file can schedule programs for execution using the RU command.

Ccmmands can also be passed directly tc the operating system using
the SY command.

Refer to the Batch-Spool Monitcr Reference Manual for a complete
description of FKGR commands.

9-8. BREAK AND ABORT COMMAKND VARIATIONS

Program FMGxx sometimes will be busy when the operating system attempts

to schedule it toc the interrupting terminal. In this case, the
operating system will issue the standard RTE prompt

XX

/-1

/(- \



and the user will e conversing with the operating system. In addition
to the standard Bkeak and ABort operator commands, two variations of
the commands will be accepted. These variations apply only when entered
from an MM terminal other than the system console, and only if program
FMGxx exists..

Throughout the remainder of this discussion, the term "father" will be
used to indicate a program that has scheduled another program and 1is
waiting for the scheduled program to conplete before resuming its own
execution. The term "son" refers to the program that the father bhas

scheduled. This form cf program scheduling is commonly called "schedule
with wait".

1. #Tr B3REAX COMMAND - The MTM command BR issued at terminal xx will
set the break bit of the last son of FMGxx. The following example
illustrates the interaction:

user hits a key

XX>FMGxX

:RU ,PRGCA FROGA runs, and assume
PROGA schedules PEOGH

user hits a key

XX> 2R nc program name specified

The UR command will set the break bit in program PROGR,
since it is the last son of FMGxx.

The command
SR, PROGX
will still set the break bit in PROGX and have no effect on FLGxx
or any cf its sons. For more informaticn on breaking programs,
refer to the IFBRK system library subroutine and the BR operator
command.
If F¥“Gxx has no scns, the break bit will be set in FMGxx itself.
WWhenever a FMGR programr finds its break bit set, it issues the
response

FMCE 000

at the turn-on terminal and prompts for the next input.

NOTE

The LReak command entered from the system console must
still have the program name specified as the first
parameter.

2. TV ABORT COMMAND - The MTM AD command issued at terminal xx
where FMGxx exists performs the same function as the BR command
except that the last son of FMGxx is aborted. Considerable care

%=-3




should be exercised in using this command. If FMGxx has no sons,
then the break bit of FMGxx is set and the program is not aborted.

| |
| |
| The batch abort command, AB, may only be entered |
| from the system console. :
|

9-9. AUTCUATIC USEFR PROGRAM RENAMING

MTHI manages ID segments so that each user can have his own copy of a
program. If the user wishes to run a program with FMGxx as the father
(i.e. :RU,PROGX but not :SYRU,PROGX), then in certain circumstances, a
copy of the program will be created belonging to the particular
terminal and run for the user at the terminal.

MTl1 will perform this action whenever the program to be run is a son of
FrMGxx, and the prcgram is either a temporary program or in a Type 6
FMGR file. A copy of the program will be created with the last two
characters being xx, and be scheduled for execution to terminal xx.

For example, if the EDITR is loaded on-line as a temporary load and
saved as a Type 6 file, the command:

tRU,L,EDITR

will create a program named EDIxX and schedule it to terminal xx. When Ci)

E0Ixx is finished, the ID segment will automatically be returned to the
system.

The advantage of processing the ID segments in this way is that all
terminals can run the same prcgram but each user gets a personal copy
of the program. Therefore, a user does not have to wait for other
users to finish with a program before gaining access to it.

The above procedure will work even if the program to be run has been

previcusly restored using the RP command. In fact, the program will be
created more quickly, since there would be no disc search time before
the proyram could be run.

If desired, the automatic renaming feature of MTM may be circumvented

by using a copy of FMGR that does not "belong" to the terminal at which
the user is operating. In this case, none of the features described for
MIv, apply, and the AR and BR commands will revert to their normal usage.

The program renaming feature of MTM may also be temporarily inhibited
when running a programn by using the following form of the RU command:

tRU,,PROGH::TIH

In this case, the actual program named PROGX will be run rather than a g;/’
copy.

76



O

C

This cagability ic especially useful when lcading permanent programs.
The program named LOADR is the only prooram that can load, replace or
purge programs permanently in the system. A copy of LOADR cannot
perforim these functions. Therefore, if the user is operating from FMGxx
at terainel xx, the following command can ne used to load a permanent
projrams:

—

tRU,LOADR:IH, ........

9-10. CPRUATING PROCRAM COFIES

Programs to be scheduled for operation from several terminals must be
swappale. That 1is, the program must perform all I/O through the
reentrant subroutine REIO, rather than thrcugh of CXEC calls, or
otherwice maintain its swappability. An additioral requirement is that
each terminal immust access the program using a different program ID
segrent (different program name).

In each cace, a program to be used by several terminals must be
accessed Dy a different name. The following example shows how to rename
the FiGR program to give 1t several different names. The commands given
assume that FMGR has been previously saved with the FMGR SP command:

tRN, FMGKR, PIAGOL rename the file
tRP,FMG01 restore FMGO1l from file
:RU,FMGOL, PMGOT rename file again

: BP,FIGCT restore FMGO7 from file
R, FPUIGCT7, PGl A rename file again

: RP, FHIG14 restore FMGl4 from file
: RP,FMCxx restore program FMGxx

: BN, FIiGxx ,FMGR renamne file back to FMCR

for future use

A similar procedure can be followed tc make multiple copies of other
pregrams.

ticte that the above coimmands can be put in a file that will be run each
time that the system 1s booted up. This relieves the user the
responsibility of renaming all programs for INT¥ use if the system

went down and had to be rebocted. The last RENAME command restores the
file’s original name for future usec.

It is recommended that a copy of FMGR be renamed for each terminal in
the ¢TM environasent to take advantage of the asutomatic scheduling
capanility of RTE.

For example, assuie a key c¢n the terminal with Logical Unit number 7 is
struck. The terminal issues the following prompt:

O07>FHG07
e

(41 file gets executed here)

7-7




.

.

The user is now conversing with F#4G07 and his default list device is : AN
Lecgical Unit 7. The dI file has heen executed and the user may now
1gssue any legal F¥GR command.



10-1. INTRODUCTION

RTE-IV operating systems are delivered w1th a collection of relocatable
subroutines that comprise the system library. This group of subroutines
are specific to RTE-IV operating systems and are used to interface user
programs with system services.

Cther collections of iH-P relocatable subroutines for more general use
are also available as options, and are described in the DOS/RTE
Relocatable Library Reference Manual. They have been grouped into the
following libreries according to function:

Library Mnemonic Library Name
RLIB.N DOS/RTE Relocatable Library
FF4 W FORTRAN IV Formatter

RLIB.N contains mathematical and utility subroutines such as SIN,COS,
BINRY, etc. The formatter libraries contain subroutines that perform
formatted data transfers, interpretation of formats, unformatted
input/output of binary data, free field input, and buffer to buffer
conversions.

10-2., CALLING SYSTEM LIBRARY SUBROUTINES

Library subroutines are called by user prcgrams and are linked tc the
caller either at generation or locad time. These subroutines can be
called either by disc-resident or memory-resident programs.

Subrcutines referenced by disc-resident programs are appended to the

end of the calling programand then linked to it either by the loader
(LOADR) or On-Line Generator.

Subroutines referenced by memory-resident programs will be placed in
the memory-resident library by the generator. These subroutines must
either be reentrant or privileged. Several memory-resident programs
can then share one subroutine, which can save considerable space

in the memory-resident area.

If only one memory-resident program is to access a subroutine, it is
advantageous to make it a Type 7 subroutine to force it to be

aprended onto the calling program. A Type 7 subroutine is not placed in
the memory-resident library and therefore need not be privileged or
reentrant. This results in faster execution, since the subroutine w111
not incur the overhead associated with reentrant or privileged
subroutines.

/o1



1G-3. REENTRANT SUBROUTINE STRUCTURE
A subroutine must meet two criteria be reentrant:
1. It must not modify any of its own instructions.

2. It must save all temprorary results if it is called
again before completing its current task.

A subroutine saves temporary results in a Temporary Data Buffer (TDB)
that the operating system ensures is unigque to each program. For
example, assume PROGA 1s executing a reentrant subroutine trat is
interrupted by PROGZ. If PROGB then begins execution of the same

subroutine, the system saves PROGA s TDBE until PROGA resumes execution,

at which time it restores the proper TDB.

Each time a reentrant subroutine begins executing, the address and
length of its temporary data block are transferred to RTE-IV through

entry point $LIBR to save the data. At the of execution, the reentrant
subroutine again calls RTE-IV through entry point SLIBX to restore any

existing temporary data.

A reentrant subroutine structure is used for subroutines with an
execution time exceeding one milli-second. However, for shorter
execution times, the overhead time the system uses in saving and
restoring temporary data makes reentrant structure unreasonable.
Faster subroutines can be structured as privileged.

|
I
| A library (Type 6) program can only call another
!
| points

|

|
!
I
library program or Table Area I and II entry I
|
I

10-4. PREENTRANT SUBROUTINE FORMAT

The format and calling seguence for reentrant subroutines is as
follows:

JAM xxxxx,6
EXT SLIBR,SLIGZE
ENTRY NCP Entry point of subroutine
J38  SLIBR Tell system to protect TDE
DEF TDD Address of temporary data
. Subroutine instructions go here
EXIT J33 SLI3X Tell system reentrant run is finished
DEF TDB Address of temporary data
DEC N Return adjustment

o>

(\

O



(Return point=N+ENTRY)

‘ TDB NOP System-supplied link to previous TDB
(Z”~ DEC K Total length of current TDB in words
y NOP - System-supplied return address to

calling program

- Temporary data (K-3 words)

10-5. PRIVILEGED SUBROUTINE STRUCTURE

Privileged subroutines execute with the interrupt system turned off.
This feature allows many memory resident programs to use a single
privileged subroutine without incurring reentrant overhead. As a
result, privileged subroutines need not save temporary data blocks but

must execute very rapidly to minimize the time that the interrupt
system is disabled.

fince privileged subroutines disable the interrupt system, EXEC calls

are illegal within a privileged subroutine. If one is attempted, the
calling program will be aborted with an EX error.

10-5. PRIVILEGED SUBROUTINE FORMAT

(i) The format and calling sequence for privileged subroutines is as

follows:
NANM XXXX,56
EXT SLIBR,SLIBX
ENTRY &OP Entry point to the routine
JSBE  SLIGLR Call the system to disable the
Interrupt system and memory
protect fence
NOFP Denotes privileged format
EXIT JSB SLIBX Call the system to return to calling
program, and to enable interrupts
and memory protect fence
EXIT1 DEF ENTRY Return address

It is also possible to go privileged in a block of in-line code, as
follows:

J3B SLIBR Go privileged
: NOP Denotes privileged format
S - First instruction

J0-3



Jel SLIax L.eave privileged status
DEF *+1 Both DEF s are required
DEF *41

The memory resident library area in RTE-I1V contains only Type 6 and
14 subroutines that are referenced by memory resident programs.

Reentrant and privileged subroutines may be placed in the

memory resident library during generation by either of the following
methods:

1. If the routine is declared as an external (called) by a memory
resident (Type 1) program, or 1is called by another resident

library subroutine, the suobroutine will be automatically placed
in the resident library py the generator.

2. The routine can be changed to a Type 14 subroutine during the
Parameter Input phase of generation (it also could have been
asseninvled as a Type 14 subroutine).

+
| NOTE I
I I
I After the relocation of the resident library and all |
I menory resident programs, all Type 6 routines are l
| converted to Type 7 (utility) routines. l
I

o e e e e e e e e e e e e e +

rot all subroutines referenced py memory resident programs are loaded
into the memory-resident library. By declaring the subroutine to be
Type 7, the user can ensure that the subroutine will be loaded with
the program. Then if .ZRHNT and .ZPRV are used instead of $LIBR, the
subroutine will execute faster since the system does not need to do
the reentrant or privileged processing prior to executing the
subroutine.

10-7. UTILITY SUBROUTINE STRUCTURE

Utility subroutines are subroutines that cannot be shared by several
programs pecause of internal design or 1/0 operations. Therefore, a
copy of a utility suproutine is appended to every program that calls
for it. The PAUSE subroutine and the library subroutines FRMTR (FF.N),
and FMTIO (F4D.iv) are typical examples of utility subroutines.

when the RTE system is generated, all library subroutines included in
the resident litrary are converted to Type 7 utility subroutines
following the relocation of memory resident programs. All utility
subroutines are then relocated immediately following each user program
that requires them during program relocation.



10-8. SYSTEM LIBRARY SUBROUTINES

All system library subroutines are described below with the exception
of .EMAP, .EMIO, MMAP and EMAST. These four subroutines are the direct
concern of memory manajement considerations and are therefore described
in the Memory Management section of this manual.

10-9, REIO (Reentrant I/0)

The REIO subroutine permits user programs to perform reentrant I/0 and
disc resident programs to be swappable. REIO is a utilit - type library
subroutine and has within its structure a reentrant routine that is

appended to each program that calls its. The calling sequence for REIO
is:

CALL REIO(ICODE,ICNWD,IBUFR,IBUFL)

where the parameters are described in the Read/Write EXEC call in

" Section IV of this manual. Note that REIO can only be used with

Read/Write calls and that the optional parameters available in those
calls are not allowed in the REIO call. REIO will always perform the
requested 1/0; however, it will do reentrant I1/0 only if the buffer is
less thar 130 words (to save system memory), and the buffer address is
at leest three words above the current fence address. If the sign bit
is set on ICODE, the same error options available with the EXEC call
are effected (i.e. error return followed by normal return). REIO

returns the same values in the A- and B-Registers as the standard EXEC
call.

A reentrent subroutine may perform I/O using the standard EXEC
requests. If the buffer is in the temporary data block (TDB) of either
itself or ancther reentrant routine that called it, the calling program
is swappable. If the buffer is in the user area, the program is not
swappable (i.e., 1f the buffer is not in the TDB or user COMMON area,
the proyram is not swappable).

10-10. BINRY (Disc Read/Vrite)

FORTRAN programs can call the BINRY subroutine, to transfer information
to cr from the disc. The call must specify a buffer array, the array
length inwords, the disc Logical Unit number, track number, sector
number, and offset in words within the sector. (If the offset equals 0,
the transfer begins on the sector boundary; if the offset equals n,

the transfer then skips n words into the sector before starting.) BINRY

has twc entry pcints: BREAD for read cperations and BWRIT for write
operations.

For example:

CALL BWKIT (ARRAY,N,IDISC,ITRK,ISECT,IOFST)
CALL BREAD (ARRAY,N,IDISC,ITRK,ISECT,IOFST)

Where:

-5



ARRAY
N

Address of the first element
Number of words

IDISC = Disc lcgical unit number .
ITRK = Starting track number £
ISECT = Starting sector nunber A
IOFST = Number of words offset within & sector

There are three pasic weys that data can pbe written on the disc in
relation tc sector bcundaries. Care must pe used in planning the
WRITE statement in two of the cases tc avoid losing existing data:

1. CGffset=n (i.e., transfer ovegins within a sector), and less than the
sectcr is written, or the data transfer ends on a sector boundary.
The entire first sector is initially read into an internal buffer,
the data is modifed according the BWRIT statement, and the entire

sector is then rewritten on the disc with no data loss. No special
precautions are required in this instance.

2. Cffset=(0 (i.e., transfer begins on a sectcr boundary), and less than
the sector is written. The remaining data in the sector will be lost
if the following precaution is not taken. The entire existing sector
on the disc can first be read into a user s buffer, modified to

reflect the desired changes, and then rewritten on the disc as a
full sector.

3. Offset=0 or n, and a sector boundary is crossed in the data transfer.

The remaining data in the final sectcr will be lost if the following
precauticn is not taken:

AN
( )
The entire final sector (of the data transfer) on the disc should be NS
read into a user’s buffer, mcdifed to reflect the desired changes,
and then rewritten on the disc as a full sector.
10-11. RNR{¢ (Resource lrianagement)
Allows cooperating programs a method of efficiently utilizing resources
through a resocurce numbering scheme. A detailed discussion of resource
managment considerations is provided following the Class 1I/C description
in the EXEC Call section c¢f this manual.
The calling sequence for RNRQ is:
ICOUE=numb
CALL RNFEQ(ICOLE,IRN,ISTAT)
where:
ICODE defines how the resource number is to be used. (See
Figure 10-1.)
IRN the resource number is returned in IRN.
ISTAT status return word. {;j

J - normal deallocate return

Jo-b



(\\\.

39

6

7

A recsource number is
exclusively with the
resource could be a physical device (see Loglcal Unit Lock) or the
system itgelf. Using an RN prevents a low priority program from being
interrupted by e higher priority program when executing.

RN is clear (unlocked)

RN is locked locally to caller

[42]

P% i

]

locked globally .

nc RN available now

PN locked locally to other program

RN was locked globally when request was made

used when cne program wishes to use a resource
cooperation of cother programs in the system. This

All programs must agree that a certain RN will be used as a lock or
busy indicator for a given device.

Figure 10-1 illustrates the format of the control word required in the

calling sequence.
o ——— trmm—————
| 15 | 14

| ' |

e ———— o ———
| WAIT ]

| OPTION |

frm e ———— Fem—————
I NO I NO

| |

| W | A

I |

| A | B

| |

| I | 0

| |

| T |

| |

| | T
e ——— e

Figure 10-1.

4 - =t —— 4+

d —— e —— . — s — —

---------- b B B Atk
5 | 4 | 3 1 2 1 1 1 0o |

| | I I | I
----- e ke Sy e
ALLOCATE | SET |
OPTION | DISPLAY |
----- et e e e Ty
c I ¢ I L + ¢ | 6 | L |

| | | I | |

L I L | o | L | » | o |

| | | | | |

E | o}t ¢ | E | o | ¢ |

| | | | | ]

A | B | A | A | B | a |

| I | I | |

R | A | . | R | a | L |

| | | ] I |

I | | [ A |
----- e e ek S S LS S

RNRQ Control Word Format

If more than one bit is set in the control word the following order of

execution i

s used:

l. local allocate (skip 2 if done)

2. global allocate

3. deallocate (exit if done)

p-7



4. local set (skip 5 if done)
5. glocbhal set

6. clear
I'ne system has a certain quantity of resource numbers (RNs) that are
specified during generation. If a number is not available, the program
is suspended until one is free, unless the “no wait’ bit is set. If the
‘no wait’ bit is set, the IEN location is set to zero. If the RN
allocation is successful, the value returred in IRPN is set by the
systen. It has no meaning to the user but must be specifiec (through
IRN) when a lock is requested or the IRN is cleared or deallocated.

The no abort it is used to alter the error return point of the call as
shown in the follcwing example:

CALT, RNRQ(ICODE....)
GO TO error routine
norinal return point

The above special error return is estaclished by setting bit 14 to 1 in
the request code word (ICODE). This causes the system to execute the
first line of code following CALL RNRC if there is an error, or the
second line of code if there is no error.

10-12. RNRD ALLOCATE OPTIONS

LOCAL - Allocate an Kiv to the calling program. The number is returned
in the IRN parameter. The number is automatically released on

termination of the calling progam, and only the calling program can
deallocate the numper.

GLOBAL - Allocate an RN globally. The number is released by a reguest
from any program.

CLEAR - Deallocate the specified¢ number.

10-13. RNRQ SET OPTIONS

LOCAL - Lock the specifiec RN to the calling program. The RN is
specified in the IRN parameter. The local lock is automatically
released on termination of the calling program. Only the calling
program can clear the number.

GLCBAL - Lock the specified RN globally. The RN is specified in the
IRN parameter and the calling program can globally lock this number
more than once. The number is released by a reqguest from any program.

CLEAR - Release the specified number.

If the ki is already locked, the calling program is suspended (unless
the no wait bit is set) until the RN is cleared. If more than one
program is attempting to lock an RN, the program with the highest
priority is given precedence. A single call can both lock and clear

jo-§

y,
—



If a program makes this call with the clear bit set, in addition to
either the global or local set bits, the program will wait (in the
general wait list) until the BN is cleared by another rrogram and then
continune with the Fi clear.

~n entry point is provided for drivers or privileged subroutines of
Tyme 3 projrams that wishi to clear a global (and only global) RN:

LA BRI
JC% SCGRN
eturn point

An examrle on how to uszse ICODE followe:

Assune you wish to get an R assigned so that any program can access
it. You also want an alternate return point in case of error. Bits
4 ana 14 wculd then be set as follows:

169 0008 000 010 C00 = 10020R

10-14. LURSC (Logical Unit Lock)

Allows a projranm to QXﬂlu81vcly dominate (lock) an input/output device.
The calling =scauence is:

IR NETI0ON LUBRY (X)
Ifﬂ’m‘“—nL“nu
NOLUI=aa
CATT, LURD(ICPTH, LUARY,RCLU)

I0rTH centrol parameter (an octal number)
Gx0000-unlock specified LUs
1x0000-unlock all LUs the program currently has locked
0x0001-1lcck with wait specified LUs
1x0001-1lock without weit specified LUs
x (bit 14) is the no abort bit. x=4 to set, else x=0.

nLuaRy an array of LUs to be locked or unlocked.
NOLU naaber of LUs to be locked or unlocked.

This rerquest tewporarily assigns a logical unit to the program. It
srevents 2 nigher priority program from interrupting a program’s use of
device until the device is unlocked by the program that locked it.

ine Logicsl Unit Lock reguest allowes up to 31 programs to exclusively
doonlnate (lock) an input/output device. Any other program attempting
tc use or lock a locked LU will be suspended until the original program
unlocks the LU or terminates.

/0~ 7



NGO ALRORT BIT

£

The no abort bit is used to alter the error return point of this call 7
as shown in the following example:

CALL LURQ(IOPIN...)

GO TO error routine

norinal return point

The above special error return is established by setting the ‘x’ in
IOPTN to 4. This causes the system to execute the first lir= of code
following the CALL LURQ if there is an error, or the second line of
code if there is no error.
UNLOCK
To unlock all owned LUs, the LUARY array is not used but still must be
coded; the program will not abort.
Any LUs the program has locked will be unlocked when the program:

1. Performs a standard termination

2. Performs a serial reusability termination.

3. Aborts W
Note that LUs will not be unlocked when the program performs a  save
resources’ termination.
This subroutine calls the program management subrocutine (RNRQ) for a
resource number (RN) allocaticn; that is, the system locks an RN
locally to the calling program. Therefore, before the logical unit
lock subroutine can be used, a resource number must have been defined
during generation. Only the first 31 RNs can be used for LU locks.
If the no-wait option is coded, the A-register will contain the
following information on return: '

0 - LU lock successful
-1 - no BN avalable at this time
1 - one or more cof the LUs is already locked.

lNote that the calling program may not have LUs locked at the time of
the call unless the no-wait option is used. All LUs locked by the
calling program are locked to the same RN.
10-15. S$PARSE (Parse) , (;/

Allows a program to parse an ASCII string.

)09



Tne calling seguence 1

0
.

L I30rs Cul fFor acdress
N CoUn Character count
AT 3PARS

JC3 SFAKS
DEF ILkisUE
-return-

se of the ASCII

where IRBUE is 33 words 1long. The result of the »a
er par - meter that

string at IBUFA is stored in IR3UF using 4 words p
are set as follows:

o~

VIORD NTRY
1 FLAD YJORD 0 = nULL
1 = NUMDRIC
2 = ASCIT
? VATL.UE (1) 0 If SNULL; Value if Yumeric; first

2 charccters if ASCIT.

3 VALUE (2) 0 If WULL cr numeric else the 3rd
and 4th characters.

59

VALULZ (3) 0 If NULL or numeric else the 5th and 6th
characters.

A5CI1I parameters are separated from nurmeric parameters by examination

of each character. OCne or more non-digit characters (except a trailing
"3" or leading "-") makes a parameter ASCII. This subroutine can parse
up to eight paraneters.

InbUP is initlialized to 0 pefore parsing the string IBUFA.

The 33rd word of IRBUE will be set to the number of parameters in the
string.

The Parse routine ignores all blanks and uses commas to delimit
parameters. 2SCII paraceters asre padded to six characters with blanks
cr, if more than 6 characters, the left most 6 are kept. Numbers may
be negative (leading "-") and/or octal (trailing "B").

FORTRAN interface with $PARS is provided with the following calling
sequence: '

CALL PARSE (IBUFA,ICOWN,IRBUF)

where the parameters are as described for the Assembly Language call
above,

10-16. INPRS (Buffer Conversion)

/01



This routine converts a buffer of data back into its original ASCII

form. The user passes the routine a buffer (IRBUF), plus the number of
parameters in the buffer, that looks like the buffer returned by the .
PARSE routine. INPRS then reformats the buffer into an ASCII string @u/
that is syntactically equivalent (under the rules of PARSE) to a buffer

that may have been passed to PARSE to form IRBUF. The length of the

ASCII string in characters will be eight times the number of parameters.

The FORTRAN calling sequence is:
CALL INPRS(IRBUF,IRBUF (33))
where:
IRBUF is the buffer containing the parsed string
IRBUF(33) is the number of parameters parsed
10-17. $CVT3,S$SCVT1,CNUMD,CNUMO,KCVT
(Binary to ASCII Conversion Subroutines)

Converts a positive integer binary number to ASCII.

The calling sequence is:

LDA numb

CLE or CCE (see text)

EXT SCVT3 e

JSB $CVT3 (
-return- L

Upon return:

E-register=1
A-register=address of result
B-register=value at invocation

SCVT3 converts a positive binary number in the A-Register to ASCII,
suppressing leading zeros, in either OCTAL (E=0) or decimal (E=1l). On
return, the A-Register contains the address of a three word array
ontaining the resultant ASCII string.

$CVT1 has the same calling sequence as $CVTI3 except that on return, the
A-Register contains the least-twoc characters of the converted number.
The number to be converted must be positive.

The FCRIRAN interface with $CVT3 is provided by the following calling

sequence:

DIMENSION IAREAY (3)
(decimal) CALL CKUME  (binary numb,IARRAY)
(cctal) CALL CWUPO  (pinery numb,IARRAY)

where pinary numb is the ygositive binary number to be converted and (w/
IARRAY is a three word array (6 ASCII characters). Leading zeros are

) -+



O

cuppressad.

ihe followin: susroutine converts a positive number to aSCII base 10
anc returne the least two dizits in "1I". The FORIEAN calling sequence

,C‘-
e

T=hCVE(d)

10=-18, HNEESE (essayge vrocessor Interface)
I'rocesses 2l1 operator coamends (see Section I11I1).

The FORTA AL call to the systen message processcr is provided by the
followiny calling sejuence:
T o= 1G85 (IBUFA,ICCUN,LU)

icre IsUEFA contains the 705CIT commend. ICCUS 1s an integer containing
th character count. LU is ortionel.

The value on return will pe zero if there is no reszonse, or the
negative of the character count if there is a message. Any message will
pe 1n IsUra.

It the reguest is U or On (starting in first colunmn) and the first
paraascter is zero or apsent, then the first pareameter will be replaced
by LY. LU is opticnal. If 1t is not suppliec, no action takes place.

10-19., FELLU (Interrupting LU Juery)

A calling sequerce is providea to find the Logical Unit number of an
interrupting device from the address cf word four of its equipment

anple entry. The address of woré 4 is placed in the B-Fegister by
the driver and used in the following secuence:

L ©moma

“his is not necessary if address of E(QT4 has already been placed intc
the 2-regicter by the driver or by another program/subroutine,.

The Asceunly Language calling segquence 1s:

AT ERLU
S LLLU
*+2 OF *+1

fee LUSULI

LOLU will return withs

A-leglister

0 if an LU referring tc¢ the EQT was not found.

]

LU if the LU was lFcund.



B=-Register

l
i

LUSDI

"

AGCII

(ontional paraneter) value is returned to this -
pvarometer oo owell as in the dA=Kegister. (
Y

Uther variations of the

LXT ECLU
JSD EQLU
DEF *+1
STA LU
STH ASCLU

LU=EQLU (LU)

10-20. PRT2,PRT!

c

00" or the LU numoer in ASCII e.g. "16"

2ll are (passed from DVROO cor DVR65):

(Parameter Return)

These twc routines are used tc pass parameters to the program that

scheduled the caller
these parameters with RMPAR,

with wait. The scheduling program may recover

The FRTW routine passes five parameters and clears the wait flag. This
means that the caller shculd terminate immecdiately after the call. P

The Assenply Language calling seguence is:

PRTH
*42
IPRAY
EXE
*42
DEF 5IX

oG OO gm
O | A
x> It B By Bl e~ A

IPRAM 258 5

SIX

The

DEC 6

EXEC,FPRTi

Farameter buffer
Program termination code

FORTRAN calling sequence 1is:

DIMENSION

CALL PRTN (IERAM)

CALL LvzZpC

The PETH routine
¥hen the paramete

(

vy
>4
i

r

IFPRAM(5)

5)

ag
=
<

se
ar

S
e

£
r

\\

our parameters and does not clear the wait flag. {:’
ecovered with RMPAR, the first parameter is

Jo-19

4

J

s



.

meaningless.

The

Asecnily Larouage calline sequence is:
IS D EN T i
Jey PRI
LEF %42
DUE ThRAM
I7ps 50 4
16-21.  .DECT (Indirect Address Subroutine)

Firnds arn indirect address within the calling program’s map.
The Asseuwwly Longuage calling sequence is:

- e
Lal JLRCT
'j'a“‘:‘. ™ rym
PN o WINC 4
FeTOpe A Y ST
DLt ADDE

-return-

The routine returns with the A-Register set to the
ALk, the ii~Realster unaltered, and the [-Register
is usually used wnen ADDR i1s external.

direct address of
lost. This routine

10-22. IFERZ (Lreakflans Test)

This routine tests the creck f£lag and clears it if it is set.

The FCHTRAD calling sequence 1s:
IV (IFBRE(IDIY)) 10,20
where:

10 = branch taken if the break flag is set.

cleared,

Trte flag will be

20 = branch taken if the break flag is not set.

IDLY must ove used tc inform the FORTEAN compiler that an external

funictiorn is being callsd.

e

Ine Assenbly Language calling sequence is:

JEE IFERE
DEF *+1
-return-

The dA-Fejister will = -1 if the break flag is set and =0 if not. The



break flay will always be cleared if set.

10-23. Cur.h, COHR.o (Pirst vore Availlable ltomory)

Finds the address of the first word of available memory for a given ID
tegment.

The Assembly T.anguage calling seguence is:

EXxT COR.A
LDA IDSEG
JSE COR.A
-return-

The ID segment address is loaded into the A-Register and the rcutine
is called. On return the A-Register contains the first word of
available memcry (MEM2 from ID). Note that on entry into a segment,
the A-Register contains the segment’s ID seqgment address.

COR.B finds the high address +1 (first word of available memory) for
main programs. This address is the same as that returned by COR.A for
non-segmented programs. For segmented programs, this address is the
high address + 1 of the largest segment. The ID segment address of only
a main program must be passed to COR.B in the A-register.

The Assembly Language calling sequence is:
EXT COR.B
LA IDSES ID segment address of a main program _ ,
JSg2 COR.E s
-return-

Upon return:

A-register = 0 if normal return
= -1 if an error return, the B register is meaningless

]

B-register high address of main program (if it is not segmented)

or the largest segment +1.
P.B makes an error return if the ID segment address passed to it is
at of ashort ID seguwent.
10-24. IDCET (Retrieve Program’s ID Segment Address)
Fetrieves the IN segment zddress of a specified program.
The FOPRTRAN calling seguence 1is:
IGENG = ISGUT(NAME)

where:

RN

{
I25CC will 2e set oy the subroutine to the referenced program’s (:/
I seagment or to § if the program does not exist. '

Jo /b



(

O

NAME i & threa-word (five-character) buffer with the program name
in 1it.

"

The Assencly Tanjaage calling seguence is:

J32 IDGET
SRR
DO AN

DANE B8C 2,PROC Set aside three words of sto-age
containing ASCII egquivalent of

PROChE.

Op return, the followinyg registers are set as indicated:

A-rejister I segqment addresg, or 0 if not found

”n

fF-register = 0 if program found, or 1 if not found

i

]
[e]

3-register

10-25. TvwvAL (Current Time)

Feforrets and returns the time in milliseconds, seconds, minutes,
hours, and the day.

The FORTaaN callingy scguence is:

CALL TwVAL (ITH,ITMAR)

where:

I°Tis is trhe two-word negative time in tens of wmilliseconds. This
dousle-word integer can be ootained from the system entry
20int $TIHE or the time values in the ID segment.

IThAR  is a five-word array to receive the time. The array is set
ug as:

tens of milliseconds

seconds

minutes

hours

current system day of year (not related to call values)

10-26. GETST (Recover Parameter String)
The routine CETST recovers the parameter string frcm a program’s
command string storage area. The parameter string is defined as all

the characters following the second comma in the command string (third
comma 1if the first parameter is NO).

Jo-(7



The Assemoly Lanquage colling seguence is:

EXT GETST
Js53 S8TST Call to subroutine
DEF RTN Feturn address
DEF IDUFR Puffer Location
DEF I3UFL 3uffer Length
DLF ILOC Transmission Log
RTH return point Continue execution
I2UFR P3S n suffer of r words
IBCKFL GEC n (or =2n) Same n; words (+) or characters (-)
I1L.OG HOP Errcr informaticn

Upon return, ILOG contains a positive integer giving the number of words
(or characters) transmitted. The A- and B-Registers may be modified by

GETST. Note that if RMPAR is used, it must be called before GETST.

when an odd nuaber of characters is specified, an extra space is
transmitted in the right half of the last word.

Tnis subrcutine performs a function similar to an EXEC 14 call.

10-27. IFTTY (Logical Unit is or is Hot Interactive)
Ascertains whether a logical unit is interactive or not.
The calling sequence in 2Assembly Language is:

EXT IPTTY

JsSB8 IFTTY

DEF RTN

CEF LU Logical unit being tested
RTN return point

The FORTRAN v callingbsequence is:
INT=IFTTY (LU)

where LU 1s the logical unit being tested.

Lpon return:

INT=A-register = -1 it logical unit LU is interactive
0 if logical unit LU is non-interactive

/ = upper byte is the driver type (word 5 of EQT
B-register< table entry bits 8-13)

\ lower byte is the subchannel number

jo-1%

P



10-2%, LOCLU (keturne LU of Terminal that Scheduled Program)

LOGLU 1s a sudbrcoutine that returns the logical unit number (LU) of the
terninal at which the currently executing procram was scheduled.

The callinjy zequence in Assenily Language is:

LY LOCLU

J&s LOGLY

BLEF 1T

DEE TDRUMS

PN return polnt
he calling sequence in RTE Fortran IV is:
LU=LOCGLYU (IDUXY)

Upon return:

LU=A-register

LU number of device at which program was scheduled

L-register = ASCII LU number
IngTY = reserved and riodified py the subroutine

Comments:

LOGLU will return the LU nuxocer of the conscle from which the currently
executiny projram was scheduled. This LU number is passed down from the
Father orcgram to the Hon prograin when one program schedules another
progran for execution. If the program was scheduled by interrupt or
from the time list, the scheduling LU will be LU 1, the system console.

10-29. CEMAP, JEATIO, oMAP, BEFAST (Extended Memory Area (EMA))sS

The subroutines .LDHAP, JEMAIO, MMAP, and EMAST are system library

sui.routines that handle Extendec Memory Areas. A complete description
of these subroutines is provided in the Memory Management section of
this manual.

/0//7






| SECTION XI |

| |-_-_-”----n-__~~_-_-_¢--a—~_-‘

| DBUGR INTERACTIVE DEBUGGCING |

DBUGR is 2 Hewlett-Packard utility subroutine used to interactively
check prcecarams for logical errors during executicn. Using DBUGR, the
user may examine and modify memory, examine and modify registers, set a
preakpoint and trace instruction execution. In the follcing discussion,
only the most freguently used DBUG functions are described; refer to

the DBUCR kkeference Manual (92067-90005) for the complete range of

DBUGR capabilities.

11-1. CALLING D3UGR

DLUGR can be automatically appended to a program at load time by calling
the LOADR with the following command parameters:

*RU,LOADR, ,filename, ,DB

where CB instructs the LOADR to append DBUGR onto the relocatable code
in f£ile filename. Eefer to the LOADR section in this manual for more
information on the LOADR parameters. This command will also handle
segmented pregrams, though there are some special procedures involving

creakpoints in segmented programs. These are explained in the section
on oreakpoints.

When a program with appended DBUGR is subsequently run with the
command: :

*RU,proygram

DLUCK will be entered and the user will be able to give any legal DBUGR
command, DBUGR calls the system subroutine LOGLU to obtain the logical
unit from which the program was scheduled. It then uses this logical
unit for all I/G. Refer to the Multi-Terminal Monitor section in this
manual for more information.

DEUGR 1s also callable from Assembly Language and FORTRAN programs
The Assembly Language calling seguence 1is:

n

NAD Lrea
pxr LBUGR
S5 DBUGR call to DEUGR
CEF RTH address of return pcint
DLEF LU optional pointer to LU number

(i\\ RTN =-return point-
e / .

/1=



LU BSS 1 interactive LU DBUGR will use for I/0

The FORTRAN calling sequence is: e~
CALL DBUGR(LU) L
or

CALL DBUGR

according tc whether the optional LU is passed in as a parameter.

In either Assembly Language or FORTRAN, if the optional LU .s not
passed in, DBUGR calls the system library subroutine LOGLU to determine
the interactive LU to use for I/0. LOGLU returns to DBUGR the LU number
of the user’s interactive log device. If none exists, LU number 1 is
returned specifying that the system console is to be used.

11-2. ENTERING DBUGR

When DEUGR is entered, it prints the following message on the
appropriate LU:

-START DBUGR

The user is now conversing with DBUGR and any legal command may be
entered. ‘

A
All DBUGR operations are conducted at the assembly language level. A {,

. . : C s N
load map of the program is essential. An assembly language listing of .
the program is also necessary if debugging a program written in a high
level language.

11-3. DBUGR COMMANDS

The following paragraphs give a concise explanation of the main

features of DBUGR. Throughout these paragraphs, the conventions

described in Table 11-1 apply.

Table 11-1. DBUGR Command Conventions
_________________________________________________________________ |

| | |

| SYMBC | MEANING I

e e e e e e |

| | |

! \ | Escape key (altmode key) |

I ! |

e e e |

I ! I —
I _ | current position of the cursor | (;/



carriage return

—
®
-

—

| italics | words and nuimbers to be supplied by the user

11-4. DZUGR MODRES

DBUGR operates in one of four modes - symbolic, constant,ASCII, or
addreses. DDBUGKR uses symbclic mode when it is first entered.

In sympclic moce, the contents of menory are inverse-assembled and
displayed as an ogcode and a imemory reference (if it is a memory
reference instructicn). The user types "escape S" to enter symbolic
rode as follows:

\& -

In constant nmode, the contents of memory are displayed as octal
constants. The user tyvres "escape C" tc enter constant mode as follows:

\C -

In ASCII mode, the contents of memory are displayed as two ASCII
cheracters. The user types "escape H" to enter ASCII mode as follows:

\H -

In address mode, the contents of memory are displayed as an offset to
a previcusly cefined lapel. DRBUGR will use any label that precedes the
the contents by less than octal 11, or any single character 1label
otherwise. The user tvpcs "escape A" to enter address mode as follows:

\& -

when DZUGK 1s in a particular mode, the mode can be temporarily switched
wher: examining a merory location. The contents of the memory location
will then be inmediately displayed again in the tempcrary mode. With

the curscr still on the displayed line of the memory location being

examined, type one of the following symbols tc temporarily enter the
particuler mode desired:

exclamation pocint - temporary symbolic mode
= equals sign - temporary constant mode

single qucte - temporary ASCII mcde



- underscore - temporary address mode

11-5. EXPRLSSIONS ANT TEEME

Expressions are used tc specify memory locations to be examined. An
expression consists of cne or more terms combined with operators as in
the following example:

AA+10

A term may be a previously defined symbol, a number, or certain special
symbols preceded by an escape key (denoted in the text by a reverse
slash (\)). The following examples are all terms:

ABC
SYMBOL
-32768
1005
\M

Legal operators are the following:

+ plus operator

blank alternate plus operator
- subtract operator

’ comma - inclusive or

11-5. SETTING A LAEBEL

DGUGR can reference memory locations relative to a label. A label
consists of one to six alphanumeric characters, the first of which must
be alphapetic. To equate a label to a particular memory location, the
user must first examine the memocry location. After DBUGR has displayed
the contents of the memory location, the label is entered followed by

a colon (:). DPRBUGR then eguates the lakel with the examined address.
For example, the label § is equated with memory location 50234 as
follows:

50234/ LDA 50277 S: [CR]

Location 50237 may now be referenced oy typing:

5+3/

11-6. EXAMINE MEMORY

To examine the contents of a memory location, simply type in an
expression that evaluates to the memory location to be examined

followed by a delimiting slash (/). For example, one way to examine
memory location 50234 is:

50232+2/

A



CEUGR will print cut on the same line the contents of the specified
memory lccation in either octal or symbeclic form. The example above
might display:

50232+2/ LDA 50277 -

informing the user that location 50234 contains a LDA instruction
referencing memory location 50277.

To examine the next sequential memory location, simply press the line
feed (LF) key or control J. Continuing the above example, an LF is used
to display the contents of memory location 50235:

50232+2/ LDA 50277 [LF]
50235/ ADA 50400 -

11-7. M™MODIFY MEMORY

To modify the contents of a memory location, the user must first opven
the memory location by examining it. After DBUGR displays the contents
of the mewmory location, it is ready to insert new contents into the
memory location examined. If an assembly language instructiocn is now
typed in, DBUGR will assemble it and insert it intc the memory location.
If an octal constant is entered, DDUGR will insert it directly into the
mencry location. For example, to modify the contents of location 50234:

50234/ LDA 50277 CcA Cisplay location 50234, change to
CCA instruction
50234/ CCA [LF] Dicplay new contents of 50234, use
line feed to examine 50235
50235/ ADA 50400 100 Charge contents of 50235 to 100 octal
50235/ 1040 Display new contents of location 50235

11-3. LWAMINE FEGISTERS

The A and [ registers are addressed as memory locations 6 and 1,
respectively. The overflow register, the extend register, and the X and
Y registers reguire special procedures for examination.

ewmory location ¥+1 may be thought ¢f as containing the overflow

rejister and the extend register, each of which is cne bit in length.
These bits wmay he examined by tyving "escape M+1/" as follows:

\“+1/
DRUCR will respond on the same line with an octal digit between 0 and 4

that is the status word. This octal digit may be broken down intoc two
binary nits (B80) which are interpreted as follows:

B (oit 1 of \M+1) = 0 extend register is clear

1 extend register is set 5;”
/I~



O (bit 0 of \M+1) = 0 overflow register is clear
1 overflow register is set

The user may modify these bits immediately after examining them by
typing in the new octal digit to replace the status word.

Memory locations M+3 and M+4 may be thought of as containing the X and

Y registers. The X-register may be examined by typing "escape M+3/" as
follows:

\i"+3/

The Y-register may be examined by typing "escape M+4/" as follows:
\ii+4/

DBUGR prints out the contents of the X or Y registers on the same line.

They may then be modified if desired. Note that the X and Y registers
are a full 16 bits wide. For example: '

0/ 000010 [CR] user types 0/ to examine A~-register
\ii+1/ 7 6 [CR] user clears the overflow register
\M+3/ 677 0[CR] examine and clear the X-register
\M+4/ 50 -1[CR] change the Y-register from octal

50 to 177777 (two’s complement of -1)

11-9. EXBCUTE PROCRAM

To proceed with execution of the user program when DBUGR has control,
the user types "escape P":

\P

Upon initial entry to D3UGR, execution proceeds at the transfer
address of the program. When a breakpoint is encountered, execution
resuines at the instruction where the breakpoint was set.

when proceeding from a breakpoint, the user has the option of typing:

n\P

CRUGR will then execute the breakpoint octal n times before it will
break at it.

If the proceed instruction is given and there is no breakpoint in the
pregraa, DLUSR displays the following message before control returns
to the executing proyram:

END D3UGR

The user may instruct DBUGR where to resume execution of the program by

/1~

&



typing the address cf the instruction to be executed, followed by
"escape G". For example, to resume program execution at location 50234,
type:

(i, 50234\G

11-10.  BEEAXPOINIS

when an instruction with a vreakpoint is encountered, control is
transferred to DBUGR iumediately prior to the execution of the
instructicn with the breakpoint. DBUGR displays information about the
state of the wachine, and the user may then enter any lcral DBUGR
coinmand.

A breakpoint is set at an address by entering the octal address
followed by "escape 2". For example, to set a breakpoint at 50234,
type:

50234\B

Cnly one breakpoint ig allowed at a tiwe.

A breakpoint that has been set is cleared either by resetting it to a
new memcry location, or oy typing "escape B" at the beginning of a line:-

\D

If the executing program reaches a breakpoint, control returns to DBUGR.
(i) DBU3SR then displays the following information about the state of the

rachine:

ADDRESS(INSTRUCTION) A-REG B-REG X-REG Y-REG STATUS -
where:

ADDRESS 1is the address of the breakpoint

INSTRUCTION is the contents of the ADDRESS

A-FEG,E-REG,X-REG,Y-REG are the contents of the registers

STATUS 1s the status of the interrupt, extend, and overflow bits
as explained in the section on examining registers

For example:

50234\

[sy)

set breakpoint at 50234
\F ' proceed¢ with execution

U234 (LDA 50277) 77 11 177776 3 3 \P
breakpoint information displayed, user types \P to proceed

(i\\ ; 50234(Lca 50277) 77 0 17777¢ 3 3 [CR]
J breakpoint encountered again; E-REG has changed to 0

JII-7



1/ 0 11[CR] change B-REG to octal 11

\P proceed P
LY

When a segmented program has been loaded with the command:

*RU,LUADR, ,filename, ,DB
use the following commands to control the setting of breaknoints within
segments:

["AJED break at entry to all segments

[("NIEB break at entry to no segments

[seglEL break at entry to seg
To set a breakpoint within a segment, enter the following command:

addr [seq]EE
where:

addr is the address within the segment at which the breakpoint

is set.
V2N

seg 1is the namne of the segment in which the breakpoint is set. '& )
The breakpcint will be set when the segment is loaded into memory.
Therefore the current breakpoint will remain in effect until the
segment is loaded. If seg is in memory at the time that the segment
break command is entered, the current breakpoint is cleared immediately.
When a segment load clears a breakpoint, DBUGR will break at the start
of the new seginent and print the following message:

SEGMENT seg EREAK

~=-BREAKPOINT INFORMATION--

addr BREAKPOINT REMOVED
where:

seqy is the name of the new segment

BREAKPOINT INFORMATION is the normal breakpoint information

adadr is the address within the o0ld segment at which the

breakpoint was removed

DBUGR does not check the validity of the segment name. The segment name 4;;
may not begin with the two characters quote A ("A) or quote N ("N).

This is tc avcid confusicn in setting the breaks in segment entry points

/8



as explained above.

BRUGKR will not allow woreakgcints pelow the memory protect fence or
outside the user’s partition. An atteupt to set such a breakpoint will

cause a aemory protect ("MP?") or a dynamic mapping ("DM?") error to be
prirnted.

There are certain legal instructions that DEUGR cannot execute without
cavsing wmemory protect (MP) or dynamic mapping (DM) errors. The
instructions "JSi L¥EC" and "JSB SLIBR" are two typical examples. When
such a situaticn arises, DPUGR will not allow execution of the
inctructicn, ancd prints out a message of "DM?" or "MP?" depending on
the error that execution of the instruction would cause. To execute the
instruction, simply move the breakpoint and proceed.

11-311. TEACING

when LEJGER has control, the instructions of & program can be traced
(single-cstepped) by typing "escape T". After each instruction is
execurtod, the same informetion about the state of the machine will be
displaved as after a Lreakpoint. For example:

50234\RB set a breakpoint at 50234
F proceed
50234(LDA 506277) 77 11 177776 3 1 \T

breakpoint information displayed, start trace

50235(ApA 501¢1) 100 11 177776 3 7 \T
breakpoint irformation displayed, continue trace

50234 (LDB 50282) 107 11 177776 3 7 -

A specified numoer of instructions can alsc be traced by specifying an
octal numper before the trace command. Tyce

n\7
to trace octal n instructions and halt.
waen DoUGKR attempts tc trace an instruction that will cause a memory
protect cor dynamic mapping violation, an "MP?" or "DM?" error will be
grinted. If the insctruction is legal, put a breakpoint on the

instruction tc which control will return and then proceed.

Note: Frivilegec routines cannct pe traced.

11-12. DLBUCGR ERRUE MISSAGES

il



DEUGR recognizes certain errors and prints an error message. Table
11-2 lists the errors and their meanings.

Table 11-2.

OBUGR Error lMessages

o ———— - — ——— - -~ —— T ——— ] —— — T ———— - - - —— - O G~ " - —— —— G W~ — " W w— -

———————_— —— - o—— - - —" Tt~ - - ——— e W G — — — e G G Gu W - D GO G - > W -

The user pressed the RUBOUT key tc erase a typing
mistake DBUGR ignores any prior partial express 'on.

——— - — -~ - — - —_- - - - - —— -~ - —— - —— — - — - —— - — - G - . - — - - -

The user entered an unassigned control. Any prior
expression is ignored. Input error in special mode.

The symbol last used is undefined, and a definition is
required. The entire preceding expression is ignored.

- ——— o — G- — -~ - -~ W - ——— T — t——————— — = S —— —— -~ — - -— T - — - — - .

Page error. A memory reference instruction referenced an
address not in the current page or the base page. The
expression is ignored. DBUGR s conception of the "current
vage" can be changed by examining any location in the
desired page.

There is a breakpoint or trace set for an instruction
that if executed by DBUGR would cause a memory-protect
violation to cccur. Move the breakpoint andé proceed.

O - —— T ———————— - - ———— - —— - ——— - -~ — - " ;> - — - -~ Vo SEn  — e W W wan S G S o w—

There 1is a breakpoint or trace set for an instruction
from which DBUGR cannot proceed. Move the breakpoint
and proceed.

—— - - —— - —— ' - St~ —— -t~ - " . S G G G G ———— - ——t—; —— " - -~ —— Y - — - -

DDUGR is attempting to access a memory location that is
not within the user’s partition.

DBUGR 1is attempting to overload, trace, or set a
oreakpoint within DBUGR.

11-13. DBUGR EXAMPLE

The following example demonstrates a typical session with DBUGR.

*RU ,PROG

START DBUGR

(11

~



16002/ CcCa M:
23456/ NOP S
S+5\B

\P

SEGMENT SEGCl 3REAK

c (0) 17542 5608 17702
5+5 BREAKPOINT REMOVED
S+5[SEG2]\R

\P

SEGMENT SEG2 BRIAW
S+5  (0) 17542 5606 45 22

M+50\R

22 6

4

1777[LF]

72 5

54 72

\I
U450 (LDA M+700) 0 2234 54 72 5
i1 706/ ALF,ALF 1727
v+701/ 0 [CE]
+700/ ALF,CLY,SLA,ALF [CR]
2T
G450 (LDA 4700) 0 2234 54
BHS1 (STA M4701) 1777 2234
EAR

SEGMENT 355564 BREAT
S (0) 17445 5562 7422 3322
5450 BREAKPOINT REMOVED

\P

E+10 (Jsi2 112,1)
["a1\i

\P

. ) ‘
TH0 DBUGE

24 0 177777 55

examine location 16002 in the main
program; equate M

examine location 23456 in the
segment; equate S

use escape B to set a breakpoint
in the segment

proceed

since a breakpoint was removed,
a break 1is executed upon entry
tec the segment

set a breakpoint within SEG2

proceed

set a breakpoint within the main

set & future breakpoint in SEG4

proceed

break in main

examine location M+700, temporary
octal display,change contents to 177
next locaticn autcmatically displayed
re—examine location M+700

trece two instructions

breakpoint instruction is executed

5 \P next instruction is
executed; proceed with execution

a segment breakpoint was remcved, sO
break upon entry to the segment

6
clear segment breakpoint

proceed



®



O >

| | MEMORY AND I/0 RECONFIGURATICON |

The ability to reconfigure the I/0 and memory assignments during system
boot-up without going throujh a complete, new system generation is a
feature of the RTE-IV operating system. The reconfiguretion cption is
execrcised py first setting bit 5 of the S-register durina system
boot-up. Other S-reglster settings (described below) posipone completion
of the pcoot-up process and schiedule an interactive Configurator program
that performe the desired I/0 and/or memory reconfiguration.

1/0 reconfiguration ic perforimed by user resassignment of I/0 octal select
codes to devices other than those assigned at system generation time.

dlemory reconficquratior includes changing the size of the System

Available Memory (SAl) extension, redefining user partitions, modifying
Lrogram pajge requirements and assigning programs to partitions. Bad

pages in menory (pages with parity errors) can be avoided by using the
Configurator to redefine the SAM extension and user partitions around the
had pages.

I1/C and memcry reconfigurations (either or coth) can be made permanent by
changing the system on the disc.
@Ll. SCHEDULING THE COWNFIGURATOR FROM ROM
The disc oot Extension can be loaded into memory from the disc using
cither the DLisc Loader ROM or the Bootstrap Loader. The example given
below assumes the system booct-up will be performed using the 12992B
RPL-couwpatible 7905/7906/7920 Disc Loader ROM, and that the Boot
Extension resides on physical track 0, sector 0 of the system disc.
Begin the beot-up vy performing the following steps:

1. ©Select the S-register for display on the computer front panel.

2. rress CLEAI DIGPLAY

3. S3et the S-register pbits as follows:

nits I'nter

— o ——

0-2 Surface numwer of the disc where the
RTE-IV system subchannel starts (surface
nupbers start at 0).

3~-4 0 (reserved).

5 1 to specify reconfiguration is to be

[2-]



(performed, A HLT 773 will be issued at
the end of the load.

o-11 Uctal select code of the disc. N
12-13 1 to indicate a manual boot from
the S~register.
14-15 Loader RC: selecticn (number of the
EOM cell containing the Disc koot
Loader).
4, Press PRESET, IBL and RUN to load the contents of the Disc Loader
POW., 2 successful load will be indicated when the HLT 77B occurs.
5. Following the HLT 778, set the S-register as follcws:
Bits Enter
0=-5 System console octal select code if either
the select code or device type 1is different
from generation specification; otherwise, 0.
6-11 System disc octal select code if different B
from generation specification; otherwise, 0. ;‘ )
\
15 1 to specify reconfiguration of I/0 and/or

memory assignments.
6. Press RUN to perform reconfiguration processes.

&/
I/-z .  BOOTSTRAP LOADEER

If the Bootstrap Loader is used to load the Boot Extension into memory,
set the S-register as decribed above in Step 5 when the HLT 77B occurs.

Set the P-register to 100 octal and press RUN to perform reconfiguration.

P

S=3. CONFIGURATOR PROGRAM

4

The Configurator works interactively with the user to make specified
changes to the current I/0 and memcry configurations. Reconfiguration is
werformed in accordance with user responses to a series of Configurator
prompts and cueries cutput on the system console. When reconfiguration

is couapleted, the Configurator queries whether it is to be made permanent.
Boot-up of the RTE-IV system is then completed in accordance with the

’

user s reply. (:;

The Configurator is divided into two programs: SCHFG and $CNFX. SCNFG is
a module located at the end of the system modules. After configuration has

[2-2



C

ccanpleted, the memory @rea occupied by SCNFG is allocated to SAM. SCNFX
is used tc reconfigure memory and is a Type 3 disc resident program,
pbrought into the user partition area from disc by the $CNFG program.
SCNFG changes $CiF:’s program nae to ",,,,," and therefore $CNFX cannot
ne executed on-line,

The Confiyurator pregram [irst checks the contents of the S-register. If
cit 15 is sct, I/V and memory reconfiguration are performed. The systenm
is reconfigured in acccrcéance with any specified new disc and console

select codes. The Configurator then loads the driver partitions, memory

resident liovrary and wmemory resident programs (if they are defined for the
system) into mewmcry.

If bit 15 is not set in the S-register, control is given to the operating
system.

Feccnfijaraticon is perforined interactively by using the system console and
list device. Note that the standard method of getting system attention by
pressing any key on the system ccnsole will not work during reconfiguraticn,

since the system is nct yet completely initialized. The bootup procedure
must therefore be restarted if any equipment I/0 errors occur (e.g., a
device not ready or a parity error).

13-

6—4. CONFIGURATOR HALTS AND ERROR MESSAGES

Various halts and Configurator error messages may occur during system
ooot-up cor reconfiguration that require corrective action by the
cperator., talts are displayed on the computer front panel. System
boct-up and configuration HLTs, their meaning and required operator
action are itemized in Table 9-1 at the end of this section.

Whenever the user enters an invalid response to a Configurator prompt
or guery, the Configurator will issue an error message in the form

CONFIG ERR xx

where xx 1s a Configurator error code as defined in Table 9-2 at the

end of this section. Following the error message, the Configurator will
usually repeat the prompt or query and the user need only enter the correct
correct response. In the reconfiguration procedures given below, only error
recovery procedures requiring further action will be described in text.

12~

‘q-S. RECONFIGURATION PROCEDURES

The Configurator begins the reconfiguration process by first displaying
the message

START RECONFIGURATION

on the system console, and followed by a set of queries to which the
user enters responses on the console keyboard. The Configurator will

redisplay a query if the user response is not what was expected. The
configurator next displays the query

LIST DEVICE LU#?

19 -3



Enter a Logical Unit number to which the Configurator can direct
listings or press the space bar and RETURN key on the console keybocard
for the default case, which is the system console. Entering a list device

other than the system console causes the Configurator to display the
following message:

®

LIST DEVICE SELECT CCDE#?

Enter a list device select code or press the space bar and RETURN key for
the default case, where the default is the list device select code '
configured into the system.

If the entered list device was not the system console, the Configurator
displays the query

ECn0? (YES/NO)
Enter YES to have all output to the list device echoed on the system console.

1>+
A-6-  1/0 KuCONFIGURATION STEPS

I/0 reconfiguration is performed by assigning the Interrupt Table and trap
cell values for the current select code to the corresponding entries for
the new select code.

The Configurator first prompts for I/0 reconfiguration by displaying a
list of the current I/O configuration, beginning with octal select code 10 P
for the operating system, in the format: & J

el

CURRENT I/O CONFIGURATION:

/ EQTyy \ /PNAME \
SELECT CODE xx = TBG TYPE nn
\ PRIV I/0/ \nnnnnn/

where:

X% = octal select code number ranging from 10 to 77.

EQTYy = EQT entry number

TBG = Time PRase Generator

PRIV I/0 = privileged I/0 card

TYPE nn = equipﬁent type code

PNAME = naite of program'to be automatically scheduled
nnnnnn =

absolute instruction to be executed upon interrupt; for
example, a JSP LINK,I where LINK contains the entry

point address. ; | .q:;

The CURRENT I/0 CONFIGURATION data is automatically displayed to provide

1>~




a basis on which to make decisions regarding reconfiguration. If the
systen disc, system console or the list device were assigned to a new
select code, they have already been configured in memory and must NOT be
(j“ reconfigured during I/C reconfiguration.

Following display of the current configuration, the Configurator then
displays the guery

I/C RECONFIGURATION? (YES/NO)

Enter NG to ovypass 1/0 reconfiguration. The Configurastor will skip all
further I1/0 reconfiguration proapts and begin prompting for memory
configuraticn entries (see below).

Lnter YLS if I/0 is tc be reconfigured. The Configurator program will
then display the message

CURBLNT EELECT CODE#,HEW SELECT CODE#?(/E TC END)

where the hyphen (-) promwts entry of the current and new select code
pairs. The current and new select codes response must be in octal and
nust vary vetween 10 and 77 octal, in the form

XX, ¥YY

followea Py & carriage return, where xx is the current select code number
and yy ie the new select code nuiaber. The Configurator’s hyphen prompt
will be repeated after each successful entry until a /¥ is entered to

(i) terminate the list.

3 privileged 1/0 card’s assignment can be reroved by entering the current
select code number of the privileged 1/0 card follcwed by zero, in the
for

xx,0
as a special case, where select code 0 is only used to remove the

privilegecd I/0 card’s assignment. A new value of 0 will be assigned to
the privileged I/C card.

CAUTION

correctly if the privileged 1/C card

l l
| |
l I
I A privileged driver will nct work I
! I
| has peer removed from the system. i
I l

A srivileged I/C card can be added tc a system that does not have one
by entering the specificaticn

TN
C

Xx,PI

[2-5"



where xx 1is the specified select code in octal, and PI assigns the

privileged I/0 card to select code xx.

If a /R is entered, I/C reconfiguration is
CURRENT SELECT CODE4, HEW SELECT CODE#? (/E

If the current select code number entry is
response, the last entry is taken as valid
ignored.

restarted with display of the
TO END) query. '

repeated in more than one
and the previous entries are

Following entry of a /E to terminate select code changes, the Configurator

displays the query

NEW I/0 CONFIGURATION PERMANENT? (YES/NO)

Enter YES to modify the system on the disc

to the new 1/0 configuration.

Enter NO otherwise. If it is desirable to restart I/0 reconfiguration for

any reason, enter the request

/R

and 1/C reconfiguration will restart by ancther display of the list

CURRENT I/0 RECCNFIGURATION:

The list will contain what the I/0O confiquration was changed to during

the reconfiquration just completed.

CAUTIONS

has not been reassigned, the

permanent.

It is strcngly recommended that the system
subchannel of the disc be backed up before
making I/O reconfiguration permanent.

If a select code has been given a new
assignment and its current I/0 device

cannot be added to the system at a later
date if the new I/0 configuration is made

If a device has multiple select codes,
meke sure that all select codes are moved
and kept in the same relative order.

Reascigning some devices to empty I/C
slots may cause unexpected results.

I/0 device

— v — —— — o e — — —— o— ——— T c—— —— —— v atv— oam—— ———




4*7. MELORY RECONFIGURATION PROCEDURES

after the I/C reconfiguration phase is either bypassed or terminated,
the Configurator will display the following statement and query:

CURRENT PHYSICAL MEM SIZE: xxxXX PAGES
MEM RECONFIGURATION? (YES/NO)

Enter NG if memory reconfiguraticn is not desired. The Configurator
will then transfer control to the operating system after displaying
the message

RECONFIGURATION COMPLETED

Enter YES if memory is to be reconfigured. The Configurator will then
display the query

PHYSICAL MEM SIZE? (#PAGES)

Enter the desired total number of memory pages, between 48 and 1024
(decimal).

~
/5—8. EXCLUDING BAD PAGES

The Configurator program can be used to redefine the SAM extension and
user partitions to exclude any bad pages within these areas. Each user
partition must be a contiguous block of memory; therefore, user partitions
must be defined on blocks of memory between the bad pages. Bad pages in
the system area, driver partitions and the memory resident partition
cannot e avoided.

The Configurator displays the query

DEFINE BAD PACES BEGINNING AT PAGE xxxx (/E TO END)

where the hyphen (-) prompts for the decimal number of a bad memory page.
The hyphen is regeated after acceptance of each entry until a /E or 100

Lad page numbers are entered, terminating the list. ( The Configurator

will accept up to 100 bad mewory page entries.) The bad page specifications
entered can range from xxxx (starting at page 0) to the maximum page number
in physical aewory and must be entered in an increasing order.

It /R 1s entered in reponse to the hyphen prompt, the Configurator will
redisplay the the Juery

DEFINE BAD PAGES BEGINNING AT PAGE xxxx (/E TO END)

anc the entire list of bad pages must be reentered .

When a /E is entered either to terminate bad page entries or bypass the

~entire phase, the Configurator displays the following information:

CURRENT SIZE OF SAM
DEFAULT: xxxxx WORDS

/27



CXTENSION: yy PASES
GAY EXTEN3ION STARTS AT PHYSICAL PAGE xx
MAX PAGES AVAIL FOR SAM EXTENSION: xXx

A ™
The number of words displayed for default SAM are the decimal number of kw/
words assigned to the first oblock of SAM.
]2 et
-9.  SAM EBXTENEIOH RECCNFIGURATION
The Configurator next prompts for any desired change in the size of
SAM extencsion by displaying the guery
CHANGE SAM EXTENSION? (# PAGES/" " CR)
Press the space bar and RETURN key (the default case) if no change is
desired. '
Fnter the decimal numnber of pages desired if the SAM extension is to be
changed. The number of pasges can vary from 0 (which removes SAM extension)
to the maximum pages available for the SAM extension. Note that this count
must not include any had pages that fall within the SAM extension (see
anove) .
The Configurator sete up the System Map to avoid bad pages in the SAM
extension regardless of whether or not a change was reguested.
If the specified SAi extension extends beyond the size of physical
wemory obecause of bad pages within this area, the Configurator P
displays the message ‘ &\;
CONFIG ERR 12
CHANGE SAM EXTENSIOW? (# PAGES/" " CR)
Enter a smaller number of pages for SAM extension size. The Configurator
allows SAl extension to be divided up into a maximum of five blocks of
memory between bad pages. If the number of pages in SAM extension recuires
c¢ivision into more than five blocks, the Configurator displays the message
CONFIG ERR 22
and the guery is redisplayed. Enter a smaller size of SAM extension.
2"
’4-10. CHANGING PARTITION DEFINITIOWS
The Configurator next disglays a list of current partition definitions
is displayed in the format
CURRENT PART 't DEFINITIONS:
, / +RT\
PART ‘il nn = pp PAGES ,RG ,R
\,S / | |
where {::
nn = the partiticn number

1> =Y



current

CURREUT PART
REAL
T) XVAJ l'_J

PACKGE

PNAML

nn

The

JAK PROGEAH
W/C0T
“//\,'\

wW/TABLE II:
AAK §

\,\JL"L‘!}U L‘v .

PAGE
J\AJLJC’

DEY I{vL PART

~T

pp = is the numbor of pages in partition nn
(i’ 1T = & real-time partition
) =0 = a ovackground partition
5 =% a cuobpartiticn
I' = a reserved partition
following the definiticn list, the Configurator next displays a list of

vartition rejguirements in the form

M REGMTS:
TIMi
v

e
A 9 A }:;f,‘)

[£] [PART ‘N=nn]

OUND

oy

X< PAGES [*][E] [PART "N=nn]

the real-time or backaround program name

indicates an EfA (Extended lemory Area) progran
indicates

the background program does not include Table Area II
(i.e., &

Type 4 program)

is the numper of the partition into which program PNAME may be
assigned.

Configuretor then displays the following information:

SIZE:
1\)1\:’. XX
KX
X
OF PART ‘NS
44 XAI F‘\l I(\"t.x .
‘us F

alel

CON FAGES
PAGES
PAGES
XX
XX

X XXX

o~y

UR

4PAGES,RT/RC/S (, R)

PARY "N

where

wa

MAY PROCGRAM

SIZE

»

X7

maximum logical space a program may occupy.
However, the partition size may be larger
than the stated maximum if the partition
will be used for EMA program execution.

127



MAX # OF PARY NS = decimal number partitions that can be defined
in memory.

PAGES REMAINING = decimal number of pages available for defining
user partitions (including bad pages that
may have been listed earlier).

#PAGES,RT/B53/S (,R)

indicates the reguired format for user entries

in response to the PART'N x? prompt described
below.

PART ‘11 x? = Configurator program prompt askinc the user
for the size (in pages) and format for the next
partition to be defined.

NS

If the maxiamum nuwmber of partitions was defined as 0 during generation time,

the Ccnfigurator skips the rest of memory reconfiguration and displays the
gquery

NEW MEFORY CONFIGURATION PERMANENT?

Since partitions must be defined contiguously, they must be within the
secticn of memory between the bad pages. If a section of memory between
bad pages has a size of one page, it is skipped by the Configurator.
The Configurator will prompt for a partiticn definition after each

accepted entry until prtitions have been deLlned for all xxxx pages in
this section of wmemory.

As each entry is accepted, the Configuratcr will reissue the prompt with
a consecutively increasing partition number for the next partition. If
the number of pages enterecd for a partition is greater than the max1mum
logical address space, the Configurator displays the message

SUBPARTITIONS? (YES/NO)

Enter a NG if the configurator is to ignore subpartition con%1derat10ns
and proceed with the normal partition definitions.

Enter a YES if subpartiticns are to be defined. Subpartition definitions
are specified by using the follcwing format in response to the prompt:

¥PAGES,S(,R)

where S specifies a subpartition and the optional R specifies the
subpartiticn is to be rescrved.

The memcry space allocated for subpartitions is the same area occupied
by the "mother" partition. Subpartition definition will end as soon as
an RT or B3G partition is defined, or can Le terminated by entering a /E.

When an attempt is made to end the subpartition definition phase by
defining an RT or BG partition and there are no more pages left in this
section of mewory, an EPR 13 will be displayed. In this case, either
enter a /E to terminate subpartition definitions and continue partition

]2/

C



definiticns for the next block of memory, or enter /R to restart the
partiticp definiticn ghase.

“he totel number of pages defined for subpartitions must not exceed the
size of the mcther partition or an error ccde will be issued and the
last suppartiticn must be redefined.

The Configurator analyzes each partition definition for possible errors as
soon as it is entered. Any error code issued will be followed by a prompt
to redefine the last partition displayed. 1If /R is entered instead of a
partition descrintion, the partition definition phase is restarted from
the first partition definition.

Partitions defined for each section of memory between bad pages must be
defined for all pages available within the section. A running total is
maintained of the number of pages currently defined within a section of
good memory. The Configurator will then take one of five possible courses
of action, depending upon the prevailing memory structure and size:

1. If the remaining total equals the number of pages available, the
Configqurator automatically requests partition definitions for the next
section of good memory.

2. If the number of pages remaining to be defined is one, the Configurator
increments the last defined partition by one page and then requests
partition definitions for the next block of good memory.

3. 1If the running total exceeds the number of available pages defined
within the wemory block, the Configurator displays an error message
and prompts for the last partition to be redefined.

4. 1If the number of partitions already defined is equal to the maximum
number partitions allowed and more undefined gocd pages remain, the
Configurator displays an errcr message and all user partitions must be
redefined. The Configurator will then prompt for new partition definitions
and repeat the prompt after each accepted entry.

5. If the running total is less than the number of pages in the block of
temncry, ¢efinition for next partition is reguested.

r list of NEW PART N DEFINITICKS will be issued to the list device when
all partitions heve been defined.
1

4-11. CHANGING PROGRAM PARTITION ASSIGNMENTS

The Configurator performs a check to ensure that every program assigned
to @ vartiticn fits its partition size. A program will be unassigned
if the programm size is larger than the partition size or if the partition

nunier does not exist. Following the check, the Configurator will issue
a list under the heading '

N

UNLESICHNED PROGS
.
.

/> -1



followed by the query
MODIFY PRCC PAGE REQMTS? (/E TO END)
PNAME , # PAGES

fnter the specifications for any disc resicdent programs whose page
requirements must be changed, using the format

program name,Xxx

where the number of pages enterec¢ for each program must include the base
page. the number of pages must be greater than or equal to "he current
program size, and less than or equal to the maximum address space for
the program. The program may only be Type 2, 3 or 4.

The hyphen prompt will be repeated after acceptance of each entry
until a /E is entered to terminate the list.

Note that the page requirements for an EMA program cannot be modified.

/1—12. PROGRAM PARTITION ASSIGNMENTS

The Configurator now asks if any programs need to be assigned to partitions
by displaying the query and prompt

ASSIGN PROG PART “%uS? (/E TO END)
PNAME, PART ‘N#

where the hyphen prompt will be repeated after each accepted entry until
a /E is entered to terminate the list.

Enter each desired program partition assignment in the form
program name,Xxx

where xx 1is the partition number tc which the program is to be assigned.
If xx 1s 0, the program is unassigned and can be dispatched to any
partition of the proper t%pe large encugh tc run the program. The program

must be Type 2, 3 or 4. en a /E is entered to terminate
list, the Configurator issues the query

NEW MEMORY CONFIGURATION PERMANENT? (YES/NO)

Enter a YES tc change the appropriate tables and lccations on the disc
recident system. The Configurator then issues the message

RECONFICURATION COMPLETED
and turns control over toc the operating system.

If a /R is entered in response to the prompt instead of YES, memory
reconfiguration is restarted from the query

/-1

) N



C

AT
»\. 1 L“‘g

SIZE? (# PACES)

and¢ the system is in the state it was changed to cduring the earlier

recnnfi;uration.

/1 13.

The

RECONFIGUERATICH PALAMPLE

sauple reccenfiguration illustrated in Figure 9~1 assumes that

recunflguration wes reguested by setting the switch register as described

at the beginning cf this section of the manual. In the example, a
prececing asterisk (*) identifies a user response. No asterisk would
appear in the ocutput from an actual reconfiquration sescion.
e

Figure q—l toc e inserted here
) "

}rl4. SO0T-UP AND RULCCREPICGURATION HALTS

During either system poot-up or reﬂonflguratlon, various HLTS may be
issuec cn the computer front panel. The meaning cf these halts and
any reqguirec opeator action are given in Table 9-1.

Systern

,»
i
Table 4—1.

Powerfail occurred and pcwerfail
automatic restart is enabled.

N

was set and
2rror occurrec.

Memorv nrotect switch

memory parity
111 Attenmpt
non-RPIL

mwade to re—execute a
compativle ROM Loader
(Product MNo. 1298922) or Bootstrap
Loader.

was

I

I

|

!

|

|

|

!

|

I

|

| One of the following conditions
| was encounterecd:
| :
|

|

|

|

|

I

I

|

|

|

|

1. SCHFG cannct find an ID seyment
for Configurator extension SCHFX.
2. SCuPF¥ 1is not a Type 3 program.
3. & contiguous mexory block cf
three good pargjes cannot be found
in the user partition area to

load SCHFX.

Error was encountered in the disc

Zoot=-up and Recenfiguration Halts

Restart system boot-up
procedure,

Restart system boot-up
procedure.

Reload the ROM Loader or
Bootstrap Loader before
re-executing.

Restart system boot-up
procedure. If memory
reccnfiguration is
desired, SCNFX must be
permanently loaded as a
Type 3 program and there
must be at least three
good pages of contiguous
memory in user partition
area.

Retry the boot-up

J2-13



1/0 process by one of the RPL-
compatible ROM Loaders (Part Nos.
12992B and 12992F). If the disc
is a 7900, the disc status is
displayed in the A-register., If
the disc is a 7905/7920, the disc
status word 1 is displayed in the
B-register and disc status word 2
in the A-register. :

procedure.

— — ——— —— — — — —— o —— — e, — —— ——— — ——— ——
— e — —— ——— — ——— — i, —— s, e e e S vt — — o oo

|
|
|
|
|
|
I
I
I
I
|
process by the RBoot Extension. If | procedure.
I
|
|
|
|
I
|
!
I
|
I
I
|

31B Error encountered in the disc I/0 Retry the system boot-up
the disc is a 7900, the disc
status is displayed in the A-
register. If the disc is 7905 or
7920, the disc status word 1 1is
disnlayed in the Z-register and
disc status word 2 is displayed
in the A-register.
558 An EQT with the equipment type Restart boot-up procedure
ccde of console cannot be found. with a console for which
an EQT is generated in
the system.
o e e i i o s e e e S o v o o o i T e B G .5 5 e o S e B S e o B S o S, B S i S S e S 2 s o o e S
.)_/

‘ -15. CONFIGURATOR ERRCR MESSAGES

Whenever a user response to a Configurator prompt is illegal or
inappropriate, the Configurator issues a CONFIG ERR message and prompts
for a correct entry. All possible Configurator error codes are listed
sequentially in Table < . Locate the appropriate code and take the
described action. / , *ﬁ

Table #4-2. I/0 and Memory Reconfiguraticn Error Codes

User Action

- e s o ——— - —— —— —-— - - -~ ——— o ——— -~ — -

- s - | - ——————— - ——— -~ ——— - ———— - — ———~—— =

1 Invalid LU number or a bit Enter valid number.
bucket LU.
2 Illegal select code nunber. Enter valid number that
must be between 10 and
77 octal.
3 New select code entered is Enter different select

identical to new select code
assigned to disc, system
console or list device, or
else the current select code
entered is identical to the

code.

)21

— —— S —— —— — o—. —— —— . — T —— T o——— — — —— —— T D —

————— e ——————— I

i
1
|
i
1
|
1
|
i
|
]
|
|
|
[
{
i
|
|
1
]
]
|
!
|
f

— — — — — — — — " tom— ———  — c—



10

11

12

13

14

'-.d
o

18

19

old select code for disc,
system console or list device.

Specified total numwber of
pages outside the range.

Invalia bad page nuinker.

Specified SAM extension entry
beyond physical memory size

5

due to bad pages.

Current running total exceeds
available pages in block of
gqood memnory or exceeds size
of mother partition.

S5econd parameter of partition
definition entry other than
RT, BG or §, or else & was
entered when a suppartition
definiticon was not expected.

Third parameter of partition
definition entry other than
R.

o such program or nane of a
seyment, or invalid type was
entered for partition assign-
ment.

Invalid partition number.

Program does not fit in the
assigned partition.

Invalid number of pages was
entered for program size.

‘program at load time and

Enter valid number in the
range 48-1024 for
physical memory size and
between 0 and maximum
pages available for SaM
extension.

Enter valid number
greater than the previous
entry and less than the
physical memory size, or
enter /E to terminate the
list.

Enter smaller number
pages for SAM extension.

Redefine last partition
or subpartition size., If
there are no more pages
available in the block of
memory to be defined, /E
or /R are the only
responses accented.

Reenter definition with
correct parameter.

Reenter definition with
R as third parameter if
partition is to be
reserved.

Reenter assignment with
correct program name Or

type or /E to end this
sequence.

Enter valid number or /E
to end this sequence.

Assign program to largei

partition if available,
or continue without
assigning the program.

Enter valid number of
pages for program, be-

|
|
|
!
|
|
|
|
|
|
|
|
I
|
|
|
|
|
I
|
!
|
|
]
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
]
|
|
|
|
|
|
|
!
|
|
]
tween the size of the |
|

/215"



20

21

Number of defined partitions
already equal tc allowed
maximum numnber and more un-—
defined pages remain.

Page requirements of an EMA
program cannot be modified.

Number of pages in SAM exten-

sion requires division into
more than five blocks.

—— - —- - - - - — - —— = — . —— — — = -

—— — e — —— — — — ———— —— — —— — ——

the maximum logical
address space for the
program.

"Redefine all partitions

Entry is skipped.

Enter a smaller size of
SAM extension

1
I
i
|
|
[
I
[
|
|
|
|
|
|
|
|
|
i
i
|
[
f
i
1
i
[
+

e — —— — —— — —— —c— — — — —— — — — —

C

J



' : |
HEWLETT-PACKARD CHARACTER _cT FOR COMPUTER SYSTEMS

This table shows HP's implementatiori of ANS X3 4-1368 (USASCIH) and ANS X3 32-1973 Some devices may substitute
alternate characters from those shown in this charn (for example. Line Drawing Set or Scandanavian tont) Consult the manual

for your dewvice

The left and nght byte columns show the octal patterns in a 16 bt word when the character occupies bits 8 to 14 (left byte) or 0
to 6 (right byte) and the rest of the bits are zero To find the pattern of two characters in the same word, add the two values For
example. "AB" produces the octal pattern 040502 (The panty bits are zero in this chart.)

The octal values 0 through 37 and 177 are control codes. The octal values 40 through 176 are characler codes

)

(

T

i T

4

Mi-Ii1y

& xray A

Octal Values Octal Values
Decimal Mnemonic | Graphic' Meaning Decimai Ch Meaning
Value Left Byte | Right Byte Value Left Byte | Right Byte
0 000000 000000 NUL N, Nutl 32 020000 000040 Space, Blank
1 000400 000001 SOH % Stant of Heading 33 020400 000041 ! Exclamation Point
2 001000 000002 STX S Stan of Text 34 021000 000042 " Quotation Mark
3 001400 000003 ETX e End of Text 35 021400 000043 # Number Sign. Pound Sign
4 002000 000004 EOT & End ot Transmission 36 022000 000044 $ Dollar Sign
5 002400 000005 ENQ % Enquiry 37 022400 000045 % Percent
6 003000 000006 ACK 4 Acknowledge 38 023000 000046 & Ampersand, And Sign
7 003400 000007 BEL Q Bell, Attention Signal 39 023400 000047 4 Apostrophe, Acute Accent
8 004000 000010 B8S 8 Backspace 40 024000 000050 { Left (opening) Parenthesis
9 004400 000011 HT M Honzontal Tabulation a1 024400 000051 ) Right (closing) Parenthesis
10 005000 000012 LF Le Line Feed 42 025000 000052 . Asterisk, Star
n 005400 000013 vT % Vertica! Tabulation 43 025400 000053 + Plus
12 006000 000014 FF Fe Form Feed 44 026000 000054 s Comma. Cedilla
13 006400 000015 CR % Carriage Return 45 026400 000055 - Hyphen, Minus. Dash
14 007000 000016 SO % Shift Out | Anernate 46 027000 000056 . Period, Decimal Point
15 007400 000017 St EN Shift In Character Set 47 027400 000057 / Slash, Stant
16 010000 000020 DLE q Data Link Escape 48 030000 000060 0 \
17 010400 000021 DC1 0, Device Control 1 (X-ON) 49 030400 000061 1
18 011000 000022 DC2 0, Device Control 2 (TAPE) 50 031000 000062 2
19 011400 000023 DC3 Dy Device Controt 3 (X-OFF) 51 031400 000063 3
20 012000 000024 DC4a 0, Device Control 4 (TAPE) 52 ¢ 032000 000064 4
21 012400 000025 NAK Ne Negative Acknowledge 53 032400 000065 5 ¢ Digits, Numbers
22 013000 000026 SYN P Synchronous Idie 54 033000 000066 6
23 013400 000027 ETB & End of Transmussion Block 55 033400 000067 7
24 014000 000030 CAN QN Cancel 56 034000 000070 8
25 014400 000031 EM & End of Medwum 57 034400 000071 9
\ 26 015000 000032 SuB % Substitute 58 035000 000072 Colon
\ 27 015400 000033 ESC Ec Escape? 59 035400 000073 H Semicolon
28 016000 000034 FS Fg File Separator 60 036000 000074 < Less Than
29 016400 000035 GS & Group Separator 61 036400 000075 = Equals
30 017000 000036 RS R Record Separator 62 037000 000076 > Greater Than
31 017400 000037 us Y% Unit Separator 63 0374C2 000077 ? Question Mark
127 077400 000177 DEL | Delete, Rubout?
9206- 18

16/



¥

G/
€D

Octal Vsiues Octal Valuas
Decimal Character Meaning ) Decimat Character Meaning
Value Left Byte Right Byte Value Left Byte Right Byte
64 040000 000100 @ Commercial At 96 060000 000140 * Grave Accent®
65 040400 000101 A A 97 060400 000141 a \
66 041000 000102 8 98 061000 000142 b
67 041400 000103 C 99 061400 000143 c
68 042000 000104 D 100 062000 000144 d
69 042400 000105 3 101 062400 000145 e
70 043000 000106 F 102 063000 000146 {
n 043400 000107 G 103 063400 000147 9
72 044000 000110 H 104 064000 | ° 000150 h
73 044400 000111 1 105 064400 000151 i
74 045000 000112 J 106 065000 000152 i
75 045400 000113 K 107 065400 000153 k
76 046000 000114 L 108 066000 000154 1
77 046400 000115 M 109 066400 000155 m
78 047000 000116 N Upper Case Alphabet. 110 067000 000156 n Lower Case Leters®
79 047400 000117 ) Capital Letters m 067400 000157 0
80 050000 000120 P 112 070000 000160 ]
81 050400 000121 Q 113 070400 000161 qQ
82 051000 000122 R 114 071000 000162 4
83 051400 000123 S 115 071400 000163 s
84 052000 000124 T 116 072000 000164 t
85 052400 000125 V] 117 072400 000165 u
86 053000 000126 \ 118 073000 000166 v
87 053400 000127 w 119 073400 000167 LW
88 054000 000130 X 120 074000 000170 x
89 054400 000131 Y 121 074400 000171 y
90 055000 000132 2 / 122 075000 000172 z /
N 055400 000133 { Left (opening) Bracket 123 075400 000173 { Left (opening) Brace*
92 056000 000134 N Backslash, Reverse Slant 124 076000 000174 H Vertical Line$
93 056400 000135 i Right (closing) Bracket 125 076400 000175 } Right (closing) Brace®
94 057000 000136 At Caret, Circumtiex, Up Arrow* 126 077000 000176 -~ Tude, Overline.‘
95 057400 000137 - Underline; Back Arrow* ' 127 07740? 000177 l Delete ,RUbOUtS
9206- 1C Notes: 'This is the standard display representation. The software and hardware in your system delermine if the control code is

displayed, executed, or ignored. Some devices display all control codes as "||”, "@". ofr space.

2Escape is the first character of a special contro<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>