
JtT'E,-11(

'Programmers
Rf erence

Jnrermrli11t~
rnra t

:r , r <

t /'

,M./

DOCUMENTATION MAP

92067A RTE·IV
Software Numbering
Catalog
92067·90004

l

(START

t----~..al RTE-IV Programmer's

ROM Loader
Manual
12992-90001

RTE·IV On·Line
Generator Reference
Manual i....._
92067-90002 --~-~

Reference Manual ._~._---!

21 MX·M Series
Operator's Manual
02108-90004

~
RTE Interactive
Editor Referance
Manual
92060-90014

7700-141

92067-90001

• + ,,
Batch· Spool RTE UtilltY

Monitor Programs

Reference Manual Reference

9206().90013 Manual
92060-90017

Individual
Driver Manuals,
as appropriate

or
21 MX·E Serles
Operator's Manual
02109-90001

1
RTE·IV EMA Firmware
Installation Manual
92067-90006

and

RTE-IV EMA Firmware
Diagnostic Manual
92067-90007

-~
RTE Operating
Svstem Driver
Writing Manual
92200-93005

-.
RTE·IV
Debug
Subroutine
Manual
92067·90005

DS/1000
Programmer's
Reference
Manual
91740-90002

DOS/RTE
Relocatable

r+ Ubrary Reference·
Manual
24998-90001

RTE
FORTRAN IV
Reference Manual
92060-90023

RTE·IV
ASSEMBLER r. Reference
Manual
92067-90003

BASIC/1000D
Multl·User
Real·Time BASIC
Reference Manual
92060-90016

IMAGE/1000
Data Base

~ Management System
Reference Manual
92063-90001

Decimal String
Arithmetic
Routines
02100-90140

HP 21 MX·E Series
Computer
Microprogramming
Reference Manual

.,.1...o1-l_.,~ 02109-90004 or
HP 21 MX·M Serles
Computer
Microprogramming
Reference
Manual
02108-90032

I r,.
~

1--c-o_i_i_E_N_i_s--t
I I
+-----------------------------------.----------------------------------+

Foreword Page
Glossary

Section I

G E N E R A L 0 E s c R I p T I 0 N
Real-Time Executive
System Hardware . .
System Software.
Memory Management ••
Multiprogramming .••
Input/Output Processing
Resource Management ••••
Executive Communication.
Operator Commands ••••
System Configuration ..
Multi-Terminal Operations.
System Utility Programs •••• . .

Relocating Loader (LOADR)
File Management Package (FMP)
Interactive Editior (EDITR)
Batch Spool Monitor (BSM)
WHZAT .•.•
DBUGR ••••
On-Line Generator ((RT4GEN)
SWTCH ••••••• • • •
Disc Backup •••••
Disc Update ••••
KEYS and KDUMP . • • . .
LGTAT •••••••••• •• • • •

Programming Languages ••
RTE FORTRAN IV.
RTE Assembler ••••
RTE Micro-Assembler.
Real-Time BASIC •••••
QUERY • ••••••••••••••• . . .

RTE-IV System Summary ••
Section II
s y s T E M B 0 0 ·r u p p R 0 c E D
Boot Loaders and Boot Extension ••

Disc Loader ROM~.
Bootstrap Loader.

Boot Extension Execution.
Section III

....
.

. .
.

.

. . . .

u R E s ..

.
• •

. • • • • •• • • • •• • •
.
• •
• • . . . • • • •

.
••

1-1
1-2
1-3
1-3
1-3
1-4
1-4
1-5
1-6
1-6
1-7
1-7
1-8
1-8
1-8
1-8
1-8
1-9
1-9
1-9
1-9
1-9
1-9
1-10
1-10
1-10
1-10
1-10
1-10
1-11
1-11

2-1
2-1
2-3
2-3

c

r\
0

0 P E R A T 0 R C 0 M M A N D S
Introduction •••••
Command Structure ••
Command Conventions ••
RTE-IV Operator Commands.

. .
AB
AS
BL
BR

(abort} •••••••••••
(assign partition}
(buffer limits).
(break).

...

.
•••••••• ••

DN
EQ
EQ
FL
GO
IT
LG
LS
LU
LU

. (down} ••
(status) ••••••

.
OF
ON
PR
RT
RU
SS
sz
sz
TI
TM
TO
UP
UR

(buffering)
(flush) •••••
(reschedule) ••
(Interval Timer)
(LG tracks) •••
(source file} •••
(assignment) ••
(reassignment)
(terminate)
(schedule) ••

.. ...
(p r i or i ty) ••
(release tracks)

..
(run) •••••••••••••••
{operator suspend)
(assignment) ••
(reassignment) ••••
(time) ••••••

.
.

.
.

. (set clock)
(time-out) ••
(make available)
(release reserved

.
partition)
Messages ••

.
Operator Command Error

Section
E X E C

IV
C A L L s

Introduction •••••••••••••
Assembly Language Format.
FORTRAN IV Format ••••••••
EXEC Call Error Returns •••
EXEC Call Summary ••••••••
Standard Function Calls ••

READ/WRITE
I/O CONTROL ••

. . .

.
.

I/O STATUS •••
...

..

.

.
. • •

DISC TRACK ALLOCATION
PROGRAM DISC TRACKS RELEASE
GLOBAL DISC TRACKS RELEASE.
PROGRAM COMPLETION •••
PROGRAM SUSPEND •••••••
PROGRAM SEGMENT LOAD.
PROGRAi.\1 SCHEDULE.
TIME REQUEST •••••••
STRING PASSAGE •••
TIMED EXECUTION
TIMED EXECUTION

. (Initial Offset)
(Absolute Start Time)

.

3-1
3-1
3-1
3-5
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
3-13
3-15
3-16
3-17
3-18
3-19
3-20
3-21
3-24
3-25
3-26
3-28
3-28
3-29
3-30
3-30
3-31
3-32
3-33
3-33

4-1
4-1
4-2
4-4
4-6
4-8
4-9
4-12
4-16
4-17
4-19
4-20
4-21
4-23-A
4-25
4-26
4-30
4-31
4-33
4-35

PROGRAM SWAPPING CONTROL.
PARTI'rION STATUS •••
MEMORY SIZE ••••••••

Class I/O EXEC Calls.
Class I/0 READ/WRITE.
Class I/O GET •••••••••
Class I/O CONTROL ••••

.
Class I/O Applications Examples ••
Resource Numbers and Logical Unit Locks ••
EXEC Call Error Messages •••••

Memory Protect Violations ••
Dynamic Mapping Violations.
EX Errors ••••••••••••••.•••

DM and MP Errors.
Errors ••••••••••••••••

.
. . Unexpected

Parity
Error Codes for

for
for

Disc Allocation
Schedule Calls.
I/O Calls •••••••

Calls.
Error
Error

Codes
Codes

v Section
I N P U T I 0 u T p u T
Software I/O Structure.
Equipment Table ••••••••
Device Reference Table.
Logical Unit Numbers.
Interrupt Table ••

. . .
. .

System Base Page Interrupt Locations.
Driver Mapping Table •••••••••••••
I/O Processor General Operation ••

Standard I/O Calls.
Power Fail •••••••••
I/O Controller Time-Out ••••

Privileged Interrupt Processing.

Section VI
M E M 0 R Y M A N A
Addressing •••
Memory Maps ••
Physical Memory.
Logical Memory ••

G E M E N T

. ..

..

. .

Base Page •••••••
COMMON Areas •••
Memory Protection ••
Partitions •••••••
Partition Lists ••
Partition Assignments
Mother Partitions ••

and Reservations.
Subpartitions ••••••••
Extended Memory Area ••••••••
Memory Management Subroutines.

• EMAP.
• EMI 0 ••
MMAP ••
EMAST.

. . .

. .
..
.

.. . .

.
.
.

.
.. ..

. .
. .

. ..

. .

. .

.

.

.

.

4-38
4-38
4-40
4-42
4-44
4-46
4-49
4-50
4-55
4-58
4-58
4-58
4-58
4-59
4-60
4-61
4-61
4-62

5-1
5-2
5-5
5-7
5-8
5-8
5-9
5-10
5-10
5-11
5-12
5-12

6-1
6-2
6-4
6-6
6-7
6-10
6-10
6-11
6-11
6-13
6-13
6-14
6-14
6-18
6-18
6-20
6-22
6-23

-· . ·-··-· ----------~---~-

(

•o,

'

Section VII
A R E L 0 C T I N G L 0 A D E R •• •.

RTE Relocating Loader ••••
RU,LOADR Command Options.
Program Relocation •••
On-Line Modification.
Segmented Programs •••
Adding New Programs ••
Program Replacement ••

. ... • ••
Addition or Replacement Limitations ••••••••
Program Deletion •••
COMMON Allocations. • •

.
Loader Operation •••••••••••
Additional Opcode Parameters.

. • • • • • • • •
Loading the Binary Code ••••••••••••••••••••••••••••••••••
Loader Command File ••

SEARCH • ••••••••••••••••••••••
SEARCH <namr>.
RELOCATE <namr> ••
FORCE ••••••••••
DISPLAY •••••••••••••.••••
ECHO •••••
END ••••••
/A. • • • •

. • • • • • • • • • • •
* •
AS, xx •••••••• .
SZ,<yy> •• •
LL,<namr> • ••
OP, <opcode> • ••
FM, <format> • ••

Loading From a Logical Unit. •
Loading Segmented Programs ••••••••••••••••••••••••••••••••• • ••
Reducing Segmented Program Load Time.
DBUGR Library Subroutine •••••
LOADR Error Reporting ••••••••••••••••••••••••••
LOADR Errr Codes •••••• .
Section VIII
S E G M E N T E D PROGRAMS

R'rE
RTE

FORTRAN-IV Segmentation ••
Assembler Segmentation •••

Section
M U L T

IX
I T E R M I N A L

...................................

M 0 N I T 0 R
System Configuration ••••••••••••••••••••••••••••••••• ••••••••
Multipoint Initialization •••••••••••••••••••••••••••••••••••••••
Logical Unit Number Assignment ••••••• .
Operation ••••••••••••••••••••
Available MTM Services •••••••
Automatic Scheduling of FMGxx
FMG Available for Execution ••
BREAK and ABORT Commands •••••

•
•••••••••••••••••••••••••••••••••••
•
•
•

7-1
7-2
7-2
7-3
7-4
7-4
7-4
7-5
7-5
7-6
7-6
7-10
7-11
7-11
7-11
7-11
7-11
7-11
7-11
7-12
7-12
7-12
7-12
7-12
7-12
7-12
7-12
7-12
7-13
7-13
7-16
7-17
7-17
7-17

8-2
8-2

9-1
9-1
9-3
9-3
9-3
9-3
9-4
9-4

Automatic User Program Renaming ••
Creating Program Copies ••••••••••

.
Section x
RTE-IV S Y S T E M L I B R A R Y

Introduction.......
Calling System Library Subroutines ••••••••••••••••••••••••••••
Reentrant Subroutine Structure ••••••••••••••••••••••••••••••••
Reentrant Subroutine Format •••••••• •••••••••••••••••••••••••
Privileged Subroutine Structure •••••••••••••••••••••••••••••••
Privileged Subroutine Format ••••••••••••••••••••••••••••••••••
Utility Subroutine Structure ••••••••••••••••••••••••••••••••••
System Library Subroutines ••••••••••••••••••••••••••••••••••••
REIO - Reentrant I/O Subroutine •••••••••••••••••••••••••••••••
BINRY - Disc Read/Write Subroutine ••••••••••••••••••••••••••••
RNRQ - Resource Management Subroutine •••••••••••••••••••••••••
LURQ - Logical Unit Lock ••••••••••••••••••••••••••.••••••••••••
$PARS - Parse Subroutine ••••••••••••••••••••••••••••••••••••••
INPRS - Buffer Conversion Subroutine ••••••••••••••••••••••••••
$CVT3, $CVT1, CNUMD, CNUMO, KCVT - Binary to ASCII

Subroutines . ..•...................••.•...•••..•.......
MESSS - Message Processor Interface Subroutine ••••••••••••••••
EQLU - Interrupting LU Query ••••••••••••••••••••••••••••••••••
PTRN, PTRM - Parameter Return Subroutines •••••••••••••••••••••
.DRCT - Indirect Address Subroutine •••••••••••••••••••••••••••
IFBRK - Breakflag Test Subroutine •••••••••••••••••••••••••••••
COR.A, COR.B - First Word Available Memory Subroutine •••••••••
TMVAL
GETST
IFTTY
LOGLU

Current Time Subroutine •••••••••••••••••••••••••••••••
Recover Parameter String ••••••••••••••••••••••••••••••
Query Whether Logical Unit is Interactive or Not ••••••
Returns LU of Terminal That Scheduled Program •••••••••

• EMAP, .EMIO, MMAP, EMAST Subroutines •••••••••••••••••••••••••

Section XI
D E B U G R I N T E R A C T I V E D E B U G G I N G
Calling DBUGR •••••••• ~••
Entering DBUGR••
DBUGR Commands. • • • • • • • • • • • • ••••••••••••••••••••••••••••••••••
DBUGR Modes • ••
Express ions and Terms •••
Setting a Label•••
Examine Memory ••
Modify Memory •• •••
Examine Registers•••
Execute Prag ram • ••••••••••••••••••••••••••••••••• ·• ••••••••••••••
B r ea k po i n ts •
Tracing .•...•.•.•.•••••....•..••••..•••...••.•••..•.••.••••••.••
DBUGR Error Messages ••••••••••••••••••••.••••••••••••••••••••••••
DBUGR Example •••••••• •••

Section XII
R E C 0 N F I G U R A T I 0 N ME M·O RY AND I/O

Scheduling the Conf igurator From ROM • •••••••••••••••••••••••••••
Bootstrap Loader ••

9-6
9-7

10-1
10-1
10-2
10-2
10-3
10-3
10-4
10-5
10-5
10-5
10-6
10-9
10-10
10-11

10-12
10-13
10-13
10-14
10-15
10-15
10-16
10-17
10-17
10-18
10-19
10-19

11-1
11-2
11-2
11-3
11-4
11-4
11-4
11-5
11-.5
11-6
11-7
11-9
11-9
11-10

12-1
12-2

0

I,

(

Conf igurator Program •••••••••••••••••••
Configurator Halts and Error Messages •• .
Reconfiguration Procedures ••••••••••••••••••••••••••••••••••••••
I/O Reconfiguration Steps ••••••••••••
Memory Reconfiguration Procedures ••••••

.
Excluding Bad Pages............ • ••••••••••••••••••••••••
SAM Extension....................................
Changing Partition Definitions •••••••••
Changing Program Partition Assignments •••••••••••••••••••
Program Partition Assignments •••••••••• .
Reconfiguration Example ••••••••••• .
Boot-Up and Reconfiguration Halts ••••••••••
Configurator Error Messages ••••••••••
Appendix A

12-2
12-3
12-3
12-4
12-7
12-7
12-8
12-8
12-11
12-12
12-13
12-13
12-14

HP CHARAC'rER SET •• A-1

Appendix B
SYSTEM COMMUNICATION AREA AND SYSTEM TABLES . System Communication Area ••••••
Program ID Segment ••••••••• .
Equipment Table .
Device Reference Table ••••• .
Memory Allocation Table (MAT) •••••• ••
Driver Mapping
Disc Layout of

Table ••••
an RTE-IV

.
System ••

Source Record Formats •••••••••••• .
Appendix C
RECORD FORMATS
Source Record Formats ••

Record.
. NAM

EXT
DBL
EMA

Record •••••
Resord.
Record.

..
END Record.
Absolute Tape Format.
Appendix D

B-1
B-2
B-6
B-6
B-8
B-9
B-10

C-2
C-3
C-4
C-5
C-6
C-6
C-7

RTE-IV VERSUS RTE-III ••• D-1

Appendix E
TABLE AREAS I AND II ENTRY POINTS•••••••••••••••••••••••••••··~· E-1

Appendix F
RTE-IV PROGRAM TYPES•• F-1

Appendix E
ERROR MESSAGE SUMMARY•••••••••••••••••• .
Operator Command Error Messages •••••• .
EXEC Call Error Messages ••••••••••••• .

Input/Output Error Messages •• • • • • • • • •
Parity Errors ••••• .
Conf igurator Error Messages •• • • • • • • . .
FORTRAN Compiler Errors ••• ..

r~ Assembler Errors •••••••••
'Ii_/ Relocating Loader Errors •• • •

Additional Messages ••
System Hal ts ••••••••• • •

c

GLOSSARY OF TERMS

ABSOLUTE PROGRAM - A program that has been relocated and is capable
of being loaded into main memory for subsequent execut __ on. An
"absolute program" is synonymous with "relocated program."

ABSOLUTE SYSTEM - The binary memory image of an RTE system (stored
on Logical Unit 2).

ADDRESS SPACE - see LOGICAL MEMORY or PHYSICAL MEMORY.

ASYNCHRONOUS DEVICE - A device that can perform I/O operations that
are independent of time considerations but operates simultaneously
with program execution. Interaction with the computer is through
request/response circuitry.

AUXILIARY DISC SUBCHANNEL - An optional subchannel that is treated as
a logical extension of the system disc subchannel, LU2. If used, it
is assigned to Logical Unit 3. The binary memory image of RTE-IV may
not reside on the auxiliary subchannel.

BACKGROUND (BG) - An arbitrary name for one of two types of partitions
in RTE; generally used for lower priority programs whose responses
to interrupts are not time-critical.

BASE PAGE - A 1024-word area of memory corresponding to logical
page 0. It contains the system's communication area, driver links,
trap cells for interrupt processing, and system and/or user program
links.

BASE PAGE FENCE - A hardware register that divides a logical base
page into a portion containing the user's base page and a portion
of the system's base page.

BG - See BACKGROUND.

BLOCK - Two logical disc sectors of 128 bytes each, totaling a
256 bytes.

BOOT EXTENSION - An absolute program that resides on the first two
sectors of logical track 0 of the system subchannel. The Boot
Extension itself is first loaded into memory by the Bootstrap Loader
or ROM Loader.

BOOT FILE - An optional file to which the Bootstrap Loader produced
by the On-Line Generator is stored. This may be a disc file or a
logical unit (e.g., a mini-cartridge).

BOOTSTRAP LOADER - A loader produced by the Generator and stored in

the boot file. The Bootstrap Loader loads the Boot Extension into
memory and then transfers control to the Boot Extension.

BOOT-UP - The process of bringing the Bootstrap Loader or ROM Loader
contents into memory. Control is then transferred to the Boot
Extension to begin the initializatrion process.

BUFFER - An area of memory (main-memory, mass memory or local
peripheral memory) used to temporarily store data.

CLASS I/O - A means of buffering data between devices and user
programs, and between programs themselves, that permits a user
program to continue execution concurrently with its own I/O. The
term "I/O without program wait" is a more commonly used term.

CLOSE FILE - A method of terminating a program's access to a file so
that no further read/write operations may be performed on the file.

COMMON - An area of memory that can be accessed by a program and its
subprograms. Usually used to pass data from a program to a subprogram.
In RTE, system COMMON may be used to pass data from one program
to another.

CONFIGURATOR - A two-part program that allows reconfiguration of
an RTE system's I/O and physical memory structures without going
through a new system generation. The conf igurator is initiated
as an option durin'g the startup process.

CURRENT PAGE - The memory page in which the executing instruction is
located. Some 21MX memory reference instructions can only directly
reference locations in two pages: current page and base page.

DATA CONTROL BLOCK (DCB) - A table within an executable program that
contains information used by the File Management Package (FMP) in
performing disc accesses. (See the RTE Batch Spool Monitor Reference
Manual.)

DCPC - see Dual Channel Port Controller

DEVICE DOWN - Relates to the state of a peripherqal device or I/O
controller. When the device is down, it is no longer available for
use by the system. The term also refers to the DN operator command.

DEVICE INDEPENDENCE - Refers to the ability of a program to perform
I/O without knowing which physical device is being accessed (see
also Logical Unit Number).

DEVICE REFERENCE TABLE (DRT) - A table created during system
generation corresponding to Logical Units O through 63. The contents
of the Device Reference Table include a pointer to the associated EQT
entry, subchannel number of the device, and information as to whether
or not the device is locked. The table may be modified by the user
through an LU command.

DEVICE TIMEOUT - A time interval associated with a specific I/O
device. If the system expects a response from such a device and
this response does not occur within the timeout period, the

I,

~

,f--',,

\~

•d••-.··-····---

device is assumed to be inoperative by the system. This feature is
necessary to prevent a program from getting "hung up" because it
is waiting for a response from a non-functioning peripheral device. c\ DIRECT MEMORY ACCESS - See Dual Channel Port Controller.

()

DIRECTORY - A list of programs and files currently stored on a disc
subchannel that can be displayed by the user.

DISC - Strictly speaking, the term means the platter(s) with the
storage medium only; however the term is also loosely used to mean
the entire peripheral including the drive.

DISC-BASED - Refers to an operating system using a disc titorage
device as an integral part of the operating system.

DISC FORMATTING - The process by which physical track and sector
addresses are written in the preamble of each disc track sector.
Disc formatting may be performed by the appropriate disc diagnostic.
After formatting is completed, the SWTCH program and Disc Backup
utility may perform subchannel initialization.

DISC-RESIDENT - A term applied to programs in executable form
(absolute) that are stored on disc and brought into main memory for
execution by the system in response to a program or operator
request, time-of-day schedule or an I/O interrupt.

DISC ROM BOOT - A loader residing in Read-Only Memory that loads
(off-line) the Boot Extension from disc storage and transfers control
to the Boot Extension. (See also BOOT EXTENSION and STARTUP.)

DISPATCHER - An RTE system module that selects, from the scheduled
list, the highest priority program to be executed next. The
dispatcher module loads the program into memory from disc (if the
program is not already in memory) and transfers control to the
program.

DMA - See Dual Channel Port Controller

DMS - See Dynamic Mapping System

DORMANT PROGRAM - A dormant program is one that is "sleeping" or
inactive. More specifically, in RTE it is a program that is neither
executing, suspended nor scheduled.

DOWN - Status of a device controller EQT that is not available for
use.

DRIVER - A software module that interfaces a device and its
controller to an operating system. Drivers specified by EQT
definitions will go into either a driver partition or into
the System Driver area of memory.

DRIVER PARTITION - A block of memory that contains one or more
drivers. In RTE-IV, all drivers are in physical memory; however,
only the driver partition containing the driver currently being
used is included (mapped) in the logical address space.

, , ,

DRT - See DEVICE REFERENCE TABLE

DUAL CHANNEL PORT CONTROLLER (DCPC) - A hardware accessory that
permits an I/O process to transfer data to or from memory directly,
or access memory, thus providing a much faster transfer of data.
The operating system controls access to the DCPC channels.

DYNAMIC MAPPING SYSTEM - A hardware accessory allowing partitioned
memory systems to address memory configurations larger than 32K
words of physical memory.

EMA - See Extended Memory Area

EQT - See Equipment Table

EQT EXTENSION - A method for increasing the size of an Equipment
Table entry's buffer space, during system generation, that gives
the specified I/O driver more words of storage space than are
available in the EQT temporary storage area.

EQUIPMENT TABLE (EQT) _-A table in memory associating each physical
I/O device controller with a particular software processing routine
(driver). For a given device, the EQT provides status information,
temporary storage and parameter passing services (see also Device
Reference Table and Interrupt Table) •

EXEC - One of the RTE system modules that interfaces user
programs to the operating system.

EXTENDABLE FILE - An FMP file that is automatically extended in
response to a write request to·points beyond the range of the
currrently defined file. An extent is created with the same name
and size as the main, and the access is continued.

EXTENDED MEMORY AREA (EMA) - An area of physical memory that may
extend beyond the user's logical address space and is used for
large data arrays. Its size is limited only by the amount of
physical memory available. An entire array is resident in physical
memory although the entire array currently is not in the logical
address space.

EXTERNAL REFERENCE - A reference to a declared symbolic name not
defined in the software module in which the reference occurs. An
external reference is satisfied by another module that defines
the reference name by an entry point definition.

FILE - A defined section of memory on a storage device used to
store data or programs.

FILE EXTENTS - See EXTENDABLE FILE

FILE MP.NAGEMENT - The operating system functions associated with
maintaining disc files (translating file names to physical disc
memory areas; maintaining a directory; checking for security codes;
etc.) .

f---" I

' '

'~

0

0

FILE MANAGEMENT PACKAGE (FMP) - A collection of subprograms used to
access, control and maintain files.

FILE MANAGER (FMGR) - A program that provides FMP file creation,
access and manipulation services through FMGR commands entered by
the user.

FMGR - See File Manager

FMP - See File Management Package

FOREGROUND - A purely arbitrary name for one of the twu types of
partitions in RTE; generally used for higher-priority p~ograms.
The "foreground" area is synonymous with the real- time area.

GLOBAL TRACKS - Global tracks are a subset of system tracks and are
accounted for in the track assignment table. Any program can
read/write or release a global track (i.e., programs can share
global tracks).

HP-IB - The Hewlett-Packard version of the IEEE standard 488-1975
Digital Interface for Programmable Instrumentation. The HP-IB
provides two-way communication between instruments and/or
between computers, instruments, or peripherals.

ID SEGMENT - A block of words, associated with each resident
program, that is used by the system to keep track of the program's
name, software priority field, current scheduling status and other
characteristics. Every program must have its own ID segment.

ID SEGMENT EXTENSION - A method for increasing the size of an ID
segment to save additional information about its associated program.
The extensions are used only for EMA programs (see EMA). ID segment
extensions are automatically allocated by the generator or loader,
but only if sufficient ID segment extensions were specified during
system generation.

INTERRUPT - The process~ (usually initiated by an I/O device
controller) that causes the computer to signal an executing program,
in an orderly fashion, for the purpose of transferring information
between a device and the computer.

INTERRUPT LOCATION - A single memory location whose contents (always
an instruction) are executed upon interrupt by an I/O device
controller (same as trap cell).

INTERRUPT TABLE (INT) - A table that associates interrupt links the
octal select codes of peripheral devices to specific EQT entries or
programs.

I/O - A general term referring to any activity between a computer
and its peripheral devices.

I/O CONTROLLER - A combination of interface card(s), cable, and
(for some devices) controller box used to control one or more I/O
devices.

I/O DEVICE - A physical unit defined by an EQT entry (I/O controller)
and subc hanne 1.

I/O WITHOUT WAIT - See Class· I/O.

KEYWORD TABLE - A table of EQT addresses.

LG AREA - A group of tracks used to temporarily store relocatable
code that can be accessed by the File Manager.

LIBRARY - A collection of relocatable subroutines th'at perform
commonly-used (e.g., mathematical) functions. Subroutines are
appended to referencing programs or are placed in the memory
resident library for access to memory resident programs.

LOADER - A program that converts the relative addresses of relocatable
programs to absolute addresses compatible with the memory layout
of a particular system.

LOCAL COMMON - An area of COMMON appended to the beginning of a
program and accessible only by that program, its subroutines or
segments. This type of COMMON can be specified only during on-line
relocation by the loader (LOADR).

LOCKED DEVICE - See Logical Unit Lock.

LOCKED FILE - A file opened exclusively to one program and therefore
not currently accessible to any other program.

LOGICAL MEMORY - Logical memory is the 32K-word (maximum) address space
described by the currently enabled memory map. If the System Map is
enabled, it describes those areas of physical memory necessary for
the operation of RTE-IV. When the User Map is enabled, it describes
those areas needed by the currently executing program. DCPC maps
describe the address space to/from which the transfer is taking place.

LOGICAL UNIT LOCK - A mechanism for temporarily acquiring exclusive
use of an I/O device or devices by a program, to ensure its I/O
completion before being preempted by a another program.

LOGICAL UNIT NUMBER (LU) - A number used by a program to refer to an
I/O device. Programs do not ref er directly to the physical I/0 device
select code number, but rather through the LU number that has a
cross-reference to the device.

LU - See LOGICAL UNIT NUMBER

MAILBOX I/O - A Class I/O term applied to a protected buffer that
keeps track of the "sender" and "receiver" program for each block
of data in the buffer used in program-to program communication.

MAIN PROGRAM - The main body of a user program (as opposed to the
whole program, which may include subroutines or segments).

MAP - Applied to 21MX or XE machines, the term applies to a set of
32 registers that point to 32 pages of physical memory defining a
32K-word logical address space.

I
I

I

c,

(··· . .

MAPPING SEGMENT (MSEG) - The area of an EMA that is cuurently
accessible within the user program's logical address space.

MEMORY PROTECT - A hardware accesory that allows an address (memory
protection fence) to be set so that when in protected mode, the
locations below that address cannot be accessed by writes or
JSB/JMP instructions.

MEMORY-RESIDENT LIBRARY - A collection of reentrant or privileged
library routines available only to memory resident programs (in RTE-IV).
These routines are included in the disc-resident reloc,itable library
for appending to disc-resident programs.

MEMORY-RESIDENT PROGRAM - A program that executes from a designated
area in physical memory and remains in memory, as opposed to a
disc-resident program that may be swapped out to the disc or loaded
from the disc to another area in memory. Memory resident programs are
loaded during system generation (only), and usually are high priority
programs with short execution times.

MOTHER PARTITION - A partition that may be larger than the maximum
logical address space and which may consist of a group of
subpartitions. The subpartitions allow many smaller programs to use
the memory when the mother partition is not active.

MSEG - See Mapping Segment

MULTIPROGRAMMING - A technique whereby two or more routines or
programs may be executed concurrently by an interleaving process,
using the same computer. Multiprogramming is an attempt to improve
equipment efficiency by building a queue of demands for resources,
achieved by having available in main memory more than one task waiting
for resource usage. The concurrent tasks are then multiplexed among
each other's wait time intervals.

MULTI-TERMINAL MONITOR - A system software module that provides for
interactive program development and editing in a multi-terminal
environment controlled by a single computer.

OFF-LINE - Refers to use of the computer and/or I/0 devices by
resources other than the RTE operating system or subsystems.

ON-LINE - Refers to software or I/O devices recognized and controlled
by the main operating system at the time they are being used.

ON-LINE GENERATOR - A program that permits use of an existing .. RTE
operating system's services to generate a R-ew system from relocatable
software modules found in the File Manager Area. System control can
then be transferred to the new operating system through use of a
program called SWTCIJ..r' (See RTE-IV On-Line Generator Reference Manual.)

ON-LINE LOADING - The relocation of programs through use of the
Relocating Loader (see RELOCATION).

OPEN FILE - A method of gaining access to a specific file to perform
a read/write instruction.

. ,,

OPERATOR'S CONSOLE - see SYSTEM CONSOLE

OPERATING SYSTEM - An organized collection of programs designed to
optimize the usage of a computer system. It provides .. the means by
which user programs interact with hardware and other software. (See
also REAL-TIME EXECUTIVE.) ,

OVERLAYS - Also called segments,these are routines that share the
same portion of main memory and are called into memory by the
program itself (see SEGMENTED PROGRAMS).

PAGE - The largest block of memory (1024 words) that can be directly
addressed by the address field of a one-word memory reference
instruction.

PARTITION - A predefined block of memory with a fixed number of
pages (redef inable at system boot-up) located in the disc resident
program area of memory. The user may divide the disc resiaent
program area into as many as 64 partitions that can be classified
as a mixture of real-time and background, all real-time, or all
background. Disc-resident programs run in partitions and at least
one partition of sufficient size must be defined during· system
generation to run disc resident programs.

PERIPHERAL DISC SUBCHANNEL - A disc subchannel available to the user
for read/write operations but for which RTE-IV does not manage nor
maintain a track assignment table. It is the user's responsibility
to manage these tracks; however, the File Manager may be used to
manage peripheral subchannel tracks. A peripheral subchannnel must
have a logical unit number assignment greater than 6

PHYSICAL MEMORY - Physical memory is the total amount of memory
defined at generation or reconfiguration time. It refers to the
actual memory in the computer; e.g., page 67 of physical memory is
associated with a certain block of actual hardware, whereas the
same page might be referred to as "page 5" in a particular block
of logical memory.

POWER FAIL/AU'l'O-RESTART - The ability for a computer to save the.
current state of the system in permanent memo··ry when power is
lost, and to restore the system to defined conditions when power
returns.

PRIORITY - A regulation of events allowing certain actions to take
precedence over others in case of timing conflicts.

PRIVILEGED DRIVERS - I/O drivers whose interrupts are not processed
by the RTE operating system. Such drivers offer improved response
time but must perform their own internal housekeeping; i.e., saving
status upon interrupt.

PRIVILEGED INTERRUPTS - Interrupts that by-pass normal interrupt
processing to achieve optimum response time for interrupts having
the greatest urgency. Privileged interrupts are handled by
privileged I/O drivers.

I

()
.. .,

(~--

()

·-~-------- ------- ------------ ------------- ---- ···---·- ·-

PRIVILEGED SUBROUTINE - A privileged subroutine executes with the
interrupt system off (and therefore by-passes the operating system).
It allows high-speed processing at the cost of losing use of
operating system housekeeping services and real-time response.

PROGRAM STATE - Refers to the status of an executable program at
any given time. A user program is always in one of four possible
states: executing, scheduled, suspended or dormant.

PROGRAM SWAPPING - see Swapping

PURGE - Refers to the act of instructing an operating ~ystem to
delete a file or program from its directory. Usually used with
reference to disc files.

REAL-TIME (RT) - An arbitrary name for one of the two types of
partitions in RTE; generally used for higher-priority programs.
The real-time area is synonymous with the "foreground" area.

REAL-TIME EXECU'I'IVE - A collection of software modules comprising
the total operating system; e.g., EXEC, SCHED, RTIOC, I/O drivers
and various tables. For all practical purposes, Real-Time Executive,
operating system and RTE are synonymous terms.

RECORD - A logical subdivision of a file that contains zero or more
words, and is terminated by an end-of-file mark.

REENTRANT - Refers to a routine that can be shared by a number of
programs simultaneously; i.e., one program can be interrupted in
its usage of the routine to permit a higher-priority program to
utilize the routine. The first program can then reenter the
routine at the point where it was interrupted.

RELOCATABLE LIBRARIES - A collection of commonly-used subroutines
in relocatable format. For example:

System Library - subroutines that are appended to each user
program and that are unique to the operating system. This allows
a user to write programs using operating system routines but
which are independent of the operating system for subroutine
execution.

DOS/RTE Relocatable Library - a collection of utility subroutines
that are primarily accessed by FORTRAN and Assembly Language
programs.

FORTRAN Formatters - format subroutines for FORTRAN I/O operations
and other programming languages.

RELOCATING LOADER (LOADR) - A HP-supplied program that sets up
communications links and forms an absolute load module from a
relocatable program. LOADR creates the relocated program in
conformance with current system constraints and loader commands
entered by the user.

RESOURCE MANAGEMENT - A feature that allows the user to manage a
specific resource shared by a particular set of cooperating

programs.

RESPONSE TIME - The total amount of time required to bring a
real-time program or routine into execution in response to an
interrupt, interval timer' call from another program or operator ri
call. Response time is usually measured in microseconds to milliseconds. U
ROM BOOT - A loader residing in Read-Only Memory that on-line loads
the Boot Extension from disc storage and transfers control to the
Boot Extension. The Boot Extension must reside on the disc physical
unit O, track O, sector O. (See also Boot Extension and Startup
definitions.)

RTE - See REAL=TIME EXECUTIVE

SAM - See System Available Memory

SCHEDULING - Entering a program in the schedule list for execution,
either at the next entry into the dispatcher, or at the appropriate
time when the program's priority is high enough.

SEGMENTED PROGRAM - A technique for accommodating programs larger than
the available logical memory. "Segment" refers to those slices of the
program that are brought into main memory as required, and overlay
the previous segment.

SELECT CODE - An octal number (10 through 77) that specifies the
address of an I/O device interface card.

SIMULTANEOUS PERIPHERAL OPERATIONS ON-LINE (SPOOL) - An RTE feature
generally associated with batch operations. There is both (
in-spooling and out-spooling • In-spooling consists of a program ______,;
and data being first read in from some peripheral device and placed
on the disc. Program reads are translated to disc reads instead of
reads from the peripheral device. Program writes are also
translated to disc writes instead of peripheral device writes, so
that program output is on disc. Out-spooling is the process of taking
the program's output from disc to the appropriate peripheral device.

STARTUP - The startup process is initiated by the Boot Extension.
During the startup process, the tables, registers and pointers
required by the system are established. Control is then transferred
to the Conf igurator.

SUBCHANNEL - One of a group of I/O devices connected to a single I/O
controller. For example, R'rE driver DVRxx can operate more than one
magnetic tape drive through subchannel assignments. In the case of
moving head discs, contiguous groups of tracks are treated as
separate subchannels. For example, a 7905 disc platter may be divided
into four subchannels. Each subchannel is referenced by an LU number.

SUBCHANNEL INITIALIZATION - The process of preparing a disc
subchannel for use by the RTE operating system.

SUBCHANNEL NUMBERS - Decimal numbers (0-31) associated with the LU
numbers of devices with multiple functions on the same device. Each
subchannel number is associated with a specific subchannel; e.g., a

-~--------~------

2645A ter1ninal could have four subchannels: one for the keyboard, one
each for the iight and left tape channels, and one for an optional
line printer.

SUBPARTI'rIONS - Partitions that are optional subdivisions of a mother
partition. Subpartitions have the same type (RT or BG) as the mother
partition. Subpartitions are treated like other partitions except
that they cannot be used while the mother partition contains an
executing program.

SUBSYSTEM GLOBAL AREA (SSGA) - An area of memory that consists of
all Type 30 modules loaded at generation time. The area· is included
in the system address space and in the address spaces of programs
that access it (Types 17-20, and Types 25-28). The area may be
used for data (i.e., COMMON).

SWAPPING - A technique whereby an executing program is suspended and
transferred to mass storage (because another program needing the
same portion of memory has been scheduled). When the interrupting
program has terminated, becomes suspended, or becomes eligible to be
swapped out, the previously swapped program may be reloaded into
memory and resumes execution at the point where it was suspended.

SWTCrl PROGRAM - A system utility program that transfers an RTE-IV
operating system to a specific disc area from which it can be booted up.

SYNCHRONOUS DEVICE - Devices that perform I/O operations in a fixed
timing sequence, regardless of the readiness of the computer.

SYSTEM AVAILABLE Mt:MORY {SAM) - A temporary storage area used by the
system for class I/O, reentrant I/O, automatic buffering and
parameter string passing. In logical memory, SAM exists as one
contiguous block within the system map.

SYSTEM COMMON - An area of memory that is sharable by programs
operating partitions of main memory.

SYSTEM CONSOLE - The interactive console or terminal {LUI) that
controls system operation and f rorn which all system and utility
error messages are issued. In a multi-terminal environment, a system
console is distinguished from "user consoles" from which users
develop programs.

SYSTEM DISC SUBCHANNEL - The disc subchannel assigned to Logical
Unit 2 that contains the memory image of the RTE-IV system.

SYSTEM DRIVER AREA - An area for privileged drivers, very large
drivers, drivers that do their own mapping or drivers not included
in driver partitions. It is included in the system's address space,
in the address space of R'r and Type 3 BG programs, and 'optionally in
the address space of memory resident programs~

SYSTEM MAP - The 32K-word address space used by the operating
system during its own exectuion.

SYSTEM TRACKS - All those subchannel tracks assigned to RTE-IV for
which a contiguous track assignment table is maintained. These

tracks are located on Logical Unit 2 (system), and 3 (auxiliary).

TABLE AREA I - An area of memory that is included in all address
spaces and which includes the EQTs, Device Reference Table, Interrupt
Table, Track Map Table, all Type 15 modules, and some system entry r(-"'
points. '~

TABLE AREA II - An area of memory that contains the system tables,
ID segments, all Type 13 modules, and some system table and entry
points. Table Area II is included in the address space of the
system, real-time programs, Type 3 background programs, and
(optionally) memory resident programs.

TIME BASE GENERATOR (TBG) - A hardware module (real-time clock)
that generates an interrupt in 10 millisecond intervals. It
is used to trigger execution of time-scheduled user programs at
pre-determined intervals and for device time-outs.

TIME-OUT - Relating to the state of a peripheral device. When the
device has timed-out, it is no longer available for system use
(down). Also (noun) the parameter itself; the amount of time RTE
will wait for the device to respond to an I/O transfer command
before making the device unavailable.

TIME SCHEDULING - The process of automatically scheduling a program
for execution at pre-determined time intervals. Program scheduling is
established through use of the IT command, and requires that the
Time Base Generator be installed in the CPU.

UP - See Device Up

USER MAP - The 32K-word address space used by a user program during
its execution.

(-.,, t--t---------------------t

(~'
?

I GENERAL DESCRIP'flON I SECTION I I
I I I
+--+---------------------+

1-1. REAL-TIME EXECUTIVE

Tne Real-Time Executive is the ma)or control element and
communications link within the RTE-IV operating system. It supervises
and coordinates all ~rograrn calls or operator requests for system
services. In a typical real-time environment, the Executive handles
all decision making and scheduling unless overridden by operator
intervention.

A disc-based system, RTE-IV provides for real-time program execution
concurrent with full program development services. RTE-IV features
multiprogramming, dynamic memory mapping, access to more than one
million words of main memory, and an Extended Memory Area (EMA) scheme
that offers access to data arrays that are larger than a program's
logical address s9ace.

'rt1e memory management and mapping provisions al low the cent r a 1
processor unit (CPU) to access from 48K to 1024K wo~ds of "physical
memory." ~hysical men;ory refers to all of memory actually available to
the user through the me~ory management and mapping scheme. "Logical
memory" reter s to the actual 32K-word address space imposed by the
15-oit address length used in HP 21MX-series computers that is
addressable oy user programs. HTE-IV automatically handles all
addressing and mappin9 of memory fer the user.

i•10st proqrair.s rreviously written to execute under RTE-r-~, RTE-II or
HTb-III systems are Ut)ward compatible with and will successfully
operate under RTE-IV. Cifferences in features between operating
systems are itemized in l\ppendix E.

Significant new features built into RTE-IV include the following:

*

*

*

*

*

Improved user interface - reduced
systeill processes (i.e., Relocating
etc.) .

Program preparation using files.

user interaction for scheduling
Loader, FORTRAN IV, Assembler,

/\ ss is nment of prog r a1as to partitions via opera tor command.

Interactive Kelocating Loader.

Greater reliability - hardware parity error recovery, additional
checks on opera tor schedu 1 ing command input, improved error
messages, and on-line removal of defective pages. Defective pages
are those in which parity errors have been detected.

I-1

GENERAL DESCRIPTION

*

*

*

Reconfiguration of I/O and/or main memory
without the necessity of regenerating
"Defective" of memory can be by-passed
reconfiguration process. (Bad memory pages
parity errors have oeen detected.)

Increased user code area of up to 28K words.

during system boot-up
the entire system.

<'luring the memory
are those in ~hich

A 1nernory management scheme that accomodates unusually large data
arrays. Imple:-uentaticn is throu9h an easy-to-use Extended Memory
Area (.E~:A). Using ET1rn, data arrays as large as physical memory may
oe mapped into the user's logical address space, as required.
Typical applications where EMA arrays are particularly useful are
as follows:

a. Systems with large amounts of data storage, acquisition and
processing. Data access within EMA arrays is rapid. Requiring
no disc accesses as in virtual memory schemes.

b. Data acquisiticn and storage from fast devices at real-time
rates.

c. Processes involving data access from random locations (e.g.,
SOI ting) .

d. Scientific applications
inverting a matrix).

involving large matrices (e.g.,

e. Applications requiring extremely large buffer areas.

1-2. SYSTEM HARDWARE

The RTE-IV system operates with the following minimum hardware
conf ig urat ion:

*

*
*

*

*

*

*

*

I-2

HP 2l~X Series Computer with a minimum 48K words of memory (64K is
highly reconmenoed for improved memory utilization).

Time 3ase Generator

Dual Channel Port Controller (DCPC)*

Dynamic Mapping System

Me,nory Protect

System Console Device

High Speed Disc Storage

Firmware Accessory Board (FAB) (21MX-E series only)

('\

0

GENERAL DESCRIPTION

* l·:ith0r un liP ,,.,ini-CartridgF StJDsystem or i1i<Jh Speecl l?aper Tape
vea<lr!.r.

1-3. SYSTBM SOFTW~RE

The complete set of currently availaole PTE-IV operating system
modules and standard subsystArns is listed in t~o RTE-IV Software
i.'i umbering Cata 109. Opt ion a 1 suosystem rnodu les can he found in the
various Sllbsystem Software Numbering Catalogs.

The cynamic Mapping Systeffi (OMS} provides the capability of adaressing
memory configurations larger than 32K words. Up to 1024K words of
?hysical rnemory can oe addressed by the user. The following brief
explanation of the mapping and addressing process provides a general
overview of system operation. For a more detailed description, refer
to the 21MX Series Computer Reference Manual and information given in
the "Memory Organization and Managment" section of this text.

Addressing more than 32K words is accomplished by translating memory
addresses through one of four "memory maps". A memory map is defined
as a set of 32 hardware registers that provide the interface between
the 32K logical and physical memory. All memory map addressing is
performed internally by the system and is transparent to the user.
The four memory maps managed by the system consist of a system map
that defines the system's logical address space, a user map that
defines the user's logical address space, and two Port maps that
define a caller's I/O buffer in a DCPC transfer.

1-5. MULTIPROGRAMMING

RTE-IV is a multiprogramming system that allows several programs to be
active concurrently. Each program executes during the unused central
processor time of the others. Scheduling/dispatching modules decide
when to execute programs that are competing for system resources •

. These modules swap disc-resident programs in and out of partitioned
memory in accordance with availability of system resources, program
priority and time scheduling criteria. The programs may be scheduled
by pre-determined time intervals, an external event, operator command
or by another program. A scheduled list maintained by the system is
automatically scanned every 10 milliseconds or whenever a change is
made to the list by a new entry.

Up to 254 programs may be defined by ID segments at one time (an ID
seg~ent is a table that describes the program; refer to Appendix A for
more information}. Additional programs may be relocated and then saved
as files by using the File Manager. Thus, the number of readily
accessible programs can be increased to the limits of available disc
stora9e.

I-3 ·

GENERAL DESCRIPTION

1-6. INPU'r/OUTPU'r PROCESSING

All I/0 and interrupt processing is controlled oy the system with the
single exception of privileged interrupts (privileged interrupts
circumvent the system for faster response time). Input/output
operations are performed concurrently with program execution; some
programs execute while others are receiving I/O services.

Requests for I/O services are made Dy EXEC function calls coded into
the calling program. The EXEC calls specify the type of transfer
(Read, Write, Control) and the desired device. I/O requests for a
particular progra111 are queued to the controller I/O list according to
the calling program's priority. Automatic buffering for write
operations is provided if specified.

In addition to the standard I/O scheduling processes described above,
there are a number of other I/O functions available that can improve
system performance in a multiprogramming environment:

* Device Time-Out sets a time-out value for a device to prevent
indefinite program suspension because of a malfunctioning device.

* I/O Buffering auto~atic buffering on slower devices allows a

*

calling program to initiate an output operation (only) without
waiting for completion before resuming execution. A read without
wait operation is a function of Class I/O (see below}.

Reentrant I/O allows a disc resident program to be swapped out
from a memory partition and into disc storage when it is suspended
for I/U. This, in turn, permits any program to use the partition.
The previous status of the swapped program is maintained so that,
when it once again achieves highest priority on the scheduled list,
it can resume execution and I/O processing at the point of
interruption.

* Logical Unit Lock assigns a logical unit exclusively to a
specific program, thus preventing any other program from accessing
it until it is unlocked.

* Class I/O -- a special set of I/O calls that provide a method for
buffering data oetween devices and user programs and also between
pr0<3rarns (mailbox I/O}. Class I/O permits a user program to
continue execution concurrently with its own I/O (I/O without
wait) .

1-7. RESOURCE MANAGMENT

Resource management is a user-determined method for cooperating
programs to share a common resource in an orderly manner. A
"resource" may be anything so defined by the user programs accessing
it; an I/O device, a file, subroutine, or a memory location
containing volatile data are typical examples.

I-4

0

c

(-;,

GFNERAL DESCRI P1' ION

This su;)lr:vel c;; rc~3()llrce sharinq i~~ initi.:dly i:11pl€'1'H'ntf'11 (lurinq
syste:11 •Jeneration Dy clef inin9 the nurnt)er of concurrent resources to be
sh a red • h ta!) le o f t he s e nu rn o er s i s s e t up a n d ma int a i n e c1 by th e
systeii1. An ex,1in~)le of resource sharing would be the updating of
co1nmonJy-shared '.lata r•y onP proqram. It would lock the associatec'I
resource nuiuher to t;revcnt. prc111Ature access oy other proc3rams until
the data was U~)ilated. See Section IV for a co.nplete description.

;!!_;ED 7 1-8. Ex t;CU TI v !:: cc:; >:u UICI-\ TION

Exr:c calls are the line of co;i1munic;3tion between an executin(J program
and systein services. The required calls are coded into a program
ciurin'J its oeve1o~rn1ent phase. The calls have a structured format plus
a nu1aner of ~)<Ha'neter options that further define the s9ecific
operation to oe performed.

~hen an executing progra@ ~akes a call to EXEC, it attempts to execute
a jump suoroutine (JSG) to that portion of the system located in the
protected area of ;nemory. This causes a memory protect violation
interrupt that is then processed by the system. If the call is legal,
the syste:.:1 r;.irocr::sses the request.

The following is a partial list of system services available to an
executing progra~ via EXEC calls:

* Perform input and output operations

* Allocate and release disc space

* Ter.ninate er suspend itself

* Load its se:;rnent

* 3chedule other proq ra1Hs

* Recover scneduling strings

* Ootain the time of day

*

* Ootain status information on partitions

See Section IV
considerations of

of this manual for
CXl:~C calls.

complete descriptions and format

I-5

GENERAL DESCRIPTION

1-9. OJ?EfU\'l'()H Cv~lMANDS

The operator maintains final control of RTE-IV system operation
through commands entered via the system console. ·rhese commands and
their rarameter options enable the operator to monitor current system
status and/or modify system operation. The following is a partial
list of operator control functions:

*

*

*

*

*

*

Turn programs on and off

Suspend and restart prograills

Examine the status of any partition,
controller

prog ra rn,

Schedule pro9rams to execute at specified times

Change the priority of programs

Declare I/O controllers or devices up or down

I/O device or

* mynamically alter
designations

the logical I/O structure and buffering

* Delete temporarily-loaded disc resident programs from memory

* Examine and dynamically alter an I/O device's time-out parameter

* Release tracks assigned to dormant programs

* Initialize the real-time clock and display the time

* Change program size (dynamic buffer area)

* Assign programs to partitions

* Remove reserved status of partition

See Section III of this manual for descriptions and parameter options
of all operator commands.

1-10. SYSTEM CONFIGURATION

1'\emory resident and disc resident user programs, system modules,
library routines, device drivers and Real-Time Executive modules are
incorporated into a configured RTE System. The RTE software is modular
and flexible enough to permit ~ser programs and I/O device drivers to
be configured into a real-time system that is tailored to an
installation's exact requirements.

I-6

if-"
__y

I

I

('',\

()

Using the Real-Time Gn-Line Generator (RT4GN) and SWTCH, the
relocataole sof twa~e modules and user programs are converted into a
configured real-time system in memory ... 1mage binary format. The
configured system is then loaded (bootstrapped) into the computer from
the system area of the disc. Any remaining disc stor~ge is dynamically
allocated by the conf i~ured system to user programs or is utilized by
the scheduler for swapping operations.

1-11. ViUL1'1-'I'ER~·Hf'!AL OFERA'I'IONS

'The t·1ulti-'J:erminal Monitor ("Wl'M) prov1aes concurrent .nanagement of
multiple user consoles. r:ach user is provided with his own Fil.e
;1anager for command input. Individual copies of user programs are
created whenever they are initiated at MTM consoles thus allowing
concurrent execution of Assemblers, Editors, Generators, etc. See
Section IX of this nianual for a detailed discussion of M'l'M operation.

1-12. SYS1'c[J U'l'ILITY PI~OGl~}\t-'18

Standard system utilities are on-line programs that run under the RTE
operating system and are called by the user to perform various program
preparation, system status and housekeeping processes. The presence of
any utility program in the system is optional, depending upon
site-specific requirements. The programs available are:

* Relocating Loader (LOADR)

* Pile Management Package (FMP)

* Interactive Eaitor (EDITR)

* Batch Spool ~onitor (kSM)

* On-Line Generator (hT4GN)

* Cisc J3ackup

* Disc Update

* System Status Program (WHZAT)

* KEYS and KYDMP Programs

* Track Assignment Table Log Progra~ (LGTAT)

* Debug Subroutine (DBUGR)

/-7

GENERAL DESCRIPTION

1-13. RELOCATING LOADER

The Relocating Loader program accepts user-written relocatable
programs and outputs absolute load modules in conformance with loader
control command spec if ierl by the user. Other comr{'land parameters cause
the loader to list system status information; i.e., currently
available programs; or purge unwanted, permanently loaded programs
from the system. See Sectio~ VII of this manual for a detailed
discussion of LOADR operation.

1-14. FILE MANAGEMENT PACKAGE (FMP)

The File Managment Package is a set of programs (FMGR and D.RTR) and
subroutines that provide disc file housekeeping services. Service may
be acquired either programatically or through interactive user
commands. Files may be created, renamed, copied, purged, listed,
concatenated or otherwise manipulated on disc tracks under control of
the File Management Package. See the Batch Spool Monitor Reference
Manual, Sections II and III for complete information regarding use of
FMP.

1-15. INTERACTIVE EDITOR

The Editor (EDITR) program is used to create and/or edit (modify)
lines of text in a source file under development or in a data file in
ASCII format. See the RTE Interactive Editor Reference Manual for
further information.

1-16. BATCH SPOOL MONITOR

The Batch Spool Monitor is a set of programs and subroutines that are
used to perform disc-based job processing. That is, jobs or data can
be input from a disc file and data can be output on a disc, with all
the necessary I/O being performed independently of batch processing.
BSM also provides a means for input and output spooling of data. See
the Batch Spool Monitor Reference Manual, Section IV through VII, for
more information.

1-17. WHZAT

The WHZAT program provides status information regrading the current
system environment. Two different types of information can be
displayed: a list of all active program and their current status, or a
list of all partitions with their sizes and current status (occupied
or non-occupied). See the RTE Utility Programs Reference Manual for
more information.

)-j

0

c

,i

i'
I

I··

(

GENERAL DESCRIPTION

1-18. DBUGR

The DBUGR subroutine can be appended to a user program through use of
the Relocating Loader. It can then aid the user in checking for
logical errors in a program through interactive control commands.
Debugging is performed at the Assembly Language level. See the subset
of DBUGR control commands described in the Relocatin: Loader section
of this manual or the DBUGR Reference Manual for a complete
description of all DBUGR functions.

1-19. ON-LINE GENEH.ATO.R

The On-Line Generator permits use of an existing RTE-IV system to
configure a new RTE-IV system according to user specifications.
Generation can oe directed from an answer file, logical input unit or
operator console. See the RTE-IV On-Line Generator Reference Manual
for more information.

1-20. swrct-1

The swrCH ~rogram permits a user to transfer an RTE-IV orerating
system file created by the On-Line Generator to a specific area cf a
disc froill which it can be booted up •. See Section V of the RTE-IV
On-Line Generc:itor hanual for more information.

1-21. DISC GACKUP

The Disc ~acku~ programs can be used either on-line or off-line to
transfer data frorn disc to magnetic tape or vice versa, copy clata frorn
disc to disc, verify successful transfers or co!_)y operation, and to
initialize a Jisc cartrid,Je. ;)ee the RTE Utility Pro9rams Feference
r,:anual for .nore information.

1-22. DISC U~CATE

'Ihe Disc Update r_yrocess can ue used to rerlace disc cartridge files
with files stored on an HP rnini-cartridge tape. The primary purpose is
to UfH.1ate 1naster software discs with either Hi? software distributed on
mini-curtridges or user-written procJrarn modifications. See the RTE
Utility ~rograms Reference :1anual for more information.

1-23. KSY3 A~D KYC~P

(\ The K[YS and KYD>~P pro~J rams are use,~ to er ea te user-Clef ined command
~j sets for prO•Jraff.minJ the soft keys on the HP 2645.!\ Display Station.

Sof tkeys provide the capability to enter entire sequences of commands
wit~ a single keystroke. The advantages are speed of entry ana a
significant reduction in operator errors during terminal entry
sessions. See the f;TE u ti 1 i ty Programs Ref ere nee Manual for more

I-)

GENERAL DESCRIPTION

inf or mat ion.

1-24. LGTAT

The LGTAT
auxiliary
r,:an ual for

program logs and
(only) disc tracks.
more information.

/~s-
1-~ PROGhAMMING LANGUAGES

displays the status of the system and
See the RTE Utility Programs Reference

The language translators available for user program development under
the RTE system are RTE FORTRAN IV, RTE Assembler, HP Micro Assembler
and BASIC 1000/D.

f~T E FO.KTHAN- IV

RTE FORTRA~ IV is a problem oriented programming language that is
translated by a compiler. The FORTRAN IV compiler executes in RTE and
accepts source r>rograms from either an input device or FMGR file. The
resultant relocataGle object programs and listed output files are
stored in FMGR files or output to specified devices. For further
information, see the RTE FORTRAN-IV Programmer's Reference Manual.

H'I'E-IV .l\SSEM8 LC E

The RTE- IV Assembly Language is a machine-oriented p rog ramming
language. Source programs written in this language are accepted by the
~ssembler from either inrut devices or disc files and translated into
absolute or relocatable object programs. Absolute code is output in
binary records suitable for execution on systems other than RTE-IV.
For further information, see the RTE-IV Assembler Reference Manual.

RTE MIC RO-ASSEi'11BLE R

The Micro-Assembler is part of an optional support package for on-line
users of special rnicroprogra:nmed instructions. The Micro-Assembler
translates source code into ObJect microprograms. See the
~icro-Assembler keference Manual.

REAL-TIM~ ilASIC/lOOOD

Real-Time BASIC is an optional, conversational programming language
that is easily learned, even by users without previous programming
experience. Each stateinent entered by the user is immediately checked
for correct syntax by the Real-Time BASIC Interpreter. No separate
compilations or assembly operations are involved. A partly completed
program can be run at any time to confirm that it executes as the user
intended. See the Multi-User Real-Time BASIC Reference Manual.

1-11)

/-"
i .• : ' 'j

()

GENE RAI, DESCRIPTION

(;U ERY

\,JUEF"~Y is an Ln~lisb-like language usec~ to access the dP data base
,11anage;:ient suusystein called IMAGE/1000. HlAGE/1000 is itself an
optional subsystem that can be ordered for RTE-IV p•·stem applications
involved with large Jata base considerations. In adJition to the use
of QUERY, the data base can also be accessed througt RTE-IV FORTRAN,
Asserno ler or Real-'I' ime ;:rnsrc applications programs. See the 1"1AGE/l 00 0
Reference Manual for further information.

--- ,. (,
1-~. P'l'l.'.:-IV SYSTC 1,1 f3Ut•iMl\RY

The dP Heal-'l'ime executive IV software system is a multiprogramming,
multi-user and multi-partitioned system that provides priority
scheduling, interrupt handling and program preparation capabilities.

'i'~ith multiprogramminCJ, a number of dat/3 acquisition systems or te.st
stands can be operated simultaneously on a 24-hour a day basis. Data
reduction and report preparation functions can oe scheduled to execute
in the background area during times when real-time activities permit.
'l'he same computer can also ne used by the proqrarnming group for
ongoing develo2ment work with RTE background compilers for FORTRAN IV,
and with the HP Assembler, Editor, and other auxiliary programs.
Programs can be added to the system on-1 i ne. For system protect ion,
new programs can be debugged while the memory protect fence and the
Dynamic flaf?ping System :naintains the integrity of the system area
other user programs.

Scned~ling of all programs is based on priority. External events can
interru0t current operations to schedule programs for execution, or a
progra:n can oe scheduled by an operator request, a program request, or
on a real-time clock oasis. Priorities are assigned by the user during
generation or on-line loading, and may be changed by an operator
request.

The syste~ controls 1/0 processing through a central routine that
directs requests and interrupts to the appropriate device driver
subroutine. for efficiency, programs awaiting I/O are suspended to let
other programs use the computer. Outputs to slow devices can be
ouf fered. For processes that cannot tolerate ordinary system overhead,
a privileged interrupt option lets a device to contact its driver
directly without goinl) throu9h the Executive. Program-to-program
communication is provided through a mailbox (Class I/O) scheme.

The operator retains final control of system operation via commands
entered through the system console. The operator can turn on programs,
make status checks or perform other operations.

Configuration is efficient. System generation is performed on-line
using interactive operator dialog or pre-built answer files. This
results in an operating system configured for a specific hardware
system.

c

r--t---------------------t
I STANDARD BOOT-UP PROCEDURES I SECTION II I
I I I
+--+---------------------+
System boot-up is the process of loading the operating system software
into memory so that it is ready for execution. Boot-up begins by using
either the Disc Loader ROM or Bootstrap Loader to load the Boot
Extension into memory from track O, sector O of the system disc
subchannel. The Boot Extension, in turn, loads the operating system
into memory.

At this point, the user has the option of either completing a
"standard" system boot-up procedure as described in this section, or
reconfiguring the current I/O and memory assignments as described in
Section IX,"Memory and I/O Reconfiguration." In a standard boot-up,
the operating system immediately completes the rest of the
initialization process as follows:

1. Displays a SET TIME message.

2. Executes a startup program (optional).

3. Passes control to the File Manager (FMGR), which tries to execute
a procedure file named WELCOM. If the WELCOM file does not exist
on the system, the FMGR displays a FMGR -006 error message.

If memory and I/0 reconfiguration is to be performed during system
boot-up, completion is delayed and an interQctive Conf igurator program
is scLeduled via S-re:)ister settings tc make the new memory and I/0
assignments. At the ena of the reconfiguration process, control is
returnec::i to the systeff, to complete the tJoot-up procedure as described
above.

Use the LHC;Ce•~urcs <':iescriued oelow to perform a standa.rci system
boot-up. Lse the procedures described in Section IX to perform a
boot-up with I/U and iilemory reconf i13ura tion.

2-1. BOO~ LOALEUS ~NC BOOT EXTENSIO~

The Disc Loot Extension can be loaded into memory from the disc using
either the Disc Loader H021 or 13ootstrap Loader.

2-2. LI~1C LOADEF! HOM

The Disc Loader RO~ can be used to load the Uoot Extension if the Boot
Extension resides on physical track n, sector O of the system disc.
Hefer tc the tlP 12992 Loader HOM's Insta11ation t':anual (12992-90001)
for a description of the S-register setting to load the Boot Extension
in to r1emo ry.

II-1

An example of a standard system boot-up using the 129928
HPL-compatiole 7905/7906/7920 Disc Loader ROM is as follows:

1. Select the S-register for display on the computer front panel.

2. Press CLEAR DISPLAY.

3. Set the S-register bits as follows:

Bits

0-2

3-4

5

6-11

12

13

14-15

Enter:

Surface number of the disc where the
HTE-IV system subchannel starts (surface
numoers start at 0).

0 (reserved)

0 for standard ooot-up

Octal select code of the disc.

1 to indicate a manual coot from
the S-register.

0 (received)served)

Loader ROM selection (number of the
HOM cell containing the Disc Boot
Loader).

4. Press PHESE'I, nn, and PRESET (again) to load contents of Disc
Loader ROM. A successful load is indicated if the OVEPFLOW
indicator does not light up.

5. Press RUN.

II-2

1. Assume a standard boot-up from BOM #2, with a 7905 in select
code 21 and surface 0.

2. Set the S-reyister = 112100.

3. Press PRESET, IBL I PRESfT (again) and RUN.

;('
:~/

(~''

STANDARD BOOT-UP PROCEDURES

The dootstu.1c1 ;_,oader is us~::<) to load the l.~oot f'xtension into :ne.nory if
the ;_:oot L.<tension Joes not resic1e en the physical track (), sector 0
of the system disc, or if the Disc r,oader F.Ol'·i is not available. 'l'he
proceciure is as follows:

1. Select the S-register for display on the computer front panel.

2. Press CLEA~ SIS~LAY.

3. Set the S-register cits as follows:

nits:

0-5

6-11

12-15

Fnter:

0

Octal select code of input
device (e.g., phctoreader)

0

4. Press PaESET, IDL and PRESET (again) to load the Bootstrap Loader.
A successful load is indicated if the OVERFLOW indicator does not
lLjht UfJ.

5 • P r e s s KU .\l •

Wnen tne HLT 77B occurs, clear the s-register, set the P-register to
octal lOU and press FUN to continue.

2-4. LOOT EXTENSION EXECUTION

T'he disc ;:;oot Extent:ion uses the s-register to communicate with the
confi.surator program (see :.:;ection IX). Do MJT criange the S-register
contents until the system coot-up procedure is completed and the SET
TIM~ messa0e is disrlayed.

II-3

I;

!',',

(\

+--+---------------------+ I I I
I OPERATOR COMMANDS I SECTION III I
I I I
+--+---------------------+

3-1. INTRODUCTION

User control of an RTE operating system and the mon~~oring of system
status are performed through a two-way dialog between the system and
user. The system displays various status or error messages that may or
may not require human intervention. The user communicates with the
system through operator requests entered at the user console. Using
these commands and their various parameter options, an operator may
interrupt RTE at any time to determine current system status, correct
error conditions or modify system performance. The operator commmands
and their function are summarized in Table 3-1; complete descriptions
are given later in the section.

3-2. COMMAND STRUCTURE

The operator first gets system attention by pressing any key on the
system console (LUl). On the system console, RTE responds with an
asterisk (*) prompt to indicate system attention. The user then types
a command which is a two-character request word {e.g., ON, UP, etc.),
followed by the appropriate parameters separated by commas.

Each command is parsed or resolved by a central routine that accepts
certain conventions. Command syntax is described in Table 3-2. This
syntax and the command conventions described below must be followed
exactly to satisfy system requirements.

3-3. COMMAND CONVENTIONS

* When a command is entered, the items outside the brackets are
required symbols. Items inside the brackets are optional.

* Two commas in sequence defaults a parameter to zero.

* Each command entered must be completed with an end-of-record
terminator (RETURN key on a CRT or TTY system input device).

III-1

OPERATOR COMMANDS

* An error made while entering a command parameter can be corrected
by using the BACK SPACE key on a CRT system input device (th& ,r-,,
CONTROL and A keys struck simulataneously will delete the last ''---'
character entered on TTY input devices). To delete an entire line,
use the DEL key (RUBOUT key on TTY devices). Corrections to a
command must be made before the RETURN key is pressed or the system
will issue an error return. Note that line feed is supplied by the
system.

* Whenever the operating system is rebooted, parameters changed by
user command will be restored to their original values established
during system generation.

Table 3-1. Operator Command Summary

+--~---~------------------+ I Command I
I Format I Function

See I
Page I

+---------+--- -----+
AB

AS

BL

BR

DN

EQ

FL

GO

IT

LG

LS

LU

I
I Aborts current batch program.
I
I Assigns program to a partition.
I
I Examines and sets buffer limits.
I
I Sets a break flag in named program's ID segment.
I
I Declares an I/O controller or device unavailable.
I
I Examines status of any I/O device, and dynamically
I alters device buffering assignments.
I
I Buffer flush command used in conjuction with
I Multiple Terminal Monitor (MTM) only.
I I
I Restarts programs in an operator suspension state I
I (there several other suspension states). I
I I
I Sets time intervals for programs. I
I I
I Allocates LG area. I
I I
I Sets LS area pointer. I
I I
I Examines and alters device Logical Unit I
I assignments. I
I I
I I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

+---------+---+-----+

III-2

/

()

OPERATOR COMMANDS

Table 3-1. Operator Command Summary (cont'd)

+---------+---+-----+ + Command I ISee I + Format I Function IPaqe I
+---------+---+-----+

I I
OF Terminates program execution. I I

I I
ON Schedules a program for execution. I I

I I
PR Changes the priority of programs. I f

I
RT Releases program's disc tracks. I

I
RU Schedules a program for immediate execution. I

I
SS Operator suspends a program. I

ST

sz

TI

TM

TO

UP

UR

Examines the status of a program or partition.

Examines or changes program size.

Prints the current time.

Sets the real-time clock.

Examines and dynamically alters an I/O
controller's time-out parameter.

Declares an I/O controller and associated devices
as available.

Unreserves a previously reserved partition.

+---+

III-3

OPERATOR COMMANDS

Table 3-2. Operator Command Syntax Conventions

+---+ Ci Item Meaning I
+--~--------------------+
I
I UPPER CASE ITALICS
I
I
I lower case italics

(,item]

l,item 1 I
l,item 2 I
l,item 3 I

,item 1
,item 2
,item 3

••• (row of dots)

These words are literals and must be
specified as shown.

Symbolic representations indicating what
type of information is to be supplied. When
used in text, the italics distinguishes them
from other textual words.

Items with brackets are optional. However, if
item is not supplied, its position must be
accounted for with a comma7 this causes item
to automatically default.

Indicates that exactly one item may be
specified.

Indicates that there is a choice of entries
for the parameter, but one parameter must be
specified.

This notation means •and so on."

+---+

III-4

OPERATOR COMMANDS

3-4. RTE-IV OPERATOR COMMANDS

All· operator commands are described below in alphabetical sequence. A
carriage return to terminate a command entry is not illustrated, but
is assumed in every case.

+---+
I
I
I
I
I
I
I
I
I
I
I
I

AB (abort)

Aborts the current program running under batch. Since FMGR (not a
copy of FMGR) is the Batch Spool Monitor, the command applies only
to "sons" of FMGR. The format is

/,0 \
AB

\,1 I

I where:
I
I o
I

is the default case. It terminates and removes from the time
list the current batch program that is executing, scheduled,
or operator suspended. It. also terminates batch programs that
are I/O, memory or disc suspended the next time they are
scheduled. Disc tracks are not released.

I
I
I
I
I
I 1
I

immediately terminates the batch program and removes it from
the time list, and releases all disc tracks. If suspended for
I/O, a system generated CLEAR request is issued to the driver. I

I
I
I

When the File Manager is waiting on a program it is running (e.g.,
ASMB) , the AB command functions like the command

OF,name

If the File Manager is dormant or non-existent in the system, the
AB command causes the error message ILLEGAL STATUS to be printed.
If the File Manager is not dormant and is not running a program,
AB functions like the command

BR,FMGR

Note that an AB command from an MTM terminal functions differently
and has a different meaning. See the MTM section of this manual.

+---+

III-5

OPERATOR COMMANDS

+--~~~---~~~---~+ I · t r(~
AS (assign partition) l ~/

Assigns a program to a partition. The partition does not have to I
be reserved. The format is

AS,xxxxx,yy

where:

xxxxx = the program name
yy = the partition number (1-64)

Program xxxxx will be assigned to partition yy. If yy = O, the
program will be unassigned and can be dispatched to any partition
of the proper type large enough to run the program.

If the program is not dormant or is still resident in any
partition (i.e., saving resources, operator suspended or serially
resuable), the error 'ILLEGAL STATUS' will be returned and the
input ignored. Partition yy must also be large enough to run
program xxxxx. If not, the error 'ILLEGAL PART'N' will be
returned. Trying to assign a program to an undefined partition
will also generate the 'ILLEGAL PART'N' message.

If the program named xxxxx cannot be found, a "NO SUCH PROG"
error message will be issued.

+---+

(-~ •..
'

/

III-6

('

(.··.-\'

- /

OPERATOR COMMANDS

+---+
BL (buffer limits)

Examines or modifies current buffer limits. The format is

BL[lower limit, upper limit]

where:

BL without parameters displays previousll set upper and
lower limits.

lower limit is the lower limit number.

upper limit is the upper limit number.

Setting upper and lower memory limits with this command can
prevent an inoperative or slow I/O device from monopolizing
System Available Memory. Each time a buffered I/O request is
made (Class I/O requests are buffered), the system adds up
all the words in the I/O requests queued to that entry and
compares the number to the upper limit set by this command (or
during generation). If the sum is less than the upper limit, the
new request is added to the queue. If the sum is larger than the
upper limit,the requesting program is suspended in the general
wait (STATUS = 3) list.

When a buffered I/O request completes, the system adds up the
remaining words in the I/O requests queued to the EQT entry and
compares the number to the lower limit set by the command (or
during generation). When the sum is less than the lower limit,
any programs suspended for exceeding the buffer limits on this
EQT are rescheduled.

Any program with a priority of 1 through 40 will not be suspended
for buffer limit, so that alarm messages, etc., are not inhibited.

+---+

III-7

OPERATOR COMMANDS

+--~--------~--~---------~+ I
BR (break)

Sets an attention flag in a program's ID segment. The format is

BR, name

where name is the name of the program.

The BR command allows an operator to break the executicn of a
program if the program requests this via the IFBRK system
subroutine. When BR is executed, a break flag in the named
program's ID segment is set • The user's program can call the
HP-supplied subfunction that will test the break flag and then act
accordingly. The calling sequence of the subfunction is:

I =I FBRK (IDUMY)

where IDUMY is a dummy parameter to make the call appear as a
function (IDUMY need not be supplied in Assembly Language). The
returned value will be negative if the break flag is set, and
positive if it is not. If the flag is set, it will be cleared by
IFBRK. See the Multi-Terminal Monitor section for variations to
the BR command for operation under MTM.

I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I

+---+

III-8

I
I
I
I

;r'
\~

('

OPERATOR COMMANDS

+---+
DN (down)

Declares an I/O controller or device down (i.e., unavailable for
use by the RTE system). The format is

where:

eqt

lu

/ ,eqt\
DN

\,,lu/

is the EQT entry number of the I/O controller to be
set down.

is the LU entry number of the I/O device to be set
down.

Setting an I/O controller (EQT entry) down effectively sets all
devices connected to the I/O channel down by blocking any I/O
operations on the select code. The state of the devices (Lu's)
associated with the select code are unchanged.

Setting the I/O device (LU) down will make only the specific
device unavailable. However, all other LU's pointing to the
device will also be set down. Other devices using the device's
I/O select code are unaffected.

The I/O controller or I/O device remains unavailable until the
I/O controller is set up by the UP command. The operator might
set a device down because of equipment problems, tape change, etc.

I
I
I
I
I
I
I
I
I

+---+

III-9

OPERATOR COMMANDS

+----------------------------------~--------------------~-~----~--~--~+ I · I /r~"
EQ (status) U

Prints the description and status of an I/O controller, as
recorded in the EQT entry. The format is

EQ ,eqt

where:

eqt is the EQT entry number of the I/0 controiler.

The status information is printed as:

select code DV.nn DB Unn status

where:

select code is the 1/0 select code number.

OV.nn

D

B

Unn

status

is the driver routine.

is D if is OMA required; 0 if not.

is B if automatic output buffering is used; 0 if
not.

is the last subchannel addressed.

is the logical status:

0 = available
1 = I/O controller unavailable (down)
2 = I/O controller unavailable (busy)
3 = waiting for OMA assignment

Note that if eqt is O, it is a bit bucket, as is any associated
LU.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

+---+

III-10

()

OPERATOR COMMANDS

+--~--+
EQ (buffering)

Changes the automatic output buffering designation for a
particular I/O controller. The format is

where:

eqt

UNbuf fer

BUffer

/,UNbuffer\
EQ, eqt

\,BUf fer I

is the EQT entry number of the I/O controller.

turns off buffering.

turns on buffering.

When the system is rebooted from the disc, all buffering
designations are reset to the values originally specified
during generation.

+---+

III-11

OPERATOR COMMANDS

+---~-----+
FL (flush)

Eliminates buffered output to an I/O device. The format is

lu>FL

where:

lu is the Logical Unit Number of the interrupting user console.

The FLush command can only be used in conjunction with the
Multi-Terminal Monitor (MTM), and is illegal if entered from the
system console (LUl).

Other methods for clearing the buffer are using the EXEC call:

CALL EXEC (3,23B,lu)

or the File Manager command:

:ON,FMGR
:CN,lu,23B

+--~+

III-12

0

0

(~
- /

OPERATOR COMMANDS

+---+
GO (reschedule)

Reschedules a program previously suspended by the SS command or
a Suspend EXEC Call. The format is

where:

name

pl . • • p5

/GO \
, name [, pl [, • • • [, p5]] 1 1]

\GOIH/

is the name of a suspended program to be scheduled
for execution.

is a list of parameters to be passed to name only
when name has suspended itself (see Suspend EXEC
Call in Section IV). The parameters are ignored
if name was suspended with the SS command.

~he GO command is illegal if the program has not been suspended
previously by the operator or has not suspended itself.

Parameters pl through p5 can be entered in ASCII or numeric form.
Octal numbers are designated by the "B" suffix and negative
numbers by a leading minus sign. For example:

GO,name,FI,LE,310618

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

. I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

+---+

III-13

OPERATOR COMMANDS

+---+ I
GO (reschedule) ••• cont'd I

I
Note that only two ASCII characters per parameter will be returned I
by a RMPAR subroutine call: if one is given, the second I
character is passed as a blank (blank= 40B). If the first I
parameter is ASCII "NO" it must then be repeated (the system I
interprets it as "NOW" in the GO commmand). For example:

GO,name,NO,NO,FI,3,4,5

is interpreted as shown below. NO (NOW) is not used except to
push out the parameters.

NO
FI
3
4
5

After a program has suspended itself and is restarted with the GO
command, the address of the parameters passed by GO is in the
B-register. An immediate call to the library subroutine RMPAR
retrieves the parameters (see Section IV, Suspend EXEC Call). If
the program has not suspended itself, the a-register is restored
to its value before suspension and the parameters are ignored.

The program may also recover the ASCII command string (up to 80
characters typed after the prompt) that scheduled it by using the
String Passage EXEC call (see Section IV). If the program was
rescheduled with a GOIH (inhibit string passage) or if the procjram
has not suspended itself, the command string is not passed.

+---+

III-14

If~

'~,)

(~

(

('

OPERATOR COMM¥DS

+~--+
IT (Interval Timer)

Sets time values for a program so that it automatically executes
at selected times when scheduled with the ON command. The format
is

where:

name

res

mpt

hr
min
sec
ms

IT,name [res,mpt[,hr,min[,sec[,ms]]]]

is the name of the program.

is the resolution code:

1 - tens of milliseconds
2 - seconds
3 - minutes
4 - hours

is a number from 0 to 4095 and is used with res
to give the actual time interval for scheduling
(see below).

hours
minutes
seconds
tens of ms.

sets an initial start time.

The resolution code (res) is the units in time to be multiplied
by the execution interval value (mpt) to get the total
time interval. Thus, if res=2 and mpt=lOO, name would be
scheduled every 100 seconds. If hr,min,sec and ms are present,
the first execution occurs at the initial start time specified
by these parameters (the program must be initialized with the ON
command.) If the parameters are not present (e.g., IT,name), the
program's time values are set to zero and the program is removed
from the time list. The program can still be called by another
program or started with the ON,name,NOW or RU command.

When the system is rebooted from the disc, time values set by the
IT command are lost, and the original time values set at original
load time are reinstated.

The IT command is similar to
Section IV). For example:

. ·. ~ ;, ,: .,,.,.. .

The commands

IT,WHZAT,2,5
ON,WHZAT,NO

the Execution Time EXEC Call (See
I
I
I
I
I
I
I

will cause WHZAT to execute every five seconds, starting now. I

+-----~---+

· I II-15

OPERATOR COMMANDS

+-----------------------------------~---~-----------------~--~~--~---~+ I I
LG (LG tracks) l

I
Allocates or releases a group of disc tracks for the LG area. LG
tracks may be used as temporary storage for relocatable code in
FMGR operations. The format is

where:

numb=O

numb>O

LG,numb

(zero) releases the allocated LG area.

release currently allocated LG tracks and then
allocate numb contiguous tracks for an ~G area.

Enough LG tracks for storing relocatable code must be allocated
before storing into this area. Insufficient tracks cause the
program to abort and one of the following diagnostics to be
displayed on the system console: ·

I006 -
1009 -

LG area not defined.
LG area overflow.

An LG request should not be used while anyone is using the LG
tracks. Doing so may result in the message

LGO IN USE

being displayed on the syst;ern console, and no change in the
cur rent number of LG tracks.· In most cases, however, the at tempt
to do so results in an I006 error being issued.

I
I
I
I
I
I

+----------------~--+

III-16

OPERATOR COMMANDS

+---+
LS (source file)

Designates the disc Logical Unit number and starting track
number of source code stored in the track pool prior to an EDITR
operation on the code. The format is

where:

disc lu

trk nu;nb

LS,disc lu,trk numb

is the Logical Unit number of the disc containing
the source file.
2 or 3 = system or auxiliary disc units.
0 = eliminate the current source file

des ig nation.

is the starting track number (decimal) of the source
code.

LS replaces any previous declarations with the current source code
area. Only one area may be declared at a time.

+---+

III-17

OPERATOR COMMANDS

+---------------------------------------~------------------------~----+ I
LU (assignment)

Prints the EQT entry number, device subchannel number, and I/O
device status associated with a Logical Unit number. The format is

LU,lu

where lu is a Logical Unit number from 1 to 63.

Example:
LU # 7 = El2 s 1 D

Logical Unit numbe

EQT numb

subchannel number I I

I/O device status (down in this cas

If the Logical Unit's device is unavailable (down), a D is printed
as the status: otherwise the position is left blank.

+--------------------------------~------------------------------------+

III-18

OPERATOR COMMANDS

+---+
I I
I LU (reassignment) I
I
I
I
I

Changes a Logical Unit number assignment. The format is

I
I
I
I where:
I
I lu
I
I eqt
I
I eqt
I

/,eqt[,subch numb]\
LU,lu

\,0 I

is a Logical Unit number from 1 to 63 (decimal).

is an EQT entry number to assign lu.

if zero (0) lu becomes the bit bucket.

I subch numb is a subchannel number (0 to 31) to assign to lu.
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The restrictions on changing Logical Unit assignments

a. LUl
console
the new
pr int a

(system console) must be an
device. Note that if LUl is
console will print a double
double asterisk (**).

interactive
changed
asterisk (**).

b. LU2 (system disc) and LU3 (auxilia~y disc)
cannot be changed to another EQT entry number.

c. An LU cannot be changed to point at the same
device as LU2 or LU3.

are:

When an irrecoverable problem occurs on an I/O device, the
operator can bypass the downed device for future requests by
reassigning the Logical Unit number to an operable device on
another select code.

When the system is rebooted from the disc, all LU assignments
are reset to those originally established during generation.

Section -, Input/Output, explains Logical Unit numbers, equipment
table entry numbers, and subchannel numbers in detail.

+---+

III-19

OPERATOR COMMANDS

+---+ OF (terminate) I

Terminates a program or removes a disc resident program that was
loaded temporarily on-line into memory but not permanently
incorporated onto the protected system disc. For options 1 and 8
below, the message "name ABORTED" will appear for programs, (but
NOT segments), after the command is executed. The form~t is

where:

name

0

1

8

OF,name
/,0 \

,1
\,8 I

is the name of the program.

terminates and removes the named program from the time list
the next time it is scheduled. The program's disc tracks
are not released.

immediately terminates the named program, removes it from
the time list, and releases all disc tracks. If suspended
for I/O, a system-generated request to clear the device is
issued to the driver.

immediately terminates the named program. If the program
is temporary program loaded on-line, it is removed from the
system (see the Relocating Loader section of this manual).

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

For programs with segments, the OF, name, 8 command must be I
used on the segments as well as the main. I

I
I

this I
Of ,name,8 will not remove permanently loaded programs,
since their ID segments on the disc are not altered by
request. A permanently loaded program is defined as a
program loaded during generation, or on-line with the LOADR
and with a copy of its ID segment in both memory and on the
disc. For temporary programs loaded on-line, the ID segment
is blanked to make it available for use by another program
loaded with the LOADR.

The tracks (if system tracks) containing the program are
released. If the program had been stored on File Manager
tracks,those tracks remain as File Manager tracks and are
not returned to the system.

If the program is I/O suspended, a system generated clear
request is issued to the driver. The OF,name,8 command must
then be entered a second time to permanently remove the
program from the system.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I A permanently loaded disc resident program may only~r~ed I

!--~==~:~=~:.::_~~:~-:~=-:~~~~-~:-~::::~~=~-~~-~=::~~~--~--.,PJI:-------!

III-20

OPERATOR COMMANDS

+---+
ON (schedule)

Schedules a program for execution. Up to five parameters and the
command string may be passed to the program. The format is

where:

name

NOW

pl ••. p5

/ON \
, name [, NOW] [, pl [, ••• [, p5]]]]]

\ONIH/

is the name of a program.

schedules a program immediately that is normally
scheduled by the system clock (see IT).

are parameters passed to the program when it is
scheduled.

Parameters pl through p5 are the ones passed by RMPAR as described
under Comments in the Program Schedule EXEC Call in Section IV.
Refer also to XTEMP words 1 through 5 in the program's ID segment
(see Appendix). Note that any parameters not entered as part of
the ON command-will be returned as zeros by a call to RMPAR.

Parameters pl through p5 can be entered in ASCII or numeric form.
Octal numbers are designated by the "B" suffix and negative
numbers by a leading minus sign. For example:

ON,name,FI,LE,31061B

Note that only two ASCII characters per parameter will be returned
by a RMPAR subroutine call: if only one is given, the second
character is passed as a blank. (blank= 40B). If the first
parameter is ASCII "NO" then it must be repeated (the system
interprets it as "NOW" in the ON command). For example:
For example:

is interpreted as

ON,name,NO,NO,FI,3,4,5

NO
FI
3
4
5

The program can recover the ASCII command string (up to 80
characters typed after the prompt) by using the String Passage
EXEC call (see Section IV). The ONIH command inhibits the passage
of the command string.

III-21

I

OPERATOR COMMANDS

+------------------------------------~--------------------~-----~-~~--+

/

C'
,

III-22

OPERATOR COMMANDS

+--~----------------------+

ON (schedule) .•• cont'd

String Passage Example:

ON,name,FILE1,FILE2,MISCINFOSTRING, ••• ,3

If the resolution code in the ID segment of the program is not
zero, RTE places the program in the time list for e:: •• ecution at
specified times (unless NOW appears; in which case, the program
is scheduled and put into the time list immediately). The
resolution may be non-zero as a result of:

a. Generation

1. With a resolution code in the name record

2. Entry of a resolution code during parameter
input phase.

b. The IT command.

c. Scheduling the program with absolute start time
or off set by some program in the system (see EXEC
calls in Section IV).

Note that if there is no partition large enough to run the
program, or if the program is assigned to a partition that is too
small or does not exist, the error message 'SIZE ERROR' will be
reported. Conditions under which the error message could be output
when attempting to run are:

:SP,xxx
reboot and reconfigure memory to remove partitions large enough
for this program.

: RP, xxx
:RU,xxx

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

+---+

III-23

OPERATOR COMMANDS

+---+
I I
I PR (priority) I
I I
I Changes the priority of a program. The format is I
I I
I PR,name,numb I
I I
I where: I
I I
I name is the name of the program. I
I I
I numb is the new priority. I
I I
I One (1) is the highest priority, and 32767 is the lowest. When the I
I system is restarted from the disc, the priority of name resets to I
I the value set by the generator or LOADR. I
I I
+---+

III-24

(

OPERATOR COMMANDS

+---+
R'r (release tracks)

Releases all disc tracks assigned to a program. The format is

RT,narne

where:

name is the program whose tracks are to be released.

The RT command is illegal if the named program is not dormant.
If the program is dormant, all tracks assigned to the program
are released.

Any tracks released as a result of this command cause all
programs in disc track allocation suspension to be rescheduled.
More information on disc tracks may be obtained from the system
program LGTAT, described in the RTE Utility Programs Reference
Manual.

+---+

III-25

OPERATOR COMMANDS

"-,,
+--~+ ~ I I

RU (run) I
I

Immediately schedules a program without affecting its entry in the I
time list. Up to five parameters and the command string may be I
passed to the program, The format is I

I
/~ \ I

, name [, pl [, ••• [, pS] J J]] I
\RUIH/ I

I
where: I

I
name is the name of a program. I

I
pl ••. pS are parameters passed to the program when it is I

scheduled. I
I

The RU command is used when the operator desires to run a program I
without affecting its entry in the time list. I

I
Parameters pl through pS are passed by RMPAR as described in the
the Program Schedule EXEC Call in Section IV.

Note that any parameters not entered as part of the RU command
will be returned as zeros by a call to RMPAR.

Parameters pl through pS can be entered in ASCII or numeric form.
Octal numbers are designated by the "B" suffix and negative
numbers by a leading minus sign. For example:

RU,name,FI,LE,31061B

+---+

III-26

0

OPERATOR COMMANDS

+---+
RU (run) •••• cont 'a

Note that only two ASCII characters per parameter will be returned
by a RMPAR subroutine call: if only one is given, the second
character is passed as a blank (blank= 40B). If the first
parameter is ASCII "NO" then it must be repeated (~he system
interprets it as "NOW" in the RU command). For example:

RU,name,NO,NO,FI,3,4,5

is interpreted as shown below. NO(NOW) is not used except to push
the parameters out:

NO
Fl
3
4
5

The program can recover the ASCII command string (up to 80
characters typed after the prompt) by using the String Passage
EXEC call (see Section IV). The RUIH command inhibits the passage
of the command string. If there are no characters past name, the
command string is not transmitted.

String Passage Example:

RU,narne,STRINGWHATEVER,12345,ANOTHERONE,6789

Note that if there is no partition large enough to run the
program, or if the program is assigned to a partition that is too
small or does not exist, a 'SIZE ERROR' message will be reported.
Conditions causing this error message could be as follows:

: SP, xxx
reboot and reconfigure memory to remove partitions large
enough for this program.
:RP,xxx
:RU,xxx

+---+

III-27

+---+ I
SS (operator suspend) I f

I ~/
Operator suspends a non-dormant program. The format is I

SS,name

where name is the name of the program to be suspended.

The SS command places the program in the operator suspe~1ed list
immediately if the program is executing or scheduled. The request
is illegal if the program is dormant. If the program is s~spended
for I/O memory, disc or is in the time list, RTE waits until the

·current state is ended and then operator-suspends the program.

The SS command is similar to the Program Suspend EXEC call (see
Sec ti on IV) •

+---+
+---+
I
I SZ (assignment)
I
I Causes program size information to be printed. The format is
I
I SZ,xxxxx
I ~

I where xxxxx is the program name. The output will be formatted as:
I
I AAAAA BB CCCC DD
I
I where:
I
I AAAAA = the last word plus 1 of the user's program. If the program
I is segmented, AAAAA is the last word, plus the last
I address plus 1 of the largest segment.
I
I BB = minimum required partition size of the program. If the
I program is of EMA type, BB equals the program code size
I plus its EMA size.
I
I CCCC = the program's EMA size. Printed for EMA programs only.
I
I DD = the program's MSEG size. 'l'his will only be printed if the
I program is of EMA type.
I

+---+

(

(\

+---+
I I
L SZ (reassign;nent) I
I I
I Allows the user to increase the page requirements of a program.
I Certain programs such as compilers, assemblers, loaders and
I generator use memory after the end of the program for symbol table
I or data space. The SZ command modifies the size of the additional
I memory used by the program. An alternate form of the command

increases both program page requirements and EMA size requirements.
The format is

SZ,name,Pl for non-EMA programs

or

SZ,name,Pl,P2 for EMA programs

where:

name is the program name

Pl is the new required program size in pages for non-EMA
programs. For EMA programs, Pl is the new EMA size.

P2 is the new MSEG size for the EMA program referenced.
•

The following conditions will be flagged as errors with a 'SIZE
ERROR' message reported:

NON-EMA PROGRAM ERROR CONDITIONS:

a. Attempted to make Pl larger than 32K program
address space.

b. Attempted to make Pl larger than any currently
existing partition.

c. Attempted to make Pl larger than an assigned
program's partition size.

a. Attempted to make Pl smaller than the actual code
of the program.

EMA PROGRAM ERROR CONDITIONS:

a. Attempted to set Pl with a program size plus EMA size
that is larger than the largest partition.

b. Attempted to set Pl with an assigned program's size
plus EMA size that is larger than the assigned partition.

c. Attempted to set Pl less than 1.

I
I
I
I
I
I
I
I
I

d.

e.

Attempted to set P2 with the program size plus P2
that exceeds the maximum program address space.

Attempted to set P2 less than 1.

I
I
I
I

' I EMA size changes are only allowed for those programs where no EMA I
size was specified within the program itself 1 that is, the default I
was taken. An attempt to increase or decrease the EMA size in a I
program where the EMA size was specified within the program causes I
a 'SIZE ERROR' message to be issued. MSEG changes may be made I
for any EMA type program. All FTN4 programs have specified EMA I
sizes. I

I
. +-----------------------~---+
+---+ I I
I TI (time) I
I I
I Prints the current year, day and time, as recorded in the I
I real-time clock. The format is I
I I
I TI I
I I
I The computer prints out the year, day and time in the format I
I I
1 yyyy ddd hh mm ss

where:

yyyy

ddd

hh,mm,ss

is the four-digit year.

is the three-digit day of the year (see Table 2-3
at the end of this section for day-of-year
conversion).

is the time on a 24-hour clock in hour, minutes and
seconds.

The TI command is similar to the Time Request EXEC Call (see
Section IV) •

+---+
+---+

TM (set clock)

Sets the real-time clock. The format is

TM,yyyy,ddd[,hh,mrn,ss]

where:

YYYY is a four-digit year.

I
I
I
I
I
I
I
I
I
I
I

0

()

ddd

hh,mm,ss

-- '"" ·-·-···-'····-,··-··~··----~

is a three-digit day of the year (see Table 2-3 at
the end of this section).

is the current time of a 24-hour clock in hours,
minutes and seconds.

The TM command is entered in response to the message

SET TIME

which is displayed when the RTE system is booted f ·om disc.

Enter a time value ahead of real-time. When real-ti. .. ;.; equals the
entered value, press RETURN key. The system is now synchronized
with the time of day.

NOTE

The real-time clock is automatically started
from 8:00 on the system release date each
time the system is loaded into memory.

+---+
+---+

TO (time out)

Prints or changes the time-out value of an I/O controller. The
format is

where:

eqt

numb

TO, eq t [,numb]

is the EQT entry number of the I/0 controller.

is the number of 10 ms intervals to be used as the
time-out value (numb cannot be less than 500 (5 sec)
for the system input device driven by DVR00/05).

The time-out value is calculated using numb time-base generator
interrupts (the time-base generator interrupts once every 10 ms).
For example, numb = 100 sets a time-out value of one second:
100 * 10 ms = 1 second. When the system is rebooted from the disc,
time-out values set by TO are reset to the values originally set
during generation.

If numb is absent, the time-out value of eqt is printed in the
format

TO #10 = 100

and means EQT entry number 10 has a time-out value of 100
ten-millisecond intervals or one second.

3-J /

If a device has been initiated and it does not interrupt within
the interval set by the time-out parameter, the following events
place:

a. The calling program is rescheduled and a zero transmission
log is returned to it.

b. The device is set to the down status and bit 11 in the
fourth word of the device's EQT entry is set to 1. An error
message is pr inted1 e.g. ,

I/O TO L tx E ty s tz

c. The system issues a CLC to the device's I/O select code(s)
through the EQT number located in the Interrupt Table.
Table.

See also the discussion of I/0 controller time-out in the
Input/Out section of this manual and "Driver Time-Out Processing•
in the RTE Operating System Driver Writing Manual.

+--~--------------+

+-----------~---+
UP (make available)

0

Declares an I/O controller and all associated devices as up (i.e., c-\
available for use by the RTE system). The format is ...)

UP ,eqt

where eqt is the EQT entry number of the I/O controller to be
re-enabled.

When the operator has previously set an I/O controller or device
down for some reason, the condition should be corrected before
using the UP command to declare the item available again. If the
problem is irrecoverable, the LU command can be used to switch
the Logical Unit number assignment to another device for further
requests (see the LU command in this section). Previous requests
made to this device are switched to the new device. To prevent
indefinite I/O suspension on a downed device, time-out is used.
Refer to the TO command in this section and "I/O Device Time-Out•
in Section v.

The UP command places all downed devices (LU's) and the I/O
controller (EQT entry) in the available state. Any I/O operations
associated with downed devices are queued on the EQT entry for
processing. If a device's problem has not been corrected, it will
be reset down and an error message will be printed:

I/O NR L tlu E teqt s tsub c

(

I
+---+

+---+
I
I UR (release reserved partition)
I

Releases a partition previously reserved during generation or slow
boot.

The format is

UR,xx

where xx is the number of the partition to be released.

Once the command is entered, any program that fits into the
partition may run in it. Note that although partitions may be
released on-line, they may not be reserved on-line, since such
action could prevent a currently swapped-out program from
regaining use of its system-assigned partition when it was again
scheduled.

+---+

3-5. OPERATOR COMMAND ERROR MESSAGES

When an operator command is entered incorrectly or current system
conditions prevent honoring the command, RTE may reject the command and
issue one of the messages listed in Table 3-4. The operator should
either enter the command correctly or take appropriate action and enter
the command again.

Table 3-4. Operator Command Error Messages.

+---+
I I I
I Message I Meaning Action I
!----------------!------------------------------- --------------------!
I OP CODE ERROR I Illegal operator request word. Enter correct I
I I opcode I
I I I
I NO SUCH PROG I The name entered is not a main Enter correct I
I I program in the system. program name or I
I I load program I
I I I
I INPUT ERROR I A parameter is illegal. Enter command with I
I I correct parameter I
I I I
I ILLEGAL STATUS I Program is already scheduled. Check status with I
I I ST command. Either I
I I wait until program I
I I terminates itself I

J-Y3

CMD IGNORED­
NO MEM

ILLEGAL PART'N

SIZE ERROR

Not enough System Available
Memory exists for storing the
program's command string.

Partition does not match
command request,

Illegal program size specified
or size of program specified
larger than its assigned
partition or any partition.

I or off it with OF
I command and reenter
I RU command
I
I Reenter the command
I (RU ,ONIGO) or enter
I the inhibit form
I (IH) of the

command.

Reenter command
with correct
parameter number

Reenter command
with correct size
or adjust program
size with the SZ
command.

+---+
Other errors may occur when an I/O device times out because of an
inoperable state. For example, assume the line printer is in the
OFF-LINE condition (or the operator has failed to engage the paper tape
reader clutch). In this case, the system will print one of the following
error messages and suspend the program:

I/O NR L tlu E teqt s #sub

I/O TO L #lu E teqt s tsub

After the device problem has been corrected, simply enter the command

UP,eqt

where eqt is the downed device's Equipment Table entry number (same
number given in the I/O error message). The program is automatically
rescheduled and the desired I/O operation takes place.

An alternate method of handling the same problem would be to use the LU
command to change the referenced device to another device that is
operational.

Another example of time-out is running out of paper when a program is
printing a long 1 is ting on the line pr inter. In this case, it is
possible to switch LU's and continue the listing without interruption,
as shown below:

I/O TO L tlu E #eqt s #sub
LU,lu,eqt

0

(~\

~.)

The error message says that the device at LU number lu, EQT number eqt, c
subchannel number sub· has timed out and has been set down by the system.)
The operator switches logical units (with the LU command). The listing

3-~'I

will continue on the new device.

(~,

0

c- +--+---------------------+
I I I
I EXEC CALLS I SECTION IV I
I I I
+--+---------------------+

4-1. INTRODUCTION

An executing program may request various system servi~~s through EXEC
calls coded into the program. An EXEC call is a block of words
consisting of a subroutine call to EXEC with a list of parameters that
define the request. Execution of the subroutine call causes a memory
protect violation interrupt and transfers control into the EXEC
module. EXEC then determines the type of request (from the parameter
list) and initiates processing if the request was legally specified.

In RTE FORTRAN IV, EXEC calls are coded as standard CALL statements.
In Assembly Language, EXEC calls are coded as JSB EXEC, followed by a
series of parameter definitions. For any particular call, the object
code generated for the FORTRAN CALL statement is equivalent to the
corresponding Assembly Language object code.

4-2. ASSEMBLY LANGUAGE FORMAT

The general format for an EXEC call in Assembly Language is a~~
follows:

EXT EXEC

JSB EXEC

DEF *+n+l

DEF pl

Used to link program to RTE.

Transfer control to RTE.

Defines a point of return from RTE (must be immediately
after the last parameter), where n is the number
of parameters and may not be an indirect address.

Define addresses of parameters that may occur anywhere
in program; may be multi-level indirect.

IV-l

EXEC CALLS
.....

DEF pn
return point continue execution Of program.

pl - pl = !CODE = Request Code l<pl< 26.

Actual parameter values

pn -

The example below illustrates a Read request (ICODE=l), with the read
being performed on LUS:

NEXT -

Dl
LU
IBUFL
IBO FR

JSB
DEF
DEF
DEF
DEF
DEF

DEC
DEC
DEC
BSS

EXEC
NEXT
Dl
LU
I BU FR
IBUFL

1
5
10
10.0

Address of return point and call delimiter.
Address of EXEC code.
Address of LU number.
Buffer address.
Address of number of words to read.

This is !CODE; l=read.
LU number is 5.
Buffer length to read is
This is the buff er where

10 words.
the data is placed.

The above sample request reads 10 words from LUS and places the words
into the first 10 words of the 100-word· buffer called IBUFR.

4-3. FORTRAN IV FORMAT

In FORTRAN IV, the Executive can be called through a CALL statement or
as a function. The function is used when the user wishes the A and B
registers to be returned in a variable.

IV-2

0

0

I'
I

1'

EXEC CALLS

CALL Statement Example:

CALL EXEC (!CODE, p2, ••. ,pn)

where !CODE and p2 through pn are either integer values or integer
variables defined elsewhere in the program.

Function Example:

DIMENSION IREG(2)
EQUIVALENCE (REG(l) ,IA, I REG), (!REG (2) ,IB)

REG=EXEC (ICODE,p2 ... ,pn)

The A-register is returned in IA and the a-register in IB.

As a further example of using calls in FORTRAN, the Assembly Language
example given previously in paragraph 4-2 could be performed in two
different ways in FORTRAN-IV:

1. As a call:

DIMENSION IBUFR(lOO)

LU=5
IBU FL=l 0
CALL EXEC(l,LU,IBUFR,IBUFL)

2. As a function:

DIMENSION IBUFR(lOO)

LU=5
IBUFL=l 0
REG=EXEC(l,LO,IBUFR,IBUFL)

These two FORTRAN examples and the Assembly Language call all perform
the same function.

IV-3

EXEC CALLS

4-4. EXEC CALL ERROR RETURNS

EXEC calls that are in error will cause the offendin9 pro9r1m to bta 0
aborted if the error is severe enough. The following errors are
considered to be sufficiently catastrophic to cause a program abort:

Error Code:

MP
DM
RQ
RE
PE

Error Type:

Memory Protect
Dynamic Mapping
Request Code
Reentrancy
Parity

If an error is not severe, it will either abort the program or, at the
user's option, report the error to the program itself and allow the
program to continue execution. Non-severe error codes include the
following:

Error Code:

SC
LU
IO
DR
RN

Er·ror Type:

Scheduling
LU Lock
Input/Output Error
Disc Allocation
Resource Number

A detailed explanation of EXEC call error messages is given at the e.nd
of this section.

The "no-abort" option is set up by altering the return point of the
EXEC call. This error return is established by setting bit 15 to "l"
on the request code word (!CODE}. This causes the system to execute
the first line of code (it must be a one-word instruction} following
the CALL EXEC if there is an error. If there is no error, the second
line of code following the CALL EXEC is extended.

The special error return will also return control to the calling
program on a disc parity error on the system disc or auxilliary disc.
In this case, the B-register will be set to -1 instead of the
transmission log, and the return will be to the normal return point.
If there is an error, the A-register will be set to the ASCII error
type (LU,SC,IO,DR,RN} and the a-register set to the ASCII error
numbers normally displayed on the system consol~.

IV-4

I

1
1
l
1

!l
I

0

EXEC CALLS

The following excerpts from a sample FORTRAt'I program demonstrates use
of the special error return:

Error Return->
No Error Return->

CALL EXEC(ICODE+lOOOOtl,LU,IBUFR,IBUFL)
GO TO 100

Only the GO TO statement snould be entered after a no-abort EXEC call;
any other F0RTRAN command would cause error type ii.formation to be
lost (see below). The GO TO statement also must not reference the very
next statement; thus, the following sequence is illegal:

100

CALL EXEC(ICODE+lOOOOB;LU,IBUFR,IBUFL)
GO TO 100

This is illegal because FORTRAN produced code tries to optimize the
two statements and will not produce a jump if the jump destination is
the very next executable statement. Therefore, the GO TO would be
ignored.

As mentioned previously, if an error return is made to a program, the
A and d registers contain the ASCII error code. The A-register
contains the error type (SC,LU,IO,DR,RN), and the a-register contains
the error number (ASCII 01,02,03,etc.).

The A-register can be easily examined in Assembly Language calls.
Examination is slightly more complex in FORTRAN-IV, but the A and B
registers can be fetched in the following way:

CALL EXEC(ICODE+lOOOOOB, •••)
GO ·ro 100

100 CALL ABREG(IA,IB)

ABREG is an HP-supplied subroutine that returns the A-register in the
first parameter (IA) and the B-register in the second parameter (IB).
Since the contents of A and B are now available, the user may examine
the the error and take appropriate action.

CAUTION
Note that the no-abort option should not be used when the EXEC call is
made as a function;· that is, the following should not be used:

REG=EXEC(ICODE+lOOOOOOB •••••)
GO TO 100

IV-5

EXEC CALLS

The reason is that REG forces the A and B register to be treateed as a
REAL subroutine instead of on integer subroutine.

4-5. EXEC CALL SUMMARY

Table 4-1 summarizes the available RTE EXEC calls, their function and
order of appearance in this section. The error mesaages associated
with the calls are listed at the end of this section.

IV-6

0

0
I
i

~
ll
i.J

()

c

EXEC CALLS

Table 4-1. RTE EXEC Calls

+----------------------+-------+---------------------------------+----+
I I I I
I Call I Request! Function I Page
!----------------------+-------+---------------------------------+----
! I
I Read,Write I 1,2
I I
I I
I I
I I/O Control I 3
I I
I I
I I/O Status I 13
I I
I I
I Disc Track Allocation!

Pro9ram I 4
Global I 15

I
Disc Track Release I

Program I 5
Global I 16

I
Program Completion I 6

I
I

Program Suspend I 7
I
I

Program Segment Load I 8
I
I

Program Schedule I
I 9
I 10
I 23
I 24
I

I I
!Transfers information to and
Ian external I/O device.

from!

I
I
!Performs various I/O control
I operations.
I
!Requests information about a
I device.
I
!Assigns a specific number of disc
!tracks for data storage.
I
I
iRelease assigned disc tracks.
i
I
I
!Logically terminates execution of
la calling program.
I
!Suspends calling program
I execution.
I
iLoads a program segment into
!background area.
i
!Schedules a program for execution
I Immediate with wait.
I Immediate without wait.
I Queue with wait.
I Queue without wait.
I

I
I
I
I
I

+----------------------+-------+---------------------------------+----+

IV-7

EXEC CALLS

Table 4-1. RTE EXEC Calls (cont'd)

+----------------------+-------+---------------------------------+--~-+
I I

Call I Request I Function I Page I
+----------------------+-------+---------------------------------+----+
I I I I
I I I I
I Time Request 11 !Requests current time. I I
I I I
I String Passage 14 Retrieves program's commar.i string I
I or passes string to program's I I
I "Father." I I
I I I
I Timed Execution Schedules a program for execution I I
I Initial Offset 12 After an initial offset. I I
I Absolute Start 12 At a specified time. I I
I I
I Program Swapping 22 Allows a program to lock itself I
I Control into memory. I
I I
I I
I Partition Status 25 !Provides information about a I
I !specified partition. I
I I I
I Memory Status 26 !Allows a program to obtain I
I !information about its own address I
I I space. I
I I I
I Class I/O Read,Write 17,18,201Starts a no-wait I/O request that I
I !results in an information transfer I
I Ito and from an external I/O device I
I lor program. I I
I I I I
I Class I/O Control 19 !Performs various no-wait control I I
I I operations. I I
I I I I
I Class I/O Get 21 I Completes the data transfer I I
I !initiated by the Class I/O I I
I !request (17,18,19,20). I I
+----------------------+-------+---------------------------------+----+

4-6. STANDARD FUNCTION CALLS

IV-8

0

C:

EXEC CALLS

4-7. READ/WRITE CALL

Transfers information to or fr om an I/O device. For a Read request or
for writes to unbuffered devices, the program is placed in the I/O
suspend list until the operation is complete. RTE then reschedules the
program.

Assembly Language:

EXT EXEC

RTN

I CODE
ICNWD
IBUFR
I BU FL
IPRMl

IPRM2

FORTRAN

JSB
DEF
DEF
DEF
DEF
DEF
DEF

DEF

return

DEC
OCT
BSS
DEC
DEC

DEC

EXEC
RTN
I CODE
ICNWD
IBUFR
I BU FL
IPRMl

IPRM2

point

Transfer control to RTE
Return address
Request code (l=read; 2=write)
Control information
Buff er location
Buffer length
Optional parameter (track number if disc
tr an sf er)
Optional parameter (sector nu~ber if disc
transfer)
Continue execution (A=status, B=transmission
log. If buffered Write, A and B are
meaning less.)

1 (or 2) l=Read; 2=W rite
conwd
n
n(or
f

q

-2n)

conwd is described in Comments
Buffer of n words
Same n; words (+) or characters (-)
Optional parameter or decimal track number
if disc transfer
Optional parameter or decimal sector number
if disc transfer

DIMENSION IBUFR(n) Set up buffer
IBUFL = n Suffer length
!CODE = 2 Request code (l=Read; 2=Write)
ICNWD = conwd Set Control Word
REG=EXEC (ICODE,ICNWD,IBUFR,IBUFL,IPRM1,IPRM2)

IV-9

EXEC CALLS

4-8. READ/WRITE COMMENTS

Parameters IPRMl and IPRM2 are optional except in disc ttAl'\Bf~rs. lf ·'-./·
the data transfer involves a disc, IPRMl is the disc track number and
IPRM2 is the disc sector number. These parameters may have further
uses in calls to other I/O devices. In some cases, IPRMl and IPRM2 may
be used to pass an additional control buffer to the driver (see Z-bit
below) .

CO.N'rROL WORD

Figure 4-1 shows the format of the control word (conwd) required in
the Read/Write calling sequence. Function codes for DVR00/05 driven
devices are given as an example. See the appropriate driver manual for
other device function codes.

+---j---1---1---1---1---1---1---1---1---1---1---1---1---1---1---+
I 15 I 14 13 12 111 1 o 9 I 8 7 6 I 5 4 3 I 2 1 o I
+---1-----------1-----------1-----------1-----------1-----------+

0 0 0 z O I X A K V M I Logical I
I I Unit
I Function Code I
+-------------------+ TPRTE-3

Figure 4-1. Read/Write (conwd) Format

Logical Unit = the logical unit number of the devices to/from which
the I/O transfer is to be sent.

Note that if the logical unit is specified as zero (the bit bucket)
the call is executed but no data is transfered.

Z = When set, designates
and IPRM2 is the
negative character
device). The Z-bit

that IPRMl is the address of a control buffer
length of that buffer in positive words or
(useable only when the call is to a non-disc

is passed through to the driver.

Bits 11 and 13-15 are received for usage by the system and should be
set to zero by the caller.

Function code bits for DVR00/05 devices are as follows:

M = 0 for ASCII.

M = 1 for binary.

V = 1, and M = 1, causes the length of punched tape input to be
i~;~r~~~e~ap~: the word count in the first non-zero character read ()

IV-10

(/

EXEC CALLS

V = 1 for the line printer will cause it to print column one.

v = O, and M = 1, the length of the punched tape input is determined
by the buffer length specified in the EXEC call.

K = 1 causes keyboard input to be printed as received. If K=O, input
from the keyboard is not printed.

A = 1 designates punching (without printing) ASCII c~aractters on the
teleprinter (M = 0). (If A = 0, M determines mode of transfer.)
This bit is effective on devices that recogn~ze ths control
function.

X = When paper tape devices are used, "X" in combination with "M" and
"V" will indicate an honesty mode that is defined as follows:

On input, if "X", "M", and "V" are set, absolute binary tape
format is expedted and handled. If "X" and "M" are set, and "V" is
not, leader is not skipped and the specified number of words are
read. On output the record terminator (usually four feed frames)
is not punched.

On input, if "X" is set and "M" is not, ASCII tape format is
expected. Leader is not skipped, bit 8 is stripped, but otherwise,
all characters are passed to the user's buffer. The only exception
is line-feed, which terminates the record. On output, carriage
return and line-feed are suppressed; any trailing left arrow is
not (i.e., left arrow is transmitted but carriage return/line feed
is not) .

A AND B REGISTER RETURNS

End-of-operation information for reads and unbuffered writes is
to ttransmitted he program in the A-B and registers. The A-register
(stacontains word 5 tus word) of the device EQT entry with bits 14 and
the 15 indicating end-of-operation status as defined by the driver
Thiscompletion code. will be either 00 (up) or 01 (down).

The B-register contains a positive number that is the number of words
charor acters (depending upon program specification) actually
Thustransmitted. , the user can t1nd the number of words entered on
by gany input request etting the contents of the B-register.

If the input buffer length was a negative number of characters, the
contents of the a-register will be equal to the positive numbex of
characters
of wnumber
word number

entered. If the requested buffer length was a positive
ords, the B-register contents will be equal to the positive
of s entered.

When a REAL array is transmitted, the buffer length must still be the
total number of words required (i.e., two times REAL array length, or
three times double-precision array length).

IV-11

EXEC CALLS

The registers are meaningless in output requests to a buffered device.

I/O AND .SWAPPING

Disc resident programs performing I/O are
follthe owing conditions:

swappable under any one of

a. The buffer is not in the partition (i.e., it is in system
COMMON) .

b. The device is buffered, the request is for ~utput, and
enough SAM was allocated for buffering the record to be
transferred.

c. The input or output buffer is wholly contained in the
Temporary Data Block (TDB) reentrant routine, and enough
SAM was allocated to hold the TDB.

Only the first buffer of a two-buffer request (see Z-bit above) is
detechecked to rmine program swappability. It is the user's
secoresponsibility to put the nd buffer in an area that implies
are swappability if conditions "a" or "c" true. The system handles

case "b".

REENTRANT I/O

Use of reentrant I/O allows a program to be swapped if the read
is mrequest ade via a call to the REIO subroutine. REIO is a utility
subrlibrary outine and is more fully described under Section X.

4-9. I/O CO~TROL CALL

Carries out various I/O control operations, such as backspace, write
end-of-file, rewind, etc. If the I/O device is not buffered, the
placprogram is ed in the I/O suspend list until the control operation

is complete.

IV-12

0

!

I!

()

<~

Assembly La n;_J uag e :

RTN

JSB
DEF
DEF
DEF
DEF
return

EXEC

EXEC
RT1\I
I CODE
ICNWD
I PRAM
point

Transfer control to RTE
Return address
Request code (3=control)
Control information
Optional parameter
Continue execution (A = status,
A and B are both meaningless if
buff erred) •

3 Request code = 3
conwd See Control word

EXEC CALLS

B meaningless.
the call is

I CODE
ICNWD
I PRAM

DEC
OC1'
DEC n Required for some control functions; see

Control word

FORTRAN:

Use the FORTRAN statements or an EXEC call sequence.

ICODE = 3 Request code
I Q'JwD = conwd
IPRAM = x Optional; see Control Word
REG = EXEC (I CODE, ICNWD, IPR.AM)

CON'rRQL WORD

'::Llo&-..._,;;;~....-;,,;i:..,,--~ows the format of the control word (conwd) required in/f
ol calling sequence.

j1s j 14'iJ'12j11'10 '9 Is '1 's Is' 4' JI 2 . 1 'o J

0 O o o o L Function Code J Logical I
Un11=

hp

Figure 4-4. I/O Control (conwd) Format

IV-13

EXEC CALLS

The following are general function codes:

Function Code (Octal)

00

01

02

03

04

05

Ob*

07

10

11

12

13

14

15

Action

Clear device

write end-of-file (magnetic taf'-)

Backspace one record (magnetic ta~e)

Forword space one record (magnetic tape)

Rewind (magnetic tape)

Rewind standby (magnetic tape)

Dynamic status (magnetic tape)

Set end-of-paper tape--leader skipped on next
input request

Generate paper tape leader

List output line spacing

ririte inter-record gap (magnetic tape)

Forward space file (magnetic tape)

Backward space file (magnetic tape)

Conditional form feed (see Line Printer Driver
manual) .

+--+
I* FOOTNOTE: The dynamic status request (06) is unbuffered by RTIOC so that!
lthe caller receives the true status of any device. This causes the caller I
Ito wait for previous requests it (and lower priority programs) has made to!
I be processed. (· ---.
+-- ·... • _/

IV-14

0

0

--~--~--------- .. -~-

EXEC CALLS

Thl~ following functions are de:f ined for DVRdu/lJVR0.5 (see the driver
man ua 1) :

Function Code:

20

21

22

23

24

Ac ti on:

Bnable terminal - ~llows terminal to schedule
its program when any key is struck.

Disable terminal - inhibits scheduling of
terminal's program.

Set timeout - the optional parameter is set
as the new timeout interval.

Ignore all further action requests until:

a. the device queue is empty
b. an input request is encountered in the

queue

c. a restore control request is received.

Restore output processing
usually not needed).

(this request is

The following functions are defined for the 264X cartridge tape units
(CTU). (Function codes 01, 02, 03, 04, 06, 13, and 14 have the same

illeaning for CTU as for mugnetic tape.)

Function Code:

10

26

27

Action:

Rew ind.

Write end-of-file if not just previously
written or not at load point.

Write end-of-data.

Locate file number IPRAM (less than 256).

IV-15

EXEC CALLS

Function code octal 11 (list output line spacing), requires the
optional parameter IPRAM which designate::; the number of lints to be
spaced on the specified logical unit as shown below:

I PRAM ·re le printer Line Printer
----- ----------- ------------
+n space n lines space n lines

-n space n lines to&- of form

0 no line feed no line feed

4-10. I/O S'fATUS CALL

Requests information (status condition and device type) about the
device assigned to a Logical Unit number.

Assembly Language:

RTN

!CODE
ICNWD
ISTAl
IS'rA2
ISTA3

FORTRAN:

IV-16

EXT EXEC

JSB
DEF
DEF
DEF
DEF
DEF
DEF
return

DEC
DEC
NOP
NOP
NOP

EXEC
RTL'il
I CODE
ICNWD
ISTAl
ISTA2
ISTA3
point

13
n

Transfer control to RTE
Return address
Request code (13=status)
Control information
Stat us word 1
Status word 2 -- optional
Status word 3 -- optional
Continue execution (A and B are meaningless)

Request code = 13
Logical Unit number
Word 5 of EQT entry returned here
Word 4 of EQT entry returned here, optional
LU status returned here, optional

!CODE = 13 Request code
ICNWD = nn nn is the logical unit number
CALL EXEC (!CODE, ICNWD, I ST Al, ISTA2, ISTA3)

C,

RH-Ill

WOKD

5

ISTi\2

!STAI

3-16

J 5 14

D B

AV

D

l3

p

s

T

Unit

Channel

AV

~-- 3
l~1bil'1i·-'· l!O Status \\"ml! ISL\ 1 ilST i\2) Form~1t

13

p

CONTENTS

12 JI 10 9 J 8 7 6 5 4

l s T l Lnit tt Channel#

EQUIP. TYPE CODE l STATUS (see Table 3-4)

= I if OMA required.

= I if automatic output buffering used.

= I if driver is to process power fail.

= I if driver is to process time-out.

= l if device timed out (system sets to zero before each 1/0 request).

= Last sub-channel addn~ssed.

= 1/0 select code for device (lower number if a multi-board interface).

= availability indicator:

0 = available for use.

I= disabled (down).

2 =busy (currently in operation).

3 = waiting for an available DMA channel.

EQUIP. TYPE CODE = type of device. When this number is linked with "DVR." it identifies the
device's software driver routine:

00 to 07 8 = paper tape devices (or system con trul devices)

00 = telepnnter (or system keyboard control device)

0 I "' photo-reader

02 = paper tape punch

05 sub..:l1an11el 0 = interactive kl'yhu~ird device (or system
keyboard control devices)

subch;innel 1.2 = HP mini-cartrid!.!e device ,...

0

0 7 ~(... u{~ >/ _. 1 ~,: 1. _ ./1,,.p
I 0 to 17 =unit record devices .r'7/~c; ,_.,,,I ;;:, c"..,d<J

STATUS

IO
II

I 2

l 5

=plotter t1 ·J
~411 lLl~

=line printer

=mark 'ense card reader

20 Ill 37 = m~1g11l'tic tapc'/llJass sturage devi-·c~

= the actual physical status or simulated status at the end of each operation.
For paper tape devices, two status conditions are simulated: Bit 5 = I
means end-of-tape on input, or tape supply low on output.

J-/-/i

_.,,

()

7900 Moving I lead Disc
D\IU I

~ ./·''
79 2 JO) 1\1oving I leac.l Disc

D R3~

Where:

EOF

PS

~,/f
Table :4-l. EQT Word 5. STATUS Table.

s

ST EOT T

NR EOT AE

FS l!F FC

SC= Seek Check
FC =Flagged Track (protected)
AF= Address Em1r
l;OT = Fml of Tape

NR =Not Ready

HF= ll~rc.lware Fault
PS= P111tect Switch Set
I'S = Drive Format Switch i-, set
FE= Error exists

3

FC

SC

2

CWP

LCF

SC

NR

TEN
EOD

H*"

page
CJCCt

DE

DB

Exec Calls

CN /DB

NR

NE

x

DB/OL

EE

EE

l-/-/2
3-17

0

c

EXEC CALLS

4-11. I/O 3Ti\TllS 20:1 \:•ir'.tH~~

The c:alJing progratn is not suspended when the call is made. Equi~>1llent
Table entry (EQT entry) words 5 and 4 (optional) are returned in ISTAl
and IS·rA2 and a.rE'! defined as shown i:i Table 4-2. The STATUS portion of
EQT en Lr y word 5 for moving head dis cs is further broken down and is
shown in 'f'able 4-3. Refer to the appropriate driver manual for the
format for other drivers.

The status of the specified LU is returned in ISTA3. Bit 15 indicates
wnether the device (LU) is up (0) or down (1). Bits 4-0 give the
subchannel associated with the device.

Insert Table 4-2 here

Insert Table 4-3 here

4-12. DISC TRACK ALLOCATION CALL

Requests that the system assign a specific number of contiguous disc
tracks for data storage. The tracks are either assigned to the calling
program or assigned globally.

IV-17

EXEC CALLS

Assembly Language:

RTN

I CODE

IT RAK

IS'rRK

EXT

JSB
DEF
DEF
DEF
DEF
DEF
DEF
return

DEC

DEC

NOP

EXEC

EXEC
RTN
I CODE
IT RAK
ISTRK
I DISC
I SECT
point

4 or 15

n

Transfer control to RTE
Re turn address
Request code (4=local track;l5=global track)
Number of contiguous tracks required
Start track number
Disc logical unit number
Number of 64 word sectors/track
Continue execution (A and B are meaningless)

4 = allocate track to program
15 = allocate track globally
n = number of contiguous tracks within the
same disc unit requested. If bit 15 of
ITRAK = 1 the program is not suspended if
tracks are not available; if bit 15 = 0, the
program is suspended until the tracks are
available.

c I

!DISC
I SECT

NOP
NOP

System stores starting track number here, or
-1 if the tracks are not available.
System stores Logical Unit number (2 or 3) h~\
System stores number of 64 word sectors/track"l_)
here.

FOR'l'RAN:

Example (with no suspension):

!CODE = 4
ITRAK = lOOOOOB + n
CALL EXEC (I CODE, ITRAK ,ISTRK, I DISC, I SECT)

Example (with suspension until tracks available):

!CODE = 4
ITRAK = n
CALL EXEC (I CODE, IT RAK ,ISTRK, I DISC, I SECT)

4-13. DISC TRACK ALLOCATION COMMENTS

RTE supplies only whole tracks within one disc. When writing or
reading from the tracks (see Read/Write EXEC call), RTE does not
provide automatic track switching; when using this call, the user
program is completely responsible for track management. RTE will
prevent other programs from writing on program-assigned tracks but not
from reading them.

IV-18

c

(

0

EXEC CALLS

TtH~ ~1n)Jt:>1r rt:-t,u1,~ ltl<' t1,h·k~:; until 't'le,'U·t'·-1 hy th;1-·lf, tti,• 11t•l~1,~tnr 1
~1r if Utt' ~'t.:."'.J:,111' :, .it•,q t1'd. ~~h1l .1~ I)' ,1, .• ~;i\lth'd tr.1>·1\~; ,Ht' .w-11 l,.1bh.•
tc1 ,',r~' ,)r,19r.1n1 fi..11 l\t·:l\1', Wl{l'l'l·:, ,11 1.•\,·,1~"''· 'l'h1• 11:h:•1 ib 1·11n11ll1 1 l:•\y
re~;pons1hle t'cr Utt' i I 1\1.lllcl-Jt~llleilL. f:'l'l< w i I.I 11 .. t i}I t:Vt·,1d uLli<.'l L'ldljldlllci

from wr itin(j on glob;illy assigned track:3 or releds.i.ng them.

4-14. PROGF:AM IHSC 'l'RACKS RELEASE CALL

Releases 30me contiguous disc tracks previously assigned to a program
{see uisc Allocation BXEC call).

As SE! inb ly La n.J ua.g e:

RTN

ICOnE
r·r J?.Af.

I 51' i-IK
I DISC

FCiRTRAN:

EX'r EXEC

;JSB
DEF
DEF
DEF
DEF
DEF
return

fl I .. ~ C
f)CC

DEC
DCC

EXEC
RTN
I CODE
ITHAK
ISTRK
ID I SC
point

5
n

•Tl
p

Transfer control to RTE
Return address
Request code (5=release local tracks)
Number of contiguous tracks, or -J
Starting track number
Disc logical unit = 2 or 3
Continue execution (A <:ind Bare 111eanin9less)

Release program'::> tracks
If n = -1, release a.11 tracks assigned to
program; ISTRK and IDISC are unnecessc1ry.
OtberwL:;e, n L3 the nmnber of contig•ious
tracks to be releas~d starting at ISTRK.
Starting track number
Disc logical unit

Relc;ase of n conti..juo:Js tracks starting at ·11 on LU p:

ICODE - 5
J'f HAK =; n
I STRK =: ,11

IDISC -· p
CALL EXEC (I CODE I IT RAK I I s·r RK, I DISC)

Heleiise all trackf:> allocated t:o the program.

ICODE = S
ITHAK ::: -1
CAr.T~ EXEC (ICODE,ITRAK)

IV-19

EXEC CALLS

4-15. PROGRAM TRACKS RELFASE COMMENTS

Any suspended prograrn waiting for tracks is .rescheduled when t~noui:Jh
tracks are released to honor the request.

4-16. GLOBAL DISC TRACKS RELEASE CALL

Releases a specified number of contiguous disc tracks that were
previously assigned globally (see Disc Allocation EXEC call).

Assembly Language:

EXT

J-sn
Dt:F
DEF
DEF
DEF
DEF
return

EXEC

EXEC
R'r.N
I CODE
IT RAK
ISTRK
I DISC
point

Transfer control to RTe
Return address
Request code (16=release global track)
Number of contiguous tracks
Starting track number
Disc logical unit
Continue execution (A = track release status,
B meaning less)

c

!CODE
IT RAK

DEC
DEC

16
n

Release global tracks
The number of contiguous
starting at ISTRK
Starting track number
Disc logical unit

tracks to be released

ISTRK
!DISC

FORTRAN:

DEC
DEC

m
p

Release of n contiguous global tracks starting at m on LU p:

I CODE = 16
IT RAK = n
ISTRK = m
I DISC = p
REG = EXEC (!CODE, I'l'RAK, I ST RK, ID ISC)

4-17. GLOBAL DISC TRACK RELEASE COMME!NTS

If any one of the tracks to be released is either not assigned
globally or is currently in use (i.e., some program is queued to read
or write on the track at the time of the release request), none of the
tracks are released.

IV-20

C\
. I

0

EXEC CALLS

'!'tie r•::iqut:!:d:inJ pr,).:_:;t<:1111 is reschedulE<i afh'!r the request with tht'!
A- ~.':3 9 j (:. r P ~ ~-"' 1~; ::. l : , ~- i . \ J \ · ... , ~-' :

A=-2 .~o tracks nav~~ . been released
a3si9ned 3lob~lly).

(one nr more tracks was not

4--1 3. PROGRl\.'J, CrnP.PLETION CA.LT,

Not if ip~; WI'E that tr1P calling progro:n wishes to b~rmjnate itself or
a n.nth1..'r J?(O'J ra111.

RTN

TCODi·~

I Nf>.ME

f.X'T 3XEC

~fSB

DEF
D8F
DEF
DEF
DEF'

f·:X EC:
R'.PN
ICODF.:
I tJAi.Vi E
JNUMi~

lPRMJ

DEF' 1PHM5
return

DEC

(')(

point

6
0

Tr.:,1nsEer control tn RTE
Return address
Request code (6 =tf.>. rmi nate)
Name of .:,:n:ogram to be terminated (optional)
'Iype of comp let icn (opt ioral)

Continue executior (A = as it wasi B = as it
was or. £•<'! rcuue te r address)

Re•1ues t code = 6
Ten11 inate this pro9 rain

p,s<~ 3,.nrune name = .Narne of subordinate iJrogram t:.o be
terminated.

name = 0 if terminating itself.

IV-21

EXEC CALLS

INUM.B DEC n

IV-22

n = -1,

Normal completion

Seri al
comp let ion.
program is
memory if
resident.

reusability
When rescheduled,
not reloaded into

it is still

n = 1, Save Resources Completion.
Make program dormant but save
current suspensioll point and
save all resources the
program has; that is, any
system resource the program
a8ked for but did not itself
release is retained.

n = 2, Terminates and removes from
the time list the named
program. If the pro9ram is
I/0 suspencled, tbe system
waits until the I/O completes
before setting the program
dormant; however, this call
does not wait. The program's
disc tracks are not released.
CALL EXEC (6 , O, 2 or 3) is
equivalent to issuing an
OF,name,O or 1 command
(respect- ively) a.nd
tnerefore is treated like an
atnormal termination.

n = 3, Immediately terminates the
named program, removes it
from the time list, and
releases all disc tracks. If
suspended for I/O, a system
generated clear request is
issued to the driver. An
abort message is printed on
the system console. CALL EXEC
(6 , 0 , 2 or 2 } is equiv a 1 en t
to issuing an Of ,name, 0 or l
command (respectively) and
therefore is treated as an
abnormal condition.

,r~

''__;;'

0

()

IPRMl

IPRM5

FORTRAN: DIMENSION
ICOOE = 6
!NUMB = 0
INAME{l) =
INAME{2) =
INAME{3) =
REG = EXEC

EXEC CALLS

These parameters are saved in the
termi.m,t in1 pn),.iram·~ 1\1 st-~~11,h·nt "nd
th u~~ ll\L"_¥ bu pi~ kt:1d u~1 by a \.)~ l l tu
RMPAR when t11e lHOQ ram ne~ t t':l~HH,lU tct:ii:i,
In this manner a terminating program
may retain parameters for all future
executions. to caller when next
scheduled {INAME = 0).

INAME{3) See INAME above

See !NUMB above
2Hcc First two characters
2Hcc Second two
2Hc Last character in upper eight bits
{I CODE, I NAME, I NUMB)

· IV-23

0

EXEC CALLS

4-19. PROGRAM COMPLETlu~ COMMMENTS

The optional parameters in this call makes it possible to selectively
terminate programs that only the user has scheduled. That is, if PROGl
("Father") schedules PROG2 {"Son") to run, and PROG2 later schedules
PROG3, then PROG2 becomes the "Father" to PROG3 {a "son"). In this
case, only the following calls for Program Completion are legal:

*
*
*

PROGl terminates itself or PROG2
PROG2 terminates itself or PROG3
PROG3 terminates itself only.

Option -1 {INUMB=-1) should be used only for programs that are
serially reusable; that is, disc resident programs that can initialize
their own buffers or storage locations. When li.\IUMB=-1, the program is
reloaded from disc only if it has been overlaid by another program.
The program must be able to maintain the integrity of its data in
memory.

Option 1 {INUM.13=1) is nearly identical to tne Program Suspend EXEC
call (see below}, and also functions similarly to the SS operator
command. When I~UM8=1, the program starts from its point of suspension
with all resource3 saved. Unless the program terminated itself in this
manner, it could only be restarted by the program that scheduled it
("father") or through the ON or RUN operator comfilands. If the program
terminated it3elf {INA.1\1E=O), it may be restarted by any normal run
stimulus (i.e., schedule, Ocl, RUN, TIME and interrupt).

IPRMl through IPRM5 are optional parameters that are passed back to
the Program when it is next scheduled. They are passed only when
INAl'-1. E=O, and may be re cove red by a cal 1 to RiVIPAR when the program next
executes. This permits a program in the time list to run with the same
parameters each time.

Note that the FORTRAN compiler automatically generates a Program
Completion EXEC call when it compiles an END statement.

Note also that a father may either terminate a son normally or with
the son saving resources.

4-20. PROGRAM SUSPEND CALL

Suspends execution of the calling program
GO operator request.

until it is restarted by a

'JJ-A
IV-23

EXEC CALLS

Assembly Language:

R'l'N

I CODE

EXT

JSB
DEF
DEF
return

DEC

EXEC

EXEC
RTi:~

I CODE
point

7

4-21. PROGRAM SUSPEND COMMENTS

Transfer control to RTE
Re turn address
Request code (?=suspend)
Continue execution (A=as it was: B=as it

was or parameter address)

Request code = 7

The FORTRAN library subroutine PAUSE, which is automatically called by
a PAUSE statement, generates the Program suspend EXEC call. In
addition, it logs the pause and any supplied number on the system
console.

It is illegal to suspend a program running under batch with the
Program suspend call. This results in a SCOO error return.

The Program Suspend call is similar in function to the SS operator
command. When a program is suspended either by this call or by the SS
operator command, both the A- and B-registers are saved and the
program is placed in the operator s~spension list. When the program
is restarted via a GO command without parameters, all registers are
restored to the same status they had at the point of suspension and
the program resumes execution.

rv-'24

0

(

()

(\

/

EXEC CALLS

1~hen the pru':)Lrn1 i~; rc:'~'LHtf•d vict; .:::o C('ill\liHH) with par.;imeters, the
B-reqish~1 cont<1in:; th1' ,hkl11':;:. 1.ll .i 1 \\'C \,·,11,~ ;\11.·iy :·~·t t•y \hr· 1'.,)

command. In a FORTRAN program, a call tu the RMPAR libr.'HY };uhroutine
can load these pararnetc•rs, providing the RMPAR cal1 occurs immediatPly
following the Program Suspend call. However, it should be noted that
wben RcV\PAH is u~'Ed, parameters MUST accompany the GO command.
Otherwise, RMPAR will use the restored B-register as an address to
parameters that do not exjst. When it is suspected that there might
not be any parameters, the following example sbows how to allow for
it:

DlMRNSION I (5) ,IREG(2)
F.QUIVALENCE (IREG,REG) I (IREG (2) ,IB)
REG=O.O
REG=EXEC (7)
IF (IB) 20,20,10
10 CALL RMPAR (I)

20 CON'l1 IN UE

S11spend

Return point;
pararoete rs
Re turn point;
para mete rs

4-22. PROGRAM SEGMENT LOAD CALL

get

no

Loads u. calling program's background segment from disc into the
background segment area and transfers control to the segment's entry
point. (See "Segmented Pro9rams" in the Program Preparation section of
this manual for information on segmented programs.)

Assembly Language:

EX'f EXEC

RTi·~

I CODE
INJl,ME

JS3
DEF
DEF
DEF
DEF

DEF
return

DEC
ASC

EXEC
RTN
I CODE
I NAME
IPRMl \

>
I

IPRMS I
point

8
3,name

Trunsfer control to RTE
Return address
Request code
Segment name

Up to five optional parameters

Control is transferred to the segment.
(A = segment ID seg. address; B = as
it was or parameter address.)

Request code = 8
name is the segment name

TV-25

EXEC CALLS

FORT~:

DIMENSION NAME (3)
ICODE=8
INAME(l) =2Hcc First two characters
I NAME (2) =2Hcc ·Second two characters
I NAME (3) =2Hc Last character in bits 8-15
CALL EXEC (ICODE,INAME,IPRM1 ..• IPRM5)

4-23. PROGRAM SEGMENT LOAD COMMENTS

On segment entry the registers are set as follows:

A = Segment ID segment address.

c :

B = As it is unless parameters are passed, in which case it is the address
of parameter list address (see RMPAR).

If the segment loaded does not exist, an SC05 error results.

4-24. PROGRAM SCHEDULE CALL

Schedules a program for execution and passes up to five parameters and a
buffer to the program.

IV-26

c

()

EXEC CALLS

~ssembly Language:

I CODE

I NAME

JSB
DEF
DEF
DEF
DEF

DEF
DEF'
DEF
return

DEC

ASC

EXEC

EXEC
RTN
I CODE
I NAME
IPRMl \

I
IPRMS I
IBUFR
IBUFL
point

numb

3, name

>

Transfers control to RTB
Return address
Request code
Name of program to schedule

Up to five optional parameters

Option~l buffer address
Optional buffer length
Continue execution (A=program status;
S=as it was or pcirar:ieter address)

9=immediate schedule with wait
lO=i~mediate schedule with no wait
23=queue schedule with wait
24=~ueue schedule with no wait
n~me is the named program to schedule

Up to five optional parameters

IBUF'R BSS n O?tional buffer of n words
IBUF~ DEC n (or-2n) Same n; words (+) or characters (-)

FORI'RAN ~

DIME NS ION I NAME (3) , I BUC'R (n)
IBLJFI, = n Si~t buffer length
ICODE = numb See ICODE above
INA.MF.(l) ·- 2Hcc First two characters
INAi.'Vl.B (2) = 2Hcc Second two characters
INA.l'°1E (3) = 2Hc Last character
CALL = EXEC (I CODE, I NAME, I PRMl, ••. IPRM5, IBUFR, I BUFL)

4-2 5. PROGRAtv: SCHF.:Ol.JLE COMMEN'rS

The ICODE parameter determines whether or not the calling program will
wait, and whether tbe calling program's schedule request will be
qur::uc:d ,mt il the currently scheduled pro•:J ram becomes dormant.

IV-27

EXEC CALLS

When a program is scheduled, a pointer is placed in its ID segment
that will:

a. Point back to the program that scheduled it.

b. Be set to 0 if the program was scheduled by the operator,
from an interrupt or from the time list.

The pointer is cleared when the program terminates or is iborted. Note
that the pointer established the program performing the scheduling as
the "Father" and the program being scheduled as the "Son".

When a. program that had been scheduled with wait completes, .. the Father
may recover the system's copy of optional parameter 1 to determine
whether or not the Son terminated normally.

Abnormal termination of the Son is caused by any of the following
conditions:

a. System abort of program.

b. An OF operator command.

c. Self-termination
(6,0,3).

via CALL EXEC (6,0,2) or CALL EXEC

Abnormal termination causes the syste;n's copy of optional parameter 1
to be sent to lOOOOOB. Th is occurs even if the Son at tempted or
planned to pass back parameters via PRTN. The Father can recover the
system's copy of optional parameter 1 by calling RMPAR.

If the Son terminated normally and no parameters were passed back via
PRTN, the value of optional parameter 1 returned by RMPAR will then
be equal to its original value. Alternately, it will be the value set
up in the Son's PRTN call. The PRTN subroutine allows Sons to pass
parameters back to Fathers.

!CODE = 9 OR 10

If a progra~ to be scheduled is dormant, it is scheduled and a zero
is returned to the calling program in the A-register. If the program
to be scheduled is not dormant, it is not scheduled by this call and
its status (some non-zero value) is returned to the calling program
in the A-register. If the program to be scheduled is a Son that was
suspended with the EXEC 6 call, some high bits may be set in the
A-register. Only the least four-bits should be checked for zero in
this case.

IV-28

1~
I
I

01

0

EXEC CALLS

A schedule with wait (ICODE=9) call causes RTE to put the "Father" in
a wait status by setting the wait bit in tho 1t~t~1 word of ~h@
Father's ID segment. If required, the Father may be swapped by the
system to make way for a program that needs to run. The "Son" runs at
its ·own priority, which may be greater than, less than or equal to
that of the calling program. Only when the Son terminates does RTE
resume execution of the Father at the point immediately following the
Program Schedule call.

A disc resident program may schedule another disc resident program
with wait, since disc resident programs are swap~2d according to
their priority when they are in conflict over use of their memory
area.

A Program Schedule call without wait (ICODE=lO) causes the specified
program to be scheduled for execution according to its priority. The
Father program continues at its own priority without wait. Again note
that !CODES of 9 and 10 will not schedule the program if the program
to be scheduled is busy (i.e., not dormant).

!CODE = 23 or 24

These requests are identical to 9 and 10 except that the system
places the "Father" in a queue if the "Son" is not dormant. The
Father's request will then be honored when the Son becomes available.
Note that status will not be available in the A-register and the
Father will be impeded until the request is honored. The queue means
that if the Son is not dormant, the potential Father is suspended
until the Son may be scheduled by this Father. When tbe potential Son
can be scheduled, the request is reissued and execution precedes as
EXEC 9 and 10 described above.

OPTIONAL PARAMETERS

When the Son begins executing, the B-register contains the address of
a a five-word parameter list from the Father (parameters = 0 as the
default). A call to the RMPAR library subroutine, as the first
executable statement of a called program, transfers these parameters
to a specified five-word array within the called program. For
example:

PROGRAM XQF
DIM ENS ION I PHAM (5)
CALL HMPAR (IPRAM.)

Note that IPRAM must be a minimum dimension of five words.

IV-29

EXEC CALLS

If the optional buffer is included in the Father's scheduling call,
the buffer is moved to System Available Memory and assigned to the
Son. The Son can recover the string by using the GETST library
routine or the String Passage cal.l. The Father is memory suspended if
there is not P.nou•:;h System Available Memory to currently hold the
buffer but there will be in the future. The Father is aborted and an
SClO ~rror is returned if there never be enough System Available
Memory for tbe buffer. The Father will not abort if the no-abort bit
(bit 15 in ICODE) is set. The length of the string is linited only by
the amount of usable sy~3tem Available Memory.

For schedule with wait requests (ICODE = 9 or 23), the Son may pass
back five words to the Father by calJing the PRTN library routine;
for example:

PROGRAM SCHED
DIMENSION IBACK (5)
CALL PRTN (I BACK)
CALL EXEC (6)

The EXEC (6) cal} (termination call) must immediately follow the PR.TN
call. The Father may recover these parameters by calling RMPAR
.immediately after the Son call. The Son may pass back a buffer to the
J:t'ather (see the Strin9 Passage call).

The Program Schedule call is similar in function to the RUN operator
command.

4-26. . TIME REQUEST CALL

Requests the current time as recorded in the real-time clock.

Assembly Language:

EX'I' EXEC

IV-30

R'I'i~

I CODE
I'I'IME
I YEAR

JSB
DEF
DEF'
DEF
DEF
return

DEC
BSS
BSS

EXEC
RTN
I CODE
I TIME
I YEAR
point

11
5
]

Transfer control to RTE
Return address
Request code (ll=time request)
Time value array
Optional year par arne te r
Continue execution (A=meaningless;

it was)

Request code = 11
Time value array
Year (optional)

B=as

E°'
'(~_,;

0

c

FORTRAN:

DIMENSION ITIME(5) ,IYEAR(l)
ICODE=ll

EXEC CALLS

CALL EXEC (ICODE,ITIME,IYEAR)

4-27. TIME REQUEST COMMENTS

The time value array contains the time
year in an optional parameter, when RTE
four digits (e.g., 1978}.

Asseml'..ller FORTRAN

on a 24-hour clock, with the
returns. Th~ year is a full

ITIMF. or ITIME(l} = Tens of milliseconds
ITIME+l. or ITIME (2} = Seconds
ITIME+2 or ITIME(3} = Minutes
ITIME+3 or ITIME(4} = Hours
ITIME+4 or ITIME(S} = Day of· the year

Another method of obtaining the current time is through a double-word
load from the $TIME Table Area II entry point. $TIME contains the
double-word integer of the current time of day. If this double-word
is passed to the TMVAL library subroutine, then TMVAL returns
milliseconds, seconds, minutes and hours. Refer to the Library
Subroutine section of this manual for more information.

The Time Request call is similar in function to the TI operator
command.

4-28. STRING PASSAGE CALL

Retrieves the command string that scheduled the program or passes a
buffer back to the "Father" program.

IV-31

EXEC CALLS

Assembly Language:

R'fN

I CODE
IRCOD

IBUFR
I BU F'L

FORTRAN:

EXT EXEC

JSB
DEF'
DEF
DEF
DEF
DEF
return

DEC
DEC

BSS
DEC

EXEC
R'r.N
I CODE
IRCOD
I BU FR
I BU FL
point

14
1 or 2

n
n (or -2n)

DIMENSION IBUFR (n)
IBUFL ;::: n
ICODE = 14
IRCOD = 1

Transfer control to RTE
Return address
Request code (14=string passage)
Retrieve/write code
Buffer location (string location)
Buffer length (string length)
Continue execution (A = status; B =

positive number of words/characters)

Request code
1 = retrieve parameter string
2 = write buffer to "Father"
Buffer of n words
Same n; words(+) or characters(-)

REG = EXEC (I CODE, I RCOD, I BU FR, I BUFL)

4-29. s·r RING PASSAGE COMMENTS

The command string retrieved is exactly like the string used in
scheduling the program via RU, ON, GO commands, or EXEC 9, 10, 23, or
24. rrhe block of System Available Memory used to store the command
string (buffer) is released by this call or when the calliing program
goes dormant. Any parsing of the returned string is left to the
calling program. The RTE system library routine GETST can be used to
recover the pc.rameter string portion of the command string.

Upon return from a retrieve operation, the A-Register contains status
information: 0 if the operation was successful or 1 if no string was
found. The B-Register is a positive number giving the number of words
(or characters) transmitted. If the string is longer than IBUFL, only
IBUFL words are transmitted. If an odd number of characters are
requested in a retrieve operation, the right half of the last word is
undefined.

If the write parameter string option is used, the call returns any
block of system available memory associated with the "Father" and
allocates a new blocK for the "Father" into which the string will be
stored.

IV-32

I·
I

(~-

0

EXEC CALLS

If no mernort is currently available, the calling program is memory
suspenc'led.

If there will never be enou9h memory and bit 15 of I CODE is not set,
the calling program is aborted with an SClO error.

IE there is no "Father," execution continues at the return point with
the A-register equal to 1. If the write parameter operation was
successful, the A-register is set to 0.

Ex i.i mp le :

RU, PROGX, ABCDSTRlNG

Where RU,PROGX,ABCDSTRING is returned by EXEC (14, •••) and ABCDSTRING
is returned by GETST.

NOTE

Be careful when writing a buffer to
a "Father" when the Father scheduled
the "Son" without wait (EXEC 10 or 24).
It is the user's responsibility to
ensure synchronization of the Son's
write and the Father's read.

4-30. TIMFD EXECUTION CALL (Initial Offset)

Schedules a program for execution at specified time intervals,
startin1; after an initial offset time. RTE places the specified
program in the time list and returns to the calling program.

IV-33

gXEC CALLS

Assembly Language:

RTN

I CODE

IPROG

JRESL

MTPLE
IOFST

FORTRAN:

Exrr EXBC

JSB ;:.~XEC

DEF' "R.Tt~

DEF I CODE
DEF 1PHOG
DEF IRESL
DEF MTPLE
DEF I OF ST
return point

DEC 12
DEC 0

or
ASC 3 v na;:ne

m~c x

DEC y
DEC -7:

DIMENSION lPROG(3)
IPRO~(l) = 2Hcc
IPROG(2) = ?.Hee
IPROG(3) == 2Hc
ICODE = 12
IRESL = x
MRPLE = y
IOFST = -z

Transfer control to RTE
Return address
Request code (12==initial offset schedule)
Program to put in time li~t
Resolution code
Execution multiple (0-4095)
Initial time offset
Continue execution (A=meaningless:
B as it was)

Request code = 12
Put calling program in time list

name is the program to put in the
U me lj st
Resolution code
(1=10 's/ms; 2= ses ;3=mins ;4=hrs)
Execution multiple
z (units set by x) gives the initial
off set

See IPROG above
First two characters
Second two
Last. character in upper 8 bits

(l=lO's/ms;2=secs;3=mins;4=hrs)

z (units set by x) gives the initial
offset

CALL EXEC (ICODE,IPROG,IRESL,MTPI,E,~IOFST)

IV-34

0

EXEC CALLS

4-31. INITIAL OF'F'SET COMMENTS

The E>eecution Time EXEC call ts si.milar to tht=' IT Operatt'>r reque1t
(see Section II). However, the EXEC call places the program in the
time lint whercaG IT does not. This call can schedule a program to
execute in one of three ways as described in the following
paragraphs:

1. RUN ONCE

After a time offset and the program to be scheduled is dormant, the
program will execute once and then be made dormant. This is
accomplished as shown in the following example:

IRESL = 3 (specifies minutes)

MTPLE = 0 (specifies run once)

IOFST = -45 (specifies run after 45 minutes have elapsed from
current time)

2. RUN REPEATEDLY

After a time offset and the program to be scheduled is dormant, the
program will execute, go dormant, and then re-execute at specified
intervals. This is accomplished as shown in the following example.

IRESL = 3 (specifies minutes)

MTPLE = 60 (specifies run every 60 minutes)

IOFST = -30 (specifies run after 30 minutes have elapsed from
current time)

3. GO DORMANT; THEN RUN

If IPROG=O, the current/calling program is made dormant, but the
point of suspension is retained. The program is then placed in the
time list for rescheduling from the point of suspension after a
delay. When the program is rescheduled, it can be either to run once
or repeatedly.

4-32. TIMED EXECUTION CALL (Absolute Start Time)

Schedules a program for execution ~t specified time intervals,
starting at a particular absolute time. RTE places the specified
program in the time list and returns to the calling program.

IV-35

EXEC CALLS

Assembly Language:

RTN

!CODE

IPROG

IRESL

MTPLE
IHRS
MINS
!SECS
MSEC

FORTRAN:

IV-36

EXT EXEC

JSB
DEF
DEF

DEF
DEF
DEF
DEF
DEF
DEP
DEF
return

DEC
DEC

ASC

DEC

DEC
DEC
DEC
DEC
DEC

or

EXEC
R'rN
I CODE

IP ROG
IRESL
M.TPLE
IHRS
MINS
I SECS
MSECS
point

12
0

3,name

x

y
a
b
c
d

Transfer control to RTE
Return address
Request code {12=absolute start
time sched.)
Program to put in time list
Resolution code
Execution multiple
Hours
Minutes
Seconds
Tens of milliseconds
Continue execution (A = meaningless,
B as it was)

Request code = 12
Putting calling program in time list

name is the program to put in the
time list
Resolution code
(1=10 's/ms; 2= secs ;3 =mins; 4= hrs)
Execution multiple
Absolute star ting time
In hours, minutes, seconds
and tens of milliseconds
on a 24-hour clock

IPROG=O or
IPROG(l) =
Il?ROG (2) =
IPROG(3) =
!CODE = 12
IRESL = x
MTPLE = y
IHRS = h
MINS = m

DIMENSION IPROG(3)

!SECS = s
MSECS = ms

2Hcc First two characters
2Hcc Second two
2Hc Last character in upper 8 bits

(1=10's/ms;2=secs;3=mins;4=hrs)
(0-4095)

CALL EXEC (I CODE, I PROG, I RESL, MTPLE, I HRS, MINS, I SECS ,MS ECS)

("

0

()

EXEC CALLS

4-33. ABSOLUTE START TIME COMMENTS

The Execution Time EXEC call is similar to the IT operator request
(see Section II). However, the EXEC call places the program in the
time list whereas IT does not. This call differs from the Init.ial
Offset version in that a future starting time is specified instead of
an offset. For example, if the current time is 1400 hours and you
wish the program to run at 1545 hours the parameters would be as
follows:

!HRS
MINS
!SECS
MSECS

= 15
= 45
= 0
= 0

This call can schedule a program to execute in one of two ways as
described in the following paragraphs:

1. RUN ONCE

After a time offset and the program to be scheduled is dormant, the
program will execute once and then be made dormant. This is
accomplisned as shown in the following example.

IRESL = 3 (specifies minutes)
MTPLE = 0 (specifies run once)
!HRS = h
MINS = m (specifies absolute start-time)
!SECS = s
MSECS = ms

2. RUN REPEATEDLY

After a time offset and the program to be scheduled is dormant, the
program will execute, go dormant, and then re-execute at specified
intervals. This is accomplished as shown in the following example:

IRESL = 3 (specifies minutes)
MTPLE = 60 (specifies run every 6 0 mi nu te s)
!HRS = h
MINS = m (specifies absolute start-time)
!SECS = s
MSECS = ms

IV-37

4-34. PROGRM1 SWAPPING CONTROL CP.LT ..

Allows a program to lock itself into memory (real-time or background) if the
ability to perform a memory lock was specified during generation.

I

Assembly Language:

RTN

I CODE
IOPTN

FOH'fRMJ:

EXT f.XEC

,JSB
DEF
DEF
DEF
return

DEC
DEC

EXEC
RTN
I CODE
I OP.TN
point

22
numb

ICODE = 22
IOPTN = numb

Transfer control to RTE
Return address
Request code
Control information
Continue execution (A=meaningless~ B as it
was)

Request code = 22
0 = program may be swapped
l = program may not be swapped

CALL EXEC (ICODE,IOPTN)

4-35. PROGRAM SWAPPING CONTROL COMMENTS

This call allows a programmer to lock a program into memory so it cannot
be swapped out for a program of higher priority.

+---+
I NOTB I
I I
I The program cannot be locked into memory I
I if the memory lock bits (base page word I
I 1736£, bits 2 and 3) are not set (SC07 I
I error results). The bits are set during I
I generation. I
I I
+---+

The program's ffiemory lock bit (IOPTN = 0 or 1) is set or cleared by the
request (refer to ID segment word 15, bit 6 in Table A-1). This bit is also
cleared (making the program swappable) if the program aborts or terminates
except on the Save Resources Program Completion EXEC call.

4-36. PAR'I'ITION S'rATUS CALL

Returns status information about any specified partition.

0

0

Assembly Language:

EXT EXEC

EXEC
RTN

Transfer control to RTE
Return address
Request code (25=partition status)

JSB
DEF
DEF
DEF
DEF
DEF

I CODE
I PART
I PAGE
NPGS

Partition no. that information is desired about
Returned no. of starting paJe for partition
Returned no. of pages in partition (includes Base
Page)

DEF IPST Partition status word (defined below)

FORTRAN:

CALL EXEC (25, I PART ,I PAGE, INPGS, !PST)

4-37. PARTITION STATUS COMMENTS

The format of PSTAT is as follows:

15 14 13 12 11 8 7 0
1---1---1---1---1---1---------------1----------------------1
IRS IRT I M I S I C 1-------0------ I ID Seg. no. I
1---1---1---1---1---1---------------1----------------------1
where

RS = 1 if partition reserved.
RT = 1 if partition is real time.
M = 1 if partition is a mother partition.
s = 1 if partition is subpartition of a mother partition.
c = 1 if chain is in effect; that is, if EMA type program

is currently active in that subpartition.

ID Seg. no. is the ordinal number of the ID segment for the program
that occupies the partition. If ID Seg. no. = 0, the partition is
unoccupied.

The values returned for number of pages and starting page number will be
identical to those displayed by the WHZAT system program.

If the partition number is illegal (i.e., undefined or illegal), a -1
will be returned in the number of pages word and a O returned to the
page number word.

The interaction between physical memory and logical memory for the
partition status is illustrated in Figure 4-4. Note that the Table
Area in the illustrated User Map is the system-supplied space that
contains the necessary software to enable the user to communicate with

f(-39

the system.

:JFGS
(part. length)

I
I
v

---IPAGC--->

Start physical
page of
partition

Pby s ical Memory Logical Memory
(User Map)

+----------------+ +-----------------+
I I I I
I Partition n I I Partition 1 I
I I I I
I I 1-----> I I
I I I I I
I I I I I
1----------------1 I I I
I Uase Page I I 1-----------------1
1----------------1 I I I
I I I I Table Area I
I I I I-> I I
I I I I I I
1----------------1\ I I 1-----------------1
I Partition 1 I I I 1--->I Base Page I
I I I I I I +-----------------+
I I \--- I I
I I I I I
I I I I I
I I I I I
1----------------1/ I I
I Base Page 1-------- I
1----------------1 I
1----------------1 I
I Table Area 1----------
1----------------1
I OperatinJ I
I System I
I I
I l
+----------------+

Figure 4-4. Partition Status Parameter Return

4-38. MCMCRY SIZE CALL

Returns current memory limits of the partition in which the calling program
is executing.

Assembly Language:

EXT EXEC

JSB
DEF
DEF
DEF

DEF'

EXEC
HTN
ICCDE
IF'PG

I LMEH

Transfer control to RTE
Return Address
Request Code (26=meory size)
Fir st available word address behind the program (i.e.,
last word + 1 of program + largest segment + 1)

Number of words available between end of program and

,~-,,

''___,,;

c-

0

end of program's address space.
DEF NPGS Length of current partition in pages (includes·

base page)
DEF IMAP Heturn copy of curr~nt un~r runp (optional), lMAP rnu~t

be a 32-word buffer address.

FORTRl\N:

CALL EXEC (26,IFPG,IUIJE~·',NPGS,H1AP)

4-39. MEMORY SIZE com:tNTS

ILi'.'1EM = last word address space minus IFPG to give the amount of room for
dynamic buffer space.

The number of words of logical memory (ILMEM) is calculated by subtracting
IFPG, the program's hi9h main plus one (including its largest segment),
from the last word of the program's logical address space. The logical
address space, which may be smaller than the partition, is determined at
load time and may be greater than (if size override option taken) or equal
to the program size.

For EMA program, ILMen is the number of words between the end of the
program and the start of MSEG.

The manner in which the current status of the partition is calculated is
illustrated in Figure 4-5. Sample data is provided.

Logical User Map

+-----------------+
I

Unused
Partition

Last word of Space or
address space MSEG v
(47777)-------------> ----------------- -----

///////////////// ILMEM
I ---> - - - - - - - - -
I I

IFPG----------1---
{address I
46537) 15 Pages

I XYZ Program
I
I
v

1-----------------
1

I COMMON area
I
I
1-----------------
1 Base Page

26 Pages (NPGS)
(includes base page)

I
I
I
I
v

+-----------~-----+

Figure 4-5. Partition Current Status Example

4-40. CLASS I/O EXEC CALLS

'rhe Class I/O feature consists of a special set of I/0 EXEC' calls that
give user progra1TJs a level of I/O independence beyond that provided by
standard I/O. Use of the Class I/O scheme can provide the fo'lowing
benefits:

a. A program doing an input operation can proceed with execution even
though the data is not yet ready (I/O without wait).

b. Program-to-program communication with controlled access via a mailbox
scheme.

c. Synchronized program-to-program data passing that avoids processing of
incomplete or non-updated data. A calling program can put itself to
sleep until it receives a signal that updated data processed by another
program is available for further processing.

Implementation cf Class I/O is based on use of a buffer with an exclusive
access key, thus avoiding the possibility of unplanned alteration of

c

existing data or access to incomplete data. Use of such keyed buffers or ~~.·)-
"classes" is exclusive of system or local COMMON resources utilized in
standard program-to-program data passing.

A definition of the term "class" and other terms unique to Class I/O
considerations is given in Table 4-5.

The maximum number of classes is established during system generation. The
generator asks how many Class Numbers are to be established and the operator
responds with a number between 0 and 255. Once the numbers are established
the system keeps track of them and assigns them (if available) to the calling
program when a Class I/O call is made and the Class Number parameter is set tc
zero. Once the number has been allocated, the user can keep it as long as
desired and use it to make multiple Class I/O Calls. When the user is f inishec
with the number it can be returned to the system for use by some other class
user.

The system allocates a buffer from System Available Memory (SAM) when a
user program issues a Class I/O call. The "key" is also issued to the calling
program in th~ form of a Class Number, which is the only mechanism by which
a calling program may thereafter access the buffer. Note that there may be
more than one buffer associated 1.vith a sin(Jle Class Number (key) and that a
user program may have more than one Class Number allocated to itself.

For "I/O without wait" operations, data can .be read from or written to an
I/O device by first transferring the data to the buffer. The user orogram
can thus either continue execution of other tasks without waiting for the c~)
I/O transfer to complete, or can suspend or terminate itself (releasing ·
non-conflicting system services to other waiting programs} until the data
transfer is completea.

(

0

A simple example of I/O without wait would be a program that issues a
Class I/O READ call in its code, followed by a series of other coded
operations. While these following operations were being execut~J, the
system si1T1ultaneously woulrl oe reading the data into the allocated keyed

' buffer. The calling program would issue a Class I/O GET call to fetch the
data from the buffer. A more detailed example of I/O without wait is
given later in this section.

Table 4-5. Class Input/Output Te r:ns

+-- ·-------------------
' 1'er;r, I Description
+--

Class I An account owned by one program that may be

Class Users

Class Request

Class :"lembe rs

Class Queue (pending)

Class Queue (completed)

I usea oy a group of programs.

The account numoer referred to above.

Programs that use the Class Number.

An access to a Lc0ical Unit number with a
class number.

Logical Unit numbers that are currently being
accessed in behalf of a class. Completion of
access removes the association between class
nu;nber and Logical Unit number (completion of
access is defined as when the driver completes
the request).

The set of uncompleted class requests.

The set of all completed class requests. The
structure is first-in- first-out.

+--·

'rhe system handles a Class I/O call in the following manner:

a. When the class user issues a Class I/O call (and the call is received),
the system allocates a buffer from System Available Memory and puts the
call in the header (first eight words) of the buffer. The call is placed in
the pending Class Queue and the system returns control to the class user.

b. If this is the only call pending on the EQT, the driver is called
immediately; otherwise, the system returns control to the class user and
queues the request according to program priority.

c. If buffer space is not available, the class user is memory suspended
unless bit 15 ("no wait") is set. If the "no wait" bit is set, control is
returned to the class user with the A-register containing a -2 indicating
no memory available.

d. If too much me~ory was asked for (more than all of System Available

i/-1/:J

Memory) the program is aborted with an 1004 error return.

e. If the Class Numoer is not availab~e o1 ~ the I/0 devic3e is ~o1wnh, the C'· .
Class User is placed in the general wait 1st (status =) unt1 t e
condition changes.

f. If the call is successful, the A-register will contain zero on return to;
the program.

The buffer area furnished by the system is filled with the caller's data if
the request is either a WRITF, or a WRITE/READ call. The buff !I is then queue~
(pending) on the EQT entry specified by the Logical Unit Number.

After the driver receives the Class I/O call (in the form of a standard I/0
call) and completes, the system will:

a. Release the buffer portion of the request if a WRITE. The header is
retained for the GET call.

b. Queue the header portion of the buffer in the Completed Class Queue.

c. If a GET call is pending on the Class Number, reschedule the calling
program. (This means that if the user issues a Class GET call or examines
the completed Class Queue before the driver completes, the user has
effectively beat the system to the completed CLass Queue.) Note that the
program that issued the Class I/O call and the program that issued the
Class GET c.all do not have to be the same program.

d. If there is no GET call outstanding, the system continues and the
driver is free for other calls.

When the user issues the GET call, the completed Class Queue is checked
and one of the following paths is taken:

a. If the driver has completed, the header of the buffer is returned
(plus the data). The user (calling program) has the option of leaving
the I/O request in the completed Class Queue so as not to lose the data.
In this case a subsequent GET call will obtain the same data. Or,the user
can dequeue the request and release the Class Number, and can also
release the Class Number back to the system.

b. If the driver hu.s not yet coir.pleted (GE'r call beat system to the
co;npleted Class Queue), the calling program is suspended in the general
wait list (status = 3) and a marker so stating is entered in the completed
Class Queue header. If desired, the program can set the "no wait" bit to
avoid suspension. In any case, when the driver completes, any program
waiting in the general wait list for this class is automatically
rescheduled. Note that only one program can be waiting for any given
class at any instant. If a second program attempts a GET call on the
same Class Number before the first one has been satisfied, it will be
aborted (I/O error IOlO).

4-4f. CLASS 1/0 - READ/WRITE CALL

Transfers information to or from an external (non-disc) I/O device or
another program. Depending upon parameter specifications, the calling

(~
..~J

c

1,

()

program will not oe suspended while the call completes.

Assembly Language:

RTi"J

rcorn:
ICNWD
IBUFR
IBUFL
IPRMl
IPR:-12
I CLAS

FORTRAN:

EX'l' L'XCC

JS8 EXEC
DEF FT~·~

DEF I COLE
DEF ICL~~·m

DEF IBUFR
DEF Il3UFL
DEF IPR:11
DEF IPiUQ
DEF I CLAS
return point

DEC numb
OC'l' conwa
BSS n
DEC n or-2
DEC f
DEC g
OC'r class

DIMENSION IBUFR
IBUFL =
ICODE =
ICNWD =
!CLAS =

Transfer control to RTE
Return address
Request code (17=Read;l8=Write:20=Write/Read)
Control information
3uf fer location
Buffer length
Optional pa~ameter
Optional parameter
Class word
Continue execution (A=zero or status: B
meaningless)

17=Reaa: 18=Write; 20=Write/Read
conwd is described in Figure 4-1
Buffer of n words
Same n; words {+) or characters (-)
Optional parameter
Optional parameter
Class is described in comments

CALL=EXEC (ICODE,ICNWD,IBUFR,IBUFL,IPRMl,IPRM2,ICLAS)

4-421 CLASS I/O READ/WRITE COMMENTS

For a combination Class Write/Read call, the driver should expect control
data in the buffer IBUFR. The system will treat the request as a Class
Write in that the buffer must be moved prior to the driver call, and as a
Class R~ad in that the buffer must be saved after driver completion. Note
that the driver will receive a standard Read request (!CODE = 1) on this
request.

Refer back to Figure 4-2 for the format of the control word (conwd)
required in the Class I/O Read/Write calling sequence.

IPRMl and IPRM2 are required as place holders in this request. They may
also be used to pass information through to the Class GET call to aid in
processing the request.

Figure 4-6 shows the format of the class word (ICLAS) required in the
calling sequence. To obtain a Class number from the system the class portion Q, ,·
(bits 12-0) of the word is set to zero. This causes the system to allocate
a Class Number (if one is available) to the calling program. The number is
returned in the ICLAS parameter when the call completes and the user must
specify this parameter (unaltered) when using it for later calls. Bit 15 is
the "no-wait" bit. When set the calling program does not memory suspend if
m~mory (or a class number) is not available. A-register value when the prograr.
returns is as follows:

"A" Value

0
-1
-2

OK-request done
No class number

Reason

No memory now or buffer limit exceeded.

. 1s j 14 '13 '12I11 '10 '9 I a ' 1 ' s I s ' 4 ' 3 j 2 ' t ' o j
I

No
Wait

.__ _ ___. ___ Class Number-----__,

TPRTE-4

Figure 4-6. Class Number (ICLAS) Format here

~vh en the user's program issues a Class I /0 cal 1 the system allocates a
buffer froffi System Available Memory and puts the call in this buffer. The
call is queued and the system returns control to the user's program. If
memory is not available, three possible conditions exist:

1. The program is requesting more memory space than will ever be available.
In this case, the program is aborted with a I004 error.

2. The program is requesting a reasonable amount of memory but the system
must wait until ~emory is returned before it can satisfy the calling
program. 'rhe program is suspended unless the "no wait" bit is set, in
which case a return is made with the A-register set to -2.

3. If the buffer limit is exceeded, the program will be suspended until
this condition clears. If the "no wait" bit is set, the program is not
suspended and the A-register is set to -2~

4-(i. CLASS I/O. - GET Cf',LL

Completes the data transfer between the system and user program that was
previously initiated by a class request.

i'\ssembly Language:

EXT EXEC

(. \)

c·\

0

RTN

I CODE
ICLl.\S
IoUFR
IBUFL
IR'I'Nl
IR'I'N 2
IRTN3

FOP.'I'RAN:

JSB

DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
return

DEC
l,JOp

BSS
DEC
l\iOP
NOP
NOP

EXEC
R'I'N
!COOL:
I CLAS
I3UFH
IBUFL
IRTNl
IRTN2
IR'l'N 3
address

Transfer control to RTE
Return address
Request code
Class word
i3uf fer location
Buffer length
Optional parameter status word
Optional parameter status word
Optional parameter class word
Continue execution (A=status:B=Transmission
log)

21 21 = class GET call
class is described below

n Buffer of n words
n (or -2n) Same n: words (+) or characters (-)

Location for IPRMl from READ/WRITE call
Location for IPRM2 from READ/WRITE call
Request code passed to driver or initial
Read or Write call

DIMENSION IBUFR (n)
ICODE = 21
IBUl!'L = n
ICLAS = x 0
REG = EXEC(ICODE,ICLAS,IBUFR,IBUFL,IRTN1,IRTN2,IRTN3)

CLASS I/O GET CALL CO~MENTS

One of the features of the GET call is that one or more user programs
waiting for system resources can suspend themselves without CPU
overhead or program overhead such as polling. A program can perform
a deliberate GET on a Class Number associated with a device or anothe~
program and put itself to sleep. The program will only be awakened when
there is something to process. The desired data will be resident in the
program's buffer. After the data is processed, the program can put itself
to sleep again with another GET. ·

When the calling [Jrogram issues a Class GET call, the program is telling
the system that it is ready to accept returned data from a Class READ call
or remove a completed Class WRITE or CONTROL call from the completed class
list. If the driver has not yet completed (GET call got to the completed
class before the system), the calling program is suspended in the general
wait list (status = 3) and a marker so stating is entered in the Class
Queue header. When the driver completes, the program is automatically
rescheduled. If desired, the program can set the "no wait" bit to avoid
suspension.

Figure 4-6 shows the format of the class word (!CLAS) required in a class GI
call. Bits 12-0 represent the Class Number and security code that the GET
call is seeking. This Class Number is obtained (in unaltered form) from
the original Class I/O READ, WRITE, CONTROL or WRITE/READ call. Bit 15 is
the "no wait" bit. When set, the calling program does not suspend if the

class request has not yet coi;1pleted. Bit 14 is the "save" bit. When set, the
buffer is not released; therefore, a subsequent GET call will return the same
the same data. Pit 13 is the "de-allocate" bit. When set, the Class Number
is not returr.ec: to the syste,n. If bit 13 is zero ..:rnd no re(1uests arE' left
in the Pending Class Queue, Gnd no class requests for this class are
waiting for driver ~rocessin9, the class is returned to the system.

It is possible for the call to return the Class Number and data, or no
no data, depending on whether or not there is one class call left.

Bits 14 and 13 work in conjunction with each other. If bit 14 is set,
then the 0uf fer will not be released. Therefore you cannot de~llocate
the Class .:~u,r;Der. That is, the Class NumDer cannot be released
because there is still an outstanding reque£t against it.

Only when the GET call gets the last class request on a class, or on an empty
class queue (co:npletec~ anC! pending) can the user release the Class Number
by clearing bit 13 in the ICLAS word.

Three parameters in the call are return locations: that iE., values from the
system are returned to the calling program in these locations. Optional
parameters IPRMl and IPRM2 from the Class I/O WRITE/READ or CONTROL calls
are returned in IRTNl and IRTN2. These words are protected from modification
by the driver. 'fhe orig in al request code received by the driver is returned ·
in IRTN3, as follows:

Original Request Code Value Returned in IRTN3

/

(''

0

17/20(READ,WRITE/READ) 1

10 (WRITE) 2

19 (CONTROL) 3

BUFFER CONSIDERATIONS

There are several buffer considerations in using the Class I/O GET call:

a. The number of words returned to the user's buffer is the minimum
of the requested number and the number in the Completed Class queue
element being returned (that was specified in the initial Read/Write
in the READ/WRITE call) •

b. If the original request was made with the "Z" bit set in the control
word, then IPRMl returned by this call will be meaningless.

c. The "Z" buffer will be returned if there is room for it (see •a•
above) only if the original request was a READ or WRITE/READ (i.e., for
WRITE requests no data is returned in the buffer area).

A AND B REGISTER RETURNS

The A and B registers are set as follows after a Class I/O GET call:

A-Register

Al5 = 0 then A = status

Al5 = 1 then A= -(numb+l)

B-Reg ister

B = transmission log (positive words or
characters depending on original request)

B = meaningless

On return with data, bit 15 is set to zero and the rest of the A-register
contains the status word (EQT5). If a return is made without data (the "no
wait bit" was set in the class word) then bit 15 is set to one and the
A-register contains the number of requests numb made to the class bit
not yet serviced by the driver (i.e., pending class requests). ·

4-4(CLl\SS I/0 - CON'l'HQL CALL

Carries out various I/O control operations such as backspace, write
enJ-of-f ile, rewind, etc. The calling program does not wait for the
function to be completed.

Assembly Language:

EXT EXEC

JSB EXEC Transfer control to RTE
DEF i~TN Return address
DEF I CODE Request code 1"
D~~F ICN;...;o Control information _,)
DEF IP H.'\i•'.
Df:F ICL.\S
~)CF I PP:n
DEF IPHf.-12

R'r,\J return point

I CODE DEC 19
ICN 11'1D OC'l' conw:J
IPRA"·1 DCC n

ICLl\S ocrr class
IPHMl DL~C f
IPRM2 .D.GC 9

Optional varameter
class word
Optional parameter
Optional parameter
Continue execution (A=Class number: B
meaning less)

Request code = 19
See Control Word
Required for some control functions:
Control iJord
class is described in Comments
Optional J?arameter passed to GET call
Optional parameter passed to GET call

Use the FORTRAN I/O statements or an EXEC call sequence.

ICODE = 19 Bequest code
ICl.M'D = conwd See Control word format in Figure 4-2
I PRAM = x See Control Word format in Figure 4-2
ICLl\S = y Class h'ord
HEG = EXEC(ICODE,ICNWD,IPRAM,ICLAS)

4-4 /,. CLl\SS I/O CON'I'ROT, CO,\MEN'rS

see

Refer to Figure 4-2 for the format of the control word (conwd) required in
the Class I/O Control calling sequence.

Note that this call, with the exception of the ICLAS, IPRMland IPRM2
parameters, is the same as the standard I/O Control call. Also refer to
the Class I/O GET call for additional information.

Cne example of using Class I/O is progra;n-to-program (mailbox) communication.
The sequence of events that occur are described below, and the calling
sequence is illustrated in Figure 4-7.

4-41. CLASS I/0 APPLICATIONS EX!\i"IPLES

The range of possible areas where Class I/O could be us~a to improve
applications program performance is too wide and varied to show "typical"
examples. The two examples given below are intended only to demonstrate some
of the considerations and procedures used in designing on-site applications.

(

····· ..•.••.• !

.. /

EXAMPLE 1. MUL'rIPLC 'I'ER.MI NALS WITH A s nr:;L E APPLICATIONS PROCP.l•J-1

0

In the following example, any one of many users could be providing input
to the program:

I
I

---/
I

I
I

\
------- \

I
I

I

I
I

---!
I

\
\

\ +---------------+
I I
I I

I

I R T E I
I I
+---------------+

I \

I

I \
I \

I \
\

\

\

\
\---

1

\
\---

1

\
\
\---

'

Assume an order-entry situation in which there are several operators but
only one program. If standard I/O was used, it would be possible to read
from only one terminal at a time. However, by using Class I/O, the program
permits all operators to enter data seemingly at once. RTE handles all
queueing so that the program operates on a single transaction at a time,
thus simplifying the programming while giving the appearance of simul­
taneous processing on all transactions.

The flowchart for such an application is illustrated in Figure 4-7. Note
that although operators and terminal devices are shown, the input could
be received from any one o a series of indentical devices.

+--------+
I I
I START I
I I
+--------+

I
v

+---+
I Issue Class I/O READ on each I
I terminal: I
I I
I ICLAS = 0 I

I
._ I

I
I
I 10
I

DO 10 I = l,NL!J

C . .:.\LL EXEC(17 LUIY~1 (1)+400B,I~3U~·'i\,Il\UFL, I
LU'l'YS (I) ,O,ICLi\S) I

+---+
I
v

+---------------------------+
I Specify that Class Number I
I is to be keJt: I
I I
I ICLAS = IOR(ICLAS,2000B) I

+------+ +---------------------------+
I V>.AI 'l' I I
+------+----------------> v

+-------------------------------------+
I I (\iai t for any terminal to input data I
I I (o~erator enters data followed by I
I I RETURN key): I
I I I
I I Cr'\LL EX8C(21,ICL?\S,IBfJFR,IEN,LUTERM) I
I I CALL AEREG(IA,IB) I
I +----------------------~--------------+
I I
I v
I +---------------+
I I Process input I
I +---------------+
I I
I v
I +-------------------------+
I I Print reply on terminal I
I I (Logi·~al Unit contained I
I I in LDT C: HE) I
I +-------------------------+
I I
I v
I +--------------------~-----------------+
I I Issue another Class READ on terrninal:I
I I I
I I CA LL EXCC (17, LUT CRCH4 OOB I HlUfl\ I I dUFL I I
I I LU'J.'E;fo\l,0,ICU\S) I
I +--------------------------------------+
I I

Notes:

IBUFL cont~ins negative
no. of characters allowed
input.

LUTYS contains the Logipal
Unit of each terminal.
NLU contains number of
terminal.

LEN contains max. length
of IBUFR.

On return, IA = status
(e.g., bit 7 or bit 5
will be set for EOF or
EOT res~ectively).

IB = no. of characters
input (will be positive).

figure 4-7. Class I/O ::ultiple Terminal Input Exa:nple

In some applications, it may oe necessary to maintain context~al
information for each operator~ for example, a code indicating the type
of input expected next, or the operator's name to be used in friendly
dialog, etc. This information can be kept in a two-dimensional array
that is indexed oy the terminal LU number.

0

For simplicity's sake, let's assume that all terminals have consecutive
Logical Unit numbers, starting from 15. The index of the array can then
be calculated by subtractin9 14 from the LU.

EXAMPLE 2. MAILBOX COM~UNCIATION BETWEEN PROGRAMS

Frocir.::,m-to-prograrn co.nrnunic<1tion involves a "mailbox" scheme to rass data
buffers back an~ forth in the most expeditious manner. One method of
implementation might be to separate a given task into a number of subtasks
in order to provide prioritized processing for differr 1t tasks (the most
urgent tasks being processed at the highest priority), or to minimize
program rartition size requirements.

For example, assume in Figure 4-7, illustrated in Example 1, that the box
labeled "Process Input" actually involved several programs, one each for
a number of general categories:

a. Order entry

b. Inventory quantity look-up

c. Report generation

d. Display of status or recent history of several
critical real-time activities.

The program illustrated in Figure 4-7 might then serve only as a keyboard
entry controller that checks input for legality and calls on other
programs to process operator commands. Many operators could now enter
commands, with the applications software relying on RTE to queue the
commands according to the priority of the category.

The real-time display program might have the highest priority, perhaps
followed by order entry, inventory quantity look-up, and report
generation last.

Other orderings are possible, depending upon the application. Some
management summary reports might be considered most important, or
categories may be ordered so that those involving the least processing
may have the highest priority to minimize waiting time for users with
"short jobs."

The significant point to note is that RTE's priority-driven scheduling
functions can be used to process commands according to priority. This is
done through the simple expedient of separating the processes of those
commands into separate programs that run at different priority levels,
and coordinating the processing via Class I/O.

In continuation with Figure 4-7 in Example 1, Class Numbers must be
allocated for each of the process subprograms and is performed in the
initialization section as follows:

DO 20 I=l,NSUBP
JCLAS=O
CALL EXEC(l8,0,IBUFR,O,O,O,JCLAS)
JCLAS=IOR (JCLAS,20000B)

CALL EXEC(21,JCLAS,IBUFR,0)
CALL EXEC(23,<processing program name>,JCLAS)

20 ISUBCL(I)=JCLAS

+---+
NOTE:

Every Class I/O ~RITE, READ, WRITE/READ and
CON'l'ROL call issued must ALWAYS be matched
with a corresponding GET call issued at some I
point in the calling sequence. The time I
sequence is not important (GET's can be I
issued before Class calls) but there must bel
a GET for every Class call. Failure to do I
so will tie u~ system resources (the Class I
Number and the system buffer me~ory) that I
other programs nay need. I

I
+---+

Programs that issue Class I/O calls may be thought of as "manufacturers,"
with programs that issue GCT calls being thought of as "consumers." It
should be clear f rrnr. the anal09y why Class I/O and GET cal ls must be
issued in equal nuffibers.

The "Process Input" box of Figure 4-7 illustrated in Example 1 can then
be expanded as illustrated in Figure 4-8 below.

v
+------------------+
I Determine input I
I command legality I
+------------------+

I
v

+-----------------------------+
I Determine Class Number from I
I input commanc~ type (~!CLAS) I
+-----------------------------+

I
v

+---+
I Send input buffer to process iwJ program I
I for that corrmand, with LU for use by I
I processing program: I
I I
I CALL EXEC(20,0,IBUFR,IBUfL,LUTEFM,ICLAS,I
I JCLAS) I
+---+ I -

v
+------+
I ~1ll1IT I

(•

0

c

----~---~------ . -~~·----·-----

+------+

E'it]ure 4-i:l. Operator Cornman:] Subtask Division

Since no devices are involved in mailbox I/O, the CNTWD (second parameter)
of the request is zero. For this case, it is usually desirable to let
the processing prograw print an acknowledgement or error return and then
issue another Class READ on the terminal. The Class Nu~er to use for this
purpose is placed in the second optional parameter.

The processing prouram obtains the Class Number to use for the above
procedure by calling the RMPAR subroutine, as follows:

CALL PMPAR(IPRAM(l)
MYCLAS = IPRAM(l)

Waits for processing input
(Initialization code may go here)

10 0 CJ\LI., EXEC (21, MYCLAS, IBUFR, MAXLEN, LUTEf~, ITRMCL)

Process input

WRITE(LUTERM,1100)
1100 F017<MAT (< ac k.nowledg emen t or error message>)

The program issues a Class FEAD on the terminal and then "goes to sleep"
until ~nether transaction is available for it to process.

Note that although this 1nailbox example has discussed only one program
with many users, other programs could be involved in the process. The
basic concepts presented could be expanded considerably, limited only by
the number of programs allowed in the system, the number of Class Numbers
available, and the amount of available buffer memory.

4-4a. RESOUHCE i:~Ui·iuf.f1E AND LOGICAL CNIT I.OCKS

Although Resource Nurncering and Logical Unit locking services are not
implemented through EX~C calls, their discussion logically fits in this
section because their ability to synchronize use of system services
between cooperating programs is closely associated with Class I/O
capab i 1 i ties. (See the mmQ subroutine call in the System Library
Subroutines section of this manual.)

Like Class Numbers, the number of Resource Numbers available on the
on-site RTC system is determined during system generation. Resource
Numbers provide the capability of synchronizing programs that access the
same resource. The resource might be a device (locking a Logical Unit
requires a Resource Nunber), a table in memory, a file or even another
program or subroutine.

The use of resource Nurnoers is only required when:

a. TWO or more progrc:imf. use the same device, or CHANGE the contents
of a memory location or ciisc file.

b. ONE or more pro'}rarns 111al<e decisions based upon the cont<~nts of ,:i

data item that can De tnO('!ifieci by at least one other program.

to relate the Hesourci? ;-.Jun•Lier mechanism to applications considerations,
assume the following "proble;o" conditions:

P.R.OGRf\~-.j !\
CO'.·IMOt,1 J
IF(J.EQ.2) J=J+l

PHOGHAM B
COMMON J
I F (tT • ~; Q • 2) J =,J + 3

Assume Pro<Jrams A an0 .!.:'.> are both scheduled memory-resident programs and
that J is initially 2. Further assume Program A executes the IF statement
but before it can execute J=J+l, Program B gets scheduled (with B having
the highest priority).

Program E sets J to J+3 (waking it 5), perhaps performinc:; other tasks, and
thc:n terminates.

Program i\ then increffents J, waking it 6. l~otice that Program A running
alone would leave J=3. Program D running alone would leave J=S. Under
rare conditions, Programs A and B running together would leave J=6.

Now assume that J is a table of tasks to be executed and that there are
several 9rosrams scanning the table. Also assume the tasks are sufficiently
I/O bound that the applications software has several identical programs,
each of which may select any task. Without synchronization via Resource
Numbers, two or more of these programs might select the same task to work
on.

Such "race conditions" can be defined as any code that will execute
unexpectedly, depending upon when other programs execute relative to the
code. These conditions are an illusive form of software bug, causing
unusual errors that can seldom be successfully repeated. Consequently,
these errors are much harder to locate and, identify. ·

You cannot rely si~ply on program priority to solve the described
problems. Und(:>r the dynamict of real-time aplications, there are too many
other conditions under whicl1 a lower priority program occasionally may
run when a higher prioritt ~rogram is scheJuled. The high priority
program may have tu be swappeci [)ecause a still higher Friority program
has been scheduled, and it either has been assigned to the same partition,
or the purtition is the s:;iallest that the hir3hest priority program will
fit into. l'eanwhile, the lower priority program may be running in anotheT
r-artition i·1hile the other programs are being swapped. Now, let's look at
some solLitions.

The proper w~y to avoid race conditions is to assign a Resource Number to
all data accesses that are upcJated by more than one program, or updaten

r-".
/':

l"\._j

(~_- --

0

c

by one ~;roc3ram and reao oy others. However, it is extremely important to
note and remember three i te1r;.s:

1. Ti1e association i)ct1'<'r:~en a He~>o1.trct' ~;um~1cr (1\;~) and ti r.i1.ut"d d(lt°.I
area is createL1 throu'.Jh the user's software desi9n. H'l'E's only role
is to ma~c EJ's available for allocation, locking, clearing and
releasin•J, and the system will suspend any cooperating program that
att.cr:ipts tc lock .Jn RN that is already locked. R'rE will reschedule
the p r og r .::.i m 0n1 y w ll on t he .Rt-... i s c 1 ea red .

2. ALL programs that access the same resource MUST ·ooperate with each
other in controlling "simultaneous" access; that is, an R~ must be
allocated for each resource when RTE is booted up. An RN may be
su.ved in COMMON or SSGA. Progro.rns must lock the RN locally before
accessing the associated data base, and clear the R~ when finished
with it.

3. RTE automatically clears all RN's locked locally whenever the
locking program is aborted or terminates (unless it terminated
saving resources).

EXM1PLE 1. 1'w0 PROGRi\r1S UPDATii~G A DISC FILE

In this example the file may be either an FMP file or an area in the
system track pool on LU 2 or 3. In the first case, the file must be
opened non-exclusively (shared). Note that FMP files are normally opened
for exclusive use and therefore are NOT sharable. Therefore, no RN's are
necessary to control them. In the second case, the disc treks must be
allocated globally. In either case, the RN must be kept in some area
common to all programs (CO:lMON, SSGA or in the file itself.

It is roar practise to always assume the RN's will always be the same;
changes in initialization sequences or different RTE generations may
change the aN's allocated. When RTE is booted up, an initialization
program should be run au toinat ical ly that w il 1 allocate al 1 required RN' s
and store them where required.

Prior to updating any record, the RN for the file is locked.

You might possibly choose to use one RN to control access to all data
bases. Although this practise consumes the least number of RN's, it is
inefficient when several programs need to update different files (no two
files are the same). Increasing the number of RN's so that each controls
a smaller number of files or area of memory increases the probability that
the RN will be clear when the associated resource is required. The number
of RN's allowed is limited to 255.

The application itself may still further limit the minimum area of control,
depending upon the circumstances. Typically, one RN per file is the limit.
If several files are updated together, one RN should control the set.

EXAMPLE 2. LINE PIUN'I'ER CONTROL

The line printer is a commonly used resource, and therefore, programs that

lj-f 7

generate output t.o it should lock it fir st. Note that the Batch Spool
Monitor system provides the users with this exclusive control and therefore
LU locking is not requirecoi. (This is true for any device shared by programs
that may run concurrently.) i·Jhenever any other prograM attempts to access
the LU, the calling pro0ram will be suspended until the locking proqr.;rn1
unlocks the LU, terminates or aborts. Note that in this case, cooperation
among programs is not required because RTE performs the LU/RN association.

4-4q. EXEC CALL ERROf\ rmSSAGES • '~ ~t~ ~
£? "/4 ~ ~~· '4(~~: (/.'-'r~~

4.,.~ MEMORY l?ROTEC'I VIOLJ\TIONS~/i.'(f.C,~,~,""1 ~~~ ~
1

·rhe R'rE:-IV Of)erating system is protected by a hardware memor?~t1ctf
Consequently, any user program that illegally tries to modify or jump
to the operating system will cause a memory protect interrupt. The
operating system intercepts the interrupt and determines its legality.
If the memory protect is illegal, the program is aborted and the
following message is displayed on the system console:

MP INST = XXXXXX
ABE PPPPPP QQQQQQ R
XYO PPPPPP QQQQQQ R
MP YYYYY ZZZZZ
YYYYY l\I30R'rED

s-1

(XXXXXX = offending octal instruction code)
(contents of A, B and E registers at abort)
(contents of X, Y and O registers at abort)
(YYYYY = program name: zzzzz = violation address)

4-tt. DYl\AMIC :.-rnPPING VIOLATIONS

A dynamic mapping violation occurs when an illegal read or write occurs
to a protected page of memory. This may happen when a user program tries
to write beyond its own address space to non-existant memory or to some
other program's memory. In this case, the program i$ aborted and the
following message is issued:

!)t•1 VIOL = h'WiJh'W
CM INS 1r = XXXXXX
ADE PPPPPP QQQQQQ R
XYO PPPPPP QQQQQQ R
Dl-i yyyyy L; z z z z
YYYYY ABOR'I'ED

4-sU. EX EHHORS

(WWWWW = contents of DMS violation register)
(XXXXXX = offending octal instruction code)
(contents of A, B and E registers at abort)
(contents of x, Y and O registers at abort)
(YYYYY = program name: zzzzz = violation address)

It is possible to execute in the privileged mode; that is, with the
interrupt system off. Therefore, the user may not make EXEC calls in this
mode because the memory protect is the access vehicle to EXEC. An attempt
to make an EXEC call with the interrupt system off causes the calling
program to be aborted and the following message issued:

EX YYYYY ZZZZZ
EX ABORTED

(YYYYY = program name; zzzzz = violation address)

C' .

0
I

l'l
Ill
ii

14
I

(

0

--~~-----------

4-51. UNbXPECTED Dt1: AND MP ERHORS

'fh e Ot.Jer at in() sys te.i1 handles al 1 :1M and r1P violations. Some of these
violations are le0al: others are not. In any case, the operating system
associates these violations with pro1Jrru11 3Ctivity. !\ DM or MP vi.ol~t.if;)n
occuring when no program is active is .:in unexpected violation. Since no
program is present there is no program to abort. In such a case, one of
the following ~essages will be issued:

DM VIOL = WWWWWW (contents of D~S violation register)
DM INST = XXXXXX
ABE PPPPPP QQQQQQ R
XYO PPPPPP QQQQQQ R

(XXXXXX = offending octal ir truction code)
(contents of A, B and E registers at abort)
(contents of X, Y and o regist~rs at abort)
(<INT> = system-designated name for program) DM <INT> 0

or

MP INST = XXXXXX
ABE PPPPPP QQQQQQ R
XYO PPPPPP QQQQQQ R

(XXXXXX = offending octal instruction code)
(contents of A, B and E registers at abort)
(contents of x, Y and O registers at abort)
(<INT> = system-designated name for program) MP <IN'r> 0

Either of the above messages specify <INT> as the program name to signal
the user that an unexpected memory protect or dynamic mapping violation
error has occured. Either is a serious violation of the operating system
integrity. Usually, it indicates that user-written software (driver,
privileged subroutine, etc.) has damaged the operating system integrity
or has inadequetly performed required (driver) system housekeeping.
However, it could also mean that the CPU has failed and that the
operating system detected the failure in time to prevent a system crash.

If this error occurs, it is recommended that all users on the system save
whatever they were doing (i.e., finish up editing, etc.) and reboot the
system. If only HP modules are present in the operating system, CPU
failure is a highly likely cause of the error and CPU diagnostics should
be run prior to rebooting.

The following errors have the same format as the MP and DM error returns
except that the register contents are not reported:

Error

TI

RE

RQ

Meaning

Batch program exceeds allowed time.

Reentrant subroutine attempted recursion.

Illegal request code is not between 1 and 26, or
(in text) an RQOO means that the address of a returned
parameter is below the memory protect fence.

The general format for other errors is

type name address

Where:

type is a four-character error code

name is the program that mode the call

a6dress is the location of the call (equal to the exit point if the
error is detected after the program suspen~s).

'"}fogram that

r­
\.j

tt~ ~- PARITY ~RRORS
Upon detecting a parity error in memory, RTE will abort the program that
encountered the parity error and the message will be printed:

PE ppppp nn
ABE=aaaaaa bbbbbb e
XYO=xxxxxx yyyyyy o

where:

PPPPP = the program name

nn = physical page number where the parity error was detected
(page number counting starts at 0).

ABE = the contents of the A, B and E registers respectively when
the parity error was detected.

XYO = the contents of the X, Y and O registers respectively when
the parity error was detected.

If the proJrram was disc resident, the following message will be printed:

PAWl1'N xx DOWN
p AH'l' , N YY omm

where:

~ xx is the partition the program was executing in •

c:

. yy is th€ Mother partition program.

Alternately, if xx is a ~other Partition, then yy is the subpartition that
contained the 1)arity error. In either case, partition xx and yy will no longer
oe available to the user until the system is next booted up.

A parity error occuring within the operating system itself, a driver or
system table area causes the system to execute a HLT 102005. The A-register
will contain the physical page number and the B-register will contain the
logical address of the error.

t?'
4-~. F:RROP CODL'S FOl~ DISC ALLOCATIO~ CALLS

DROl

DH02

DR03

4-50.

= Not enough parameters.

= Number of tracks zero, illegal logical unit; or number
of tracks to release is zero or negative.

- l\ttempt to release track assigned to another program.

ERROR CODES ~OH SCHEDULE CALLS

SCOl = Missing parameter.

SC02 = Illegal parameter.

SC03 = Program cannot be scheduled.

SC03 H-!T = Occurs wllen an external interrupt attempts to schedule a ''----/

SC04

SC07

SC08

SC09

SClO

program thQt is already scheduled. RTE-III ignores the
interrupt and returns to the point of interruption.

= narnE:: is not a subordinate (or "son") of the prograrn
issuins:; the completion call.

= Program 9iven is not defined.

= No resolution code in Execution Time EXEC Call
(not 1, 2, 3, or 4).

= ~rohioited memory lock attempted.

= The progra~ just scheduled is assigned to partition
smaller than the program itself. Llnassign the program
or reassign the program to a partition that is as
large or larger than the program.

= The prograw just scheduled is too large for any partition
of the sa;ne type. For ex amp le, trying to schedule a 2 JK
background program when the largest background partition
is only 21;r.

= Not enou~h system available memory for string passage.

4-51. ERBOR CODES FO~ I/O C~LLS

IOOO

IOCl

I003

I004

IOO S·

IOOG

IG07

IOOfl

= Illegal call numoer. OutsidE table, not allocated,
or ~ad security code.

- i:~ot enough parameters.

X o it set.

= Illeg&l ECT referenced by LU in I/0 call (Select code=O).

= Ille9al user buffer. Extends beyond RT/BG area or not
enough system available memory to buffer the request.

- Illegal rlisc track or sector.

= Reference to a rrotected track: or using LG tracks
before asc::ignin<J the.n (see LC~, Section II).

= Driver has rejected call.

- Cisc transfer longer than track boundary.

(·,·,· '

>/

1-t,~

!009

(- 1010

IOll

0

·----· ---------

= Overflow of 26 ~rea.

= Class (~L.:'i call i!:3Sucd \~h.ile C.":'ne call already ot1tstc.:tnclin9,

= 'l'ype ·1 pro9ram rnaoe an unlniffered I/U request to a driver
that diJ not Jo its own ffiapping.

RTE-Ill

I f<KoM

DROl

llH02

DR03

1000

1001

1004

1005

1006

MtAP\IN<i

I l "'' 1h.1n .a p.11:11n1."ll.'h,

l l..:" th.an I p.il,tnll.'h.•r.
.1. Nutnht"r -. -1.
-'· I"" than J 1nol ·IJ.

flk1!JI lr .. ,k Numbc.-ror
I 1lJ!1l';al Lrul ~umber.
I I rJtdc. numbtr • O.
2. lup~al Unil nul 2 ,1, J.
J. Ot.ilO\.Jlt' 0 1lr ii: .. , Tr11L'k\ .

.\Utmpl hl rtkaM.' I r.alk
.1,,1~ntd ,,, ano1hcr pro~n:m

1 Ouh1dl" I .ibll"
."::. ~''' aJIU1..th•d
' IC.id S..-, unry (11de.

:'.\111 I n1luttfl P;uam\'ll.'t\.

RfAIJ

I /.1.'JO PJfJITitlff''. I
, Lt·,, lh.111 J p.iram"'h'f\. 2
.\. l&'\)l lh.an 5/dl'W.'. 3
.f L1:'' lhan ! p.i.r.tml.'h'n.
5 C l.1•1111 \l.otd mM1ng.

lllrJ?.dL11g1ull:ni1
I. IJurnu\lmum. I
:?. (1J'' re11u,·~111n d1,1· LU.
'· LL'•., th.in ~ piltiinh'lth and l

X·hil\l'I ~

lll•·i•l I'•" ~ulfcr. RT/ Of' h...£~
1 1 \ll'111.J1i; b1·rond ..WP. r'-1,:;a
!. ~11 11·nuugh1>)-,ltm m"mur)· ru 1

hulkr lhr rr-quei.I.

lllq?..i.11'1" rrad .. 1u~l'lt1t
I It." k numti-:r ma\lmum.
, ~'l lnr numbi.·r

fl111 m.a\lmum

Allcmptl'd lu \\Kil I lo Ll':?I)

WRl'l't.

I
1
J

I

''V"

7\

I
2

x

C'O!'\UWL

I

I

f.

PRO<oRAM
IKAt'K

Al.LOC~."11

4

.and ua~ k nut auignl'd 10 u~·r
nr t-!lo1l1.1llv. ur nol lo ne\l
h1.iJ·.i.11J·r11 \t'f.:lot. IJll'g~
\\IU 11 lu"' I \tP lr;h:k.~ "<:::"°--1---4---t---..l._-
l>m n h.i.' Jl.'JCdl'd fl•qut-•U 1007

x x
Jnd O'tflll.'\l I\ llUI bulff'J\'d.

x x
•'>'lhh ti t::?f))

1009 Weruow of x

.1010 Class GET &
, one ~all al-
! ready out-
: standina...

-
x jl0la117gal User fTX

I, Map request V
, for Syste~

·~

x

PROCK AM
rRA<.K

Kl-.U.ASf.

~

PROGRAM
l'OMPU.f'IOI'<

PRIXoRA!lf
Sl'SPf NIJ

,
t'MOCiKAM PR()(;RAM
Sl.l.OMf.NT SCllWOl.f.

LOAIJ l>IWAIT

H 9

0

PROGRAM TIME
SOllDOLf. KfQOUT
WO/WAIT

10 II

·(·.-~ _)

7 "

Exec Calls

l'IUXiRi\M
1/0 STRISG

GLOBAL GLONAL CLASS ll.ASS C'l.ASS CLASS C'LASS PROGRA~ PROGRAM PROGRAM
~11111>1'1.I TRACK TR An 1/0 1,u 110 110 110 SWAPPISG Sl:HED QUF.U~ SCHEDQUEUE RNRQ LURQ

11\11
STATIS PASSA(il

ALLOCATI' RI Ll:ASI: REAO WRlrt C"ONTROL WKITf./Kt:AO GH CONfROL W/WAIT WO/WAIT

" IJ 14 15 16 11 IK 19 20 21 22 23 24

I
3
4

I

l

I I I I I
2 2 2 2 2
3) 3 3 3

I I I I I
2 ? 2

4
s s s 5

I I I I I
2 2 2 2

_\./' 1L ~ 3..., 3~ \.,

7' '2' ~ 2--,...; ·" ~ 2
•

-

l x

C.I
'"---"'

3-41

'Ir/

RTE Ill

11 01

3-42

un~ Of lnlltC IOJ!k:.11
l"hlJ!f;lltl h~\ .tnd I~ lf!r'llll(•o
Ulllh l111:ki.:d . h \\Arr.
LOCK .mnth~·r wu

C' I

0
7Y

Exec Calls

l'H.o<~K.\\I
1/0 STRIN(, GLOUAL GLOBAL CLASS C:LASS (LASS CLASS CLASS PROGRAM PR(.)(;RA\t PRO<iRAM

\\lllDlll TRACK TRACK 110 110 110 1/0 1/0 SWAPPINli SUIUJ \)Ul.UI SCIUO\)l'llil RN Rt) Ll'R\I
fl\11 STAfVS PA~SAGL

ALLOCATt. RLLEAS[READ WRITf: C\INTROL WRlff/REAO GET (ONTROL W/l\All WO/llAll
I' _ll -"- ..l.l.. -1/i.. .lL ...la.. ..ll.. !IL ..ll ..ll. ll. li.

x

x

x

x x x x x x

\ x x x x x x x x x x x x

x

x

x

2

J

I

2

2 l

2 2 2

x

' ' x

0

()

c

0

+---+ I I SECTION V I
I 1-----------------1
I INPUT/OUTPUT I
+---+
In the Real-Time Executive System, centralized control and logical
referencing of I/O operations effect simple, device-independent
programming. Each I/O device is interfaced to the comp11ter through an
I/O controller associated with one or more I/O select codes that are
hardware-linked to corresponding memory locations for i·terrupt
processing. By means of several user-defined I/O tables, self-contained
multi-device drivers and program EXEC calls, RTE relieves the
programmer of many I/O processing details.

For details on the hardware input/output organization, consult the
appropriate computer manuals (refer to the documentation map at the
beginning of this manual). For details on writing drivers, see the RTE
Driver Writing Reference Manual.

For a full understanding of the software I/O characteristics of RTE as
described in this manual section, the user should be familiar with two
hardware-related terms:

1. I/O Controller - a combination of I/O card, cable and, for some
devices, a controller box used to control one or more I/O devices
on a computer I/O select code.

2. I/O Device - a physical unit {or portion of a unit) identified in
the operating system by means of an Equipment Table (EQT) entry and
a subchannel assignment.

Each I/O device is interfaced to the computer through an I/O controller
that is associated with one or more of the computer I/0 select codes.
Interrupts from controllers on specific select codes are directed to
specific computer memory locations for system processing.

5-1. SOFTWARE I/O STRUCTURE

This description of the I/O software is primarily intended for those
who will be using I/O EXEC calls for standard programming applications.
Users who will be writing their own drivers or who may otherwise
require a more detailed knowledge of the I/O internal structure should
consult the RTE Driver Writing Reference Manual.

The I/O structure is made up of two general types of software:

1. The system I/O processor (RTIOC) and various device drivers.

2. A number of I/O tables, including: Equipment Table, Device Reference
Table, Interrupt Table, Driver Mapping Table, plus a Base Page
Communications area.

These tables and areas are used for communication between the system

5-l

and the drivers, and for control of the many I/0 operations that can be
in progress simultaneously.

An Equipment Table entry records each controller's I/O select code,
driver, DCPC, buffering and time-out specifications. A Device Reference
Table assigns one or more Logical Unit numbers to each device and
points each device to the appropriate Equipment Table entry. This
allows the programmer to reference changeable logical units instead of
fixed physical units.

An Interrupt Table directs the system's action when an interrupt occurs
on any select code. RTE can call a driver that is responsib]e for
initiating and continuing operations on all devices' controllers of an
equivalent type, schedule a specified program, or handle the interrupt
itself.

The programmer requests I/O by means of an EXEC call that specifies the
logical unit, control. information, buffer location, buffer length, and
type of operation. Some subsystems may require additional parameters.

5-2. EQUIPMENT TABLE

The Equipment Table (EQT) is used to maintain a list of all the I/O
equipment in the system. The table consists of a number of EQT entries,
with one EQT entry for each I/O controller de.tined in the system at
generation time. Each EQT entry contains all of the information required
by the system and associated driver to operate the device, including:

* I/O select code in which the controller is interfaced with the
computer.

* Driver type.

* Various driver or controller requirements and specifications,
such as DCPC, buffering, time-out, power fail, etc.

These 15-word EQT entries reside in the system and have the format
illustrated in Figures 5-1 and 5-2. Note that some information in an
EQT entry is static; other parts are dynamic. Information marked <A> is
fixed at generation time or during I/O reconfiguration at boot-up time
and never changes during on-line system operation. Words marked are
also fixed during generation or I/O reconfiguration but can be changed
on-line through operator commands. Information marked <C>, <D> and <E>
are driver considerations. <F> is maintained by the system.

+------!--+
I Word I Contents I
l------1----1----l---l---l----l---l--l---l--l--l---l--l--l---l--l---I
I I 15 I 14 13 12 I 11 10 9 I 8 7 6 I 5 4 3 I 2 1 o I
1------1----1------------1-----------1---------1---------1----------1
I 1 I R I I/O Request List Pointer <C> I
1------1----1---1
I 2 I R I Driver Initiation Section Address <A > I
1------1----1---1
I 3 I R I Driver Continuation/Completion Section Address <A> I

1------1----1----1---1----1---1----------------1--------------------1
I 4 I D I B I P I s I T I Subchannel I I/O Select Code t I

I l<A> l l<E>l<E> l<C>I <C> I <A> I
l------1----1----l---l----1---1----------1-----1--------------------1
I 5 I AV I EQUIPMENT TYPE CODE I STATUS I
I I <F> I <A> I <E> I
1------1----1----1-----------------------1--------------------------1
I 6 I CONWD (Current I/O Request Word) <C> I
------ --1

7 Request Buffer Address <C> I
------ --1

8 Request Buffer Length <C> I
------ --- ------------1

9 Temporary Storage <D> or Optional Parameter <C> I

10 Temporary Storage <D> or Optional Parameter <C>

11 Temporary Storage for Driver <D>

12 Temporary Storage
for Driver <D>

or EQT Extension Size,
any <A>

13 Temporary Storage or EQT Extension Starting
I for Driver <D> Address, if any <A>

------1--
14 I Device Time-Out Reset Value

1------1---·l
I 15 I Device Time-Out Clock <C> I
+----~--+

where:

I/O Request
List Pointer

Figure 5-1. Equipment Table Entry Format

R = reserved for system use.

= points to list of requests queued up on this
EQT entry. First entry in list is current
request in progress (zero if no request).

D = 1 if DCPC required.

B = 1 if automatic output buffering used.

P = 1 if driver is to process power fail.

s = 1 if driver is to process time-out.

T = 1 if device timed out (system sets to zero before
each I/O request).

Subchannel# = last subchannel addressed.

I/O Select =
Code#

I/O select code for the I/O controller
(lower number if a multi-board interface).

AV = I/O controller availability indicator:

0 =
1 =
2 =
3 =

available for use.
disabled (down).
busy (currently in operation).
waiting for an available DCPC channel.

EQUIPMENT = type of device on this controller. When this octal
TYPE CODE number is linked with "DVy," it identifies the

device's software driver routine. Som~ st~ndard driver
numbers are:

00 to 07 = paper tape devices or consoles

00 = teleprinter or keyboard control device

01 = photoreader

02 = paper tape punch

05 = 264x-series terminals

07 = multi-point devices

10 to 17 = unit record devices

10 = plotter

11 = card reader

12 = line printer

15 = mark sense card reader

20 to 37 = magnetic tape/mass storage devices

23 = 9-track magnetic tape

31 = 7900 moving head disc

32 = 7905/06/20 moving head disc

33 = flexible disc drives

36 = writable control store

37 = HPIB

40 to 77 = instruments

STATUS = actual physical status or simulated status at the
end of each operation.

CONWD = combination of user control word and user request code
word in the I/O EXEC call (see Section IV1 see also
Figure 5-2 below).

0

0

0

(

II

0

(';
/

and where the letters in brackets (<>) indicate the nature of each
data item as follows:

<A> = fixed at generation or reconfiguration time1 never
changes

 = fixed at generation or reconfiguration time1 can be
changed on-line

<C> = set up or modified at each I/O initialization

<D> = available as temporary storage by driv~r

<E> = can be set driver

<F> = maintained by system

+---1----1----1----1----1----1---1---1---1---1---1---1---1---1---1---1
I 151 14 I 13 I 12 I 11 I 10 I 9 I 8 I 7 I 6 I 5 I 4 I 3 I 2 I 1 I O I
1---1----1----1----1----1----1---1---1---1---1---1---1---1---1---1---1

I Status I
1---1----1

I

00 - standard call
10 - buffered call
11 - Class call

I Subfunction I
1---------1----------1

I

00000 = clear controller
(if function = 11 =
CONTROL call)

Other subfunctions are
driver specific and may
or may not be defined

Function
1---1---1

I

01-READ call
10-WRITE call
11-CONTROL call

Figure 5-2. CONWD Word (EQT Entry Word 6) Expanded

When RTE initiates or continues an I/O operation (except for privileged
driver constructions), it places the address of the EQT entry for the
device's controller into the Base Page Communications area before
calling the driver routine.

All Equipment Table entries are located sequentially in memory,
beginning with EQT entry number 1. The address of the first entry and
the total number of entries in the table can be found in the Base Page
Communications area.

5-3. DEVICE REFERENCE TABLE

The Device Reference Table (ORT) is part of the mechanism by which
Logical Unit numbers for I/O are implemented (see Logical Unit Numbers
below). Users request I/Oby specifying a Logical Unit (LU) number.

The DRT tr~nslates this Logical Unit number into a physical device
as specified by an EQT entry number and subchannel. The ORT is also
used to queue requests for I/O on an unavailable (down) device. The ~·---,,
request list for available (up) devices originates from word 1 of the 'G
EQT entry, as illustrated in Figure 5-1.

~ach DRT entry is two words long (see Figure 5-3). There is one entry
for each Logical Unit number defined at generation time, beginning with
Logical Unit 1.

The first word of each entry includes the EQT entry number of the
controller assigned to the logical unit and the subchannel ~umber of
the specific device on that controller to be referenced.

The second word of each DRT entry contains the current status of the
logical unit; up (available) or down (unavailable). If the device is
down, word 2 also contains a pointer to the list of requests waiting to
access the LU. Figure 5-3 illustrates the format of a Device Reference
Table entry, and Figure 5-4 illustrates the Device Reference Table.

+--~----------------1-------------------1-----------------------+
I Subchannel No. I (Reserved) I EQT Entry Number I
l---l---l---l---l---l---l---1---1---l---l---l---l---l---l---l---I
115 114 13 12 Ill 10 9 I 8 7 6 I 5 4 3 2 1 o I word 1
1---1-----------1-----------1-----------1-----------------------1
I F I Downed I/O Request List Pointer I word 2
+---1---+
where:

F (up/down flag) = O if device is up
= 1 if device is down

Figure 5-3. Device Reference Table Entry Format

+---+
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

+--+
I I
I LUl I
1--1
I I
I LU2 I
1--1
I I
I LU3 I
+--+

+--+
I I
I LUn I

I
I
I
I
I Word 1 of
1-- each DRT
I entry
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

0

1--1
I I
I LUl I
1--1
I I
I LU2 I
+--+

+--+
I I
I LUn I
+--+
Where:

n = number of logical units in system

I
I
I
I Word 2 of
1-- each DRT
I entry
I
I
I

+---+
Figure 5-4. Device Reference Table

Note that there are separate tables for words 1 and 2, with the word 2
table being located in memory immediately following the word 1 table.
The starting address and length of the word 1 table are recorded in
the base page.

5-4. LOGICAL UNIT NUMBERS

Logical Unit numbers provide R'rE users with the capability of logically
addressing the physical devices defined by the Equipment Table. Logical
Unit numbers are used by executing programs to specify on which device
I/O transfers are to be carried out. In an I/O EXEC call, the program
simply specifies an LU number and does not need to know which physical
device or which I/O controller handles the transfer.

Although many devices such as line printers are addressed by a single
LU number, others such as disc drives have subchannels, with each
subchannel addressed by a different LU number.

If on-line changes to existing LU assignments become necessary or
desirable, this can be achieved through use of the LU operator command.
LU numbers are maintained by the Device Reference Table (see above).

Logical Unit numbers are decimal integers. The functions of Logical
Units 0 through 6 are predefined in the RTE-IV system as follows:

0 bit bucket (null device: no entry in Device Reference Table)

1 system console

2 reserved for system (system disc subchannel)

3 reserved for system (auxiliary disc subchannel)

4 standard output device

5 standard input device

6 standard list device

Logical Unit 8 is recommended to be the magnetic tape device, if
present on the system. Peripheral discs must be assigned logical
greater than 6. Additional logical units may be assigned fo~ any
function desired.

5-5. INTERRUPT TABLE

one is
units

The Interrupt Table contains an entry, established at system generation
time, for each I/O select code in the computer. If the entry is equal
to o, the select code is undefined in the system. If an interrupt
occurs on one of these select codes and is processed by the Central
Interrupt Controller (CIC), RTE outputs the message

ILL INT xx

where xx is the octal I/O select code number. RTE-IV then clears the
interrupt flag on the channel and returns to the point of interruption.

The ILL INT message is also issued if the driver completes and the
system cannot find the processed I/O request queued to the EQT entry.

If the content of the entry is positive, the entry contains the address
of the EQT entry for the I/O controller on the channel (refer to the
EQT option for the Interrupt Table entry during system generation).

If the content of the entry is negative, the entry contains the negated
ID segment address of a program to be scheduled. If the program is not
dormant when an interrupt occurs on that I/O select code, the following
message is output on the system console:

SC03 INT xxxxx

where xxxxx is the program name. The interrupt flag is then cleared for
that channel and control is returned to the point of interruption.
(Refer to the P~G option for the Interrupt Table entry in the RTE-IV
On-Line Generator Reference Manual~)

5-6. SYSTEM BASE PAGE INTERRUPT LOCATIONS

When an interrupt is received, the computer transfers control to one of
a group of memory locations, known as trap cells, in the system base
page. The I/O select code of the interrupting controller determines the
location of the transfer. For instance, interrupts from select code 12
cause a transfer to memory location ~2~ interrupts from select code 13

S-'!J

~ v '

()

(" I
\ I

)i

0

0

cause a transfer to location 13, et cetera. Memory locations from octal
4-77 comprise the entire set of interrupt trap cells, where

4 = powerfail

5 = memory protect/OMS/parity error

6 = DCPC Port l

7 = DCPC Port 2

10-77 = I/O slots

Transferring control to an interrupt trap cell causes the instruction
located there to be executed. For all devices operating under control
of the Central Interrupt Controller (CIC), this instruction is a
JSB LINK,!, where LINK contains the address of the entry point to CIC.
This instruction is initially set up at generation time and is reset
each time the system is rebooted. There are three different ways that
interrupts are serviced, according to the contents of the trap cell and
the Interrupt Table:

Generation Interrupt Table Trap Cell
Entry (examples) Contents Contents
---------------- --------------- ---------
12,EQT,l EQT entry address JSB LINK,I

12,PRG,name Negative ID JSB LINK, I
segment address

12,ENT,entry 0 JSB entry,!

JSB LINK,I trap cells are processed by CIC. JSB entry,! trap cells
by-pass the Interrupt Table and CIC for time-critcal events such as
Power Fail and privileged interrupts.

5-7. DRIVER MAPPING TABLE

Each EQT entry has an associated two-word Driver Mapping table entry
that indicates whether the driver for that EQT entry is in the System
Driver Area (SDA) or a driver partition; and whether or not the driver
(if it is in SDA) performs its own mapping. If the driver is in a
partition, the entry contains the physical starting page number of the
partition. This page number is used to map the driver into the
appropriate System Map or User Map.

The second word of each entry is set up when I/O is started on the
corresponding driver. The sign bit of the second word indicates whether

·or not I/O is being performed for a memory resident program. The word
is 0 for system I/O. The low 10 bits contain the page number of the
user's physical base page if it is a partition resident program. This
word is used to save time on setting up the proper map on processing

interrupts.

The format of the Driver Map Table is illustrated in Figure 5-5.

Insert Figure 5-5. Driver Mapping Table here (full page)

5-8. I/O PROCESSOR GENERAL OPERATION

5-9. STANDARD I/O CALLS

A user program makes an EXEC call to initiate I/O transfers. If t~e
device's controller is not buffered or the I/O transfer is for input,
the calling user program is suspended until the transmission is
completed (see Class I/O, Section IV for exceptions). The next lower
priority program is allocated execution time during the suspension of
a higher priority program.

An I/O request (i.e., READ, WRITE, CONTROL) is channeled to RTIOC by
the executive request processor. After the necessary legality checks
are made, the request is linked into the request list corresponding to
the referenced I/O controller.

If the device's controller is available (i.e., no prior requests were
pending), preparation is made to enter the driver's initiation section.
The parameters from the request are set in the temporary storage area
of the EQT entry.

The proper mapping registers are set up if the Driver Mapping Table
indicates they are needed. The decision to choose the User Map or the
System Map is decided by the type of I/O request. All system I/O, class
I/O, and buffered user I/O requests require the use of the System Map.

Unbuffered user requests require the user Map. Note that in the case of
a driver located in the System Driver Area making unbuffered requests,
the program must be Type 2 or 3.

If the disc resident program's User Map needs to be modified to map in
a partition resident driver, the User Map is saved in the program's
physical base page. The second word of the driver's mapping table entry
is modified to record the type of map needed and if it is a disc
resident program's map the physical base page number is also kept. This
second word is used to save time on setting up the map registers for a
subsequent continuation interrupt. The initiation section initializes
the device's controller and starts the data transfer or control
function.

If the device's controller is busy upon return from the initiation
section or else a required DCPC channel is not available, RTIOC returns
to the scheduling module to execute the next lower-priority program.

If the device's controller (EQT entry) or the device (LU) is down, the
calling program is automatically suspended in the general wait list
(status=3). While in this list, the program is swappable. If any LU or

0

., ('.'" ...

EQT entry is set UP, the program is automatically rescheduled. Refer
to the ST command in Section III for more information on the general
wait list.

Interrupts froffi the device's controller cause the Central Interrupt
Control (CIC) module of RTIOC to call the continuation/completion
section of the driver. RTIOC sets up the correct map before entering
the driver. This is done by checking the Driver Mapping Table entry
associated with the EQT entry. If a User Map is being reset, its
contents are obtained from the program's physical base page. At the end
of the operation, the driver returns to CIC and consequently to RTIOC.

RTIOC causes the requesting program to be placed back irto the schedule
list and checks for an I/O stacked request. If there are no stacked
requests, RTIOC exits to the dispatching module ~ otherwise, the
initiation section is called to begin the next operation before
returning.

5-10. POWER FAIL

Power Fail is an optional hardware/software feature that saves all
system status and context up to the point at which the computer signals
a power failure. If generated into the system, the Power Fail routine
performs the following steps:

1. When power fails, it saves all registers, stops DCPC transfers and
saves maps. If not enough time was available, Power Fail issues a
HLT 4.

2. When power comes on, it restarts the real-time clock, sets up a
time-out entry (TO) back to its EQT entry, and then returns to the
Power Fail interrupt location so that it can do more recovery type
work after the power fail system and operating system are reenabled.

3.

4.

When the EQT entry times-out, the Power Fail routine checks EQT
entry word 5, bits 14 and 15 of each I/O controller. The status of
bits 14 and 15 will indicate whether the I/O controller is "down ..
or "busy." The routine also checks bit 13 of EQT entry word 4 (set
by driver), which indicates if the driver is to process the power
failure.

If the I/O controller was busy when the power failed and the power
fail bit was set when power resumed, the Power Fail routine calls
the driver. The proper map is set up, according to the Driver
Mapping Table entry and the driver is entered at Ixnn with its EQT
entry unchanged. If the power fail bit was not set, the Power Fail
routine calls the IOC module to set the controller and all downed
LU's "up", reinitializes the EQT entry, and enters the driver at
Ixnn.

To summarize, assuming the controller was reading or writing data
when power failure occurred (and the driver is designed to handle
power fail), the controller driver will perform the power fail
recovery when power resumes. If the controller was busy when power
failure occurred and the controller driver cannot handle power
failure, the routine attempts to restart the I/O operation.

5. If the controller or device was down when the power failed and the
power fail bit is set or not set, the system "ups" the controller
(EQT entry) and associated Lu's, resets the EQT entry and enters
the driver at Ixnn when power resumes.

6. An HP-supplied program called AU'l'OR will be scheduled. AUTOR sends
the time of power failure to all teletypes on the system (wh~ch
reenables all terminals). AUTOR is written in FORTRAN, with the
source program supplied to the user so that the program may easily
be modified to meet on-site requirements.

5-11. I/O CONTROLLER TIME-OUT

Each I/O controller may have a time-out clock to prevent indefinite I/O
suspension. Indefinite I/O suspension can occur when a program initiates
I/O and the device's controller fails to return a flag (possible
hardware malfunction or improper program encoding). Without the
controller time-out, the program that made the I/O call would remain
in I/O suspension indefinitely, awaiting the "operation done"
indication from the device's controller.

For privileged drivers, the time-out parameter must be long enough to
cover the period from I/O initiation to transfer completion.

EQT entry words 14 and 15 in the EQT entry for each I/O controller
function as a controller time-out clock. EQT entry word 15 is the
actual working clock. Before each I/O transfer is initiated, it is set
to a value m, where m is a negative number of 10 ms time intervals
stored in EQT entry word 14. If the controller does not interrupt
within the required time interval, it is to be considered as having
"timed out." The EQT 15 clock word for each controller can be
individually set by three methods:

1. The system inserts the contents of EQT entry word 14 into EQT entry
word 15 Defore a driver (initiation or completion section)
is entered. EQT entry word 14 can be preset to rn by entering (T=)
at generation time.

2. By use of the TO operator command (see Section III).

3. Sy driver.

5-12. PRIVILEGED INTERRUPT PROCESSING

Privileged interrupt processing provides access to specific elements
for more rapid operations than are possible in standard I/O processing.
I/O transfers are performed directly rather than going through the
Central Interrupt Control module and other standard system services.

Including a special I/O interface card is the means by which RTE allows (,·····,,
a class of privileged interrupts to be processed independently of system ~/
operation. The presence and location of the special I/O card is
determined at system generation time. Its actual hardware location is

0

i (\
' ,!
' ,
' ~/

stored in the word DUMMY in the Base Page Communication Area (or, if
the card is not preset, zero). See the RTE-IV on-Line Generator
Reference Manual for the exact specification procedure.

The special I/O card physically separates the higher priority privileged
interrupts from the regular system-controlled interrupts. When an
interrupt occurs, the card has its flag set which enables the card to,
hold off non-privileged, lower priority interrupts. This means that the
system does not operate with the interrupt system disabled, but in a
hold-off state. Furthermore, the privileged interrupts are always
enabled when RTE is running and can interrupt any process taking place.
See the RTE Operating System Driver Writing Manual for further details
on writing privileged drivers.

(-----
'

··---·

0

+--+ I I SECTION VI I
I 1---------------------1
I I MEMORY MANAGEMENT I
+--+

RTE uses the Dynamic Mapping System (OMS} of 21MX-series computers to
address memory configurations larger than 32K words. The user can
address up to 1024K words of physical memory using the DMS feature. This
is accomplished by translating memory addresses through o.:e of four
"memory maps". A memory map is defined as 32 hardware registers that
provide the interface between the 32K words of logical memory and
physical memory. All memory map addressing is done internally by the
system and is transparent to the user.

The following brief explanation of the addressing and mapping process
provides a general understanding of the overall operation of the system:
for a more detailed description of the Dynamic Mapping System, refer to
the appropriate 21MX Series Computer Reference Manual.

6-1. ADDRESSING

The basic addressing scheme of the computer uses a 15-bit number that
describes a location in memory numbered O to 32767 (see Figure 6-1). The
32768 (32K word) locations are grouped into 32 pages, with each page
containing 1024 (lK) words. DMS takes the 15-bit address and splits it
into two parts. The upper five bits (bits 10-14), become the logical
page number, an index pointing to one of the 32 registers within a
memory map (only one of the four maps can be enabled at a time). The
lower 10 bits point to a relative address (or offset} within the
destination page and do not require translation.

When the address is converted, the index is used to determine which of
the 32 registers of the currently enabled map has the 10-bit physical
page address. This page address is then concatenated to the relative
address to provide the ultimate 20-bit address in physical memory.

Insert Figure 6-1. R1'E-IV Address Scheme here

6-2. MEMORY MAPS

There are four memory maps managed by the system: the User Map for
describing current user programs, the System Map for describing the
system and System Available Memory (SAM), and two Dual Channel Port
Controller {DCPC} maps called Port A Map and Port B Map for defining
the memory space of the DCPC transfer.

At any one instant, only one memory map is enabled. This map defines
the 32K words of logical address space currently being used. Either the
System or User Map will be enabled. A DCPC transfer is handled under
the appropriate Port Ma9, and once intitiated, is essentially transparent
to the user.

SYSTEM MAP. This map is automatically enabled whenever an interrupt
occurs and is loaded by the system during system initialization. It is
changed only to map different driver partitions. It describes the
logical address space used for the operating system and its base page,
COMMON, Subsystem Global Area, System Driver Area, Table Areas I and II,
driver partition, and System Available
Memory.

USER MAP. Associated with each disc resident program is a unique set of
pages that describe the logical address space for the program. These
pages define the memory occupied by Table Area I, driver partition,
optional Table Area II and optional System Driver Area, COMMON (if the
program uses it}, the program's base page, and the program.

All memory resident programs use a common set of pages that define the
memory occupied by Table Area I, driver partition, COMMON, optional
Table Area II and System Driver Area, base page, the memory resident
library, and the memory resident program area.

Each time a new memory or disc resident program is dispatched, the
system reloads the User Map with the appropriate set of pages. The User
Map, therefore, provides the interface between logical memory and
physical memory.

PORT A MAP. DCPC transfers are a software assignable direct data path
between memory and a high speed peripheral device. This function is
provided by the 21MX series Dual Channel Port Controller (DCPC). There
are two DCPC channels, each of which may be assigned to operate with an
I/O device. The Port A Map is automatically enabled when a transfer on
DCPC channel 1 takes place.

The Port Map must be reloaded by the system each time the channel is
assigned for a new I/O call so that the data buffer is mapped in. Having

~~',,

l(cj

0 DIRECT
1 • INDIRECT

14 13 12 11 10 9 8 7 6 5 4 3 2 0

'---~,----' _____ -.,. ____ _J

LOGICAL PAGE
ADDRESS

.
PHYSICAL PAGE

ADDRESS

OFFSET WITHIN
DESTINATION PAGE

20-BIT MEMORY ADDRESS BUS

1s 14 13 12 11 10 9 ·a 1 s s 4 3 2 o

ONE WOAD OUT OF
ONE MILLION

I
I

I
I

I
I

~---3_

a--~

separate maps for DCPC facilitates multiprogramming, since DCPC may be
accessing one program's buffer while another program (in a different
area of physical memory) is using the CPU under the User Map (i.e., when
one program is using DCPC, another program can be executing).

PORT B MAP. This map is handled in the same way the Port A Map is
handled except that it applies to DCPC channel 2.

6-3. PHYSICAL MEMORY

At generation time, the user plans the physical memory allo ations as
illustrated in Figure 6-2 and then loads the system components and
drivers for the most efficient configuration. The user determines the
size of System Available Memory, (SAM), the number and size of each
partition, the size of COMMON, and the size and composition of the
resident library and memory resident program area.

The areas shown in Figure 6-2 are used as follows:

* System Base Page - contains system communication area and is used by
the system to define request parameters, I/O tables, scheduling lists,
pointers, operating parameters, memory bounds, etc. System links and
trap cells are also located on the system base page.

The base page links for memory resident library and memory resident
programs are only in the memory resident base page and are not
accessible by disc resident programs. The Table Area, SSGA and
driver links, and the system communication area are accessible to
all programs. Partition base pages, used for disc resident program
links, are described below with partitions. For all practical
purposes, the memory resident programs are in a single partition
separate (protected) from all other partitions.

+-----------------------------+
I User Partition M(l<M<64) I
I I , _____________________________ ,
1-----------------------------1
I I
I I
I • I
1-----------------------------1
I User Partition l(& user BP) I
1-----------------------------1
I SAM Extension I
I I
1-----------------------------1
I Memory Resident Programs I
I I
I I
1-----------------------------1
I Resident Library I
1-----------------------------1
I Memory Resident Base Page I
1-----------------------------1

f"""

_/

(~. i

c··

0

*

*

*

*

*

····--·---

I Driver Partition n
1-----------------------------
1
I
I •
1-----------------------------
1 Driver Partition 2
1-----------------------------
1 System Available Memory
1-----------------------------
1 Operating System

Table Area II

Syste~ Driver Area I
-----------------------------!

Background I
I

Real-Time I
I

Subsystem Global Area I
-----------------------------1

Driver PartitioA 1 I
1-----------------------------1
I Systeffi Available Memory I
1-----------------------------1
I Table Area I I
1-----------------------------1
I System Base Page I
1-----------------------------1

Figure 6-2. Physical Memory Allocations

\
\

\
COMMON

I
I

I

Table Area I - Contains the Equipment Table entries, Driver Mapping
Table, Device Reference Table, Interrupt Table, the Disc Track Map
Table, some system entry points and all Type 15 modules.

Driver Partition - An area set aside at generation time containing
one or more drivers. All driver partitions are the same length, and
only one is included in a 321'-word address space at any one point in
time. The minimu~ partition size is two pages but may be increased.

Systerr. Driver Area - An area for privileged drivers, large drivers,
or drivers that de their own mapping. The drivers that go into this
area are specified during the EQT definition phase of system
generation. ·rhe System Driver Area (SDA) is included in the logical
address space of both the system and Type 2 and 3 programs. It is
included in the memory resident program area (if requested) at
generation time.

System - Contains the absolute code of the Type 0 system modules
(e.g., RTIOC, SCHED, EXEC).

Memory Resident Library - Contains the reentrant or privileged

*

*

*

*

*

library routines (Type 6) that are used by the memory resident
programs, or which are force loaded at generation ti~e (Type 14). It
is accessible only by memory resident programs. All routines loaded
into the resident library also go into the relocatable library for
appending to disc resident programs that require them.

COM.MON - 'fhis area is divided into three subareas: The Subsystem
Global Area (SSGA), the Real-time COMM.ON area, and the Background
COMMON area. SSGA is used by some Hewlett-Packard software subsystems
for buffering and communications. The Real-time and Background
sub-areas (system COMMON) are reserved for user-written programs
that declare COMMON. All programs relocated during gener2tion time
that declare COMMON will reference this system COMMON. Progr~ms
relocated on-line with LOADR may choose to reference system COMMON
or use local COMMON.

Memory Resident Programs - This area contains all Type 1 programs
that were relocated during generation.

Table Area II - Contains the Memory Protect Fence Table, ID
segments, Keyword Table, ID Segment Extensions, Class Table, RN
Table, LU Switch Table, Memory Resident Map, and a number of entry
points for system pointers. This area has entry points that are
created by the generator and some that are def inea by Type 13
modules.

System Available Memory - This is a temporary storage area used by
the system for buffered and Class I/O reentrant I/O (refer to
Section IV), and parameter string passing.

Partition - This is an area set aside by the user for a disc
resident program to run. Each partition has its own base page that
describes the linkages for the program running in the partition. Up
to 64 partitions are allowed, within the constraints of available
physical memory.

All of the above areas are established during system generation.

6-4. LCGICAL MEMORY

Logical memory is the 32K word (maximum) address space described by the
currently enabled memory map. If the System Map is enabled, logical
memory includes the operating system and its base page, Table Areas I
and II, System Driver Area, driver partition and System Available Memory.
It also includes COMMON and Subsystem Global Area.

If the User Map is enabled for a disc resident program, logical memory
includes Table Area I, a driver partition, optional Table Area II,
optional System Driver Area, COMMON (if used), and the currently
executing program and its base page.

The logical memory of a memory resident program includes the memory

r-­
''--/

resident program area and base page, Table Area I, a driver partition, (.. -,.)
COMMON, optional Table Area II and System Driver Area. ~

Port Maps are used DCPC transfers and describe the logical memory

containing a data buffer. A Port map will be the same as either the
System Map or the map of the program being serviced, depending on type
of I/0 cal 1.

Figure 6-3 shows the four configurations of the 32K word logical address
space. The first configuration illustrates how this space appears under
control of the System ~ap. Note that there is always a total of 32 pages
to be divided up; however, the particular boundaries shown for the
various parts are examples only, and a user's system could be larger or
smaller.

The second configuration illustrates how the logical address space
appears under control of the User Map when a memory res~1ent program is
executing.

The third configuration illustrates how the logical address space
appears under control of the User Map when either an RT or Type 3 (BG)
disc resident program is executing.

The fourth configuration illustrates how the logical address space
space appears under control of the User Map when a Type 4 (BG) disc
resident programs is executing.

Many programs will not require a full 32K of space, and unneeded pages
will be READ/WRIT~ protected as illustrated in the User Map given in
Figure 6-3, configuration 3.

FULL PAGE)

0 Figure 6-3. R'rE-IV 32K word Logical Memory Configurations

c

6-5. BASE PAGE

The system area, memory resident program area and each disc resident
pro0ram have their own logical base pages, as follows:

a. The system base page contains the system communication area, system
links, driver links, SSGA links, table area links and trap cells for
interrupt processing.

b. The disc resident program base page contains the system communication
area, driver links, SSGA links, table area links and disc resident
program links.

c. The memory resident case page has the memory resident program links,
resident library links, System Communication area, table area links,
SSGA links, and driver links.

The Base Page Communications area (see Appendix B), driver links, SSGA
and table area links located in physical page 0 will be common to all
base pages. Base page structures are illustrated in in Figure 6-4.

The Base Page Fence (refer to the 21MX and 21MX E-series Operating and
Reference Manual) is automatically set by the system for all user base
pages so that the bottom portion of the base page will contain the user

(p- 7

0
\

~

l!.

A

A

A

A

DESCRIBED BY
SYSTEM MAP

SYSTEM

SAM EXTENSION

SAM

-"'

I
I
lw
I

I
lw
I
I
I
I
I

SYSTEM ',w
I

TAB.LE AREA II 'w :
I

SYSTEM DRIVER lw
AREA !

I BG COMMON 1------------1
RT COMMON I W 1----- -------- -,

SSGA I

DRIVER PARTITION

SAM 1-------------
TABLE AREA I

SYSTEM BASE PAGE

11 l
A .. PAGE BOUNDARIES
W • . WRITE PROTECT

MEMORY RESIDENT

MEMORY RESIDENT
PROGRAMS

/:,

MEMORY T
RESIDENT LIBRARY I W

/:,
I

I

TABLE AREA II lw
I

i

I
SYSTEM DRIVER lw

AREA I

A
I

BG COMMON f------- -------
RT COMMON 1---------------SSGA

A

DRIVER PARTITION

A
SAM 1-------------1

TABLE AREA I

A
MEMORY RESIDENT

BASE PAGE

(2)

0 • MEMORY PROTECT FENCE SETTINGS

THREE POSSIBLE CONFIGURATIONS DESCRIBED
BY USER MAP

0

0

0

~
0
2
)>

/:,

Jr t;,

0 Cll
m

o} ~
0 o A

A

A

RTANDBG
DISC RESIDENT

REAL-TIME (TYPE 2)
AND BACKGROUND (TYPE 31

DISC RESIDENT
PROGRAMS

TABLE AREA 11
T ,w
l
I

SYSTEM DRIVER lw
AREA I

I
BG COMMON

!------------
RT COMMON 1-------------

SSGA

DRIVER PARTITION

SAM 1-----------..,.
TABLE AREA I

DISC RESIDENT
BASE PAGE

(3)

0

o};; t;,

0 Vi
0 l:l ll

ll

A

LARGE BG
DISC RESIDENT

LARGE
BACKGROUND(TYPE4)

DISC RESIDENT
PROGRAMS

BG COMMON
1---- ---:-- -- - __ ..,

RT COMMON f-------------i
SSGA

DRIVER PARTITION

SAM
1-- - -- --------

TABLE AREA I

DISC RESIDENT
r\SE PAGE

"----
(4)

Figur~RTE-IV 32K-WORD LOGICAL MEMORY CONFIGURATIONS

6.-b .

~1 i
0 0

~ (~-')
\c. / \

/
I

l·

-

o?--. I .
' .

System's physical
base page-:::. .
~page-0)

_system
conununiC-1 ti on

--
System Links.

I/O Trap Cells

!.ogical .}!ser
lfas~ page

_system
:Conununication

-,-
I _vser
I ~.ase page

,-- -=

I

"[3 .. ?
• . ~L I "d-J'V'

•

user J?_rogram' s
pfrysical base page
.t!- ?' :;;..

Copy of _the User Map
(32 Words)

user
=base page - -,-- -

-
,- ·.;-;t··,~ ..•

I

program links.

6-6. COMMON AREAS

The real-time and background COMMON, along with Subsystem Global Area
occupy a contiguous area in memory and are treated as a single group for
rr.appi ng rur poses (refer to Figure 6-2) • The use of COMMON is optional on
a program oasis: that is, any program may use real-time COMMON,
background COMMON or no COMMON. If the program declares COMMON and the
user chooses not tQ use local COMMON, both COMMON areas an, the
Subsystem Global Area will be included in the User Map. If ~he Type 4
program does not use COM~ON it is not included in the User Map, thereby
possibly (if SSGA, COMMON is not empty) providing the user a larger
program area in the 32K of logical address space.

REAL-TIME AND BACKGROUND COMMON. If a program declares at least one
word of COMMON, the use of real-time or background COMMON is selected
by program type {at generation) or parameters with the on-line loader.
Program types are summarized in Appendix E. Note that the memory
protect fence protects areas below the selected COMMON.

These system COMMON areas are not to be confused with the local COMMON
area that may be specified for programs loaded on-line. The system
COMMON areas are sharable oy programs operating in different partitions,
whereas the local COMMON area is appended to the program (i.e., it will
be in its partition) and is accessible only to that program, its
subroutines and segments.

SUBSYSTEM GLOBAL AREA. The Subsystem Global Area consists of all Type
30 modules input to the generator. Accessed by entry point {using EXT
statements) rather than COMMON declarations, SSGA provides multiple
communication and buffer areas for Hewlett-Packard subsystems. SSGA
access is authorized by program type at generation or through special
parameters during on-line loading. Programs authorized for SSGA access
have the COMMON area included in their maps and have the memory protect
fence set below SSGA.

6-7. MEMORY PROTECTION

Memory protection between disc resident program partitions and between
disc and memory resident programs is provided by the Dynamic Map~ing
System. Protection between the program and the. operating system is
handled by memory protect. A program cannot access a page not included
in its loqical memory, either directly or through a DMA transfer. Since
many programs do not use all of the possible 32K word logical area,
unused logical pages above the program are READ/WRITE protected: it is
possible for a user to read from system logical memory via cross-map
reads but the system is write protected.

A different form of protection is required for the driver partition,
Table Area I, and {o~tionally) System Driver Area, Table Area II, and
COMMON. The memory protect fence provides this protection by preventing
stores and jumps to locations below a specified address. All possible
fence positions are illustrated in Figure 6-3.

f~~,

_~

0

0

The memory protect fence applies to the logical address space where
addresses are compared to the fence before translation. If a disc
resident program does not use any of the COMMON areas, the memory
protect fence is set at the !Jot tom of the pr0<.Jram area. Similarly, for a
memory resident program not using COMMON, the memory protect fence is
set at the base of the entire memory resident area.

For programs using COMMON, all of logical memory including COMMON is
mapped and the fence is set at one of three possible locations,
depending on the portion of COMMON being used. A hierarchy of protection
is thereby established within COMMON due to their physical locations.
Background COMMON is the least protected (any program using any common
can modify it) and SSGA is the most protected (only programs authorized
for SSGA access can modify it). Figure 6-5 expands the COMMON area and
shows these three fence settings as a, b, and c respectively.

Figure 6-5. Memory Protect Fence Locations for Programs using COMMON

6-8. PARTITIONS

Partitions are blocks of physical memory that are reserved for disc
resident programs and drivers. Program partitions are defined during
system generation and ordinarily are not changed. However the partitions
may be redefined during the reconfiguration process at system boot-up
(see Section XII).

The number of partitions depends on the amount of available physical
memory. Partition types can be specified as a mixture of real-time and
background, all real-time, or all background. A program can be assigned
at load time to run in any partition large enough to accommodate it.
Several programs can be assigned to the same partition, but only one
program can run in that partition at a time. If a program is not
assigned to a partition, then by default, real-time programs will run
in real-time partitions, background programs in background partitions,
and Efv'.A programs will run in Mother partitions. If only one type of
partition is defined, all programs will run in that type partition.

6-10. PA~TITION LISTS

The system generator links all partitions intc one of three free lists:
BG, RT or mother partitions. During system initialization,if one of the
free lists is empty, it is substituted by one of the other non-empty
lists. F'or example, if no H'l' partitions were generated into a system,
R'l' prograil!s will be dispatched in BG partitions by default.

,-

1-- - -· - - P,AGE BOUNDARY

©
BG COMMON

HIGHER PHYSICAL

@
RT COMMON MEMORY

©
·SSGA

Page Boundary

/~ .' ...

Figur:f ~· M:mory Protect Fence Locations for Programs
f using Common. ·

11

0

6-11. PAI\'rl'l'ION ASS IGNME~'l' ANJ:: RESERVATION

Disc resident ~rograms may be assigned to specific partitions durin9
system generation, memory reconfiguration at system boot-up, or during
on-line program relocation. A program may be unassigned or reassigned
via an AS operator command.

A progra~ assigned to a specific partition may only be dispatched to
that partition. Program contention for a partition may be minimized by
careful assigninent of programs to partiticns, especially if the
partitions are reserved. A reserved partition may be used only to
dispatch programs that are assigned to the partition. Pr~rarns not
assigne~ to the reserved partitiori will not be able to use it as a
default, even if no other partitions are available. A partition's
reserved status may be removed by the UR operator command.

A disc resident program may be assigned to any partition large enough
to accomodate it--regardless of type. For example, an RT program may
be assigned to a BG partition even though both RT and BG partitions are
available. Although this type of assignment is not recommended because
of potential partition contention, it may be necessary when there are no
partitions of sufficient size within the same partition type as the
program.

6-12. MOTHER PARTITIONS

Mother partitions are large partitions that may be defined for executing
large programs or E~A programs. When a mother partition is not in use,
the memory may be used by programs executing in the subpartitions
chained to the mother (see "Subpartitions" below). EMA programs that are
not assigned to a partition use the largest mother partition by default.
The general structure and organization of a mother partition and its
subpartitions is illustrated in Figure 6-6.

When an E)'JA program needs to run in a mother partition or when an RT or
BG program is assignee to a mother partition, more handling is involved
than is the case with RT or BG partitions. If a mother partition is
available in the free list, each subpartition is checked. If all
subpartitions are either free or occupied by swappable programs, the
subpartitions are marked as being used for a mother partition and all
the procJrams in the subpartitions are swapped out. The subpartitions are
then removed from all partition free lists. Note that the swapped-out
programs may go oack into any other partition large enough to accept
them.

It is now apparent that when a mother partition is required and its
suopartitions are in use, there may be a delay before the program can be
dispatchec in the mother partition. A subpartition cannot be made
availaole oy swappin':J if any one of the subparti tions has a memory-locked
program, contains a program that is performing I/O in its own area, or
contains a scheduled program of higher priority. There may be additional
delay whE:·n the mother partition is checked (if not assigned to a
specific one) or until the program in the subpartition becomes swappable.

If a mother partition is needed to dispatch a program and the partition
is already allocated, the current occupant must be swapped out if the

occupant's priority and status permit it. If the progrant to be swapped
out is an EMA program, the program's code and EMA data must both be
swapped. Th,e EMA area is swapped out in large blocks equal in size to
the maximum logical address space in the User Map (up to a. maximum of
281< words). Each block is mapped and written to the swap tracks on the
disc until all of the EMA area is swapped. Because of the many disc
accesses that may be needec to swap out an EMA program, caution should
be exercised when assigning ANY program to a mother partition.

6-13. SUBPARTITIONS

Subpartitioris ate 'not available for dispatching programs when the mother
partition is in use (chain mode is in effect) by an active program. When
a program in a mother partition terminates normally or is aborted, the
subpartitions are released from chain mode and again become available.
The mother partition occupant is swapped only under the following
conditions:

1. The occupant is swappable and another program needs the same
mother partition.

2. The occupant is dormant (terminated with the save-resources option,
operator-suspended or serially reuasable), and a subpartition is
needed for another program.

3. A higher-priority program is assigned to a subpartition and the
mother partition occupant is in a swappable state.

When an RT or BG program is scheduled and is not assigned to a
partition, a search is made for a partition of the same type that is
large enough to accomodate the program. If none can be found in the free
list, dormant list, nor in the allocated list (or it contains
non-swappable programs), then the dormant mother partition list will be
searched for one with a subpartition of the correct type and size. If a
suitable subpartition can be found, the dormant program in the mother
partition will be swapped out.

6-14. EXTENDED MEMORY AREA

The Extended Memory Area (EMA) is a large area of memory within a
partition, limited only by the size of the physical memory. An EMA can
extend well beyond a program's maximum logical addressable space. A
section of the EMA must be included within the program's logical address
space before data within that section can be addressed. Because an EMA
area is in a program's partition, i.t is not accessible by other programs
(EMA is not shared between programs). The maximum number of pages of the
EMA that can be included in this segment is called the mapping segment
U'1SEG) •

The philosophy behind the mapping segment function is quite similar to
page faulting in a virtual memory system. If an EMA element needs to be
accessed and is not within the currently mapped mapping segment, a fault
occurs and the appropriate segment of the EMA containing the element is
mapped in the program's logical address space. This mapping is very fast
since no disc swaps ~re required. The entire EMA is divided into

(-If

C\
I

/

0

0

c\

sections of the length of MSEG. They are numbered sequentially starting
frorr: u. Yappin<J se]ments are then referred to by using these ma9ping
seg::nent nu:ncers. \;hen a pro0rarn is first dispatched, none of the EMA is
mapped in· the user's loJical address space until a call is made to
• EtA:'\P' • EMIO or r·wr-..p.

System l iora.ry routini?s . E~'.AP and . L1HO cun be used to determine the
location of the element within the EMA to oe accessed and to map the
appropriate mapping segment. The .EMAP routine is used to map the
standard mapping segment if necessary. See the .r~AP and .EMIO subroutine
descriptions at the end of this section for more detailed information.

'l'he • E:·H O routine is used to access a buffer with in the '~!V'tA and also
ensure that the entire buffer will be included in the logical address
at one time. This buffer must be of the same length or smaller than the
mapping segment size. The EMAST routine in the system library may be
used to determine the standard MSEG size and EMA size for default EMA •

• EMIO checks to see if the upper and lower bounds of the buffer are
coffipletely included within a standard mapping segment. If so,
.EMIO functions like .EMAP and maps the appropriate MSEG into the
program's logical address space. If the bounds of this buffer do not fit
completely within a standard ~apping segment, .EMIO will then map in the
necessary pages to include the entire buffer. A flag is set to indicate
that a standard mapping segment is not in the current MSEG. The constraint
in using .EMIO, as opposed to .EMAP, is that for the next EMA access the
MSEG has to be re-mapped.

The MMAP routine, with the help of EMAST, can be used independently to
do Yl.SEG mapping. This may be needed if the array handling procedure for
a given application differs from the array handling tools provided by
.EMAP and .muo.

Figure 6-7 illustrates the structure of EMA's and MSEG's.

FULL PAGE ILLUSTRATION

Insert Figure 6-7. EMA and MSEG Structure here.

One extra page above the MSEG size is always mapped. This allows for
overflow of elements containing more than one word per element, and for
overflow of records for the formatter beyond the last page of the MSEG.

Only one extended memory area is allowed to be defined per program. An
E:·1A is declared in an .1\ssembly Language program by using the pseudo
instruction:

label Et·J\ rnl,m2

where label is the EMA label and must be defined, ml is the EMA size
in pages, and m2 is the mapping segment size in pages. The EMA size can
vary from O to 1024 pages. The MSEG size must be less than 32 pages.
The default case on either EMA size, MSEG size or both, can be taken

!(
I .

~ ~
.,., i.. ~-,

I

·-··· · .. i ··--~ ... --·-·- . .,,.
I

\·
\

·\
:\:

' •
;--' . :.t£Mlt~___,.----L

·• t ·: · • •·•·•• .. H~IEG #:-.:J.. \.
; I ~

ti.{) a.·· · A-j.i::, · · \
:\\ .,

f}.~I!:-:,;. f.(.piJ - . .
' \''

... ~ ', - ,.. _,. \ .
\ •I

\

' .

C l
)

.l .• ~- -~

-; . . :·. .;.. ·-
. I

!

H~~~;_·--~r.~.i '7 . I ·;·

. \ ! : :. i . c -t·· ·; ..

:· ,.... -
-~ . -~ ~ ; .• .!.... - : i . .£~1

~-- . :· .. ~ .. -~--- ~ ~~-~.~v
... _ __ ,.. · -

I -··-··· -
I

... ? ..,. .••

'. ~ ~ ...

....

.. . . - ... ~ ...

. ··-. '

\I/. .l ..

. I

.. . .
i •

r •
' . ; .
: .
I

'"i -· '

; ···-~-.:_-~ --~ -··· .Lo,1eAL
• • I I

. P~l>$f{~"M~ ~~~-
! · A~Ei'r·-~ .~~~
! i •. . I .. 1 ..
; i f I ' l'
~ 00 :-· -~ ,., -·t·· Oo :HO~-- J. • ..

: • I ,
- i··-. ':',... ... -·-f ... -·-· .. ~. : .. i

I .

i··· ····~· --:. ... -~ ' ' . , . ..
• I : I
: ., .. ' . ; ..

46Hs·J.Jd. ; ~:
/;°/j/}~ {JS£& k~ . ci.Y9.~l-ff.p.

I

1~19,

' ··;·~

.:·~ ';. ;.f,t·~· '

0

by specifying O as their values. If a default is taken on the MSEG Size,
its size is determined at load time as the program's maximum logical
address space (the program size-1). The EMA size .is determined at
the time of the first rlisp.:itch as the rr0gram's partitions size minus
pro(3raa1 size •• Et .. 11\. or !I.SEC size can be modified on-line only if the
default was taken.

An EMA may he further subdivided into more than one data array. This is
accomplished through use of optional offset parameters supplied in.
asse1nbly language programs to the .EMAP and .EMIO routines. The offset is
defined as the number of words from the start of the Extended Memory Area
to the start of the particular array, and consists of a positive value
that is 20 bits wide and is contained in two successive memory locations.
The 9eneral memory structure for multiple data arrays is illustrated in
Fi,~ure 6~

i

Prog ratn
Partition

v

EMA
I
I
I
I
I
I
I
I
I
v

-+----------------------------+----
a I I A
s I I R
E I I R
G I I A
3 I I Y

-I - - - - - - - - - - - - - I 2
~1 1---s I I A ...
E I I R I
G I I R I
2 I I A Offset 2

- - -I - - - - - - - - - - - - - I Y I
M I I 1 I
s 1----------------------------1----------- I
E I I A ... I
G I I R I I
1 I I R I I

-I - - - - - - - - - - - - - I A Offset 1 I
M I I Y I I
s
E
G
0

User

Program

I O I I
I I I
I <-- I I

-, I v v , ___ , ________________ _
I I
I -- Page Boundary
I
I
I
I
I
I
I

+----------------------------+
c Figure Gf. Multiple Data Arrays Organization

~-11

Lo cat ions with in an E1'il\ can not be accessed using the EMA labe 1 with an
offset, nor can E(v\A labels be referenced indirectly. External routines
and segments can use EMA by dee 1 a ring EM2\ as on external. F'or fur th er
information on using EflA as a pseudo-instruction, sec the n•n: IV
Assembler Reference Manual.

Since EMA's can extend well beyond a program's 32K logical address
space, they should oe managed by defining several dimensions over them.
The .EMAP or .EMIO routnes ca~ then be used to resolve the address of a
specified element by using subscripts for each dimension, thus making
the array addressing and mapping procedures transparent to the user.

Standard FOH'TRAN I/O and array accesses using subscripts are hand led
without any special user action. In FORTRAN, EMA's are used like any
other array. Hefer to the RTE l''ORTRAN IV Reference Manual for further
information.

A segmented program may use EMA. This allows many separate operations to
be performed on the same EMA; e.g., one segment reads the data, a second
processes the data, and a third saves the results.

6-14. MEMORY MANAGEMEiT SUBROUTINES

Four subroutines implement the Extended Memory Area (EMA)
capability in the RTE-IV Operating System. These are: .CMAP, .EMIO,
MNAP, and EMAST. Although the software versions
of these subroutines are actually part of the
system library described in Section of this manual, they are
described here because they are an iEfegral part of memory management.

Microcoded versions of .EMAP, .EMIO, and MMAP exist for use on the
21MX-E series computer. The microcoded version of .EMAP operates
slightly differently than the software version, as described in
the following discussion of .. EMAP.

6-15 .. EMAP SUBROUTINE (Resolves Array Element Addresses)

The .EMAP subroutine resolves an address for an element in both E~A
and non-EfvJA arrays •• E~:,AP returns the address of the referenced
element in the current logical address space.

The software version of .EMAP calls on MMAP (if necessary}
to map the appropriate mapping segment into the logical address
space of the user program. The microcoded version of .EMAP always
rnaps two pages into the logical address space of the program, the
first of which contains the referenced element.

+-------------~---+
I CAUTION I
I I

·"--,,,,
.~~

I The microcoded version of .1::.;-rn.p maps in the page containing the I (·- ..
I e lerr.ent and the following page (if the fol lowing page is in the EMA I j

I area). Therefore a call to the firmware version of .EMAP will not I
I ensure that an entire HSEG is mapped •• Erno can be used to ensure I

()

I this if necessary.
+---+

The calling sequence is:

EXT • EMAP
JSB .EMAP
DEF RTN
DEF AFRAY
DEF TABLE
DEF' An
DEF An-1

DEF A2
DEF Al

address of the start of the array
address of table containing array parameters
address of nth subscript value
address of (n-1) subscript value

address of 2nd subscript value
address of 1st subscript value

R'I'N error return
normal return

ERROP IrnTURN On an error return, the A-register equals 15 (ASCII) and
and the B-register equals EM (ASCII). If the relocatable library
subroutine ERRO is called to handle the error, the following message
will be displayed on the console:

name 15-E~ @ address

where na:ne is the name of the program executing when the error occurred,
and address is the address from which ERRO was called •

• EMAP makes an error return under any of the following conditions:

* one of the subscript values is less than the lower bound
of its dimension.

*

*

*

*

*

*

the size of a dimension d(i) is negative.

the number of words per element is specified as negative.

the double precision offset is specified as negative.

the number of dimensions is specified as negative.

the elexent address for an EMA variable does not fall within
the Extended Meffiory Area bounds.

for a non-E~A array, the displacement is larger than 32767
words.

NORMAL RETURN On a normal return, the B-register contains the logical
address of the element referenced. The A-register is meaningless.

ARRAY is the starting address of the array in which the element address
is to be resolved. If EMA is dee lared in the cal 1 ing program and the
element address specified is greater than or equal to the logical start

address of E~A, the array is assumed to be an EMA array. In this case,
the start address actually used by • E~iAP is the logical start address
of EMA.

TABLE is a table of array parameters containing the number of
dimensions in the array; the negative of the lower bounds for every
dimension: the number of elements in every dimension (upper bound,
minus lower bound, plus 1): and the number of words per element.

For EMA arrays only, a two-word offset value is required at the end of
the table. The use of this offset enables several arrays to be defined
in the same EMA by allowing the array origin to be higher than the
logical start of the EMA. The offset is a double precision i~teger
value with the low 16 bits (bits 15-0) in offset word 1 and the high
16 bits (bits 31-16) in word 2. This value must be positive.

The lower bound must be bet~een -32767 and +32767.

The number of words per element must be between 1 and 1024.

The content and structure of TABLE is as follows:

where:

Number of Dimensions
-L (n)
d(n-1)
-L (n-1)
d (n-2)

•

-1(2)
d(l)
-L(l)
number of words per element
offset word 1 (bits 15-0)
offset word 2 (bits 31-16)

(used for EMA only)
(used for EMA only)

L(i) is the low~r bound of the ith dimension.

d(i) is the number of elements in the ith dimension.

The .EMAP subroutine assumes the array is stored in column-major order
(the left subscript varies the quickest).

6-16 •• EMIO SUBROUTINE (EMA I/O)

.EMIO is a subroutine used only in an EMA environment to ensure that a
buffer to be accessed is entirely within the logical address space of
the program. It will call MMAP (if appropriate) to alter the logical
address space to contain the buffer, or if this is impossible it will
return with an error •

• EMIO first checks whether the buffer fits in a standard mapping
segment. If so, the standard mapping segment is mapped into the

0

H
1'

I

I

I·
I

C'
J

I

0

logical address space and .~MIO returns the loaical address of the
start of the buffer. If the buffer does not fall within a standard
~a~ping segment, then .E~IO ~lters the mapping segment boundaries to
contain the buffer.

The number of pages ~apped in this special mapping segment is normally
equal to the number of pages in the standard mapping segment. When this
mapping segment starts within an MSEG size from the end of the EMA, all
those pages up to the end of the EMA are mapped. The rest of the pages
are read-write protected.

The buffer length plu~ the offset between the start of the buffer and
its page boundary must be less than or equal to the mapping segment
size. 'l'O ensure th is, it is recomme'nded that the buffer length be less
than or equal to (MSEG size - 1) pages •

• EMIO maps the special mapping segment if necessary and returns with
the logical address of the start of the buffer.

The calling sequence is:

EXT .EMIO
JSB • El.'1!0
DCF RTN
DEF' BUFL
DEF 'rABLE
DEF An
DEF An-1

DEF ,\2
DL:F Al

R'l'N error return
normal return

where:

address for error-return
number of words in the buffer
table containing array parameters
subscript value for nth dimension
sunscript value for (n-l)st dimension

subscript value for 2nd dimension
subscript value for 1st dimension

TABLC is as defined in .EMAP description

ER.HOR RETURN .EMIO rnakes an error return at location RTN with the
A-register containing 16 (ASCII) and the B-register containing EM
ASCII). If the relocatable subroutine ERRO is called to handle the
err~r, the following message is displayed on the console:

name 16-EM @ address

where name is the name of the program and address is the location
from which EPRG was called •

• EMIO makes an error return under any of the following conditions:

C~.11 1. One of the subscript values is less than the lower bound of its
.· dimension.

2. The size of a dimension d (i) is negative.

3. The number of words per element is negative.

4. The double precision offset word is negative.

5. The number of dimensions is negative.

6. The buffer length is negative.

7. An EMA is not declared in the calling program.

8. The buffer length plus the page offset of the start of tne buffer
is greater than the mapping segment size.

9. The entire buffer does not fall within EMA bounds.

NORMAL RETURN When .EMIO makes a normal return, the B-register
contains the logical address of the element. The contents of the
A-register are meaningless.

6-17. MMAP SUBROUTINE (Maps Physical Memory Into Logical Memory)

MMAP is a subroutine that maps .a sequence of physical pages into the
mapping segment area of the logical address space of a program. It
is callable from both Assembly Language and FORTRAN programs.

The Assembly Language calling sequence is:

EX'f ~·!MAP

JSB MMAP
DEF RTN
DEP !PCS Page displacement from the start of EMA to the

start of the segment to be mapped.

_DEF NPGS Number of pages to be mapped.
RTN return point

The RTE FORTRAN IV callling sequence is:

CALL MMAP(IPGS,NPGS)

Upon return:

A-register = 0 if normal return
= -1 if an error occurred.

MMAP returns an error under any of the following conditions:

1. IPGS or NPGS is negative.

2. NPGS is greater than MSEG size.

3. All NPGS to be mapped do not fall within EMA bounds.

4. EMA was not declared in the calling program.

0

0

0

(\

0

c

5. IPGS is greater than or equal to EMA size.

If NPGS is less than the standard mapping segment size, the number of
pages actually mapped w il 1 normally oe equal to the standard mapping
segment size. The number of pages mapped will be less than this if
the starting page of the segment to be mapped lies within an MSEG
size of the end of LMA. In this case, the number of pages mapped will
include all pages from the starting page to the end of EMA.

MMAP maps one more page than the size of the mapping segment if the
end of the EMA is not reached. This is done to prevent dynamic mapping
system (OMS) errors in case a multiple word element or a buffer for
an I/O transfer crosses the end of the last mapping segment page.

6-lR. EMAST SUBROUTINE (Returns Information on E~A)

EMAST is a subroutine that returns information about the extended
memory area (EMA) of the calling program. It is callable from Assembly
Language and FOR'I' RAN programs.

The Assembly Language calling sequence is:

EXT E:,•lAST
JS.!3 E1·1AS'l'
DEF RTN
DEF NEMA (returned) Total size of EMA
DEF NMSEG (returned} Total size of mapping segment (MSEG)
DEF IMSEG (returned) Starting logical page MSEG

RTN return point

The R'rE POR'l'RAN IV calling sequence is:

CALL EMAST(NBMA,N~SEG,IMSEG).

Upon return:

A-register = O if normal return
= -1 if error occurred

An error return is made if an EMA is not defined in the calling program •

. 1

' c

0

C\
i

,/

I:
~ l
i~
14
I~
I

0

+--~----------+
I I SECTION VII I
I 1---------------------1
I I RELOCATING LOADER I
+---+

7-1. RTE RELOCATING LOADER

The Relocating Loader (LOADR) reads relocatable code from any input
device or FMP file, and produces an absolute load module that is ready
for execution. The loader automatically sets up the lin~,ge between the
program and any required library files. That is, the user does not have
to specify library searches during the load process. The program may
be relocated as a background disc resident program, foreground disc
disc resident program or optionally have a debug routine appended.

In addition to its linking functions, the LOADR's command parameter
options may also be used to list program names and blank ID segments,
purge permanent programs from the system and add or replace permanent
programs.

The Relocating Loader has the following features:

* Can be operated under control of the File Manager in batch mode.

* Is swappable and can be operated in either real-time or background
disc-resident areas.

* Allows programs declaring COMMON to reference either a system COMMON
area (shared with other programs) or a local COMMON area (not shared
with other programs).

*

*

*

*

*

*

*

*

Can relocate programs from relocatable files (Type 5 files).

Can scan and relocate from user library files.

Allows a program to be permanently added deleted from the system.
Only the loader can be used to purge a permanent program. The
the OF, name, B command will not remove a permanent program from
the system.

Can read LOADR commands from a command file to control the load
process.
Allows temporary loads into either the real-time or background area
for execution with an optional debug routine.

Allows a program to reference absolute and code replacement type ENT
macros.

Uses system area disc tracks left vacant by deleted programs.

Uses a short ID segment when loading a basckground program segment
(when available: see "On-Line Modification below).

1-1

7-2. RU,LOADR COM.MAND OPTIONS

Parameter options are available in the RU,LOADR statement that permit
user specification of the following items:

1. Command file name.

2. File or the logical unit number of the input device for relocatable
code.

3. Logical unit number of the list device.

4. An operation code that allows Subsystem Global Area (SSGA) flag
access together with COM.MON type and program type.

5. A program format code that includes temporary loads with DBUGR
features.

6. Listing characteristics.

A detailed description of the RU,LOADR statement is given under Loader
operation in this section.

At load time, the user need not know the actual address of the
partition in which the program will run because each partition appears
to be within the first 32K words of memory. The location at which a
program area appears to begin is a logical address, and the program is
relocated with respect to this logical address. Logical memory address
space configurations are illustrated in Section IV, Figure • It is
not necessary to declare the partition number that a program-will
execute in, since a program will run in any partition large enough to
accomodate it.

7-3. PROGRAM RELOCATION

During loading, programs are relocated to start at the beginning of the
disc-resident program area of logical memory. If COMMON is declared, the
program will be preceded by the COMMON area. The logical address of the
program location always begins at a page boundary. The first two words
of the program location are allocated for saving the contents of the
X and Y registers whenever the program is suspended. Once relocated, the
program is linked to external references such as EXEC or the Relocatable
Library.

Any program segments will overlay the memory area immediately following
the main program and its subroutines.

;(-'

~/'

'I'he loader stores the absolute version of the program, its subroutines
and linkages on a disc track or a group of contiguous disc tracks. It
then assigns the disc tracks to the system (that is, they are not
available as scratch or assigned to the program. The program, together
with its subroutines. and its largest segmen.t, may be as large as the (·.
largest partition of the same type. If a program is assigned to a ' .. >

partition, it must not be larger than the partition or an Ll7 error

1-;t

0

c

results (see Loader Error Messages). COMMON may be allocated in one of
several areas according to the needs of the programmer (see the
optional parameter list for the RU,LOADR request).

7-4. ON-LINE MOCIFICATION

The operator can use the loader to permanently modify the set of disc
resident programs previously loaded during generation. The loader adds
new disc-resident real-time or background programs, and also replaces
disc-resident programs with updated versions having the same name. A
program to be replaced must have all the following conaitions present:

* Must be dormant

* Not currently occupying a partition

* Not in the time list

* Have a zero point of suspension.

'l'he OF,xxxxx,8 operator command deletes disc-resident programs or
segments that were loaded temporarily into the system by the loader.
The OF command cannot delete programs or segments that were permanently
added on-line using the loader, or stored during generation using the
On-Line Generator (RT4GN).

The On-Line Generator stores disc-resident programs on disc in an
absolute, packed format. Each main program is identified and located
by a 33-word ID segment. The ID segments are stored in the ID segment
area of the system disc area and brought into main memory when the
system is started up~ For disc-resident programs, the program's disc
location as well as its main memory and base page addresses are kept
in the ID segment. When a main program and segments are loaded, the
segments are identified and located by a nine-word short ID segment.
When a main program declares an External Memory Area, three-word ID
extension is allocated. See Appendix~ for the ID segment and
extension format.

R'l'4GN can create a number of blank 33-word and 9-wora ID segments so
that the loader can later add new programs and segments to the permanent
system. It can also create blank ID extensions. The addition or
replacement of a program involves the conversion of relocatable programs
into an absolute unit, finding space on the disc to store it, and
recording information in the ID segment.

The loader always attempts to use the short ID segment for identifying
a program segment. However, if a short ID segment is not available, a
standard 33-word ID segment is used.

A program declaring an EMA cannot be loaded if an ID extension does not
exist for the program.

When replacing a program, the new program may overlay the old program's
disc space only if the length of the new program (plus base page
linkages) does not exceed the disc space formerly occupied by the
previous program. A track or group of tracks is allocated for program

~-3

storage when adding a program or if space requirements of a replacement
program exceed those of the old. These newly allocated tracks are
software-protected but not hardware-protected. Memory resident programs
can neither be added nor replaced in the system.

When performing an on-line modification, the disc hardware protect must
be physically disabled prior to the loading (and then enabled
afterwards) unless the protection is always kept disabled. RTE provides
additional software protection for any tracks containing system programs
or user programs.

7-5. SEGMENTED PROGRAMS

Segmented modules can be added and replaced in any order provided that
the main program is always entered first. Permanent replacement of a
permanent program or main segment programs will not necessarily result
in the main and segments being stored on contiguous tracks.

When replacing segmented modules that were incorporated into the system
at generation time, the operator must either replace every segment with
a new segment having the same name, or else remove the original segment
permanently from the system.

Note that a main and all its segments must be relocated at the same
time (see "Loading Segmented Programs" later in this section).

7-6. ADDING NEW PROGRAMS

A new program to be added to the system is stored on a complete disc
track or several contiguous tracks. A blank ID segment is allocated to
record the program's memory and disc boundaries, name, type, priority,
assigned partition, and time values. The loader attempts to use
available disc space in the system before allocating new full tracks.
If new tracks must be allocated, they are assigned to the system and are
software-protected.

7-7. PROGRAM REPLACEMENT

When replacing one program with another, the following sequence of
events take place as appropriate to the current conditions:

1. The new program is first generated onto scratch disc tracks.

2. The new program will use the same ID segment as the old program but
will only use the same disc space if the length of the code and
base page does not exceed the old program size.

3. If the new program cannot be fitted into the disc area of the
replaced program, the loader then looks for another area of
appropriate size if one was previously freed by the user through
deleting a program incorporated during generation. In this case,
the deleted program's ID segment had its name blanked but its disc·
space was retained. That disc space is given to the new program.

7-'I

c!

0

(~

0

0

4. If neither condition exists (items 2 and 3), the scratch tracks on
which the new pr0<Jram was generated become system protected and the
old ID segment is retained.

7-8. ADDITION OR REPLACEMENT LIMITATIONS

Several limitations may prohibit the final addition or replacement of
disc-resident programs:

1. System or reverse COMMON is requested but the program's COMMON
length exceeds that of the COMMON area.

2. Local COMMON is requested and COMMON is not declared by the first
relocatable module encountered by the loader, even though the
module is a dummy module that contains no executable code.

3. 'I'he base page linkages exceed the corresponding linkage are for ,
disc-resident programs established by the system during generation.

4. The length of the absolute program unit exceeds the area available.

5. Disc space is not available to store the program.

6. A olank ID segment is not available for adding a program (program
previously loaded can be deleted to create a blank ID segment) or
its segments.

7. An ID extension is not available for adding a program with an EMA.

7-9. PROGRAi.\1 DELETION

A temporary program is deleted from the system with the OF,name,8
command. A permanent program (i.e., a program loaded during generation,
or on-line with the loader as a permanent addition or replacement load)
is deleted with the loader. When using the loader to delete a permanent
program, the opcode parameter is set to PU, which blanks the program's
ID segment and makes it available for loading another program.

The tracks containing the program are released, unless they are system
tracks. If the program had been saved through the File Manager on FMP
tracks, the rracks are not released to the system but remain as FMP
tracks.

+--+
I I
I NOTE I
I I
I Only the LOADR may perform permanent loads or deletes. I
I Copies of LOADR may peform temporary loads but will be I
I aborted with an I006 error return if the attempt is I
I made to perform permanent loads or purges. I
I I
+--+

7-10. COMMON ALLOCATIOt~S

Three options can be specified when allocating a COMMON area for a
program:

SYSTEM COMMON. This implies a background program with COMMON in the
background system COMMON area, or a real-time program with COMMON in
the real-time COMMON area. System COMMON is established when the system
is generated.

LOCAL COMMON. The local COMMON area for a program is established at
the beginning of the background program's area. The COMMON area will be
swapped together with the program. It is necessary for the ftrst COMMON
allocation to be the largest declared. RTE FORTRAN IV named COMMON is
handled the same as local COMMON.

REVERSE COMMON. This implies a background program with its COMMON in
the real-time COMMON area. Conversely, a real-time program can
reference and use the background system COMMON area. Reverse COMMON is
established when the system is generated. This allows background and
real-time programs to share the same COMMON.

6-11. LOADER OPERATION

The loader is scheduled the loader for execution with the RU or ON
operator command in the format

RU,LOADR,command[,input[,list(,opcode[,format[,partition [,size]]]]]]

where:

command

input

list

The command file structure must be used for loads when
more than one relocatable file is required. The <command>
parameter specifies:

1. A command file <namr>.

2. An interactive input device. Commands may be entered from
a TTY type device. When commands are entered interactively
on such a device, a /LOADR: prompt is displaced when the
loader is ready for a new command.

3. A non-interactive input device, such as a tape cassette,
froffi which commands may be entered. No prompt is issued by
the loader to solicit new commands.

If this and all other parameters are omitted, command
entry defaults to the Logical Unit number of the user's
terminal.

'l'he file name of the relocatable ma in program or the
Logical Unit number of the relocatable input. There is no
default case.

List output device. The default setting is the Logical
i
\,)

11

l"l

opcode

0

c

Unit number specified in the <command> parameter. If the
<command> parameter is a file or is not interactive, the
default is Logical Unit 6. Refer to the <opcode> parameter
below for list options. The list device is locked for the
duration of the load if the LU is not interactive and is
not a file.

Alternately, a list file <namr> may be specified. The
listing will then go to a file. The file named must not
already exist. The loader must create the file. The one
exception to this is if the specified file name has an
apostrophe as its first character; for example:

narne

In this case, the loader will create the file if it does
net exist, or simply open the file if it does exist.

i•lnemonic operation code. The parameter defines the program
type~ COMMON type, and whether or not the program requires
the Subsystem Glooal Area (SSGA). To determine the
operation code mnemonic, select one or more (or none) from
each of the following columns:

Program COMMON
Type Type

--------- ---------
BG SC
RT RC
LB NC

SS

where:

BG = Background program
RT = Real-Time program
LB = Large background program
SC = System COMMON
RC = Reverse COMMON
NC = I,:o COMMON (or local COMMON)

Load
Type

PE
TE
RP

SS= Use Subsystem Global (SSGA). SS may also
used with other elements in its same column.

PE = Permanent Program
TE = Temporary program
RP = Replace permanent program (do not also

specify PE).

The default setting is BGNCTE.

The elements of the selected mnemonic code may be
specified in any order with no intervening commas or
blanks. For example, PEBGSS will be interpreted the same as
SSBGPE, which specifies a background program using Subsystem
Global to be made a permanent program. One, two or all three
parameters may be specified.

1-7

format

partition

size

Mnemonic format code. This actually an extension of the op
code that was filled. The parameter defines the format for
the program load operation. To determine the format code,
select one or none from each of the following columns:

DEBUG
Append

DB

List
Opt ions

LE
NL

r'ile
Scan

RS

where:

DB =
LE =
NL =
RS =

append DBUGR subroutine to the program
list entry points
no listing desired
reverse scan. RS changes the order of loading for
segmented programs. The default is load segment,
rescan file and load system library routines. However,
when RS is specified, rescan of the file is performed
only if undefined external references remain after a
library saearch. Selection of this option can
significantly speed up segment loading. See "Loading
Segmented Programs" later in this section.

Do not specify RS if a system library routine is to be
replaced by a user routine.

Format and opcode parameters may be intermixed and
intermingled in any order. For instance, SSBGRT will
relocated as a real-time program using SSGA. Note that
later specifications will override earlier
specifications.

The specific partition number in which program is to be
executed. If not specified, the program will execute in
any available partition of sufficient size. This is the
same as using the AS operator command.

Allows a logical address space larger than the program
size. Permits use of a dynamic buffer at the end of the
program for use as a data array, symbol table space, etc.,
when the program requires such space.

The <opcode> and <format> parameter mnemonics can intermingled in any
order. That is, <opcode> mnemonics can be mixed with <format>
mnemonics, and vice versa. A comma must be included as a parameter
position marker if:

1. The character count within the parameter exceeds six, or

2. Subsequent parameters such as <partition> are to be specified.

The following examples show typical usage of the <opcode> and <format>

1-i

#"~'

''----/

0

\ (~.·.·.
'

/

parameters:

*RU,LOADR,PROGl, , ,RTDCBSS,NL

I !------------ <format/opcode> parameter I 1----------- <opcode/format> parameter I 1------------- <list output> parameter position
I 1----------- <input> parameter position 1----------- <command> parameter

*RU ,LOA.DR, , , , RP, , 7

I 1--------------- <partition> parameter I 1------------ <format/opcode> parameter position
I 1---------- <opcode/format> parameter

I 1----------- <list output> parameter position
I 1------------ <input> parameter position
1---------- <command> parameter position

If a track allocation cannot be made for a relocation, the loader
displays the message WAITING FOR DISC SPACE. The loader repeats the
disc request and is suspended until space becomes available.

Following the relocation of a program that has its external references
satisfied, the loader terminates with the following messages:

xx PAGES RELOCATED xx PAGES REQ'D NO PAGES EMA NO PAGES MSEG
/LOADR name READY

/LOADR:$END

where name is the main program name. The loader terminates and the
program is ready to run.

If a new program is loaded bearing the same name as a main program
already defined in the system, the following message is displayed:

DUPLICATE PROG NAME -<nnnnn>

where <nnnnn> is the duplicated program name. the loader automatically
attempts to create a unique program name by replacing the first two
characters of the nedw program's name with period characters (••). If
successful, the loading process continues and when completed, the
following messages are displayed:

/LOADR: < •• nnn> READY
/LOADR: $END

where < •• nnn> is the modified program name.

If unsuccessful; that is, a program named < .• nnn> already exists, the
loader is aborted and the appropriate error message is displayed.

Whenever the loader completes a successful or unsuccessful load, it 1~
returns five words of information about the load to the program that
scheduled it, via the PRTN system subroutine. The returned information
can be accessed via RMPAR. For example, when the loader is run from the
File Manager, FMGR picks up the information in parameters lP, 2P, 3P,
4P and SP (this is also the FMGR lOG). A successful load gives the
following:

1P,2P,3P = program name

If an unsuccessful load occured, the following information would be
returned:

1P,2P,3P = 0
4P = L-
5P = loader error return

7-12. ADDI'rIONAL OPCODE PARAMETERS

The loader's <opcode> parameter has two other uses. Entering LI or PU
causes the loader to, respectively, list all currently active programs
in the system, or purge a permanent program. Opcodes LI and PU may be
used in the interactive mode but may not be entered in batch mode or
from a command file.

The syntax for the list option is as follows:

RU,LOADR,,,lu,LI

In this case, a list of all active programs in the system is
transmitted to the specified Logical Unit. The list will include the
program name, type, priority, low and high main program addresses, low
and high Base Page addresses, and partition number if the program is
assigned to a partition. Each blank ID segment available for use by the
loaderis noted by <long blank ID> or by <short blank ID> if the ID
segment is a nine-word program segment ID segment.

It is printed as a table in the form:

NAME TYPE PRIORITY LO MAIN HI MAIN LO BP HI BP SIZE EMA MSEG PART'N

An alternate form of the request is:

RU,LOADR,,PROG,LU#,LI

This will list all of the above information only for the program named
PROG.

If the opcode is PU, the message

/LOADR: PNAME?

7-/0

'OJ ~/

is output on the assigned Logical Unit device. Entering a program name
following the prompt causes the loader to permanently purge the
referenced program from the system. Entering a /A will prevent any
purge operation and terminate the loader.

The LI and PU opcodes may also be entered in the interactive mode but
may not be entered during program relocation. The PU command may not be
entered from a command file or under batch mode.

7-13. LOADING THE BINARY CODE

The RTE-IV loader will accept binary relocatable code fr~m any FMP file
on any disc cartridge. The file <namr> of the main may be included in
the RUN statement. If all segments and all subroutines are in the input
file <namr>, then no further information is needed. However, segments
and subroutines will frequently be in several files throughout the
system, and in this case, additional commands to the LOADR are required.
The additional commands may be specified through a command file, an
interactive or non-interactive Logical Unit. The file <namr> or LU is
specified in the first loader RUN parameter.

In the interactive mode the loader prompt /LOADR: is issued:

/LOADR:

7-14. LOADER COMMAND FILE

The loader will load all relocatable input found in the file specified
by the RUN statement. However, subroutines or segments will often be
located in other files. In order to facilitate loading of a program
broken up in this manner, the loader will take input from a command
file. The command file syntax and meaning are described below. Note
that only the first two characters of any command are required unless
otherwise specified.

SEARCH

SEARCH,<namr>

Searches the system disc library for undefined
externals.

Searches the file <namr> for undefined externals.
Only the first two characters of this command need be
specified for a single-pass search of the named file.
If more than two characters are used in the command~
that is, SExxxxx,NAMR instead of SE,NAMR, the file
is searched multiple times to ensure that backward
references are satisfied. The SE,NAMR form is faster
but will not satisfy backward references.

RELOCATE,<namr> Loads file <namr> as part of the program. The <namr>
specified may be a program, subroutine or segment.

FORCE

DISPLAY

Force loads a program and/or program segment.
Undefined externals will be ignored.

Causes a list of undefined exxternals to be printed

J-1/

ECHO
(see footnote)

END

/A

*

on the list device, or in the interactive mode, on
the interactive command device. Note that the
undefined externals listed are those referenced by
the module being loaded; that is, undefined externals
in the main of a segmented program will not be listed
if the current module being relocated is a segment.

Causes the input commands from a file to be echoed on
the list device as they are encountered. This is
useful for debugging loader command files. The
command is ignored if the commands are coming from
an interactive device.

End of command input. Signals the loader to exit the
command mode and finish up the load. If undefined
externals exist at this time, an automatic scan of the
system library is performed.

Aborts the loader immediately. A clean termination of
the load operation is performed.

Denotes a comment line when entered as the first
character of an entry line. The loader ignores the
entire line. Comments may also following a command
and be in the same entry line as the command,
providing two commas appear in the line. For example:

SE,,SEARCH THE LIBRARY
RE,XTABS,LCAD PROGRAM NAMED XTABS
DI,,DISPLAY UNSATISFIED EXT REFS

AS,xx Assigns the relocated program to partition xx.
(see footnote)

SZ,<yy>
(see footnote)

LL,<narnr>
(see footnote)

OP,<opcode>
(see footnote)

FM,<format>
(see footnote)

Specifies the size of the program. The program will
only execute in partitions of size yy or larger.
The value of <yy> must be greater than or equal to
the size of the largest partition available.

Specifies the list Logical Unit number or file name.
if the listing is to go to a file. If a file name is
specified, the file must not already exist unless its
name begins with an apostrophe (').

Specifies an <opcode> parameter where <opcode> is as
defined previously. Note that opcodes LI or PU are
illegal in a file, but are legal in the interactive
mode.

Specifies a <format> parameter, where <format> is as
defined previously.

--------~---
Footnote:

/-/;)_

£'·
i.

'__j

(····

-;/'

0

0

Specification of these commands must precede specification of any
RELOCATE or SEAFCH co~mand. Otherwise, the control command will be
ignored if entered from an interactive device, or cause errors if
entered from a file. These commands may be entered either within the RU
commandor from a command file. Note that RU command parameters will be
overridden by any commands subsequently entered from a command file.

At the end of every segment load, main load, and at the end of a
command file, the system library is searched for undef liied externals.
If undefined externals still exist and the commands come from a file,
then the undefined externals will be listed and the loader will abort.

The loader prints the message:

UNDEFINED EXTS

The external references are listed, or.e per line.

Not that during the load process, undefined externals are allowed in the
main of a segmented program because they might be satisfied in a segment.
When the user specified the end of the loading process, the main is then
checked for undefined externals. If undefined externals exist, the
following error message is issued

MAil\iS
UNDEFINED EXT

and the loader will then abort unless the FORCE option is in effect.

The loader will not allow undefined externals in a segment, because one
segment's entry points may not satisfy another segment's externals. This
is because only one segment may be in memory at a given time. The DISPLAY
command will list undefined externals. Note that the list refers only to
the main or current segffient being loaded.

The abort may be prevented by the FORCE command. The FORCE command will
force load a prog;:am and/or program segment.

7-15. LOADING FRUM A LOGICAL UNIT

Relocatable code from a Logical Unit can be accepted by the
RU,LOADR,,<lu> command or interactively with the RELOCATE,<lu> command.
If more than one tape is to be mounted for the load, the interactive
mode must be used and the RELOCATE,<lu> command reentered for each tape.

7-16. LOADING SEG!'CEJ:\'l'ED PROGRAMS

The loading of segmented programs requires special loader processing.
The loading speed of such programs can be increased if the load process
is understood and the suggestions given below are followed. Generally,
all the relocatable code will be in one file or several files scattered
throughout the system.

1-13

Assume the following program:

A program has three segments ~nd seven subroutines located in one file,
as illustrated in Figure 7-1.

+---+
I ISISI ISi I ISISISISI
I IUIUI IUI I IUIUIUIUI
I Main I B I B I SEGl I B I SEG2 I SEG3 I B I B I B I B I
I 111 2 I I 31 I I 4·1 5 I 6 I 7 I
+---+
Figure 7-1. Segmented Program Example

The loader would relocate this program as follows:

1. Load MAIN program.

2. Load SUBl and then SUB2.

3. If there are undefined externals references, search entire file
for subroutines required by the MAIN.

4. If any subroutines are loaded in Step 3, repeat Step 3 to satisfy
backward external references (i.e., assume SUB6 is loaded and it
references SUB3).

5. If there any undefined external references, search the system
library and relocatable library.

6. If there are still undefined externals, continue loading (they may
be satisfied by a segment).

7. Load SEGl.

8. Load any subroutines (i.e., SUB3).

9. If there are undefined externals, search the entire file for
referenced subroutines.

10. If any subroutines are loaded in Step 9, repeat Step 9 to satisfy
backward external references.

11. If there are undefined external references, search the system and
relocatable libraries.

12. If there are still undefined externals, abort the load.

13. Continue Steps 7 through 12 for each segment.

The loading sequence described above has several implications for the
user when preparing a segment load:

1-lt/

..c-,

l/

0

a. A subroutine called by many segments need only appear once in the
file.

b. Subroutines loaded with the MAIN may be shared by all segments.

c. Any subroutines residing in the file after a MAIN or a segment, but
before another segment (or end-of-file), are relocated together with
the preceding MAIN or segment.

It follows that care should be exercised in the ordering of the
relocatable modules. A subroutine should be placed only after a segment
that references the subroutine. Subroutines should never be collected
together and placed at the end of the file. Doing so woL1d result in
all subroutines being relocated with the last segment, whether or not
that seg~ent referenced any of the subroutines.

When a relocatble program is contained in several files, a command file
should be used to load the program. Typically, the MAIN program would
be in one file, each segment in a separate file, and perhaps a file of
subroutines that are referenced by some of the segments. The command
file for loading such a segmented program might consist of the
following:

File
Entry
Number

1.

2.

3.

4.

5.

6.

Command

RE,MAIN

SE,LIBRY

RE,SEGl

SE,LIBRY

RE,SEG2

SE,LIBHY

Resulting
Action

Relocates program named MAIN

Searches library named LIBRY

Relocates segment named SEGl

Searches liorary named LIBRY

Relocates segment named SEG2

Searches library named LIBRY

When the loader encounters the command in file entry 3, it recognizes
the program as segmented. Before SEGl is loaded, LOADR searches the
system and relocatable libraries for undefined external references.
Undefined externals are still permitted at this point, since they might
be satisfied in a segment.

However, at file entry number 5, undefined externals remaining after
the system and relocatable libraries are searched will cause LOADR
execution to be aborted. This is because a segment may not satisfy an
undefined external reference t hroucJh another segment. (The FORCE opt ion
may be specified to force load the code and prevent an abort condition.)
Upon completion of the loading process, any remaining undefined

1-/~

external references in the MAIN program would result in the loader
being aborted and display of the following messages:

/LOADR: MAINS
/LOADR: UNDEFINED EXTERNALS
/LOADR: <list of MAIN program's undefined externals>

7-18. REDUCING SEGMENTED PROGRAM LOAD TIME

There are several ways to increase segmented program loading speed.
Those described below are suggestive only, and are not to be considered
as required procedures:

1. Place any referenced subroutine with the segment that calls it. This
eliminates unecessary file scans in search of a subroutine that will be
relocated with a segment.

2. Place subroutines into files in the sequence in which they are
called. That is, if SUB! calls SUB2, place SUBl in the file before SUB2,
etc. For example, assume these subroutines are in a library file to
be searched by the loader and that the loader is looking for SUB!.
Ideally, the loader would pick up SUBl and create SUB2 as an undefined
external reference. The loader would then continue the file search: if
SUB2 was then encountered, it would be picked up on the same pass.
However, if SUB2 was located in front of SUBl, an additional file
search would then be necessary.

3. If all the relocatable code is within the same file, place the
subroutines in the sequence suggested in Item 2.

4. If several segments reference the same subroutine, place that
subroutine immediately following the MAIN program. Segments may share
subroutines that are loaded together with the MAIN program.

5. When all the relocatable program code is within the same file and
the file has been organized as described in Item 2, use the RS operation
code when the loader is scheduled. RS informs the loader that all
subroutines have been sequenced as suggested above, and that the system
and relocatable libraries are to be searched before a file scan. That is,
in the loading steps previously described for the segmented program load
example, Step 5 would be placed between Steps 2 and 3, and Step 11 would
be placed between Steps 8 and 9. Another scan of the file will occur if
undefined external references remain following a scan of the system and
relocatable libraries.

Caution should ce exercised in using the RS mnemonic, since it changes
the loading sequence so that the HP relocatable library is searched
before a scan of the file is made. It is therefore possible that a
relocatable library subroutine might be loaded instead of a user's
subroutine. However, this could only occur if the subroutine had the
same entry point name as a relocatable library routine (i.e., SIN, TAN,
ARCTAN, etc.) and if the user's subroutine was not included at the end

1-16

[~"'

i'
-~_;

(1'~)
"-___/

0

0

of the segment or main that called it.

7-lY. DUUGR LIBRARY SUEROUTINE

DBUGR is a utility subroutine of the RTE Relocatable Library. It is
appended to the end of a user's program by the loader when the opcode
parameter in the RU,LOADR command is DB. DBUGR allows the user to debug
a program oy means of Trace, Break Point and other features. Permanent
loads are not allowed with DBUGR.

7-20. LOADER ERROR REPORTING

All loader errors are reported to the list device. The list device may
be specif idally declared in the ON or RU scheduling command, or
defaulted. The default list device is specified under "LIST = " earlier
in this section

The error codes are displayed on the list device in the following form:

/LOADR:<error code>

For some non-recoverable error conditions, LOADR aborts execution and
displays the error report as follows:

/LOADR:<error code>
/LOADR:LOADR ABORTED

At times, the user may wish to abort a load while the load is going on.
Entering a BR,LOADR command will cause the loader to abort a load and
perform a clean and orderly termination. This is greatly preferable to
using an OF,LOADR command during a load process, which may leave files
open.

For some error codes, the name of the program module and the entry point
name of the subroutine being relocated are displayed prior to the error
code display line, as follows:

/LOADR:<module name>
/LOADR:<entry point name>
/LOADR:<error code>

7-21. LOADER ERROR CODES

All loader error codes, their meaning and possible are listed in Table 7-1
below. Note that the asterisks following some diagnostics have the
following meaning:

* = module name printed BEFORE diagnoistic

** = entry point name printed AFTER module name

The asterisks would not actually appear in the displayed error code.
All error codes are prefixed by L- characters.

Note that numbered items in the "Recovery Action" column indicate
possible alternatives, as appropriate, rather than sequential steps.

Tnble 7-1. Loader Error Codes

+---+
I Error ~eaning I Recovery Action
I Code I
1------- ---

L- :

01*

02*

I
I 03*
I
I
I
I
I
I
I 04*
I
I
I
I
I
I
I 05*
I
I
I
I
I
I
I
I 06*
I
I
I
I o 7* * * I
I I
I I
I I
I 08 I
I I
I I

---------------------------!----------------------- ----------
1

Checksu;n error. (Was it a I Recompile. Give loader the
relocatable file?) I correct file.

Loader found an entry
that was not a NAM, ENT,
EXT, DBL, EMA or END
record. Did the computer
emit bad records? Was
it a relocatable file?

Program code and system
tables exceeded 32K or
user-specified max. size.
(Program size + MSEG size
is too large.)

BP linkage overflow. The
program requires more
BP links than system has.

Symbol table overflow.
(Loader does not have
enough room to relocate.)

COMMON block error (was
first COMrWN declaration
the largest?).

Duplicate entry points
encountered. {Subroutine
entered twice.)

No transfer address (only
subroutines were loaded;
no main was found).

I
I Recompile. Give loader the
I correct file.

I
I
I
I

1. Segment program. I
2. Do NOT specify a size; make I
it a Type 4 program if possible. I
3. Move data to EMA area if I
possible; otherwise, make I
program smaller. I

I
1. Rearrange subroutines. I
2. Rearrange order of loading I
modules. I

I 3. Recode to decrease number of I
I references across page I
I boundaries. I
I I
I 1. Use SZ operator command to I
I expand size for loader. I
I 2. Use SE loader command to I
I reduce loader fix-up table size. I
I 3. Break up code into subrs. in I
I separate files and use SE cmd I
I after relocating each file. I
I I
I Make largest COMMON declaration I
I the first declaration the loader!
I encounters. I
I I
I Remove one of the duplicate I
I routines. I
I I
I I
I 1. If program was written in I
I Assembly Language, put a label I
I on the END statement. The label I

1-11

I
I
I

c··- I
I
I 09*
I
I
I
I
I 10
I
I
I
I
I 11
I

14*

0 16

.17

18

19

20

0

Record out of sequence
(Probably attempted to
relocate from improperly
positioned tape.)

Illegal parameter in RU
statement or in statement
prior to a RELOCATE
statement.

Attempted to replace a
memory resident program
with a program having the
same name.

Assembler produced illegal
relocatable module. A DBL
record was produced that
referred to an undefined
external; i.e., it should
been found in program's
symbol table but was not.

Illegal partition number
or corrupt map table.
Partition specified does
exist or is down due to a
parity error.

Number of pages required
exceeds partition size.

Specified program size too
large for partition.
(Exceeds 32 pages.)

(1) EMA declared twice (2)
EMA declared in a program
segment, (3) reference to
the EMA label before label
was declared EMA, (4) an
attempt was made to
declare the same label as
ENT record (i.e.,
duplicate ENT).

No ID extensions available
for the EMA program.

~--~······-----

is where the program starts.
2. If program was written in
FORTRAN, relocate the module
with the 'PROGRAM' statement.

Rewind tape and start over.

Start over. Make certain the
run string is proper.

Rename program with a different
name, recompile and reload. It
is impossible to replace a
memory resident program. The
loader will not even rename it.

Recompile and try again. This
could also be an Assembler or
FORTRAN compiler bug.

Either specify a different
partition or no partition.

Either specify a different
partition or no partition.

Either specify a smaller size or
no size. See also error code 03
other recovery alternatives

Specify the EMA in the main and
load the main first. An EMA must
be declared in the main and any
segments or subroutines that
reference that EMA must be
loaded after the main.

Either abort other EMA programs
to release required ID
extensions, or regenerate and
specify more ID extensions.

I 21
I
I
I
I 24**
I
I
I
I
I 25
I
I
I
I
I
I
I 26
I
I
I
I 27
I
I
I

I Program's EMA size too
I large for current system
I partitions.
I
I Attempted to access an
I SSGA entry point but SSGA
I access was not declared
I at beginning of load.
I
I Attempted to purge a
I program under batch, or
I attempted to use LI or PU

commands within transfer
file. LI or PU may only
be used interactively.

Not enough long and short
ID segments to finish
load.

Attempted to access an
EMA external with offset
or indirect.

Either reconfigure· system at
boot-up to give more EMA space,
or declare less EMA in program.

Restart the load, specifying
the SS mnemonicr i.e., OP,SS or
FM,SS.

Do not put LI or PU commands in
a File Manager file.

Off or purge all ro's created,
free up additional ID segments,
and restart load.

f Use HP-supplied .EMAP and .EMIO
I subroutines to access EMA arrays
I
I

+--

0

i
I

C'I

)I

0

(~

+---+
I I SEC'rTON VIL! I
I 1--------------------1
I I S EGMEN'rED PRO GRAMS I
+---+

Real-time or background disc-resident programs may be structured into
a main program and several segments to save memory space during program
execution. A segmented program is first separated by thf programmer
during the coding process. Once the program is relocated, the segments
are then called into memory only as they are needed for execution.
The program can ~un in a smaller partition than its total size, since
only parts of the executable code are in memory at any one time.

When the code in one of the segments is required for execution, the
currently executing program uses an EXEC call to request the operating
system to make a segment overlay. RTE loads the segment from the disc
into a memory block following the end of the main program, overlaying
whatever was previously there. Control is then passed to the entry
point of the segment and execution proceeds within the segment (see
Figure 8-1). Note that a segment is not allowed to overlay the main
program; segments may only overlay one another.

While a segment is in memory, it can freely access subroutines and data
areas in the main program, and vice-versa. The main program and its
segment effectively Oferate as a single program. When another segment
is required, either the main program or the segment can make the EXEC
call to request ¬her segment overlay. The operating system will then
load the new segment into memory and pass control to it.

(INSERT FIGURE 3-1)

y- I

3cgnents may oe of any size, uut need not necessarily be of equal
length. The entire progr~rn requires a partition large enough to hold
tne main program ~lus the size of the largest segment.

3-1. RTE FORTRAN IV SEGMENTATION

l\.'l'L FOI\.Tl,Al\: IV programs can be segmented if certain conventi ')ns are .
followed. The main proJram must be Type 2,3, or 4, and the segment must
be specified as ·rype 5 in its PH0GHAM statement. The. segment must be
initiated using thE Program Segment Load EXEC call from the main program
or another segment.

Each segment must make a non-executable dummy call to the main program.
This ensures that the proper linkage is established between the main
program and its seqrnents. For ex ample:

CALL H.Z\IN
END

where ~AIN is the name of the main program.

Chaininu of segments is uni-directional. Once a seg~ent is loaded,
execution is transferred to it. The segment, in turn, may call another
segment but a se~ment written in FORTRAN cannot easily return to the
1nain program. Segments can call any subroutine attached to the main
pror:Jra.11. Corr:munication between the main prograrr and segments may be
throuqh COAMOl\.

8-2. RTE ASSEA3LER SEGMENTATION

The main program must be Type 2,3, or 4 and the segments must be Type
5. One external reference from each segment to its main program is
required for the generator to link the segments and main program. If
the main program accesses an external symbol that will be satisfied in
a segment, the symbol ~ay appear in only one segment. Otherwise, the
generator or the loader may link the segments and the main program
incorrectly.

Figure 8-2 shews how an executing main program may use the JSB EXEC
call to bring in any of its segments from the disc. Note that although
control is passed to the transfer point of the segment, the main itself
is not suspended.

: '

__;1

I
I

i

11

(

-ztJ.· d1i.c res.1den1

MAIN PROGRAM

SEGMENT 1--._

r

SEGMENT

OVERLAY

AREA

f----------
MAIN PROGRAM

J..1)(# /Cit'-
~'- • ...tSQfl~EMORY_

DISC MEMORY

r--1

MAIN PROGRAM

NOTE TRACK. SEG!llfNT.
ANO GAP SUES ARE
EXAGGERATED

TPRTE-8

Figure ~ Segmented Programs

(INSERT FIGURE B-2 on ~AIN CALLING SEGMENT)

An executing segment may itself call in another of the main program s
segments by using the same "JSD EXEC" request (see Figure 8-3).

INSEFT FIGURF 8-3 SEGMENT CALLING SEGMENT

A main program and segment operate as a single program when they are
resident in memory. Jurnps fron; a segment to the main program (or
vice-versa) can be programmed by declaring an external symbol and
referencing it via a JMP instruction (see Figure 8-4). A matching entry
symbol must be defined at the destination in the the other program.

The generator and the loader associate the main program and its
segments by replacing the symbolic linkage with actual absolute
addresses (i.e. a Jump into a segment is executed as a jump to a specific
address). The prograrrmer should be sure that the correct segment is in
memory before the JMP into it is executed.

,!- ""

0

0

M41" PAOGAAM

DISC MEMORY

HAMMAIH

UT .O.tC

JS8 fXfC

IV'STEM \
TABLES

ISfClio'fNT OVUU.AV
ARI Al •

IMAIH PAOOAAM
A"EAI

l

......_. ~:...:··~ . -·~·
DISC AHIOENT

PNITITION AAEA

LOGICAL MEMORY

Figure ~-Main Calling Segment

8--~

MAIN l'RQGRA.\t

DISC MEMORY

,..AM SIC1
UT I ll:(C

NAM MAI"'
Ul IX(C

tSlG ... fHT OVUH.AY
AAf.t.I

IMAINPAOCAA ..
AA(AI

LOGICAL MEMORY

DtSC •UtOl'-T
f>AATITIOH AAIA

</"';,
Figure~egment Calling Segment ·

I

I
~·
I

EXTM1

ENT S1
rt S1 JMP M1 _____,

!Segments I

---------~
- EXT SI

ENTM1

.. f-.+JMPS1

Mt- - - - - - .. _.--t-a

MAIN PROGRAM

. -'-
MEMORY»·

4- Ii
Figure/'\· Main-to-Segment Jumps

0

0

. C)

0

+---+
I I SECTION IX I
I 1---------------------------1
I I MUL'I'IPLE TERMINAL ~10NITOR I
+---+
The nulti-Tenninal 'lonitor (MTM) is a software pack~9e developed by
Hewlett-PDckard to service 7rt1Jltiple terminals in an RTE operating
system. Included in this this description are several special
considerations npplicable to multipoint operations.

9-1. SYSTCM ~ONFIGURATION

Multiple terminal operation requires that routines PRMPT and RPN be
configured into the operating system during generation. By default,
they are memory resident and should oe included in the system during the
generation Program Input Phase.

Configuring a terminal for MTM servicing is performed during the
Interrupt Table portion of generation. The following entry is required:

sc, PRG, PRMPT

where sc is the select code of the terminal being configured. This will
cause interrupts to those select codes to be handled by program PRMPT.

After the RTE system is initialized and running, each terminal must be
initialized with a control request either through an FMGR command:

:CN,lu,20B

or an EXEC request:

CALL EXEC(3,2000B+lu)

9-2. MULTIPOINT INITIALIZATION

Configuring a terminal for multipoint operation is performed during the
Interrupt Table portion of generation. Refer to the HP 91730A Multipoint
Terminal Interface User's Guide (91730-90002) For a complete
description of multipoint operations. The following entry should be
made for each communication line:

scl,PRG, PRMP'r

where scl is the select code of the line being configured. This will
cause interrupts to that select code to be handled by program PRMPT.

Each terminal also requires a dummy Equipment Table entry (EQT). Number
77 is a good choice. This same EQT can be used for all terminals. The
following entry is then required for each terminal:

sct,ABS, 0

q-1

where set is the dummy select code that has been assigned to the
terminals.

r"
After the RTE system is initialized and running, both the communication '0
lines and the terminals must be initialized. Each line is enabled with
a control request through either an FMGR command:

:CN,llu,20B,100000B+ICW

or through an EXEC request:

CALL EXEC(3,2000B+llu,100000+ICW)

where:

llu is the Logical Unit number for the line

ICW is the control word and has the following bit
configuration:

ll5114113112lllllOI09I08107I06I05104I03102IOllOOI
1---1
I 11 XX I 'I'OVAL I XX I LN I

where:

bit 15 is 1 to designate this as a line initiation

TOVAL is the timeout value in hundreds of milliseconds

LN is the logical line number

After the line has been initialized, each terminal on the line must be
enabled. This is done using either of the following commands:

:CN, ilu,20B,ICV'

or:

CALL EXEC(3,2000B+ilu,ICW)

where:

ilu is the logical unit number of the terminal.

ICW is the control word and has the following bit specification:

ll5ll41131121llllOI09IOBI07106IOSI04103I02IOllOOI
l------------~----------------------------------1
I 01 Li'~ I GID I DID I

(-

0

where:

t; i t 15

Ll~

CIU

DIL

is

is

is

is

~ tc d~si1nate this as a terminal initialization.

the Logical LinE t,:unt)er as specifie~ in the
Line Initiation control word.

the Grour Identification character as specified
on the terwinal 's cc.inrr.unication carc1.

the Device Identification character as specified
or; the terminal's ccmmunication card.

9-3. LOGICAL UNIT NUELLH ;\SSIGWlEt,'i'

A cartri09e tape unit (CTU) on a 264x terminal may have a Logical Unit
number either less than or greater than the Logical Unit number of the
associate~ dis~lay (CRT). It is suggeste~ that the CRT's and CTU's be
assigned LU numoers oetween 09 anrl 63, inclusive.

9-4. O.tCI~ATIOI~

MTM will perform several services fer the user in conjunction with a
terminal'; copy of FMGk. A terminal with Logical Unit number xx has its
own copy of FMCF: if a pro(3rarr exists named Fr1Gxx. For example, the copy
of r:;Gr;: for Logical Unit 07 would be F:'.G07. 'l'he paragraph entitled
"Crestiny Proqrarn Copies" (see below) explains how to make copies of a
pr 09 r c.i Ii:.

If a copy of fl0!Gh nam2d FLCxx does not exist for a terrr.inal, the
stanciard RTE pro~pt will be issued and the user will be conversing with
the riTE Operating System. The remainder of this manual section assumes
that the ter~inal has its own copy of F~GR named FMGxx.

9 ,.
-:; . l\ ','/\.I Ll\oL E il'f;,, s En VICES

In an i-lTL environment, a user terminal with its own copy of n~GR has
access tc four service~:

1. /\utof'.latic scheduling of FI'-:Gxx when the user terminal interrupts
the operating system.

2. Variations of the BReak and ABort commands.

3. Automatic renaming of user programs.

4. Automatic execution of transfer file named HI.

9-6. AUTGr':ATIC SCViEDULIUG OF FMGxx

If a copy of FMGR called FMGxx exists for the terminal, striking a key
on the terminal c<:uses FMGxx to be schE.1 C::uled for execution. One of two

actions will then be taken, depending on whether or not FMGxx is
available for execution. Normally, FMGxx is available, since it
11 belon9s" tc the terniinal. If it is not available, the MTM variations
of the DReak and ABort commands may be used to make it available as
described below.

9-7. F'i~Gxx AVAILABLE FOE\ EXECUTION

If the terminal's copy of FMGR is available for execution (not
busy or suspended), three events will occµr:

First, the prornpt

will be issued to the terminal.

Second, an

:LL,xx

is roade automatically on behalf of the user terminal to make its
LU the list device.

Third, control is transferred to a file name HI, which must exist on
LU 2, the system disc.

The HI file is a procedure file usually written by the system manager
and placed on Logical Unit 2. Although the file may be empty, it must
nevertheless exist or an FMGR -006 error will result. When the end of
the HI file is reached, control is transferred to the interrupting
terminal. The user is now conver~ing with the terminal's copy of FMGR.

The system manager or other user can define many useful functions to
be performed in the HI file:

*

*

*

Since the FMGxx global parameter OG always equals the turn-on LU
number, the HI file can be made sensitive to the turn-on terminal.

The HI file can schedule programs for execution using the RU command.

Ccm~ands can also be passed directly to the operating system using
the SY command.

Refer to the catch-Spool ~onitcr Reference Manual for a complete
description of Ff.'lGR commands.

9-8. iJREAf~ AL\iD ABORT COt·;MAlW VAHIATIONS

Program F0Gxx sometimes will be busy when the operating system attempts
to schedule it to the interrupting terminal. In this case, the
operating system will issue the standard RTE prompt

xx>

(

,cl
j

and the user will oe conversing with the operating system. In addition
to the standard DReak and ABort operator commands, two variations of
the commands will be accepted. These variations apply only when entered
from an MTM terminal other than the system console, and only if program
PMGxx exists.

Throughout the remainder of this discussion, the term "father" will be
used to indicate a program that has scheduled another program and is
waiting for the scheduled program to co;nplete before resu::ting its own
execution. The term "son" refers to the program that the father has
scheduled. This form cf program scheduling is commonly called "schedule
with wu.it".

1. '-1TVi i3l<EAK COMMAND - The ~:TM command BE issued at terminal xx will
set the break bit of the last sor. of FMGxx. The following exa:nple
illustrates the interaction:

user hits a key
xx> F\".Gxx
:HU,PROGA

user hits a key
xx> 8F

PROGA runs, and assume
PROGA schedules PROGB

no program name s9ecified

The BR command will set the break bit in program PROGB,
since it is the last son of FMGxx.

The command

:..l.F, FHOC~·:

will still set th~ break bit in PROGX and have no effect on FMGxx
or any cf its sons. For more information on breaking programs,
refer to the IFBRK system library subroutine and the BR operator
command.

If FYGxx has no sens, the break bit will be set in FMGxx itself.
l·1henever a FMGfl prograir. finds its break bit set, it issues the
response

at the turn-on ter~inal and prompts for the next input.

+---·-----------+
I NOTE I
I I
I The E~eak command entered from the system console must I
I still have the progra~ name specified as the first I
I parameter. I
I I
+--+

2. :1·r1-1 .l\BO!~T COLiMAND - The MTM A.D command issued at terminal xx
where FMGxx exists performs the sa~e function as the BR command
except that the last son of FMGxx is aborted. Considerable care

should be exercised in using this command. If FMGxx has no sons,
then the break bit of FMGxx is set and the program is not aborted.

+---+ I NOTE I
I I
I The batch abort command, AB, may only be entered I
I from the systew console. I
I I
+------------~--+ . ' .

9-9. AUTOl'i.ATIC USEP PR.OGRAM RENA~IING

MT.M manages ID segments so that each user can have his own copy of a
program. If the user wishes to run a program with FMGxx as the father
(i.e. :RU,PROGX but not :SYRU,PROGX), then in certain circumstances, a
copy of the program will be created belonging to the particular
terminal and run for the user at the terminal.

~TM will perform this action whenever the program to be run is a son of
FMGxx, and the program is either a temporary program or in a Type 6
FMGR file. A copy of the program will be created with the last two
characters being xx, and be scheduled for execution to terminal xx.

For example, if the EDITR is loaded on-line as a temporary load and
saved as a Type 6 file, the command:

:RU,EDITH

will create a program named EDixx and schedule it to terminal xx. When
EOixx is finished, the ID segment will automatically be returned to the
system.

The advantage of processing the ID segments in this way is that all
terminals can run the same program but each user gets a personal copy
of the program. Therefore, a user does not have to wait for other
users to finish with a program before gaining access to it.

The above procedure will work even if the program to be run has been
previously restored using the RP command. In fact, the program will be
created more quickly, since there would be no disc search time before
the proyram could be run.

If desired, the automatic renaming feature of MTM may be circumvented
by using a copy of FMGR that does not "belong" to the terminal at which
the user is operating. In this case, none of the features described for
MT~ apply, and the AB and BR commands will revert to their normal usage.

The program renaming feature of MTM may also be temporarily inhibited
when running a program by using the following form of the RU command:

: HU, PHOGX: I H

In this case, the actual program named PROGX will be run rather than a
copy.

0

cl

0

c

'l'his capability is especially useful when leading permanent programs.
T~e ?rogram named LOADR is the only program that can load, replace or
purge programs permanently in the syste~. A copy of LOADR cannot
perform these functions. Therefore, if the user is operating from FMGxx
at tt?r~nin.:il xx, the followin9 command can oe used to load a permanent
f? ro'J r urn:

:RU,LOADR:IH,•...

Program£ to be scheduled for operation from several terminals must be
swappable. 'I'ha t is, the program must perform al 1 I/0 through the
re8ntrant subroutine REIO, rather than through of EXEC calls, or
otherwise maintain its swappability. An additional requirement is that
each terminal rnust access the program using a different program ID
segment (different program name).

In each case, a program to be used oy several terminals must be
accessed by a different name. The following example shows how to rename
the FMGR program to give it several different names. The commands given
assu~e that FMGR has been previously saved with the FMGR SP command:

: RN, F:··1GR, FJtGQ 1
: HP, FMGOl
: R:~, FMGOl, Fl\:G07
:HP,FMG07
: r:n, F:IG07, p;·~Gl4
: RP, F'MG14

:RP,F'.'1Gxx
:R,'J,FViGx:x,FMGR

rename the file
restore FMGOl from file
rename file again
restore FMG07 from file
rename file again
restore FMG14 from file

restore program FMGxx
rename file back to FMCR
for future use

A similar procedure can be followed to make multiple copies of other
prcg rams.

Note that the above commands can be put in a file that will be run each
time that the system is booted up. 'I'h is relieves the user the
responsibility of renaming all programs for ~TM use if the system
went down and had to be rebooted. The last RENAME command restores the
file's original name for future use.

It is recommended that a copy of f\\!GR be renamed for Each terminal in
the [i!'TM env iron.«1ent to take advantage of the automatic scheduling
ca~a0ility of RTE.

For example, assume a key on the terminal with Logical Unit number 7 is
struck. The terminal issues the following prompt:

07>FMG07
(~I file gets executed here)

The user is now conversing with FMG07 and his default list device is
Logical Unit 7. The HI file has been executed and the user ~ay now
issue any legal FMGH command.

C.

0

0

'

0

(~

+---+ I SECTION X I
!--------------------------------!
I RTE-IV SYSTEM LIBRARY I

+---+

10-1. INTHODUC'l'ION

RTE-IV operating systems are delivered with a collection of relocatable
subroutines that coniprise the system library. This group of subroutines
are specific to RT~-IV operating systems and are used to interface user
programs with systere services.

Other collections of H-P relocatable subroutines for more general use
are also available as options, and are described in the DOS/RTE
Relocatable Library Reference Manual. They have been grouped into the
following libraries according to function:

Library Mnemonic

RLIB.N
FF4.N

Library Name

DOS/RTE Relocatable Library
FORTFAN IV Formatter

RLI3.N contains mathematical and utility subroutines such as SIN,COS,
BINRY, etc. The formatter libraries contain subroutines that perform
formatted data transfers, interpretation of formats, unformatted
input/output of binary data, free field input, and buffer to buffer
conversions.

10-2. CALLING SYSTEM LIBRARY SUBROUTINES

Library subroutines are called by user programs and are linked to the
caller either at generation or load time. These subroutines can be
called either by disc-resident or memory-resident programs.

Subroutines referenced by disc-resident programs are appended to the
end of the calling programand then linked to it either by the loader
(LOADR) or On-Line Generator.

Subroutines referenced by memory-resident programs will be placed in
the memory-resident library by the generator. These subroutines must
either be reentrant or privileged. Several memory-resident programs
can then share one subroutine, which can save considerable space
in the memory-resident area.

If only one memory-resident program is to access a subroutine, it is
advantageous to make it a Type 7 subroutine to force it to be
appended onto the calling program. A Type 7 subroutine is not placed in
the memory-resident library and therefore need not be privileged or
reentrant. This results in faster execution, since the subroutine will
not incur the overhead associated with reentrant or privileged
subroutines.

10-3. REENTRANT SUBROUTINE STRUCTURE

A subroutine must meet two criteria be reentrant:

1. It must not modify any of its own instructions.

2. It must save all temprorary results if it is called
again before completing its current task.

A subroutine saves temporary results in a Temporary Data Buffer (TDB)
that the operating system ensures is unique to each program. For
example, assume PROGA is executing a reentrant subroutine tt~t is
interrupted oy PROGB. IE PROGB then begins execution of the same
subroutine, the system saves PROGA's TDB until PROGA resumes execution,
at which time it restores the proper TDB.

Each time a reentrant subroutine begins executing, the address and
length of its temporary data block are transferred to RTE-IV through
entry point $LIBR to save the data. At the of execution, the reentrant
subroutine again calls RTE-IV through entry point $LIBX to restore any
existing temporary data.

A reentrant subroutine structure is used for subroutines with an
execution time exceeding one milli-second. However, for shorter
execution times, the overhead time the system uses in saving and
restoring temporary data makes reentrant structure unreasonable.
Faster subroutines can be structured as privileged.

+--+
I NOTE I
I I
I A library (Type 6) program can only call another I
I library program or Table Area I and II entry I
I points I
I I
+--~-----+

10-4. REENTRANT SUBROUTINE FORMAT

The format and calling sequence for reentrant subroutines is as
follows:

iJ!\(',j X XXXX I 6
E:~T $LIBH, ;LICZ

ENTitY NOP
J , .. j)

;.) J...)

DEF
$Lil3H
'I'DU

EXIT JS3 $LISX
DEF 'fDB
DEC N

Entry point of subroutine
Tell system to protect TDB
Address of temporary data

Subroutine instructions go here

Tell system reentrant run is finished
Address of temporary data
Return adjustment

,(~ !

~f

f
'l_j

'··

0

0

TDB NOP
DEC K
NOP·

BSS K-3

(Return point=N+ENTRY)

System-supplied link to previous TDB
Total length of current TDB in words
System-supplied return address to

calling program

Temporary data (K-3 words)

10-5. PRIVILEGED SUBROUTINE STRUCTURE

Privileged subroutines execute with the interrupt system turned off.
This feature allows many memory resident programs to use a single
privileged subroutine without incurring reentrant overhead. As a
result, privileged subroutines need not save temporary data blocks but
must execute very rapidly to minimize the time that the interrupt
system is disabled.

Since privileged subroutines disable the interrupt system, EXEC calls
are illegal within a privileged subroutine. If one is attempted, the
calling program will be aborted with an EX error.

10-6. PRIVILEGED SUBROUTINE FORMAT

The format and calling sequence for privileged subroutines is as
follows:

NAJI.-; xx xx, 6
EXT $L 1l3R, $Llt3X

EN'I'RY l'<OP
JSB $LILR

EXI'r JSB $LIBX

EXIT! DEF ENTRY

Entry point to the routine
Call the system to disable the
Interrupt system and memory

protect fence
Denotes privileged format

Call the system to return to calling
program, and to enable interrupts
and memory protect fence

Return address

It is also possible to go privileged in a block of in-line code, as
follows:

JSB $LIBR
NOP

Go privileged
Denotes privileged format
First instruction

;o-3

J23 $Lli3:<
DEF *+l
D8P *+l

Leave privileged status
hath DEF's are required

The memory resident library area in RTE-IV contains only Type 6 and
14 subroutines that are referenced ~y memory resident programs.

Reentrant and privileged subroutines may be placed in the
memory resident library during generation by either of the following
methods:

1. If the routine is declared as an external (called) oy a memory
resident (Type 1) program, or is called by another resident
library subroutine, the suoroutine will be automatically placed
in the resident library oy the generator.

2. The routine cDn be changed to a Type 14 subroutine during the
Parameter Input phase of generation (it also could have been
assem0led as a Type 14 subroutine).

+--+
I NOTE I
I I
I After the relocation of the resident library and all I
I memory resident programs, all Type 6 routines are I
I converted to Tyt_:>e 7 (utility) routines. I
I I
+--+

~at all subroutines referenced oy memory resident programs are loaded
into the tilemory-resident library. By declaring the subroutine to be
Type 7, the user can ensure that the subroutine will be loaded with
the program. Then if .ZRNT and .ZPRV are used instead of $LIBR, the
subroutine will execute faster since the system does not need to do
the reentrant or privileged processing prior to executing the
subroutine.

10-7. UTILITi SUBROUTINE STHUCTURE

Utility subroutines are subroutines that cannot be shared by several
programs oecause of internal design or I/O operations. Therefore, a
copy of a utility suoroutine is appended to every program that calls
for it. The PAU:3E subroutine and the library subroutines FRMTH (FF.N),
and FMTIO (F4D.h) are typical examples of utility subroutines.

i';hen the R'I'E system is generated, all library subroutines included in
the resident library are converted to Type 7 utility subroutines
following the relocation of memory resident programs. All utility
subroutines are then relocated immediately following each user program
that requires them during program relocation.

/o·-i 11

0

0

10-3. SYS'rr.::~~ LIBRAHY SUBROUTINES

All system library subroutines are described below with the exception
of .EM1\P, .EMIO, :IMAP and Ei'1AST. These four subroutines are the direct
concern of memory management considerations and are therefore described
in the ~Iemory ~!anag em en t section of th is manual.

10-9. REIO (Reentrant I/0)

The REIO subroutine permits user programs to perform reentrant I/O and
disc resident programs to be swappable. REIO is a utilit_· type library
subroutine and has within its structure a reentrant routine that is
appended to each program that calls its. The calling sequence for REIO
is:

CALL REIO(ICODE,ICNWD,IBUFR,IBUFL)

where the parameters are described in the Read/Write EXEC call in
·Section IV of this manual. Note that REIO can only be used with

Read/Write calls and that the optional parameters available in those
calls are not allowed in the REIO call. REIO will always perform the
requested I/O: however, it will do reentrant I/O only if the buffer is
less than 130 words (to save system memory), and the buffer address is
at least three words above the current fence address. If the sign bit
is se~ on !CODE, the same error options available with the EXEC call
are effected (i.e. error return followed by normal return). REIO
returns the same values in the A- and B-Registers as the standard EXEC
call.

A reentrant subroutine may perform I/O using the standard EXEC
requests. If the buffer is in the temporary data block (TDB) of either
itself or another reentrant routine that called it, the calling program
is swappable. If the buffer is in the user area, the program is not
swappable (i.e., if the buffer is not in the TDB or user COMMON area,
the program is not swappable).

10-10. BINRY (Disc Read/Write)

FORTRAN programs can call the BINRY subroutine, to transfer information
to er from the disc. The call must specify a buffer array, the array
length inwords, the disc Logical Unit number, track number, sector
number, and offset in words with in the sector. (If the off set equals 0,
the transfer begins on the sector boundary: if the offset equals n,
the transfer then skips n words into the sector before starting.) BINRY
has two entry points: BREAD for read operations and BWRIT for write
operations.

For ex amp le:

Where:

Cl\LI. BWRIT {ARRAY,N,IDISC,ITRK,ISECT,IOFST)
CALL BREAD (ARRAY,N,IDISC,ITRK,ISECT,IOFST)

ARRAY

N
I DISC
ITRK
I SECT
IOFf)T

= Address of the first element
= Number of words
= Disc 100ical unit number
= Starting track number
= Starting sector nu~ber
= Number of words offset within a sector

There are three oasic ways thal data can be written on the disc in
relation to sector bcunciaries. Care must be used in planning the
WHITE statement in two of the cases to avoid losing existing data:

1. Offset=n (i.e., transfer oegins within a sector), and ltss than the
sector is written, or the data transfer ends on a sector ooundary.
The entire first sector is initially read into an internal buffer,
the data is modifed according the BWRIT statement, and the entire
sector is then rewritten on the disc with no data loss. No special
precautions are required in this instance.

2. Offset=O (i.e., transfer begins on a sector boundary), and less than
the sector is written. The remaining data in the sector will be lost
if the following precaution is not taken. The entire existing sector
on the disc can first be read into a user's buffer, modified to
reflect the desired changes, and then rewritten on the disc as a
full sector •

....
3. Offset=O or n, and a sector boundary is crossed in the data transfer.

The remaining data in the final sector will be lost if the following
precaution is not taken:

The entire final sector (of the data transfer) on the disc should be
read into a user's buffer, modifed to reflect the desired changes,
and then rewritten on the disc as a full sector.

10-11. RNRQ (Resource Management)

Allows cooperating programs a method of efficiently utilizing resources
through a resource numbering scheme. A detailed discussion of resource
managment considerations is provided following the Class I/O description
in the EXEC Call section of this manual.

The calling sequence for RNFQ is:

ICOD:C=numb
CALL RNPQ(ICODE,IR~,ISTAT)

where:

I CODE

!RN

I STAT

defines how the resource number is to be used. (See
Figure 10-1.)

the resource number is returned in !RN.

status return word.

O - normal aeallocate return

,-~,

''-_j

0

1 - RN is clear (unlocked)

" t. - fl •..
"\ 1\ is locked locally to caller

3 - r.1~ is locked globally •

4 - no Rt~ available now

6 - PN locked locally to other program

7 - RN was locked globally when request was made

A resource number is used when one program wishes to use a resource
exclusively with the cooperation of other programs in the system. This
resource could be a physical device (see Logical Unit Lock) or the
system itself. Using an RN prevents a low priority program from being
interrupted by a higher priority program when executing.

All programs must agree that a certain RN will be used as a lock or
busy indicator for a given device.

F'igure 10-1 illustrates the format of the control word required in the
calling sequence.

+---------+--------+-----+-----+-----+-----+-----+-----+
I 15 I 14 I 5 I 4 I 3 I 2 I 1 I o I
I I I I I I I I I
+---------+--------+-----+-----+-----+-----+-----+-----+
I WAIT I I ALLOCATE I SET I
I OPTION I I OPTION I DISPLAY I
+---------+--------+-----+-----+-----+-----+-----+-----+
I NO I NO I C I G I L I C I G I L I
I I I I I I I I I
I w I A I L I L I O I L I L I O I
I I I I I I I I I
I A I B I E I O I C I E I O I C I
I I I I I I I I I
I I I O I A I B I A I A I B I A I
I I I I I I I I I
IT IR IR I A IL IR I A IL I
I I I I I I I I I
I I T I I L I I I L I I

+---------+--------+-----+-----+-----+-----+-----+-----+
Figure 10-1. RNRQ Control Word Format

If more than one bit is set in the control word, the following order of
execution is used:

1. local allocate (skip 2 if done)

2. global allocate

0 3. deallocate (exit if done)

/b-1

4. local set (skip 5 if done)

5. global set

6. clear
•

rhe system has a certain quantity of resource numbers (RNs) that are
spec if iea during generation. If a number is not available, the program
is suspended until one is free, unless the 'no wait' bit is set. If the
'no wait' bit is set, the IFN location is set to zero. If the RN
allocation is sucbessful, ~he value retµrned in IRN is set by the
systen. It has no meaning to ~he user but must be specif ieci (through
IRN) whert a lock is re4uested or the IRN is cleared or deallocated.

The no abort bit is used to alter the error return point of the call as
shown in the following example:

CALL RNRQ(ICODE •...)
GO TO error routine
no r n 21 l r et u r n po i n t

The above special error return is estaclished oy setting bit 14 to 1 in
the request code worJ (ICODE}. This causes the system to execute the
first line of code following CALL RNRQ if there is an error, or the
second line of code if there is no error.

10-12. RNRQ ALLOCATE OPTIONS

0

LOCAL - i\llocate an Rl.~ to the calling program. The number is returned ()
in the IRN parameter. The number is automatically released on
termination of the calling progam, and only the calling program can
deallocate the number.

GLOBAL - Allocate an RN globally. The number is released by a request
from any program.

CLEAR - Deallocate the specified number.

10-13. RNRQ SET OPTIONS

LOCAL - Lock the specified RN to the calling program. The RN is
specified in the IRN parameter. The local lock is automatically
released on termination of the calling program. Only the calling
program can clear the number.

GLOBAL - Lock the specified RN globally. The RN is specified in the
IRN parameter and the calling program can globally lock this number
more than once. The number is re lea sea i')y a request from any program.

CLEAR - Release the specified number.

If the HN is already locked, the calling program is suspended (unless
the no wait bit is set) until the RN is cleared. If more than one
program is attempting to lock an RN, the program with the highest
priority is given precedence. A single call can both lock and clear

;o- rt
I

Ii
1:

11

0

0

If a program makes this call with the clear bit set, in ndctition to
either th0 Jlobal or local set bits, the program will wait (in the
general \;ait list) until the PN is cleared by unother rro9ram and then
continue wi tl' the ft-l clear.

~n entry point is provided for drivers or privileged subroutines of
'l'yp<? 3 prc3ra,ns that wi~,;li to clear a ·:Jlobal (and only global) RN:

L i:1\ I·: i·~
J~-:::3 $CGHN
return point

l\n e xaiii[:·lP on how to use ICOr. E. fol lows:

Assu~~ you wish to get an RN assigned so that any program can access
it. You also want an alternate return point in case of error. Bits
4 anci 14 would then be 3et as follows:

100 000 000 010 000 = l0020B

10-14. LURQ {Logical Unit Lock)

Allows a proJram to exclusively dominate {lock) an input/output device.
Th~ calling sc1uence is:

l:,1()I" () = d a
CA~L LURQ(IOPTN,LUARY,NCLU)

ra r a .-rie te rs

LUAP'{

control parameter {an octal number)
GxOOOO-unlock specif iea LUs
lxOOOO-unlock all LUs the program currently has locked
OxOOOl-lock with w~it specified LUs
lxOOOl-lock without wait specified LUs
x (bit 14) is the no abort bit. x=4 to set, else x=O.

an array of LUs to be locked or unlocked.

n u,nt>e r of I.Us to be locked or unlocked.

This request te~porarily assigns a logical unit to the program. It
Jisvents a higher priority progr~m from interrupting a program's use of
dc1l=e until the ~evice is unlocked by the program that locked it.

T;I':' Logical Unit Lock request allows up to 31 programs to exclusively
do,ninate (lock) an in£:rnt/outµut device. Any other program attempting
tc use or lock a lockea LU will be suspended until the original program
unlocks the LU or tcrrainates.

NO ABOR'l' BI'I'

The no abort bit is used to alter the error return point of this call
as shown in the following example:

CALL LURQ(IOPTN •• w)
GO TO error routine

normal return point

The above special error return is established by setting the 'x' in
IOPTN to 4. This causes the system to execute the first li~~ of code
following the CALL LURQ if there is an error, or the second line of
code if there is no error.

UNLOCK

To unlock all owned LUs, the LUARY array is not used but still must be
coded; the program will not abort.

Any LUs the program has locked will be unlocked when the program:

1. Performs a standard termination

2. Performs a serial reusability termination.

3. Aborts

Hote that LUs will not be unlocked when the program performs a save
resources' termination.

'rhis subroutine calls the program management subroutine (FNRQ) for a
resource number (RN) allocation; that is, the system locks an RN
locally to the calling program. Therefore, before the logical unit
lock subroutine can be used, a resource number must have been defined
during generation. Only the first 31 RNs can be used for LU locks.

If the no-wait option is coded, the A-register will contain the
following information on return:

0 - LU lock successful

-1 - no RN ava1able at this time

1 - one or more of the LUs is already locked.

Note that the cal 1 i ng prog raff, may not have LUs locked at the time of
the call unless the no-wait option is used. All LUs locked by the
calling program are locked to the same RN.

10-15. $Pl\HS (Parse)

Allows a program to parse an ASCII string.

;o·-/tJ

c }

()

0

(~

()

c\

The calling sequence is:

Ll.'i".
Ll~B

I::\ ll er
ICC~ULJ

T ~·J $1°A FS
1JEF IL;:;uF
-return-

: ' u i · :: c r a (5 d r c ~> s
Char.:Actcr count

whi:2re r;~~:»Ui·' is 33 .wr,}:. lon~::i. 'The rE~~:;ult of the parse of the ASCII
string at I8UfA is 3tored in IRJUF usin0 4 words per rar~meter that
are set as follows:

v!OPD

l

V i\L Of~ (l)

3 VALUE (2)

0 = ;:ULL
1 = t:u:·:<E 1\IC
2 = !\SCI I

O I f i'JIJ LL : Va 1 u E: if t, um e r i c : f i r st
2 charocters if ASCII.

0 If ~JULL or nu~neric else the 3rd
and 4th characters.

VALUJ.::(3) 0 If NULL or numeric else the 5th and 6th
characters.

ASCII 0arameters are seJaratea frora nuweric parameters by examination
of each character. One or more non-di9it characters (except a trailing
"3" or leading "-") makes a pcrameter ASCII. This subroutine can parse
up to eight para:i1eters.

lhLUF is initialized to 0 before parsing the string IEUFA.

'l'ne 33rd word of IHBUF will be set to th;:: numtJer of parameters in the
strin<J.

1he Parse routine ignores all blanks and uses commas to delimit
parameters. ASCII parc~eters are padded to six characters with blanks
or, if more than 6 characters, the left most 6 are kept. Numbers may
be negative (leadin9 "-") and/or octal {trailing "B").

FOHTRAN interface with $PARS is provided with the following calling
sequence:

CALL PARSE (IBUFA,ICONN,IRBUF)

where the parameters are as described for the Assembly Language call
above.

10-16. INPRS (Buffer Conversion)

/CJ-/(

This routine converts a buffer of data back into its original ASCII
form. The user passes the routine a buffer (IRBUF), plus the number of
parameters in the buffer, that looks like the buffer returned by the
PARSE routine. INPRS then reformats the buffer into an ASCII string
that is syntactically equivalent (under the rules of PARSE) to a buffer
that may have been passed to PARSE to form IRBUF. The length of the
ASCII string in characters will be eight times the number of parameters.
The FORTRAN calling sequence is:

CALL INPRS(IRBUF,IRBUF(33))

where:

IRBUF is the buffer containing the parsed string
IRBUF(33) is the number of parameters parsed

10-17. $CVT3,$CVTl,CNUMD,CNUMO,KCVT
(Binary to ASCII Conversion Subroutines)

Converts a positive integer binary number to ASCII.

The calling sequence is:

LDA numb
CLE or CCE (see text)
EXT $CVT3
JSB $CVT3

-return-

Upon return:

E-reg ister=l
A-register=address of result
B-register=value at invocation

$CVT3 converts a positive binary number in the A-Register to ASCII,
suppressing leading zeros, in either OCTAL (E=O) or decimal (E=l). On
return, the A-Register cor.tains the address of a three word array
ontaining the resultant ASCII string.

$CVT1 has the same calling sequence as $CVT3 except that on return, the
A-Register contains the least-two characters of the converted number.
The number to be converted must be positive.

The FORTRAN interface with $CVT3 is provided by the following calling
sequence:

(decimal)
(octal)

DIMENSION IARPAY(3)
C 1\LL Cl\Orm (binary numb,IARP..1\Y)
CALL CNUliO (Dinery numb,IARRAY)

where oinary numb is the 0ositive binary number to be converted, and
IARRAY is a three word array (6 ASCII characters). Leading zeros are

C i
'

(\
)

c

(_)

'll1e follmdn 1J E·LIDroutin<:: ccnverts a positive r.uir.ber to ,\~;c11 o,1s0 10
uric return:::- the lc:i~~t t>10 di_; it::~ in "I". The H1i('lL\:~ call in':) r;e,1ucnc.;
is:

I=h\..:li'J' (,J)

1('-12. FSSS (Vessa0c i:-'rocef:sor Interface)

rr~)CE:SSf:::-> 011 o~·,crator co.~mcnd:::- (seE ~-'.ection III).

Ti1t FO:d. ·,;-, call to the sysb::~. if,essage processor is provided by the
folJv,.,ir.J c.:::illin'J ~,~e·1urncc:

T ==- !;_·~;~);:; (IbUF1\,ICCU;,,L~.i)

wLc.re LJ!_'f/\ cr~ntain::: the T~:CII cc•;Jin:2nG. IC0U~·l is &n integer containing
U1P cL;:aacter count. LL, is crtional.

Thr value on return i!.ill i:.1;:: zero if there is no re~::;onse, or the
ncJativc of tile cLeiracter count if. thE::re i~. a message. Any message will
/)(~ ir, Ii:>Ufi\.

It the rc.1uest i[: ,;u or o::< (:;t;utinJ in first colu:nn) and the first
J/<..ir.c11i:ct2r is zero or ausent, then the first paran1eter will be replacec)
oy LU. LU is optional. If it is not supplieci, no action takes place.

10-14. E~LU (Interrupting LU Juery)

A callinJ ;,;E''::Juence is provicleci to find the Logical Unit number of an
interrupting device fron: the .:H.Jdress of word four of its equiprr.ent
tacJr: entry. 'l'lle arJdress of word 4 is r1aced in the D-F.eCJister by
the rlriver anJ used in the following sequence:

r.._i..iis is nut necessary if address of E':,.iT4 has already been placed into
the 2-rcgister by the rlriver or by another program/subroutine.

;;z·~' E':;'.LLJ
J'.;,_ l.:';.:Lc
1; ; ; F' ·1c + 2 (.) F. * + l
r r·.
L , ... t

C(.. LIJ ::;LU return with:

,\-l PJ ister = 0 if an LU refer r ins tu the EQ'l' was not found.

= L~ if the LU was fauna.

li-Re:J ister == r::-;c1 I "00" or the LC nurnc1cr in ASCII e.g. "16"

LU SCI = (orit ioi:..:::1 r'arc1 net er) val tic is returnee: to this
L)cr<F'C'tPr ,-,, "''"11 ,,,.r; in t\q' i'-1.;J''<Jit~trr.

Utber variations of the cz.:l l are (passed f roff. DVFOO or DVR65):

LX'l' I:CLU
JSP· E;:)LL
DEF *+l
STA LU
S'I'b l\E«CLU

-or-

LU=E:QLU (LU}

10-20. PRT;),PI\Tf1 (Para;neter Return)

These twc routines are used tc pass parameters to the program that
scheduled the caller ~ith wait. The scheduling program may recover
these paraweters with RMPAR.

The PRTN routine passes five parameters and clears the wait flag. This
means that the caller shculd terminate immediately after the call.

The Assembly Language calling sequence is:

EXT' EXEC ,PPTN
JSl3 Pr:TU
DEF *+2
DFF I PHP .. :•f

DEF *+2
DEF SIX

IPHl\M BSS 5
;.;rx DEC 6

rarameter buffer
Prograill termination code

The FOPTPA~ calling sequence is:

DIMENSION IPRAV(5)

CALL PRTN(IPFAM)
CALL L:z~~c (6)

~he PRTM routine passes four parameters and does not clear the wait flag.
v.;hen the parar;·1ete:rs are recovered with KMPl\F, the first parameter is

.r-,,,

'c/

0

0

i;FF *+2

in-~!l. .DUCT (Indirect Address Subroutine)

rir1d2 an in<lirect <'t(Jr:;ress within the calling program's map.

Th0 l\ss.::::1«_ily Language callin•J sequence is:

\", ... ,.1

• Ul·\... l

.GRCT
r.:LF l\DDr:
-return-

~he routin~ returnE with the A-Register set to the direct address of
ADU<, the L-H.e<Jister unultered, and the !:-Register lost. This routine
is usually used wnen ADDR is external.

This routine tests the creak flag an0 clears it if it is set.

The· FCF.Ti\f\i c.:tll i nCJ sequence is:

IF (IFBF~((IDr·~Y)) 10, 20

·where:

10 = brund: taken if the break flag is S<?t. 'rt·e flag will be
cleareC:.

20 = branch taken if the break flag is not set.

ID~Y must oe use~ to inform the FORTRA~ compiler that an external
function is being called.

The Assei·'1bly LantJU...l'Je calling sequence is:

Jsr:. IFEPr:
DEF *+l
-return-

The A-ReJist~r will = -1 if the break flag is set and =O if not. The

;0-1~

break flay will alwcys he clcareci if set.

Finds the address of the first word of available memory for a given ID
e:.eg:nent.

The Assemoly Lan~uase calling sequence is:

LDA IDSEG
JSB cm.c..l\
-return-

The ID se9ment address is loaded into the A-Register and the routine
is called. On return the A-Register contains the first word of
available memory (MEM2 from ID). Note that on entry into a segment,
the A-Register contains the segment's ID segment address.

COR.B finds the high address +l (first word of available memory) for
main programs. This address is the same as that returned by COR.A for
non-segmented programs. For segmented programs, this address is the
high address + 1 of the largest segment. The ID segment address of only
a main program must be passed to COR.B in the A-register.

The Assembly Language calling sequence is:

EXT COR.B
LD!1 IDS EG
.. Tse» COR. s
-return-

ID segment address of a main program

Upon return:

A-register= 0 if normal return
= -1 if an error return, the B register is meaningless

B-register = high a~dress of main program (if it is not segmented)
or the largest segment +l.

COR.B makes an error return if the ID segment address passed to it is
that of ashort ID segment.

10-24. u:rcrr (F:etrieve Program's IO Segment l-\ddress)

:>ctrh~ves the ID s(?·31r.;_~nt ad6ress of a specified program.

The FOi·'l'i,7\>i C.J1lilVJ S<?quenc•? lS:

If)f"EC = r;JGr:1~{L,i!\"1 'IC)

'...:here:

ICSCG will oe set ~Y the suoroutine tc the referenced program s
IC se:J.rent or to 0 if the program does not exist.

j.

0

~~~!' 1s a three-word (five-character) buffer with the program name 
in it. 

T :' i) ' ) w 

r· . ., .. ' 
'' • t 

IDGE:T 
*+2 

r '\.'.!'' 
;. 'J- .... , 1JJ Set aside thr~e words of sto·age 

containing ASCII equivalent of 
I) EOCL>b. 

On return, the follo1.viny registers are set as indicated: 

:\-re3istcr = Il~ seument address, or 0 if not found 

E-register -- 0 iE rrorJr<J.G founc"i, or 1 if not found 

'.)-req ister = 0 

10- 2 5. Tt :v /\ L (Current Ti me) 

Reforrats and returns the ti~0 in milliseconds, seconds, minutes, 
hours, 3nf the day. 

C.'\ LL T !•:Vi\ L ( I Ti' , I Tr-iJ\R) 

where: 

ITi; is the two-w)[d negative time in tens of milliseconds. This 
Jou0le-wor1J integer can be ootained from the system entry 
?oint $TIME or the time values in the ID segment. 

ITMA~ is a f ive-w0rd array to receive the time. The array is set 
ui;:. as: 

tens of milliseconds 
seconrl s 
r:ii nu tes 
hours 
current system day of year (not related to call values) 

10-26. SETST (recover Parameter String) 

The routine CETRT recovers the parameter string from a program's 
cor:-,mancl str int] stora13e area. 'l'he parcirneter string is defined as all 
the chQracters following the second comma in the command string (third 
cor:1ma if the first raran1eter is NO). 



The !\ssemoly Lan<JU.JJC callin') se~1uence is: 

EXT G:3'l'S'I' 

DEF rrn FF: 
DCF I-1Ut'L 
DLG' ILOC 
return point 

I3UFF PSS n 
IBUFL DEC n {or -2n) 
ILOG lJOP 

Call to subroutine 
return address 
Duffer Location 
3uffer Length 
Transmission Log 
Continue execution 

3uf fer of n words 
Same n~ words {+) or characters (-) 
Error information 

Upon return, ILOG contains a positive integer giving the number of woras 
(or characters) transrnitte~. The A- and B-Registers may be modified by 

GCTST. Note that if nMPAH is used, it roust be called before GETST. 

When an acid nuillber of characters is specified, an extra space is 
transmitted in the riJht half of the last word. 

This subroutine performs a function similar to an EXEC 14 call. 

10-27. IFTTY {Logical Unit is or is Not Interactive) 

Ascertains whether a 100ical unit is interactive or not. 

The calling se~uence in Assembly Language is: 

EXT IFTT'Y 
LlSS IFTTY 
DEF HTN 
DEF' LU 

RTN return point 
Logical unit being tested 

'l'he FORrl'Ht'\tl IV calling scc.Juence is: 

I'lT=IF'TTY(LU) 

where LU is the logical unit being tested. 

Cpon return: 

INT=A-register = -1 if logical unit LU is interactive 
= 0 if logical unit LU is non-interactive 

I = upper byte is the driver type (word 5 of EQT 
n-register< t~Gle entry bits 8-13) 

\ = lower byte is the subchannel number 

10-14 



10-28. LOGLU (I<eturns LU of Terminal that Scheduled Progr<lm) 

LO',~LJ is ..J suoroutine that returns the lcx3ical unit number (LU) of the c·,. terminal dt which th<? currently cxecutiffJ prO<]ram was scheduled. 

0 

c 

'rhe call in:J .::~u1uence in Assec::LJly Langua'Je is: 

CXl' LUCJLU 
,J;"J Loz;L;..J 
DL:F F'l':'! 
D t:: F I U U i·'lY 

i·<T,,; return point 

The calling sequence in RTE rortran IV is: 

LU=LCGLU ( rnu:r·n 

Upon return: 

LU=T-1-regist""~r =LU nu:nber of device at whict pro·Jram was scheduled 

G-reg is ter = ASCII LU nunilier 

= reserved and f'.iodiE ied oy the subroutine 

Comments: 

LOGLU will return the LU nu~oer of the console from which the currently 
executin0 rro3ram was scheduled. This LU number is passed down from the 
Pather cirogra:n to tbE: Son f)rogram when one program schedules another 
proyrarn for Rxecution. If the~ proc3ram w<:is scheduled by interrupt or 
from the time list, the scheduling LU will be LU 1, the system console. 

10-29 . • EMAP, .E::IO, ;'MAP, Er'AS'r (Extended i-:emory Area (EMA))s 

·rhe subroutines .rriA?, .Er-:ro, I1i'-'i\P, and EMAST are system library 
suLroutines that handle Extende0 Memory Areas. A complete description 
of these subroutines is provided in the Memory Management section of 
th is man ua 1. 



0 

! C,' 
! 

l'j 
fa 

1,,: 

I '~ ~ 



0 

0 

----------------------------------------------------------------------+ I I SECTION XI I 
I 1----------------------~~~---~I 
I I DBUGR INTERACTIVE DEBUGGING I 
+---------------------------------------------------------------------+ 

DDUGP is a Hewlett-Packard utility subroutine used to interactively 
ch8ck programs for logical errors during execution. Us?ng DBUGR, the 
user may examine and modify memory, examine and modify registers, set a 
oreakpoint and trace instruction execution. In the follc1ing discussion, 
only the mos.t frequently used DBUG functions are described: refer to 
the DBUGR ~eference Manual (92067-90005) for the co~plete range of 
G3UGR capabilities. 

11-1. CALLING DBUGR 

D~UGR can be automatically appended to a program at load time by calling 
the LOADR with the following command parameters: 

*RU,LOADR,,filename,,DB 

wllE:re DB instructs the LOADR to append DBUGR onto the relocatable code 
in file filename. Refer to the LOADR section in this manual for more 
information on the LOADR parameters. This command will also handle 
segmented programs, though there are some special procedures involving 
break~oints in segmented programs. These are explained in the section 
on ore.:ikpcints. 

V·ihen a program with ;3ppended DBUGE is subsequently run with the 
command: 

*HlJ ,pro.3rarn 

DCUG~ will be entered and the user will be able to give any legal DBUGR 
corrirnand. DBUGR calls the system subroutine LOGLU to obtain the logical 
unit from which the program was scheduled. It then uses this logical 
unit for all I/O. Refer to the Multi-Terminal Monitor section in this 
manual for more information. 

DGUGR is also callable from Assembly Language and FORTRAN programs. 
The Assembly Language calling sequence is: 

~•A:'; i_JrO'] 

EX'l' DBUGR 

JSG DJJUGR 
DEF E'rN 
01.::F LU 

RT~ -return point-

call to DBUGR 
address of return point 
optional pointer to LU number 

/(~! 



LU BSS 1 interactive LU DBUGR will use for I/O 

'l'he FOR'l'RAN calling sequence is: 

CALL DBUGR (LU) 

or 

CALL DBUGR 

according to whether the optional LU is passed in as a par1meter. 

In either Assembly Language or FORTI\AN, if the optional LU ~snot 
passed in, DBUGR calls the system library subroutine LOGLU to determine 
the interactive .LU to use for I/O. LOGLU returns to DBUGR the LU number 
of the user's interactive log device. If none exists, LU number 1 is 
returned specifying that the system console is to be used. 

11-2. ENTERING DBUGR 

Khen DEUGR is entered, it prints the following message on the 
appropric;te LU: 

START DBUGR 

The user is now conversing with DBUGR and any legal command may be 
entered. 

All DBUGR operations are conducted at the assembly language level. A 
load map of the program is essential. An assembly language listing of 
the program is also necessary if debugging a program written in a high 
level language. 

11-3. DBUGR COMMANDS 

The following paragraphs give a concise explanation of the main 
features of DBUGR. Throughout these paragraphs, the conventions 
described in Table 11-1 apply. 

Table 11-1. DBUGR command Conventions 

-----------------------------------------------------------------! 
I I I 
I SYMBCL I MEANING I 
1----------------------------------------------------------------1 
I I I 
I \ I Escape key (altmode key) I 
I I I 

!----------------------------------------------------------------! 
I I I 
I I current position of the cursor I 
I I I 
l-----~----------------------------------------------------------1 

JI-~ 

"-""· (• 

'-/' 



0 

0 

I 
[CJ-:] carrias;e return I 

I I I 
1----------------------------------------------------------------1 
I I I 
I [LF] I line fee<J (control J on some terminals) I 
I I I 
1----------------------------------------------------------------1 I I I 
I it~lics I words onJ numbers to be supplied by the user I 
I I I 
1-----------------------------------------------------------------

11-4. DEUC.t\ '.·iOD23 

DBUGR operates in one of four modes - symbolic, constant,ASCII, or 
aodresE:. DDlJGl{ use-s symbolic: mode when it is first entered. 

In sym0clic mode, the contents of memory are inverse-assembled and 
displayed as an opcode and a memory reference (if it is a memory 
reference instruction). The user types "escape S" to enter symbolic 
mode as follows: 

\S 

In constant n~de, the contents of memory are displayed as octal 
constants. The user tyres "escape C" to enter constant mode as follows: 

\C 

In ASCII ~ode, the contents of memory are displayed as two ASCII 
characters. The user types "escape H" to enter ASCII mode as follows: 

\H 

In address modE·, the contents of memory are displayed as an offset to 
a previously cef ined label. D3UGR will use any label that precedes the 
the contents by less than octal 11, or any single character label 
otherwise. The user types "escape A" to enter address mode as follows: 

\A 

~hen D3~GR is in a particular mode, the mode can be temporarily switched 
when examining a memory location. The contents of the memory location 
will then be iLlmeaiately displayed again in the temporary mode. With 
the cursor still on the displayed line of the memory location being 
examinea, type one of the following symbols to temporarily enter the 
particular mode desired: 

exclamation point - temporary symbolic mode 

= equals sign - temporary constant mode 

single quote - temporary ASCII mode 

//~} 



underscore - temporary address mode 

11-5. EXPIU:ss IONS Al!D TEFl'ff 

Expressions are used to specify memory locations to be examined. An 
expression consists of one or more terms combined with operators as in 
the following example: 

AA+lO 

A term may be a previously defined symbol, a number, or certain special 
symbols preceded by an escap~ key (derioted in the text by a reverse 
slash (\)). The following examples are all terms: 

ABC 
SYMBOL 
-32768 
1005 
\M 

Legal operators are the following: 

+ 
blank 

plus operator 
alternate plus operator 
suotract operator 
comma - inclusive or 

11-5. SETTING A LABEL 

DGUGR can reference memory locations relative to a label. A label 
consists of one to six alphanuffieric characters, the first of which must 
be alphaoetic. To equate a label to a particular memory location, the 
user must first examine the memory location. After DBUGR has displayed 
the contents of the memory location, the label is entered followed by 
a colon(:). DBUGR then equates the label with the examined address. 
For example, the label S is equated with memory location 50234 as 
follows: 

50 2 3 4/ LDA 50277 (.' . . _) . [CP} 

Location 50237 may now be referenced by typing: 

S+3/ 

11-6. EXAMINE MEMORY 

To examine the contents of a memory location, simply type in an 
expression that evaluates to the memory location to be examined 
followed by a delimiting slash (/). For example, one way to examine 
memory location 50234 is: 

50232+2/ 

11-1 
'pil'f 

,-.. 
~!. 



() 

DBUGR will print cut on the same line the contents of the specified 
me:r1ory location in either octc.l or symbolic form. The example above 
might clisplay: 

50232+2/ LDA 50277 

informing the user that location 50234 contains a LDA instruction 
referencing memory location 50277. 

To examine the next sequential memory location, simply press the line 
feed (LF) key or control J. Continuing the above example, an LF is used 
to display the contents of memory location 50235: 

50232+2/ 
50235/ 

LDA 50277 
ADA 50400 

11-7. ~ODIFY MEMORY 

[LF] 

To modify the contents of a memory location, the user must first open 
the memory location by examining it. After DBUGR displays the contents 
of the ~emery location, it is ready to insert new contents into the 
memory location examined. If an assembly language instruction is now 
typed in, DBUGP will assemble it and insert it into the memory location. 
If an octal constant is entered, DGOGR will insert it directly into the 
merrory location. For example, to modify the contents of location 50234: 

50234/ LDl\ 

50 234/ CCA 

5G2 . .3c>/ l\Di-\ 

l.:()'!)t:/ 
_) '· .J _) 100 

50 277 

1) 0 ·1 0 Cl 

CCA 

[ Lf'] 

Display location 50234, change to 
CCJ\ instruction 

Display new contents of 50234, use 
line feed to examine 50235 

100 Change contents of 50235 to 100 octal 

Display new contents of location 50235 

ThE A and ~ registers are addressed as memory locations 0 and 1, 
respectively. The overflow register, the extend register, and the X and 
Y registers require special procedures for examination. 

i'.F.:ino r y 1 oc;~ t ion :i+ 1 may be thought c·f as cont a in ing the overflow 
register and the extena register, each of which is one bit in length. 
These bits may be examined by typing "escape M+l/" as follows: 

\H+l/ 

DBUGR will respond an the same line with an octal digit between O arid 4 
that is the status word. This octal digit may be broken down into two 
binary bits (~0) which are interpreted as follows: 

E (oit 1 of \M+l) - 0 extend register is clear 
1 extend register is set 

11- r 



o (bit O of \M+l) = O overflow register is clear 
1 overflow register is set 

The user way modify these bits immediately after examining them by 
typing in the new octal digit to replace the status word. 

Memory locations M+3 and M+4 may be thought of as containing the X and 
Y registers. The x-register may be examined by typing "escape M+3/" as 
fol lows: 

\f'+3/ 

The Y-register may be examined by typing "escape M+4/" as follows: 

\n+4/ 

DBUGR ;rints out the contents of the x or Y registers on the same line. 
They may then be modified if desired. Note that the X and Y registers 
are a full 16 bits wide. For example: 

0/ 000010 [CR] user types 0/ to examine A-register 

\:l+l/ 7 6 [CH] user clears the overflow register 

\~H3/ 677 0 [CR] examine and clear the x-reg ister 

\M+4/ 50 -l[Cfl] change the Y-reg ister from octal 
50 to 177777 (two 

, 
complement of -1) s 

11-9. E~CCUTE PROCFAM 

To proceed with execution of the user program when DBUGR has control, 
the user types "escare P": 

\P 

Upon initial entry to DdUGR, execution proceeds at the transfer 
address of the program. When a breakpoint is encountered, execution 
res u;aes at the instruct ion where the breakpoint was set. 

When proceeding froill a breakpoint, the user has the option of typing: 

n\P 

DBUGR will then execute the breakpoint octal n times before it will 
break at it. 

If the proceed instruction is given and there is no breakpoint in the 
prog ra.n, DL:UGH dist:Jlays the following message before control returns 
to the executing program: 

E:-JD DIHJ3R 

The user may instruct DBUGR where to resume execution of the program by 

11--C 

/('-"' .. 

"~ 



0 

0 

.---~----·--

typing the address of the instruction to be executed, followed by 
"escape G". For example, to resume program execution at location 50234, 
type: 

5U234\G 

11-10. bfE~KPOI~TS 

When an instruction with a creak~oint is encountered, control is 
transferred to DBUGR immediately prior to the execution of the 
instruction with the ~reakpoint. DBUGR displays information about the 
state of the ~achine, and the user may then enter any lE~al DBUGR 
command. 

A breakpoint is set at an address by entering the octal address 
followed by "escape S". For example, to set a breakpoint at 50234, 
type: 

50234\B 

Only one breakpoint is allowed at a time. 

A breakpoint that has been set is cleared either by resetting it to a 
new memory location, or oy typing "escape B" at the beginning of a line: 

\D 

If the executing program reaches a breakpoint, control returns to DBUGR. 
DBU.:;l'{ then displays the following information about the state of the 
1nachilie: 

ADDH~SS(INSTRUCTION) A-REG B-REG X-REG Y-REG STATUS -

where: 

ADDRESS is the address of the breakpoint 

I~STRUCTION is the contents of the ADDRESS 

A-REG,B-REG,X-REG,Y-RCG are the contents of the registers 

STA':'US is the status of the interrupt, extend, and overflow bits 
as explained in the section on examining registers 

For example: 

50 2 34\B set breakpoint at 50234 

\P proceed with execution 

50234(LDA 50277) 77 11 177776 3 3 \P 
breakpoint information displayed, user types \P to proceed 

50234(LDA 50277) 77 0 177776 3 3 [CR] 
breakpoint encountered again; B-REG has changed to O 

//-7 



1/ 0 

\P 

ll[CH] change B-REG to octal 11 

proceed 

~hen a segmented pro9ram has been loaded with the command: 

*RU,L0ADR,,filenarne,,DD 

use the following commands to control the setting of breaknoints within 
seg;nents: 

l"A)f:G break at entry to all segments 

["N]E13 break at entry to no segments 

break at entry to seg 

To set a breakpoint within a segment, enter the following command: 

addr[seg]EB 

where: 

addr is the address within the segment at which the breakpoint 
is set. 

seg is the name of the segment in which the breakpoint is set. 

The breakpoint will be set when the segment is loaded into memory. 
Therefore the current breakpoint will remain in effect until the 
segment is loaded. If seg is in memory at the time that the segment 
break command is entered, the current breakpoint is cleared immediately. 

When a segment load clears a breakpoint, DBUGR will break at the start 
of the new segment and print the following message: 

SEGMENT seg BUBAK 
--BRLAKPOIN~ I~FORMATION--

addr BREAKPOINT REMOVED 

where: 

seg is the naroe of the new segment 

BREAKPOINT INFORMATION is the normal breakpoint information 

aadr is the address within the old segment at which the 
breakpoint was removed 

i(-~\ 

,~, 

DBUGR does not check the validity of the segment name. The segment name (-~ 
rray not be~1in with the two characters quote A ("A) or quote N ("N). . _.,/ 
'Ihis is to avoid confusion in setting the breaks in segment entry points 

//-~ 



0 

0 

as expl~ined above. 

DDUGEt will not Dllow ureQkpoints below the memory protect fence or 
outside the user's partition. An atteLlpt to set such a breakpoint will 
cause a i1t(?inory protect ("m>?") or a dyna:11ic m.:ipping ("DM?") error to be 
printed. 

There are certain l~gal instructions that DBUGR c2nnot execute without 
Ci1usinq ,(H?i;;ory prntect U<P) or dynamic mapping (DM) errors. The 
instructions "JSB EXEC" and "JSB $LIER" are two typical examples. When 
such a ~ituaticn arises, DPUGR will not allow execution of the 
in::::truction, and r;rints out a message of "OM?" or "MP?" depending on 
the error that execution of the instruction would cause. To execute the 
instruction, simply move the break~oint and proceed. 

11-11. Thl\CING 

0hen DbJGR has control, the instructions of a program can be traced 
(sinJle-~teppcd) by typing "escape T". After each instruction is 
e;u:cL·tcd, the sam(' informotion about the state of the machine will be 
display~6 as after a 0reakpcint. For example: 

set a breakpoint at 50234 

\F proceed 

502J4(LDA 50277} 77 11 177776 3 7 \T 
breakpoint information displayed, start trace 

50235(ADA 50101} 100 11 177776 3 7 \T 
breakpoint irformation displayed, continue trace 

50236(LDB 50282} 107 11 177776 3 7 

A srccif ied num0er of instructions can also be traced by specifying an 
octal numner before the trace command. Type: 

n\T 

to trace octal n instructions and halt. 

·;.ihen D,.:.UGh atte1q1ts tc trace an instruction that will cause a memory 
protect or dynamic ffiapping violation, an "MP?" or "DM?" error will be 
printed. If the instruction is legal, put a breakpoint on the 
instruction to which control will return and then proceed. 

Note: Privileget routine~ cannot be traced. 

11-12. DBUGR ERROR M~SSAGES 



DEUGR recognizes certain errors and prints an error message. Table 
11-2 lists the errors and their meanings. 

'l'able 11-2. !JBUGR Error Mes sag es 

+---------------------------------------------------------------------+ 
I 

Error I ~eaning . 
----------------------------------------------·---~-----------------~-' 

X The user pressed the RUBOUT key to erase a typing 
mistake DBUGR ignores any prior partial express:on. 

---------------------------------------------------------------------1 I 
? I 'I'he user entered an unassigned control. Any prior I 

I expression is ignored. Input error in special mode. I 
---------------------------------------------------------------------! 

I I 
U I The symbol last used is undefined, and a definition is I 

I I required. The entire preceding expression is ignored. I 
!-------------~-------------------------------------------------------! 
I I I 
I P? I Page error. A memory reference instruction referenced an I 
I I address not in the current page or the base page. The I 
I I expression is ignored. DBUGR's conception of the "current I 
I I page" can be changed by examining any location in the I 
I I desired page. I 

0 

:--------,------------------------------------------------------------\ ~-) 
I MP? I There is a breakpoint or trace set for an instruction 
I I that if executed by DBUGR would cause a memory-protect 
I I violation to occur. Move the breakpoint and proceed. 
1---------------------------------------------------------------------
1 l 
I IN? I There is a break~oint or trace set for an instruction 
I I from which DBUGR cannot proceed. Move the breakpoint 
I I and proceed. 
1---------------------------------------------------------------------
1 I 
I DM? I DBUGR is attempting to access a memory location that is 
I I not within the user's partition. . 

1---------------------------------------------------------------------
TP? OBUGR is attempting to overload, trace, or set a 

oreakpoint within DBUGR. 

+-------------~------------------~-----------------~------------------+ 

11-13. DBUGR EXAMPLE 

The following example demonstrates a typical session with DBUGR. 

*RU,PROG 

START DBUGR 

i 

Ct\ i 
/ '1 

i 



(',, I 
.. 

0 

16002/ CCA M: 

23456/ NOP S: 

S+S\B 

\P 

SEGMENT SEGl BREAK 
s (0) 17542 5608 17702 22 6 
S+S BREAKPOINT REMOVED 

S+5[SEG2]\D 

\P 

SEGMENT SEG2 BRSA~ 
S+5 (0) 17542 5606 45 22 1 

examine location 16002 in the main 
program: equate M 
examine location 23456 in the 
segment: equate S 
use escape B to set a breakpoint 
in the segment 
proceed 

since a breakpoint was removed, 
a break is executed upon entry 
to the segment 

set a breakpoint within SEG2 

proceed 

M+50\E set a breakpoint within the main 

c+lO [.-.r,''"'4] \r> ..J i:J i..r•.1 .w set a future breakpoint in SEG4 

\P proceed 

M+SO (~DA M+700) 0 2234 54 72 5 break in main 

M 700/ .1\LF,ALP = 1727 

!-'.+701/ 0 [CB] 

M+700/ ALF,CLE,SLA,ALF [CR] 

2\T 

1777[LF] examine location M+700, temporary 
octal display,change contents to 177' 

next location automatically displayed 

re-examine location M+700 

tr&ce two instructions 

:1;+50 (LDA >1+700) O 2234 54 72 5 breakpoint instruction is executed 

l'i+51 (ST/\ «H701) 1777 223·1 54 72 5 \P next instruction is 

s (0) 17445 5562 7422 3322 5 
r;+so l.WF:l-1.KPOINT REl"CNED 

\P 

executed; proceed with execution 

a segment breakpoint was removed, so 
break upon entry to the segment 

S+lO (JSL 112,I) 24 0 177777 55 6 

["H] \J'.. clear segment breakpoint 

\
T) 
l. proceed c END DBUGF 





0 

c 

+-------------------------------------1--------------------------------~-I . I SECTION (!> I 
I . !------------------------------- -I 
I I MEMORY AND I/O RECONFIGURATION I 
+-------------------------------------!-----------~----------------------+ 

'l'he ability to reconfigure the I/O an<1 me1nory assignments during system 
boot-up without going throuJh a complete, new system generation is a 
feature of the RTE-IV operating system. The reconfiguration option is 
ex€rcised oy first settinJ bit 5 of the S-register durinq system 
boot-up. Other s-register sattings (described below) poslJone completion 
of the ooot-u? ~recess ~na schedule an interactive Conf igurator program 
that performs the desired I/0 and/or memory reconfiguration. 

I/O reconfiguration is f?erformed by user resassignment of I/O octal select 
codes to devices other than those assigned at system generation time. 

Memory reconf iguratior includes changing the size of the System 
Av.:i il able :.le.nor y ( SAr·'.) extension, re defining user partitions, modifying 
progrom page requirements and assigning programs to partitions. Bad 
pages in rne~ory (pages with parity errors) can be avoided by using the 
Conf igurator to redefine the SAM extension and user partitions around the 
ba0 page~. 

I/O and ~emery reconfigurations {either or both) can be made permanent by 
changing the system on the disc. 

1J--
(j-l. ::iCHEDULING THE co:~l·'IGURATOH FRCX1 ROM 

The disc.Boot Extension can be loaded into memory from the disc using 
either the Disc Loader HOM or the Bootstrap Loader. The example given 
below assumes the system boot-up will be performed using the 12992B 
RPL-compatible 7905/7906/7920 Disc Loader ROM, and that the Boot 
Extension residea on physical track O, sector 0 of the system disc. 

Begin the bcot-uri oy performing the following steps: 

1. Select tbe s-reg i st er for a is play on the computer f rent panel. 

2. Press CLEAR DISPLAY 

3. Set the S-register bits as follows: 

Lits 

0-2 

3-4 

5 

Lnter 

Surface numoer of the disc where the 
RTE-IV system subchannel starts (surface 
numbers start at 0). 

O (reserved). 

1 to specify reconfiguration is to be 



6-11 

12-13 

14-15 

!performed. A HLT 77B will be issued at 
the end of the load. 

Octal select code of the disc. 

1 to indicate a manual boot from 
the s-register. 

Loarler RO~ selection (number of the 
ROM cell containing the Disc Boot 
Loader) . 

4. Press PRESET, IBL and RUN to load the contents of the Disc Loader 
PO~. A successful load will be indicated when the HLT 77B occurs. 

5. following the HL'I' 77B, set the S-register as follows: 

Bits 

0-5 

6-11 

15 

Enter 

System console octal select code if either 
the select code or device type is different 
fro~ generation specification; otherwise, O. 

System disc octal select code if different 
from generation specification; otherwise, O. 

1 to specify reconfiguration of I/O and/or 
memory assignments. 

6. Press FUN to perform reconfiguration processes. 

,q.-
)5'-2. BOO'rSTPl\P LOADER 

If the 3ootstrap Loader is used to load the Boot Extension into memory, 
set the s-register as decribed above in Step 5 when the HLT 778 occurs. 

Set the P-register to 100 octal and press RUN to perform reconfiguration. 

Th~ Conf igurator works interactively with the user to make specified 
chan<JeS to the current I/O <:.tnd rne,11ory configurations. Reconfiguration is 
performed in accordance with user responses to a series of Conf igurator 
promrts and queries output on the system console. When reconfiguration 
is co,npleted, the Conf igurator queries whether it is to be made permanent. 
Boot-up of the RTE-IV system is then completed in accordance with the 
user's reply. 

The Conf igurator is divided into two programs: $CNFG and $CNFX. $CNFG is 
a module located at the end of the system modules. After configuration has 

./ 

I, 



0 

c 

co:nrleted, the rneinory ~Jrea occupied by $CNFG is allocated to SAM. $CNFX 
is used tc reconfir]ure :ne;:1ory and is a 1rype 3 disc resident program, 
nrou9ht into the user partition area Crom 11isc by the $CNFG program. 
$CNFG cbanr1es $C.\Jf'~:'s pro1jr.::i~.1 n.::iff1 E' to 11 ,,,,, 11 and therefore $CNFX cannot 
oe executed on-line. 

The ConfiJurator 1:~rc,JrcL" first checks the contents of the S-register. If 
t.it 15 is set, I/U and ii1C:,nory reconfiguration are performed. The system 
is reconfi~ured in acc0rtiance with any specified new disc and console 
select coCcs. The Conf igurator then loads the driver partitions, memory 
resident liorury and i11emory resident programs (if they '3re defined for the 
systeM) into memory. 

If bit l'J is not set in the S-register, control is given to the operating 
syste~n. 

Peconf:i;JLlration is performed interactively by using the system console and 
list device. Note that the standard ~ethod of getting system attention by 
pressing any key on the system console will not work during reconfiguration, 
since the system is not yet completely initialized. The bootup procedure 
must therefore be restarted if any equipment I/0 errors occur (e.g., a 
device not ready or a parity error). 

ri-
6-4. COKFIGU~ATOR HALTS AND ERROR MESSAGES 

Various.halts ana Configurator error messages may occur during system 
ooot-up or reconfiguration that require corrective action by the 
operator. fJalts are displayed on the computer front panel. System 
boot-up and configuration HLTs, their meaning and required operator 
action are itemized in Table 9-1 at the end of this section. 

Whenever the user enters an invalid response to a Conf igurator prompt 
or query, the Conf igurator will issue an error message in the form 

CONfIG EHH xx 

where xx is a Conf igurator error code as defined in Table 9-2 at the 
end of this section. Following the error message, the Conf igurator will 
usually repeat the prompt or query and the user need only enter the correct 
correct response. In the reconfiguration procedures given below, only error 
recovery procedures requiring further action will be described in text. 

()./I 
,,,-5. RECONFIGURATION PROCEDURES 

The Conf igurator begins the reconfiguration process by first displaying 
the message 

START RECONFIGURATION 

on the system console, and followed by a set of queries to which the 
user enters responses on the console keyboard. The Conf igurator will 
redisplay a query if the user response is not what was expected. The 
conf igurator next displays the query 

LIST DEVICE LU#? 



Enter a Logical Unit number to which the Configurator can direct 
listings or press the space bar and RETURN key on the console keyboard 
for the default case, which is the system console. Entering a list device 
other than the system console causes the Conf igurator to display the 
following message: 

LIST DEVICE SELECT CODE#? 

Enter a list device select code or press the space bar and RETURN key for 
the default case, where the default is the list device selPct code 
configured into the system. 

If the entered list device was not the system console, the Configurator 
displays the query 

EC.tiO . .? (YES/NO) 

.,--1' 

."-J 

Enter YBS to have all output to the list device echoed on the system console. 

,~-
.J\-6. I/O Ht;CONFIGUHI1Tlm'i STEPS 

1/0 reconfiguration is performed by assigning the Interrupt Table and trap 
cell values for the current select code to the corresponding entries for 
the new select code. 

The Conf igurator first prompts for 1/0 reconfiguration by displaying a 
list of the current I/O configuration, beginning with octal select code 10 
for the operating system, in the format: 

CURRENT I/O CONFIGURATION: 

/ eQTyy \ /PNAME \ 
SELECT CODE xx = TBG ,TYPE nn 

\ PRIV I/O/ \nnnnnn/ 

where: 

xx = octal select code number ranging from 10 to 77. 

EQTyy = EQT entry number 

TBG = Time Base Generator 

PHIV I/O = privileged I/O card 

TYPE nn = equipment type code 

PN l\i.1!E. = name of program to be automatically scheduled 

nnnnnn = absolute instruction to be executed upon interrupt~ for 
example, a JSB LINK,! where LINK contains the entry 
point address. 

The CURRENT I/O CONFIGURATION data is automatically displayed to provide 



( 

0 

-- -·---··"'--~ --" ----------·------·---~------ -- -----"----<---.,------'----~-· --·-

a i)csis 0n whicn to noke 6ecisions re9arding reconfiguration. If the 
system Jisc, syste~ console or the list device were assigned to a new 
select code, they have already been configured in memory and must NOT be 
reconfigured ciuring I/O reconfiguration. 

Follo~ing display of the current configuration, the Configurator then 
disrlays the query 

I/C RECC~FIGURATIO~?(YES/NO) 

Enter NO to 0ypass I/O reconfiguration. The Configurator will skip all 
further I/~ reconfiguration prompts and begin prompting for memory 
configuration entries (see below). 

Enter YES if I/O is tc be reconfigured. The Configurator program will 
then display the message 

CURRENT SELECT CODE#,NEW SELECT CODF#?(/E TO END) 

1·1herc the hyphen (-) prompts entry of tbe current and nev; select code 
pairs. The current and ne~ select codes response must be in octal and 
must vary between 10 and 77 octal, in the form 

X>~ ,yy 

followed by a carriage return, where xx is the current select code number 
and jy is the new select code nuxoer. The Configurator's hyphen prompt 
will be repeated after each successful entry until a /E is entered to 
terminate the list. 

A privileged I/O card's assignment can be re~oved by entering the current 
select code number of the privileged I/O card followed oy zero, in the 
f orrn 

xx,O 

as a special case, where select code 0 is only use~ to remove the 
privile0ed I/O card~s assignment. A new value of 0 will be assigned to 
the privileged I/O card. 

+---------------------------------------+ 
CAUTION 

A privileged driver will not work 
correctly if the privileged I/O card 
has been removed from the system. 

+---------------------------------------+ 

A ;rivilegcd I/O card can be added to a system that does not have one 
uy cr~terin<J the specification 

xx,PI 



where xx is the specified select code in octal, and PI assigns the 
privileged I/0 card to select code xx. 

If a /R is entered, I/O reconfiguration is restarted with display of the 
CURRENT SELECT CODE#, NEW SELECT CODE#?(/E TO END) query. 

If the current select code number entry is repeated in more than one 
response, the last entry is taken as valid and the previous entries are 
ignored. 

Following entry of a /E to terminate select code changes, the Configurator 
displays the query 

NEW I/O CONFIGURATION PF:RMANENT?(YES/NO) 

Enter YES to modify the system on the disc to the new I/O configuration. 
Enter r-.~o otherwise. If it is desirable to restart I/O reconfiguration for 
any reason, enter the request 

/R 

and I/O reconfiguration will restart by another display of the list 

CURREN'I' I/O .RECONFIGURATION: 

'I'he list will contain what the I/O configuration wss changed to during 
the reconfiguration just completed. 

+----------------------------------------------+ 
I I 
I CAUTIONS I 
I I 
I It is strcngly recommended that the system I 
I subchannel of the disc be backed up before I 
I making I/O reconfiguration permanent. I 
I I 
I If a select code has been given a new I 
I assignment and its current I/O device I 
I has not been reassigned, the I/O device I 
I cannot be added to the system at a later I 
I date if the new I/O configuration is made I 
I permanent. I 
I I 
I If a device has multiple select codes, I 
I make sure that all select codes are moved I 
I and kept in the same relative order. I 
I I 
I Reassigning some devices to empty I/O I 
I slots may cause unexpected results. I 
I I 
+----------------------------------------------+ 

I~ 
vi 

(~I 

0 



c 

0 

0 

f)"' 
/f-7. HE'.,~JPY HECot~FIGURATION PROCCDURCS 

After the I/O reconfiguration phase is either bypassed or terminated, 
the Conf igurator \.'ill display the following statement and query: 

CURRENT PI-IYSICAL MEM SIZE: xxxx PAGES 
MEM RECONFIGURATION?(YES/NO) 

Enter NO if memory reconf iguraticn is not desired. The Conf igurator 
will then transfer control to the operating system after displaying 
the message 

RECONFIGURATION COMPLETED 

Enter YES if memory is to be reconfigured. The Conf igurator will then 
display the query 

PHYSICAL MEM SIZE?(#PAGES) 

Enter the desired total number of memory pages, between 48 and 1024 
(dee imal). 

,.,..,, 
lf-8. EXCLUDING BAD PAGES 

The Configurator program can be used to redefine.the SAM extension and 
user partitions to exclude any bad pages within these areas. Each user 
partition must be a contiguous block of memory; therefore, user partitions 
must be defined on blocks of memory between the bad pages. Ban pages in 
the system area, driver partitions an<l the memory resident partition 
cannot be avoided. 

The Conf igurator displays the query 

DEFINE BAn PAGES BEGINNING AT PAGE xxxx (/E TO END) 

where the hyphen {-) pro~pts for the decimal number of a bad memory page. 
The hyphen is repeated after acceptance of each entry until a /E or 100 
b::id 2aJe numbers are entered, terminating the list. ( The Configurator 
\1ill uccept up to 100 bad mernory pa3e entries.) The bad page specific.ations 
entered can range f row xx xx {starting at page 0) to the maximum page number 
in physiczil :ae:nory and ;nust be entered in an increasing order. 

If /R is entered in reponse to the hyphen prompt, the Conf igurator will 
redisplay the the ~uert 

DEFINE GAD PAGES DEGINNING AT PAGE xxxx (/E TO END) 

and the entire list of bad pages must be reentered • 

~hen a /E is entered either to terminate bad page entries or bypass the 
entire phas2, the Confi']urator displays the following information: 

CURRSNT SIZE OF SAM 
DEFAULT: xxxxx WORDS 



SXTENSION: yy PA3ES 
SAM EXTENSION STARTS AT PHYSICAL PAGE xx 
tlAX PAGES AVAIL FOH SA~1 EXTENSION: xx 

The nu;nber of words displayed for default SAM are the dee imal number of 
words assigned to the first block of SA~. 

SA~ EXTE~SION RECCNFIGURATION 

1he Conf igur~tor next prompts for any desired change in th~ size of 
SAK extenEion by displaying the query 

CHANGE SAM EXTENSION?(# PAGES/" " CR) 

Press the space bar and RETURN key (the default case) if no change is 
desired. 

Fnter the decimal number of pages desired if the SAM extension is to be 
changed. The number of pages can vary from O (which removes SAM extension) 
to the maximu,n pages available for the SAM extension. Note that this count 
must not include any l')ad pages that fall within the SAM extension (see 
aoove) . 

The Conf igurator sets up the System Map to avoid bad pages in the SAM 
extension regardless of whether or not a change was requested . . 
If the specif ie~ SAM extension extends beyond the size of physical 
memory oecause of bad pages within this area, the Conf igurator 
displays the message 

COi'ffIG ERR 12 
CHANGE SAM EXTENSION?(# PAGES/" "CR) 

Enter a smaller number of pages for SAM extension size. The Conf igurator 
allows SAM extension to be divided up into a maximum of five blocks of 
memory between bad pages. If the number of pages in SAM extension requires 
cJivision into ;nore than five blocks, the Configurator displays the mes.sage 

CO~ff·IG ERR 2 2 

and the query is redisplayed. Enter a smaller size of SAM extension. 

j 'J.,, 
~-10. CHANGING PARTITION DEFINITIONS 

The Conf igurator next displays a list of current partition definitions 
is displayed in the format 

where 

CJRRENT PART'N DEFINITIONS: 

I' R'l'\ 
PA:{•r'N nn = pp PASES ,BG ,R 

\,S / 

nn = the partition number 

~~,,,., 

,,_/ 

C.·.·.' ' . I 



0 

() 

pp = is the nurnbc:r o.E p.:qes in partition nn 

aT = a real-time partition 

~'G = a "Jack·~round partition 

S ~ a subpartiticn 

r = a reserved ~artition 

Followin9 thE def initicn list, the Configurator next displays a list of 
c~rrent partition re~uirements in the form 

CURn;::1r.r PAl~'I', N Rt~·;.?M'rS: 
PEAL T !.'~i•; 
PNN~E xx PAGES [E] [PART 'N=nn] 

RA c I<G no u rm 
PNA:V!J.:.: xx PAGE:s [*] [E] [PART'N=nn] 

P<~.ZV1'ii.:: = the real-time or background program name 

E = indicates an EVA (Extencled Memory Area) program 

* = indicates the backg rount~ program does not include Tab le Area II 
(i.e., a 'l'ype 4 program) 

nn = is the nu.nber of the partition into which program PNAME may be 
assigned. 

The Configurator then displays the following information: 

where 

.1i\X P f{0GFU\t'11 SIZE: 
w;cu·r co·;;.101~: xx PAGl:S 
h'/COt-1:"lOU: xx P;\GE:S 
W/TAGLE II: xx PAGES 
'117\X :j!: OF' PAR'l''l~S: xx 
Pi'.GC[~ RCViAI NIM~: xx 
DEfINE PART'NS FOR xxxx PAGES 
~p~~~~ nT/DC/~( R) it h\J l.J ~;> r !"• t;. ' t...· t . 

Pl\R'l' 'N x? 

~AX PROGRAM SIZE = maximum logical space a program may occupy. 
However, the partition size may be larger 
than the stated maximum if the partition 
will be used for EMA program execution. 



MAX #OF PAH'.i''r.is 

PAGES .REMAINING 

#PAGES, RT/BG/$ ( ,R) 

PART't~ x? 

= decimal number partitions that can be defined 
in memory. 

= decimal number of pages available for d.efining 
user partitions (including bad pages that 
may have been listed earlier). 

= indicates the required format for user entries 
in response to the PART'N x? prompt described 
below. 

= Conf igurator program prompt askin~ the user 
for the siz~ (in pages) and format for the next 
partition to be defined. 

If the maximum number of partitions was defined as 0 during generation time, 
the Conf igurator skips the rest of memory reconfiguration and displays the 
query 

NEW MEMORY CONFIGURATION PERMANENT? 

Since partitions must be defined contiguously, they must be within the 
section of memory between the bad pages. If a section of memory between 
bad pages has a size of one page, it is skipped by the Configurator. 
The Conf igurator will prompt for a partition definition after each 
accepted entry until prtitions have been defined for all xxxx pages in 
this section of memory. 

As each entry is accepted, the Conf iguratcr will reissue the prompt with 
a consecutively increasing partition number for the next partition. If 
the number of pages entered for a partition is greater than the maximum 
logical address space, the Confiuurator displays the message 

SUBPARTITIONS?(YES/NO) 

Enter a NO if the conf igurator is to ignore subpartition considerations 
and proceed with the normal partition definitions. 

Enter a YES if subpartiticns are to be defined. Subpartition definitions 
are specified by using the following format in response to the prompt: 

#PAGES,S{,H) 

where S specifies a subpartition and the optional R specifies the 
subpartition is to be reserved. 

The memory space allocated for subpartitions is the same area occupied 
oy the "mother" partition. Subpartition definition will end as soon as 
an RT or HG partition is defined, or can be terminated by entering a /E. 

When an atte~pt is made to end the subpartition definition phase by 
defining an RT or BG partition and there are no more pages left in this 
section of memory, an EI'R -13 will be displayed. In this case, either 
enter a /E to terminate subpartition def.initions and continue partition 

\ 
_) 

,. 
,. 

I 
I 



0 

d~finiticns for the next block of memory, or enter /R to restart the 
?artiticn definition phase. 

The totsl num0er of pages def inea for subpartitions must not exceed the 
size of the mother partition or an error code will be issued and the 
last subpartiticn must be redefined. 

The Conf igurator analyzes each partition definition for possible errors as 
soon as it is entered. Any error code issued will be followed by a prompt 
to redefine the last partition displayed. If /R is entered instead of a 
partition description, the partition definition phase is restarted from 
the first partition definition. 

Partitions defined for each section of memory between bad pages must be 
defined for all pages available within the section. A running total is 
maintained of the number of pages currently defined within a section of 
good memory. The Conf igurator will then take one of five possible courses 
of action, depending upon the prevailing memory structure and size: 

1. If the remaining total equals the number of pages available, the 
Conf igurator automatically requests partition definitions for the next 
section of good memory. 

2. If the number of pages remaining to be defined is one, the Configurator 
increments the last defined partition by one page and then requests 
partition definitions for the next block of good memory. 

3. If the running total exceeds the number of available pages defined 
within the memory block, the Configurator displays an error message 
and prompts for the last partition to be redefined. 

4. If the number cf partitions already defined is equal to the maximum 
number partitions allowed and more undefined good pages remain, the 
Conf igurator displays an error message and all user partitions must be 
reCef ined. The Configurator will then prompt for new partition definitions 
and repeat the prompt after each accepted entry. 

5. If the running total is less than the number of pages in the block of 
:T•emcry, (;efinition for next partition is requested. 

r~ list of NE\v PAl?.T'IJ DCFL:~IT!Ofif:. will be issued to the list device when 
all partitions have been defined. 

r1--
~~11. CH~NGING PROGRAM PAFTITION ASSIGNMENTS 

'l'be .confir1urator performs a check to ensure that every program assigned 
to a ~-)<:<rtition fits its partition size. A program will be unassigned 
if the program size is larger than the partition size or if the partition 
nu~ber aoes not exist. Following the c~eck, the Conf igurator will issue 
a list under the heading · 

UNtSSIGNED PROGS 



followed by the query 

~10DIFY PDOG Pl1GE HEC!MTS? (/E '110 END) 
PNAME,#PAGES 

~nter the specifications for any disc resiaent programs whose page 
requirements must be changed, using the format 

program name,xx 

where the number of pages entered for each program must include the base 
page. the number of pa9 es must be greater than or equal to · he cur rent 
program size, and less than or equal to the maximum address space for 
the program. The program may only be Type 2, 3 or 4. 

The hyphen prompt will oe repeated after acceptance of each entry 
until a /E is entered to terminate the list. 

Note 

J?­,,,-12. 
that the page requirements for an EMA program cannot be modified. 

PROGRAM PARTITION ASSIGNMENTS 

The Conf igurator now asks if any programs need to be assigned to partitions 
by displaying the query and prompt 

ASSIGN PROG PART'NS?(/E TO END) 
PNAME, PAR'I'N# 

where the hyphen prompt will be repeated after each accepted entry until 
a /E is entered to terminate the list. 

Enter each desired program partition assignment in the form 

program name, xx 

where xx is the partition number to which the program is to be assigned. 
If xx is O, the program is unassigned and can be dispatched to any 
partition of the proper type large .enough to run the program. The program 
must be Type 2, 3 or 4. \~hen a /E is entered to terminate 
list, the Configurator issues the query 

NEW ME~ORY CONFIGURATION PERMANENT?(YES/NO) 

Enter a YES to change the appropriate tables and locations on the disc 
resirlent system. The Conf igurator then issues the message 

PECONFICURATION COMPLETED 

and turns control over to the operating system. 

If a /H is entered in response to the prompt instead of YES, memory 
reconfiguration is restarted from the query 



Vii Y 3 I Ct I. I·' E i.Vi S I Z E ? ( # hi\(_~ ES ) 

anc~ the systE'i;~ is in the state it was changed to during the earlier 
reconf LJurat ior .. 

,.~/ 

~-13. F~f:CONEIGUF:t.r::IC1J r::;.P,i'1PLE 

The sample reccnf iyuration illustrated in Figure 9-1 assumes that 
reccnfi 1Jur.1tior. was reque:sted by setting the switch register as described 
at th·? ue(j inning of th is section of the manual. In the example, a 
precc~in~ asterisk (*) identifies a user response. No asterisk would 
ap9ear in the output from an actual reconfiguration sescion. 

J)-
;i:ure .,-1 to be inscrte''' here 

))\ 14 .ot.r"'I' .L. 1" l .. . ,,, ... ,r·c.-··,."r'IGU.,'"·rrION :J·"r,,.,,... - . • I__;v· ... ,,. - Jr 1:.\l.t,...• l\, l_,·l\!i. ·-· J\1~, 1J.!4. J.L~ 

During either system noot-up or reconfiguration, various HLTS may be 
issuec en the co:ri;uter front panel. The meaning of these halts and 
any reguired ope~tor action are given in Table 9-1. 

I J- ./' 
Tablc~-1. Syster. 3oot-up and Reconfiguration Halts 

+----------------------------------------------------------------------+ 
I IILT ! Meanin~1 I User Action I 
1------1-----------------------------------1---------------------------1 1------1-----------------------------------1---------------------------1 
I 4 I Po~erfail occurred and powerfail I Restart system boot-up 
I I automatic restart is enabled. I procedure. 
I I I 
I S I ~emory rrotect switch was set and I Restart system boot-up 
I I .11e:nory l;arity error occurred. I procedure. 
I I I 
I JlB I .1\tterr,pt wus mac1e to re-execute a I Reload the HOM Loader or 
I I non-EPL compatible Hor,: Loader I Bootstrap Loader before 
I I (Product No. 12992A) or Bootstrap I re-executing. 
I I Loader. I 
I I I 
I 22B I One of the following conditions I Restart system boot-up 
I I was encounterec:: I procedure. If memory 
I I I reconfiguration is 
I I l. $CNFG cannot find an ID segment! desired, $CNFX must be 
I I for Conf i9 ur a tor ex tens ion $ClJFX. I permanently loaded as a 
I I I Type 3 program and there 
I I 2. $CiFX is net a. Type 3 pro9 ram. I must be at least three 
I I I good pages of contiguous 
I I 3. A contiguous me~ory block cf I memory in user partition 
I I three 000J paJeS cannot be found I area. 
I I in the user partition area to I 
I I load ~>CNFX. I 
I I I 
I 30B I Error was encountered in the disc I Retry the boot-up 

/?-13 



31B 

55B 

I I/O process by one of the RPL-
. compatible ROM Loaders (Part Nos. 

12992B and 12992F) •. If the disc 
is a 7900, the disc status is 
displayed in the A-register. If 
the disc is a 7905/7920, the disc 
status word 1 is displayed in the 
a-register and disc status word 2 
in the A-register. 

Error encountered in the disc I/O 
~recess by the Boot Extension. If 
the disc is a 7900, the disc 
status is displayed in the A-
reg ister. If the disc is 7905 or 
7920, the disc status word 1 is 
dis?layed in the B-register and 
disc status word 2 is displayed 
in the A-register. 

An EQT with the equipment type 
code of console cannot be found. 

procedure. 

Retry the sys~em boot-up 
procedure. 

Restart boot-up procedure 
with a console for which 
an EQT is generated in 
the system. 

+----------------------------------------------------------------------+ ,. ...,, 
'.,,-15. CONFIGURATOR ERROR MESSAGES 

Whenever a user response to a Conf igurator prompt is illegal or 
inappropriate, the Conf igurator issues a CONFIG ERR message and prompts 
for a correct entry. All possible Conf igurator error codes are listed 
sequentially in Table ~~ Locate the appropriate code and take the 
described ''ction. I --

]';)- )'J.,) 
Table ~-2. I/O and Memory Reconfiguration Error Codes 

+-----------------------------------~-----------------------------------+ 
I I I 

COHF IG ERR I Meaning I User Action I 
------------1-------------------------------1--------------------------1 
------------1-------------------------------1--------------------------1 1 I Invalid LU number or a bit I Enter valid number. I 

I bucket LU. I I 
I I I 

2 I Illegal select code number. I Enter valid number that I 
I I must be between J.O and I 
I I 77 octal. I 
I I I 

3 I New select code entered is I Enter different select I 
I identical to new select code I code. ·I 
I assigned to disc, system I I 

I console or list device, or I I 

I else the current select code I I 
I entered is identical to the I I 

J ;)-I'( 

c 

(_) 

1« 

1
¢, 
! 

'~ 
j 

Ii 
' ! 



(/ 

( /\ 
/ 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

10 

Jl 

12 

13 

14 

15 

16 

17 

lB 

19 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

old select code for disc, 
system console or list device. I 

I 
Spi::•c if ied total nmr.ber of 
pages outside the ran0e. 

Invalici bad page number. 

Specified SAM extension entry 
beyond physical memory size 
due to bad pages. 

Current running total exceeds 
available pages in block of 
<JOod rnel;iory or exceeds size 
of mother partition. 

Second parameter of partition 
definition entry other than 
RT, BG or S, or else S was 
entered when a suopartition 
definition was not expected. 

I Third parameter of partition 
! definition entry other than 
I H. 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

i'Jo sue h program or name of a 
se3ment, or invalid type was 
entersd for partition assign­
aH::nt. 

Invalid partition number. 

Program does not fit in 
assigned partition. 

Invalid number of pa0es was 
entered for program size. 

I 
I 
I 

Enter valid number in the! 
range 48-1024 for I 
physical memory size and 
between 0 and maximum 
pages available for SAM 
extension. 

Enter valid number 
greater than the previous 
entry and less than the 
physical memory size, or 
enter /E to terminate the 
list. 

Enter s~aller number 
pages for SAM extension. 

Redefine last partition 
or subpartition size. If 
there are no more pages 
available in the block of I 
memory to be defined, /E I 
or /R are the only I 
responses acce~ted. I 

Reenter definition with 
correct parameter. 

Reenter definition with 
R as third parameter if 
partition is to be 
reserved. 

Reenter assignment with 
correct program name or 
type or /E to end this 
sequence. 

Enter valid number or /E 
to end this sequence. 

Assign program to larger 
partition if available, 
or continue without 
assigning the program. 

Enter valid number of 
pages for program, be­
tween the size of the 
program at load time and 

/?-I~ 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 



I 
I 
I 
I 

20 I Number of defined partitions 
I already equal to allowed 
I maximum number and more un­
i defined pages remain. 
I 

21 I Page requirements1 of an EMA 
I program cannot be mod ff ied. 
I 

22 I Number of pages in SAM exten-
1 sion requires division into 
I more than five blocks. 

I I 
+------------!-------------------------------

the maximum logical 
address space for the . 
program. 

Redefine all partitions 

Entry is skipped. 

Enter a small.er size of 
SAM extension 

1. 
I' 
I 
I 
I 

·. I 
I 
I 
I 
I 
I 
I . 
I I . 
I 
I 

--------------------------+ 

1~ -/? 

i··, 'l 
'j 

C. 
', ! 
' 
. 

\ ! 

" ' 

~ ! 

c, 
' ! 
' ·.· 

I· 



Cl 
t-'J 

t 

' ~ ..... 

............. 

~ 

Declmlll 
V•lue 

0 

t 

2 

3 

4 

5 

6 

7 

8 

9 

10 

t1 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 
30 

31 

127 

9206· 1B 

Ocllll Velun 

\") 
._ j 

HEWLETT-PACKARD CHARACTEh ~.CT FOWCOMPUTER SYSTEMS 

This table sho,,;,s HP's 1mprementat1ori of ANS X34-t968 (USASCll) and ANS X332-t973 Some devices may substitute 
alternate characters from those shown 1n this chart (for example. Line Drawing Set or Scandanav1an font) Consult the manual 
for your device 

The left and right byte columns show the octal patterns in a t6 brt word when the character occupies bits 8 to t4 (left byte) or 0 
to 6 (right byte) and the rest of the bits are zero To find the pattern of two characters 1n the same word. add the rwo values For 
example. "AB" produces the octal pattern 040502 (The parity bits are zero in this chart.) 

The octal values 0 through 37 and t 77 are control codes. The octal values 40 through t 76 are character codes. 

Oct8I VeluH 
Mnemonic Graphlc1 Me•nlng Decim8I Chlil'llCter 

L.rt Brte Right Brte V•lue L.rt Byte Right Byte 

000000 000000 NUL "tJ Null 32 020000 000040 
000400 000001 SOH \, Start of Heading 33 020400 000041 ! 

OOtOOO 000002 STX 5x Stan of Text 34 021000 000042 
.. 

001400 000003 ETX "x End of Text 35 021400 000043 # 
002000 000004 EOT Er End of Transmission 36 022000 000044 $ 
002400 000005 ENO Ea Enquiry 37 022400 000045 % 
003000 000006 ACK ~ Acknowledge 38 023000 000046 & 
003400 000007 BEL 0 Bell. Attention Signal 39 023400 000047 

, 

004000 000010 BS ~ Backspace 40 024000 000050 ( 
004400 000011 HT Hr Horizontal T abutatlOll 41 024400 000051 ) 

005000 000012 LF LF Line Feed 42 025000 000052 • 
005400 000013 VT "r Vertical Tabulation 43 025400 000053 + 
006000 000014 FF FF Form Feed 44 026000 000054 . 
006400 0000t5 CR <ft Carriage Return 45 026400 000055 -
007000 000016 so " Shift Out } Alternate 
007400 000017 SI s, Shift In Character Set 

46 027000 000056 

47 027400 000057 / 

010000 000020 OLE q_ Data Link Escape 48 030000 000060 0 
010400 000021 OC1 01 Device Control 1 (X-ON) 49 030400 000061 1 
011000 000022 DC2 C\ Device Control 2 (TAPE) 50 031000 000062 2 
Ot1400 000023 DC3 03 Device Control 3 (X-OFF) 51 031400 000063 3 
012000 000024 OC4 04 Device Control 4 (f.UJE) 52 4 032000 000064 4 
012400 000025 NAK "k Negative Acknowledge 53 032400 000065 5 
013000 000026 SYN ~ Synchronous Idle 54 033000 000066 6 
013400 000027 ETB Ea End of Transmission Block 55 033400 000067 7 

014000 000030 CAN ~ Cancel 56 034000 000070 8 
014400 000031 EM Fi-1 End of Medium 57 034400 000071 9 
015000 000032 SUB '\:i Subslllute 58 035000 000072 : 
015400 000033 ESC EC Escape• 59 035400 000073 ; 
016000 000034 FS FS File Separator 60 036000 000074. < 
016400 0000'.35 GS I\ Group Separator 61 036400 000075 -
017000 000036 RS "s Record Separator 62 037000 000076 > 
017400 000037 us LS Unit Separator 63 037400 000077 ? 

077400 000t77 DEL • Delete. Rubout• 

I""-, 

it I~ 
~ 

:;! 

t; 4~ 
~ ~\ 

'-- ~ ,::... 

ll•nlng 

Space. Blank 
Exclamation Point 

Quotation Mark 

Number Sign. Pound Sign 

Dollar Sign 

Percent 

Ampersand. And Sign 

Apostrophe. Acute Accent 

Lei! (opening) Parenthesis 

Right (closing) Parenthesis 

Asterisk. Star 

Plus 

Comma. Cedilla 

Hyphen, Minus. Dash 

Per10d, Decimal Point 

Slash. Slant 

Digits. Numbers 

Colon 

Semicolon 

Less Than 

Equals 

Greater Than 

Question Mark 

~ 

~ 
{\-1 

~­
~ 
'-..... 
~ 

~ 



( \ 

Octal Value• 
Decimal 

Value Left Byte Right Byte 

64 040000 000100 

65 040400 000101 

66 041000 000102 

67 041400 000103 

68 042000 000104 

69 042400 000105 

70 043000 000106 

71 043400 000107 

72 044000 000110 

73 044400 000111 

74 045000 00011:.:' 

75 045400 000113 

76 046000 000114 

71 046400 000115 

78 047000 000116 

79 047400 000117 

80 050000 000120 

81 050400 000121 

82 051000 000122 

83 051400 000123 

84 052000 000124 

BS 052400 000125 

86 053000 000126 

87 053400 000127 

88 054000 000130 

89 054400 000131 

90 055000 000132 

91 055400 000133 

92 056000 000134 

93 056400 000135 

94 057000 000136 

~ 
95 057400 000137 

9206· 1C 

' ~ 
' " " C'> 

~ 

~' \ ' 

( '· ( 

Octal ValuH 

Character Meaning Decimal Character Meaning 

Value Laft Byte Right Byte 

.@ Commercial At 96 060000 000140 
\ Grave Accent• 

A 97 060400 000141 a 

B 98 061000 000142 b 

c 99 061400 000143 c 

0 100 062000 000144 d 

E 101 062400 000145 e 

F 102 063000 000146 I 

G 103 063400 000147 g 

H 104 064000 000150 h 

I 105 064400 000151 i 

J 106 065000 000152 j 

K 107 065400 000153 k 

L 108 066000 000154 I 

M 109 066400 000155 m 

N 
Upper Case Alphabet. 

110 067000 000156 n Lower Case Leners' 

0 
Capi1a1 Letters 

111 067400 000157 0 

p 112 070000 000160 p 

a 113 070400 000161 Q 

R 114 071000 000162 r 

s 115 071400 000163 s 

T 116 072000 000164 t 

u 117 072-100 000165 u 

v 118 073000 000166 y 

w 119 073400 000167 .w 

x 120 074000 000170 x 

v 121 074400 000(11 v 
z 122 075000 000172 l 

I Lei! (opening) Bracket 123 075400 000173 { Left {openrng) Brace• 

' Backslash. Reverse Slant 124 076000 000174 ' Vertical Line• 
I 

I Right (closing) Bracket 125 076400 000175 } Righi (closing) Brace• 

" f Carel, Circumflex; Up Arrow• - Under~ne; Back Arrow• -
126 077000 000176 - Tiide, Overline• 3 
127 07740( 000177 Delete,Rubout 

L 
Notes: 'This is tho standard display representation. The software and hardware in your syslem determine if the control code is 

displayed, execute<j. or ignored. Some deviees display an cont1of codes as "IJ", ··@",or space. 

:Escape is the first character ol a special conlrol sequence. For example. ESC tonowed by "J" clears lhe dispiay on a 2640 
terminal. 

30elete may be displayed as "_ ... ··@", or space. 

•Normafty. the caret and underline arc displayed. Some devices substitute the up arrow and back arrow 

1Some devices upsh1h lower case letters and symb01$ (' lhtougll - ) to the corresponding upper case chnracter (@ lhrough 
" ). For example, the leh brace would be conwrted 10 a left bracket 

~--~ ,,,c·""' 
\, ', 

"" 



•• .A. .......... 

RTE SPECIAL CHARACTERS: 

Mnemonic Octal Value Use (_ 
C~- SOH (Control A) Backspace 

EM (2600 Backspace) 31 B:H:kspace 
(Control Y) 

BS (Control H) 10 Backspace 

EOT (Control D) 4 Simulate 
End Tape 

I 

G-4 



C·, 
' J3 

APPENDIX/-
SYSTEM COMMUNICATION AREA AND SYSTEM TABLES 

APPENDIX A 

This appendix contains the following information: 

SYSTEM COMMUNICATION AREA 

Base page locations of area used for 
system communication. 

PROGRAM ID SEGMENT MAP 

Format of ID segments kept in system area 
for user programs. 

EQUIPMENT TABLE 

Format of Equipment Table entries for RTE 
devices. 

DEVICE REFERENCE TABLE 

Format of table relating logical units to devices 
in Equipment Table. 

DISC LAYOUT 

Allocation of disc space for RTE system. 

~l'I I) 
i 7\ SYSTEM COMM UNI CATION AREA ; 

\ A bl~"r·a~ in base page, starting at octal I cation 
ains the system communication area dis used 
to define request parameters, 1/0 ta les, 

scheduling lists, operating parameters, memory ounds, etc. 
The Real-Time Assembler allows relocatable p grams to 
reference this area by absolute addresses 16.():1777 octal. 
User programs can read information from this area, but 
cannot alter it because of the memory protect feature. 

Octal Location Contents Description 
SYSTEM TABLE DEFINITION 

.()1Q45 XIDEX Addres~ of current prog~am's 

01646 
01647 

01650 
01651 
01652 

01653 
01654 
01655 
01656 

01657 

IU extension 

XMATA Address of current program's1 
XI lflcirglJtffuoex 

register save area 
EQTA FWA of equipment table 
EQT# No. of EQT entries 
DRT FW A of device reference 

word 1 table 
LUM AX No. of logical units (in DRT) 
INTBA FWA of interrupt table 
INT LG No. of interrupt table entries 
TAT FWA of track assignment 

table 
KEYWD FWA of keyword block 

1/0 MODULE/DRIVER COMMUNICATION Ci . 
01660 EQTI Addresses 
01661 EQT2 of 
01662 EQT3 first 
01663 EQT4 I I-words 
01664 EQT5 of 
01665 EQT6 current 
01666 EQT7 EQT 
01667 EQT8 entry 
01670 EQT9 (see 01771 
01671 EQTIO for last 
01672 EQTII 4 words) 
01673 CHAN Current DMA channel No. 
01674 TBG 1/0 address of time-base card 
01675 SYS TY EQT en try address of system 

TTY 

SYSTEM REQUEST PROCESSOR/ EXEC COMMUNICA· 
TION 

01676 RQCNT No. of request parameters· 1 
01677 RQRTN Return point address 
01700 RQPI Addresses of 
01701 RQP2 request 
01702 RQP3 parameters 
01703 RQP4 (set 
01704 RQP5 for 

0 01705 RQP6 maximum 
01706 RQP7 of9 
01707 RQP8 parameters) 
01710 RQP9 

,,a·..-



RTE-Ill 

Octal Location Contents Description 

ADDRESSES OF SYSTEM LISTS 

01711 SKEDD 'Schedule' lisr 
,111- 01713 SUSP2 'Wait suspend' list 

01714 SUSP3 'Available memory' list 
01715 SUSP4 'Disc allocation' list 
01716 SUSP5 'Operator suspend' list 

DEFINITION OF EXECUTING PROGRAM ID SEGMENT 

01717 XEQT ID segment addr. of current 
program 

01720 XLINK 'Linkage' 
01721 XTEMP 'Temporary' (5-words) 

01726 XPRIO 'Priority' word 
01727 XPENT 'Primary entry point' 
01730 XS USP 'Point of suspension' 
01731 XA 'A-Register' at suspension 
01732 XB 'B-Register' at suspension 
01733 XEO 'E and overflow'register 

suspension 

SYSTEM MODULE COMMUNICATION FLAGS 

01734 OPATN Operator/keyboard attention 
flag 

01735 OPFLG Operator communication flag 
01736 SWAP RT disc resident swapping 

flag 
01737 DUMMY l/O address of dummy 

interface card 
01740 IOSDA Disc addr. of first ID segment 
01741 IDS DP Position within sector 

DEFINITION OF MEMORY ALLOCATION BASES 

01742 BPAI FWA user base page link area 
01743 BPA2 LWA user base page link area 
01744 BPA3 FW A user base page link 
01745 LBORG FWA of resident library area 
01746 RTORG FW A of real-time common 
01747 RTCOM Length of real common 
01750 D RTDRA FW A of real-time partition 
01751 D AVMEM LWA+I memory real-time 

CL-
partition 

01752 BGORG FW A of background common 
01753 BGCOM Length of background 

common 
01754 D BGDRA FWA of background partition 

r 

UTILITY PARAMETERS ~ 
01755 TATLG -i,t'Cngth of track assignment 

table 

01756 TATSD #of tracks on system dis1,; 
01757 SECT:! #sectors/track on LU 2 

(system) 
01760 SECT3 #sectors/track on~ , 

(:>ux.) 
01761 DSC LB Disc addr of user available. en· 
01762 DSCLN # ~f user available eRtty ] 
01763 SYS LB Disc addr.of Sys ntry p· 
01764 SYSLN # of Syste ntry p in ts 
01765 LGOTK LGO: LU#, starting track, 

#of tracks (same format as 

~ ID seg word 28) 
01766 LGOC Current LGO track/sector 

address (same format as ID 
seg word ~ ;::Jl,) 

01767 SF CUN LS: LU# and disc address 
(same format as ID seg 
worde '81 -;>') 

01770 MPTFL Memory protect on/off flag 
(O/l) 

01771 EQTl2} Address of 
01772 EQTl3 last 4 
01773 EQT14 words of 
01774 EQTl5 current EQT 

01775 D FENCE memory protect fence 
0111<,,, address 
01777 BGLWA LWA memory background 

partition 

The letter D indicates the contents of the location are set 
dynamically by the dispatcher. _ <" 
PROGRAM ID SEGMENT ,, 7~ (}µI/~ , 
Each user program has aefword ID segment located~ 
spas area. The format of the ID segment is shown in 
Table A·l. The address of each ID segment is located in the 
Keyword Table (see location 01657). The ID segment 
contains static and dynamic information defining the 
properties of a program. The static information is set during 
generation time or when a program is loaded on-line, and 
the dynamic information is maintained by the Executive. 

The number of ID segments contained in a system is set 
during generation time, and is directly related to the 
number of programs that can be in core at any given time. 
If all the ID segments are in use, no more programs can be 
added on-line. 

Short ID segments requiring nine wor-ds are used only for 
background program segments. One short ID segment is 
required for each program segment. lfa~ on-line load is 
done and there are no blank short ID segm'ents available, 
a re~word.one will b.e used. · 

~'.7 f3-d> 



I 

;'-< 

.. · 

...._ .. 

- - - - -=;> ( l~OIW 0 

I 1 

XEQT 

f'.lcmory 
Rcsi<lcnt 
Programs 

Memory 
Residents 

I z 

I :. 
' 6 I • 7 

i 
i 

I 
! 

\. .. 

( 

• 
• 
• 

8 
9 

10 
11 

12 
n 
14 

15 
16 

17 
18 
19 

20 
21 

• 22 
• 23 

• 24 

• 25 
• 26 

27 

'28 
29 

7<>1214 

RTE- I\' ID SE(;\!l:\T .. 

l S l •i 13 C 1 l IO ~> ~ 7 C1 S 4 ~ 2 I 0 

f :~l: 11'.;;p'. ~I \L\i; E __ -----·- c .•• ~-~~ ·-~·· -~~~-:-~ .• · --~l 
J .. 1 I ..... 

' TI:i·iP :> 

THIP ,1 
I 

TD!P S 
' :1;1ffai{·r:r-y-------------.. ----·---·--··-1 

l ' i PRI~l\RY E~;TRY POii-:T 
l --·---·-.. ···-··--.... --... -. -- ····· ............... . 

1 POI\T or SUSP 
; A-RU; 
! 
. B-REG 
I 
i EO-REGS . .----·--· ~---· _ .......... -... ----------..----..... _____ .. .._ ______ ... 
; NNIE l ~ NA~·iE 2 : 
~ N:\i· !E 2 NA~-11': tl ; 

j i\A~!F. s r:.~·~.i~7?.: ss! TYPE ' 
:-.• T:'0~~!) • -.~·i!l "-·i?;',;:.;. '. t--. ·1 ··., .. ::rt·--·.-.:~-":"' ... ·: 
,N:\·-"."'i-1 \)t:\t,,..-tO:.~·_. J-.Lll . · ..;:!._ ?J.-)Jll~:. 

TIME LIST LINKAGE 
• REs [ r 1 ~1u .. L-rrPLE-··------------.. -·-: .. _. ____ .. ___________ .. _____________ .,. ___ .: 

LOW ORDER 16 BITS or Tn!E 

' 11rr.11 o:wrn 16 BITS or nm: 
:BA 11l ··1 XI~ r~~~ij-~:1i~~·r-r~/,ri'iE1~--1·i) -st:G-·;;-·-; 
:RP j~[.~fl~~~l~~i.~~!~.i---h<~PARTil:T~~-~~-~ I_ 

LO\'i ~.Ii\ 1 ~~ ..\DDR 
III r.!i\[1\ ADDR+l 

LO\~ BASE P.-\GE ADDll 

i SJ.:5316\ M8'.HT.o.R \•;QR[, 2 ,..._ __ .... _. _____ _ 
\votms USED J;-.J SI!ORT ID SEC!E\T FOi! SEG~lENTS 

rjgurc 1 

!'·····" I 

\__,,,1 I 

1(· ···.· .. , 

./ 



I' r# 13. n. /I IO I 1 ' S ~ 3 ~ I o 

NS 
WORD 0 

WORD 1 (f!IYSICAl.) EM,f ":>1ilR:f ~G' 
f 

WORD 2 

DE = 0 if the EMA size was specified by the user 
DE = 1 if the EMA size is allowed to default to the maximum 

size available in the system 

N~ = " if the MSEG is pointing to a standard segment of the 
EMA (set up by .EMAP) 

~S = 1 if the MSEG is pointing to a non-standard segment 
(set up by .EMIO) 

ID SEGMENT EXTENSION 

( r-:' , .... 

I" 



System Tables and Communication Area 

SEE ID SEGMENT DIAGRAM ON PREVIOUS PAGE 

WHERE: 

• = These bits are reserved for future improve-
men ts. 

TM Temporary load (copy of ID segment is not on 
the disc). 

CL = Core lock (program may not be swapped). 
AM = All memory (program uses all of its areal. 
SS = Short segment (indicates a 9-word ID segment). 
NA = No abort (pass abort errors to the program 

instead). 
NP = No parameters allowed on reschedule. 

W " Wait bit (waiting for program whose ID seg-
ment address is in word 21. 

A " Abort on next list entry for this program. 
O = Operator suspend on next schedule attempt. 
R = Resource save (save resources when setting 

dormant). 

D 

T 
BA 
FW 
AT 

RM 

RE 
PW 

RN 

RP 

MPFI 

= Dormant bit (set dormant on next schedule 
attempt). 
Time list entry bit (program is in the time listl. 
Batch (program is running under batchl. 
Father is waiting (he scheduled with waitl. 
Attention bit (operator has requested atten­
tionl. 
Re-entrant memory must be moved before 
dispatching program. 

~ Re-entrant routine in control now. 
Program wait (some program wants to schedule 
this one I. 
Resource number either owned or 

. locked by this program. 

- Reserved partition-only for programs that 
request it. 

• Memory protect fence Index. 

A-3 

,,---, 
''-_j 



.~·EQUIPMENT TABLE 

The Equipment Table (EQT) has an entry for each 1/0 
controller recognized by RTE-Ill (these entries are 
established by the user when the RTE-III System is 
generated). These 15-word EQT entries reside in the 
system, and have format as shown in Table A-2. 

Table A-2. EQT Table Entries 

WorJ l Contents 

15}1.:i1312}11109J876J54~J210 
I 1/0 Request List Pointer 

"I Driver "Initiation" Se.:tion AJJress -
3 Driver .. Completion" Section AJJress 

4 DI B PI s IT I Unit :;: I Channel# 

5 AV EQ TYPE CODE I STATUS 

6 CONWD (Current 1/0 Request WorJ) 

7 Request Huffer AJJress 

8 Request Huffer Length 

9 Temporary Storage for Optional Parameter 

10 Temporary Storage for Optional Parameter· 

11 Temporary Storage for Driver 

12 Temporary Storage for Driver 

13 Temporary Storage for Driver 

14 Device Time-Out Reset Value 

15 Device Time-Out Clock 

Where: 

() = I if OMA required. 

ll = l if automatic output buffering uscJ. 

P = l if Jriver is to process power fail. 

S= 

T= 

Unit= 

l if driver is tu process time-out. 

l if device timed out (system sets to 1crn 
before each 1/0 rc4ucst ). 

Last sub-channel addressed. 

Channel = 1/0 select code for the 1/0 controller (lower 
number if a multi-board interface). 

AV= 1/0 controller availability indicator: 

o= 
l= 
"I = 
J= 

available fur use. 
disabled ( Jown ). 
busy (currcntiy in operation 1. 
waiting for an available DMA Ll1annd. 

STATCS = the adual physical status or simulated status at 
the enJ of each operation. For paper tape 
devices. two status conditions arc simulated: 
Hit 5 = l means end-of-tape on input. m tape 
supply low on l>Utput. 

EQ 
TYPE 
CODE 

type of device. When this octa) number is 
linked with "DY x ," it identifies the device's 
software driver routine as follows: 

00 to 07 = paper tape devices (or system control devices). 
00 = teleprinter (or sy~ .em keyboard control device). 
01 = photoreader. 
02 = pape.r tape punch. 
05 sub 0 = console (or system keyboard control device). 
05 sub 1} = mini cartridge. 
05 sub 2 devices. 
IO to 17 = unit record devices. 
IO = plotter. 
11 == card reader. 
12 = line printer. 
15 = mark sense card reader. 
20 to 37 = magnetic tape/mass storage devices. 
31 = 7900 moving head disc. 
32' = 7905 moving head disc. 
40 to 77 = instruments. 

CONWD = user control word supplied in the 1/0 EXEC 
call (see Section III). 

DEVICE REFERENCE TABLE 

Logical unit numbers numbers from decimal 1 to 63 pro· 
vide logical addressing of the physical devices defined in 
the EQT and the subchannels within the physical devices 
(if applicable). These numbers are maintained in the Device 
Reference Table (ORT), which is created by the generator, 
and can be modified by the LU operator request (see Figure 

· A-1 ). Base page location 1652 contains the address of the 
DRT first word table. Base page location 1653 contains 
the number of LU entries (LUMAX). 

Word 1 

' Subchannel No. l LU lock Flag 1 EQT Number 

15114 13 12111 10 9J 8 7 615 4 3 l 2 I 1 0 
FJ Downed t/O Request List Pointer 

>. 
Word 2 

F (up/down flag) c 0 if device is up 
1 if device is down 

Figure A-1. Device Reference Table 

The first DRT word contains the EQT entry number of the 
device assigned to the logical unit, and the subchannel 
number within the EQT entry. The second DRT word 
contains the logical unit's status (up or.down) and a 
pointer to any downed 1/0 requests. If the pointer is less 
than 64, it is the LU number off of which the downed 1/0 
requests are queued. If several LU's point to the same 
device, the requests are queued off the lowest LU number 

''1'1"' I 



-
.,,,__. 

umcation Area System Tables and Comm . 

,,--"' 
I'-..../ I 



( ''"'·· 
\ 

.--~-:__..,. 

()-

RTE-IV MEMORY ALLOCATION TABLE (MAT) ENTRY 

1 s }1 13 12 11 10 9 8 7 6 s 4 3 2 l 0 

WORD 0 MAT LINK WORD 

1 PRIORITY OF PARTITION OCCUPANT 

ID SEGMENT ADDRESS OF OCCUPANT 
2 . . 

~~ ~ ... :~ .~v,~~~; PHYSICAL START PAGE 
3 M ~-; D .;!;:·"':/~• OF PARTITION 

·h; •.. 
;~~·,·.,_.~ ... ; NUMBER OF PAGES IN 

RC .. -....... ;'····· t .•; ,,. . • •• 
4 A ITION(EXCLUDE BASE. 

t-~..-:-~~--....... ~~~ 
. ·'!· .. • ~.:·:~ ... ," s 

SUBPARTITION LINK WORD 
6·--~~----~----------~~----~~-

LINK WORD= -1 if partition not defined either during system generation or by pari1 
0 if end of list erroJ 

M = 1 if mat entry is for a mother partition 
D = 1 if program is dormant after save-resource or serial reusability termination 
R = 1 if partition is reserved 
C = 1 if partition is in use as part of a chained partition 

RT = 1 if MAT entry is for a real-timepartition 
S =program's dispatching status 

0 - program is being loaded 
1 - program is in memory 
2 - segment is being loaded or being swapped 
3 - program is swapped out 

UBPARTITION LINK WORD 
= 0 if MAT entry is not a subpartition 
= next subpartition address if subpartition 
= mother partition address if this entry is the last subpartition 

B-i 



r 

,.,... 
'-" 

.. 

$DVMP 

Entry 
First 
Word 

EQT # Words 

Entry 
Second 
Word 

EQT #·Words 

EQT 1 

EQT 2 

EQT 3 

EQT n 

EQT 1 

EQT 2 
. ,_ 

EQT n 

DRIVER MAPPING TABLE 

15 14 13 12 11 10 9 8 7 6 s 4 3 2 1 0 . 

M 

SD M 

M 

M 

N 

N 

N. 

SD=~ Driver in driver partition and 
M=starting page number in bits 0-9 

=1 Driver in system driver area and 
M=O not doing own mapping or 
M=l is doing own ma-ping 

MR=~ Not memory resident program I/O, 
N=" System I/O 

""· 

r 

N~~ User I/O physical page number of base page 
=l Memory resident program I/O 

f-"' I 

\. .. J 

) 
), 



. I(_~/ 

0 

nr I/ ,_. • • r- I'" 

DISC PROTECT 
BOUNDARY 

~ 

t::. 

!::. 

!!. 

!!. 

!!. 

!!. 

~ 

!!. 

!!. 

!!. 

/j, 

A 

A 

!!. 

!!. 

A 

AVAILABLE DISC SPACE 

LIBRARY ENTRY POINTS LIST 

RELOCATABLE LIBRARY AND UTILITIES 

BASE PAGE LINKS 
BACKGROUND DISC RESIDENT 

BASE PAGE LINKS 
REAL·TIME DISC RESIDENT 

MEMORY RESIDENT BASE PAGE 
MEMORY RESIDENT PROGRAMS 
MEMORY RESIDENT LIBRARY 

PARTITION RESIDENT DRIVERS 

SYSTEM 

TYPE 13 MODULES 
TRACK ALLOCATION TABLE 
$MATA,$ MRMP, $ MPFT TABLES 
KEYWORD TABLE, ID SEGMENTS 
ID EXTENSIONS,$ IDEX TABLE 
$CLAS,$ LUSW, $ kNTB, $ LUAV TABLES 

SYSTEM DRIVER AREA 

BACKGROUND COMMON 
REAL-TIME COMMON 
SSGA . 

PARTITION #1 RESIDENT DRIVERS 

TYPE 15 MODULES 
INT 
ORT 
$ DVMP TABLE 
EQT, EQT EXTENSIONS 
TRACK MAP TABLE $ TB3X 

SYSTEM COMMUNICATION AREA 
UPPER BASE PAGE LINKS 
SYSTEM LINKS 
TRAP CELLS 

BOOT EXTENSION 

!!. SECTOR BOUNDARIES 

I REPEATED FOR ALL BG DISC 
RESIDENTS AND SEGMENTS 

PEPEATED FOR ALL RT DISC 
RESIDENTS AND SEGMENTS 

} TABLE AREA II 

} COMMON 

} TABLE AREA I 

} . SYSTEM BASE PAGE · 

Figure~. RTE-IV SYSTEM DISC LAYOUT 

. -B-1 

9.e:F rs-10 



f-r-lll ID 1) APPE·N.DIX ~0 ·. I 

t:-'--" II'- V 1EM'E FORMATS \....../ 

/l 

C--/ -ii§,~ , 
.. 

194 

0 

C l 
} I 

I
I: 
j 
" •I 

I' 



-

(/~ 

;:- : A~~ c, .- I 
. rr'!-

(
/ SOURCE RECORD FORMATS 

The source format used for the disc records in the LS area by the system 
programs Editor, and FMGR is given in 

·~B"'::-p All records are packed ignoring sector boundaries. Binary 
recor~re packed directly onto the disc. After an END record, a 
zero word is written and the rest of the sector is skipped. If this 
zero word is the first word of the sector, it is not written. Binary 
files are always contiguous so a code word is not required. 

---·;,..--

15 8 7 0 

Word 1 L ZERO 

Where L is the record length in words excluding 
Word I 

Word 2 CHARI 

If Word I = fJ then end of TAPE 
If Word I = -1 then end of Fl LE 

CHAR2 

Odd characters are padded with blanks to make a full word. TI1e last 
word on any given track in a multi-track file is a code word that points 
to the next track in the file. 

Code Word Format 

IS 7 0 

LU# TRACK 

Where LU# is either 2 (system) or 3 (auxiliary) depending on whid1 
platter the track is on. 



/ '. 

/ ., 

NAM RECORD 
CONTENT EXPLANATION 

1r-s _____ a-T.l..,....,....,....,,...,....,..,o....,;1,..5_1_3r.,1.,..27"""7_,..,...,"""7"'~~'"7""7"":0:>'1'.1_s _________ _...,o RECORD. LENGTH • ~WORDS 

15 

I 

RECORD 
LENGTH 

WORDO 

8,7 

s 

I 
WOADJ 

0,15 

y 

I 
M 

WOAD1 

8,7 

I B 

WOA04 

CHECKSUM 

.· 
WOAD2 

.. ,_, 

WOADS ----· 

IDENT = 001 

CHECKSUM: ARITHMETIC 
TOTAL OF ALL WORDS 
IN RECORD EXCLUDING 
WORDS 1 ANO 3. • 

SYMBL: FIVE CHARACTER 
NAM;I: OF PROGRAM 

.-"· 

15 14 . 0,15 015 . 0 AIC: BINARY TAPE PRECESSION 

= 0 IF ASSEMBLER 
PRODUCED OR LENGTH 
IS EXACT. 

A 
/ 
c 

15 

15 

15 

LENGTH OF 
MAIN PROGRAM 

SEGMENT 
IOR ZERO) 

WOADS 

015 

PROGRAM PRIORITY 
TYPE 

WORD9 WOR010 

0,15 

; 

HOURS . MINUTES 

. 

.WORD 13 WOAD 14 

8,7 0 

COMMENT COMMENT 
CHAR 1 CHAR2 

WOR017 

,,, 
LENGTH OF LENGTH OF 
BASE PAGE COMMON 
SEGMENT SEGMENT 
(OR ZERO) IOR ZE;AO) 

WORD7 WOADS 

015 015 . 
RESOLUTION EXECUTION 

CODE 

WORD 11 

0,15 

. 
SECONDS 

WORD15 

l 
' . ~ 

MULTIPLE 

' 

WORD12 

0,15 

TENS OF 
MILLISECONDS 

COMMENT 
CHAR 
2n-1 

WOAD16 

COMMENT 
CHAR 

2n 

WORD n 
In< 60) 

0 

0 

= 1 IF COMPILER 
PRODUCED ANO LENGTH 
IS UNKNOWN. 

HATCH-MARKED AREAS SHOULD BE ZERO-FILLED ~ 
WH_EN THE RECORDS ARE GENERATED . . \ • ~ 

--_ - ---------,__ . ·: --. .__ ~ "~" 

CROSS.HATCH-MARKED AREAS SHOULD BE SPACE·' \ 
FILLED WHEN THE RECORDS ARE GENEAATEO / J 

. ··. ~··~ ff ~7.>---­
~-v "' 

I .. 
. ,>"1 f 

. ---- t ...- .. , ... _ --·~.-... --,!<-··-··-""'··~--..,. .. _..-...,.,..,.--·.. ' 

0 

. 
C. i' 



,.... 
(~ 

EXT RECORD 

1S 

15 

I 

15 

I 

RECORD 
LENGTH 

WORD 1 

8,7 

s 

I 
WORD4 

8,7 

s 

I 
WOAD7 

y 

y 

CONTENT 

0, 1S, 13,12 

WORD2 

0,15 8,7 

I 
M 

I 
WOADS 

0,15 

I i\ 

B 

E 
N 
T 
R 
I 
E 
s 

0,1S 

0,15 

I 

0,15 

I 

0 

CHECKSUM 

WORD3 

8,7 0 

I I 
L 

SYMBOL 
1.D. NO. 

WORDS 

8,7 0 

L 

I I 
SYMBOL 
l.D. NO. 

WORD 60 

Tape Formats 

EXPLANATION 

RECORD LENGTH • 6·60 WORDS 

IDENT • 100 

ENTRIES: 1 TO 19 PER 
RECORD; EACH ENTRY 
IS THREE WORDS LONG 

SYMBL: 5 CHARACTER 
EXTERNAL SYMBOL 

SYMBOL ID. NO.: NUMBER 
ASSIGNED TO SYMBL FOR 
USE IN LOCATING 
REFERENCE IN BODY 
OF PROGRAM. 

WOADS 4 THROUGH 6 REPEATED 
FOR EACH EXTERNAL 
SYMBOL (MAXIMUM OF 
19 PER RECORD). 

TOOS-16 



RTE-Ill 

DBL RECORD 

CONTENT EXPLANATION 

1 .• !::-....~----~8,~7--....... _._.:.o~,1~5,~1~3~,1~2 ........ .-_:Bw,7=-=6~,5~ __ .......;;oT.1~5-· __________ .......,. ____ _,o RECORDLENGTH•&eoWORDS 
... IDENT •011 

15 

.. 

"'[ 

15 

RECORD 
LENGTH 

WORD1 

UNRELOCATED 
LOAD 

ADDRESS 

WORD4 

15-BIT PROGRAM 
RELOCATABLE 

VALUE 

D/tb--;L 
INSTRUCTION WORD 

R '"001 

Dtq)--:C:: 
INSTRUCTION WORD 

R • 100 

NO.OF 
INST. 

WORDS 

WORD2 

CHECKSUM 

WORD3 

. . . . 0151312109 76 4.3 1,015 

RI R R 
:> 3 

WORDS 

1..1 
1..1 

RJ1 R,~ 
ii 

ABSOLUTE 
VALUE 

INSTRUCTION WORD 
R •000 

015,14 , 0,15,14 

l 

15-BIT BASE PAGE 
RELOCATABLE 

VALUE 

D~J: 
J. INSTRUCTION WORD 

R .. 010 

'(_"D 

15-B IT COMMON 
RELOCATABLE 

VALUE 

~x: 
INSTRUCTION WORD 

R • 011 

INSTRUCTION WORD 
R • 101 

12 11 21015 0 

TYPE 

I 
I 
I 
I 

.l 

I 
IM 
IA 
I 

_l 

RELOCATABLE 
BYTE 

ADDRESS 

INSTRUCTION WORD R • 110 

H-6 

0 

0 

Z/C: RELOCATION OF LOAD 
ADDRESS 
• 0 FOR BASE PAGE 
• 1 FOR PROGRAM 
• 2 FOR A.,SOLUTE 
• 3 FOR COMMON 

NO, OF INST. WOfl.'S: 1 TO 45 
LOADABLE INSTRUCTION 
WORDS PER RECORD 

RELOCATABLE LOAD ADDRESS: 
STARTING ADDRESS FOR 
LOADING THE INSTRUCTIONS 
WHICH FOLLOW; 

R's: RELOCATION INDICATORS: 
000 .. ABSOLUTE 
001 = 15-BIT PROGRAM 

RELOCATABLE 
010 = 15-BIT BASE PAGE 

RELOCATABLE 
011 "' 15-BIT COMMON 

RELOCATABLE 
100 = EXTERNAL REFERENCE 
101 '"MEMORY REFERENCE 
110" BYTE REFERENCE 

Rt IS RELOCATION INDICATOR 
FOR INSTRUCTION WORD1; R2, 
FOR INSTRUCTION WORD2; ETC. 

TODS-17 

/q9. 

!. 
! 



END RECORD 

15 

RECORD 
LENGTH 

8,7 

WORDl 

CONTENT 

0,15 13,12 

15. 14 -------·---.o 

RELOCATABLE 
TRANSFER 
ADDRESS 

WORD4 

3, 2, 1, 0, 15 

R T 

WORD2 

CHECKSUM 

WORD 3 

Tape Formats 

0 

EXPLANATION 

RECORD L ~NGTH = 4 WORDS 
IDENT = 101 

R: RELOCATION INDICATOR 
FOR TRANSFER ADDRESS 

= 0 IF PROGRAM RELOCATABLE 
= 1 IF BASE PAGE RELOCATABLE 
= 2 IF COMMON RELOCATABLE 
= 3 IF ABSOLUTE 

T: TRANSFER ADDRESS 
INDICATOR 

= 0 IF NO TRANSFER 
ADDRESS IN RECORD 

= 1 IF TRANSFER ADDRESS 
PRESENT 

TODS-18 

l's ~;, . , 1:_Qr'2 ,5v·1 ;~ 1 1 · .1-.J.r' ______________ ._2
1 r// / , · / / , . ' . 

I / , • ; , t /. E.llH I Dr:;·/' ... D i , I ' / I ',' I , , I 
"--'- _o ,_ (% / '/ i, ; D I, I', ·' ! C. ~ f'C. k s, UH 

' l r ~r,..- H / , < /, ·:. :- l £ ~ /( ~ s } C £ l' . - I 
C.o'-'11 ,,,,,,, .,, 1· I 

I,/~// '/':,/, I I 
..,_ ____ __,·_!_:__:_/11 , ___ _:__J__J·-·---L. -·----. -----·------.. -- _j 

1.J oe.o .:t. hJ c r. c 1 w cr.:....D 3 

I~ f,? 
:-----· -·--·- ... .. 1 - .. ____ _o_ (5 __ - ___ --'g"-

1
""'.'T __ _ 

'I 
I -- ----------- -· ------

uor:...o ·Lt 

/:
. . . · . T ? --s;, tj. ... ,;_,/, 

• I / . // , / / /i ~ 
• .. // . I I:_, S 

/ - ' I r-
/ •/ ' I I c ~ 

/· , '<; ~ 
"' ..• ... '. . . ~ 

,,... 

I 

I 

I 
i . . - -· 

.·-
•..,/ 

I I I S'I t·I ::;. .:::> t. 

l.r.C. NO. 
I 
I 
I 

I .,, 

,'<.;.~c,:..D L£t-'C,7H = 1 :..J~K..C;::., 
1~:-1:1:::1!0 

$'/H60L f.D. 1;0.: NUHi?.l~ 

rl$.St4N'E.0 ···:..:. S'/tv13i.. Fr.R.. 
U:. t / r· · L :- · r. r 1 :-1 :j 
.~ !. r t i' l ,..:t f I f\J e 0 D 'I ,'j F 
::11.· c~, /·.'·-t. 

H-5 



RTE-Ill 

15 

15 

RECORD 
LENGTH 

87 

WORD I 

ABSOLUTE TAPE FORMAT 

CONTENT 

01514 

0 15 

ABSOLUTE 
LOAD 

ADDRESS 

WORD 2 

INSTRUCTION 
WORD. 

I 

WORD n-1 

015 

0 15 

INSTRUCTION 
WORD1 

WORD3 

CHECKSUM 

WORD n 

0 

0 

EXPLANATION 

RECORD LENGTH = NUMBER OF 
WORDS IN RECOR l EXCLUDING 
WORDS I ANO 2 AND THE 
L4.ST WORD. 

ABSOLUTE LOAD ADDRESS: 
STARTING ADDRESS FOR 
LOADING THE INSTRUCTIONS 
WHICH FOLLOW 

INSTRUCTION WORDS: 
ABSOLUTE INSTRUCTIONS 
OR DATA 

CHECKSUM: ARITHMETIC 
TOTAL OF ALL WORDS 
EXCEPT FIRST AND LAST 

t On paper tape, each word represents two frames arranged as fallows: 

Bit 8 - - Bit 0 

- Feed Holes 

Bit 15 - - Bit 7 

H-8 c-7 



(~ .. __ 
·-·"' 

c. 

APPENDIX -~ D 
RTE-IV vs. RTE-III 

LOGICAL USER MAP 

The operating system code and nearly all &i-:t:fte dr" ers are removed from the 
logical user map, thus allowing larger programs in RTE-IV than was possible in 
RTE-III. In RTE-I~ the user map is saved in the o e portion of the user"°' 

~~~~=-page so that it is merely restored after being interru~~ed, rather than 
~~in RTE-III. ...J-.f:~ .

DRIVER PARTITIONS ~-

Driver partitions a~low many drivers to be resident i·~ysical memory but share
one portion of the address spac~suen that _gie driverk;n mapped at a time only
when it i_needed. Driver partitions in RTC:IV hav8" the eava1\tage evei• RTE III * reduc~ the a~~~. of Jddz.!~:J~8:.C:~ used up in the user map A_..:_ · ~
f?l~--u:r-.---~~ ~-r,~~"'. h-"'-k·Ju~
The System D ver Area exists for privileged drivers andl{dr1vers whioifi ate uezy
~ or · their own mapping. The driver partitio11...and ~stem driver area
did not exist in RTE-III. : t.l,,lllaJJ~ '\:s - -:::=-- -=-
TYPE 2 AND 3 PROGRAMS . l{µr-~Cj/

Type 2 and 3 programs have 'teRl t3Qle1t/included in their address space.
In addition, external references to system entry points will be resolved for

>-ype 3 programs, although cross~~ instructions must be used to accesss~-
'1ocations in the system ma~t;:o ~'/~· .. g,,., "j;, ~ · /

EXTENDED MEMORY ARRAY~ rJ#-- / ,t({~ ~~
AllowfaTE- IV program~ C:dress "vii te!H" memory arrays,(beyond the 32K add7~ss
limit. This feature ~~~t exist in RTE-III. EMA arrays can be declared in
RTE-IV Assembly Language programs and FORTRAN program~·n .. J~

FILE INPlIT/OUTPlIT f~~ -~

The Loader FORTRAN IV Compiler and Assembler can ~I/O tofrom FMP files in RTE-IV.

PARITY ERROR ~

If a parity error is detected in a user program wlrl:'Ch- is running in a
partition, the error will be reported and the partition is removed from
t.he RTE-I.V system. Parity errors detected in the system map or in a~~t
map will still halt, as in RTE-III. ;::-. ;::..-
.::..--

During boot-up of the RTE-IV system, the partitions may be defined (for new

L REC~NFIGURATION_jl! MEMORY AND I/O I ~

user requirement~~ to eliminate pages parity errors or reassign devices
to different I/O slots.

p-J
~!)/ --

EXEC
$CIC
$ERAB
$IDLE
$IDNO
$LIBR
$LIBX
$LIST
$MESS
$MEU
$MTM
$0PSY
$PVCN
$SCD3
$TBXX*
$UCON
$UIN
$ULLU
$UPIO
$WORK
$XCIC
$XDMP
$XEQ
$YCIC

Appendix.()./£
TABLE AREA I ENTRYPOINTS

*built by the generator where 'XX'= 31 for a 7900 system
= 32 for a 7905/06/20 system

£--!

$BATM
$BGFR
$CFR
$CLAS*
$CMST
$COML
$DLP
$DLTH
$DVMP
$DVPT
$EMRP
$ENDS
$IDEX
$LUAV*
$LUSW*
$MATA
$MBGP
$MCHN
$MNP
$MPFT
$MPSA
$MPSZ
$MRMP
$MRTP
$PLP
$RLB
$RLN
$RNTB*
$TRFR
$SBTB
$SDA
$SDT2
$TIME

TABLE AREA II ENTRYPOINTS

* Built by the generator.

· J 'liif M1r ~ RTE-IV PROGRAM TYPES _I <!t-l-rjr
Tabl~ro~ist of the default program types of the libraries and programs distributed
with the RTE-IV operating system. The default program type is listed in the first column, and
the remaining columns list the additional available program types. Each row of the table lists
a program name or a library file name and indicates whether or not the correfponding
program types available are allowed for that respective program or library (a "YES" meaning
that the listed type is allowed, a "NO" meaning that the listed type is not allowed).

Note that several of the listed spool ~odules require SSGA access.

. Table~. RTE-IV PROGRAM TYPES

TYPE 1 TYPE 1
PROGRAM OR LIBRARY DEFAULT without with SSGA

FILE NAME TYPE TA II TA II TYPE 2 TYPE3 TYPE 4 REQUIRED"

LOA DR 3 NO NO YES YES NO NO
PRMPT 1 YES YES YES YES YES NO
RSPNS 1 YES YES YES YES YES NO
A UT OR 2 YES YES YES YES YES NO
$CNFX 3 NO NO NO YES NO NO
WHZAT 1 YES YES YES YES YES NO
LGTAT 3 YES YES YES YES YES NO
RT4GN 3 NO NO YES YES NO NO
SWTCH 3 NO NO YES YES YES NO
FMGR 3 NO NO YES YES NO NO
D.RTR 2 YES YES YES YES YES NO
EDITA 3 NO NO YES YES NO NO
XREF 3 NO NO YES YES NO NO
FTN4 3 NO NO YES YES NO NO
ASMB 3 NO NO YES YES NO NO
KEYS 3 YES YES YES YES YES NO
KYDMP 3 YES YES YES YES YES NO

#EMA 3 NO NO YES YES YES NO

SAVE 3 NO NO YES YES NO NO
RETOR 3 NO NO YES YES NO NO
VER FY 3 NO NO YES YES NO NO
COPY 3 NO NO YES YES NO NO
MSAFD 3 NO NO YES YES NO NO

JOB 2 NO NO YES YES NO NO
GASP 3 NO NO NO YES NO NO
SMP 18 NO YES YES YES NO YES
EXTNO 17 NO YES YES YES NO YES
SPOUT 17 NO YES YES. YES NO YES
.RUB (RTE/DOS YES YES YES YES YES NO

Relocatable Library)
BMLIB (Batch Monitor YES YES YES YES YES NO

Library)
CUB (Compiler Library) NO NO YES YES NO NO
DECAR (Decimal String YES YES YES YES YES NO

Library)
DBUGR (Debug NO NO YES YES YES NO

Subroutine)
SYLIB (System Library) YES YES YES YES YES NO

·Add 16 to the desired program type to ~btain SSGA access.

----~----------- - --· -- ---- ----- --- -- -----

c

C:

-

0

APPENDIXvrf ·

= St1l\i1Md~F ERROR MESSAGFI 5[/f!l/ffef

oPERATOR~s1l1!~~ES r:-...-VVWhen an EXEC call conta; ~an illegal request code, the
R. following message is printed: (address is the location that

When an operator e ue is in error. RT cts the made the illegal call.)
request and prints one of the messages below perator
enters the request again, correctly. RQ name address

Message

OP CODE ERROR

NOSUCHPROG

INPUT ERROR

ILLEGAL STATUS

CMD IGNORED-NO
MEM

Meaning

Illegal operator request word.

The name given is not a main
program in the system.

A parameter is illegal.

Program is not in appropriate
state.

Not enough system available
memory exists for storing the
program's command string.
Re-enter the command (RU,
ON, GO) or enter the inhibit
(IH) form of the command.

EXEC CALL ERROR MESSAGES

. -1v
When RTE-dYctiscovers an error in an EXEC call, it

An RQOO error means that the address of a returned
parameter is below the memory protect fence.

The following errors have the same format as "MP" and
"RQ" errors.

Error Meaning

TI Batch program exceeds allowed time

RE Re-entrant subroutine attempted recursion,

(call itself)~. t>--i~
DM Program t~ a p~­

e4 jp U5J2gifi1 0~

The general er~r errors, is:

type name address

where type is a 4-character error code

name is the program that made the call

terminates the program, releases any disc tracks assigned to A~;;;Jhwt.
the program, prints an error message on the ~ ""'/ •• •
wnsole,, ""'i J>rHeeils 'e e1u nate •b tlit pnsram in tbe

t+•~ekt; .. lv

address is the locahon of the call (equal to the
exit point if the error is detected after the
program suspends)

When RT~orts a program, it prints the following
message:

name ABORTED

When a memory protect violation occurs that is not an
EXEC call or $LIBX or $LIBR call, the following message
is printed: (address is the location that caused the viola·
tion.)

MP name address

ERROR CODES FOR DISC ALLOCATION CALLS

ORO J · = Not enough parameters

DR02 = Number of tracks is < zero; illegal logical unit;
or number of tracks to release is zero or
negative.

DR03 = Attempt to release track assigned to another
program

RTL-Ill

ERROR CODES FOR SCHEDULE CALLS

scoo =

SCOI=

SC02 =

SC03 =

Batch program attempted to suspend
(EXEC(7))

Missing parameter

Illegal parameter

Program cannot be scheduled

SC03 INT name_ Occurs when an external interrupt
attempts to schedule a program that is already sched­
uled. RTB.IJ ignores the interrupt and returns to the
point of interruption.

SC04=

scos =

SC06 =

SC07 =

SCIO=

name is not a subordinate (or "son") of
the program issuing the completion call.

Program given is not defined.

No resolution code in EXECUTION TIME
EXEC call (not I, 2, 3, or 4).

Prohibited core lock attempted.

Not enough system available memory for
string passage.

ERROR CODES FOR 1/0 CALLS

IOOO =

1001 =

1002=

1003 =

1004 =

IOOS =

1006 =

1007 =

!008 =

Illegal class number. Outside table not
allocated, or bad security code

Not enough parameters

Illegal logical unit or Jess than 5 parameters
and X-bit set

Not used

Illegal user buffer. Extends beyond FG/BG
area or not enough system memory to.
buffer the request

Illegal disc track or sector

Reference to a protected track; or using
LG tracks before assigning them (see LG_,
Section II)

Driver has rejected call

Disc transfer longer than track

·101~ = Class GET and one call already
outstanding

IOll=lllegal User Map request for System
Driver Area

ERROR CODES FOR PROGRAM MANAGEMENT CALLS

RNOO = No option bits set in call

RNOl = Resource number not defined

RN02 = Resource number not defined

RN03 = Unauthorized attempt to clear a LOCAL
resource number

ERROR CODES FOR LOGICAL UNIT LOCK CALLS

LUO I = Program has one or more logical units locked
and is trying to LOCK another with WAIT

LU02 = Illegal logical unit reference (greater than
maximum number)

LU03 = Not enough parameters furnished in the call,
logical unit reference Jess than one, or
logiCal unit not locked to c.iller

INPUT /OUTPUT ERROR MESSAGES

ILLEGAL INTERRUPTS

When an illegal interrupt occurs, RTE-III prints this message:

ALL ~NT xx

~~
Where xx is the octal -...1 numb~~""/~
RTEfJ clears the i• L t flag on tl•,.._.,I and returns
to the point of interruption.

EQUIPMENT ERROR MESSAGES

Message Meaning

1/0 ET L #x E #y S #z End-of-tape condition on LU #x,
defined by EQT #y subchannel
#z. Correct the condition and
set 1/0 controller (EQT) UP.

I/O TO L #x E #y S #z Device (LU #x) defined by EQT
#y subchannel #z has timed out.
Examine device. Correct problem
and set I/O controller (EQT) UP.

1/0 NR L #x E #y S #z Device (LU #x) defined by EQT
#y subchannel #z is not ready.
Make it ready and set l/O con·
trailer (EQT) UP.

11$

(.· .. ·.-.····---
.

()--

T Y E P F: Cl ;~ ;.;:; A n ,; !_! ·.: T ·:: C: H E ~, '-' :... '.:: ; . : .: ~. ··, : :-, : : !: ~' T C;
P A R T 1 : I ::: N :. th-t :_ L E R T ii H M T l1 -• : 1 f!l f C' " Ci C ~· i'.i ~~ I T S E L F .
UHASSIGN THE PROG~AM OP PEA~SIGN Thf PPOG~AM
r o A P (~ i;:·: 1 T 1 ~1 M r HA: : ~; / ;_ ;, ;: c ~ •:! ~: ~. ;, r: .-, E ;.: r H •.. i
THE PROCF:AM

THE PROGRAM JUST SCHEDULE~ IS TC LAr2E roR ANY
PART 1 T ~ 0 N Cl F THE S 14 ME T ,· F' r- . F .~ ~ f- / ·-: t'1 P !.. E .. TF: \' 1 11 G
TO SCHU•ULE A 23~: BAC:f:F:;:,Uii[: ;·~<:cr.,;:ir; !,•H'=::!l THE LAE·::;Es7
8 A C ~: R 0 U '1 D P A R : .! T I 0 "l . I ~; 0 M 1. '.' .~· ; :·· .

I t>t I

PARITY ERRORS

RTE IV can detect parity errors and tries to continue system operations if
possible. When a parity error is detected, the system tries to verify the
location of the parity error. If the error occurred in a program, that program
is aborted. If the program was running in a partition, the partition is
removed from the system. In the case of a subpartition or a Mother partition,
two partitions may be removed from the system.

Tf T .. t P•~TTV F~~C~ T! lh A FA~TT1Tt~,
!FEJ<R l1"LTt\"~. HE FHiTITJCt-. FIOC~ Tl-F ~VCTFft Cl "'II
t-Fx'T PcrT l.~). IT T ... t~ ~Flt FC"'S II. TH : .

~FA~''" •• crwt-."
"FA~''" ** tc~"" CTf ,~~~t 1~ A ~t,~FR f''"l

TF T .. ! FA~TTV FRC:C~ kA~ '" A ~F~r~v ~E~lrf"'T P~C~~~~.
!FE~~ ~TLI r"LY P~JhT Tl-F FrLLC~I~~ ~FS~A~F·
CHiFSF. "'ILL FfLI Cit. T._F FASi'T1TTCt- r.t1t.t-. ftF~~Hf'~
lt-. T~F rA~f CF • FA~TJTTC"' ~E~tre~l F~cr~~~,:

"FF FG• ~#•** PAr"
"~~ x~x~x ~*•*~"
11 XVl01lC APCFTFC"

Tf Tl-~ FH'TT't
!FES:.R .. ALTSI

F.~~c~ TS It-. Tl-F. rFS:~AlT"r. ~VCTF~.
1-1 l ~ (IOZ.005)
(A' • F .. V!trAI. FAl'!E "' ~Pt:i:
(P) a LCGICAL ArC~f ~~

FHTTV F,.r:ci= T~ A St"fi' FRl;Ct; (l lillorf;FC:CrLrJiPLS:).
F~l"'T~ 'T .. F ~E~fAGFS~

''FF ' • .,. *t• ''
"~~S ~l•T c ***U*~"

/j('

,,-!" i

\,
'.._/

-

1/0 PE L #x E #y S #z Parity error in data transmission
from device (LU #x) defined by
EQT #y subchannel #z.
Examine device.

TR nnnn EQT eqt,
Upp S (or U)

Irrecoverable disc transfer parity·
error. If the transfer is to a
system or auxiliary disc the fol­
lowing applies.

Where:
nnn=
eqt =
pp=

Track number
EQT number
Unit or sub­
channel number

a. If user request (U), then
program is abnormally term­
inated and track is made un­
available for further opera­
tions. If the user request was
an on-line modification with
the RTE-III loader, the parity
error could be the result of
failing to turn off the hard­
ware disc protect switch. The
loader should be executed
again with the protect switch
off.

b. If system request (S), the
program transfer terminates.

If user request to peripheral disc,
a transmission log of -1 is re­
tume d to the calling system.

Summary of Error Messages

ge eration. In an case, an EOT does not suspend the
FORTRAN co plier. erefore, it is recommended that
when compi · g m iple tapes, DVROO be configured to
set the ta rea down on EQT or more information

e D 00 Manual (Part No. 29029-95001).

e RTE

z

The opera to must place the t source tape into the tape
reader an set the tape r oer up with the UP operat r

UP,#x

ot cause the tape reader be set down,
stem does not output a message and the

compiler is t suspended.

At the end of compilation (w n the compiler detects the
END statement), the follow ng message is printed.

by RTE•III when
acks (RTE-111 aborts

LG tracks were not med by an LG
e LG tracks ove

LG tracks wi G

a. No source file i LS, although
logical unit 2 is give for input. Compiler error
E-0019 (FTN2), or ERROR 05 (FTN4) is printed on

the list devii~c:e:... ------=--.::::::=:------"'

b. The symbol table overflows. Compiler
error ERROR 03(FTN4) is printed on the
list device. $EN TN appears when
using FTN4.

ASSEMBLER ERRORS

When a pap r tape is be' g input through the tape reader,
RTE Dri er DVRO can interpret an end-of-tape (EOT)
in two wa . An EOT can set the tape reader down (make it
inactive) or not set it down. The action depends on how
DVRO was configured during generation. In any case, a~·
EOT does not suspend the Assembler. Therefore, it is
recommended that when assembling multiple tapes, DVRO
be configured to set the tape reader down on EOT. For
more information refer to the DVROO manual (HP Part No.
29029-95001).

If an EQT causes the tape reader to be set down, the
RTE system will output a message to the operator:

1/0 ET L #x E #y S #z

The operator must up the tape reader with the UP operator
command.

UP,#x

If an EOT does not cause the tape reader to be set down,
the RTE System does not output any message and the
assembler is not suspended.

At the end of assembly, the following message is printed:

$END ASMB

If another pass of the source program is required, the
following message appears at the end of pass one.

PASS

st replace the ~in the input de

4SMB
/

If an error is found in the Assembler control statement, the
following message appears:

SEND ASMBCS

The current assembly aborts.

If an end-of-file condition occurs before an END statement
is found (LS File only), the console signals:

$END ASMB XEND

The current assembly aborts.

Summary of Error Messages

The next message is associated with each error diagnostic
printed during pass I.

#tape numb

tape numb is the "tape" number where the error (reported
on the next line of the listing) occurred. A program may
consist of more than one tape. The tape counter starts with
one and increments when" er an end-of-tape condition
occurs (paper tape), or a blar 1< card is encountered, or a
zero length record is read from the disc. When the counter
increments, the numbering of source statements starts over
at one.

Each error diagnostic printed during pass 2 of the assembly
is associated with a different message:

PG page numb

page numb is the page number (in the listing) of the
previous error diagnostic.

PG 000 is associated with the first error in the program.

These messages occur on a seperate line, above each error
diagnostic in the listing.

RELOCATING LOADER ERRORS

Messages are printed in this format:

/LOADR: message

WARNING (W) MESSAGE

WI 7 - Number of pages required by the program exceeds
the partition size. The loader cannot find a partition
large enough for the program. It can be relocated
successfully but cannot be executed. You can
generate a new system containing a partition large
enough for the program or you can revise the program.

"L" ERROR MESSAGES

LO I - checksum error

L02 - illegal record

These errors are recoverable (except in Batch mode). The
offending record can be reread by repositioning the tape
and typing:

GO,LOADR

;l,-7 E-S

--- -~~ .. ~.· ~ .. ~. ·-· """' ,,~l.Jt.J:/.

...__ ..

RTE-Ill

L03 - Memory overflow

L04 - Base page linkage area overflow

LOS - Symbol table area overflow

L06 - Common block error

a. Exceeding allocation in a replacement or addi­
tion.

b. In a normal background load, first program did ·
not declare largest common block.

L07 - Duplicate entry points

Ll 6 -' Illegal partition number. Value must be in
the range from J through 64.

L17 - Number of pages required by the program
exceeds assigned partition size. A specific
partition has been assigned for this pro­
gram. The program requires more pages
than are available in the partitiOn.

LI 8 - Total number of pages requir"n exceeds
32. The sum of required pages must be in

the range from 1 through 32. . ~ • _)

ADDITIONALMESSAGES ~~
NO BLANK ID SEGMENT

This message is printed when no available (i.e., blank) ID
Segment is not found. The loader calls for program
suspension. The operator may then delete a program from
the system (OF,name,8 operator request) or may terminate

L08 - No transfer addre~s (main program) in the program
unit. Another program may be entered with a GO

operator request. (This also occurs when the - the loader.

LG track area is specified, but no program
exists in that area.)

L09 - Record out of sequence

LIO- Operator request parameter error. GO requests
may be retyped; ON requests may not.

LI I - Operator attempted to replace or purge a
memory resident program.

L 12 - LG track area used without resetting (input option
= 2 in "GO"). Input option was not specified as 99
previously.

L 13 - LG track area has been illegally reset (i.e. over·
written). Program addition on this area not allowed
if it has already been specified for program 'input.
Or area was once used for force loading with input
option= 99 and it is again being used with Input
option = 99, (must = 2).

Ll4-

LIS-

E-6

Assembler or compiler produced illegal relocatable.
A DBL record refers to an external which has not
been defined (the original can not be found in the
symbol table).

Forward reference to a type 3 or type 4 ENT or to
an EXT with off set which has not yet be~n
defined, or a forward indirect external reference, \\

\
L~

WAITING FOR DISC SPACE

This message is printed when a track allocation cannot be
made. The loader repeats the disc request and is suspended
until space becomes available .

UNDEFINED EXTS

This message is printed followed by a list of all remaining
undefined external symbols after a scan of the library.
Additional programs may be loaded by the GO operator
request.

LOAD

This message is printed and the loader is suspended
whenever an End-of-Tape condition is detected from the
input unit.

DUPLICATE PROG NAME-name

This message is printed when a program name is already
defined in the system for a normal load or a program
addition. The loader changes the name of the current
program by replacing the first two characters with periods
(e.g., JIMBI becomes .. MBI). The second duplicate
program name aborts the loader.

-C'•
.:_~

~ C--

.
RTE·III

/

This m sage is printed when an end-of-tape condition s
detec d from the input dev.:ce being used for library inp t
and e loader needs the r rary to be scanned again.

the end of a n mal IOad, or after loading the la
s gment, the Joa r prints the following me
t rminates itself.

LOAD LIB

'-­
This message is printed when. an end-of-tap ondition is
detected from the input d!}vlce being used for library input
and the loader needs to scan the library again.

Summary of Error Messages

SYSTEM HAL TS

Several system halts are located within the protected sys­
tem area. They are as follows:

Halt Reason

102000 Illegal execution into a portipn of
Table Area I.

102002 Tried to execute location 2. in the system map
102003 Tried to execute !~cation 3. in the system map

102004 System was in halt mode when power failed;
or, no EQT entry for DVP43 power fail routine.
or there was not enough time to save
all the OMS map registers when power­
fail occurred.

102005 Parity error in the system map.

102006

A-register=Physical page numbers
8-reei~te~=logical address of n~~ity

error

A program partition's memory allocatic
table entry could not be found in the
linked list being searched.

E-7/E-8

/'I~

r

•••

' J

•• '

I

