TITLE: 16K MEMORY EXPANSION MODULE
SERVICE MANUAL

PART NUMBER: 64032-90901
MICROFICHE: 64032-90801
PRINT DATE: JULY 1984 REV.l
UPDATE:
PRINTED IN THE U.S.A.

* The product related to this manual is no longer in production at the Hewlett-
- Packard Corporation. The manual is maintained on a microfiche master by Direct
- Marketing Division. As a service to our customers we are providing a hardcopy
- print of the microfiche. The print is produced using a Microfiche Printing System. In
- addition, we are providing a duplicate of the microfiche to provide maximum
- flexibility for our customers.
* *

TABLE OF CONTENTS

Section Page
I GENERAL INFORMATION $1-1$
1-1. Introduction $1-1$
1-4. Instruments Covered by this Manual. $1 \cdot 1$
1-9. Description 1-1
1-12. Specifications $1 \cdot 1$
1-13. Level of Service 1-2
II INSTALLATION 2-1
2-1. Introduction 2-1
2-3. Initial Inspection 2-1
2-5. Installation $2-1$
2-6. Removal 2-1
III OPERATION 3-1
IV PERFORMANCE TESTS 4-1
4-1. Introduction 4-1
4-3. Required Equipment 4-1
4-4. System Condsiderations 4-1
4-6. Performance Verification Tests 4-1
4-8. Starting Performance Verification 4-1
4-10. Performance Verification Commands $4 \cdot 3$
4-12. Total PV Tests 4-3
4-17. Operation Test 4-4
4-21. Data Test $4-5$
4-24. Address Test 4.5
4-27. Byte Operation Test 4.6
4.30. Pattern Test 4-7
4.3:3. Refresh Test 4-7
4:37. Delay Test $4-8$
4.40. Timing Test 4-8
443. Signature Analysis Test 4.9
Section Page
4-47. Refresh Only Test $4-9$
4-52. Troubleshooting 4-9
4-57. Troubleshooting with Signature Analysis 4-10
v ADJUSTMENTS 5.1
VI REPLACEABLE PARTS 6-1
6-1. Introduction 6.1
6-3. Abbreviations 6-1
6-5. Replaceable Parts List 6-1
6-7. Ordering Information 6-1
6-10. Direct Mail Order System 6-2
VII MANUAI, CHANGES $7 \cdot 1$
VIII SERVICE $8-1$
8-1. Introduction 8-1
8-4. Block Diagram Theory $8-1$
8-5. Identify Slot/Select $8-1$
8-7. RAM Storage 8.1
8-9. Address Multiplexer 8-1
8-11. Timing/Refresh Clock $8-1$
8-13. Read/Write Control $8-1$
8-15. Arbitrator/Sequencer $8-1$
8-17. Data Buffers $8-1$
8-19. Detailed Circuit Theory 8-2
8-21. Identify Slot/Select Circuit 8-2
8-2:3. RAM Storage Circuit $8 \cdot 2$
8-27. Address Multiplexer (ircuit $8-3$
8-30. Refresh Clock Circuit $8-3$
8-32. Read/Write Control Circuit $8-3$
8-36. Arbitrator/Sequencer Circuit $8-3$
8-41. Data Buffers Circuit 8.4
8-43. Conventions 84

LIST OF ILLUSTRATIONS

Figure	Title	Page	Figure	Title	Page
1-1.	Model 64032A 16k Memory Expansion Module.	$.1-2$	6-1.	Component Locator.	6-3
4-1.	System Awaiting Command Display .	4-2	8-1.	Block Diagram	8-2
4-2.	Card Cage Directory Display	.4-2	8-2.	Schematic Diagram Notes	8-10
4-3.	Total PV Display .	.4-3	8-3.	Component Locator. .	8-12
4-4.	Operation Test Display	. 4-4	8-4.	Schematic, Service Sheet 1	8-13
4-5.	Refresh Test Display	. 4.7	8-5.	Refresh Memory Operation Timing	8.14
			8.6.	BPC Memory Operation Timing...	8-14

LIST OF TABLES

Table

Title	Page
Error Code Conversion	4.9
Signature Analysis Loop A	4-11
Signature Analysis Loop B	4.12
Reference Designators and Abbreviations.	6-\%

4-1. Error Code Conversion11
4-3. Signature Analysis Loop B 12
6-1. Reference Designators
and Abbreviations 6

6-2. Replaceable Parts list
6.1

6-3. Manufacturers' Codes6.6
8-1. Mnemonics .

Table
Table Title Page

8-2. Logic Symbols... . 7
8-2. Logic Symbols 8-7

SECTION I

GENERAL INFORMATION

1-1. INTRODUCTION.

1-2. This service manual contains information required to install, test and service the Hewlett-Packard Model 64032A 16k Memory Expansion Module.

1-3. Shown on the title page is a microfiche part number. This number can be used to order 4×6 inch microfilm transparencies of the manual. Each microfiche contains up to 96 photoduplicates of the manual pages.

1-4. INSTRUMENTS COVERED BY THIS MANUAL.

15. Attached to the instrument or printed on the printed circuit board is the repair number. The repair number is in the form: 0000 A 00000 . It is in two parts; the first four digits and the letter are the repair prefix, and the last five are the suffix. The prefix is the same for all identical instruments. The suffix, however, is assigned sequentially and is different for each instrument. The contents of this manual apply to instruments with the repair number prefix(es) listed under REPAIR NUMBERS on the title page.
16. An instrument manufactured after the printing of this manual may have a repair number prefix that is not listed on the title page. This unlisted repair number prefix indicates thet the instrument is different from those described in this manual. The manual for this newer instrument is accompanied by a Manual Changes supplement. This supplement contains "change information" that explains how to adapt the manual for the newer instrument.

1-7. In addition to change information, the supplement contains information for correcting errors in the manual. To keep this manual as current as possible, Hewlett-Packard recommends that you periodically request the latest Manual Changes supplement. The supplement for this manual is identified with the manual print date and part number, both appear on the manual title page. Complimentary copies of the supplement are available from Hewlett-Packard Sales/Service Office.

1-8. For information concerning a repair number prefix that is not listed on the title page or in the Manual Changes supplement, contact your nearest Hewlett-Packard Sales/Service office.

1-9. DESCRIPTION.

1-10. The Hewlett-Packard Model 64032A 16k Memory Expansion Module provides additional memory for the HP 64000 software. Memory is contained on one printed circuit board that fits in the 64000 mainframe card cage (figure 1 1).

1-11. Memory capacity of $16 k, 16$ bit words is achieved through the use of 16 dynamically refreshed RAMs. Each word is stored in memory in the form of an upper and lower byte, with each bit located in an individual RAM chip. Refer to Section VIII Service for a more detailed description.

1-12. SPECIFICATIONS.
a. Memory expansion of $16 \mathrm{k}, 16$ bit words.
b. Board ID 0401 H .
c. Typical power consumption, in watts.
1.9 at $+5 \mathrm{~V}, .1$ at $-5 \mathrm{~V}, .5$ at +12 V .

1-13. LEVEL OF SERVICE.

1-14. This is a Final Component Level Manual. It contains information that provides component level servicing of the Model 64032A. Detailed schematics, theory of operation and Signature Analysis loops are provided in sections IV and VIII.

Figure 1-1. Model 64032A 16k Memory Expansion Module

SECTION II

INSTALLATIO:

2-1. INTRODUCTION.

2-2. This section contains information for installing and removing the Model 64032A. Also included are initial inspection procedures.

2-3. INITIAL INSPECTION.

2-4. Inspect the shipping container for damage. If the shipping container or cushioning material is damaged, it should be kept until contents of the shipment have been checked for completeness and the instrument has been checked mechanically and electrically. Procedures for checking electrical performance are given in section IV. If the contents are incomplete, if there is mechanical damage or defect, or if the instrument does not pass the performance tests, notify the nearest Hewlett-Packard Sales/Service office. If the shipping container is damaged, or if the cushioning material shows signs of stress, notify the carrier as well as the Hewlett-Packard Sales/Service office. Keep the shipping materials for the carrier's inspection. The HP office will arrange for repair or replacement at HP option without waiting for claim settlement.

CAUTION

The Model 64032A 16k Memory Expansion Module must be installed and removed with the mainframe power off!

2-5. INSTALLATION.

a. Remove the access cover from the mainframe.
b. Orient the module so th. 1 the 86 pin edge connector is pointed toward the bottom of the card cage, and the component side is facing the CPU board. Insert the module into any numbered slot and press down firmly until it is seated.
c. Replace the access cover.

2-6. REMOVAL.

a. Remove the access cover from the mainframe.
b. Locate the module: its extraction tabs are labeled M16KDYN and 64032A. Remove the module by lifting up the extraction tabs.
c. Replace the access cover.

SECTION III

OFERATION

The operation of the 16 k Memory Expansion Module is a function of the HP 64000 software and is beyond the scope of this service manual. All operating features of the modulo are transparent to the user of the software.

SECTION IV

PERFORMANCE TESTS

4-1. INTRODUCTION.

4-2. This section explains servicing of the 16k Memory Expansion Module. The paragraphs on Performance Verification (P^{\prime}) describe what the $P^{\prime} \mathrm{V}$ is, how it is run, what it does, and how to decode $P \mathrm{P}$ errors. The troubleshooting paragraphs explain how the PV tests are used to identify failures. Using this section, the schematic in section VIII, and Signature Analysis it is possible to service the module to the individual component level.

4-3. REQUIRED EQUIPMENT.

a. $\triangle \mathbf{6 4 0 O O})$ series mainframe with most recent P V software.
b. 'To print PV results a printer must be attached to the system.
c. To perform PV generated signature analysis, an HP Model io() 4 A . or equivalent signature analyzer is required.

4-4. SYSTEM CONSIDERATIONS.

4.5. Failure isolation must be performed to eliminate other sections of the logic Development System as the source of the faidure. It is assumed in this manual that the mainframe PV has been successfully conducted and that other option cards have been removed from the card cage.

4-6. PERFORMANCE VERIFICATION TESTS.

4.7. The Performance Verification for the 16 k Memory Expansion Module is a software routine used by the mainframe to test about 99% of the circuitry of the memory module. It is a subsection of the system Option Test Performance Verification that allows testing of each module located in the mainframe card cage. The following paragraphs describe how to perform the 16 k Memory Expansion Module PV, what is checked, and how to decode the errors.

4-8. STARTING PERFORMANCE VERIFICATION.

1.9. To test the memory proceed as follows.
a. With the operating system initialized and awaiting a command (figure $4-1$), enter the option_lest command.

Figure 4-1. System Awaiting Command Display

Figure 4.2. Card Cage Directory Display
b. The PV now displays a directory of the installed option boards and their card slot numbers (figure 4-2). The first step in the PV is to locate the card slot of the 16 k Memory Expansion Module and enter the slot number. For example, if the memory is in slot 1 , enter:

1 RETURN

4-10. PERFORMANCE VERIFICATION COMMANDS.

4-11. Each PV display provides prompting for the commands that can be executed. These commands are selected by "softkeys" which are defined brlow.
cycle starts highlighted test and continues through other tests until the end. next_test, or start softkey is pressed.
end terminates test activity and returns display to next higher level. At Total PV Display (figure 4.3) also resets failure counters to zero.
next_test moves highlight line to following test category.
print outputs display to attached printer.
start begins execution of s.lected test.

4-12. TOTAL PV TESTS.

4-13. Display. All test categories available are shown in this display. When one or more test categories have been executed the results are displayed. Use the display to choose the test categories to be performed or to review the overall results of the IV.

Figure 4.3. Total PV Display

4-14. Running the Total PV. To run all the tests shown on the display, press the cycle softkey. Each test category is executed and the results are displayed. A complete cycle requires approximately fifteen seconds. Press the nextlext softkey to halt the iterations.

4-15. Using the Total PV Results. When the tests are complete, examine the \# Fail column. When all entries are zerv it indicates approximately 99% of the circuitry has been checked and no errors have been found.

4-16. A non-zero value represents the number of errors detected in the test category. Determine the exact cause of the error by running the failed test category and viewing the results in detail. Do this by positioning the highlight line over the failed test category and pressing the start softkey.

4-17. OPERATION TEST.

4-18. Display. This display shows the four Operation test categories and the test results. Use the display to view test conditions in detail.

Figure 4-4. Operation Test Display

4-19. Running the Operation Tests. The Operation tests are always running while this screen is displayed. To stop the tests and return to the Total PV Display, press the end softkey. Each iteration of the tests takes less than one second.

4-20. Using the Operation Test Results. The total number of errors detected during the tests is shown in the \# Fail column. Each error code in the Results column represents a single failure encountered during the last iteration. Fach error code in the (cumulative) column represents the sum of all errors detected during the test. Cumulative error codes that differ from Results error codes indicate multiple, or intermittent errors. When the error codes are the same the errors are systematic. Refer to the appropriate test for an explanation of what the test does and how to decode the errors.

4-21. DATA TEST.

4-22. Purpose. This test (figure 4-4) checks all data paths for signals LD0 through LD15 by writing data to the memory RAMs and then reading it back. When a bit cannot be written and read back in both its high and low level, an error is flagged. During the test, data is written to only one address in each of the 16 RAMs , therefore, a successful test indicates that the data paths are functioning correctly, but it does not imply that all cells in all RAMs are operating properly. See Pattern Test for RAM cell checks. Note that address bus failures generally do not affect the reliability of this test.

4-23. Decoding Data Test Errors. All errors found are formatted as a four character hexidecimal word. Each character represents four binary digits, each digit corresponding to a single data line. To decode an error word, convert each character to its binary equivalent and compare it with the chart shown below. If necessary, refer to table 4-2 for hexidecimal-to-binary conversion. For example, if the error word is 0005 , there are errors on the LID0 and LD2 data paths. The U-number shown in the chart indicates the RAM that may have a failure.
a. Data Test Errors.

Hex	Binar				Signal	in
$\mathbf{x} \mathbf{x x} \mathbf{x}=$	0000	0000	0000	0000	None	
			-	--1	LDO	U1
	- -	-	---	-1-	LD1	U17
	--	--	-	-1-	LD2	U2
			-	1--	LD3	U18
			--1	--	LD4	U3
	-	---	--1-	-	LD5	U19
	--	--	-1-	-	LD6	U4
	-	--	$1-$	-	LD7	U20
	-	-1	--	-	LD8	U5
	-	-1-	--	--	LD9	U21
	-	-1--	-	--	LD10	U6
	--	1-	--	--	LD11	U22
	--1	--	--	-	LD12	U7
	-1-	--	--	-	LD13	U23
	-1-	--	-	---	LD)14	U8
	1-	--	-	--	LD15	U24
	$\mathrm{LD}=$	Low	Data			

4-24. ADDRESS TEST.
4-25. Purpose. All 14 address lines are checked in this test (figure 4-4) to make certain they are intact. Data is written to selected addresses in the RAMs and read back. When each bit at the selected addresses cannot be written and read at its high and low state, an error is noted.

4-26. Decoding Address Test Errora. Because data errors can cause an address test to fail, both the address bits and data bits are flagged when a failure occurs. Decode the four character address error word using the chart shown below, and decode the data error word using the chart shown in the Data Test. Refer to table $4-2$ for hexidecimal-to-binary conversion, if necessary. Significant error conditions follow.
a. Address Test Errors.

Hex	Binary			Signal in error
$\mathbf{x x} \mathbf{x x}=$	00000000	0000	0000	None
	00--	---	--1	LA0
	00- -	--		L,A1
	00- -	--	-1-	L.A2
	00- -	-	1--	LA3
	00- -	--1	---	LA4
	00- -	--1-	-	LA5
	00-- -	-1-	---	LA6
	00--	1-	---	LA7
	00---1	--	---	LA8
	00--1-	---	---	LA9
	00-- -1-	--	--	LA10
	00-- 1-	--	--	LAll
	00-1 -	---	-	LA12
	001- -	-		LA13
	LA = Low	Addres		

b. Address Error $=3$ FFF. Indicates all address lines are failing. This is because there are only 14 address lines and an error of FFFF cannot be returned from the test.
c. Multiplexed Address Errors. When two address bits are in error, check to see if they are separated by seven bits. This may indicate a single line is failing that is carrying both bits in multiplexed form. Multiplexed address bits are shown in below.

Multiplexed Address Bits

Bits	Node	Hex
0 and 7	U37-11	0081
1 and 8	U37-13	0101
2 and 9	U37-12	020.4
3 and 10	U37-18	0.408
4 and 11	U37-17	0810
5 and 12	U37-16	1020
6 and 13	U37-19	2040

4-27. BYTE OPERATION TEST.
4-28. Purpose. This test (figure 4-4) checks the module's ability to perform byte operations. When the upper and lower bytes cannot be written and read back correctly, an error condition is noted.

4-29. Decoding Byte Operation Errors. The errors found in this test are not decoded. When this test fails and all other tests pass, the failure is probably associated with signals LWRTL and LWRTU in the read/write control circuit.

4-30. PATTERN TEST.
4-31. Purpose. All of the cells in each RAM are checked by this test (figure 4-4). When both the high and low state cannot be written and read back from each cell, a failure is noted.

4-32. Decoding Patfern Test Errors. All errors found are formatted as a four character hexidecimal word. Each character represents four binary digits, each digit corresponding to a single bit. To decode an error word, convert each character to its binary equivalent and compare it with the chart shown below. If necessary, see table $4 \cdot 2$ for hexidecimal-to-binary conversion. For example, if the error word is 0)(io), there are errors on the l, Dit and lidg data paths. The U-number shown in the chart indicates the RAM that may have a failure.
a. Pattern Test Eirrors.

4-33. REFRESH TEST.
4-34. Display. This display shows the two Refresh test categories available and their test results. Use the display to review test conditions.

Figure 1.5. Refresh Test Display

4-35. Running the Refrash Tests. When this screen is displayed, the two tests are always running. Press the end softkey to stop the tests and return to the Total PV Display. Each iteratior takes approximately ten seconds.

4-36. Using the Refresh Results. The total number of errors detected during the tests is shown in the \# Fail column. Each error code in the Results column represents a single failure encountered during the last iteration. Each error code in the (cumulative) column represents the sum of all errors detected during the test. Cumulative error codes that differ from Results error codes indicate multiple, or intermittent errors. When the error codes are the same, the errors are systematic. Refer to the appropriate test for an explanation of what the test does and how to decode the errors.

4-37. DELAY TEST.

4-38. Purpose. This test (figure 4-5) checks for hard failures in the refresh circuitry. When data cannot be written to the RAMs and read back correctly after waiting several refresh cycles, an error is noted. When this test fails and all other tests pass, the problem lies in the refresh circuit.

4-39. Decoding Delay Test Errors. All errors found are formatted as a four character hexidecimal word. Each character represents four binary digits, each digit corresponding to a single bit. To decode an error word, convert each character to its binary equivalent and compare it with the chart shown below. See table $4-2$ for hexidecimal-to-binary conversion, if necessary. For example, if the error word is 0A00, there are errors on the LD9 and LD11 data paths. The U-number shown in the chart indicates the RAM that may have a failure.
a. Delay Test Errors.

4-40. TIMING TEST.

4-41. Purpose. Soft failures of the refresh circuit are detected in this test (figure 4-5). When the circuit refreshes memory more frequently than necessary, the power consumption on the +12 volt supply increases. Also, the mainframe CPU accesses may be delayed by this condition. The test detects statistically significant deviations from normal CPU access rates over a timed interval. When the access rate is not within the normal range, a failure is flagged.

4-42. Decoding Timing Errors. The errors found in this test are not decoded. When the test fails and all other tests pass, the failure is probably associated with the refresh clock, components U49 and U50 or multiplexer U37.

4-43. SIGNATURE ANALYSIS TEST.

4-44. Display. There is no separate display for this test. See the Total PV Display, figure 4-3.
4-45. Running the Signature Analysis Test. There are two separate Signature Analysis loops used to test the module, Loop A and Loop B. Loop A tests all circuitry, except the refresh circuit, and is run while the PV is in the Signature Analysis mode. To run the loop A test, proceed as follows. Locate the highlight line over the words Signature Analysis on the Total PV display and press the start softke;: In this mode the PV places signals on the lines of the module that generate known signatures when read by an HP Signature Analyzer. Press the end softkey to stop the test.

4-46. A complete description of how to connect the Signature Analyzer and take signatures on Loop A is provided in the paragraphs on troubleshooting.

4-47. REFRESH ONLY TEST.

4-48. Display. There is no separate display for this test. See the Total PV Display, figure 4-3.
4-49. Running the Refresh Only Test. Position the highlight line over the words Refresh Only on the Total PV display and press the start softkey. To stop the test, press the end softkey.

4-50. Purpose. This test provides two functions during servicing of the refresh circuitry. First, the test checks the mainframe CPU and increments the counter on the display to indicate the CPU is running. Second, this PV mode generates signatures for the Loop B Signature Analysis which checks the refresh circuitry.

4-51. A complete description of how to connect the Signature Analyzer and take signatures on Loop B is provided in the paragraphs on troubleshooting.

Table 4-1. Error Code Conversion

Hex = Binary		Hex = Binary	
1	--1	8	$1-$
2	$-1-$	9	$1-1$
3	-11	A	$1-1-$
4	$-1-$	B	$1-11$
5	$-1-1$	C	$11-$
6	$-11-$	E	$11-1$
7	-111	F	$111-$

4-52. TROUBLESHOOTING.

4-53. When servicing to the component level is not practical, use the Performance Verification tests to quickly check the overall condition of the module. When any of the tests fail, try swapping with a good module. Because the $16 k$ Memory Expansion Module interacts only with the 64000 mainframe, a failed memory PV can only be due to a module failure or to a mainframe failure.

4-54. The Performance Verification tests can be used to good advantage to isolate the functional area of the module that is failing. After determining the faulty functional area, Signature Analysis can be used to identify the faulty component.

4-55. When the Operation test fails, use Signature Analysis Loop A for component level servicing. When the Refresh test fails, use Signature Analysis Loop B.

4-56. When Low Memory Synchronization (LMSYN) is held low, the CPU is placed in a wait mode. Therefore, if this signal is stuck in the low state, the CPU will hang up the system. To release the system, remove buffers U38 and U40, and use a jumper wire to connect TP4 to ground. Remove jumper and replace buffers when finished.

4-57. TROUBLESHOOTING WITH SIGNATURE ANALYSIS.

4-58. Set up the memory module for Signature Analysis using the basic steps shown below.

CAUTION

The Model 64032A 16k Memory Expansion Module must be installed and removed with the mainframe power off!

4-59. General Sel-Up Procedure.

a. Turn off the power to the mainframe and remove the card cage access cover.
b. Remove the memory board. Insert an extender board in the card cage and insert the memory module in the extender.

4-60. Troubleshooting with Signature Analysis Loop A.
a. Connect the SA Start lead to U26 pin 5 and set Start on the on the falling edge.
b. Connect the SA Stop lead to U35 pin 11 and set Stop on the rising edge.
c. Connect the SA Clock lead to U50 pin 11 and set Clock to the falling edge.
d. Disable the refresh circuit by connecting TP2 on the memory module to the ground test point (TP6) with a jumper wire.
e. Connect the SA ground lead to the memory module ground test point (TP6).
f. Turn on power to mainframe and begin memory module PV.
g. Locate the highlight line over the words Signature Analysis on the Total PV display and press the start softkey. Press the end softkey to stop the test.
h. Use signatures shown in table 4-2.

4-61. Troubleshooting with Signature Analysis Loop B.
a. Connect the SA Start and Stop lead(s) to TP1 on the memory board. Set Start on the rising edge and set Stop on the falling edge.
b. Connect the SA clock lead to U42, pin 3, and set to the rising edge.
c. Connect the SA ground lead to the memory module ground test point (TP6).
d. Turn on power to mainframe and begin memory module PV.
e. Locate the highlight line over the words Refresh Only Test on the Total PV display and press the start softkey. Press the end softkey to stop the test.
f. Use signatures shown in table 4-3.

Performance Verification Mode: Signature Analysis.
Procedure: Ground TP'2.
Start=U26 pin 5, falling edge (I,BPCPENI).
Stop $=$ U35 pin 11, rising edge ($\mathrm{S}_{\mathrm{S}} \mathrm{T}^{\prime} \mathrm{M}$).
Clock=U50 pin 14, falling edge.
$\mathrm{Vh}=001 \mathrm{U}$.

Table 43. Signature Analysis Loop B

Performance Verification Mode: Refresh Only.
Procedure: NA.
Start=Memory Board, TP1, rising edge.
Stop=Memory Board, TP1, falling edge.
Clock=Memory Board U42, pin 33, rising edge.
$\mathrm{Vh}=76 \mathrm{U} 0$.

SECTION V

ADJUSTMENT

There are no adjustments on the 16 k Memory Expansion Module.

SECTION VI

REPLACEABLE PARTS

6-1. INTRODUCTION.

6-2. This section contains information for ordering parts. Table 6-1 lists abbreviations used in the parts list and throughout the manual. Table 6-2 lists all replaceable parts in reference designator order. Table 6-3 contains the names and addresses that correspond to the manufactures' five-digit code numbers.

6-3. ABBREVIATIONS.

6-4. Table 6-1 lists abbreviations used in the parts list, schematics, and throughout the manual. In some cases, two forms of the abbreviation are used: one all in capital letters, and one partial or no capitals. This occurs because the abbreviacions in the parts list are always capitals. However, in the schematics and other parts of the manual, other abbreviation forms are used with both lowercase and uppercase letters.

6-5. REPLACEABLE PARTS LIST.

6-6. Table 6-2 is the list of replaceable parts and is organized as follows:
a. Chassis-mounted parts in alphanumerical order by reference designation.
b. Electrical assemblies and their components in alphanumerical order by reference designation.
c. Miscellaneous.

The information given for each part consists of the following:
a. The Hewlett-Packard part number and the check digit.
b. The total quantity (Qty) in the instrument.
c. The description of the part.
d. A five-digit code that indicates the manufacturer.
e. The manufacturers' part number.

The total quantity for each part is given only once - at the first appearance of the part number in the list.

6-7. ORDERING INFORMATION.

6-8. To order a part listed in the replaceable parts table, quote the Hewlett-Packard part number and check digit, indicate the quantity.

6-9. To order a part that is not listed in the replaceable parts table, include the instrument model number, instrument repair number, the description and function of the part, and the number of parts required. Address the order to the nearest Hewlett-Packard office.

neplaceadie raris

6-10. DIRECT MAIL ORDER SYSTEM.

6-11. Within the USA, Hewlett-Packard can supply parts through a direct mail order system. Advantages of using the system are as follows:
a. Direct ordering and shipment from the HP Parts Center in Mountain View, California.
b. No maximum or minimum on any mail order (there is a minimum order amount for parts ordered through a local HP office when the orders require billing and invoicing).
c. Prepaid transportation (there is a small handling charge for each order).
d. No invoices - to provide these advantages, a check or money order must accompany each order.

6-12. Mail-order forms and specific ordering information are available through your local HP office. Addresses and phone numbers are located at the back of this manual.

Table 6-I. Reference Designators and Abbreviations

			Reference	IGNATOR			
A	assembly	F	tuse	MP	mechanical part	U	integrated cricuit
8	motor	FL	filter	P	plug	v	vacuum. lube neon
8 T	battery	IC	integrated circuit	0	transistor		bulb photocell. etc
C	capactior	J	jack	R	resistor	VR	voltage regutator
CP	coupler	K	relay	RT	thermistor	w	cabla
CR	diode	1	inductor	S	switch	x	socket
D	delay line	LS	loud speaker	\boldsymbol{T}	transformer	\boldsymbol{Y}	crystal
DS	device sıgnaling 'lamp	M	meter	TB	terminal board	z	tuned cavity network
E	misc electronic part	MK	mucrophone	TP	test point		
ABBREVIATIONS							
A	amperes	H	henries	N/O	normally open	RMO	rack mount only
AFC	automatic trequency control	HDW	hardware	NOM	nominal	RMS	coot-mean square
AMPL	amplitier	HEX	hexagonal	NPO	negative positive zero	RWV	reverse working
	beat trequency oscillator	HG	mercury		'zero temperature		voltage
BE CU	beryllium copper	Hz	nertz	NPN	negative-positive	S-8	slow blow
BH	bunder head				negative	SCR	screw
BP	bandpass			NRFR	not recommended tor	SE	selenum
BRS	brass	IF	intermediate frea		field replacement	SECT	sectrons
Bwo	backward wave oscillator	$\begin{aligned} & \text { IMPG } \\ & \text { INCD } \end{aligned}$	impregnated incandescent	NSR	not separately replaceable	$\begin{aligned} & \text { SEMICON } \\ & \text { SI } \end{aligned}$	semiconductor silicon
CCW	counter-clickwise	INCL	includers'			SIL	silver
CER	ceramic	INS	insulationed"	OBD	order by description	SL	slicte
CMO	cabinet mount only	INT	internal	OH	oval head	SPG	sprung
COEF	coeficient			OX	oxide	SPL	special
COM	common	K	knlo 1000			SST	stamless steed
COMP	composition					SR	Solit ing
COMPL	- complete	LH	lett hand	P	peak	STL	stiey
CONN	connector	LIN	linear taper	PC	punted curcuit		
CP	cadmum plate	LK WASH	lock washer	PF	protarads 10%	TA	tantahum
CRT	- cathode-ray tube	LOG	logar thmic tapet		tarads	TD	tume delay
CW	clockwise	LPF	low pass titter	PH BRZ	phosphor bronze	TGL	togute.
				PHL	phillips	THD	threas
DEPC	deposited carbon		mili 103	PIV	peak inverse voltage	II	', ${ }^{\text {anmum }}$
DR	drive	ME G MET FLM	meng 10 s metal firm	PNP	positive negativepositive	TOL TRIM	tolerance tummet
ELECT	electrolytic	MET OX	metallic oxide	P/O	part of	TWT	traveling wave tube
ENCAP	encapsulated	MFA	manufacturer	POLY	polystyrene		
EXT	- external	MHZ minat	mega hertz minature	PORC POS	porcerinn positions)	U	micro 10%
F_{F}	tarads	MOM	momentary	POT	pcientiometer	VAR	varrable
	flat head	MOS	metal oxide substrate	PP	peak-to-peak	VDCw	dc wothing volts
FXI ${ }^{\text {FX }}$	= fillister head \because fixed	MTG	mounting 'mylar	PT PWV	point peak working voltage	W/	with
						w	watts
	$=$ grga 1109		nano 110 m	RECT	rectitier	wiv	working inverse
GE	germanum		normally closed	RF	radio trequency		voltage
GRD	glass groundted	NI PL	nean nickel plate	RH	round head or nght hand	$\begin{aligned} & w w \\ & w / 0 \end{aligned}$	wrewound without

Figure 6-1. Component Locator

Table 6－2．Replaceable Parts List

Reference Designation	HP Part Number	C	Qty	Description	Mfr Code	Mfr Part Number
	6，4832－66581	2	1	hrimory boand ibk drn	28480	640．32－6650 01
Cl	0160－2053	9	30	CAPACIIOR－FXD AIUF＋88－2az 180 UDC CER	28488	$0160-2055$
C2	0160－2095	9			274日0 28480	$\begin{aligned} & 01160-2055 \\ & 0160-2055 \end{aligned}$
${ }_{C}$	1168－2055	9			？ 8480	0160－2355
C5	1160－2153	9		CAPACITOR－5XD．01UF＋80－282 100 UDC．CEP	234R：	0160－2055
C6	0160－2055	9			2 4 480	0160－2355
C 7	0160－2055	9		CAPACIIOR－FXD 0 IUF 888 －20x $188 U L C$ CER	25488	011．0－2055
8.8	0168－2055	7			27380	0160－2055
C9	$1160-2053$ $168-2055$	9			204RG	$\begin{aligned} & 0160-2055 \\ & 0180-2055 \end{aligned}$
C11	1160－2055	9			28488	$0160-2055$
c12 c13	$0150-2055$ $0168-2055$	9			27440	$\begin{aligned} & 0160-2025 \\ & 0160-2055 \end{aligned}$
C14	$01600-2055$	9			2TARO	0160－205s
cis	1168－2055	－		CAFACITOR FXD．01UF＋B0－202 10SUDC CEP	2R4R0	0160－205．5
c： 6	0180－20：5	7			27480	0180－2055
Cl_{17}	01602055	9			234R0	011．0－2055
C18	01602055	9			2R4AO	011，0－2055
C19 C28	$0169-2055$ $0160-2055$	9		CAPACITOR－TXS CAPACIIRR	264AR 2P4日	$016.0-2055$ $0160-2055$
C28		7			20．480	0160－205s
C21	6160－2055	9		CAPACIIOR FXD CAPAFIIOR	294880	0160－2859
${ }^{628}$	0160－2055	9		CAPAFIIOR－FXD ．Dillif tho－snx 10DUDC E：R	27480	0160－2055
C23	0160－2055	9			28488 20410	016.0 205s
124 0.25	$0160-2055$ 01602055	9			254Fio 284，ieg	n160－2095 $0160-2855$
c2s	0160－2095	9			PR4日 0	0130－20．55
0.7	2160－2055	9			28486	01602055
C28	0160 －705s	9			28480	0160－2035
C． 29	0168－205s	9			20480	011，n－2055
C30	0160－2055	7			20.480	0160－2055
c 31	0168－2055	9		CAFACITOR－TXD ． 0 IUF－DO－2Mz IOCUDC CIA	251409	01602055
632 $C 33$	01602055 01682055 016050	9			28480	0180－2395
C．33	01602055	9			23488	0160－2055
C34	01602055	9		CAPACIIOR FXD CAFACITOR－FXD	2n4no	0160－205s
C． 35	016820.55	9			PR4n0	0160 －2055
c36 c．37	0160 － 0055	\cdots			PO4AO	0160－20．55
c． 37	01612055	9			294na	$0160-2055$
C．38	0150	9			2rant	0160－2355
	01602055 0160.2055	9		CAFACIIOR FXD CAPACITOR．	20，488 2.8440	01602055
C48	$0160 \cdot 2055$	9		CAPACITOR EXD ．O11F－ $60-202$ looudc CIR	28440	0160－20．95
CAL_{4}	0160 205s	9			2n4RO	0160－2055
C 42	0160 ？ 055	9			？ 1480	011，0－2035
r．43	0160－205s	9			274888	016.0 2055
C．44	0160 2355	7			¢0480	0150－2055
C45	$0160-3055$	9			20430	0160 2055
$\mathrm{C46}$	0160－2055	9			2r：480	31：3－23：5
C47	0150 205s	9			2n468	011602055
－ 8.8	0160 2005	9		CAPAFIILR IXD DillF HHO 2nX looute irg	－19480	3160－20：5
C49	0180.0474	4	4	CAPACITOR－TXD 1511F 102 PaUdC TA	28480	011000474
150	0180－0474	4			－1780	0180－0474
c．51	9188－0474	－		CAPACITOR FXD 15UR＋－10x 2QUDC IA		01000474
5．52	0150	9			26480	0160－20．35
CSO_{5}	$0160-2055$	$\stackrel{\square}{ }$			23488	0160－205s
C54	01800474	4		CAPAFIIIIR FXD 1SMF． 102 ？SVDC TA	20480	0100－0474
51	82：3 V013	4	an	Wh ：ege kame	00000	
MP1	5403285001	7	1	Exipacicripl	311480	640．22－85001
$\mathrm{MrO}^{\text {re }}$	14880116	8	2	PINCRU．OBZSIN－DIA ．25 IN LG STI．	20480	
MP 3 He 4	$6,9037-858 n ?$ 1480 0116	8 8	1		20480 ？ 2480	$64032-85.32$ 1480.0114.
				PIN CHO ．obe In dia ．an in en sti		
R1	0757 044：	9	10		24546	C．4－1／8 10－100：$\%$
Q2	$0737-0442$ 078.70442	9		RESISTRR 10×12 ． 125 S F TC＝00 100	24346	C4 1／8 10 100？F
		$\stackrel{9}{2}$			24546	C4 1／8－10－1002 F
84 85	$06.83 \cdot 3.365$ $06.83 \quad 3305$	2	13		01121	CA．3305
	0.43	2		RESISIOR 33 3x ．rid re TC＝－493／＋500	01121	Cb3705
R6 87	$\begin{array}{lll}0683 & 3305 \\ 01843 & 3305\end{array}$	3			01121 011121	Cr3305 C83305
R	06838 $06.83-3.305$ 0.85	？ 2 2			21121	CB3.305 CR3.05
89	0×8133305	2		RESISIOR 33 5x ． 3 W YC IC $=-400 / 0.580$	01121	CB3335
P10	06.83 3305	2			01121	cosses

See introduction to this section for ordering information

Table 6-2. Replaceable Parts List (Cont'd)

Reference Designation	HP Part Number	C	Qty	Description	Mfr Code	Mfr Part Number
R11	04.83-3305	2			31121	C43305
R12	18.83-3305	2			01121	Ca3305
813	0737-1442	9			24546	EA 1/8 10-1002.F
R14 R15	-7757-0442	$\stackrel{9}{9}$			24546	
R16	0683-3365	2		RESISTOR 3352 . 254 FC TC=-400/+500	01131	CR3x05
117	0757-0442	9		RESISIOR 10 K IX . 12 SH F IC=00 100	24546	C4.1/E 10-10n? C
R18	-757-8442	9		RFSISTOR $10 \times 12,1754$ F TC $=00+100$	24.546	C4 1/8-70 100:- ${ }^{\text {c }}$
$\cdots 19$	0737-0442	9			24546	C4 1/8-10-100: F
220	-757-0442	9		RESISTOR 101 12.1254 F TC $=0+100$	24546	r.4-1/8-70-100.F
221	0683-3305	2			01121	103305
R22	-683-3305	2			01121	CB3.305
223	0683-3305	2			01121	C83.3JS
TP1	0.368-05.35	!	6	TFRMINAL TEST POINT PCE	00000	OPDEP BY OTSCRIPTITN
182 TP3	$0360-0535$ $0360-853$	0		TERMINAL TEST POINT PCE TERMINAL TEST POINT PCP	30095 00080	
TP3	$0360-0535$ $0360-0535$	-		TERNINAL TEST POINT PCP TERMINAL IEST POINT PCH	00080 30000	
TPS	1360-8535	\cdots		teaninal test point pce	60000	OEDER BY DF:SCRIPTIEN
IFS	0360-0535	${ }^{\circ}$		irmminal teit phint prim	27630	netier fir cegrimipition
41	1818-1396	5	16	IC. MEmPI Y	008.31	UFA1br E(Scifciro
42	$1818-1396$ $1818-1396$	5 5			30833.3 00831	
04	1818-1396	5		ic. mimuiry	33033	
Us	1818-1396	5		IC-memory	00035	UFAlbr z(SriERTED)
16	1818-1396	5		If memory	00083	UP whic: z(Criected)
17	1818-1396	5		IC- MEMDRY	000.3	IFAIbr E(SFIERIED)
18 417	$1818-1376$ 1818.1396	5 5		IC-ME MORY	30935	IPAIAC- z(STIFCIID)
117 418	$1818-1396$ $1818-1396$	5 5		IC-memory	00003.3 0.7875	ITA4br z(SFiFC:IFD) IPA1sC-2(Sr.trcirb)
U19	1818-1396	5		IC-memor	008.35	INA16C z(sTicctrd)
428	1818-1376	5		IC. NE MOR Y	30.35	IFAldic ensilecird)
421 422	$1818-1396$ $1818-1396$	5		IC-ME MTR Y	$000 . \mathrm{xJ}$	
122 423	$1818-1396$ $1818-1396$	5		IC-ME MORY If-mfane	00833 0003.5	
424	1818-1396	5		IC- nf mor 1	0083.5	UPALAC 2(FITECIPD)
425	1828-1201	6	1	If. CATE ITL LS AND QUAD 2 -INP	01295	SNT4LSORN
426	1820-0693	B	3	IC FF IIL 3 d iric pas rokr irits	01255	r.N78S74N
4.35	1628-1199	1	2	IC. INU TIL IS HEX I-INF	01738	SNTA1 SOAN
1136	1820-1197	9	$?$	IC CAIF Ill is mand quad ?-inp	01295	SNTALSOON
4.37	1820-2076	5	1	IC Misc itic	34649	r.324:
U38	1820-2024	3	$?$	IC DRUR ITL IS IINT DRUR NCII.	01295	SNTPLSTA+N
439	1828-0907	7	1	If. GAIE TTL NAND TPL 3-INF	017275	SNTA12N
U41	1820-1433	3	1	If SHF-RGIR TIL LS R S SERIMA-IN PRL OUI	01275 08.295	
442	1020-9693	日		IC If IIL 5 d-irfe pis idorer init	01295	SN74S74N
1433	1820-1199	$!$		IC INU TIL LS HEX 1-INP	01293	SN741 SE4N
1344 145	1820-1197	9		IC CAIE IIL IS mand OISAD 2-InP	01255	SNT4LSO3N
144 446	$1828-1204$ $1820-1204$	9	?	IC CATE TTL LS MAND DUAI A IMP IC GATE TIL IS MAND DLAL 4 -INP	01295 01295	SN/AISEAN SNTALSTON
447	1828-1208	3	1	IC. Cate itl is or oliad 2-inp	01395	SNT41 S.32N
148	1820-06,93	8		IC FF ITL S D IrPE PIS EDCE TRIS	01.295	SN74574N
U49 use	$1028-1438$ 1828.1438	3	2	IC CNTR ITL IS RIM SYMCHEO POS EDGF IRIC.	01275	SNTAISIG1AN
458	1R28 - 1438	3		IC CNTR ITL IS Bim stminio pos fdor ihic	01235	Sn7al Siblan
xu1	1280-0687	,	16	SOCKET-IC 16-CONT DIP DIP SLDR	2п4 38	170e-0607
xuz $\times 03$	$1280-1687$ $1280-0607$	-		SOCKET-IC 16 CONT DIP DIP-SLDA	3R4RO	1209-0607
x194	1208-0607	,		SOCKEI-IC SOCKET-IC 16-CONT DIP DIP-SLDP DIP DIP-SIDR	28480 $\mathbf{2 R H E O}$	12088667 $1213-0607$
xus	1280-0607	-		SOCKFT-IC 16-CNNT DIP DIP SLDP	2nang	12000807
xu6	1200-0607	-		GOCKET-IC 16-T.ONT DIP DIP SIDR	-TARO	1.000-0507
xu7	1200-06.c7	*		SOCKFI-IC $16-C O N T$ DIP DIP-SLDP	3TARE	12000607
xu8	1200-0607	0		SOCKET-IC IS COMT DIP DIP SIADR	?3480	$1: 0000607$
X 1117 x 1318	$1208-0687$ $1200-3607$:		SOCKEI-IC ${ }^{16}$ COCKNT DIF DIF SLDP	2194R0	12088807
x1318	1200-3607	0		SOCKF.T-1C 36-CNNT DIP DIF SEDR	27480	1200-0607
xu19 x 428	1708-01.07	-		SOCKET-12 16. CRNT DIP DIP-SIDDR	2048a	1200-0007
xu28 $\times 1121$	$1200-0607$ $1200-06.67$	0		SOCKEI-IC 16 CRNT DIP DIP SIDR SOCXET-IC 16-CONT DIF DIP SLDP	28480 28480	$1: 100-0607$ $1200-0607$
xu22	1200-0607	-		SOCKET IC IS SONT DIP DIP-SIDR	2R4A0 2R4AO	$1200-0607$ $1200-0607$
$\times 1123$	1280-06.07	-		SOCETT-IC 16-CONT DIF DIP Side	234A8	1200-0607
xu24	$1280-0607$	-		SOCKRT-IC 16 RTNT DIP DIF GADR	23480	1200-0607
x 1137 $\times 638$ $\times 1048$	$1200-0567$ $1280-06.39$	1	$\underline{1}$		20488 38480	$1700-858.7$ $1200-0639$
xU40	1701-0639	8		SOCKEI IC. 21. CONT DIP DIP SidP		$\begin{aligned} & 1: 00-0639 \\ & 1200-08.39 \end{aligned}$

Table 6-3. Manufacturers' Codes

$\begin{aligned} & \text { Mir } \\ & \text { No. } \end{aligned}$	Manufacturer Name	Address		Zip Code
0980	any Salisfactory supplier			
808121	(${ }^{\text {NIPPON- ELECTMIC }}$ CO	Trurko	${ }_{\text {japan }}$	
${ }^{121295}$	TEXAS INSTR INC SEMICOMD CCPPNT DIU	dallas	Tx	\$5222
- 2834846	CORNINC CLASS MORKS (PRADPORD) WEWET-PACKARD CO CORPORATE HO		PA CA	16701 94304
34649 56299		Hountain viru nortil adass	${ }_{\text {cha }}^{\text {ca }}$	95551 01247

SECTION VII

MANUAL CHANGES

This section normaiiy inntains information for backdating this manual for models with repair numbers prior to the one shown on the title yage. Because this edition includes the information for the first repair number, there is no backdating material.

SECTION VIII

SERVICE

8-1. INTRODUCTION.

K•2. This section contains background information for repairing the Model $640: 32 \mathrm{~A} 16 \mathrm{k}$ Memory Expansion Module. For converience, the schematic and other service information is provided on a fold-out service sheet.

8-3. BLOCK DIAGRAM THEORY.

8-4. Refer to figure 8-1 Block Diagram for the relationships between the seven functional blocks of the memory module. Fach of the blocks is described below.

8-5. IDENTIFY/SLOT SELECT.

8 -6. At v. ious times the BP(requests the board's II) number. The identify slot select circuit returns the II) (0.401H to the BPC , a the data bus.

8-7. RAM STORAGE.

$8-8$. The memory is organized into $16 k$, 16 bit words, with each word comprised of an upper and lower 8 bit byte. Sixteen dynamically refreshed, 16 k by one bit MOS RAMs are used for the storage. Fach RAM's internal addressing is arranged as a square matrix of 128 rows by 128 columns, yielding addresses 0 through $16,343$.

8-9. ADDRESS MULTIPLEXER.

8-10. All RAMs are addressed by multiplexing the RAMs' internal row and column address vial U:37. The mode select on the multiplexer chooses between BPC initiated read/ write activities and module initiated refresh reguests.

8-11. TIMING/REFRESH CLOCK.
8-12. The timing circuit uses the 25 MHz signal generated by the lisplay (ontroller and I) river board as the input for clocking purposes. The circuit produces two timing clocks, a 12.5 MHz module clock, and a 97.6 kHz signal for refreshing the memory RAMs.

8-13. READ/WRITE CONTROL.

X-14. This circuit converts BP(' read and write signals into the necessary RAM internal row and column control signals. During write operations the circuit selects upper, lower, or full word access. Read operations are always by full word, with the BPC performing byte functions after the access.

8-15. ARBITRATOR/SEQUENCER.

8-16. The arbitrator sequencer circuit schedules competing requests for memory operations between the BP(' and the refresh circuit. When a $\mathrm{BP}^{\prime}\left({ }^{\prime}\right.$ memory operation occurs, the arbitrator seguencer locksout refresh requests until the BP(' memory operations are completed. In a similar manner, refresh operations cannot be interrupted by a BP(request for a read or write.

8-17. DATA BUFFERS.

8-18. During a BPC read, the data buffers are enabled to output the 16 bit word onto the Low Data Out lines

Figure 8-1. Block Diagram

8-19. DETAILED CIRCUIT THEORY.

8-20. The following paragraphs provide a detailed description of the circuit operation within each functional block of the memory module. The circuits are shown in figure 8 -t. Service Sheet 1 .

8-21. IDENTIFY SLOT/SELECT CIRCUIT

 15 data bus. The BP(reads and stores the II) (0.40111) and slot number for future operations.

8-23. RAM STORAGE CIRCUIT.

8-24. The RAMs (U1-U8, U17-U®4) circuit provides three major operations; read, write, and refresh. During a read operation, the RAM internal row addresses HRA()-HRA6 are latched into the chip by IRASI and the internal column addre: ses HCAO-HCA6 are latched by LCASI. Data is made available on pin 14 of the RAMs for access by the data buffers circuit.

8-25. In a write memory cycle, internal RAM row and column addresses are strobed into the RAMs as in the read cycle. Data (LI)(0-15) is written into the RAMs in the selected cell by active signal L.WRTL and I.WR'TU.

8-26. Refresh of the RAMs circuit is accomplished by performing a memory cycle at each of the 128 row addresses within a 2 millisecond time interval. The abitrator/sequencer circuit allows the address multiplexer to enable HRAOHRA6, and LRASI to latch the address into the RAMs. The address multiplexer has an internal 7-bit counter capable of reading (i.e. refreshing) all 128 row addresses.

8-27. ADDRESS MULTIPLEXER CIRCUIT.

8-28. The address multiplexer, U37, provides internal RAM row and column address multiplexing and address indexing for refresh. The address multiplexer receives LAO-LAI 3 from the CPU and multiplexes it to seven inverted output pins. When chip controls M1 and M4 are active, internal RAM row addresses are output. When controls M2 and M4 are active, the internal RAM column addresses are output to the RAMs.

8-29. During a refresh cycle, control signal RFFRESH is activated and combined with the 97.6 kHz clocking signal on U37 pin 1. The multiplexer increments the address and refreshes one memory location. At the 97.6 kHz frequency rate, the entire memory is refreshed in 128 cycles within the required 2 millisecond period.

8-30. REFRESH CLOCK CIRCUIT.

8-31. The refresh clock circuit is initialized by LIP()P. Clocking signal L.25 MHz is input to U48A producing an output clock used by U49, U50 and the arbitrator sequencer circuit. The output of U 48 A is 12.5 MH Z and is divided by (U 50 and U49. The 97.6 kHz output from U49, pin 12, clocks the refresh counter in U:37 (address multiplexer circuit) and enables the arbritrator sequencer to start a refresh cycle at the completion on a BP($:$ memory cycle.

8-32. READ/WRITE CONTROL CIRCUIT.

X-33. The read/write control circuit produces control signals for column address, write for upper or lower byte, and buffer enable, respectively. Control signal LMAPl is sent to U47A. When HBPC and a clocking signal from the arbitrator/sequencer circuit are sent to (U4.4), a low is output on pin 11 of U.4.1). This low output is combined with LMAP'l in U47A producing I.CASI Control signal I.CASI enables the column address from the address multiplexer circuit into the RAMs.
8.34. The (PPU sends control signals LBY'TE. IUPIB and LWRT to U43B, U43C, and U43F in the read write control circuit to select either a byte or word operation. When HBPC and the 97.6 k clocking signal are active, the following functions can also occur.
 When I.BYTTE is inactive. I.WRTU and I.WRTL produce a word operation. When LDPB is inactive UATA outputs LWRTL. When L.WRT is inactive and the CPU enables L.STB: U46A is enabled and outputs signall.BUFEN. When IBUFEN is active, data is enabled through the data buffers circuit to the CPU on the data bus.

8-36. ARBITRATOR/SEQUENCER CIRCUIT.

8-37. The a:bitrator sequencer circuit produces timing, refresh. BPC read or write, and syne control signals. The arbitrator/sequencer is responsible for control of refresh or BPC memory operation. The control signals cause multiplexing of the address lines and send I.MSYN to the BPC.Signall.MSYN forces the BPC to wait until the reador write operation is complete. The arbitrator sequencer is also responsible for the timing of control signals to the RAMs and Data Buffers.
K.3s. When the correct address, data and read write control signals are present, the BP('requests access to the RAMA: by sending LSTM and LSS via U35, U25, and (144. This request is latched intoU26A producing HBP(PEND).IMSYN becomes active via $\mathrm{C}^{2} 39 \mathrm{~B}$, telling the BPC to wait until the memory cycle is complete.

8-39. Any refresh cycle in progress is allowed to complete. HMEMOP goes low signifying the completion of the current memory cycle. LBPCPEN is clocked into U42A making HMEMOP true again beginning another memory cycle which allows the BPC to read or write. The transition of HMEMOP from low to high latches HBP(CPEN into U42B producing signal HBPC. Signal HBPC in conjunction with a timing signal from U41 enables the read write control circuit and clears HBPCPEND, thus removing LMSYN. This sequence allows the BPC to complete its operation.

8-40. The dynamic RAMs used have only 7 address lines. In order to access the 16 k locations in each RAM, 14 address bits are needed. The 14 signals are provided by loading the row address (LA0-6) by means of the row address strobe (LRAS) and the column address (LA7-13) by means of a column address strobe (LCAS). When HMEMOP becomes true, shift register U41 begins shifting ones to produce control signals that sequence the row and column address strobes and row and column address. After the memory cycle is complete, HMEMOP is cleared via U36B, U36C, U48B and U42A. HMEMOP is cleared when set and reset on U42A are both low.

8-41. DATA BUFFERS CIRCUIT.

8-42. Data from the RAMs circuit is enabled to the data bus (LDO-15), through the data buffers circuit, by means of signal LBUFEN (Low Buffer Enable).

8-43. CONVENTIONS.

8-44. The following conventions are used in this manual.
a. Components are numbered in upper left to lower right convention.
b. Logic symbology; see table 8-2.
c. TTL Logic Levels.

Electrical Level	Voltage
Input Low	$<0.8 \mathrm{~V}$
Input High	$>2.0 \mathrm{~V}$
Output Low	$<0.4 \mathrm{~V}$
Output High	$>2.4 \mathrm{~V}$

d. Mnemonics (signal names); see table 8-1.

First Letter Active TTL Level
H High
L Low
e. Signature analysis locations are indicated in red on the schematic.
f. Abbreviations; see Section VI.

Table 8-1. Mnemonics

Mnemonic	Mnemonic Meaning	Active Level	Function
HBPC	BPC	High	When active, enables the read/write control circuit.
HBPCPEND	BPC Pending	High	When active, produces signal LMSYN forcing the microprocessor to wait until a read or write operation is complete.
HMEMOP	Memory Operation	High	When active, memory read, write, or Operation refresh is in progress.
HRA0-6/ HCA7-16	Row Address 0-6/Column Address 7-13	High	The row address and column address are selected by U37 to address RAM memory.
HREFRESH	Refresh	High	When active, enables refresh circuitry.
LA0-13	Address Bits 0-13	Low	A 14 bit address bus used to address RAM space.
LBPCPEND	BPC Pending	Low	When active, enables the refresh circuitry.
LBUFEN	Buffer Enable	Low	When active, enables buffers U:38 and U40. Buffers enable data from the RAMs to the CPU. Only active during a read cycle.
LBYTE	Byte	Low	When low, indicates that a memory cycle is to involve an eight bit byte, rather than the full 16 bits of the word.
LCAS 1	Column Address Strobe One	Low	When active, strobes the column address into RAM.
LD0-15	Data Bits 0-15	Low	A 16 bit bidirectional bus used to transfer data to and from the microprocessor. When LSTB is low, data is present on the bus.
LD0, LD10	Data Bits 0 and 10	Low	LD0 and LD10 are used to generate card II) code after being requested by the CPU.
LID	Identify Enable	Low	When active, enables all PC boards in slots 0 thru 9 (option slots) to generate card-type ID codes after interrogation by the slot select command (LSSEL).
LMAP1	Address Map 1	Low	When active, enables bank one of RAM.
LRAS2	Row Address Strobe Two	Low	Not used.
LMSYN	Memory Sync	Low	When active, forces the microprocessor to wait until the read or write operation is complete.
LPOP	Power On Pulse	Low	Initializes CPU and all option cards.

Table 8-1. Mnemonics (Cont'd)

Mnemonic	Mnemonic Meaning	Active Level	Function
LRAS	Row Address Strobe One	Low	When active, strobes the row address into bank one of RAM. Also used during refresh.
LRAS2	Row Address Strobe Two	Low	When active, strobes the row address into bank two of RAM. Also used during refresh.
LREFPEND	Refresh Pending	Low	When active, enables the retresh circuitry.
LSS	Slot Select	Low	When active, allows module to place ID on CPU data bus.
LSTB	Strobe	Low	When active, and in the write mode, indicates the data bus has valid information. When active in the read mode, indicates the microprocessor is not driving the bus and the device addressed can now drive the bus.
LSTM	Start Memory	Low	Used to initiate a memory cycle. When active, indicates information on the Address Bus is valid.
LUPB	Upper Byte	Low	When active, indicates the upper byte is being written into, or read from. Used only when LBYTE is active.
LWRT	Write	Low	When active, the microprocessor writes to the addressed device.
LWRTL	Write Lower	Low	When active, the lower byte of RAM is written into.
LWRTU	Write Upper	Low	When active, the upper byte of PAM is written into.
L25MHz	25 MHz	Low	25 MHz clock used for general clocking. Generated by the display board.

Table 8-2. Logic Symbols

GENERAL

All signals flow from left to right, relative to the symbol's orientation with inputs on the left side of the symbol. and outputs on the right side of the symbol (the symbol may be reversed if the dependency notation is a single term.)

All dependency notation is read from left to right (relative to the symbol's orientation).
An external state is the state of an input or output outside the logic symbol.
An internal state is the state of an input or output inside the logic symbol. All internal states are True $=$ High.

SYMBOL CONSTRUCTION

Some symbols consist of an outline or combination of oullines together with one or more qualifying symbols, and the representation of input and output lines.

Some have a common Control Block with an array of elements:

CONTROL BLOCK - All inputs and dependency notation affect the array elements directly. Common outputs are located in the control block. (Control blocks may be above or below the array elements.)

ARRAY ELEMENTS -All array elements are controlled by the control block as a function of the dependency notation. Any array element is independent of all other array elements. Unless indicated, the least significant element is always closest to the control block. The array elements are arranged by binary weight. The weights are indicated by powers of 2 (shown in []).

Table 8-2. Logic Symbols (Cont'd)
INPUTS - Inputs are located on the left side of the symbol and are affected by their dependency notation.
Common control inputs are located in the control block and control the inputs/outputs to the array elements according to the dependency notation.

Inputs to the array elements are located with the corresponding array element with the least significant element closest to the control block.

OUTPUTS - Outputs are located on the right side of the symbol and are effected by their dependency notation.
Common control outputs are located in the control block.
Outputs of array elements are located in the corresponding array element with the least significant bit closest to the control block.

CHIP FUNCTION - The labels for chip functions are defined, i.e.. CTR - counter. MUX - multiplexer.

DEPENDENCY NOTATION

Dependency notation is always read from left to right relative to the symbol's orientation.
Dependency notation indicates the relationship between inputs. outputs, or inputs and outputs. Signals having a common relationship will have a common number, i.e., C7 and 7D....C7 controls D. Dependency notation $2,3,5,6+/ 1, C 7$ is read as when 2 and 3 and 5 and 6 are true, the input will cause the counter to increment by one count.... or (/) the input (C7) will control the loading of the input value (7D) into the D flip-flops.

The following types of dependencies are defined:
a. AND (G), OR (V), and Negate (N) denote Boolean relationship between inputs and outputs in any combination.
b. Interconnection (Z) indicates connections inside the symbol.
c. Control (C) identifies a timing input or a clock input of a sequential element and indicates which inputs are controlled by it.
d. Set (S) and Reset (R) specify the internal logic states (outputs) of an RS bistable element when the R or S input stands at its internal 1 state.
e. Enable (EN) identifies an enable input and indicates which inputs and outputs are controlled by it (which outputs can be in their high impedance state).
f. Mode (M) identifies an input that selects the mode of operation of an element and indicates the inputs and outputs depending on that mode
g. Address (A) identifies the address inputs.
h. Transmission (X) identifies bi-directional inputs and outputs that are connected together when the transmission input is true.

DEPENDENCY NOTATION SYMBOLS

A	Address (selects inputs/outputs) (indicates binary range)	N	Negate (compliments state)
C	Control (permits action)	R	Reset Input
EN	Enable (permits action)	S	Set Input
G	AND (permits action)	V	OR (permits action)
M	Mode (selects action)	Z	Interconnection
		X	Transmission

LS-09-81-2

Table 8-2. Logic Symbols (Cont'd)

	ETCHED CIRCUIT BOARD	(925)	WIRE COLORS ARE GIVEN BY NUMBERS IN PARENTHESES USING THE RESISTOR COLOR CODE
	FRONT PANEL MARKING		
			\mid (925) IS WHT RED GRN \| 0 BLACK 5 GREEN
			1 BROWN 6 blue
			2 RED 7 VIOLET
	REAR PANEL MARKING		3 ORANGE 8 Griay
			4 YELILOW 9 WHITE
1	MANUAL CONTROL		optimum value selected AT FACTORY. TYPICAL VAIUE SHOWN. PART MAY have been omitted
	SCREWDRIVER ADJISSTMENT		
			UNIESS OTHERWISE INDICATED MESISTANCE IN OHMS (EAPACITANCE IN PICOFARADS inductance in microhentries
TP1	ELECTRICAL TEST POINT		
	TP (WITHNUMBER)		
1	NUMBERED WAVEFORM		
	NUMBER CORRESPONDS TO ELECTRICAL. TEST POINT NO		MICROPRROCESSOR PART OF
		P. O	
		NC	NO CONNECTION
	LETTERED TEST POINT	CW	Clockwise enu of vabiable. RESISTOR
	PROVIDED		
A	COMMON CONNECTIONS AII IIKE DESIGNATEDPOINTS ARF CONNECTEU		
(1) 3	NUMBER ON WHITE BACKGROUND OFF-PAGE CONNECTION.		
	LARGE UMBER ADJACENT SERVICE SHEET NUMBER FOR OFF-PAGE CONNECTION.		
(A)	Cimcle Iffter off paci SHEET	TWEE	(ifs Of SAMF Strulce

Dervice

Figure 8.3. Component Locator

