HP64000
 Logic Development System

Model 64601A Timing Analysis Control Board

HEWLETT
PACKARD

CERTIFICATION

Hewlett-Packard Company certifies that this product met its published specifications at the time of shipment from the factory. Hewlett-Packard further certifies that its calibration measurements are traceable to the United States National Bureau of Standards, to the extent allowed by the Bureau's calibration facility, and to the calibration facilities of other International Standards Organization members.

WARRANTY

This Hewlett-Packard system product is warranted against defects in materials and workmanship for a period of 90 days from date of installation. During the warranty period, HP will, at its options, either repair or replace products which prove to be defective.

Warranty service of this product will be performed at Buyer's facility at no charge within HP service travel areas. Outside HP service travel areas, warranty service will be performed at Buyer's facility only upon HP's prior agreement and Buyer shall pay HP's round trip travel expenses. In all other cases, products must be returned to a service facility designated by HP.

For products returned to HP for warranty service. Buyer shall prepay shipping charges to HP and HP shall pay shipping charges to return the product to Buyer. However, Buyer shall pay all shipping charges, duties, and taxes for products returned to HP from another country.

HP warrants that its software and firmware designated by HP for use with an instrument will execute its programming instructions when properly installed on that instrument. HP does not warrant that the operation of the instrument, or software, or firmware will be uninterrupted or error free.

LIMITATION OF WARRANTY

The foregoing warranty shall not apply to defects resulting from improper or inadequate maintenance by Buyer, Buyer-supplied software or interfacing, unauthorized modification or misuse, operation outside of the environmental specifications for the product, or improper site preparation or maintenance.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED. HP SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

EXCLUSIVE REMEDIES

THE REMEDIES PROVIDED HEREIN ARE BUYER'S SOLE AND EXCLUSIVE REMEDIES. HP SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER BASED ON CONTRACT, TORT, OR ANY OTHER LEGAL THEORY.

ASSISTANCE

Product maintenance agreements and other customer assistance agreements are available for Hewlett-Packard products.

For any assistance, contact your nearest Hewlett-Packard Sales and Service Office. Addresses are provided at the back of this manual.

HEWLETT-PACKARD
 SERVICE MANUAL
 MODEL 64601A
 TIMING ANALYSIS CONTROL BOARD

REPAIR NUMBERS
This Manual applies directly to Models with Repair Numbers prefixed 2350A.
© COPYRIGHT HEWLETT-PACKARD COMPANY 1982
LOGIC SYSTEMS DIVISION
COLORADO SPRINGS, COLORADO, U.S.A.
ALL RIGHTS RESERVED

Manual Part Number 64601-90904
Microfiche Part Number 64601-90804
PRINTED: OCTOBER 1982
UPDATED: DECEMBER 1983

SAFETY SUMMARY

The following general safety precautions must be observed during all phases of operation, service, and repair of this instrument. Failure to comply with these precautions or with specific warnings elsewhere in this manual violates safety standards of design, manufacture, and intended use of the instrument. Hewlett-Packard Company assumes no liability for the customer's failure to comply with these requirements.

GROUND THE INSTRUMENT.

To minimize shock hazard, the instrument chassis and cabinet must be connected to an electrical ground. The instrument is equipped with a three-conductor ac power cable. The power cable must either be plugged into an approved three-contact electrical outlet or used with a three-contact to two-contact adapter with the grounding wire (green) firmly connected to an electrical ground (safety ground) at the power outlet. The power jack and mating plug of the power cable meet International Electrotechnical Commission (IEC) safety standards.

DO NOT OPERATE IN AN EXPLOSIVE ATMOSPHERE.

Do not operate the instrument in the presence of flammable gases or fumes. Operation of any electrical instrument in such an environment constitutes a definite safety hazard.

KEEP AWAY FROM LIVE CIRCUITS.

Operating personnel must not remove instrument covers. Component replacement and internal adjustments must be made by qualified maintenance personnel. Do not replace components with power cable connected. Under certain conditions dangerous voltages may exist even with the power cable removed. To avoid injuries, always disconnect power and discharge circuits before touching them.

DO NOT SERVICE OR ADJUST ALONE.

Do not attempt internal service or adjustment unless another person. capable of rendering first aid and resuscitation, is present.

DO NOT SUBSTITUTE PARTS OR MODIFY INSTRUMENT.

Because of the danger of introducing additional hazards, do not install substitute parts or perform any unauthorized modification of the instrument. Return the instrument to a Hewlett-Packard Sales and Service Office for service and repair to ensure that safety features are maintained.

DANGEROUS PROCEDURE WARNINGS.

Warnings, such as the example below, precede potentially dangerous procedures throughout this manual. Instructions contained in the warnings must be followed.

WARNING

Dangerous voltages, capable of causing death, are present in this instrument. Use extreme caution when handling, testing, and adjusting.

TABLE OF CONTENTS

Section Page
I GENERAL INFORMATION 1-1
1-1. Introduction 1-1
1-4. Instruments Covered by this Manual 1-1
1-9. Description 1-2
1-14. Specifications 1-3
II INSTALLATION 2-1
2-1. Introduction 2-1
2-3. Initial Inspection 2-1
2-5. Preparation for Use 2-1
2-7. Installation Instructions 2-1
2-24. Operating, Storage and Shipment Environments 2-4
III OPERATION 3-1
IV PERFORMANCE TESTS \& TROUBLESHOOTING 4-1
4-2. Introduction 4-1
4-8. Troubleshooting Techniques 4-2
4-16. Physical Setup 4-3
4-18. Keyboard Setup (All 15 Tests) 4-4
4-20. Keyboard Setup (One Test) 4-5
4-22. Explanation of the Test Descriptions 4-5
4-26. Test 1: Serial Programming 4-6
4-29. Test 2: Run/Halt/Reset 4-7
4-32. Test 3: Trigger 4-8
4-36. Test 4: Delay Counter \& Trigger Position 4-9
4-40. Test 5: Window Counter 4-11
4-45. Test 6: Rates/Interval (B) 4-12
4-49. Test 7: Less Than Interval (B) 4-1.4
4-54. Test 8: Transition Trigger (B) 4-15
4-59. Test 9: Display Driver 4-16
4-60. Test 10: Rates/Interval (A).......(16 Ch. Only) 4-17
4-61. Test 11: Less Than Interval (A)...(16 Ch. Only)....4-17
4-62. Test 12: Transition Trigger (A)...(16 Ch. Only).... 4-17
4-63. Test 13: And......................... (16 Ch. Only).... 4-18
4-67. Test 14: Or4-70. Test 15: B Followed by A..........(16 Ch. Only)....4-20
4-74. Supplementary Display Test 4-21
4-75. Inter Module Bus Performance Verification 4-37
4-87. Supplementary Board ID Test 4-40
4-90. Signature Analysis 4-46
TABLE OF CONTENTS (CONT)
∇ ADJUSTMENTS 5-1
5-1. Introduction 5-1
5-3. Safety Requirements 5-1
5-5. Equipment Required 5-1
5-7. Sample-rate Oscillator Calibration 5-3
5-12. Trigger Duration Calibration 5-5
5-17. Hardware Setup 5-5
5-18. Keyboard Setup for 8-Channel Adjustment (R1-R3) 5-5
5-19. Adjustment for 8-Channel System (R1-R3) 5-6
5-20. Keyboard Setup for 16 -Channel Adjustment (R4-R6) 5-6
5-21. Adjustment for 16-Channel System (R4-R6) 5-7
VI REPLACEABLE PARTS 6-1
6-1. Intro uction 6-1
6-3. Abbreviations 6-1
6-5. Replaceable Parts. 6-1
6-7. Ordering Information 6-2
6-10. Spare Parts Kit 6-2
6-12. Direct Mail Order System 6-2
VII MANUAL CHANGES 7-1
VIII THEORY AND SCHEMATICS 8-1
8-1. Introduction 8-1
8-3. Logic Convention 8-1
8-8. Theory and Block Diagrams 8-3
8-56. Mnemonics 8-16

LIST OF ILLUSTRATIONS

Figure Title Page
1-1. Model 64601A Timing Analysis Control Board 1-0
2-1. Timing Configuration 2-2
2-2. Timing Bus Cables 2-4
4-1. PV Test Display (16-channel system) 4-4
4-2. Display Driver Test Patterns (Figures 4-2 to 4-16) 4-22
4-17. Inter Module Bus PV Display 4-37
4-18. Softkey Setup (For running one PV test repeatedly) 4-41
5-1. Adjustment Locator 5-2
8-1. System Block Diagram 8-2
8-2. Control Board Block Diagram. 8-4
8-3. Sample Rate Clock Block Diagram. 8-6
8-4. Sample Clock Waveforms 8-7
8-5. Term Generators Block Diagram 8-8
8-6. Trigger Enable Circuit Block Diagram. 8-10
8-7. Tracepoint Selector Block Diagram 8-12
8-8. Display Driver Block Diagram 8-14
8-9. Service Sheet 1, CPU Interface 8-25
8-10. Service Sheet 2, 130-Bit Control Shift Register. 8-27
8-11. Service Sheet 3, Sample Clock 8-29
8-12. Service Sheet 4, Term Generator A 8-31
8-13. Service Sheet 5, Term Generator B 8-33
8-14. Service Sheet 5, Trigger Enable Circuit. 8-35
8-15. Service Sheet 6, Tracepoint Selection. 8-37
8-16. Service Sheet 7, Display Addressing 8-39
8-17. Service Sheet 8, Display Driver 8-41
LIST OF TABLES
Table Title Page
1-1. Specifications 1-3
4-1. Performance Tests VS Schematic 4-2
6-1. Reference Designators and Abbrevations 6-3
6-2. Replaceable Parts List 6-4
6-3. List of Manufacturer's Code. 6-7
8-1. 64601A Mnemonics 8-16
8-2. Logic Symbology 8-23

Figure 1-1. Model 64601A Timing Analysis Control Board

SECTION I

GENERAL INFORMATION

1-1. INTRODUCTION.

1-2. This Service Manual contains information required to install, test and service the Hewlett-Packard Model 64601A Timing Analysis Control Board. Operating instructions are provided in a separate Operating Manual supplied with the instrument. It should be kept with the instrument for use by the operator.

1-3. Shown on the title page is a microfiche part number. This number can be used to order 4X6-inch microfilm transparencies of the manual. Each microfiche contains up to 96 photoduplicates of the manual pages.

1-4. INSTRUMENTS COVERED BY THIS MANUAL.

1-5. Attached to the instrument or printed on the printed circuit board is the repair number. The repair number is in the form: 0000A0000. It is in two parts; the first four digits and the letter are the repair prefix, and the last five are the suffix. The prefix is the same for all identical instruments. The suffix, however, is assigned sequentially and is different for each instrument. The contents of this manual apply to instruments with the repair number prefix(es) listed under REPAIR NUMBERS on the title page.

1-6. An instrument manufactured after the printing of this manual may have a repair number prefix that is not listed on the title page. This unlisted repair number prefix indicates that the instrument is different from those described in this manual. The manual for this newer instrument is accompanied by a Manual Changes supplement. This supplement contains "change information" that explains how to adapt the manual for the newer instrument.

1-7. In addition to change information, the supplement contains information for correcting errors in the manual. To keep this manual as current as possible, Hewlett-Packard recommends that you periodically request the latest Manual Changes supplement. The supplement for this manual is identified with the manual print date and part number, both of which appear on the manual title page. Complimentary copies of the supplement are available from HewlettPackard.

1-8. For information concerning a repair number prefix that is not listed on the title page or in the Manual Changes supplement, contact your nearest Hewlett-Packard Office.

1-9. DESCRIPTION.
1-10. The Timing Analyzer is used to monitor information flow in the time domain. The information may be a software program, the actions of a hardware state machine, or random logic signals.

1-11. The Timing Analyzer consists of one Model 64601A Timing Control Board, and from one to two Timing Data Acquisition Boards.

1-12. Up to two Acquisition Boards may be combined to form a Timing Analyzer with as many as 16 channels.

1-13. Logic Analyzers within one Mainframe may be connected together using the Inter Module Bus (IMB). One possible use of the IMB is to allow a State Analyzer to trigger a Timing Analyzer.

1-14. SPECIFICATIONS.
1-15. Instrument specifications are listed in Table 1-1. These specifications are the performance standards or limits against which the instrument is tested.

Table 1-1. Specifications.
Includes Models 64601A Control Board, 64602A 8-Channel Acquisition, and 64604A 8-Channel Timing Probes.

Sample rates
Wide Sample Mode: variable from 2 Hz to 200 MHz .
Glitch mode: variable from 2 Hz to 100 MHz .
Dual Threshold: same as Wide Sample Mode.
Fa.st Sample: 400 MHz .
Memory length:
Wide Sample, Glitch, \& Dual Threshold Modes: 4060 samples. 400MHz Mode.. 8140 samples.

Memory width (8 channel system)
Wide Sample.................................... : 8 channels.
Dual Threshold, Glitch, and 400 MHz modes: 4 channels.
Memory width (16 channel system--two acquisition boards) Double the width for a single, 8-channel system.

Resolution:
Total skew from probe tip:
Within pod: +/-1.5ns.
Pod to pod: +/- 3.0ns.
Conditions: Input signal: $\mathrm{VH}=-1.0 \mathrm{~V}$, $\mathrm{VL}=-1.6 \mathrm{~V}$,
VTH at -1.3V
Input slew rate > . $25 \mathrm{~V} / \mathrm{ns}$
Sample rate accuracy: typically +/- . 002%
Probe characteristics
Input 2: 100 K ohms $\div /-2 \%$, shunted by $<6 \mathrm{pf}$.
Drive requirements:
Minimum input amplitude: 600 mV P/P.
Minimum input overdrive: 200 mV or 25% of input amplitude, whichever is greater.
Minimum input pulse width: 3.Ons at threshold.
Dynamic range: +/- 10V.
Maximum input: $+/-40 \mathrm{~V}$.
Threshold accuracy: $+/-50 \mathrm{mV}$ or $+/-2 \%$ whichever is greater. Hysteresis: Typically 50 mV .

Glitch Mode

Maximum sample rate: 100 MHz .
Minimum width: 3.Ons at threshold.
Maximum width: sample period less $4.0 n s$.

Specifications (continued)

Triggering
Time duration accuracy: $+/-(20 \%+2 n s)$.
Minimum width for narrower-than trigger: 6ns typical.
Minimum width for transition trigger: 6ns typical.
Displayed position accuracy: +/- 4 samples in Wide Sample, Dual Threshold, and Glitch Modes.
: +/- 8 samples in Fast Sample Mode.
Delay from input to external BNC drive: Typically 60ns.
Delay from input to internal IMB drive: Typically 55ns.
Dead time for post-qualify measurement reset. Typically 50ns + the time required to fill the memory with the selected amount of pre-trigger information.
Reset time for duration trigger: To meet the duration specifications, the trigger duty cycle must be no greater than 40%.

BNC Drive
Output signal swing in transition trigger mode:
Amplitude: 2.0 V typical.
Width at 50\%: 10ns typical.
Output signal swing in width greatex-than trigger mode:
Amplitude: 2.5V typical.
Width: Input trigger width minus the selected duration.
Output signal swing in width less-than trigger mode:
Amplitude: same as in transition trigger mode.
Width: same as in transition trigger mode.
Position: occurs when trigger pattern disappears, before
the selected duration times out.
IMB Functions (interconnection with other modules):
Master Enable (LE/ME)--.-.-.: drive, receive (Execute/Halt only)
Trigger Enable (LE/TE)-..---: drive, receive.
Trigger (HE/TR)------------:- drive, receive.
Delay Clock (HE/DCLK)-------: receive only.
Storage Enable (LE/SE)--.-.--: not used.

SECTION II

INSTALLATION

2-1. INTRODUCTION.
2-2. This section contains information for installing and removing the Model 64601A. Included are initial inspection procedures, preparation for use, and instructions for repacking the instrument for shipment.

2-3. INITIAL INSPECTION.

2-4. Inspect the shipping container for damage. If the shipping container or cushioning material is damaged, it should be kept until contents of the shipment have been checked for completeness and the instrument has been checked mechanically and electrically. Procedures for checking electrical performance are given in Section IV. If the contents are not complete, if there is mechanical damage or defect, or if the instrument does not pass the Performance Tests, notify the nearest Hewlett-Packard Office. If the shipping container is damaged, or if the cushioning material shows signs of stress, notify the carrier as well as the Hewlett-Packard Office. Keep the shipping materials for carrier's inspection. The HP office will arrange for repair or replacement at $H P$ option without waiting for cleim settlement.

2-5. PREPARATION FOR USE.
2-6. There are no specific preparation for use procedures except the actual installation of the boards in the Mainframe cardcage.

2-7. INSTALLATION INSTRUCTIONS.

WARNING

WHEN REMOVING OR INSTALLING THE TIMING ANALYZER BOARDS, THE MAINFRAME A.C. LINE POWER MUST BE IURNED OFF.

Figure 2-1. Timing Configuration

2-8. Mainframe Conitguration.

2-9. Depending on the number of channels required, the timing analyzer will use two or three card slots of the mainframe cardcage.

2-10. One Timing Acquisition Board (64602A) should be installed in the lowest numbered card slot available. The Timing Control Board (64601A) then goes in the next higher slot. And if there is a second Acquisition Board, it will go in the next higher slot. In other words, Acquisition Boards are installed on either side of the Control Board. SEE FIGURE 2-1.

2-11. Up to two Acquisition Boards may be installed with one Control Board forming one Timing Analysis Subsystem.

2-12. Inter Module Bus (IMB).
2-13. Some systems may contain a combination of a timing analyzer and another type of analysis subsystem. The Inter Module Bus, located at the upper left-hand corner of the timing boards (when viewing from the component side) connects two or more analysis modules together for controlling and arming purposes. For example, a Timing Analyzer may arm a State Analyzer, and vice versa.

2-14. The IMB ribbon cable (W3 on the 64601A parts list) is connected the 64601 A control board. Although 64602A acquisition boards have an inter module bus jack, tsere is no electrical connection between this IMB jack and the rest of the board. The 64602A communicates with the IMB through the 64601A control board. Since there is no electrical connection to the 64602A IMB jack and the rest of the board, this jack may have a ribbon cable connected to it for mechanical support.

2-15. Probe Bus
2-16. The timing analyzer communicates with the system under test by means of the 64604A Timing Probe. The probe cable ($W 2$ on the 64602 A parts list) connects to the probe bus located on the top center of of the 64602A acquisition board.

2-17. Clock Cables.
2-18. The 64601A control board will supply four sample clock signals to two acquisition boards via SMC jacks J1, J2, J3, and J4 located on the top left-hand part of the board (when viewed from the component side).

2-19. Each 64602A acqusition board requires two clock inputs from the control board. Sample clocks are supplied from the control board to SMC jacks J1 and J2 on the top left-hand part of the acqusition board.

2-20. Clocks should be paired: The left-hand two jacks, J1 and J2, on the control board should be connected to one acquisition board; the right-hand two jacks, J3 and J4 should be connected to a second acquisition board.

2-21. Timing Bus.

2-22. The timing bus is at the top right-hand corner of the 64602A and 64601A timing boards (when viewing from the component side). The timing bus connects the timing Control Board to one or two Acquisition Boards.

2-23. The timing Control and Acquisition Boards must be grouped together to allow the timing bus ribbon cable (W1 on the 64601A parts list) to connect the Control Board to the Acquisition Board. When there are two Acquisition boards, which are placed on either side of the Control Board, a 3-position ribbon cable (W2 on the 64601A parts list) is used. Use only the timing bus cable with the part number given in the 64601 A Control Board parts list. The threeposition cable (64600-61603) is a special "split" cable which has lines 1-12 cut. See FIGURE 2-2.

4-XE/TRIG from Acq. 5-XE/TRIG from Acq. 11- H/MEMFUL from Acq 12-H/MEMFUL from Acq. 15-HE/RESET from Contr. 19-H/RUN from Contr. 20-L/PVC from Contr.

timing bus 1 ACQ BOARD

timing bus 2 ACQ BOARDS

Figure 2-2. Timing Bus Cables

2-24. OPERATING, STORAGE, AND SHIPMENT ENVIRONMENTS .

CAUTION

THE GLITCH (U27) AND ENCODER (U22-25) CHIPS ON THE 64602A ACQUISITION BOARD ARE VERY SENSITIVE TO STATIC. THEY SHOULD BE LEFT IN CONDUCTIVE FOAM UNTIIL INSTALLATION. GROUNDING STRAPS AND A GROUNDED WORK STATION ARE RECOMMENDED WHEN HANDLING THE ICS.

2-25. Operating Environment.
2-26. The Model 64601A may be operated in environments within the limits shown below. It should be protected from temperature extremes which cause condensation within the instrument.

$$
\begin{aligned}
& \text { Temperature }+10^{\circ} \text { to }+40^{\circ} \text { degrees Celsius } \\
& \text { Humidity. } 5 \% \text { to } 80 \% \text { relative humidity } \\
& \text { Altitude. } 4600 \mathrm{~m}(15000 \mathrm{ft})
\end{aligned}
$$

2-27. Storage Environment.
2-28. The Model 64601A may be stored or shipped in environments within the following limits:

$$
\begin{aligned}
& \text { Temperature }-40^{\circ} \text { to }+70^{\circ} \text { degrees Celsius } \\
& \text { Humidity. } 5 \% \text { to } 80 \% \text { relative humidity } \\
& \text { Altitude. } 15000 \mathrm{~m}(50000 \mathrm{ft})
\end{aligned}
$$

2-29. Packing.
2-30. Tagging for Service. If the instrument is to be shipped to a HewlettPackard Sales/Service Office for service or repair, attach a tag showing owner (with address), complete instrument repair number, and a description of the service required.

2-31. Original Packing. Containers and materials identical to those used in factory packing are available through Hewlett-Packard Offices. Mark the container FRAGILE to ensure careful handling. In any correspondence, refer to the instrument by model number and complete repair number.

2-32. Other Packing. The following general instructions should be used for repacking with commercially available materials:
a. Wrap instrument in heavy plastic or paper. (If shipping to HewlettPackard Office or Service Center, attach a tag indicating type of service required, return address, model number, and complete repair number.
b. Use a strong shipping container. A double wall carton made of 350 pound test marerial is adequate.
c. Use a layer of shock-absorbing material 70 to 100 mm (3 to 4 inches) thick around all sides of the instrument to provide firm cushioning and prevent movement inside container.
d. Seal shipping container securely.
e. Mark shipping container FRAGILE to ensure careful handling.
f. In any correspondence, refer to instrument by model number and complete repair number.

SECTION III

OPERATION
The operation of the Model 64601A is a function of the system software. Complete system keyboard operation is beyond the scope of the service manual. Please refer to the operator's manual (64601-90903) for the procedure.

Operation - Model 64601A

NOTES

SECTION IV

PERFORMANCE TESTS

4-1. SECTION IV TABLE OF CONTENTS.

4-2. INTRODUCTION.
4-3. Performance verification tests check the major circuit blocks for proper operation, giving the operator at least 90% confidence that the board is operating correctly.

4-4. There are 15 PV Tests and 3 Supplementary Tests. The supplementary tests use different access instructions. They are described after the the regular 15 PV tests.

4-5. Signature analysis instructions and tables are given at the end of the section.

4-6. The performance verification tests are also used in troubleshooting: (1) They help to isolate troubles to particular blocks, and within particular blocks; (2) Each test corresponds to a one signature loop when running signature analysis.

4-7. Each test is shown on the mainframe screen as a bracket group of 0 's. The 0's correspond to steps in a particular test. When the board fails a test step, the " 0 " for that step becomes a " 1 ".

4-8. TROUBLESHOOTING TECHNIQUES.

4-9. Although each of the PV tests checks a specific circuit block, signals from other blocks are used. A failure in one block can be caused by failures in blocks upstream. When failures occur on a given PV test, check the schematics in TABLE $4-1$ below for each test.

Table 4-1. Performance Tests VS Schematic

NUMBER	TEST	CHECK ON SCHEMATIC
1	SERIAL PROGRAMMING	1,2
2	RUN/HALT/RESET	1,7
3	TRIGGER	$4,5,6$
4	DELAY COUNTER AND TFIGGER POSITION	7
5	WINDOW	7
6	RATES/INTERVAL (B)	5
7	LESS THAN INTERVAL (B)	5
8	TRANSITION TRIGGER (B)	5
9	DISPLAY DRIVER	8,9
10	RATES/INTERVAL (A)	4
11	LESS THAN INTERVAL (A)	4
12	TRANSITION TRIGGER (A)	4
13	AND	$4,5,6$
14	OR	$4,5,6$
15	B FOLLOWED BY A	$4,5,6$

4-10. Check board seating.

4-11. Check cable connections.

All cables should be fastened securely. The clock cables should be paired on the left or right two jacks. The timing bus and IMB cables should have the pin 1 wire connected to pin 1 on the jack. No cables other than the two listed in the 64601A Control Board manual parts list may be used for the timing bus.

4-12. Check supply voltages.
Supply voltages from the mainframe ($+5 \mathrm{~V},-5.2 \mathrm{~V}$) should be within 5%. The -3.25 V should be within 3%.

CTL 4-2

4-13. Isolate the problem to one board.

When a PV failure occurs, isolate the problem to either an acg uisition board, or the control board. Check signatures on the timing bus, whi ch connects the control board to the acquisition board(s). Look first at the signals HE/RUN and HE/RESET from the control board. If these are good, look at the return signals from the acquisition board(s), H/MEMFUL, XE/TRIG1(2). In a two-acquisition board system, H/MEMFUL comes from the acquisition boar d in the lower numbered slot only.

4-14. Check the programming.
In PV tests the mainframe stimulates the timing analyzer and v erifies correct operation by looking at the status registers. Read each test description to see what is being stimulated. Look at the signatures on the out puts of address decoders, data latches, and mode registers where the mainframe is stimulating that PV test circuit block. Correct signatures may be traced back to where signals become incorrect.

4-15. Check the status registers.
A PV failure means the status registers for the control board o n service sheet 1 will have one or more incorrect output signatures. The signa 1 path may then be traced back to the problem.

4-16. PHYSICAL SETUP CONDITIONS FOR THE PV TESTS.
4-17. Conditions for the following tests:
a. Connect the timing pod to the 64602 A acquisition boar d by means of timing cable 64604-61601.
b. Leave the probe leads disconnected, so that the prosbe inputs are floating near ground.
c. Make sure the two clock cables are securely connected. Clock cables should be connected in pairs to either the two right or two left jacks.
d. The timing bus cable should be connected to the jacks at the upper right-hand corner (when viewing from the component sicle) of both the 64601 A control board and the one or two 64602 A acquis ition board (s). Only timing bus cables (two or three position) listed in the 64601A parts list should be used.
e. NOTE: In noisy environments, ground each probe input, using the ground lead for each probe. Failure to do this may result in the PV displaying intermittent non-existent failures.

Performance Tests and Troubleshooting - Model 64601A

4-18. KEYBOARD SETUP (For running all 15 PV tests repeatedly).

4-19. To verify that the entire board is operating correctly, perform the following steps on the mainframe keyboard: (FIGURE 4-1)
a. With the operating system initialized and awaiting a command, press the softkey labeled "opt_test" (you may have to keep pressing the "etc" softkey until you see "opt_test" on the screen). Or you may type "option_test" in lower case.
b. Press [RETURN]. You should see a listing of all the optional boards that are present in your mainframe, along with their slot numbers.
c. Type in the 64601A timing control board slot number. [RETURN]
d. Press softkey "run".
e. Press softkey "slot".
f. Type in the 64601A timing control board slot number.
g. Press softkey "repeated".
h. Press [RETURN]. As shown in Figure 4-1, the screen will now show all 15 Control Board PV tests. Tests that pass will be indicated by " 0 ", and failures will be indicated by " 1 ". The screen will also show the number of times the tests are run, and the number of failures.

Figure 4-1. PV Test Display (16-channel system).

4-20. KEYBOARD SETUP (For running one PV test repeatedly).
4-21. To run one test at a time repeatedly for signature analysis, perform the following steps: (Figures 4-2 TO 4-10)
a. Press softkey "opt_test". [RETURN]
b. Type in the 64601A timing control board slot number.
[RETURN]
c. Press soiftkey "run".
d. Press softkey "slot".
e. Type in the 64601 A timing control board slot number.
f. Press softkey "test".
g. Type in the number of the test you wish to run.
h. Press the soft key "repeated". [RETURN]

4-22. EXPLANATION OF THE TEST DESCRIPTIONS.
4-23. There are 15 (9 in an 8 -channel system) performance verification tests for the timing control board. Each of these tests has one or more test steps, denoted by the 0's or 1's within brackets. A "0" in the bracket indicates a PASS for that test step; and a " 1 " indicates FAIL.

1. SERIAL PROGRAMMING
2. RUN/HALT/RESET
3. TRIGGER
4. DELAY COUNTER \& TRIG. POSN.
5. WINDOW
6. RATES/INTERVAL (B)
7. LESS THAN INTERVAL (B)
8. TRANSITION TRIGGER (B)
9. DISPLAY DRIVER
10. RATES/INTERVAL (A)
11. LESS THAN INTERVAL (A)
12. TRANSITION TRIGGER (A)
13. AND
14. OR
15. B FOLLOWED BY A
[00]
[0000000]
[0000]
\{0000\}[0000000]
[00000000]
\{00000\}[0000]
[0000]
[000]
[00000000]
\{00000\}[0000]
[0000]
[000]
[0000] *
[0000] *
[00000]

* Not used in an 8-channel, single acquisition-board system.

4-24. The numbered test steps described in each PV test correspond, from left to right, to the 0 's or 1 's within the displayed brackets.

4-25. The numbered test steps describe the commands given by the system software. They do not call for operator intervention.

4-26. TEST 1: SERIAL PROGRAMMING

| | |
| :--- | :--- | :--- |
| test steps: | $\left.\begin{array}{lll}0 & 0\end{array}\right]$ |
| 1 | 2 |

4-27. Purpose.
This test verifies the programming of the 130 -bit control register, consisting of U1, U10, U11, U15, U36, U37, U38, U71, and U73. The 130-bit register is the means for programming the timing analyzer.

4-28. Test Steps. (Description of software execution)

1. The 130 -bit shift register is loaded with all HIGHs, and a single LOW is walked through. There should be one LOW, and 129 HIGHs coming out the end of the shift register. The last bit, HE/STOP (U36-4), should be LOW.
2. Perform the above test using 129 LOWs and a single HIGH.

4-29. TEST 2: RUN/HALT/RESET
$\left[\begin{array}{lllllll}0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$
test steps: 1234567

4-30. Purpose.
This test verifies that the L/RUN bit at U90-6 can be exercised. The L/RUN bit stops the sample clock and disables the 64602A acquistion board memory address counters when it is high.

The test also verifies that the delay counter (U37), the window counter (U38), the trigger position counter (U51,U52), and the acquisition board memory address counters can be reset to 0 .

4-31. Test Steps. (description of software execution)

1. HE/RESET is set high; and the H/HALT bit at U90-6 is set high.
2. The H/HALT bit at U9O-6 is set low.
3. The U85 status bits, H/STOP, H/TRIG $+\mathrm{DLY}, \mathrm{H} / \mathrm{MEMFUL}, \mathrm{H} / \mathrm{TCO}, \mathrm{H} / \mathrm{TC} 1$, and $\mathrm{H} / \mathrm{TC} 2$ should all be low.
4. Prior to reset, the acquisition-board RAM counters were programmed to FFFFH; the counters should not be 0000 H before reset.
5. The RAM counters should be 0000 H after reset.

6,7. If there is a second acquisition board, these steps are the same a.s 4 and 5 above for the second board.

Performance Tests and Troubleshooting - Model 64601A

4-32. TEST 3: TRIGGER

| $\left[\begin{array}{llll}0 & 0 & 0 & 0\end{array}\right]$ | | | |
| ---: | :--- | :--- | :--- | :--- |
| test steps: | | | |
| 1 | 2 | 3 | 4 |

4-33. Purpose.
This test checks the trigger path from the timing bus through the delay counter (U37).

4-34. Conditions set up by the software.
a. The trigger enable counter (U38), the window counter (U36), and the delay counter (U37) are set for zero delay.
b. HE/AND, HE/ATRANSIT, and HE/BTRANSIT are set HIGH, or true.
c. LE/PDUR $>A$, LE/PDUR $>B$, LE/ENTRIGA, and LE/ENTRIGB are set HIGH, or false.
d. Pattern duration is set greater than 5 ns .

4-35. Test Steps. (Description of software execution)
The first step checks the trigger path from the term selector (U55) through the delay counter.

1. The 130 -bit shift register is programmed for HE/PATT high at U55-2. H/TRIG+DLY at the status register (U85-4) should be high.

In the following three steps the trigger path is checked from the trigger selectors (U13 and U17) through the delay counter.
2. The 130 -bit shift register is re-programmed so the analyzer itself will generate a trigger when HE/RESET is low. HE/RESET is set high: H/TRIG+DLY should be low.
3. XE/PVIRIG is programmed high true to the trigger selectors, U13 and U17. H/TRIG+DLY should be high at the status register (U85-4).
4. The trigger from each acquisition board can be programmed high true or low true. If XE/TRIG1, from the acquisition board in the lower numbered slot, is high--whether true or false--step 2 above may fail. Step 4 passes when XE/TRIG1 is low.

4-36. TEST 4: DELAY COUNTER \& TRIG. POSN.

4-37. Purpose.

This test checks the delay counter (U37), and the position counter (U51,U52). The tests in braces compare the delay counter against a software timer: The delay counter must "time out" within a 200us window in order to pass. If the tests in braces fail it may mean that the 25 MHz system clock in the mainframe, or the 200 MHz timing clock, are significantly off in frequency.

4-38. Conditions set up by the software. For this test, the window counter (U36) and the trigger enable counter (U38) are set to zero.

4-39. Test Steps. (Description of software execution)

1. The delay counter is loaded with a 1010... pattern, resulting in a delay of 167.8 ms . H/TRIG+DLY should be false at 167.7 ms .
2. $H / T R I G+D L Y$ should go true sometime during the 200 us interval, between 167.7 ms and 167.9 ms .
3. The delay counter is loaded with a $0101 \ldots$ pattern, resulting in a delay of 55.8 ms . H/TRIG+DLY should be false at 55.7 ms .
4. A trigger should occur by the end of the 200us interval, before 55.9 ms .

In the following bracket steps, the delay counter is checked against the memory address counters on the acquisition board. When the delay counter times out, it starts the window counter, which determines the "window" in memory wetween tracepoint ($H / T R I G+D L Y$) and the end of aquisition. Since the window counter has been set to zero for this test, it immediately stops (H/STOP) the RAM countexs when the delay counter times out.
5. In steps \#1 and \#2 above, when H/TRIG+DLY goes true during the 200us interval, it starts the window counter. Since the window counter has been set to zero, H/STOP immediately goes true, stopping acquisition and leaving the RAM counters with a certain count. This count is verified.
6. This is similar to step 5: The RAM counters should be correct at the end of the second 200 us interval in steps 3 and 4 above.

DELAY COUNTER (continued)

Because the RAM counters have a capacity of only 256 , the above steps could pass when the delay counter is actually off by a multiple of 256. To avoid that possibility, the mainframe processor clock is used to clock the delay, window, and position counters.

Since the processor clock is so much slower than the 200 MHz timing analyzer sample clock, only the lower 16 bits of the delay counter are loaded with a pattern.

The signature analyzer is gated ON during the following test steps only.
7. The upper 8 bits of the delay counter are loaded with all 0 's, and the lower 16 bits with 5555 H . H/TRIG+DLY ait the status register (U85- 4) should be false one count before the delay counter is supposed to count out.
8. $H / T R I G+D L Y$ should be true on the next count.
9. The upper 8 bits of the delay counter are loaded with all 0 's, and the lower 16 bits with 2AAAH. H/TRIG+DLY should be false one count before overflow.
10. The trigger should be true on the next count.
11. This step checks the 3-bit trigger position counter. At the end of step 4, H/TCO should have been HIGH. Then, during step 7, H/TC1 and $\mathrm{H} / \mathrm{TC} 2$ go HIGH at different times; and finally, all three, $\mathrm{H} / \mathrm{TCO}$, H/TC1, and H/TC3, finish in a LOW state at the end of step 7.

4-40. TEST 5: WINDOW COUNTER
test steps: $\left.\begin{array}{lllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$

4-41. Purpose.
This test checks the window counter (U36) and trigger enable counter (U38).
4-42. Theory.
The trigger enable counter, the window counter, and the delay counter are preset by the 130 -bit shift register load during RESET.

The trigger enable counter prevents a trigger until old data has been flushed out of the acquisition board glitch chip and encoders. The trigger enable counter also defines the depth of pre-trigger information in memory. Even in the start-trace mode, some pre-trigger information will be displayed.

When the delay counter times out, it emits H/TRIG+DLY, which starts the window counter. When the window counter times out, it emits H/STOP which stops the sample clock and memory address counters, and ends the trace. The count preset into the window counter determines where $H / T R I G+D L Y$ will appear in memory. The "window", then, is the post-tracepoint part of memory.

4-43. Test conditions.

Processor-generated clocks are used for this test, and the delay counter is set to zero.

4-44. Test Steps. (Description of software execution)

1. The trigger enable and window counters are loaded to AAH. Clock until one before the trigger enable counter should fire. H/TRIG+DLY at the status register (U85-4) should be false.
2. Clock once more and HE/ENTRIG from the trigger enable counter should go true, causing a trigger at the status register.
3. Clock until one before the window should close. H/STOP should be false out of the window counter.
4. Clock once more and the window should be shut, causing H/STOP at the status register ($\mathrm{U} 85-2$) to be true.

5-8. The trigger enable and window counters are loaded to 155 H and tested as above.

4-45. TEST 6: RATES/INTERVAL (B)
$\left.\begin{array}{lllllllll} & \left\{\begin{array}{llllll}0 & 0 & 0 & 0 & 0\end{array}\right\}\end{array} \begin{array}{lllll}0 & 0 & 0 & 0\end{array}\right]$

4-46. Purpose.
A user of the timing analyzer may specify pattern durations: a trigger will then occur only when the pattern lasts a given length of time.

In this test a trigger must not occur when the pattern lasts less than the given time. The user may thus ensure that triggering does not occur on transients or shorter patterns.

This test checks the B term generator duration circuits (U44, U46, U47) and the sample rate clock. For a given sample rate, the acquisition board memory address counters are used to verify the accuracy of the selected interval within 20%.

The tests in braces check each capacitor and current source at a different sample rate.

With ranges <1us, the resolution is not good enough to verify the specs.

4-47. Theory.
When tracepoint (H/TRIG+DLY) is generated, the window counter (U36) counts down to determine the amount of "window" between tracepoint in memory and the end of new acquisition. When the window counter times out, it generates $H / S T O P$, stopping the sample clock and, consequently, the acquisition-board RAM counter.

By setting the window counter (U36), the delay counter (U37), and the trigger enable counter (U38) to zero, the only delay between the acquisition-board trigger (XE/TRIG) and H/STOP is that selected by the duration circuits in the term generators.

RATES/INTERVAL B (continued)

4-48. Test Steps. (Description of software execution)
The acquisition board memory address counters verify within 20% the accuracy of the duration circuits. After each test step, the countexs are checked. For the duration ciruits to pass, the counters must fall within the allowable range.

1. Duration circuits are set to 10 us , sample rate is 50 MHz .
2. Duration is set to 100 us, sample rate is 200 MHz .
3. Duration is set to $1 u s$, sample rate is 100 MHz .
4. Duration is set to 50 us , sample rate is 40 MHz .
5. Duration is set to 200us, sample rate is 10 MHz .

The following steps in brackets use a single capacitor and different current sources. If these steps pass, and the previous ones fail, the problem is likely to be a capacitor or the particular sample rate circuitry associated with the step that fails.
6. Duration is set to 2 us, sample rate is 200 MHz .
7. Duration is set to 5 us, sample rate is 200 MHz .
8. Duration is set to 10 us , sample rate is 200 MHz .
9. The last test verifies that HTRIG \uparrow DLY was true, or HIGH, in all previous test steps.

Performance Tests and Troubleshooting - Model 64601A

4-49. TEST 7: LESS THAN INTERVAL (B)
$\left[\begin{array}{lllll}0 & 0 & 0 & 0\end{array}\right]$
test steps: $\quad 1234$

4-50. Purpose.
In this test the duration circuits must "time out" before the trigger pattern ends. If "timeout" occurs before the Acquisition Board trigger signal XE/TRIG disappears, the analyzer should trigger.

4-51. Theory.
The B term generator duration circuits ramp down from ground after receiving a LOW trigger signal from U35-14. The mainframe processor programs the time it takes to fire the schmitt circuit (U34).

4-52. Conditions.
a. The acquisition board DACs are set for an "always trigger" condition lasting a specified time.
b. The delay counter (U37) and the trigger enable counter (U38) are set to zero.
c. LE/PDUR $>$ B is programmed true, or LOW; and HE/BTRANSIT false, or LOW. (In other words, we specify level triggering and require the duration circuits to time out while the pattern is still true).

4-53. Test Steps. (Description of software execution)

1. $\mathrm{H} / \mathrm{TRIG}+\mathrm{DLY}$ is initialized false, or LOW.
2. The duration circuits are programmed for a 200us duration. The DAC thresholds are set to cause an "always trigger" for longer than 200us. H/TRIG+DLY should be true at the status register (U85-4).
3. $\mathrm{H} / \mathrm{TRIG}+\mathrm{DLY}$ is initialized false.
4. With the duration circuits still set for 200us, the DACs are programmed to cause an acquisition board trigger signal lasting less than 200us. H/TRIG+DLY should be false.

4-54. TEST 8: TRANSITION TRIGGER (B)
$\left.\begin{array}{llll} \\ \text { test steps: } & 0 & 0 & 0\end{array}\right]$

4-55. Purpose.
This test checks the B term generator transition circuits (Ul42 and U43). Thresholds which simulate a particular pattern are programmed into the acquisition board DACs, and the glitch chip (U27 on the acquisition board) is programmed to trigger on that pattern.

4-56. Theory.
The B term generator transition circuit will cause a trigger on a transition away from, or leaving the specified pattern when HE/BTRANSIT is true and LE/PDUR>B is false.

Under the same conditions, the analyzer will trigger on a transition into, or entering the pattern when the acquisition board trigger XE/TRIG is low true. (The " X " in the mnemonic indicates this signal can be programmed either low true or high true).

4-57. Test Conditions.
a. The delay counter (U37), trigger enable counter (U38), and window counter (U36) are set to zero.
b. HE/BTRANSIT is high. We want to trigger on a transition.
c. LE/PDUR $>B$ is high. We are triggering on a transition, not an interval.
d. XE/TRIG1 from the acq board is programmed low true for this test.

4-58. Test Steps. (Description of software execution)

1. During RESET, the transition circuits are programmed for transition triggering, the DAC thresholds are set up to simulate a pattern, and the glitch chip is programmed to recognize that pattern. During RUN, H/IRIG+DLY should be false because there has been no transition.
2. The pattern on the input is changed. This is a "leaving" transition. H/TRIG+DLY should remain false because XE/TRIG1 is low true.
3. Setting the thresholds back to their original value is, in effect, an "entering" transition. H/TRIG+DLY should go true.

4-59. TEST 9: DISPLAY DRIVER

The Display RAMs are loaded with eight different patterns and read out. This tests the programming, the mode control circuits, the address latches, and the RAMs.

CTL 4-16

4-60. TEST 10: RATES/INTERVAL (A) (16 CH. ONLY)
$\left.\begin{array}{rl}\left\{\begin{array}{lllll}0 & 0 & 0 & 0 & 0\end{array}\right\}\left[\begin{array}{llll}0 & 0 & 0 & 0\end{array}\right] \\ \text { test steps: } \\ 1 & 2\end{array} 3 \begin{array}{lllll}6 & 4 & 8 & 9\end{array}\right]$

This is the same as TEST 6 above for the B term generator.

4-61. TEST 11: LESS THAN INTERVAL (A) (16 Ch. Only)

| | $\left[\begin{array}{llll}0 & 0 & 0 & 0\end{array}\right]$ | | |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 2 | 3 | 4 |

This is the same as TEST 7 above for the B term generator.

4-62. TEST 12: TRANSITION TRIGGER (A) (16 Ch. Only)
test steps: $\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$

This is the same as TEST 8 for the B term generator.

4-63. TEST 13: AND (16 Ch . Only)

| | $\left[\begin{array}{llll}0 & 0 & 0 & 0\end{array}\right]$ | | |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 2 | 3 | 4 |

4-64. Purpose.
This test checks the AND/OR combination circuits (U13, U17, U34, U35). HE/AND is set high.

4-65. Theory.
In a 16-channel, two-acquisition board system, each acquisition board provides a trigger signal to the control board via the timing bus.

These two triggers, XE/TRIG1 and XE/TRIG2 from pods 1 and 2, are ANDed or ORed in the combination circuits.

When the two triggers are both high, and HE/AND is high, they are ANDed. When the one or both of the triggers are low, and HE/AND is low, they are ORed.

XE/TRIG1 and XE/TRIG2 may be programmed as either high true or low true by XE/TRIGPOL out of the glitch chip (U27 on the acquisition board). Hence the " X " designation.

4-66. Test Steps. (Description of software execution)

1. With HE/AND high, XE/TRIG1 and XE/TRIG2 into U13 and U17 are both set low. H/TRIG+DLY should be false, or low at U85-4.
2. Low XE/TRIG1 and high XE/TRIG2. H/TRIG+DLY should be low.
3. High XE/TRIG1 and low XE/TRIG2. H/TRIG+DLY should be low.
4. High XE/TRIG1 and high XE/TRIG2. H/TRIG+DLY should be high.

4-67. TEST 14: OR (16 Ch. Only)

4-68. Purpose.

4-69. Test Steps. (Description of software execution)

1. Low XE/TRIG1 and low XE/TRIG2. H/TRIG+DLY should be low at U85-4.
2. Low XE/TRIG1 and high XE/TRIG2. H/TRIG \uparrow DLY should be true, or high.
3. High XE/TRIG1 and low XE/TRIG2. H/TRIG + DLY should be high.
4. High XE/TRIG1 and high XE/TRIG2. H/TRIG + DLY should be high.

Performance Tests and Troubleshooting - Model 64001A

4-70. TEST 15: B FOLLOWED BY A (16 Ch. Only)
$\left.\begin{array}{llllll} \\ \text { test steps: } & {\left[\begin{array}{lllll}0 & 0 & 0 & 0 & 0\end{array}\right]} \\ 1 & 2 & 3 & 4 & 5\end{array}\right]$

4-71. Purpose.
This tests the programming, the term generators, the B latching circuit (U67,74), and the arming circuits (U54,55,69).

4-72. Theory.
The A and B term generators select and combine acquisition board triggers. Besides AND/OR combinations, there is a B-before-A combination. A signal satisfying the B term generator is latched, and the analyzer then waits for an A signal to occur before triggering.

LE/ENLATCHB into U55 must be low for the latched B mode.

4-73. Test Steps. (Description of software execution)

1. $\mathrm{HE} /$ TRIGA out of the A term generator is high, and HE/TRIGB is low. H/TRIG+DLY should be low at U85-4.
2. Both $\mathrm{HE} /$ TRIGA and $\mathrm{HE} / \mathrm{TRIGB}$ are low. $\mathrm{H} / \mathrm{TRIG}+\mathrm{DLY}$ should be low.
3. HE/TRIGA is low and HE/TRIGB is high: The B latch is now set. H/TRIG+DLY should still be low.
4. Both HE/TRIGA and HE/TRIGB are low. H/TRIG+DLY should be low. The B latch should remain set because there has been no RESET.
5. HE/TRIGA is high and HE/TRIGB is low. We now have an A trigger occurring after a latched B trigger. H/TRIG + DLY should be high.

4-74. SUPPLEMENTARY DISPLAY TEST.

Further confirmation of proper display driver operation may be be obtained visually by pressing the following softkeys in sequence: "run slot display_test". Press [RETURN] and the first pattern appears. This pattern verifies, by corner brackets, proper timing display centering. You may observe other test patterns by continuing to press [RETURN] until the first pattern finally reappears.

Fifteen unique patterns are illustrated in figures $4-2$ to $4-16$. The last 11 patterns (figures $4-5$ to $4-16$) are repeated eight times in the displays, and shifted by one dot in each display. The repetitions are not shown in the manual.

Except for the eight-dot shift in the patterns following those shown in figures 4-5 to 4-16, the screen patterns should look similar to the illustrations. Intensity alternations cannot be shown in the manual, but will be described.

Although the purpose of the patterns is primarily to generate signatures, defects in the displays may help to isolate problems. For example, address line shorts may put one character adjacent to another. An open line might take away a character that should be there. Or perhaps one character will be substituted for another, eg glitch for cursor. Look primarily for irregularities and discontinuities.

Examples of possible problems:

```
Irregularities.
Misshapen characters.
Glitch instead of normal data, or vice versa.
Adjacent line shorts may show up as adjacent graticules, cursors, etc.
Blanks instead of characters.
Highs instead of lows, or vice versa.
Transition characters subsituted for other data characters, or vice versa.
```


Figure 4-2.

This display checks the proper centering of the pattern.
The bar at the bottom and the brackets are generated by the mainframe. The timing analyzer display driver puts out the dot pattern, which should be centered within the brackets as shown.

Problems might be in the Start-Address Latches (U92, 93) or the Row, Char, or Line Counters (U78, 94-96).

Figure 4-3.
This is an alternating pattern of high-low transitions, low-high transitions, glitches, graticule, and cursor. This is the first pattern for signature analysis.

Characters Exercised.

Data Characters.
High-low/low-high transition characters (Two every eight dots).
Enhancement Characters.
Intensity (alternating every 12 dots).
Graticule (on for 32 dots, then blanked for 32 dots).
Cursor (alternating, on for four dots, off for 12 dots)
Blanking (on for four dots, off for four dots during the time the graticule is off).

Glitches (Two every eight dots).

```
Performance Tests and Troubleshooting - Model 64601A
```


Press NEXT PRGE to CONTINUE

Figure 4-4.

This is the same as the previous pattern, but for 16 channels. This is the
second pattern for signature analysis.

Figure 4-5.
This is the third pattern for signature analysis.

Characters Exercised.

Data Characters.
High (following every glitch character).
High-low transition (alternating every eight dots).
Enhancement Characters.
Cursor (alternating, on for four dots, off for 12 dots).
Graticule (alternating, continuous for 32 dots, then off for 32 dots).
Dual Threshold (following every high-low transition).
Glitch (following every dual threshold character).
Blanking (lasts for four dots on the part of the display where there is no cursor).

Press NEXT PAGE to CONTINDE
Figure 4-6.
This display is repeated eight times and shifted by one dot.

Characters Exercised.
Data Characters.
Low (continuous on all channels).
Enhancement Characters.
Graticule (every fourth dot).
Cursor (continuous except for graticule columns).

Press NEXT FQGE to CONTINUE
Figure 4-7.
This is a pattern of highs lasting four dots, high-low transitions, lows lasting four dots, and then low-high transitions. This display is shifted by one Sut in each of the next eight displays (not shown).

Characters Exercised

Data Characters.
High (Alternating every four dots).
Low (Alternating every four dots).
High-low transitions.
Low-high transitions.

Enhancement Characters.
Graticule (continuous).
Cursor (continuous).
Intensify (all).
Press NEXT FAGE to CONTINDE

Figure 4-8.
This pattern is displayed eight times and shifted by one dot each time.

Characters Exercised.
Data Characters.
Low (continuous on all channels).
Enhancement Characters.
Intensity (alternating pattern imposed on the continuous lows, shifted in each display).
Cursor (on for four dots, off for two, on for two, off for one, then repeating).

CTL 4-28

Press next page to cuntimule.

Figure 4-9.
This is a pattern of four highs and a glitch, then four lows and a glitch. The pattern is shifted by one dot in each of the following eight displays.

Characters Exercised.

Data Characters.
High (lasting four dots, followed by a glitch, then four lows).
Low (lasting four dots, followed by a glitch, then four highs).
Enhancement Characters.
Graticule (continuous).
Cursor (continuous).
Intensity (all).

Figure 4-10.
This is a continuous alternation of highs, lows, high-low transitions, and lowhigh transitions. This pattern is shifted by one dot in each of the following eight displays.

Characters Exercised.

Data Characters.
High (lasting four dots, followed by a high-low transition).
Low (lasting four dots, followed by a low-high transition).
High-low transitions.
Low-high transitions.
Enhancement Characters.
None.

Figure 4－11．
This is the 16 －channel version of figure $4-6$ ，shifted by one dot in each of the next eight displays．

Characters Exercised．

Data Characters．
Low（continuous on every channel）．
Enhancement Characters．
Graticule（every fourth dot）．
Cursor（alternates with the graticule）．

Press HEXT PRGE to GMNTINLE

Figure 4-12.
This is the 16 -channnel version of figure $4-7$, shifted by one dot in each of the next eight patterns. This is a shifting pattern of highs lasting four dots, high-low transitions, lows lasting four dots, and then low-high transitions.

Characters Exercised.
Data Characters.
High (lasting for four dots, and then alternating with four-dot lows).
Low (lasting for four dots, and then alternating with four-dot highs).
Enhancement Characters.
Graticules (continuous).
Cursor (continuous).
Intensify (continuous).


```
Press NEXT FGGE to GONTINLE
```

Figure 4-13.

This is the 16 channel version of figure $4-8$, shifted by one dot in each of the next eight displays.

Press NEXT PAGE to GORTINLE.
Figure 4-14.
This is the 16 -channel version of figure 4-9. The following eight displays are each shifted by one dot. The pattern consists of glitch characters every four dots, followed by highs for four dots, and then lows for four dots. Intensity, cursor, and graticule are continuous.

Press NEXT PGGE to continlle
Figure 4-15.
This is the 16 channel version of figure $4-10$. It is an alternating pattern of data characters: high, low, high-low transitions, and low-high transitions. The following eight patterns are each shifted by one dot. There are no enhancement characters.

Frese NEXT PRGE to GLNTINUE

Figure 4-16.
This is an alternating pattern of highs, small transitions, middles, and lows. The pattern is shifted by one dot in the following eight displays.

Characters Exercised.

Data Characters.
High (alternate with dual threshold and low characters).
Low (alternate with dual threshold and high characters).
Enhancement Characters.
Graticule (repeated twice, blanked twice, repeated twice, etc.). Cursor (continuous).
Intensity (cursor is intensified every other two dots, and middles are intensified).

Dual Threshold (alternate with highs and lows).

4-75. INTER MODULE BUS PERFORMANCE VERIFICATION. (Supplementary PV test)

4-76. This is a supplementary PV test. To access this test press the following keys:
a. Press "opt_test"; RETURN
b. Type the timing control board slot number; RETURN
c. Press "test_IMB"; RETURN
d. The screen should show a display like Figure 4-3.

Inter Module Eus Performance Verification
Tue, $190 \%+1982,11: 12$

64601 A TIME CTI
Eoard for TME stimulus
7 1001 700 MHz Timing Analyzer 64601 A TME.CTI
IME test results (l =: Error)

IMBEtimulus board limitations ($1=$ Not tested)
DRIUE 100000 (DCLK, LME, LTE, HTR, ITE, HTR) RECETUE 1000 (BNCA, IME, ITE, HTR)

TESTED 0 FATLED 0

Figure 4-17. Inter Module Bus Performance Verification.

4-77. For this test, there must be another analyzer, either state or timing, present in the mainframe. One analyzer is the "test" board and the other is the "stimulus" board.

4-78. The test checks each of the IMB lines that are used commonly by the stimulus and test boards. In figure $4-3$, slot 3 contains the test board and slot 7 contains the stimulus board.

4-79. All the test board lines that can be driven or received are listed in the display under the heading "IMB test results. When six 0's, 000000, are indicated for RECEIVE, and four O's are indicated for DRIVE, all IMB lines pass satisfactorily.

4-80. When the particular stimulus board used in the test is unable to drive or receive certain lines, those lines are indicated under the heading "IMB stimulus board limitations". A "1" indicates those lines which cannot be tested. In figure 4-3, for example, the stimulus board in slot 7 cannot drive the DELAY CLOCK line, and cannot receive from the BNC4 external connector. Without this limitation listing, those lines would normally show errors.

4-81. Description.
4-82. DCLK. (Same as HE/DCLK, GMC, PDC).

1. The stimulus board sends ten clocks over this line.
2. The test board must receive ten and only ten clocks.

4-83. LME, LTE, HTR. (Same as LE/ME, LE/TE, LE/TR)

1. These three lines are initialized low.
2. The stimulus board drives one line at a time high.
3. The test board must see a high only on the exercised line.
4. The three lines are initialized high.
5. The stimulus board drives one line at a time low.
6. The test board must see a low only on the exercised line.

4-84. RST, HLD (Same lines as LE/TE, HE/TR)
In the Post Qualify Mode, $H T R$ and LTE have different functions than in the other timing analyzer modes. HTR is a HOLD command from another analyzer over the IMB, and LTE is the RESET command.

In the Post Qualify Mode, the timing analyzer triggers independently; then at some later time, another analyzer can initiate a re-run of the timing analayzer, or tell it to hold its present data.

The Post Qualify Mode, then, consists of three possible states: (1) The NORMAL data acquisition state, in which the timing analyzer is acquiring data while looking for a trigger condition. (2) The HOLD state, in which the timing analyzer has triggered and is told by a second analyzer to hold its data. (3) The RESET state, in which the timing analyzer is told by another analyzer to RESET and watch for another trigger condition.

4-85. POST-QUALIFY MODE -- RESET

1. DACs are set for an "always trigger" condition.
2. Stimulus board drives LTE true.
3. DACs are programmed for a "no trigger" condition.
4. LTE is set false. This should initiate a RESET. Since the DACs are set for "no trigger", the measurement should still be running (incomplete) because LTE did reset the analyzer and there was still no trigger.
5. DACs are set for an "always trigger" condition.
6. The analyzer should trigger and stop the measurement.

4-86. FOST-QUALIFY MODE -- HOLD

1. DACs are set for "always trigger".
2. Test board drives HTR true.
3. Stimulus board drives LTE true.
4. DACs are set for "never trigger".
5. Stimulus board drives LTE false. There should still be a trigger because HTR (which is a HOLD line in the POSTQUALIFY mode) is still true. The HOLD prevents a RESTART.
6. The stimulus board now drives HTR true. The timing analyzer is still programmed for the POST-QUALIFY MODE, but it no longer drives HTR .
7. DACs are set for "never trigger".
8. Initiate a HOLD from the stimulus board by driving HTR true.
9. Set the DACs for "always trigger".
10. Verify that HOLD (HTR) prevents a trigger.

Performance Tests and Troubleshooting - Model 64601A

4-87. SUPPLEMENTARY BOARD ID TEST.

4-88. The board ID circuits have stable signatures when "opt_test" is pressed. If the Timing Boards are not then listed on the screen, the ID circuitry is not working. Check the ID circuitry signatures at U88 and U89.

4-89. The following figures ($4-18$ to $4-26$) show the operator softkey sequence needed to run a single PV test repeatedly for signature analysis purposes. Each PV test corresponds to one signature loop. Signature lists are given following the figures.

Figure 4-19. Type the slot number.

CTL 4-41

Figure 4-20. Press "run".

Figure 4-21. Press "slot".

Figure 4-22. Type the slot number.

Figure 4-23. Press "test".

Figure 4-24. Type the test number.

Figure 4-25. Press "repeated".

CTL 4-44

Figure 4-26. Press [RETURN].

Performance Tests and Troubleshooting - Model 64601A

3-90. SIGNATURE ANALYSIS
4-91. The following 15 signature loops correspond to the previously given performance verification tests. That is, if a PV test fails, run the signature loop corresponding to that test. For example, if one of the test steps for TEST 1: SERIAL PROGRAMMING shows a " 1 " instead of a " 0 " in the bracket, look at the signatures for LOOP 1. In order to take the signatures, run TEST 1 repeatedly, using the procedure illustrated by the above figures (4-18 to 4-26).

64601A Timing Contral Board
SERTAL．．PROCRAMMTNG \＃！
NORM MOOE：UH $=: \quad$ WH6

DATA THRESHOLD HTCH；t＋J \＆EED
C OCK THRESHOL O：t＋I
SY－SP OL．THRESHOLD： $1+1$

Location of QUAL．STOP：tp 12
1．． 0 eation of ClOCK：tp 11
Locotion of GROUND：gnd
$\mathrm{Heg}, \mathrm{adge}$ pos．edge neg．edge

TTL

U	$49 \cdots 4$	A418
\square	$49 \cdots$	10w
U	$49 \cdots 12$	Iow
U	$49-13$	H76A
U	85．．．	6 CA
U	85－	A418
U	83… 3	UPG0
U	83－4	10w
U	85－5	117F
U	¢\％… 6	10w
U	8w…	UPG0
U	8ツ－8	1 ow
	ब\％－9	UPG0
U	8w－11	10 w
U	$83+12$	UF\％0
U	$8 \mathrm{~F}-13$	10w
	¢\＃－14	UPG0
	85－1世	high
	85－16	UFS0
	¢＂－17	Jow
	85－18	3012
	85…19	勺2CA
	86…	7376
	$86 \cdots 6$	high
	86… 7	9471
	86－10	Iow
	86－11	high
	88－1	low
	88－2	high
	88－3	0000
（TOTLz $=0781$ ）		
	88‥ 4	8496
（TOTLZ＝0781）		
	98…	0000
（TOT1z＝1＂2\％）		
	88… 6	0000
T0TL． $7=0781$ ）		

$\begin{gathered} 4.9 \cdots \quad 1 \\ \text { (TOTLZ }=: \end{gathered}$	$\begin{gathered} 18496 \\ 2=07810 \end{gathered}$
U） $89 \ldots$	2 10 w
U 89 ${ }^{4}$	3 UF50
U） $89 \cdots 4$	$48+196$
（TOTLZ $=0781$ ）	
U $89 \cdots$	$\square 10 \mathrm{~W}$
U $89 \ldots$	63012
U $91 \ldots 1$	12471
U $91-2$	$204 \% 1$
U 91.3	3 FCHH
U 91．-4	40000
（TOTL \％＝1\％e\％7）	
U91． 5	50000
（ToTLz：\＃0\％81）	
U 91－6	6 high
U91－7	7 abFC
U 91．．9	9 hagh
U 91－10	10 high
U 91－11	11 high
U91－12	12 62CA
U $91 \cdots 13$	13 high
U 91－14	14 high
U91－15	152471
U101－8	$873 F 6$
U101．．9	9 UF50

ECL		
$\begin{gathered} u 1-1 \quad 0000 \\ (\operatorname{ror} z=0500) \end{gathered}$		
U	$1-3$	0051
U	1－4	Р2СА
U	1－6	high
4	$1 \cdots$	low
U	1－8	1．OW
1	1－7	Jow
4	1－10	1． 0 w
U	$1 \cdots 12$	A9P\％
U	$1-13$	nigh
4	$1 \cdots 14$	Agp\％
U	±-15	high
1.	1－1\％	0000
（TOTLZ $=0$ 060）		
U	$1-18$	10w
U	1－19	high
U	1．．20	high
U	$1-24$	high
U	4…7	1776
U	4－9	6496
U	$4 \cdots 14$	A9P\％
U	ㅃ．．… 4	A4l 6
U	$10 \cdots 1$	high
U	$10-2$	6490
4	$10 \cdots 3$	1776
\cup	$10 \cdots 4$	FAlU
U	10－	16 CC
U	$10 \cdots 6$	6090
U	$10 \cdots$	$17 \% 6$
U	$10 \cdots$	A9P\％
U	$10 \cdots 10$	Gedu
U	10－11	40 PF
U	$10 \cdots 12$	P284
1.	$10-13$	40 PF
U	$10 \cdots 14$	F284
4	$10-15$	9874
\cup	$11 \cdots 1$	nigh

U	$11 \cdots 2$	AF14	U $36-6$	high
1	$11-3$	C6FF	U $36 \cdots 7$	low
1.	$11 \cdots 4$	HAHH	U $36-8$	1． 0 w
U	$11 \cdots$	9249	U 36－9	I． 0 W
U	$11 \cdots 6$	AF： 14	U $36-10$	A418
U	11.7	C6FF	（1） $36-12$	A9P7
U	$11-9$	A9ア7	（1） $36-13$	high
U	$11-10$	HAHH	（1） $36 \cdots 14$	A9P7
U	11－11	148 A	（1） $36-15$	high
U	$11-12$	$6+1 \mathrm{C}$	U $36-17$	0000
\checkmark	$11-13$	148 A	（ TOTLZ $=0$	\％0）
U	$11-14$	$6{ }^{6} \mathrm{CG}$	U 36－18	low
U	11－15	96 AH	U 36－19	high
U	$13 \cdots 4$	HAHH	U 36－20	high
U	$13 \cdots$	148 A	U 36－64	high
U	$13-11$	$6 \mathrm{HCO}_{6}$	U 37－1	0000
1	$13-13$	96 AH	（TOTLz $=0$	20）
U	19－1	high	U 37－3	6 AHC
U	$15 \cdots$	3 AFL	U 37－4	0051
U	13	C8\％	U $37-6$	high
U	15－4	日FC6	U $37-7$	low
U	1%	96 AH	U $37 \cdots$	15 F
U	$15 \cdots$	3 AFI	U $3 \%-9$	H75A
U	19	C．88U	U 37－10	low
U	$15 \cdots$	A9P\％	（1） $37-12$	A9P\％
U	$15-10$	8 CCO	$\begin{array}{ll}\text {（1）} & 37 \cdots 13\end{array}$	high
U	$15-11$	PCPH	U $37-14$	A9P\％
U	$15 \cdots$	F\％11	U 37×15	high
U	$15-13$	PCPH	U 377.17	0000
U	$15-14$	F711	© TOTL $2=0$	$320)$
U	$15-15$	16 CC	$437-18$	1．0w
U	$17 \cdots$	P090	U $37 \cdots 19$	high
U．	$17 \cdots 4$	$8 \mathrm{FC6}$	U $37-20$	high
U	1%－ 7	PCPH	U $37-24$	high
U	$17 \cdots 11$	Frol 1	U 38－1	0000
U	$17-13$	16 CC	（ToTLZ $=0$	20）
U	$19 \cdots$	H985	U 38－3	9874
U	$21-6$	14909	（1）38－4	6AHC
U	$21-10$	902p	U $38 \cdots 6$	high
U	$21-12$	1363	U $38 \cdots$	1．0w
1	24－	P 2 CA	（1）38－8	Jow
U	24－7	P¢CA	$438 \cdots 9$	high
U	$24 \cdots 11$	$\triangle 0 \mathrm{PF}$	（1） $38 \cdots 10$	80 C
\cup	$24 \cdots 12$	\％AdU	U $38 \cdots 12$	A9P7
U	27－－4	AFl 14	U $38 \cdots 13$	High
U	$27 \cdots 6$	8 H 49	U $38 \cdots 14$	A9P7
U	2\％	C6FF\％	U $38 \cdots 15$	high
U	$34 \cdots-13$	P284	U 38－17	0000
U	35－7	P284	（TOTLZ $=0$	90）
U	$35 \cdots$	P284	U 38－18	10w
1.	$36 \cdots 1$	0000	（1）38－19	high
	TOTLz	\％0）	U 38－70	high
U	36－3	Р\％CA	U 38－w	high
U	$36 \cdots 4$	A418	U $42 \cdots 6$	AF｜ 14

U	$42 \cdots 12$	3AFI
U	43－4	3AFI
1.	$43-7$	C88U
U	$49 \cdots 3$	A418
U	49－7	1． 0 W
U	49－11	low
U	$49-15$	H75A
U	50－9	6 AHC
\checkmark	54.5	C33H
1	¢4…6	C7FF
U	54－11	79P0
U	5゙－4	9249
U	$5 \mathrm{~F}-11$	0051
U	$5 \mathrm{5}-13$	F145
\cup	67－6 6	6036
\cup	$67 \cdots 11$	2HUU
U	69－3	A9F\％
\checkmark	$69 \cdots 6$	A9P\％
U	$69 \ldots 7$	high
U	71.1	high
U	$71-2$	\％HUU
U	$71 \cdots$	6 C 66
\cup	$71-4$	1363
\cup	71－	79 P 0
U	$71-6$	2HUU
\cup	$71-7$	6 C 36
\cup	71－9	A9P7
\cup	$71-10$	1363
U	$71-11$	H985
\cup	$71-12$	F145
U	$71 \cdots 13$	H985
U	$71-14$	F145
U	71－15	9249
U	$73-1$	hich
U	73－2	0178
U	$73 \cdots 3$	802P
U	73－4	H9C\％
U	$73 \cdots 5$	$73 F 6$
U	73－6	0178
U	73	802P
U	73－9	A9ア7
U	73－10	H9C9
U	$73-11$	C 3 HH
U	$73-12$	G7PF
U	$73-13$	C33H
	$73-14$	C\％PF
	$73-15$	$79 P 0$
	$74-10$	0178
	74－11	A069
	$74 \cdots 13$	high
	$74 \cdots 14$	high
	$86 \cdots 2$	$73 F 6$
	86－3	A9P＇\％

```
64601A Timing Control Board
RUN/ HAl.T / RESETT #
NORH MOOE: UH := ONUF
DATA THRFSHOLD HTCH: t+1 & ECI
OLOCK THRESHOID : +tI
ST-.-SP-OL.. THRESHOLD: t+1
Location of ST/SP/START: t% te
Meg, edge
Locetion of GUAL/STOP: tp d%
l.ocation of ClOCK: tp I!
pos, edge
Location of GROUND: grod
pos, edge
```


ECi.

4	1-1	10w
4	1-3	high
1.	1-4	10w
U	$1-6$	high
4	1-7	low
U	1-12	low
U	$1 \cdots 13$	0002
U	1-14	. 10 w
U	$1-15$	high
U	$1-17$	10w
U	$1-18$	10w
U	1-19	high
U	1-20	high
U	1-24	0002
U	ツ-	000%
U	\%-13	0002
\cup	19-9	0002
U	$19-13$	0002
4	$21-13$	0002
U	22-9	0002
U	3- 4	000%
U	3-1\%	000%
U	36-1	low
U	36-3	10w
U	36-4	10w
U	$36 \cdots 6$	high
U	36-7	1.0w
4	36-8	0000
U	36-9	10w
U	$36-10$	I OW
U	36-12	10w
U	36-13	0002
\cup	36-14	low
U	$36-15$	high
\cup	36-17	J. 0 W
U	36-18	10w
U	36-19	nigh
U	$36 \cdots 20$	high

	36-24	000 z
1.	37.	10 w
U	37-3	nigh
U	37-4	high
U	37-6	high
U	37-7	10w
U	37-9	low
U	37-10	10w
\cup	37-12	1
U	37-13	0002
U	37-14	10
U	37-15	high
U	37-17	10
U	37×1	10 w
\cup	37-19	high
4	$37-20$	hagh
\cup	37--24	000%
U	38 -	10w
U	38-3	10w
U	38-4	high
U	38-6	high
U	38-7	10w
U	38-8	0000
(TOTLZ=0432)		
U	38-9	high
U	38-10	high
U	38-12	10w
\square	$38 \cdots 13$	0002
U	38-14	1ow
U	38-17	10
U	38-18	low
U	38-19	high
U	38-20	high
U	38-24	0002
\cup	51-4	0002
U	$51-12$	002
\cup	$52-12$	02
U	66.4	0002
U	$66-11$	0002
U	$67 \times$	0002
\cup	67-9	0002
U	$67-12$	0002
U	69-7	0002
1.	69-9	0060
\cup	69-10	0002
U	69-11	0002
U	69-12	0197
1	$69-13$	high
u	69-14	019F'
U	74-13	0002
U	86-2	0000
\cup	86-3	d
\cup	86-12	000 e
	86	019 F

```
G4601A Taming Control Eoard
TRTGGER ##
```

NORM MODE
DATA THRESHOLD HTGH: tt 2 हeel CLOCK THRESHOLD: t+1
ST- SP-QL. THRESHOLD: ttI
$U H=826 \%$
Temporarily connect U13 pins 12 and 14 together

| Location of ST/GP/START: tp | neg edge |
| :--- | :--- | :--- |
| Location of QUAI/STOP: to 12 | pos. edge |
| Location of CLOCK: tp it | neg. edge |
| Location of GROUNO: gnd | |

TTL

	49	
	49.	
d	$49-12$	
	49	
,	85	Hu
J	85	81
	95.	74
	85	
	85	
	85	
	85	56
	85-1.	10 w
	85-	72
J	85.-11	CP
)	$85 \cdots$	U3
1	85	low
U	85-14	U3P:
1	85-13	6 P
	85-16	337
	85-17	
1	85-18	5909
J	85-19	HUOC
	$86-$	0093
	$86-$	4730
	86-10	
d	86-11	
	90.	P6\%
	90	P6
	90-3	547
	90 -	
	90-	
	90	6 P 07
	90-12	
U	90-13	CH 35
1	90-14	1725
U	0-15	
	91	P
	91.	4730

U91-3 9542
U 91-4 0000
U91-5 0000
U $91 \cdots$ high
491-7 1725
(J 91-12 HUOC
U 91-13 0 H79
(1) $91-15 \quad 4730$

EC.

- …… ……......................

U $1 \cdots 10000$ (TOTLZ=0260)
() $1-3 \quad 3314$ () 1-4 820A U 1-6 high (1) 1-7 Jow

U $1-1 \%$ FW\%
() $1 \cdots 13 \quad H F 03$

U $1-14$ F557
U 1-1G high
U $1-17 \quad 0000$
(TOTLZ $=0060$)
U $1-18$ low
(u) 1-19 high
u \quad - 0 high
() $1 \cdots 24$ HFOZ
() $10 \cdots 1$ high

U $10 \cdots 203$
U $10 \cdots 3 \quad 9909$
() $10 \cdots \quad 4 \quad 0 \mathrm{CC} 4$

い $10 \cdots 5 \quad 5701$
U $10 \cdots \quad 6 \quad 3213$
U 10… 79909
U 10-9 F557
U 10-10 0CCA
(1) 10-11 81 CP

U $10-12 \quad 87 \mathrm{PU}$
() 10-13 81CP

U $10 \cdots 14 \quad 87 P U$
U $10-15 \quad 4793$
U 11... 1 high
(11-2 93AA
U 11-3 F9HF
U 11 - \quad CP5
U 11-5 1F4C
U 11-6 93AA
U $11 \cdots \quad 79 \mathrm{H}$
U $11-9$ F5\%

u	11-10	CP5
11	11-11	F6Fi
U	$11-12$	P360
U	11-13	F
U	11-14	P360
U	$11-15$	2 C
U	13	h
U	13	06 P 4
U	13-	8483
U	$15 \cdots$	CP55
U	13-5	10w
U	13	10
U	$13 \cdots 7$	F6Fl
U	13 -	1 ow
U	$13 \cdots 10$	Per
U	13-11	P360
4	$13-12$	0 A14
U	13-13	2 COL
U	13-14	0 A14
U	$13-15$	dow
U	$15 \cdots$	high
U	$15-2$	0F6F
U	$15 \cdots$	0636
J	15	4
U	$15-$	2COU
U	15-6	0 F 6 F
U	15	0636
U	15-9	F557
U	$15-10$	59 A4
U	$15-11$	3539
U	15-12	1A9F
U	$15-13$	3539
U	$15 \cdots 14$	1 A 9 F
U	$15-15$	57U1
U	17 -	high
U	17-2	H5SH
U	17-3	573 A
U	17	A4
U	17 -	1
J	17-	low
J	$17 \cdots$	3539
U	17-9	10
U	17-10	PeFH
U	17-11	1 AgF
U	17-12	$0 \mathrm{Al4}$
U	17-13	57U1
u	17-14	0 Al 4
\cup	17-15	low
U	19-	high
U	19-2	SPFP
U	19	$05 A C$
U	19	CFAC
U	19-7	4 A 3 C
	-	

U	19-10	CFA9	
U	$19 \cdots 11$	Migh	
U	$19-12$	1. 0 W	
U	19-13	HFO3	
U	19-14	1. 0 W	
4	$21-1$	high	
U	21-2	87FF'	
U	$21 \cdots 3$	9 F 64	
U	21-	$05 A C$	
U	$21-6$	032 U	
U	21-7	3 FFP	
U	$21-10$	8006	
U	$21-11$	1414	
U	$21-12$	AU7A	
U	21.13	HF03	
U	$21-14$	F6CA	
U	$21-15$	P 2 FH	
U	27-1	high	
U	27-2	826%	
U	27-3	CFFC	
U	27-4	93AA	
U	27-6	8100	
U	27-7	F9H\%	
U	27-9	9267	
U	27-11	$036{ }^{\circ}$	
U	\%7-12	036 F	
U	$27-13$	8100	
U	27-14	810 C	
U	31-1	-4.520	DCU
U	31-2	\cdots	DCU
U	31-3	--w. 09	DCU
U	$31 \cdots 4$	\cdots--9.17	DCU
U	$31-5$	$\cdots .4 .37$	DCU
U	31-6	--4.99	DCU
U	31-7	--5.17	DCU
U	$31 \cdots 8$	\cdots - 9	DCU
U	31-9	…1.78	DCV
U	$31-10$	0.17	DCU
U	$31-11$	0.01	DCU
U	31-12	\cdots	DCV
U	$31-13$	0.65	DCV
U	31-14	0.01	DCV
U	31-15	-4.1	DCV
U	$31 \cdots 16$	-4.5\%	bCU
U	32-1	4.99	DCU
U	$32-2$	0.17	DCU
U	32-3	0.01	DCU
U	$32 \cdots 4$	0.17	nCU
U	32-5	4.99	DCU
U	32-6	0.17	DCV
U	3-7-7	0.01	DCU
U	$32 \cdots 8$	4.99	DCU
U	$32-9$	0.17	DCU
U	32-10	0.01	DCU

1.1	$3 \%-11$	4.99	DCV
1.1	$3 \%-12$	0.17	DCV
U	$32 \cdots 13$	0.01	DCV
U	$32 \cdots 14$	4.99	OCV
U	34-1	high	
U	34 -2	8100	
U	$34 \cdots 3$	036%	
U	34.-4	8100	
II	$34 \cdots 6$	\%C\%	
U	34-7	HOH5:	
U	$34 \cdots 9$	W\%\%	
U	$34-11$	0000	
U	$34 \cdots 12$	0000	
U	$34 \cdots 13$	87FU	
U	$34 \cdots 14$	0988	
U	3\%-1.	high	
U	36-2	036%	
U	$3 \square 3$	8100	
U	35... 4	0588	
U	35	0694	
U	$35 \cdots$	8483	
	35… 7	9\%PU	
U	3\%-9	10w	
	$35 \cdots 10$	$0 \mathrm{OB8}$	
	$3 \%-11$	HEH	
	3\%-12	E73A	
U	$35-13$	87PU	
	$35 \cdots 14$	ज\%С	
	$35-15$	H0HE	
	$36 \cdots 1$	0000	
(TOTLZ $=0260$)			
U	$36-3$	820A	
U	36-4	819	
	$36 \cdots 6$	high	
U	36-7	low	
	36-8	¢CP 3	
	36-9	2CP3	
U	$36-10$	9195	
U	$36-12$	F55\%	
U	$36-13$	HFO3	
	36-14	F56\%	
	36-15	high	
U	$36-17$	0000	
(YOTLZ $=0060$)			
	$36 \cdots 18$	J. 0 w	
	36-19	high	
	36-20	high	
	$36-24$	HFO3	
	37-1	0000	
(TOTLZ $=0260$)			
	37-3	133 A	
	37-4	3314	
	37-6	high	
	37-7	Jow	

Performance Tests and Troubleshooting－Model 64601A

U	37－8	PP1\％
U	37－9	1026
1	$37-10$	7042
4	$37-12$	19\％ 5
\cup	$37-13$	HF03
U	$37-14$	1597
U	$37-15$	high
U	37－17	0000
（TOTLZ $=0.660$ ）		
U	$3 \%-18$	10w
U	$37 \cdots 19$	high
U	37－20	high
U	$37-24$	HFO3
U	38－1	0000
（TOTLZ $=0260$ ）		
U	38…	4793
U	38－4	133A
U	$38 \cdots 6$	high
U	38－7	10 w
U	38－8	2cp 3
U	38－9	high
4	$38 \cdots 10$	98 A 2
U	38－12	F55\％
U	$38 \cdots 13$	HFO
U	38－14	F5\％
U	38－15	high
4	38－17	0000
（T0TL\％$=0260$ ）		
U	38－18	1． 0 w
U	38－19	high
U	38－20	high
U	38－24	HFO3
U	39－1	PFl\％
U	39＊ 5	A984
U	39－6	10w
U	39－9	4793
U	40－1	high
U	40－3	0000
（TOTLZ $=0003$ ）		
\cup	40－5	HFOS
U	40－7	0000
U	$40 \cdots 9$	A984
U	40－10	2 CP 3
U	40－11	0000
U	40－1\％	HFO\％
U	$40 \cdots 14$	2 CP 3
U	$42-1$	high
U	$42 \cdots 3$	$9 H 49$
\cup	43－4	high
U	$42-5$	CFFC
U	$42 \cdots 6$	93AA
\cup	$42 \cdots 7$	810 C
4	$42-9$	1ow
	$42 \cdots 10$	high

U	$42-11$	4451	
\cup	$42-12$	0 F 6 F	
\cup	$43-13$	5%	
\cup	$42-14$	CP03	
\cup	$42-15$	$3 F 64$	
U	$43-1$	high	
\cup	$43-2$	high	
U	$43 \cdots 3$	$4 \cup 5 F$	
\cup	43－4	0 FGF	
U	$43 \cdots 6$	\％\％2	
U	$43 \cdots 7$	0636	
U	$43-9$	high	
\square	$43-11$	HOHF	
U	43－12	HOHS	
U	$43-13$	5 CL	
U	$43 \cdots 14$	ツ2С2	
\cup	$46-1$	－4．33	DCV
\checkmark	$46 \cdots 2$	－－5．17	BCV
\cup	$46-3$	－－5．11	DCU
U	46－4	－-5.17	BCU
\cup	$46-5$	-4.3%	DCU
\cup	$46 \cdots 6$	$\cdots 4.97$	DCV
U	$46 \cdots 7$	－5．17	DCU
1.	$46-8$	－-5.17	OCU
U	$46 \cdots 9$	$\cdots 1.76$	DCU
U	$46-10$	0.16	DCV
U	$46-11$	0.01	DCU
U	$46-12$	－－5．17	ロCU
U	$46-13$	0.64	DCV
U	$46-14$	0.01	OCV
U	46－15	-4.37	DCV
U	$45 \cdots 16$	－－4．53	DCV
U	$47-1$	4.99	DCU
U	$47-2$	0.16	mCU
U	47－3	0.01	DCU
U	$47 \cdots$	0.16	DCV
U	47－5	4.99	DCV
U	$47-6$	0.16	DCU
U	$47 \cdots$	0.01	DCU
U	$47-8$	4.99	DCU
U	$47 \cdots$	0.16	DCU
U	$47 \cdots 10$	0.01	OCV
U	$47 \cdots 11$	4.99	DCV
U	$47-12$	0.16	DCU
U	$47-13$	0.01	OCV
U	$47 \cdots 14$	4.99	DCV
U	49－3	8195	
U	$49 \cdots 7$	9 F 64	
U	$49-11$	CFA9	
U	$49-15$	1126	
U	$50 \cdots 1$	high	
U	50－3	：1964	
U	50－4	تP64	
U	－ 0 －-7	10w	

U	50－9	13 A
U	\％0－10	1．0W
U	$50-11$	3 FFP
U	W0－12	high
U	$50-14$	5 EF 64
U	\％1－1	hagh
U	$51-2$	2CP3
U	G1．．． 4	HFO3
\cup	$51-6$	A984
U	\％1．7	YP64
U	$51-10$	A984
U	： $1-11$	5P64
\cup	$51-12$	HF03
U	－1－14	Iow
U	5\％－1	high
U	ツ\％－2	10w
U	52－3	2cps
U	G2－－．	high
U	凹\％－7	2CP3
U	$52-12$	HF03
U	$52-13$	A984
4	$\cdots 4.1$	high
U	54…	FPCE
U	－7－3	FPCS
U	$54-4$	98 A
U	54…	187 F
U	$54-6$	5681
U	54‥7	87FF\％
U	54－9	HFO． 3
U	54－10	$F 6 \mathrm{CA}$
U	6－4－11	P814
U	ツ4－12	FPCE
1.	$54-13$	1．0w
U	파－14	FPC5
U	$54-15$	AFH？
U	$5 \%-1$	high
11	$55-2$	1026
U	Eㅍ．－4	1 FAC
U	65－．	$9 H 49$
1	\％－6	1． 0 m
U	$5 \mathrm{E}-7$	10w
U	$56 \cdots$	AFHC
U	$5 \mathrm{~F}-10$	10 W
U	$\cdots-11$	3314
U	$5 \mathrm{E}-12$	F2\％H
U	$5 \%-13$	3996
U	$55-14$	CPOX
U	$5 \mathrm{~F}-15$	Jow
U	$66 \cdots 1$	high
U	$66 \cdots 2$	9P64
U	66－3	HFOS
U	66－4	HFO3
U	$66-5$	7U4\％
U	$66-6$	\＃P64

U 66-7	1. 0 w	U $73-9$	F5\%
U 66-9	10w	U $73-10$	0320
U 66-10	98A2	(1) $73-11$	187%
(J) $66-11$	HFO3	(.) $73-12$	5681
U 66-12	10w	U) $73-13$	1871
(1) $66-13$	high	(1) $73-14$	9681
4 66-14	6099	U $73-15$	P814
$1466 \cdots$	GP64	U 74×1	high
U 67-1	high	U $74-2$	P\%FH
U $67 \cdots$	PSFH	U) $74 \cdots 4$	Hi=03
U 67-3	CFAS	U $74-3$	P2FH
U 67-4	3F64	U $74-10$	8U8H
U $67-5$	HF03	U $74-11$	1410
11 67-6	663F	U) $74-12$	1. 0 W
U 67-7	HF03	U $74-13$	HFO.
U 67-9	HFO3	U) $74-14$	high
U $67-10$	5 F 64	U $86 \cdots$	0093
(1) $67 \cdots 11$	2AH1	U $86 \cdots 3$	$1: 567$
U $67-12$	HF0.3	U) $86 \cdots 12$	HFO3
U 67-14	1410	(1) $86 \cdots 14$	A984
U 69-1	high		
U 69-2	low		
U 69-3	F6\%7		
U 69-4	8U8H		
U 69-5	CFA9		
U) 69-6	15 F 5		
U 69-7	6 PO 1		
U 69-9	$\triangle \mathrm{CP} 3$		
U $69-10$	HF0.		
U 69-11	HF03		
U 69-12	A984		
U 69-13	high		
U 69-14	A984		
U $71-1$	high		
U $71-2$	2 AH 1		
U 71-3	:63F		
U 71-4	AU7A		
U $71-5$	P814		
U) $71-6$	2 AHI		
U 71-7	663 F		
U 71-9	F557		
U $71-10$	AU7A		
U 71-11	4 A 3 S		
U 71-12	3896		
U 71-13	4 A 32		
U $71-14$	3896		
U 71-15	1F40		
U $73-1$	high		
U 73-2	8U8H		
U $73-3$	$80 \cup 6$		
U 73-4	032 U		
U $73 \cdots$	0093		
U 73-6	848 H		
U 73-7	$80 \cup 6$		

64601 A Timing Control Board OFLAY COUNTER \＆TRTG POSTTTON ：\＃

NORM HODE

DATA THRESHOLO HTGH：t t \＆※ © CLOCK THRESHOLD：ttI
ST…SP… THRESHOLO：ttI

L．．ocetan of ST／GF／START：to ic
Location of QUAL／ETOP：tp la
Location of CLOCK：tp 11
Location of GROUNO：gnd

$$
U H=55
$$

Temporarily connect U13 pins 12 and 14 together
neg，edge nos．edge neg ，edge

TTL

（1）49－ 4	3H26
（U） $49 \cdots$	7331
U $49 \cdots 12$	4081
U）49－13	3800
U 64－4	106
U $64 \cdots \square$	3PP9
（1） $64-12$	5844
U） $64-13$	Cu81
（1） 8 ¢－ 1	531
U 3 F	$3+26$
U ¢\％－3	75р9
U 85－4	7331
U1 $8 \%-5$	$6 \mathrm{HW}^{2}$
U 85－6	UH2\％
U 8\％${ }^{\text {¢ }}$－ 7	005%
U 8w…	Cu81
U 8\％．．． 9	F 53%
U $65 \cdots 11$	\％84u
U $85 \cdots$	7742
（1） $83-13$	\％PP9
1）6\％－14	7396
（1） $85 \cdots$	4019
U 9\％－16	6 HUN
U 89.17	Cu®1
（1） $5 \cdots-18$	$67 \% 1$
U $89-19$	631
U 90－1	610
U $90 \cdots \cdots$	9205
U $90 \cdots 3$	719
U $90 \cdots \mathrm{~A}$	10 w
U $90 \cdots$	HW1\％
U $90 \cdots 6$	4019
U $90 \cdots 1 \%$	high
$490-13$	6 H 3 H
$1.90 \cdots 14$	8Р2\％
$1.90 \cdots$	high
U91．．．1	HC． 13
$491 \ldots$	EF

$91-3$	HCO\％
U $91-4$	0000
（ToTlz $=0199$ ）	
U $91 \cdots$	0000
U）91－6	high
U 91－7	8pe2
U $91-12$	W31
U $91-13$	H6U？
4 91－15	W8F！
U101－－8	1 FHS
U101．．9	4903

U	$7 \cdots$	ntat
U	$\cdots \cdots$	23P\％
U	$\cdots \cdots$	76 F \％
U	7 －－4	こ3P7
U	$7 \cdots$	$76 F 2$
U	7．．．9	ころP7
4	$7-10$	$76 \mathrm{~F} \%$
4	$\cdots \cdots 12$	23P7
U	$7 \cdots 13$	76 F 2
U	7－1\％	76 F \％
U	$36 \cdots 1$	0000
U	36－	2EHC
1	$36 \cdots 6$	higlu
U	36－7	Jow
U	$36-8$	66A6
U	36－9	0080
U	36－12	PGAl
U	36－13	8032
1	$36-14$	F5Al
4	36－16	high
1	36－17	0000
1	$36 \cdots 18$	low
U	36－19	high
U	36－20	high
U	$36-24$	8032
4	$3 \%-1$	0000
U	$37 \cdots 3$	1P20
1.	$37 \cdots 4$	UH94
1.	$3 \% \ldots$	nigh
4	37.7	10 w
U	37．．． 8	9200
1.	$3 \% \cdots$	3800
U	$37 \cdots 10$	0000
4	$37 \cdots 1 \%$	PEA1
U	$37 \cdots 13$	0032
U	37－14	PWAl
U	$37-15$	hjgh
U	37×17	0000

U	37×18	1． 0 w
4	37×19	high
II	37×0	High
1.	$37-24$	8030
U	38－1	0000
\cup	38－3	P4F9
1.	38－4	$1 \mathrm{~F}_{2} 20$
U	38－6	high
4	38－7	low
\checkmark	38－8	66 Ab
U	38－9	high
U	$38 \cdots 10$	F700
\cup	36－12	PツA1
1	38－13	8032
\cup	38－14	PGAl
U	$38 \cdots 16$	high
U	38－17	0000
U	30－18	1ow
U	$38 \cdots 19$	hagh
U	$38-60$	high
U	$38-24$	0032
U	$40 \cdots 1$	High
U	$40 \cdots 3$	P\％F\％
U	$40 \cdots$	Q032
U	$40 \cdots$	PワFP
	$40 \cdots$	7672
U	40×10	66Ab
U	$40 \cdots 11$	РクFP
U	$40-12$	8032
U	$40 \cdots 14$	66 Ab
U	$49 \cdots 3$	$3 \mathrm{H}_{2} 6$
	$49 \cdots 7$	7331
U	49－11	Cu81
\cup	49…1\％	3801
U	$50 \cdots 1$	high
U	W0．	7331
U	＂0－．． 4	7331
U	60…	Iow
	50－9	1P\％0
U	W0－10	10 W
	60－11	PAAA
U	60－12	High
U	$50-14$	7331
	： 1 － 1	high
	W1－2	0090
	E1－4	8032
	W！－－ 6	$76 F 2$
	－ 1 1－7	7331
	W1－7．9	10w
	$51-10$	76 F
	$51-11$	7331
	W1－12	8032
	51．．．14	cusi
	$51-1 \%$	high

u $\%$－ 1 high

U $5 \cdots 35840$
U $5 \cdots$ high
U ジ心－ 60080
U $5 \%-12 \quad 8032$
U ש2－13 76F2
U $5.7-1$ high

U
U 56－． 5 OP1U
U $5 \mathrm{G}-6$ 10w
U 5\％… 7 low
U ज以 9 2ט62
4 W－w 10 10w
U FiG－11 UH94
U $\mathrm{F} 5-12 \quad 6$－ 96
U $5 \div-13$ 0Р 57
（1） $5.5-14$ 70C3
$064 \cdots 30000$
U $64 \cdots \quad 7$ … 7
U $64 \cdots 11$ ت84

U 66－ 1 high
U $66 \cdots 27331$
U $66-3 \quad 2614$
（1） $66-4 \quad 8032$
U $66 \cdots \quad 0000$
（U） $66 \cdots \quad 6$ H517
U $66-10 \quad F 708$
U 66－11 9032
U66－15 HF17

```
64601A Timing Control Board
WITNOOW COUNTER 泞
```

```
NORM MODE
DATA THREGHOLD HJCH: t+1 * ECI
COOCK THRESHOHN: t+I
ST--SF-QL.THRESHOLD; tt!
Locataon of ST/SP/START: tp t%
Location of QUAL.N/STOP: to In
L.ocation of COOCK: tp dl
Location of GROUND: gnd
```

TTI．

U	49－4	CH\％3
U	$49 \cdots$	A以い\％
U	49－12	10w
1	$49 \cdots 13$	A0P9
U	64－4	10W
U	$64 \cdots$	A＂A9
4	$64-12$	8F85
U	$64-13$	1．0w
U	$85 \cdots 1$	P01U
U	85－－2	CH73
U	$8 \mathrm{~B}-3$	8206
U	85－4	AWい7
4	8：－	P8F9
U	85－6	429 A
U	8玉… 7	H641
U	85－8	10w
U	85.9	3746
4	83－11	8F85
U	$86-12$	C62A
1.	$85 \cdots 13$	AWA9
U	85．．．14	OPFU
\cup	85－15	$\because 284$
4	$85-16$	0リび\％
U	85－17	I OW
\cup	85－18	1921
4	85－19	P014
U	86－	4906
U	86‥7	6 67U
U	$86 \cdots 10$	Cbita
U	86－11	\％234
\cup	$90 \cdots 1$	C8A？
U	$90 \cdots$	8485
4	$90-3$	4
U	$90 \cdots$	1． 0 w
U	90－5	C 6 HA
U	$90 \cdots 6$	W2，
U	90…	1 ow
	90－7	l． 0 W

VH ：： $13 H$ ？
Temporarily connect U13 pins 12 and 14 together
neg．adge pos．edge neg，adge

ECL．

64601A Timing Control Board RATES / TNTERVAL E $\# 6$

NORM MODE:
DATA THRESHOLD HTGH: t+1 \& ect
ClOCK THRESHOLD: ttI ST--GP - QL THRESHOLD: $+t$

Location of ST/GP/START: tp 12 Location of QUAL/STOF: tp 12 Location of Clock: tp 11 Location of GROUND: gnd

UH: FOB6
Temporarily connect U13 pins 12 and 14 together

TTI.

	44.]	
	44	
	44.	80
	44	
U	44.	1590
	44 -	3 P
	44	C3
	44.	C 70 O
	44.	
J	$44 \cdots 11$	F036
U	44-12	AU
J	44-13	
1	44-14	H3A
J	44-15	3 P 30
U	44.16	3070
1		32
U	44-18	C2
1	44-19	
1	49-1	692
1	49...	U7F
U	$49-12$	10w
J	49-13	6909
	85-	F03
	85-	
	85-1.	0 PO
1	$85-$	U7F
	85.	USP
	35.-1	
	85.-.	410
	35--	
	85-12	
	85-14	6 FCU
u	85-15	A
	85-16	CCUS
	85-17	
	85	80
	85-19	
	86-5	

ECl.

U	86-7	F0.36
\cup	$86-10$	U7F0
\cup	86‥11	SFAE
U	$90 \cdots 1$	2F-7F
U	$90 \cdots$	6914
U	$90 \cdots 3$	7466
U	$90 \cdots 4$	1.0w
U	90-	U7F0
U	$90-6$	らFAE
U	$90-13$	3299
U	$90 \cdots 14$	F036
U	$90-15$	high
U	$91-1$	63 C \%
U	91-2	884H
U	$91-3$	947H
U	$91-4$	F036
(TOTLZ $=0207$)		
U	91-	0000
U	91-6	high
	91-7	$F 036$
(TOTLZ $=0001$)		
	$91-12$	F036
U	91-13	F036
	91-15	F036

	$7-$	
	$7-$	49 P 7
	7	89
	7 -	
,	7-5	89
I	7-9	49
	7-10	89
	-12	
	-13	89H1
	7-15	
	10-1	high
	10-2	GAH1
1	10-3	9 CAH
	10 -	$8 F 06$
	$10-$	087
	$10-$	6AHI
1	10-7	9 CHH
J	10-10	F06
	10-11	822
	10-12	
	10-13	8225
J	10-14	0450
	10-15	00
	$15-$	
	15-	
	15-	51
J	15-	3323
	15-5	0A
	15-6	A
	15-7	
U	15-10	3323
J	15	39 CF
U	15-12	H8U8
J	15-13	39 CF
J	15-14	18
U	$15-15$	0877
	17-	
	17-	

$\cup 17-3$	7684	U 38--1	0000	U 55-12	U7F 0
U 17-4	3323	$438-3$	4600	$455-13$	1446
$417 \ldots 5$	low	U 38-4	UC4E	$455-15$	10w
U17-6	10 w	$1138-6$	high	U $67 \cdots 1$	high
U17\% 7	39 CF	(1) 38-7	low	$467 \ldots$	U7F0
U17-9	Iow	U 38-9	high	U 67-3	10w
$417-10$	U7FF0	U 38×10	$9 F 01$	U $67-5$	3706
(1) $17 \cdots 11$	H8U8	U $38-12$	0000	11 67	2100
U 17-12	0000	U 38-13	3706	U 67-7	3706
(1) $17 \cdots 13$	0877	U 38-14	0000	(1) 67-9	3706
$417 \cdots 14$	0000	U 38-15	high	4 67-10	U7FF 0
(1) $17-15$	1 ow	(u) 38-17	0000	4 67-11	1 UAF
$434-1$	high	U 38-18	10w	U 67-12	3706
U) $34 \cdots 13$	0450	U 38-19	nigh	U $67-13$	low
$1)^{1} 34-14$	F 46 H	U 38-20	high	(1) $67-14$	HU9A
(1) $34 \cdots 15$	F=036	U 38-24	3746	U $71-1$	high
$435-10$	F 46 H	U 43-1	high	$471-2$	1 UAF
(1) $35-11$	Cbcc	U $43-2$	high	$471-3$	aunc
U $35-12$	768 H	143	SFA3	U71-4	53 HC
U $35-13$	045C	$143 \cdots$	10w	$471-5$	7003
U 35-15	7246	U 43.	AP51	U71-6	1 UAF'
U $36 \cdots 1$	0000	$1143-9$	high	U 71-7	2Uuc
$436 \cdots 3$	9 920	$143-10$	10w	U 71-10	53 HC
U $36 \ldots 4$	6920	$1{ }^{1} 43 \cdots 11$	$72 H 6$	$071-11$	99PH
U $36-6$	high	U 43-12	$72 H 6$	$471-12$	1446
$1{ }^{1} 36-7$	1.0w	U) $43-13$	Cep 0	$471-13$	29PH
$436-9$	49ア\%	(1) $43-14$	cepo	U $71-14$	1406
U 36-10	6920	U $43-15$	0000	U $71-15$	6P70
U $36-12$	0000	U 49-3	692 C	4 73-1	high
U 36-13	3706	U 49‥7	U7F0	U 73-2	FFus
U $36-14$	0000	$1489-11$	low	U 73-3	8277
(1) $36-15$	high	14 $49 \cdots 15$	6969	U $73-4$	P116
U 36-17	0000	15 5-1	high	$473-5$	7205
U 36-18	1 ow	U54. 2	11148	$473-6$	FFus
U 36-19	high	$\cup 54-3$	$0 \cup 48$	U 73-7	8277
U $36-20$	high	(1) 54-4	9F01	4 73-10	P116
U $36-24$	3706	〕54-5	C4AH	$473-11$	C 4 AH
(1) $37-1$	0000	U $54 \cdots 6$	CPSH	(1) 73-12	CPSH
U $37-3$	UCAS	U 54-7	4 HFB	U 73-13	CAAH
(1)37-14	7170	$154-9$	3706	(J) $73-14$	CPSH
U $37 \cdots$	high	0 54-10	267 A	$473-15$	7003
U 37-7	low	U 54-11	7003	U 86-2	7205
U37-8	FUHA	U 54-12	UU48	$486 \cdots 3$	0000
4 $37-9$	$69 \mathrm{C9}$	U 54-13	Jow	$1.86-12$	3706
U 37-10	7337	U 54-14	UU48	U 86-14	89H1
(1) $37-12$	0000	U 54-15	3U7P		
U 37-13	3706	455	high		
(J 37-14	0000	U 55- 2	69 CO		
U $37-15$	high	$455-4$	6P70		
U 37-17	0000	$455-6$	low		
U 37-18	l. 0 W	4 55-7	low		
(1) 37-19	nigh	455	3U7P		
$\cup 37-20$	high	U 55-10	10w		
() $37-24$	3706	(1) 55-11	7190		

64601 A Timing Control Board
LI: 59 THAN INTERUAL. B \#'7

NORM MODE:

DATA THRESHOLD HTGH: tta \& ect
CLOCK THRESHOLD: + +1.
ST-SP-WQ THRESHOLD: $t+1$
L... OC ation of ST/SP/START: to $\%$

Location of QUAL/STOP: tp 10
Loc:ation of CloCK: tp II
Location of GROUND: gnd

UH $=59.39$
Temporarily connect U13 pins 12 and 14 together

TTL

U	44-1	high		1.	47-6	0.16	1) CO	U	$90 \cdots 14$	593 A
\checkmark	44-2	low		U	$47 \ldots$	0.01	10CV	U	90-16	high
U	44-3	HHHU		U	47-8	4.99	DCU	U	$91 \cdots 1$	0583
U	44… 4	4UA2		U	$47 \cdots$	0.16	DCV	U	91.	CuF0
U	44…	1. 0 w		1.	$47-10$	0.01	DCU	U	91.3	0500
\cup	44-6	10 W		U	$47 \cdots 11$	4.99	DCU	U	91.	\%93A
\square	$44 \cdots 7$	869F:		U	$47 \cdots 12$	0.91	DCU	U	$91 .$.	0000
U	44-8	4153		U	$47 \cdots+13$	0.01	OCU	U	91-6	high
U	$44 \cdots 9$	1.0w		U	$47-14$	0.04	DCU	U	91.7	693A
U	$44 \cdots 11$	693A		1	49… 4	8F3U		U	91-12	693A
U	$44-12$	high		U	$49 \cdots$	P7A2		U	$91-13$	\%93A
U	44-13	8067		U	$49 \cdots 12$	low		U	$91 \cdots 14$	high
U	$44 \cdots 14$	3F17		U	49-13	F8C\%		U	$91-15$	5934
U	44-15	1.0w		U	8世-1	993 A				
U	$44 \cdots 16$	high		U	85-2	8F30				
U	44-18	8874		U	8ㅍ..…	82ep				
U	$44-19$	1.0w		4	85-4	P7A2				
\cup	46-1	$\cdots 4.53$	DCV	4	85-	A9A6				
U	$46-2$	- 5.17	DCV	U	85-6	9226				
\cup	46-3	--9.11	DCV	U	85-7	FPAB				
U	46-4	--.5.17	DCV	U	85-9	H6HE				
U	$46 \cdots$	$\cdots . .4 .36$	DCV	U	83-12	7020				
\cup	$46 \cdots 6$	-4.89	DCO	U	85-14	H780				
U	46-7	\cdots	DCV	U	$85-15$	P\%AF				
U	46-8	-6.17	DCV	U	85-16	C197				
U	$46 \cdots 9$	$\cdots 0.81$	DCU	U	85-17	1.0w				
U	46-10	0.16	DCU	U	85-18	A9A8				
U	$46 \cdots 11$	0.01	DCU	U	85-19	593 A				
U	$46-12$	--5.17	OCV	1	86-5	H14P				
U	$46-13$	0.64	DCV	U	86-7	\%93A				
U	46-14	0.01	DCU	U	86-10	9266				
U	$46-15$	--4.36	DCU	U	86-11	PSAF				
U	46-16	$\cdots 4.53$	DCU	U.	$90 \cdots 1$	7479				
U	$47 \cdots 1$	4.99	DCU	U	$90 \cdots$	06 HC				
U	$47 \cdots$	0.16	DCV	U	90-3	29%				
U	$47 \cdots$	0.01	DCV	U	90… 4	1. 0 w				
U	47... 4	0.16	DCU	U	$90 \cdots$	9266				
U	47-	4.97	DCV	U	$90 \cdots 6$	PツAF				

ECL.

u	$5-2$	$\cdots 24$	MHz	1	35-13	074F'	U	$42-12$	0433
U	5-3	$\cdots 24$	MHz	\cup	$35 \cdots$	18 H 4	U	43-1	high
U	7-2	$\cdots 24$	M $\mathrm{Hz}_{\text {\% }}$	U	36-1	0000	U	$43 \cdots$	high
U	7… 3	$\cdots 24$	MHz	u	36-3	2e4A	\cup	43-4	0033
U	$10 \cdots 1$	high		U	36-7 4	8F34	U	43-5	10w
U	$10 \cdots 2$	F194		U	36-6	nigh	\cup	43-7	5831
U	10-3	3067		1	36-7	10w	\cup	43-9	high
U	10-4	9UC3		U	36-9 9	P7A2	U	43-10	10w
U	10-5	6870		U	$36-10$	8F34	U	43-11	18H4
\cup	10-6	F194		\cup	36-12	0000	\cup	$43 \cdots 12$	18 H 4
\cup	10-7	3067		U	36-13	FCSF	u	$43 \cdots 13$	A1PP
U	10-10	9 90.3		U	36-14	0000	U	43-14	41PP
U	10-11	P5H6		U	36-15	high	\cup	49… 3	8F3U
U	$10 \cdots 12$	074 F		U	36-17	0000	U	49-7	P7AC
u	$10 \cdots 13$	P5H6		1	36-18	low	U	49-11	low
U	10-14	074 F		U	36-19	high	1	49-15	$\mathrm{FBC7}$
U	10-15	HFOP		U	36-20	high	U	54-1	high
U	$15-1$	high		\cup	36-24	FCSF	U	54-2	AHES
U	$15-2$	0133		U	37-1	0000	U	54-3	AH52
U	15-3	5831		U	37-3	848 H	U	54.-4	2082
U	15-4	8617		\cup	37-4	116F	1	54-5	1941
u	15-5	4528		U	37-6	high	u	54-6	A6AU
U	$15 \cdots 6$	0433		\cup	37-7	low	\cup	54-7	PFGH
U	$15-7$	9831		\cup	37-9	$\mathrm{FBC7}$	U	54-9	FCEF
U	$15-10$	8617		U	37-10	10w	1	54-10	1817
u	15-11	C6AF		U	37-12	0000	\cup	$54 \cdots 11$	2640
U	$15 \cdots 12$	84UP		U	37-13	FCSF	U	54-12	AHSE
\cup	$15-13$	C6AF		\cup	37-14	0000	U	$54 \cdots 13$	10w
\cup	$15-14$	84UP		U	37-15	high	U	54-14	AH5\%
u	$15-15$	6870		U	37-17	0000	\cup	54-15	11468
u	17-1	high		U	37-18	1ow	U	55-1	high
U	17-2	46 A 2		U	37-19	high	U	55- 2	F8C7
u	17-3	11998		\cup	37-20	high	\cup	55-4	A 33 H
u	17-4	8617		\cup	37-24	FCSF	U	55-6	low
u	17-5	low			38-1	0000	U	55-7	low
U	$17 \cdots 6$	10w		U	38.-3	HFOP	\cup	55-9	11468
u	17-7	C6AF		\square	38--4	848H	u	5-10	low
U	17-9	low			38-6	high	U	$55-11$	116 F
u	17-10	10w		U	38--7	low	u	$55-12$	P7AE
u	17-11	g4UP		U	38-9	high	U	55-13	1264
u	17-12	0000		U	38-10	2u82	U	55-15	1.0w
u	17-13	6870		U	38-12	0000	U	67-1	high
u	17-14	0000		\cup	38-13	FCSF	u	67-2	low
U	17-15	10w		U	38-14	0000	U	67-3	low
U	34-1	high		\cup	38-15	high	U	67-5	FCEF
U	34-6	90 AP		U	38-17	0000	U	67-6	06F8
U	34-13	074F		\cup	38-18	low	U	67-7	CP98
U	34-14	5 BP 76		U	38-19	high	\cup	67-9	FCEF
U	34-15	high		u	38-20	high	\cup	67-10	P7A2
U	35-10	$5 P 76$		U	38-24	FCSF	U	$67 \cdots 11$	PGHU
U	35-11	46AE		U	42-9	low	1.	$67-12$	FCSF
U	35-12	1498		U	42-10	high	U	$67 \cdots 13$	10w

（．） $67 \cdots 14$ CUPG
U 67… 593 A
U 71－1 high
U $71 \cdots 2$ P6HU
U $71 \cdots 306 \mathrm{~B}$－
U 71－4 U6F3
U $71 \cdots 5060$
U $71 \cdots 6$ P6HU
U $71 \cdots \quad 0678$
U $71 \cdots \quad 0000$
U $71-10 \quad$ U6F．
$171-1124 F 9$
い $71-12 \quad 1264$
U 71－13 24F9
U71－14 1264
U 71－15 A33H
U 73．．． 1 high
U 73 － 2 以下F
U $73-3 \quad 10 P 8$
U $73 \cdots$－ 4 HH3
U $73 \cdots 5$ H14P
U $73 \cdots 6$ C…FP
$173 \cdots \quad 110 P 8$
U $73-90000$
U $73-10$ 8HH3
$473-111941$

U $73-13 \quad 1941$
U 73－14 A6AU
U $73 \cdots 1 \because 2600$
U $86 \cdots \quad \mathrm{HA} \mathrm{F}^{\circ}$
U 86－3 0000
（1） $86-12 \quad F C 5 F$
（．） $86-14 \quad F C+F$

```
Performance Tests and Troubleshooting - Model 64601A
```

$64601 A$ Timing Controd Board
TRANSTTTON TRTBOR B

NORM MOOE
DATA THRESHOLD HTEH: tol \& ECD
CLOCK THRESHOLD: + +1.
ST-SP-WL THKESHOLD: tt

Locetion of ST/SP/GTART: tp th
Location of QuAL/STOP: tp 12 Location of ClOCK: tp I Location of GROUND: gnol

```
UH :=:CO%7
```

Temporarily connect U13 pins 12 and 14 together

TTL..

U $49 \cdots .4$	$7 \mathrm{P90}$	1191.4	FCom
II 49…	3242	(TOTLZ $=$	07)
U $49-12$	1. ow	U91...	0000
(1) $49 \cdots 13$	H916	(TOTLZ $=$	01)
U 85-1	FCe\%	U $91 \cdots 6$	high
U 85-2	7P9C	U 91..7	FCe"
U 85-3	Cu8A	(TOTLZ	01)
U 85-4	3242	U 91-9	high
U 85-5	FAAC	U 91.10	high
U $85 \cdots$	3244	U $91-11$	high
U 85-7	86 PC	U) $91-12$	FCO
U 85... 9	$2 \mathrm{H80}$	U $91-13$	$\mathrm{FCe} \mathrm{\%}$
U 85-12	$0 \mathrm{Pa4}$	U 91.14	high
U 85-14	HAU0	U 91-15	$\mathrm{FC} \mathrm{\%}$
U 85-15	7FC:3		
(1) 83-16	1632		
U 85-17	1.0w		
U 85-18	935		
U) 85-19	FCe\%		
U $86 \cdots$	$9 \mathrm{C8} 3$		
U 86\% 7	$\mathrm{FCo} \mathrm{\%}$		
(1) $86-10$	324 F		
(1) $86 \cdots 11$	7FC6		
U 90-1	4599		
U $90 \cdots \cdots$	FOHA		
U 90-3	$4 \mathrm{H}_{3} 4$		
U 90-4	1. 0 W		
U 90-5	324%		
U $90 \cdots 6$	7FC:		
U $90-12$	high		
U 90-13	H469		
U 90‥14	FC27		
(TOTLZ $=0001$)			
U $90 \cdots 15$	high		
U 91-1	AOC0		
U $91 \ldots$	C\%PA		
U 91-3	A0C'7		

ECl

U	7-1. 1	high
U	7-2	$3 \% 42$
U	7-3	U96:
U	7--4	3242
U	7...6	4965
U	7...9	3942
U	7-10	U96:
U	$7-12$	3242
U	$7-13$	1996
U	7-1-15	1.1965
U	10… 1	high
U	10-2	P6:3
\cup	10-3	U32H
U	10-4	$8 \mathrm{FH7}$
\cup	10-5	7 CWF
U	10-6	P65A
U	10-7	U32H
U	10-9	0000
U	$10 \cdots 10$	8FH\%
U	$10 \cdots 11$	9H9F
U	10-12	$3 \mathrm{C8P}$
\cup	$10 \cdots 13$	$9 \mathrm{H9P}$
\cup	10-14	$3 \mathrm{C8P}$
4	10-15	4632
\cup	$15-1$	high
U	$15-2$	PPC6
U	15-3	H9PU
U	$15 \cdots 4$	4243
U	$15-5$	8004
\cup	$15 \cdots 6$	PPC6
U	15-7	H9PU
4	$15-10$	4243
U	$15-11$	809%
U	$15 \cdots 12$	1F3U
U	$15-13$	8U9\%
U	$15 \cdots 14$	1 F 34
U	$15-15$	7 CEP
U	17-1	high

U	17\％	PAl2
U	$17 \cdots$	2135
U	17－4	4243
U	$17 \ldots$	1． 0 W
\cup	$17 \cdots 6$	10w
U	17－7	849：
U	$17-9$	1 ow
4	$17-10$	low
\checkmark	$17-11$	1530
4	17－12	0002
U	$17-13$	7 CSF
1.	17－14	0002
U	$17-15$	10w
U	$34 \cdots 6$	H19F
U	34－7	1 ACO
U	34．．9	H19F
\cup	$34-13$	$3 \mathrm{C8P}$
U	34－14	100A9
U	34－1	FC\％\％
1	$3 \mathrm{yc}-10$	10049
U	$35-11$	PAl？
4	$35-12$	2135
\cup	$35-13$	3 CBP
U	$35-14$	H19F
U	35－15	1 ACO
U	36－1	0000
U	36－3	CC\％
\cup	36－4	7ア9С
U	36－6	high
4	36－7	Iow
U	36－9	3242
U	36－10	7P90
U	$36-12$	0000
U	36－13	1.1960
U	$36-14$	0000
U	36－16	high
U	36－17	0000
U	$36-18$	Iow
U	36－19	high
U	36－70	high
U	$36-24$	U960
U	$37-1$	0000
U	37－3	A38H
\cup	37－4	1.13 F
U	37－6	high
\cup	37－7	low
U	37－8	Cいま\％
	37－9	4916
U	37－10	J． 0 w
	$37-12$	0000
U	$37-13$	1960
U	$37-14$	0000
U	37－1世	high
	$37 \cdots 17$	0000

	37－18	low
	$37 \cdots 19$	high
U	37－900	high
U	$37 \cdots 4$	19960
J	38－	0000
J	39－3	4632
U	38－4	A 38 H
U	38－6	high
U	$38 \cdots$	10w
U	38－9	high
U	$38 \cdots 10$	PWu0
U	$38-12$	0000
U	38－13	U960
U	38－14	0000
U	38－15	high
U	38－17	0000
U	38－18	10w
U	$38-19$	high
4	$38-20$	high
U	38－24	U96C
U	$42-10$	FCe\％
U	$42 \cdots-11$	1935
U	$42-12$	PPC6
U	$42-13$	H！9F
U	$42-14$	CAFI
U	$42 \cdots 1 \%$	71P6
U	$43-1$	high
U	$43 \cdots$	$\cdots \mathrm{Ca7}$
U	$43-3$	1936
1	$43 \cdots 4$	PPC6
U	43－5	low
U	$43 \cdots 6$	H19F
1	$43-7$	H9PU
1	$43 \cdots 9$	FCo\％
1	$43 \cdots 10$	l． 0 w
U	$43 \cdots 11$	1 ACC
U	$43-12$	1 ACC
U	$43-13$	H19F
1.	$43-14$	H19F－
\square	$43-15$	0000
1.	$49 \cdots$	7P9世
\square	49－7	3242
\checkmark	$49-11$	10 W
U	49－16	19916
\cup	54－1	High
U	$\cdots 4 \cdots$	8р72
U	54－3	日ค72
U	54… 4	PGu0
U	54．－5	3532
U	74－6	PUH8
\cup	54－7	H6\％\％
	\％4‥9	1.196 C
	$\cdots 4-10$	7643
U	$54-11$	H958

U	54－12	8P\％e
，	W4 -13	10w
1	：74－14	8P\％\％
U	ツ迷－15	465
U	以＂：－	high
U	\％	H916
0	以－4	5691
U	55－6	0580
U	以－6	1 ow
U	W\％－7	low
U	以5．．．9	456
U	\％ㅍ․ 10	10w
\square	W－1． 1	U13P
U	W－12	3242
U	65－13	47 A 0
U	\％以－14	CAFI
U	$5 \mathrm{5}-15$	low
1.	$67-1$	high
4	$67-2$	Jow
1.1	$67-3$	low
U	$67 \ldots 4$	71 Pb
U	6% \％	U960
\cup	$67 \ldots$	0UC\％
\cup	$67 \cdots$	1965
U	$67-9$	U960
U	$67-10$	3242
U	$67 \cdots 11$	4218
U	$67 \cdots 12$	1196 C
U	67－13	1． 0 w
U	$67 \cdots 14$	8934
U	$67-15$	FC？\％
U	71.	high
U	$71-2$	4216
U	$71-3$	$0 \cup 108$
U	$71-4$	A968
U	$71-\mathrm{F}$	H7\％8
U	$71-6$	4218
U	$71 . .7$	0uce
U	$71-9$	0000
U	$71-10$	A968
U	$71-11$	8041
U	71－12	4\％A0
U	$71-13$	8U41
U	71.14	47 AO
U	$71-1 \%$	5691
U	73－1	high
U	$73-2$	2667
U	73－3	P677
U	73－4	HHEU
U	73－－	$5 \mathrm{C8}$
U	$73-6$	2667
U	$73 \cdots$	P677
U	$73-9$	0000
U）	$73 \cdots 10$	HH8U

Performance Tests and Troubleshooting - Model 64601A
U 73-11 353e
$073-12 \quad$ PUHB
U 73-13 3532
U) 73-14 PUH8
$473-15 \quad H 958$
(1) 86-2 5 CB

U 86-3 0000
$1086-12 \quad 1960$
$\begin{array}{lll}U & 86-14 & 4963\end{array}$
$64601 A$ Timing Control Board
OTSPLAY ORTVER
NORM MODF: UH =9ezF

DATA THRESHOLD HTGH: t tI
CLOCK THRESHOL O: t+I
ST-GP ORL THRESHOLD: $t+1$

```
L.ocation of ST/SP/START: to 10
Location of QuAl./STOP: tp 12
Location of CLOCK: tp ll
Location of GROUND: gnd
```

neg. edge pos, edge pos, edge

TTL.

U	$56 \cdots 1$	high		58-8	923%	U	$62 . .9$	P6UF
U	- 6	high		TOTLz $=$	2768)	U	$62 \cdots 10$	high
U	56-3	0 CO 2	\cup	58-10	F99\%	\cup	$62-11$	PGUF
1	\%6-4	U204	U	58-11	6351	\cup	$62 \cdots 12$	4319
U	56-6	62% A	U	$58-12$	A64\%	U	$62-14$	4319
U	$56-6$	6731	U	\%8-13	1 ABH	U	$62 \cdots 1 \%$	1 l W
U	W6-9	9\%3F	U	58-1. 14	HCHC	U	$63-1$	4319
	rorlz $=$	148)	U	$58-16$	6820	U	$63 \cdots$	0000
\square	56-10	1.0W	U	$58-16$	6 P 3 C	(TOTLZ $=$ OFLO		
U	6-6-11	3 HP	U	$58-17$	94 AF	U	$63 \cdots 4$	HI25
U	\%6-12	Fa 4 C	U	59-1	416 C	U	63 - 5	4319
U	$96-13$	C.443	U	\%9-7	09AP	U	$63 \cdots 6$	H125
U	56‥14	1009	U	$59-3$	2UF\%	U	63-8	high
11	$56-15$	4319	U	\%9-4	F19H	U	$63-9$	low
U	\%\%-1	416 C	U	59	9UPC	U	$63-10$	high
U	W7-2	09AP		$59 \cdots 6$	2c32	4	$63-11$	0000
U	57	こ以	\cup	W9-7	218 A	(TOTL \% =OFLO)		
U	\%7-4	F19H		\%9-8	$923 F$	U	$63-12$	high
U	57-5	9UPC		TOTLZ $=$	768)	U	$63-13$	Jow
U	67-6	2032		59-10	4 FFAH		$76 \cdots 1$	923F-
U	57-7	39 Cz	U	\%9…11	C883	(TOTLZ $=32764$)		
U	\%7-8	923F	U	59-12	A545	U	$76 \cdots$	$39 \mathrm{C2}$
	TOTL $2=3$	768)	U	59\%13	1 ABH	U	$76 \cdots 3$	9387
U	$\because 7 \cdots 10$	2656		59-14	HCHC	U	$76 \cdots 4$	2490
U	57-11	93 P 7	U	59-15	6820	U	$76 \cdots 5$	W51
U	W7-12	AW45		59-16	$6{ }^{\circ} 3 \mathrm{C}$	U	$76 \cdots 6$	218A
U	$57+13$	1 ABH		$59-17$	94 AF	U	76-7	C883
U	\%7‥14	HCHC		$62 \cdots 1$	1. 0 W	1	$76 \cdots 9$	AABF
1	57-15	682u		$62-2$	$9 \% 3 F$	U	76-10	2UCH
U	\%7-16	6 P 3 C		TOTLZ	(5\%)	U	76-11	Ce5\%
U	$47 \% 17$	94 AF		$6 \%-3$	1. 0 w	U	$76-12$	C076
U	\%8-1	416 C		62.	$923 F$	U	$76-13$	AHCC
U	58-2	09AP		OTLZ $=6$	W\%)	U	$76 \cdots 14$	9660
U	\%8-3	2 WC		$62 \cdots$	923F	U	$76-1 \%$	923F
U	58-4	Fl 9 H		OTL $\mathrm{C}=6$	5 5		TOTLZ $=$	764)
U	W8-	9UPC		62.	4319	\cup	$77 \cdots 1$	Fl 9 H
U	\%8-6	2 C 32		$62 \cdots 7$	923%	U	$7 \% \ldots$	2 SC
U	58-7	2490		OTLZ	(52)	U	77×3	09AP

Performance Tests and Troubleshooting－Model 64601A

U	$77 \ldots 4$	416 C
U	7\％	2C3e
U	$77 \ldots$－	94AF\％
U	77	6 P C
U	7\％	1． 0 W
U	77.	4 HCC
U	$77 \ldots 10$	5 CbO
U	$77 \cdots 11$	AmeF
U	77－1．	OUCH
U	$77-16$	C60
U	$77-16$	C0\％
U	$77-17$	high
U	77－18	J．ow
U	77.19	99%
\cup	$9 \% 0$	92 yb
（TOTLZ $=0018$ ）		
U	77721	CUPC
U	$77-\cdots$	hagh
\cup	$81 \cdots 1$	low
\cup	$81 \cdots$	10w
U	81－3	WC60
U	81－4	10w
1	81．	1．0w
U	81 -6	C0\％8
U	81．－7	1．0w
U	81－9	low
1.	\％1－10	1．0w
4	31－11	low
\checkmark	81－12	1．0w
U	81－13	low
\cup	81－14	high
U	$81-1 \%$	1 ow
U	8 8．．． 1	0000
（TOTLZ $=6$ \％\％\％）		
	$82 \cdots$	F24C
U	82－3	93 F
（TOTLZ $=32768$ ）		
U	82－－4	0000
（TOTL $2=6$ wwo）		
U	92－	0000
（TOTLZ $=655 \%$ ）		
U	82－6	923F
（TOTL $=6=650$ ）		
U	$82 \cdots$	H125
1	82－9	high
U	$82 \cdots 10$	4.319
U	82－11	high
U	82－12	low
11	82．．．13	low
U	$85 \cdots 1$	high
\square	85－2	Low
U	85…	U204
U	85－4	10w
U	85－5	$0 \mathrm{CO2}$

	8w－6	high
U	8玉－7	C\％\％
U	85－8	10 W
U	8玉－－9	4HCC
\checkmark	$8 \mathrm{EF-12}$	AABF
U	$85-14$	C883
U	8w－15	10w
U	85－16	6351
\cup	85．．．17	10W
U	8＂－18	$93 \mathrm{~F}^{7}$
U	85－1． 19	high
U	88－1．	low
U	88－2	high
U	88－3	0000
（ToT1z＝99213）		
U	88… 4	0000
（TOTLZ $=98537$ ）		
U	38…	923F
（TOTL Z＝OFLO）		
U	88－ 6	0000
（TOTLZ $=99013$ ）		
U	80－． 8	1．0w
\cup	88－7	high
U	88－10	low
1.	88－11	high
U	88－12	high
U	88－13	low
U	$90 \cdots 1$	2 H 31
U	$90 \cdots 2$	A279
U	90－3	3952
U	90－－4	1 l W
U	90－－	high
1.	$90-6$	1．0w
U	$90 \cdots$	9925
U	$90 \cdots$	265
U	90－10	F995
U	90－11	AFAH
	90－12	high
\cup	90－13	0840
	$90 \cdots 14$	923 F
（TOTLZ $=0.33$ ）		
	90－15	high
	91.	ツA\％8
	91.2	7UP0
U	$91 \cdots 3$	OP2F
	$91-4$	923%
（TOTLZ $=$ OFIOO）		
	91－	0000
（TOTLZ $=99213$ ）		
	$91-6$	high
	91．－7	$923 F$
（TOTLZ $=0133$ ）		
	91.	$923 F$
TOTLZ $=3$ 3\％ 764 ）		

$(\operatorname{TOTLZ}=0048)$		
	$91-11$	93 F
（TOTLZ $=6 \%$ \％2）		
U	91－12	high
	91.13	high
	91－14	$923 F$
（TOTLZ $\mathrm{Z}=0040$ ）		
	91.15	high
	92．．．1	nigh
	9\％－2	CCHU
	$92 \cdots$	9307
	92－4	5351
	9\％－	Fe6\％
	92－6	C．883
\cup	9\％－7	248 F
	9\％－9	9237
（ YOTLz $=0040$ ）		
U	$9 \%-10$	Cu28
U	$92 \cdots 11$	AABF
U	92－12	HICA
	$92 \cdots 13$	4 HCC
U	$92 \cdots 14$	C2\％\％
U	$92 \cdots$	$6 \mathrm{CU1}$
U	$93 \cdots 1$	high
4	93－2	82FU
\cup	93．．．3	0692
1	93－4	U204
1.	93－．	266%
\square	93－6	6731
U	93－7	C 48 F
	93－9 9	923F
（TOTLZ $=0040$ ）		
	93－10	いいころ
	$93-11$	WZHF
	93－12	H193
	$93-13$	C44\％
	93－14	1009
1.	93－15	6 CW 4
U	94－1	high
U	$94 \cdots 2$	$923 F$
（TOTL $=6$ \％		
U	94－3	CCHU
U	94－ 4	F26\％
U	$94 . \cdots$	$\% 48 \mathrm{~F}$
\checkmark	94…6	Cu28
\cup	94－7．7	high
U	94… 9	4319
U	$94-10$	high
U	94－11	Fl 9 H
\cup	94－12	ख以\％
	94－13	09 AP
\cup	94－14	416 C
1	$94 \cdots 1$	HPU4

U $95-1$ nigh
U9世… 923 （TOTLZ $=6$ W\％）
U 953 HICA
U 9ت－ 4 6CUI
U $95 \cdots$ 曰2HU
U $9 \%-6$ 26
（） $95-7 \mathrm{high}$
U95－．． 94319
U $9 \%-10$ HFUA
い $95 \cdots 116 \mathrm{~F}=$
U $9:-1294 \mathrm{AF}$
U $95-13 \quad 203 \%$
U $95-14$ 9UPC
U 9\％－15 p8uF
U $96 \cdots 1$ high
U 96… 923F
（TOTLZ $=6$ Wo）
U 96－3 348 P
U 96－4 いい22
U $96 \cdots \quad \mathrm{H}=\mathrm{F}$
U $96 \cdots 660.64$
U $96 \cdots 7 \mathrm{migh}$
U $96 \cdots 94319$
U 96－10 F8UF
U $96-11$ А 545
U $96-12 \quad 1 \mathrm{ABH}$
U $96-13$ HCHC
$1.96 \cdots 14 \quad 68 \% \mathrm{U}$
U $96-1 \% 89 \mathrm{HF}$

Performance Tests and Troubleshooting－Model 64601A

```
64601A Timing Control Board
RATES / TNTERUAL. A 相処
```

NORM MÖOE UH : W FOB6

DATA THRESHOLD HTCH：tol \＆E世I
CLOCK THRESHOLD：tol
STMGF－QL．THRESHOLD：t T．

TTI．．

U 28－1	high	U $66 \cdots 7$	F0．36
U $28 \cdots$	4999	（．） $86-10$	U7F0
U $28-3$	H18U	（1） $86-11$	EFA
U 28－4	CCUF	U $90-1$	2F7F
U $28-5$	1590	（1） $90 \cdots 2$	6914
（1） $28 \cdots$	3 P 42	U 90－3	7466
（1） $2 \mathrm{E}-7$	6 FCU	U $90 \ldots 4$	1． 0 W
U 28－9	4A31	U $90 \cdots$	U7F0
U 28－9	OHFA	U $90 \cdots 6$	SFAE
U 28－11	F0X6	（1）90－13	C3A7
U $28 \cdots 12$	AUC：－	U 90‥14	F036
U 28－13	WP4A	（TOTLZ $=0$	$0 \mathrm{t})$
U $28 \cdots 14$	U10\％	U $90 \cdots 15$	high
U）28－1\％	3030	U $91-1$	6309
U $28 \cdots 16$	3078	U 91－2	884H
U 28－1\％	WFH	U $91 \ldots 3$	947H
$428 \cdots$	0 POP	U 91．．． 4	F036
U 28－19	10 W	（TOTLZ $=0$	0\％）
U．1） $49 \cdots 4$	2904	U $91 \cdots$	0000
U $49 \cdots$	U＇7F0	（ToTLz $=0$	02）
U $49 \cdots 12$	10w	U）91－6	high
U $49 \cdots 13$	PH4F	U 91－7	$F 036$
U 8世．．． 1	F036	（TOTLZ $=0$	$01)$
U 8以－2	2904	U 91－9	high
U） $85 \cdots$	0 POP	U 91－10	high
U）8\％－4	U7F0	（．）91－11	high
U 85．．．	USPH	U 91－12	F036
U 85－6	Iow	U 91－13	F036
U ¢\％－7	U10\％	$1191 \cdots 14$	high
U 8\％－9	WP4A	U 91－1\％	F036
U $85 \cdots$	4 A 31		
U） $85-14$	6 FCu		
U $85 \cdots$	5FA		
（1）85－16	CCUS		
U 85－17	10w		
（1） $96-18$	H18U		
U 8\％－19	F036		
（1）86－\％	329 A		

ECl

U	7×1	high
U	$7 \cdots$	4987
U	7－3	89H1
U	7－7． 4	49 P 7
U	7．．．．	89\％1
U	$7 \cdots 6$	49P7
\cup	77	89H1
U	7－．． 9	49P7
U	$7 \cdots 10$	89H1
U	$7-12$	49 P 7
U	$7-13$	89H1
U	7×16	89H1
U	10－1	high
U	$10 \cdots$	6495
U	$10 \cdots 3$	1F以\％
U	$10 \cdots 4$	41J8C
4	10－5	141 P
U	10－6	$64 p 5$
U	10－7	15 F
U	$10 \cdots 9$	0000
U	$10 \cdots 10$	4 4 8 C
U	10－11	63 P 3
U	$10-12$	14 CB
U	$10-13$	$63 P 3$
4	$10 \cdots 14$	U4C8
U	$10-15$	CP7A
U	$11 \cdots 1$	high
U	$11-2$	3 AUP
U	$11 \cdots 3$	9H7U
U	$11 \cdots 4$	2 AC 4
U	$11 \cdots$	7ツ以\％
U	$11 \cdots 6$	3 AUP
U	$11 \cdots$	9H7U
4	$11-9$	0000
U	$11 \cdots 10$	$2 \mathrm{AC4}$
U	$11 \cdots 11$	ツ\％7
\cup	$11-12$	$9 \mathrm{P9H}$
\cup	$11-13$	C以77

，	$11 \cdots 14$	$9 \mathrm{P9H}$
U	$11 \cdots 1 \%$	2 CaF
U	$13 \cdots 1$	high
\square	$13 \cdots$	8 HWH
U	$13-3$	4 H 6 C
U	13－4	2 AC 4
U	$13 \cdots$	1． 0 W
U	$13 \cdots 6$	Tow
4	$13 \cdots 7$	Cら\％\％
U	13－9	I OW
4	$13-10$	U7F0
U	$13 \cdots 11$	$9 \mathrm{P9H}$
U	$13-12$	0000
U	$13-13$	$2 \mathrm{C4}$
1.	13－14	high
U	$13 \cdots 1 \%$	10w
U	27… 1	high
U	27－2	high
U	\％＂－4	3 AUP
U	27－	low
U	37－7	9H\％U
U	こワ－9	high
U	2\％－10	low
\cup	27－11	COH
4	$27-12$	C9H3
U	$27-13$	79 F
U	$27-14$	$998:$
U	$27-15$	0000
U	$34 \cdots 1$	high
U	$34-13$	114 CB
U	34－14	348P
U	$34-15$	F036
U	$35 \cdots 1$	high
U	$33 \cdots$	C9H3
U	$35 \cdots 4$	348%
U	$35 \cdots$	8H：3
U	35－6	4 HCO
U	$35 \cdots$	$114 C 8$
U	36－1	0000
U	$36 \cdots 3$	9FF8
U	36－6	high
U	36－7	low
	36－9	49P\％
	36－12	0000
	$36-13$	3706
	36－14	0000
U	36－15	high
	36－17	0000
U	$36 \cdots 18$	1． W
	$36-19$	high
U	$36-20$	high
U	$36-24$	3746
\cup	37－1	0000
	37－3	$\cdots 841$

U	$37 \ldots 4$	GUA9
U	$37 \cdots$	hi．gh
U	$37-7$	1． 0 w
U	$37 \ldots$	37 AC
U	37－9	PH4＊
\square	37－10	$117 \% 0$
U	37－12	0000
U	37－13	3706
U	37－14	0000
U	37.15	high
U	37－17	0000
U	37－18	low
\cup	$37-19$	high
U	37×0	nigh
U	$37-24$	3706
U	$30 \cdots 1$	0000
U	$38-3$	CP7A
U	38－－4	FF FH
U	39．．．6	high
4	38．．．7	low
1.	38－9	high
\square	38－10	9F01
\cup	38－12	0000
\checkmark	38－13	3706
\cup	38－14	0000
U	38－15	high
\cup	38－17	0000
U	$38 \cdots 18$	Jow
U	38－19	high
U	38－20	high
U	38－24	3706
4	$4 \% \mathrm{C}$	high
U	42 \％	F036
U	$42 \cdots 4$	high
\checkmark	$42-6$	3AUP
U	$49 \cdots 7$	U7F0
U	$49 \cdots 11$	1． 0 W
U	$49 \cdots 15$	PHAP
U	$54-1$	high
U	\％4－2	17746
U	W4－3	F746
1.1	$\cdots 4.7$	$9 \mathrm{FO1}$
U	54－5	1044
U	$\cdots 4 \cdots 6$	6759
U	54－7	6058
	\％4－9	3746
U	54－10	5667
	W4－11	1601
U	54.12	F746
	W4－13	1．04
U	E4－14	F746
1	54－15	0770
U	55－1	high
	\％	PHAP

U	$55 \cdots 4$	7501
U	\％＂－ 6	10w
1	56－7	1．0w
1	6－－9	0770
U	$55-10$	1．0w
U	\％ $5 \cdots 11$	WUA9
1	Wi－1\％	U7F0
U	\％ㅍ－13	6305
1	\％6－16	10w
4	$67 \cdots 1$	high
1	$6 \% \cdots$	U7F0
U	67－3	10w
U	67－5	3706
4	$67 \cdots$	WECC
U	67	3746
U	6% \％ 9	3706
U	$6 \% \cdots 10$	U7F0
U	$67-11$	2COH
U	$67-12$	3746
4	$67 \cdots 13$	Jow
U	$6 \%-14$	PCIC
U	$71 \cdots 1$	high
U	$71-2$	2 CzH
U	$71 \cdots 3$	CWCC
U	$71-4$	1 PUC
1.	$71-5$	1601
U	$71-6$	2 COH
U	$71 \ldots 7$	C6C
U	$71-9$	0000
U	$71-10$	IPUC
U	$71 \cdots 11$	0U7H
U	$71-12$	6305
\cup	$71-13$	OU7H
U	71.14	6305
U	$71-16$	75015
U	$73 \cdots 1$	high
U	73	PFC\％
U	$73 \cdots$	1250
U	73－4	A905
U	$73 \cdots$	329 A
U	$73-6$	PFC\％
U	73－7	1250
U	73－9	0000
U	$73-10$	A905
4	$73-11$	10 A 4
U	$73 \cdots 12$	6 659
U	$73-13$	10 AA
U	$73-14$	6 F 59
U	$73-15$	1601
U	36－2	329 A
U	66…	0000
1.1	$86-1 \%$	3706
	$86 \cdots 13$	F． 036

G4601A Timing Control Board
LESS THAN INTERVAL.. A \# \# 11

NORM MODE

$$
U H=593 \mathrm{~A}
$$

DATA THRESHOLD HTGH: ttl \& EET
CIOCK THRESHOLD: ttI
ST- SP - QL THRESHOLD: tol.

Location of ST/SP/START: tp ie	neg. edge
Location of QUAL/STOF: tp ig	pos. edge
Location of Clock: tp 11	pos. edge

TTL

U 28-1	high	U 3 - -5	4.98 DCV	U 90.	PSAF
U $28 \cdots$	low	U 32-6	0.17 DCV	U $90 \cdots 14$	593A
U 28.. 3	A9A8	U 32-7	0.01 DCV	1 90-15	high
$\cup 28-4$	C197	U $32-8$	4.98 DCV	(1) $91 \ldots 1$	0583
U28-5	10w	U $32-9$	0.16 DCV	u 91-2	cuso
U $28-6$	low	4 32-10	0.01 DCV	(1) $91-3$	$05 C 0$
U28-7	H780	U $32-11$	4.98 DCV	U91-4	593A
U 28-8	7020	$\cup 32-12$	0.91 DCV	(Totlz $=0$	07)
U 28-9	10w	43 y -13	0.01 dDCV	U91. 5	0000
$428-11$	993 A	$43 \mathrm{C}-14$	0.03 DDCV	(TOTLZ $=0$	(02)
$428-12$	high	U 49.. 4	U7F2	U91-6	high
U 28-13	H6H5	149 49	P7A2	U $91-7$	993 A
U 28-14	FFAS	U 49-12	1.0w	(TOTLZ $=0$	01)
U 28-15	low	U 49-13	F8C'7	$491 \cdots 12$	593 A
U 28-16	high	U 85-1	593 A	U 91-13	593 A
U 28-17	A9A6	U 85...2	U7F2	U 91-15	593 A
U 28-18	日eјp	U 85-3	82ep		
(1) 28-19	1. 0 w	485	P7AZ		
$431-1$	$-4.53 \mathrm{DCO}$	485	A9A6		
U31-2	$\cdots .17 \mathrm{DCO}$	U 85-6	9225		
U $31-3$	$\cdots \mathrm{F} .1 \mathrm{DCU}$	U $85 \cdots$	FPAB		
$\cup 31-4$	--5.17 nCV	485	H6H5		
U $31-5$	--4.37 DCV	U 85-12	7020		
$031-6$	- -4.94 DCV	$485-14$	H780		
U31-7	--5.17 DCV	$485-15$	P5AF		
U $31-8$	$\cdots-9.17 \mathrm{DCV}$	(1) 85-16	C197		
U 31-9	-0.83 DCV	U 85-17	1.0w		
4 31-10	0.16 DCV	U 85-18	A9A8		
$431-11$	0.01 DCV	U 85-19	593A		
U $31-12$	$-5.17 \mathrm{DCV}$	U 86-5	AAC3		
(1) 31-13	0.64 DCO	U 86-7	593 A		
U 31-14	0.01 mCV	U 86-10	9266		
U 31-15	$-4.37 \mathrm{DCO}$	(1) $86 \cdots 11$	PSAF		
U 31-16	-4.52 DCU	$490 \cdots 1$	7479		
U 32-1	4.98 DCV	U 90-2	06 HC		
U32-2	0.17 DCV	U90-3	292H		
U 3\%-3	0.01 DCO	U $90 \cdots 4$	1.0w		
U32-4	0.17 DCV	U90..	9266		

	27.14	2074
U	27－16	0000
U	$34 \cdots 1$	high
U	$34 \cdots 2$	フアブャ
U	34－6	0915
U	$34-13$	16 P 4
4	34－14	AUHP
U	$36 \cdots 1$	0000
4	$36-3$	AWAF＇
U	$36 \cdots 6$	Migh
U	36－7	low
U	$36 \cdots 9$	PワAC
U	$36-12$	0000
U	36－13	FCFF
U	36－14	0000
U	$36-15$	figh
U	$36 \cdots 17$	0000
U	$36-18$	low
L	36－19	high
U	$36-20$	high
U	$36 \cdots 4$	FCGF
－	$37 \cdots 1$	0000
U	$37 \cdots$	1436
U	$3 \% \ldots 4$	HPU6
U	$37 \cdots 6$	high
4	$37 \ldots$	low
U	37\％	F80\％
1	$37 \cdots 10$	0000
U	$37 \cdots 12$	0000
U	$37-13$	FCWF
1	37－14	0000
1.	37×19	high
U	37×17	0000
U	$37-18$	low
U	$37 \cdots 19$	high
U	$37-20$	high
4	$37-24$	FCEF
U	38－1	0000
U	38－3	H4， $\boldsymbol{H}^{\text {a }}$
U	38－4	$1{ }^{1436}$
U	38－6	high
U	38－7	1． 0 w
U	38－9	high
U	38－10	2u8\％
U	38－12	0000
U	38－13	FCWF
U	38－14	0000
	38－19	high
U	38－17	0000
\cup	38－18	10w
	38－19	high
	$38 \cdots 0$	high

U	$38 \cdots 2$	FCWF
U	$42 \cdots 1$	high
U	$42-2$	W9\％A
U	42… 4	993 A
U	$4 \%-5$	AC7U
U	$42 \cdots 6$	2 A 42
U	49－7	Р7ヶ2\％
U	$49 \cdots 11$	low
U	$49-15$	F80\％
1	ツイ＊－1	high
1.	$54-2$	P8HH
4	64…	P8HH
4	54… 4	2 Q
U	\％4…	1PUP
U	W4…6	以\％0
U	54… 7	P073
1.	6品…9	FCWF
U	W4－10	1242
U	54…11	F71u
U	W4－1\％	P8HH
\cup	\％4－13	1． 0 w
U	W4…14	PBHH
U	$54 \cdots 15$	C1P\％
U	5\％－1	high
U	以－2	1 F 807
U	W以－4	009A
U	W\％－5	$3 \cup 34$
U	\％	10w
U	W\％－7	low
	W\％$\%$	ClP\％
	$5 \mathrm{~F}-10$	low
	6\％－11	HPU6
U	$5-12$	Р\％A2
	W5－13	CP64
1.1	以＂－15	1． 0 W
	$67 \cdots 1$	high
	67－2	low
II	67．．．3	Iow
	$67-5$	FCW\％
4	$67 \cdots-6$	3603
U	6%	CP98
	67－9	FCGF
	$67 \cdots 10$	P7A2
	$67-11$	8628
	$67-12$	FCGF
	$67-13$	1． 0 W
	67－14	HUl？
	$67-15$	993 A
	$71-1$	hagh
	$71 . . .2$	8628
	$71 \cdots$	3603
	$71 . .4$	PPUP

U71-5 『71U
U 71- $6 \quad 0628$
U 71-7 3603
U $71 \cdots 80000$
U $71-10$ PPUP
U $71 \cdots 11 \quad 2847$
U 71-12 CP64
$\begin{array}{llll}4 & 71 & -13 & 2847\end{array}$
(1) 71-14 CP64

U $71-15009 \mathrm{~A}$
u) 73-1 high

U $73 \cdots 2880$
U $73-3$ PP17
U $73-4$ GeAF
$1173-5$ AACB

| 1 |
| :--- | :--- | :--- | :--- | $73-6830$

U 73-7 PPi7
1 73-9 0000
U $73-10$ 82AF
U $73-11$ TPUP
U $73-12 \quad 2570$
U 73-13 IPUP
$\begin{array}{lll}4 & 73-14 & 2570\end{array}$
$\begin{array}{lll}0 & 73-15 & \text { P71U }\end{array}$
U $36-2$ AACB
U $86 \cdots 30000$
U 86-12 FCEF
(1) $86 \cdots 14$ FC1F

```
64601A Timing Control Board
TRANSITTON TRTCGER A #lD
```

NORM MODE	$V H=F C 27$
DATA THRESHOLD HTGH: tti \& Eel	
CLOCK THRESHOLD : tel	
ST-SP-QL THRESHOLD: tt	
Location of ST/SP/ETART: tp le	neg, edge
Location of QuAL/stop: tp le	pos. edge
Location of Clock: tp it	pos. edge
Locotion of GROUNO: gnd	

$\begin{aligned} & \text { U } 91 \ldots=5 \\ & \text { crotzz }= \end{aligned}$	00
4 91-6	high
U 91-7	FCe7
(TOTL	01)
U 91-9	high
$491-10$	ig
U) 91-11	high
U91-12	FCe7
$491-13$	FCE7
U 91-14	
91	

ECL

u	$7-$	
U	$7-2$	3242
U	7 -	4965
U	7-4	3242
U	$7 \cdots$	U965
U	7-6	3242
\cup	7-7	U965
U	7-9 9	3242
U	7-10	1965
1.	7-12	3242
U	7-13	4965
U	7-15	0965
U	$10-$	high
U	10-2	1-50C
U	10-3	P285
U	10-1 4	8403
U	10-5	3HUF:
\cup	10-	1750 C
\cup	10-7	P285
\checkmark	10-9	0000
\cup	10-10	8403
4	10-11	14
U	10-12	79 CC
U	10-13	1904
\checkmark	10-14	79 CC
U	10-15	6728
U	11-1	high
1.	$11-2$	9433
\cup	11-3	P4AH
U	11-4	HFPS
\cup	11-5	F2PS
u	$11 \cdots 6$	9433
U	11-7	P4AH
1	11-9	0000
U	11-10	HFPD
J	11-11	FOFS
4	11-12	ccog
\rfloor	11	5

u	11-14	cc9\%	U	36-19	nigh	(1) 54-10	0709
\cup	11-15	288A	U	36-20	high	U 54-11	F165
\cup	$13 \cdots 1$	high	U	36-24	4960	$454-12$	F6F3
\cup	$13-2$	9905	\cup	37-1	0000	U) 54-13	low
\cup	13-3	52e2	U	37-3	10CA	U 54-14	FSF3
U	13-4	HFP2	U	37-4	28FH	U -54-15	0 HP 4
\cup	$13-5$	low	U	37-6	high	4 55-1	high
u	13-6	low	U	37-7	low	(1) 55-2	19816
\cup	13-7	Fors	U	37-8	9 PAH	U 55.	Feps
\cup	13-9	low	U	37-9	H916	U $55-5$	FUE2
U	$13-10$	low	U	37-10	0000	U55-6	low
\checkmark	13-11	CC97	U	37-12	0000	U $55-7$	10 w
\cup	$13-12$	0002	U	37-13	4960	$455-9$	0HPA
\cup	$13-13$	288A	U	37-14	0000	$455-10$	10w
\checkmark	$13 \cdots 14$	high	U	37-15	high	U 55-11	28 FH
\cup	13-15	low	4	37-17	0000	U $55-12$	3242
u	27-1	high	U	37-18	10w	U $555 \cdots 13$	3220
\cup	27-	high	U	37-19	high	$\cup 55-14$	7680
\checkmark	27-3	58 Cb	U	37-20	high	U 55-15	1.0w
\cup	27-4	9433	U	$37-24$	11960	U 67-1	high
u	27-5	10w	\cup	38-1	0000	U 67-2	low
\cup	27-6	POCP	U	38-3	6728	U 67-3	10w
\cup	27-7	P4AH	U	38-4	10CA	U 67-4	CHAF
1.	27-9	high	U	38-6	high	U 67-5	196C
\cup	27-10	10w	u	38-7	1ow	U $67-6$	09C7
u	27-11	2099	u	33-9	high	U 67-7	19965
\cup	27-12	$2 \mathrm{C9} 9$	U	38-10	Psu0	U67-9	U960
u	27-13	POCP	U	38-12	0000	(1) $67-10$	3242
u	27-14	POCP	U	38-13	U96C	U $67 \cdots 11$	4F06
\cup	34-1	high	U	38-14	0000	U $67-12$	1.196 C
u	34-2	POCP	u	38-15	high	U 67-13	10w
U	34-3	2C99	U	38-17	0000	U $67 \cdots 14$	8521
\cup	34-4	POCP	U	38-18	1ow	U 67-15	high
U	34ㅍ13	79 CC	U	38-19	high	U $71 \cdots 1$	high
\cup	34-14	C29F	U	38-20	high	U71-2	4P06
\cup	35-1	high	u	38-24	1960	U $71-3$	0907
4	35-2	2099	u	42-1	high	U 71-4	AAbU
u	35-3	POCP	U	42-2	high	U71-5	F165
\cup	35-4	C29F	U	42-3	Fuse	U 71-6	4P06
\checkmark	35--5	9905	U	42--4	FCご	U 71-7	0907
4	35-6	5222	\cup	42-5	58 c 6	U 71-9	0000
U	35-7	79 CC	\cup	42-6	9433	U 71-10	AAGU
U	36-1 1	0000	\cup	42-7	P0CP	U 71-11	8PF?
U	36.. 3	PC82	U	49-7	3242	U 71-12	3220
U	36-4	71P4	U	49-11	10w	U 71-13	8PF?
U	36-16	high	\cup	49-15	H916	U 71-14	3220
\cup	36-7	low	\checkmark	54-1	high	U 71-15	Feps
U	36-9	3242	u	54-2	F6F3	U $73 \cdots 1$	nigh
\cup	36-12	0000	\checkmark	54-3	F6F3	U73-2	2143
U	36-13	1.1960	1	54... 4	P5U0	U $73-3$	65A8
\cup	36-14	0000	\cup	54-5	5575	U 73-4	1F60
U	36-15	migh	U	54-6	HUA3	U 73-5	5414
U	36-17	0000	\checkmark	54-7	H7H6	(73-6	$21 \mathrm{H3}$
U	36-18	10w	U	54.9	1196 C	U73-7	65 AB

U $73-90000$
U $73-10 \quad 1 F 60$
U 73-11 55F:
U $73-12$ HUAB
U $73-13$ 55F:
U $73 \cdots 14$ HUA3
U 73-15 F165
U $36 \cdots \quad \because A U F$
U 86-3 0000
U $86 \cdots 12 \quad 1960$
U 86-14 1963

Performance Tests and Troubleshooting - Model 64601A

```
g4601A Timana Contral Roare
AND
#13
```

NORM MODE
UH: $=60 \mathrm{GU}$
DATA THRESHOLD HIGH: t+1 \& ect
CLOCK THRESHOID: ttI

location of	ST/EP/START:	a . edge
Location of	QUAL/ETOP: tp le	pos, edge
Location of	Clock: tp 11	0 s . edac

Location of GROUND: and tp ?

TTL.

	49	H830
U	49-5	894F
U	49-12	1.0 w
4	$49 \cdots 13$	59
U	64 ‥	10
U	64- 5	POHI
U	64-12	PU50
U	64-13	
	85.	60 Al
(TOTLZ $=0004$		
U	85	H830
U	85-3	HACU
1	85.	894F:
U	85	6H5P
0	5	low
1	95-m	6HF\%
U	85.	10
U	85-9 9	$55 P 2$
U	85-11	PU50
1	$85-12$	2 HIC
U	$85-13$	OH1
1	85	Hu32
J	85	6390
U	85-16	1278
\cup	85-17	low
1	85-18	0 ECO
	85-19	60 AU
TOTLZ $=000$		

ECL
…… …

U	10-1	hioh	1	13-10	10 w
4	10-2	62 H	U	$13-11$	HHUS
U	10-3	1696	U	$13-12$	4764
\cup	10-4	8C4C	4	$13 \cdots 13$	PPUF:
\cup	10--5	2 AAA	U	$13-14$	1HP7
U	$10 \cdots 6$	62 H	1	$13-15$	low
U	10-7	1696	U	15-1	hioh
\cup	10-9	0000	4	$15-2$	777 P
	TOTL Z $=0$	130)	\cup	15-3	3 Ccu
U	10-10	8C4C	U	$15-4$	6AA'7
\cup	10-11	3\%HH	U	$15-5$	PPUF
\cup	10-12	4996	U	15-6	777 P
\checkmark	$10 \cdots 13$	32 HH	u	15-7	3 Ccu
4	$10 \cdots 14$	4996	4	15-9	0000
\cup	10-15	8340		TOTL $2=$	30)
\cup	11-1	high	U	$15-10$	$6 A^{\prime \prime}$
\cup	11-2	UHCP	U	15-11	PSAC
\cup	$11-3$	7PHU	4	15-12	555:
\cup	11-4	4817	1	$15-13$	PSAC
\square	11-5	UC7H	U	$15-14$	5555
\cup	$11-6$	UHCP	U	$15-15$	2AAA
\cup	11-7	7PMU	U	17-1	high
	11-9	0000	U	17-12	8AFg
	TOTLz $=0$	130)	U	17-3	Pat6
U	11-10	4817	U	17-4	6AAT
4	11-11	U4143	U	17-5	low
U	11-12	HHU9	U	17-6	10w
U	11-13	U4U3	U	17-7	PGAC
4	11-14	HHU9	U	17-9	1.0w
\cup	11-15	PPuF	U	17-10	low
	13-1	hi.gh	\cup	17-11	555
4	$13 \cdots$	U781	4	17-12	4764
\cup	13-3	972 P	U	$17 \cdots 13$	2AAA
4	13-4	4817	U	17-14	1HP7
	13-5	low	U	$17 \cdots 15$	10 W
	$13-6$	low	\cup	34-1	high
	$13 \cdots 7$	U4U3	\cup	34-2	CP17
	13-9	Iow	U	34-3	HPC8

U	34－7	CF17
U	34－6	F3Wu
U	34．．．7	A SU0
U	34－9	F3\％U
U	34－13	4996
U 1.	34－14	29.39
U	34－15	hioh
U	35－1	high
11	3：－2	HPCe
1.	3\％－3	CP1\％
U	35－4	2939
U	$35 \cdots 5$	1781
\checkmark	3\％－6	972p
4	3世－7． 7	4996
U	3\％－9	10w
U	35－10	2939
U	3\％－11	8AF9
U	35－12	PA66
U	$35-13$	4996
U	35－14	F3Wu
U	$35-15$	A3U0
U	49．．．7	894F
U	49－11	1．0W
U	$49 \cdots 1$.	HFW9
U	ツ－1－1	high
U	54－2	C1FU
U	\％4－3	CIFU
U 1	\％4－4	4498
U	54－6	A $76 H$
U	ツ4－6	24 FP
U	54－7	UUPC
1.1	ツ－9－9	8622
U	W－10	6476
U	ㅍ－1－11	F294
U	$54-12$	CIFU
U	$54-13$	1．0w
U	$54 .-14$	CIFU
U	$54 \cdots 1 \%$	H160
U	E®－ 1	high
U	W－－2	HF59
U	5	CCOS
U	5 F	UC7H
U	\％\％－	ABCU
U	G\％－ 6	10w
1.	¢\％ 9	10w
U	F\％－9	H160
U	W以－10	1． 0 W
U	$5 \mathrm{~F}-11$	C5F8
U	$5 \mathrm{~F}-12$	694F＇
	$5 \mathrm{E}-13$	U6UA
	5 F	CU90
	56	1．0w
	$64 \cdots 7$	Porl
	$64 \cdots 11$	PU：0

U） $64 \cdots 15$ 10w
U $\%$－ 1 nign

U 71… 3 8823
U 71－4 94F9
U $71 \cdots \quad$ F29い
U $71 \cdots 6 \quad 610 \%$
U $71 \cdots \quad 7 \quad 8823$
U $71 \cdots \quad 0000$
（TOTLZ＝0130）
U $71-10 \quad 94 \mathrm{~F} 9$
U 71－11 PHUA
U $71 \cdots 12$ U6UA
U $71-13$ PHUA
U 71－1． 14 UbUA
U 71－1－UC7
U 73 － 1 high
U 7% AAクA
U $73-3$ A24프…
（．） $73-4$－ 0 IHA
U $73-5$ H0C\％
U $73-6$ AA7A
U 7 Э… 7 A24\％
$\cup 7 \% \cdots \quad 0000$
（TOTוz：0130）
U $73 \cdots 10$ 0． 14 A
U $73-11$ A76म
U $73 \cdots+2 \mathrm{OFF}$
U $73-13$ A $76 H$
U $73-14$ 24FP
U $73 \cdots 1 \%$ Fo9い

```
64601A Timing Control Board
OR
    # | 4
```

NORM MODE
UH :=: 60AU

DATA THRESHOLD HJCH: ttI \& ECD
CI DCK THRESHOLD: $t+1$
ST-SF-wL. THRESHOLD: $t+1$

Lowation of ST/SF/START: tp 12 neq. edge
Location of QUAL/STOP: tp 12 pos. edge
Location of CIOCK: tp ti pos. edge Location of GROUND: gnd

TTL.

U	49-4	179F-
U	49-5	PGPC
U	49-12	1 W
U	$49 \cdots 13$	6F6\%
U	$64 \cdots 4$	1.0w
U	$64 \cdots$	A056
U	$64 \cdots 12$	31115
U	$64 \cdots 13$	1.0w
	$85 \cdots 1$	60 AU
	OTLZ $=$	(1)
	85…	1797
4	85-3	HACU
U	85-4	PGPC
U	85	$6 \mathrm{H5P}$
\checkmark	8E-6	Low
	85… 7	6HF7
	85--8	1. 0 w
	85-9.9	EPP
	85-11	3016
	85-12	2 HC
	85-13	A056
	85-14	HU3\%
	85-15	6390
	85-16	1278
	85-17	1. 0 w
	8玉-18	05 Cb
	85-19	60 AL
(TOTLZ $=0004$)		

ECl

	10-1	hegh	U	$13-10$	10w
U	10-2	3642	U	13-11	Coct
U	$10 \cdots 3$	CH2l	U	$13 \cdots 12$	$2 F 99$
U	10-4	51980	U	$13-13$	5958
U	$10 \cdots$	8474	\cup	$13 \cdots 14$	7551
U	10-6	3542	U	$13-15$	1.0W
U	10-7	C.H2)	U	$15-1$	high
U	10-9	0000	U	$15-2$	AFAF
	TOTLZ $=$	30)	U	$15 \cdots$	H656
U	10-10	5 F 90	1	$15 \cdots$	1553
\cup	$10 \cdots 11$	H830	U	$15-5$	5958
U	10-12	1 CO 8	U	$15 \cdots$	AFAF
U	$10-13$	H830	1	$15-7$	H656
U	10-14	FC98	U	15-9	0000
U	10-15	$65 F F$		OTL. $\mathrm{Z}=$	$30)$
U	11-1	high	U	$15 \cdots 10$	1753
U	11-2	0934	U	$15-11$	EPH1
U	$11 \cdots 3$	049A	U	15-12	08 P 8
U	$11 . .4$	U53 3	U	$15-13$	5 PH 1
U	11-6	1268	U	$15 \cdots 14$	$08 P 8$
U	$11 \cdots 6$	0934	U	15-15	8474
U	$11 \cdots 7$	049 A	U	17-1	high
U	11-9	0000	U	$17 \ldots$	614 H
	rorlz =	$30)$	U	17-3	$01 P 2$
U	$11-10$	U535	U	17-7 4	1F53
U	$11-11$	2 Ab 2	U	17-	low
1.	$11-12$	C2C1	U	$17 \cdots 6$	10w
U	$11-13$	2 AbS	U	$17 \ldots$	5 SH 1
U	$11 \cdots 14$	Coct	U	17-9	Iow
U	$11-15$	9988	U	$17 \cdots 10$	1.0w
U	13-1	high	U	$17-11$	08 P 8
U	13-2	2607	U	17-12	2F99
\cup	$13-3$	46 AB	U	$17 \cdots 13$	8474
U	13-4	1535	U	$17 \cdots 14$	7551
U	$13 \ldots$	low	U	$17 \cdots 15$	10w
U	$13-6$	10w	U	$34 \cdots 1$	high
U	$13 \cdots 7$	2462	1.	34-2	PH9U
U	$13 \cdots 9$	1. 0 w	U	$34 \cdots 3$	8 H 30

（1） $34 \cdots \quad 4$ PH9U
（U） $34 \cdots 6$ AAHF
（1） $34-7$ FA7A
い $34 \cdots 9$ AAHE
U $34-13 \quad F C 96$
U $34 \cdots 14$ AC37
U $3 \mathrm{~F}-1$ high
い 3 G － 2 BH 30
U $3 \mathrm{~F}-3$ PH9U
（1） $35 \cdots \quad 4 \quad \mathrm{AC} 37$
（1） $3 \%-5060 \%$
U $35-6 \quad 46 \mathrm{AB}$
U $35 \cdots \quad 7 \mathrm{FC9}$
U 3 F 9 O 10w
U $3 \mathrm{~F}-10$ AC\％？
（） $35-11$ 614H
U $35-1201 F 2$
U $3 \mathrm{Ex}-13$ FC98
U $35-14$ AAHE
U $361 \because$ FA7A
U 49－7 P6PC
（1）49…11 10w
（1） $49-15$ 6F62
U $\because 4 \cdots 1$ high
い 54． 2 CDFU
U $\because 4-3$ KIFU
い 54 － 4 07HC
U $\because 4-\ddot{\square} \quad$ ССС
U $\because 4 \cdots \quad 6$ AP2？
U $\because 4-7$－$\because C C F$
い $54 \cdots 9862$
U）$\because 4-10 \quad 46 \mathrm{FH}$
U $54-11$ 87F9
U $\because-12 \quad \mathrm{CH}$
（．） $64-13$ low
U $=4.94$ C1FU
U $54-15$ H160
U ジ．－l high
U 5\％ 2 6F62
U $\because \because-4 \quad 1268$
U 5\％－5 8070
（1） $5 \cdots-6$ low
U 55－7 low
U $55-9$ H160
U 55－10 10w
U $65-11$＂－ 938
U $5 \mathrm{~B}-12 \mathrm{P} \quad \mathrm{PFC}$
（） $5-13$ 24H1
U 55－14 OHF8
U） $6 \div 15$ Jow
（1） $64 \cdots \quad$ A0 76
U64－11 3Uい6
（1）64－15 low
U $71 \cdots 1$ high

U $71-2930 F$
U $71 \cdots 3$ 197\％
U 71－4 HF47
U 71 －\quad－ 7 F 9
U $71-6$ 930F
U 71．．7 197p
U71－… 0000
（TOTLZ＝0130）
U $71 \cdots 10$ HF 47
U $71-11$ 49A3
（1） $71-12 \quad 24 \mathrm{HI}$
（） $71-13$ 49A3
U 71－14 24H1
U $71-15 \quad 1268$
u $73 \cdots 1$ high
U $73 \cdots 204 \mathrm{C}$
U $73 \cdots 3$ U521
U 73 － 4 ＂ A 68
U $73-58426$
U $73-6$－ 04 Ce
U $73 \cdots \quad 7$ U． 51
U $73 \cdots \quad 9 \quad 0000$
（TOTLZ $=0130$ ）
U 73－10 2A68
U $73 \cdots 11$ СаС4
U $73-12 \quad A P 22$
U $73-13 \quad \mathrm{CQCA}$
U $73-14$ AP 22
U $73 \cdots 15$－ 7 99
64601 A Timing Control Board
B FOLLDED BY A

NORM MODE:
UH: FIGU

DATA THRESHOLD HTGH: ttI \& ect
CLOCK THRESHOLD: t+I

Location of ST/SF/START: tp te neq. edqe
Location of QUAL/STOF: tp I\%
Locestion of CIOCK: tp 11
l. ocation of GROUND: gnd
pos. edge Pow, edge

TTL.

ECl

1.	$10 \cdots 1$	hioh
U	10-2	$13 H 7$
U)	$10 \cdots 3$	F6FA
U	$10 \cdots 4$	63%
U	10‥6	644 P
U	$10 \cdots 6$	134%
1	$10 \cdots$	FGPa
U	$10 \cdots$	0000
(TOTLZ $=0130$)		
U	10․10	6375
U	10-11	HU4C
U	$10 \cdots 12$	FPG5
\cup	$10-13$	HUAC
U	$10 \cdots 14$	F\%G\%
U	10-15	A82C
U	11-1	high
\cup	11-2	A4\%1
U	$11 \cdots 3$	H2e8
U	$11 \cdots 4$	87P6
4	$11 \cdots$	48 AL
U	$11 \cdots 6$	A4E1
4	11-7	H2e8
U	$11 \cdots 9$	0000
(TOTLZ $=0130$)		
U	$11 \cdots 10$	$8 \% \mathrm{~F}$
U	$11 \cdots 11$	P20\%
U	$11-12$	H0Ul
4	$11-13$	P202
U	11.14	H0U1
U 4	$11-15$	2979
U	$13 \cdots 1$	high
U	$13 \cdots$	P119
U	$13 \cdots 3$	204%
U	$13 \cdots 4$	8\%P\%
U	$13-4$	1.0w
U	$13 \cdots 6$	10w
U	$13 \cdots$	Fou\%
U	$13 \cdots$	1.0w

U	$13-10$	1.0w
U	$13 \cdots 11$	H0U1
U	$13-13$	279
U	$13 \cdots 14$	3 BH
U	$13 \cdots 15$	low
U	$1 \mathrm{~F}-1$	high
U	$15 \cdots$	13 CF
U	15	89 ${ }^{\text {a }}$
U	$15-4$	$\because A 1 P$
U	1 \%-	2\%79
U	15.	13 CF
U	$15-7$	89\%P
\cup	$15-9$	0000
(ToTLz $=0130$)		
U	$15 \cdots 10$	2A1P
	1\%-11	C.4Uu
U	$15-12$	157\%
U	$15 \cdots$	C4UU
1.	$15-14$	$157 p$
U	16	$644{ }^{\circ}$
U	17-1	high
U	17-\%	AWPC
U	$17 \cdots$	64 CA
U	17×4	2A1P
U	17-	10w
4	$17 \cdots 6$	low
U	17.7\%	C.4UU
U	$17 \cdots$	10w
U	$17 \cdots 10$	low
U	$17 \cdots 11$	157
4	$17 \cdots 13$	644 P
U	$17 \cdots 14$	3FH\%
U	$17-15$	1. 0 w
\cup	$43 \cdots 1$	high
U	$42 \cdots$	CPF0
\cup	$4 \%-4$	high
U	$42 \cdots$	F1PA
	$4 \%-6$	A4:

U	$42 \cdots$	2 OH
U	$42 \cdots$	low
\checkmark	$42-10$	high
U	$42 \cdots 11$	731 H
U	$42 \cdots 12$	13 CF
U	$42 \cdots 13$	6CCP
\cup	$42 \cdots 14$	F 102
\cup		005
\cup	W4．．．1	hight
U	W4	C036
\cup	54	C036
\cup	64…4	4 HCA
U	54－5	6U6F：
\cup	ツ4…6	69.9
U	54․7	$9 \mathrm{P9} 1$
U	ツ4．．． 9	$8{ }^{\circ} 42$
U	$54 \cdots 10$	F820，
U	54－11	01.153
U	$54 \cdots 12$	C036
U	64－13	10w
U	$54-14$	C036
U	\％4－1\％	7169
U	$5 \%-1$	high
U	$55 \cdots$	1888
U	55－4	48 AL
U	5\％－\％	CワP0
\cup	$55-6$	1． 0 W
U	6\％－7	low
U	$5 \%-9$	7169
U	Ei－10	low
4	5 F －11	509
U	W－12	80 CF
U	5 F	$0 \cup 46$
U	ت\％－14	F10e
U	56	low
U	$64 \cdots 7$	$743 F$
1	$64-11$	CHF6
4	$64 \cdots 15$	Jow
1.	$67 \cdots 1$	nigh
U	$67 \ldots$	H88\％
U	$67 \cdots$	1． 0 w
U	$67-4$	005 H
U	$67 \cdots$	8P42
\cup	6%－ 6	72 FF
U	$6 \% \cdots$	$1 \mathrm{H9H} \mathrm{\%}$
4	$6 \% \cdots$	8 P 42
U	$67 \cdots 10$	1888
4	$67 \cdots 11$	A7\％9
U	$6 \%-12$	8 P 4
1.	$67 \cdots 13$	10 w
U	$67-14$	6606
U	$6 \%-1$.	high
U	$69 \cdots 1$	high
4	$69 \cdots$	low

U 69－3 0000
（TOTLZ＝0130）
い $69 \cdots 4949$
U $69 \cdots$ low
U $69 \cdots 60000$
（TOTLZ $=0170$ ）

U 69… $9 \quad 340$
U $69-10 \quad$ 8P42
U $69 \cdots 11$ 8P4\％
U 69－12 0310
U $69 \cdots 13$ high
U $69 \cdots 14$ … 1310
U $7 \mathrm{a}-\mathrm{I}$ high
U71－2 2759
U 71 … 7 万5F
U 71－4 18HP
い $71-60$－$\quad 03$
い 71－6 А7与9
U 71 … 7 ＂以下＂
U $71-90000$
（TOTLZ＝0130）
い $71-10$ 18HP
（） $71-11$ F36P
U $71-12 \quad 01146$
U $71-13 \quad 136 \mathrm{~F}$
U $71-14 \quad 0.146$
U $71-1 \%$ 48A2
U $73 \ldots 1$ high
$473 \cdots 2949$
U $73-3$ F2世世
U） $73 \cdots 4$ 40HA
（1） $73-5 \quad 5460$
U $73-6949$
$1173 \cdots 76$
U $7 \% \cdots \quad 0000$
（TOTLZ＝0130）
U $73-10$ 40HA
U 73－11 6 166
（1） $73 \cdots 12994$
U $73-13$ 6U6F
U 73 － 14 5947
U $73 \cdots 150 H 53$
（．） $74 \cdots 1$ high
U $74 \cdots 280 \mathrm{cF}$
い $74 \cdots$ 4 $8 P 4 \%$
U $74 \cdots$ H882
（．） $74 \cdots 10 \quad 9949$
U74－11 6606
U $74 \cdots 1 \mathrm{cmow}$
い 74－13 8P42
U $74 \cdots 14$ high

Performance Tests and Troubleshooting - Model 64601A
64601 a Taming Control Eoard
DTSPLAY TEST 1 . 1 ST PATTER
QUAL MODE

$$
V H=383 \mathrm{~A}
$$

Gual =: high
DATA THRESHOLD: t+1
CIOCK THRESHOLD: tol
ST- SF-WL THRESHOLD: $t+1$

Location of ST/SP/START: tp 10
Location of DUAL/STOP: U99...12 on U 81… 3
Location of ClOCK: tp 8 Location of GROUND: gno
pos. edge pos. edge pos. edge

TTL.

U	56	
1	$56-2$	1ow
1	$56-5$	high
U	56	
U	56	
U	56-10	high
4	$56 \cdots 12$	low
U	$56-15$	gh
U	$57 \cdots 1$	P816
1	57-	S80H
U	57-	12 A
U	57-4	UPF6
1	57- 5	8779
U	57	日ePu
U	57	H0EF
1	57-8	high
U	57-10	10
U	57-12	4 CPa
4	57-13	HUZA
11	57-14	45 F
U	57-15	C
U	E7 716	5 AFC
U	$57-17$	5632
U	E8-1	P816
U	58…	580 H
U	58-	12 A 9
U	58	UPF6
U	58	8779
U	58-6	82pu
U	58-7	6037
U	58-8	high
\checkmark	58-10	10w
U	58	4 CP 2
U	58-13	HU2A
U	58-14	4521
	8	

U	58-16	5AFC	4 $61-4$	high
\cup	68-17	5632	$461-5$	383A
U	59-1	P816	(TOTLZ $=0$	025)
4	59…	580 H	461-6	0000
U	59-3	12A9	(TOTLZ $=0$	024)
U	59-4	UPF6	U61-9	363A
U	59-5	8779	(TOTLZ $=0$	$001)$
U	59-6	82PU	U 61-10	high
4	59-7	2A93	4 61-11	CC34
U	59-8	high	(1) 61-12	Cc34
U	59-10	1.0 W	() $61 \cdots 13$	383A
1	59-12	4 CP 2	(TOTL Z =0	024)
1.	59-13	Huea	(1) 61114	383閏
U	59-14	4521	$461-15$	383A
1	$59-15$	9860	(TOTL $2=0$	024)
u	59-16	$5 A F C$	U62-1	high
U	59-17	5632	U $62-2$	high
U	$60 \ldots 1$	10w	$162 \cdots$	0000
U	$60 \cdots 2$	P816	(TOTLz $=1$	2519)
4	60-3	H02F	U 62--4	0000
1	60-4	6037	(rotiz $=1$	ए519)
U	60‥	C010	U62--5	0000
U	$60 \cdots 6$	9549	(Totlz $=1$	2519)
U	$60 \cdots 7$	2493	4 62-6	383A
U	60-18	9549	($\mathrm{TOTL} \mathrm{z}=0$	024)
1	60-9	4AA4	U 62.-7	383A
4	$60 \cdots 11$	0000	(TOTLZ $=0$	024)
	rotcz $=1$	519)	(1) $62-9$	U352
U	60-12	H0eF	U 62--10	U35\%
U	60-13	P816	$462-11$	1166
1.	60-14	colc	(1) $62 \cdots 12$	383A
1	60-15	580 H	(TOTLZ $=0$	001)
U	60-16	637 P	U 62-13	383A
1	$60 \cdots 17$	F6UF	$462 \cdots 14$	high
U	60-19	high	U $62 \cdots 15$	10w
	61-1	383A	U 63-1	high
	$61 \cdots$	1166	U 63--2	383A
	$61 \cdots 3$	1166	(TOTLZ $=0$	0.24)

CTL 4-84

	$63 \cdots$	high
	$63 \ldots$	383A
（TOTLZ $=0024$ ）		
	6.3	0000
（ TOTLZ $=0024$ ）		
	$63 \cdots 8$	383A
（ToTLz＝12518）		
	$63 \cdots 9$	0000
（TOTLz＝12w19）		
U	$63 \cdots 10$	high
U	$63-12$	383A
（TOTLZ $=12518$ ）		
U	（ 03－13 high	
U	76－1	high
$76-2 \mathrm{HO2F}$		
U	$76 \cdots 4$	6037
26－4 6037		
76－10		
76－12		
$76-14$		
$76-15$ high		
$77 \cdots$ I UPF6		
77－2 12A9		
$77 \cdots 380 \mathrm{H}$		
77－－4 P816		
$77 \cdots$－82PU		
$77 \cdots 6$－ 632		
77－7 $\quad \mathrm{F} \mathrm{AFC}$		
U 77－8		
177－10 CUA3		
177－12 F6UF		
$477 \cdots 13$ high		
U）77－14 high		
U $77 \cdots 16$ CAHE		
U $77-17$		
U 777 ll － 10 w		
U	77－19	10w
U	77×0	high
U	77.	87\％9
1	$77-20$	high
	$78 \cdots 1$	high
U	$78 \cdots$	383A
（TOTL $2=0024$ ）		
	$78 \cdots$	high
	$78 \cdots 4$	J． 0 W
1 1 1	$78 \cdots$	low
U	$78-6$	10w
U	78－7	high
	78－9	FC6O
1$U$$U$	78－10	high
	$78 \cdots 11$	AHful
11111	$78-12$	9023
	$78 \cdots 13$	CU1A
	$78 \cdots 14$	AU73

U	78－15	U35\％
U	$79 \cdots 1$	1．0w
U	$79 \cdots 2$	high
U	$79 \cdots$	986 C
U	79－． 4	AHAU
U	79.	AU73
U	$79 \cdots 6$	Cu1A
U	$79 \cdots$	9023
U	79．－9	0い22
U	79.10	9286
\cup	$79-11$	7923
\cup	$79 \cdots 12$	PH28
U	$79-13$	1． 0 w
\cup	79－14	low
4	79－15	J． ow
U	80－1	580 H
1.	80－2	COHC
11	80－3	H02F
11	60－4	P816
11	80－．．	PH28
U	80－6	7923
U	80－7	9286
\checkmark	$80 \cdots$	CH6F
U	80－10	8以以
4	80－11	A900
U	80－12	842U
U	$80 \cdots 13$	Jow
U	80－14	10w
4	80－15	10w
U	81－1	high
U	81－3	HUA1
U	$81 \cdots 3$	CUAX
U	81－4	HUA1
U	81－	6 UHO
\cup	81－6	CAHE
\square	81－7	$5 H 6 A$
	81－9	0000
（TOTLZ $=12 \mathrm{E}$（9）		
U	81－10	$\mathrm{AP}^{\mathrm{P}} \mathrm{C}$
	$81-11$	WH6A
U	81－12	14AP
U	81－13	383 A
（TOTLZ $=0001$ ）		
U	81－14	883F
4	$81-15$	C383
1.	82．．1	1． 0 W
1.	8\％	1． 0 w
U	82－3	high
\cup	8\％－4	dow
U	82－6	I． 0 w
4	82－6	high
U	82－8	high
	82－9	Jow
	82－10	high

U82．．．11 10w
U 82－12 high
U 8 ewly high
U 83… 1 637P
U 83‥ A AFH
（1）83－ 3 383A
（TOTLz＝12：58）
U $83 \cdots 40000$
（TOTLZ $=12 \%$ ）
U $83 \cdots$ ㅍ․ 993F
U） $83 \cdots 69907$
U $83 \cdots 8 \quad 883 F$
い $83-98556$
（1） $83 \cdots 10 \quad 14 \mathrm{AP}^{\mathrm{B}}$
U 83－13 14AP
U 84… 1 high
U $84 \cdots 20000$
U $84-3 \quad 383 A$
（TOTLZ $=0024$ ）
U 84．－． 4 high
U 84… 0000
U $84 \cdots \quad 633 A$
い 84 … 8 low
U $84 \ldots 9 \mathrm{high}$
（．） $84 \cdots 10$ high
U $84-110000$
U 84…2 high
U $84 \cdots 13$ high
U 88… low
U $88 \cdots$ high
U．88… 4 low
U 88… 8 C383
い 88－9 9947
（1） $88-10$ FF2A
U 88…11 low
U 88－12 い3\％2
U 88－13 FC68
U 89… 10w
U $89 \cdots 20 \mathrm{~m}$
U 89… 4 low
U $89 \ldots 5$ low
U $89 \cdots$ Jow
U $89 \cdots 11$ low
U $90 . .4$ 10w
U $90 \cdots$ high
U 90 … 6 high
U 90－7 low
U90…9 10w
U $90-10$ 10w
U 90－1！Iow
U 90－12 high
U $90-14$ high
U 90－15 high
U $91-6$ high

	$91 \cdots 7$	high	$1.950-14$	8779	U99－8	87AA
U	$91 \cdots 9$	high	$1.95-15$	1166	U 1.99	6UH0
U	91－10	high	U 96－1	high	U 999－10	6UHO
U	$91 .-11$	high	U 96－2	383 A	U 99－11	4 AA 4
U	$91-12$	high	（TOTLZ $=$	024）	U 99－12	383 A
1	91－13	high	U $96 \cdots 3$	low	（TOTLz $=$	01）
U	91－14	high	U 96－ 4	high	U 99－13	high
U	$91 \cdots 15$	high	U 96－w	high	U100－1	high
U	$92 \cdots 1$	high	U 96－6	high	U100－2	$84 \% \mathrm{~J}$
U	$72 \cdots$	high	U 96－7	high	U100 3	0000
U	93.	1．0w	U 96－9	383A	（TOTLZ $=$	W19）
U	92－7	1．0w	＜TOTLz $=$	（01）	U100－4	high
U	92－9	high	$496-10$	U35\％	U100－ 5	AIFH
U	$92-10$	low	（J）96－11	4 CP 2	U100－6	9947
U	9\％－12	high	U 96－12	HU2A	U100－8	A106
U	92－15	high	U 96－13	4521	U100－9	$993 F$
U	93－1	high	U 96－14	9860	U100－10	high
U	$93 \cdots$	10w	U $96-13$	9034	U100－11	0000
U	93－	10w	U 97\％－1	4743	（TOTLZ $=$	$519)$
U	$93 \ldots$	low	1197－	日7AA	6100－12	A900
U	93－9	hagh	U 97－3	8000	U100－13	high
U	93－10	high	U $97 \ldots 4$	4AA 4	U101－1	383 A
U	93－12	high	U97－5	4743	U101－2	0000
U	93－15	high	U $97 \cdots 6$	FAgP	U101．－4	10w
U	94… 1	high	U 97\％ 8	FA9P	U101－5	0000
	94－2	0000	U $97 \cdots 9$	002 l	（TOTLz $=$	038）
	TOTL Z＝	2919）	（1） $97 \cdots 10$	0000	U101－10	1．0w
	94－3	high	（1）97\％－11	9684	U101． 11	high
U	94－4	Jow	U 97\％－19	APCO	U101－12	high
U	94…	10w	（1） $97-13$	383A	U101－13	low
U	94－6	1ow	（ TOTLZ $=$	518）		
	94．．．7	high	U $98 \cdots 1$	high		
	94－9 9	383A	U $98 \cdots$	4743		
	TOTLZ $=$	024）	U 98－3	7U79		
	$94 \cdots 10$	high	U 98－－4	FF2A		
	$94 \cdots 11$	UPF6	U 98…	4AA4		
	94－12	12 A 9	U 98‥6	729 P		
	$94 \cdots 13$	580 H	U $98 \cdots$	4AAA		
	94－14	P816	U 98…9	383A		
	94－15	998A	（Torlzz：	（037）		
	95－1	high	$\cup 98 \cdots 10$	87AA		
	$95 \cdots$	0000	U 98－11	CU90		
	TOTL $2=$	519）	U 98－12	87AA		
	93	high	U 98－13	9684		
	$95 \cdots 4$	high	（）98－14	0000		
	9以－5	I．ow	（1）98－15	383A		
	95．．6	1．0w	U 99\％－1	383A		
	$95 \cdots$	high	（ TOTLz $=0$	01）		
		383 A	U 99－． 2	383年		
	TOTLZ $=0$	24）	（TOTLZ $=0$	25）		
	95－10	898A	U 99－3	$14 \mathrm{Al}^{\circ}$		
	95－11	\％AFC	U 99－ 4	WH6A		
	95－12	5630	U 99．．．	EH6A		
	$95 \cdots 13$	82PU	U99…6	5H6A		

64601 A Timing Control Board
DISPLAY TEST－－2ND PATTERE
QLAAL MODE
VH $=393 \mathrm{~A}$
Qual $=$ high
DATA THRESHOLD：trl
CLOCK THRESHOLD：t＋1
ST－SP－WL．THRESHOLD：ttl

Location of ST／SP／START：tp 10
Location of QUAL／STOP：U99－12 or U 8：－13
Location of Clock：tpe
Location of GROUND：gnd
pos．edge pos．edge pos．edge

Trl．

U6I－4 high		
	61 ．．．	383A
（TOTL $=000 \%$ ）		
	61	0000
（ TOTLZ $=0024$ ）		
	61.	0000
	61 －	383 A
（TOTLz $=0001$ ）		
	$61 \cdots 10$	high
	$61-11$	CC 34
	$61 \cdots 12$	CC34
	$61-13$	383 A
（TOTLZ $=0024$ ）		
	$61 \cdots 14$	383 A
	$61-15$	383 A
（T0TLZ $=0024$ ）		
	$62-$	high
	$62-2$	hign
	$6 \%-3$	0000
（TOTLz $=12 \mathrm{~F}$（9）		
	$62-4$	0000
（TOTLz＝10世19）		
	6%	0000
（TOTLZ＝19世19）		
	62－6	383 A
（TOTLZ $=002$ ）		
	62	383 A
（TOTLz＝0024）		
	6\％－．．． 9	U3世\％
	$62-10$	1350
	$62-11$	1166
	$62-12$	383 A
（TOTLZ $=0001$ ）		
U	$62-13$	383 A
	$62-14$	hion
	$62-16$	low
4	$63 \cdots$	Hig

Performance Tests and Troubleshooting - Model 64601A

U	78.13	Cula
U	$78-14$	AU73
U	$78-15$	135
\cup	$79-1$	1. 0 w
U	79-2	10w
U	$79 \cdots$	986 C
U	79… 4	AHAU
1.	$79 \cdots$	AU73
U	$79 \cdots 6$	CU1A
U	ワ9…7	9023
U	79-9	002 L
U	79-10	C68
U	$79-11$	FF3U
U	$79 \cdots 12$	2033
U	$79 \cdots 13$	1. 0 w
U	$79 \cdots 14$	low
U	$79-15$	1.0w
\checkmark	$80 \cdots 1$	580H
U	80-2	0010
1	$80 \cdots 3$	H0¢F
0	80… 4	P816
U	80…	203%
U	$80 \cdots 6$	FF3U
U	80‥7	C584
U	80-9	8054
U	80-10	C66P
U	80-11	H49C
\cup	80‥12	3680
	00-13	10 w
U	60․14	low
	$80 \cdots 16$	low
U	81-1	high
	81-2	HUAl
U	81-3	CU43
	91.-4	HUAL
U	$81 \cdots$	6UH0
	81-6	CAHE
U	$81-7$	WH6A
	81..7	0000
(TOTLz = 1\%		
	$81-10$	APCE
	81-11	$\cdots H^{\text {Wa }}$
	81-12	14 AP
	81-13	383 A
(TOTLZ $=0001$)		
	81-14	1281
	$81-15$	H04A
U	82-1	J. 0 w
	82...	10w
	\%\%	nigh
	$82 \ldots 4$	1. 0 w
	Q2-5	d. 0 w
	82... 6	high
	82-8	high

U	82...9	1. 0 w
U	$8 \%-10$	high
U	82-11	1. 0 w
U	$82-12$	nigh
U	$82-13$	high
\square	$83 \cdots 1$	637 P
U	83-2	HC3C
U	83-3	383 A
(TOTLZ $=19618$)		
\checkmark	$83-4$	0000
4	83-6	$4 \mathrm{C46}$
\checkmark	$83 \cdots 6$	P301
U	83-8	1281
U	$83 \cdots$	686 P
U	$83 \cdots 10$	$14.4{ }^{\circ}$
U	$83 \cdots 13$	14 AF
U	$84 \cdots 1$	high
U	84-2	0000
U	84‥3	383 A
(TOTLZ $=0024$)		
U	84‥ 4	nigh
\cup	84…	0000
U	84-6	383 A
U	84-8	Low
U	84-9	high
	84‥10	hagh
	$84 \cdots 11$	0000
	64-12	high
	84-13	high
	88-1	1. 0 w
	83-2	high
	88-4	Iow
	88‥ 8	H04A
	88-9	P301
U	88-10	9 PCU
	88-11	Iow
	88-12	1350
	89-13	FC60
	89…	low
	89‥	1.0w
	$89 \cdots$	1. 0 W
	89.5	10w
	89… 8	Jow
	89-11	1.0w
	90-4	low
U	$90-5$	high
	$90 \cdots 6$	high
	$90 \cdots$	Jow
	$90-\cdots$	low
	$90 \cdots 10$	10w
	$90 \cdots 11$	low
	$90-12$	high
	90-14	high
	90-15	high

	91.76	nigh	U	$9 \cdots-13$	Q2Pu	U99-6	WH6A
	$91 \cdots$	nigh	U	$95-14$	8779	U 99… 8	87AA
	91-7	high	U	$9 \%-1$.	1166	U 99.9	6 HHO
	$91 \cdots 10$	high	U	$96 \cdots 1$	hjgh	U 99-10	6UH0
\cup	$91 .-11$	hagh	U	96-	383A	U 99-11	4 AA 4
	$91-12$	hagh		TOTLZ	24)	$499+12$	383A
	91-13	high	U	96-3	Iow	(TOTLZ $=0001$)	
4	91.14	njog	U	$96 \cdots 4$	high	U 99...13	High
	$91-15$	nign	U	96-.	high	U100-1	high
	9%.	high	U	$96-6$	high	U100-2	3680
	$92 \cdots$	high	U	96..7	high	U100-3	0000
	92.	1. Ow		$96 \cdots 9$	383A	(TOTLZ=92519)	
	92.	10w	(TOTLZZ:=0001)			U100-4	high
	92.	high	U	$96 \cdots 10$	U3:\%	U100-5	HC 3 C
	92.10	low	U	96-11	4 CP E	U100-6	P301
	9\%-12	nigh	U	$96-12$	HU\%A	U100-6	737 F
	$92 \cdots 15$	high	U	96-13	4 Fl	$4100 \cdots$	$4 \mathrm{C46}$
	$93 \cdots 1$	high	U	$96 \cdots 14$	986 C	U100-10	higto
	$93 \cdots 2$	1. 0 w	U	96-15	0 CO 4	U100-11	0000
	$93-5$	1. 0 w	U	97-1	14.40	$4100-12$	H49C
	93-7	10w	U	97-2	87AA	U100-13	high
	93-9	high	U	97-3	ABH9	U101-1	383 A
	$93-10$	nigh	U	$97 \ldots 4$	4AAA	U101 - -	0000
	93-12	high	U	97-..	U4UC	U101-4	J. OW
	$93 \cdots$	high	U	$97 \cdots$	1 6 PA	U101-6	0000
	94…1	nigh	U	97- 8	1	(TGTLz $=$ \% 038)	
	94.-	0000		97--9	0い2\%	U101-10	Jow
	TOTL $2=$	W19)		$97 \cdots 10$	0000	U101-11	high
	$94 \cdots 3$	high	U	$97 \ldots 11$	9680	U101-12	high
	94...4	low	U	$97-12$	AFCE	U101-13	low
	94-7.	1. 0 w		$97 \cdots 13$	333 A		
	$94 \cdots 6$	1. 0 w	(TOTLZ $=12 \% 18$)				
	94...7	high		$98-1$	high		
	94-7	383 A		98-\%	U4UC		
	TOTL..	24)	U	$98 \cdots 3$	FFFI		
	$94 \cdots 10$	High		$98 \cdots 4$	9 PCU		
	$94 \cdots 11$	UPF6		98-	4 AA 4		
	94-12	1299	U	$98 \cdots$	729		
	$94 \cdots 13$	\%80H	U	98-7	4 AAA		
	$94 \cdots 14$	P816		$98 \cdots$	383A		
	94% 1 \%	898A	(TOTL $2=26037)$				
	$9 \% 1$	high		98-10	8\%AA		
	9 y	0000	U	98-11	CU90		
	TOTL Z=	W19)		$98-12$	87AA		
	$9 \% 3$	High		98-13	9680		
	95.	highimer		98-14	0000		
	9% \%	T Ow		$98 \cdots$	383 A		
	$9 \%-6$	3. 0 w		99 $\cdots 1$	383 A		
	$95 \cdots$	High		TOTLz $=$	01)		
	9\%-9	388 A		99…	323A		
	TOTLZ $=0$	24)		Toriz $=$	\%)		
	$95-10$	898A		$99 \cdots 3$	$14 \mathrm{AP}^{\mathrm{P}}$		
	$9 \% \cdots 11$	$\cdots \mathrm{AF} \mathrm{C}$	U	99… 4	$5 H 6 A$		
	95-12	663		$99 \cdots$	$5 H 6 A$		

Performance Tests and Troubleshooting－Model 64601A

64601A Timing Gontrol Board
DTSPLAY TEST－SRD PATTERN
QUAL．MODE
$U H=303 \mathrm{~A}$

Qual $=$ nigh
DATA THRESHOLD：$t+1$
COOK THKESHOLD：tt

Location of ST／BF／START：tp 10 pos，edge
 Lowation of ClOCK；t阝 pos，adge Location of GROUND：gnct

TTL．

U	$\cdots 6 \cdots 1$	high
U	36－	high
1.	66－5	high
U	\％6‥7	high
U	\％6‥9	high
U	$36-10$	high
U	$56-12$	1． 0 w
U	\％6－1\％	high
U	57×1	P816
U	－\％	W80H
U	57－3	12 A 9
U	W7－4	UPFG
U	\％$\%$－	8779
U	\％7－6	\％2PU
U	$57 \% 7$	H0\％
1	$57 \cdots$	high
U	67－10	10w
U	$47 \cdots 12$	4CP\％
U	w7－13	HU2A
U	57－14	4 SE
4	57	986 C
U	＂7－16	GAFC
U	\％7－17	563%
U	W8…	P816
U	68…	W0H
U	\％8－3	1299
U	以8… 4	UPF6
U	68－	8779
U	\％8－6	8 O
4	\％8‥7	6037
U	$58 \cdots 8$	high
U	\％8－10	low
1.	\％8－12	4CP\％
U	\％8－13	HUFA
U	58－14	4521
	$\cdots 8 \cdots$	9860

U	$58-16$	FAFC	U $61 \cdots 4$	high
	\％8－17	5632	U61．．	383 A
U	$59-1$	P816	（TOTLZ $=$	0\％\％）
U	59－2	680 H	$461 \cdots 6$	0000
U	\％9… 3	12 Ac	（TOTLZ $=$	024）
U	69－4	UPF6	U 61－7	0000
U	59－5	8779	U $61-9$	383A
U	$9 \%-6$	8еPU	（Torlz $=$	001）
\cup	69－7	$2 \mathrm{A93}$	（1）61－10	high
U	\％9－8	high	（1） $61-11$	$C \mathrm{C} 34$
1.	59－10	10w	（1） $61-12$	CC34
U	69－12	4 CP 2	U $61-13$	383 A
U	$59+13$	HU\％A	（TOTLZ $=$	024）
\square	$59 \cdots 14$	$4 \% 1$	（1）61－14	393A
\square	59－15	9860	U 61－15	383A
U	59－16	FAFC	（TOTLZ：＝	024）
U	59.17	563%	U 62－1	high
	60… 1	1．0W	1162－2	high
	$60 \cdots 2$	P816	U 62．－3	0000
1	$60 \cdots 3$	H02F	（TOTLZ $=:$	\％19）
1.	$60 \cdots 4$	6037	U 6\％－4	0000
U	$60 \cdots$	8010	（TOTLZ $=$	3（9）
U	$60 \cdots 6$	9549	U $62 \ldots 5$	0000
	$60 \cdots 7$	2 A 93	（ToTlz＝	－519）
	60－8	9549	46% 6	383A
	60‥9	4 AAA	（TOTLZ：$=$	024）
	60－11	0000	U 6 －-7	3834
	rotiza	319）	（TOTLZ＝	024）
	$60 \cdots 12$	H0\％\％＇	$\cup 6 \%-9$	435
	$60 \cdots 13$	P816	（1） $6 \%-10$	4352
	$60 \cdots 14$	C010	U $62-11$	1166
	60－1\％	680H	U $62 \cdots 12$	383 A
	60－16	$63 \% \mathrm{P}$	（TOTLZ $=$	001）
	60－17	FGUF	$462-13$	383 A
	$61-1$	383閏	$469 \cdots 14$	high
	OTL． $\mathrm{Z}=1$	616）	U） $62-15$	low
	$61 \cdots 2$	1166	U 63－1	high
	$61 \cdots 3$	1166		

U $63 \cdots 238 \mathrm{~A}$ (TOTLZ=0024)		
1.	$63-4$	high
\square	$63 \cdots$	383 A
(TOTLZ $=0024$)		
1	$63 \cdots 6$	0000
(TOTLZ:=0024)		
)	$63-8$	383 A
(TOTLZ=10\%18)		
	$63-9$	0000
(rotlz $=1319$)		
U	$63-10$	high
	$63-12$	383 A
(TOTLZ $=12 \mathrm{~F}$ (8)		
U	$63-13$	high
	76-1	high
U	76	H0eF
U	76-4	6037
U	$76-6$	2493
U	$76-10$	F6UF
U	$76-12$	CAHE
U	$76-14$	CU43
U	$76-15$	high
U	$77-1$	UPFG
U	77-2	12 A 9
U	77-3	580 H
1.	77--4	P816
U	77-E	82 PU
U	77...6	5632
U	$77 \ldots$	5 AFC
U	77--8	low
	$77 . \cdots 10$	CU43
	$77-12$	F6UF
	$77-13$	high
	77-14	high
	77×16	CAHE
	$77-17$	high
\cup	$77-18$	low
	$77-19$	low
	$77-20$	high
	77×1	8779
	$77-22$	high
U	78-1	high
U	$78-2$	383A
(TOTLZ $=0024$)		
U	78-3	high
U	78-4	low
U	$78-5$	10w
U	$78 . \cdots$	10w
U	$78 \cdots$	high
U	78-9	FC6 6
	78-10	high
	78-11	AHAUS
	78-12	9023

U	$78 \cdots 13$	CUIA
\square	$78 . \cdots 14$	AU73
U	78-15	1352
U	$79 \cdots 1$	10w
0	79--2	high
U	79-3	9860
U	79-4	AHAU
U	79-5	AU7\%
U	79… 6	CUIA
U	79… 7	9023
U	79 - 9	$0 い 22$
U	79…10	9286
U	79-11	7923
U	79-12	PH2S
U	79-13	10w
U	79-14	1ow
U	$79-15$	1. 0 w
U	80-1	580 H
U	80-3	COIC
U	80-3	H02F
U	80-. 4	P816
U	80-5	PH28
1.	80-6	7923
4	80-7	9286
U	80-9	$\mathrm{CH6F}$
U	$80 \cdots 10$	8556
U	$80 \cdots 11$	1716
U	80-12	A424
U	80-13	low
U	80-14	10w
\square	80-1\%	high
U	81-1	high
U	81-2	HUA1
U	81-3	CU43
U	81-4	HUA1
U	81.	6UHO
U	81-6	CAHE
U	81-7	5H6A
U	$81 \cdots 9$	0000
(TOTLZ $=12519$)		
\cup	$81 \cdots 10$	$A^{P C 5}$
4	81-11	SH6A
U	81-12	14 AP
U	81-13	383 A
(TOTLZ $=0001$)		
U	$81-14$	883F:
4	$81 \cdots 16$	C383
U	8% \%-1	10w
U	$82 \cdots$	low
U	$82 \cdots$	high
U	$82 \cdots$	l. 0 w
U	$82 \cdots$	10w
	8\%-6	high
	82... 8	high

U)	89.9	1.0w
U	$82-10$	high
U	82-11	low
U	$82-12$	high
U	82-13	high
U	83-1	6378
u	83-2	3178
U	83-3	383 A
(TOTLZ=12518)		
U	83--4	0000
(TOTLZ $=12519$)		
U	83-5	F637
U	83-6	0902
U	83-8	883F-
U	83-9	8556
U	$83-10$	14 AP
U	83-11	0000
U	$83-12$	0000
U	83-13	14 AP
U	84…	high
U	84-2	0000
U	$84 \cdots 3$	383 A
(TOTLZ:=0024)		
U	84-4	Migh
U	84-7	0000
U	84‥6	383A
U	84…8	1.0W
U	84‥9	high
U	84‥10	high
U	84-11	0000
1.	84-12	high
U	84-13	high
U.	88… 1	low
U	88-\%	high
U	88-4	l. 0 W
U	88-6	383A
U	88-8	0383
U	88‥9	09 UC
U	88‥10	7A゙57
U	88-11	J. 0 W
U	88-12	1355
U	$88 \cdots 13$	FC68
U	89… 1	Jow
4	89… 2	10w
U	89-4	low
U	89 -	10w
U	89-8	Iow
U	89-11	1.0w
U	$90 \cdots 4$	low
U	90-5	high
U	$90 \cdots 6$	high
U	$90-7$	low
U	90-9	low
	$90 \cdots 10$	10w

U	90.-11	I 0w
U	$90-12$	high
U	$90-14$	high
1.	$90 \cdots$	high
U	$91-6$	high
U	91.7	high
U	91-9	high
U	$91 \cdots 10$	high
U	$91 \cdots 11$	high
U	91-12	high
U	91-13	high
U	91-14	high
U	$91-15$	high
U	92--1	hiogh
U	$92 \cdots$	high
U	$92 \cdots$	1. 0 W
U	$92 \cdots$	1.0w
U	92... 9	nigh
U	$92-10$	l. 0 W
U	$92-12$	high
U	92-15	high
U	$93 \cdots 1$	high
U	93-2	1. 0 W
U	93-5	1.0W
U	$93 \cdots$	1.0W
U	$93-9$	high
U	93-10	nigh
U	$93-12$	high
U	93-15	high
U	94-1	high
U \downarrow	94-2	0000
	OTL Z $=1$	519)
U	94-3	high
\cup	94-4	J. W
\checkmark	94-	1.0w
U	$94 \cdots 6$	1.0w
U	94.7.7	high
U	$94 \cdots 9$	383A
	TOTLz $=0$	24)
U	94-10	high
1	$94 \cdots 11$	UPF6
U	$94 \cdots 12$	12 A 9
U	94-13	580 H
1.	94-14	F816
U	94-1	898A
U	9 ¢-. 1	high
1	$95 \cdots$	0000
(TOTLZ = 12w19)		
U	$95 \cdots$	high
U	$9 \% 4$	high
U	9\%-	low
U	$95 \cdots 6$	1.0w
U	$95 \cdots$	high

	$\begin{aligned} & 9 \mathrm{E}-9 \\ & 0 \mathrm{OL} Z= \end{aligned}$	383A
U	95-10	898A
U	$95-11$	5 AFC
U	$95-12$	5632
U	95-13	82 PU
U	95...14	8779
U	95-1\%	1166
U	96-1	high
u	$96 \cdots$	383A
(TOTLZ $=0024$)		
U	96-3	1.0w
U	96‥ 4	high
U	96-	high
U	$96 \cdots 6$	high
U	96-7	high
U	96-9 9	383A
(TOTLZ $=0001$)		
U	96-10	U35
U	96-11	4 CP 2
U	96-12	HU2A
U	96-13	4501
U	96-14	986 C
U	$96-15$	CC34
U	$97 . .1$	AU47
U)	77-2	87AA
U	97-3	P74A
U	97-4	AAA4
U	97-. 5	AU4\%
U)	97-6	C126
U	9\%.- .8	C126
U	97-.. 9	0422
U	$97 \cdots 10$	0000
U	$97 \cdots 11$	9680
U	$97-12$	APCE
	$97 \cdots 13$	383 A
(TOTLZ $=12518$)		
U	98-1	high
1	98-2	AU4\%
U	$98 \cdots 3$	977 H
U	98-4	7Aら7
U	98-	4AA4
U	$98 \cdots 6$	799
	98-7	4AA4
	98-9	383 A
(T0TL $2=0 \% 037$)		
U	98-10	87AA
	98-11	CU90
	98-12	87AA
	98-13	9680
	98-14	0000
U	98-15	383 A
	99-1	383A
(TOTLZ $=0001$)		

$U 99 \cdots \quad 383 \mathrm{~A}$	
U 99\%3	314 AP
U 99… 4	4 WH6A
U 99-w	Fi. 5 H6A
4 99-6	6 जH6A
$499 \cdots 8$	8 87AA
U 99…9	96 UHO
$499 \cdots 10$	$\cdots 0$ ¢UH0
$1199 \cdots 11$	11 4AA4
$499 \cdots 12$	12 383A
(TOTLZ $=0001$)	
U 99-13	- 3 high
U100-.1	- 1 high
$4100 \cdots$	- A424
U100-3	- 30000
(TOTLZ $=12519$)	
U100 - 4	- 4 high
U100-5	- 5 - 178
U100-6	- 690
U100-8	- 8 UPOH
U100-9	- 96.637
U100-10	-10 high
U100 111	110000
(Totcz = = 2 ¢9)	
U100-1\%	-1\% 1716
U100-13	- 3 high
U101-1	- 1 383A
U101-2	-20000
U101-4	- 4 low
U101-	- 0000
(TOTLz	
U101.-6	- 6 383A
(TOTLz $=2$ \% 037)	
U101-10	10 1.0w
U101-11	-11 high
1101-120	-1\% high
U101-13	13 low

5-1. INTRODUCTION.
5-2. This section describes adjustments and checks required to return the instrument to peak operating capability after repairs have been made.

5-3. SAFETY REQUIREMENTS

5-4. Although this instrument has been designed in accordance with international safety standards, general safety precautions must be observed during all phases of operation, service, and repair of the instrument. Failure to comply with precautions listed in the Safety Summary at the front of this manual or with specific warnings given throughout the manual could result in serious injury or death or damage to equipment. Service adjustments should be performed only by qualified service personnel.

5-5. EQUIPMENT REQUIRED.
5-6. HP 64000 series mainframe.
2 HP 64602-66501 200MHz Data Acq. Boards
2 HP 64604A Timing Probes
HP 1722B S
HP 5314A Universal Counter or equivalent
HP 10017 Probe or equivalent
BNC Coaxial Cable approx. 1 meter long.
Alignment Tool.
Small Screwdriver.
Small Screwdriver.
HP 64110-66503 Extender Board.
4 Extended coaxial clock cables. (Part of 64934A Service Kit HP 3 -way extended timing bus cable. (Part of 64934 B Service Kit)

Adjustments - Model 64601A

5-7. SAMPLE-RATE OSCILLATOR CALIBRATION.

5-8. Setup.
5-9. TP1, the coaxial testpoint for the oscillator, is located at the very top-center of the board (when viewing from the component side). The oscillator transistor (Q1), and its trimmer capacitor (C7), are located at the top of the board between U7 and U8. See figure 5-1.

5-10. Using the mainframe keyboard and softkeys configure the timing analyzer for the oscillator adjustment as follows:
a. Press softkey "timing", then [RETURN]. The screen should show the trace specification.
b. Verify that the "mode_is wide_sample", and the "sample rate_is 200 MHz".
c. Press the softkeys "trigger on entering POD1.0 = OXXH". [RETURN]
d. Press "execute". [RETURN]

5-11. Adjustment
a. Connect the probe to the 64602A acquisition board through the timing cable. Leave the probe leads disconnected.
b. Connect channel A of the scope to testpoint 1. Since this is a coaxial test point, no ground clip is necessary.
c. Set up CHANNEL A VOLTS/DIV to .01 (100 mv /div. with the X10 probe), and AC couple the input.
d. Set up HORIZ DISPLAY to MAG X10 and MAIN.
e. Set up TIME/DIV to $10 \mathrm{~ns} / \mathrm{div}$. (This is actually $1 \mathrm{~ns} / \mathrm{div} .$, since MAG X10 has been selected).
f. If no signal is present adjust the trimmer capacitor on the upper middle part of the board until a sinusoidal signal is observed (try to adjust the capacitor to the middle of the range when the sinusoid is observed). NOTE: USE A NON-CONDUCTIVE ALIGNMENT TOOL ONLY!!! (ISOLATION IS REQUIRED).
g. The sinusoidal waveform should have an amplitude of 100 to 150 mV and a frequency of 200 MHz (2 periods/screen on 1ns/div.).

SAMPLE RATE OSCILLATOR CALIBRATION (continued)

h. To determine if the oscillator is stable, tap the collector of the high frequency transistor lightly with the blade of a small screwdriver to see if the oscillator will come back to a stable 200 MHz oscillation.

HIGH FREQUENCY TRANSISTOR: $\begin{gathered}\text { | } \\ -0-1->-----c o l l e c t o r ~\end{gathered}$ (located below the trimmer cap.)
i. If the oscillator will not come back with the correct oscillation, readjust the trimmer capacitor and repeat the last step to ensure a stable oscillation.
j. Connect the scope probe BNC to INPUT A of the 5314 A Universal Counter. Set up the counter for NORM FREQ A 10 Hz RESOLUTION positive SLOPE ATIN XI and adjust LEVELA on the counter to approximately the middle position.
k. Connect the scope probe tip to TP4 (located between U4 and U20), and connect the ground lead of the scope probe to TP7 (GND).

1. The counter should display $50 \mathrm{MHz}+/-0.01 \%(49995 \mathrm{kHz}-50005 \mathrm{kHz}$).

Press softkey "end". Press [RETURN].

5-12. TRIGGER DURATION CALIBRATION (R1 through R6)

5-13. Besides the previous sample rate oscillator adjustment, there are six adjustments for trigger duration on the 64601 A control board. The six pots, R1-R6, are located at the top of the board (when viewed from the component side). The last three adjustments, $\mathrm{R} 4-\mathrm{R} 6$, are for a 16-channel, twoacquisition board system ONLY.

5-14. The duration pots, R1-R6 at the top of the 64601A control board, determine the pattern duration required for triggering.

5-15. Use PV tests 6 and 10 for adjustment of R1 through R6. For an 8-channel single acquisition board system, only R1, R2, and R3 need to be adjusted.

5-16. A slight readjustment may be necessary whenever the 64601 A control board is moved to a different mainframe.

5-17. Hardware Setup.
a. Connect the timing probes to the data acquisition boards through the timing cables.
b. Disconnect all channels from any signal source: that is, leave the probes disconnected.

5-18. 8-Channel Keyboard Setup. Use the following procedure to adjust R1-R3.
a. Press softkey "option_test". [RETURN]
b. The screen should list all the option boards installed in your system. Type in the slot number for the 64601A control board. [RETURN]
c. Press softkey "run".
d. Press softkey "slot".
e. The screen should list the timing analyzer boards in the system. Type in the slot number for the 64601A control board.
f. Press softkey "test". The screen should list all the Control Board PV tests.
g. Type in "6".
h. Type in "cal". [RETURN]

5-19. 8-Channel Adjustment. (R1 through R3)

Test 6 consists of nine test steps, five in braces, and four in brackets: \{00000\}[0000]. We are concerned only with the four in brackets. All four should be 0. If they are not, procede as follows:

1. Adjust R1 until the second digit from the right is 0 .
2. Adjust R 2 until the third digit from the right is 0 .
3. Adjust R3 until the fourth digit from the right is 0 .
4. The first bracket digit indicates whether the others are correct. It should now be 0 also.
5. Press the "stop" softkey.
6. Press the "end" softkey.

5-20. 16-Channel Keyboard Setup. (R4 through R6)

Use the following procedure to adjust R4-R6 in a system containing a second 64602A acquisition board.
a. Press softkey "option_test". [RETURN]
b. The screen should list all the option boards installed in your system. Type in the slot number for the 64601A control board. [RETURN]
c. Press softkey "run".
d. Press softkey "slot".
e. The screen should list the timing analyzer boards in the system. Type in the slot number for the 64601A control board.
f. Press softkey "test".
g. The screen should list the 15 control board PV tests. Type in " 10 ".
h. Type in "cal". [RETURN]

5-21. 16-channel adjustment procedure. (R4 through R6)

When test 10 is displayed, nine digits are shown: five in braces, and four in brackets. We are concerned only with the four bracket digits. The four digits in brackets should all be 0. If they are not, procede as follows:

1. Adjust $R 4$ until the second digit from the right is 0.
2. Adjust $R 5$ until the third digit from the right is 0 .
3. Adjust R6 until the fourth digit from the right is 0.
4. The first digit from the right should be 0 when the other three are 0.
5. Press the "stop" softkey. [RETURN]
6. Press the "end" softkey. [RETURN].

Adjustments - Model 64601A

NOTES

SECTION VI

REPLACEABLE PARTS

6-1. INTRODUCTION.
6-2. This section contains information for ordering parts. Table 6-1 lists abbreviations used in the parts list and throughout the manual. Table 6-2 lists all replaceable parts in reference designator order. Table 6-3 contains the names and addresses that correspond to the manufacturers' five-digit code numbers.

6-3. ABBREVIATIONS.
6-4. Table 6-1 lists abbreviations used in the parts list, the schematics and throughout the manual. In some cases, two forms of the abbreviation are used: one all in capital letters, and one partial or no capitals. This occurs because the abbreviations in the parts list are always capitals. However, in the schematics and other parts of the manual, other abbreviation forms are used with both lowercase and uppercase letters.

6-5. REPLACEABLE PARTS LIST.
6-6. Table 6-2 is the list of replaceable parts and is organized as follows:
a. Chassis-mounted parts in alphanumerical order by reference designation.
b. Electrical assemblies and their components in alphanumerical order by reference designation.
c. Miscellaneous parts.

The information given for each part consists of the following:
a. The Hewlett-Packard part number and the check digit.
b. The total quantity (Qty) in the instrument.
c. The description of the part.
d. A five-digit code that indicates the manufacturer.
e. The manufacturer's part number.

The total quantity for each part is given only once--at the first appearance of the part number in the list.

6-7. ORDERING INFORMATION.

6-8. To order a part listed in the replaceable parts table, quote the Hewlewtt-Packard part number and check digit, indicate the quantity required, and address the order to the nearest Hewlett-Packard office.

6-9. To order a part that is not listed in the replaceable parts table, include the instrument model number, instrument repair number, the description and function of the part, and the number of parts required. Address the order to the nearest Hewlett-Packard office.

6-10. SPARE PARTS KIT.
6-11. A service kit is available. To order, please contact your local sales and service representative.

6-12. DIRECT MAIL ORDER SYSTEM.
6-13. Within the USA, Hewlett-Packard can supply parts through a direct mail order system. Advantages of using the system are as follows:
a. Direct ordering and shipment from the HP Parts Center in Mountain View California.
b. No Maximum or minimum on any mail order (there is a minimum order amount, for parts ordered through a local HP office when the orders require billing and invoicing).
c. Prepaid transportation (A small handling charge for each order).
d. No invoices--to provide these advantages, a check or money order must accompany each order.

6-14. Mail-order forms and specific ordering information are available through your local HP office. Addresses and phone numbers are located at the back of this manual.

Table 6-1. Reference Designators and Abbreviations

REFERENCE DESIGNATORS							
A	= assembly	F	- fuse	MP	- mechanical part	U	integrated circuit
B	= motor	FL	= filter	P	- plug	v	- vacuum, tube, neon
BT	= battery	IC	- integrated circuit	Q	- transistor		bulb, photocell, etc
C	= capacitor	J	= jack	R	resistor	VR	= voltage regulator
CP	= coupler	K	= relay	RT	$=$ thermistor	w	- cable
CR	= diode	L	= inductor	S	- switch	\mathbf{X}	- socket
DL	= delay line	LS	= loud speaker	T	- transformer	Y	- crystal
DS	= device signaling (lamp)	M	= meter	TB	- terminal board	Z	- tuned cavity network
E	= misc electronic part	MK	$=$ microphone	TP	$=$ test point		
ABBREVIATIONS							
A	= amperes	H	$=$ henries	N/O	= normally open	RMO	- rack mount only
AFC	$\begin{aligned} & =\text { automatic frequency } \\ & \text { control } \end{aligned}$	HDW	- hardware	NOM	= nominal	RMS	- root-mean square
AMPL	= amplifier	HEX	= hexagonal	NPO	- negative positive zero	RWV	* reverse working
		HG	= mercury		(zero temperature		voltage
BFO	= beat frequency oscillator	HR	$=$ hour(s)		coefficient)		
BECU	= beryllium copper	HZ	= hertz	NPN	- negative-positive-	S-B	* slow-blow
BH	= binder head				negative	SCR	screw
BP	= bandpass			NRFR	= not recommended for	SE	selenium
BRS	= brass	IF	$=$ intermediate freq		field replacement	SECT	- section(s)
BWO	= backward wave oscillator	IMPG	= impregnated	NSR	= not separately	SEMICON	semiconductor
		INCD	= incandescent		replaceable	SI	- silicon
CCW	= counter-clockwise	INCL	- include(s)			SIL	= silver
CER	= ceramic	INS	$=$ insulation(ed)	OBD	- order by description	SL	- slide
CMO	= cabinet mount only	INT	- internal	OH	= oval head	SPG	spring
COEF	$=$ coeficient			OX	oxide	SPL	- special
COM	= common	K	$=$ kilo $=1000$			SST	= stainless steel
COMP	= composition					SR	- split ring
COMPL	= complete	LH	- left hand	P	- peak	STL	steel
CONN	= connector	LIN	- linear taper	PC	= printed circuit		
CP	= cadmium plate	LK WASH	= lock washer	PF	- picofarads-10.12	TA	$=$ tantalum
CRT	= cathode-ray tube	LOG	= logarithmic taper		farads	TD	time delay
CW	= clockwise	LPF	= low pass filter	PH BRZ	- phosphor bronze	TGL	= toggle
				PHL	- phillips	THD	thread
DEPC	= deposited carbon	M	$=$ milli $=10-3$	PIV	- peak inverse voltage	TI	$=$ titanium
DR	= drive	MEG	$=\mathrm{meg}=106$	PNP	- positive-negative-	TOL	- tolerance
		MET FLM	= metal film		positive	TRIM	trimmer
ELECT	= electrolytic	MET OX	= metallic oxide	P/O	= part of	TWT	- traveling wave tube
ENCAP	- encapsulated	MFR	= manufacturer	POLY	polystyrene		
EXT	= external	MHZ	$=$ mega hertz	PORC	= porcelain	U	micro-10 6
		MINAT	= miniature	POS	$=$ position(s)		
F	$=$ farads	MOM	= momentary	POT	- potentiometer	VAR	- variable
FH	$=$ flat head	MOS	$=$ metal oxide substrate	PP	- peak-to-peak	VDCW	dc working volts
FIL H	$=$ fillister head	MTG	= mounting	PT	$=$ point		
FXD	$=$ fixed	MY	= "mylar"	PWV	= peak working voltage	W/	= with
						w	watts
G	- giga (109)	N	- nano (10-9)	RECT	- rectifier	wiv	working inverse
GE	= germanium	N/C	- normally closed	RF	$=$ radio frequency		voltage
GL	= glass	NE	= neon	RH	- round head or	ww	- wirewound
GRD	$=$ ground (ed)	NI PL	= nickel plate		right hand	W/O	without

Table 6-2. Replaceable Parts List

Reference Designation	HP Part Number	C	Oty	Description	Mfr Code	Mfr Part Number
	64601A	9	1	TIMING ANALYSTS CONTROL ROARD	28480	64601A
A1	64601-66502	2	1	TIMING CONTROL BOARD	23480	64601-66502
A1C1	0160-2055	9	65	CAPACITOR - FXD . 014 L + $80-20 \% 100 \cup D C$ CER	23480	0160-2055
A1C2	0160-2055	9		CAPACITOR-FXD . $014 \mathrm{~L}+80-20 \% 100 \mathrm{UDC}$ CER	28480	0160-2055
A1C3	0160-2055	9		CAPACITOR-FXD . $014 \mathrm{~L}+80-20 \% 100 \cup D C$ CER	28480	0160-2055
Alc4	0160-2055	9		CAPACITOR-FXD . $01 \mathrm{UF}+80-20 \% 100 \mathrm{UDC}$ CER	28480	0160-2055
A1C5	0160-3879	7	3	CAPACITOR-FXD . $011 \mathrm{~F}+-20 \% 100 \mathrm{VDC} \mathrm{CER}$	28480	0160-3879
A1C6	0160-3879	7		CAPACITOR-FXD $0.01 \mathrm{UF}+\cdots 20 \% 100 \cup D C$ CER	28480	0160-3879
A1C7	0121-0061	1	1	CAPACTTOR-U TRMR - CER $5.5-18 P F 3500$	52763	304322 5.5/18PF NPO
A1C8	0160-4383	0	1	CAPACTTOR-FXD 6.8PF +-. SPF $200 \cup D C$ CER	20932	$5024 \mathrm{E} 0200 \mathrm{RD6898}$
A1C9	0160-3874	2	6	CAPACITOR -FXD 10PF +-.5PF 200UDC CER	28480	0160-3874
AlC10	0160-3874	2	4	CAPACITOR-FXD 10PF +-. SPF 2000 DC CER	28480	0160-3874
Alcil	0160-2055	9		CAPACTTOR - FXD . $010 \mathrm{~F}+80-20 \% 100$ UDC CER	28480	0160-2055
Alciz	0160-3879	7 0		CAPACITOR-FXD . $011 \mathrm{UF}+\cdots 20 \% 100 \mathrm{UDC}$ CER	23480	0160-3879
A1C13	0160-2055	9		CAPACITOR-FXD . 01 UF + $80-20 \% 100$ UDC CER	28480	0160-2055
AlC14	0160-2055	9			28480	0160-2055
A1C15	0160-2055	9		CAPACITOR - FXD . $014 \mathrm{LF}+80-20 \% 100 \cup \mathrm{DC}$ CER	23480	0160-2055
A1C16	0160-2055	9		CAPACITOR-FXD . $014 \mathrm{UF}+80-20 \% 100 \mathrm{UDC}$ CER	28480	0160-2055
A1C17	0160-2055	9		CAPACITOR-FXD . $014 \mathrm{~F}+80-20 \% 100 \mathrm{UDC}$ CER	28480	0160-2055
AlC18	0140-0199	6	2	CAPACITOR-FXD 240PF +-5\% 300UDC MTCA	72136	DM15F241J0300WVICR
A1C19	0160-5415	4	2	CAPACITOR - FXD 3600PF 50UDC	28480	$0160-5415$
Alc20	0160-5343	4	2	CAPACITOR-FXD . O4UF SOUDC	28480	0160-5343
A1C21	0160-5342	3	2	CAPACITOR-FXD , AUF 50UDC	28480	0160-5342
Alc22	0160-3874	2		CAPACITOR-FXD 10PF + - SPF 200UDC CER	28480	0160-3874
A1C23	0160-5341	2	2	CAPACITOR-FXD AUF 50UDC	28480	0160-5341
${ }^{\text {AlC24 }}$	$0160-2055$	9		CAPACITOR-FXD . $014 \mathrm{~F}+80-20 \%$ 100UDC CER	29480	0160-2055
Alces	0160-2055	9		CAPACITOR-FXD . $011 \mathrm{JF}+80-20 \% 100 \mathrm{VDC} \mathrm{CER}$	23480	0160-2055
Alc26	0160-2055	9		CAPACITOR-FXD $010 \mathrm{OF}+80-20 \% 1000 \mathrm{DC}$ CER	29480	0160-2055
A1C27	0160-3875	3	2	CAPACITOR-FXD 22PF +-- SPF 200UDC CER	28480	0160-3875
Alc28	0160-2055	9		CAPACITOR-FXD . $010 \mathrm{JF}+80-20 \% 100 \mathrm{UDC}$ CER	28480	0160-2055
A1C29	0160-4813	1 9	3	CAPACTTOR - FXD 180PF +-5\% 1000 DCC CER	28480	0160-4813
Alczo	0160-2055	9		CAPACITOR-FXD . $014 \mathrm{~F}+80-20 \% 100$ UDC CER	29480	0160-2055
A1C31	0160-2055	9		CAPACITOR FXD . 01 UF + $+80-20 \% 100 \cup \mathrm{DC}$ CER	28480	0160-2055
A1C32	0160-4492	2	2	CAPACITOR-FXD 18PF +-5\% 200UDC CER 0+-30	28480	0160-4492
A1C33	0160-2055	9		CAPACITOR-FXD . $011 \mathrm{JF}+80-20 \% 100 \mathrm{DDC}$ CER	28480	0160-2055
Alc34	0160-2055	9		CAPACITOR-FXD . $01 \mathrm{UF}+80-20 \% 100 \mathrm{UDC}$ CER	28480	0160-2055
A1C35	0160-2055	9		CAPACTTOR - FXD . $011 \mathrm{JF}+80-20 \% 100 \mathrm{DDC}$ CER	28480	0160-2055
A1C36	0160-2055	9		CAPACITOR-FXD . $01 \mathrm{UF}+80-20 \% 100$ UDC CER	28480	0160-2055
A1c37	0160-2055	9		CAPACITOR-FXD . 01UF $+80-20 \% 100$ UDC CER	28480	0160-2055
Alc38	0160-2055	9		CAPACITOR-FXD .01UF + $80-20 \% 100$ UDC CER	23480	0160-2055
A1C39	0160-2055	9		CAPACTTOR-FXD . 01UF $+80-20 \% 100 \mathrm{VDC} \mathrm{CER}$	28480	0160-2055
Alc40	0160-2055	9		CAPACITOR-FXD . $0.14 F+80-20 \% 100 \cup D C$ CER	28480	0160-2055
A1C41	0160-2055	9		CAPACTTOR-FXD .01UF $+80-20 \% 100 \cup D C$ CER	28480	0160-2055
A1C42	0160-2055	9		CAPACITOR-FXD . $014 \mathrm{~F}+80-20 \% 100$ UDC CEER	28480	0160-2055
A1C43	0160-2055	9		CAPACITOR-FXD . 01UF + $80-20 \% 100$ UDC CER	28480	0160-2055
A1C44	0160-2055	9		CAPACITOR-FXD .01UF $+80-20 \% 100 \cup D C$ CER	28480	0160-2055
A1545	0160-2055	9		CAPACITOR - FXD . $01 \mathrm{UF}+80-20 \% 100$ DS CER	28480	0160-2055
A1C46	0160-2055	9		CAPACITOR-FXD .01UF +80-20\% 100 UDC CER	28480	0160-2055
A1C47	0160-2055	9		CAPACTTOR-FXD, O1JF $+80-20 \% 100 \cup D C$ CEER	28480	0160-2055
A1C48	0160-4813	1		CAPACITOR-FXD 190PF + -5\% 100 UDC CER	29480	0160-4813
A1C49	0160-3875	3		CAPACTTOR-FXD 22PF +--5PF 200UDC CER	28480	0160-3875
Alc50	0160-4492	2		CAPACITOR-FXD 18PF +--5\% 200UDC CER 0+-30	29480	0160-4492
A1CS1	0160-2055	9		CAPACTTOR-FXD . $010 \mathrm{UF}+80-20 \% 100 \cup D C$ CER	23480	0160-2055
Alcse	0160-2055	9		CAPACITIOR-FXD . $014 \mathrm{UF}+80-20 \% 100$ UDC CER	29480	0160-2055
A1c53	0140-0199	6		CAPACJTOR-FXD $240 \mathrm{PF}+\mathrm{-5} \mathrm{\%} 300 \cup \mathrm{DC}$ MLICA	72136	DM15F241J0300WU1CR
AlCS4	0160-5415	1		CAPACITTR -FXD 3600PF 50UDC	28480	$0160-5415$
A1C5S	0160-5343	4		CAPACITOR-FXD . O4UF SOUDC	28480	0160-5343
A1C56	0160-5342	3		CAPACITTOR-FXD AUF SOUDC	28480	0160-5342
A1C57	0160-3874	2		CAPACITOR - FXD 10PF + - .5PF 200UDC CER	28480	0160-3874
Alcss	0160-5341	2		CAPACTTOR-FXD 4UFE 50UDC	28480	0160-5341
A1C59	0160-2055	9		CAPACTTDR -FXD - $014 \mathrm{~F}+80-20 \% 100$ UDC CER	28480	0160-2055
Alc60	0160-2055	9		CAPACITOR-FXD . $014 \mathrm{~F}+80-20 \% 100 \mathrm{UDC}$ CER	28480	0160-2055
A1Cs1	0160-2055	9		CAPACTITR - FXD - $014 \mathrm{~F}+80-20 \% 100$ UDC CER	28480	0160-2055
Alcte	0160-2055	9		CAPACITOR-FXD . $01 \mathrm{UF}+80-20 \% 100 \mathrm{UDC}$ CER	29480	0160-2055
A1C63	0160-2055	9		CAPACITOR-FXD . 014 L + 80 - $20 \% 100$ UDC CER	28480	0160-2055
A1C64	0160-2055	9		CAPACITOR-FXD . $014 \mathrm{LF}+80-20 \% 100 \cup \mathrm{DC}$ CER	23480	0160-2055
A1C65	0160-2055	9		CAPACITID-FXD . $010 \mathrm{LF}+80-20 \% 100 \mathrm{UDC}$ CER	28480	0160-2055
A1C66	0160-2055	9		CAPACITOR-FXD . $014 \mathrm{LF}+80-20 \% 100 \mathrm{UDC}$ CER	28480	0160-2055
A1C67	0160-2055	9		CAPACITOR - FXD . 01 UF $+80-20 \% 100 U D C$ CER	23480	0160-2055
A1C68	0160-2055	9		CAPACITOR-FXD . $014 \mathrm{~L}+80-20 \% 100 \mathrm{UDC}$ CER	28480	0160-205s
A1C69	0160-2055	9			28480	0160-2055
A1C70	0160-2055	9		CAPACITOR-FXD . $014 \mathrm{~F}+80-20 \% 100$ UDC CER	28480	0160-2055

See introduction to this section for ordering information
CTL 6-4
CHANGE 1

Table 6-2. Replaceable Parts List (Con't)

Reference Designation	HP Part Number	$\begin{aligned} & \mathrm{C} \\ & \mathrm{D} \end{aligned}$	Oty	Description	Mfr Code	Mfr Part Number
A1C71	0160-2055	9		CAPACTTOR-FXD . $014 \mathrm{~F}+80-20 \% 100 \cup \mathrm{DC}$ CER	28480	0160-2055
AlC72	0\%60-2055	9		CAPACITOR-FXD . 01 UF + $80-$-20\% 100 UDC CER	28480	0160-2055
A1C73	0160-2055	9		CAPACITOR - FXD . $010 \mathrm{~F}+80$ - $20 \% 100 \cup D C$ CER	28480	0160-2055
A1C74	$0160 \cdots 4813$	1		CAPACITOR-FXD 180PF +-5\% 100 UDC CER	28480	0160-4813
A1C75	0160-2055	9		CAPACITOR-FXD . $014 \mathrm{~F}+30-20 \% 100 \mathrm{VDC} \mathrm{CER}$	28480	0160-2055
AlC76	0160-2055	9		CAPACITTOR-FXD . 01 UF + $80-20 \% 100 \cup D C$ CER	28480	0160-2055
A1C77	0160-2055	9		CAPACTTOR-FXD . $014 \mathrm{~F}+80-20 \% 100$ UDC CER	28480	0160-2055
A1678	0160-2055	9		CAPACITOR-FXD . $014 \mathrm{~F}+80-20 \% 100 \cup D C$ CER	28480	0160-2055
A1C79	0160--2055	9		CAPACITOR-FXD . $014 \mathrm{~F}+80-20 \% 100 \cup \mathrm{DC}$ CER	28480	0160-2055
Alc80	0160-2055	9		CAPACITOR-FXD . 01 UF $+80-20 \% 100$ DC CER	28480	0160-2055
A1C81	0160-2055	9		CAPACTTOR-FXD . $010 \mathrm{~F}+80-20 \% 100 \cup D C$ CER	28480	0160-2055
Alc8e	0160-2055	9		CAPACITOR-FXD . $014 \mathrm{~F}+80-20 \% 100$ UDC CER	28480	0160-2055
A1C83	0140-0198	5	1	CAPACITOR -FXD 200PF +-5\% 300VDC MICA	72136	DM15F20150300WU1CR
A1C84	0160-2055	9		CAPACITOR-FXD , 01UF + $80-20 \% 100 \cup D C$ CER	28480	0160-2055
A1685	0160-2055	9		CAPACITOR-FXD . 01 UF + $80-20 \% 100 \cup D C$ CER	28480	0160-2055
A 1686	0160-4808	4	1	CAPACITOR-FXD 470PF +-5\% 1000 DCC CER	28490	0160-4808
A1c87	0160-2055	9		CAPACITOR FXD . 01 UF + $80-20 \% 100 \cup D C$ CER	28480	0160-2055
A 1688	$0160 \cdots 2055$	9		CAPACITOR-FXD , 01UF + $80-20 \% 100 \cup D C$ CER	28480	0160-2055
A1c89	0160-2055	9		CAPACITOR FFXD . $011 \mathrm{JF}+80-20 \% 100 \cup D C$ CER	88480	0160-2055
A1C90	0160-2055	9		CAPACSTOR-FXD . $014 \mathrm{~F}+80-20 \% 100 \mathrm{UDC}$ CER	28480	0160-2055
A1C91	0160-2055	9		CAPACTTOR F- FXD . $014 \mathrm{~F}+80-20 \% 100$ UDC CER	28480	0160-2055
A1c92	$0160 \cdots 2055$	9		CAPACTTOR--FXD . 01 LUF + $80-20 \% 100 \cup D C$ CER	28480	0160-2055
A1C93	0160-2055	9		CAPACITOR FXD . $014 \mathrm{~F}+80-20 \% 100 \cup \mathrm{DC}$ CER	28480	0160-2055
A1C94	0180 0.374	3	3	CAPACITOR-FXD 10UF+-10\% 20UDC TA	56289	150D106×902082
A1095	0180-0374	3		CAPACTTOR - FXD 10UF+-10\% 20VDC TA	56289	150D106×9020日2
A1C96	0180 0374	3		CAPACITOR-FXD $100 \mathrm{FF}+-10 \%$ 20UDC TA	56289	150D106x9020月2
A1C97	0160-4822	2	1	CAPACITOR-FXD 1000 PF $+-5 \% 100 \mathrm{VDC}$ CER	28480	0160-4822
A1C98	0160-3569	2	1	CAPACITOR-FXD 27PF +-5\% 200VDC CER	28480	0160-3569
A1CR1	1901-0040	1	1	DIDDE-SWITCHING 30U 50MA 2 NS DO-35	28480	1901-0040
AlJ1	125000543	8	2	CONNECTOR-RF SM-SNP M PC 50-0HM	28480	1250-0543
Als 2	1250-1189	0	2	CONNECTOR-RF SME FEM PC 50 - 0 OHM	28480	1250-1189
A1J3	1250-0543	9		CONNECTOR-RF SM-SNP M PC 50-0HM	28480	1250-0543
A1.JA	1250-1189	0		CONNECTOR-RF SMB FEM PC 50-OHM	28480	1250-1189
A1L. 1	9100-2247	4	1		28480	$9100-2 \mathrm{e} 47$
Alle	9100-2248	5	1	INDUCTOR RF-CH-MI. D $120 \mathrm{NH} 10 \% .105 D \mathrm{C}$. 26 LG	28480	9100-2248
A1MP 1	1490-0116	8		PIN-GRU , 062-IN-DTA , 25-TN-LG STL	23480	1480-0116
Almpa	64601-85001	6	1	BOARD EJECTOR	28480	$64601-85001$
A1MP3	64601-85002	7	1	GOARD EJECTOR	28480	$64601-85002$
Alp 1	$1258-0182$	7	3	CONNECTTOR-R \& P I MALE PLUGG	28480	1259-0182
A1P2 Alp	1258-0182	7		CONNECTOR-R \& P 1 MALEE PLUG	28480	1258-0182
A1P3	1258-0182	7		CONNECTOR-R \& P I MALEE PILUG	28480	1258-0182
A1Q1	1854-0591	6	1	TRANSTSTOR NPN ST PD=180MW FT $=4 \mathrm{FH} \mathrm{C}$	25403	EFR-90
AiRit	2100-3352	7	4	RESTSTOR-TRMR $1 \mathrm{~K} 10 \% \mathrm{C}$ STDE ADJ 1 -TRN	28480	2100-3352
AIke	$2100-3352$	7		RESISTOR-TRMR 1K 10% C SIDEE-ADJ 1 - TRN	29480	2100-3352
AIR 3 AIR 4	$2100-3351$ $2100-3352$	6 7 7	2	RESTSTOR-TRMR 500 10% C STDE ADJ $1 \cdots$ TRN	28480	2100-3351
A1R4 A1R	$2100-3352$ $2100-335$	7 7		RESTSTOR-TRMR RESISTOR-TRMR 10	28480 88480	$2100-3352$ $2100-3352$
A1R6 AIR'	21003351 0757×0280	6 3	4	RESISTOR-TRMR $50010 \% \mathrm{C}$ STDE-ADJ 1 - TRN RESISTOR $1 \mathrm{~K} 1 \% .125 W \mathrm{~F}$ TC=0+-100	28480 24546	$2100-3351$ $C 4 \cdots 1 / 8 \cdots \mathrm{~T} 0-1001 \cdots \mathrm{~F}$
AIR8	0757-0401	0	3	RESTSTOR 100 ($1 \% .125 \mathrm{~W}$ F TC\% $=0+-100$	24546	C4 1/8-T0-1001-F
AIR9	0757-0394	${ }_{0}^{0}$	1	RESISTOR 51.1 1%, 125W FF TC=0 0 + 100	24546	C4-1/8-T0-51R1-F
AXR10	0757-0280	3		RESTSTIR $1 \mathrm{~K} 1 \%$, 12SW F TC=0 $0+100$	24546	C4-1/8-T0-1001-F
AlR11	0757 0 - 0 280	3		RESTSTOR $1 \mathrm{~K} 1 \%$. 12 SW FF TC: $0+-100$	24546	$\mathrm{C} 4 \cdots 1 / 8-\mathrm{T} 0 \cdots 1001 \cdots$
A1R12 AR13	$0757-0410$ $0757-0426$	1 0 0	1	RESISTOR 3011%, 125W F TC=0 $0+100$	24546	$\mathrm{C} 4 \cdots 1 / 8-\mathrm{T} 0-301 \mathrm{R} \cdots$
A1R13	0757-0426	9	2	RESISTOR 1.3K 1%, 125W F TC=0 0 - 100	24546	$\mathrm{C} 4-1 / 8-\mathrm{T} 0-1301-\mathrm{F}$
A1R14	0757-0427	5	2	RESISTOR 1.5K 1%, 125W F TC=0+ 100	24546	C4-1/8- T0-1501 F
A1R15	0757- 0414	5	2	RESISTOR 4321%. 125W F TC $=0+-100$	24546	C.4-1/8-T0-432R-F
A1R16	0698-3132	4		RESTSTOR $2611 \% .125 W$ F TC= $0+\cdots-100$		
AlR17	$0757 \cdots 0405$	4	1	RESISTOR 1621%, 125 W F TC\% $=0+-100$	24546	$\mathrm{C}: 4 \cdots 1 / 8-\mathrm{T} 0-162 \mathrm{R}-\mathrm{F}$
A1R18	0757-0391	7	6	RESISTOR 39.2 $1 \% .125 \mathrm{~F}$ F TC=0 $+\cdots 100$	24546	$\text { CA } 1 / 8-T 0-39 R_{2}-F$
A1R19	0757-0391	7		RESISTOR $39.21 \% .125 W$ F TC $=0+-100$	24546	C4-1/8-T0-39R2-F
A1R20	0757-0391	7		RESISTOR $39.21 \% .125 W$ F TC=0 +-100	24546	C.4-1/8-T0-39R2-F

Table 6-2. Replaceable Parts List (Con't)

Reference Designation	HP Part Number	$\left\|\begin{array}{l} C \\ D \end{array}\right\|$	Oty	Description	Mfr Code	Mfr Part Number
A1R21	0757-0391	7		RESTSTOR 39.2 1%. 125 W F TC $=0+\cdots 100$	24546	C4-1/8-T0-39R2-F
Alrze	0757-0391	7		RESISTOR $39.21 \% .125 W \mathrm{~F}$ TC= $=0+-100$	24546	C4-1/8-T0-39R2-F
Aireza	0757-0391	7		RESISTOR 39.21%-125W F rCo $0+\cdots 100$	24546	C4-1/8-T0-39R2-F
A1R23	0757-0407	6	5	RESTSTOR 2001%. 125 L F F TC=0 $+\cdots 100$	24546	C4-1/8-T0-201 F
A1R24	$0757-0407$	6		RESISTOR $2001 \% .125 W$ F TC=0+-100	24546	C.4-1/8-T0-201-F
A1R25	0757-0416	7	5	RESTSTOR $5111 \% .125 \mathrm{SW}$ F TC=0 $0+100$	24546	C4 $41 / 8-70-511 \mathrm{R}-\mathrm{F}$
AlR26	0757-0416	7		RESISTOR $5111 \% .125 W$ F TC= $=0+-100$	24546	C4-1/8-T0-511R-F
A1R27	0757-0416	7		REESTSTOR $5111 \% .125 \mathrm{~L}$ F TC=0+-100	24546	C4-1/8-T0-511R-F
A1R28	0757-0416	7		RESISTOR $5111 \% .125 \mathrm{~W}$ F TC=0+-100	24546	C.4-1/8-T0-511R-F
A1R29 A 1 R 30	$0757-0407$ $0757-0407$	6		RESTSTOR $2001 \% .125 \mathrm{~W}$ F TC $=0+\cdots 100$ RESTSTOR $2001 \% .125 W$ F TC $=0+-100$	24546 24546	
AlR30	-	6		RESISTOR 200 1\% . 125W F TC=0+-100	24546	C.4-1/8-T0-201-F
A1R31	0757-0426	9		RESISTRR $1.3 \mathrm{~K} 1 \% .125 \mathrm{WF}$ TC $=0+\cdots 100$	2.4546	C4 1/8-T0-1301-F
Alr3e	0757-0427	0		RESISTOR $1.5 K 1 \%$, 125W F TC=0+-100	24546	C4-1/8-T0-1501-F
A1R33	0757-0414	5		RESTSTOR $4321 \% \cdot 125 W$ F TC $=0+100$	24546	C4 1/8-T0-432R-F
A1R34	0757-0280	3			24546	
A1R35	0757-0401	0		RESISTOR 1001%. 125 W F TC $=0+100$	24546	C4-1/8-T0-101 F
AlR36	0757-0416	7		RESTSTOR $5111 \% .125 W$ F TC $=0+-100$	245:46	
A1R37	0757-0407	6		RESTSTOR $2001 \% .125 W$ F TC=0 $0+100$	24546	C4-1/8-T0-201-F
AlR38	0757-0401	0		RESISTOR $1001 \% \cdot 125 \mathrm{~W}$ F TC $=0+-100$	24546	C4-1/8-T0-101-F
AlTP1	1250-1737	4	1	COAXIAL TEST POINT	28480	1250-1737
Altpe	0360-0535	0	11	TERMINAL TEST POINT PCB	00000	ORDER BY DESCRIPTİN
A1TP3	0360-0535	0		TERMINAL TEST POINT PCES	00000	ORDER BY DESCRIPTTION
Alpa	$0360-0.0535$	0		TERMINAL TEST POINT PCB	00000	ORDER EY DESCRIPTION
AlTP5	0360-0535	0		terminal test point peb	00000	drder by description
AltPg	03600-0535	0		TERMINAL TEST POINT PCB	00000	ORDER by description
A1TP7	0360-0535	0		TERMINAL TEST POINT PCB	00000	ORDER EY DESCRTPTION
A1TP8	0360-0535	0		TERMINAL TEST POINT PCB	00000	ORDER EY DESCRIPTION
A1TPG AlPP10	$0360-0535$ $0360-0535$	0		TERMINAL TEST POTNT PCB	00000 00000	ORDER GY DESCRIPTTION ORDER GY DESCRIPTION
AITP11	0360-0535	0		terminal test point pee	00000	ORDER EY descriptatan
A. TP12	0360-0535	0		TERMINAL TEST POINT PCB	00000	ORDER GY description
Alul	1NE4-5008	9	4	IC---delay	28480	1NF4-5008
Alue	1810-0273	9	1	NETWORK-RES 10 -SIP 470.0 OHM $\times 9$	01.121	21.04471
Aluz	1820-2359	7	1	IC MISC ECL 14 -INP	07263	F10014PC
Alu4	1820-1359	5	1	IC MUXR/DATA- SEI. ECL 4-T0-1-LINE DUAL.	04713	MC10174P
A1us	1820-1225	4	3	IC FF ECL D-M/S DUAL	04713	MC10231P
A1U6	1810-0271	7	9	NETWORK-RES 10 -SIP 200.0 OHM $\times 9$	01121	$210 A_{2} 01$
A1U7	1820-1320	0	2	IC RCUR ECL LINE RCUR TPL 2-INP	04713	MC10216L
Alus	1820-0920	4	1	IC RCUR ECL LINE RCUR QUAD 2-INP	04713	MC.1692L
alug	1810-0272	8	7	NETWORK-RES $10-5 T P 330.0$ OHM $\times 9$	01121	210 A 331
Alulo	1820-2193	7	5	ic ff ecl d-m/s pos-edge-trig com clock	04713	MC10176L
A1U11	1820-2193	7		IC FFF ECL D-M/S POS-EDGE - TRIG COM CLOCK	04713	MC10176L
Aluta	1810-0272	8		NETWORK-RES $10-$ SIP 330.0 OHM $\times 9$	01121	210 A331
A1u13	1820-0815	6	3	IC CATE ECL AND-OR	04713	MC10121P
A1U1.4	1810-0272	8		NETWORK-RES $10-$ STP 330.0 OHM $\times 9$	01121	2104331
Aluts	1820-2193	7		IC FFF ECL D-M/s POS-EDGE--TRTG COM CLOCK	04713	MC10176L
Alult	1810-0271	7		NETWORK - RES 10--stP 200.0 OHM $\times 9$	01121	210 A 201
A1U17	1820-0815	6		IC CATE ECL AND-OR	04713	MC10121P
AlU18A	1810-0281	9	2	NETWORK-RES 10 --SIP 100.0 K OHM $\times 9$	01.121	210 A104
A1U18	1810-0541	4	1	NETWORK-RES 6--sip mul ti-value	28480	1810-05.41
Alu19	1820-0802	1	6	IC GATE ECL NOR QUAD 2-INP	04713	MC10102P
Alue 0	1810-0271	7		NETWORK-RES 10-5TP200.0 DHM $\times 9$	01121	210 A 201
Aluei	1820-0802	1		IC GATE ECL NOR QUAD $2 \cdots$ INP	04713	MC10102P
Alua?	1820-2664	7	1		04713	MC16781.
Alue3	1820-1225	4		IC FFF ECL D-M/S DUAL	04713	MC10231P
Alue 4	1820-0796	2	1	IC GATE ECL NOR QUAD 2 -Inp	04713	MC1662L
Alves	1810-0272	8		NETWORK-RES $10-$ STP 330.0 OHM $\times 9$	01.121	2104331
Alu26	1810-0271	7		NETWORK--RES $10-\mathrm{STP} 200.0$ OUM $\times 9$	01121	210 A 201
Aluar	1820-0802	1	6	IC GATE ECL NOR OUAD $2-I N P$	04713	MCi0102P
Alu2e	1820-1730	6	-	IC FF TTL LS D--TYPE POS-EDGE-TRIG COM	01295	SN74L.S273N
A1U29	1810-0402	6	,	NETWORK RES 16-DTP 330.0 OHM $\times 8$	01121	316 E 331
Alu30	$1810 \ldots 0243$	3	1	NETWRRK-RES 16-DIP6.8K OHM $\times 8$	01121	3168682
Alu31	1858-0054	4	2	transistor array 16-PIN PLISTC DIP	28480	1858-0054
Aluse	1821-0002	5	2	TRANSISTOR ARRAY 14-PIN CER DIP	31.585	CA3045
A1U33	1810-0271	7		NETWORK--RES $10-$ SIP 200.0 OHM $\times 9$	01121	210 CzO 01
Alu34	1820-1320	0		IC RCUR ECL LINE RCUR TPL. - -INP	04713	MC10216L
Allu35	1820-1946	6	3	IC GATE ECL DUAL.	04713	MC10117L
Alu36	1NB4-5008	9		ic-delay	28480	1NB4-5008
A1U37	1NR4-5008	9		ic--delay	28480	1 NE4-5008
Alu38	1NB4-5008	9		IC-DElay	28480	1NB4-5008
A1439	1820-1993	3	1	IC MUXR/DATA-SEL ECL QUAD 2-INP	04713	MC1015BL
AlU40	1820-1225	4		IC FFF ECL D-M/S DUAL	04713	MC10231P
A1U41	1810-0271	7		NETWORK-RES $10-\mathrm{STP200.0}$ DHM $\times 9$	01121	210 A 201
A1442	1820-1946	6		IC GATE ECL DUAI.	04713	MC10117L
A1U43 A1U44	1820-0802	1		IC GATE ECL NOR QUAD $2-1$ INP	04713	MC10102P
A1U44 Alu45	1820-1730	6		IC FF TTL L.S D-TYPE PDS-EDSE-TRIG CDM NETWORK-RES 16 -DIP 330.0 OHM $\times 8$	01295 01.121	${ }_{3168331}$

CTL 6-6
See introduction to this section for ordering information

Table 6-2. Replaceable Parts List (Con't)

Reference Designation	HP Part Number	C	Qty	Description	Mfr Code	Mfr Part Number
AlU46	1858-0054	4		TRANSTSTOR ARRAY 16 PJTN PLSTC DJP	28480	1858-0054
Alu47A	1810-0281	9		NETWORK-RES 10 -STP100.0K OHM $\times 9$	01121	21.04104
A1147	1821-0002	5		TRANSISTOR ARRAY 14-FJN CER DIP	$3 \mathrm{LSB5}$	CA30.45
Alu48	1820-0780	4	1	IC DRUR TTL. LINE DRUR QUAD	27014	DS8831N
A1U49	1820-1052	5	2	IC XLTR ECL EEL.--TO-TTL RUAD 2 - Inf	04713	MC1012SL
Alus 0	1820-1946	6		IC GATE ECL DUAI.	04713	MC101171.
A1u51	1820-0817	8	2	TC FF ECL D-M/S DUAL	04713	MC10131P
Aluse	1820-1788	4	1	TC CNTR ECL BIN SYNCHRO POS-EDGE-TRTG	07263	F100160C
A1U53	1810-0271	7		NETWORK-RES $10-5 T P 200.0$ OHM $\times 9$	01121	2108201
A1054	1820-0802	1		IC GATE ECL NOR QUAD 2-INP	04713	MC10102P
A1us5	1820-0815	6		IC GATE EECL AND-OR	04713	MC10121P
Alu56	1820-1196	8	3	IC FFF TTL LS D-TYPE POS-EDDEE-TRIG COM	01295	SN74I.S174N
A1457	1818-1596	7	3	IC CMOS 4096 (4K) STAT RAM 55-NS $3 \cdots 5$	54013	HM6147P - -3
A1458	1818-1596	7		IC CMOS 4096 (4K) STAT RAM 55-NS 3 - S	94013	HM6147P-3
A1459	1818-1596	7		IC CMOS 4096 (4K) STAT RAM S5-NS 3-S	54013	HM6147P-3
Alu60	1820-1677	0	1	IC FF TTL S D-TYPE OCTL	01295	SN'74S374N
A1U61	1820-0629	0	1	TC FF TTL S J-K NEG-EDGE-TRTG	01295	SN74S112N
Alute	1820-1077	4	1	IC MUXR/DATA-SEL TTL S ${ }^{\text {2 TO-1-1 INE }}$ QUAD	01295	SN745157N
A11463 A1U64	$1820-0693$ $1820-1052$	8 5	3	IC FFFTTLS D-TYPE POS-EDCE-TRIG IC XITR ECL ECL-TO-TTL QUAD $2-$ INP	01295 04713	SN74S74N
A1465	1810-0271	7		NETWORK-RES $10-\mathrm{STPC00.0}$ OHM $\times 9$	01121	2104201
A1U66	1820-1944	4	1	IC LCH ECL D--TYPE POS-EDGE-TRIG DUAL	04713	MC10130L
A11167	1820-0802	1		TC GATE ECL NOR RUAD Z-INP	04713	MC10102P
A1U68	1810-0271	7		NETWORK-RES $10-\mathrm{STP} 200.0$ OHM $\times 9$	01121	210 ARO
A11469	1820-1400	7	1	IC CATE ECL AND QUAD $2 \cdots$ INP	04713	Mr:10104P
A 1470	1810-0272	8		NETWORK-RES $10-\mathrm{STP} 330.0$ OHM $\times 9$	01121	210 A331
A1U71	1820--2193	7		IC FF ECL D-M/S POS-EDGE TRTG COM Clock	04713	MC10176L
Alu7e	1810-0272	8		NETWORK RES 10-ETP 330.0 OHM $\times 9$	01121	2100331
A1U73	1820-2193	7		IC FFF ECL D-M/S POS-EDGE- TRTG COM ClOCK	04713	MC101761
A1.474	1820-0817	8		IC FFF ECL D-M/S DUAL	$04 \% 13$	MC10131P
A1475	1810-0280	8	1	NETWORK--RES $10-5 T P 10.0 \mathrm{~K}$ OHM $\times 9$	01121	2104103
A1476	1820-1641	8	1	IC DRUR TTL LS BUS drur hex 1-INP	01295	SN741.S365AN
A1477	1816-1308	5		IC TTL L 1024 (1K) STAT RAM $75 \cdots \mathrm{NS} 3 \mathrm{M}$	07263	931.422PC
A1478	1820 1430	3	2	IC CATR TTL LS BTN SYNCHRO POS-EDGEE-TRIG	01295	SN74ILS161AN
A1479	646001-10002	-	1	IC-7611A- 5 FORMAT	28480	64601-10002
A1u80	64601-10001	9	1	ROM-PROGRAMMED 5 CHAR	28480	64601-10001
A1481	1820-1076	3	1	IC FFF TTL S D-TYPE PDS EDEE-TRTG CLEAR	01295	SN74S174N
Aluse	1820-1197	9	1	IC GATE TTL LS NAND QUAD $2-I N P$	01295	SNT4LS00N
A1483	1820-1158	2	1	TC GATE TTL S AND -OR-TNU DUAL $2-I N P$	01295	SN74S51N
AlU84	1820-0693	8		IC FF TTL S D-myPE POS-EDGE-TRTG	01295	SN74S74N
A1485	1820-1917	,	1	IC EFR TTL LS LINE DRUR DCTI.	01295	SN74L-S240N
A1486	1820-1173	1	1	IC XITR ECL TTL--TO-ECL QUAD 2 --INP	04713	MC10124L.
A11487	1810-0272	8		NETWORK - RES $10-5 T P 330.0$ OHM $\times 9$	01121	2104331
A1488	1820-1322	2	1	IC GATE TTL 5 NOR QUAD $2 \ldots$ INP	01295	SN74S02N
A11189	1820-0269	4	1	IC GATE TTL NAND QUAD $2-I N P$	01295	SN7403N
Alu90	1820--2799	9	1	IC-SN74L.S259	28480	1820-2799
Alu91	1820-1216	3	1	IC DCDR TTL LS 3-TO-BMINE 3-INP	01295	SN'74LS138N
Alu92	1820-1196	8		IC FF TTL LS D TYPE POS-EDGE-TRIG COM	01295	SN741-5174N
A1493	1820-1196	8		TC FF TTL LS D-TYPE PDS EDGE TRTG COM	01295	SN74LS174N
Al494	1820-1475	6	2	IC CNTR TTL S BIN SYNCHRO POS-EDGE--TRTG	07263	93516 DC
A1495	1820-1475	6		TC CNTR TTL 5 RTN SYNCHRO POS-EDSE-TRTG	07263	93516 DC
Al1496	1820-1430	3		IC CNTR TTL LS ETN SYNCHRO POS-EDGE --TRIG	01295	SN74LSIGIAN
A11497	1820-1451	8	1	TC GATE TTL 5 NAND QUAD $2 \cdots$ INP	01295	5N74S38N
Al 1498	1820-1191	3	1	IC FF THL 5 D TYPE POS-EDGE-TRTG COM	01295	SN74S175N
A1499	1820-0686	9	1	IC GATE TTL S AND TPL 3-TNP	01295	SN74S11N
A1U100	1820-0693	8		IC FF TTL S D-TYPE POS-EDGE-TRIG	01295	SN74S74N
A1U101	1820-0683	6	1	TC INU TTL S HEX 1-JNP	01295	SN74S04N
Alxus	1200-0541	1	4	SOCKET-IC 24-CONT DIP DIP SLDR	28480	1200-0541
A1×U13	1200-0607	0	22	SOCKET-TC 16-CONT DTP DIP --SLDR	28480	1200-0607
AlXU17	1200-0607	0		SOCKET-IC 16-CONT DIP DTP--SIDR	29480	1200-0607
A1xu19	1200-0607	0		SOCKET-TC 16-CONT DTP DTP SLIDR	28480	1200-0607
Al \times U21	1200-0607	0		SOCKET-IC 16-CONT DTP DTP SLDR	28480	1200-0607
Alxuze	1200-0607	0		SOCKET-TC 16-CONT DTP DTP - SLIDR	28480	1200-0607
A1 Xues	1200-0639	8	3	SOCKET-IC 20-CONT DTP DIP -.SLDR	28480	1200-0639
At $\times 131$	1200-0607	0		SOCKET-TC 16-CONT DIP DIP --SLDR	28480	1200-0607
Alxuze	1200-0638	7	7	SOCKET-IC 14-CONT DTP DTP --SLDR	28480	1200-0638
A1×1336	1200-0541	1		SDCKET--TC 24-CONT DIP DIP SLIDR	28480	1200-0541
A 1×037	1200-0541	1		SOCKET-IC: 24-CONT DIP DIP --sIDR	28480	1200-0541
A1 XU38	1200-0541	1		SOCKET-TC 24-CONT DTP DIP --sLDR	28480	1200-0541
A1 XU44	1200-0639	8		SOCKET-IC 20-CONT DTP DIP--SILDR	28480	1200-0639
A1×U46	1200-0607	0		SOCKET-TTC 16-CONT DIP DIP--SIDR	28480	1200-0607
Al $\times 1447$	1200-0638	7		SOCKET-IC 14-CONT DTP DIP--SIDR	28480	1200-0638
A1 $\times 1448$	1200-0607	0		SOCKET-TC 16-CONT DIP DIP--9SLD	28480	1200-0607
A1 XU5 4	1200-0607	0		SOCKET-IC 16-CONT DIP DTP --SLDR	28480	120000607
A1 $\times 1555$	1200-0607	0		SOCKET-TC 16-CDNT DIP DTP - SLDR	28480	1200-0607
A) $\times 456$	1200-0607	0		SOCKET-IC 16-CONT DTP DTP SLDR	28480	1200-0607
A1 $\times 155$	1200-0539	7	3	SOCKET-rC 18-CONT DIP DTP -.SLDR	28480	1200-0539

See introduction to this section for ordering information
*Indicates factory selected value

Table 6-2. Replaceable Parts List (Con't)

See introduction to this section for ordering information
CTL 6-8

Table 6-3. List of Manufacturers' Codes

Mfr No.	Manufacturer Name	Address		Zip Code
50167	Fujitsu l.ti)	TOKYO	JP	
54013	HITACHI	tokyo	JP	
00000	ANY SATISFACTORY SUPPLIER			
01121	ALLEN-BRADLEY CO	mil.waljiee	Wr	5320.4
01295	TEXAS INSTR INC SEMICOND CMPNT DIU	DALILAS	TX	75222
02111	SPECTROL ELECTRONICS CORP	City of ind	CA	91745
04713	MOTOROLA SEMICONDUCTOR PRODUCTS	Phoentix	Az	85008
07263	FAIRCHILD SEMICONDUCTOR DIV	MOUNTAIN UIEW	CA	94042
11236	CTS OF BERNE INC	berne:	IN	46711
19701	MEPCO/ELECTRA CORP	mineral wells	TX	76067
20932	EMCON DIV TTW	SAN DIEGO	CA	92129
24546	CORNING GI. ASS WORKS (BRADFORD)	ERADFORD	PA	16701
25403	Amperex Elek Corp semicon \& MC div	Slatersutile	RI	02876
27014	NATIONAL SEMICONDUCTOR CORP	SANTA CLARA	CA	95051
27167	CORNING GLASS WORKS (WILMINGTON)	WILMINGTON	NC,	28401
28480 31585	HEWLETT-PACKARD CO CORPORATE HO	PALO ALTO	CA	94304
31.585	RCA CORP SOLTD STATE DIU	SOMERUTILE	NJ	
34.335	ADVANCED MICRD DEvICES INC	SUNNYUALEE	C.	94086
52763 56289	STETTNER Trush inc Sprague elmectrac co	CAZENOUTA NORTH ADAMS	NY M	13035 01247
72136	ELECTRO MOTIVE CORP	Florence	Sc	06226
75042	TRW InC Philladelphia div	Phil adelphia	PA	19108

Replaceable Parts - Model 64601A

NOTES

SECTION VII

MANUAL CHANGES

This section normally contains information for backdating this manual for models with repair numbers prior to the one shown on the title page. Because this edition includes the information for the first repair number, there is no backdating material.

Manual Changes - Model 64601A

NOTES

SECTION VIII

THEORY AND SCHEMATICS

8-1. INTRODUCTION.
8-2. This section contains block diagrams, theory of operation, mnemonic tables, and schematics. Some theory of operation is also given in SECTION 4.

8-3. LOGIC CONVENTION

8-4. Logic states are defined a.s follows:
0------------False, negated, inactive, or unasserted state.

1--------------True, active, or asserted state.
8-5. Voltage levels representing logic states:
LOW (L)-------The more negative of two voltage levels.
HIGH (H)------The more positive of two voltage levels.

8-6. Signals may be either high true, or low true, as indicated by the mnemonics on the service sheets.

8-7. The 64601A includes both TTL and ECL ICs. Worst case voltage levels for trouble shooting and signature analysis purposes are as follows: (IC data sheet specifications may be better than this).

TTL Voltage Levels

Level	Voltage	Level	Voltage
LOW	<0.8	LOW	<-1.50
HIGH	>2.0	HIGH	>-1.10

8-8. TIMING SYSTEM THEORY. (Fig. 8-1)
8-9. The timing analyzer consists of either two or three boards. In an 8channel system there is one 8 -channel acquisition board and one control board in the next higher mainframe slot. One timing probe is connected to each acquisition board.

8-10. The D/A converters on the acquisition board set the probe thresholds. The upper four channels can be programmed with an upper threshold, and the lower four channels with a lower threshold for dual threshold operation.

8-11. The eight inputs go into the probe, and after conditioning are sent out as 16 differential inputs to the acquisition board. The 16 inputs go into a "glitch" custom IC, along with four sample clocks, which determine the rate at which the acquisition board looks at data from the probe. Except for Glitch Mode, the triggering is asynchronous. The glitch chip's holding register has been programmed with the specified pattern during RESET, and will cause a trigger only when the incoming pattern agrees with the one specified. The glitch chip also looks for glitches in the glitch mode, and will cause a trigger if the glitch occurs at the time specified.

8-12. In a timing analysis system, the incoming data is constantly being stored in memory, regardless of whether a trigger has occurred. The encoders serialize the high-speed data so it may be loaded into low-speed RAM.

8-13. When the glitch chip recognizes that incoming pattern is the same as what was previously programmed into its holding register, it sends a trigger to the control board via the timing bus, which connects the control board to the acquisition board.

8-14. A trigger selector (U13,17) determines which acquisition board signal may become the trigger. Triggers may be ANDed or ORed. Durations or transitions may also be specified. If the trigger signal satisfies the qualifications at this point, and if the trigger has been enabled, either internally, or externally via the IMB from another analyzer, the trigger will be sent on to the delay counter.

8-15. The delay counter (U37) may be programmed to cause a delay from the time a trigger has come out of the glitch chip until the start of an actual trace in memory. Memory is continuously be filled, but "good" data does not occur until tracepoint (trigger + delay) has occurred. The delay counter is clocked internally by the sample clock, or externally from the IMB (DLCK) if the delay must be synchronous.

8-16. The programmable delay counter sends its terminal count to a tracepoint latch (U51). The tracepoint latch may be loaded either by the internal trigger signal, or by a trigger from another analyzer via the IMB.

8-17. The tracepoint signal now goes to the programmable window, or trigger position counter (U36), which determines how much post-tracepoint memory will be filled. The window counter's terminal count stops the sample clock and the memory address counters on the acquisition board. By determining the size of the window between tracepoint and end-of-acquisition, the window counter determines the position of tracepoint in memory.

Figure 8-2.
Timing Control Board
Block Diagram

8-18. TIMING CONTROL BOARD THEORY. (Fig. 8-2)

8-19. 130-Bit Control Holding Register.
$8-20$. The CPU programs the timing analyzer by loading 130 bits into a holding register, consisting of the 25 -bit registers in U1, $36,37,38$, and the 6 -bit registers U10, 11, 15, 71, and 73. The analyzer can be programmed to AND or OR triggers from two acquistion boards, sample at different rates up to 400 MHz , generate and combine up to two terms, trigger on entering or leaving pattern transitions, trigger on maximum or minimum pattern durations, or delay for specified times after triggering.

8-21. IMB (Inter Module Bus).
8-22. The IMB is the means by which the timing analyzer communicates with other analyzers, such as a state analyzer. The timing analyzer can be clocked, or triggered, or enabled externally. It can also enable, delay, or trigger another analyzer.

8-23. Timing Bus.
8-24. The timing bus is the means by which the control board communicates with one or two timing acquisition boards. The control board sends the acquisition board sample clocks and RESET and RUN commands; the acquisition board(s) sends the control board a trigger signal when the specified pattern is found and memory has been filled.

8-25. Motherboard.
8-26. The motherboard is the mainframe bus which communicates power and CPU programming aignals to the timing analyzer.

SAMPLE CLOCK

8-27. SAMPLE RATE CLOCK THEORY. (Figs. 8-3, 8-10)

8-28. The sample rate clock determines the frequency at which the timing analyzer samples data. The maximum clock frequency is 100 MHz , but data is sampled on both clock edges, allowing a maximum sample rate of 200 MHz in the Wide Sample Mode.

8-29. In Fast Sample Mode the clock is split into two phases, allowing four edges in the same time period, thus effectively increasing the sample rate to 400 MHz . In the Fast Sample Mode the number of channels in an eight channel system is decreased from eight to four, since every second channel is sampled at the second clock phase.

SAMPLE CLOCKS

FAST SAMPLE (400 MHz) MODE

NOTE:
DATA FROM THE PROBE IS SAMPLED ON BOTH THE RISING \& FALLING EDGE OF EACH CLOCK SIGNAL.
Figure 8-4. Sample Clock Waveforms

Figure 8-5. Term Generators Block Diagram

8-30. TERM GENERATORS. (Figs. 8-4, 8-11, 8-12)

8-31. The term generators receive, combine, and qualify the trigger(s) from the acquisition board(s). There are two term generators, A and B, on a timing control board. Thus, an A trigger, a B trigger, or a B-Latched-Then-A trigger signal may be generated. A and B terms may be ANDed, but the latched-B and B triggers are mutually exclusive.

8-32. The "A" term generator will be described. One of the outputs of the AND/OR trigger combination IC is a ramp moving down toward -5.2V (U35-3). The ramp moves down at a rate determined by the combination of capacitors and current sources turned on by the programming. At some point the ramp will reach the schmitt trigger (U34) threshold. The schmitt will thus trigger sooner or later, depending on the programmed duration.

8-33. The other output of the AND/OR trigger combination IC is a high-going pulse into the transition circuit (U27). One of the paths through U27 is delayed, so that when the pulse finally goes low again, a negative glitch occurs (U27-9).

8-34. When a trigger satisfies the conditions of the " A " term generator, the output (HE/TRIGA at U42-3) is a positive-going pulse. This output can occur under four different conditions:
a. Greater-Than durations: The pattern must last longer than the A term generator specifies.
b. Less-Than durations : The pattern must last less than the A term generator specifies.
c. Leaving transitions : A trigger will occur when the pattern is leaving the specified pattern.
d. Entering transitions : A trigger will occur when the input data is entering the specified pattern.

8-35. Three signals determine which of the above situations will cause an A trigger (HE/TRIGA). Tables for these signals are given on the service sheets for the term generators (4 and 5).
a. XE/TRIG1 and XE/TRIG2 from the acquisition boards may be programmed to be either high true, or low true, at the output of the glitch chip. These signals are programmed low for entering transitions. For all other situations, they are high true.
b. LE/PDUR $>A$ (pattern duration greater than A specifies) is low, or true, only for greater-than durations.
c. $\mathrm{HE} /$ TRANSITA is high, or true, only when transitions are specified.

8-36. In the B term generator, there is a latched B circuit, which allows a B trigger to be latched. Then, if an A trigger occurs afterwards, HE/LTRIGB will be true out of the B term generator. The latched-B trigger is mutually exclusive with the normal B trigger signal, HE/TRIGB.

Figure 8-6.
Trigger Enable Circuit Block Diagram

8-37. TRIGGER ENABLE CIRCUIT. (Figs. 8-5, 8-13)

8-38. The trigger enable circuit receives the qualified A, B, or $B-L a t c h e d$ signals from the term generators. The trigger enable circuit can combine these signals into a pattern trigger, $\mathrm{HE} / \mathrm{PATT}$; or it can form a trigger from external commands via the IMB.

8-39. The glitch chip and the encoders on the acquisition board are between the probe and memory. Before a new run they contain old data from the last run. The trigger enable counter (U38) is programmed to hold off a trigger for several clocks, until the old data has been flushed from the system. The trigger enable counter also allows a certain amount of pre-trigger information to be viewed, even in start-trace modes. Since the trigger enable counter and the window counter (U36) are not fast enough to be clocked at the sample rate, they are clocked by the window clock (U40), which is one-fourth the rate.

8-40. The trigger enable circuit may drive, and be driven by, the IMB. The timing analyzer can enable, or be enabled by, other analyzers. The trigger (TR), trigger enable (TE), or master enable (ME) lines from the Inter Module Bus may all be used to enable the timing analyzer. The timing analyzer may also itself drive the TR, TE, and ME lines.

8-41. The trigger enable circuit also has a Post-Qualify Mode. When the HE/RESTARTEN (restart enable) line is high, the IMB TE line acts as a restart line, causing the timing analyzer to reset itself at the command of a second analyzer and look for another trigger. The TE line acts like a restart line in this mode; and the TR line acts like a hold line, preventing further resets.

8-42. The trigger enable circuit determines which term generator trigger, HE/TRIGA, HE/TRIGB, or HE/LTRIGB will become the pattern trigger HE/PATT that is sent on to the delay counter. The latched B trigger and the B trigger are mutually exclusive, but the A and B triggers may be anded.
tracepoint selection

8-43. TRACEPOINT SELECTOR. (Figs. 8-6, 8-14)

8-44. "Tracepoint" is the start of a trace. The acquisition board provides a trigger signal to the control board when the pattern specification is satisfied. This trigger signal is further qualified in the control board: (1) It can be ANDed or ORed with a trigger from a second aquisition board. (2) It can be armed by signals from the IMB. (3) It can be delayed. (4) It can be qualified as to pattern duration and transition. The final qualified trigger (HE/TRIG+DLY) that starts a trace is called tracepoint.

8-45. The tracepoint selector receives the qualified pattern trigger, HE/PATT, from the Trigger Enable Circuit. The tracepoint selector can add delay to the timing trigger; or it can ignore the timing irigger entirely, and trigger the analyzer via the IMB.

8-46. The tracepoint selector is also programmed by the 130 -bit holding register to determine the amount of "window" between tracepoint in memory and the end of new acquisition. That is, the tracepoint selector generates $\mathrm{HE} / \mathrm{STOP}$, which stops the sample clock, ending the trace.

8-47. The tracepoint selector allows the mainframe to determine the exact position of tracepoint in memory. This is necessary because the acquisition RAM is loaded from eight-bit serial-to-parallel shift registers. Thus the memory write pulses and the memory address counter clocks occur at one-eighth sample frequency. Without additional circuitry in the tracepoint selector, the position of the trigger in memory could be known only to an eight-bit-group accuracy.

8-48. DISPLAY DRIVER. (Figs. 8-7, 8-15, 8-16)

8-49. The timing analyzer has its own display driver, which provides the timing characters, enhancements, and blanking to the mainframe for display. The mainframe receives the display driver video, programs the display to start at a particular portion of the screen, supplies horizontal and vertical synchronizing pulses, and selects the order and number of the probe channels displayed.

8-50. The display driver produces a 512-by-240 dot display. Each character is two dots wide; in the 8 -channel mode a character is 30 dots high, and in the 16-channel mode 15 dots high.

8-51. The display driver has two modes of operation. In the programming mode the mainframe presets the character counter, the character-row counter, and the dot-line counter with starting addresses for the display. The mainframe also loads the display RAMs with data, glitch, blanking, cursor, intensify, and graticule information. In the normal mode, the timing analyzer actually sends video and inverse video to the mainframe for display.

8-52. The character counters are capable of counting 255 2-dot characters, but are preset to less to allow for a left margin. The dot-line counters count the number of horizontal dot-lines in the display. Since only one line of a character is written at a time, the dot-line counter increments each time forizontal sync (L/HSYN) pulses. The character-row counter counts the number of character rows (eight in 8 -channel mode) and increments every 30 lines in 8 channel mode, or every 15 lines in 16 -channel mode.

8-53. The mainframe loads the encoded timing information into the display RAMs during the programming mode. Since transitions require knowledge of past data, RAM information is sent to a "present/past" shift register, which delays data by one dot during display. Both old and new data are then sent to a character ROM, which also receives information from the formatting ROM. Since only one line of a character is written at a time, and characters such as dualthresholds have "middle" information, horizontal trace position is needed to format characters. The formatting ROM, after getting the horizontal position from the dot-line counter, outputs a 3-segment code which correlates horizontal position with character type.

8-54. The character ROM encodes data and formatting information into two dots of video. The mainframe writes dots on the screen at a 25 MHz rate; but since each character is two dots wide, 12.5 MHz has been used up to this point in the display driver. The two 12.5 MHz parallel dots are therefore changed to serial. information and synchronized with the 25 MHz system clock in the output latch.

8-55. Since data, enhancements, and blanking have taken different paths, they need to be synchronized. The output latch "lines up" the information so that the data may be enhanced and blanked; and the resulting video is sent out to the mainframe.

8-56. MNEMONICS.
8-57. Mnemomics are listed in alphabetical order following the slash. The following convention is used:
a. An L or H before the slash indicates active LOW or HIGH.
b. An E after L or H, but before the slash, indicates an ECL signal.
c. No E before the slash indicates a TTL signal.
d. An X instead of L or H means the signal may be programmed as either active LOW or HIGH.
e. The functional mnemonic appears after the slash.

Table 8-1. Mnemonics
MNEMONIC DEFINITION

HE/AND Determines AND/OR combination of XE/TRIG signals from two acquisition boards.

HE/ATRANSIT A transition. Enables an A trigger on the transition "leaving" the specified pattern. To trigger on "entering" transitions, XE/TRIG from the acquisition board must be LOW true.

HE/BLATCHR
L/BLNKMEM
HE/BTRANSIT

H/CHARADO-11 Character address. Addresses to display RAM from the character and line counters.

L/CNIRLD	Counter load. Clocks character, dot-line, and character-row counters in the display circuits during the programming mode. During normal counting, $12.5 M H z$ clocks these counters. Derived from L/MEMWRT.		
HE/DLCLK		\quad	Delay clock. The timing analyzer delay counter (U37) may be
:---			
clocked externally over this IMB line.			

LE/ENTRIG2A	Enables a trigger into the A term generator from a second acquisiton board in the higher numbered slot.
LE/ENTRIG3A	Enables a trigger into the A term generator from a third acquisition board. Not used in a 200 MHz system.
LE/ENTRIG4A	Enables a trigger into the A term generator from a fourth acquisition board. Not used in a 200 MHz system.
LE/ENTRIG1B	Enables a trigger into the B term generator from the acquisition board in the lower numbered mainframe slot.
LE/ENTRIG2B	Enables a trigger into the B term generator from a second acquisition board in the higher numbered mainframe slot.
LE/ENTRIG3B	Enables a trigger into the B term generator from a third aquisition board. Not used on the 200 MHz system.
LE/ENTRIG4B	Enables a trigger into the B term generator from a fourth acquisition board. Not used on the 200 MHz system.
HE/F1*	
HE/F2	Selects the sample clock frequency.
HE/F3	
HE/F4 *	
L/GLTCHMEM	Enable display glitch memory.
HE/HRCLK	Holding register clock. Clocks programming into the 130 -bit control register.
L/HSYN	Horizontal synchronizing signal for display from the mainframe.
L/IVID	Inverse video to motherboard.
L/LOADEN	Load enable. Enables presetting the display counters with an address for the display RAMs during the programming mode.
L/LOADUR	Load duration. Clocks in pattern duration specification.
HE/LTRIGB	Latched B trigger signal. $H E / T R I G B$ must be false. A trigger will occur when A occurs anytime after B.
HE/MASKME	Mask master enable. Masks the IMB master enable signal. Must be low if ME from the IMB is to enable the trigger.

HE/MASKTE	Mask trigger enable. Masks the IMB trigger enable signal. Must be low if TE from the IMB is to enable the trigger.
H/MEMFUL	Memory full. Indicates when memory has been completely filled with good data at least once. Status bit to processor.
L/MEMWRT	Enables write to display memory.
L/MODEN	Mode enable. Enables display mode register.
HE/PATT	Pattern trigger. Internal trigger signal after being qualified by term generators, but before delay is inserted. External trigger may also be asserted at this point.
H/PATTOUT (BNC4)	Pattern trigger output to the BNC4 jack on the mainframe.
LE/PDUR>A	Pattern duration greater than A specifies. Enables triggering on patterns with durations greater than specified by the A term generator. High for "less than" durations.
LE/PDUR $>$ B	Pattern duration greater than B specifies. Enables detection of patterns with durations greater than specified by the B term generator. False, or high, for "less-than" widths.
HE/phi2C1	Derived from phi2 sample clock. Used to clock the delay counter if HE/DLCLK (delay) from the IMB is not selected.
HE/phi2C2	Derived from phi2 sample clock. Clocks the position counter, which determines exact trigger position in an eight-bit sample group. Also used to derive H/WNDWCLK for the window and trigger enable counters.
HE/phi2,	Sample clock from sample rate generator to the acquisition boards.
L/PROGRAM	Selects programming mode for timing display. This mode is used for loading the display RAMs. When high, the display, or normal, mode is selected.
LE/PVCLK	Performance verification sample clock from the mainframe.
HE/PVSTOP	Stops the sample clock during performance verification.

MNEMONIC

DEFINITION

XE/PVIRIG	Used instead of a acquisition-board trigger during performance verifcation. Can be either HIGH or LOW, depending on whether			
ANDing or ORing triggers.		\quad	L/POP	
:---	:---			
HE/PROCRESET	Processor reset. Used by the mainframe to drive HE/RESET.			

LE/TRDRVTE	Trigger drives trigger enable. The received $\mathrm{HE} / \mathrm{TR}$ from the IMB is used to drive the IMB LE/TE line.
HE/TRIGTEST	Enables trigger for performance verification.
HE/TRIGA	Trigger signal qualified by the A term generator.
HE/TRIGB	Trigger signal qualified by the B term generator.
H/TRIG+DLY	Trigger plus delay. Tracepoint--the position of the trigger in in memory, plus any delay added by the timing analyzer's delay counter or by another analyzer via the IMB.
L/VID	Video from display driver to motherboard.
L/VSYN	Vertical synchronizing signal for display from the mainframe.
HE/WNDWCLK	Window clock. Clock to window (U36) and trigger enable (U38) counters.
$\begin{aligned} & \mathrm{H} / 12.5 \mathrm{MHz}, \\ & \mathrm{~L} / 12.5 \mathrm{MHz} \end{aligned}$	Derived from the 25 MHz . mainframe system clock. Used as the timing display character clock, since each timing character is two dots wide.
25MHz CLK	Mainframe system clock. Used by the timing display as the dot frequency.

NOTES

INDICATES SINGLE SIGNAL LINE

Table 8.2. Logic Symbols
GENERAL
All signals flow rrom left to right, relative to the symbol's orientation with inputs on the leff side of the symbol. and
outputs on the right side of the symbol (the symbol may be reversed it the dependency notation is a single term.) All dependency notation is read trom left to right treatative to the symbor's orientation
An external state is the state of an input or output outside the logic symbol
An internal state is the state of an input or output inside the logic symbol. All internal states are True $=$ High
SYMBOL CONSTRUCTION
Some symbols consist of tan outtine or combination of outlines together with one or more qualify
represeng symbols, and the

CONTROL BLOCK - Al inputs and dependency notation affect the array elements directly. Common outputs are
ocated in the control block. (Control blocks may be above or below the array elements.) RRAY ELEMENTT-All array elements are controllea by the contro block as a tunction of the dependency notation.
 dosest ot te cont
of 2 (shown in $[1)$

(

INPUTS - Inputs are located on the left side of the symbol and are affected by their dependency notation
Common control inputs are located in the control block and control the inputs/ outputs to the array elements
according to the dependency notation.
Inputs to the array elements are located with the corresponding array element with the least significant element
closest to the control block.
outputs - Outp
Common control outputs are located in the control block.
Outputs of array elements are located in the corresponding array element with the least significant bit closest to
the control block.
CHIP FUNCTION - The labels for chip functions are defined. i.e.. CTR - counter, MUX - multiplexer. DEPENDENCY Notation
Dependency notation is always read from left to right relative to the symbol's orientation.
Dependency notation indicates the relationship between inputs, outputs, or inputs and outputs. Signals having a
 $2.3,5.6+1, C 7$ is read as when 2 and 3 and 5 and 6 are true, the input will cause the counter to in
count. or (1) the input ($C 7$) will control the loading of the input value (70) into the D filip-tiops.
The following types of dependencies are defined:
a. AND (G). OR (V), and Negate (N) denote Boolean relationship between inputs and outputs in any

Interconnection (z) indicates connections inside the symbol.
c. Control (C) identifies a timing input or a clock input of a sequential element and indicates which inputs are
d. Set (S) and Resest (R) specify the interral logic states (outputs) of an RS bistable element when the R or S
e. Enable (EN) identifies an enable input and indicates which inputs and outputs are controlled by it (which

- oupuis can be in their high impedance stai

Mode (M) identifies an input that selects the mode of operation of an element and indicates the inputs and
outputs depending on that mode
Address (A) identifies the address inputs
h. Transmission (x) identifies bi-directional inputs and outputs that are connected together when the

Derendency notatia indicates binary range
 Adrases sselectsis inuts/d Control (permits action)

 \begin{tabular}{c} Negate

Resel

Sel in

\hline
\end{tabular}

 Interconnection
Transmision

Ref des	HP Part No.	mer. Part No.
U49, 64	$1820-1052$	Mc10125L
U69	$1820-1400$	Mc101048
U76	$1820-1641$	SN74LS3659N
ve5	1820-1917	74LL240N
U86	$1820-1173$	Mc 10124 L
U88	$1820-1322$	SN74802N
บя9	$1820-0269$	SN7403N
บ90	1820-2799	SN74L2259
v91	1820-1216	SN74LS 138 N
U101	1820-0683	SN74504N

PARTS ON THIS SChematic

$c 1,3,4,111,13-17,24-26,28,30,31$
$37-45,47,51,52,59-82,84-96$

$\underset{\substack{\text { CR1 } \\ \text { R34, } 36,38 \\ \text { U87 (RESISTOR PaCK) }}}{\text { CR }}$
IC POWER SUPPLY
CONFIGURATION

U49,64,86

Figure $8-9$.
Siver
CPV Sheet
Figure $8-9$
ervice Sheet
CPU Interface

Theory and Schenatics - Mode1 64601 A

ICs on this schematic

note $\mathrm{A}:$

 Ic Power Supply
cONFIGURATION $\stackrel{y}{ }$ ${ }_{325}$ RESITTOR PAKS

mesome	${ }^{\text {com }}$	errema	teme	usamm
,	wn			\checkmark
=	wore			
-	umenter	$\urcorner-$	\checkmark	\checkmark
	vas	\checkmark	\checkmark	\checkmark
-	wes	,	_ـ	_ـ

Theory and Schenatics - Model 64601A

parts on this schematic

$\bar{\nabla} \sigma^{4}$ $\stackrel{x}{\square}$

heory and Schematics - Model 64601A

moxomem	${ }^{\text {rom }}$	wrmam	emme	$\stackrel{\text { uss mum }}{ }$
	une			\checkmark
	une			
	\%	$\checkmark-$	\checkmark	$\sqrt{\square}$
	vos	\checkmark	\checkmark	\checkmark
-	ver*	Ω	Ω	_ـ

$\overline{\mathrm{XE} / \text { /TRIG }}$	HE/TRANSIT	LE/PDUR>	
н	*	1	criarer than specirig
$\stackrel{H}{H}$	${ }_{\text {L }}$	$\stackrel{\text { H }}{\text { H }}$	TRANSITION LEAVING

Theory and Schematics - Model 64601A

Ref Des hp Part

บ3	1820-2359	${ }_{\text {F } 100149 \mathrm{PC}}$
us	$1820-1225$	Mc10231P
U54,67,19, 21	1820-0802	MC10102P
u55	1820-0815	MC10121P
U69	1820-1400	MC10104P
U74	1820-0817	MC10131P

PARTS ON THIS SChematic
C97,98
R16,
R
U2,20,41,53,68,72 (RESISTor packs)

IC POWER SUPPLY
CONFIGURATION

THE 25 SIT HoLDING GEGIITER PART OF U38
iS SHOWN ON SHEET $2 ?$

Theory and Schematics - Model 64601A
\square^{1} \qquad

Theory and Schenatics - Model 64601 A

ICs ON THIS SCHEMATIC

U56,37	1N84-5008	
-	1993	
U50	${ }_{1820-1946}$	nctoith
$\underset{\substack{\text { U51 } \\ \text { U52 }}}{ }$		(ex
U66		

${ }_{\text {U55, } 65}$
(rResstor racks)

note a
THE 25 git Hololng reaiste secions

SALES \& SUPPORT OFFICES
 Arranged alphabetically by country

Product Line Sales/Support Key
Key Product Line
A
Analytical
CM
Components
C
Computer Systems Sales only
C
Computer Systems Hardware Sales and Services
E
Elemputer Systems Software Sales and Services
M

IIPORTANT: These symbols designate general product line capability. They do not insure sales or support availability for all products within a line, at all locations. Contact your local sales office for information regarding locations where HP support is avaliable for specific products.

HP distributors are printed in ilalics.

ANGOLA

Telectra
Empresa Técnica de Equipamentos
R. Barbosa Rodrigues, 41 II DT.

Caixa Postal 6487
LUANDA
Tel: 355 15,35516
E,M,P

ARGENTINA

Hewlett-Packard Argentina S.A.
Avenida Santa Fe 2035
Martinez 1640 BUENOS AIRES
Tel: 798-5735, 792-1293
Telex: 17595 BIONAR
Cable: HEWPACKARG
A,E,CH,CS,P
Biotron S.A.C.I.M. e I.
Av Paseo Colon 221, Piso 9
1399 BUENOS AIRES
Tel: 30-4846, 30-1851
Telex: 17595 BIONAR
M

AUSTRALIA
Adelaide, South Australia
Office
Hewlett-Packard Australia Lid.
153 Greenhill Road
PARKSIDE, S.A. 5063
Tel: 272-5911
Telex: 82536
Cable: HEWPARD Adelaide
A $^{*}, C H, C M, E, M S, P$

Brisbane, Queensland

Office
Hewlett-Packard Australia Ltd.
10 Payne Road
THE GAP, Queensland 4061
Tel: 30-4133
Telex: 42133
Cable: HEWPARD Brisbane
A,CH,CM,E,M,P
Canberra, Australia
Capital Territory
Office
Hewlett-Packard Australia Ltd
121 Wollongong Stree
FYSHWICK, A.C.T. 2609
Tel: 804244
Telex: 62650
Cable: HEWPARD Canberra
CH,CM,E,P

Melbourne, Victoria Office
Hewlett-Packard Australia Lid.
31-41 Joseph Street
BLACKBURN, Victoria 3130
Tel: 8906351
Telex: 31-024
Cable: HEWPARD Melbourne
A,CH,CM,CS,E,MS,P
Perth, Western Australia
Office
Hewiett-Packard Australia Lid.
261 Stirling Highway
CLAREMONT, W.A. 6010
Tel: 383-2188
Telex: 93859
Cable: HEWPARD Perth
A,CH,CM, E,MS,P
Sydney, New South Wales Office
Hewlett-Packard Australia Lid.
17-23 Talavera Road
P.O. Box 308

NORTH RYDE, N.S.W. 2113
Tel: 887-1611
Telex: 21561
Cable: HEWPARD Sydney
A,CH,CM,CS,E,MS,P
AUSTRIA
Hewlett-Packard Ges.m.b.h.
Grottenhotstrasse 94
Verkauf́sburo Graz
A-8052 GRAZ
Tel: 291-5-66
Telex: 32375
CH,E*
Hewlett-Packard Ges.m.b.h.
Lieblgasse 1
P.O. Box 72

A- 1222 VIENNA
Tel: (0222) 23-65-11-0
Telex: 134425 HEPA A
A,CH,CM,CS,E,MS,P
BAHRAIN
Green Salon
P.O. Box 557

BAHRAIN
Tel: 255503-255950
Telex: 84419
P
Wael Pharmacy
P.O. Box 648

BAHRAIN
Tel: 256123
Telex: 8550 WAEL BN
E, M

BELGIUM
Hewlett-Packard Belgium S.A.N.V.
Blvd de la Woluwe, 100
Woluwedal
B-1200 BRUSSELS
Tel: (02) 762-32-00
Telex: 23-494 paloben bru
A,CH,CM,CS,E,MP,P
BRAZIL
Hewlett-Packard do Brasil l.e.C. Lida.
Alameda Rio Negro, 750
Alphaville
06400 BARUERI SP
Tel: (011) 421.1311
Telex: (011) 33872 HPBR-BR
Cable: HEWPACK Sao Paulo
A,CH,CM,CS,E,M,P
Hewlett-Packard do Brasil I.e.C.
Ltda.
Avenida Epitacio Pessoa, 4664
22471 RIO DE JANEIRO-RJ Tel: (021) 286.0237
Telex: 021-21905 HPBR-BR
Cable: HEWPACK Rio de Janeiro A,CH,CM,E,MS, P*

CANADA

Alberta

Hewlett-Packard (Canada) Ltd.
210, 7220 Fisher Street S.E.
CALGARY, Alberta T2H 2 H 8
Tel: (403) 253-2713
A,CH,CM,E*,MS,P*
Hewlett-Packard (Canada) Ltd.
11620A-168th Street
EDMONTON, Alberta T5M 3T9
Tel: (403) 452-3670
A,CH,CM,CS,E,MS,P*

A,CH,CM,E*,MS,P*
Hewlett-Packard (Canada) Ltd.
6877 Goreway Drive
MISSISSAUGA, Ontario L4V 1M8
Tel: (416) 678-9430
A,CH,CM,CS,E,MP,P

Hewlett-Packard (Canada) Ltd
2670 Queensview Dr.
OTTAWA, Ontario K2B 8K1
Tel: (613) 820-6483
A,CH,CM,CS, E* $, \mathrm{MS}, \mathrm{P}^{*}$
Hewlett-Packard (Canada) Ltd.
220 Yorkland Blvd., Unit \#11
WILLOWDALE, Ontario M2J 1R5
Tei: (416) 499-9333

Quebec
Hewlett-Packard (Canada) Lid
17500 South Service Road
Trans-Canada Highway
KIRKLAND, Quebec H9J 2 M5
Tel: (514) 697-4232
A,CH,CM,CS,E,MP,P*
Hewlett-Packard (Canada) Lid
Les Galeries du Vallon
2323 Du Versont Nord
STE. FOY, Quebec G1N 4C2
Tel: (418) 687-4570
CH
CHILE
Jorge Calcagni y Cia. Ltda.
Arturo Buhrle 065
Casilla 16475
SANTIAGO 9
Tel: 222-0222
Telex: Public Booth 440001
A,CM,E,M
Olympia (Chile) Ltda.
Av. Rodrigo de Araya 1045
Casilla 256-V
SANTIAGO 21
Tel: (02) 2255044
Telex: 240-565 OLYMP CL
Cable: Olympiachile Santiagochile
CH,CS, P

CYPRUS
Telerexa Ltd.
P.O. Box 4809

14C Stassinos Avenue
NICOSIA
Tel: 62698
Telex: 2894 LEVIDO CY
E,M,P
DENMARK
Hewlett-Packard A/S
Datavej 52
DK-3460 BIRKEROD
Tel: (02) 81-66-40
Telex: 37409 hpas dk
A,CH,CM,CS,E,MS,P
Hewlett-Packard A/S
Rolighedsvej 32
DK-8240 RISSKOV
Tel: (06) 17-60-00
Telex: 37409 hpas dk
CH,E
DOMINICAN REPUBLIC
Microprog S.A.
Juan Tomás Mejia y Cotes No. 60
Arroyo Hondo
SANTO DOMINGO
Tel: 565-6268
Telex: 4510 ARENTA DR (RCA) P

ECUADOR
CYEDE Cia. Lida
Avenida Eloy Alfaro 1749
Casilla 6423 CCI
QUITO
Tel: 450-975, 243-052
Telex: 2548 CYEDE ED
CM,E,P
Hospitalar S.A.
Robles 625
Casilla 3590
QUITO
Tel: 545-250, 545-122
Telex: 2485 HOSPTL ED
Cable: HOSPITALAR-Quito
M

EGYPT

International Engineering Associates
24 Hussein Hegazi Street
CAIRO
Tel: 23829, 21641
Telex: IEA UN 93830
CH,CS,E,M
Informatic For Systems
22 Talaat Harb Street
CAIRO
Tel: 759006
Telex: 93938 FRANK UN
CH,CS, P
Egyptian International Office
for Foreign Trade
P.O.Box 2558

CAIRO
Tel: 650021
Telex: 93337 EGPOR
P

Telex: 20539 EPISA
A,CH,CM,CS,E,P

Kasr-el-Aini

23829, 21641

EL SALVADOR
IPESA de El Salvador S.A.
29 Avenida Norte 1216
SAN SALVADOR
Tel: 26-6858, 26-6868

)

JADOR
DE Cia. Lida

British Columbia
Hewlett-Packard (Canada) Ltd.
10691 Shellbridge Way

RICHMOND,

British Columbia V6X 2W7
Tel: (604) 270-2277
Telex: 610-922-5059
A,CH,CM,CS,E* ${ }^{*}$ MS,P

Manitoba

Hewlett-Packard (Canada) Ltd.
380-550 Century Street
WINIIPEG, Manitoba R3H OY1
Tel: (204) 786-6701
A,CH,CM,E,MS,P*
New Brunswick
Hewlett-Packard (Canada) Ltd.
37 Sheadiac Road
MONCTON, New Brunswick E2B 2VO
Tel: (506) 855-2841
CH^{*}

Nova Scotia

Hewlett-Packard (Canada) Ltd.
P.O. Box 931

900 Windmill Road
DARTMOUTH, Nova Scotia B2Y $3 Z 6$
Tel: (902) 469-7820
CH,CM,CS,E*,MS,P*

Ontario

Hewlett-Packard (Canada) Lid.
552 Newbold Street
LONDON, Ontario N6E $2 S 5$
Tel: (519) 686-9181
CHINA, People's Republic
of
China Hewlett-Packard Rep. Office
P.O. Box 418

1A Lane 2, Luchang St.
Beiwei Rd., Xuanwu District
BEIJING
Tel: 33-1947, 33-7426
Telex: 22601 CTSHP CN
Cable: 1920
A,CH,CM,CS,E,P
COLOMBIA
Instrumentación
H. A. Langebaek \& Kier S.A.

Carrera 4A No. 52A-26
Apartado Aereo 6287
bOGOTA 1, D.E.
Tel: 212-1466
Telex: 44400 INST CO
Cable: AARIS Bogota
CM,E,M
COSTA RICA
Cientifica Costarricense S.A
Avenida 2, Calle 5
San Pedro de Montes de Oca
Apartado 10159
SAN JOSE
Tel: 24-38-20, 24-08-19
Telex: 2367 GALGUR CR
CM,E,M
British Columbla

Arranged alphabetically by country

FINLAND
Hewlett-Packard Oy
Revontulentie 7
SF-02100 ESPOO 10
Tel: 00358-0-4550211
Telex: 9100
A,CH,CM,CS,E,MS,P
Hewlett-Packard Oy
Aatoksenkatv 10-C
SF-40720-72 JYVASKYLA
Te: (941) 216318
CH
Hewlett-Packard Oy
Kainvuntie 1-C
SF-90140-14 OULU
Tel: (981) 338785 CH

FRANCE

Hewlett-Packard France
Z.I. Mercure B

Rue Berthelot
F-13763 Les Milles Cedex
AIX-EN-PROVENCE
Tel: 16 (42) 59-41-02
Telex: 410770 F
A,CH,E,MS,P*
Hewlett-Packard France
64, rue Marchand Saillant
F-61000ALENCON
Tel: 16 (33) 290442
Hewlett-Packard France
Boite Postale 503
F-25026 BESANCON
28 rue de la Republique
F-25000 BESANCON
Tel: 16 (81) 83-16-22
CH,M
Hewlett-Packard France
13, Place Napoleon III F-29000 BREST
Tel: 16 (98) 03-38-35
Hewlett-Packard France
Chemin des Mouilles
Boite Postale 162
F-69130 ECULLY Cedex
Tel: 16 (78) 833-81-25
Telex: 310617 F
A,CH,CS,E,MP
Hewlett-Packard France
Tour Lorraine
Boulevard de France
F-91035 EVRY Cedex
Tel: 166 077-96-60
Telex: 692315F
E
Hewlett-Packard France
5, avenue Raymond Chanas
F-38320 EYBENS
Tel: 16 (76) 25-81-41
Telex: 980124 HP GRENOB EYBE CH
Hewlett-Packard France
Centre d'Affaire Paris-Nord
Bâtiment Ampère 5 etage
Rue de la Commune de Paris
Boite Postale 300
F-93153 LE BLANC MESNIL
Tel: 16 (1) 865-44-52
Telex: 211032 F
CH,CS,E,MS
Hewlett-Packard France
Parc d'Activités Cadera
Quartier Jean Mermoz
Avenue du Président JF Kennedy
F-33700 MERIGNAC
Tel: 16 (56) 34-00-84
Telex: 550105F
CH,E,MS
Hewlett-Packard France
Immueble "Les 3 B"
Nouveau Chemin de la
ZAC de Bois Briand
F-44085 NANTES Cedex
Tel: 16 (40) 50-32-22
CH"
Hewlett-Packard France
125, rue du Faubourg

125, rue du Faubourg Bannier F-45000 ORLEANS
Tel: 16 (38) 680163
Hewlett-Packard France
Zone Industrielle de Courtaboeut
Avenue des Tropiques
F-91947 Les Ulis Cedex ORSAY
Tel: (6) 907-78-25
Telex: 600048F
A,CH,CM,CS,E,MP,P
Hewlett-Packard France
Paris Porte-Maillot
15, Avenue de L'Amiral Bruix
F-75782 PARIS CEDEX 16
Tel: 16 (1) 502-12-20
Telex: 613663F
CH,MS,P
Hewlett-Packard France
124, Boulevard Tourasse
F-64000 PAU
Tel: 16 (59) 803802
Hewlett-Packard France
2 Allee de la Bourgonnette
F-35100 RENNES
Tel: 16 (99) 51-42-44
Telex: 740912F
CH,CM,E,MS,P*
Hewlett-Packard France
98 Avenue de Bretagne
F-76 100 ROUEN
Tel: 16 (35) 63-57-66
CH**,CS
Hewlett-Packard France
Boite Postale 56
F-67033 STRASBOURG Cedex
4 Rue Thomas Mann
F-67200 STRASBOURGCedex
Tel: 16 (88) 28-56-46
Telex: 890141 F
CH,E,MS,P*
Hewlett-Packard France
Le Péripole
3, Chemin du Pigeonnier de la Cépière
F-31083 TOULOUSE Cedex
Tel: 16 (61) 40-11-12
Telex: 531639 F
A,CH,CS,E,P*
Hewlett-Packard France
9 , rue Baudin
F-26000 VALENCE
Tel: 16 (75) 427616
Hewlett-Packard France
Garolor
ZAC de Bois Briand
F-57640 VIGY
Tel: 16 (8) 7712022 CH
Hewlett-Packard France Immeuble Péricentre
F-59658 VILLENEUVE D'ASCQ Cedex
Tel: 16 (20) 91-41-25
Telex: 160124 F
CH,E,MS,P*

GERMAN FEDERAL

REPUBLIC

Hewlett-Packard GmbH Geschäftsstelle
Keithstrasse 2-4
D-1000 BERLIN 30
Tel: (030) 24-90-86
Telex: 0183405 hpbin d
A,CH,E,M,P

Hewlett-Packard GmbH Geschaftsstelle
Herrenberger Strasse 110
D-7030 BOBLINGEN
Tel: (7031) 667-750
Telex: bbn or
A,CH,CM,CS,E,MP,P
Hewlett-Packard GmbH
Geschăftsstelle
Emanuel-Leutze-Strasse 1 D-4000 DUSSELDORF
Tel: (0211) 5971-1
Telex: 085/86 533 hpdd d A,CH,CS,E,MS,P
Hewlett-Packard GmbH
Vertriebszentrale Frankfurt
Berner Strasse 117
Postfach 560140
D-6000 FRANKFURT 56
Tel: (0611) 50-04-1
Telex: 0413249 hpffm d
A,CH,CM,CS,E,MP,P
Hewlett-Packard GmbH
Geschäflsstelle
Kapstadtring 5
D-2000 HAMBURG 60
Tel: (040) 63804-1
Telex: 02163032 hphh d
A,CH,CS,E,MS,P
Hewlett-Packard GmbH
Geschăftsstelle
Heidering 37-39
D-3000 HANNOVER 91
Tel: (0511) 5706-0
Telex: 0923259
A,CH,CM,E,MS,P
Hewlett-Packard GmbH
Geschättsstelle
Rosslauer Weg 2-4
D-6800 MANNHEIM
Tel: (0621) 70050
Telex: 0462105
A,C,E
Hewlett-Packard GmbH
Geschäftsstelle
Messerschmittstrasse 7
D-7910 NEU ULM
Tel: 0731-70241
Telex: 0712816 HP ULM-D
A,C,E*
Hewlett-Packard GmbH
Geschätrsstelle
Neumeyerstrasse 90
D-8500 NÜRNBERG
Tel: (0911) 5220 83-87
Telex: 0623860
CH,CM,E,MS,P
Hewlett-Packard GmbH
Geschăftsstelle
Eschenstrasse 5
D-8028 TAUFKIRCHEN
Tel: (089) 6117-1
Telex: 0524985
A,CH,CM,E,MS, P
GREAT BRITAIN
See United Kingdom
GREECE
Kostas Karaynnis S.A.
8 Omirou Street
ATHENS 133
Tel: 3230 303, 3237371
Telex: 215962 RKAR GR
A,CH,CM,CS,E,M,P
PLAISIO S.A.
G. Gerardos

24 Stournara Street

ATHENS

Tel: 36-11-160
Telex: 221871

GUATEMALA
IPESA
Avenida Reforma 3-48, Zona 9
gUATEMALA CITY
Tel: 316627, 314786
Telex: 4192 TELTRO GU
A,CH,CM,CS,E,M,P
HONG KONG
Hewlett-Packard Hong Kong, Ltd.
G.P.O. Box 795

5th Floor, Sun Hung Kai Centre
30 Harbour Road
HONG KONG
Tel: 5-8323211
Telex: 66678 HEWPA HX
Cable: HEWPACK HONG KONG
E,CH,CS,P
CET LId.
1402 Tung Way Mansion
199-203 Hennessy Rd.
Wanchia, HONG KONG
Tel: 5-729376
Telex: 85148 CET HX
CM
Schmidt \& Co. (Hong Kong) Ltd.
Wing On Centre, 28th Floor
Connaught Road, C.
HONG KONG
Tel: 5-455644
Telex: 74766 SCHMX HX
A, M
ICELAND
Elding Trading Company Inc.
Hafnarnvoli-Tryggvagotu
P.O. Box 895

IS-REYKJAVIK
Tel: 1-58-20, 1-63-03
M
INDIA
Computer products are sold through
Blue Star Ltd. All computer repairs
and maintenance service is done
through Computer Maintenance
Corp.
Blue Star Ltd.
Sabri Complex II Floor
24 Residency Rd.
BANGALORE 560025
Tel: 55660
Telex: 0845-430
Cable: BLUESTAR
$A, C H^{*}, C M, C S^{*}, E$
Blue Star Ltd.
Band Box House
Prabhadevi
BOMBAY 400025
Tel: 422-3101
Telex: 011-3751
Cable: BLUESTAR
A, M
Blue Star LId.
Sahas
414/2 Vir Savarkar Marg
Prabhadevi
bOMBAY 400025
Tel: 422-6155
Telex: 011-4093
Cable: FROSTBLUE
A,CH*, CM, CS' ${ }^{*}, E, M$
Blue Star Ltd.
Kalyan, 19 Vishwas Colony
Alkapuri, BORODA, 390005
Tel: 65235
Cable: BLUE STAR
A
Blue Star Ltd.
7 Hare Street
CALCUTTA 700001
Tel: 12-01-31
Telex: 021-7655
Cable: BLUESTAR

Blue Star Ltd
133 Kodambakkam High Road
MADRAS 600034
Tel: 82057
Telex: 041-379
Cable: BLUESTAR
A, M
Blue Star Ltd.
Bhandari House, 7th/8th Floors
91 Nehru Place
NEW DELHI 110024
Tel: 682547
Telex: 031-2463
Cable: BLUESTAR
$A, C H^{*}, C M, C S^{*}, E, M$
Blue Star Ltd.
15/16:C Wellesley Rd.
PUNE 411011
Tel: 22775
Cable: BLUE STAR
A
Blue Star Lid.
2-2-47/1108 Bolarum Rd.
SECUNDERABAD 500003
Tel: 72057
Telex: 0155-459
Cable: BLUEFROST
A, E
Blue Star Ltd.
T.C. 7/603 Poornima

Maruthankuzhi
TRIVANDRUM 695013
Tel: 65799
Telex: 0884-259
Cable: BLUESTAR
E
Computer Maintenance Corporation
Lid.
115, Sarojini Devi Road
SECUNDERABAD 500003
Tel: 310-184, 345-774
Telex: 031-2960
CH^{*} *
INDONESIA
BERCA Indonesia P.T.
P.O.Box 496/JKT.

JI. Abdul Muis 62
JaKARTA
Tel: 373009
Telex: 46748 BERSAL IA
Cable: BERSAL JAKARTA
P
BERCA Indonesia P.T.
P.O.Box 2497/Jkt Antara Bldg.,

17th Floor
JI. Medan Merdeka Selatan 17
JAKARTA-PUSAT
Tel: 21-344-181
Telex: BERSAL IA
A,CS,E,M
BERCA Indonesia P.T.
P.O. Box 174/SBY.
J. Kutei No. 11
surabaya
Tel: 68172
Telex: 31146 BERSAL SB
Cable: BERSAL-SURABAYA
A^{*}, E, M, P
IRAQ
Hewlett-Packard Trading S.A.

SALES \& SUPPORT OFFICES
 Arranged alphabetically by country

IRELAND
Hewlett-Packard Ireland Ltd.
82/83 Lower Leeson Street
DUBLIN 2
Tel: (1) 608800
Telex: 30439
A,CH,CM,CS,E,M,P
Cardiac Services Ltd.
Kilmore Road
Artane
dublin 5
Tel: (01) 351820
Telex: 30439
M

ISRAEL
Eldan Electronic Instrument LId.
P.O.Box 1270

JERUSALEW 91000
16, Ohaliav St.
JERUSALEW 94467
Tel: 533 221, 553242
Telex: 25231 AB/PAKRD IL
A
Electronics Engineering Division
Motorola Israel Ltd.
16 Kremenetski Street
P.O. Box 25016

TEL-AVIV 67899
Tel: 3-338973
Telex: 33569 Motil IL
Cable: BASTEL Tel-Aviv
$C H, C M, C S, E, M, P$
ITALY
Hewlett-Packard Italiana S.p.A
Traversa 99C
Via Giulio Petroni, 19
1.70124 BARI

Tel: (080) 41-07-44
M
Hewlett-Packard Haliana S.p.A.
Via Martin Luther King, 38/111
1-40132 BOLOGNA
Tel: (051) 402394
Telex: 511630
CH,E,MS
Hewlett-Packard Italiana S.p.A.
Via Principe Nicola 43G/C
1-95 126 Catania
Tel: (095) 37-10-87
Telex: 970291
C.P

Hewlett-Packard Italiarıa S.p.A.
Via G. Di Vittorio 9
I-20063 CERNUSCO SUL NAVIGLIO
Tel: (2) 903691
Telex: 334632
A,CH,CM,CS,E,MP,P
Hewlett-Packard Italiana S.p.A.
Via Nuova San Rocco a
Capodimonte, 62/A
-80131 NAPLES
Tel: (081) 7413544
Telex: 710698
A,CH,E
Hewlett-Packard Italiana S.p.A.
Viale G. Modugno 33
-16156 GENOVA PEGL
Tel: (010) 68-37-07
Telex: 215238
E, C
Hewiett-Packard Italiana S.p.A.
Via Turazza 14
-35100 PADOVA
Tel: (049) 664888
Telex: 430315
A,CH,E,MS
Hewlett-Packard Italiana S.p.A.
Viale C. Pavese 340
-00144 ROMA
Tel: (06) 54831
Telex: 610514
A,CH,CM,CS,E,MS,P*

Hewlett-Packard Italiana S.p.A.
Corso Svizzera, 184
-10149 TORINO
Tel: (011) 744044
Telex: 221079
CH,E

JAPAN

Yokogawa-Hewlett-Packard Lid.
152-1, Onna
000 ATSUGI, Kanagawa, 243
Tel: (0462) 28-0451
CM, C* ${ }^{*}$ E
Yokogawa-Hewlett-Packard Lid.
Towa Building
2-3, Kaigan-dori, 2 Chome Chuo-ku
KOBE, 650
Tel:
Yokogawa-Hewlett-Packard Lid.
Kumagaya Asahi 82 Bidg
3-4 Tsukuba
KUMAGAYA, Saitama 360
Tel: (0485) 24-6563
CH,CM,E
Yokogawa-Hewlett-Packard Lid.
Asahi Shinbun Daiichi Seimei Bldg.
4-7, Hanabata-cho
KUMAMOT0,860
Tel: (0963) 54-7311
CH,E
Yokogawa-Hewlett-Packard Lid.
Shin-Kyoto Center Bldg.
614, Higashi-Shiokoji-cho
Karasuma-Nishiru
Shiokoji-dori, Shimogyo-ku
KYOTO, 600
Tel: 075-343-0921
CH,E
Yokogawa-Hewlett-Packard LId.
Mito Mitsui Bldg
4-73, Sannomaru, 1 Chome
MITO, Ibaragi 310
Tel: (0292) 25-7470
CH,CM,E
Yokogawa-Hewlett-Packard Ltd.
Sumitomo Seimei 14-9 Bldg.
Meieki-Minami, 2 Chome
Nakamura-ku
NAGOYA, 450
Tel: (052) 571-5171
CH,CM,CS,E,MS
Yokogawa-Hewlett-Packard Lid. Chuo Bldg.,
4-20 Nishinakajima, 5 Chome
Yodogawa-ku
OSAKA, 532
Tel: (06) 304-602
Telex: YHPOSA 523-3624 A,CH,CM,CS,E,MP,P*

Yokogawa-Hewlett-Packard Lid.
27-15, Yabe, 1 Chome
SAGAMIHARA Kanagawa, 229
Tel: 0427 59-1311
Yokogawa-Hewlett-Packard LId.
Daiichi Seimei Bldg.
7-1, Nishi Shinjuku, 2 Chome Shinjuku-ku,TOKYO 160
Tel: 03-348-4611-5 CH,E
Yokogawa-Hewlett-Packard Ltd. 29-21 Takaido-Higashi, 3 Chome Suginami-ku TOKYO 168 Tel: (03) 331-6111
Telex: 232-2024 YHPTOK
A,CH,CM,CS,E,MP,P*
Yokogawa-Hewlett-Packard Ltd.
Daiichi Asano Building
2-8, Odori, 5 Chome UTSUNOMIYA, Tochigi 320 Tel: (0286) 25-7155
CH,CS,E

Yokogawa-Hewlett-Packard Lid.
Yasuda Seimei Nishiguchi Bldg.
30-4 Tsuruya-cho, 3 Chome YOKOHAMA221
Tel: (045) 312-1252
CH,CM,E
JORDAN
Mouasher Cousins Company
P.O. Box 1387

AMMAN
Tel: 24907, 39907
Telex: 21456 SABCO JO
CH,E,M,P
KENYA
ADCOM Ltd., Inc., Kenya
P.O.Box 30070

NAIROBI
Tel: 331955
Telex: 22639
E,M
KOREA
Samsung Electronics Computer
Division
76-561 Yeoksam-Dong
Kwangnam-Ku
C.P.O. Box 2775

SEOUL
Tel: 555-7555, 555-5447
Telex: K27364 SAMSAN
A,CH,CM,CS,E,M,P
KUWAIT
Al-Khaldiya Trading \& Contracting
P.O. Box 830 Safat

KUWAIT
Tel: 42-4910, 41-1726
Telex: 22481 Areeg kt
CH,E,M
Photo \& Cine Equipment
P.O. Box 270 Safat

KUWAIT
Tel: 42-2846, 42-3801
Telex: 22247 Matin kt
P
LEBANON
G.M. Dolmadjian

Achrafieh
P.O. Box 165. 167

BEIRUT
Tel: 290293
MP**
LUXEMBOURG
Hewlett-Packard Belgium S.A./N.V.
Blvd de la Woluwe, 100
Woluwedal
B-1200 BRUSSELS
Tel: (02) 762-32-00
Telex: 23-494 paloben bru
A,CH,CM,CS,E,MP,P

MALAYSIA

Hewlett-Packard Sales (Malaysia)
Sdn. Bhd.
1st Floor, Bangunan British
American
Jalan Semantan, Damansara Heights
KUALA LUMPUR 23-03
Tel: 943022
Telex: MA31011
A,CH,E,M,P*
Protel Engineering
P.O.Box 1917

Lot 6624, Section 64
23/4 Pending Road
Kuching, SARAWAK
Tel: 36299
Telex: MA 70904 PROTEL
Cable: PROTELENG
A, E,M

MALTA
Philip Toledo LId.
Notabile Rd.
MRIEHEL
Tel: 447 47, 45566
Telex: Media MW 649
P
MEXICO
Hewlett-Packard Mexicana, S.A.
de C.V.
Av. Periferico Sur No. 6501
Tepepan, Xochimilco
MEXICO D.F. 16020
Tel: 676-4600
Telex: 17-74-507 HEWPACK MEX
A,CH,CS,E,MS,P
Hewlett-Packard Mexicana, S.A.
de C.V.
Ave. Colonia del Valle \#409
Col. del Valle
Municipio de Garza Garcia
MONTERREY, N.L.
Tel: 784241
Telex: 038410
CH
ECISA
José Vasconcelos No. 218
Col. Condesa Deleg. Cuauhtermoc
MEXICO D.F. 06140
Tel: 553-1206
Telex: 17-72755 ECE ME
M

MOROCCO

Dolbeau
81 rue Karatchi
CASABLANCA
Tel: 3041-82, 3068-38
Telex: 23051, 22822
E
Gerep
2 rue d'Agadir
Boite Postale 156
CASABLANCA
Tel: 272093, 272095
Telex: 23739
P
NETHERLANDS
Hewlett-Packard Nederland B.V.
Van Heuven Goedhartlaan 121
NL 1181 KK AMSTELVEEN
P.O. Box 667

NLL180 AR AMSTELVEEN
Tel: (020) 47-20-21
Telex: 13216 HEPA NL
A,CH,CM,CS,E,MP,P
Hewlett-Packard Nederland B.V.
Bongerd 2
NL 2906VK CAPELLE, A/D IJSSEL
P.O. Box 41

NL 2900AA CAPELLE, A/D IJSSEL
Tel: (10) 51-64-44
Telex: 21261 HEPAC NL
A,CH,CS,E
NEW ZEALAND
Hewlett-Packard (N.Z.) Lid.
169 Manukau Road
P.O. Box 26-189

Epsom, AUCKLAND
Tel: 687-159
Cable: HEWPACK Auckland
CH,CM,E,P*
Hewlett-Packard (N.Z.) Ltd.
4-12 Cruickshank Street
Kilbirnie, WELLINGTON 3
P.O. Box 9443

Courtenay Place, WELLINGTON 3
Tel: 877-199
Cable: HEWPACK Wellington
CH,CM,E,P

Northrop Insituments \& Systems
Ltd.
369 Khyber Pass Road
P.O. Box 8602

AUCKLAND
Tel: 794-091
Telex: 60605
A,M
Northrop Instruments \& Systems
Lid.
110 Mandeville St.
P.O. Box 8388

CHRISTCHURCH
Tel: 486-928
Telex: 4203
A,M
Northrop Instruments \& Systems
Lid.
Sturdee House
85.87 Ghuznee Street
P.O. Box 2406

WELLINGTON
Tel: 850-091
Telex: NZ 3380
A, M
NORTHERN IRELAND
See United Kingdom
NORWAY
Hewlett-Packard Norge ASS
Folke Bernadottes vei 50
P.O. Box 3558

N-5033 FYLLINGSDALEN (Bergen)
Tel: (05) 16-55-40
Telex: 16621 hpnas n
CH,CS,E,MS
Hewlett-Packard Norge A/S
Osterndalen 18
P.O. Box 34

N- 1345 ÖSTERÅS
Tel: (02) 17-11-80
Telex: 16621 hpnas n
A,CH,CM,CS,E,M,P

OMAN

Khimjil Ramdas
P.O. Box 19
mUSCAT
Tel: 722225, 745601
Telex: 3289 BROKER MB MUSCAT
P
Suhail \& Saud Bahwan
P.O.Box 169
muscat
Tel: 734 201-3
Telex: 3274 BAHWAN MB
PAKISTAN
Mushko \& Company LId.
1-B, Street 43
Sector F-8/1

ISLAMABAD

Tel: 26875
Cable: FEMUS Rawalpindi
A, E,M
Mushko \& Company Ltd.

SALES \& SUPPORT OFFICES
 Arranged alphabetically by country

PERU
Cla Electro Médica S.A. Los Flamencos 145, San Isidro Casilla 1030
LIMA 1
Tel: 41-4325, 41-3703
Telex: Pub. Booth 25306 $C M, E, M, P$

PHILIPPINES
The Online Advanced Systems
Corporation
Rico House, Amorsolo Cor. Herrera

Street

Legaspi Village, Makati
P.O. Box 1510

Metro MANILA
Tel: 85-35-81, 85-34-91, 85-32-21
Telex: 3274 ONLINE
A,CH,CS,E,M
Electronic Specialists and
Proponents Inc.
690-B Epifanio de los Santos

Avenue

Cubao, QUEZON CITY
P.O. Box 2649 Manila

Tel: 98-96-81, 98-96-82, 98-96-83
Telex: 40018, 42000 ITT GLOBE
MACKAY BOOTH
P

PORTUGAL

Mundinter
Intercambio Mundial de Comércio
S.A.R.L.
P.O. Box 276

Avenida Antonio Augusto de Aguiar
138
P-LISBON
Tel: (19) 53-21-31, 53-21-37
Telex: 16691 munter p
M
Soquimica
Av. da Liberdade, 220-2
1298 LISBOA Codex
Tel: 5621 81/2/3
Telex: 13316 SABASA
P
Telectra-Empresa Técnica de Equipmentos Eléctricos S.A.R.L. Rua Rodrigo da Fonseca 103
P.O. Box 2531

P-LISBON 1
Tel: (19) 68-60-72
Telex: 12598
CH,CS,E,P
PUERTO RICO
Hewlett-Packard Puerto Rico
P.O. Box 4407

CAROLINA, Puerto Rico 00628
Calle 272 Edificio 203
Urb. Country Club
RIO PIEDRAS, Puerto Rico
Tel: (809) 762-7255
A,CH,CS
QATAR
Computearbia
P.O. Box 2750

DOHA
Tel: 883555
Telex: 4806 CHPARB

P

Eastern Technical Services
P.O.Box 4747

DOHA
Tel: 329993
Telex: 4156 EASTEC DH

Nasser Trading \& Contracting
P.O.Box 1563

DOHA
Tel: 22170, 23539
Telex: 4439 NASSER DH
M
SAUDI ARABIA
Modern Electronic Establishment Hewlett-Packard Division
P.O. Box 281

Thuobah
AL-KHOBAR
Tel: 864-46 78
Telex: 671106 HPMEEK SJ
Cable: ELECTA AL-KHOBAR
$C H, C S, E, M, P$
Modern Electronic Establishment
Hewlett-Packard Division
P.O. Box 1228

Redec Plaza, 6th Floor

JEDDAH

Tel: 6443848
Telex: 402712 FARNAS SJ
Cable: ELECTA JEDDAH
CH,CS,E,M,P
Modern Electronic Establishment
Hewlett-Packard Division
P.O.Box 2728

RIVADH
Tel: 491-97 15, 491-63 87
Telex: 202049 MEERYD SJ
CH,CS,E,M,P
SCOTLAND
See United Kingdom
SINGAPORE
Hewlett-Packard Singapore (Sales)
Pte. Ltd.
P.O. Box 58 Alexandra Post Office

SINGAPORE, 9115
6th Floor, Inchcape House
450-452 Alexandra Road
SINGAPORE 0511
Tel: 631788
Telex: HPSGSO RS 34209
Cable: HEWPACK, Singapore A,CH,CS,E,MS,P
Dynamar International LId.
Unit 05-11 Block 6
Kolam Ayer Industrial Estate
SINGAPORE 1334
Tel: 747-6188
Telex: RS 26283
CM
SOUTH AFRICA
Hewlett-Packard So Africa (Pty.) Ltd.
P.O. Box 120

Howard Place CAPE PROVINCE 7450
Pine Park Center, Forest Drive,
Pinelands
CAPE PROVINCE 7405
Tel: 53-7954
Telex: 57-20006
A,CH,CM,E,MS,P
Hewlett-Packard So Africa (Pty.) Ltd.
P.O. Box 37099

92 Overport Drive
DURBAN 4067
Tel: 28-4178, 28-4179, 28-4110
Telex: 6-22954
CH,CM

Hewlett-Packard So Africa (Pty
Lid.
6 Linton Arcade
511 Cape Road
Linton Grange
PORT ELIZABETH 6001
Tel: 041-302148
CH
Hewlett-Packard So Africa (Pty.)
Lid. P.O.Box 33345
Glenstantia 0010 TRANSVAAL
1st Floor East
Constantia Park Ridge Shopping
Centre
Constantia Park
PRETORIA
Tet: 982043
Telex: 32163
CH,E
Hewlett-Packard So Africa (Pty.) Ltd.
Private Bag Wendywood
SANDTON 2144
Tel: 802-5111, 802-5125
Telex: 4-20877
Cable: HEWPACK Johannesburg
A,CH,CM,CS,E,MS,P

SPAIN

Hewlett-Packard Española S.A.
Calle Entenza, 321
E-BARCELONA 29
Tel: 322.24.51, 321.73.54
Telex: 52603 hpbee
A,CH,CS,E,MS,P
Hewlett-Packard Española S.A.
Calle San Vicente S/No
Edificio Albia II
E-BILBAO 1
Tel: 423.83.06
A,CH,E,MS
Hewlett-Packard Española S.A.
Crta. de la Coruña, Km. 16, 400
Las Rozas
E-MADRID
Tel: (1) 637.00.11
CH,CS,M
Hewlett-Packard Española S.A.
Avda. S. Francisco Javier, S/no
Planta 10. Edificio Sevilla 2,
E-SEVILLA 5
Tel: 64.44 .54
Telex: 72933
A,CS,MS,P
Hewlett-Packard Española S.A.
Calle Ramon Gordillo, 1 (Entlo.3)
E-valencia 10
Tel: 361-1354
CH, P

SWEDEN

Hewlett-Packard Sverige AB
Sunnanvagen 14 K
S-22226 LUND
Tel: (046) 13-69-79
Telex: (854) 17886 (via Spånga office)
CH
Hewlett-Packard Sverige AB
Vastra Vintergatan 9
S-70344 OREBRO
Tel: (19) 10-48-80
Telex: (854) 17886 (via Spånga office)

CH

Hewlett-Packard Sverige AB
Skalholtsgatan 9, Kista
Box 19
S- 16393 SPÅNGA
Tel: (08) 750-2000
Telex: (854) 17886
A,CH,CM,CS,E,MS, P
Hewlett-Packard Sverige AB
robtallisgatan 30
S-42 132 VÄSTRA-FRÖLUNDA
Tel: (031) 49-09-50
Telex: (854) 17886 (via Spånga
office)
CH,E,P
SWITZERLAND
Hewlett-Packard (Schweiz) AG
Clarastrasse 12
CH-4058 BASLE
Tel: (61) 33-59-20
A
Hewlett-Packard (Schweiz) AG
7, rue du Bois-du-Lan
Case Postale 365
CH-1217 MEYRIN 1
Tel: (0041) 22-83-11-11
Telex:27333 HPAG CH
CH,CM,CS
Hewlett-Packard (Schweiz) AG
Allmend 2
CH-8967 WIDEN
Tel: (0041) 57312111
Telex: 53933 hpag ch
Cable: HPAG CH
A,CH,CM,CS,E,MS,P

SYRIA

General Electronic Inc.
Nuri Basha P.O. Box 5781

DAMASCUS Tel: $33-24-87$

Telex: 11216 ITIKAL SY
Cable: ELECTROBOR DAMASCUS
E

Middle East Electronics
Place Azmé
P.O.Box 2308

DAMASCUS
Tel: 334592
Telex: 11304 SATACO SY M, P

TAIWAN

Hewlett-Packard Far East Ltd.
Kaohsiung Office
2/F 68-2, Chung Cheng 3rd Road
KAOHSIUNG
Tel: 241-2318, 261-3253
CH,CS,E
Hewlett-Packard Far East Lid.
Taiwan Branch
5th Floor
205 Tun Hwa North Road
TAPEI
Tel: (02) 712-0404
Cable:HEWPACK Taipei
A,CH,CM,CS,E,M, P
Ing Lih Trading Co.
3rd Floor, 7 Jen-Ai Road, Sec. 2
TAIPEI 100
Tel: (O2) 3948191
Cable: INGLIH TAIPEI

THAILAND

Unimesa
30 Patpong Ave., Suriwong
BANGKOK 5
Tel: 235-5727
Telex: 84439 Simonco TH
Cable: UNIMESA Bangkok
A,CH,CS,E,M
Bangkok Business Equipment Ltd.
5/5-6 Dejo Road
BANGKOK
Tel: 234-8670, 234-8671
Telex: 87669-BEQUIPT TH
Cable: BUSIQUIPT Bangkok
P

TRINIDAD \& TOBAGO

Caribbean Telecoms Ltd.
50/A Jerningham Avenue
P.O. Box 732

PORT-OF-SPAIN
Tel: 62-44213, 62-44214
Telex: 235,272 HUGCO WG
CM, E, M, P
TUNISIA
Tunisie Electronique
31 Avenue de la Liberte
TUNIS
Tel: 280-144
E, P
Corema
1 ter. Av. de Carthage
TUNIS
Tel: 253-821
Telex: 12319 CABAM TN M

TURKEY
Teknim Company Ltd.
Iran Caddesi No. 7
Kavaklidere, ANKARA
Tel: 275800
Telex: 42155 TKNM TR
E
E.M.A.

Medina Eldem Sokak No. 4 1/6
Yuksel Caddesi
ANKARA
Tel: 175622
M

UNITED ARAB EMIRATES

Emitac Ltd.
P.O. Box 1641

SHARJAH
Tel: 354121,354123
Telex: 68136 Emitac Sh
CH,CS,E,M,P
UNITED KINGDOM
GREAT BRITAIN
Hewlett-Packard LId.
Trafalgar House
Navigation Road
ALTRINCHAM
Chesire WA14 iNU
Tel: (061) 928-6422
Telex: 668068
A,CH,CS,E,M
Hewlett-Packard Lid
Oakfield House, Oakfield Grove
Clifton
BRISTOL BS8 2BN, Avon
Tel: (027) 38606
Telex: 444302
$\mathrm{CH}, \mathrm{M}, \mathrm{P}$

Arranged alphabetically by country

GREAT BRITAIN (Cont'd)
Hewlett-Packard Lid.
Fourier House
257-263 High Street
LONDON COLNEY
Herts., AL2 1HA, St. Albans
Tel: (0727) 24400
Telex: 1-8952716
CH,CS,E
Hewlett-Packard Lid.
Quadrangle
106-118 Station Road
REDHILL, Surrey
Tel: (0737) 68655
Telex: 947234
CH,CS,E
Hewlett-Packard LId.
Avon House
435 Stratford Road
SHIRLEY, Solihull
West Midiands B90 4BL
Tel: (021) 7458800
Telex: 339105
CH
Hewlett-Packard Ltd.
West End House 41
High Street, West End
SOUTHAMPTON
Hampshire S03 300
Tel: (703) 886767
Telex: 477138
CH
Hewlett-Packard Ltd.
King Street Lane
WINNERSH, Wokingham
Berkshire RG11 5AR
Tel: (0734) 784774
Telex: 847178
A,CH,E,M
Hewlett-Packard Ltd.
Nine Mile Ride
WOKINGHAM
Berkshire, 3RG11 3LL
Tel: 34463100
Telex: 84-88-05
CH,CS,E
NORTHERN IRELAND
Cardiac Services Company
95A Finaghy Road South
BELFAST BT 10 OBY
Tel: (0232) 625-566
Telex: 747626
M
SCOTLAND
Hewlett-Packard Ltd. SOUTH QUEENSFERRY
West Lothian, EH3O 9GT
Tel: (031) 3311188
Telex: 72682
A,CH,CM,CS,E,M
UNITED STATES
Alabama
Hewlett-Packard Co.
P.O. Box 7000

8290 Whitesburg Drive, S.E.
HUNTSVILLE, AL 35802
Tel: (205) 830-2000
CH,CM,CS,E,M*

Arizona

Hewlett-Packard Co.
8080 Point Parkway West
PHOENIX, AZ 85044
Tel: (602) 273-8000
A,CH,CM,CS,E,MS
Hewlett-Packard Co.
2424 East Aragon Road
TUCSON, AZ 85706
Tel: (602) 889-4631
CH,E,MS**

Californla
Hewlett-Packard Co.
99 South Hill Dr.
4BRISBANE, CA 94005
Tel: (4 15) 330-2500
CH,CS
Hewlett-Packard Co.
7621 Canoga Avenue
CANOGA PARK, CA 91304
Tel: (213) 702-8363
A,CH,CS,E,P
Hewlett-Packard Co.
P.O. Box 7830 (93747)

5060 E. Clinton Avenue, Suite 102
FRESNO, CA 93727
Tel: (209) 252-9652
CH,CS,MS
Hewlett-Packard Co.
P.O. Box 4230

1430 East Orangethorpe
FULLERTON, CA 92631
Tel: (714) 870-1000
CH,CM,CS,E,MP
Hewlett-Packard Co.
320 S. Kellogg, Suite B
GOLETA, CA 93117
Tel: (805) 967-3405 CH
Hewlett-Packard Co.
5400 W. Rosecrans Boulevard
LAWNDALE, CA 90260
P.O. Box 92105

LOS ANGELES, CA 90009
Tel: (213) 970-7500
Telex: 910-325-6608
CH,CM,CS,MP
Hewlett-Packard Co.
3200 Hillview Avenue
PALO ALTO, CA 94304
Tel: (415) 857-8000
CH,CS,E
Hewlett-Packard Co.
P.O. Box 15976 (95813)

4244 So. Market Court, Suite A
SACRAMENTO, CA 95834
Tel: (916) 929-7222
A* ${ }^{*}$ CH,CS,E,MS
Hewlett-Packard Co.
9606 Aero Drive
P.O. Box 23333 SAN DIEGO, CA

92123
Tel: (619) 279-3200
CH,CM,CS,E,MP
Hewlett-Packard Co.
2305 Camino Ramon "C"
SAN RAMON, CA 94583
Tel: (415) 838-5900

CH,CS

Hewlett-Packard Co.
P.O. Box 4230

Fullerton, CA 92631
363 Brookhollow Drive
SANTA ANA, CA 92705
Tel: (714) 641-0977
A,CH,CM,CS,MP
Hewlett-Packard Co.
3003 Scott Boulevard
SANTA CLARA, CA 95050
Tel: (408) 988-7000
Telex: 910-338-0586
A,CH,CM,CS,E,MP
Hewlett-Packard Co.
5703 Corsa Avenue
WESTLAKE VILLAGE, CA 91362
Tel: (213) 706-6800
E*, CH* ${ }^{*}$ CS*

Colorado
Hewlett-Packard Co.
24 Inverness Place, East
ENGLEWOOD, CO 80112
Tel: (303) 771-3455
Telex: 910-935-0785
A,CH,CM,CS,E,MS
Connecticut
Hewlett-Packard Co.
47 Barnes Industrial Road South
P.O. Box 5007

WALLINGFORD, CT 06492
Tel: (203) 265-7801
A,CH,CM,CS,E,MS
Florida
Hewlett-Packard Co.
P.O. Box 24210 (33307)

2901 N.W. 62nd Street
FORT LAUDERDALE, FL 33309
Tel: (305) 973-2600
CH,CS,E,MP
Hewlett-Packard Co.
P.O. Box 13910

6177 Lake Ellenor Drive
ORLANDO, FL 32809
Tel: (305) 859-2900
A,CH,CM,CS,E,MS
Hewlett-Packard Co.
5750B N. Hoover Blvd., Suite 123
TAMPA, FL 33614
Tel: (813) 884-3282
$\mathrm{A}^{*}, \mathrm{CH}, \mathrm{CM}, \mathrm{CS}, \mathrm{E}^{*}, \mathrm{M}^{*}$

Georgia

Hewlett-Packard Co.
P.O. Box 105005

30348 ATLANTA,GA
2000 South Park Place
ATLANTA, GA 30339
Tel: (404) 955-1500
Telex: 810-766-4890
A,CH,CM,CS,E,MP

Hawail

Hewlett-Packard Co.
Kawaiahao Plaza, Suite 190
567 South King Street
HONOLULU, HI 96813
Tel: (808) 526-1555
A,CH,E,MS
Illinois
Hewlett-Packard Co.
P.O. Box 1607

304 Eldorado Road
BLOOMINGTON, IL 61701
Tel: (309) 662-9411
CH,MS**
Hewlett-Packard Co.
1100 31st Street, Suite 100
DOWNERS GROVE, IL 60515
Tel: (312) 960-5760
CH,CS
Hewlett-Packard Co.
5201 Tollview Drive
ROLLING MEADOWS, IL 60008
Tel: (312) 255-9800
Telex: 910-687-1066
A,CH,CM,CS,E,MP

Indiana

Hewlett-Packard Co.
P.O. Box 50807

7301 No. Shadeland Avenue
INDIANAPOLIS, IN 46250
Tel: (317) 842-1000
A,CH,CM,CS,E,MS
lowa
Hewlett-Packard Co.
1776 22nd Street, Suite 1
WEST DES MOINES, IA 50262
Tel: (515) 224-1435
CH,MS**
Hewlett-Packard Co.
2415 Heinz Road
IOWA CITY, IA 52240
Tel: (319) 351-1020
CH,E*, MS

Kansas

Hewlett-Packard Co.
7804 East Funston Road

Suite 203

WICHITA, KA 67207
Tel: (316) 684-8491 CH
Kentucky
Hewlett-Packard Co.
10300 Linn Station Road
Suite 100
LOUISVILLE, KY 40223
Tel: (502) 426-0100
A,CH,CS,MS
Louisiana
Hewlett-Packard Co.
P.O. Box 1449

KENNER, LA 70063
160 James Drive East
ST. ROSE, LA 700087
Tel: (504) 467-4 100
A,CH,CS,E,MS
Maryland
Hewlett-Packard Co.
3701 Koppers Street
BALTIMORE, Md. 21227
Tel: (301) 644-5800
Telex: 710-862-1943
A,CH,CM,CS,E,MS
Hewlett-Packard Co.
2 Choke Cherry Road
ROCKVILLE, MD 20850
Tel: (301) 948-6370
A,CH,CM,CS,E,MP
Massachusetts
Hewlett-Packard Co.
32 Hartwell Avenue
LEXINGTON, MA 02173
Tel: (617) 861-8960
A,CH,CM,CS,E,MP

Michigan

Hewlett-Packard Co.
23855 Research Drive
FARMINGTON HILLS, MI 48024
Tel: (313) 476-6400
A,CH,CM,CS,E,MP
Hewlett-Packard Co.
4326 Cascade Road S.E.
GRAND RAPIDS, MI 49506
Tel: (616) 957-1970
CH,CS,MS
Hewiett-Packard Co.
1771 W. Big Beaver Road
TROY, MI 48084
Tel: (313) 643-6474
CH,CS

Minnesota

Hewlett-Packard Co.
2025 W. Larpenteur Ave.
ST. PAUL, MN 55113
Tel: (612) 644-1100
A,CH,CM,CS,E,MP

Missouri
Hewlett-Packard Co.
11131 Colorado Avenue
KANSAS CITY, MO 64137
Tel: (816) 763-8000
A,CH,CM,CS,E,MS
Hewlett-Packard Co.
13001 Hollenberg Drive
BRIDGETON, MO 63044
Tel: (314) 344-5100
A,CH,CS,E,MP
Nebraska
Hewlett-Packard
10824 Old Mill Rd., Suite 3
OMAHA, NE 68154
Tel: (402) 334-1813
CM,MS
New Jersey
Hewlett-Packard Co
W 120 Century Road
PARAMUS, NJ 07652
Tel: (201) 265-5000
A,CH,CM,CS,E,MP
Hewlett-Packard Co.
60 New England Av. West
PISCATAWAY, NJ 08854
Tel: (201) 981-1 199
A,CH,CM,CS,E
New Mexico
Hewlett-Packard Co.
P.O. Box 11634 (87192)

11300 Lomas Blvd.,N.E.
albuaueraue, nm 87112
Tel: (505) 292-1330
CH,CS,E,MS
New York
Hewlett-Packard Co.
Computer Drive South
ALBANY, NY 12205
Tel: (518) 458-1550
Telex: 710-444-4691
A,CH,E,MS
Hewlett-Packard Co.
P.O. Box AC

9600 Main Street
CLARENCE, NY 14031
Tel: (716) 759-8621
CH
Hewlett-Packard Co.
200 Cross Keys Office Park
FAIRPORT, NY 14450
Tel: (716) 223-9950
CH,CM,CS,E,MS
Hewlett-Packard Co.
7641 Henry Clay Blvd.
LIVERPOOL, NY 13088
Tel: (315) 451-1820
A,CH,CM,E,MS
Hewlett-Packard Co.
No. 1 Pennsylvania Plaza 55th Floor
34th Street \& 8th Avenue
MANHATTAN NY 10001
Tel: (212) 971-0800
CH,CS,E*, M*
Hewlett-Packard Co.
250 Westchester Avenue
WHITE PLAINS, NY 10604
Tel: (914) 328-0884
CM,CH,CS,E
Hewlett-Packard Co.
3 Crossways Park West
WOODBURY, NY 11797
Tel: (516) 921-0300
Telex: 510-221-2183

SALES \& SUPPORT OFFICES

Arranged alphabetically by country

UNITED STATES (Cont'd)

North Carolina
Hewlett-Packard Co
P.O. Box 26500 (27420)

5605 Roanne Way
GREENSBORO, NC 27409
Tel: (919) 852-1800
A,CH,CM,CS,E,MS
Ohio
Hewlett-Packard Co.
9920 Carver Road
CINCINNATI, OH 45242
Tel: (513) 891-9870
CH,CS,MS
Hewlett-Packard Co.
16500 Sprague Road CLEVELAND, OH 44130
Tel: (216) 243-7300
A,CH,CM,CS,E,MS
Hewlett-Packard Co.
962 Crupper Ave.
COLUMBUS, OH 43229
Tel: (614) 436-1041
CH,CM,CS,E*
Hewlett-Packard Co.
P.O. Box 280

330 Progress Rd.
DAYTON, OH 45449
Tel: (513) 859-8202
A,CH,CM, E*, MS

Oklahoma

Hewlett-Packard Co.
P.O. Box 75609 (73147)

304 N. Meridian, Suite A
3
OKLAHOMA CITY, OK 73107
Tel: (405) 946-9499
$\mathrm{A}^{*}, \mathrm{CH}, \mathrm{E}^{*}, \mathrm{MS}$
Hewlett-Packard Co.
3840 S. 103rd E. Avenue
Logan Building, Suite 100
TULSA, OK 74145
Tel: (918) 665-3300
$\mathrm{A}^{*}, \mathrm{CH}, \mathrm{CS}, \mathrm{M}^{*}$

Oregon

Hewlett-Packard Co
9255 S. W. Pioneer Court
WILSONVILLE, OR 97070
Tel: (503) 682-8000
A,CH,CS,E*, MS
Pennsylvania
Hewlett-Packard Co.
1021 8th Avenue
KING OF PRUSSIA, PA 19046
Tel: (215) 265-7000
A,CH,CM,CS,E,MP
Hewlett-Packard Co.
111 Zeta Drive
PITTSBURGH, PA 15238
Tel: (412) 782-0400
A,CH,CS,E,MP

South Carolina

Hewlett-Packard Co.
P.O. Box 21708 (29221)

Brookside Park, Suite 122
1 Harbison Way
COLUMBIA, SC 29210
Tel: (803) 732-0400
CH,E,MS

Tennessee

Hewlett-Packard Co.
3070 Directors Row
MEMPHIS, TN 38131
Tel: (901) 346-8370
A,CH,MS

Texas
Hewlett-Packard Co.
Suite C-110
4171 North Mesa
EL PASO, TX 79902
Tel: (915) 533-3555
CH,E*, MS**
Hewlett-Packard Co.
P.O. Box 42816 (77042)

10535 Harwin Street houston, TX 77036
Tel: (713) 776-6400 A,CH,CM,CS,E,MP
Hewlett-Packard Co.
P.O. Box 1270

930 E. Campbell Rd.
RICHARDSON, TX 75080
Tel: (214) 231-6101
A,CH,CM,CS,E,MP
Hewlett-Packard Co.
P.O. Box 32993 (78216)

1020 Central Parkway South SAN ANTONIO, TX 78232
Tel: (512) 494-9336
CH,CS,E,MS

Utah

Hewlett-Packard Co P.O. Box 26626 (84 126)

3530 W. 2100 South
SALT LAKE CITY, UT 84119
Tel: (801) 974-1700
A,CH,CS,E,MS

Virginia

Hewlett-Packard Co
P.O. Box 9669 (23228)

RICHMOND, Va. 23228
4305 Cox Road
GLEN ALLEN, Va. 23060
Tel: (804) 747-7750
A,CH,CS,E,MS

Washington

Hewlett-Packard Co.
158 i5 S.E. 37th Street
BELLEVUE, WA 98006
Tel: (206) 643-4000
A,CH,CM,CS,E,MP
Hewlett-Packard Co.
Suite A
708 North Argonne Road
SPOKANE, WA 99206
Tel: (509) 922-7000
CH,CS

West Virginia

Hewlett-Packard Co.
P.O. Box 4297

4604 MacCorkle Ave., S.E.
CHARLESTON, WV 25304
Tel: (304) 925-0492 A,MS

Wisconsin

Hewlett-Packard Co
150 S. Sunny Slope Road BROOKFIELD, WI 53005
Tel: (414) 784-8800
A,CH,CS,E*,MP

URUGUAY
Pablo Ferrando S.A.C. e I.
Avenida Italia 2877
Casilla de Correo 370
MONTEVIDEO
Tel: 80-2586
Telex: Public Booth 901
A,CM,E,M
VENEZUELA
Hewlett-Packard de Venezuela C.A. 3A Transversal Los Ruices Norte
Edificio Segre
Apartado 50933
CARACAS 1071
Tel: 239-4133
Telex: 25146 HEWPACK
A,CH,CS,E,MS,P
Hewlett-Packard de Venezuela C.A.
Calle-72-Entre 3 H Y 3Y, No.3H-40
Edificio Ada-Evelyn, Local B
Apartado 2646
MARACAIBO, Estado Zulia
Tel: (061) 80.304
CE*
Hewlett-Packard de Venezuela C.A.
Calle Vargas Rondon
Edificio Seguros Carabobo, Piso 10 valencia
Tel:(041) 51385
CH,CS,P
Colimodio S.A.
Este 2 - Sur 21 No. 148
Apartado 1053
CARACAS 1010
Tel: 571-3511
Telex: 21529 COLMODIO
M

ZIMBABWE

Field Technical Sales
45 Kelvin Road, North
P.B. 3458

SALISBURY
Tel: 705231
Telex: 4-122 RH
C, E, M, P

HEADQUARTERS

OFFICES
If there is no sales office listed for your area, contact one of these headquarters offices.

NORTH/CENTRAL

AFRICA

Hewlett-Packard S.A.
7 Rue du Bois-du-Lan
CH-1217 MEYRIN 1, Switzerland
Tel: (022) 831212
Telex: 27835 hpse
Cable: HEWPACKSA Geneve

ASIA

Hewlett-Packard Asia Ltd.
6th Floor, Sun Hung Kai Centre
30 Harbour Rd.
G.P.O. Box 795

HONG KONG
Tel: 5-832 3211
Telex: 66678 HEWPA HX Cable: HEWPACK HONG KONG

CANADA

Hewlett-Packard (Canada) Ltd. 6877 Goreway Drive
MISSISSAUGA, Ontario L4V 1M8
Tel: (416) 678-9430
Telex: 610-492-4246

EASTERN EUROPE

Hewlett-Packard Ges.m.b.h.
Lieblgasse 1
P. O.Box 72

A- 1222 VIENNA, Austria
Tel: (222) 2365110
Telex: 134425 HEPA A

NORTHERN EUROPE

Hewlett-Packard S.A.
Uilenstede 475
NL-1183 AG AMSTELVEEN
The Netherlands
P.O.Box 999

NL-1180 AZ AMSTELVEEN
The Netherlands
Tel: 20437771
OTHER EUROPE
Hewlett-Packard S.A.
7 rue du Bois-du-Lan
CH-1217 MEYRIN 1, Switzerland
Tel: (022) 831212
Telex: 27835 hpse
Cable: HEWPACKSA Geneve
MEDITERRANEAN AND
MIDDLE EAST
Hewlett-Packard S.A.
Mediterranean and Middle East
Operations
Atrina Centre
32 Kifissias Ave.
Maroussi, ATHENS, Greece
Tel: 6828811
Telex: 21-6588 HPAT GR
Cable: HEWPACKSA Athens

EASTERN USA

Hewlett-Packard Co.
4 Choke Cherry Road
Rockville, MD 20850
Tel: (301) 258-2000
MIDWESTERN USA
Hewlett-Packard Co.
5201 Tollview Drive
ROLLING MEADOWS, IL 60008
Tel: (312) 255-9800

SOUTHERN USA
Hewlett-Packard Co.
P.O. Box 105005

450 interstate N. Parkway
ATLANTA, GA 30339
Tel: (404) 955-1500

WESTERN USA

Hewlett-Packard Co.
3939 Lankershim Blvd.
LOS ANGELES, CA 91604
Tel: (213) 877-1282

OTHER INTERNATIONAL

AREAS

Hewlett-Packard Co.
Intercontinental Headquarters
3495 Deer Creek Road
PALO ALTO, CA 94304
Tel: (415) 857-1501
Telex: 034-8300
Cable: HEWPACK

March 1983 5952-6900

