HP64000
 Logic Development System

Model 64941A Flexible Disc (Floppy) Drive Controller

CERTIFICATION

Hewlett-Packard Company certifies that this product met its published specifications at the time of shipment from the factory. Hewlett-Packard further certifies that its calibration measurements are traceable to the United States National Bureau of Standards, to the extent allowed by the Bureau's calibration facility, and to the calibration facilities of other International Standards Organization members.

W ARRANTY

This Hewlett-Packard system product is warranted against defects in materials and workmanship for a period of 90 days from date of installation. During the warranty period, HP will, at its options, either repair or replace products which prove to be defective.

Warranty service of this product will be performed at Buyer's facility at no charge within HP service travel areas. Outside HP service travel areas, warranty service will be performed at Buyer's facility only upon HP's prior agreement and Buyer shall pay HP's round trip travel expenses. In all other cases, products must be returned to a service facility designated by HP.

For products returned to HP for warranty service, Buyer shall prepay shipping charges to HP and HP shall pay shipping charges to return the product to Buyer. However, Buyer shall pay all shipping charges, duties, and taxes for products returned to HP from another country.

HP warrants that its software and firmware designated by HP for use with an instrument will execute its programming instructions when properly installed on that instrument. HP does not warrant that the operation of the instrument, or software, or firmware will be uninterrupted or error free.

LIMITATION OF WARRANTY

The foregoing warranty shall not apply to defects resulting from improper or inadequate maintenance by Buyer, Buyer-supplied software or interfacing, unauthorized modification or misuse, operation outside the environmental specifications for the product, or improper site preparation or maintenance.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED. HP SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.

EXCLUSIVE REMEDIES

THE REMEDIES PROVIDED HEREIN ARE BUYER'S SOLE AND EXCLUSIVE REMEDIES. HP SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER BASED ON CONTRACT, TORT, OR ANY OTHER LEGAL THEORY.

[^0]POSTAGE WILL BE PAID BY ADDRESSEE
HEWLETT－PACKARD
Logic Product Support Dept．
Attn：Technical Publications Manager
Centennial Annex－D2
P．O．Box 617
Colorado Springs，Colorado 80901－0617

READER COMMENT SHEET

Service Manual, Model 64941A
Flexible Disc (Floppy) Drive Controller 64941-90902, April 1983

Your comments are important to us. Please answer this questionaire and return it to us. Circle the number that best describes your answer in questions 1 through 7. Thank you.

1. The information in this book is complete:

| Doesn't cover enough
 what more do you need?) | 1 | 2 | 3 | 4 | 5 |
| :---: | :--- | :--- | :--- | :--- | :--- |\quad Covers everything

2. The information in this book is accurate:
Too many errors
12345
Exactly right
3. The information in this book is easy to find:

I can't find things I need | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- |

4. The Index and Table of Contents are useful:

Helpful
12345
Missing or inadequate
5. What about the "how-to" procedures and examples:

No help	1	2	3	4	5	Very helpful
Too many now	1	2	3	4	5	l'd like more

6. What about the writing style:

$$
\begin{array}{llllll}
\text { Confusing } & 1 & 2 & 3 & 4 & 5
\end{array}
$$

Clear
7. What about organization of the book:

Poor order
$1 \begin{array}{llll}1 & 2 & 3 & 5\end{array}$
Good order
8. What about the size of the book:
too big/small
12345
Right size

Comments: \qquad
\qquad

Particular pages with errors?

Name (optional): \qquad
Job title:
Company \qquad
Address:
Note: If mailed outside U.S.A., place card in envelope. Use address shown on other side of this card.

SERVICE MANUAL

MODEL 64941A FLEXIBLE DISC DRIVE

REPAIR NUMBERS

This manual applies to 64941 A Flexible Disc Drive with a repair number prefix of 2429 A . For further information on repair numbers refer to "Instruments Covered by This Manual" in Section I.

© COPYRIGHT HEWLETT -PACKARD COMPANY 1982,1983 LOGIC SYSTEMS DIVISION COLORADO SPRINGS, COLORADO, U.S.A.

ALL RIGHTS RESERVED

Manual Part No. 64941-90902
PRINTED: APRIL 1983
UPDATED: JULY 1984

SAFETY SUMMARY

The following general safety precautions must be observed during all phases of operation, service, and repair of this instrument. Failure to comply with these precautions or with specific warnings elsewhere in this manual violates safety standards of design, manufacture, and intended use of the instrument. Hewlett-Packard Company assumes no liability for the customer's failure to comply with these requirements.

GROUND THE INSTRUMENT.

To minimize shock hazard, the instrument chassis and cabinet must be connected to an electrical ground. The instrument is equipped with a three-conductor ac power cable. The power cable must either be plugged into an approved three-contact electrical outlet or used with a three-contact to two-contact adapter with the grounding wire (green) firmly connected to an electrical ground (safety ground) at the power outlet. The power jack and mating plug of the power cable meet International Electrotechnical Commission (IEC) safety standards.

DO NOT OPERATE IN AN EXPLOSIVE ATMOSPHERE.

Do not operate the instrument in the presence of flammable gases or fumes. Operation of any electrical instrument in such an environment constitutes a definite safety hazard.

KEEP AWAY FROM LIVE CIRCUITS.

Operating personnel must not remove instrument covers. Component replacement and internal adjustments must be made by qualified maintenance personnel. Do not replace components with the power cable connected. Under certain conditions, dangerous voltages may exist even with the power cable removed. To avoid injuries, always disconnect power and discharge circuits before touching them.

DO NOT SERVICE OR ADJUST ALONE.

Do not attempt internal service or adjustment unless another person, capable of rendering first aid and resuscitation, is present.

do Not substitute parts Or modify instrument.

Because of the danger of introducing additional hazards, do not install substitute parts or perform any unauthorized modification of the instrument. Return the instrument to a Hewlett-Packard Sales and Service Office for service and repair to ensure that safety features are maintained.

DANGEROUS PROCEDURE WARNINGS.

Warnings, such as the example below, precede potentially dangerous procedures throughout this manual. Instructions contained in the warnings must be followed.

WARNING

Dangerous voltages, capable of causing death, are present in this instrument. Use extreme caution when handling, testing, and adjusting.

TABLE OF CONTENTS

Section Title Page
I GENERAL INFORMATION 1-1
1-1. Introduction 1-1
1-3. Instruments Covered By This Manual 1-1
1-8. Safety Considerations 1-1
1-11. Physical Description 1-2
1-17. Environmental and Physical Specifications 1-2
1-18. Operating Environment 1-2
1-20. Storage Environment 1-2
1-22. Recording Characteristics 1-3
1-23. HP Physical Track Format 1-3
1-24. Alignment Limits 1-3
1-25. Physical Dimensions 1-3
1-27. Power Requirements 1-3
1-29. Mini Drive Assemblies 1-3
1-33. Recommended Test Equipment 1-4
II INSTALLATION AND REMOVAL 2-1
2-1. Introduction 2-1
2-4. Installation of New Mini Drive and Mini Control Board. 2-1
2-6. Mini Drive Removal Procedure 2-3
2-7. Mini Drive Installation Procedure 2-3
2-8. Mini Drive Jumper Configurations 2-4
2-12. Termination Resistor Package 2-5
2-14. Soldered Jumpers 2-5
2-16. Packaging 2-5
2-17. Original Packaging 2-5
2-19. Other Packaging 2-6
2-21. Flexible Disc Media 2-6
2-23. Flexible Disc Drive Head Cleaning Procedures 2-7
III OPERATION 3-1
3-1. Introduction 3-1
3-3. Operating Cleanliness 3-1
3-5. Disc Loading 3-1
3-7. Write Protection 3-1
3-9. Formatting the Disc 3-2
3-11. Floppy Disc Diagnostic Test 3-2
3-17. Test Errors 3-6

TABLE OF CONTENTS (Cont'd)

Section Title Page
IV
PERFORMANCE VERIFICATION 4-1
4-1. Introduction. 4-1
4-5. Performance Verification Test Procedure 4-1
4-10. Operation Verification Tests 4-4
4-13. Media Change Test 4-6
4-14. Motor Control Test 4-6
4-15. Drive Ready Test 4-7
4-16. Drive Select Test 4-7
4-17. Format a Disc 4-7
4-18. Head Alignment Test 4-7
4-20. Head Azimuth Alignment Check 4-7
v ADJUSTMENTS 5-1
5-1. Introduction 5-1
5-4. Test and Adjustment Drive Access Procedure 5-1
5-6. Field Adjustments 5-1
5-7. Spindle Motor Speed Adjustment 5-1
5-9. Known Primary Power and Fluorescent Lighting 5-2
5-11. Primary Power Frequency is Unstable or Unknown 5-3
5-13. Spindle Drive Belt Adjustment 5-3
5-15. Factory Adjustments 5-4
5-18. Required Tools and Test Equipment 5-5
5-19. Radial Head Alignment 5-5
5-21. Track 0 Switch Adjustment 5-7
5-23. Index Emitter/Detector Adjustment 5-9
5-25. Write Protect Switch Adjustment 5-10
VI REPLACEABLE PARTS 6-1
6-1. Introduction 6-1
6-3. Abbreviations 6-1
6-5. Replaceable Parts List 6-1
6-7. Ordering Information 6-1
6-10. Direct Mail Order System 6-1
VII MANUAL BACKDATING 7-1
7-1. General 7-1

TABLE OF CONTENTS (Cont'd)

Section Title Page
VIII SERVICE 8-1
8-1. Introduction 8-1
8-4. Safety Considerations 8-1
8-6. Flexible Disc Recording Fundamentals 8-1
8-17. Block Diagram Theory 8-4
8-20. Mini Control Block Theory 8-4
8-23. Interface Control Latch 8-4
8-25. DMA/CPU Address Selector 8-4
8-27. Signature Analysis Stimulus Latch 8-5
8-29. CPU Interface/DMA State Machine 8-5
8-31. Data Latches. 8-5
8-33. 4 MHz Oscillator 8-5
8-35. Mini Drive Controller (MDC) Chip 8-5
8-37. Drive Control Latch/Buffer 8-5
8-39. Drive Status Buffers 8-6
8-41. Data Separator 8-6
8-43. Disc Drive Multiplexer And Control Buffering 8-6
8 -45. Disc Drive Block Theory 8-6
8-47. Index Pulse Shaping Network 8-6
8-49. Write Protect Sensor 8-6
8-51. Track 0 Switch 8-6
8-53. Spindle Motor Drive Control 8-8
8-58. Head Position Control. 8-8
8-60. Power ON Circuit 8-8
8-62. Data Circuitry 8-8
8-65. Writing Data. 8-10
8-76. Reading Data 8-11
8-82. Mini Control Theory of Operation 8-12
8-94. Mini Control Data Separator 8-14
$8-102$. Mini Drive Theory of Operation. 8-14
8-104. Troubleshooting 8-15
8-106. Performance Verification (PV) Test Descriptions 8-15
8-108. Floppy Controller Response Test 8-15
8-110. Select Test 8-15
8-112. Track 00 Test 8-15
8-114. Read Track 0 Test 8-15
8-116. Read Track 34 Test 8-16
8-118. Track 34 Check Test 8-16
8-120. Track 34 Write Test 8-16
8-122. Track 34 Read/Verify Write 8-16
8-124. PV Error Messages 8-17

TABLE OF CONTENTS (Cont'd)

Section Title Page
VIII 8-126. Description of Error Codes And Troubleshooting 8-18
8-128. Troubleshooting Using Signature Analysis (SA) 8-22
8-131. Key Signatures 8-22
8-133. Interface Loop 8-22
8-136. Data Separator Loop. 8-23
8-138. Service Sheet Layout 8-23
8-140. Mini Control And Drive Service Sheet Layout 8-23
8-142. Logic Convention 8-25
8-144. Logic Symbology 8-25
8-146. Mnemonics 8-28
8-148. Troubleshooting Hints 8-36
LIST OF ILLUSTRATIONS
Figure Title Page
1-1. 64100A Flexible Disc Drive 1-0
1-2. Physical Dimensions 1-4
1-3. Drive Option Breakdown 1-5
2-1. Display Panel Attach Screw Locations 2-8
2-2. Blank Panel Screw Locations 2-9
2-3. Mini Drive Cable Installation. 2-10
2-4. Mini Drive Mount Screw Locations on Shield Box 2-11
2-5. Shield Box Screw Locations for Mounting to Display Bezel. 2-12
2-6. Mini Drive Ribbon Cable Position and Fold. 2-13
3-1. Write Protect Tab Installation 3-1
3-2. Floppy Disc Diagnostic Display 3-3
3-3. Floppy Test Menu First Level. 3-3
3-4. Floppy Test Menu Second Level 3-5
4-1. Display Test Pattern 4-2
4-2. PV Test Display 4-2
4-3. Floppy Disc Diagnostic Display 4-5
4-4. Floppy Test Menu First Level. 4-5
4-5. Floppy Test Menu Second Level 4-6
4-6. Head Azimuth Waveform 4-8

List of Illustrations and Tables - Model 64941A

LIST OF ILLUSTRATIONS (Cont'd)

Figure Title Page
5-1. Spindle Motor Speed Adjustment 5-2
5-2. Spindle Drive Belt Adjustment 5-3
5-3. Radial Head Alignment Waveform 5-5
5-4. Head Assembly Retaining Screws 5-6
5-5. Track 0 Waveform 5-8
5-6. Track 0 Retaining Screw 5-8
5-7. Index Detector Retaining Screw 5-10
5-8. Index To Burst Waveform 5-11
6-1. A9 Or A10 Flexible Disc Drive Exploded View. 6-3
8-1. ID And Field Content 8-2
8-2. Media Sector And Track Structure 8-3
8-3. Head Positioning Assembly 8-3
8-4. Mini Control Block Diagram 8-7
8-5. Mini Drive Block Diagram 8-9
8-6. Write Timing Diagram 8-11
8-7. Read Timing Diagram 8-12
8-8. Component Locator And Block Diagram For Service Sheet 11A 8-50
8-9. Mini Control Service Sheet 11A. 8-51
8-10. Component Locator And Block Diagram For Service Sheet 11B 8-52
8-11. Mini Control Service Sheet 11B 8-53
8-12. Component Locator And Block Diagram For Service Sheet 11C 8-54
8-13. Mini Control Service Sheet 11C 8-55
8-14. Component Locator For Service Sheet 1 8-56
8-15. Servo Electronics Service Sheet 1. 8-57
8-16. Component Locator For Service Sheet 2. 8-58
8-17. Drive Electronics Service Sheet 2 8-59
LIST OF TABLES
TableTitle
Page
1-1. Power Requirements 1-3
1-2. Recommended Test Equipment 1-4
2-1. Mini Drive Jumpers And Functions $2-5$

LIST OF TABLES (Cont'd)

Table Title Page
6-1. Reference Designators And Abbreviations 6-3
6-2. Replaceable Parts List 6-4
6-3. List of Manufacturers' Codes 6-11
8-1. Mini Floppy PV Error Messages 8-17
8-2. Description of PV Error Codes 8-18
8-3. Service Sheet To Function 8-24
8-4. Logic Symbology 8-26
8-5. Mnemonics 8-28
8-6. SA Loop A. 8-39
8-7. SA Loop B 8-41
8-8. SA Loop M 8-42
8-9. SA Loop C 8-43
8-10. SA Loop D 8-44
8-11. SA Loop E 8-45
8-12. SA Loop F 8-45
8-13. SA Loop G 8-46
8-14. SA Loop H 8-46
8-15. SA Loop I 8-47
8-16. SA Loop J 8-47
8-17. SA Loop K 8-48
8-18. SA Loop L 8-49

Figure 1-1. 64100A Flexible Disc Drive(s)

SECTION I

GENERAL INFORMATION

1-1. INTRODUCTION.

1-2. This manual contains information and theory necessary to operate, install, maintain, and troubleshoot the Floppy Disc Drive option. Operating instructions are provided in a separate operating manual supplied with the instrument. It should be kept with the instrument for use by the operator.

1-3. INSTRUMENTS COVERED BY THIS MANUAL.

1-4. Attached to the instrument or printed on the printed circuit board is the repair number. The repair number is in the form 0000A0000. It is in two parts; the first four digits and the letter are the repair prefix, and the last five are the suffix. The prefix is the same for all identical instruments. The suffix, however, is assigned sequentially and is different for each instrument. The contents of this manual apply to instruments with the repair number prefix(es) listed under REPAIR NUMBERS on the title page.

1-5. An instrument manufactured after the printing of this manual may have a repair number prefix that is not listed on the title page. This unlisted repair number prefix indicates that the instrument is different than those described in this manual. The manual for this newer instrument is accompanied by a Manual Changes supplement. This supplement contains "change information" that explains how to adapt the manual for the newer instrument.

1-6. In addition to change information, the supplement contains information for correcting errors in the manual. To keep this manual as current as possible, Hewlett-Packard recommends that you periodically request the latest Manual Changes supplement. The supplement for this manual is identified with the manual print date and part number, both of which appear on the manual title page.

1-7. For information concerning a repair number prefix that is not listed on the title page or in the Manual Changes supplement, contact your nearest Hewlett-Packard Sales/Service Office.

1-8. SAFETY CONSIDERATIONS.

1-9. The Local Mass Storage unit is installed in a 64100A Mainframe (see figure 1-1) and contains voltages in +-12 V AND +5 V range.

1-10. There are high voltages present in the mainframe. Exercise EXTREME CAUTION when removing or installing the Flexible Disc Drive(s). Lethal Voltages exist under the high voltage cover and around the CRT. Review the Mainframe Service Manual for WARNINGs and CAUTIONs before servicing.

1-11. PHYSICAL DESCRIPTION.

1-12. Each Mini Flexible Disc Drive is a semi-random access mass storage system employing a flexible magnetic medium. It consists of a Mini Disc Drive, a Servo Electronics circuit board, a Drive Electronics circuit board, and a Mini Control board.

1-13. Each drive module contains all the mechanical parts necessary for physically handling the disc. These include the drive spindle and motor, 2 heads each having read/write and erase capability, write protect sensor, track 0 sensor, index sensor, and activity LED on the front panel. Each drive module also contains a Servo Control board which controls the DC drive motor speed and a Drive Electronics board which interprets and generates control signals, controls movement of the read/write head to the correct position, and also reads and writes data.

1-14. The flexible magnetic medium used for Local Mass Storage is called a flexible disc. A disc measures 133.4 mm (5.25 inches) on a side and has a 3.8 cm (1.5 inch) hole for alignment on the disc drive spindle. The disc is enclosed in a protective polyvinylchloride (PVC) jacket with a slot for access to the recording surface. Both sides of the flexible disc are used for data storage.

1-15. The recording head in the drive module is positioned by a mechanism driven by a stepper motor and taut metal band. The head positioning mechanism operates in an open loop configuration, that is, there is no feedback to the Drive Electronics board to determine the actual position of the head.

1-16. The heads are mechanically coupled to the door mechanism so that closing of the door (pushing down the latch) causes the heads to make contact with the media.

1-17. ENVIRONMENTAL AND PHYSICAL SPECIFICATIONS.

1-18. OPERATING ENVIRONMENT.

1-19. The Flexible Disc Drive Local Mass Storage unit may be operated in environments within the following limits:
a. Temperature: $+10^{*} \mathrm{C}$ to $+44^{*} \mathrm{C}$ (50*F to $111.2^{*} \mathrm{~F}$)
b. Relative Humidity: 20% to 80% while at +29.4 C (85 F)
c. Altitude: 0 to 4572 m (0 to 15000 ft)

It should be protected from temperature extremes which cause condensation within the instrument.

1-20. STORAGE ENVIRONMENT.

1-21. The Flexible Disc Drive Local Mass Storage may be stored or shipped in environments within the following limits:
a. Temperature: $-41^{\circ} \mathrm{C}$ to $+71^{\circ} \mathrm{C} \quad\left(-40.5^{\circ} \mathrm{F}\right.$ to $\left.+159.8^{\circ} \mathrm{F}\right)$
b. Relative Humidity: 20% to 80% at $+29.4^{\circ} \mathrm{C} \quad\left(+85^{\circ} \mathrm{F}\right)$
c. Altitude: 0 to 4572 m (0 to 15000 feet)

1-22. RECORDING CHARACTERISTICS.

1-23. HP PHYSICAL TRACK FORMAT.
a. Recording Mode: Modified Frequency Modulated (MFM)
b. Rotational Speed: 300 RPM +-1.5\% (+-4.5 RPM)
c. Bit Density: 5456 BPI on Track 34
d. Tracks Per Inch: 48
e. Sides Per Disc: 2
f. Tracks Per Sides: 35
g. Sectors Per Track: 16
h. Bytes Per Sector: 256 (362 including overhead bytes)
i. Bytes Per Disc: 286,720 (formatted) 420,000 (unformatted)

1-24. ALIGNMENT LIMITS.
a. Radial Alignment: 1.1 mils maximum of track center at track 16 measured at $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$ and 50% humidity.
b. Azimuth: 18 degrees maximum clockwise/counterclockwise on tracks 16 and 34.

1-25. PHYSICAL DIMENSIONS.

1-26. Figure 1-2 illustrates the physical dimensions of a single flexible disc drive unit.

1-27. POWER REQUIREMENTS.

1-28. Table 1-1 gives the power requirements for a single or double flexible disc drive plus a Mini Control board. The values include the $O N$ transient which is considered to be the most limiting case.

Table 1-1. Power Requirements

Total (1) Drive	+5 V current use $=1.7 \mathrm{~A}-1.8 \mathrm{~A}$ During PV
Total (2) drives $\quad+5 \mathrm{~V}$ current use $=3.4 \mathrm{~A}-3.6 \mathrm{~A}$ During PV	

1-29. MINI DRIVE ASSEMBLIES.
1-30. The flexible disc drives used in the 64000 system are HP9130K drives with the following options.

1-31. OPTION \#010. This option consists of drive board P / N 09130-66501. Refer to figure 1-3.

1-32. OPTION \#052. This option consists of the mechanical drive assembly with Servo board and front panel P/N 4040-1915 and brown latch P / N 4040-1913 and associated hardware. Refer to figure 1-3. Inis option also has an exchange assembly number HP P/N 09130-69600.

NOTES:

1. DIMENSIONS GIVEN AS MILLIMETRES (INCHES).
2. THIS DIMENSION FROM BACK OF FACEPLATE.

Figure 1-2. Physical Dimensions

1-33. RECOMMENDED TEST EQUIPMENT.

1-34. Refer to table 1-2 for a list of recommended test equipment.

Table 1-2. Recommended Test Equipment
Product Support Package
Service Kit
Alignment tool or small shank screwdriver
HP 5314A or equivalent frequency counter
Spindle motor adjustment tool................. P /N 8710-1385
Oscilloscope...................................... . . HP 1740A or equivalent
Alignment Disc. $P /$ 9164-0151
Torque Driver..................................... . . $P /$ 8710-0670
\#1 Posidriv Screwdriver. P / N 8710-0899
\#2 Posidriv Screwdriver......................... . P / N 8710-0900
3/16 Thin Wall Nutdriver....................... P/N 8720-0001
5004A or 5005A Signature Analyzer

Figure 1-3. Drive Option Breakdown
NOTE

Refer to Section II for jumper configuration when installing a new drive assembly or drive option.

SECTION II

INSTALLATION AND REMOVAL

2-1. INTRODUCTION.
2-2. This section contains information for unpacking, initial inspection, installation and removal of the Local Mass Storage (Mini Flexible Disc Drives and Mini Control board).

2-3. The initial inspection procedure assumes the unit is installed. An installation and removal procedure is included for installing a new unit or removing a defective unit.
a. Unpack the Local Mass Storage unit.
b. Keep the shipping carton and cushioning material until the contents have been checked. The carrier will wish to inspect the shipping materials if a claim is made.
c. Visually inspect the unit for mechanical damage.
d. Install the Mini Drive(s) using the installation procedures in paragraphs 2-4 (Installation of new Mini Drive and Mini Control board Procedure) or paragraph 2-6 (removal and installation for servicing).
e. Run the performance verification tests as specified in this service manual. See section IV for more information.
f. If the contents are not complete, or there is mechanical damage, or defect, or it does not pass the performance verification, then notify the carrier as well as the Hewlett-Packard Field Sales/Service Office. Addresses and numbers are located at the back of this manual. HP will arrange for repair or replacement at HP option without waiting for the claim against the carrier to be settled.

2-4. INSTALLATION OF NEW MINI DRIVE AND MINI CONTROL BOARD PROCEDURE.
2-5. The following procedure should be used when installing a Local Mass Storage unit into a 64100A Mainframe. This procedure assumes that no Local Mass Storage option is installed.
a. Switch power OFF on the mainframe and disconnect the AC power cord.
b. Completely remove the five screws that secure the top cover. Remove the two (or four) Rear-Panel screws holding the state and timing grounding clips. Lift and remove cover.
c. Remove the four display bezel attach screws and washers. See figure 2-1.
d. Pull the display bezel forward.
e. Remove the four screws and washers attaching the blank cover panel. See figure 2-2.
f. Attach the Mini Drive cover panel using the four screws and washers from step (e).
g. Remove the cardboard from inside the drive unit that is protecting the drive heads.
h. Place the Mini Drive cables into and through shield box as shown in figure 2-3.
i. Mount the drive unit(s) into the shield box using the four attach screws provided for each drive.
j. Mount the drive unit onto the display bezel using the four attach screws provided.
k. Plug upper drive 0's keyed power cable P2 into J2 on drive 0 and connect (W1) ribbon control cable P1 onto J1 on drive 0. Make sure that pin one on the plug, indicated by a triangle molded on the connector, is attached to pin one on the jack.

1. Plug lower drive 1's keyed power cable P2 into J2 on drive 1 and connect (W1) ribbon control cable P1 onto J1 on drive 1. Make sure that pin one on the plug, indicated by a triangle molded on the connector, is attached to pin one on the jack.
m. Remove the two plug IOD cable from the $C P U$ and I/O board in the card cage. See figure 2-6.
n. Insert the Mini Control board into slot 0 in the card cage behind the CPU board.
o. Attach the three plug IOD cable so that the I/O, CPU and Mini Control boards are connected on the I/O bus. See figure 2-6.
p. Attach drive 0's control and power cables P1 and P2 into J4 and J2 on the Mini Control board. Make certain that pin one on the plug is attached to pin one on the Mini Control board jack.
q. Attach drive 1's control and power cables P1 and P2 into J3 and J1 on the Mini Control board. Make certain that pin one on the plug is attached to pin one on the Mini Control board jack.
r. Push the display bezel back enough so the drive cables are lose.
s. Pull the two control cables $W 1$ back and fold. Attach them to the clip on the top of the shield box. See figure 2-6. Note: Make sure that the cables are not lying near the CRT.
t. Push the display bezel all the way back and secure it with the four attach screws and washers.
u. Put on the top cover making sure not to pinch the drive power cables and secure it with the five top cover screws. Attach the state and timing ground clips to the Rear-Panel with the two (or four) screws given.
v. Installation complete.

2-6. MINI DRIVE REMOVAL PROCEDURE.
a. Switch power OFF on the mainframe and disconnect the AC power cord.
b. Completely remove the five screws that secure the top cover. Remove the two (or four) Rear-Panel screws holding the state and timing grounding clips. Lift and remove cover.
c. Disconnect both Mini Drive power and ribbon cables from the Mini Control board.
d. Remove the four display bezel attach screws and washers. See figure 2-1.
e. Pull the display bezel forward.
f. Remove the four screws and washers that attach the shield box to the mainframe. See figure 2-4.
g. Remove the shield box from the mainframe. The Mini Drives are located inside the shield box. There are four screws for upper drive 0 and four screws for lower drive 1 which attach the shield box to each of the drives. Remove the applicable screws. Remove the Mini Drive(s) from the shield box. See figure 2-3 thru 2-5.

NOTE
The power and control cables are routed through the back of the shield box. Use CAUTION when removing the Mini Drive(s). Damage may occur to cables if they are not treated carefully when being pulled through the rear of the shield box.

2-7. MINI DRIVE INSTALLATION PROCEDURE. (After Servicing Drive)
a. Place Mini Drive(s) cables into and through shield box as shown in figure 2-3. Make sure cables are not bent or twisted.
b. Plug upper drive 0 's keyed power cable P2 into J2 on drive 0 and connect (W1) ribbon control cable P1 into J1 on drive 0 . Make sure that pin 1 on the plug, indicated by a triangle molded on the connector, is attached to pin 1 on the jack.
c. Plug lower drive 1's keyed power cable P2 into J2 on drive 1 and connect (W1) ribbon control cable P1 into J1 on drive 0 . Make sure that pin 1 on the plug, indicated by a triangle molded on the connector, is attached to pin 1 on the jack.
d. Attach drive 0 's control and power cables P1 into J4 and P2 into J2 on the Mini Drive Control board. Make certain that pin 1 on the plug is attached to pin 1 on the jack.
e. Attach drive 1 's control and power cables P1 into J4 and P2 into J2 on the Mini Drive Control board. Make certain that pin 1 on the plug is attached to pin 1 on the jack.
f. Attach the four screws that attach each of the Mini Drives to the shield box.
g. Reattach the shield box to the bezel with four screws and washers. See figure 2-5. Be careful not to drop the screws or washers into the mainframe.
h. Pull up the lock bracket on the left side of display bezel and push bezel back into mainframe. See figure 2-1.
i. Fold ribbon cables as shown in figure 2-6. Make SURE the power cables (P2) are away from the CRT.
j. Reattach the four display bezel attach screws and washers. See figure 2-1.
k. Place the top cover on the mainframe and reattach the five attach screws that secure the top cover. Reattach the state grounding clip(s) with the two (or four) attach screws.

2-8. MINI DRIVE JUMPER CONFIGURATIONS.

2-9. Each disc drive is shipped with a jumper block installed on the Drive Electronics board. The specific configuration of the jumper block installed depends on the board part number and the particular installation. All jumpers are installed except for the $H M$ jumper on the Drive Electronics board.

2-10. The jumper configurations described here are found on the 09130-66501 Drive Electronics board.

2-11. The jumpers on the 09130-66501 Drive Electronics are located in a 16 pin DIP socket designated U1E. For use with the 64000 system, all jumpers should be intact except the HM jumper (U1E pins 8 and 9). The drives are normally shipped this way. The jumpers and their functions are listed in table 2-1.

Table 2-1. Mini Drive Jumpers and Functions

Jumper Name	Installed	U1E Pin Numbers	Function
HS	X	1 and 16	The head load solenoid is activated when the drive is selected if this jumper is left intact.
DSO	YES	2 and 15	When this jumper is intact, the drive responds to drive address 0 .
DS1	X	3 and 14	When this jumper is intact, the drive responds to drive address 1.
DS 2	X	4 and 13	When this jumper is intact, the drive responds to drive address 2.
DS3	X	5 and 12	When this jumper is intact, the drive responds to drive address 3.
MUX	YES	6 and 11	This jumper should only be used in installations having more than one drive on the controller.
NOT USED	X	7 and 10	This jumper is not used.
HM	NO	8 and 9	This jumper is not installed on the 64000 system. This jumper is not installed because the Motor ON and Drive Select signals are to operate independent of each other.

2-12. TERMINATION RESISTOR PACKAGE.

2-13. On the Drive Electronics board P/N 09130-66501, the 16 pin DIP socket U2F is for insertion of the termination resistor package. The resistor package must be installed.

2-14. SOLDERED JUMPERS.

2-15. On the 09130-66501 board, Jumper wires are soldered in R50 and R56. Locations R51 and R57 are left open.

2-16. PACKAGING.

2-17. ORIGINAL PACKAGING.

2-18. Containers and packaging are available through Hewlett-Packard offices.

2-19. OTHER PACKAGING.

2-20. The following general instructions should be used for re-packing with commercially available materials:
a. Wrap the 64941A in heavy paper or plastic.
b. Use a strong shipping container. A double-wall carton made of 350 pound test material is adequate.
c. Use a layer of shock-absorbing material 70 to 100 mm (3 to 4 inches) thick around all sides of the 64941A to provide firm cushioning and prevent movement inside the container.
d. Seal the shipping container securely.
e. Mark the shipping container FRAGILE to ensure careful handling.
f. In any correspondence, refer to the instrument by model number and full serial number.

2-21. FLEXIBLE DISC MEDIA.
2-22. The storage medium used in the Mini Flexible Disc Drive, is a flexible feromagnetic disc. Both sides of the flexible disc are used for data storage. Each disc must be initialized before it can be used for data storage. The initialization procedure marks each disc track, checks for defective tracks, and establishes file directories. Refer to the formating procedure in section III of this manual and the Flexible Disc Drive Reference Manual for specific details.

2-23. FLEXIbLE DISC DRIVE hEAD CLEANING PROCEDURES.
2-24. The flexible disc drive READ/WRITE HEAD should be cleaned ONLY when a HEAD failure is suspected. Use the HP head cleaning kit, HP Model No. 92193A, to service the READ/WRITE HEAD. Contact the nearest HP Sales/Service Office for ordering information.

2-25. If a head failure is apparent, then clean it with the 92193A head cleaning kit. Follow the steps given below to clean the head.

2-26. The mainframe must be configured for Performance Verification. To do this, either press CNTR/RESET or turn the mainframe OFF and configure the control source switches on the Rear-Panel to the performance verification mode. Then power $O N$ the mainframe. The display test pattern, figure 4-1 should be on the screen. Then perform the following:
a. The flexible disc media used in the 64941A flexible disc drive is double sided. Configure the head cleaning disc for "double sided" according to the instructions given with the 92193A head cleaning kit. Insert the cleaning disc into the failing drive unit and close latch.
b. Press the DIAG softkey. The display will change to the diagnostic level.
c. Press the DIAG softkey. The display will change to the next lower level.
d. Press the TEST softkey. A list of tests will appear on the screen.
e. Press the ALT SEEK softkey. This will step the head in and out across the head cleaning disc. Let this step run for approximately 2 minutes.
f. Press ALT_SEEK again to end the test. Then press STOP TEST to exit into the next display level. Then press END_DIAG....then END_TEST to reset the mainframe.

NOTE: If the control source switches on the Rear-Panel were configured to Performance Verification for the head cleaning procedure, then they must be reconfigured to the previous state to get out of the Performance Verification mode.

Figure 2-1. Display Panel Attach Screw Locations

Figure 2-2. Blank Panel Screw Locations

Figure 2-3. Mini Drive Cable Installation

Figure 2-4. Mini Drive Mount Screw Locations on Shield Box

Figure 2-5. Shield Box Screw Locations for Mounting to Display Bezel

Figure 2-6. Mini Drive Ribbon Cable Position and Fold

SECTION III

OPERATION

3-1. INTRODUCTION.

3-2. Complete operation of the Flexible Disc Drive is beyond the scope of this manual. Please refer to the Flexible Disc Drive Reference Manual for complete operating instructions.

3-3. OPERATING CLEANLINESS.

3-4. To prevent potential damage or data loss, it is extremely important to maintain the cleanliness of the disc and air within the disc drive. The disc drive should not be operated in an environment in which dust, smoke, moisture, oil or chemical vapor or other foreign matter are present. Also, be sure to strictly follow the disc handling guidelines, found in the Flexible Disc Drive Reference Manual.

3-5. DISC LOADING.
3-6. Insert the flexible disc into the drive (be sure that the label faces up and the notch is facing left). Push the disc in until it bottoms out against the rear of the disc drive, then close the door latch. Never force the latch, as the media can be latched off center within the protective jacket.

3-7. WRITE PROTECTION.

3-8. The disc has the capability of being write protected. This feature prevents the accidental erasure of data previously recorded on the disc. The write protect is enabled when the write protect notch on the jacket of the disc is covered (see Figure 3-1). When the notch is uncovered, data can be written on the disc.

Figure 3-1. Write Protect Tab Installation

3-9. FORMATTING THE DISC.

3-10. Use the following procedure to format a disc:

NOTE: The floppy drives can operate in a "stand alone" or "system" configuration. The "system" configuration must have the "BUS_OP_SYS" software module. In the "stand alone" configuration, the system must have the "FLOPPY OP SYS" and "FLOPPY UTILITIES" modules. Contact the nearest Sales/Sērvice Office for more information.
(Floppy Drives In The System Configuration)
a. Turn ON mainframe. Press the "---ETC---" softkey twice until the "-BACKUP-" softkey appears.
b. Press the "-BACKUP-" softkey. The next level of softkeys will appear.
c. Press the "floppy" softkey.
d. Press the "utilities" softkey and then the carriage return key.
e. Press the "format" softkey.
f. Type in the number of the drive (0 or 1) that the formatting is to is to occur on ($0=$ left drive, $1=r i g h t ~ d r i v e)$.
g. Press return.

3-11. FLOPPY DISC DIAGNOSTIC TEST.
3-12. Follow these steps to get into the Floppy Diagnostic Tests:
a. Either configure the Rear-Panel switches for performance verification and turn the mainframe OFF then ON or press CNTL/RESET to get PERFORMANCE VERIFICATION TEST DISPLAY to appear.
b. Press the DIAG softkey to get FLOPPY DISC DIAGNOSTIC to appear on the screen. Refer to figure 3-2.
c. With the FLOPPY DISC DIAGNOSTIC displayed, press the DIAG softkey to get into the first level of the floppy menu. Refer to figure 3-3.

WARNING - These tests can causpermanert loss of disc data and
gre mext for use only wy quatified service personne

To saféay ex: tris routine hit EnD.

Mik: inokes diss diggnostio program.

Eif: : Penurs to performancerification tes:s.
\qquad

Figure 3-2. Floppy Disc Diagnostic Display

Figure 3-3. Floppy Test Menu First Level

3-13. The floppy disc diagnostic test uses two levels of floppy menu. The first level allows the user to set the Diagnostic test parameters by pressing the four softkeys (see figure 3-3). These are:

DRIVE	$0 / 1$	Alternately selects DRIVE 0 or 1 to be tested when the TEST softkey is pressed. The LED will be ON on the DRIVE selected.
SIDE	$0 / 1$	Alternately selects SIDE 0 or 1 to be tested when the TEST softkey is press- ed.
MIN TRACK		

3-14. The DRIVE STATUS will be displayed in the first level also (see figure 3-3). These are:

MOTOR	ON/OFF	Motor will only be ON when in second (TEST) level of diagnostic.
MEDIA CHANGE	ON/OFF	Indicates a write protect switch closure has occurred. Reset by selecting other drive.
WRITE PROTECT	ON/OFF	Indicates the state of the write protect switch (ON=open).
TRACK00 INDICATOR ON/OFF	Indicates the state of the track00 signal (ON=head over track00).	

3-15. After the TEST PARAMETERS have been set up, press the TEST softkey. The floppy second level menu will appear (see figure 3-4). The display will remain the same (motor status will now be ON), only the softkeys will change.

Figure 3-4. Floppy Test Menu Second Level

3-16. There are eight different tests on the softkeys. The functions of each are explained from left to right (the user is facing the terminal).
a. RESTORE - Issues 255 step pulses to step the head toward track 00. The user should check track 00 indicator status to make sure that it is ON .
b. STEP IN - Each time this softkey is pressed the head is stepped in toward track 34.
c. STEP OUT - Each time this softkey is pressed the head is stepped out toward track 00 .
d. SEEK - Each time this softkey is pressed it must be followed by the track number to be SEEKED. When the return key is pressed, the head will move to the selected track and read the ID information on that track and compare it to the track being SEEKed. If they do not match, a error message will appear on the command line (Seek Error, Track not Verified). If the ID information is verified then the message, Seek Verified will appear on the command line.
e. ALT SEEK - Causes the head to alternate between MIN TRACK and

MAX TRACK. Each time the head is moved, the CPU reads the ID information on the MIN TRACK or MAX TRACK and compares it to the desired head position. If an error occurs, it will be displayed as a SEEK ERROR. There are four messages given for this test, SEEK ERROR, DISC DOWN, TOTAL ERRORS, TOTAL TESTS (the last three are updated with each test). To exit this test, press the ALT SEEK softkey again.
f. READ - The READ TEST reads each sector of the the track
which has been selected by the STEP IN/OUT or SEEK
softkeys. Each time a sector is read, the CPU checks
the status register in the MDC chip for the follow-
errors: ID CRC (Cyclic Redundancy Check), LOST DATA,
DATA CRC, RFN (Record Not Found). If an error occurs,
the read error field will be updated.
g. RD/WR/VRF - In addition to the tests performed in the read test, the RD/WR/VRF test also writes a random data pattern on each sector of the selected track then reads this information back and verifies that it is the same as the information written. If not the VRF error field will be updated to indicate the type of error and sector of the occurrence.
h. STOP TEST - This softkey allows the user to go from the floppy
test menu second level into the first level.

3-17. TEST ERRORS.

ID CRC If the CRC error bit has been set in the status register after the ID field has been read, the number of ID CRC errors in that sector will be incremented.

LOST DATA
When this error occurs, it indicates the host system did not respond to LDRQ (Low Data Request) in one byte time (32uS). The number of LOST DATA errors will be displayed in the sector of occurrence.

DATA CRC If the CRC error bit has been set in the data register, the number of occurrences will be displayed in the sector where it took place.

RNF When this error occurs, it indicates that the desired track, sector, or side which was read in the ID field, did not correspond to the track, sector, or side being tested.

VERIFY When this error occurs, it indicates that that data pattern read was not the same as the data pattern written by the host system.

SECTION IV

PERFORMANCE VERIFICATION

4-1. INTRODUCTION.
4-2. This section describes the Performance tests for the Flexible Disc Drive Local Mass Storage. There are two modes of testing, performance verification and operation verification. Refer to the Mainframe Service Manual for more information on initiating performance verification.

4-3. The Performance Verification test will verify to an 85% confidence level that the flexible disc drive(s) are operational.

4-4. The Operation Verification procedures allow the operator to verify all specifications. With the aid of the error code and descriptions in the troubleshooting portion of Section VIII, troubleshoot the mini flexible (floppy) disc drives from the mainframe keyboard.

4-5. PERFORMANCE VERIFICATION TEST PROCEDURE.
4-6. In order to initiate mainframe performance verification (PV) the following methods may be used:
a. Place the control source switches in the performance verification position shown on the control source label on the RearPanel.
b. Turn power OFF then back ON. The display test pattern, figure 4-1, should be on screen.
c. Press the PVIESTS softkey.
d. Press the NEXT TEST soft key until the FLOPPY DISC DRIVE test is displayed. See figure 4-2.
e. Press START to initiate the test. Press START again to stop test.
f. If no more tests are required, change control source switches to the desired boot source and press END TESTS and the system will reboot.

OR
g. There is another method that can be initiated from the front panel when a boot is from a hard disc or flexible disc (floppy) if the operating software has been loaded. To do this Press CNTL and RESET together.

\qquad nisk \qquad \square \qquad M Tcis

Figure 4-1. Display Test Pattern

Figure 4-2. PV Test Display

4-7. During the Floppy test the mainframe software will perform eight tests on the flexible disc drives. A description of each test is given in section VIII. The following is the sequence of events that occurs during a test cycle.

NOTE
It is required that a formatted disc be used when performing the floppy PV. Also, the WRITE electronics are not tested if a disc containing data on track 34 is present in the drive being tested. Furthermore, the floppy $P V$ will only verify to an 85% confidence level that the mini drives are operational. In order to completely test the drives, the floppy drive diagnostics (operation verification) must also be done.

Purpose:
The FLOPPY DISC TEST tests several functions of the two floppy disc drives and the controller board electronics.

Area Tested:
CPU and I/O data lines, Disc Drive Controller board electronics, the cable from the Controller board to the drives, Drive READ/WRITE electronics and mechanics, and the CPU, I/O and disc drive I/O data and control line cable.

Operation:
a. Response from the Disc Drive Controller chip is tested by writing a pattern to the track register in the Mini Disc Controller chip (MDC) and reading it back.
b. When initiated, each disc drive is cycled through the following series of tests:

1. The drive is selected.
2. The drive is restored (head moved to track 00).
3. Step inward to track 1 (check TRKOO indicator OFF)
4. Step out to track 00 , check track 0 indicator $0 N$.
5. Read all sectors on track 0 , side 0 ; check for all errors.
6. Step to track 34, read all sectors on both sides.
c. The PV routines now check to see if there is any data on track 34. Track 34 will be a spare track on a disc with no bad tracks. However, if there is a bad track on a disc, then track 34 is allocated as useable even though it may contain information.
d. If data exists on track 34, a READ/WRITE test is not performed and a message indicating this is displayed on the CRT. If track 34 is available, the following is performed:
7. Known data on side 0 , sector 0 is READ.
8. A random data pattern is written to side 0 , sector 1.
9. The pattern is read from side 0 sector 1 and compared with what was written.
10. Steps 7,8 and 9 are repeated on track 34 , side 1 .

4-8. When a test fails an error message is displayed. Refer to table 8-1 (Mini Floppy PV Error Messages) for a quick reference explanation of the error messages, and refer to table 8-2 for a detailed description of each error message and some possible trouble and corrective measures to service a failure.

4-9. When the test passes, a binary error word is displayed which indicates the area of previous failures. This word will contain a one wherever a failure has previously occurred and can be decoded to correspond with the error messages normally displayed. Refer to table 8-1 for an explanation of the error messages.

4-10. OPERATION VERIFICATION TESTS.
4-11. In order to perform the operation verification tests, the following sequence should be used to access the DIAG mode tests:
a. Place the control source switches in the performance verification position shown on the control source label on the Rear-Panel.
b. Turn power OFF then back ON. The display test pattern, figure 4-1, should be on screen.
c. Press the DIAG soft key. Figure 4-3 should be displayed.
d. Press the DIAG soft key again. Figure 4-4 should be displayed.
e. Set up desired tests and press the TEST soft key to initiate. Figure 4-5 should be displayed.
f. When the desired test is finished press the STOP TEST soft key.
g. Press END DIAG to exit the DIAG mode. The display test pattern should be on screen.

Figure 4-3. Floppy Disc Diagnostic Display

$$
\text { TOTA TESTE } 0 \text { TOTMEEDRE }
$$

- TESY STATUS: Awaiting Commard
 \qquad 5nk 2186 \qquad

Figure 4-4. Floppy Test Menu First Level

WARNING. These tests can cause permanent loss of disc data and are meant for use only by qualified service personnei

To safely ex: this routine hit END.

DHG: invokes disc diagnostic program.
DSA 1: Starts interface DSA loop. Pefer to service manut.
USA 2: Starts data separator DSA loof. Refer to service manul.
EnD : Returns to performance verification tests

NiAK nSE MSE 2

Figure 4-5. Floppy Test Menu Second Level

4-12. Perform all or part of the following tests to verify that the mini drives are operating properly:

NOTE

The Performance Verification procedure should be performed prior to the Operation Verification procedures. When the DIAG mode is required, use the sequence described in paragraph 4-10 to access the DIAG tests.

4-13. MEDIA CHANGE TEST.
a. Go to DIAG mode and make sure media change indication "ON" occurs when media is removed and reset, "OFF" when other drive is selected.

4-14. MOTOR CONTROL TEST.
a. Remove both discs from drives and leave doors open.
b. Go to DIAG mode and observe that drive spindle only turns when motor indication for that drive is in the "TEST" mode.

4-15. DRIVE READY TEST.

a. When running the Operation Verification "READ" test, open the door of each drive and observe "...Disc Down..." failure for the drive being tested.

4-16. DRIVE SELECT TEST.
a. Go to DIAG mode and observe drive select LEDs to make sure that the corresponding LED is only ON when drive is selected.

4-17. FORMAT A DISC.
(check for index pulses at the MDC)
a. Refer to disc format procedure given in Section III of this manual.

4-18. HEAD ALIGNMENT TEST.

4-19. This test requires performing Steps (a) through (i) of the Radial Head Alignment procedure and then the Head Azimuth Alignment Check. The Radial Head Alignment procedure is found in Section V.

NOTE

The Radial Head Alignment is a difficult procedure! (Steps (a) through (i) are a check only.)

4-20. HEAD AZIMUTH ALIGNMENT CHECK.
4-21. The head azimuth is not field adjustable due to its very delicate nature. For this reason, the nearest $H P$ Sales/Service Office should be contacted to have this adjustment done. To determine whether the head azimuth is out of limits, perform the following procedures:
a. Use the procedure in section V to setup Mini Drive as shown in figure 5-1.
b. Call up the DIAG test on the mainframe.
c. Insert the alignment disc $\mathrm{P} / \mathrm{N} 9164-0151$ into drive and close the latch. the latch.
d. Select side and drive to be checked.
e. Step to Track 16.
f. Connect and setup the scope as follows:

Trigger	Ch. A (pos)	
Display	Ch. B	
Sensitivity	Ch. A 1V/Div	
	Ch. B .1V/Div	
Time/Div	. 5msec/Div	
Coupling	Ch. A DC	
	Ch. B AC	
Connections	(Drive Electronics	Board)
	Channel A	Channel B
Signal	TP7 (INDEX)	TP4(READ DATA)
Gnd	TP6 (GND)	TP10 (GND)

g. Observe the waveform at TP4 should look similar to that of Figure 4-6. Examine the waveform for heads 1 and 2. If lobe A is greater in amplitude than lobe B or if lobe D is greater in amplitude than lobe C, then the head azimuth is out of alignment.
h. Check both heads by selecting one side, perform the check then select the other side. The side selection is made during test set-up from the mainframe.

Figure 4-6. Head Azimuth Waveform

SECTION V

ADJUSTMENTS
5-1. INTRODUCTION.
5-2. This section provides the adjustment procedures for the mini flexible disc drive. These procedures are recommended to return the drive to its original optimum performance after maintenance or repair. Included at the beginning of each procedure is a list of required tools. Table 1-2 in section I is a list of all the required tools. All these procedures assume the access to the service equipment listed in table 1-2 of this manual is available.

5-3. There are two catagories of adjustments given in this section. The first two procedures are the spindle motor speed and spindle motor drive adjustments. These first two adjustments may be performed in the field. The second set of adjustments are; Radial head alignment, track 0 switch adjustment, index emitter/detector adjustment, and the write protect switch adjustment. These adjustments should not be performed except in emergency situations due to their delicate nature. These adjustments are NEVER to be performed at the customers location. If a non-field adjustment needs to be done, contact the nearest HP Sales/Service Office. Locations and addresses are given at the back of this manual.

5-4. TEST AND ADJUSTMENT DRIVE ACCESS PROCEDURE.
5-5. The following procedure is a general set up procedure which allows access to the flexible disc drive for testing and adjustments:
a. Remove flexible disc drive from mainframe by reversing the installation procedure (paragraph 2-4 in section II) and place it along side the mainframe.
b. Supply power and control to the flexible disc drive by connecting the power and control extender cables between the control board and the drive unit. Make SURE that pin one on the control board is connected to pin one on the drive under test. The part number for the mini power extender cable is HP P / N 64110-61620, and the part number for the mini control extender cable is HP P/N 8120-4020.

5-6. FIELD ADJUSTMENTS.
5-7. SPINDLE MOTOR SPEED ADJUSTMENT.
5-8. The spindle motor speed should be re-adjusted whenever a new spindle motor or Servo Electronics board is installed. Refer to figure 5-1 while making this adjustment.
a. Required Tools:

1. Alignment tool or small insulated shank screwdriver.
2. HP 5314A or equivalent frequency counter (if primary power frequency is unknown or unstable or when adjusting motor speed under incandescent lighting).

Figure 5-1. Spindle Motor Speed Adjustment

5-9. KNOWN PRIMARY POWER AND FLUORESCENT LIGHTING.
5-10. Follow these instructions when primary power is a known 50 or 60 Hz and this adjustment is done under fluorescent lighting.
a. Check the spindle pulley to see that it has a strobe label P / N 71211451.
b. Enter the DIAG Test on the mainframe. Refer to section IV, operation verification tests.
c. Select the drive to be adjusted.
d. Press TEST and note the motor status light is ON indicating the drive motor is running.
e. Observe the strobe pattern on the spindle pulley. For 50 Hz primary power observe inner pattern. For 60 Hz , observe the outer pattern.
f. Locate and adjust the potentiometer on the servo board until the proper pattern on the strobe label stabilizes. Refer to figure 51.

5-11. PRIMARY POWER FREQUENCY IS UNSTABLE OR UNKNOWN.
5-12. If the primary power frequency is unstable or unknown, follow these instructions:
a. Connect the frequency counter input to TP7 (index) and TP6 (ground) on the Drive Electronics board.
b. Enter the DIAG Test on the mainframe. Refer to section IV operation verification tests.
c. Select the drive to be adjusted.
d. Press TEST and note the motor status light is $O N$ indicating the drive motor is running.
e. Locate and adjust the potentiometer on the servo board until a $200 \mathrm{~ms}+/-1 \%$ period is observed on the counter display. This will assure a 300 RPM spindle speed. Refer to figure 5-1.

5-13. SPINDLE DRIVE BELT ADJUSTMENT.
5-14. This adjustment is to ensure proper drive belt tension. This adjustment should be made whenever the drive belt or drive spindle motor is replaced.

Figure 5-2. Spindle Drive Belt Adjustment
a. Required Tools:

1. \#1 Pozidriv screwdriver or equivalent
2. Spindle motor adjustment tool P/N 8710-1385
b. Refer to Figure 5-2 while performing these steps:
c. Place the drive assembly on its side so that the bottom of the drive faces you.
d. Remove the drive belt.
e. Place the spindle motor adjustment tool on the bottom of the drive as shown in Figure 5-1 so that the small end of the adjustment tool rests against the motor pulley and the large end rests against the spindle pulley.
f. Slightly loosen the spindle motor retaining screws and move the motor until it rests firmly against the adjustment tool.
g. Re-tighten the spindle motor retaining screws and reinstall the drive belt.

NOTE
There is a good chance that the drive motor is not exactly perpendicular to the drive casting on which it is mounted. This will cause the drive belt to slip from the drive pulley when it is rotated. After a belt is installed, rotate the drive spindle approximately 10 revolutions to insure the belt will not slip from the drive pulley.

5-15. FACTORY ADJUSTMENTS.
5-16. The following adjustments should not be performed except in emergency situations due to their delicate nature. These adjustments are NEVER to be performed at the customers location.

5-17. The adjustments described in this section are:
a. Radial Head Alignment
b. Track 0 Switch Adjustment
c. Index Emitter/Detector Adjustment
d. Write Protect Switch Adjustment

5-18. REQUIRED TOOLS AND TEST EQUIPMENT.
a. Oscilloscope
.HP 1740 A or equivalent
b. Alignment Disc
P/N 9164-0151
c. Torque Driver.................................... P /N 8710-0670
d. \#1 Pozidriv Screwdriver or equivalent........ P/N 8710-0899
e. \#2 Pozidriv Screwdriver or equivalent.........P/N 8710-0900
f. 3/16 Thin Wall Nutdriver or equivalent....... P/N 8720-0001

5-19. RADIAL HEAD ALIGNMENT.

NOTE

Steps (a) through (i) serve as a radial head alignment check.

NOTE
If radial alignment steps (j) through (1) are performed, track 0 adjustment will be required. The track 0 adjustment is an extremely difficult adjustment.

Figure 5-3. Radial Head Alignment Waveform

5-20. To properly align the read/write heads, perform to the following steps in the order shown. Refer to table 8-2, section VIII for head misalignment symptoms.
a. Connect equipment as in procedure in paragraph 5-5.
b. Enter the DIAG test on the mainframe. Refer to section IV operation verification tests.

Figure 5-4. Head Assembly Retaining Screws
c. Insert the Alignment disc P/N 9164-0151 into the drive and close the latch.
d. Select the drive and side to be tested and press the TEST softkey.
e. Press the RESTORE softkey.
f. Step to track 16
g. Connect and setup the scope as follows:

Trigger	Ch. A (Pos)
Display	Ch. B
Sensitivity	Ch. A 1V/Div
	Ch. B .1V/Div
Time/Div	20msec
Coupling	Ch. A DC
	Ch. B AC
Connections	(Drive Electronics Board)
	Channel A
Signal	TP7 (INDEX)
Gnd	TP6 (GND)

h. With the scope connected, the pattern shown in Figure 5-3 should be observed.
i. Both lobes of the pattern should be within 80% in amplitude of each other. If doing a check repeat steps (a) through (i) with the other side of disc selected.
j. If the amplitude of one of the lobes of the waveform is less than 80% (. 8 mils) of the other, slightly loosen the three screws shown in figure 5-4 and adjust the radial head alignment by gently turning the head alignment cam screw.
k. After the radial alignment has been completed, retighten the three screws loosened in step (j) while observing the scope pattern. Tighten the retaining screws with the torque-driver set at 8 inch-pounds.

1. Check the other side by selecting the other side in the DIAG test set-up.

5-21. TRACK 0 SWITCH ADJUSTMENT. (extremely difficult adjustment)

5-22. Track 0 switch adjustment should be performed whenever the radial head alignment is changed. To properly adjust the track 0 switch, follow these steps in the order shown:
a. Connect the equipment as in the procedure in paragraph 5-5.
b. Insert a formatted disc into the drive.
c. Go to DIAG mode (refer to section IV operation verification tests) and set MIN TRACK to 0 and MAX TRACK to 4.
d. Press TEST then RESTORE and then ALT SEEK.
e. Connect and setup the scope as follows:

Trigger	Internal on Ch. A (POS)
Display	Ch. B
Sensitivity	Ch. A 1V/Div
	Ch. B 2V/Div
Time/Div	5mS/Div
Coupling	Ch. A DC
	Ch. B AC

Connections (Drive Electronics Board)

	Channel A	Channel B
Signal	TP12 (STEP)	U4F pin 1
Gnd	TP10 (GND)	TP6 (GND)

f. With the scope connected and setup, the waveform should be similar to that of figure 5-5. The duration from T0 to T1 must be less than 18 mS and the duration from $T 0$ to $T 2$ must be less than 24 mS . If these times are within the limits, no adjustment is necessary. If either of the time limits is exceeded, proceed with steps (g) thru (1).

Figure 5-5. Track 0 Waveform

Figure 5-6. Track 0 Retaining Screw
g. Remove connectors P5 and P6 from the front of the drive board.
h. Rest the drive board on a piece of insulating material such as cardboard.
i. Slightly loosen the track 0 switch retaining screw shown in figure 5-6.
j. Adjust the switch position until the time requirements in step (f) are met.
k. With the torque driver adjusted to 8 inch-pounds, retighten the track 0 switch retaining screw while observing the oscilloscope pattern (refer to Figure 5-5).

1. Reinstall the drive board and connectors P5 and P6. Tighten the board retaining screws with the torque driver set to 8 inch pounds.

5-23. INDEX EMITTER/DETECTOR ADJUSTMENT.
5-24. This adjustment is required when the index emitter/detector assembly has been replaced. Perform this adjustment as follows: steps:
a. Connect the equipment as in the procedure in paragraph 5-5.
b. Place drive on its side with bottom facing you as in figure 5-7.
c. Go to DIAG mode. See section IV operation verification tests.
d. Insert alignment disc into the disc and close the latch.
e. Select drive to be tested and press TEST soft key.
f. Press RESTORE, step to track 16 , side 0 .
g. Connect and setup the oscilloscope as follows:

Figure 5-7. Index Detector Retaining Screw
h. The oscilloscope presentation should appear as shown in Figure 5-8.
i. Loosen the index detector retaining screw (Figure 5-7) and move the detector until the INDEX to DATA burst time is approximately 400 uS $+/=300$ uS for side 0 .
j. Retighten the index detector retaining screw using the torque driver set to 8 inch pounds while observing the scope.
k. Check the INDEX and DATA time for head 1 by going to the DIAG mode and selecting side 1 , then press TEST.

1. If the INDEX to DATA time is too far out, adjust the index emitter located on the top side of the drive assembly and then redo steps (i) through (k).
m. Tighten the index emitter and detector retaining screws using the torque driver set to 8 inch pounds.
n. Reassemble the drive assembly.

5-25. WRITE PROTECT SWITCH ADJUSTMENT.
5-26. The disc drive head assembly may be severely damaged while performing this adjustment. For this reason, replacement or adjustment of this switch is not to be done in the field.

Figure 5-8. Index to Burst Waveform

SECTION VI

REPLACEABLE PARTS

6-1. INTRODUCTION.

6-2. This section contains information for ordering parts. Table 6-1 lists abbreviations used in the parts list and throughtout the manual. Table 6-2 lists all replaceable parts in reference designator order. Table 6-3 contains the names and addresses that correspond to the manufacturer's five-digit code numbers.

6-3. ABBREVIATIONS.

6-4. Table 6-1 lists abbreviations used in the parts list, schematics, and throughout the manual. In some cases, two forms of the abbreviation are used: one, all in capital letters; and two, partial or no capitals. This occurs because the abbreviations in the parts list are always capitals. However, in the schematics and other parts of the manual, other abbreviation forms are used with both lowercase and uppercase letters.

6-5. REPLACEABLE PARTS LIST.
6-6. Table 6-2 is the list of replaceable parts and is organized as follows:
a. Chassis-mounted parts in alphanumerical order by reference designator.
b. Electrical assemblies and there components in alphanumerical order by reference designator.
c. Miscellaneous.

6-7. ORDERING INFORMATION.

6-8. To order a part listed in the replaceable parts table, quote the Hewlett-Packard part number and check digit, indicate the quantity required, and address the order to the nearest Hewlett-Packard Sales/Service Office.

6-9. DIRECT MAIL ORDER SYSTEM.

6-10. Within the USA, Hewlett-Packard can supply parts through a direct mail order system. Advantages of using the system are as follows:
a. Direct ordering and shipment from the HP Parts Center in Mountain View, California.
b. No maximum or minimum on any mail order (there is a minimum order amount form parts ordered through a local HP Sales/Service Office when the orders require billing and invoicing).
c. Prepaid transportation (there is a small handling charge for each order).
d. No invoices - to provide these advantages, a check or money order must accompany each order.

6-11. Mail-order forms and specific ordering information are available through your
local HP Sales/Service Office. Addresses and phone numbers are located at the back
of this manual.
6-12. The Model 64941A Floppy Drive Control Board is now supported by the Bluestripe program. The Bluestripe pipeline contains replacement boards for 64000 options made by Hewlett-Packard. The replacement board for the Model 64941A is available at the factory. For additional information, contact your nearest Hewlett-Packard representative. The Bluestripe replacement part number for the 64941A Floppy Drive Control Board is 64941-69502.

Table 6-1. Reference Designators and Abbreviations

REFERENCE DESIGNATORS							
A	= assembly	F	= fuse	MP	= mechanical part	U	= integrated circuit
B	= motor	FL	= filter	P	= plug	v	= vacuum, tube, neon
BT	= battery	IC	= integrated circuit	Q	$=$ transistor		bulb, photocell, etc
c	= capacitor	J	= jack	R	= resistor	VR	= voltage regulator
CP	= coupler	K	$=$ relay	RT	= thermistor	w	= cable
CR	= diode	L	= inductor	s	= switch	X	= socket
DL	= delay line	LS	= loud speaker	T	= transformer	Y	= crystal
DS	= device signaling (lamp)	M	= meter	TB	= terminal board	z	$=$ tuned cavity network
E	$=$ misc electronic part	MK	$=$ microphone	TP	$=\text { test point }$		
ABBREVIATIONS							
A	= amperes	H	$=$ henries	N/O	= normally open	RmO	= rack mount only
AFC	$\begin{aligned} & =\text { automatic frequency } \\ & \text { control } \end{aligned}$	HDW	= hardware	NOM	= nominal	RMS	= root-mean square
AMPL	= amplifier	HEX HG	$=$ hexagonal = mercury	NPO	= negative positive zero (zero temperature	RWV	$=$ reverse working voltage
BFO	= beat frequency oscillator	HR	= hour (s)		coefficient)		
BE CU	= beryllium copper	HZ	$=$ hertz	NPN	$=$ negative-positive-	S-B	= slow-blow
BH	= binder head				negative	SCR	= screw
BP	= bandpass			NRFR	= not recommended for	SE	= selenium
BRS	= brass	IF	= intermediate freq		field replacement	SECT	= section(s)
Bwo	= backward wave oscillator	IMPG	$=$ impregnated	NSR	= not separately	SEMICON	= semiconductor
		INCD	= incandescent		replaceable	SI	= silicon
CCW	= counter-clockwise	INCL	= include(s)			SIL	= silver
CER	= ceramic	INS	= insulation(ed)	OBD	= order by description	SL	= slide
СмO	= cabinet mount only	INT	= internal	OH	= oval head	SPG	= spring
COEF	= coeficient			OX	= oxide	SPL	= special
COM	= common	K	$=$ kilo $=1000$			SST	= stainless steel
COMP	= composition					SR	= split ring
COMPL	= complete	LH	$=$ left hand	P	= peak	STL	= steel
CONN	= connector	LIN	= linear taper	PC	= printed circuit		
CP	= cadmium plate	LK WASH	= lock washer	PF	= picofarads $=10-12$	TA	= tantalum
CRT	= cathode-ray tube	LOG	= logarithmic taper		farads	TD	= time delay
CW	= clockwise	LPF	= low pass filter	PH BRZ	= phosphor bronze	TGL	= toggle
				PHL	$=$ phillips	THD	= thread
DEPC	= deposited carbon	M	$=$ milli $=10-3$	PIV	= peak inverse voltage	TI	= titanium
DR	= drive	MEG	$=\mathrm{meg}=106$	PNP	= positive-negative-	TOL	= tolerance
		MET FLM	= metal film		positive	TRIM	= trimmer
ELECT	= electrolytic	MET OX	= metallic oxide	P/O	= part of	TWT	$=$ traveling wave tube
ENCAP	= encapsulated	MFR	= manufacturer	POLY	= polystyrene		
EXT	= external	MHZ	= mega hertz	PORC	= porcelain	U	$=$ micro $=10-6$
		MINAT	$=$ miniature	POS	$=$ position(s)		
F	= farads	MOM	= momentary	POT	= potentiometer	VAR	= variable
FH	= flat head	MOS	= metal oxide substrate	PP	= peak-to-peak	vDCw	$=\mathrm{dc}$ working volts
FIL H	= fillister head	MTG	= mounting	PT	= point		
FXD	= fixed	MY	= "mylar"	PWV	$=$ peak working voltage	$\begin{aligned} & \mathbf{w} / \\ & \mathbf{w} \end{aligned}$	$\begin{aligned} & =\text { with } \\ & =\text { watts } \end{aligned}$
G	= giga (109)	N	$=$ nano (10-9)	RECT	$=$ rectifier	wiv	= working inverse
GE	= germanium	N/C	$=$ normally closed	RF	$=$ radio frequency		voltage
GL	= glass	NE	= neon	RH	$=$ round head or	ww	= wirewound
GRD	$=$ ground(ed)	NI PL	= nickel plate		right hand	w/o	$=$ without

Figure 6-1. A9 or A10 Flexible Disc Drive Exploded View

Table 6-2. Replaceable Parts List (Cont'd)

Reference Designation	HP Part Number	$\left\|\begin{array}{l} C \\ D \end{array}\right\|$	Oty	Description	Mfr Code	Mfr Part Number
A9	09131-69600	1	1	DISK DRIVE EXCHANGE(INCL., A9AZ)	28430	09131-69600
A9MP 1	4040-1915	8	1	DRIUE-FRONT PANEL.	28480	4040-1915
A9MP 2 A9MP3	$0950-0448$ $4040-1913$	5	1 1	EELLT-DRIVE HP LATCH (BROWN)	28480 28480	$0950-0448$ $4040-1913$
A9W1	8120-3772.	4	1	CABLE-MINI (LEFT)	28430	6120-3772
A9W2	$64941-61606$	4	1	CABLE-MTNI (POWER)	28480	$64941-61603$
A9A1	09130-66500	4	1	SERUO ELECTRONICS BDARD	28480	09130-66500
A9A2	09130-66501	5	1	drive electronics board	28480	09130-66501
A9A3	09130-67920	4	1	MOTOR ASSEMELY --servo	28480	09130-67920
A9A4	09130-67993	7	1	Index assembly	28480	09130-67923
A9A5	09130-67917	9	1	SWITCH ASSEMEI.Y Y--TRACK (LEET)	28480	09130-67917
A9A6	09130-61604	9	1	LED ASSEMBLY-FRONT PANEL.	28480	09130-61604
A10	09131-69600	1	1	DISK DRIVE EXCHANGE (INLL, A10A2)	28480	09131-69600
A 10 MP 1	4040-1915	8	1	DRIUE (FRONT PANEL)	28480	4040-1915
A10MP 2 A10MP 3	$0950-0448$ $4040-1913$	㐌	1 1	BELT-MTIUE HP LATCH (BROWN)	28480 28480	$0950-0448$ $4040-1913$
A10W1	8120-3772	3	1	CABLE MINI (RTGHT)	28430	8120-3772
Al 0 W2	64941 -61043	1	1	CABLE-MINI (POWER)	28480	64941-6.603
A10A1	09130-66500	4	1	SERUO FLEECTRONICS BOARD	28480	09130-66500
A10A2	09130-66501	5	1	DRIVE ELECTRONICS BOARD	28480	09130-66501
A10A3	09130-67920	4	1	MOTOR ASSEMBLY ${ }^{-\cdots \text { SERUD }}$	28480	09130-67920
A10A4	09130-67923	7	1	INDEX ASSEMBLY	28480	09130-67923
A10AS	09130-67417	4	1	SWITCH ASSEMELY-TRACK (RICHT)	28480	09130-67417
A10A6	09130-61604	9	1	LED ASSEMBLY (FRONT PANEL.)	28480	09130-61604
A10A1	09130-6650	4		SERVO ELECTRONICS BOARD Refer to jumper configuration, Section II when placing Servo Electronics Board	28480	09130-66500
A10A1C1	0180-0058		2	CAPACITOR - FXD 50 UF $+75-10 \%$ 25UDC: AL.	56289	$30 \mathrm{D} 506 \mathrm{G025cce}$
A10A1C2	0180-0058	0		CAPACITOR FXD SOUF $+75-10 \%$ 2SUDC AL.	56289	$30 \mathrm{DS06G025CC2}$
A 10 A1C3	0160-4557	0	1	CAPACITOR-FXD . 1 UF +-20\% 50UDC CER	16299	CAC04X7R104M050A
A10A1C4	0180-0291	3	1	CAPACITOR F-FD 1 UF+ $10 \% 350 D C$ TA	56289	$1500105 \times 9035 \mathrm{~A} 2$
Al0A1C5	0160-5334	3	1	CAPACITOR -FXD . 010 UF 100UDC	28480	0160-5334
A10A1C6	0160-4833	5	1	CAPACTTOR - FFXD . D22LJF + - $10 \% 100 \cup D C$ CER	28480	0160-4833
Al0A1H1	1205-0438	5	1	HEAT SINK SGL TO-66-CS	29480	1205 - 0438
A10A1H2	2420-0001	5	1	NUT HEX-W/L.KWR 6-32-THD, 109-TN-THK	00000	ORDER BY DESCRIPTION
A 10 A1 H3	2360-0454	4	2	SCREW-MACH 6-32 . 5 -IN-LG PAN-HD-POZT	00000	ORDER BY DESCRTPTION
A10A1H4	2360-0454	4		SCREW-MACH 6-32 , $5-T N$-IG PAN-HD-PDZT	00000	ORDER EY DESERIPTION
A10A1H5	2360-0121	2 2 7	1		00000 28480	ORDER BY DEGCRIPTION
A10A1H6	2190-0060	7	1	WASHER-LK INTL T 1/4 IN . 256 -IN--ID	28480	$2190-0060$
Al0A1H12	0380-0340	7	2	SPACER-RND . 25-IN-LG . 143 -IN-ID	00000	ORDER BY DESCRIPTION
'A10A1H13	0380-0340	7		SPACER - RND . $25-$ TN-LG . 143 IN - TD	00000	ORDER EY DESCRIPTION
A10A1J1	1251-4051	3	1	CONNECTOR 10-PIN M POST TYPE	28480	1251-4051
A10A1L1	9140-0607	0	1		28480	9140-0607
A10A1Q1	1854-0648	4	1	TRANSISTOR NPN 2N6300 SI DARL TO-66	$04 \% 13$	$2 N 6300$
A10A1Q2	1854-0215	1	1	TRANSTSTOR NPN ST PD= 350 MW FT $=300 \mathrm{MHZ}$.	04713	2N3904
Al0A1R1	0683-2035	3	1	RESISTOR 20K 5%, 25W FC TC= $=400 /+800$	01121	Cben3s
A10A1R2	0683-1055	5	1	RESISTOR $1 \mathrm{M} 5 \%$, 25 W FC $\mathrm{TC}=-800 /+900$	01121	CB1055
A1 0A1R3 A10A1R4	0757-0280 $2100-3154$	3 7	2 1		245.46	$\mathrm{C}_{4} \mathbf{4} \mathrm{P}$ 1/8-T0-1001-F
A10A1R4 A10A1R5	$2100-3154$ $0757-0280$	7 3	1	RESISTOR-TRMR 1 K (10% C SIDE ADJ 17-TRN RESISTOR $1 \mathrm{~K} 1 \% .125 W \mathrm{~F}$ TC $=0+-100$	02111 24546	43P102 C4-1/8-T0-1001-F
A10A1R6	0757-0469	0	1	RESISTOR $150 \mathrm{~K} 1 \%$, 125W F TC=0+-100	24546	C4-1/8-T0-1503-F
Al ${ }^{\text {a }}$ A1R7	0683-4715	0	2	RESISTOR 4705%, 25W FC TC $=-400 \%+600$	01121	CB4715
A10A1R8 A10A1R9	$0683-1025$ $0683-4715$	9	3	RESISTOR $1 \mathrm{~K} 5 \%$, 25W FC TC= $-400 /+600$	01121	CE1025
Al0A1R9 A 10 A1R10	$0683-4715$ $0683-1025$	0		RESISTOR 4705%, 25 W FC $T C=-400 /+600$ RESTSTOR 1 K	01121	CB4715
A10A1R10	0683-1025	9		RESISTOR 1K 5\% .25W FC. TC=-400/+600	01121	C81025
AIOA1R11	0811-1668	9	1	RESTSTOR 1.55% 2W PW TC= $0+\cdots 400$	75042	BWH2-1R5-J
A10A1R12	0683-1025	9		RESISTOR $1 \mathrm{~K} 5 \%$, 25W FC TC $=-400 \%+600$	01121	CR1025
Al0A1R13	0683-1225	1	1	RESISTOR 1.2K 5%. 25 W FCC TC $=-400 /+700$	01121	CB1225
A10A1R14	0683-2225	3	1	RESTSTOR 2.2K $5 \% .25 \mathrm{~W}$ FC TC $=-400 /+700$	01121	C822e5
Al0alui	1826-0842	1	1	IC CONU FREQ/V 14-DIP-P PKG	27014	LME917N

The part number given for the mini drive is an exchange assembly part number. It inlcudes all parts listed for A9 or A10 except A9/A10A2, Drive Electronics Board.

Table 6-2. Replaceable Parts List (Cont'd)

Table 6-2. Replaceable Parts List (Cont'd)

The part number given for the mini drive is an exchange assembly part number. It inlcudes all

Table 6-2. Replaceable Parts List (Cont'd)

Reference Designation	HP Part Number	C	Oty	Description	Mfr Code	Mfr Part Number
A10A2R25	0683-1025	9		RESISTOR $1 \mathrm{~K} 5 \%$. 25W FC TC $=-400 /+600$	01121	CB1025
Al 0 A2R76	0683-5105	4	1	RESISTOR 515%.25W FC TC $=-400 /+500$	01121	CB5 105
Al0azule	1251-4292	4	1	shunt block	28480	1251-4292
A10ALUIF	1820-0621	2	3	If elfr Ttl nand quad 2-inp	01295	SN7438N
A10A2JIS	1820-0471	0	,	IC INU TTL HEX ${ }^{\text {-İNP }}$	01275	SN7406N
Al 0azliac	1820-2520	4	1	IC drur til dual.	01295	SN75463N
A10AこU2d	1826-0408	5	,	IC B-DIP-P PKG	32293	JCLemb12CPA
Al OALUEE	1820-1416	5	1	IC SCHMITT-TRIG TTL LSS INU HEX 1 -INP	01295	SN74LST14N
A10A2LIEF	1810-0325	2	1	NETWORK-RES 16-DJP150.0 DHM $\times 8$	01121	3168151
al 10 azuza	1826-0064	9	,	IC WIDEEBAND AMPL UTD 14-DIP-C PKG	04713	MC1733CL
A10A2U3B	1820-1204	9	2	IC GATE TTL L.S NAND DUAL 4--INP	01295	SN74LS20N
A10A2U3C	1820-0621	2		IC bFR TTL NAND QUAd 2-INP	01295	SN7438N
A10A2U3D	1820-0174		1	IC INU TTL HEX	01295	SN740.4N
Al $10 A 2 U 3 E$	1820-0668	7	1	IC BFR TTL NON-INU HEX 1 --INP	01295	SN7407N
A10A2U4A	1826-0194	6	1	IC WIDEEAND AMPL UID 14-DIP - P PKG	18324	NE59CA
A. 0 A $2 U 4 \mathrm{AB}$	1820-1204	9		IC. GATE TTL LS NAND DUAL 4-INP	01295	SN741..S20N
A10A2U4C	1820-1112	8	2	IL FF TTL LS D--TYPE POS-EDCE-TRIG	01295	SN74LST4AN
A1 0A2U4D A10A2U4E	$1820-2208$ $1820-2208$	5 5	2	IC DRUR TTL DUAL IC DRUR TTL DUAL.	01295 01295	SN75462P SN75462P
A10A2U4F	1820-0621	2		IC EFR TTL NAND QuAd 2-INP	01295	SN75462P SN7438N
A10A2USE	1826-0065	0	1	IC COMPARATOR PRCN 8 - DIP - P PKG	50545	UPC311C
A10A2USC, A10A2USD	$1820-1112$ $1820-1211$	8		IC FF TTL LS D-TYPE POS EDDCETRIG	01295	SN74L.S74AN
Al OAZUSE	$1820-1211$ $1820-1260$	8	1	IC DATE TTL LSS EXCL--DR QUAD $2-$ INP IC MU TTL MONOSTBL DUAL.	01295 01295	SN74LSB6N SN74221N
A10A2XUIE	1200-0853	8	2	SOCKET-IC 16-CONT DIP DIP SLIDR	28480	1200-0853
Al0A2XUEF	1200-0853	8		SOCKET-IC 16-CONT DIP DIP - SL Dr	28480	1200-0853
A10A3	09130-6\%920			SERVO MOTOR AStemely	28480	09130-67920
A $10 \mathrm{~A} 3 \mathrm{B1}$	3140-0654		1	MOTOR-SPINDLE DRIUE	28480	3140-0654
A10A3H1	3050-1056		2	WASHER - shoul dered	51506	15250-050-065-N-1
A10A3H2	2360-0332		2	SCREW-MACH 6-32	28490	2360-0332
A10A3MP 1	1401-0180		1	CAP-MOTOR END	23480	1401-0180
A10A3MP 2	1600-1024		1	SHIEI.D.MOTOR	28480	1600-1024
A10A3PE	1251-4273		1	CONNECTOR-5-PIN FEMALE	28480	1251-4273
A10A4	09130-67923	7		index assembly	28480	09130-67923
A10A4CR1	1990-0443	5	1	LED-INFRARED BUR=aU	28480	1990-0443
A10A4H1	2360-0331	6	1	SCREW MA,CH 6-32	28480	2360-0331
A 10 ALHE	2360-0119	6	1	SCREW-MACH 6-32	00000	ORDER GY DESCRIPTICN
A10A4H3	3050-0635	7	1	WASHER-FLAT	28.480	3050-0635
A DOA4MP 1	4040-1852	2	1	holder-memitter	29490	4040-1852
A10A4MP 2	4040-1851	1	1	holder-detector	28480	4040-1851
A10A4P10	1251-3965	6	1	CONNECTOR-4-PIN FEMALE	28490	1251-3965
A10A4Q1	1990-0792	7	1	TRANSISTOR - Photio	11295	T ML. 99
A10AS	09130-67917	9		Swrtch assemely y-track left	28480	09130-67917
A 10ASH1	2360-0331	6	1	SCREW-MACH 6-32. $25 .-\mathrm{IN}$-LG PAN-HD-POZT	28480	2360-0331
A10ASH2	2200-0149	6	2	SCREW-MACH 4-40 .625-IN-LIS PAN-HD-POZI	30000	ORDER BY DESCRIPTTON
A10ASH3	3050-0222	8	2	WASHER-FL. MTLC NO. 4 . 12S-TN-ID	29480	3050-02a?
A10A5H4	1600-10.59	6	2	SPRING MODULE	28480	1600-1059
Al 0 ASH5	2360-0370	3	2	SCREW-MACH 6-32, 375-IN-LG PAN-HD-POZI	06000	order by description
A10A5MP 1	1600-1025	6	1	ERACKET-SWITCH	28480	1600-1025
A10A5MP 2	0590-1312	0	1	NUT PLATE 4-40	00000	ORDER BY DESCRTPTITAN
A10ASMP3	4040-1847	5	1	HIL DEE- - SPRTNG	28480	$4040 \cdots 1847$
A. 10 ASP 11	1251-3965	6	1	CONNECTOR-4-PIN FEMAI.E	28480	1251-3965
A10ASS2	3101-2438	1	2	SWITCH TRACK (LEEFT GR RIGHT)	28480	3101-2438
A10AG	09130-61604	9		LED ASSEMBLY F-FRONT PANEL	28480	091:30-61604
A10AGCR 3	1990-0794	9	1	DIODE-LED (RED)	71744	CM4 - 23
A10AGH14	1250-0610	0	1	Eushing-collar led	28480	1250-0610
A10AGP9	1251-3965	6	1	CONNECTOR-4 PIN FEMALE	28490	1251-3965
A) 10 AF	64100-65501.	3	1	Shteld box assembly	23480	64109-65501
		If 64100A Mainframe has serial prefix 2301A and a suffix of 03176 or greater, change A10A7 Shield Box Assembly part number from 64100-65501 to 64100-65502. Subassemblies A9A1 thru A9A6 are the same as A10A1 thru A10A6. Refer to the A10 Listing for these parts and numbers.				

Replaceable Parts - Model 64941A

Table 6-2. Replaceable Parts List (Cont'd)

See introduction to this section for ordering information

Table 6-2. Replaceable Parts List (Cont'd)

Reference Designation	HP Part Number	C	Qty	Description	Mfr Code	Mfr Part Number
A11R1	0757-0442	9	8	RESISTOR 10K 1\%.125W F TC=0+-100	24546	C4-1/8-T0-1002-F
A11R2	0757-0442	9	8	RESISTOR 10K $1 \% .125 \mathrm{~W}$ F TC $=0+-100$	24546	C4-1/8-T0-1002-F
A11R3	0757-0280	3	7	RESISTOR $1 \mathrm{~K} 1 \% .125 \mathrm{~W}$ F TC=0+-100	24546	C4-1/8-T0-1002-F
A11R4	0757-0280	3		RESISTOR 1K 1\%.125W F TC=0+-100	24546	C4-1/8-T0-1002-F
A11R5	0757-0280	3		RESISTOR 1K $1 \% .125 \mathrm{~W}$ F TC=0+-100	24546	C4-1/8-T0-1002-F
A11R6	0757-0273	4		RESISTOR $3.01 \mathrm{~K} 1 \%$. 125 W F TC=0+-100	24546	C4-1/8-T0-3011-F
A11R7	0757-1094	9	,	RESISTOR 1.47K $1 \% .125 \mathrm{~W}$ F TC=0+-100	24546	C4-1/8-T0-1471-F
A11R8	0757-0438	3	1	RESISTOR 5.11K 1%. 125W F TC=0+-100	24546	C4-1/8-T0-5111-F
A11R9	0757-0273	4		RESISTOR 3.01K 1\% .125W F TC=0+-100	24546	C4-1/8-T0-3011-F
A11R10 A11R11	0757-0455 $0757-0455$	4 4	2	RESISTOR $36.5 \mathrm{~K} 1 \% .125 \mathrm{~W}$ F TC=0+-100 RESISTOR $36.5 \mathrm{~K} 1 \% .125 \mathrm{~W} \mathrm{~F} \mathrm{TC}=0+-100$	24546 24546	C4-1/8-T0-3625-F C4-1/8-T0-3625-F
Altrit						
A11R12	0757-0442	9		RESISTOR 10K 1\%.125W F TC=0+-100	24546	C4-1/8-T0-1002-F
A11R13	0757-0442	9		RESISTOR 10K $1 \% .125 \mathrm{~W}$ F TC=0+-100	24546	C4-1/8-T0-1002-F
A11R14	0757-0442	9		RESISTOR 10K $1 \% .125 \mathrm{~W}$ F TC=0+-100	24546	C4-1/8-T0-1002-F
A11R15	0757-0442	9		RESISTOR 10K 1\%.125W F TC=0+-100	24546	C4-1/8-T0-1002-F
A11R16	0698-3154	0	4	RESISTOR 4.22K 1\%.125W F TC=0+-100	24546	C4-1/8-T0-4221-F
A11R17	0757-0442	9 3		RESISTOR 10K $1 \% .125 \mathrm{~W}$ F TC=0+-100 RESISTOR $1 \mathrm{~K} 1 \% .125 \mathrm{~W}$ TC $=0+-100$	24546 24546	C4-1/8-T0-1002-F
A11R18 A11R19	$0757-0280$ $0757-0442$	3 9		RESISTOR 1K $1 \% .125 \mathrm{~W}$ F TC=0+-100 RESISTOR $10 \mathrm{~K} 1 \% .125 \mathrm{~W}$ TC $=0+-100$	24546 24546	C4-1/8-T0-1001-F C4-1/8-T0-1002-F
A11R20	0698-3156	2	1	RESISTOR 14.7K 1%. 125 W F TC $=0+-100$	24546	C4-1/8-T0-1472-F
A11R22	0698-3154	0		RESISTOR 4.22K $1 \% .125 \mathrm{~W}$ F TC=0 + - 100	24546	C4-1/8-T0-4221-F
A11R23	0698-3154	0		RESISTOR 4.22K 1%. 125W F TC=0+-100	24546	C4-1/8-T0-4221-F
A11R24	0698-3154	0		RESISTOR 4.22K $1 \% .125 \mathrm{~W}$ F TC=0+-100	24546	C4-1/8-T0-4221-F
A11R25 A11R26	$0698-7401$ $0698-7518$	1 8	1	RESISTOR $1.71 \mathrm{~K} 1 \% .125 \mathrm{~W}$ F TC=0+-100 RESISTOR $200.25 \% .125 \mathrm{~W}$ F TC $=0+-50$	24546 19701	C4-1/8-TO-1621-F MF4C1/8-T2-200R-C
A11R26	0698-7518	8	1		19701	MF4C1/8-T2--200R-C
A11R27	0757-0429	2	2	RESISTOR 1.82K $1 \% .125 \mathrm{~W}$ F TC $=0+100$	24546	C4-1/8-T0-1821-F
A11R28	0757-0280	3		RESISTOR 1K $1 \% .125 \mathrm{~W}$ F TC $=0+-100$	24546	C4-1/8-T0-1001-F
A11R29	0757-0429	2		RESISTOR 1.82K $1 \% .125 \mathrm{~W}$ F TC $=0+-100$	24546	C4-1/8-T0-1821-F
A11R30	0757-0280	3		RESISTOR $1 \mathrm{~K} 1 \% .125 \mathrm{~W}$ F TC $=0+-100$	24546	C4-1/8-T0-1001-F C4-1/8-T0-6812-F
A11R31	0757-0461	2	2	RESISTOR $68.1 \mathrm{~K} 1 \% .125 \mathrm{~W}$ F TC $=0+-100$	24546	C4-1/8-T0-6812-F
A11R32	0757-0280	3		RESISTOR $1 \mathrm{~K} 1 \%$, 125W F TC $=0+-100$	24546	C4-1/8-T0-1001-F
A11R33	0757-0461	2	2	RESISTOR $68.1 \mathrm{~K} 1 \% .125 \mathrm{~W}$ F TC $=0+-100$	24546	C4-1/8-T0-6812-F
A11R34	0757-0416	7	1	RESISTOR 511 1\%.125W F TC $=0+-100$	24546	C4-1/8-T0-511R-F
A11TP's	0360-0535	0	20	TERMINAL TEST POINT PCB	00000	ORDER BY DESCRIPTION
A11U1	1820-1470	1	2	IC MUXR/DATA-SEL TTL LS 2 -TO-1-LINE QUAD	01295	SN74LS157N
A11U2	1810-0271	7	1	NETWORK-RES 10-SIP200.0 OHM $\times 9$	01121	210A201 SN74S240N
A11U3	1820-1633	8	2	IC BFR TTL S INV OCTL 1-INP	01295	SN74S240N
A11U4	1820-2456	5	1	IC-FD1791A-01	28480	1820-2456
A11U5	1810-0280	8	1	NETWORK-RES 10-SIP 10.0 K OHM $\times 9$	01121	210A103
A11U6	1820-1425	6	1	IC SCHMITT-TRIG TTL LS NAND QUAD 1-INP	01295	SN74LS132N
A11U9	1820-1112	8	3	IC FF TTL LS D-TYPE POS-FDGE-TRIG	01295	SN74LS74AN
A11U10	1820-1112	8		IC FF TTL LS D-TYPE POS-FDGE-TRIG	01295	SN74LS74AN
A11U11	1820-0535	8	1	IC DRVR TTL AND DUAL 2-INP	01295	SN75451BP
A11U12	1826-0207	2	1	IC OP AMP WB 8-DIP-P PKG	01295	LM318P
A11U13	1820-1633	8		IC BFR TTL S INV OCTL 1 -INP	01295	SN74S240N
A11U14	1820-1858	9	1	IC FF TTL LS D-TYPE OCTL	1295	SN74LS377N
A11U17 A11U18	$1820-1212$ $1820-1244$	9 7	5	IC FF TTL LS J-K NEG-EDGE-TRIG IC MUXR/DATA-SEL TTL LS 4 -TO-1-LINE DUAL	1295 01295	SN74LS112AN
Allul8	1820-1244	7			01295	SN74LS153N
A11U19	1820-1212	9		IC FF TTL LS J-K NEG-EDGE-TRIG	1295	SN74LS112AN
A11U20	1820-1212	9		IC FF TTL LS J-K NEG-EDGE-TRIG	1295	SN74LS112AN
A11U21	1820-1212	9		IC FF TTL LS J-K NEG-EDGE-TRIG	1295	SN74LS112AN
A11U22 A11U23	$1820-1997$ $1820-1997$	7 7	6	IC FF TTL LS D-TYPE POS-EDGE-TRIG PRL-IN IC FF TTL LS D-TYPE POS-EDGE-TRIG PRL-IN	01295	SN74LS374N SN74LS374N
A11U24	1820-1730	6		IC FF TTL LS D-TYPE POS-EDGE-TRIG COM	01295	SN74LS273N
A11U25	1820-2024	3	2	IC DRVR TTL LS LINE DRVR OCTL	01295	SN74LS244N
A11U26	1820-1997	7		IC FF TTL LS D-TYPE POS-EDGE-TRIG PRL-IN	01295	SN74LS374N
A11U27	1820-1260	7	2	IC MV TTL MONOSTBL DUAL	1295	SN74221N
A11U28	1820-1428	9	2	IC MUXR/DATA-SEL TTL LS 2-TO-1-LINE QUAL	01295	SN74LS158N
A11U29	1820-1989	7	2	IC CNTR TTL LS BIN DUAL 4-BIT	01295	SN74LS02N
A11U30	1820-1433	6	1	IC SHF-RGTR TTL LS R-S SERIAL-IN PRL-OUT	01295	SN74LS164N
A11U31	1820-1260	7		IC MV TTL MONOSTBL DUAL	01295	SN74221N
A11U32	64110-10001	5	1	ROM-ASM CONTROL	28480	64110-10001
A11U33	1820-1917	1	1	IC BFR TTL LS LINE DRVR OCTL	01295	SN74LS240N
A11U34	1820-1212	9		IC FF TTL LS J-K NEG-EDGE-TRIG	01295	SN74LS112AN
A11U35	1820-1470	1		IC MUXR/DATA-SEL TTL LS 2-TO-1-LINE QUAD	01295	SN74LS138N
A11U36	1820-1216	3	1	IC DCDR TTL LS 3-TO-8-LINE 3-INP	01295	SN74LS240N
A11U37	1820-1997	7		IC FF TTL LS D-TYP POS-EDGE-TRIG PRL-IN	01295	SN74LS374N
A11U38	1820-1997	7		IC FF TTL LS D-TYPE POS-EDGE-TRIG PRL-IN	01295	SN74LS374N
A11U39	1820-1730	6			01295	SN74LS273N
A11U40 A11U4	$1820-2024$ $1820-1997$	3 7 7		IC DRVR TTL LS LINE DRVR OCTL IC FF TTL LS D-TYPE POS-EDGE-TRIG PRL-IN	01295 01295	SN74LS244N
A11U42	64110-10002	6	1	ROM-ASM OUT DC	28480	64110-10002
A11U43	1820-1246	9	1	IC GATE TTL LS AND QUAD 2-INP	01295	SN74LS09N

Table 6-2. Replaceable Parts List (Cont'd)

See introduction to this section for ordering information

Table 6-3. List of Manufacturers' Codes

Mfr No.	Manufacturer Name	Address		Zip Code
	NIPPON ELECTRIC CO ANY SATISFACTORY SUPPLIER Al. LEN-ERADLEY CO TEXAS INSTR INC SEMICOND CMPNT DIU SPECTROL ELECTRONICS CORP MOTOROLA SEMICONDUCTOR PRODUCTS CORNING GLASS WKS COMPONENT DIU STGNETICS CORP MEPCO/ELECTRA CORP CORNING GLASS WORKS (BRADFORD) NATIONAL SEMICONDUCTOR CORP HEWLETT-PACKARD CO CORPORATE HQ INTERSIL INC accurate screw machine co SPRAGUE ELECTRIC CO CHICAGO MINIATURE LAMP WORKS ELECTRO MOTIVE CORP TRW INC PHILADELPHIA DIU	TOKYO MILWAUKEE DALLAS CITY OF IND PHOENTX RALEIGH SUNNYUALE MINERAL WELI.IS BRADFORD GANTA CLARA PALO AI...TO CUPERTTNO NORTH ADAMS CHICAGO FLORENCE PHILADELPHTA		53204 775222 99175 85008 27604 94086 76067 16701 95051 90304 95014 07645 01427 60640 06226 19108

SECTION VII

MANUAL BACKDATING

7-1. GENERAL .
7-2. There is no backdating material at the printing of this manual.

SECTION VIII

SERVICE

8-1. INTRODUCTION.

8-2. This section provides information to service the flexible disc control and drives. If an error has occurred while using the flexible disc drive option, use this section to diagnose the problem and troubleshoot it.

8-3. This section is divided into two groups. The first contains the fundamentals of flexible disc recording, and block and component level theory-of-operation. This information should help the user understand the operation of the flexible disc drive. The second portion contains troubleshooting information. This includes descriptions of the error messages given during PV and DIAG tests, troubleshooting using signature analysis, troubleshooting hints, and detailed service sheets.

8-4. SAFETY CONSIDERATIONS.

8-5. Read the Safety Summary at the front of this manual before servicing this instrument. Review each procedure before performing it for CAUTIONs and WARNINGs given in the procedures. For example, when working around the power supply and the display circuitry in the mainframe; CAUTION should be taken to avoid the potentially lethal voltages! In general however, the flexible disc drives use only +-12 Volts and +5 Volts.

8-6. FLEXIBLE DISC RECORDING FUNDAMENTALS.

8-7. To better understand the operation of the flexible disc drive, read this brief description of disc recording principles. Refer to figures 8-1 through 8-3 while reading this section.

8-8. The flexible magnetic media used with the 64100 A option 041 disc drive measures 5.25 inches in diameter. Both surfaces are coated with a ferromagnetic iron oxide. Both sides are used for data storage. Each side contains 35 circular tracks. Each track is divided into 16 pie slice shaped regions called sectors. A sector can contain up to 256 bytes of data. Surface, track and sector information is used to reference data location on the disc. Data is encoded on the disc (ones and zeros) by changing the orientation of small magnetic dipoles in the magnetic coating on the disc. There is no correlation between magnetic polarity of the dipoles and the ones and zeros. The ones and zeros are indicated by the location of the dipole polarity transitions.

8-9. The disc is soft sectored; that is, there is no hardware indication of where each sector begins. In order to allow soft sectoring, each sector is divided into two fields. For each sector there is an ID field which contains information to identify the sector. Next there is a data field which contains the actual data. Thus, the ID field serves as a fixed marker for the beginning of each sector.

8-10. The makeup of the ID and DATA fields are similar. Both fields begin with a series of synchronization bytes (zeros). These bytes allow the decoder circuitry of the controller time to synchronize itself with the data on the disc. Following the synchronizing bytes, is the address mark byte which indicates that the beginning of an ID or DATA field has been located. The address mark is a specially recorded data pattern that does not occur in any data stream and is used to sychronize the data decoding circuits in the Mini Disc Controller (MDC).

8-11. A series of information bytes follows the address mark. In an ID field, these bytes indicate the logical cylinder, head and sector address. In a DATA field, these bytes are the data being stored in the sector.

8-12. At the end of each field are two cyclic redundance check (CRC) bytes. This check word (16 bits long) allows detection of most errors that occur in the data storage and recovery of information from a disc.

8-13. There are two gaps following each field on a track. The gaps allow for variations in disc rotational speed, index detector alignment variations and time for the hardware to prepare for the next field.
$8-14$. The logical sectors are numbered consecutively. However, the sectors (see figure 8-2) may occur in any physical order around the track. This allows the sectors to be staggered to optimize system performance (interleaving).

8-15. The outermost track on the disc is track 0 and the intermost track is 34. Each track has a physical address as described previously. There is also a logical track address associated with each good track. The logical track address is written in the ID field of each sector on the track.
$8-16$. The recording head (see Figure $8-3$) is moved in and out by a stepper motor as sembly. Write current passes through the head coil to selectively magnetize portions of the disc. To read back data, the magnetized material is passed under the head.

Figure 8-2. Media Sector and Track Structure

Figure 8-3. Head Positioning Assembly

8-17. BLOCK DIAGRAM THEORY.
8-18. The Local Mass Storage is divided into two major functions; the first function is the Mini Controller, and the second is the flexible disc drives.

8-19. The block diagram for the Mini Controller and Flexible Disc Drive functions is shown on figure 8-4. The left half of the Block diagram is the Mini Control board A11 and the right half is showing the Flexible Disc Drives (Drive 0 and 1) with drive 0 showing the internal functions. Figure $8-5$ is a more detailed block diagram of the flexible disc drives.

8-20. MINI CONTROL BLOCK THEORY.
8-21. The Mini Controller is part of the 64100 A mainframe. It interfaces the flexible disc drives with the mainframe by supplying the drive with power, data, timing, and control signals.

8-22. The Mini Controller is divided into eleven subfunctions.
a. Interface Control Latch
b. DMA/CPU Address Selector
c. SA Stimulus Latch
d. CPU Interface/DMA State Machine
e. Data Latches
f. 4 MHz Oscillator
g. Mini Drive Controller
h. Drive Control Latches/Buffers
i. Drive Status Buffers
j. Data Separator
k. Disc Drive Multiplexer and Control Buffering

8-23. INTERFACE CONTROL LATCH.
8-24. Refer to figure 8-4. The control latch is responsible for capturing the upper byte of I/O data and providing this information to the DMA/CPU Address selector.

8-25. DMA/CPU ADDRESS SELECTOR.
8-26. Refer to figure 8-4. The address selector, which is gated by the state machine, generates control signals to the Mini Drive Control chip (MDC). The state of the control signals is determined by the output of the interface control latch.

8-27. SIGNATURE ANALYSIS STIMULUS LATCH.
8-28. Refer to figure 8-4. The output of the SA stimulus latch can be connected to either the input of the DMA state machine, jumper E2, or to the inputs of the data separator circuitry, jumper E1. This facilitates troubleshooting of the DMA state machine and data separator by forcing them into known state sequences.

8-29. CPU INTERFACE/DMA STATE MACHINE.
8-30. Refer to figure 8-4. The CPU Interface/DMA State Machine performs two functions. First, a major portion of the circuitry does byte packing and unpacking so that the 16 bit I / O bus can interface to the 8 bit bus of the MDC. Second, the state machine provides signals for enabling the data latches and providing next state information for itself.

8-31. DATA LATCHES.
8-32. Refer to figure 8-4. The data latches are used for loading and transfering 8 bit read/write, status and control signals to and from the drive circuitry from the 16 bit 64100A I/O bus. The enabling and clocking of the data latches is performed by the DMA state machine.

8-33. 4 MHZ OSCILLATOR.
8-34. Refer to figure 8-4. The oscillator block is comprised of a 4 Mhz crystal oscillator that is used to clock a 4 bit binary counter. The 2 Mhz and 500 Khz outputs are used to clock the data separator and the 1 Mhz output is used to clock the Mini Drive Controller chip.

8-35. MINI DRIVE CONTROLLER (MDC) CHIP.
8-36. Refer to figure 8-4. The Mmini Drive Controller (MDC) chip is divided into two functions. The first is the microprocessor interface that uses control signals to determine whether it is in a read or a write mode. Then, once it has determined it's R / W status it will then read or write data via the data access lines to the data latches. The second section, the disc interface, implements the commands from the microprocessor interface section. The disc interface section processes commands and status signals from the disc drive MUX. Also, the MDC will provide encoded information to be written onto the disc and a means of decoding read data to be output to the system.

8-37. DRIVE CONTROL LATCH/BUFFER.
8-38. Refer to figure 8-4. This block is responsible for providing control signals to each disc drive.

8-39. DRIVE STATUS BUFFERS.
8-40. Refer to figure 8-4. The drive status buffers provide the system with information necessary to determine the status of the disc drives.

8-41. DATA SEPARATOR.
8-42. Refer to figure 8-4. This block is responsible for dividing the 1 's and 0 's on the data stream into half bit cells, and phase locking this data for use by the MDC. The data stream consists of raw encoded information from the disc. Furthermore, the raw read information is delayed and phase locked with a read clock as soon as seven sync bytes have been read from the disc.

8-43. DISC DRIVE MULTIPLEXER AND CONTROL BUFFERING.
8-44. Refer to figure 8-4. This block is the final interface to the disc drives. The multiplexer selects between the two sets of signals going to/from the two flexible disc drives depending on which drive is currently active.

8-45. DISC DRIVE BLOCK THEORY.
8-46. This section describes the block digram theory for the disc drives. Figure 8-5 is a detailed block diagram of the disc drives.

8-47. INDEX PULSE SHAPING NETWORK.
8-48. The index pulse circuitry consists of an index LED, photo transistor and pulse shaping network. The index hole in the flexible disc passes between the index LED and photo transistor, causing the photo transistor to conduct. The detected signal is then shaped and buffered and output on the Index Pulse interface line (J1-8). This signal although inverted may be observed at TP7 on the Drive Electronics board.

8-49. WRITE PROTECT SENSOR.
8-50. The write protect sensor consists of a switch which is opened when a write protected disc is inserted into the drive. This signal is delayed by an RF filter to eliminate transient noise from the switch. This will cause the write protect line (J1-28) to go low and TP9 to go high.

8-51. TRACK 0 SWITCH.
8-52. The level on the Track 0 interface is a function of the head assembly position. When the head assembly is positioned at track 0 and the stepper motor indicates phase 0, J4-19 is pulled low, causing TP8 and the Track 0 interface line to be pulled low.

8-53. SPINDLE MOTOR DRIVE CONTROL.

8-54. The spindle drive system consists of a spindle assembly driven by a DC motor tachometer combination and the Servo Electronics board.

8-55. The Servo Electronics includes a current limiter and interface control line
8-56. When the Drive Motor Enable line is low, the drive motor is allowed to come up to speed. This speed is adjustable by potentiometer R4 located on the Servo Electronics board

8-57. A current sensing resistor, also located on the servo electronics board limits the motor current to 900 mA . If this limit is exceeded, the notor is disabled

8-58. HEAD POSITION CONTROL.
8-59. The head position control consists of a four phase stepper motor drive which changes one phase for each track advancement of the head assembly. In addition to the logic for motion control, a gate is provided to inhibit repositioning during a write operation.

8-60. POWER ON CIRCUIT.

8-61. This circuit detects when the $+5 V D C$ and $+12 V D C$ are valid and prevents writing/reading/erasing/stepping until such time.

8-62. DATA CIRCUITRY.

8-63. All signals required to control the data circuitry are provided by the host system and are shown in the functional block diagram of Figure 8-5. These signal are as follows:
a. Drive Select
a. Drive Selec
c. Write Data
d. Side Select

8-64. There are 4 drive select lines connected to the data electronics. A shunt block determines the drive number. The drive n mber is established by clipping three of the jumpers on the shunt block or adding a shunt to an empty block. When the selected drive select line is pulled low, the data circuitry is enabled and the drive is conditioned to respond to step or read/write commands. On the 641001 option 041 all of the jumpers are intact and the drive is enabled with DSO.

Figure 8-5. Mini Drive Block Diagram

8-65. WRITING DATA.
8-66. The write electronics consists of the following circuits:
a. Write/erase current source
b. Waveform generator
c. Trim erase current source
d. Head select logic
e. Bias Source

8-67. The read/write winding on the head is center tapped. During a write operation, the current from the write current source flows in the alternate halves of the winding under the control of the write waveform generator.

8-68. Before recording can begin, certain conditions must be satisfied. The conditions required before writing (i.e., unit ready) must be established by the host system as follows:
a. Drive speed stabilization. This will exist 250 mS after starting the drive motor.
b. Subsequent to any step operation, the positioner must be allowed to settle. This requires 20 mS total after the last step pulse is initiated, i.e., 5 mS for the step motion and 15 mS for settling.

8-69. The following operations are performed when writing data. These operations may be overlapped if required.

8-70. Figure 8-6 shows the relevent timing diagram for a write operation. At $T=0$ when the unit is ready, the write enable line goes low. This enables the write current source and bias circuitry.

8-71. Since the trim erase gaps are behind the read/write gap, the TRIM ERASE control goes true $390 u S$ after the WRITE ENABLE interface line. It should be noted that this value is optimized between the requirements at track 0 and track 34 so that the effect of the trim erase gaps on previous information is minimized.

8-72. Figure 8-6 shows the information on the WRITE DATA interface line, and the output of the write waveform generator which toggles on the leading edge of every WRITE DATA pulse.

8-73. At the end of recording, at least one additional pulse on the WRITE DATA line must be inserted after the last significant WRITE DATA pulse to avoid excessive peak shift effects.

8-74. The TRIM ERASE signal must remain true for $800 u S$ after the termination of WRITE ENABLE to ensure that all recorded data are trim erased. This value is again optimized between the requirements at track 0 and 34 .

8-75. The duration of a write operation is from the true going edge of WRITE ENABLE to the false going edge of TRIM ERASE. This is indicated by the internal WRITE BUSY waveform shown.

8-76. READING DATA.
8-77. The read electronics consists of the following circuitry:
a. Read switch/side select
b. Read amplifier
c. Filter
d. Differentiator
e. O Crossing detector

8-78. The read switch is used to isolate the read amplifier from the voltage excursion across the magnetic head during a write operation. The side select is used to enable one of the read/write/erase heads.

8-79. Before reading can begin, the drive must be in a ready condition. As with the data recording operation, this ready condition must be established for data recording. A 100 us delay must exist from the trailing edge of the TRIM ERASE signal to allow the read amplifier to settle after the transient caused by the read switch returning to the read mode.

8-80. Referring to figure $8-7$, the output signal from the read/write head is amplified by a read amplifier and filtered to remove noise by a linear phase filter. The linear output from the filter is passed to the differentiator which generates a waveform whose zero crossovers correspond to the peaks of the read signal. This signal is then fed to the comparator and digitizer circuit.

Figure 8-6. Write Timing Diagram

8-81. The comparator and digitizer circuitry generates a $1 u S$ READ DATA pulse corresponding to each peak of the read signal. This composite read data signal is then sent to the host system via the READ DATA interface line.

8-82. MINI CONTROL THEORY OF OPERATION.
8-83. MINI CONTROL.
(See service sheets 11A, 11B figures 8-9 and 8-11)
8-84. The CPU may execute I / O to any 1 of 16 peripheral addresses (defined by LPA $0-3$) and to any one of four registers at each address. The state of the CPU registers are defined by the state of LIC1 and LIC2:

LIC2	LIC1	Register	Function
H	H	R4	All DMA except last byte
H	L	R5	Command
L	H	R6	Last byte of DMA
L	L	R7	SA test

Figure 8-7. Read Timing Diagram

8-85. Address and register information is guaranteed valid while LIOSB is low or, in other words, LIOSB is the I/O bus clock. U36 causes LMYPA to go low whenever peripheral address 4 is addressed. If the access is a write to R5 (a command) the data is clocked into U10 and U24 (PCMD) via U45. A write to R7 (used only for SA testing) enables U14. Through U45, a write to any register other than R7 (DMA or command) enables U23 and U38. Whereas, a read from R4 or R6 (DMA) reads data from U22 and U37 (LRD).

8-86. U10B enables DMA upon command through R5 (PCMD). HDMAEN allows U9B to be set on the rising edge of $H D M A R Q$ from the state machine output U41. This generates a DMA request through U9B and U43C. An access through R6 (LR6), the last byte of DMA, clears the enable. This in turn, generates an interrupt (LIR3) through U6C, U34B, $U 44 A, B$ and $U 43 \mathrm{~A}$ indicating the end of a DMA cycle.

8-87. U26, U32 U42 and U41 comprise the controller state machine. U26 and U41, used to syncronize the state machine, are clocked by the normal and inverted outputs of a 2 MHz clock which runs asynchronously to the CPU clock. U32 and U42 are programmed ROMs. The purpose of the state machine is to interface between the CPU's 16 bit I/O bus and control bus, to U4's 8 bit bus. The state machine provides packing and and unpacking of words into Dytes thru the Mini Disc Controller internal registers when required (during DMA), and passing single bytes through without waiting for a second byte during commands.

8-88. U39 and U40 form a data control register. One example of this registers operation is as follows: During a read operation the Mini Disc Controller U4 is reading data from disc 0 and needs to write to disc 1 after its read routine is executed. First, the disc 0 drive operating conditions will be captured by the control latch U39. Then, the MDC will execute a read on disc 0 . After the read is done the control latch is loaded with the operating conditions for disc 1 via the data latches. Then, the MDC will execute a write on disc 1. The drive control buffer U40 is used for determining drive status and to provide a return path for SA stimulus.

8-89. U24, U25 and U10 form a drive status register that informs the system if the drives are operating, media has changed, write protected, requesting DMA, or the MDC, U4, has generated an interrupt.

8-90. U35 the DMA/CPU address selector is used to generate control signals for the internal data register of the Mini Disc Controller, U4.

8-91. U50 is used to detect that there is media in the drives and that the motor is turning. Index pulses will occur every 200 mS , which will keep the monostables retriggered. U51 detects a media change by monitoring the write protect switch.

8-92. U13, U1 and U3 are the final interface to the disc drives. Control and data signals are sent to U13 and U3 from U4 and control latch, U39. Status information from the drives is multiplexed by U1. The reason for multiplexing this information is that the Mini Drive Controller is designed for single drive operation.

8-93. The control board clock generation is done by the circuitry surrounding Y1, a 4 MHz crystal oscillator. R27, R28 and R29 bias U47C,D so the chip will operate in the linear region if the crystal is not oscillating. The crystal oscillates in the series-resonant mode.

Service - Model 64941A

8-94. MINI CONTROL DATA SEPARATOR.
(See service sheet 11C figure 8-13)
8-95. Due to the encoding scheme used, data from the disc drive consists of a train of pulses whose pulse-to-pulse spacing may be $4 u S$, $6 u S$ or $8 u S$. In practice, up to 200 nS of jitter may exist around these nominal values. The function of the data separation circuitry is to recover a clock from this data stream. Each block of data to be recovered is proceeded by a sync field consisting of 96 pulses spaced at $4 u S$ (12 bytes of 0 's).

8-96. U29 and U43B detect the presence of the sync field in the following manner: U29B counts a 2 MHz clock so if 5 uS or more elapses between sent pulses on pin 12, U29A will be reset by U43B. Since the sync field pulses occur at a nominal 4uS, U29A will count sync field pulses and QD will present a positive edge to U30 after 8, 24, 40 , 56 pulses. U30 QB and QD will transition from low to high after 24 (3 bytes) and 56 (7 bytes) pulses respectively. After $U 4$ has recognized four bytes of the sync field, it will set HRG high which will prevent U30 from being reset by the interpulse spaces of $6 u S$ and $8 u S$ which will occur in the data. However, HRG will be reset if an address mark is not found in 16 bytes or if the head is in the incorrect position.

8-97. U17, U18, U19, U11, U12 and U31 comprise a phase locked loop. U31, the VCO, runs at a nominal 500 KHz . When no data is being inspected off the disc, the PLL is locked to a 500 KHz reference in order to keep the loop in its active region. The DC voltage at TP1 should be within +- 2 V of ground under these conditions.

8-98. U18 is responsible for three operations. First, when no data is being inspected it will lock the VCO, U31, to the 500 KHz reference signal. Second, after U30 QB goes high U18 will lock the VCO to the 250 KHz signal while inspection is done of the sync field. Last, when U3O QD goes high the VCO is locked to the 4uS, 6uS, or 8uS data pulses.

8-99. U20, U21, and U17 cause an in phase switch between the 500 KHz reference and the sync field (these signals have a random phase relationship). Assume that U3O QB has just gone high: The next time U17 pin 9 transitions low, U20A will be clocked true. This will lock U17 pins 9 and 5 low (the PLL will be locked to the reference) and stop the VCO, U31. The second sync pulse which occurs after this will clock U21 true which will switch U18. Then, the sync field is presented to the PLL and the VCO is restarted in phase. The second sync pulse is the one necessary to insure that both halves of U31 have timed out before they are restarted.

8-100. U27A moves the data transition, either $1-0$ or $0-1$, to the center of each half bit cell. U27B then sets the data transition pulse width for U4.
$8-101$. The +12 V motor supply is provided by VR1, a voltage regulator, that uses the +17 V supply and converts it to +12 V . R25 and R26 provide the output voltage adjustment. CR3 and CR4 are used for protection to prevent C26 and C27, filter capacitors, from discharging through low current points in the regulator. +12 V motor, +5 V , and GND are distributed to the drives through J1 and J2.

8-102. MINI DRIVE THEORY OF OPERATION.
8-103. There is no theory-of-operation on the flexible disc drives at this time.

8-104. TROUBLESHOOTING.
8-105. This section contains troubleshooting information for the Flexible Disc Drive System when installed in the 64100A Logic Development Station. Contained are descriptions of each of the eight PV tests, descriptions of the PV error codes, the use of signature analysis, and service sheet layout.

8-106. PERFORMANCE VERIFICATION (PV) TEST DESCRIPTIONS (see paragraphs 8-108 thru 8-123).

8-107. The following is a description of each of the eight tests performed during a single performance verification (PV) test cycle.

8-108. FLOPPY CONTROLLER RESPONSE TEST.
8-109. During this test the CPU writes AA hex to the track register in the Mini Disc Controller chip and then reads it back and compares it. If this test fails Error message 14 (NO RESPONSE FROM DISC CONTROLLER) is displayed.

8-110. SELECT TEST. (SELECT will be in inverse video)

8-111. This test selects the drive to be tested, turns $O N$ the motor and checks for drive ready indication from the drive. If this test fails error message 1 (... DISC DOWN...) will be displayed.

8-112. TRACK 00 TEST.
(TRK 00 will be in inverse video)
8-113. This test issues a restore command to the drive and checks for the TRACK 00 indicator line to be active over track 0 and inactive over track 1. If this test fails error messages 2,3 , or 4 may be displayed. These are:

TRACK 00 INDICATOR ON OVER TRACK XX
TRACK 00 INDICATOR NOT ON OVER TRACK 0
TRACK 0 NOT FOUND

8-114. READ TRACK O TEST.
(RTRKO will be in inverse video)
8-115. This test reads all 16 sectors of track 0 on both sides of the disc. The possible error messages generated are message $1,5,6,, 7,8$ and 9 . These are:
...DISC DOWN...
LOST DATA:
DATA CRC ERROR:
ID CRC ERROR:
RECORD NOT FOUND:
SEEK ERROR:

TRK XX SEC XX SIDE X-R/W
TRK XX NOT VERIFIED

8-116. READ TRACK 34 TEST.
(RTRK34 will be in inverse video)
8-117. This test reads all 16 sectors of track 34 on both sides of the disc. The possible error messages generated are message 1, 5, 6, 7, 8 and 9. These are:
...DISC DOWN...
LOST DATA:
DATA CRC ERROR:
ID CRC ERROR:
RECORD NOT FOUND:
SEEK ERROR:

TRK XX SEC XX SIDE X-R/W
TRK XX SEC XX SIDE X-R/W
TRK XX SEC $X X$ SIDE $X-R / W$
TRK XX SEC XX SIDE X-R/W
TRK XX NOT VERIFIED

8-118. TRACK 34 CHECK TEST.
(The first READ after TRK 34: will be in inverse video)
8-119. This test checks track 34 to determine if it has been used. This is done by reading the data on track 34 , sector 0 on both sides. If the track is not used the data read will be all zeros. The possible error messages are 1, 5, 6, 7, 8, 9, 11, and 12. These are:
...DISC DOWN...
LOST DATA: TRK XX SEC Xx SIDE $\mathrm{X}-\mathrm{R} / \mathrm{w}$
DATA CRC ERROR: TRK XX SEC XX SIDE $X-R / W$
ID CRC ERROR:
TRK XX SEC XX SIDE X-R/W
RECORD NOT FOUND: TRK XX SEC XX SIDE $X-R / W$
SEEK ERROR: TRK XX NOT VERIFIED
READ KNOWN DATA ERROR: SIDE X
NO DISC SPACE AVAILABLE FOR WRITE TEST

8-120. TRACK 34 WRITE TEST.
(The WRITE after TRK 34: will be in inverse video)
8-121. This test writes to track 34 sector 1 on both sides of the disc. The error messages that can be generated are $1,5,6,7,8,9$, and 10 . These are:

```
...DISC DOWN...
LOST DATA:
DATA CRC ERROR:
ID CRC ERROR:
RECORD NOT FOUND:
SEEK ERROR:
NO WRITE--DISC PROTECTED
TRK XX SEC XX SIDE X-R/W
TRK XX NOT VERIFIED
```

8-122. TRACK 34 READ/VERIFY WRITE.
(The second READ after TRK 34: will be in inverse video)
8-123. This test reads the data written in the previous test and verifies that it is the same as the data written. The error messages that can be generated are 1, 5, 6, $7,8,9$, and 13. These are:
...DISC DOWN...
LOST DATA:
TRK XX SEC XX SIDE X-R/W
DATA CRC ERROR:
TRK XX SEC XX SIDE $X-R / W$
TRK XX SEC XX SIDE $X-R / W$
TRK XX SEC XX SIDE X-R/W
TRK XX NOT VERIFIED

RECORD NOT FOUND:
SEEK ERROR:
WRITE ERROR: SIDE X

8-124. PV ERROR MESSAGES.
8-125. While running the floppy PV test an error may be encountered and an error number given. Table 8-1 gives the error number to message conversion.

Table 8-1. Mini Floppy PV Error Messages
ERROR \#
ERROR MESSAGE

1	.DISC DOWN.
2	TRACK 00 INDICATOR ON OVER TRACK XX
3	TRACK 00 INDICATOR NOT ON OVER TRACK 0
4	TRACK O NOT FOUND
5	LOST DATA: TRK XX SEC XX SIDE X-R/W
6	DATA CRC ERROR: TRK XX SEC XX SIDE X-R/W
7	ID CRC ERROR: TRK XX SEC XX SIDE X-R/W
8	RECORD NOT FOUND: TRK XX SEC XX SIDE X-R/W
9	SEEK ERROR: TRACK XX NOT VERIFIED
10	NO WRITE--DISC WRITE PROTECTED
11	READ KNOWN DATA ERROR: SIDE X
12	NO DISC SPACE AVAILABLE FOR WRITE TEST
13	WRITE ERROR: SIDE X
14	NO RESPONSE FROM DISC CONTROLLER
15	not currently used

When the current test passes a record of previous errors is displayed in the form of an error mask. A "1" is set in each of the bit positions corresponding to the ERROR \# of previous errors.

ERROR \# -> 15 --------------1
PREVIOUS ERROR MASK: XXXXXXXXXXXXXXX
For example, an error message reads:
PASSED PREV ERRORS: 000000001000001

This indicates that the present test passes but during one or more of the previous tests, errors occurred due to the disc being down (ERROR \#1) and ID CRC errors (ERROR \#7).

8-126. DESCRIPTION OF ERROR CODES AND TROUBLESHOOTING.
8-127. Table 8-2 is a description of each error code in table 8-1. Also, possible troubleshooting and corrective measures are listed.

Table 8-2. Description Of PV Error Codes.

CODE \#
DESCRIPTION
"...DISC DOWN..." This message indicates that the drive ready line of the disc being tested was not read in the true state.

Possible trouble/corrective measure:
a. No media in drive/Insert media and close door.
b. No index pulses from drive or motor not running/Check index pulse circuitry and servo motor.
c. Index pulses but no drive ready indication/Check drive ready circuitry.
d. Drive ready signal true on floppy control board/Check CPU interface with interface DSA loops.
"TRACK 00 INDICATOR ON OVER TRACK XX" This message indicates that the MDC was able to verify, by reading the ID portion of the track data, that the head was positioned over track XX. However, the CPU read the TRACK 00 status bit from the Mini Drive Controller (MDC) to be in the true state.

Possible trouble/corrective measures:
a. Go to DIAG mode (see section IV operation verification tests) and select correct drive and step to TRACK XX.
b. TRACK 00 signal is true at input to Mini Controller Chip (MDC)/Troubleshoot TRACK 00 detector circuitry, may have to do TRACK 00 switch adjustment.
c. TRACK 00 signal is false at input to MDC/Troubleshoot CPU interface circuitry with DSA interface loops.
"TRACK 00 INDICATOR NOT ON OVER TRACK 0 " This message indicates that it was verified by reading the ID portion of the track data, that the head was positioned over track 0 but the CPU read the TRACKOO status bit from the MDC to be in the false state.

Possible trouble/corrective measures:
a. Go to DIAG mode (see section IV operation verification tests) and select correct drive and restore it.
b. TRACKOO signal is false at input to MDC/Troubleshoot track 00 detector circuitry, may have to do a Track 00 switch adjustment.
c. TRACKOO is true at input to MDC/Troubleshoot CPU interface circuitry with DSA interface loops.
"TRACK 0 NOT FOUND" This message indicates that after the restore command the CPU read the TRACKOO indicator to be false and that the head was not positioned over track 0.

Possible trouble/corrective measures:
a. Go to DIAG mode (see section IV operation verification tests) and try the RESTORE command for the drive that failed.
b. Bad head positioning circuit/Check step and direction lines from the mini drive controller and stepper motor circuitry.
c. CPU interface to MDC bad/Check interface circuitry using DSA interface loops.
"LOST DATA TRK XX SEC XX SIDE X R/W" This message indicates that the CPU did not respond to either an interrupt or a DMA request from the mini drive controller. Also, that the data in the MDC was lost.

Possible trouble/corrective measures:
a. CPU interface to MDC is bad/Check interface circuitry using DSA interface loops.
b. DMA path to CPU bad/Check using logic probe or ohmmeter.
c. Mainframe interrupt circuitry bad/Troubleshoot with DSA in mainframe I/O write test.
"DATA CRC TRK XX SEC XX SIDE X R" This message is generated when the mini drive controller chip detects a CRC error in the data portion of a sector read operation.

Possible trouble/corrective measures:
a. Bad media/Reformat a new disc and repeat test.
b. Data separator circuit bad/Check using DSA data separator loops.
c. Bad drive read electronics/Check read data waveforms with the ones shown in the drive and drive head alignment procedures. See radial head alignment procedure in Section V, paragraph 5-19.
"ID CRC TRK XX SEC XX SIDE $\mathrm{X} R / \mathrm{W}$ " When this message is generated the MDC chip has detected a CRC error in the ID portion of a sector read operation.

Possible trouble/corrective measure:
a. Same as trouble/corrective measures used in code 6 above.
"RECORD NOT FOUND TRK XX SEC XX SIDE X R/W" This message is generated when the code for the desired track, sector, and side were not found on the current track in any of the ID fields.

Possible trouble/corrective measure:
a. Bad media/Reformat a new disc and repeat test.
b. Data separator circuit bad/Check using DSA data separator loops.
c. Bad Drive Electronics/Check the read data waveforms with the waveforms given in the drive and drive head alignment procedures given in Section V.
d. Bad head positioning circuit/Check the step and direction lines from the mini drive controller and stepper motor circuitry.
"SEEK ERROR: TRK XX NOT VERIFIED" When this message is generated the code for the desired track is not found in the ID field.

Possible trouble/corrective measure:
a. The trouble and corrective measures are the same as code 8 above.
"NO WRITE DISC WRITE PROTECTED" This message is generated when the CPU reads the write protect line (through the activity register) for the selected drive in the true state during a write operation.

Possible trouble/corrective measure:
a. Disc write protected/Use disc that is not write protected.
b. The write protect signal is true when the disc is not write protected/Troubleshoot the write protect circuitry.
c. Write protect line operates correctly, but, the CPU interface is bad/Check CPU interface using DSA with activity buffer moved to mode buffer location.
"READ KNOWN DATA ERROR: SIDE X" When the data read on track 34 , during the track 34 check, is not all zeros then an error is displayed.

Possible trouble/corrective measure:
a. Bad media/Reformat a new disc and perform test again.
b. Data separator circuit bad/Check using DSA data separator loops.
c. Bad drive read electronics/Check the read data waveforms with the waveforms given in the drive and head alignment procedures given in Section V.
d. Bad head positioning circuit/Check step and direction lines from the mini drive controller and stepper motor circuitry.
"NO DISC SPACE AVAILABLE FOR WRITE TEST" This message is generated when the first byte of data read on track 34 , during the track 34 check, is not all zeros.

Possible trouble/corrective measure:
a. The trouble and corrective measures are the same as code 11 above.
"WRITE ERROR: SIDE X" When the data written to track 34 during the track 34 write test does not match the data read back during the track 34 read/verify test this message will be generated.

Possible trouble/corrective measure:
a. Bad media/reformat a new disc and perform the test again.
b. Bad write circuitry/check write gate, write data, and write protect signals to the MDC and the write waveforms to the drive units.
"NO RESPONSE FROM DISC CONTROLLER" This message is generated when the CPU cannot write 55 Hex to the track register in the Mini Drive Controller and read it back correctly.

Possible trouble/corrective measure:
a. CPU interface to MDC bad/check interface circuitry using DSA interface loops.

8-128. TROUBLESHOOTING USING SIGNATURE ANALYSIS (SA).
8-129. Signature analysis may be used to troubleshoot the Mini Control board to component level. Signature analysis is a technique that enables the signature analyzer to display a compressed, four digit "fingerprint" or signature of the data stream at a given node. Any fault associated with a device on that node will force a change in the data stream and, therefore, result in an erroneous signature.

8-130. Do the following when troubleshooting the flexible disc drive system: first, configure the Rear-Panel switches to the PV mode or press CONTROL/RESET simultaneously (figure 4-1 should appear); second, press the DIAG softkey figure 4-2 should appear). This will give access to the floppy disc diagnostic menu. This menu consists of two signature stimulus loops, DSA1 and DSA2. DSA1 starts the CPU interface DSA loop. DSA2 starts the data separator DSA loop. SA tables 86 thru $8-18$ are represented by a black letter at a given node that correlates to the letter given with the SA table. For example, Table 8-6, Loop A. The black letter "A" is given on the schematic where loop A signatures can be taken.

8-131. KEY SIGNATURES.

8-132. While using SA on the Floppy Control Board, some of the loops may contain key signatures. Using the key signatures should reduce troubleshooting time. A key signature is indicated with a " + " next to the node on the SA table and will be a red shaded black letter on the service sheet. The key signatures should be checked before doing all of that loop. If the key signatures are good, then the rest of the signatures in that loop are good.

8-133. INTERFACE LOOP.
8-134. The SA tables for the interface loop contain key signatures. However, key signatures in loops A, B and M should be taken first. If all of the key signatures are good, then no more signatures need to be taken in the interface loop. Although, if some of the key signatures in loops A, B and M are wrong, then performing other SA loops may be necessary to fix a problem.

8-135. In the interface loop, SA tables $A-J$ are used to exercise the CPU/MDC interface circuitry. In this loop, test jumper E2 must be in the interface TEST position, XU15. This connects the output of the SA stimulus latch to the inputs of DMA state machine. This allows the CPU to directly control the state machine. Also, the clock for the state machine is connected to LMYPA so that the state machine is clocked only when the CPU communicates with register 4 . This makes all interface circuitry synchronous with the CPU and thus allows SA. SA tables A-J are outlined below:

Table A -- Check overall interface
Table B -- Check Floppy ASM
Table M -- Check all Data (I/O Bus) to/from Floppy Controller
Table C -- To check I/O bus decoding
Table D -- Check Data written to Floppy drives

Table E -- Checks Floppy Read Latches

Table F -- Check Data out of U23
Table G -- Check Data from U38

Table H -- Check Data from mode buffer U40
Table I -- Check Data from the MDC (MSB)
Table J -- Check Data from the MDC (LSB) and from U40

8-136. DATA SEPARATOR LOOP.
8-137. In this loop, test jumper E1 must be in the Data Separator TEST position, XU7. This connects the output of the SA latch to the data separator inputs. Also, LMYPA is connected to the L2MHZ input to the data separator. This makes all of the data separator circuitry synchronous to the CPU and thus allows for SA. SA tables K and L are outlined below:

Table K -- Check Data Separator circuitry
Table L -- To check U18 multiplexer to make sure it is multiplexing the HDATA1US signal properly. There are no signature nodes for this loop. just check for correct VH.

8-138. SERVICE SHEET LAYOUT.
8-139. Each service sheet shows the circuitry that controls each of the functional areas listed in table 8-3. Reduced block diagrams and component locators are given with each service sheet. These are gray shaded to correlate the general relationships of the particular circuitry to the overall system.

8-140. MINI CONTROL AND DRIVE SERVICE SHEET LAYOUT.
8-141. The circuitry for the mini control board is shown on service sheets 11A-11C and the circuitry for the mini drives is shown on sheets 1 and 2. Refer to table 8-3 for a list of service sheets and the functional circuitry shown on each sheet.

Table 8-3. Service Sheet To Function

Service	Sheet Number	Functions Shown
11A	Figure 8-9	Microprocessor Interface/DMA State Machine
		CPU Decode
		DMA/CPU Address Selector
		Interrupt Circuitry
		DMA Request
		SA Stimulus Latch
		DMA Acknowledge Latch
		Processor Request Latch
		DMA Enable Latch
		Interface Control Latch
		Data Latches
11B	Figure 8-11	4 MHz Oscillator
		Drive Ready Monostables
		Media Change Latches
		CPU/Drive Interface
		Drive Control Latch and Buffer
		Drive Status Buffer
		Disc Drive Multiplexer and Control Buffering
11C	Figure 8-13	Data Separator Circuitry
		Voltage Controlled Oscillator
		Zero Detection
		Phase Detection
		Drive Power Supply
1	Figure 8-15	Servo Electronics
2	Figure 8-17	Drive Electronics

8-142. LOGIC CONVENTION.
8-143. The positive logic convention is used for the circuits of the 64941A floppy drive option. Positive logic defines a logic 1 as a more positive voltage (high) and a logic 0 as the more negative voltage (low). Ideally, the low and high voltage levels are $0 V$ and +5 V , respectively. Actual levels may vary from these ideal values. Therefore, the voltage levels for a logic 1 and 0 are defined as follows:

TTL Voltage Levels
Binary Quantity Voltage Limit

Input 0	$<0.8 \mathrm{~V}$
Input 1	$>2.0 \mathrm{~V}$
Output 0	$<0.4 \mathrm{~V}$
Output 1	$>2.4 \mathrm{~V}$

8-144. LOGIC SYMBOLOGY.
8-145. Table $8-4$ gives a summary of the logic symbology used in this manual.

Table 8-4. Logic Symbology

GENERAL

All signals flow from left to right, relative to the symbol's orientation with inputs on the left side of the symbol, and outputs on the right side of the symbol (the symbol may be reversed if the dependency notation is a single term .

All dependency notation is read from left to right (relative to the symbol's orientation).
An external state is the state of an input or output outside the logic symbol
An internal state is the state of an input or output inside the logic symbol. All internal states are True $=$ High.

SYMBOL CONSTRUCTION

Some symbols consist of an outline or combination of outlines together with one or more qualifying symbols, and the representation of input and output lines.

Some have a common Control Block with an array of elements

CONTROL BLOCK - All inputs and dependency notation affect the array elements directly. Common outputs are located in the control block. (Control blocks may be above or below the array elements.)

ARRAY ELEMENTS -All array elements are controlled by the control block as a function of the dependency notation. Any array element is independent of all other array elements. Unless indicated, the least significant element is always closest to the control block. The array elements are arranged by binary weight. The weights are indicated by powers of 2 (shown in []).

Table 8-4. Logic Symbology (Cont'd)
INPUTS - Inputs are located on the left side of the symbol and are affected by their dependency notation.
Common control inputs are located in the control block and control the inputs/outputs to the array elements according to the dependency notation

Inputs to the array elements are located with the corresponding array element with the least significant element closest to the control block.

OUTPUTS - Outputs are located on the right side of the symbol and are effected by their dependency notation. Common control outputs are located in the control block.

Outputs of array elements are located in the corresponding array element with the least significant bit closest to the control block.

CHIP FUNCTION - The labels for chip functions are defined, i.e., CTR - counter, MUX - multiplexer

DEPENDENCY NOTATION

Dependency notation is always read from left to right relative to the symbol's orientation.
Dependency notation indicates the relationship between inputs, outputs, or inputs and outputs. Signals having a common relationship will have a common number, i.e., $\mathrm{C7}$ and 7D....C7 controls D. Dependency notation $23.5+/ 1 \mathrm{C} 7$ is read as when 2 and 3 and 5 and 6 are true the input will cause the counter to increment by one count or (/) the input (C7) will control the loading of the input value (7D) into the D flip-flops.

The following types of dependencies are defined:
a. AND (G), OR (V), and Negate (N) denote Boolean relationship between inputs and outputs in any omb
b. Interconnection (Z) indicates connections inside the symbol.
c. Control (C) identifies a timing input or a clock input of a sequential element and indicates which inputs are controlled by it
d. Set (S) and Reset (R) specify the internal logic states (outputs) of an RS bistable element when the R or S input stands at its internal 1 state.
e. Enable (EN) identifies an enable input and indicates which inputs and outputs are controlled by it (which outputs can be in their high impedance state).
f. Mode (M) identifies an input that selects the mode of operation of an element and indicates the inputs and outputs depending on that mode
g. Address (A) identifies the address inputs.
h. Transmission (X) identifies bi-directional inputs and outputs that are connected together when the transmission input is true

ependency notation symbols

A	Address (selects inputs/outputs) (indicates binary range)	N	Negate (compliments state)
C	Control (permits action)	R	Reset Input
EN	Enable (permits action)	S	Set Input
G	AND (permits action)	V	OR (permits action)
M	Mode (selects action)	Z	Interconnection
		X	Transmission

LS-08-09-82-2

Table 8-4. Logic Symbology (Cont'd)

OTHER SYMBOLS

\bigcirc	Analog Signal	$\Delta \Delta$	Inversion		Shift Right (or down)
\&	AND	O	Negation	/	Solidus (allows an input or output to have more than one function)
$\}\{$	Bit Grouping	\cdots	Nonlogic Input/Output	∇	Tri-State
	Buffer	Δ	Open Circuit (external resistor)		
$!$	Compare	∇	Open Circuit (external resistor)	,	Causes notation and symbols to effect inputs/outputs in an AND relationship, and to occur in the order read from left to right.
	Dynamic	≥ 1	OR		
$=1$	Exclusive OR	$\bar{\nabla}$	Passive Pull Down (internal resistor)	()	Used for factoring terms using algebraic techniques.
T1	Hysteresis	θ	Passive Pull Up (internal resistor)		Information not defined.
$?$	Interrogation		Postponed	Φ	Logic symbol not defined due to complexity.
-	Internal Conne		Shift Left (or up)		

MATH FUNCTIONS

I.	Adder
ALU	Arithmetic Logic Unit
COMP	Comparator
DIV	Divide By
$=$	Equal To

$>$	Greater Than
$<$	Less Than
CPG	Look Ahead Carry Generntor
π	Multiplier
P-Q	Subtractor

CHIP FUNCTIONS

BCD	Binary Coded Decimal	DIR	Directional	RAM	Random Access Memory
BIN	Binary	DMUX	Demultiplexer	RCVR	Line Receiver
BUF	Buffer	FF	Flip-Flop	ROM	Read Only Memory
CTR	Counter	MUX	Multiplexer	SEG	Segment
DEC	Decimal	OCT	Octal	SRG	Shift Register

DELAY and MULTIVIBRATORS

$\Omega \Omega$	Astable
100 ns	Delay
\square	Nonretriggerable Monostable
NV	Nonvolatile
\square	Retriggerable Monostable

LS-08-09-82-3

8-146. MNEMONICS.
8-147. Signals in the 64941A flexible disc drive option have been assigned mnemonics that describe the active state and function of the signal (see table 8-4). A prefix letter ($\mathrm{H}, \mathrm{L}, \mathrm{P}$, or N) is used to indicate the active state of the signal and the remaining letters indicate its function A " H " prefix indicates that the function is active in the "high" state; a "L" prefix indicates that the function is active in the "low" state; a "P" prefix indicates the clock signal is active on the positive edge of the clock; a " N " indicates the clock is active on the negative edge of the clock. Table 8-5 is a listing of the mnemonics used on the service sheets.

Table 8-5. Mnemonics

MNEMONIC
DESCRIPTION

DSO-3 Drive Select 0 through 3.
When low, the drive is selected and will respond to step or read/write commands. This system uses DSO only.

HA 0-1 High Address 0-1.
These inputs in conjunction with the chip select and write inputs select between the status register, track register, sector register, data register and command registers internal to the Mini Disc Controller chip.

HBYTE 3 High Byte 3.
When true, this signal indicates that three consecutive bytes of zeros or ones have been received from the disc.

HBYTE $7 \quad$ High Byte 7.
When true, this signal indicates that seven consecutive bytes of zeros or ones have been received from the Flexible Disc Drive electronics.
hDATAIUS High Data 1 Microsecond.
This signal pulses true for 1 microsecond whenever a flux transition is detected from the disc drive.

HDIRC

HDMAEN
High Direction.
When high the heads are stepped out (away from center) and when low the heads are stepped in with each step pulse.

High DMA Enable.
This signal is set true by the CPU when it is ready for a DMA operation. This signal is set to the false state when the DMA operation is completed.

HDMARQ	High DMA Request. Signal from CPU Interface/DMA state machine that indicates that the Mini Disc Controller chip is requesting a DMA cycle.
HDRQ	High Data Request. When high, indicates that the Mini Disc Controller's data register is full, if a read operation is occurring, or empty during a write operation. This line is cleared when the CPU does a read or write to the data register.
HINHIBIT	High Inhibit. Signal in data separator circuitry which halts the vCO during a sink-up cycle. When this signal goes to the false state, the VCO is again started in phase with incoming data.
HMDCRQ	High Mini Disc Controller Request. HMDCRQ is a signal from Mini disc Controller chip which, when true, indicates that the Mini Disc Controller chip wishes to interrupt the CPU operation.
HR5,6	High Register 5, 6. When in the true state indicates that the CPU is communicating with the Mini Disc Controller via either register 5 or register 6 internal to the CPU. The state of the registers is determined by LIC1 and LIC2.
HRCLK	High Read Clock. Clock signal from data separator circuitry which is in phase with the LRAWRD signal.
HRG	High Read Gate. Signal from the Mini Disc Controller chip which indicates to the data separator circuitry that a field of zeros or ones has been encountered. When true, it does not allow the data separator to re-synchronize.
HSA D0-7	High Signature Analysis Data 0-7. These signals are the outputs of the SA stimulus latch. The lower byte of the LIOD ($0-7$) bus is used by the CPU to make the interface and data separator circuitry synchronous with the CPU.
HVCOE	High Voltage Control Oscillator Enable. Complement of LVCOE.

Table 8-5. Mnemonics (Cont'd)

MNEMONICS
DESCRIPTION

H2MHZC	High 2 MHz Clock. The inverted 2 MHz clock used to clock data from the output of the state machine.
LAO-2	Low Address 0-2. Address bits from CPU which are used to select the address of the Mini Disc Controller chip or other registers in which read and write operations are to occur.
LBEN	Low Buffer Enable. When low, this signal enables the drive status buffers and also resets the processor request flip-flop.
LCS	Low Chip Select. Input signal from the CPU which enables the Mini Disc Controller chip.
LCRMCO, 1	Low Clear Media Change 0, 1. These signals clear their respective media change flip-flops, and are controlled by the CPU.
LDAL 0-7	Low Data Access Lines 0-7 Bi directional lines that carry data and commands to and from the Mini Disc Controller chip, drive status register, etc.
LDMAAK	Low DMA Acknowledge. Signal to the CPU interface state machine which indicates that the DMA request from the Mini Disc Controller has been acknowledged.
LDMAEN	Low DMA Enable. Complement of HDMAEN.
LDMAI	Low Direct Memory Access Interrupt. An interrupt to the CPU when the MDC is requesting DMA and LDMAEN is not true.
LDMAR	Low Direct Memory Access Request. When low, indicates to the CPU that the MDC wants direct access to memory.
LDOUT	Low Data Out. Signal from CPU which indicates read or write operation on the I/O bus (Low $=$ Write). This is valid when LIOSB is low.

Table 8-5. Mnemonics (Cont'd)

LDRQ	Low Data Request. Complement of HDRQ .
LIC1-2	Low Interface Control 1 and 2. These lines can provide up to four states used to control peripheral devices. How these lines are controlled is determined by software.
LINT	Low Interrupt. The microprocessor pulls this line low to poll the Input/Output Bus to determine which peripheral device requested the interrupt.
LIODO-15	Low Input/Output Data 0 through 15. The LIOD bus is a bi-directional bus. The CPU uses this bus to communicate with I/O ports. Information is low true, and is used in conjunction with LPABO-3.
LIOSB	Low Input/Output Strobe. When this signal goes from low to high, the data on the $1 / 0$ bus is valid.
LIR3	Low Interrupt Request 3. Interrupt request from Mini Controller board to the interrupt circuitry on the I/O board that the mini controller is in need of service by the CPU.
LLL	Low Latch Least. Signal from CPU interface state machine which latches the least significant byte of data during a CPU read cycle.
LLM	Low Latch Most. Signal from CPU interface state machine which latches the most significant byte of data during a CPU read cycle.
LMDCI	Low Mini Disc Controller Chip Interrupt. Flag signal to CPU that indicates that the Mini Disc Controller chip is currently requesting an interrupt.
LMCIR	Low Media Change Interrupt Request. Interrupt signal from media change flip-flops indicating that media has been changed on the disc.
LMDCHGO,1	Low Media Change 0,1 . When low, the corresponding signal indicates that the media has been changed on the appropriate disc.

Table 8-5. Mnemonics (Cont'd)

MNEMONICS
DESCRIPTION

LMR	Low Master Reset. Input to the Mini Disc Controller chip, when true, resets internal status registers.
LMDCRQ	Low Mini Disc Controller Request. Complement of HMDCRQ.
LMYPA	Low My Peripheral Address. Goes low when the CPU is communicating with the mini drive circuitry. This signal is formed when Peripheral Address 4 is accessed by the CPU. Also, LMYPA is used as the clock during SA.
LNTRDYO,1	Low Not Ready 0,1 When true, these signals indicate that the corresponding disc drive is not ready, i.e, index pulses have dropped below a specified rate.
LOEL	Low Output Enable Lower. When true, this signal enables the least significant 8 bits of data to appear on the disc interface bus during a microprocessor write cycle.
LOEM	Low Output Enable Most. When true, this signal enables the 8 most significant bits to the disc interface bus during a microprocessor write cycle.
LPOP	Low Power On Pulse. This signal pulses low when power is cycled. When pulsed low, it will initialize and reset the CPU and mini drive control circuitry.
LPOPB	Low Power On Pulse Buffered. When low, resets drive and interface control latches.
LPAO-3	Low Peripheral Address 0 through 3. Identifies which one of the 16 peripheral devices will be involved in a I/O operation.
LPRQ	Low Processor Request. When true, this signal indicates that the CPU is requesting a cycle from the the CPU interface/DMA state machine.
LRAWRD	Low Raw Read. Signal which enables a read data cycle from the data separator circuitry and is in phase with HRCLK.

Table 8-5. Mnemonics (Cont'd)

MNEMONICS
DESCRIPTION

LR7	Low Register 7. When true, this signal indicates that the CPU is communicating on the I / O bus through register 7 .
LRDDATA	Low Read Data. When true, indicates to the data separation circuitry that a flux transition has occurred on the disc.
LRD	Low Read. When true, this signal indicates that the microprocessor is executing a read cycle from the Mini Disc Control circuitry through the data latches.
LRST	Low Reset. Signal from the microprocessor which resets the Mini Disc Controller circuits.
LRSTINT	Low Reset Interrupt. Signal from the microprocessor. When true, it resets the Mini Disc Controller chip interrupts and DMA interrupt request flip-flops.
LVCO	Low Voltage Control Oscillator. Low true output of VCO oscillator.
LVCOE	Low Voltage Control Oscillator Enable. Signal from Mini Disc Controller chip which is made true when the Mini Disc Controller is inspecting data coming from the disc. When true, enables data separator circuitry.
LWE	Low Write Enable. Signal to Mini Disc Controller chip which enables write circuitry in conjunction with Low Chip Select (LCS).
LWRT	Low Write. When true, corresponding signal indicates that the CPU is executing a write to the mini disc circuitry through the data latches.
LWRTSM	Low Write State Machine. Signal from microprocessor which indicates whether a read or write operation should be executed during the next CPU/DMA state machine interface cycle.
LWPRT0,1	Low Write Protect 0,1. When true, corresponding signal indicates that the disc installed in the disc drive is write protected. See Write Protect. Also, used to set corresponding media change flipflop.

Table 8-5. Mnemonics (Cont'd)

MNEMONICS
DESCRIPTION

LRE	Low Read Enable. Input to Mini Disc Controller chip which enables read circuitry in conjunction with Low Chip Select (LCS).
L2MHZ	Low 2 MHz.
	2 MHz signal derived from the 4 MHz oscillator circuit.

Table 8-5. Mnemonics (Cont'd)

SIDE ONE	A high logic level selects the side " 0 " read/write head and a low logic level selects the side " 1 " read/write head.		
SELECT		\quad	Pulses low to step the head in or out. Direction is controlled
:---			
by HDIRC.			

8-148. TROUBLESHOOTING HINTS.
8-149. The following are some things to check before troubleshooting the Mini Control board.
a. Make sure the clocks on U26 pin 11 and U41 pin 11 are clocking at 2 MHz .
b. Check that U36 pin 12 (LMYPA) is toggling. This indicates that the CPU is working and communicating with the Mini Disc Controller.
c. The CPU will not work at all if LIR3 or LDMAR are pulled low at the wrong time. $U 43$ may be removed to disable these signals.
d. To isolate a problem to a drive, swap the drive control cables (A9W1 and A10W1) and see if the symptom changes from one drive to the other.
e. If both drives fail, the problem is probably on the Mini Control board.
f. If the problem is on the Mini Control board (A11) and no bad signatures are found, and the data separator is good then check the signals that go between the Mini Disc Control (MDC U4) and the drives using diagnostic mode (DIAG).
g. Test STEP and RESTORE commands before a READ or WRITE to disc. These require that a lot less circuitry be functional.
h. The phase detector U19 locks the NEGATIVE transitions of "vCO Data" and "VCO OSC" together.
i. For a simple analysis, consider U12 to be an integrator.
j. Check that the VCO will lock to the 500 KHz reference record.

8-150. To completely check the Data Separator Circuitry perform the following checks in the order given:

1) Set-up SA loop K and check the following key signatures:
```
U11-1 7CA3
U11-2 7CA3
U11-6 55AP
U11-7 55AP
```

IF FAILURE - Use SA loop K to isolate problem.
2) Set-up SA loop L and check the following:
$\mathrm{VH}=72 \mathrm{~A} 2$
IF FAILURE - Check for 1uS pulses on U18 pins 11 and 13. If good then replace U18.

Waveform at TP1 is correct. (schematic 11C).
IF FAILURE - Check components in Intergrator and Phase Detector circuits. (schematic 11C)

Pulse width (low) at TP4 (U27A pin 4) is $1 u S+-50 n S$.
IF FAILURE - Check U27A, R20 and C33.

Pulse width (high) at U4 pin 27 is $170 \mathrm{nS}+-20 \mathrm{nS}$.
IF FAILURE - Check U27B, R21 and C34.
3) Return instrument to normal operating configuration and check for 2 MHz square wave (period $500 \mathrm{nS}+-25 \mathrm{nS}$) at U 29 B pin 13 and for 500 KHz square wave (period $2 \mathrm{uS}+-100 \mathrm{nS}$) at U17 pin 13.

IF FAILURE - Check oscillator circuit on schematic 11B.
4) Short TP1 to ground and check TP5 for a period of $1.9 \mathrm{uS}+-100 \mathrm{nS}$ with asymmetry less than 5% and $U 4$ pin 26 for 250 KHz square wave.

IF FAILURE - Check U31A,B, R10,11,22,23, C15 and C20.

8-151. The following are some specification that should be tested before troubleshooting.
a. 44 pin 24
b. U50 pins 5 and 13
c. U27 pin 13

U27 pin 12
d. U31 pin 4

U31 pin 13 with TP1 grounded
e. TP1 PLL locked to 500 KHz
reference reference
period $=2 u S+-100 \mathrm{nS}$
asymmetry of square wave $<=5 \%$
$1 \mathrm{MHz}+-1 \%$ square wave
$225 \mathrm{mS}<=\mathrm{PW}<=300 \mathrm{mS}$
$1 \mathrm{uS}+-50 \mathrm{nS}$
$150 \mathrm{nS}<=\mathrm{PW}<=190 \mathrm{nS}$
$+-2 V$ of ground

Table 8-6. SA Loop A

Table 8-6. SA Loop A (Cont'd)

U 25-1	$588 \mathrm{P}+$	U 32-11	H42F	U 37-8	H700 +	U 41-3 8H32
U 25-3	H700	U 32-12	2C8P	U 37-11	6624	U 41-4 U66C
U 25-5	H700	U 32-13	0000	U 37-13	$4 \mathrm{~F} 81+$	U 41-5 UC35
U 25-6	FHP9 +	U 32-14	0000	U 37-14	9P1H +	U 41-6 C6F7
U 25-7	059F	U 32-15	PAC6	U 37-17	C8H3 +	U 41-7 51A1
U 25-8	6UF8 +			U 37-18	9P1H +	U 41-8 9U2U
U 25-9	059F	U 33-1	0000			U 41-9 H180
U 25-11	CFCA +	U 33-2	2814	U 38-1	AHU4	U 41-11 0000
U 25-12	4F81	U 33-3	0000	U 38-2	059F	U 41-12 PU2A
		U 33-4	277U	U 38-5	059F	U 41-13 P27A
U 25-14	9P1H	U 33-5	3A65	U 38-6	H700	U 41-14 03C4
U 25-15	$2603+$	U 33-6	4FC1	U 38-9	H700	U 41-15 1UFH
U 25-16	C8H3	U 33-7	0000	U 38-11	PCP5	U 41-16 6624
U 25-18	9P1H	U 33-8	03U5	U 38-12	4F81	U 41-17 U067
U 25-19	588P +	U 33-9	0000	U 38-15	9P1H	U 41-18 67F7
		U 33-11	PCP5	U 38-16	C8H3	U 41-19 AHU4
U 26-1	0000	U 33-12	P810	U 38-17	79H8	
U 26-2	A199	U 33-13	PCP5			U 42-1 67F7
U 26-3	7U1F	U 33-14	A754	U 39-1	PCP5	U 42-2 U067
U 26-4	5U1F	U 33-15	H180	U 39-2	FHP6	U 42-3 03C4
U 26-5	3199	U 33-16	FF9A	U 39-3	H700 +	U 42-4 P27A
U 26-6	88FF	U 33-17	PCP5	U 39-4	H700 +	U 42-5 8H32
U 26-7	1199	U 33-18	F3U1	U 39-5	FHP6	U 42-6 U66C
U 26-8	12 HU	U 33-19	0000	U 39-6	260F	U 42-7 51A1
U 26-9	096U			U 39-7	9P1H +	U 42-9 9U2U
U 26-11	PCP5	U 34-1	F3U1	U 39-8	$4 \mathrm{~F} 81+$	U 42-10 2C8P
U 26-12	PAC6	U 34-2	0000	U 39-9	260F	U 42-11 H42F
U 26-13	P943	U 34-3	PCP5	U 39-10	0000	U 42-12 H50F
U 26-14	P57A	U 34-4	PCP5	U 39-11	CHHU	U 42-13 559F
U 26-15	6FAA	U 34-5	842H	U 39-12	FHP6	U 42-14 0000
U 26-16	PH4A	U 34-6	6UF8	U 39-13	059F +	U 42-15 0000
U 26-17	P6CC	U 34-7	CFCA	U 39-14	059F +	
U 26-18	C4PA	U 34-9	575U	U 39-15	FHP6	U 43-1 $3897+$
U 26-19	4462	U 34-10	PCP5	U 39-16	260F	U 43-2 000U +
		U 34-11	PCP5	U 39-17	C8H3 +	U 43-3 000U
U 28-1	P810	U 34-12	0000	U 39-18	9P1H +	U 43-8 PCP5 +
U 28-2	FF9A	U 34-13	10H0	U 39-19	260F	U 43-9 PCP5
U 28-3	FF9A	U 34-14	19A1			U 43-10 PCP5
U 28-4	277U	U 34-15	19A1	U 40-1	080F	
U 28-5	277 U			U 40-2	260F	U 44-1 CFCA +
U 28-6	PCP5	U 35-1	559F	U 40-3	H700	U 44-2 6UF8 +
U 28-7	03U5	U 35-2	PCP5	U 40-4	260F	U 44-3 H372
U 28-9	277U	U 35-3	FUU2	U 40-5	H700	U 44-4 H372
U 28-10	FF9A	U 35-4	CU94	U 40-6	260F	U 44-5 H372
U 28-11	PCP5	U 35-5	PCP5	U 40-7	059F	U 44-63897
U 28-12	248A	U 35-6	2922	U 40-8	260F	
U 28-13	FF9A	U 35-7	5944	U 40-9	059F	U 45-1 A754
U 28-14	0000	U 35-9	CH09	U 40-11	FHP6	U 45-2 277U
U 28-15	0000	U 35-10	7316	U 40-12	4F81	U 45-3 277U
		U 35-11	0000	U 40-13	FHP6	U 45-4 PCP5
U 32-1	A199	U 35-12	5F17	U 40-14	9P1H	U 45-5 0000
U 32-2	4462	U 35-13	6PH0	U 40-15	FHP6	U 45-6 03U5
U 32-3	PH4A	U 35-14	C215	U 40-16	C8H3	U 45-7 PCP5
U 32-4	6FAA	U 35-15	0000	U 40-17	FHP6	U 45-9 PCP5
U 32-5	3199			U 40-18	9P1H	U 45-10 248A
U 32-6	88FF	U 37-1	PCP5	U 40-19	080F	U 45-11 0000
U 32-7	096U	U 37-3	059F +			U 45-12 PCP5
U 32-9	559 F	U 37-4	059F +	U 41-1	0000	U 45-13 0000
U 32-10	H50F	U 37-7	H700 +	U 41-2	588P	U 45-14 248A

Table 8-6. SA Loop A (Cont'd)
$\left.\begin{array}{|lllllll|}\hline \mathrm{U} 45-15 & \text { PCP5 } & \mathrm{U} 49-4 & \text { FHP6 } & \mathrm{U} 49-13 & 000 \mathrm{U} & \mathrm{U} 51-8 \\ & & \mathrm{U} 49-5 & 2603 & & & \mathrm{U} 51-9 \\ \text { PCP5 }\end{array}\right]$

Table 8-7. SA Loop B.

Table 8-8. SA Loop M

Table 8-9. SA Loop C

```
INTERFACE LOOP-C
PC BOARD: 64941-66501 Floppy Control
CIRCUITRY TESTED: I/O bus decoding
PROCEDURE: Remove U25 mode buffer (U25 can be tested by exchanging with U40). Remove all option boards.
    Move E2 TEST jumper to interface TEST position in XU15. Press DSA 1 soft key to initiate test.
SETUP: CLOCK - pos. edge TP1 I/O board (LIOSB)
    START - pos. edge TP2 I/O board (I/O SA LATCH)
    STOP - neg. edge TP2 I/O board (I/O SA LATCH)
    VH - 9CCH
    + - KEY SIGNATURE
```


Table 8-10. SA Loop D

INTERFACE LOOP-D
PC BOARD: 64941-66501 Floppy Control
CIRCUITRY TESTED: Data written to floppy drives
PURPOSE: Remove U25 mode buffer (U25 can be tested by exchanging with U40). Remove all option boards. Move E2 TEST jumper to interface TEST position in XU15. Press DSA 1 soft key to initiate test.

SETUP: CLOCK - pos. edge TP14 LWRT
START - pos. edge TP2 I/O board (I/O SA LATCH)
STOP - neg. edge TP2 I/O board (I/O SA LATCH)
VH - 399F

+ - KEY SIGNATURE

U 4-19	6 C 35	+	U 22-16	U834	$+$	U 34-14	6651	+
			U 22-19	52PF	$+$	U 34-15	6651	+
U 6-5	0A66	$+$						
U 6-9	0A66	$+$	U 23-3	C4F8	$+$			
			U 23-4	98F4	+			
U 9-12	33UA		U 23-7	71P3	+	U 35-3	9064	$+$
			U 23-8	606H	+	U 35-6	086P	$+$
U 10-3	5613	$+$	U 23-13	HA15	+	U 35-10	19P9	$+$
U 10-8	33UA	+	U 23-14	U74A	+	U 35-13	H45F	$+$
U 10-9	0A66	$+$	U 23-17	U834	$+$	U 35-14	5U64	+
U 10-10	6U8U	+	U 23-18	52PF	$+$			
U 10-11	5613	+				U 37-2	46CA	$+$
U 10-12	U74A	$+$	U 24-2	5U64		U 37-5	46CA	$+$
			U 24-3	C4F8		U 37-6	1443	$+$
U 14-3	1443	+	U 24-4	98F4		U 37-9	1443	+
U 14-4	1443	+	U 24-5	6C35		U 37-12	7 C 48	+
U 14-7	46CA	+	U 24-6	19P9		U 37-15	29 C 1	+
U 14-8	46CA	$+$	U 24-7	71P3		U 37-16	29U0	+
U 14-13	7 C 48	$+$	U 24-8	606H		U 37-19	29 C 1	+
U 14-14	29 C 1	+	U 24-9	9064				
U 14-17	29U0	+	U 24-11	5613		U 38-3	46CA	$+$
U 14-18	29C1	$+$	U 24-12	6651		U 38-4	46CA	$+$
			U 24-13	HA15		U 38-7	1443	$+$
U 22-2	C4F8	+	U 24-14	U74A		U 38-8	1443	+
U 22-5	98F4	+	U 24-15	U7UC		U 38-13	7 C 48	$+$
U 22-6	71P3	+	U 24-16	H45F		U 38-14	29 C 1	+
U 22-9	606H	+	U 24-17	U834		U 38-17	29U0	+
U 22-12	HA15	+	U 24-18	52PF		U 38-18	29C1	+
U 22-15	U74A	+						

Table 8-11. SA Loop E

INTERFACE LOOP-E					
PC BOARD: 64941-66501 Floppy Control					
CIRCUITRY TESTED: Floppy read latches					
PROCEDURE: R	Remove U25 mode buffer (U25 can be tested by exchanging with U40). Remove all option boards. Move E2 TEST jumper to interface TEST position in XU15. Press DSA 1 soft key to initiate test.				
SETUP: $\begin{array}{ll} & \text { CL } \\ & \text { S } \\ & \mathrm{SH} \\ & +\end{array}$	CLOCK - pos. edge TP10 (LRD)				
	START - neg. edge TP6 (SA GATE)				
	+ - KEY SIGNATURE				
U 22-2 2003	U 23-3	$0003+$	U 37-2 0002	U 38-3	
U 22-5 0003	U 23-4	$0003+$	U 37-5 0002	U 38-4	0002
U 22-6 6003	U 23-7	$0003+$	U 37-6 0002	U 38-7	
U 22-9 0003	U 23-8	$0003+$	U 37-9 0002	U 38-8	
U 22-12 0003	U 23-13	$0003+$	U 37-12 0001	U 38-13	0001
U 22-15 0003	U 23-14	$0003+$	U 37-15 0001	U 38-14	
U 22-16 0003	U 23-17	$0003+$	U 37-16 0001	U 38-17	0001
U 22-19 0003	U 23-18	$0003+$	U 37-19 0001	U 38-18	0001

Table 8-12. SA Loop F

INTERFACE LOOP-F
 PC BOARD: 64941-66501 Floppy Control
 CIRCUITRY TESTED: Data out of U23

PROCEDURE: Remove U25 mode buffer (U25 can be tested by exchanging with U40). Remove all option boards. Move E2 TEST jumper to interface TEST position in XU15. Press DSA 1 soft key to initiate test.

SETUP: CLOCK - pos. edge TP13 (LOEM)
START - neg. edge TP6 (SA GATE)
STOP - pos. edge TP6 (SA GATE)
VH - 0003

+ - KEY SIGNATURE

U 4-7	0002	+	U 23-2	0002	U 39-7	0002	+
U 4-8	0002	+	U 23-5	0002	U 39-8	0002	+
U 4-9	0002	+	U 23-6	0002	U 39-13	0002	+
U 4-10	0002	+	U 23-9	0002	U 39-14	0002	+
U 4-11	0002	+	U 23-12	0002	U 39-17	0002	+
U 4-12	0002	+	U 23-15	0002	U 39-18	0002	+

U 4-13 $0002+\quad$ U 23-16 0002
U 4-14 $0002+$
U 23-19 0002

U 23-2 0002
0002

U 23- 9
U 23-12 0002

Table 8-13. SA Loop G

INTERFACE LOOP-G

PC BOARD: 64941-66501 Floppy Control
CIRCUITRY TESTED: Data from U38
PROCEDURE: Remove U25 mode buffer (U25 can be tested by exchanging with U40). Remove all option boards. Move E2 TEST jumper to interface TEST position in XU15. Press DSA 1 soft key to initiate test.

SETUP: CLOCK - pos. edge TP11 BY U41 (LOEL)
START - neg. edge TP6 (SA GATE)
STOP - pos. edge TP6 (SA GATE)
VH - 0UP7

+ - KEY SIGNATURE

U 4-7	0A2H	+	U 38-6	0A2H	U 39-3	0A2H	$+$
U 4-8	0F24	$+$	U 38-9	0A2H	U 39-4	0A2H	$+$
U 4-9	0A2H	+	U 38-12	0408	U 39-7	0F24	+
U 4-10	0F14	$+$	U 38-15	0F24	U 39-8	0408	+
U 4-11	0201	+	U 38-16	0F14	U 39-13	0201	+
U 4-12	0F24	$+$	U 38-19	0F24	U 39-14	0201	+
U 4-13	0201	+			U 39-17	0F14	+
U 4-14	0408	+			U 39-18	0F24	$+$

Table 8-14. SA Loop H

INTERFACE LOOP-H

PC BOARD: 64941-66501 Floppy Control
CIRCUITRY TESTED: Data from U40
PROCEDURE: Remove U25 mode buffer (U25 can be tested by exchanging with U40). Remove all option boards. Move E2 TEST jumper to interface TEST position in XU15. Press DSA 1 soft key to initiate test.

SETUP:
CLOCK - pos. edge TP8
START - neg. edge TP6 (SA GATE)
STOP - pos. edge TP6 (SA GATE)
VH - 0003

+ - KEY SIGNATURE

Table 8-15. SA Loop I

Table 8-16. SA Loop J

INTERFACE LOOP-J				
PC BOARD: 64941-66501 Floppy Control				
CIRCUITRY TESTED: Data from floppy controller (LSB) and data from mode buffer U40.				
PROCEDURE:		25 can be tested by terface TEST positi	with U4 Press D). Rem A 1 so
SETUP:	$\begin{aligned} & \text { CLOCK - pos. edge U37-PIN } 11 \text { (LLL) } \\ & \text { START - neg. edge TP6 (SA GATE) } \\ & \text { STOP - pos. edge TP6 (SA GATE) } \\ & \text { VH - 001U } \\ & +- \text { KEY SIGNATURE } \end{aligned}$			
	U 4-7 000A	U 37-7 000A +	U 40-1	001F
	U 4-8 0011	U 37-8 000A +	U 40-3	000A
	U 4-9 000A	U 37-13 $0011+$	U 40-5	000A
	U 4-10 0011	U 37-14 $0011+$	U 40-7	000A
	U 4-11 000A	U 37-15 001U +	U 40-9	000A
	U 4-12 0011	U 37-16 001U +	U 40-12	0011
	U 4-13 000A	U 37-17 $0011+$	U 40-14	0011
	U 4-14 0011	U 37-18 $0011+$	U 40-16	0011
			U 40-18	0011
			U 40-19	001F

DATA SEPARATOR LOOP-K

PC BOARD: 64941-66501 Floppy Control
CIRCUITRY TESTED: Data separator circuitry
PROCEDURE: Remove all option boards. Move E1 TEST jumper to separator TEST position in XU7. Press DSA 2 soft key to initiate test.

SETUP: CLOCK - pos. edge TP9 (LMYPA)
START - neg. edge U14-PIN 15 (SA GATE HDSA5 TP3)
STOP - pos. edge U14-PIN 15 (SA GATE HDSA5 TP3)
VH - HCH5

+ - KEY SIGNATURE

U 7-1	5944	U 18-1	0000
U 7-2	5U2F	U 18-2	P733
U 7-3	8P80	U 18-3	5A44
U 7-4	CAHF	U 18-4	0000
U 7-5	5A44	U 18-5	4H3A
U 7-6	0000	U 18-6	4H3A
		U 18-7	4FA6
U 11-1	7CA3 +	U 18-9	4U2F
U 11-2	7CA3 +	U 18-10	H015
U 11-6	$55 \mathrm{AP}+$	U 18-11	0000
U 11-7	55AP	U 18-12	0000
		U 18-13	0000
U 14-1	5690	U 18-14	5C86
U 14-2	5944	U 18-15	0000
U 14-3	HPU6		
U 14-4	27PU	U 19-1	4FA6
U 14-5	8P80	U 19-2	0000
U 14-6	5A44	U 19-3	HCH5
U 14-7	H8U7	U 19-4	HCH5
U 14-8	64A3	U 19-5	7CA3
U 14-9	846P	U 19-7	55AP
U 14-11	0000	U 19-10	HCH5
U 14-12	C107	U 19-11	HCH5
U 14-13	OP71	U 19-12	0000
U 14-14	5691	U 19-13	4U2F
U 14-15	0000	U 19-14	4FA6
U 14-16	CAHF	U 19-15	4U2F
U 14-17	19F6		
U 14-18	P8F9	U 20-1	H015
U 14-19	5U2F	U 20-2	0000
		U 20-3	0HA5
U 17-1	5A44	U 20-4	165A
U 17-2	HCH5	U 20-5	2P64
U 17-3	383P	U 20-6	383P
U 17-5	4H3A	U 20-9	6P1C
U 17-9	H015	U 20-10	HCH5
U 17-11	383P	U 20-11	2P64
U 17-12	HCH5	U 20-12	0000
U 17-13	CAHF	U 20-13	0000
		U 20-14	0HA5
		U 20-15	5623

U 21-1	0000	U 33-4	0000
U 21-2	0000	U 33-6	0000
U 21-3	6P1C	U 33-8	5690
U 21-4	HCH5	U 33-12	8 H 45
U 21-5	5C86	U 33-14	HCH5
U 21-6	8053	U 33-16	HCH5
U 21-11	5944		
U 21-15	0HA5	U 43-4	CH11
		U 43-5	82F8
U 24-4	UUCF	U 43-6	82A4
U 24-5	165A	U 43-11	5623
U 24-11	8H45	U 43-12	8053
		U 43-13	0HA5
U 27-4	HCH5		
U 27-10	HCH5	U 44-8	0000
U 27-11	5944	U 44-9	HCH5
U 27-12	HCH5	U 44-10	HCH5
U 27-13	0000	U 44-11	HCH5
		U 44-12	0000
U 28-1	8H45	U 44-13	0000
U 28-12	5690		
U 28-13	HCH5	U 45-1	HCH5
		U 45-5	0000
U 29-1	HCH 5	U 45-6	5690
U 29-2	82A4	U 45-7	8H45
U 29-6	488C	U 45-9	8H45
U 29-8	82F8	U 45-10	5690
U 29-10	CH11	U 45-12	HCH5
U 29-12	0000	U 45-14	5690
U 29-13	0000	U 45-15	0000
U 30-1	HCH5	U 46-1	82A4
U 30-2	HCH5	U 46-2	84U9
U 30-4	0HA5	U 46-3	F82F
U 30-6	P733	U 46-11	84U9
U 30-8	488C	U 46-12	5U2F
U 30-9	F82F	U 46-13	HCH5

Table 8-18. SA Loop L

DATA SEPARATOR LOOP-L
PC BOARD: 64941-66501 Floppy Control
CIRCIUTRY TESTED: U18 multiplexer
PROCEIURE: multiplexer to make sure itis multiplexingt the H HATAIUS Signal properly. There are no signature
nodes for this loop just verify that $V H$ is correct. Press ISA 2 soft key to initiate test. CLIOCK - pos. edge U18-PIN 9
START - pos. edge U21-PIN 11

Rel los	Hp Parat No.	${ }_{\text {mir rat }}$
${ }^{\text {U6 }}$		
\% 410		
U33		
,		cill
${ }_{4}^{462}$		

正

Rell Pes	HP Parn No .	${ }_{\text {Mir rat }}$
${ }_{11}$	${ }^{1820.190}$	${ }^{74} 4$ Sty
${ }_{\text {U3, }}^{13}$	coin	
		24in2
cis		coill
Sedt		
cis	coile	
${ }_{\substack{\text { und } \\ \text { uid }}}$		${ }^{24514}$

pewis configivaroon
 $\stackrel{\nabla}{\nabla}$

				寿		

css on thils schenatic

Refoes	${ }_{\text {Hp Par }} \mathrm{No}$	Mrf Par No.
${ }^{411}$		
(il		
cin		
(ise		
	$\xrightarrow[\substack{1820,197 \\ 1820687}]{ }$	

Ponef courgicuaranos

Foindex

Figure 8-16. Component Locator for Service Sheet 2

Product Line Sales/Support Key
Key Product Line
A Analytical
CM Components
C Computer Systems Sales only
CH Computer Systems Hardware Sales and Services
CS Computer Systems Software Sales and Services
E Electroni Instruments \& Measurement Systems
M
Pedical Products
P Personal Computation Products

* Sales only for specific product line
* Support only for specific product line

IMPORTANT:These symbols designate general product line capability.They do not insure sales or support availability for all products within a line, at all locations.Contact your local sales office for intormation regarding locations where HP support is available for specific products.

HP distributors are printed in italics.

HEADQUARTERS OFFICES

If there is no sales office listed for your area, contact one of these headquarters offices.

AFRICA AND

MIDDLE EAST
Hewlett-Packard S.A.
Mediterranean and Middle East
Operations
Atrina Centre
32 Kifissias Ave.
Paradissos-Amarousion, ATHENS
Greece
Tel: 6828811
Telex: 21-6588 HPAT GR
Cable: HEWPACKSA Athens
NORTH/CENTRAL AFRICA
Hewlett-Packard S.A.
7, Rue du Bois-du-Lan
CH-1217 MEYRIN 2, Switzerland
Tel: (022) 831212
Telex: 27835 hpse
Cable: HEWPACKSA Geneve

ASIA

Hewlett-Packard Asia Ltd.
47/F, 26 Harbour Rd.,
Wanchai, HONG KONG
G.P.O. Box 863, Hong Kong

Tel: 5-8330833
Telex: 76793 HPA HX
Cable: HPASIAL TD
CANADA
Hewlett-Packard (Canada) Ltd.
6877 Goreway Drive
MISSISSAUGA, Ontario L4V 1M8
Tel: (416) 678-9430
Telex: 610-492-4246

EASTERN EUROPE

Hewlett-Packard Ges.m.b.h.
Lieblgasse 1
P.O.Box 72

A- 1222 VIENNA, Austria
Tel: (222) 2365110
Telex: 134425 HEPA A

NORTHERN EUROPE

Hewlett-Packard S.A.
Uilenstede 475
P.O.Box 999

NL-1180 AZ AMSTELVEEN
The Netherlands
Tel: 20437771

SOUTH EAST EUROPE
Hewlett-Packard S.A.
World Trade Center
110 Avenue Louis Caro
1215 Cointrin, GENEVA, Switzerland
Tel: (022) 989651
Telex: 27225 hpse.
EASTERN USA
Hewlett-Packard Co. 4 Choke Cherry Road
ROCKVILLE, MD 20850
Tel: (301) 258-2000
MIDWESTERN USA
Hewlett-Packard Co.
5201 Tollview Drive
ROLLING MEADOWS, IL 60008
Tel: (312) 255-9800
SOUTHERN USA
Hewlett-Packard Co.
2000 South Park Place
P.O. Box 105005

ATLANTA, GA 30348
Tel: (404) 955-1500
WESTERN USA
Hewlett-Packard Co. 3939 Lankershim Blvd. P.O. Box 3919

LOS ANGELES, CA 91604
Tel: (213) 506-3700

OTHER INTERNATIONAL

AREAS

Hewlett-Packard Co. Intercontinental Headquarters
3495 Deer Creek Road PALO ALTO, CA 94304
Tel: (415) 857-1501
Telex: 034-8300
Cable: HEWPACK

ANGOLA	
Empresa TAEcnica de Equipamentos	
	R. Barbosa Rodrigues, 41-I DT.
Caixa Postal 6487	
LUANDA	
Tel: 35515,35516	
E,P	
	ARGENTINA
Hewlett-Packard Argentina S.A.	
Avenida Santa Fe 2035	
Martinez 1640 BUENOS AIRES	
Tel: 798-5735, 792-1293	
Cable: HEWPACKARG	
A,E,CH,CS,P	
AUSTRALIA	
ide, South A	
Office	
Hewlett-Packard Australia Ltd. 153 Greenhill Road	
PARKSIDE, S.A. 5063	
Tel: 272-5911	
Telex: 82536	
Cable: HEWPARD Adelaide	
A*,CH,CM,CS,E,M,P	
Brisbane, Queensland	
Hewlett-Packard Australia Ltd.	
10 Payne Road	
THE GAP, Queensland 4061	
Tel: 30-4133	
Telex: 42133	
Cable: HEWPARD Brisbane	
A,CH,CS,CM,E,M,P	
Canberra, Australia	
Capital Territory	
Office	
Hewlett-Packard Australia Ltd.	
121 Wollongong Street	
FYSHWICK, A.C.T. 2609	
Tel: 804244	
Telex: 62650	
Cable: HEWPARD Canberra	
C,CH,CM,CS,E,P	
Melbourne, Victoria	
Office	
Hewlett-Packard Australia Ltd.	
31-41 Joseph Street	
BLACKBURN, Victoria 3130	
Tel: 895-2895	
Telex: 31-024	
Cable: HEWPARD Melbourne A,CH,CM,CS,E,M,P	
Perth, Western Australia	
Office	
Hewlett-Packard Australia Ltd.	
261 Stirling Highway	
CLAREMONT, W.A. 6010	
Tel: 383-2188	
Telex: 93859	
Cable: HEWPARD Perth	
	A,CH,CM,CS,E,M,P

ANGOLA
Empresa TAEcnica de Equipamentos
R. Barbosa Rodrigues, 41-IDT.

Caixa Postal 6487
LUANDA
Tel: 35515,35516
E,P
ARGENTINA
Avenida Santa Fe 2035
Martinez 1640 BUENOS AIRES
798-5735, 792-1293
Cable: HEWPACKARG
A,E,CH,CS,P
USTRALIA
Adelaide, South Australia
Hewlett-Packard Australia Ltd.
153 Greenhill Road
PARKSIDE, S.A. 5063
Tel: 272 -5911

Cable: HEWPARD Adelaide

Brisbane, Queensland

Hewlett-Packard Australia Ltd.
10 Payne Road
THE GAP, Queensland 4061
Tel: 30-4133
elex: 42133
A,CH,CS,CM,E,M,P
Canberra, Australia
Capital Territory
Office
Hewlett-Packard Australia Ltd.
121 Wollongong Street
FYSHWICK, A.C.T. 2609
Tel: 804244
Telex: 62650
Cable:HEWPARD Canba

Melbourne, Victoria
Office
tt-Packard Austraila Ltd.
1-41 Joseph Street

Tel: 895-2895
Telex: 31-024
ble: HEWPARD Melbourne

Perth, Western Australia
Office

261 Stirling Highway
CLAREMONT, W.A. 6010
Tel: 383-2 188
Telex: 93859
NPARD Perth
A,CH,CM,CS,E,M,P

Sydney, New South Wales Office
Hewlett-Packard Australia Ltd
17-23 Talavera Road
P.O. Box 308

NORTH RYDE, N.S.W. 2113
Tel: 888-4444
Telex: 21561
Cable: HEWPARD Sydney
A,CH,CM,CS,E,M,P

AUSTRIA

Hewlett-Packard Ges.m.b.h
Grottenhofstrasse 94
A-8052 GRAZ
Tel: (0316) 291566
Telex: 32375
CH,E
Hewlett-Packard Ges.m.b.h.
Lieblgasse 1
P.O. Box 72

A-1222 VIENNA
Tel: (0222) 2365 11-0
Telex: 134425 HEPA A
A,CH,CM,CS,E,M,P
BAHRAIN
Green Salon
P.O. Box 557

Manama
BAHRAIN
Tel: 255503-255950
Telex: 84419
P
Wael Pharmacy
P.O. Box 648

BAHRAIN
Tel: 256123
Telex: 8550 WAEL BN
E,M
BELGIUM
Hewlett-Packard Belgium S.A./N.V.
Blvd de la Woluwe, 100
Woluwedal
B-1200 BRUSSELS
Tel: (02) 762-32-00
Telex: 23-494 paloben bru
A,CH,CM,CS,E,M,P

BERMUDA

Applied Computer Technologies
Atlantic House Building
Par-La-Ville Road
Hamilton 5
Tel: 295-1616
P
BRAZIL
Hewlett-Packard do Brasil
I.e.C. Ltda.

Alameda Rio Negro, 750
Alphaville
06400 BARUERI SP
Tel: (011) 421.1311
Telex: (011) 33872 HPBR-BR
Cable: HEWPACK Sao Paulo
A,CH,CM,CS,E,M,P

SALES \& SUPPORT OFFICES

Arranged alphabetically by country

BRAZIL (Cont'd)
Hewlett-Packard do Brasil
I.e.C. Ltda.

Avenida Epitacio Pessoa, 4664
22471 RIO DE JANEIRO-RJ
Tel: (021) 286.0237
Telex: 021-2 1905 HPBR-BR
Cable: HEWPACK Rio de Janeiro
A,CH,CM,E,M, P*
Convex/Van Den
Rua Jose Bonifacio
458 Todos Os Santos
CEP 20771
RIO DE JANEIRO, RJ
Tel: 249-7121, 591-4946
Telex: 33487
ANAMED I.C.E.I. Ltda.
Rua Bage, 103
04012 SAO PAULO
Tel: (011) 570-5726
Telex: 021-2 1905 HPBR-BR
M

CANADA

Alberta

Hewlett-Packard (Canada) Ltd.
3030 3rd Avenue N.E.
CALGARY, Alberta T2A 6 T7
Tel: (403) 235-3100
A,CH,CM, ${ }^{*}, M, P^{*}$
Hewlett-Packard (Canada) Ltd.
11120-178th Street
EDMONTON, Alberta T5S 1P2
Tel: (403) 486-6666
A,CH,CM,CS,E,M,P

British Columbia

Hewlett-Packard (Canada) Ltd.
10691 Shellbridge Way
RICHMOND,
British Columbia V6X 2W7
Tel: (604) 270-2277
Telex: 610-922-5059
A,CH,CM,CS, ${ }^{*}, \mathrm{M}, \mathrm{P}^{*}$
Hewlett-Packard (Canada) Ltd.
121-3350 Douglas Street
VICTORIA, British Columbia V8Z 3L1
Tel: (604) 381-6616
CH, CS

Manitoba

Hewlett-Packard (Canada) Ltd.
1825 Inkster Blvd.
WINNIPEG, Manitoba R3H OY1
Tel: (204) 786-6701
A,CH,CM,E,M,P*

New Brunswick

Hewlett-Packard (Canada) Ltd.
37 Shediac Road
MONCTON, New Brunswick E1A 2R6
Tel: (506) 855-2841
CH,CS

Nova Scotia

Hewlett-Packard (Canada) Ltd.
Suite 111
900 Windmill Road
DARTMOUTH, Nova Scotia B2Y 3Z6
Tel: (902) 469-7820
CH,CM,CS,E*,M, ${ }^{*}$

Ontario
Hewlett-Packard (Canada) Ltd.
3325 N. Service Rd., Unit 6
BURLINGTON, Ontario P3A 2A3
Tel: (416) 335-8644
CS, M*
Hewlett-Packard (Canada) Ltd.
496 Days Road
KINGSTON, Ontario K7M 5R4
Tel: (613) 384-2088
CH,CS
Hewlett-Packard (Canada) Ltd.
552 Newbold Street
LONDON, Ontario N6E $2 S 5$
Tel: (519) 686-9181
$\mathrm{A}, \mathrm{CH}, \mathrm{CM}, \mathrm{E}^{*}, \mathrm{M}, \mathrm{P}^{*}$
Hewlett-Packard (Canada) Ltd.
6877 Goreway Drive
MISSISSAUGA, Ontario L4V 1M8
Tel: (416) 678-9430
A,CH,CM,CS,E,M,P
Hewlett-Packard (Canada) Ltd.
2670 Queensview Dr.
OTTAWA, Ontario K2B 8K1
Tel: (613) 820-6483
$\mathrm{A}, \mathrm{CH}, \mathrm{CM}, \mathrm{CS}, \mathrm{E}^{*}, \mathrm{MS}, \mathrm{P}^{*}$
Hewlett-Packard (Canada) Ltd.
1855 Lasalle Boulevard
SUDBURY, Ontario, P3A 2A3
Tel: (705) 560-5450
CH
Hewlett-Packard (Canada) Ltd.
220 Yorkland Blvd. Unit \#11
WILLOWDALE, Ontario M2J 1R5
Tel: (416) 499-9333
CH

Quebec

Hewlett-Packard (Canada) Ltd.
17500 South Service Road
Trans-Canada Highway
KIRKLAND, Quebec H9J 2M5
Tel: (514) 697-4232
A,CH,CM,CS,E,M,P*
Hewlett-Packard (Canada) Ltd.
1150 Rue Claire Fontaine
QUEBEC CITY, Quebec G1R 5 G4
Tel: (418) 648-0726
CH, CS
Hewlett-Packard (Canada) Ltd.
\#7-130 Robin Crescent
SASKATOON, Saskatchewan S7L 6M7
Tel: (306) 242-3702
CH,CS

CHILE

ASC Ltda.
Austria 2041
SANTIAGO
Tel: 223-5946, 223-6148
Telex: 340192 ASC CK
P, C
Jorge Calcagni y Cia. Ltda.
Av. Italia 634 Santiago
Casilla 16475
SANTIAGO 9
Tel: 222-0222
Telex: 440283 JCYCL CZ
CM,E,M

Metrolab S.A.
Monjitas 454 of. 206

SANTIAGO

Tel: 395752, 398296
Telex: 340866 METLAB CK
A
Olympia (Chile) Ltda.
Av. Rodrigo de Araya 1045
Casilla 256-V
SANTIAGO 21
Tel: 225-5044
Telex: 340892 OLYMP
Cable: Olympiachile Santiagochile CH,CS,P

CHINA, People's
Republic of
China Hewlett-Packard Co., Ltd.
6th Floor, Sun Hung Kai Centre
30 Harbour Road
HONG KONG
Tel: 5-8323211
Telex: 36678 HEWPA HX
A,C,CH,CS,E,M,P
China Hewlett-Packard Rep. Office
P.O. Box 418

1 A Lane 2, Luchang St.
Beiwei Rd., Xuanwu District

BEIJNG

Tel: 33-1947, 33-7426
Telex: 22601 CTSHP CN
Cable: 1920
A,CH,CM,CS,E,P
COLOMBIA
InstrumentaciAOn
H. A. Langebaek \& Kier S.A.

Carrera 4A No. 52A-26
Apartado Aereo 6287
bogota 1, D.E.
Tel: 212-1466
Telex: 44400 INST CO
Cable: AARIS Bogota
CM, E,M
Nefromedicas Ltda.
Calle 123 No. 9B-31
Apartado Aereo 100-958
BOGOTA D.E., 10
Tel: 213-5267, 213-1615
Telex: 43415 HEGAS CO

A

Procesa, S.A.
CRA 7 No. 24-89 Piso 25
Torre Colpatria
Apartado Aereo No. 49667
BOGOTA D.E.
Tel: 2344925, 2344958, 2344742
Telex: 43127 COVER CO
C,P
Compumundo
Avenida 15\# 107-80
BOGOTA D.E.
Tel: 214-4458
Telex: 45466 MARICO
P

COSTA RICA
Cientifica Costarricense S.A.
Avenida 2, Calle 5
San Pedro de Montes de Oca
Apartado 10159
SAN JOSE
Tel: 24-38-20, 24-08-19
Telex: 2367 GALGUR CR
CM,E,M
CYPRUS
Telerexa Ltd.
P.O. Box 4809

14C Stassinos Avenue
NICOSIA
Tel: 62698
Telex: 2894 LEVIDO CY

E,M,P

DENMARK

Hewlett-Packard A/S
Datavej 52
DK-3460 BIRKEROD
Tel: (02) 81-66-40
Telex: 37409 hpas dk
A,CH,CM,CS,E,M,P
Hewlett-Packard A/S
Rolighedsvej 32
DK-8240 RISSKOV, Aarhus
Tel: (06) 17-60-00
Telex: 37409 hpas dk
CH,E
DOMINICAN REPUBLIC
Microprog S.A.
Juan Tomás Mejia y Cotes No. 60
Arroyo Hondo
SANTO DOMINGO
Tel: 565-6268
Telex: 4510 ARENTA DR (RCA)
P
ECUADOR
CYEDE Cia. Ltda.
Avenida Eloy Alfaro 1749
y Belgica
Casilla 6423 CCI
QUITO
Tel: 450-975, 243-052
Telex: 2548 CYEDE ED
CM,E,P
Hospitalar S.A.
Robles 625
Casilla 3590
QUITO
Tel: 545-250, 545-122
Telex: 2485 HOSPTL ED
Cable: HOSPITALAR-Quito
M
Quito
Tel: 2-238-951
Telex: 2298 ECUAME ED

EGYPT

Egyptian International
Office for Foreign Trade
P.O. Box 2558

42 E-Zahraa Street
Dokki, CAIRO,
Tel: 712230
Telex: 93337 EGPOR UN
Cable: EGYPOR
P,A

EGYPT (Cont'd)	Hewlett-Packard France	Hewlett-Packard France	Hewlett-Packard GmbH
INFORMATIC FOR SYSTEMS	Boite Postale 503	Paris Porte-Maillot	Geschäftsstelle
22 Talaat Harb Street	F-25026 BESANCON	15, Avenue de L'Amiral Bruix	Emanuel-Leutze-Strasse 1
CAIRO,	28 rue de la Republique	F-75782 PARIS CEDEX 16	D-4000 DUSSELDORF
Tel: 7590	F-25000 BESANCON	Tel: (1) 502-12-20	Tel: (0211) 5971-1
Telex: 93697 SAFLM UN	Tel: (81) 83-16-22	Telex: 613663F	Telex: 085/86 533 hpdd d
CS	Telex: 361157	CH,M, P	A,CH,CS,E,M,P
International Engineering Associates 24 Hussein Hegazi Street Kasr-el-Aini CAIRO, Tel: 23829, 21641 Telex: 93830 IEA UN Cable: INTEGASSO E	CH,M		Hewlett-Packard GmbH
		124, Boulevard Tourasse	Geschättsstelle
	13, Place Napoleon III	F-64000 PAU	Schleefstr. 28a
	F-29000 BREST	Tel: (59) 803802	D-4600 DORTMUND-Aplerbe
	Tel: (98) 03-38-35	Hewlett-Packard France	Tel: (0231) 45001
	Hewlett-Packard France	2 AllaEe de la Bourgonnette	Hewlett-Packard GmbH
	Boite Postale 162	F-35100 RENNES	Vertriebszentrale Frankfurt
E.S.C. Medical		Telex: 740912F	Postfach 560140
	F-69 130 ECULLY Cedex (Lyon)	CH,CM, E, M, P*	D-6000 FRANKFURT 56 Tel: (0611) 50-04-1
	Tel: (78) 833-81-25	Hewlett-Packard France	
CAIRO, Tel: 803844, 805998, 810263	Telex: 310617F		Telex: 0413249 hpffm d
	A,CH,CS, E,M	F-76100 ROUEN	A,CH,CM,CS,E,M,P
Telex: 20503 SSC UN	Hewlett-Packard France Parc d'Activite du Bois Briard	Tel: (35) 63-57-66	Hewlett-Packard GmbH
		Telex: 770035F	Geschättstelle
EL SALVADOR	Parc d'Activite du Bois Briard Ave. du Lac	CH^{*}, CS	Aussenstelle Bad Homburg
	F-91040 EVRY Cedex	Hewlett-Packard France	Louisenstrasse 115
IPESA de El Salvador S.A. 29 Avenida Norte 1216 SAN SAL VADOR		4 Rue Thomas Mann	D-6380 BAD HOMBURG
SAN SAL VADOR Tel: 26-6858, 26-6868		Boite Postale 56	Tel: (06172) 109-0
	E	F-67033 STRASBOURG Cedex	Hewlett-Packard GmbH
Telex: 20539 IPESASAL A,CH,CM,CS,E,P	Hewlett-Packard France 5, Avenue Raymond Chanas	Tel: (88) 28-56-46	Geschätsstelle
Hewlett-Packard Oy		Telex: 890141F	Kapstadtring 5
	F-38320 EYBENS (Grenoble)	CH,E,M, ${ }^{\text {P* }}$	D-2000 HAMBURG 60
		Hewlett-Packard France Le PAEripole 20, Chemin du Pigeonnier de la	Tel: (040) 63804-1
Hewlett-Packard Oy Piispankalliontie 17 02200 ESPOO	Tel: (76) 62-67-98 Telex: 980124 HP GRENOB EYBE CH		Telex: 02163032 hphh d
			A,CH,CS, E,M,P
Tel: 00358-0-88721 Telex: 121563 HEWPA SF CH,CM,SS,P	Hewlett-Packard France Centre d'Affaire Paris-Nord	20, Chemin du Pigeonnier de la CAEpiGEere	Hewlett-Packard GmbH
		F-31083 TOULOUSE Cedex	Geschäftsstelle
	Bâtiment Ampère 5 étage	Tel: (61) 40-11-12	Heidering 37-39
Hewlett-Packard Oy (Olarinluoma 7) PL 24		Telex: 531639F	D-3000 HANNOVER 61
		A,CH,CS,E,P*	Tel: (0511) 5706-0
PL 24O2101 ESPOO 10Tel: (90) 4521022	Boite Postale 300 F-93153 LE BLANC MESNIL	Hewlett-Packard France	Telex: 0923259
		9 , rue Baudin	A,CH,CM, E, M, P
A,E,M	Telex: 211032F	F-26000 VALENCE	Hewlett-Packard GmbH
Hewlett-Packard Oy Aatoksenkatv 10-C SF-40720-72 JYVASKYLA Tel: (941) 216318 CH	CH,CS, E, M	Tel: (75) 427616	Geschäftsstelle
	Hewlett-Packard France Parc d'Activités Cadera Quartier Jean Mermoz Avenue du Président JF Kennedy	Hewlett-Packard France	Rosslauer Weg 2-4
		Carolor	D-6800 MANNHEIM
		ZAC de Bois Briand	Tel: (0621) 70050
		F-57640 VIGY (Metz)	Telex: 0462105
Hewlett-Packard Oy Kainvuntie 1-C SF-90140-14 OULU Tel: (981) 338785 CH	F-33700 MERIGNAC (Bordeaux)	Tel: (8) 7712022	A,C,E
		CH	Hewlett-Packard GmbH
	Telex: 550105F	Hewlett-Packard France	Geschäftsstelle
	CH,E,M	Immeuble PEricentre	Messerschmittstrasse 7
		F-59658 VILLENEUVE D'ASCQ Cedex	D-7910 NEU ULM
FRANCE Hewlett-Packard France	Immueble "Les 3 B"	Tel: (20) 91-41-25	Tel: 0731-70241
		Telex: 160124F	Telex: 0712816 HP ULM-D
	Nouveau Chemin de la Garde	CH,E,M, P*	Hewlett-Packard GmbH
Rue Berthelot	F-44085 NANTES Cedex	GERMAN FEDERAL REPUBLIC	
			Geschäftsstelle Ehhericherstr. 13
AIX-EN-PROVENCE	$\begin{aligned} & \text { Tel: (} 40 \text {) 50-32-22 } \\ & \text { Telex: } 711085 \mathrm{~F} \end{aligned}$	Hewlett-Packard GmbH Geschäftsstelle	Ehhericherstr. 13 D-8500 NÜRNBERG 10
Tel: (42) 59-41-02			
Telex: 410770F		Geschäftsstelle	D-8500 NURNBERG 10
A,CH,E,M, P*	Hewlett-Packard France 125, rue du Faubourg Bannier F-45000 ORLEANS	D-1000 BERLIN 30	Telex: 0623860
Hewlett-Packard France 64, rue Marchand Saillant F-61000 ALENCON Tel: (33) 290442		Tel: (030) 24-90-86	CH,CM, E,M,P
		Telex: 0183405 hpbin d	Hewlett-Packard GmbH
	Tel: (38) 680163	$\mathrm{A}, \mathrm{CH}, \mathrm{E}, \mathrm{M}, \mathrm{P}$	Geschätrstelle
	Hewlett-Packard France Zone Industrielle de Courtaboeuf Avenue des Tropiques F-91947 Les Ulis Cedex ORSAY Tel: (6) 907-78-25 Telex: 600048F A,CH,CM,CS,E,M,P	Hewlett-Packard GmbH Geschäftsstelle Herrenberger Strasse 130 D-7030 BÖBLINGEN Tel: (7031) 14-0 Telex: 07265739 A,CH,CM,CS,E,M,P	Eschenstrasse 5
			D-8028 TAUFKIRCHEN
			Tel: (089) 6117-1
			Telex: 0524985
			A,CH,CM, E,M, P
			GREAT BRITAIN
			See United Kingdom

GREECE
Hewlett-Packard A.E.
178, Kifissias Avenue
6th Floor
Halandri-ATHENS
Greece
Tel: 6471673, 6471543, 6472971
A,CH,CM**,CS**,E,M,P
Kostas Karaynnis S.A.
8 Omirou Street
ATHENS 133
Tel: 3230 303, 3237371
Telex: 215962 RKAR GR
A,CH,CM,CS,E,M,P
PLAISIO S.A.
Eliopoulos Brohers Ltd.
11854
ATHENS
Tel: 34-51-911
Telex: 216286
P
GUATEMALA
IPESA
Avenida Reforma 3-48, Zona 9
GUATEMALA CITY
Tel: 316627, 314786
Telex: 4192 TELTRO GU
A,CH,CM,CS,E,M,P
HONG KONG
Hewlett-Packard Hong Kong, Ltd.
G.P.O. Box 795

5th Floor, Sun Hung Kai Centre
30 Harbour Road
HONG KONG
Tel: 5-8323211
Telex: 66678 HEWPA HX
Cable: HEWPACK HONG KONG
E,CH,CS,P
CET Ltd.
10th Floor, Hua Asia
Bldg. Gloucester
64-66 Gloulester Road
HONG KONG
Tel: (5) 200922
Telex: 85148 CET HX CM

Schmidt \& Co. (Hong Kong) Ltd.
18th Floor, Great Eagle Centre
23 Harbour Road, Wanchai
HONG KONG
Tel: 5-8330222
Telex: 74766 SCHMC HX
A, M
ICELAND
Elding Trading Company Inc.
Hafnarnvoli-Tryggvagotu
P.O. Box 895

IS-REYKJAVIK
Tel: 1-58-20, 1-63-03
M
INDIA
Computer products are sold through Blue Star Ltd.All computer repairs and maintenance service is done through Computer Maintenance Corp.

Blue Star Ltd.
Sabri Complex II Floor
24 Residency Rd.
BANGALORE 560025
Tel: 55660
Telex: 0845-430
Cable: BLUESTAR
$A, C H^{*}, C M, C S^{*}, E$
Blue Star Ltd.
Band Box House
Prabhadevi
BOMBAY 400025
Tel: 422-3101
Telex: 011-3751
Cable: BLUESTAR
A, M
Blue Star Ltd.
Sahas
414/2 Vir Savarkar Marg
Prabhadevi
BOMBAY 400025
Tel: 422-6155
Telex: 011-71193
Cable: FROSTBLUE
A,CH*,CM,CS* ${ }^{*}$, , M *
Blue Star Ltd.
Kalyan, 19 Vishwas Colony
Alkapuri, BORODA, 390005
Tel: 65235
Cable: BLUE STAR
A
Blue Star Ltd.
7 Hare Street
CALCUTTA 700001
Tel: 12-01-31
Telex: 021-7655
Cable: BLUESTAR
A, M
Blue Star Ltd.
133 Kodambakkam High Road
MADRAS 600034
Tel: 82057
Telex: 041-379
Cable: BLUESTAR
A, M
Blue Star Ltd.
Bhandari House, 7th/8th Floors
91 Nehru Place
NEW DELHI 110024
Tel: 682547
Telex: 031-2463
Cable: BLUESTAR
$A, C H^{*}, C M, C S^{*}, E, M$
Blue Star Ltd.
15/16:C Wellesley Rd.
PUNE 411011
Tel: 22775
Cable: BLUE STAR
A
Blue Star Ltd.
2-2-47/1108 Bolarum Rd.
SECUNDERABAD 500003
Tel: 72057
Telex: 0155-459
Cable: BLUEFROST

Blue Star Ltd.
T.C. 7/603 Poornima

Maruthankuzhi
TRIVANDRUM 695013
Tel: 65799
Telex: 0884-259
Cable: BLUESTAR
E
Computer Maintenance Corporation Ltd.
115, Sarojini Devi Road
SECUNDERABAD 500003
Tel: 310-184, 345-774
Telex: 031-2960
CH^{*}
INDONESIA
BERCA Indonesia P.T.
P.O.Box 496/Jkt.

JI. Abdul Muis 62
JAKARTA
Tel: 21-373009
Telex: 46748 BERSAL IA
Cable: BERSAL JAKARTA
P
BERCA Indonesia P.T.
P.O.Box 2497/Jkt

Antara Bldg., 17th Floor
J. Medan Merdeka Selatan 17

JAKARTA-PUSAT
Tel: 21-344-181
Telex: BERSAL IA
A,CS,E,M
BERCA Indonesia P.T.
P.O. Box 174/SBY.

JI. Kutei No. 11
SURABAYA
Tel: 68172
Telex: 31146 BERSAL SB
Cable: BERSAL-SURABAYA
A^{*}, E, M, P
IRAQ
Hewlett-Packard Trading S.A.
Service Operation
Al Mansoor City 9B/3/7
BAGHDAD
Tel: 551-49-73
Telex: 212-455 HEPAIRAQ IK
CH,CS
IRELAND
Hewlett-Packard Ireland Ltd.
82/83 Lower Leeson Street

DUBLIN 2

Tel: 0001608800
Telex: 30439
A,CH,CM,CS,E,M,P
Cardiac Services Ltd
Kilmore Road
Artane
DUBLIN 5
Tel: (01) 351820
Telex: 30439
M
ISRAEL
Eldan Electronic Instrument Ltd.
P.O.Box 1270

JERUSALEM 91000
16, Ohaliav St.
JERUSALEM 94467
Tel: 533 221, 553242
Telex: 25231 AB/PAKRD IL
A,M

Computation and Measurement
Systems (CMS) Ltd.
11 Masad Street
67060
TEL-A VIV
Tel: 388388
Telex: 33569 Motil IL
CH,CM,CS,E,P
ITALY
Hewlett-Packard Italiana S.p.A
Traversa 99C
Via Giulio Petroni, 19
I-70124 BARI
Tel: (080) 41-07-44
M,CH
Hewlett-Packard Italiana S.p.A.
Via Martin Luther King, 38/III
I-40132 BOLOGNA
Tel: (051) 402394
Telex: 511630
CH,CS,E,M
Hewlett-Packard Italiana S.p.A
Via Principe Nicola 43G/C
I-95126 CATANIA
Tel: (095) 37-10-87
Telex: 970291
CH
Hewlett-Packard Italiana S.p.A.
Via G. Di Vittorio 9
I-20063 CERNUSCO SUL

NAVIGLIO

(Milano)
Tel: (02) 923691
Telex: 334632
A,CH,CM,CS,E,M,P
Hewlett-Packard Italiana S.p.A.
Via C. Colombo 49
I-20090 TREZZANO SUL
NAVIGLIO
(Milano)
Tel: (02) 4459041
Telex: 322116
CH,CS
Hewlett-Packard Italiana S.p.A.
Via Nuova San Rocco a
Capodimonte, 62/A
I-80131 NAPOLI
Tel: (081) 7413544
Telex: 710698
A**,CH,CS,E,M
Hewlett-Packard Italiana S.p.A.
Viale G. Modugno 33
I-16156 GENOVA PEGLI
Tel: (010) 68-37-07
Telex: 215238
E,C
Hewlett-Packard Italiana S.p.A.
Via Pelizzo 15
I-35128 PADOVA
Tel: (049) 664888
Telex: 430315
A,CH,CS,E,M
Hewlett-Packard Italiana S.p.A.
Viale C. Pavese 340
I-00144 ROMA EUR
Tel: (06) 54831
Telex: 610514
A,CH,CS,E,M,P*
R

ITALY (Cont'd)
Hewlett-Packard Italiana S.p.A.
Via di Casellina 57/C l-50018 SCANDICCI-FIRENZE
Tel: (055) 753863
CH,E,M
Hewlett-Packard Italiana S.p.A.
Corso Svizzera, 185
l-10144 TORINO
Tel: (011) 744044
Telex: 221079
A*,CS,CH,E
JAPAN
Yokogawa-Hewlett-Packard Ltd.
152-1, Onna
ATSUGI, Kanagawa, 243
Tel: (0462) 28-0451
CM, $\mathbf{C}^{*}, \mathrm{E}$
Yokogawa-Helwett-Packard Ltd.
Meiji-Seimei Bldg. 6F
3-1 Hon Chiba-Cho
CHIBA, 280
Tel: 472257701
E,CH,CS
Yokogawa-Hewlett-Packard Ltd.
Yasuda-Seimei Hiroshima Bldg.
6-11, Hon-dori, Naka-ku
HIROSHIMA, 730
Tel: 82-241-0611
Yokogawa-Hewlett-Packard Ltd.
Towa Building
2-3, Kaigan-dori, 2 Chome Chuo-ku
KOBE, 650
Tel: (078) 392-4791
C,E
Yokogawa-Hewlett-Packard Ltd.
Kumagaya Asahi 82 Bldg
3-4 Tsukuba
KUMAGAYA, Saitama 360
Tel: (0485) 24-6563
CH,CM,E
Yokogawa-Hewlett-Packard Ltd.
Asahi Shinbun Daiichi Seimei Bldg.
4-7, Hanabata-cho
KUMAMOTO, 860
Tel: (0963) 54-7311
CH,E
Yokogawa-Hewlett-Packard Ltd.
Shin-Kyoto Center Bldg.
614, Higashi-Shiokoji-cho
Karasuma-Nishiru
Shiokoji-dori, Shimogyo-ku
KYOTO, 600
Tel: 075-343-0921
CH,E
Yokogawa-Hewlett-Packard Ltd.
Mito Mitsui Bldg
4-73, Sanno-maru, 1 Chome
MITO, Ibaraki 310
Tel: (0292) 25-7470
CH,CM,E
Yokogawa-Hewlett-Packard Ltd. Meiji-Seimei Kokubun Bldg. 7-8
Kokubun, 1 Chome, Sendai
MIYAGI, 980
Tel: (0222) 25-1011
Telex:
C,E

Yokogawa-Hewlett-Packard Ltd. Sumitomo Seimei 14-9 Bldg Meieki-Minami, 2 Chome
Nakamura-ku
NAGOYA, 450
Tel: (052) 571-5171
CH,CM,CS,E,M
Yokogawa-Hewlett-Packard Ltd.
Chuo Bldg.,
4-20 Nishinakajima, 5 Chome
Yodogawa-ku
OSAKA, 532
Tel: (06) 304-6021
Telex: YHPOSA 523-3624
A,CH,CM,CS,E,M, P*
Yokogawa-Hewlett-Packard Ltd
27-15, Yabe, 1 Chome
SAGAMIHARA Kanagawa, 229
Tel: 0427 59-1311
Yokogawa-Hewlett-Packard Ltd. Daiichi Seimei Bldg.
7-1, Nishi Shinjuku, 2 Chome
Shinjuku-ku,TOKYO 160
Tel: 03-348-4611
CH,E
Yokogawa-Hewlett-Packard Ltd. 29-21 Takaido-Higashi, 3 Chome
Suginami-ku TOKYO 168
Tel: (03) 331-6111
Telex: 232-2024 YHPTOK
A,CH,CM,CS,E,M, P*
Yokogawa-Hewlett-Packard Ltd.
Daiichi Asano Building
2-8, Odori, 5 Chome
UTSUNOMIYA, Tochigi 320
Tel: (0286) 25-7 155
CH,CS,E
Yokogawa-Hewlett-Packard Ltd.
Yasuda Seimei Nishiguchi Bldg.
30-4 Tsuruya-cho, 3 Chome
YOKOHAMA 221
Tel: (045) 312-1252
CH,CM,E

JORDAN

Scientific and Medical Supplies Co.
P.O. Box 1387

AMMAN

Tel: 24907, 39907
Telex: 21456 SABCO JO
CH,E,M,P

KENYA

ADCOM Ltd., Inc., Kenya
P.O.Box 30070

NAIROB
Tel: 331955
Telex: 22639
E,M
KOREA
Samsung Hewlett-Packard Co. Ltd. 12 FI. Kinam Bldg.
San 75-31, Yeoksam-Dong
Kangnam-Ku
Yeongdong P.O. Box 72
SEOUL
Tel: 555-7555, 555-5447
Telex: K27364 SAMSAN
A,CH,CM,CS,E,M,P

KUWAIT
Al-Khaldiya Trading \& Contracting
P.O. Box 830

SAFAT
Tel: 424910, 411726
Telex: 22481 AREEG KT
Cable: VISCOUNT
E, M, A
Photo \& Cine Equipment
P.O. Box 270

SAFAT
Tel: 2445111
Telex: 22247 MATIN KT
Cable: MATIN KUWAIT
P
W.J. Towell Computer Services
P.O. Box 75

SAFAT
Tel: 2462640/1
Telex: 30336 TOWELL KT
c
LEBANON
Computer Information Systems
P.O. Box 11-6274

BEIRUT
Tel: 894073
Telex: 42309
C,E,M,P
LUXEMBOURG
Hewlett-Packard Belgium S.A./N.V.
Blvd de la Woluwe, 100
Woluwedal
B-1200 BRUSSELS
Tel: (02) 762-32-00
Telex: 23-494 paloben bru
A,CH,CM,CS,E,M,P
MALAYSIA
Hewlett-Packard Sales (Malaysia)
Sdn. Bhd.
1st Floor, Bangunan British
American
Jalan Semantan, Damansara Heights
KUALA LUMPUR 23-03
Tel: 943022
Telex: MA31011
A,CH,E,M,P**
Protel Engineering
P.O.Box 1917

Lot 6624, Section 64
$23 / 4$ Pending Road
Kuching, SARAWAK
Tel: 36299
Telex: MA 70904 PROMAL
Cable: PROTELENG
A,E,M
MALTA
Philip Toledo Ltd.
Notabile Rd.
MRIEHEL
Tel: 447 47, 45566
Telex: Media MW 649
E,P,M
MEXICO
Hewlett-Packard Mexicana, S.A.
de C.V.
Av. Periferico Sur No. 6501
Tepepan, Xochimilco
16020 MEXICO D.F.
Tel: 6-76-46-00
Telex: 17-74-507 HEWPACK MEX
A,CH,CS,E,M,P

Hewlett-Packard Mexicana, S.A.
de C.V.
Czda. del Valle
409 Ote. 1° Piso
Colonia del Valle
Municipio de Garza García
66220 MONTERREY, Nuevo LeAOn
Tel: 784241
Telex: 038410
CH
Equipos Cientificos de Occidente, S.A.
Av. Lazaro Cardenas 3540

avadajara

Tel: 21-66-91
Telex: 0684186 ECOME
A
Infograficas y Sistemas del Noreste, S.A.
Rio Orinoco \#171 Oriente
Despacho 2001
Colonia Del Valle
MONTERREY
Tel: 782499, 781259A
A
MOROCCO
Dolbeau
81 rue Karatchi
CASABLANCA
Tel: 3041-82, 3068-38
Telex: 23051, 22822
E
Gerep
2 rue d'Agadir
Boite Postale 156
CASABLANCA
Tel: 272093, 272095
Telex: 23739
P
Sema-Maroc
Rue Lapebie
CASABLANCA
Tel: 26.09.80
CH,CS, P

NETHERLANDS

Hewlett-Packard Nederland B.V.
Van Heuven Goedhartlaan 121
NL 1181KK AMSTELVEEN
P.O. Box 667

NL1 180 AR AMSTELVEEN
Tel: (020) 47-20-21
Telex: 13216 HEPA NL
A,CH,CM,CS,E,M,P
Hewlett-Packard Nederland B.V.
Bongerd 2
NL 2906VK CAPELLE A/D WSSEL
P.O. Box 41

NL 2900AA CAPELLE ADD IJSSEL
Tel: (10) 51-64-44
Telex: 21261 HEPAC NL
A,CH,CS,E
Hewlett-Packard Nederland B.V.
Pastoor Petersstraat 134-136
NL 5612 LV EINDHOVEN
P.O. Box 2342

NL 5600 CH EINDHOVEN
Tel: (040) 326911
Telex: 51484 hepae nl
A,CH**,E,M

NEW ZEALAND
Hewlett-Packard (N.Z.) Ltd.
5 Owens Road
P.O. Box 26-189

Epsom, AUCKLAND
Tel: 687-159
Cable: HEWPAK Auckland
CH,CS,CM,E,P*
Hewlett-Packard (N.Z.) Ltd.
4-12 Cruickshank Street
Kilbirnie, WELLINGTON 3
P.O. Box 9443

Courtenay Place, WELLINGTON 3
Tel: 877-199
Cable: HEWPACK Wellington
CH,CS,CM,E,P
Northrop Instruments \& Systems Ltd.
369 Khyber Pass Road
P.O. Box 8602

AUCKLAND
Tel: 794-091
Telex: 60605
A,M
Northrop Instruments \& Systems Ltd.
110 Mandeville St.
P.O. Box 8388

CHRISTCHURCH
Tel: 488-873
Telex: 4203
A,M
Northrop Instruments \& Systems Ltd.
Sturdee House
85-87 Ghuznee Street
P.O. Box 2406

WELLINGTON
Tel: 850-091
Telex: NZ 3380
A,M

NORTHERN IRELAND

See United Kingdom
NORWAY
Hewlett-Packard Norge A/S
Folke Bernadottes vei 50
P.O. Box 3558

N-5033 FYLLINGSDALEN (Bergen)
Tel: 0047/5/165540
Telex: 16621 hpnas n
CH,CS,E,M
Hewlett-Packard Norge A/S
UCOsterndalen 16-18
P.O. Box 34

N-1345 OCUSTERAS
Tel: 0047/2/17 1180
Telex: 16621 hpnas n
A,CH,CM,CS,E,M,P
OMAN
Khimjil Ramdas
P.O. Box 19
muscat
Tel: 722225, 745601
Telex: 3289 BROKER MB MUSCAT

P

Suhail \& Saud Bahwan
P.O.Box 169
muscat
Tel: 734 201-3
Telex: 3274 BAHWAN MB
E

Imtac LLC
P.O. Box 8676

MUTRAH
Tel: 601695
Telex: 5741 Tawoos On
A,C,M
PAKISTAN
Mushko \& Company Ltd.
House No. 16, Street No. 16
Sector F-6/3
ISLAMABAD
Tel: 824545
Cable: FEMUS Islamabad
A,E,M, P*
Mushko \& Company Ltd.
Oosman Chambers
Abdullah Haroon Road
KARACHI 0302
Tel: 524131, 524132
Telex: 2894 MUSKO PK
Cable: COOPERATOR Karachi
A, E, M, P^{*}
PANAMA
ElectrOnico Balboa, S.A.
Calle Samuel Lewis, Ed. Alfa
Apartado 4929
PANAMA 5
Tel: 63-6613, 63-6748
Telex: 3483 ELECTRON PG
A,CM, E,M,P

PERU

Cia Electro Médica S.A.
Los Flamencos 145, San Isidro
Casilla 1030
LIMA 1
Tel: 41-4325, 41-3703
Telex: Pub. Booth 25306
CM,E,M,P
SAMS
Rio De La Plata 305
SAN ISIDRO
Tel: 419928
Telex: 39420450 PELIBERTAD
P
PHILIPPINES
The Online Advanced Systems
Corporation
Rico House, Amorsolo Cor. Herrera
Street
Legaspi Village, Makati
P.O. Box 1510

Metro MANILA
Tel: 815-38-11 (up to 16)
Telex: 63274 Online PN
A,CH,CS,E,M
Electronic Specialists and
Proponents inc.
690-B Epifanio de los Santos
Avenue
Cubao, QUEZON CITY
P.O. Box 2649 Manila

Tel: 98-96-81, 98-96-82, 98-96-83
Telex: 40018, 42000 ITT GLOBE MAC-
KAY BOOTH
P

PORTUGAL
Mundinter
Intercambio Mundial de ComAErcio
S.A.R.L.
P.O. Box 2761

Av. Antonio Augusto de Aguiar 138 PLISBON
Tel: (19) 53-21-31, 53-21-37
Telex: 16691 munter p
M
Soquimica
Av. da Liberdade, 220-2
1298 LISBOA Codex
Tel: 562181/2/3
Telex: 13316 SABASA
P
Telectra-Empresa Técnica de
Equipmentos Eléctricos S.A.R.L.
Rua Rodrigo da Fonseca 103
P.O. Box 2531

P-LISBON 1
Tel: (19) 68-60-72
Telex: 12598
CM, E
Rarcentro Ltda
R. Costa Cabral 575

4200 PORTO
Tel: 499174/495173
Telex: 26054
CH,CS

PUERTO RICO

Hewlett-Packard Puerto Rico
101 MuANoz Rivera Av
Esu. Calle Ochoa
HATO REY, Puerto Rico 00918
Tel: (809) 754-7800
A,CH,CS,CM,M,E,P

QATAR

Computer Arabia
P.O. Box 2750

DOHA
Tel: 883555
Telex: 4806 CHPARB
P
Nasser Trading \& Contracting
P.O.Box 1563

DOHA
Tel: 422170
Telex: 4439 NASSER DH
M
SAUDI ARABIA
Modern Electronic Establishment
Hewlett-Packard Division
P.O. Box 281

Thuobah
AL-KHOBAR
Tel: 895-1760, 895-1764
Telex: 671106 HPMEEK SJ
Cable: ELECTA AL-KHOBAR
CH,CS,E,M
Modern Electronic Establishment
Hewlett-Packard Division
P.O. Box 1228

Redec Plaza, 6th Floor
JEDDAH
Tel: 6443848
Telex: 402712 FARNAS SJ
Cable: ELECTA JEDDAH
A,CH,CS,CM,E,M,P

Modern Electronic Establishment
Hewlett-Packard Division
P.O.Box 22015

RIYADH

Tel: 491-97 15, 491-63 87
Telex: 202049 MEERYD SJ
CH,CS,E,M
Abdul Ghani EI Ajou
P.O. Box 78

RIYADH

Tel: 4041717
Telex: 200932 EL AJOU
P
SCOTLAND
See United Kingdom
SINGAPORE
Hewlett-Packard Singapore (Sales)
Pte. Ltd.
\#08-00 Inchcape House
450-2 Alexandra Road
P.O. Box 58 Alexandra Rd. Post

Office
SINGAPORE, 9115
Tel: 631788
Telex: HPSGSO RS 34209
Cable: HEWPACK, Singapore
A,CH,CS,E,MS,P
Dynamar International Ltd.
Unit 05-11Block 6
Kolam Ayer Industrial Estate
SINGAPORE 1334
Tel: 747-6188
Telex: RS 26283
CM

SOUTH AFRICA

Hewlett-Packard So Africa (Pty.) Ltd.
P.O. Box 120

Howard Place CAPE PROVINCE 7450
Pine Park Center, Forest Drive, Pine-
lands
CAPE PROVINCE 7405
Tel: 53-7954
Telex: 57-20006
A,CH,CM,E,M,P
Hewlett-Packard So Africa (Pty.) Ltd.
P.O. Box 37099

Overport Drive 92
DURBAN 4067
Tel: 28-4178
Telex: 6-22954
CH,CM
Hewlett-Packard So Africa (Pty.) Ltd.
6 Linton Arcade
511 Cape Road
Linton Grange
PORT ELIZABETH 6001
Tel: 041-301201
CH
Hewlett-Packard So Africa (Pty.) Ltd.
Fountain Center
Kalkden Str
Monument Park
Ext 2
PRETORIA 0105
Tel: 45-5723
Telex: 32163
CH,E

SOUTH AFRICA (Cont'd)
Hewlett-Packard So Africa (Pty.) Ltd.
Private Bag Wendywood
SANDTON 2144
Tel: 802-5111, 802-5125
Telex: 4-20877
Cable: HEWPACK Johannesburg
A,CH,CM,CS,E,M,P

SPAIN

Hewlett-Packard Española S.A.
Calle Entenza, 321
E-BARCELONA 29
Tel: 322.24.51, 321.73.54
Telex: 52603 hpbee
A,CH,CS,E,M,P
Hewlett-Packard Española S.A.
Calle San Vicente S/No
Edificio Albia $117 B$
E-BILBAO 1
Tel: 423.83 .06
A,CH,E,M
Hewlett-Packard Española S.A.
Crta. de la Coruña, Km. 16, 400
Las Rozas
E-MADRID
Tel: (1) 637.00.11
Telex: 23515 HPE
CH,CS,M
Hewlett-Packard Española S.A.
Avda. S. Francisco Javier, S/no
Planta 10. Edificio Sevilla 2,

E-SEVILLA 5

Tel: 64.44.54
Telex: 72933
A,CS,M,P
Hewlett-Packard Española S.A.
C/lsabel La Catolica, 8
E-46004 VALENCIA
Tel: 0034/6/351 5944
CH,P
SWEDEN
Hewlett-Packard Sverige AB
Sunnanvagen 14K
S-22226 LUND
Tel: (046) 13-69-79
Telex: (854) 17886 (via Spånga office)
CH
Hewlett-Packard Sverige AB
Ostra Tullgatan 3
S-21128 MALMÖ
Tel: (040) 70270
Telex: (854) 17886 (via Spånga office)
Hewlett-Packard Sverige AB
Vástra Vintergatan 9
S-70344 ÖREBRO
Tel: (19) 10-48-80
Telex: (854) 17886 (via Spånga office)
CH
Hewlett-Packard Sverige AB
Skalholtsgatan 9, Kista
Box 19
S-16393 SPÅNGA
Tel: (08) 750-2000
Telex: (854) 17886
Telefax: (08) 7527781
A,CH,CM,CS,E,M,P

Hewlett-Packard Sverige AB
Frötallisgatan 30
S-42 132 VÄSTRA-FRÖLUNDA
Tel: (031) 49-09-50
Telex: (854) 17886 (via Spånga office)
CH,E,P

SWITZERLAND

Hewlett-Packard (Schweiz) AG
Clarastrasse 12
CH-4058 BASEL
Tel: (61) 33-59-20
A
Hewlett-Packard (Schweiz) AG
7, rue du Bois-du-Lan
Case Postale 365
CH-1217 MEYRIN 2
Tel: (0041) 22-83-11-11
Telex:27333 HPAG CH
CH,CM,CS
Hewlett-Packard (Schweiz) AG
Allmend 2
CH-8967 WIDEN
Tel: (0041) 57312111
Telex: 53933 hpag ch
Cable: HPAG CH
A,CH,CM,CS,E,M,P
SYRIA
General Electronic Inc.
Nuri Basha Ahnaf Ebn Kays Street
P.O. Box 5781

DAMASCUS
Tel: 33-24-87
Telex: 411215
Cable: ELECTROBOR DAMASCUS
E
Middle East Electronics
P.O.Box 2308

Abu Rumnaneh
DAMASCUS
Tel: 334592
Telex: 411304
M
TAIWAN
Hewlett-Packard Taiwan
Kaohsiung Office
11/F 456, Chung Hsiao 1st Road
KAOHSIUNG
Tel: (07) 2412318
CH,CS,E
Hewlett-Packard Taiwan
8th Floor Hewlett-Packard Building
337 Fu Hsing North Road
TAIPEI
Tel: (02) 712-0404
Telex: 24439 HEWPACK
Cable:HEWPACK Taipei
A,CH,CM,CS,E,M,P
Ing Lih Trading Co.
3rd Floor, 7 Jen-Ai Road, Sec. 2
TAIPEI 100
Tel: (02) 3948191
Cable: INGLIH TAIPEI
A

THAILAND	Saniva Biligayar Sistemleri A.S.
Unimesa	Buyukdere Caddesi 103/6
30 Patpong Ave., Suriwong	Gayrettepe
BANGKOK 5	ISTANBUL
Tel: 235-5727	Tel: 1673180
Telex: 84439 Simonco TH	Telex: 26345 SANI TR
Cable: UNIMESA Bangkok	C, P
A,CH,CS,E,M	Teknim Company Ltd.
Bangkok Business Equipment Ltd.	Iran Caddesi No. 7
5/5-6 Dejo Road	Kavaklidere
BANGKOK	ANKARA
Tel: 234-8670, 234-8671	Tel: 275800
Telex: 87669-BEQUIPT TH	Telex: 42155 TKNM TR
Cable: BUSIQUIPT Bangkok	E,CM
P	UNITED ARAB
TOGO	EMIRATES
Societe Africaine De	Emitac Ltd.
Promotion	P.O. Box 1641
B.P. 12271	SHARJAH,
LOME	Tel: 591181
Tel: 21-62-88	Telex: 68136 EMITAC EM
Telex: 5304	Cable: EMITAC SHARJAH
P	E,C,M,P,A
TRINIDAD \& TOBAGO	Emitac Ltd.
Caribbean Telecoms Ltd.	P.O. Box 2711
Corner McAllister Street \&	ABU DHABI,
Eastern Main Road, Laventille	Tel: 820419-20
P.O. Box 732	Cable: EMITACH ABUDHABI
PORT-OF-SPAIN	Emitac Ltd.
Tel: 624-4213	P.O. Box 8391
Telex: 22561 CARTEL WG	DUBAI,
Cable: CARTEL, PORT OF SPAIN	Tel: 377951
CM,E,M,P	Emitac Ltd.
Computer and Controls Ltd.	P.O. Box 473
P.O. Box 51	RAS AL KHAIMAH,
66 Independence Square	Tel: 28133, 21270
PORT-OF-SPAIN	UNITED KINGDOM
Tel: 623-4472	
Telex: 3000 POSTLX WG	GREAT BRITAIN
P	Hewlett-Packard Ltd.
	Trafalgar House
TUNISIA	Navigation Road
Tunisie Electronique	ALTRINCHAM
31 Avenue de la Liberte	Cheshire WA14 1 IN
TUNIS	Tel: 0619286422
Tel: 280-144	Telex: 668068
CH,CS, E, P	A,CH,CS, E,M,M, P
Corema	Hewlett-Packard Ltd.
1 ter. Av. de Carthage	Miller House
TUNIS	The Ring, BRACKNELL
Tel: 253-821	Berks RG 12 1XN
Telex: 12319 CABAM TN	Tel: 44344424898
M	Telex: 848733
TURKEY	E
E.M.A	Hewlett-Packard Ltd.
Mediha Eldem Sokak No. 41/6	Elstree House, Elstree Way
Yenisehir	BOREHAMWOOD, Herts WD6 1SG
ANKARA	Tel: 012075000
Tel: 319175	Telex: 8952716
Telex: 42321 KTX TR	E,CH,CS,P
Cable: EMATRADE ANKARA	Hewlett-Packard Ltd.
M	Oakfield House, Oakfield Grove
Kurt \& Kurt A.S.	Clitton BRISTOL, Avon BS8 2BN
Mithatpasa Caddesi No. 75	Tel: 0272736806
Kat 4 Kizilay	Telex: 444302
ANKARA	CH,CS,E,P
Tel: 318875/6/7/8	
Telex: 42490 MESR TR	
A	

GREAT BRITAIN (Cont'd)

Hewlett-Packard Ltd.
Bridewell House
E,ridewell Place
LONDON EC4V 6BS
Tel: 015836565
Telex: 298163
CH,CS,P
Hewlett-Packard Ltd.
Fourier House
257-263 High Street
LONDON COLNEY
Herts. AL2 1HA, St. Albans
Tel: 072724400
Telex: 1-8952716
CH,CS
Hewlett-Packard Ltd.
Pontefract Road
NORMANTON, West Yorkshire WF6 1RN
Tel: 0924895566
Telex: 557355
CH,CS,P
Hewlett-Packard Ltd.
The Quadrangle
106-118 Station Road
REDHILL, Surrey RH1 1PS
Tel: 073768655
Telex: 947234
CH,CS,E,P
Hewlett-Packard Ltd.
Avon House
435 Stratford Road
Shirley, SOLIHULL, West Midlands B90 4BL
Tel: 0217458800
Telex: 339105
CH,CS,E,P
Hewlett-Packard Ltd.
West End House
41 High Street, West End
SOUTHAMPTON
Hampshire S03 3DQ
Tel: 042186767
Telex: 477138
CH,CS,P
Hewlett-Packard Ltd.
King Street Lane
Winnersh, WOKINGHAM
Berkshire RG11 5AR
Tel: 0734784774
Telex: 847178
A,CH,CS,E,M,P
Hewlett-Packard Ltd.
Nine Mile Ride
Easthampstead, WOKINGHAM
Berkshire, 3RG11 3LL
Tel: 0344773100
Telex: 848805
CH,CS,E,P

IRELAND

NORTHERN IRELAND
Hewlett-Packard Ltd.
Cardiac Services Building
95A Finaghy Road South
BELFAST BT10 OBY
Tel: 0232 625-566
Telex: 747626
CH,CS

SCOTLAND
Hewlett-Packard Ltd.
SOUTH QUEENSFERRY
West Lothian, EH30 9TG
Tel: 0313311188
Telex: 72682
CH,CM,CS,E,M,P
UNITED STATES

Alabama

Hewlett-Packard Co.
700 Century Park South, Suite 128
BIRMINGHAM, AL 35226
Tel: (205) 822-6802
C,CH,CS, P*
Hewlett-Packard Co.
420 Wynn Drive
P.O. Box 7700

HUNTSVILLE, AL 35807
Tel: (205) 830-2000
C,CH,CM,CS,E,M*
Alaska
Hewlett-Packard Co.
3601 C St., Suite 1234
ANCHORAGE, AK 99503
Tel: (907) 563-8855
CH,CS,E

Arizona

Hewlett-Packard Co. 8080 Pointe Parkway West
PHOENIX, AZ 85044
Tel: (602) 273-8000
A,CH,CM,CS,E,M
Hewlett-Packard Co.
2424 East Aragon Road
TUCSON, AZ 85706
Tel: (602) 573-7400
CH,E,M**
California
Hewlett-Packard Co.
99 South Hill Dr.
BRISBANE, CA 94005
Tel: (415) 330-2500
CH,CS
Hewlett-Packard Co.
P.O. Box 7830 (93747)

5060 E. Clinton Avenue, Suite 102
FRESNO, CA 93727
Tel: (209) 252-9652
CH,CS,M
Hewlett-Packard Co.
1421 S. Manhattan Av.
FULLERTON, CA 92631
Tel: (714) 999-6700
СН,CM,CS,E,M
Hewlett-Packard Co.
320 S. Kellogg, Suite B
GOLETA, CA 93117
Tel: (805) 967-3405
CH
Hewlett-Packard Co.
5400 W. Rosecrans Blvd.
LAWNDALE, CA 90260
P.O. Box 92105

LOS ANGELES, CA 90009
Tel: (213) 643-7500
Telex: 910-325-6608
СН,См,CS,M

Hewlett-Packard Co.
3155 Porter Drive
PALO ALTO, CA 94304
Tel: (415) 857-8000
CH,CS,E
Hewlett-Packard Co. 4244 So. Market Court, Suite A
P.O. Box 15976

SACRAMENTO, CA 95813
Tel: (916) 929-7222
A*,CH,CS,E,M
Hewlett-Packard Co.
9606 Aero Drive
P.O. Box 23333

SAN DIEGO, CA 92123
Tel: (619) 279-3200
СН,CM,CS,E,M
Hewlett-Packard Co.
2305 Camino Ramon 'C'
SAN RAMON, CA 94583
Tel: (415) 838-5900
CH,CS
Hewlett-Packard Co.
3005 Scott Boulevard
SANTA CLARA, CA 95050
Tel: (408) 988-7000
Telex: 910-338-0586
A,CH,CM,CS,E,M
Hewlett-Packard Co.
5703 Corsa Avenue
WESTLAKE VILLAGE, CA 91362
Tel: (213) 706-6800
E*,CH*,CS*
Colorado
Hewlett-Packard Co.
24 Inverness Place, East
ENGLEWOOD, CO 80112
Tel: (303) 649-5000
A,CH,CM,CS,E,M
Connecticut
Ef. Dec. 1, 1984
Hewlett-Packard Co.
500 Sylvan Av.
BRIDGEPORT, CT 06606
Tel: (203) 371-6454
CH,CS,E
Hewlett-Packard Co.
47 Barnes Industrial Road South
P.O. Box 5007

WALLINGFORD, CT 06492
Tel: (203) 265-7801
A,CH,CM,CS,E,M

Florida

Hewlett-Packard Co.
2901 N.W. 62nd Street
P.O. Box 24210

FORT LAUDERDALE, FL 33307
Tel: (305) 973-2600
CH,CS,E,M, P*
Hewlett-Packard Co.
4080 Woodcock Drive, Suite 132
JACKSONVILLE, FL 32207
Tel: (904) 398-0663
$\mathrm{C}^{*}, \mathrm{CH}^{*}, \mathrm{M}^{*}$

Hewlett-Packard Co.
6177 Lake Ellenor Drive
P.O. Box 13910

ORLANDO, FL 32859
Tel: (305) 859-2900
A,C,CH,CM,CS,E,P*
Hewlett-Packard Co.
4700 Bayoue Blvd.
Building 5
PENSACOLA, FL 32505
Tel: (904) 476-8422
A,C,CH,CM,CS,M
Hewlett-Packard Co.
5550 Idlewild, \#150
P.O. Box 15200

TAMPA, FL 33684
Tel: (813) 884-3282
$\mathrm{A}^{*}, \mathrm{C}, \mathrm{CH}, \mathrm{CS}, \mathrm{E}^{*}, \mathrm{M}^{*}, \mathrm{P}^{*}$

Georgia

Hewlett-Packard Co. 2000 South Park Place
P.O. Box 105005

ATLANTA, GA 30348
Tel: (404) 955-1500
Telex: 810-766-4890
A,C,CH,CM,CS,E,M,P*

Hawaii

Hewlett-Packard Co.
Kawaiahao Plaza, Suite 190
567 South King Street
HONOLULU, HI 96813
Tel: (808) 526-1555
A,CH,E,M

Illinois

Hewlett-Packard Co.
304 Eldorado Road
P.O. Box 1607

BLOOMINGTON, IL 61701
Tel: (309) 662-9411
CH,M**
Hewlett-Packard Co.
525 W. Monroe, \#1300
CHICAGO, IL 60606
Tel: (312) 930-0010
CH, CS
Hewlett-Packard Co.
1200 Diehl
NAPERVILLE, IL 60566
Tel: (312) 357-8800
CH^{*},CS
Hewlett-Packard Co.
5201 Tollview Drive
ROLLING MEADOWS, IL 60008
Tel: (312) 255-9800
Telex: 910-687-1066
A,CH,CM,CS,E,M

Indiana

Hewlett-Packard Co.
11911 N. Meridian St.
CARMEL, IN 46032
Tel: (317) 844-4100
A,CH,CM,CS,E,M

Iowa

Hewlett-Packard Co.
4070 22nd Av. SW
CEDAR RAPIDS, IA 52404
Tel: (319) 390-4250
CH,CS,E,M

UNITED STATES (Cont'd)

Hewlett-Packard Co.
4201 Corporate Dr.
WEST DES MOINES, IA 50265
Tel: (515) 224-1435
A**,CH,M**

Kentucky

Hewlett-Packard Co. 10300 Linn Station Road, \#100
LOUISVILLE, KY 40223
Tel: (502) 426-0100
A,CH,CS,M

Louisiana

Hewlett-Packard Co. 160 James Drive East
ST. ROSE, LA 70087
P.O. Box 1449

KENNER, LA 70063
Tel: (504) 467-4100
A,C,CH,E,M,P*

Maryland

Hewlett-Packard Co.
3701 Koppers Street
BALTIMORE, MD 21227
Tel: (301) 644-5800
Telex: 710-862-1943
A,CH,CM,CS,E,M
Hewlett-Packard Co. 2 Choke Cherry Road ROCKVILLE, MD 20850
Tel: (301) 948-6370
A,CH,CM,CS,E,M
Massachusetts
Hewlett-Packard Co.
1775 Minuteman Road
ANDOVER, MA 01810
Tel: (617) 682-1500 A,C,CH,CS,CM,E,M,P*
Hewlett-Packard Co. 32 Hartwell Avenue LEXINGTON, MA 02173
Tel: (617) 861-8960
CH,CS,
Michigan
Hewlett-Packard Co. 4326 Cascade Road S.E. GRAND RAPIDS, MI 49506
Tel: (616) 957-1970 CH,CS,M
Hewlett-Packard Co. 39550 Orchard Hill Place Drive NOVI, MI 48050
Tel: (313) 349-9200
A,CH,CS,E,M
Hewlett-Packard Co.
1771 W. Big Beaver Road
TROY, MI 48084
Tel: (313) 643-6474
CH, CS

Minnesota

Hewlett-Packard Co.
2025 W. Larpenteur Ave.
ST. PAUL, MN 55113
Tel: (612) 644-1100
A,CH,CM,CS,E,M

Missouri
Hewlett-Packard Co.
1001 E. 101st Terrace
KANSAS CITY, MO 64131
Tel: (816) 941-0411
A,CH,CM,CS,E,M
Hewlett-Packard Co. 13001 Hollenberg Drive BRIDGETON, MO 63044
Tel: (314) 344-5100
A,CH,CS,E,M

Nebraska

Hewlett-Packard
10824 Old Mill Rd., Suite 3
OMAHA, NE 68154
Tel: (402) 334-1813
CM,M

New Jersey

Hewlett-Packard Co. 120 W. Century Road PARAMUS, NJ 07652 Tel: (201) 265-5000 A,CH,CM,CS,E,M
Hewlett-Packard Co. 20 New England Av. West PISCATAWAY, NJ 08854
Tel: (201) 981-1199
A,CH,CM,CS,E
New Mexico
Hewlett-Packard Co. 11300 Lomas Blvd.,N.E. P.O. Box 11634

ALBUQUERQUE, NM 87112
Tel: (505) 292-1330
CH,CS,E,M

New York

Hewlett-Packard Co.
5 Computer Drive South
ALBANY, NY 12205
Tel: (518) 458-1550
A,CH,E,M
Hewlett-Packard Co.
9600 Main Street
P.O. Box AC

CLARENCE, NY 14031
Tel: (716) 759-8621
CH,CS, E
Hewlett-Packard Co.
200 Cross Keys Office Park
FAIRPORT, NY 14450
Tel: (716) 223-9950
А,СН,СМ,СS,E,M
Hewlett-Packard Co.
7641 Henry Clay Blvd.
LIVERPOOL, NY 13088
Tel: (315) 451-1820
A,CH,CM,CS,E,M
Hewlett-Packard Co.
No. 1 Pennsylvania Plaza
55th Floor
34th Street \& 8th Avenue
MANHATTAN NY 10119
Tel: (212) 971-0800
CH,CS,M*
Hewlett-Packard Co.
15 Myers Corner Rd.
WAPPINGER FALLS, NY 12590
CM, E

Hewlett-Packard Co.
250 Westchester Avenue
WHITE PLAINS, NY 10604
Tel: (914) 684-6100
CM,CH,CS,E
Hewlett-Packard Co.
3 Crossways Park West
WOODBURY, NY 11797
Tel: (516) 921-0300
A,CH,CM,CS,E,M
North Carolina
Hewlett-Packard Co.
305 Gregson Dr.
CARY, NC 27511
Tel: (919) 467-6600
C,CH,CM,CS,E,M, P*
Hewlett-Packard Co.
$9600-$ H Southern Pine Blva.
CHARLOTTE, NC 28210
Tel: (704) 527-8780
CH^{*}, CS^{*}
Hewlett-Packard Co.
5605 Roanne Way
P.O. Box 26500

GREENSBORO, NC 27420
Tel: (919) 852-1800
A,C,CH,CM,CS,E,M,P*
Ohio
Hewlett-Packard Co.
9920 Carver Road
CINCINNATI, OH 45242
Tel: (513) 891-9870
CH,CS,M
Hewlett-Packard Co.
16500 Sprague Road
CLEVELAND, OH 44130
Tel: (216) 243-7300
A,СН,СМ,СС,Е,М
Hewlett-Packard Co.
980 Springboro Pike
MIAMISBURG, OH 45343
Tel: (513) 859-8202
A,CH,CM,E*,M
Hewlett-Packard Co.
675 Brooksedge Blvd.
WESTERVILLE, OH 43081
Tel: (614) 436-1041
CH,CM,CS,E*

Oklahoma

Hewlett-Packard Co.
304 N. Meridian, Suite A
P.O. Box 75609

OKLAHOMA CITY, OK 73147
Tel: (405) 946-9499
C,CH,CS,E*,M
Hewlett-Packard Co.
3840 S. 103 rd E. Ave., \#100
P.O. Box 35747

TULSA, OK 74153
Tel: (918) 665-3300
A $^{* *}, \mathrm{C}, \mathrm{CH}, \mathrm{CS}, \mathrm{M}^{*}, \mathrm{E}, \mathrm{P}^{*}$

Oregon

Hewlett-Packard Co.
9255 S. W. Pioneer Court
P.O. Box 328

WILSONVILLE, OR 97070
Tel: (503) 682-8000
A,CH,CS,E*,M

Pennsylvania
Hewlett-Packard Co. 50 Dorchester Rd.
P.O. Box 6080

HARRISBURG, PA 17111
Tel: (717) 657-5900
C
Hewlett-Packard Co.
111 Zeta Drive
PITTSBURGH, PA 15238
Tel: (412) 782-0400
A,CH,CS,E,M
Hewlett-Packard Co. 2750 Monroe Boulevard
P.O. Box 713

VALLEY FORGE, PA 19482
Tel: (215) 666-9000
A,CH,CM,CS,E,M
South Carolina
Hewlett-Packard Co.
Brookside Park, Suite 122
1 Harbison Way
P.O. Box 21708

COLUMBIA, SC 29221
Tel: (803) 732-0400
A,C,CH,CS,M
Hewlett-Packard Co.
100 Executive Cntr. Dr.
Koger Executive Center
Chesterfield Bldg., Suite 124
GREENVILLE, SC 29615
Tel: (803) 297-4120
C
Tennessee
Hewlett-Packard Co.
One Energy Centr. \#200
Pellissippi Pkwy.
P.O. Box 22490

KNOXVILLE, TN 37933
Tel: (615) 966-4747
A,C,CH,CS,M
Hewlett-Packard Co.
3070 Directors Row
MEMPHIS, TN 38131
Tel: (901) 346-8370
A,C,M
Hewlett-Packard Co.
220 Great Circle Road, Suite 116
NASHVILLE, TN 37228
Tel: (615) 255-1271
C,M, ${ }^{*}$
Texas
Hewlett-Packard Co.
11002-B Metric Boulevard
AUSTM, TX 78758
Tel: (512) 835-6771
C,CM,E,P*
Hewlett-Packard Co.
5700 Cromo Dr
P.O. Box 12903

EL PASO, TX 79913
Tel: (915) 833-4400
$\mathrm{CH}, \mathrm{E}^{*}, \mathrm{M}^{* *}$

UNITED STATES (Cont'd)
Hewlett-Packard Co.
3952 Sand Shell St
FORT WORTH, TX 76137
Tel: (817) 232-9500
A,C,CH,E,M
Hewlett-Packard Co.
10535 Harwin Drive
P.O. Box 42816

HOUSTON, TX 77042
Tel: (713) 776-6400
A,C,CH,CS,E,M,P*
Hewlett-Packard Co.
511 W. John W. Carpenter Fwy.
Royal Tech. Center \#100
IRVINE, TX 75062
Tel: (214) 556-1950
C,CH,CS,E
Hewlett-Packard Co.
930 E. Campbell Rd.
P.O. Box 83/1270

RICHARDSON, TX 75083-1270
Tel: (214) 231-6101
A,CH,CM,CS,E,M,P*
Hewlett-Packard Co.
1020 Central Parkway South
P.O. Box 32993

SAN ANTONIO, TX 78232
Tel: (512) 494-9336
A,C,CH,CS,E,M,P*
Utah
Hewlett-Packard Co.
3530 W. 2100 South
P.O. Box 26626

SALT LAKE CITY, UT 84126
Tel: (801) 974-1700
A,CH,CS,E,M

Virginia

Hewlett-Packard Co.
4305 Cox Road
GLEN ALLEN, VA 23060
P.O. Box 9669

RICHMOND, VA 23228
Tel: (804) 747-7750
A,C,CH,CS,E,M,P*

Washington

Hewlett-Packard Co.
15815 S.E. 37th Street
BELLEVUE, WA 98006
Tel: (206) 643-4000
A,CH,CM,CS,E,M

Hewlett-Packard Co.
708 North Argonne Road P.O. Box 3808 SPOKANE, WA 99220-3808
Tel: (509) 922-7000
CH,CS
West Virginia
Hewlett-Packard Co.
4604 MacCorkle Ave.
CHARLESTON, WV 25304
Tel: (304) 925-0492
A,M
Wisconsin
Hewlett-Packard Co. 275 N. Corporate Dr. BROOKFIELD, WI 53005 Tel: (414) 784-8800 A,CH,CS,E*,M
URUGUAY
Pablo Ferrando S.A.C. e I.
Avenida Italia 2877
Casilla de Correo 370
MONTEVIDEO
Tel: 80-2586
Telex: Public Booth 901
A,CM,, , M
Mini Computadores, Ltda.
Avda. del Libertador Brig
Gral Lavalleja 2071
Local 007
MONTEVIDEO
Tel: 29-55-22
Telex: 901 P BOOTH UY
P
Olympia de Uruguay S.A.
Maquines de Oficina
Avda. del Libertador 1997
Casilla de Correos 6644
MONTEVIDEO
Tel: 91-1809, 98.-3807
Telex: 6342 OROU UY
P

VENEZUELA
Hewlett-Packard de Venezuela C.A.
3RA Transversal Los Ruices Norte
Edificio Segre 1, 2 \& 3
Apartado 50933
CARACAS 1071
Tel: 239-4133
Telex: 251046 HEWPACK
A,CH,CS,E,M,P
Hewlett-Packard de Venezuela C.A.
Residencias Tia Betty Local 1
Avenida 3 y con calfe 75
MARACAIBO, Estado Zulia
Apartado 2646
Tel: (061) 75801-75805-75806-
80304
Telex: 62464 HPMAR
C,E*
Hewlett-Packard de Venezuela C.A.
Urb. Lomas de Este
Torre Trebol - Piso 11
VALENCIA, Estado Carabobo
Apartado 3347
Tel: (041) 222992/223024
CH,CS,P
Albis Venezolana S.R.L.
Av. Las Marias, Ota. Alix,
El Pedregal
Apartado 81025
CARACAS 1080A
Tel: 747984, 742146
Telex: 24009 ALBIS VC
A
Tecnologica Medica del Caribe, C.A.
Multicentro Empresarial del Este
Ave. Libertador
Edif. Libertador
Nucleo "C" - Oficina 51-52
CARACAS
Tel: 339867/333780
M

CIZUCA
Cientifica Zulia C.A.
Calle 70, Los Olivos
No. 66-86
Apartado 1843
maracaibo
Tel: 54-64-37, 54-63-85, 54-64-94
Telex: 62144
A
YUGOSLAVIA
Do Hermes
General Zdanova 4
Telex: YU-11000 BEOGRAD
A,CH,E,P
Hermes
Titova 50
Telex: YU-61000 LJUBLJANA
CH,CS, E,M, P
Elektrotehna
Titova 51
Telex: YU-61000 LJUBLJANA
CM
ZAMBIA
R.J. Tilbury (Zambia) Ltd.
P.O. Box 32792

LUSAKA
Tel: 215590
Telex: 40128
E
ZIMBABWE
Field Technical Sales
45 Kelvin Road, North
P.B. 3458

SALISBURY
Tel: 705231
Telex: 4-122 RH
E,P
August 1984
HP distributors are printed in italics.

[^0]: ASSISTANCE
 Product maintenance agreements and other customer assistance agreements are available for Hewlett-Packard products.

 For any assistance, contact your nearest Hewlett-Packard Sales and Service Office. Addresses are provided at the back of this manual.

