
HP64000
Logic Development
System

Model 64817A
HP64000
HOST Pascal

F//0- HEWLETT
a:~ PACKARD

CERTIFICATION
Hewlett-Packard Company certifies that this product met its published specifications at the
time of shipment from the factory. Hewlett-Packard further certifies that its calibration
measurements are traceable to the United States National Bureau of Standards, to the extent
allowed by the Bureau's calibration facility, and to the calibration facilities of other
International Standards Organization members.

WARRANTY
This Hewlett-Packard system product is warranted against defects in materials and
workmanship for a period of 90 days from date of installation. During the warranty period, HP
will, at its option, either repair or replace products which prove to be defective.

Warranty service of this product will be performed at Buyer's facility at no charge within HP
service travel areas. Outside HP service travel areas, warranty service will be performed at
Buyer's facility only upon HP's prior agreement and Buyer shall pay HP's round trip travel
expenses. In all other cases, products must be returned to a service facility designated by HP.

For products returned to HP for warranty service. Buyer shall prepay shipping charges to HP
and HP shall pay shipping charges to return the product to Buyer. However, Buyer shall pay all
shipping charges, duties, and taxes for products returned to HP from another country.

HP warrants that its software and firmware designated by HP for use with an instrument will
execute its programming instructions when properly installed on that instrument. HP does not
warrant that the operation of the instrument, or software, or firmware will be uninterrupted or
error free.

LIMITATION OF WARRANTY

The foregoing warranty shall not apply to defects resulting from improper or inadequate
maintenance by Buyer, Buyer-supplied software or interfacing, unauthorized modification or
misuse, operation outside of the environmental specifications for the product, or improper site
preparation or maintenance.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED. HP SPECIFICALLY DISCLAIMS THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE.

EXCLUSIVE REMEDIES

THE REMEDIES PROVIDED HEREIN ARE BUYER'S SOLE AND EXCLUSIVE REMEDIES. HP
SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES, WHETHER BASED ON CONTRACT, TORT, OR ANY OTHER
LEGAL THEORY.

ASSISTANCE
Product maintenance agreements and other customer assistance agreements are available for
Hewlett-Packard products. ·

For any assistance, contact your nearest Hewlett-Packard Sales and Service Office.

HP64000

HOST Pascal

©COPYRIGHT HEWLETT-PACKARD COMPANY 1982, 1983
LOGIC SYSTEMS DIVISION

COLORADO SPRINGS, COLORADO, U. S. A.

A.LL IUGHTS llESEll VED

Printing History

Each new edition of this manual incorporates all material updated since
the previous edition. Manual change sheets are issued between editions,
allowing you to correct or insert information in the current edition.

The part number on the back cover changes only when each new edition is
published. Minor corrections or additions may be made as the manual is
reprinted between editions.

First Edition .•••...•••.. January, 1982 (P/N 64817-90902)
Second Edition ••••.•.••... May, 1982 (P/N 64817-90903)
Third Edition .••••.••••••••• December, 1983 (P /N 64817-90904)

ii

Model 64817A
HP 64000
HOST Pascal

TABLE OF CONTENTS

Chapter I: General Information
Introduction•... 1-1
HOST Pas cal Compiler ...•.. 1-1
HOST Pas cal Ex tens ions .. 1-1

Chapter 2: Source Code Considerations
Introduction ...•.. 2-1
Character Set . .. 2-1

Alphabetic Characters •.........................•.................... 2-1
Numeric Characters•.................................... 2-1
Special Characters ..•..•......................•..................... 2-1

Reserved Words•........................ 2-4
Identifiers•.. 2-5
Predefined Identifiers .. 2-6

Predefined Procedures•........ 2-6
Predefined Functions•.....................•.. 2-6
Predefined Files •................................•.................. 2-6
Predefined Types•... 2-7
Predefined Constants•........... 2-7

Directives .. 2-7
String Literals ...•...•...............................•............... 2-7
Comments 2-8
HOST Compiler Options•..................................•......... 2-8

Chapter 3: General Form Of A Pascal Program
Introduction•..•....................................•.......•... 3-1
Main Program Module•....•.....•...........•..................... 3-1
Program Heading ...•.•.•..•......................•.....•............•.. 3-1
Program Block•....•.................•.....•............... 3-2
Segment . .. 3-4

Chapter 4: Pascal Program Declarations
Introduction•.....•.........................•..................... 4-1
Declaration Section•....•.......•............................•.. 4-2

LABEL Declaration ..••.•.........•.........................•......•.. 4-2
CONSTant Declaration ..•......••......................•.............. 4-3

Simple Constants•..•..•....•...•..............•..•........... 4-6
Structured Constants ..•.......•..•..•.............•............... 4-6
Array Constants•...••.......•.................•..•........ 4-7
RECORD Constant•......•........................•.... 4-8
SET Constant •....•.............•.................................. 4-9
String Literal•........•............•..•.•.•.•............... 4-10

TYPE Definitions •....•......................•..•..............•...... 4-10
TYPE ... 4-10
Type Declaration ... 4-11

Simple Types ..•..........•.......•...........•...........•.....•... 4-11
Ordinal Types 4-11
Predefined Ordinal Types ...•......................•................ 4-12

BOOLEAN . •............•..................•......•................. 4-12
CHAR. ••• 4-12
INTEGER ..•.•..................•....................•..•.......•.. 4-13

iii

Table of Contents (Cont'd)

User Defined Ordinal Types.
Enumerated Type.
Subrange Type ••.

Real Types •.
REAL ••••••
LONGREAL ..

Pointer Types ..
Structured Types.

Array
PAC . •...•.•..•••
String Data Types ..
RECORD ..
SET .•.
FILE •.

PACKED Type Modifier ••.
VARiable .•••.•.•.•..••
VARiable Declaration ••

Entire Variables ..••
Component Variables.
Indexed Variables ...

Field Designators •.
Buffer Variables ..•.
Referenced Variables.

Routine Declarations ••.
PROCEDURE Declaration ••.
FUNCTION Declaration.

Parameter Lists ..••.•..
Formal Parameter List •.
Actual Parameter List.

Value Parameter .•..
Variable Parameter.
Procedure Parameter.
Function Parameter .•...••••.

Parameter List Compatibility .••
Declarations Within Routines.

Routine Body .••.•.•..
Directives••...
Recursive Routines .•.

Scope .•..•.
Statements .•

Chapter 5: Statements and Expressions
Introduction
Statement Label .•••.••
Assignment Statement ••
Procedure Statement.
Compound Statement.
IF Statement •.•.
CASE Statement •.
WHILE Statement.
REPEAT Statement ••••••••••

.

iv

Model 64817A
HP 64000

HOST Pascal

.4-13

.4-13

.4-13

.4-14

.4-14

.4-14

.4-15

.4-15

.4-15

.4-17

.4-17

.4-19

.4-21

.4-21

.4-22

.4-23

.4-23

.4-24

.4-24

.4-24

.4-24

.4-24

.4-25

.4-25

.4-25

.4-26

.4-27

.4-27

.4-28

.4-28

.4-28

.4-29

.4-29

.4-29

.4-29

.4-29

.4-30

.4-30

.4-30

.4-31

.5-1

.5-2

.5-2

.5-3

.5-5

.5-5

.5-6

.5-7

.5-8

Model 64817A
HP 64000
HOST Pascal

Table of Contents (Cont'd)

FOR Statement ..
WITH Statement.
GOTO Statement.
Empty Statement ••.
Expressions.
Operands
Literals

Integer Literals.
Real Literals ...•
String Literals.

Symbolic Constants.
Variables.
Selectors.
Array Subscripts.
Field Selection .•
Pointer Dereferencing.
File Buffer Selection.
Operators ...•.....•...

Arithmetic Operators.
Boolean Operators.

NOT ..
AND ••
OR •.

Set Operators.
Set Union ...
Set Difference.
Set Intersection.

Set Constructor ••
String Operators ..
Relational Operators ..

Ordinal Relationals ..
PAC Relationals •.•••
String Comparison .•••
Pointer Relationals.
Set Relationals •.•

Function References •.
Constant Expressions.

Operators ••.•..•••..
Predefined Functions.
Operands

Type Compatibility.
Identical Types ..
Compatible Types.
Assignment Compatible Types •.

Special Cases .•.....•.....•..•••

Chapter 6: Files
Introduction ...
Logical Files .••.
Sequential Files.
Physical Files •••

v

.. 5-8
. ... 5-9

. ... 5-10

. ... 5-11

.... 5-11
. .5-13
. .5-13
.. 5-14

.5-14
. .5-14
.5-14

. . 5-15

.. 5-15

. .5-16

. .5-16
.5-16

. .5-16

. .5-17

. . 5-17
..•••• 5-18

. .5-18

. .5-18

. .5-18

. .5-19

. .5-19

. .5-19

.. 5-19
. 5-20

. . 5-21

. . 5-21

. . 5-21
........ 5-22

. . 5-22
. ... 5-22

.5-23
. . 5-23

.... 5-24

. ... 5-24
• • 5-24
. . 5-24
.5-25

.. 5-25

. .5-25

. .5-26

. . 5-27

... 6-1

. .. 6-1

. .. 6-2
• .6-2

Table of Contents (Cont'd)

Model 64817A
HP 64000

HOST Pascal

Textfiles•........................ 6-2
Logical File Characteristics•.......... 6-2

File Buffer Variable•...............•.......... 6-3
Current Position Pointer .. 6-3
File States ... 6-3

Opening Files ... 6-4
RESET ..•...••••...••.•..•..••........•.•..••••..•..••..•.•...•••.... 6-4
REWRITE•...•................. 6-4
APPEND . .•....................•................•..........•.......... 6-5

Associating Logical and Physical Files•...•...••..... 6-5
Associating Files Through the String Parameter 6-6
Sequential File Operations .•.. 6-6

Textfile Operation .. 6-6
GET(f) .•...•...... 6-6
Pt.JT(f) .. 6-7
READ(f ,v) ... 6-7
READ (f, v) With Textfiles•....... 6-8
READLN(f ,v)•.. 6-9
WRITE (f, e) ... 6-10
WRITE(f ,v) With Textfiles .. 6-11
WRITELN(f ,p) ... 6-12
PAGE(f) .. 6-13
LINEPOS(f) ... 6-13
EOLN (f) .. 6-13

Closing Files•...........•................... 6-13
Summary of Procedures and Functions•....•........•.•. 6-14

Chapter 7: Standard Procedures and Functions
File-Handling Procedures•........................ 7-1

APPEND (f) • • • • • . • • . • • • . . • • • . . . • 7 -1
RESET(f) .. 7-2
REWR.ITE (f) .. 7 - 2
CLOSE (f) .. 7 -2
GET .•.•..........•.. 7-2
PAGE •..•.•...•.••...•...•.•••.•..••..•••..•••...••......•..••••••••• 7-3
Pl.JT •••••••••••••••••••••••••••••.•••••••••••••••••••••••••••••••••.• 7-3
RE.AD . .•.•••.•....•.•...••..•.•.•.••....••....••...•..••..•.•....•... 7 -3
READLN•.•..................................•.............. 7 -4
TIMEOlJT (f, t) .. 7 -4
WR.ITE•...............••................•••....•...•.•........ 7-5
WRITELN . .•...............•..............•.............••...•..•..... 7 -5

String Handling Procedures and Functions•..... 7-6
SETSTRLEN . • . . • . 7 -6
STRAPPEND . . • • . • . • • • • • . • . . • . • • . . • . . • . • • . . • • . • . • • • . . • • • • . • • . • • • . • 7 -6
STR INSERT . 7 -6
STR.DELETE . . • • • • • . . . • • . . . • . . • • . . . • • • • • • . . • • • • • • • . • . • • . 1-7
STR.MOVE • . • • • • • • • 1-7
STRLEN • • • . . • . • . • • . . . • . . . • • . . . • . • • . . • . • • • • • • • • • • • • . • . • 7 .-8
STRMAX •• 7-8
STR ·••.•..•..............•. .• 7-8
STRLTRIM•.......................•...................•...... 7 -9

vi

Model 64817A
HP 64000
HOST Pascal

Table of Contents (Cont'd)

STRRTRIM••...................................•......•...•...... 7-9
STRREAD • 7 -9
STRWRITE .•••••...••..•.•......•..............•...•.•.•.....•....•.. 7 -10
STRRPI' • • . . . • • • • • • . . 7 -10
STRPOS•..•.••...•......•...........•..................••...•... 7-10

Dynamic Allocation and De-allocation Procedures••••....... 7-10
General Information•..••.......................•....•.... 7-10

NEW (p) • • • . . . • • . • . • . . . • . • . . . 7 -11
DISPOSE (p) .••..•.....•.....•.•.•.••.••.•...•.............•..•.••... 7-12
MARK{p) •• 7-12
RELEASE {p)•.•............••......•...•..•..•...•...•......•.•.. 7-12

Transfer Procedures•...•......•••....•....••...•.......•.... 7-12
PACK ...•......•...................•.........•....••.•.............. 7-12
UNPACK .•....•••...............•.....•....•.•.......•......•..•..... 7-14

Arithmetic Functions•..•.....•.•..•••..........•. 7-15
Abs .. 7-15
Sqr 7-15
Sqrt ...••....•.••...•.........•......•.•.................•••.•..... 7-15
Exp .. 7-15
Ln ... 7-15
Sin, Cos ...•...•..............••.•..••.......••....•.•...••........ 7-16
Arctan•......•............••.•...................•...••..... 7-16

Predicates••......•.....•...•.....•.•....•....•...•.••••••.•..... 7-16
Odd••....•.....•...••....•••......•....•.••••.••..••.•• ,7-16
Eof ,7-16
Eoln ... 7-16

Trans fer Fun ct ions ...•..•.•....•.•.•...•.•....•...•••......•••..••••. 7-16
Trunc 7-16
Round•.......•.....•.....••..•....•• 7 -1 7

Ordinal Functions ...•....••.•..........••.•••.•.•.•...•...•...•.••••. 7-17
Ord 7 -1 7
Chr .. 7-18
Succ ... 7-18
Pred •.••.•...•.•....•......•.•.......•..•.•.•..................••.. 7-18

Numeric Conversion Functions •..•..••••.•..•••.......•......•..•.••••• 7-19
Ii.EX ..•..•.•....•........•.....••••.•...........•.••....•.•.....•••• 7-19
OCTAL .. 7-19
BINARY•.•.•.••...........•.•....•.•••...............•••.•..••. 7-19

File Handling Functions •.............•.........•....•......•.•..•..•. 7-19
LINEPOS•.•..•.•..•..•.....•....•.•..•........••..•..•..•....•.. 7-19
POSITION••.•.••.•.•..••.............••..•.•.•••.•.••..•.••.•.. 7-19
IORESULT .•.•.•.••.•••...••...•...•...•..•.....••..•..••••..•.•..... 7-19

Chapter 8: Implementation of HOST Pascal
Introduction ,, 8-1
Data Al location•..•.••••..••.•..••........•...•..••.••.••.•..•.•. 8-1

Allocation for Scalar Variables••.......•...•..•.•••..•.••...•. 8-1
Allocation for Structured Variables•.....••.•.....•.•. 8-3
Allocation for Elements of Packed Structures ...•..•.•.•••....••.•... 8-4

vii

Table of Contents (Cont'd)

Model 64817A
HP 64000

HOST Pascal

Examples of Packed and Unpacked Structure Allocation 8-6
Example 1: Unpacked structure allocation•. 8-6
Example 2: Packed Record Allocation With Unpacked Array .•.......... 8-8
Example 3: Packed Record Allocation With Packed Array 8-10

Memory Al location ..•....•..•.....•....••.........................••.. 8-11
I/O Error Handling•...................•..................... 8-12

Chapter 9: Using HOST Pascal
The Source File ... 9-1
Compiling The Source File•............ 9-1
Command Parameters•............•........................... 9- 2

Source File••.•..•..............•......•........•........... 9-2
Listfile ...•.......... 9-3
Opt ions _ ... 9-3

Running HOST Pascal Programs .. 9-4
Run Command Parameters .. 9-4
Additional Program Parameters ... 9-6

Appendix A: Compile-Time and Run-Time Error Messages
Compile-Time Error Messages ... A-1
Run-Time Error Messages•........................•...........•..... A-5

Legend A-5

Appendix B: Sample Pascal Programs
Sample Programs ... B-1

Appendix C: Input/Output Characteristics
Introduction C-1
Disc Files C-1
Text Files ... C-1
Non-text Files .. C-2
I/O Devices . .. C-2

Null .. C-2
Keyboard•.....•.................................. C- 2
Display ... C-3
Printer . .. C-3
Displayl C-3
RS-232 .. C-6

Hardware Options•..•.................... C-7
Receiver and Transmitter•....•.•..................•. C-7
Character and Protocol Transparency ...•..........•....•......••••. c-7
Circular Buffers•................•....•....•.............•.•.. C-8
TIMEOUT (F , T) Procedure•......•...•......•.............. C-8
RS-232 Receiver Operation•......•.............•....•..•..... C-9
RS-232 Transmitter Operation ...•.....••...••........•..•.••..•... C-10
Modem Control C-11
Restricted Use of READ and READLN••.......•....••.......••.•. C-11
Timing Considerations•....•............•••................ C-11

Example Program of RS-232 Implementation••...•.•.........• C-13

Index ... I -1

viii

Model 64817A
HP 64000
HOST Pascal

2-1.
2-2.
3-1.
3-2.
3-3.
4-1.
4-2.
4-3.
4-4.
4-5.
4-6.
4-7.
4-8.
4-9.
4-10.
4-11.
4-12.
4-13.
4-14.
4-15.
4-16.
4-17.
4-18.
4-19.
4-20.
4-21.
4-22.
4-23.
4-24.
4-25.
4-26.
4-27.
4-28.
4-29.
5-1.
5-2.
5-3.
5-4.
5-5.
5-6.
5-7.
5-8.
5-9.
5-10.
5-11.
5-12.
5-13.
5-14.
5-15.
5-16.
5-17.

LIST OF ILLUSTRATIONS

Identifier Syntax .. 2-5
Compiler Options Syntax 2-9
Pro gram Syn tax ... 3-1
Heading Syntax ... 3-1
Program Block Syntax ... 3-3
Declaration Syntax ... 4-2
LABEL Declaration Syntax 4-3
CONSTant Declaration Syntax 4-4
String Literal Syntax•................. 4-5
Integer Syntax ... 4-5
Real Syntax•.................................. 4-5
Structured Constant Syntax .•................................... 4-6
Array Constant Syntax ..•. 4-7
RECORD Constant Syntax•................................•.. 4-8
SET Constant Syntax ...•.. 4-9
TYPE Declaration Syntax 4-11
TYPE Syntax•............ 4-12
Enumerated Type Syntax•..........................•.... 4-13
Subrange Type Syntax•........•... 4-14
Po inter Type Syntax•... 4-15
Array Syn tax•........................... 4-16
String Type Syntax ...• 4-18
Record Type Syntax .•.. 4-20
Field List Syntax ... 4-20
Set Type Syntax•........................... 4-21
File Type Syntax•...................................•.... 4-22
PACKED Modifier Syntax•............ 4-22
VARiable Declaration Syntax•..................... 4-23
Routine Declaration Syntax 4-25
PROCEDURE Heading Syntax•.....•........ 4-25
FUN CTI ON Heading Syn tax•..•...•.....•....•..... 4- 26
Formal Parameter List Syntax•••..............•. 4-27
Actual Parameter List Syntax•.....•.......... 4-28
Statement List Syntax •.....•......•......•.................... 4-31
Statement Syntax . .. 5-2
Assignment Statement Syntax•..•..................... 5-3
Procedure Statement Syntax •.•............•..•.................. 5-4
Compound Statement Syntax•... 5-5
IF Statement Syntax•........•............................. 5-6
CASE Statement Syntax .. 5-7
WHILE Statement Syntax ... 5-8
REPEAT Statement Syntax ..•....................•................ 5-8
FOR Statement Syntax ..•.......................•...•............ 5-9
WITH Statement Syntax ...•...•................•.......•....•... 5-10
GOTO Statement Syntax •...................•..••................ 5-11
Express ion Syntax•.......•............••..• 5-11
Simple Expression Syntax ..••....................•...••........ 5-12
Term Syntax•...•...............................•... 5-12
Factor Syntax•................................•...•.•.... 5-13
Selector Syntax ..••. 5-15
Set Constructor Syntax•.......••..•.......•......... 5-20

ix

List of Illustrations (Cont'd)

Model 64817A
HP 64000

HOST Pascal

6-1. READ INTEGER Syntax•............ 6-8
6-2. READ REAL or LONGREAL Syntax•....•....•...•...... 6-9
8-1. Unpacked Structure Allocation•.................... 8-7
8-2. Packed Record Allocation With Unpacked Array•. 8-9
8-3. Packed Record Allocation With Packed Array •..•................ 8-11
9-1. Compile Command ·syntax•...........••.•....•.. 9-2
9-2. Source File Name Syntax•.....•....•..•.......•.. 9-2
9-3. Run Command Syntax ... 9-4

LIST OF TABLES

6-1. Field Width Parameter Default Values•................. 6-11
6-2. Procedure and Function to File Association•......... 6-14
7-1. IORESULT Definitions•......•.. 7-20
8-1. Allocations for Scalar Variables 8-2
8-2. Allocations for Structured Variables•................. 8-3
8-3. Allocations for Elements of Packed Structures••.... 8-4

x

Chapter 1
General Information

Introduction

This manual describes the Hewlett-Packard HOST Pascal compiler and its
operation on the HP Model 64000 Logic Development Station.

HOST Pascal Compiler

The HOST Pascal compiler is an application program that translates Pascal
source programs into a pseudo opcode file that will execute on the HP
Model 64000.

The HOST Pascal language is a superset of "standard" Pascal. "Standard"
here refers to the ISO (International Standards Organization) Pascal
Standard.

It is assumed that the user has some knowledge of the Pascal language as
defined by Jensen and Wirth and other reference books on standard Pascal.

HOST Pascal Extensions

HOST Pascal contains enhancements that provide more versatility for
programming.

• The CASE statement can have an OTHERWISE clause.

• Constant-value expressions are allowed in places where a con
stant is allowed in standard Pascal.

• CONST, TYPE, and VAR declaration sections may be in any order
after the optional LABEL declaration section and any number of
CONST, TYPE, or VAR declaration sections is allowed.

e Dynamic memory procedures, MARK and RELEASE, may be used in the
same program using the standard memory management procedures
NEW and DISPOSE.

° Compiler directives may be specified in a flexible manner using
the $ character as a delimiter.

• Constant lists in the CASE statement and RECORD variant defini
tions may use the" .. " symbol to denote a range of values.

• Constant arrays, records, and sets may be defined in the CONST
declaration section.

1-1

1-2

Model 64817A
HP64ooo

HOST Pascal

• Functions may return a value of any assignable data type.

• There is an extended syntax for string literals that uses the #
character to allow non-printing characters to be incorporated
into string literals.

• There is a predefined double precision real data type called
LONGREAL.

• There is a predefined family of data types called STRINGs.
These are similar to packed arrays uf character but have a
dynamic length attribute that allows the number of characters
contained in the string to be variable.

• There are a number of predefined procedures and functions that
perform useful operations with STRING data types.

• Predefined procedures APPEND and CLOSE, and predefined func
tions POSITION and LINEPOS enhance input/output capability.

• Predefined functions HEX, OCTAL, and BINARY perform number base
conversions.

Chapter 2
Source Code Considerations

Introduction

The HOST Pascal Compiler will run on any HP 64000 system, provided that
the memory expansion module is present in the logic chassis. The HOST
Pascal Compiler allows the user the development of Pascal programs for
the execution of repetitive tasks, performing mathematical calculations,
and solving problems. Basically, the HOST compiler .allows the 64000 sys
tem to be used as a mini-computer.

The HOST compiler accepts as input a sequence of statements from one or
more source code files for conversion into a quasi-machine code which is
stored in the 64000 for future use. This chapter discusses some source
code features that must be considered when writing a source program.

Character Set

Alphabetic Characters

The alphabetic characters include all upper and lower case characters,
i.e., 'A' thru 'Z' and 'a' thru 'z'.

Numeric Characters

The numeric characters include the digits 0 thru 9 for decimal numbers.

Special Characters

The special character set (symbols) and their use in Pascal programming
are described as follows:

Character
(Symbol)

*

(* ... *)

{ ... }

Description

Apostrophe

Asterisk

Use

String Literal Delimiter.

Arithmetic operator-multiply; set
intersection.

Asterisk/Parenthesis Comment delimiters.

Braces Comment delimiters.

2-1

2-2

[... 1

NOTE

Model 64817A
HP64ooo

HOST Pascal

The "(*" and 11
{" comment delimiters are equal in

power and can be used interchangeably without regard
to the right delimiter used. The "}" and "*)" com
ment delimiters are equal in power and can be used
interchangeably without regard to the left delimiter
used.

Brackets Set constructor; structured constant
delimiter; array index delimiters.

(. } Parenthesis/Period Set constructor; structured con
stant; array index delimiters.

$

=

(...)

+

NOTE

The 11
[

11 and " (. 11 set delimiters are equal in power
and can be used interchangeably without regard to the
right delimiter used. The "]" and 11

•) " set
delimiters are equal in power and can be used inter
changeably without regard to the left delimiter used.

Colon

Comma

Dollar sign

Equal sign

Minus sign

Parentheses

Period

Plus sign

Case constant list delimiter; state
ment label delimiter; field width
delimiter; identifier list
delimiter.

Argument list separator; structured
constant value list separator;
enumerated type list separator.

Compiler
delimiter.

option (directive)

Equality (relational operator}.

Arithmetic operator-subtract/
negate; set difference.

Delimits a parameter list or an ex
pression group; delimits an
enumerated type.

End of program; decimal point; field
selector.

Arithmetic operator-addition; string
concatenation; set union.

Model 64817A
HP64ooo
HOST Pascal

I

I

@

Pound sign

Semicolon

Slant bar

Underscore

Caret

At

Indicates non-printing character in
string constant.

Parameter
separator.

separator; statement

Arithmetic operator-real divide.

Allowed in identifiers but not as
first character.

Indicates file buffer accessing; in
dicates pointer dereferencing.

Indicates file buffer accessing; in
dicates pointer dereferencing.

NOTE

The caret and "at" are equal in power and can be used
interchangeably.

:= Symbol Assignment indicator.

> Symbol Greater than (relational operator).

>= Symbol Greater than or equal to (relational
. operator); superset of.

< Symbol Less than (relational operator).

<= Symbol Less than or equal to (relational
operator); subset of.

<> Symbol Not equal (relational operator).

Symbol Subrange.

2-3

Reserved Words

Model 64817A
HP64ooo

HOST Pascal

The following words are reserved. They have special meaning to the HOST
compiler and cannot be used as identifiers or user-defined symbols.

Reserved Word(s)

AND

.ARRAY

BEGIN, END

CASE, OF, OTHERWISE

CONST

DIV

FILE

FOR, TO, DOWNTO, DO

FUNCTION

GOTO

IF, THEN, ELSE

IN

LABEL

MOD

NIL

NOT

OR

PACKED

PROCEDURE

PROGRAM

RECORD

REPEAT, UNTIL

2-4

Description

Boolean conjunction operator.

A structured type.

Delimit a compound statement.

A conditional statement.

Indicates constant definition section.

Integer division operator.

A structured type.

A repetitive statement.

Indicates a function declaration.

Control transfer statement.

A conditional statement.

Set inclusion operator.

Indicates label definition section.

Integer modulus operator.

Special pointer value.

Boolean negation operator.

Boolean disjunction operator.

Controls storage allocation for structured
type.

Indicates a procedure declaration.

Program heading.

A structured type.

A repetitive statement.

Model 64817A
HP64ooo
HOST Pascal

SET

TYPE

VAR

WHILE, DO

WITH, DO

A structured type.

Indicates a type definition section.

Indicates a variable declaration section.

A repetitive statement.

Opens record scope(s).

ldentif iers

Identifiers are selected by the programmer to denote constants, types,
variables, procedures, functions, and programs. An identifier consists
of a letter followed by any combination of upper-case or lower-case let
ters, digits, or underscore () . The syntactical construction of an
identifier is shown in Figure 2~1.

IDENTIFIER LETTER

LETTER

DIGIT

Figure 2-1. Identifier Syntax

When constructing identifiers, the following rules should be observed:

a. The first character of an identifier must be a letter.

b. Identifiers may contain any number of characters up to a source
line in length. All characters are significant.

c. A reserved word cannot be used as an identifier.

d. Upper and lower case letters are not differentiated within
identifiers.

e. Each identifier must be unique within its scope, i.e., with a
procedure or function in which they are defined.

f. All identifiers must be defined before they are used, except
that a pointer type identifier may refer to a type that is
defined later in the same declaration section, and a program

2-5

Model 64817A
HP64ooo

HOST Pascal

parameter may refer to a file variable that is declared in the
program block.

Predefined Identifiers

There are certain predefined identifiers that will be recognized by the
HOST compiler without being defined in the program. These predefined
identifiers are listed in the following paragraphs.

Predefined Procedures

The following list of predefined procedures will be recognized by the
compiler without further definition (refer to Chapter 7 for an explana
tion of each procedure):

append new reset strread
close pack rewrite strwrite
dispose page setstrlen timeout
get put strappend unpack
halt read strdelete write
mark readln strinsert writeln

release strmove

Predefined Functions

The following list of predefined functions will be recognized by the com
piler without further definition (refer to Chapter 7 for an explanation
of. each function):

abs exp
arc tan hex
binary ioresult
chr linepos
cos ln
eof octal
eoln odd

ord

Predefined Files

position
pred
round
sin
sqr
sqrt
str
strlen

strltrim
strmax
strpos

. strrpt
strrtrim
succ
trunc

The following predefined files will be recognized by the compiler without
further definition; they must, however, be indicated in the program pa
rameter list if they are used in the program. (Refer to Chapter 6 for an
explanation of each file.)

input output

2-6

Model 64817A
HP64ooo
HOST Pascal

Predefined Types

The following list of predefined types will be recognized by the compiler
without further definition (refer to Chapter 4 for an explanation of each
type):

boolean
char

Predefined Constants

integer
longreal

real
string

text

The following list of predefined constants will be recognized by the com
piler without further definition (refer to Chapter 5 for an explanation
of each constant):

false
maxint

min int
true

Directives

A directive introduces a procedure or function declaration for which
there is no block specified.

forward Indicates to the compiler that a block for the
routine appears later in the program.

String Literals

A string literal is a sequence of ASCII characters enclosed by
apostrophes. String literals are constants of the PAC type or the string
type. String literals containing a single character may also be of the
predefined type CHAR.

a. Non-printing (and other) characters are encoded after a pound
symbol (fl).

Example:

#48 is the representation for 'O'.

b. If a string literal is to contain an apostrophe, the apostrophe
is written twice.

c. String literals must be contained on a single line.

d. Characters between apostrophes must be in the range chr(32)
thru chr(126), i.e., 'space' thru 'tilde'.

Additional information on string literals and character constants may be
found in Chapter 5.

2-7

Comments

Model 64817A
HP64ooo

HOST Pascal

Words and messages contained in braces { •.. }, or parentheses/asterisks
(* ••. *),are comments used to document the program. Comments are ignored
by the compiler. A comment has the form:

{character string} or (*character string} or

(*character string*) or {character string*)

Conventions to be observed when using comments are listed below:

a. Since a comment is equivalent to a blank, it may be placed
anywhere in the program that a blank is permitted.

b. A comment beginning with a left brace ({) need not terminate
with a right brace (}). A comment beginning with the compound
symbol (*need not terminate with the compound symbol*).

HOST Compiler Options

The compiler interprets the following construct as a compiler directive:

$<compiler_options>$

where <compiler_options> may be any or all of the following:

ANSI
INCLUDE
BUFFERS
NOSAVE
EXTENSIONS
LIST

PAGE
IOCHECK
RANGE
CODE
PARTIAL EVAL
WIDTH

LINESIZE
TITLE
XREF
SWAP
SHORTID
SEGMENT

Compiler options may be inserted between any two tokens (identifiers,
numbers, string literals, and special symbols). They are used to inform
the compiler about changing needs within the program. A compiler option
is a separator (as is a space or a comment) in the Pascal program.
Compiler options must begin with a dollar sign and close with a dollar
sign. A compiler error will result if no closing dollar sign appears on
the line. A compiler option must exist entirely on one line.

The compiler option specification may include an option value. If no op
tion value is specified, then, for options that require an ON - OFF
value, ON is assumed. Otherwise, for options that require an integer or
string literal value, the option is set to its default value.

The compiler option syntax is defined here, and the syntax diagram is
shown in Figure 2-2.

2-8

Model 64817A
HP64ooo
HOST Pascal

<compiler options>
<option>

::=<option> {<separator> <option>}
::=<identifier> <option value> I <empty>
::=ON I OFF I <signed integer> I <option value>

<string literal> I <empty>
<separator> : : = ; I ,

IDENTIFIER t-------i ON

OFF

SIGNED
INTEGER

STRING
LITERAL

Figure 2-2. Compiler Options Syntax

The compiler options are described in the following paragraphs.

ANSI

INCLUDE

BUFFERS

The compiler option ANSI, when ON, causes warning messages
to be issued for all features of HOST Pascal that are not
part of ANSI Standard Pascal. Default is OFF.

The compiler option INCLUDE is followed by a string literal
that names a file containing text to be included at the
current position in the program. The included code may not
contain additional INCLUDE options. The remainder of the
line, after the closing'$', must be blank. INCLUDE has no
default.

The compiler option BUFFERS specifies the number of 128
word blocks to be made available for the file buffer.
Allowable values are 1, 2, 4, 8, or 16. This option ap
plies to all succeeding variable definitions involving
files. If the standard files INPUT and OUTPUT appear in
the program heading and the BUFFERS option is to apply to
them, the option must appear before the program heading.
Default is 1.

2-9

Model 64817A
HP64ooo

HOST Pascal

NOSAVE The compiler option NOSAVE specifies that the values of
structured constants, i.e. , constant arrays and constant
records, will not be available to use in a later structured
constant definition. This can result in a significant
savings of memory at compile time. Default is OFF.

EXTENSIONS The Compiler option EXTENSIONS allows language features
that are extensions to HP Standard Pascal to be used.
Default is OFF.

LIST The compiler option LIST, when off, suppresses source code
listing, except for lines that contain errors. Default is
ON.

PAGE The compiler option PAGE causes listing to continue at the
top of the next page if LIST is ON. PAGE has no default
value.

IOCHECK The compiler option IOCHECK specifies that code will be
emitted so that an I/O error will cause an immediate run
time error. Default. is ON.

RANGE The compiler option RANGE specifies that run-time checks of
array index, parameter, and assignment values be carried
out. Default is ON.

CODE The compiler option CODE specifies that object code will be
generated. If CODE OFF is ever specified, no object file
will be generated regardless of any other CODE ON direc
tives. Default is ON.

PARTIAL EVAL The compiler option PARTIAL EVAL, when ON, causes evalua
tion of a Boolean expression-to cease when the left operand
evaluates to an opposing value. Evaluation ceases when the
operand preceding AND evaluates false, and when the operand
preceding OR evaluates TRUE. The option, when OFF, forces
evaluation of the entire Boolean expression. Default is
OFF.

WIDTH The compiler option WIDTH specifies the number of sig
nificant characters in a source line. Additional charac
ters are ignored. Default is 240 characters.

LINESIZE The compiler option LINESIZE specifies the maximum number
of characters in a line that a text file will be able to
handle. It applies to all successive variable declarations
that involve text files. If the standard files INPUT and
OUTPUT appear in the program heading and the LINESIZE op
tion is to apply to them, it must appear before the program
heading. Default is 240.

2-10

Model 64817A
HP64ooo
HOST Pascal

TITLE

XREF

SWAP

SHORT ID

SEGMENT

The compiler option TITLE specifies that the string
parameter will be printed at the top of any subsequent
pages of the listing, provided that LIST is ON. Default is
all blanks.

The compiler. option XREF specifies that a cross reference
of the program will be generated at the end of the listing.
Default is OFF.

The compiler option SWAP, when ON, allows the compiler to
compile a considerably larger program but at the cost of
lower compilation speed. The compiler is roughly divided
into two segments or overlays. One segment processes the
declaration portion of a block, and the other segment
processes the executable statements. These compiler seg
ments are swapped in and out of memory as needed during the
course of the compilation. Because all the compiler code
is not in memory at once, more working space and symbol
table space is available to the compiler. The SWAP option,
if it is used, must be specified before the PROGRAM head
ing. Otherwise, it is ignored. Default is OFF.

The compiler option SHORTID, when ON, causes only the first
six characters of identifiers to be significant. This can
save memory space during compilation since only the first
six characters of identifiers are stored in the symbol
table. Ths SHORTID option must be specified before the
PROGRAM heading if it is to be used. Otherwise, it is ig
nored. Default is OFF.

The compiler option SEGMENT specifies that the p-code for
the next procedure or function will be put into a separate
segment or overlay. (See Chapter 3 for more detail.)
There is no value associated with the SEGMENT option.

2-11

2-12

Model 64817A
HP64ooo

HOST Pascal

Chapter 3
General Form Of A Pascal Program

Introduction

Every Pascal program consists of a main program module and may contain as
many procedure and function routines as necessary to properly execute the
program.

Main Program Module

The compilation unit begins with the special compiler directive, "HOST",
followed by the main program.

A main program contains a heading and a block, and concludes with a
period(.) as indicated in Figure 3-1.

PROGRAM PROGRAM)------~ PROGRAM ~--I~
HEADING BLOCK

Figure 3-1. Program Syntax

Program Heading

The word PROGRAM is a reserved word and is always the first word of a
Pascal program heading. The program heading may specify a list of
program parameters, as shown in Figure 3-2.

HEADING
--~
PROGRAM}----l~IDENTIFIER i-....~----------------..-i

Figure 3-2. Heading Syntax

The identifier gives the program a name, but has no other significance
within the program.

3-1

Model 64817A
HP64ooo

HOST Pascal

The program parameter list contains identifiers of type FILE through
which the program communicates with the external environment. All of the
file variables listed as program parameters will be associated with the
name of a physical file or an I/O device when the program is executed ..
In the case of files INPUT and OUTPUT a file name is specified as part of
the run command. For each additional program parameter, after the run
command is issued and before program execution, the system will prompt
the operator for the name of a physical file or I/O device.

A few examples of program headings follow:

"HOST"
PROGRAM execute;

"HOST"
PROGRAM applepie (input, output);

"HOST"
PROGRAM payroll (data, output);

NOTE

All identifiers must be defined before they are used,
except that a pointer type may reference a type name
that is defined later in the same declaration sec
tion, and a program parameter may reference a vari
able that is defined in the program block.

Program Block

The program block contains declarations and a compound statement. The
declaration consists of labels, constants, types, variables, procedures,
and functions. Identifiers and labels declared in the main program block
are known as global identifiers and labels. The compound statement in
the main program block is known as the program body. Execution of the
program begins at the compound statement. The syntax diagram for the
program block is shown in Figure 3-3.

3-2

Model 64817A
HP64ooo
HOST Pascal

PROGRAM
BLOCK

LABEL

CONST

TYPE

VAR

FUNCTION
HEADING

PROCEDURE
HEADING

BEGIN

INTEGER

IDENTIFIER

IDENTIFIER

IDENTIFIER

STATEMENT
LIST

TYPE

TYPE

BLOCK

DIRECTIVE

CONSTANT

STRUCTURED
CONSTANT

Figure 3-3. Program Block Syntax

3-3

SEGMENT

3-4

Segment

Model 64817A
HP64ooo

HOST Pascal

The compiler option SEGMENT provides a means of dividing a
program's p-code into segments or overlays which may be
loaded into memory individually. A progra.ni that is too
large to fit into memory all at once may be divided and
thus executed. The SEGMENT option has no value associated
with it. It specifies that the next procedure or function
encountered by the compiler will become a "segment proce
dure" or "segment function". The p-code for the segment
procedure or function plus the p-code for any procedure or
functions contained therein will be put into a separate p
code segment which can be loaded into memory as desired.
P-code for the main program body and for any routines which
are not part of segment procedure or functions is put into
the main program segment which is always resident in memory
during execution. When a program is run, the p-code for
the main 'program segment is loaded into memory. The code
for other segments is loaded from disc by simply calling
the segment procedure or function in the usual way. The
p-code for a segment remains in memory as long as the pro
cedure or function is active. After a segment procedure or
function returns, the memory containing the p-code for that
segment is used for other purposes. Therefore, a sub
sequent activation of that segment requires that the p-code
be loaded again. Recursive calls to segment procedures or
functions require only one copy of the segment's p-code to
be in memory. The SEGMENT option must be specified before
the heading of the desired procedure function. A total of
14 segments may be specified in addition to the main
program segment. A segment procedure or function may it
self contain up to 255 procedures, functions, array con
stants, or record constants. A segment procedure or func
tion may itself contain nested segment procedures or
functions.

Chapter 4
Pascal Program Declarations

Introduction

Every program consists of a heading and a block. The heading has been
discussed in Chapter 3. The block consists of a declaration section, and
a statement section that specifies the action to be executed. Items
identified in the program declaration are considered to be global in
scope.

A complete block contains the following parts:

a. <LABEL declaration>

b. <CONSTant declarations>

c. <TYPE definitions>

d. <VARiable declarations>

e. <PROCEDURE and FUNCTION declarations>

f. <statements>

The declaration syntax is shown in Figure 4-1.

The LABEL declaration, if used, must be placed ahead of the other
declarations in the block. The CONSTant, TYPE, VARiable, PROCEDURE, and
FUNCTION parts may follow in any order and may be repeated as often as
required. A procedure or function may be made into a segment or overlay
by using the $SEGMENT$ compiler directive. A total of 14 segment
procedures or functions, in addition to the main program segment, may be
specified. Each segment may contain up to 255 procedures, functions ar
ray constants, or record constants. The repetition of CONST, TYPE and
VAR declarations is an HP extension to standard Pascal.

Each part of the declaration section is discussed in detail in the fol
lowing paragraphs. The statement section is discussed in Chapter 5.

4-1

DECLARATION

LABEL ~-"""-I~ INTEGER

CONST 1------1~ IDENTIFIER

TYPE IDENTIFIER

CONSTANT

STRUCTURED
--- CONSTANT

TYPE

VAR IDENTIFIER TYPE

FUNCTION
HEADING

PROCEDURE
HEADING

LABEL Declaration

BLOCK

DIRECTIVE

Figure 4-1. Declaration Syntax

Declaration Section

Model 64817A
HP64ooo

HOST Pascal

A LABEL is an unsigned integer no more than four digits long (leading
zeros are not significant) ; followed by a colon and a statement. The
colon separates the integer from the statement.

Any statement in a program body may be identified by a LABEL. Prior to
use, however, the integer must be identified in the LABEL declaration,
and in addition, and must be declared first after the program heading.

The function of the LABEL is to transfer program control from one portion
to another. The function is not complete, however, without a connecting
GOTO <label> statement. Transfer of program control is initiated by the
GOTO statement. Figure 4-2 shows the LABEL declaration syntax.

4-2

Model 64817A
HP64ooo
HOST Pascal

UNSIGNED INTEGER
LABEL IN THE RANGE

1 .. 9999

Figure 4-2. LABEL Declaration Syntax

The following example illustrates both LABEL declaration and LABEL use.

Example:

PROGRAM showlabel (input,output);

LABEL
1234;

VAR
a,b:integer;

BEGIN

IF a > b
THEN

ELSE

•
•
•

GOTO 1234

•
•
•

1234: writeln ('overhead is exceeded');
END. {showlabel}

CONSTant Declaration

CONSTants are identifiers of literal values. The values are assigned to
the identifiers at compile time. A constant may denote a value for any
data type except a file or a type that contains a file.

Those identifiers, or constants, may then be used throughout the program,
making the program more readable for the user.

The literal values cannot be changed during program execution. Literal
values ca.n be changed, however, during a program editing session. A
literal value assigned to a constant is used whenever the identifier is
listed in the program.

If the literal value had been used in the program in place of the
identifier, the old value would have to be changed to the new value at

4-3

Model 64817A
HP64ooo

HOST Pascal

each location in the program. If a constant identifier is used in the
program, and not a literal, the only change needed is to the value in the
constant declaration. The new value will be used in the program at each
location of the identifier.

The syntax diagram for a CONSTant declaration is given in Figure 4-3, and
the syntax diagram for literals is expanded in Figures 4-4 thru 4-6.

CONST ~--..,.IDENTIFIER

STRUCTURED
CONSTANT

Figure 4-3. CONSTant Declaration Syntax

A string literal consists of a sequence of printable ASCII characters
enclosed by apostrophes. If the string contains an apostrophe, the
apostrophe must be written twice. The length of the string can range
from no characters to a full line of characters. Any string literai must
not exceed a line in length. Only printable ASCII characters are allowed
between apostrophes. Other characters are denoted by using the # sign
outside the apostrophes. The # may be followed by an unsigned integer in
the range of 0 thru 255, or by a control character. A control character
may be a letter or@, [,], \, A, symbol. If a control character (c)
is used, ·the value produced is: chrford(c)MOD 32).

4-4

Model 64817A
HP64ooo
HOST Pascal

STRING
LITERA_L _ __,,_--e..i

---c CHARACTER

LETTER

r--~ INTEGER ---i

I'---~@

II

Figure 4-4. String Literal Syntax

[
4

.. 1 INTEGER DIGIT ..
Figure 4-5. Integer Syntax

REAL
INTEGER

Figure 4-6. Real Syntax

4-5

Simple Constants

Model 64817A
HP64ooo

HOST Pascal

A simple constant can take the form of
defined constant identifier, an integer,
or - , or an expression of an ordinal
CHARacter, subrange, or enumerated type.
as constants is an HP extension.

a string literal, a previously
a REAL optionally preceded by +
type , i . e . , INTEGER, BOOLEAN,
The use of ordinal expressions

Example:

CONST
pagesize = 55;
maxpages = 99;
pi = 3.14159;
pagenurn = maxpages - pagecount;
heading_a ='List is now on.';

Constant expressions are constructed according to the rules defined for
general expressions. The operands in an expression must be either
literals or constants that have already been defined. The operators al
lowed are +, -, *, DIV, MOD, and the predefined functions ord, chr, pred,
succ, abs, hex, octal, and binary.

The operands must be ordinal types except that a plus or minus is allowed
before a REAL constant. Selection of elements of structured constants as
operands is only allowed in executable expressions.

Structured Constants

A structured constant is a constant of a structured type, i.e., array,
record, set, or string. Structured constants are an HP extension to
Pascal. The definition consists of a previously defined TYPE identifier
followed by a list of values. Values for all elements of the structured
type must be specified and must have a type that is assignment compatible
with the type of the corresponding element; with the exception tha.t a
string literal may be used to specify the elements of a PAC or a string
data type. Structured constants can be used to initialize variables of
structured types. The individual elements of a structured constant are
also available as constants. The syntax of the structured constant is
shown in Figure 4-7.

4-6

ARRAY
----1.,.CONSTANT

SET
----t~CONSTANT

Figure 4-7. Structured Constant Syntax

Model 64817A
HP64ooo
HOST Pascal

The following paragraphs describe the structured constants array, record,
set, and string.

Array Constants

The definition of an ARRAY constant consists of the ARRAY type identifier
followed by the list of values that are to be included in the constant
array. The Array constant syntax is shown in Figure 4-8.

ARRAY
CONSTANT ARRAY TYPE

IDENTIFIER

CONSTANT

CONSTANT

STRUCTURED
CONSTANT

Figure 4-8. Array Constant Syntax

Examples:

TYPE
Boolean table
TABLE
ROW
MATRIX
COLOR
COLOR STRING
COLOR ARRAY

CONST
TRUE VALUE

INIT VALUEl
INIT VALUE2
IDENTITY

COLORS

=ARRAY [1 •• 5] OF BOOLEAN;
=ARRAY [1 •. 100] OF INTEGER;
=ARRAY [1 .. 5] OF INTEGER;
=ARRAY [1 .. 5] OF ROW;
= (RED,YELLOW,BLUE);
=PACKED ARRAY [1 .. 6] OF CHAR;
= ARRAY [COLOR] OF COLOR_STRING;

= BOOLEAN TABLE
[TRUE, TRUE, TRUE, TRUE, TRUE] ;

=TABLE [100 OF O];
=TABLE [60 OF O, 40 OF 1];
=MATRIX [ROW [1,0,0,0,0],

ROW [O,l,O,O,O],
ROW [0,0,1,0,0],
ROW [0,0,0,1,0],
ROW [0,0,0,0,1]];

= COLOR ARRAY
[COLOR_STRING ['RED', 3 OF' '],
COLOR STRING ['YELLOW '],
COLOR STRING ['BLUE', 2 OF' ']];

4-7

Model 64817A
HP64ooo

HOST Pascal

Notice that in the last example, where the array was a PAC, that a
combination of strings and characters was used. This is the only case
where the constant (string) is permitted to be of a type that is not
assignment compatible with the element type (char).

RECORD Constant

The definition of a RECORD constant consists of the RECORD type iden
tifier followed by a list of the values to be assigned to the fields of
the constant record. Each value is preceded by the name of the field
that it initializes. All fields must be initialized and may be specified
in any order, except that a tag field (if present) must be initialized
before any variant fields. Once the tag is initialized, only the variant
fields associated with that value of the tag may be initialized. If a
variant is present, but no tag exists (a tagless variant), then the first
variant field initialized selects the variant as if a tag had been in
itialized. The syntax for a record constant is shown in Figure 4-9.

RECORD TYPE
RECOR=-0--..! IDENTIFIER
CONSTANT

Examples:

TYPE

FIELD
IDENTIFIER

CONSTANT

STRUCTURED
CONSTANT

Figure 4-9. RECORD Constant Syntax

COUNTER RECORD = RECORD
PAGES: INTEGER;
LINES: INTEGER;
CHARACTERS: INTEGER;

END;
REPORT RECORD =RECORD

REVISION: CHAR;
PRICE: REAL;

END;

INFO: COUNTER_RECORD;
CASE SECRET: BOOLEAN OF

TRUE: (CODE: INTEGER);

CONST

4-8

NO COUNT = COUNTER RECORD [PAGES: 0, CHARACTERS: 0,
LINES:O];

Model 64817A
HP64ooo
HOST Pascal

BIG REPORT = REPORT RECORD
[REVISION: 'C',
PRICE: 27.50,

SET Constant

INFO: COUNTER RECORD
[PAGES: 6~ LINES: 28, CHARACTERS:
496],

SECRET: TRUE,
CODE: 8128] ;

The definition of a SET constant consists of an optional SET type iden
tifier followed by the list of values that are to be included in the con
stant set.

If no type identifier is used, one of three possible results will occur
depending on the type T of the elements in the set:

a. If T is an integer, then the set created is of type SET OF
0 .. 255. Compile-time and run-time checks are performed to en
sure that specified elements are in this range. Thus the set
[25,0,255) is legal, but the set [-10, 256) is not legal.

b. If T is any other ordinal type, the set created is a set whose
base type is the entire ordinal type. The set ['A' , 'T'] has
the type SET OF CHARacter.

c. If the empty set ([]) is specified, the type of the set will be
determined from context.

The syntax for the SET constant is shown in Figure 4-10.

SET
CONSTANT

SET TYPE
IDENTIFIER

CONSTANT

Figure 4-10. SET Constant Syntax

4-9

Model 64817A
HP64ooo

HOST Pascal

Examples:

TYPE
DIGITS
CHARSET

CONST
ALL DIGITS
ODD DIGITS
LETI'ERS
NO CHARS

= SET OF 0 .. 9;
= SET OF CHAR;

= DIGITS [O .. 9];
=DIGITS [1,3,5,7,9];
= CHARSET [' a ' . . ' z ' , 'A ' . . ' Z '] ;
= CHARSET [] ;

String Literal

A string literal consists of a sequence of alphabetic or numeric charac
ters in a specific order and enclosed by apostrophes. The string is as
sociated with an identifier, i.e., declared as a CONSTant. Strings can
be declared as part of the main program, or can be declared in any
routine.

Example:

PROGRAM; {or routine}
CONST

Heada = 'INVALID INPUT';

Begin
IF NOT (INPUT = 5)

THEN writeln (heada)
End. {program}

TYPE Definitions

Types defined in this section of Chapter Four are the Predefined Types,
Structured Types and the type modifier Packed.

TYPE

Data items can be characterized by th~ir type. The TYPE determines a set
of attributes:

4-10

a. the set of permissable operations that may be performed on an
object of that type.

b. the set of values that may be assumed by an object of that
type.

c. the amount of storage required by objects of that type.

Model 64817A
HP64ooo
HOST Pascal

Certain types are predefined. Other types can be defined by the user.

Type Declaration

In the type declaration section, an identifier can be associated with a
type definition.

The TYPE declaration syntax is shown in Figure 4-11.

TYPE TYPE r•DENTOFIERI _n J
0

TYPE L --r;'l,__ J---< DECLARAT~ r-\...::_,11 ~

Figure 4-11. TYPE Declaration Syntax

Types can be further defined as:

Simple Types
Pointer Types
Structured Types

The TYPE syntax is shown in Figure 4-12.

Simple Types

All simple types define an ordered set of values. Simple types are
divided into ordinal types and real types.

Ordinal Types

Ordinal types are the predefined ordinal types: BOOLEAN, CHAR, and
INTEGER; the user defined ordinal types: enumerated and subrange, and
type identifiers that have been equated to another ordinal type.

4-11

TYP E

Predefined Ordinal Types

BOOLEAN

-={TYPE IDENTIFIER}

--f ENUMERATED L
-l TYPE J

-={SUBRANGE TYPE}

{ POINTER TYPE }

--[STRING TYPE }

./PACKED~

_I
ARRAY TYPE } L

jl RECORD TYPE }

I SET TYPE L .. 1 J
J FILE TYPE } I.

Figure 4-12, TYPE Syntax

__,.. -

Model 64817A
HP64ooo

HOST Pascal

The type Boolean is an ordinal type having two elements, false and true,
and occupies one word of memory. Implicit is the concept that false <

true. The operators applicable to Boolean operands are NOT, AND, OR.
NOT takes precedence over AND; AND takes precedence over OR. The order
of precedence may be altered by the use of parentheses. The relational
operators always yield Boolean values.

CHAR

The type CHAR is an ordinal type consisting of the ASCII character set
whose ordinality range is 0 .. 255, and occupies one word in memory. The
functions applicable to the type CHAR are ORD(C) which yields the ordinal
integer corresponding to the character (C); and CHR(I) which yields the
character corresponding to the ordinal value (I).

4-12

Model 64817A
HP64ooo
HOST Pascal

INTEGER

The type Integer is an ordinal subset of the set of whole numbers. The
range of Integers is predefined by the terms MININT .. MAXINT.
MININT .. MAXINT is the range -231 to 231 -1. Each integer occupies two
words in memory.

User Defined Ordinal Types

The user defined types discussed in the following paragraphs are the
enumerated type and subrange type.

Enumerated Type

Enumeration defines an ordered set of values by listing the identifiers
of the ordered values. The identifiers are constants that have ordinal
values beginning with 0 for the first identifier, 1 for the second iden
tifier, and so forth. The syntax diagram for the enumerated type is
shown in Figure 4-13.

Examples:

ENUMERATED
TYPE IDENTIFIER

Figure 4-13. Enumerated Type Syntax

color= (black, brown, red, orange);
day= (sunday, monday, tuesday);

The ordinal value of black is 0. The ordinal value of orange is J. The
ordinal value of monday is 1.

Subrange Type

Definition of a subrange (of an ordinal type) requires listing the lower
bound constant and the upper bound constant of the subrange. In the case
of a subrange of type INTEGER, the bounds must be between -231 .. 231 -1.
A variable of the subrange type possesses all of the properties of a
variable of the base type, with the only restriction being that its value
be in the specified range. The syntax for the subrange type is shown in
Figure 4-14.

4-13

Model 64817A
HP64ooo

HOST Pascal

SUBRANGE TYPE CONSTANT ,___._. CONSTANT __ ._

Figure 4-14. Subrange Type Syntax

Examples:

TYPE

Dip = 1 .. 99;
Alpha = 'A' .. 'K';

Two words of memory will be occupied by a subrange of INTEGER if either
the lower bound or the upper bound falls outside of the range
-32768 .. 32767. Only one word of memory will be occupied if both upper
and lower bounds of the subrange fall within the range -32768 .. 32767.

Examples:

Flop= 3900 .. 39000; {will occupy two words of memory.}
Flip= -39000 .. -3900; {will occupy two words of memory.}
Floor= -99 .. 99; {will occupy one word of memory.}

Real Types

Real types are the predefined types REAL, LONGREAL, and identifiers that
have been equated to real types.

REAL

The set of Real numbers is a subset of whole numbers and is not an or
dinal type. The Real number range includes values between +/- 1037
with six significant decimal digits. Each real number occupies two words
in memory.

LONG REAL

The set of Longreal numbers
number occupies four words
greater than that of Real.
10308 with 15 significant
plicable to Real numbers are

4-14

is a subset of Real numbers. Each longreal
in memory. The precision of Longreal is
The values of Longreal range between +/

digits. Any of the set of operators ap
also applicable to Longreal numbers.

Model 64817A
HP64ooo
HOST Pascal

Pointer Types

Variables that are declared in a program are accessible by their iden
tifiers. These variables exist during the entire execution of the level
of program to which they are local, and are therefore called static
variables.

Dynamic variables can be generated without any correlation to program
structure by using the standard procedure NEW(p). New memory space is
allocated for the new dynamic variable, and the pointer variable (p)
holds the address of the new dynamic variable. Thus a pointer variable
may "point" to a dynamic variable. See Figure 4-15 for the pointer type
syntax diagram.

POINTER TYPE

TYPE ---- IDENTIFIER t---..

Figure 4-15. Pointer Type Syntax

A pointer may only refer to dynamic variables of a single type called the
"base type". The base type is specified in the pointer definition. A
pointer variable may be assigned the value NIL. NIL points to no loca
tion in memory. NIL is a reserved word used in a pointer at the end of a
linked data structure to indicate the end of the data structure.
Pointers occupy one word of memory space.

The base type identifier is an exception to the rule that all identifiers
must be declared before they are used.

HOST Pascal does not allow dynamic variables to be type FILE or a type
that contains a file.

Examples:

father, mother, child, sibling: Aperson;
carbon, film, wirewound: Aresistor;

Structured Types

The structured types Array, Record, Set, and File are characterized by
component type and by the structuring method. A structured type defini
tion may contain an indication of the preferred data representation by
use of the term PACKED. The term PACKED is an indication to the compiler
that data storage is to be economized.

Array

An array is made up of a fixed number of components, each of which can be
directly accessed. Each array has an index by which a component is

4-15

Model 64817A
HP64ooo

HOST Pascal

selected from the array. The index must be an ordinal type, e.g. ,
[1 •. 6]. The number of elements in the array is specified by the index.
The components can be any type; but all components are of the same type,
called the base type. It is illegal to use the form [INTEGER] as an in
dex, even though INTEGER is an ordinal type. The syntax of the Array is
shown in Figure 4-16.

ARRAY
TYPE

Examples:

TYPE
Root
Freq

CONST
Flip
Flop

ARRAY TYPE TYPE

Figure 4-16. Array Syntax

= Array ['1' .. '6'] of Real;
= Packed Array ['1' •• '6'] of Real;

= Root [1.1, 1.2, 1.3, 1.4, 1.5, 1.6];
= Freq [2.1, 2.2, 2.3, 2.4, 2.5, 2.6];

Components of an array can be assigned values during execution of the
main program block as well as in the CONST declaration. The use of a
packed array involves a choice between ease of access/execution time and
conservation of memory space. A packed format conserves memory space but
increases access/execution time because each access of the packed array
requires a corresponding UNPACK effort.

Multi-dimensioned arrays, i.e., arrays of arrays, are possible by use of
the following format:

TYPE
row= ARRAY [1 .. 5] OF real;
matrix= ARRAY [1 •• 10] OF row;

or shortened to the equivalent form:

TYPE
matrix= ARRAY [1 •• 5] OF ARRAY [1 .. 10] OF real;

or reduced further to the form:

TYPE
matrix= ARRAY [1 •. 5, 1 •. 10] OF real;

4-16

Model 64817A
HP64ooo
HOST Pascal

Bear in mind that each dimension of an array can accommodate no more than
16,383 elements. Multi-dimension arrays can, however, by their nature,
accommodate more than 16,383 elements.

PAC

The term PAC is used to refer to arrays of the type:

PACKED ARRAY [1 .. n] OF CHAR;

PAC data types have the special property that they are compatible with
string J.i terals with the same or fewer components than are in the PAC
data type.

When a string literal with fewer characters is assigned to a PAC vari
able, it is automatically extended on the right with blanks so that it
has the same number of components as the PAC. When a string literal with
fewer components is compared to a PAC data type, it is automatically ex
tended on the right with blanks before the comparison is made. The use
of PACs with shorter string literals is an HP extension to standard
Pascal.

String Data Types

Strings are a family of standard data types that are similar to packed
arrays of character, but have special properties. String data types are
an HP extension to standard Pascal.

String data types have a dynamically variable length. While the maximum
length of a string is fixed in the type definition, the actual length,
i.e., the number of valid characters presently in the string, may vary
from 0 to the maximum declared length of the string data type.

The predefined function STRLEN may be used to determine the present
length of any string expression.

The components of a string data type are of type CHAR and may be accessed
in the same way as components of other arrays. There is the additional
restriction that the value of the index expression used to select a
character must be greater than or equal to 1, and less than or equal to
the current length of the string.

A string data type is compatible with any other string data type. In ad
dition, string data types are compatible with string literals. The
string literal '' represents the "null" string that is a string consist
ing of no characters.

The syntax for defining string types is different from other arrays. See
Figure 4-17 for the string type syntax.

4-17

STRING TYPE
---1-.C STRING J-----1-.C

Figure 4-17. String Type Syntax

Model 64817A
HP64ooo

HOST Pascal

The constant is a constant integer expression specifying the maximum num
ber of characters that may be contained in the string. In HOST Pascal
the value of this constant must be between 1 and 255.

String variables may be used as VAR parameters in procedures and func
tions in a way that is fundamentally different from other data types.

Ordinarily the actual parameter substituted for a formal VAR parameter in
a procedure or function must have the identical type as the formal param
eter. With strings, however, the following type of parameter declaration
is allowed:

PROCEDURE P (VAR S: STRING);

In this case, where the parameter type identifier is the predefined iden
tifier STRING, any string variable may be substituted for S.

String expressions may be concatenated using the "+" operator and com
pared to other strings and string literals. Refer to Chapter 5 for in
formation on string comparison.

When a string variable is created at program execution time, its value,
including the dynamic length, is unpredictable. It is important for con
sistent execution to assign a value to the dynamic length before access
ing the individual characters of the string variable. For example, the
following will sometimes produce a run-time error:

4-18

VAR

BEGIN
FOR I :=
S[I) :=

s
I

STRING [100];
INTEGER;

1 TO 100 DO , , .
'

{Sometimes causes run-time error }
{because STRLEN(S) is unpredictable.}

Model 64817A
HP64ooo
HOST Pascal

The length of a string variable is set in only one of three ways.

1. Assign to the entire string variable. For example,

S :='ABC';

2. Use the procedure SETSTRLEN. For example,

SETSTRLEN (S,100);

3, Use the variable as an actual variable parameter to a routine
which assigns a value to it. For example,

READ (S);

The example can be rewritten as follows:

VAR s
I

STRING[lOO];
INTEGER;

BEGIN
SETSTRLEN (S,100);
FOR I := 1 TO 100 DO

S[I] := ' ';

RECORD

{operates correctly}

RECORD is a Pascal reserved word signifying a structured data type having
a fixed number of elements. These elements, called fields, can be of
differing types. The fields are enumerated and their types defined in
the record TYPE declaration. Different records may have fields of the
same name, but fields within a record must have distinct names. The
field list follows each RECORD identifier. Each RECORD declaration is
completed by END;. The syntax of a Record constant is shown in Figure
4-10.

A RECORD type definition may contain a "variant" part. This enables
variables of type RECORD, although of identical type, to exhibit struc
tures that differ in the number and type of their component parts. The
"variant" part may contain an optional "tag" field. The value of the tag
field indicates which of the variants is currently valid. If a tag field
is not specified, then determination of which variant is currently valid
is left to the programmer. (Actually, HOST Pascal does not check the tag
field when a variant field is used.) The responsibility for proper ac
cess of variants is always left to the programmer.

Each label in the variant CASE declaration must be of the same type as
the tag type. Fields of type FILE or types which contain files are not
permitted in the variant part of a RECORD. The label OTHERWISE is not
allowed in the variant CASE declaration.

The syntax for a record type is shown in Figure 4-18, and the syntax for
a field list is shown in Figure 4-19.

4-19

FIELD LIST

4-20

RECORD TYPE

CASE

RECORD ~--I~
FIELD
LIST

Figure 4-18. Record Type Syntax

TYPE

TYPE
IDENTIFIER

IDENTIFIER

FIELD
LIST

Figure 4-19. Field List Syntax

END

Model 64817A
HP64ooo

HOST Pascal

Model 64817A
HP64ooo
HOST Pascal

SET

A set is the powerset (set of all subsets) of an ordinal type called the
base type. The base type may be identified by a predefined type, i.e.,
char or integer, or a subrange of a predefined type. The syntax of a Set
type is shown in Figure 4-20.

SET TYPE SET TYPE

Figure 4-20. Set Type Syntax

The set base type must be an ordinal type. In the case of a subrange of
integers, the low bound must be >= to 0 and the high bound must be <=
4079.

Relational operators for sets include =, >=, <=, and <>. These operators
can be used between sets, with results that are Boolean. The symbol IN
may be used between an ordinal expression and a simple set expression.

Examples:

CHARSET
FRUIT
FRUITSET
SOMEFRUIT
CENTURY20

= SET OF CHAR;
= {apple, banana, cherry, peach, pear, pineapple);
= SET OF FRUIT;
=SET OF apple .. cherry;
=SET OF 1901 .. 2000;

Sets can be manipulated by set union (+), set difference (-), and set in
tersection (*) to define new element groups. The maximum number of ele
ments in a set is limited to 4080.

FILE

The file definition specifies a structure consisting of a sequence of
components that are all of the same type. The number of components is
not fixed by the file type definition. A file is usually associated with
a peripheral storage device. A file having no components is an EMPTY
file. The component of a file may not be a file or a structured type
containing a file. The component type of a file must be assignable. The
file type syntax is shown in Figure 4-21.

4-21

FILE TYPE FILE TYPE

Figure 4-21. File Type Syntax

PACKED Type Modifier

Model 64817A
HP64ooo

HOST Pascal

The representation of a variable in HOST Pascal is usually determined by
the compiler. Ease of access is given priority over storage compactness.
For example, Boolean variables occupy a 16-bit word instead of a single
bit, and character variables occupy a 16-bi t word instead of an 8-bit
byte.

There are times, however, when the programmer needs smaller amounts of
storage allocated to certain data items, even if this requires less effi
cient access. The programmer can indicate this to the compiler by
prefixing the definition of a structured type with the symbol PACKED.
The syntax of the PACKED modifier is shown in Figure 4-22.

PACKED MODIFIER ARRAY TYPE

SET TYPE

FILE TYPE

Figure 4-22. PACKED Modifier Syntax

Non-structured components of PACKED structured types are allocated the
smallest amount of storage required to represent all the possible values
of each component in a manner consistent with the following rules:

4-22

a. A component that requires more than one 16-bit word of storage
will begin on a 16-bit word boundary.

b. A component that requires one 16-bit word or less of storage
will not cross a word boundary.

c. A component that is a set of more than 16 elements will use a
whole number of words, even if all of the last word is not
required by the set.

Model 64817A
HP64ooo
HOST Pascal

Structured components of a structured type are not affected by the PACKED
type modifier.

The operations allowed on data of a PACKED data type are the same as
those allowed for data that is not PACKED, with the exception that com
ponents of a packed structure cannot be passed as VAR (call-by-reference)
parameters.

The standard procedures PACK and UNPACK can be used to assign components
from an unpacked array to a packed array, and vice versa.

VARiable

VARiables are locations in memory that are identified by name, and exist
during the entire execution of the level of program to which they are lo
cal. Variables that have been declared are called static variables.

Dynamic variables, on the other hand, can be generated without any cor
relation to program structure. Variables contain values that can be
changed during the execution of the program. The VARiable declaration
syntax is shown in Figure 4-23.

VAR TYPE

Figure 4-23. V ARiable Declaration Syntax

VARiable Declaration

The variable declaration consists of a list of identifiers followed by
the applicable type definition.

Examples:

VAR

aset : char;
bset, dset, flop : integer;
freq PACKED ARRAY [1. .15] of REAL;
root ARRAY [(alpha, beta)] of COLOR;
cset FILE OF char;
nset SET OF noun;
pl, p2 : Aperson;

4-23

Model 64817A
HP64ooo

HOST Pascal

The value of a variable is undefined at the time of declaration.

Variables denoted are either entire variables, component variables, or
variables referenced by a pointer.

Entire Variables

An entire variable is denoted by its identifier.

Component Variables

A component variable is denoted by the variable followed by a selector
specifying the component. The form of the selector depends on the struc
ture type of the variable. The selector can be an index, a field desig
nator, or a buffer variable.

Indexed Variables

A component of an n-dimensional array variable is denoted by the variable
identifier followed by n index expressions. The index expressions must
be assignment compatible with the index types declared in the definition
of the array type. Indices separated by commas are equivalent to indices
in separate brackets, and combinations of commas and brackets. For ex
ample, [a,c,e] is equivalent to [a,c] [e], equivalent to [a] [c,e], and
equivalent to [a] [c] [e].

Field Designators

A component of a record variable is denoted by the record variable fol
lowed by a period and the field identifier of the component.

Examples:

a.color
b[red,true].nset

Buffer Variables

A buffer variable is associated with each file. The current file com
ponent may be read into this buffer variable and inspected prior to a
READ of the component. The next file component may be placed in the
buffer variable and written from that location.

Example:

input"

4-24

Model 64817A
HP64ooo
HOST Pascal

Referenced Variables

A referenced variable is a pointer expression followed by the " symbol.
If p is a pointer variable with base type T, then pA denotes a variable
of type T.

Examples:

pA pA.sibling"

Routine Declarations

PROCEDURE and FUNCTION declarations may take place in the declaration
portion of the main program, or within other procedures or functions.
Routines must be declared before they are used. Each routine, whether
procedure or function, is declared in a similar fashion. The routine
heading is followed by either the directive FORWARD or by a block that
contains the declarations and statements comprising the routine. The
routine declaration syntax is shown in Figure 4-24.

ROUTINE
DECLARATION

PROCEDURE
HEADING

FUNCTION
HEADING

BLOCK

DIRECTIVE

Figure 4-24. Routine Declaration Syntax

PROCEDURE Declaration

Procedures perform specific tasks or algorithms by execution of the
statements within the procedure. Each procedure must be declared before
its use. The procedure heading syntax is shown in Figure 4-25.

PROCEDURE_--11-iPROCEDURE>--._..IDENTIFIER
HEADING

FORMAL
PARAMETER
LIST

Figure 4-25. PROCEDURE Heading Syntax

4-25

Example:

PROGRAM REG21
VAR I,N

X,Y
PROCEDURE
VAR TEMP
BEGIN

TEMP
p

Q
END;

BEGIN
READ(N);

(INPUT, OUTPUT) ;
: INTEGER;
: REAL;
SWAP (VAR P,Q :REAL);
: REAL;

:= P;
:= Q;
:= TEMP

FOR I := 1 TON DO
BEGIN

READ (X,Y);
IF X > Y THEN SWAP (X,Y)

END;
WRITELN ('ARE THE ORDERED PAIRS') ;

END.

FUNCTION Declaration

Model 64817A
HP64ooo

HOST Pascal

The function declaration consists of a heading and a main block. The
function heading consists of the function identifier, a formal parameter
list, and the type of function result. The type of the function result
can be any type except a file, or a type containing a file. Within the
function main block at least one statement must assign a value to the
function identifier. See Figure 4-26 for the FUNCTION heading syntax.

FUNCTION HEADING FUNCTIONt----ll~IDENTIFIER

FORMAL
PARAMETER
LIST

TYPE
IDENTIFIER

Figure 4-26. FUNCTION Heading Syntax

Functions perform specific tasks or algorithms by execution of statements
within the FUNCTION. The function is further identified by a type; and
the value generated by the function must be of that type, and assignable
to the function identifier.

4-26

Model 64817A
HP64ooo
HOST Pascal

Example:

{function declaration}
FUNCTION Sqrt (x:real):real;
VAR XO, Xl:real;
BEGIN Xl :=X; {X >1, Newton's method}

END;

REPEAT XO := Xl; Xl := (X / XO + XO) * 0.5
UNTIL abs (xl-xO) < eps * xl;
Sqrt := xO

{function call}
BEGIN {start of program}

•
•
•

writeln ('The following is a square root matrix.');
y :=sqrt (3.5);
writeln ('End of square root matrix.');

•
"
•

END. {end of program}

Parameter Lists

Formal Parameter List

The formal parameters for both functions and procedures can be value
parameters, variable parameters, procedure parameters, and function para
meters. The syntax diagram of the formal parameter list is shown in
Figure 4-27.

FORMAL
PARAMETER

LIST

VAR

PROCEDURE
HEADING

FUNCTION
HEADING

TYPE
IDENTIFIER

Figure 4-2 7. Formal Parameter List Syntax

4-27

Actual Parameter List

Model 64817A
HP64ooo

HOST Pascal

Actual parameters are the values used in the execution of procedures and
functions. The syntax diagram of the actual parameter list is shown in
Figure 4-28.

ACTUAL~~---~~~~~~~~~~~~~~~~~~~~~~-r-~--
PARAMETER
LIST

Value Parameter

PROCEDURE
IDENTIFIER

FUNCTION
IDENTIFIER

Figure 4-28. Actual Parameter List Syntax

The actual parameter must be an expression, i.e., something found on the
right side of an assignment statement. The corresponding formal parame
ter represents a local variable in the called routine, and the current
value of the expression is initially assigned to this variable. Actual
value parameters must be assignment compatible with the type of the cor
responding formal parameter.

Variable Parameter

The actual parameter must be a variable, and the corresponding formal pa
rameter represents the actual variable during the entire execution of the
routine.

An actual variable parameter must have the same type as the corresponding
formal parameter.

There is one exception to this rule of identical types. The type of a
variable parameter may be the predefined type STRING. In this case, a
variable of any string data type may be the actual parameter.

4-28

Model 64817A
HP64ooo
HOST Pascal

Procedure Parameter

The formal parameter is a procedure heading. The actual parameter is a
procedure identifier. The actual procedure and formal procedure have
compatible formal parameter lists.

Predefined procedures may not be used as actual procedure parameters.

Function Parameter

The formal parameter is a function heading. The actual parameter is a
function identifier. The formal function and actual function have com
patible formal parameter lists and identical result types.

Predefined functions may not be used as actual function parameters.

Parameter List Compatibility

Two formal parameter lists are compatible if they contain the same number
of parameters, and if the corresponding parameters match. Corresponding
parameters match if any of the following is true:

a. They are both value parameters of the same type.

b. They are both variable parameters of the same type.

c. They are both procedure parameters with compatible parameter
lists.

d. They are both function parameters with compatible parameter
lists and the same result type.

Declarations Within Routines

The declaration part of a procedure or function contains the declarations
of constants, types, labels, variables, and other routines. These
declarations are local to the routine in which they are declared.
Declarations within routines take the same form as the program
declaration.

Routine Body

The body of a routine is a compound statement that describes the execu
tion of the routine toward an end result. The result of a function is a
value. The result of a procedure is an action. The syntax for the
routine block is the same as that of a main program block.

4-29

Directives

Model 64817A
HP64ooo

HOST Pascal

All routines must be declared before they are called. If the routine's
block does not immediately follow the routine heading, then a directive
FORWARD must be used to infonn the compiler of the location of the block.
A FORWARD declaration is composed of the routine heading, including the
parameter list if used, the function result type if applicable, followed
by the directive. The routine must be fully declared before the end of
the current scope. The parameter list, and result type for a FUNCTION,
may be respecified. If the parameter list and function type is
respecified, they must be identical with the original declaration.

Example:

FUNCTION exclusive or (x,y:boolean)
FORWARD;

FUNCTION exclusive or;
BEGIN -

boolean;

exclusive or := (x and not y) or (not x and y)
END;

Recursive Routines

A routine that calls itself is a recursive routine. Use of the routine
identifier within the routine body indicates recursive execution of the
routine. If a FUNCTION identifier appears on the left of an assignment
statement, however, only the assignment is executed. It is also possible
for a first routine to call a second routine in which the first routine
is called. That action is an indirect recursion.

Scope

Certain objects in HOST Pascal programming have a related scope of
utility. Those objects are:

a. labels
b. constants
c. types
d. variables
e. fonnal parameters
f. routines

The scope of an object pertains to the level of the program in which the
object is declared or defined. Within a routine declaration the declara
tion part specifies local labels, constants, types, variables, and
routines. Execution of the routine may access labels, variables, con
stants, types, and parameters declared at the same or outer levels of'
declaration. No outer level program execution, however, can access an

4-30

Model 64817A
HP64ooo
HOST Pascal

inner level identifier. In the case of two identifiers having different
scopes but having the same spelling, the outer identifier will be
inaccessible to the inner identifier. No two identifiers having the same
scope can have the same spelling.

Statements

A compound statement is a statement list consisting of other compound
statements and simple statements. Each statement must be separated from
other statements by a semicolon (;). The statement list syntax is shown
in Figure 4-29. Refer to Chapter 5 for more information on compound
statements.

o .. [) STATEMENT .. I STATEMENT I LIST ...

Figure 4-29. Statement List Syntax

4-31

4-32

Model 64817A
HP64ooo

HOST Pascal

Chapter 5
Statements and Expressions

Introduction

The body of a program, procedure, or function consists of a compound
statement, meaning the BEGIN/END delimiters enclose the program or
routine body. Following is the type and general function of HOST
PASCAL/64000 statements:

Label

Assignment statement

Procedure statement

Conditional statements

Repeat statements

Field dependent statement

statement identifier.

assigns a value to a variable.

calls a procedure.

IF and CASE statements choose a set of
actions based on a condition.

WHILE, REPEAT, and FOR repeat a set of
actions.

WITH statement allows a reference to a
record field without naming the record.

Control transfer statement - GOTO statement transfers action to
another part of the program.

Grouping statement

No Op statement

Compound statement is a group of
statements.

Empty statement is a do nothing
statement.

The assignment, PROCEDURE, GOTO, and empty statements are commonly called
"simple" statements; the IF, CASE, WHILE, REPEAT, FOR, and WITH state
ments are commonly called structured statements for they may contain
other structured statements, simple statements, and statement labels.
The syntax for statements is shown in Figure 5-1.

5-1

STATEMENT

INTEGER ASSIGNMENT
STATEMENT

PROCEDURE
STATEMENT

IF
STATEMENT

CASE
STATEMENT

WHILE
STATEMENT

REPEAT
STATEMENT

FOR
STATEMENT

WITH
STATEMENT

GOTO
STATEMENT

COMPOUND
STATEMENT

Figure S-1. Statement Syntax

Statement Label

Model 64817A
HP64ooo

HOST Pascal

A statement label may be associated with any statement in a program body.
The label must have appeared in the LABEL declaration section of the
program or routine in which the label is defined.

Assignment Statement

The assignment statement is used to change the value of a variable. The
variable can be of any type except a file type, or a structure containing
a file. The type of the variable and the type of the expression must be
assignment compatible; e.g., a variable of type INTEGER cannot be as
signed a value of type CHARacter. The identifier on the left side of the
assignment symbol may be either a variable identifier, a field
identifier, or a function identifier. If the identifier is a FUNCTION

5-2

Model 64817A
HP64ooo
HOST Pascal

identifier, the assignment statement must be made within the block of the
FUNCTION. The assignment statement syntax is shown in Figure 5-2.

Example:

fctr := 31.25;

VARIABLE
IDENTIFIER

FIELD
IDENTIFIER

Figure 5-2. Assignment Statement Syntax

flop := flim * fctr;

Procedure Statement

EXPRESSION

The procedure statement transfers program execution to a procedure. Upon
completion of the procedure, program execution is transferred to the
statement that follows the procedure statement. The procedure identifier
must be the name of either a predefined procedure or a procedure declared
previously in a procedure declaration. The declaration may have been an
actual declaration (i.e., heading and body), a forward declaration, or it
may be the declaration of a procedural parameter. If the formal declara
tion of the procedure includes a parameter list, the procedure statement
must have the actual parameters. The actual parameter list must agree in
number, order, and type with the formal parameter list. The procedure
statement is illustrated in the following examples, and the syntax is
shown in Figure 5-3.

5-3

PROCEDURE
STATEMENT

Model 64817A
HP64ooo

HOST Pascal

IDENTIFIER ~.----------------------~--1~

PROCEDURE
IDENTIFIER

FUNCTION
IDENTIFIER

Figure 5-3. Procedure Statement Syntax

Example:

5-4

PROCEDURE freqgen (VAR fctr,rctr:integer); {procedure
declaration}

BEGIN
•
•
•

END; {procedure declaration}

BEGIN {program}
•
•
•
freqgen (apron, ramp) ;
•
•
•

END. {program}

Model 64817A
HP64ooo
HOST Pascal

Compound Statement

The compound statement is used as a means of treating a group of state
ments as a single statement. The compound statement is delimited by the
reserved words BEGIN and END. The statements enclosed by BEGIN and END
are executed in the order written. The compound statement has two
primary uses:

a. as the body of a procedure, function, or program;

b. as a structured statement that may contain other statements.
Usually where a substatement is allowed, the default is only
one statement. The compound statement is useful if more than
one statement is to be executed.

Compound statements can be used as part of IF, CASE, WHILE, REPEAT, FOR,
and WITH statements. Delimiters are required with each of the compound
statements. The BEGIN/END pair is used in all cases except REPEAT and
CASE statements.

REPEAT/UNTIL delimit the REPEAT statement, and CASE/END delimit the CASE
statement. The compound statement syntax is shown in Figure 5-4.

COMPOUND - _f BEGIN)1---___.[._ .. ~1ST;;t--"----t~1----t ... ~
STATEMENT---\, . . ~

Figure 5-4. Compound Statement Syntax

IF Statement

The IF statement chooses one of two possible responses, based on a given
condition. The two responses possible are THEN and ELSE. The expression
that follows IF must be a boolean type. When the IF statement is ex
ecuted, the expression is evaluated to be either TRUE or FALSE. If the
value is true, the action following THEN is performed. If the value is
false, the action following ELSE is performed. If the value is false and
no ELSE action is specified, no action is taken. By implication,
however, the remainder of the program becomes the ELSE action. ELSE
parts that appear to belong to more than one IF statement are always as
sociated with the nearest IF statement. Note that a semicolon may not
separate a THEN statement from the related ELSE statement. The IF state
ment syntax is illustrated in Figure 5-5.

5-5

EXPRESSION THEN STATEMENT

Figure 5-5. IF Statement Syntax

CASE Statement

ELSE

STATEMENT

Model 64817A
HP64ooo

HOST Pascal

The CASE statement, like the IF statement, is used to select a certain
action based upon the value of an expression. The CASE statement,
however, can select from more than two courses of action. If none of
those courses of action are selected an OTHERWISE statement is executed.
The OTHERWISE portion of the CASE statement is an HP extension of stan
dard Pascal. CASE statement syntax is illustrated in Figure 5-6. The
CASE expression may be any ordinal type, including boolean, integer,
character, and user-defined enumeration and subrange types. The expres
sion, called the selector, is used to choose which statement is to be ex
ecuted. Each constant expression in the list or" labels must be com
patible with the type of the selector. A label may only appear in one
list, and separate ranges may not overlap. The statement associated with
the label list containing the value matching the selector is executed.
The statement associated with the OTHERWISE part is executed if the
selector does not match any of the labels. Specifically, when a CASE
statement is executed:

a. The selector expression is evaluated.

b. If the value appears in a label list within the CASE statement,
the statement associated with that label is executed and main
program execution continues with the statement following the
CASE statement.

c. If the value does not appear in any label list the statements
appearing between OTHERWISE and END are executed, and program
execution resumes with the statement following the CASE
statement.

d. If the value does not appear in any label list and no OTHERWISE
clause exists, the result will be a run time error.

CASE statements may be nested to any level.

Because of the way the CASE statement is implemented in HOST Pascal, it
is possible to generate a large amount of object code with a small amount
of source code.

S-6

Model 64817A
HP64ooo
HOST Pascal

Specifically, when the values in the labels of the CASE statement are
widely separated, the use of nested IF statements is much more memory
efficient and will achieve the same result. The compiler generates a
table whose length, in bytes, is twice the difference between the smal
lest label value and the largest label value. The compiler will produce
a warning if the difference between label values is greater than 1000.

Example:

CASE I OF
0 : J := 1;
10000 : J := 2;
OTHERWISE

J := 3;
END;

The above example CASE statement would generate over 20,000 bytes of ob
ject code, and very likely would cause the compiler to run out of memory.

CASE r----1.. EXPRESSION OF

CONSTANTt--'-11.i STATEMENT

'----t-.i OTHERWISE 1-------....----1~ STATEMENT

Figure 5-6. CASE Statement Syntax

WHILE Statement

The WHILE statement is a repeating statement used to execute an action so
long as a given expression is true. The expression is evaluated before
execution, in contrast to the REPEAT statement which is evaluated after
execution. The expression must be of the boolean type. Each time the
evaluation is true the WHILE statement is executed. When the evaluation
becomes false the statement following the WHILE statement is executed and
program action is continued.

5-7

Model 64817A
HP64ooo

HOST Pascal

It is necessary that execution of a WHILE statement causes a change in
data such that the evaluation result becomes false. Otherwise the WHILE
statement is never exited, an endless loop exists and execution of the
program is never concluded. The WHILE expression syntax is illustrated
in Figure 5-7.

WHILE J---1.i EXPRESSION

Figure S-7. WHILE Statement Syntax

REPEAT Statement

The REPEAT statement is executed so long as the UNTIL Boolean expression
is false. The expression is evaluated after execution of the statement
enclosed by the REPEAT/UNTIL delimiters, in contrast to the WHILE expres
sion which is evaluated before execution. The expression must be of the
boolean type.

Each time the evaluation returns false the REPEAT statement is executed.
When the evaluation returns true the statement following the REPEAT is
executed and program action is continued. It is necessary that execution
of a REPEAT statement causes a change in data such that evaluation
results in a true value. Otherwise the REPEAT statement is never exited,
an endless loop exists and execution of the program is never concluded.
The REPEAT statement syntax is illustrated in Figure 5-8.

BOOLEAN
REPEAT i---...--1~ STATEMENT 1--...---...i UNTIL t------1~ EXPRESSION ---

Figure 5-8. REPEAT Statement Syntax

FOR Statement

The FOR statement executes a statement once for each value in a range
specified by initial and final expressions. A variable, called the con
trol variable, is assigned each value of the range before the correspond
ing iteration of the statement. The control variable must be a local
variable, and it also must be an entire variable. In addition, the con
trol variable may be a local formal value parameter, but may not be a
formal variable parameter.

Within the FOR loop, the control variable is protected from assignment at
compile-time, and may not be passed as a variable parameter. It also may
not appear as the control variable for a second FOR loop nested within
the first. If the value of the variable is changed by some other means

5-8

Model 64817A
HP64ooo
HOST Pascal

during the execution of the loop, the effect on the number of times the
statement is executed is undefined.

The range of values assumed by the control variable is specified, typi
cally: FOR n : = 1 TO 10 DO. The range specified is 1 TO 10. The FOR
statement is not executed, and the control variable is not changed if the
initial expression is greater than the final expression with the FOR •• TO
statement (or less than the final expression with the FOR •• DOWNTO state
ment). The range expressions must be assignment compatible with the type
of the control variable. These expressions are evaluated only once,
before any assignment is made to the control variable. The FOR statement
syntax is illustrated in Figure 5-9.

FOR STATEMENT

FOR t----1.i IDENTIFIERI--__.-.! 1----1~ EXPRESSION

STATEMENT

Figure S-9. FOR Statement Syntax

WITH Statement

DOWN TO

The WITH statement allows access to record fields without naming the
record. Each record expression in the list is either a record variable,
a record constant, or a reference to a function which returns a record.
Within the WITH statement any field of any of the records in the list may
be accessed by using only its field name instead of the normal field
selection notation using the period between the record and the field
name.

When the record expression is a function returning a record, the fields
of the record may only be used in other expressions. (i.e., they may not
be used on the left side of an assignment statement.)

5-9

Example:

WITH

TYPE
R = record

aa:integer;
b,c:real;

END;
FUNCTION A : R;

BEGIN

END;
•
•
•
BEGIN

A.aa := 3;
A.b := O;
A.c := O;

with A do
v := aa;
•
•
•

END;

statement syntax is illustrated in Figure 5-10.

Model 64817A
HP64ooo

HOST Pascal

(,___o---4 J
WITH STATEMENT--.(WITH)r-----'-..__-1"'iai EXPRESSION 1-l ---"----11t~@)r----1~~STATEMENT~

Figure 5-10. WITH Statement Syntax

GOTO Statement

The GOTO statement is used in conjunction with a label. The label must
be an integer in the range of l .. 9999. Program execution is transferred
to the statement named by the label. The label in a GOTO statement may
be defined in the same body as the GOTO statement, or it may be defined
in a.n enclosing block. The latter case is referred to as an "out-of
block" GOTO. The execution of an "out-of-block" GOTO automatically
closes any files that were local to any of the exited blocks. The GOTO
statement syntax is illustrated in Figure 5-11.

5-10

Model 64817A
HP64ooo
HOST Pascal

GOTO STATEMENT GOTO INTEGER 1-----l•

Figure 5-11. GOTO Statement Syntax

In HOST Pascal the GOTO statement should not direct program execution
into the middle of any FOR or WITH statement because results may be
undefined.

Empty Statement

The empty statement is denoted by no symbol and performs no action. It
is used to indicate that no action is to be taken as the result of a con
dition evaluation.

Example:

IF a < b
THEN
ELSE

writeln ('a is greater than or equal to b. ');

THEN has no action statement associated with it, therefore an empty
statement exists.

Expressions

An expression is a construct composed of operators and operands, and is
used to compute a value of some type. An operator defines an action to
be performed on its operands. Operands denote the objects that operators
will use in obtaining a value. An operand may be a literal, a constant
identifier, a variable, or it may be a reference to a function. The syn
tax diagram for expressions is shown in Figure 5-12, and is expanded into
greater detail in Figures 5-13 thru 5-15.

EXPRESSION SIMPLE
EXPRESSION

Figure 5-12. Expression Syntax

5-11

SIMPLE
EXPRESSION --ot--------- TERM

Figure 5-13. Simple Expression Syntax

TERM FACTOR

FACTOR

Figure 5-14. Term Syntax

5-12

TERM

Model 64817A
HP64ooo

HOST Pascal

Model 64817A
HP64ooo
HOST Pascal

FACTOR--.--...-

INTEGER

REAL

STRING
LITERAL

FIELD
IDENTIFIER

VARIABLE
IDENTIFIER

CONSTANT
IDENTIFIER

FUNCTION
IDENTIFIER

SET
CONSTRUCTOR

FACTOR

ACTUAL
t----at PARAMETER

LIST

Figure 5-15. Factor Syntax

An expression's type is known when it is written, and never changes. An
expression's value, however, may not be known until the expression is
evaluated and may be different for each evaluation.

Operands

An operand is a literal, symbolic constant, variable, function or the
value of another expression, that can be acted upon by an operator.

Literals

A literal is a representation of one of the possible values of a certain
type. The literal must conform to certain syntax rules for literals of
that type. Literals in Pascal may be integer, real, or string literals.

5-13

Integer Literals

Model 64817A
HP64ooo

HOST Pascal

Integer literals consist of numbers of the type integer. Spaces may not
be used within an integer literal. Integers can be represented only in
decimal notation.

Real Literals

Literals of the types REAL and LONGREAL consist of numbers of the type
REAL. Exponential notation may be used to represent real or longreal
values. The letter "E" preceding a scale factor specifies an exponent
with a real number, and is read "times 10 to the power of". The letter
"L" preceding a scale factor specifies an exponent with a longreal num
ber. Decimal points must be preceded and followed by at least one digit.
Spaces can not be used in real or longreal numbers.

Examples:

0.5 3-79E-3 3-79L-3 8E+4 8L4

String Literals

String literals consist of groups of characters set off by single
quotation marks. A single character can be considered as a type
CHAR or as a type string. If a single quotation mark is included
in a string, it must be shown twice. Printable ASCII characters
appear in strings in the normal manner with the exception of the
apostrophe ('), which must be inserted twice.

Examples:

'DON''T USE THIS CONTAINER'.
'This is a string.'

Non-printing ASCII characters may be included in strings by using an ex
tended string syntax employing the pound sign (#). The pound sign is
used to encode an ASCII control character when followed by a non-numeric
character, or to encode any character by giving its decimal value (in the
range 0 .. 255).

Examples:

#27'that was an ESC character, as this is, too.'#[
'This string has 5 be1ls'#g#g#g#7#7' in it.'

Symbolic Constants

A symbolic constant is an identifier that represents a literal, a con
stant expression, or a structured constant. A symbolic constant may also
represent a component of a structured constant if it appears with the

5-14

Model 64817A
HP64ooo
HOST Pascal

appropriate selector. The identifiers defined in an enumeration type
definition are also symbolic constants. The identifier is associated
with a value in the CONST declaration section. This declaration also
determines the data type of the constant. The constant may be used in
places where expressions are expected. The identifier may also be used
in TYPE definitions and other CONST definitions. A symbolic constant
cannot appear on the left hand side of an assignment statement, as an ac
tual variable parameter, or as a FOR loop control variable.

Variables

A variable is an identifier that represents a changeable data item. The
variable must be declared and associated with the type of data it
represents. The declaration takes place in the VAR portion of the block
to which it is local. The identifier may denote a simple variable such
as an integer or character, or it may be a structured variable such as an
array or record. In either case, the variable is an entire variable. A
variable may also denote a component of a structured variable if it ap
pears with the appropriate selector. Such a variable is called a com
ponent variable.

Selectors

A selector specifies a particular component of a structured expression.
The selector may be applied to a structured variable or symbolic con
stant, or to a reference to a function that returns a structured type.
The syntax for selectors is shown in Figure 5-16.

EXPRESSION

Figure 5-16. Selector Syntax

5-15

Array Subscripts

Model 64817A
HP64ooo

HOST Pascal

Array and string components are selected using subscripts, denoted by
square ([]) brackets, and an expression. The subscript, or index, type
must be compatible with the expression type appearing in the array type
definition. The values of constants and non-constants are checked at run
time to make sure those values lie in the range specified in the index
type, unless the RANGE compiler option is turned off. The array denota
tion appearing before the brackets may itself be a selected variable,
constant, or function reference.

Field Selection

A field of a record is selected by following the record identifier with a
period and the name of the field. The record name appearing before the
period may itself be a selected variable, constant, or function
reference. The WITH statement may be used to "open the scope" of the
record, making it unnecessary to mention the record when accessing its
fields.

Pointer Dereferencing

A pointer points to, or "references" a variable in the heap. To access
that variable, the pointer is followed by the caret (A). At run time the
pointer value is checked to make sure it isn't NIL before accessing the
heap variable. The pointer may itself be a selected variable, or func
tion reference. It may not be a selected constant, for the only pointer
constant is NIL.

Examples:

File Buffer Selection

Every file in a program has implicitly associated with it a "buffer vari
able". This is the variable through which data is passed to or from a
file. The file component at the current position of the file can be read
into the buffer variable or the next item to be written to the file may
be assigned to the variable and then written. The buffer variable, which
is of the same type as the file base type, is denoted by following the
file identifier with a caret (A). The file identifier appearing before
the caret may itself be a selected variable, but may not be a selected
constant or a selected function reference.

Examples:

5-16

Model 64817A
HP64ooo
HOST Pascal

Operators

Operators are used within expressions to specify certain actions on one
or more operands, and to create a new value. The value is determined by
the operator, its operands, and the definition of the effect of the
operator. With each operator is associated the following:

a. number, order, and type of operands
b. result type
c. precedence

Operator precedence is used to determine the order of element evaluation
in an expression. The higher precedence operators are evaluated first.
Grouping of operators can alter the precedence value of the group;
however, precedence within the group still follows the rules of
precedence. The following list shows operators with their order of
precedence, from highest to lowest.

NOT
* /, DIV, MOD, AND
+, - OR
<, <=, <>, =, >=, >, IN

Operators may either be predefined or user-defined. Predefined operators
are the arithmetic, boolean, set, string, and relational operators, and
the predefined functions. User-defined operators are references to user
written functions, routines that compute and return a value. The value
resulting from any operation may in turn be used as an operand for
another operator.

Arithmetic Operators

Arithmetic operators take numeric operands and produce a numeric result.
A numeric type is the type REAL, LONGREAL, INTEGER, or any INTEGER sub
range. If either operand is REAL or LONGREAL, the result will be of type
LONGREAL. If both operands are integers, the result will be a two-word
INTEGER. Operands are converted to match the type of the result before
operation takes place. Integer values, for example, are converted to
real values before an operation involving integer and real numbers.

In the case of real division (/), if both operands are integers, the
operands are converted to REAL type before division takes place. The
result is of type LONGREAL.

Operands for both DIV and MOD must be integers.

Integer division (DIV) calculates the truncated quotient of two integers.
The sign of the result is positive if both operands have the same sign,
and negative if the operands have opposite signs.

A div Bis equivalent to trunc (A/B).

5-17

Model 64817A
HP64ooo

HOST Pascal

For the MOD operation, the sign of the result is always positive. I MOD
J is defined only for j > 0. An error occurs if j <= 0.

A mod Bis equivalent to (A - (k * b)) for integer k such that 0 <=A mod
B < B, where B > 0.

Boolean Operators

The Boolean operators perform logical functions on Boolean operands. The
Boolean operators are: NOT, AND, OR.

NOT

The NOT operator takes one Boolean operand and produces a Boolean result
equal to the inverse of the operand.

AND

The AND operator yields a Boolean result of true only if all operands are
true.

OR

The OR operator yields a Boolean result of true if any one of the
operands is true; or yields a Boolean result of false only if all of the
operands are false.

a b NOT a aANDb a OR b

T T F T T
T F F F T
F T T F T
F F T F F

All Boolean expressions are evaluated using either partial or full
evaluation, depending on the setting of the PARTIAL EVAL option. The
default state of the PARTIAL EVALuation option is off; however, the op
tion may be changed at any time in the program.

Under PARTIAL EVAL, the evaluation proceeds from left to right. The
evaluation ceases for the AND operator when a "false" boolean value is
detected. The evaluation process ceases for the OR operator when a
"true" boolean value is detected.

Relational operators with Boolean operands are always fully evaluated.
NOT, AND, OR cannot be used on operands of non-Boolean types.

5-18

Model 64817A
HP64ooo
HOST Pascal

Set Opera tors

Three infix operators are defined which manipulate two expressions having
compatible set types and result in a third set. The set operators are:
set union (+), set difference (-), and set intersection (*).

Set Union

The union operator creates a set whose members are all of those elements
present in the first set plus those in the second set. Simply, the com
bining together of two sets into one set.

Set Difference

The difference operator creates a set whose members are those elements
that are members of the first set but are not members of the second set.

Set Intersection

The intersection operator creates a set whose members are all of those
members present in both sets.

The two operands of a set operator must be expression compatible. The
distance between the lower and upper bounds of a set's base type is
referred to as "width". One set is wider than a second set if every ele
ment in the second set is represented in the first.

Example:

set of 0 .. 100 is wider than set of 1 .• 10.

The result of a set operation is a set whose lower bound is the minimum
of the lower bounds of its two operands, and whose upper bound is the
maximum of the two upper bounds. Before the set operation is performed,
if either operand has a width other than the result's width, it is auto
matically widened prior to the operation.

Example:

TYPE

VAR

HIGH= SET OF 50 .. 100;
LOW= SET OF 1 .. 10;
CROSS= SET OF 5 .. 75;

pos:HIGH;
neg:LOW;
crs:CROSS;

5-19

Model 64817A
HP64ooo

HOST Pascal

The result of the expression (neg + pos) is a set whose base type is the
range 1 .. 100. The result of the express ion (crs + pos) is the range
5 .. 100.

Narrowing of sets is also automatic for set assignments and actual value
parameters. Run-time range checks are made to verify that the narrowing
of a set does not discard any elements. For example, in the assignment
crs := crs + pos, the result of the union is of the type SET OF 5 .. 100
and thus must be narrowed to SET 5 .. 75. A run-time error will occur if
the result has as members any of the numbers in the range 76 .. 100.

Set Constructor

The set constructor notation is considered to be an operator and it too
creates a set. Each expression value in the constructor is entered into
the set. Every element between two expressions may be included by using
the range (..) symbol between the expressions. A type identifier may be
used to specify exactly what type of set is to be created. See Figure
5-17 for the Set Constructor Syntax diagram.

SET
CONSTRUCTOR

TYPE
IDENTIFIER

EXPRESSION

Figure S-17. Set Constructor Syntax

EXPRESSION

If no type identifier is used, one of three possible results will occur
depending on the type T of the elements in the set:

5-20

a. If T is an integer, then the set created is of type SET OF
0 .. 255. Compile-time and run-time checks are performed to en
sure that specified elements are in this range. Thus the set
[25,0,255] is legal, but the set [-10, 256] is not legal.

b. If T is any other ordinal type, the set created is a set whose
base type is the entire ordinal type. The set ['A','T'] has
the type SET OF CHARacter.

c. If the empty set ([]) is specified, the type of the set will be
determined from context.

Model 64817A
HP64ooo
HOST Pascal

The type identifier is needed to construct integer sets outside the range
0 .. 255. But it is also desirable to specify the type for sets over other
subrange types for efficiency reasons. The set UPPER CASE ['A' .. 'T']
requires much less storage than the set ['A' •• 'T'], and has a correspond
ing savings in run time.

String Operators

The operator + specifies the concatenation of two string expressions. An
error will result if the combined length of the two expressions is
greater than 255.

Example:

VAR
s string[lOO];

•
•
•

BEGIN
s : = 'part 1' ;
write (s + 'part 2'};

END.

Relational Operators

Relational operators are used to compare two operands and return a
boolean result. The operands may be INTEGER, REAL, LONGREAL, sets,
boolean, or pointers. Relational operators appear between two expres
sions, that must be compatible, and always result in a value of type
boolean. The relational operators are:

< {less than)
<= {less than or equal)
= (equal)
<> {not equal)
>= {greater than or equal)
> {greater than)
IN (set membership)

Ordinal Relationals

The relationals that can be used with operands of the types integer,
boolean, char, or any enumeration or subrange type, are: <, >, <=, =, <>,

and >=. These operators carry the normal definition of ordering for
numeric types, and char relationals are defined by the ASCII collating
sequence. The order of enumerated constants is defined by the order in
which the constant identifiers are listed in the TYPE definition. The
predefinition of boolean is: BOOLEAN = (false, true) and means false <

true. An expression having an ordinal type may also appear as the first

5-21

Model 64817A
HP64ooo

HOST Pascal

operand of the IN operator. Some boolean functions may be performed
using the relational opera tors with boolean operands , as shown in the
following truth table:

a b a<b a<=b a=b a<>b

T T F T T F T F
T F F F F T T T
F T T T F T F p
F F F T T F T F

<= is the implication operator, is the equivalence operator, and <> is
an exclusive OR operator.

PAC Relationals

PACs (packed arrays of characters) may be compared using the operators =,
<>, <, >, <=, or >=. The two PACs must have the same number of com
ponents. In addition, PACs may be compared to string literals that have
the same number or fewer characters than the PAC.

PACs are compared character by character until either a pair of unequal
characters are found, or until all characters have been compared. The
ordering of two PACs is determined by the first pair of unequal charac
ters according to the ASCII collating sequence.

Comparing a PAC to shorter string literal is an HP extension to standard
Pascal. When a PAC is compared to a shorter literal, the literal is ex
tended on the right with blanks until the two are equal in length.

String Comparison

A string expression can be compared to any other string expression, in
cluding string literals. Strings are compared character by character un
til a pair of unequal characters are found or until all the characters in
the shorter string are used. If two characters are unequal, the ordering
of the string is determined by the ASCII collating sequence. If all the
characters in two strings are equal up to the length of the shorter
string, then the longer string is greater than the shorter string. Two
strings are equal only if they have the same length and all characters
contained in that length are equal.

Pointer Relationals

Pointers can only be compared using the relationals = and <>, Two point
ers are equal if they point to exactly the same object, and are not equal
otherwise. Pointers of any type may be compared to the constant NIL.
Pointers can only be compared to other pointers, and their two pointer
types must be identical.

5-22

Model 64817A
HP64ooo
HOST Pascal

Set Relationals

Two sets can be compared for equality with = and <>. In addition the <=
operator is used to denote the subset operation, and >= denotes the su
perset operation. One set is a subset of a second set if every element
in the first set is also a member of the second set. Also, the second
set is said to be a superset of the first set. Sets are widened, if
necessary, before the relational operation. The < and > operators are
not allowed on sets.

The IN operator is used to determine whether or not an element is a mem
ber of a set. The second operand has the type SET OF T, and the first
operand has an ordinal type compatible with T. To test the negative of
the IN operator, the following form is used: NOT (element IN set).

Function References

A reference to a function can be thought of as an operator whose operands
are the actual parameters passed to the function; or as an operand whose
value is determined by the process in the function.

The result, whose type is defined in the function heading, is treated
identically to the result of any other operator, and may be used inside
an expression. Actual parameters must match the function's formal para
meters in number, order, and type. If the function's type is structured,
then components of the result value may be accessed using an appropriate
selector. Care must be taken to avoid inefficient use of this construct.
It is usually better to copy the result of a structured function into a
local variable before accessing, if several components of the structure
will be accessed.

Functions may be recursive.

5-23

Constant Expressions

Model 64817A
HP64ooo

HOST Pascal

A constant expression is one that the compiler is able to evaluate at
compile time. The syntax is no different from ordinary expressions, but
there are restrictions on the operators and operands of a constant ex
pression. Allowed in constant expressions are the following:

Operators
+ (unary and binary)

(unary and binary)
*
DIV
MOD

Predefined Functions
pred
succ
ord
chr
odd
abs (except for REAL or LONGREAL operands)
hex
octal
binary

Operands
integer literals
real and longreal literals
string literals
previously-defined constant identifiers

Other operators, such as the relationals, boolean operators, and other
predefined functions are not allowed. Neither are selected constants,
e.g., "table [5]" where table is a structured constant.

Structured constants are not constant expressions, and can only appear in
CONST declarations.

Constant expressions are called for in CONST declarations, subrange
definitions, the variant part of a field list, structured constants, and
case statement label lists.

5-24

Model 64817A
HP64ooo
HOST Pascal

Type Compatibility

A set of compatibility requirements for the operands of each operator is
based both on the operator and the types of its operands.

Relative to each other, two types in Pa!': cal are either:

a. identical,
b. compatible,
c. assignment compatible,
d. expression compatible, or
e. incompatible.

Identical Types

Two types are identical if either of the following is true:

a. their types have the same type identifier.

b. if the two type identifiers have been equivalenced by a defini
tion in the form Tl = T2.

Compatible Types

Two types, Tl and T2, are compatible if any of the following is true:

a. Tl and T2 are identical types.

b. Tl and T2 are subranges of the same base type, or Tl is a sub
range of T2 or T2 is a subrange of Tl.

c. Tl and T2 are set types with compatible base types.

d. Tl and T2 are string types.

e. Tl and T2 are both PAC types with the same number of
components.

f. Tl and T2 are both real types.

5-25

Model 64817A
HP64ooo

HOST Pascal

Assignment Compatible Types

T2 is assignment compatible with Tl (that is, a value of type T2 can be
assigned to a variable of type Tl) if one of the following is true:

a. Tl and T2 are compatible types which are not files or struc
tures that contain files.

b. Tl is a real type and T2 is compatible with INTEGER.

c. Tl is REAL and T2 is LONGREAL. In this case the LONGREAL is
rounded before being assigned. A run-time error will occur if
the LONGREAL value is outside the range of the REAL.

d. Tl and T2 are compatible ordinal types and the value of type T2
is in the closed interval specified by the type Tl.

e. Tl and T2 are compatible set types and all the members of the
value of type T2 are in the closed interval specified by the
base type of Tl.

f. Tl is a PAC and T2 is a string literal with the same or fewer
components as Tl. In the case where T2 is shorter than Tl, T2
will be extended on the right with blanks.

For operations that require assignment compatibility, a compile-time or
run-time error will be produced if either:

a. Tl and T2 are compatible ordinal types and the value of type T2
is not in the closed interval specified by the type Tl.

b. Tl and T2 are compatible set types and any member of the value
of type T2 is not in the closed interval specified by the base
type of the type Tl.

For operations that require assignment compatibility, the following im
plicit conversions are performed prior to the operation:

5-26

a. 1-word INTEGER values are converted to 2-word INTEGER values.

b. 2-word INTEGER values are converted to 1-word INTEGER values.

c. INTEGER values are converted to REAL values.

d. INTEGER values are converted to LONGREAL values.

e. LONGREAL values are rounded to REAL values.

f. Set values are widened or narrowed to the type Tl.

g. Shorter string literals are extended on the right with blanks
to become compatible with longer PACs.

Model 64817A
HP64ooo
HOST Pascal

Two types, Tl
ing is true:

a. Tl

b. T2

and T2, are expression compatible if either of the follow-

is assignment compatible with T2.

is assignment compatible with Tl.

Special Cases

The pointer constant NIL is both compatible and assignment compatible
with any pointer type.

The empty set [] is both compatible and assignment compatible with any
set type.

5-27

5-28

Model 64817A
HP64ooo

HOST Pascal

Chapter 6
Files

Introduction

Files, although declared in the VARiable section, are different from
other variables. The main purpose of a file is to allow the program to
communicate with the program environment.

Logical Files

All file variables used in HOST Pascal programs are logical files. Each
logical file has an identifier associated with it. The logical file
structure consists of a sequence of components of the same type. These
components may be of a simple type, such as INTEGER, REAL, or CHAR; or
they may be of structured types, such as arrays or records. The com
ponents cannot be of type FILE or a structured type that contains a file.

The identifiers associated with the file and the component type are
declared in a VARiable declaration section. All files used in the
program, except files INPUT and OUTPUT, must be declared before they are
used. Files INPur and OUTPUT are predefined:

INPUT, OUTPUT : TEXT;

and can be accessed in any routine or program body if declared in the
program heading.

Examples:

TYPE

VAR

STR70 =PACKED ARRAY [1 .. 70) OF CHAR;
person = RECORD

END;

name : STR70;
age_in_years : 0 .. 120;
employee_number: 0 .. 5000

people_file : FILE OF person;
string_file : FILE OF STR70;
int file FILE OF CHAR;
num-file : FILE OF INTEGER;

A logical file must be opened if it is to be accessed. The procedure
used in opening the file determines how the file components may be
accessed.

The compiler automatically generates code for the files INPUT and/or
OUTPUT, if the file was listed in the program heading. RESET code is

6-1

Model 64817A
HP64ooo

HOST Pascal

applied to file INPUT, and REWRITE code is applied to file OUTPUT, at the
beginning of the program body.

Sequential Files

Sequential files are logical files that have been opened through the
procedures RESET, REWRITE, or APPEND. Components in these files must be
accessed in sequence.

An existing sequential file can be changed only by rewriting the entire
file (REWRITE), or by appending new data to the file (APPEND).

The process of opening associates the logical file with a physical file.

Physical Files

A physical file is either an I/O device or a disc .file that exists out
side the program environment on the 64000 system. I/O devices that may
be accessed are: display, printer, keyboard, displayl, rs232, and null.
Disc files are identified with file names. A file name has the syntax:

<name>[: [<userid>]][:<digit>][:<type>]

Textfiles

The identifier TEXT is predefined as follows:

TYPE
TEXT = FILE OF CHAR;

Textfiles are similar to other files but are further structured into
lines that are separated by line markers. Line markers may be generated
by the standard procedure WRITELN and be detected by the standard func
tion EOLN.

A textfile type definition specifies a structure consisting of a sequence
of components that are all of type CHAR. The number of components is not
fixed by the file type definition. Sequential operations applicable to
variables of the type File of CHAR also apply to textfiles. Line markers
are not of type CHAR. If a READ is performed when the end-of-line has
been reached, a blank character will be stored into the file variable.

Logical File Characteristics

Every logical file is associated with a file buffer variable, current
position pointer, and a state or mode.

6-2

Model 64817A
HP64ooo
HOST Pascal

File Buffer Variable

The file buffer variable is of the same type as the file's component
type, denoted: fA, where f is the identifier associated with the file.

The file buffer variable is used to access the component to be read from
or written to the file.

Once the file has been opened, the file buffer may be accessed by the
program as a variable of the file component type. The contents of the
file buffer may be assigned to a variable through the assignment state
ment. For example: variable id := file idA would assign the contents of
the file id buffer to "variable id". The variable must be of a type that
is assigilment compatible with the file's component type. (Files of the
predeclared type TEXT have file buffers variable that are assignment com
patible with variables of the predeclared type CHAR).

Example:

TYPE

VAR

Book info = RECORD

END;

-title : packed array [1 •• 50] of char;
author packed array [1 •• 50] of char;
number 1 .. 32000;
status (on_shelf, checked_out,lost,ordered)

book : book info;
book file :-FILE OF book_info;

•
•
•

BEGIN
book := book_fileA;

•
•
•

END;

Current Position Pointer

The current position pointer marks a component of the file. It is used
with the file buffer to access components of the file. The first com
ponent of a file is number 1.

File States

Logical files are either OPEN or CLOSED. Logical files, when open, will
be in either a readable or writable state. Files are opened into a
readable state by the procedure RESET. Files are opened into a writable
state by the procedure REWRITE, or by the procedure APPEND. Files that
are closed are not accessable.

6-3

Opening Files

Model 64817A
HP64ooo

HOST Pascal

A file cannot be accessed, although previously declared, until it has
been opened. There are three predefined procedures that can be used to
open a file. Those procedures are: RESET, REWRITE, and APPEND. Files
opened by these procedures are sequential files.

RESET(f)
RESET(f,s)
RESET(f,s,t)

A file opened by the procedure RESET(f) is opened in a readable mode.

If the file (f) is already open when RESET is called, then file (f) is
automatically closed and then reopened.

Then the logical file (f) is associated with a physical file.
Association is performed by use of a file name. The name is obtained ac
cording to the rules given in the section on "Associating Logical and
Physical Files". If the physical file does not exist, an error occurs.
If the file is not empty, the file pointer will be positioned at the
first component of the file.

After the procedure RESET(f) is called, the current position points to
the first component if file (f) is not empty. Then a call to the stan
dard procedure GET occurs. In addition, the function EOF(f) remains
FALSE. If the file is empty, the contents fA is not defined and EOF(f)
becomes TRUE.

An optional second parameter, (f, s) , may be included in the procedure
call. This is a string parameter that may be used to specify the physi
cal file by name. The string parameter is described in the section tit
led "Associating Files Through The String Parameter", in this chapter.

A third parameter, (f, s, t), is also optional and of type string. The
string may contain system dependent information. The third parameter is
not used by HOST Pascal but is allowed for compatibility with other HP
Pascal systems.

REWRITE(f)
REWRITE(f,s)
REWRITE(f,s,t)

A file opened by the procedure REWRITE(f) is in the writable mode.
Rewrite(f) discards any previously existing components (file is now
empty) and the current position points to the first position of the file.
The content of the file buffer fA is undefined, and the function EOF(f)
becomes TRUE.

If the file (f) is open when REWRITE is called, then file(f) is
automatically closed and reopened.

6-4

Model 64817A
HP64ooo
HOST Pascal

If the physical file associated with (f) exists and is a disc file, the
physical file is purged, any existing components of the file are lost,
and a new physical file is created.

A second parameter, (f ,s), described in the section "Associating Files
Through The String Parameter", may be included in the procedure call.

A third parameter, (f,s,t), may be included, and is interpreted as in the
procedure RESET.

APPEND(f)
APPEND(f,s)
APPEND(f,s,t)

A file opened by the procedure APPEND(f) is in the writable mode. The
components of file(f) are not discarded, however. The current position
pointer is set to just after the last existing component in the physical
file. The content of the file buffer is undefined and the function
EOF(f) is TRUE.

If the file(f) is open before APPEND is called, file(f) is automatically
closed and reopened.

If the physical file associated with (f) does not exist, it will be
created, as described in the section REWRITE.

A second parameter, (f,s}, may be included in the procedure call. This
is a string parameter described in "Associating Files Through The String
Parameter" in this chapter.

A third parameter, (f,s,t), may also be included. This parameter is in
terpreted as by RESET.

Associating Logical and Physical Files

A physical file may be associated with a logical file in one of following
ways:

a. An external name may be supplied as a second parameter to the
predeclared procedures APPEND, RESET, and REWRITE.

Example:

RESET (T,'DATA:MINE:data');

b. If the logical file was open before the call to APPEND, RESET,
or REWRITE, then the physical file associated with (f) will be
the same physical file that was associated with (f) before the
call.

6-5

Model 64817A
HP64ooo

HOST Pascal

c. If the logical file appears as a parameter in the program head
ing an external name is bound to that file when the program is
invoked through the run command.

d. If no external name is supplied, a file name will be created.
This name will be the same as the first nine characters of the
logical file identifier. Any lower case alphabetic characters
will be converted to upper case.

Associating Files Through the String Parameter

One method of associating logical and physiCal files is through the
string parameter. This method involves the use of the optional second
parameter in the predefined procedures APPEND, RESET, and REWRITE.

The second parameter of the procedures is a string expression that names
a physical file to be associated with the logical file named by the first
parameter. Note that apostrophes must be treated as those in a string
literal.

The string parameter allows the user to both specify and later change the
association between logical and physical files within the program. If a
logical file is opened through a procedure using a second parameter, any
previous association between that logical file and physical file is no
longer in effect. The physical file is closed and a new physical file
(named by the second parameter) is opened and associated with the logical
file. The string parameter is ignored if its value is either the "null"
string or all blanks.

Sequential File Operations

A file can be accessed only after it has been opened. There are six
predefined procedures in HOST Pascal that can be used to access the com
ponents of a file. Those procedures are GET, PUT, READ, READLN, WRITE,
and WRITELN.

Textfile Operation

Textfiles may be used as parameters with any of the procedures used to
access non-text sequential files. In addition, several standard
procedures and functions can be used exclusively with textfiles. The
procedures are READLN, WRITELN, and PAGE; the functions are LINEPOS, and
EOLN.

GET(f)

The procedure GET(f) advances the current-position pointer one component,
but does not cause the file component to be assigned to the file
variable. Rather, after performing GET(f), a subsequent reference to the

6-6

Model 64817A
HP64ooo
HOST Pascal

file buffer fA, or a call to eof(f) or eoln(f), will actually cause the
input operation and the assignment of the file component to the file
variable. This so-called "deferred GET" implementation is useful when
the physical file being accessed, such as a keyboard, is interactive in
nature.

If the component is the last one of the file, the function EOF(f) will be
TRUE the next time GET(f) is called. If the file was not opened in the
readable mode, or if the EOF(f) was TRUE prior to the procedure call, an
error will occur.

PUT(f)

The procedure PUT(f) assigns the contents of the file buffer into the
current component of (f), and advances the current-position pointer to
the next component. Following the procedure call, the content of the
file buffer is undefined. An error occurs if the file was not in a
writable mode prior to the procedure call.

READ(f,v)

For a file(f) that is not a textfile, and a variable (v) of a type that
is assignment compatible with the type of the file's components, the pro
cedure call READ(f ,v) will assign the contents of the file buffer to
variable (v), and advance the current-position pointer one component. If
file(f) is omitted, the file INPUT is assumed.

Errors will occur if the file was not opened in the readable mode, or if
EOF(f) was TRUE prior to the call to READ(f,v).

The procedure READ (f, v) may contain additional parameters, vl, ... , vn.
READ(f,vl, ... ,vn) is equivalent to:

READ(f,vl);
•
•
•

READ(f,vn);

READ(v) is equivalent to READ(input,v); READ(f,v) transfers from file (f)
to variable (v). If (f) is not a text file, READ(f,v) is equivalent to:

V := fA;
GET(f);.

The file component type must be assignment compatible with (v). (v) may
be a component of a PACKED structure.

6-7

READ(f,v) With Textfiles

Model 64817A
HP64ooo

HOST Pascal

Although the textfiles contain only components of type CHAR, the variable
(v) , in the procedure call READ (f, v) , may be of type INTEGER, REAL,
LONGREAL, PAC, string, a subrange of INTEGER, CHAR, or a subrange of
CHAR. This is possible because the procedure does an implicit conversion
from the ASCII form that appears in the text file to the actual form
stored in the variable.

If variables of type REAL, LONGREAL, INTEGER, or INTEGER subrange are in
cluded as parameters in the procedure READ, the file will be searched for
characters that satisfy the syntax of the variables.

If (f) is a textfile, even though the textfile contains only characters,
(v) may be compatible with CHAR and may be a component of a PACKED struc
ture; (v) may be compatible with INTEGER; (v) may be REAL or LONGREAL;
(v) may be a PAC; or (v) may be a string.

The action performed depends on the type of the variable.

If (v) is compatible with CHAR, then READ(f,v) is equivalent to v := fA;
GET (f).

If (v) is compatible with INTEGER, then READ implies reading from (f) a
sequence of characters forming a number according to the syntax shown in
Figure 6-1.

READ
INTEGER-~----__, __ .,......... ... DIGIT

Figure 6-1. READ INTEGER Syntax

An implicit conversion from the ASCII representation to the internal
representation takes place if the variable is INTEGER or REAL.

An error will occur if the proper sequence of characters is not found or
the value read is not in the range of integers.

Preceding blanks and line markers are skipped. The value will be assign
ed to (v) after reading the digits. fA will then contain the character
immediately following the last digit read.

The READ syntax, if {v) is REAL or LONGREAL, is shown in Figure 6-2.

6-8

READ

Model 64817A
HP64ooo
HOST Pascal

UNSIGNED
INTEGER

REAL OR --+-------~~-~
LONGREAL

UNSIGNED
INTEGER

UNSIGNED
INTEGER

Figure 6-2. READ REAL or LONGREAL Syntax

An error will occur if the proper sequence of characters is not found or
the value read is not in the range of REAL or LONGREAL.

Preceding blanks and line markers are skipped. The value will be assign
ed to (v) after reading the digits. r~ will then contain the character
immediately following the last digit read.

If (v) is a PAC type, then characters are read into (v) until either (v)
is full or EOLN(f) becomes TRUE. If EOLN becomes TRUE before (v) is
full, then the remainder of (v) is filled with blanks. If EOLN(f) is
TRUE when READ(f,v) is called, then an initial READLN(f) is done to skip
past the line marker.

If (v) is a string variable, then characters are read into (v) until
either (v) is full or EOLN(f) is true. The length of the string will be
set to the number of characters that were read. If eoln(f) is true when
read{f,v) is called, an initial readln(f) is done to skip past the line
marker.

READLN(f,v)

The parameter list for READLN(f,v) is similar to that of the procedure
READ. The file INPUT is assumed if the file identifier is missing.
Several variable parameters of the types CHAR (or subrange of CHAR),

6-9

Model 64817A
HP64ooo

HOST Pascal

REAL, LONGREAL, INTEGER (or a subrange of INTEGER), PAC, or string can be
used.

READLN(v) is equivalent to READLN(input,v). READLN(f,vl, ... ,vn) is
equivalent to:

READ(f,vl, ... ,vn);
READLN(f);.

READLN(f) is equivalent to:

while not eoln(f) do
get(f);

get(f);.

READ and READLN differ in their use of the end-of-line. After a call to
READLN, the current-position pointer is positioned after the end-of-line.
The variable parameters are filled followed by a skip to the next line,
ignoring whatever remains in the line.

WRITE(f,e)

The procedure call WRITE(f,e) will assign the value of the expression (e)
to the file buffer, assign the contents of the file buffer into the cur
rent component of (f), and advance the current-position pointer to the
next component.

If the file parameter is not included in the procedure call, then (f) is
assumed to be the OUTPUT file.

An error will occur if the file was not in a writable mode prior to the
procedure call.

The procedure WRITE(f,el) may contain additional parameters, e2, •.• ,en,
of a type compatible with the file's component type. The procedure call
WRITE(f,el, ... ,en) is equivalent to:

WRITE(f,el);
•
•
•

WRITE(f,en);

WRITE (e) is equivalent to WRITE(output,e).

If (f) is not a text file, then WRITE (f, e) is equivalent to f" : = e;
PUT(f);. Note that e must be assignment compatible with the component
type of (f).

If (f) is a textfile, then write parameters may have one of the following
forms:

6-10

Model 64817A
HP64ooo
HOST Pascal

a. e
b. e:m
c. e:m:n

where e, m, and n are expressions. The form e:m:n is legal only if the
type of e is REAL or LONGREAL.

WRITE(f,v) With Textfiles

The procedure WRITE (f, v) , when used with textfiles , uses the variable
identifiers occurring as "write parameters". The program ouput can be
formatted through the use of these write parameters to display program
results in a more readable form.

Write parameters may be listed in one of three different forms:

a. expression

b. expression:m

c. expression:m:n

where m and n are field width parameters and must be expressions com
patible with integer.

If default formatting is desired, the first form is used. The type of
the expression may be an integer, real, longreal, char, Boolean, PAC, or
string. The field-width parameter (m) will be defaulted depending on the
type of the expression. The field width default values are shown in
table 6-1.

Table 6-1. Field Width Parameter Default Values

PARAMETER TYPE (m) FIELD WIDTH DEFAULT

CHAR 1
PAC length of PAC
string. current length
INTEGER 12
REAL 12
LONGREAL 20
BOOLEAN length of TRUE

Example:

flop := 20;
write('This string contains');
write(flop);
write(' characters.');

of string

or FALSE

6-11

will produce output of the form:

This string contains 20 characters.

Model 64817A
HP64ooo

HOST Pascal

Field width parameters can be used to adjust the space into which a value
is written when formatting is desired. For expressions of type INTEGER,
CHAR, or string, only the first field width parameter can be specified,
therefore, the second form of write parameter is used.

The field width parameter (m) is an integer expression specifying the
number of characters that will be used to represent the value in the
text file. If (m) is greater than the number of characters actually
needed, the additional characters will be represented as blanks preceding
the value. Thus the value is right justified.

For integer or real expressions (m) is ignored and text remains un
abridged if parameter (m) is less than needed. Text is truncated,
however, if (m) is less than needed for CHAR, string, and enumerated
types. If (m) < O, an error will occur.

Both (m) and (n) parameters can be used to format REAL values. If param
eter (n) is present, a fixed-point representation with (n) digits after
the decimal point is obtained. If (n) is 0 the decimal point will be
omitted. No more significant digits will be written than are contained
in the internal representation. If (n) is less than the number of sig
nificant digits in the internal representation, the number will be
rounded off. When the parameter (n) is missing or the value cannot be
expressed with a fixed-point representation, a floating point representa
tion consisting of a coefficient and scale factor will be chosen.

A text file has a maximum line length that may be controlled using the
LINESIZE compile option. The Host Pascal system insures that longer
lines are not written by automatically performing WRITELN operations if
necessary.

When writing to a text file, the system counts the number of characters
written since the last WRITELN operation.

When writing each field, the system checks to see if the new field will
fit on the present line without exceeding the maximum line length. If
the field will not fit, the system performs a WRITELN operation and then
writes the field on the next line.

WRITELN(f,p)

The procedure WRITELN is the same as the procedure WRITE, except that an
end-of-line marker is placed immediately after writing the values of the
write parameters. As with the procedure WRITE, parameters in WRITELN may
be of type CHAR, subrange of CHAR, INTEGER, REAL, LONGREAL, BOOLEAN, PAC,
string, or a subrange of INTEGER.

WRITELN is equivalent to writeln(output). writeln(f ,pl, ... pn) is
equivalent to:

6-12

Model 64817A
HP64ooo
HOST Pascal

WRITE(f,pl, •.. pn); WRITELN(f);

PAGE(f)

The procedure PAGE(f) will cause the next element written to textfile (f)
to appear at the top of the next page. PAGE causes the line printer to
skip to the top of form so it will only effect a printed listing. If the
file (f) is not a textfile, an error will occur. If the procedure call
contains no parameters, the predefined file OUTPUT is assumed.

LINEPOS(f)

LINEPOS is a function that returns the number of characters read from, or
written to the file since the last end-of-line. The component currently
in the file buffer is not included in this count.

LINEPOS(f) is an HP Pascal extension.

EOLN(f)

The function EOLN will return the Boolean value TRUE if the position
pointer is located at the line marker, and will be FALSE at any other
position.

If parameter (f) is omitted, the file INPUT is assumed.

Closing Flies

A file is closed by use of the procedure CLOSE. Any attempt to access a
closed file will produce an error.

~Opening a file will implicitly close any physical file previously as
sociated with that logical file.

If any physical file was associated with a logical file, the procedure
CLOSE will save the physical file unless the file is purged through the
string parameter PURGE. The procedure CLOSE(<file name>, PURGE) will
purge any physical file associated by the program with the file
(file_name) at the time of the call.

The procedure CLOSE is an HP Pascal extension.

6-13

Summary of Procedures and Functions

Model 64817A
HP64ooo

HOST Pascal

Table 6-2 provides a brief summary of procedures and functions listed in
chapter 6, and the types of file with which they can be associated.

Table 6-2. Procedure and Function to File Association

Sequential File

text non-text
PUT x x
GET x x
RESET x x
REWRITE x x
APPEND x x
CLOSE x x
EOF x x
EOLN x
LINEPOS

/
x

READ x x
READLN x
WRITE x x
WRITELN x
PAGE x

6-14

Chapter 7
Standard Procedures and Functions

File Handling Procedures

The following procedures are used to manipulate files in the HOST Pascal
64000 compiler.

The procedures APPEND, RESET, and REWRITE may have first, second, and
third parameters (f,s,t). The optional second parameter is a string that
specifies a system file to be associated with (f). The optional third
parameter is also a string specifying implementation dependent options
relating to the file. If s and t parameters are all blanks they are
treated as if they were omitted.

The following actions occur when APPEND, RESET or REWRITE are called:

a. The file (f) is closed if it was open.

b. An actual file or I/O device is associated with (f). The name
of the file or device is determined as follows:

1. The second parameter is used as a file name.

2. If the second parameter is all blanks, or was omitted,
then the following takes place:

APPEND (f)
APPEND (f,s)
APPEND (f,s,t)

a) lf the file was open previous to the call to APPEND,
RESET, or REWRITE, the same file is used.

b) If the file was not open previous to the call, and if
the file was a program parameter, then the name given
to the program parameter is used as file name.

c} If the file was not a program parameter, or if the
file name associated with the program parameter was
all blanks, then the file name becomes the same as
the file variable identifier.

The procedure APPEND opens the file as a sequential file in the writable
mode. Any components previously existing in the file remain, and the
pointer is positioned directly after the last component of the file. The
content of the file buffer is undefined. The boolean eof(f) will be
TRUE. New data will be added to the file, at the end of the file.

7-1

Model 64817A
HP64ooo

HOST Pascal

The parameter (f) must be a file that has been previously declared. It
need not be closed before the call is made. If the file was open before
the procedure call, the file is automatically closed and reopened in a
writable mode.

RESET(f)

The procedure RESET opens the file as a sequential file in the readable
mode. 1'he current-position pointer is initially positioned at the first
component of the file, followed by a GET.

The parameter (f) must be a file that has been previously declared. It
need not be closed before the call is made. If the file was open before
the procedure call, it is automatically closed and then reopened in the
readable mode.

REWRITE(f)

The procedure REWRITE opens the file as a sequential file in the writable
mode. The current-position pointer is placed at the first component.
Any components previously existing in the file are discarded and the file
buffer is undefined. The function eof(f) is true.

If the Pascal file i.::: associated with a system file by the procedure
REWRITE, all contents of that system file are destroyed.

CLOSE(f)
CLOSE(f,s)

The procedure CLOSE makes the file unavailable for accessing, and as
sociation with a system file is dropped. The content of the file buffer
is undefined. The boolean eof(f) will be true.

The parameter (f) must be a file which has been previously declared. It
need not be open before the call is made. If the file was closed before
the procedure call, no error will be produced.

The second parameter is optional and is of type string. This parameter
can take on one value, PURGE. If the string PURGE is used, the file is
destroyed when it is closed. If the second parameter is omitted or has
any value except PURGE, the file will be saved.

GET

The procedure GET advances the current file position. A following
reference to the buffer variable will actually move this component into
the buffer variable. If the component does not exist, the content of the
file buffer is undefined and eof(f) will be true. An error will occur if
eof(f) was true before the call or if the file was not readable.

7-2

Model 64817A
HP64ooo
HOST Pascal

The parameter (f) must be a file that has previously been opened in a
readable mode.

PAGE

The procedure PAGE causes printer orientation to the top of the next page
when the text file (f) is printed.

The file (f) must have been previously declared as a text file. The file
must be in a writable mode.

The file OUTPUT is assumed if the parameter (f) is omitted.

PUT

The procedure PUT writes the value of the buffer variable fA to the cur
rent component of (f) and advances to the next component. Following the
call, the content of the file buffer is undefined.

The parameter (f) must be a file that has previously been opened in a
writable mode.

READ

The procedure READ accepts input from a file that has previously been
opened in a readable mode. Data from the file is then assigned to vari
ables specified as parameters in the procedure call.

The file INPUT is assumed if the file identifier is not included as a
parameter.

The procedure call READ (f ,vl, ..• ,vn) is equivalent to the procedure
calls READ(f,vl), READ(f,v2), •.. ,READ(f,vn).

The procedure READ can be used ·to read from a file that is not a
textfile. In that case READ (f,x) is equivalent to x := fA, GET (f).
READ (f,xl, ... ,xn) is equivalent to READ (f,xl); ••. ;READ(f,xn). If vis
a variable of type CHAR, then READ(f,v) is equivalent to v := fA, GET(f).

If (f) is a textfile and v is a variable of type INTEGER (or subrange of
integer) or REAL or LONGREAL, then READ(f,v) implies the reading from (f)
of a sequence of characters that form a number according to the following
syntax:

<integer number>::= <sign><unsigned integer>;
<real number> ::= <sign><input real number><exponent>;
<input real number> ::=<digit sequence>!

<unsigned integer>.<digit sequence>l<unsigned integer>!
<unsigned integer>.;

<exponent> ::= E<scale factor>IL<scale factor>! E I L I
<empty>;

7-3

Model 64817A
HP64ooo

HOST Pascal

The value of the number read is assigned to the variable v. Preceding
blanks and line markers are skipped. Following the read, fA will contain
the next character immediately following the characters read. The result
of reading a longreal number is independent of the letter preceding the
scale factor.

READ(f,v), if vis a variable of type PAC, implies the reading of charac
ters into v. If eoln(f) becomes true before v is filled, then the
remainder of v is filled with blanks. If f"' contains the line marker
when this call is made, an initial READLN is performed. In this case v
will contain all blanks if the next component is the line marker.

READ (f, v), if v is a variable of string type, implies the reading of
characters into v until either EOLN is true, or v is filled. The current
length of v is set to the number of characters read. If EOLN is true
when this call is made, an initial READLN is performed. In this case, v
will contain the null string if the next component is a line marker.

READLN

The procedure READLN is used to read and skip to the next line. It is
similar to the procedure READ used with text files in that the input is
received from the file and assigned to the variable parameter(s). Once
this action has been completed, however, the procedure READLN will ignore
any remaining characters on the line and the next access to the file will
begin on the following line.

The parameter (f) must be a file that has been previously declared as a
text file and opened in the readable mode. The file INPUT is assumed if
the file identifier is not included as a parameter.

The variables vl thru vn may be of type CHAR, REAL, LONGREAL, INTEGER (or
subrange of INTEGER), PAC, or string. Their values will be assigned in
the same way as variable parameters of the procedure READ used with text
files.

TIMEOUT(f,t)

The procedure TIMEOUT is used to specify the time interval for waiting
for a character to be received on the "rs 232" I/O device. TIMEOUT has
an effect only if text file f is open for reading to the RS232 device.
The integer expression t specifies the time interval as a number of ticks
of the real time clock. A clock tick is either 1/60th or 1/50th of a
second depending on the AC line frequency. If the value of t is nega
tive, timeout timing is disabled and the RS232 receiver will wait forever
for a character. When the time interval is set, it remains in effect for
all subsequent input operations until TIMEOUT is called again or the file
is closed.

TIMEOUT is an extension to HP Standard Pascal and requires the compiler
directive $EXTENSIONS ON$ to be in effect.

7-4

Model 64817A
HP64ooo
HOST Pascal

Example:

$EXTENSIONS ON$
RESET(F,"RS232");
TIMEOUT(F,120);

$IOCHECK OFF$
READ(F,CH);

$IOCHECK ON$
IF IORESULT = 0 THEN

{Handle valid data}
ELSE

{Handle errors including timeout};

In the above example, the timeout interval is set to 120 ticks which is
2. 0 seconds if the AC line frequency is 60 Hertz. The READ procedure
will complete either when a character is received or when 2 seconds have
elapsed, whichever comes first. The function IORESULT is used to deter
mine which happened.

WRITF

The procedure WRITE places the values of its write parameters into a file
(f) previously opened as a sequential file in a writable mode.

The file OUTPUT is assumed if the file identifier (f) is not included as
a parameter.

WRITELN

The procedure WRITELN places the values of its write parameters into the
text file (f), and appends a line marker to the file immediately follow
ing the last character. The statement:

WRITELN(f,pl, ••• ,pn);

is equivalent to:

WRITE(f,pl, ... ,pn);
WRITELN(f);

The file identifier (f) must be a text file that has previously been
opened. The predeclared file OUTPUT is assumed If the parameter (f) is
not included.

7-5

Model 64817A
HP64ooo

HOST Pascal

String Handling Procedures and Functions

SETSTRLEN

The procedure SETSTRLEN(s,l) sets the current length of string variable s
to 1 without changing any characters in the string. A run-time error oc
curs if the value of integer expression 1 is less than zero or greater
than STRMAX(s).

Example:

VAR
sl string [100];

•
•
•

setstrlen(sl,10);

STRAPPEND

The procedure STRAPPEND(s1,s2) concatenates string expression s2 to the
value of string variable sl and stores the result in sl. A run-time er
ror occurs if STRLEN(sl) + STRLEN(s2) is greater than STRMAX(sl). This
procedure is equivalent to:

sl := sl + s2;

Example:

VAR

BEGIN

END.

sl string [10];

sl : = 'ABC';
STRAPPEND(sl, 'DE');

sl now has the value 'ABCDE'.

STRINSERT

The procedure STRINSERT(sl,s2,startpos) inserts string expression sl into
string variable s2 starting at the position startpos. A run-time error
occurs if the value of integer expression startpos is less than one or
greater than strlen(s2) + 1. A run-time error occurs if strlen(sl) +
strlen(s2) is greater than strmax(s2).

Example:

7-6

s : = 'ABCDE ' ;
STRINSERT ('xy' , s , 4) ;

Model 64817A
HP64ooo
HOST Pascal

The value of sis now 'ABCxyDE'.

STRDELETE

The procedure STRDELETE(s,startpos,nchars) deletes nchars characters from
string variable s starting at position startpos. If the value of integer
expression nchars is less than 1, then no change is made in s and the
values of the other arguments are not checked. Otherwise, a run-time er
ror occurs if the value of integer expression startpos is less than 1 or
if startpos + nchars-1 is greater than strlen(s).

Example:

s := 'ABCDE'; strdelete(s,3,2);

The value of sis now 'ABE'.

STRMOVE

The procedure STRMOVE copies characters from one part of a string or PAC
expression into part of a string or PAC variable. STRMOVE requires five
parameters:

STRMOVE(nchars, source, sourcepos, dest, destpos);

Nchars is an integer expression specifying the number of characters to be
moved. If the value of nchars is less than 1, no change is made to the
destination and no run-time errors occur regardless of the value of other
parameters.

Source may be a string literal, a string expression, or a PAC expression.

Sourcepos is an integer expression specifying the first character in the
source to be moved. A run-time error occurs if the value of sourcepos is
less than 1. If source is a string, a run-time error occurs if sourcepos
+ nchars-1 is greater than strlen(source). If source is a PAC, a run
time error occurs if sourcepos + nchars-1 is greater than the upper bound
of the PAC type.

Dest is either a string variable or a PAC variable.

Destpos is an integer expression specifying the index of the first
character in dest to be changed. A run-time error occurs if the value of
destpos is less than one.

If dest is a string, run-time errors occur if either
than strlen(dest)+l, or if destpos + nchars-1
strmax(dest). If destpos + nchars-1 is greater than
of dest, then the current length of dest will be
nchars-1.

destpos is greater
is greater than

the current length
set to destpos +

7-7

Model 64817A
HP64ooo

HOST Pascal

If dest is a PAC, a run-time error will occur if destpos + nchars-1 is
greater than the upper bound of the PAC type.

STRMOVE will properly handle the case of moving part of a string or PAC
variable onto an overlapping part of itself.

Example:

VAR
P packed array [1 •. 10] of char;

•
0

•
P := 'ABCEDFGHIJ';

strmove(3,'123',1,p,5);

The value of pis: 'ABCD123HIJ'.

STRLEN

The function STRLEN(s) returns an integer that is the current length of
string expressions.

Examples:

STRLEN('') returns 0.
STRLEN('ABCDE' + 'FGHIJ') returns 10.

STRMAX

The function STRMAX(s) returns an integer that is the maximum declared
length of string variable (s).

Example:

VAR
Sl string [100];

•
•
•

strmax (sl) returns 100.

STR

The function STR(s,startpos,nchars) returns a new string that is a copy
of some portion of string expression (s). The string returned has a
length equal to the value of integer expression nchars, and begins with
the character s[startpos].

7-8

Model 6l+817A
HP64ooo
HOST Pascal

If nchars is less than 1, the string returned is the null string and no
further checks are made on the values of the other parameters.
Otherwise, a run-time error occurs if the value of integer expression
startpos is less than 1, or if startpos + nchars-1 is greater than
strlen(s).

Example:

str('ABCDE',4,2) returns 'DE'.

STRLTRIM

The function STRLTRIM(s) returns a new string that is a copy of string
expression (s) with leading blanks removed.

Example:

strltrim (' ABC ') returns 'ABC

STRRTRIM

The function STRRTRIM(s) returns a new string that is a copy of string
expression (s) with trailing blanks removed.

Example:

strrtrim (' ABC ') returns ' ABC'.

STRREAD

The procedure STRREAD (s,startpos,nextpos,vl, ••• ,vn) performs symbolic to
internal conversion from the contents of string expression s into vari
ables vl •.• vn. It is similar to the procedure READ (f,vl, ..• ,vn) where f
is a textfile. READ obtains its input characters from textfile f while
STRREAD obtains its input from string expression s.

The string s is treated as a single line of a TEXT file with an implicit
line marker at its end followed by an implicit end of file. The integer
expression startpos indicates the starting character in s. After the
operation, the integer variable nextpos will contain the index of the
next component of s that would be read from. The conversion rules and
allowable types for variables vl ... vn are the same as for READ from TEXT
files.

A run-time error will occur when STRREAD is called if the value of
startpos is less than 1 or greater than STRLEN(s) + 1. A run-time error
will occur if STRREAD attempts to access data beyond the implicit line
marker at the end of the string s.

7-9

STRWRITE

Model 64817A
HP64ooo

HOST Pascal

The procedure STRWRITE (s,startpos, nextpos, pl, ... ,pn) performs internal
to symbolic conversion from the values of write parameters pl ... pn into
the string variable s. It is similar to the procedure WRITE
(f,pl, .•. ,pn) where f is a text file. WRITE places its output characters
into text file f while STRWRITE places its output characters into string
variable s.

The integer expression startpos indicates the first character position in
s where output characters will be placed. After the operation, the in
teger variable nextpos will contain the index of the next component of s
that STRWRITE would access. The conversion rules and allowable forms for
write parameters pl .•• pn are the same as the parameters to WRITE when ap
plied to text files.

A run-time error will occur when STRWRITE is called if the value of
startpos is less than 1 or greater than STRLEN(s) + 1. A run-time error
will occur if the routine attempts to write more than STRMAX(s) charac
ters into s.

STRRPT

The function STRRPT(s ,n) returns a new string that is composed of n
copies of string expression (s). The null string is returned if n is
less than 1. A run-time error occurs if n * strlen(s) is greater than
255.

Example:

strrpt('ABC',3) returns 'ABCABCABC'.

STRPOS

The function STRPOS(sl,s2) searches string expression s2 for string ex
pression sl and returns the integer index of the beginning of the first
occurrence of sl within s2, or returns 0 if the string sl was not found.

Example:

strpos('DE','ABCDEF') returns 4.

Dynamic Allocation and De-allocation Procedures

General Information

HOST Pascal allows variables to be created during program execution. The
space, called the "heap", allocated to dynamic variables can then be
de-allocated and later re-allocated to another variable. Dynamic

7-10

Model 64817A
HP64ooo
HOST Pascal

allocation and de-allocation are useful when variables are needed only
temporarily, and when a program contains data structures whose maximum
size may vary each time the program is run. Examples are temporary buff
er areas and dynamic structures such as linked lists or trees. Dynamic
variables are not explicitly declared and cannot be referred to directly
by identifiers.

The standard procedure NEW is used to create variables. The standard
procedure DISPOSE is normally used to de-allocate variables. In HOST
Pascal, however, the procedure DISPOSE does not actually allow space oc
cupied by the dynamic variable to be reused. The procedures MARK and
RELEASE are used in order to reclaim space used for dynamic variables.

When it is known in advance that a group of dynamic variables may be
needed on a short term basis, the state of the heap, before the short
term variables are allocated, can be recorded by using the predefined
procedure MARK. When the short term variables are no longer needed, the
heap can be returned to the original condition by using the predefined
procedure RELEASE. All variables allocated after the MARK are removed.

An attempt to allocate variables that require more space than available
in the heap will cause an error message and aborting of the program.

The following paragraphs describe in greater detail the dynamic
procedures NEW, DISPOSE, MARK, AND RELEASE.

NEW(p)

The procedure NEW is used to allocate memory space for a dynamic vari
able. (p) is a variable of type pointer. (p) can only point to a vari
able of a particular type T, and therefore is said to be bound to T.

When the procedure NEW(p) is called, a section of the heap large enough
for a variable of type T is allocated and the address of that space is
held in pointer (p).

If T is a record with variants, then the amount of space allocated is the
amount required by the fixed part of the record, plus the amount required
by the largest variant.

An alternative form of NEW can be used if type T is a record with
variants. NEW(p,vl, ... ,vn), where vl ... vn are constants used to select
variants and subvariants of the record. The constants must be listed
contiguously and in the order of their declaration. The amount of memory
allocated is determined by the size of the variants selected. The tag
field constant values are used by NEW only to determine the amount of
space needed and are not assigned to the tag fields by this procedure.

7-11

DISPOSE(p)

Model 64817A
HP64ooo

HOST Pascal

DISPOSE(p) indicates that the dynamic variable pA is no longer needed.
The value of the pointer p is set to NIL.

If the second form of NEW was used to allocate pA, then the alternate
form of DISPOSE(p) must be used. DISPOSE (p,vl, ... ,vn). The tag field
values should be identical to those used when the variable was allocated.
A run-time error occurs if the value of p is NIL when DISPOSE is called.

DISPOSE does not allow the space used by pA to be reused. In/ order to
reclaim and reuse space previously occupied by dynamic variables, the
standard procedures MARK and RELEASE must be used.

MARK(p)

MARK(p) is a predefined procedure having one parameter, a pointer vari
able, that records the HEAP state at the time MARK is executed. Calling
MARK(p) causes assignment of the first free address in the HEAP to (p).
The value of (p) may not change between MARK and HELEASE. Any execution
of the procedure NEW will build new data structures, starting with the
address held in (p).

RELEASE(p)

RELEASE is a predefined procedure having one parameter, a pointer vari
able, that restores the HEAP to the state present at the time of MARK(p).
The value of (p) may not change between MARK and RELEASE. All dynamic
variables created after MARK are effectively destroyed, and the memory
space occupied by those variables is available for allocation to new
dynamic variables. Be sure that no pointer variables point to dynamic
structures created after the MARK procedure.

Transfer Procedures

PACK

PACK transfers components of an unpacked array to a packed array. The
number of components in the unpacked array must be greater than or equal
to the number of components in the packed array. Economy of memory is
achieved by use of the procedure PACK.

PACK is used in the form: PACK (a,i,z), where:

7-12

a is of type ARRAY [m .. n] oft;
i is of a type compatible with the index type of array a;
z is of type PACKED ARRAY [u .. v] oft.

Model 64817A
HP64ooo
HOST Pascal

The procedure successively assigns the values of the elements of array a,
starting with a[i], to the elements of array z, starting with z[u]. All
elements of array z, i.e., z[u] .. z[v], are assigned values of elements
from array a.

The following example uses arrays that have index types compatible with
integer.

Example:

VAR
a ARRAY [1 .. 10] OF CHAR;
z PACKED ARRAY [1 .. 8] OF CHAR;
i INTEGER;

•
•
•

BEGIN
•
•
•
i : = 1;
pack (a,i,z);
•
•
•

END.

After PACK(a,i,z) is executed, the array z contains values from the first
eight elements of array a. The difference in size between arrays a and z
determines the values of i that can be used. In the above example, the
value of i must be 1, 2, or 3. If the value of i is 3, then the 3rd
through 10th elements of a are assigned to z. If the value of i is 4, an
error will occur when PACK tries to access a[ll] since PACK attempts to
assign values to all eight elements of array z. The value of i must also
be greater than or equal to the lower bound of the unpacked array.

In general, given that:

a Array [m .. n] oft;
z Packed array [u .. v] oft;

where m-n >= u-v. Then PACK[a,i,z] means:

k := i;
for j := u to v do

BEGIN

END;

z[j] := a[k];
k := succ(k);

where k is a variable compatible with the index type of a, and j is a
variable compatible with the index type of z.

7-13

UNPACK

Model 64817A
HP64ooo

HOST Pascal

The procedure UNPACK transfers components of a packed array to an unpack
ed array.

UNPACK is used in the form: UNPACK (z,a,i), where:

z is of type PACKED ARRAY [u .. v] of t;
a is of type ARRAY [m .. n] of t;
i is of a type compatible with the index type of array a.

The procedure successively assigns the values of the elements of array z,
starting with z[u], to the elements of array a, starting with a[i]. All
elements of array z, i.e., z[u] .. z[v], are assigned to elements in array
a.

The following example uses arrays that have index types compatible with
integer.

Example:

VAR
a ARRAY [1 .. 10] OF CHAR;
z PACKED ARRAY (1 .. 8] OF CHAR;
i INTEGER;

•
•
•

BEGIN
•
•
•
i : = 1;
UNPACK (z,a,i);
•
•
•

END.

After UNPACK(z,a,i) is executed, the elements a[l] through a[8] contain
values from the eight elements of array z. The difference in size be
tween arrays a and z determines the values of i that can be used. In the
above example, the value of i must be 1, 2, or 3. If i has any other
value, an error occurs when unpack attempts to index array z beyond the
range of its index type.

7-14

Model 64817A
HP64ooo
HOST Pascal

In general, given that:

a Array [m .• n] oft;
z PACKED ARRAY [u .. v] of t;

where m-n >= u-v. Then UNPACK[a,i,z] means:

k : = i;
for j := u to v do

BEGIN

END;

a[k] := z[j];
k := succ(k);

where k is a variable compatible with the index type of a, and j is a
variable compatible with the index type of z.

Arithmetic Functions

There are eight predefined arithmetic functions in HOST Pascal. Each of
these functions is passed in an arithmetic expression as a parameter and
returns a numeric value.

In some cases the type of the value returned depends on the type of the
parameter passed. The functions abs (absolute value) and sqr (square)
return integer values if integer values are passed to them. The other
arithmetic functions return longreal values if integer values are passed
to them. All of the functions return a longreal value when a real or
longreal parameter is passed.

To compute the values of the functions, HOST Pascal uses system routines
and compiler-defined algorithms.

Abs
abs(X)

Sqr
sqr(X)

Sqrt
sqrt(X)

Exp
exp(X)

Ln
ln(X)

Computes the absolute value of X.

Computes the value of X squared.

Computes the square root of X. If X < 0 then a
run time error occurs.

Computes e (base of the natural logarithms) to
the power of X.

Computes the natural logarithm of X. If X < 0
then a run time error occurs.

7-15

Sin, Cos
sin(X), cos(X)

Arctan
arctan(X)

Model 64817A
HP64ooo

HOST Pascal

Computes the sine and cosine of X, in radians.

Computes the arctangent of X, in radians.

Predicates

The following three procedures return Boolean results.

Odd

Eof

odd(X) The procedure odd returns TRUE if the value of the integer
expression X is odd, FALSE otherwise.

eof, or eof(f) where (f) is a file that has previously been
declared. The procedure eof(f) returns TRUE
if the file F is not open, F is open in a
writable mode, or F is open for reading and
the file is positioned beyond last existing
component. If the parameter F is omitted, the
standard file INPUT is assumed.

Eoln
eoln, or eoln(f) where (f) is a text file that has previously

been declared and opened in the readable mode.
The procedure eoln(f) returns TRUE if the text
file f is positioned at the end of a line. If
the parameter f is omitted, the file INPUT is
assumed.

Trunc
trunc(X)

Examples:

7-16

Transfer Functions

The function trunc returns an integer result that is
the integral part of the real or longreal expression
X. The absolute value of the result is not greater
than the absolute value of X. An error will occur if
the result is not within the integer range.

trunc(5.61)
trunc(-3.38)
trunc(l8.999)

returns
returns
returns

5
-3
18

Model 64817A
HP64ooo
HOST Pascal

Round
round(X) The function round returns the integer value of the

real or longreal expression X rounded to the nearest
integer. If X is positive or zero, then round(X) is
equivalent to trunc(X + 0.5); otherwise round(X) is
equivalent to trunc(X - 0.5). An error will occur if
the result is not in the integer range.

Examples:

round(3.l)
round(-6. 4)
round(-4.6)

returns
returns
returns

Ordinal Functions

3
-6
-5

The ordinal functions are: ord, chr, succ, and pred.

Ord
ord(X) where X is an expression of ordinal type. The func

tion ord returns the ordinal number associated with
the value of X. If the result can be contained in one
word, a one-word result is returned, otherwise a two
word result is returned. If the parameter is com
patible with INTEGER, then the parameter value is
returned as the result. If X is of type char, then
the result is an integer value between 0 and 255,
determined by the ASCII ordering. If X is of any
other ordinal type (i.e., a predefined or user-defined
enumeration type), then the result is the ordinal num
ber determined by mapping the values of the type onto
consecutive non-negative integers starting at zero.

The ord value of -1 is -1; the ord value of 1000 is
1000. The ord value of 'a' is 97, the ord value of
'A' is 65.

The predefined type Boolean, for example, is defined:

TYPE BOOLEAN = (false, true) and therefore ord(false) returns
0, and ord(true) returns 1.

The same method is used to determine the ordinality of an element in
a user-defined enumeration type. For example, given the declaration:

TYPE color = (red, blue, yellow); the ord(red) returns 0,
ord(blue) returns 1, and ord(yellow) returns 2.

7-17

Chr
chr(X)

Examples:

Model 64817A
HP64ooo

HOST Pascal

where X is an integer expression. The function chr
returns the character value whose ordinal number is
equal to the value of the integer expression X. If
the RANGE compiler option is ON, a run-time error will
occur if the value of Xis outside the range 0 .. 255.
If the RANGE option is OFF, a character will be formed
by zeroing all but the least significant 8 bits of the
value of X. For any character ch, the following is
true: chr(ord (ch)) = ch.

The value of 63 returns the chr '?', the value 100 returns the
chr , d, , the value 13 returns the chr , carriage return' , the
value 75 returns the chr 'K'.

Su cc
succ(X) where X is an expression of ordinal type. The func

tion succ returns a result having an ordinal one
greater than the expression X. The result is of a
type identical to that of X. If no such value exists,
no error is reported at the function call, but a run
time error will occur if the value is assigned to a
variable of the ordinal type. Given the declaration:
TYPE color = (red, blue, yellow); succ (red) returns
blue, and succ (Yellow) returns a value that is not of
type color. If X is 1, then succ(X) is 2. If X is
-5, then succ(X) is -4. If Xis 'a', then succ(X) is
'b'. If Xis false, then succ(X) is true.

Pred
pred(X) where X is an expression of ordinal type. The func

tion pred returns a value having an ordinal value one
less than X. If no such value ex is ts, no error is
reported at the function call, but a run-time error
will occur if the value is assigned to a variable of
the ordinal type.

Given the declaration:

TYPE day = (monday, tuesday, wednesday) ; the following is
true: pred(tuesday) = monday, and pred(monday) returns a value
that is not of type day.

Examples:

7-18

The pred(l) is 0, the pred(-5) is -6, the pred('b') is
'a', the pred(true) is false.

Model 64817A
HP64ooo
HOST Pascal

HEX(s)
OCTAL(s)
BINARY(s)

Numeric Conversion Functions

HEX, OCTAL, and. BINARY are functions that take the string expression s
and return an integer. The string is interpreted as a hexadecimal, oc
tal, or binary number. Except for leading and trailing blanks, all
characters in the string must be legal digits in the indicated base.
Blanks embedded between the digit characters are not allowed.

File Handling Functions

The functions LINEPOS, and POSITION enable the program to determine the
current position in a file relative to the beginning-of-file and
end-of-line.

LINEPOS

The function LINEPOS(f) is applicable if (f) is a previously opened
file. The function returns, as an integer, the number of characters
from or written to the text file (f) since the last line marker.
does not include the character in fA.

text
read
This

The meaning of LINEPOS is altered if (f) is open to the I/O device
"RS232". In the case where (f) is open for reading to RS232, LINEPOS
returns the number of characters that are presently in the RS232 receiver
circular buffer. In the case where (f) is open for writing to RS232,
LINEPOS returns the number of characters that are in the RS232 transmit
ter circular buffer plus the number of characters contained in the trans
mitter hardware registers. See the discussion in Appendix C for further
information.

POSITION

The function POSITION returns, as an integer, the index of the current
component of the file(f) starting with 1. This component is the next to
be accessed by read or write. The file(f) must have previously been
opened. File(f) may not be a text file. If the buffer fA is full, the
result is the index of that component.

IORESULT

The function IORESULT, used in conjunction with the compiler directive
$IOCHECK OFF$, allows input/output exceptions to be handled by the
program.

IORESULT is an extension to HP Standard Pascal and requires the compiler
directive $EXTENSION ON$ to be in effect.

7-19

Model 64817A
HP64ooo

HOST Pascal

IORESULT returns an integer that is the result code of the last in
put/output operation. The meaning of the integer returned is shown in
Table 7-1.

Integer

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

Table 7-1. IORESULT Definitions

Definition

No error
End of file
Invalid disc number
File not found
File already exists
No disc space available
No directory space available
File linkage is corrupt
Read/Write-Only device opened in wrong mode
Non-textfile opened text-type device
Two files opened the same disc file or device
Illegal syntax reading integer or real
Illegal value reading integer or real
File is not open in proper mode
Ill formed file name

The following result codes are returned only when reading from
the I/O device "RS232".

7-20

15

16
17

18
19

20

Timeout interval has elapsed without receiving
character
Circular buffer overflow; data has been lost
Line break (i.e., continuous spacing) signal
received
Character framing error (i.e., stop bit was 0)
Character overrun error (interrupts were not
serviced fast enough)
Character parity error

Chapter 8
Implementation of HOST Pascal

Introduction

A practical knowledge of the implementation of HOST Pascal is useful for
efficient programming. This chapter describes data allocation, memory
configuration, data and stack management, HEAP management, and efficient
programming.

Data Allocation

The HOST Pascal compiler converts source code into pseudo code instruc
tions and data definitions. The space reserved by the data definitions
is used to represent variables. Type definitions are used only by the
compiler and do not result in data allocation.

The size of the data allocation is determined by the type of the variable
or structured constant. A variable or structured constant of a PACKED
type is given data allocation that optimizes the use of memory space. An
unpacked data type is given an allocation that allows faster data access.

This section describes the size in bits and words of the data allocation
for a variable or structured constant of a particular type and the bound
ary alignment conventions for that allocation.

Allocations for structured constants are identical to the allocations for
variables of the same type as the structured constant.

Allocation for Scalar Variables

The allocations for variables of scalar, subrange, and pointer types is
shown in Table 8-1. All allocations begin on word boundaries.

8-1

Type

BOOLEAN

INTEGER

Subrange of
INTEGER

Enumeration

Subrange of
Enumeration

REAL

LONGREAL

CHAR

Pointer

8-2

Model 64817A
HP64ooo

HOST Pascal

Table 8-1. Allocations for Scalar Variables

Size Notes

1 word FALSE is represented by O.
TRUE is represented by 1.

2 words Bit 15 of the first word is the
sign bit.

1 or 2 Subranges contained in -32768 .. 32767
words require 1 word to represent

variables of that type. All other
subranges require 2 words to
represent variables of that type.

Examples:

Subrange Allocation
-------- ----------
0 .. 8 1 word
-32768 .. 32767 1 word
10 .. 40000 2 words
-70000 .. -1 2 words

1 word The values are represented
internally as 1-word integers in the
range O .. (cardinality of the
enumeration type - 1).

1 word Represented by their enumerated
value.

2 words Floating point fonnat.

4 words Floating point fonnat.

1 word The character is represented in the
byte (the left byte contains 0).

1 word

Model 64817A
HP64ooo
HOST Pascal

Allocation for Structured Variables

The allocation for variables of ARRAY, RECORD, FILE, and SET types
is shown in Table 8-2. All allocations begin on word boundaries.

Type

ARRAY

RECORD

FILE

SET

Table 8-2. Allocations for Structured Variables

Size

The size of an array allocation is the sum of the
allocations of its elements:

(product of cardinalities * (allocation of one
of index types) element)

The elements are stored in row major order.

The size of a record allocation is the sum of the
allocations of the fixed part and, if any, the
allocations of the tag field and the largest
variant.

The FILE variable needs memory in two areas:

a. Space for file variable.
b. Space for the Device Control Block (DCB).

If the file is a textfile, the variable allocation
is 131 words. If the file is not a textfile, the
allocation is 2 words + size of the file component
type. Assignment of a buffer (DCB) area is made
when the block in which the file is declared
becomes active. The DCB area is taken from a group
of buffer areas allocated when the program was
executed. The size of a DCB is approximately 40
words + (128 * b) where b can be 1, 2, 4, 8, or 16.
The value of b is determined by the value of the
BUFFERS compiler option when the file is declared.
Default value of BUFFERS is 1.

The maximum number of elements possible in a set
is 4080. The allocation for a set is (n + 16) DIV
16, where n is the ordinal value of the largest
element in the set, and the allocation is in words.

8-3

8-4

Allocation for Elements of Packed Structures

Model 64817A
HP64ooo

HOST Pas ca.l

Arrays, records, sets, and files may be packed by prefixing the type
definition with 'PACKED'. This indicates to the compiler that the
non-structured elements of the type are to be allocated in a memory
conserving format. In general, the following guidelines are used in
the interest of data accessibility:

a. Any item requiring a word or less of storage will not
cross a word boundary.

b. Any item requiring a word or more of storage will be
aligned on a word boundary.

The packed attribute of a structured type does not distribute to the
structured elements of the type. For example, the elements of an
array within a packed record are not packed. (The array may be
packed, however, by prefixing the array definition with 'PACKED'.)

PACKED ARRAY [1 .. 6,1. .3] of T, however, is equivalent to PACKED
ARRAY [1.. 6] of PACKED ARRAY [1. .3] of T.

Table 8-3. Allocations for Elements of Packed Structures

Type Allocation

BOOLEAN Size: 1 bit
Alignment: Bit boundary

INTEGER Size: 2 words
Alignment: Word boundary

Subrange of Size: -32768 <=lower bound .. upper bound
INTEGER <= 32767 requires no more than 1

word. If the high bound <= 32767
and if the low bound >= 0, the
packed subrange of integer will
occupy the minimum number of bits
required to represent the highest
value of the subrange. For example:

0 .. 7 requires 3 bits,
0 .. 8 requires 4 bits,
o .. 31 requires 5 bits,

25 .. 31 requires 5 bits,
0 .. 32767 requires 15 bits,

Alignment: Bit boundary

Model 64817A
HP64ooo
HOST Pascal

Table 8-3. Allocations for Elements of Packed Structures (Cont'd)

Enumeration Size: Minimum number of bits necessary
to represent the value (cardinality
of type - 1)

Alignment: Bit boundary

Subrange of Size: Minimum number of bits necessary to
Enumeration represent the value (cardinality of

subrange - 1)
Alignment: Bit boundary

REAL Size: 2 words
Alignment: Word boundary

LONGREAL Size: 4 words
Alignment: Word boundary

CHAR Size: 1 byte (8 bits)
Alignment: Bit boundary

.•
Pointer Size: 1 word

Alignment: Word boundary

Set Size: n bits, n <= 16
Alignment: Bit boundary where n is the

cardinality of the base type.

Size: n bits, 16 < n <= 4080
The maximum number of elements
possible in a set is 4080. The
allocation for a set is (n + 16)
DIV 16, where n is the number of
bits in the set.

Alignment: Word boundary

8-5

Model 64817A
HP64ooo

HOST Pascal

Examples of Packed and Unpacked Structure Allocation

Example 1: Unpacked structure allocation

TYPE
SUIT= (club, diamond, heart, spade);

VAR
r RECORD

a INTEGER;
b 1. .13;
c SUIT;
d REAL;
e CHAR;
f 'A' .. 'Z';
g BOOLEAN;
h LONGREAL;
i SET OF SUIT;
j ARRAY [SUIT) OF 1. .13;
CASE t : BOOLEAN OF

true: (k,l,m CHAR);
false: (n INTEGER);

END;

8-6

Model 64817A
HP64ooo
HOST Pascal

Variable r is allocated as follows:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

a

b

c

d

e

f

g

h

Figure 8-1. Unpacked Structure Allocation

8-7

Model 64817A
HP64ooo

HOST Pascal

Example 2: This example shows a packed record allocation. Note,
however, that field j is not packed.

TYPE

VAR

8-8

SUIT= (club, diamond, heart, spade};

r PACKED RECORD
a INTEGER;
b 1. .13;
c SUIT;
d REAL;
e CHAR;
f 'A'..'Z';
g BOOLEAN;
h LONGREAL;
i SET OF SUIT;
j ARRAY (SUIT] OF
CASE t : BOOLEAN OF

END;

true: (k, l,m
false: (n

1. .13;

CHAR);
INTEGER};

Model 64817A
HP64ooo
HOST Pascal

Variable r is allocated as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1
a

2

3 b c allocated but unused

4
d

5

6 e f g

7

8
h

9

10

11 i allocated but unused

12 j [club

13 j [diamond

14 j [heart]

15 j [spade]

16 t k (if t is true) unused

17 1 if t is true) m (if t is true)
n (if t is false)

18 allocated but unused if t is true

Figure 8-2. Packed Record Allocation With Unpacked Array

Note that the elements of array j are not packed, but the array as a
whole is treated as a field of the packed record.

8-9

Model 64817A
HP64ooo

HOST Pascal

Example 3: This example shows a packed record allocation, including
field j as a packed array.

TYPE

VAR

8-10

SUIT= (club, diamond, heart, spade);

r PACKED RECORD
a INTEGER;
b 1. .13;
c SUIT;
d REAL;
e CHAR;
f 'A' .. 'Z';
g BOOLEAN;
h LONGREAL;
i SET OF SUIT;
j PACKED ARRAY [SUIT] OF 1 .. 13;
CASE t : BOOLEAN OF

END;

true: (k,l,m
false: (n

CHAR);
INTEGER);

Model 64817A
HP64ooo
HOST Pascal

Variable r is allocated as follows:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

a

b c allocated but unused

d

e f g

h

i allocated but unused

j [club j diamond] j [heart] j [spade]

t k if t is true) unused

1 (if t is true) m (if t is true)
n (if t is false)

allocated but unused if t is true

Figure 8-3. Packed Record Allocation With Packed Array

Memory Allocation

The memory layout employed in the HOST Pascal system is composed of a DCB
area, an upper STACK/HEAP area, and a lower STACK/HEAP area if the Memory
Expansion Module is present in the logic system.

The DCB area varies in size, based on the number of files declared in the
program and the value of the BUFFERS option at the time of file declara
tion. DCB area is allocated when a program is run and does not change in
size during program execution.

One DCB is pre-allocated at the beginning of run-time for each file vari
able declared in the program. It is possible, through recursive calls to
procedures or functions that contain local file variables, to exceed the
number of DCB's that have been preallocated. In this case, a run-time
error, "UNABLE TO ALLOCATE FILE BUFFER", will occur.

8-11

Model 64817A
HP64ooo

HOST Pascal

The upper stack/heap area accommodates 25k bytes of memory minus the area
allocated to DCB. The lower stack/heap area accommodates an additional
32k bytes of memory.

The stack contains p_code and static variables; the heap contains dynamic
variables allocated with the standard procedure NEW. Implementation of
the stack begins with the high address and increases in size toward the
low address. The heap is implemented at the low address and increases in
size toward the high address. An overlapping of stack and heap areas is
possible and causes an error, "OU'!' OF MEMORY. CAN,T EXPAND STACK OR
HEAP."

Each activation of a procedure or function creates a new space for the
static data area of the procedure or function. The procedure or function
code is never duplicated.

1/0 Error Handling

I/O errors cause termination of program execution. Processing of I/O er
rors can be implemented by using the compiler option IOCHECK and the
standard function IORESULT.

IORESULT is an extension to the standard Pascal, and its use is enabled
by the EXTENSIONS compiler option. IOCHECK OFF disables the generation
of code that checks for I/O errors. IORESULT returns an integer that is
the result code from the previous I/O operation. The value returned by
IORESULT is defined in Table 7-1.

8-12

$IOCHECK OFF$
RESET(f);
IF IORESULT <> 0

THEN
BEGIN {exception handling}

•
•
•

END;

Chapter 9
Using HOST Pascal

The Source File

The Pascal compiler takes as input a program source file created with the
64000 Editor function. The basic form of a program source file is as
follows:

"HOST"

PROGRAM Name (parameters);

{Declarations}
•
•
•

BEGIN {program}
•
•
•

END. {program}

The first line of the source file must be the special compiler directive
"HOST". Then follow the declaration and statement sections of the
program.

Compiling the Source File

After the source file has been edited, and before the program can be ex
ecuted, the source file must be compiled. Pressing the soft key labeled
C~Qf!j~il~-=', and adding the source file name, causes translation of the
source file into an absolute file. The absolute file contains a pseudo
machine code version of the source file. The source file name is given
also to the absolute file. After the "compile" command has been entered,
some choices must be made by the operator. The "compile" command syntax
is shown in Figure 9-1.

9-1

COMPILE ----t.i COMPILE 1----t~ SOURCE
COMMAND FILE

FILE

PRINTER 1---------J

NULL

OPTONS EXPAND NOCODE

LIST

NOLIST r----

Figure 9-1. Compile Command Syntax

Command Parameters

Model 64817A
HP64ooo

HOST Pascal

XREF

Source File The name of the source file to be compiled. The syntax
for the source file name is shown in Figure 9-2.

FILE FILE NAME

where:

file name

9-2

USER ID

Figure 9-2. Source File Name Syntax

DISC
NUMBER

is comprised of 1 to 9 alphanumeric characters
beginning with an upper case alphabetic character.

Model 64817A
HP64ooo
HOST Pascal

user id

disc I

Listfile

Options

is comprised of 1 to 6 alphanumeric characters
beginning with an upper case alphabetic character. If
userid is omitted, the present userid will be the
default value.

represents the logical unit number of the system disc.
Only decimal numbers are allowed. If disc I is omit
ted, all discs will be searched for the file.

The absolute file will be written onto the same disc
from which the source file was taken. If another ab
solute file has the same name as the current absolute
file, the old file will be overwritten by the current
file.

The pseudo machine code will not be written into the
absolute file if errors are detected during the com
piling of the source file, or if the nocode option is
specified, or if any CODE OFF directives are encoun
tered in the source file.

If the listfile keyword is not used, then the default is
the predefined listfile for the present userid. If no
predefined listfile exists, a null listfile is the
default. If the list file keyword is used• one of the
following must also be specified:

<FILE>
display
printer
null

The syntax for <FILE> is the same as for source file.
The type of the listing file is "listing". If no disc fl
was specified, then the listing file will be written to
the disc from which the source file was taken.

If the options keyword is used, then one or more of the
following may be specified:

list
no list
expand
nocode
xref

list List specifies a complete source code listing with error
messages,

no list

expand

Nolist specifies that only error messages will be listed.
All LIST directives in the source code are ignored.

The expand option has no effect.

9-3

no code

xref

Model 64817A
HP64ooo

HOST Pascal

specifies that no pseudo code file will be written. CODE
directives in the source file will be ignored.

specifies a cross reference listing of the source file.
All XREF directives in the source file are ignored.

Running HOST Pascal Programs

The "run" command causes execution of the pseudo-machine code in the ab
solute file.

When a HOST Pascal program is executed, a file name may be associated
with each program parameter. A program parameter is a file variable that
was listed in the program heading of the Pascal program. The file name
is the name of a disc file or an I/O device.

File names for the standard files INPUT and OUTPUT may be specified in
the context of the run command. For other program parameters, the system
prompts the user for a file name for each additional program parameter.
The run command syntax is shown in Figure 9-3.

9-4

RUN
COMMAND

<file>

input

INPUT

OUTPUT .,._,.--I~ FILE SPEC

KEY
BOARD

FILE
SPEC

rs232

Figure 9-3. Run Command Syntax

Run Command Parameters

DISPLAY

DISPLAY1

PRINTER

NULL

rs232

the name of the absolute file containing pseudo-machine
code. The syntax for <file> is: <file name>
[:<userid>][:<disc #>].

if the input keyword is not used, then the file name as
sociated with INPUT is keyboard.

if the input keyword is used, one of the following must be
given:

keyboard
<file spec>

Model 64817A
HP64ooo
HOST Pascal

output

the syntax for <file spec> is:

<file name>[:<userid>][:disc #)[:<file type>)

where:

file name is 1 to 9 alphanumeric characters beginning
with an upper case alphabetic character.

userid is 1 to 6 alphanumeric characters beginning
with an upper case alphabetic character.

disc I is a decimal number.

file type is source, relocatable, absolute, link_com,
emul com, prom, asmb sym, link sym, comp sym, trace,
data: asym_db, or comp_db. The default file type is
source.

If the keyword output is not used, then the default file
name for OUTPUT is the default listing file. If no default
listing file has been specified for the present userid,
then the default listing file is null.

If the keyword output is used, then one of the following
must be given:

<file spec>
display
displayl
printer
rs232
null

The syntax for <file spec> is the same as for input. If
the file type is omitted in the file spec for OUTPUT, then
the default type is listing.

9-5

Additional Program Parameters

Model 64817A
HP64ooo

HOST Pascal

If the program about to be executed has program parameters other than
INPUT or OUTPUT, then a prompt will be issued for each of the parameters
in the order in which they were listed in the program heading. The
prompt looks like the following example:

Enter the file name for <identifier>.

<identifier> is the variable identifier from the Pascal program. One may
then enter one of the following:

<file spec>
display
displayl
keyboard
printer
rs232
null

The syntax for <file spec> is the same as shown with the input keyword.
If file type is not specified, then the default file type is source, if
the file is a text file, or data, for a non-text file.

If no entry is made following the prompt, the system treats the file as
if it were not a program parameter.

9-6

Appendix A
Compile-Time and Run-Time Error Messages

Compile-Time Error Messages

1: Error in simple type
2: Identifi.~r expected
3: 'PROGRAM' expected
4: ')' expected
5: ':' expected
6: Illegal symbol
7: Error in parameter list
8: 'OF' expected
9: ' (' expected

10: Error in type
11: ' [' expected
12: ']'expected
13: END expected
14: ';'expected
15: Integer expected
16: '=' expected
17: 'BEGIN' expected
18: Error in declaration part
19: Error in field list
20: '.'expected
21: '*' expected
22: LABEL expected
23: CONST, TYPE, VAR, BEGIN, FUNCTION or PROCEDURE expected
24: EOF expected
25: Statement begin symbol expected
26: PROCEDURE or FUNCTION expected
27: ';' or OTHERWISE expected
28: '('or'[' expected
29: String expected
30: Type name expected
31: ' •. 'expected
32: Error in variant label
50: Error in constant
51: ':=' expected
52: 'THEN' expected
53: 'UNTIL' expected
54: 'DO' expected
55: 'TO/DOWNTO' expected
58: Error in factor
59: Error in variable

101: Identifier declared twicP.
102: Low bound exceeds high bound
103: Identifier is no.t of appropriate class
104: Identifier not declared
105: Sign not allowed
106: Number expected

A-1

107: Incompatible subrange types
108: File not allowed here
109: Type must not be REAL
110: Tag field type must be ordinal or subrange
111: Incompatible with tag field type
112: Index type must not be REAL
113: Index type must be ordinal or subrange
114: Base type must not be REAL
115: Base type must be ordinal or subrange
116: Error in type of standard procedure parameter
117: Unsatisfied forward reference
118: Forward reference type identifier in variable

declaration
119: Forward declared: repeated parameter list not identical
120: Function result type must not be/contain file
121: File value parameter not allowed
122: Forward declared function; repeated result type not

identical
123: Missing result type in function declaration
125: Error in type of standard procedure/function parameter
126: Number of parameters does not agree with declaration
127: Illegal parameter substitution
128: Result type of parameter function does not agree

with declaration
129: Type conflict of operands
130: Expression is not of set type
131: Tests on equality allowed only
132: Strict inclusion not allowed
133: File comparison not allowed
134: Illegal type of operand(s)
135: Type of operand must be boolean
136: Set element type must be ordinal or subrange
137: Set element types not compatible
138: Type of variable is not array
139: Index type is not compatible with declaration
140: Type of variable is not record
141: Type of variable must be file or pointer
142: Illegal parameter substitution
143: Illegal type of loop control variable
144: Illegal type of expression
145: Type conflict
146: Assignment of files not allowed
147: Label type incompatible with selecting expression
148: Subrange bounds must be ordinal
149: Index type must not be integer
150: Assignment to standard function is not allowed
151: Assignment to formal function is not allowed
152: No such field in this record
153: Type error in read
154: Actual parameter must be a variable
155: Control variable must be declared locally
156: Multidefined case label
158: Missing corresponding variant declaration

A-2

Model 64817A
HP64ooo

HOST Pascal

Model 64817A
HP64ooo
HOST Pascal

159: Tag field must be ordinal
160: Previous declaration was not forward
161: Again forward declared
162: Parameter size must be constant
163: Missing variant in declaration
164: Substitution of standard proc/func not allowed
165: Multidefined label
166: Multideclared label
167: Undeclared label
168: Undefined label
169: Error in base set
170: Value parameter expected
171: Standard file was redeclared
172: Undeclared external file
174: Pascal procedure or function expected
175: Missing file INPUT in program heading
176: Missing file OUTPUT in program heading
177: Assignment to function identifier not allowed here
178: Multidefined record variant
179: Parameter list of actual proc/func does not match formal

declaration
180: Control variable must not be formal
181: Constant part of address out of range
182: Actual VAR parameter must not be packed
183: Assignment to field in non-variable record
184: 'STRING' not allowed in this context
185: Variant may not contain file
186: Expression must be compatible with INTEGER
187: Illegal assignment to FOR control variable
188 Value of preceding function not assigned.
201: Error in real constant: digit expected
202: String constant must not exceed source line
203: Integer constant exceeds range
205: Zero string not allowed
206: Integer part of real constant exceeds range
207: Compiler option must not exceed source line
208: Illegal character in this context
209: Bad data for HEX, OCTAL, or BINARY
230: Structured type identifier expected
250: Too many nested scopes of identifiers
251: Too many nested procedures and/or functions
252: Too many forward references or procedure entries
253: Procedure too long
255: Too many errors on this source line
256: Too many external references
257: Too many externals
260: Too many exit labels
261: Too many nested INCLUDEs
262: Can't open INCLUDE file
263: Too many elements in array
264: Size of structure may not exceed 16383 words
265: Procedure's data area exceeds size limit
266: Case label must be between -32768 and 32767

A-3

267: Total segment code exceeds 32767 bytes
268: More than 16 program parameters
269: Sets are restricted to ordinal range 0 .. 4079

Model 64817A
HP64ooo

HOST Pascal

270: Number of procedures and structured constants exceeds 255
271: Number of SEGMENTs exceeds 15
300: Division by zero
301: No case provided for this value
302: Index expression out of bounds
303: Value to be assigned is out of bounds
304: Element expression out of range
305: Illegal operator in constant expression
306: Constant expression causes integer overflow
307: Illegal operand type in constant expression
308: Illegal function in constant expression
309: Set element not in range of set base type
310: Structured constant not allowed here
311: Too many constant array elements specified
312: Too few constant array elements specified
313: Constant value inaccessible due to $NOSAVE$
314: Illegal to select elements in constant expression
315: Constant NIL dereferenced
316: Constant record element respecified
317: Variant field specified before tag field
318: Field doesn't belong to previously selected variant
319: All fields of record constant have not been specified
320: Variable which is program parameter must be file
321: String literal is too long
322: a MOD b, b <= 0
397: Error in compiler, contact HP representative
398: Implementation restriction
402: End of source before end of compilation
403: Symbol table overflow; delete symbols; parsing stopped
404: Semantic stack overflow; break up program; parsing stopped
409: Label may not have more than four digits
411: Constant expression expected
413: Assignment to constant
414: More than 255 subroutines
455: Language extensions used in extensions off mode
500: Warning: illegal compiler option; option ignored
502: Warning: Option ignored. Specify before PROGRAM.
503: Warning: Source line exceeds allowed length
504: Warning: non-standard feature used
508: Warning: wide range of CASE labels generates large amounts

of code
509: Warning: illegal value for compiler option
510: Warning: $SEGMENT$ not specified before FORWARD. Option

ignored.

A-4

Model 64817A
HP64ooo
HOST Pascal

Run-Time Error Messages

A diagnostic message is displayed on the 64000 Logic Development station
screen when a run-time error occurs. The information in the message can
be used, together with the program listing, to locate and correct the of
fending area of the program.

Following is an example program that generates a run-time error.
Included, also, is a brief explanation of the error locating procedure.

Example:

FILE:TNILREF:PTEST:O HP 64000 HOST PASCAL

1 1 l:D 1 "HOST"
2 1 l:D 1 PROGRAM TNILREF;
3 1 l:D 1 TYPE
4 1 l:D 1 PAClO = PACKED ARRAY [1. .10] OF CHAR;
5 1 l:D 1 PACPTR = "'PAClO;
6 1 l:D 1 VAR
7 1 l:D 1 PTR: PACPTR;
8 1 l:D 2 I: INTEGER;
9 1 l:C 0 BEGIN

10 1 l:C 0 PTR := NIL;
11 1 l:C 3 FOR I : = 2 TO 10 DO
12 1 l:C 24 PTR"'[I] := ' ' .

' 13 1 l:C 68 END.

End of compilation, number of errors= 0

Legend

The first column indicates the source file line numbers.

The second column indicates the segment number. In this case segment 1
is listed.

The third column indicates the procedure number, in this case procedure
number 1 is shown. D designates the declaration part; C designates the
code (or executable) part of block.

The fourth column indicates offset (in words) of the memory location of
the variable I in the block local datum area. (Line 8 of the file shows
2 words of offset.)

The fourth column also indicates P-code offset (in bytes) of code for the
statement that follows. (Line 12 of the file shows 33 bytes of offset.)

The example program TNILREF contains a reference to a pointer variable
that contains the value NIL. When executed, TNILREF will produce the
following error message:

A-5

Model 64817A
HP64ooo

HOST Pascal

Error 11 in program TNILREF:Pl'EST, seg. #1, proc. #1, p-code offset = 37

"NIL POINTER REFERENCE"

The error occurred in segment number 1, procedure number 1 with the p
machine's instruction pointer equal to 37. Examining the listing allows
us to determine that procedure number 1 is the main program body, and
that the error occurred in line number 12.

The code generated by line 12 begins at offset 24, and the code generated
by line 13 begins at offset 68. By deduction, then, offset 37 occurs in
line 12.

Following is a listing of run-time error messages:

VALUE OUT OF RANGE
STANDARD PROCEDURE/FUNCTION PARAMETER OUT OF RANGE
SET ELEMENT OUTSIDE OF RECEIVING SET'S RANGE
OUT OF MEMORY. CAN'T EXPAND STACK OR HEAP
INTEGER OVERFLOW
DIVISION BY 0
A MOD B OPERATION, B < 0
NIL POINTER REFERENCE
NO LABEL SPECIFIED FOR CASE EXPRESSION VALUE
FLOATING POINT OVERFLOW
INVALID OPERAND FOR FLOATING POINT EXPRESSION
FLOATING POINT DIVISION BY 0
STRING TOO LONG FOR RECEIVING STRING VARIABLE
INDEX INTO STRING OUTSIDE OF CURRENT LENGTH
ATTEMPT TO ACCESS PROTECTED MEMORY
ILLEGAL DATA FOR HEX, OCTAL, OR BINARY
UNABLE TO ALLOCATE FILE BUFFER
CORRUPT DATA IN FILE VARIABLE
PROCEDURE HALT EXECUTED
ILLEGAL OPERATION ON "rs232"
<FILE NAME> TIMEOUT INTERVAL ELAPSED
<FILE NAME> RECEIVE BUFFER OVERFLOW
<FILE NAME> BREAK RECEIVED
<FILE NAME> CHARACTER FRAMING ERROR
<FILE NAME> CHARACTER OVERRUN ERROR
<FILE NAME> CHARACTER PARITY ERROR
<FILE NAME> READ/WRITE-ONLY DEVICE OPENED IN WRONG MODE
<FILE NAME> DEVICE CANNOT BE ASSIGNED TO NON-TEXT FILE
<FILE NAME> FILE NAME OPENED BY TWO FILES
<FILE NAME> ILLEGAL SYNTAX FOR READ VARIABLE
<FILE NAME> ILLEGAL VALUE FOR READ OPERATION
FILE NOT OPEN IN PROPER MODE
ILL FORMED FILE NAME
END OF FILE FILE = <FILE NAME>
ILLEGAL DISC FILE = <FILE NAME>
FILE NOT FOUND FILE = <FILE NAME>
DISC FULL FILE = <FILE NAME>
DIRECTORY FULL FILE = <FILE NAME>
INVALID OPERATION. P-CODE IS CORRUPI'

A-6

Appendix B
Sample Pascal Programs

The following is a listing of HOST Pascal statements, and the examples in
which the statements are shown.

Assignment: all examples;
Case: 11,14,15,25,27;
Enumerated Type: 25;
For: 5,6,8,10,13,14,17,18,19,20,21,24,26,27,28;
Function: 23,24;
Goto Label: 12,13;
If: 8,9,10,12,13,14,16,20,21,26,27;
Procedure: 19,20,21,22,23,24,27;
Read or Readln: all examples;
Record: 29;
Repeat: 3,7,9,15,16,26,27;
Reset(f): 27;
Rewrite(f): 27;
While: 4,7,12;
While Not: 27;
With: 29;
Write or Writeln: all examples;
Write parameters: 18,19,22,23,24;

Sample Programs

If any of the sample programs are to be attempted, the program must first
have the directive "HOST" or compilation will not be possible.

1. Adding two given integers and printing the results.

"HOST"
PROGRAM REGl (INPUT, OUTPUT) ;
VAR A,B,C INTEGER;

BEGIN

END.

READ(A,B);
C := A+ B;
WRITELN (C)

B-1

2. Calculate automobile operating cost.

"HOST"
PROGRAM REG2 (INPUT,OUTPUT);
CONST ROADTAX = 50.0
VAR GARAGEBILL, INSURANCE, TOTAL REAL;

BEGIN

END.

READ (GARAGEBILL,INSURANCE);
TOTAL := GARAGEBILL + INSURANCE + ROADTAX;
WRITELN ('TOTAL COST IS' TOTAL)

3, Repeat two statements until true.

"HOST"
PROGRAM REG3 (INPUT,OUTPUT);
VAR SUM,NUMBER : INTEGER;

BEGIN

END.

SUM := O;
REPEAT

READ (NUMBER) ;
SUM := SUM + NUMBER

UNTIL NUMBER = O;
WRITELN ('THE TOTAL IS', SUM)

Model 64817A
HP64ooo

HOST Pascal

4. Calculate the largest power of a number that is less than or equal to
another number.

B-2

"HOST"
PROGRAM REG4 (INPUT, OUTPUT) ;
VAR A,B,PRODUCT REAL;

POWER : INTEGER;

BEGIN

END.

READ (A,B);
POWER := O;
PRODUCT : = B;
WHILE PRODUCT <= A DO
BEGIN

END;

POWER := POWER + 1;
PRODUCT := PRODUCT * B;

WRITELN ('LARGEST POWER OF' ,B, '<'.A, 'IS' ,POWER)

Model 64817A
HP64ooo
HOST Pascal

5. Form the average of N numbers.

"HOST"
PROGRAM REG5 (INPur,ourPur);
VAR I,N : INTEGER;

AVERAGE,SUM,NUMBER : REAL;

BEGIN

END.

READ (N);
SUM := O;
FOR I BECOMES 1 TO N DO
BEGIN

READ (NUMBER) ;
SUM := SUM + NUMBER

END;
AVERAGE := SUM/N;
WRITELN ('THE AVERAGE IS" ,AVERAGE)

6. Form the average of each of M groups of numbers.

"HOST"
PROGRAM REG6 (INPl1r,OUTPUT);
VAR I,J,M,N INTEGER;

AVERAGE, SUM, NUMBER : REAL;

BEGIN

END.

READ (M);
FOR J := 1 TO M DO
BEGIN

END

READ (N);
SUM := O;
FOR I := 1 TON DO
BEGIN

READ (NUMBER) ;
SUM := SUM + NUMBER

END;
AVERAGE := SUM/N;
WRITELN ('THE AVERAGE IS', AVERAGE)

B-3

7. Find HCF of two numbers.

"HOST"
PROGRAM REG7 (INPUT,OUTPUT);
VAR A,B : INTEGER;
BEGIN

END.

READ (A,B);
REPEAT

WHILE A > B DO
A := A - B;
WHILE B > A DO
B := B - A;

UNTIL A = B;
WRITELN ('HCF IS', A)

8. Find the maximum of N numbers.

"HOST"
PROGRAM REGS (INPUT, OUTPUT) ;
VAR N, MAXNO, NUMBER, I : INTEGER;
BEGIN

END.

READ (N);
READ (MAXNO);
FOR I := 1 TO N-1 DO
BEGIN

READ (NUMBER) ;
IF NUMBER > MAXNO

THEN MAXNO := NUMBER
END;
WRITELN ('THE MAXIMUM NO. IS', MAXNO)

9. Count the positive and negative numbers.

"HOST"
PROGRAM REG9 (INPUT, OUTPUT) ;
VAR POSCOUNT, NEGCOUNT INTEGER;

NUMBER : REAL ;
BEGIN

POSCOUNT := O;
NEGCOUNT := 0:
REPEAT

READ (NUMBER) ;
IF NUMBER > 0

THEN POSCOUNT := POSCOUNT + 1
ELSE NEGCOUNT := NEGCOUNT + 1

UNTIL NUMBER= 0 [LAST NUMBER O];

Model 64817A
HP64ooo

HOST Pascal

WRITELN ('THERE WERE' , POSCOUNT,' POSITIVE NUMBERS. ');
WRITELN ('THERE WERE' , NEGCOUNT, ' NEGATIVE NUMBERS. ') ;

END.

B-4

Model 64817A
HP64ooo
HOST Pascal

10. Form separate totals of positive and negative numbers, and count the
number of zeros.

"HOST"
PROGRAM REGlO (INPUT ,OUTPUT);
VAR I, N, NUMBER, POSITIVESUM, NEGATIVESUM, COUNT INTEGER;

BEGIN

END.

READ (N);
POSITIVESUM := O;
NEGATIVESUM := O;
COUNT := O;
FOR I := 1 TO N DO

BEGIN
READ (NUMBER) ;
IF NUMBER = 0

END;

THEN COUNT := COUNT + 1
ELSE IF NUMBER > 0

THEN POSITIVESUM := POSITIVESUM + NUMBER
ELSE NEGATIVESUM := NEGATIVESUM + NUMBER

WRITELN ('TOTAL OF POSITIVE NUMBERS IS', POSITIVESUM);
WRITELN ('TOTAL OF NEGATIVE NUMBERS IS', NEGATIVESUM);
WRITELN ('AND THE NUMBER OF ZEROS IS' , COUNT) ;

11. Read number, print day of week.

"HOST"
PROGRAM REGll (INPUT,OUTPtrr);
VAR DAYNO : INTEGER;
BEGIN

END.

READ (DAYNO);
CASE DAYNO OF

1: WRITELN ('MONDAY') ;
2: WRITELN ('TUESDAY') ;
3 : WRITELN ('WEDNESDAY') ;
4: WRITELN ('THURSDAY ') ;
5: WRITELN ('FRIDAY') ;
6 : WRITELN ('SATURDAY ') ;
7: WRITELN ('SUNDAY');

END {CASE}

B-5

12. Add numbers until number is -1.

"HOST"
PROGRAM REG12 (INPUT,OUTPUT);
LABEL 123;
VAR SUM, NUMBER : INTEGER;

BEGIN

END.

SUM := O;
WHILE TRUE DO
BEGIN

END;

READ (NUMBER) ;
IF NUMBER = -1

THEN GOTO 123;
SUM := SUM + NUMBER

123: {JUMP TO THIS POINT WHEN -1 IS READ.}
WRITELN ('THE SUM IS ' , SUM)

Model 64817A
HP64ooo

HOST Pascal

13. Form the average of each of M groups of numbers, stopping if a nega
tive number is encountered.

B-6

"HOST"
PROGRAM REG13
LABEL 33;

(INPUT, OUTPUT) ;

VAR I,J,M,N INTEGER;
SUM, NUMBER REAL; AVERAGE,

BEGIN

END.

READ (M);
FOR J := 1 TOM DO
BEGIN

END;

READ (N);
SUM := O;
FOR I := 1 TON DO
BEGIN

END;

READ (NUMBER) ;
IF NUMBER < 0

THEN GOTO 33;
SUM := SUM + NUMBER

SUM := SUM/N;
WRITELN ('AVERAGE IS' , AVERAGE)

33: {JUMP TO THIS POINT IF NUMBER IS NEGATIVE}

Model 64817A
HP64ooo
HOST Pascal

14. Tax calculation.

"HOST"
PROGRAM REG14 (INPUT,OUTPUT);
CONST ALLOWANCE = 150;
RATE = 0.35;
VAR TAX, INCOME, EXPENSES, ALLOW, CHARITYLEVY

I, N, DEPENDENTS, EMPLTYPE

BEGIN
READ (N);
FOR I := 1 TO N DO
BEGIN

REAL;
INTEGER;

READ (INCOME, EXPENSES, DEPENDENTS, EMPLTYPE);
CASE EMPLTYPE OF

END.

END;

1: CHARITYLEVY := 5;
2: CHARITYLEVY := 2;
3: CHARITYLEVY := 1

EXPENSES := EXPENSES + CHARITYLEVY:
ALLOW := ALLOWANCE*DEPENDENTS+EXPENSES;
IF INCOME > ALLOW

THEN TAX := (INCOME - ALLOW) * RATE
ELSE TAX := O;

WRITELN ('TAX FOR EMPLOYEE' , I , ' IS' , TAX)

15. Program to act as a hand calculator.

"HOST"
PROGRAM REG15 (INPUT,OUTPUT);
VAR OPERATOR CHAR;

ANSWER, NEWNO : REAL;

BEGIN

END.

ANSWER := O;
OPERATOR : = +;
REPEAT

READ (NEWNO);
READ (OPERATOR);
CASE OPERATOR OF

END;

'+'
' - '
'*'
'/'

:= ANSWER + NEWNO;
:= ANSWER - NEWNO;
:= ANSWER * NEWNO;
:= ANSWER / NEWNO

UNTIL OPERATOR= '=';
WRITELN ('ANSWER IS', ANSWER)

B-7

16. Print all numbers with same sign as first number.

"HOST"
PROGRAM REG16 (INPUT,OUTPUT);
VAR NUMBER : REAL;

FIRSTSIGN : BOOLEAN;
BEGIN

END.

READ (NUMBER);
WRITELN (NUMBER);
FIRSTSIGN := NUMBER >= O;
REPEAT

READ (NUMBER) ;
IF FIRSTSIGN = (NUMBER >= 0)

THEN WRITELN (NUMBER)
UNTIL NUMBER = 0

Model 64817A
HP64ooo

HOST Pascal

17. Read lines of 4 CHAR name and number output each line in other
order.

"HOST"
PROGRAM REG17 (INPUT,OUTPUT);
VAR I,N,NUMBER : INTEGER;

A,B,C,D CHAR;
BEGIN

END.

READLN (N);
FOR I := 1 TO N DO
BEGIN

END;

READ (A,B,C,D);
READLN (NUMBER);
WRITELN (NUMBER,A,B,C,D)

18. Tabulate Centigrade integer temperatures from 0 to 99 degrees
against the Fahrenheit equivalent to the nearest 0.1 degree.

B-8

"HOST"
PROGRAM REG18 (INPUT,OUTPUT);
CONST CONVERSION = 1.8;

OFFSET = 32.0;
VAR CENTEMP : INTEGER;

FAHRTEMP : REAL;
BEGIN

END.

WRITELN ('CENTIGRADE FAHRENHEIT');
FOR CENTEMP := 0 TO 99 DO
BEGIN

END;

FAHRTEMP := CENTEMP * CONVERSION + OFFSET;
WRITELN (CENTEMP:2' ':7,FAHRTEMP:7:1)

Model 64817A
HP64ooo
HOST Pascal

19. Add two numbers and print neatly.

"HOST"
PROGRAM REG19 (INPUT,OUTPUT);
VAR NUMl, NUM2,TOTAL : REAL;
PROCEDURE DRAWLINE;

CONST LENGTH = 10;
VAR I : INTEGER;
BEGIN

END;

FOR I := 1 TO LENGTH DO
WRITE (' - ') ;
WRITELN

BEGIN

END.

READ (NUMl, NUM2);
WRITELN (NUM1:10:3);
WRITELN (NUM2:10:3);
DRAWL I NE
TOTAL := NUMl + NUM2;
WRITELN (TOTAL:10;3);
DRAWL I NE

20. Draw histogram as lines of appropriate length for the values read.

"HOST"
PROGRAM REG20 (INPUT,OUTPUT);
VAR X,Y,N : INTEGER;

NUMBER : REAL;
PROCEDURE DRAWALINE (LENGTH : INTEGER);

VAR I : INTEGER;
BEGIN

END;

FOR I : = 1 TO LENGTH DO
WRITE (' - ') ;
WRITELN

BEGIN

END.

READ (N);
FOR X := 1 TO N DO
BEGIN

END

READ (NUMBER);
Y : = ROUND (NUMBER) ;
IF Y < 0

THEN DRAWALINE (0)
ELSE IF Y > 100

THEN DRAWALINE (100)
ELSE DRAWALINE (Y)

B-9

21. Order each of N data pairs.

"HOST"
PROGRAM REG21 (INPUT,OUTPUT);
VAR I,N : INTEGER;

X,Y : REAL;
PROCEDURE SWAP (VAR P,Q REAL);

VAR TEMP : REAL;
BEGIN

END;

TEMP := P;
p := Q;
Q := TEMP;

BEGIN

END.

READ (N);
FOR I := 1 TO N DO
BEGIN

END;

READ (X,Y);
IF X > Y

THEN SWAP (X, Y);

WRITELN ('ARE THE ORDERED PAIRS')

Model 64817A
HP64ooo

HOST Pascal

22. Convert a number of inches into miles, yards, feet, and inches.

B-10

"HOST"
PROGRAM REG22 (INPUT,OUTPUT);
VAR A,B,C,D,NUMBER : INTEGER;
PROCEDURE CONVERT (VAR M,Y,F,I,INS INTEGER);
BEGIN

END;

M :=INS DIV (1760 * 36);
INS :=INS MOD (1760 * 36);
Y := INS DIV 36;
INS := INS MOD 36;
F := INS DIV 12;
I := INS MOD 12;

BEGIN

END.

READ (NUMBER) ;
CONVERT (A,B,C,D,NUMBER);
WRITE(A:4, 'MILES,',B:4, 'YARDS,');
WRITELN (C : 1, 'FEET AND' , D: 2 , ' INCHES')

Model 64817A
HP64ooo
HOST Pascal

23. Lengths arithmetic.

"HOST"
PROGRAM REG23 (INPUT,OUTPUT);
VAR A,B,C,D,TOTAL : INTEGER;
PROCEDURE CONVERT (VAR M,Y,F,I,INS INTEGER);
BEGIN

END;

M := INS DIV (1760 * 36);
INS :=INS MOD (1760 * 36);
Y := INS DIV 36;
INS := INS MOD 36;
F := INS DIV 12;
I := INS MOD 12;

FUNCTION INCHES (M,Y,F,I : INTEGER) : INTEGER;
BEGIN

INCHES := ({{M * 1760) + Y) * 3 + F) * 12 + 1
END;

BEGIN

END.

READ (A,B,C,D);
TOTAL :=INCHES (A,B,C,D);
CONVERT (A,B,C,D,TOTAL);
WRITELN ('SUM IS', TOTAL, INCHES - I.E.);
WRITE(A:4,' MILES,', B:4,' YARDS,');
WRITELN(C:l,' FEET AND', D:2' INCHES')

B-11

Model 64817A
HP64ooo

HOST Pascal

24. Print sum of N values. Each value is the average of a set of
numbers.

B-12

"HOST"
PROGRAM REG2 4 (INPUT, OUTPUT) ;
CONST WIDTH = 10;
VAR I,N,COUNT INTEGER;

LINEAVERAGE, TOTAL REAL;
PROCEDURE DRAWALINE;

VAR I : INTEGER;
BEGIN

END;

FOR I := 1 TO WIDTH DO
WRITE (' - ') ;
WRITELN

FUNCTION AVERAGE (READCOUNT INTEGER) REAL;
VAR I INTEGER;

TOTAL , NUM : REAL ;
BEGIN

END;

TOTAL := O;
FOR I : = 1 TO READCOUNT DO
BEGIN

READ (NUM);
TOTAL := TOTAL + NUM

END;
AVERAGE := TOTAL/ READCOUNT

BEGIN

END.

TOTAL := O;
READ (N);
FOR I := 1 TON DO
BEGIN

READ (COUNT);
LINEA VERAGE : = AVERAGE (COUNT) ;
WRITELN (LINEAVERAGE : WIDTH : 2);
TOTAL := TOTAL + LINEAVERAGE

END;
DRAWALINE;
WRITELN (TOTAL WIDTH 2);
DRAWALINE

Model 64817A
HP64ooo
HOST Pascal

25. Scalar enumeration types - defining a new type.

"HOST"
PROGRAM REG25 (INPUT,OUTPUT);
TYPE SUIT = (CLUB, DIAMOND, HEART, SPADE);

DAY = (SAT, SUN, MON, TUE, WED, THUR, FRI);
PRICOLOR = (RED, YELLOW, BLUE);
FLOOR = (GROUND, LOWFIRST, FIRST);

VAR PAYDAY, DAYOFF, : DAY;
TRUMP SUIT;
PAINT PRICOLOR;
COATS INTEGER;
UNDERCOAT BOOLEAN;

BEGIN

END.

CASE PAINT OF
RED

BEGIN

END;

END;
YELLOW :

COATS := 1;
UNDERCOAT : = FALSE;

BEGIN

END;
BLUE

BEGIN

END

COATS := 2;
UNDERCOAT := TRUE

COATS := 2;
UNDERCOAT := FALSE

26. Read numbers and calculate their divisors.

"HOST"
PROGRAM REG26 (INPUT,OUTPUT);
VAR NUMBER, DIVISOR : INTEGER;

BEGIN
REPEAT

END.

READ (NUMBER) ;
IF NUMBER > 0

THEN
BEGIN

WRITELN ('THE DIVISORS OF', NUMBER,' ARE':');
FOR DIVISOR := 2 TO NUMBER DO
IF NUMBER MOD DIVISOR = 0

THEN WRITELN (DIVISOR)
END

UNTIL NUMBER <= 0

B-13

Model 64817A
HP64ooo

HOST Pascal

27. Copying one or more lines of text from one file to another.

B-14

"HOST"
PROGRAM REG27 (INPUT, OUTPUT) ;
VAR OLDFILE, NEWFILE TEXT;

CH : CHAR;
ERROR : BOOLEAN;
N, I, CURRENTLINE : 1 .. MAXINT;

PROCEDURE COPYLINE (VAR Fl, F2 : TEXT);
VAR CH : CHAR;
BEGIN

WHILE NOT EOLN (Fl) DO
BEGIN

END;

READ (Fl, CH);
WRITE (F2, CH)

READLN (Fl);
WRITELN (F2)

END; {PROCEDURE COPYLINE}

BEGIN {MAIN PROGRAM}
RESET (OLDFILE);
REWRITE (NEWFILE) ;
CURRENT := 1;
ERROR := FALSE;
REPEAT

READ (CH);
IF CH < > 'E'

THEN READ (N);
READLN;
IF (CH= 'E') OR (CH= 'C') OR (CH= 'S')
OR (CH = 'I')

THEN
CASE CH OF
'c' :
BEGIN

END;
'S' :

ERROR := N < CURRENTLINE;
FOR I := 1 TON - CURRENTLINE DO

COPYLINE (OLDFILE, NEWFILE);
CURRENTLINE := N

BEGIN

END;
'I'

ERROR := N < CURRENTLINE;
FOR I := 1 TO N-CURRENTLINE DO

READLN (OLDFILE);
CURRENTLINE : = N

FOR I := 1 TO N DO
COPYLINE (INPUT, NEWFILE);

Model 64817A
HP64ooo
HOST Pascal

'E'

END

WHILE NOT EOF (OLDFILE) DO
COPYLINE (OLDFILE, NEWFILE)

ELSE ERROR : = TRUE
UNTIL (CH = 'E') OR ERROR;

IF ERROR
THEN WRITELN ('ERROR IN EDIT')

END.

28. Print a table of powers of integers.

"HOST"
PROGRAM REG28 (INPUT,OUTPUT);
VAR TABLESIZE, BASE, SQUARE, CUBE, QUAD INTEGER;

BEGIN

END.

READ (TABLESIZE);
FOR BASE := 1 TO TABLESIZE DO
BEGIN

END;

CUBE := BASE * SQUARE;
QUAD : SQR (SQUARE) ;
WRITE(BASE, SQUARE, CUBE, QUAD);
WRITELN(l/BASE, 1/SQUARE, 1/CUBE, 1/QUAD)

29. Calculate area of a polygon.

"HOST"
PROGRAM REG29 (INPUT ,OUTPUT);
VAR V : INTEGER;
TYPE R = RECORD

aa:integer;
b,c : real;
END;

FUNCTION A:R;
BEGIN

A.aa := 3;
a.b := o.6;
a.c := 0.2;

END;
BEGIN

WITH A DO
V : = aa;.

WRITELN (V)
END.

B-15

B-16

Model 64817A
HP64ooo

HOST Pascal

Appendix C
Input/Output Characteristics

Introduction

Physical files are either disc files or I/O devices on the 64000 system.
The I/O devices keyboard, display, printer, and displayl may only be as
sociated with TEXT files. The I/O device null, and disc files, may be
associated with either text or non-text files.

Disc Files

All disc files on the 64000 system consist of a list of variable length
records, and can range from 2 to 256 bytes in length. The length of a
physical record is always an even number of bytes. The term "logical
record" refers to the data in one component of the file. That is, given
a FILE OF T, a logical record consists of one data item of type T.

The system performs a mapping of logical records to physical records
during an output operation, and a mapping of physical records into logi
cal records during an input operation. The details of this mapping are
explained below for both text files and non-text files.

Text Files

Each component, or logical record, of a text file is of type CHAR. Since
text files are also structured into lines, the system maps each line into
a physical disc record, with the following implications:

a. A line in a text file may never be longer than 256 bytes.

b. A line always consists of an even number of characters. The
system generates an extra character, i.e., a blank, if neces
sary, to pad the line to an even number of characters when a
WRITELN is executed.

c. A line can never have zero characters. For example, if the
statements to WRITELN occur consecutively,

WRITELN (output);
WRITELN (output);

the record produced by the second WRITELN will consist of two
blanks.

C-1

Non-text Files

Model 64817A
HP64ooo

HOST Pascal

The mapping of logical records to physical records takes place as
follows:

a. Each logical record is written to one physical record if the
length of the logical record is 256 bytes or less.

b. The system writes as many 256 byte physical records as are
needed to satisfy the logical record length. Any remaining
portion of the logical record is written into a shorter physi
cal record.

c. The system always writes the same number of bytes for each
record. If the file component is a record with variants, then
the number of bytes in the longest variant is written.

The system considers the length of the record to be the length of the
logical record when reading a non-text file. The record length, then, is
determined by the program and not by the data in the file. ·The system
reads physical records until enough data is obtained to fill a logical
record.

Problems will occur if data is written using a file variable with one
component type of a particular length, and a later attempt is .made to
read the data using a file variable with a component type that has a dif
ferent length. The data in the physical records will not map properly
into the logical records and results will be unpredictable.

1/0 Devices

Null

"Null" is a nothing device. Used for input, null always produces an end
of-file condition. Used for output, null functions as a bit bucket.

Keyboard

"Keyboard" uses the command line area at the bottom of the 64000 screen
for keyboard input. An end-of-file condition is. produced by entering a
zero-length line. In order to clear an end-of-file condition, if it is
inadvertently produced, the following may be done:

Assume that F is a file assigned to "keyboard";
IF EOF(F} THEN RESET(F);

The cursor will always appear in the command area. The RETURN key ter
minates a line and causes data to be sent to the program. The BACK
SPACE, CLR LINE, INSERT CHAR, DELETE CHAR, LEFT ARROW, RIGHT ARROW, and
RECALL keys may be used to prepare and edit text in the command line.

C-2

Model 64817A
HP64ooo
HOST Pascal

ROLL UP, ROLL DOWN, NEXT PAGE, PREV PAGE, and TAB keys have no effect.
No "control" character has any special meaning.

Display

The "display device" is 80 characters wide and 18 lines high. Data is
always written to the bottom line of the display. The display rolls up
and the data on the top line is lost to view. Lines wider than 80
characters are truncated and the additional data is not displayed. Time
delays take place after each line is written to ensure that the display
does not roll up too rapidly.

The display hardware is sensitive to certain characters that are used for
special effects. The following bit patterns are significant:

lOUIXXBX

where: x = don't care;
u = 1 turns on underlining;
u = 0 turns off underlining;
I = 1 turns on inverse video;
I = 0 turns off inverse video;
B = 1 turns on blinking video;
B = 0 turns off blinking video.

llllXXOX causes the display to be blanked to the end of the line.

llllXXlX causes the display to be blanked to the end of the display
screen. Should this character be used, nothing beyond it, including the
message line, command line, and softkey line will be visible.

Printer

The "printer" has a maximum line width of 132 characters. Data in lines
wider than 132 characters will be lost. The printer will form feed if
the standard procedure PAGE is used.

Displayl

"Displayl" is similar to the "display" device in that data is shown in
the area at the top. of the screen.

a. display may only be associated with a text file.

b. text files have a maximum line length.

c. The maximum line length defaults to 240 characters, but is
setable from 1 to 256 characters with the "$LINESIZE$" option.

C-3

Model 64817A
HP64ooo

HOST Pascal

d. If more than the maximum number of characters are written
without a WRITELN being issued, a WRITELN will be automatically
generated.

e. Cursor positioning, using control characters to the displayl
device is not a WRITELN. A common error occurs when control
characters are sent to display1 to reset the cursor without a
WRITELN. In the following example, some data will appear on
line 2 of the display because of the automatic WRITELN
generated by HOST Pascal.

FOR I := 1 TO 100 DO
BEGIN
WRITE (CHR (194}}; {HOME CURSOR}
WRITE ('I WANT THIS DATA TO APPEAR ON LINE 1' } ;
END;

The above FOR statement will operate correctly if the second
WRITE is replaced by a WRITELN.

The "display_cursor", although invisible, determines where the next
character received by display1 will be shown.

c-4

a. If the display cursor is located in the 80th column of a line
and another data character is to be displayed, then the cursor
wraps to the first column of the next line.

b. If the display_cursor is on the 18th line and the dis
play cursor is forced to the next line, then the displayed data
is rolled up, the top line is lost, the 18th line is blanked,
and the display_cursor remains on the 18th line.

c. After performing a REWRITE or APPEND to a file associated with
"displayl", the display cursor is positioned in the upper left
hand corner, i.e., the home position.

d. The following characters are not displayed by "displayl" but
are treated as control characters:

chr(l92} - SET X,Y - The next two characters received by
"display1" are not displayed but are used to set the column
and row, respectively, of the display cursor. The columns
are numbered 0 thru 79. If the column-character is greater
than 79, the column will be set equal to 79. The rows are
numbered 0 thru 17. If row character is greater than 17,
the row will be set equal to 17.

chr(193) - CARRIAGE RETURN - The display cursor is set
to the beginning of the current line, i. e :-, with column
equal to zero.

Model 64817A
HP64ooo
HOST Pascal

chr(194) HOME - The display cursor is set to the
"home" position, i.e., the upper left corner of the screen,
with both row and column equal to zero.

chr(195) CLEAR TO END OF LINE - The screen is blanked
from the current display_cursor position to the end of the
present line. The position of the display_cursor is
unchanged.

chr(196) CLEAR TO END OF SCREEN - The screen is
blanked from the current display cursor position to the end
of the 19th line of the screen.- The position of the dis
play_cursor is unchanged.

chr(197) - CLEAR SCREEN - The entire data area of the
screen is blanked. The position of the display_cursor is
unchanged.

chr(198) - BINK - The audible alarm is sounded.

chr(199) - CURSOR RIGHT - The display_cursor is moved
right one position. If the cursor is at the end of the
line, a wrap to the next line occurs. If the cursor wraps
and is on the bottom line, the display is rolled up one
line.

chr(200) CURSOR LEFT - The display cursor is moved
left one position. If the cursor is in the first column of
a line, it is moved to the last column of the previous
line. If the cursor is in the home position nothing
happens.

chr(201) - CURSOR UP - The display cursor is moved to the
previous line with the column unchanged. If the cursor is
on the top line of the display nothing happens.

chr(202) - CURSOR DOWN - The display_cursor is moved to
the next line with the column unchanged. If the cursor was
on the bottom line of the screen the screen is rolled up
one line.

e. Characters having the bit pattern llllXXlX are changed to 7FH.
This bit pattern would cause the display to blank-to-end-of
display and is filtered out.

f. All other characters are displayed unchanged. For easy
reference the display enhancement bit pattern is as follows:

C-5

lOUIXXBX

where: x =
u =
u =
I =
I =
B =
B =

don't care;
1 turns on underlining;
0 turns off underlining;
1 turns on inverse video;
0 turns off inverse video;
1 turns on blinking video;
0 turns off blinking video.

Model 64817A
HP64ooo

HOST Pascal

In addition, the bit pattern 1111XXXX causes the display to be
blanked to the end of line.

RS-232

The RS-232 I/O device performs serial input and output in the
asynchronous mode. The hardware interface is either the RS-232 port or
the current loop connector. A thorough discussion of the serial hardware
interface may be found in the HP 64000 System Configuration and
Installation Reference Manual.

Input and output using the RS-232 port presents more problems to the
programmer than I/O using disc files and other devices. A list of the
extra or exaggerated problems follows.

a. Both input and output operations must be done on the same
device. In the case of full duplex protocols, input and output
operations occur simultaneously under the control of a Pascal
program which is an inherently sequential language.

b. Since the behavior of the device at the other end of the com
munications link is beyond the control of the 64000 system, the
program must be able to deal with exception conditions. The
problem of no response or timeout must be handled.

c. Input and output operations must take place within real time
limits. A more thorough discussion of timing considerations is
presented later in this section.

d. The communications link has a much higher error rate than other
peripheral devices.

e. Modem signals must sometimes be manipulated by the program.

HOST Pascal has features to solve these problems in most cases. A
detailed description of the RS-232 implementation and an example program
are shown at the end of this Appendix.

c-6

Model 64817A
HP64ooo
HOST Pascal

Hardware Options

The following hardware options are selected by switches on the 64000 I/O
board. See the 64000 Configuration and Installation Reference Manual for
details.

RS-232C or current loop interface.
20 ma. or 60 ma. current loop.
Internal or external clock source.
Baud rate using internal clock.
Full duplex or half duplex modem control.
Number of data bits in character.
Character parity bits (none, odd, or even).
Number of stop bits in character.

Receiver and Transmitter

It is useful to think of the RS-232 I/O device as two separate devices, a
receiver and a transmitter that share the same hardware resource. The
HOST Pascal program controls the RS-232 transmitter using one TEXT vari
able and the RS-232 receiver using a different TEXT variable. The fol
lowing program fragment illustrates this arrangement.

VAR RECEIVER: TEXT; TRANSMITTER: TEXT; BEGIN RESET(RECEIVER,'rs232');
REWRITE(TRANSMITTER,'rs232');

Since HOST Pascal allows a file variable to open for either reading or
writing but not both, the use of two text files is required. The RESET
procedure associates the text file RECEIVER with the RS-232 receiver
device while the REWRITE procedure associates the text file TRANSMITTER
with the RS-232 transmitter device. Normally, HOST Pascal would produce
a run time error if two file variables were associated with the same
device. An exception to this rule is allowed with RS-232 if one file is
open for reading and another for writing.

Character and Protocol Transparency

The RS-232 device is designed to be transparent to any character code or
communications protocol. The RS-232 receiver does not recognize any
character as a control character and the RS-232 transmitter does not au
tomatically send any control characters. The recognition or sending of
control characters must be done in the HOST Pascal program. This ar
rangement has the following implications:

The end-of-file condition for the RS-232 device is not defined. If
F is a text file associated with the RS-232 receiver, then EOF(F)
always returns FALSE. If F is associated with the RS-232 transmit
ter, then EOF(F) will always return TRUE. Recognizing or producing
end-of-file conditions must be accomplished by the HOST Pascal
program.

C-7

Model 64817A
HP64ooo

HOST Pascal

Line markers are not defined for the RS-232 device. If F is a text
file associated with RS-232 receiver, then EOLN(F) always returns
FALSE. If F is associated with the RS-232 transmitter, then
WRITELN(F) has no effect. Recognizing or producing line markers or
record delimiters must be accomplished by the HOST Pascal program.

Circular Buffers

There is a circular data buffer associated with the TEXT variable that is
open to the RS-232 receiver. There is another circular data buffer as
sociated with the TEXT variable that is open to the RS-232 transmitter.
These data buffers are located in the Device Control Block (DCB) that is
associated with all file variables. (See Chapter 8, Table 8-2, for more
information.)

The size of the DCB, and therefore the size of the circular buffer, is
controllable through the use of the $BUFFERS n$ compiler option, the same
as for other files. The value of n may be 1, 2, 4, 8, or 16 which
results in a circular buffer size of 128, 256, 512, 1024, or 2048 words,
respectively. In general, one word in the buffer can hold one character
of data and any error information associated with it.

These circular buffers accomplish several things. When receiving, it al
lows higher speed operation. Typically, some received characters require
only brief processing while others initiate lengthy processes. The HOST
Pascal program does not have to process each character as soon as it is
received but need only keep up with the average rate of data input. It
also allows simultaneous transmitting and receiving in full duplex
protocols. When one does a WRITE operation, the output data is stored in
the circular buffer, transmission is initiated, and the WRITE procedure
returns immediately. The HOST program can then do other processing, in
cluding receiving, while transmission is taking place. The programmer
can use the standard function LINEPOS to determine the number of data
characters in either circular buffer.

TIMEOUT(F,T) Procedure

There is a new predefined procedure that allows the HOST Pascal program
to deal with the case of no input data to the RS-232 receiver. The pro
cedure TIMEOUT(F,T) specifies the time interval for waiting for a charac
ter to be received on the RS-232 device. If no data, is received in the
specified interval, a "timeout" condition occurs and the READ procedure
returns control to the HOST Pascal program after setting the I/O result
code to specified value. The HOST Pascal program calls the predefined
function IORESULT to determine whether data was received or a timeout
occurred.

The procedure TIMEOUT(F,T) has no effect unless the text file F is open
for reading to the RS-232 device. The integer expression T specifies the
time interval as a number of clock "ticks". A "tick" is either 1/60th or
1/50th of a second depending on the AC line frequency. After TIMEOUT is

c-8

Model 64817A
HP64ooo
HOST Pascal

called, the specified time interval remains in effect until either
another call to TIMEOUT is made or the file F is closed. If the value of
T is negative, then timing is disabled and the timeout interval is effec
tively infinite.

Example:
$EXTENSIONS ON$ VAR

F: TEXT;
BEGIN RESET(F,'rs232'); TIMEOUT(F,120);

In the example, the timeout interval is set to 120 "ticks" which is 2. 0
seconds if the AC line frequency is 60 Hz. or 2.4 seconds if the AC line
frequency is 50 Hertz. TIMEOUT is an extension to HP Standard Pascal and
requires the $EXTENSIONS ON$ compiler option to be in effect.

RS-232 Receiver Operation

The basic operation of the RS-232 receiver is as follows:

1. When a file is opened for input to the RS-232 (e.g.,
RESET(F, 'rs232');), the circular buffer is reset to indicate
empty and the receiver hardware is enabled. The timeout inter
val is initialized to -1 which specifies an infinite time.
Subsequent calls to TIMEOUT can be made to change this value.

2. As characters are received, the character is combined with any
error indications associated with the character and put into a
word in the circular buffer. Possible error indications are
BREAK, overrun error, framing error, and parity error.

3. If the circular buffer contains only one free word, then the
character/error data is not stored. Rather an error code in
dicating buffer overflow is stored and the buffer becomes full.
If characters are received after the buffer is full, they are
discarded but there will always be a buffer overflow indication
when any data is lost.

c-9

Model 64817A
HP64ooo

HOST Pascal

4. The READ(F,CH) procedure where CH is a CHAR variable is used to
remove character/error data from the circular buffer. If no
data is in the buffer, this procedure will wait until a charac
ter is received or until the interval specified by TIMEOUT has
elapsed. The character data is put into CH and the error infor
mation is used to set the value for a subsequent call to
IORESULT. IORESULT returns the following values:

0 -No error. CH contains the received data.

15 -Timeout. CH contains CHR(O).

16 -Buffer overflow. CH contains CHR(O).

17 -Break received. CH contains CHR(O).

18 -Framing error. CH contains the received

19 -Overrun error. CH contains the received data.

20 -Parity error. CH contains the received data.

5. The predefined procedure LINEPOS(F) will return the number of
data characters in the circular buffer at any time.

6. When a file open for reading to the RS-232 device is closed, the
receiver hardware is disabled.

RS-232 Transmitter Operation

The general operation of the RS-232 transmitter is as follows:

C-10

1. When a file is opened for output to the RS-232 device, the cir
cular buffer is reset to indicate empty and the transmit
hardware is disabled.

2. When an output operation (PUT or WRITE) is done, the output data
characters are put into words in the circular buffer and the
transmitter hardware is enabled. If there is space in the cir
cular buffer for all the data, the PUT or WRITE procedures
return immediately. Otherwise, they will wait until space be
comes available before returning. Space will become available
as the transmitter hardware removes the data from the buffer and
sends it.

NOTE

The transmitter hardware will not actually send
data until the CTS (Clear To Send) modem signal
is high. See the HP 64000 System Overview
Manual for details.

Model 64817A
HP64ooo
HOST Pascal

3. After the transmitter hardware sends a character, it looks in
the circular buffer for another. If more data is available, it
is transmitted. Otherwise, the transmitter hardware is
disabled.

4. The predefined function LINEPOS(F) may be used to determine the
number of characters remaining in the buffer at any time. The
value returned by LINEPOS is the number of characters in the
circular buffer plus the number of characters contained in the
transmitter hardware registers.

5. Whenever a file open for writing to the RS-232 is closed, the
close procedure will wait until all characters in the circular
buffer have actually been sent before finishing.

Modem Control

The modem signals DTR (Data Terminal Ready) and RTS (Request To Send) can
be controlled by the HOST Pascal. Note that RTS is only controllable if
the full/half duplex switch on the I/O board is in the half duplex posi
tion. Otherwise, RTS is always high. The normal state for the DTR and
RTS signals is high. When a HOST Pascal program is run, the RS-232
hardware is initialized and both DTR and RTS are set low. The DTR signal
is set high when a file is opened for reading to the RS-232 device. The
DTR signal remains high until the file is closed. Thus the program can
control DTR by alternately calling RESET and CLOSE. The RTS signal is
set high when a file is opened for writing to the RS-232 device. The RTS
signal remains high until the file is closed and all characters in the
transmitter buffers have been sent. Thus the program can control RTS by
alternately calling REWRITE and CLOSE. Note that the RS-232 transmitter
hardware will not send data until the CTS (Clear To Send) input signal is
high.

Restricted Use of READ and READLN

When a text file F is open for reading to the RS-232 device, many forms
of READ(F,V) and READLN(F) are not allowed. A run-time error will result
if the type of variable V is integer, real, longreal, string, or PAC.
READLN is always illegal with the RS-232 device. READ is only allowed
when the variable V is compatible with type CHAR. The are two reasons
for these restrictions. READLN and READ of string and PAC variables
depend on the EOLN condition in their definitions. However, line markers
are not .defined for the RS-232 device. READ with integer and real vari
ables is prohibited because the interaction of multi-character input and
timeout timing is difficult to define in a straight forward way.

Timing Considerations

In data communications programs written in HOST Pascal, there are three
areas where real time constraints must be considered.

C-11

Model 64817A
HP64ooo

HOST Pascal

1. When receiving, the system software must remove a character from
the receiver hardware register before the next character is
received. If this does not happen fast enough, the result is
called an overrun error. The critical time interval here is the
character transmission time which is a function of baud rate.
At 110 bps, the character time is about 100 ms. At 9600 bps,
the character time is about 1 ms.

2. When receiving, the HOST Pascal program must remove data from
the circular buffer faster, on the average, than it is received.
If this does not happen, eventually the circular buffer will be
come full and the result is called a buffer overflow error. The
average rate that characters are received is a function of baud
rate and, also, the communications protocol of the sending
device. That is, if the sender sends blocks of data and pauses,
the average transmission rate is less than if the sending was
continuous. The average rate that characters are removed is a
function of the HOST Pascal program; how much time it spends
processing each character.

3. In some communications protocols, one station sends a message to
another station and expects a response within a certain time in
terval. If the response is not received within the time limit,
the result is a timeout error. The critical time interval is a
function of the particular computer system being used.
Typically, this time is on the order of several seconds.

Given the above problems, there follows a list of recommendations to
avoid or overcome them. Since data communications systems are so varied,
meaningful limits on performance or speed cannot be formulated.
Therefore, the following discussion is general.

Overrun errors should only be a problem at speeds of 2400 bps and above.
They can be nearly eliminated by avoiding disc I/O operations while data
is begin received. That is, at high speed, pick a communications
protocol and design your HOST Pascal program so that disc operations and
RS-232 receiving can happen at alternate times.

The problem of receive buffer overflow is complicated with many factors
involved. One important factor is communications protocol. At speeds of
2400 bps and above, it is probably impossible to do any meaningful
processing of received data if transmission is continuous. The HOST
Pascal program simply cannot process the received characters fast enough.
One must use a communications protocol that sends data in bursts and then
pauses so that the HOST program can catch up with its data processing.

Using a communications protocol that divides the transmissions into
blocks has another advantage. One can then design a program where is
main receiving loop is very brief. Typically, the main receiving loop
need only call th~ function IORESULT to check for errors, store the
received character in memory, and check if the character is a transmis
sion terminator. Time consuming functions can be performed in the time
interval between blocks. Examples of time consuming functions are I/O

C-12

Model 64817A
HP64ooo
HOST Pascal

operations to the disc, printer or display, computations of CRC sums,
data reformatting, and data interpretation. In extreme cases, avoid
procedure and function calls in favor of in-line code. Also, avoid doing
READ or WRITE operations with integer or real data to text files. The
conversion to and from internal format to character format requires con
siderable computation.

Example Program of RS-232 Implementation

"HOST"
{**}
{
{ THIS PROGRAM SIMULATES A "DUMB" TERMINAL. IT ACCEPTS DATA
{ FROM THE KEYBOARD AND SENDS IT ON THE rs232 DEVICE. THE
{ RECEIVING STATION ECHOES THIS DATA. THE PROGRAM RECEIVES
{ DATA FROM THE rs232 DEVICE AND DISPLAYS THE PRINTABLE
{ CHARACTERS ON THE displayl DEVICE.

THE REMOTE STATION USES THE ENQ/ACK PROTOCOL. THE REMOTE
STATION SENDS ENQ AFTER EVERY 80 CHARACTERS OF OUTPUT DATA.
THE PROGRAM RESPONDS WITH ACK WHEN IT IS READY TO ACCEPT 80
MORE CHARACTERS.

}
}
}
}
}
}
}
}
}
}
}
}

{
{
{
{
{
{
{
{
{
{
{
{
{
{

GENERAL FLOW }
1. INITIALIZATION (OPEN FILES) }
2. READ THE KEYBOARD. IF KEYBOARD DATA IS '\ \' , END PROGRAM. }
3. TRANSMIT THE KEYBOARD DATA OVER THE RS232 FOLLOWED BY CR. }
4. RECEIVE AND DISPLAY DATA FROM RS232 UNTIL DCl CHAR IS }

RECEIVED OR UNTIL THE TIMEOUT INTERVAL HAS ELAPSED. }
5. GO TO 2. }

}
{**}
$EXTENSIONS ON$
PROGRAM TTERM;
CONST

{CONTROL CHARACTERS FOR THE displayl DEVICE}
INVERSE= CHR(144);
ENH OFF= CHR(128);
CARRET = CHR(193);
CLRSCREEN = CHR(197);
BINK = CHR(198);
CURLEFT = CHR(200);
CURDOWN = CHR(202);

{CODES RETURNED BY THE FUNCTION IORESULT}
INOERROR = 0;
IENDOFFILE = 1;
!TIMEOUT = 15;
IBUFOFLO = 16;
!BREAK = 17;
IFRAMERR = 18;
!OVERRUN = 19;
!PARITY = 20;

C-13

{ASCII CONTROL CHARACTERS}
ENQ = CHR(5);
ACK = CHR(6);
BELL= CHR(7);
BS= CHR(8);
LF = CHR(lO);
CR = CHR(13);
DCl = CHR(17);
DEL = CHR(127);

VAR
DONE1,DONE2: BOOLEAN;
CH: CHAR;
STR: STRING[240];
KBD,DISP: TEXT;

$BUFFERS 2$
INRS,OUTRS: TEXT;

BEGIN

Model 64817A
HP64ooo

HOST Pascal

{**}
{ 1. INITIALIZATION }
{**}
RESET(KBD, 'keyboard');
REWRITE(DISP,'displayl');
RESET(INRS,'rs232');
REWRITE(OUTRS,'rs232');
WRITE(DISP,CLRSCREEN);
TIMEOUT(INRS,600); {10 SECOND TIMEOUT INTERVAL}
DONE2 := FALSE;
{**}
{ 2. READ KEYBOARD. IF DATA IS '\\' THEN END THE PROGRAM. }
{**}
REPEAT

IF EOF(KBD) THEN
BEGIN
RESET(KBD);
STR : = ";
END

ELSE
READLN(KBD,STR);

IF STRPOS('\\',STR) = 1 THEN
BEGIN
DONE2 : = TRUE;
DONEl := TRUE;
END

ELSE

C-14

Model 64817A
HP64ooo
HOST Pascal

{**}
{ 3. TRANSMIT THE KEYBOARD DATA FOLLOWED BY A CARRIAGE RETURN }
{**}

BEGIN
WRITE(OUTRS,STR,CR);
DONEl :=FALSE;
END;

{**************************~*************************************}

{ 4. RECEIVE AND DISPLAY DATA FROM RS232 UNTIL A DCl IS RECEIVED}
{ OR UNTIL TIMEOUT OCCURS. }
{**}

WHILE NOT DONEl DO
BEGIN {WHILE}

$IOCHECK OFF$
READ (INRS , CH) ;

$IOCHECK ON$
CASE IORESULT OF

INOERROR:
BEGIN {NO ERROR}
IF ORD(CH) >= 128 THEN

CH := CHR(ORD(CH) - 128);
CASE CH OF

' ' .. DEL:
WRITE(DISP,CH);

CR:
BEGIN
WRITE(DISP,CARRET);
END;

LF:
WRITELN(DISP);

BS:
IF LINEPOS(DISP) > 0 THEN

WRITE(DISP,CURLEFT);
BELL:

WRITE(DISP,BINK);
ENQ:

WRITE(OUTRS,ACK); {RESPONSE TO ENQ WITH ACK}
DCl:

DONEl := TRUE;
OTHERWISE
END; {CASE}

END; {NO ERROR}

C-15

!TIMEOUT:
DONEl : = TRUE ;

IBUFOFLO:
WRITE(DISP,INVERSE, 'BUF',ENH_OFF);

!BREAK:
WRITE(DISP,INVERSE, 'BRK',ENH_OFF);

IFRAMERR:
WRITE(DISP,INVERSE, 'FRM',ENH_OFF);

!OVERRUN:
WRITE(DISP,INVERSE,'OVR',ENH_OFF);

!PARITY:
WRITE(DISP,INVERSE, 'PAR',ENH_OFF);

OTHERWISE
HALT;

END; {CASE}
END; {WHILE}

Model 64817A
HP64ooo

HOST Pascal

{**}
{ 5. GO TO 2. }
{**}
UNTIL DONE2;
END.

C-16

Model 64817A
HP64ooo
Host Pascal

INDEX

a

Abs•................................•... 7-15
Absolute file•...........................•............. 9-1
Allocation for elements of packed structures 8-4
Allocation for scalar variables 8-1
Allocation for structured variables•.................... 8-3
Allocation, memory•................... 8-11
Alphabetic characters 2-1
AND •• 5-18
APPEND 1-2, 6-5, 6-6, 7-1
Arctan ... 7-16
Arithmetic functions•........ 7-15
Arithmetic operators•............... 5-17
Array•.. 1-1, 4-15
Array constant .. 4-7
Array subscripts ... 5-16
Arrays, multi-dimensioned 4-16
Assignment compatible types 5-26
Assignment statement .. 5-2
Associating files through the string parameter 6-6
Associating logical and physical files 6-5

b

BINARY•........•.................•... 1-2, 7-19
BINK, chr(198) .. C-5
Boolean operators .. 5-18
Buffer variables•..............•.•.•...•.... 4-24

c

CARRIAGE RETURN, chr(193)•.............•.. C-4
CASE ...•...•........ 1-1
CASE Statement•.............. 5-6
Character and protocol transparency, RS-232 ..•.............. C-7
Character set ... 2-1
Characteristics, logical file 6-2
Characters, alphabetic 2-1
Characters, numeric•.......... 2-1
Characters, special ..•....................................•. 2-1
Chr 7-18
chr(192), SET X,Y•...............•.............. C-4
chr(193)' CARRIAGE RETURN c-4
chr(194), HOME•...............•............... C-5
chr(195), CLEAR TO END OF LINE C-5
chr(196), CLEAR TO END OF SCREEN C-5

I-1

Index (Cont'd)

Model 64817A
HP64ooo

Host Pascal

chr (197) , CLEAR SCREEN ..•........••...•..•.•.•.•....••.•.•.. C-5
chr(l98), BINK•......•.....••...•.•.••.••.••••.• C-5
chr (199), CURSOR RIGHT .•.•••••.•••••••.•••..•.••.•.•..•••••• C-5
chr (200) , CURSOR LEFT ...•.••.•...•.•••••••...••..•••.•••.•.. C-5
chr (201), CURSOR UP•.••••.•..•••..•••.•••••...••••••..• C-5
chr (202) , CURSOR DOWN ..••.••••.•.••.••.••..••.......•••....• C-5
Circular buffers, RS-232 .•.•.••••••••.....••.....•.••..•.•.. C-8
CLEAR SCREEN, chr (197) •.•..•.••••••••••.•.•••....•...•.•.•.. C-5
CLEAR TO END OF LINE, chr(195) .••.••••..•.••...•.•.••..•.•.• C-5
CLEAR TO END OF SCREEN, chr(l96) ..•.••..•.•..•......•••••••. C-5
CLOSE ..••..•••.•.•..•.••••••..•..•••••.••..•...•.•..... 1-2 , 7- 2
Closing files •••..•........•....••.........•.•.•.•••••.••.. 6-13
Command parameters •.•...••...........•..•..•...••••.••..•.•. 9- 2
Comments ...•........•.....•.....•••..•.•...•...•••...••••••• 2-8
Compatible types .•.....•.••...•..•••.•.....•••...••••••••.• 5-25
Compiler options ..•.•...................•.............•.•.•• 2-8
Compile-Time error messages ••.••.•••••••••.•••....••.••.•..• A-1
Compiling the source file .•..••..••.••.•••.•..••••.•..•.•.•. 9-1
Component variables .•......•..•..•.• ·· .••.•...•....•.••.•••• 4-24
Compound statements ..•..•..•.•••.•.••.•...••••.•.•.•.• 4-31, 5-5
CONST 1-1
CONSTant declaration ••.••..••••.•••..•.••.•.•..•...•..•..•.. 4-3
Constant expressions .•..•......•.••.••..•..•.•.•••.•.. 4-6, 5-24
Constant, array . .. 4-7
Constant , RECORD ..•..•....•..•••.••..••••....•.•.•.••••.•.•• 4-8
Constant, SET .•...•.......•....•.••..••••.•...••.•.•.••.•.•. 4-9
Constant, simple 4-6
Constant, structured•.••.•••.....•....•••.••.•... 4-6
Constants, predefined ..•...•.•...•.•.....•.•..•••.••••..•.•. 2-7
Cos ..•...••.•..•..•.•.•....•..•...•........•...•......••... 7-16
Current position pointer •.•.••.••••.•.•••••.••..•••••••••••• 6-3
CURSOR DOWN, chr (202) •.•..•..•..••....•.•..•.•.•.••••••••••• C-5
CURSOR LEFT, chr (200) ..•..•.•...•....••.•...••.•••.•••••.•.. C-5
CURSOR RIGHT, chr (199) ••........••.........•.•.•.••.••.••••• C-5
CURSOR UP, chr (201) .••.•••••••..••.••.••••.••.••..•••••••••• C-5

d

Data allocation .••......•.•.••.••.•....••....•••••.••••••.•• 8-1
Data types, string•........••.....••....•.•.•.•••.•.•. 4-17
DCB ..•........•..••.•.••..•......•....••........•.•.....•••. 8-11
Declaration section ..•..•..•.•...•••.......•...•.•.......••. 4-2

CONSTant • .••...•...•.•.••••..••...••....•.....•..•.••...••. 4-3
LABEL•................................•.............••. 4-2
Literal, string .••.•.••...•...•.••...•..••..•.....••....••. 4-4
Simple constants ...•.••••.•..•...•.•..•.•..•..•....••....•. 4-6

Declaration, FUNCTION .••.•..•.....•.•..•......••.....••.... 4-26
Declaration, PROCEDURE••.....•..•••.•...........••••.•• 4-25

I-2

Model 64817A
HP64ooo
Host Pascal

Index (Cont'd)

Declaration, VARiable 4-23
Declarations, routine 4-25
Declarations, within routines 4-29
Delimiter, compiler directive 1-1
Device control buffer, (DCB) 8-11
Directives .. 2-7, 4-30
Disc files•.................•.. C-1
Display, I/O Device•.. C-3
Displayl, I/O Device•.......•............. C-3
Display_ cursor .. C-4
DISPOSE ... 1-1, 7-11, 7-12
Double precision data type 1-2
DTR (Data Terminal Ready} C-11
Dynamic variables .. 4-15
Dynamic variable base type•.... 4-15

e

Empty statement .. 5-11
Entire variables•.... 4-24
Eof .. 7-16
EOLN ... 6-13, 7-16
Error messages, compile-time•..... A-1
Error messages, run-time•.. A-5
Example Program of RS-232 Implementation C-13
Exp .. 7-15
Expression operands•...................... 4-6
Express ions•.....•........................ 5-11
Extensions , Pas cal .. 1-1

APPEND•.....•..........•.. 1-2
.&-ray 1-1
BINARY•... 1-2
CASE 1-1
CLOSE . .•.•••..•••....•...........•..•..•..•..•..••..••..•. • 1-2
Compiler directive delimiter•.......•. 1-1
CONST 1-1
DISPOSE ..•..... 1-1
Double precision data type 1-2
liEX .. 1-2
LINEPOS .. 1-2
LONGREAL•.. 1-2
MAR.1{ •• • 1-1
NEW .. 1-1
OCTAL•..........................•......•• . 1-2
OTHERWISE•...............•.............•......... 1-1
POSITION•....................................... 1-2
Predefined functions 1-2
Predefined procedures•............ 1-2
Range symbol ... 1-1

I-3

Index (Cont'd)

RECORD ..•.
RELEASE.
Set
STRING ••
TYPE ••
VAR •••

Field designators ..•••
Field selection ...•.•..
Field-width parameter ..
FILE
File
File
File
File
File
File
File

buffer selection .•
buffer variable .•.
handling
handling

procedures.
functions .•

opening, procedure ••
states ...••
variables .•

Files, logical .•.
Files, physical ..
Files, predefined •.
Files, sequential •.
Files, textfiles.
FOR Statement
FUNCTION Declaration.
Function
Function

parameter ...•
references .•

arithmetic .. Functions,
Abs
Arctan.
Cos ..
Exp.
Ln •..
Sin ..
Sqr .•
Sqrt ••

Functions, file handling.
IORESULT .•
LINEPOS .••
POSITION •.

f

Functions, numeric conversion ..
BINARY ••
HEX •••
OCTAL.

I-4

Model 64817A
HP64ooo

Host Pascal

. .1-1
.1-1

. .1-1
.1-2
.1-1
.1-1

.... 4-24
.5-16

. ... 6-11
.4-21

. .5-16
. .6-3

..... 7-1
.7-19
.. 6-1

. 6-3
. ... 6-1

.6-1
. .6-2
.2-6
.6-2
.6-2

. ... 5-8

. .. 4-26

. .. 4-29
.. 5-23

... 7-15
. . 7-15
.. 7-16
. . 7-16

. ... 7-15
... 7-15

.7-16
. . 7-15

. 7-15
. .. 7-19
... 7-19
. .. 7-19
. .. 7-19

. 7-19
.. 7-19

. .. 7-19
.. 7-19

Model 64817A
HP64ooo
Host Pascal

Index (Cont'd)

Functions, ordinal ... 7-17
Chr .•... 7-18
Ord ... 7-17
Pred•... 7-18
Succ .. 7-18

Functions, predefined 1-2, 2-6, 5-24
Functions, string handling 7-6

STR .••.••.•..••...••....••.••....•...•....•..........•..... 7-8
STRLEN ... 7-8
STRLTRIM•.. 7-9
STRM.AX ••• 7-8
STRPOS•.......................................•. 7-10
STRRPI' ...•.... 7-10
STRRTRIM•.....•........................... 7-9

Functions, transfer•.•...................... 7-16
Round ... 7-17
Trunc . .. 7-16

g

GET ..•... 6-6, 7-2
GOTO Statement ... 5-10

h

Hardware Options, RS-232•............................... C-7
Heap ... 5-16, 7-10, 8-11
HEX ... 1-2, 7-19
HOME, chr(194)•...................................•. C-5
HOST Compiler options•.................•. 2-8

Identical types .. 5-25
Identifiers ... 2-5
Identifiers, predefined 2-6
IF Statement•... 5-5
Indexed variables•.............. 4-24
Input file .. 6-1
I/O Devices ... C-2
Display , C-3
Displayl ... C-3
Keyboard ... C-2
Null•...•......................... C-2
physical files•.•..............•........ 6-2
Printer•... C-3
RS-232•.......•......••..........•.................... C-6

I-5

Index (Cont'd)

Model 64817A
HP64ooo

Host Pascal

I/O Error handling•...•.......•...•.•••......•. 8-12
Integer literals ...•...•.......•..•.....•..•............... 5-14
IOCHECK 8-12
IORESULT .•..................••.......•.••......•...•..•.... 7-19

k

Keyboard, I/O Device•..•..••..•..•....••....•..••••.. C-2

LABEL•.•.........•...........•................... 4-1
LABEL Declaration•....................•.. 4-2
Legend, error message••...................... A-5
LINEPOS•..•..•............. 1-2, 6-13, 7-19
LINESIZE, option•................•...•..•...... 6-12
Listfile .. 9-3
Literal value ... 4-3
Literals•...................•.... 5-13

integer . .. 5-14
real .. 5-14
string•............................... 2-7, 4-10, 5-14

Ln ... 7-15
Logical file characteristics•.......•.......••.. 6-2
Logical files•.....•.....................• 6-1
LONGREAL ••.....•..••••.•.•.••.••.•••.••.••..•..•..•••.•..•• • 1-2

m

Main program module ... 3-1
MARK•................................ 1-1, 7-11, 7-12
Memory allocation••........•..•......... 8-11
Modem control, RS-232•.................. C-11
Multi-dimensioned arrays•.................. 4-16

n

NEW ... 1-1, 7-11
NEW(p) ...•...•. 4-15
NIL, po inter•..............................•........ 4-15
Non-text files .. C-2
NOT .. 5-18
Null, I/O Device .. C-2
Numeric characters•...................... 2-1
Numeric conversion functions 7-19

r-6

Model 64817A
HP64ooo
Host Pascal

Index (Cont'd)

OCTAL.
Odd ...
Opening files •.
Operands .••.
Operators ..••
arithmetic ••
boolean ..
set

Option, IOCHECK ..
Options •...•.....
Options, HOST compiler.
OR .••.
Ord .•.
Ordinal functions.
Ordinal relationals ..
Ordinal types, predefined.

BOOLEAN ••
CHAR ••••••
INTEGER ..

Ordinal types, user defined ..
Enumerated type.
Subrange type.

OTHERWISE
Output file •.

PAC . •....•..•.•••.
PAC Relationals .•
PACK
PACKED .•..
PACKED type modifier.
PAGE ...•.••..•..
Parameter lists.
Actual parameter list.
Formal parameter list ..
Procedure parameter.
Value parameter
Variable parameter ..

Parameter List Compatibility ..
Parameter, function •.
Parameter, listfile ••
Parameter, options .•..•••..

0

p

I-7

.• 1-2, 7-19
.7-16

. 6-4

.5-13, 5-24

.5-17, 5-24
. • . • • . . 5-17

.5-18

.5-19

.8-12

. .9-3
.... 2-8

. .5-18
.. .7-17

,7-17
.5-21

.4-11, 4-12
.4-12

. 4-12
. .•..•.. 4-13
.4-11, 4-13

• .4-13
. .. 4-13

.1-1
.• 6-1

.••.... 4-17

. •..•.. 5-22

.4-23, 7-12

. •.•... 4-15
• 4-22
. .6-13, 7-3

.4-27
• .4-28
.4-27
.4-29

. •. 4-28
.4-28
.4-29
.4-29
.9-3
.9-3

Index (Cont'd)

Model 64817A
HP64ooo

Host Pascal

Parameter, passed ..•.•...............•..................... 7-15
Parameter, procedure 4-29
Parameter, source file .•.......•.......•.................•.. 9-2
Parameters, command ...•........•............................ 9-2
Parameters , run command ..•.....................•............ 9-4
Pascal statement listing, sample programs B-1
Physical files ..•..... 6-2
Pointer dereferencing•............................... 5-16
Pointer relationals••...•.....•..•..................... 5-22
Pointer types•...................................... 4-15
Pointer, current position ..•................................ 6-3
POSITION .. 1-2, 7-19
Pred . .. 7-18
Predefined functions•........•............. 5-24
Predefined identifiers 2-6

constants . .. 2-7
files 2-6
fun ct ions 2-6
procedures 2-6
types ... 2-7

Predefined ordinal types•. 4-12
Printer, I/O Device ... C-3
Procedures, predefined .•............................... 1-2, 2-6
PROCEDURE Declaration 4-25
Procedure statement ... 5-3
Procedures and Functions, summary•.... 6-14
Procedures, Allocation and De-allocation•....... 7-10

DISPOSE•........•....................•..............•. 7-12
MARK •• 7-12
NEW•..........•.............•.... 7-11
RELEASE•............................•.... 7-12

Procedures, file handling•.••.........•...... 7-1
APPEND . 6-5 , 7 -1
CLOSE•.....•......•............ 7-2
GET••.....•.•............•.............. 6-6, 7-2
PAGE••.......................•............. 6-13, 7-3
PtJT .. 6-6, 7-3
RE.AD•.••...•.••••.•••.•••.•.•••.••••••••..••....•• 6-6, 7-3
READLN•.............•.....•............. . 6-6, 7-4
RESET•.........•...•...............•.........• 6-4, 7-2
REWR.ITE••...•.•.........•..••...•..............• 6-4, 7-2
TIMEOl.J'I' . .•...•••.••.••.••.••......••..••.•.•••••.••..•..••• 7-4
'WRITE .•...••..•.•••..•.•...••••.•..•..••••..•••..•.•.. 6-6, 7-5
WRITELN ... 6-6, 7-5

I-8

Model 64817A
HP64ooo
Host Pascal

Index (Cont'd)

Procedures, string handling 7-6
SETSTRLEN .••... 7-6
STRAPPEND ••.••.•.•...........•.......•.•...•..•.••••..••..• 7-6
STRDELETE ..•... 7 - 7
STRINSERT•... 7-6
STRMOVE . . • .. · 7 - 7
STRREAD •.••••..••.•••.•...••••••...••.......•..••...•...... 7-9
STRWR.ITE .•....•...•.••..........•................. 7-10

Procedures, transfer ..•....•.•...••.•....•.........•....... 7-12
PACK•........•..•...............•.................... 7-12
UNPACK .. 7-14

Predicates ..•.. 7-16
Eof 7-16
Eoln 7-16
Odd•.•.................•..•......................... 7-16

Program block ... 3-2
Program heading ... 3-1
Program parameters, additional. 9-6
PUT •• 6-6, 7-3

r

Range symbol•......•..............•............ 1-1
READ ••• 6-6, 7-3
READLN•.•...•..•..................•....•..••.• .. 6-6, 7-4
Real types . .. 4-14

REAL•...............••.................•....• " .•...... 4-14
LONGREAL .•...........•..................•...•...........•. 4-14

Real literals ...•..•.....•....•..•.....•.......•..•..•..... 5-14
Receiver Operation, RS-232••.............•.........•.. C-9
RECORD .. 1-1, 4-19
RECORD constant••....•..•...................•.......... 4-8
RECORD field•••...........•..•..•.•...•..... 4-19
Recursive routines ... 4-30
Referenced variables•.•.............................. 4-25
Relational operators•.... 5-21
Relational operators, sets•.....•.... 4-21
Set difference (-)•........•.................•.... 4-21
Set intersection (*)•............................•. 4-21
Set union (+) ••••••••.•.•....•..•••........•..•..•...•••.. 4-21

Relationals, ordinal ..•......•.....•......•..•....•........ 5-21
Relationals, PAC •.....•................•........•.......... 5-22
Relationals, pointer•............................... 5-22
Relationals, set .•.............................•.......... 5-23
RELEASE .•...••.......•••..•.......•......•...... 1-1, 7-11, 7-12
REPEAT Statement•.....•.....•.•..........•........•... 5-8
Reserved words•......•.............•............ 2-4
RESET . •••....•........•...•....................... 6-4, 6-6, 7-2
Restricted Use of READ and READLN•............. C-11

I-9

Index (Cont'd)

Model 64817A
HP64ooo

Host Pascal

REWRITE•.•..•................................ 6-4, 6-6, 7-2
Round•...............•.......................•......... 7-1 7
Routine body•......•.•..................•...•.......... 4-29
Routine declarations 4-25
Routines , recursive•....... 4-30
RS-232 Hardware Options•........ C-7
RS-232 Implementation, example program•..•...•... C-13
RS-232, I/O Device•...............••...• C-6
RS-232 Receiver and Transmitter ..•........•.....•...•.•..... C-7

Character and protocol transparency•...••......... C-7
Transmitter operation•....................... C-10

Run command parameters 9-4
Running HOST Pascal programs .•.......................•...... 9-4
Run-Time error messages A-5
RTS (Request To Send) C-11

s

Sample Pas cal programs B-1
Scope 4-30
SEGMENT, directive••.................... 4-1
Segment, program•...................................... 3-4
Selectors 5-15
Sequential file operations•..•...•................ 6-6
Sequential Files•....•......•.••..••................... 6-2
SET•................................ 1-1, 4-21
SET, base type•.•..•.•......•...•...........•....... 4-21
SET constant•....•.......•.•..........................•. 4-9
Set constructor••.•...•............. 5-20
Set difference _5-19
Set intersect ion . .. 5-19
Set operators 5-19
Set relationals ...•.....•.•...••..•........................ 5-23
Set union .. 5-19
SET X, Y, chr(192) ...•. C-4
SETSTRLEN . 7 -6
Simple statements•.•............................. 4-31
Sin .. • 7-16
Source file ..•. 9-1, 9-2
Source file, compiling•........•....•............... 9-1
Special cases•.................•........•......••... 5-27
Special characters•..................................... 2-1
Sqr 7-15
Sqrt ... 7-15
Static variables•........•........•.•......•.......•... 4-15
STACK .. 8-11

I-10

Model 64817A
HP64ooo
Host Pascal

Index (Cont'd)

Statement label ... 5-2
Statements•..............................• 4-31
Statements and expressions••..•...•.................••. 5-1
Statements, compound•...................... 4-31
Statements, simple .•..•....•...........•................... 4-31
STRING ...•.......•...•...................................... 1-2
String comparison .•.............................•.......... 5-22
String data types•........•........ 4-17
String handling procedures and functions .••...•............• 7-6

STR•.. 7-8
STRAPPEND•........•....•...• 7-6
STRDELETE•............•.................•........... 7-7
STRINSERT .. 7-6
STRLEN .. 7-6, 7-8
STRLTRIM •.................•...........................•...• 7-9
STRMAX•..•......•.................. 7-6, 7-8
STRMOVE•.................... 7 - 7
STRPOS ...•.... 7 -10
STRREAD•......................................•... 7-9
STRRPT ...•.•...•.. 7-10
STRRTRIM•......•.••............•........•.... 7-9
STRWRITE ..•....•......•..•...•..•.....•............••..... 7-10

String literals•...•......•.. 2-7, 4-4, 4-10, 5-14
String operators•...................•............ 5-21
Structured constants•.................. 4-6
Structured types ••....•..•......•............•............. 4-15
Succ •.....•......•..•.........•.•..................•....... 7-18
Summary of procedures and functions ..•..................... 6-14
Symbol, nonprinting character••.•.... 1-2
Symbolic constants••................................... 5-14

t

Tag field ...••...................•.......•••......•... 4-8, 4-19
Tag less variant ...•........•...•...•.........•.•...........• 4-8
Textfile operation•...•....•...•........ 6-6
Textfiles•.............••..•..•..•..•... 6-2, C-l
TIMEOUT•......•..•.........•....................... 7 -4
TIMEOUT Procedure, RS-232•............................ C-8

RS-232 Receiver operation ..•.....•.•...............•...•... C-9
Timing considerations, RS-232•......•..•...•....•.•.... C-11
Transfer functions ..••....•.....•.......•..••..••.••....... 7-16
Transfer procedures ..••.•.............................•...• 7-12
Transmitter Operation, RS-232 ..••..•..••...•..•...••..•..•. C-10

Modem control ...•.•.•••..•..••.....•..•.•.•..•...•....•... C-11
Trunc ... 7-16
TYPE•..••...•..........•.•..••..•... 1-1, 4-10
Type compatibility•..•..•...•.....•......••....•...... 5-25
Type declaration•..••..•.............• 4-11

Simple types•......................•........ 4-11

I-11

Index (Cont'd)

TYPE definitions ..
enumerated.
real ...•.
ordinal.
pointer ..
predefined ..
simple
structured ..
subrange ...

UNPACK .••••••••••.•••••••••
User defined ordinal types.

Enumerated type.
Subrange type

Value, literal.
VAR ...
VARiable.
VARiable,
Variable,
Variables.

declaration.
file buffer.

buffer ...
component.
dynamic.
entire
indexed.
referenced ..
static

Variant field.
Variant, CASE.

OTHERWISE
Variant, RECORD ••

WHILE Statement.
WITH Statement.
WRITE
WRITELN.

u

v

w

I-12

Model 64817A
HP64ooo

Host Pascal

•• 4-10
. .. 4-13
. . 4-14
• • 4-11
. . 4-15
. .2-7
.4-11
. 4-15
.4-13

.. 4-23' 7-14
.4-13
.4-13

. . 4-13

.... 4-3
. .. 1-1
.4-23

. .. 4-23
.. 6-3
.5-15
.4-24

. . 4-24
.. .4-15
. .. 4-24

.4-24

.4-25
. . 4-15
.. .4-8

. .. 4-19

.. .4-19
.4-19

....... 5-7

.6-6,

.6-6,

.5-9
7-5
7-5

64817-90904, DECEMBER 1983
Replaces: 64817-90903, May 1982

HEWLETT
PACKARD PRINTED IN U.S.A.

	0000
	0001
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	3-01
	3-02
	3-03
	3-04
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	9-01
	9-02
	9-03
	9-04
	9-05
	9-06
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15
	C-16
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	I-09
	I-10
	I-11
	I-12
	xBack

