
HP 64762/3

8086/8088 Emulators
PC Interface

User’s Guide

64762-97002
Printed in U.S.A.
August, 1990

Edition 4

Certification and Warranty

Certification Hewlett-Packard Company certifies that this product met its published
specifications at the time of shipment from the factory.
Hewlett-Packard further certifies that its calibration measurements are
traceable to the United States National Bureau of Standards, to the
extent allowed by the Bureau’s calibration facility, and to the
calibration facilities of other International Standards Organization
members.

Warranty This Hewlett-Packard system product is warranted against defects in
materials and workmanship for a period of 90 days from date of
installation. During the warranty period, HP will, at its option, either
repair or replace products which prove to be defective.

Warranty service of this product will be performed at Buyer’s facility
at no charge within HP service travel areas. Outside HP service travel
areas, warranty service will be performed at Buyer’s facility only upon
HP’s prior agreement and Buyer shall pay HP’s round trip travel
expenses. In all other cases, products must be returned to a service
facility designated by HP.

For products returned to HP for warranty service, Buyer shall prepay
shipping charges to HP and HP shall pay shipping charges to return the
product to Buyer. However, Buyer shall pay all shipping charges,
duties, and taxes for products returned to HP from another country. HP
warrants that its software and firmware designated by HP for use with
an instrument will execute its programming instructions when properly
installed on that instrument. HP does not warrant that the operation of
the instrument, or software, or firmware will be uninterrupted or error
free.

Limitation of Warranty The foregoing warranty shall not apply to defects resulting from
improper or inadequate maintenance by Buyer, Buyer-supplied
software or interfacing, unauthorized modification or misuse, operation
outside of the environment specifications for the product, or improper
site preparation or maintenance.

No other warranty is expressed or implied. HP specifically
disclaims the implied warranties of merchantability and fitness for
a particular purpose.

Exclusive Remedies The remedies provided herein are buyer’s sole and exclusive
remedies. HP shall not be liable for any direct, indirect, special,
incidental, or consequential damages, whether based on contract,
tort, or any other legal theory.

Product maintenance agreements and other customer assistance
agreements are available for Hewlett-Packard products.

For any assistance, contact your nearest Hewlett-Packard Sales and
Service Office.

Notice

Hewlett-Packard makes no warranty of any kind with regard to
this material, including, but not limited to, the implied warranties
of merchantability and fitness for a particular purpose.
Hewlett-Packard shall not be liable for errors contained herein or for
incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of
its software on equipment that is not furnished by Hewlett-Packard.

© Copyright 1988–1990, Hewlett-Packard Company.

This document contains proprietary information, which is protected by
copyright. All rights are reserved. No part of this document may be
photocopied, reproduced or translated to another language without the
prior written consent of Hewlett-Packard Company. The information
contained in this document is subject to change without notice.

IBM and PC AT are registered trademarks of International Business
Machines Corporation.

MS-DOS is a trademark of Microsoft Corporation.

UNIX is a registered trademark of AT&T.

Torx is a registered trademark of Camcar Division of Textron, Inc.

Hewlett-Packard Company
Logic Systems Division
8245 North Union Boulevard
Colorado Springs, CO 80920, U.S.A.

Printing History

New editions are complete revisions of the manual. The date on the
title page changes only when a new edition is published.

A software code may be printed before the date; this indicates the
version level of the software product at the time the manual was issued.
Many product updates and fixes do not require manual changes, and
manual corrections may be done without accompanying product
changes. Therefore, do not expect a one-to-one correspondence
between product updates and manual revisions.

Edition 1 64762-90903, July 1988 E0788

Edition 2 64762-90903, February 1989 E0289

Edition 3 64762-97000, August 1989

Edition 4 64762-97002, August 1990

Using this Manual

This manual shows you how to use the HP 64762/3 (8086/88)
emulators with the PC Interface.

This manual:

Shows you how to use emulation commands by executing
them on a sample program and describing their results.

Shows you how to use the emulator in-circuit (connected to a
target system).

Shows you how to configure the emulator for your
development needs. Topics include:
– Restricting the emulator to real-time execution.
– Selecting a target system clock source.
– Allowing the target system to insert wait states.

This manual does not:

Show you how to use every PC Interface command and
option. The Emulator PC Interface Reference describes
commands and options in detail.

Organization

Chapter 1 “Introduction to the 8086/8088 Emulator.” This chapter briefly
introduces you to emulation concepts and lists the basic features of the
8086/8088 emulator.

Chapter 2 “Getting Started.” This chapter shows you how to use emulation
commands by executing them on a sample program. This chapter
describes the sample program and how to:

Load programs into the emulator.
Map, display, and modify memory.
Display registers.
Step through programs.
Run programs.
Set software breakpoints.
Search memory for data.
Use the analyzer.

Chapter 3 “In-Circuit Emulation.” This chapter shows you how to install the
emulator probe into a target system and how to use “in-circuit”
emulation features.

Chapter 4 “Configuring the 8086/8088 Emulator.” This chapter shows you how
to:

Restrict the emulator to real-time execution.
Select a target system clock source.
Make background cycles visible to the target system.
Allow the target system to insert wait states.
Select foreground or background emulation monitors.
Add custom code to the background monitor.
Allow DMA accesses to emulation memory.
Select the internal 8087 numerics coprocessor.

Chapter 5 “Using the Emulator.” This chapter describes emulation topics that are
not covered in the “Getting Started” chapter (for example, coordinated
measurements and storing memory).

Appendix A “Foreground Monitor Description.” This appendix describes the
foreground monitor program. The foreground monitor is resident in the
emulator firmware, but it also comes with the emulator on a floppy
disk so that you may customize it, if necessary.

Appendix B “File Format Readers.” This appendix shows you how to use files
stored in Intel OMF or HP64000 formats.

Index The index allows you to locate topics quickly.

Notes

Contents

1 Introduction to the 8086/8088 Emulator

Purpose of the Emulator . 1-1
Features of the 8086/8088 Emulator 1-1

Supported Microprocessors . 1-1
Internal 8087 Coprocessor . 1-1
Internal or External Clock Sources 1-3
Emulation Memory . 1-3
External DMA Access to Emulation Memory 1-3
Analysis . 1-3
Register Display and Modification 1-3
Single-Step . 1-3
Breakpoints . 1-4
Reset Support . 1-4
Configurable Target System Interface 1-4
Foreground or Background Emulation Monitor 1-4
Real-Time Execution . 1-5

2 Getting Started

Introduction . 2-1
Before You Begin . 2-2

Prerequisites . 2-2
A Look at the Sample Program 2-2

Data Declarations . 2-2
Initialization . 2-5
Reading Input . 2-5
Processing Commands . 2-5
The Destination Area . 2-6

Sample Program Location . 2-6
Assembling the Sample Program 2-6
Linking the Sample Program 2-6

Starting the 8086 PC Interface . 2-7
Selecting PC Interface Commands 2-8
Emulator Status . 2-8

Mapping Memory . 2-8

Contents-1

Which Memory Locations Should Be Mapped? 2-8
Loading Programs into Memory 2-11

File Format . 2-11
Memory Type . 2-11
Force Absolute File Read . 2-11
File Format Options . 2-12
Absolute File Name . 2-12

Using Symbols . 2-12
Displaying Global Symbols 2-13
Load and Display Local Symbols 2-14

Using Local Symbols without Loading and Displaying . . . 2-16
Transferring Symbols to the Emulator 2-16
Removing Symbols from the Emulator 2-17
The Scope of Symbols . 2-17

Display Memory in Mnemonic Format 2-18
When Symbol Handling is Supported 2-19

Step Through the Program . 2-19
Specifying a Step Count . 2-21

Modify Memory . 2-22
Run the Program . 2-23
Search Memory for Data . 2-23
Break Into the Monitor . 2-24
Using Software Breakpoints . 2-24

Defining a Software Breakpoint 2-26
Displaying Software Breakpoints 2-26
Setting a Software Breakpoint 2-26
Clearing a Software Breakpoint 2-27

Using the Analyzer . 2-27
Resetting the Analysis Specification 2-27
Specifying a Simple Trigger 2-27
Starting the Trace . 2-31
Displaying the Trace . 2-31
Changing the Trace Format 2-33
For a Complete Description 2-36

Copying Memory . 2-36
Resetting the Emulator . 2-37
Exiting the PC Interface . 2-37

2-Contents

3 In-Circuit Emulation

Introduction . 3-1
Prerequisites . 3-1
Installing the Emulator Probe into a Target System 3-1

Auxiliary Output Lines . 3-3
TGT BUF DISABLE . 3-3
8087 INT . 3-3
SYSTEM RESET . 3-3

In-Circuit Configuration Options 3-5
Using the Target System Clock Source 3-5
Allowing the Target System to Insert Wait States 3-5
Selecting Visible/Hidden Background Cycles 3-5
Defining the Emulator’s Queue Status in Background 3-5

Running the Emulator from Target Reset 3-6

4 Configuring the 8086/88 Emulator

Introduction . 4-1
Prerequisites . 4-2
Access Emulator Configuration Options 4-2
Internal Emulator Clock? . 4-3
Enable READY from Target? . 4-4
Enable Background Cycles to Target? 4-4
Send Flush Queue Status to Target? 4-5
Enable Real-Time Mode? . 4-5
Enable Max Segment Algorithm? 4-6
Enable Breaks on Writes to ROM? 4-7
Enable Software Breakpoints? . 4-7
Enable CMB Interaction? . 4-8
Memory-I/O Data Access Width? 4-9
Monitor Type? . 4-10

bg . 4-11
fg . 4-11
ubg . 4-11
ufg . 4-11
Background . 4-11
User Background . 4-12

Loading User Code . 4-18
Foreground . 4-18

More About the Foreground Monitor 4-18
Using the Foreground Monitor 4-19
How to Use the Foreground Monitor 4-20

Contents-3

About the Vector Program and Monitor Segment 4-22
Assembling, Linking, and Loading the Vector Program . . 4-22

User Foreground . 4-23
Loading a User Foreground Monitor 4-23

Monitor Block? . 4-23
Enable Numeric Coprocessor? 4-24
RQ/GT Line for Numeric Coprocessor? 4-24
Select Numeric Processor as INTR Source? 4-25
Interrupt Vector? . 4-25
Enable DMA to/from Emulation Memory? 4-25
Storing an Emulator Configuration 4-26
Loading an Emulator Configuration 4-27

5 Using the Emulator

Introduction . 5-1
Making Coordinated Measurements 5-1

Running the Emulator at /EXECUTE 5-2
Using the Analyzer Trigger to Break into the Monitor 5-3

Storing Memory Contents to an Absolute File 5-4
Register Names and Classes . 5-5

A Foreground Monitor Description

Introduction . A-1
Breaks into the Monitor . A-1
Emulator Modes (Foreground, Background) A-1

Foreground . A-2
Background . A-2
Modes in Which the Foreground Monitor Operates A-2
Other Background Modes A-2

Listing . A-3
Flowchart . A-4

B File Format Readers

Introduction . B-1
What the Reader Does . B-1

The Absolute File . B-2
The ASCII Symbol File . B-2

Location of the Reader Programs B-4
Using a Reader from MS-DOS . B-4

OMF Reader . B-4

4-Contents

HP64000 Reader . B-5
Using a Reader from the PC Interface B-5

If the Reader Won’t Run . B-7
Including the Reader in a Make File B-8

Index

Contents-5

Illustrations

Figure 1-1. The HP 64762/3 Emulator for the 8086/8088 1-2
Figure 2-1. Sample Program Listing 2-3
Figure 2-2. Linker Command File for Sample Program 2-6
Figure 2-3. PC Interface Display 2-7
Figure 2-4. Sample Program Load Map Listing 2-9
Figure 2-5. Memory Map Configuration 2-10
Figure 2-6. Analyzer Pattern Specification 2-30
Figure 2-7. Analyzer Trigger Specification 2-30
Figure 3-1. Connecting the Emulator Probe 3-4
Figure 4-1. General Emulator Configuration 4-3
Figure 5-1. Cross Trigger Configuration 5-4

Tables

Table B-1. How to Access Variables B-3

6-Contents

1

Introduction to the 8086/8088 Emulator

Purpose of the
Emulator

The HP 64762/3 8086/8088 emulator replaces the 8086/8088
microprocessor in your target system to help you integrate target
system software and hardware. The emulator performs just like the
processor that it replaces, but simultaneously gives information about
the processor’s operation. The emulator gives you control over target
system execution. You also can view or modify the contents of
processor registers, target system memory, and I/O resources.

Features of the
8086/8088
Emulator

This section introduces you to the features of the emulator.

Supported
Microprocessors

The emulator probe has a 40-pin DIP connector. The HP 64762/3
emulators support Intel 8086/8088 microprocessors and other
processors that conform to the specifications of the 8086/8088.

Internal 8087
Coprocessor

The HP 64762/3 emulators contain an 8087 numeric data processor.
You can enable the internal 8087 with an emulator configuration
command. Additional configuration items allow you to:

Select which RQ/GT pin the internal 8087 will use (if
enabled).
Select the internal 8087 as the 8086/88 INTR input driver.
Specify the internal interrupt vector (if the internal 8087
drives the 8086/88 INTR input).

Introduction 1-1

Figure 1-1. The HP 64762/3 Emulator for the 8086/8088

1-2 Introduction

Internal or External
Clock Sources

The emulator runs with an internal clock speed of 8 MHz, or with
target system clocks from 2-10 MHz.

Emulation Memory There are either 126K or 510K bytes of emulation memory, depending
on the emulator model you have. You can define up to 16 memory
ranges (beginning on 1K byte boundaries and at least 1K bytes in
length). You can characterize memory ranges as emulation RAM or
ROM, target system RAM or ROM, or as guarded memory. The
emulator displays an error message for accesses to guarded memory
locations. You can configure the emulator so that writes to memory
defined as ROM break emulator execution from the user program into
the emulation monitor program.

External DMA Access
to Emulation Memory

You can enable DMA accesses of emulation memory with an emulator
configuration command. Target system devices that reside on the local
8086/8088 bus and conform to the 808X MAX mode bus timing (for
example, an external 8087) can access emulation memory.

Analysis The analyzer supplied with the emulator, called the emulation analyzer,
captures emulator bus cycle states synchronously with the emulation
clock.

The optional external analyzer allows you to capture data on up to 16
signals external to the emulator. You can configure the external
analyzer to make state or timing analysis measurements.

Refer to the Analyzer PC Interface User’s Guide for a complete list of
analyzer features.

Register Display and
Modification

You can display or modify the 8086/88 internal register contents, and
you can display the contents of the 8087 numeric coprocessor registers.
The 8087 register display shows the register stack registers in both
hexadecimal and scientific decimal notation.

Single-Step You can direct the emulation processor to execute a single instruction
or many instructions.

Introduction 1-3

Breakpoints You can set up the emulator/analyzer interaction so that when the
analyzer finds a specific state, emulator execution will break out of the
user program into the background monitor.

You also can define software breakpoints in your program. The
emulator uses the 8086/88 single-byte interrupt facility to provide
software breakpoints. When you define a software breakpoint, the
emulator places an INT 3 instruction at the specified address. After the
INT 3 instruction breaks emulator execution from the user program
(into the monitor), the emulator replaces the original opcode.

Reset Support The emulator can be reset from the emulation system under your
control, or your target system can reset the emulation processor.

Configurable Target
System Interface

You can configure the emulator to honor target system wait requests
when accessing emulation memory. You can configure the emulator so
that it presents cycles to, or hides cycles from, the target system when
executing in background. You can configure the emulator so that it
presents either a FLUSH or a NOP queue status to the target system
while in background (and in the maximum mode). You also can
configure the emulator to allow external DMA access to emulation
memory.

Foreground or
Background

Emulation Monitor

The emulation monitor is a program executed by the emulation
processor. It allows the emulation controller to access target system
resources. For example, when you display target system memory, the
monitor program executes 8086 instructions to read the target memory
locations and send their contents to the emulation controller.

The monitor program can execute in foreground, the mode in which
the emulator operates as would the target processor. The foreground
monitor occupies processor address space and executes as if it were
part of the target program.

The monitor program also can execute in background, the emulator
mode in which foreground operation is suspended so that the emulation
processor can be used to access target system resources. The
background monitor does not occupy processor address space.

Real-Time Execution Real-time operation signifies continuous execution of your program
without interference from the emulator. (Such interference occurs when

1-4 Introduction

the emulator temporarily breaks into the monitor so that it can access
register contents or target system memory or I/O.)

You can restrict the emulator to real-time execution. When the
emulator is executing your program under real-time restriction,
commands that display/modify registers, or display/modify target
system memory or I/O are not allowed.

Introduction 1-5

Notes

1-6 Introduction

2

Getting Started

Introduction This chapter leads you through a basic tutorial that shows how to use
the HP 64762/64763 emulators with the PC Interface.

This chapter:

Tells you what to do before you can use the emulator in the
tutorial examples.

Describes the sample program used for this chapter’s
examples.

Briefly describes how to enter PC Interface commands and
how emulator status is displayed.

This chapter shows you how to:

Start the PC Interface from the MS-DOS prompt.

Define (map) emulation and target system memory.

Load programs into emulation and target system memory.

Enter emulation commands to view execution of the sample
program.

Getting Started 2-1

Before You Begin

Prerequisites Before beginning the tutorial presented in this chapter, you must
complete the following tasks:

1. Connect the emulator to your computer. The Hardware
Installation and Configuration manual shows you how to do
this.

2. Install the PC Interface software on your computer. Software
installation instructions come with the media containing the
PC Interface software. The PC Interface Reference manual
contains additional information on the installation and setup of
the PC Interface. If you need more information, refer to the
MS-DOS Applications Installation manual.

3. You also should read and understand the concepts of
emulation presented in the System Overview manual. The
System Overview also covers HP 64700-Series system
architecture. Understanding these concepts may help you
avoid problems later.

You should read the PC Interface Reference manual to learn
general operation of the PC Interface.

A Look at the Sample
Program

Figure 2-1 lists the sample program used in this chapter. The program
is a primitive command interpreter.

Data Declarations

The area ORGed at 500H defines the messages used by the program to
respond to various command inputs. These messages are labeled
Msg_A, Msg_B, and Msg_I.

Initialization

The program instructions from the Init label to the Read_Cmd label
perform initialization. The segment registers are loaded and the stack
pointer is set up.

2-2 Getting Started

HEWLETT-PACKARD: 8086 Assembler
FILE: C:\DIR86\CMD_RDR.S
LOCATION OBJECT CODE LINE SOURCE LINE

 1 "8086"
 2 GLB Msgs,Init,Cmd_Input,Msg_Dest
 3 ORG 500H
 0500 4 Msgs
 0500 436F6D6D61 5 Msg_A DB "Command A entered "
 0505 6E64204120
 050A 656E746572
 050F 656420
 0512 456E746572 6 Msg_B DB "Entered B command "
 0517 6564204220
 051C 636F6D6D61
 0521 6E6420
 0524 496E76616C 7 Msg_I DB "Invalid Command "
 0529 696420436F
 052E 6D6D616E64
 0533 20
 0534 8 End_Msgs
 9
 10
 11
 12
 13 ORG 400H
 14 ASSUME DS:ORG,ES:ORG
 15 **
 16 * The following instructions initialize segment
 17 * registers and set up the stack pointer.
 18 **
 0400 B80000 19 Init MOV AX,SEG Msg_A
 0403 8ED8 20 MOV DS,AX
 0405 B80000 21 MOV AX,SEG Cmd_Input
 0408 8EC0 22 MOV ES,AX
 040A 8ED0 23 MOV SS,AX
 040C BCF906 24 MOV SP,OFFSET Stk
 25 **
 26 * Clear previous command.
 27 **
 040F 26C6060006 28 Read_Cmd MOV Cmd_Input,#0
 0414 0090
 29 **
 30 * Read command input byte. If no command has been
 31 * entered, continue to scan for command input.
 32 **
 0416 26A00006 33 Scan MOV AL,Cmd_Input
 041A 3C00 34 CMP AL,#0
 041C 74F8 35 JE Scan
 36 **
 37 * A command has been entered. Check if it is
 38 * command A, command B, or invalid.
 39 **
 041E 3C41 40 Exe_Cmd CMP AL,#41H
 0420 7407 41 JE Cmd_A
 0422 3C42 42 CMP AL,#42H

Figure 2-1. Sample Program Listing

Getting Started 2-3

 0424 740C 43 JE Cmd_B
 0426 E91200 44 JMP Cmd_I
 45 **
 46 * Command A is entered. CX = the number of bytes in
 47 * message A. SI = location of the message. Jump to
 48 * the routine which writes the messages.
 49 **
 0429 B91200 50 Cmd_A MOV CX,#Msg_B-Msg_A
 042C BE0005 51 MOV SI,OFFSET Msg_A
 042F E90F00 52 JMP Write_Msg
 53 **
 54 * Command B is entered.
 55 **
 0432 B91200 56 Cmd_B MOV CX,#Msg_I-Msg_B
 0435 BE1205 57 MOV SI,OFFSET Msg_B
 0438 E90600 58 JMP Write_Msg
 59 **
 60 * An invalid command is entered.
 61 **
 043B B91000 62 Cmd_I MOV CX,#End_Msgs-Msg_I
 043E BE2405 63 MOV SI,OFFSET Msg_I
 64 **
 65 * Message is written to the destination.
 66 **
 0441 8D3E0106 67 Write_Msg LEA DI,Msg_Dest
 0445 F3A4 68 REP MOVSB
 69 **
 70 * The rest of the destination area is filled
 71 * with zeros.
 72 **
 0447 C60500 73 Fill_Dest MOV BYTE PTR [DI],#0
 044A 47 74 INC DI
 044B 81FF2106 75 CMP DI,#Msg_Dest+20H
 044F 75F6 76 JNE Fill_Dest
 77 **
 78 * Go back and scan for next command.
 79 **
 0451 EBBC 80 JMP Read_Cmd
 81
 82 ORG 600H
 83 **
 84 * Command input byte.
 85 **
 0600 86 Cmd_Input DBS 1
 87 **
 88 * Destination of the command messages.
 89 **
 0601 90 Msg_Dest DDS 3EH
 06F9 91 Stk DWS 1 ; Stack area.
 92 END Init

Errors= 0

Figure 2-1. Sample Program Listing (Cont’d)

2-4 Getting Started

Reading Input

The instruction at the Read_Cmd label clears any random data or
previous commands from the Cmd_Input byte. The Scan loop
continually reads the Cmd_Input byte to look for a command (a value
other than 0H).

Processing Commands

When a command is entered, the instructions from Exe_Cmd to
Cmd_A determine whether the command was “A,” “B,” or an invalid
command.

If the command input byte is “A” (ASCII 41H), execution transfers to
the instructions at Cmd_A.

If the command input byte is “B” (ASCII 42H), execution transfers to
the instructions at Cmd_B.

If the command input byte is neither “A” or “B,” an invalid command
was entered, and execution transfers to the instructions at Cmd_I.

The instructions at Cmd_A, Cmd_B, and Cmd_I each load register
CX with the length of the message to be displayed, and register SI with
the message’s starting location. Then, execution transfers to
Write_Msg, which writes the appropriate message to the destination
location, Msg_Dest.

After the message is written, the instructions at Fill_Dest fill the
remaining destination locations with zeros. (The entire destination area
is 20H bytes long.) Then, the program jumps back to read the next
command.

The Destination Area

The area ORGed at 600H declares memory storage for the command
input byte, the destination area, and the stack area.

Sample Program
Location

The sample program is installed in the directory
\hp64700\demo\64762. You can copy the files cmd_rdr.s and
cmd_rdr.k to another directory from the demo directory if you wish. A
batch file (make.bat) is provided to automate assembly and linking of

Getting Started 2-5

the file, or you can enter the commands listed in the following
paragraphs.

Assembling the
Sample Program

The sample program is written for and assembled with the HP 64853
8086/88 Series Cross Assembler/Linker. The following command was
used to assemble the sample program.

C>asm -o cmd_rdr.s > cmd_rdr.o
<RETURN>

The assembler creates the assembler listing (cmd_rdr.o) and two other
files. The “cmd_rdr.r” file is the relocatable file. Relocatable files are
linked together to form the absolute file, which is loaded into the
emulator. The “cmd_rdr.a” file is the assembler symbol file. It contains
information on the local symbols in the sample program.

Linking the Sample
Program

The linker command file (cmd_rdr.k) shown in figure 2-2 and the
following linker command were used to generate the absolute file that
is loaded into the emulator.

C>lnk -o cmd_rdr.k > cmd_rdr.map
<RETURN>

Three files are created. First is the linker load map listing
(cmd_rdr.map). The “cmd_rdr.x” file is the file that contains the
absolute code to be loaded into the emulator. The “cmd_rdr.l” file is
the linker symbol file. It contains information on the global symbols in
the sample program and the relocatable files that were combined to
form the absolute file.

segment
object files cmd_rdr.R
library files
load addresses 00000400H 00000500H 00000600H
absolute file name cmd_rdr.X

Figure 2-2. Linker Command File for Sample Program

2-6 Getting Started

Starting the 8086
PC Interface

If you have set up the emulator device table and the HPTABLES shell
environment variable as shown in the PC Interface Reference, you can
start up the 8086 PC Interface. Enter the following command at the
MS-DOS prompt:

C> pci808x <emulname>

In the command above, pci808x is the command to start the PC
Interface; “<emulname>” is the logical emulator name given in the
emulator device table. If this command is successful, you will see the
display shown in figure 2-3. Otherwise, you will see an error message
and return to the MS-DOS prompt.

Selecting PC
Interface Commands

You can select command options by either using the left and right
arrow keys to highlight the option. Then, press the Enter key. Or, you
can simply type the first letter of that option. If you select the wrong
option, you can press the ESC key to retrace the command tree.

Figure 2-3. PC Interface Display

Getting Started 2-7

When a command or option is highlighted, the bottom line of the
display shows the next level of options or a short message describing
the current option.

Emulator Status The line above the command options displays the emulator’s status.
The PC Interface periodically checks the status and updates the status
line.

Mapping Memory Depending on the emulator model number, emulation memory has
either 128K or 512K bytes, mappable in 1K byte blocks. The monitor
occupies 2K bytes, leaving 126K or 510K bytes of emulation memory
for your programs. The emulation memory system does not need wait
states.

The memory mapper allows you to characterize memory locations.
You can specify that a certain range of memory is present in the target
system, or that you will be using emulation memory for that address
range. You also can specify whether the target system memory is ROM
or RAM, and you can specify that emulation memory be treated as
ROM or RAM.

Blocks of memory also can be characterized as guarded memory.
Guarded memory accesses will generate “break to monitor” requests.
Writes to ROM will generate “break to monitor” requests if the
“Enable breaks on writes to ROM?” configuration item is enabled (see
the “Configuring the Emulator” chapter).

Which Memory
Locations Should Be

Mapped?

Typically, assemblers generate relocatable files and linkers combine
relocatable files to form the absolute file. The linker load map listing
will show what locations your program will occupy in memory. Figure
2-4 shows a linker load map listing for the sample program.

2-8 Getting Started

From the load map listing, you can see that the sample program
occupies locations in four address ranges. The program area, which
contains the opcodes and operands of the sample program, occupies
locations 400H through 452H. The data area, which contains the ASCII
values of the messages the program displays, occupies locations 500H
through 533H. The destination area, which contains the command input
byte and the locations of the message destination and the stack,
occupies locations 600H through 6FAH.

One mapper term must be specified for the example program. Since the
program writes to the destination locations, the mapper block
containing the destination locations should not be mapped as ROM.

To map memory for the sample program, select:

Config Map Modify

Using the arrow keys, move the cursor to the “address range” field of
term 1. Enter:

400..7ff

Move the cursor to the “memory type” field of term 1, and press the
Tab key to select the eram (emulation RAM) type.

HP 64000+ Linker Fri Aug 17 09:34:03 1990
Page 1

FILE/PROG NAME PROGRAM DATA COMMON ABSOLUTE
--
cmd_rdr.R
 C:\HP64700\86\CMD_RDR.S
 00000500-00000533
 00000400-00000452
 00000600-000006FA

next address

XFER address = 00000400 Defined by cmd_rdr.R
Current working directory = C:\HP64700\86
Absolute file name = cmd_rdr.X
Total number of bytes loaded = 00000182

Figure 2-4. Sample Program Load Map Listing

Getting Started 2-9

To save your memory map, press the End key to move to the last field.
Then use the Enter key to exit the field. Figure 2-5 shows the memory
configuration display.

When mapping memory for your target system programs, you may
wish to map emulation memory locations containing programs and
constants (locations that should not be written to) to ROM. This will
prevent programs and constants from being written over accidentally,
and will cause breaks when instructions do so.

Note The memory mapper reassigns blocks of emulation memory after the
insertion or deletion of mapper terms. For example, if you modified the
contents of 400..7ff above, added a new term, then deleted term 1, and
displayed locations 400..7ff, you would notice that the contents of
those locations differ.

Figure 2-5. Memory Map Configuration

2-10 Getting Started

Note Software breakpoints should be removed before altering the memory
map. If they are not, SBI instruction (INT 3) opcodes will be left at
unknown locations.

Loading Programs
into Memory

If you have already assembled and linked the sample program, you can
load the absolute file by selecting:

Memory Load

File Format Use Tab and Shift-Tab to select the format of your absolute file. The
emulator accepts absolute files in the following formats:

Intel Object Module Format (OMF86)

HP absolute

Intel hexadecimal

Tektronix hexadecimal

Motorola S-records

For this tutorial, choose the HP64000 format.

Memory Type The next field allows you to selectively load the portions of the
absolute file which reside in emulation memory, target system
memory, or both. Since emulation memory is mapped for sample
program locations, you can enter either “emulation” or “both.”

Force Absolute File
Read

This option is only available for the HP64000 and Intel OMF formats.
It forces the file format readers to regenerate the emulator absolute file
(.hpa) and symbol database (.hps) before loading the code. Normally,
these files are only regenerated whenever the file you specify (the

Getting Started 2-11

output of your language tools) is newer than the emulator absolute file
and symbol database.

For more information, refer to the File Format Readers appendix.

File Format Options Some of the formats, such as the Intel OMF format, have special
options. Refer to the File Format Readers appendix of this manual for
more information.

Absolute File Name For most formats, you enter the name of your absolute file in the last
field. The HP64000 format requires the linker symbol filename instead.
Type cmd_rdr.l , and press Enter to start the memory load.

Using Symbols Symbols are available when you load HP or Intel OMF format absolute
files.

When you build an absolute file using the HP 64000 development
tools, an assembler symbol file (with the same base name as the source
file and a “.A” extension) is created. The assembler symbol file
contains local symbol information. When you link relocatable
assembly modules, a linker symbol file (with the same base name as
the absolute file and a “.L” extension) is created. The linker symbol file
contains global symbol information and information about the
relocatable assembly modules that were combined to form the absolute.

Symbols are a part of the Intel OMF definition. They are contained in
the absolute file.

When you load a file using the HP64000 file format, the file format
reader collects global symbol information from the linker symbol file
and local symbol information from the assembler symbol files. It uses
this information to create a single symbol database with the extension
.hps. If you load an Intel OMF file, the file format reader obtains all the
global and local symbol information from the absolute file and builds a
symbol database with the extension .hps. For both formats, the reader
builds an absolute file with extension .hpa that is optimized for
efficient transfer to the emulator.

2-12 Getting Started

The 8086/88 emulator PC Interface provides two methods for
manipulating symbols. It allows you to use both global and local
symbols to reference memory variables within the PC Interface.

You also can transfer symbols to the emulator for use in displaying
memory values with the “Memory Display Mnemonic” command, the
“Analysis Display” command, and the mnemonic field of single-step
commands. (These features are only available if you have the version
of emulator firmware that supports emulator symbol-handling.)

Displaying Global
Symbols

When you load HP format or Intel OMF absolute files into the
emulator, the corresponding symbol database is also loaded.

The symbol database also can be loaded with the “System Symbols
Global Load” command. Use this command when you load multiple
absolute files into the emulator. You can load the various symbol
databases corresponding to each absolute file. When you load a symbol
database, information from a previous symbol database is lost. That is,
only one symbol database can be present at a time.

After a symbol database is loaded, both global and local symbols can
be used when entering expressions. You enter global symbols as they
appear in the source file or in the global symbols display. To display
global symbols, select:

System Symbols Global Display

The symbols window automatically becomes active. Press <CTRL>z
to zoom the window. The resulting display follows.

Getting Started 2-13

The global symbols display has two parts. The first part lists all the
modules that were linked to produce this object file. These module
names are used by you when you want to refer to a local symbol, and
are case-sensitive. The second part of the display lists all global
symbols in this module. These names can be used in measurement
specifications, and are case-sensitive. For example, if you want to
make a measurement using the symbol Cmd_Input , you must specify
Cmd_Input . The strings cmd_input and CMD_INPUT are not valid
symbol names here.

Load and Display
Local Symbols

To load and display local symbols, select:

System Symbols Local Display

Enter the name of the module you want to display (from the first part of
the global symbols list; in this case, CMD_RDR.S) and press Enter.
The resulting display follows.

2-14 Getting Started

Note Emulators with system firmware below version 2.00 do not have
symbol handling capability and thus have a restricted symbol command
set in the PC Interface. To display local symbols in these emulators,
use the command:

System Symbols Local

After you display local symbols with the “System Symbols Local
Display” command, you can enter local symbols as they appear in the
source file or local symbol display. When you display local symbols
for a given module, that module becomes the default local symbol
module.

Local symbols must be from assembly modules that were linked to
form the absolute whose symbol database is currently loaded.
Otherwise, no symbols will be found (even if the named assembler
symbol file exists and contains information).

Getting Started 2-15

Using Local Symbols without Loading and Displaying

If you have not displayed local symbols, you can still enter a local
symbol by including the name of the module:

module_name:symbol

Remember that the only valid module names are those listed in the first
part of the global symbols dispaly, and are case-sensitive for
compatibility with other systems (such as HP-UX).

When you include the name of a source file with a local symbol, that
module becomes the default local symbol module, as with the “System
Symbols Local Display” command.

Transferring
Symbols to the

Emulator

If your emulator has system firmware version 2.0 or later, yo can use
the emulator’s symbol-handling capability to improve measurement
displays. You do this by transferring the symbol database information
to the emulator.

You transfer the global symbols to the emulator with the command:

System Symbols Global Transfer

Then the global symbol names are displayed instead of the absolute
address values in subsequent memory references.

You transfer all local symbols from the absolute file using the
command:

System Symbols Local Transfer All

You can transfer the local symbols from one or more modules using the
“System Symbols Local Transfer Group <module_name>” command.
Therefore, to transfer the local symbols from an example module
named “MODNAME,” enter:

System Symbols Local Transfer Group

Enter “MODNAME,” and press <Enter>. The symbols are transferred
to the emulator.

You can find more information on emulator symbol handling
commands in the Emulator PC Interface Reference.

To determine which version of emulator firmware is present, use the
Terminal Interface ver command while in System Terminal Mode. See

2-16 Getting Started

the Emulator PC Interface Reference for more information on System
Terminal mode.

If your emulator does not have symbol handling capability, the symbol
transfer commands will not appear in the PC Interface. Also, the
displays in this chapter will appear somewhat different. For example, in
the memory mnemonic example, the “Symbol” column will be
replaced by a “Data” column showing the data found at that address.

Contact your local HP Sales and Service office (listed in the Support
Services guide) for information on firmware upgrades.

Removing Symbols
from the Emulator

If you transfer many symbols to the emulator, you can fill the available
memory used to store symbolic references. The PC Interface allows
you to remove global and local symbols to free symbol memory in the
emulator.

You can delete all global symbols in the emulator with the “System
Symbols Global Remove” command, or all local symbols with the
“System Symbols Local Remove All” command. You can delete local
symbols from one or more modules with the “System Symbols Local
Remove Group <module_name>” command.

The Scope of
Symbols

It is possible for a symbol to be local in one module and global in
another, which may result in some confusion. For example, suppose
symbol “XYZ” is defined as a global in module A and as a local in
module B, and that these modules are linked to form the absolute file.
After you load the absolute file (and the corresponding symbol
database), entering “XYZ” in an expression refers to the symbol from
module A. Then, if you display local symbols from module B, entering
“XYZ” in an expression refers to the symbol from module B, not the
global symbol.

Now, if you want to enter “XYZ” to refer to the global symbol from
module A, you must display the local symbols from module A (since
the global symbol is also local to that module). Loading local symbols
from a third module, if it was linked with modules A and B and did not
contain an “XYZ” local symbol, also would cause “XYZ” to refer to
the global symbol from module A.

Getting Started 2-17

Display Memory in
Mnemonic Format

Once you have loaded a program into the emulator, you can verify that
the program was loaded by displaying memory in mnemonic format.
To do this, select:

Memory Display Mnemonic

Enter the address range “400..431.” The emulation window
automatically becomes active. You can press <CTRL>z to zoom the
memory window. The resulting display follows.

Notice that the symbol column is empty. That is because the symbols
are related to segment:offset addresses, not physical addresses. To see
the symbols, you can enter an address range using segment:offset
addresses or symbol names. For example, enter:

Memory Display Mnemonic

Enter the address range Init..Init+31 . The resulting display follows.

If you want to see the rest of the program memory locations, select the
“Memory Display Mnemonic” command and enter the range
0000:0432 to 0000:0452.

2-18 Getting Started

When Symbol
Handling is
Supported

If your emulator supports symbol handling, when you issue a “Memory
Display Mnemonic” command, the memory list will include symbols
as shown in the display. (You must first transfer the symbols to the
emulator as described earlier in this chapter. You also must enter
address information in segment:offset or symbol form, as described
earlier.)

If your emulator supports symbols, but no symbols have been
transferred to the emulator, only “-” will be displayed in the Symbol
column.

Step Through the
Program

The emulator allows you to execute one instruction or several
instructions with the step command. To begin stepping through the
sample program, select:

Processor Step Address

Enter a step count of 1, enter the symbol Init (defined as a global in the
source file), and press Enter to step from the program’s first address,

Getting Started 2-19

400H. The emulation window will automatically become the active
window. Press <CTRL>z to view a full screen of information. The
executed instruction, the program counter address (CS:IP), and the
resulting register contents are displayed as shown in the following
listing.

Note You cannot display registers if the processor is reset. Use the
“Processor Break” command to start executing in the monitor. You can
display registers while the emulator is executing a user program (if
execution is not restricted to real-time). Emulator execution will
temporarily break to the monitor.

An individual step may execute multiple instructions. When this
happens, the step display includes all those instructions.

To continue stepping through the program, you can select:

Processor Step Pc

2-20 Getting Started

After selecting the command above, you have the opportunity to
change the previous step count. If you wish to step the same number of
times, you can press Enter to start the step. To repeat the previous
command, you can press <CTRL>r .

Specifying a Step
Count

If you want to continue to step a number of times from the current
program counter, select:

Processor Step Pc

The previous step count is displayed in the “number of instructions”
field. You can enter a number from 1 through 99 to specify the number
of times to step. Type 5 into the field, and press Enter. The resulting
display follows.

When you specify step counts greater than one, only the last instruction
and register contents after the instruction are displayed.

Getting Started 2-21

Modify Memory The preceding step commands show the sample program is executing
in the Scan loop, where it continually reads the command input byte to
check if a command has been entered. To simulate the entry of a
sample program command, you can modify the command input byte by
selecting:

Memory Modify Bytes

Now, enter the address of the memory location to be modified, an
equal sign, and new value of that location, for example,
Cmd_Input=41H or Cmd_Input="A" . (The Cmd_Input label was
defined as a global symbol in the source file.)

To verify that 41H was written to Cmd_Input (600H), select:

Memory Display Bytes

Type the address 600 or the symbol Cmd_Input , and press Enter.
This command automatically activates the emulation window. The
resulting display is as follows:

2-22 Getting Started

Run the Program To start the emulator executing the sample program, select:

Processor Go Pc

The status line will show that the emulator is “Running user program.”

Search Memory
for Data

You can search the message destination locations to verify that the
sample program writes the appropriate messages for the allowed
commands. The command “A” (41H) was entered above, so the
“Command A entered “ message should have been written to the
Msg_Dest locations. To search the destination memory location for the
command message, select:

Memory Find

Enter the range of the memory locations to be searched, 600 through
620, and enter the data "Command A entered" . The resulting
information in the memory window shows you that the message was
written correctly.

To verify that the sample program works for the other allowed
commands, you can modify the command input byte to “B” and search
for "Entered B command" . Or, you can modify the command input
byte to “C” and search for "Invalid command" .

Getting Started 2-23

Break Into the
Monitor

To break emulator execution from the sample program to the monitor
program, select:

Processor Break

The status line shows that the emulator is “Running in monitor.”

While the break will occur when possible, the actual stopping point
may be many cycles after the break request (dependent on the type of
instruction being executed and whether the processor is in a hold state).

Using Software
Breakpoints

Software breakpoints are handled by the 8086/88 single-byte interrupt
(SBI) facility. When you define or enable a software breakpoint, the
emulator will replace the opcode at the software breakpoint address
with a breakpoint interrupt instruction (INT 3).

Note In order for the software breakpoints feature to work, a stack must be
set up in the user program.

Note You must only set software breakpoints at memory locations that
contain instruction opcodes (not operands or data). If you set a software
breakpoint at a memory location that is not an instruction opcode, the
software breakpoint instruction will never execute and the break will
never occur.

2-24 Getting Started

Note Because software breakpoints are implemented by replacing opcodes
with the single-byte interrupt instructions, you cannot define software
breakpoints in target ROM.

Note Do not add, set, remove, or disable software breakpoints while the
emulator is running user code. If you enter any of these commands
while the emulator is running user code in the area where the
breakpoint is being modified, program execution may be unreliable.

Note Remove software breakpoints before altering the memory map or
changing the monitor type. If you do not remove the breakpoints, SBI
instruction (INT 3) opcodes will be left at unknown locations.

When the emulator detects a vector fetch from the single-byte interrupt
area (in other words, the INT 3 instruction has executed), it generates a
break to background request, which causes an NMI response, as with
the “Processor Break” command. Since the system controller knows
the locations of defined software breakpoints, it can determine whether
the SBI was an enabled software breakpoint or a single-byte interrupt
instruction in your target program.

If the SBI was generated by a software breakpoint, execution breaks to
the monitor, and the breakpoint interrupt instruction (INT 3) is replaced
by the original opcode. A subsequent run or step command will
execute from this address.

If the SBI was generated by a single-byte interrupt instruction in the
target system, execution still breaks to the monitor. An “undefined
breakpoint” status message is displayed. To continue with program
execution, you must run or step from the target program’s breakpoint
interrupt vector address.

Getting Started 2-25

Defining a Software
Breakpoint

To define a breakpoint at the address of the Cmd_I label of the sample
program (43BH), select:

Breakpoints Add

Enter the local symbol “Cmd_I.” After the breakpoint is added, the
emulation window becomes active and shows that the breakpoint is set.

You can add multiple breakpoints in a single command by separating
them with a semicolon. For example, you could type
2010h;2018h;2052h to set three breakpoints.

Run the program by selecting:

Processor Go Pc

The status line shows that the emulator is running the user program.
Modify the command input byte to an invalid command by selecting:

Memory Modify Bytes

Enter an invalid command, such as “Cmd_Input=75h.” The following
messages result:

ALERT: Software breakpoint:
00000:0043b
STATUS: Running in monitor

To continue program execution, select:

Processor Go Pc

Displaying Software
Breakpoints

To view the status of the breakpoint, select:

Breakpoints Display

The resulting display shows that the breakpoint was cleared.

Setting a Software
Breakpoint

When a breakpoint is hit, it is disabled. To reenable the software
breakpoint, you can select:

Breakpoints Set Single

2-26 Getting Started

As with the “Breakpoints Add” command, the breakpoint window
becomes active and shows that the breakpoint is set.

Clearing a Software
Breakpoint

If you wish to clear a software breakpoint that does not get hit during
program execution, you can select:

Breakpoints Clear Single

Using the Analyzer The 8086/8088 emulation analyzer has 47 trace signals, which monitor
internal emulation lines (address, data, and status lines). Optionally,
you may have an additional 16 trace signals, which monitor external
input lines. The analyzer collects data at each pulse of a clock signal,
and saves the data (a trace state) if it meets a “storage qualification”
condition.

Note Emulators which do not have the optional external analyzer will not
display the Internal option shown in the examples. Enter the first part
of the command to execute the example.

Resetting the
Analysis

Specification

To be sure that the analyzer is in its default or power-up state, select:

Analysis Trace Reset I nternal

Specifying a Simple
Trigger

Suppose you want to trace the states of the sample program that follow
the read of a “B” (42H) command from the command input byte. To do
this, you must modify the default analysis specification by selecting:

Analysis Trace Modify I nternal

The analyzer trigger specification is shown. Use the arrow keys to
move to the “Trigger on” field. Type in “a” and press Enter.

Getting Started 2-27

Now you enter the analzyer pattern specification form. Use the arrow
keys to move the cursor to the filed under the heading “addr” next to
the row marked “a=.” Type in the address of the command input byte,
using either the global symbol Cmd_Input or address 0000:0600, and
press Enter.

The “Data” field is now highlighted. Type in 0XX42 and press Enter.
42H is the value of the “B” command and the “X"s specify “don’t
care” values. When 42H is read from the command input byte (600H),
a lower byte read is performed because the address is even.

Now the “Status” field is highlighted. Use the Tab key to view the
status qualifiers that may be entered.

The status qualifiers are defined as follows.

Qualifier Status Bits (46..36) Description

exec 0xx xxxx xxxxB Executed instruction state

procopf 1xx xx01 x100B Processor opcode fetch cycle

procmr 1xx xx01 x101B Processor memory read cycle

procmw 1xx xx01 x110B Processor memory write cycle

procior 1xx xx01 x001B Processor I/O read cycle

prociow 1xx xx01 x010B Processor I/O write cycle

dmaior 1xx xxx0 x001B DMA I/O read cycle

dmaiow 1xx xxx0 x010B DMA I/O write cycle

dmamr 1xx xxx0 x101B DMA memory read cycle

dmamw 1xx xxx0 x110B DMA memory write cycle

procinta 1xx xx01 x000B Processor interrupt acknowledge cycle

prochalt 1xx xx01 x011B Processor halt acknowledge cycle

opcode 1xx xxxx x100B Opcode fetch

memread 1xx xxxx x101B Memory read cycle

2-28 Getting Started

Qualifier Status Bits (46..36) Description

memwrite 1xx xxxx x110B Memory write cycle

ioread 1xx xxxx x001B I/O port read cycle

iowrite 1xx xxxx x010B I/O port write cycle

proc 1xx xx01 xxxxB Processor (not DMA) cycle

dma 1xx xxx0 xxxxB DMA cycle

coproc 1xx xx11 xxxxB Coprocessor cycle

intack 1xx xxxx x000B Interrupt acknowledge cycle

halt 1xx xxxx x011B Halt acknowledge cycle

grd 1xx x1xx xxxxB Guarded memory access

rom 1xx 1xxx xxxxB Access to ROM cycle

procr 1xx xx01 xx01B Processor read cycle

procw 1xx xx01 xx10B Processor write cycle

Select the memread status and press Enter.

Figure 2-6 shows the resulting analysis pattern specification. To save
the new specification, use the End Enter key sequence to exit from the
form.

Figure 2-7 shows the analyzer trigger specification. To save the trigger
specification, press End, then Enter.

Getting Started 2-29

Figure 2-6. Analyzer Pattern Specification

Figure 2-7. Analyzer Trigger Specification

2-30 Getting Started

Starting the Trace To start the trace, select:

Analysis Begin I nternal

A message on the status line shows that the trace is running. You do
not expect the trigger to be found because no commands were entered.
Modify the command input byte to “B” by selecting:

Memory Modify Bytes

Enter Cmd_Input=42 or Cmd_Input="B" . The status line now shows
that the trace is complete.

Displaying the Trace To display the trace, select:

Analysis Display

Note If you choose to dump a complete trace into the trace buffer, it will
take a minute or so to display the trace.

You now have two fields in which to specify the states to display. Use
the right arrow key to move the cursor to the “Ending state to display”
field. Type 260 into the ending state field, press Enter, and use
<CTRL>z to zoom the analysis window. Press the Home key to move
to the top of the trace list.

When symbol transfer is supported, the PC Interface will show the
states available for display and the default disassembly mode. By
specifying the disassembly mode, you can display addresses, symbols,
or both addresses and symbols in the trace list. The default is “Both,”
indicating that addresses and symbols will be displayed. To display
only symbols, select “Symbols” as the disassembly mode. To display
only addresses, select “Addresses” as the disassembly mode.

The resulting trace is similar to the trace shown in the following
display. (The trace listings that follow are of program execution on the
8086 emulator. Trace listings of program execution on the 8088
emulator look different because of the 8-bit data bus. For example,
opcodes are fetched a byte at a time.)

Getting Started 2-31

Line 0 in the preceding trace list shows the state that triggered the
analyzer. The trigger state is always on line 0. The other states show
the exit from the Scan loop, the Exe_Cmd and Cmd_B instructions.
Notice that the trace list includes prefetches of instructions that do not
get executed (lines 11 and 13).

Press the PgDn key to see more lines of the trace.

The following trace list shows the jump to Write_Msg and the
beginning of the repeat instruction.

2-32 Getting Started

Changing the Trace
Format

You can modify the trace list format to suit your needs. You can:

Widen the address column to accommodate longer symbol
names.
Change the port base; to octal, for example.
Change the count from relative to absolute.

The default trace display format for the 8086/88 emulator includes:

Trace line number (which is always displayed)
Hexadecimal address
8086/88 mnemonic
Relative count

You can make the trace format more useful for this example by adding
a data character.

To change the trace list format, enter:

Analysis Format I nternal

Getting Started 2-33

Use the cursor keys to move the arrow to the count field. Press the Tab
key until it says data. Press Enter. Tab in the new field until it shows
asc. Press Enter. Tab to change the field name to count. Press Enter.
The following display is the result.

Press the End and Enter keys to save the new trace format
specification. When you display the trace list now with the “Analysis
Display” command, the trace format will resemble the following listing.

2-34 Getting Started

Note Notice that symbols are displayed in the trace list. If your emulator
does not have symbol-handling capability, the symbols won’t be
displayed.

To see the bus activity for moving the message to the destination
location, press the Page Down key twice. You’ll see the display that
follows.

Getting Started 2-35

For a Complete
Description

For a complete description of using the HP 64700-Series analyzer with
the PC Interface, refer to the Analyzer PC Interface User’s Guide.

Copying Memory You can copy the contents of one range of memory to another. This is a
useful feature to test things like the relocation of programs. To test
whether the sample program is relocatable within the same segment,
copy the program to an unused, but mapped, area of emulation
memory. For example, select:

Memory Copy

Enter 400 through 452 as the source memory range to be copied, and
enter 700 as the destination address.

To verify that the program is relocatable, run it from its new address by
selecting:

Processor Go Address

2-36 Getting Started

Enter 700. The status line shows that the emulator is “Running user
program.” You may wish to trace program execution or enter valid and
invalid commands and search the message destination area (as shown
earlier in this chapter) to verify that the program is working correctly
from its new address.

Resetting the
Emulator

To reset the emulator, select:

Processor Reset Hold

The emulator is held in a reset state (suspended) until a “Processor
Break,” “Processor Go,” or “Processor Step” command is entered. A
CMB execute signal also will run the emulator if reset.

You can also specify that the emulator begin executing in the monitor
after reset instead of remaining in the suspended state. To do this,
select:

Processor Reset Monitor

Exiting the PC
Interface

There are three ways to exit the PC Interface. You can exit the PC
Interface using the “locked” option, which restores the current
configuration next time you start up the PC Interface. You can select
this option as follows.

System Exit Locked

Another way to execute the PC Interface is with the “unlocked” option,
which reinitializes the emulator the next time you start the PC
Interface. You can select this option with the following command.

System Exit Unlocked

Getting Started 2-37

Or, you can exit the PC Interface without saving the current
configuration using the command:

System Exit No_save

See the Emulator PC Interface Reference for a complete description of
the system exit options and their effect on the emulator configuration.

2-38 Getting Started

3

In-Circuit Emulation

Introduction The emulator is in-circuit when it is plugged into the target system.
This chapter covers topics on in-circuit emulation.

This chapter:

Describes the issues concerning the installation of the
emulator probe into target systems.

Shows you how to install the emulator probe.

Shows you how to use features related to in-circuit emulation.

Prerequisites Before performing the tasks described in this chapter, you should be
familiar with general emulator operation. Refer to the System Overview
manual and the “Getting Started” chapter of this manual.

Installing the
Emulator Probe
into a Target
System

The emulator probe has a 40-pin Dual In-Line Package (DIP)
connector.

In-Circuit Emulation 3-1

Caution Possible Damage to the Emulator Probe. The emulator probe comes
with a pin extender. Do not use the probe without a pin extender
installed. Replacing a broken pin extender is much less expensive than
replacing the emulator probe.

Do not use more than one pin extender, unless it is needed for
mechanical clearance reasons, because pin extenders degrade signal
quality.

The emulator probe also comes with a foam pin protector to: (1) protect
the probe from damage due to electrostatic discharge (ESD), and (2)
protect the delicate gold-plated pins of the probe connector from
damage due to impact. The foam pin protector is conductive and must
be removed before running performance verification or using the
emulator.

Caution Possible Damage to the Emulator Probe. The emulator (emulation)
probe contains devices that are susceptible to damage by static
discharge. Take precautions before handling the microprocessor
connector attached to the end of the probe cable to avoid damaging the
internal components of the probe.

Caution Possible Damage to the Emulator. Make sure target system power is
OFF before installing the emulator probe into the target system.

Caution Damage to the Emulator Probe Will Result if the Probe is Incorrectly
Installed. Make sure pin 1 of the probe connector is aligned with pin 1
of the socket.

3-2 In-Circuit Emulation

Auxiliary Output
Lines

There are three auxiliary output lines provided by the emulator:

Caution Damage to the Emulator Probe Will Result if the Auxiliary Output
Lines are Incorrectly Installed. When installing the auxiliary output
lines into the end of the emulator probe cable, make sure that the
ground pins on the auxiliary output lines (labeled with white dots)
match the ground receptacles in the end of the probe cable.

TGT BUF DISABLE

This active-high output is used when the emulator is configured to
allow external DMA accesses to emulation memory (see the
“Configuring the Emulator” chapter). Use it to tristate (in other words,
select the high Z output) any target system devices on the 808X
address/data bus. Target system devices should be tristated since reads
from emulation memory (by the emulation processor or an external
device) will output data on the user probe.

The TGT BUF DISABLE signal goes true at the start of clock cycle T2
in any bus cycle that accesses emulation memory if external DMA is
enabled. It goes false during T4.

8087 INT

This active-high output is the internal 8087’s INT output. If you have
enabled the internal 8087 (see the “Configuring the Emulator”
chapter), are using the internal 8087 interrupts, but have not configured
the internal 8087 to drive the 808X INTR input, this output must be
connected to the target system interrupt controller.

SYSTEM RESET

This active-high, CMOS output should be used to synchronously reset
the emulator and the target system. You should use this when an 8089
I/O processor is in the target system, because the coprocessor

In-Circuit Emulation 3-3

Figure 3-1. Connecting the Emulator Probe

3-4 In-Circuit Emulation

interpretation of the channel attention (CA) input is relative to the last
reset.

In-Circuit
Configuration
Options

The 8086/8088 emulators provide configuration options for the
following in-circuit emulation issues. Refer to the chapter on
“Configuring the 8086/8088 Emulator” for more information on these
configuration options.

Using the Target
System Clock Source

You can configure the emulator to use the external target system clock
source.

Allowing the Target
System to Insert Wait

States

High-speed emulation memory provides no-wait-state operation. The
emulator may optionally respond to the target system ready lines
during emulation memory accesses.

Selecting
Visible/Hidden

Background Cycles

Emulation processor activity while executing in background can either
be visible to the target system (cycles are sent to the emulator probe) or
hidden (cycles are not sent to the emulator probe).

Defining the
Emulator’s Queue

Status in Background

When the 8086 is in maximum mode, the queue status is output on
lines QS0 and QS1. You can configure the emulator to output either a
FLUSH or NOP queue status while it is executing in background.

In-Circuit Emulation 3-5

Running the
Emulator from
Target Reset

You can specify that the emulator begin executing from target system
reset. When the target system RESET line becomes active and then
inactive, the 8086/8088 registers are initialized to their reset values.
The emulator begins running from 0FFFF0H (this will occur within a
few cycles of the RESET signal). To specify a run from target reset,
select:

Processor Go Reset

The status now shows that the emulator is “Awaiting target reset.”
After the target system is reset, the status line message will change to
show the appropriate emulator status.

You also can enter the “Processor Go Reset” command with the target
system powered down. The emulator will respond with the “Slow
clock” status (because the external clock is automatically selected).
The emulator will prepare itself internally for foreground operation.
When the target is powered up and toggles RESET, the emulator will
run from 0FFFF0H.

3-6 In-Circuit Emulation

4

Configuring the 8086/88 Emulator

Introduction Your 8086 or 8088 emulator can be used in all stages of target system
development. For instance, you can run the emulator out-of-circuit
when developing target system software, or you can use the emulator
in-circuit when integrating software with target system hardware.
Emulation memory can be used for or with target system memory. You
can use the emulator’s internal clock or the target system clock. You
can execute target programs in real-time or divert emulator execution
into the monitor when commands request access of target system
resources (target system memory or I/O, or register contents).

The emulator is a versatile instrument and may be configured to suit
your needs at any stage of the development process. This chapter
describes the configuration options for the 8086 or 8088 emulator.

This chapter:

Shows you how to access the emulator configuration options.

Describes the emulator configuration options (in the order of
the configuration display).

Shows you how to save a particular emulator configuration,
and load it again at a later time.

Configuring the 8086/8088 Emulator 4-1

Prerequisites Before performing the tasks described in this chapter, you should be
familiar with general emulator operation. Refer to the System Overview
manual and the “Getting Started” chapter of this manual.

Access Emulator
Configuration
Options

To access the 8086/88 emulator configuration options, select:

Config General

When you position the cursor to a configuration item, a brief
description of the item appears at the bottom of the display.

Note You can use the System Terminal window to modify the emulator
configuration. But, if you do this, some PC Interface features may no
longer work properly. We recommend that you only modify the
emulator configuration by using the options presented in the PC
Interface.

You change items in the configuration screen by using the arrow keys
to move to the selected item, then typing a value. Press the End and
Enter keys to exit from the configuration form and save your changes.

4-2 Configuring the 8086/8088 Emulator

Internal Emulator
Clock?

This configuration item allows you to select whether the emulator will
be clocked by the internal clock source or by a target system clock
source.

Yes The internal 8 MHz clock oscillator is the emulator clock source. This
is the default.

No An external target system clock is the emulator clock source. External
clock sources must be within the range 2-10 MHz.

Figure 4-1. General Emulator Configuration

Configuring the 8086/8088 Emulator 4-3

Enable READY
from Target?

High-speed emulation memory provides no-wait-state operation. The
emulator may optionally respond to the target system ready lines
during emulation memory accesses.

No When the ready relationship is not locked to the target system,
emulation memory accesses ignore the ready signal from the target
system (no wait states are inserted).

Yes When the ready relationship is locked to the target system, emulation
memory accesses honor the ready signal from the target system (wait
states are inserted if requested).

Enable
Background
Cycles to Target?

Emulation processor activity while running in the background monitor
can either be visible to the target system (cycles are sent to the
emulator probe) or hidden (cycles are not sent to the emulator probe).

Yes The default emulator configuration specifies that background activity is
visible.

If your target system requires that the emulator always appear running
(for example, to refresh dynamic memories), you should allow
background cycles to be visible to the target system.

When background cycles are visible, they appear to the target system
as “reads” from the address range of the monitor. If you need to put the
monitor in a memory range where read operations will not cause an
undesired interaction, you can change the monitor’s base address.
(Refer to the “Monitor Block?” configuration item.)

No When a break occurs and background cycles are disabled (hidden), the
emulator appears to the target system to have suspended operation until
a return to foreground. When cycles are disabled, background cycles
are blocked (S0-S2 remain high and /RD, /WR, /DEN, ALE, and
/INTA remain inactive).

4-4 Configuring the 8086/8088 Emulator

Send Flush Queue
Status to Target?

When the 8086 is in the maximum mode, the queue status is output on
lines QS0 and QS1. The QS0 and QS1 signals allow external
processors that receive instructions and operands via the ESC
instruction to track the ESC instruction through the queue to see if it
executes.

No By default (if in maximum mode), the emulator outputs a NOP status
on lines QS0 and QS1 while in background.

Yes The emulator (if in maximum mode) outputs a FLUSH queue status
while in background.

Enable Real-Time
Mode?

If the emulator must execute target system programs in real-time, you
can enable the real-time emulator mode. In other words, when you
execute target programs (with the “Processor Go” command), the
emulator will execute in real-time.

No The default emulator configuration disables the real-time mode. When
the emulator is executing the target program, you can enter emulation
commands that require access to target system resources
(display/modify registers, target system memory, or target system I/O).
If you enter one of these commands, the system controller will
temporarily break emulator execution into the monitor.

Yes If your target system program requires real-time execution, you should
enable the real-time mode to prevent temporary breaks that might
cause target system problems.

Configuring the 8086/8088 Emulator 4-5

Commands Not Allowed in Real-Time Mode

When emulator execution is restricted to real-time and the emulator is
running user code, the system refuses all commands that require access
to processor registers or target system memory or I/O. The following
commands are not allowed when runs are restricted to real-time:

Register display/modification.

Target system memory display/modification. (Because the
emulator contains dual-port emulation memory, commands
that access emulation memory do not require breaks and are
allowed while runs are restricted to real-time.)

I/O display/modification.

If the real-time mode is enabled, these resources can only be displayed
or modified while running in the monitor.

Breaking out of Real-Time Execution

The only commands that can break real-time execution are:

Processor Reset
Processor Go
Processor Break
Processor Step

Enable Max
Segment
Algorithm?

The “Processor Go” and “Processor Step” commands allow you to
enter addresses in either logical form (segment:offset, for example,
0F000:0FFFF) or physical form (for example, 0FFFFF).

When you enter a physical address (non-segmented) with either a
“Processor Go” or “Processor Step” command, the emulator must
convert it to a logical (segment:offset) address.

4-6 Configuring the 8086/8088 Emulator

If you use logical addresses other than the two methods that follow,
you must enter addresses in logical form.

No By default, a physical run address is converted such that the low 16 bits
of the address become the offset value. The physical address is
right-shifted 4 bits and ANDed with 0F000H to yield the segment
value.

logical_addr = ((phys_addr >> 4) & 0xf000):(phys_addr & 0xffff)

Yes Specifies that the low 4 bits of the physical address become the offset.
The physical address is right-shifted 4 bits to yield the segment value.

logical_addr = (phys_addr >> 4):(phys_addr & 0xf)

Enable Breaks on
Writes to ROM?

Emulator execution may optionally break into the monitor when the
target (user) program writes data to a location mapped as ROM.

Yes Emulator execution will break into the monitor when the target
program writes to ROM locations.

No Target program writes to ROM locations will not cause emulator
execution to break into the monitor.

Enable Software
Breakpoints?

The software breakpoint feature uses the 8086/88 single-byte interrupt
facility. When you add or set a software breakpoint (and software
breakpoints are enabled), the emulator will replace the opcode at the
software breakpoint address with the breakpoint interrupt instruction
(INT 3). When the emulator executes the INT 3 instruction, execution
breaks into the monitor.

Configuring the 8086/8088 Emulator 4-7

If your target program uses single-byte interrupt instructions and
contains a breakpoint interrupt routine, you may wish to disable the
software breakpoints feature. Then, INT 3 instructions do not cause
breaks to the monitor.

Refer to the “Getting Started” for information on using software
breakpoints.

No The software breakpoints feature is disabled. This is the default
emulator configuration, so you must change this item before you can
use software breakpoints.

Yes The software breakpoints feature is enabled. The emulator breaks to the
monitor when an INT 3 is executed. If the interrupt instruction is a
software breakpoint, the original opcode is restored in the user
program. A subsequent “Processor Go Pc” or “Processor Step Pc”
command will execute from the breakpoint address.

If the INT 3 instruction is not a software breakpoint, an “undefined
breakpoint” status message is displayed. To continue with program
execution, you must use the “Processor Go Address” or “Processor
Step Address” command and specify the target program’s breakpoint
interrupt vector address.

Enable CMB
Interaction?

Coordinated measurements are measurements synchronously made in
multiple emulators or analyzers. Coordinated measurements can be
made between HP 64700-Series emulators, which communicate over
the Coordinated Measurement Bus (CMB).

Multiple emulator starts/stops is one type of coordinated measurement.
The CMB signals READY and /EXECUTE are used to perform
multiple emulator starts/stops.

This configuration item allows you to enable/disable interaction over
the READY and /EXECUTE signals. (The third CMB signal,
TRIGGER, is unaffected by this configuration item.)

4-8 Configuring the 8086/8088 Emulator

No The emulator ignores the /EXECUTE and READY lines, and the
READY line is not driven.

Yes Multiple emulator starts/stops are enabled. If the

Processor CMB Go ...

command is entered, the emulator begins executing code when a pulse
on the /EXECUTE line is received. The READY line is driven false
while the emulator is running in the monitor. It goes true whenever
execution switches to the user program.

Note CMB interaction will also be enabled when the

Processor CMB Execute

command is entered.

Memory-I/O Data
Access Width?

This configuration item allows you to specify the type of
microprocessor cycles used by the monitor program to access target
memory or I/O locations. When a command requests the monitor to
read or write target system memory or I/O, the monitor program
examines this configuration item to determine whether to use byte or
word instructions.

Bytes Selecting the byte access mode specifies that the emulator will access
target memory using upper and lower byte cycles (one byte at a time).
The default emulator configuration specifies a data access width of
bytes.

Words Selecting the word access mode specifies that the emulator will access
target memory using word cycles (one word at a time).

Configuring the 8086/8088 Emulator 4-9

Monitor Type? The emulation processor executes the monitor program. It allows the
emulation system controller to access target system resources. For
example, when you enter a command that requires access to target
system resources (display target memory, for example), the system
controller writes a command code to a communications area and breaks
the execution of the emulation processor into the monitor. The monitor
program then reads the command from the communications area and
executes the processor instructions to access the target system. After
the monitor has performed its task, execution returns to the target
program. Monitor program execution can take place in the
“background” or “foreground” emulator modes.

In the foreground emulator mode, the emulator operates as would the
target system processor.

In the background emulator mode, foreground execution is suspended
so that the emulation processor may be used for communication with
the system controller, typically to perform tasks that access target
system resources.

A background monitor program operates entirely in the background
emulator mode. That is, the monitor program does not execute as if it
were part of the target program. The background monitor does not take
up any processor address space and does not need to be linked to the
target program. The monitor resides in dedicated background memory.

A foreground monitor program performs its tasks in the foreground
emulator mode. That is, the monitor program executes as if it were part
of the target program. Breaks into the monitor always put the emulator
in the background mode. But, foreground monitors switch back to the
foreground mode before performing monitor functions.

The default emulator configuration selects the background monitor.
You can change the configuration to select the foreground monitor.
Also, you can select two other options: the user background monitor, or
the user foreground monitor. These four monitor options are listed
below.

4-10 Configuring the 8086/8088 Emulator

bg Default background monitor.

fg Default foreground monitor.

ubg Default background monitor with the addition of a user supplied
routine (less than 512 bytes of absolute code), which is executed while
in the monitor. User code must first be loaded using the “B_Monitor”
memory load option.

ufg User supplied foreground monitor. Allows use of a custom foreground
monitor (less than 2K bytes of absolute code) for a specific target
system. The user foreground monitor must first be loaded using the
“F_Monitor” memory load option.

Note Remove software breakpoints before changing the monitor type.
Otherwise, SBI instruction (INT 3) opcodes will be left at unknown
locations.

Note All memory mapper terms are deleted when the monitor type is
changed!

Background The default emulator configuration selects the background monitor by
default. When you use the background monitor:

Target programs should set up the stack in memory mapped as
emulation or target RAM. The stack must be present to use
software breakpoints.

Guarded memory accesses can occur if the vector table area,
0-3FFH, is mapped as “guarded memory.” (If locations
0-3FFH are not mapped, and unmapped memory is assigned

Configuring the 8086/8088 Emulator 4-11

the “grd” memory type, then these locations act as guarded
memory.)

Halt instructions will cause “processor halted” emulation
status. A subsequent break command, followed by a run or
step command, repeats the halt instruction.

Note Stepping into a HLT instruction will not halt the processor.

The 8086 processor will not halt when an interrupt occurs while a HLT
instruction is executed.

User Background The emulator allows you to insert code into the background monitor.
Limit your code to four sections of 128 bytes each (the absolute file
should be less than 2048 bytes long). Code in the first section gets
executed on monitor entry. Code in the second section gets executed
once for each loop through the monitor. Code in the third section is
executed on monitor exit. And, code in the fourth section executes
when the monitor is entered from reset. User code is subject to the
following restrictions:

User code must be at 400H. This is not the absolute address of
the user code. It is the offset within the monitor segment. A
template for user code programs comes with the emulator and
is shown below. Always refer to the shipped file for the most
recent version.

The user code must not contain instructions that use the stack
(PUSH, POP, CALL, RET, and so on). The background
monitor makes no assumptions about the existence of a stack
in foreground code and does not contain any instructions that
use the stack. Six bytes of monitor memory save values
normally saved on the stack: CS, IP, and the flags.

The user code must not write to monitor locations outside the
area to which the user code is restricted. The background
monitor uses locations in the reserved 2K bytes to
communicate with the emulation system controller.

4-12 Configuring the 8086/8088 Emulator

The user code must not jump to locations outside the area to
which it is restricted. Other locations in the 2K bytes reserved
for the monitor contain the monitor program and data. Also,
jumping to certain locations outside the range restricted to
user code will put the emulator into different modes of
operation. These modes allow the background monitor to
access target system resources when executing emulation
commands. Refer to the “Other Emulator Modes” description
in the “Foreground Monitor Description” appendix.

The user code must not change the contents of the CS or SS
registers.

"8086"
;@(mktid) Lab Proto(1.00)
;
; Template for using background monitor features in user background code
;
; Following is a memory map of the background monitor. The monitor always
; occupies 2Kbytes of space. User code is always installed at offset 400H.
;
;-- --------------
;
; 000H **
; * IP,CS and flag jam area (all 8 bytes used) *
; 008H **
; * Vector area *
; 00CH **
; * Communications area *
; 020H **
; * I/O area 0 *
; 030H **
; * I/O area 1 *
; 038H **
; * Set BGCPCYC flag *
; 040H **
; * Set JAMBKGR flag *
; 048H **
; * Reset JAMBKGW flag *
; 050H **
; * Set BKGPS flag *
; 058H **
; * Reset BKGPS flag *
; 060H **
; * Set BKGWTT flag *
; 068H **
; * Reset BKGWTT flag *
; 070H **
; * Set BKGRFT flag *

Configuring the 8086/8088 Emulator 4-13

; 078H **
; * Reset BKGRFT flag *
; 080H **
; * Monitor Area *
; 380H **
; * Register Area *
; 400H **
; * Execute on Entry User code area *
; 480H **
; * Execute while in Monitor User code area *
; 500H **
; * Execute on Exit User code area *
; 580H **
; * Execute on Reset User code area *
; 6E0H **
; * Monitor buffer area *
; 7F0H **
; * Background reset area *
; 7FFH **
;

;-- --------------
; I/O Area 0
;
; A read from this area will bring in the following emulator status flags:
;
; Bit Flag
;
; 0 Break request
; 1 Run request
; 2 Was Halted
; 3 Sixteen bit processor
;
; A write to this area will set the ready flag true.
;-- --------------
; I/O Area 1
;
; A read from this area does the same thing as a read from I/O area 0.
;
; A write to this area sets the jam counter to the value written (only bit
; D0 is used).
;-- --------------
; Locations 38H thru 7FH are special in that they require an opcode
; fetch from the appropriate range to set or reset the indicated flag.
; In all cases except for setting the jam read flag, JAMBKGR, the desired
; function must be called using the macro sfunc (sfunc guarantees that only
; opcode fetches are generated).
;-- --------------

JAMAREA EQU 000H
VECTAREA EQU 008H
COMMAREA EQU 00CH
IOAREA0 EQU 020H
IOAREA1 EQU 030H
MONAREA EQU 080H

REGAREA EQU 380H

ENTRYUAREA EQU 400H
CONTUAREA EQU 480H
EXITUAREA EQU 500H

4-14 Configuring the 8086/8088 Emulator

RESETUAREA EQU 580H

BUFAREA EQU 6E0H
RESETAREA EQU 7F0H
TRUE EQU 1
FALSE EQU 0

SPECEN0 EQU 00001100000B
SPECEN1 EQU 00001000000B
SPECEN2 EQU 00000100000B

BPA EQU 00000B
BPB EQU 01000B
BPC EQU 10000B
BPD EQU 11000B

IRETTOFG EQU 00001000000B ;SPECEN1 + BPA
CLRJAMBKGW EQU 00001001000B ;SPECEN1 + BPB

BREAKMASK EQU 0001B
RUNMASK EQU 0010B
WASHALTEDMASK EQU 0100B
SXTNSELMASK EQU 1000B
CMDAVAIL EQU 0
CMDCOMPLETE EQU 0FFFFH
INRFGLOOP EQU 0FFFFH

; These functions may be useful. They are called in the following manner:
;
; SFUNC ame
;
; Where ame (in lower case!!!) is one of the following:

; Force internal co-processor memory accesses to go to background memory
SETBGCPCYC EQU 00000111000B ;SPECEN2 + BPD
setbgcpcyc ORG SETBGCPCYC

; Present real status to the target system.
SETBKGPS EQU 00001011000B ;SPECEN1 + BPD
setbkgps ORG SETBKGPS

; Substitute either nothing or memory read for real status to the target
; (Depending on the setting of the ^cyc^ configuration item)
CLRBKGPS EQU 00001010000B ;SPECEN1 + BPC
clrbkgps ORG CLRBKGPS

; Send background writes to the target system.
SETBKGWTT EQU 00001101000B ;SPECEN0 + BPB
setbkgwtt ORG SETBKGWTT

; Send background writes to monitor memory.
CLRBKGWTT EQU 00001100000B ;SPECEN0 + BPA
clrbkgwtt ORG CLRBKGWTT

; Get background reads from monitor memory.
CLRBKGRFT EQU 00001110000B ;SPECEN0 + BPC
clrbkgrft ORG CLRBKGRFT

; Get background reads from the target system.
SETBKGRFT EQU 00001111000B ;SPECEN0 + BPD

Configuring the 8086/8088 Emulator 4-15

setbkgrft ORG SETBKGRFT

;
; Macros
;
;

SFUNC MACRO &SUBADDR
 MOV BP,#($+6)
 JMP NEAR PTR &SUBADDR
 MEND

SFUNCRET MACRO
 JMP BP
 MEND

MONCALL MACRO
 MOV BX,#($+5)
; JMP [SI]
 DB 0FFH,024H
 MEND

MONRET MACRO
 JMP BX
 MEND

; User code macros
;
; These macros are used to get to and return from user routines. Note that
; if BX is to be used, it must be saved and restored before executing a
; UCODERET.

UCODECALL MACRO &ULOC
 MOV BX,#($+6)
 JMP NEAR PTR &ULOC
 MEND

UCODERET MACRO
 JMP BX
 MEND

 ASSUME CS:ORG,DS:ORG,ES:ORG

 ORG ENTRYUAREA

; User code that is to execute on monitor entry goes here
;
; 1. dont use the stack
; 2. called on entry into the monitor
; 3. dont modify BX!!

 UCODERET

 ORG CONTUAREA

; User code that is to execute on a continuous basis goes here. This code
; is called whenever the monitor has nothing else to do.
;

4-16 Configuring the 8086/8088 Emulator

; 1. dont use the stack
; 2. called once each monitor loop
; 3. dont modify BX!!
; ##- ############
; Example to refresh DRAM
;
; This routine simply reads a word from every memory location below 80000H.
; This might be used as a replacement for DMA type refresh while in
; background.

 LDS SI,CS:userptr ;get word ptr to loc to read
 LODSW ;read it and inc si
 MOV WORD PTR CS:userptr,SI ;save it for next time
 CMP SI,0 ;is SI zero?
 JE modseg ;if so skip
 UCODERET ;return
modseg:
 MOV SI,DS ;get ds
 CMP SI,7000H ;is it 7000H?
 JE zeroseg ;if so skip
 ADD SI,1000H ;else add 1000H
 MOV WORD PTR CS:userptr+2,SI ;save it
 UCODERET ;return
zeroseg:
 MOV SI,0 ;clear si
 MOV WORD PTR CS:userptr+2,SI ;put in seg location
 UCODERET ;return

; Define data
userptr DD 0

; ##- ############
; End example

 ORG EXITUAREA

; User code that is to execute on monitor exit goes here
;
; 1. dont use the stack
; 2. called on exit from the monitor
; 3. dont modify BX!!

 UCODERET

 ORG RESETUAREA

; User code that is to execute on monitor reset goes here
;
; 1. dont use the stack
; 2. called when the monitor is reset
; 3. dont modify BX!
; 4. a good place to set up memory/peripheral select lines

 UCODERET

Configuring the 8086/8088 Emulator 4-17

Loading User Code

You must load user code to be placed in the background monitor
before you can select the user background monitor type. Use the
“B_Monitor” memory load option when loading user code.

Foreground The foreground monitor uses processor address space. The foreground
monitor uses 2K bytes of memory (at 0FF800H by default—see the
“Monitor Block?” configuration item).

Note You must not use the foreground monitor if you want to make
coordinated measurements.

More About the Foreground Monitor

The monitor, whether background or foreground, is the interface
between the emulation system controller and the target system. The
monitor allows commands that display and modify the contents of
target system memory, I/O ports, and processor registers. It also
enables commands that step through program execution.

When you select a background monitor, its execution is hidden from
the target system (except background cycles, optionally). When the
emulator is executing in the monitor, it appears to the target system as
if it has suspended operation.

When you select the foreground monitor, the monitor performs its tasks
in the foreground emulator mode (where the emulator acts just as the
microprocessor it replaces). The monitor remains in the 2K bytes of
emulation memory reserved. The remaining emulation memory (either
126K or 510K bytes, depending on the emulator model number) is at
your disposal. But, when the foreground monitor is selected, the
monitor occupies 2K bytes of 8086 memory space.

When you select the foreground monitor, breaking into the monitor still
occurs in background. The rest of the monitor program functions are
executed in foreground.

4-18 Configuring the 8086/8088 Emulator

Note Foreground monitors can cause breaks (a foreground monitor that
accesses guarded memory, for example). If these breaks occur
consistently within approximately 10 ms of monitor entry, the emulator
will become unresponsive. Each time a break to the monitor occurs, an
access of guarded memory will occur, which causes a break into the
monitor, and so on. If this happens, you must cycle power to the
emulator.

Using the Foreground Monitor

When you use the foreground monitor:

Your program must set up a stack. The foreground monitor
assumes that there is a stack in the foreground program. This
stack is used to save CS, IP, and the flag word upon entry into
the monitor.

You must set up your vector table to point to locations in the
foreground monitor program. The vector table (shown in the
following listing) contains assembly language pseudo-ops that
define vectors, which point to the proper locations in the
foreground monitor. The “step” feature of the emulator uses
the single-step interrupt vector, and the software breakpoints
feature uses the breakpoint interrupt vector. The segment
portion of the logical addresses defined in your vector table
should match the location you have selected, or will select, for
the monitor program. (The segment values in the vector table
file that follows match the default location of the monitor.)

Guarded memory accesses can occur if no vector table is
loaded and the vector table area, 0-3FFH, is mapped as
“guarded memory.” (If locations 0-3FFH are not mapped, and
unmapped memory is assigned a type of “grd”, then these
locations act as guarded memory.)

Halt instructions will cause “processor halted” emulation
status. A subsequent break command, followed by a run or
step command, repeats the halt instruction.

Configuring the 8086/8088 Emulator 4-19

How to Use the Foreground Monitor

The processor’s interrupt vector table must be loaded with the correct
address of the interrupt service routine associated with that interrupt
type. The interrupt type is an integer, which specifies one of 256
memory addresses. The address is found by multiplying the interrupt
type by 4. Thus, a type 1 interrupt refers to address 4, a type 2 interrupt
refers to address 8, and so on. Each of these memory addresses
identifies a complete logical address (two bytes for the segment and
two bytes for the offset).

When an interrupt occurs, the processor calculates the interrupt vector
address and loads the CS and IP registers with the address of the
interrupt routine. Program execution transfers to the new location.

An example program comes with the emulator that performs a partial
initialization of the processor’s interrupt table. This program is called
V64762.S for the 80186/C186 emulator, and V64763.S for the
80188/C188 emulator.

The beginning of the program appears in the following listing.

"8086"

; Vector table
;
; This table defines monitor entry points other than by breaking. To use
; these entry points, the processors vector table must be loaded with
; pointers to these locations.

VTABLEAREA EQU 00420H
MONSEGMENT EQU 0FF80H
ENTRYSIZE EQU 0000AH
SBIAREA EQU 007E8H
NUMEXCVECT EQU 00040H
USERVECT EQU 00080H

 ORG 0

 DW VTABLEAREA+ENTRYSIZE*0 ; zero divide
 DW MONSEGMENT

; This vector MUST be present to single step!!!
 DW VTABLEAREA+ENTRYSIZE*1 ; single step
 DW MONSEGMENT

 DW VTABLEAREA+ENTRYSIZE*2 ; user nmi
 DW MONSEGMENT

4-20 Configuring the 8086/8088 Emulator

Loading this program into the emulator would alter the processor’s
vector table to:

0000H | xxxxxx |
 |----------|
0002H | xxxxxx |
 |----------|
0004H | 042AH | IP
 |----------| Type 1 interrupt (single-step)
0006H | 0FF80H | CS
 |----------|
0008H | xxxxxx |
 |----------|
000AH | xxxxxx |
 |----------|
000CH | 07E8H | IP
 |----------| Type 3 interrupt (breakpoint)
000EH | 0FF80H | CS
 |----------|
0010H | xxxxxx |

; This vector MUST be present to allow the monitor to handle breakpoints
; properly.
 DW SBIAREA ; single byte int.
 DW MONSEGMENT

 DW VTABLEAREA+ENTRYSIZE*4 ; overflow
 DW MONSEGMENT

 ORG NUMEXCVECT

 DW VTABLEAREA+ENTRYSIZE*5 ; numeric exception
 DW MONSEGMENT

 ORG USERVECT

 DW VTABLEAREA+ENTRYSIZE*6
 DW MONSEGMENT

 DW VTABLEAREA+ENTRYSIZE*7
 DW MONSEGMENT

 DW VTABLEAREA+ENTRYSIZE*8
 DW MONSEGMENT

 DW VTABLEAREA+ENTRYSIZE*9
 DW MONSEGMENT

 DW VTABLEAREA+ENTRYSIZE*10
 DW MONSEGMENT

 DW VTABLEAREA+ENTRYSIZE*11
 DW MONSEGMENT

 DW VTABLEAREA+ENTRYSIZE*12
 DW MONSEGMENT

 DW VTABLEAREA+ENTRYSIZE*13
 DW MONSEGMENT

Configuring the 8086/8088 Emulator 4-21

About the Vector Program and Monitor Segment

The monitor uses the single-step and breakpoint hardware interrupts to
single-step or break user code. The vector program sets up the vector
table to point to the functional procedures located within the monitor
program.

The addresses at 06H and 0EH in the interrupt vector table correspond
to the address specified in the “Monitor Segment?” emulation
configuration question. If you want to use a different address for the
monitor, you must modify this configuration (whether you are using
the foreground or background monitor). In addition, if you use a
foreground monitor, the statement in the vector program (V6476X.S)
for the monitor segment (MONSEGMENT EQU XXXX) must reflect
any change made to the monitor block location.

For example, if a monitor segment of 0F000H is specified in the
configuration, the MONSEGMENT variable in the vector program
(V6476X.S) should be equated to 0F000H. The address values at 04H
and 0CH are offsets in the segment, and point to the offset location of
the interrupt routine within the monitor segment. These values should
remain constant unless the “Monitor Offset?” configuration question is
modified.

The statements that appear as comments in the vector program can be
used to further load the vector table. You can remove comments from
this program to load the vector table with the addresses of additional
interrupt service routines found in the monitor program. Or you may
prefer to load these vector addresses with pointers to custom service
routines.

Assembling, Linking, and Loading the Vector Program

The vector program must be assembled, linked and loaded into the
emulator if you want to use the foreground monitor. The load address
specified to the linker is arbitrary. All addresses are ORGed. The
foreground monitor is already resident in the emulator’s ROM at the
default location. Therefore, no assembling or linking is required. You

4-22 Configuring the 8086/8088 Emulator

simply specify the foreground monitor in the “Monitor Type?”
configuration question. If you want to modify the monitor, the
foreground monitor source code is in a separate file. Then this program
would need to be assembled, linked, and loaded into the emulator.

User Foreground If you need a customized monitor, you can load it into the 2K byte area
reserved for the monitor. When customizing the foreground monitor,
you must maintain the basic communication protocol between the
monitor and the emulation system controller.

The foreground monitor program source file comes with the emulator,
and is described in the “Foreground Monitor Description” appendix.

Loading a User Foreground Monitor

You must load the monitor before you can select the user foreground
monitor type. Use the “F_Monitor” memory load option.

Monitor Block? The default emulator configuration locates the monitor at 0FF800H.
You can relocate the monitor to any 2K byte boundary except 0H. The
location of the background monitor may be important to specify which
target system locations are read if background cycles are made visible
to the target system (which is the default case). The location of
foreground monitors is important because they will occupy part of the
processor address space. Foreground monitor locations must not
overlap the locations of target system programs.

When entering monitor block addresses, you must only specify
addresses on 2K byte boundaries. Otherwise, an invalid syntax
message is displayed.

Note Relocating the monitor removes all memory mapper terms.

Configuring the 8086/8088 Emulator 4-23

Enable Numeric
Coprocessor?

The HP 64762/3 emulators contain an internal 8087 numeric
coprocessor. You typically use the internal 8087 when target system
hardware containing an 8087 is not yet developed. The internal 8087
allows you to execute and debug code that contains instructions for the
8087 coprocessor. When the target system hardware is developed, the
internal 8087 is typically disabled and external DMA is enabled (see
the “Enable DMA to/from Emulation Memory?” section that follows).

Yes When the internal 8087 numeric coprocessor is enabled, the emulator’s
internal 8087 coprocessor will respond to numeric opcodes in the
instruction stream. An 8086/8088 RQ/GT line is taken by the 8087
when it is enabled. The RQ/GT line used is selectable using the
“RQ/GT Line for Numeric Coprocessor?” configuration item below.

No When the internal 8087 is disabled, it will not operate and numeric
opcodes will be ignored by the emulator. Both RQ/GT lines are
available to the target system when the internal 8087 is disabled.

RQ/GT Line for
Numeric
Coprocessor?

If the internal 8087 numeric coprocessor is enabled, an 8086/8088
RQ/GT line allows the 8087 to acquire the local bus. The other RQ/GT
line is available for target system use.

0 The internal 8087 uses the RQ/GT0 line. If the internal 8087 is
enabled, the emulator will ignore this line from the target system.

1 The internal 8087 uses the RQ/GT1 line. If the internal 8087 is
enabled, the emulator will ignore this line from the target system.

4-24 Configuring the 8086/8088 Emulator

Select Numeric
Processor as
INTR Source?

When the internal 8087 is enabled, you can select either the target
system or the internal 8087 to drive the 8086/88 INTR input.

If the internal 8087 is enabled but does not drive the 808X INTR input,
use the 8087 INT auxiliary output line to drive the interrupt controller
in the target system. See the “Auxiliary Output Lines” section in the
“In-Circuit Emulation” chapter.

No When the target system is selected as the INTR source, the signal
appearing on the INTR input of the user probe is applied to the
emulation processor.

Yes When the internal 8087 is selected as the INTR source, the INT output
of the internal 8087 numeric coprocessor drives the INTR input.

Interrupt Vector? If you enable the internal 8087 and select it as the source for the
emulation processor INTR input, the value specified for this
configuration question will be jammed onto the data bus during
interrupt acknowledge cycles.

The default emulator configuration specifies a value of 10H, which
points to the numeric exception interrupt vector.

Enable DMA
to/from Emulation
Memory?

If external DMA access to emulation memory is enabled, target system
devices that reside on the local 8086/8088 bus and conform to the
808X MAX mode bus timing can access emulation memory. An
external 8087, for example, meets this requirement.

Configuring the 8086/8088 Emulator 4-25

Yes If external DMA is enabled, you must connect the auxiliary output line
TGT BUF DISABLE so that any target system devices that can drive
the 808X addr/data bus are tristated when TGT BUF DISABLE is high.
This is because any reads from emulation memory by the emulation
processor or an external device will output data on the user probe. (The
TGT BUF DISABLE signal goes active at the start of T2 in any bus
cycle which accesses emulation memory; it goes inactive in T4.)

Enabling external DMA accesses of emulation memory will
automatically configure the emulator to send flush queue status to the
target while in background and while the 8086 is in MAX mode. You
can subsequently reconfigure the emulator to send a NOP queue status
while in background although this is not recommended. In particular,
stepping through numeric instructions may not work properly if NOP
queue status is selected.

No If external DMA is disabled, external devices cannot access emulation
memory and will be unable to track the operation of emulation memory
instructions. Then, the TGT BUF DISABLE line need not be used.

Storing an
Emulator
Configuration

The PC Interface lets you store a particular emulator configuration so
that it may be reloaded later. The following information is saved in the
emulator configuration.

Emulator configuration items.

Memory map.

Break conditions.

Trigger configuration.

Window specifications.

To store the current emulator configuration, select:

Config Store

4-26 Configuring the 8086/8088 Emulator

Enter the name of the file to which the emulator configuration will be
saved.

Loading an
Emulator
Configuration

If you want to reload a previously stored emulator configuration, select:

Config Load

Enter the configuration file name and press Enter. The emulator will
be reconfigured with the values specified in the configuration file.

Configuring the 8086/8088 Emulator 4-27

Notes

4-28 Configuring the 8086/8088 Emulator

5

Using the Emulator

Introduction The “Getting Started” chapter shows you how to use the basic features
of the 8086/8088 emulator. This chapter describes the more in-depth
features of the emulator.

This chapter shows you how to:

Make coordinated measurements.

Store the contents of memory into absolute files.

This chapter also discusses register names and classes.

Making
Coordinated
Measurements

Coordinated measurements are measurements that use multiple
emulators or analyzers. Coordinated measurements can be made
between HP 64700-Series emulators, which communicate over the
Coordinated Measurement Bus (CMB). You also can make
Coordinated measurements between an emulator and another
instrument connected to the BNC connector.

This section describes coordinated measurements made from the PC
Interface, which involve the emulator. These types of coordinated
measurements are:

Running the emulator on reception of the CMB /EXECUTE
signal.

Using the analyzer trigger to break emulator execution into
the monitor.

Using the Emulator 5-1

Note You must use the background monitor to make coordinated
measurements. Refer to the “Configuring the Emulator” chapter for
more information on the emulation monitor.

Three signal lines on the CMB are active and serve the following
functions:

/TRIGGER Active low. The analyzer trigger line on the
CMB and on the BNC serve the same logical
purpose. They provide a means for the analyzer
to drive its trigger signal out of the system or
for external trigger signals to arm the analyzer
or break the emulator into its monitor.

READY Active high. This line is for synchronized,
multi-emulator starts and stops. When CMB
run control interaction is enabled, all emulators
must break to background upon reception of a
false READY signal and will not return to
foreground until this line is true.

/EXECUTE Active low. This line serves as a global
interrupt signal. Upon reception of an enabled
/EXECUTE signal, each emulator is to
interrupt whatever it is doing and execute a
previously defined process, such as run the
emulator or start a trace measurement.

Running the
Emulator at
/EXECUTE

Before you can specify that the emulator run upon receipt of the
/EXECUTE signal, you must enable CMB interaction. To do this,
select:

Config General

Use the arrow keys to move the cursor to the “Enable CMB
Interaction? [n]” question, and type “y.” Use the End Enter key
sequence to exit from the lower right-hand field in the configuration
display.

5-2 Using the Emulator

To specify that the emulator begin executing a program upon reception
of the /EXECUTE signal, select:

Processor CMB Go

Now you may select either the current program counter (“Pc,” in other
words, the current CS:IP) or a specific address.

The command you enter is saved and is executed when the /EXECUTE
signal becomes active. Also, you will see the message “ALERT: CMB
execute; run started.”

Using the Analyzer
Trigger to Break into

the Monitor

To break emulator execution into the monitor when the analyzer trigger
condition is found, you must modify the trigger configuration. To
access the trigger configuration, select:

Config Trigger

The trigger configuration display contains two diagrams, one for each
internal TRIG1 and TRIG2 signal.

To use the internal TRIG1 signal to connect the analyzer trigger to the
emulator break line, move the cursor to the highlighted “Analyzer”
field in the TRIG1 portion of the display. Use the Tab key to select the
“----->>” arrow, which shows that the analyzer is driving TRIG1. Next,
move the cursor to the highlighted “Emulator” field. Use the Tab key
to select the arrow pointing toward the emulator (<<-----).

This breaks emulator execution into the monitor when the TRIG1
signal is driven. Figure 5-1 shows the trigger configuration display.

Note If your emulator does not have the optional external analyzer, or the
external analyzer is aligned with the emulation analyzer (Analaysis
System command), the “Timing” cross trigger option will not be
displayed.

Using the Emulator 5-3

Storing Memory
Contents to an
Absolute File

The “Getting Started” chapter shows you how to load absolute files
into emulation or target system memory. You also can store emulation
or target system memory to an absolute file with the following
command.

Memory Store

Note You can name the absolute file with a total of 8 alphanumeric
characters, and optionally, you can include an extension of up to 3
alphanumeric characters.

Figure 5-1. Cross Trigger Configuration

5-4 Using the Emulator

Caution The “Memory Store” command writes over an existing file if it has the
same name that is specified in the command. You may want to verify
beforehand that the specified filename does not already exist.

Register Names
and Classes

The following table lists the register names and classes that may be
used with the display/modify register commands.

<REG CLASS> <REG NAME> Description:

* ah, al, ax, bh, bl, bx, ch, cl, cx,
dh, dl, dx, bp, si, di, ds, es, ss,
sp, ip, cs, fl

All Basic Registers

gen ax, bx, cx, dx General Registers

seg ds, es, ss, cs Segment Registers

ptr bx, bp, si, di, ds, es Pointer Registers

ncp
(Internal 8087 numeric
coprocessor registers)

ctrl
stat
iptr
optr
opc
tag
st[0], st[1], st[2], st[3], st[4],
st[5], st[6], st[7]

Control Word
Status Word
Exception Pointer Instruction Address
Exception Pointer Operand Address
Exception Pointer Instruction Opcode
Tag Word
Register Stack Registers

Using the Emulator 5-5

Notes

5-6 Using the Emulator

A

Foreground Monitor Description

Introduction The monitor program is the interface between the emulation system
controller and the target system. The emulation system controller uses
its own microprocessor to accept and execute emulation, system, and
analysis commands. The emulation processor (the 8086 or 8088)
executes the monitor program.

The monitor program makes possible emulation commands that access
target system resources. (The only way to access target system
resources is through the emulation processor.) For example, when you
enter a command to modify target system memory, the monitor
program executes instructions to write the new values to target system
memory.

When the emulation system controller recognizes that an emulation
command needs to access target system resources, it writes a command
code to a communications area and breaks into the monitor. The
monitor reads this command (and any associated parameters) from the
communications area and executes the appropriate 8086/88 instructions
to access these target system resources.

Breaks into the
Monitor

When a break condition occurs, the emulation processor’s NMI is used
to enter the monitor. The IP, CS, and flag information, normally saved
on the stack during an NMI, are jammed into monitor program storage
locations. (The background portion of the monitor makes no
assumptions about the existence of a stack.)

Emulator Modes
(Foreground,
Background)

The two emulator modes are foreground and background.

Foreground Monitor Description A-1

Foreground

Foreground is the mode in which all emulation processor cycles appear
on the emulation probe, and the emulator executes as if it were a real
8086/8088 microprocessor. In foreground mode, the emulation
microprocessor typically executes out of target system or emulation
memory. (But, it may operate out of memory reserved for the monitor
when a foreground monitor is selected.)

Background

Background is the mode in which instruction execution does not appear
normally on the emulator probe. Background cycles may be visible (on
the emulator probe), or hidden from the target system. But, when
background cycles are visible, they appear as reads. When background
cycles are hidden, the emulator appears to the target system to be in a
suspended state. In background mode, the emulation microprocessor
executes out of memory reserved for the monitor.

Modes in Which the Foreground Monitor Operates

The foreground monitor operates in both background and foreground.
The difference between the foreground monitor and the background
monitor is that when the background monitor is used, all monitor
functions execute in background. When the foreground monitor is
used, the monitor functions execute in foreground. Part of the
foreground monitor executes in background because emulator breaks
always put the emulator in the background mode. The portion of the
foreground monitor that executes in background sets up the IP, CS, and
flags for return to foreground (where execution of monitor functions
takes place).

Other Background Modes

The emulator may be operated in additional modes while in
background. These additional emulator modes can:

Present unmodified cycles (real status) to the target system
(allows the emulator to perform writes to target memory while
in background).

Allow background writes to target system memory.

A-2 Foreground Monitor Description

Allow background reads from target system memory.

These additional modes are set and reset by opcode fetches to special
locations in the monitor area (40H through 7FH). These modes (and the
instructions which set and reset them) are documented in the
foreground monitor listing. The portion of the foreground monitor that
executes in background does not use any of these additional modes.

Listing The foreground monitor is resident in the emulator, and it may be
selected without having to load any code. But, the foreground monitor
comes with the emulator on a floppy disk so that you may customize it,
if necessary. Refer to the floppy disk’s foreground monitor source file
for the latest program listing.

Foreground Monitor Description A-3

Flowchart

A-4 Foreground Monitor Description

Foreground Monitor Description A-5

A-6 Foreground Monitor Description

Foreground Monitor Description A-7

Notes

A-8 Foreground Monitor Description

B

File Format Readers

Introduction Two file format readers come with the 8086/88 PC Interface. The
OMF Reader reads Intel OMF86 files. The HP64000 reader reads
HP64000 absolute file format. Both readers convert the absolute code
and symbol information obtained from the OMF or HP64000 files into
two files that are usable with the HP 64762/3 Emulator. This means
that you can use available language tools to create OMF86 or HP64000
absolute files, then load those files into the emulator using the 8086/88
PC Interface.

The readers can operate from within the PC Interface or as a separate
process. You may need to execute the reader as a separate process if
there is not enough memory on your personal computer to operate the
PC Interface and reader simultaneously. You also can operate the
reader as part of a “make file.”

Note In this appendix, both the HP64000 Reader and the OMF Reader are
called reader unless the information is specific to one of those readers.

What the Reader
Does

The OMF reader takes any OMF86 absolute file in the form
“<file>.<ext>,” and produces two new files, an “absolute” file and an
ASCII symbol file, that will be used by the 8086/88 PC Interface.
These new files are named: “<file>.hpa” and “<file>.hps.” The
HP64000 reader produces the same files, but obtains information from
the .X file (absolute code), .L file (linker symbols) and .A file
(assembler symbols).

File Format Readers B-1

The Absolute File The reader creates an absolute file (<file>.hpa). The absolute file is a
binary memory image optimized for efficient downloading into the
emulator.

The ASCII Symbol
File

The ASCII symbol file (<file>.hps) produced by the reader contains
global symbols, module names, local symbols, and, when using
applicable development tools such as a “C” compiler, program line
numbers. Local symbols evaluate to a fixed (static, not stack relative)
address.

Note You must use the required options for your specific language tools to
include symbolic (“debug”) information in the OMF absolute file or
HP64000 symbol files. The reader will only convert symbol
information that is present in the file.

The symbol file contains symbol and address information in the
following form:

 module_name1
 module_name2
 ...
 module_nameN
global_symbol1 00100:01234
global_symbol2 00100:05678
...
global_symbolN 00100:0ABCD
|module_name|# 1234 00200:00872
|module_name|local_symbol1 00200:00653
|module_name|local_symbol2 00200:00872
...
|module_name|local_symbolN 00200:00986

Each symbol is sorted alphabetically in the order: module names,
global symbols, and local symbols.

Line numbers will appear similar to a local symbol except that
“local_symbolX” will be replaced by “#NNNNN” where NNNNN is a
five digit decimal line number. For the HP64000 format, the addresses

B-2 File Format Readers

associated with global and local symbols are in segment:offset format
(not physical addresses).

Note The PC Interface displays line number symbols in brackets. Therefore,
the symbol “MODNAME:line 345” will be displayed as
“MODNAME:[345]” in mnemonic memory and trace list displays.

The space preceding module names is required. Although formatted for
readability here, a single tab separates symbol and address.

The local symbols obey static scoping rules. This means that to access
a variable named “COUNT” in a function named “Foo” in a source file
module named “main.c,” you would enter “main.c:Foo.COUNT.” See
table B-1.

Table B-1. How to Access Variables

Module Name Function Name Variable Name You Enter:

main.c Foo COUNT main.c:Foo.COUNT

main.c bar COUNT main.c:bar.COUNT

main.c line number 23 main.c: line 23

You enter line number symbols by typing the following on one line in
the order shown:

module name
colon (:)
space
the word “line”
space
the decimal line number

For example:

main.c: line 23

File Format Readers B-3

Location of the
Reader Programs

The readers are installed in the directory named \hp64700\bin by
default, with the PC Interface. This directory must be in the
environment variable PATH for the readers and PC Interface to operate
properly. This is usually defined in the “\autoexec.bat” file.

The following examples assume that you have “\hp64000\bin”
included in your PATH variable. If not, you must supply the directory
name when executing a reader program.

Using a Reader
from MS-DOS

OMF Reader The command name for the OMF Reader is RDOMF86.EXE. To
execute the Reader from the command line, enter:

RDOMF86 [-q] [-u] [-m] <filename>

-q specifies the “quiet” mode. This option suppresses
the display of messages.

-u defeats removal of a leading underscore in the
symbol name (for example, “_symbol"). When
used, a symbol name containing a leading
underscore will be left alone.

-m removes duplicate module names generated by
some construction tools. Some tools enclose all
functions and variables in a module within a block
(or function) whose name is the same as that of the
module (or source file). When you use this option,
the Reader ignores the first enclosing block in a
module if its name matches the module name.

<filename> is the name of the file containing the Intel OMF
absolute program. You can include an extension in
the file name.

B-4 File Format Readers

The following command will create the files “TESTPROG.HPA” and
“TESTPROG.HPS.”

RDOMF86 TESTPROG.ABS

HP64000 Reader The command name for the HP 64000 Reader is RHP64000.EXE. To
execute the Reader from the command line, for example, enter:

RHP64000 [-q] <filename>

-q This option specifies the “quiet” mode, and
suppresses the display of messages.

<filename> This represents the name of the HP 64000 linker
symbol file (file.L) for the absolute file to be loaded.

The following command will create the files “TESTPROG.HPA” and
“TESTPROG.HPS”

RHP64000 TESTPROG.L

Using a Reader
from the PC
Interface

The 8086/88 PC Interface has a file format option under the “Memory
Load” command. After you select OMF86 or HP64000 as the file
format, the appropriate reader will operate on the file you specify.
After this completes successfully, the 8086/88 PC Interface will accept
the absolute and symbol files produced by the Reader.

To use the Reader from the PC Interface:

1. Start up the 8086/88 PC Interface.

2. Map memory (if it isn’t already done by your configuration
file). Then select “Memory Load.” The memory load menu
will appear.

3.

4.

File Format Readers B-5

5. Specify the file format as “OMF86” (default) or “HP64000.”
You can use the Tab and Shift-Tab keys to cycle through the
choices.

6. Select a memory type. You can use the Tab and Shift-Tab
keys to cycle through the choices:

– emulation (loads address ranges mapped to emulation
memory only)

– target (loads address ranges mapped to target memory
only)

– both (loads all address ranges)

7. Specify Y or N for “Force Absolute file Read?” If you select
Y, the OMF or HP64000 file is always read, even if it is older
than the .HPA and .HPS files with the same name.

8. For the Intel OMF format only:

– Select whether leading underscores should be removed
from symbol names found in the absolute file.

– Select whether duplicate module names found in the
absolute should be removed.

9. Specify a filename in the appropriate format.

– For the OMF format, select an OMF absolute file
(“TESTFILE.OMF,” for example). The file extension can
be something other than “.OMF,” but “.HPA,” “.HPT,” or
“.HPS” cannot be used.

– For the HP64000 format, select the linker symbol file
(“TESTFILE.L,” for example). “.HPA,” “.HPT,” or
“.HPS” cannot be used.

Note The “<filename>.HPT” file is a temporary file used by the reader to
process the symbols.

B-6 File Format Readers

Using the file that you specify (TESTFILE.OMF, for example), the PC
Interface does the following:

It checks to see if two files with the same base name and
extensions .HPS and .HPA already exist (for example,
TESTFILE.HPS and TESTFILE.HPA).

If TESTFILE.HPS and TESTFILE.HPA don’t exist, the PC
Interface starts the reader. The new absolute file,
TESTFILE.HPA, is then loaded into the emulator.

If TESTFILE.HPS and TESTFILE.HPA already exist but the
create dates and times are earlier than the .OMF file creation
date/time, the PC Interface has the reader recreate the files.
The new absolute file, TESTFILE.HPA, is then loaded into
the emulator.

If TESTFILE.HPS and TESTFILE.HPA already exist, but the
creation dates and times are later than those for the .OMF file,
the PC Interface does not call the reader. The current absolute
file, TESTFILE.HPA, is then loaded into the emulator.

Note Date/time checking is done only within the PC Interface. When you
run a reader at the MS-DOS command line prompt, it will always
update the absolute and symbol files.

When a reader operates on a file, a status message will be displayed
indicating that the reader is operating and the file type that is being
read. When the reader is finished, another message will be displayed
showing that the absolute file is being loaded.

The PC Interface executes the Reader with the “-q” (quiet) option by
default.

If the Reader Won’t
Run

If your program is very large, the PC Interface may run out of memory
while attempting to create the database file. You need to exit the PC
Interface. Then execute the program at the MS-DOS command prompt
to create the files.

File Format Readers B-7

Including the Reader
in a Make File

You may wish to incorporate the “RDOMF86” or “RHP64000”
process as the last step in your “make file,” or as a step in your code
construction process. Then you won’t need to exit the PC Interface due
to memory space limitations.

B-8 File Format Readers

Index

A absolute files, 2-6
file, B-2
loading, 2-11
storing, 5-4

access width of memory-I/O data, 4-9
algorithm, max segment, 4-6
analysis begin, 2-31
analysis display, 2-31
analysis specification

resetting the, 2-27
saving, 2-29
trigger condition, 2-27

analyzer
features of, 1-3
using the, 2-27

ASCII symbol file (<file>.hps), B-2
assembler symbol files, 2-6, 2-12
assemblers, 2-8
assembling the getting started sample program, 2-6
auxiliary output lines, 3-3

B B_Monitor, memory load option, 4-18
background, 1-4, 4-10, A-2
background cycles, making visible or hidden, 4-4
background modes, additional, A-2
background monitor, 4-10

adding user code, 4-12
loading user code, 4-18
restrictions on user code, 4-12
template for user code, 4-18
things to be aware of, 4-11

BNC connector, 5-1
break command, 2-20, 2-24, 2-37
break conditions, 4-26

Index-1

breakpoints, 1-4
software, 2-24
undefined (software), 2-25

breaks
guarded memory accesses, 2-8
into background, 4-4
into the monitor, 4-10, A-1
on analyzer trigger, 5-3
to access target resources, 4-10
when restricted to real-time, 4-6
writes to ROM, 2-8, 4-7

C cautions
do not use probe without pin extender, 3-2
filenames in the memory store command, 5-5
make sure of auxiliary output pin alignment, 3-3
make sure of emulator probe pin alignment, 3-2
protect emulator against static discharge, 3-2
target power must be OFF when installing probe, 3-2

characterization of memory, 2-8
clock source, 1-3

external, 4-3
internal, 4-3

CMB (coordinated measurement bus), 5-1
enabling interaction, 4-8
execute signal while emulator is reset, 2-37
signals, 5-2

commands (PC Interface), selecting, 2-8
configuration (emulator), 4-1

accessing, 4-2
background cycles to target, 4-4
breaks on writes to ROM, 4-7
emulator clock source, 4-3
enable CMB interaction, 4-8
enable software breakpoints, 4-7
enabling external DMA to emulation memory, 4-25
enabling the internal 8087, 4-24
honor target wait states, 4-4
interrupt vector when 8087 drives INTR, 4-25
loading, 4-27
locating the monitor block, 4-23
max segment algorithm, 4-6

2-Index

configuration (cont’d)
memory-I/O data access width, 4-9
queue status while in background, 4-5
real-time mode, 4-5
selecting driver of 808X INTR, 4-25
selecting the RQ/GT pin for the internal 8087, 4-24
storing, 4-26

configuration options
in-circuit, 3-5

coordinated measurements
break on analyzer trigger, 5-3
definition, 5-1
multiple emulator start/stop, 4-8
run at /EXECUTE, 5-2

copy memory command, 2-36
count, step command, 2-21
customized foreground monitors, 4-23

D data access width, 4-9
device table, emulator, 2-7
displaying the trace, 2-31
DMA access (external) of emulation memory, 1-3
dual in-line package (DIP) probe connector, 3-1
dual-port emulation memory, 4-6

E 8089 I/O coprocessor, 3-3
8087 INT, auxiliary output line, 3-3
electrostatic discharge, 3-2
emulation analyzer, 1-3
emulation memory, 1-3

dual-port, 4-6
external DMA access of, 1-3
RAM and ROM, 2-8
size of, 2-8

emulation monitor
foreground or background, 1-4
See also monitor

emulator (HP 64762/3)
device table, 2-7
features of, 1-1
modes, A-1
probe installation, 3-1

Index-3

emulator (cont’d)
purpose of, 1-1
reset, 2-37
running from target reset, 3-6
status, 2-8
supported microprocessors, 1-1

emulator configuration, 4-1
See also configuration (emulator)

eram, memory characterization, 2-8
erom, memory characterization, 2-8
EXECUTE

CMB signal, 5-2
run at, 5-2

executing programs, 2-23
exiting the PC Interface, 2-37
external analyzer, 1-3
external clock source, 4-3
external DMA access to emulation memory, 1-3

F F_Monitor, memory load option, 4-23
features of the emulator, 1-1
file formats, absolute, 2-11
files

absolute, 2-6
assembler symbol, 2-6, 2-12
linker command, 2-6
linker symbol, 2-7
relocatable, 2-6

find data in memory, 2-23
FLUSH queue status while in background, 4-5
foreground, 1-4, 4-10, A-2
foreground monitor, 4-10, 4-18

description, 4-18
emulator modes used, A-2
flowchart, A-4
listing, A-3
loading a customized monitor, 4-23
things to be aware of, 4-19
using a customized, 4-23

G getting started, 2-1
prerequisites, 2-2

4-Index

global symbols, 2-13
grd, memory characterization, 2-8
guarded memory accesses, 2-8

to vector table area, 4-11, 4-19

H halt instructions
continuing after break to background monitor, 4-12
continuing after break to foreground monitor, 4-19

HP 64000 Reader command (RHP64000.EXE), B-5
HP64000 Reader, B-1

using with PC Interface, B-5
HPTABLES environment variable, 2-7

I I/O data access width, 4-9
in-circuit configuration options, 3-5
in-circuit emulation, 3-1
internal 8087, 1-1
internal clock source, 4-3

L line numbers, 2-32
lines (output), auxiliary, 3-3
linker symbol files, 2-7
linkers, 2-8
linking the getting started sample program, 2-6
load map, 2-8
loading absolute files, 2-11
local symbols, 2-14, B-3
locating the monitor, 4-23
locked, PC Interface exit option, 2-37
logical run address, conversion from physical address to, 4-6

M make file, B-1
mapping memory, 2-8
MAX mode, 808X, 1-3
max segment algorithm, 4-6
memory

copy range, 2-36
data access width, 4-9
displaying in mnemonic format, 2-18
dual-port emulation, 4-6
mapping, 2-8
modifying, 2-22
reassignment of emulation memory blocks, 2-10

Index-5

memory (cont’d)
searching for data, 2-23

memory characterization, 2-8
microprocessors, supported by HP 64762/3 emulators, 1-1
modes, emulator, A-1
monitor

background, 4-10
foreground, 4-10
locating the, 4-23

monitor block, 4-23
monitor program, 4-10

foreground monitor description, A-1
memory reserved for (2K bytes), 2-8
types, 4-10

N NOP queue status while in background, 4-5
notes

absolute file names for stored memory, 5-4
breaks in the foreground monitor, 4-19
CMB interaction enabled on execute command, 4-9
coord. meas. require background monitor, 4-18
date checking only in PC Interface, B-7
displaying complete traces, 2-31
mapper terms deleted when mon. is relocated, 4-23
mapper terms deleted when mon. type is changed, 4-11
reassignment of emul. mem. blocks by mapper, 2-10
register command, 2-20
software bkpt. cmds. while running user code, 2-25
software bkpts. & memory map, 2-11, 2-25, 4-11
software bkpts. not allowed in target ROM, 2-25
software bkpts. only at opcode addresses, 2-24
software bkpts. require stack, 2-24
stepping into a HLT instruction, 4-12
terminal window to modify emul. config., 4-2
use required options to include symbols, B-2

O OMF Reader, B-1
using with PC Interface, B-5

OMF Reader command (rdomf86.exe), B-4
output lines, auxiliary, 3-3

P PC Interface
exiting the, 2-37

6-Index

PC Interface (cont’d)
HP64000 Reader, B-5
OMF Reader, B-5
selecting commands, 2-8
starting the, 2-7

physical run address, conversion to logical run address, 4-6
pin extender, 3-2
prerequisites for getting started, 2-2
probe cable installation, 3-1
purpose of the emulator, 1-1

Q qualifiers, analyzer status, 2-28
queue status, while in background, 4-5

R RAM, mapping emulation or target, 2-8
READY 808X signal, 4-4
READY, CMB signal, 5-2
real-time execution, 1-5, 4-5

commands not allowed during, 4-6
commands which will cause break, 4-6

registers, 1-3
display/modify command, 2-20
names and classes, 5-5

relocatable files, 2-6, 2-8
removing symbols, 2-17
reset (emulator), 1-4, 2-37

running from target reset, 3-6
resetting the analyzer specifications, 2-27
ROM

mapping emulation or target, 2-8
writes to, 2-8

run address, conversion from physical address, 4-6
run at /EXECUTE, 5-2
run from target reset, 3-6
running programs, 2-23

S sample program, description, 2-2
saving analysis specifications, 2-29
searching for data in memory, 2-23
selecting PC Interface commands, 2-8
simple trigger, specifying, 2-27
single-byte interrupt (SBI), 1-4, 2-24

stack required for software breakpoints, 2-24

Index-7

single-step, 1-3
software breakpoints, 2-24

clearing, 2-27
defining (adding), 2-26
displaying, 2-26
enabling, 4-7
foreground monitor operation, 4-19
setting, 2-26

specifications
See analysis specification

stack
using the background monitor, 4-11
using the foreground monitor, 4-19

starting the trace, 2-31
static discharge, protecting the emulator probe against, 3-2
status (analyzer) qualifiers, 2-28
status line, 2-8
step, 2-19

count specification, 2-21
foreground monitor operation, 4-19

symbols
.HPS file format, B-2
local, B-2
removing from the emulator, 2-17
transferring to the emulator, 2-16

SYSTEM RESET, auxiliary output line, 3-3

T target reset, running from, 3-6
target system interface (emulator probe & connector), 1-4
target system RAM and ROM, 2-8
TGT BUF DISABLE, auxiliary output line, 3-3, 4-26
trace

analyzer signals, 2-27
description of listing, 2-32
displaying the, 2-31
starting the, 2-31

tram, memory characterization, 2-8
transferring symbols, 2-16
TRIG1, TRIG2 internal signals, 5-3
trigger, 2-27

breaking into monitor on, 5-3
specifying a simple, 2-27

8-Index

TRIGGER, CMB signal, 5-2
trom, memory characterization, 2-8

U undefined breakpoint, 2-25, 4-8
unlocked, PC Interface exit option, 2-37

V vector table (when using foreground monitors), 4-23
visible background cycles, 4-4

W wait states, allowing the target system to insert, 4-4

Z zoom, window, 2-13, 2-18

Index-9

Notes

10-Index

	Using this Manual
	Contents
	Introduction to the 8086/8088 Emulator
	Getting Started
	In-Circuit Emulation
	Configuring the 8086/88 Emulator
	Using the Emulator
	Foreground Monitor Description
	File Format Readers
	Index

