
HP Branch Validator
for AxLS C

User’s Guide

HP Part No. B1418-97000
Printed in U.S.A.
March 1994

Edition 5

Notice Hewlett-Packard makes no warranty of any kind with regard to
this material, including, but not limited to, the implied warranties
of merchantability and fitness for a particular purpose.
Hewlett-Packard shall not be liable for errors contained herein or for
incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of
its software on equipment that is not furnished by Hewlett-Packard.

 Copyright 1990,1991, 1994 Hewlett-Packard Company.

This document contains proprietary information, which is protected by
copyright. All rights are reserved. No part of this document may be
photocopied, reproduced or translated to another language without the
prior written consent of Hewlett-Packard Company. The information
contained in this document is subject to change without notice.

HP is a trademark of Hewlett-Packard Company.

UNIX (R) is a registered trademark of UNIX System Laboratories Inc.
in the U.S.A. and other countries.

Torx is a registered trademark of Camcar Division of Textron, Inc.

Hewlett-Packard Company
P. O. Box 2197
1900 Garden of the Gods Road
Colorado Springs, CO 80901-2197, U.S.A.

RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure
by the U.S. Government is subject to restrictions as set forth in
subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer
Software Clause in DFARS 252.227-7013. Hewlett-Packard
Company, 3000 Hanover Street, Palo Alto, CA 94304, U.S.A. Rights
for non-DOD U.S. Government Departments and Agencies are as set
forth in FAR 52.227-19 (c) (1,2).

Printing History New editions are complete revisions of the manual. The date on the
title page changes only when a new edition is published.

A software code may be printed before the date; this indicates the
version level of the software product at the time the manual was issued.
Many product updates and fixes do not require manual changes, and
manual corrections may be done without accompanying product
changes. Therefore, do not expect a one-to-one correspondence
between product updates and manual revisions.

Edition 1
Edition 2
Edition 3
Edition 4

B1419-97000, May 1990
B1419-97001, June 1990
B1419-97002, November 1990
B1419-97003, November 1991

Edition 5 B1418-97000, March 1994

Using This Manual

Organization The HP Branch Validator is based on the HP Basis Branch Analyzer
product, which has been encapsulated within the HP SoftBench
Interface. This product can function in the HP SoftBench environment
with an OSF/Motif type interface. In addition, it has the capabilities of
the previous BBA product in that it can operate in a
standard-in/standard-out format. Throughout this manual, the HP
Branch Validator product will be referred to as the BBA.

This manual is designed to show you how to use the BBA to create
valid tests and use them to improve the quality of your product
software. The BBA can be operated through the following three
interfaces: (1) an emulation interface, (2) a debugger interface to an
emulator or simulator, and (3) an emulator or simulator working within
the HP SoftBench environment. This manual provides all of the
information you will need to operate BBA with any one of these three
interfaces.

Chapter 1 Discusses general testing with the BBA. The tests made with the BBA
determine the extent of execution of branches in your source program.
Networked use of the BBA is also discussed in this Chapter.

Chapter 2 Covers use of the BBA with an emulator or a debugger. It describes a
sequence in which the BBA is used to develop a comprehensive test set
to thoroughly test a software routine under development.

Chapter 3 Covers use of the BBA through the HP SoftBench interface. It shows
you how the test sequence performed in Chapter 2 can be performed
more easily by using the capabilities of the HP SoftBench interface.

Chapter 4 Shows you how to use the preprocessing routine to prepare your source
files for testing with the Basis Branch Analyzer. Shows you how to use
the options available to obtain specific information during your test
runs.

Chapter 5 Covers use of BBA with an emulator. It shows you how to use the
command that builds the readable file of branch analysis information,
after you have completed your tests.

Chapter 6 Covers use of BBA with a debugger. It shows you how to use the
command that builds the readable file of branch analysis information,
after you have completed your tests.

Chapter 7 Shows you how to obtain reports of measurement results and use these
to develop a comprehensive test suite during software development.

Chapter 8 Shows you how to eliminate redundancy in dump files to keep your
dump file to its smallest possible size, without losing information.

Chapter 9 Shows you how to create and use Makefiles when using BBA with an
emulator or a debugger. This chapter also discusses regression testing.
Finally, this chapter shows you how to use command files to run
Makefiles and perform automatic regression testing with BBA and an
emulator.

Chapter 10 Provides the details you need to understand to obtain the best possible
usage of BBA within the HP SoftBench interface.

Appendix A Lists each error message that is specific to the use of the Basis Branch
Analyzer, discusses its meaning, and shows you the steps to take to
clear the problem.

Contents

1 General Information

bbacpp . 1-1
BBA Unload . 1-2
bbarep . 1-3
bbamerge . 1-3
bba . 1-3
Compatibility with Operating Systems Software 1-4
Compatibility with HP SoftBench Software 1-4
Compatibility with HP Development System Software 1-5
Networking . 1-6

2 Getting Started Using BBA In An Emulator Or A Debugger
(Walkthrough)

Networked Use Of BBA . 2-2
The Test Program (And Directories) 2-4
The Driver Routine . 2-5
The Makefile . 2-6
Special Requirements Of The HP 64749A Emulator For 68331
And 68332 . 2-10
The Initial Test Set . 2-10
Gathering Data . 2-11
The Default Report . 2-15
The Source-Reference Report 2-19
Avoiding Manual Re-verification Of Known-good Results 2-21
Using Ignore Files . 2-25
Logically Dead Code . 2-27
The Final Report - Net Benefits 2-35

Contents-1

3 Getting Started With The HP Branch Validator (BBA) In The
SoftBench User Interface

Before You Start The HP Branch Validator (BBA) SoftBench User
Interface . 3-3
Starting The Demo With SoftBench 3-4
Starting The Demo Without SoftBench Broadcast Message Server 3-5
The Main Branch Validator Window 3-6

Pull Down Menu Bar . 3-6
Command Buttons . 3-6
Test Report Area . 3-6
Menu Mnemonics . 3-6
Menu Item Accelerators . 3-8
Customizing Mnemonics and Accelerators 3-8

Displaying The Test Reports . 3-8
Details Of The Histogram Display 3-9
Details Of The Summary Report 3-10
Details Of The Results Only Display 3-12
Details Of The File History Report 3-14

Ignoring A File . 3-16
Displaying The Source Of A File Or Function With Unexecuted
Branches Identified . 3-16
Ignoring A Branch . 3-18
Adding A Pragma . 3-19
Printing And Saving The Results 3-20
How To Exit The HP Branch Validator (BBA) SoftBench User
Interface . 3-21

4 Details Of bbacpp

What bbacpp Does . 4-4
Amount Of Code Added . 4-5
Example Of bbacpp’s Operation On A Simple Source File 4-5
Explanation Of Lines In Figure 4-3 4-6
How To Invoke bbacpp . 4-8
Relocating The BBA Constants
(-DBBA_OPTc<constname> Option) 4-10
Relocating The BBA Data Array
(-DBBA_OPTd<dataname> Option 4-11
Details Of How bbacpp Modifies Your Code,
And The -DBBA_OPTO=<options> Options 4-12

2-Contents

Default Instrumenting Of Branches
(No -DBBA_OPTO=<options>) 4-14
Instrumenting Conditional Assignments
(-DBBA_OPTO=a Option) 4-17
Instrumenting Do-While Statements
(-DBBA_OPTO=d Option) 4-18
Instrumenting Case Statements
(-DBBA_OPTO=e Option) 4-18
Instrumenting An If With No Else
 (-DBBA_OPTO=i Option) 4-20
Instrumenting A Switch With No Default
(-DBBA_OPTO=s Option) 4-20
Instrumenting The Third Expression In A For Statement
(-DBBA_OPTO=f Option) 4-21
Detecting A While Loop Always Executed
(-DBBA_OPTO=w Option) 4-22
Using All -DBBA-OPTO Options Together
(-DBBA_OPTO=A Option) 4-22

How (And Why) To Combine -DBBA_OPTO= Options 4-23
Changing The Map File Suffix
(-DBBA_OPTM<character> Option) 4-26
Suppressing Creation Of The Map File
(-DBBA_OPTS Option) . 4-28
What Is A Pragma? . 4-30
Detailed Explanation Of The BBA_IGNORE Pragma 4-30

Why Use Ignore Branches? 4-32
bbarep And BBA_IGNOREd Branches 4-33

Detailed Explanation Of The
BBA_IGNORE_ALWAYS_EXECUTED Pragma 4-34
Detailed Explanation Of The BBA_ALERT Pragma 4-35
Why Use BBA_ALERT . 4-35
Increasing Push-Back-Line Memory
(-DBBA_OPTp<lines> Option) 4-36
Reserved Words (Symbols) . 4-36
Pitfalls With bbacpp And AxLS cc<COMP> 4-37

cc<COMP> -h (emulator only) 4-37
cc<COMP> -s . 4-37
cc<COMP> -u . 4-37
The ASM Pragma Of cc<COMP> 4-38
ccv20 -Q, ccv33 -Q, and cc8086 -Q 4-38

Contents-3

Linking Array And Data Sections 4-39
Pitfalls With bbacpp And MRI Compilers 4-39

5 Details Of bbaunload or Unload_BBA

What BBA Unload Does . 5-1
Read Only If Using M68020, M68030, or M68040 5-4

6 Details Of bbarep

What bbarep Does . 6-4
The BBAPATH Environment Variable 6-5
How To Set BBAPATH . 6-6
Getting A Short Summary Report (-S Option) 6-7
Getting The Default Report (-s Option) 6-8
Getting Line Numbers In The Report (-l Option) 6-9
Explanation Lines For -l, -bN, And -aN Options 6-12
Showing Lines Before The Unexecuted Line (-bN Option) . . . 6-17
Showing Lines After The Unexecuted Line (-aN Option) 6-19
Details Of Actions When -bN And -aN Options Are Combined . 6-21
Showing Character Positions In The Report (-p Option) 6-22
Ignoring By Use Of The -i<ignorefile> Option 6-23

How To Ignore All Functions In A File 6-24
How To Ignore A Function 6-24
How To Ignore All Branches Generated By A Macro . . . 6-25
How To Ignore All Branches Controlled By A Specific
Statement . 6-26

Selecting The Report Content With The -u <usefile> Option . . . 6-31
Getting Reports From Other Dump Files (-d <file> Option) . . . 6-32
How To Obtain Separate Reports Per Test Suite, And Then
Combine Them . 6-32
Specifying Spaces In A Tab (-e <tabs> Option) 6-33
Getting Reports That Include Older Dump Data (-o Option) . . . 6-34
Suppressing Footnotes In Reports (-F Option) 6-35
Ignoring Branches In Include Files (-I option) 6-35
Appending Additional Information To Reports (-D[fvt] Option) . 6-36

Listing Totals (-Dt Option) 6-36
Listing Files (-Df Option) 6-37
Listing Version Numbers (-Dv Option) 6-39

4-Contents

7 Details Of bbamerge

What bbamerge Does . 7-1
When To Use bbamerge . 7-3

8 Tips On More Effective Testing Using BBA

 Makefiles (make) . 8-1
Makefile Without Branch-Analysis Capability 8-3
Makefile With Simple Branch-Analysis Capabilities 8-6
Makefile With And Without Branch-Analysis Capabilities . 8-7
Automatic Makefile With And Without BBA 8-10
Automatic/Efficient Makefile With And Without BBA . . 8-12

Automatic Regression Testing 8-14
Detailed Example Of Automatic Regression Testing 8-16
Scripts to Run Emulator Command Files 8-17
Makefile To Run Emulator Command Files 8-19
Advantages Of Automatic Regression Testing 8-20

9 Details Of The HP Branch Validator (BBA) In The HP SoftBench
Interface

Customizing The HP Branch Validator 9-1
Details About The .bbarc File . 9-3

Options Controlling General BBA Operation 9-3
Special BBA Options And Their Default Values 9-4
BBA Options Used By The Actions Pull Down Menu 9-7
Options Used When Not Using HP SoftBench Broadcast
Message Server . 9-10

Before Starting BBA . 9-11
Starting BBA And Using The SoftBench Broadcast Message
Server . 9-12

Invoking BBA From The Command Line 9-12
Starting From The Tool Manager 9-12

Starting BBA, But Not Using The SoftBench Broadcast Message
Server . 9-13
Using The Four Test Report Displays 9-14

The Summary Test Report 9-14
The Histogram Test Report 9-15
The Results Only Test Report 9-15
The File History Test Report 9-15

The BBAPATH Environment Variable 9-16
How To Display Source Files 9-16

Contents-5

Ignoring A Branch In The Source Window 9-17
Exiting The Source Files Display 9-20

Selecting A Set Of Active Files And Functions To Appear In
Test Reports . 9-21
Displaying Error And Warning Messages 9-22
How To Ignore A File, Function, Or Branch 9-22
Adding Pragmas . 9-25
Using Build . 9-27
How To Control A Run Of Your Test 9-29
Accessing A File To Edit . 9-30
Using Print And Save . 9-31
Setting The Dump Data File And Retaining Old Data 9-32
Using Help . 9-33
Exiting BBA . 9-33
Restrictions When Using The HP Branch Validator (BBA) In
The HP SoftBench Interface . 9-34

A Error And Warning Messages

bbacpp Messages . A-2
BBA Unload Messages . A-10
bbarep Messages . A-13

B Installing The HP Branch Validator

Installation On HPUX Systems . B-1
Installation On SUN Sparc Systems With SunOS 4.X B-2
Installation On SUN Sparc Systems With SunOS 5.X (Solaris) . . . B-2

6-Contents

1

General Information

Introduction The quality of your product is directly related to the extent that you
tested your product. The Hewlett-Packard Branch Validator (called
BBA) is a software tool you can use to analyze your testing, create
more complete test suites, and quantify your level of testing.

This chapter gives an overview of testing using the BBA. The tests
made with the BBA determine the extent of execution of the branches
in your source program. Branches are optional paths in a source
program.

By doing branch analysis on the example in figure 1-1, you can obtain
a record showing which (if either, or both) of the two possible branches
were taken during any execution of the example program.

To do branch analysis testing, a BBA array must be defined and BBA
statements must be inserted in your source code file(s) before the
corresponding executable file is generated. See figure 1-2. These are
inserted automatically by a BBA preprocessor routine (called bbacpp).

bbacpp The first step in a typical compiler sequence is to submit the source file
to a "C" language preprocessor. This preprocessor performs tasks to
get the file ready for parsing by the compiler, such as "including" files
specified by the "# include" commands, and the processing of "# ifdef"
statements. The BBA uses a special "C" language preprocessor (called
bbacpp) that is substituted for the normal "C" language preprocessor.
This special "bbacpp" preprocessor does everything that the normal
preprocessor does, and additionally, it inserts array definitions and
BBA statements in the source file to record which branches were
executed in the file. Bbacpp also creates a "map file", which contains

General Information 1-1

information necessary to map a specific branch with the associated
source file.

When you run your executable file, the BBA statements write to the
arrays to keep track of which branches were executed.

BBA Unload When you have run your program as many times as you want, you can
use the BBA unload command (bbaunload in the emulator or
Unload_BBA in the debugger) to gather the data into an appropriate
file for interpretation. You issue this command while still in your
emulation or debugger session. This command unloads the data in the
BBA arrays and stores it in a file called "bbadump.data". The
"bbadump.data" file is formatted to be read by the routine that
generates reports of branch analysis information ("bbarep").

if (statement)

 statement 1; /* branch 1 */

else

 statement 2; /* branch 2 */

Figure 1-1. Source Program Without BBA Statements

static short _bA_array[23];

if (statement)

 { _bA_array[1]=1;statement 1; }

else

 { _bA_array[2]=1;statement 2; }

Figure 1-2. Source Program With BBA Statements Added

1-2 General Information

bbarep Now you obtain test reports by running "bbarep" from the shell. The
bbarep command offers several options to generate reports based on
the data contained in the "bbadump.data" file. You can use "bbarep" to
derive information in a variety of report formats, each designed to give
you a specific kind of information about the execution of your
program. For example, you can measure the percentage of your
program’s branches that were executed during your series of tests. You
can identify all of the branches that were not executed so that you can
write additional tests to execute those branches. By this method, you
can also identify unnecessary branches (if any) in your program.

bbamerge The bbamerge routine can take large bbadump.data files and compress
their information into smaller "bbadump.data" files. By using
"bbamerge", you can reduce the overall execution time of a "bbarep"
when you are running "bbarep" several times on a large
"bbadump.data" file. You can also use bbamerge to recover some disk
space when you are storing large "bbadump.data" files.

bba BBA is a SoftBench tool that provides a complete environment in
which to do basis branch analysis. It is an interactive, mouse-driven
tool that helps you rapidly determine which branches of a program
have not been taken. With the missed branches identified, you can
modify your regression tests to take those branches (or choose to
ignore the missed branches) to improve the percentages on your final
branch coverage report.

BBA primarily uses bbarep and the SoftBench Encapsulator to produce
the following types of output:

Branch coverage summaries, illustrating file and function
coverage.
Branch coverage histogram for all functions.
Source of file or function, with missed branches indicated and
explained.

General Information 1-3

Branch coverage file history, indicating the file dates and
bbacpp options under which they were compiled.
Results only summary, indicating total files, functions,
branches, and coverage percents.
List of the files and functions used to produce the final report.

Compatibility with
Operating
Systems Software

To use HP Branch Validator (BBA) on HP-UX systems, you must have
an HP-UX operating system with software version number 8.0 (or
higher).

To use HP Branch Validator on Sun SPARCstations, you must have
SunOS Release 4.1 (or higher), and Sun OpenWindows 2.0 (or higher).

Compatibility with
HP SoftBench
Software

To use HP SoftBench and HP Branch Validator together on HP-UX
systems, you must have similar versions of HP SoftBench and HP
Branch Validator. This version of the HP Branch Validator software
will work with HP Softbench version A.02.XX or B.00.XX or higher.

If you have a software version number of HP SoftBench that does not
meet the requirements listed above, contact your HP Sales/Service
Office for an update of your HP SoftBench Software.

If you do not have HP SoftBench, the SoftBench-style interface
described in this manual will still operate, but in a slightly limited
manner (discussed later in this manual).

1-4 General Information

Compatibility with
HP Development
System Software

The HP Branch Validator (BBA) will operate properly when it is used
with an HP AxLS C compiler, HP emulator and/or HP debugger. In
general, the HP Branch Validator will work with all HP AxLS C
compilers with revision codes of A.03.10, or greater.

In addition, the HP Branch Validator will work with MRI compilers.
In particular, it has been tested with the following MRI compilers:

MRI Compiler Version

mcc68k
mcc86
ccc68k
mcc960

4.3A
2.2A
1.1
2.2

General Information 1-5

Networking The HP Branch Validator (BBA) is supported over a network where
software development is done on one host and emulation or debugger
operation is done on another. Consult the manual "Networking
HP64000 Software Development and Execution Environments" for
details. This manual is supplied with the compiler manual for your HP
AxLS C compiler, and with the assembler manual for your assembler.

If BBA is networked with an emulator or debugger on another host,
the following files must be moved before operation:

1. One file must be moved from the software development host
which hosts BBA to the emulator/debugger host. It is the
bbacpp.spec file that is specific to your emulator/debugger.
You will find its file name in table 1-1. Move this file once,
before you start to use BBA. System priviledges are required.

2. One file must be moved from the emulator/debugger host to
the software development host. It is the file: bbadump.data.
The "bbadump.data" file must be moved each time new test
results are to be analyzed.

Emulator In Use Name Of File To Be Moved To Emulation Host

68000/302
68020
68030
68040
68332/340/360
8086-Series
80960-Series
V20-Series
V33-Series

$HP64000/lib/68000/bbacpp.spec
$HP64000/lib/68020/bbacpp.spec
$HP64000/lib/68030/bbacpp.spec
$HP64000/lib/68040/bbacpp.spec
$HP64000/lib/68332/bbacpp.spec
$HP64000/lib/8086/bbacpp.spec
$HP64000/lib/80960/bbacpp.spec
$HP64000/lib/v20/bbacpp.spec
$HP64000/lib/v33/bbacpp.spec

Table 1-1. List Of bbacpp.spec Files

1-6 General Information

2

Getting Started Using BBA In An Emulator Or A
Debugger (Walkthrough)

Introduction Frank Wiz is working on a routine. He is designing it to read two
hardware registers that reflect which lines are down on a 5X5 grid of
buttons, and map that information into a keycode reflecting which
button was pressed. In this chapter, we will watch Frank create a
test-set to thoroughly test that routine.

The files used in this chapter can be found in the directory named
$HP64000/demo/bba/demo1. In that directory are several
sub-directories (e.g., start, mod1, etc.) that show the program and
test-set data in several stages of development. To read a more complete
description of the problem, see the introductory comments in the file
$HP64000/demo/bba/demo1/start/getkey.c.

In this chapter you will see examples of:

1. A quick ’driver’ program to test a function.

2. A Makefile to compile programs either for branch analysis or
regular execution.

3. Several different bbarep reports, showing when each is useful.

4. How to use BBA_IGNORE pragmas.

5. How to extend test-set data based on the coverage information.

6. How to avoid manual re-verification of known-good results.

7. How to use ignore files.

Getting Started (BBA/Emulator Walkthrough) 2-1

Note Make sure your current PATH variable includes the path to the
hp64000/bin directory. Typically, this is /usr/hp64000/bin or
/opt/hp64000/bin.

Networked Use Of
BBA

Follow the instructions in this paragraph only if you are using an
emulator in a networked system, such as shown in figure 2-1. If you
are using an emulator but not in a networked system (if your software
host and emulation host are the same, or your emulator is on the LAN),
skip this paragraph, and go directly to the paragraph titled, The Test
Program (And Directories).

If you are using a networked system, you must have a login on both the
software development host (SW host) and the emulation host (HW
host). Both hosts must be running Networked File Services (NFS) for
this walkthrough to work as presented. This walkthrough assumes you
have logged in to the HW host.

LAN

Mount

 Software

Development

 Host

 (SW Host)

 Emulation

 Host

 (HW Host)

 Emulator

Figure 2-1. Networking Block Diagram

2-2 Getting Started (BBA/Emulator Walkthrough)

The system administrator for your networked system must enter the
following commands from the HW host:

1. Make a home directory for the special BBA file on the HW
host:

$mkdir $HP64000/lib/<emulator>

2. Copy special BBA file (listed in table 2-1) to the HW host:

$rcp <SW_host>:/<bbaspec file from table 2-1>
 $HP64000/lib/<emulator>/bbacpp.spec

3. Have "Root" on the SW host export the home_directory, and
mount your files on the HW host.

4. Run this walkthrough from the HW Host.

Note Rcp(1) is a Berkeley service.
Mount(1), as it is used here, is an NFS service.
Refer to the appropriate UNIX system manual for details of
administration and usage.

Emulator In Use Name Of File To Be Moved To HW Host

68000/302
68020
68030
68040
68332/340/360
8086-Series
80960-Series
V20-Series
V33-Series

$HP64000/lib/68000/bbacpp.spec
$HP64000/lib/68020/bbacpp.spec
$HP64000/lib/68030/bbacpp.spec
$HP64000/lib/68040/bbacpp.spec
$HP64000/lib/68332/bbacpp.spec
$HP64000/lib/8086/bbacpp.spec
$HP64000/lib/80960/bbacpp.spec
$HP64000/lib/v20/bbacpp.spec
$HP64000/lib/v33/bbacpp.spec

Table 2-1. List Of bbacpp.spec Files

Getting Started (BBA/Emulator Walkthrough) 2-3

The Test Program
(And Directories)

Command lines beginning with the shell prompt "$" are commands that
you are to type into the shell during this demonstration. Command lines
that do not begin with the "$" prompt are to be typed into the emulator
or debugger command line.

If you would like to follow along with this chapter, create an empty
directory and copy all of the files from the directory
$HP64000/demo/bba/demo1/start to your empty directory. Adapt the
commands shown in figure 2-2 to copy the files to your empty
directory.

Note that each subdirectory of $HP64000/demo/bba/demo1 has all of
the files instead of just the files that change from the "previous"
subdirectory. This is a convenience in case you want to jump to the
middle of this walkthrough. At the beginning of each section, a
comment will tell you which files should be copied to your current
directory, if you want to start at the beginning of that section (if you do
that, some warning messages may be different from those shown in this
manual).

Edit "Makefile.old" and "Makefile" to specify the correct compiler
invocations (CC=) and emulation environment (ENVFLAG=). If you
start somewhere in the middle of these procedures, make sure you edit
"CC=" and "ENVFLAG=" in the Makefile in the directory where you
begin. Instructions for editing these parameters are contained in the
text of Makefile.

Figures 2-3 and 2-4 show how the Makefile will appear after editing is
complete.

$ cd # go to your home directory

$ mkdir examples # make an empty directory

$ cd examples # go to the empty directory

$ cp $HP64000/demo/bba/demo1/start/* . # copy all files

Figure 2-2. Initial Setup For Walkthrough

2-4 Getting Started (BBA/Emulator Walkthrough)

Note The makefiles supplied for this demonstration procedure contain
instructions for modifying the emulation environment file
"ENVFLAG=" when the HP Branch Validator is used on an emulator
or a debugger/emulator.

The Driver Routine (We are using the files in the directory named
$HP64000/demo/bba/demo1/start).

Sometimes it is useful to have a ’driver’ routine to help when testing a
function. A ’driver’ routine is a program that fetches input (in a
friendly way!) from a test-set (file), sends that data to a function (or
functions) that you want to test, and then presents the results in such a
way as to make it easy to decide whether or not the tested functions
passed or failed the tests.

The driver routine in this example is in the file named "driver.c".

File "driver.c" creates a main() routine so we can use the default linker
command file. We will not have to bother with creating a new linker
command file. (Remember, this is to be used for testing, so the less
time we have to spend here, the better. On the other hand, in many
cases the ability to quickly tell if a test has passed or failed is
important, so the test program may become quite elaborate - it just
depends on the circumstances.)

This driver routine takes input from a file on the host system (via
Simulated I/O), and sends the results to another file (again via
Simulated I/O). This is a typical test method - it makes it easy to re-run
the tests later when the program has been modified. You’ll see this
used later in this chapter.

This driver opens a file named "input" and sends the output to a file
named "output". Both "input" and "output" are files located in the
directory where the emulator or debugger is running.

Getting Started (BBA/Emulator Walkthrough) 2-5

The Makefile (We are still using the files in the directory named
$HP64000/demo/bba/demo1/start.)

The UNIX program "make" is an indispensable aid to program
development. Properly used, it will track changes made to source files
and compile, assemble, and link only those files that need it (e.g., if
you have 500 source files and modify only three of them, only the three
modified files will be re-compiled and assembled, and then all 500 will
be linked together to form your executable. This is quite a timesaver
over always having to compile all files, and it is a lot safer than trying
to remember exactly which files you changed!)

"Make" uses a description file (typically named "Makefile") to
determine which source files are needed to create the executable. When
Frank started out (i.e., before he wanted to use the BBA to help him
test his routine), his Makefile looked like the one shown in figure 2-3
(also called "Makefile.old" in the directory
$HP64000/demo/bba/demo1/start).

2-6 Getting Started (BBA/Emulator Walkthrough)

Example Makefile
#
Target Action
runtest creates test program (runtest)
#
Specify the appropriate compiler CC=ccXXXXX
CC=cc68000
Use CC=cc68000 if using a 68000, or 68302 processor.
Change to CC=cc68020 if using a 68020 processor.
Change to CC=cc68030 if using a 68030 processor.
Change to CC=cc68040 if using a 68040 processor.
Change to CC=cc68332 if using a 68332, 68340, or 68360 processor.
Change to CC=cc8086 if using an 8086-Series processor.
Change to CC=ccv20 if using a V20-Series processor.
Change to CC=ccv33 if using a V33-Series processor.
#
Specify the environment variable (ENVFLAG) according to your emulator
ENVFLAG=-r hp64742
See your compiler user’s guide for the correct value
A few of the values are listed below:
Change to ENVFLAG="-r hp64742" if using a 68000 emulator
Change to ENVFLAG="-r hp64746" if using a 68302 emulator
Change to ENVFLAG="-r hp64748" if using a 68020 emulator
Change to ENVFLAG="-r hp64747" if using a 68030 emulator
Change to ENVFLAG="-r hp64749A" if using a 68332A emulator
Change to ENVFLAG="-r hp64749B" if using a 68332B emulator
Change to ENVFLAG="-r hp64751" if using a 68340 emulator
Change to ENVFLAG="-r hp64780" if using a 68360 emulator
#

CFLAGS= -gw $(ENVFLAG)
SHELL=/bin/sh

Source files
CSRC = convert.c driver.c getkey.c multibits.c
Object files
COBJ = $(CSRC:.c=.o)

Main target. Create a program to test the ’getkey.c’ file.
runtest : $(COBJ)
 $(CC) $(CFLAGS) -o runtest $(COBJ)

.SUFFIXES: .o .c

.c.o: $*.c
 $(CC) $(CFLAGS) -c $*.c

Figure 2-3. Makefile Without Branch Analysis Additions

Getting Started (BBA/Emulator Walkthrough) 2-7

Frank wants to be able to switch quickly between normal compilation
and compilation with BBA. He changes the Makefile so that it has two
targets: runtest, and bbatest, shown in figure 2-4.

Note Frank has chosen one of the fancier options for modifying his
Makefile. The paragraph on MAKEFILES in Chapter 8 shows simpler
changes he might have made.

The Makefile shown in figure 2-4 (which is the file "Makefile") will
automatically remember if the programs were last compiled with or
without BBA statements, so it is totally automatic (which Frank thinks
is a great idea!).

Example Makefile
#
Target Action
runtest creates test program (runtest) w/o bba
bbatest creates test program (bbatest) w/bba
#
NOTE: The file .NORMAL is present if the last compile did not use bba.
The file .BBA is present if the last compile did use bba.
#
Specify the appropriate compiler CC=ccXXXXX
CC=cc68000
Use CC=cc68000 if using a 68000, or 68302 processor.
Change to CC=cc68020 if using a 68020 processor.
Change to CC=cc68030 if using a 68030 processor.
Change to CC=cc68040 if using a 68040 processor.
Change to CC=cc68332 if using a 68332, 68340, or 68360 processor.
Change to CC=cc8086 if using an 8086-Series processor.
Change to CC=ccv20 if using a V20-Series processor.
Change to CC=ccv33 if using a V33-Series processor.
#

Figure 2-4. Makefile With Branch Analysis Added

2-8 Getting Started (BBA/Emulator Walkthrough)

Specify the environment variable (ENVFLAG) according to your emulator
ENVFLAG=-r hp64742
See your compiler user’s guide for the correct value
A few of the values are listed below:
Change to ENVFLAG="-r hp64742" if using a 68000 emulator
Change to ENVFLAG="-r hp64746" if using a 68302 emulator
Change to ENVFLAG="-r hp64748" if using a 68020 emulator
Change to ENVFLAG="-r hp64747" if using a 68030 emulator
Change to ENVFLAG="-r hp64749A" if using a 68332A emulator
Change to ENVFLAG="-r hp64749B" if using a 68332B emulator
Change to ENVFLAG="-r hp64751" if using a 68340 emulator
Change to ENVFLAG="-r hp64780" if using a 68360 emulator
#

BBACMD= -b
BBAOPT= -DBBA_OPTO=A
CFLAGS= -gw $(ENVFLAG)
SHELL=/bin/sh

Source files
CSRC = convert.c driver.c getkey.c multibits.c
Object files
COBJ = $(CSRC:.c=.o)

Normal make
First check to see if the last time we compiled we
used bba. If so, delete the object files and remind
ourselves that we are compiling without bba.
runtest ::
 -if [! -f .NORMAL] ; then rm $(COBJ) .BBA; touch .NORMAL; fi

Now compile any out-of-date object files
runtest :: $(COBJ)
 # link the object files into the file ’runtest’
 $(CC) $(CFLAGS) -o runtest $(COBJ)

BBA make
If last time we compiled without bba remove all .o files;
then compile any out-of-date files.
Note that making runobjs forces all sources to be compiled with
BBA options.
bbatest ::
 -if [! -f .BBA] ; then rm $(COBJ) .NORMAL; touch .BBA; fi
 $(MAKE) CFLAGS="$(CFLAGS) $(BBACMD) $(BBAOPT)" CC="$(CC)" runobjs

bbatest :: $(COBJ)
 $(CC) $(CFLAGS) -o bbatest $(COBJ)

runobjs : $(COBJ)
 touch runobjs

.SUFFIXES: .o .c

.c.o: $*.c
 $(CC) $(CFLAGS) -c $*.c

Figure 2-4. Makefile With Branch Analysis Added (Cont)

Getting Started (BBA/Emulator Walkthrough) 2-9

Special
Requirements Of
The HP 64749A
Emulator For
68331 And 68332

The HP 64749A emulator for the 68331 and 68332 processors has no
emulation memory. All of the BBA software must be loaded into your
target system memory (it will occupy about 40K of target system
memory). In order to use the HP 64749A emulator, you will need to
create your own linker command file (.k) to allocate target system
memory. For an example linker command file, refer to [io]linkcom.k
in the directory $HP64000/env/hp64749A. This example linker
command file was written for use in a system with 64k of target system
memory beginning at address 0.

You will also need to edit the Makefile (figure 2-4). The ENVFLAG
entry in Makefile is ignored when you modify "CFLAGS" so that it
envokes the correct options for the HP 64749A Emulator. Edit
Makefile to change CFLAGS to:

CFLAGS= -gw -k<your linker command ".k" file name>

The Initial Test Set (For this section, we are still using the files in directory
$HP64000/demo/bba/demo1/start.)

For Frank’s first attempt at a test-set, he decides to try the equivalent of
hitting all of the buttons in the first column, and all of the buttons on
the first row. (He knows this will cause the function to have been run
with all bits set in both "horiz" and "vert".) Because our driver program
reads the file named "input", this is shown as "input" in the "start"
directory. See figure 2-5.

2-10 Getting Started (BBA/Emulator Walkthrough)

Gathering Data (For this section, we are still using the files in directory
$HP64000/demo/bba/demo1/start.)

To gather the branch analysis data for this first set of test data, Frank
does the procedure shown in figure 2-6. (If you are following along,
you should do the numbered instructions in figure 2-6, also.) Don’t be
alarmed if some of the "rm" commands invoke messages about
non-existent files; it just means we attempted to remove a file that
wasn’t there, as a precaution).

As you do these procedures, you may see warning messages about
/bbatest.Ys/bldmessages.WY. Ignore these warning messages, also.

 1,1
 2,1
 4,1
 8,1
 16,1
 1,2
 1,4
 1,8
 1,16

Figure 2-5. The First Test-Set Data

1.Make the absolute file that is tooled for branch analysis:

$ make bbatest

2.Delete any data left over from earlier BBA tests by using the
command:

$ rm bbadump.data

Figure 2-6. Instructions List #1

Getting Started (BBA/Emulator Walkthrough) 2-11

3.Copy the emulation configuration file for your processor from
the appropriate "/env" directory to your current directory. Use
a command like:
$cp $HP64000/env/hp<emulator number>/ioconfig.EA .

Where <emulator number> is the HP product number of
your emulator.

For example, if you have a 68020 emulator, use the command:
$cp $HP64000/env/hp64748/ioconfig.EA .

The configuration file assumes the monitor you linked in
supports simulated I/O, and the program can be loaded into
the emulator without problems (i.e., the memory map in the
emulator is correct).

4.If networked, login to the HW host and access the "examples"
directory:

$rlogin <HW_host>
$cd examples

5.Start the emulator interface or debugger interface by using the
appropriate command, listed below:

emul700 <logical_name> (if starting an emulator)

dbxxxxx -e <logical_name> (if starting a debugger)

Where <logical_name> is the logical emulator name in the
HP 64700 device table file ($HP64000/etc/64700tab.net),
and dbxxxxx is the debugger invocation (examples: db68k,
db86, db80960).

Figure 2-6. Instructions List #1 (Cont’d)

2-12 Getting Started (BBA/Emulator Walkthrough)

6.Load the emulation configuration by using the following
command:

File→Load→Emulator Config...

Select your file .../ioconfig.EA in the dialog box, and press
OK.

7.Load the program into memory using the command:

File→Load→Executable...

Select your file .../bbatest.x in the dialog box, and press OK.

(Ignore any warnings about duplicate symbols)

8.Run the program using the command:

Execution→Run→from Transfer Address

9.When the program finishes (Prog end, returned 0 appears),
Frank unloads the Branch Validator data using the command:

File→Store→BBA Data...

Enter the name of the BBA Dump file bbadump.data in the
dialog box and press OK.

Figure 2-6. Instructions List #1 (Cont’d)

Getting Started (BBA/Emulator Walkthrough) 2-13

Then Mr. Frank G. W. looks at the output file which was created when
the testing program ran. He wants to see if the output is correct. The
output file looks like figure 2-7.

To do this, he opens a terminal window and then within the terminal
window, he displays the output file:

File→Term...

$ more output

As Frank looks through the data shown in figure 2-7, he sees that, yes,
"1,1" should indeed return a "10" (because "10" is the keycode for the
"a" key, as shown in keymap.h), and that "2,1" returns keycode "11"
correctly, and so on.

Frank leaves the terminal window open. That is where he will get his
reports.

 (1, 1) -> 10

 (2, 1) -> 11

 (4, 1) -> 12

 (8, 1) -> 13

 (16, 1) -> 14

 (1, 2) -> 15

 (1, 4) -> 1

 (1, 8) -> 6

 (1, 16) -> 20

Figure 2-7. "output" File Using First Test-Set Data

2-14 Getting Started (BBA/Emulator Walkthrough)

The Default Report (In this part of the procedure, we are still using the files in
$HP64000/demo/bba/demo1/start.)

Reassured that the function took the test data correctly, Frank now
runs the "bbarep" program within the terminal window by entering the
following command:

$ bbarep

He wants to focus on functions that are only lightly tested, so he selects
the default output (shown in figure 2-8).

_hit___total____%____IA____function____________file_____________

 8 / 12 (66.67) keyconvert convert.c

 6 / 9 (66.67) bitpos convert.c

 0 / 1 (0.00) error driver.c

 3 / 5 (60.00) getkeyvalue getkey.c

 5 / 7 (71.43) twobits multibits.c

22 out of 34 retained branches executed (64.71%)

[23 branches were ignored]

Figure 2-8. Default Branch Analysis Output

Getting Started (BBA/Emulator Walkthrough) 2-15

The first thing that Frank notices is that a function from his driver
program (error) was included in the report. Frank doesn’t care about
testing his driver program. The appearance of this function annoys him
so he goes into his driver.c program and adds a BBA_IGNORE pragma
in error so it won’t show up in the report anymore. (Chapter 4
explains the use of the BBA_IGNORE pragma.) Frank had
remembered to do that for his other routines, but he forgot it for this
one.

If you are following along, this change is reflected in the driver.c file
found in the directory $HP64000/demo/bba/demo1/mod1. Copy the
file "driver.c" from that directory to your current directory by using the
following command within the terminal window:

 $ cp $HP64000/demo/bba/demo1/mod1/driver.c .

Then Frank reruns his tests as shown in figure 2-9.

2-16 Getting Started (BBA/Emulator Walkthrough)

1.Within the terminal window, make new version of program
tooled for branch analysis:

$ make bbatest

2.Within the emulator or debugger interface, load the new
absolute file:

File→Load→Executable...

Select your file .../bbatest.x in the dialog box, and press OK.

(Ignore any warnings about duplicate symbols)

3.Run the program using the command:

Execution→Run→from Transfer Address

4.When the program finishes (Prog end, returned 0 appears),
Frank unloads the Branch Validator data using the command:

File→Store→BBA Data...

Enter the name of the BBA Dump file bbadump.data in the
dialog box and press OK.

5.From within the terminal window, Frank gets another default
report with the command:

 $ bbarep

Figure 2-9. Instructions List #2

Getting Started (BBA/Emulator Walkthrough) 2-17

The output of the bbarep command is shown in figure 2-10.

Oh yes, Frank remembers, he forgot to remove the old branch analysis
data (bbadump.data) before he ran the new version. Therefore, the
report generator warned him that it was ignoring some data from an
old version of the driver. No problem - Frank doesn’t care about the
data from driver.c, anyway.

bbarep: warning: skipping data from older version of file driver.c

date of skipped file is 10/05/1987 12:46

_hit___total____%____IA____function____________file_____________

 8 / 12 (66.67) keyconvert convert.c

 6 / 9 (66.67) bitpos convert.c

 3 / 5 (60.00) getkeyvalue getkey.c

 5 / 7 (71.43) twobits multibits.c

22 out of 33 retained branches executed (66.67%)

[24 branches were ignored]

Figure 2-10. Default Branch Analysis Output #2

2-18 Getting Started (BBA/Emulator Walkthrough)

The
Source-Reference
Report

(Now we are using the files from $HP64000/demo/bba/demo1/mod1.)

The next item that catches Frank’s eye is that the function
’getkeyvalue’ has a rather low coverage (60%). Frank decides to do a
better job of testing ’getkeyvalue’. To find out which branches were
not hit during the test, Frank gets a source-reference listing of
getkeyvalue. Frank likes to see four lines before the control statement,
and four lines after the first non-executed statement, so he uses the
following command and gets the output shown in figure 2-11.

$ bbarep -a4 -b4 getkeyvalue # Frank’s command

"Well", says Frank, "I guess I should test the conditions of no bits set in
either horiz or vert, as well as the case of multiple bits set." He
modifies the file "input" by adding the lines shown in figure 2-12. His
modifications are reflected in the file
$HP64000/demo/bba/demo1/mod2/input;
to get it, use a command like:

$ cp $HP64000/demo/bba/demo1/mod2/input .

"Wait a minute!", Frank says. "If I rerun the test with the new data,
it’ll re-write the file ’output’, and I’ll have to re-verify the first nine
sets of data! Isn’t there some way around that?"

(The way around this extra work is discussed in the next paragraph.)

Getting Started (BBA/Emulator Walkthrough) 2-19

bbarep: warning: skipping data from older version of file driver.c
date of skipped file is 10/05/1987 09:05

getkeyvalue getkey.c
 (1) ’then’ part of ’if’ was never executed
49 {
50 int keycode; /* keycode we will return */
51
52 /* First test: if both horiz and vert are 0, just return KEY_NONE */
53 if ((horiz == 0) && (vert == 0))
54 {
55 -> return(KEY_NONE);
56 }
57
58 /* Second: if more than one key pressed, return an error */
59 if ((twobits(horiz) != 0) || (twobits(vert) != 0))

 (1) ’then’ part of ’if’ was never executed
55 return(KEY_NONE);
56 }
57
58 /* Second: if more than one key pressed, return an error */
59 if ((twobits(horiz) != 0) || (twobits(vert) != 0))
60 -> return(KEY_NONE);
61
62 /* Do the conversion! */
63 keycode = keyconvert(horiz, vert);
64

3 out of 5 branches executed (60.00%)

Figure 2-11. Source-Reference Branch Analysis Output

 0,0

 3,1

 2,7

Figure 2-12. First Additions To "input" File

2-20 Getting Started (BBA/Emulator Walkthrough)

Avoiding Manual
Re-verification Of
Known-good
Results

(We are using the files in directory
$HP64000/demo/bba/demo1/mod2.)

When a test is run on a set of test data, the output is checked
(manually) to make sure it is correct (i.e., the test-set "passed").
Wouldn’t it be nice to never have to manually check that test-set’s
output again? After all, if you have a lot of output to check, you might
easily miss a significant error.

UNIX helps again. There is a program (called ’diff’) that will show
differences between two ASCII files.

Frank uses the following command to copy the current "output" file
(which contains data that he knows is OK) to a file he calls
"output.good":

$ cp output output.good

Then Frank re-runs the tests by using the sequence of instructions in
figure 2-13.

1.Remove the current dump data file (to avoid those nasty
warning messages):

$ rm bbadump.data

2.From within the emulator or debugger interface, Frank
executes the test with the new input data (no need to reload
the program; it has not been changed):

Execution→Run→from Transfer Address

4.When the program finishes, Frank stores the new Branch
Validator data using the command:

File→Store→BBA Data...

Enter the name of the BBA Dump file bbadump.data in the
dialog box and press OK.

Figure 2-13. Instructions #3

Getting Started (BBA/Emulator Walkthrough) 2-21

Now Frank needs to see if the new output is good. He uses the ’diff’
command within the terminal window so that any differences will leap
out at him. The command is shown below. Its output is shown in
figure 2-14.

$ diff output.good output # Frank’s command

Figure 2-14 shows that the only differences found by "diff" were that
lines 10 thru 12 in "output" were added after line 9 in "output.good".
That means that the first nine lines - the previous output that Frank had
manually verified - didn’t change. There is no need to even look at the
first nine sets of input that was passed to the function under test.
(Refer to the manual page on "diff" in your UNIX system for more
information on how to read "diff" outputs. Use the command
"man diff" to do this.)

At any rate, the additional tests show good news for Frank: "0,0"
should, indeed, return a "-1" (because -1 is the keycode for
"KEY_NONE"), and the same goes for "3,1" and "2,7" because they
both show multiple keys being down.

Because this output is "good", Frank copies it to output.good so that he
doesn’t have to check it over again, later.

$ cp output output.good

 9a10,12

 > (0, 0) -> -1

 > (3, 1) -> -1

 > (2, 7) -> -1

Figure 2-14. Display Of "diff" Output

2-22 Getting Started (BBA/Emulator Walkthrough)

Now Frank wants to get a report that shows his new test coverage so he
runs the default bbarep command.

$ bbarep

The summary report produced by the bbarep command is shown in
figure 2-15.

Great! The test input achieves 100% coverage of the getkeyvalue
routine. Now Frank decides to find the untested parts of another
low-coverage routine, "bitpos". Frank issues the following bbarep
command, and obtains the report shown in figure 2-16:

$ bbarep -a4 -b4 bitpos # Frank’s command

_hit___total____%____IA____function____________file______________

 8 / 12 (66.67) keyconvert convert.c

 6 / 9 (66.67) bitpos convert.c

 5 / 5 (100.00) getkeyvalue getkey.c

 6 / 7 (85.71) twobits multibits.c

25 out of 33 retained branches executed (75.76%)

[24 branches were ignored]

Figure 2-15. Summary Report After Changing Test-Set

Getting Started (BBA/Emulator Walkthrough) 2-23

bitpos convert.c
 (1) ’case’ code was never executed
71 return(2);
72 case 8 :
73 return(3);
74 case 16 :
75 return(4);
76 case 32 :
77 -> return(5);
78 case 64 :
79 return(6);
80 case 128 :
81 return(7);

 (1) ’case’ code was never executed
73 return(3);
74 case 16 :
75 return(4);
76 case 32 :
77 return(5);
78 case 64 :
79 -> return(6);
80 case 128 :
81 return(7);
82 }
83 }

 (1) ’case’ code was never executed
75 return(4);
76 case 32 :
77 return(5);
78 case 64 :
79 return(6);
80 case 128 :
81 -> return(7);
82 }
83 }
(eof)

6 out of 9 branches executed (66.67%)

Figure 2-16. BBA Source-Reference For bitpos

2-24 Getting Started (BBA/Emulator Walkthrough)

Using Ignore Files (At this point, we are using the files in directory
$HP64000/demo/bba/demo1/mod2.)

"Ah ha!", Frank exclaims. "I can never get to cases 32, 64, and 128
(for legal input!) because only bits 0 thru 4 are legal". Upon
investigation, however, he discovers that Shirley (another
programmer in his group) would like to use his routine to do the same
task, but she needs all eight bits to be returned. To save memory space,
Frank and Shirley decide to make the routine work for both
applications. However, for his comfort, Frank wants his BBA test
reports to ignore the branches he won’t need. He asks Shirley if he can
place "BBA_IGNORE" pragmas in his source file for those cases.

"Surely you jest!", she replies. "I’ll need to test those, and if you put
BBA_IGNORE pragmas in those cases, I won’t ever see whether or
not they are executed!"

"O.K.," Frank says. "There’s another way to do this, and it’ll work for
both of us." He creates the file "ignorelist" (which is already in the
mod2 directory). It looks like figure 2-17.

If you do not have the ’ignorelist’ file in your directory, copy it to your
current directory by using the following command:

 $ cp $HP64000/demo/bba/demo1/mod2/ignorelist .

 case 32:

 case 64:

 case 128:

Figure 2-17. The "ignorelist" File

Getting Started (BBA/Emulator Walkthrough) 2-25

Here is Frank’s new (summary) bbarep command. The output it
produces is shown in figure 2-18.

$ bbarep -i ignorelist # Frank’s command

Frank notes that bitpos now has 100% coverage, but the report notifies
him that some branches in the routine were ignored.

_hit___total____%____IA____function____________file______________

 8 / 12 (66.67) keyconvert convert.c

 6 / 6 (100.00) * bitpos convert.c

 5 / 5 (100.00) getkeyvalue getkey.c

 6 / 7 (85.71) twobits multibits.c

25 out of 30 retained branches executed (83.33%)

[27 branches were ignored]

NOTE:

A ’*’ in the ’I’ column means this function had one or more

 branches that were ignored

Figure 2-18. BBA Report Using An Ignore File

2-26 Getting Started (BBA/Emulator Walkthrough)

Logically Dead
Code

(We are still using the files in directory
$HP64000/demo/bba/demo1/mod2.)

Frank next looks at the unexecuted branches in keyconvert.
(See figure 2-20.) He uses the following command:

$ bbarep -a4 -b4 keyconvert # Frank typed this

"Hmm," Frank says. "The first one is pretty easy. I’ll just add the
equivalent of pressing the "0" key (16, 8). But how can the conditional
of the ’do while’ be both ’never TRUE’ and ’never FALSE’?!?! Oh, I
see. I always executed the ’return’ statement on line 45 (and therefore
I never got to the conditional of the ’do while’). Maybe I’d better add
some cases to exercise the while conditional." After some thinking,
Frank adds the lines shown in figure 2-19 to the file "input".

To get this new version of the file "input", use the command:

 $ cp $HP64000/demo/bba/demo1/mod3/input .

 16,8

 2,16

 16,16

Figure 2-19. Additional Lines To "input"

Getting Started (BBA/Emulator Walkthrough) 2-27

keyconvert convert.c
 (1) ’then’ part of ’if’ was never executed
32 keycode = bitpos(horiz) + KEY_1;
33 break;
34 case 8: /* pressing fourth column of keys */
35 keycode = bitpos(horiz) + KEY_6;
36 if (keycode > KEY_9) /* special case for 0 key */
37 -> keycode = KEY_0;
38 break;
39 case 16: /* pressing fifth column of keys */
40 keycode = KEY_RUN;
41 do

 (1) conditional of ’if’ was never FALSE (no ’else’ statement) [control lines]
40 keycode = KEY_RUN;
41 do
42 {
43 /* If lowest bit is set, return its keycode */
44 -> if (horiz == 1)
45 return(keycode);
46 horiz = horiz >> 1;
47 keycode++;
48 }

 (1) conditional of ’do while’ was never TRUE [control lines]
45 return(keycode);
46 horiz = horiz >> 1;
47 keycode++;
48 }
49 -> while (horiz != 0);
50 }
51
52 return(keycode);
53 }

 (1) conditional of ’do while’ was never FALSE [control lines]
45 return(keycode);
46 horiz = horiz >> 1;
47 keycode++;
48 }
49 -> while (horiz != 0);
50 }
51
52 return(keycode);
53 }

8 out of 12 branches executed (66.67%)

Figure 2-20. BBA Source-Reference For keyconvert

2-28 Getting Started (BBA/Emulator Walkthrough)

Now Frank runs the test program again with the new data. The steps he
follows are shown in figure 2-21.

1.Remove the current dump data (it’s a good habit):

$ rm bbadump.data

2.Within the emulator or debugger interface, rerun the program.
(No need to load the program; it has not changed):

Execution→Run→from Transfer Address

3.When the program finishes, Frank unloads the Branch
Validator data using the command:

File→Store→BBA Data...

Enter the name of the BBA Dump file bbadump.data in the
dialog box and press OK.

4.From within the terminal window, Frank verifies that the
output file is correct by using the command:

$ diff output.good output

(Refer back to figure 2-14 and its supporting text to
understand the output you get at this point.)

5.The above command automatically checks the
"known good" (i.e. previously verified) data, and Frank
manually checks the additional values.

6.Now copy the output file to "output.good" so you can preserve
the new "known good" data:

$ cp output output.good

7.Get another detailed report for keyconvert:

$ bbarep -a4 -b4 keyconvert

Figure 2-21. Instructions #4

Getting Started (BBA/Emulator Walkthrough) 2-29

The new report is shown in figure 2-22. After some reflection, Frank
realizes that the while loop will only become FALSE if the value of
horiz either (A) has more than one bit set, or (B) is zero on entry to
keyconvert. Neither one of these cases are legal input, but Frank
wonders if these cases are dealt with appropriately.
(The problem definition states that for non-legal input, the program
should return KEY_NONE. Frank wonders if it does that correctly.)
Looking at the routine getkeyvalue (in getkey.c), Frank sees that both
cases are trapped prior to calling keyconvert.

Therefore, the test "while (horiz != 0)", in keyconvert, doesn’t make a
whole lot of sense; horiz can never be 0!

keyconvert convert.c
 (1) conditional of ’do while’ was never FALSE [control lines]
 45 return(keycode);
 46 horiz = horiz >> 1;
 47 keycode++;
 48 }
 49 -> while (horiz != 0);
 50 }
 51
 52 return(keycode);
 53 }

11 out of 12 branches executed (91.67%)

Figure 2-22. Another Source-Reference Output

2-30 Getting Started (BBA/Emulator Walkthrough)

To tell the truth, this loop was only added to point out that you can
discover "logically dead" code by using the BBA. Frank would not
have written the code this way (Frank made us put that disclaimer in
the manual). The natural way to have written case 16 in keyconvert is
shown in figure 2-23.

Frank now changes convert.c to the way shown in figure 2-23.
To see Frank’s rewrite, enter the following command:

$ cp $HP64000/demo/bba/demo1/mod4/convert.c .

 case 16: /* pressing fifth column of keys */

 keycode = bitpos(horiz) + KEY_RUN;

Figure 2-23. Natural Way To Write Case 16’s Code

Getting Started (BBA/Emulator Walkthrough) 2-31

Frank now recompiles, runs the tests, and gets yet another report by
using the steps shown in figure 2-24. The report is shown in figure
2-25.

1.Make the new version of the test:

$ make bbatest

2.Remove the current dump data (it’s a good habit to develop):

$ rm bbadump.data

3.Within the emulator or debugger interface, load the new
absolute file:

File→Load→Executable...

Select your file .../bbatest.x in the dialog box, and press OK.

(Ignore any warnings about duplicate symbols)

4.Run the program using the command:

Execution→Run→from Transfer Address

5.When the program finishes, Frank unloads the Branch
Validator data using the command:

File→Store→BBA Data...

Enter the name of the BBA Dump file bbadump.data in the
dialog box and press OK.

6.From within the terminal window, Frank gets another
summary report, using the ignore file:

$ bbarep -i ignorelist

Figure 2-24. Instructions #5

2-32 Getting Started (BBA/Emulator Walkthrough)

_hit___total____%____IA____function____________file______________

 8 / 8 (100.00) keyconvert convert.c

 6 / 6 (100.00) * bitpos convert.c

 5 / 5 (100.00) getkeyvalue getkey.c

 6 / 7 (85.71) twobits multibits.c

25 out of 26 retained branches executed (96.15%)

[27 branches were ignored]

NOTE:

A ’*’ in the ’I’ column means this function had one or more

 branches that were ignored

Figure 2-25. Report Using "-i ignorelist"

Getting Started (BBA/Emulator Walkthrough) 2-33

Continuing to track down the unexecuted branches, Frank issues the
command:

$ bbarep -i ignorelist -a4 -b4 multibits.c

(Note: Frank didn’t need the -i ignorelist in his last command because
the ignorelist file doesn’t contain any code pertaining to the file
multibits.c. On the other hand, using the "ignorelist" file didn’t hurt
him, either.)

As Frank looks at his source-reference output (figure 2-26),
he sees that the while loop is only skipped when the routine is entered
and bitmap is 0. The routine getkeyvalue checks for 0 values before
this is called. It might make more sense to change this to a "do-while"
loop instead of a "while" loop.

twobits multibits.c
 (1) body of ’while’ loop was never skipped
20
21 /* This loop continues only while there is at least
22 one more bit set in bitmap
23 */
24 while (bitmap != 0)
25 {
26 -> if ((bitmap & 1) != 0)
27 numbits++; /* increment count of bits that are set */
28 bitmap = bitmap >> 1; /* test next bit */
29 }
30

6 out of 7 branches executed (85.71%)

Figure 2-26. Another Source-Reference Output

2-34 Getting Started (BBA/Emulator Walkthrough)

Remember, Shirley wants to use this routine, too. She wants the
function’s documentation to show that it will return a ’0’ only if the
passed parameter has exactly one bit set (she thinks that the
documentation implies that it returns a ’0’ if 1 or 0 bits are set).

Therefore, Frank changes the documentation and adds
"while (bitmap != 0)" to the "ignorelist" file. These changes are shown
in the following files. Copy them to your directory using the following
commands:

$ cp $HP64000/demo/bba/demo1/finish/multibits.c .
$ cp $HP64000/demo/bba/demo1/finish/ignorelist .

The Final Report -
Net Benefits

(We are now using the files in the directory
$HP64000/demo/bba/demo1/finish.)

Frank now recompiles, runs the tests, and gets the last report by using
the steps shown in figure 2-27. The last report is shown in figure 2-28.

Getting Started (BBA/Emulator Walkthrough) 2-35

1.Recompile:

$ make bbatest

2.Remove the current dump data:

$ rm bbadump.data

3.Within the emulator or debugger interface, load the new
absolute file:

File→Load→Executable...

Select your file .../bbatest.x in the dialog box, and press OK.

(Ignore any warnings about duplicate symbols)

4.Run the program using the command:

Execution→Run→from Transfer Address

5.When the program finishes, Frank unloads the Branch
Validator data using the command:

File→Store→BBA Data...

Enter the name of the BBA Dump file bbadump.data in the
dialog box and press OK.

6.From within the terminal window, Frank gets another
summary report, using the ignore file:

$ bbarep -i ignorelist

Figure 2-27. Instructions #6

2-36 Getting Started (BBA/Emulator Walkthrough)

Frankly, this was a lot of work. Let’s see what Frank has gained:

1. Frank now has high confidence that his routine works.

2. If Frank needs to change the routine, he does not need to
create his tests all over again. He can use his old tests and
only write new tests.

3. When Frank changes a routine in the future, he does not
worry that he may ’break’ something. He can just run these
tests over again and still have high confidence that everything
is working.

4. If Shirley has to take over maintenance of these routines, she
is assured that these routines have been well tested. She
won’t be nervous about having to support them.

5. Both Frank and Shirley can share code, knowing that if any
changes are made to it, they can run the old tests and discover
any unanticipated side effects (i.e., somebody adds some
functionality, but their "addition" changes some output that it
shouldn’t have changed. Re-running these tests will quickly
locate the problems).

_hit___total____%____IA____function____________file_________________
 8 / 8 (100.00) keyconvert convert.c

 6 / 6 (100.00) * bitpos convert.c

 5 / 5 (100.00) getkeyvalue getkey.c

 3 / 3 (100.00) * twobits multibits.c

22 out of 22 retained branches executed (100.00%)

[31 branches were ignored]

NOTE:

A ’*’ in the ’I’ column means this function had one or more

 branches that were ignored

Figure 2-28. Frank’s Last Report

Getting Started (BBA/Emulator Walkthrough) 2-37

Notes

2-38 Getting Started (BBA/Emulator Walkthrough)

3

Getting Started With The HP Branch Validator
(BBA) In The SoftBench User Interface

Introduction Before you perform the procedures in this chapter, do the getting
started procedures in Chapter 2. The procedures in Chapter 2 will
show you how BBA is used to develop a complete test suite. In this
chapter, you will see how the HP Branch Validator (BBA) SoftBench
User Interface can simplify many aspects of the branch analysis
development process.

The HP Branch Validator (BBA) is a SoftBench tool that provides a
complete environment in which to do basis branch analysis testing. It
utilizes the mouse and menus to provide a point-and-click method for
doing basis branch analysis. This interface will dramatically reduce the
amount of time you need to spend to analyze BBA test reports, create
ignore files, and add pragmas. In addition, the HP Branch Validator
(BBA) SoftBench User Interface provides many parameters that you
can define to further increase the speed at which operations are done.

This interface is available on any HP-UX operating system with
software version number 8.0 (or higher). You must have HP
SoftBench or HP SoftBench Framework to use this interface. HP
SoftBench must be software version number B.00.00 or greater. Note
that HP SoftBench Framework is included with the HP-UX B1418
Branch Validator. Refer to the installation instructions in Appendix B
for proper installation.

This interface is available on Sun SPARCstations with SunOS Release
4.1 (or higher), and Sun OpenWindows 2.0 (or higher). When used on
Sun SPARCstations, HP SoftBench (version B.00.00 or higher) is not
required, but it is highly recommended. The HP Branch Validator
installation on SUN SPARCstations will automatically install the
needed HP SoftBench files if they do not exist.

Getting Started (BBA/SoftBench User Interface) 3-1

In this chapter you will see examples of:

How to start the HP Branch Validator (BBA) SoftBench User
Interface

How to display BBA test reports

How to ignore a file

How to display the source code of a file or function,
identifying its unexecuted branches

How to ignore a branch

How to add a pragma

How to print test results

How to Quit the HP Branch Validator (BBA) SoftBench User
Interface

Note Make sure your current PATH variable includes the paths to
/softbench/bin and hp64000/bin. If not, add those directories to your
current PATH variable before starting BBA. Typically, the path to
/softbench/bin is the first path in your PATH shell variable.

3-2 Getting Started (BBA/SoftBench User Interface)

 Before You Start
The HP Branch
Validator (BBA)
SoftBench User
Interface

Before starting these demonstration procedures, you need to gain
access to the directory supplied by HP that contains the files for these
demonstrations. Then you will enter commands to make sure the
demonstration files are clean, and to install the appropriate
configuration file in your home directory.

BBA obtains its branch coverage information from a bbadump.data file
and its associated ".M" (map) files. The ".M" files are created when a
program is compiled using the BBA preprocessor "bbacpp" with an HP
AxLS or Host compiler. The bbadump.data file is created when you
unload it from your emulator or simulator.

The demonstrations in this chapter use a bbadump.data file and
corresponding map files that were created by HP and supplied in
directory $HP64000/demo/bba/demo2. To access the demonstration
directory, use the following command:

cd $HP64000/demo/bba/demo2

Before starting the HP Branch Validator (BBA) SoftBench User
Interface, enter the following commands to ensure that the
demonstration will run properly:

Demo_clean # Cleans up the demo

Demo_install # Installs the appropriate configuration file in your
$HOME directory

If you do not have HP SoftBench, or you do not intend to use the HP
SoftBench Broadcast Message Server, enter:
Demo_install no_softbench. This command sets up the demo to not
utilize the HP SoftBench Broadcast Message Server for the execution
of Edit, Build, and other commands.

Getting Started (BBA/SoftBench User Interface) 3-3

 Starting The
Demo With
SoftBench

Begin by starting SoftBench. Enter the following command:

softbench

Move the cursor into OK in the Tool Manager copyright statement, and
click the command select mouse button.

Start BBA from within the SoftBench Tool Manager window, as
follows:

Move the cursor into the Tool pull down and click on Start.

A new window will open, showing a list of tools available in the
SoftBench Tool Manager. You may have to scroll down this window
to find BBA. Click on BBA in this list. This selects BBA as the tool
to be started. To start the BBA tool, press the Start button. You could
also have started BBA by double-clicking the command select mouse
button (two quick presses) with the cursor on BBA in the list of tools.

Close the Tool Manager - Start window by moving the cursor to the
"Close" button and clicking the command select mouse button.

BBA can also be invoked without using the HP SoftBench Tool
Manager. This is done by entering bba on the command line of your
host system (like any UNIX command) and pressing the return key. If
SoftBench Broadcast Message Server is already running, the bba
invocation will connect with the SoftBench Broadcast Message Server.
The SoftBench Broadcast Message Server is used to pass the Edit,
Build and Help commands of BBA. If SoftBench Broadcast Message
Server is not running, BBA will still start and run, but the Edit, Build,
and Help features of the interface will not be available. Enter the
command:

bba

3-4 Getting Started (BBA/SoftBench User Interface)

 Starting The
Demo Without
SoftBench
Broadcast
Message Server

Make sure you have the X window system running, and you have run
the "Demo_install" command with the "no_softbench" option. Enter
the command:

Demo_install no_softbench

Start the HP Branch Validator (BBA) from the command line by
entering the following command:

bba

The message "Starting the Basis Branch Analyzer Interface..." will
appear on your display and BBA will start in a few moments.

Additionally, you may see a message like:

encaprun: cannot find a message server
 Make sure that there is a message server running and
 that either $DISPLAY or $MSERVE were set correctly,
 both when SoftBench was started, and also in the current environment.

This message is simply a warning message and can be disregarded.
When properly set up, this mode of operation will still allow you to use
all of the BBA commands in the pull down menus, with the exception
of the Help command. The Help command uses resources within the
SoftBench Broadcast Message Server.

Note If you have HP SoftBench installed, you must add "/usr/softbench/bin"
to your PATH variable even if you are not using the SoftBench
Broadcast Message Server. If you do not have HP SoftBench installed,
do not add the above to your PATH variable.

Getting Started (BBA/SoftBench User Interface) 3-5

 The Main Branch
Validator Window

The main Branch Validator window will be on screen. See figure 3-1.
It is labeled "Softbench - Branch Validator". It will contain a BBA test
report about files named convert.c, driver.c , getkey.c, and multibits.c.
The main Branch Validator window presents three sets of control
selections for controlling tests and formatting test reports:

1. The Pull Down Menu Bar.

2. The Command Buttons Row.

3. The Test Report Area.

Pull Down Menu Bar The Pull Down Menu Bar (with pull downs hidden under File, Actions,
Edit, Settings, and Help) sets up the environment in which basis branch
analysis can be performed. For example, you can redefine the location
of the bbadump.data file by setting the context directory of the
bbadump.data file (the location of this file must be defined before you
make any BBA tests).

For a complete BBA test report, choose File→Show Summary or
File→Show Histogram.

Command Bu ttons The Command Buttons row (row of on-screen buttons labeled Next,
Previous, Ignore, Source, Update, and Errors) selects and/or ignores
functions and files listed in the test report area.

Test Report Area The test report area allows you to scroll through a BBA test report and
find the files or functions that have low test coverage.

Menu Mnemonics The HP Branch Validator supports Pull Down Menu Mnemonics.
These are shortcuts for selecting items in pull down menus. The
mnemonic for a menu category is the underscored letter in the text of
the menu category.

To make a selection, press the <Alt> key and the mnemonic key for the
pull down menu category (i.e. F, A, E, S, or H, corresponding to File,
Actions, Edit, Settings, or Help).

3-6 Getting Started (BBA/SoftBench User Interface)

Note On HP-UX systems, the <Alt> key is the <Extend char> key.
On Sun SPARCstations, the <Alt> key is the diamond-shaped key to
the left of the space bar.

For example, pressing <Alt> F will open the File pull down menu.
Each item in the pull down menu also has a mnemonic. To activate an
item in the pull down menu, press the designated key. For example,
press "h" to display a histogram in the test report area. Be sure to
release the <Alt> key before pressing the new key ("h" in this
example).

Figure 3-1. The Main BBA Window

Getting Started (BBA/SoftBench User Interface) 3-7

To open a different pull down menu category, press <Alt><Key>
where <Key> is the mnemonic character for the menu category.

To close a pull down menu without making a selection, repeat the
<Alt><Key> you used to open it. For example, <Alt> F opens the File
pull down menu, and <Alt> F will close it.

Menu Item
Accelerators

Some pull down menu items also have key accelerators associated with
them. These key accelerators allow the action for a menu item to be
obtained without going through the pull down menu system. The key
sequence for all accelerators is <Shift><Alt><Key>. Later paragraphs
in this chapter show how to use some of the key accelerators you may
use most often.

Customizing
Mnemonics and

Accelerators

Mnemonics and accelerators can be customized by adding resource
entries to your .Xdefaults file. The file
$HP64000/lib/X11/app-defaults/BBA contains the default settings. It
can be copied or appended to your $HOME/.Xdefaults and modified.
If BBA is running, it must be restarted before the new resource settings
will be recognized.

 Displaying The
Test Reports

Use the commands described below to obtain test reports available in
the HP Branch Validator SoftBench User Interface.

Note Use the command select mouse button to click on selections in the pull
down menus.

3-8 Getting Started (BBA/SoftBench User Interface)

Details Of The
Histogram Display

Choose File→Show Histogram. The test report area will show a
histogram of the branch coverage of the functions tested. See
figure 3-2.

This display shows the BBA function coverage, and each graphic bar
represents the percent of the branches that were hit (executed) in the
associated function during the test. The histogram shows the
following:

Numerical percent of branch coverage.

Histogram bars representing percent of branches hit.

Name of function, and name of file.

Figure 3-2. BBA Histogram

Getting Started (BBA/SoftBench User Interface) 3-9

Details Of The
Summary Report

Choose File→Show Summary. The test report area will show a file
and function summary of BBA test coverage. See figure 3-3. The
following specific information is shown in this report:

1. Name of file.

2. On a function-by-function basis:

a. Number of retained branches hit (executed).

b. Total number of retained branches in function.

c. Percent of retained branches that were hit.

d. Existence of "ignores" in function.

e. Existence of "alerts" in function.

f. Name of function.

3. For each file, the total branch-test values for all retained
functions in the file.

Note Retained branches are the branches remaining after removal of the
branches designated to be ignored or excluded from the analysis.
Retained functions are the functions remaining after removal of the
functions designated to be ignored or excluded from the analysis.

3-10 Getting Started (BBA/SoftBench User Interface)

Figure 3-3. BBA Summary

Getting Started (BBA/SoftBench User Interface) 3-11

Details Of The
Results Only Display

Choose File→Show Results Only. The test report area will show a
summary of the branch coverage during the BBA tests. See figure 3-4.
The information shown in the Results Only report is listed below:

Number of files tested.

Number of functions tested.

Number of all branches in the files and functions.

Number and percent of retained branches that were hit
(values exclude ignored branches).

Number of branches ignored.

Note Number of branches is equal to total retained branches plus total
ignored branches (e.g. 57 branches = 34 retained branches + 23 ignored
branches).

3-12 Getting Started (BBA/SoftBench User Interface)

Figure 3-4. BBA Results Only

Getting Started (BBA/SoftBench User Interface) 3-13

Details Of The File
History Report

Choose File→Show File History. The test report area will show a list
of all of the files that were tested, the dates when the files were last
compiled, and the "bbacpp" preprocessor options with which the files
were compiled. See figure 3-5. This command is identical to the BBA
report command "bbarep -Dft". It shows the following information:

File names.

File modification dates.

BBA preprocessor options with which the files were
compiled.

Number of unloads within the dumpfile.

Full path name of each file.

Total number of files and functions compiled.

Total number of branches.

3-14 Getting Started (BBA/SoftBench User Interface)

Figure 3-5. BBA File History Report

Getting Started (BBA/SoftBench User Interface) 3-15

 Ignoring A File Return again to the Histogram display. As a shortcut, type
<Shift><Alt>H.

You may remember that during the getting started procedures in
Chapter 2, Frank wanted to ignore the function named error in the
driver.c file. One method to ignore this function would be to add
"error" to the ignore file. Let’s do that in this interface.

Move the cursor to the error line on the report and click the
command select mouse button. This selects the error function (the line
containing error is highlighted).

Move the cursor to the "Ignore" command button and click the
command select mouse button. This causes BBA to ignore the
indicated file (or function).

To see a new report with the error function ignored, click on the
"Update" command button. The new report will ignore the error
function.

 Displaying The
Source Of A File
Or Function With
Unexecuted
Branches
Identified

The normal use of BBA test results consists of scanning the list of files
or functions in the Summary or Histogram reports until you find a
function with a test coverage that is too low. After selecting the
low-coverage function, you can view its associated source file and see
its unexecuted branches by clicking on the "Source" command button.
The selected source file is displayed in a new window with the
unexecuted branches highlighted. See figure 3-6. To see how this
works, enter the following commands:

Choose File→Show Summary or type <Shift><Alt>S.

3-16 Getting Started (BBA/SoftBench User Interface)

Select the convert.c file in the report by moving the cursor into the
convert.c line and clicking the command select mouse button.

Now move the cursor to the "Source" command button and click the
command select mouse button, or simply double click on convert.c to
open the source window.

A second window opens (figure 3-6) and displays the convert.c source
file. The first unexecuted branch in convert.c is highlighted.

In the source window, click on the "Next" button. The source display
will scroll to the next unexecuted branch in the source file.

Figure 3-6. Source Of Selection Window

Getting Started (BBA/SoftBench User Interface) 3-17

In the source window, click on the "Previous" button. The source
display will scroll back to the previous unexecuted branch in the source
file.

In the main Branch Validator window, click on the "Next" button. The
source file for the next file or function in the Summary report will
appear in the source window.

In the main Branch Validator window, click on "Previous" to see the
previous source file or function in the Summary report.

In the main Branch Validator window, you can click on any file or
function in the test report area and see its source file appear in the
source window.

 Ignoring A Branch In the main Branch Validator window, select the function bitpos. Its
source file will appear in the source window.

In the getting started procedures of Chapter 2, Frank needed to ignore
the three cases of this routine that were used by another programmer.
Here is an easy way he could have ignored these three branches if he
had been using this interface.

With the first branch highlighted in the source window (case 32), click
on the "Ignore" button.

The highlighting advances to the next unexecuted branch in the file.

Click on the "Ignore" button two more times to ignore all three
branches.

3-18 Getting Started (BBA/SoftBench User Interface)

 Adding A Pragma With the function bitpos still selected and its source file still on screen,
the following paragraphs will show you how to remove the "ignore"
designations and add BBA_IGNORE pragmas to the three branches.

Frank might have decided to add BBA_IGNORE pragmas to the last
three branches in the bitpos routine if he had not heard that his fellow
worker would be using the routine, also. (A BBA_IGNORE pragma is
a compiler directive that prevents bbacpp from instrumenting the
branch for branch analysis. Refer to the paragraph titled "What is a
pragma?" in Chapter 4 for more information.)

First remove the ignore designations from the ignore file by selecting
the first ignored branch in the source file "case 32" using the
"Previous" command button. Click on "Clear" to remove the ignore
designation.

The next ignored branch will be highlighted in the source window.
Click on "Clear" again.

Click on "Clear" one more time. This removes the ignore designation
from the last of the three branches.

Now select (highlight) the first branch to be ignored and click on "Add
Pragma".

The highlighting advances to the next branch.

Click on "Add Pragma" two more times. This adds pragmas to all
three branches. The P^ indicates that the pragma will appear above
this line in the source file.

The pragma is not actually inserted into your source code at this point.
To get the pragmas inserted into your souce code, you will have to go
to the Actions pull down and click on Add Pragmas to Source Files.
Thus, you can use "Add Pragma" and "Clear" as many times as you
want and your source file will be unaffected unless you use the Actions
pull down and click on Add Pragmas to Source Files.

Once you have added the pragmas to your source file, you can
recompile and link your file, and rerun your test sequence.

Getting Started (BBA/SoftBench User Interface) 3-19

 Printing And
Saving The
Results

You can print the four displays of measurement results, a listing of the
present content of a selected source file, or a list of active files and
functions. For example, choose File→Print →Summary.

The summary file is passed as a parameter to the command defined by
BBA_PRINTER_COMMAND. As a default, the
BBA_PRINTER_COMMAND pipes the summary file to lp. (lp can
be modified as discussed in Chapter 10 under the heading, "Using Print
And Save."

You can save in a file the four displays of measurement results, a
listing of the present content of a selected source file, or a list of active
files and functions. For example, choose
File→Save in file→Histogram.

A new window will open. In it, you can specify the name of the file
where you want your histogram saved. When you enter the file name
and click OK, the content of your histogram will be appended to the
specified file.

3-20 Getting Started (BBA/SoftBench User Interface)

 How To Exit The
HP Branch
Validator (BBA)
SoftBench User
Interface

Choose File→Quit or type <Shift><Alt>Q.

Note You can quit BBA at any time and later resume your analysis and
continue right where you left off. The branches you marked to be
ignored or in which you entered pragmas are retained in files in your
home directory. When you restart the BBA process, the contents of
those files will be used to generate your BBA test reports.

Getting Started (BBA/SoftBench User Interface) 3-21

Notes

3-22 Getting Started (BBA/SoftBench User Interface)

4

Details Of bbacpp

Introduction Chapter 1 briefly explained the purpose of bbacpp. This chapter will
explain how to invoke bbacpp, the options available to bbacpp, the
effect bbacpp has on your code, and how and why to insert
BBA_IGNORE, BBA_IGNORE_ALWAYS_EXECUTED,
and BBA_ALERT pragmas into your source code.

 BBACPP QUICK REFERENCE

HP AxLS C Cross Compilers

Bbacpp is invoked by using the "-b" command-line option to
"cc<COMP>" (where <COMP> = your specific compiler number;
e.g., cc68000, cc8086, cc68030, etc).
In addition to the options that cpp<COMP> will accept (e.g., -P, -C,
-I<directory>, etc), bbacpp<COMP> also accepts the options listed in
this quick reference figure. (See the next two pages.)

MRI C/C++ Cross Compilers

Bbacpp is invoked by replacing your normal compile command with a
script. As an example, replace mcc68k with mcc68kbba. If you are
using a makefile, this can typically be done by changing CC=mcc68k
to CC=mcc68kbba. In addition, the following scripts are available
mcc86bba, mcc960bba, and ccc68kbba. These scripts accept most of
the same options as the normal compiler, with a few exceptions. Refer
to the man pages for complete details.

Figure 4-1. Quick Reference To "bbacpp"

Details Of bbacpp 4-1

 BBACPP QUICK REFERENCE (Cont’d)

-DBBA_OPTO=<insert_options>

 <insert_options>:

 A - turn on all of the following options.

 a - insert code to tell if the true and false expressions of a
conditional assignment statement were ever executed.

 d - insert code to tell if the conditional of a ’do’ statement was
evaluated as true.

 e - insert code to tell if empty ’case’ statements (i.e., those with no
statements or only a "break" statement) were ever executed.

 i - insert code to tell if an ’if’ statement that has no ’else’ was never
evaluated as false.

 s - insert a ’default’ statement for ’switch’ statements that do not
have a ’default’.

 f - insert code to tell if the third expression in a ’for’ statement was
ever executed.

 w - insert code to tell if the body of a ’while’ statement was never
skipped.

Figure 4-1. Quick Reference To "bbacpp" (Cont’d)

4-2 Details Of bbacpp

 BBACPP QUICK REFERENCE (Cont’d)

-DBBA_OPTc<constname>

Place the constant data that bbacpp creates in a CONST SECTION
named <constname>. The default is to place the constant data into the
CONST SECTION that is valid at the end of the file. This option is not
available when using an MRI compiler.

-DBBA_OPTd<dataname>

Place the array that bbacpp creates in a DATA SECTION named
<dataname>. The default is to place the array into the DATA
SECTION that is valid at the beginning of the file. This option is not
available when using an MRI compiler.

-DBBA_OPTM<character>

Use <character> as the suffix for the map file (instead of "M").

-DBBA_OPTp<lines>

 Increase the amount of "push-back-line" memory.

-DBBA_OPTS

 Do not generate a mapping file.

Figure 4-1. Quick Reference To "bbacpp" (Cont’d)

Details Of bbacpp 4-3

 What bbacpp
Does

Bbacpp prepares a C source file to have branch analysis data generated
when it is executed. It also creates a "map file" that is used by bbarep
to associate branches with the source statements that created the
branches.

To do this, bbacpp performs the following:

1. Creates an array with one entry for each branch. Each entry in
the array is initialized to 0, which is the default for the C
language.

2. For each branch that is detected:

a. An array entry is assigned to the branch.

b. An assignment statement is inserted as the first executable
statement within the branch. (The assignment statement
sets the associated array entry to 1, showing that it was
executed. Also, the assignment statement is inserted on
the same line as the first executable statement so that
emulators and debuggers can report the correct line
numbers of the source statements.)

c. An entry in the map file is created for that array entry.
The entry specifies what type of branch it was
(e.g., an if statement or a for loop).

3. At the end of the newly created source file, an "environment"
data area is created. This data prevents mismatching of
mapping files with data, and allows changes in the source file
to be monitored. The data area specifies (among other things):

a. Which -DBBA_OPTO= options were used.

b. The number of branches detected in this file.

c. The suffix of the map file.

d. The date that the source file was last modified.

4-4 Details Of bbacpp

The BBA unload routine (File→Store→BBA_Data) will use a symbol
database to locate the array and the environment data area, then use the
emulator or debugger to transfer the values in the array and data area to
your host’s disk. The symbol database is created automatically when
you load your program into the emulator or debugger.

 Amount Of Code
Added

The "environment" data (step 3 in the preceding paragraph) adds a little
more than 20 bytes to your absolute file. The exact number of bytes
depends primarily upon the length of the full path name of the current
file.

The "per-branch" data (step 2 in the preceding paragraph) adds
between five and eight bytes (depending on optimization and register
usage), plus one byte in the data section (the array, itself).

Experiments have shown total code expansion anywhere between 1%
and 100%, depending on coding practices.

 Example Of
bbacpp’s
Operation On A
Simple Source
File

Figure 4-2 shows a simple C source file. Figure 4-3 shows that same
source file after it has been tooled by bbacpp. Line numbers have been
inserted on the left-hand side for use in the discussion that follows.

Details Of bbacpp 4-5

 Explanation Of
Lines In Figure 4-3

Lines 1 and 5 are lines that C preprocessors generate for the compiler.
They identify the file and line where the text originated (so that
include files can be tracked correctly).

Line 2 sets the SECTION for the branch data array to be in section
bbadata. For this to have happened, the -DBBA_OPTdbbadata
option was used with bbacpp. Refer to the paragraph that discusses the
details of the -DBBA_OPTd<dataname> OPTION appearing later in
this chapter for more information. If no -DBBA_OPTd<dataname>
option had been used, this line would not be present.

Line 3 is the declaration of the array where the branch data is kept.
Note that the bizarre name (_bA_array) is unlikely to conflict with
variables you use. In fact, all variables that bbacpp creates begin with
the characters _bA_.

Line 4 sets the SECTION information back to what it was prior to line
2. If no -DBBA_OPTd<dataname> option had been used,
this line would not be present.

Note MRI compilers do not support options to change the data and constant
sections. Therefore, program SECTION directives are not inserted.

1 extern int goodbye;
2
3 yousay(hello)
4 int hello;
5 {
6 if (hello == goodbye)
7 goodbye = hello + 3;
8 else
9 goodbye = hello - 5;
10 }

Figure 4-2. Simple C Source File

4-6 Details Of bbacpp

Lines 6 thru 10 are exact copies of lines 1 thru 5 in the source file.

Line 11 contains the first executable statement of the function yousay.
Therefore, an array assignment expression is inserted.
The array entry for this function is 0, something you don’t care about,
but bbarep does.

Line 12 shows that another array assignment was generated. Note that
bbacpp has inserted "{" and "}" correctly so that no logical change to
the code was made.

Line 13 is a copy of line 8 in the source file.

Line 14 is another array assignment.

Line 15 is the last line of the source file.

1 # 1 "t.c"
2 #pragma SECTION DATA=bbadata CONST=bbaconst
3 static unsigned char _bA_array[3] = {0};
4 #pragma SECTION UNDO
5 # 1 "t.c"
6 extern int goodbye;
7
8 yousay(hello)
9 int hello;
10 {
11 _bA_array[0]=1;if (hello == goodbye)
12 {_bA_array[1]=1;goodbye = hello + 3;}
13 else
14 {_bA_array[2]=1;goodbye = hello - 5;}
15 }
16 #pragma SECTION DATA=bbadata CONST=bbaconst
17 struct _bA_probe_struct_ {
18 unsigned char insertprotocol;
19 char mapsuffix;
20 char sourcemodtime[9];
21 unsigned char options[4];
22 int numentries;
23 };
24 const struct _bA_probe_struct_ _bA_t_nam_crs_abb_ph_ =
25 { 6,
26 ’M’,
27 {’B’, ’w’, ’x’, ’‘’, ’q’, ’j’, ’’, ’v’, ’‘’},
28 {0xa7, 0x05, 0x02, 0x00},
29 3,
30 };
31 #pragma SECTION UNDO

Figure 4-3. Simple C Source File Tooled By bbacpp

Details Of bbacpp 4-7

Line 16 sets the SECTION for the following constant definition to be
bbaconst. Refer to the paragraph that discusses the details of the
-DBBA_OPTc<constname> OPTION appearing later in this chapter,
for more information. If no -DBBA_OPTc<constname> option had
been used, this line would not be present.

Lines 17 thru 30 were inserted by bbacpp to define the data area that
keeps track of the environment that the file was compiled under. The
name defined on line 24 (_bA_t_nam_crs_abb_ph_) will be unique
for each file (it has to be, because it is global), and will always start
with _bA_ so it will not conflict with any of your symbols.

Line 31 sets the SECTION information back to what it was prior to line
16. This is not strictly necessary, but clean, in case you have additional
processing you wish to do.

 How To Invoke
bbacpp

To use bbacpp with your AxLS C compiler, you simply add the -b
option to your cc<COMP> command line (where <COMP> is your
specific compiler number; e.g., 68000, 8086, 68030, etc.).

This tells cc<COMP> to replace the normal C preprocessor
(cpp<COMP>) with the BBA preprocessor that is specific for your
compiler (bbacpp<COMP>). This preprocessor has the same
predefined variables (e.g. __<COMP>) and search paths (e.g.,
$HP64000/include/<COMP>) as cpp<COMP>, but adds the BBA
capabilities.

For example, if you normally compile a program by use of a command
such as:

 $ cc<COMP> -c myfile.c

you can modify your command to use bbacpp by adding the -b option,
as follows:

 $ cc<COMP> -c -b myfile.c

4-8 Details Of bbacpp

To use bbacpp with your MRI compiler, use the appropriate script
command in place of your normal compile command. For example, if
you normally compile a program by using a command like
mcc68k -c myfile.c, you can modify your command to use bbacpp
with a modification like mcc68kbba -c myfile.c

Details Of bbacpp 4-9

 Relocating The
BBA Constants
(-DBBA_OPTc
<constname>
Option)

Bbacpp generates a constant data structure for each file (refer to
DETAILS OF HOW BBACPP MODIFIES YOUR CODE later in this
chapter for more information on this structure).

Normally this data structure is placed in the same section that contains
the rest of your constants.

You can override placement of this data structure in the normal section
by using the -DBBA_OPTc<constname> option. There must be no
space between the c and the constant name.

This will allow you to separate the constants that bbacpp generated
from the constants you generate.

Normally, the <constname> section is placed after the "const" section.
You can also use a linker command file to place the sections where you
want them. For example, if you usually use a command like the
following:

 $ cc<COMP> -b blue.c

you can force bbacpp to put the data structure for blue.c in the section
myconst by using the command:

 $ cc<COMP> -b -DBBA_OPTcmyconst blue.c

Note Due to limitations in the file formats, the use of
-DBBA_OPTc<constname> option to BBA does not make sense
when using the cc<COMP> -h flag. For more information, refer to the
paragraph titled PITFALLS WITH BBACPP AND CC<COMP> at the
end of this chapter.

This option is not available with MRI compilers.

4-10 Details Of bbacpp

 Relocating The
BBA Data Array
(-DBBA_OPTd
<dataname>
Option

Bbacpp normally places the branch analysis data (the array) in the
same data section with the rest of your data.

You can override placement of the array in the normal section by using
the -DBBA_OPTd<dataname> option. There must be no space
between the d and the data name.

This will allow you to separate the data that bbacpp generated from the
data that you generated.

Normally, the <dataname> section is placed after the "data" section.
You can also use a linker command file to place the sections anywhere
else that you want them. For example, if you usually use a command
such as:

 $ cc<COMP> -b green.c

you can force bbacpp to put the data structure for green.c in the section
named mydata by using the command:

 $ cc<COMP> -b -DBBA_OPTdmydata green.c

Note Due to limitations in the file formats, use of the
-DBBA_OPTd<dataname> option to BBA does not make sense when
using the cc<COMP> -h flag. For more information, refer to the
paragraph titled PITFALLS WITH BBACPP AND CC<COMP> at the
end of this chapter.

This option is not available with MRI compilers.

Details Of bbacpp 4-11

 Details Of How
bbacpp Modifies
Your Code,
And The
-DBBA_OPTO=
<options>
Options

This part of the manual explains which branches are detected and
instrumented by using different -DBBA_OPTO=<options> options.
(The term "instrumented" means that the branch is detected, and an
array assignment statement is inserted. Examples in the following
subparagraphs show how the code is instrumented by using different
options to this command.

Normally, the option -DBBA_OPTO=A is used. It requests bbacpp to
detect all branches (therefore, bbarep reports on all branches).
However, you may not wish to recognize certain branches based on
previous experience or lack of microprocessor address space.
If this is the case, you can still obtain the equivalent of the
-DBBA_OPTO=A option by making multiple compilations and
test-set executions (refer to the paragraph that discusses HOW TO
COMBINE -DBBA_OPTO= OPTIONS later in this chapter for more
information). To use any (or all) of the -DBBA_OPTO=<options>,
simply add the options you want on the same command line that
contains the -b option.

Examples:

$CC -b -DBBA_OPTO=iaf -c hello.c

$CC -b -DBBA_OPTO=A -c hello.c

The examples in the following subparagraphs refer to the sample
function in figure 4-4. Line numbers have been added on the left-hand
side of the sample function for reference in the discussions that follow.

4-12 Details Of bbacpp

 1 /* Sample function showing many types of branches */
 2 sample()
 3 {
 4 int a, b, c;
 5
 6 /* if statement with an else */
 7 if (a == 0)
 8 b++;
 9 else
10 c++;
11
12 /* if statement with no else */
13 if (b == 0)
14 b++;
15
16 /* Switch statement with empty case, a case with fall-thru
17 execution, and a default */
18 switch(a)
19 {
20 case 0:
21 case 1: b++;
22 break;
23 default: b++;
24 }
25
26 /* switch statement with no default */
27 switch(a)
28 {
29 case 0: b++; /* non-empty, no fall-thru */
30 break;
31 /* no default */
32 }
33
34 /* while statement */
35 while(b != 0)
36 b--;
37
38 /* For loop */
39 for (c = 0; c < b; c++)
40 b--;
41
42 /* Conditional assignment */
43 c = (a == 0) ? 123 : 321;
44
45 /* do-while loop */
46 do
47 b++;
48 while (b != 0);
49 }

Figure 4-4. Sample Function

Details Of bbacpp 4-13

Default
Instrumenting Of

Branches
(No -DBBA_OPTO=

<options>)

When no -DBBA_OPTO=<options> are used, bbacpp detects the
following:

1. Functions: An array assignment is added as the first
executable statement of any function.

2. if statements: An array assignment is added as the first
executable statement of the ’then’ part of any if statement.

3. else statements: An array assignment is added as the first
executable statement of the ’else’ part of any if statement for
which you wrote the else.

4. while statements: An array assignment is added as the first
executable statement within any while loop.

5. for statements: An array assignment is added as the first
executable statement within any for loop.

6. case and default statements: An array assignment is added as
the first executable statement following a case or default
within a switch statement.

(To understand the purpose of the "array assignments" described
above, refer to the paragraphs entitled, "WHAT BBACPP DOES" and,
"EXAMPLE OF BBACPP’S OPERATION ON A SIMPLE SOURCE
FILE", earlier in this chapter.)

Running the sample through bbacpp with no -DBBA_OPTO= options
(but with the -C option so that comments are retained)
will produce a listing as shown in figure 4-5. We removed the
_bA_array declaration and the file’s data structure from the top and
bottom to emphasize the _bA_array assignment statement insertions.

4-14 Details Of bbacpp

Notes On Figure 4-5 1. On line 7, the array assignment was inserted because the
if (a == 0) statement is the first statement of the function. The
first statement of any function is always preceded with an
array assignment so the BBA can tell if the function was ever
called.

2. An insertion was done on lines 8 and 14 to reflect the if
statements.

3. An insertion was done on line 10 because the example
program had an else statement. No else insertion was done for
the if statement on line 13 because the example program did
not have an "else" (refer to the explanation of the
-DBBA_OPTO=i option later in this chapter).

4. Insertions were done on lines 21, 23, and 29 in response to
code after case or default statements. Note that on line 21,
array[4] will be set even if a is 0. Refer to the discussion of
-DBBA_OPTO=e later in this chapter). Also note that if the
switch statement at line 27 was entered with
"a not equal to 0", no notice would be given; however,
refer to the discussion of -DBBA_OPTO=s later in this
chapter.

5. An insertion was done on line 36 because that was the first
statement of a while loop.

6. An insertion was done on line 40 because that was the first
statement of a for loop.

The -DBBA_OPTO= options add to the branches that are detected.
The examples that follow will only show differences caused by adding
the options.

Details Of bbacpp 4-15

 1 /* Sample function showing many types of branches */
 2 sample()
 3 {
 4 int a, b, c;
 5
 6 /* if statement with an else */
 7 _bA_array[0]=1;if (a == 0)
 8 {_bA_array[1]=1;b++;}
 9 else
10 {_bA_array[2]=1;c++;}
11
12 /* if statement with no else */
13 if (b == 0)
14 {_bA_array[3]=1;b++;}
15
16 /* Switch statement with empty case, a case with fall-thru
17 execution, and a default */
18 switch(a)
19 {
20 case 0:
21 case 1: _bA_array[4]=1;b++;
22 break;
23 default: _bA_array[5]=1;b++;
24 }
25
26 /* switch statement with no default */
27 switch(a)
28 {
29 case 0: _bA_array[6]=1;b++; /* non-empty, no fall-thru */
30 break;
31 /* no default */
32 }
33
34 /* while statement */
35 while(b != 0)
36 {_bA_array[7]=1;b--;}
37
38 /* For loop */
39 for (c = 0; c < b; c++)
40 {_bA_array[8]=1;b--;}
41
42 /* Conditional assignment */
43 c = (a == 0) ? 123 : 321;
44
45 /* do-while loop */
46 do
47 b++;
48 while (b != 0);
49 }

Figure 4-5. Results Of bbacpp -C

4-16 Details Of bbacpp

Instrumenting
Conditional

Assignments
(-DBBA_OPTO=a

Option)

This option will cause bbacpp to detect and instrument conditional
assignments, that is, code will be inserted to detect whether or not the
condition in the conditional assignment was ever TRUE and was ever
FALSE. By adding this option to the sample program, line 43 changes
as shown in figure 4-6.

When you have used this option, bbarep will automatically report
whether or not the condition (in this example, the (a == 0) expression)
was never TRUE or never FALSE.

Note When you use this option, you may receive warnings from the
compiler about "illegal combination of pointer and integer".
This happens when the left-hand side (lhs) of the conditional
assignment is a pointer, and either the TRUE or FALSE expression was
0 or NULL. For example, you will receive the warning for the
following code fragment:

 char *ptr1, *ptr2;
 ptr1 = (a == 0) ? ptr2 : NULL;

To avoid this warning, typecast the 0 or NULL to be the same type as
the lhs. For example:

 char *ptr1, *ptr2;
 ptr1 = (a == 0) ? ptr2 : (char *) NULL;

42 /* Conditional assignment */
43 c = (a == 0) ? (_bA_array[9]=1,123) : (_bA_array[10]=1,321);
44

Figure 4-6. Results Of bbacpp -C -DBBA_OPTO=a

Details Of bbacpp 4-17

Instrumenting
Do-While Statements

(-DBBA_OPTO=d
Option)

This option is used to instrument do-while statements. Obviously, the
code in a do-while is always executed (at least once). This adds code
to determine if the do-while is ever executed more than once. Adding
this option to the sample program changes lines 46 thru 48 as shown in
figure 4-7.

Note that if there was a break within the do loop that was always being
executed, bbarep would also report that the conditional of the while
was never FALSE.

Instrumenting Case
Statements

(-DBBA_OPTO=e
Option)

This option actually does several things to case statements:

1. If a case or default statement has no code, this will instrument
the case statements so that the BBA can tell when the switch
statement went to that case. In our example function, line 20
has a case with no code.

2. If a case or default statement is not preceded by a break
statement, code is inserted so that you can tell if the switch
statement did not go to that case, but the case’s code was
executed because the previous code "fell through" and
executed the code. For example, the b++; on line 21 of the
sample function will be executed even if a is never 1 (but is
ever a 0).

Figure 4-8 shows an example of the inserted code when the
-DBBA_OPTO=e option is used:

45 /* do-while loop */
46 do
47 b++;
48 while ((b != 0)?(_bA_array[9]=1,1):(_bA_array[10]=1,0));

Figure 4-7. Results Of bbacpp -C -DBBA_OPTO=d

4-18 Details Of bbacpp

Note that if the switch is entered with a value of 0, array[4] will be set,
but array[5] will not be set, even though the code associated with
case 1 will still be executed because of fall through.

16 /* Switch statement with empty case, a case with fall-thru
17 execution, and a default */
18 switch(a)
19 {
20 case 0:
21 _bA_array[4]=1; goto _bA_switch_label_1_1;case 1:
 _bA_array[5]=1;_bA_switch_label_1_1:b++;
22 break;
23 default: _bA_array[6]=1;_bA_switch_label_1_2:b++;
24 }

Figure 4-8. Results Of bbacpp -C -DBBA_OPTO=e

Details Of bbacpp 4-19

Instrumenting An If
With No Else

 (-DBBA_OPTO=i
Option)

This option allows you to detect when an if statement that has no else is
always TRUE. It does this by inserting an else statement and an array
assignment. Then bbarep checks to see if the array value is 0, and if it
is, informs you that the conditional of the if was never FALSE.

For example, using the -DBBA_OPTO=i option with our sample
function, the code is modified as shown in figure 4-9.

Instrumenting A
Switch With No

Default
(-DBBA_OPTO=s

Option)

This option is used to determine if a switch that has no default was
entered with a value that caused none of the case statements to be
executed. It creates a default statement and inserts an assignment
statement. By using this option, our example function will be modified
as shown in figure 4-10. As you can see, a default and associated
array assignment statement have been added at line 32, at the end of
the switch statement on line 27.

12 /* if statement with no else */
13 if (b == 0)
14 {_bA_array[3]=1;b++;}else _bA_array[4]=1;
15

Figure 4-9. Results Of bbacpp -C -DBBA_OPTO=i

26 /* switch statement with no default */
27 switch(a)
28 {
29 case 0: _bA_array[6]=1;b++; /* non-empty, no fall-thru */
30 break;
31 /* no default */
32 default:_bA_array[7]=1; }

Figure 4-10. Results Of bbacpp -C -DBBA_OPTO=s

4-20 Details Of bbacpp

Instrumenting The
Third Expression In

 A For Statement
(-DBBA_OPTO=f

Option)

 This option is used to tell if the third expression in a for statement is
ever executed. By default, bbacpp inserts statements to tell if the code
within a for loop was ever executed, but it is possible for the code
within a for loop to be executed and the third expression to never be
executed (for example, this could be caused by a break or a return
that is always executed in the code controlled by the for).

Using -DBBA_OPTO=f to tool the sample function yields code as
shown in figure 4-11.

In the example of figure 4-11, the c++ is the third expression of the for
on line 39.

38 /* For loop */
39 for (c = 0; c < b; _bA_array[8]=1,c++)
40 {_bA_array[9]=1;b--;}
41

Figure 4-11. Results Of bbacpp -C -DBBA_OPTO=f

Details Of bbacpp 4-21

Detecting A While
Loop Always

Executed
(-DBBA_OPTO=w

Option)

This option allows you to detect when the body of a while loop is
always executed. It does this by adding a "temporary" variable, setting
it to "0" prior to the loop, and then after the loop, checking to see if the
temporary variable is still 0. This is shown in figure 4-12.

Note The _bA_temp_ array is created only if needed (which is why you
haven’t seen it in this manual before).

Using All
-DBBA-OPTO

Options Together
(-DBBA_OPTO=A

Option)

The -DBBA_OPTO=A option implies all of the previous
-DBBA_OPTO= options. Therefore, it is identical to
-DBBA_OPTO=adeisfw.

34 /* while statement */
35 _bA_temp_[0]=0;while(b != 0)
36 {_bA_array[7]=1;_bA_temp_[0]=1;b--;} if(_bA_temp_[0]==0)_bA_array[8]=1;
37

Figure 4-12. Results Of bbacpp -C -DBBA_OPTO=w

4-22 Details Of bbacpp

 How (And Why)
To Combine
-DBBA_OPTO=
Options

Generally, you will want to use the -DBBA_OPTO=A option.
However, there are at least two occasions when you may not want to
use it:

1. Your organization chooses not to (for example, your
organization may want to shorten testing time,
recognizing the trade-off in test quality).

2. Your system does not have enough memory to load the entire
program in memory with all the branch-analysis options
enabled (-DBBA_OPTO=A).

For the first case, just choose the options you want, and that’s the end
of it.

The second case only applies when using an emulator. You can
usually use the memory mapping in the emulator to expand your
system’s memory by placing some emulation memory after your
system’s memory. However, if you are constrained by your addressing
space (i.e., your program just about fills the processor’s addressing
capability), there is another method.

In this case, compile all of your files with two or more
-DBBA_OPTO= options. Load the program. Run the tests, and dump
the data to "bbadump.data". Then do the compile-load-run-dump loop
with different -DBBA_OPTO= options. When you run "bbarep" or
"bbamerge", the branch data will automatically be "merged" to give
you the same effect as if you had used all of the -DBBA_OPTO=
options and had only run the tests one time.

For example, assume that when you used -DBBA_OPTO=A,
you could not fit your program into your system’s memory space, but
when you used the options -DBBA_OPTO=ade,
and -DBBA_OPTO=isfw, the program fit.

Details Of bbacpp 4-23

You would first compile all of your programs using

 $CC -c -b -DBBA_OPTO=ade -DBBA_OPTM1 <C source files>

This enables the "ade" insertion options, and sets the extension of the
map file to "1" instead of "M". The map file extension was changed so
that when you compile with different options, you won’t overwrite the
mapping file created with the previous options. That would restrict the
type of reports you could get with "bbarep".

Note Details of how to use the -DBBA_OPTM option to change the map file
extension are given under the next heading in this chapter.

Now run your tests and create the "bbadump.data" file with the
File→Store→BBA_Data command.

Re-compile all of your programs using the command:

 $ CC -c -b -DBBA_OPTO=isfw -DBBA_OPTM2 <C source files>

This enables the "isfw" insertion options, and sets the mapping file
extension to "2" instead of "M".

Run your tests, and use the File→Store→BBA_Data command
(which always appends the data to the previous dump, so you don’t
loose previous data). When you run "bbarep", you will get the same
results as if you had been able to use the -DBBA_OPTO=A option.

Note The process described above will work with "bbarep", the command
line report generator. It will not work for BBA in the HP SoftBench
interface (where only ".M" map files can be used).

4-24 Details Of bbacpp

Two requirements must be met before the preceding example will
work:

1. The modification dates of your source files must all be the
same during each compilation of your program. Don’t go in
and modify your source files half-way through and expect to
merge the results of all the tests!

2. Each time you compile tests with a new option, be sure to give
your "mapping file" a different file extension (discussed next
in this chapter). Otherwise, each time you invoke tests, your
new (.M) map will overwrite the existing (.M) map, and the
map information required by "bbarep" will only be able to
show information from the most recent run of your executable
file.

Details Of bbacpp 4-25

 Changing The
Map File Suffix
(-DBBA_OPTM
<character>
Option)

This option allows you to override the default suffix that is used for the
map file. Refer to the detailed discussion of THE -DBBA_OPTS
OPTION appearing later in this chapter for information on the use of
the map file, and information on how to suppress the creation of the
map file, if necessary.

Typically, the name of the map file is the same as the name of the C
source file, except that the file extension ".c" is replaced with ".M". If
your source file name does not end with ".c", but does end with
".<character>", the <character> is replaced with an "M". However,
bbacpp will not overwrite a file unless it is either zero length or is a
bbacpp map file (so don’t worry that bbacpp may overwrite one of
your significant files!).

The map file is always placed in the same directory as the C source
file.

To change the map suffix from M to something else, add the
-DBBA_OPTM<character> option to the same command line that
has the -b option. There must be no space between the -DBBA_OPTM
and the <character>.

4-26 Details Of bbacpp

There are several reasons why you might want to use the
-DBBA_OPTM<character> option:

1. You already have files (that you want to keep) with the name
of the C source file, but with the .M extension.

2. Your organization may reserve the .M extension for a
particular type of file, and you don’t want any exceptions to
that rule.

3. You need to compile your program several times with
different -DBBA_OPTO= options. When you do this,
you must specify different map file extensions for each
compilation. Refer to the discussion entitled "HOW (AND
WHY) TO COMBINE -DBBA_OPTO= OPTIONS"
appearing earlier in this chapter for reasons to use several
compilations with different -DBBA_OPTO= options.

 When the BBA unload command File→Store→BBA_Data unloads
the data area associated with each file, it will store the map suffix
(along with other information) into the "bbadump.data" file. Bbarep
will look for map files with the specified suffix in order to generate
reports. Refer to the next paragraph (the -DBBA_OPTS option), for
the list of bbarep output options that require the map files.

Note If you use the -DBBA_OPTM option, you will not be able to use BBA
in the HP SoftBench Interface.

Details Of bbacpp 4-27

 Suppressing
Creation Of The
Map File
(-DBBA_OPTS
Option)

This option allows you to prevent creation of the mapping file.
If you use this option, some of the functions of the bbarep command
will not work.

To use this option, simply add the -DBBA_OPTS option to the same
command line that has the -b option.

You might use this option if you are concerned about limited disk
space, or if you only care about over-all coverage percentage
(and have no BBA_IGNORE or BBA_ALERT pragmas in your source
code).

Note If you use the -DBBA_OPTS option, you will not be able to use BBA
in the HP SoftBench Interface.

4-28 Details Of bbacpp

Bbarep uses the map file(s) to:

1. Find out what type of branch was executed or not executed
(used by the -l, -aN and -bN options to bbarep).

2. Determine the "scope" of a branch (so you don’t get 500
reports of unexecuted branches, if a single function that had
500 branches in it was never executed). Used by the -l, -aN
and -bN options to bbarep.

3. Determine if a branch had a BBA_IGNORE or BBA_ALERT
pragma within it (used by all reporting options of bbarep).

4. Determine what function a branch is associated with
(used by all reporting options of bbarep).

5. Determine which source lines generated the branch, and which
source lines would be unexecuted if a branch were not taken.
Used by the -l, -aN and -bN options to bbarep.

Details Of bbacpp 4-29

 What Is A
Pragma?

 First, let’s define "pragma" because it is not defined in the K&R book.

In ANSI-standard C, a "pragma" is defined to be the way to extend
directives in an implementation-dependent manner. A pragma can go
anywhere that a "#if" operator can go - i.e., the ’#’ must be the first
non-whitespace on the line, and the entire line is generally not
considered part of the C source file for grammatical purposes. Further,
all implementations of C ignore unrecognized pragmas.

 We have defined three pragmas for use with the BBA:

1. BBA_IGNORE.

2. BBA_IGNORE_ALWAYS_EXECUTED.

3. BBA_ALERT.

The names were chosen to make it highly unlikely that any other
implementation of C would recognize these pragmas (thus, these
should be ignored).

 Detailed
Explanation Of
The BBA_IGNORE
Pragma

The BBA_IGNORE pragma causes all branches to be ignored at, or
within, the scope where the pragma is located - i.e., the reports
generated by bbarep will not show whether or not the ignored branches
were hit (although the number of ignored branches will be shown in a
summary). As a special case, a BBA_IGNORE pragma that is outside
of any function will act as if it were located within the next function
(but only the next function; it will not cause any of the other functions
from that point on to be ignored!).

In figure 4-13, lines 21 through 24 are ignored (i.e., if a was never
zero, you would not see it in the number of unexecuted branches).
Further, because the statement if (j == 0) is "within" the same scope as
the BBA_IGNORE pragma, it is also ignored. The ’if’ statement on
line 26 is not within the same scope as line 22. Therefore, it will not be
ignored (i.e., if j is never 5, you will see an unexecuted branch in the
report).

4-30 Details Of bbacpp

Lines 31 through 34 are also ignored because that is the scope of
BBA_IGNORE, even though the pragma itself is toward the end of the
scope.

In figure 4-14, the TRUE condition of (j == 0) ? is ignored while the
FALSE condition is not ignored (because the FALSE part is at a
different scoping level - see below). Note that the pragma can go
anyplace a white space can go, but it must be on a line by itself.
Because C always expands macros on a single line, no pragmas can be
used in macros. (Specifically, you cannot ignore a portion of the
branches generated by a macro; however, you can ignore all branches
generated by a macro by using the -i <ignorefile> option to bbarep.)

Note that C comments are legal on the pragma line; however, they
should not continue on to other lines.

20 if (a == 0)
21 {
22 # pragma BBA_IGNORE
23 if (j == 0)
24 k++;
25 }
26 if (j == 5)
27 {
28 k--;
29 }
30 if (b == 5)
31 {
32 j++;
33 # pragma BBA_IGNORE
34 }

Figure 4-13. Ignoring Lines 21 Thru 24 And 31 Thru 34

945 k = (j == 0) ?
946 # pragma BBA_IGNORE /* It is ok to do this */
947 hello->dolly + 67 : 487 - well;

Figure 4-14. Ignoring The TRUE Condition

Details Of bbacpp 4-31

In figure 4-15, we see that the pragma is not part of C’s grammar; i.e.,
the object of the statement if (j == 4) is the statement on line 78, not
the pragma on line 77. Also, since the pragma is not considered part of
the grammar, it was not necessary to put braces ({ and }) around lines
77 and 78. It may be wise to insert the braces, anyway, for readability
reasons.

One final note about BBA_IGNORE. For the ’if’ statement that has an
’else’ associated with it, a BBA_IGNORE in the ’then’ part does not
ignore the ’else’ part. If you want to also ignore the ’else’ part, you
must put a BBA_IGNORE pragma in the ’else’ statement, as well.
However, for the case of an ’if’ statement with no ’else’, and when
-DBBA_OPTO=i is used, a BBA_IGNORE in the ’then’ part will
cause the (inserted) ’else’ to also be ignored. In the example in figure
4-15, line 78 is ignored but not line 80. If you want line 80 to be
ignored, add a BBA_IGNORE pragma after the else statement.

Why Use Ignore
Branches?

You might ask, "Why would I want to ignore branches?" Good
question! The answer is that there may be conditions that you want to
check, but that are impossible (or very difficult) to test. For example, a
motor-controller program might be designed to go to a "fail-safe"
condition if the motor overheats. You probably would not want to ruin
a motor for each test! On the other hand, you don’t want to be
"penalized" by the test report for doing a complete job of
programming, and not being able to test it as completely!

Also, you might want to include code in your product that is only
executable in a "maintenance mode", and yet you might not want to
test that code.

76 if (j == 4)
77 # pragma BBA_IGNORE
78 drag_cursor(LEFT);
79 else
80 drag_cursor(RIGHT);

Figure 4-15. Ignore Pragma Under If Statement

4-32 Details Of bbacpp

bbarep And
BBA_IGNOREd

Branches

In the percent summary (bbarep -S), the number of ignored branches is
subtracted from the total number of branches, and the number of
ignored branches that were hit is subtracted from the total number of
hit branches. However, the number of ignored branches is printed (at
the end of the report).

In the function summary (bbarep -s), the number of ignored branches is
subtracted from the total number of branches in each function, and the
number of ignored branches that were hit in each function is subtracted
from the total number of branches hit in each function. Any function
that was completely ignored (i.e., there was a BBA_IGNORE pragma
prior to the function declaration) will not show up in the listing. Any
function which was not completely ignored, but which did have one or
more BBA_IGNORE pragmas within it, will have a star next to it in
the ’I’ column.

When you request a list of unexecuted branches (bbarep -a, -b), no
ignored branch will be printed, whether it was hit or not (unless it was
also a BBA_ALERT branch, described later in this chapter).

Refer to the discussion of DETAILS OF BBAREP OPTION "-i" in
Chapter 6 for more information.

Details Of bbacpp 4-33

 Detailed
Explanation
Of The
BBA_IGNORE_
ALWAYS_
EXECUTED
Pragma

The BBA_IGNORE_ALWAYS_EXECUTED pragma is used only
within while loops. When the -DBBA_OPTO=w option is used with
bbacpp, while loops that are never skipped are reported. If you want to
ignore that condition, but not ignore any other branches within the
while statement, you must use the
BBA_IGNORE_ALWAYS_EXECUTED pragma; it ignores ONLY
the "while loop never skipped" condition.

In figure 4-16, if ptr was always not equal to NULL the first time the
while statement on line 132 was executed, you would normally get the
message "while loop never skipped" when you run bbarep. With the
pragma on line 134 present, that message is suppressed because that
condition will be ignored. However, if the "if" statement on line 137 is
never TRUE, you will still get the message "’then’ part of ’if’ was
never executed".

If the pragma on line 134 was BBA_IGNORE, the "while loop never
skipped" would still be ignored, but the if statement on line 137 would
also be ignored.

132 while (ptr != NULL)
133 {
134 # pragma BBA_IGNORE_ALWAYS_EXECUTED
135 optr = ptr;
136 ptr = ptr->next;
137 if (ptr->string != NULL)
138 {
139 free(ptr->string);
140 }
141 free(optr);
142 }

Figure 4-16. BBA_IGNORE_ALWAYS_EXECUTED Example Listing

4-34 Details Of bbacpp

 Detailed
Explanation Of
The BBA_ALERT
Pragma

The BBA_ALERT pragma causes bbarep to ’flag’ you when a branch
containing the BBA_ALERT pragma is executed. Specifically, if code
which is in the same scope as the BBA_ALERT pragma is executed,
bbarep will alert you. Refer to Chapter 7 for details of the bbarep
options -s, -aN, -bN, and -l.

The BBA_ALERT pragma can go anywhere the BBA_IGNORE
pragma can go. Further, both BBA_ALERT and BBA_IGNORE can
be combined in any order on the same #pragma line. See figure 4-17.

 Why Use
BBA_ALERT

Sometimes when a program is written, conditions are identified as
"impossible". However, as specifications change, the case that was
"impossible" may become "possible". Or, you may not be in a position
to write code to deal with a "possible" condition now, but you want to
be reminded to write that code later. A method for dealing with this is
to test for the condition, but not have any code for the condition, except
whatever is necessary to alert you that the condition has occurred.

Alert branches are a method of notifying you when a branch (which
you designate) has been executed.

if (a != OMEGA)
{
pragma BBA_ALERT BBA_IGNORE /* should never get here.... */
}

Figure 4-17. Combining BBA_ALERT And BBA_IGNORE

Details Of bbacpp 4-35

By using the alert pragma, you do not need to write any code to alert
yourself, because the BBA will alert you! In fact, any bbarep report of
a function or file that contains executed "alert" branches will contain a
notification; the output was designed to immediatly catch your
attention.

 Increasing
Push-Back-Line
Memory
(-DBBA_OPTp
<lines> Option)

This option is only necessary when a previous run of bbacpp gives you
the following error message:

Out of push-back-line memory; use -DBBA_OPTpNNN, where NNN is greater than XXX

Where XXX is a decimal integer. This message warns you that your
source code exceeded an internal limit, and bbacpp could not finish
processing your file. The XXX will be the current internal limit, and if
you specify a number larger than XXX , bbacpp will probably succeed.
(If it doesn’t succeed, it will give you the error message again, and you
should try an even larger number).

 Reserved Words
(Symbols)

Bbacpp generates symbols of the form _bA_xxxxxxxx. If your source
file has any symbols of that form, the error message below will be
printed to stderr:

 symbol ’xxxxxx’ conflicts with bba symbol

where xxxxxx is the symbol in your source file. In order to avoid these
messages, and other problems, do not use bbacpp with any file that
gives you this message, or else change the name of the offending
symbol to begin with characters other than ’_bA_’.

4-36 Details Of bbacpp

 Pitfalls With
bbacpp And
AxLS cc<COMP>

Keep the following considerations in mind when using the BBA with
cc<COMP>; where <COMP> represents your compiler number; e.g.
68000, 8086, 68030, etc.

cc<COMP> -h
(emulator only)

If you use the -h option (to generate HP 64000 format files), and
additionally you use -DBBA_OPTc<constname> or
-DBBA_OPTd<dataname>, bbaunload may not be able to unload
some file data.

If, in addition to the -h option, you use the compiler -d option, you will
not be able to unload the BBA data from the file. This problem is
caused by the mapping of compiler segments into HP File Format
regions. Only the three HP File regions "prog", "data", and "common"
can be used by BBA to store BBA information. If any of the BBA
information (_bA_array and _bA_info) is loaded into the absolute HP
File Format region, bbaunload will be inoperable. A possible work
around is to use -DBBA_OPTc<constname> and
-DBBA_OPTd<dataname> and set both to the name of a segment that
will be loaded into the HP File Format data or common regions.

In the situation where you are using the compiler option -d, you could
define -DBBA_OPTcidata and then be able to obtain a BBA dump
from this file (provided you do not define other segments).

If you use the Debugger, do not use the -h option.

cc<COMP> -s Do not use the -s option for cc<COMP>. The -s option causes all
symbol information to be stripped. When this happens, the bbaunload
emulation command or Unload_BBA debugger command cannot
locate the data arrays.

cc<COMP> -u Be very careful when using the -u option for cc<COMP>. The -u
option prevents the setting of initialized data to zeros. Getting valid
BBA data requires the data arrays to be 0 before the program starts. If
you use the -u option, you should manually force all of the memory to
0’s before loading your program.

Details Of bbacpp 4-37

The ASM Pragma Of
cc<COMP>

The ASM pragma of cc<COMP> is used to insert assembly language
code into your C source file. Branches within the assembly language
area will not be recognized by the BBA. The entire block of code
between ASM and END_ASM will be treated as a single C statement.

If the ASM pragma is the only statement of an if or else branch, you
must use curly brackets around it. Example:

if (a>0)
pragma ASM
 moveq #1,D3
pragma END_ASM

must be written as

if (a>0)
{
pragma ASM
 moveq #1,D3
pragma END_ASM
}

ccv20 -Q, ccv33 -Q,
and cc8086 -Q

If you are using a V20-series, V33-series, or 8086-series
microprocessor and you need to use the -Q compiler option, you will
need to copy the file named bbacppQ.spec for your emulator to
bbacpp.spec. (The normal bbacpp.spec file is not compatible with the
-Q option.)

1. Change to the appropriate directory.

a. For 8086-series, use: cd $HP/lib/8086

b. For V20-series, use: cd $HP64000/lib/v20

c. For V33-series, use: cd $HP64000/lib/v33

2. Save the current version of the bbacpp.spec file. You will
need it when you make tests and measurements without the -Q
option.

cp bbacpp.spec bbacppNOQ.spec

3. Copy the "Q" version of the ".spec" file to bbacpp:

cp bbacppQ.spec bbacpp.spec

4-38 Details Of bbacpp

 As long as you use the -Q option, you will need to use the "Q" version
of the file bbacpp.spec. In your later measurements, if you do not use
the -Q option, you will need to switch back to use of the file you saved
as bbacppNOQ.spec.

Note: Only the file named bbacpp.spec is actually read during the
BBA test process.

Linking Array And
Data Sections

In order for the File→Store→BBA_Data command to work correctly,
the sections that contain the array data and the constant data must have
the same "function code". Refer to "WHAT BBA UNLOAD DOES",
in Chapter 5 of this manual, for an example linker command file and
discussion of how the BBA Unload command reacts to different
linking strategies.

 Pitfalls With
bbacpp And
MRI Compilers

Keep the following considerations in mind when using the BBA with
MRI compilers:

Not all compiler options are supported. Refer to the appropriate man
pages mcc68kbba(1), mcc86bba(1), mcc960bba(1), and ccc68kbba(1).

The HP Branch Validator, when used with the MRI C++ Compiler,
will show additional branches that are generated by the translation of
C++ to the C language. You can reduce the number of these additional
branches by proper selection of options for BBA_OPTO.

The HP Branch Validator, when used with the MRI C++ Compiler will
not allow you to ignore MACROs by entering the name of the
MACRO. You can still ignore the branches generated by a MACRO
by individually ignoring each branch.

Details Of bbacpp 4-39

 Notes

4-40 Details Of bbacpp

5

Details Of bbaunload or Unload_BBA

Introduction Chapter 1 briefly explained the purpose of BBA unload. This chapter
will explain exactly how to invoke the BBA unload, and it will also
describe each of the options available to use with each of the BBA
unload commands (bbaunload or Unload_BBA). Figure 5-1 is
provided for quick reference to the emulator bbaunload command.
Figure 5-2 provides a quick reference to the debugger Unload_BBA
command. The File→Store→BBA Data pulldown menu item can be
used in either interface to unload the BBA data.

 What BBA Unload
Does

The BBA unload command appends all the branch-execution data from
the target system RAM or the emulation RAM to a file on the host disc.
(Branch execution data is created when files are compiled using the HP
Branch Validator preprocessor. Refer to Chapter 4 for more
information on how to use bbacpp).

The file on the host disc where the branch data is sent can be optionally
specified. This is the file that bbarep uses to prepare reports on the
number of branches hit during execution of the code. Refer to
Chapter 6 for details of the bbarep command and its options. The name
of the dump file defaults to bbadump.data, unless otherwise specified.

Details Of bbaunload In An Emulator 5-1

 BBAUNLOAD QUICK REFERENCE

Bbaunload is invoked by using the "bbaunload" softkey when you are
in an emulation session. This command unloads the data in the
branch-analysis arrays from the emulator memory (either emulation or
target memory) to a file named "bbadump.data". Bbaunload always
appends the data to the file instead of writing over it. Error messages,
if any, are sent to the status line.
Softkey tracking is available to help you enter a correct command
because "bbaunload" is executed from within an emulation session.

Usage:

 bbaunload [function codes] load_file [dump_file]

Examples:

 bbaunload myprogram
 bbaunload fcode USER_DATA programundertest mydumpfile

Figure 5-1. Quick Reference To "bbaunload"

5-2 Details Of bbaunload In An Emulator

 UNLOAD_BBA QUICK REFERENCE

Unload_BBA is invoked via the Memory Unload_BBA command
when you are in a debugger/emulation or debugger/simulation session.
This command unloads the data in the branch-analysis arrays from the
debugger memory to either a file named "bbadump.data", or a file
name of your choice. Unload_BBA always appends the data to the file
instead of writing over it.
Error messages, if any, are sent to the journal window.

Examples:

 Memory Unload_BBA All - Unload BBA information from all
absolute files loaded, placing data in file bbadump.data.

 Memory Unload_BBA Load_File "bbatest" - Unload BBA
information from absolute file bbatest.x, placing data in file
bbadump.data.

 Memory Unload_BBA All to "mydumpfile" - Unload BBA
information from all absolute files loaded, placing data in file
mydumpfile.

 Memory Unload_BBA Load_File "bbatest" to "mydumpfile" -
Unload BBA information from absolute file bbatest.x, placing
data in file mydumpfile.

Figure 5-2. Quick Reference To Unload_BBA

Details Of bbaunload In An Emulator 5-3

 Read Only If
Using M68020,
M68030, or
M68040

The remaining paragraphs in this chapter apply only if you are using
Motorola M68020, M68030, or M68040 emulators because these
emulators support separate address spaces selected by using optional
function codes. These function codes appear on softkeys when using
these emulators.

Link the DATA section for the BBA (the same DATA section used in
your source files by default), and the CONST section for the BBA (the
same CONST section used in your source files by default) next to each
other in your executable file. This ensures that the branch data will
unload properly.

Assuming that you used the options -DBBA_OPTcbbaconst and
-DBBA_OPTdbbadata when compiling all of the source files, the
example linker command file in figure 5-3 will be a good guide for you
when you are preparing your own linker command file.

In figure 5-3, bbadata and bbaconst are together in the address
ranging from FFFEA000 up. If we assign that address range to
USER_DATA, and invoke bbaunload with the function code
USER_DATA, the unload operation will proceed correctly. If we
move bbaconst to address 400 and put it right after const, for example,
and the addresses from 400 up are either SUPER_PROG or
USER_PROG (it is a program and/or constant section), then the data
accessed by bbaunload is split into two different function codes and
the unload operation will not work properly.

Function codes appear on softkeys when the absolute code has been
loaded into a memory configuration that uses the function codes.
Depending on the memory configuration selected, there are different
modes for function codes:

They may be enabled (full use of function codes).

They may be disabled (no use of function codes).

They may be partially disabled (only PROGRAM/DATA
spaces recognized).

If the function codes are disabled (even partially), they will be masked

5-4 Details Of bbaunload In An Emulator

off and ignored during the access of memory by bbaunload. When
they are enabled, only two choices for function code are valid for the
bbaunload command: SUPER_DATA and USER_DATA (the branch
data always resides in the data area of the program). Function codes
are not required when they are disabled in the selected memory
configuration. They don’t even appear on softkeys. When a function

* Example of a linker command file

* In this file, <COMP> = your specific microprocessor number

* (e.g. 68020, 68030, etc.).

* <PROD> = your specific HP product number

* (e.g. 64747, 647480, etc.).

*

CHIP <COMP>

SECT env=$400 * Load address for program/const sections

ORDER env,prog,const,lib,libc,libm

SECT mon =$20000 * Load address for emulation monitor sections

ORDER mon,mondata * This must be mapped to emulation memory

SECT stack=$7FFF8000 * Load address for stack section

SECT envdata=$FFFEA000 * Load address for data sections

ORDER envdata,data,bbadata,bbaconst,libdata,libcdata,libmdata,heap

* Set register A5 to the beginning address of the data section + 32k

* so that the A5-relative address mode may be used. If this directive

* is omitted, ?A5 has an undefined value.

INDEX ?A5,data,$8000

LOAD test.o,sub1.o,sub2.o

LOAD $HP64000/env/hp<PROD>/crt1.o

LOAD $HP64000/lib/<COMP>/libc.a

LOAD $HP64000/lib/<COMP>/lib.a

LOAD $HP64000/env/hp<PROD>/monitor.o

LOAD $HP64000/env/hp<PROD>/env.a

END

Figure 5-3. Example Of A Linker Command File

Details Of bbaunload In An Emulator 5-5

code is valid, but not explicitly specified, SUPER_DATA is the
default.

5-6 Details Of bbaunload In An Emulator

6

Details Of bbarep

Introduction Chapter 1 briefly explained the purpose of bbarep. This chapter will
explain exactly how to invoke bbarep, describe the options available to
bbarep, and show you how to interpret the reports produced by bbarep.

 BBAREP QUICK REFERENCE

Bbarep is invoked by using the "bbarep" command from the shell.
It normally reads data from the "bbadump.data" file (which can be
overridden with the "-d" option, see below). All output, except errors,
are written to stdout; errors go to stderr.

Usage for C: bbarep [options] [file | function ...]

Usage for C++: bbarep [options] [file | function ...] | c++filt

Options to bbarep:

-S Print only the percentage of coverage, the number of
 branches, and the number of ignored branches. This
 option may be used with style options "-s", "-l", "-b", "-a"
 and "-D*".

-s Print a summary of coverage information for each function.
 This is the default. This option may be used with style
 options "-S" and "-D*".

Figure 6-1. Quick Reference To "bbarep"

Details Of bbarep 6-1

-l Print the line numbers of unexecuted code for each function.
 This option may be used with style options "-S" and "-D*".

-bN Print "N" lines prior to the line which generated the branch
 that was never taken. A value of 0 will print out only the
 control statement. This option may be used with style
 options "-S", "-aN" and "-D*".

-aN Print "N" lines after the first line that was never executed.
 A value of 0 will print only the first line. If "-bN" is also
 specified, the printout will also include all lines from the
 control statement thru the unexecuted lines. This option
 may be used with style options "-S", "-bN" and "-D*".

-D[ftv] These options are helpful when documenting which
 files and versions were used in the testing. This option may
 be used with any of the previous style options.
 The documentation options are:

 f - list all files used to generate a report, the modification
 date/time of the files, and which -DBBA_OPTO= options
 were used when the files were compiled.

 t - list total number of compiled files, included files,
 functions, and branches.

 v - report version of "bbacpp" used when files were
 compiled, and current version of "bbarep".

The following options change some aspect of the report,
but not the style of the report:

-F Do not print the explanatory footnotes at the end of the
 report.

-d<file> Use <file> as the dumpfile instead of the default
 bbadump.data.

-u<usefile> Only include files or functions whose names are
 in <usefile>. Note that only one function name or file
 name should be on each line of <usefile>.

Figure 6-1. Quick Reference To "bbarep" (Cont’d)

6-2 Details Of bbarep

-i<ignorefile> The <ignorefile> is a file that contains control
 statements, file names, and/or function names (one per line).
 In addition to code which contains the BBA_IGNORE
 pragma, the BBA will ignore code whose function name,
 file name, or control statement appears in this file.

-I Ignore branches associated with include files. This option
 ignores all branches that are generated through an include file.
 This is most useful with C++.

-p Print the column numbers in addition to line numbers of
 unexecuted code for each function. Note that this is useful
 only if "-l" was used.

-o Retain data associated with older sources in the dumpfile.
 Normally, if the dumpfile contains data from older sources,
 the old data is ignored (and a warning is printed to stderr).
 If this is used, however, the BBA will attempt to retain the
 old data.

-e<tabs> Expand tabs to <tabs> tabstops. The default is one
 tabstop every 8 spaces. For example, -e2 will set tabstops
 every 2 spaces.

Examples:

bbarep
bbarep -l -d old.data -Df
bbarep -a4 -b4 -e2 proc1 file2.c
bbarep -S
bbarep -s -Dtvf

Figure 6-1. Quick Reference To "bbarep" (Cont’d)

Details Of bbarep 6-3

 What bbarep Does Bbarep reads the dump file that the File→Store→BBA_Data
command created, and generates any of several reports based on the
data. For most reports, the "mapfiles" (which are usually generated
when bbacpp runs) are also used, and for the source-reference reports,
the source files are also used.

If there are file names or function names on the command line, only
those functions listed (or functions within the listed files) will show up
in the report. Refer to the discussion of the -u <usefile> option, later in
this chapter.

The "bbadump.data" files are ASCII files. You may catenate the
"bbadump.data" files together if you wish. In fact, the
File→Store→BBA_Data command normally appends data to data
already in the bbadump.data file. Also, you may add lines to the
bbadump.data files as long as they do not begin with a colon (:) in the
first column. Lines that do not start with a colon are ignored by
bbarep.

Normally, results from multiple File→Store→BBA_Data commands
are ORed together to form a single report. However, if a source file
has been modified and compiled between File→Store→BBA_Data
commands, the data from the newest version is retained and the data
from the oldest is skipped. Refer to the discussion of the -o option for
a way to override this, if desired.

Each of the following sections describes one of the options that bbarep
will accept, what it does, and some reasons you might want to use it.
Certain of the options (such as -l and -aN) cannot be used together. If
you want reports with multiple styles of output, run bbarep with each
style as an option. See the man page to determine legal combinations
of command-line flags (or bbarep will warn you if you use an illegal
combination). The options -D[ftv] , -S, -F, -d<file>, -u<usefile>,
-i<ignorefile>, -I , and -e<tabs> can be combined with any of the other
options.

6-4 Details Of bbarep

 The BBAPATH
Environment
Variable

When bbarep needs to use a map file or a source file, it looks for the
file in the directory where that file was compiled. If the file is not
there, bbarep will generate an error message telling you that it could
not find the file. When this happens, the output you wanted may not be
available (such as a source reference report).

If the file exists, but it is in a different directory from the one where it
was compiled, you can direct bbarep to find it using the BBAPATH
environment variable. The format of the BBAPATH variable is the
same as the PATH variable; directory names are separated by colons.

For example, if BBAPATH contained
"/users/harry/src:/users/harry/src2:/users/harry/src3",
bbarep will look for files that it cannot find in their original directories
in these three directories: "/users/harry/src", "/users/harry/src2", and
"/users/harry/src3". When bbarep cannot find a file, it will search the
directories mentioned in the BBAPATH variable in the order they are
specified; it will stop when it finds a file with the name it is looking
for.

For example, if bbarep needs the file "/users/hairy/mysource/main.M"
but that file does not exist, and BBAPATH is set to the example above,
bbarep will look for the files:

/users/harry/src/main.M
/users/harry/src2/main.M
/users/harry/src3/main.M

If none of those exist, you will get the error message telling you that
"/users/hairy/mysource/main.M" could not be found.

Details Of bbarep 6-5

 How To Set
BBAPATH

In sh(1) or ksh(1), the following commands will set BBAPATH:

BBAPATH=<directory>:<directory>:....
export BBAPATH

(The ’export’ is necessary to make the BBAPATH variable
available to programs executed from the shell.)

Example:

 BBAPATH=/users/harry/src:/users/harry/src2:/users/harry/src3

In csh(1), the command is:

 setenv BBAPATH <directory>:<directory>:....

6-6 Details Of bbarep

 Getting A Short
Summary Report
(-S Option)

This option prints only a short summary of the results, including the
percentage of coverage, the number of branches, and the number of
alert/ignored branches (if the mapping files are available). See figure
6-2.

This shows that of the 33 branches that were supposed to be executed
(i.e., 33 branches were not ignored), only 22 were actually executed,
for a 66.67% coverage. There were 24 branches that were ignored (i.e.,
out of 57 branches, 24 were ignored either because their control
statement occurred in an ignore file, or because they had #pragma
BBA_IGNORE in the source file).

This output format is useful for quickly getting a measurement of how
well the complete set of software is being tested.

Note If a file or function is ignored by a statement in the ignore file,
its branches are not included in the summary.

 22 out of 33 retained branches executed (66.67%)
 [24 branches were ignored]

Figure 6-2. Example Of bbarep -S Output

Details Of bbarep 6-7

 Getting The
Default Report
(-s Option)

This option prints a function-by-function summary of the results,
showing the percentage of coverage (and number of branches) for each
function. It also includes explanatory footnotes.

This is the default report, which means if no options are given to
bbarep, it is equivalent to bbarep -s. If you want to combine the -s
option with (for example), -Dt, you must include the -s.

The -s report also includes the information provided by the -S option,
at the end of the listing.

Figure 6-3 shows four functions (keyconvert, bitpos, getkeyvalue, and
twobits) in three files (convert.c, getkey.c, and multibits.c).

In keyconvert, for example, 8 branches out of a total of 12 retained
branches were executed (we know that there were some ignored
branches in keyconvert because a star (*) appears in the I column next
to keyconvert’s name). That came to 66.67% coverage for the function
’keyconvert’. If there had been a star (*) in the A column, we would
know that at least one BBA_ALERT branch in keyconvert had also
been executed (as there was in getkeyvalue).

The footnotes - explaining what the stars meant - can be disabled by
using the -F option (discussed later in this chapter).

_hit___total____%____IA____function_____________file___________
 8 / 12 (66.67) * keyconvert convert.c
 6 / 9 (66.67) bitpos convert.c
 3 / 5 (60.00) *getkeyvalue getkey.c
 5 / 7 (71.43) twobits multibits.c
22 out of 33 retained branches executed (66.67%)
[24 branches were ignored]

NOTE:
A ’*’ in the ’I’ column means this function had one or more
 branches that were ignored
A ’*’ in the ’A’ column means this function had a BBA_ALERT which
 was executed

Figure 6-3. Example Of bbarep -s Output

6-8 Details Of bbarep

This output format is useful when you know you want to enhance your
test suite, and want to find out which functions have low test coverage
(on the idea that it is better to have all functions tested at N% instead of
some functions tested at 100% and some at 0%, even though that might
result in the same over-all coverage).

 Getting Line
Numbers In The
Report
(-l Option)

This option prints the line numbers and types of branches for each
"outer unexecuted" branch. Only the outer one is printed to avoid tons
of meaningless output. For example, consider a function with 300
branches in it. If the function is never called,
you might get 300 lines of output! By using the -l option,
you would just get one line, telling you that the function was never
called, but you would be notified that there were 300 branches beneath
it (see the function bonzo, in figure 6-4, below).

The listing in figure 6-4 shows that the function "bonzo" (which is in
file "globals.c") was never called, and that there were 300 branches in
that function.

The "range of code" (which is 12 through 345 for "bonzo") identifies
the line numbers that contain the code that was not executed.

range_of_code____#_explanation_________________________

bonzo globals.c
 12 -> 345 300 function was never called

keyconvert convert.c
 37 -> 37 1 ’then’ part of ’if’ was never executed
 44 -> 44 c 1 conditional of ’if’ was never FALSE (no ’else’ statement)
 49 -> 49 c 1 conditional of ’do while’ was never TRUE
 49 -> 52 *** code with BBA_ALERT was executed

bitpos convert.c
 77 -> 87 5 ’case’ code was never executed
 194 -> 198 2 ’then’ part of ’if’ was never executed

Figure 6-4. Example Of bbarep -l Output

Details Of bbarep 6-9

If a "c" is between the line numbers and the number of branches (such
as in "keyconvert", line 44), the line numbers refer to the controlling
statement, not the lines of unexecuted code. This is necessary, for
example, in order to clearly report about an ’if’ statement which had no
’else’ when the condition of the ’if’ was never TRUE.

The three stars (for lines 49 through 52 of function keyconvert)
indicate that these lines were a block of code that had a BBA_ALERT
pragma, and that code was executed. The stars should catch your
attention.

The numbers in the ’#’ column indicate the number of branches that
were never executed. The number in this column can be greater than
one when the branch listed has other branches nested within it. For
example, consider the code fragment in figure 6-5.

If a was always non-zero, you would get a line in the report that looks
like:

 22 -> 30 3 ’then’ part of ’if’ was never executed

 20 if (a == 0)
 21 {
 22 if (b == 0)
 23 {
 24 c++;
 25 }
 26 else
 27 {
 28 c--;
 29 }
 30 }

Figure 6-5. Code Fragment To Explain The # Column

6-10 Details Of bbarep

The ’#’ column shows the following three branches:

1. One for the if (a == 0) statement itself.

2. One for the if (b == 0) statement (which could not be
executed, because a was never 0).

3. One for the else associated with the if (b == 0) statement.

This output is useful when you want to increase test coverage for a
large routine. It identifies the branches that "hide" the most branches
(so you can concentrate on those branches first). It is also useful if you
want to quickly find the executed "BBA_ALERT" branches.

If you have several instrumented branches on a single line, the -p
option to bbarep is useful. Refer to the discussion of DETAILS OF
THE -p OPTION, later in this chapter for more information.

Note that if a branch is "ignored", it will not show up in this listing
unless it was also a "BBA_ALERT" branch and the branch was
executed.

Details Of bbarep 6-11

 Explanation Lines
For -l, -bN, And
-aN Options

The explanations shown with the -l option are usually the same as the
explanations shown with the -aN and -bN options (see below).

Here is a complete list of explanation strings, and their meanings:

function was never called

The function referenced was never called.

conditional of ’if’ was never TRUE ’
then’ part of ’if’ was never executed

Both of these tell you that the conditional of an ’if’ statement was
never evaluated to be TRUE; however, in the second case, the line
numbers refer to the unexecuted code, and in the first case, the line
numbers refer to the ’if’ statement itself. The first form of the message
will be used whenever the -bN is used without the -aN option. The
second form will be used for all other reports.

conditional of ’if’ was never FALSE (’else’ never executed) ’
else’ part of ’if’ was never executed

Both of these tell you that the conditional of an ’if’ statement was
never evaluated to be FALSE; however, in the second case, the line
numbers refer to the unexecuted code, and in the first case, the line
numbers refer to the ’if’ statement itself.

6-12 Details Of bbarep

conditional of ’if’ was never FALSE (no ’else’ statement)

This tells you that the file was compiled with the -DBBA_OPTO=i
option. The lines referenced were an ’if’ statement that had no ’else’.
Further, the conditional of the ’if’ statement was never evaluated to be
FALSE (so the ’then’ part of the ’if’ statement was never unexecuted).

switch never went to ’case’
switch never went to ’default’
switch never went to ’inner case’
switch never went to ’inner default’
’case’ code was never executed
’default’ code was never executed

All six of these refer to ’case’ or ’default’ statements inside a ’switch’
statement. In the first two, the lines refer to unexecuted code. In the
last four, the lines refer to the ’case’ or ’default’ statement itself. The
’inner case’ mentioned in the third message refers to a ’case’ statement
that is within the scope of another case statement. An ’inner case’
example is shown in figure 6-6.

In figure 6-6, case 1 is a normal case, while case 2 is an ’inner case’,
and the default is an ’inner default’.

 switch(a)
 {
 case 1 : if (i == 4)
 {
 case 2: i++;
 j--;
 default: k++;
 }
 }

Figure 6-6. ’inner case’/’inner default’ Explanation

Details Of bbarep 6-13

switch never went to ’case’ (no executable statements)
switch never went to ’default’ (no executable statements)

In these two messages, the referenced ’case’ or ’default’ had no
executable statements, but the file was compiled with the
-DBBA_OPTO=e option so the BBA detected that the ’switch’
statement was never executed with a value that caused it to go to the
specified ’case’ or ’default’.

switch never went to ’default’ (code executed by fall-thru)
switch never went to ’case’ (code executed by fall-thru)
switch never went to ’inner default’ (code executed by fall-thru)
switch never went to ’inner case’ (code executed by fall-thru)

These four messages advise you that although the code associated with
a ’case’ or a ’default’ was executed, the switch statement never went to
the ’case’ or ’default’. This happens when a previous ’case’ or
’default’ was not followed by a ’break’ statement. This is detected
when the -DBBA_OPTO=e option is used. Refer to the paragraph
associated with figure 6-6 for an explanation of ’inner case’ and
’inner default’.

switch went to ’default’ (default not defined in code)

This shows that even though a ’switch’ statement did not have a
’default’ statement within it, the ’switch’ was entered with a value that
did not match any of the ’case’ statements. This is detectable only
when the -DBBA_OPTO=s option is used when compiling the file.

6-14 Details Of bbarep

conditional of ’while’ was never TRUE
body of ’while’ loop was never executed

Both of these describe what happens when the conditional of a ’while’
statement was never TRUE. The first has line numbers that refer to the
’while’ statement itself. The line numbers in the second message refer
to the unexecuted code controlled by the ’while’ statement.

conditional of ’while’ was never false first time thru
body of ’while’ loop was never skipped

These both refer to cases where the body of a ’while’ loop was always
executed at least once. For the first message, the lines refer to the
’while’ statement itself; for the second message, the lines refer to the
unexecuted code controlled by the ’while’ statement. This case can
only be detected when the file was compiled with the
-DBBA_OPTO=w option.

conditional of ’for’ was never TRUE
body of ’for’ loop was never executed

Both of these describe what happens when the conditional in a ’for’
statement is never TRUE; however, in the second case, the line
numbers refer to the unexecuted code; and in the first case, the line
numbers refer to the ’for’ statement itself.

3rd expression of ’for’ was never executed

This means that the third expression in a ’for’ command was never
reached. This can happen, for example, when a ’return’ statement
inside a for loop is always executed the first time the ’for’ is executed.
This can only be detected when the file was compiled with the
-DBBA_OPTO=f option.

Details Of bbarep 6-15

conditional of ’conditional assignment’ was never TRUE
true part of ’conditional assignment’ was never executed

Both of these describe what happens when the conditional in a
conditional assignment statement is never TRUE.
(The conditional is the part prior to the question mark). In the second
case, the line numbers refer to the unexecuted code; and in the first
case, the line numbers refer to the conditional statement itself.

conditional of ’conditional assignment’ was never FALSE
false part of ’conditional assignment’ was never executed

Both of these describe what happens when the conditional in a
conditional assignment statement is never FALSE; however, in the
second case, the line numbers refer to the unexecuted code; and in the
first case, the line numbers refer to the conditional statement itself.

conditional of ’do while’ was never TRUE
conditional of ’do while’ was never FALSE

Pretty clear - the line numbers always refer to the line(s) that carry the
’while’ statement. It is only possible to get this if the file was compiled
with the -DBBA_OPTO=d option.

6-16 Details Of bbarep

 Showing Lines
Before The
Unexecuted Line
(-bN Option)

This option requests N lines to be printed before the line(s) that have
the controlling statement. If you use -b0, only the line(s) of the
controlling statement will be printed.

For example, refer to the code fragment in figure 6-7.

If timer_count was never less than TIME_OUT , these are the reports
that different -bN values will give you:

"-b0"

 (2) conditional of ’if’ was never TRUE
 17 -> if (timer_count < TIME_OUT)

The "explanation text" precedes the actual source reference. The
number in parenthesis indicates the number of branches that were
never executed (i.e., they are identical to the numbers in the ’#’ column
for the -l report).

The line numbers being printed are to the left; the line referred in the
"explanation" text is highlighted with an arrow (pretty useless in the
case where only one line is printed, but very useful for the case where
multiple lines are printed.)

Any tabs in the source file are expanded as per the -eN option,
described later in this chapter.

15 /* execute if we have not timed out yet */
16 timer_count++;
17 if (timer_count < TIME_OUT)
18 {
19 int i;
20 for (i = 0; i < active_ports; i++)
21 *port[i] = NO_IO;
22 }

Figure 6-7. Example Code Fragment

Details Of bbarep 6-17

"-b2"

 (2) conditional of ’if’ was never TRUE
 15 /* execute if we have not timed out yet */
 16 timer_count++;
 17 -> if (timer_count < TIME_OUT)

Each time the output changes from one file or function to another, a
line is printed showing the function and file before the first condition.

When code containing the "BBA_ALERT" pragma was executed, the
output will have stars in the first column. Again, this is done to make it
easy to see these cases. For example:

 *** code with BBA_ALERT was executed
 *18 array[i]--;
 *19 -> if (array[0] == 1)

If there are two or more branches of the type referenced in the
explanation, the branch of interest will be pointed out by carets (^)
printed beneath the line:

"-b3"

 (1) conditional of ’if’ was never TRUE
 25 /* execute if we have not timed out yet */
 27 -> if (j < k) { j++; } else {if (k > q) q--; else k++; }
 ^^^^^

The listing above indicates that j was never less than k.

The -bN output is useful when you want to see the branches that were
not executed, but you want to exclude the code associated with these
branches

6-18 Details Of bbarep

 Showing Lines
After The
Unexecuted Line
(-aN Option)

This option requests N lines to be printed after the first line that was
not executed. If you use -a0, only the first unexecuted line will be
printed.

For the following examples, refer to the code fragment shown in figure
6-7. Here are some example listings:

"-a0"

 (2) ’then’ part of ’if’ was never executed
 20 -> for (i = 0; i < active_ports; i++)

"-a2"

 (2) ’then’ part of ’if’ was never executed
 20 -> for (i = 0; i < active_ports; i++)
 21 *port[i] = NO_IO;
 22 }

Again, the "explanation text" precedes the source reference. The
number in parenthesis indicates the number of branches that were
never executed (i.e., they are identical to the numbers in the ’#’ column
for the -l report).

Note that the output may contain lines that were executed (consider the
report you would have if you used -a15, and an unexecuted branch
only controlled three lines).

If there are fewer than N lines in the file after the first unexecuted line,
(eof) will be printed at the end of the listing.

Details Of bbarep 6-19

Again, any executed code that had a "BBA_ALERT" pragma will be
highlighted by stars:

 *** code with BBA_ALERT was executed
 *21 -> i++;
 22 # pragma BBA_ALERT / Shouldn’t get here for version 1.5! */
 *23 }

Carets are also used to avoid confusion when two or more branches of
the same type are on one line:

"-a1"

 (1) true part of ’conditional assignment’ was never executed
 20 -> j = (i < 0) ? ++i : (i < 30) ? i-- : 0;
 ^^^
 21 /* what a mess! check I/O ports to see if

The output obtained by "-aN" is useful to see the code that was not
executed (and therefore, the program behaviors that were not tested).

6-20 Details Of bbarep

 Details Of Actions
When -bN And -aN
Options Are
Combined

When you use both the -bN and -aN options, the listing includes lines
before the control statement, after the first unexecuted statement, and
some lines in between. The number of lines printed that are "between"
the control statement and first executable statement is about the same
as the smallest N value used for -a or -b.

For example:

"-a2 -b2"

 (2) ’then’ part of ’if’ was never executed
 15 /* execute if we have not timed out yet */
 16 timer_count++;
 17 if (timer_count < TIME_OUT)
 18 {
 19 int i;
 20 -> for (i = 0; i < active_ports; i++)
 21 *port[i] = NO_IO;
 22 }

In the above example:

1. Two lines prior to the controlling statement are printed (lines
15 and 16).

2. The controlling statement is printed (line 17).

3. Two lines between the controlling statement and the first
executable statement are printed (lines 18 and 19).

4. The first unexecuted statement is printed (line 20).

5. Two lines after the first unexecuted statement are printed
(lines 21 and 22).

Note that the arrow points at the line referenced in the explanation.
Compare this with the examples discussing the -bN option, earlier in
this chapter.

Details Of bbarep 6-21

This is, perhaps, the most useful output because it shows not only
which conditions must occur for a branch to be executed, but also what
the unexecuted code would have done.

 Showing
Character
Positions In The
Report
(-p Option)

This option is only useful when the -l option is used. It causes the
character positions in addition to the line numbers to be printed to the
left of the explanation for each outer unexecuted branch.
See figure 6-8.

Figure 6-8 shows that the ’then’ code for the first unexecuted branch
started in character position 3 on line 15, and ended in character
position 2 on line 17. Character positions are defined as the number of
characters (not number of columns!) from the start of the line. Each
tab counts as 1 character (regardless of how it expands when printed).
The first character on a line is character position 1 (not 0).

 ___range_of_code________#_explanation__________________

 main dump1.c

 15/3 -> 17/2 1 ’then’ part of ’if’ was never executed
 24/4 -> 26/3 1 ’then’ part of ’if’ was never executed

Figure 6-8. Example Report Using -p Option

6-22 Details Of bbarep

 Ignoring By Use
Of The
-i<ignorefile>
Option

This option provides another method of ignoring branches
(in addition to the BBA_IGNORE pragma). It also provides a method
of ignoring macros (which can’t be ignored with the BBA_IGNORE
pragma), as well as a convenient method for ignoring all functions in a
file.

To use the option, you must have a file (the "ignorefile") which
contains lines defining what is to be ignored. There are four types of
lines that can be put in an ignore file:

1. File names (ignore all functions in the named file).

2. Function names (ignore all branches in the named function).

3. Macro names (ignore all branches generated by the named
macro).

4. Conditions (ignore all branches controlled by the condition).

Note With C++, the names must be the C++ file names (.cxx), the function
names must be the C encrypted function names, and the conditions
must be the C encrypted conditions from the intermediate file. From a
practical point of view, only C++ filenames can easily be entered.

Details Of bbarep 6-23

How To Ignore All
Functions In A File

 A file name is contained on this line. This is usually an "absolute path"
name, i.e., a file name beginning with a slash ("/"). However, if the
files do not begin with a slash, they are assumed to be paths relative to
the directory where the bbarep command is presently running.

Examples:

 file1.c

 /proc1/src/omega.c

 test_src/gamma.c

The first line requests that all functions in the file "<cwd>/file1.c" be
ignored; <cwd> is the directory where bbarep is presently running.

The second line requests that all functions in the file
"/proc1/src/omega.c" be ignored.

The third line requests that all functions in the file
"<cwd>/test_src/gamma.c" be ignored; <cwd> is the directory where
bbarep is presently running.

How To Ignore A
Function

 This is done by entry of a line that contains a function name, or
contains a "full-path file name: function name". It is exactly equivalent
to having a BBA_IGNORE pragma before a function.

Examples:

function1

main.c

/users/leslie/project/file1.c: function2

The first two lines cause all branches in the functions "function1" and
"main" to be ignored. These entries will ignore ALL functions that
have the name (a function name can be duplicated if no more than one
of the instances of the function name is declared static).

The third line causes all branches in the function "function2" in the file
"/users/leslie/project/file1.c" to be ignored.

Note A file name preceding a function must be a full-path file name.

6-24 Details Of bbarep

How To Ignore All
Branches Generated

By A Macro

This is done by entering a macro name on a line. This will only cause
those branches that are generated by "outer invocations" of the macro
to be ignored. Any macro that is not invoked inside another macro is an
"outer invocation".

For example, consider the macro definitions, and macro invocations
shown in figure 6-9, and in the following subparagraphs.

If an "ignorefile" contains the following line:

 MAC1

then the branches generated on line 17 of figure 6-9 will both be
ignored. However, although MAC1 is invoked indirectly on lines 18
and 20, those branches will not be ignored.

If an "ignorefile" contains the following line:

 MAC2

then all of the branches generated on lines 18 and 20 will be ignored
because MAC2 is the "outer macro".

If an "ignorefile" contains the following line:

 MAC3

then the branches on line 19 will be ignored (assuming you compiled
your source files with the -DBBA_OPTO=A option!). Although
MAC3 is mentioned on line 20, it is not the "outer invocation" so the
ignorefile will not ignore it.

11 # define MAC1(a) if (a == 0) j++; else j--;
12 # define MAC2(b,c) if (b != c) MAC1(c) else MAC1(b)
13 # define MAC3(a) (a == 0) ? -1 : 1;
14
15 func(j,k,l,m)
16 {
17 MAC1(j);
18 MAC2(k,l);
19 m = MAC3(j);
20 MAC2(MAC3(j), k)

Figure 6-9. Macro Definitions

Details Of bbarep 6-25

You could ignore all branches on lines 17 through 20 by an
ignorefile that looks like:

 MAC1

 MAC2

 MAC3

If you want to ignore MAC1 in only one function, you can enter a line
like:

 /..full path name../file1.c: function2: MAC1

This is called scoping. A macro can be ignored throughout all of the
code by just including the macro name, or it can be ignored on a
functional basis by providing the file and function scoping
(full-path file: function: MACRO). These are the only two methods of
ignoring a macro.

How To Ignore All
Branches Controlled

By A Specific
Statement

This is done by entering a control statement (or part of it) in the
ignorefile. In all files and functions, branches that are controlled by that
statement will be ignored. For example, if an ignorefile contains

 if (a == 0)

then all if statements that compare a == 0 will be ignored. Note that
this might make the BBA ignore lots of important branches. On the
other hand, if you commonly have code that is only executed under
circumstances you don’t want to test (such as a "maintenance mode"),
this can be very useful.

Further, lines in an ignorefile are compared against both the
pre-processed and post-processed C source lines (i.e., they are
compared both against the text you wrote, and against the results of any
macro expansion). Used with care, this might ignore specific branches
of macros.

Even if the source line that is the control code spans several lines, the
lines must be reduced to one line for each control statement in the
ignore file. White space in C language programs (i.e. spaces, tabs, and
comments) is ignored when comparing each control statement in the
source files with the line in the ignore file.

6-26 Details Of bbarep

For example, consider the following code fragment:

133 if (beta(8) <
134 omega(90))
135 {
136 printf("oops\n");
137 }
138
139 j = (k == 9) ? /* degenerate case */ 0 : 9;

All branches in the above code fragment can be ignored by using the
following ignore file:

if (beta(8) < omega(90))
(k==9)?
/* don’t really care */

Note again that the above statements will ignore all occurrences of
these control statements in all of your source files.

By adding the file and function name to these branches, you can
confine the ignoring to the specified file and functions. To do this,
include the file name, function name, and controlling branch separated
by ":’s" all on one line in the ignore file.

Consider the following statements:

/..full path name../file1.c: function2: if (beta(8) < omega(90))

/..full path name../file1.c: function3: (k == 9)?

The first line will ignore all branches associated with each occurrence
of "if (beta(8) < omega(90))", but only in function "function2" in file
"file1.c".

The second line will ignore each occurrence of "(k == 9)?", but only in
function "function3", in file "file1.c".

In the following examples, remember that each controlling statement
can be scoped to a function by adding
file: function: controlling statement.

Details Of bbarep 6-27

Note Scoping will only work on a function level. You must enter both
"full-path file:" and "function:" for this scoping to work.

Entries of "file: : controlling statement" and
": function: controlling statement" will not work.

The following examples and explanations will help you to decide
exactly what text to insert into an ignore file for each type of branch.

Ignoring An ’if’ Statement (And ’else’ Statement)

The text to ignore an ’if’ statement starts with the ’if’ text and stops
with the closing parenthesis of the ’if’s condition.

Examples:

 if (j++ <= omicron(890 + falsetto))
 if (MAC3(j) == 4)

Note When an ’if’ statement appears in an ignorefile, the ’else’ statement is
also ignored. There is no way to specify ignoring only the ’else’ or only
the ’then’ part of an ’if’ statement. However, you can ignore just one of
these by using the BBA_IGNORE pragma, discussed in Chapter 4 of
this manual.

Ingoring ’case’ And ’default’ Statements

The text to ignore a ’case’ statement starts with the word ’case’ and
ends with the cases’s colon (:).

Examples:

 case 28:

 case HELP_CHARACTER:

 case ’Q’ :

6-28 Details Of bbarep

Ignoring An Inserted Default

Defaults are inserted by using the -DBBA_OPTO=s option.
The entry required to ignore a default that isn’t defined in the code (but
was generated when the file was compiled with the -DBBA_OPTO=s
option) is the name of the switch statement that didn’t have the default.
It starts with the word ’switch’ and ends with the closing parenthesis of
the switch’s condition.

Examples:

 switch (input_character)

 switch(j)

Ignoring A ’while’ Statement

The text required in an ignore file to ignore branches generated by a
’while’ statement begins with the word ’while’ and ends with the
closing parenthesis of the ’while’s condition.

Examples:

 while (b != 0)

 while(payment > stocks)

Ignoring ’do-while’ Statements

The text required to ignore the branches in a ’do-while’ statement is
only the condition of the while (no other text). To ignore branches in
the following statement:

 do { j++; } while (j < 5);

the ignorefile’s line is:

 j < 5

Details Of bbarep 6-29

Ignoring A ’conditional assignment’ Statement

The text required to ignore a conditional assignment starts with the
opening parenthesis of the conditional assignment’s condition, and
closes with the question-mark (?).

Examples:

 (j == 4) ?

 (k <= j)?

Note There is no way in an ignorefile to ignore only the TRUE or FALSE
portions of a conditional assignment. If a conditional assignment is
specified in an ignorefile, both the TRUE and FALSE branches will be
ignored. The BBA_IGNORE pragma, however, can be used to
selectively ignore the TRUE or FALSE branch.

Ignoring A ’for’ Loop

The text required in an ignorefile to ignore the body of a ’for’ loop
begins with the word ’for’ and ends with the closing parenthesis.

Examples:

 for (i = 0; i < sizeof(array); i++)
 for (/* no init*/; j <= omega; j+= 45)

When compiling with the -DBBA_OPTO=f option, you may ignore
whether or not the third expression of a ’for’ statement is executed by
inserting the controlling code into the ignorefile. For example, to
ignore both the i++ and j+=45 shown above, the ignorefile should
contain:

 i < sizeof (array)
 j <= omega

6-30 Details Of bbarep

 Selecting The
Report Content
With The -u
<usefile> Option

This option specifies a file that contains names of files or functions
that are to be included in a report. Only those files or functions named
in the <usefile> will be in the report.

The effect is identical to having the files or functions on the command
line, but it may be easier to put the list in a <usefile> than to type it on
the command line.

The format of the <usefile> is simple. Each line contains the name of a
function or file. File names are assumed to be relative to the directory
where the bbarep program is running, unless they begin with a slash (/).

For example, if the file "myfiles" contains:

 gram/lex.c

 gram/parse.c

 parseerror

then the command bbarep -u myfiles would report on all functions in
the files <cwd>/gram/lex.c and <cwd>/gram/parse.c
(<cwd> is the directory where bbarep is being run), and all functions
named parseerror.

This is useful when several people are working on a single program,
but you only want your report to show the files for which you have
responsibility.

Details Of bbarep 6-31

 Getting Reports
From Other
Dump Files
(-d <file> Option)

This option tells bbarep to use the file <file> instead of the file
"bbadump.data" to obtain the data for the report. Normally, the
bbaunload emulation command or the Unload_BBA debugger
command writes the coverage data to a file named "bbadump.data".
This can be overridden.

Example:

bbarep -a5 -b5 -d mydata

requests bbarep to generate a source reference listing using data
contained in the file mydata instead of bbadump.data.

 How To Obtain
Separate Reports
Per Test Suite,
And Then
Combine Them

You may want to save the coverage from one test set and then run
another test-set, and get separate reports on each of them. Perhaps, you
might want another report that merges both sets of coverage data). To
do this, you might:

1. Remove the old bbadump.data files (to avoid inadvertent
merging of coverage information). Use a command such as:

rm bbadump.data coverage.1 coverage.2

2. Run your first test suite, and use the File→Store→BBA_Data
command to store the coverage data into a file named
coverage.1.

3. Reload your program (to set the coverage data arrays to 0).
Then run your second test suite. Use the
File→Store→BBA_Data command to save the data in a file
named coverage.2.

6-32 Details Of bbarep

4. Run bbarep twice, once for each File→Store→BBA_Data
command given:

bbarep -d coverage.1
 # get report on first test suite’s coverage

bbarep -d coverage.2
 # get report on second test suite’s coverage

5. To get a merged report (i.e., with the coverage from both test
suites ORed together), create a file that is a combination of
coverage.1 and coverage.2, using the UNIX cat command:

cat coverage.1 coverage.2 > coverage

 and to get the report of the merged data, use the following
command:

bbarep -d coverage

 Specifying Spaces
In A Tab
(-e <tabs> Option)

When the -aN and -bN options are used, your source files are printed
out (in addition to other information). When a tab character is found in
your source code, it is expanded the same way that "vi" (and other
UNIX utilities) would expand it.

With the -e <tabs> option, you can set the number of columns between
tabstops (-eN is equivalent to the vi command
:set tabs=N).

In order to make the bbarep listing have the same indentation as your
source file when it is displayed in your editor, you will want to set the
<tabs> to the same value used by your editor. The default value for
<tabs> is 8 (i.e., there is a tabstop every 8 characters).

For example, to cause bbarep to expand tabs as if there were tabstops
every four columns, use the following command:

bbarep -a3 -b5 -e4

Details Of bbarep 6-33

 Getting Reports
That Include Older
Dump Data
(-o Option)

This option disables some of the error checking that bbarep does
when reading a bbadump.data file prior to generating the reports.

In the bbadump.data file, the data from each file also has the
modification date of that file (detected at the time bbacpp was run)
associated with it. Normally, bbarep does not combine data when it
detects two BBA unload’s with different modification dates in the
same bbadump.data file. However, the -o option tells bbarep to go
ahead and combine the data.

If the number of branches has changed (for identical -DBBA_OPTO=
options), the -o option is ineffective. You have made a significant
change and the data cannot be reliably merged. In this case, the data
associated with the newest file modification time will be retained and
you will be notified via a warning message.

This option is useful when you have inadvertently changed the
modification dates of the files, but have not changed the branches. For
example, if you added a comment, or changed the name of a variable,
you might still want to combine old coverage data with new coverage
data.

Example of use:

1. File "hello.c" is compiled with the -b option. The absolute file
is created, run, and a File→Store→BBA_Data command is
given.

2. File "hello.c" is edited, changing only a comment.

3. File "hello.c" is compiled and linked. The absolute is loaded
into the emulator or debugger and run, and a
File→Store→BBA_Data command is given.

6-34 Details Of bbarep

 Normally, running bbarep will result in the warning:

 bbarep: warning: skipping data from older version of file hello.c

 date of skipped file is 11/01/87 12:32:48

and the coverage data from the first run of "hello.c" is not used in
creating the report. However, if you include the -o option in your
command, the data from both files will be ORed together to form that
report, and you’ll get the warning:

 bbarep: warning: using data from multiple versions of file hello.c

 Suppressing
Footnotes In
Reports
(-F Option)

This option suppresses the footnotes, which are printed after -s, -aN,
-bN, and -l listings. If you use bbarep often, you may feel that the
footnotes are not necesary. For a new user, the footnotes help in
understanding the output.

This option is useful to generate listings with a minimum of extraneous
output.

 Ignoring Branches
In Include Files
(-I option)

This option ignores all branches that are generated from include files.
Each branch is examined to determine if it was generated by a source
or include file. Branches associated with include files are ignored.
This is the same as choosing Settings→Ignore→Include Files... in the
bba SoftBench interface.

This feature is most useful with C++ programs where many branches
may come from include files.

Details Of bbarep 6-35

 Appending
Additional
Information To
Reports
(-D[fvt] Option)

This option causes bbarep to append various information after all of
the previous options output. This information is useful when you wish
to archive information about the test to make it easier to repeat the test,
or to define exactly what was tested.

All of the options (-Df, -Dv, and -Dt) may be combined. The
following paragraphs describe the output of each option and how to
interpret the listings.

Listing Totals
(-Dt Option)

This causes a listing of "totals" to be printed to stdout. The following
is an example of this list:

 Number of compiled files: 3
 Number of included files: 1
 Number of functions: 7
 Number of branches (including ignored branches): 56

The above list shows the following information:

1. Data for three files were contained in the bbadump.data file
from which bbarep generated the report. This implies that
these three files are .c files that had been compiled with the -b
option to cc<COMP>, where <COMP> = your specific
compiler number; e.g., cc68000, cc8086, cc68030, etc.

2. The three files had included (via the #include <file> directive)
one file. The "Number of included files" is the number of
unique files that were included. In this example, either one,
two, or three of the compiled files had included the same file.

3. There were a total of seven functions (defined in the three
compiled files).

4. There were a total of 56 branches, including any branches that
were "ignored".

6-36 Details Of bbarep

Listing Files
(-Df Option)

This option gives a listing for each file that was in "bbadump.data".
An example output is shown in figure 6-10.

For each .c file, figure 6-10 shows the following:

1. The file’s basename (the last column is the file’s full path).

2. The modification date of the file (i.e., the last date/time that
the file was modified).

3. The -DBBA_OPTO= options that were used when the file
was compiled.

4. The number of branches (including "ignored" branches) in the
file that were instrumented.

5. The number of emulation or debugger BBA unload commands
that were given where the file was present.

 For each included (.h) file, figure 6-10 shows:

1. The basename of the file (the file’s full path is in the last
column).

2. The modification date of the file (i.e., the last date/time the file
was modified).

Since the "dumper.h" file was included (via the #include directive),
perhaps in several files, no other data can be shown. The #unloads and
-DBBA_OPTO= options are determined by the file where it was
included.

file__________modification date__options__branches__unloads___full path of file
dump1.c 10/14/1987 17:13 a fi 23 7 /hp/dump1.c

Included files:
dumper.h 10/10/1987 09:58 /hp/dumper.h

Figure 6-10. Report Of bbadump.data Content

Details Of bbarep 6-37

In cases where multiple runs were made with different
-DBBA_OPTO= options, the output may look like figure 6-11.

Figure 6-11 shows that dump2.c was compiled three times (once with
no -dBBA_OPTO= option, instrumenting nine branches, once with
-DBBA_OPTO=a options, instrumenting 11 branches, and once with
-DBBA_OPTO=fi options, instrumenting 13 branches).

Further, the version that was compiled with no -DBBA_OPTO=
options was unloaded twice, the version that was compiled with
-DBBA_OPTO=a was unloaded three times, and the version that was
compiled with -DBBA_OPTO=fi was unloaded twice (which implies
that the same test suite had NOT been executed with all three versions).

If you used the -o option to bbarep, and a file had multiple modification
dates, the date field would show a star (*), and a line would be added in
the report showing the modification dates.
See figure 6-12.

Figure 6-12 shows that the file dump1.c was compiled twice with the
-DBBA_OPTO=fi option, and was edited between compilations.
Therefore, there were two modification dates: 11/04/1987 and
10/31/1987.

file__________modification date__options__branches__unloads___full path of file
dump2.c 10/14/1987 17:13 9 2 /hp/dump2.c
 a 11 3
 fi 13 2

Figure 6-11. Multiple Runs With Different -DBBA_OPTO=

bbarep: warning: using data from multiple versions of file dump1.c

file__________modification date__options__branches__unloads___full path of file
dump1.c 11/04/1987 15:01 12 2 /hp/dump1.c
 a 12 3
 * fi 19 2
* = 11/04/1987 15:01, 10/31/1987 15:00

Figure 6-12. Report Files With Multiple Modifications

6-38 Details Of bbarep

Only the first modification date for an included file is retained.
Therefore, only one date will be displayed beside it.

Listing Version
Numbers

(-Dv Option)

By itself, the -Dv option simply prints the version of bbarep.

When used with -Df, it prints the version number of the bbacpp used
to compile the files. Again, this option is designed to make it easier to
document the environment in which the tests were executed.

Details Of bbarep 6-39

 Notes

6-40 Details Of bbarep

7

Details Of bbamerge

Introduction Chapter 1 briefly explained the purpose of bbamerge. This chapter will
explain exactly how to invoke bbamerge, describe the effect of
bbamerge on your file system, list the options available to bbamerge,
and tell you when and why to use the bbamerge command.

 What bbamerge
Does

Bbamerge reads the dump file that the BBA unload command
generated, and reduces the amount of redundant information present.
For example, each BBA unload command will append the name of
each C source file (that was compiled with bbacpp) to the dumpfile,
along with information associated with that file. The "bbamerge"
command will reduce the number of instances of each C source file’s
name by combining the ’associated information’ as much as possible.

If the dump file contains data from different versions of a C source file,
only the data associated with the most recent version of the C source
file will be retained.

Use the -o option to this command if you want to retain data from older
versions of C source files.

If you have placed measurement results into separate dump files, you
can first cat the files together, and then run bbamerge to compress the
results to conserve disk space.

Details Of bbamerge 7-1

 BBAMERGE QUICK REFERENCE

Bbamerge is invoked by executing the "bbamerge" command from the
shell. It normally reads data from the "bbadump.data" file
(this can be overridden with the "-i" option, see below).

Bbamerge reduces the size of the "bbadump.data" file. The output is
normally sent to "bbadump.data", unless you specify a different output
file name.

Usage:

bbamerge [options] [output-file]

Options to bbamerge:

-o Retain data from older C sources in the dumpfile. Normally, if the
dumpfile contains data from older versions of C source files, the old
data will be removed when the merged dumpfile is created (and a
warning will be printed to stderr). If "-o" is used, however, bbamerge
will retain the old data in the merged dumpfile.

-i <input-dumpfile> Use the file <input-dumpfile> for input instead
of the file named "bbadump.data". The input file and output file may
have the same name.

Examples:
bbamerge
bbamerge -i infile.data
bbamerge -o -i infile.data outfile.data
bbamerge -o

Figure 7-1. Quick Reference To bbamerge

7-2 Details Of bbamerge

 When To Use
bbamerge

Use the bbamerge command to reduce the size of your
"bbadump.data" file. This file gets large after many executions of
BBA unload commands. For example, if your "bbadump.data" file is
4 Kbytes after a single use of File→Store→BBA_Data, the
"bbadump.data" file could be as large as 400 Kbytes after 100
executions of File→Store→BBA_Data. The bbamerge command
can reduce the size of that 400-Kbyte "bbadump.data" file to 6 or
7 Kbytes, depending on how many times you have modified your C
source files, etc.

Note that the only way to remove obsolete data from a "bbadump.data"
file (when you have not touched your C source files and recompiled
them) is to remove the "bbadump.data" file and re-run your tests.

Details Of bbamerge 7-3

 Notes

7-4 Details Of bbamerge

8

Tips On More Effective Testing Using BBA

Introduction This chapter discusses "Makefiles". It shows you how to create them,
and how to use them. This chapter also discusses regression testing.
Finally, this chapter shows you how to use command files to run
Makefiles and perform automatic regression testing.

 Makefiles (make) The most common use of Makefiles is to list all of the files that must
be included in an absolute file, and let the computer decide which files
are newer than the absolute file, and, therefore, need to be recompiled
and linked in order to update the absolute file.

This chapter is not intended to completely explain what make is
capable of doing or how it works. This chapter is only provided to help
you use Makefiles with BBA. See the UNIX manual entry on make
(in section 1 of the UNIX manual set) for a more complete description
of make.

The UNIX program called make looks for a file of the name
"Makefile" or "makefile" in your current directory, and reads it in order
to determine what actions to take.

Effective Testing Using BBA 8-1

Note If you use "Makefile" as your file’s name, the file will show up first in
any directory listing where the rest of the file’s names are in lower
case. This is useful, because it makes it clear to everybody who looks
in the directory that a Makefile has already been written for that
directory.

The following paragraphs describe how to create a Makefile, and how
to use it to perform tasks.

In the discussion of Makefiles, the following terms will be used:
"macros", "targets", "dependencies", and "actions". These terms are
defined as follows:

1. Macros - identified by a token beginning in column 1 and
followed by an equals sign (=) and value. Macros are
referenced by $(<token>), which replaces the $(<token>) with
its value. Both COBJ and CC in figure 9-1 are macros.

2. Target - generally anything beginning in column 1, and
followed by a colon. In figure 8-1, program is a target.

3. Dependency - whatever follows the colon after a target
(objects and $(COBJ)). Dependencies are what the associated
target depends on. In figure 8-1, the target called program
depends on the expansion of $(COBJ). Also, there may be
implied dependencies. For example, make understands that
any <file>.o depends on some <file>.c.

4. Action - anything that doesn’t begin in column 1 (preceded by
at least one tab), and follows a target. These are the actions to
take when the target is found to be out of date with respect to
its dependencies. Actions must be preceded by tabs, NOT
SPACES.

8-2 Effective Testing Using BBA

Makefile Without
Branch-Analysis

Capability

A simple Makefile is shown in figure 8-1. It will give you an idea of
how make works. The "Makefile" in figure 8-1 is a Makefile without
branch-analysis entries. It simply automates the task of making an
up-to-date executable file. It will check to see if any of the object files
are older than their corresponding source files, and it will compile new
object files for any it finds that have more recent source files. Then it
will link all object files together and deliver an up-to-date executable
file.

Note that any text following a pound sign (#) is a comment.

To execute this form of makefile and obtain the executable file,
all you need to do is type make on the command line and press
RETURN. See figure 8-1.

Make will go through the following actions:

1. The file shown in figure 8-1 will be read in.

a. The macro COBJ is defined to be the string
cprog.o csub.o.

b. The macro CC is defined to be the string cc68030 (or your
compiler invocation, if different). The macro CC is used
in make’s default rule for creating .o files from .c files.
Refer to letter "a" under number 2, below.

c. The macro CFLAGS is used in make’s default rule for
creating .o files from .c files. Refer to letter "a" under
number 2, below.

COBJ= cprog.o csub.o
CC=cc68030 # Replace with your compiler number; e.g., cc68000, cc8086, cc68030, etc.
CFLAGS=
SHELL=/bin/sh

program : $(COBJ)
 $(CC) $(CFLAGS) -o program $(COBJ)

Figure 8-1. Example Makefile Without BBA Entries

Effective Testing Using BBA 8-3

d. The macro SHELL is defined to be the string /bin/sh.
The macro SHELL is the shell used by make when it
executes commands.

e. The target program is found. It depends on the files
cprog.o and csub.o (because the COBJ macro was
expanded). Further, because this is the first target found,
this is the "default" target, which is what will be made
when no targets are mentioned on make’s command line.

f. The action for the target program is read in. It is the
string

cc68030 -o program cprog.o csub.o

because the CC macro was expanded to become cc68030,
and the COBJ was expanded to the object file names.

2. Make seeks to create its target (program).

a. The first dependency of program is cprog.o. Now make
tries to figure out if cprog.o depends on anything.
Although there is no explicit rule (i.e., cprog.o is not a
target in this makefile), make has a built-in rule that says
"<any_file>.o depends on <any_file>.c". Now make
looks for the file cprog.c. When it finds cprog.c, it
compares the modification dates of cprog.o and cprog.c.
If cprog.o is older than cprog.c, make will execute its
default rule for creating a new .o file from the .c file. The
default rule is:

$(CC) $(CFLAGS) -c <any_file>.c

Therefore, in this case, the command

cc68030 -c cprog.c

is executed. After that, cprog.o is declared to be
up-to-date with respect to all of its dependencies
(cprog.c).

8-4 Effective Testing Using BBA

b. The second dependency of program is csub.o. The same
rules are followed as in step a above. When finished,
csub.o is declared to be up-to-date with respect to all of its
dependencies.

c. Now the modification date of the file program is
compared with the modification dates of cprog.o and
csub.o. If program is newer, no action is taken.
If program is older than either (or both) of its
dependencies, the defined action is executed
(i.e., the following command is executed):

cc68030 -o program cprog.o csub.o

When this command is executed, make is finished.

Effective Testing Using BBA 8-5

Makefile With Simple
Branch-Analysis

Capabilities

When you are ready to test your program using the BBA, you can
simply modify your Makefile. The appropriate modifications for the
Makefile shown in figure 8-1 are illustrated in figure 8-2.

In figure 8-2, CFLAGS was modified to add the -b option.
This causes cc68030 to use the branch-analysis preprocessor.
Also, -DBBA_OPTO=A was added. This will be passed to bbacpp,
requesting that all branches be instrumented.

If you have previously compiled cprog.o and csub.o, you will need to
force their .o files to appear to be "out of date" (with respect to their
source files) in order to get make to recompile the files with the branch
analysis information. There are two popular ways to do this:

1. Remove the .o files with a command like:

rm *.o

The command in method 1 actually removes ALL of the .o
files in your current directory.

2. You can "touch" the .c files so they appear to have been
edited. The following is a command to touch the files:

touch cprog.c csub.c

COBJ= cprog.o csub.o
CFLAGS= -b -DBBA_OPTO=A
CC=cc68030 # Replace with your compiler number; e.g., cc68000, cc8086, cc68030, etc.
SHELL=/bin/sh

program : $(COBJ)
 $(CC) $(CFLAGS) -o program $(COBJ)

Figure 8-2. Example Makefile Configured For BBA

8-6 Effective Testing Using BBA

No matter which method you use, when make is run, it will execute
the following commands:

 cc68030 -b -DBBA_OPTO=A -c cprog.c
 cc68030 -b -DBBA_OPTO=A -c csub.c
 cc68030 -b -DBBA_OPTO=A -o program cprog.o csub.o

Note that the text created by expanding macro CFLAGS is used in
each of the invocations of cc68030. This is because of the default rule
used to convert .c files to .o files, and because $(CFLAGS) was used
on the action line to create program.

In this instance, neither -b nor -DBBA_OPTO=A were needed in the
command to link the file. On the other hand, the presence of -b and
-DBBA_OPTO=A didn’t hurt; it is considered good practice to use
$(CFLAGS) wherever $(CC) is used.

When you have finished doing your testing with branch analysis, you
need to remove the branch-analysis structures from your makefile.
This returns the file to its former arrangement
(figure 8-1).

Makefile With And
Without

Branch-Analysis
Capabilities

Figure 8-3 shows an example makefile that can be used to make an
executable file with or without the branch-analysis structures. Figure
8-3 makes the object files with different CFLAGS, depending on
whether or not you want to make an executable file that has branch
analysis, or one that has no branch analysis.

It is almost as simple to write this makefile as it is to write the
preceding two makefiles (figures 8-1 and 8-2). You can use it to make
an executable file that includes all of the branch-analysis structures,
and then use it again to create an executable file that has none of the
branch-analysis features. You don’t have to make any changes to the
content of this makefile to obtain either one of the executable files. All
you have to do is change the command you type on the command line
when you invoke the makefile, depending on the kind of executable
file you want.

If you want an executable file that has no branch-analysis features,
type: make RETURN. The make routine will search for the first
target in the makefile (the default), and make the executable file
according to that target. The first target is program, which produces
an executable file with no branch-analysis features.

Effective Testing Using BBA 8-7

If you want an executable file that has all of the branch-analysis
features, type: "make bba" RETURN. The make routine will find
your makefile and search through it until it finds the bba target. Then
it will do whatever work is necessary to get the bba target up-to-date
with respect to its dependencies. The commands under the bba target
make the executable file with branch-analysis features.

Target Action
program creates ’program’ without branch analysis
bba creates ’program’ with branch analysis
object forces the .o files to be up-to-date with the .c files

COBJ= cprog.o csub.o
CC=cc68030 # Replace with your compiler number; e.g., cc68000, cc8086, cc68030, etc.
CFLAGS=
SHELL=/bin/sh

program : objects
 $(CC) $(CFLAGS) -o program $(COBJ)

objects : $(COBJ)

bba :
 $(MAKE) CFLAGS="$(CFLAGS) -b -DBBA_OPTO=A" objects
 $(CC) $(CFLAGS) -o program $(COBJ)

Figure 8-3. Example Makefile That Makes Either File

8-8 Effective Testing Using BBA

The Makefile in figure 8-3 shows the following new ideas:

1. A target (bba) can have no dependencies. In this case, make
assumes that the target is up-to-date if the file with the name
of the target exists (and its actions are not run). If the file does
not exist, the actions are executed.

2. It is OK to invoke make from within make, as long as you
avoid infinite recursion. In this case, the re-invocation of
make occurs when "bba" is the target to be made.
The macro MAKE is (by default) the text "make" so when
"make bba" is executed, the first action taken is:

make CFLAGS="-b -DBBA_OPTO=A" objects

This causes another make to do the actions necessary to get
"objects" up-to-date with respect to its dependencies. This
leads to the next "new idea".

3. A target (objects) that is never created is assumed to always be
out of date with respect to its dependencies.
In this case, trying to get objects up to date causes cprog.c
and csub.c to be recompiled (assuming they need to be) - buy
adding -b -DBBA_OPTO=A to CFLAGS!

From the above discussion, you know that in order for this makefile to
work, you must force the .o files to become out of date with respect to
their .c files (via touch, for example) whenever you have been
compiling for one target and want to switch to another target. The
advantage of this is that if you make changes and want to compile
again using the same target, it’s easy to do. The disadvantage is that if
you forget to touch the .c source files when you switch to the other
target, you may be annoyed with the result.

Another disadvantage of the Makefile in figure 8-3 is that when the
make bba command is given, the following commands will always be
executed:

make CFLAGS="-b -DBBA_OPTO=A" objects
cc68030 -o program cprog.o csub.o

even if none of the .c files have been modified.

Effective Testing Using BBA 8-9

Automatic Makefile
With And Without

BBA

The Makefile shown in figure 8-4 will ’remember’ whether you
compiled with branch analysis or without branch analysis the last time
make was run. This means that you can just type make bba if you
want the branch analysis version and not have to worry about whether
or not to touch your source files, etc.

The Makefile shown in figure 8-4 has three new ideas:

1. There is a primitive macro-replacement facility in make. In
the case of figure 8-4, the macro CSRC was defined to be our
C source files, and COBJ was defined to be the text of CSRC,
but with the ".c" entries replaced with ".o" entries.

2. If a target is followed by two colons (e.g., program ::),
then make will permit multiple instances of that target; each
instance of the target is executed sequentially.

3. The full power of the UNIX shell is available in the actions; in
this case, the shell’s if statement and file-existence test
([-f <file>] is a shell command to return TRUE if <file>
exists. Refer to the UNIX manual pages on sh and test, both
in Section 1, for more information).

When make bba is executed, the following command is executed:

if [! -f .BBAOBJ]; then rm *.o .NORMOBJ ; touch .BBAOBJ; fi

This command checks for the existence of the file .BBAOBJ. If it
does not exist, then all .o and .NORMOBJ files are deleted, and the
file .BBAOBJ is created. This is done so that the next time make bba
is executed, the file .BBAOBJ will exist and the .o files will not be
deleted. The files .BBAOBJ and .NORMOBJ are used to ’remember’
which CFLAGS were last used during compilation. These two file
names begin with a dot (.) so that they don’t clutter up a normal listing
(but you can force ls to show them by using the -a flag. Refer to the
UNIX manual page on ls, in Section 1).

Then the following command line is executed:

make CFLAGS="-b -DBBA_OPTO=A" objects

This command causes any out-of-date .o files to be made.

8-10 Effective Testing Using BBA

Finally, the modification date of the BBA file is compared with the
modification dates of cprog.o and csub.o. If they are newer, the
following commands are executed:

cc68030 -o program cprog.o csub.o
touch bba

The first line causes program to be relinked, and the second causes the
file bba to be touched so that if another make bba command is given
(without any source files having been changed) another link is avoided.

The only problem with the makefile in figure 8-4 is that if you
frequently go between non-branch-analysis links and branch-analysis
links, you will be recompiling ALL of your source files each time you
do so.

Target Action
program creates ’program’ without branch analysis
bba creates ’program’ with branch analysis
object forces the .o files to be up-to-date with the .c files

CSRC= cprog.c csub.c
COBJ= $(CSRC:.c=.o)
CC=cc68030 # Replace with your compiler number; e.g., cc68000, cc8086, cc68030, etc.
CFLAGS=
SHELL=/bin/sh

program ::
 if [! -f .NORMOBJ]; then rm *.o .BBAOBJ ; touch .NORMOBJ; fi

program :: objects
 $(CC) $(CFLAGS) -o program $(COBJ)

bba ::
 if [! -f .BBAOBJ]; then rm *.o .NORMOBJ ; touch .BBAOBJ; fi
 $(MAKE) CFLAGS="$(CFLAGS) -b -DBBA_OPTO=A" objects

bba :: objects
 $(CC) $(CFLAGS) -o program $(COBJ)
 touch bba

objects : $(COBJ)

Figure 8-4. Example Makefile #4

Effective Testing Using BBA 8-11

Automatic/Efficient
Makefile With And

Without BBA

The Makefile shown in figure 8-5 has several advantages:

1. It will minimize the number of compilations done for each
target (non-bba and bba).

2. It will automatically re-compile files that have been changed
since the last time they were compiled for the same target
(non-bba and bba).

The automatic Makefile has the disadvantage of potentially using a lot
of disk space!

The Makefile shown in figure 8-5 uses two subdirectories: .bbaobj,
and .normobj. When you go from using branch analysis to not using
it, for example, the current .o files (which were created with branch
analysis) are copied to the directory .bbaobj, then removed from the
current directory. The file .BBAOBJ is removed, preventing any
further copying of files down to .bbaobj.

The .o files in .normobj are copied to the working directory, and the
.NORMOBJ file is created.

If the next make command creates program, the file .NORMOBJ
exists, so the only actions are to update the .o files and perhaps to
re-link.

8-12 Effective Testing Using BBA

Automatic Makefile Example.
Target Action
program compiles & links without bba
bba compiles & links with bba

CSRC=cprog.c csub.c # list of source files
COBJ=$(CSRC:.c=.o) # list of object files we want (derived from source list)
CC=cc68030 # Replace with your compiler number; e.g., cc68000, cc8086, cc68030, etc.
CFLAGS=
SHELL=/bin/sh

program ::
 if [! -f .NORMOBJ]; then \
 if [-f .BBAOBJ] ; then \
 rm .bbaobj/*.o ; ln *.o .bbaobj; rm .BBAOBJ; \
 fi; rm *.o ; ln .normobj/*.o .; touch .NORMOBJ; \
 fi; exit 0

program :: objects
 $(CC) $(CFLAGS) -o program $(COBJ)

bba ::
 if [! -f .BBAOBJ]; then \
 if [-f .NORMOBJ] ; then \
 rm .normobj/*.o ; ln *.o .normobj; rm .NORMOBJ; \
 fi; rm *.o ; ln .bbaobj/*.o .; touch .BBAOBJ; \
 fi; exit 0

bba ::
 $(MAKE) CFLAGS="$(CFLAGS) -b -DBBA_OPTO=A" objects
 $(CC) $(CFLAGS) -o program $(COBJ)

objects : $(COBJ)

Figure 8-5. Fully Automatic Makefile

Effective Testing Using BBA 8-13

 Automatic
Regression
Testing

 The problem of verifying that software is correct grows geometrically
with the size and complexity of the program under development. You
can increase the coverage of your tests by doing module-based testing.
This form of testing can be more precise, and cover more possibilities.
The traditional method of testing code is to wait until the code is
complete and then test it as a whole. This makes it difficult, if not
impossible, to measure the performance of sections of the code that are
deeply embedded within the program. For example, if a module of
code is intended to convert the values of a Gray-code counter to a
linear count, and then send the result to an LED display, you can only
test its performance by putting different values into the Gray-code
hardware and then observing the display. This method is time
consuming and prone to error.

The following paragraphs will show you a way to:

1. Isolate such modules (or functions) for testing.

2. Automate the testing process itself.

Test automation is easy when you use the programmability of UNIX
and the controlling power inherent in an emulator or debugger. In fact,
you can create "regression tests" that start when nobody is around and
store the results for reporting later. This means changes in one section
of code that cause unexpected behavior in another section of code can
be detected and fixed early in the project.

The basis of this test method is to write the tests at the same time you
write the code module. In this way, the tests tend to be more complete
because you are most familiar with the code module when you are
writing it. This is called "white-box testing". Also, writing tests for a
single module at the same time as writing the module itself is relatively
painless when compared with the task of writing all of the tests at the
end of the project.

The tests are written in the form of UNIX shell scripts combined with
HP64000-UX or debugger command files.

8-14 Effective Testing Using BBA

The emulator or debugger command files do the following tasks:

1. Load the program (or perhaps a portion of the program) in an
emulator.

2. Set up the initial test data.

3. Run the program from start to finish.

4. Write the resulting data out to a file.

5. Repeat the preceding test with new data. This repetition
continues until the module under test has operated on a
sufficient variety of data to give a high degree of confidence
in its performance. (i.e., bbarep shows a sufficiently high
coverage percentage).

The UNIX shell script executes command files, and compares the
outputs generated with ’known good’ output.

Alternatively, a Makefile can be written to execute the command files
and compare the outputs.

When combined with the UNIX "crontab" command, the UNIX shell
scripts can be automatically run on a regular schedule, and the results
of the tests can be "mailed" to you (or to a group of people) via UNIX
"mail".

Effective Testing Using BBA 8-15

 Detailed Example
Of Automatic
Regression
Testing

Suppose you are writing a function to convert a 64-bit integer into an
ascii decimal string. Call the function "i64toa". Your function is
normally invoked after an A/D has sampled a line, then added an offset
factor, and then multiplied the result by a scale factor. To test this
function, you decide to send it a series of selected values, and check
that the output is correct for each value. You choose inputs that will
inspect the boundary conditions (or, perhaps, you start with some input
data and let bbarep guide you in creating more complete data).

If you were testing without an emulator or debugger, you would have
to figure out what voltage to send to the A/D, and determine the
appropriate scale factors to use in order to test this function. By having
an emulator or debugger in your test equipment, you can simply set the
necessary values in the data areas read by i64toa, and let the module
run.

For an emulator, figure 8-7 shows an example command file that could
be used to make the example test with data in figure 8-6.

input, hex output, ASCII
0000000000000000 0
0000000000000001 1
0000000000007FFF 32767
0000000000008000 32768
0000000000008FFF 36863
000000000000FFFF 65535
0000000000010000 65536
0000000000100000 1048576
 . .
 . .
 . .
1000000000000000 1152921504606846976
7FFFFFFFFFFFFFFF 9223372036854775087
8000000000000000 9223372036854775088
FFFFFFFFFFFFFFFF 18446744073709551615

Figure 8-6. Input/Output Selected For Example Test

8-16 Effective Testing Using BBA

Scripts to Run
Emulator
Command Files

Figure 8-8 shows an example UNIX shell script that runs the example
test.

Note that the example shell script in figure 8-8 uses the same format,
no matter which modules are being tested. To create new shell scripts
when you need them, you can probably copy your most recent shell
script and change the names to identify the new command files. After
you have finished testing a module, you can include its test in the
master-testing file (test_master) which is run automatically each day.
Figure 8-9 shows an example of a master-test shell script.

FILE: i64toa.cmd

load memory bigprog # load in the big program
input value is 0000000000000000H
modify memory i64toa_msword to 0
modify memory i64toa_mshword to 0
modify memory i64toa_mslword to 0
modify memory i64toa_lsword to 0
run from i64toa until i64toa end
wait measurement_complete
copy memory i64toa_ascii thru i64toa_ascii + 20 absolute bytes
 to i64toa.lst.2

input value is 0000000000000001H
modify memory i64toa_msword to 0
modify memory i64toa_mshword to 0
modify memory i64toa_mslword to 0
modify memory i64toa_lsword to 1
run from i64toa until i64toa end
wait measurement_complete
copy memory i64toa_ascii thru i64toa_ascii + 20 absolute bytes
 to i64toa.lst.2

... and so on.

Figure 8-7. Command File To Run Emulator Example Test

Effective Testing Using BBA 8-17

FILE: i64toa
#
test the i640toa program

rm -f i60toa.lst.2 # remove old attempt

Start the emulator, telling it to execute commands from
the i64toa command file:
emul700 -c i64toa.cmd m68000

Compare the ’known good’ output with what we just got:
Put the comparison results in a temporary file so we can
print them without having to run diff again

diff i64toa.lst i64toa.lst.2 > .tmpdiff$$ 2>&1

If the diff program found a difference, print an error message;
else report that the program completed successfully

if [$? != 0]
then
 echo "ERROR: i64toa.cmd: the 64-bit to ASCII conversion function failed!"
 cat .tmpdiff$$
else
 echo "OK: i64toa.cmd: the 64-bit to ASCII conversion function passed!"
fi
rm -f .tmpdiff$$

Figure 8-8. Shell Script To Run Example Command File

FILE: test_master
#
This file invokes all regression tests.
It is run from cron each night and the results
are mailed to me each morning

i64offset # test offset function
i64scale # test the scaling system
i64toa # test conversion to ASCII

Figure 8-9. Master-Test Shell Script Example

8-18 Effective Testing Using BBA

Makefile To Run
Emulator
Command Files

You can also use a Makefile to run the tests and compare output. This
method tends to hold the tests together better (i.e. centralize and
standardize the tests, because everybody knows how to run make).

Figure 8-10 shows a Makefile that is analogous to both the
test_master and i64toa files used in this example (figures 8-7 and 8-8).

Note that when you add new tests, all you have to do is copy the
actions of i64toa and change the test i64toa to the name of the new
test. This is very easy to do in most editors!

Testing Makefile
target action
all execute all tests
i64toa test the function i64toa()

EMUL=m68000 # emulator’s name
DIFF=diff # text comparator program
SHELL=/bin/sh

all : i64toa i64offset i64scale

i64toa :
 rm -f i64toa.lst.2 # remove old attempt
 emul700 -c i64toa.cmd $(EMUL) # execute command file
 if $(DIFF) i64toa.lst i64toa.lst.2 > .tmpdiff; then \
 echo "i64toa.cmd: the 64-bit to ASCII conversion function passed!"; \ else
 echo "i64toa.cmd: the 64-bit to ASCII conversion function failed!";
 cat .tmpdiff; fi

Figure 8-10. Makefile To Run Emulator Command Files

Effective Testing Using BBA 8-19

 Advantages Of
Automatic
Regression
Testing

Performing automatic regression testing during the
software-development phase of a project offers several advantages.
These are listed below:

1. Tests are written as code is developed, increasing test
coverage.

2. The risk of propagating undetected defects is decreased.

3. The effort of designing tests is spread out over the entire
project instead of piling up at the end.

4. Unexpected side effects of code changes are detected quickly.

5. The task of developing a quality-assurance test routine for the
entire program is greatly simplified.

8-20 Effective Testing Using BBA

9

Details Of The HP Branch Validator (BBA) In
The HP SoftBench Interface

Introduction This chapter discusses all of the detailed information you will need to
operate the HP Branch Validator (BBA) within the HP SoftBench User
Interface. The HP Branch Validator (BBA) SoftBench User Interface
will operate (with some limitations) even if you have not purchased HP
SoftBench.

 Customizing The
HP Branch
Validator

Perform the following steps to ensure proper operation of the HP
Branch Validator in the HP SoftBench Interface.

1. For each user of BBA, copy the BBA configuration file
($HP64000/bba/config/bbarc) to the users $HOME directory
and name it .bbarc. Use a command like:

cp $HP64000/bba/config/bbarc /users/clarkkent/.bbarc

The configuration file can be modified to customize the BBA
interface for the needs of each user. In particular, if you are
not using HP SoftBench Broadcast Message Server, set
BBA_USE_SOFTBENCH=False in each user’s .bbarc.
In addition, if you are using MRI C++, you must set
BBA_C_PLUS_PLUS=True.

If you are using HP SoftBench Broadcast Message Server,
each user who has a .softinit file should add the BBA tool to
their SoftBench initialization table. To add the BBA tool,
copy the BBA line from the softinit file
(/usr/softbench/config/softinit) to the users .softinit file.

HP Branch Validator (BBA) In HP SoftBench 9-1

The line will look like:

BBA TOOL DIR * %Local% bba -host %Host% -dir
%Directory% -toolmgr

2. You may need to modify the command that enables printing to
reflect your system’s printing mechanism. Printing is
controlled by the script file
$HP64000/bba/config/cmd_print.

When a print command is issued, this script file receives the
name of the file to be printed. The script file then executes its
default "lp $1". If this print command needs to be changed
for use in your system, such as "lp -dlaser $1", you will need
to edit this file.

3. Finally, you may want to copy the BBA Xdefaults to a users
$HOME/.Xdefaults file. Copying the BBA Xdefaults file to
a users file is only necessary if you want to edit the file to
change the default keyboard accelerators for BBA. The
default Xdefaults are located in the file
$HP64000/lib/X11/app-defaults/BBA.

9-2 HP Branch Validator (BBA) In HP SoftBench

 Details About The
.bbarc File

The .bbarc file customizes the BBA interface to a users needs. This
file consists of about 23 options which are read when the HP Branch
Validator (BBA) SoftBench User Interface is started. If you change
one of these options while the HP Branch Validator (BBA) SoftBench
User Interface is running, you will have to click on Read Configuration
File in the Settings pull down menu before the option you just changed
will take effect.

Options are included in the .bbarc file to:

1. Define the general operation of BBA.

2. Define default parameters needed by BBA.

3. Define the actions of various BBA Pull Down Menu items.

Options Controlling
General BBA

Operation

The first three options in the .bbarc file determine the general operation
of BBA. These are BBA_USE_SOFTBENCH,
BBA_C_PLUS_PLUS, and BBA_PRINTER_COMMAND.

BBA_USE_SOFTBENCH

This option specifies whether or not you are using the HP SoftBench
Broadcast Message Server.

When BBA_USE_SOFTBENCH=True, Edit, Build, and Help requests
are directed to the SoftBench Broadcast Message Server, and
ultimately to the tools servicing these requests.

When BBA_USE_SOFTBENCH=False, the BBA interface does not
use the SoftBench Broadcast Message Server. Instead, the BBA
interface executes edit and build commands by using the Edit and
Build options discussed in the paragraph titled "Options If Not Using
HP SoftBench Broadcast Message Server", later in this chapter. The
help feature is disabled when BBA_USE_SOFTBENCH=False.

Default: BBA_USE_SOFTBENCH=True

HP Branch Validator (BBA) In HP SoftBench 9-3

If you are not using HP SoftBench Broadcast Message Server, set this
option False:

BBA_USE_SOFTBENCH=False.

BBA_C_PLUS_PLUS

This option specifies whether or not you are using C++ files. This
option should be set to true if you are examining C++ files, or
combinations of C and C++ files. For faster performance, this option
should be set to False when examining only C files.

Default: BBA_C_PLUS_PLUS=False

Note that setting BBA_C_PLUS_PLUS=True will invoke a c++filt(1)
routine to demangle C++ function names. Make sure your PATH shell
variable can find c++filt before setting this to True.

BBA_PRINTER_COMMAND

This is the command that directs printing of BBA reports.

Modify either the $HP64000/bba/config/cmd_print file, or this
command directly to specify how to print BBA ascii reports. The first
parameter passed is the name of the file containing the report to print.

Default: BBA_PRINTER_COMMAND=
$HP64000/bba/config/cmd_print

Special BBA Options
And Their Default

Values

The following options specify default values for various BBA
parameters.

BBA_IGNORE_FILE

Name of the file containing the list of ignored branches, files, and
functions.

Default: $HOME/BBA_IGNORE_FILE

9-4 HP Branch Validator (BBA) In HP SoftBench

BBA_PRAGMA_FILE

Name of the file containing a list of pragmas to be inserted into the
users source file.

Default: $HOME/BBA_PRAGMA_FILE

BBA_DUMPDATA_FILE

Name of the file pointing to the BBA dump file.

Default: bbadump.data

BBA_SOURCE_TAB_WIDTH

Expand tabs in the source listings to the specified number of spaces.
Enter a value between 1 and 8.

Default: 8

BBA_RETAIN_OLD_DATA

Retain data associated with older sources in the dumpfile. Normally, if
the dumpfile contains data from older sources, the old data is ignored.
If this is set True, the BBA will attempt to retain the older data.

Default: False

BBA_IGN_COMMENT_TYPE

Defines the type of comment to be added with each branch, file, or
function that is ignored. "Unique Comments" query you each time for
an appropriate comment. "Universal Comment" is appended after each
ignore. "No Comment" does not append any comment with ignores.

Default: No Comment

HP Branch Validator (BBA) In HP SoftBench 9-5

BBA_IGNORE_COMMENT

Defines the default comment string to be included with each branch,
file, or function that is ignored when you have selected "Unique
Comments" or "Universal Comment" in
BBA_IGN_COMMENT_TYPE.

Default: # Enter Comment

BBA_PRAG_COMMENT_TYPE

Defines the type of comment to be added with each pragma in the
source file. Pragma comments are added to the line just before the line
where the pragma will be added. "Unique Comments" query you each
time for an appropriate comment. "Universal Comment" is included
with each pragma. "No Comment" does not include any comment with
your pragma.

Default: No Comment

BBA_PRAGMA_COMMENT

Defines the default comment string to be included with each pragma
when you have selected "Unique Comments" or "Universal Comment"
in BBA_PRAG_COMMENT_TYPE.

Default: /* Enter Comment */

9-6 HP Branch Validator (BBA) In HP SoftBench

BBA_PRAGMA_TYPE

Defines the type of pragma to be added to your source file. The
pragmas that can be added include: BBA_IGNORE, BBA_ALERT,
both BBA_IGNORE and BBA_ALERT together, and
BBA_IGNORE_ALWAYS_EXECUTED. Enter one of the following
five values as your pragma to add to the source file:
Ignore
Alert
Ignore Always Executed
Ignore and Alert
Prompt for Pragma

The "Prompt for Pragma" selection will prompt you for one of the four
pragma types when you select "Add Pragma" in the source window.

Default: Ignore

BBA Options Used
By The Actions Pull

Down Menu

The following options are executed when you select items in the
Actions pull down menu bar:

BBA_MAKEFILE_NAME

Name of makefile if you select "BBA Build". This option is not used if
BBA_USE_SOFTBENCH=False.

Default: BBA_MAKEFILE_NAME=Makefile

BBA_MAKEFILE_OPTIONS

List of options to be used with Makefile when "BBA Build" is selected.
This option is not used if BBA_USE_SOFTBENCH=False.

Default: BBA_MAKEFILE_OPTIONS=all.

BBA_UNLOAD_COMMAND

Command that executes an unload operation if you select "BBA
Unload". Typically, this command is used to execute a script to unload
an emulator or simulator. Refer to Chapter 5 for details of the BBA
unload command.

HP Branch Validator (BBA) In HP SoftBench 9-7

BBA_MERGE_COMMAND

Command that controls merge operations if you select "BBA Merge".
Typically, this option will execute "bbamerge". Refer to Chapter 7 for
details of the bbamerge command.

BBA_RUN_TEST_COMMAND

Command that executes a test if you select "Run Test". This may be a
script to run an emulator or simulator. Note that the currently selected
file, function, and line number will be passed to this option if they are
selected.

Note Do NOT add a change directory command directly to the following
option strings: BBA_RUN_TEST_COMMAND,
BBA_STOP_TEST_COMMAND, BBA_MOD_TEST_COMMAND,
and BBA_ADD_PRAG_COMMAND.
You should enter only a simple command or a script command. (You
can have a change directory command in the script command, if
desired. Do NOT do this:
"BBA_RUN_TEST_COMMAND=cd /users/clarkkent;
my_run_command")

BBA_STOP_TEST_COMMAND

Command to halt a running test if you select "Stop Test". This may be
a script to stop an emulator or simulator. Note that the currently
selected file, function, and line number will be passed to this option if
they are selected.

BBA_MOD_TEST_COMMAND

Command that opens a test file for modification if you select "Modify
Test". This may be used to modify a specified test. Note that the
currently selected file, function, and line number will be passed to this
command if they are selected.

9-8 HP Branch Validator (BBA) In HP SoftBench

BBA_ADD_PRAG_COMMAND

Command that writes all present pragmas into the designated source
files if you select "Add Pragmas to Source Files". This command is
passed three parameters:

1. The first parameter is the complete list of source files to be
updated with new pragmas.

2. The second parameter is the name of the file that lists all of
the pragmas to be added.

3. The third parameter is the file that returns (to BBA) the names
of the files that have had pragmas successfully added.

Normally, you will not want to modify
BBA_ADD_PRAG_COMMAND unless you want pragmas to be
inserted into your source files in a different manner.

HP Branch Validator (BBA) In HP SoftBench 9-9

Options Used When
Not Using HP

SoftBench Broadcast
Message Server

The following options are only available if you are not using the HP
SoftBench Broadcast Message Server
(BBA_USE_SOFTBENCH=False).

BBA_BUILD_COMMAND

Command that performs a build of your executable file if you select
"BBA Build". This option should include the complete command to
build your BBA executable. You may want to make this a script that
executes the desired make commands. Note that options
BBA_MAKEFILE_NAME and BBA_MAKEFILE_OPTIONS are not
used here (they are only available if you are using the HP SoftBench
Broadcast Message Server).

Note
Do NOT add a change directory command directly to the
BBA_BUILD_COMMAND or BBA_EDIT_FILE_COMMAND
option strings. You should enter only a simple command or a script
command.
(You can have a change directory command in the script command, if
desired. Do NOT do this:
"BBA_BUILD_COMMAND=cd /users/clarkkent; make bbatest")

BBA_EDIT_FILE_COMMAND

Command that starts an edit session of a file if you select an Edit pull
down menu item. Parameters passed to this command are a file name
and a line_number. By default, this command invokes the vi editor.
You can modify the script in $HP64000/bba/config/cmd_edit to
specify a different editor if you do not want to use the vi editor.

Default: set -m;$HP64000/bba/config/cmd_edit

The "set -m;" in front of this command prevents BBA from exiting
until the BBA_EDIT_FILE_COMMAND command completes. This
avoids killing your edit session when you quit BBA. Note that BBA

9-10 HP Branch Validator (BBA) In HP SoftBench

will not leave the screen until the edit completes.
(You can iconify BBA to remove it, if desired.)

 Before Starting
BBA

BBA can be run with or without using the HP SoftBench Broadcast
Message Server. Before starting BBA, you need to decide whether or
not you will use the SoftBench Broadcast Message Server. To make
this decision, consider that the SoftBench Broadcast Message Server
provides all the capabilities under the Edit pull down menu, the "BBA
Build" function in the Actions pull down menu, and all of the Help
menu items. In certain CPU systems that have limited memory
available, using the HP SoftBench Broadcast Message Server may
reduce the performance of your system. HP recommends at least 12
Mbytes of RAM when using HP SoftBench.

If you want to use the SoftBench Broadcast Message Server, set
BBA_USE_SOFTBENCH=True. If you do not want to use the
SoftBench Broadcast Message Server, set
BBA_USE_SOFTBENCH=False. Even with a "False" setting, you
can still use the Edit and Build pull down menu items if you follow
instructions in the paragraph titled "Options Used When Not Using HP
SoftBench Broadcast Message Server", above.

The BBA_USE_SOFTBENCH option is located in your BBA
configuration file, which must be named .bbarc in your $HOME
directory.

HP Branch Validator (BBA) In HP SoftBench 9-11

 Starting BBA And
Using The
SoftBench
Broadcast
Message Server

When the SoftBench Broadcast Message Server is running, BBA can
be invoked in one of two ways: (1) it may be invoked from the
command line, just like any other UNIX command, and (2) it may be
invoked by using the SoftBench Tool Manager.

Invoking BBA From
The Command Line

On the command line, enter bba and press return. The SoftBench
Broadcast Message Server will connect with BBA. The message
"Starting the Basis Branch Analyzer Interface..." will appear on your
display, and BBA will start in a few moments. You may see the
following message:

encaprun: cannot find a message server
 Make sure that there is a message server running and
 that either $DISPLAY or $MSERVE were set correctly,
 both when SoftBench was started, and also in the current environment.

Appearance of the above message indicates that the SoftBench
Broadcast Message Server is NOT running and it needs to be started.
BBA will still work, with the exception that Build, Edit, and Help
commands will be inoperable. To get the SoftBench Broadcast
Message Server running, exit BBA, start the SoftBench Broadcast
Message Server by executing "softbench", and then restart BBA. Refer
to your SoftBench manuals titled, "Installing HP SoftBench" or
"Exploring HP SoftBench: A Beginner’s Guide."

Starting From The
Tool Manager

Move the cursor into the Tool pull down and click on Start.

A new window will open, showing a list of the tools available in the
SoftBench Tool Manager. You may have to scroll down this window
to find BBA. Click on BBA in this list. This selects BBA as the tool
to be started. To start the BBA tool, press the Start button (by moving
the cursor into the "Start" button and clicking the command select
mouse button). You can also start BBA by placing the cursor on BBA
in the list of tools and double-clicking the command select mouse
button.

9-12 HP Branch Validator (BBA) In HP SoftBench

 Starting BBA, But
Not Using The
SoftBench
Broadcast
Message Server

You can use BBA and not use the SoftBench Broadcast Message
Server if you wish. This will give you a little better performance on
CPU systems that have less than the recommended amount of RAM
(12 Mbytes for HP SoftBench installations) because you will not be
using as many SoftBench Tools.

First, verify that you have set option BBA_USE_SOFTBENCH=False
in your configuration file. Then start BBA from the command line by
entering bba and pressing return. The message "Starting the Basis
Branch Analyzer Interface..." will appear on your display and BBA
will start in a few moments. In addition, you will probably see this
message:

encaprun: cannot find a message server
 Make sure that there is a message server running and
 that either $DISPLAY or $MSERVE were set correctly,
 both when SoftBench was started, and also in the current environment.

This message is simply a warning message and can be disregarded.
When properly set up, this mode of operation will still allow you to use
all of the BBA commands in the pull down menus, with the exception
of the Help command. The Help command uses resources within the
SoftBench Broadcast Message Server.

Note If you have HP SoftBench installed, you must add "/usr/softbench/bin"
to your PATH variable even if you are not using the SoftBench
Broadcast Message Server.

HP Branch Validator (BBA) In HP SoftBench 9-13

 Using The Four
Test Report
Displays

There are four test reports that can be displayed in the bottom half of
the main Branch Validator window. These are labeled: Summary,
Histogram, Results Only, and File History. If your Xdefaults file is
properly set up, you can cycle through these test reports by typing
<Shift><Alt>S, <Shift><Alt>H, <Shift><Alt>R, and <Shift><Alt>F,
respectively.

Note On HP-UX systems, <Alt> is the <Extend char> key. On Sun
SPARCstations, <Alt> is the diamond-shaped key to the left of the
space bar. Refer to Chapter 3 for more details on pull down menu
accelerators and mnemonics.

The following paragraphs assume you have a bbadump.data file to
examine. If this is not the case, you may want to set the context to
$HP64000/demo/bba/demo2 and use the bbadump.data file supplied
for the "Getting Started" demonstration. Do this by choosing
File→Set Context... and then entering the proper context in the new
window that pops up.

The Summary Test
Report

The Summary test report (File→Show Summary or <Shift><Alt>S)
presents a BBA summary that shows file-by-file and
function-by-function branch-coverage results. Information in the
summary test report includes: percent of test coverage, and number of
retained (not ignored) branches, both total and hit. In addition, if an
asterisk "*" appears in the "I" column in the report, some branches in
the associated file or function were ignored. An "*" in the A column of
the report indicates that a branch that contained a BBA_ALERT
pragma was executed. At the end of the summary test report is a
cumulative total of the branch coverage results.

The "Totals" line reflects the totals of all of the listed functions. It may
not be an accurate representation for the total of the file. In particular,
functions that are ignored will not be counted in the totals. Instead, the
branches in these ignored functions will be counted in the summary
listing at the bottom of the display (XX branches were ignored).

9-14 HP Branch Validator (BBA) In HP SoftBench

Use the vertical scroll bar to scroll through the list of files and
functions to examine branch-coverage test results.

You can select a file or function in the report by moving the cursor into
the desired line and clicking the command select mouse button. Use
the Next and Previous keys to select the next or previous file or
function in the report. If you select a file, Next and Previous will select
the next and previous files. If you select a function, Next and Previous
will select the next and previous functions (even between different
files).

The Histogram Test
Report

The histogram test report (File→Show Histogram or <Shift><Alt>H)
presents a BBA histogram that shows function-by-function
branch-coverage results.

Information displayed includes: percent of coverage, a histogram
display of the coverage percent, the function name, and the file name.

Use the vertical scroll bar to scroll through the list of functions to
examine branch-coverage test results. To select a function in the
display, move the cursor to the desired line and click the
command select mouse button. Use the Next and Previous keys to
select the next or previous function in the display.

The Results Only
Test Report

The results only test report (File→Show Results Only or
<Shift><Alt>R) presents a BBA Results Only listing. This listing is a
cumulative total of the branch coverage test results, along with the total
number of files, functions, and branches instrumented for BBA.

The File History Test
Report

The file history test report (File→Show File History or
<Shift><Alt>F) presents the following information about the files that
make up the executable that was subjected to the BBA tests:

1. The files that were tested.

2. The dates when the files were compiled.

3. The BBA options with which the files were compiled.

4. The number of branches in each file.

HP Branch Validator (BBA) In HP SoftBench 9-15

5. The number of times the data from each file was unloaded.

6. The complete path of each file.

This display is identical to "bbarep -Dft". Refer to Chapter 6 for a
more complete description about this display.

Use the vertical scroll bar to scroll through the list of files. Use the
horizontal scroll bar to view the complete path of each file.

 The BBAPATH
Environment
Variable

The BBA Interface will search for map and source files in the
directories where they were originally compiled, and it will report an
error if it cannot find a file. When you have moved map and/or source
files out of the directories where they were originally compiled, you
can use the BBAPATH Environment Variable to define the new paths
to the map and source files. To set up this variable, refer to the
paragraph titled "BBAPATH Environment Variable" in Chapter 6 of
this manual.

You can also set the BBAPATH with the
Settings→Source Directories command.

 How To Display
Source Files

With the Summary or Histogram test report on screen, select a file or
function by clicking on (highlighting) its line in the report. Press the
"Source" button. A new window will open and it will contain the
source listing of the selected file or function. The source file listing
will identify the branches that were not executed (or hit) when your
program executed. The first branch that was not hit will be on screen
in the listing. Included will be an explanation of why the branch was
not executed, preceded in parenthesis by a count of the number of
branches affected because this branch was not executed. Chapter 6 in
this manual has a complete description of the generated messages. All
of these messages correspond to use of the bbarep -bN option. Use the
Next and Previous keys in the Source file window to display other

9-16 HP Branch Validator (BBA) In HP SoftBench

branches that were not hit during the run of your executable file. Also,
use the vertical scroll bar to roll the source listing in the window.

You can have the source file listing shown for a different file or
function by selecting the desired file or function in the Summary or
Histogram window with the command select mouse button or with the
Next and Previous keys. Each time a new file or function is selected,
its source file listing will appear in the source window. If you want to
look at all of the branches in all of the functions, one at a time, select
the Histogram display and use the Next button in the Histogram display
to sequence through each function.

If you want to look at all of the branches missed on a file level, use the
Summary display and select a file of interest. Then use the Next and
Previous keys in the main Branch Validator window to obtain the next
or previous files in the source window.

If you want your source file listing shown with a tab width other than
TAB=8 characters, you can specify the desired number of characters to
expand each tab by using "Settings: Source Tab Width" in the main
BBA box. Simply enter a value between 1 and 8 in the dialog window
and then redisplay your source by clicking on the desired file or
function.

Ignoring A Branch In
The Source Window

In the source window, you can set the BBA to ignore an unexecuted
branch. You can ignore the branch in one of two ways: (1) ignore the
branch directly, or (2) insert an ignore pragma.

Ignoring Branches Directly

To ignore the branch directly, you must write the file:function:branch
identifier in the BBA Ignore file. To do this, highlight the branch to be
ignored and click on "Ignore". This branch will now be ignored in
your next summary display. The "I" indicator will appear in front of
the ignored branch, and the next unexecuted branch will be displayed
in the Source window.

If multiple branches are on one line, then ignoring that line will ignore
all of the branches on that line. If you decide not to ignore the branch
you just ignored, you can use the "Clear" button to clear the ignore
from the ignore file. Select the line having the ignored branch and then
click the command select mouse button on "Clear".

HP Branch Validator (BBA) In HP SoftBench 9-17

Note
If a function contains two branches with identical text
(e.g. "if (k == 1)" appears, and then "if (k == 1)" appears again later in
the same function), ignoring one of the branches will cause both
branches to be ignored. The ignore symbol "I" will initially appear
only on the branch you ignored. When you redisplay the source (by
clicking again on the function name in the main BBA window), the
ignore symbol will appear beside both branches.
The only way to ignore one of the two branches without ignoring the
other is to add an ignore pragma to the selected branch.

Ignoring Branches Using A Pragma

To ignore a branch by using a pragma, you will need to write an
appropriate pragma into your source file listing. A pragma is a
compiler directive that tells the BBA preprocessor to do something
special with the associated branch or file. If you insert a
BBA_IGNORE pragma (default case), the associated branch or
function will not be instrumented for BBA, thereby ignoring the
branch. For a more complete description of the various BBA pragmas
and what they do, refer to "What is a pragma?" in Chapter 4 (Details
Of bbacpp) in this manual.

To add a pragma to a branch, select the branch in the source file listing,
and press the "Add Pragma" button. The location where the pragma
will be added will be indicated by "P^". The "^" indicates that the
pragma will be placed on a new line between where the P is located
and the line above it. If an ignore is to be placed on the same line
where a pragma is to be inserted, the symbol shown in your source list
will be "PI" without the caret. In any case, the pragma will be inserted
on a new line in between the line where the P is shown and the line
above it. Note that the pragma is not actually added to your source file
at this time. The name of the source file and the location of the pragma
(line number) are simply stored in a file to be added later, when you
choose Actions→Add Pragmas to Source Files. Therefore, you can
use "Clear" to remove the pragma (provided you have not used
Actions→Add Pragmas to Source Files).

9-18 HP Branch Validator (BBA) In HP SoftBench

To clear a pragma from a source line, click on either the pragma or the
branch associated with the pragma, and click on "Clear". The "P^"
symbol will be removed and the pragma will no longer be in the source
file.

Problems Inserting Pragmas

The BBA determines the location where the pragma will be inserted by
examining the preprocessor-generated ".M" files. In some cases, it is
not clear where to add the pragma to ignore a particular branch.
Typically, this occurs when the branch and the first line of code to be
executed for the branch are on the same line. The pragma insertion
program tries to add the pragma after the branch and before the first
executable statement associated with the branch. If the branch and the
first executable statement of the branch are both on the same line, the
pragma insertion routine will not know where to add the pragma, and it
will indicate that the pragma will be inserted on the line above the
branch. This is typically not where you want to add the pragma. In
this case, you will probably want to remove this pragma and insert it
manually. To insert the pragma manually, locate a line where the
pragma should be added in the associated statements of the branch and
select "Add Pragma". The pragma will now be inserted one line above
the selected line (provided the selected line is not another branch).

Example Of Problem Inserting Pragma

If the line where you add a pragma manually contains a branch, the
pragma will be inserted at the appropriate location to ignore that
branch; it will not be on the line you selected manually.

HP Branch Validator (BBA) In HP SoftBench 9-19

Listing showing the problem:

1 if (i == 10) { j = 11;/* trying to ignore this line */
2 if (k >= 10) { /* manually insert pragma here */
3 j = 12; /* P^ appears on this line */
4 m = 10;
5 }
6 z = 12;
7 }

In the above example, the user wanted to add a pragma to ignore the "if
(i == 10)" branch. By using the "Add Pragma" command, the pragma
was inserted on the line above the branch statement
"if (i == 10)". This occurred because BBA could not determine exactly
where to add the pragma (the first executable statement
"j = 11;" was on the same line as the branch). The user then removed
this pragma with the "Clear" command and tried to manually insert the
pragma on the "if (k >= 10) {" line. If the "P^" appeared on this line,
the desired ignore would be achieved, but instead the pragma appeared
on the "j = 12;" line. This is because the line where the user manually
tried to insert the pragma was a branch control statement, also. If the
user left this as it is, the "if (k >= 10)" branch would be ignored and not
the desired
"if (i == 10)" branch. Finally, the user corrected this problem by
clearing the pragma and selecting another statement in the scope of the
"if (i == 10)" branch. In this case, the desired ignore can be achieved
by selecting the "z = 12;" statement and manually inserting the pragma
there. This will places the ignore pragma one line above the "z = 12;"
statement. As long as the pragma is inserted within in the scope of the
branch, it will affect the entire segment of the branch.

Listing showing the way the problem was solved:

1 if (i == 10) { j = 11; /* trying to ignore this branch */
2 if (k = 10) {
3 j = 12;
4 m = 10;
5 }
6 z = 12; /* manually insert pragma P^ here */
7 }

Exiting The Source
Files Display

Use the "Close" button to close the Source window when you want to
remove it from the screen. Do not use the "Close" selection in the pull
down menu of your window manager because this may exit BBA.

9-20 HP Branch Validator (BBA) In HP SoftBench

 Selecting A Set Of
Active Files And
Functions To
Appear In Test
Reports

You can identify a set of files and functions to appear in BBA test
reports (excluding all others) by choosing
Settings→Active Files and Functions. This opens a new window
named "Set Active Files and Functions". All of the files and functions
you have instrumented for BBA will appear in this window. Use the
vertical scroll bar to examine the list. You can select a file or function
in this window, and use the "Ignore" button to ignore (or remove) the
selected file or function from your test report. The line you selected
will show the "Ign->" symbol, indicating that the selected file or
function has been added to the BBA Ignore file. If you ignore a file, all
of the functions of the ignored file will also be ignored, and this will be
indicated by (Ign->), an implied ignore. The (Ign->) symbol indicates
that the function will be ignored even though it is not listed in the BBA
Ignore file.

If you change your mind and decide to have a previously ignored file
or function included in your BBA report, select the line with that file or
function and press "Clear". Whenever you press either "Clear" or
"Ignore", the selecting line on the display advances to the next function
or file. If the selected line is a function with an implied ignore
"(Ign->)", you cannot clear it this way. You’ll have to clear its file.

If you only want to examine BBA coverage on one or two files or
functions in a long list, use the "Ignore All" button to add all of the
files and functions to the BBA Ignore file. Then use "Clear" to clear
only the desired files and functions from the ignore file. Note that you
must clear a file before you can clear the functions within the file.

The "Clear All" button will remove all of the files and functions from
the BBA Ignore file. No file or function will be ignored (including any
you previously ignored through the main Branch Validator window and
the source window).

Use the "Close" button to close the Active Files and Functions window
when you want to remove it from the screen. Do not use the "Close"
selection in the pull down menu of your window manager because this
will exit BBA. This window may also be iconified separately from the
main Branch Validator window, if desired.

HP Branch Validator (BBA) In HP SoftBench 9-21

 Displaying Error
And Warning
Messages

The BBA Errors window will open when you click on the "Errors"
button in the main Branch Validator window. The Errors window lists
all of the error and warning messages that have been generated since
executing the most recent BBA command. Serious error messages will
bring this window up, automatically. If you do not see what you
expect to see when you execute a BBA command, click on the "Errors"
button to see if any errors have occurred while executing your last
command. All of the commands associated with BBA (including the
user-definable commands in the Actions pull down) are capable of
writing errors to this window. For help in understanding a BBA error
message, refer to Appendix A near the end of this manual.

 How To Ignore A
File, Function, Or
Branch

Pressing the "Ignore" button in the main Branch Validator window,
Source window, or Active Files and Functions window will ignore the
selected file, function, or branch. In the main Branch Validator
window, pressing the "Ignore" button after selecting a file or function
will write the specified file or function to the BBA Ignore file. Note
that the display will indicate that a function is ignored by placing the
string "Ignore" in the same line as the function. If you ignore a file, all
of the functions in the file will be preceded by the string "Ignore" to
indicate that they are ignored.

The Active Files and Functions window allows you to define a set of
files and functions to include in the BBA test report. All files or
functions in this window that begin with "Ign->" are listed in the BBA
Ignore file. You can add or remove files and functions within the
ignore file by pressing "Ignore" and "Clear".

The Source window allows you to ignore branches and functions.
Simply select the desired branch and click on "Ignore". You can
remove these branches from the BBA Ignore file by selecting the
desired branch again, and clicking on "Clear".

9-22 HP Branch Validator (BBA) In HP SoftBench

Commenting Ignore Entries

You may add comments to each file, function, and branch that is
ignored by choosing Settings→Ignore→Comment Type. The three
types of comments you can include with each ignore are: "No
comment", "Universal comment", and "Unique comments". By
selecting "No comment", you turn off the commenting feature and do
not include a comment with an ignore entry. By selecting "Universal
comment", your selected comment text will be included with each new
Ignore entry in the ignore file. By selecting "Unique comments", BBA
will query you after each new "Ignore" selection for a comment to add
to the ignore statement in the BBA Ignore file. All Ignore comments
should begin with a "#" symbol as the first character. If your comment
does not begin with a "#" symbol, a "#" symbol will be added
automatically.

The Ignore File

The appropriate statements required to ignore files, functions, and
branches are stored in the BBA Ignore file, which by default is defined
to be $HOME/BBA_IGNORE_FILE. You can rename the BBA
Ignore file, if desired, by either choosing Settings→Ignore→File... or
by defining the configuration file option "BBA_IGNORE_FILE".

You may edit the ignore file to remove or add the names of files,
functions, and branches, provided you leave the file content in a format
usable by BBA. If BBA does not understand a particular statement in
the BBA Ignore file, that statement will be treated as a comment. To
edit the BBA Ignore file, choose Edit→Ignore File.

HP Branch Validator (BBA) In HP SoftBench 9-23

Format Of Ignore File Contents

The contents of the BBA Ignore file can include files, functions,
branches, and comments. The format of the contents in the Ignore file
is important if you desire the HP Branch Validator (BBA) SoftBench
User Interface to use this file properly. In order to ignore a file, enter
the complete path of the file. To ignore a function, enter the complete
path of the file that contains the function, followed by a ":", and then
followed by the function name. To ignore a branch, enter the full path
of the file, the function, and the branch-control statement, all separated
by ":". Refer to Chapter 4 for an explanation of the branch-control
statements required to ignore a particular type of branch. The
comment associated with a file, function, or branch will then appear
immediately following the branch in the file.

Consider the following Ignore File segment:

/usr/hp64000/demo/bba/demo2/driver.c : error
Routine is a hardware driver, don’t need to test

/usr/hp64000/demo/bba/demo2/convert.c : bitpos : case 128 :
Case impossible to reach

/usr/hp64000/demo/bba/demo2/multibits.c

From the above segment, you can see that the function "error", the
branch "case 128:" and the file "multibits,c" are being ignored. Note
that the function and the branch statements have comments added.
Also note that the contents of the BBA Ignore file can be in any order,
except that the comment statement about a file, function, or branch
should follow the file, function, or branch.

Note When not using the HP softBench interface, BBA will allow you to
enter ignore-file statements without the complete scoping of the file
and function and without the complete path to the source file. Bbarep
will work properly with both unscoped and fully scoped ignore
statements. The HP Branch Validator (BBA) SoftBench User Interface
will not work properly unless each ignore-file entry includes complete
scoping, as shown above.

9-24 HP Branch Validator (BBA) In HP SoftBench

 Adding Pragmas To add a pragma to a branch, open the Source window, select the
desired branch, and click on "Add Pragma". The pragma will be added
at the indicated line (refer to the discussion about the source window,
earlier in this chapter). This step actually adds a pragma tag (or
pragma) to the $HOME/BBA_PRAGMA_FILE. Pragma tags are read
when you choose Actions→Add Pragmas to Source Files, and the
pragmas are actually inserted at that time.

The name of the pragma tag file is $HOME/BBA_PRAGMA_FILE.
You may rename the BBA Pragma file to a name of your choice by
either choosing Settings→Pragma→File... or by defining the
configuration file option "BBA_PRAGMA_FILE" in your .bbarc file.

Four types of pragmas can be added to a particular branch. They are:
BBA_IGNORE, BBA_ALERT,
BBA_IGNORE_ALWAYS_EXECUTED, and BBA_IGNORE plus
BBA_ALERT in combination. To specify the type of pragma to be
included with a particular branch, choose Settings→Pragma→Type
and enter your selection. Refer to Chapter 4 for a discussion of why
you might want to enter pragmas, and the various types of pragmas
available. In addition, you may add comments to each pragma.
Comments are inserted by choosing
Settings→Pragma→Comment Type. The three types of comments
you can include with each pragma are "No comment", "Universal
comment", and "Unique comments". Selecting "No comment" turns
off the commenting feature and does not add a comment to each
pragma entry. Selecting "Universal comment" causes BBA to ask you
to enter a comment that it can include with each subsequent pragma
selection. Selecting "Unique comments" causes BBA to query you
after each use of "Add Pragma" for a unique comment to include with
the pragma in the source file. All pragma comments must begin with
"/*" and end with "*/", like normal C comments.

The BBA Pragma file stores the results of using the "Add Pragma"
command, along with the pragma comments. You may edit this file
and remove pragmas or add new pragmas, provided you leave the file
content in a format usable by BBA. To edit the BBA Pragma file,
choose Edit→Pragma File.

HP Branch Validator (BBA) In HP SoftBench 9-25

The format of each statement in the BBA Pragma file includes: the full
path name of the file, the line number where the pragma will be added,
the type of pragma to add (I,E,A or C), and a comment to be included
with the pragma, if desired. Each of these fields is separated by a ":"
and there are no blank spaces.

Note This format is critical. If it is not followed exactly, the associated
pragmas will not be added to your source files properly.
Consider the following Pragma file segment:

/usr/hp64000/demo/bba/demo2/driver.c:105:I:

/usr/hp64000/demo/bba/demo2/convert.c:79:A:/* Let me know if enters */

/usr/hp64000/demo/bba/demo2/convert.c:77:C:/* Case not possible */

From the above segment, you can see that the file "driver.c" will have a
BBA_IGNORE pragma added before line 105. The file convert.c will
have two pragmas added (a BBA_ALERT before line 79 and a
combination of BBA_ALERT and BBA_IGNORE before line 77).
Note that the Pragma file entry shows only the file and line number
where the pragma will be added. If the source file is edited and the line
numbers change before you insert the pragmas with the
Actions→Add Pragmas to Source Files command, the pragmas will
not be inserted in the proper locations. Edit the Pragma file and delete
all pragmas that are to be inserted into the modified file before you
actually add the pragmas to the other non-edited files.

The routine that actually adds the pragmas is controlled by the script
file assigned to the configuration file option
BBA_ADD_PRAG_COMMAND in the .bbarc configuration file.
When you execute this command (by using
Actions→Add Pragmas to Source Files), it will display a terminal
window and show you the results of adding the pragmas to each of the
files. When the command is complete, you can roll this window to
examine the results off adding the pragmas. The script can be edited to
check-out versioned files before adding the pragmas, to log the results
of adding the pragmas to a file, or to more(1) the resulting files to the
screen, if desired. The only thing that BBA needs back from executing
this script is a list of the files where pragmas have been successfully

9-26 HP Branch Validator (BBA) In HP SoftBench

added. This list of files is used to delete the pragma tags in the BBA
Pragma File.

 Using Build The BBA Build feature provides an automated method of building an
up-to-date executable file to run in your BBA test environment. BBA
Build operates in one of two ways, depending on how you have set the
BBA_USE_SOFTBENCH option in your $HOME/.bbarc
configuration file. If BBA_USE_SOFTBENCH=True, choosing
Actions→BBA Build will open a series of dialog boxes where you
enter a build directory, Makefile name, and Makefile options. The
default value for the build directory is your current context directory.
The default values for the Makefile name and Makefile options are
read from your BBA_MAKEFILE_NAME and
BBA_MAKEFILE_OPTIONS options in your configuration file
(.bbarc).

If you have the AxLS C-Cross BBA, and you have the HP SoftBench
Builder properly set up to build your Cross Compiler executables, you
could enter the appropriate Build directory, Makefile name, and
Makefile options, and have the HP SoftBench Builder create an
executable file for you.

If you are not using the SoftBench Broadcast Message Server
(BBA_USE_SOFTBENCH=False), choosing Actions→BBA Build
will execute the command defined by option
BBA_BUILD_COMMAND in your configuration file. No questions
will be asked and no options will be passed. Be sure to define this
command exactly as you want it to occur. This command will be
passed to a hidden shell exactly as you have it defined. Error messages
from the hidden shell will be sent to the Errors window. If you want to
see the complete results of the command, you may want to create a
script file similar to the following:

make -f Makefile bbatest > /tmp/results 2 > &1

hpterm -e more /tmp/results

mailx -s "Build Results" clarkkent < /tmp/results

HP Branch Validator (BBA) In HP SoftBench 9-27

This command will save the results of the make in a temporary file, and
then more(1) the build results to the screen. In addition, it will mail the
results to the specified user "clarkkent". Once the build is complete,
you will need to rerun your executable to obtain the new BBA dump
data.

Note Do NOT add a change directory command directly to a
BBA_BUILD_COMMAND option string. You should enter only a
simple command or a script command.
You can have a change directory command in the script command, if
desired. Do NOT do this:
"BBA_BUILD_COMMAND=cd /users/clarkkent; make bbatest"

9-28 HP Branch Validator (BBA) In HP SoftBench

 How To Control A
Run Of Your Test

The Actions pull down offers the following three user-definable
actions: "Run Test", "Stop Test", and "Modify Test". When you click
on one of the three user-definable pull down items, the user-defined
command in your configuration file (.bbarc) will be executed. Refer to
table 9-1 to see which command option runs when a pull down menu
item is selected.

Each of the commands shown in table 9-1 will be executed in a hidden
shell (no standard ouput results will be sent to the screen). Standard
error messages will be sent to the BBA-Errors window. Up to three
parameters will be passed to each of the commands, depending on what
you have selected on your screen. If you have selected a file in the
Summary display, each of the above commands will be passed the
name of the file as the first parameter. If you have selected a function
in the Summary or Histogram display, your command will be passed
the file name as the first parameter and the function name as the second
parameter. If you have selected a line of source code in the Source
window, your command will be passed the line number as the third
parameter. You can do anything with these parameters that you want.
They may be used as qualifiers for running, stopping, or modifying
your test. The mechanism for doing this qualification is user definable;
it depends on your tests, file locations, etc. You may be able to
implement the qualifications with a look-up table.

Actions Pull Down Menu Command To Run In Hidden Shell

Run Test
Stop test
Modify Test

BBA_RUN_TEST_COMMAND
BBA_STOP_TEST_COMMAND
BBA_MOD_TEST_COMMAND

Table 9-1. User-Definable Commands

HP Branch Validator (BBA) In HP SoftBench 9-29

 Accessing A File
To Edit

The Edit pull down menu offers a method for editing a function or file
listed in the Summary or Histogram test report, editing the Ignore file,
the Pragma file, the Configuration file ($HOME/.bbarc), or a file of
your own choosing. If you are using the SoftBench Broadcast Message
Server (BBA_USE_SOFTBENCH=True), your edit menu selection
will be passed to the SoftBench Broadcast Message Server as a request
to edit the specified file at the specified line number.

If you are not using the SoftBench Broadcast Message Server
(BBA_USE_SOFTBENCH=False), your edit menu selection will
invoke the command defined by BBA_EDIT_FILE_COMMAND.
This command will be passed a file name as the first parameter and a
line number as the second parameter. By default, an Edit menu
selection (with BBA_USE_SOFTBENCH=False) will invoke the vi
editor in a terminal window. If this is not the editor you want to use,
you can enter a new edit command in the script file
$HP64000/bba/config/cmd_edit, or you can modify the configuration
file option BBA_EDIT_FILE_COMMAND to invoke your desired
editor.

If you would like to edit a source line that appears in the Source
window, click on "Edit: Selected Summary File". The source line
number will be passed along with the edit request. A new window will
open. It will show the file that is in the Source window, and be
positioned directly to the line of interest.

If you edit the configuration file ($HOME/.bbarc), BBA will not
automatically reread your new version of configuration file variables.
Use "Settings: Read Configuration File" to make BBA reread the
values of the configuration file.

9-30 HP Branch Validator (BBA) In HP SoftBench

 Using Print And
Save

The File→Print → and File→Save in file→ commands allow you to
document your BBA test results. You can print the content of the
"Summary", "Histogram", "Results Only", "File History", "Source of
Selection" or "Active Files and Functions" displays, or you can save
the selected contents in a file. Each of these results is identical to the
corresponding display you can obtain on your screen.

Note The files you print or save may not match the display on screen. The
resulting outputs are created fresh with each execution of the "Print" or
"Save" command; thus, they will not match exactly what is on your
screen if your screen has not been updated to contain the latest
information.

The Print command creates a file of the requested output and then
passes its file name as the first parameter to the command defined by
BBA_PRINT_COMMAND. By default, the
BBA_PRINT_COMMAND executes a script,
"$HP64000/bba/config/cmd_print" which executes the command
lp $1 (where $1 is set equal to the requested file name). The results of
this print command are then captured and presented to the screen in a
small dialog box. If you do not want this small dialog box coming up
on the HP Branch Validator (BBA) SoftBench User Interface, you can
send the results of the print operation to /dev/null. In this case, no
dialog box will be displayed.

The "Save in file" command appends the requested output to a file of
your choice. If the file does not exist, it will be created. Each "Save in
file" command will append the current output to the end of the contents
of the file.

HP Branch Validator (BBA) In HP SoftBench 9-31

 Setting The Dump
Data File And
Retaining Old
Data

In order for BBA to operate properly, the location of the bbadump.data
file must be specified. You can specify its location in one of two ways:
(1) specify the dump data file directly, or (2) modify
BBA_DUMP_DATA_FILE in your .bbarc configuration file.

To directly specify the location of the dump data file, choose
Settings→Dump Data File.... This opens a dialog box where you can
specify the directory and the name of the BBA dump data file (by
default, called "bbadump.data"). After entering the name of the file,
select "Update" to get a new test report display. If the specified dump
file does not exist, you will get an appropriate error message in the
Errors window.

Note Entering a new BBA dump data file name will not automatically
update your screen. Select the desired type of test report, or click on
"Update" to view the summary from the new BBA dump data.

The other method of selecting a different bbadump.data file involves
editing your .bbarc configuration file to redefine the
BBA_DUMP_DATA_FILE option. If you specify a file name without
a complete path, BBA will expect to find the BBA dump file in the
current context where the BBA tool is running. Note that you cannot
specify an incomplete path dump file by choosing the
Settings→Dump Data File... (method discussed above). The dialog
box will always return a full path file name, even if you only put in a
partial pathname file.

Choose Settings→Retain Old Dump Data to retain older dump data
along with more recent dump data when producing the BBA reports.
Refer to "bbarep -o" (in Chapter 6) to understand more about why you
might want to use this option.

9-32 HP Branch Validator (BBA) In HP SoftBench

 Using Help Help windows are only available if you are using the SoftBench
Broadcast Message Server (BBA_USE_SOFTBENCH=True), and the
Message Server is running. If you choose Help→Application Help, a
window opens to show a complete listing of all "help" topics available
for the BBA. If you choose Help→Item Help, a window opens to
describe how to get help on individual screen items. You can get item
help about any button, any pull down menu item, and most of the
display regions. For more information about the Help facility, refer to
the manual titled, "Exploring HP SoftBench: A Beginner’s Guide".

 Exiting BBA To exit BBA, choose File→Quit . If you are using the default
keyboard accelerators, type <Shift><Alt>Q. You can quit BBA at any
time and return later to resume where you left off. The files, functions,
and branches you have ignored will be retained in the BBA Ignore file.
The pragmas you were prepared to insert will be retained in the BBA
Pragma file.

There is only one potential problem when quitting BBA. When the
BBA interface exits, it will attempt to kill all windows that are
associated with the BBA interface. This includes any windows or
commands that were started by using any of the Actions menu items.
In addition, if you are NOT using the SoftBench Broadcast Message
Server, this kill signal will be sent to any edit processes and build
processes that were started from the BBA interface. This kill signal
will abort any of the above listed Actions or Edits unless "set -m;" was
issued as part of the command. By using "set -m;", BBA is prevented
from exiting until the specified command completes. In this case, BBA
will appear to hang until the command completes. If this happens, you
may want to close and exit the windows that BBA is waiting for, or
you may want to iconify BBA to get it out of the way and allow the
action in the BBA initiated window to complete.

HP Branch Validator (BBA) In HP SoftBench 9-33

 Restrictions When
Using The HP
Branch Validator
(BBA) In The HP
SoftBench
Interface

Within the HP SoftBench User Interface, BBA uses the bbarep
command to obtain test results to display. Consequently, there are a
few restrictions and limitations imposed by BBA on the bbarep and
bbacpp commands.

1. You cannot use multiple map files with the bbacpp
-DBBA_OPTM option. In this interface, BBA assumes that
all preprocessor-generated map files are labeled with a ".M"
file name extension.

2. BBA will not work correctly if a file name contains a ":"
character as part of the filename.

3. BBA may not always find the proper location to insert
pragmas. Pragma insertion will be a problem when the
pragma needs to be inserted in the middle of a statement, or
when a branch and the first executable statement of the branch
are both on the same line.

4. If you add pragmas to a branch and then later add pragmas to
the same branch before choosing
Actions→Add Pragmas to Source Files, then the last (and
only the last) pragma added to the branch will actually be
inserted into the source file. Stated differently, if a branch
contains multiple pragma tags, only the most recent tag will
actually be added to the branch when you choose
Actions→Add Pragmas to Source Files.

5. When you ignore a branch by using a statement in the ignore
file, both the if and the else conditions of the branch will be
ignored. This is identical to the operation of bbarep.

9-34 HP Branch Validator (BBA) In HP SoftBench

6. Alert warnings are placed before the affected branch. This
sometimes makes it difficult to determine which portion of a
multiple-branch statement activated the Alert warning.
For example:

In the above listing, the BBA Alert warning was activated by
line 64. If the warning had been activated by line 58, then the
warning would be placed immediately before the branch on
line 55.

7. Yacc and Lex source files will not work properly with BBA.
Bbarep will work better with yacc and lex output, but neither
will show you the original yacc and lex source where the
branches were generated.

8. Dialog windows will always pop the main Branch Validator
window to the top of the display when using the Motif
Window Manager (Mwm). If this behavior disturbs you, you
will have to position the Branch Validator source and main
windows in such a manner that the effect is minimized, or use
a different window manager.

9. Pressing the keyboard accelerators one after another too
rapidly (such as <Shift><Alt>H for a histogram display,
depending on your version of HP SoftBench software) may
cause the display to become out of sync. Wait until the
display is valid before pressing the next keyboard accelerator.

 *** code with BBA_ALERT was executed
->53 if ((horiz == 0) && (vert == 0))
 54 {
 55 if (k == 12)
 56 {
 57 j = 12;
 58 # pragma BBA_ALERT
 59 }
 60 return(KEY_NONE);
 61 }
 62 else
 63 {
 64 # pragma BBA_ALERT
 65 }

HP Branch Validator (BBA) In HP SoftBench 9-35

10. If the HP Branch Validator (BBA) SoftBench User Interface is
exited by a non-standard method (power failure, kill signals,
etc.), temporary files may not be properly removed. When
this happens, HP suggests that you remove the bba* and
analc* files in the /usr/tmp and /tmp directories.

9-36 HP Branch Validator (BBA) In HP SoftBench

A

Error And Warning Messages

Introduction This appendix contains a list of error and warning messages that you
may see when using the BBA. The list in this appendix is separated
into the following three sections:

1. Messages that may be generated during preprocessing.

2. Status-line messages that may appear while using the
bbaunload command with an emulator, and journal window
messages that may appear when using the Unload_BBA
command with a debugger.

3. Messages that may be generated when running bbarep.

Conventions used in this appendix are described below:

1. <sfx> stands for a specific single character. In the actual error
message, it will be replaced by the actual suffix.

2. <mapfile> stands for the name of a map file
(such as /hp/goodyear/blimp.M).

3. <file> stands for a file name. The type of file depends on the
context of the message.

4. <flag> stands for a command-line flag
(such as -DBBA_OPTS).

5. <num> stands for a decimal integer (such as 64).

6. <line> stands for a line number in <file>.

Error And Warning Messages A-1

7. <sym> stands for a C symbol.

8. <date> stands for a date and time, in the current time zone.

bbacpp Messages Bbacpp<COMP> always sends its messages to stderr. In addition to
the error messages that cpp<COMP> can generate, bbacpp<COMP>
can generate the following messages:

Note In place of "bbacpp<COMP>", substitute your specific compiler
number, e.g., bbacpp68000, bbacpp8086, bbacpp68030, etc.

<file>: <line>: BBA_IGNORE_ALWAYS_EXECUTED is not immediately within a while loop

This message indicates that a
BBA_IGNORE_ALWAYS_EXECUTED pragma is not at the same
scope as a while statement. Move the pragma that is at line <line> so
that it is within the control of the while statement, but not within the
control of any branches that are within the if statement. For example:

15 while(i != 0)
16 {
17 if (j == i)
18 {
19 # pragma BBA_IGNORE_ALWAYS_EXECUTED
20 j++;
21 }
22 }

is incorrect, and should be changed as shown in one of the two
following examples:

A-2 Error And Warning Messages

Example 1:

15 while(i != 0)
16 {
17 # pragma BBA_IGNORE_ALWAYS_EXECUTED
18 if (j == i)
19 {
20 j++;
21 }
22 }

Example 2:

15 while(i != 0)
16 {
17 if (j == i)
18 {
19 j++;
20 }
21 # pragma BBA_IGNORE_ALWAYS_EXECUTED
22 }

"<file>", <line>: Illegal operand type combination for ’?:’.

This message actually comes from cc<COMP>. If you do not
normally see this message when you compile your program, refer to
Chapter 4 for more information about "the -DBBA_OPTO=a option".

<file>: <line>: ERROR: cscanorigtext: unexpected \\0 when looking for a \\002

This message should never happen. It implies that the temporary file
was truncated between passes.

Error And Warning Messages A-3

<file>: <line>: No string delimeter

A string was started (with either a single quote or double quote), and an
end-of-line was found before the matching quote was found. Note that
you can end a line with a backslash (\\) and continue a string on a
following line with no problems.

<file>: <line>: Out of push-back-line memory; use -DBBA_OPTpNNN, where NNN is greater
than <num>

Refer to Chapter 4 for more information about DETAILS OF THE
-DBBA_OPTpNNN OPTION.

<file>: <line>: Syntax error

bbacpp has detected a syntax error in <file> at line <line>. Use the
cc<COMP> compiler without the -b option for a more complete
syntax/semantic check (bbacpp does not do a semantic check).

<file>: <line>: Too many syntax errors

bbacpp detected too many syntax errors, and is giving up its attempt to
parse the file.

A-4 Error And Warning Messages

<file>: <line>: Unexpected end of comment

The end of the C source file was found before the end of a comment.

<file>: <line>: Unknown preprocessor directive

A line beginning with # was found that bbacpp could not parse. Note
that

 # pragma <anything>

is always legal!

<file>: <line>: symbol ’<sym>’ conflicts with bba symbol

The symbol <sym> begins with _bA_, which is reserved for use by the
BBA. You can either change the name of the symbol, or choose not to
use bbacpp on files that reference that symbol.

<file>: <line>: Yacc stack overflow

This message indicates that an expression on line <line> has become
too complex. Simplify your expression.

Error And Warning Messages A-5

bbacpp<COMP>: ERROR: cgets: unexpected EOF while searching for a \003

This message can happen if you have the illegal characters ^A, ^B, or
^C in your file (probably in comments or strings).

bbacpp<COMP>: cannot generate map file ’<mapfile>’ because that would overwrite an
unknown-type file (use the -DBBA_OPTM<suffix> to choose a suffix different from ’<sfx>’

This message is warning you that the mapfile will not be generated.
Refer to Chapter 4 for the discussion of the DETAILS OF THE
-DBBA_OPTS OPTION for the implications of not having a map file.
The mapfile is not generated because a file already exists that has the
same name as the mapfile, and this already existing file is not a BBA
mapfile.

bbacpp<COMP>: cannot generate map file ’<mapfile>’ because that would overwrite the
source file (use the -DBBA_OPTM<suffix> to choose a suffix different from ’c’)

This message warns you that the mapfile will not be generated. Refer
to Chapter 4 for the discussion of DETAILS OF THE -DBBA_OPTS
OPTION for the implications of not having a map file.

A-6 Error And Warning Messages

bbacpp<COMP>: cannot generate map file because file name ’<file>’ is too long to append
.<sfx>

This message warns you that the mapfile will not be generated. Refer
to Chapter 4 for the discussion of DETAILS OF THE -DBBA_OPTS
OPTION for the implications of not having a map file. The mapfile is
not generated because the file has no extension and there are not
enough characters left in the file name to uniquely append a suffix.

bbacpp<COMP>: cannot open map file <mapfile> for output

This message warns you that the mapfile will not be generated. Refer
to Chapter 4 for the discussion of DETAILS OF THE -DBBA_OPTS
OPTION for the implications of not having a map file. The mapfile is
not generated because a file already exists that has the same name as
the mapfile, but the permissions of the existing file will not allow
bbacpp to write to it.

bbacpp<COMP>: cannot read file offset

This message should never happen. It implies that the temporary file
was truncated between passes. If this occurs, somebody else probably
deleted the file accidently while you were running bbacpp<COMP>.
Try again.

Error And Warning Messages A-7

bbacpp<COMP>: cannot reposition input

This message should never happen. It implies that the temporary file
was truncated between passes.

bbacpp<COMP>: could not open <file> for output

The post-cpp file that bbacpp<COMP> was requested to create is write
protected. This should not happen, because cc<COMP> requests
output to a file in /usr/tmp or /tmp (and temporary files should never be
write protected).

bbacpp<COMP>: exceeded maximum scoping (<num>)

This message states that more nested blocks were found than could be
handled by bbacpp<COMP>. This should not happen because bbacpp
can handle the same number of nesting as cc<COMP>.

bbacpp<COMP>: pass2 could not open pass1’s output file

bbacpp<COMP> operates in two passes. The first pass does the cpp
processing, and the second pass parses the post-cpp output. The output
of the first pass is stored in a temporary file in the directory /usr/tmp or
/tmp. If this message appears, it implies that something has deleted the
temporary file (which should never happen).

A-8 Error And Warning Messages

bbacpp<COMP>: unable to write output file

bbacpp<COMP> attempted to write to a file and failed, either due to
the file system being full or to a hardware (disk I/O) error.

bbacpp<COMP>: unknown flag <flag>

An unknown flag was used on the command line and passed to
bbacpp<COMP>. This does not affect processing. It is an advisory
message, only.

Error And Warning Messages A-9

BBA Unload
Messages

The bbaunload command in emulation always sends its error
messages to the status line. The Memory Unload_BBA command in
the debugger always sends its error messages to the journal window.

<file> can’t be appended

The file "bbadump.data", or dumpfile <file>, is write protected.

<file> can’t be opened

(Emulator Only) This shows that <file> (which is your absolute file)
could not be opened. Since it must be valid for the emulator to have
loaded your absolute, either you have entered an incorrect file name, or
the file has been deleted.

<file> is not currently loaded

(Debugger Only) This shows that <file> (which is the base name of
your absolute file) is not loaded. Most often, this is the result of an
incorrectly spelled file name.

A-10 Error And Warning Messages

Can’t look up name of symbol (<sym>)

This should not happen. It shows that the symbol database is corrupt.

Can’t search the symbol database

This should not happen. It shows that the symbol database is corrupt.

Incorrectly formatted dump file

The file "bbadump.data", or dumpfile <file>, is either not a dumpfile,
or parts of the file have been deleted.

No root symbol

This should not happen. It shows that the symbol database is corrupt.

Error And Warning Messages A-11

dump protocol <num> is newer than known protocol <num>

The version of bbacpp is newer than the version of your emulator or
debugger. You must get a new version of the emulator or debugger
software (or use an older version of bbacpp).

insert protocol <num> is newer than known protocol <num>

The version of bbacpp is newer than the version of your emulator or
debugger. You must get a new version of the emulator or debugger
software (or use an older version of bbacpp).

spec file is corrupt

The file $HP64000/lib/<COMP>/bbacpp.spec has been modified.
Reload it from the product tape.

A-12 Error And Warning Messages

bbarep Messages Bbarep always sends its error messages to stderr.

bbarep: <file>: <line>: error in dump time

This shows that the bbadump.data file <file> became corrupt between
the time the BBA unload command wrote it, and bbarep tried to read it.
bbarep cannot generate any reports when this happens.

bbarep: <file>: <line>: expected ’:array’ line; did not find it

This shows that the bbadump.data file <file> became corrupt between
the time the BBA unload command wrote it, and bbarep tried to read it.
bbarep cannot generate any reports when this happens.

bbarep: <file>: <line>: illegal ’:array’ line

This shows that the bbadump.data file <file> became corrupt between
the time the BBA unload command wrote it, and bbarep tried to read it.
bbarep cannot generate any reports when this happens.

Error And Warning Messages A-13

bbarep: <file>: <line>: illegal ’:dump’ line

This shows that the bbadump.data file <file> became corrupt between
the time the BBA unload command wrote it, and bbarep tried to read it.
bbarep cannot generate any reports when this happens.

bbarep: <file>: <line>: illegal ’:file’ line

This shows that the bbadump.data file <file> became corrupt between
the time the BBA unload command wrote it, and bbarep tried to read it.
bbarep cannot generate any reports when this happens.

bbarep: <file>: <line>: no ’:dump’ line

This shows that the bbadump.data file <file> became corrupt between
the time the BBA unload command wrote it, and bbarep tried to read it.
bbarep cannot generate any reports when this happens.

bbarep: <file>: <line>: no ’:dump’ line, or ’:dump’ line out of order

This shows that the bbadump.data file <file> became corrupt between
the time the BBA unload command wrote it, and bbarep tried to read it.
bbarep cannot generate any reports when this happens.

A-14 Error And Warning Messages

bbarep: <file>: <line>: no ’:file’ lines; no branch data in dump file

This shows that the bbadump.data file <file> became corrupt between
the time the BBA unload command wrote it, and bbarep tried to read it.
bbarep cannot generate any reports when this happens.

bbarep: <file>: <line>: unexpected :array line

This shows that the bbadump.data file <file> became corrupt between
the time the BBA unload command wrote it, and bbarep tried to read it.
bbarep cannot generate any reports when this happens.

bbarep: <file>: <line>: unexpected end of file

This shows that the bbadump.data file <file> became corrupt between
the time the BBA unload command wrote it, and bbarep tried to read it.
bbarep cannot generate any reports when this happens.

bbarep: <file>: <line>: unknown line

This shows that the bbadump.data file <file> became corrupt between
the time the BBA unload command wrote it, and bbarep tried to read it.
bbarep cannot generate any reports when this happens.

Error And Warning Messages A-15

 bbarep: <mapfile>: <line>: error in modification date

This shows that the mapfile became corrupt between the time bbacpp
wrote it and bbarep tried to read it. This causes bbarep to act as if the
<mapfile> does not exist. Refer to Chapter 4 for the discussion on
DETAILS OF THE -DBBA_OPTS OPTION for the implications of
not having a map file.

bbarep: <mapfile>: <line>: illegal ’:option’ line

This shows that the mapfile became corrupt between the time bbacpp
wrote it and bbarep tried to read it. This causes bbarep to act as if the
<mapfile> does not exist. Refer to Chapter 4 for the discussion on
DETAILS OF THE -DBBA_OPTS OPTION for the implications of
not having a map file.

bbarep: <mapfile>: <line>: illegal ’:probe’ line

This shows that the mapfile became corrupt between the time bbacpp
wrote it and bbarep tried to read it. This causes bbarep to act as if the
<mapfile> does not exist. Refer to Chapter 4 for the discussion on
DETAILS OF THE -DBBA_OPTS OPTION for the implications of
not having a map file.

A-16 Error And Warning Messages

bbarep: <mapfile>: <line>: illegal ’:source’ line

This shows that the mapfile became corrupt between the time bbacpp
wrote it and bbarep tried to read it. This causes bbarep to act as if the
<mapfile> does not exist. Refer to Chapter 4 for the discussion on
DETAILS OF THE -DBBA_OPTS OPTION for the implications of
not having a map file.

bbarep: <mapfile>: <line>: missing at least one :probe line

This shows that the mapfile became corrupt between the time bbacpp
wrote it and bbarep tried to read it. This causes bbarep to act as if the
<mapfile> does not exist. Refer to Chapter 4 for the discussion on
DETAILS OF THE -DBBA_OPTS OPTION for the implications of
not having a map file.

bbarep: <mapfile>: <line>: no ’:options’ line

This shows that the mapfile became corrupt between the time bbacpp
wrote it and bbarep tried to read it. This causes bbarep to act as if the
<mapfile> does not exist. Refer to Chapter 4 for the discussion on
DETAILS OF THE -DBBA_OPTS OPTION for the implications of
not having a map file.

Error And Warning Messages A-17

bbarep: <mapfile>: <line>: no ’:protocol’ line, or ’:protocol’ line out of order

This shows that the mapfile became corrupt between the time bbacpp
wrote it and bbarep tried to read it. This causes bbarep to act as if the
<mapfile> does not exist. Refer to Chapter 4 for the discussion on
DETAILS OF THE -DBBA_OPTS OPTION for the implications of
not having a map file.

bbarep: <mapfile>: <line>: unknown control line

This shows that the mapfile became corrupt between the time bbacpp
wrote it and bbarep tried to read it. This causes bbarep to act as if the
<mapfile> does not exist. Refer to Chapter 4 for the discussion on
DETAILS OF THE -DBBA_OPTS OPTION for the implications of
not having a map file.

bbarep: Unable to read protocol level (<num>) of dump file <file> (current maximum
protocol level for dumpfiles is <num>)

This shows that the BBA unload command generated a dumpfile that
bbarep could not read because the software version of your emulator or
debugger is newer than the software version of bbarep.

A-18 Error And Warning Messages

bbarep: Unable to read protocol level (<num>) of map file <mapfile> (current maximum
protocol level for mapfiles is <num>)

This shows that bbacpp generated a mapfile that bbarep could not read
because the version of bbacpp is newer than the version of bbarep.
This causes bbarep to act as if the <mapfile> does not exist (because
you did not invoke bbarep with the -o option).
Refer to Chapter 4 for the discussion on DETAILS OF THE
-DBBA_OPTS OPTION for the implications of not having a map file.

bbarep: cannot derive a mapping file name for <file>

This message warns you that bbacpp was run on a file for which no
mapping file could be generated (you would have also been warned of
this while bbacpp was running).

bbarep: cannot find <mapfile>, or it is not a mapping file

This implies that the mapfile either does not exist, is not readable, or is
not of the correct type.

bbarep: cannot open <file>, or it is not a Basis Branch Analysis dumpfile

Either <file> does not exist, it is not readable, or it is not the correct
format for a bbadump.data file.

Error And Warning Messages A-19

bbarep: error: cannot merge data for <file> (different -O= options have identical
map-suffixes; no analysis done for file)

The bbadump.data file contains at least two entries for <file> which
show different -DBBA_OPTO= options, but the map suffix for
different -DBBA_OPTO= options are identical. This means that one of
the mapfiles was overwritten, so there is no reliable way to merge the
data. Bbarep will act as if the file was not compiled using bbacpp.

bbarep: error: cannot merge data for <file>

(no map-suffix information; no analysis done for file)

The bbadump.data file contains at least two entries for <file> which
show different -DBBA_OPTO= options. However, at least one of the
mapfiles does not exist (or isn’t readable), so there is no reliable way to
merge the data. Bbarep will act as if the file was not compiled using
bbacpp.

bbarep: warning: ignoring mapsuffix of ’<sfx>’ for source file ’<file>’

The bbadump.data file contains at least two entries for <file>. Both of
these entries show that <file> had the same -DBBA_OPTO= options,
both have the same number of branches, and both have the same
modification date, but they have different mapfile suffixes. In this
case, bbarep will search for a mapfile with the first suffix, and ignore
the mapfile with the second suffix.

A-20 Error And Warning Messages

bbarep: warning: mapfile ’<mapfile>’ has different number of probes

than the dump file shows; some functions disallowed for <file>

This shows that <mapfile> is out-of-date with respect to data in the
bbadump.data file. This causes bbarep to act as if the <mapfile> does
not exist. Refer to Chapter 4 for the discussion on DETAILS OF THE
-DBBA_OPTS OPTION for the implications of not having a map file.

bbarep: warning: mapfile ’<mapfile>’ shows different source date than dumpfile

The source modification date stored in the <mapfile> is different from
the date stored in the dumpfile; however, the number of branches
detected and the options used to create the mapfile are the same. This
warns you that some data may not be correct, but you invoked bbarep
with the -o option (forcing it to retain the old data).

bbarep: warning: mapfile ’<mapfile>’ shows different source date than dumpfile

some functions disallowed for <file>

The source modification date stored in the <mapfile> is different from
the date stored in the dumpfile; however, the number of branches
detected and the options used to create the mapfile are the same. This
causes bbarep to act as if the <mapfile> does not exist (because you
did not invoke bbarep with the -o option). Refer to Chapter 4 for the
discussion on DETAILS OF THE -DBBA_OPTS OPTION for the
implications of not having a map file.

Error And Warning Messages A-21

bbarep: warning: skipping data from file <file> showing <num> branches

date of both files is the same

The bbadump.data file contains at least two entries for <file>. Both of
these entries show that <file> had the same -DBBA_OPTO= options,
and both have the same modification date, but they have a different
number of branches. In this case, the data associated with the fewer
number of branches is ignored.

bbarep: warning: skipping data from file <file> showing <num> branches

date of file skipped is <date>

The bbadump.data file contains at least two entries for <file>. Both of
these entries show that <file> had the same -DBBA_OPTO= options,
but they have different branches and the source file has different
modification dates. In this case, the data associated with the oldest
modification date is ignored.

bbarep: warning: using data from multiple version of file <file>

The bbadump.data file contains at least two entries for <file>. Both of
these entries show that <file> had the same -DBBA_OPTO= options,
both have the same number of branches, but they have different source
modification dates. This warns you that some data may not be correct,
but you invoked bbarep with the -o option (forcing it to retain the old
data).

A-22 Error And Warning Messages

B

Installing The HP Branch Validator

Introduction If you are going to use HP SoftBench and HP Branch Validator (BBA)
together, install HP softBench before you install the HP Branch
Validator (BBA). If you install BBA before installing HP SoftBench,
you should reinstall BBA after installing HP SoftBench. Refer to
Chapter 1 for information about software version numbers that are
appropriate for your system.

The following steps describe the correct sequence of installation.

1. Install HP SoftBench (optional).

2. Verify that HP SoftBench is properly installed and working
(optional).

3. Install BBA.

Installation On
HPUX Systems

If HP SoftBench exists on your system and it is not installed under the
/usr/softbench directory, you will need to define the SOFTBENCH
shell variable to point to the directory where softbench exists.

As an example, if using sh(1) or ksh(1):
SOFTBENCH=/usr/softbench
export SOFTBENCH

The HP Branch Validator product is shipped with SoftBench filesets
that should only be installed if SoftBench does not exist on your
system. These SoftBench filesets are:

B3283 SoftBench Filesets For HP9000 series 700 Rev B.00.01
B3281 SoftBench Filesets For HP9000 series 300 Rev B.00.01

Installation B-1

If you have HP SoftBench installed on your system, do not install the
above filesets.

You can avoid the need to install the above fileset by using /etc/update
and unselecting the fileset from the list of filesets to be loaded.

Installation On
SUN Sparc
Systems With
SunOS 4.X

If HP SoftBench exists on your system and it is not installed under the
/usr/softbench directory, you will need to define the SOFTBENCH
shell variable to point to the directory where softbench exists.

As an example, if using csh(1):
setenv SOFTBENCH /usr/softbench

The HP Branch Validator product is shipped with SoftBench
components that are required for operation on your system. If you
already have SoftBench on your system, the components will already
be there. If you do not have SoftBench on your system, the
components will be installed automatically when your install the HP
Branch Validator product. The installation process automatically
checks to determine if the HP SoftBench components are needed.

Installation On
SUN Sparc
Systems With
SunOS 5.X
(Solaris)

The HP Branch Validator SoftBench interface (bba) is only available
if you have HP SoftBench installed. You must purchase separately the
HP SoftBench Framework to use this interface.

If HP SoftBench exists on your system and it is not installed under the
/opt/softbench (Solaris) directory, you will need to define the
SOFTBENCH shell variable to point to the directory where softbench
exists.

As an example, if using csh(1):
setenv SOFTBENCH= /opt/softbench

Installation B-2

Index

A accelerators in Main BBA Window, customizing, 3-8
action used in makefiles, 8-2
active files and functions display, how to use, 9-21
<Alt> key, which key is it on the keyboard, 3-7
application-defaults file, what is its name, 9-2
array and data sections, linking, 4-39
ASM pragma (bbacpp), 4-38
automating regression testing, 8-14
avoiding manual re-verification of known-good results, 2-21

B _bA_ symbols (bbacpp), 4-36
BBA effect on code expansion, 4-5
BBA general information, 1-1
BBA Unload, 1-2
BBA, benefits of using, 2-35, 2-37
BBA, the pitfalls of using certain options, 4-37
BBA/emulator getting started procedure, 2-1
BBA_ADD_PRAG_COMMAND option in Actions menu, 9-9
BBA_ALERT pragma (bbacpp), details, 4-35
BBA_ALERT pragma and bbarep -aN or -bN (bbarep), 6-20
BBA_ALERT pragma and bbarep -l (bbarep), 6-18
BBA_ALERT warning, which branch caused it, 9-35
BBA_BUILD_COMMAND option in configuration file, 9-10
BBA_C_PLUS_PLUS option in configuration file, 9-4
BBA_DUMPDATA_FILE option, 9-5
BBA_EDIT_FILE_COMMAND option in configuration file, 9-10
BBA_IGN_COMMENT_TYPE option, 9-5
BBA_IGNORE (bbacpp), why use it?, 4-32
BBA_IGNORE and else statements, 4-32
BBA_IGNORE pragma (bbacpp), details of, 4-30
BBA_IGNORE pragma, operation and use, 6-23
BBA_IGNORE used in getting started procedure, 2-16
BBA_IGNORE_ALWAYS_EXECUTED, details of, 4-34
BBA_IGNORE_COMMENT option, 9-6
BBA_IGNORE_FILE option, 9-4
BBA_MAKEFILE_NAME option in Actions menu, 9-7

Index-1

BBA_MAKEFILE_OPTIONS option in Actions menu, 9-7
BBA_MERGE_COMMAND option in Actions menu, 9-8
BBA_MOD_TEST_COMMAND option in Actions menu, 9-8
BBA_PRAG_COMMENT_TYPE option, 9-6
BBA_PRAGMA_COMMENT option, 9-6
BBA_PRAGMA_FILE option, 9-5
BBA_PRAGMA_TYPE option, 9-7
BBA_PRINTER_COMMAND option in configuration file, 9-4
BBA_RETAIN_OLD_DATA option, 9-5
BBA_RUN_TEST_COMMAND option in Actions menu, 9-8
BBA_SOURCE_TAB_WIDTH option, 9-5
BBA_STOP_TEST_COMMAND option in Actions menu, 9-8
BBA_UNLOAD_COMMAND option in Actions menu, 9-7
BBA_USE_SOFTBENCH option in configuration file, 9-3
bbacpp,

branches instrumented with -DBBA_OPTO=f, 4-21
changing the name of the constant data section, 4-10
changing the name of the data data section, 4-11
-DBBA_OPTc option, 4-10
default instrumenting of branches, 4-14
detailed discussion, 4-1
error and warning messages, A-2
generally, 1-1
how it works, 4-4
how to invoke it, 4-8
insertions, an example, 4-5
instrumenting : ? statements, 4-17
instrumenting a switch with no default, 4-20
instrumenting all options, how to, 4-22
instrumenting do-while loops, 4-18
instrumenting else-less if statements, 4-20
instrumenting fall-through case and default statements, 4-18
instrumenting switch statements, 4-14
instrumenting the third expression of a for loop, 4-21
instrumenting while loops), 4-22
not initializing the data area), 4-37
quick reference, 4-4
removing symbols from the absolute file, 4-37
using BBA_ALERT pragma, 4-35
what it inserts into your code, 4-4
what the array is for, 4-4

2-Index

bbacpp (continued),
what the assignment statement is for, 4-4
what the constant data is for, 4-4
what the mapfile is for, 4-4

bbacpp.spec file to move when networking, 1-6
bbacppQ.spec for use with -Q option, 4-38
bbamerge,

generally, 1-3
described in detail, 7-1
quick reference, 7-2
what it does, 7-1
when to use, 7-3

BBAPATH, detailed description, 6-5
bbarc configuration file for HP Branch Validator/SoftBench, 9-3
bbarep,

-aN option, 6-19
-bN option, 6-17
default report in getting started, 2-15
-Df option, 6-37
-Dt option, 6-36
-Dv option, 6-39
error and warning messages, A-13
detailed discussion, 6-1
-F option, 6-35
generally, 1-3
-l option, 6-9
-o option, 6-34
-p option, 6-22
quick reference, 6-3
-s option, 6-8
-S option, 6-7
source-reference report in getting started, 2-19
what it does, 6-4

bbaunload,
cannot locate the data arrays, 4-37
error and warning messages, A-10
generally, 1-2
used in an emulator, 5-1
what it does, 5-1

before starting HP Branch Validator/SoftBench, 9-11
body of ’while’ loop was never executed, 6-15

Index-3

body of for loop was never executed (bbarep), 6-15
body of while loop was never skipped (bbarep), 6-15
branches in source listing, shown in HP Branch
Validator/SoftBench, 3-16
branches,

how to ignore, 9-22
how to ignore in HP Branch Validator/SoftBench, 3-18
how to ignore in source file listing, 9-17
retained defined, 3-10

build, as it is used in HP Branch Validator/SoftBench, 9-27

C case code was never executed (bbarep), 6-13
case statements, how to instrument, 4-18
changing the mapfile’s suffix from .M, 4-26
code expansion caused by bbacpp, 4-5
code that is logically dead, how to find it, 2-27
combining -aN and -bN (bbarep), 6-21
combining -DBBA_OPTO= options, 4-23
command buttons row in Main BBA Window, 3-6
command file, example linker, 5-4
command files run by UNIX scripts, 8-15
commenting ignore entries, 9-23
comments that can be used in pragmas, 9-25
compatible software version numbers, 1-4
conditional assignments, how to instrument, 4-17
conditional of ’while’ was never TRUE, 6-15
conditional of conditional assignment was never FALSE (bbarep), 6-16
conditional of conditional assignment was never TRUE (bbarep), 6-16
conditional of do while was never FALSE (bbarep), 6-16
conditional of do while was never TRUE (bbarep), 6-16
conditional of for was never TRUE (bbarep), 6-15
conditional of if was never FALSE (else never executed)
(bbarep), 6-12
conditional of if was never FALSE (no else statement) (bbarep), 6-13
conditional of if was never FALSE (no else), 6-13
conditional of if was never TRUE (bbarep), 6-12
conditional of while was never false first time thru (bbarep), 6-15
configuration file details for HP Branch Validator/Softbench, 9-3

4-Index

Configuration file options:
BBA_ADD_PRAG_COMMAND, 9-9
BBA_BUILD_COMMAND, 9-10
BBA_C_PLUS_PLUS, 9-4
BBA_DUMPDATA_FILE, 9-5
BBA_EDIT_FILE_COMMAND, 9-10
BBA_IGNORE_FILE, 9-4
BBA_MAKEFILE_NAME, 9-7
BBA_MAKEFILE_OPTIONS, 9-7
BBA_MERGE_COMMAND, 9-8
BBA_MOD_TEST_COMMAND, 9-8
BBA_PRAGMA_FILE, 9-5
BBA_PRINTER_COMMAND, 9-4
BBA_RUN_TEST_COMMAND, 9-8
BBA_SOURCE_TAB_WIDTH, 9-5
BBA_STOP_TEST_COMMAND, 9-8
BBA_UNLOAD_COMMAND, 9-7
BBA_USE_SOFTBENCH, 9-3

constant data structure, override its placement, 4-10
controlling an HP Branch Validator/SoftBench test run, 9-29
copying demonstration files in getting started, 2-4

D data and array sections, linking, 4-39
data area not initialized, 4-37
data section, changing its name, 4-11
dead code, how to find it, 2-27
dealing with the ’Out of push-back-line memory’ error, 4-36
default code was never executed (bbarep), 6-13
definition of branches, 1-1
definition of pragma, 4-30
demo directory used by HP Branch Validator/SoftBench, 3-3
demo files and directories in getting started, 2-1
Demo_clean, what it does, 3-3
Demo_install, what it does, 3-3
demonstration, starting without SoftBench, 3-5
dependency used in makefiles, 8-2
description of BBA, 1-1
diff used in getting started, 2-21
directory used in getting started, 2-1
$DISPLAY, 3-5, 9-12 - 9-13
display out of sync after pressing key, 9-35
displaying source file listings, 9-16

Index-5

do-while loops, how to instrument, 4-18
documenting the test environment, 6-36
driver routine in getting started, 2-5
dumpdata file, how to set it and retain data, 9-32

E editing a file, how to access the file, 9-30
else part of if was never executed (bbarep), 6-12
emulator 68331 or 68332, special requirements, 2-10
emulator use of bbaunload, 5-1
emulator/BBA getting started procedure, 2-1
encaprun: cannot find a message server message, 3-5, 9-12 - 9-13
equipment software version numbers, 1-5
error messages, A-1
error messages displayed in HP Branch Validator/SoftBench, 9-22
example of bbacpp insertions, 4-5
example of the -eN option (bbarep), 6-17
exiting HP Branch Validator/SoftBench, 9-33
exiting the HP Branch Validator/SoftBench interface, 3-21
expansion of code space caused by bbacpp, 4-5

F false part of conditional assignment was never executed (bbarep), 6-16
file format for pragma files, 9-26
file format, ignore file, 9-24
File History report, discussed in getting started, 3-14
File History test report, discussed in detail, 9-15
file name with ":" causing failure, 9-34
file, example linker command, 5-4
file, how to access and edit, 9-30
file, how to set and retain dump data, 9-32
files and directories used in getting started, 2-1
files of HP Branch Validator/SoftBench improper, 9-36
files, how to ignore, 9-22
files, merging to save space, 7-1
final report in getting started procedure, 2-35
footnotes, how to suppress them in reports, 6-35
for statement, instrumenting the third expression, 4-21
function was never called (bbarep), 6-12
functions performed by bbacpp, 4-4
functions, how to ignore, 9-22

6-Index

G getting started,
files and directories, 2-1
problem BBA/emulator, 2-1
test program, 2-4
the final report, 2-35
using ignore files, 2-25
with BBA and a 68030 emulator, 2-1
with BBA/emulator, 2-1
with HP Branch Validator in SoftBench, 3-1

good results, how to avoid reverifying, 2-21

H Help
how to use it in HP Branch Validator/SoftBench, 9-33
messages not available, 9-11

Histogram
discussed in getting started, 3-9
test report, discussed in detail, 9-15

HP 64000 format files, 4-37
HP Branch Validator

appears to hang when you try to exit, 9-33
files with improper format, 9-36
in SoftBench, getting started procedure, 3-1
starting but not using Message Server, 9-13

HP Branch Validator/SoftBench
before starting the demo, 3-3
configuration file (.bbarc), 9-3
controlling a run of a test, 9-29
how to exit or quit, 9-33
how to invoke from command line, 9-12
interface, how to quit, 3-21
restrictions when using, 9-34
starting the demo procedure, 3-4
things to do before starting, 9-11
use of build, 9-27

I if statements with no else, how to instrument, 4-20
Ign-> symbol discussed, 9-21
ignore,

file, function, or branch, how to, 9-22
capabilities and options, 4-31
entries, how to add comments, 9-23
file contents, format of, 9-24

Index-7

ignore (continued),
file details, 9-23
file format, 9-24
files used in getting started, 2-25
files in detail, 6-23

ignoring,
all functions in a file (bbarep), 6-24
branch in HP Branch Validator/SoftBench, 3-18
branch in source file listing, 9-17
’case’ and ’default’ statements, 6-28
’conditional assignment’ statement, 6-30
data in BBA reports, 2-18
elements during a test, 6-23
’for’ loop, 6-30
’if’ statement, 6-28
inserted default, 6-29
macro (bbarep), 6-25
single function (bbarep), 6-24
specific statements (bbacpp), 4-30
specific statements (bbarep), 6-26
TRUE or FALSE branches, 6-30
’while’ statement, 6-29

illegal combination of pointer and integer, 4-17
initial test set in getting started, 2-10
insertion of pragmas incorrect in source file, 9-19
instrumented branches, definition, 4-12
invoking HP Branch Validator/SoftBench from the command line, 9-12

K keyboard accelerator makes display unstable, 9-35
keyboard accelerators, file to edit, 9-2
keyboard letters to select test reports, 9-14
known-good results, how to avoid reverifying, 2-21

L letters on keyboard to select test reports, 9-14
Lex source files with HP Branch Validator and SoftBench, 9-35
line numbers shown in report (bbarep), 6-9
linking array and data sections, 4-39
logically dead code, how to find it, 2-27

8-Index

M macros used in makefiles, 8-2
Main BBA Window,

discussed in getting started, 3-6
pops to top of screen, 9-35

makefile,
changes for BBA/emulator, 2-6
described in getting started, 2-6
discussed in detail, 8-1
how to create and use, 8-2
with BBA in getting started, 2-8
with simple BBA capabilities, 8-6
with/without BBA, automatic, 8-7, 8-10
with/without BBA, automatic and efficient, 8-12
without BBA capability, 8-3
without BBA in getting started, 2-7

map file,
how to change its filename extension, 4-26
how to prevent its creation, 4-28
its purpose in bbacpp, 4-4
incomplete? this may be why, 4-25
".M" when using HP Branch Validator/SoftBench, 9-34
the information it gives to bbarep, 4-29

memory,
how to increase push-back-line memory, 4-36
if not enough, here is a workaround, 4-23

menu item accelerators in Main BBA Window, 3-8
menu mnemonics in Main BBA Window, 3-6
merging dumpdata files, 7-1
Message Server,

how to turn it on, 9-12
not used with HP Branch Validator/SoftBench, 9-13
options when not using it, 9-10
whether or not to use it, 9-11

message strings explained, 6-12
messages

displayed in HP Branch Validator/SoftBench, 9-22
error and warning, A-1

mnemonics in Main BBA Window, customizing, 3-8
$MSERVE, 3-5, 9-12 - 9-13
multiple dumps in a single bbadump.data file, 6-4

Index-9

N networked system described in getting started, 2-2
networking, 1-6
networking requirements, 2-2

O old data included in reports (bbarep), 6-34
option h for generating HP 64000 format files, 4-37
options when not using SoftBench Broadcast Message Server, 9-10
overview of bbacpp, 1-1
overview of makefiles, 8-1

P P^, what it means in source file listing, 9-18
PATH variable,

made specifically for BBA, 6-5
required additional file, 3-2

PI, what it means in the source file listing, 9-18
pragma,

definition, 4-30
file format, 9-26
how to add one in source windows, 9-25
how to insert in HP Branch Validator/SoftBench, 3-19
in wrong place when using HP Branch Validator/SoftBench, 9-34
not correctly inserted in source file, 9-19
only one gets added to source file, 9-34
types of comments they can use, 9-25

preprocessor used by BBA, detailed discussion, 4-1
preventing creation of the mapfile, 4-28
print,

how to use in HP Branch Validator/SoftBench, 9-31
HP Branch Validator/SoftBench test results, 3-20
version of bbacpp, 6-39

program used in getting started procedure, 2-4
pulldown menu bar in Main BBA Window, 3-6
purpose of BBA, 1-1
push-back-line memory, how to increase it, 4-36

Q quitting HP Branch Validator/SoftBench, 9-33
quitting the HP Branch Validator/SoftBench interface, 3-21

10-Index

R regression testing,
advantages, 8-20
automatic, 8-14
testing example, 8-16

report,
default form, 6-8
default form in getting started, 2-15
from other than ’dumpfile.data’, 6-32
includes old data, 6-34
function-by-function summary, 6-8
generator, detailed discussion, 6-1
listing each file included, 6-37
only specific files (bbarep), 6-4, 6-31
separate reports combined, 6-32
short summary, 6-7
showing ***, 6-10
showing line numbers, 6-9
showing N lines after the unexecuted statement, 6-19
showing N lines before the unexecuted statement, 6-17
showing totals printed to stdout, 6-36
showning lines before and after statement, 6-21
source-reference, 2-19

reserved words for BBA, 4-36
restrictions when using HP Branch Validator/SoftBench, 9-34
Results Only,

display, discussed in getting started, 3-12
test report, discussed in detail, 9-15

results, known-good, how to avoid reverifying, 2-21
retained branches, definition of, 3-10
reverifying known good results, avoiding, 2-21
running your HP Branch Validator/SoftBench test, 9-29

S save, how to use in HP Branch Validator/SoftBench, 9-31
saving HP Branch Validator/SoftBench test results in a file, 3-20
set -m;, 9-10
set of files and functions in report, how to compose, 9-21
setting tabs for source-reference reports (bbarep), 6-33
setting tabs=spaces in source file listings, 9-17
short summary

(bbamerge), 7-3
report (bbarep), 6-7

Index-11

SoftBench Broadcast Message Server,
how to turn it on, 9-12
whether or not to use it, 9-11

SoftBench with HP Branch Validator, getting started procedure, 3-1
SoftBench, command to use if not installing, 3-3
software,

compatibility, 1-5
version numbers, 1-4

source file,
displays, how to obtain, 3-16
gets only one pragma added to it, 9-34
listings, how to display, 9-16

source-reference report, 2-19
special requirements: 68331 or 68332 emulator, 2-10
specifying the dump file’s name, 6-32
starting HP Branch Validator/SoftBench from Tool Manager, 3-4, 9-12
Summary test report,

discussed in detail, 9-14
discussed in getting started, 3-10

switch never went to case (bbarep), 6-13
switch never went to case (code executed by fall-thru) (bbarep), 6-14
switch never went to case (no executable statements) (bbarep), 6-14
switch never went to default (bbarep), 6-13
switch never went to default (code executed by fall-thru) (bbarep), 6-14
switch never went to default (no executable statements) (bbarep), 6-14
switch never went to inner case (bbarep), 6-13
switch never went to inner case (code executed by fall-thru)
(bbarep), 6-14
switch never went to inner case (no executable statements)
(bbarep), 6-14
switch never went to inner default (bbarep), 6-13
switch never went to inner default (code executed by fall-thru)
(bbarep), 6-14
switch never went to inner default (no executable statements), 6-14
switch statements, how to instrument, 4-18
switch went to ’default’ (default not defined), 6-14
switch with no default, how to instrument, 4-20
symbols stripped out of the absolute file, 4-37
symbols used by BBA, 4-36

12-Index

T 3rd expression of for was never executed (bbarep), 6-15
tab spaces, defining for source-reference reports, 6-33
tabs=spaces, how to set in source file listings, 9-17
target used in makefiles, 8-2
test,

advantages of regression testing, 8-20
automatic regression testing, 8-14
avoid reverifying known-good results, 2-21
environment, how to document, 6-36
example automatic regression test, 8-16
report area in Main BBA Window, 3-6
reports selected by typing keyboard letters, 9-14
with BBA efficiently, 8-1

then part of if was never executed (bbarep), 6-12
Tool Manager used to start HP Branch Validator/SoftBench, 3-4, 9-12
true part of conditional assignment was never executed (bbarep), 6-16
types of comments used with pragmas, 9-25

U unexecuted branches, how to display in source file list, 3-16
Unload_BBA, 1-2

cannot locate the data arrays, 4-37
error and warning messages, A-10

unloading dump data from an emulator, 5-1
usefile explained in detail, 6-31
using BBA/emulator in getting started, 2-1
using BBA_IGNORE to ignore functions, 4-30
using bbacpp from the command line, 4-8

V version number,
for associated software, 1-4
of bbarep, how to print, 6-39
of compatible software, 1-5

W warning messages, A-1
displayed in HP Branch Validator/SoftBench, 9-22

what to do when out of memory, 4-23
while loop never skipped, how to ignore, 4-34
while loops, how to instrument, 4-22

X Xdefaults files, where they are located, 9-2

Y Yacc source files with HP Branch Validator and SoftBench, 9-35

Index-13

Notes

14-Index

	Using This Manual
	Contents
	General Information
	Getting Started Using BBA In An Emulator Or A Debugger (Walkthrough)
	Getting Started With The HP Branch Validator (BBA) In The SoftBench User Interface
	Details Of bbacpp
	Details Of bbaunload or Unload_BBA
	Details Of bbarep
	Details Of bbamerge
	Tips On More Effective Testing Using BBA
	Details Of The HP Branch Validator (BBA) In The HP SoftBench Interface
	Error And Warning Messages
	Installing The HP Branch Validator
	Index

