
Reference

68030 Emulator

HP 64430

68030
Emulator

Reference

F//89 HEWLETT
~e..I PACKARO

HP Part No. 64430·97009
Printed In U.S.A.
June 1991

Edition 3

Certification and Warranty

Certification

Warranty

Hewlett-Packard Company certifies that this product met its
published specifications at the time of shipment from the factory.
Hewlett-Packard further certifies that its calibration measurements
are traceable to the United States National Bureau of Standards, to
the extent allowed by the Bureau's calibration facility, and to the
calibration facilities of other International Standards Organization
members.

This Hewlett-Packard system product is warranted against defects
in materials and workmanship for a period of 90 days from date of
installation. During the warranty period, HP will, at its option,
either repair or replace products which prove to be defective.

Warranty service of this product will be performed at Buyer's
facility at no charge within HP service travel areas. Outside HP
service travel areas, warranty service will be performed at Buyer's
facility only upon HP's prior agreement and Buyer shall pay HP's
round trip travel expenses. In all other cases, products must be
returned to a service facility designated by HP.

For products returned to HP for warranty service, Buyer shall
prepay shipping charges to HP and HP shall pay shipping charges
to return the pr.oduct to Buyer. However, Buyer shall pay all
shipping charges, duties, and taxes for products returned to HP
from another country. HP warrants that its software and firmware
designated by HP for use with an instrument will execute its
programming instructions when properly installed on that
instrument. HP does not warrant that the operation of the
instrument, or software, or firmware will be uninterrupted or error
free.

Limitation of Warranty The foregoing warranty shall not apply to defects resulting from
improper or inadequate maintenance by Buyer, Buyer-supplied
software or interfacing, unauthorized modification or misuse,
operation outside of the environment specifications for the
product, or improper site preparation or maintenance.

No other warranty is expressed or implied. HP specifically
disclaims the implied warranties of merchantability and fitness for
a particular purpose.

Exclusive Remedies The remedies provided herein are buyer's sole and exclusive
remedies. HP shall not be liable for any direct, indirect, special,
incidental, or consequential damages, whether based on contract,
tort, or any other legal theory.

Product maintenance agreements and other customer assistance
agreements are available for Hewlett-Packard products.

For any assistance, contact your nearest Hewlett-Packard Sales and
Service Office.

Notice

Hewlett-Packard makes no warranty of any kind with regard to
this material, including, but not limited to, the implied warranties
of merchantability and fitness for a particular purpose.
Hewlett-Packard shall not be liable for errors contained herein or
for incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability
of its software on equipment that is not furnished by
Hewlett-Packard.

©Copyright 1990,1991 Hewlett-Packard Company.

This document contains proprietary information, which is
protected by copyright. All rights are reserved. No part of this
document may be photocopied, reproduced or translated to
another language without the prior written consent of
Hewlett-Packard Company. The information contained in this
document is subject to change without notice.

UNIX is a registered trademark of UNIX System Laboratories Inc.
in the U.S.A. and other countries.

Hewlett-Packard Company
Logic Systems Division
8245 North Union Boulevard
Colorado Springs, CO 80920, U.S.A.

RESTRICTED RIGHTS LEGEND. Use, duplication, or
disclosure by the U.S. Government is subject to restrictions set
forth in subparagraph (C) (1) (ii) of the Rights in Technical Data
and Computer Software Clause at DFARS 252.227-7013.
Hewlett-Packard Company, 3000 Hanover Street, Palo Alto, CA
94304

Printing History

New editions are complete revisions of the manual. The date on
the title page changes only when a new edition is published.

A software code may be printed before the date; this indicates the
version level of the software product at the time the manual was
issued. Many product updates and fixes do not require manual
changes. and manual corrections may be done without
accompanying product changes. Therefore, do not expect a
one-to-one correspondence between product updates and manual
revisions.

Edition 1
Edition 2

Edition 3

64430-97001, February 1990
64430-97006, February 1991

64430-97009. June 1991

Safety

Summary of Safe
Procedures

The following general safety precautions must be observed during
all phases of operation, service, and repair of this instrument.
Failure to comply with these precautions or with specific warnings
elsewhere in this manual violates safety standards of design,
manufacture, and intended use of the instrument. Hewlett-Packard
Company assumes no liability for the customer's failure to comply
with these requirements.

Ground The Instrument

To minimize shock hazard, the instrument chassis and cabinet must
be connected to an electrical ground. The instrument is equipped
with a three-conductor ac power cable. The power cable must
either be plugged into an approved three-contact electrical outlet.
The power jack and mating plug of the power cable meet
International Electrotechnical Commission (IEC) safety standards.

Do Not Operate In An Expl~slve Atmosphere

Do not operate the instrument in the presence of flammable gases
or fumes. Operation of any electrical instrument in such an
environment constitutes a definite safety hazard.

Keep Away From Live Circuits

Operating personnel must not remove instrument covers.
Component replacement and internal adjustments must be made
by qualified maintenance personnel. Do not replace components
with the power cable connected. Under certain conditions,
dangerous voltages may exist even with the power cable removed.
To avoid injuries. always disconnect power and discharge circuits
before touching them.

Designed to Meet Requirements of IEC Publication 348

This apparatus has been designed and tested in accordance with
IEC Publication 348, safety requirements for electronic measuring
apparatus, and has been supplied in a safe condition. The present

Warning

instruction manual contains some information and warnings which
have to be followed by the user to ensure safe operation and to
retain the apparatus in safe condition.

Do Not Service Or Adjust Alone

Do not attempt internal service or adjustment unless another
person. capable of rendering first aid and resuscitation, is present.

Do Not Substitute Parts Or Modify Instrument

Because of the danger of introducing additional hazards, do not
install substitute parts or perform any unauthorized modification
of the instrument. Return the instrument to a Hewlett-Packard
Sales and Service Office for service and repair to ensure that safety
features are maintained.

Dangerous Procedure Warnings

Warnings, such as the example below, precede potentially
dangerous procedures throughout this manual. Instructions
contained in the warnings must be followed.

Dangerous voltages, capable of causing death, are present
In this Instrument. Use extreme caution when handling,
testing, and adjusting.

Safety Symbols Used
In Manuals

OR

rh OR ..L

The following is a list of general definitions of safety symbols used
on equipment or in manuals:

Instruction manual symbol: the product is marked with this symbol
when it is necessary for the user to refer to the instruction manual
in order to protect against damage to the instrument.

Hot Surface. This symbol means the part or surface is hot and
should not be touched.

Indicates dangerous voltage (terminals fed from the interior by
voltage exceeding 1000 volts must be marked with this symbol).

Protective conductor terminal. For protection against electrical
shock in case of a fault. Used with field wiring terminals to indicate
the terminal which must be connected to ground before operating
the equipment.

Low-noise or noiseless, clean ground (earth) terminal. Used for a
signal common, as well as providing protection against electrical
shock in case of a fault. A terminal marked with this symbol must
be connected to ground in the manner described in the installation
(operating) manual before operating the equipment.

Frame or chassis terminal. A connection to the frame (chassis) of
the equipment which normally includes all exposed metal
structures.

Alternating current (power line).

Direct current (power line).

Alternating or direct current (power line).

Note

Caution I

Warning

'

The Note sign denotes important information. It calls your
attention to a procedure, practice, condition, or similar situation
which is essential to highlight.

The Caution sign denotes a hazard. It calls your attention to an
operating procedure, practice, condition, or similar situation,
which, if not correctly performed or adhered to, could result in
damage to or destruction of part or all of the product.

The Warning sign denotes a hazard. It calls your attention to
a procedure, practice, condition or the llke, which, If not
correctly performed, could result In injury or death to
personnel.

Using This Manual

Organization

Chapter 1

Chapter 2

Appendix A

Appendix B

This manual is a detailed reference for the 68030 emulator
commands. The detailed syntax descriptions apply to the emulator
functions only. See the Analysis Reference Manual for 32-Bit
Microprocessors for detailed descriptions of analysis commands.

"Introducing 68030 Emulation" has a brief functional and physical
description of the emulation system. It also contains information
on transparency and real-time emulation mode considerations.

"Emulation Command Syntax" describes the emulation commands
in detail with command descriptions, command syntax diagrams,
and examples.

"User Interface/HP-UX Cross Reference" translates the HP
64000-UX system softkeys into commands that can be entered
from the HP-UX prompt.

"Using Control Characters And Other Commands" describes how
to use control characters in the emulation session. It also lists
HP-UX and HP 64000-UX system commands available in an
emulation session.

Understanding
The Examples

This manual assumes that you are using the User-Friendly
Interface Software (HP 64808S), which you start using the HP
64000-UX pmon command. The manual shows you how to enter
HP 64000-UX system commands (edit, compile, assemble, link,
msinit, msconfig, etc.) by telling you to press various softkeys.

If you are not using "pmon," you will find the User Interface/
HP-UX Cross Reference appendix especially useful. The cross
reference table shows how the "pmon" softkeys translate into
commands that you can enter at the HP-UX prompt.

The examples in this manual use the following structure:

copy display to trcfilel

copy display to

trcfilel

Softkeys appear in bold italic type in
examples. Commands appear in bold in text.
You will not be prompted to use the
-··ETC··· softkey to search for the
appropriate softkey template. Three softkey
templates are available at the HP 64000-UX "a
system monitor level. ..,.,

This is the name of a file, which you must
type in. There are no softkeys for this type of
selection since it is variable. However, a
softkey prompt such as <FILE> will appear
as a softkey selection.

For most commands, you must press the Return (or Enter) key
before the command is executed.

Contents

l Introducing 68030 Emulation

Introduction
What Is An Emulation System?

Physical Description
Functional Description . .

Independent Operation
Emulation Probe

What Tasks Does The Emulator Do?
Does the Emulator Work With Other HP 64000-UX
Modules?
How Does the Emulator Affect Your Program?

Real-Time Mode Vs. Nonreal-Time Mode
Real-Time Mode Capabilities
Real-Time Mode Restrictions

What Is Happening While Your Program Is Running?
During Target Program Execution
During Emulation Monitor Program Control .. .

How Does The Emulator Affect Your Microprocessor
Sysrem?

Functional Transparency
Timing Transparency ..
Electrical Transparency .

What Are The Steps To Using The Emulator?
Prepare the Software
Prepare the Emulator
Use the Emulator ..

2 Emulation Command Syntax

Overview
Conventions
Command Summary .
at execution
break
copy

.l-1

.l-1

.1-1

.l-2

.1-2

.1-2

.1-2

.1-4

.1-4

.1-4

.1-5

.1-5

. l-6

.1-6

.1-6

.1-7

.l-7

.1-7

.1-7

.1-8

. l-8

.1-8

.1-8

.2-1

.2-1

.2-2

.2-4

.2-6

.2-7

Contents·1

copy display . 2-11
copy global_symbols . 2-12
copy help .. . 2-13
copy local_symbols_in . 2-14
copy memory .. . 2-15

"" copy mmu_mappings . 2-19
copy mmu_tables . 2-22
copy registers . . 2-25
copy software_breakpoints . 2-27
copy trace 2-29
copy trace_ s pecifica ti on . 2-30
display 2-31
display global_ symbols . 2-33
display local_symbols_in . 2-34
display memory . 2-35
display mmu_mappings . 2-39
display mmu_tables . 2-42
display registers . 2-45
display simulated_io . 2-47
display source _file . 2-48
dis play software_ breakpoints . 2-49 ·\J display trace .. . 2-51
display trace_specification ~ . 2-52
execute . 2-53
--EXPR-- . 2-54
halt . 2-56
help . 2-57
load .. . 2-58
modify . . 2-61
modify analysis . 2-63
modify configuration . 2-64
modify keyboard_ to_ simio . 2-65
modify memory . 2-66
modify register .. . 2-70
modify software_breakpoints . 2-72
reset . 2-74
run 2-75
set .. . 2-77

""' set analysis . 2-79
set bnc_ports . 2-80
set source .. . 2-81

2-Contents

set symbols
set <VAR>
set WIDTH, SOURCE WIDTH, SYMBOLS WIDTH
step .. .
store
--SYMB--

trace

HP-OMF Symbol Tree
IEEE-695 Symbol Tree

wait

A User Interface Software/HP-DX Cross Reference

B Using Control Characters And Other Commands

Using Control Characters
Other Control Characters And Commands

Index

. 2-83

. 2-85

. 2-87

. 2-89

. 2-91

. 2-94
. 2-100
. 2-103

2-106
. 2-107

B-1
B-2

Contents-3

Notes

4-Contents

Introducing 68030 Emulation

Introduction

What Is An
Emulation System?

Physical Description

This chapter answers the following questions:

• What is an emulation system?
• What does an emulator enable you to do?
• Does the emulator system run interactively with other

HP 64000-UX Microprocessor Development Environment
modules?

• Does the emulator affect your program?
• What happens while your program is running?
• What does the emulator do to your microprocessor

system?
• What are the steps in using the emulator?

The 68030 emulation system is a separate functional module within
the HP 64000-UX Microprocessor Development Environment.
The emulation system has several hardware modules, the
emulation software, and technical manuals. A typical 68030
emulation system has the following hardware modules:

• The emulation subsystem for your microprocessor.
• Integrated analysis board.
• Integrated analysis expansion board .

. • Analysis interconnect board.
• Processor specific analysis bus generator board.
• Processor active probe.

Introducing 68030 Emulation 1-1

Functional
Description

What Tasks Does
The Emulator Do?

The emulation system may be used interactively with other
HP 64000-UX emulation and analysis systems for more
sophisticated measurements.

The emulator helps you develop your (target system) hardware and "1fl
software design. The emulator can be used in-circuit, alone, or with
other development tools to debug and integrate your target system
hardware with the software program modules.

Independent Operation

The emulation and analysis functions are independent of the
HP 64000-UX operating system. Once you configure and start the
emulator and analyzer, they operate without interaction from the
operating system. A multiprocessor system controls the emulation
system and the HP 64000-UX operating system.

Emulatlon Probe

The emulator replaces the microprocessor in your target system
with a device that acts like the microprocessor, but can be \irJ
controlled by you from the development station. This is done
through the emulation pod and active probe, which is part of the
cable extending from the emulation pod. The active probe contains
the emulation microprocessor that drives your target system. The
probe is plugged into your target system microprocessor socket.

You use the emulator for software and hardware debugging and
system integration. To do this, you use the emulator features:

• Program Loading and Execution. You develop programs
on the HP 64000-UX system using the editor, compilers,
assembler, and linker. Or, you can develop code on other
systems and transfer it to the HP 64000-UX host. Then
you load these programs into memory using the emulator
and execute them in the emulation environment.

1 ·2 Introducing 68030 Emulatlon

• Run/Stop Controls. Programs may be run from address or I
symbolic locations. Emulation can be stopped by breaking
into the emulation monitor or by resetting the processor.

• Memory Display/Modification. You can display locations
or blocks of memory and modify those locations that can
be changed.

• Global and Local Symbols Display. You can display the
addresses associated with your program's global and local
symbols while in emulation.

• Internal Resource Display/Modification. Allows you to
display internal resources of the processor, such as
registers. You also can modify them if desired.

• Analysis (with optional integrated analyzer boards). Lets
you observe and display real-time activity on the
emulation processor bus.

• Program Stepping. Allows you to execute code
instruction-by-instruction. You can view the internal
machine state between instructions.

• Resource Mapping. Allows you to use emulation memory,
target memory, or both by defining the characteristics of
the blocks of memory.

• Memory Characterization. You can assign emulation
memory as ROM or RAM. You can test "ROM" code
without using ROM hardware.

• Hardware and Software Breakpoints. You can transfer
program execution to an emulation monitor routine on
the occurrence of a particular machine state or range of
states.

• Clock Source Selection. The emulator provides an internal
clock for out-of-circuit use. When your target system
design is ready, you can select an external clock.

Introducing 68030 Emulatlon 1 ·3

Does the Emulator
Work With Other
HP 64000-UX
Modules?

How Does the
Emulator Affect
Your Program?

Real· Time Mode Vs.
Nonreal· Time Mode

The HP 64000-UX Microprocessor Development Environment
allows you to use other emulators and analyzers to make
interactive measurements. Interaction allows the integration of ... Ji
development work on designs, more elaborate and detailed analysis .._,.
of a design, or both. You can:

• Begin multiple measurements simultaneously.

• Use the results of one measurement to control another.

• Coordinating execution of a program with the beginning
of a measurement.

The operating mode you select influences the way the emulator
interacts with your program. The emulator never permanently
alters your program.

The emulator operates in one of two modes: real-time or
nonreal-time. Real-time refers to the continuous execution of your
target system program without interference from the host. (You
can use some commands to interrupt the program if needed).

Interference occurs when a break to the emulation monitor is
initiated either by you or automatically. The emulation monitor is
a program that enables you to access the internal processor
registers and target system memory.

When the processor is running in the emulation monitor, it is not
executing your program in real time. The 68030 Emulator User's
Guide describes the monitor program. ""1JI

1 ·4 Introducing 68030 Emulation

Real-Time Mode
Capabilities

Real· Time Mode
Restrictions

Caution I

Commands that can be used in real-time mode are:

run, some display, some modify, specify,
execute, trace, load trace, stop_trace

Some commands cannot be used in real-time mode. You must first
break into the emulation monitor.

DAi'\1AGE TO TARGET SYSTEM CIRCUITRY. When the
emulator detects a guarded memory access or other illegal
condition, or when you request a memory access that breaks the
emulator into the monitor, the emulator stops executing your
program and enters the monitor. Use caution if you have circuitry
that can be damaged because the emulator is not executing your
application code. Restrict the emulator to real-time mode, and do
not break into the emulation monitor.

The features that cannot be performed in real-time mode are:

• Target memory accesses-display, copy, load, modify, and
store.

• Logical emulation memory accesses with MMU enabled.
• Register accesses-display, copy, and modify.
• Software breakpoints-set and reset.

You can use these features when the emulator is configured for
real time mode by causing a monitor break:

• Use the break softkey.
• Set an analysis break.
• Cause a memory break (your program accesses guarded

memory or writes to ROM).
• Set and execute a software breakpoint.

Introducing 68030 Emulatlon 1 ·5

I

What Is
Happening While
Your Program Is
Running?

During Target
Program Execution

During Emulation
Monitor Program

Control

During normal program execution, the emulation processor
generates address information for each cycle. The emulator pod
hardware differentiates between your target system and emulation
resources based on the address. If the pod identifies a target system
resource with the current address, it enables the data path buffers
between your target system and the emulator processor. Otherwise,
it enables the data path buffers between the emulation processor
and the emulation bus.

As your program runs, the integrated analysis circuitry observes the
acti'vity on the emulation analysis bus. You can tell the analyzer to
store this program flow. The information can be displayed later
without interrupting the program.

Some emulator features are implemented by seizing control of the
emulation processor from your program and transferring control to
the emulation monitor. The emulation monitor program links the
emulation processor to the HP 64000-UX operating system.

The emulation monitor has several separate routines. Some
routines are executed automatically whenever the monitor
program is entered. They extract the internal processor
information that existed at entry. You can display this information
to help analyze your program. For instance, if the emulator entered
the monitor after the execution of a program instruction, the
internal machine state that existed then would be available.

1 ·6 Introducing 68030 Emulation

How Does The
Emulator Affect
Your
Microprocessor
System?

Functional
Transparency

Timing Transparency

Electrical
Transparency

The emulator must look like the microprocessor that will
eventually control your system, as seeq by your target system
hardware. The function, signal quality, signal timing, loading, drive
capacity, and other factors at the plug-in connector should be
identical with the actual processor. This characteristic is called
transparency.

Functional transparency is the ability of the emulator to function
as your processor would when the emulator is connected to your
target system. This means that the emulator must execute your
program, generate outputs, and respond to inputs exactly as the
actual target processor would. The emulator must simultaneously
give you complete information about the clock-by-clock operation
of your target system. HP 64000-UX 32-bit emulators are designed
to perform their functions with minimum impact on functional
trans par ency.

The 68030 Emulator User's Guide discusses emulation functions
that may affect your target system operation.

Timing transparency refers to the timing relationships between
signals at your target system plug-in. The timing relationships of
signals at the emulation probe are designed to be nearly identical
to those of the microprocessor in your system.

Electrical transparency refers to the electrical characteristics of the
emulator target plug pins compared to the pins of the actual target
processor. These characteristics include such things as rise and fall
times, input loading, output drive capacity, and transmission line
considerations. The electrical parameters at the emulation target
plug pins are designed to be as close as possible to the
microprocessor it replaces in your target system.

Introducing 68030 Emulatlon 1·7

I

What Are The
Steps To Using
The Emulator?

Prepare the Software

Prepare the Emulator

There are three steps to the emulation process (see figure 1-1):

• Prepare the software.

• Prepare the emulator.

• Use the emulator.

Preparing the software consists of creating and entering a program,
assembling or compiling the program, and linking the assembled or
compiled modules. See the appropriate Assembler/Linker or
Compiler Manual for more information.

You prepare the emulator by initializing and defining a
measurement system to the HP 64000-UX operating software. See
the HP 64000-UX Measurement System Operating Manual. After
the emulator is properly defined, you configure the emulator for
your application. The 68030 Emulator User's Guide discusses
emulator configuration.

Use the Emulator To use the emulator, you load your absolute code into emulation
and/or target system memory. Then, you use the emulation features
to observe the program as it runs, display the contents of the
registers and/or memory, and debug your hardware and software.
Emulator use is covered in this manual and the 68030 Emulator
User's Guide.

1 ·8 Introducing 68030 Emulatlon

1. PREPARING THE SOFTWARE 2. PREPARING THE EMULATOR

El } create and
enter o
program

ASSEMBLER
OR

COMPILER

absolute_ files

}
form relocatable
code for the
microprocessor

load absolute_ files
run

3. USING THE
EMULATOR

trace TRIGGER_ON <ADDR
display memory
display registers

•
• •

initialize and
define a

measurement
system

enter
emulation

load
configuration

}
not needed if
continuing a
previous measurement

clock source?
real time runs?
mapper questions

•
•
•

configuration

file

Figure 1 ·1. Steps to Using the Emulator

Introducing 68030 Emulation 1 ·9

I

Notes

1 ·1 O Introducing 68030 Emulation

2

Emulation Command Syntax

Overview

Conventions

(~~)

0

This chapter:

• Describes the syntax conventions used in this manual.
• Summarizes the emulation commands.
• Gives a detailed description of each emulator command.

Here are the conventions used in the command syntax diagrams:

This symbol shows a command keyword that you enter by pressing
a softkey. The keyword appears as it would in the command line,
which may not be the same as the softkey label.

Rectangular boxes contain either a prompt showing parameters
that you must enter or a reference to another syntax diagram.
Softkey prompts are enclosed by the "<" and ">" symbols and are
shown exactly as they appear on the softkey label. ··EXPR·· and
··SYMB·· are prompts that access "expression help" softkeys. You
can return to the normal set of emulation softkeys by pressing
--NORMAL··. This chapter includes syntax diagrams for ··EXPR··
and ··SYMB··.

References to additional syntax diagrams may be shown in upper or
lower case characters without delimiters.

Circles denote operators and delimiters used in expressions and
command lines.

Whenever keywords entered from softkeys appear in text or
examples, they are shown in bold type, for example: copy.
Parameters entered from the keyboard are shown in standard type.

Emulatlon Command Syntax 2·1

I

Command
Summary

Note

Table 2-1 summarizes the emulation commands. The remainder of
this chapter gives detailed descriptions of each command.

Some command parameters shown in the following syntax
diagrams may not be available during emulation. The softkeys that
are available depends on how you configure the emulator.

For example, if you have not configured simulated I/0 to be used
during your session and you enter the command:

display

the sim_io softkey will not be shown. Your answers to other
emulation configuration questions also affect the softkey labels.
Only softkeys that are enabled for your emulation configuration
are displayed.

2·2 Emulation Command Syntax

at execution
break
copy display
copy global_symbols
copy local_ symbols
copy memory
copy mmu_mappings
copy mmu_tables
copy registers
copy software_breakpoints
copy trace*
copy trace_ s pecifica ti on*
copy help**
display global_ symbols
display local_ symbols
display memory
display mmu_mappings
display mmu_tables

Table 2·1. Emulation Command List

display registers
display simulated_io
display source _file
display software _breakpoints
display trace*
display trace _specification*
end
execute
halt
help**
load configuration
load memory
load symbols
load trace_ s pecifica ti on
modify analysis
modify configuration
modify keyboard_ to_ simio
modify memory

modify register
modify software_ breakpoints
performance_ measurement
reset
run
set
set analysis*
set bnc _ports*
set source
set symbols
set <VAR>
set WIDTH
step
store
trace*
wait**

* These commands are described in the Analysis Reference Manual for 32-Bit Microprocessors.
**Hidden commands: not displayed on the softkeys. Must be typed in at the keyboard.

Emulation Command Syntax 2·3

I

at execution

Syntax

at execution f---...,---- run 1--____,--.i<RETURN>

trace

Function You use at_ execution to prepare a run or trace command for
execution. Use this command with the execute command. If the
processor is not reset, at_execution run causes a break from your
program, and initializes the monitor to the default address or to
the specified address. An execute command then starts the run.
The execute command removes the run specification, which cannot
be repeated without respecifying the run.

at_ execution trace initializes the trace hardware with the given
trace specification. An execute command will start the trace. A
trace specification is not removed. It can be repeated without
another at_ execution trace command. at_ execution trace and
at_ execution run can be used with a single execute command that
begins the run, the trace, and any other analyzers that are
connected to the intermodule bus (IMB).

A trace command cancels an at_execution trace command. A run
or step command cancels an at_ execution run command. The
at_exec softkey label is displayed only with multiple module
systems.

Default Value none

Example

at execution run from START

at execution trace XRIGGER ON a= 1234h

See Also: • Execute syntax (in this chapter)

2·4 Emulation Command Syntax

• Emulation configuration (chapter 4 in the 68030 Emulator
User's Guide).

• Operating In the Measurement System (in the
HP 64000-UX User's Guide).

Emulation Command Syntax 2·5

I

break

Syntax

(break)1------>j<RETURN>j

Function Break diverts the processor from execution of your program to the
emulation monitor program.

The break softkey is not displayed if the emulation monitor is not
loaded.

Default Value none

Example

break

2-6 Emulatlon Command Syntax

copy

\...., Syntax

copy memory

registers

sw _breakpoints 1-----..

trace

display

global _symbols1-----

local_symbols

trace_ specification

help

mmu tables>------

mmu_mappings --~

to,__~..., <FILE>

noappend noheader

HP UX CMD

~----------~---i<RETURN>

Function The copy command copies selected information to your system
printer, to a listing file, or pipes it to an HP-UX filter.

Emulation Command Syntax 2-7

I

Default Values Depending on the information selected, defaults may be the
options selected for the previous execution of the display
command.

Parameters ""111
display display copies the information displayed on the

screen to the selected destination.

<FILE> <FILE> prompts you for the name of the listing
file where the specified information is to be
copied.

global_symbols global_ symbols copies the global symbols from
the symbol database to the selected destination.

help help copies the contents of the emulation help
files to the selected destination. The keyword
"help" is not available on the softkeys. You must
type it from the keyboard. After you type help,

HP-UXCMD

local
symbols_in

2·8 Emulation Command Syntax

the emulation help filenames are displayed on """"'
the softkeys.

HP-UX CMD represents an HP-UX filter or
pipe. The output of the copy command will be
routed to this command. HP-UX commands
must be preceded by an exclamation point(!).
An exclamation point following the HP-UX
command continues command line execution
after execution of the HP-UX command.
HP-UX commands that are shell intrinsics don't
affect emulation.

local_symbols_in copies a list of local symbols in
a specified source file to the selected destination.
Local symbols are those that are children of the
specified symbol. That is, they are defined in thatii
s~mbol's scope. See the --SYMB-- syntax pages ~
and the HP64000-UXSystem User's Guide for
more information.

\._,

\._,

memory memory copies the contents of memory to the
selected destination.

mmu_mappings mmu_mappings copies the logical-to-physical
address mappings for a particular root pointer.

mmu tables mmu_tables copies the mapping information for
a particular logical address.

noappend noappend overwrites any existing file specified
by <FILE> with the copied information. If
noappend is not specified, the default operation
is to append the copied information to the end
of an (existing) file.

no header noheader copies the information without
headings.

printer printer specifies your system printer as the
destination device for the copy command. Before
you can specify printer as the destination device,
you must first define PRINTER as a shell
variable.

$ PRINTER=lp

$ export

registers

software_
breakpoints

to

trace

PRINTER

registers copies the contents of the various
register sets to the selected destination.

software_breakpoints copies the current
software breakpoint table to the selected
destination.

to specifies the destination of the copied
information. to must be included in the
command line.

trace copies some or all of the current trace
listing to the selected destination.

Emulatlon Command Syntax 2·9

I

trace
s pecifica ti on

2-1 o Emulatlon Command Syntax

trace_specification copies some or all of the
trace specification to the selected destination.

The exclamation point is the delimiter for
HP-UX commands.

An exclamation point must precede all HP-UX
commands. A trailing exclamation point to
return to command line execution is optional.

If an exclamation point is part of the HP-UX
command, a backslash(\) must be used to escape
the exclamation point (\!).

copy display

Syntax

display

Function The copy display command copies the information currently
displayed on the screen.

Default Value none

Examples

copy display to printer

copy display to trcfilel

Emulation Command Syntax 2-11

I

I

copy
global_ symbols

Syntax

__ __,,.._(global_ symbols)>----

Function The copy global_symbols command copies the global symbols
defined for the current absolute file. Global s~bols are those that
are declared as global (XDEF) in the source file. They include
procedure names, variables, constants, and file names. The listing
will include the symbol name, logical address, segment containing
the s~bol, and the s~bol's offset from the start of the segment.

Default Value None

Examples

copy global_symbols to printer
copy global_symbols to symbols noheader

2-12 Emulation Command Syntax

copy help

Syntax

\ { .@r--.,,...-----i•I <HELP _FILE> ~

Function The copy help command copies the contents of a specified help file.
The help command is not displayed on the softkeys. You must type
it at the keyboard. You can substitute a question mark (?)for the
keyword help in the command string.

Default Value none

Examples

Parameters

copy help system_conunands to printer
copy ? trace to trc cmd

HELP FILE HELP _FILE is the name of the help file you
want to copy. After you type help from the
keyboard, the help file names are available on
the softkeys.

Emulation Command Syntax 2·13

I

I
'

copy
local_symbols_in

Syntax

---.{1ocal_symbols_in),_--.,-I --SYMB--J ,_ ----

Function The copy local_symbols_in command copies the local symbols in a
specified source file or scope, their addresses, their relative
segment, and offset. Local symbols are the children of the symbol
specified by --SYMB--. That is, they are defined within that symbol.

Default Value none

Example

Parameters

copy local_symbols_in sample(module) to
printer

--SYMB-- --SYMB-- represents the source file that
contains the local symbols to be listed. See the
--SYMB-- syntax diagram.

See Also See the --SYMB-- syntax pages and the HP 64000-UX System User's
Guide for more information on symbols.

2·14 Emulation Command Syntax

copy memory

Syntax

<ADDR>

fcode <F_CODE>

<ADDR>

<RETURN>

<F_CODE>

real short

long

obsolute word

blocked byte

binary

offset_ by - -EXPR- -

Function The copy memory command copies the contents of the specified
memory location or series of locations.

Memory can be copied to the system printer, to a listing file, to
another area of memory, or piped to an HP-UX filter. When
copying to another area of memory, the destination memory
locations must be in target RA.i\1 or emulation memory mapped as
RAM or ROM.

Emulation Command Syntax 2-15

I

I
Note

The memory contents can be listed either in mnemonic, binary,
hexadecimal, or real number format. In addition, the memory
addresses can be listed offset by a value, allowing easy comparison
of the information to the program assembly listing.

The copy memory command works only when you are using the
background monitor. The foreground monitor does not implement
the memory accesses needed to support this command.

Default Values Initial values are the same as specified by the command display
memory 0 blocked words offset_by 0.

Examples

Parameters

Defaults are to values specified in the previous display memory
command.

copy memory fcode SUPER_PROG START thru
START+3ffH nmemonic to printer

copy memory fcode SUPER_DATA 0 thru lOOH '
fcode SUPER PROG START thru START+5 blocked
long to memlist
copy memory fcode SUPER_PROG 1000 thru 13ffh
to_memory fcode USER PROG 2000h

absolute

<ADDR>

binary

absolute formats the memory listing in a single
column.

<ADDR> is a combination of numeric values,
symbols, operators, and parentheses specifying a
memory address or offset value. See the
--EXPR-- syntax diagram.

binary copies the contents of memory locations
as binary values.

2-16 Emulatlon Command Syntax

blocked blocked formats the memory listing in multiple
columns.

~ fcode fcode enables you to specify a function code with
the address expression as part of the memory
access specification.

<F CODE> <F _CODE> is a prompt for the function code.
You can specify the function code as a number

I or as a defined function code mnemonic on the
softkeys.

logical logical treats the address specification as a
logical address.

long long copies the memory values as long word
values.

When used with the real parameter, long copies
memory in a 64-bit real number format.

mnemonic mnemonic formats the memory listing in
assembly language instruction mnemonics with
associated operands. When you select mnemonic
format, specify a starting address that
corresponds to the first word of an opcode. This
ensures that the listed mnemonics are correct.

offset_by offset_by enables you to specify an offset that is
subtracted from each absolute address before
listing the addresses and the corresponding
memory contents. You can select an offset value
(--EXPR--) such that each module in a program
appears to start at address OOOOH. The memory
contents listing will then appear similar to the
assembly or compiler listing.

physical physical treats the address specification as a
physical address.

Emulation Command Syntax 2·17

I

real

short

thru

to_memory

words

real formats the memory values in the listing as
real numbers.

Use short with real to format memory values as
32-bit real numbers.

thru specifies that a range of memory locations
be copied.

to_memory copies a block of memory to another
location in memory.

words copies the memory listing as word values.

A comma(,) appearing immediately after
memory in the command line appends the
current copy memory command to the preceding
display memory command. The data specified in
both commands is copied to the destination
selected in the current command. The current
command specifies the data format.

The comma is also used as a delimiter between
values when specifying multiple memory
addresses.

Function codes are an important part of the memory access
specification, with the address expression. The function code (if
stated explicitly) precedes the associated address expression, and
may be specified as a number or a predefined function code
mnemonic (for example: SUPER_PROG, USER_DATA).

Memory configuration allows different modes for function codes:
they may be enabled (full use of function codes), disabled (no use
of function codes), or partially disabled (only PROGRAM;DATA
spaces are recognized). If the function codes are disabled (even
partially), the unused function code bits are masked off and
ignored during the memory access.

2·18 Emulatlon Command Syntax

"'· .. ~ .,.,

copy
mmu_mappings

Syntax

mmu_moppings root_ptr

CRP

SRP show_ mop_ from

<VALUE> translation_ control <ADDR>

--EXPR--

fcode,._ _______ ____,,...-.(logicol _address <ADDR>

Note

<FCODE>

--EXPR-- 1-------~

Function The copy mmu_mappings command copies the overall
logical-to-physical address mapping information for a particular
root pointer to the specified destination.

The copy mmu_mappings command works only when you are using
the background monitor. The foreground monitor does not
implement the memory accesses needed to support this command.

Default Values None.

Emulatlon Command Syntax 2·19

I

I

Examples

Parameters

copy mmu_mappings root_ptr CRP to printer
copy mmu_mappings root_ptr
osoooooo2ooof4oooh translation control
8c0c440h to rnap_table.txt

copy mmu_mappings root_ptr CRP show_map_from
fcode USER DAXA logical_address 2000H to
my map

<ADDR>

CRP

fcode

This prompts you to enter an address expression.
See the --EXPR-- syntax diagram for details.

CPU Root Pointer.

Use this to specify the function code you want to
begin your mmu_mappings list, or mmu_tables
display.

<FCODE> Prompts you to enter a function code, either as a
number or as a function code shown on the
softkeys.

logical_address The address in logical (virtual) memory space.

root_ptr Use this to introduce the source of the root
pointer descriptor.

show_map_from Use this to specify the logical address (with or
without function code) where you want your
mapping list or tables display to begin.

SRP

translation
control

Supervisor Root Pointer

Use this to specify a value for the translation
control register. This is required when you
specify a value for the root pointer.

2·20 Emulation Command Syntax

<VALUE> Root pointer value to be used instead of the
CRP or SRP. You also must specify the value of
the translation control register when you specify
a root pointer value.

Emulation Command Syntax 2·21

I

copy mmu_tables

Syntax

mmu_tobles root_ptr

CRP

SRP

<VALUE> translation_ control <ADDR>

--EXPR--

fcode i-.--------~~-show _table _level
'------'

<FCODE> logical_ address

show_ table_ level

FCODE

<ADOR>

--EXPR--

FCODE

A

B

c

D

Function The copy mmu_tables command copies the mapping information
for a particular logical address to a specified destination.

2·22 Emulation Command Syntax

·..J·

Note The copy mmu_tables command works only when you use the
emulator's background monitor. The foreground monitor doesn't
implement the memory accesses required to support this command.

Default Values none

Examples

Parameters

copy mmu tables root_ptr CRP logical address
0 to mytables

copy mmu tables root_ptr CRP fcode USER DAXA
logical_address 02000000H show table level
FCODE to printer noheader
copy mmu_tables root_ptr OllB
translation control 82CFSOOOH
logical_address 02000000H show table level B

<ADDR>

CRP

fcode

<FCODE>

This prompts you to enter an address expression.
See the --EXPR-- syntax diagram for details.

CPU Root Pointer.

Use this to specify the function code you want to
begin your mmu_mappings list, or mmu_tables
display.

Prompts you to enter a function code, either as a
number or as a function code shown on the
softkeys.

logical_address The address in logical (virtual) memory space.

root_ptr Use this to introduce the source of the root
pointer descriptor.

Emulation Command Syntax 2-23

I

Note

show table
level

SRP

translation
control

<VALUE>

Use this to specify the table level that you want
to examine in detail in your mmu_tables copy.

Supervisor Root Pointer

Use this to specify a value for the translation
control register. This is required when you
specify a value for the root pointer.

Root pointer value to be used instead of the
CRP or SRP. You also must specify the value of
the translation control register when you specify
a root pointer value.

See the Motorola MC68030 Enhanced 32-Bit Microprocessor User's
Manual for more information on root pointers.

2-24 Emulation Command Syntax

copy registers

Syntax

registers

offset_ by --EXPR--

Function The copy registers command copies the current contents of the
processor/coprocessor's various register sets. This process does not
occur in real time. You must configure the emulator for
nonreal-time run mode to list registers while the processor is
running.

You can supply a number to offset the CPU program counter from
the actual value. This allows easy comparison of some registers to
the assembled listing.

When you specify a custom coprocessor, the coprocessor register
set is appended to the CPU register set listing.

Default Values Initially cpu registers with O offset. After that, defaults to the last
copy registers command specification.

Examples

Parameters

copy registers mmu to reglist

copy registers cpu offset_by lOfOh to printer

--EXPR-- --EXPR-- is a combination of numeric values,
symbols, operators, and parentheses specifying
an offset value to be subtracted from the

Emulation Command Syntax 2·25

I

I

program counter. See the --EXPR-- syntax
diagram.

offset_by offset_by specifies an offset to subtract from the
actual cpu program counter address before the ..,,,,j
program counter value is copied. You can select
the offset value (--EXPR--) such that the
program counter address will match the current
instruction's address in the assembler or
compiler listing.

<REG SET> <REG_SET> specifies the name of the register
set to be displayed. You can select a register set
name from the softkeys. All custom coprocessor
names defined in your custom register
specification file are displayed. The name cpu
specifies the 68030's internal cpu registers. The
name fpu is reserved for the emulator's internal
68881 floating point processor, if used.

2·26 Emulation Command Syntax

copy software_
breakpoints

Syntax

software_ breakpoints

Function

Default Value

Examples

Parameters

offset_by <ADDR>

The copy software_breakpoints command copies the currently
defined software breakpoints and their status. If you're continuing
emulation from a previous session, then the listing includes any
previously defined breakpoints. The column marked "status" shows
whether the breakpoint is pending or inactivated. A pending
breakpoint forces the processor to enter the emulation monitor on
execution of that breakpoint. Breakpoints that were defined as
one _shot are listed as inactivated after they are executed. Entries
that show an inactive status can be reactivated by executing the
modify software_breakpoints set command.

none

copy software_breakpoints to printer

copy software_breakpoints offset_by OfOOOh
to breaklist noheader

<ADDR>

offset_by

<ADDR> is a combination of numeric values,
symbols, operators, and parentheses specifying
an offset from the listed software breakpoint
address. See the --EXPR-- syntax diagram.

offset_by allows you to offset the listed software
breakpoint address value from the breakpoint's

Emulation Command Syntax 2-27

I

I

2-28 Emulation Command Syntax

actual address. The system subtracts the offset
from the breakpoint's actual address, making the
listed address match that given in the assembler
or compiler listing.

copy trace

Function The copy trace command enables you to copy some or all of the
current trace listing to the selected destination.

See the Analysis Reference Manual for 32-Bit Microprocessors for a
detailed description of the copy trace command.

Emulation Command Syntax 2·29

I

I

copy
trace_ specification

Function The copy trace_specification command enables you to copy some
or all of your trace specification to the selected destination.

See the Analysis Reference Manual for 32-Bit Microprocessors for a
detailed description of the copy trace_specification command.

2·30 Emulation Command Syntax

display

Syntax

display memory >------~_.,<RETURN>

registers

trace

sw breakpoints ,___ __

global_ symbols >---~

local symbols

trace_ specification

simulated io >-----~

mmu tables,___ __ __,

mmu_mappings

source file

Function The display command displays selected information on your
workstation screen. You can use the UP and DOWN cursor keys,
the NEXT and PREV keys, and sometimes, the LEFT and RIGHT
cursor keys to view the displayed information. <Ctrl>F and
<Ctrl>G may be used to scroll the screen left and right by header
columns.

Default Values Depending on the information selected, defaults may be the
options selected for the previous execution of the display
command.

Parameters

global_symbols global_symbols displays a list of all global
symbols in memory.

Emulation Command Syntax 2·31

I

local - local_symbols_in displays a list of local symbols
symbols in defined in a specified symbol. Local symbols are -

those that are children of the specified symbol.
See the --SYMB-- syntax pages and the

""' HP64000-UXSystem User's Guide for more
information.

memory memory displays the contents of memory.

I mmu_mappings mmu_mappings displays the logical-to-physical
address mappings for a particular root pointer.

mmu tables mmu_tables displays the mapping information
for a particular logical address.

registers registers displays the contents of the
microprocessor registers.

simulated io simulated_io displays the data being written to
the simio display buffer.

~
software software_breakpoints displays the current -
breakpoints software breakpoint table.

source file source file displays the content of the source file
you specify.

trace trace displays the current trace listing.

trace - trace_specification displays your current trace
specification specification, starting at optionally defined

points.

2·32 Emulation Command Syntax

display
global_ symbols

Syntax

global_ symbols

Function Thfe display global_symbols comfmand displays the global symbols 1· ..
de ined for the current absolute ile. Global symbols are those that
are declared as global (XDEF) in the source file. They include
procedure names, variables, constants, and file names. When you
use this command, the listing will include the symbol name, logical
address, segment containing the symbol, and the symbol's offset
from the start of the segment.

Default Value none

Example

display global_symbols

Emulation Command Syntax 2·33

I

display
local_symbols_in

Syntax

---.(1ocal_symbols_in)>---•-I --SYMB--1 ,_ ----

Function The display local_symbols_in command displays the local symbols
in a specified symbol, which may include various combinations of
source file and scope. Displayed information includes symbol
addresses plus relative segment and offset.

Default Value none

Example

display local_symbols_in towers(module)

Parameters

--SYMB-- --SYMB-- represents the symbol that contains
the local symbols to be listed.

See Also See the --SYMB-- syntax pages and the HP64000-UXSystem User's
Guide for more information on symbols and their scoping.

2·34 Emulatlon Command Syntax

display memory

Syntax

mnemonic

real short

long

absolute word

blocked byte

binary

offseLby --EXPR-- repetitively

Function The display memory command displays the contents of the
specified memory location or series of locations. The memory
contents can be listed in mnemonic, binary, hexadecimal, or real
number format. Memory addresses can be listed offset by a value
that allows the information to be easily compared to the program
listing.

Default Values Initial values are the same as specified by the command display
memory 0 blocked word offset_by 0.

Default for "logical" or "physical" addresses is "logical" to start,
then the same as requested in a previous command.

Emulatlon Command Syntax 2·35

I

I
Examples

Parameters

Other defaults are to values specified in previous display memory
command.

Each memory access command has a separate function code
default to be used when a function code is valid, but not explicitly
specified.

display memory fcode SUPER_PROG START
mnemonic offset_by lfOOh

display memory fcode USER_DATA O thru lOOE ,
fcode USER PROG START thru START+S blocked
word

absolute

<ADDR>

binary

blocked

fcode

<F_CODE>

absolute formats the memory listing in a single
column.

<ADDR> is a combination of numeric values,
symbols, operators, and parentheses specifying a
memory address or memory offset value. See the
--EXPR-- syntax diagram.

binary displays the contents of memory locations
as binary values.

blocked formats the memory listing in multiple
columns.

fcode enables you to specify a function code with
the address expression as part of the memory
access specification.

<F _CODE> is a prompt for the function code.
The function code may be specified as a number
or as a defined function code mnemonic on the
softkeys.

2·36 Emulation Command Syntax

logical logical specifies that the address space to be
displayed is logical space.

long long displays the memory values as long word
values.

When used with the real parameter, long
displays memory in a 64-bit real number format.

mnemonic mnemonic formats the memory listing in I assembly language instruction mnemonics with
associated operands. You should specify a
starting address that corresponds to the first
word of an opcode to ensure that the listed
mnemonics are correct.

offset_by otTset_by allows you to specify an offset that is
subtracted from each absolute address before
listing the addresses. You can choose the offset
value (--EXPR--) so that each module in a
program appears to start at address OOOOH.
The memory contents listing will then appear
similar to the assembly or compiler listing.

physical physical specifies that the address space to be
displayed is physical space.

real real formats the memory values in the listing as
real numbers.

repetitively repetitively continuously updates the memory
listing displayed on your screen.

short Use short with real to list memory values as
32-bit real numbers.

\., thru thru enables you to specify that a range of
memory locations be displayed. The amount of
information displayed at once is restricted by
your display terminal. Use the UP and DOWN

Emulation Command Syntax 2·37

I

words

cursor keys. and the NEXT and PREV keys to
view additional memory locations.

words displays the memory listing as word values.

A comma(,) appearing immediately after
memory in the command line will append the
current display memory command to the
preceding display memory command. The data
specified in both commands is displayed. The
data is formatted as specified in the current
command.

The comma is also used as _, Jelimiter between
values when specifying muiuple memory
addresses.

Function codes are an important part of the memory access
specification. with the address expression. The function code (if
stated explicitly) precedes the associated address expression, and
may be specified as a number or a predefined function code
mnemonics (for example: SUPER_PROG, USER_DATA). """"'

Memory configuration allows different modes for function codes:
they may be enabled (full use of function codes), disabled (no use
of function codes), or partially disabled (only PROGRAM/DATA
spaces are recognized). If the function codes are disabled (even
partially), the unused function code bits are masked off and
ignored during the memory access.

2·38 Emulatlon Command Syntax

display
mmu_mappings

Syntax

(mmu_mappings)--(root_ptr J
CRP

SRP

<VALUE>

fcode

Note

shaw_ map_ from

translation_ control <ADDR>

--EXPR--

~----------,~ logical_ oddress <ADDR>

<FCODE>

--EXPR-- >-------

Function The display mmu_mappings command displays the overall
logical-to-physical address mapping information for a particular
root pointer.

The display mmu_mappings command works only when you are
using the background monitor. The foreground monitor does not
implement the memory accesses needed to support this command.

Default Values None.

Emulation Command Syntax 2·39

I

I

Examples

Parameters

display nunu_mappings root_ptr CRP
display nunu_mappings root_ptr
osoooooo2ooof4oooh translation control
8c0c440h
display nunu_mappings root_ptr CRP
show_map_from fcode USER_DATA
logical_address 20008

<ADDR>

CRP

fcode

This prompts you to enter an address expression.
See the --EXPR-- syntax diagram for details.

CPU Root Pointer.

Use this to specify the function code you want to
begin your mmu_mappings list, or mmu_tables
display.

<FCODE> Prompts you to enter a function code, either as a
number or as a function code shown on the
softkeys.

logical_address The address in logical (virtual) memory space.

root_ptr Use this to introduce the source of the root
pointer descriptor.

show_map_from Use this to specify the logical address (with or
without function code) where you want your
mapping list or tables display to begin.

SRP

translation
control

Supervisor Root Pointer

Use this to specify a value for the translation
control register. This is required when you
specify a value for the root pointer.

2·40 Emulatlon Command Syntax

<VALUE> Root pointer value to be used instead of the
CRP or SRP. You also must specify the value of
the translation control register when you specify
a root pointer value.

Emulation Command Syntax 2·41

I

display
mmu tables

mmu_tables

CRP

SRP

<VALUE>

fcode

Syntax

root_ptr

translation_ control <ADDR>

--EXPR--

FCODE

<FCODE> logical_ address <ADDR>

--EXPR--

show_ table_ level FCODE

A

B

c

D

Function The display mmu_tables command displays the mapping
information for a particular logical address.

2·42 Emulatlon Command Syntax

Note The display mmu_tables command works only when you use the
emulator's background monitor. The foreground monitor doesn't
implement the memory accesses required to support this command.

Default Values none

Examples

Parameters

display mmu tables root_ptr CRP logical
address O

display mmu_tables root_ptr CRP fcode
USER_DAXA logical_address 02000000H
show table level FCODE - -
display mmu_tables root_ptr OllB
translation control 82CFSOOOH
logical_address 02000000H show table level B

<ADDR> This prompts you to enter an address expression.
See the --EXPR-- syntax diagram for details.

CRP CPU Root Pointer.

fcode Use this to specify the function code you want to
begin your mmu_mappings list, or mmu_tables
display.

<FCODE> Prompts you to enter a function code, either as a
number or as a function code shown on the
softkeys.

logical_ address The address in logical (virtual) memory space.

root_ptr Use this to introduce the source of the root
pointer descriptor.

Emulatlon Command Syntax 2·43

I

I
Note

show table
level

SRP

translation
control

<VALUE>

Use this to specify the table level that you want
to examine in detail in your mmu_tables copy.

Supervisor Root Pointer

Use this to specify a value for the translation
control register. This is required when you
specify a value for the root pointer.

Root pointer value to be used instead of the
CRP or SRP. You also must specify the value of
the translation control register when you specify
a root pointer value.

See the Motorola MC68030 Enhanced 32-Bit Microprocessor User's
Manual for more information on root pointers.

2·44 Emulatlon Command Syntax

display registers

Syntax

registers

Function

repetitively

offset_ by --EXPR--

The display registers command displays the current contents of the
processor/coprocessor's various register sets. If a step has just been
executed, the mnemonic of the last instruction is also displayed.
This process does not occur in real time. You must configure the
emulator for nonreal-time run mode if you want to display registers
while the processor is running.

The displayed value of the CPU program counter can be offset
from the actual value by a number that allows the register
information to be easily compared to the assembler listing.

When you specify a custom coprocessor, the coprocessor register
set is appended to the CPU register set listing.

Default Values Offset is initially 0. After that, offset is the previous value.

Example

Parameters

display registers cpu

--EXPR-- --EXPR·· is a combination of numeric
values, symbols, operators, and parentheses
specifying an offset value to be subtracted
from the program counter. See the --EXPR-­
syntax diagram.

Emulation Command Syntax 2·45

I

offset_by offset_by enables you to specify an offset that
is subtracted from the actual cpu program
counter address before the program counter
value is displayed. You can choose the offset

""""'
value (--EXPR--) such that the program
counter address will match the current
instruction's address in the assembler or
compiler listing.

I
<REG SET> <REG_SET> specifies the register set to be

displayed. You can select the register set
names from softkeys. All custom coprocessor
names defined in your custom register
specification file are displayed. The name
cpu specifies that the 68030's internal cpu
registers be displayed. The name fpu is
reserved for the emulator's internal 68881
floating point processor, if used.

repetitively repetitively continuously updates the register

"""'
listing displayed on your screen.

2·46 Emulation Command Syntax

dis play
simulated lo

Syntax

---<>-(simuloted_io)---

Function The display simulated_io command displays the information being
written to the simulated I/O display buffer. See the HP 64000-UX
Simulated l!O Reference Manual and chapter 9 of the 68030
Emulator User's Guide for detailed information.

Default Value none

Example

display simulated io

Emulation Command Syntax 2·47

I

display source_file

Syntax

source file <FILE>

line number <LINE#>

Function The display source _file command displays the content of the
source file you specify on screen. You can use the roll and paging
keys of your keyboard to look at any desired area of your source
file, or you can specify any line in your source file to begin the
display. You cannot modify the content of your source file through
this display.

Default Values displaysource_file <FILE> line_numberO.

Example

Parameters

display source file test.c

display source file keyboard.c line number 40

<FILE>

line_number

<LINE#>

<FILE> is a prompt for the name of the file
to be displayed. Be sure to include the
file-type identifier (".c" in the example) with
the name of the file.

line_number enables you to specify a line
number in your source file where the display
should begin. The line number you specify
will be at the top of the source-file display. ..,J
<LINE#> is a prompt for the source_file
line number where you want to begin the
display.

2·48 Emulation Command Syntax

display software
_breakpoints

Syntax

software_ breakpoints

Function

offset_by <ADDR>

The display software_breakpoints command displays the currently
defined software breakpoints and their status. If you're continuing
emulation from a previous session, then the listing includes any
previously defined breakpoints. The column marked "status" shows
whether the breakpoint is pending or inactivated. A pending
breakpoint forces the processor to enter the emulation monitor on
execution of that breakpoint. Breakpoints that were defined as
one_shot are listed as inactivated after they are executed. Entries
that show an inactive status can be reactivated by executing the
modify software_breakpoints set command.

Default Value none

Examples

Parameters

display software_breakpoints

display software_breakpoints offset_by lOOOE

<ADDR>

offset_by

<ADDR> is a combination of numeric values,
S)-mbols, operators, and parentheses specifying
an offset value for the breakpoint address. See
the --EXPR-- syntax diagram.

offset_by allows you to offset the listed software
breakpoint address value from the breakpoint's
actual address. The system subtracts the offset

Emulatlon Command Syntax 2·49

I

2·50 Emulation Command Syntax

value from the breakpoint's actual address. This
can make the listed address match that given in
the assembler or compiler listing.

display trace

Function The display trace command enables you to display some or all of
the current trace listing.

See the Analysis Reference Manual for 32-Bit Microprocessors for a
detailed description of the display trace command.

Emulation Command Syntax 2·51

I

display
trace _specification

Function The display trace_specification command enables you to display
some or all of your trace specification.

See the Analysis Reference Manual for 32-Bit JJicroprocessors for a
detailed description of the display trace _specification command.

2·52 Emulatlon Command Syntax

execute

Syntax

execute

Function The execute command starts a trace measurement. The execute I
softkey label is replaced with the halt softkey label when a
measurement is in progress. If emulation is participating in a
system measurement through cross-triggered analysis or the
emulation start function (at_execution run or at_ execution trace),

Examples

See Also:

then the system measurement is begun. Otherwise, the execute
command is not available.

You can continuously repeat a measurement by using the execute
repetitively command. This restarts the current measurement after
each completion, until you give the halt command. The execute
command starts all modules participating in a system measurement
when issued from any one of the modules. If an emulator is started
as part of a measurement, it continues running and cannot be
restarted by subsequent executions unless an at_execution run
command is reissued.

The execute softkey is displayed only when multiple modules are
present in a system and some IMB interaction is requested
(cross-triggered analysis or emulation start function).

execute
execute repetitively

• at_ execution command (in this chapter)

• Emulation configuration (chapter 4 of the 68030 Emulator
User's Guide)

• The "Operating in the Measurement System" section of
the HP64000-UXUser's Guide.

Emulation Command Syntax 2·53

I

--EXPR--

Syntax

<NUMBER>

--SYMB--

start

end

<OP>

Function An expression is a combination of numeric values, symbols,
operators, and parentheses specifying an address, data, status, or
any of several other value types used in the emulation commands.

Default Value none

Examples

Parameters

05fxh (not valid for all commands)
DISP BUF + 5
SYMB TBL + (OFFSET I 2)
START
prog(module): line 15 end

<NUMBER> <NUMBER> is a numeric value in binary,
octal, decimal, or hexadecimal base.

2·54 Emulatlon Command Syntax

<OP>

--SYMB--

()

<OP> is an algebraic or logical operand.
<OP> can be (in order of precedence):

mod modulo

* multiplication

division

& logical AND

+ addition

subtraction

logical OR

--SYMB-- is a symbolic reference to an address
or address range, file, or other value. See the
--SYMB-- syntax pages and the HP 64000-UX
System User's Guide for more information on
symbols.

Parentheses may be used in expressions to alter
evaluation precedence or add clarity. For every
opening parenthesis, there must be a closing
parenthesis.

Algebraic negation (minus)

logical negation (NOT)

Emulation Command Syntax 2-55

I

I

halt

Syntax

(halt)>----------•l<RETURN>j

Function The halt command stops the current measurement and turns off
the repetitively option. When you give the halt command, some or
all systems involved may have completed their measurement. The
halt softkey is displayed only during a trace, or during an execution
(in the place of the execute softkey).

Example

The halt command affects measurements caused by both trace and
execute commands. If emulation is entered with a measurement in
progress, the halt command will stop that measurement even if
emulation is not interacting in the measurement.

halt

2·56 Emulatlon Command Syntax

help

Syntax

<RETURN> ~<HELP _FILE>H

.. ?

Function The help command enables you to request information about
system and emulation features during your emulation session.
Typing "help" or "?" from the keyboard displays softkey labels that
list the areas on which you may receive help. Press the softkey for
the command in which you are interested, and then press the
return key. The system displays the information on the screen
using the HP-UX more utility.

The help command is not displayed on the softkeys. You must type
it on the keyboard. You can substitute a question mark (?) for the
keyword "help" in the command string.

Default Value none

Examples

Parameters

help system_commands

? trace

HELP_FILE HELP _FILE is the name of the help file you
wish to display. After you type "help" from the
keyboard, the help file names can be entered
from the softkeys.

Emulation Command Syntax 2-57

I

I

load

Syntax

load

memory i--------,...... <FILE>
~--~

physical fcode <F CODE>

at <AOOR> no_ update overload

trace_ specification~---------~ <FILE>
~--~

with_ trace_ data

configuration ...,,,,

symbols <FILE>

no_update

Function The load memory command transfers absolute code from the host
system disc into target system RAM or emulation memory. The
memory configuration map and the address specified during
linking determine the destination of the absolute code. The map is
defined during emulator configuration.

You can load the absolute code at a location other than the address
specified during linking by using the at <ADDR> parameter.
When using at <ADDR>, the absolute code is loaded in memory
beginning at the specified address. For example, if you specify "at
2000h," you are effectively specifying an offset of +2000h for your
code.

2·58 Emulation Command Syntax

Note Don't use the at <ADDR> feature if your code uses absolute
addressing. Absolute addresses and symbol values in your program
are not modified. This may cause run-time errors or unexpected
beha'oior.

The load configuration command reloads a previously saved
emulation configuration.

The load trace_specification command reloads a previous trace
specification. If you saved the trace specification with trace data,
you can use the display command to access and display the
previously stored trace data. You can execute the previously stored
trace specification using the trace again or execute commands.

Default Value For the load memory command, all memory is in the default
function code space.

Examples

Parameters

load memory physical sort

load configuration conf ig3

load trace_specification trace3

at

configuration

fcode

<FILE>

at lets you load absolute code at a location other
than the address specified during linking.

configuration loads a configuration file created
by a modify configuration command.

fcode enables you to specify a function code with
the address expression as part of the memory
access specification.

<FILE> is the pathname of the absolute file to
be loaded from the system disk into target
system RAM, emulation memory, or the trace

Emulation Command Syntax 2·59

I

memory (.TR files are assumed) containing a
pre<viously stored trace specification and trace
listing.

<F CODE> < F _CODE> is a prom pt for the function code. -..I You may specify the function code as a number
or as a defined function code mnemonic on the
softkeys.

I
memory memory loads an absolute file into emulation or

target memory.

no_update This option suppresses rebuilding of the SRU
symbol database when you load an absolute file.
Normally, the symbol database is rebuilt if the
absolute file has changed since the last time the
symbol database was updated.

overload overload forces loading of the absolute file and
suppresses warning messages. Normally, if you
load a file with symbols that have already been

-..I loaded, and the symbols were used in a trace
specification, you will receive a warning that
existing symbols will be lost.

physical physical specifies that the address space to be
loaded is physical space.

symbols symbols loads a symbol database with the
specified filename.

trace - trace_speciflcation loads a trace file that was
specification generated using the store trace command.

with trace data with_trace_data loads the trace data with the - -
trace specification, if the trace data was stored.

·"'1t/J

2·60 Emulation Command Syntax

modify

Syntax

modify memory r--~~~~---,,__~<RETURN>

registers

configuration,____ ___ _

sw _breakpoints

analysis

keyboard to simio

Default Value none

Parameters

analysis

configuration

memory

registers

analysis allows you to change any part of your
analysis trace specification or trace command.

configuration enables you to review and modify
(if necessary) the current emulation
configuration.

memory allows you to modify the contents of
selected memory locations.

Use registers to modify the contents of one or
more of the various register sets.

Emulation Command Syntax 2·61

I

I

software
breakpoints

software_breakpoints sets or clears software
breakpoints used with the emulator break
function.

trace command trace command recalls the last trace command
for editing.

2-62 Emulation Command Syntax

modify analysis

Function The modify analysis command lets you change any part of your
analysis trace specification or trace command.

See the Analysis Reference Manual for 32-Bit Microprocessors for a
detailed description of the modify analysis command.

Emulation Command Syntax 2-63

I

I

modify
configuration

Syntax

configuration

Function The modify configuration command enables you to review and edit
the current emulation configuration. Each configuration question
is presented with the response previously entered. You can select
the previous response by pressing the return key, or modify it as
necessary and then enter it by pressing the return key.

Default Value none

Example

modify configuration

2·64 Emulatlon Command Syntax

modify
keyboard_to_simio

Syntax

Function

keyboard_ to_ simia

The modify keyboard_to_simio command activates the keyboard to I
interact with your program through the HP 64000-UX simulated
I/O software. When you activate the keyboard for simulated I/O, its
normal interaction with emulation is disabled. The emulation
softkeys are blanked and the single softkey suspend is displayed on
your screen. Press suspend and then the return key to deactivate
keyboard simulated I/O and return the keyboard to normal
emulation mode. Refer to the HP 64000-UXSimulated I!O
Reference Manual and chapter 9 of the 68030 Emulation User's
Guide for detailed information about simulated I/O.

Default Value none

Example

modify keyboard_to_simio

Emulation Command Syntax 2·65

I

modify memory

Syntax

memory

string

<STRING>~--...

byte

word <F _CODE>

long

real thru <ADOR>

fcode <F_CODE>

thru <AOOR>

Function The modify memory command enables you to modify the contents
of selected memory locations. You can modify the contents of each
memory location in a series to an individual value or the contents
of all locations in a memory block to a single or repeated sequence
of values.

Function codes are an important part of the memory access
specification, along with the address expression. The function code
(if stated explicitly) precedes the associated address expression.
You can specify the function code as a number or one of the
defined function code mnemonics (for example: SUPER_PROG,
USER_DATA).

2·66 Emulation Command Syntax

Note If the specified address range is too small to contain the new data,
the emulator will modify as many locations as required to contain
the new data, beginning with the starting address you specified.

New data value lists will be repeated as needed to fill the specified
address ranges. Any remaining values will modify address locations
after the last address in the specified address range.

Default Values Each memory access command has a separate function code I
default that is used when a function code is valid, but not explicitly
specified.

Examples

Parameters

modify memory word logical faode SUPER_DATA
OOAOh to 1234h

modify memory word faode USER DATA DATAl to
OE3h , 0 lh , 0 Sh

modify memory real long TEMP to 0.5532E-8

modify memory string BUFFER to "This string"

<ADDR> < ADDR > is a combination of numeric values,
symbols, operators, and parentheses specifying a
memory address. See the --EXPR-- syntax
diagram.

byte

fcode

<F CODE>

byte specifies that the memory values be
modified as byte values.

fcode enables you to specify a function code with
the address expression as part of the memory
access specification.

< F _CODE> is a prompt for the function code.
You can specify the function code as a number

Emulation Command Syntax 2·67

or as a defined function code mnemonic on the
softkeys.

logical logical specifies that the address space to be

tJ modified is in logical space.

long long specifies that the memory values be
modified as long word values.

I
When used with the real parameter. long
specifies that memory be modified as a 64-bit
real number value.

physical physical specifies that the address space to be
modified is in physical space.

real real specifies that the memory values be
modified as real number values.

<REAL#> <REAL#> prompts you to enter a value in
real number format.

""" short short is used with real to specify that memory
values be modified as 32-bit real number values.

string string enables you to modify a series of byte
locations to the ASCII values contained in a
string literal value.

<STRING> <STRING> is a prompt for a quoted ASCII
string literal such as "This is a string".

thru thru enables you to specify that a range of
memory locations be modified.

to to enables you to specify the values to which the
selected memory locations will be changed.

word word specifies that the memory locations be """ modified as word values.

2-68 Emulatlon Command Syntax

commas(,) are delimiters between values when
modifying multiple memory addresses.

Description You can modify a series of memory locations by specifying the
address of the first location in the series to be modified (--EXPR--)
and the list of the values (--EXPR--) to which the contents of that
location and the succeeding locations are to be changed. The first
value listed replaces the contents of the specified memory location,
the second value replaces the contents of the next location in the I
series, and so on until the list has been exhausted. If only one
number or symbol is specified, only that address is modified. When .
more than one value is listed, the value representations must be
separated by commas.

You can modify an entire block of memory such that the contents
of each location in the block is changed to the single specified
value, or to a single or repeated sequence. Do this by entering the
limits of the memory block to be modified (--EXPR-- thru
--EXPR--) and the value or list of values (--EXPR--, ... , --EXPR--)
to which the contents of all locations in the block are to be changed.

Function codes are an important part of the memory access
specification, with the address expression. The function code (if
stated explicitly) precedes the associated address expression, and
may be specified as a number or one of the defined function code
mnemonics (for example: SUPER_PROG, USER_;DATA).

Memory configuration allows different modes for function codes:
they may be enabled (full use of function codes), disabled (no use
of function codes), or partially disabled (only PROGRAM/DATA
spaces are recognized). If the function codes are disabled (even
partially), then the unused function code bits are masked off and
ignored during the memory access.

Emulation Command Syntax 2·69

I

modify register

Syntax

--(_register H<REG_SET>t--1-c..,,......, .. ,~ _<_RE_G_>_~ <VALUE> T
Function Use the modify register command to modify the contents of one or

more registers in the processor/coprocessor's register set. The entry
for <REG> determines the register to modify.

You can't modify registers when the emulator is restricted to
real-time runs. Break to the monitor to access the registers.

Default Value none

Examples

Parameters

modify registers cpu DO to 98

modify registers cpu AO to lOOlb , Al to
1023h

<REG> <REG> represents the name of the register to
be modified. The softkey labels display the
possibilities for <REG>.

<REG_SET> <REG_SET> specifies the name of the register
set to be modified. Select the register set names
from softkeys. All custom coprocessor names "'1lfl
defined in your custom register specification file
are displayed. The name cpu specifies the
68030's internal cpu registers. The name fpu is

2· 70 Emulatlon Command Syntax

to

<VALUE>

reserved for the emulator's internal 68881
floating point processor, if used.

to enables you to specify the values to which the
selected registers will be changed.

<VALUE> is a combination of numeric values,
symbols, operators, and parentheses specifying a
register value. See the --EXPR-- syntax diagram.

Emulatlon Command Syntax 2.·71

I

I

modify software_
breakpoints

Syntax

software _breokpoints

set all

one_shot entry <ENTRY>

permanent ~---------.-.. <ADDR>

clear f_code <F _CODE>

disoble

one_shot >-------r

permanent >----------

Function Software breakpoints enable the emulator to "break on execution"
of an instruction at a specified address. You can specify any valid
address (number, label or expression) as a breakpoint. Valid
addresses identify the first word of valid instructions.

Resume program operation after the breakpoint by using either a
run or step command.

Default Values none

Examples

2· 72 Emulation Command Syntax

modify software_breakpoints clear fcode
USER_PROG 1099h , 1234h

modify software_breakpoints set fcode
SUPER_PROG one shot LOOPlEND ' LOOP2END

modify software_breakpoints clear entry 1

modify software_breakpoints disable entry 2

Parameters

<ADDR>

all

clear

disable

<F CODE>

one shot

permanent

set

<ADDR> is a combination of numeric values,
symbols, operators, and parentheses specifying a
software breakpoint address. See the --EXPR-­
syntax diagram.

If used with the set parameter, all reactivates all
breakpoint entries (sets them to pending). If
used with the clear parameter, all clears all
entries and restores the original values of the
memory locations. all also enables you to disable
all entries or to change all entries to one-shot or
permanent mode.

clear clears the specified breakpoint address
<ADDR> and restores the original contents of
the memory location.

disable deactivates the selected breakpoint entry.

<F_CODE> is a prompt for the function code.
If you use a function code, it must be specified
using a predefined function code mnemonic
from the softkeys.

one_shot sets the breakpoint for one execution.
On execution, the breakpoint is deactivated and
the original content of the memory location is
restored. Also, use one_shot to modify the mode
of existing entries.

permanent sets the breakpoint until you clear or
disable it. The breakpoint can be repeatedly
executed. permanent is also used to modify the
mode of existing entries.

set adds software breakpoints to your program.

Commas (,)are delimiters between specified
breakpoint values.

Emulation Command Syntax 2·73

I

I

reset

Syntax

(reset)r---------... j<RETURN>I

Function The reset command suspends target system operation and
establishes initial operating parameters, such as reloading control
registers. The reset signal is latched when the reset command is
executed and is released by the run command.

When the processor is released from reset by a run command, one
of two operations will occur, depending on the answer to the
reset_to_monitor configuration question:

• Reset_to_monitor enabled: the processor will reset into
the monitor, ignoring any user-defined reset vector.

• Reset_to_monitor disabled: the processor will vector into "°· .. ~
the reset handler defined by the user reset vector. ~

Default Value none

Example

reset

2·74 Emulation Command Syntax

run

Syntax

~r_un~r--.------------+-----~----.,------<----------.,,..-~<RETURN>

from
,___, ______ .,...... <ADDR>

until <F_CODE> <ADDR>

<F _CODE>

transfer_ address>-----~

Function If the processor is in a reset state, run will release the reset, and if a
"from" address is specified the processor is started at that address.
If the processor is running in the monitor, the run command
causes the processor to exit into your program. The program can
either be run from a specified address (--EXPR--), from the
address currently stored in the processor's program counter, or
from a label specified in the program.

The program will run until the until address is encountered and
then break to the monitor. The until <ADDR> specification sets
a software breakpoint at the requested address.

Default Value If you omit the address (--EXPR--) option, the emulator will begin
program execution at the address in the processor's program
counter.

Examples

Parameters

run

run from B lOH

run from USER STATE START until LOOP 1

run until SUPERVISOR STATE LOOP 1

<ADDR> <ADDR> is a combination of numeric values,
symbols, operators, and parentheses specif)ing a

Emulation Command Syntax 2· 75

I

I

<F_CODE>

memory address. See the --EXPR-- syntax
diagram.

<F _CODE> is a prompt for the function code.
If used, the function code must be specified
using a predefined function code mnemonic
from the softkeys.

from from is used to specify the address from which
program execution is to begin.

transfer address transfer_address is the starting address of the
program you loaded into emulation or target
memory. The transfer_address is defined in the
linker map.

until

2-76 Emulation Command Syntax

until is used in defining a software breakpoint on
which to break execution of your program.

set

Syntax

set analysis >----~• <RETURN>

bnc _ports 1-----

source

symbols

<VAR>

WIDTH

Function Allows you to set parameters for analyzer measurements,
cross-trigger configuration, symbol and source display, and system
environment.

Default Values See the syntax pages for the set options.

Parameters

analysis

bnc_ports

source

Allows you to set the analyzer configuration and
operating characteristics. Refer to the 32-bit
Analysis Reference Manual for more information
on these options.

You use this to set up the cross-trigger
configuration (for measurements involving other
instruments). Refer to the 32-bit Analysis
Reference Manual for more information on these
options.

You use this option to control source code
display. See the pages that follow for more
information on this option.

Emulatlon Command Syntax 2· 77

I

symbols

<VAR>

I
WIDTH

2·78 Emulation Command Syntax

You use this option to control symbol display.
See the pages that follow for more information
on this option.

You use this to set system environment
parameters. This option is described on the
following pages.

You can use this option to control the display
width allocated to showing information in the
address and mnemonic columns. and in the lines
of source-file information. Remember to
"set source/symbols on" before setting display
width.

set analysis

Function The set analysis command lets you change your prestore or
GLOBAL_ CONTEXT specification, set your trigger_position and
analysis break condition, or change your analysis softkey interface.

See the Analysis Reference Manual for 32-Bit Microprocessors for a
detailed description.

Emulation Command Syntax 2-79

I

I

set bnc_ports

Function The set bnc_ports command lets you change any portion of your ...,J
bnc port configuration.

See the Analysis Reference Manual for 32-Bit Microprocessors for a
detailed description of the set bnc_ports command.

2-80 Emulation Command Syntax

set source

Syntax

source on

::=:==::::
r---,.........,..----< inverse_ video

only

off

tobs_are <TABS>

number of source_ lines <NUMSRC>

WIDTH

Function You use this command to control display of source lines in
emulator measurement displays, such as the analyzer trace.

Examples

set source on inverse video on tabs are 2

Default Values The default display format parameters are the same as set by the
command:

Parameters

set source off symbols on

inverse video

off

on

This displays source lines in normal video.

This highlights the source lines on the screen
(dark characters on light background) to
differentiate the source lines from other data on
the screen.

Emulatlon Command Syntax 2-81

I

number of This allows you to specify the number of source

- source lines lines displayed for the actual processor
instructions with which they correlate. Only
source lines up to the previous actual source line

""" will be displayed. Using this option, you can
specify how many comment lines are displayed
preceding the actual source line. The default
value is 5.

I
<NUMSRC> This prompts you for the number of source lines

to be displayed. Values in the range 1..50 may be
entered.

source

off This option prevents inclusion of source lines in
the trace and memory mnemonic display lists.

on This option displays source program lines
preceding actual processor instructions with

'WI which they correlate. This enables you to
correlate processor instructions with your source
program code.

only This option displays only source lines.

tabs are This option allows you to define the number of
spaces inserted for tab characters in the source
listing.

<TABS> Prompts you for the number of spaces to use in
replacing the tab character. Values in the range
2 .. 15 may be entered.

WIDTH Refer to set WIDTH page for this syntax.

""'
2-82 Emulation Command Syntax

set symbols

_.,, Syntax

all WIDTH

high

law

off

Function You use this command to control symbol display in various
emulator measurement screens, such as the analyzer trace.

Examples

set symbols on

Default Values The default display format parameters are the same as set by the
command:

Parameters

set source off symbols on

symbols

off

on

high

This prevents symbol display.

This displays symbols.

Displays only high level symbols, such as those
available from a compiler. See the HP 64000-UX
System User's Guide for a detailed discussion of
symbols.

Emulation Command Syntax 2·83

I

low

all

WIDTH

I

2·84 Emulation Command Syntax

Displays only low level symbols, such as those
generated internally by a compiler, or an
assembly symbol.

Displays all symbols.

Refer to set WIDTH page for this syntax.

set <VAR>

Syntax

<VAR> <VALUE>

Function You use the set <VAR> command to define system environment
variables for use within an emulation session. For example, if you
enter the command:

set x = /users/guest/test

then, at any later time, ''$x" may be used as an alias for
''/users/guest/test." For example:

load memory $x/myfile

A< VALUE> that contains embedded spaces must be enclosed
within quotation marks. Also. any HP-UX environment variables
that were defined and exported prior to the emulation session may
be used.

Default Values none

Examples

Parameters

set emuldir
set dispmem

Allowing you to use:

cd $emuldir

/users/<yourlogon>/emul683k
"display memory 1000h"

$dispmem blocked word

<VAR> <VAR> specifies an environment variable
name, consisting of a string of letters, and/or
digits.

Emulation Command Syntax 2-85

I

<VALUE>

=

I

2·86 Emulatlon Command Syntax

<VALUE> is the alias assigned to the
environment variable (<VAR>), consisting of a
string of letters, and/or digits.

Equal(=) signs indicate that the environment
variable <VAR> is to be set to <VALUE>.

set WIDTH,
SOURCE WIDTH,
SYMBOLS WIDTH

width

Syntax

address <WIDTH>

default

mnemonic }--.,---------..,...~ symbols <WIDTH>

<WIDTH> default

default

source <WIDTH>

default

Function You use this command to set widths of columns of information
displayed on screen. The widths you specify will apply in trace list
displays and memory displays.

Examples

set width address 24 mnemonic 45 symbols 22

set symbols on high width mnemonic symbols 30

set source only width source 78

Default Values address default = 12
mnemonic default= 55
symbols default = 16
source default = 67

Emulation Command Syntax 2-87

I

Parameters

address

default

I
mnemonic

source

symbols

<WIDTH>

2·88 Emulation Command Syntax

This option allows you to specify the width
allocated to the display of address
information.

This specifies use of the default value for the
associated parameter.

This option allows you to specify the width
allocated to display of information in the
mnemonic column.

This option allows you to specify the display
width allocated to source-file lines.

This option allows you to specify the width
allocated to the display of symbols.

This prompts you to enter a display width for
the associated option.

step

step

Syntax

r--..,..-------,....--..,..---------------------.,-<RETURN>

<#STEPS> from ~..---+-----,- <ADDR>

<F _CODE>

~transfer _address)r-------

Function The step command causes the emulation processor to execute a
specific number of instructions. This allows sequential analysis of
program execution. The contents of the processor registers, the
contents of trace memory, and the contents of emulation or target
memory can be displayed after each step command completes.

Default Values If no value is entered for <NUMBER> of times, only one
instruction is executed each time you press the return key.
Multiple instructions also can be executed by holding down the
return key.

Examples

Parameters

If the from address (--EXPR-- or transfer_address) option is
omitted, stepping begins at the next address.

step

step from fcode SUPERVISOR STATE 810h

step 20 from fcode USER STATE OAOh

<ADDR> < ADDR > is a combination of numeric values,
symbols, operators, and parentheses specifying a
memory address. See the --EXPR-- syntax
diagram.

Emulation Command Syntax 2-89

I

I

<F CODE>

from

<F_CODE> is a prompt for the function code.
If used, the function code must be specified
using a predefined function code mnemonic
from the softkeys.

from is used to specify the address from which
program stepping is to begin.

<NUMBER> <NUMBER> determines how many
instructions will be executed by the step
command. The number of instructions to be
executed can be entered in binary (B), decimal
(D), octal (0 or Q), or hexadecimal (H)
notation.

transfer address transfer_address is the starting address of the
program you loaded into emulation or target
memory. The transfer_address is defined in the
linker map.

2·90 Emulatlon Command Syntax

store

Syntax

store memory

logical fcode <F_CODE>

physical

to_ file <FILE> <RETURN>

Function Use the store command to store the contents of specific memory
locations into an absolute file (.X file), or to store the trace
specification, with or without trace data, into a trace file (.TR file).

Default Value None

Examples

Parameters

store memory logical fcode USER_PROG 800h
thru 20ffh to_file temp2

store trace_speaifiaation to file trclst

--EXPR-- --EXPR-- is a combination of numeric values,
symbols, operators, and parentheses specifying a
memory address. See the --EXPR-- syntax
diagram.

Emulation Command Syntax 2-91

I

fcode fcode enables you to specify a function code with
the address expression as part of the memory
access specification. This parameter is valid only
if different function code ranges are defined in

"""' the memory map.

<F_CODE> < F _CODE> is a prompt for the function code.
The function code may be specified as a number

I
or as a defined function code mnemonic on the
softkeys.

<FILE> <FILE> is a prompt for the identifier for the
absolute file or trace file in which data is to be
stored.

The store command creates a new file having the
specified name when there is no absolute file on
the disc with that name. If the file already exists,
the system asks whether the old file is to be
deleted. If the response is yes, the new file

'+J replaces the old one. If the response is no, then
the store command is canceled and no data is
stored. The transfer address of the absolute file
is set to zero.

logical logical specifies that the selected memory
locations to be stored are in logical space.

memory memory stores the selected memory locations in
the specified file.

physical physical specifies that the selected memory
locations to be stored are in physical space.

thru thru enables you to store memory ranges.

to file to_file must be used in the store memory

""" command to separate the memory location
specifications from the file identifier (<FILE>).

2·92 Emulation Command Syntax

trace
specification

trace_specification stores the current trace
specification in the specified file.

with_trace_data with_trace_data stores the trace data with the
trace specification.

Commas (,) are used to separate memory
expressions in the command line.

Emulation Command Syntax 2·93

I

I

--SYMB--

Syntax

--SYMB--

<SYMB>

procedure

FILE

FILE

This parameter is a symbolic reference to an address, address
range, file, or other value.

entry_ exit_ range start

text range end

segment <SEG_NAME>

line <LINE#>

<FILENAME>

SCOPE

<SYMB>

SCOPE

<FILENAME>

SCOPE

SCOPE

--l <IDENTIFIER> 1 ------------~--­
~,..---<TY_P_E_> ----.~

2·94 Emulatlon Command Syntax

Note i If no default file or module was defined by executing the command
display local_symbols_in --SYMB-·, or with the cws command, a
source file name (<FILE>) or module name must be specified
with each local symbol in a command line.

Function Symbols may be:

• Combinations of paths, filenames, and identifiers defining
a scope. or referencing a particular identifier or location
(including procedure entry and exit points).

• Combinations of paths, filenames, and line numbers
referencing a particular source line.

• Combinations of paths, filenames. and segment identifiers
identifying a particular PROG, DATA or COMN segment
or a user-defined segment.

The Symbolic Retrieval Utilities (SRU) handle symbol scoping and
referencing. These utilities build trees to identify unique symbol
scopes.

If you use the SRU utilities to build a symbol database before
entering the emulation environment, the measurements involving a
particular symbol request will occur immediately. If you then
change a module and reenter emulation without rebuilding the
symbol database, the emulation software rebuilds the changed
portions of the database as necessary.

Further information regarding the SRU and symbol handling is
available in the HP 64000-UX System User·s Guide. Also refer to
that manual for information on the HP64KSYMBPATH
environment variable.

Default Value The last symbol specified in a display local_symbols_in --SYMB-­
command, or with the cws command, is the default symbol scope.
The default is "none" if no current working symbol was set in the
current emulation session.

Emulation Command Syntax 2·95

I

I
Parameters

You also can specify the current working symbol by typing the cws
command on the command line and following it with a symbol
name. The pws command displays the current working symbol on
the status line.

Display memory mnemonic also can modify the current working
symbol.

end

entry_exit_range

<FILENAME>

line

<LINE#>

<IDENTIFIER>

The last address associated with the given
procedure or range.

This is the range of addresses associated with
all code for the given procedure. May differ
from textrange, which is all addresses
associated with the starting and ending text
points of the procedure.

This is an HP-UX path specifying a source
file. If no file is specified, and the identifier
referenced is not a global symbol in the
executable file that was loaded, then the
default file is assumed (the last absolute file
specified by a display local_symbols_in
command). A default file is only assumed
when other parameters (such as line) in the
-·SYMB·· specification expect a file.

This specifies that the following numeric
value references a line number in the
specified source file.

Prompts you for the line number of the
source file.

Identifier is the name of an identifier as
declared in the source file.

2·96 Emulatlon Command Syntax

procedure procedure indicates that you want to use the
address range of a procedure with the given
symbol name.

SCOPE Scope is the name of the portion of the
program where the specified identifier is
defined or active (such as a procedure
block). Scope also may refer to a module
name in IEEE-695 file format.

I segment This shows that the following string specifies
a standard segment (such as PROG, DATA,
or COMN) or a user-defined segment in the
source file.

<SEG N.Ai\.1E> Prompts you for entry of the segment name.

start The first address associated with the given
procedure or range.

text range Represents the range of code addresses
associated with the given procedure. May be
different than entry_exit_range, especially if
the compiler generates subroutine code that
is at addresses after the exit point.

(<TYPE>) When two identifier names are identical and
have the same scope, you can distinguish
between them by entering the type (in
parentheses). Do not type a space between
the identifier name and the type
specification. The type will be one of the
following:

filename Specifies that the identifier is a source file.

module These refer to module symbols. For the
68020 C compiler, these names derive from
the source file name. For Ada, they are

Emulatlon Command Syntax 2·97

procedure

static

I task

2·98 Emulatlon Command Syntax

packages. Other language systems may allow
user-defined module names.

Any procedure or function symbol. For
languages that allow a change of scope
without explicit naming, SRU assigns an
identifier and tags it with type procedure.

Static symbols, which includes global
variables. The logical address of these
symbols will not change.

Task symbols, which are specifically defined
by the processor and language system in use.

A colon is used to separate the HP-UX file
path from the line, segment, or symbol
specifier. When following the file name with
a line or segment selection, there must be a
space after the colon. For a symbol, there
must not be a space after the colon.

Examples The following short C code example should help illustrate how
symbols are maintained by SRU and referenced in your emulation
commands.

int *port one;
main () -
{

int port_value;

port one = 255;
port:value = 10;
process_port (port_one, port_value);
/* end main */

/users/dave/control.c

iinclude "utils.c"

process port (int *port_num, int port_data)
{ -
static int i;
static int i2;

for (i = O; i <= 64; i++)
*port num = port data;
delay-(); -

}

{
static int i;
i = 3;
port data = port data + i;
} - -

/* end of process_port */

/system/project1 /porthand.c

delay()
{

int i,j;
int waste_time;

for (i = O; i <= 256000; i++)
for (j = O; j <= 256000; j++)

waste_time = O;
/* end delay */

/system/project1 /utlls.c

Emulatlon Command Syntax 2·99

I

I

i2
(stotic)

HP·OMF Symbol Tree

The HP-OMF (HP64000 absolute file format) symbol tree as built
by SRU would appear as follows (this is not a complete symbol
tree):

root

port_ one (static) main (procedure)

I system/ project 1 I porthand.c
(filename)

process_ port
(procedure)

(static)

/system/project! /utils.c
(filename)

EXIT
procspecial

EXIT
(procspecial

2·100 Emulation Command Syntax

Note that SRU does not build tree nodes for variables that are
dynamically allocated on the stack at run-time, such as i and j
within the delay() procedure. SRU has no way of knowing where
these variables will be at run time and therefore cannot build a
corresponding symbol tree entry with run time address.

Here are some examples of referencing different symbols in the
above programs:

control.c:main

control.c:port_one

porthand.c:utils.c:delay

The last example above only works with IEEE-695 object module
format; the HP object module format does not support referencing
of include files that generate program code.

porthand.c:process_port.i

porthand.c:process_port.BLOCK_l.i

Notice how you can reference different variables with matching
identifiers by specifying the complete scope. You also can save
typing by specifying a scope with cws. For example, if you are
making many measurements involving symbols in the file
porthand.c, you could specify:

cws porthand.c:process_port

Then:

i

BLOCK l.i

are prefixed with porthand.c: process_port before the database
lookup.

If a symbol search with the current working symbol prefix is
unsuccessful, the last scope on the current working symbol is
stripped. The symbol you specified is then retested with the
modified current working symbol. Note that this does not change
the actual current working symbol.

For example, if you set the current working symbol as

cws porthand.c:process_port.BLOCK_l

Emulation Command Syntax 2-101

I

I

and made a reference to symbol i2, the retrieval utilities attempt to
find a symbol called

porthand.c:process_port.BLOCK_l.i2

which would not be found. The symbol utilities would then strip
BLOCK_l from the current working symbol, yielding

porthand.c:process_port.i2

which is a valid symbol.

You also can specify the symbol type if conflicts arise. Although
not shown in the tree, assume that a procedure called port_ one is
also defined in control.c. This would conflict with the identifier
port_ one, which declares an integer pointer. SRU can resolve the
difference. You must specify:

control.c:port_one(static)

to reference the variable, and

control.c:port_one(procedure)

to reference the procedure address.

The ENTRY and EXIT symbols are accessed through the
entry_exit_range keyword. For example, if you want to start
execution at process_port, you can use:

run from porthand.c:process_port
entry_exit_range start

(Usually this is not necessary. SRU can generally interpret what
you mean if you simply specified run from porthand. process.)

Line numbers are referenced through the source file. For example,
you might want to start execution on line 5 of your source file.
Type:

run from porthand.c: line 5

2·102 Emulation Command Syntax

i2
(static)

IEEE·695 Symbol Tree

The IEEE-695 symbol tree as built by SRU would appear as
follows (this is not a complete symbol tree):

/

,/

///

root

,//

// port_ one (static)

I users I dove/ control.c
(filename)

I system/ project 1 I porthond.c

process port
(procedure)

(filename)

(static)

(pracspeciol

I users I dove I control
(module)

main (procedure)

EXIT
(procspeciol

line # X

Emulatlon Command Syntax 2·103

I

I

The most significant difference between this tree and the HP-OMF
symbol tree is that IEEE-695 file formats use a module concept.
The module owns the source file and the symbols associated with
it. Compare the two tree structures to see the differences.

Now, look at the examples of referencing symbols in the previous
programs. You might want to compare these to the examples given
for the HP-OMF file format.

control.main

This also could be expressed as:

control(module) .main(procedure)

control.port_one

porthand."utils.c":delay

You must enclose the file name in quotation marks. Otherwise,
SRU interprets the period delimiting the file extension as a scope
change, which is not correct.

porthand.process_port.i

porthand.process_port.BLOCK_l.i

Again, you can reference different symbols with matching
identifiers by specifying the complete scope. You also can save
typing by specifying a scope with cws. For example, if you are
making many measurements involving symbols in the file
porthand.c, you could specify:

cws porthand.process_port

Then:

i

BLOCK 1. i

are prefixed with porthand.process_port before the database
lookup.

Global symbols (procedures and variables) can be specified either
by their complete path through the symbol tree, or directly from
the root level.

2·104 Emulatlon Command Syntax

Line number s~mbols are owned by the source file in IEEE-695
format. To reference these, you must specify the module, then the
filename, then the line number. For example:

porthand."porthand.c" line 5

You also can specify the symbol type if conflicts arise. Although
not shown in the tree, assume that a procedure called port_one is
also defined in control.c. This would conflict with the identifier
port_ one, which declares an integer pointer. SRU can resolve the
difference. You must specify:

control.port_one(static)

to reference the variable, and

control.port_one(procedure)

to reference the procedure address.

Emulatlon Command Syntax 2·105

I

I

trace

Function The trace command allows you to trace program execution using ~
the HP 64404 and HP 64405 Integrated Analyzers.

See the Analysis Reference Manual for 32-Bit Microprocessors for a
detailed description of the trace command.

2·106 Emulation Command Syntax

wait

wait

Syntax

<TIMER> <RETURN>

measurement complete

<TIMER>

stepping_ complete

Function The wait command is a delay command. Delay commands are
enhancements that allow flexible use of command files (although
delays are also available outside command files). Command delays
give the emulation system and target processor time to reach some
condition or state before executing the next command. The delay
commands may be included in command files.

The wait command is not displayed on the softkeys. You must type
the command from the keyboard. After you type "wait," the wait
command parameters are displayed on the softkeys.

Default Value Waiting for Ctr! c

Emulation Command Syntax 2·107

I

I

Note

Examples

Parameters

If "set intr "c" has not been executed on your system, replace Ctr!
c with the backspace key in the following examples and parameter
definitions.

wait

wait 6

emulator waits for Ctrl c before
accepting the next command.

emulator waits for Ctrl c or 6
seconds before accepting the next
command.

wait measurement
complete

emulator waits for Ctrl c or for a
pending measurement to
complete. If no measurement is in
progress, wait will be satisfied
immediately.

wait measurement
complete

emulator waits for Ctrl c, for a
pending measurement to complete,
or 20 seconds (whichever occurs
first) before accepting the next
command.

or 20

measurement
complete

stepping_ complete

<TIME>

measurement_complete waits for a
measurement in progress to complete before
the next command is executed.

stepping_ complete causes the system to wait
for the current step command to complete
before executing another command.

<TIME> is the number of seconds you
insert for your delay.

2-108 Emulation Command Syntax

A

User Interface Software/HP-UX Cross Reference

User Interface Command HP· UX Command

cat cat
anychar ?
anystrng *

chng_dir cd

copy cp
anychar ?
anystrng *

date&time date

edit Defined by the variable I
recover "EDITOR" -r
Readonly -R

!if copy lifcp
binary -b
anychar ?
anystrng *
translat -t
raw -r

lifinit lifinit
vol name -n

liflis t lifls
long -1
list to >
print I SPRINTER

lifremv lifrm

User lnterface/HP-UX Cross Reference A·1

User Interface Command HP-UX Command

lifrenam lifrename

list dir ls
File type -F
time_mod -t
use time -u
reverse -r
all -a
Recurse -R
anychar ?
anystrng *
list to >
print !$PRINTER
long -1

log log_ commands
to to

I
off off

makedir mkdir

manual man
keyword -k
list to >
print !$PRINTER

move mv
anychar ?
anystrng *
force -f

msconfig msconfig

msinit msinit
search -s

msstat msstat

opt_test opt

prom_prg prom_prg

removdir rmdir

A-2 User lnterface/HP-UX Cross Reference

User Interface Command HP-UX Command

remove rm
anychar ?
anystrng *
force -f
recurse -r
interact -i

shell !

<system_name> <system_name>
(for example e386) (for example e386)

tar chive tar
add r
update u
extract x
create c
table t
anychar ?
anystrng *
no dir 0

file/dev f<device>
verbose v I
prsvmode p
mar know m

User lnterface/HP·UX Cross Reference A·3

Notes

I

A·4 User lnterface/HP-UX Cross Reference

B

Using Control Characters And Other Commands

Using Control
Characters

The following control characters can be used in HP 64000-UX:

• CTRL b recalls commands starting from the first command
you entered. You can continue pressing these keys to
observe commands previously executed.

• CTRL c is an interrupt, and stops processing of the current
command. In Option Test, this has no effect. (This is
different from most HP 64000-UX interfaces, and is set
this way so that the HP 64000-UX hardware is never left in
an unknown state.)**

• CTRL d stops all tests and exits HP 64000-UX features.**

• CTRL e clears the command line from the cursor location
to the end of the line.

• CTRL f rolls the diagram left while in emulation.

• CTRL g rolls the diagram right while in emulation.

• CTRL 1 refreshes (redraws) the display.

• CTRL q resumes scrolling of information on the screen
(previously stopped with CTRL s).

• CTRL r recalls commands from the previous command
you entered (scrolling through the commands toward the
first command). You can continue pressing these keys to
view previous commands.

• CTRL s temporarily stops scrolling of information on the

Using Control Characters B-1

I

I

Other Control
Characters And
Commands

B-2 Using Control Characters

screen (resume with CTRL q).

• CTRL u clears the command line.**

• CTRL \(backslash) stops all tests and exits HP 64000-UX """'
features.**

• Tab moves the cursor to the next word on the command
line.

• Shift Tab moves the cursor back one word on the
command line (this is for HP terminals only).

**Depends on actual stty settings.

Listed below are other control characters and commands you can
use:

• # is used to include comments in files. All characters after
the"#" are ignored when the file is executed.

• help or ? displays the possible help files.

• ! forks an HP-UX shell (using the $SHELL environment
variable).

• cd changes directory for the present HP-UX shell.

• <FILE> pl p2 p3 executes a command file and passes
three parameters.

• log_commands to <FILE> puts commands you execute
into a file that you specify.

• wait pauses a command file until you press CTRL c
(SIGnal_INTerrupt).

• wait measurement_ complete pauses a command file until
the measurement is complete, or until CTRL c (SIG_INT).

• wait <TIME> pauses a command file until <TIME> (in
number of seconds) has passed, or until CTRL c is pressed.

Using Control Characters 8·3

I

Notes

I

8·4 Using Control Characters

Index

A analysis, 1-3
at_execution syntax, 2-4

B break command syntax, 2-6
breakpoint generation, 1-3

C clock source selection, 1-3
command summary, emulation, 2-2
command syntax

--EXPR--, 2-54
at_execution, 2-4
break, 2-6
copy, 2-7
copy display, 2-11
copy global_symbols, 2-12
copy local_symbols_in, 2-14
copy memory, 2-15
copy mmu_tables, 2-22
copy registers, 2-25
copy sw _breakpoints, 2-27
copy trace, 2-29
copy trace_specification, 2-30
display, 2-31
display global_symbols, 2-33
display local_symbols, 2-34
display memory, 2-35
display mmu_tables, 2-42
display registers, 2-45
display simulated_io, 2-47
display source _file, 2-48
display sw _breakpoints, 2-49
display trace, 2-51
display trace_specification, 2-52
execute, 2-53
halt, 2-56
help, 2-13, 2-57
load. 2-58 I

lndex-1

D

I
2-lndex

modify, 2-61
modify analysis, 2-63
modify configuration, 2-64
modify keyboard_to_simio, 2-65
modify memory. 2-66
modify registers, 2-70
modify sw_breakpoints, 2-72
reset, 2-74
run, 2-75
set. 2-77
set analysis, 2-79
set bnc _ports, 2-80
set VAR, 2-85
set WIDTH, SOURCE WIDTH, SYMBOLS WIDTH, 2-87
step, 2-89
store, 2-91
trace, 2-106
wait, 2-107

control characters, using, B·l
copy display syntax, 2-11
copy global_symbols syntax, 2·12
copy help command syntax, 2-13
copy local_symbols_in command syntax, 2-14
copy memory command syntax, 2-15
copy mmu_tables command syntax. 2-22
copy registers command syntax, 2-25
copy sw_breakpoints command syntax, 2-27
copy syntax, 2-7
copy trace command, 2-29
copy trace_specification command, 2-30

damage to target system circuitry, l-5
display command syntax, 2-31
display global_symbols command syntax, 2-33
display local_symbols_in command syntax, 2-34
display memory command s:yntax, 2-35
display mmu_tables command syntax, 2-42
display registers command syntax, 2-45
display simulated_io command syntax, 2-47
display source_file command syntax, 2-48
display sw_breakpoints command syntax, 2-49

E

display trace command, 2-51
display trace_specification command, 2-52

electrical transparency, 1-7
emulation probe, 1·2
emulation system, physical description, 1-1
emulator effects on user program, 1-4
execute command syntax, 2-53
expression syntax. 2-54
--EXPR-- syntax, 2-54

F functional description of emulator, 1-2
functional trans par ency, 1·7

H halt command syntax, 2-56

L

hardware modules, emulation system, 1·1
help command syntax, 2-57
how the emulator affects the target system, 1-7

interactive measurements. 1-4
interactive operation with other modules, 1·4
internal processor resources display/modify, 1-3

load command syntax, 2-58

M memory characterization, 1-3
memory display/modification, 1-3
microprocessor replacement probe, 1-2
modify analysis command, 2-63
modify command syntax, 2-61
modify configuration command syntax, 2-64
modify keyboard_to_simio command syntax, 2-65
modify memory command syntax, 2-66
modify registers command syntax, 2-70
modify sw_breakpoints command syntax, 2·72

0 operational independence from host system, 1-2

p physical description, emulation system, l·l
preparing the emulator, 1·8
preparing the software, 1·8
program loading, 1·2
program stepping, 1-3

'

I
lndex-3

4·1ndex

R real-time mode capabilities, 1-5
real-time mode restrictions. 1-5
real-time vs. non-real-time mode, 1·4
reset command syntax, 2-74
resource mapping, 1-3
run command syntax, 2-75
run/stop controls. 1-3

S set analysis command syntax, 2-79
set bnc_ports command S)'ntax, 2-80
set command syntax. 2-77

T

set VAR command syntax, 2-85
set WIDTH command syntax, 2-87
step command syntax, 2-89
store command syntax, 2-91
symbol display, global and local, 1-3
symbol syntax, 2-94
S)'mbols (--SYMB--), 2-94
syntax conventions, 2·1

timing transparency, l · 7
trace command, 2-106
transparency

electrical. l · 7
functional. 1-7
timing, 1-7

U using the emulator, 1-8

W wait command syntax, 2-107
what happens during program execution, 1·6
what is an emulation system, l·l

F//~ HEWLETT
~/:.. PACKARD

Hewlett-Packard
Printed in the USA

