HP 9000 Series 200/500 Computers (D) Preshreits

HP-UX Reference
Vol. 1: Section 1

HP-UX Reference
Vol. 1: Section 1
for the HP 9000 Series 200/500 Computers

Manual Part No. 09000-90007

© Copyright 1984,1985, Hewlett-Packard Company.

This document contains proprietary information which is protected by copyright. All rights are
reserved. No part of this document may be photocopied, reproduced or translated to another
language without the prior written consent of Hewlett-Packard Company. The information con-
tained in this document is subject to change without notice.

Restricted Rights Legend
Use, duplication, or disclosure by the Government is subject to restrictions as set forth in paragraph
(b)(3)(B) of the Rights in Technical Data and Software clause in DAR 7-104.9(a).
* © Copyright 1980, Bell Telephone Laboratories, Inc.

© Copyright 1979, 1980, The Regents of the University of California.

This software and documentation is based in part on the Fourth Berkeley Software Distribution
under license from the Regents of the University of California.

Hewlett-Packard Company
3404 East Harmony Road, Fort Collins, Colorado 80525

Printing History

New editions of this manual will incorporate all material updated since the
previous edition. Update packages may be issued between editions and
contain replacement and additional pages to be merged into the manual by
the user. Each updated page will be indicated by a revision date at the
bottom of the page. A vertical bar in the margin indicates the changes on
each page. Note that pages which are rearranged due to changes on a
previous page are not considered revised.

The manual printing date and part number indicate its current edition. The
printing date changes when a new edition is printed. (Minor corrections and
updates which are incorporated at reprint do not cause the date to change.)
The manual part number changes when extensive technical changes are
incorporated.

July 1984.. Edition 1. This manual replaces HP-UX Reference Manual,
09000-90006

March 1985...Edition 1 with update

Warranty Statement

Hewlett-Packard products are warranted against defects in materials and workmanship. For Hewlett-Packard
computer system products sold in the U.S.A. and Canada, this warranty applies for ninety (90) days from the
date of shipment.* Hewlett-Packard will, at its option, repair or replace equipment which proves to be defective
during the warranty period. This warranty includes labor, parts, and surface travel costs, if any. Equipment re-
turned to Hewlett-Packard for repair must be shipped freight prepaid. Repairs necessitated by misuse of the
equipment, or by hardware, software, or interfacing not provided by Hewlett-Packard are not covered by this
warranty.

HP warrants that its software and firmware designated by HP for use with a CPU will execute its programming
instructions when properly installed on that CPU. HP does not warrant that the operation of the CPU, software,
or firmware will be uninterrupted or error free.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED
WARRANTY OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. HEWLETT-PACKARD
SHALL NOT BE LIABLE FOR CONSEQUENTIAL DAMAGES.

HP 9000 Series 200

For the HP 9000 Series 200 family, the following special requirements apply. The Model 216 computer comes
with a 90-day, Return-to-HP warranty during which time HP will repair your Model 216, however, the computer
must be shipped to an HP Repair Center.

All other Series 200 computers come with a 90-Day On-Site warranty during which time HP will travel to your site
and repair any defects. The following minimum configuration of equipment is necessary to run the appropriate
HP diagnostic programs: 1) ¥2Mbyte RAM; 2) HP-compatible 3Y2" or 5% disc drive for loading system func-
tional tests, or a system install device for HP-UX installations; 3) system console consisting of a keyboard and
video display to allow interaction with the CPU and to report the results of the diagnostics.

To order or to obtain additional information on HP support services and service contracts, call the HP Support
Services Telemarketing Center at (800) 835-4747 or your local HP Sales and Support office.

* For other countries, contact your local Sales and Support Office to determine warranty terms.

ii

TABLE OF CONTENTS

1. Commands

.. debugger
create and administer SCCS files

...archive and library maintainer
.. assembler for MC68000
BB tiureeteeutentte et et ettt ettt et h e b e et e bt e n e et en bt bt st en et e e e nneeanene interpret ASA carriage control characters
Attt ettt ettt eh e ettt n st e et e bt ent e e ete et e enbenaeenteneenns execute commands at a later time
aterm... ..general purpose asynchronous terminal emulation
AETANS ..ottt e et ettt et e tb e bt e b e e eaeeeneeatseeaseeeaaeereeanean translate assembly language
awk........ .text pattern scanning and processing language
DANNEE ...ttt ettt ettt r e bbb e e st et e e raesaeeaeetbeeteeseaenes make posters in large letters
DASENAIME.uecviivecvictetetect ettt vttt et et et esteas b e bete et esbessersebeesessessensereerens extract portions of path names
B ettt ettt sa et s et nereene arbitrary-precision arithmetic language
DI .. b ettt b ekttt et b st e b ke sttt be b ea e et e bentansenraereens big diff
bs.. compiler/interpreter for modest-sized programs
CALL ettt e h e E ettt e h e ket et E et e b e e bt b bt et bbb ekt eh et e bt e ntesrebens print calendar
calendar..........cccoenene. reminder service
cat.......... ..concatenate, copy, and print files
cb.....C program beautifier, formatter

£ ettt ettt ettt e ete e ettt e ettt et etaeeetteeate e ttee ettt eabeeeteeetteetteateetteateetteerteeatteetteetes e teeateeteeetreeetereeeteeenrreeans C compiler
C ettt ettt b e et be et e erte e ete e s be e tbe st e e erteetbeennreeateeesaeraaeas change working directory
CAD ettt sttt ettt ettt e C, FORTRAN, Pascal symbolic debugger
cdc.. change the delta commentary of an SCCS delta
LT ..ottt e e ete e eerae e eertaeeeans change program’s internal attributes
CRMIOM. ...ttt ettt e ettt eeteete et et e et e ete e eanete et e reaneen change mode
CROWIL ...ttt ettt et e et e et e st e tesseesbesseessabeesbeseesbaeseeseasees change file owner or group
chroot..... ..change root directory for a command
CRSH e ettt sttt b et ne s sensenes change default login shell
16 1) T OO OOt compare two files
col... ...filter reverse line-feeds and backspaces
COMMML ..ttt eitee et e eteeetveeeteeeabeeseseeeaseeesaeesseensseseasseaesseaesaesseeassesnseanssannen select/reject common lines of two files
et teettenteantesteesteese et e e teetaeesseettesbeeRbeeatesbeeR e e st en s eR e eReeatenteeR e Rt ente et eansenteanee s eesaeeneeteesaeetanses copy, link or move files
cpio..... copy file archives in and out
D vttt ettt entee ettt e et eeetteeate e e etbeeebeeeatteeeatearaeeatteeaab e teerseerneeeateeabe e beetbeeateeerneesareearaentaeannas C language preprocessor
16 4o S OSSR RPRRSSTR encode/decode files
(oL + T U TSP P RSP PSRUPUN C shell
CRBGS. .t evteteeute ettt et e st et e e e ete et e e ea s s ke eate et e bttt ettt eh e et bt bt et aten b ea bt eh e a et e et et e bebe e beentes create a tags file
cu.. ..call another UNIX system
cut...... cut out selected fields of each line of a file
CXTCE .ttt ettt ettt et ettt eh e st aeea e naeabeetaen generate C program cross-reference
AL, ..ttt ettt at et e reeta et e et ebeeabeesb e b e benaereeaeres print and set the date
G0 ettt ettt et et et e ets et e eteere e aeerteteeas e te e b et ebe e b ebereeereenbe e desk calculator
dd.... ..convert, reblock, translate, and copy a (tape) file
EHA. ..ottt ettt sttt et be b e e e make a delta (change) to an SCCS file
deroff ..remove nroff/troff, tbl, and eqn constructs
A ettt et ettt et eerbeeeraeeas report number of free disk blocks
I oottt e et et et et e e teear e etreereereereens differential file comparator
diffmk..... ...mark differences between files

.directory difference comparison
U ettt e bt s et r ettt r e te s et s b e st et s e b et et e et e s e seetesaereasaereeees summarize disk usage
.echo (print) arguments
B0 .ottt e ere et ettt e b be et e et beetbeeheeat e ta e beetaereeabeer e et et e enreebeeteeaaeas text editor
ENADIC ...ttt e te et e e reenaeenaenteennentennes enable/disable LP printers
BRIV ..ttt tt e ettt e et e bt e e taee e ateeaeeeatb e e st e e bt e eabe e bt e bt e e abeetteehbeeabeenbeeeneean set environment for command execution

Table of Contents

... report error information on last failure
.. text editor commands
.. expand tabs to spaces, and vice versa

.. evaluate arguments as an expression
... FORTRAN 77 compiler
...factor a number, generate large primes

.. FORTRAN 77 compiler
... determine file type
.. find files
... get a version of an SCCS file
............. parse command options

.search an ASCII file for a pattern

.............. give first few lines of file
.. ask for help
ROSINAME ..ottt et et sbe e ns set or print name of current host system
DD handle special functions of HP 2640 and 2621 series terminals
... find hyphenated words

.print user, group IDs and names

... relational database operator
... terminate a process

JASE ..ttt et eb b e b saa et e reeaeas indicate last logins of users and teletypes
LA bbbttt e b et h bbbt b e b et eb e et e st ket b eneen b e e enaaenee link editor
lex. ..generate programs for lexical analysis of text
lif..... ...Logical Interchange Format description
BECD .1ttt ettt et ettt et b bt ra et e s e s et e b e s b ae b ensereebensenaerees copy to or from LIF files
BANIE. ..ottt ee ..write LIF volume header on file
BIS ettt eae e nenn list contents of LIF directory
BET@NMAMIE. ...ttt sttt b ettt a bbbttt rename LIF files

BEOM e remove a LIF file
B ...ttt ettt ettt e be et e b b et e s teenberbenrans read one line from user input

link...... ..exercise link and unlink system calls
It ettt ettt b ettt aereeaa e e es et et ersebe s ernereereans a C program checker/verifier
JOGIN 1ttt e h et ettt e bt e bt s e bbbt et et e et e et e e bt et et eneeeneennean sign on
JOGNAIME......ccuiiiiiieiicie ettt ettt ettt b ettt e steebe et et e st esbe st e b e st e b e be st esebesaesaase st ebessesbassaesaanaans get login name
LOTAEE.......c.ooiiitiiceee ettt find ordering relation for object library
Ip..... ..send or cancel requests to an LP line printer
DA e ettt b e b b e e st b et et b et b teetas s e st ebenbenbesaennens line printer daemon
JDE et et b b bbb e s e te st e bt be b e n b et b et et ese b et e s e eteeteteernna line printer spooler
IDSTAL ...ttt ettt sttt a e e bt print LP status information
IS ettt ettt b s a e a sttt eebe b e ebeebesseseeReete et ansereeseraeseesantn list contents of directories
Isdev list device drivers in the system
mail..... .send mail to users or read mail
mailx e send and receive mail
make .maintain, update, recompile programs
1171 1 O OO OSSOSO U U SORUU PO PSR PSP SRR on-line manual command
TNIESQ ..eeetitittteeeeeitiietatr et eeeeeeeeeanaebeeees e e et e ee e e et r e eeee e eannn e n e e e e st naneeeeaas permit or deny messages to terminal
INKAIL ...ttt ettt ettt ettt et e e b e eb e b e b e st ereeteetaetees e s et e st eteeb et eteeseese st etaereeteeraentens make a directory
mm ...print documents formatted with MM macros
IMIOT@ouiteutenteeateesee e e e et eteesbeeabe s esetesseeseeseemsesbeesaeeatenbeesaees e et en st entenheententesneennan file perusal filter for crt viewing
TTIOUN ..ottt eittitte ettt e sttt et e eat e et eesbeesieeesbeesbe e bt e e e e e e bt enbeeeabbeesbeenbeeeneesaeesebaenbans mount and unmount file system
TN magnetic tape manipulating program
IVAIL ... cteveetiiteteste ettt ese et eesteteete b et esbeseebessessesaeseeseesessassessasseseeseebeesaraesees e b esbeb e et et ansenteeseees move a directory
ncheck... .generate names from i-numbers
TIEWEIP . .eentteeiiteeaiteeeutee ettt e stte sttt eeaterab e et teeaseeas e e ss b e et e ehbeeeabeeebaesabe e b b e e bt saaeebneeabeenbe e nreeenne login to a new group

2-

Table of Contents

TYCWS ..etvtvtueveasttaseeeeseeeaeeseeeeaeaeaesaeees et at st bttt et e e e e te e e e e e et e et e e e e e e e e e e et te e e e e et et e et e te b et et eaesesseeaaes print news items
1011 =S OO POP PO PP P PP PPRPPPPRPPIORE run a command at low priority
2] O SO O TP O T TP P PP PPRPRUPR line numbering filter
1116 DSOS PP PR RUPPPPRUPPP print name list (symbol table) of object file
NONUPD ...ceviiicic e et run a command immune to hangups, logouts, and quits
.. format text

octal and hexadecimal dump

..................... compress and expand files
.. change login password

PASEE ...ttt ettt e ettt ettt e et e e e b e s etbee e e merge lines in one or more files
Pascal compiler

................................... print files

printenvprint out current environment

printfmt... ...format IBM/RJE printer output
PO ettt ettt b h bt ehe e sh et e ab e et e s e bt ea e b ettt en display profile data
PIS ettt ettt et e tte ettt et a e et e b et e a bt ha ettt bttt n e eat e b e sb e shbe e e e eareeate s print and summarize an SCCS file
P eeiiiiiieeiiinieenmnneiieiisssisesseestaerstetieersastiirisesianstttesttetssttreatiesssteetetttaressanstetteenitaateettestrasaatanrees report process status
ptx... ..create permuted index
pwd .. working directory name
Y2780 ettt ettt a ettt she et beeb et neas 2780/3780 terminal emulation
r2780traceformat a trace dump from r2780
ranlibconvert archives to random libraries
FAHOT ...ttt ettt ettt ettt st b e b bt et be bt reene rational FORTRAN dialect
Y@V oitteeettette e teeesteeeeusteeabeeesteaetseeabeeass e e bt e eabeee e ea ke et b e ehe Rt e st e eh et ea bt e et b eh b e e bt e bae et b e nabeeatenne reverse lines of a file
revisionget HP-UX revision information

TESTAL ...ttt et e a e ettt st ene e s RJE status report
|40 DU SO SO TURU SO RS SUUPRROPRORRUPRPROPNY remove files or directories
TN ..ottt ettt st et e e b e e s naeataaanaes remove a delta from an SCCS file
TN oottt e ettt e tbeeneas remove extra new-line characters from file
1212 YOO restricted shell (command interpreter)

..print current SCCS file editing activity

scesdiff ...compare two versions of SCCS file
LT OO SO O SO OO OSSP UPRUSORPRTPOP stream text editor
SCIA. ..ottt ettt et eta et e aae e ae et teeteaeateeaeeateeeabeeeabeeerbeesbaeaaa e et eeaneeentetabeantes submit RJE jobs
sh ... shell, the standard command programming language

size... . et size of an object file
sleep ..suspend execution for an interval
10) ¢ SUTT OO U PP POUPUP PR PP PP OPPPPTRURPON sort and/or merge files
SPCIL ..ttt ettt e a e te bt h bt ea b e et e e e e be e bt e e bt e e h bt e abeeaae e ettt enta e tenteas find spelling errors
SPHE 1.ttt ettt e ettt ettt et et et e b e e teeae e e te st et e et enae e st en b san e s aenteeteensennaenteteetnesareen split a file into pieces
SHANGS .vveuvievreteireete ettt eeteereeere e te et e reebeetaees e se e s ebaseeseeseaeesaensenseenaeenreeneennanes find printable strings in binary file

..remove symbols and relocation bits

stty ..set the options for a terminal port
SUL 1ttt eteeeuteeesteeeseeeetaeeeesse e teeeaaeeess e e bteeaneeerseeabeerbaesaeetbeeabeeaaeeseeenseeesaeeetseeaseaaraeenteeteenrene become another user
SUIMN .ttt eetteeuteeeuueeessreesesaeeesesaenaeanseesseeasseassansseensaensaesssesusaenseessseeseessaeenns print checksum and block count of a file
DS ..ttt ettt s et e e s h e et e bt et e s et nh e e a e teerae bt e e e besateren set tabs on a terminal
taildeliver the last part of a file
BB L.ttt ettt ettt e et e et b e et e e ettt et et e ettetbeneere et et e erseteetaeaseeseereereeene et ebeerreerereenteeres tape file archiver
D] ettt e st et et a et r e st et e e st et e areeseanteeneenraesaeneas format tables for nroff or troff
IO L. Command Set 80 Cartridge Tape Utility
. ettt ettt ettt bt st et e h e eh e bt e e bt e e e e b e e et eh R et e e Rt e bt e b e b e saeat e Rt enbenareabaes pipe fitting
test ..condition evaluation command
HITIE ...ttt ettt ettt e et e et e ae et e et s ettt e et et e b eat et e he e et et e e nb e et et e e s ae b e eneeaessaenennnenne time a command
BOUCK ...ttt sttt s eaeeaeeneens update access/modification/change times of file

-3

Table of Contents

Lttt e et e h ettt b e e bt e b e e be e bt e h e eesh b e e be e bt e e eateeab e et b e nrenaaenbeaas translate characters
BIUC ..ottt ettt ettt e st e et et e e st e st et e e aa et e et e e st e st e et e st enaenaeesaeeaeenaesreeneeraenreens provide truth values
S ettt et e st e et a et e e b b e et e e e seenteehbeeseeenres terminal dependent initialization

BSOTE Lottt ettt ettt et e e ae et e et et e et b e st et e s e ea s e ate et e ent et e e aaeertenb et e easeententetesatetesateraeereenrens topological sort
L1V ...get the terminal’s name
ULttt ettt et b ekt b ek a et R b e s s b e b bkt ben et et et ek et et s entetaneaneseeberennans do underlining
UIMNASK. ... cuteiteetetentiitetesteste ettt e steste st ete e e s esse e esesaeseeseeseesasseseesessaessesessassassensasessasensans set file-creation mode mask
UNBIMIC. ... cuteuttenteenteeereereesaeeseenseeseessansesseassessesssensensessesssesssensersesssensesseessensns print name of current HP-UX version
UNIGEE .ttt ittt ettt e ettt s e et et e et e e stbe e aesate e te e et e e bt e s hbaesabeebeesaaaeas undo a previous get of an SCCS file
LN ettt eritaeeeesuaeeeeareeeeestsseeasssseeassssesssssessansessssessessseessssssessssssesnssssesssasasassssessnnes report repeated lines in a file
L0 111 OSSP PR R R PSPPPUON unit conversion program
upm.... unpack cpio archives from HP media

UUCICO. .+t eeteetteette ettt e eteeeaveeteeeseesae st esseessessesseeseeseessessessasseessensaessenseesaesseessessesseensenne uucp copy in and copy out
LUGP. ¢+ttt enteeutesteeseeseaasseensesseessanseeseensesseassansessessesssenseansensennsensesneensesnsessenneen UNIX to UNIX copy; file transfer
LUSEAE ..t uucp status inquiry and job control
LUBO Lottt ettt a e e bbb sa et et b e sabeene s public UNIX-to-UNIX file copy
uux ...UNIX to UNIX command execution
UUXQ L. 1ot vevrenreereteessesseveereessesessessessessessesesseseesessassesessassessesassessessensessessssensessessessessesenses uucp command execution
VAL ettt etttk etk bRt b etk n ke h et te st s et s e et et st s aeane validate SCCS file
Vit ttt ettt ettt ettt e heea e bt ettt et e eb e e Rt bt e beeh e e neesha e st et ente e beeraens visual text editor
..await completion of process
.................... write to all users
...word, line, and character count
WHAL....eetiitt ettt ettt ettt ettt ettt a et a et et et et e bt eneeneereebene identify files for SCCS information
WHETEIS......eveiiieiiiiiiectieice ettt eaa e locate source, binary, and/or manual for program
WHO Lottt ettt sttt e s e bt et b b b st st e b st sttt e st e s eneenens which users are on the system
WHOAO ..ottt which users are doing what
WIHE. ...ttt ettt et ettt s b e e ene e interactively write (talk) to another user
xargs... .construct argument list(s) and execute command
JACC «.evvtuteeueenteenteestesstestsesstesseese e seestesseeseehee s anaeshees e e st e et e b e ba e teenbe st e st e nneeneeenean yet another compiler-compiler
2. System Calls
BCCESS. . .evveerienetenteeat et eeutaateeteese e et tra e e e e s he e bt ee et e et eat e et s et et na e e be et et e bt et e naeennenne determine accessibility of a file
ALAITIL L.ttt a e et a et n e st e a e e b e et b e bt et e aa e b e ereerseaaeane s set process’s alarm clock
DK ettt ettt be e ne e ers et eraenns change data segment space allocation
CRAIT ottt et et et etb et e re e teerterreereereens change working directory

....change access mode of file

chown .change owner and group of a file
CRTOOL. ..ttt ettt ettt e a et e s e et e es e beebanbe e et e ete s erneraan change root directory
ClOSE ... ettt ettt ettt e e re et et te e eaeerseteenes close a file descriptor

..create new file, rewrite existing file

dup..... ..duplicate an open file descriptor
BITIS ..itiiitieetteesttte ettt eeeaeeeetseeebaeeseeeaseeebeeesaeeabeenseesbe e sae e st e et beenseeesbaeeteeerbaeerbaesraeesaeanns Extended Memory System
CITINIO. ...ttt e st s et et e st es e te et b e e et e s et e st eb e se st en e eb et an s et e essabesseneeseereereabeen error indicator
BITTIO . . eutententeneensestestesteeseassessesaes e et ssaesees s esessasaesssesseseesseseesessessessensasensesessensansaneas error indicator for system calls
XEC .ttt et e et et e et e e e e ehae et e et et e et b et e et e eaa e e eab e e bt e e tte et e e bt ebeeeabee b teeabeenbe e st tebaeenseeens execute a file
XL ..ot e s s eb e e e terminate process
Ol ettt sttt e ae et Rt e e e e s e st e st e neen e eseeeseens file control
BOTK ettt ettt et et et e ete e s e aeeaeetb e beentesteeteenbenreens create a new process
FSYNC ettt synchronize a file’s in-core state with that on disc
GEHHOSINAIME.vuieeieiieie ittt et es et ebe st s e s e seeneebe b esaeneas get name of current host
GetPId ..t get process, process group, and parent process IDs

Table of Contents

GOIUIA ..ottt et get real/effective user, real/effective group IDs
HOCHL ettt ettt ettt b e et s e b st e ke eat et e bt e teeaaeaae st e he e s et s aeneentaeten control device
KilL ..ottt ettt e a et et e rb et e b e e beeaaene e enteneeaaesaenseeneens send signal to process(s)
BINK. ettt b ettt b bR b et e e b et es e et e eR e be st et b e bt et e st et en s eReebaenseneenes link to a file
ISCEK ...t ettt ettt ettt e ettt e et e eba e enatenteeenteennes move read/write file pointer; seek
memadvise ..advise OS about segment reference patterns

MEMAILCoouieiiiiiiiict ettt sa s et benaas allocate and free address space
MEMCAMA........eiiiiiiiiie et et sbe bt ae e e change memory segment access modes

MEIMICK ...ttt lock/unlock process address space or segment
TNCIMIVAYYoeoiiiiiiiiieeeeite e etteebeeeaa e s bt eaae e ba e s e s e sat e sa e e bs e ean e s eaaesaaaeaessabee sanesaneennsensates modify segment length
MKNOM ...ttt ettt eb et et a et s s eaesbesae s s eseesessaseneas make directory, special or ordinary file

TNOUN c..e.etiiieteeeteetteetteeteeeeeaeesaeseeeseessenseestenseesesaeesaeesee b eseestesstenseaseaseeseentensesseseensassereeeseen mount a file system
TUC@ ...uveetitieteeteette et e ese e et eteeae et e e e e seesees s esbeessesseabe e et e ene e st enteeh e et e e nten b et e e st eneeneeneens change priority of a process
OPCIN. it eutesteaseeuseeseesseeestesseessesseeseesaesaessenbesseeneenseeste shesaeesae b eent e teententenneenaannenne open file for reading or writing
PAUSEuviiniieiireeetieeetteestteestae et e eeeseesaeesbe e st e esae e h e e e e htenbbeeh b e e st e e aae et e e eabeebaeentensaes suspend process until signal
921 T OO OO PP R PP U PP ORPPOPPOON create an interprocess channel
PIEALIOC.ottt e e et ear e e e aeeeeetaeeenares preallocate fast disc storage
POl .ttt b e st eh e bbb s r e be b e sa et et ense e etatas execution time profile

PITACE ...ttt et e e et e et e e et a e e et e e s e bte e e e e s eanhtbbaee et nbba e nartaaaaeaeen process trace
- Tc O OO U USRS PRRURI read from file
sethostname. .set name of host cpu
setpgrpset process group ID
SCEUIA. ..cuvteurieiieieii et eete ettt et et e st et et ete et et e st e tesae st et e st ese et e b e st e st e st e saebe s ensentes e nebenteneeaarenn set user and group IDs
SIGNAL....e ettt ettt e e e b e e be e s ae e raeebaeseeeabeans set up signal handling for program
Sttt ettt ee e e e e e e e e e e et e e e e te e e e aeeeaaaeee e tbaeeeattaeaestteeanbaeentaeeeaaraartteeennraaeenns get file status

...set time and date

Sl ettt ettt e e e e e e e et aaeeeeheeeeeaeeeasaaeeasseeeeanseeeensaeeas et eeetasaeanteeeeenaeee st ee e naaeeateeeenenaaeenne control device
SUNIC .. eetteeuiteenteeetteeeuueeeetseeesaeeesaeeesseesseessaeassaesseesse e ns e e s beanaeeabeeehaeeetbeeabeenbeeenbeeaeebaeenteeebenten update super-block
111 4 L= O PP PRSPPSO PP PPTPPPPP get time
timesget process and child process times
BIAPIIO ..ttt et eiae et et e et et e et et et e s ettt et et eae e sa et e be ettt e st ettt eeae e nae e st e nne et nanesaene hardware trap numbers
truncate ...truncate a file to a specified length
LB .ottt et ettt e e e b e bt e et e e e be e saaeeabeenbeeraeenbane s get and set user limits
UIMISK. ...ttt etieete ettt e ete et ete e seesse st eeseesseaeeseesseessessenseesseseessesssessenseensesseeasesaans get and set file creation mask
UIMOUNE ...ttt ctieeteeetee ettt e e e eteesae et eesaesaessaeseeseeseessasseessessenssenseassensenseessanseessessesseessasenn unmount a file system
uname... ..get name of current HP-UX system
unlink.... ...remove directory entry; delete file
USEAL. ..o etieste ettt et et e et et e st et et e ee s st et e et b e b e e se e bt enteeae s heen et eh e et e nrees b e bt eneenbe s et e neenens get file system statistics
UBITIC ..ottt ettt ettt e bt e st eab et e e sabesabeeatr e e e e sabesane e set file access and modification times
vfork.. ...Spawn new process in a virtual memory efficient way
vsadv ..advise system about backing store usage
USOMN....uteutte ettt eeuseetateeenseeeeteeesasaeesseeassesesaseeesseesseasseessesenseasseensseesaansneanns advise OS about backing store devices
wait..... ...wait for child process to terminate
WIHEE. .ttt ettt ettt ettt et e ettt e st e e ettt e e sub e e s e e s eaeteeeab e e e e nbeeeear e e e e b bt e e sabe e et a e e naeesareeeeenaraes write on a file

AOAL.......ooiiie et ettt reeeata s convert between long and base-64 ASCII
BDOTE. ...t eeae et ere e e aaaan e generate an 10T fault
@D, 1ttt ettt ettt et e te et e bt beareeat e b e eabeebaereesbeeabeteeaeenseseetentans integer absolute value
= XY o OO PRSP PPPRPP RO PPRPPRRPTRPPPINY program verification
atof..... ...convert ASCII to numbers
DIESSEL.....eeuieiieieetet ettt ettt ettt ettt et b st s e a et et e e st ene e e et ase st esaena et ennnreehenba et bessel functions

Table of Contents

COMV Lottt ettt ettt s e et ebaae s ettt s e e e ebes e e e e aabeb e e e e e e e aebabba e e e e e aasaaeb e s e e ae bt e s s e eatsnaseeasenntnnaees character translation
(o1 4, o SO TP OO T PP P PP P PP PPPRRUPRPIRPPRY DES encryption
CEEITIIA ...ttt ettt ettt et et b et et e b et et e et et e seere b e sneseeseesasseebebensensan generate file name for terminal
CHITIC ..ottt ettt ettt ettt sttt st et e s e e b et e s et entenseneesaas convert date and time to ASCII
CEUP .ttt et b bt sbe et eb et ehe et e b eneen character classification
cuserid... .character login name of the user
ITECIOTY ...ttt ettt ettt ettt b et s ettt e e e bbb b s et ebessese s et esassens s s esseseseene directory operations
[=101 1 SO PP UP PR UPPPPPPRRTOPRPPIRY output conversion
@I ..ottt et e ae et b e e e ra et et eebeeae et e ereeebe e e e eteere e re et et eeres last locations in program
(254 = T U TSSO exponential, logarithm, power, square root functions
BCIOSE ..ottt ettt ettt ettt a e aeea e bt eat e ereere b eren close or flush a stream
FRITOT ...ttt ettt ettt ettt b ettt st eae et et e st ereeaeerbere et e reeaerneneens stream file status inquiries
i (oYo) (O SUT ...absolute value, floor, ceiling, remainder functions
FOPN ..ottt open or re-open a stream file; convert file to stream
rEAd ...ttt buffered binary input/output to a stream file
BEOXD. .. vttt ettt ettt ettt ettt eea et eera b teeab et e ne e neeraeereers split into mantissa and exponent
JET=T) RSP POPRORORRR reposition a stream
GAIMINIAvveevee ettt e e ceaeeeetaeeeaaeeeteeeasseeseseeteeesseeaseeesseesseasseesssessessseeesssensbeseesaseennsenseeennes log gamma function
gefcget character or word from stream file

GEECIIV. ...ttt ettt ettt ettt e et e e e et e e b e e bt e et b e ba e et ba e bae bt e entaeetbe e baesaraeeaen value for environment name
GOLGTCNEeeuiivieticie ettt et eteett et ete et e st et et e e et e s e b et ese b et esee b e es e b e se et b neeseeae b eabe et ertesseneeteerens get group file entry
GOHIOGIN.veiti ittt ettt ettt ettt e e et heete s b e b et e s e e b e sa et e asebeete e s eneeaeerenren get login name
o (23 (o] o SO OO USSR U SRR RPTRRP get option letter from argv
GREPASSuvvieitie ittt cetee et e et e et ete e et e et e eta e et teeeteeete et e eteeaaeeeateetbeeateeateeeabeeeateeeteeeaneerreeenreenrs read a password
getpw ...get name from UID
GEEPWENL ...c.vviviciiicii ettt ettt et e e e e e e ae st e ebaebeeseeasessesseessesbesssessasseenseassebeessenseenseeseeseen get password file entry
GOES ettt ettt e et e ettt e e e s teab e e e teeehteetbeetbae s ae et b e nabeeerbaetreeanas get a string from a stream file
GPIO_GEE STALUS.......uiiiiiiiiiccie ettt ettt ere et r e e eraeetbe e e taeeeaaeenraeas return status lines of GPIO card
GPIO_SELCHlviiiiiiiiie ettt ettt e ba et taere s eneeraens set control lines on GPIO card
hpib_abort....... stop activity on specified HP-IB bus
NPID_DUS_SEALUS ...ttt e eae e e et eaeere s return status of HP-IB interface
hpib_eoi_ctl........ ...control EOIl mode for HP-IB file
hpib_io............ perform I/O with an HP-IB channel from buffers
NPID_PASS_CHL ...cuvivieeiciici ettt ettt an change active controllers on HP-IB
NPID_PPOLL ...ttt e naees conduct parallel poll on HP-IB bus
hpib_ppoll_respcontrol response to parallel poll on HP-IB

hpib_ren_ctlcontrol the Remote Enable line on HP-IB

hpib_rgst_srvce... allow interface to enable SRQ line on HP-IB

hpib_send_cmnd............coeeiiiiiiiiiiieee e et send command bytes over HP-IB
RPID_SPOI ...ttt et sa et se s naens conduct a serial poll on HP-IB bus
hpib_wait_on_ppoll............ccceeveirerieieieieeeieeeeee s wait until a particular parallel poll value occurs

hpib_wait_on_status.. ...wait until the requested status condition becomes true

UPOL ...ttt ettt ettt et b et b e b et erb et r e e b e ab et e e b e b e eateersenaeensenneenees Euclidean distance
INAPOLL. ...ttt enable/disable integer trap handler
HO_CLOSE ...ttt ettt sttt ettt e e enbe e ae e e close an entity identifier for a channel
I0_Get teIM_T@ASOMoviieuieeiiitititeieiet ettt ettt se e s ere e determine how last read terminated

io_open.open channel file for reading or writing
HOT@AM ... evveetieretetiet ettt ettt ettt et e ae bt e b ste et ese b ettt eae et et et enbe st enteseeaean read from a channel device file
HOLT@S@E. ...ttt ettt ettt et e ettt e st st et eeae e sbeene s reset an I/O interface
HOS@L @Ol ...eeiiiiiiiiiiieeiiecceiee ettt set up read termination character on special file
J0_SEL_HIMEOULeccviiiiieciie ettt ettt s e s e e sbae s establish a time limit for /O operations
io_write........ .write to a channel device file
HOXI@L_IMOAE ...ttt ettt e set width of data path
HO_XECT_SPEEAueveviciieiesieieiee ettt ens inform system of required transfer speed

Table of Contents

convert between 3-byte integers and long integers
... return login name of user
... main memory allocator
... make a unique file name
.. prepare execution profile
..get entries from name list
............... system error messages
..initiate pipe I/O to/from a process
.......................... output formatters
.put character or word on a stream
......... write password file entry
...put a string on a stream file
... quicker sort
... random number generator
.compile and execute regular expression
..formatted input conversion, read from stream file
.. assign buffering to a stream file
.. non-local goto
... hyperbolic functions
... suspend execution for interval
... software signals

SEAIO 1.ttt ettt s standard buffered input/output stream file package
L5301 o o SO OPP PR character string operations

SWAD. ...ttt et ettt et e et eete et e te et e eteeuees e e at e e eateen e a b e e Rt en b e ee e e Rt e heeR b et bt e heea b e s e nh e e bt et et nte e beeanenarean swap bytes
[=3+« SO O O O O PP T U PP TP PP P PR PPPPION issue a shell command
termcap ..access terminal capabilities in termcap(5)
EMIPFLE ... et ettt et eare e create a temporary file
BMPNAIM ...ttt ettt e e sabre e e et et e e stb e s rae e e naesesraesann create a name for a temporary file
(4 1o SO PSP PP PP PP PPPPPPTPTTRRIN trigonometric functions
BIUNIAITIC. ...ttt ettt ettt ettt e et et eetbeeenb e e s beehbe e bt e sat e e beeehbeeabesab e e nt bt e e eeteens find name of a terminal
UNGEIC ...ttt eaiieeiiieestte et e e tee et e et e et e sttessbeesbe e bt e e s aeebbeeeateeabsesaresabeenaresans push character back into input stream

STttt ettt ettt et et bt ehte e bt e h e et e eabeeeh e e e st eabeeebeeeateeeabenbe e nnes direct disc access
graphicsinformation for crt graphics devices
PDID et ettt eb et ea et ne s hpib interface information
JASEY ..ottt description of HP 2680/2688 laser printer driver
DDttt ettt ae et e tae et e e tae et bt e aa e e teent e eaaeeheeennteeasenntees printer information
IMICITL. . eviteettetseetenseteesesseeseeseseasessesees e s eseesees e s e s e st eses s e st esees e eseaseateseebeeeemtese et e s ene e st enees et e enb et enaes core memory
I Lttt e et e et e bttt e et e s bb e e an e an e e e aar e eane s magnetic tape interface and controls
1101 | USRS P PR null file (" bit bucket")
Bl ettt e ettt e e b e et b e et e et e e e et e ab e et e e n e teeabe e bt e bt e e bt e beeeheeehbeenntenaeeas general terminal interface
5. File Formats
BLOUL. .ttt ettt et ettt et ettt s h e a bbbt e ee st e et e e e be e e en e nnenae s assembler and link editor output
archive file format
CRECKLISE ...ttt ettt et et er e list of file systems processed by fsck
COT@.. uiiuiteeeteeeeteeeeteeeeaeeeess e e seeeseeasseesseessaenseeesseeessaeenbeeesseenseeest e nbeebeaeseessbeenbeennteansbeanne format of core image file
CPI0. 1ttt ettt ettt ettt e ettt e et e et e eeaee e et e e et e teeeaeeetae e bt e e b ae e ae e beerbaeehbeeeteeataa e bt e bt enbaeenbeennbaesbanee format of cpio archive
CTONEAD. ...ttt et ettt ettt et et e st e e e ese ettt estees e e st et e st es s e saeeseentesatebenbe et sennenbeebeenneeas scheduling file for cron(8)

Table of Contents

QL ottt e e e b e h et e e e et et e s e teeabe b ae b e seesaeesbeebeeseenseennenneans SDF directory format
ertfile.. ..system error logging file
fs.......format of system volume
B .ttt ettt et et ettt testens format specification in text files
GEHYARSS ..ot e speed and terminal settings used by getty(8)
GEOUP ...eeuvteetreeuureesteasseeasaessaeesseessseensseseseeessseseeeheeesseesbeessesateesaeeeat e eb b e esbe e e eabeesbeeabe e bt e abecabeeenbeesnrenane group file
inittab control information for init(8)
NIOAE ..ottt ettt et e e et e e b e e et e te e te e et be et ae et e e be e bt e e ba e st eenbteeetbaeataennaeebaeennaen format of an i-node
magic ...magic numbers for HP-UX implementations
mknod create a special file entry
mnttab. mounted file system table
TNOAEL.......eiiitieiie ettt et e e et e e st e e tbeetaesbeeabeeabe e a e eb e e sabeeebaenaaas HP-UX machine identification
PASSWeuveetieereeieeste st esteeseesteesteseeesteeste st e e s e e bt eb s eat e b st e bt b et e bt eh s ea e eae et e abeshe et e naeeeteebe e beeaeenaensren password file
PYOFIlE ...t e st set up user’s environment at login time
FANID ...t ...table of contents format for object libraries
.................................. format of SCCS file
terminal capability data base
BB D@, 1ttt ettt sttt ae data base of terminal types by port
UBITID 1.ttt et et st et sateebesa e s be bt e s b e n e b ern b et eaesnnennanne utmp and wtmp entry format
6. Games
No games are currently supported.
7. Miscellaneous Facilities
.. user environment
... file control options
................................ macros for formatting entries in this manual
the MM macro package for formatting documents
... regular expression compile and match routines
.............. data returned by stat/fstat system call
................... conventional device names
... primitive system data types
8. System Maintenance Utilities
BCCPE...uveeuteeeieeteeeteeteeteetteste e s esat e seesaeaseesseessenbesae e st en s e b e beeae e st en b e enteshe e bt enteenaeeatenaan allow or prevent LP requests
BDACKUD ...ttt ettt sttt n backup or archive file system
CAITIANueiiieiieeeiiieetie et et eeeete ettt esbeesstee st eesebeeabe e st e s st eesbe st eeaeeembeebeeesbeeenneens create the cat files for the manual
chsys..... ..change to different operating system or version
L& 1 T OO RO SO PO SRR PPOUOPOPRPPTPPRRPPRORt clear i-node
cron...... ..clock daemon
QUNIMI....couiiiieiie ettt ettt et te e et e et e e et e esaess e b e eaeesaesseensenseeseenseesseessessenseeneesssensansaensenen device name
BSCK 1 vieeiteee ettt ettt sttt eaee file system consistency check, interactive repair
BSAD ..ot be s file system debugger
WEINID ..ttt ettt et b bbb ee e b e e sttt en e e eanenenaeeane s manipulate wtmp records
getty..... .set the modes of a terminal
init..... process control initialization
ANSTALL. . bbb install commands
KIllall.......coeeieieieieeee ettt na e e e send signal to all user processes

Table of Contents

IPAAMUIN ...ttt ettt st er bbb st ens administer the LP spooling system
Ipsched start/stop the LP request scheduler and move requests
MNAKEKEY.c..itiiiiieiierie sttt ettt ettt sttt b ettt n e e rebs generate encryption key
.. make device files
....construct a file system

INKNOG. ...ttt et et e et eeaae et e e et e eeaaeeaaeeeaeeeaeeessetseesseeneeerseeenaneeras create special, fifo, files
OPHNSALL........ooiiiiii i install/update optional HP-UX products
OSCK ettt ettt ettt ettt ettt ettt bbbttt sttt n e benes check integrity of OS in SDF boot area(s)
oscp. ..copy, create, append to, split operating system
OSIMATK ...ttt ettt et mark SDF OS file as loadable/unloadable
OSINIGL.c..veivitiiteeeireeeeeeeete e et eabeeebaeesaeebeesssseseestsesaseeesssenbaassseennes operating system manager package description
PWEK ..ttt ettt ettt e te et et e b e s e et e et beeateteent e e e beereeaeenaens password/group file checkers
Lttt ettt ettt e et e ene e e tte e tbeeabaeeaae e b aeehteeeht et beea st e anbeeeteeeat e e e ate e naeeheeenaeenbaanbeenbe e neataants system initialization shell script
revck...... ettt check internal revision numbers of HP-UX files
FOOMMATK ...ttt et ettt ene mark/unmark volume as HP-UX root volume
SCONFIG . vvviutititetiet ettt ettt ettt e sttt te s essese e s e e e e st ssessesaessesesaeseesenesens system swap space reconfiguration
sdfinit.....initlalize Structured Directory Format volume
SBHMINE......cuviitititectete ettt et et et e ae s ete s e ae s esseas et e eseesasessesaeseese s eseesenseseesesseseesensessearee s establish mnttab table
SULAOWN ...ttt ettt es e b se st e eneeaeee terminate all processing
SHOPSYS. ..ttt ettt sttt sttt sbe e et rens stop operating system with optional reboot
update the super block

UCOMNEIG ..ottt ettt ettt et et e et e et e e e e aeeesteereeesseeneeenneenseereeenneeeaens system reconfiguration
UUCIBAN. ...ttt ettt ettt ettt ettt se e e e eeeeenen uucp spool directory clean-up
UUSUD L ..ottt ettt ettt ettt s e e ae et eseesesbesse st ese b eseesesseseesesessensensenraes monitor uucp network

9. Glossary

9.

Introduction

This manual describes the features of HP-UX in an alphabetical reference format. It is written for the
user who is already familiar with UNIX or UNIX-like operating systems (UNIX is a trademark of Bell
Telephone Laboratories, Inc.). The manual is intended for referencing specific details concerning
the HP-UX operating system.

For a general overview of HP-UX, see the supplied tutorial text entitled Introducing the UNIX System.
For details of the implementation and maintenance of the system, see the HP-UX System
Administrator Manual.

This manual is divided into nine sections, some containing sub-classes that are interspersed
throughout the section:

1. Commands and Application Programs:
1. General-Purpose Commands.
1C. Communications Commands.
1G. Graphics Commands.

2. System Calls.

3. Subroutines:

3C. C Library Routines.

3M. Mathematical Library Routines.

3S. Standard I/O Library Routines.

3X. Miscellaneous Routines.

Special Files.

File Formats.

Games (none are currently implemented).

Miscellaneous Facilities.

System Maintenance Procedures.

Glossary.

O 0N O

Section 1 (Commands and Application Programs) describes programs intended to be invoked
directly by the user or by command language procedures, as opposed to system calls (section 2) or
subroutines (section 3), which are intended to be called by the user’s programs. Commands
generally reside in the directory /bin (for binary programs). Some programs also reside in /usr/bin,
to save space in /bin, and to reduce search time for commonly-used commands. These directories
are normally searched automatically by the command interpreter called the shell (sk(1)). Sub-class
1C contains communication programs such as cu, fget, etc. These entries may differ from system to
system. A few commands are also located in /lib and /usr/lib.

Section 2 (System Calls) describes the entries into the HP-UX kernel, including the C language
interface.

Section 3 (Subroutines) describes the available subroutines. Their binary versions reside in various
system libraries in the directories /lib and /usr/lib. See intro(3) for descriptions of these libraries and
the files in which they are stored.

-1-

Section 4 (Special Files) discusses the characteristics of each special file (device driver) that actually
refers to an input/output device. The names in this section generally refer to Hewlett-Packard’s
device names for the hardware, rather than to the names of the special files themselves.

Section 5 (File Formats) documents the structure of particular kinds of files. For example, the
format of the output of the link editor is given in a.out(5). Excluded are files used by only one
command (for example, the assembler’s intermediate files). In general, the C language struct
declarations corresponding to these formats can be found in the directories /usr/include and
/usr/include/sys.

Section 6 (Games) describes the games and educational programs that, as a rule, reside in the
directory /usr/games. This section may or may not exist, depending on whether or not games are
supported in each implementation of HP-UX.

Section 7 (Miscellaneous Facilities) contains a variety of things. Included are descriptions of
character sets, macro packages, etc.

Section 8 (System Maintenance Procedures) discusses those commands which are useful for crash
recovery and booting the system, plus commands used to perform system integrity checks and ott.er
maintenance procedures. Information in this section is mostly of interest to the super-user.

Section 9 (Glossary) defines terms used in this manual.

Each section (except 9) consists of a number of independent entries of a page or so each. The
name of the entry appears in the upper corners of its pages. Entries within each section are
alphabetized, with the exception of the introductory entry that begins each section. The page
number of each entry starts at 1. Some entries may describe several routines, commands, etc. In
such cases, the entry appears only once, alphabetized under its " major" name.

All entries are based on a common format, not all of whose parts always appear:

NAME
gives the name(s) of the entry and briefly states its purpose.

SYNOPSIS
summarizes the use of the entry (program) being described. A few conventions are used:

Boldface strings are literals and are to be typed just as they appear.

Ttalic strings represent substitutable argument names and program names found elsewhere in
the manual.

Square brackets [] around an argument name indicate that the argument is optional. When
an argument name is given as "name" or "file", it always refers to a file name.

Ellipses (...) are used to show that the previous argument may be repeated.

A final convention is used by the commands themselves. An argument beginning with a dash (=), a
plus sign (+), or an equal sign (=) is often taken to be some sort of flag argument, even if it appears
in a position where a file name could appear. Therefore, it is unwise to have files whose names
begin with —, +, or =.

HP-UX COMPATIBILITY
shows the entry’s HP-UX level and its origin, according to the HP-UX Compatibility Model (see
HP-UX Compatibility Model following this introduction). This section also shows whether an
optional HP software package is required.

DESCRIPTION
discusses the function and behavior of each entry.

HARDWARE DEPENDENCIES
points out variations from HP-UX standard due to the specific hardware involved.

EXAMPLE(S)
gives example(s) of usage, where appropriate.

FILES
gives the file names that are built into the program.

RETURN VALUE
discusses the meaning of values which are returned by the program.

SEE ALSO
gives pointers to related information.

DIAGNOSTICS
discusses the diagnostic indications that may be produced. Messages that are intended to be
self-explanatory are not listed.

WARNINGS
points out potential pitfalls.

BUGS
gives known bugs and sometimes deficiencies. Occasionally, the suggested fix is also
described.

A table of contents and a permuted index precede Section 1. On each index line, the title of the
entry to which that line refers is followed by the appropriate section number in parentheses. This is
important because there is considerable duplication of names among the sections, arising principally
from commands that exist only to exercise a particular system call.

How to Get Started

This discussion provides the basic information you need to get started on HP-UX: how to log in and
log out, how to communicate through your machine, and how to run a program. (See the supplied
tutorial text for a more complete introduction to the system.)

Logging in. To log in you must have a valid user name, which may be obtained from the system
administrator of your system. Keep pressing the "break" or "del" key until the login: message
appears.

When a connection has been established, the system types login: and you then type your user
name followed by the "return" key (or "enter" key, on some terminals). If you have a password
(and you should!), the system asks for it, but does not print it on the terminal.

[t is important that you type your login name in lower case if possible; if you type upper-case letters,
HP-UX assumes that your terminal cannot generate lower-case letters, and that all subsequent
upper-case input is to be treated as lower case. When you have logged in successfully, the shell
typesa $. (The shellis described below under How to run a program.)

For more information, consult login (1) and gerzy(8), which discuss the login sequence in more detail,
and stty(1), which tells you how to describe the characteristics of your terminal to the system
(profile(5) explains how to accomplish this last task automatically every time you log in).

Logging out. You can log out by typing an end-of-file indication (ASCIl EOT character, usually
typed as "control-d") to the shell. The shell will terminate and the login: message will appear
again.

How to communicate through your terminal. When you type to HP-UX, the system usually
gathers your characters and saves them. These characters will not be given to a program until you
type a "return® (ora "new-line").

HP-UX terminal input/output is full-duplex. It has full read-ahead, which means that you can type at
any time, even while a program is printing on your display or terminal. Of course, if you type during
output, the output will have the input characters interspersed in it. However, whatever you type will
be saved and interpreted in the correct sequence. There is a limit to the amount of read-ahead, but
it is generous and not likely to be exceeded unless the system is in trouble. When the read-ahead
limit is exceeded, the system throws away all the saved characters.

On an input line from a terminal, the character @ "kills" all the characters typed before it. The
character # erases the last character typed. Successive uses of # will erase characters back to, but
not beyond, the beginning of the line; @ and # can be typed as themselves by preceding them with
\ (thus, to erase a '\, you need two #s). These default erase and kill characters can be changed,
and usually are (see stzy(1)).

The ASCII DC3 (control-s) character can be used to temporarily stop output. It is useful with CRT
terminals to prevent output from disappearing before it can be read. Output is resumed when any
character is typed. If DCI (control-q) or DC3 are used to restart the program, they are not saved and
passed to later programs. Any other characters are saved and passed as input to later programs.

4-

The ASCII DEL character (sometimes labelled "rubout" or "rub") is not passed to programs, but
instead generates an interrupt signal, just like the "break", "interrupt", or "attention" signal. This
signal generally causes whatever program you are running to terminate. It is typically used to stop a
long printout that you don’t want. However, programs can arrange either to ignore this signal
altogether, or to be notified when it happens (instead of being terminated). The editor ed(1), for
example, catches interrupts and stops what it is doing, instead of terminating, so that an interrupt
can be used to halt an editor printout without losing the file being edited.

The quit signal is generated by typing the ASCII octal 34 (control-\) character. It causes a running
program to terminate.

Besides adapting to the speed of the terminal, HP-UX tries to be intelligent as to whether you have a
terminal with the "new-line” key, or whether it must be simulated with a "carriage-return” and
"line-feed" pair. In the latter case, all inpur " carriage-return” characters are changed to "line-
feed" characters (the standard line delimiter), and a "carriage-return” and "line-feed" pair is
echoed to the terminal. If you get into the wrong mode, see szy(1).

Tab characters are used freely in HP-UX source programs. If your terminal does not have the tab
function, you can arrange to have tab characters changed into spaces during output, and echoed as
spaces during input (not currently supported on the Series 500). The stzy(1) command will set or
reset this mode. The system assumes that tabs are set every eight character positions. The zabs(1)
command will set tab stops on your terminal, if that is possible.

How to run a program. When you have successfully logged into HP-UX, a program called the shell
is listening to your terminal. The shell reads the lines you type, splits them into command names
and arguments, and executes the command. A command is simply an executable program.
Normally, the shell looks first in your current directory (see The current directory below) for a
program with the given name, and if none is there, then in system directories. There is nothing
special about system-provided commands except that they are kept in directories where the shell
can find them. You can also keep commands in your own directories and arrange for the shell to
find them there.

The command name is the first word on an input line to the shell; the command and its arguments
are separated from one another by space and/or tab characters.

When a program terminates, the shell will ordinarily regain control and type a $ at you to indicate
that it is ready for another command. The shell has many other capabilities, which are described in
detail in sh(1).

The current directory. HP-UX has a file system arranged in a hierarchy of directories. When the
system administrator gave you a user name, he or she also created a directory for you (ordinarily
with the same name as your user name, and known as your login or home directory). When you log
in, that directory becomes your current or working directory, and any file name you type is assumed
to be in that directory by default. Because you are the owner of this directory, you have full
permissions to read, write, alter, or destroy its contents. The permissions you have in other
directories and files will have been granted or denied to you by their respective owners, or by the
system administrator. To change the current working directory use cd(1).

Path names. To refer to files not in the current directory, you must use a path name. Full path
names begin with /, which is the name of the root directory of the whole file system. After the slash
comes the name of each directory containing the next sub-directory (followed by a /), until finally
the file name is reached (e.g., /usr/ae/filex refers to file filex in directory ae, while ae is itself a
subdirectory of usr; usr springs directly from the root directory). See the glossary for a formal
definition of path name.

If your current directory contains subdirectories, the path names of files therein begin with the name
of the corresponding subdirectory (without a prefixed /). Without important exception, a path name
may be used anywhere a file name is required.

Important commands that modify the contents of files are ¢p(1), mv(1), and rm(1), which
respectively copy, move (i.e., rename), and remove files. To find out the status of files or
directories, use Is(1). Use mkdir(1) for making directories and rmdir(1) for destroying them.

For a more complete discussion of the file system, see the references cited at the beginning of the
Introduction above. It may also be useful to glance through Section 2 of this manual, which
discusses system calls, even if you don’t intend to deal with the system at that level.

Writing a program. To enter the text of a source program into an HP-UX file, use ed(1), ex(1), or
21(1). The three principal languages available under HP-UX are C (see cc(1)), Fortran (see fc(1) or
f77(1)), and Pascal (see pc(1)). After the program text has been entered with the editor and written
into a file (whose name has the appropriate suffix), you can give the name of that file to the
appropriate language processor as an argument. Normally, the output of the language processor
will be left in a file in the current directory named a.out (if that output is precious, use mv (1) to give it
a less vulnerable name). If the program is written in assembly language, you will probably need to
link library subroutines with it (see ld(1)). Fortran, C, and Pascal call the linker automatically.

When you have gone through this entire process without encountering any diagnostics, the resulting
program can be run by giving its name to the shell in response to the $ prompt.

Your programs can receive arguments from the command line just as system programs do by using
the argc, argv, and envp parameters. See the supplied C tutorial for details.

Text processing. Almost all text is entered through the editors ed(1), ex(1), or vi(1). The
commands most often used to write text on a terminal are cat(1) and pr(1). The cat(1) command
simply dumps ASCII text on the terminal, with no processing at all. The pr(1) command paginates
the text, supplies headings, and has a facility for multi-column output.

Surprises. Certain commands provide inter-user communication. Even if you do not plan to use
them, it would be well to learn something about them, because someone else may direct them
toward you. To communicate with another user currently logged in, write(1) is used; mail(1) will
leave a message whose presence will be announced to another user when he or she next logs in.
The corresponding entries in this manual also suggest how to respond to these two commands if
you are their target.

When you log in, a message-of-the-day may greet you before the first $ prompt.

HP-UX Compatibility Model

HP-UX is Bell System III plus "HP value added". HP value added includes both Hewlett-Packard
capabilities, such as graphics, and features from other UNIX systems, such as those from University
of California at Berkeley.

Levels

The various HP-UX systems are listed below in order of increasing completeness; each contains all
the elements of the previous one.

HP-UX/RUN ONLY
This describes a run-only kernel with no commands or applications attached.

HP-UX/NUCLEUS
This is the run-only kernel plus a minimum set of commands. It also provides a minimum
command interpreter to permit access to the commands.

HP-UX/'DEVELOPMENT
This is the first "normal" UNIX, but it does not include the full UNIX command set.

HP-UX/STANDARD
This is a nearly complete UNIX. It includes most of the capabilities from Bell, but not
everything that HP will make available.

HP-UX/EXTENDED

This is the largest standard package. It contains almost everything HP-UX has to offer (a few
Bell capabilities are not included).

OPTIONAL
For the purposes of the model, there are also capabilities that are never required, even at
the HP-UX/EXTENDED level. The term OPTIONAL designates capabilities in this
category.

NON-STANDARD

This designation is given to those keywords which have either not yet been approved as part
of standard HP-UX, or never will be.

-1-

INTRO(1) INTRO(1)

NAME
intro — introduction to commands
DESCRIPTION

This section describes, in alphabetical order, publicly-accessible commands. Certain distinctions of
purpose are made in the headings:

(1) Commands of general utility.

(1C) Commands for communication with other systems.

(1G) Commands used primarily for graphics and computer-aided design.

ADB(1) Series 200 Only

NAME
adb — debugger

SYNOPSIS
adb [—w] [objfil [corfil]]

HP-UX COMPATIBILITY
Level: HP-UX/DEVELOPMENT

Origin: System III
Remarks: Adb is implemented on the Series 200 only.
DESCRIPTION

ADB(1)

Adb is a general purpose debugging program. It may be used to examine files and to provide a
controlled environment for the execution of HP-UX programs.

Objfil is normally an executable program file, preferably containing a symbol table; if not then the
symbolic features of adb cannot be used although the file can still be examined. The default for objfil is
a.out. Corfil is assumed to be a core image file produced after executing objfil; the default for corfil is
core.

Requests to adb are read from the standard input and responses are to the standard output. If the —w
flag is present then objfil is created if necessary and opened for reading and writing so that it can be
modified using adb. Adb ignores QUIT, INTERRUPT causes return to the next adb command.

In general requests to adb are of the form
[address] [, count] [command][;]

If address is present then dot is set to address. Initially dot is set to 0. For most commands count specifies
how many times the command will be executed. The default count is 1. Address and count are
expressions.

The interpretation of an address depends on the context in which it is used. If a subprocess is being
debugged then addresses are interpreted in the usual way in the address space of the subprocess. For
further details of address mapping see ADDRESSES.

EXPRESSIONS
. The value of dot.
+ The value of dot incremented by the current increment.

The value of dot decremented by the current increment.
" The last address typed.

tnteger An octal number if integer begins with a 0; a hexadecimal number if preceded by 0x; a decimal
number if preceded by 0d; otherwise the base of integer is whatever the default number base
forinputis. This base is initialized to hexadecimal.

integer.fraction
A 32 bit floating point number.

‘cccc’” The ASCII value of up to 4 characters. \ may be used to escape a .

< name The value of name, which is either a variable name or a register name. Adb maintains a number
of variables (see VARIABLES) named by single letters or digits. If name is a register name then
the value of the register is obtained from the system header in corfil. The register names are a0
...a6d0... d7 sp pc ps.

symbol A symbol is a sequence of upper or lower case letters, underscores or digits, not starting with a
digit. The value of the symbol is taken from the symbol table in objfil. An initial _ will be
inserted at the beginning of symbol if needed.

ADB(1) Series 200 Only ADB(1)

_ symbol
In C, the “true name” of an external symbol begins with . It may be necessary to utter this
name to distinguish it from a symbol generated in assembly language.

(exp) The value of the expression exp.
Monadic operators:
*exp The contents of the location addressed by exp in corfil.
@exp The contents of the location addressed by exp in objfil.
—exp Integer negation.
“exp Bitwise complement.
Dyadic operators are left associative and are less binding than monadic operators.
el +e2 Integer addition.
el—e2 Integer subtraction.
el %¢2 Integer multiplication.
el %e2 Integer division.
el &e2 Bitwise conjunction.
el |e2 Bitwise disjunction.
el #e2 EI rounded up to the next multiple of e2.

COMMANDS
Most commands consist of a verb followed by a modifier or list of modifiers. The following verbs are
available. (The commands ? and / may be followed by *; see ADDRESSES for further details.)

°f Locations starting at address in objfil are printed according to the format f. dot is incremented
by the sum of the increments for each format letter.

If Locations starting at address in corfil are printed according to the format f and dot is
incremented as for ?.

=f The value of address itself is printed in the styles indicated by the format f. (For i format ? is
printed for the parts of the instruction that reference subsequent words.)

A format consists of one or more characters that specify a style of printing. Each format character may
be preceded by a decimal integer that is a repeat count for the format character. While stepping through
a format dot is incremented by the amount given for each format letter. If no format is given then the last
format is used. The format letters available are as follows:

o 2 Print2bytesin octal. All octal numbers output by adb are preceded by 0.
O 4 Print4 bytes in octal.

q 2 Print 2 bytes in signed octal.

Q4 Print4 bytes in signed octal.

d 2 Print 2 bytes in decimal.

D 4 Print4 bytes in decimal.

X 2 Print2 bytes in hexadecimal.

X 4 Print 4 bytes in hexadecimal.

u 2 Print 2 bytes as an unsigned decimal number.

U 4 Print4 bytes as an unsigned decimal number.

f 4 Printthe 32 bit value as a floating point number.
F 8 Print double floating point.

b 1 Print the addressed byte in hexadecimal.

B 1 Printthe addressed byte in octal.

AUD\1)

Series 200 Only ADB(1)

c 1 Printthe addressed character. (The sign bit is ignored.)

C 1 Print the addressed character using the following escape convention. Character values
000 to 040 are printed as @ followed by the corresponding character in the range
0100 to 0140. The character @ is printed as @@. (The sign bit is ignored.)

s n Print the addressed characters until a zero character is reached. N is the length of the
string, including the zero terminator.

S n Print a string using the @ escape convention. 7 is the length of the string including its
zero terminator.

Y 4 Print4 bytes in date format (see ctime(3C)).

i n Printas MC68000 instructions. n is the number of bytes occupied by the instruction.

I n Same as i, except that immediate constants are printed in decimal.

a 0 Print the value of dot in symbolic form. Symbols are checked to ensure that they have
an appropriate type as indicated below.
/ local or global data symbol
? local or global text symbol
= local or global absolute symbol

p 4 Print the addressed value in symbolic form using the same rules for symbol lookup as
a.

t 0 When preceded by an integer tabs to the next appropriate tab stop. For example, 8t
moves to the next 8-space tab stop.

r 0 Printaspace.

n 0 Printanew-line.

"..." 0 Print the enclosed string.

" Dot is decremented by the current increment. Nothing is printed.

+ Dot is incremented by 1. Nothing s printed.

- Dot is decremented by 1. Nothing is printed.

new-line
Repeat the previous command with a counr of 1. Also can be used to repeat a :s or :c
command.

[2/11 value mask
Words starting at dot are masked with mask and compared with value until a match is found. If
L is used then the match is for 4 bytes at a time instead of 2. If no match is found then dot is
unchanged; otherwise dot is set to the matched location. If mask is omitted then —1 is used.

[?2/1w value ...
Write the 2-byte value into the addressed location. If the command is W, write 4 bytes. Odd
addresses are not allowed when writing to the subprocess address space.

[?/Im bl el f1[?/]
New values for (b1, el, fI) are recorded. If less than three expressions are given then the
remaining map parameters are left unchanged. If the ? or / is followed by * then the second
segment (b2, e2, f2) of the mapping is changed. If the list is terminated by ? or / then the file
(objfil or corfil respectively) is used for subsequent requests. (So that, for example, /m? will
cause / to refer to objfil.)

>name Dot is assigned to the variable or register named.

! A shellis called to read the rest of the line following !.

$modifier
Miscellaneous commands. The available modifiers are:

<f Read commands from the file f and return.

ADB(1)

Series 200 Only ADB(1)

>f Send output to the file f, which is created if it does not exist.

r Print the general registers and the instruction addressed by pc. Dot is set to pc.
Print all breakpoints and their associated counts and commands.

C stack backtrace. If address is given then it is taken as the address of the current frame
(instead of a6). If count is given then only the first count frames are printed.
The names and values of external variables are printed.

Set the page width for output to address (default 80).

Set the limit for symbol matches to address (default 255).

The default for all integers input is octal.

The default for all integers input is decimal.

The default for all integers input is hexadecimal.

Exit from adb.

Print all non zero variables in octal.

Set the number of significant digits for floating point dump to address.

Print the address map.

6 Cc

B:C-Q%Q-OU’E@

new-line
print the process id and register values.
:modifier
Manage a subprocess. Available modifiers are:
be Set breakpoint at address. The breakpoint is executed count-1 times before causing a

stop. Each time the breakpoint is encountered the command ¢ is executed. If this
command sets doz to zero then the breakpoint causes a stop.

d Delete breakpoint at address.
d* Delete all breakpoints
r Run objfil as a subprocess. If address is given explicitly then the program is entered at

this point; otherwise the program is entered at its standard entry point. coun: specifies
how many breakpoints are to be ignored before stopping. Arguments to the
subprocess may be supplied on the same line as the command. An argument starting
with < or > causes the standard input or output to be established for the command.
All signals are turned on on entry to the subprocess.

e Setup a subprocess as in r; no instructions are executed.

cs The subprocess is continued with signal s (see signal(2)). If address is given then the
subprocess is continued at this address. If no signal is specified then the signal that
caused the subprocess to stop is sent. Breakpoint skipping is the same as for r.

ss As for ¢ except that the subprocess is single stepped count times.
Ss As for ¢ except that a temporary breakpoint is set at the next instruction. Useful for
stepping across subroutines.
xal(b]...
Execute subroutine a with parameters [b]...
k The current subprocess, if any, is terminated.
VARIABLES

Adb provides a number of variables. Named variables are set initially by adb but are not used
subsequently. Numbered variables are reserved for communication as follows.

0 The last value printed.
1 The last offset part of an instruction source.
2 The previous value of variable 1.

On entry the following are set from the system header in the corfil. If corfil does not appear to be a core
file then these values are set from objfil.

b The base address of the data segment.

ADB(1) Series 200 Only ADB(1)
d The data segment size.
e The entry point.
m The “magic”’ number (0x107, 0x108)
s The stack segment size.
t The text segment size.
ADDRESSES

FILES

The address in a file associated with a written address is determined by a mapping associated with that
file. Each mapping is represented by two triples (b1, el, fI) and (b2, e2, f2) and the file address
corresponding to a written address is calculated as follows:

bl address<el

file address = address + f1-bl

Otherwise,

b2 address<e2
file address = address + f2-b2

Otherwise, the requested address is not legal. If a ? or/is followed by an * then only the second triple is
used.

The initial setting of both mappings is suitable for normal a.out and core files. If either file is not of the
kind expected then, for that file, b1 is set to 0, el is set to the maximum file size and f7 is set to O; in this
way the whole file can be examined with no address translation.

In order for adb to be used on large files, all appropriate values are kept as signed 32 bit integers.

/dev/mem
/dev/swap
a.out
core

SEE ALSO

a.out(b), core(b).

DIAGNOSTICS

“Adb” when there is no current command or format, and comments about inaccessible files, syntax
errors, abnormal termination of commands, etc. Exit status is 0, unless last command failed or returned
non-zero status.

ADMIN(1) ADMIN(1)

NAME
admin — create and administer SCCS files

SYNOPSIS
admin [-n] [-i[name]] [-rrel] [-t[name]] [-fflag[flagvall] [—dflag[flagval]] [-alogin] [—elogin]
[-m[mrlist]] [-y[comment]] [-h] [-z] files

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System III

DESCRIPTION
Admin is used to create new SCCS files and change parameters of existing ones. Arguments to admin,
which may appear in any order, consist of keyletter arguments, which begin with —, and named files
(note that SCCS file names must begin with the characters s.). If a named file doesn’t exist, it is created,
and its parameters are initialized according to the specified keyletter arguments. Parameters not
initialized by a keyletter argument are assigned a default value. If a named file does exist, parameters
corresponding to specified keyletter arguments are changed, and other parameters are left as is.

If a directory is named, admin behaves as though each file in the directory were specified as a named
file, except that non-SCCS files (last component of the path name does not begin with s.) and
unreadable files are silently ignored. If a name of — is given, the standard input is read; each line of the
standard input is taken to be the name of an SCCS file to be processed. Again, non-SCCS files and
unreadable files are silently ignored.

The keyletter arguments are as follows. Each is explained as though only one named file is to be
processed since the effects of the arguments apply independently to each named file.

-n This keyletter indicates that a new SCCS file is to be created.

—i[name) The name of a file from which the text for a new SCCS file is to be taken. The
text constitutes the first delta of the file (see —r keyletter for delta numbering
scheme). If the i keyletter is used, but the file name is omitted, the text is
obtained by reading the standard input until an end-of-file is encountered. If
this keyletter is omitted, then the SCCS file is created with an empty initial delta.
Only one SCCS file may be created by an admin command on which the i
keyletter is supplied. Using a single admin to create two or more SCCS files
requires that they be created empty (no —i keyletter). Note that the —i keyletter
implies the —n keyletter.

—rrel The release into which the initial delta is inserted. This keyletter may be used
only if the —i keyletter is also used. If the —r keyletter is not used, the initial delta
is inserted into release 1. The level of the initial delta is always 1 (by default
initial deltas are named 1.1).

—t[name) The name of a file from which descriptive text for the SCCS file is to be taken. If
the —t keyletter is used and admin is creating a new SCCS file (the —n and/or —i
keyletters also used), the descriptive text file name must also be supplied. In the
case of existing SCCS files: (1) a —t keyletter without a file name causes removal
of descriptive text (if any) currently in the SCCS file, and (2) a —t keyletter with a
file name causes text (if any) in the named file to replace the descriptive text (if
any) currently in the SCCS file.

—fflag This keyletter specifies a flag, and, possibly, a value for the flag, to be placed in
the SCCS file. Several f keyletters may be supplied on a single admin command
line. The allowable flags and their values are:

b Allows use of the —b keyletter on a get(1) command to create branch deltas.

ADMIN(1)

—dflag

—alogin

cceil

ffloor

dsip

1list

qtext

mmod

trype

vlpgm]

Wist

ADMIN(1)

The highest release (i.e., "ceiling"), a number less than or equal to 9999, which
may be retrieved by a get(1) command for editing. The default value for an
unspecified c flag is 9999.

The lowest release (i.e., "floor"), a number greater than 0 but less than 9999,
which may be retrieved by a get(1) command for editing. The default value for
an unspecified f flag is 1.

The default delta number (SID) to be used by a get(1) command.

Causes the "No id keywords (cm7)" message issued by gez(1) or delta(1) to be
treated as a fatal error. In the absence of this flag, the message is only a
warning. The message is issued if no SCCS identification keywords (see get(1))
are found in the text retrieved or stored in the SCCS file.

Allows concurrent get(1) commands for editing on the same SID of an SCCS file.
This allows multiple concurrent updates to the same version of the SCCS file.

A list of releases to which deltas can no longer be made (get —e against one of
these "locked" releases fails). The list has the following syntax:

<list> :: = <range> | <list>, <range>
<range>:= RELEASE NUMBER | a

The character a in the list is equivalent to specifying all releases for the named
SCCS file. Omitting any list is equivalent to a.

Causes delta(1) to create a "null" delta in each of those releases (if any) being
skipped when a delta is made in a new release (e.g., in making delta 5.1 after
delta 2.7, releases 3 and 4 are skipped). These null deltas serve as "anchor
points" so that branch deltas may later be created from them. The absence of
this flag causes skipped releases to be non-existent in the SCCS file preventing
branch deltas from being created from them in the future.

User definable text substituted for all occurrences of the %Q% keyword in SCCS
file text retrieved by gez(1).

Module name of the SCCS file substituted for all occurrences of the %M%
keyword in SCCS file text retrieved by get(1). If the m flag is not specified, the
value assigned is the name of the SCCS file with the leading s. removed.

Type of module in the SCCS file substituted for all occurrences of the %Y %
keyword in SCCS file text retrieved by get(1).

Causes delta(1) to prompt for Modification Request (MR) numbers as the
reason for creating a delta. The optional value specifies the name of an MR
number validity checking program (see delta(1)). (If this flag is set when
creating an SCCS file, the m keyletter must also be used even if its value is null).

Causes removal (deletion) of the specified flag from an SCCS file. The —d
keyletter may be specified only when processing existing SCCS files. Several —d
keyletters may be supplied on a single admin command. See the —f keyletter for
allowable flag names.

A list of releases to be "unlocked". See the —f keyletter for a description of the 1
flag and the syntax of a lisz.

A login name, or numerical HP-UX group ID, to be added to the list of users
which may make deltas (changes) to the SCCS file. A group ID is equivalent to
specifying all login names common to that group ID. Several a keyletters may
be used on a single admin command line. As many logins, or numerical group
IDs, as desired may be on the list simultaneously. If the list of users is empty,

-2

ADMIN(1) ADMIN(1)

FILES

then anyone may add deltas.

—elogin A login name, or numerical group ID, to be erased from the list of users allowed
to make deltas (changes) to the SCCS file. Specifying a group ID is equivalent to
specifying all login names common to that group ID. Several e keyletters may
be used on a single admin command line.

—y[comment] The comment text is inserted into the SCCS file as a comment for the initial delta
in a manner identical to that of delta(1). Omission of the —y keyletter results in a
default comment line being inserted in the form:

date and time created YY/MM/DD HH:MM:SS by login

The —y keyletter is valid only if the —i and/or —n keyletters are specified (i.e., a
new SCCS file is being created).

—m[mrlist] The list of Modification Requests (MR) numbers is inserted into the SCCS file as
the reason for creating the initial delta in a manner identical to delta(1). The v
flag must be set and the MR numbers are validated if the v flag has a value (the
name of an MR number validation program). Diagnostics will occur if the v flag
is not set or MR validation fails.

~h Causes admin to check the structure of the SCCS file (see sccsfile(5)), and to
compare a newly computed check-sum (the sum of all the characters in the
SCCS file except those in the first line) with the check-sum that is stored in the
first line of the SCCS file. Appropriate error diagnostics are produced.

This keyletter inhibits writing on the file, so that it nullifies the effect of any other
keyletters supplied, and is, therefore, only meaningful when processing existing
files.

-z The SCCS file check-sum is recomputed and stored in the first line of the SCCS
file (see —h, above).

Note that use of this keyletter on a truly corrupted file may prevent future
detection of the corruption.

The last component of all SCCS file names must be of the form s.file-name. New SCCS files are given
mode 444 (see chmod(1)). Write permission in the pertinent directory is, of course, required to create a
file. All writing done by admin is to a temporary x-file, called x.file-name, (see get(1)), created with mode
444 if the admin command is creating a new SCCS file, or with the same mode as the SCCS file if it exists.
After successful execution of admin, the SCCS file is removed (if it exists), and the x-file is renamed with
the name of the SCCS file. This ensures that changes are made to the SCCS file only if no errors
occurred.

It is recommended that directories containing SCCS files be mode 755 and that SCCS files themselves be
mode 444. The mode of the directories allows only the owner to modify SCCS files contained in the
directories. The mode of the SCCS files prevents any modification at all except by SCCS commands.

If it should be necessary to patch an SCCS file for any reason, the mode may be changed to 644 by the
owner allowing use of ed(1). Care must be taken! The edited file should always be processed by an
admin —h to check for corruption followed by an admin —z to generate a proper check-sum. Another
admin -h is recommended to ensure the SCCS file is valid.

Admin also makes use of a transient lock file (called z.file-name), which is used to prevent simultaneous
updates to the SCCS file by different users. See get(1) for further information.

SEE ALSO

delta(1), ed(1), get(1), help(1), prs(1), what(1), sccsfile(5).
SCCS User’s Guide in HP-UX Concepts and Tutorials.

-3

ADMIN(1) ADMIN(1)

DIAGNOSTICS
Use help (1) for explanations.

AR(1)

NAME

AR(1)

ar — archive and library maintainer

SYNOPSIS

ar key [posname | afile name ...
HP-UX COMPATIBILITY

Level: HP-UX/STANDARD

Origin: System III

DESCRIPTION
Ar maintains groups of files combined into a single archive file. Its main use is to create and update
library files for use by the link editor. It can be used, though, for any similar purpose.

The archive file format is consistent across all HP-UX implementations. It is only useful to port source
archives. Individual files are inserted without conversion into the archive file. Note that ar files from
other UNIX systems are not readable on HP-UX, even if those files contain ASCII text.

Key must be present, and is one character from the set drqtpmx, optionally concatenated with one or
more of vuaibcl. Afile is the archive file. The names are constituent files in the archive file. The
meanings of the key characters for operations on an archive are:

d

r

Delete the named constituents from the archive file.

Replace the named files, or add a new file to the archive. If the optional character u is used with r,
then only those files with modified dates later than the archive files are replaced. If an optional
positioning character from the set abi is used, then the posname argument must be present and
specifies that new copies of the named files are to be placed after (a) or before (b or i) posname. In
the absence of a positioning character, new files are placed at the end. Ar will create afile if it does
not already exist. If there are no file names, ar may create an empty archive file whose only contents
is the archive magic number (see magic(5)).

Quickly append the named files to the end of the archive file. Optional positioning characters are
invalid. The command does not check whether the added members are already in the archive.
This is useful only to avoid quadratic behavior when creating a large archive piece-by-piece. Ar will
create afile if it does not already exist.

Print a table of contents of the archive file. If no names are given, all files in the archive are
described. If names are given, information about only those files appears.

Print the named files in the archive.

Move the named files to the end of the archive. If a positioning character is present, then the
posname argument must be present and, as in r, specifies where the files are to be moved. Note
that, when used with a positioning character, the files are moved in the same order that they currently
appear in the archive, not in the order specified on the command line. See EXAMPLES.

Extract the named files. If no names are given, all files in the archive are extracted. In neither case
does x alter (i.e. delete entries from) the archive file.

The meanings of the remaining optional modifying characters are:

\Y%

Verbose. When used with t, it gives a long listing of all information about the files from the
archive headers. When used with the d, m, p, q, and x options, the verbose option causes ar to
print the key letter and file name associated with each file for that operation. For the r
operation, ar will show an "a" if it added a new file, oran "r" if it replaced an existing one.

Create. Normally ar will create afile when it needs to (for the r and q operations). The create
option suppresses the normal message that is produced when afile is created.

Local. Normally ar places its temporary files in the directory /tmp. This option causes them to
be placed in the current working directory. Only the d, m, and r options use temporary files.

S1-

AR(1)

AR(1)

Only the following combinations are meaningful:
d vl

u,v,c landalbli

v,c

v

v

v,Landalbli

v

xgmren

For other combinations of modifiers with operations not shown in the above table, the modifier has no
effect.

EXAMPLES

FILES

The command
ar r newlib.a f3 2 f1 4

will create a new file (if one does not already exist) in archive format with its constituents entered in the
order shown in the above command line.

If you want to replace files f2 and {3 such that the new copies follow file {1, the commands

ar ma f2 newlib.a 3
ar ra fl newlib.a f2 {3

will produce the desired effect. The archive will now be ordered
newlib.a: f1 f2° 13" {4

where the single quote marks indicate updated files. The first command says "move {3 after {2 in
newlib.a", thus creating the order

f2 13 f1 4

The second command above says "replace files 2 and {3 in newlib.a, and put the new copies after f1".
Note that the new files must be replaced in the same order as they already occur in the archive. This is
why the first command above is used to create a new order that will be preserved in the replace
operation. Thus, the two commands above cannot be replaced by

ar ra f1 newlib.a f2 {3

because the previous order of {2 and {3 in the archive will be preserved (no matter how the files are
specified on the command line), producing the following archive:

newlib.a: f1 3° 2" {4

/tmp/v#* temporary files

SEE ALSO

1d(1), lorder(1), ranlib(1), ar(5).

WARNING

BUGS

If you are the super-user, ar will alter any archive file, even if it is write-protected.

If the same file is mentioned twice in an argument list, it may be put in the archive twice.

Ar reports cannot create file.a, where file.a is an ar-format archive file, even if file.a already exists. This
message is triggered when file.a is write-protected or inaccessible.

AS(1) Series 200 Only AS(1)

NAME
as — assembler for MC68000
SYNOPSIS
as [-A] [—a afile] [—o objfile] [file]
HP-UX COMPATIBILITY
Level: HP-UX/DEVELOPPMENT
Origin: System [II
Remarks: As is implemented on the Series 200 only.
DESCRIPTION '
As assembles the named file, or the standard input if no file name is specified. The optional arguments

—A or —a may be used to obtain an assembly listing with offsets and instruction codes listed in hex. If —-A
is used the listing goes to standard output. If —a is used the listing goes to afile.

All undefined symbols in the assembly are treated as global.

The output of the assembly is left on the file objfile; if that is omitted, .s is stripped from the end of the file
name (if there) and .o is appended to it. This becomes the name of the output file. As does not invoke

.

FILES
/usr/tmp/* temporary files
file.o object file

SEE ALSO

adb(1), 1d(1), nm(1), a.out(5).
MC68000 Assembler on HP-UX, in HP-UX Concepts and Tutorials.
DIAGNOSTICS
If the name chosen for the output file is of the form *.[cs], the assembler issues an appropriate

complaint and quits. When syntactic or semantic errors occur, a single-line diagnostic is typed out
together with the line number and the file name in which it occurred.

ASA(1) ASA(1)

NAME
asa — interpret ASA carriage control characters

SYNOPSIS
asa | files]
HP-UX COMPATIBILITY
Level: HP-UX/NUCLEUS
Origin: System V
Remarks: Asa is in a preliminary state, and could change in the future.
DESCRIPTION
Asa interprets the output of FORTRAN programs that utilize ASA carriage control characters. It processes

either the files whose names are given as arguments, or the standard input if no file names are supplied.
The first character of each line is assumed to be a control character. Their meanings are:

blank single new-line before printing;

0 double new-line before printing;
1 new page before printing;
+ ovei print previous line.

Lines beginning with other than the above characters are treated as if they began with a blank. The first
character of a line is not printed. If any such lines appear, an appropriate diagnostic will appear on
standard error. This program forces the first line of each input file to start on a new page.

To correctly view the output of FORTRAN programs which use ASA carriage control characters, asa
could be used as a filter as follows:

a.out | asa | Ipr

and the output, properly formatted and pagenated, would be directed to the line printer. FORTRAN
output sent to a file could be viewed by:

asa file

SEE ALSO
fc(1), £77(1).

AT(1)

NAME

AT(1)

at - execute commands at a later time

SYNOPSIS

at time [day] [file]

HP-UX COMPATIBILITY

Level: HP-UX/STANDARD

Origin: Version 7

DESCRIPTION

FILES

At stores a copy of the named file (standard input default) to be used as input to si(1) at a specified later
time. File must be a shell script. A cd(1) command to the current directory is inserted at the beginning,
followed by assignments to all environment variables. When the script is run, it uses the user and group
ID of the creator of the copied file.

Time is one to four digits, with an optionally appended 'A’, 'P’, 'N’, or 'M’, standing for AM, PM, noon,
or midnight, respectively. One and two digit numbers are taken to be hours; three and four digit num-
bers are taken to be hours and minutes. If none of the above-mentioned letters follow the digits, a 24
hour clock time is assumed.

Day is either a month name followed by a day number, or a day of the week. If the word 'week’ follows
day, invocation is moved seven days further off. Three-letter abbreviations for month and day names
may be used. Examples of legal commands are

at 8am jan 24 scriptfilel
at 1530 fri week scriptfile2

At programs are executed by periodic execution of the command /usr/lib/atrun from cron(8). The time
interval accuracy of at depends upon how often atrun is executed.

Standard output or error output is lost unless redirected.

/usr/spool/at/yy.ddd.hhhh.uu
activity to be performed at hour hhhh of day ddd of year yy. uu is a unique number.
/usr/spool/at/lasttimedone
contains hhhh for last hour that atrun was executed.
/usr/spool/at/past
directory of activities now in progress.
/ust/lib/atrun
program that executes activites that are due.
pwd(1)

SEE ALSO

calendar(1), cron(8).

DIAGNOSTICS

BUGS

Complains about various syntax errors and times out of range.

Due to the time interval accuracy of the execution of /usr/lib/atrun, there may be bugs in scheduling
things almost exactly 24 hours into the future.

ATERM(1C) Series 500 Only ATERM(1C)

NAME

aterm — general purpose asynchronous terminal emulation
SYNOPSIS

aterm configfile

HP-UX COMPATIBILITY
Level: Data Communications — HP-UX/STANDARD

Origin: HP
Remarks: Aterm is implemented on the Series 500 only.
DESCRIPTION

Aterm is a general purpose asynchronous terminal emulator designed for maximum connection
flexibility and simple file transfers without remote host support. Transparent pass-through mode
provides all user terminal capabilities in multi-user systems.

Configfile is used by aterm to match the particular terminal configuration needed for the remote system
you are logging onto. This file consists of configuration commands, one to a line. Each line consists of
the command name and its arguments, if any. Only configuration parameters which differ from the
standard default need be specified. Most configuration commands can also be given from the keyboard
while the emulator is running. You can exit aterm by typing "~.".

The following list shows the recognized configuration command names:

da Serial device file name (no default);

hn Name of remote computer system (no default);

db Number of data bits per character: 5, 6, 7, or 8 (default = 7);

sb Number of stop bits per character: 1, 1.5, or 2 (default = 1);

pa Character parity: none (n), odd (o), even (e), zero (0), or one (1) (default = o);

dr Rate for data sent and received: 50, 75, 110, 134.5, 150, 300, 600, 1200, 1800, 2400, 3600,
4800, 9600, or 19200 baud (default = 2400 baud);

mc Modem control: enabled (+) for full-duplex modem, or disabled () for full-duplex hard-wired
connection (default = —);

ss Switched service: auto-answer (a) or manual originate (o) (default = o);

ga Gap: number of character transmission times to delay between successive output characters;
values range from 0 to 254 (default = 0);

ec Echo: enabled (+) if the host computer echos characters sent by the emulator, disabled (—}

otherwise (default = —);
te Terminal ENQ/ACK: enabled (+) or disabled (—) (default = +);
he Host ENQ/ACK: enabled (+) or disabled (-) (default = —);
tx Terminal XON/XOFF: enabled (+) or disabled (—) (default = —);
hx Host XON/XOFF: enabled (+) or disabled (—) (default = —);

im Input mode: block (b), character (c), or line (1) (default = b);
om OQutput mode: character (c) or line (1) (default = c);
ph Prompt handshake: if enabled (+), the emulator waits for the prompt sequence before

sending each line of data during an input diversion; if disabled (-), no wait is performed (default

=-);

pt Prompt timeout: number of seconds to allow for receipt of a prompt sequence during an input
diversion; values range from 1 to 600, with O disabling the timeout altogether (default = 0);
st Single text terminators: list of characters, any of which terminates a line sent by the host

computer when the emulator is in input line mode; up to eight characters may be specified
(default = no characters);

dt Double text terminator: a pair of characters which together terminate a line sent by the host
computer when the emulator is in input line mode (default = carriage-return/line-feed);

ATERM(1C) Series 500 Only ATERM(1C)

ps Prompt sequence: one or two characters which terminate a line sent by the host computer
when the emulator is in input line mode, and which satisfy the prompt handshake if enabled
(default = DC1);

bl Beginning of line: character to be prefixed to each line sent to the host computer (default =
none);

el End of line: one or two characters to be postfixed to each line sent to the host computer
(default = carriage-return);

es Local command character: character which designates a local command to be interpreted by

the emulator if it comes at the beginning of a line read from the standard input (default = 7).
Note that emulation does not include block or format modes.

SEE ALSO
cu(1C) if simple connections are adequate or if you are calling another UNIX system;
uucp(1C) for file transfers with other UNIX systems.

HP-UX Asynchronous Communications Guide.

BUGS
Core capabilities, as well as standard extensions for graphics or color, are not yet formally defined.

ATRANS(1) Series 200 Only ATRANS(1)

atrans — translate assembly language

SYNOPSIS

atrans [—j] [—n] [filename]

HP-UX COMPATIBILITY

Level: HP-UX/DEVELOPMENT
Origin: HP
Remarks: Atrans is implemented on the Series 200 only.

DESCRIPTION

Atrans translates an assembly language source file from Series 200 Pascal workstation assembly
language syntax to Series 200 HP-UX assembly language syntax. If no filename is given, input is
assumed to come from stdin.

All uppercase characters are converted to lowercase characters, except those in comments or in quoted
strings.

Hexadecimal constants are converted from Series 200 Pascal workstation syntax, §<hex number> to
the Series 200 HP-UX syntax, 0x<hex number>.

Operands whose effective address is program counter with displacement will have the string pc inserted
in them (e.g. 8(d6) will become 8(pc,d6)).

Lines containing the following list of Series 200 Pascal workstation pseudo-ops have no parallel in
Series 200 HP-UX syntax and are translated as comment lines: decimal, end, llen, list, lprint, nolist,
noobj, nosyms, page, spc, sprint, ttl.

Lines containing the mname or src pseudo-ops are translated as comment lines, and a warning is printed
stating that modules are not supported by the Series 200 HP-UX assembler.

The pseudo-ops, def, refa, and refr, are translated as globl.
The file name operand of an include pseudo-op will have quote marks put around it.

Certain pseudo-ops require manual intervention to translate. Each Line containing these pseudo_ops
will cause a message to be printed stating that an error will be generated by the Series 200 HP-UX
assembler. These pseudo-ops are: com, lmode, org, rorg, rmode, smode, start.

The —j option converts opcodes with the becl.sl.1] branch syntax to the jcc syntax. It also converts
bsr(.s1.1] to jbsr.

The —n option converts groups of blanks to tabs.

SEE ALSO

as(1).

AWK(1) AWK(1)

NAME
awk — text pattern scanning and processing language

SYNOPSIS
awk [—Fc] [prog] [files]

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System III

DESCRIPTION
Awk scans each input file for lines that match any of a set of patterns specified in prog. With each
pattern in prog there can be an associated action that will be performed when a line of a file matches the
pattern. The set of patterns may appear literally as prog, or in a file specified as —f file. The prog string
should be enclosed in single quotes (') to protect it from the shell.

Files are read in order; if there are no files, the standard input is read. The file name — means the
standard input. Each line is matched against the pattern portion of every pattern-action statement; the
associated action is performed for each matched pattern.

An input line is made up of fields separated by white space. (This default can be changed by using FS,
see below). The fields are denoted $1, $2, . . . ; $0 refers to the entire line.

A pattern-action statement has the form:
pattern { action }

A missing action means print the line; a missing pattern always matches. An action is a sequence of
statements. A statement can be one of the following:

if (conditional) statement [else statement]

while (conditional) statement

for (expression ; conditional ; expression) statement
break

continue

{[statement] ...}

variable = expression

print [expression-list] [>expression]

printf format [, expression-list] [>expression]
next # skip remaining patterns on this input line
exit # skip the rest of the input

Statements are terminated by semicolons, new-lines, or right braces. An empty expression-list stands
for the whole line. Expressions take on string or numeric values as appropriate, and are built using the
operators +, —, *, /, %, and concatenation (indicated by a blank). The C operators + +, —, + =,
—=, ¥=, /=, and %= are also available in expressions. Variables may be scalars, array elements
(denoted x[i]) or fields. Variables are initialized to the null string. Array subscripts may be any string, not
necessarily numeric; this allows for a form of associative memory. String constants are quoted (").

The print statement prints its arguments on the standard output (or on a file if >expr is present),
separated by the current output field separator, and terminated by the output record separator. The
printf statement formats its expression list according to the format (see prinzf(3S)).

The built-in function length returns the length of its argument taken as a string, or of the whole line if no
argument. There are also built-in functions exp, log, sqrt, and int. The last truncates its argument to an
integer; substr(s, m, n) returns the n-character substring of s that begins at position m. The function
sprintf(fmt, expr, expr, . . .) formats the expressions according to the printf(3S) format given by fimt and
returns the resulting string.

AWK(1) AWK(1)

Patterns are arbitrary Boolean combinations (!, Il, &&, and parentheses) of regular expressions and
relational expressions. Regular expressions must be surrounded by slashes and are as in egrep (see
grep(1)). Isolated regular expressions in a pattern apply to the entire line. Regular expressions may also
occur in relational expressions. A pattern may consist of two patterns separated by a comma; in this
case, the action is performed for all lines between an occurrence of the first pattern and the next
occurrence of the second.

A relational expression is one of the following:

expression matchop regular-expression
expression relop expression

where a relop is any of the six relational operators in C, and a matchop is either ~ (for contains) or " (for
does not contain). A conditional is an arithmetic expression, a relational expression, or a Boolean
combination of these.

The special patterns BEGIN and END may be used to capture control before the first input line is read
and after the last. BEGIN must be the first pattern, END the last.

A single character ¢ may be used to separate the fields by starting the program with:
BEGIN{FS = ¢}
or by using the —F¢ option.

Other variable names with special meanings include NF, the number of fields in the current record; NR,
the ordinal number of the current record; FILENAME, the name of the current input file; OFS, the output
field separator (default blank); ORS, the output record separator (default new-line); and OFMT, the
output format for numbers (default %.6g).

EXAMPLES
Print lines longer than 72 characters:

length > 72
Print first two fields in opposite order:
{ print $2, $1 }
Add up first column, print sum and average:
{s +=81}
END { print "sumis", s, " average is", s/NR }
Print fields in reverse order:
{for (i = NF;i> 0; —i) print $i }
Print all lines between start/stop pairs:
[start/, /stop/
Print all lines whose first field is different from previous one:
$1 !'= prev { print; prev = $1}
SEE ALSO
grep(1), lex(1), sed(1).
Awk: A Programming Language for Manipulating Data in HP-UX Concepts and Tutorials.
BUGS
Input white space is not preserved on output if fields are involved.
There are no explicit conversions between numbers and strings. To force an expression to be treated as
a number add 0 to it; to force it to be treated as a string concatenate the null string (* ") to it.

BANNER(1) BANNER(1)

NAME
banner — make posters in large letters

SYNOPSIS
banner strings

HP-UX COMPATIBILITY
Level: System IIl Compatibility - HP-UX/STANDARD

Origin: System III

DESCRIPTION
Banner prints its arguments (each up to 10 characters long) in large letters on the standard output.

Each argument is on a separate line.

BASENAME(1) BASENAME(1)

NAME
basename, dirname — extract portions of path names

SYNOPSIS
basename string [suffix]
dirname string

HP-UX COMPATIBILITY
Level: HP-UX/NUCLEUS
Origin: System Il
DESCRIPTION
Basename deletes any prefix ending in / and the suffix (if present in string) from string, and prints the

result on the standard output. It is normally used inside command substitution marks ("...") within shell
procedures.

Basename returns the string unmodified if string does not contain the indicated suffix, or if string contains
the suffix, but the suffix does not occur at the end of the string. If string and suffix are identical, basename
returns the null string.

Dirname delivers all but the last level of the path name in string. If string is null or does not contain a
directory component, dirname returns ".", indicating the current working directory.

HARDWARE DEPENDENCIES
Series 200:
Basename returns the null string if the indicated suffix does not occur in string.

Basename returns an unpredictable string (sometimes the null string, sometimes one or more
characters from the original string) if the indicated suffix contains one or more characters from
the actual suffix in string, but the suffix does not match the actual suffix exactly. For example,
the returned string is unpredictable in cases like

basename file.trf .r

If the indicated suffix occurs in string, but not at the end of string, basename returns only that part
of string which occurs before the indicated suffix. For example,
basename file.f.g .f
returns "file".
EXAMPLES

The following shell script, invoked with the argument /usr/src/cmd/cat.c, compiles the named file and
moves the output to a file named cat in the current directory:

cc $1
mv a.out “basename $1 .c
The following example will set the shell variable NAME to /usr/src/cmd:
NAME = “dirname /ust/src/cmd/cat.c”
RETURN VALUE
Both commands return O for success, 1 for failure. Dirname always succeeds, and thus always returns O.

SEE ALSO
expr(1), sh(1).

BC(1) BC(1)

NAME
bc — arbitrary-precision arithmetic language

SYNOPSIS
bec[—c][-l][file..]
HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System V
DESCRIPTION

Bc is an interactive processor for a language that resembles C but provides unlimited precision
arithmetic. It takes input from any files given, then reads the standard input. The options are as follows:

- compile only. Bc is actually a preprocessor for dc(1), which bc invokes automatically.
Specifying —c prohibits invocation of dc, and sends the dc input to the standard output.

-1 causes an arbitrary precision math library to be linked in with the code.
The syntax for bc programs is as follows;

L means a letter in the range a—z;
E means expression;

S means statement;

R means relational expression.

Comments are enclosed in /% and */.
Names may be any of the following:

simple variables: L
array elements: L[E]

the words ““ibase”’, “obase”’, and ‘‘scale”
stacks: "L

Other operands are:

arbitrarily long numbers with optional sign and decimal point.
(E)
sqri (E)
length (E) number of significant decimal digits
scale (E) number of digits right of decimal point
L(E, ..,E)
Strings of ASCII characters enclosed in quotes /RB (").
Arithmetic Operators (yeild an E as a result) consist of:

+ — % / % " (% is remainder; " is power)
+ + — (prefix and postfix; apply to names) "
== <= >= 1= < >

Relaltional Operators (yeild an R when used as E op e).

= =4 =— =% =/=% =
Statements consist of:

E

{S;...;S}
if(E)S

while (E)S
for(E;E;E)S
null statement

BC(1) BC(1)

break
quit
Function definitions are:
defineL (L,...,L){
autoL, ..., L
S;...S
return (E)
}
The following functions are contained in the -1 math library:
s(x) sine
c(x) cosine
e(x) exponential
1(x) log
a(x) arctangent
j(n,x) Bessel function

All function arguments are passed by value.

The value of a statement that is an expression is printed unless the main operator is an
assignment. No operators are defined for strings, but the string is printed if it appears in a
context where an expression result would be printed. Either semicolons or new-lines may
separate statements. Assignment to scale influences the number of digits to be retained on
arithmetic operations in the manner of dc(1). Assignments to ibase or obase set the input and
output number radix respectively, again as defined by dc(1).

The same letter may be used as an array, a function, and a simple variable simultaneously. All
variables are global to the program. “Auto” variables are pushed down during function calls.
When using arrays as function arguments or defining them as automatic variables, empty
square brackets must follow the array name.

EXAMPLE
scale = 20
define e(x) {
autoa, b, c, i, s
a=1
b=1
s=1
for(i=1;1==1;i+ +){
a = a¥x
b = b*i
c=alb
if(c = = 0) return(s)
s=s+c
}
}

defines a function to compute an approximate value of the exponential function, and
for(i=1;i<=10;i+ +) e(i)
prints approximate values of the exponential function of the first ten integers.

FILES
/ust/lib/lib.b mathematical library

BC(1) BC(1)

/usr/bin/dc desk calculator proper

SEE ALSO
bc(10), de(1).

BUGS
There is currently no && (AND) or 1| (OR) comparisons.

The for statement must have all three expressions.
Quit is interpreted when read, not when executed.

Bc’s parser is not robust in the face of input errors. Some simple expression like 2 + 2 will tend to get it
back into phase.

BDIFF(1) BDIFF(1)

NAME

bdiff — big diff

SYNOPSIS

bdiff file1 file2 [n] [—s]

HP-UX COMPATIBILITY

Level: HP-UX/STANDARD
Origin: System [II

DESCRIPTION

FILES

Bdiff is used in a manner analogous to diff(1) to find which lines must be changed in two files to bring
them into agreement. lts purpose is to allow processing of files which are too large for diff. Bdiff
ignores lines common to the beginning of both files, splits the remainder of each file into n-line seg-
ments, and invokes diff upon corresponding segments. The value of n is 3500 by default. If the
optional third argument is given, and it is numeric, it is used as the value for n. This is useful in those
cases in which 3500-line segments are too large for diff, causing it to fail. If filel (file2) is —, the standard
input is read. The optional —s (silent) argument specifies that no diagnostics are to be printed by bdiff
(note, however, that this does not suppress possible exclamations by diff. If both optional arguments
are specified, they must appear in the order indicated above.

The output of bdiff is exactly that of diff, with line numbers adjusted to account for the segmenting of
the files (that is, to make it look as if the files had been processed whole). Note that because of the seg-
menting of the files, bdiff does not necessarily find a smallest sufficient set of file differences.

SEE ALSO

diff(1).

DIAGNOSTICS

Use help(1) for explanations.

BS(1)

NAME

BS(1)

bs — a compiler/interpreter for modest-sized programs

SYNOPSIS

bs [file [args]]

HP-UX COMPATIBILITY

Level: HP-UX/STANDARD
Origin: System V

DESCRIPTION

Bs is a remote descendant of Basic and Snobol4 with a little C language thrown in. Bs is designed for
programming tasks where program development time is as important as the resulting speed of
execution. Formalities of data declaration and file/process manipulation are minimized. Line-at-a-time
debugging, the trace and dump statements, and useful run-time error messages all simplify program
testing. Furthermore, incomplete programs can be debugged; inner functions can be tested before outer
functions have been written and vice versa.

If the command line file argument is provided, the file is used for input before the console is read. By
default, statements read from file are compiled for later execution. Likewise, statements entered from
the console are normally executed immediately (see compile and execute below). Unless the final
operation is assignment, the result of an immediate expression statement is printed.

Bs programs are made up of input lines. If the last character on a line is a \, the line is continued. Bs
accepts lines of the following form:

statement
label statement

A label is a name (see below) followed by a colon. A label and a variable can have the same name.

A bs statement is either an expression or a keyword followed by zero or more expressions. Some
keywords (clear, compile, !, execute, include, ibase, obase, and run) are always executed as they are
compiled.

Statement Syntax:

expression
The expression is executed for its side effects (value, assignment, or function call). The details of
expressions follow the description of statement types below.

break Break exits from the inner-most for/while loop.
clear Clears the symbol table and compiled statements. Clear is executed immediately.
compile [expression]
Succeeding statements are compiled (overrides the immediate execution default). The optional

expression is evaluated and used as a file name for further input. A clear is associated with this
latter case. Compile is executed immediately.

continue
Continue transfers to the loop-continuation of the current for/while loop.

dump [name]
The name and current value of every non-local variable is printed. Optionally, only the named
variable is reported. After an error or interrupt, the number of the last statement is displayed. The
user function trace is displayed after an error or stop that occurred in a function.

edit A call is made to the editor selected by the EDITOR environment variable if it is present, or ed(1)
if EDITOR is undefined or null. If the file option is present on the command line, that file is
passed to the editor as the file to exit. (Otherwise no filename is used.) Upon exiting the editor, a
compile statement (and associated clear) is executed giving that file name as it’s argument.

BS(1)

BS(1)

exit [expression]
Return to system level. The expression is returned as process status.

execute
Change to immediate execution mode (an interrupt has a similar effect). This statement does not
cause stored statements to execute (see run below).

for name = expression expression statement
for name = expression expression

next

for expression, expression, expression statement
for expression, expression, expression

next The for statement repetitively executes a statement (first form) or a group of statements (second
form) under control of a named variable. The variable takes on the value of the first expression,
then is incremented by one on each loop, not to exceed the value of the second expression. The
third and fourth forms require three expressions separated by commas. The first of these is the
initialization, the second is the test (true to continue), and the third is the loop-continuation action
(normally an increment).

funf([a,...])[v,...]

nuf Fun defines the function name, arguments, and local variables for a user-written function. Up to
ten arguments and local variables are allowed. Such names cannot be arrays, nor can they be
[/O associated. Function definitions may not be nested. Calling an undefined function is
permissible, see function calls below.

freturn
A way to signal the failure of a user-written function. See the interrogation operator (?) below. If
interrogation is not present, freturn merely returns zero. When interrogation is active, freturn
transfers to that expression (possibly by-passing intermediate function returns).

goto name
Control is passed to the internally stored statement with the matching label.

ibase N
Ibase sets the input base (radix) to N. The only supported values for N are 8, 10 (the default),
and 16. Hexadecimal values 10-15 are entered as a—f. A leading digit is required (i.e., f0a must
be entered as 0f0a). Ibase (and obase, below) are executed immediately.

if expression statement

if expression
[else
.
fi The statement (first form) or group of statements (second form) is executed if the expression
evaluates to non-zero. The strings 0 and " " (null) evaluate as zero. In the second form, an

optional else allows for a group of statements to be executed when the first group is not. The only
statement permitted on the same line with an else is an if; only other fi’s can be on the same line
with a fi. The concatenation of else and if into an elif is supported. Only a single fi is required to
closeanif...elif ... [else...

include expression
The expression must evaluate to a file name. The file must contain bs source statements. Such
statements become part of the program being compiled. Include statements may not be nested.

BS(1)

BS(1)

obase N
Obase sets the output base to N (see tbase above).

onintr label

onintr
The onintr command provides program control of interrupts. In the first form, control will pass to
the label given, just as if a goto had been executed at the time onintr was executed. The effect of
the statement is cleared after each interrupt. In the second form, an interrupt will cause bs to
terminate.

return [expression]
The expression is evaluated and the result is passed back as the value of a function call. If no
expression is given, zero is returned.

run The random number generator is reset. Control is passed to the first internal statement. If the
run statement is contained in a file, it should be the last statement.

stop Execution of internal statements is stopped. Bs reverts to immediate mode.

trace [expression]
The trace statement controls function tracing. If the expression is null (or evaluates to zero),
tracing is turned off. Otherwise, a record of user-function calls/returns will be printed. Each
return decrements the trace expression value.

while expression statement
while expression

next While is similar to for except that only the conditional expression for loop-continuation is given.

Ishell command
An immediate escape to the shell.

... This statement is ignored. It is used to interject commentary in a program.

Expression Syntax:

name A name is used to specify a variable. Names are composed of a letter (upper or lower case)
optionally followed by letters and digits. Only the first six characters of a name are significant.
Except for names declared in fun statements, all names are global to the program. Names can
take on numeric (double float) values, string values, or can be associated with input/output (see
the built-in function open() below).

name ([expression [, expression]... 1)

Functions can be called by a name followed by the arguments in parentheses separated by
commas. Except for built-in functions (listed below), the name must be defined with a fun
statement. Arguments to functions are passed by value. If the function is undefined, the call
history to the call of the function is printed, and a requent for a return value (as an expression) is
made. The result of that expression is taken to be the result of the undefined function. This
permits debugging programs where not all the functions are yet defined. The value is read from
the current input list.

name [expression [, expression | ...]
This syntax is used to reference either arrays or tables (see built-in table functions below). For
arrays, each expression is truncated to an integer and used as a specifier for the name. The
resulting array reference is syntactically identical to a name; a[1,2] is the same as a[1][2]. The
truncated expressions are restricted to values between 0 and 32 767.

number
A number is used to represent a constant value. A number is written in Fortran style, and
contains digits, an optional decimal point, and possibly a scale factor consisting of an e followed

BS(1)

BS(1)

by a possibly signed exponent.

string Character strings are delimited by " characters. The \ escape character allows the double
quote (\\ "), new-line (\\n), carriage return (\\r), backspace (\\b), and tab (\(t) characters to
appear in a string. Otherwise, \ stands for itself.

(expression)
Parentheses are used to alter the normal order of evaluation.

(expression, expression [, expression . ..]) [expression]
The bracketed expression is used as a subscript to select a comma-separated expression from
the parenthesized list. List elements are numbered from the left, starting at zero. The
expression:

(False, True)[a == b]
has the value True if the comparison is true.

? expression
The interrogation operator tests for the success of the expression rather than its value. At the
moment, it is useful for testing end-of-file (see examples in the Programming Tips section
below), the result of the eval built-in function, and for checking the return from user-written
functions (see freturn). An interrogation “trap” (end-of-file, etc.) causes an immediate transfer
to the most recent interrogation, possibly skipping assignment statements or intervening
function levels.

— expression
The result is the negation of the expression.

+ + name
Increments the value of the variable (or array reference). The result is the new value.

— name
Decrements the value of the variable. The result is the new value.

! expression
The logical negation of the expression. Watch out for the shell escape command.

expression operator expression
Common functions of two arguments are abbreviated by the two arguments separated by an
operator denoting the function. Except for the assignment, concatenation, and relational
operators, both operands are converted to numeric form before the function is applied.

Binary Operators (in increasing precedence):

= is the assignment operator. The left operand must be a name or an array element. The
result is the right operand. Assignment binds right to left, all other operators bind left to right.

_ (underscore) is the concatenation operator.

& (logical and) has result zero if either of its arguments are zero. It has result one if both of its
arguments are non-zero; | (logical or) has result zero if both of its arguments are zero. It has
result one if either of its arguments is non-zero. Both operators treat a null string as a zero.
<<= >>= == 1=

The relational operators (< less than, < = less than or equal, > greater than, > = greater than
or equal, = = equal to, ! = not equal to) return one if their arguments are in the specified
relation. They return zero otherwise. Relational operators at the same level extend as follows:
a>b>c is the same as a>b & b>c. A string comparison is made if both operands are strings.

BS(1)

BS(1)

" Add and subtract.
* / % Multiply, divide, and remainder.
" Exponentiation.
Built-in Functions:
Dealing with arguments

arg(i) is the value of the i-th actual parameter on the current level of function call. At level zero, arg
returns the i-th command-line argument (arg(0) returns bs).

narg() returns the number of arguments passed. At level zero, the command argument count is
returned.

Mathematical

abs(x) is the absolute value of x.
atan(x) is the arctangent of x. Its value is between —m/2 and n/2.
ceil(x) returns the smallest integer not less than x.
cos(x) is the cosine of x (radians).
exp(x) is the exponential function of x.
floor(x) returns the largest integer not greater than x.
log(x) is the natural logarithm of x.
rand() is a uniformly distributed random number between zero and one.
sin(x) is the sine of x (radians).
sqrt(x) is the square root of x.

String operations
size(s) the size (length in bytes) of s is returned.

format(f, a)
returns the formatted value of a. F is assumed to be a format specification in the style of
printf(3S). Onlythe %...f, %...e,and %...s types are safe.

index(x, y)
returns the number of the first position in x that any of the characters from y matches. No
match yields zero.

trans(s, f, t)
Translates characters of the source s from matching characters in f to a character in the same
position in z. Source characters that do not appear in f are copied to the result. If the string f is
longer than ¢, source characters that match in the excess portion of f do not appear in the result.

substr(s, start, width)
returns the sub-string of s defined by the starting position and width.

match(string, pattern)

mstring(n)
The pattern is similar to the regular expression syntax of the ed(1) command. The characters .,
[, 1, " (inside brackets), * and $ are special. The mstring function returns the n-th (1 <=n <=
10) substring of the subject that occurred between pairs of the pattern symbols \\(and \) for
the most recent call to match. To succeed, patterns must match the beginning of the string (as if
all patterns began with *). The function returns the number of characters matched. For
example:

BS(1) BS(1)

match("al23ab123", " . #\ ([a-z]\)") = =
mstring(1) == "b"

File handling

open(name, file, function)

close(name)
The name argument must be a bs variable name (passed as a string). For the open, the file
argument may be 1) a O (zero), 1, or 2 representing standard input, output, or error output,
respectively, 2) a string representing a file name, or 3) a string beginning with an ! representing
a command to be executed (via sh —). The function argument must be either r (read), w
(write), W (write without new-line), or a (append). After a close, the name reverts to being an
ordinary variable. If name was a pipe, a wait(2) is executed before the close completes. The bs
exit command does not do such a wait. The initial associations are:

Open(n getll s 0’ " r ")

open(n putll s 17 Ilwll)

open("puterr”, 2, "w")
Examples are given in the following section.

access(s, m)
executes access(2).

ftype(s) returns a single character file type indication: f for regular file, p for FIFO (i.e., named pipe), d for
directory, b for block special, or ¢ for character special.

Tables

table(name, size)
A table in bs is an associatively accessed, single-dimension array. ‘‘Subscripts” (called keys) are
strings (numbers are converted). The name argument must be a bs variable name (passed as a
string). The size argument sets the minimum number of elements to be allocated. Bs prints an
error message and stops on table overflow. The result of table is name.

item(name, i)

key() The item function accesses table elements sequentially (in normal use, there is no orderly
progression of key values). Where the item function accesses values, the key function accesses
the “subscript” of the previous item call. It fails (or in the absence of an interrogate operator,
returns null) if there was no valid subscript for the previous item call. The name argument
should not be quoted. Since exact table sizes are not defined, the interrogation operator should
be used to detect end-of-table; for example:

table("t", 100)

If "word" contains " party", the following expression
adds one to the count of that word:
+ + tlword]

To print out the the key/value pairs:

fori = 0, ?(s = item(t, i)), + +i ifkey() put = key()_":"_s
If the interrogation operator is not used, the result

of item is null if there are not further elements

in the table. Nullis, however, a legal

"subscript".

iskey(name, word)

The iskey function tests whether the key word exists in the table name and returns one for true,
zero for false.

BS(1)

BS(1)

eval(s) The string argument is evaluated as a bs expression. The function is handy for converting
numeric strings to numeric internal form. Ewal can also be used as a crude form of indirection,

asin:

name = "xyz"

eval(" + + " _name)

which increments the variable xyz. In addition, eval preceded by the interrogation operator
permits the user to control bs error conditions. For example:

2eval("open(\ "X\ ", XXX, \r\))

returns the value zero if there is no file named XXX (instead of halting the user’s program). The

following executes a goto to the label L (if it exists):

label="L"

if !(?eval(" goto " _label)) puterr = "no label"

" plot(request, args)"

The plot function produces output on devices recognized by plot(1G). tplot is not currently
supported on HP-UX. The requests are as follows:

Call
plot(0, term)

plot(4)

plot(2, string)
plot(3,x1,y1,x2,y2)
plot(4, x, v, r)
plot(5,x1,y1,x2,y2,x3,y3)

plot(6)

plot(7, x, y)

plot(8, x, y)

plot(9, x,)

plot(10, string)
plot(11, x1, y1, x2, y2)

plot(12, x1, y1, x2, y2)

Function

causes further plor output to be piped into
tplot(1G) with an argument of —Tzerm. tplot
is not currently supported on HP-UX.

“‘erases’ the plotter.

labels the current point with string.

draws the line between (x1,y1) and (x2,y2).
draws a circle with center (x,y) and radius r.

draws an arc (counterclockwise) with center
(x1,y1) and endpoints (x2,y2) and (x3,y3).

is not implemented.

makes the current point (x,y).

draws a line from the current point to (x,y).
draws a point at (x,y).

sets the line mode to string.

makes (x1,y1) the lower left corner of the
plotting area and (x2,y2) the upper right
corner of the plotting area.

causes subsequent x (y) coordinates to be
multiplied by xI (yI) and then added to x2
(¥2) before they are plotted. The initial
scaling is plot(12, 1.0, 1.0, 0.0, 0.0).

Some requests do not apply to all plotters. All requests except zero and twelve are implemented
by piping characters to #ploz(1G). tplot is not currently supported on HP-UX. See plot(4) for
more details. Each statement executed from the keyboard re-invokes tplor, making the results
unpredictable if a complete picture is not done in a single operation. Plotting should thus be
done either in a function or a complete program, so all the output can be directed to tplot in a
single stream. tplot is not currently supported on HP-UX.

BS(1)

last()

in immediate mode, last returns the most recently computed value.

Programming Tips:

Using bs as a calculator:

$bs

Distance (inches) light travels in a nanosecond.

186000 * 5280 * 12/ 1e9
11.78496

Compound interest (6% for 5 years on $1,000).

int =.06/4

bal = 1000

fori = 15#%4 bal = bal + bal*int
bal — 1000

346.855007

exit

The outline of a typical bs program:

initialize things:
varl =1
open("read", "infile", "r")

.#'compute:
while ?(str = read)

next
clean up:
close("read")

last statement executed (exit or stop):
exit

last input line:

run

Input/Output examples:

Copy "oldfile" to "newfile".
open("read”, "oldfile", "r")
open("write", "newfile", "w")

while ?(write = read)

close "read" and "write":
close("read")

close("write")

Pipe between commands.
open("ls", "lls ®", "r")
open("pr", "lpr—2 -h'List'", "w")
while?(pr =1Is) ...

‘# i)e sure to close (wait for) these:
close("Is")

close("pr")

BS(1)

BS(1) BS(1)

SEE ALSO
ed(1), sh(1), access(2), printf(3S), stdio(3S), plot(4).

BUGS Bs is not extremely tolerant of some errors. Mistyping a declaration is painful, as a new definition
cannot be made without doing a clear Using the edit command is the best soluction in this case.

The graphics mode is nearly useless without #plot, which is nor currently available. tplot is not
supported on HP-UX

CAL(1) CAL(1)

NAME
cal — print calendar

SYNOPSIS
cal [[month] year]

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD
Origin: System V

DESCRIPTION
Cal prints a calendar for the specified year. If a month is also specified, a calendar just for that month is
printed. If neither is specified, a calendar for the present month is printed. Year can be between 1 and
9999. The month is a number between 1 and 12. The calendar produced is that for England and her
colonies.
Try September 1752.

BUGS
The year is always considered to start in January even though this is historically naive.

Beware that “‘cal 83" refers to the early Christian era, not the 20th century.

CALENDAR(1) CALENDAR(1)

NAME

calendar — reminder service

SYNOPSIS

calendar [-]

HP-UX COMPATIBILITY

Level: HP-UX/STANDARD
Origin: System III

DESCRIPTION

FILES

Calendar consults the file calendar in the current directory and prints out lines that contain today’s or
tomorrow’s date anywhere in the line. Most reasonable month-day dates such as "Dec. 7" or "decem-
ber 7" are recognized, but not "7 December" or "7/12". On weekends, "tomorrow" extends
through Monday.

When an argument is present, calendar does its job for every user who has a file calendar in his login
directory and sends him any positive results by mail(1). Normally this is done daily in the early morning
hours under control of cron(8).

calendar

/ust/lib/calprog to figure out today’s and tomorrow’s dates
/etc/passwd

/tmp/cal *

/ust/lib/crontab

SEE ALSO

BUGS

mail(1), cron(8).

Your calendar must be public information for you to get reminder service.
Calendar’s extended idea of "tomorrow" does not account for holidays.

CAT(1) CAT(1)

NAME
cat — concatenate, copy, and print files

SYNOPSIS
cat[—u][-s][—v[t][-e]]file...
HP-UX COMPATIBILITY
Level: HP-UX/NUCLEUS
Origin: System V
DESCRIPTION
Cat reads each file in sequence and writes it on the standard output. Thus:
cat file
prints the file, and
cat filel file2 >file3
concatenates the first two files and places the result on the third.

If no input file is given, or if the argument — is encountered, cat reads from the standard input file.

The options are:
-u causes output to be unbuffered (character-by-character); normally, output is buffered.
—-s makes cat silent about non-existent files, identical input and output, and write errors.

Normally, no input file may be the same as the output file unless it is a special file.

—v causes non-printing characters (with the exception of tabs, new-lines and form-feeds)
to be printed visibly. Control characters are printed “x (control-x); the DEL character
(octal 0177) is printed “?. Non-ASCII characters (with the high bit set) are printed as
M-x, where x is the character specified by the seven low order bits.

—t when used with the —v option, causes tabs to be printed as I's.

—e when used with the —v option, causes a $ character to be printed at the end of each
line (prior to the new-line).
The —t and —e options are ignored if the —v option is not specified.
SEE ALSO
cp(1), pr(1).
WARNING
Command formats such as
cat filel file2 >filel

overwrites the data in filel before the concatenation begins. Therefore, take care when using shell
special characters.

CB(1) CB(1)

NAME

cb — C program beautifier, formatter
SYNOPSIS

cb [file]

HP-UX COMPATIBILITY
Level: C-Compiler - HP-UX/EXTENDED
Origin: System III

DESCRIPTION

Cb places a copy of the C program in file (standard input if file is not given) on the standard output with
spacing and indentation that displays the structure of the program.

CC(1)

NAME
cc - C compiler

SYNOPSIS

CC(1)

cc [option] ... file ...

HP-UX COMPATIBILITY

Level: C Compiler — HP-UX/DEVELOPMENT
Origin: System III

DESCRIPTION

Cc is the HP-UX C compiler. It accepts several types of arguments:

Arguments whose names end with .c are taken to be C source programs; they are compiled, and each
object program is left on the file whose name is that of the source with .o substituted for .c. The .o file is
normally deleted, however, if a single C program is compiled and linked all in one step.

In the same way, arguments whose names end with .s are taken to be assembly source programs and
are assembled, producing a .o file.

Arguments whose names end with .0 are taken to be relocatable object files which are to be included in

the link operation.

The following options are interpreted by cc. Options may not be concatenated. See Id (1) for link editor

options.

—Bstring

-E

i)
-p

P
s

_t[p012]

Find substitute compiler passes in the files named string with the suffixes cpp,
ccom, cl and c2. String must be specified for —B to be meaningful.

Suppress the link edit phase of the compilation, and force an object (.0) file to be
produced even if only one program is compiled. Produces a .o file for each .c file.

Run only the macro preprocessor on the named C programs, and send the result
to the standard output. The result is compatible with the /ltb/ccom step of cc.

Cause the compiler to generate additional information needed for the use of a
symbolic debugger.

Invoke an object-code optimizer.

Arrange for the compiler to produce code which counts the number of times each
routine is called; also, if link editing takes place, replace the standard startoff
routine by one which automatically calls monitor(3C) at the start and arranges to
write out a mon.out file at normal termination of execution of the object program.
An execution profile can then be generated by use of prof(1).

Similar to the —E option above, but the output goes to a corresponding file
suffixed with .i which is suitable for compilation later. No compilation is done.

Compile the named C programs, and leave the assembler-language output on
corresponding files suffixed .s.

Find only the designated compiler passes in the files whose names are constructed
by a —B option. In the absence of a —B option, the string is taken to be /lib/n. Any
or all of the pass designators p, 0, 1, or 2 may be specified, with the following
meanings:

P — preprocessor;

0 — first pass of C compiler;

1 — second pass of C compiler;
2 — optimizer.

CC(1) CC(1)

v Enables verbose mode, which produces on stdout a step-by-step description of the
compilation process.

-C

~Dname = def

—Dname

-Hnnn

~Idir

-T

~Uname These options are passed through to the C preprocessor, c¢pp. Refer to c¢pp(1) for
details.

Other arguments are taken to be either link editor option arguments, or C-compatible object programs,
typically produced by an earlier cc run, or perhaps libraries of C-compatible routines. These programs,
together with the results of any compilations specified, are linked (in the order given) to produce an
executable program with the name a.out.

The Kernighan and Ritchie C text, and the various addenda to it, comprise the best available reference
on C. The documents are intentionally ambiguous in some areas. HP-UX specifies some of these.

char
The char type is treated as signed by default. It may be declared unsigned.

pointers
Dereference of a NULL (zero) pointer is illegal and may cause a SIGSEGV error. This applies
whether the access is for reading or writing. Some implementations may not be able to detect this
error, in this case the result of such an access is undefined. Programs which rely on being able to
derefrence a null pointer are not considered portable within HP-UX.

identifiers
Identifiers are significant up to (at least) 255 characters. Whether or not longer identifiers are handled
is machine dependent. The assembler and loader must also support long identifiers to 255
characters.

HARDWARE DEPENDENCIES

Series 200:
The —g option is not currently supported.

[dentifiers longer than 255 characters are not supported.
The following additional options are supported:
-a this option is passed directly to the assembler, as(1). Refer to as(1) for details.

-b causes the compiler to generate code for floating point operations that will use
floating point hardware if it is installed in the computer at run-time.

—f causes the compiler to generate code for floating point operations that will use
floating point hardware. This code will not run unless floating point hardware
is installed at run-time.

—N< secondary ><n>
This option adjusts the size of internal compiler tables. The compiler uses
fixed size arrays for certain internal tables. Secondary is one of the letters from
the set {dpw}, and = is an integer value. Secondary and n are not optional.
The table sizes can be re-specified using one of the secondary letters and the
number 7 as follows:

d max size of the dimtab table. This table maintains information
about the definitions of all structures, unions, and arrays.
Default = 1000 table entries.

CC(1) cC(1)

p max size of the parameter stack. Default = 150 table entries.

w max size of the switch table stack. Default = 250 table
entries.

Two additional pass designators are available for the —t option. They are:

a assembler;
1 linker;

Series 500:
The —p option is not currently supported.

An additional option, —F, is supported. The —F option causes the compiler to generate
information for use by various program analysis commands.

The ld options p and v conflict with cc options, and thus cannot be accessed via cc.
The —B option is supported, but no substitute compiler passes are provided.
The file /lib/mcrt0.0 is not currently supported.

Identifiers longer than 255 characters are not supported.

FILES

file.c input file

file.o object file

a.out linked output

/tmp/ctm* temporary

/Nlib/cpp preprocessor

/lib/ccom compiler, cc

Nib/c2 optional optimizer

Nlib/crt0.0 runtime startoff

Nlib/mert0.0 startoff for profiling

Nlib/libc.a standard library, see section 3 of this manual

Just/include standard directory for #include files
SEE ALSO

B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, 1978.
as(1), 1d(1), prof(1), monitor(3C).
DIAGNOSTICS
The diagnostics produced by C itself are intended to be self-explanatory. Occasional messages may be
produced by the assembler or the link editor.

CD(1) CD(1)

NAME

cd — change working directory
SYNOPSIS

cd [directory]

HP-UX COMPATIBILITY
Level: HP-UX/NUCLEUS
Origin: System III

DESCRIPTION
If specified, directory becomes the new working directory; otherwise, the value of the shell parameter
$HOME is used. The process must have execute (search) permis-ion in directory.

Because a new process is created to execute each command, cd would be ineffective if it were written as
a normal command; therefore, it is recognized and executed by the shell.

SEE ALSO
pwd(1), sh(1), chdir(2).

CDB(1) Series 500 Only CDB(1)

NAME
cdb, fdb, pdb — C, FORTRAN, Pascal symbolic debugger

SYNOPSIS
cdb [-d dir] [-r file] [-p file] [-a num] [-b num] [-s num] [-S num] [—u] [objectfile [corefile]]
fdb [cdb options]
pdb [cdb options]

HP-UX COMPATIBILITY
Level: HP-UX/DEVELOPMENT

Origin: Third Eye Software

Remarks: This debugger is currently implemented on the Series 500 only.
TABLE OF CONTENTS

DESCRIPTION

CONVENTIONS
Notational Conventions
Variable Name Conventions
Expression Conventions
Procedure Call Conventions

COMMANDS
File Viewing Commands
Display Formats
Data Viewing Commands
Stack Viewing Commands
Job Control Commands
Breakpoint Commands
Assertion Control Commands
Signal Control Commands
Record and Playback Commands
Miscellaneous Commands

HARDWARE DEPENDENCIES

SYMBOL TABLE DEPENDENCIES

FILES

SEE ALSO

DIAGNOSTICS

WARNINGS

BUGS

DESCRIPTION
Cdb, fdb, and pdb are alternate names for a source level debugger for C, HP FORTRAN, and HP Pascal
programs. It provides a controlled environment for their execution.

Objectfile is an executable program file with one or more of its component modules compiled with
debug option(s) turned on. The support module /usr/lib/end.o must be included as the last object file in
the list of those linked, except for libraries included with the -1 option to ld(1). (Some systems automate
this; see the Hardware Dependencies section below.) The default for objectfile is a.out.

Corefile is a core image from a failed execution of objectfile. The default for corefile is core.

The options are:

—d dir names an alternate directory where source files are located. You may have up to 16

alternate directories. They are searched in the order given. If a source file is not found in
any alternate directory, the current directory is searched last.

21-

CDB(1)

Series 500 Only CDB(1)

—r file names a record file which is invoked immediately (for overwrite, not for append). See the
section below entitled Record and Playback Commands for a description of this feature.

—p file names a playback'ﬁle which is invoked immediately. See the section below entitled Record
and Playback Commands for a description of this feature.

—a num sets the maximum number of assertions you can have active at once. The default numis 16.
See the section below entitled Assertion Control Commands for details.

—b num sets the maximum number of breakpoints you can have active at once. The default num is
16. See the section below entitled Breakpoint Commands for details.

—s num sets the maximum number of special variables you can define during a debugging session.
The default num is 26. See the section below entitled Variable Name Conventions for details.

—S num sets the size of the string cache to num bytes. The default num depends on the symbol table
format used. The option is not available for all formats. The string cache holds data read
from objectfile.

-u tells the debugger to expect names in the symbol table to start with an extra underscore.
The option is not available for all symbol table formats.

There can only be one objectfile and one corefile per debugging session (activation of the debugger).
The program (objectfile) is not invoked as a child process until you give an appropriate command (see
the Fob Control Commands section below). The same program may be restarted, as different child
processes, many times during one debugging session.

This debugger is a complex, interactive tool with many synergistic and combinatoric features. What you
can do with it is often limited only by your imagination. Remember, however, that the debugger is only
a "window" on the world consisting mostly of the program being debugged and the system it runs on.
If something puzzling happens, you may need to consult a manual which describes the program or the
system, in order to understand the behavior.

CONVENTIONS

The debugger remembers the current file, current procedure, current line, and current data location.
They are a function of what you have been viewing (not necessarily executing) most recently. Many
commands use these current locations as defaults, and many commands set them as a side effect. It is
important to keep this in mind when deciding what a command does in any particular situation.

For example, if you stop in procedure "abc", then view procedure "def", then ask for the value of
local variable "xyz", the debugger assumes that the variable belongs to procedure "def".

Notational Conventions

Most commands are of the form " [modifier] command-letter [options]". Numeric modifiers before and
after commands can be any numeric expression. They need not be just simple numbers. A blank is
required before any numeric option. Multiple commands on one line must be separated by ";".

These are common modifiers and other special notations:
(AIBIC) Any one of A or B or C is required.
[AIBIC] Any one of A or B or C is optional.

file A file name.

proc A procedure (or function, or subroutine) name.

var A variable name.

number A specific, constant number (e.g. "9", not "4+5"). Floating point (real) numbers may

be used any place a constant is allowed.

expr Any expression, but with limitations stated below.

CDB(1)

Series 500 Only CDB(1)

depth A stack depth, as printed by the "t" command. The top procedure is at a depth of zero.
A negative depth acts like a depth of zero. Stack depth usually means "exactly at the
specified depth", not "the first instance at or above the specified depth".

format A style for printing data. See the Data Viewing Commands section below for details.

commands A series of debugger commands, separated by ";", entered on the command line or
saved with a breakpoint or assertion. Semicolons are ignored (as commands) so they
can be freely used as command separators. Commands may be grouped with "{}" for
the "a", "b", "if", and "!" commands. In all other cases commands inside "{}" are
ignored.

Variable Name Conventions

Variables are referenced exactly as they are named in your source file(s). Case sensitivity is controlled
by the "Z" command. Be careful with one letter variable names, since they can be confused with
commands. If an expression begins with a variable that might be mistaken for a command, just enclose
the expression in "()" (e.g. "(k)"), or eliminate any white space between the variable and the first
operator (use "k= 9" instead of "k = 9").

If you are interested in the value of some variable var, there are a number of ways of getting it,
depending on where and what it is:

var Search the stack for the most recent instance of the current procedure. If found, see if varis a
parameter or local variable of that procedure. If not, search for a global variable named either
var or _var, in that order.

proc.var Search the stack for the most recent instance of proc. If found, see if it has a parameter or
local variable named var, as before.

proc.depth.var
Use the instance of proc that is at depth depth (exactly), instead of the most recent instance.
This is very useful for debugging recursive procedures where there are multiple instances on
the stack.

war Search for a global (not local) variable named either var or _var, in that order.

Dot is shorthand for the last thing you viewed (see the Data Viewing Commands section
below). It has the same size it did when you last viewed it. For example, if you look at a long
as a char, then "." is considered to be one byte long. This is useful for treating things in
unconventional ways, like changing the second highest byte of a long without changing the
rest of the long. Dot may be treated like any other variable.

NOTE: "." is the name of this magic location. If you use it, it is dereferenced like any other
name. If you want the address of something that is, say, 30 bytes farther on in memory, do
not say ".+30". That would take the contents of dot and add 30 to it. Instead, say
"&.+30", which adds 30 to the address of dot.

Special variables are names for things that are not normally directly accessible. Special variables
include:

$var The debugger has room in its own address space for a number of user-created special variables.
There are 26 of them by default (this number is adjustable using the —s invocation option).
They are all of type long, and do not take on the type of any expression they are assigned to.
Names are defined when they are first seen. For example, saying "$xyz = 3%4" creates
special symbol "$xyz", and assigns to it the value 12. Special variables may be used just like
any other variables.

$pc, $fp, $sp, $r0, etc. ;
These are the names of the program counter, the frame pointer, the stack pointer, the registers,
etc. To find out which names are available on your system, use the "l r" (list registers)

CDB(1) Series 500 Only CDB(1)

command. All registers act as type integer.

$result This is used to reference the return value from the last procedure exit. Where possible, it takes
on the type of the procedure. $short and $long are available as alternate ways of looking at
$result.

$signal This lets you see and modify the current child process signal number.
$lang This lets you see and modify the current language (0 for C, 1 for FORTRAN, or 2 for Pascal).

$line This lets you see and modify the current source line number, which is also settable with a
number of different commands.

$malloc
This lets you see the current amount of memory (bytes) allocated at run-time for use by the
debugger itself.

$cBad This lets you see and modify the number of machine instructions the debugger will step while in
a non-debuggable procedure before setting an up-level breakpoint and free-running to it.
Setting it to a small value can improve debugger performance, at the risk of taking off free-
running after missing the up-level break for some reason.

To see all the special variables, including the predefined ones, use the "1 s (list specials) command.
You can also look up code addresses with
proc#line

which searches for the given procedure name and line number (which must be an executable line within
proc) and uses the code address of that line. Just referring to a procedure proc by name uses the code
address of the entry point to that procedure.

Expression Conventions
Every expression has a value, even simple assignment statements, as in C. "Naked" expression values
(those which aren’t command modifiers) are always printed unless the next token is ";" (command
separator) or "}" (command block terminator). Thus breakpoint and assertion commands (see the
appropriate sections below) are normally silent. To force an expression result to be printed, follow the
expression with "/n" (print in normal format; see below).

Integer constants may begin with "0" for octal or "0x" or "0X" for hexadecimal. They are int if they
fit in two bytes, long otherwise. If followed immediately by "1" or "L", they are forced to be of type
long (this is useful on systems where int is two bytes).

Floating point constants must be of the form digits.digits[elEIdID[+ I-]digits], for example, "1.0",
"3.14e8", or "26.62D-31". One or more leading digits is required to avoid confusion with "." (dot).
A decimal point and one or more following digits is required to avoid confusion for some command
formats. If the exponent doesn’t exactly fit the pattern shown, it is not taken as part of the number, but
as separate token(s). The "d" and "D" exponent forms are allowed for compatibility with FORTRAN.
However, all floating point constants are taken as doubles, regardless.

Character constants must be entered in ”” and are treated as integers. String constants must be entered
in " " and are treated like "char *" (e.g. pointer to char). Character and string constants may contain
the standard backslashed escapes understood by the C compiler and the echo(1) command, including
" \b n s " \fn s " \n " s " \\r " s " \\t " s " \\ u’ " \/ " R and " \nnn " . HOWeVer, " \\<newline> 1] iS
not supported, neither in quotes nor at the end of a command line.

Expressions are composed of any combination of variables, constants, and C operators. If the debugger
is invoked as cdb, the C operator "sizeof" is also available. If the debugger is invoked as fdb, FORTRAN
operators are also available and FORTRAN meanings take precedence where there is a conflict. The
same is true for Pascal if the debugger is invoked as pdb.

CDB(1) Series 500 Only CDB(1)

If there is no active child process and no corefile, you can only evaluate expressions containing
constants.

Expressions approximately follow the C rules of promotion, e.g. char, short, and int become long, and
float becomes double. If either operand is a double, floating math is used. If either operand is
unsigned, unsigned math is used. Otherwise, normal (integer) math is used. Results are then cast to
proper destination types for assignments.

If a floating point number is used with an operator that doesn’t normally permit it, the number is cast to

long and used that way. For example, the C binary operator "~" (bit invert) applied to the constant
"3.14159" is the same as "~3".

Note that " =" means "assign" except for Pascal; use "= =" or ".EQ." for FORTRAN. In Pascal,
" =" is a comparison operator; use ":=" for assignments. For example, if you invoke the debugger as

cdb, then set "$lang = 2" (Pascal), you must say "$lang: = 0" to return to C.

Use "//" for division, instead of "/", to distinguish from display formatting (see the Data Viewing
Commands section below).

The special unary operator "$in" (not to be confused with debugger local variables) evaluates to 1
(true) if the operand is an address inside a debuggable procedure and $pc (the current child process
program location) is also in that procedure, else it is O (false). For example, "$in main" is true if the
child process is stopped in main().

If the first expression on a line begins with " + " or "—", use "()" around it to distinguish from the " + "
and "-" commands (see the Data Viewing Commands section below). Parentheses may also be needed
to distinguish an expression from a command it modifies.

You can attempt to dereference any constant, variable, or expression result using the C " * " operator.
If the address is invalid, an error is given.

Whenever an array variable is referenced without giving all its subscripts, the result is the address of the
lowest element referenced. For example, consider an array declared as "x[5][6][7]" in C, "x(5,6,7)"
in FORTRAN, or "x[1..5,2..6,3..7]" in Pascal. Referencing it simply as "x" is the same as just "x" in C,
the address of "x(1,1,1)" in FORTRAN, or the address of "x[1,2,3]" in Pascal. Referencingitas "x[4]"
is the same as "& (x[4][0][0])" in C, the address of "x(1,1,4)" in FORTRAN, or the address of
"x[4,2,3]" in Pascal.

If a not-fully-qualified array reference appears on the left side of an assignment, the value of the right-
hand expression is stored into the element at the address specified.

Except for C, array indices are checked and must be within declared bounds.

String constants are stored in a magic buffer in the file /usr/lib/end.o, which you link with your program.
The debugger starts storing strings at the beginning of this buffer, and moves along as more assignments
are made. If the debugger reaches the end of the bulffer, it goes back and reuses it from the beginning.
In general this doesn’t cause any problems. However, if you use very long strings, or if you assign a
string constant to a global pointer, problems could arise. To fix them, you can edit and compile a
personal copy of /usr/liblend.c to increase the size of the buffer. (Some systems don’t support this; see
the Hardware Dependencies section below.)

Procedure Call Conventions
Procedures may be invoked from the command line, even within expressions. For example:

xyz = $abc * (3 + def (ghi—1, jkl, "Hi Mom"))
calls procedure " def" when its value is needed in the expression.

Any breakpoints encountered during command line procedure invocation are handled as usual
However, the debugger has only one active command line at a time. If it stops in a called procedure for
any reason, the remainder (if any) of the old command line is tossed, with notice given.

CDB(1) Series 500 Only CDB(1)

If you attempt to call a procedure when there is no active child process, one is started for you as if you
gave a single-step command first. Unfortunately, this means that the data in corefile (if any) may
disappear or be reinitialized.

If you send signal SIGINT (e.g., hit the BREAK key) while in a called procedure, the debugger aborts the
procedure call and returns to the previous stopping point (the start of the main program for a new
process).

You can call any procedure that is in your objectfile, even if it is not debuggable (was not compiled with
debug on). For example, assume that you reference "printf()" in your program, so the code for it is in
your objectfile. Then you can enter on the command line:

printf (" This works! %d %c\n", 9, '?’);

If you wonder what procedu s are available, do a list labels command ("1 1"). If you want to have
some library routines available for debugging, but they aren’t referenced anywhere in your code (so
they aren’t linked), you can modify a personal copy of /usr/lib/end.c to reference them. (Some systems
don’t support this; see the Hardware Dependencies section below.) It is not necessary to have correct
calls. For example, just " printf() " works fine, since you never execute the statements in end.c.

Note that procedure name "_end_" is declared in end.c.

COMMANDS
The debugger has a large number of commands for viewing and manipulating the program being
debugged. They are explained below, grouped by functional similarity.
File Viewing Commands
These commands may change the current viewing position, but they do not affect the next statement to
be executed in the child process, if any.

e Show the current file, procedure, line number, and source line (e.g
"test.c: testit: 28: a = 1;"). Commands that show the file and/or procedure with a
source line skip (do not print) any leading white space from the source line.

e (file | proc)

Enter (view) file or proc and print its first line. File can be any file, not necessarily one of the
source files for objectfile (but be careful not to view object code). For procedures, the "first
line" is the procedure’s first executable line, not its line of declaration.

[depth] E Like "e", but it sets the viewing location to the current location in the proc on the stack at
depth depth (which is not necessarily the first executable line of the procedure). Depth
defaults to zero, which is where the program is currently stopped.

L This is a synonym for OE.

line Print source line number line in the current file.

[line] p [count]
Print one (or count) lines starting at the current line (or line number line). If more than one
line is printed, the current line is marked with a " =" in the leftmost print position.

+ [lines] Move to lines (default one) lines after the current line.

—[lines] Move to lines (default one) lines before the current line.

[line] w [size]
Print a window of text, size (default 11) lines big, centered about the current line (or line),
which is marked with a " = " in the leftmost print position if more than one line is printed.
[line] W [size]
Same as "w", but size defaults to 21 lines.

CDB(1) Series 500 Only CDB(1)

+w [size]
+ W [size]
Print a window of text, of the given or default size, beginning at the end of the previous
window, if the previous command was a window command, or at the current line otherwise.
—w [size]
—W [size] Print a window of text, of the given or default size, ending at the beginning of the previous
window, if the previous command was a window command, or at the current line otherwise.

If after any window command you give a "w" or "W" command with no line specified, the debugger
prints the following window of source text, or the previous window if the previous window command

was "-w" or "-W", using the given size (or the default if none). A simple carriage-return after any
window command does the same thing, but uses the previous size as well.

/[string] ~ Search forward through the current file, from the line after the current line, for string.

?[string] Search backward for string, from the line before the current line.

Searches wrap around the end or beginning of the file, respectively. If string is not specified, the
previous one is used. Wild cards and regular expressions are not supported; string must be literal.

n Repeat the previous "/" or "?" command using the same string as previously.

N The same as "n", but the search goes in the opposite direction as specified by the previous
"/" or "?" command.
Display Formats
A format is of the form " [*][countformchar(size]" .
"% " means "use alternate address map" (if maps are supported).
Count is the number of times to apply the format style formchar. It must be a number.

Size is the number of bytes to be formatted for each count, and overrides the default size for the format
style. It must be a positive decimal number (except short hand notations, see below). Size is disallowed
with those formchars where it makes no sense.

For example, "abc/4x2" oprints, starting at the location of "abc", four two-byte numbers in
hexadecimal.

The formats which print numbers allow an upper-case character to be used instead, for the same results
as appending "1" (see below). For example, "O" prints in long octal. These formats, which are useful
on systems where integer is shorter than long, are noted below. The following formats are available:

n Print in the "normal" format, based on the type. Arrays of char and pointers to char
are interpreted as strings, and structures are fully dumped.

(d I D) Print in decimal (as integer or long).

(u10) Print in unsigned decimal (as integer or long).

(010) Print in octal (as integer or long).

(x1X) Print in hexadecimal (as integer or long).

(b B) Print a byte in decimal (either way).

(c1C) Print a character (either way).

(el E) Print in "e" floating point notation (as float or double) (see printf(3)). Remember
that floating point constants are always doubles!

(fI F) Printin "f" floating point notation (as float or double).

(@1 G) Printin "g" floating point notation (as float or double).

CDB(1)

Series 500 Only CDB(1)
a Print a string using expr as the address of the first byte.
s Print a string using expr as the address of a pointer to the first byte. This is the same as
saying " *expr/a", except for arrays.
t Show the type of expr (usually a variable or procedure name). For true procedure
types you must actually call the procedure, e.g. "def (2)/t".
p Print the name of the procedure containing address expr.
S Do a formatted dump of a structure (only with symbol tables which support it). Note

that expr must be the address of a structure, not the address of a pointer to a structure.

There are some short hand notations for size:

b 1 byte (char).
s 2 bytes (short).
1 4 bytes (long).

These can be appended to formchar instead of a numeric size. For example, "abc/xb" prints one byte in
hexadecimal.

If you view an object with a size (explicitly or implicitly) less than or equal to the size of a long, the
debugger changes the basetype to something appropriate for that size. This is so "." (dot) works
correctly for assignments. For example, "abc/c2" sets the type of "." to short. One side effect is that if
you look at a double using a float format, dot loses accuracy or has the wrong value.

Data Viewing Commands

expr If expr does not look like anything else (such as a command), it is handled as if you had typed
"expr/n" (print expression in normal format), unless followed by ";" or "}", in which case
nothing is printed.

expr/format
Print the contents (value) of expr using format. For example, "abc/x" prints the contents of
"abc" as an integer, in hexadecimal.

expr?format
Print the address of expr using format. For example, "abc?0" prints the address of "abc" in
octal.

“[[/1format]
Back up to the preceding memory location (based on the size of the last thing displayed). Use
format if supplied, or the previous format if not. Note that no "/" is needed after the """. Also
note that you can reverse direction again (e.g. start going forward) by entering "." (doz), which
is always an alias for the current location, followed by carriage returns.

1 [proc[.depth]]
List all parameters and local variables of the current procedure (or of proc, if given, at the
specified depth, if any). Data is displayed using "/n" format, except that all arrays and pointers
are shown simply as addresses, and only the first word of any structure is shown.

I(albidliz)
List all assertions, breakpoints, directories (where to search for files), or zignals (signal actions).

1(figiliplrlis)[string]
List all files (source files which built objectfile), global variables, labels (program entry points
known to the linker), procedure names, registers, or special variables (except registers). If szring
is present, only those things with the same initial characters are listed.

Stack Viewing Commands

CDB(1) Series 500 Only CDB(1)

[depth] t
Trace the stack for the first depth (default 20) levels.

[depth] T
The same as "t", but local variables are also displayed, using "/n" format (except that all
arrays and pointers are shown simply as addresses, and structures as first words only).

Job Control Commands
The parent (debugger) and child (objectfile) processes take turns running. The debugger is only active

while the child process is stopped due to a signal, including hitting a breakpoint, or terminated for
whatever reason.

r [arguments]
Run a new child process with the given argument list (if any). The existing child process, if
any, is terminated first. If no arguments are given, the ones used with the last "r" command
are used again (none if "R" was used last).

Arguments may contain "<" and ">" for redirecting standard input and standard output.
("<" does an open(2) of file descriptor O for read-only; ">" does a creat(2) of file descriptor
1 with mode 0666). Arguments cannot contain shell variables, quote marks, or other special
syntax. They cannot be enclosed in "{}" as with other commands, so "r" cannot be safely
saved with a breakpoint or assertion.

R Run a new child process with no argument list.
k Terminate (kill) the current child process, if any.

[count] c [line]
Continue after a breakpoint or a signal, ignoring the signal, if any. If count is given, the current
breakpoint, if any, has its count set to that value. If line is given, a temporary breakpoint is set
at that line number, with a count of —1 (see the Breakpoint Commands section below).

[count] C [line]
Continue just like "c*", but allow the signal (if any) to be received. This is fatal to the child
process if it doesn’t catch or ignore the signal!

[count] s Single step 1 (or count) statements. Successive carriage-returns repeat with a count of 1. If
count is less than one, the child process is not stepped. Note that the child process continues
with the current signal, if any! (You can set " $signal = 0" to prevent this.)

If you accidently step down into a procedure you don’t care about, use the "bU" command
to set a temporary up-level breakpoint, and then continue using "c".

[count] S Single step like "s", but treat procedure calls as single statements (don’t follow them down).
If a breakpoint is hit in such a procedure, or in one that it calls, its commands are executed.
This is usually all right, but beware if there is a "c" command in that breakpoint’s command
list!

The debugger has no knowledge about or control over child processes forked in turn by the process

being debugged. Also, it gets very confused (leading to "Bad access" messages) if the process being
debugged executes a different program via exec(2).

Child process output may be (and usually is) buffered. Hence it may not appear immediately after you

step through an output statement such as prinzf(3). It may not appear at all if you kill the process.
Breakpoint Commands

The debugger provides a number of commands for setting and deleting breakpoints. A breakpoint has

three attributes associated with it:

address All the commands which set a breakpoint are simply alternate ways to specify the breakpoint
address. The breakpoint is then encountered whenever address is about to be executed,
regardless of the path taken to get there. Only one breakpoint at a time (of any type or count)

_9.

CDB(1)

count

Series 500 Only CDB(1)

may be set at a given address. Settinga new breakpoint at address replaces the old one, if any.

The number of times the breakpoint is encountered prior to recognition. If count is positive, the
breakpoint is "permanent”, and count decrements with each encounter. Each time count goes
to zero, the breakpoint is recognized and count is reset to one (so it stays there until explicitly set
to a different value bya "c" or "C" command).

If count is negative, the breakpoint is "temporary*, and count increments with each encounter.
Once count goes to zero, the breakpoint is recognized, then deleted.

A count of zero is used internally by the debugger and means that the breakpoint is deleted
when the child process next stops for any reason, whether it hit that breakpoint or not.
Commands saved with such breakpoints are ignored. Normally you never see these sorts of
breakpoints.

Note that count is set to either —1 (temporary) or 1 (permanent) for any new breakpoint. It can
then be modified only by the "c" or "C" command.

commands

Actions to be taken upon recoy,. ...ion of a breakpoint before waiting for command input. These
are separated by ";" and may be enclosed in "{}" to delimit the list saved with the breakpoint
from other commands on the same line. If the first character is anything other than "{", or if
the matching "}" is missing, the rest of the line is saved with the breakpoint.

Remember that the results of expressions followed by ";" or "}" are not printed unless you
specify a print format. You can use "/n* (normal format) to simply force printing of a result.
Saved commands are not parsed until the breakpoint is recognized. If commands are nil then,
after recognition of the breakpoint, the debugger just waits for command input.

The debugger has only one active command line at a time. When it begins to execute
breakpoint commands, the remainder (if any) of the old command line is tossed, with notice
given.

Here are the breakpoint commands:

1b
B

Both forms list all breakpoints in the format "num: count: nnn proc: In: contents ", followed by
"{commands}", e.q.:
1: count: -1 (temporary) sortall: 12: abc + = 1;
{t;i/D}
2: count: 5 fixit: 29: def = abc >> 4;
{Qiif *argv = = —1{"Oops" } {c}}

The leftmost number is an index number for use with the *d" (delete) command.

[line] b [commands]

Set a permanent breakpoint at the current line (or at line in the current procedure). When the
breakpoint is hit, commands are executed. If there are none, the debugger pauses for command
input. If immediate continuation is desired, finish the command list with "c" (see breakpoint 2
in the example above).

For example, suppose you want to set a breakpoint in some file or procedure other than where
you are at the moment. First, use the "e" command to get you to the right file or procedure.
Look around for the line where you want the break to occur (using searches, or just by printing
the lines). Once you are there, you canjust say "b" to set a breakpoint on that line.

[expr] d Delete breakpoint number expr. If expr is absent, delete the breakpoint at the current line, if

any. If there is none, the debugger executes a "B" command instead.

-10-

CDB(1) Series 500 Only CDB(1)

D [b] Delete all breakpoints. The "b" is optional.

For the following commands, if the second character is upper case, e.g. "bU" instead of "bu", then
the breakpoint is temporary (count is —1), not permanent (count is 1).

[depth] bb [commands]

[depth] bB [commands]
Set a breakpoint at the beginning (first executable line) of the procedure at the given stack
depth. If depth is not specified, it uses the current procedure, which might not be the same as the
one at depth zero.

[depth] bx [commands)

[depth] bX [commands]
Set a breakpoint at the exit (last executable line) of the procedure at the given stack depth. If
depth is not specified, it uses the current procedure, which might not be the same as the one at
depth zero. The breakpoint is set at a point such that all returns of any kind go through it.

[depth] bu [commands]

[depth] bU [commands)
Set an up-level breakpoint. The breakpoint is set immediately after the return to the procedure
at the specified stack depth (default one, not zero). A depth of zero means " current location",
e.g. "0bU" is a way to set a temporary breakpoint at the current value of $pc.

[depth] bt [proc] [commands]

[depth] bT [proc] [commands]
Trace current procedure (or procedure at depth, or proc). This command sets breakpoints at
both the entrance and exit of a procedure. By default, the entry breakpoint commands are
"Q;2t;c", which shows the top two procedures on the stack and continues. The exit
breakpoint is always set to execute " Q;$result/n;c", which prints the procedure’s return value
and continues.

If depth is given, proc must be absent or it is taken as part of commands. If depth is missing but
proc is specified, the named procedure is traced. If both depth and proc are omitted, the current
procedure is traced, which might not be the same as the one at depth zero.

If commands are present, they are used for the entrance breakpoint, instead of the default shown
above.

address ba [commands)

address bA [commands]
Set a breakpoint at the given code address. Note that address can be the name of a procedure
or an expression containing such a name. Of course, if the child process is stopped in a non-
debuggable procedure, or in prologue code (before the first executable line of a procedure),
things may seem a little strange.

The next few commands, while not strictly part of the breakpoint group, are used almost exclusively as
arguments to breakpoints (or assertions).

if [expr] {commands}[{commands}]
If expr evaluates to a non-zero value, the first group of commands (the first "{}" block) is
executed, else it (and the following "{", if any) is skipped. In general, all other "{}" blocks are
always ignored (skipped), except when given as an argument to an "a", "b", or "!"
command. The "if" command is nestable, and may be abbreviated to "i".

Q If the "quiet" command appears as the first command in a breakpoint’s command list, the
normal announcement of "proc: line: text" is not made. This allows quiet checks of variables,
etc. to be made without cluttering up the screen with unwanted output. The "Q" command is
ignored if it appears anywhere else.

S11-

CDB(1) Series 500 Only CDB(1)

" any string you like "
Print the given string, which may have the standard backslashed character escapes in it,
including "\\n" for newline. This command is useful for labelling output from breakpoint
commands.
Assertion Control Commands
Assertions are lists of commands that are executed before every statement. This means that, if there is
even one active assertion, the program is single stepped at the machine instruction level. In other
words, it runs very slowly. The primary use for assertions is tracking down nasty bugs, such as when
someone corrupts a global variable. Some examples follow the command descriptions.

Each assertion is individually active or suspended, plus there is an overall assertions mode. If any
assertion is added or activated, or if all assertions become suspended, the global mode follows suit.

a commands
Create a new assertion with the given command list, which is not parsed until it’s executed. As
with breakpoints, the command list may be enclosed in " {}" to delimit it from other commands
on the same line. Doan "1 a" command to list all current assertions and the overall mode.

expra(aldls)
Modify the assertion numbered expr: activate it, delete it, or suspend it. Suspended assertions
continue to exist, but have no effect until reactivated.

A Toggle the overall state of the assertions mechanism between active and suspended.

Da Delete all assertions.

[flag] x Force an exit from assertions mode. If flag is absent, or if it evaluates to zero, exit immediately.
Otherwise, finish executing the current assertion first. If any assertion executes an "x"
command, the child process stops and the assertion doing the "x" is identified.

The debugger has only one active command line at a time. When it begins to execute assertion
commands, the remainder (if any) of the old command line is tossed, with notice given.

Certain commands ("r", "R", "c", "C", "s", "S", and "k") are not allowed while assertions are
running. They must appear after the "x", if at all.

A useful assertion might be:

al
This just traces execution a line at a time until "something" happens (e.g., you hit the BREAK key).
Another example:

a L; if (xyz > (def—9) # 10) {A; 1 x; ¢} {abc —= 10}

This assertion prints the line just executed, then checks the condition. Ifitis false, "abc" is decremented
by 10. If it is true, assertions are suspended, assertion mode is exited, and the program continues at
normal speed. Without the number before the "x" command, the "c¢" command is not executed.

Another example:
a if (abc!= $abc) {$abc = abc; abc/d; if (abc >9) {x}}

This command sets up an assertion to report the changing value of some global variable ("abc"), and
stop if it ever exceeds some value. It uses a debugger local variable ("$abc") to keep track of the old
value of "abc".

Signal Control Commands
The debugger catches all signals bound for the child process before the child process sees them. (This is
a function of the ptrace(2) mechanism.) For many signals, this is a reasonable thing to do. Most

processes are not set up to handle segmentation errors, etc. However, some processes do quite a bit
with signals and the constant need to continue from a signal catch can be tedious.

-12-

CDB(1) Series 500 Only CDB(1)

[signal] z [i](x][s][Q]
Maintains the "zignal" (signal) handling table. Signal is a valid signal number (the default is the
current signal). The options (which must be all one word) toggle the state of the appropriate
flag: ignore, report, or stop. If "Q" is present, the new state of the signal is not printed.

Do an "1 z" command to list the current handling of ™ - "gnals. Note that just "z" with no options tells
you the stete of the current or selected signal.

For example, assuming a start up state of (don’t ignore, don’t report, don’t stop), the command
"14z sr" sets the alarm clock signal (at least for System IlI) to stop (but still don’t ignore) and report
that it occurred. Doing " 14z sr" again toggles the flags back to the original state.

When the child process stops or terminates on a signal it is always reported, except for the breakpoint
signal when the breakpoint commands start with "Q".

When the debugger ignores a .ignal, the "c" command then does not know about it. The signal is
never ignored when the child process terminates, only when it stops.

Record and Playback Commands

The debugger supports a record-and-playback feature to help recreate program states and to record all
debugger output. Itis particularly useful for bugs requiring long setups.

The commands are:

>file Set or change recordfile to file and turn recording on. This rewrites file from the start. Only
commands are recorded to this file.

>>file This is the same, but appends to file instead of overwriting.

> @file

>>@file
Set or change record-all file to file, for overwriting or appending. The record-all file may be
opened or closed independently of (in parallel with) the recordfile. All debugger standard
output is copied to the record-all file, including prompts, commands entered, and command
output. However, child process output is not captured.

>(tiflc)
Turn recording on ("t") or off ("f"), or close the recording file ("c"). When recording is
resumed, it appends after commands recorded earlier. In this context, ">>" is the same as

" > n .

>@(t1flc)
Turn record-all on, off, or close the record-all file. In this context, ">>@" is the same as
" >@ n .

> Tell the current recording status. ">>" does the same thing.

>@ Tell the current record-all status. ">>@" does the same thing.
<file Start playback from file.

<<file Start playback from file, using the single-step feature of playback. Each command line from the
playback file is presented before it is executed. A simple menu lets you execute (" <cr>") or
skip ("S") the line, execute more than one line (" <num>"), continue ("C") or quit ("Q")
single stepping, or ask for help ("?").

Only command lines read from the keyboard or a playback file are recorded in the recordfile. For
example, if recording is turned on in an assertion, it doesn’t "take effect" until assertion execution
stops.

Command lines beginning with ">", " <" or "!" are not copied to the current recordfile (but they are
copied to the record-all file). You can override this by beginning such lines with blanks.

-13-

CDB(1)

Series 500 Only CDB(1)

NOTE: The debugger can of course be invoked with standard input, standard output, and/or standard
error redirected, independent of record and playback. If the debugger encounters an end of file while
standard input is redirected from anything other than a terminal, it prints a message to standard output
and exits, returning zero.

Miscellaneous Commands

<carriage-return>

‘D

An empty line or a "~" command causes the debugger to repeat the last command, if possible,
with an appropriate increment, if any. Repeatable commands are those which print a line, print
a window of lines, print a data value, single step, and single step over procedures. Note that
<carriage-return> is saved in a record file as a " ™" command, to distinguish from "D.

Control-D is like <carriage-return>, but repeats the previous command ten times. Note that
this command is saved in a record file as an empty line.

! [command-line]

This shell escape invokes a shell program. If command-line is present, it is executed via
system(3). Otherwise, the environment variable SHELL gives the name of the shell program to
invoke with a —i option, also using system(3). If SHELL is not found, the debugger executes
"/bin/sh—i". Inany case, the debugger then waits for the shell or command-line to complete.

As with breakpoints, command-line may be enclosed in "{}" to delimit it from other (debugger)
commands on the same line. For example,

14b {{date};c}; t;1a

sets a breakpoint at line 14 that calls date(1), then continues; then (after setting the breakpoint),
the debugger does a stack trace, then lists assertions.

f [V printf-style-format"]

g line

help
I
M

Set address printing format, using printf(3) format specifications (not debugger format styles).
Only the first 19 characters are used. If there is no argument, the format is set to a system-
dependent default. All addresses are assumed to be of type long, so you should handle all four
bytes to get something meaningful.

Find and fix bug (a useless but humorous command).

Go to an address in the procedure on the stack at depth zero (not necessarily the same as the
current procedure). This changes the program counter so line is the next line to be executed.

Print the debugger help file (command summary) using more(1).
Print information (inquire) about the state of the debugger.

Print the current text (objectfile) and core (corefile) address maps.

M (t | c) [expr; [exprs;...]]

q

z

Set the text (objectfile) or core (corefile) address map. The first zero to six map values are set to
the exprs given.

Quit the debugger. To be sure you don’t lose a valuable environment, this command requests
confirmation.

Toggle case sensitivity in searches. This affects everything: File names, procedure names,
variables, and string searches! The debugger starts out as not case sensitive.

HARDWARE DEPENDENCIES
The "bx" (break on exit) command requires that compilers support it by funneling all exits through one
point. The breakpoint is always set at the last line of the procedure, which should be, but may not be,
the sole exit point.

_14-

CDB(1) Series 500 Only CDB(1)

Series 200:
The debugger is not supported.

Series 500:
"bx" works, except for FORTRAN multiple returns. The compilers emit a special source line
symbol for this exit point, after the last "visible" source line.

Series 500 supports two types of string formats in addition to null-terminated C strings.
FORTRAN character variables consist of four-word (16-byte) string markers, where the second
word plus the third word plus three is the byte address of the string itself, and the fourth word is
the length of the string. Pascal string variables consist of a four-byte, word-aligned length word
followed by the string characters.

If the current language is FORTRAN, or if you use "/s" format with fdb or pdb, the debugger
interprets the variable (or expression) as a string marker (or address thereof), which is a null
pointer if the second word of the marker is zero. Multiple-count formats show a series of fixed-
length strings, beginning with the first one pointed to by the marker. Using " <cr>" or """ to
go forward or backward in memory uses the four words after or before the current string
marker as the new marker.

If the current language is Pascal, or if you use "/a" format with fdb or pdb, the debugger
interprets the variable (or expression) as a Pascal string (or address thereof). Multiple-count
formats show a series of random-length strings, using successive length words, skipping any
wasted bytes in the last word of the previous string. Likewise, using " <cr>" or """ to go
through memory skips the total bytes consumed in the last display.

FORTRAN arrays of character variables use only one string marker, but the debugger doesn’t
know this. You can see all the strings using a multiple-count format, e.g. "str[1]/6s", but
indexing into any element other than 1 results in junk.

There is no easy way to assign into a FORTRAN or Pascal string (nor, for that matter, into a
Pascal packed array of char, which looks like a simple array). Only one word is copied into
the first word of the string marker or into the length word, regardless of the type of the
expression result.

When a C parameter is declared as an array of anything, the highest type qualifier (array)
shows up as a pointer instead. For example, "int x[]" looks like "int *x*, and "char (*x)[]"
looks like " char **x ", but " char *x[]" is treated correctly as " pointer to array of char".

There is limited support for command-line calls of functions which return structures. The
debugger interprets the start of heap as a structure of the return type. However, a call such as
"abc()/t" displays the return type correctly.

There is never a corefile, so all features which depend on it don’t work. Also, there are no
address maps in the usual sense, so the "M*" command is not supported.

$short and $long are available in addition to $result. However, $result is only set to (valid as)
the return value from the last procedure calied from the command line. If the procedure
returns a double, $result is set to the value cast to long.

If a child process receives a signal and you then step with the "s" command (or run with
assertions active), the process free-runs through the signal handler procedure (if any) before
pausing (or doing assertions).

The source file end.c is not supported, so you can’t customize /usr/lib/end.o. The buffer size is
fixed at 200 bytes. However, to force linking of library routines not otherwise referenced, you
can use the —u option to ld(1).

All compiler front ends (cc(1), fc(1), and pc(l)) automatically tell the linker to include
lusr/liblend.o for you if you give the —g (debug) option. (They don’t know to do it if you instead

-15-

CDB(1)

Series 500 Only CDB(1)

use debug options in source code.)

Both code and data pointers in objectfile contain segment numbers. At exec(2) time, all such
pointers are mapped from ld(1) pseudo-values to real values based on actual segment numbers
allocated. The debugger operates in "pseudo-address-space", so you won’t notice anything
unusual most of the time. All addresses look the same each time you invoke a new child
process. For example, the heap always begins at "broken" address zero (0).

WARNING: The debugger’s interaction with a child process is somewhat complicated, due to
the "fixing" of pointer values written to the child and the "breaking" of pointers read from the
child. If you tell the debugger to treat a pointer as a non-pointer, it may get confused, with
unpredictable results. In particular, if you set a debugger special variable equal to a pointer
value, then attempt to dereference that special variable, you will either get garbage or cause an
access error.

In the rare case where maxheap is set very large (greater than “70Mb) and your program uses
shared EMS segments (from memalic(2)), the debugger may confuse pointers into the EMS
segments with large addresses in the heap.

Addresses of unknown (non-debuggable) procedures are shown as call-type pointers, not data
pointers. They can be distinguished because the high bit is set (e.g., the decimal value looks
negative). Pointers of this form are not usable for anything; you can’t dereference them nor set
breakpoints based on them.

SYMBOL TABLE DEPENDENCIES

Series 500 compilers use the HP9000 Symbol Table Format.

The —u (unique names) option is only available for System IIl symbol table versions (e.g. not on Series

HP9000 Symbol Table Format:

When you try to display a variable which is a FORTRAN format label, a Pascal file-of-text, or a
Pascal set, with no display format or with normal format ("/n"), the value is shown as
"{format-label}", "{file-of-text}", or "{set}", respectively. You can use other formats, such as
"/x", to display the contents of such variables.

Procedures in FORTRAN and Pascal may have alias names in addition to normal names.
Aliases are shown by the "1 p" (list procedures) command. They can be used in place of the
normal name, as desired.

The procedure name "_MAIN_" is used as the alias name for the main program (main
procedure) in all supported languages. Do not use it for any debuggable procedures.

When a compiler does not know array dimensions, such as for some C and FORTRAN array
parameters, it uses 0:MAXINT or 1:MAXINT, as appropriate. The "/t" format shows such cases
with "[]" (no bounds specified), and subscripts from O (or 1) to MAXINT are allowed in
expressions.

Even though the symbol table supports C structure, union, and enumeration tags, C typedefs,
and Pascal types, the debugger does not know how to search for them, even for the "/t"
format. They are "invisible".

The debugger does not know about (search for) Pascal variant record tag fields nor variant
fields.

Some variables are indirect, so a child process must exist in order for the debugger to know
their addresses. When there is no child process, the address of any such variable is shown as
Oxfftffffe.

The optional pattern given with the "1 g" (list globals) command must be an exact match, not
just a leading pattern.

-16-

CDB(1) Series 500 Only CDB(1)

The string cache (see the —S option) defaults to 1Kbyte in size. This cache holds data read from
the Value Table.

Do not include executable source lines (from a separate file) within any procedure. If you do,
such source lines appear to belong to the other source file, e.g. they don’t belong to the file that
contains the procedure declaration, so they can’t be found. In the worst cas~ if the first
executable line of the main procedure is in a different source file than the procedure
declaration, the debugger fails during start up.

If you do any includes within a procedure, even just of declarations (no code), the debugger
may get confused and show you a wrong procedure name in some cases.

Symbol names in the Value Table are never preceded by underscores, so the debugger never
bothers to search for names of that form. The only time a prefixed underscore is expected is
when searching the Linker Symbol Table for names of non-debuggable procedures.

FILES
a.out Default objectfile to debug.
core Default corefile to debug.
/usr/lib/cdb.help

Text file listed by the "help" command.

/usr/lib/cdb.error
Text file which explains debugger error and warning messages.

/usr/lib/end.o
Object file to link with all debuggable programs.

/usr/lib/end.c Source file for end.o.

SEE ALSO
cc(1), echo(1), 1d(1), more(1), creat(2), exec(2), fork(2), open(2), printf(3), system(3), a.out(5).

On some systems any of the following may exist: adb(1), fc(1), pc(1), sdb(1), ptrace(2), core(5),
symtab(5), user(5).

DIAGNOSTICS
Most errors cause a reasonably accurate message to be given. Normal debugger exits return zero and
error exits return one. All debugger output goes to standard output except error messages given just
before non-zero exits, which go to standard error.

Debugger errors are preceded by "panic: ", while user errors are not. If any error occurs during
initialization, the debugger then prints "cannot continue" and quits. If any error happens after
initialization, the debugger attempts to reset itself to an idle state, waiting for command input. If any
error occurs while executing a procedure call from the command line, the context is reset to that of the
normal program.

Child process (program) errors result in signals which are communicated to the debugger via the
ptrace(2) mechanism. If a program error occurs while executing a procedure call from the command
line, it is handled like any other error (i.e. you can investigate the called procedure). To recover from
this, or to abort a procedure call from the command line, type DEL, BREAK, "C, or whatever your
interrupt character is.

For more information, see the text file /usr/lib/cdb.errors.

WARNINGS
Code that is not debuggable or does not have a corresponding source file is dealt with in a half-hearted
manner. The debugger shows "unknown" for unknown file and procedure names, cannot show code
locations or interpret parameter lists, etc. However, the linker symbol table provides procedure names
for most procedures, even if not debuggable. The main procedure (main program) must be debuggable

S17-

CDB(1) Series 500 Only CDB(1)

and have a corresponding source file.

On some systems, if the debugger is run on a shared objectfile you cannot set breakpoints. (This may
only apply if someone else is also executing the program.) This may be indicated by the error "Bad
access" when you attempt to start a child process. If another person starts running objectfile while you
are debugging, they and you may have some interesting interactions.

If the address given to a "ba" command is a not a code address in the child process, strange results or
errors may ensue.

If you set the address printing format to something printf(3) doesn’t like, you may get an error (usually
memory fault) each time you try to print an address, until you fix the format with another "f"
command.

Do not use the "z" command to manipulate the SIGTRAP signal. If you change its state you had better
know what you are doing or be a very good sport!

If you single step or run with assertions through a call to longimp(3), the child process will probably take
off free-running as the debugger sets but never hits an up-level breakpoint.

Do not modify any file while the debugger has it open. If you do, the debugger gets confused and may
display garbage.

Although the debugger tries to do things reasonably, it is possible to confuse the recording mechanism.
Be careful about trying to playback from a file currently open for recording, or vice versa; strange things
can happen.

Many compilers only issue source line symbols at the end of each logical statement or physical line,
whichever is greater. This means that, if you are in the habit of saying "a = 0; b = 1;" on one line, there
is no way to put a breakpoint after the assignment to "a" but before the assignment to "b".

Multi-line statements, such as a multi-line #f, may only have a line symbol generated at the end of the list
of conditions. If you try to set a breakpoint on any but the last line of this statement, the breakpoint will
actually be set on the preceding statement. Also, if you try to set a breakpoint before the first executable
line of a procedure, it may be set at the last line of the previous procedure. You can detect this because
the debugger tells you what line it really set the breakpoint on.

Some statements do not emit code where you would expect it. For example, assume:
99:for (i = 0;i<9;i+ +){
100:xyz (i);
101:}
A breakpoint placed on line 99 will be hit only once in some cases. The code for incrementing is placed

at line 101. Each compiler is a little different; you must get used to what your particular compiler does.
A good way of finding out is to use single stepping to see in what order the source lines are executed.

The output of some program generators, such as yacc(1), have compiler line number directives in them
that can confuse the debugger. It expects source line entries in the symbol table to appear in sorted
order. Removal of line directives fixes the problem, but makes it more difficult to find error locations in
the original source file. The following script, run after yacc(1) and before cc(1), comments out line
number changes in C programs:

sed "/# *line/s/". #$/\/*&*\//" y.tab.c >temp.c

In general, line number directives (or compiler options) are only safe so long as they never set the
number backwards.

BUGS
The C operators " + + ", "—", and "?:" are not available. The debugger always understands all the
other C operators, except "sizeof", if the default language is FORTRAN or Pascal.

-18-

CDB(1) Series 500 Only CDB(1)

For FORTRAN, only the additional operators ".NE.", ".EQ.", ".LT.", ".LE.", ".GT.", and ".GE." are
supported.

For Pascal, only the operators ":=", "<>" "*" "~ " (a5in "x"y"), "and", "or", "not", "div",
and "mod" are added.

The "/t" format mostly knows how to print type information using only C syntax. Also, it's confused
about "array of pointer”, e.g., "int #x[]" is shown as "int x[](¥)". However, it does show FORTRAN
array subscripts correctly (e.g. right to left).

Multiple array dimensions must always be given separately, as in C, for example, "x[3](2](4]".
FORTRAN array indices must be given using "[]", not "()".

There is no support for FORTRAN entry points. They don’t show up with the "1 p" (list procedures)
command, and you can’t call them or reference them by name.

There is no support for FORTRAN complex variables, except as a series of two separate floats or
doubles.

The debugger doesn’t understand C type casts.

The C operators "&&" and "II" aren’t short circuit evaluated as in the compiler. All parts of
expressions involving them are evaluated, with any side-effects, even if it's not necessary.

The debugger doesn’t understand C pointer arithmetic. "#*(a+n)" is not the same as "a[n]" unless
"a" has an element size of 1.

There is no support for C local variables declared in nested blocks, nor for any local overriding a
parameter with the same name. When looking up a local by name, parameters come first, then locals in
the order of the "}"s of the blocks in which they are declared. When listing all locals, they are shown in
the same order. When there is a name overlap, the address or data shown is that of the first variable
with that name.

There is no support for Pascal intermediate variables. To reference a variable local to an enclosing
procedure, you must specify the procedure name and stack depth in the usual way (proc.depth.var).

There is no support for Pascal packed arrays where the element size is not a whole number of bytes.
Any reference into such an array may produce garbage or a bad access.

Pascal WITH statements are not understood. To access any variable you must specify the complete
" " H
path" toit.

If you set the maximum allowed number of breakpoints, thendoa "r" or "R" (run) command, you get
a "Too many breakpoints" error because the debugger needs to set one internally. This can happen
for similar reasons at other times, too.

The debugger supports call-by-reference only for known parameters of known (debuggable)
procedures. If the object to pass lives in the child process, you can fake such a call by passing "&
object", i.e. the address of the object.

Array parameters are always passed to command-line procedure calls by address. This is correct except
for Pascal call-by-value parameters. Structure parameters are passed by address or value, as
appropriate, but only a maximum of eight bytes is passed, which can totally confuse the called
procedure. FORTRAN string markers are never passed correctly. Only the first number of a complex
pair is passed as a parameter. Functions which return complex numbers are are not called correctly;
insufficient stack space is allocated for the return area, which can lead to overwriting the parameter
values.

Assignments into objects greater than four bytes in size, from debugger special variables, result in errors
or invalid results.

Case-insensitive searches are done in a crude way which equates some non-letters with other non-
letters. For example, "[" and "{" are equal, asare "@" and """.

219-

CDB(1) Series 500 Only CDB(1)

Command lines longer than 1024 bytes are broken into pieces of that size. This may be relevant if you
run the debugger with playback or with input redirected from a file.

-20-

CDC(1)

NAME

CDC(1)

cdc — change the delta commentary of an SCCS delta

SYNOPSIS

cdc —rSID [-m[mrlist]] [-y[comment]] files

HP-UX COMPATIBILITY

Level: HP-UX/STANDARD

Origin: System III
DESCRIPTION

Cdc changes the delta commentary, for the SID specified by the —r keyletter, of each named SCCS file.

Delta commentary is defined to be the Modification Request (MR) and comment information normally
specified via the delta(1) command (—m and —y keyletters).

If a directory is named, cdc behaves as though each file in the directory were specified as a named file,
except that non-SCCS files (last component of the path name does not begin with s.) and unreadable
files are silently ignored. If a name of — is given, the standard input is read (see WARNINGS); each line
of the standard input is taken to be the name of an SCCS file to be processed.

Arguments to cdc, which may appear in any order, consist of keyletter arguments, and file names.

All the described keyletter arguments apply independently to each named file:

—SID

—m{[mrlist]

—y[comment]

Used to specify the SCCS IDentification (SID) string of a delta for which the
delta commentary is to be changed.

If the SCCS file has the v flag set (see admin(1)) then a list of MR numbers to be
added and/or deleted in the delta commentary of the SID specified by the —r
keyletter may be supplied. A null MR list has no effect.

MR entries are added to the list of MRs in the same manner as that of delta(1).
In order to delete an MR, precede the MR number with the character ! (see
EXAMPLES). If the MR to be deleted is currently in the list of MRs, it is
removed and changed into a "comment" line. A list of all deleted MRs is

placed in the comment section of the delta commentary and preceded by a
comment line stating that they were deleted.

If —m is not used and the standard input is a terminal, the prompt MRs? is issued
on the standard output before the standard input is read; if the standard input is
not a terminal, no prompt is issued. The MRs? prompt always precedes the
comments? prompt (see —y keyletter).

MRs in a list are separated by blanks and/or tab characters. An unescaped
new-line character terminates the MR list.

Note that if the v flag has a value (see admin(1)), it is taken to be the name of a
program (or shell procedure) which validates the correctness of the MR
numbers. If a non-zero exit status is returned from the MR number validation
program, cdc terminates and the delta commentary remains unchanged.

Arbitrary text used to replace the comment(s) already existing for the delta
specified by the —r keyletter. The previous comments are kept and preceded by
a comment line stating that they were changed. A null comment has no effect.

If —y is not specified and the standard input is a terminal, the prompt
comments? is issued on the standard output before the standard input is read,;
if the standard input is not a terminal, no prompt is issued. An unescaped new-
line character terminates the comment text.

CDC(1) CDC(1)

The exact permissions necessary to modify the SCCS file are documented in the article indicated

under SEE ALSO. Simply stated, they are either (1) if you made the delta, you can change its delta

commentary; or (2) if you own the file and directory you can modify the delta commentary.
EXAMPLES

cdc —r1.6 —m"bl78-12345 !b177-54321 bl79-00001 " —ytrouble s.file

adds bl78-12345 and bl79-00001 to the MR list, removes bl77-54321 from the MR list, and adds the
comment trouble to delta 1.6 of s.file.

cdc —rl.6 s.file
MRs? |bl77-54321 bl78-12345 bl79-00001
comments? trouble

does the same thing.

FILES
x-file (see delta(1))
z-file (see delta(1))
SEE ALSO
admin(1), delta(1), get(1), help(1), prs(1), sccsfile(5).
SCCS User’s Guide in HP-UX Concepts and Tutorials.
DIAGNOSTICS
Use help(1) for explanations.
WARNINGS

If SCCS file names are supplied to the cdc command via the standard input (- on the command line),
then the —m and —y keyletters must also be used.

CHATR(1) Series 500 Only CHATR(1)

NAME
chatr — change program’s internal attributes

SYNOPSIS
/lbin/chatr [+ cl—c] [+ gl—g] [+ hi-h] [-mn] [+ nl-n] [+ pl-p] [-s] [+zl—2] file ...

HP-UX COMPATIBILITY
Level: HP-UX/OPTIONAL

Origin: HP
Remarks: Chatr is implemented on the Series 500 only.
DESCRIPTION

Chatr, by default, prints each file's magic number and file attributes to the standard output. With one or
more optional arguments, chatr performs the following operations:

set (+) or clear () the virtual bit for each code segment.

g set (+) or clear (=) the virtual bit of the global data segment.

h set (+) or clear () the virtual bit for the heap of a two data segment program.

-mn change the maximum heap size to n bytes.

n mark code as shareable (+) (magic number = SHARE_MAGIC), or unshareable (-) (magic
number = EXEC_MAGIC).

P set (+) or clear (-) the paged and virtual bits for the heap of a two data segment program.

-s perform action silently.

z set (+) or clear (—) the demand load bit for each segment.

Upon completion, chatr prints the file’s old and new values to the standard output file, unless —s is in
effect.

RETURN VALUE
Chatr returns zero on success. If the call to chatr is syntactically incorrect, or one or more of the specified
files cannot be acted upon, chatr returns the number of files whose attributes could not be modified. If
no files are specified, chatr returns decimal 255.

SEE ALSO
1d(1), a.out(5), magic(5).

DIAGNOSTICS
Chatr generates an error message for the following conditions:

no arguments are supplied — in this case the syntax is printed to the standard error file;
cannot open a file;
arequest is made to modify a file which is not EXEC_MAGIC or SHARE_MAGIC.
Chatr generates a warning message for the following conditions:
the +p, —p, +h, or —h option is specified for a file which is a one data segment program,;

the —m option is specified for a file which is a one data segment program, or a file for which the
data is unpaged.

CHMOD(1) CHMOD(1)

NAME
chmod — change mode

SYNOPSIS
chmod mode file ...

HP-UX COMPATIBILITY
Level: HP-UX/NUCLEUS

Origin: System III
DESCRIPTION

The permissions of each named file are changed according to mode, which may be absolute or symbolic.
An absolute mode is an octal number constructed from the OR of the following modes:

4000 set user ID on execution
2000 set group ID on execution
1000 sticky bit, see chmod(2)
0400 read by owner

0200 write by owner

0100 execute (search in directory) by owner
0070 read, write, execute (search) by group
0007 read, write, execute (search) by others

A symbolic mode has the form:
[who] op permission [op permission]

The who part is a combination of the letters u (for user’s permissions), g (group) and o (other). The
letter a stands for ugo, the default if who is omitted.

Op can be + to add permission to the file’s mode, — to take away permission, or = to assign permission
absolutely (all other bits will be reset).

Permission is any combination of the letters r (read), w (write), x (execute), s (set owner or group ID) and
t (save text — sticky); u, g or o indicate that permission is to be taken from the current mode. Omitting
permission is only useful with = to take away all permissions.

Multiple symbolic modes separated by commas may be given. Operations are performed in the order
specified. The letter s is only useful with u or g and t only works with u.

Only the owner of a file (or the super-user) may change its mode. Only the super-user may set or clear
the sticky (save text) bit.

EXAMPLES
The first example denies write permission to others, and the second makes a file executable (using
symbolic mode):

chmod o—w file
chmod +x file

The first example below assigns read and execute permission to everybody, and sets the set-user-id bit.
The second assigns read and write permission to the file owner, and read permission to everybody else
(using absolute mode):

chmod 4555 file
chmod 644 file

SEE ALSO
Is(1), chmod(2).

CHOWN(1) CHOWN(1)

NAME
chown, charp — change file owner or group

SYNOPSIS
chown owner file ...
chgrp group file ...
HP-UX COMPATIBILITY
Level: HP-UX/NUCLEUS
Origin: System [II

DESCRIPTION
Chown changes the owner of the files to owner. The owner may be either a decimal user ID or a login
name found in the password file.

Chgrp changes the group ID of the files to group. The group may be either a decimal group ID or a
group name found in the group file.
In order to change the owner or group, you must own the file or be the super-user.

FILES
[etc/passwd
/etc/group

SEE ALSO
chown(2), group(5), passwd(5).

CHROOT(1) CHROOT(1)

NAME

chroot — change root directory for a command

SYNOPSIS

chroot newroot command

HP-UX COMPATIBILITY

Level: HP-UX/STANDARD
Origin: System Il

DESCRIPTION

The given command is executed relative to the new root. The meaning of any initial slashes (/) in path
names is changed for a command and any of its children to newroot. Furthermore, the initial working
directory is newroot.

Notice that:

chroot newroot command >x
will create the file x relative to the original root, not the new one.
Command includes both the command name and any arguments.
This command is restricted to the super-user.

Chroot does not search PATH for the location of command, so the absolute path name of command must
be given.

The new root path name is always relative to the current root. Even if a chroot is currently in effect, the
newroot argument is relative to the current root of the running process.

SEE ALSO

BUGS

chdir(2).

Command cannot be in a shell script.

CHSH(1) CHSH(1)

NAME
chsh — change default login shell

SYNOPSIS
chsh name [shell]

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD
Origin: UCB4.2

DESCRIPTION
Chsh is a command similar to passwd(1), except that it is used to change the login shell field of the
password file rather than the password entry. If no shell is specified then the shell reverts to the default
login shell /bin/sh. Otherwise, only /bin/csh can be specified as the shell.

An example use of this command is:
chsh bill /bin/csh

SEE ALSO
csh(1), passwd(1), passwd(5).

CMP(1) CMP(1)

NAME
cmp — compare wo files
SYNOPSIS
cmp [-1][—s] filel file2
HP-UX COMPATIBILITY
Level: HP-UX/STANDARD
Origin: System V
DESCRIPTION
The two files are compared. (If filel is —, the standard input is used.) Under default options, cmp makes
no comment if the files are the same; if they differ, it announces the byte and line number at which the
difference occurred. If one file is an initial subsequence of the other, that fact is noted.

The options are:
.| Print the byte number (decimal) and the differing bytes (octal) for each difference. (Byte
numbering begins at 1, rather than at 0 as is common.)
-s Print nothing for differing files; return codes only.

SEE ALSO
comm(1), diff(1).

DIAGNOSTICS
Exit code O is returned for identical files, 1 for different files, and 2 for an inaccessible or missing
argument.

09000-90007, rev: 1/85

COL(1)

COL(1)

NAME

col —filter reverse line-feeds and backspaces
SYNOPSIS

col [—bflpx]

HP-UX COMPATABILITY

Level: HP-UX/STANDARD
Origin: System Il

DESCRIPTION

Col reads from the standard input and writes onto the standard output. It performs the line overlays
implied by reverse line-feeds (ASCII code ESC-7), and by forward and reverse half-line-feeds (ESC-9
and ESC-8). It also removes backspaces in favor of multiply overstruck lines. Col is particularly useful
for filtering multi-column output made with the .rt command of nroff(1) and output resulting from use of
the tbl(1) preprocessor.

If the —b option is given, col assumes that the output device in use is not capable of backspacing. In this
case, if two or more characters are to appear in the same place, only the last one read will be output.

If the -1 option is given, col assumes the output device is a line printer (rather than a character printer)
and removes backspaces in favor of multiply overstruck full lines. It generates the minimum number of
print operations necessary to generate the required number of overstrikes. (All but the last print
operation on a line are separated by carriage returns (\r); the last print operation is terminated by a
newline (\\n).)

Although col accepts half-line motions in its input, it normally does not emit them on output. Instead,
text that would appear between lines is moved to the next lower full-line boundary. This treatment can
be suppressed by the —f (fine) option; in this case, the output from col may contain forward half-line-
feeds (ESC-9), but will still never contain either kind of reverse line motion.

Unless the —x option is given, col will convert white space to tabs on output wherever possible to shorten
printing time.

The ASCII control characters SO (\017) and SI (\016) are assumed by col to start and end text in an
alternate character set. The character set to which each input character belongs is remembered, and on

output SI and SO characters are generated as appropriate to ensure that each character is printed in the
correct character set.

On input, the only control characters accepted are space, backspace, tab, return, new-line, SI, SO, VT
(\.013), and ESC followed by 7, 8, or 9. The VT character is an alternate form of full reverse line-feed,
included for compatibility with some earlier programs of this type. All other non-printing characters are
ignored.

Normally, col will ignore any unrecognized escape sequences found in its input; the —p option may be
used to cause col to output these sequences as regular characters, subject to overprinting from reverse
line motions. The use of this option is highly discouraged unless the user is fully aware of the textual
position of the escape sequences.

Note that the input format accepted by col matches the output produced by nroff(1) with either the -T37

or —Tlp options. Use —T37 (and the —f option of col) if the ultimate disposition of the output of col will be
a device that can interpret half-line motions, and —Tlp otherwise.

SEE ALSO

BUGS

nroff(1), tbl(1).

Cannot back up more than 128 lines.

Allows at most 800 characters, including backspaces, on a line.

Local vertical motions that would result in backing up over the first line of the document are ignored. As
aresult, the first line must not have any superscripts.

o1-

COMM(1) COMM(1)

NAME
comm - select or reject lines common to two sorted files

SYNOPSIS
comm [— [123]] filel file2

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System V

DESCRIPTION
Comm reads filel and file2, which should be ordered in ASCII collating sequence (see sort(1)), and
produces a three-column output: lines only in filel; lines only in file2; and lines in both files. The file
name — means the standard input.

Flags 1, 2, or 3 suppress printing of the corresponding column. Thus
comm -12

prints only the lines common to the two files;
comm -23

prints only lines in the first file but not in the second;
comm -123

is a no-op.

SEE ALSO
cmp(1), diff(1), sort(1), uniq(1).

CP(1)

cp, In, mv — copy, link or move files

SYNOPSIS

cp filel [file2 ...] target
In [f] filel [file2 ...] target
mv [f] filel [file2 ...] target

HP-UX COMPATIBILITY

Level: HP-UX/NUCLEUS
Origin: System Il

DESCRIPTION

Filel is copied (linked, moved) to target. Under no circumstance can filel and target be the same. If
target is a directory, then one or more files are copied (linked, moved) to that directory. If two or more
files are specified for any of these commands (not counting target), then target must be a directory.

Only mo will allow filel to be a directory, in which case the directory rename will occur only if the two
directories have the same parent.

Ln and mv will ask for permission if zarget already exists and is not writable. This is done by printing the
mode (see chmod(2)), and reading one line from the standard input (if the standard input is a terminal).
If the line (which you type in) begins with y, the operation will take place. Any other response will abort
it. (Note that this will not occur if you are the super-user, since all files are considered writable by the
super-user. Cp behaves similarly, in that the super-user is allowed to overwrite an existing file, while
ordinary users are not.) The —f option will force these operations to occur without your intervention.

You cannot use mo to perform the following operations:
rename either the current working directory or its parent directory using the "." or ".." nota-
tion:
rename a directory such that its new name is the same as the name of a file contained in that
directory.

SEE ALSO

cpio(1), link(1), rm(1), chmod(2).

If filel and target lie on different file systems, mv must copy the file and delete the original. In this case
the owner name becomes that of the copying process and any linking relationship with other files is lost.

Ln will not link across file systems.

You cannot use mo to rename a directory when its name ends in a slash (/).

CPIO(1)

NAME

CPIO(1)

cpio — copy file archives in and out

SYNOPSIS

cpio —o [acBvx]
cpio —i [BcdmPrstuvx6] [patterns]
cpio —p [adlmuvx] directory

HP-UX COMPATIBILITY

Level: HP-UX/STANDARD
Origin: System III

DESCRIPTION

Cpio —o (copy out) reads the standard input to obtain a list of path names and copies those files onto the
standard output together with path name and status information.

Cpio —i (copy in) extracts from the standard input (which is assumed to be the product of a previous
cpio —o) the names of files selected by zero or more patterns given in the name-generating notation of
sh(1). In patterns, metacharacters ?, #, and [...] match the slash / character. Multiple parterns may be
specified. If no patterns are specified, the default is # (i.e., select all files). The extracted files are
conditionally created and copied into the current directory tree based upon the options described
below.

Cpio —p (pass) reads the standard input to obtain a list of path names of files that are conditionally
created and copied into the destination directory tree based upon the options described below.

The meanings of the available options are:

a Reset access times of input files after they have been copied.

B Input/output is to be blocked 5120 bytes to the record (does not apply to the pass option;
recommended only with data directed to or from /dev/rmt?).

d Directories are to be created as needed.

c Write header information in ASCII character form for portability.

P Read a file written on a PDP-11 or VAX system (with byte swapping) that did not use the —c

option. Only useful with —i (copy in). Only bytes contained in the header are swapped. Non-

ascii files will probably need further processing to be readable; this processing requires

knowledge of the content of the file and thus cannot be done by this program. (PDP-11 and

VAX are registered trademarks of Digital Equipment Corporation).

Interactively rename files. If the user types a null line, the file is skipped.

Identical to the P option, except that all bytes in the file are swapped (including the header).

Print only a table of contents of the input. No files are created, read, or copied.

Copy unconditionally (normally, an older file will not replace a newer file with the same name).

Save or restore device special files. Mknod(2) will be used to recreate these files on a restore,

and thus —ix can only be used by the super-user. Restoring device files onto a different system

can be very dangerous. This is intended for intrasystem (backup) use.

v Verbose: causes a list of file names to be printed. When used with the t option, the table of
contents looks like the output of an Is —I command (see Is(1)).

1 Whenever possible, link files rather than copying them. Usable only with the —p option.

m Retain previous file modification time. This option is ineffective on directories that are being
copied.

6 Process an old (i.e., UNIX Sixth Edition format) file. Only useful with —i (copy in).

X s 0=

When the end of the tape is reached, cpio will prompt the user for a new special file and continue.

Note that cpio archives created using a raw device file must be read using a raw device file.

CPIO(1) CPIO(1)

If you want to pass one or more metacharacters to cpio without the shell expanding them, be sure to
precede each of them with a backslash (\).

Device files written with the —ox option (e.g. /dev/tty03) will not transport to other implementations of
HP-UX.

HARDWARE DEPENDENCIES

Series 200/500:
All files with i-nodes greater than or equal to 65535 are unlinkable with the —i option. A
separate copy of each file is made instead.

The number of blocks reported by cpio is always in units of 512-byte blocks, regardless of the
block size of the initialized media.

The —B option must be used when writing directly (i.e. without using cio(1)) to a CS-80
cartridge tape unit (HP 88140L/S). Warning: using cpio to write directly to a cartridge tape unit
can severely damage the tape drive in a short amount of time, and is therefore strongly
discouraged. The recommended method of writing to the cartridge tape unit is to use zcio(1) in
conjunction with ¢pio (note that —B must not be used when tcio(1) is used). Tcio(1) buffers data
into larger pieces, yielding better system performance and less wear and tear on the media and
tape drive. A minimum buffer size of 64K bytes is recommended. Note that the —B option also
must not be used when performing raw 1/O to the internal miniature flexible disc drive (HP
9130K), if the /O requires more than one volume.

EXAMPLES

The first example below copies the contents of a directory into an archive; the second duplicates a
directory hierarchy:

Is | cpio —o >/dev/mt0

cd olddir
find . —print | cpio —pdl newdir

The trivial case "find . —print | cpio —oB >/dev/rmt0" can be handled more efficiently by:
find . —cpio /dev/rmt0

SEE ALSO

ar(1), find(1), tar(1), tcio(1), cpio(5).

WARNING

BUGS

Do not redirect the output of ¢pio to a named cpio archive file which resides in the same directory as the
original files which are part of that cpio archive. This can cause loss of data.

If data has been written out to a medium using a raw device file, then a raw device file must be used in
reading that data back in.

Path names are restricted to 128 characters. If there are too many unique linked files, the program runs
out of memory to keep track of them and, thereatter, linking information is lost. Only the super-user can
copy special files.

Cpio tapes written on HP machines with the —ox[c] options can mislead (non-HP) versions of cpio
which do not support the —x option. If a non-HP (and non-Bell) version of cpio happens to be modified
so that (HP) cpio recognizes it as a device special file, a spurious device file could be created.

If /dev/tty is not accessible, cpio issues a complaint, or refuses to work.

The —pd option will not create the directory typed on the command line.

CPIO(1) CPIO(1)

The —idr option will not make empty directories.
Cpio will fail while restoring files from a backup tape (cpio i) if the following conditions are met:

your working directory during the restore is not the root directory (/), and the files being
restored have multiple links, and their path names begin with slash (/).

If these conditions are met, the following occurs:

(1) The first file on the backup tape is restored correctly;
(2) The second file is removed, and the restore fails.

Note that the second file is removed before the restore fails!

Cpio then writes the message " Cannot link filel & file2" to stderr, but also writes " filel linked to file2"
on stdout, as if everything went fine. The correct message is that written to stderr.

There are two work-arounds for this bug, either of which will solve the problem. The first is to make
sure that your working directory is the root directory during the restore process. The second is to use
relative file names (path names not beginning with slash) in your backup.

CPP(1)

NAME

CPP(1)

cpp — C language preprocessor

SYNOPSIS

Nib/cpp [option ...] [file [ofile]]

HP-UX COMPATIBILITY

Level: HP-UX/STANDARD
Origin: System III

DESCRIPTION

Cpp is the C language preprocessor which is invoked as the first pass of any C compilation using the
cc(1) command. Its purpose is to process include and conditional compilation instructions, and macros.
The output of ¢pp is designed to be in a form acceptable as input to the next pass of the C compiler. As
the C language evolves, cpp and the rest of the C compilation package will be modified to follow these
changes. Therefore, the use of c¢pp other than in this framework is not suggested. The preferred way to
invoke cpp is through the cc(1) command, since the functionality of cpp may someday be moved
elsewhere.

Cpp optionally accepts two file names as arguments. Ifile and ofile are respectively the input and output
for the preprocessor. They default to standard input and standard output if not supplied.

The following options are recognized:

-C By default, ¢pp strips C-style comments. If the —C option is specified, all comments (except
those found on ¢pp directive lines) are passed along.

—Dname
—Dname = def
Define name as if by a #define directive. If no = defis given, name is defined as 1.

—H nnn Change the internal macro definition table to be nnn bytes in size. The macro symbol table is
increased proportionally. The default table size is 36 000 bytes. This option serves to eliminate
the "too many defines" and "too much defining" errors.

-Idir Change the algorithm for searching for #include files whose names do not begin with / to look
in dir before looking in the directories on the standard list. Thus, #include files whose names
are enclosed in " " will be searched for first in the directory of the ifile argument, then in
directories named in —I options, and last in directories on a standard list. For #include files
whose names are enclosed in <>, the directory of the ifile argument is not searched.
However, the directory dir is searched.

-P Preprocess the input without producing the line control information used by the next pass of
the C compiler.

-T Forces cpp to use only the first eight characters for distinguishing different preprocessor names.
This behavior is the same as previous preprocessors with respect to the length of names, and is
included for backward compatibility.

—Uname
Remove any initial definition of name, where name is a reserved symbol that is predefined by the
particular preprocessor. The current list of these possibly reserved symbols includes:

operating system: mert, ibm, gcos, os, tss, unix

hardware: hp9000s500, hp9000s200, interdata, pdpll, u370,
u3b, vax

UNIX System variant: RES, RT, TS, PWB

Two special names are understood by cpp. The name __LINE__ is defined as the current line number
(as a decimal integer) as known by ¢pp, and __FILE__ is defined as the current file name (as a C string)
as known by cpp. They can be used anywhere (including in macros) just as any other defined name.

S1-

CPP(1) CPP(1)

All cpp directives start with lines begun by #. The directives are:

#define name token-string
Replace subsequent instances of name with token-string (token-string may be null).

#define name(arg, ... , arg) token-string
Replace subsequent instances of name, followed by (, a list of comma separated tokens, and a),
by token-string, where each occurrence of an arg in the token-string is replaced by the
corresponding token in the comma separated list. Note that there must be no space between
name and (.

#undef name
Cause the definition of name (if any) to be forgotten from now on.

#include " filename"

#include <filename>
Include at this point the contents of filename (which will then be run through cpp). When the
<filename> notation is used, filename is only searched for in the standard places. See the —I
option above for more detail.

#line integer-constant " filename"
Cause cpp to generate line control information for the next pass of the C compiler. Integer-
constant is the line number of the next line and filename is the file from which it comes. If
" filename" is not given, the current file name is unchanged.

#endif <texr>
Ends a section of lines begun by a test directive (#if, #ifdef, or #ifndef). Each test directive
must have a matching #endif. Any zext occurring on the same line as the endif is ignored and
thus may be used to mark matching if-endif pairs, making it easier to match up endifs with their
associated ifs.

#ifdef name
The lines following will appear in the output if and only if name has been the subject of a
previous #define without being the subject of an intervening #undef, or if it is a currently
defined reserved symbol.

#ifndef name
The lines following will not appear in the output if and only if name has been the subject of
previous #define without being the subject of an intervening #undef.

#if constant-expression

Lines following will appear in the output if and only if the constant-expression evaluates to non-
zero. All binary non-assignment C operators, the ?: operator, the unary —, !, and ~ operators
are all legal in constant-expression. The precedence of the operators is the same as defined by
the C language. There is also a unary operator defined, which can be used in constani-
expression in these two forms: defined (name) or defined name. This allows the utility of #ifdef
and #ifndef in a #if directive. Only these operators, integer constants, and names which are
known by cpp should be used in constant-expression. In particular, the sizeof operator is not
available.

#else Reverses the notion of the test directive which matches this directive. Thus, if lines previous to
this directive are ignored, the following lines will appear in the output, and vice-versa.

The test directives and the possible #else directives can be nested.
Cpp supports names up to 255 characters long.

FILES
/usr/include standard directory for #include files

CPP(1) CPP(1)

SEE ALSO
cc(1).

DIAGNOSTICS
The error messages produced by cpp are intended to be self-explanatory. The line number and
filename where the error occurred are printed along with the diagnostic.

CRYPT(1) CRYPT(1)

NAME

crypt — encode/decode files

SYNOPSIS

crypt [password]

HP-UX COMPATIBILITY

Level: HP-UX/STANDARD
Origin: System III

DESCRIPTION

Crypt reads from the standard input and writes on the standard output. The password is a key that
selects a particular transformation. If no password is given, crypt demands a key from the terminal and
turns off printing while the key is being typed in. Crypt encrypts and decrypts with the same key:

crypt key <clear >cypher
crypt key <cypher | pr

will print the clear.
Files encrypted by crypt are compatible with those treated by the editor ed in encryption mode.

The security of encrypted files depends on three factors: the fundamental method must be hard to solve;
direct search of the key space must be infeasible; "sneak paths" by which keys or clear text can become
visible must be minimized.

Crypt implements a one-rotor machine designed along the lines of the German Enigma, but with a
256-element rotor. Methods of attack on such machines are known, but not widely; moreover the
amount of work required is likely to be large.

The transformation of a key into the internal settings of the machine is deliberately designed to be
expensive, i.e. to take a substantial fraction of a second to compute. However, if keys are restricted to
(say) three lower-case letters, then encrypted files can be read by expending only a substantial fraction
of five minutes of machine time.

Since the key is an argument to the crypt command, it is potentially visible to users executing ps(1) or a
derivative. To minimize this possibility, crypt takes care to destroy any record of the key immediately
upon entry. The choice of keys and key security are the most vulnerable aspect of crypt.

FILES

/devi/tty for typed key
SEE ALSO

ed(1), makekey(8).
BUGS

If output is piped to nroff(1) and the encryption key is not given on the command line, crypt can leave
terminal modes in a strange state (see stty(1)).

Due to legal restrictions, cryptis currently not available on systems that may be sold outside the United States.

09000-90007, rev: 1/85

CSH(1)

NAME

CSH(1)

csh — a shell (command interpreter) with C-like syntax

SYNOPSIS

csh [—cefinstvVxX] [command file] [argument list ...]

HP-UX COMPATIBILITY

Level: HP-UX/STANDARD
Origin: Berkeley 4.1

DESCRIPTION

Csh is a command language interpreter incorporating a command history buffer and a C-like syntax.

The command options are interpreted as follows:

—C

—f

—i

-n

—S

-t

Y

—X

-V

X

The first argument in the argument list is a command file. Commands are read and
executed from that file. The command file must exist. Any arguments in the argument
list are copied into the shell variable argv.

The shell exits if any invoked command terminates abnormally or yields a non-zero
exit status.

Suppress execution of the .cshre file in your home directory, thus speeding up shell
start-up time.

Forces csh to respond interactively when called from a device other than a computer
terminal, such as another computer. Csh’s normally responds non-interactively. If csh
is called from a computer terminal, it always responds interactively, no matter which
options are selected.

This option causes commands to be parsed, but not executed. This may be used in
syntactic checking of shell scripts. All substitutions are performed (history, command,
alias, etc.).

This option allows you to redirect input from a command.

A single line of input is read and executed. This option combines the —n option
described above with automatic execution of the command.

This option causes the verbose shell variable to be set. This causes command input to
be echoed to your standard output device after history substitutions are made.

This option causes the echo shell variable to be set. This causes all commands to be
echoed to the standard output immediately before execution.

This option causes the verbose variable to be set before .cshrc is executed. This means
all .cshrc commands are also echoed to the standard output.

This option causes the echo variable to be set before .cshre is executed. This means all
.cshrc commands are also echoed to the standard output.

After processing the command options, if arguments remain in the argument list, and the —c, —i, —s, or
—t options were not specified, the first remaining argument is taken as the name of a file of commands to

be executed.
COMMANDS

A simple command is a sequence of words, the first of which specifies the command to be executed. A
sequence of simple commands separated by vertical bar (i) characters forms a pipeline. The output of
each command in a pipeline is made the input of the next command in the pipeline. Sequences of
pipelines may be separated by semicolons (;), and are then executed sequentially. A sequence of
pipelines may be executed in background mode by following the last entry with an ampersand (&)

character.

CSH(1) CSH(1)

Any pipeline may be placed in parenthesis to form a simple command which in turn may be a

component of another pipeline. It is also possible to separate pipelines with "| 1" or "&&" indicating,
as in the C language, that the second pipeline is to be executed only if the first fails or succeeds,
respectively.

Built-In Commands
Built-in commands are executed within the shell. If a built-in command occurs as any component of a
pipeline except the last then it is executed in a subshell. The build-in commands are:

alias

alias name

alias name wordlist
The first form prints all aliases. The second form prints the alias for name. The final form
assigns the specified wordlist as the alias of name. Command and filename substitution are
performed on wordlist. Name cannot be alias or unalias.

alloc This comand shows the amount of dynamic core in use, broken down into used and free core,
and the address of the last location in the heap. With an argument, alloc shows each used and
free block on the internal dynamic memory chain indicating its address, size, and whether it is
used or free. This is a debugging command.

break Causes execution to resume after the and of the nearest enclosing foreach or while. The
remaining commands on the current line are executed. Multi-level breaks are thus possible by
writing them all on one line.

breaksw
Causes a break from a switch, resuming after the endsw.

case label:
A label in a switch statement as discussed below.

cd

cd directory_name

chdir

chdir directory_name
Change the shell’s current working directory to directory_name. If no argument is given, then
directory_name defaults to your home directory.

If directory_name is not found as a subdirectory of the current working directory (and does not
begin with "/", "./" or "../"), then each component of the variable cdpath is checked to see if
it has a subdirectory directory_name. Finally, if all else fails, csh treats directory_name as a shell
variable. If its value begins with ‘/’, then this is tried to see if it is a directory.

continue
Continue execution of the nearest enclosing while or foreach. The rest of the commands on the
current line are executed.

default:
Labels the default case in a switch statement. The default should come after all other case
labels.

dirs Prints the directory stack; the top of the stack is at the left; the first directory in the stack is the
current directory.

echo wordlist

echo —n wordlist
The specified words are written to the shell's standard output, separated by spaces, and
terminated with a new-line unless the —n option is specified.

CSH(1)

CSH(1)

else

end

endif

endsw See the description of the foreach, if, switch, and while statements below.

eval arguments ...
(As in sh(1).) The arguments are read as input to the shell and the resulting command(s)
executed. This is usually used to execute commands generated as the result of command or
variable substitution, since parsing occurs before these substitutions.

exec command
The specified command is executed in place of the current shell.

exit

exit (expression)
The shell exits either with the value of the status variable (first form) or with the value of the
specified expression (second form).

foreach name (wordlist)

end The variable name is successively set to each member of wordlist and the sequence of
commands between this comma~nd and the matching end are executed. (Both foreach and end
must appear alone on separate lines.)

The built-in command continue may be used to continue the loop prematurely and the built-in
command break terminates it prematurely. When this command is read from the terminal, the
loop is read once, prompting with ‘?’ before any statements in the loop are executed. If you
make a mistake while typing in a loop at the terminal you can then rub it out.

glob wordlist
Like echo but no “\’ escapes are recognized and words are delimited by null characters in the
output. Useful for programs which wish to use the shell to perform filename expansion on a list
of words.

goto word
The specified word is filename and command expanded to yield a string of the form ‘label’. The
shell rewinds its input as much as possible and searches for a line of the form ‘label:’ possibly
preceded by blanks or tabs. Execution continues after the specified line.

hashstat
Print a statistics line indicating how effective the internal hash table has been at locating
commands (and avoiding exec’s). An exec is attempted for each component of the path where
the hash function indicates a possible hit, and in each component which does not begin with a
7.

history

history n

history —rn
Displays the history event list; if n is given only the n most recent events are printed. The —r
option reverses the order of printout to be most recent first rather than oldest first.

if (expression) command
If the specified expression evaluates true, then the single command with arguments is executed.
Variable substitution on command happens early, at the same time it does for the rest of the if
command. Command must be a simple command, not a pipeline, a command list, or a

parenthesized command list. Input/output redirection occurs even if expression is false, when
command is not executed (this is a bug).

CSH(1)

CSH(1)

if (expressionl) then
else if (expression2) then
else

endif If the specified expressionl is true then the commands to the first else are executed; otherwise if
expression2 is true then the commands to the second else are executed, etc. Any number of
else-if pairs are possible; only one endif is needed. The else part is likewise optional. (The
words else and endif must appear at the beginning of input lines; the if must appear alone on its
input line or after an else.)

jobs [1]
Lists the active jobs; the —I option lists process id’s in addition to the normal information.

kill % job

kill — sig %job ...

kill pid

kill -sigpid . ..

kill-1 Sends either the TERM (terminate) signal or the specified signal to the specified jobs or
processes. Signals are either given by number or by names (as given in /usr/include/signal.h,
stripped of the "SIG" prefix — see signal(2)). The signal names are listed by kill -1. There is no
default, so saying just kill does not send a signal to the current job. If the signal being sent is
TERM (terminate) or HUP (hangup), then the job or process is sent a CONT (continue) signal as
well.

login Terminates a login shell, replacing it with an instance of /bin/login. This is one way to log off,
included for compatibility with sk(1).

logout Terminates a login shell. Especially useful if ignoreeof is set.

newgrp Changes the group identification of the caller; for details see newgrp(1). A new shell is executed
by newgrp so that the current shell environment is lost.

nice

nice + number

nice command

nice + number command
The first form sets the nice (run command priority) for this shell to 4 (the default). The second
form sets the priority to the given number. The final two forms run command at priority 4 and
number respectively. The super-user may raise the priority by specifying negative niceness
using nice —number Command is always executed in a sub-shell, and the restrictions place on
commands in simple if statements apply.

nohup [command]
Without an argument, nohup can be used in shell scripts to cause hangups to be ignored for the
remainder of the script. With an argument, causes the specified command to be run with
hangups ignored. All processes executed in the background with & are effectively nohup’ed.

notify [%job . ..]
Causes the shell to notify the user asynchronously when the status of the current (no argument)
or specified jobs changes; normally notification is presented before a prompt. This is automatic
if the shell variable notify is set.

onintr [—] [label]
Controls the action of the shell on interrupts. With no arguments, onintr restores the default
action of the shell on interrupts, which is to terminate shell scripts or to return to the terminal
command input level. If — is specified, causes all interrupts to be ignored. If a label is given,

CSH(1)

CSH(1)

causes the shell to execute a goto label when an interrupt is received or a child process
terminates because it was interrupted.

If the shell is running in the background and interrupts are being ignored, onintr has no effect;
interrupts continue to be ignored by the shell and all invoked commands.

popd|[+n]
Pops the directory stack, returning to the new top directory. With an argument, discards the
nth entry in the stack. The elements of the directory stack are numbered from O starting at the
top.

pushd [name][+n]
With no arguments, pushd exchanges the top two elements of the directory stack. Given a name
argument, pushd changes to the new directory (using c¢d) and pushes the old current working
directory (as in csw) onto the directory stack. With a numeric argument, rotates the nth
argument of the directory stack around to be the top element and changes to it. The members
of the directory stack are numbered from the top starting at 0.

rehash Causes the internal hash table of the contents of the directories in the path variable to be
recomputed. This is needed if new commands are added to directories in the path while you
are logged in. This should only be necessary if you add commands to one of your own
directories, or if a systems programmer changes the contents of one of the system directories.

repeat count command
The specified command (which is subject to the same restrictions as the command in the one line

if statement above) is executed count times. /O redirections occur exactly once, even if count is
0.

set

set name

set name = word

set name[index]=word

set name = (wordlist)
The first form of set shows the value of all shell variables. Variables which have other than a
single word as value print as a parenthesized word list. The second form sets name to the null
string. The third form sets name to the single word. The fourth form sets the index’th
component of name to word; this component must already exist. The final form sets name to the
list of words in wordlist. In all cases the value is command and filename expanded.

These arguments may be repeated to set multiple values in a single sez command. Note,
however, that variable expansion happens for all arguments before any setting occurs.

setenv name value
Sets the value of environment variable name to be value, a single string. The most commonly
used environment variables USER, TERM, and PATH are automatically imported to and
exported from the csh variables user, term, and path; there is no need to use setenv for these.

shift [variable |
With no argument, the members of argv are shifted to the left, discarding argv[1]. An error
occurs if argv is not set or has less than two strings assigned to it. With an argument, shift
performs the same function on the specified variable.

source name
The shell reads commands from name. Source commands may be nested; if they are nested too
deeply the shell may run out of file descriptors. An error in a source at any level terminates all
nested source commands. Input during source commands is never placed on the history list.
stop [%job ...]
Stops the current (no argument) or specified job which is executing in the background.

CSH(1)

CSH(1)

switch (szring)
case strl:

brea.l‘t.sw
default:

breaksw

endsw Each case label (strl) is successively matched against the specified string which is first command
and filename expanded. The file metacharacters %, ?, and [...] may be used in the case labels,
which are variable expanded. If none of the labels match before a default label is found, then
the execution begins after the default label. Each case label and the default label must appear
at the beginning of a line. The command breaksw causes execution to continue after the endsw.
Otherwise, control may fall through case labels and default labels as in C. If no label matches
and there is no default, execution continues after the endsw.

time [command]
With no argument, a summary of time used by this shell and its children is printed. If an
argument is given, the specified simple command is timed and a time summary as described
under the time variable is printed. If necessary, an extra shell is created to print the time statistic
when the command completes.

umask [value
The current file creation mask is displayed (no argument) or set to the specified value. The
mask is given in octal. Common values for the mask are 002, which gives all permissions to the
owner and group, and read and execute permissions to all others, or 022, which gives all
permissions to the owner, and read permission only to the group and all others.

unalias pattern
All aliases whose names match the specified pattern are discarded. Thus, all aliases are
removed by unalias ¥. No error occurs if pattern is omitted.

unhash
Use of the internal hash table to speed location of executed programs is disabled.

unset pattern
All variables whose names match the specified pattern are removed. Thus, all variables are
removed by unset #; this has noticeably distasteful side-effects. No error occurs if pattern is
omitted.

unsetenv pattern
Removes all variables whose names match the specified pattern from the environment. See
also the setenv command above and printenv(1).

wait All background jobs are waited for. If the shell is interactive, then an interrupt can disrupt the
wait, at which time the shell prints names and job numbers of all jobs known to be outstanding.

while (expression)

end While the specified expression evaluates non-zero, the commands between the while and the
matching end are evaluated. Break and continue may be used to terminate or continue the loop
prematurely. (The while and end must appear alone on their input lines.) If the input is a
terminal (i.e. not a script), prompting occurs the first time through the loop as for the foreach
statement.

CSH(1) CSH(1)

@

@ name = expression

@ name[index]= expression
The first form prints the values of all the shell variables. The second form sets the specified
name to the value of expression. If the expression contains "<", ">" "&" or "|", then at
least this part of the expression must be placed within parentheses. The third form assigns the
value of expression to the index’th argument of name. Both name and its index’th component
must already exist.

The operators "#=" "4 =" etc., are available as in C. White space may optionally
separate the name from the assignment operator. However, spaces are mandatory in
separating components of expression which would otherwise be single words.

Special postfix " + + " and "——" operators increment and decrement name, respectively (i.e.
@i+ +).
Non-Built-In Command Execution
When a command to be executed is not a built-in command, the shell attempts to execute the
command via exec(2). Each word in the variable path names a directory in which the shell attempts to
find the command (if the command does not begin with "/"). If neither —c nor —t is given, the shell
hashes the names in these directories into an internal table so that an exec is attempted only in those
directories where the command might possibly reside. This greatly speeds command location when a
large number of directories are present in the search path. If this mechanism has been turned off (via
unhash), or if —c or —t was given, or if any directory component of path does not begin with a /', the shell
concatenates the directory name and the given command name to form a path name of a file which it
then attempts to execute.

Parenthesized commands are always executed in a subshell. Thus
(cd; pwd)
prints the home directory but leaves you where you were.
cd; pwd
does the same thing, but leaves you in the home directory.
Parenthesized commands are most often used to prevent chdir from affecting the current shell.

If the file has execute permissions but is not an executable binary file, then it is assumed to be a shell
script, and a new shell is spawned to read it.

If there is an alias for shell then the words of the alias are inserted at the beginning of the argument list to
form the shell command. The first word of the alias should be the full path name of the shell (e.g.
"$shell"). Note that this is a special, late-occurring case of alias substitution, which inserts words into
the argument list without modification.

Command Substitution
Command substitution is indicated by a command enclosed in single quotes (' ...’). The output from
such a command is normally broken into separate words at blanks, tabs and newlines, with null words
being discarded, this text then replacing the original string. Within double quotes, only newlines force
new words; blanks and tabs are preserved.

In any case, the single final newline does not force a new word. Note that it is thus possible for a
command substitution to vield only part of a word, even if the command outputs a complete line.

History Substitutions
History substitutions enable you to use words from previous commands as portions of new commands,
repeat commands, repeat arguments of a previous command in the current command, and fix spelling
mistakes in the previous command.

CSH(1) CSH(1)

History substitutions begin with an exclamation point (!). Substitutions may begin anywhere in the input
stream, but may not be nested. The exclamation point can be preceded by a backslash to prevent its
special meaning. For convenience, an exclamation point is passed to the parser unchanged when it is
followed by a blank, tab, newline, equal sign or right parenthesis. Any input line which contains history
substitution is echoed on the terminal before it is executed for verification.

Commands input from the terminal which consist of one or more words are saved on the history list.
The history substitutions reintroduce sequences of words from these saved commands into the input
stream. The number of previous commands saved is controlled by the history variable. The previous
command is always saved, regardless of its value. Commands are numbered sequentially from 1.

You can refer to previous events by event number (such as !10 for event 10), relative event location
(such as !-2 for the second previous event), full or partial command name (such as !d for the last event
using a command with initial character d), and string expression (such as !?mic? referring to an event
containing the characters mic).

These forms, without further modification, simply reintroduce the words of the specified events, each
separated by a single blank. As a special case, !! is a re-do; it refers to the most previous command.

To select words from a command you can follow the event specification by a colon (:) and a designator
for the desired words. The words of a input line are numbered from zero. The basic word designators
are:

0 selects the first word (i.e. the command name itself).
selects the nth word.
$ selects the last word.

a-b selects the range of words from a to b. Special cases are —y, which is an abbreviation
for "word O through word y", and x—, which stands for "word x up to, but not

including, word $".
* indicates the range from the second word to the last word.
% used with a search sequence to substitute the immediately preceding matching word.

The colon separating the command specification from the word designator can be omitted if the
argument selector begins with a *, $, *, — or %.

After each word designator, you can place a sequence of modifiers, each preceded by a colon. The
following modifiers are defined:

h Use only the first component of a pathname by removing all following components.
r Use the root file name by removing any trailing suffix (.xxx).
e Use the file name’s trailing suffix (.xxx) by removing the root name.

s/lir substitute the value of r for the value / in the indicated command.

t Use only the final file name of a pathname by removing all leading pathname
components.

Repeat the previous substitution.
Print the new command but do not execute it.
Quote the substituted words, preventing further substitutions.

Like q, but break into words at blanks, tabs and newlines.

w *X 9 T @

global command; used as a prefix to cause the specified change to be made globally
(all words in the command are changed).

CSH(1) CSH(1)

Unless preceded by a g, the modification is applied only to the first modifiable word. You get an error if
a substitution is attempted and cannot be completed (i.e. if you have a history buffer of 10 commands
and ask for a substitution of 111).

The left hand side of substitutions are not regular expressions in the sense of the HP-UX editors, but
rather strings. Any character may be used as the delimiter in place of a slash (/); a backslash quotes the
delimiter into the ! and r strings. The character & in the right hand side is replaced by the text from the
left. A\ quotes & also. A null / uses the previous string either from a / or from a contextual scan string s

in 12s?. The trailing delimiter in the substitution may be omitted if a newline follows immediately, as
may the trailing ? in a contextual scan.

A history reference may be given without an event specification (e.g. !$). In this case the reference is to

the previous command unless a previous history reference occurred on the same line, in which case this
form repeats the previous reference. Thus

12fo0?" 1$
gives the first and last arguments from the command matching " ?foo?".

A special abbreviation of a history reference occurs when the first non-blank character of an input line is
acaret (*). Thisis equivalent to "!:s*", providing a convenient shorthand for substitutions on the text of
the previous line. Thus ""Ib’lib" fixes the spelling of "lib" in the previous command.

Finally, a history substitution may be surrounded with curly braces { } if necessary to insulate it from the
characters which follow. Thus, after

Is —1d “paul
we might execute {1}a to do
Is —Id ~paula
while !la would look for a command starting with "la".

Quoting with Single and Double Quotes
The quotation of strings by backslash (\\) and double quotes (") can be used to prevent all or some of
the remaining substitutions. Strings enclosed in backslashes are protected from any further
interpretation. Strings enclosed in double quotes are still variable and command expanded as described
below.

In both cases the resulting text becomes (all or part of) a single word; only in one special case does a
double-quoted string yield parts of more than one word; single-quoted strings never do.

Alias Substitution
The shell maintains a list of aliases which can be established, displayed and modified by the alias and
unalias commands. After a command line is scanned, it is parsed into distinct commands and the first
word of each command, left-to-right, is checked to see if it has an alias. If it does, then the text which is
the alias for that command is reread with the history mechanism available as though that command
were the previous input line. The resulting words replace the command and argument list. If no
reference is made to the history list, then the argument list is left unchanged.

Thus, if the alias for Is is Is—I, the command Is /usr maps to Is—I/usr, leaving the argument list
undisturbed. Similarly, if the alias for lookup was grep !" /etc/passwd, then lookup bill maps to
grep bill /etc/passwd.

If an alias is found, the word transformation of the input text is performed and the aliasing process
begins again on the re-formed input line. Looping is prevented if the first word of the new text is the
same as the old by flagging it to prevent further aliasing. Other loops are detected and cause an error.

Note that the mechanism allows aliases to introduce parser metasyntax. Thus we can execute

alias print ‘pr \!* | Ipr’

CSH(1) CSH(1)

to make a command which uses pr(1) to print its arguments on the line printer.

Expressions
A number of the built-in commands take expressions, in which the operators are similar to those of C,
with the same precedence. These expressions appear in the @, exit, if, and while commands. The
following operators are available (shown in order of increasing precedence):

Il && | * === =" I"'<=>= < ><<>> + — %[%17 ()
The following list shows the grouping of these operators. The precedence decreases from top to bottom
in the list:

* /%

+ -

<< >>

<= = < >

== 1= =~ I
The = =, !=, =7, and I" operators compare their arguments as strings; all others operate on numbers.
The operators =~and !" are like | = and = =, except that the right hand side is a pattern (containing *’s,

?’s, and instances of [...]) against which the left hand operand is matched. This reduces the need for use
of the switch statement in shell scripts when all that is really needed is pattern matching.

Strings which begin with 0 are considered octal numbers. Null or missing arguments are considered 0.
The result of all expressions are strings, which represent decimal numbers. It is important to note that no
two components of an expression can appear in the same word. These components should be
surrounded by spaces except when adjacent to components of expressions which are syntactically
significant to the parser — &, |, <, >, (, and).

Also available in expressions as primitive operands are command executions enclosed in curly braces
{ }and file enquiries of the form "—I filename" , where lis one of:

read access
write access
execute access
existence
ownership
zero size

plain file
directory

QN O® X g~

The specified filename is command and filename expanded and then tested to see if it has the specified
relationship to the real user. If the file does not exist or is inaccessible then all enquiries return false (0).
Command executions succeed, returning true, if the command exits with status 0; otherwise they fail,
returning false. If more detailed status information is required then the command should be executed
outside of an expression and the variable status examined.

Control of the Flow (one)
The shell contains a number of commands which can be used to regulate the flow of control in
command files (shell scripts) and (in limited but useful ways) from terminal input. These commands all
operate by forcing the shell to reread or skip parts of its input and, due to the implementation, restrict the
placement of some of the commands.

The foreach, switch, and while statements, as well as the if~then—else form of the if statement, require that
the major keywords appear in a single simple command on an input line as shown below.

If the shell’s input is not seekable, the shell buffers up input whenever a loop is being read and performs
seeks in this internal buffer to accomplish the rereading implied by the loop. (To the extent that this
allows, backward goto’s succeed on non-seekable inputs.)

-10-

CSH(1) CSH(1)

Signal Handling
The shell normally ignores quit signals. Jobs running in background mode are immune to signals
generated from the keyboard, including hangups. Other signals have the values which the shell
inherited from its parent. The shells handling of interrupts and terminate signals in shell scripts can be
controlled by onintr. Login shells catch the terminate signal; otherwise this signal is passed on to children
from the state in the shell’s parent. In no case are interrupts allowed when a login shell is reading the file
Jogout.

Command Line Parsing
Csh splits input lines into words at blanks and tabs. The following exceptions (parser metacharacters) are
considered separate words:

& ampersand;

| vertical bar;

; semicolon;

< less-than sign;

> greater-than sign;
(left parenthesis;

) right parenthesis;

&& double ampersand;

Il double vertical bar;

<< double less-than sign;
>> double greater-than sign;

The backslash (\\) removes the special meaning of these parser metacharacters. A parser metacharacter
preceded by a backslash is interpreted as its ASCII value. A newline character (ASCII 10) preceded by a
backslash is equivalent to a blank.

Strings enclosed in single or double quotes form parts of a word. Metacharacters in these strings,
including blanks and tabs, do not form separate words. Within pairs of backslashs or quotes, a newline
preceded by a backslash gives a true newline character.

When the shell’s input is not a terminal, the pound sign (#) introduces a comment terminated by a
newline.

CSH VARIABLES
Csh maintains a set of variables. Each variable has a value equal to zero or more strings (words).
Variables have names consisting of up to 20 letters and digits starting with a letter. The underscore
character is considered a letter. The value of a variable may be displayed and changed by using the set
and unset commands. Some of the variables are boolean, that is, the shell does not care what their value
is, only whether they are set or not.

Some operations treat variables numerically. The at sign (@) command permits numeric calculations to
be performed and the result assigned to a variable. The null s<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>