
HP 9000 Series 200/500 Computers

HP-OX Reference
Vol. 1: Section 1

r6~ HEWLETT
~r... PACKARD

HP-UX Reference
Vol. 1: Section 1

for the HP 9000 Series 2001500 Computers

Manual Part No. 09000-90007

© Copyright 1984,1985, Hewlett-Packard Company.

This document contains proprietary information which is protected by copyright. All rights are
reserved. No part of this document may be photocopied, reproduced or translated to another
language without the prior written consent of Hewlett-Packard Company. The information con­
tained in this document is subject to change without notice.

Restricted Rights Legend
Use, duplication, or disclosure by the Government is subject to restrictions as set forth in paragraph
(b)(3)(B) of the Rights in Technical Data and Software clause in DAR 7-104.9(a) .

. © Copyright 1980, Bell Telephone Laboratories, Inc.

© Copyright 1979, 1980, The Regents of the University of California.

This software and documentation is based in part on the Fourth Berkeley Software Distribution
under license from the Regents of the University of California.

Hewlett-Packard Company
3404 East Harmony Road. Fort Coli ins, Colorado 80525

Printing History

New editions of this manual will incorporate all material updated since the
previous edition. Update packages may be issued between editions and
contain replacement and additional pages to be merged into the manual by
the user. Each updated page will be indicated by a revision date at the
bottom of the page. A vertical bar in the margin indicates the changes on
each page. Note that pages which are rearranged due to changes on a
previous page are not considered revised.

The manual printing date and part number indicate its current edition. The
printing date changes when a new edition is printed. (Minor corrections and
updates which are incorporated at reprint do not cause the date to change.)
The manual part number changes when extensive technical changes are
incorporated.

July 1984 ... Edition 1. This manual replaces HP-UX Reference Manual,
09000-90006

March 1985 ... Edition 1 with update

Warranty Statement

Hewlett-Packard products are warranted against defects in materials and workmanship. For Hewlett-Packard
computer system products sold in the U.S.A. and Canada. this warranty applies for ninety (90) days from the
date of shipment: Hewlett-Packard will, at its option, repair or replace equipment which proves to be defective
during the warranty period. This warranty includes labor, parts, and surface travel costs, if any. Equipment re­
turned to Hewlett-Packard for repair must be shipped freight prepaid. Repairs necessitated by misuse of the
equipment, or by hardware, software, or interfacing not provided by Hewlett-Packard are not covered by this
warranty.

HP warrants that its software and firmware designated by HP for use with a CPU will execute its programming
instructions when properly installed on that CPU. HP does not warrant that the operation of the CPU, software,
or firmware will be uninterrupted or error free.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED
WARRANTY OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. HEWLETI-PACKARD
SHALL NOT BE LIABLE FOR CONSEQUENTIAL DAMAGES.

HP 9000 Series 200
For the HP 9000 Series 200 family, the following special requirements apply. The Model216 computer comes
with a 90-day, Return-to-HP warranty during which time HP will repair your Model 216, however, the computer
must be shipped to an HP Repair Center.

All other Series 200 computers come with a 90-Day On-Site warranty during which time HP will travel to your site
and repair any defects. The following minimum configuration of equipment is necessary to run the appropriate
HP diagnostic programs: 1) Y2 Mbyte RAM; 2) HP-compatible 3Yi' or 5%" disc drive for loading system func­
tional tests, or a system install device for HP-UX installations; 3) system console consisting of a keyboard and
video display to allow interaction with the CPU and to report the results of the diagnostics.

To order or to obtain additional information on HP support services and service contracts, call the HP Support
Services Telemarketing Center at (800) 835-4747 or your local HP Sales and Support office .

• For other countries, contact your local Sales and Support Office to determine warranty terms.

ii

TABLE OF CONTENTS

1. Commands

adb .. debugger
admin .. create and administer sees files
ar .. archive and library maintainer
as .. assembler for MC68000
asainterpret ASA carriage control characters
at. .. execute commands at a later time
aterm ... general purpose asynchronous terminal emulation
atrans .. translate assembly language
awk .. text pattern scanning and processing language
banner ... make posters in large letters
basename ... extract portions of path names
be .. arbitrary-precision arithmetic language
bdiff ... big diff
bs ... compiler/interpreter for modest-sized programs
cal ... print calendar
calendar .. reminder service
cat.. .. concatenate, copy, and print files
cb ... C program beautifier, formatter
cc .. C compiler
cd .. change working directory
cdb .. C, FORTRAN, Pascal symbolic debugger
cdc .. change the delta commentary of an sees delta
chatr .. change program's internal attributes
chmod ... change mode
chown ... change file owner or group
chroot. ... change root directory for a command
chsh ... change default login shell
cmp ... compare two files
col ... filter reverse line-feeds and backspaces
comm .. select/reject common lines of two files
cp .. copy, link or move files
cpio .. copy file archives in and out
cpp ... C language preprocessor
crypt .. encode/decode files
csh ... CsheII
ctags ... create a tags file
cu ... call another UNIX system
cut ... cut out selected fields of each line of a file
cxref .. generate C program cross-reference
date .. print and set the date
dc .. desk calculator
dd ... convert, reblock, translate, and copy a (tape) file
delta .. make a delta (change) to an sees file
deroff .. remove nroff/troff, tbl, and eqn constructs
df ... report number of free disk blocks
dlff ... differentiaI file comparator
dlffmk ... mark differences between files
dircmp ... directory difference comparison
du ... summarize disk usage
echo .. echo (print) arguments
ed ... text editor
enable .. enable/disable LP printers
env ... set environment for command execution

-1-

Table of Contents

err ... report error information on last failure
ex .. text editor commands
expand .. expand tabs to spaces, and vice versa
expr. ... evaluate arguments as an expression
f77 ... FORTRAN 77 compiler
factor .. .factor a number, generate large primes
fe .. FORTRAN 77 compiler
file .. determine file type
find .. find files
get ... get a version of an SCCS file
getopt. ... parse command options
grep ... search an ASCII file for a pattern
head ... give first few lines of file
help , ... ask for help
hostname ... set or print name of current host system
hp .. handle special functions of HP 2640 and 2621 series terminals
hyphen ... find hyphenated words
id ... print user, group IDs and names
join .. relational database operator
kill ... terminate a process
lastindicate last logins of users and teletypes
ld .. link editor
lex ... generate programs for lexical analysis of text
lif .. Logical Interchange Format description
lifep .. copy to or from LIF files
lifinit... ... write LIF volume header on file
lifls .. .list contents of LIF directory
lifrename .. rename LIF files
lifrm .. remove a LIF file
line ... read one line from user input
link ... exercise link and unlink system calls
lint .. a C program checker/verifier
login .. sign on
logname ... get login name
lorder .. find ordering relation for object library
lp ... send or cancel requests to an LP line printer
lpd :line printer daemon
lpr .. line printer spooler
lpstat.. .. print LP status information
Islist contents of directories
lsdev .. list device drivers in the system
mail.. .. send mail to users or read mail
mailx ... send and receive mail
make .. maintain, update, recompile programs
man .. on-line manual command
mesg ... permit or deny messages to terminal
mkdir .. make a directory
mm .. print documents formatted with MM macros
more .. file perusal filter for crt viewing
mount.. .. mount and unmount file system
mt .. magnetic tape manipulating program
mvdir .. move a directory
ncheck. .. generate names from i-numbers
newgrp .. .log in to a new group

-?-

Table of Contents

news .. print news items
nice .. run a command at low priority
nl ... line numbering filter
nm .. print name list (symbol table) of object file
nohup .. run a command immune to hangups, logouts, and quits
nroff .. format text
od .. octal and hexadecimal dump
pack ... compress and expand files
passwd .. change login password
paste ... merge lines in one or more files
pc ... Pascal compiler
pr ... print files
printenv .. print out current environment
printfmt..format IBMIRJE printer output
prof ... display profile data
prs ... print and summarize an sees file
ps .. report process status
ptx ... create permuted index
pwd ... working directory name
r2780 .. 2780/3780 terminal emulation
r2780trace .. format a trace dump from r2780
mnlib ... convert archives to random libraries
mtfor .. rational FORTRAN dialect
rev ... reverse lines of a file
revision .. get HP-UX revision information
rjestat ... RJE status report
rm ... remove files or directories
rmdel ... remove a delta from an sees file
rmnl ... remove extra new-line characters from file
rsh .. restricted shell (command interpreter)
sact .. print current sees file editing activity
sccsdiff ... compare two versions of sees file
sed ... stream text editor
send ... submit RJE jobs
sh .. shell, the standard command programming language
size .. size of an object file
sleep .. suspend execution for an interval
sort ... sort and/or merge files
spell.. .. find spelling errors
split ... split a file into pieces
strings .. find printable strings in binary file
strip .. remove symbols and relocation bits
stty ... set the options for a terminal port
su ... become another user
sum .. print checksum and block count of a file
tabs .. set tabs on a terminal
tail ... deliver the last part of a file
tar ... tape file archiver
tblformat tables for nroff or troff
telo .. Command Set 80 Cartridge Tape Utility
tee .. pipe fitting
test. ... condition evaluation command
time .. time a command
touch .. update access/modification/change times of file

Table of Contents

tr ... translate characters
true .. provide truth values
tset .. terminal dependent initialization
tsort .. topological sort
tty ... get the terminal's name
ul ... do underlining
umask. .. set file-creation mode mask
uname ... print name of current HP-UX version
unget .. undo a previous get of an sees file
uniq ... report repeated lines in a file
units .. unit conversion program
upm ... unpack cpio archives from HP media
uucico .. uucp copy in and copy out
uucp .. UNIX to UNIX copy; file transfer
uustat .. uucp status inquiry and job control
uuto .. public UNIX-to-UNIX file copy
uux .. UNIX to UNIX command execution
uuxqt. ... uucp command execution
val ... validate sees file
vi ... visual text editor
wait. ... await completion of process
wall .. write to all users
wc ... word, line, and character count
what... .. .identify files for sees information
whereislocate source, binary, and/or manual for program
who .. which users are on the system
whodo .. which users are doing what
writeinteractively write (talk) to another user
xargs .. construct argument list{s) and execute command
yacc ... yet another compiler-compiler

2. System Calls

access ... determine accessibility of a file
alarm .. set process's alarm clock
brk .. change data segment space allocation
chdir .. change working directory
chmod ... change access mode of file
chown .. change owner and group of a file
chroot. ... '" change root directory
close ... close a file deSCriptor
creat ... create new file, rewrite existing file
dup .. duplicate an open file descriptor
ems ... Extended Memory System
errinfo ... error indicator
erma ... error indicator for system calls
exec ... execute a file
exit .. terminate process
fcnt! .. file control
fork ... create a new process
fsync ... synchronize a file's in-core state with that on disc
gethostname .. get name of current host
getpid .. get process, process group, and parent process IDs

-4-

Table of Contents

getuid .. get real!effective user, real!effective group IDs
ioctl ... control device
kill ... send signal to process(s)
link .. link to a file
lseek .. move read/write file pointer; seek
memadvise .. advise as about segment reference patterns
memallc .. allocate and free address space
memchmd .. change memory segment access modes
memlcklock/unlock process address space or segment
memvary ... modify segment length
mknod ... make directory, special or ordinary file
mount ... mounta file system
nice .. change priority of a process
open ... open file for reading or writing
pause ... suspend process until signal
pipe .. create an interprocess channel
prealloc ... preallocate fast disc storage
profil ... execution time profile
ptrace , .. process trace
read ... read from file
sethostname .. set name of host cpu
setpgrp .. set process group 10
setuid .. set user and group IDs
signal .. set up signal handling for program
stat. ... get file status
stime .. set time and date
stty .. control device
sync .. update super-block
time .. gettime
times ... get process and child process times
trapno .. hardware trap numbers
truncate .. : truncate a file to a specified length
ulimit. , ... get and set user limits
umask ... get and set file creation mask
umounL ... unmount a file system
uname .. get name of current HP-UX system
unlink .. remove directory entry; delete file
ustat. .. get file system statistics
utime .. , ... set file access and modification times
vfork ... spawn new process in a virtual memory efficient way
vsadv .. , ... advise system about backing store usage
vson ... advise as about backing store devices
wait ... wait for child process to terminate
write ... write on a file

3. Subroutines

a641... .. , .. convert between long and base-64 ASCII
abort ... generate an lOT fault
abs .. integer absolute value
assert ... program verification
atof .. convert ASCII to numbers
bessel ... bessel functions

-5-

Table of Contents

conv .. character translation
crypt ... DES encryption
ctermid .. generate file name for terminal
ctime .. convert date and time to ASCII
ctype .. character classification
cuserid ... character login name of the user
directory .. directory operations
ecvt .. , output conversion
end ... last locations in program
exp ... exponential, logarithm, power, square root functions
fclose .. close or flush a stream
ferror , ... stream file status inquiries
floor , ... absolute value, floor, ceiling, remainder functions
fopen .. open or re-open a stream file; convert file to stream
fread .. buffered binary input/output to a stream file
frexp .. split into mantissa and exponent
fseek. ... reposition a stream
gammalog gamma function
getc ... get character or word from stream file
getenv ... value for environment name
getgrent ... get group file entry
getlogin .. get login name
getopt ... get option letter from argv
getpass .. read a password
getpw , ... get name from UID
getpwent .. get password file entry
gets ... get a string from a stream file
gpio_geLstatus .. return status lines of GPIO card
gpio-seLctl ... set cO.ntrollines on GPIO card
hpib_abort ... stop activity on specified HP-IB bus
hpib_bus-status ... return status of HP-IB interface
hpib_eoLctl... .. control EOI mode for HP-IB file
hpib-.lo ... perform I/O with an HP-IB channel from buffers
hpib_pass_ctl ... change active controllers on HP-IB
hpib_ppoll .. conduct parallel poll on HP-IB bus
hpib_ppolLresp ... control response to parallel poll on HP-IB
hpibJen_ctl ... control the Remote Enable line on HP-IB
hpibJqsLsrvce ... allow interface to enable SRQ line on HP-IB
hpib-sencLcmnd .. send command bytes over HP-IB
hpib-spoll ... conduct a serial poll on HP-IB bus
hpib_waiLon_ppoll... ... wait until a particular parallel poll value occurs
hpib_waiLon.-Status ... wait until the requested status condition becomes true
hypo!. .. Euclidean distance
intrapoff ... enable/disable integer trap handler
io_close ... close an entity identifier for a channel
io_geLtermJeason ... determine how last read terminated
io_open ... open channel file for reading or writing
iOJead .. read from a channel device file
iOJeset. .. reset an liD interface
io-seLeol ... set up read termination character on special file
io-seLtimeout ... establish a time limit for I/O operations
io_write ... write to a channel device file
io-xfeLmode .. set width of data path
io-xfer--.Speed .. .inform system of required transfer speed

-6-

Table of Contents

13tol. ... convert between 3-byte integers and long integers
logname ... return login name of user
malloc ... main memory allocator
mktemp .. make a unique file name
monitor .. prepare execution profile
nlist .. get entries from name list
perror ... system error messages
popen .. initiate pipe I/O to/from a process
printf .. output formatters
putc .. put character or word on a stream
putpwent ... write password file entry
puts ... put a string on a stream file
qsort ... quicker sort
rand ... random number generator
regex .. compile and execute regular expression
scanf .. formatted input conversion, read from stream file
setbuf .. assign buffering to a stream file
seljmp .. non-Iocal goto
sinh ... hyperbolic functions
sleep ... suspend execution for interval
ssignal .. software signals
stdio , .. standard buffered input/output stream file package
string .. character string operations
swab .. swap bytes
systemissue a shell command
termcap .. access terminal capabilities in termcap(5)
tmpfile .. create a temporary file
tmpnam .. create a name for a temporary file
trig .. trigonometric functions
ttyname .. .find name of a terminal
ungetc ... push character back into input stream

4. Special Files

disc ... direct disc access
graphics .. information for crt graphics devices
hpib .. hpib interface information
laser .. description of HP 2680/2688 laser printer driver
lp ... printer information
mem .. core memory
mt ... magnetic tape interface and controls
null , , '" .. null file ("bit bucket")
tty .. general terminal interface

5. File Formats

a.ou!... ... assembler and link editor output
ar .. archive file format
checklist .. list of file systems processed by fsck
core ... format of core image file
cpio .. .format of cpio archive
crontab .. scheduling file for cron(8)

-7-

Table of Contents

dir .. SDF directory format
errfile .. system error logging file
fs .. format of system volume
fspecformat specification in text files
gettydefs .. speed and terminal settings used by getty(8)
group ... group file
inittab .. control information for init(8)
inodeformat of an i-node
magic .. magic numbers for HP-UX implementations
mknod .. create a special file entry
mnttab ... mounted file system table
model ... HP-UX machine identification
passwd ... password file
profile .. set up user's environment at login time
ranlib .. table of contents format for object libraries
sccsfile .. format of SCCS file
termcap ... terminal capability data base
tty type .. data base of terminal types by port
utmp .. utmp and wtmp entry format

6. Games

No games are currently supported.

7. Miscellaneous Facilities

environ .. user environment
fcntl .. file control options
man .. macros for formatting entries in this manual
mm .. the MM macro package for formatting documents
regexp ... regular expression compile and match routines
stat ... data returned by stat/fstat system call
term .. conventional device names
types ... primitive system data types

8. System Maintenance Utilities

accepL ... allow or prevent LP requests
backup ... backup or archive file system
catman ... create the cat files for the manual
chsys ... change to different operating system or version
c1ri .. c1ear i-node
cron .. c1ock daemon
devnm .. device name
fsck ... file system consistency check, interactive repair
fsdb ... file system debugger
fwtmp .. manipulate wtmp records
getty .. set the modes of a terminal
init. ... process control initialization
install .. .install commands
killall ... send signal to all user processes

-8-

Table of Contents

Ipadmin .. administer the LP spooling system
lpsched .. start/stop the LP request scheduler and move requests
makekey .. generate encryption key
mkdev .. make device files
mkfs .. constructa file system
mknod ... create special, fifo, files
optinstall ... install/update optional HP-UX products
osck ... check integrity of as in SDF boot area(s)
oscp ... copy, create, append to, split operating system
osmark .. mark SDF as file as loadable/unloadable
osmgr .. operating system manager package description
pwck .. password/group file checkers
rc .. system initialization shell script
revck ... check internal revision numbers of HP-UX files
rootmark ... mark/unmark volume as HP-UX root volume
sconfig ... system swap space reconfiguration
sdfinit ... initialize Structured Directory Format volume
setmnt.. ... establish mnttab table
shutdown ... terminate all processing
stopsys ... stop operating system with optional reboot
sync ... update the super block
uconfig .. system reconfiguration
uuclean ... uucp spool directory clean·up
uusub ... monitor uucp network

9. Glossary

-9-

Introduction

This manual describes the features of HP-UX in an alphabetical reference format. It is written for the
user who is already familiar with UNIX or UNIX-like operating systems (UNIX is a trademark of Bell
Telephone Laboratories, Inc.). The manual is intended for referencing specific details concerning
the HP-UX operating system.

For a general overview of HP-UX, see the supplied tutorial text entitled Introducing the UNIX System.
For details of the implementation and maintenance of the system, see the HP-UX System
Administrator Manual.

This manual is divided into nine sections, some containing sub-classes that are interspersed
throughout the section:

1. Commands and Application Programs:
1. General-Purpose Commands.
le. Communications Commands.
lG. Graphics Commands.

2. System Calls.
3. Subroutines:

3e. C Library Routines.
3M. Mathematical Library Routines.
3S. Standard 110 Library Routines.
3X. Miscellaneous Routines.

4. Special Files.
5. File Formats.
6. Games (none are currently implemented).
7. Miscellaneous Facilities.
8. System Maintenance Procedures.
9. Glossary.

Section 1 (Commands and Application Programs) describes programs intended to be invoked
directly by the user or by command language procedures, as opposed to system calls (section 2) or
subroutines (section 3), which are intended to be called by the user's programs. Commands
generally reside in the directory Ibin (for binary programs). Some programs also reside in lusr/bin,
to save space in Ibin, and to reduce search time for commonly-used commands. These directories
are normally searched automatically by the command interpreter called the shell (sh(l)). Sub-class
IC contains communication programs such as cu, jget, etc. These entries may differ from system to
system. A few commands are also located in llib and lusrllib.

Section 2 (System Calls) describes the entries into the HP-UX kernel, including the C language
interface.

Section 3 (Subroutines) describes the available subroutines. Their binary versions reside in various
system libraries in the directories llib and lusrllib. See intra (3) for descriptions of these libraries and
the files in which they are stored.

-1-

Section 4 (Special Files) discusses the characteristics of each special file (device driver) that actually
refers to an input/output device. The names in this section generally refer to Hewlett-Packard's
device names for the hardware, rather than to the names of the special files themselves.

Section 5 (File Formats) documents the structure of particular kinds of files. For example, the
format of the output of the link editor is given in a.out(5). Excluded are files used by only one
command (for example, the assembler's intermediate files). In general, the C language struct
declarations corresponding to these formats can be found in the directories lusr/include and
lusr/include/sys.

Section 6 (Games) describes the games and educational programs that, as a rule, reside in the
directory lusr/games. This section mayor may not exist, depending on whether or not games are
supported in each implementation of HP-UX.

Section 7 (M iscellaneous Facilities) contains a variety of things. Included are descriptions of
character sets, macro packages, etc.

Section 8 (System Maintenance Procedures) discusses those commands which are useful for crash
recovery and booting the system, plus commands used to perform system integrity checks and otr.er
maintenance procedures. Information in this section is mostly of interest to the super-user.

Section 9 (Glossary) defines terms used in this manual.

Each section (except 9) consists of a number of independent entries of a page or so each. The
name of the entry appears in the upper corners of its pages. Entries within each section are
alphabetized, with the exception of the introductory entry that begins each section. The page
number of each entry starts at 1. Some entries may describe several routines, commands, etc. In
such cases, the entry appears only once, alphabetized under its "major" name.

All entries are based on a common format, not all of whose parts always appear:

NAME
gives the name(s) of the entry and briefly states its purpose.

SYNOPSIS
summarizes the use of the entry (program) being described. A few conventions are used:

Boldface strings are literals and are to be typed just as they appear.

Italic strings represent substitutable argument names and program names found elsewhere in
the manual.

Square brackets [] around an argument name indicate that the argument is optional. When
an argument name is given as "name" or "file" , it always refers to afile name.

Ellipses (. ..) are used to show that the previous argument may be repeated.

-2-

A final convention is used by the commands themselves. An argument beginning with a dash (-), a
plus sign (+), or an equal sign (=) is often taken to be some sort of flag argument, even if it appears
in a position where a file name could appear. Therefore, it is unwise to have files whose names
begin with -, +, or =.

HP-UX COMPATIBILITY
shows the entry's HP-UX level and its origin, according to the HP-UX Compatibility Model (see
HP-UX Compatibility Model following this introduction). This section also shows whether an
optional HP software package is required.

DESCRIPTION
discusses the function and behavior of each entry.

HARDWARE DEPENDENCIES
points out variations from HP-UX standard due to the specific hardware involved.

EXAMPLE(S}
gives example(s} of usage, where appropriate.

FILES
gives the file names that are built into the program.

RETURN VALUE
discusses the meaning of values which are returned by the program.

SEE ALSO
gives pointers to related information.

DIAGNOSTICS
discusses the diagnostic indications that may be produced. Messages that are intended to be
self-explanatory are not listed.

WARNINGS
points out potential pitfalls.

BUGS
gives known bugs and sometimes deficiencies. Occasionally, the suggested fix is also
described.

A table of contents and a permuted index precede Section 1. On each index line, the title of the
entry to which that line refers is followed by the appropriate section number in parentheses. This is
important because there is considerable duplication of names among the sections, arising principally
from commands that exist only to exercise a particular system call.

_ '1_

How to Get Started

This discussion provides the basic infonnation you need to get started on HP-UX: how to log in and
log out, how to communicate through your machine, and how to run a program. (See the supplied
tutorial text for a more complete introduction to the system.)

Logging in. To log in you must have a valid user name, which may be obtained from the system
administrator of your system. Keep pressing the "break" or "del" key until the login: message
appears.

When a connection has been established, the system types login: and you then type your user
name followed by the "return" key (or "enter" key, on some tenninals). If you have a password
(and you should!), the system asks for it, but does not print it on the terminal.

It is important that you type your login name in lower case if possible; if you type upper-case letters,
HP-UX assumes that your terminal cannot generate lower-case letters, and that all subsequent
upper-case input is to be treated as lower case. When you have logged in successfully, the shell
types a $. (The shell is described below under How to run a program.)

For more infonnation, consult login (1) and getty (8), which discuss the login sequence in more detail,
and sqy(l), which tells you how to describe the characteristics of your terminal to the system
(profile(5) explains how to accomplish this last task automatically every time you log in).

Logging out. You can log out by typing an end-of-file indication (ASCII EOT character, usually
typed as "control-d") to the shell. The shell will terminate and the login: message will appear
again.

How to communicate through your terminal. When you type to HP-UX, the system usually
gathers your characters and saves them. These characters will not be given to a program until you
type a "return" (or a "new-line").

HP-UX tenninal input/output is full-duplex. It has full read-ahead, which means that you can type at
any time, even while a program is printing on your display or terminal. Of course, if you type during
output, the output will have the input characters interspersed in it. However, whatever you type will
be saved and interpreted in the correct sequence. There is a limit to the amount of read-ahead, but
it is generous and not likely to be exceeded unless the system is in trouble. When the read-ahead
limit is exceeded, the system throws away all the saved characters.

On an input line from a tenninal, the character @ "kills" all the characters typed before it. The
character # erases the last character typed. Successive uses of # will erase characters back to, but
not beyond, the beginning of the line; @ and # can be typed as themselves by preceding them with
"- (thus, to erase a ,,-, you need two #s). These default erase and kill characters can be changed,
and usually are (see stO'(l)).

The ASCII DC3 (control-s) character can be used to temporarily stop output. It is useful with CRT
terminals to prevent output from disappearing before it can be read. Output is resumed when any
character is typed. If DCI (control-q) or DC3 are used to restart the program, they are not saved and
passed to later programs. Any other characters are saved and passed as input to later programs.

-4-

The ASCII DEL character (sometimes labelled "rubout" or "rub") is not passed to programs, but
instead generates an interrupt signal, just like the" break", "interrupt", or "attention" signal. This
signal generally causes whatever program you are running to terminate. It is typically used to stop a
long printout that you don't want. However, programs can arrange either to ignore this signal
altogether, or to be notified when it happens (instead of being terminated). The editor ed(l), for
example, catches interrupts and stops what it is dOing, instead of terminating, so that an interrupt
can be used to halt an editor printout without losing the file being edited.

The quit signal is generated by typing the ASCII octal 34 (control-"-) character. It causes a running
program to terminate.

Besides adapting to the speed of the terminal, HP-UX tries to be intelligent as to whether you have a
terminal with the "new-line" key, or whether it must be simulated with a "carriage-return" and
"line-feed" pair. In the latter case, all input "carriage-return" characters are changed to "line­
feed" characters (the standard line delimiter), and a "carriage-retum" and "line-feed" pair is
echoed to the terminal. If you get into the wrong mode, see stty(1).

Tab characters are used freely in HP-UX source programs. If your terminal does not have the tab
function, you can arrange to have tab characters changed into spaces during output, and echoed as
spaces during input (not currently supported on the Series 500). The stty(l) command will set or
reset this mode. The system assumes that tabs are set every eight character positions. The tabs(l)
command will set tab stops on your terminal, if that is possible.

How to run a program. When you have successfully logged into HP-UX, a program called the shell
is listening to your terminal. The shell reads the lines you type, splits them into command names
and arguments, and executes the command. A command is simply an executable program.
Normally, the shell looks first in your current directory (see The current directory below) for a
program with the given name, and if none is there, then in system directories. There is nothing
special about system-provided commands except that they are kept in directories where the shell
can find them. You can also keep commands in your own directories and arrange for the shell to
find them there.

The command name is the first word on an input line to the shell; the command and its arguments
are separated from one another by space and/or tab characters.

When a program terminates, the shell will ordinarily regain control and type a $ at you to indicate
that it is ready for another command. The shell has many other capabilities, which are described in
detail in sh(l).

The current directory. HP-UX has a file system arranged in a hierarchy of directories. When the
system administrator gave you a user name, he or she also created a directory for you (ordinarily
with the same name as your user name, and known as your login or home directory). When you log
in, that directory becomes your current or working directory, and any file name you type is assumed
to be in that directory by default. Because you are the owner of this directory, you have full
permissions to read, write, alter, or destroy its contents. The permissions you have in other
directories and files will have been granted or denied to you by their respective owners, or by the
system administrator. To change the current working directory use cd(l).

-5-

Path names. To refer to files not in the current directory, you must use a path name. Full path
names begin with /, which is the name of the root directory of the whole file system. After the slash
comes the name of each directory containing the next sub-directory (followed by a I), until finally
the file name is reached (e.g., /usr/ae/filex refers to file filex in directory ae, while ae is itself a
subdirectory of usr; usr springs directly from the root directory). See the glossary for a formal
definition of path name.

If your current directory contains subdirectories, the path names of files therein begin with the name
of the corresponding subdirectory (without a prefixed I). Without important exception, a path name
may be used anywhere a file name is required.

Important commands that modify the contents of files are cp(I), mv(I), and rm(I), which
respectively copy, move (Le., rename), and remove files. To find out the status of files or
directOries, use Is(I). Use mkdir(l) for making directories and rmdir(l) for destroying them.

For a more complete discussion of the file system, see the references cited at the beginning of the
Introduction above. It may also be useful to glance through Section 2 of this manual, which
discusses system calls, even if you don't intend to deal with the system at that level.

Writing a program. To enter the text of a source program into an HP-UX file, use ed(I), ex(I), or
vi(I). The three principal languages available under HP-UX are C (see cc(I)), Fortran (seejc(l) or
177(1)), and Pascal (see pc(I)). After the program text has been entered with the editor and written
into a file (whose name has the appropriate suffix), you can give the name of that file to the
appropriate language processor as an argument. Normally, the output of the language processor
will be left in a file in the current directory named a.out (if that output is precious, use mv (1) to give it
a less vulnerable name). If the program is written in assembly language, you will probably need to
link library subroutines with it (see Id(I)). Fortran, C, and Pascal call the linker automatically.

When you have gone through this entire process without encountering any diagnostics, the resulting
program can be run by giving its name to the shell in response to the $ prompt.

Your programs can receive arguments from the command line just as system programs do by using
the argc, argv, and envp parameters. See the supplied C tutorial for details.

Text processing. Almost all text is entered through the editors ed(I), ex(I), or vi(I). The
commands most often used to write text on a terminal are cat(l) and pr(I). The cat(l) command
simply dumps ASCII text on the terminal, with no processing at all. The pr(l) command paginates
the text, supplies headings, and has a facility for multi-column output.

Surprises. Certain commands provide inter-user communication. Even if you do not plan to use
them, it would be well to learn something about them, because someone else may direct them
toward you. To communicate with another user currently logged in, write(l) is used; mail(l) will
leave a message whose presence will be announced to another user when he or she next logs in.
The corresponding entries in this manual also suggest how to respond to these two commands if
you are their target.

When you log in, a message-of-the-day may greet you before the first $ prompt.

-6-

HP-UX Compatibility Model

HP-UX is Bell System III plus" HP value added". HP value added includes both Hewlett-Packard
capabilities, such as graphics, and features from other UNIX systems, such as those from University
of California at Berkeley.

Levels
The various HP-UX systems are listed below in order of increasing completeness; each contains all
the elements of the previous one.

HP-UXIRUN ONLY
This describes a run-only kernel with no commands or applications attached.

HP-UXINUCLEUS
This is the run-only kernel plus a minimum set of commands. It also provides a minimum
command interpreter to permit access to the commands.

HP-UXIDEVELOPMENT
This is the first" normal" UNIX, but it does not include the full UNIX command set.

HP-UXISTANDARD
This is a nearly complete UNIX. It includes most of the capabilities from Bell, but not
everything that HP will make available.

HP-UXlEXTENDED
This is the largest standard package. It contains almost everything HP-UX has to offer (a few
Bell capabilities are not included).

OPTIONAL
For the purposes of the model, there are also capabilities that are never required, even at
the HP-UXlEXTENDED level. The term OPTIONAL designates capabilities in this
category.

NON-STANDARD
This designation is given to those keywords which have either not yet been approved as part
of standard HP-UX, or never will be.

-1-

INTRO(l) INTRO(l)

NAME
intro - introduction to commands

DESCRIPTION
This section describes, in alphabetical order, publicly-accessible commands. Certain distinctions of
purpose are made in the headings:

(1) Commands of general utility.
(IC) Commands for communication with other systems.
(1 G) Commands used primarily for graphics and computer-aided design.

- 1 -

ADB(1) Series 200 Only ADB(t)

NAME
adb - debugger

SYNOPSIS
adb [-w 1 [objfil [corfil 1 1

HP-UX COMPATIBILITY
Level: HP-UXIDEVELOPMENT

Origin: System III

Remarks: Adb is implemented on the Series 200 only.

DESCRIPTION

Adb is a general purpose debugging program. It may be used to examine files and to provide a
controlled environment for the execution of HP-UX programs.

Objfil is normally an executable program file, preferably containing a symbol table; if not then the
symbolic features of adb cannot be used although the file can still be examined. The default for objfil is
a.out. Corfil is assumed to be a core image file produced after executing objfil; the default for corfil is
core.

Requests to adb are read from the standard input and responses are to the standard output. If the -w
flag is present then objfil is created if necessary and opened for reading and writing so that it can be
modified using adb. Adb ignores QUIT; INTERRUPT causes return to the next adb command.

In general requests to adb are of the form

[address 1 [, count 1 [command 1 [; 1

If address is present then dot is set to address. Initially dot is set to O. For most commands count specifies
how many times the command will be executed. The default count is 1. Address and count are
expressions.

The interpretation of an address depends on the context in which it is used. If a subprocess is being
debugged then addresses are interpreted in the usual way in the address space of the subprocess. For
further details of address mapping see ADDRESSES.

EXPRESSIONS
The value of dot.

+ The value of dot incremented by the current increment.

The value of dot decremented by the current increment.

The last address typed.

integer An octal number if integer begins with a 0; a hexadecimal number if preceded by Ox; a decimal
number if preceded by Od; otherwise the base of integer is whatever the default number base
for input is. This base is initialized to hexadecimal.

integer .fraction
A 32 bit floating point number.

, ecce' The ASCII value of up to 4 characters. "may be used to escape a '.

< name The value of name, which is either a variable name or a register name. Adb maintains a number
of variables (see VARIABLES) named by single letters or digits. If name is a register name then
the value of the register is obtained from the system header in corfil. The register names are aO
... a6 dO ... d7 sp pc ps.

symbol A symbol is a sequence of upper or lower case letters, underscores or digits, not starting with a
digit. The value of the symbol is taken from the symbol table in objfil. An initial _ will be
inserted at the beginning of symbol if needed.

- 1 -

ADB(!) Series 200 Only ADB(!)

_symbol
In C, the "true name" of an extemaI symbol begins with. It may be necessary to utter this
name to distinguish it from a symbol generated in assembly language.

(exp) The value of the expression expo

Monadic operators:

*exp The contents of the location addressed by exp in corfil.

@exp The contents of the location addressed by exp in objfil.

--exp Integer negation.

-exp Bitwise complement.

Dyadic operators are left associative and are less binding than monadic operators.

e1 + e2 Integer addition.

e1--e2 Integer subtraction.

e1 *e2 Integer multiplication.

el %e2 Integer division.

e1 &e2 Bitwise conjunction.

e1 I e2 Bitwise disjunction.

e1 #e2 E1 rounded up to the next multiple of e2.

COMMANDS
Most commands consist of a verb followed by a modifier or list of modifiers. The following verbs are
available. (The commands? and I may be followed by *; see ADDRESSES for further details.)

?f Locations starting at address in objfil are printed according to the format f. dot is incremented
by the sum of the increments for each format letter.

If Locations starting at address in corfil are printed according to the format f and dot is
incremented as for ?

= f The value of address itself is printed in the styles indicated by the format f. (For i format? is
printed for the parts of the instruction that reference subsequent words.)

A format consists of one or more characters that specify a style of printing. Each format character may
be preceded by a decimal integer that is a repeat count for the format character. While stepping through
a format dot is incremented by the amount given for each format letter. If no format is given then the last
format is used. The format letters available are as follows:

o 2 Print 2 bytes in octal. All octal numbers output by adb are preceded by O.
o 4 Print 4 bytes in octal.
q 2 Print 2 bytes in signed octal.
Q 4 Print 4 bytes in signed octal.
d 2 Print 2 bytes in decimal.
D 4 Print 4 bytes in decimal.
x 2 Print 2 bytes in hexadecimal.
X 4 Print 4 bytes in hexadecimal.
u 2 Print 2 bytes as an unsigned decimal number.
U 4 Print 4 bytes as an unsigned decimal number.
f 4 Print the 32 bit value as a floating point number.
F 8 Print double floating point.
b 1 Print the addressed byte in hexadecimal.
B 1 Print the addressed byte in octal.

-2-

nUD\.l} ~eries ZUU Unly ADB(!)

c 1 Print the addressed character. (The sign bit is ignored.)
C 1 Print the addressed character using the following escape convention. Character values

000 to 040 are printed as @ followed by the corresponding character in the range
0100 to 0140. The character @ is printed as @@. (The sign bit is ignored.)

5 n Print the addressed characters until a zero character is reached. N is the length of the
string, including the zero terminator.

S n Print a string using the @ escape convention. n is the length of the string including its
zero terminator.

Y 4 Print 4 bytes in date format (see ctime(3C)).

new-line

i n Print as MC68000 instructions. n is the number of bytes occupied by the instruction.
n Same as i, except that immediate constants are printed in decimal.

a 0 Print the value of dot in symbolic form. Symbols are checked to ensure that they have
an appropriate type as indicated below.

/ local or global data symbol
? local or global text symbol
= local or global absolute symbol

p 4 Print the addressed value in symbolic form using the same rules for symbol lookup as
a.

o When preceded by an integer tabs to the next appropriate tab stop. For example, 8t
moves to the next 8-space tab stop.

r 0 Print a space.
n 0 Print a new-line.
" ... " 0 Print the enclosed string.

Dot is decremented by the current increment. Nothing is printed.
+ Dot is incremented by 1. Nothing is printed.

Dot is decremented by 1. Nothing is printed.

Repeat the previous command with a count of 1. Also can be used to repeat a :5 or :c
command.

[? 1]1 value mask
Words starting at dot are masked with mask and compared with value until a match is found. If
L is used then the match is for 4 bytes at a time instead of 2. If no match is found then dot is
unchanged; otherwise dot is set to the matched location. If mask is omitted then -1 is used.

[?/]w value ...
Write the 2-byte value into the addressed location. If the command is W, write 4 bytes. Odd
addresses are not allowed when writing to the subprocess address space.

[?I]m bI eI fI[?/]

New values for (bI, eI,fl) are recorded. If less than three expressions are given then the
remaining map parameters are left unchanged. If the ? or / is followed by * then the second
segment (b2, e2,12) of the mapping is changed. If the list is terminated by? or / then the file
(objfil or corfil respectively) is used for subsequent requests. (So that, for example, /m? will
cause / to refer to objfil.)

>name Dot is assigned to the variable or register named.

A shell is called to read the rest of the line following!.

$modifier
Miscellaneous commands. The available modifiers are:

<J Read commands from the file f and return.

-3-

ADB(!) Series 200 Only ADB(!)

> f Send output to the file f, which is created if it does not exist.
r Print the general registers and the instruction addressed by pc. Dot is set to pc.
b Print all breakpoints and their associated counts and commands.
c C stack backtrace. If address is given then it is taken as the address of the current frame

(instead of a6). If count is given then only the first count frames are printed.
e The names and values of external variables are printed.
w Set the page width for output to address (default 80).
s Set the limit for symbol matches to address (default 255).
o The default for all integers input is octal.
d The default for all integers input is decimal.
x The default for all integers input is hexadecimal.
q Exit from adb.
v Print all non zero variables in octal.

:modifier

n Set the number of significant digits for floating point dump to address.
m Print the address map.

new-line
print the process id and register values.

Manage a subprocess. Available modifiers are:

bc Set breakpoint at address. The breakpoint is executed coUnl-l times before causing a
stop. Each time the breakpoint is encountered the command c is executed. If this
command sets dot to zero then the breakpoint causes a stop.

d Delete breakpoint at address.
d* Delete all breakpoints
r Run objfiZ as a subprocess. If address is given explicitly then the program is entered at

this point; otherwise the program is entered at its standard entry point. count specifies
how many breakpoints are to be ignored before stopping. Arguments to the
subprocess may be supplied on the same line as the command. An argument starting
with < or > causes the standard input or output to be established for the command.
All signals are turned on on entry to the subprocess.

e Setup a subprocess as in r; no instructions are executed.
cs The subprocess is continued with signal s (see signaZ(2)). If address is given then the

subprocess is continued at this address. If no signal is specified then the signal that
caused the subprocess to stop is sent. Breakpoint skipping is the same as for r.

ss As for c except that the subprocess is single stepped count times.
Ss As for c except that a temporary breakpOint is set at the next instruction. Useful for

stepping across subroutines.
xa [b) ...

Execute subroutine a with parameters lb J ...
k The current subprocess, if any, is terminated.

VARIABLES
Adb provides a number of variables. Named variables are set initially by adb but are not used
subsequently. Numbered variables are reserved for communication as follows.

o The last value printed.
1 The last offset part of an instruction source.
2 The previous value of variable 1.

On entry the following are set from the system header in the corfiZ. If corfiZ does not appear to be a core
file then these values are set from objfiZ.

b The base address of the data segment.

- 4-

ADB(l) Series 200 Only ADB(l)

d The data segment size.
e The entry point.
m The "magic" number (Ox107, Ox108)
s The stack segment size.
t The text segment size.

ADDRESSES

FILES

The address in a file associated with a written address is determined by a mapping associated with that
file. Each mapping is represented by two triples (bI, eI, fI) and (b2, e2, /2) and the file address
corresponding to a written address is calculated as follows:

bI address<el
file address = address + fI-b I

Otherwise,

b2 address<e2
file address = address + /2-b2

Otherwise, the requested address is not legal. If a ? or / is followed by an * then only the second triple is
used.

The initial setting of both mappings is suitable for normal a.out and core files. If either file is not of the
kind expected then, for that file, bI is set to 0, eI is set to the maximum file size andfI is set to 0; in this
way the whole file can be examined with no address translation.

In order for adb to be used on large files, all appropriate values are kept as signed 32 bit integers.

/dev/mem
/dev/swap
a.out
core

SEE ALSO

a.out(S), core(S).

DIAGNOSTICS
"Adb" when there is no current command or format, and comments about inaccessible files, syntax
errors, abnormal termination of commands, etc. Exit status is 0, unless last command failed or returned
non-zero status.

-S-

ADMIN(l) ADMIN(l)

NAME
admin - create and administer sees files

SYNOPSIS
admin [-n] [-i[namell [-rrel] [-t[namell [-fflag[flagvalll [-dflag[flagvall] [-alogin] [-elogin]
[-m[mrlistll [-y[commentll [-h] [-z] files

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

DESCRIPTION
Admin is used to create new sees files and change parameters of existing ones. Arguments to admin,
which may appear in any order, consist of keyletter arguments, which begin with -, and named files
(note that sees file names must begin with the characters s.). If a named file doesn't exist, it is created,
and its parameters are initialized according to the specified keyletter arguments. Parameters not
initialized by a keyletter argument are assigned a default value. If a named file does exist, parameters
corresponding to specified keyletter arguments are changed, and other parameters are left as is.

If a directory is named, admin behaves as though each file in the directory were specified as a named
file, except that non-Sees files (last component of the path name does not begin with s.) and
unreadable files are silently ignored. If a name of - is given, the standard input is read; each line of the
standard input is taken to be the name of an sees file to be processed. Again, non-SeeS files and
unreadable files are silently ignored.

The keyletter arguments are as follows. Each is explained as though only one named file is to be
processed since the effects of the arguments apply independently to each named file.

-n

-i[name]

-rrel

-t[name]

-fflag

b

This keyletter indicates that a new sees file is to be created.

The name of a file from which the text for a new sees file is to be taken. The
text constitutes the first delta of the file (see -r keyletter for delta numbering
scheme). If the i keyletter is used, but the file name is omitted, the text is
obtained by reading the standard input until an end-of-file is encountered. If
this key letter is omitted, then the sees file is created with an empty initial delta.
Only one sees file may be created by an admin command on which the i
keyletter is supplied. Using a single admin to create two or more sees files
requires that they be created empty (no -i keyletter). Note that the -i keyletter
implies the -n keyletter.

The release into which the initial delta is inserted. This keyletter may be used
only if the -i keyletter is also used. If the -r key letter is not used, the initial delta
is inserted into release 1. The level of the initial delta is always 1 (by default
initial deltas are named 1.1).

The name of a file from which descriptive text for the sees file is to be taken. If
the -t keyletter is used and admin is creating a new sees file (the -n and/or-i
keyletters also used), the descriptive text file name must also be supplied. In the
case of existing sees files: (1) a -t keyletter without a file name causes removal
of descriptive text (if any) currently in the sees file, and (2) a -t keyletter with a
file name causes text (if any) in the named file to replace the descriptive text (if
any) currently in the sees file.

This keyletter specifies a flag, and, possibly, a value for the flag, to be placed in
the sees file. Several f keyletters may be supplied on a single admin command
line. The allowable flags and their values are:

Allows use of the -b keyletter on aget(I) command to create branch deltas.

- 1 -

J\UMIN\lj ADMIN(!)

cceil The highest release (i.e., "ceiling"), a number less than or equal to 9999, which
may be retrieved by a get(l) command for editing. The default value for an
unspecified c flag is 9999.

fjloor The lowest release (i. e., "floor"), a number greater than a but less than 9999,
which may be retrieved by a get(l) command for editing. The default value for
an unspecified f flag is 1.

dSID The default delta number (SID) to be used by a get(l) command.

Causes the "No id keywords (cm 7)" message issued by get (1) or delta (1) to be
treated as a fatal error. In the absence of this flag, the message is only a
warning. The message is issued if no sees identification keywords (see get(l))
are found in the text retrieved or stored in the sees file.

Allows concurrentget(l) commands for editing on the same SID of an sees file.
This allows multiple concurrent updates to the same version of the sees file.

llist A list of releases to which deltas can no longer be made (get -e against one of
these" locked" releases fails). The list has the following syntax:

<list> :: = <range> I <list> , <range>
<range> :: = RELEASE NUMBER I a

The character a in the list is equivalent to specifying all releases for the named
sees file. Omitting any list is equivalent to a.

n Causes delta (1) to create a "null" delta in each of those releases (if any) being
skipped when a delta is made in a new release (e. g., in making delta 5.1 after
delta 2.7, releases 3 and 4 are skipped). These null deltas serve as "anchor
points" so that branch deltas may later be created from them. The absence of
this flag causes skipped releases to be non-existent in the sees file preventing
branch deltas from being created from them in the future.

qtext User definable text substituted for all occurrences of the %Q% keyword in sees
file text retrieved by get(l).

mmod Module name of the sees file substituted for all occurrences of the %M%
keyword in sees file text retrieved by get(l). If the m flag is not specified, the
value assigned is the name of the sees file with the leading s. removed.

ttype Type of module in the sees file substituted for all occurrences of the %Y%
keyword in sees file text retrieved by get(1).

v[pgm] Causes delta(l) to prompt for Modification Request (MR) numbers as the
reason for creating a delta. The optional value specifies the name of an MR
number validity checking program (see delta(l)). (If this flag is set when
creating an sees file, the m keyletter must also be used even if its value is null).

-dflag Causes removal (deletion) of the specified flag from an sees file. The-d
keyletter may be specified only when processing existing sees files. Several-d
keyletters may be supplied on a single admin command. See the -f keyletter for
allowable flag names.

Ilist

-alogin

A list of releases to be "unlocked". See the -f keyletter for a description of the I
flag and the syntax of a list.

A login name, or numerical HP-UX group ID, to be added to the list of users
which may make deltas (changes) to the sees file. A group ID is equivalent to
specifying all login names common to that group ID. Several a keyletters may
be used on a single admin command line. As many logins, or numerical group
IDs, as desired may be on the list simultaneously. If the list of users is empty,

- 2 -

ADMIN(!) ADMIN(1)

FILES

-elogin

-y[commentl

-m[mrlistl

-h

-z

then anyone may add deltas.

A login name, or numerical group [D, to be erased from the list of users allowed
to make deltas (changes) to the sees file. Specifying a group ID is equivalent to
specifying all login names common to that group [D. Several e keyletters may
be used on a single admin command line.

The comment text is inserted into the sees file as a comment for the initial delta
in a manner identical to that of delta(l). Omission ofthe -y keyletterresults in a
default comment line being inserted in the form:

date and time created YY/MM/DD HH:MM:SS by login

The -y keyletter is valid only if the -i and/or -0 keyletters are specified (Le., a
new sees file is being created).

The list of Modification Requests (MR) numbers is inserted into the sees file as
the reason for creating the initial delta in a manner identical to delta(l). The v
flag must be set and the MR numbers are validated if the v flag has a value (the
name of an MR number validation program). Diagnostics will occur if the v flag
is not set or MR validation fails.

Causes admin to check the structure of the sees file (see sccsfile(5)), and to
compare a newly computed check-sum (the sum of all the characters in the
sees file except those in the first line) with the check-sum that is stored in the
first line of the sees file. Appropriate error diagnostics are produced.

This keyletter inhibits writing on the file, so that it nullifies the effect of any other
keyletters supplied, and is, therefore, only meaningful when processing existing
files.

The sees file check-sum is recomputed and stored in the first line of the sees
file (see -h, above).

Note that use of this keyletter on a truly corrupted file may prevent future
detection of the corruption.

The last component of all sees file names must be of the form s.file-name. New sees files are given
mode 444 (see chmod(l)). Write permission in the pertinent directory is, of course, required to create a
file. All writing done by admin is to a temporary x-file, called x.file-name, (see get (1)), created with mode
444 if the admin command is creating a new sees file, or with the same mode as the sees file if it exists.
After successful execution of admin, the sees file is removed (if it exists), and the x-file is renamed with
the name of the sees file. This ensures that changes are made to the sees file only if no errors
occurred.

It is recommended that directories containing sees files be mode 755 and that sees files themselves be
mode 444. The mode of the directories allows only the owner to modify sees files contained in the
directories. The mode of the sees files prevents any modification at all except by sees commands.

If it should be necessary to patch an sees file for any reason, the mode may be changed to 644 by the
owner allowing use of ed(l). Care must be taken! The edited file should always be processed by an
admio -h to check for corruption followed by an admin -z to generate a proper check-sum. Another
admio -h is recommended to ensure the sees file is valid.

Admin also makes use of a transient lock file (called z.file-name), which is used to prevent simultaneous
updates to the sees file by different users. See get (1) for further information.

SEE ALSO
delta(l), ed(l), get(l), help(l), prs(l), what(l), sccsfile(5).
sees User's Guide in HP-UX Concepts and Tutorials.

-3-

ADMIN(l) ADMIN(l)

DIAGNOSTICS
Use help (1) for explanations.

-4-

AR(l) AR(l)

NAME
ar - archive and library maintainer

SYNOPSIS
ar key [posname 1 afile name ...

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

DESCRIPTION
Ar maintains groups of files combined into a single archive file. Its main use is to create and update
library files for use by the link editor. It can be used, though, for any similar purpose.

The archive file format is consistent across all HP-UX implementations. It is only useful to port source
archives. Individual files are inserted without conversion into the archive file. Note that ar files from
other UNIX systems are not readable on HP-UX, even if those files contain ASCII text.

Key must be present, and is one character from the set drqtpmx, optionally concatenated with one or
more of vuaibcl. Afile is the archive file. The names are constituent files in the archive file. The
meanings of the key characters for operations on an archive are:

d Delete the named constituents from the archive file.

r Replace the named files, or add a new file to the archive. If the optional character u is used with r,
then only those files with modified dates later than the archive files are replaced. If an optional
pOSitioning character from the set abi is used, then the posname argument must be present and
specifies that new copies of the named files are to be placed after (a) or before (b or i) posname. In
the absence of a positioning character, new files are placed at the end. Ar will create afile if it does
not already exist. If there are no file names, ar may create an empty archive file whose only contents
is the archive magic number (see magic(5)).

q QUickly append the named files to the end of the archive file. Optional positioning characters are
invalid. The command does not check whether the added members are already in the archive.
This is useful only to avoid quadratic behavior when creating a large archive piece-by-piece. Ar will
create afile if it does not already exist.

Print a table of contents of the archive file. If no names are given, all files in the archive are
described. If names are given, information about only those files appears.

p Print the named files in the archive.

m Move the named files to the end of the archive. If a pOSitioning character is present, then the
posname argument must be present and, as in r, specifies where the files are to be moved. Note
that, when used with a positioning character, the files are moved in the same order that they currently
appear in the archive, not in the order specified on the command line. See EXAMPLES.

x Extract the named files. If no names are given, all files in the archive are extracted. In neither case
does x alter (Le. delete entries from) the archive file.

The meanings of the remaining optional modifying characters are:

v Verbose. When used with t, it gives a long listing of all information about the files from the
archive headers. When used with the d, m, p, q, and x options, the verbose option causes aT to
print the key letter and file name associated with each file for that operation. For the r
operation, ar will show an "a" if it added a new file, or an "r" if it replaced an existing one.

c Create. Normally ar will create afile when it needs to (for the rand q operations). The create
option suppresses the normal message that is produced when afile is created.

Local. Normally ar places its temporary files in the directory Itmp. This option causes them to
be placed in the current working directory. Only the d, m, and r options use temporary files.

- 1 -

AR(l)

Only the following combinations are meaningful:
d: v,1
r: u, v, C, I, and a I b I i
q: v, C

t: v
p: v
m: v, I, and a I b I i
x: v

AR(l)

For other combinations of modifiers with operations not shown in the above table, the modifier has no
effect.

EXAMPLES

FILES

The command

ar r newlib.a f3 f2 fl f4

will create a new file (if one does not already exist) in archive format with its constituents entered in the
order shown in the above command line.

If you want to replace files f2 and f3 such that the new copies follow file fl, the commands

ar rna f2 newlib.a f3
ar ra fl newlib.a f2 f3

will produce the desired effect. The archive will now be ordered

newlib.a: fl f2- f3- f4

where the single quote marks indicate updated files. The first command says "move f3 after f2 in
newlib.a" , thus creating the order

f2 f3 f1 f4

The second command above says" replace files f2 and f3 in newlib.a, and put the new copies after f1 " .
Note that the new files must be replaced in the same order as they already occur in the archive. This is
why the first command above is used to create a new order that will be preserved in the replace
operation. Thus, the two commands above cannot be replaced by

ar ra fl newlib.a f2 f3

because the previous order of f2 and f3 in the archive will be preserved (no matter how the files are
specified on the command line), producing the folloWing archive:

newlib.a: fl f3- f2- f4

Itmplv* temporary files

SEE ALSO
Id(l), lorder(l), ranlib(l), ar(S).

WARNING

BUGS

If you are the super-user, ar will alter any archive file, even if it is write-protected.

If the same file is mentioned twice in an argument list, it may be put in the archive twice.

Ar reports cannot create file. a, where file.a is an ar-format archive file, even if file.a already exists. This
message is triggered when file. a is write-protected or inaccessible.

-2-

AS(l) Series 200 Only AS(l)

NAME
as - assembler for MC68000

SYNOPSIS
as [-A 1 [-a afile 1 [-0 objfile 1 [file 1

HP-UX COMPATIBILITY
Level: HP-UXIDEVELOPPMENT

Origin: System III

Remarks: As is implemented on the Series 200 only.

DESCRIPTION

FILES

As assembles the named file, or the standard input if no file name is specified. The optional arguments
-A or -a may be used to obtain an assembly listing with offsets and instruction codes listed in hex. If-A
is used the listing goes to standard output. If -a is used the listing goes to afile.

All undefined symbols in the assembly are treated as global.

The output of the assembly is left on the file objfile; if that is omitted, .s is stripped from the end of the file
name (if there) and .0 is appended to it. This becomes the name of the output file. As does not invoke
ld.

/usr/tmp/*
file. 0

temporary files
object file

SEE ALSO

adb(l), ld(l), nm(l), a.out(S).
MC68000 Assembler on HP-UX, in HP-UX Concepts and Tutorials.

DIAGNOSTICS
If the name chosen for the output file is of the form *.[cs], the assembler issues an appropriate
complaint and quits. When syntactic or semantic errors occur, a single-line diagnostic is typed out
together with the line number and the file name in which it occurred.

- 1 -

ASA(l) ASA(l)

NAME
asa - interpret ASA carriage control characters

SYNOPSIS
asa [files 1

HP-UX COMPATIBILITY
Level: HP-UXINUCLEUS

Origin: System V

Remarks: Asa is in a preliminary state, and could change in the future.

DESCRIPTION
Asa interprets the output of FORTRAN programs that utilize ASA carriage control characters. It processes
either the files whose names are given as arguments, or the standard input if no file names are supplied.
The first character of each line is assumed to be a control character. Their meanings are:

blank single new-line before printing;

o double new-line before printing;

1 new page before printing;

+ OVE. print previous line.

Lines beginning with other than the above characters are treated as if they began with a blank. The first
character of a line is not printed. If any such lines appear, an appropriate diagnostic will appear on
standard error. This program forces the first line of each input file to start on a new page.

To correctly view the output of FORTRAN programs which use ASA carriage control characters, asa
could be used as a filter as follows:

a.out I asa Ilpr

and the output, properly formatted and pagenated, would be directed to the line printer. FORTRAN
output sent to a file could be viewed by:

asa file

SEE ALSO
fc(l), £77(1).

- 1 -

AT(l) AT(l)

NAME
at - execute commands at a later time

SYNOPSIS
at time [day 1 [file 1

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: Version 7

DESCRIPTION

FILES

At stores a copy of the named file (standard input default) to be used as input to sh(l) at a specified later
time. File must be a shell script. A cd (1) command to the current directory is inserted at the beginning,
followed by assignments to all environment variables. When the script is run, it uses the user and group
lD of the creator of the copied file.

Time is one to four digits, with an optionally appended' A', 'P', 'N', or 'M', standing for AM, PM, noon,
or midnight, respectively. One and two digit numbers are taken to be hours: three and four digit num­
bers are taken to be hours and minutes. If none of the above-mentioned letters follow the digits, a 24
hour clock time is assumed.

Day is either a month name followed by a day number, or a day of the week. If the word 'week' follows
day, invocation is moved seven days further off. Three-letter abbreviations for month and day names
may be used. Examples of legal commands are

at 8am jan 24 scriptfile 1
at 1530 fri week scriptfile2

At programs are executed by periodic execution of the command lusrlliblatrun from cron(8). The time
interval accuracy of at depends upon how often atrun is executed.

Standard output or error output is lost unless redirected.

lusrlspool/at/yy. ddd. hhhh. uu
activity to be performed at hour hhhh of day ddd of year yy. uu is a unique number.

lusrlspool/at/lasttimedone
contains hhhh for last hour that atrun was executed.

lusrlspool/at/past
directory of activities now in progress.

lusr/lib/atrun
program that executes activites that are due.

pwd(l)

SEE ALSO
calendar(1), cron(8).

DIAGNOSTICS

BUGS

Complains about various syntax errors and times out of range.

Due to the time interval accuracy of the execution of lusrlliblatrun, there may be bugs in scheduling
things almost exactly 24 hours into the future.

-1-

ATERM(lC) Series 500 Only ATERM(lC)

NAME
aterm - general purpose asynchronous terminal emulation

SYNOPSIS
aterm configfile

HP-UX COMPATIBILITY
Level:

Origin:

Data Communications - HP-Ux/STANDARD

HP

Remarks: Aterm is implemented on the Series 500 only.

DESCRIPTION

Aterm "is a general purpose asynchronous terminal emulator designed for maximum connection
flexibility and simple file transfers without remote host support. Transparent pass-through mode
provides all user terminal capabilities in multi-user systems.

Configfile is used by aterm to match the particular terminal configuration needed for the remote system
you are logging onto. This file consists of configuration commands, one to a line. Each line consists of
the command name and its arguments, if any. Only configuration parameters which differ from the
standard default need be specified. Most configuration commands can also be given from the keyboard
while the emulator is running. You can exit aterm by typing "-. " .

The following list shows the recognized configuration command names:

da Serial device file name (no default);
hn Name of remote computer system (no default);
db Number of data bits per character: 5, 6, 7, or 8 (default = 7);
5b Number of stop bits per character: 1,1.5, or 2 (default = 1);
pa Character parity: none (n), odd (0), even (e), zero (0), Drone (1) (default = 0);
dr Rate for data sent and received: 50, 75, 110, 134.5, 150, 300, 600, 1200, 1800, 2400, 3600,

4800,9600, or 19200 baud (default = 2400 baud);
me Modem control: enabled (+) for full-duplex modem, or disabled H for full-duplex hard-wired

connection (default = -);

55 Switched service: auto-answer (a) or manual originate (0) (default = 0);
ga Gap: number of character transmission times to delay between successive output characters;

values range from 0 to 254 (default = 0);
ee Echo: enabled (+) if the host computer echos characters sent by the emulator, disabled (-)

otherwise (default = -);

te Terminal ENQ/ACK: enabled (+) or disabled (-) (default = +);
he Host ENQ/ACK: enabled (+) or disabled H (default = -);
tx Terminal XON/XOFF: enabled (+) or disabled H (default = -);

hx Host XONIXOFF: enabled (+) or disabled H (default = -);

im Input mode: block (b), character (c), or line (I) (default = b);
om Output mode: character (c) or line (I) (default = c);
ph Prompt handshake: if enabled (+), the emulator waits for the prompt sequence before

sending each line of data during an input diversion; if disabled H, no wait is performed (default
=-);

pt Prompt timeout: number of seconds to allow for receipt of a prompt sequence during an input
diversion; values range from 1 to 600, with 0 disabling the timeout altogether (default = 0);

st Single text terminators: list of characters, any of which terminates a line sent by the host
computer when the emulator is in input line mode; up to eight characters may be specified
(default = no characters);

dt Double text terminator: a pair of characters which together terminate a line sent by the host
computer when the emulator is in input line mode (default = carriage-retumlline-feed);

- 1 -

ATERM(lC) Series 500 Only ATERM(lC)

ps Prompt sequence: one or two characters which terminate a line sent by the host computer
when the emulator is in input line mode, and which satisfy the prompt handshake if enabled
(default = DCI);

bl Beginning of line: character to be prefixed to each line sent to the host computer (default =

none);
el End of line: one or two characters to be postfixed to each line sent to the host computer

(default = carriage-return);
es Local command character: character which designates a local command to be interpreted by

the emulator if it comes at the beginning of a line read from the standard input (default = -).

Note that emulation does not include block or format modes.

SEE ALSO

BUGS

cu(IC)
uucp(IC)

if simple connections are adequate or if you are calling another UNIX system;
for file transfers with other UNIX systems.

HP-UX Asynchronous Communications Guide.

Core capabilities, as well as standard extensions for graphics or color, are not yet formally defined.

-2-

ATRANS(l) Series 200 Only ATRANS(l)

NAME
atrans - translate assembly language

SYNOPSIS
atrans [-j] [-n] [filename]

HP-UX COMPATIBILITY
Level: HP-UXIDEVELOPMENT

Origin: HP

Remarks: AlTans is implemented on the Series 200 only.

DESCRIPTION
AlTans translates an assembly language source file from Series 200 Pascal workstation assembly
language syntax to Series 200 HP-UX assembly language syntax. If no filename is given, input is
assumed to come from stdin.

All uppercase characters are converted to lowercase characters, except those in comments or in quoted
strings.

Hexadecimal constants are converted from Series 200 Pascal workstation syntax, $ <hex number> to
the Series 200 HP -UX syntax, Ox<hex number> .

Operands whose effective address is program counter with displacement will have the string pc inserted
in them (e.g. 8(d6) will become 8(pc,d6».

Lines containing the following list of Series 200 Pascal workstation pseudo-ops have no parallel in
Series 200 HP-UX syntax and are translated as comment lines: decimal, end, lien, list, lprint, nolist,
noobj, nosyms, page, spc, sprint, ttl.

Lines containing the mname or src pseudo-ops are translated as comment lines, and a warning is printed
stating that modules are not supported by the Series 200 HP-UX assembler.

The pseudo-ops, de!, refa, and refr, are translated as globl.

The file name operand of an include pseudo-op will have quote marks put around it.

Certain pseudo-ops require manual intervention to translate. Each Line containing these pseudo_ops
will cause a message to be printed stating that an error will be generated by the Series 200 HP-UX
assembler. These pseudo-ops are: com, lmode, org, rorg, rmode, smode, start.

The -j nption converts opcodes with the bcc[.sl'!] branch syntax to the jcc syntax. It also converts
bsr[.sl.lJ to jbsr.

The -n option converts groups of blanks to tabs.

SEE ALSO
as(l).

- 1 -

AWK(l) AWK(l)

NAME
awk - text pattern scanning and processing language

SYNOPSIS
awk [-Fc 1 [prog 1 [files 1

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

DESCRIPTION
Awk scans each input file for lines that match any of a set of patterns specified in prog. With each
pattern in prog there can be an associated action that will be performed when a line of a file matches the
pattern. The set of patterns may appear literally as prog, or in a file specified as -f file. The prog string
should be enclosed in single quotes (') to protect it from the shell.

Files are read in order; if there are no files, the standard input is read. The file name - means the
standard input. Each line is matched against the pattern portion of every pattern-action statement; the
associated action is performed for each matched pattern.

An input line is made up of fields separated by white space. (This default can be changed by using FS,
see below). The fields are denoted $1, $2, ... ; $0 refers to the entire line.

A pattern-action statement has the form:

pattern { action }

A missing action means print the line; a missing pattern always matches. An action is a sequence of
statements. A statement can be one of the following:

if (conditional) statement [else statement 1
while (conditional) statement
for (expression ; conditional ; expression) statement
break
continue
{ [statement 1 ... }
variable = expression
print [expression-list 1 [>expression 1
printf format [, expression-list 1 [>expression 1
next # skip remaining patterns on this input line
exit # skip the rest of the input

Statements are terminated by semicolons, new-lines, or right braces. An empty expression-list stands
for the whole line. Expressions take on string or numeric values as appropriate, and are built using the
operators +, -, *, /, %, and concatenation (indicated by a blanh). The C operators + +, --, + =,
- =, * =, / =, and % = are also available in expressions. Variables may be scalars, array elements
(denoted xU]) or fields. Variables are initialized to the null string. Array subscripts may be any string, not
necessarily numeric; this allows for a form of associative memory. String constants are quoted (").

The print statement prints its arguments on the standard output (or on a file if >expr is present),
separated by the current output field separator, and terminated by the output record separator. The
print[statement formats its expression list according to the format (see print[(3S)).

The built-in fpnction length returns the length of its argument taken as a string, or of the whole line if no
argument. lpere are also built-in functions exp, log, sqrt, and into The last truncates its argument to an
integer; substr(s, m, n) returns the n-character substring of s that begins at position m. The function
sprint[(fmt, expr, expr, ...) formats the expressions according to the printf(3S) format given by [mt and
returns the resulting string.

- 1 -

AWK(l) AWK(l)

Patterns are arbitrary Boolean combinations (!, II, &&, and parentheses) of regular expressions and
relational expressions. Regular expressions must be surrounded by slashes and are as in egrep (see
grep (I)). Isolated regular expressions in a pattern apply to the entire line. Regular expressions may also
occur in relational expressions. A pattern may consist of two patterns separated by a comma; in this
case, the action is performed for all lines between an occurrence of the first pattern and the next
occurrence of the second.

A relational expression is one of the following:

expression matchop regular-expression
expression relop expression

where a relop is any of the six relational operators in C, and a matchop is either - (for contains) or !- (for
does not contain). A conditional is an arithmetic expression, a relational expression, or a Boolean
combination of these.

The special patterns BEGIN and END may be used to capture control before the first input line is read
and after the last. BEGIN must be the first pattern, END the last.

A single character c may be used to separate the fields by starting the program with:

BEGIN {FS = c }

or by using the -Fc option.

Other variable names with special meanings include NF, the number of fields in the current record; NR,
the ordinal number of the current record; FILENAME, the name of the current input file; OFS, the output
field separator (default blank); ORS, the output record separator (default new-line); and OFMT, the
output format for numbers (default %.6g).

EXAMPLES
Print lines longer than 72 characters:

length> 72

Print first two fields in opposite order:

{ print $2, $1 }

Add up first column, print sum and average:

{s + = $1 }
END { print "sum is" , s, " average is", s/NR }

Print fields in reverse order:

{ for (i = NF; i > 0; -i) print $i }

Print all lines between start/stop pairs:

Istart/, Istopl

Print all lines whose first field is different from previous one:

$1 ! = prev { print; prev = $1 }

SEE ALSO

BUGS

grep(l}, lex(l}, sed(l}.
Awk: A Programming Language for Manipulating Data in HP-UX Concepts and Tutorials.

Input white space is not preserved on output if fields are involved.
There are no explicit conversions between numbers and strings. To force an expression to be treated as
a number add 0 to it; to force it to be treated as a string concatenate the null string (" ") to it.

- 2-

BANNER(l)

NAME
banner - make posters in large letters

SYNOPSIS
banner strings

HP-UX COMPATIBILITY
Level: System 1II Compatibility - HP-UXISTANDARD

Origin: System 1II

DESCRIPTION

BANNER(l)

Banner prints its arguments (each up to 10 characters long) in large letters on the standard output.

Each argument is on a separate line.

-1-

BASENAME(l) BASENAME(l)

NAME
basename, dirname - extract portions of path names

SYNOPSIS
basename string [suffix 1
dirname string

HP-UX COMPATIBILITY
Level: HP-UXINUCLEUS

Origin: System III

DESCRIPTION
Basename deletes any prefix ending in I and the suffix (if present in string) from string, and prints the
result on the standard output. It is normally used inside command substitution marks C ... -) within shell
procedures.

Basename returns the string unmodified if string does not contain the indicated suffix, or if string contains
the suffix, but the suffix does not occur at the end of the string. If string and suffix are identical, basename
returns the null string.

Dirname delivers all but the last level of the path name in string. If string is null or does not contain a
directory component, dirname returns" . " , indicating the current working directory.

HARDWARE DEPENDENCIES
Series 200:

EXAMPLES

Basename returns the null string if the indicated suffix does not occur in string.

Basename returns an unpredictable string (sometimes the null string, sometimes one or more
characters from the original string) if the indicated suffix contains one or more characters from
the actual suffix in string, but the suffix does not match the actual suffix exactly. For example,
the returned string is unpredictable in cases like

basename file.trf .r

If the indicated suffix occurs in string, but not at the end of string, basename returns only that part
of string which occurs before the indicated suffix. For example,

basename file.f.g .f

returns "file".

The follOWing shell script, invoked with the argument lusrlsrc!cmd/cat.c, compiles the named file and
moves the output to a file named cat in the current directory:

cc $1
mv a.out 'base name $1 .c'

The follOWing example will set the shell variable NAME to lusrlsrc/cmd:

NAME = 'dirname lusrlsrc!cmd/cat.c'

RETURN VALUE
Both commands return 0 for success, 1 for failure. Dirname always succeeds, and thus always returns O.

SEE ALSO
expr(l), sh(l).

- 1 -

BC(I)

NAME
bc - arbitrary-precision arithmetic language

SYNOPSIS
bc[-c][-I][file ...]

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System V

DESCRIPTION

BC(I)

Be is an interactive processor for a language that resembles C but provides unlimited precision
arithmetic. It takes input from any files given, then reads the standard input. The options are as follows:

-c compile only. Be is actually a preprocessor for dell), which be invokes automatically.
Specifying -c prohibits invocation of de, and sends the de input to the standard output.

-I causes an arbitrary precision math library to be linked in with the code.

The syntax for be programs is as follows;

L means a letter in the range a-z;
E means expression;
S means statement;
R means relational expression.

Comments are enclosed in 1* and *1.

Names may be any of the following:

simple variables: L
array elements: L [E]
the words "ibase", "obase", and "scale"
stacks: -L

Other operands are:

arbitrarily long numbers with optional sign and decimal point.
(E)
sqri (E)
length (E)
scale (E)
L(E, .. ,E)

number of significant decimal digits
number of digits right of decimal point

Strings of ASCII characters enclosed in quotes IRB (").

Arithmetic Operators (yeild an E as a result) consist of:

+ - * I % '(% is remainder;' is power)
+ + - (prefix and postfix; apply to names)"
= = <= >= != < >

Relaltional Operators (yeild an R when used as E op e).

= =+ =- =* =1=% ='

Statements consist of:

E
{S; ... ; S}
if(E)S
while (E) S
for(E ; E ; E) S
null statement

- 1 -

BC(l)

break
quit

Function definitions are:

define L (L , ... , L) {
autoL, ... , L
S; ... S
return (E)

The following functions are contained in the -I math library:

sIx) sine
c(x) cosine
e(x) exponential
I(x) log
a(x) arctangent
j(n,x) Bessel function

All function arguments are passed by value.

Be(l)

The value of a statement that is an expression is printed unless the main operator is an
assignment. No operators are defined for strings, but the string is printed if it appears in a
context where an expression result would be printed. Either semicolons or new-lines may
separate statements. Assignment to scale influences the number of digits to be retained on
arithmetic operations in the manner of de(I). Assignments to ibase or abase set the input and
output number radix respectively, again as defined by de(I).

The same letter may be used as an array, a function, and a simple variable simultaneously. All
variables are global to the program. "Auto" variables are pushed down during function calls.
When using arrays as function arguments or defining them as automatic variables, empty
square brackets must follow the array name.

EXAMPLE

FILES

scale = 20
definee(x) {

auto a, b, c, i, s
a = 1
b = 1
s = 1
for(i = 1; 1 = = 1; i + +){

a = a*x
b = b*i
c = alb
if(c = = 0) return(s)
s = s+c

defines a function to compute an approximate value of the exponential function, and

for(i = 1; i< = 10; i + +) eli)

prints approximate values of the exponential function of the first ten integers.

lusr/lib/lib. b mathematical library

- 2 -

BC(I)

/usr/bin/dc

SEE ALSO

desk calculator proper

BUGS

bc(lO), dc(l).

There is currently no && (AND) or II (OR) comparisons.

The for statement must have all three expressions.

Quit is interpreted when read, not when executed.

BC(I)

Be's parser is not robust in the face of input errors. Some simple expression like 2 + 2 will tend to get it
back into phase.

-3-

BDlFF(l) BDlFF(l)

NAME
bdiff - big diff

SYNOPSIS
bdifffilel file2 [n] [-5]

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System 1lI

DESCRIPTION

FILES

Bdiff is used in a manner analogous to diff(1) to find which lines must be changed in two files to bring
them into agreement. Its purpose is to allow processing of files which are too large for diff. Bdiff
ignores lines common to the beginning of both files, splits the remainder of each file into n-line seg­
ments, and invokes diff upon corresponding segments. The value of n is 3500 by default. If the
optional third argument is given, and it is numeric, it is used as the value for n. This is useful in those
cases in which 3500-line segments are too large for diff, causing it to fail. Iffile} (file2) is -, the standard
input is read. The optional -5 (silent) argument specifies that no diagnostics are to be printed by bdiff
(note, however, that this does not suppress possible exclamations by diff. If both optional arguments
are specified, they must appear in the order indicated above.

The output of bdiff is exactly that of diff, with line numbers adjusted to account for the segmenting of
the files (that is, to make it look as if the files had been processed whole). Note that because of the seg­
menting of the files, bdiff does not necessarily find a smallest sufficient set of file differences.

/tmp/bd?????

SEE ALSO
diff(1).

DIAGNOSTICS
Use help (1) for explanations.

-1-

BS(I) BS(I)

NAME
bs - a compiler/interpreter for modest -sized programs

SYNOPSIS
bs[file[args]]

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System V

DESCRIPTION
Bs is a remote descendant of Basic and Snobol4 with a little C language thrown in. Bs is designed for
programming tasks where program development time is as important as the resulting speed of
execution. Formalities of data declaration and file/process manipulation are minimized. Line-at-a-time
debugging, the trace and dump statements, and useful run-time error messages all simplify program
testing. Furthermore, incomplete programs can be debugged; inner functions can be tested before outer
functions have been written and vice versa.

If the command line file argument is provided, the file is used for input before the console is read. By
default, statements read from file are compiled for later execution. Likewise, statements entered from
the console are normally executed immediately (see compile and execute below). Unless the final
operation is assignment, the result of an immediate expression statement is printed.

Bs programs are made up of input lines. If the last character on a line is a ","" the line is continued. Bs
accepts lines of the following form:

statement
label statement

A label is a name (see below) followed by a colon. A label and a variable can have the same name.

A bs statement is either an expression or a keyword followed by zero or more expressions. Some
keywords (clear, compile, I, execute, include, ibase, abase, and run) are always executed as they are
compiled.

Statement Syntax:

expression
The expression is executed for its side effects (value, assignment, or function call). The details of
expressions follow the description of statement types below.

break Break exits from the inner-mostfor/while loop.

clear Clears the symbol table and compiled statements. Clear is executed immediately.

compile [expression]
Succeeding statements are compiled (overrides the immediate execution default). The optional
expression is evaluated and used as a file name for further input. A clear is associated with this
latter case. Campile is executed immediately.

continue
Continue transfers to the loop-continuation of the current for/while loop.

dump [name]
The name and current value of every non-local variable is printed. Optionally, only the named
variable is reported. After an error or interrupt, the number of the last statement is displayed. The
user function trace is displayed after an error or stop that occurred in a function.

edit A call is made to the editor selected by the EDITOR environment variable if it is present, or ed(l}
if EDITOR is undefined or null. If the file option is present on the command line, that file is
passed to the editor as the file to exit. (Otherwise no filename is used.) Upon exiting the editor, a
compile statement (and associated clear) is executed giving that file name as it's argument.

- 1 -

BS(I) BS(I)

exit [expression J
Return to system level. The expression is returned as process status.

execute
Change to immediate execution mode (an interrupt has a similar effect). This statement does not
cause stored statements to execute (see run below).

for name = expression expression statement
for name = expression expression

next

for expression, expression, expression statement
for expression, expression, expression

next The for statement repetitively executes a statement (first form) or a group of statements (second
form) under control of a named variable. The variable takes on the value of the first expression,
then is incremented by one on each loop, not to exceed the value of the second expression. The
third and fourth forms require three expressions separated by commas. The first of these is the
initialization, the second is the test (true to continue), and the third is the loop-continuation action
(normally an increment).

fun f([a, ... J) [v, ... J

nuf Fun defines the function name, arguments, and local variables for a user-written function. Up to
ten arguments and local variables are allowed. Such names cannot be arrays, nor can they be
1/0 associated. Function definitions may not be nested. Calling an undefined function is
permissible, see function calls below.

fretum
A way to signal the failure of a user-written function. See the interrogation operator (?) below. If
interrogation is not present, fretum merely returns zero. When interrogation is active, fretum
transfers to that expression (possibly by-passing intermediate function returns).

gotoname
Control is passed to the internally stored statement with the matching label.

ibaseN
[base sets the input base (radix) to N. The only supported values for N are 8, 10 (the default),
and 16. Hexadecimal values 10-15 are entered as a-f. A leading digit is required (i.e., fOa must
be entered as OfOa). [base (and abase, below) are executed immediately.

if expression statement
if expression

[else
... J

fi The statement (first form) or group of statements (second form) is executed if the expression
evaluates to non-zero. The strings 0 and "" (null) evaluate as zero. In the second form, an
optional else allows for a group of statements to be executed when the first group is not. The only
statement permitted on the same line with an else is an if; only other fi's can be on the same line
with afi. The concatenation of else and if into an elifis supported. Only a singlefi is required to
close an if . .. elif . .. [else . ..

include expression
The expression must evaluate to a file name. The file must contain bs source statements. Such
statements become part of the program being compiled. [nclude statements may not be nested.

- 2-

85(1) 85(1)

obaseN
Obase sets the output base to N (see ibase above).

onintr label
onintr

The onintr command provides program control of interrupts. In the first form, control will pass to
the label given, just as if a goto had been executed at the time onintr was executed. The effect of
the statement is cleared after each interrupt. In the second form, an interrupt will cause bs to
terminate.

return [expression 1
The expression is evaluated and the result is passed back as the value of a function call. If no
expression is given, zero is returned.

run The random number generator is reset. Control is passed to the first internal statement. If the
run statement is contained in a file, it should be the last statement.

stop Execution of internal statements is stopped. Bs reverts to immediate mode.

trace [expression 1
The trace statement controls function tracing. If the expression is null (or evaluates to zero),
tracing is turned off. Otherwise, a record of user-function calls/returns will be printed. Each
return decrements the trace expression value.

while expression statement
while expression

next While is similar to for except that only the conditional expression for loop-continuation is given.

!shell command
An immediate escape to the shell.

. .. This statement is ignored. It is used to interject commentary in a program.

Expression Syntax:

name A name is used to specify a variable. Names are composed of a letter (upper or lower case)
optionally followed by letters and digits. Only the first six characters of a name are significant.
Except for names declared in fun statements, all names are global to the program. Names can
take on numeric (double float) values, string values, or can be associated with input/output (see
the built-in function open() below).

name ([expression [, expression 1 ... 1)
Functions can be called by a name followed by the arguments in parentheses separated by
commas. Except for built-in functions (listed below), the name must be defined with a fun
statement. Arguments to functions are passed by value. If the function is undefined, the call
history to the call of the function is printed, and a requent for a return value (as an expression) is
made. The result of that expression is taken to be the result of the undefined function. This
permits debugging programs where not all the functions are yet defined. The value is read from
the current input list.

name [expression [, expression 1 . ..]

number

This syntax is used to reference either arrays or tables (see built-in table functions below). For
arrays, each expression is truncated to an integer and used as a specifier for the name. The
resulting array reference is syntactically identical to a name; a[1,2] is the same as a[1][2]. The
truncated expressions are restricted to values between 0 and 32767.

A number is used to represent a constant value. A number is written in Fortran style, and
contains digits, an optional decimal point, and possibly a scale factor consisting of an e followed

BS(l) BS(I)

by a possibly signed exponent.

string Character strings are delimited by 10 characters. The "- escape character allows the double
quote ("- 10), new-line ("-n), carriage return ("-r), backspace ("-b), and tab ("-t) characters to
appear in a string. Otherwise, "- stands for itself.

(expression)
Parentheses are used to alter the normal order of evaluation.

(expression, expression [, expression ... 1) [expression 1
The bracketed expression is used as a subscript to select a comma-separated expression from
the parenthesized list. Ust elements are numbered from the left, starting at zero. The
expression:

(False, True)[a = = b 1
ha:; the value True if the comparison is true.

? expression
The interrogation operator tests for the success of the expression rather than its value. At the
moment, it is useful for testing end-of-file (see examples in the Programming Tips section
below), the result of the eval built-in function, and for checking the return from user-written
functions (seefreturn). An interrogation "trap" (end-of-file, etc.) causes an immediate transfer
to the most recent interrogation, possibly skipping assignment statements or intervening
function levels.

- expression
The result is the negation of the expression.

+ + name
Increments the value of the variable (or array reference). The result is the new value.

-name
Decrements the value of the variable. The result is the new value.

! expression
The logical negation of the expression. Watch out for the shell escape command.

expression operator expression
Common functions of two arguments are abbreviated by the two arguments separated by an
operator denoting the function. Except for the assignment, concatenation, and relational
operators, both operands are converted to numeric form before the function is applied.

Binary Operators (in increasing precedence):

&

= is the assignment operator. The left operand must be a name or an array element. The
result is the right operand. Assignment binds right to left, all other operators bind left to right.

_ (underscore) is the concatenation operator.

& (logical and) has result zero if either of its arguments are zero. It has result one if both of its
arguments are non-zero; I (logical or) has result zero if both of its arguments are zero. It has
result one if either of its arguments is non-zero. Both operators treat a null string as a zero.

< <= > >= = = 1=
The relational operators « less than, < = less than or equal, > greater than, > = greater than
or equal, = = equal to, ! = not equal to) return one if their arguments are in the specified
relation. They return zero otherwise. Relational operators at the same level extend as follows:
a>b>c is the same as a>b & b>c. A string comparison is made if both operands are strings.

-4-

8S(1) 8S(I)

+ -
Add and subtract.

* I % Multiply, divide, and remainder.

Exponentiation.

Built-in Functions:

Dealing with arguments

arg(i) is the value of the i-th actual parameter on the current level of function call. At level zero, arg
returns the i-th command-line argument (arg(O) returns bs).

narg() returns the number of arguments passed. At level zero, the command argument count is
returned.

Mathematical

abs(x) is the absolute value of x.

atan(x) is the arctangent of x. Its value is between -1T/2 and 1T/2.

ceil (x) returns the smallest integer not less than x.

cos (x) is the cosine of x (radians).

exp(x) is the exponential function of x.

fIoor(x) returns the largest integer not greater than x.

Iog(x) is the natural logarithm of x.

rand() is a uniformly distributed random number between zero and one.

sin(x) is the sine of x (radians).

sqrt(x) is the square root of x.

String operations

size(s) the size (length in bytes) of s is returned.

format(f, a)
returns the formatted value of a. F is assumed to be a format specification in the style of
printf(3S). Only the % ... f, % ... e, and % ... s types are safe.

index(x, y)
returns the number of the first pOSition in x that any of the characters from y matches. No
match yields zero.

trans(s, f, t)
Translates characters of the source s from matching characters in f to a character in the same
pOSition in t. Source characters that do not appear in f are copied to the result. If the stringf is
longer than t, source characters that match in the excess portion of f do not appear in the result.

substr(s, start, width)
returns the sub-string of s defined by the starting position and width.

match(string, pattern)
mstring(n)

The pattern is similar to the regular expression syntax of the ed(l) command. The characters.,
[,], A (inside brackets), * and $ are special. The mstring function returns the n-th (1 < = n < =

10) substring of the subject that occurred between pairs of the pattern symbols ".(and ".) for
the most recent call to match. To succeed, patterns must match the beginning of the string (as if
all patterns began with A). The function returns the number of characters matched. For
example:

-5-

B5(1)

match("aI23abI23", ".*"-([a-zJ"-)") = = 6
mstring(l) = = "b"

open(name, file, function)
c1ose(name)

File handling

B5(1)

The name argument must be a bs variable name (passed as a string). For the open, the file
argument may be 1) a 0 (zero), 1, or 2 representing standard input, output, or error output,
respectively, 2) a string representing a file name, or 3) a string beginning with an ! representing
a command to be executed (via sh -c). The function argument must be either r (read), w
(write), W (write without new-line), or a (append). After a close, the name reverts to being an
ordinary variable. If name was a pipe, a wait(2) is executed before the close completes. The bs
exit command does not do such a wait. The initial associations are:

open("get",O, "r")
open(lIputll, 1, IIWIl)
open("puterr", 2, "w")

Examples are given in the following section.

access(s, m)
executes access(2).

ftype(s) returns a single character file type indication: f for regular file, p for FIFO (Le., named pipe), d for
directory, b for block special, or c for character special.

Tables

table(name, size)
A table in bs is an associatively accessed, single-dimension array. "Subscripts" (called keys) are
strings (numbers are converted). The name argument must be a bs variable name (passed as a
string). The size argument sets the minimum number of elements to be allocated. Bs prints an
error message and stops on table overflow. The result of table is name.

item(name, i)
keyO The item function accesses table elements sequentially (in normal use, there is no orderly

progression of key values). Where the item function accesses values, the key function accesses
the "subscript" of the previous item call. It fails (or in the absence of an interrogate operator,
returns null) if there was no valid subscript for the previous item call. The name argument
should not be quoted. Since exact table sizes are not defined, the interrogation operator should
be used to detect end-of-table; for example:

table("t", 100)

If "word" contains "party" , the following expression
adds one to the count of that word:
+ +t[wordJ

To print out the the key/value pairs:
fori = 0, ?(s = item(t, i), + +i ifkeyO put = keyO_": "_s

If the interrogation operator is not used, the result
of item is null if there are not further elements
in the table. Null is, however, a legal
" subscript" .

iskey(name, word)
The iskey function tests whether the key word exists in the table name and returns one for true,
zero for false.

- 6 -

8S(1) 8S(I)

Odds and ends

eval(s) The string argument is evaluated as a bs expression. The function is handy for converting
numeric strings to numeric internal form. Eval can also be used as a crude form of indirection,
as in:

name = IIxyzll

eval(" + + " _ name)

which increments the variable xyz. In addition, eval preceded by the interrogation operator
permits the user to control bs error conditions. For example:

?eval(" open("- "X"- ", "- "XXX"- ", "-" r"- ")")

returns the value zero if there is no file named "XXX" (instead of halting the user's program). The
following executes a goto to the label L (if it exists):

label = "L"
if!(?eval("goto "_label))puterr = "nolabel"

"plot(request, args) "
The plot function produces output on devices recognized by tplot(IG). tplot is not currently
supported on HP-UX. The requests are as follows:

Call

plot(O, term)

plot(4)

plot(2, string)

plot(3,xl ,y 1,x2,y2)

plot(4, x, y, r)

plot(5,xl,yl,x2,y2,x3,y3)

plot(6)

plot(7, x, y)

plot(8, x, y)

plot(9, x, y)

plot(lO, string)

plot(ll, xl, yl, x2, y2)

plot(12, xl, yl, x2, y2)

Function

causes further plot output to be piped into
tplot(IG) with an argument of -Tterm. tplot
is not currently supported on HP-UX.

"erases" the plotter.

labels the current point with string.

draws the line between (xl,yl) and (x2,y2).

draws a circle with center (x,y) and radius r.

draws an arc (counterclockwise) with center
(xl,yI) and endpoints (x2,y2) and (x3,y3).

is not implemented.

makes the current point (x,y).

draws a line from the current point to (x,y).

draws a point at (x,y).

sets the line mode to string.

makes (xl,yI) the lower left corner of the
plotting area and (x2,y2) the upper right
corner of the plotting area.

causes subsequent x (y) coordinates to be
multiplied by xl (yI) and then added to x2

(y2) before they are plotted. The initial
scaling is plot(12, 1.0, 1.0, 0.0, 0.0).

Some requests do not apply to all plotters. All requests except zero and twelve are implemented
by piping characters to tplot(IG). tplot is not currently supported on HP-UX. See plot(4) for
more details. Each statement executed from the keyboard re-invokes tplot, making the results
unpredictable if a complete picture is not done in a single operation. Plotting should thus be
done either in a function or a complete program, so all the output can be directed to tplot in a
single stream. tplot is not currently supported on HP-UX.

- 7 -

8S(1)

last{) in immediate mode, last returns the most recently computed value.

Programming Tips:

Using bs as a calculator:

$ bs
Distance (inches) light travels in a nanosecond.
186000 * 5280 * 12/ 1e9
11.78496

Compound interest (6% for 5 years on $1,000).
int = .06/4
bal = 1000
for i = 15*4 bal = bal + bal*int
bal-lOOO
346.855007

exit

The outline of a typical bs program:

initialize things:
var1 = 1
open("read ll , lIinfile ll , UrI!)

compute:
while ?(str = read)

next
clean up:
close("read")

last statement executed (exit or stop):
exit
last input line:
run

Input/Output examples:

Copy" oldfile" to "newfile".
open("read", "oldfile", "r")
open(lIwrite ll , II newfile II , IIWIl)

while ?(write = read)

close "read" and "write":
close(" read")
close("write")

Pipe between commands.
open(1I1s", 11115*11, IIrll)
open("pr", "!pr-2 -h 'List''', "w")
while ?(pr = Is) ...

be sure to close (wait for) these:
close("Is")

close("pr")

-8-

8S(I)

8S(1) 8S(1)

SEE ALSO
ed(l), shIll, access(2), printf(3S), stdio(3S), plot(4).

BUGS Bs is not extremely tolerant of some errors. Mistyping a declaration is painful, as a new definition
cannot be made without doing a clear Using the edit command is the best soluction in this case.

The graphics mode is nearly useless without tplot, which is nor currently available. tpJot is not
supported on HP-UX

-9-

CAL(I)

NAME
cal- print calendar

SYNOPSIS
cal [[month 1 year 1

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System V

DESCRIPTION

CALlI)

Cal prints a calendar for the specified year. If a month is also specified, a calendar just for that month is
printed. If neither is specified, a calendar for the present month is printed. Year can be between 1 and
9999. The month is a number between 1 and 12. The calendar produced is that for England and her

BUGS

colonies.

Try September 1752.

The year is always considered to start in January even though this is historically naive.

Beware that "cal 83" refers to the early Christian era, not the 20th century.

- 1 -

CALENDAR(l) CALENDAR(l)

NAME
calendar - reminder service

SYNOPSIS
calendar [- 1

HP-lJX COMPATIBILITY
Level: HP-lJX/STANDARD

Origin: System III

DESCRIPTION

FILES

Calendar consults the file calendar in the current directory and prints out lines that contain today's or
tomorrow's date anywhere in the line. Most reasonable month-day dates such as "Dec. 7" or "decem­
ber 7" are recognized, but not "7 December" or "7112". On weekends, "tomorrow" extends
through Monday.

When an argument is present, calendar does its job for every user who has a file calendar in his login
directory and sends him any positive results by mail (1). Normally this is done daily in the early morning
hours under control of cron(8).

calendar
lusr/lib/calprog
letc/passwd
Itmp/cal*
lusr/lib/crontab

to figure out today's and tomorrow's dates

SEE ALSO

BlJGS

mail(1), cron(8).

Your calendar must be public information for you to get reminder service.
Calendar's extended idea of "tomorrow" does not account for holidays.

-1-

CAT(l) CAT(1)

NAME
cat - concatenate, copy, and print files

SYNOPSIS
cat [-u] [-5] [-v H] [-el] file ...

HP-UX COMPATIBILITY
Level: HP-UXINUCLEUS

Origin: System V

DESCRIPTION
Cat reads each file in sequence and writes it on the standard output. Thus:

cat file

prints the file, and

cat file1 file2 >file3

concatenates the first two files and places the result on the third.

If no input file is given, or if the argument - is encountered, cat reads from the standard input file.

The options are:

-u causes output to be unbuffered (character-by-character); normally, output is buffered.

-5 makes cat silent about non-existent files, identical input and output, and write errors.
Normally, no input file may be the same as the output file unless it is a special file.

-v causes non-printing characters (with the exception of tabs, new-lines and form-feeds)
to be printed visibly. Control characters are printed AX (control-x); the DEL character
(octal 0177) is printed A? Non-ASCII characters (with the high bit set) are printed as
M-x, where x is the character specified by the seven low order bits.

-t when used with the -v option, causes tabs to be printed as AI'S.

-e when used with the -v option, causes a $ character to be printed at the end of each
line (prior to the new-line).

The -t and -e options are ignored if the -v option is not specified.

SEE ALSO

cp(l), pr(l).

WARNING
Command formats such as

cat file1 file2 > file 1

overwrites the data in filel before the concatenation begins. Therefore, take care when using shell
special characters.

- 1 -

CB(I)

NAME
cb - C program beautifier, formatter

SYNOPSIS
cb [file]

HP-lJX COMPATIBILITY
Level: C-Compiler - HP~UXJEXTENDED

Origin: System III

DESCRIPTION

CB(I)

Cb places a copy of the C program in file (standard input iffile is not given) on the standard output with
spacing and indentation that displays the structure of the program.

-1-

CC(l) CC(1)

NAME
cc - C compiler

SYNOPSIS
cc [option] ... file ...

HP-UX COMPATIBILITY
Level: C Compiler - HP-UXIDEVELOPMENT

Origin: System III

DESCRIPTION
Cc is the HP-UX C compiler. It accepts several types of arguments:

Arguments whose names end with .c are taken to be C source programs; they are compiled, and each
object program is left on the file whose name is that of the source with .0 substituted for .c. The.o file is
normally deleted, however, if a single C program is compiled and linked all in one step.

In the same way, arguments whose names end with .5 are taken to be assembly source programs and
are assembled, producing a .0 file.

Arguments whose names end with .0 are taken to be relocatable object files which are to be included in
the link operation.

The following options are interpreted by cc. Options may not be concatenated. See ld(l) for link editor
options.

-Bstring

-c

-E

-g

-0

-p

-p

-s

-t[pOI2]

Find substitute compiler passes in the files named string with the suffixes cpp,
ccom, c1 and c2. String must be specified for -B to be meaningful.

Suppress the link edit phase of the compilation, and force an object (.0) file to be
produced even if only one program is compiled. Produces a .0 file for each .c file.

Run only the macro preprocessor on the named C programs, and send the result
to the standard output. The result is compatible with the Ilib/ccom step of cc.

Cause the compiler to generate additional information needed for the use of a
symbolic debugger.

Invoke an object-code optimizer.

Arrange for the compiler to produce code which counts the number of times each
routine is called; also, if link editing takes place, replace the standard startoff
routine by one which automatically calls monitor(3C) at the start and arranges to
write out a mon.out file at normal termination of execution of the object program.
An execution profile can then be generated by use ofproJ(l).

Similar to the -E option above, but the output goes to a corresponding file
suffixed with .i which is suitable for compilation later. No compilation is done.

Compile the named C programs, and leave the assembler-language output on
corresponding files suffixed .5.

Find only the deSignated compiler passes in the files whose names are constructed
by a -B option. In the absence of a -B option, the string is taken to be /lib/n. Any
or all of the pass designators p, 0, 1, or 2 may be specified, with the following
meanings:

p - preprocessor;
0- first pass of C compiler;
1 - second pass of C compiler;
2 - optimizer.

- 1 -

CC(I)

-v

-C
-Dname = de!
-Dname
-Hnnn
-Idir
-T
-Uname

CC(I)

Enables verbose mode, which produces on stdout a step-by-step description of the
compilation process.

These options are passed through to the C preprocessor, cpp. Refer to cpp(!) for
details.

Other arguments are taken to be either link editor option arguments, or C-compatible object programs,
typically produced by an earlier cc run, or perhaps libraries of C-compatible routines. These programs,
together with the results of any compilations specified, are linked (in the order given) to produce an
executable program with the name a.out.

The Kernighan and Ritchie C text, and the various addenda to it, comprise the best available reference
on C. The documents are intentionally ambiguous in some areas. HP-UX specifies some of these.

char
The char type is treated as signed by default. It may be declared unsigned.

pointers
Dereference of a NULL (zero) pointer is illegal and may cause a SIGSEGV error. This applies
whether the access is for reading or writing. Some implementations may not be able to detect this
error, in this case the result of such an access is undefined. Programs which rely on being able to
derefrence a null pointer are not considered portable within HP-UX.

identifiers
Identifiers are significant up to (at least) 255 characters. Whether or not longer identifiers are handled
is machine dependent. The assembler and loader must also support long identifiers to 255
characters.

HARDWARE DEPENDENCIES
Series 200:

The -g option is not currently supported.

Identifiers longer than 255 characters are not supported.

The following additional options are supported:

-a this option is passed directly to the assembler, as(!). Refer to as(!) for details.

-b causes the compiler to generate code for floating point operations that will use
floating point hardware if it is installed in the computer at run-time.

-f causes the compiler to generate code for floating point operations that will use
floating point hardware. This code will not run unless floating point hardware
is installed at run-time.

-N< secondary >< n >
This option adjusts the size of internal compiler tables. The compiler uses
fixed size arrays for certain internal tables. Secondary is one of the letters from
the set {dpw}, and n is an integer value. Secondary and n are not optional.
The table sizes can be re-specified using one of the secondary letters and the
number n as follows:

d max size of the dimtab table. This table maintains information
about the definitions of all structures, unions, and arrays.
Default = 1000 table entries.

CC(l)

FILES

CC(l)

p

w

max size of the parameter stack. Default = 150 table entries.

max size of the switch table stack. Default = 250 table
entries.

Two additional pass designators are available for the -t option. They are:

a assembler;
linker;

Series 500:
The -p option is not currently supported.

An additional option, -F, is supported. The -F option causes the compiler to generate
information for use by various program analysis commands.

The Ld options p and v conflict with cc options, and thus cannot be accessed via cc.

The -B option is supported, but no substitute compiler passes are provided.

The file !Iib/mcrtO.o is not currently supported.

Identifiers longer than 255 characters are not supported.

file.c
file. 0

a.out
/tmp/ctm*
!Iib/cpp
!Iib/ccom
!Iib/c2
!Iib/crtO.o
!Iib/mcrtO.o
!Iib/libc.a
/usr/include

input file
object file
linked output
temporary
preprocessor
compiler, cc
optional optimizer
runtime startoff
startoff for profiling
standard library, see section 3 of this manual
standard directory for #include files

SEE ALSO
B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, 1978.
as(l), Id(l}, prof(l}, monitor(3C}.

DIAGNOSTICS
The diagnostics produced by C itself are intended to be self-explanatory. Occasional messages may be
produced by the assembler or the link editor.

-3-

CD(1}

NAME
cd - change working directory

SYNOPSIS
cd [directory 1

HP-UX COMPATIBILITY
Level: HP-UX/NUCLEUS

Origin: System III

DESCRIPTION

CD(1}

If specified, directory becomes the new working directory; otherwise, the value of the shell parameter
$HOME is used. The process must have execute (search) permisoion in directory.

Because a new process is created to execute each command, cd would be ineffective if it were written as
a normal command; therefore, it is recognized and executed by the shell.

SEE ALSO
pwd(l), sh(1), chdir(2}.

-1-

CDB(l) Series 500 Only CDB(1)

NAME
cdb, fdb, pdb - C, FORTRAN, Pascal symbolic debugger

SYNOPSIS
cdb [-d dir] [-r file] [-p file] [-a num] [-b num] [-s num] [-5 num] [-u] [object file [corefilell

fdb [cdb options]

pdb [cdb options]

HP·UX COMPATIBILITY
Level: HP-UXIDEVELOPMENT

Origin: Third Eye Software

Remarks: This debugger is currently implemented on the Series 500 only.

TABLE OF CONTENTS

DESCRIPTION

DESCRIPTION
CONVENTIONS

Notational Conventions
Variable Name Conventions
Expression Conventions
Procedure Call Conventions

COMMANDS
File Viewing Commands
Display Formats
Data Viewing Commands
Stack Viewing Commands
Job Control Commands
Breakpoint Commands
Assertion Control Commands
Signal Control Commands
Record and Playback Commands
Miscellaneous Commands

HARDWARE DEPENDENCIES
SYMBOL TABLE DEPENDENCIES
FILES
SEE ALSO
DIAGNOSTICS
WARNINGS
BUGS

Cdb, fdb, and pdb are alternate names for a source level debugger for C, HP FORTRAN, and HP Pascal
programs. It provides a controlled environment for their execution.

Objectfile is an executable program file with one or more of its component modules compiled with
debug option(s) turned on. The support module /usr/lib/end.o must be included as the last object file in
the list of those linked, except for libraries included with the -I option to Id(l). (Some systems automate
this; see the Hardware Dependencies section below.) The default for objectfile is a.out.

Core file is a core image from a failed execution of objectfile. The default for corefile is core.

The options are:

-d dir names an alternate directory where source files are located. You may have up to 16
alternate directories. They are searched in the order given. If a source file is not found in
any alternate directory, the current directory is searched last.

- 1 -

CDB(!) Series 500 Only CDB(1)

-r file names a record file which is invoked immediately (for overwrite, not for append). See the
section below entitled Record and Playback Commands for a description of this feature.

-p file names a playback'file which is invoked immediately. See the section below entitled Record
and Playback Commands for a description of this feature.

-a num sets the maximum number of assertions you can have active at once. The default num is 16.
See the section below entitled Assertion Control Commands for details.

-b num sets the maximum number of breakpoints you can have active at once. The default num is
16. See the section below entitled Breakpoint Commands for details.

-5 num sets the maximum number of special variables you can define during a debugging session.
The default num is 26. See the section below entitled Variable Name Conventions for details.

-S num sets the size of the string cache to num bytes. The default num depends on the symbol table
format used. The option is not available for all formats. The string cache holds data read
from objectfile.

-u tells the debugger to expect names in the symbol table to start with an extra underscore.
The option is not available for all symbol table formats.

There can only be one objectfile and one core file per debugging session (activation of the debugger).
The program (objectfile) is not invoked as a child process until you give an appropriate command (see
the Job Control Commands section below). The same program may be restarted, as different child
processes, many times during one debugging session.

This debugger is a complex, interactive tool with many synergistic and combinatoric features. What you
can do with it is often limited only by your imagination. Remember, however, that the debugger is only
a "window" on the world consisting mostly of the program being debugged and the system it runs on.
If something puzzling happens, you may need to consult a manual which describes the program or the
system, in order to understand the behavior.

CONVENTIONS
The debugger remembers the current file, current procedure, current line, and current data location.
They are a function of what you have been viewing (not necessarily executing) most recently. Many
commands use these current locations as defaults, and many commands set them as a side effect. It is
important to keep this in mind when deciding what a command does in any particular situation.

For example, if you stop in procedure "abc", then view procedure "def", then ask for the value of
local variable" xyz" , the debugger assumes that the variable belongs to procedure" def" .

Notational Conventions
Most commands are of the form" [modifier] command-letter [options]". Numeric modifiers before and
after commands can be any numeric expression. They need not be just simple numbers. A blank is
required before any numeric option. Multiple commands on one line must be separated by ";".

These are common modifiers and other special notations:

(A I B I C) Anyone of A or B or C is required.

[AlBIC]

file

proc

var

number

expr

Anyone of A or B or C is optional.

A file name.

A procedure (or function, or subroutine) name.

A variable name.

A specific, constant number (e.g. "9", not" 4 + 5"). Floating point (real) numbers may
be used any place a constant is allowed.

Any expression, but with limitations stated below.

COB(l)

depth

format

commands

Series 500 Only COB(1)

A stack depth, as printed by the "t" command. The top procedure is at a depth of zero.
A negative depth acts like a depth of zero. Stack depth usually means "exactly at the
specified depth" , not "the first instance at or above the specified depth" .

A style for printing data. See the Data Viewing Commands section below for details.

A series of debugger commands, separated by ";", entered on the command line or
saved with a breakpoint or assertion. Semicolons are ignored (as commands) so they
can be freely used as command separators. Commands may be grouped with "{}" for
the "a", "b", "if", and "!" commands. In all other cases commands inside "{}" are
ignored.

Variable Name Conventions
Variables are referenced exactly as they are named in your source file(s}. Case sensitivity is controlled
by the "Z" command. Be careful with one letter variable names, since they can be confused with
commands. If an expression begins with a variable that might be mistaken for a command, just enclose
the expression in "0" (e.g. "(k)"), or eliminate any white space between the variable and the first
operator (use" k = 9" instead of "k = 9").

If you are interested in the value of some variable var, there are a number of ways of getting it,

depending on where and what it is:

var Search the stack for the most recent instance of the current procedure. If found, see if var is a
parameter or local variable of that procedure. If not, search for a global variable named either
var or _var, in that order.

proc.var Search the stack for the most recent instance of proc. If found, see if it has a parameter or
local variable named var, as before.

proc.depth.var
Use the instance of proc that is at depth depth (exactly), instead of the most recent instance.
This is very useful for debugging recursive procedures where there are multiple instances on
the stack.

:var Search for a global (not local) variable named either var or _var, in that order.

Dot is shorthand for the last thing you viewed (see the Data Viewing Commands section
below). It has the same size it did when you last viewed it. For example, if you look at a long
as a char, then "." is considered to be one byte long. This is useful for treating things in
unconventional ways, like changing the second highest byte of a long without changing the
rest of the long. Dot may be treated like any other variable.

NOTE: "." is the name of this magic location. If you use it, it is dereferenced like any other
name. If you want the address of something that is, say, 30 bytes farther on in memory, do
not say ". + 30 ". That would take the contents of dot and add 30 to it. Instead, say
" &. + 30 " , which adds 30 to the address of dot.

Special variables are names for things that are not normally directly accessible. Special variables
include:

$var The debugger has room in its own address space for a number of user-created special variables.
There are 26 of them by default (this number is adjustable using the -s invocation option).
They are all of type long, and do not take on the type of any expression they are assigned to.
Names are defined when they are first seen. For example, saying" $xyz = 3*4" creates
special symbol "$xyz", and assigns to it the value 12. Special variables may be used just like
any other variables.

$pc, $fp, $sp, $rO, etc.
These are the names of the program counter, the frame pointer, the stack pointer, the registers,
etc. To find out which names are available on your system, use the "I r" (list registers)

- 3 -

CDB(1) Series 500 Only CDB(I)

command. All registers act as type integer.

$result This is used to reference the retum value from the last procedure exit. Where possible, it takes
on the type of the procedure. $short and $long are available as alternate ways of looking at
$result.

$signal This lets you see and modify the current child process signal number.

$lang This lets you see and modify the current language (0 for C, 1 for FORTRAN, or 2 for Pascal).

$line This lets you see and modify the current source line number, which is also settable with a
number of different commands.

$maUoc
This lets you see the current amount of memory (bytes) allocated at run-time for use by the
debugger itself.

$cBad This lets you see and modify the number of machine instructions the debugger will step while in
a non-debuggable procedure before setting an up-level breakpoint and free-running to it.
Setting it to a small value can improve debugger performance, at the risk of taking off free­
running after missing the up-level break for some reason.

To see all the special variables, including the predefined ones, use the "1 s" (list specials) command.

You can also look up code addresses with

proc#line

which searches for the given procedure name and line number (which must be an executable line within
proc) and uses the code address of that line. Just referring to a procedure proc by name uses the code
address of the entry point to that procedure.

Expression Conventions
Every expression has a value, even simple assignment statements, as in C. " Naked" expression values
(those which aren't command modifiers) are always printed unless the next token is ";" (command
separator) or "}" (command block terminator). Thus breakpoint and assertion commands (see the
appropriate sections below) are normally silent. To force an expression result to be printed, follow the
expression with" In" (print in normal format; see below).

Integer constants may begin with "0" for octal or "Ox" or "OX" for hexadecimal. They are int if they
fit in two bytes, long otherwise. If followed immediately by "I" or "L", they are forced to be of type
long (this is useful on systems where int is two bytes).

Hoating point constants must be of the form digits.digits[elEldlD[+ I-]digits], for example, "1.0",
"3. 14e8 " , or "26.62D-31". One or more leading digits is required to avoid confusion with "." (dot).
A decimal point and one or more follOwing digits is required to avoid confusion for some command
formats. If the exponent doesn't exactly fit the pattern shown, it is not taken as part of the number, but
as separate token(s}. The "d" and" D" exponent forms are allowed for compatibility with FORTRAN.
However, all floating point constants are taken as doubles, regardless.

Character constants must be entered in " and are treated as integers. String constants must be entered
in " " and are treated like "char *" (e.g. pointer to char). Character and string constants may contain
the standard backslashed escapes understood by the C compiler and the echo(1} command, including
""b", 11,,£", II "nil , n"'-r", II "'.t" , 11"-"11,11".'11, and II "".nnn 11. However, n,<newline> II is
not supported, neither in quotes nor at the end of a command line.

Expressions are composed of any combination of variables, constants, and C operators. If the debugger
is invoked as cdb, the C operator" sizeof" is also available. If the debugger is invoked as Jdb, FORTRAN
operators are also available and FORTRAN meanings take precedence where there is a conflict. The
same is true for Pascal if the debugger is invoked as pdb.

-4-

CDB(!) Series 500 Only CDB(!)

If there is no active child process and no core file, you can only evaluate expressions containing
constants.

Expressions approximately follow the C rules of promotion, e.g. char, short, and int become long, and
float becomes double. If either operand is a double, floating math is used. If either operand is
unsigned, unsigned math is used. Otherwise, normal (integer) math is used. Results are then cast to
proper destination types for assignments.

If a floating point number is used with an operator that doesn't normally permit it, the number is cast to
long and used that way. For example, the C binary operator "-,, (bit invert) applied to the constant
"3.14159" is the same as "-3".

Note that " = " means "assign" except for Pascal; use " = = " or ".EQ." for FORTRAN. In Pascal,
" = " is a comparison operator; use ": = " for aSSignments. For example, if you invoke the debugger as
cdb, then set" $lang = 2" (Pascal), you must say" $lang : = 0" to return to C.

Use "II" for division, instead of "I", to distinguish from display formatting (see the Data Viewing
Commands section below).

The special unary operator "$in" (not to be confused with debugger local variables) evaluates to 1
(true) if the operand is an address inside a debuggable procedure and $pc (the current child process
program location) is also in that procedure, else it is 0 (false). For example, "$in main" is true if the
child process is stopped in mainO.

If the first expression on a line begins with " + " or "-" , use "0" around it to distinguish from the " + "
and" -" commands (see the Data Viewing Commands section below). Parentheses may also be needed
to distinguish an expression from a command it modifies.

You can attempt to dereference any constant, variable, or expression result using the C "*" operator.
If the address is invalid, an error is given.

Whenever an array variable is referenced without giving all its subscripts, the result is the address of the
lowest element referenced. For example, consider an array declared as "x[5][6][7]" in C, "x(5,6, 7)"
in FORTRAN, or "x[1 .. 5,2 .. 6,3 .. 7]" in Pascal. Referencing it simply as "x" is the same as just" x" in C,
the address of" x(l,1,l)" in FORTRAN, or the address of "x[1,2,3]" in Pascal. Referencing it as "x[4]"
is the same as "& (x[4][O][O])" in C, the address of "x(1,1,4)" in FORTRAN, or the address of
"x[4,2,3]" in Pascal.

If a not-fully-qualified array reference appears on the left side of an assignment, the value of the right­
hand expression is stored into the element at the address specified.

Except for C, array indices are checked and must be within declared bounds.

String constants are stored in a magic buffer in the file lusrlliblend.o, which you link with your program.
The debugger starts storing strings at the beginning of this buffer, and moves along as more assignments
are made. If the debugger reaches the end of the buffer, it goes back and reuses it from the beginning.
In general this doesn't cause any problems. However, if you use very long strings, or if you assign a
string constant to a global pointer, problems could arise. To fix them, you can edit and compile a
personal copy of lusrlliblend.c to increase the size of the buffer. (Some systems don't support this; see
the Hardware Dependencies section below.)

Procedure Call Conventions
Procedures may be invoked from the command line, even within expressions. For example:

xyz = $abc * (3 + def (ghi - 1, jkl, "Hi Mom"))

calls procedure "def" when its value is needed in the expression.

Any breakpoints encountered during command line procedure invocation are handled as usual.
However, the debugger has only one active command line at a time. If it stops in a called procedure for
any reason, the remainder (if any) of the old command line is tossed, with notice given.

-5-

CDB(1) Series 500 Only CDB(1)

If you attempt to call a procedure when there is no active child process, one is started for you as if you
gave a single-step command first. Unfortunately, this means that the data in core file (if any) may
disappear or be reinitialized.

If you send signal SIGINT (e. g., hit the BREAK key) while in a called procedure, the debugger aborts the
procedure call and returns to the previous stopping point (the start of the main program for a new
process).

You can call any procedure that is in your object file, even if it is not debuggable (was not compiled with
debug on). For example, assume that you reference" printfO" in your program, so the code for it is in
your objectfile. Then you can enter on the command line:

printf ("This works! 'fod 'foc,,",n", 9, '?');

If you wonder what procec1t,; zs are available, do a list labels command (" I I"). If you want to have
some library routines available for debugging, but they aren't referenced anywhere in your code (so
they aren't linked), you can modify a personal copy of /usrllib/end.c to reference them. (Some systems
don't support this; see the Hardware Dependencies section below.) It is not necessary to have correct
calls. For example, just" printfO" works fine, since you never execute the statements in end.c.

Note that procedure name "_end_" is declared in end.c.

COMMANDS
The debugger has a large number of commands for viewing and manipulating the program being
debugged. They are explained below, grouped by functional Similarity.

File Viewing Commands
These commands may change the current viewing position, but they do not affect the next statement to
be executed in the child process, if any.

e Show the current file, procedure, line number, and source line (e.g.
"test.c: testit: 28: a = 1;"). Commands that show the file and/or procedure with a
source line skip (do not print) any leading white space from the source line.

e (file I proc)
Enter (view) file or proc and print its first line. File can be any file, not necessarily one of the
source files for object file (but be careful not to view object code). For procedures, the "first
line" is the procedure's first executable line, not its line of declaration.

[depth] E Like "e", but it sets the viewing location to the current location in the proc on the stack at
depth depth (which is not necessarily the first executable line of the procedure). Depth
defaults to zero, which is where the program is currently stopped.

L This is a synonym for OE.

line Print source line number line in the current file.

[line] p [count]
Print one (or count) lines starting at the current line (or line number line). If more than one
line is printed, the current line is marked with a " = " in the leftmost print position.

+ [lines] Move to lines (default one) lines after the current line.

-[lines] Move to lines (default one) lines before the current line.

[line] w [size]
Print a window of text, size (default 11) lines big, centered about the current line (or line),
which is marked with a " = " in the leftmost print position if more than one line is printed.

[line] W [size]
Same as "w", but size defaults to 21 lines.

- 6-

CDB(1)

+w [size]
+W[size]

-w [size]

Series 500 Only CDB(1)

Print a window of text, of the given or default size, beginning at the end of the previous
window, if the previous command was a window command, or at the current line otherwise.

-W [size] Print a window of text, of the given or default size, ending at the beginning of the previous
window, if the previous command was a window command, or at the current line otherwise.

If after any window command you give a "w" or "W" command with no line specified, the debugger
prints the following window of source text, or the previous window if the previous window command
was "-w" or "-W", using the given size (or the default if none). A simple carriage-return after any
window command does the same thing, but uses the previous size as well.

/ [string] Search forward through the current file, from the line after the current line, for string.

? [string] Search backward for string, from the line before the current line.

Searches wrap around the end or beginning of the file, respectively. If string is not specified, the
previous one is used. Wild cards and regular expressions are not supported; string must be literal.

n Repeat the previous "/" or "?" command using the same string as previously.

N The same as "n", but the search goes in the opposite direction as specified by the previous
II/II or II? II command.

Display Formats
Afonnat is of the form" [* Hcountlfonnchar[size]".

" * " means" use alternate address map" (if maps are supported).

Count is the number of times to apply the format style fonnchar. It must be a number.

Size is the number of bytes to be formatted for each count, and overrides the default size for the format
style. It must be a positive decimal number (except short hand notations, see below). Size is disallowed
with those fonnchars where it makes no sense.

For example, "abC/4x2" prints, starting at the location of "abc", four two-byte numbers in
hexadecimal.

The formats which print numbers allow an upper-case character to be used instead, for the same results
as appending" I" (see below). For example, "0" prints in long octal. These formats, which are useful
on systems where integer is shorter than long, are noted below. The following formats are available:

n

(diD)

(uIU)

(010)

(xiX)

(bl B)

(c I C)

(e I E)

(fl F)

(giG)

Print in the "normal" format, based on the type. Arrays of char and pointers to char
are interpreted as strings, and structures are fully dumped.

Print in decimal (as integer or long).

Print in unsigned decimal (as integer or long).

Print in octal (as integer or long).

Print in hexadecimal (as integer or long).

Print a byte in decimal (either way).

Print a character (either way).

Print in "e" floating pOint notation (as float or double) (see printf(3». Remember
that floating point constants are always doubles!

Print in "f" floating point notation (as float or double).

Print in "g" floating point notation (as float or double).

- 7 -

CDB(!)

a

s

p

S

Series 500 Only CDB(!)

Print a string using expr as the address of the first byte.

Print a string using expr as the address of a pointer to the first byte. This is the same as
saying" *expr/a" , except for arrays.

Show the type of expr (usually a variable or procedure name). For true procedure
types you must actually call the procedure, e.g. "def (2}/t".

Print the name of the procedure containing address expr.

Do a formatted dump of a structure (only with symbol tables which support it). Note
that expr must be the address of a structure, not the address of a pointer to a structure.

There are some short hand notations for size:

b

s

1 byte (char).

2 bytes (short).

4 bytes (long).

These can be appended to formchar instead of a numeric size. For example, "abc/xb" prints one byte in
hexadecimal.

If you view an object with a size (explicitly or implicitly) less than or equal to the size of a long, the
debugger changes the basetype to something appropriate for that size. This is so "." (dot) works
correctly for assignments. For example, "abc/c2" sets the type of " ." to short. One side effect is that if
you look at a double using a float format, dot loses accuracy or has the wrong value.

Data Viewing Commands

expr If expr does not look like anything else (such as a command), it is handled as if you had typed
"exprln" (print expression in normal format), unless followed by ";" or "}", in which case
nothing is printed.

exprlformat
Print the contents (value) of expr using format. For example, "abc/x" prints the contents of
"abc" as an integer, in hexadecimal.

expr?format
Print the address of expr using format. For example, "abc?o" prints the address of "abc" in
octal.

A [[! !format 1
Back up to the preceding memory location (based on the size of the last thing displayed). Use
format if supplied, or the previous format if not. Note that no "I" is needed after the "A". Also
note that you can reverse direction again (e.g. start going forward) by entering "." (dot), which
is always an alias for the current location, followed by carriage returns.

I [proc[.depth]]
list all parameters and local variables of the current procedure (or of proc, if given, at the
specified depth, if any). Data is displayed using" In" format, except that all arrays and pointers
are shown simply as addresses, and only the first word of any structure is shown.

I (a I bid I z)
list all assertions, breakpoints, directories (where to search for files), or zignals (signal actions).

I (f I gill P I r I s) [string 1
list all files (source files which built objectfile), global variables, labels (program entry points
known to the linker), procedure names, registers, or special variables (except registers). If string
is present, only those things with the same initial characters are listed.

Stack Viewing Commands

- 8-

CDB(1) Series 500 Only CDB(1)

[depth] t
Trace the stack for the first depth (default 20) levels.

[depthlT
The same as "t", but local variables are also displayed, using "In" format (except that all
arrays and pointers are shown simply as addresses, and structures as first words only).

Job Control Commands
The parent (debugger) and child (objectfile) processes take turns running. The debugger is only active
while the child process is stopped due to a signal, including hitting a breakpoint, or terminated for
whatever reason.

r [arguments]
Run a new child process with the given argument list (if any). The existing child process, if
any, is terminated first. If no arguments are given, the ones used with the last "r" command
are used again (none if "R " was used last).

Arguments may contain "<" and ">" for redirecting standard input and standard output.
(" <" does an open(2) of file descriptor 0 for read-only; ">" does a creat(2) of file descriptor
1 with mode 0666). Arguments cannot contain shell variables, quote marks, or other special
syntax. They cannot be enclosed in "{}" as with other commands, so "r" cannot be safely
saved with a breakpoint or assertion.

R Run a new child process with no argument list.

k Terminate (kill) the current child process, if any.

[count] c [line]
Continue after a breakpoint or a signal, ignoring the signal, if any. If count is given, the current
breakpoint, if any, has its count set to that value. If line is given, a temporary breakpoint is set
at that line number, with a count of -1 (see the Breakpoint Commands section below).

[count] C [line]
Continue just like" c", but allow the signal (if any) to be received. This is fatal to the child
process if it doesn't catch or ignore the signal!

[count] s Single step 1 (or count) statements. Successive carriage-returns repeat with a count of 1. If
count is less than one, the child process is not stepped. Note that the child process continues
with the current signal, if any! (You can set "$signal = 0" to prevent this.)

If you aCcidently step down into a procedure you don't care about, use the "bU" command
to set a temporary up-level breakpoint, and then continue using" c" .

[count] S Single step like" s" , but treat procedure calls as single statements (don't follow them down).
If a breakpOint is hit in such a procedure, or in one that it calls, its commands are executed.
This is usually all right, but beware if there is a "c" command in that breakpoint's command
list!

The debugger has no knowledge about or control over child processes forked in tum by the process
being debugged. Also, it gets very confused (leading to "Bad access" messages) if the process being
debugged executes a different program via exec(2).

Child process output may be (and usually is) buffered. Hence it may not appear immediately after you
step through an output statement such as printf(3). It may not appear at all if you kill the process.

BreakpOint Commands
The debugger provides a number of commands for setting and deleting breakpoints. A breakpoint has
three attributes associated with it:

address All the commands which set a breakpoint are simply alternate ways to specify the breakpoint
address. The breakpoint is then encountered whenever address is about to be executed,
regardless of the path taken to get there. Only one breakpoint at a time (of any type or count)

-9-

CDB(l) Series 500 Only CDB(l)

may be set at a given address. Setting a new breakpoint at address replaces the old one, if any.

count The number of times the breakpoint is encountered prior to recognition. If count is positive, the
breakpoint is "permanent", and count decrements with each encounter. Each time count goes
to zero, the breakpoint is recognized and count is reset to one (so it stays there until explicitly set
to a different value by a "c" or "C" command).

If count is negative, the breakpoint is "temporary", and count increments with each encounter.
Once count goes to zero, the breakpoint is recognized, then deleted.

A count of zero is used internally by the debugger and means that the breakpoint is deleted
when the child process next stops for any reason, whether it hit that breakpoint or not.
Commands saved with such breakpoints are ignored. Normally you never see these sorts of
breakpoints.

Note that count is set to either -1 (temporary) or 1 (permanent) for any new breakpoint. It can
then be modified only by the "c" or "C" command.

commands
Actions to be taken upon recob ... Jon of a breakpoint before waiting for command input. These
are separated by ";" and may be enclosed in "{}" to delimit the list saved with the breakpoint
from other commands on the same line. If the first character is anything other than "{", or if
the matching "}" is miSSing, the rest of the line is saved with the breakpoint.

Remember that the results of expressions followed by ";" or "}" are not printed unless you
specify a print format. You can use "In" (normal format) to simply force printing of a result.

Saved commands are not parsed until the breakpoint is recognized. If commands are nil then,
after recognition of the breakpoint, the debugger just waits for command input.

The debugger has only one active command line at a time. When it begins to execute
breakpoint commands, the remainder (if any) of the old command line is tossed, with notice
given.

Here are the breakpoint commands:

I b
B Both forms list all breakpoints in the format" num: count: nnn proc: In: contents", followed by

"{commands}", e.g.:

1: count: -1 (temporary) sortall: 12: abc + = 1;
{t;i/D}

2: count: 5 fixit: 29: def = abc> > 4;
{Q;if *argv = = -1 {"Oops "Hc}}

The leftmost number is an index number for use with the "d" (delete) command.

[line] b [commands]
Set a permanent breakpoint at the current line (or at line in the current procedure). When the
breakpoint is hit, commands are executed. If there are none, the debugger pauses for command
input. If immediate continuation is desired, finish the command list with "c" (see breakpoint 2
in the example above).

For example, suppose you want to set a breakpoint in some file or procedure other than where
you are at the moment. First, use the "e" command to get you to the right file or procedure.
Look around for the line where you want the break to occur (using searches, or just by printing
the lines). Once you are there, you can just say" b" to set a breakpoint on that line.

[expr] d Delete breakpoint number expr. If expr is absent, delete the breakpoint at the current line, if
any. If there is none, the debugger executes a "B" command instead.

-10 -

CDB(l) Series 500 Only CDB(1)

D [b] Delete all breakpoints. The "b" is optional.

For the following commands, if the second character is upper case, e. g. " bU" instead of "bu", then
the breakpoint is temporary (count is -1), not permanent (count is 1).

[depth] bb [commands]
[depth] bB [commands]

Set a breakpoint at the beginning (first executable line) of the procedure at the given stack
depth. If depth is not specified, it uses the current procedure, which might not be the same as the
one at depth zero.

[depth] bx [commands]
[depth] bX [commands]

Set a breakpoint at the exit (last executable line) of the procedure at the given stack depth. If
depth is not specified, it uses the current procedure, which might not be the same as the one at
depth zero. The breakpoint is set at a point such that all returns of any kind go through it.

[depth] bu [commands]
[depth] bU [commands]

Set an up-level breakpOint. The breakpOint is set immediately after the return to the procedure
at the specified stack depth (default one, not zero). A depth of zero means" current location" ,
e.g. "ObU" is a way to set a temporary breakpoint at the current value of $pc.

{depth] bt [proc] [commands]
[depth] bT [proc] [commands]

Trace current procedure (or procedure at depth, or proc). This command sets breakpoints at
both the entrance and exit of a procedure. By default, the entry breakpoint commands are
" Q;2t;c ", which shows the top two procedures on the stack and continues. The exit
breakpoint is always set to execute" Q;$resultln;c" , which prints the procedure's return value
and continues.

If depth is given, proc must be absent or it is taken as part of commands. If depth is missing but
proc is specified, the named procedure is traced. If both depth and proc are omitted, the current
procedure is traced, which might not be the same as the one at depth zero.

If commands are present, they are used for the entrance breakpoint, instead of the default shown
above.

address ba [commands]
address bA [commands]

Set a breakpoint at the given code address. Note that address can be the name of a procedure
or an expression containing such a name. Of course, if the child process is stopped in a non­
debuggable procedure, or in prologue code (before the first executable line of a procedure),
things may seem a little strange.

The next few commands, while not strictly part of the breakpoint group, are used almost exclusively as
arguments to breakpoints (or assertions).

if [expr] {commands}[{commands}]
If expr evaluates to a non-zero value, the first group of commands (the first "H" block) is
executed, else it (and the following "{", if any) is skipped. In general, all other "H" blocks are
always ignored (skipped), except when given as an argument to an "a", "b", or "!"
command. The" if" command is nestable, and may be abbreviated to "i" .

Q If the "quiet" command appears as the first command in a breakpoint's command list, the
normal announcement of "proc: line: text" is not made. This allows qUiet checks of variables,
etc. to be made without cluttering up the screen with unwanted output. The "Q" command is
ignored if it appears anywhere else.

-11-

CDB(l) Series 500 Only CDB(!)

" a~ string you like"
Print the given string, which may have the standard backslashed character escapes in it,
including "'\.n" for newline. This command is useful for labelling output from breakpoint
commands.

Assertion Control Commands
Assertions are lists of commands that are executed before every statement. This means that, if there is
even one active assertion, the program is single stepped at the machine instruction level. In other
words, it runs very slowly. The primary use for assertions is tracking down nasty bugs, such as when
someone corrupts a global variable. Some examples follow the command descriptions.

Each assertion is individually active or suspended, plus there is an overall assertions mode. If any
assertion is added or activated, or if all assertions become suspended, the global mode follows suit.

a commands
Create a new assertion with the given command list, which is not parsed until it's executed. As
with breakpOints, the command list may be enclosed in "{}" to delimit it from other commands
on the same line. Do an "1 a" command to list all current assertions and the overall mode.

expr a (a I dis)
Modify the assertion numbered expr: activate it, delete it, or suspend it. Suspended assertions
continue to exist, but have no effect until reactivated.

A Toggle the overall state of the assertions mechanism between active and suspended.

D a Delete all assertions.

[flag 1 x Force an exit from assertions mode. If flag is absent, or if it evaluates to zero, exit immediately.
Otherwise, finish executing the current assertion first. If any assertion executes an "x"
command, the child process stops and the assertion doing the "x" is identified.

The debugger has only one active command line at a time. When it begins to execute assertion
commands, the remainder (if any) of the old command line is tossed, with notice given.

Certain commands (" r", "R", "c", "C", "s", "S", and "k") are not allowed while assertions are
running. They must appear after the "x", if at all.

A useful assertion might be:

a L

This just traces execution a line ata time until "something" happens (e.g., you hit the BREAK key).

Another example:

a L; if (xyz > (def - 9) * lO){A; 1 x; c}{abc - = 1O}

This assertion prints the line just executed, then checks the condition. If it is false, "abc" is decremented
by 10. If it is true, assertions are suspended, assertion mode is exited, and the program continues at
normal speed. Without the number before the "x" command, the "c" command is not executed.

Another example:

a if (abc! = $abc) {$abc = abc; abcld; if (abc> 9) {x}}

This command sets up an assertion to report the changing value of some global variable (" abc"), and
stop if it ever exceeds some value. It uses a debugger local variable (" $abc ") to keep track of the old
value of "abc" .

Signal Control Commands
The debugger catches all signals bound for the child process before the child process sees them. (This is
a function of the ptrace(2) mechanism.) For many signals, this is a reasonable thing to do. Most
processes are not set up to handle segmentation errors, etc. However, some processes do quite a bit
with signals and the constant need to continue from a signal catch can be tedious.

- 1?-

CDB(l) Series 500 Only CDB(l)

[signal] z [i][r][s][Q]
Maintains the "zignal" (signal) handling table. Signal is a valid signal number (the default is the
current signal). The options (which must be all one word) toggle the state of the appropriate
flag: ignore, report, or stop. If" Q" is present, the new state of the signal is not printed.

Do an "I z" command to list the current handling of 1) , • 3nals. Note that just "z" with no options tells
you the stc.te of the current or selected signal.

For example, assuming a start up state of (don't ignore, don't report, don't stop), the command
"14z sr" sets the alarm clock signal (at least for System lll) to stop (but still don't ignore) and report
that it occurred. DOing "14z sr" again toggles the flags back to the original state.

When the child process stops or terminates on a signal it is always reported, except for the breakpoint
signal when the breakpoint commands start with "Q".

When the debugger ignores a jgnal, the "c" command then does not know about it. The signal is
never ignored when the child process terminates, only when it stops.

Record and Playback Commands
The debugger supports a record-and-playback feature to help recreate program states and to record all
debugger output. It is particularly useful for bugs requiring long setups.

The commands are:

>file Set or change recordfile to file and turn recording on. This rewrites file from the start. Only
commands are recorded to this file.

> >file This is the same, but appends to file instead of overwriting.

>@file
»@file

Set or change record-all file to file, for overwriting or appending. The record-all file may be
opened or closed independently of (in parallel with) the recordfile. All debugger standard
output is copied to the record-all file, including prompts, commands entered, and command
output. However, child process output is not captured.

>(t 1 fl c)
Turn recording on ("t") or off ("f"), or close the recording file ("c"). When recording is
resumed, it appends after commands recorded earlier. In this context, "> >" is the same as
11>11,

>@(tlflc)
Turn record-all on, off, or close the record-all file. In this context, "> >@" is the same as
II>@II,

> Tell the current recording status. "> >" does the same thing.

>@ Tell the current record-all status. "»@" does the same thing.

<file Start playback from file.

< <file Start playback from file, using the single-step feature of playback. Each command line from the
playback file is presented before it is executed. A simple menu lets you execute (" <cr> ") or
skip (" S") the line, execute more than one line (" <num> "), continue ("C") or quit ("Q")
single stepping, or ask for help ("?").

Only command lines read from the keyboard or a playback file are recorded in the recordfile. For
example, if recording is turned on in an assertion, it doesn't "take effect" until assertion execution
stops.

Command lines beginning with ">", "<", or " !" are not copied to the current recordfile (but they are
copied to the record-all file). You can override this by beginning such lines with blanks.

- 13-

CDB(1) Series 500 Only CDB(l)

NOTE: The debugger can of course be invoked with standard input, standard output, and/or standard
error redirected, independent of record and playback. If the debugger encounters an end of file while
standard input is redirected from anything other than a terminal, it prints a message to standard output
and exits, returning zero.

Miscellaneous Commands

<carriage-return>
An empty line or a "-,, command causes the debugger to repeat the last command, if possible,
with an appropriate increment, if any. Repeatable commands are those which print a line, print
a window of lines, print a data value, single step, and single step over procedures. Note that
<carriage-return> is saved in a record file as a "-,, command, to distinguish from AD.

AD Control-D is like <carriage-return>, but repeats the previous command ten times. Note that
this command is saved in a record file as an empty line.

! [command-line 1
This shell escape invokes a shell program. If command-line is present, it is executed via
.rystem(3). Otherwise, the environment variable SHELL gives the name of the shell program to
invoke with a -i option, also using system (3). If SHELL is not found, the debugger executes
"/bin/sh -i". In any case, the debugger then waits for the shell or command-line to complete.

As with breakpoints, command-line may be enclosed in "{}" to delimit it from other (debugger)
commands on the same line. For example,

14b {!{date};c}; t; I a

sets a breakpoint at line 14 that calls date(l), then continues; then (after setting the breakpoint),
the debugger does a stack trace, then lists assertions.

[" printf-style-format " 1
Set address printing format, using printf(3) format specifications (not debugger format styles).
Only the first 19 characters are used. If there is no argument, the format is set to a system­
dependent default. All addresses are assumed to be of type long, so you should handle all four
bytes to get something meaningful.

F Find and fix bug (a useless but humorous command).

g line Go to an address in the procedure on the stack at depth zero (not necessarily the same as the
current procedure). This changes the program counter so line is the next line to be executed.

h
help Print the debugger help file (command summary) using more(1).

I Print information (inquire) about the state of the debugger.

M Print the current text (objectfile) and core (corefile) address maps.

M (t I c) [expr; [expr; ... J]
Set the text (objectfile) or core (corefile) address map. The first zero to six map values are set to
the exp:'s given.

q Quit the debugger. To be sure you don't lose a valuable environment, this command requests
confirmation.

Z Toggle case sensitivity in searches. This affects everything: File names, procedure names,
variables, and string searches! The debugger starts out as not case sensitive.

HARDWARE DEPENDENCIES
The "bx" (break on exit) command requires that compilers support it by funneling all exits through one
point. The breakpoint is always set at the last line of the procedure, which should be, but may not be,
the sole exit point.

-14-

COB(1) Series 500 Only COB(l)

Series 200:
The debugger is not supported.

Series 500:
"bx" works, except for FORTRAN multiple returns. The compilers emit a special source line
symbol for this exit point, after the last "visible" source line.

Series 500 supports two types of string formats in addition to null-terminated C strings.
FORTRAN character variables consist of four-word (16-byte) string markers, where the second
word plus the third word plus three is the byte address of the string itself, and the fourth word is
the length of the string. Pascal string variables consist of a four-byte, word-aligned length word
followed by the string characters.

If the current language is FORTRAN, or if you use "Is" format with fdb or pdb, the debugger
interprets the variable (or expression) as a string marker (or address thereof), which is a null
pointer if the second word of the marker is zero. Multiple-count formats show a series of fixed­
length strings, beginning with the first one pointed to by the marker. Using" <cr>" or "A" to
go forward or backward in memory uses the four words after or before the current string
marker as the new marker.

If the current language is Pascal, or if you use "/a" format with fdb or pdb, the debugger
interprets the variable (or expression) as a Pascal string (or address thereof). Multiple-count
formats show a series of random-length strings, using successive length words, skipping any
wasted bytes in the last word of the previous string. Likewise, using "<cr>" or "A" to go
through memory skips the total bytes consumed in the last display.

FORTRAN arrays of character variables use only one string marker, but the debugger doesn't
know this. You can see all the strings using a multiple-count format, e.g. "str[I)/6s", but
indexing into any element other than 1 results in junk.

There is no easy way to assign into a FORTRAN or Pascal string (nor, for that matter, into a
Pascal packed array of char, which looks like a simple array). Only one word is copied into
the first word of the string marker or into the length word, regardless of the type of the
expression result.

When a C parameter is declared as an array of anything, the highest type qualifier (array)
shows up as a pointer instead. For example, "int x[)" looks like "int *x" , and "char (*x)[) "
looks like" char **x", but" char *x[)" is treated correctly as "pointer to array of char".

There is limited support for command-line calls of functions which return structures. The
debugger interprets the start of heap as a structure of the return type. However, a call such as
"abc()/t" displays the return type correctly.

There is never a core file, so all features which depend on it don't work. Also, there are no
address maps in the usual sense, so the "M" command is not supported.

$short and $Iong are available in addition to $result. However, $result is only set to (valid as)
the return value from the last procedure calied from the command line. If the procedure
returns a double, $result is set to the value cast to long.

If a child process receives a signal and you then step with the "5" command (or run with
assertions active), the process free-runs through the signal handler procedure (if any) before
pausing (or doing assertions).

The source file end.c is not supported, so you can't customize lusr/liblend.o. The buffer size is
fixed at 200 bytes. However, to force linking of library routines not otherwise referenced, you
can use the -u option to ld(I). .

All compiler front ends (cc(I), /c(I), and pc(I)) automatically tell the linker to include
lusr/liblend.o for you if you give the -g (debug) option. (They don't know to do it if you instead

-15 -

CDB(l) Series 500 Only CDB(1)

use debug options in source code.)

Both code and data pointers in objectJile contain segment numbers. At exec(2) time, all such
pointers are mapped from Id(l) pseudo-values to real values based on actual segment numbers
allocated. The debugger operates in "pseudo-address-space", so you won't notice anything
unusual most of the time. All addresses look the same each time you invoke a new child
process. For example, the heap always begins at "broken" address zero (0).

WARNING: The debugger's interaction with a child process is somewhat complicated, due to
the "fixing" of pointer values written to the child and the "breaking" of pointers read from the
child. If you tell the debugger to treat a pointer as a non-pointer, it may get confused, with
unpredictable results. In particular, if you set a debugger special variable equal to a pointer
value, then attempt to dereference that special variable, you will either get garbage or cause an
access error.

In the rare case where maxheap is set very large (greater than -70Mb) and your program uses
shared EMS segments (from memallc(2)), the debugger may confuse pOinters into the EMS
segments with large addresses in the heap.

Addresses of unknown (non-debuggable) procedures are shown as call-type pointers, not data
pOinters. They can be distinguished because the high bit is set (e.g., the decimal value looks
negative). Pointers of this form are not usable for anything; you can't dereference them nor set
breakpoints based on them.

SYMBOL TABLE DEPENDENCIES
Series 500 compilers use the HP9000 Symbol Table Format.

The -u (unique names) option is only available for System III symbol table versions (e.g. not on Series
500).

HP9000 Symbol Table Format:
When you try to display a variable which is a FORTRAN format label, a Pascal file-of-text, or a
Pascal set, with no display format or with normal format (" In"), the value is shown as
"{format-label}", "{file-of-text}", or "{set}", respectively. You can use other formats, such as
" Ix " , to display the contents of such variables.

Procedures in FORTRAN and Pascal may have alias names in addition to normal names.
Aliases are shown by the "I p" (list procedures) command. They can be used in place of the
normal name, as desired.

The procedure name "-MAIN_" is used as the alias name for the main program (main
procedure) in all supported languages. Do not use it for any debuggable procedures.

When a compiler does not know array dimensions, such as for some C and FORTRAN array
parameters, it uses O:MAXINT or l:MAXINT, as appropriate. The" It" format shows such cases
with "[]" (no bounds specified), and subscripts from 0 (or 1) to MAXINT are allowed in
expressions.

Even t,ough the symbol table supports C structure, union, and enumeration tags, C typedefs,
and Pascal types, the debugger does not know how to search for them, even for the "It"
format. They are "invisible".

The debugger does not know about (search for) Pascal variant record tag fields nor variant
fields.

Some variables are indirect, so a child process must exist in order for the debugger to know
their addresses. When there is no child process, the address of any such variable is shown as
Oxfffffffe.

The optional pattern given with the "I g" (list globals) command must be an exact match, not
just a leading pattern.

- 16-

CDB(l)

FILES

Series 500 Only CDB(1)

The string cache (see the -S option) defaults to 1 Kbyte in size. This cache holds data read from
the Value Table.

Do not include executable source lines (from a separate file) within any procedure. If you do,
such source lines appear to belong to the other source file, e.g. they don't belong to the file that
contains the procedure declaration, so they can't be found. In the worst cafn if the first
executable line of the main procedure is in a different source file than the procedure
declaration, the debugger fails during start up.

If you do any includes within a procedure, even just of declarations (no code), the debugger
may get confused and show you a wrong procedure name in some cases.

Symbol names in the Value Table are never preceded by underscores, so the debugger never
bothers to search for names of that form. The only time a prefixed underscore is expected is
when searching the Linker Symbol Table for names of non-debuggable procedures.

a. out Default objectfile to debug.

core Default corefile to debug.

lusr/lib/cdb.help
Text file listed by the "help" command.

lusr/lib/cdb.error
Text file which explains debugger error and waming messages.

lusrllib/end.o
Object file to link with all debuggable programs.

lusrllib/end.c Source file for end.o.

SEE ALSO
cc(l), echo(l), Id(l), more(l), creat(2), exec(2), fork(2), open(2), printf(3), system(3), a.out(S).

On some systems any of the following may exist: adb(l), fc(l), pc(l), sdb(l), ptrace(2), core(S),
symtab(S), user(S).

DIAGNOSTICS
Most errors cause a reasonably accurate message to be given. Normal debugger exits return zero and
error exits return one. All debugger output goes to standard output except error messages given just
before non-zero exits, which go to standard error.

Debugger errors are preceded by "panic: ", while user errors are not. If any error occurs during
initialization, the debugger then prints "cannot continue" and quits. If any error happens after
initialization, the debugger attempts to reset itself to an idle state, waiting for command input. If any
error occurs while executing a procedure call from the command line, the context is reset to that of the
normal program.

Child process (program) errors result in signals which are communicated to the debugger via the
ptrace(2) mechanism. If a program error occurs while executing a procedure call from the command
line, it is handled like any other error (i.e. you can investigate the called procedure). To recover from
this, or to abort a procedure call from the command line, type DEL, BREAK, T, or whatever your
interrupt character is.

For more information, see the text file lusrlliblcdb.errors.

WARNINGS
Code that is not debuggable or does not have a corresponding source file is dealt with in a half-hearted
manner. The debugger shows "unknown" for unknown file and procedure names, cannot show code
locations or interpret parameter lists, etc. However, the linker symbol table provides procedure names
for most procedures, even if not debuggable. The main procedure (main program) must be debuggable

- 17 -

CDB(I)

BUGS

Series 500 Only CDB(I)

and have a corresponding source file.

On some systems, if the debugger is run on a shared objectJile you cannot set breakpoints. (This may
only apply if someone else is also executing the program.) This may be indicated by the error "Bad
access" when you attempt to start a child process. If another person starts running objectfile while you
are debugging, they and you may have some interesting interactions.

If the address given to a "ba" command is a not a code address in the child process, strange results or
errors may ensue.

If you set the address printing format to something printf(3) doesn't like, you may get an error (usually
memory fault) each time you try to print an address, until you fix the format with another "f"
command.

Do not use the "z" command to manipulate the SIGTRAP signal. If you change its state you had better
know what you are doing or be a very good sport!

If you single step or run with assertions through a call to /ongjmp(3), the child process will probably take
off free-running as the debugger sets but never hits an up-level breakpoint.

Do not modify any file while the debugger has it open. If you do, the debugger gets confused and may
display garbage.

Although the debugger tries to do things reasonably, it is possible to confuse the recording mechanism.
Be careful about trying to playback from a file currently open for recording, or vice versa; strange things
can happen.

Many compilers only issue source line symbols at the end of each logical statement or physical line,
whichever is greater. This means that, if you are in the habit of saying "a = 0; b = 1;" on one line, there
is no way to put a breakpoint after the assignment to "a" but before the assignment to "b" .

Multi-line statements, such as a multi-line if, may only have a line symbol generated at the end of the list
of conditions. If you try to set a breakpoint on any but the last line of this statement, the breakpoint will
actually be set on the preceding statement. Also, if you try to set a breakpoint before the first executable
line of a procedure, it may be set at the last line of the previous procedure. You can detect this because
the debugger tells you what line it really set the breakpoint on.

Some statements do not emit code where you would expect it. For example, assume:

99:for (i = 0; i < 9; i + +) {
100:xyz (0;
lOI:}

A breakpoint placed on line 99 will be hit only once in some cases. The code for incrementing is placed
at line 101. Each compiler is a little different; you must get used to what your particular compiler does.
A good way of finding out is to use single stepping to see in what order the source lines are executed.

The output of some program generators, such asyacc(I), have compiler line number directives in them
that can confuse the debugger. It expects source line entries in the symbol table to appear in sorted
order. Removal of line directives fixes the problem, but makes it more difficult to find error locations in
the original source file. The following script, run after yacc(I) and before cc(I), comments out line
number changes in C programs:

sed "1# *line/sr. *$1',.,1*&* ",.,II" y.tab.c >temp.c

In general, line number directives (or compiler options) are only safe so long as they never set the
number backwards.

The C operators " + + ", "--", and"?:" are not available. The debugger always understands all the
other C operators, except" sizeof" , if the default language is FORTRAN or Pascal.

- 18-

CDB(l) Series 500 Only CDB(l)

For FORTRAN, only the additional operators" .NE.", ".EQ.", ".LT.", ".LE.", ".GT.", and" .GE." are
supported.

For Pascal, only the operators II: = II, II <> II, 11"'11, 11"'.11 (as in II X y ..), II and ", II or II , II oot II , IIdivll,
and "mod" are added.

The "/t" format mostly knows how to print type information using only C syntax. Also, it's confused
about "array of pointer", e.g., "int *x[]" is shown as "int x[](*)". However, it does show FORTRAN
array subscripts correctly (e.g. right to left).

Multiple array dimensions must always be given separately, as in C, for example, "x[3][2][4]".
FORTRAN array indices must be given using "[]" , not "0" .
There is no support for FORTRAN entry points. They don't show up with the "I p" (list procedures)
command, and you can't call them or reference them by name.

There is no support for FORTRAN complex variables, except as a series of two separate floats or
doubles.

The debugger doesn't understand C type casts.

The C operators "&&" and "II" aren't short circuit evaluated as in the compiler. All parts of
expressions involving them are evaluated, with any side-effects, even if it's not necessary.

The debugger doesn't understand C pointer arithmetic. "*(a + n)" is not the same as "a[n]" unless
" a" has an element size of 1.

There is no support for C local variables declared in nested blocks, nor for any local overriding a
parameter with the same name. When looking up a local by name, parameters come first, then locals in
the order of the "}" s of the blocks in which they are declared. When listing all locals, they are shown in
the same order. When there is a name overlap, the address or data shown is that of the first variable
with that name.

There is no support for Pascal intermediate variables. To reference a variable local to an enclosing
procedure, you must specify the procedure name and stack depth in the usual way (proc.depth.var).

There is no support for Pascal packed arrays where the element size is not a whole number of bytes.
Any reference into such an array may produce garbage or a bad access.

Pascal WITH statements are not understood. To access any variable you must specify the complete
"path" to it.

If you set the maximum allowed number of breakpoints, then do a "r" or "R" (run) command, you get
a "Too many breakpoints" error because the debugger needs to set one internally. This can happen
for similar reasons at other times, too.

The debugger supports call-by-reference only for known parameters of known (debuggable)
procedures. If the object to pass lives in the child process, you can fake such a call by passing "&
object", i.e. the address of the object.

Array parameters are always passed to command-line procedure calls by address. This is correct except
for Pascal call-by-value parameters. Structure parameters are passed by address or value, as
appropriate, but only a maximum of eight bytes is passed, which can totally confuse the called
procedure. FORTRAN string markers are never passed correctly. Only the first number of a complex
pair is passed as a parameter. Functions which return complex numbers are are not called correctly;
insufficient stack space is allocated for the return area, which can lead to overwriting the parameter
values.

Assignments into objects greater than four bytes in size, from debugger special variables, result in errors
or invalid results.

Case-insensitive searches are done in a crude way which equates some non-letters with other non­
letters. For example, "[" and "{" are equal, as are "@" and "-,, .

- 19-

CDB(I) Series 500 Only CDB(1)

Command lines longer than 1024 bytes are broken into pieces of that size. This may be relevant if you
run the debugger with playback or with input redirected from a file.

- 20-

CDC(l) eDe(1)

NAME
cdc - change the delta commentary of an sees delta

SYNOPSIS
cdc -rSID [-m[mrlistll [-y[commentll files

HP-UX COMPATIBILITY
Level: HP-Ux/STANDARD

Origin: System 1II

DESCRIPTION
Cdc changes the delta commentary, for the SID specified by the -r keyletter, of each named sees file.

Delta commentary is defined to be the Modification Request (MR) and comment information normally
specified via the delta (1) command (-m and -y keyletters).

If a directory is named, cdc behaves as though each file in the directory were specified as a named file,
except that non-sees files (last component of the path name does not begin with s.) and unreadable
files are silently ignored. If a name of- is given, the standard input is read (see WARNINGS); each line
of the standard input is taken to be the name of an sees file to be processed.

Arguments to cdc, which may appear in any order, consist of keyletter arguments, and file names.

All the described keyletter arguments apply independently to each named file:

-rSID Used to specify the sees IDentification (SID) string of a delta for which the
delta commentary is to be changed.

-m[mrlistl If the sees file has the v flag set (see admin(l)) then a list of MR numbers to be
added and/or deleted in the delta commentary of the SID specified by the -r
keyletter may be supplied. A null MR list has no effect.

-y[commentl

MR entries are added to the list of MRs in the same manner as that of delta(l).
In order to delete an MR, precede the MR number with the character ! (see
EXAMPLES). If the MR to be deleted is currently in the list of MRs, it is
removed and changed into a "comment" line. A list of all deleted MRs is
placed in the comment section of the delta commentary and preceded by a
comment line stating that they were deleted.

If -m is not used and the standard input is a terminal, the prompt MRs? is issued
on the standard output before the standard input is read; if the standard input is
not a terminal, no prompt is issued. The MRs? prompt always precedes the
comments? prompt (see -y keyletter).

MRs in a list are separated by blanks and/or tab characters. An unescaped
new-line character terminates the MR list.

Note that if the v flag has a value (see admin(l)), it is taken to be the name of a
program (or shell procedure) which validates the correctness of the MR
numbers. If a non-zero exit status is returned from the MR number validation
program, cdc terminates and the delta commentary remains unchanged.

Arbitrary text used to replace the comment(s) already existing for the delta
specified by the -r keyletter. The previous comments are kept and preceded by
a comment line stating that they were changed. A null comment has no effect.

If -y is not specified and the standard input is a terminal, the prompt
comments? is issued on the standard output before the standard input is read;
if the standard input is not a terminal, no prompt is issued. An unescaped new­
line character terminates the comment text.

- 1 -

CDC(1) CDC(1)

The exact permissions necessary to modify the SCCS file are documented in the article indicated
under SEE ALSO. Simply stated, they are either (1) if you made the delta, you can change its delta
commentary; or (2) if you own the file and directory you can modify the delta commentary.

EXAMPLES

FILES

cdc -r1.6 -m "bI78-12345 !b177 -54321 b179-0000l " -ytrouble s.file

adds b178-12345 and b179-00001 to the MR list, removes bl77-54321 from the MR list, and adds the
commenttrouble to delta 1.6 of s.file.

cdc -r 1.6 s.file
MRs? !bI77-54321 b178-12345 b179-00001
comments? trouble

does the same thing.

x-file (see delta(l))
z-file (see delta(l))

SEE ALSO
admin(l), delta(l), get(l), help(l), prs(l), sccsfile(5).
sees User's Guide in HP-UX Concepts and Tutorials.

DIAGNOSTICS
Use help (1) for explanations.

WARNINGS
If SCCS file names are supplied to the cdc command via the standard input (- on the command line),
then the -m and -y keyletters must also be used.

-2-

CHATR(l) Series 500 Only CHATR(l)

NAME
chatr- change program's internal attributes

SYNOPSIS
/Ibin/chatr [+ cI-c] [+ gl-g] [+ hl-h] [-mn] [+ nl-n] [+ pl-p] [-5] [+ zl-z] file ...

HP-UX COMPATIBILITY
Level: HP-UXIOPTIONAL

Origin: HP

Remarks: Chatr is implemented on the Series 500 only.

DESCRIPTION
C hatr, by default, prints each file's magic number and file attributes to the standard output With one or
more optional arguments, chatr performs the following operations:

c set (+) or clear (-) the virtual bit for each code segment.

9 set (+) or clear H the virtual bit of the global data segment.

h set (+) or clear (-) the virtual bit for the heap of a two data segment program.

-mn change the maximum heap size to n bytes.

n mark code as shareable (+) (magic number = SHAREJ<.1AGIC), or unshareable (-) (magic
number = EXEC_MAGIC).

p set (+) or clear (-) the paged and virtual bits for the heap of a two data segment program.

-s perform action silently.

z set (+) or clear (-) the demand load bit for each segment.

Upon completion, chatr prints the file's old and new values to the standard output file, unless -s is in
effect.

RETURN VALUE
Chatr returns zero on success. If the call to chatr is syntactically incorrect, or one or more of the specified
files cannot be acted upon, chatr returns the number of files whose attributes could not be modified. If
no files are specified, chatr returns decimal 255.

SEE ALSO
ld(l), a.out(5), magic(5).

DIAGNOSTICS
Chatr generates an error message for the following conditions:

no arguments are supplied - in this case the syntax is printed to the standard error file;

cannot open a file;

a request is made to modify a file which is not EXEC~GlC or SHARE~GIC.

Chatr generates a warning message for the following conditions:

the + p, -p, + h, or -h option is specified for a file which is a one data segment program;

the -m option is specified for a file which is a one data segment program, or a file for which the
data is unpaged.

- 1 -

CHMOD(l) CHMOD(l)

NAME
chmod - change mode

SYNOPSIS
chmod mode file ...

HP-UX COMPATIBILITY
Level: HP-UX/NUCLEUS

Origin: System III

DESCRIPTION
The permissions of each named file are changed according to mode, which may be absolute or symbolic.
An absolute mode is an octal number constructed from the OR of the following modes:

4000 set user ID on execution
2000 set group ID on execution
1000 sticky bit, see chmod(2)
0400 read by owner
0200 write by owner
0100 execute (search in directory) by owner
0070 read, write, execute (search) by group
0007 read, write, execute (search) by others

A symbolic mode has the form:

[who 1 op permission [op permission 1

The who part is a combination of the letters u (for user's permissions), 9 (group) and ° (other). The
letter a stands for ugo, the default if who is omitted.

Op can be + to add permission to the file's mode, - to take away permission, or = to assign permission
absolutely (all other bits will be reset).

Permission is any combination of the letters r (read), w (write), x (execute), 5 (set owner or group ID) and
t (save text - sticky); u, 9 or ° indicate that permission is to be taken from the current mode. Omitting
permission is only useful with = to take away all permissions.

Multiple symbolic modes separated by commas may be given. Operations are performed in the order
specified. The letter s is only useful with u or 9 and t only works with u.

Only the owner of a file (or the super-user) may change its mode. Only the super-user may set or clear
the sticky (save text) bit.

EXAMPLES
The first example denies write permission to others, and the second makes a file executable (using
symbolic mode):

chmod o-w file

chmod +x file

The first example below assigns read and execute permission to everybody, and sets the set-user-id bit.
The second assigns read and write permission to the file owner, and read permission to everybody else
(using absolute mode):

SEE ALSO

chmod 4555 file

chmod 644 file

ls(1), chmod(2).

- 1 -

CHOWN(l)

NAME
chown, chgrp - change file owner or group

SYNOPSIS
chown owner file ...

chgrp group file ...

HP-UX COMPATIBILITY
Level: HP-UXINUCLEUS

Origin: System III

DESCRIPTION

CHOWN(l)

Chown changes the owner of the files to owner. The owner may be either a decimal user ID or a login
name found in the password file.

FILES

Chgrp changes the group ID of the files to group. The group may be either a decimal group ID or a
group name found in the group file.

In order to change the owner or group, you must own the file or be the super-user.

/ete/passwd
jete/group

SEE ALSO
chown(2), group(5), passwd(5).

-1-

CHROOT(1) CHROOT(l)

NAME
chroot - change root directory for a command

SYNOPSIS
chroot newroot command

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System 1Il

DESCRIPTION
The given command is executed relative to the new root. The meaning of any initial slashes (I) in path
names is changed for a command and any of its children to newroot. Furthermore, the initial working
directory is newroot.

Notice that:

chroot newroot command >x

will create the file x relative to the original root, not the new one.

Command includes both the command name and any arguments.

This command is restricted to the super-user.

Chroot does not search PATH for the location of command, so the absolute path name of command must
be given.

The new root path name is always relative to the current root. Even if a chroot is currently in effect, the
newroot argument is relative to the current root of the running process.

SEE ALSO
chdir(2).

BUGS
Command cannot be in a shell script.

-1-

CHSH(l)

NAME
chsh - change default login shell

SYNOPSIS
chsh name [shell 1

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: UCB 4.2

DESCRIPTION

CHSH(l)

Chsh is a command similar to passwd(l), except that it is used to change the login shell field of the
password file rather than the password entry. If no shell is specified then the shell reverts to the default
login shellibinish. Otherwise, only Ibinlcsh can be specified as the shell.

An example use of this command is:

chsh bill Ibin/csh

SEE ALSO
csh(1), passwd(l), passwd(5).

- 1 -

CMP(1) CMP(l)

NAME
cmp - compare twO files

SYNOPSIS
cmp [-I 1 [-s 1 file1 file2

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System V

DESCRIPTION
The two files are compared. (If filel is -, the standard input is used.) Under default options, cmp makes
no comment if the files are the same; if they differ, it announces the byte and line number at which the
difference occurred. If one file is an initial subsequence of the other, that fact is noted.

The options are:

SEE ALSO

-I Print the byte number (decimal) and the differing bytes (octal) for each difference. (Byte
numbering begins at 1, rather than at 0 as is common.)

-s Print nothing for differing files; return codes only.

comm(1), diff(l).

DIAGNOSTICS
Exit code 0 is returned for identical files, 1 for different files, and 2 for an inaccessible or missing
argument

- 1 -
09000-90007, rev: 1/85

COL(1) COL(1)

NAME
col- filter reverse line-feeds and backspaces

SYNOPSIS
col [-bflpx 1

HP-UX COMPATABILITY
Level: HP-UXISTANDARD

Origin: System IJI

DESCRIPTION
Col reads from the standard input and writes onto the standard output. It performs the line overlays
implied by reverse line-feeds (ASCII code ESC-7), and by forward and reverse half-line-feeds (ESC-9
and ESC-8). It also removes backspaces in favor of multiply overstruck lines. Col is particularly useful
for filtering multi-column output made with the.rt command of nroff(l) and output resulting from use of
the tbl(l) preprocessor.

[f the -b option is given, col assumes that the output device in use is not capable of backspacing. [n this
case, if two or more characters are to appear in the same place, only the last one read will be output.

lf the -I option is given, col assumes the output device is a line printer (rather than a character printer)
and removes backspaces in favor of multiply overstruck full lines. It generates the minimum number of
print operations necessary to generate the required number of overstrikes. (All but the last print
operation on a line are separated by carriage returns (".,r); the last print operation is terminated by a
newline (".,n).)

Although col accepts half-line motions in its input, it normally does not emit them on output. Instead,
text that would appear between lines is moved to the next lower full-line boundary. This treatment can
be suppressed by the -f (fine) option; in this case, the output from col may contain forward half-line­
feeds (ESC-9), but will still never contain either kind of reverse line motion.

Unless the -x option is given, col will convert white space to tabs on output wherever possible to shorten
printing time.

The ASCII control characters SO (,,017) and SI (".,016) are assumed by col to start and end text in an
alternate character set. The character set to which each input character belongs is remembered, and on
output SI and SO characters are generated as appropriate to ensure that each character is printed in the
correct character set.

On input, the only control characters accepted are space, backspace, tab, return, new-line, SI, SO, VT
(".,013), and ESC followed by 7,8, or 9. The VT character is an alternate form of full reverse line-feed,
included for compatibility with some earlier programs of this type. All other non-printing characters are
ignored.

Normally, col will ignore any unrecognized escape sequences found in its input; the -p option may be
used to cause col to output these sequences as regular characters, subject to overprinting from reverse
line motions. The use of this option is highly discouraged unless the user is fully aware of the textual
position of the escape sequences.

Note that the input format accepted by col matches the output produced by nroff(l) with either the - T37
or -Tip options. Use - T37 (and the -f option of col) if the ultimate disposition of the output of col will be
a device that can interpret half-line motions, and -Tip otherwise.

SEE ALSO

BUGS

nroff(l), tbl(l).

Cannot back up more than 128 lines.
Allows at most 800 characters, including backspaces, on a line.
Local vertical motions that would result in backing up over the first line of the document are ignored. As
a result, the first line must not have any superscripts.

- 1 -

COMM(l)

NAME
comm - select or reject lines common to two sorted files

SYNOPSIS
comm [- [123 1 1 filel file2

HP-UX COMPATIBILITY
Level: HP-Ux/STANDARD

Origin: System V

DESCRIPTION

COMM(l)

Comm reads filel and file2, which should be ordered in ASCII collating sequence (see sort(l)), and
produces a three-column output: lines only in filel; lines only in file2; and lines in both files. The file
name - means the standard input.

Flags 1, 2, or 3 suppress printing of the corresponding column. Thus

comm -12

prints only the lines common to the two files;

comm -23

prints only lines in the first file but not in the second;

comm -123

is a no-op.

SEE ALSO

cmp(l), diff(l), sort(l), uniq(l).

- 1 -

CP(1) CP(l)

NAME
cp, In, mv - copy, link or move files

SYNOPSIS
cp file 1 [file2 ... J target
In HJ file1 [file2 ... J target
mv HJ file1 [file2 ... J target

HP-UX COMPATIBILITY
Level: HP-UXINUCLEUS

Origin: System III

DESCRIPTION
Filei is copied (linked, moved) to target. Under no circumstance can file] and target be the same. If
target is a directory, then one or more files are copied (linked, moved) to that directory. If two or more
files are specified for any of these commands (not counting target), then target must be a directory.

Only mv will allow file] to be a directory, in which case the directory rename will occur only if the two
directories have the same parent.

Ln and mv will ask for permission if target already exists and is not writable. This is done by printing the
mode (see chmod(2)), and reading one line from the standard input (if the standard input is a terminal).
If the line (which you type in) begins with y, the operation will take place. Any other response will abort
it. (Note that this will not occur if you are the super-user, since all files are considered writable by the
super-user. Cp behaves similarly, in that the super-user is allowed to overwrite an existing file, while
ordinary users are not.) The -f option will force these operations to occur without your intervention.

You cannot use mv to perform the following operations:

rename either the current working directory or its parent directory using the "." or " .. " nota­
tion:

rename a directory such that its new name is the same as the name of a file contained in that
directory.

SEE ALSO

BUGS

cpio(l), link(1), rm(1), chmod(2).

If file] and target lie on different file systems, mv must copy the file and delete the original. In this case
the owner name becomes that of the copying process and any linking relationship with other files is lost.

Ln will not link across file systems.

You cannot use mv to rename a directory when its name ends in a slash (I).

-1-

CPIO(l) CPIO(l)

NAME
cpio - copy file archives in and out

SYNOPSIS
cpio -0 [acBvx 1
cpio -i [BcdmPrstuvx6 1 [patterns 1

cpio -p [adlmuvx 1 directory

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

DESCRIPTION
Cpio -0 (copy out) reads the standard input to obtain a list of path names and copies those files onto the
standard output together with path name and status information.

Cpio -i (copy in) extracts from the standard input (which is assumed to be the product of a previous
cpio -0) the names of files selected by zero or more patterns given in the name-generating notation of
shIll. In patterns, metacharacters ?, *, and [... J match the slash I character. Multiple patterns may be
specified. If no patterns are specified, the default is * (i.e., select all files). The extracted files are
conditionally created and copied into the current directory tree based upon the options described
below.

Cpio -p (pass) reads the standard input to obtain a list of path names of files that are conditionally
created and copied into the destination directory tree based upon the options described below.

The meanings of the available options are:

a Reset access times of input files after they have been copied.
B Input/output is to be blocked 5120 bytes to the record (does not apply to the pass option;

recommended only with data directed to or from Idev/rmt?).
d Directories are to be created as needed.
c Write header information in ASCII character form for portability.
P Read a file written on a PDP-ll or VAX system (with byte swapping) that did not use the-c

option. Only useful with -i (copy in). Only bytes contained in the header are swapped. Non­
ascii files will probably need further processing to be readable; this processing requires
knowledge of the content of the file and thus cannot be done by this program. (PDP-ll and
V AX are registered trademarks of Digital Equipment Corporation).

r Interactively rename files. If the user types a null line, the file is skipped.
s Identical to the P option, except that all bytes in the file are swapped (including the header).
t Print only a table of contents of the input. No files are created, read, or copied.
u Copy unconditionally (normally, an older file will not replace a newer file with the same name).
x Save or restore device special files. Mknod(2) will be used to recreate these files on a restore,

and thus -ix can only be used by the super-user. Restoring device files onto a different system
can be very dangerous. This is intended for intrasystem (backup) use.

v Verbose: causes a list of file names to be printed. When used with the t option, the table of
contents looks like the output of an Is -I command (see ls(l)).
Whenever possible, link files rather than copying them. Usable only with the -p option.

m Retain previous file modification time. This option is ineffective on directories that are being
copied.

6 Process an old (i.e., UNIX Sixth Edition format) file. Only useful with -i (copy in).

When the end of the tape is reached, cpio will prompt the user for a new special file and continue.

Note that cpio archives created using a raw device file must be read using a raw device file.

- 1 -

CPIO(l) CPIO(l)

If you want to pass one or more metacharacters to cpia without the shell expanding them, be sure to
precede each of them with a backslash (,,).

Device files written with the -ox option (e.g. Idev/tty03) will not transport to other implementations of
HP-UX.

HARDWARE DEPENDENCIES
Series 200/500:

All files with i-nodes greater than or equal to 65535 are unlinkable with the -i option. A
separate copy of each file is made instead.

The number of blocks reported by cpia is always in units of 512-byte blocks, regardless of the
block size of the initialized media.

The -B option must be used when writing directly (Le. without using tcia(1)) to a CS-80
cartridge tape unit (HP 88140LlS). Warning: using cpia to write directly to a cartridge tape unit
can severely damage the tape drive in a short amount of time, and is therefore strongly
discouraged. The recommended method of writing to the cartridge tape unit is to use tcia(1) in
conjunction with cpia (note that-B must nat be used when tcia(1) is used). Tcia(1) buffers data
into larger pieces, yielding better system performance and less wear and tear on the media and
tape drive. A minimum buffer size of 64K bytes is recommended. Note that the -B option also
must nat be used when performing raw 110 to the internal miniature flexible disc drive (HP
9130K), if the 1/0 requires more than one volume.

EXAMPLES
The first example below copies the contents of a directory into an archive; the second duplicates a
directory hierarchy:

Is I cpio -0 >/dev/mtO

cd olddir
find . -print I cpio -pdl newdir

The trivial case" find . -print I cpio -oB >/dev/rmtO" can be handled more efficiently by:

find . -cpio Idev/rmtO

SEE ALSO
ar(1), find(1), tar(1), tcio(1), cpio(5).

WARNING

BUGS

Do not redirect the output of cpia to a named cpia archive file which resides in the same directory as the
original files which are part of that cpia archive. This can cause loss of data.

If data has been written out to a medium using a raw device file, then a raw device file must be used in
reading that data back in.

Path names are restricted to 128 characters. If there are too many unique linked files, the program runs
out of memory to keep track of them and, thereafter, linking information is lost. Only the super-user can
copy special files.

Cpia tapes written on HP machines with the -oxIc] options can mislead (non-HP) versions of cpia
which do not support the -x option. If a non-HP (and non-Bell) version of cpia happens to be modified
so that (HP) cpia recognizes it as a device special file, a spurious device file could be created.

If Idev/tty is not accessible, cpia issues a complaint, or refuses to work.

The -pd option will not create the directory typed on the command line.

?

CPIO(1) CPIO(l)

The -idr option will not make empty directories.

Cpio will fail while restoring files from a backup tape (cpio -i) if the following conditions are met:

your working directory during the restore is not the root directory (/), and the files being
restored have multiple links, and their path names begin with slash (/).

If these conditions are met, the following occurs:

(1) The first file on the backup tape is restored correctly;
(2) The second file is removed, and the restore fails.

Note that the second file is removed before the restore fails!

Cpio then writes the message "Cannot link filel & file2" to stderr, but also writes "filellinked to file2"
on stdout, as if everything went fine. The correct message is that written to stderr.

There are two work-arounds for this bug, either of which will solve the problem. The first is to make
sure that your working directory is the root directory during the restore process. The second is to use
relative file names (path names not beginning with slash) in your backup.

- 3 -

CPP(l) CPP(l)

NAME
cpp - C language preprocessor

SYNOPSIS
/lib/cpp [option ... 1 [ifile [ofile 1 1

HP-UX COMPATIBILITY
Level: HP-Ux/STANDARD

Origin: System III

DESCRIPTION
Cpp is the C language preprocessor which is invoked as the first pass of any C compilation using the
cc(l) command. Its purpose is to process include and conditional compilation instructions, and macros.
The output of cpp is designed to be in a form acceptable as input to the next pass of the C compiler. As
the C language evolves, cpp and the rest of the C compilation package will be modified to follow these
changes. Therefore, the use of cpp other than in this framework is not suggested. The preferred way to
invoke cpp is through the cc(l) command, since the functionality of cpp may someday be moved
elsewhere.

Cpp optionally accepts two file names as arguments. [file and ofile are respectively the input and output
for the preprocessor. They default to standard input and standard output if not supplied.

The following options are recognized:

-C By default, cpp strips C-style comments. If the -C option is specified, all comments (except
those found on cpp directive lines) are passed along.

-Dname
-Dname = def

Define name as if by a #define directive. If no = defis given, name is defined as 1.

-H nnn Change the internal macro definition table to be nnn bytes in size. The macro symbol table is
increased proportionally. The default table size is 36 000 bytes. This option serves to eliminate
the "too many defines" and "too much defining" errors.

-Idir Change the algorithm for searching for #include files whose names do not begin with / to look
in dir before looking in the directories on the standard list. Thus, #include files whose names
are enclosed in " " will be searched for first in the directory of the ifile argument, then in
directories named in -I options, and last in directories on a standard list. For #include files
whose names are enclosed in < >, the directory of the ifile argument is not searched.
However, the directory dir is searched.

-p Preprocess the input without producing the line control information used by the next pass of
the C compiler.

- T Forces cpp to use only the first eight characters for distinguishing different preprocessor names.

-Uname

This behavior is the same as previous preprocessors with respect to the length of names, and is
included for backward compatibility.

Remove any initial definition of name, where name is a reserved symbol that is predefined by the
particular preprocessor. The current list of these possibly reserved symbols includes:

operating system:
hardware:

UNIX System variant:

mert, ibm, gcos, os, tss, unix
hp9000s500, hp9000s200, interdata, pdpll, u370,
u3b,vax
RES, RT, TS, PWB

Two special names are understood by cpp. The name _J..INE __ is defined as the current line number
(as a decimal integer) as known by cpp, and __ FlLE __ is defined as the current file name (as a C string)
as known by cpp. They can be used anywhere (including in macros) just as any other defined name.

- 1 -

CPP(l)

FILES

All cpp directives start with lines begun by #. The directives are:

#define name token-string
Replace subsequent instances of name with token-string (token-string may be null).

#define name(arg, ... , arg) token-string

CPP(l)

Replace subsequent instances of name, followed by (, a list of comma separated tokens, and a),
by token-string, where each occurrence of an arg in the token-string is replaced by the
corresponding token in the comma separated list. Note that there must be no space between
nameand(.

#undefname
Cause the definition of name (if any) to be forgotten from now on.

#include "filename"
#include <filename>

Include at this point the contents of filename (which will then be run through cpp). When the
<filename> notation is used, filename is only searched for in the standard places. See the -I
option above for more detail.

#Iine integer-constant "filename"
Cause cpp to generate line control information for the next pass of the C compiler. Integer­
constant is the line number of the next line and filename is the file from which it comes. If
"filename" is not given, the current file name is unchanged.

#endif <text>
Ends a section of lines begun by a test directive (#if, #ifdef, or #ifndef). Each test directive
must have a matching #endif. Any text occurring on the same line as the endif is ignored and
thus may be used to mark matching if-endif pairs, making it easier to match up endifs with their
associated ifs.

#ifdefname
The lines following will appear in the output if and only if name has been the subject of a
previous #define without being the subject of an intervening #undef, or if it is a currently
defined reserved symbol.

#ifndef name
The lines following will not appear in the output if and only if name has been the subject of
previous #define without being the subject of an intervening #undef.

#if constant-expression
Lines following will appear in the output if and only if the constant-expression evaluates to non­
zero. All binary non-assignment C operators, the ?: operator, the unary -, !, and - operators
are all legal in constant-expression. The precedence of the operators is the same as defined by
the C language. There is also a unary operator defined, which can be used in constant­
expression in these two forms: defined (name) or defined name. This allows the utility of #ifdef
and #ifndef in a #if directive. Only these operators, integer constants, and names which are
known by cpp should be used in constant-expression. In particular, the sizeof operator is not
available.

#else Reverses the notion of the test directive which matches this directive. Thus, if lines previous to
this directive are ignored, the following lines will appear in the output, and vice-versa.

The test directives and the possible #else directives can be nested.

Cpp supports names up to 255 characters long.

lusrlinclude standard directory for #include files

-2-

CPP(1)

SEE ALSO
cc(l).

DIAGNOSTICS

CPP(l)

The error messages produced by cpp are intended to be self-explanatory. The line number and
filename where the error occurred are printed along with the diagnostic.

-3-

CRYPT(l) CRYPT(l)

NAME
crypt - encode/decode files

SYNOPSIS
crypt [password 1

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System III

DESCRIPTION

FILES

Crypt reads from the standard input and writes on the standard output. The password is a key that
selects a particular transformation. If no password is given, crypt demands a key from the terminal and
turns off printing while the key is being typed in. Crypt encrypts and decrypts with the same key:

crypt key <clear >cypher
crypt key <cypher I pr

will print the clear.

Files encrypted by crypt are compatible with those treated by the editor ed in encryption mode.

The security of encrypted files depends on three factors: the fundamental method must be hard to solve;
direct search of the key space must be infeasible; "sneak paths" by which keys or clear text can become
visible must be minimized.

Crypt implements a one-rotor machine designed along the lines of the German Enigma, but with a
256-element rotor. Methods of attack on such machines are known, but not widely; moreover the
amount of work required is likely to be large.

The transformation of a key into the internal settings of the machine is deliberately designed to be
expensive, i. e. to take a substantial fraction of a second to compute. However, if keys are restricted to
(say) three lower-case letters, then encrypted files can be read by expending only a substantial fraction
of five minutes of machine time.

Since the key is an argument to the crypt command, it is potentially visible to users executing ps(l) or a
derivative. To minimize this possibility, crypt takes care to destroy any record of the key immediately
upon entry. The choice of keys and key security are the most vulnerable aspect of crypt.

/dev/tty for typed key

SEE ALSO

BUGS

ed(l}, makekey(S).

If output is piped to nroff(1) and the encryption key is not given on the command line, crypt can leave
terminal modes in a strange state (see stO' (1)).

Due to legal restrictions, cryptis currently not available on systems that may be sold outside the United States.

-1-
09000-90007, rev: 1/85

CSH(l) CSH(1)

NAME
csh - a shell (command interpreter) with C-like syntax

SYNOPSIS
csh [-cefinstvVxX 1 [command file 1 [argument list ...

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: Berkeley 4.1

DESCRIPTION
Csh is a command language interpreter incorporating a command history buffer and a C-like syntax.

The command options are interpreted as follows:

-c The first argument in the argument list is a command file. Commands are read and
executed from that file. The command file must exist. Any arguments in the argument
list are copied into the shell variable argv.

-e The shell exits if any invoked command terminates abnormally or yields a non-zero
exit status.

-f Suppress execution of the .eshre file in your home directory, thus speeding up shell
start-up time.

-i Forces esh to respond interactively when called from a device other than a computer
terminal, such as another computer. Csh's normally responds non-interactively. If esh
is called from a computer terminal, it always responds interactively, no matter which
options are selected.

-n This option causes commands to be parsed, but not executed. This may be used in
syntactic checking of shell scripts. All substitutions are performed (history, command,
alias, etc.).

-s This option allows you to redirect input from a command.

-t A single line of input is read and executed. This option combines the -n option
described above with automatic execution of the command.

-v This option causes the verbose shell variable to be set. This causes command input to
be echoed to your standard output device after history substitutions are made.

-x This option causes the eeho shell variable to be set. This causes all commands to be
echoed to the standard output immediately before execution.

-v This option causes the verbose variable to be set before .eshre is executed. This means
all .eshre commands are also echoed to the standard output.

-x This option causes the eeho variable to be set before .eshre is executed. This means all
.eshre commands are also echoed to the standard output.

After processing the command options, if arguments remain in the argument list, and the -c, -i, -s, or
-t options were not specified, the first remaining argument is taken as the name of a file of commands to
be executed.

COMMANDS
A simple command is a sequence of words, the first of which specifies the command to be executed. A
sequence of simple commands separated by vertical bar (I) characters forms a pipeline. The output of
each command in a pipeline is made the input of the next command in the pipeline. Sequences of
pipelines may be separated by semicolons (;), and are then executed sequentially. A sequence of
pipelines may be executed in background mode by following the last entry with an ampersand (&)
character.

- 1 -

CSH(l) CSH(l)

Any pipeline may be placed in parenthesis to form a simple command which in tum may be a
component of another pipeline. It is also possible to separate pipelines with "I I" or "&&" indicating,
as in the C language, that the second pipeline is to be executed only if the first fails or succeeds,
respectively.

Built-In Commands
Built-in commands are executed within the shell. If a built-in command occurs as any component of a
pipeline except the last then it is executed in a subshell. The build-in commands are:

alias
alias name
alias name wordlist

The first form prints all aliases. The second form prints the alias for name. The final form
assigns the specified wordlist as the alias of name. Command and filename substitution are
performed on wordlist. Name cannot be alias or unalias.

alloc This comand shows the amount of dynamic core in use, broken down into used and free core,
and the address of the last location in the heap. With an argument, aUoc shows each used and
free block on the internal dynamic memory chain indicating its address, size, and whether it is
used or free. This is a debugging command.

break Causes execution to resume after the and of the nearest enclosing foreach or while. The
remaining commands on the current line are executed. Multi-level breaks are thus possible by
writing them all on one line.

breaksw
Causes a break from a switch, resuming after the endsw.

case label:
A label in a switch statement as discussed below.

cd
cd directory_name
chdir
chdir directory_name

Change the shell's current working directory to directory..JIame. If no argument is given, then
directory_name defaults to your home directory.

If directory_name is not found as a subdirectory of the current working directory (and does not
begin with "/", ".!" or " . .!"), then each component of the variable cdpath is checked to see if
it has a subdirectory directory_name. Finally, if all else fails, csh treats directory_name as a shell
variable. If its value begins with '/', then this is tried to see if it is a directory.

continue

default:

Continue execution of the nearest enclosing while or foreach. The rest of the commands on the
current line are executed.

Labels the default case in a switch statement. The default should come after all other case
labels.

dirs Prints the directory stack; the top of the stack is at the left; the first directory in the stack is the
current directory.

echo wordlist
echo -n wordlist

The specified words are written to the shell's standard output, separated by spaces, and
terminated with a new-line unless the -n option is specified.

- 2 -

CSH(l)

else
end
endif

CSH(l)

endsw See the description of the foreach, if, switch, and while statements below.

eval arguments ...
(As in sh(l).} The arguments are read as input to the shell and the resulting command(s}
executed. This is usually used to execute commands generated as the result of command or
variable substitution, since parsing occurs before these substitutions.

exec command
The specified command is executed in place of the current shell.

exit
exit (expression)

The shell exits either with the value of the status variable (first form) or with the value of the
specified expression (second form).

foreach name (wordlist)

end The variable name is succeSSively set to each member of wordlist and the sequence of
commands between this comma'ld and the matching end are executed. (Both foreach and end
must appear alone on separate lines.)

The built-in command continue may be used to continue the loop prematurely and the built-in
command break terminates it prematurely. When this command is read from the terminal, the
loop is read once, prompting with '?' before any statements in the loop are executed. If you
make a mistake while typing in a loop at the terminal you can then rub it out.

glob wordlist
Like echo but no ',,",,' escapes are recognized and words are delimited by null characters in the
output. Useful for programs which wish to use the shell to perform filename expansion on a list
of words.

gotoword
The specified word is filename and command expanded to yield a string of the form 'label'. The
shell rewinds its input as much as possible and searches for a line of the form 'label:' possibly
preceded by blanks or tabs. Execution continues after the specified line.

hashstat
Print a statistics line indicating how effective the internal hash table has been at locating
commands (and avoiding exec's). An exec is attempted for each component of the path where
the hash function indicates a possible hit, and in each component which does not begin with a
'I' .

history
historyn
history-rn

Displays the history event list; if n is given only the n most recent events are printed. The-r
option reverses the order of printout to be most recent first rather than oldest first.

if (expression) command
If the specified expression evaluates true, then the single command with arguments is executed.
Variable substitution on command happens early, at the same time it does for the rest of the if
command. Command must be a simple command, not a pipeline, a command list, or a
parenthesized command list. Input/output redirection occurs even if expression is false, when
command is not executed (this is a bug).

-3-

CSH(l) CSH(1)

if (expression]) then

else if (expression2) then

else

endif If the specified expression] is true then the commands to the first else are executed; otherwise if
expression2 is true then the commands to the second else are executed, etc. Any number of
else-if pairs are possible; only one endif is needed. The else part is likewise optional. (The
words else and endif must appear at the beginning of input lines; the if must appear alone on its
input line or after an else.)

jobs [-I]
Lists the active jobs; the -I option lists process id's in addition to the normal information.

kill %job
kill- sig %job ...
killpid
kill-sig pid ...
kill-I Sends either the TERM (terminate) signal or the specified signal to the specified jobs or

processes. Signals are either given by number or by names (as given in lusrlincludelsignal.h,
stripped of the "SIG" prefix - see signal(2)). The signal names are listed by kill-I. There is no
default, so saying just kill does not send a signal to the current job. If the signal being sent is
TERM (terminate) or HUP (hangup), then the job or process is sent a CONT (continue) signal as
well.

login Terminates a login shell, replacing it with an instance of Ibinllogin. This is one way to log off,
included for compatibility with sh (1).

logout Terminates a login shell. Especially useful if ignoreeofis set.

newgrp Changes the group identification of the caller; for details see newgrp(l). A new shell is executed
by newgrp so that the current shell environment is lost.

nice
nice + number
nice command
nice + number command

The first form sets the nice (run command priority) for this shell to 4 (the default). The second
form sets the priority to the given number. The final two forms run command at priority 4 and
number respectively. The super-user may raise the priority by specifying negative niceness
using nice -number Command is always executed in a sub-shell, and the restrictions place on
commands in simple if statements apply.

nohup [command]
Without an argument, nohup can be used in shell scripts to cause hangups to be ignored for the
remainder of the script. With an argument, causes the specified command to be run with
hangups ignored. All processes executed in the background with & are effectively nohup' ed.

notify [%job ...]
Causes the shell to notify the user asynchronously when the status of the current (no argument)
or specified jobs changes; normally notification is presented before a prompt. This is automatic
if the shell variable notify is set.

onintr [-] [label]
Controls the action of the shell on interrupts. With no arguments, onintr restores the default
action of the shell on interrupts, which is to terminate shell scripts or to return to the terminal
command input level. If - is specified, causes all interrupts to be ignored. If a label is given,

-4-

CSH(l) CSH(l)

causes the shell to execute a goto label when an interrupt is received or a child process
terminates because it was interrupted.

If the shell is running in the background and interrupts are being ignored, onintr has no effect;
interrupts continue to be ignored by the shell and all invoked commands.

popd[+nl
Pops the directory stack, returning to the new top directory. With an argument, discards the
nth entry in the stack. The elements of the directory stack are numbered from 0 starting at the
top.

pushd [name 1 [+n 1
With no arguments, pushd exchanges the top two elements of the directory stack. Given a name
argument, pushd changes to the new directory (using cd) and pushes the old current working
directory (as in csw) onto the directory stack. With a numeric argument, rotates the nth
argument of the directory stack around to be the top element and changes to it. The members
of the directory stack are numbered from the top starting at O.

rehash Causes the internal hash table of the contents of the directories in the path variable to be
recomputed. This is needed if new commands are added to directories in the path while you
are logged in. This should only be necessary if you add commands to one of your own
directories, or if a systems programmer changes the contents of one of the system directories.

repeat count command

set

The specified command (which is subject to the same restrictions as the command in the one line
if statement above) is executed count times. I/O redirections occur exactly once, even if count is
O.

set name
set name = word
set name [index 1 = word
set name = (wordlist)

The first form of set shows the value of all shell variables. Variables which have other than a
single word as value print as a parenthesized word list. The second form sets name to the null
string. The third form sets name to the single word. The fourth form sets the index'th
component of name to word; this component must already exist. The final form sets name to the
list of words in wordlist. In all cases the value is command and filename expanded.

These arguments may be repeated to set multiple values in a single set command. Note,
however, that variable expansion happens for all arguments before any setting occurs.

setenv name value
Sets the value of environment variable name to be value, a single string. The most commonly
used environment variables USER, TERM, and PATH are automatically imported to and
exported from the csh variables user, term, and path; there is no need to use setenv for these.

shift [variable 1
With no argument, the members of argv are shifted to the left, discarding argv[l]. An error
occurs if argv is not set or has less than two strings assigned to it. With an argument, shift
performs the same function on the specified variable.

source name
The shell reads commands from name. Source commands may be nested; if they are nested too
deeply the shell may run out of file deSCriptors. An error in a source at any level terminates all
nested source commands. Input during source commands is never placed on the history list.

stop [%job ... 1
Stops the current (no argument) or specified job which is executing in the background.

-5-

CSH(l) CSH(l)

switch (string)
casestrl:

breaksw

default:

breaksw
endsw Each case label (strl) is successively matched against the specified string which is first command

and filename expanded. The file metacharacters *, ?, and [oo.J may be used in the case labels,
which are variable expanded. If none of the labels match before a default label is found, then
the execution begins after the default label. Each case label and the default label must appear
at the beginning of a line. The command breaksw causes execution to continue after the endsw.
Otherwise, control may fall through case labels and default labels as in C. If no label matches
and there is no default, execution continues after the endsw.

time [command I
With no argument, a summary of time used by this shell and its children is printed. If an
argument is given, the specified simple command is timed and a time summary as described
under the time variable is printed. If necessary, an extra shell is created to print the time statistic
when the command completes.

umask [value I
The current file creation mask is displayed (no argument) or set to the specified value. The
mask is given in octal. Common values for the mask are 002, which gives all permissions to the
owner and group, and read and execute permissions to all others, or 022, which gives all
permissions to the owner, and read permission only to the group and all others.

unalias pattern

unhash

All aliases whose names match the specified pattern are discarded. Thus, all aliases are
removed by unalias *. No error occurs if pattern is omitted.

Use of the internal hash table to speed location of executed programs is disabled.

unset pattern
All variables whose names match the specified pattern are removed. Thus, all variables are
removed by unset *; this has noticeably distasteful side-effects. No error occurs if pattern is
omitted.

unsetenv pattern
Removes all variables whose names match the specified pattern from the environment. See
also the setenv command above andprintenv(l).

wait All background jobs are waited for. If the shell is interactive, then an interrupt can disrupt the
wait, at which time the shell prints names and job numbers of all jobs known to be outstanding.

while (expression)

end While the specified expression evaluates non-zero, the commands between the while and the
matching end are evaluated. Break and continue may be used to terminate or continue the loop
prematurely. (The while and end must appear alone on their input lines.) If the input is a
terminal (j.e. not a script), prompting occurs the first time through the loop as for the foreach
statement.

-h-

CSH(l) CSH(l)

@
@ name = expression
@ name [index 1 = expression

The first form prints the values of all the shell variables. The second form sets the spedfled
name to the value of expression. If the expression contains "<", ">", "&" or "I", then at
least this part of the expression must be placed within parentheses. The third form assigns the
value of expression to the index'th argument of name. Both name and its index'th component
must already exist.

The operators "* = ", "+ = ", etc., are available as in C. White space may optionally
separate the name from the assignment operator. However, spaces are mandatory in
separating components of expression which would otherwise be single words.

Spedal postfix" + + " and "--" operators increment and decrement name, respectively (i.e.
@i++).

Non-Built-In Command Execution
When a command to be executed is not a built-in command, the shell attempts to execute the
command via exec(2). Each word in the variable path names a directory in which the shell attempts to
find the command (if the command does not begin with "I"). If neither -c nor -t is given, the shell
hashes the names in these directories into an intemal table so that an exec is attempted only in those
directories where the command might possibly reside. This greatly speeds command location when a
large number of directories are present in the search path. If this mechanism has been tumed off (via
unhash), orif-c or-t was given, or if any directory component of path does not begin with a '(, the shell
concatenates the directory name and the given command name to form a path name of a file which it
then attempts to execute.

Parenthesized commands are always executed in a subshell. Thus

(cd; pwd)

prints the home directory but leaves you where you were.

cd; pwd

does the same thing, but leaves you in the home directory.

Parenthesized commands are most often used to prevent eMir from affecting the current shell.

If the file has execute permissions but is not an executable binary file, then it is assumed to be a shell
script, and a new shell is spawned to read it.

If there is an alias for shell then the words of the alias are inserted at the beginning of the argument list to
form the shell command. The first word of the alias should be the full path name of the shell (e.g.
"$shell"). Note that this is a spedal, late-occurring case of alias substitution, which inserts words into
the argument list without modification.

Command Substitution
Command substitution is indicated by a command enclosed in single quotes (' .. .'). The output from
such a command is normally broken into separate words at blanks, tabs and newlines, with null words
being discarded, this text then repladng the original string. Within double quotes, only newlines force
new words; blanks and tabs are preserved.

In any case, the single final newline does not force a new word. Note that it is thus possible for a
command substitution to yield only part of a word, even if the command outputs a complete line.

History Substitutions
History substitutions enable you to use words from previous commands as portions of new commands,
repeat commands, repeat arguments of a previous command in the current command, and fix spelling
mistakes in the previous command.

-7-

CSH(1) CSH(1)

History substitutions begin with an exclamation point (1). Substitutions may begin anywhere in the input
stream, but may not be nested. The exclamation point can be preceded by a backslash to prevent its
special meaning. For convenience, an exclamation point is passed to the parser unchanged when it is
followed by a blank, tab, newline, equal sign or right parenthesis. Any input line which contains history
substitution is echoed on the terminal before it is executed for verification.

Commands input from the terminal which consist of one or more words are saved on the history list.
The history substitutions reintroduce sequences of words from these saved commands into the input
stream. The number of previous commands saved is controlled by the history variable. The previous
command is always saved, regardless of its value. Commands are numbered sequentially from 1.

You can refer to previous events by event number (such as !10 for event 10), relative event location
(such as !-2 for the second previous event), full or partial command name (such as !d for the last event
using a command with initial character d), and string expression (such as !?mic? referring to an event
containing the characters mic).

These forms, without further modification, simply reintroduce the words of the specified events, each
separated by a single blank. As a special case, !! is a re-do; it refers to the most previous command.

To select words from a command you can follow the event specification by a colon (:) and a designator
for the desired words. The words of a input line are numbered from zero. The basic word designators
are:

0

n

$

a-b

*
%

selects the first word (i.e. the command name itself).

selects the nth word.

selects the last word.

selects the range of words from a to b. Special cases are -y, which is an abbreviation
for "word 0 through word y", and x-, which stands for "word x up to, but not
including, word $ " .

indicates the range from the second word to the last word.

used with a search sequence to substitute the immediately preceding matching word.

The colon separating the command specification from the word designator can be omitted if the
argument selector begins with a ., $, *, -, or %.

After each word designator, you can place a sequence of modifiers, each preceded by a colon. The
following modifiers are defined:

h Use only the first component of a path name by removing all following components.

r Use the root file name by removing any trailing suffix (.xxx).

e Use the file name's trailing suffix (. xxx) by removing the root name.

slllr substitute the value of r for the value I in the indicated command.

Use only the final file name of a pathname by remOving all leading path name
components.

& Repeat the previous substitution.

p Print the new command but do not execute it.

q Quote the substituted words, preventing further substitutions.

x Like q, but break into words at blanks, tabs and newlines.

g global command; used as a prefix to cause the specified change to be made globally
(all words in the command are changed).

-~-

CSH(l) CSH(l)

Unless preceded by a g, the modification is applied only to the first modifiable word. You get an error if
a substitution is attempted and cannot be completed (Le. if you have a history buffer of 10 commands
and ask for a substitution of !11).

The left hand side of substitutions are not regular expressions in the sense of the HP-UX editors, but
rather strings. Any character may be used as the delimiter in place of a slash (I); a backslash quotes the
delimiter into the I and r strings. The character & in the right hand side is replaced by the text from the
left. A "- quotes & also. A null I uses the previous string either from a I or from a contextual scan string s
in !?s? The trailing delimiter in the substitution may be omitted if a newline follows immediately, as
may the trailing? in a contextual scan.

A history reference may be given without an event specification (e.g. !$). In this case the reference is to
the previous command unless a previous history reference occurred on the same line, in which case this
form repeats the previous reference. Thus

!?foor !$

gives the first and last arguments from the command matching "?foo?" .

A special abbreviation of a history reference occurs when the first non-blank character of an input line is
a caret ('). This is equivalent to "!:s''', providing a convenient shorthand for substitutions on the text of
the previous line. Thus" 'lb'lib" fixes the spelling of "lib" in the previous command.

Finally, a history substitution may be surrounded with curly braces { } if necessary to insulate it from the
characters which follow. Thus, after

Is -ld -paul

we might execute !{l}a to do

Is -Id -paula

while !\a would look for a command starting with "Ia".

Quoting with Single and Double Quotes
The quotation of strings by backslash ("-) and double quotes (") can be used to prevent all or some of
the remaining substitutions. Strings enclosed in backslashes are protected from any further
interpretation. Strings enclosed in double quotes are still variable and command expanded as described
below.

In both cases the resulting text becomes (all or part of) a single word; only in one special case does a
double-quoted string yield parts of more than one word; Single-quoted strings never do.

Alias Substitution
The shell maintains a list of aliases which can be established, displayed and modified by the alias and
unalias commands. After a command line is scanned, it is parsed into distinct commands and the first
word of each command, left-to-right, is checked to see if it has an alias. If it does, then the text which is
the alias for that command is reread with the history mechanism available as though that command
were the previous input line. The resulting words replace the command and argument list. If no
reference is made to the history list, then the argument list is left unchanged.

Thus, if the alias for Is is Is -I, the command Is lusr maps to Is -I lusr, leaving the argument list
undisturbed. Similarly, if the alias for lookup was grep!' letc/passwd, then lookup bill maps to
grep bill letc/passwd.

If an alias is found, the word transformation of the input text is performed and the aliasing process
begins again on the re-formed input line. Looping is prevented if the first word of the new text is the
same as the old by flagging it to prevent further aliasing. Other loops are detected and cause an error.

Note that the mechanism allows aliases to introduce parser metasyntax. Thus we can execute

alias print 'pr "-!* I Ipr'

-9-

CSH(l) CSH(l)

to make a command which uses pr(l) to print its arguments on the line printer.

Expressions
A number of the built-in commands take expressions, in which the operators are similar to those of C,
with the same precedence. These expressions appear in the @, exit, if, and while commands. The
following operators are available (shown in order of increasing precedence):

II && 1 " & = = ! = =-!- < = > = < > « » + - * I % ! - ()

The following list shows the grouping of these operators. The precedence decreases from top to bottom
in the list:

* I %
+ -
« »
<= >= < >
= = != =-!-

The = =, ! =, =-, and r operators compare their arguments as strings; all others operate on numbers.
The operators = - and !- are like! = and = =, except that the right hand side is a pattern (containing *' s,
?'s, and instances of [...)) against which the left hand operand is matched. This reduces the need for use
of the switch statement in shell scripts when all that is really needed is pattern matching.

Strings which begin with 0 are considered octal numbers. Null or missing arguments are considered O.
The result of all expressions are strings, which represent decimal numbers. It is important to note that no
two components of an expression can appear in the same word. These components should be
surrounded by spaces except when adjacent to components of expressions which are syntactically
significanttotheparser-&, I, <, >, (,and).

Also available in expressions as primitive operands are command executions enclosed in curly braces
{ } and file enquiries of the form "-I filename" , where I is one of:

read access
w write access
x execute access
e existence
0 ownership
z zero size
f plain file
d directory

The specified filename is command and filename expanded and then tested to see if it has the specified
relationship to the real user. If the file does not exist or is inaccessible then all enqUiries retum false (0).
Command executions succeed, returning true, if the command exits with status 0; otherwise they fail,
returning false. If more detailed status information is required then the command should be executed
outside of an expression and the variable status examined.

Control ofthe Flow (one)
The shell contains a number of commands which can be used to regulate the flow of control in
command files (shell scripts) and (in limited but useful ways) from terminal input. These commands all
operate by forcing the shell to reread or skip parts of its input and, due to the implementation, restrict the
placement of some of the commands.

The foreach, switch, and while statements, as well as the if-then-else form of the if statement, require that
the major keywords appear in a single simple command on an input line as shown below.

If the shell's input is not seekable, the shell buffers up input whenever a loop is being read and performs
seeks in this internal buffer to accomplish the rereading implied by the loop. (To the extent that this
allows, backward goto's succeed on non-seekable inputs.)

-10 -

CSH(l) CSH(l)

Signal Handling
The shell normally ignores quit signals. Jobs running in background mode are immune to signals
generated from the keyboard, including hangups. Other signals have the values which the shell
inherited from its parent. The shells handling of interrupts and terminate signals in shell scripts can be
controlled by onintr. Login shells catch the terminate signal; otherwise this signal is passed on to children
from the state in the shell's parent. In no case are interrupts allowed when a login shell is reading the file
.logout.

Command Line Parsing
Csh splits input lines into words at blanks and tabs. The following exceptions (parser metacharacters) are
considered separate words:

& ampersand;
vertical bar;
semicolon;

< less-than sign;
> greater-than sign;
(left parenthesis;
) right parenthesis;
&& double ampersand;

double vertical bar;
< < double less-than sign;
> > double greater-than sign;

The backslash ("') removes the special meaning of these parser metacharacters. A parser metacharacter
preceded by a backslash is interpreted as its ASCII value. A newline character (ASCII 10) preceded by a
backslash is equivalent to a blank.

Strings enclosed in single or double quotes form parts of a word. Metacharacters in these strings,
including blanks and tabs, do not form separate words. Within pairs of backslashs or quotes, a newline
preceded by a backslash gives a true newline character.

When the shell's input is not a terminal, the pound sign (#) introduces a comment terminated by a
newline.

CSH VARIABLES
Csh maintains a set of variables. Each variable has a value equal to zero or more strings (words).
Variables have names consisting of up to 20 letters and digits starting with a letter. The underscore
character is considered a letter. The value of a variable may be displayed and changed by using the set
and unset commands. Some of the variables are boolean, that is, the shell does not care what their value
is, only whether they are set or not.

Some operations treat variables numerically. The at sign (@) command permits numeric calculations to
be performed and the result assigned to a variable. The null string is considered to be zero, and any
subsequent words of multi-word values are ignored.

After the input line is aliased and parsed, and before each command is executed, variable expansion is
performed keyed by the dollar sign ($) character. Variable expansion can be prevented by preceding
the dollar sign with a backslash character ("'l except within double quotes (") where substitution
always occurs. Variables are never expanded if enclosed in single quotes. Strings quoted by single
quotes are interpreted later (see Command Substitution) so variable substitution does not occur there
until later, if at all. A dollar sign is passed unchanged if followed by a blank, tab, or end-of-line.

Input/output redirections are recognized before variable expansion, and are variable expanded
separately. Otherwise, the command name and entire argument list are expanded together.

Unless enclosed in double quotes or given the :q modifier, the results of variable substitution may
eventually be command and filename substituted. Within double quotes, a variable whose value
consists of multiple words expands to a portion of a single word, with the words of the variable's value

-11-

CSH(l) CSH(l)

separated by blanks. When the :q modifier is applied to a substitution, the variable expands to multiple
words with each word separated by a blank and quoted to prevent later command or filename
substitution.

The following metasequences are provided for introducing variable values into the shell input. Except
as noted, it is an error to reference a variable which is not set.

$variable_name
${variable_name}

When interpreted, this sequence is replaced by the words of the value of the variable
variablLname, each separated by a blank. Braces insulate variablLname from
following characters which would otherwise be interpreted to be part of the variable
name itself.

If variablLname is not a csh variable, but is set in the environment, then that value is
used. Non-csh variables cannot be modified as shown below.

$variable_name[selectorl
${variable_name[selector l}

This modification allows you to select only some of the words from the value
of variablLname. The selector is subjected to variable substitution and may
consist of a single number or two numbers separated by a dash. The first
word of a variable's value is numbered 1. If the first number of a range is
omitted it defaults to 1. If the last member of a range is omitted it defaults to
the total number of words in the variable ($#variable_name). An asterisk
metacharacter used as a selector selects all words.

$#variable_name
${ #variable_name}

This form gives the number of words in the variable. This is useful for forms
using a [selector 1 option.

$0 This form substitutes the name of the file from which command input is being
read. An error occurs if the filename is not known.

$number
${number}

This form is equivalent to an indexed selection from the variable argv
($argv[number)).

$* This is equivalent to selecting all of argv ($argv[*)).

The modifiers :h, :t, :r, :q and :x may be applied to the substitutions above, as may :gh, :gt and
:gr. If curly braces { } appear in the command form then the modifiers must appear within the
braces. The current implementation allows only one: modifier on each $ expansion.

The following substitutions may not be modified with: modifiers.

$ 7variable_name
${7variable_name}

Substitutes the string 1 if variablLname is set, 0 if it is not. VariablLname must
be a boolean variable.

$70 Substitutes 1 if the current input filename is known, 0 if it is not.

$$ Substitutes the (decimal) process number of the (parent) shell.

$< Substitutes a line from the standard input, with no further interpretation
thereafter. It can be used to read from the keyboard in a shell script.

- 12-

CSH(l) CSH(l)

Pre-Defined and Environment variables
The following variables have special meaning to the shell. Of these, argv, cwd, home, path, prompt, shell,
and status are always set by the shell. Except for cwd and status, this setting occurs only at initialization
(initial execution of csh); these variables are not modified unless modified explicitly by the user.

Csh copies the HP-UX environment variable USER into the shell variable user, the environment variable
TERM into term, the environment variable HOME into home, and PATH into path. Csh copies these
values back into the environment whenever the csh variables are reset. The HP-UX environment
variable PATH could be set in the shell script .login, except that commands through net(1) would not see
that value.

argv

cdpath

cwd

echo

history

home

ignoreeof

mail

noclobber

noglob

This variable is set to the arguments of the csh command statement. It is from
this variable that positional parameters are substituted, i.e. $1 is replaced by
$argv[I], etc.

This variable gives a list of alternate directories searched to find subdirectories
in chdir commands.

This variable contains the absolute pathname of your current working
directory. Whenever you change directories (using cd), this variable is
updated.

This variable is set by the -x command line option. If set, all built-in
commands and their arguments are echoed to your standard output device
just before being executed. Built-in commands are echoed before command
and filename substitution, since these substitutions are then done selectively.
For non-built-in commands, all expansions occur before echoing.

This variable is used to create your command history buffer and to set its size.
If this variable is not set, you have no command history and can do no history
substitutions. Very large values of history may run your shell out of memory.
Values of 10 or 20 are normal. All commands, executable or not, are saved
in your command history buffer.

This variable contains the absolute pathname to your home directory. Home
is initialized from the HP-UX environment. The filename expansion of tilde
n refers to this variable.

If set, csh ignores end-of-file characters from input devices which are
terminals. This prevents your processes from aCcidentally being killed by
control-D's.

This variable contains a list of the files where csh checks for your mail. Csh
periodically (default is 10 minutes) checks this variable after a command
completion which results in a prompt. If the variable contains a filename that
has been modified since the last check (resulting from mail being put in the
file), csh prints Youhavenewmail.

If the first word of the value of mail is numeric, that number specifies a
different mail checking interval in seconds.

If multiple mail files are specified, then the shell says Newmailinfile.J1ame,
where jileJUlme is the file containing the mail.

This variable places restrictions on output redirection to insure that files are
not aCcidentally destroyed, and that commands using append redirection
(> >) refer to existing files.

If set, filename expansion is inhibited. This is most useful in shell scripts
which are not dealing with filenames, or after a list of filenames has been

-13 -

CSH(l)

nonomatch

notify

path

prompt

shell

status

time

verbose

CSH(l)

obtained and further expansions are not desirable.

If set, it is no longer an error for a filename expansion to not match any
existing files. If there is no match, the primitive pattem is returned. It is still an
error for the primitive pattem to be malformed, i.e. 'echo [' still gives an
error.

If set, esh notifies you immediately (through your standard output device) of
background job completions. The default is unset (indicate job completions
just before printing a prompt).

Each word of the path variable specifies a directory in which commands are
to be sought for execution. A null word specifies your current working
directory. If there is no path variable then only full path names can be
executed. When path is not set and when users do not specify full
pathnames, esh searches for the command through the directories . (your
current directory), Ibin, Ilbin, lusrlbin, and lusrllbin. A esh which is given
neither the -c nor the -t option normally hashes the contents of the
directories in the path variable after reading . eshre, and each time the path
variable is reset. If new commands are added to these directories while the
shell is active, it is necessary to execute rehash for esh to access these new
commands.

This variable lets you select your own prompt character string. The prompt is
printed before each command is read from an interactive terminal input. If a
! appears in the string it is replaced by the current command history buffer
event number unless a preceding '" is given. The default prompt is the
percent sign (%) for users and the pound sign (#) for the super -user.

This variable contains the name of the file in which the esh program resides.
This variable is used in forking shells to interpret files which have their
execute bits set, but which are not executable by the system. (See the
description of Non-built-In Command Execution).

This variable contains the status value returned by the last command. If the
command terminated abnormally, then 0200 is added to the status variable's
value. Built-in commands which terminated abnormally return exit status 1,
and all other built-in commands set status to O.

This variable contains a numeric value which controls the automatic timing of
commands. If set, then esh prints, for any command which takes more than
the specified number of cpu seconds, a line of information to your standard
output device giving user, system, and real execution times plus a utilization
percentage. The utilization percentage is the ratio of user plus system times to
real time. This message is printed after the command finishes exection.

This variable is set by the -v command line option. If set, the words of each
command are printed on the standard output device after history
substitutions have been made.

Command and Filename Substitution
The remaining substitutions, command and filename substitution, are applied selectively to the
arguments of built-in commands. This means that portions of expressions which are not evaluated are
not subjected to these expansions. For commands which are not intemal to the shell, the command
name is substituted separately from the argument list. This occurs very late, after input-output
redirection is performed, and in a child of the main shell.

-14 -

CSH(l) CSH(l)

Filename Substitution
If a word contains any of the characters *, 7, [, or {, or begins with the character -, then that word is a
candidate for filename substitution, also known as glob bing. This word is then regarded as a pattern,
and replaced with an alphabetically sorted list of file names which match the pattern. In a list of words
specifying filename substitution it is an error for no pattern to match an existing file name, but it is not
required for each pattern to match. Only the metacharacters *, 7, and [imply pattern matching, while
the characters - and { are more like abbreviations.

In matching filenames, the character. at the beginning of a filename or immediately following a I, as well
as the character I itself, must be matched explicitly. The character * matches any string of characters,
including the null string. The character 7 matches any single character. The sequence [... 1 matches any
one of the characters enclosed. Within the square brackets, a pair of characters separated by - matches
any character lexically between and including the two.

The tilde character n at the beginning of a filename is used to refer to home directories. By itself, the
tilde expands to your home directory as reflected in the value of the variable home. When followed by a
name consisting of letters, digits and - characters, the shell searches for a user with that name and
substitutes their home directory; thus Ken might expand to luserslken and Kenlchmach to
lusrlkenlchmach. If the - is followed by a character other than a letter or I, or appears somewhere
other than at the beginning of a word, it is left undisturbed.

The metanotation a{b,c,d}e is a shorthand for "abe ace ade". Left to right order is preserved, with
results of matches being sorted separately at a low level to preserve this order. This construct may be
nested. Thus

-source/sll{oldls,ls}.c

expands to

lusrlsource/slloldls.c lusrisource/sllls.c

whether or not these files exist, without any chance of error if the home directory for source is
IUSTlsource. Similarly,

might expand to

(Note that "memo" was not sorted with the results of matching *box.) As a special case, {,}, and {} are
passed undisturbed.

Input/Output
The standard input and standard output of a command may be redirected with the follOwing syntax:

< name Open file name (which is first variable, command and filename expanded) as the
standard input

«word
Read the shell input up to a line which is identical to word. Word is not subjected to
variable, filename or command substitution, and each input line is compared to word
before any substitutions are done on this input line. Unless a quoting '\., ", " or -
appears in word, variable and command substitution is performed on the intervening
lines, allowing'\. to quote $ and '\.. Commands which are substituted have all blanks,
tabs, and newlines preserved, except for the final newline which is dropped. The
resultant text is placed in an anonymous temporary file which is given to the command
as standard input.

> name
>!name
>&name
>&!name

The file name is used as standard output. If the file does not exist then it is created; if

-15-

CSH(l) CSH(l)

the file exists, it is truncated, and its previous contents are lost.
If the variable noclobber is set, then the file must not exist or be a character special file
(e. g. a terminal or Idev/null) or an error results. This helps prevent accidental
destruction of files. In this case the exclamation point (!) forms can be used to suppress
this check.
The forms involving the ampersand character (&) route the standard error into the
specified file as well as the standard output. Name is expanded in the same way as <
input filenames are.

» name
»&name
»! name
»&!name

Uses file name as standard output like >, but appends output to the end of the file. If
the variable noclobber is set, then it is an error for the file not to exist unless one of the!
forms is given. Otherwise, it is similar to >.

A command receives the environment in which the shell was invoked as modified by the input-output
parameters and the presence of the command in a pipeline. Thus, unlike some previous shells,
commands executed from a shell script have no access to the text of the commands by default; rather
they receive the original standard input of the shell. The < < mechanism should be used to present
inline data. This permits shell scripts to function as components of pipelines and allows the shell to block
read its input. Note that the default standard input for a command run detached is not modified to be
the empty file Idev/null; rather the standard input remains as the original standard input of the shell. If
this is a terminal and if the process attempts to read from the terminal, then the process will block and
the user is notified.

Diagnostic output may be directed through a pipe with the standard output. Simply use the form " , & "
rather than just" , " .

CSH UTILITIES
File Name Completion

In typing file names as arguments to commands, it is no longer necessary to type a complete name,
only a unique abbreviation is necessary. When you want the system to try to match your abbreviation,
press your ESCAPE key. The system then completes the filename for you, echOing the full name on
your terminal. If the abbreviation doesn't match an available filename, the terminal's bell is sounded.
The file name may be partially completed if the prefix matches several longer file names. In this case,
the name is extended up to the ambiguous deviation, and the bell is sounded.

File name completion works equally well when other directories are addressed. In addition, the tilde
n convention for home directories is understood in this context.

Viewing a File or Directory List
At any point in typing a command, you may request "what files are available" or "what files match
my current specification". Thus, when you have typed:

% cd -speech/data/bench/fritz/

you may wish to know what files or subdirectories exist (in -speech/datalbench/fritz), without
aborting the command you are typing. Typing Control-D or Control-F at this point lists the files
available. The files are listed in multicolumn format, sorted column-wise. Directories and
executable files are indicated with a trailing / and *, respectively. Once printed, the command is re­
echoed for you to complete. Additionally, you may want to know which files match a prefix, the
current file specification so far. If you had typed:

% cd -speech/data/benchlfr

followed by a control-D, all files and subdirectories whose prefix was "fr" in the directory
-speech/data/bench would be printed. Notice that the example before was simply a degenerate case

CSH(l) CSH(l)

of this with a null trailing file name. (The null string is a prefix of all strings.) Notice also that a trailing
slash is required to pass to a new sub-directory for both file name completion and listing. Note that
the degenerate case

% -'0

prints a full list of login names on the current system.

Command Name Recognition
Command name recognition and completion works in the same manner as file name recognition and
completion above. The current value of the environment variable PATH is used in searching for the
command. For example

% newa [Control]-[O]

might expand to

% newaliases

Also,

% new [Control]-[O]

lists all commands (along PATH) that begin with "new". As an option, if the shell variable
listpathnum is set, then a number indicating the index in PATH is printed next to each command on a
[ControlJ-[O] listing.

Autologout
A new shell variable has been added called autologout. If the terminal remains idle (no character input)
at the shell's top level for a number of minutes greater than the value assigned to autologout, you are
automatically logged off. The autologout feature is temporarily disabled while a command is
executing. The initial value of autologout is 60. If unset or set to 0, autologout is entirely disabled.

Sanity
The shell now restores your terminal to a sane mode if it appears to return from some command in raw,
cbreak, or noecho mode.

Saving Your History Buffer

FILES

Csh has the facility to save your history list between login sessions. If the shell variable savehist is set to a
number, then that number of command events from your history list are saved. For example, placing
the line

set history = 10 savehist = 10

in your .cshrc file maintains a history buffer of length 10 and saves the entire list when you logout.
When you log back in, the entire buffer is restored. The commands are saved in the file .history in
your login directory.

Ibin/sh
Itmp/sh*
letclpasswd

standard shell, for shell scripts not starting with a #;
temporary file for < <;
source of home directories for -name.

LIMITATIONS
Words can be no longer than 1024 characters.
The system limits argument lists to 10240 characters.
The number of arguments to a command which involves filename expansion is limited to 1I6'th the
number of characters allowed in an argument list.
Command substitutions may substitute no more characters than are allowed in an argument list.
To detect looping, the shell restricts the number of alias substititutions 011 a single line to 20.

SEE ALSO
sh(1), access(2), exec(2), fork(2), pipe(2), umask(2), wait(2), tty(4), a.out(5), environ(7).

- 17-

CSH(1)

BUGS

CSH(l)

Shell built-in functions are not stoppable/restartable. Command sequences of the form II a ; b ; C II are
also not handled gracefully when stopping is attempted. If you suspend b, the shell then immediately
executes c. This is especially noticeable if this expansion results from an alias. It suffices to place the
sequence of commands in ()'s to force it into a subshell, i.e. (a ; b ; c).

Because of the signal handling required by csh, interrupts are disabled just before a command is
executed and restored as the command begins execution. There may be a few seconds delay between
when a command is given and when interrupts are recognized.

If you do a kill job command on a pipeline, only the first process in the pipeline is killed.

Control over tty output after processes are started is primitive; perhaps this will inspire someone to work
on a good virtual terminal interface. In a virtual terminal interface much more interesting things could be
done with output control.

Alias substitution is most often used to clumsily simulate shell procedures; shell procedures should be
provided rather than aliases.

Commands within loops, prompted for by 7, are not placed in the history list. Control structure should
be parsed rather than being recognized as built-in commands. This would allow control commands to
be placed anywhere, to be combined with I, and to be used with & and; metasyntax.

It should be possible to use the: modifiers on the output of command substitutions. All and more than
one: modifier should be allowed on $ substitutions.

Your terminal type is only examined the first time you attempt recognition.

To list all commands on the system along PATH, enter [SHIFTJ-[CNTLJ-[D].

The csh metasequence ,- does not work.

-18 -

CTAGS(l) CTAGS(l)

NAME
ctags - create a tags file

SYNOPSIS
ctags [options 1 name ...

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: UCB

DESCRIPTION

FILES

Ctags makes a tags file for ex(l) from the specified C, Pascal and Fortran sources. A tags file gives the
locations of specified objects (in this case functions) in a group of files. Each line of the tags file contains
the function name, the file in which it is defined, and a scanning pattern used to find the function
definition. These are given in separate fields on the line, separated by blanks or tabs. Using the tags file,
ex can qUickly find these function definitions.

The options are as follows:

-8 use backward searching patterns (7 ... 7).

-F use forward searching patterns (/ .. ./) (default).

-a Add the information from the files to the tags file. Unlike re-building the tags file from the
original files, this can cause the same symbol to be entered twice in the tags file. This option
should be used with caution.

-t create tags for typedefs.

-u causes the specified files to be updated in tags. That is, all references to them are deleted, and
the new values are appended to the file. This option is rather slow; it is usually faster to simply
rebuild the tags file.

-v A page index is prepared on the standard output. This listing contains the function name, file
name, and page number within that file (assuming 56 lines pages to match pr(l)). Since the
output is sorted into lexicographic order, it may be desirable to run the output through sort -f,
as in

ctags -v files I sort -f >index

-w suppresses warning diagnostics.

-x causes ctags to print a simple function index. This is done by assembling a list of function
names, file names on which each function is defined, the line numbers where each function
name occurs, and the text of each line. The list is then printed on the standard output.

Files whose name ends in .c or .h are assumed to be C source files and are searched for C routine and
macro definitions. Others are first examined to see if they contain any Pascal or Fortran routine
definitions; if not, they are processed again looking for C definitions.

The tag main is treated specially in C programs. The tag formed is created by attaching M to the
beginning of the file name, with a trailing .c removed, if any, and leading pathname components also
removed. This makes use of ctags practical in directories with more than one program.

tags output tags file

SEE ALSO

BUGS

ex(l), vi(l).

Recognition of functions, subroutines and procedures for FORTRAN and Pascal is done is a very
simple-minded way.

- 1 -

CTAGS(!) CTAGS(1)

No attempt is made to deal with block structure. If you have two Pascal procedures in different blocks
with the same name, invalid data can result.

The method of deciding whether to look for C or Pascal and FORTRAN functions is unreliable.

It does not know about #ifdefs and Pascal types.

It relies on the input being well formed to detect typedefs.

If more than one function definition appears on a single line, only the first definition will be indexed.

- 2-

CU(1C) CU(lC)

NAME
cu - call another UNIX system; terminal emulator

SYNOPSIS
eu [-sspeed 1 [-aacu 1 [-Jline 1 [-h 1 [-q 1 [-ol--e 1 telno
cu [-sspeed 1 [-h 1 [-q 1 [-0 I -e 1 -!line dir

HP-UX COMPATIBILITY
Level: Data Communications - HP-UXISTANDARD

Origin: System III

DESCRIPTION
Cu calls up another UNIX system, a terminal, or possibly a non-UNIX system. It manages an interactive
conversation with possible transfers of ASCII files. Speed gives the transmission speed (110, 150, 300,
1200, 4800, 9600); 300 is the default value. Most modems restrict you to choose between 300 and
1200.

When using a direct-connect line, the -s option has no effect. The first line which matches the -\ option
is used, and its speed is taken from L-devices.

The -a and -\ options may be used to specify device names for the ACU and communications line
devices. They can be used to override searching for the first available ACU with the right speed.

The -h option emulates local echo, supporting calls to other computer systems which expect terminals
to be in half-duplex mode.

The -q option invokes the use of ENQIACK handshake.

The -e (-0) option designates that even (odd) parity is to be generated for data sent to the remote.

Telno is the telephone number, with equal signs for secondary dial tone or minus signs for delays, at
appropriate places. The string dir for telno must be used for directly connected lines, and implies a null
ACU.

Cu will try each line listed in the file lusr/Jib/uuep/L-devices until it finds an available line with
appropriate attributes or runs out of entries. After making the connection, eu runs as two processes: the
transmit process reads data from the standard input and, except for lines beginning with -, passes it to
the remote system; the receive process accepts data from the remote system and, except for lines
beginning with -, passes it to the standard output. Normally, an automatic DC3/DC1 protocol is used to
control input from the remote so the buffer is not overrun. Lines beginning with - have special
meanings.

The transmit process interprets the following:

terminate the conversation.

-!

-!emd .. .

-$cmd .. .

-%take from [to 1

-%put from [to 1

escape to an interactive shell on the local system.

run cmd on the local system (via sh -e).

run cmd locally and send its output to the remote system.

copy file from (on the remote system) to file to on the local system. If to is
omitted, the from argument is used in both places.

copy file from (on local system) to file to on remote system. If to is omitted, the
from argument is used in both places.

send the line -. .. to the remote system. If you use eu on the remote system to
access a third remote system, send -. to cause the second remote cu to exit.

turn off the DC3/DC1 input control protocol for the remainder of the session.
This is useful in case the remote system is one which does not respond properly
to the DC3 and DC1 characters,

- 1 -

CU(lC)

FILES

CU(lC)

The receive process normally copies data from the remote system to its standard output. A line from the
remote that begins with -> initiates an output diversion to a file. The complete sequence is:

->[> l:file
zero or more lines to be written to file
->

Data from the remote is diverted (or appended, if » is used) to file. The trailing -> terminates the
diversion.

The use of -%put requires 5tO'(1) and cat(l) on the remote side. It also requires that the current erase
and kill characters on the remote system be identical to the current ones on the local system.
Backslashes are inserted at appropriate places.

The use of -%take requires the existence of echo(l) and cat(l) on the remote system. Also, stty tabs
mode should be set on the remote system if tabs are to be copied without expansion.

lusrllib/uucp/L-devices
lusrlspool/uucp/LCK.. (tty-device)
Idevlnull

SEE ALSO
cat(l), echo(1), stty(l), uucp(lC), tty(4).

DIAGNOSTICS

BUGS

Exit code is zero for normal exit, non-zero (various values) otherwise.

There is an artificial slowing of transmission by cu during the -%put operation so that loss of data is
unlikely.

-2-

CUT(l) CUT(1)

NAME
cut - cut out selected fields of each line of a file

SYNOPSIS
cut -clist [file! file2 ... J
cut -flist [-d char J [-5J [file! file2 ... J

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

DESCRIPTION
Use cut to cut out columns from a table or fields from each line of a file; in data base parlance, it
implements the projection of a relation. The fields as specified by list can be fixed length, Le., character
positions as on a punched card (-c option), or the length can vary from line to line and be marked with
a field delimiter character like tab (-f option). Cut can be used as a filter; if no files are given, the
standard input is used.

The meanings of the options are:

list A comma-separated list of integer field numbers (in increasing order), with optional - to
indicate ranges as in the -0 option of nroffitrofffor page ranges; e.g., 1,4,7; 1-3,8; -5,10 (short
for 1-5,10); or 3- (short for third through last field).

-clist The list following -c (no space) specifies character positions (e.g., -c1-72 would pass the first
72 characters of each line).

-flist The list following -f is a list of fields assumed to be separated in the file by a delimiter character
(see -d); e.g. ,-£1,7 copies the first and seventh field only. Lines with no field delimiters will be
passed through intact (useful for table subheadings), unless -5 is specified.

-dchar The character following -d is the field delimiter (-f option only). Default is tab. Space or other
characters with special meaning to the shell must be quoted.

-5 Suppresses lines with no delimiter characters in case of -f option. Unless specified, lines with
no delimiters will be passed through untouched.

Either the -c or -f option must be specified.

Hints
Use grep (I) to make horizontal "cuts" (by context) through a file, or paste (I) to put files together
column-wise (Le., horizontally). To reorder columns in a table, use cut and paste.

EXAMPLES
cut-d: -fl,5/etc/passwd mapping of userlD to names

name = 'who am i I cut -fl -d" ". to set name to current login name.

SEE ALSO
grep(I}, paste(I}.

DIAGNOSTICS
line too long A line can have no more than 511 characters or fields.

bad list for c If option Missing -c or -f option or incorrectly specified list. No error occurs if a line has
fewer fields than the list calls for.

no fields The list is empty.

- 1 -

CXREF(I) Series 500 Only CXREF(I)

NAME
cxref - generate C program cross-reference

SYNOPSIS
cxref [options J files

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System V

Remarks: exrefis implemented on the Series 500 only.

DESCRIPTION

FILES

Cxref analyzes a collection of C files and attempts to build a cross-reference table. Cxref utilizes a special
version of epp to include #define'd information in its symbol table. It produces a listing on standard
output of all symbols (auto, static, and global) in each file separately, or with the -c option, in
combination. Each symbol contains an asterisk (*) before the declaring reference.

In addition to the -D, -I and -U options (which are identical to their interpretation by ee(l)), the
following options are interpreted by exref:

-c Print a combined cross-reference of all input files.

-wnum Width option, which formats output no wider than num (decimal) columns. This option
defaults to 80 if num is not specified or is less than 51.

-0 file Direct output to the named file.

-5 Operate silently; do not print input file names.

-t Format listing for 80-column width.

lusrllib/xcpp special version of C-preprocessor.

lusrllib/xpass special version of C-compiler front-end.

SEE ALSO
cc(1).

DIAGNOSTICS

BUGS

Error messages are unusually cryptic, but usually mean that you cannot compile these files.

Cxref considers a formal argument in a #define macro definition to be a declaration of that symbol. For
example, a program that #includes ctype_h will contain many declarations of the variable c.

Since exref operates by running special versions of the C-preprocessor and the C-compiler front-end, if
a file cannot be compiled, it usually cannot be processed by exref

- 1 -

DATE(1) DATE(l)

NAME
date - print and set the date

SYNOPSIS
date [mmddhhmm[yy II [+ format 1

HP-UX COMPATIBILITY
Level: HP-UX/NUCLEUS

Origin: System III

DESCRIPTION
If no argument is given, or if the argument begins with +, the current date and time are printed. Oth­
erwise, the current date is set. The first mm is the month number; dd is the day number in the month; hh
is the hour number (24 hour system); the second mm is the minute number; y.y is the last 2 digits of the
year number and is optional. For example:

date 10080045

sets the date to Oct 8, 12:45 AM. The current year is the default if no year is mentioned. The system
operates in GMT. Date takes care of the conversion to and from local standard and daylight time.

Attempting to set the date backwards generates a warning, and requires an extra confirmation from the
(super-)user.

If the argument begins with +, the output of date is under the control of the user. The format for the
output is similar to that of the first argument to print/(3S). All output fields are of fixed size (zero padded
if necessary). Each field descriptor is preceded by % and will be replaced in the output by its correspon­
ding value. A single % is encoded by % %. All other characters are copied to the output without
change. The string is always terminated with a new-line character.

Date writes an accounting record on the file lusr/adm/wtmp.

Field Descriptors:
n insert a new-line character

insert a tab character
m month of year - 01 to 12
d day of month - 01 to 31
y last 2 digits of year - 00 to 99
D date as mm/dd/yy
H hour-OO to 23
M minute - 00 to 59
S second - 00 to 59
T time as HH:MM:SS

Julian date - 001 to 366
w day of week - Sunday = 0
a abbreviated weekday - Sun to Sat
h abbreviated month - Jan to Dec
r time in AM/PM notation

HARDWARE DEPENDENCIES
Series 500:

The file Idev/kmem is not used.

Do not change the date and/or time in the BASIC language system if your machine also runs HP-

-1-

DATE(1)

ux. The two operating systems' date and time are incompatible.

EXAMPLE
date' + DATE: '7om/'70d/'70y'70nTIME: '7oH'70M:'70S'

FILES

would generate as output:

DATE: 08/01176
TIME: 14:45:05

/dev/kmem
/usr/adm/wtmp

SEE ALSO
ctime(3C).

DIAGNOSTICS
No permission if you aren't the super-user and you try to change the date;

bad conversion if the date set is syntactically incorrect:

bad format character if the field descriptor is not recognizable.

-2-

DATE(l)

DC(I) DC(I)

NAME
dc - desk calculator

SYNOPSIS
de [file J

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System V

DESCRIPTION
De is an arbitrary precision arithmetic package. Ordinarily it operates on decimal integers, but you may
specify an input base, output base, and a number of fractional digits to be maintained. (See bell), a
preprocessor for de that provides infix notation and a C-like syntax that implements functions. Be also
provides reasonable control structures for programs.) The overall structure of de is a stacking (reverse
Polish) calculator. If an argument is given, input is taken from that file until its end, then from the
standard input. An end of file on standard input or the q command stop dc. The following
constructions are recognized:

number The value of the number is pushed on the stack. A number is an unbroken string of
the digits 0-9 or A-F. It may be preceded by an underscore (_) to input a negative
number. Numbers may contain decimal points.

sx

Ix

d

p

The top two values on the stack are added (+), subtracted (-), multiplied (*), divided
(I), remaindered (%), or exponentiated n. The two entries are popped off the stack;
the result is pushed on the stack in their place. Any fractional part of an exponent is
ignored and a warning generated.

The top of the stack is popped and stored into a register named x, where x may be any
character. If the s is capitalized, x is treated as a stack and the value is pushed on it.

The value in register x is pushed on the stack. The register x is not altered. All registers
start with zero value. If the I is capitalized, register x is treated as a stack and its top
value is popped onto the main stack.

The top value on the stack is duplicated.

The top value on the stack is printed. The top value remains unchanged. P interprets
the top of the stack as an ASCII string, removes it, and prints it.

All values on the stack are printed.

q exits the program. If executing a string, the recursion level is popped by two. If q is
capitalized, the top value on the stack is popped and the string execution level is
popped by that value.

x treats the top element of the stack as a character string and executes it as a string of de
commands.

X replaces the number on the top of the stack with its scale factor.

[... 1 puts the bracketed ASCII string onto the top of the stack. Strings may be nested by
using nested pairs of brackets.

<x >x = x The top two elements of the stack are popped and compared. Register x is evaluated
if they obey the stated relation.

v replaces the top element on the stack by its square root. Any existing fractional part of
the argument is taken into account, but otherwise the scale factor is ignored.

interprets the rest of the line as an HP-UX system command, unless the next character
is <, >, or =, in which case the appropriate relational operator is used.

- 1 -

DC(l)

c

o

o
k

K

z

Z

?

DC(1)

All values on the stack are popped.

The top value on the stack is popped and used as the number radix for further input.

Pushes the input base on the top of the stack.

The top value on the stack is popped and used as the number radix for further output.

pushes the output base on the top of the stack.

the top of the stack is popped, and that value is used as a non-negative scale factor: the
appropriate number of places are printed on output, and maintained during
multiplication, division, and exponentiation. The interaction of scale factor, input
base, and output base will be reasonable if all are changed together.

pushes the scale factor on the top of the stack.

The stack level is pushed onto the stack.

replaces the number on the top of the stack with its length.

A line of input is taken from the input source (usually the terminal) and executed.

, • are used by .I bc for array operations.

The input base may be any number, but only the digits 0--9 and A-F are available for input, thus limiting
the usefulness of bases outside the range 1-16. All 16 possible digits may be used in any base; they
always take their conventional values.

The output base may be any number. Bases in the range of 2-16 generate the "usual" results, with
letters A-F representing the values from 10 through 15. Base 1 generates a string of l's whose length is
the value of the number. Base 0 generates a similiar string consisting of d's. Other bases have each
"digit" represented as a (multi-digit) decimal number giving the ordinal of that digit. Each "digit" is
signed for negative bases. Given the definition of output base, the command Op will always yield
"10", regardless of the base; 01-p yields useful information about the output bases.

SEE ALSO
bc(1).

DIAGNOSTICS
x is unimplemented

where x is an octal number.

stack empty
when there are not enough elements on the stack to do what was asked.

OutoJspace
when the free list is exhausted (too many digits).

Out oj headers
when there are too many numbers being kept around.

Out oj pushdown
when there are too many items on the stack.

Nesting Depth
when there are too many levels of nested execution.

-2-

DD(I) DD(1)

NAME
dd - convert, reblock, translate, and copy a (tape) file

SYNOPSIS
dd [option = value 1 ...

HP-UX COMPATIBILITY
Level: HP-Ux/STANDARD

Origin: System 1II

DESCRIPTION
Dd copies the specified input file to the specified output with possible conversions. The standard input
and output are used by default. The input and output block size may be specified to take advantage of
raw physical I/O.

option
if= file
of=file
ibs=n
obs=n
bs=n

cbs=n
skip=n
seek=n
count=n
conv=ascii

ebcdic
ibm
lease
ucase
swab
noerror

values
input file name; standard input is default.
output file name; standard output is default.
input block size. n bytes (default 512).
output block size (default 512).
set both input and output block size, superseding ibs and obs; also, if no conversion is
specified, it is particularly efficient since no in-core copy need be done.
conversion buffer size.
skip n input records before starting copy.
seek n records from beginning of output file before copying.
copy only n input records.
convert EBCDIC to ASCII.
convert ASCII to EBCDIC.
slightly different map of ASCII to EBCDIC.
map alphabetics to lower case.
map alphabetics to upper case.
swap every pair of bytes.

do not stop processing on an error.
sync pad every input record to ibs .
. . . • . .. several comma-separated conversions.

Where sizes are specified, a number of bytes is expected. A number may end with k, b, or w to specify
multiplication by 1024, 512, or 2 respectively; a pair of numbers may be separated by x to indicate a
product.

Cbs is used only if ascii or ebcdic conversion is specified. In the former case cbs characters are placed
into the conversion buffer, converted to ASCII, and trailing blanks are trimmed and a new-line is added
before sending the line to the output. In the latter case ASCII characters are read into the conversion
buffer, converted to EBCDIC, and blanks added to make up an output record of size cbs.

After completion, dd reports the number of whole and partial input and output blocks.

EXAMPLE
This command will read an EBCDIC tape blocked ten 80-byte EBCDIC card images per record into the
ASCII file x:

dd if=/dev/rmtO of=x ibs=800 cbs=80 conv=ascii,icase

Note the use of raw magtape. Dd is especially suited to I/O on the raw physical devices because it allows
reading and writing in arbitrary record sizes.

SEE ALSO
cp(l), tr(l).

- 1 -

00(1) 00(1)

DIAGNOSTICS
f + P records inC out) numbers of full and partial records read (written)

WARNING

BUGS

You may experience trouble writing directly to or reading directly from a cartridge tape. For best results,
use teio(1) as an input or output filter. For example, use

... I dd... I tcio -ovVS 256 /dev/rct

for output to a cartridge tape, and

tcio -ivS 256 /dev/rct dd . .. I ...

for input from a cartridge tape.

The ASCII/EBCDIC conversion tables are taken from the 256 character standard in the CACM Nov,
1968. The ibm conversion, while less Widely accepted as a standard, corresponds better to certain IBM

print train conventions. There is no universal solution.

New-lines are inserted only on conversion to ASCII; padding is done only on conversion to EBCDIC.
These should be separate options.

-2-

DELTA(l) DELTA(l)

NAME
delta - make a delta (change) to an sees file

SYNOPSIS
delta [-rSIDJ [-s] [-nJ [-glistJ [-m[mrlistll [-y[commentll [-PJ files

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

DESCRIPTION
Delta is used to permanently introduce into the named sees file changes that were made to the file
retrieved by get (1) (called the g-file, or generated file).

Delta makes a delta to each named sees file. If a directory is named, delta behaves as though each file
in the directory were specified as a named file, except that non-SeeS files (last component of the path
name does not begin with s.) and unreadable files are silently ignored. If a name of - is given, the
standard input is read (see WARNINGS); each line of the standard input is taken to be the name of an
sees file to be processed.

Delta may issue prompts on the standard output depending upon certain keyletters specified and flags
(see admin(l)) that may be present in the sees file (see -m and -y keyletters below).

Keyletter arguments apply independently to each named file.

-rSID Uniquely identifies which delta is to be made to the sees file. The use of this
keyletter is necessary only if two or more outstanding gets for editing (get -e) on
the same sees file were done by the same person (login name). The SID value
specified with the -r keyletter can be either the SID specified on the get
command line or the SID to be made as reported by the get command (see
get(l)). A diagnostic results if the specified SID is ambiguous, or, if necessary
and omitted on the command line.

-s

-n

-glist

-m[mrlistJ

-y[commentJ

Suppresses the issue, on the standard output, of the created delta's SID, as well
as the number of lines inserted, deleted and unchanged in the sees file.

Specifies retention of the edited g-file (normally removed at completion of delta
processing).

Specifies a list (see get (1) for the definition of list) of deltas which are to be
ignored when the file is accessed at the change level (SID) created by this delta.

If the sees file has the v flag set (see admin(l)) then a Modification Request
(MR) number must be supplied as the reason for creating the new delta.

If -m is not used and the standard input is a terminal, the prompt MRs? is issued
on the standard output before the standard input is read; if the standard input is
not a terminal, no prompt is issued. The MRs? prompt always precedes the
comments? prompt (see -y keyletter).

MRs in a list are separated by blanks and/or tab characters. An unescaped
new-line character terminates the MR list.

Note that if the v flag has a value (see admin(1)), it is taken to be the name of a
program (or shell procedure) which will validate the correctness of the MR
numbers. If a non-zero exit status is returned from MR number validation
program, delta terminates (it is assumed that the MR numbers were not all
valid).

Arbitrary text used to describe the reason for making the delta. A null string is
considered a valid comment.

- 1 -

DELTA(l) DELTA(l)

FILES

-p

If -y is not specified and the standard input is a terminal, the prompt
comments? is issued on the standard output before the standard input is read;
if the standard input is not a terminal, no prompt is issued. An unescaped new­
line character terminates the comment text.

Causes delta to print (on the standard output) the sees file differences before
and after the delta is applied in a diff(1) format.

All files of the form ?-file are explained in the Source Code Control System User's Guide. The naming
convention for these files is also described there. All files below except the g-file are created in the same
directory as the s-file. The g-file is created in the user's working directory.

g-file Existed before the execution of delta; removed after completion of delta (unless -n was

p-file
q-file
x-file
z-file
d-file

specified).
Existed before the execution of delta; may exist after completion of .delta.
Created during the execution of delta; removed after completion of delta.
Created during the execution of delta; renamed to sees file after completion of delta.
Created during the execution of delta; removed during the execution of delta.
Created during the execution of delta; removed after completion of delta.

/usrlbin/bdiff Program to compute differences between the "gotten" file and the g-file.

SEE ALSO
admin(l), bdiff(l), get(l), help(l), prs(l), sccsfile(S).
sees User's Guide in HP-UX Concepts and Tutorials.

DIAGNOSTICS
Use help (1) for explanations.

WARNINGS
Lines beginning with an SOH ASCII character (octal 001) cannot be placed in the sees file unless the
SOH is escaped. This character has special meaning to sees (see sccsfile(S)) and will cause an error.

A get of many sees files, followed by a delta of those files, should be avoided when the get generates a
large amount of data. Instead, multiple get/delta sequences should be used.

If the standard input (-) is specified on the delta command line, the -m (if necessary) and -y keyletters
must also be present. Omission of these keyletters causes an error to occur.

-2-

DEROFF(l) DEROFF(1)

NAME
deroff - remove nroffltroff, tbl, and eqn constructs

SYNOPSIS
deroff [-w 1 [-mx 1 [files 1

HP-UX COMPATIBILITY
Level: Text processing - HP-UX/EXTENDED

Origin: System III

DESCRIPTION
Deraff reads each of the files in sequence and removes all troff(1) requests, macro calls, backslash con­
structs, eqn(l) constructs (between .EQ and .EN lines, and between delimiters), and tbl(l) descriptions.
and writes the remainder of the file on the standard output. Deraff follows chains of included files (.50

and .nx traff commands); if a file has already been included. a .50 naming that file is ignored and a .nx
naming that file terminates execution. If no input file is given, deraff reads the standard input.

The -m option may be followed by an m, 5, or I. The resulting -mm or -ms option causes the mm or
ms macros to be interpreted so that only running text is output (i.e., no text from macro lines.) The -ml
option forces the -mm option and also causes deletion of lists associated with the mm macros.

If the -w option is given, the output is a word list, one "word" per line, with all other characters deleted.
Otherwise, the output follows the original, with the deletions mentioned above. In text, a "word" is any
string that contains at least two letters and is composed of letters. digits. ampersands (&), and apos­
trophes ('); in a macro call, however, a "word" is a string that begins with at least two letters and con­
tains a total of at least three letters. Delimiters are any characters other than letters, digits, apostrophes.
and ampersands. Trailing apostrophes and ampersands are removed from" words" .

SEE ALSO

BUGS

eqn(l), tbl(1), troH(l).

Deraff is not a complete troff interpreter, so it can be confused by subtle constructs. Most such errors
result in too much rather than too little output.
The -ml option does not handle nested lists correctly.

-1-

DF(l)

NAME
df - report number of free disk blocks

SYNOPSIS
df [-t 1 [-f 1 [file-systems 1

HP-UX COMPATIBILITY
Level: HP-UXJNUCLEUS

Origin: System 1II

DESCRIPTION

DF(l)

Df prints out the number of free blocks and free i-nodes available for on-line file systems by examining
the counts kept in the super-blocks; file-systems may be specified either by device name or by mounted
directory name. If the file-systems argument is unspecified, the free space on all of the mounted file sys­
tems is printed.

The -t flag causes the total allocated block figures to be reported as well.

If the -f flag is given, only an actual count of the blocks in the free list is made (free i-nodes are not repor­
ted). With this option, df will report on raw devices.

HARDWARE DEPENDENCIES
Series 500:

Df cannot report on unmounted raw devices.

FILES
Idev/HP79*
Idev/HP9l*
Idev/HP98*
Idev/HP829* 1
letc!mnttab

SEE ALSO
du(l), fs(5), mnttab(5), fsck(8).

-1-

DIFF(l) DIFF(l)

NAME
diff, diffh - differential file comparator

SYNOPSIS
diff [-efbh 1 file1 file2

lusr/lib/diffh file 1 file2

HP·UX COMPATIBILITY
Level: Hp·UX/STANDARD

Origin: System III

DESCRIPTION

FILES

Diff tells what lines must be changed in two files to bring them into agreement. If filel (file2) is -, the
standard input is used. Iffilel (file2) is a directory, then a file in that directory with the namefile2 (file!)
is used. The normal output contains lines of these forms:

n! a n3,n4
nl,n2 d n3
n! ,n2 c n3,n4

These lines resemble ed commands to convert file! into file2. The numbers after the letters pertain to
file2. In fact, by exchanging a for d and reading backward one may ascertain equally how to convert
file2 into file!. As in ed, identical pairs where n! = n2 or n3 = n4 are abbreviated as a single number.

Following each of these lines come all the lines that are affected in the first file flagged by <, then all the
lines that are affected in the second file flagged by >.
The -b option causes trailing blanks (spaces and tabs) to be ignored and other strings of blanks to com­
pare equal.

The -e option produces a script of a, c and d commands for the editor ed, which will recreate file2 from
filel. The -f option produces a similar script, not useful with ed. in the opposite order. In connection
with -e, the following shell program may help maintain multiple versions of a file. Only an ancestral file
($1) and a chain of version-to-version ed scripts ($2,$3, ...) made by difJ need be on hand. A "latest
version" appears on the standard output.

(shift; cat $*; echo' 1,$p') ed - $1

Except in rare circumstances. diff finds a smallest sufficient set of file differences.

Option -h does a fast, half-hearted job. It works only when changed stretches of text are short and
well-separated, but does work on files of unlimited length. Options -e and -f are unavailable with -h.

Diffh is equivalent to diff -h. It must be invoked as shown above in the synopsis, unless the PATH vari­
able in your environment includes the directory lusrllib.

Itmp/d?????
/usr/lib/diffh for-h

SEE ALSO
cmp(1), comm(l), diff3(l), diffmk(1), dircmp(1), ed(1), sccsdiff(1), sdiff(1).

DIAGNOSTICS

BUGS

Exit status is 0 for no differences, 1 for some differences, 2 for trouble.

Editing scripts produced under the -e or -f option are naive about creating lines consisting of a single
period (.).

The specified files must contain ASCII text in the same format as that produced by the HP-UX editors (ed,
ex, vi). That is, all lines (including the last) must end with a new-line. Diff will not recognize a final line if
the terminating new-line is not there.

-1-

DIFFMK(l) DIFFMK(l)

NAME
diffmk - mark differences between files

SYNOPSIS
diffmk namel name2 name3

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System V

DESCRIPTION
Diffmk compares two versions of a file and creates a third file that includes "change mark" commands
for nroff. Name] and name2 are the old and new versions of the file. Diffmk generates name3, which
contains the lines of name2 plus inserted formatter "change mark" (.mc) requests. When name3 is
formatted, changed or inserted text is shown by I at the right margin of each line. The position of
deleted text is shown by a single *.

If anyone is so inclined, diffmk can be used to produce listings of C (or other) programs with changes
marked. A typical command line for such use is:

diffmk old.c new.c tmp; nroff macs tmp I pr

where the file macs contains:

.pl I

.11 77

.nf

.eo

.nc

The .11 request might specify a different line length, depending on the nature of the program being
printed. The .eo and .nc requests are probably needed only for C programs.

If the characters I and * are inappropriate, a copy of diffmk can be edited to change them (diffmk is a
shell procedure).

SEE ALSO

BUGS

diff(l), nroff(l).

Aesthetic considerations may dictate manual adjustment of some output. File differences involving only
formatting requests may produce undesirable output, i.e., replacing .sp by .sp 2 will produce a "change
mark" on the preceding or following line of output.

Although unlikely, certain combinations of formatting requests may cause change marks to either
disappear or to mark too much. Manual intervention may be required as the subtleties of all the various
formatting macro packages and preprocessors is beyond the scope of diffmk.

The input to tbl(I) cannot tolerate. mc commads. Any. mc that would appear inside a . TS range will be
silently deleted. The script can be changed if this action is inappropriate or diffmk can be run on the
output from tbl(l).

diffmk uses diff and thus has whatever limitations on file size and performance that diff may impose. In
particular the performance is non-linear with the size of the file, and very large files (well over 1000 lines)
may take extremely long to process. Breaking the file into smaller pieces may be advisable.

diffmk also uses ed(l), and if the file is too large for ed, ed error messages may be imbedded in the file.
Again, breaking the file into smaller pieces may be advisable.

- I -

DIRCMP(l) DIRCMP(l)

NAME
dircmp - directory difference comparison

SYNOPSIS
dircmp [-d] [-8] dirl dir2

HP·UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

DESCRIPTION

FILES

Dircmp examines dirl and dir2 and generates various tabulated information about the contents of the
directories.

First, dircmp generates a listing, with an appropriate heading, of all files which are found in dir] or dir2,
but not both.

Then, if one or more files are found which are common to both directories, dircmp examines each fiie to
determine its type. If the file is a directory or a special file, dircmp states this fact and moves on to the
next file. If the file is an ordinary file, dircmp compares them (using cmp(1)), and states whether or not
the files are the same.

The options are as follows:

-d run diffil) on ordinary files which occur in both directories but which have different
contents, and generate a print-out, with an appropriate heading, which displays the
result. Without this option, dircmp simply states that the two files are different, and
proceeds.

-8 suppress ali output except that which describes the actual differences between dir} and
dir2 (Le. dircmp prints only a list of files unique to each directory, and a list of files
common to both directories but having different contents).

lusr/tmp/dc* [a-g]

SEE ALSO

temporary files

cmp(l), diff(l).

DIAGNOSTICS
Dircmp generates appropriate error messages about incorrect syntax. Also, a message is generated if
dirl or dir2 is not a valid directory name.

- 1 -

DU(1) DU(I)

NAME
du - summarize disk usage

SYNOPSIS
du [-ar5 1 [nam€s 1

HP-UX COMPATlBIUIY
Level: HP-UX/NUCLEUS

Origin: System 1Il

DESCRIPTION

BUGS

Du gives the number of blocks contained in all files and (recursively) directories within each directory
and file specified by the names argument. The block count includes the indirect blocks of the file. If
names is missing, . is used.

The optional argument -5 causes only the grand total (for each of the specified names) to be given. The
optional argument -a causes an entry to be generated for each file. Absence of either causes an entry to
be generated for each directory only.

Du is normally silent about directories that cannot be read. files that cannot be opened, etc. The-r
option will cause du to generate messages in such instances.

A file with two or more links is only counted once.

If the -a option is not used, non-directories given as arguments are not listed.
If there are too many distinct linked files, du will count the excess files more than once.
Files with holes in them will get an incorrect block count.
If multiple links are involved, du can give different results, depending on the order of names.

-1-

ECHO(l) ECHO(l)

NAME
echo - echo (print) arguments

SYNOPSIS
echo [arg 1 ...

HP-UX COMPATIBILITY
Level: HP-UX/NUCLEUS

Origin: System 1II

DESCRIPTION
Echo writes its arguments separated by blanks and terminated by a new-line on the standard output If
echo's arguments are not quoted, or are enclosed in double quotes (" ... "), all metacharacters are
expanded according to the shell's interpretation. Thus, echo can be used to verify how a certain
metacharacter pattern is going to be interpreted by the shell.

Echo also understands C-Iike escape conventions, which are listed below:

'" b backspace
'" c print line without new-line "'f form-feed "'0 new-line
"'r carriage return "'t tab
"'n the 8-bit character whose ASCII code is the 1-, 2- or 3-digit octal number n, which must

start with a zero.

Note that these escape sequences are first interpreted by the shell before being passed to echo. Thus, if
the arguments are unquoted, or quoted with double quotes, the backslash must be doubled to prevent
premature Interpretation by the shell. If the arguments are enclosed in single quotes, then the above
escapes may be typed as shown.

To produce a literal backslash on the output, it must be doubled (if unquoted or quoted by double
quotes). If quoted with single quotes, a single backslash suffices.

Echo is useful for producing diagnostics in command files and for sending known data into a pipe.

SEE ALSO
sh(l).

- 1 -

ED(1) ED(1)

NAME
ed - text editor

SYNOPSIS
ed[-)[-xl[filel

HP-UX COMPATIBILITY
Level: HP-UXIDEVELOPMENT

Origin: System III

DESCRIPTION
Ed is the standard (line-oriented) text editor. If the file argument is given, ed simulates an e command
(see below) on the named file; that is to say, the file is read into ed's buffer so that it can be edited. The
optional- suppresses the printing of character counts bye, r, and w commands, of diagnostics from e
and q commands, and of the ! prompt after a !shell command. If -x is present, an x command is
simulated first to handle an encrypted file. Ed operates on a copy of the file it is editing; changes made
to the copy have no effect on the file until a w (write) command is given. The copy of the text being
edited resides in a temporary file called the buffer. There is only one buffer.

Commands to ed have a simple and regular structure: zero, one, or two addresses followed by a single­
character command, possibly followed by parameters to that command. These addresses specify one or
more lines in the buffer. Every command that requires addresses has default addresses, so that the
addresses can very often be omitted.

In general, only one command may appear on a line. Certain commands allow the input of text. This
text is placed in the appropriate place in the buffer. While ed is accepting text, it is said to be in input
mode. In this mode, no commands are recognized; all input is merely collected. Input mode is left by
typing a period (.) alone at the beginning of a line.

Ed supports a limited form of regular expression notation; regular expressions are used in addresses to
specify lines and in some commands (e.g., s) to specify portions of a line that are to be substituted. A
regular expression (RE) specifies a set of character strings. A member of this set of strings is said to be
matched by the RE. The REs allowed by ed are constructed as follows:

The follOWing one-character REs match a single character:

1.1 An ordinary character (not one of those discussed in 1.2 below) is a one-character RE that matches
itself.

1.2 A backslash ("') followed by any special character mentioned below is a one-character RE that
matches the special character itself. The special characters are:

a. ., *, [, and", (period, asterisk, left square bracket, and backslash, respectively), which are
always special, except when they appear within square brackets ([I; see 1.4 below).

b. "(caret or circumflex), which is special at the beginning of an entire RE (see 3.1 and 3.2 below),
or when it immediately follows the left ofa pair of square brackets ([I) (see 1.4 below).

c. $ (currency symbol), which is special at the end of an entire RE (see 3.2 below).

d. The character used to bound (Le., delimit) an entire RE, which is special for that RE (for
example, see how slash (/) is used in the g command, below.)

1.3 A period (.) is a one-character RE that matches any character except new-line.

1.4 A non-empty string of characters enclosed in square brackets ([I) is a one-character RE that
matches anyone character in that string. If, however, the first character of the string is a circumflex
n, the one-character RE matches any character except new-line and the remaining characters in
the string. The" has this special meaning only if it occurs first in the string. The minus (-) may be
used to indicate a range of consecutive ASCII characters; for example, [0-91 is equivalent to
[01234567891. The -loses this special meaning if it occurs first (after an initial", if any) or last in

- 1 -

ED(1) ED(l)

the string. The right square bracket (I) does not terminate such a string when it is the first character
within it (after an initial·, if any); e.g., [la-£] matches either a right square bracket (J) or one of the
letters a through f inclusive. The four characters listed in 1.2.a above stand for themselves within
such a string of characters.

The following rules may be used to construct RE s from one-character REs:

2.1 A one-character RE followed by an asterisk (*) is a RE that matches zero or more occurrences of
the one-character RE. If there is any choice, the longest leftmost string that permits a match is
chosen.

2.2 A one-character RE followed by "-{m"-}, "-{m, "-}, or "-{m,r."-} is a RE that matches a range
of occurrences of the one-character RE. The values of m and n must be non-negative integers
less than 256; "-{m"-} matches exactly m occurrences; "-{m, "-} matches at least m
occurrences; "-{m,n"-} matches any number of occurrences between m and n inclusive.
Whenever a choice exists, the RE matches as many occurrences as possible.

2.3 The concatenation of REs is a RE that matches the concatenation of the strings matched by each
component of the RE.

2.4 A RE enclosed between the character sequences "-(and "-) is a RE that matches whatever the
unadorned RE matches.

2.5 The expression "-n matches the same string of characters as was matched by an expression
enclosed between "-(and "-) earlier in the same RE. Here n is a digit; the sub-expression
specified is that beginning with the n-th occurrence of "-(counting from the left. For example,
the expression ·"-(.*,,-)"-1$ matches a line consisting of two repeated appearances of the
same string.

Finally, an entire RE may be constrained to match only an initial segment or final segment of a line (or
both):

3.1 A circumflex n at the beginning of an entire RE constrains that RE to match an initial segment of a
line.

3.2 A currency symbol ($) at the end of an entire RE constrains that RE to match afinal segment of a
line. The construction· entire RE$ constrains the entire RE to match the entire line.

The null RE (e.g., II) is equivalent to the last RE encountered. See also the last paragraph before FILES
below.

To understand addressing in ed it is necessary to know that at any time there is a current line. Generally
speaking, the current line is the last line affected by a command; the exact effect on the current line is
discussed under the description of each command. Addresses are constructed as follows:

1. The character. addresses the current line.

2. The character $ addresses the last line of the buffer.

3. A decimal number n addresses the n-th line of the buffer.

4. IX addresses the line marked with the mark name character x, which must be a lower-case letter.
Lines are marked with the k command described below.

5. A RE enclosed by slashes (I) addresses the first line found by searching forward from the line
following the current line toward the end of the buffer and stopping at the first line containing a
string matching the RE. If necessary, the search wraps around to the beginning of the buffer and
continues up to and including the current line, so that the entire buffer is searched. See also the
last paragraph before FILES below.

6. A RE enclosed in question marks (?) addresses the first line found by searching backward from the
line preceding the current line toward the beginning of the buffer and stopping at the first line
containing a string matching the RE. If necessary, the search wraps around to the end of the buffer

-2-

ED(t) ED(t)

and continues up to and including the current line. See also the last paragraph before FILES
below.

7. An address followed by a plus sign (+) or a minus sign (-) followed by a decimal number specifies
that address plus (respectively minus) the indicated number of lines. The plus sign may be
omitted.

8. If an address begins with + or -, the addition or subtraction is taken with respect to the current
line; e.g, -5 is understood to mean .-5.

9. If an address ends with + or -, then 1 is added to or subtracted from the address, respectively. As
a consequence of this rule and of rule 8 immediately above, the address - refers to the line
preceding the current line. (To maintain compatibility with earlier versions of the editor, the
character A in addresses is entirely equivalent to -.) Moreover, trailing + and - characters have a
cumulative effect, so - refers to the current line less 2.

10. For convenience, a comma (,) stands for the address pair 1,$, while a semicolon (;) stands for the
pair. ,$.

Commands may require zero, one, or two addresses. Commands that require no addresses regard the
presence of an address as an error. Commands that accept one or two addresses assume default
addresses when an insufficient number of addresses is given; if more addresses are given than such a
command requires, the last one(s) are used.

Typically, addresses are separated from each other by a comma (,). They may also be separated by a
semicolon (;). In the latter case, the current line (.) is set to the first address, and only then is the second
address calculated. This feature can be used to determine the starting line for forward and backward
searches (see rules 5. and 6. above). The second address of any two-address sequence must
correspond to a line that follows, in the buffer, the line corresponding to the first address.

In the following list of ed commands, the default addresses are shown in parentheses. The parentheses
are not part of the address; they show that the given addresses are the default.

It is generally illegal for more than one command to appear on a line. However, any command (except
e, J, T, or w) may be suffixed by p or by I, in which case the current line is either printed or listed,
respectively, as discussed below under the p and I commands.

(.)a
<text>

(.)c
<text>

(.,.)d

eJile

The append command reads the given text and appends it after the addressed line; . is left at
the last inserted line, or, if there were none, at the addressed line. Address 0 is legal for this
command: it causes the "appended" text to be placed at the beginning of the buffer.

The change command deletes the addressed lines, then accepts input text that replaces these
lines; . is left at the last line input, or, if there were none, at the first line that was not deleted.

The delete command deletes the addressed lines from the buffer. The line after the last line
deleted becomes the current line; if the lines deleted were originally at the end of the buffer, the
new last line becomes the current line.

The edit command causes the entire contents of the buffer to be deleted, and then the named
file to be read in; . is set to the last line of the buffer. If no file name is given, the currently­
remembered file name, if any, is used (see the J command). The number of characters read is
typed; file is remembered for possible use as a default file name in subsequent e, T, and w
commands. If file begins with !, the rest of the line is taken to be a shell (sh(l)) command

- 3-

ED(1)

Efile

ffile

ED(l)

whose output is to be read. Such a shell command is not remembered as the current file name.
See also DIAGNOSTICS below.

The Edit command is like e, except that the editor does not check to see if any changes have
been made to the buffer since the last w command.

If file is given, the file-name command changes the currently-remembered file name to file;
otherwise, it prints the currently-remembered file name.

(l,$)g/RE/command list
In the global command, the first step is to mark every line that matches the given RE. Then, for
every such line, the given command list is executed with . initially set to that line. A single
command or the first of a list of commands appears on the same line as the global command.
All lines of a multi-line list except the last line must be ended with a '.; a, i, and c commands
and associated input are permitted; the. terminating input mode may be omitted if it would be
the last line of the command list. An empty command list is equivalent to the p command. The
g, G, v, and V commands are not permitted in the command list. See also BUGS and the last
paragraph before FILES below.

(l,$)GlREI

h

H

(.)i
<text>

In the interactive Global command, the first step is to mark every line that matches the given
RE. Then, for every such line, that line is printed, . is changed to that line, and any one
command (other than one of the a, c, i, g, G, v, and V commands) may be input and is
executed. After the execution of that command, the next marked line is printed, and so on; a
new-line acts as a null command; an & causes the re-execution of the most recent command
executed within the current invocation of G. Note that the commands input as part of the
execution of the G command may address and affect any lines in the buffer. The G command
can be terminated by an interrupt signal (ASCli DEL or BREAK).

The help command gives a short error message that explains the reason for the most recent?
diagnostic.

The Help command causes ed to enter a mode in which error messages are printed for all
subsequent? diagnostics. It will also explain the previous? if there was one. The H command
alternately turns this mode on and off; it is initially off.

The insert command inserts the given text before the addressed line; . is left at the last inserted
line, or, if there were none, at the addressed line. This command differs from the a command
only in the placement of the input text. Address 0 is not legal for this command.

(.,.+l)j

(.)kx

(.,.)1

The join command joins contiguous lines by removing the appropriate new-line characters. If
only one address is given, this command does nothing.

The mark command marks the addressed line with name x, which must be a lower-case letter.
The address I x then addresses this line; . is unchanged.

The list command prints the addressed lines in an unambiguous way: a few non-printing
characters (e.g., tab, backspace) are represented by (hopefully) mnemonic overstrikes, all other
non-printing characters are printed in octal, and long lines are folded. An I command may be

-4-

ED(l)

(.,.)ma

(.,.)n

(.,.)p

p

q

Q

($)r file

ED(l)

appended to any other command other than e, f, r, or w.

The move command repositions the addressed line{s) after the line addressed by a. Address 0
is legal for a and causes the addressed line{s} to be moved to the beginning of the file; it is an
error if address a falls within the range of moved lines; . is left at the last line moved.

The number command prints the addressed lines, preceding each line by its line number and a
tab character; . is left at the last line printed. The n command may be appended to any other
command other than e, f, r, or w.

The print command prints the addressed lines; . is left at the last line printed. The p command
may be appended to any other command other than e, f, r, or w; for example, dp deletes the
current line and prints the new current line.

The editor will prompt with a * for all subsequent commands. The P command alternately
turns this mode on and off; it is initially off.

The quit command causes ed to exit. No automatic write of a file is done {but see
DIAGNOSTICS below}.

The editor exits without checking if changes have been made in the buffer since the last w
command.

The read command reads in the given file after the addressed line. If no file name is given, the
currently-remembered file name, if any, is used (see e and f commands). The currently­
remembered file name is not changed unless file is the very first file name mentioned since ed
was invoked. Address 0 is legal for r and causes the file to be read at the beginning of the
buffer. If the read is successful, the number of characters read is typed; . is set to the last line
read in. If file begins with !, the rest of the line is taken to be a shell (sh{l}) command whose
output is to be read. Such a shell command is not remembered as the current file name.

{ . , .)slRElreplacementl or
{ ., . }slRElreplacementlg

The substitute command searches each addressed line for an occurrence of the specified RE. In
each line in which a match is found, all (non-overlapped) matched strings are replaced by the
replacement if the global replacement indicator 9 appears after the command. If the global
indicator does not appear, only the first occurrence of the matched string is replaced. It is an
error for the substitution to fail on all addressed lines. Any character other than space or new­
line may be used instead of I to delimit the RE and the replacement; . is left at the last line on
which a substitution occurred. See also the last paragraph before FILES below.

An ampersand {&} appearing in the replacement is replaced by the string matching the RE on
the current line. The special meaning of & in this context may be suppressed by preceding it by
",-. As a more general feature, the characters "'-n, where n is a digit, are replaced by the text
matched by the n-th regular subexpression of the specified RE enclosed between "'-(and "'-).
When nested parenthesized subexpressions are present, n is determined by counting
occurrences of "'-(starting from the left. When the character % is the only character in the
replacement, the replacement used in the most recent substitute command is used as the
replacement in the current substitute command. The % loses its special meaning when it is in a
replacement string of more than one character or is preceded by a ",-.

ED(l)

(.,.)ta

u

ED(l)

A line may be split by substituting a new-line character into it. The new-line in the replacement
must be escaped by preceding it by"'. Such substitution cannot be done as part of a g or v
command list.

This command acts just like the m command, except that a copy of the addressed lines is placed
after address a (which may be 0); . is left at the last line of the copy.

The undo command nullifies the effect of the most recent command that modified anything in
the buffer, namely the most recent a, c, d, g, i,j, m, r, s, t, v, G, or V command.

(1, $)v/REicommand list

This command is the same as the global command g except that the command list is executed
with. initially set to every line that does not match the RE.

(1,$)V/REI
This command is the same as the interactive global command G except that the lines that are
marked during the first step are those that do not match the RE.

(l,$)wfile

x

($)=

The write command writes the addressed lines into the named file. If the file does not exist, it is
created with mode 666 (readable and writable by everyone), unless your umask setting (see
sh(l)) dictates otherwise. The currently-remembered file name is not changed unless file is the
very first file name mentioned since ed was invoked. If no file name is given, the currently­
remembered file name, if any, is used (see e and f commands); . is unchanged. If the
command is successful, the number of characters written is typed. If file begins with !, the rest
of the line is taken to be a shell (sh (1)) command whose output is written to the specified file, or
to the currently-remembered file. Such a shell command is not remembered as the current file
name.

A key string is demanded from the standard input. Subsequent e, r, and w commands will
encrypt and decrypt the text with this key by the algorithm of crypt(1). An explicitly empty key
turns off encryption.

The line number of the addressed line is typed; . is unchanged by this command.

!shell command
The remainder of the line after the! is sent to the HP-UX shell (sh(1)) to be interpreted as a
command. Within the text of that command, the unescaped character % is replaced with the
remembered file name; if a ! appears as the first character of the shell command, it is replaced
with the text of the previous shell command. Thus, !! will repeat the last shell command. If any
expansion is performed, the expanded line is echoed; . is unchanged.

(. + 1)<new-line>
An address alone on a line causes the addressed line to be printed. A new-line alone is
eqUivalent to . + Ip; it is useful for stepping forward through the buffer.

If an interrupt signal (ASCII DEL or BREAK) is sent, ed prints a ? and returns to its command level.

Some size limitations: 512 characters per line, 256 characters per global command list, 64 characters per
file name, and 128K characters in the buffer. The limit on the number of lines depends on the amount
of user memory: each line takes 1 word.

When reading a file, ed discards ASCII NUL characters and all characters after the last new-line. Files
(e.g., a.out) that contain characters not in the ASCII set (bit 8 on) cannot be edited by ed.

-n-

ED(l)

FILES

ED(l)

If the closing delimiter of a RE or of a replacement string (e.g., I) would be the last character before a
new-line, that delimiter may be omitted, in which case the addressed line is printed. The following pairs
of commands are equivalent:

slslls2 s/slls2/p
glsl glsllp
?sl ?sl?

Itmp/e# temporary; # is the process number.
ed. hup work is saved here if the terminal is hung up.

SEE ALSO
awk(I), crypt(I), ex(I), grep(I), sed(I), sh(I), vi(I).

The Ed Editor, in HP-UX Concepts and Tutorials.

DIAGNOSTICS

BUGS

? for command errors.

?file for an inaccessible file.
(use the help and Help commands for detailed explanations).

If changes have been made in the buffer since the last w command that wrote the entire buffer, ed warns
the user if an attempt is made to destroyed's buffer via the e or q commands: it prints? and allows one
to continue editing. A second e or q command at this point will take effect. The - command-line option
inhibits this feature.

A! command cannot be subject to a g or a v command.
The! command and the! escape from the e, r, and w commands cannot be used if the the editor is
invoked from a restricted shell (see sh(I)).
The sequence "'.0 in a RE does not match any character.
The I command mishandles DEL.
Files encrypted directly with the crypt(l) command with the null key cannot be edited.
Because 0 is an illegal address for the w command, it is not possible to create an empty file with ed.

On systems which do not support crypt(l), the - x option and the X command are not available.

-7-

ENABLE(l) ENABLE(l)

NAME
enable, disable - enable or disable LP printers

SYNOPSIS
enable printers
disable [-c 1 [-r[reason 11 printers

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System V

DESCRIPTION

FILES

Enable activates the named printers, enabling them to print requests taken by Ip(l). Use Ipstat(l) to find
the status of printers.

Disable deactivates the named printers, disabling them from printing requests taken by lp(l). By default,
any requests that are currently printing on the designated printers will be reprinted in their entirety either
on the same printer or on another member of the same class. Use lpstat(1) to find the status of printers.
Options useful with disable are:

-c Cancel any requests that are currently printing on any of the designated printers.

-r[reason 1 Associate a reason with the deactivation of the printers. This reason applies to all printers
mentioned up to the next -r option. If the -r option is not present or the -r option is given
without a reason, then a default reason will be used. Reason is reported by lpstat(l).

/usr/spool/lp/ *
SEE ALSO

Jp(l), Jpstat(l).

- 1 -

ENV(l) ENV(1)

NAME
env - set environment for command execution

SYNOPSIS
env [-l [name = value 1 ... [command args 1

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System 1Il

DESCRIPTION
Env obtains the current environment. modifies it according to its arguments. then executes the command
with the modified environment. Arguments of the form name = value are merged into the inherited
environment before the command is executed. The - flag causes the inherited environment to be
ignored completely. so that the command is executed with exactly the environment specified by the
arguments.

If no command is specified, the resulting environment is printed. one name-value pair per line.

SEE ALSO
sh(1), exec(2), profile(5), environ(7).

-1-

ERR(1) Series 500 Only ERR(1)

NAME
err - report error information on last failure

SYNOPSIS
err

HP-UX COMPATIBILITY
Level: HP-UXINON-STANDARD

Origin: HP

Remarks: Err is implemented on the Series 500 only.

DESCRIPTION
Err produces error information on the standard output for the last command which failed. The ermo,
errinfo, and octal trapno values are listed.

Error information on the last child process which reported a failure is inherited across a fork and cleared
by exec. The error values are also passed back from child to parent to grandparent as long as no errors
were detected in the intermediate parent. Intervening commands which are executed successfully have
no effect on the saved error information. If a command thinks it successfully completed, and returns an
exit status of zero, no error information will be returned.

In general, the values reported are for a kernel intrinsic which failed, although values of ermo or errinfo
which are set by libraries or commands will also be reported.

SEE ALSO
errno(2), errinfo(2), trapno(2).

WARNING

BUGS
This command may change in future releases of HP-UX. Err is intended for diagnostic purposes only.

Information on a real error can be masked by "normal" errors caused by library routines or commands.
For example, the library routine isatty will generate the error ENOTTY during normal operation.

-1-

EX(1) EX(1)

NAME
ex, edit, e, expreserve, exrecover - text editor commands

SYNOPSIS
ex [-] [-v] [-ttag] [-r] [-I] [-wn] [-x] [-R] [+ command] name ...
edit [ex options]
e [ex options]
lusr/lib/expreserve
lusr llibl exrecover

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: UCB

DESCRIPTION

FILES

Ex is the root of a family of editors: edit, ex, e, vi, and view. Ex is a superset of ed, with the most notable
extension being a display editing facility. Display based editing is the focus of vi.

If you have not used ed, or are a casual user, you will find that the editor edit is convenient for you. It
avoids some of the complexities of ex, which is used mostly by systems programmers and persons very
familiar with ed.

A display-based editor is often preferred with a CRT terminal. Vi(l) is a command that focuses on the
display editing portion of ex.

The options have the following meanings:

-v

-ttag

-r

-I

-wn

-x

-R
+ command

suppresses all interactive-user feedback and is useful in processing editor sCripts in
command files;

equivalent to using vi rather than ex;

equivalent to an initial tag command, editing the file containing the tag and positioning
the editor at its definition;

used in recovering after an editor or system crash, retrieving the last saved version of
the file name, or, if no file is specified, typing a list of saved files;

sets the showmatch and lisp options;

sets the default window size to n lines;

causes ex to prompt for a key, which is used to encrypt and decrypt the contents of the
file (which should already be encrypted using the same key);

sets the readonly option;

indicates that the editor should begin by executing the specified command. If command
is omitted, then it defaults to $, positioning the editor at the last line of the first file
initially.

E xpreserve saves the temporary files created during a vi, ex, edit, or e editing session that are left after a
crash or editor abort. It looks in Itmp and moves all such files to lusr/preserve. Do not run expreserve
while an editor is currently being used. Expreserve is normally invoked automatically by rc(8).

Exrecover is used by any of the above-mentioned editors when invoked with the -r option. It is rarely
used in a stand-alone fashion.

lusrllib/exrecover
lusr/lib/expreserve
letcitermcap

recover command
preserve command
describes capabilities of terminals

- 1 -

EX(t)

$HOMEl.exrc
Itmp/Exnnnnn
Itmp/Rxnnnnn
lusr/preserve

editor startup file
editor temporary
named buffer temporary
preservation directory

EX(t)

SEE ALSO

BUGS

awk(I), ed(I), grep(1), sed(I), vi(I), environ(5), terrncap(5).

Edit: A Tutorial, in HP-UX Concepts and Tutorials.
Ex Reference Manual, in HP-UX Concepts and Tutorials.
The Vi Editor, in HP-UX Concepts and Tutorials.

The undo command causes all marks to be lost on lines changed and then restored if the marked lines
were changed.

Undo never clears the buffer modified condition.

The z command prints a number of logical rather than physical lines. More than a screenful of output
may result if long lines are present.

File input/output errors do not print a name if the command line "-" option is used.

There is no easy way to do a single scan ignoring case.

The editor does not warn if text is placed in named buffers and not used before exiting the editor.

Null characters are discarded in input files, and cannot appear in resultant files.

On systems which do not support crypt(l), the -x option is not available.

-2-
09000-90007, rev: 1185

EXPAND(l) EXPAND(l)

NAME
expand, unexpand - expand tabs to spaces, and vice versa

SYNOPSIS
expand [-tabstop 1 [-tab1,tab2 tabn 1 [file ...
unexpand [-a 1 [file. 1

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: UCB

DESCRIPTION
Expand processes the named files or the standard input writing the standard output with tabs changed
into blanks. Backspace characters are preserved into the output and decrement the column count for
tab calculations. Expand is useful for pre-processing character files (before sorting. looking at specific
columns, etc.) that contain tabs.

If a single tabstop argument is given then tabs are set tabstop spaces apart instead of the default 8. If mul­
tiple tabstops are given then the tabs are set at those specific columns.

Unexpand puts tabs back into the data from the standard input or the named files and writes the result
on the standard output. By default only leading blanks and tabs are reconverted to maximal strings of
tabs. If the -a option is given. then tabs are inserted whenever they would compress the resultant file by
replacing two or more characters.

-1-

EXPR(l) EXPR(l)

NAME
expr - evaluate arguments as an expression

SYNOPSIS
expr arguments

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

DESCRIPTION
The arguments are taken as an expression. After evaluation, the result is written on the standard output.
Terms of the expression must be separated by blanks. Characters special to the shell must be escaped.
Note that 0 is returned to indicate a zero value, rather than the null string. Strings containing blanks or
other special characters should be quoted. Integer-valued arguments may be preceded by a unary
minus sign. Internally, integers are treated as 32-bit, 2's complement numbers.

The operators and keywords are listed below. Characters that need to be escaped are preceded by "'-.
The list is in order of increasing precedence, with equal precedence operators grouped within { } sym­
bols.

expr "'- I expr
returns the first expr if it is neither null nor 0, otherwise returns the second expr.

expr "'-& expr
returns the first expr if neither expr is null or 0, otherwise returns O.

expr{ =, = =, "'->, "'->=, "'-<, "'-<=,!= }expr
returns the result of an integer comparison if both arguments are integers, otherwise returns the
result of a lexical comparison (note that = and = = are identical, in that both test for equality).

expr{ +,-}expr
addition or subtraction of integer-valued arguments.

expr{ "'-*, I, % }expr
multiplication, division, or remainder of the integer-valued arguments.

expr: expr
The matching operator: compares the first argument with the second argument which must be
a regular expression; regular expression syntax is the same as that of ed(l), except that all pat­
terns are" anchored" (Le., begin with 0) and, therefore, 0 is not a special character, in that con­
text. Normally, the matching operator returns the number of characters matched (0 on failure).
Alternatively, the "'-(... "'-) pattern symbols can be used to return a portion of the first
argument.

Iengthexpr
The length of expr.

substr expr expr expr
Takes the substring of the first expr, starting at the character specified by the second expr for the
length given by the third expr.

index expr expr
Returns the position in the first expr which contains a character found in the second expr.

match Match is a prefix operator equivalent to the infix operator :.

EXAMPLES
1. a=-expr$a + 1-

adds 1 to the shell variable a.

2. # -For $a equal to either" lusr/abc/file" or "file"­
expr $a: -.*I",-(.*",-r "'-I$a

-1-

EXPR(1) EXPR(l)

returns the last segment of a path name (i.e" file). Watch out for / alone as an argument: expr
will take it as the division operator (see BUGS below).

3. # 'A better representation of example 2.'
expr //$a: . */"-." (. * "-.,,)
The addition of the // characters eliminates any ambiguity about the division operator and sim­
plifies the whole expression.

4. expr $VAR: '.*'
returns the number of characters in $VAR.

RETURN VALUE
As a side effect of expression evaluation, expr returns the following exit values:

o if the expression is neither null nor 0
1 if the expression is null or 0
2 for invalid expressions.

SEE ALSO
ed(1), sh(1), test (1).

DIAGNOSTICS

BUGS

syntax error
non-numeric argument

for operator/operand errors
if arithmetic is attempted on such a string

After argument processing by the shell, expr cannot tell the difference between an operator and an
operand except by the value. If $a is an =, the command:

expr $a = '='

looks lil;e:

expr =

as the arguments are passed to expr (and they will all be taken as the = operator). The following works:

expr X$a = X=

-2-

F77(l) Series 200 Implementation F77(l)

NAME
f77 - FORTRAN 77 compiler

SYNOPSIS
f77 [options 1 filelist

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: HP

Remarks: This manual page describes the FORTRAN 77 compiler as implemented on the Series 200
computers. Refer to [c(l) for a description of the FORTRAN 77 compiler as implemented
on the Series 500 computers.

DESCRIPTION
F77 is the HP-UX FORTRAN 77 compiler. It accepts several types of file arguments:

(1) Arguments whose names end with .f are taken to be Fortran 77 source programs. They are
compiled, and each object program is left in the current directory in a file whose name is that of
the source, with .0 substituted for.f. (The.o file will not be created for any source which fails to
compile correctly.) In the same way, arguments whose names end with .c or .s are taken to be C
or assembly source programs and are compiled or assembled, producing .0 files.

(2) Arguments whose names end with .r are taken to be raifor(l) source programs. These are first
transformed by the raifor preprocessor, and then compiled by 177 producing .0 files.

(3) Arguments whose names end with .0 are passed on to the linker (ld(I)) to be linked into the final
program.

The following options are recognized:

-b causes the compiler to generate code for floating point operations that will use floating
point hardware if it is installed in the computer at run-time.

-c Compile, but do not link. The compiler produces a relocatable file (.0) for each file in
[ilelist. This include5 .c, .f, .r, and .s files.

-C enable range checking (same as $OPTION RANGE ON).

-f causes the compiler to generate code for floating point operations that will use floating
point hardware. This code does not run unless floating point hardware is installed.

-12 makes the default size of integers and logicals equal to one-half wordsize (same as
$OPTION SHORT).

-14 This is the default. This option causes the compiler to generate code to store integers and
logicals in four byte quantities unless specifically declared otherwise.

-k This option forces dynamic storage for local arrays. If specified, arrays are subject to the
32K byte limitation for local data space.

-K This option forces static storage for all local variables. This is to provide a convenient path
for importing FORTRAN 66 and FORTRAN 77 programs which were written to depend
on static allocation of memory (Le. variables retaining their values between invocations of
the respective program units.)

-N < secondary> < n >
This option adjusts the size of internal compiler tables. The compiler uses fixed size arrays
for certain internal tables. Secondary is one of the letters from the set {qsxcndpw}, and n is
an integer value. Secondary and n are not optional. The table sizes can be re-specified
using one of the secondary letters and the number n as follows:

- 1 -

F77(l)

FILES

Series 200 Implementation F77(l)

q maximum size of equivalence table (default = 150 table entries).

s maximum size of statement label table (default = 201 table entries).

x maximum size of external symbol table (default = 200 table entries).

c maximum size of control staternents table (default = 200 table entries).

n maximum size of the hash table of symbols (default = 401 table entries).

d rnaximum size of the dimtab table. This table maintains inforrnation about the

-ooutfile

-onetrip

-p

-s

-S

-u

-u
-v

-w

-w66

definitions of all arrays in pass 2 (default = 1000 table entries).

p maximum size of the pararneter stack in pass 2 (default = 150 table entries).

w maximum size of the switch table stack in pass 2 (default = 250 table entries).

narne the output file from the linker outfile instead of a.out.

causes the cornpiler to generate code that executes any DO loop at least once.

prepares object files for profiling (see prof(I)).

issue warnings for non-ANSI features (same as $OPTION ANSI ON).

cornpiles the named programs and leaves the assembler language output in
corresponding files whose names are suffixed with .s. (no .0 files are created).

force types of identifiers to be implicitly undeclared (same as specifying IMPLICIT
NONE; no other IMPLICIT statements are permitted).

do not convert upper -case letters to lower-case (default is to convert to lower -case).

write expanded compiler and linker runstrings to stderr.

suppress warning messages (same as $OPTION WARNINGS OFF).

supresses warnings about FORTRAN 66 features used.

F77 also recognizes the following options, but they have no effect if they are encountered. This is for
compatibility with other FORTRAN systems.

-m, -f, -0, -E, -R, -F

A warning is written to stderr if any of these options is used.

Any other options are taken to be arguments to Id, and are passed along to the linker.

file.r
file.f
file.s
file.c
file. 0

a.out
lusr/bin/f77
lusr/lib/f77passl
Ilib/fl
lusrllib/libF77.a
lurs/lib/libl77.a
lusrllibc.a
llib/libm.a
lliblfrtO.o
Ilib/mfrtO.o

input file (ratfor source file)
input file (FORTRAN source file)
input file (assembly source file)
input file (C source file)
object file
linked executable output file
mother program (linked to lusrlbin/fc)
compiler pass 1
compiler pass 2
intrinsic function library
FORTRAN 110 library
C library; See Section 3 of this manual
math library
run-time startoff routine
startoff with profiling

-2-

F77(1) Series 200 Implementation F77(l)

SEE ALSO
as(l), asa(l), cc(l), Id(l).

F ortranl9000 Language Reference Manual.
F ortranl9000 Language Reference Supplement.

DIAGNOSTICS
The diagnostics produced by f77 are intended to be self-explanatory. Errors are written to stderr.

-3-

FACTOR(l) FACTOR(l)

NAME
factor, primes - factor a number, generate large primes

SYNOPSIS
factor [number 1
primes [start [stop 1 1

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System V

DESCRIPTION
When factor is invoked without an argument, it waits for a number to be typed in. If you type in a
positive number, it factors the number and print its prime factors; each one is printed the proper number
of times. Then it waits for another number. It exits if it encounters a zero or any non-numeric character.

If factor is invoked with an argument, it factors the number as above and then exits.

Maximum time to factor is proportional to sqrt(n) and occurs when n is prime or the square of a prime.

The largest number that can be dealt with by factor is 1.0e14.

Primes prints prime numbers between a lower and upper bound. If primes is invoked without any
arguments, it waits for two numbers to be typed in. The first number is interpreted as the lower bound,
and the second as the upper bound. All prime numbers in the resulting inclusive range are printed.

If start is specified, all primes greater than or equal to start are printed. If both start and stop are given,
then all primes occurring in the inclusive range "start - stop" are printed.

Start and stop values must be integers represented as long integers.

If the stop value is omitted in either case, primes runs until either overflow occurs or it is stopped by
typing interrupt.

The largest number that can be dealt with by primes is 2,147,483,647.

DIAGNOSTICS
"Ouch" when the input is out of range, for garbage input, or when start is greater than stop.

- 1 -

FC(l) Series 500 Implementation FC(l)

NAME
fc - FORTRAN 77 compiler

SYNOPSIS
fe [options 1 files

HP-UX COMPATIBILITY
Level: HP-UXISTANOARO

Origin: HP

Remarks: This manual page describes the FORTRAN 77 compiler as implemented on the Series 500
computers. Refer toj77(1) for a description of FORTRAN 77 as implemented on the Series
200 computers.

DESCRIPTION
Fe is the HP-UX FORTRAN 77 compiler. lt accepts two types of file arguments:

(1) Arguments whose names end with .f are taken to be FORTRAN 77 source programs. They are
compiled, and each object program is left in the current directory in a file whose name is that of
the source, with .0 substituted for.f. (The.o file will not be created for a single source which is
compiled and loaded, nor for any source which fails to compile correctly.)

(2) Arguments whose names end with .0 are passed on to the linker (ld(l)) to be linked into the final
program.

The following options are recognized:

-e

-C
-D

-e

-F
-g

-12

-K
-L
-ooutfile

-onetrip

-Qdfile

-5

-u

-u
-v

-Ve
-Vd
-Vf

suppress linking and produce object (.0) files from source files;

enable range checking (same as $OPTION RANGE ON);

compile debug lines (source lines with a "0" or "d" in column 1 are treated as
comments by default);

write errors to stderr;

causes the compiler to generate information used by various program analysis programs.

causes the compiler to generate additional information needed for the use of a symbolic
debugger.

make default size of integers and logicals half a word (same as $OPTION SHORT);

automatically SAVE all local variables in all subprograms;

write a program listing to stdout during compilation;

name the output file from the linker outfile instead of a.out;

execute any DO loop at least once;

specify dfile as the option file;

issue warnings for non-ANSI features (same as $OPTION ANSI ON).

force types of identifiers to be implicitly undeclared (same as specifying IMPLICIT
NONE; no other IMPLICIT statements are permitted);

use upper case for external names (default is lower case);

write expanded compiler and linker runstrings to stderr;

put all COMMONs in the virtual data area;

put all SAVE'd and initialized (DATA statement) variables in the virtual data area;

put all FORMAT strings in the virtual data area;

- 1 -

FC(l)

FILES

Series 500 Implementation FC(l)

-w suppress warning messages (same as $OPTION WARNINGS OFF).

Any other options are taken to be arguments to ld, and are passed along to the linker. Note, however,
that, because the -5 option is recognized by the compiler, it is not possible to pass the strip option to the
linker. Programs which are to be stripped may be compiled with the -c option, then linked separately.

file.f
file. 0

a.out
/bin/fc
lusr!lib/f77comp
!lib/friO.o
!lib/libI77.a
!lib!libF77. a
/usr/tmp/*

input file (FORTRAN source file)
object file
linked executable output file
mother program
compiler
runtime startup
FORTRAN 110 library
FORTRAN math library
temporary files used by the compiler; names are created by tmpnam(3S).

SEE ALSO
asa(l),ld(l).

FORTRAN/9000 Language Reference Manual.
Structured FORTRAN 77, by Seymour Pollack.

DIAGNOSTICS
The diagnostics produced by fc are intended to be self-explanatory. If a listing is requested (-L option),
errors are written to the listing file. If no listing is being generated, errors are written to stderr. Errors will
be written to both the listing file and stderr if the -L and -e options are both specified. Occasional
messages may be produced by the linker.

\

- 2 -

FILE(l) FILE(l)

NAME
file - determine file type

SYNOPSIS
file [-c 1 [-f ffile 1 [-m mfile 1 arg ...

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System V

DESCRIPTION
File performs a series of tests on each argument in an attempt to classify it. If an argument appears to be
ASCII, file examines the first 512 bytes and tries to guess its language. If an argument is an executable
a.out file, file will print the version stamp, provided it is greater than 0 (see Id(l)).

File uses the file f etc!magic to identify files that have some sort of magic number, that is, any file containing
a numeric or string constant that indicates its type. Commentary at the beginning of fetc!magic explains
its format.

The options are as follows:

-c causes file to check the magic file for format errors. This validation is not normally carried out
for reasons of efficiency. No file classification is done under-c.

-f ffile specifies that ffile is a file containing a list of the files which are to be examined. File then
classifies each file whose name appears inffile.

-mmfile
instructs file to use mfile as the magic file.

SEE ALSO
ld(l).

- 1 -

FIND(l) FIND(l)

NAME
find-find files

SYNOPSIS
find path-name-list expression

HP-UX COMPATIBILITY
Level: HP-Ux/STANDARD

Origin: System III

DESCRIPTION
Find recursively descends the directory hierarchy for each path name in the path-name-list (i.e., one or
more path names) seeking files that match a boolean expression written in the primaries given below. In
the descriptions, the argument n is used as a decimal integer where + n means more than n, -n means
less than nand n means exactly n.

-name string

-permonum

-typec

-linksn

-useruname

-group gname

-sizen

-atimen

-mtimen

-ctimen

-execcmd

-okcmd

-print

-epio device

True if string matches the current file name. Normal shell argument syntax may be
used if escaped (watch out for [, ? and *).

True if the file permission flags exactly match the octal number onum (see chmod(I)}.
If onum is prefixed by a minus sign, more flag bits (017777, see stat(2)} become
significant and the flags are compared:

(flags&onum) = = onum

True if the type of the file is c, where c is b, c, d, p, or f for block special file, character
special file, directory, fifo (a.k.a named pipe), or plain file.

True if the file has n links.

True if the file belongs to the user uname. If uname is numeric and does not appear
as a login name in the /etc/passwd file, it is taken as a user ID.

True if the file belongs to the group gname. If gname is numeric and does not appear
in the /etc/group file, it is taken as a group ID.

True if the file is n blocks long.

True if the file has been accessed in n days.

True if the file has been modified in n days.

True if the file has been changed in n days.

True if the executed cmd returns a zero value as exit status. The end of cmd must be
punctuated by an escaped semicolon. A command argument {} is replaced by the
current path name.

Like -exec except that the generated command line is printed with a question mark
first, and is executed only if the user responds by typing y.

Always true; causes the current path name to be printed. This option must be
included on the find command line anytime you want find to print the path names it
has found on the standard output. If -print is not specified, find locates the files, but
fails to tell you about them!

When -print is specified as the only expression, find prints the absolute path names of
all files it finds, beginning at each directory in the path-name-list. If -print is included
as the last component of an expression, find prints the absolute path names of only
those files which satisfy the other primaries in the expression.

Write the current file on device in cpio(5} format (5120 byte records).

- 1 -

FIND(l)

-newer file

(expression)

-inumn

-ncpio

FIND(l)

True if the current file has been modified more recently than the argumentfile.

True if the parenthesized expression is true (parentheses are special to the shell and
must be escaped).

True if the file has inode number n.

Same as -cpio but adds the -c option to cpio.

The primaries may be combined using the following operators (in order of decreasing precedence):

1) The negation of a primary (! is the unary not operator).

2) Concatenation of primaries (the and operation is implied by the juxtaposition of two primaries).

3) Alternation of primaries (-0 is the or operator).

EXAMPLE

FILES

To remove all files named a.out or *.0 that have not been accessed for a week:

find / ,,(-name a.out -0 -name '*.0' ,,) -atime +7 -exec rm {} ,,;

Note that the spaces delimiting the escaped parentheses are required.

The following command finds all files in /usrllib which are directories:

find /usr/lib -type d -print

Conversely,

find /usr/lib ! -type d -print

finds all files in /usrllib which are not directories. Finally,

find /users -print

prints every file found under /users.

/etc/passwd
fete/group

SEE ALSO
cpio(l), sh(l), test(1), stat(2), cpio(5), fs(5).

- 2-

GET(l) GET(l)

NAME
get - get a version of an sees file

SYNOPSIS
get [-rSIDJ [-ccutoffJ [-HistJ [-xlistJ [-aseq-no.J [-kJ [-eJ [-l[pJ] [-PJ [-mJ [-nJ [-sJ [-bJ [-gJ [-tJ
file ...

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

DESCRIPTION

Get generates an ASCII text file from each named sees file according to the specifications given by its
keyletter arguments, which begin with -. The arguments may be specified in any order, but all keyletter
arguments apply to all named sees files. If a directory is named, get behaves as though each file in the
directory were specified as a named file, except that non-SeeS files (last component of the path name
does not begin with s.) and unreadable files are silently ignored. If a name of - is given, the standard
input is read; each line of the standard input is taken to be the name of an sees file to be processed.
Again, non-SeeS files and unreadable files are silently ignored.

The generated text is normally written into a file called the g-file whose name is derived from the sees
file name by simply removing the leading s.; (see also FILES, below).

Each of the keyletter arguments is explained below as though only one sees file is to be processed, but
the effects of any keyletter argument applies independently to each named file.

-rSID The sees IDentification string (SID) of the version (delta) of an sees file to be retrieved.
Table 1 below shows, for the most useful cases, what version of an sees file is retrieved (as
well as the SID of the version to be eventually created by delta(l) if the -e keyletter is also
used), as a function of the SID specified.

-ccutoff Cutoff date-time, in the form:

YY[MM[DD[HH[MM[SSlllll

No changes (deltas) to the sees file which were created after the specified cutoff date-time
are included in the generated ASCII text file. Units omitted from the date-time default to their
maximum possible values; that is, -c7502 is equivalent to -c750228235959. Any number
of non-numeric characters may separate the various 2 digit pieces of the cutoff date-time.
This feature allows one to specify a cutoff date in the form: "-c77/212 9:22:25". Note that
this implies that one may use the 83/04/30 and 13:03:44 identification keywords (see below)
for nested gets.

-e Indicates that the get is for the purpose of editing or making a change (delta) to the sees file
via a subsequent use of delta (1). The -e keyletter used in a get for a particular version (SID) of
the sees file prevents further gets for editing on the same SID until delta is executed or the j
(joint edit) flag is set in the sees file (see admin(l)). Concurrent use of get -e for different
SIDs is always allowed.

If the g-file generated by get with an -e keyletter is accidentally ruined in the process of editing
it, it may be regenerated by re-executing the get command with the -k keyletter in place of
the -e keyletter.

sees file protection specified via the ceiling, floor, and authorized user list stored in the sees
file (see admin(l)) are enforced when the -e keyletter is used.

-b Used with the -e keyletter to indicate that the new delta should have an SID in a new branch
as shown in Table 1. This keyletter is ignored if the b flag is not present in the file (see
admin (1)) or if the retrieved delta is not a leaf delta. (A leaf delta is one that has no successors
on the sees file tree.)

- 1 -

GET(l) GET(l)

Note: A branch delta may always be created from a non-leaf delta.

-ilist A list of deltas to be included (forced to be applied) in the creation of the generated file. The
list has the following syntax:

-xlist

-k

-I[p]

-p

-5

-m

-n

-g

-t

<list> :: = <range> I <list> , <range>
<range>:: = SID I SID-SID

SID, the sees Identification of a delta, may be in any form shown in the "SID Specified"
column of Table 1. Partial SIDs are interpreted as shown in the" SID Retrieved" column of
Table 1.

A list of deltas to be excluded (forced not to be applied) in the creation of the generated file.
See the -i keyletter for the list format.

Suppresses replacement of identification keywords (see below) in the retrieved text by their
value. The -k keyletter is implied by the -e keyletter.

Causes a delta summary to be written into an I-file. If -Ip is used then an I-file is not created;
the delta summary is written on the standard output instead. See FILES for the format of the
I-file. The user must have read permission for the s-file in order to use the -I option.

Causes the text retrieved from the sees file to be written on the standard output. No g-file is
created. All output which normally goes to the standard output goes to file deSCriptor 2
(stderr) instead, unless the -5 keyletter is used, in which case it disappears.

Suppresses all output normally written on the standard output. However, fatal error
messages (which always go to file deSCriptor 2) remain unaffected.

Causes each text line retrieved from the sees file to be preceded by the SID of the delta that
inserted the text line in the sees file. The format is: SID, followed by a horizontal tab,
followed by the text line.

Causes each generated text line to be preceded with the %M% identification keyword value
(see below). The format is: %M% value, followed by a horizontal tab, followed by the text
line. When both the -m and -n keyletters are used, the format is: %M% value, followed by a
horizontal tab, followed by the -m keyletter generated format.

Suppresses the actual retrieval of text from the sees file. It is primarily used to generate an 1-
file, or to verify the existence of a particular SID.

Used to access the most recently created ("top") delta in a given release (e.g., -rl), or
release and level (e.g., -r1.2).

-aseq-no. The delta sequence number of the sees file delta (version) to be retrieved (see sccsfile(5)).
This keyletter is used by the comb{l) command; it is not a generally useful keyletter, and users
should not use it. If both the -r and -a key letters are specified, the -a keyletter is used. Care
should be taken when using the -a keyletter in conjunction with the -e keyletter, as the SID of
the delta to be created may not be what one expects. The -r keyletter can be used with the
-a and -e keyletters to control the naming of the SID of the delta to be created.

For each file processed, get responds (on the standard output) with the SID being accessed and with the
number of lines retrieved from the sees file.

If the -e keyletter is used, the SID of the delta to be made appears after the SID accessed and before the
number of lines generated. If there is more than one named file or if a directory or standard input is
named, each file name is printed (preceded by a new-line) before it is processed. If the -i keyletter is
used included deltas are listed following the notation "Included"; if the -x keyletter is used, excluded
deltas are listed following the notation "Excluded" .

- 2-

GET(l) GET(l)

SID* - b Keyletter Other SID SID of Delta
Specified Usedt Conditions Retrieved to be Created

none:j: no R defaults to mR mRmL mR(mL+ 1)
none:j: yes R defaults to mR mRmL mRmL.(mB+ 1).1

R no R>mR mRmL Rl ***
R no R=mR mRmL mR(mL+ 1)
R yes R>mR mRmL mRmL.(mB+ 1).1
R yes R=mR mRmL mRmL.{mB+ 1).1

R
R<mRand

hRmL** hRmL.(mB+ 1).1 -
R does not exist

Trunk succ. # in
R - release> Rand R RmL RmL.(mB+l).1

exists

RL no No trunk suce. RL R(L+ 1)
RL yes No trunk succ. RL RL.(mB+ 1).1

RL
Trunk suce. in

RL RL.(mB+l).1 -
release ~R

RL.B no No branch succ. RL.B.mS RL.B.(mS+l)
RL.B yes No branch suce. RL.B.mS RL.(mB+l).1

RL.B.S no No branch suce. RL.B.S RL.B.(S+I)
RL.B.S yes No branch succ. RL.B.S RL.(mB+ 1).1
RL.B.S - Branch succ. RL.B.S RL.(mB+l).1

* "R" "L" "8", and "5" are the "release", "level" "branch", and "sequence" components of the SID. respectively; "m" means
"maximum', Thus. for example, "RmL" means "the maximum level number within release R" "RL(mB + 1).1 ,. means "the first
sequence number on the new branch (j.e .. maximum branch number plus one) of level L within release R", Note that if the SID
specified is of the form "RL", "R L.B" , or "RL.B.S", each of the specified components muslexist.

** "hR" is the highest existing release that is lower than the specified, nonexistent, release R

*** This is used to force creation of the first delta in a new release

Successor

t The b keyletter is effective only if the b flag (see admin(1)) is present in the file. An entry of - means "irrelevant"

:1: This case applies if the d (default SID) flag is not present in the file. If the d flag is present in the file, then the SID obtained from the d
flag is interpreted as if it had been specified on the command line. Thus. one of the other cases in this table applies.

Identification Keywords
Identifying information is inserted into the text retrieved from the sees file by replacing identification
keywords with their value wherever they occur. The following keywords may be used in the text stored
in an sees file:

Keyword
%M%

%1%
%R%
%L%
%8%
%5%
%D%
%H%

Value
Module name: either the value of the m flag in the file (see admin(1)), or if absent, the name
of the sees file with the leading s. removed.
sees identification (SID) (%R%. %L %. %B%. %S%) of the retrieved text.
Release.
Level.
Branch.
Sequence.
Current date (VY/MMlDD).
Current date (MMIDDIYY).

GET(l)

%T%
%E%
%G%
%U%
%Y%
%F%
%P%
%Q%
%C%

%Z%
%W%

%A%

Current time (HH:MM:SS).
Date newest applied delta was created (YY/MMJDD).
Date newest applied delta was created (MMJDDIYY).
Time newest applied delta was created (HH:MM:SS).
Module type: value ofthe t flag in the sees file (see admin(l)).
sees file name.
Fully qualified sees file name.
The value ofthe q flag in the file (see admin(l)).

GET(l)

Current line number. This keyword is intended for identifying messages output by the
program such as "this shouldn't have happened" type errors. It is not intended to be used
on every line to provide sequence numbers.
The 4-character string @(#)recognizablebywhat(l).
A shorthand notation for constructing what(l) strings for UNIX program files. %W% =

%Z%%M%<horizontal-tab>%I%
Another shorthand notation for constructing what(l) strings for non-UNIX program files.
%A% = %Z%%Y% %M% %I%%Z%

HARDWARE DEPENDENCIES

FILES

Series 200/500:
Comb(l) is not currently supported.

Several auxiliary files may be created by get, These files are known generically as the g-file, I-file, p-file,
and z-file. The letter before the hyphen is called the tag. An auxiliary file name is formed from the
sees file name: the last component of all sees file names must be of the form s.module-name, the
auxiliary files are named by replacing the leading s with the tag. The g-file is an exception to this
scheme: the g-file is named by removing the s. prefix. For example, s.xyz.c, the auxiliary file names
would be xyz.c, l.xyz.c, p.xyz.c, and z.xyz.c, respectively.

The g-file, which contains the generated text, is created in the current directory (unless the -p keyletter
is used). A g-file is created in all cases, whether or not any lines of text were generated by the get. It is
owned by the real user. If the -k keyletter is used or implied its mode is 644; otherwise its mode is 444.
Only the real user need have write permission in the current directory.

The I-file contains a table showing which deltas were applied in generating the retrieved text. The I-file
is created in the current directory if the -I keyletter is used; its mode is 444 and it is owned by the real
user. Only the real user need have write permission in the current directory.

Lines in the I-file have the following format:

a. A blank character if the delta was applied;
* otherwise.

b. A blank character if the delta was applied or wasn't applied and ignored;
* if the delta wasn't applied and wasn't ignored.

c. A code indicating a "special" reason why the delta was or was not applied:
" I " : Included.
" X ": Excluded.
"C": Cut off (by a -c keyletter).

d. Blank.
e. sees identification (SID).
f. Tab character.
g. Date and time (in the form YY/MM/DD HH:MM:SS) of creation.
h. Blank.
i. Login name of person who created delta.

The comments and MR data follow on subsequent lines, indented one horizontal tab character.
A blank line terminates each entry.

-4-

GET(!) GET(!)

The p-file is used to pass information resulting from a get with an -e keyletter along to delta. Its contents
are also used to prevent a subsequent execution of get with an -e keyletter for the same SID until delta is
executed or the joint edit flag, j, (see admin{l)) is set in the sees file. The p-file is created in the
directory containing the sees file and the effective user must have write permission in that directory. Its
mode is 644 and it is owned by the effective user. The format of the p-file is: the gotten SID, followed by
a blank, followed by the SID that the new delta will have when it is made, followed by a blank, followed
by the login name of the real user, followed by a blank, followed by the date-time the get was executed,
followed by a blank and the -i keyletter argument if it was present, followed by a blank and the -x
keyletter argument if it was present, followed by a new-line. There can be an arbitrary number of lines
in the p-file at any time; no two lines can have the same new delta SID.

The z-file serves as a lock-out mechanism against simultaneous updates. Its contents are the binary (2
bytes) process ID of the command (i.e., get) that created it. The z-file is created in the directory
containing the sees file for the duration of get. The same protection restrictions as those for the p-file
apply for the z-file. The z-file is created mode 444.

SEE ALSO
admin{l), delta{l), help{l), prs{l), what{l), sccsfile(5).

sees Users Guide in HP-UX Concepts and Tutorials.

DIAGNOSTICS

BUGS

Use help (1) for explanations.

If the effective user has write permission (either explicitly or implicitly) in the directory containing the
sees files, but the real user doesn't, then only one file may be named when the -e keyletter is used.

An I-file cannot be generated when -g is used. In other words, -g -1 does not work.

-5-

GETOPT(1) GETOPT(l)

NAME
getopt - parse command options

SYNOPSIS
-get opt optstring args-

HP-UX COMPATIBILITY
Level: HP-UXINUCLEUS

Origin: System III

DESCRIPTION
GelOpl is used to break up options in command lines for easy parsing by shell procedures, and to check
for legal options. Oplslring is a string of recognized option letters (see getopt(3C)); if a letter is followed
by a colon, the option is expected to have an argument which mayor may not be separated from it by
white space. The special option -- is used to delimit the end of the options. GelOpt will place -- in the
arguments at the end of the options, or recognize it if used explicitly. The shell arguments ($1 $2 ...)
are reset so that each option is preceded by a - and placed in its own shell argument. Each option
argument is also placed in its own shell argument.

The most common use of gelOpl is in the shell's set command (see the example below). There, gelopl
converts the command line to a more easily parsed form. Gelopt writes the modified command line to
the standard output.

EXAMPLE
The following code fragment shows how one might process the arguments for a command that can take
the options a and b, and the option 0, which requires an argument.

set -- 'getopt abo: $*'
if [$7 ! = 0 1
then

fi

echo $USAGE
exit 2

for i in $*
do

case $i in
-a -b) FLAG=$i; shift;;
-0) OARG=$2; shift; shift:;
- -) shift; break;;
esac

done

This code will accept any of the following as equivalent:

cmd -aoarg file file
cmd -a -0 arg file file
cmd -oarg -a file file
cmd -a -oarg - - file file

SEE ALSO
sh(l), getopt(3C).

DIAGNOSTICS

BUGS

GelOpt prints an error message on the standard error when it encounters an option letter not included in
optslring.

The output of getopt cannot be more than 256 characters.

-1-

GREP(l) GREP(l)

NAME
grep, egrep, fgrep - search an ASCII file for a pattern

SYNOPSIS
grep [-bclnsv) pattern [file ...)

egrep [-bclnvef) pattern [file ...)

fgrep [-bclnvxef) strings [file ...)

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

DESCRIPTION
Commands of the grep family search the input files (standard input if no file is specified) for lines
matching a pattern. Normally, each line found is copied to the standard output. Grep patterns are limited
regular expressions in the style of ed(1); it uses a compact non-deterministic algorithm. Egrep patterns
are full regular expressions; it uses a fast deterministic algorithm that sometimes needs exponential
space. F grep patterns are fixed strings; it is fast and compact. The following options are recognized:

-v All lines but those matching are printed.
-x (Exact) only lines matched in their entirety are printed (fgrep only).
-c Only a count of matching lines is printed.
-I Only the names of files with matching lines are listed (once), separated by new-lines.
-n Each line is preceded by its relative line number in the file.
-b Each line is preceded by the block number on which it was found. This is sometimes useful in

locating disk block numbers by context.
-s The error messages produced for nonexistent or unreadable files are suppressed (grep only).
-e expression

Same as a simple expression argument, but useful when the expression begins with a - (does not
work with grep).

-f file The regular expression (egrep) or strings list (fgrep) is taken from the file.

In all cases, the file name is output if there is more than one input file. Care should be taken when using
the characters $, *, [, " I, (,), and" in patterns or strings, because they are also meaningful to the shell.
It is safest to enclose the entire expression argument in single quotes ' ... '.

Fgrep searches for lines that contain one of the strings, each of which is separated from the next by a
new-line.

Egrep accepts regular expressions as in ed(1), except for "(and "), with the addition of:

1. A regular expression followed by + matches one or more occurrences of the regular expression.
2. A regular expression followed by ? matches 0 or 1 occurrences of the regular expression.
3. Two regular expressions separated by 1 or by a new-line match strings that are matched by

either.
4. A regular expression may be enclosed in parentheses () for grouping.

The order of precedence of operators is [), then * ? +, then concatenation, then 1 and new-line.

EXAMPLES
The following example searches two files, finding all lines containing occurrences of any of four strings:

fgrep 'if
then
else
fi' script! script2

Note that the single quotes are necessary to tell fgrep when the strings have ended and the file names
have begun.

-1-

GREP(l) GREP(l)

This example searches for a new-line in a file:

grep -v'''..' filel

The -v option causes grep to print those lines that do not match the expression. Since a new-line cannot
be matched with dot, only lines containing a new-line are printed.

SEE ALSO
ed(l), sed(l), sh(l).

DIAGNOSTICS

BUGS

Exit status is 0 if any matches are found, 1 if none, 2 for syntax errors or inaccessible files.

Unes are limited to 256 characters; longer lines are truncated.
Egrep does not recognize ranges, such as [a-z), in character classes.
Grep finds lines in the input file by searching for a new-line. Thus, if there is no new-line at the end of
the file, grep will ignore the last line of the file.

-2-

HEAD(l)

NAME
head - give first few lines

SYNOPSIS
head [---count 1 [file ... 1

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: UCB

DESCRIPTION

HEAD(l)

This filter gives the first count lines of each of the specified files, or of the standard input. If count is
omitted it defaults to 10.

SEE ALSO
tail(l).

- 1 -

HELP(1) HELP(l)

NAME
help - ask for help

SYNOPSIS
help [argsl

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

DESCRIPTION

FILES

Help finds information to explain a message from a command or explain the use of a command. Zero
or more arguments may be supplied. If no arguments are given, help will prompt for one.

The arguments may be either message numbers (which normally appear in parentheses following mes­
sages) or command names, of one of the following types:

type 1

typeZ

type 3

Begins with non-numerics, ends in numerics. The non-numeric prefix is usually an abbrevi­
ation for the program or set of routines which produced the message (e. g., ge6, for message
6 from the get command).

Does not contain numerics (as a command, such as get)

Is all numeric (e.g., 212)

The response of the program will be the explanatory information related to the argument, if there is any.

When all else fails, try "help stuck" .

lusr/lib/help

DIAGNOSTICS

directory containing files of message text.

Use help (1) for explanations.

BUGS
Only sces and a very few other commands currently use help.

-1-

HOSTNAME(l)

NAME
hostname - set or print name of current host system

SYNOPSIS
hostname [nameofhost 1

HP-UX COMPATABILITY
Level: HP-UXISTANDARD

Origin: UCB

DESCRIPTION

HOSTNAME(l)

The hastname command prints the name of the current host, as given in the uname system call. The
super-user can set the hostname by giving an argument; this is usually done in the startup script letclre.

SEE ALSO
uname(l), gethostname(2), sethostname(2), uname(2).

-1-

HP(l) HP(I)

NAME
hp - handle special functions of HP 2640 and 2621-series terminals

SYNOPSIS
hp[-e)[-m)

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System V

DESCRIPTION
Hp supports special functions of the Hewlett-Packard 2640 series of terminals, with the primary purpose
of producing accurate representations of most nroff output. A typical use is:

nroff -h files . .. I hp

Regardless of the hardware options on your terminal, hp tries to do sensible things with underlining and
reverse line-feeds. If the terminal has the "display enhancements" feature, subscripts and superscripts
can be indicated in distinct ways. If it has the "mathematical-symbol" feature, Greek and other special
characters can be displayed.

The options are as follows:

-e It is assumed that your terminal has the "display enhancements" feature, and so maximal use is
made of the added display modes. Overstruck characters are presented in the Underline
mode. Superscripts are shown in Half-bright mode, and subscripts in Half-bright, Underlined
mode. If this flag is omitted, hp assumes that your terminal lacks the "display enhancements"
feature. In this case, all overstruck characters, subscripts, and superscripts are displayed in
Inverse Video mode, i.e., dark-on-light, rather than the usuallight-on-dark.

-m Requests minimization of output by removal of new-lines. Any contiguous sequence of 3 or
more new-lines is converted into a sequence of only 2 new-lines; i.e., any number of successive
blank lines produces only a single blank output line. This allows you to retain more actual text
on the screen.

With regard to Greek and other special characters, hp provides the same set as does 300(1), except that
"not" is approximated by a right arrow, and only the top half of the integral sign is shown. The display
is adequate for examining output from neqn.

DIAGNOSTICS

"line too long", if the representation of a line exceeds 1,024 characters.

The exit codes are 0 for normal termination, and 2 for all errors.

SEE ALSO

BUGS

300(1), col(l), eqn(I), greek(I), nroff(I), tbl(I).

An "overstriking sequence" is defined as a printing character followed by a backspace followed by
another printing character. In such sequences, if either printing character is an underscore, the other
printing character is shown underlined or in Inverse Video; otherwise, only the first printing character is
shown (again, underlined or in Inverse Video). Nothing special is done if a backspace is adjacent to an
ASCII control character. Sequences of control characters (e.g., reverse line-feeds, backspaces) can
make text "disappear"; in particular, tables generated by tbl(l) that contain vertical lines will often be
misSing the lines of text that contain the "foot" of a vertical line, unless the input to hp is piped through
col(I).

Although some terminals do provide numerical superscript characters, no attempt is made to display
them.

- 1 -

HYPHEN(1)

NAME
hyphen - find hyphenated words

SYNOPSIS
hyphen [files 1

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System V

DESCRIPTION

HYPHEN(!)

Hyphen finds all the hyphenated words ending lines in files and prints them on the standard output. If
no arguments are given, the standard input is used; thus, hyphen may be used as a filter.

EXAMPLE
The following will allow the proofreading of nroff hyphenation in textfile.

mm textfile I hyphen

SEE ALSO

BUGS

mm(l), nroff(l).

Hyphen cannot cope with hyphenated italic (Le., underlined) words; it will often miss them completely,
or mangle them.

Hyphen occasionally gets confused, but with no ill effects other than spurious extra output.

- 1 -

10(1)

NAME
id - print user, group IDs and names

SYNOPSIS
id

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System 1II

DESCRIPTION

10(1)

I d writes a message on the standard output giving the user and group IDs and the corresponding names
of the invoking process. If the effective and real IDs do not match, both are printed.

SEE ALSO
logname(l), getgid(2), getuid(2).

-1-

JOIN(l) JOIN(l)

NAME
join - relational database operator

SYNOPSIS
join [options 1 file1 file2

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

DESCRIPTION
Join forms, on the standard output, a join of the two relations specified by the lines of filel and file2. If
filel is -, the standard input is used.

Filel andfile2 must be sorted in increasing ASCII collating sequence on the fields on which they are to
be joined, normally the first in each line.

There is one line in the output for each pair of lines in filel and file2 that have identical join fields. The
output line normally consists of the common field, then the rest of the line fromfilel, then the rest of the
line from file2 .

Fields are normally separated by blank, tab or new-line. In this case, multiple separators count as one,
and leading separators are discarded.

These options are recognized:

-an In addition to the normal output, produce a line for each unpairable line in file n, where n is 1 or
2.

-e s Replace empty output fields by string s.

-jn m Join on the mth field of file n. If n is missing, use the mth field in each file.

-0 list Each output line comprises the fields specifed in list, each element of which has the form n.m,
where n is a file number and m is a field number.

-tc Use character c as a separator (tab character). Every appearance of c in a line is significant.

SEE ALSO

BUGS

awk(l), comm(l), sort(l).

With default field separation, the collating sequence is that of sort -b; with -t, the sequence is that of a
plain sort.

The conventions of join, sort, comm, uniq and awk (1) are incongruous.

-1-

KILL(l) KILL(l)

NAME
kill- terminate a process

SYNOPSIS
kill [-signo 1 pid ...

HP-UX COMPATIBILITY
Level: HP-UXINUCLEUS

Origin: System III

DESCRIPTION
Kill sends a signal to the process(es) specified by each pid mentioned on the command line. By default,
signal 15 (SIGTERM) is sent. This normally kills processes that do not catch or ignore the signal.

If signa is given, then that signal is sent instead of SIGTERM (refer to signal(2) for a list of the defined
signals). In particular, "kill -9 ... " is a sure kill.

The correct pid to specify can be found in two ways. The shell reports the process id of each command
executed in the background (using &). If a pipeline is executed in the background, then only the
process id of the last command in the pipeline is reported. Regardless, the reported process id is the pid
to use. If you forget the reported process id of background tasks, or you need the process id of some
other command, use the ps(1) command.

The details of the kill are described in kill(2). For example, if process number 0 is specified, all
processes in the process group are signaled.

The killed process must belong to the current user unless he is the super-user.

SEE ALSO

BUGS

ps(l), ShIll, kill(2), signal(2).

If a process becomes hung during some operation (such as 1/0) so that it is never scheduled, that
process will not die until it is allowed to run. Thus, such a process may never go away after the kill.
Often, the system must be re-booted in such cases.

- 1 -

LAST(l) LAST(l)

NAME
last - indicate last logins of users and teletypes

SYNOPSIS
last, lastb [-N 1 [name ... 1 [tty ...

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: UCB

DESCRIPTION

FILES

Last looks back in the wtmp file, which records all logins and logouts, for information about a user, a
teletype or any group of users and teletypes. Arguments specify names of users or teletypes of interest.
Names of teletypes may be given fully or abbreviated. For example last 0 is the same as last ttyO. If
multiple arguments are given, the information which applies to any of the arguments is printed. For
example last root console lists all of "root's" sessions as well as all sessions on the console terminal.

Last prints the sessions of the specified users and teletypes, most recent first, indicating the times at
which the session began, the duration of the session, and the teletype on which the session took place.
If the session is still continuing or was cut short by a re-boot, last indicates this.

The pseudo-user reboot logs in at re-boots of the system, thus

last reboot

gives an indication of mean time between re-boots.

Last with no arguments prints a record of alliogins and logouts, in reverse order. The -N option limits
the report to N lines.

If last is interrupted, it indicates how far the search has progressed in wtmp. If interrupted with a quit
signal (generated by a control-"-), last indicates how far the search has progressed so far, and the search
continues.

Lastb will look back in the btmp database to display bad login information.

/usr/admlwtrnp
login data base

/usr/admlbtrnp
bad login database

SEE ALSO
10gin(l), wtrnp(5).

- 1 -

LD(l) Series 200 Implementation LD(l)

NAME
Id -link editor

SYNOPSIS
Id [-sulxrdnm I [--0 name I [-h name I [-e name I [-R value I [-v num I file ...

HP-UX COMPATIBILITY
Level: HP-UXINUCLEUS

Origin: HP and System III

Remarks: This manual page describes the linker as implemented on the Series 200 computers. Refer
to other Id(1) manual pages for information valid for other implementations.

DESCRIPTION
Ld combines,~everal object programs into one; resolves external references; and searches libraries (as
created by ar(lH. In the simplest case several objectfiles are given, and Id combines them, producing
an object module which can be either executed or become the input for a further Id run. (In the latter
case, the -r option must be given to preserve the relocation bits.) The output of ld is left on a.out. This
file is made executable if no errors occurred during the load and the -r flag was not specified.

The argument routines are concatenated in the order specified. The entry point of the output is the
beginning of the first routine (unless the -e option is used).

If any argument is a library, it is searched exactly once at the point it is encountered in the argument list.
Only those routines defining an unresolved external reference are loaded. If a routine from a library
references another routine in the library, and the library has not been processed by ranlib(l) , the
referenced routine must appear after the referencing routine in the library. Thus the order of programs
within libraries is important. If the first member of a library is named _.SYMDEF, then it is understood
to be a dictionary for the library such as produced by ranlib; the dictionary is searched iteratively to
satisfy as many references as possible.

The symbols etext, edata and end (etext"edata and end in C) are reserved, and if referred to, are set to
the first location above the program, the first location above initialized data, and the first location above
all data respectively. It is erroneous to define these symbols.

Ld understands several flag arguments which are written preceded by a -. Except for -I, they should
appear before the file names.

-d Force definition of common storage even if the -r flag is present.

-e The following argument is taken to be the name of the entry point of the loaded program; loca-
tion Ox2000 is the default.

-h For -r output, hide the named symbol by clearing the external bit in the symbol table.

-I This option is an abbreviation for a library name. -I alone stands for llibllibc.a, which is the
standard system library for C and assembly language programs. -Ix stands for llib/libx.a,
where x is a string. If that does not exist, ld tries lusr/lib/libx.a A library is searched when its
name is encountered, so the placement of a -1 is Significant.

-m The names of all files and archive members used to create the output file are written to the stan­
dardoutput.

-n Arrange that when the output file is executed, the text portion will be read-only and shared
among all users executing the file. This involves moving the data areas up to the first possible
5l2K word boundary follOwing the end of the text.

--0 The name argument after --0 is used as the name of the Id output file, instead of a.out.

-r Generate relocation bits in the output file so that it can be the subject of another Id run. This
flag also prevents final definitions from being given to common symbols, and suppresses the
"undefined symbol" diagnostics.

-R The next argument is a hexadecimal number which sets the text segment origin. The default

-1-

LD(l)

FILES

Series 200 Implementation LD(l)

value if 0x2000.

-s "Strip" the output, that is, remove the symbol table and relocation bits to save space (but
impair the usefulness of the debugger). This information can also be removed by strip (1). This
option is turned off if there are any undefined symbols.

-u Take the following argument as a symbol and enter it as undefined in the symbol table. This is
useful for loading wholly from a library, since initially the symbol table is empty and an unresol­
ved reference is needed to force the loading of the first routine.

-V The num argument is taken as a decimal version number identifying the a.out that is produced.
Num must be in the range 0-32767. The version stamp is stored in the a.out header; see
a.out(S).

-x Do not preserve local (non-.globl) symbols in the output symbol table; only enter external sym­
bols. This option saves some space in the output file.

Ilib/lib?a
/usrllib/lib?a
a.out

libraries
more libraries
output file

SEE ALSO
ar(l), as(l), cc(1), a.out(S).

-2-

LO(1) Series 500 Implementation LO(I)

NAME
Id -link editor

SYNOPSIS
Id [[option] ... [file] ...] ...

HP-UX COMPATIBILITY
Level: HP-UX/NUCLEUS

Origin: HP

Remarks: This manual page describes ld as implemented on the Series 500 computers. Refer to other
ld(1) manual pages for information valid for other implementations.

DESCRIPTION
Ld combines one or more object files into a single file. In so doing, it resolves references between files
(such as procedure calls and accesses of COMMON). The linker can produce either executable (the
default) or relocatable output An executable file is one that is loadable by the HP-UX program loader,
exec. A relocatable file is one that is suitable as input for future re-Iinking (see -r below). The linker will
not generate an output file if any errors occur during its operation.

Ld recognizes two kinds of input files: ordinary files created by the compilers or assembler (called .0

files) and archives of these object files, called libraries (see ar(l)). In tum, there are two types of libraries:
ordinary and indexed. An ordinary library is an archive (of a.out format files), with no embellishments.
An indexed library is an archive generated by the ar command which has also been processed by
ranlib(l). The first element of such a library is an index (or table of contents) of all the external symbols
defined by object modules within the archive.

Ld processes files in the same order as they appear on the command line. The linker includes code and
data from a library element if, and only if. that object module defines a (currently unresolved) reference
within the user's program. Ld scans an ordinary library once, from beginning to end. It may be
necessary to name such a library several times in order to pick up all necessary definitions from them.
Ld scans an indexed library until it has picked up all definitions needed by the user's program.
However, if the index is out of date (which can happen if you copy the library or insert/delete elements
and don't reprocess it with ranlib(l)), the linker ignores the index and treats the library like an ordinary
one.

Ld automatically updates any debugger support tables present in the input files (as long as -s does not
appear on the command line). If you intend to use cdb(l) on a program, you should link with it the
appropriate run-time start-up file as the first file and end.o as the last file named in the command line
(see the examples below). Note that cdb(l) will not operate on a program marked as shared.

Ld options may occur anywhere on the command line as long as they follow the command name itself.
Some options require a modifier follOwing the option letter (e.g. -0 outpumame). Ld recognizes
modifiers either as part of the word containing the option letter, or as a separate word following the
option letter (the same convention used by getopt(3)).

Ld recognizes the following options. In these descriptions a colon following the option letter indicates
that it takes an additional modifier. The colon itself is not literal, and must not appear on the command
line.

-A keep the O-data and I-data areas apart (in separate segments).

-M: merge input code segments together. The modifier indicates an (approximate) upper bound
on the size of the merged code segments in the output file.

-N mark the program as normal (not shared) executable.

-T put the O-data and I-data areas together in the same global data segment (GOS).

-V: use the specified number as a version number and store it in the output file header. This is not
the same as any version number reported by the sees what(l) command.

-1-

LO(I) Series 500 Implementation LO(I)

-X: indicates the initial size for the linker's global symbol table. Thus you can improve linker
performance for very large programs (i.e. those with very many external symbols). The linker
expands its internal data structures as necessary no matter what the starting size of these
structures.

-d force definition of COMMON storage (Le. assign addresses and sizes), even for -r output.

--e: names an alternate entry point for the user program. The HP-UX loader calls this entry point
whenever you run your linked program. The default is JIlain.

-h: prior to writing the output file, mark the named symbol so that it is no longer externally visible.
This prevents the symbol from being treated as a global definition in future linking. Use this in
conjunction with -r.

-1: is a shorthand form for specifying libraries in certain directories. Ld searches a default set of
directories to locate the desired library. These directories are:

/lib
/usr/lib

The linker searches these directories in the above order, looking for an archive named libxxx.a,
where xxx is a string of one or more ASCII characters specified as the modifier for the -1 option.
A -1 with no modifier (which is only valid at the end of the command line) is the same as -le.

-n mark the program as shared. (This is the default; the option is here to maintain compatibility
with other linkers.)

-0: specify an alternate name for the resulting output object file produced by the linker. The
default is a.out.

-r arranges for the output file to be re-linkable. Ld preserves all symbol table and relocation
information necessary for linking. In this case the linker does not make final definitions of
COMMON, nor does it issue "undefined symbol" messages. This option overrides the actions
of -s if both options are present. Note: the resulting file is not executable.

-s indicates that the output file should not contain symbol table, relocation, or debug support
information. This option pro ~vents processing of any symbolic debugger support information in
a program. Note: The linker ignores this option if the -r option is also present. (You can also
use strip(l) to remove this information from an existing file.)

-t print a trace of the files (including library components) that ld is including in the final output.
This information appears twice - once for each pass the linker makes over the input files.
Because ee(l) also has a -t option, you can only exercise this capability by invoking ld directly.

-u: specifies a name to enter in the linker's symbol table as undefined. It appears as an unresolved
reference to the linker. This provides a way of loading something from a library without having
an explicit reference to it in any ".0" files.

-v (verbose) causes the linker to display additional information regarding its operation. This
option is not available when linking via ee(l) because ee intercepts the option as its own.

DEFAULTS
Unless otherwise noted, ld names its output a.out. The -0 option overrides this. Similarly, the linker
searches for JIlain (written as main in C) as the main entry point for a user program. Use the --e option
to specify a different entry point.

Default memory management attributes for executable files are as follows: shared text, virtual code,
virtual data (D-data and I-data), and paged I-data. The only exception is that debuggable programs are
marked as normal, rather than shared. Use ehaIT(l) to change these attributes, or enable new ones,
such as demand-load.

-2-

LO(1) Series 500 implementation LO(1)

EXAMPLES

FILES

This example links part of a C program for later processing by /d. Note the ".0" suffix for the output
object file. This is an HP-UX convention for indicating a linkable object file. It also marks the version
number of the file as 2.

Id -V2 -r cl.o c2.0 -0 prog.o

This example links a simple FORTRAN program for use with the cdb(l) symbolic debugger. The output
file name is a.out since there is no -0 option in the command line.

Id -e start /lib/frtO.o user.o -1177 -IF77 -1m -Ic /usr/lib/end.o

This command links a Pascal program so that all its data resides in a single data segment and code
segments are merged to be no larger than 16 000 bytes in size.

Id -T -M16000 -e start /lib/prtO.o main.o util.o -Ipc -1m -Ie

837u /lib/crtO.o run-time start-up for C
llib/frtO.o

run-time start-up for FORTRAN llib/prtO.o run-time start-up for Pascal /usr/lib/end.o special file
for use by cdb(l)

SEE ALSO
ar(l), cc(l), cdb(l), chatr(l), fc(l), nm(l), pc(l), ranlib(1), strip(l), end(3), getopt(3), a.out(S).

DIAGNOSTICS

NOTES

Ld returns the following exit codes:

0- no errors;
1- abort (killed by signal);
2 - error during link;

Ld recognizes several names as having special meanings. These names - _end, _edata, and _etext
(end, edata, and etext in C) - are reserved. (See section 3 of the HP-UX Reference manual for more
information.) User programs must not contain (externallY-visible) definitions for these names. Also,
remember that there are several names already defined in the various run-time start-up files, the most
common being start (only accessible via assembly language).

-3-

LEX(l) LEX(l)

NAME
lex - generate programs for lexical analysis of text

SYNOPSIS
lex [-rctvn 1 [file 1 ...

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

DESCRIPTION
Lex generates programs to be used in simple lexical analysis of text.

The input files contain strings and expressions to be searched for, and C text to be executed when
strings are found. Multiple files are treated as a single file. If no files are specified, the standard input is
used.

A file lex.yy.c is generated which, when loaded with the library, copies the input to the output except
when a string specified in the file is found; then the corresponding program text is executed. The actual
string matched is left inY.Ytext, an external character array. Matching is done in order of the strings in the
file. The strings may contain square brackets to indicate character classes, as in [abx-zl to indicate a, b,
x, y, and z; and the operators *, +, and? mean respectively any non·negative number of, any positive
number of, and either zero or one occurrences of, the previous character or character class. The
character. is the class of all ASCII characters except new-line. Parentheses for grouping and vertical bar
for alternation are also supported. The notation r{d,e} in a rule indicates between d and e instances of
regular expression r. It has higher precedence than I, but lower than * , ?, +, and concatenation. The
character - at the beginning of an expression permits a successful match only immediately after a new­
line, and the character $ at the end of an expression requires a trailing new-line. The character / in an
expression indicates trailing context; only the part of the expression up to the slash is returned in Y.Ytext,
but the remainder of the expression must follow in the input stream. An operator character may be used
as an ordinary symbol if it is within " symbols or preceded by ",-. Thus [a-zA-Zl + matches a string of
letters.

Three subroutines defined as macros are expected: inputO to read a character; unput(c) to replace a
character read; and output(c) to place an output character. They are defiJiled in terms of the standard
streams, but you can override them. The program generated is named yy(exO, and the library contains
a mainO which calls it. The action REJECT on the right side of the rule causes this match to be rejected
and the next suitable match executed; the function yymoreO accumulates additional characters into the
same yytext; and the function yyless(p) pushes back the portion of the string matched beginning at p,
which should be between y'ytext and yytext + J.Yleng. The macros input and output use files yyin and
yyout to read from and write to, defaulted to stdin and stdout, respectively.

Any line beginning with a blank is assumed to contain only C text and is copied; if it precedes % % it is
copied into the external definition area of the lex.yy.c file. All rules should follow a %%, as in YACC.
Lines preceding %% which begin with a non-blank character define the string on the left to be the
remainder of the line; it can be called out later by surrounding it with {}. Note that curly brackets do not
imply parentheses; only string substitution is done.

The flags, which must appear before any files, are as follows:

-r indicates ratfor(1) actions;

-c indicates C actions - this is the default;

-t causes the lex.yy.c program to be written instead to the standard output;

-v provides a one-line summary of statistics for the machine generated;

-n suppresses printing of the - summary.

- 1 -

LEX(!) LEX(!)

Certain table sizes for the resulting finite state machine can be set in the definitions section:

%p n number of positions is n (default is 2000);

%n n number of states is n (default is 500);

%t n number of parse tree nodes is n (default is 1000);

%a n number of transitions is n (default is 3000).

The use of one or more of the preceding table options automatically implies -v, unless -n is specified.

External names generated by lex all begin with the prefix yy or YY.

EXAMPLE

SEE ALSO

yacc(l).

D
%%
if
[a-z] +
O{D} +
{D}+
11++11
11+11

11/* II

[0--9]

printf(" IF statement"n");
print£("tag, value %s"n" ,yytext);
printf("octal number %s"n" ,yytext);
printf("decimal number %s "n" ,yytext);
printf("unary op "n ");
print£("binary op "n");
{ loop:

while (inputO ! = '*');
switch (inputO)

{
case 'I': break;
case' *': unput(' *');
default: go to ioop;
}

Lex - Lexical Anaryzer Generator in HP-UX Concepts and Tutorials.

BUGS
The -f option is not yet fully operational.

-2-

LIF(1) LIF(l)

NAME
LIF - Logical Interchange Format description

HP-UX COMPATIBILITY
Level: HP-UXINUCLEUS

Origin: HP

DESCRIPTION
LIF (Logical Interchange Format) is a Hewlett-Packard standard disc format that may be used for inter­
change of files among various HP computer systems. A LIF volume contains a header (identifying it as a
LIF volume) and a directorY that defines the contents (i.e. files) of the volume. The size of the directory is
fixed when the volume is initialized (see lifinit(l)) and sets an upper bound on the number of files that
may be created on the volume.

HP-UX contains a set of utilities (referred to hereafter as lif*(l)) that may be used to initialize a LIF
volume (i.e. create a header and an empty directory), copy files to and from LIF volumes, list the con­
tents of LIF volumes, remove LIF files, and rename LIF files.

The lif*(l) utilities are the only utilities within HP-UX where the internal contents of a LIF volume are
known. To the rest of HP-UX a LIF volume is simply a file containing some unspecified data. The term
'LIF volume' should in no way be confused with the HP-UX notion of a file system volume or moun­
table volume.

A LIF volume may be created on any HP-UX file (either regular disc file or device special file) that sup­
ports random access via Iseek(2). Note that you should not mount the special file before using the
lif*(l) routines. See lifinit(l) for details. Within a LIF volume, individual files are identified by 1 to 10
character file names. File names may consist of upper-case alphanumeric characters (A through Z, 0
through 9) and the underscore character (_). The first character of a LIF file name must be a letter. The
lif* (1) utilities will accept any file name, including illegal file names generated on other systems, but will
only create legal names. For example, file names containing lower-case letters will be read but not
created.

LIF file names are specified to the lif*(1) utilities by concatenating the HP-UX path name for the LIF
volume with the LIF file name, separating the two with a colon (:). For example,

Idevlfd.O:ABC specifies LIF file ABC within HP-UX device special file Idevlfd.O.

myfile:ABC specifies LIF file ABC within HP-UX disc file 'myfile'.

Note that this file naming convention is applicable only for use as arguments to the lif*(l) utilities and
do not constitute legal path names for any other use within HP-UX.

HARDWARE DEPENDENCIES
Series 500:

You must use a character special file to access the media.

SEE ALSO
lifcp(l), lifinit(l), lifis(l), lifrename(1), lifrm(l).

-1-

LIFCP(l) LIFCP(l)

NAME
lifcp - copy to or from LIF files

SYNOPSIS
Iifcp [-aJ [-bJ HJ filel file2
Iifcp [-aJ [-bJ HJ filel [file2 ... J directory

HP-UX COMPATIBILITY
Level: HP-UXINUCLEUS

Origin: HP

DESCRIPTION

Lifcp copies a LIF file to an HP-UX file, an HP-UX file to a LIF file, or a LIF file to another LIF file. It also
copies a list of (HP-UXlLIF) files to a (LIFIHP-UX) directory. The last name on the argument list is the
destination file or directory.

The options are:

-a causes an ASCII copy. In case of HP-UX to LIF copy, a LIF ASCII file is created.

-b forces binary copy, creating LIF BINARY files. If neither of the -a or -b options are
given, Iifcp will guess whether to do an ASCII or a binary copy based on the magic
number of the file. Text files are ASCII and object files are treated as binary.

-t causes HP-UX file names to be translated to a name acceptable by a LIF utility. That is,
all the lower -case letters are converted to upper -case letters, and all other characters
(except digits) are converted to an underscore (_). If the HP-UX file name starts with a
non-letter, the file name is preceded by X. Note that if there are two files named colon
(:) and semicolon (;), both of them are translated to "X_". File names are truncated to
a maximum of 10 characters.

A LIF file name is recognized by the embedded colon (:) delimiter (see lif(l) for LIF file naming
conventions). A LIF directory is recognized by a trailing colon. If an HP-UX file name containing a
colon is used, the colon must be escaped with two backslash characters ("-"-) (the shell removes one of
them). The file name '-' (dash) is interpreted to mean standard in or standard out, depending on its
position in the argument list.

The LIF file naming conventions are known only by the LIF utilities. Since file name expansion is done
by the shell, this mechanism cannot be used for expansion of LIF file names.

Note that the media should not be mounted before using lifcp.

HARDWARE DEPENDENCIES
Series 500:

You must use a character special file to access the media.

EXAMPLES

Iifcp abc IiffiIe:CDE
copy HP-UX file abc to L1F file CDE within HP-UX file liffile (liffile must have been previously
initialized as a LIF volume with lifinit). This type of operation is commonly done to create a LIF
volume within an HP-UX file, which, when completed, can be copied out to some medium in one
step.

Iifcp abc"-"-: Iiffile:CDE
copy LIF file abc: to LIF file CDE in liffile.

Iifcp -t abc def Iiffile:
copy HP-UX files abc and defto LIF files ABC and DEF within liffile.

Iifcp Iiffile:ABC .
copy LIF file ABC within liffile to HP-UX file ABC within the current directory.

- 1 -

L1FCP(l) L1FCP(l)

lifcp - Idevlrfd.O:A.HLE
copy the standard input to LIF file AYILE on LIF volume Idev/rfd.O.

lifcp liffile:ABC Idev/rfd.O:CDE
copy LIF file ABC in liffile to LIF file CDE in Idev/rfd.O.

lifcp liffile:ABC -
copy LIF file ABC in liffile to standard out.

lifcp * liffile:
copy all files within the current HP-UX directory to LIF files of the same name on LIF volume
liffile (may cause errors if file names in the current directory do not obey LIF naming
conventions!).

SEE ALSO
lif(l), lifinit(l), lifls(1), lifrename(1), lifrrn(l).

DIAGNOSTICS
Lifcp returns exit code 0 if the file is copied successfully. Otherwise it prints a diagnostic and returns
non-zero.

- 2 -

L1FINIT(I) L1FINIT(I)

NAME
lifinit - write LIF volume header on file

SYNOPSIS
Iifinit [-vnnn] [-dnnn] [-n string] file

HP-UX COMPATIBILITY
Level: HP-UXINUCLEUS

Origin: HP

DESCRIPTION
Lifinit writes a LIF volume header on a volume or file. Options may appear in any order. Their mean­
ings are:

-vnnn

-dnnn

-n string

Sets the volume size to nnn bytes. If nnn is not a multiple of 1024, it will be rounded down
to the next such multiple.

Sets the directory size to nnn file entries. If nnn is not a multiple of 8, it will be rounded up to
next such multiple.

sets the volume name to be string. If the -n option is omitted, the volume name is set to
the last component of the path name specified by file. If string is longer than 6 characters, it
is truncated.

If file does not exist, a regular HP -UX disc file is created and initialized.

The default values for volume size are 256K bytes for regular files, and the actual capacity of the device
(as determined by volsize(3)) for device files.

The default directory size is a function of the volume size. A percentage of the volume size is allocated to
the volume directory as follows:

VOLUME SIZE
<2MB
> 2MB

DIRECTORY SIZE
-1.3%
-0.5%

Each directory entry occupies 32 bytes of storage. The actual directory space is subject to the rounding
rules stated above.

Note that you should not mount the special file before using lifinit.

HARDWARE DEPENDENCIES
Series 200:

If your media has never been initialized, it must be initialized using system_mi before lifinit can
be used. (Refer to the System Administrator Manual for details concerning system_mi.)

Series 500:
You must use a character special file to access the media.

If your media has never been initialized, it must be initialized using sdfinit(8) before lifinit can be
used.

EXAMPLES
Iifinit -v500000 -dIO x
Iifinit /dev/rfd.O

SEE ALSO
lif(1), lifcp(l), lifls(l), lifrename(l), lifrm(l), sdfinit(8).

DIAGNOSTICS
Lifinit returns exit code 0 if the volume is initialized successfully. Otherwise it prints a diagnostic alCd
returns non-zero.

-1-

L1F1NIT(1) L1F1NIT(l)

WARNING
Do not terminate lifinit once it has started executing. ,Otherwise, your media could become corrupted.

-2-

LIFLS(l)

NAME
lifls -list contents of LlF directory

SYNOPSIS
lifts [option 1 name

HP-UX COMPATIBILITY
Level: HP-UXINUCLEUS

Origin: HP

DESCRIPTION

LIFLS(l)

Lifts lists the contents of a LlF directory on stdout. The default output format calls for the file names to
be listed in multiple columns (as is done by Is(l), except unsorted) if stdout is a character special file. If
stdout is not a teletype, the output format is one file name per line. Name is a path name to an HP-UX
file containing a LlF volume and optional file name. If name is a volume name, the entire volume is
listed. If name is of the form volume.file, then only the file is listed. There are two options:

-I List in long format, giving volume name, volume size, directory start, directory size, file type, file
size, file start, extension, date created, last volume and volume number.

-C Force mUltiple column output format regardless of stdout type.

Note that you should not mount the special file before using lifts.

HARDWARE DEPENDENCIES
Series 500:

You must use a character special file to access the media.

EXAMPLES
lifts -I . .ITESTlheader
lifts Idevlrfd.O

SEE ALSO
lif(l), lifcp(l), lifinit(l), lifrename(l), lifrm(l).

DIAGNOSTICS
Lifts returns exit code 0 if the directory was listed successfully. Otherwise it prints a diagnostic and
returns non-zero.

- 1 -

LIFRENAME(l)

NAME
lifrename - rename LIF files

SYNOPSIS
Iifrename oldfile newfile

HP-UX COMPATIBILITY
Level: HP-UXINUCLEUS

Origin: HP

DESCRIPTION

LIFRENAME(l)

Oldfile is a full LIF file specifier (see lij{l) for details) for the file to be renamed (e.g. Iiffile:AJ'ILE).
Newfile is the new name to be given to the file (only the file name portion). This operation does not
include copy or delete. Old file names must match the name of the file to be renamed, even if that file
name is not a legal LIF name.

Note that you should not mount the special file before using lifrename.

HARDWARE DEPENDENCIES

Series 500:
You must use a character special file to access the media.

EXAMPLES
Iifrename Iiffile:A...FILE B..FILE
Iifrename Idev/fd.O:ABC CDE

SEE ALSO
lif(1), lifcp(l), lifinit(l), lifls(l), lifrm(l).

DIAGNOSTICS
Lifrename returns exit code 0 if the file name is changed successfully. Otherwise it prints a diagnostic
and returns non-zero.

- 1 -

L1FRM(l)

NAME
lifrm - remove a LIF file

SYNOPSIS
lifrm file1 ... filen

HP-UX COMPATIBILITY
Level: HP-UXINUCLEUS

Origin: HP

DESCRIPTION

L1FRM(l)

Lifrm removes one or more entries from a LIF volume. File name specifiers are as described in lif(1).

Note that you should not mount the special file before using lifrm.

HARDWARE DEPENDENCIES
Series 500:

You must use a character special file to access the media.

EXAMPLES
lifrm liffile:MAN
lifrm /dev/rfd.O:F

SEE ALSO
lif(l), lifcp(l), lifinit(l), lifls(l), lifrename(1).

DIAGNOSTICS
Lifrm returns exit code 0 if the file is removed successfully. Otherwise it prints a diagnostic and returns
non-zero.

-1-

LINE(l)

NAME
line - read one line from user input

SYNOPSIS
line

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

DESCRIPTION

LINE(l)

Line copies one line (up to a new-line) from the standard input and writes it on the standard output. It
returns an exit code of 1 on EOF and always prints at least a new-line. It is often used within shell files to
read from the user's terminal.

SEE ALSO
read (documented under sh(l)), read(2).

-1-

LINK(l)

NAME
link, unlink - exercise link and unlink system calls

SYNOPSIS
/etcJlink filel file2
/ete/unlink file

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System JII

DESCRIPTION

LINK(l)

Link and unlink perform their respective system calls on their arguments, abandoning most error check­
ing. These commands may only be executed by the super-user.

RETURN VALUE
o -successful link .
1 - input syntax error.
2 -link call failed (unlink will never report failure).

SEE ALSO
rrn(l}, link(2}, unlink(2}.

-1-

LINT(1) LINT(1)

NAME
lint - a C program checker/verifier

SYNOPSIS
lint [-abchnpuvxDUI 1 file .

HP-UX COMPATIBILITY
Level: C Compiler- HP-UXISTANDARD

Origin: System 1lI

DESCRIPTION
Lint attempts to detect features of the C program files which are likely to be bugs, non-portable, or
wasteful. It also checks type usage more strictly than the compilers. Among the things which are
currently detected are unreachable statements, loops not entered at the top, automatic variables
declared and not used, and logical expressions whose value is constant. Moreover, the usage of func­
tions is checked to find functions which return values in some places and not in others, functions called
with varying numbers of arguments, and functions whose values are not used.

It is assumed that all the files are to be loaded together; they are checked for mutual compatibility. By
default, lint uses function definitions from the standard lint library Ilib--Ic.ln; function definitions from
the portable lint library Ilib--port.ln are used when lint is invoked with the -p option.

Any number of lint options may be used, in any order. The following options are used to suppress cer­
tain kinds of complaints:

-a Suppress complaints about assignments of long values to variables that are not long.

-b Suppress complaints about break statements that cannot be reached. (Programs produced by
lex or yacc will often result in a large number of such complaints.)

-c Suppress complaints about casts that have questionable portability.

-h Do not apply heuristic tests that attempt to intUitively find bugs, improve style, and reduce
waste.

-u Suppress complaints about functions and external variables used and not defined, or defined
and not used. (This option is suitable for running lint on a subset of files of a larger program.)

-v Suppress complaints about unused arguments in functions.

-x Do not report variables referred to by external declarations but never used.

The following arguments alter lint's behavior:

-n Do not check compatibility against either the standard or the portable lint library.

-p Attempt to check portability to other dialects of C.

The -D, -U, and -I options of cc (1) are also recognized as separate arguments.

Certain conventional comments in the C source will change the behavior of lint:

I*NOTREACHED*I
at appropriate points stops comments about unreachable code.

I*VARARGSn*1
suppresses the usual checking for variable numbers of arguments in the following func­
tion declaration. The data types of the first n arguments are checked; a missing n is
taken to be O.

I*ARGSUSED*I
turns on the -v option for the next function.

I*LINTLIBRARY*I
at the beginning of a file shuts off complaints about unused functions in this file.

-1-

UNT(1) UNT(1)

FILES

Lint produces its first output on a per source file basis. Complaints regarding included files are collected
and printed after all source files have been processed. Finally, information gathered from all input files is
collected and checked for consistency. At this point, if it is not clear whether a complaint stems from a
given source file or from one of its included files, the source file name will be printed followed by a ques­
tion mark.

lusr/lib/lint[12] programs
lusr/lib!llib-lc.ln declarations for standard functions (binary format; source is in lusr/lib!llib-Ic)
lusrlliblllib-port.1n declarations for portable functions (binary format; source is in lusrllib/llib-port)
lusr/tmp/* lint* temporaries

SEE ALSO
cc(l).

BUGS
Exit(2) and other functions which do not return are not understood.

-2-

LOGIN(l) LOGIN(l)

NAME
login - sign on

SYNOPSIS
jete/login [name [hangup 1 1

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System 1II, 4.2850

DESCRIPTION

FILES

The login command is used at the beginning of each terminal session and allows you to identify yourself
to the system. It cannot be invoked explicitly (except by the super-user), but is invoked by the system
when a connection is first established, or after the previous user has logged out by sending an "end-of­
file" (control-D) to his or her initial shell. (See How to Get Started at the beginning of this volume for
instructions on how to dial up initially.)

Login asks for your user name (preferably lower-case), and, if appropriate, your password. Echoing is
turned off (where possible) during the typing of your password, so it does not appear on the written
record of the session. Note that, if you have a password, you are asked for it whether your user name is
valid or not. This is done to make it more difficult for an unauthorized user to log in on the system by
trial and error.

If password aging has been invoked by the super-user on your behalf, your password may have
expired. In this case, you are diverted into passwd (I) to change it, after which you may attempt to login
again.

If you do not complete the login successfully within a certain period of time (e.g., one minute), you are
likely to be silently disconnected.

After a successful login, the accounting files are updated, and the user and group id's and the working
directory are initialized. Login then executes a command interpreter (usually sh(l)}, according to
specifications found in the /ete/passwd file. If the shell is executed, the profile files /etc/profile and
$HOME/.profile are executed, if they exist. Depending on what these profile files contain, you are
notified of mail in your mail file or any messages you may have received since your last login. Argument
o of the command interpreter is - followed by the last component of the interpreter's path name. The
environment (see environ (7)) is initialized to:

HOME = your-login-directory
PATH = :/bin:/usrlbin
LOG NAME = your-login-name

For the super-user, PATH is augmented to include /etc.

The presence of name suppresses the login: prompt, and uses name as the login name. H angup is the
time, in seconds, before hanging up if the login is unsuccessful. The default is 60 seconds. Zero (O)
seconds indicates an indefinite wait.

If /usr/adm/btmp is present, all unsucessfullogin attempts are logged to this file. This feature is disabled
if the file is not present. A summary of bad login attempts may be viewed using lastb (see last(l)}.

If /etc/securetly is present, login security is in effect and the super-user may only login successfully on
the ttys listed in this file. Ttys are listed by device name, one per line. Valid tty names are dependent on
installation. Some examples could be "console", "ttyOl", "ttyal", etc. Note that this feature does
not inhibit a normal user from using suo

After three unsuccessfullogins attempts, a hangup signal is issued.

/etc/utmp users currently logged in

- 1 -

LOGIN(l)

lusr/admlwtmp
lusr/adm/btmp
lusr/maillyour-name
letc/motd
letc/passwd
lete/profile
lete/securetty
$HOME/.profile

SEE ALSO

history of logins, logouts, and date changes
history of bad login attempts
mailbox for user your-name
message-of-the-day
password file - defines users, passwords, and groups
system profile (initialization for all users)
list of valid ttys for root login
personal profile (individual user initialization)

LOGIN(l)

last{l), mail{I), newgrp{I), passwd{I), sh{I), su{I), passwd(5), profile(5), utmp(5), environ(7), getty(8).

DIAGNOSTICS

Login incorrect
if the user name or the password is incorrect.

No shell, cannot open password file, no directory:
consult your system manager.

Your password has expired. Choose a new one.
if password aging is implemented.

No entry in utmp:
utmp file exists but your terminal is not listed there. Caused by serious trouble in the file system
or t~name(3).

No root directory:
attempted to log into a subdirectory that does not exist (Le., passwd file entry had shell name
" * ", but the system cannot chroot to the given directory).

No login in letc or Ibin on root:
same as above except sub-root login command not found.

Invalid ID:
setuid or setgid failed.

No directory:
cannot chdir to your home directory.

No shell:
your shell (or Ibin/sh if your shell name is null in letc/passwd) could not be exec' d.

-2-

LOGNAME(1)

NAME
logname - get login name

SYNOPSIS
logname

HP-UX COMPATIBILITY
Level: HP-UXfSTANDARD

Origin: System III

DESCRIPTION

LOGNAME(l)

Logname returns the contents of the environment variable $LOGNAME, which is set when a user logs
into the system.

FILES
fetefprofile

SEE ALSO
env(1), 10gin(1), logname(3X), environ(7).

-1-

LURDER(l) LORDER(l)

NAME
lorder - find ordering relation for object library

SYNOPSIS
lorder file ...

HP-UX COMPATIBILITY
Level: HP-UXiSTANDARD

Origin: System III

DESCRIPTION

FILES

The input is one or more object or library archive files (see ar{ 1)). The standard output is a list of pairs
of object file names, meaning that the first file of the pair refers to external identifiers defined in the
second. The output may be processed by tsart(1) to find an ordering of a library suitable for one-pass
access by ld{ 1).

This one-line example intends to build a new library from existing .0 files.

ar cr library' lorder *.0 I tsort"

Ranlib (I) serves a similar purpose and is more efficient for libraries.

*symref, *symdef temp files

SEE ALSO

BUGS

ar{l), Id(1), tsort(1), ranlib(1).

Object files whose name do not end with .0, even when contained in library archives, are overlooked.
Their global symbols and references are attributed to some other file.

-1-

LP(l) LP(l)

NAME
lp, lpr, cancel- send or cancel requests to an LP line printer

SYNOPSIS
Ip [-c] [-ddest] [-m] [-nnumber] [-ooption] [-s] [-ttitle] [-w] files
Ipr [-c] [-ddest] [-m] [-nnumber] [-ooption] [-s] [-ttitle] [-w] files
cancel [ids] [printers]

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System V

DESCRIPTION
Lp arranges for the named files and associated information (collectively called a request) to be printed by
a line printer. If no file names are mentioned, the standard input is assumed. The file name - stands for
the standard input and may be supplied on the command line in conjunction with named files. The
order in which files appear is the same order in which they will be printed.

Lp associates a unique id with each request and prints it on the standard output. This id can be used
later to cancel (see cancel) or find the status (see lpstat(1)) of the request.

The following options to lp may appear in any order and may be intermixed with file names:

-c Make copies of the files to be printed immediately when lp is invoked. Normally, files will
not be copied, but will be linked whenever possible. If the -c option is not given, then the
user should be careful not to remove any of the files before the request has been printed in
its entirety. It should also be noted that, in the absence of the -c option, any changes made
to the named files after the request is made but before it is printed will be reflected in the
printed output.

-ddest Choose dest as the printer or class of printers that is to do the printing. If dest is a printer,
then the request will be printed only on that specific printer. If dest is a class of printers, then
the request will be printed on the first available printer that is a member of the class. Under
certain conditions (printer unavailability, file space limitation, etc.), requests for specific
destinations may not be accepted (see accept(8) and lpstat(1)). By default, dest is taken from
the environment variable LPDEST (if it is set). Otherwise, a default destination (if one exists)
for the computer system is used. Destination names vary between systems (see Ipstat(I)).

-m Send mail (see mail(1)) after the files have been printed. By default, no mail is sent upon
normal completion of the print request.

-nnumber Print number copies (default = 1) of the output.

-ooption Specify printer-dependent or class-dependent options. Several such options may be
collected by specifying the -0 keyletter more than once. For more information about what
is valid for options, see Models in Ipadmin(8).

-s Suppress messages from lp (1) such as "request id is ... " .

-ttitle

-w

Print title on the banner page of the output.

Write a message on the user's terminal after the files have been printed. If the user is not
logged in, then mail will be sent instead.

Cancel cancels line printer requests that were made by the Ip(I) command. The command line
arguments may be either request ids (as returned by Ip(I)) or printer names (for a complete list, use
Ipstat(I)). Specifying a request id cancels the associated request even if it is currently printing.
Specifying a printer cancels the request which is currently printing on that printer. In either case, the
cancellation of a request that is currently printing frees the printer to print its next available request.

- 1 -

LP(l)

FILES
/usr/spool/lp/ *

SEE ALSO
enable(l), Ipstat(l), mail(l), accept(S), lpadmin(S), Ipsched(S).

-2-

LP(l)

LPD(l) LPD(l)

NAME
Ipd -line printer daemon

SYNOPSIS
lusr/lib/lpd [printername 1

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System III

DESCRIPTION

FILES

Lpd is the daemon for the line printer. It is automatically initiated by the line printer spooling command,
Ipr.

Printername is the name of a printer device file, without the initial" Idev/" (i.e. IpS). If printername is not
specified, the default printer Ip is used.

Lpd searches the directory lusrlspool for a directory of the same name as the specified printername.
Thus, lusrispooi/lp is used by default. To be able to use other printers, a directory for each printer must
be created in lusrlspool by the super-user. (Other spool directories can be specified by lpr with the -d
option.)

The file lock is used to prevent two daemons from becoming active on the same spool directory.
Several daemons can be active simultaneously, as long as they are working on different spool direc­
tories. After the program has successfully set the lock, it forks and the main path exits, thus spawning the
daemon. The directory is scanned for files beginning with "df". Each such file is submitted as a job.
Each line of a job file must begin with a key character to specify what to do with the remainder of the
line. The key characters are:

L specifies that the remainder of the line is to be sent as a literal.
I is the same as L, but signals the $lDENT card which is to be mailed back by the mail option.
B specifies that the rest of the line is a file name. That file is to be printed.
F is the same as B except a form-feed is prepended to the file.
U specifies that the rest of the line is a file name. After the job has been transmitted, the file is

unlinked.
M is followed by a user ID: after the job is sent, a message is mailed to the user via the mail (1) com-

mand to verify the sending of the job.
D specifies that the remainder of the line is a pathname for a specific printer.

Any error encountered will cause the daemon to give up, wait 10 seconds, and start over. This means
that an improperly constructed" df" file may cause the same job to be submitted every 10 seconds.

To restart lpd (in the case of hardware or software malfunction), it is necessary to first kill the old dae­
mon (if it is still alive), and remove the lock file (if present), before initiating the new daemon. This is
done automatically by letcirc when the system is brought up, in case there were any jobs left in the
spooling directory when the system last went down.

Lpd will pass ASCII escape sequences to the output device. This enables users to access special capabili­
ties like expanded type fonts, alternate character sets, etc.

lusrispooi/lpi *
lusrlspoollprinternamel *
letc/passwd
Idev/lp
Idev/lp*

default spool area for line printer daemon.
spool area for additional printers
used to get the user's name.
default line printer device.
additional printer devices.

SEE ALSO
Ipr(1).

-1-

LPR(l) (obsolete) LPR(l)

NAME
Ipr -line printer spooler

SYNOPSIS
Ipr [option ... 1 [name ... 1

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

DESCRIPTION

FILES

Lpr causes the named files to be queued for printing on a line printer. If no names appear, the standard
input is assumed; thus lpr may be used as a filter. If the -d option is absent, the printer Idev/lp is
assumed.

The following options may be given (each as a separate argument and in any order) before any file name
arguments:

-c Makes a copy of the file to be sent before returning to the user.
-r Removes the file after sending it.
-m When printing is complete, reports that fact by mail(l).
-n Does not report the completion of printing by mail(l). This is the default option.
-d Is followed by a printer name, and causes output to be sent to that printer.

Note that lpr does not force a page-eject at the end of a printing. Thus, if printing stops in the middle of
a page, the upcoming header will not begin at the appropriate place. The most common solution to this
is to pipe your printing through pr(l).

letc/passwd
lusr/lib/lpd
lusrlspool! printernamel *

user's identification and accounting data.
line printer daemon.
spool area.

SEE ALSO
Ip(1), Ipd(l), prIll.

WARNING
Lpr is an obsolete command. The use of lp(l) is encouraged instead.

- 1 -

LPSTAT(l) LPSTAT(l)

NAME
lpstat - print LP status information

SYNOPSIS
Ipstat [options 1

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System V

DESCRIPTION

FILES

Lpstat prints information about the current status of the LP line printer system.

If no options are given, then lpstat prints the status of all requests made to lp (1) by the user. Any
arguments that are not options are assumed to be request ids (as retumed by lp). Lpstat prints the status
of such requests. Options may appear in any order and may be repeated and intermixed with other
arguments. Some of the keyletters below may be followed by an optional list that can be in one of two
forms: a list of items separated from one another by a comma, or a list of items enclosed in double
quotes and separated from one another by a comma and/or one or more spaces. For example:

-u"userl, user2, user3"

The omission of a list following such keyletters causes all information relevant to the keyletter to be
printed. For example:

Ipstat-o

prints the status of all output requests.

-a[list 1 Print acceptance status (with respect to lp) of destinations for requests. List is a list of
intermixed printer names and class names.

-c[list 1 Print class names and their members. List is a list of class names.

-d Print the system default destination for lp.

-or list 1 Print the status of output requests. List is a list of intermixed printer names, class names, and
request ids.

-p[list 1 Print the status of printers. List is a list of printer names.

-r Print the status of the LP request scheduler

-s Print a status summary, including the status of the line printer scheduler, the system default
destination, a list of class names and their members, and a list of printers and their associated
devices.

-t Print all status information.

-u[list 1 Print status of output requests for users. List is a list of login names.

-v[list 1 Print the names of printers and the path names of the devices associated with them. List is a list
of printer names.

/usr/spool/lp/*

SEE ALSO
enable(l),lp(l).

- 1 -

LS(1) LS(1)

NAME
Is, 1, 11, Isf, Isr, Isx -list contents of directories

SYNOPSIS
Is [-abcdfgilmnoqrstuxlACFR) [names)
1 [Is options) [names)
11 [Is options) [names)
lsf [Is options) [names)
lsr [Is options) [names)
Isx [Is options) [names)

HP-UX COMPATIBILITY
Level: HP-UXINUCLEUS

Origin: System III and UCB

DESCRIPTION
For each directory named, Is lists the contents of that directory; for each file named, Is repeats its name
and any other information requested. By default, the output is sorted alphabetically. When no
argument is given, the current directory is listed. When several arguments are given, the arguments are
first sorted appropriately, but file arguments are processed before directories and their contents.

If you are the super-user, Is defaults to listing all files except. and ...

There are three major listing formats. The format chosen depends on whether the output is going to a
login device, and may also be controlled by option flags. The default format for a teletype is to list the
contents of directories in multi-column format, with the entries sorted down the columns. (When
individual file names (as opposed to directory names) appear in the argument list, those file names are
always sorted across the page rather than down the page in columns. This is because the individual file
names may be arbitrarily long.) If the standard output is not a teletype, the default format is to list one
entry per line. Finally, there is a stream output format in which files are listed across the page, separated
by " , " characters. The -m flag enables this format.

There are several options:

-a List all entries; in the absence of this option, entries whose names begin with a period (.) are not
listed.

-A The same as -a, except that the current directory "." and parent directory " .. " are not listed.
For the super-user, this flag defaults to ON, and is turned off by-A.

-b Force printing of non-graphic characters to be in "-,.ddd notation, in octal.

-c Use time of last modification of the inode (mode, etc.) instead of last modification of the file for
sorting (-t) and/or printing (-I).

-C Force multi-column output to a file or a pipe.

-d If argument is a directory, list only its name; often used with -I to get the status of a directory.

-f Force each argument to be interpreted as a directory and list the name found in each slot. This
option turns off -I, -t, -s, and -r, and turns on -a; the order is the order in which entries
appear in the directory.

-F Cause directories to be marked with a trailing "/" and executable files to be marked with a
trailing "*".

-g The same as -I, except that the owner is not printed (overrides -0 if both options are specified).

-i For each file, print the i-number in the first column of the report.

-I List in long format, giving mode, number of links, owner, group, size in bytes, and time of last
modification for each file (see below). If the file is a special file, the size field will contain the

- 1 -

LS(l) LS(l)

major device number in decimal and the minor device number in hexadecimal, rather than a
size.

-m Force stream output format, i.e. a comma separated list.

-n The same as -I, except that the owner number is printed, and all group information is omitted.

-0 The same as -I, except that the group is not printed.

-q Force printing of non-graphic charaters in file names as the character "?"; this normally
happens only if the output device is a teletype.

-r Reverse the order of sort to get reverse alphabetic or oldest first, as appropriate.

-R Recursively list subdirectories encountered.

-s Give size in blocks (including indirect blocks) for each entry.

-t Sort by time of last modification (latest first) instead of by name.

-u Use time of last access instead of last modification for sorting (with the -t option) and/or printing
(with the -I option).

-x Force columnar printing to be sorted across rather than down the page.

-1 The file names will be listed in single column format regardless of the output device. This will
force single column format to the user's terminal.

Ls normally is known by several names which provide shorthands for the various formats:

I is equivalent to Is -m.
II is equivalent to Is-I.
Isf is equivalent to Is -F.
Isr is equivalent to Is-R.
Isx is equivalent to Is -x.

The shorthand notations are implemented as links to Is. Option arguments to the shorthand versions
behave exactly as if the long form above had been used with the additional arguments.

The mode printed under the -I option consists of 11 characters that are interpreted as follows:

The first character is:

d if the entry is a directory;
b if the entry is a block special file;
c if the entry is a character special file;
p if the entry is a fifo (a.k.a. "named pipe") special file;

if the entry is an ordinary file.

The next 9 characters are interpreted as three sets of three bits each. The first set refers to the
owner's permissions; the next to permissions of others in the user-group of the file; and the last
to all others. Within each set, the three characters indicate permission to read, to write, and to
execute the file as a program, respectively. For a directory, "execute" permission is
interpreted to mean permission to search the directory for a specified file.

The permissions are indicated as follows:

r if the file is readable;
w if the file is writable;
x if the file is executable;

if the indicated permission is not granted.

The group-execute permission character is given as s if the file has set-group-ID mode; likewise,
the user-execute permission character is given as s if the file has set-user-ID mode. The last
character of the mode (normally x or -) is t if the 1000 (octal) bit of the mode is on; see

-2-

LS(l) LS(l)

chmod(1) for the meaning of this mode. The indications of set-JD and 1000 bit of the mode are
capitalized if the corresponding execute permission is not set.

When the sizes of the files in a directory are listed, a total count of blocks, including indirect blocks, is
printed.

HARDWARE DEPENDENCIES
Series 200:

FILES

Network and SRM files are not implemented.

Series 500:
The -a and -A options perform the same function.

I etc/passwd
lete/group

to get user IDs for Is -I and Is -0.

to get group IDs for Is -I and Is -g.

SEE ALSO

BUGS

chmod(l), find(l).

Newline and tab are considered printing characters in file names.

The output device is assumed to be 80 columns wide.

The option setting based on whether the output is a teletype is undesirable as Is -s is much different
than Is -s I Ipr. On the other hand, not using this setting would make old shell scripts which used ls
error-prone.

Column widths choices are poor for terminals which can tab.

-3-

LSDEV(l)

NAME
lsdev -list device drivers in the system

SYNOPSIS
letc!lsdev [major. .. 1

HP-UX COMPATIBILITY

Series 500 Only

Level: HP-UXINON-STANDARD

Origin: HP

Remarks: Lsdev is implemented on the Series 500 only.

DESCRIPTION

LSDEV(l)

With no arguments, lsdev lists, one pair per line, the major device numbers and driver names of all dev­
ice drivers configured into the system and available for invocation via special files.

[f there are any arguments, they must represent major device numbers. For each, lsdev lists the
corresponding driver name (if any).

Lsdev is simply a qUick-reference aid. [n some implementations, it may only read an internal list of dev­
ice drivers, not the actual list in the operating system.

SEE ALSO
Section 4.

DIAGNOSTICS
Lists the drivername as "no such driver" when appropriate.

-1-

MAIl(!) MAIl(!)

NAME
mail, rmail- send mail to users or read mail

SYNOPSIS
mail [-rpqe 1 [-f file 1
mail persons

rmail persons

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

DESCRIPTION
Mail without arguments prints a user's mail, message-by-message, in last-in, first-out order. For each
message, the user is prompted with a ?, and a line is read from the standard input to determine the
disposition of the message:

<new-line>
+
d
p

s [files 1
w [files 1
m [persons 1
q
EOT (control-d)
x
!command

*

Go on to next message.
Same as <new-line>.
Delete message and go on to next message.
Print message again.
Go back to previous message.
Save message in the named files (mbox is default).
Save message, without its header, in the named files (mbox is default).
Mail the message to the named persons (yourself is default).
Put undeleted mail back in the mail file and stop.
Sameasq.
Put all mail back in the mailfile unchanged and stop.
Escape to the shell to do command.
Print a command summary.

The optional arguments alter the printing of the mail:

-r causes messages to be printed in first-in, first-out order.
-p causes all mail to be printed without prompting for disposition.
-q causes mail to terminate after interrupts. Normally an interrupt only causes the termination of

the printing of the current message.
-ffile causes mail to use file (e.g., mbox) instead of the default mailfile.
-e The mail is simply tested for existence and the exit code returned.

o = mail present
1 = no mail
2 = other error

When persons are named, mail takes the standard input up to an end-of-file (or up to a line consisting of
just a .) and adds it to each person's mailfile. The message is preceded by the sender's name and a
postmark. Lines that look like postmarks in the message, (i.e., "From ... ") are preceded with a >. A
person is usually a user name recognized by login(l). If a person being sent mail is not recognized, or if
mail is interrupted during input, the dead.letter will be saved to allow editing and resending.

To denote a recipient on a remote system, prefix person by the system name and exclamation mark (see
uucp(lC)). Everything after the first exclamation mark in persons is interpreted by the remote system. In
particular, if persons contains additional exclamation marks, it can denote a sequence of machines
through which the message is to be sent on the way to its ultimate destination. For example, specifying
a!b!cde as a recipient's name causes the message to be sent to user b!cde on system a. System a will
interpret that destination as a request to send the message to user cde on system b. This might be
useful, for instance, if the sending system can access system a but not system b, and system a has access

- 1 -

MAIL(l)

FILES

MAIL(l)

to system b.

The mailfile may be manipulated in two ways to alter the function of mail. The other permissions of the
file may be read-write, read-only, or neither read nor write to allow different levels of privacy. If
changed to other than the default, the file will be preserved even when empty to perpetuate the desired
permissions. The file may also contain the first line:

Forward to person

which will cause all mail sent to the owner of themailfiletobeforwardedtoperson.This is especially
useful to forward all of a person's mail to one machine in a multiple machine environment.

Rmail only permits the sending of mail; uucp (1 C) uses rmail as a security precaution.

When a user logs in, he is informed of the presence of mail, if any.

letc/passwd
lusr/mail/*
$HOME/mbox
$MAIL
Itmp/ma*
lusr/maill * .lock
dead.letter

to identify sender and locate persons
incoming mail for user *; mailfile
saved mail
mailfile
temporary file
lock for mail directory
unmailable text

SEE ALSO
login(l), mailx(l), uucp(lC), write(l).

BlJGS
Race conditions sometimes result in a failure to remove a lock file.
After an interrupt, the next message may not be printed; printing may be forced by typing a p.

- 2-

MAILX(l) MAILX(l)

NAME
mail- send and receive mail

SYNOPSIS
mailx [-v I [-i I [-n I [-s subject I [user ... I
mailx [-v I [-i I [-n I -f [name I
mailx [-v I [-i I [-n I -u user

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: UCB

DESCRIPTION
Mailx is a intelligent mail processing system, which has a command syntax reminiscent of ed(1), with
lines replaced by messages.

The options common to all mailx invocations are as follows:

-v verbose mode; the details of mail delivery are displayed on your terminal.

-i Causes tty interrupt signals to be ignored. This is particularly useful when using mailx on noisy
phone lines.

-n inhibits the reading of /usr/lib/mailx/mailx.rc.

Sending Mail
To send a message to one or more other people, mailx can be invoked with arguments which are the
names of people to send to. You are then expected to type in your message, followed by an EDT
(control-D) at the beginning of a line. A subject may be specified on the command line by using the -s
option. (Only the first argument after the -s option is used as a subject, so be sure to quote (" ... ")
subjects containing spaces.) The section below, labeled Replying to or Originating Mail, describes some
features of mailx available to help you compose your letter.

Reading Mail
In normal usage, mailx is invoked with no arguments, causing mailx to check the post office for any mail
for you, and then print a one-line header for each message found there. The current message is initially
the first message (numbered 1) and can be printed using the print command (which can be abbreviated
pl. You can move among the messages much as you move between lines in ed, with the commands +
and - moving backwards and forwards, and simple numbers typing the addressed message.

Disposing of Mail
After examining a message you can delete (d) the message or reply (r) to it. Deletion causes the mailx
program to forget about the message. This is not irreversible - the message can be undeleted (u) by
giving its number, or the mailx session can be aborted by giving the exit (x) command. However,
deleted messages usually disappear, never to be seen again.

Specifying Messages
Commands such as print and delete can be given a list of message numbers as arguments to apply to a
number of messages at once. Thus,

delete 12

deletes messages 1 and 2, while

delete 1-5

deletes messages 1 through 5. The special name "*" addresses all messages, and "$" addresses the
last message. Thus, the command top which prints the first few lines of a message could be used in "top
*" to print the first few lines of all messages.

Replying to or Originating Mail
You can use the reply command to set up a response to a message, sending it back to the person from

- 1 -

MAILX(l) MAILX(l)

which it came. Text you then type in, up to an end-of-file, defines the contents of the message. While
you are composing a message, mailx treats lines beginning with the character <-, specially. For instance,
typing <~m" (alone on a line) places a copy of the current message into the response, right-shifting it by
a tabstop. Other escapes set up subject fields, add and delete recipients to the message and allow you to
escape to an editor to revise the message or to a shell to run some commands. (These options are given
in the summary below.)

Ending a Mail Processing Session
You can end a mailx session with the quit (q) command. Messages which have been examined go to
your mbox file unless they have been deleted, in which case they are discarded. Unexamined messages
go back to the post office. The -f option causes mailx to read in the contents of your mbox (or the
specified file) for processing. When you quit, mailx writes undeleted messages back to this file. The-u
option is a short way of executing "mailx -f /usr/mail/user " .

Personal and Systemwide Distribution Lists
It is also possible to create personal distribution lists so that, for instance, you can send mail to "cohorts"
and have it go to a group of people. Such lists can be defined by placing a line like

alias cohorts bill ozalp sklower jkf mark cory:kridle

in the file .mailre in your home directory. The current list of such aliases can be displayed by the alias
(a) command in mailx. System wide distribution lists can be created by editing /usr/lib/mailx/mailx.rc.
These are kept in a slightly different syntax. In mail you send, personal aliases are expanded in mail sent
to others so that they are able to reply to the recipients.

Network Mail- UUCP
Refer to uucp(lC) for a description of uucp network addresses.

Mailx has a number of options which can be set in the .mailre file to alter its behavior; thus "set askcc"
enables the "askcc" feature. (These options are summarized below.)

Summary
Each command is typed on a line by itself, and may take arguments following the command word. The
command need not be typed in its entirety - the first command which matches the typed prefix is used.
For the commands which take me5sage lists as arguments, if no message list is given, then the next
message forward which satisfies the command's requirements is used. If there are no messages forward
of the current message, the search proceeds backwards, and if there are no good messages at all, mailx
types "No applicable messages" and aborts the command.

Goes to the previous message and prints it out If given a numeric argument n, goes to
the nth previous message and prints it.

? Prints a brief summary of commands.

Executes the HP-UX shell command which follows.

Print (P) Like print, but also prints out ignored header fields. See also print and ignore.

Reply (R) Reply to originator. Does not reply to other recipients of the original message.

Type (T) Identical to the Print command.

alias (a) With no arguments, prints out all currently-defined aliases. With one argument, prints
out that alias. With more than one argument, creates a new alias or changes an old alias.

alternates (alt) Useful if you have accounts on several machines. Alt can be used to inform mailx
that the listed addresses are really yourself. When you reply to messages, mailx does not
send a copy of the message to any of the addresses listed on the alternates list. If the
alternates command is given with no argument, the current set of alternate names is
displayed.

-2-

MAILX(l)

chdir

copy

delete

dp

edit

exit

file

folders

folder

from

headers

help

hold

mailx

mbox

next

preserve

print

quit

MAILX(l)

(cd) Changes the user's working directory to that specified, if given. If no directory is
given, then changes to the user's login directory.

(co) Does the same thing that save does, except that it does not mark the messages it is
used on for deletion when you quit.

(d) Takes a list of messages as arguments and marks them all as deleted. Deleted
messages are not saved in mbox, nor are they available for most other commands.

(also dt) Deletes the current message and prints the next message. If there is no next
message, mailx says "at EOF."

(e) Takes a list of messages and invokes the text editor for each one in turn. On return
from the editor, the message is read back in.

(ex or x) Effects an immediate return to the shell without modifying the user's system
mailbox, his mbox file, or his edit file in -f.

(fi) Identical to folder.

List the names of the folders in your folder directory.

(fo) Switches to a new mail file or folder. With no arguments, it tells you which file you
are currently reading. If you supply an argument, it writes out changes (such as deletions)
you have made in the current file, and reads in the new file. Some special conventions
are recognized for the name. # means the previous file, % means your system mailbox,
%user means user's system mailbox, & means your -/mbox file, and + folder means a file
in your folder directory.

(f) Takes a list of messages and prints their message headers.

(h) Lists the current range of headers, which is an 18 message group. If a "+" argument
is given, then the next 18 message group is printed, and if a "-" argument is given, the
previous 18 message group is printed.

A synonym for?

(ho, also preserve) Takes a message list and marks each message therein to be saved in
the user's system mailbox instead of in mbox. Does not override the delete command.
ignore (i) Add the list of header fields named to the ignored list. Header fields in the
ignore list are not printed on your terminal when you print a message. This command is
very handy for suppression of certain machine-generated header fields. The Type and
Print commands can be used to print a message in its entirety, including ignored fields. If
ignore is executed with no arguments, it lists the current set of ignored fields.

(m) Takes as arguments login names and distribution group names and sends mail to
those people.

Indicates that a list of messages are to be sent to mbox in your home directory when you
quit. This is the default action for messages if you do not have the hold option set.

(n like + or CR) Goes to the next message in sequence and types it. With an argument
list, types the next matching message.

A synonym for hold.

(p) Takes a message list and types out each message on the user's terminal.

(q) Terminates the session, saving all undeleted, unsaved messages in the user's mbox file
in his login directory, preserving all messages marked with hold or preserve or never
referenced in his system mailbox, and removing all other messages from his system
mailbox. If new mail has arrived during the session, the message "You have new mail" is
given. If given while editing a mailbox file with the -f flag, then the edit file is rewritten. A

- 3-

MAILX(l)

reply

respond

save

set

shell

size

source

top

type

unalias

undelete

unset

visual

write

xit

z

MAILX(l)

return to the shell is effected, unless the rewrite of edit file fails, in which case the user can
escape with the exit command.

(r) Takes a message list and sends mail to the sender and all recipients of the specified
message. The default message must not be deleted.

A synonym for reply.

(s) Takes a message list and a filename and appends each message in tum to the end of
the file. The filename in quotes, followed by the line count and character count, is
echoed on the user's terminal. Preceded by a vertical bar (I), the filename is treated as a
pipe. For example,

s 2 Ilpr

submits message #2 to the line printer.

(se) With no arguments, prints all variable values. Otherwise, sets options. Arguments
are of the form "option = value" or "option."

(sh) Invokes an interactive version of the shell.

Takes a message list and prints out the size in characters of each message.

(so) Reads mailx commands from a file.

Takes a message list and prints the top few lines of each. The number of lines printed is
controlled by the variable toplines and defaults to five.

(t) A synonym for print.

Takes a list of names defined by alias commands and discards the remembered groups of
users. The group names no longer have any significance.

(u) Takes a message list and marks each one as not being deleted.

Takes a list of option names and discards their remembered values; the inverse of set.

(v) Takes a message list and invokes the display editor on each message.

(w) A synonym for save.

(x) A synonym for exit.

Mailx presents message headers in windowfuls as described under the headers
command. You can move mailx's attention forward to the next window with the z
command. Also, you can move to the previous window by using Z-.

Here is a summary of the tilde escapes, which are used when composing messages to perform special
functions. Tilde escapes are only recognized at the beginning of lines. The name "tilde escape" is
somewhat of a misnomer since the actual escape character can be set by the option escape.

-!command Execute the indicated shell command, then return to the message.

-cname ...

-f messages

Add the given names to the list of carbon copy recipients.

Read the file "dead. letter" from your home directory into the message.

Invoke the text editor on the message collected so far. After the editing session is finished,
you may continue appending text to the message.

Read the named messages into the message being sent. If no messages are specified, read
in the current message.

Edit the message header fields by typing each one in tum and allowing the user to append
text to the end, or modify the field by using the current terminal erase and kill characters.

-4-

MAILX(l) MAILX(l)

-m messages Read the named messages into the message being sent, shifted right one tab. If no
messages are specified, read the current message.

-p Print out the message collected so far, prefaced by the message header fields.

-q Abort the message being sent, copying the message to "dead.letter" in your home
directory if save is set.

-r filename Read the named file into the message.

-s string Cause the named string to become the current subject field.

-t name... Add the given names to the direct recipient list.

-v Invoke an altemate editor (defined by the VISUAL option) on the message collected so
far. Usually, the alternate editor is a screen editor. After you quit the editor, you may
resume appending text to the end of your message.

-w filename Write the message onto the named file.

-I command Pipe the message through the command as a filter. If the command gives no output or
terminates abnormally, retain the original text of the message. The command fmt(1) is
often used as command to rejustify the message.

-string Insert the string of text in the message prefaced by a single -. If you have changed the
escape character, then you should double that character in order to send it.

Options are controlled via the set and unset commands. Options may be either binary, in which case it
is only significant to see whether they are set or not, or string, in which case the actual value is of interest.
The binary options include the following:

append

ask

askcc

autoprint

dot

hold

ignore

ignoreeof

mete~

nosave

quiet

save

Causes messages saved in mbox to be appended to the end rather than inserted at the
beginning.

Causes mailx to prompt you for the subject of each message you send. If you respond
with simply a new-line, no subject field is sent.

Causes you to b prompted for additional carbon copy recipients at the end of each
message. Responding with a new-line indicates your satisfaction with the current list.

Causes the delete command to behave like dp. Thus, after deleting a message, the
next one is typed automatically.

The binary option dot causes mailx to interpret a period alone on a line as the
terminator of a message you are sending.

This option is used to hold messages in the system mailbox by default.

Causes interrupt signals from your terminal to be ignored and echoed as @'s.

Causes mailx to refuse to accept a control-d as the end of a message. Ignoreeof also
applies to mailx command mode.

Usually, when a group is expanded that contains the sender, the sender is removed
from the expansion. Setting this option causes the sender to be included in the group.

Normally, when you abort a message with two interrupts, mailx copies the partial
letter to the file "dead. letter" in your home directory. Setting this binary option
prevents this.

Suppresses the printing of the version when first invoked.

Causes the message collected prior to an interrupt to be saved on the file
"dead.letter" in your home directory on receipt of two interrupts (or after a -q).

-5-

MAILX(l) MAILX(1)

FILES

verbose Setting this option is the same as using the -v option on the comand line. When mailx
runs in verbose mode, the actual delivery of messages is displayed on the user's
terminal.

The following options have string values:

EDITOR

SHELL

VISUAL

crt

escape

folder

record

toplines

lusr/mail/*
-/mbox
-I.mailrc

Pathname of the text editor to use in the edit command and -e escape. If not defined,
then a default editor is used.

Pathname of the shell to use in the ! command and the -! escape. A default shell is
used if this option is not defined.

Pathname of the text editor to use in the visual command and -v escape.

The value of crt is used as a threshold to determine how long a message must be
before morel l) is used to read it.

If defined, the first character of this option gives the character to use in the place of - to
denote escapes.

The name of the directory to use for storing folders of messages. If the directory name
begins with a slash (/), mailx considers it to be an absolute pathname. Otherwise, the
directory is found relative to your home directory.

If defined, gives the pathname of the file used to record all outgoing mail. If not
defined, then outgoing mail is not saved in this way.

If defined, gives the number of lines of a message to be printed out with the top
command; normally, the first five lines are printed.

post office
your old mail

Itmp/R#
lusrllib/mailxlmailx. help*
lusrllib/mailxlmailx. rc
Message *

file giving initial mail commands
temporary for editor escape
help files
system initialization file
temporary for editing messages

SEE ALSO

BUGS

mail(l), fmt(l), uucp(lC).

Mailx in HP-UX Concepts and Tutorials.

Many more flags are documented in the reference manual listed above. In general, these flags are not
useful to most users.

-6-

MAKE(l) MAKE(l)

NAME
make - maintain, update, recompile programs

SYNOPSIS
make [-f makefile] [-p] H] [-k] [-s] [-r] [-n] [-b] [-e] H] [-q] [--d] [names]

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

DESCRIPTION
The following is a brief description of all options and some special names. Options may occur in any
order.

-b Compatibility mode for old (Version 7) makefiles.

--d Debug mode. Print out detailed information on files and times examined. (This is intended
for debugging the make command itself.)

-e Environment variables override assignments within makefiles.

-f makefile Description file name. Makefile is assumed to be the name of a description file. A file name
of - denotes the standard input. The contents of make file override the built-in rules if they
are present. Note that the space between -f and makefile must be present.

-i Ignore error codes returned by invoked commands. This mode is also entered if the fake
target name .IGNORE appears in the description file.

-k Abandon work on the current entry, but continue on other branches that do not depend on
that entry.

-0 No execute mode. Print commands, but do not execute them. Even lines beginning with
an @ are printed.

-p Print out the complete set of macro definitions and target deSCriptions.

-q Question. The make command returns a zero or non-zero status code depending on
whether the target file is or is not up-to-date.

-r Do not use the built-in rules.

-s Silent mode. Do not print command lines before executing. This mode is also entered if the
fake target name .SILENT appears in the description file.

-t Touch the target files (causing them to be up-to-date) rather than issue the usual
commands.

The" built-in" dependency targets are:

.DEFAULT
If a file must be made but there are no explicit commands or relevant built-in rules, the
commands associated with the name .DEFAULT are used if it exists .

• PRECIOUS
Dependents of this target will not be removed when quit or interrupt are hit.

.SILENT
Same effect as the -s option .

.IGNORE
Same effect as the -i option.

Make executes commands in make file to update one or more target names. Name is typically a
program. If make file is -, the standard input is taken. If no -f option is present, the current directory is
searched for a file named makefile, Makefile, s.makefile, or s.Makefile, in that order. The search

- 1 -

MAKE(l) MAKE(l)

stops when a file is found whose name matches one of these four names. (Note that make only performs
one search for a makefile. If one is found, it is used and, if an error occurs, make terminates. If a makefile
is not found, make terminates immediately.) More than one -f makefile argument pair may appear.

Make updates a target only if it depends on files that are newer than the target. All prerequisite files of a
target are added recursively to the list of targets. Missing files are deemed to be out of date.

Makefile contains a sequence of entries that specify dependencies. The first line of an entry is a blank­
separated, non-null list of targets, followed by a colon (:), followed by a (possibly null) list of prerequisite
files or dependencies. Text following a ; and all following lines that begin with a tab are shell commands
to be executed to update the target. The first line that does not begin with a tab or # begins a new
dependency or macro definition. Shell commands may be continued across lines with the
< backslash > <new-line> sequence. Sharp (#) and new-line surround comments.

The following makefile says that pgm depends on two files a.o and b.o, and that they in turn depend on
their corresponding source files (a.c and b.c) and a common file incl.h:

pgm: a.o b.o
cc a.o b.o -0 pgm

a.o: incl.h a.c
cc -c a.c

b.o: incl.h b.c
cc -c b.c

Command lines are executed one at a time, each by its own shell. A line is printed when it is executed
unless the -5 option is present, or the entry .SILENT: is in makefile, or unless the first character of the
command is @. The -n option specifies printing without execution; however, if the command line has
the string $(MAKE) in it, the line is always executed (see discussion of the MAKEFLAGS macro under
Environment). Note that this feature does not work if MAKE is enclosed in braces, as in ${MAKE}. The
-t (touch) option updates the modified date of a file without executing any commands.

Commands returning non-zero status normally terminate make. If the -i option is present, or the entry
.IGNORE: appears in makefile, or if the line specifying the command begins with <tab><hyphen>, the
error is ignored. If the -k option is present, work is abandoned on the current entry, but continues on
other branches that do not depend on that entry.

The -b option allows old makefiles (those written for the old version of make) to run without errors. The
difference between the old version of make and this version is that this version requires all dependency
lines to have a (possibly null) command associated with them. The previous version of make assumed if
no command was specified explicitly that the command was null.

Interrupt and quit cause the target to be deleted unless the target depends on the special name
.PRECIOUS.

Environment
The environment is read by make. All variables are assumed to be macro definitions and processed as
such. The environment variables are processed before any makefile and after the internal rules; thus,
macro assignments in a makefile override environment variables. The -e option causes the
environment to override the macro assignments in a makefile.

The MAKEFLAGS environment variable is processed by make as containing any legal input option
(except -f, -p, and -d) defined for the command line. Further, upon invocation, make "invents" the
variable if it is not in the environment, puts the current options into it, and passes it on to invocations of
commands. Thus, MAKEFLAGS always contains the current input options. This proves very useful for
"super-makes". In fact, as noted above, when the -n option is used, the command $(MAKE) is
executed anyway; hence, one can perform a make -n recursively on a whole software system to see
what would have been executed. This is because the -n is put in MAKEFLAGS and passed to further
invocations of $(MAKE). This is one way of debugging all of the makefiles for a software project without
actually doing anything.

- 2 -

MAKE(I) MAKE(I)

Macros
Entries of the form stringl = string2 are macro definitions. Subsequent appearances of $ (stringl [:substl
= [subst2]]) are replaced by string2. The parentheses are optional if a single character macro name is
used and there is no substitute sequence. The optional :substl = subst2 is a substitute sequence. If it is
specified, all non-overlapping occurrences of substl in the named macro are replaced by subst2. Strings
(for the purposes of this type of substitution) are delimited by blanks, tabs, new-line characters, and
beginnings of lines. An example of the use of the substitute sequence is shown under Libraries.

Internal Macros
There are five internally maintained macros which are useful for writing rules for building targets.

$* The macro $* stands for the file name part of the current dependent with the suffix deleted. It is
evaluated only for inference rules.

$@ The $@ macro stands for the full target name of the current target. It is evaluated only for
explicitly named dependencies.

$< The $< macro is only evaluated for inference rules or the .DEFAULT rule. It is the module which
is out of date with respect to the target (Le., the" manufactured" dependent file name). Thus, in
the .c.o rule, the $< macro would evaluate to the .c file. An example for making optimized .0 files
from .c files is:

.c.o:
cc -c -0 $*.c

or:

.c.o:
cc -c -0 $<

$? The $? macro is evaluated when explicit rules from the makefile are evaluated. It is the list of
prerequisites that are out of date with respect to the target; essentially, those modules which must
be rebuilt.

$% The $% macro is only evaluated when the target is an archive library member of the form
lib(file.o). In this case, $@ evaluates to lib and $% evaluates to the library member, file.o.

Four of the five macros can have alternative forms. When an upper case D or F is appended to any of
the four macros the meaning is changed to "directory part" for D and" file part" for F. Thus, $(@D)
refers to the directory part of the string $@. If there is no directory part, .I is generated. The only macro
excluded from this alternative form is $? The reasons for this are debatable.

Suffixes
Certain names (for instance, those ending with .0) have inferable prerequisites such as .c, .s, etc. If no
update commands for such a file appear in makefile, and if an inferable prerequisite exists, that
prerequisite is compiled to make the target. In this case, make has inference rules which allow building
files from other files by examining the suffixes and determining an appropriate inference rule to use.
The current default inference rules are:

.c .c- .sh .sh- .c.o .c-.o .c-.c .s.o .s-.o .y.o .y-.o .1.0 .r.o

.y.c .y-.c .I.c .c.a .c-.a .s-.a .h-.h

To print out the rules compiled into the make on any machine in a form suitable for recompilation, the
following command is used:

make -p -f - 2>/dev/null </dev/null

The only peculiarity in this output is the (null) string which printf(3S) prints when handed a null string.

A tilde in the above rules refers to an sees file (see sccsfile(5)). Thus, the rule .c-.o would transform an
sees C source file into an object file (.0). Because the s. of the sees files is a prefix it is incompatible
with make's suffix point-of-view. Hence, the tilde is a way of changing any file reference into an sees

-3-

MAKE(!) MAKE(!)

file reference.

A rule with only one suffix (Le .. c:) is the definition of how to build x from x.c. In effect, the other suffix
is null. This is useful for building targets from only one source file (e.g., shell procedures, simple C
programs).

Additional suffixes are given as the dependency list for .SUFFIXES. Order is significant; the first possible
name for which both a file and a rule exist is inferred as a prerequisite.

The default list is:

.SUFFIXES: .0 .c .y .1 .s

Here again, the above command for printing the internal rules will display the list of suffixes
implemented on the current machine. Multiple suffix lists accumulate; .SUFFIXES: with no
dependencies clears the list of suffixes.

Inference Rules
The first example can be done more briefly:

pgm: a.o b.o
cc a.o b.o -0 pgm

a.o b.o: incl.h

This is because make has a set of internal rules for building files. The user may add rules to this list by
simply putting them in the makefile.

Certain macros are used by the default inference rules to permit the inclusion of optional matter in any
resulting commands. For example, CFLAGS, LFLAGS, and YFLAGS are used for compiler options to
cc(1), lex(1), and yacc(l) respectively. Again, the previous method for examining the current rules is
recommended.

The inference of prerequisites can be controlled. The rule to create a file with suffix .0 from a file with
suffix .c is specified as an entry with .c.o: as the target and no dependents. Shell commands associated
with the target define the rule for making a .0 file from a .c file. Any target that has no slashes in it and
starts with a dot is identified as a rule and not a true target.

Libraries
If a target or dependency name contains parenthesis, it is assumed to be an archive library, the string
within parenthesis referring to a member within the library. Thus lib(file.o) and $(LIB)(file.o) both refer
to an archive library which contains file.o. (This assumes the LIB macro has been previously defined.)
The expression $(LIB)(filel.o file2.0) is not legal. Rules pertaining to archive libraries have the form
XX.a where the xx is the suffix from which the archive member is to be made. An unfortunate
byproduct of the current implementation requires the xx to be different from the suffix of the archive
member. Thus, one cannot have lib(file.o) depend upon file.o explicitly. The most common use of the
archive interface follows. Here, we assume the source files are all C type source:

lib: lib(file1.o) lib(file2.0) lib(file3.0)
@echo lib is now up to date

.c.a:
$(CC) -c $(CFLAGS) $<
ar rv $@ $*.0
rm -f $*.0

In fact, the .c.a rule listed above is built into make and is unnecessary in this example. A more
interesting, but more limited example of an archive library maintenance construction follows:

lib: lib(file1.o) lib(file2.0) lib(file3.0)
$(CC) -c $(CFLAGS) $(7:.0 = .c)
ar rv lib $7
rrn $7 @echo lib is now up to date

-4-

MAKE(l) MAKE(l)

FILES

.c.a:;

Here the substitution mode of the macro expansions is used. The $? list is defined to be the set of
object file names (inside lib) whose C source files are out of date. The substitution mode translates the
.0 to .c. (Unfortunately, one cannot as yet transform to .c-; however, this may become possible in the
future.) Note also, the disabling of the .c.a: rule, which would have created each object file, one by one.
This particular construct speeds up archive library maintenance considerably. This type of construct
becomes cumbersome if the archive library contains a mix of assembly programs and C programs.

[Mmlakefile
s.[Mmlakefile

SEE ALSO
sh(l).

WARNING

BUGS

Be wary of any file (such as an include file) whose access, modification, and last change times cannot be
altered by the make-ing process. For example, if a program depends on an include file which in turn
depends on another include file, and if one or both of these files are out-of-date, make will try to update
these files each time it is run, thus unnecessarily re-makeing up-to-date files dependent on the include
file. The solution is to manually update these files with the touch(l) command before running make.
(Note that it is generally a bad idea to include the touch(l) command in your makefile, because it can
cause make to update a program that otherwise did not need to be updated.)

Some commands return non-zero status inappropriately; use -i to overcome the difficulty.

Commands that are directly executed by the shell, notably cd(l), are ineffectual across new-lines in
make.

The syntax (lib(filel.o file2.o file3.o) is illegal.

You cannot build Iib(file.o) from file.o.

The macro $(a:.o = .c) doesn't work.

There is a limit of 2500 characters, including the terminating new-line, for expanded dependency lines.

Make will not properly expand a macro within another macro when string substitution is involved.

-5-

MAN(1) MAN(I)

NAME
man - on-line manual command

SYNOPSIS
man -k keyword ...
man -f file ...
man [- 1 [-t 1 [section 1 title ...

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: UCB

DESCRIPTION
Man is a program which gives information from the programmers manual. It can be asked to form one
line descriptions of commands specified by name, or for all commands whose description contains any
of a set of keywords. It can also provide on-line access to the sections of the printed manual.

When given the option -k and a set of keywords, man prints out a one line synopsis of each manual
section whose listing in the table of contents contains that keyword.

When given the option -f and a list of file names, man attempts to locate manual sections related to
those files, printing out the table of contents lines for those sections.

The -t option causes man to use troffinstead of nroff -t is ignored when specified with -k or -f.

When neither -k nor -f is specified, man formats a specified set of manual pages. If the section specifier
section is given, man looks in that section of the manual for the given titles. Section can be a digit (0 - 9),
or one of the words local, new, or public. If section is a digit, it may be followed by a single letter
classifier (Le. Ig indicating a graphics program in section 1). Classifiers may not be specified if a word is
given for section. If local, new, or public is specified, then the manual section manl, mann, or manp is
searched, respectively.

If section is omitted, man searches the on-line manual sub-directories in the follOwing order: manl,
mann, manl, man6, manS, man2, man3, man4, manS, man7, and finally manp. Man prints the first
title it finds, if any.

If no section value is specified, or if the first attempt fails, man appends default section classifiers onto the
given titles in an effort to locate the file. The list below gives the default classifiers used for each manual
section, in the order in which they are used:

manual section 1: none, h, m, c, g;
manual section 2: none, h, j, v;
manual section 3: none, h, j, x, m, s, f, c;
manual sections 4-8: none, h.

If the standard output is a teletype, or if the flag - is given, then man pipes its output through rmnl(l) to
delete useless blank lines, ul(l) to create proper underlines for different terminals, and through more(l)
to stop after each page. Hit a space to continue.

If the lusr/man/cat? directory is present and the file is not in it, but the file exists in lusr/man/man?, then
the page is formatted and installed in lusr/man/cat? on first access. If only the lusr/man/cat? directories
are present and/or nroff is not installed then only those pages which have been preformatted are
displayable.

HARDWARE DEPENDENCIES
Series 200/500:

FILES

Troffis not currently supported.

lusr/manlman?l*
lusr/manlcat?l*

- 1 -

MAN(1) MAN(I)

SEE ALSO

BUGS

morellI, rmnl(l), uI(I), whereis(l), catman(8).

The section words local, new, or public may not be abbreviated by 1, n, or p. They must be completely
spelled out.

-2-

MESG(l)

NAME
mesg - permit or deny messages to terminal

SYNOPSIS
mesg [n 1 [y 1

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

DESCRIPTION

MESG(l)

Mesg with argument n forbids messages via wrile(l) by revoking non-user write permission on the user's
terminal. Mesg with argument y reinstates permission. All by itself, mesg reports the current state
without changing it.

FILES
Idev/tty*

SEE ALSO
write(l).

DIAGNOSTICS
Exit status is 0 if messages are receivable, 1 if not, 2 on error.

- 1 -

MKDlR(l)

NAME
mkdir - make a directory

SYNOPSIS
mkdir dirname ...

HP-UX COMPATIBILITY
Level: HP-UXINUCLEUS

Origin: System 111

DESCRIPTION

MKDlR(l)

Mkdir creates specified directories in mode 777, masked by the current value of umask. Standard
entries, " for the directory itself, and ", for its parent, are made automatically.

Mkdir requires write permission in the parent directory.

SEE ALSO
rm(l), umask(l).

DIAGNOSTICS
Mkdir returns exit code 0 if all directories were successfully made; otherwise, it prints a diagnostic and
returns non-zero.

-1-

MM(l) MM(1)

NAME
mm - print documents formatted with MM macros

SYNOPSIS
rom [options 1 [files 1

HP-UX COMPATIBILITY
Level: Text Processing - HP-UXlEXTENDED

Origin: System III

DESCRIPTION
Mm can be used to type out documents using nroff(l) and the MM text formatting macro package. It
has options to specify preprocessing by tbl(l) and/or neqn(l) and postprocessing by various terminal­
oriented output filters. The proper pipelines and the required arguments and flags for nroff(l) and MM
are generated, depending on the options selected.

Options for mm are given below. Any other arguments or flags (e.g., -rC3) are passed to nroff(l) or to
MM, as appropriate. Such options can occur in any order, but they must appear before the files
arguments. If no arguments are given, mm prints a list of its options.

- Tterm Specifies the type of output terminal; for a list of recognized values for term, type help term2.
If this option is not used, mm will use the value of the shell variable $TERM from the
environment (see profile(5) and environ(7)) as the value of term, if $TERM is set; otherwise,
mm will use 450 as the value of term. If several terminal types are specified, the last one takes
precedence.

-12 Indicates that the document is to be produced in 12-pitch. May be used when $TERM is set
to one of 300, 300s, 450, and 1620. (The pitch switch on the DASI 300 and 300s terminals
must be manually set to 12 if this option is used.)

--c Causes mm to invoke col(l); note that col(l) is invoked automatically by mm unless term is
one of 300, 300s, 450, 37, 4000A, 382, 4014, tek, 1620, and X.

-e Causes mm to invoke neqn(l).
-t Causes mm to invoke tbl(l).
-E Invokes the -e option of nroff(l).
-y Causes mm to use the non-compacted version of the macros (see mm(7)).

As an example (assuming that the shell variable $TERM is set in the environment to 450), the two
command lines below are equivalent:

mm -t -rC3 -12 ghh*
tbl ghh* I nroff --em -T450 -12 -h -rC3

Mm reads the standard input when - is specified instead of any file names. (Mentioning other files
together with -leads to disaster.) This option allows mm to be used as a filter, e. g.:

cat dws I mm-

The following helpful hints should aid you in using these macros:

1. Mm invokes nroff(l) with the -h flag. With this flag, nroff(l) assumes that the terminal has tabs
set every 8 character positions.

2. Use the -olist option of nroff(l) to specify ranges of pages to be output. Note, however, that
mm, if invoked with one or more of the -e, -t, and - options, together with the -olist option of
nroff(l) may cause a harmless "broken pipe" diagnostic if the last page of the document is not
specified in list.

3. If you use the -s option of nroff(l) (to stop between pages of output), use line-feed (rather than
return or new-line) to restart the output. The -s option of nroff(l) does not work with the-c
option of mm, or if mm automatically invokes col (1) (see --c option above).

4. If you lie to mm about the kind of terminal its output will be printed on, you'll get (often subtle)
garbage; however, if you are redirecting output into a file, use the -T37 option, and then use

-1 -

MM(l) MM(1)

the appropriate terminal filter when you actually print that file.

SEE ALSO
col(l), nroff(l), tbl(l), profile(5), mm(7), term(7).
MM- Memorandum Macros in HP-UX Concepts and Tutorials.

DIAGNOSTICS
II mm: no input file II if none of the arguments is a readable file and mm is not used as a filter.

-2-

MORE(l) MORE(l)

NAME
more, page - file perusal filter for crt viewing

SYNOPSIS
more [-cdflsu 1 [-n 1 [+ linen umber 1 [+ Ipattern 1 [name ... 1

page [more options 1
HP-UX COMPATIBILITY

Level: HP-Ux/STANDARD

OIigin: UCB

DESCRIPTION
More is a filter which allows examination of continuous text, one screenful at a time, on a soft-copy
terminal. It normally pauses after each screenful, printing --More-- at the bottom of the screen. If
you then type a carriage return, one more line is displayed. If you hit a space, another screenful is
displayed. Other possibilites are enumerated later.

The command line options are:

-n An integer which is the size (in lines) of the window which more will use instead of the default.

-c More will draw each page by beginning at the top of the screen and erasing each line just before
it draws on it. This avoids scrolling the screen, making it easier to read while more is writing.
This option will be ignored if the terminal does not have the ability to clear to the end of a line.

-d More will prompt the user with the message "Hit space to continue, Rubout to abort" at the
end of each screenful. This is useful if more is being used as a filter in some setting, such as a
class, where many users may be unsophisticated.

-f This causes more to count logical lines, rather than screen lines. That is, long lines are not
folded. This option is recommended if nroff output is being piped through ul, since the latter
may generate escape sequences. These escape sequences contain characters which would
ordinarily occupy screen positions, but which do not print when they are sent to the terminal as
part of an escape sequence. Thus more may think that lines are longer than they actually are,
and fold lines erroneously.

-I Do not treat 'L (form feed) specially. If this option is not given, more will pause after any line
that contains a 'L, as if the end of a screenful had been reached. Also, if a file begins with a
form feed, the screen will be cleared before the file is printed.

-s Squeeze multiple blank lines from the output, producing only one blank line. Especially helpful
when viewing nroff output, this option maximizes the useful information present on the screen.

-u Normally, more will handle underlining and bold such as produced by nroff in a manner
appropriate to the particular terminal: if the terminal can perform underlining or has a stand­
out mode, more will output appropriate escape sequences to enable underlining, else stand-out
mode, for underlined information in the source file. If the terminal can perform stand-out, more
uses that mode for bold information. The -u option suppresses this processing, as do the "ul"
and "os" term cap flags.

+ linenumber
Start up at linenumber.

+ pattern
Start up two lines before the line containing the regular expression pattern.

If the program is invoked as page, then the screen is cleared before each screenful is printed (but only if a
full screenful is being printed), and k - 1 rather than k - 2 lines are printed in each screenful, where k is
the number of lines the terminal can display.

- 1 -

MORE(l) MORE(l)

More looks in the file letcltermcap to determine terminal characteristics, and to determine the default
window size. On a terminal capable of displaying 24 lines, the default window size is 22 lines.

More looks in the environment variable MORE to pre-set any flags desired. For example, if you prefer to
view files using the -c mode of operation, the shell command sequence

MORE = '--c'; export MORE

causes all invocations of more, including invocations by programs such as man, to use this mode.
Normally, the user will place the command sequence which sets up the MORE environment variable in
the .profile file.

If more is reading from a file, rather than a pipe, then a percentage is displayed along with the
- -More- - prompt. This gives the fraction of the file (in characters, not lines) that has been read so far.

Other sequences which may be typed when more pauses, and their effects, are as follows (i is an optional
integer argument, defaulting to 1):

i<space>
display i more lines, (or another screenful if no argument is given).

i-D display 11 more lines (a "scroll"). If i is given, then the scroll size is set to i lines.

d same as -0 (control-D).

! z same as typing a space except that i, if present, becomes the new window size.

! s skip i lines and print a screenful of lines.

if skip i screenfuls and print a screenful of lines.

q or Q Exit from more.

Display the current line number.

v Start up the editor vi at the current line.

h Help command; give a description of all the more commands.

i I expr search for the i -th occurrence of the regular expression expr. If there are less than i occurrences
of expr, and the input is a file (rather than a pipe), then the position in the file remains
unchanged. Otherwise, a screenful is displayed, starting two lines before the place where the
expression was found. The user's erase and kill characters may be used to edit the regular
expression. Erasing back past the first column cancels the search command.

in search for the i -th occurrence of the last regular expression entered.

(single quote) Go to the point from which the last search started. If no search has been
performed in the current file, this command goes back to the beginning of the file.

!command
invoke a shell to execute command. The characters "%" and "'" in command are replaced with
the current file name and the previous shell command respectively. If there is no current file
name, "%" is not expanded. The sequences"" %" and" "'" are replaced by "%" and
"'" respectively.

i:n skip to the i -th next file given in the command line (skips to last file if i doesn't make sense).

i:p skip to the i -th previous file given in the command line. If this command is given in the middle
of printing out a file, then more goes back to the beginning of the file. If i doesn't make sense,
more skips back to the first file. If more is not reading from a file, the bell is rung and nothing else
happens.

:f display the current file name and line number.

- 2-

MORE(!) MORE(!)

FILES

:q or :Q exit from more (same as q or Q).

(dot) repeat the previous command.

The commands take effect immediately, i.e., it is not necessary to type a carriage return. Up to the time
when the command character itself is given, the user may hit the line kill character to cancel the
numerical argument being formed. In addition, the user may hit the erase character to redisplay the
--More--(xx%).

At any time when output is being sent to the terminal, the user can hit the quit key (normally
control-"-). More stops sending output, and displays the usual--More-- prompt. The user may then
enter one of the above commands in the normal manner. Unfortunately, some output is lost when this
is done, due to the fact that any characters waiting in the terminal's output queue are flushed when the
quit signal occurs.

The terminal is set to noecho mode by this program so that the output can be continuous. What you
type will thus not show on your terminal, except for the / and! commands.

If the standard output is not a teletype, then more acts just like cat, except that a header is printed before
each file (if there is more than one).

A sample usage of more in previewing nroff output would be

nroff -ms + 2 doc.n I more -s

/etcitermcap
/usrllib/more. help

terminal data base
help file

SEE ALSO
man(l), sh(l), termcap(5).

-3-

MOUNT(l) MOUNT(l)

NAME
mount, umount - mount and unmount file system

SYNOPSIS
/etc/mount [special directory [-r j j

/etclumount special

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

DESCRIPTION
Mount announces to the system that a removable file system is present on the device special. The direc­
tory must exist already; it becomes the name of the root of the newly mounted file system. Directory
must be given as an absolute path name.

These commands maintain a table of mounted devices. If invoked with no arguments, mount prints the
table.

The optional last argument indicates that the file is to be mounted read-only. Physically write-protected
and magnetic tape file systems must be mounted in this way or errors will occur when access times are
updated, whether or not any explicit write is attempted.

Umount announces to the system that the removable file system previously mounted on device special is
to be removed.

HARDWARE DEPENDENCIES
Series 500:

FILES

Warning: if virtual memory is brought up on a volume other than the root volume, and if that
volume is then mounted, it cannot be unmounted.

/etclmnttab

SEE ALSO

mount table

mount(2), mnttab(5).

DIAGNOSTICS

BUGS

Attempts to mount a currently-mounted volume under another name will result in an error [EBUSYj.

If an attempt to read and (partially) verify the disc label information fails, the mount will fail.

Umount complains if the special file is not mounted or if it is busy. The file system is busy if it contains an
open file or some user's working directory.

Some degree of validation is done on the file system, however it is generally unwise to mount garbage
file systems.
The third parameter may be anything which has the effect of -r.
An error will occur if mnttab does not exist.
Names are truncated to MNTLEN bytes (see mnttab(5)).

-1-

MT(l)

NAME
mt - magnetic tape manipulating program

SYNOPSIS
mt [-t tapename 1 command [count 1

HP-UX COMPATABILITY
Level: Magnetic Tape Support- HP-UXISTANDARD

Origin: UCB

DESCRIPTION

MT(l)

Mt is used to give commands to the tape drive. If tapename is not specified, Idev/rmt12 is used. If count
is not specified, 1 is assumed.

FILES

Here are the commands:
eof write count end-of-file marks
fsf space forward count files
fsr space forward count records
bsf space backward count files
bsr space backward count records
rew rewind tape
off! rewind tape and go offline.

Idev/mt* Magnetic tape interface
Idevlrmt* Raw magnetic tape interface

Idev/rmt12 (or whatever drive is used) must be described as a Berkeley compatibility-mode tape drive
without rewind for mt to operate as expected.

SEE ALSO
mt(4).

-1-

MVDlR(l) MVDlR(l)

NAME
mvdir - move a directory

SYNOPSIS
/etc/mvdir dimame name

HP-UX COMPATIBILITY
Level: HP-UXINUCLEUS

Origin: System III

DESCRIPTION
Mvdir moves and/or renames directories within a file system. Dirname must be a directory. If name
exists, then the directory dirname is moved. If name does not exist, dirname is simply renamed.

Name cannot be a subdirectory of dirname. Dirname may be a subdirectory of name, but the shorthand
notations. and .. must be used in naming the directories, because mvdir does not allow explicit directory
names to be used when one directory is a subdirectory of the other.

Only the super-user can use mvdir.

SEE ALSO
mkdir(l).

BUGS
The restriction on names is intended to prevent creation of a (cyclic) sub-tree that cannot be reached
from the root. The test is strictly by name, thus creating such a sub-tree is still possible. The super-user
is cautioned to be very careful in his use of the names. and .. while moving directories.

-1-

NCHECK(l) Series 200 Only

NAME
ncheck - generate names from i-numbers

SYNOPSIS
fetdncheck [-i numbers 1 [-a 1 [-s 1 [file-system 1

HP-UX COMPATIBILITY
Level: HP-UX/NUCLEUS

Origin: System III

Remarks: Ncheck is implemented on the Series 200 only.

DESCRIPTION

NCHECK(l)

N check with no argument generates a path name vs. i-number list of all files on the volumes specified by
the file fetcfchecklist. Names of directory files are followed by f .. The options are as follows:

-i reduces the report to only those files whose i-numbers are specified on the command line in the
numbers list.

-a allows printing of the names. and .. , which are ordinarily suppressed.

-s reduces the report to special files and files with set-user-tD mode; it is intended to discover con-
cealed violations of security policy.

A file system may be specified.

The report is in no useful order, and probably should be sorted.

SEE ALSO
sort(1), checklist(5}, fsck(8}.

DIAGNOSTICS
When the file system structure is improper, ?? denotes the "parent" of a parentless file and a path name
beginning with ... denotes a loop.

-1-

NEWGRP(l) NEWGRP(l)

NAME
newgrp -log in to a new group

SYNOPSIS
newgrp [group 1

HP-UX COMPATIBILITY
Level: HP-UXISTANOARO

Origin: System III

DESCRIPTION

FILES

N ewgrp changes the group identification of its caller. The same user remains logged in, and the current
directory is unchanged, but calculations of access permissions to files are performed with respect to the
new group 10.

N ewgrp without an argument changes the group identification to the group in the password file; in effect
it changes the group identification back to the caller's original group.

A password is demanded if the group has a password and the user himself does not, or if the group has a
password and the user is not listed in jete/group as being a member of that group.

N ewgrp is recognized by the shell, and causes the newgrp program to execute on top of the shell (instead
of as the usual sub-process). If newgrp fails, you cannot be returned to your old shell, and you are thus
logged out.

jete/group
/ete/passwd

SEE ALSO
login(l), group(.5).

DIAGNOSTICS
Sorry: You didn't qualify as a group member.

The group name was not in jete/group.

BUGS

Unknown group:

Permission denied:

You have no shell:

If a password must be given, it can only come from a teletype port. If the stdin is
a non-tty file, this message is given.

Exec of the shell failed.

There is no convenient way to enter a password into jete/group.
Use of group passwords is not encouraged, because, by their very nature, they encourage poor security
practices. Group passwords may disappear in the future.
Shell variables which are not exported are lost.

-1-

NEWS(l) NEWS(l)

NAME
news - print news items

SYNOPSIS
news [-a 1 [-n 1 [-s 1 [items 1

HP-UX COMPATIBILITY
Level: HP-Ux/STANDARD

Origin: System 1II

DESCRIPTION

FILES

News is used to keep the user informed of current events. By convention, these events are described by
files in the directory /usr/news.

When invoked without arguments, news prints the contents of all current files in /usr/news, most recent
first, with each preceded by an appropriate header. News stores the "currency" time as the modifica­
tion date of a file named .news_time in the user's home directory (the identity of this directory is deter­
mined by the environment variable $HOME); only files more recent than this currency time are con­
sidered "current. "

The -a option causes news to print all items, regardless of currency. In this case, the stored time is not
changed.

The -n option causes news to report the names of the current items without printing their contents, and
without changing the stored time.

The -s option causes news to report how many current items exist, without printing their names or con­
tents, and without changing the stored time. It is useful to include such an invocation of news in one's
.profile file, or in the system's /etciprofile.

All other arguments are assumed to be specific news items that are to be printed.

If an interrupt is typed during the printing of a news item, printing stops and the next item is started.
Another delete within one second of the first causes the program to terminate.

/etc/profile
/usr/news/ *
$HOME/.news_time

SEE ALSO
mail(l), profile(5), environ(7).

-1-

NICE(l)

NAME
nice - run a command at low priority

SYNOPSIS
nice [-increment 1 command [arguments 1

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

DESCRIPTION

NICE(l)

Nice executes command with a lower CPU scheduling priority. If the increment argument (in the range
1-19) is given, it is used; if not, an increment of 10 is assumed.

The super-user may run commands with priority higher than normal by using a negative increment,
e.g.,--lO.

HARDWARE DEPENDENCIES
Series 500:

A note to the super-user: be careful about increasing the priority of your processes. Your key­
board process is running at a nice value of 1, 2, 3, or 4. If you should assign a process a nice
value of 0, you will lock out your keyboard, forcing you to reboot the system.

SEE ALSO
nohup(1), nice(2).

DIAGNOSTICS
Nice returns the exit status of the subject command.

BUGS
An increment larger than 19 is equivalent to 19.

-1-

NL(l) NL(l)

NAME
nl-line numbering filter

SYNOPSIS
nl [-htype] [-btype] [-£type] [-vstart#] Hiner] [-p] [-Inurn] [-ssep] [-wwidth] [-nformat]
[-ddelim] file

HP-UX COMPATIBILITY
Level: HP-Ux/STANDARD

Origin: System V

DESCRIPTION
Nl reads lines from the named file or the standard input if no file is named and reproduces the lines on
the standard output. Lines are numbered on the left in accordance with the command options in effect.

Nl views the text it reads in terms of logical pages. Line numbering is reset at the start of each logical
page. A logical page consists of a header, a body, and a footer section. Empty sections are valid.
Different line numbering options are independently available for header, body, and footer (e.g., no
numbering of header and footer lines while numbering blank lines only in the body).

The start of logical page sections are signaled by input lines containing nothing but the following
delimiter character(s}:

Line contents

,,:,,:,,:
,,:,,:
,,:

Start of

header
body
footer

Unless optioned otherwise, nl assumes the text being read is in a single logical page body.

Command options may appear in any order and may be intermingled with an optional file name. Only
one file may be named. The options are:

-btype Specifies which logical page body lines are to be numbered. Recognized types and
their meaning are:

-ftype

-p

-vstart#

-iincr

-ssep

-wwidth

-nformat

a
t
n
pstring

number all lines;
number lines with printable text only;
no line numbering;
number only lines that contain the regular expression specified
in string.

The default type for logical page body is t (text lines numbered).

Same as -btype except for header. Default type for logical page header is n (no lines
numbered).

Same as -btype except for footer. Default for logical page footer is n (no lines
numbered).

Do not restart numbering at logical page delimiters.

Start# is the initial value used to number logical page lines. Default is 1.

Iner is the increment value used to number logical page lines. Default is 1.

Sep is the character(s} used in separating the line number and the corresponding text
line. Default sep is a tab.

Width is the number of characters to be used for the line number. Default width is 6.

Format is the line numbering format. Recognized values are:

- 1 -

NL(l)

-Inum

-dxx

EXAMPlE
The command:

NL(l)

In left justified, leading zeroes suppressed;
rn right justified, leading zeroes supressed;
rz right justified, leading zeroes kept.

Default/annat is rn (right justified).

Num is the number of blank lines to be considered as one. For example, -12 results in
only the second adjacent blank being numbered (if the appropriate -ha, -ba, and/or
-fa option is set). Default is 1.

The delimiter characters specifying the start of··a logical page section may be changed
from the default characters ('\..:) to two user-specified characters. If only one character
is entered, the second character remains the default character (:). No space should
appear between the -d and the delimiter characters. To enter a backslash, use two
backslashes.

nl-v10-ilO-d!+ file1

will number file1 starting at line number 10 with an increment of ten. The logical page delimiters are!
and +.

SEE ALSO
pr(l).

-2-

NM(l} Series 200 Implementation NM(1}

NAME
nm - print name list (symbol table) of object file

SYNOPSIS
nm [-gnoprsu J [filename ... J

HP-UX COMPATIBILITY
Level: HP-Ux/STANDARD

Origin: System III

Remarks: This manual page describes nm as implemented on the Series 200 computers. Refer to
other nm(1) manual pages for information valid for other implementations.

DESCRIPTION
Nm prints the name list (symbol table) of each object file in the argument list. If an argument is an
archive, a listing for each object file in the archive will be produced. If no file is given, the symbols in
a.out are listed.

Each symbol name is preceded by its value printed in a representation appropriate to the architecture of
the machine (blanks if undefined) and one of the letters U (undefined), A (absolute), T (text segment
symbol), D (data segment symbol), B (bss segment symbol), R (register symbol), F (file symbol), or C
(common symbol). If the symbol is local (non-external) the type letter is in lower case. The output is
sorted alphabetically.

Options are:

-g Print only global (external) symbols.

-n Sort numerically rather than alphabetically.

-0 Prepend file or archive element name to each output line rather than only once. This option
can be used to make piping to grep (1) more meaningful.

-p Don't sort; print in symbol-table order.

-r Sort in reverse order.

-s Sort according to the size of the external symbol (computed from the difference between the
value of the symbol and the value of the symbol with the next highest value). This difference is
the value printed. This flag turns on -g and -n and turns off -u and -po

-u Print only undefined symbols.

If the symbol was an align symbol, the letter L will be printed after the letter describing its type.

SEE ALSO
ar(1), a.out(5), ar(5).

-1-

NM(l) Series 500 Implementation NM(l)

NAME
nm - print name list (symbol table) of object file

SYNOPSIS
nm [-gnopru 1 [file ... 1

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System 1lI

Remarks: This manual page describes nm as implemented on the Series 500 computers. Refer to
other nm manual pages for information valid for other implementations.

DESCRIPTION
Nm prints the name list (symbol table) of each object file in the argument list. If an argument is an
archive, a listing for each object file in the archive will be produced, preceded by the member name on a
separate line. If no file is given, the symbols in a.out are listed.

Options are:

-g Print only global (external) symbols.

-n Sort numerically rather than alphabetically.

-0 Prepend file or archive element name to each output line rather than only once. This option
can be used to make piping to grep (1) more meaningful.

-p Don't sort; print in symbol-table order.

-r Sort in reverse order.

-u Print only undefined symbols.

The output from nm consists of five columns of data. The following is a portion of a typical output:

X IDATA 00000108 AJob
X IDATA 000002aO A..sctab
X ICOMM 00000400 0 00000440 A..sibuf
X ICOMM 00000400 0 00000840 A..sobuf

UDATA 00000c40 Aallocs
X FUNC EDS c04 002a8 00000003 __ cleanup
X DDATA DR 00000098 __ ctype
X FUNC EDS cOc 00000 00000001 __ doscan
X SYSTEM EPP 004 OOOOe __ exit
X DDATA DR 00000038 _.lob
X DCOMM 00000004 OOOOOObO __ pfile

X DDATA DR 00000090 _--sctab
X PTR 1 OOOOOa 000000b4 _--sibuf
X PTR 1 OOOOOc 000000b8 _--sobuf

FILENAME OOOOOOOa _exit. 0

FILENAME OOOOOOOf _print. 0

From left to right, the first column specifies whether the symbol is defined (.) or undefined (U). The
second column specifies whether the symbol is non-external (.) or external (X). The third column gives
the linker symbol type (as defined in a.out.h and described below). The fourth column lists the data
associated with the specified symbol type. The fifth column gives the name of the system call, file,
variable, array, common, etc., described by that entry in the symbol table.

- 1 -

NM(l) Series 500 Implementation NM(l)

Up to four data elements are reported in the fourth column. If they are not symbolic values (such as
'EDS' or 'DR'), then they are hexadecimal values. The number of data elements reported depends on
the symbol type. Each symbol type has one to four parameters associated with it, whose values are
given by the data elements in the fourth column. The symbol types and associated parameters are
discussed below.

The following symbol types are supported:

ABS not currently generated; reserved for future use.

FUNC or ENTRY specifies that the entry refers to a function or procedure call. Four numbers,
pty-type, segment, offset, and stt-index, are associated. Their values are given in
order, from left to right, by the data elements. PtY-type consists of a single bit that
is always cleared. It is symbolically represented by 'EDS'. PtY-type is meaningful
to the linker (see ld(l)), and specifies the storage format of the call in the symbol
table. Segment specifies the code segment number (a number in the range 3073
to 4095, that indicates which code segment in the user's program space contains
the desired code). Offset specifies the number of bytes from the beginning of the
code segment where the function or procedure code begins. Stt-index is an
indirect reference to the beginning of the function or procedure code.

SYSTEM specifies that the entry refers to a procedure call directly into the system kernel.
Three numbers, entry---'Ype, segment, and stt, are associated. Their values are
given by the data elements. Entry_type consists of a single bit that is always set.
Its value is symbolically represented by 'EPP'. Entry_type is meaningful to the
linker, and specifies the storage format of the call in the symbol table. Segment
specifies the system code segment number (the number of a code segment
among those set aside for system use; typically in the range 0 to 64). Stt is an
indirect pointer to the beginning of the procedure code.

LABEL specifies that the entry is the destination address for a branch instruction. Three
numbers, ptY-type, segment, and offset, are associated. Their values are given by
the data elements. PtY-type consists of a single bit which is always cleared. Its
value is symbolically represented by 'EDS'. PtY-type is meaningful to the linker,
and specifies the storage format of the address in the symbol table. Segment
specifies the user code segment number. Offset specifies the number of bytes
from the beginning of the code segment where the label begins.

DDATA specifies that the entry is a directly-addressable, initialized data structure (a
variable, or the beginning of an array, common, structure, etc.). Two numbers,
basLreg and displacement, are associated. Their values are given by the data
elements. BaseJ'eg is assigned one of nine possible symbolic values which
describe the addressing scheme used to find the data structure. It is meaningful
to the linker. The possible symbolic values are P +, P-, DB, DL, Q +, Q-, SB,
S-, and DR. Displacement specifies the byte offset where the data structure is
located. Note that this offset is measured relative to the beginning of the data
space of the file for which the nm listing is made. The actual byte offset of the
data structure in the executable a.out file could change.

IDATA or UDATA specifies that the entry refers to an indirectly-addressable, uninitialized array, or
an indirectly-addressable, initialized common block. One number, displacement,
is associated. Its value is given by the data element. It is identical to the
displacement described above under DDATA.

DCOMM or ICOMM specifies that the entry is treated as a common block. Three numbers, blocksize,
needs....length_word, and displacement, are associated. Their values are given by
the data elements. Blocksize is the size, in bytes, of the common block.

-2-

NM(l)

PTR

SEGMENT

FILENAME

Series 500 Implementation NM(l)

N eedLlengtLword is a boolean value which appears in a print-out as either a or
1. If its value is 1, the linker places the value of (blocksize - 4) in the first four
bytes of the common block. This information is necessary when linking
FORTRAN programs. Displacement is identical to that described under DDATA
above.

specifies that the entry is a pointer to an indirectly-addressable data structure
(variable, array, common block, etc.). Three numbers, ptrJo_common, target,
and address, are associated. Their values are given by the data elements.
PtrJo-common is an eight-bit boolean expression. Its value is given as 1 (true) or
a (false). If true, then the entry is a pointer to a common block. If false, the entry
is a pOinter to some other type of data structure. Target is an index into the
symbol table to the entry that describes the target of the data structure pointer.
Address is a pointer to the data structure pointer; that is, an indirect pointer to the
data structure.

not currently generated; reserved for future use.

specifies that the entry is a file name. One number, sequence, is associated. Its
value is given by the data element. Sequence reflects the order in which the linker
encountered each file name.

SEE ALSO
ar(l), a.out(5), ar(5).

DIAGNOSTICS
Nm generates an error message for the following conditions:

invalid option
cannot open file
bad magic number
read error

-3-

NOHUP(1)

NAME
nohup - run a command immune to hangups, logouts, and quits

SYNOPSIS
nohup command [arguments 1

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

DESCRIPTION

NOHUP(l)

Nohup executes command with hangups and quits ignored. If output is not re-directed by the user, it will
be sent to nohup.out. If nohup.out is not writable in the current directory, output is redirected to
$HOMEinohup.out; otherwise, nohup will fail.

If output from nohup is redirected to a terminal, or is not redirected at all, the output is sent to nohup.out.

SEE ALSO
nice(1), signal(2).

-1-

NROFF(l) NROFF(l)

NAME
moff - format text

SYNOPSIS
nroff [options] [files]

HP-UX COMPATIBILITY
Level: Nroff - HP-UXISTANDARD

Origin: System III

DESCRIPTION
Nroff formats text contained in files (standard input by default) for printing on typewriter-like devices
and line printers. Its capabilities are described in the NROFF ITROFF User's Manual cited below.

An argument consisting of a minus (-) is taken to be a file name corresponding to the standard input.
The options, which may appear in any order, but must appear before the files, are:

-olist Print only pages whose page numbers appear in the list of numbers and ranges, separated by
commas. A range N -M means pages N through M; an initial-N means from the beginning
to pageN; and a finalN-means fromN to the end. (See BUGS below.)

-nN Number first generated page N.
-sN Stop every N pages. N roff will halt after every N pages (default N = 1) to allow paper loading

or changing, and will resume upon receipt of a line-feed or new-line (new-lines do not work in
pipelines, e.g., with mm(l)). When nroff halts between pages, an ASCII BEL is sent to the
terminal.

-raN Set register a (which must have a one-character name) toN.
-i Read standard input after files are exhausted.
-q Invoke the simultaneous input-output mode of the .rd request.
-z Print only messages generated by .tm (terminal message) requests.
-mname Precede the input files with the non-compacted (ASCII text) macro file

lusr/lib/tmac/tmac.name.
-cname Precede the inputfiles with the compacted macro files lusr/lib/macros/cmp.[nt].[dt].name

and lusrllib/macros/ucmp.[nt].na
-kname Compact the macros used in this invocation of nroff, placing the output in files [dt].name in the

current directory (see the May 1979 Addendum to the NROFFITROFF User's Manual for
details of compacting macro files).

-Tname Prepare output for specified terminal. Known names are 37 for the (default) TELETYPE@
Model 37 terminal, tn300 for the GE TerrniNet300 (or any terminal without half-line
capability), 300s for the DASI 300s, 300 for the DASI 300, 450 for the DASI 450, Jp for a
(generic) ASCII line printer, 382 for the DTC-382, 4000A for the Trendata 4000A, 832 for the
Anderson Jacobson 832, X for a (generic) EBCDIC printer, and 2631 for the Hewlett Packard
2631 line printer.

-e Produce equally-spaced words in adjusted lines, using the full resolution of the particular
terminal.

-h Use output tabs during horizontal spacing to speed output and reduce output character count.
Tab settings are assumed to be every 8 nominal character widths.

-un Set the emboldening factor (number of character overstrikes) for the third font pOSition (bold)
to n, or to zero if n is missing.

HARDWARE DEPENDENCIES
Series 500:

The -c and -k options are not currently supported.

FILES
lusrllib/suftab suffix hyphenation tables

- 1 -

NROFF(l) NROFF(l)

Itmp/ta$# temporary file
lusrllib/tmac/tmac. * standard macro files and pointers
lusrllib/macrosl * standard macro files
lusrllib/terml * terminal driving tables for nroff

SEE ALSO

BUGS

mm(l).

NROFF ITROFF User's Manual in HP-UX Concepts and Tutorials.

Nroffis keyed to Eastern Standard Time; as a result, depending on the time of the year and on your
local time zone, the date that nroff generates may be off by one day from your current date.
When nroff is used with the -olist option inside a pipeline, it may cause a harmless "broken pipe"
diagnostic if the last page of the document is not specified in list.

- 2 -

UD(I) 00(1)

NAME
od, xd - octal and hexadecimal dump

SYNOPSIS
od [-bcdox 1 [file 1 [[+ loffset[.][b 11
xd [od options 1

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III and HP

DESCRIPTION
Od (xd) dumps file in one or more formats as selected by the first argument. If the first argument is
missing, -0 (-x) is the default. Each line begins with an offset field. For ad, the offset is in octal, and for
xd the offset is in hexadecimal. The meanings of the format options are:

-b Interpret bytes in octal (hexadecimal).

-c Interpret bytes in ASCII. Certain non-graphic characters appear as C escapes: nulI = "'0,
backspace = "'b, form-feed = "'f, new-line = "'n, return = "'r, tab = ",t; others appear as 3-
digit octal numbers.

-d Interpret 16-bit words in decimal.

-0 Interpret 16-bit words in octal.

-x Interpret 16-bit words in hexadecimal.

The file argument specifies which file is to be dumped. If no file argument is specified, the standard
input is used.

The offset argument specifies the offset in the file where dumping is to commence. This argument is
normalIy interpreted as octal bytes. If. is appended, offset is interpreted in decimal. If offset begins with
Ox, offset is interpreted in hexadecimal. If b is appended, offset is interpreted in blocks of 512 bytes. If
the file argument is omitted, offset r.1ust be preceded by +.
Dumping continues until end-of-file.

SEE ALSO
adb(l).

- 1 -

PACK(l) PACK(1)

NAME
pack, pcat, unpack - compress and expand files

SYNOPSIS
pack [- 1 [-f 1 name ...

pcat name ...

unpack name ...

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System V

DESCRIPTION
Pack attempts to store the specified files in a compressed form. Wherever possible (and useful), each
input file name is replaced by a packed file name.z with the same access modes, access and modified
dates, and owner as those of name. The -f option forces packing of name. This is useful for causing an
entire directory to be packed even if some of the files do not benefit. If pack is successful, name is
removed. Packed files can be restored to their original form using unpack or peat.

Pack uses Huffman (minimum redundancy) codes on a byte-by-byte basis. If the - argument is used,
an internal flag is set that causes the number of times each byte is used, its relative frequency, and the
code for the byte to be printed on the standard output. Additional occurrences of - in place of name will
cause the internal flag to be set and reset.

The amount of compression obtained depends on the size of the input file and the character frequency
distribution. Because a decoding tree forms the first part of each .z file, it is usually not worthwhile to
pack files smaller than three blocks, unless the character frequency distribution is very skewed, which
may occur with printer plots or pictures.

Typically, text files are reduced to 60-75% of their original size. Load modules, which use a larger
character set and have a more uniform distribution of characters, show little compression, the packed
versions being about 90% of the original size.

Pack returns a value that is the number of files that it failed to compress.

No packing will occur if:

the file appears to be already packed;
the file name has more than 12 characters;
the file has links;
the file is a directory;
the file cannot be opened;
no disk storage blocks will be saved by packing;
a file called name.z already exists;
the .z file cannot be created;
an I/O error occurred during processing.

The last segment of the file name must contain no more than 12 characters to allow space for the
appended .z extension. Directories cannot be compressed.

Peat does for packed files what cat(l) does for ordinary files, except that peat cannot be used as a filter.
The specified files are unpacked and written to the standard output. Thus to view a packed file named
name.zuse:

pcatname.z

or jus!:

pcatname

PACK(l) PACK(l)

To make an unpacked copy, say nnn, of a packed file named name.z (without destroying name.z) use the
command:

pcat name >nnn

Pcat returns the number of files it was unable to unpack. Failure may occur if:

the file name (exclusive of the .2) has more than 12 characters;
the file cannot be opened;
the file does not appear to be the output of pack.

Unpack expands files created by pack. For each file name specified in the command, a search is made
for a file called name.z (or just name, if name ends in .z). If this file appears to be a packed file, it is
replaced by its expanded version. The new file has the .2 suffix stripped from its name, and has the
same access modes, access and modification dates, and owner as those of the packed file.

Unpack returns a value that is the number of files it was unable to unpack. Failure may occur for the
same reasons that it may in pcat, as well as for the following:

SEE ALSO
cat(l).

a file with the "unpacked" name already exists;
the unpacked file cannot be created.

-2-

PASSWD(l) PASSWD(l)

NAME
passwd - change login password

SYNOPSIS
passwd [name 1

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

DESCRIPTION

FILES

This command changes (or installs) a password associated with the login name. If name is omitted, it
defaults to gellogin (3) name.

The program prompts for the old password (if any) and then for the new one (twice). The caller must
supply these. New passwords should be at least four characters long if they use a sufficiently rich alpha­
bet and at least six characters long if monocase. Only the first eight characters of the password are signi­
ficant.

Only the owner of the name or the super-user may change a password; the owner must prove he knows
the old password, if any. The super-user need not supply the old password when he changes another
user's password. Only the super-user can create a null password.

The password file is not changed if the new password is the same as the old password, or if the password
has not "aged" sufficiently; see passwd (5)).

/etc/passwd

SEE ALSO
10gin(1), crypt(3C), passwd(5).

DIAGNOSTICS
Permission denied.

name is not in password file, or you are not user name or the super-user.

Sony. the old password does not match.

Sony: <x weeks since the last change
password aging is in effect, and it is too soon to change yours.

You may not change this password
the super-user has made it impossible to change your password.

Too short
passwords must be at least 4 characters long.

Please use at least one non-numeric character
your new password does not utilize a sufficiently varied selection of characters. You can over­
ride this rule by re-entering your new password 2 more times.

Please use a longer password.
your new password is not long enough to be sufficiently secure. You can override this rule by
re-entering your new password 2 more times.

They don't match, try again.
the two entries of your new password are not identical.

Temporary file busy; try again later
only one user can change his password at a time.

Cannot create temporary file
see the super-user.

Cannot unlink 'filename'
see the super-user.

-1-

PASSWD(l) PASSWD(l)

cannot link' file' to 'file'.
see the super-user.

cannot recover' file' .
see the super-user.

Password unchanged.
the new and old passwords are the same.

-2-

PASTE(l) PASTE(l)

NAME
paste - merge lines in one or more files

SYNOPSIS
paste file1 file2 ...
paste -d list file1 file2 .
paste -s [-d list I file1 file2 ...

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System III

DESCRIPTION
In the first two forms, paste concatenates corresponding lines of the given input files file], file2, etc. It
treats each file as a·column or columns of a table and pastes them together horizontally (parallel mer­
ging). If you will, it is the counterpart of cat(l) which concatenates vertically, i.e., one file after the other.
In the last form above, paste subsumes the function of an older command with the same name by com­
bining subsequent lines of the input file (serial merging). In all cases, lines are glued together with the
tab character, or with characters from an optionally specified list. Output is to the standard output, so it
can be used as the start of a pipe, or as a filter, if - is used in place of a file name.

The meanings of the options are:

-d Without this option, the new-line characters of each but the last file (or last line in case of the-s
option) are replaced by a tab character. This option allows replacing the tab character by one
or more alternate characters (see below).

list One or more characters immediately following -d replace the default tab as the line concatena­
tion character. The list is used circularly, i. e. when exhausted, it is reused. In parallel merging
(i. e. no -s option), the lines from the last file are always terminated with a new-line character,
not from the list. The list may contain the special escape sequences: "'-n (new-line), "'-t (tab),
"'- "'- (backslash), and ",-0 (empty string, not a null character). Quoting may be necessary, if
characters have special meaning to the shell (e.g. to get one backslash, use" " -d ""'- "'- "'- "'- "
).

-s Merge subsequent lines rather than one from each input file. Use tab for concatenation, unless
a list is specified with -d option. Regardless of the list, the very last character of the file is forced
to be a new-line.

May be used in place of any file name, to read a line from the standard input. (There is no
prompting).

EXAMPLES
Is I paste -d" "-

Is I paste - - - -

paste-s-d""'-t"'-n" file

SEE ALSO
grep(1), cut(1),

list directory in one column

list directory in four columns

combine pairs of lines into lines

pr(1): pr -t -m ... works similarly, but creates extra blanks, tabs and new-lines for a nice page layout.

DIAGNOSTICS
line too long Output lines are restricted to 511 characters.

too many files Except for -s option, no more than 12 input files may be specified.

-1-
09000-90007, rev: 1/85

PC(I) Series 200 Implementation PC(I)

NAME
pc - Pascal compiler

SYNOPSIS
pc [options 1 files

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: HP

Remarks: This manual page describes the Pascal compiler as it is implemented on the Series 200
computer. Refer to other pc(l) manual pages for information valid for other
implementations.

DESCRIPTION

FILES

Pc is the HP standard Pascal compiler. It accepts two types of file arguments:

(I) Arguments whose names end with. p are taken to be Pascal source programs. They are compiled,
and each object program is left in the current directory in a file whose name is that of the source,
with .a substituted for .p. (The.a file will not appear for a single source which is compiled and
loaded, nor for any source which fails to compile correctly.)

(2) Arguments whose names end with .a are passed on to the linker (ld(l)) to be linked into the final
program.

The following options are recognized:

-c

-w

Suppress linking and produce object (.a) files from source files;

Suppress warning messages (same as $WARN OFF$);

-L Write a program listing to stdout or to the file given in $LIST filename $option in source
during compilation;

-ooutfile

-e

Name the output file from the linker outfile instead of a.out;

Write lines containing errors to stderr;

-v Write expanded compiler and linker runstrings to stderr.

Other options are taken to be arguments to ld, and are passed along to the linker.

The compiler generates object code in archive file format, putting each module in a separate .0 format
file and archiving them into a .a file.

file.p
file. a
a.out
/bin/pc
lusrllib/pascomp
llib/crtO.o
Ilib/libpc.a
lusr/tmp/*
lusrllib/paserrs
luserllib/escerrs
lusrllib/syserrs
lusrllib/ioerrs

input file (Pascal source file)
archive file of object file(s)
linked executable output file
mother program
compiler
runtime startoff
Pascal run-time library
temporary files used by the compiler
compiler errors
Pascal escape codes
unix system messages
Pascal ioresults

SEE ALSO
HP Pascal Language Reference.

- I -

PC(l) Series 200 Implementation PC(l)

DIAGNOSTICS
The diagnostics produced by pc are intended to be self-explanatory. If a listing is requested (-L option),
errors are written to the listing file. If no listing is being generated, errors are written to stderr. Errors wil1
be written to both the listing file and stderr if the -L and -e options are both specified. Occasional
messages may be produced by the linker.

A list of all compiler errors may be found in /usr/lib/paserrs.

-2-

PC(l) Series 500 Implementation PC(l)

NAME
pc - Pascal compiler

SYNOPSIS
pc [options] files

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: HP

Remarks: This manual page describes the Pascal compiler as implemented on the Series 500
computers. Refer to other pc(l) manual pages for information valid for other
implementations.

DESCRIPTION

FILES

Pc is the HP standard Pascal compiler. It accepts two types of file arguments:

(1) Arguments whose names end with. p are taken to be Pascal source programs. They are compiled,
and each object program is left in the current directory in a file whose name is that of the source,
with .0 substituted for .p. (The.o file will not be created for a single source which is compiled and
loaded, nor for any source which fails to compile correctly.)

(2) Arguments whose names end with.o are passed on to the linker (ld(l)) to be linked into the final
program.

The following options are recognized:

-c Suppress linking and produce object (.0) files from source files;

-w Suppress warning messages (same as $WARN OFF$);

-L Write a program listing to stdout during compilation;

-ooutfile Name the output file from the linker outfile instead of a.out;

-e Write lines containing errors to stderr;

-v Write expanded compiler and linker runstrings to stderr;

-W [bytes] Display (if bytes is omitted) or set a Pascal program's working set size. Bytes is the number
of bytes in the program's working set;

-H [bytes] Display (if bytes is omitted) or set a Pascal program's maximum heap size. Bytes is the
maximum number of bytes in the heap.

Any other options are taken to be arguments to ld, and are passed along to the linker.

file.p
file. 0

a.out
/bin/pc
lusrllib/pascomp
lusrllib/paserrs
llib/prtO.o
Ilibllibpc.a
lusr/tmp/*

input file (Pascal source file)
object file
linked executable output file
mother program
compiler
error message file
runtime startup
Pascal run-time library
temporary files used by the compiler; names are created by tmpnam(3S).

SEE ALSO
Pascall9000 Language Reference Manual.
Programming in Pascal with Hewlett-Packard Pascal, by Peter Grogono.

DIAGNOSTICS
The diagnostics produced by pc are intended to be self-explanatory. If a listing is requested (-L option),

- 1 -

PC(1) Series 500 Implementation PC(I)

errors are written to the listing file. If no listing is being generated, errors are written to stilerr. Errors will
be written to both the listing file and stderr if the -L and -e options are both specified. Occasional
messages may be produced by the linker.

A list of all errors may be found in /usrllib/paserrs.

-2-

PR(l) PR(l)

NAME
pr - print files

SYNOPSIS
pr [options 1 [files 1

HP-UX COMPATIBILITY
Level: HP-Ux/STANDARD

Origin: System V

DESCRIPTION
Pr prints the named files on the standard output. If file is -, or if no files are specified, the standard input
is assumed. By default, the listing is separated into pages, each headed by the page number, a date and
time, and the name of the file.

By default, columns are of equal width, separated by at least one space; lines which do not fit are
truncated. If the -s option is used, lines are not truncated and columns are separated by the separation
character.

If the standard output is associated with a terminal, error messages are withheld until pr has completed
printing.

Options may appear singly or be combined in any order. Their meanings are:

+k Begin printing with page k (default is 1).

-k Produce k-column output (default is 1). The options -e and -i are assumed for multi-column
output.

-a Print multi-column output across the page.

-d Double-space the output.

-eck Expand input tabs to character positions k + 1, 2*k + 1, 3*k + 1, etc. If k is 0 or is omitted,
default tab settings at every eighth position are assumed. Tab characters in the input are
expanded into the appropriate number of spaces. If c (any non-digit character) is given, it is
treated as the input tab character (default for c is the tab character).

-f Use form-feed character for new pages (default is to use a sequence of line-feeds). Pause
before beginning the first page if the standard output is associated with a terminal.

-h Use the next argument as the header to be printed instead of the file name.

-ick In output, replace white space wherever possible by inserting tabs to character positions k + 1,
2*k + 1, 3*k + 1, etc. If k is 0 or is omitted, default tab settings at every eighth position are
assumed. If c (any non-digit character) is given, it is treated as the output tab character (default
for c is the tab character).

-Ik Set the length of a page to k lines (default is 66).

-m Merge and print all files Simultaneously, one per column (overrides the -k, and -a options).

-nck Provide k-digit line numbering (default for k is 5). The number occupies the first k + 1
character positions of each column of normal output or each line of -m output. If c (any non­
digit character) is given, it is appended to the line number to separate it from whatever follows
(defaultfor c is a tab).

-ok Offset each line by k character positions (default is 0). The number of character positions per
line is the sum of the width and offset.

-p Pause before beginning each page if the output is directed to a terminal (pr will ring the bell at
the terminal and wait for a carriage return).

- 1 -

PR(I)

-f

-sc

-t

-wk

PR(I)

Print no diagnostic reports on failure to open files.

Separate columns by the single character c instead of by the appropriate number of spaces
(default for c is a tab).

Print neither the five-line identifying header nor the five-line trailer normally supplied for each
page. Quit printing after the last line of each file without spacing to the end of the page.

Set the width of a line to k character positions (default is 72 for equal-width multi-column
output, no limit otherwise).

EXAMPLES

FILES

Print file land file2 as a double-spaced, three-column listing headed by "file list" :

pr -3dh "file list" file 1 file2

Write filel on file2, expanding tabs to columns 10,19,28,37, ... :

pr -e9 -t < file 1 >file2

Idev/tty* to suspend messages

SEE ALSO
cat(l), Ip(l), ul(l).

- 2 -

PROF(I) Series 200 Only PROF(I)

NAME
prof - display profile data

SYNOPSIS
prof[-a] [-I] [file]

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

Remarks: Profil) is implemented on the Series 200 only.

DESCRIPTION

FILES

Prof interprets the file mon.out produced by the monitor(3C) subroutine. Under default modes, the
symbol table in the named object file (a.out default) is read and correlated with the mon.out profile file.
For each external symbol, the percentage of time spent executing between that symbol and the next is
printed (in decreasing order), together with the number of times that routine was called and the number
of milliseconds per call.

If the -a option is used, all symbols are reported rather than just external symbols. If the -I option is
used, the output is listed by symbol value rather than decreasing percentage.

In order for the number of calls to a routine to be tallied, the -p option of cc must have been given when
the file containing the routine was compiled. This option also arranges for the mon.out file to be produ­
ced automatically.

man. out for profile
a.out for namelist

SEE ALSO
cc(1), profil(2), monitor(3C).

BUGS
Beware of quantization errors.

-1-

PRS(l) PRS(l)

NAME
prs - print and summarize an sees file

SYNOPSIS
prs [-d[dataspecll [-r[SID]] [-e] H] [-a] files

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

DESCRIPTION
Prs prints, on the standard output, parts or all of an sees file (see sccsfile(5)) in a user supplied format.
If a directory is named, prs behaves as though each file in the directory were specified as a named file,
except that non-sees files (last component of the path name does not begin with so), and unreadable
files are silently ignored. If a name of - is given, the standard input is read; each line of the standard
input is taken to be the name of an sees file to be processed; non-SeeS files and unreadable files are
silently ignored.

Arguments to prs, which may appear in any order, consist of keyletter arguments, and file names.

All the described keyletter arguments apply independently to each named file:

-d[dataspec] Used to specify the output data specification. The dataspec is a string consisting of
sees file data keywords (see Data Keywords) interspersed with optional user
supplied text.

-r[SID] Used to specify the sees IDentification (SID) string of a delta for which
information is desired. If no SID is specified, the SID of the most recently created
delta is assumed. If an SID is specified, it must agree exactly with an SID in the file
(Le. the SID structure used by get(l) does not work here).

-e

-I

-a

Data Keywords

Requests information for all deltas created earlier than and including the delta
designated via the -r key letter.

Requests information for all deltas created later than and including the delta
designated via the -r keyletter.

Requests printing of information for both removed, Le., delta type = R, (see
rmdel(I)) and existing, Le., delta type = D, deltas. If the -a keyletter is not
specified, information for existing deltas only is provided.

Data keywords specify which parts of an sees file are to be retrieved and output. All parts of an sees
file (see sccsfile(5)) have an associated data keyword. There is no limit on the number of times a data
keyword may appear in a dataspec.

The information printed by prs consists of: (1) the user supplied text; and (2) appropriate values
(extracted from the sees file) substituted for the recognized data keywords in the order of appearance
in the dataspec. The format of a data keyword value is either Simple (5), in which keyword substitution
is direct, or Multi-line (M), in which keyword substitution is followed by a carriage return.

- 1 -

PRS(l) PRS(l)

Keyword Data Item File Selection Value Format

:Dt: Delta information Delta Table Seebelow* S
:DL: Delta line statistics " :Li:/:Ld:/:Lu: S
:Li: Lines inserted by Delta " nnnnn S
:Ld: Lines deleted by Delta " nnnnn S
:Lu: Lines unchanged by Delta " nnnnn S
:DT: Delta type " DorR S
:1: SCCS ID string (SID) " :R:.:L:.:B:.:5: S
:R: Release number " nnnn S
:L: Level number " nnnn S
:B: Branch number " nnnn S
:S: Sequence number " nnnn S
:0: Date Delta created " :Dy:/:Dm:/:Dd: S
:Dy: Year Delta created " nn S
:Dm: Month Delta created " nn S
:Dd: Day Delta created " nn S
:T: Time Delta created " :Th:::Tm:::Ts: S
:Th: Hour Delta created " nn 5
:Tm: Minutes Delta created " nn S
:Ts: Seconds Delta created " nn S
:P: Programmer who created Delta " logname S
:DS: Delta sequence number " nnnn S
:DP: Predecessor Delta seq-no. " nnnn S
:01: Seq-no. of deltas incl., excl., ignored " :Dn:/:Dx:/:Dg: S
:Dn: Deltas included (seq#) " :D5::DS: ... 5
: Ox: Deltas excluded (seq#) " :D5::DS: ... S
:Dg: Deltas ignored (seq#) " :DS::DS: ... S
:MR: MR numbers for delta " text M
:C: Comments for delta " text M
:UN: User names User Names text M
:FL: Flag list Flags text M
:Y: Module type flag " text 5
:MF: MR validation flag " yes or no S
:MP: MR validation pgm name " text 5
:KF: Keyword error/warning flag " yes or no 5
:BF: Branch flag " yes or no S
:J: Joint edit flag " yes or no 5
:LK: Locked releases " :R: ... 5
:Q: User defined keyword " text 5
:M: Module name " text S
:FB: Floor boundary " :R: S
:CB: Ceiling boundary " :R: S
:Ds: Default SID " :1: 5
:ND: Null delta flag " yes or no 5
:FD: File descriptive text Comments text M
:BD: Body Body text M
:GB: Gotten body " text M
:W: A form of what(l) string N/A :Z::M: "'tl: 5
:A: A form of what(1) string N/A :Z::Y::M::I::Z: S
:Z: what(1) string delimiter N/A @(#) 5
:F: 5CCSfilename N/A text 5
:PN: SCC5 file path name N/A text S

* :Dt: ~:DT: :1: :0: :T: :P: :os: :OP:

-2-

PRS(l) PRS(l)

User supplied text is any text other than recognized data keywords. Escapes may be used as follows:

tab
new-line
colon
backspace
carriage-return
form feed
backslash
single quote

The default dataspec is:

"'-t
"'-n
"'-:
"'-b
"'-r
"'-f
"'-"'-"'-'

:Ot: ",-t:0L: "'-n:MRs: ",-n:MR:COMMENTS: "'-n:C:

If no option letters (or only -a) are given, prs prints the file name, using the default dataspec, and the-e
option; thus, information on all deltas is produced.

EXAMPLES

FILES

prs -d" Users and/or user IDs for :F: are: "'-n:UN:" s.file

may produce on the standard output:

Users and/or user IDs for s.file are:
xyz
131
abc

prs -d" Newest delta for pgm :M:: :1: Created :0: By :P:" -r s.file

may produce on the standard output:

Newest delta for pgm main.c: 3.7 Created 77/12/1 By cas

As a special case (when no -d keyletter is given):

prs s.file

may produce on the standard output:

o 1.1 77/1211 00:00:00 cas 1 000000/00000/00000
MRs:
b178-12345
b179-54321
COMMENTS:
this is the comment line for s.file initial delta

for each delta table entry of the "0" type.

/tmp/pr????? {temp files exist only while psr is active.}

SEE ALSO
admin(l), delta(l), get(l), help(l), sccsfile(5).

sees User's Guide in HP-UX Concepts and Tutorials.

DIAGNOSTICS
Use help (1) for explanations.

PS(l) PS(l)

NAME
ps - report process status

SYNOPSIS
ps [-edafl] [-s swapdev] [-n namelist] H tlist] [-p plist] [-u ulist] [-g glist]

HP-UX COMPATIBILITY
Level: HP-UXINUCLEUS

Origin: System III

DESCRIPTION
Ps prints certain information about active processes. With no options, information is printed about
processes associated with the current terminal. Otherwise, the information that is displayed is controlled
by the following options:

-a

-d
-e
-f

-g glist

-I
-n namelist
-p plist

-sswapdev

-t tlist

-u ulist

Print information about all processes, except process group leaders and processes not
associated with a terminal.
Print information about all processes, except process group leaders.
Print information about all processes.
Generate a full listing. (Normally, a short listing containing only process ID, terminal
("tty") identifier, cumulative execution time, and the command name is printed.) See
below for meaning of columns in a full listing.
Restrict listing to data about processes whose process groups are given in glist, where glist
is a list of process group leaders and is in the same format as tlist.
Generate a long listing. See below.
The argument will be taken as the name of an alternate namelist (lunix is the default).
Restrict listing to data about processes whose process ID numbers are given in plist, where
plist is in the same format as tlist.
Use the file swapdev in place of /dev/swap. This is useful when examining a corefile; a
swapdev of /dev/null will cause the user block to be zeroed out.
Restrict listing to data about the processes associated with the terminals given in tlist,
where tlist can be in one of two forms: a list of terminal identifiers separated from one
another by a comma, or a list of terminal identifiers enclosed in double quotes and
separated from one another by a comma and/or one or more spaces.
Restrict listing to data about processes whose user ID numbers or login names are given in
ulist, where ulist is in the same format as tlist. In the listing, the numerical user ID will be
printed unless the -f option is used, in which case the login name will be printed.

The column headings and the meaning of the columns in a ps listing are given below. The letters f and I
indicate the option (full or long) that causes the corresponding heading to appear. All means that the
heading always appears. Note that these two options only determine what information is proVided for a
process; they do not determine which processes will be listed.

F (I) Flags (octal and additive) associated with the process:
01 in core;
02 system process;
04 locked in core (e.g., for physical 1/0);
10 currently being swapped out;
20 being traced by another process;
40 another trace flag;
100 text pointer valid;
200 partially swapped out.

S (I) The state of the process:
o non-existent;
S sleeping;

- 1 -

PS(l)

UID (f,1)

PID (all)
PPIO (f,1)
C (f,l)
STIME (f)
PRI (I)

NI (I)

ADDR (I)
SZ (I)
WCHAN (I)

TrY (all)
TIME (all)
CMD (all)

PS(l)

W waiting;
R running;
I intermediate;
Z terminated;
T stopped.

The user ID number of the process owner; the login name is printed under the -f
option.
The process ID of the process; it is possible to kill a process if you know this datum.
The process ID of the parent process.
Processor utilization for scheduling.
Starting time of the process.
The priority of the process; higher numbers mean lower priority.
Nice value; used in priority computation.
The memory address of the process, if resident; otherwise, the disk address.
The size in blocks of the core image of the process.
The event for which the process is waiting or sleeping; if blank, the process is
running.
The controlling terminal for the process (without the initial" tty" , if any).
The cumulative execution time for the process (reported in the form" min:sec").
The command name; the full command name and its arguments are printed under
the -f option.

A process that has exited and has a parent, but has not yet been waited for by the parent, is marked
<defunct> (see "zombie process" inexit(2)).

Under the -f option, ps tries to determine the command name and arguments given when the process
was created by examining memory or the swap area. Failing this, the command name, as it would
appear without the -f option, is printed in square brackets.

HARDWARE DEPENDENCIES
Series 200:

FILES

ADDR is the page frame number of the u_area, if resident.

Series 500:
The F field is always Ol.
In the S field, I means "waiting for input from terminal" .
In the S field, the P (paused) state is added.
In the S field, the T state is not currently supported.
The C field is always zero.
The ADDR field reports the partition number.
In the SZ field, the block size is lK bytes.
The WCHAN field is always blank.
The CMD field is renamed COMMAND except when the -fl option is specified.

The definition of STIME is as follows:

The time when the process was forked, not the time when it was modified by exec; the
date is included only if the elapsed time is greater than 24 hours.

The sand n options are not currently supported. A diagnostic is printed if they are used.

The file Idevlmem does not exist.

lunix
Idev/mem
Idev

system namelist
memory
searched to find swap device and terminal (tty) names

- 2-

PS(l) PS(l)

SEE ALSO

BUGS

kill(l), nice(l), exec(2), exit(2).

Things can change while ps is running; the picture it gives is only a snapshot in time. Some data printed
for defunct processes are irrelevant.

If two special files for terminals are located at the same select code, they are reported in the order in
which they appear in /dev, not in alphabetical order.

-3-

PTX(I) PTX(I)

NAME
pix - permuted index

SYNOPSIS
ptx [options J [input [output J J

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System V

DESCRIPTION

FILES

Ptx generates the file output that can be processed with a text formatter to produce a permuted index of
file input (standard input and output default). It has three phases: the first does the permutation,
generating one line for each keyword in an input line. The keyword is rotated to the front. The
permuted file is then sorted. Finally, the sorted lines are rotated so the keyword comes at the middle of
each line. Ptx output is in the form:

.xx "tail" "before keyword" "keyword and after" "head"

where.xx is assumed to be an nroff or troff(l) macro provided by the user, or provided by the mptx(7)
macro package. The before keyword and keyword and after fields incorporate as much of the line as will
fit around the keyword when it is printed. Tail and head, at least one of which is always the empty
string, are wrapped-around pieces small enough to fit in the unused space at the opposite end of the
line.

The following options can be applied:

-f

-t

-wn

-gn

-0 only

-i ignore

-b break

-r

/bin/sort

Fold upper-and lower-case letters for sorting.

Prepare the output for the phototypesetter.

Use the next argument, n, as the length of the output line. The default line length is
72 characters for nroff and 100 for troff.

Use the next argument, n, as the number of characters that ptx will reserve in its
calculations for each gap among the four parts of the line as finally printed. The
default gap is 3.

Use as keywords only the words given in the only file.

Do not use as keywords any words given in the ignore file. If the -i and -0 options
are missing, use /usr/lib/eign as the ignore file.

Use the characters in the break file to separate words. Tab, new-line, and space
characters are always used as break characters.

Take any leading non-blank characters of each input line to be a reference identifier
(as to a page or chapter), separate from the text of the line. Attach that identifier as a
5th field on each output line.

/usrllib/eign
/usrllib/tmac/tmac. pix

SEE ALSO
nroff(l), troff(l), mm(7), mptx(7).

BUGS
Line length counts do not account for overstriking or proportional spacing.

Lines that contain tildes n are botched, because ptx uses that character internally.

- 1 -

PWD(l)

NAME
pwd - working directory name

SYNOPSIS
pwd

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

DESCRIPTION
Pwd prints the path name of the working (current) directory.

SEE ALSO
cd(1).

DIAGNOSTICS

PWD(l)

" Cannot open .. " and "Read error in .. " indicate possible file system trouble and should be referred to
the super-user.

-1-

R2780(1C) Series 500 Only R2780(IC)

NAME
r2780 - IBM 2780/3780 terminal emulation

SYNOPSIS
r2780 [options] devicefile

HP-UX COMPATIBILITY
Level: HP-UXlEXTENDED

Origin: HP

Remarks: R2780 is implemented on the Series 500 only. R2780 is part of an optional product num­
bered 97077 A (single-user) or 97087 A (multi-user).

DESCRIPTION
R2780 emulates an IBM 2780 or 3780 remote job entry station. In addition, support for character set
translation and tracing is provided.

Options

-sspeed Data rate (120024003600 48007200960019200 e). Default is e.

-3 Emulate 3780 instead of 2780.

-b Suppress character set translation.

-f Enable full duplex.

-p Enable primary station (shorter timeouts).

-m[amr] Select type of modem connection: Manual Dial (m), AutoAnswer with ring (a),
Autoanswer without Ring (r). Default is m.

-t Enable truncation of trailing blanks.

-c Enable compression of imbedded blanks.

-Iretrylimit Select limit for retries on bad blocks (1-255). The default is (7).

-orecsize Set maximum record size for outgoing records (1-509 bytes for 3780, 1-397 bytes for
2780). Default is 80.

-irecsize Set maximum record size for incoming records (1-509 bytes for 3780, 1-397 bytes
for 2780). Default is 160.

-wtimeout Select timeout for modem connection (0-255 seconds). 0 disables this timeout. The
default is 60.

-ntimeout Select no activity timeout (0-65535 seconds). 0 disables the no activity timeout. The
default is 26.

-r Signal Rate select. Enable alternate (lower) modern speed.

-v Enable MSV2 protocol.

-k[artcdbmf] Trace mask. All events (a), received data characters (r), transmitted data characters
(t), received control characters (c), transmitted control characters (d), backplane state
machine transitions (b), midplane state machine transitions (m), frontplane state
machine transitions (f).

-ydevicefile Enable tracing and read trace data from specified device file.

-z[file or shell command]
Output filter program (if tracefile begins with "I") or file to receive raw trace data.

Commands
R2780 interprets the follOwing commands from standard input:

* [> or> >outfile or loutfilter]
configuration display.

-1-

R2780(1C)

I [> or > > outfile or I out filter]
interface card status display.

? [> or > > outfile or I out filter]
emulator status display.

enter new local shell.

!shell command

Series 500 Only

execute one local shell command.

-[config option]
set one of the following configuration options: t, c, b, k, z, or i.

+ [config option]
reset one of the following configuration options: t, c, b, k, z, or i.

>[1][>] [:] [file or filter]
receive one file, pipe to filter (I), append to existing file (», suppress echo (:).

<[#][:][file]
transmit one file, transparent (#), suppress echo (:).

<@ send EOT.

R2780(1C)

The interrupt signal (e.g. "C or BREAK) can be used to abort file transfers. End of file (e.g. "D from ter­
minal) can be used to terminate r2780 or to terminate a file transfer from standard input.

SEE ALSO
r2780trace(lc).

-2-

R2780TRACE(1) Series 500 Only R2780TRACE(1)

NAME
r2780trace - format a trace dump from r2780

SYNOPSIS
r2780trace

HP-UX COMPATIBILITY
Level: HP-UXlEXTENDED

Origin: HP

Remarks: R2780trace is implemented on the Series 500 only. R2780trace is part of an optional pro­
duct numbered 97077 A (Single-user) or 97087 A (multi-user).

DESCRIPTION

FILES

R2780trace reads from standard input the results of a trace done by r2780(1). The format of the input is
expected to be the same as the format of the output of r2780 when the trace feature of that program is
on.

II the overhead information at the beginning of the trace (includes date and time of trace) is not present
or is in the wrong format, the trace will immediately abort with an error message. If not, the trace input
as a whole will be considered valid, and any subsequent invalid data will result in error messages but not
termination.

The output of the trace appears in 3 columns. A transmitted byte is printed in column 2 in each of three
formats: octal, ascii, and ebcdic. A received byte is printed in column 3 in each of the above three for­
mats. For both of these cases, the value of the trace timer appears in column 1. Control bytes have no
trace time associated with them, are interpreted according to tables of messages found in
lusr/Jib/tracetable and are interpreted on the output without regard for alignment with the three
columns mentioned above.

Note: any trace data following an end of trace and preceding a new beginning of trace will not be inter­
preted, but a count of these thrown-away bytes will be printed.

lusr/lib/tracetable

SEE ALSO

names of state machines, events, and sub-functions.

r2780(1).

-1-

RANLIB(l) RANLIB(l)

NAME
ranlib - convert archives to random libraries

SYNOPSIS
ranlib archive ...

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: Version 7

DESCRIPTION
Ranlib converts each named archive to a form which can be loaded more rapidly by the link editor (Id).
It does this by adding a table of contents named __ SYMDEF to the beginning of the archive. It uses
ar(!) to reconstruct the archive, so that sufficient temporary file space must be available in the file system
containing the current directory. A library's table of contents must be updated each time that library is
modified, or Id refuses to use the table of contents. The table of contents is updated by running the
library through ranlib again.

SEE ALSO

BUGS

art!), ld(!), ranlib(5).

Because generation of a library by ar and creation of the table of contents by ranlib are separate, phase
errors are possible. The link editor ld warns when the modification date of a library is more recent than
the creation of its table of contents, but this means that you get the warning even if you only copy the
library.

On some systems, the date for a table of contents might be newer than the last modified date of the library
because of delayed updating of the i-node information. Ranlib tries to compensate for this by modifying the
archive header for the table of contents: it adds five seconds to the date. Therefore, on systems that perform
"fast" updating of the i-node dates (such as the Series 500), it is sometimes possible to execute one or more
commands (e.g. touch) on the archive without invalidating the table of contents.

- ! -
09000-9OIJIJ7, rev: 1185

RATFOR(l) RATFOR(l)

NAME
ratfor - rational Fortran dialect

SYNOPSIS
ratfor [options 1 [files 1

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System V

DESCRIPTION
Rat/or converts a rational dialect of Fortran into ordinary irrational Fortran. Rat/or provides control flow
constructs essentially identical to those in C:

statement grouping:
{ statement; statement; statement}

decision-making:

loops:

if (condition) statement [else statement 1
switch (integer value) {

case integer: statement

[default: 1 statement

while (condition) statement
for (expression; condition; expression) statement
do limits statement
repeat statement [until (condition) 1
break
next

and some syntactic sugar to make programs easier to read and write:

free form input:
multiple statementslline; automatic continuation

comments:
this is a comment.

translation of relationals:
>, > =, etc., become .GT., .GE., etc.

return expression to caller from function:
return (expression)

define: define name replacement

include:
include file

The options are as follows:

-h causes quoted strings to be turned into 27H constructs.

-C copies comments to the output and attempts to format it neatly.

-6c Normally, continuation lines are marked with an & in column 1; this option makes the
continuation character c and places it in column 6.

Rat/or may be used withj77(1) and/c(l).

- 1 -

RATFOR(l)

HARDWARE DEPENDENCIES
Series 200:

RATFOR(l)

Ratfor options conflict with other fl7(1) options. Therefore, these options are not recognized
by fl7. To use ratfor options, ratfor must be called directly.

Series 500:
F c(l) does not recognize ratfor .r files. Therefore, ratfor must be called directly.

The -h option should not be used.

The -6c option must be used for successful automatic continuation.

SEE ALSO
efl(l), f77(1), fc(l).

- 2 -

REV(I) REV(I)

NAME
rev - reverse lines of a file

SYNOPSIS
rev [file 1 .. ,

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: UCB4.2

DESCRIPTION
Rev copies the named files to the standard output, reversing the order of characters in every line. If no
file is specified, the standard input is copied.

- 1 -

nr.Vl-:>lVI'I\J.} ;:,enes :JUU unly

NAME
revision - get HP-UX revision information

SYNOPSIS
/Ibin/revision

HP-UX COMPATIBILITY
Level: HP-UXlEXTENDED

Origin: HP

Remarks: Revision is implemented on the Series 500 only.

DESCRIPTION

HEVI~IUN (1)

This command prints six lines to standard output. Those six lines consist of the six data items output by
uname(2), which give information on the kernel.

The following is a sample output from a machine whose loader chip was not programmed with a serial
number:

System:
Release:
Version:
Machine:
Identity:
Nodename:

SEE ALSO
uname(2).

HP-UX
TEST23#
B

hpfcla

-1-

RM(l) RM(l)

NAME
rm, rmdir - remove files or directories

SYNOPSIS
rm [-fri 1 file ...

rmdir dir ...

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

DESCRIPTION

Rm removes the entries for one or more files from a directory. If an entry was the last link to the file, the
file is destroyed. Removal of a file requires write permission in its directory, but neither read nor write
permission on the file itself.

If a file has no write permission and the standard input is a terminal, its permissions are printed and a line
is read from the standard input. If that line begins with y the file is deleted, otherwise the file remains.
No questions are asked if the standard input is not a terminal.

If a designated file is a directory, an error comment is printed (unless the optional argument -r has been
used - see below).

The options are:

-f removes a file with no questions asked, even if the file has no write permission.

-r causes rm to recursively delete the entire contents of a directory, and then the directory
itself. Rm can recursively delete up to 17 levels of directories.

-i causes rm to ask whether or not to delete each file. If -r is also specified, rm asks
whether to examine each directory encountered.

Rmdir removes entries for the named directories, which must be empty and have execute permission
for the user trying to remove them.

SEE ALSO
unlink(2).

DIAGNOSTICS
Generally self-explanatory. It is forbidden to remove the file .. merely to avoid the consequences of
inadvertently doing something like:

!l rm -r .*11

- 1 -

RMDEL(l) RMDEL(l)

NAME
rmdel- remove a delta from an sees file

SYNOPSIS
rmdel -rSID files

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

DESCRIPTION

FILES

Rmdel removes the delta specified by the SID from each named sees file. The delta to be removed
must be the newest (most recent) delta in its branch in the delta chain of each named sees file. In
addition, the SID specified must not be that of a version being edited for the purpose of making a delta Ii.
e., if ap-file (seeget{I)) exists for the named sees file, the SID specified must not appear in any entry of
the p-file).

If a directory is named, rmdel behaves as though each file in the directory were specified as a named file,
except that non-sees files (last component of the path name does not begin with s.) and unreadable
files are silently ignored. If a name of - is given, the standard input is read; each line of the standard
input is taken to be the name of an sees file to be processed; non-sees files and unreadable files are
silently ignored.

The exact permissions necessary to remove a delta are documented in the sees User's Guide. Simply
stated, they are either (I) if you make a delta you can remove it; or (2) if you own the file and directory
you can remove a delta.

x-file (see delta{I))
z-file (see delta{I))

SEE ALSO

delta{I), get{I), help{I), prs{I), sccsfile(5).

sees User's Guide in HP-UX Concepts and Tutorials.

DIAGNOSTICS
Use help{I) for explanations.

- 1 -

RMNL(l)

NAME
rmnl - remove extra new-line characters from file

SYNOPSIS
rmnl

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: UeB

DESCRIPTION

RMNL(l)

Rmnl is useful for removing excess white space from files for display on a crt terminal. Groups of more
than one "n character are compressed to one "n character. This is used by the man command. Rmnl
provides the same functionality as ssp(1).

SEE ALSO
mantI), ssp(I).

- 1 -

RSH(I) RSH(l)

NAME
rsh - restricted shell (command interpreter)

SYNOPSIS
rsh [flags 1 [name [argl ... 11

HP-UX COMPATIBILITY
Level: HP-UXINUCLEUS

Origin: System III

DESCRIPTION
Rsh is a restricted version of the standard command interpreter sh(I). It is used to set up login names
and execution environments whose capabilities are more controlled than those of the standard shell.
The actions of rsh are identical to those of sh, except that the following are disallowed:

cd
setting the value of $P ATH
command names containing I
> and »

When invoked with the name -rsh, rsh reads the user's .profile (from $HOME/.profile). It acts as the
standard sh while doing this, except that an interrupt causes an immediate exit, instead of causing a
return to command level. The restrictions above are enforced after .profile is interpreted.

When a command to be executed is found to be a shell procedure, rsh invokes sh to execute it. Thus, it
is possible to provide to the end user shell procedures that have access to the full power of the standard
shell, while restricting him to a limited menu of commands; this scheme assumes that the end user does
not have write and execute permissions in the same directory.

The net effect of these rules is that the writer of the .profile has complete control over user actions, by
performing guaranteed setup actions, then leaving the user in an appropriate directory (probably not the
login directory).

Rsh is actually just a link to sh and any flags arguments are the same as for sh(1).

The system administrator often sets up a directory of commands that can be safely invoked by rsh.
Some systems also provide a restricted editor red.

SEE ALSO
sh(1), profile(5).

BUGS
An illegal command (such as cd) included in a trap 0 (logout) will cause a memory fault in the shell.

-1-

SACT(l) SACT(l)

NAME
sact - print current SCCS file editing activity

SYNOPSIS
sact files

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

DESCRIPTION
Sact informs the user of any impending deltas to a named SCCS file. This situation occurs when get(l)
with the -e option has been previously executed without a subsequent execution of delta(l). If a
directory is named on the command line, sact behaves as though each file in the directory were specified
as a named file, except that non-SCCS files (last component of path name does not begin with s.) and
unreadable files are silently ignored. If a name of - is given, the standard input is read with each line
being taken as the name of an sces file to be processed. Non-SeCS files and unreadable files are
ignored.

The output for each named file consists of five fields separated by spaces.

Field 1 specifies the SID of a delta that currently exists in the sees file to which changes will be
made to make the new delta.

Field 2

Field 3

Field 4

specifies the SID for the new delta to be created.

contains the logname of the user who will make the delta (i.e. executed a get -e).

contains the date that get -e was executed.

Field 5 contains the time that get -e was executed.

SEE ALSO
delta(1), get(1), unget(1).

sees User's Guide in HP-UX Concepts and Tutorials.

DIAGNOSTICS
Use help (1) for explanations.

- 1 -

SCCSDIFF(l)

NAME
sccsdiff - compare two versions of SCCS file

SYNOPSIS
sccsdiff -rSIDl -rSID2 [-p] [-sn] files

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

DESCRIPTION

SCCSDIFF(l)

Sccsdiff compares two versions of an SCCS file and generates the differences between the two versions.
Any number of SCCS files may be specified, but arguments apply to all files.

-rSID?

-p

-sn

SEE ALSO

SIDl and SID2 specify the deltas of an SCCS file that are to be compared. Versions are
passed to bdiff(l) in the order given. The SID's accepted and the corresponding version
retrieved for the comparison are the same as for get(1).

pipe outputfor each file throughpr(l).

n is the file segment size that bdiff will pass to diff(l). This is useful when diff fails due to
a high system load.

bdiff(l), diff(l), get(l), help(l), pr(1).

sees User's Guide in HP-UX Concepts and Tutorials.

DIAGNOSTICS
II File: No differences II if the two versions are the same.
Use help(l) for explanations.

- 1 -

SED(l) SED(l)

NAME
sed - stream text editor

SYNOPSIS
sed [-n 1 [-e script 1 [-f sfile 1 [files 1

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

DESCRIPTION
Sed copies the named files (standard input default) to the standard output, edited according to a script
of commands. The -f option causes the script to be taken from file sfile; these options accumulate. If
there is just one -e option and no -f options, the flag -e may be omitted. The -n option suppresses the
default output. A script consists of editing commands, one per line, of the following form:

[address [, address 1 1 function [arguments 1
In normal operation, sed cyclically copies a line of input into a pallern space (unless there is something left
after a D command), applies in sequence all commands whose addresses select that pattern space, and at
the end of the script copies the pattern space to the standard output (except under -n) and deletes the
pattern space.

Some of the commands use a hold space to save all or part of the pallern space for subsequent retrieval.

An address is either a decimal number that counts input lines cumulatively across files, a $ that addresses
the last line of input, or a context address, i.e., a/regular expression/ in the style of ed(l) modified thus:

In a context address, the construction "'-.?regular expression?, where? is any character, is identi­
cal to /regular expression/. Note that in the context address "'-.xabc "'-.xdefx, the second
x stands for itself, so that the regular expression is abcxdef.

The escape sequence "'-.n matches a new-line embedded in the pattern space.
A period. matches any character except the terminal new-line of the pattern space.
A command line with no addresses selects every pattem space.
A command line with one address selects each pattern space that matches the address.
A command line with two addresses selects the inclusive range from the first pattern space that

matches the first address through the next pattern space that matches the second. (If
the second address is a number less than or equal to the line number first selected,
only one line is selected.) Thereafter the process is repeated, looking again for the first
address.

Editing commands can be applied only to non-selected pattern spaces by use of the negation function!
(below).

In the following list of functions the maximum number of permissible addresses for each function is indi­
cated in parentheses.

The text argument consists of one or more lines, all but the last of which end with "'-. to hide the new­
line. Backslashes in text are treated like backslashes in the replacement string of an s command, and
may be used to protect initial blanks and tabs against the stripping that is done on every script line. The
rfile or wfile argument must terminate the command line and must be preceded by exactly one blank.
Each wfile is created before processing begins. There can be at most 10 distinct wfile arguments.

(l)a"'-.
text Append. Place text on the output before reading the next input line.
(2) b label Branch to the: command bearing the label. If label is empty, branch to the end of the script.
(2)c"'-.
text Change. Delete the pattern space. With 0 or 1 address or at the end of a 2-address range,

place text on the output. Start the next cycle.
(2) d Delete the pattern space. Start the next cycle.
(2) D Delete the initial segment of the pattern space through the first new-line. Start the next

-1-

SED(l)

(2)g
(2)G
(2)h
(2)H
(1) i"-
text
(2)1

(2)n

(2)N

(2)p
(2)P

cycle.
Replace the contents of the pattern space by the contents of the hold space.
Append the contents of the hold space to the pattern space.
Replace the contents of the hold space by the contents of the pattern space.
Append the contents of the pattern space to the hold space.

Insert. Place text on the standard output.

SED(l)

List the pattern space on the standard output in an unambiguous form. Non-printing
characters are spelled in two-digit ASCII and long lines are folded.
Copy the pattern space to the standard output. Replace the pattern space with the next line
of input.
Append the next line of input to the pattern space with an embedded new-line. (The
current line number changes.)
Print. Copy the pattern space to the standard output.
Copy the initial segment of the pattern space through the first new-line to the standard out­
put.

(1) q Quit. Branch to the end of the script. Do not start a new cycle.
(2) r rfile Read the contents of rfile. Place them on the output before reading the next input line.
(2) s/regular expression/replacement/flags

Substitute the replacement string for instances of the regular expression in the pattern space.
Any character may be used instead of /. For a fuller description see ed(l). Flags is zero or
more of:

9 Global. Substitute for all nonoverlapping instances of the regular expres­
sion rather than just the first one.

p Print the pattern space if a replacement was made.
w wfile Write. Append the pattern space to wfile if a replacement was made.

(2) t label Test. Branch to the: command bearing the label if any substitutions have been made since
the most recent reading of an input line or execution of a t. If label is empty, branch to the
end of the script.

(2) w wfile Write. Append the pattern space to wfile.
(2) x Exchange the contents of the pattern and hold spaces.
(2) y/string]/string2/

Transform. Replace all occurrences of characters in string] with the corresponding charac­
ter in string2. The lengths of string] and string2 must be equal.

(2)! function

(0) : label
(1) =

(2){

Don'1. Apply the function (or group, if function is {) only to lines not selected by the
address(es).
This command does nothing; it bears a label for band t commands to branch to.
Place the current line number on the standard output as a line.
Execute the following commands through a matching} only when the pattern space is selec­
ted. The syntax is:

{cmdl
cmd2
cmd3

(0) An empty command is ignored.

SEE ALSO
awk(l), ed(1), grep(1).

-2-

SED(l) SED(1)

BUGS
There is a limit of 100 commands in the script.

-3-

SH(l) SH(l)

NAME
sh - shell, the standard command programming language

SYNOPSIS
sh [--ceiknrstuvx 1 [args 1

HP-UX COMPATIBILITY
Level: HP-UXINUCLEUS

Origin: System 1II

DESCRIPTION
Sh is a command programming language that executes commands read from a terminal or a file. See
Invocation below for the meaning of arguments to the shell.

Commands.
A simple-command is a sequence of non-blank words separated by blanks (a blank is a tab or a space).
The first word specifies the name of the command to be executed. Except as specified below, the
remaining words are passed as arguments to the invoked command. The command name is passed as
argument a (see exec(2». The value of a simple-command is its exit status if it terminates normally, or
(octal) 200 + status if it terminates abnormally (see signal(2) for a list of status values).

A pipeline is a sequence of one or more commands separated by I. The standard output of each
command but the last is connected by a pipe(2) to the standard input of the next command. Each
command is run as a separate process; the shell waits for the last command to terminate.

A list is a sequence of one or more pipelines separated by;, &, &&, or II, and optionally terminated by;
or &. Of these four symbols, ; and & have equal precedence, which is lower than that of && and II.
The symbols && and II also have equal precedence. A semicolon (;) causes sequential execution of the
preceding pipeline; an ampersand (&) causes asynchronous execution of the preceding pipeline (i.e.,
the shell does not wait for that pipeline to finish). The symbol && (II) causes the list following it to be
executed only if the preceding pipeline retums a zero (non-zero) exit status. An arbitrary number of
new-lines may appear in a list, instead of semicolons, to delimit commands.

A command is either a simple-command or one of the following. Unless otherwise stated, the value
returned by a command is that of the last Simple-command executed in the command.

for name [in word ... 1 do list done
Each time a for command is executed, name is set to the next word taken from the in word list.
If in word . .. is omitted, then the for command executes the do list once for each positional
parameter that is set (see Parameter Substitution below). Execution ends when there are no
more words in the list.

case word in [pattern [I pattern 1 ...) list ;; 1 ... esac
A case command executes the list associated with the first pattern that matches word. The form
of the patterns is the same as that used for file-name generation (see File Name Generation
below).

if list then list [elif list then list 1 ... [else list 1 fi
The list follOwing if is executed and, if it returns a zero exit status, the list following the first then
is executed. Otherwise, the list following elif is executed and, if its value is zero, the list
follOwing the next then is executed. Failing that, the else list is executed. If no else list or then
list is executed, then the if command returns a zero exit status.

while list do list done

(list)

A while command repeatedly executes the while list and, if the exit status of the last command
in the list is zero, executes the do list; otherwise the loop terminates. If no commands in the do
list are executed, then the while command returns a zero exit status; until may be used in place
of while to negate the loop termination test.

Execute list in a sub-shell.

- 1 -

SH(1)

{list;}
list is simply executed.

The following words are only recognized as the first word of a command and when not quoted:

if then else elif fi case esac for while until do done { }

SH(l)

Comments.
A word beginning with # causes that word and all the following characters up to a new-line to be
ignored.

Command Substitution.
The standard output from a command enclosed in a pair of grave accents (--) may be used as part or all
of a word; trailing new-lines are removed.

Parameter Substitution.
The character $ is used to introduce substitutable parameters. Positional parameters may be assigned
values by set. Variables may be set by writing:

name = value [name = value 1 ...
Pattern-matching is not performed on value.

${parameter}
A parameter is a sequence of letters, digits, or underscores (a name), a digit, or any of the
characters *, @, #, ?, -, $, and!. The value, if any, of the parameter is substituted. The
braces are required only when parameter is followed by a letter, digit, or underscore that is not
to be interpreted as part of its name. A name must begin with a letter or underscore. If
parameter is a digit then it is a positional parameter. If parameter is * or @, then all the positional
parameters, starting with $1, are substituted (separated by spaces). Parameter $0 is set from
argument zero when the shell is invoked.

${parameter:-word}
If parameter is set and is non-null then substitute its value; otherwise substitute word.

${parameter: = word}
If parameter is not set or is null then set it to word; the value of the parameter is then substituted.
Positional parameters may not be assigned to in this way.

${parameter:?word}
If parameter is set and is non-null then substitute its value; otherwise, print word and exit from
the shell. If word is omitted, then the message "parameter null or not set" is printed.

${parameter: + word}
If parameter is set and is non-null then substitute word; otherwise substitute nothing.

In the above, word is not evaluated unless it is to be used as the substituted string, so that, in the
following example, pwd is executed only if d is not set or is null:

echo ${d:--pwd-}

If the colon (:) is omitted from the above expressions, then the shell only checks whether parameter is set
or not.

The following parameters are automatically set by the shell:
The number of positional parameters in decimal.

Rags supplied to the shell on invocation or by the set command.
? The decimal value returned by the last synchronously executed command, if the

command exited normally. Otherwise, the signal number which the command
terminated on, either 1-127 if core was not dumped, or 129-255 if core was dumped.

$ The process number of this shell.
The process number of the last background command invoked.

-2-

SH(I) SH(I)

The following parameters are used by the shell:
HOME The default argument (home directory) for the cd command.
PATH The search path for commands (see Execution below).
MAIL If this variable is set to the name of a mail file, then the shell informs the user of

the arrival of mail in the specified file.
SHELL a string specifying which shell to run.
PSI Primary prompt string, by default "$ ".
PS2 Secondary prompt string, by default "> ".
IFS Intemal field separators, normally space, tab, and new-line.

The shell gives default values to PATH, PSI, PS2, and IFS, while HOME and MAIL are not set at all by
the shell (although HOME is set by login (1».

Blank Interpretation.
After parameter and command substitution, the results of substitution are scanned for internal field
separator characters (those found in IFS) and split into distinct arguments where such characters are
found. Explicit null arguments (" II or ") are retained. Implicit null arguments (those resulting from
parameters that have no values) are removed.

File Name Generation.
FollOwing substitution, each command word is scanned for the characters *, ?, and [. If one of these
characters appears then the word is regarded as a pattern. The word is replaced with alphabetically
sorted file names that match the pattern. If no file name is found that matches the pattern, then the word
is left unchanged. The character. at the start of a file name or immediately follOwing a I, as well as the
character 1 itself, must be matched explicitly.

Quoting.

* Matches any string, including the null string.
? Matches any single character.
[... I Matches anyone of the enclosed characters. A pair of characters separated by -

matches any character lexically between the pair, inclusive. A NOT operator, !, can be
specified immediately follOwing the left bracket to match any single character not
enclosed in the brackets.

The follOWing characters have a special meaning to the shell and cause termination of a word unless
quoted:

; & () I < > new-line space tab

A character may be quoted (i.e., made to stand for itself) by preceding it with a ",-. The pair "'-new-line
is ignored. All characters enclosed between a pair of single quote marks (--), except a single quote, are
quoted. Inside double quote marks (" "), parameter and command substitution occurs and "'- quotes
the characters ",-, -, ", and $. II $* II is eqUivalent to "$1 $2 ... ", whereas II $@" is equivalent to
"$1 II "$2"

Prompting.
When used interactively, the shell prompts with the value of PSI before reading a command. If at any
time a new-line is typed and further input is needed to complete a command, then the secondary
prompt (i.e., the value of PS2) is issued.

Input/Output.
Before a command is executed, its input and output may be redirected using a special notation
interpreted by the shell. The following may appear anywhere in a simple-command or may precede or
follow a command and are not passed on to the invoked command; substitution occurs before word or
digit is used:

<word Use file word as standard input (file deSCriptor 0).

-3-

SH(I)

>word

»word

«[-]word

<&digit

<&-

SH(I)

Use file word as standard output (file descriptor 1). If the file does not exist then it is
created; otherwise, it is truncated to zero length.
Use file word as standard output. If the file exists then output is appended to it (by
first seeking to the end-of-file); otherwise, the file is created.
The shell input is read up to a line that is the same as word, or to an end-of-file. The
resulting document becomes the standard input. If any character of word is quoted,
then no interpretation is placed upon the characters of the document; otherwise,
parameter and command substitution occurs, (unescaped) ,",,-new-line is ignored,
and '""- must be used to quote the characters ,",,-, $, -, and the first character of word.
If - is appended to < <, then all leading tabs are stripped from word and from the
document.
The standard input is duplicated from file descriptor digit (see dup(2)). Similarly for
the standard output using>.
The standard input is closed. Similarly for the standard output using >.

If one of the above is preceded by a digit, then the file deSCriptor created is that specified by the digit
(instead of the default 0 or 1). For example:

... 2>&1

creates file descriptor 2 that is a duplicate of file descriptor 1. Note that this type of 110 redirection is
necessary if you want to synchronously collect stdout and stderr output in the same file. Redirecting
stdout and stderr separately will cause asynchronous collection of data at the destination (i.e. things
written to stdout can subsequently be over-written by things written to stderr, and vice-versa).

If a command is followed by & then the default standard input for the command is the empty file
Idev/null. Otherwise, the environment for the execution of a command contains the file descriptors of
the invoking shell as modified by input/output specifications.

Environment.
The environment (see environ(7)) is a list of name-value pairs that is passed to an executed program in
the same way as a normal argument list. The shell interacts with the environment in several ways. On
invocation, the shell scans the environment and creates a parameter for each name found, giving it the
corresponding value. Executed commands inherit the same environment. If the user modifies the
values of these parameters or creates new ones, none of these affects the environment unless the export
command is used to bind the shell's parameter to the environment. The environment seen by any
executed command is thus composed of any unmodified name-value pairs originally inherited by the
shell, plus any modifications or additions, all of which must be noted in export commands.

The environment for any simple-command may be augmented by prefixing it with one or more
assignments to parameters. Thus:

TERM = 450 cmd args and
(export TERM; TERM = 450; cmd args)

are equivalent (as far as the above execution of cmd is concerned),

If the -k flag is set, all keyword arguments are placed in the environment, even if they occur after the
command name. The following first prints a = b c and then c:

Signals.

echo a=b c
set -k
echo a=b c

The INTERRUPT and QUIT signals for an invoked command are ignored if the command is followed by
&; otherwise signals have the values inherited by the shell from its parent, with the exception of signal
11 (but see also the trap command below).

-4-

SH(I) SH(I)

Execution.
Each time a command is executed, the above substitutions are carried out. Except for the Special
Commands listed below, a new process is created and an attempt is made to execute the command via
exec(2).

The shell parameter PATH defines the search path for the directory containing the command.
Alternative directory names are separated by a colon (:). The default path is :/bin:/usr/bin (specifying
the current directory, /bin, and /usr/bin, in that order). Note that the current directory is specified by a
null path name, which can appear immediately after the equal sign or between the colon delimiters
anywhere else in the path list. If the command name contains a / then the search path is not used.
Otherwise, each directory in the path is searched for an executable file. If the file has execute permission
but is not an a.out file, it is assumed to be a file containing shell commands. A sub-shell (Le., a separate
process) is spawned to read it. A parenthesized command is also executed in a sub-shell.

Special Commands.
The following commands are executed in the shell process and, except as specified, no input/output
redirection is permitted for such commands:

No effect; the command does nothing. A zero exit code is returned .
. file Read and execute commands from file and return. The search path specified by PATH is used

to find the directory containing file. Note that this command does not spawn another shell to
execute file, and thus differs in behavior and output from executing file as a shell script.

break [n 1
Exit from the enclosing for or while loop, if any. If n is specified then break n levels.

continue [n 1
Resume the next iteration of the enclosing for or while loop. If n is specified then resume at the
n-th enclosing loop.

cd[arg]
Change the current directory to arg. The shell parameter HOME is the default arg.

eval [arg ... 1
The arguments are read as input to the shell and the resulting command(s) executed.

exec [arg ... 1
The command specified by the arguments is executed in place of this shell without creating a
new process. Input/output arguments may appear and, if no other arguments are given, cause
the shell input/output to be modified.

exit[nl
Causes a shell to exit with the exit status specified by n. If n is omitted then the exit status is that
of the last command executed (an end-of-file will also cause the shell to exit.)

export [name. ..]
The given names are marked for automatic export to the environment of subsequently-executed
commands. If no arguments are given, then a list of all names that are exported in this shell is
printed.

newgrp [arg . .. 1
EqUivalent to exec newgrp arg

read [name. ..]
One line is read from the standard input and the first word is assigned to the first name, the
second word to the second name, etc., with leftover words assigned to the last name. The return
code is 0 unless an end-of-file is encountered.

readonly [name. .. 1
The given names are marked readonly and the values of the these names may not be changed
by subsequent assignment. If no arguments are given, then a list of all readonly names is
printed.

set [-ekntuvx [arg . .. 1 1

- <; -

SH(l)

shift

test

times

SH(l)

-e If the shell is non-interactive then exit immediately if a command exits with a non-zero
exit status.

-k All keyword arguments are placed in the environment for a command, not just those
that precede the command name.

-n Read commands but do not execute them.
-t Exit after reading and executing one command.
-u Treat unset variables as an error when substituting.
-v Print shell input lines as they are read.
-x Print commands and their arguments as they are executed.

Do not change any of the flags; useful in setting $1 to-.
Using + rather than - causes these flags to be turned off. These flags can also be used upon
invocation of the shell. The current set of flags may be found in $--. The remaining arguments
are positional parameters and are assigned, in order, to $1, $2, If no arguments are given
then the values of all names are printed.

The positional parameters from $2 ... are renamed $1

Evaluate conditional expressions. See test(1) for usage and description.

Print the accumulated user and system times for processes run from the shell.
trap [arg 1 [n 1 ...

arg is a command to be read and executed when the shell receives signal(s) n. (Note that arg is
scanned once when the trap is set and once when the trap is taken.) Trap commands are
executed in order of signal number. Any attempt to set a trap on a signal that was ignored on
entry to the current shell is ineffective. An attempt to trap on signal 11 (memory fault) produces
an error. If arg is absent then all trap(s) n are reset to their original values. If arg is the null string
then this signal is ignored by the shell and by the commands it invokes. If n is 0 then the
command arg is executed on exit from the shell. The trap command with no arguments prints
a list of commands associated with each signal number.

umask [nnn 1
The user file-creation mask is set to nnn (see umask(2)). If nnn is omitted, the current value of
the mask is printed.

wait Wait for all child processes to terminate, and report the termination status. If n is not given then
all currently active child processes are waited for. The return code from this command is always
zero.

Invocation.
If the shell is invoked through exec(2) and the first character of argument zero is -, commands are
initially read from /etc/profile and then from $HOME/.profile, if such files exist. Thereafter, commands
are read as described below, which is also the case when the shell is invoked as /bin/sh. The flags below
are interpreted by the shell on invocation only; Note that unless the -c or -s flag is specified, the first
argument is assumed to be the name of a file containing commands, and the remaining arguments are
passed as positional parameters to that command file:

-c string If the -c flag is present then commands are read from string.
-s If the -s flag is present or if no arguments remain then commands are read from the

standard input. Any remaining arguments specify the positional parameters. Shell output is
written to file descriptor 2.

-i If the -i flag is present or if the shell input and output are attached to a terminal, then this
shell is interactive. In this case TERMINATE is ignored (so that kill 0 does not kill an
interactive shell) and INTERRUPT is caught and ignored (so that wait is interruptible). In all
cases, QUIT is ignored by the shell.

-r If the -f flag is present the shell is a restricted shell (see rsh(l)).

-6-

::.t1\I)

FILES

SH(I)

The remaining flags and arguments are described under the set command above.

If the SHELL parameter appears in the environment, and the first character to the right of the right-most
slash is an "r", then the shell becomes restricted. The following lines should be included in the .profile
files of restricted login names:

SHELL = lusr/rsh
export SHELL

This causes whoever logs in under the restricted login names to be given a restricted shell (see rsh(l)).

lete/profile
$HOME/.profile
Itmp/sh*
Idev/null

RETURN VALUE
The error codes returned by the shell are:

O-success;
1- a built-in command failure (see Special Commands);
2 - syntax error;
3 - signal received that is not trapped.

If the shell is non-interactive, it will terminate and pass one of the above as its exit status. If it is
interactive, it will not terminate, but $? will be set to one of the above values.

Whenever a child process of the shell dies due to a signal, the shell returns an exit status of 80
hexadecimal + the number of the signal.

SEE ALSO

BUGS

cd(l), env(l), 10gin(1), newgrp(l), rsh(l), test(l), umask(l), dup(2), exec(2), fork(2), pipe(2), signa1(2),
umask(2), wait(2), a.out(S), profile(S), environ(7).

The command readonly (without arguments) produces the same output as the command export.

If < < is used to provide standard input to an asynchronous process invoked by &, the shell gets mixed
up about naming the input document; a garbage file Itmp/sh* is created and the shell complains about
not being able to find that file by another name.

- is a synonym for I; the use of - is discouraged.

The shell assumes it is talking to terminals that only process the least significant seven bits of a character.
If your terminal uses all eight bits, you may see some strange strings.

When the shell encounters > >, it does not open the file in append mode. Instead, it opens the file for
writing and seeks to the end.

- 7 -

SIZE(!) SIZE(!)

NAME
size - print section sizes of common object files

SYNOPSIS
size [-0 1 [-x 1 files

HP-UX COMPATIBILITY
Level: HP -UXISTANDARD

Origin: System V

DESCRIPTION
The size command produces section size information for each section in common object files. The size
of the text, data and bss (uninitialized data) sections are printed along with the total size of the object file.
If an archive file is input to the size command the information for all archive members is displayed.

By default, numbers are printed in decimal, unless altered by the options described below.

-0 print numbers in octal.

-x print numbers in hexadecimal.

HARDWARE DEPENDENCIES
Series 500:

SEE ALSO

The text size shown is the sum of the sizes of all code segments.

The data size shown is the sum of the initialized portions of the ddata and idata segments (which
may be one or two data segments).

The bss size shown is the sum of the uninitialized portions of the ddata and idata segments.

If size is run on any commands shipped with HP-UX, the text size does not include any shared
library segments referenced by the command.

as(l), cc(l), ld(l), a.out(5), ar(5).

DIAGNOSTICS
size: name: cannot open

if name cannot be read.

size: name: bad magic
if name is not an appropriate common object file.

- 1 -

SLEEP(l)

NAME
sleep - suspend execution for an interval

SYNOPSIS
sleep time

HP-UX COMPATIBILITY
Level: HP-UX/NUCLEUS

Origin: System III

DESCRIPTION

SLEEP(l)

Sleep suspends execution for time seconds. It is used to execute a command after a certain amount of
time, as in:

(sleep 105; command)&

or to execute a command every so often, as in:

while true
do

done

command
sleep 37

SEE ALSO
alarm(2), sleep(3C).

BUGS
Time must be less than 2-32 seconds.

-1-

SORT(l) SORT(l)

NAME
sort - sort and/or merge files

SYNOPSIS
sort [-cmubdfinrTtx 1 [+ posl [-pos2 1 1 ... [-0 output 1 [file ... 1

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

DESCRIPTION
Sort sorts lines of all the named files together and writes the result on the standard output. The name­
means the standard input. If no input files are named, the standard input is sorted.

The default sort key is an entire line. Default ordering is lexicographic by bytes in machine collating
sequence. The ordering is affected globally by the following options, one or more of which may appear.

b Ignore leading blanks (spaces and tabs) in field comparisons.

d " Dictionary" order: only letters, digits and blanks are significant in comparisons.

f Fold upper case letters onto lower case.

Ignore characters outside the ASCII range 040-0176 in non-numeric comparisons.

n An initial numeric string, consisting of optional blanks, optional minus sign, and zero or more digits
with optional decimal point, is sorted by arithmetic value. Option n implies option b.

r Reverse the sense of comparisons.

tx "Tab character" separating fields is x.

The notation + pas] -pos2 restricts a sort key to a field beginning at pas] and ending just before pos2.
Pas] and pos2 each have the form m.n, optionally followed by one or more of the flags bdfinr, where m
tells a number of fields to skip from the beginning of the line and n tells a number of characters to skip
further. If any flags are present they override all the global ordering options for this key. If the b option
is in effect n is counted from the first non-blank in the field; b is attached independently to pos2. A
miSSing .n means .0; a missing -pos2 means the end of the line. Under the -tx option, fields are strings
separated by x; otherwise fields are non-empty non-blank strings separated by blanks.

When there are multiple sort keys, later keys are compared only after all earlier keys compare equal.
Lines that otherwise compare equal are ordered with all bytes significant.

These option arguments are also understood:

c Check that the input file is sorted according to the ordering rules; give no output unless the file is
out of sort.

m Merge only, the input files are already sorted.

u Suppress all but one in each set of equal lines. Ignored bytes and bytes outside keys do not
participate in this comparison.

o The next argument is the name of an output file to use instead of the standard output. This file
may be the same as one of the inputs.

T The next argument is the name of a directory where sort should put its temporary files.

EXAMPLES
Print in alphabetical order all the unique spellings in a list of words (capitalized words differ from
uncapitalized):

sort -u +Of +0 list

- 1 -

SORT(1) SORT(l)

FILES

Print the password file (passwd(5)) sorted by user ID (the third colon-separated field):

sort -t: + 2n /etc/passwd

Print the first instance of each month in an already sorted file of (month-day) entries (the options -urn
with just one input file make the choice of a unique representative from a set of equal lines predictable):

sort -urn +0 -1 dates

/usr/tmp/stm*
/tmp/stm*

default temporary files

SEE ALSO
comm(I), join(1), uniq(I).

DIAGNOSTICS

BUGS

Comments and exits with non-zero status for various trouble conditions and for disorder discovered
under option -c.

Lines that exceed 512 characters (including the new-line) are silently truncated (Le., the excess
characters are ignored).

Sort will not recognize the line in a file if it is not terminated with a new-line character.

Sort uses signed characters for comparison (unlike strcmp - see string(3C)), so you may get unexpected
results when sorting a file that contains ASCII characters with the most Significant bit set (characters 128
-255).

Sort does not understand" missing" fields. For example, if you have a file with the following contents:

Doe,John
Spencer,Joe
Johns,Ann
Malley,Dean

mailman
plumber
secretary
engineer

17550

15950
26750

8
4

4

you may get unexpected results if you try to sort on the third or fourth fields (all names and associated
data are fictitious).

Sort does not expand tabs when counting characters to locate a field.

-2-

SPELL(l) SPELL(l)

NAME
spell, spellin, spellout - find spelling errors

SYNOPSIS
spell [options 1 [files 1

/usr/lib/spell/spellin [list 1

/usr/lib/spell/speUout [-d 1 list

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

DESCRIPTION
Spell collects words from the named files and looks them up in a spelling list. Words that neither occur
among nor are derivable (by applying certain inflections, prefixes, and/or suffixes) from words in the
spelling list are printed on the standard output. If no files are named, words are collected from the
standard input.

Spell ignores most nroff(l), and tbl constructions.

The options are:

-v all words not literally in the spelling list are printed, and plausible derivations from the
words in the spelling list are indicated.

-b British spelling is checked. Besides preferring centre, colour, speciality, travelled, etc.,
this option insists upon -ise in words like standardise, Fowler and the OED to the
contrary notwithstanding.

-x every plausible stem is printed with = for each word.

The spelling list is based on many sources, and while more haphazard than an ordinary dictionary, is
also more effective with respect to proper names and popular technical words. Coverage of the
specialized vocabularies of biology, medicine, and chemistry is light.

Pertinent auxiliary files may be specified by name arguments, indicated below with their default settings.
Copies of all output are accumulated in the history file. The stop list filters out misspellings (e.g.,
thier = thy-y + ier) that would otherwise pass.

Two routines help maintain the hash lists used by spell (both expect a list of words, one per line, from
the standard input):

spellin

Spellout

adds the words on the standard input to the pre-existing list and places a new
list on the standard output. If no list is specified, the new list is created from
scratch.

looks up each word read from the standard input, and prints on the standard
output those that are missing from (or, with the -d option, present in) the hash
list.

HARDWARE DEPENDENCIES
Series 200/500:

FILES

eqn, typo and troff are not currently supported.

D_SPELL = /usr/lib/spell/hlist[ab 1
S_SPELL = /usr/lib/spell/hstop
H_SPELL = /usr/lib/spell/spellhist
/tmp/spell.$$

hashed spelling lists, American & British
hashed stop list
history file
temporary

- 1 -

SPELL(1) SPELL(!)

lusr/lib/spell/spellprog program

SEE ALSO

BUGS

deroff(l), nroff(1), sed(1), sort(1), tbl(l), tee(1).

The spelling list's coverage is uneven; new installations will probably wish to monitor the output for
several months to gather local additions; typically, these are kept in a separate local dictionary that is
added to the hashed list via spellin.
British spelling was done by an American.

- 2-

SPLIT(l)

NAME
split - split a file into pieces

SYNOPSIS
split [-n 1 [file [name 1 1

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

DESCRIPTION

SPLIT(l)

Split reads file and writes it in n-line pieces (default 1000), as many as necessary, onto a set of output
files. The name of the first output file is name with aa appended, and so on lexicographically. if no out­
put name is given, x is default.

If no input file is given, or if - is given instead, then the standard input file is used.

-1-

SSP(l)

NAME
ssp - remove multiple line-feeds from output

SYNOPSIS
ssp

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: 4.2BSD

DESCRIPTION

SSP(l)

Ssp (single-space) removes multiple line-feeds from the standard input and sends the result to the
standard output. It is typically used in pipelines like

nroff -ms filel I ssp

- 1 -

STRINGS(l)

NAME
strings - find printable strings in binary file

SYNOPSIS
strings [- 1 [--0 1 [-number 1 file ...

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: UCB

DESCRIPTION

STRINGS(l)

Strings looks for ASCII strings in a binary file. If no files are specified, stdin is used. A string is any
sequence of 4 or more printing characters ending with a new-line or a null. Unless the - flag is given,
strings only looks in the initialized data space of object files. If the --0 flag is given, then each string is
preceded by its offset in the file (in octal). If the -number flag is given, then number is used as the
minimum string length (rather than 4).

Strings is useful for identifying random object files and many other things.

SEE ALSO
od(l).

BUGS
The algorithm for identifying strings is extremely primitive.

- 1 -

STRIP(l) Series 200 Implementation STRIP(!)

NAME
strip - remove symbols and relocation bits

SYNOPSIS
strip name ...

HP-UX COMPATIBILITY
Level: HP-UXIOEVELOPMENT

Origin: System 1II

Remarks: This manual entry describes strip(1) as implemented on the Series 200 computers. Refer to
other strip(1) pages for information valid for other implementations.

DESCRIPTION

FILES

Strip removes the symbol table and relocation bits ordinarily attached to the output of the assembler
and link editor. This is useful to save space after a program has been debugged.

The effect of strip is the same as use of the -s option of [d.

If name is an archive file, strip will remove the local symbols from any a.out format files it finds in the
archive. Certain libraries, such as those residing in /lib, have no need for local symbols. By deleting
them, the size of the archive is decreased and link editing performance is increased.

/tmp/stm* temporary file

SEE ALSO

ld(l), a.out(S).

- 1 -

STRIP(1) Series 500 implementation STRIP(l)

NAME
strip - remove symbol table and debug table

SYNOPSIS
strip name ...

HP-UX COMPATIBILITY
Level: HP-UXIDEVELOPMENT

Origin: System III

Remarks:
This manual page describes strip as implemented on the Series 500 computers. Refer to other
strip manual pages for information valid for other implementations.

DESCRIPTION

FILES

Strip removes the symbol table and debug table from an executable object file. This is useful to save
space after a program has been debugged. The effect is the same as using the -s option of [d.

If name is a relocatable file, strip removes the debug table. If name is an archive file, strip removes the
debug table from any a.out format files it finds in the archive.

/tmp/s* temporary files

/tmp/sb* temporary files

SEE ALSO
ld(l), a.out(S).

- 1 -

STIY(I) STIY(I)

NAME
stty - set the options for a terminal port

SYNOPSIS
stty [-a 1 [-g 1 [options 1

HP-UX COMPATIBILITY
Level: HP-UX/NUCLEUS

Origin: System III

DESCRIPTION
Stty sets certain terminal va options for the device that is the current standard input; without arguments,
it reports the settings of certain options; with the -a option, it reports all of the option settings; with the
-g option, it reports current settings in a form that can be used as an argument to another stty com­
mand. Detailed information about the modes listed in the first five groups below may be found in tty (4).
Options in the last group are implemented using options in the previous groups. Note that many com­
binations of options make no sense, but no sense checking is performed. The options are selected from
the following: '

Control Modes

parenb (-parenb)

parodd (-parodd)

cs5 es6 es7 es8

o

enable (disable) parity generation and detection.

select odd (even) parity.

select character size (see tty (4)).

hang up phone line immediately.

5075 110 134.5 150200300600900 1200
180024003600480072009600 1920038400 exta extb

hupd (-hupd)

hup (-hup)

cstopb (-estopb)

cread (-eread)

crts (-crts)

c10cal (-doeal)

Input Modes

ignbrk (-ignbrk)

ienqak (-ienqak)

brkint (-brkint)

ignpar (-ignpar)

parmrk (-parmrk)

inpek (-inpek)

istrip (-istrip)

inler (-inler)

igner (-igner)

iernl (-icrnl)

iude (-iude)

ixon (-ixon)

Set terminal baud rate to the number given, if the hardware will support it.

hang up (do not hang up) modem connection on last close.

same as hupd (-hupd).

use two (one) stop bits per character.

enable (disable) the receiver.

enable (disable) request-to-send.

assume a line without (with) modem control.

ignore (do not ignore) break on input.

enable (disable) ENQ-ACK handshaking.

signal (do not signal) INTR on break.

ignore (do not ignore) parity errors.

mark (do not mark) parity errors (see tty (4».

enable (disable) input parity checking.

strip (do not strip) input characters to seven bits.

map (do not map) NL to CR on input.

ignore (do not ignore) CR on input.

map (do not map) CR to NL on input.

map (do not map) upper-case alphabetics to lower case on input.

enable (disable) START/STOP output control. Output is stopped by sending an
ASCII DC3 and started by sending an ASCII DCl.

-1-

STTY(I)

ixany (-ixany)

ixoff (-ixoff)

Output Modes

opost (-opost)

olcue (-olcue)

onlcr (-onlcr)

oeml (-oeml)

onoer (-onoer)

onlret (-onlret)

ofill (-ofill)

of del {-of del)

erO cd er2 er3

nlOnll

tabOtabltab2tab3

bsObsl

ffO ffl

vtOvtl

Local Modes

isig (-isig)

icanon (-icanon)

xease (-xease)

echo (-echo)

eehoe (-eehoe)

eehok (-eehok)

lfke (-Ifke)

eehonl (-eehonl)

noflsh{-noflsh)

Control Assignments

control-character c

line i

Combination Modes

evenp or parity

STTY(I)

allow any character (only DCl) to restart output.

request that the system send (not send) START/STOP characters when the input
queue is nearly empty/full.

post-process output (do not post-process output; ignore all other output
modes).

map (do not map) lower-case alphabetics to upper case on output.

map (do not map) NL to CR-NL on output.

map (do not map) CR to NL on output.

do not (do) output CRs at column zero.

on the terminal NL performs (does not perform) the CR function.

use fill characters (use timing) for delays.

fill characters are DELs (NULs).

select style of delay for carriage returns (see tty(4)).

select style of delay for line-feeds (see tty(4)).

select style of delay for horizontal tabs (see tty(4)).

select style of delay for backspaces (see tty(4)).

select style of delay forform-feeds (see tty(4)).

select style of delay for vertical tabs (see tty(4)).

enable (disable) the checking of characters against the special control characters
INTR and QUIT.

enable (disable) canonical input (ERASE and KILL processing).

canonical (unprocessed) upper/lower -case presentation.

echo back (do not echo back) every character typed.

echo (do not echo) ERASE character as a backspace-space-backspace string.
Note: this mode will erase the ERASEed character on many CRT terminals;
however, it does not keep track of column position and, as a result, may be con­
fusing on escaped characters, tabs, and backspaces.

echo (do not echo) NL after KILL character.

the same as eehok (-echok); obsolete.

echo (do not echo) NL.

disable (enable) flush after INTR or QUIT.

set control-character to c, where control-character is erase, kill, intr, quit, eof, eol,
min, or time (min and time are used with -icanon; see tty(4)). If c is preceded
by an (escaped from the shell) caret n, then the value used is the correspon­
ding CTRL character (e.g., Ad is a CTRL-d); A? is interpreted as DEL and A_ is
interpreted as undefined.

set line discipline to i (O < i < 127). (See tty(4).)

enable parenb and es7.

-2-

STIY(l) STIY(l)

oddp enable parenb, es7, and parodd.

-parHy,-evenp,or-oddp
disable parenb, and set es8.

raw (-raw or cooked) enable (disable) raw input and output (no ERASE, KILL, INTR, QUIT, EOT, or
output post processing).

nl(-nl)

lease (-lease)

LCASE (-LCASE)

tabs (-tabs or tab3)

ek

sane

unset (set) icrnl, onler. In addition -nl unsets inler, igner, oernl, and onlret.

set (unset) xcase, iude, and oleue.

same as lease (-lease).

preserve (expand to spaces) tabs when printing.

reset ERASE and KILL characters back to normal # and @.

resets all modes to some reasonable values.

term set all modes suitable for the terminal type term, where term is one of tty33,
tty37, vt05, tn300, ti700, bp, ortek.

HARDWARE DEPENDENCIES
Series 200/500:

Refer to to'(4) for a description of the capabilities that are not supported.

SEE ALSO
tabs(l), ioct1(2), tty(4).

-3-

SU(I) SU(I)

NAME
su - become another user

SYNOPSIS
su[-][name[arg ...]]

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

DESCRIPTION

FILES

Su allows one to become another user without logging off. The default user name is root (Le., super­
user).

To use su, the appropriate password must be supplied (unless one is already super-user). If the
password is correct, su will execute a new shell with the user ID set to that of the specified user. To
restore normal user ID privileges, type an EOF to the new shell.

Any additional arguments are passed to the shell, permitting execution of the shell procedures with
restricted privileges (an arg of the form --c string executes string via the shell). After the procedure has
executed, the new user is logged out, and the original user becomes the current user. When additional
arguments are passed, /bin/sh is always used. When no additional arguments are passed, su uses the
shell specified in the password file.

An initial - flag causes the environment to be changed to the one that would be expected if the user
actually logged in again. This is done by invoking the shell with an argO of -su causing the .profile in the
home directory of the new user ID to be executed. Otherwise, the environment is passed along
unchanged. The super-user's $PATH is unconditionally set to Ibin:/etc:/usrlbin. Note that the .profile
can check argO for -sh or -su to determine how it was invoked.

The - option always resets $PATH to /bin:/etc:/usr/bin for the super-user, and /bin:/usrlbin for all
others. However, the files fete/profile and .profile are normally executed anyway, thus restoring the
intended value of $PATH.

Su will ensure that the super-user gets a II # II prompt to remind him of his additional responsibilities.

Su logs all attempts to su in /usr/adm/sulog, including failures. Successful attempts are flagged with
II + ", failures with "_ II •

/etc/passwd
/usr/adm/sulog
$HOME/.profile

system's password file
log of all su attempts
user's profile file

SEE ALSO
env(l), login(l), sh(l), environ(7).

- 1 -

:'UM\l/

NAME
sum - print checksum and block count of a file

SYNOPSIS
sum [-r 1 file

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System V

DESCRIPTION

~UM(l)

Sum calculates and prints a 16-bit checksum for the named file, and also prints the number of (lK byte)
blocks in the file. Stdin is used if no fie names are given. Sum is typically used to look for bad spots, or
to validate a file communicated over some transmission line. The option -r causes an alternate
algorithm to be used in computing the checksum.

SEE ALSO
wc(l).

DIAGNOSTICS
"Read error" is indistinguishable from end of file on most devices; check the block count.

- 1 -

TABS(l) TABS(l)

NAME
tabs - set tabs on a terminal

SYNOPSIS
tabs [tabspec J [+ mn J [- Ttype J

HP-UX COMPATIBILITY
Level: HP-Ux/STANDARD

Origin: System III

DESCRIPTION
Tabs sets the tab stops on the user's terminal according to the tab specification tabspec, after clearing any
previous settings. The user must be logged in on a terminal with remotely-settable hardware tabs.

If you are using a non-HP terminal, you should keep in mind that behavior will vary for some tab
settings.

Four types of tab specification are accepted for tabspec: "canned", repetitive, arbitrary, and file. If no
tabspec is given, the default value is -8, i.e., HP-UX "standard" tabs. The lowest column number is 1.
Note that for tabs, column 1 always refers to the leftmost column on a terminal, even one whose column
markers begin at O.

-code Gives the name of one of a set of "canned" tabs. The legal codes and their meanings are as
follows:

-a 1,10,16,36,72
Assembler, IBM S/370, first format

-a21,10,16,40,72
Assembler, IBM S/370, second format

-c 1,8,12,16,20,55
COBOL, normal format

-c2 1,6,10,14,49
COBOL compact format (columns 1-6 omitted). Using this code, the first typed character
corresponds to card column 7, one space gets you to column 8, and a tab reaches
column 12. Files using this tab setup should include a format specification as follows:
<:t-c2 m6 s66 d:>

-c3 1,6,10,14,18,22,26,30,34,38,42,46,50,54,58,62,67
COBOL compact format (columns 1-6 omitted), with more tabs than -c2. This is the
recommended format for COBOL. The appropriate format specification is:
<:t-c3 m6 s66 d:>

-f 1,7,11,15,19,23
FORTRAN

-p 1,5,9,13,17,21,25,29,33,37,41,45,49,53,57,61
PUI

-s 1,10,55
SNOBOL

-u 1,12,20,44
UNIVAC 1100 Assembler

In addition to these "canned" formats, three other types exist:

-n A repetitive specification requests tabs at columns 1 +n, 1 +2*n, etc. Of particular
importance is the value -8: this represents the HP-UX "standard" tab setting, and is the
most likely tab setting to be found at a terminal. It is required for use with the nroff(I)-h

- 1 -

TABS(1) TABS(l)

nl,n2,oo.

--file

option for high-speed output. Another special case is the value -0, implying no tabs at all.

The arbitrary format permits the user to type any chosen set of numbers, separated by
commas, in ascending order. Up to 40 numbers are allowed. If any number (except the
first one) is preceded by a plus sign, it is taken as an increment to be added to the previous
value. Thus, the tab lists 1,10,20,30 and 1,10, + 10, + 10 are considered identical.

If the name of a file is given, tabs reads the first line of the file, searching for a format
specification. If it finds one there, it sets the tab stops according to it, otherwise it sets them
as -8. This type of specification may be used to make sure that a tabbed file is printed with
correct tab settings, and would be used with the pr(l) command:

tabs -- file; pr file

Any of the following may be used also; if a given flag occurs more than once, the last value given takes
effect:

- Ttype Tabs usually needs to know the type of terminal in order to set tabs and always needs to know
the type to set margins. Type is a name listed in term(7). If no-T flag is supplied, tabs searches
for the $TERM value in the environment (see environ(7)). If no type can be found, tabs tries a
sequence that will work for many terminals.

+ mn The margin argument may be used for some terminals. It causes all tabs to be moved over n
columns by making column n + 1 the left margin. If + m is given without a value of n, the
value assumed is 10. The normal (leftmost) margin on most terminals is obtained by + mO.
The margin for most terminals is reset only when the + m flag is given explicitly.

Tab and margin setting is performed via the standard output.

Format specifications are defined and described infspec(5).

SEE ALSO
nroff(l), tset(l), fspec(5), environ(7), term(7).

DIAGNOSTICS

BUGS

illegal tabs when arbitrary tabs are ordered incorrectly.

illegal increment when a zero or missing increment is found in an arbitrary specification.

unknown tab code when a 10 canned 10 code cannot be found.

can't open

file indirection

if --file option used, and file can't be opened.

if --file option used and the specification in that file points to yet another file.
Indirection of this form is not permitted.

There is no consistency among different terminals regarding ways of clearing tabs and setting the left
margin.
It is generally impossible to usefully change the left margin without also setting tabs.
Tabs clears only 20 tabs (on terminals requiring a long sequence), but is willing to set 40.

-2-

TAIL(l) TAIL(l)

NAME
tail- deliver the last part of a file

SYNOPSIS
tail [[± [number][lbc][f]]1 [-f]] [file]

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

DESCRIPTION
Tail copies the named file to the standard output beginning at a designated place. If no file is named,
the standard input is used.

Copying begins at distance + number from the beginning, or -number from the end of the input (if num­
ber is null, the value 10 is assumed). Number is counted in units of lines, blocks, or characters, according
to the appended option I, b, or c. When no units are specified, counting is by lines.

With the -f (" follow") option, if the input file is not a pipe, the program will not terminate after the line
of the input file has been copied, but will enter an endless loop, wherein it sleeps for a second and then
attempts to read and copy further records from the input file. Thus it may be used to monitor the growth
of a file that is being written by some other process.

EXAMPLES
Tail accepts at most two arguments: the first consists of specified options, and the second specifies the
file of interest. If the number and f options are both desired, they must be concatenated to create a single
option argument, as follows:

tail -3If john

This example prints the last three lines in the file john to the standard output, and leaves tail in "follow"
mode.

If only the f option is desired, it must be preceded by a -, as follows:

tail -f fred

This example prints the last ten lines of the file fred, followed by any lines that are appended to fred
between the time tail is initiated and killed. Note that this output may build up very quickly for rapidly
changing input files, perhaps too fast to read on a CRT.

SEE ALSO
dd(l).

BUGS
Tails relative to the end of the file are stored in a buffer, and thus are limited in length. Thus, be wary of
the results when piping output from other commands into tail.

Various kinds of anomalous behavior may happen with character special files.

Tail can pick up a maximum of 4K bytes of data from the specified file.

-1-

TAR(l) TAR(l)

NAME
tar - tape file archiver

SYNOPSIS
tar [key 1 [files 1

HP-UX COMPATIBILITY
Level: HP-UX/DEVELOPMENT

Origin: System III and UCB

DESCRIPTION
Tar saves and restores files on magnetic tape or flexible disc. Its actions are controlled by the key
argument. The key is a string of characters containing at most one function letter and possibly one or
more function modifiers. The key string may be preceded by a dash (-) (similar to the way options are
specified in other HP-UX commands), but it is not necessary. Other arguments to the command are
files (or directory names) specifying which files are to be dumped or restored. In all cases, appearance
of a directory name refers to the files and (recurSively) subdirectories of that directory.

The function portion of the key is specified by one of the following letters:

c
r
u

Create a new archive; writing begins at the beginning of the archive.
The named files are added to the end of the archive.
The named files are added to the archive ifthey are not already there, or have been modi­
fied since last written on that archive.

x The named files are extracted from the archive. If a named file matches a directory whose
contents had been written onto the archive, this directory is (recursively) extracted. If no
files argument is given, the entire content of the archive is extracted. Note that if several
files with the same name are on the archive, the last one overwrites all earlier ones. The
file and directory ownership written on the archive is only restored for the super-user.
Produces a listing of the names of files on the archive. Adding the v option wiii expand
this listing to include the file modes and owner numbers.

The following function modifiers may be used in addition to the function letters listed above:

0, ... ,8

v

w

b

m

o

p

This modifier selects the drive on which the 9 track tape is mounted. The default is 8 (as
IdevlrmtS).
Normally, tar does its work silently. The v (verbose) option causes it to type the name of
each file it treats, preceded by the function letter.
causes tar to print the action to be taken, followed by the name of the file, and then wait
for the user's confirmation. If a word beginning with y is given, the action is performed.
Any other input means "no".
causes tar to use the next argument as the name of the archive instead of Idev/rmt? If the
name of the file is -, tar writes to the standard output or reads from the standard input,
whichever is appropriate. Thus, tar can be used as the head or tail of a pipeline. Tar can
also be used to move hierarchies with the command:

cd fromdir; tar cf - . I (cd todir; tar xf -)

causes tar to use the next argument as the blocking factor for archive records. This option
should only be used when a blocking factor of less than 20 is desired. The default is 20
and the minimum is 1 (512 bytes). The blocking factor is determined automatically when
reading 9 track tapes. The blocking factor must be specified when reading flexible discs
and cartridge tapes if they were written with a blocking factor different than 20.
tells tar to complain if it cannot resolve all of the links to the files being dumped. If I is not
specified, no error messages are printed.
tells tar to not restore the modification time written on the archive. The modification time
of the file will be the time of extraction.
This option will suppress the directory information written to the archive. Former versions
of tar could not handle this information on input.
This option causes files to be restored to the original modes written on the archive. Setuid

-1-

TAR(l) TAR(l)

and sticky information will also be restored for the super-user.

If a 9 track tape drive is used as the output device, it must be configured in Berkeley compatability
mode; see mt(4).

EXAMPLE

FILES

tar cvf Idev/rfd.O filel file2

This example creates a new archive on Idev/rfd.O and copies filel and file2 onto it, using a blocking fac­
tor of 20. The key is made up of one function letter (e) and two function modifiers (v, and f).

Idev/rmt?
Idev/rfd. *
Itmp/tar*

SEE ALSO
ar(l), cpio(l), mt(4).

DIAGNOSTICS

BUGS

Complains about bad key characters and archive read/write errors.
Complains if enough memory is not available to hold the link tables.

There is no way to ask for the n-th occurrence of a file.
Tape errors are handled ungracefully.
The u option can be slow.
If the archive is on a flexible disc or cartridge tape, and if the blocking factor specified on output was not
20, the same blocking factor must be specified on input. This is because the blocking factor is not expli­
citly stored on the archive.
The current limit on file-name length is 100 characters.
Some previous versions of tar have claimed to support selective listing of file names using the t option
with a list. To our knowledge this was an error in the documentation and does not appear in the original
source code.
There is no way to restore an absolute path name to a relative position.
The arguments required by the f and b modifiers must be specified in the same order in which the modi­
fiers are specified in the key.
Tar always pads information written to an archive up to the next multiple of the block size. Therefore, if
you are creating a small archive and write out one block of information, tar reports that one block was
written, but the actual size of the archive is (for the default case) 20 blocks.

-2-

TBL(l) TBL(l)

NAME
tbl- format tables for nroff or troff

SYNOPSIS
tbl [-TX 1 [files 1

HP-UX COMPATIBILITY
Level: HP-Ux/STANDARD

Origin: System III

DESCRIPTION
Tbl is a preprocessor that formats tables for nroff(1) or troff(l). The input files are copied to the
standard output, except for lines between .TS and .TE command lines, which are assumed to describe
tables and are re-formatted by tbl. (The .TS and .TE command lines are not altered by tbl) .

. TS is followed by global options. The available global options are:

center center the table (default is left-adjust);
expand make the table as wide as the current line length;
box enclose the table in a box;
doublebox enclose the table in a double box;
allbox enclose each item of the table in a box;
tab (x) use the character x instead of a tab to separate items in a line of input data.

The global options, if any, are terminated with a semi-colon (;).

Next come lines describing the format of each line of the table. Each such format line describes one line
of the actual table, except that the last format line (which must end with a period) describes all
remaining lines of the table. Each column of each line of the table is described by a single key-letter,
optionally followed by specifiers that determine the font and point size of the corresponding item, that
indicate where vertical bars are to appear between columns, that determine column width, inter-column
spacing, etc. The available key-letters are:

c center item within the column;
r right-adjust item within the column;
I left-adjust item within the column;
n numerically adjust item in the column: units pOSitions of numbers are aligned vertically;
s span previous item on the left into this column;
a center longest line in this column and then left-adjust all other lines in this column with

respect to that centered line;
span down previous entry in this column;
replace this entry with a horizontal line;
replace this entry with a double horizontal line.

The characters 8 and I stand for the bold and italic fonts, respectively. The vertical bar character
indicates a vertical line between columns.

The format lines are followed by lines containing the actual data for the table, followed finally by .TE.
Within such data lines, data items are normally separated by tab characters.

If a data line consists of only _ or =, a single or double line, respectively, is drawn across the table at that
point; if a single item in a data line consists of only _ or =, then that item is replaced by a single or double
line.

The - TX option forces tbl to use only full vertical line motions, making the output more suitable for
devices that cannot generate partial vertical line motions (e.g., line printers).

If no file names are given as arguments, tbl reads the standard input, so it may be used as a filter. When
it is used with eqn(l) or neqn(l), tbl should come first to minimize the volume of data passed through
pipes.

- 1 -

TBL(1)

HARDWARE DEPENDENCIES
Series 200/500:

Troff and eqn are not currently supported.

SEE ALSO
mm(l), nroff(l), mm(7).

TBL - A Program to Format Tables in HP-UX Concepts and Tutorials.

BUGS
See BUGS undernroff(l).

- 2-

TBL(l)

TCIO(1) TCIO(1)

NAME
tcio - Command Set 80 Cartridge Tape Utility

SYNOPSIS
/Ibin/tcio -0 [dervSVC J [buffersize J filename
/Ibin/tcio -i [drvS J [buffersize J filename
/Ibin/tcio -u [cmrvV J [blocknumber J [save I restore J filename [discfilename J

HP-UX COMPATIBILITY
Level: HP-UX!NON-STANDARD

Origin: HP

DESCRIPTION
Teio -0 (copy out) reads the standard input and writes the data to the raw Command Set 80 Cartridge
Tape Unit specified by filename.

Teio -i (copy in) reads the Command Set 80 Cartridge Tape Unit speCified by filename in raw mode and
writes the data to the standard output.

Teio -u (utility) performs utility functions on the cartridge tape. such as image backup and restore.
release, mark, and/or verify cartridge. (If the system's 110 processor board's revision number is 3.0 or less, this
option winlock up the system.)

In all cases. filename MUST refer to a character special file associated with a Command Set 80 cartridge
tape unit.

With the output and input operations. teio utilizes a large buffer to transfer data to/from the cartridge
tape. yielding a significant increase in performance. as well as a savings in wear and tear on the media
and the mechanism. In addition. teio puts a tape mark in the first block on each tape to prevent the tape
from being image restored over a disc: it also utilizes the last block on each tape to flag whether the tape
is the last tape in a muiti-tape sequence or not.

With the utility operation. teio provides functions that are unique to cartridge tapes.

One of the options o. i. or u must be speCified. The meanings of the available modifiers are:

v Verbose mode: prints information and error messages to stderr.

d Prints a checksum to stderr. The checksum is a 32-bit unsigned addition of the bytes. providing an
extra check of the validity of the tape in addition to tape verification. The value is only reported to
the user and is not written on the media: thus. it's left up to the user to manually record and check
it. The checksum is valid only for the i and 0 operations. and if the same number of bytes are read
from the tape as were written to it. This option is independent of the verbose modifier.

e Applies only to the output operation. and causes a tape mark to be written on the nearest 1024-
byte boundary following the end of the data. When a tape containing an end-of-data tape mark is
read back. the read will terminate upon encountering the tape mark. Thus. with the use of this
option. the checksums generated by the input and output operations are guaranteed to agree.

S Enables specification of buffer size. This option forces the allocation of a block of memory to be
used in reading or writing the tape. The size in bytes of the buffer is 1024 times the value speCified
for buffersize. A buffersize less than 32 or greater than 512 will cause the program to terminate. If
bufJersize is not specified. teio will attempt to allocate buffer sizes in powers of 2 from 512 down to
64. taking the largest one possible. The primary uses of this option are to allow buffer sizes smaller
than 64 Kbytes. and to allow the user to pick a buffer size that is most suitable for his application.

V This option turns off tape verification. It is suggested that this option not be used. for the sake of the
integrity of the data output to tape.

m This option writes a tape mark on a tape at the specified block. If a tape is created by some other
means than teio. a tape mark in block 0 of the tape will prevent it from being image restored to a
disc. Note that blocknumber must be specified.

Releases the tape from the mechanism. unlocking the door.

-1-
09000-90007. rev: 1185

TCIO(l) TCIO(l)

c Image copy option. Provides the same capability as the push-button save and restore available in
the HP 79XX single controller drive. The save and restore keywords are the same as the labels on
those switches. Save implies disc to tape; restore implies tape to disc. Currently only single con­
troller disc/tape units can be backed up in this way.

C Check read option. Provides a measure of data security not found in the tape verification or check
digit options. Check read requires two I/O buffers of the size indicated by buJJersize, one for writing
and one for reading. The data in the first buffer is written to the tape. Then the tape is backspaced
and read into the second buffer. The two buffers are then compared. If a difference occurs, tcio
reports the error and terminates. This option forces no tape verification. Note that this option pro­
motes wear and tear on both the media and the drive, and should only be used when complete
assurance of the data's integrity is required.

HARDWARE DEPENDENCIES
Series 200:

The C option is not supported.

The c option is not supported (thus, the WARNING below does not apply to the Series 200).
The separate stand-alone utility CS80 Tape Backup provides this functionality.

Due to I/O software architecture, a buJJersize greater than 64 would provide no increase in per­
formance, but would merely tie-up system memory. Thus, the default for buJJersize is 64, and if
buJJersize is specified greater than 64, it is silently truncated back to 64.

Series 500:
In general, tapes which have any tape marks other than in the first or the last block cannot be
read successfully.

The e option is not supported, and because of the above restriction, tapes which have been
written under the e option cannot be read successfully.

EXAMPLES
The first example below copies the contents of a directory into an archive; the second restores it:

Is I cpio -0 I tcio -0 /dev/rct

tcio -i /dev/rct I cpio -i

SEE ALSO
cpio(1).

WARNING

BUGS

To be able to use the save/restore facility, the following two conditions must be met:

your system must be in Single-user mode;

you must never have used networking on your system. If networking has been used on your
system, you must reboot the system before using the save/restore facility.

Tcio can tie up substantial portions of memory, creating a situation where progress on other processes
(including those processes feeding tcio) is hindered. If this should occur, it is best to kill tcio and re­
execute using a smaller buJJersize. This problem is especially acute when using the C option, because
two buffers are required.

If the cartridge drive cannot read the manufacturer's block on the tape, the cartridge is locked in the
drive and cannot be extracted without turning off the disc/tape drive. This failure is usually the result of
faulty tapes or a dirty drive mechanism.

-2-

NAME
tee - pipe fitting

SYNOPSIS
tee [-i 1 [-a 1 [file 1 ...

HP-UX COMPATIBILITY
Level: HP-UXINUCLEUS

Origin: System III

DESCRIPTION

TEE(1)

Tee transcribes the standard input to the standard output and makes copies in the files. The -i option
ignores interrupts; the -a option causes the output to be appended to the files rather than overwriting
them.

-1-

TEST(l) TEST(l)

NAME
test - condition evaluation command

SYNOPSIS
test expr
[expr 1

HP-UX COMPATIBILITY
Level: HP-UXINUCLEUS

Origin: System III

DESCRIPTION

Test evaluates the expression expr and, if its value is true, returns a zero (true) exit status; otherwise, a
non-zero (false) exit status is returned; test also returns a non-zero exit status if there are no arguments.
The following primitives are used to construct expr:

-rfile

-wfile

-xfile

-ffile

-dfile

-cfile

-bfile

-ufile

-gfile

-kfile

-sfile

-t [fildes 1

-z s1

-os1

s1 = s2

s1 ! = s2

s1

n1-eq n2

true if file exists and is readable.

true if file exists and is writable.

true if file exists and is executable.

true if file exists and is a regular file.

true if file exists and is a directory.

true if file exists and is a character special file.

true if file exists and is a block special file.

true iffile exists and its set-user-ID bit is set.

true iffile exists and its set-groupoID bit is set.

true if file exists and its sticky bit is set.

true if file exists and has a size greater than zero.

true if the open file whose file descriptor number isfildes (1 by default) is associated with a
terminal device.

true if the length of string s1 is zero.

true if the length of the string s1 is non-zero.

true if strings s1 and s2 are identical.

true if strings s1 and s2 are not identical.

true if s1 is not the null string.

true if the integers n1 and n2 are algebraically equal. Any of the comparisons -De, -gt,
-ge, -It, and -Ie may be used in place of -eq.

These primaries may be combined with the following operators:

-a

-0

(expr)

unary negation operator.

binary and operator.

binary or operator (-a has higher precedence than -0).

parentheses for grouping.

Notice that all the operators and flags are separate arguments to test. Notice also that parentheses are
meaningful to the shell and, therefore, must be escaped.

Test is directly interpreted by the shell.

- 1 -

TEST(l) TEST(l)

SEE ALSO
eval (see sh(1)), expr(l), find(l), shIll.

WARNING
In the second form of the command (i.e., the one that uses [], rather than the word test), the square
6rackets must be delimited by blanks.

-2-

TIME(1) TIME(l)

NAME
time - time a command

SYNOPSIS
time command

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

DESCRIPTION
The given command is executed; after it is complete, time prints the elapsed time during the command,
the time spent in the system, and the time spent in execution of the command. Times are reported in
seconds.

The execution time can depend on the performance of the memory in which the program is running.
Also, note that I/O-intensive programs will show an elapsed time which is considerably more than the
CPU time, since only CPU time is monitored - not 110 time.

The times are printed on standard error.

HARDWARE DEPENDENCIES
Series 500:

For those computers with multiple CPU's, the child CPU times listed may be greater than the
actual real elapsed time, since CPU time is counted on a per-CPU basis. Thus, if three CPUs are
executing, the times listed are obtained by adding the execution times of each CPU.

SEE ALSO
timescommandinsh(l), times(2).

- 1 -

TOUCH(l) TOUCH(l)

NAME
touch - update access/modification/change times of file

SYNOPSIS
touch [-amc] [mmddhhmm[yy]] files

HP-UX COMPATIBILITY
Level: HP-UXINUCLEUS

Origin: System 111

DESCRIPTION
Touch causes the access, modification, and last change times of each argument to be updated. If no
time is specified (see date(1)) the current time is used. The -a and -m options cause touch to update
only the access or modification times respectively (default is -am). The -c option silently prevents touch
from creating the file if it did not previously exist.

The return code from touch is the number of files for which the times could not be successfully modified
(including files that did not exist and were not created).

SEE ALSO
date(1), utime(2).

-1-

TR(l) TR(l)

NAME
tr - translate characters

SYNOPSIS
tr [-cds 1 [string 1 [string2 1 1

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

DESCRIPTION
Tr copies the standard input to the standard output with substitution or deletion of selected characters.
Input characters found in string1 are mapped into the corresponding characters of string2. Any
combination of the options -cds may be used:

-c Complements the set of characters in string1 with respect to the universe of characters whose
ASCII codes are 001 through 377 octal.

-d Deletes all input characters in string 1.

-s Squeezes all strings of repeated output characters that are in string2 to single characters.

The following abbreviation conventions may be used to introduce ranges of characters or repeated
characters into the strings:

[a-z 1 Stands for the string of characters whose ASCII codes run from character a to character z,
inclusive.

[a*n] Stands for n repetitions of a. If the first digit of n is 0, n is considered octal; otherwise, n is
taken to be decimal. A zero or missing n is taken to be huge; this facility is useful for padding
string2.

The escape character", may be used as in the shell to remove special meaning from any character in a
string. In addition, '" followed by 1, 2, or 3 octal digits stands for the character whose ASCII code is
given by those digits.

EXAMPLE
The follOWing creates a list of all the words in file1 one per line in file2, where a word is taken to be a
maximal string of alphabetics. The strings are quoted to protect the special characters from
interpretation by the shell; 012 is the ASCII code for newline.

tr -cs "[A-Z][a-zl" "[",012*1" <file1 >file2

SEE ALSO
ed(1), sh(l).

BUGS
Won't handle ASCII NUL in string1 or string2; always deletes NUL from input.

- 1 -

TRUE(1)

NAME
true, false - provide truth values

SYNOPSIS
true

false

HP-UX COMPATIBILITY
Level: HP-UX/NUCLEUS

Origin: System III

DESCRIPTION

TRUE(1)

True does nothing, successfully. False does nothing, unsuccessfully. They are typically used in input to
sh (1) such as:

SEE ALSO
sh(1).

DIAGNOSTICS

while true do
command

done

True has exit status zero, false nonzero.

-1-

TSET(l) TSET(l)

NAME
tset - terminal dependent initialization

SYNOPSIS
tset [options 1 [-m [ident 1 [test baudratel:type 1 ... [type 1

reset ...

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: UCB

DESCRIPTION
Tset sets up your terminal when you first log in to an HP-UX system. It does terminal dependent
processing, such as setting erase and kill characters, setting or resetting delays, and sending any
sequences needed to properly initialize the terminal. It first determines the type of terminal involved, and
then does the necessary initializations and mode settings. The type of terminal attached to each HP-UX
port is specified in the letclttytype data base. Type names for terminals may be found in the termcap(5)
data base. If a port is not wired permanently to a specific terminal (not hardwired), it will be given an
appropriate generic identifier, such as dialup.

In the case where no arguments are specified, tset simply reads the terminal type out of the environment
variable TERM and re-initializes the terminal. The rest of this manual entry concerns itself with mode
and environment initialization, typically done once at login, and options used at initialization time to
determine the terminal type and set up terminal modes.

When used in a startup script (.profile), it is desirable to give information about the type of terminal you
will usually use on ports which are not hardwired. These ports are identified in letclttytype as dialup or
plugboard, etc. To specify what terminal type you usually use on these ports, the -m (map) option flag is
followed by the appropriate port type identifier, an optional baud rate specification, and the terminal
type. (The effect is to "map" from some conditions to a terminal type, that is, to tell tset, "If I'm on this
kind of port, then I'll probably be on this kind of terminal" .) If more than one mapping is specified, the
first applicable mapping prevails. A missing port type identifier matches all identifiers. A baudrate is
specified as with stty(l}, and is compared with the speed of the diagnostic output (which should be the
control terminal). The baud rate test may be any combination of >, @, <, and!. @ means" at" and!
inverts the sense of the test. To avoid problems with metacharacters, it is best to place the entire
argument to -m within single quotes.

Thus,

tset -m 'dialup>300:2622' -m 'dialup:2624' -m 'plugboard:?2623'

causes the terminal type to be set to an HP 2622 if the port in use is a dialup at a speed greater than 300
baud, or to an HP 2624 if the port is otherwise a dialup (Le. at 300 baud or less). If the type finally
determined by tset begins with a question mark, the user is asked if he or she really wants that type. A
null response means to use that type; otherwise, another type can be entered. Thus, in the above case,
if the user is on a plugboard port, he or she will be asked whether or not he or she is actually using an
HP2623.

If no mapping applies and a final type option, not preceded by a -m, is given on the command line, then
that type is used. Otherwise, the identifier found in the letclttytype data base will be taken to be the
terminal type. The latter should always be the case for hardwired ports.

It is usually desirable to return the terminal type, as finally determined by rset, and information about the
terminal's capabilities to a shell's environment. This can be done using the -s option. Using the Bourne
shell (sh(l}), the command

export TERM; TERM = 'tset -s options ...

- 1 -

TSET(l) TSET(l)

or

eval 'tset -s options ...

causes tset to place the name of your terminal in the variable TERM in the environment.

Once the terminal type is known, tset engages in terminal driver mode setting. This normally involves
sending an initialization sequence to the terminal, setting the single character erase (and optionally the
full line erase or line-kill) characters, and setting special character delays. Tab and new-line expansion
are turned off during transmission of the terminal initialization sequence.

On terminals that can backspace but not overstrike (such as a CRT), and when the erase character is the
default erase character (" #" on standard systems), the erase character is changed to BACKSPACE ('H).

The options are:

-ec sets the erase character to be the named character c; c defaults to 'H (BACKSPACE). The
character c can either be typed directly, or entered using the" hat" notation used here (e.g. the
"hat" notation for control-H is 'H).

-kc sets the kill character to c. The default c is 'x. If c is not specified, the kill character will remain
unchanged unless the original value of the kill character is null. In this case, the kill character is
set to an "at" sign (@).

-5 outputs setenv commands for TERM. This can be used with 'tset -s ... ', and is preferred to
"setenv TERM 'tset - .. :", because -5 sets the TERMCAP variable also.

-I suppresses transmitting terminal initialization strings.

-Q suppresses printing the "Erase set to" and "Kill set to" messages.

-A asks the user for the TERM type.

-S outputs two strings suitable for use in .profile files as follows:

set noglob set term = ('tset -S .. :) set TERM $term[l]
set TERM CAP "$term[2]" unset term unset noglob

-u do not update fetclhtmp.

-h forces a read of fetclttytype. When -h is not specified, the termnal type is determined by reading
fetclhtmp or the environment, unless some mapping is specified. This is useful when fetclhtmp is
not correct.

For compatibility with earlier versions of tset, the following flags are accepted, but their use is
discouraged:

report terminal type. Whatever type is decided on is reported. If no other flags are stated, the
only effect is to write the terminal type on the standard output.

-r report to the user in addition to other flags.

-Ec sets the erase character to c only if the terminal can backspace. C defaults to 'H.

EXAMPLES
These examples all assume the Bourne shell (sh(l)) and use the - option. Note that a typical use of tset
in a .profile will also use the -e and -k options, and often the -n or -Q options as well. These options
have not been included here to keep the examples small.

At the moment, you are on an HP 2622. This is suitable for typing by hand but not for a .profile, unless
you are always on a 2622.

export TERM; TERM = 'tset - 2622'

You have an HP 2623 at home which you dial up on, but your office terminal is hardwired and known
in fetclttytype.

-2-

TSET(l)

FILES

TSET(l)

export TERM; TERM = -tset - -m dialup:2623-

You have a switch which connects everything to everything, making it nearly impossible to key on what
port you are coming in on. You use an HP 2622 in your office at 9600 baud, and dial up to switch ports
at 1200 baud from home on an HP 2623. Sometimes you use someone else's terminal at work, so you
want it to ask you to make sure what terminal type you have at high speeds, but at 1200 baud you are
always on a 2623. Note the placement of the question mark, and the quotes to protect the> and?
from interpretation by the shell.

export TERM; TERM = -tset - -m 'switch> 1200 :72622' -m 'switch< = 1200:2623'-

All of the above entries will fall back on the terminal type specified in letclttytype if none of the conditions
hold. The following entry is appropriate if you always dial up, always at the same baud rate, on many
different kinds of terminals. Your most common terminal is an HP 2622. It always asks you what kind
of terminal you are on, defaulting to 2622.

export TERM; TERM = -tset - 72622-

If the file letclttytype is not properly installed and you want to key entirely on the baud rate, the following
can be used:

export TERM; TERM = -tset - -m '> 1200:2624' 2622-

letc/ttytype
letc/termcap

port name to terminal type mapping data base;
terminal capability data base.

SEE ALSO
sh(l), stty(1), ttytype(5), termcap(5), environ(7).

-3-

TSORT(l)

NAME
tsort - topological sort

SYNOPSIS
tsort [file 1

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

DESCRIPTION

TSORT(l)

Tsort produces on the standard output a totally ordered list of items consistent with a partial ordering of
items mentioned in the input file. if no file is specified, the standard input is understood.

The input consists of pairs of items (nonempty strings) separated by blanks. Pairs of different items indi­
cate ordering. Pairs of identical items indicate presence, but not ordering.

SEE ALSO
10rder(1).

DIAGNOSTICS
Odd data: there is an odd number of fields in the input file.

BUGS
Uses a quadratic algorithm; not worth fixing for the typical use of ordering a library archive file.

-1-

TIY(l)

NAME
tty - get the terminal's name

SYNOPSIS
tty[-sl

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System I1I

DESCRIPTION

TTY(l)

Tty prints the path name of the user's terminal. The -s option inhibits printing, allowing one to test just
the exit code.

RETURN VALUE
o if standard input is a terminal,
1 otherwise.

DIAGNOSTICS
"not a tty" if the standard input is not a terminal and -s is not specified.

-1-

UL(l) UL(l)

NAME
ul- do underlining

SYNOPSIS
ut [-i] [-t terminal] [name ...]

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: UCB

DESCRIPTION
VI reads the named files (or standard input if none are given) and translates occurences of underscores
to the sequence which indicates underlining for the terminal in use, as specified by the environment vari­
able TERM. The -t option overrides the terminal kind specified in the environment. The file
/etcitermcap is read to determine the appropriate sequences for underlining. If the terminal is incapable
of underlining, but is capable of a standout mode then that is used instead. If the terminal can over­
strike, or handles underlining automatically, ul degenerates to cat(I). If the terminal cannot underline,
underlining is ignored.

The -i option causes ul to indicate underlining onto by a separate line containing appropriate dashes '-';
this is useful when you want to look at the underlining which is present in an nroff output stream on a
crt-terminal.

SEE ALSO

BUGS

man(1), nroff(I).

Nroffusually outputs a series of backspaces and underlines intermixed with the text to indicate under­
lining. No attempt is made to optimize the backward motion.

-1-

UMASK(l) UMASK(l)

NAME
umask - set file-creation mode mask

SYNOPSIS
umask [0001

HP-UX COMPATIBILITY
Level: HP-UXINUCLEUS

Origin: System I1I

DESCRIPTION
The user file-creation mode mask is set to 000. The octal three digits refer to read/write/execute
permissions for owner, group, and others, respectively (see chmod(2) and umask(2)). The value of each
specified digit is subtracted from the corresponding "digit" specified by the system for the creation of a
file (see creat(2)). For example, umask 022 removes group and others write permission (files normally
created with mode 177 become mode 755; files created with mode 666 become mode 644).

If 000 is omitted, the current value of the mask is printed with four octal digits. The first digit, a zero,
specifies that the output is expressed in octal.

Umask is recognized and executed by the shell.

Note that the file creation mask does not affect the set-user-ID, set-group-ID, or "sticky" bits.

SEE ALSO
chmod(l), sh(l), chmod(2), creat(2), umask(2).

- 1 -

UNAME(l)

NAME
uname - print name of current HP-UX version

SYNOPSIS
uname [-snrvmia 1

HP-UX COMPATIBILITY
Level: HP-UXINUCLEUS

Origin: System III

DESCRIPTION

UNAME(l)

Uname prints the current system name of HP-UX on the standard output file. It is mainly useful to deter­
mine what system you are using. The options cause selected information returned by uname(2) to be
printed:

-s print the system name (default).

-n print the nodename (the node name is a name that the system is known by on a communica-
tions network). (e.g. uucp).

-r print the operating system release.

-v print the operating system version.

-m print the machine hardware name ..

-i print the machine identification number.

-a print all the above information.

SEE ALSO
hostname(l), gethostname(2), sethostname(2), uname(2).

-1-

UNGET(1) UNGET(!)

NAME
unget - undo a previous get of an SCCS file

SYNOPSIS
unget [-rSID] [-s] [-n] files

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

DESCRIPTION

FILES

Unget undoes the effect of a get -e done prior to creating the intended new delta. If a directory is
named, unget behaves as though each file in the directory were specified as a named file, except that
non-SCCS files and unreadable files are silently ignored. If a name of - is given, the standard input is
read with each line being taken as the name of an sces file to be processed. Refer to sact(!), which
describes how to determine what deltas are currently binding for an s-file.

Keyletter arguments apply independently to each named file.

-rSID

-5

-n

Uniquely identifies which delta is no longer intended. (This would have been
specified by get as the "new delta"). The use of this keyletter is necessary only if
two or more outstanding gets for editing on the same secs file were done by the
same person (login name). A diagnostic results if the specified SID is ambiguous,
or if itis necessary and omitted on the command line (see sact(!».

Suppresses the printout, on the standard output, of the intended delta's SID.

Causes the retention of the gotten file which would normally be removed from
the current directory.

Note: unget can only be executed by the user who did the corresponding get -e. If a system
administrator needs to unget a get -e done by another user, he must either use su(!) to change into that
user, or edit the p-file directly (which can be done either by the s-file owner of the super-user).

p-file see delta(!).

g-file see delta(!).

SEE ALSO
delta(!), get(!), sact(!).

sees User's Guide in HP-UX Concepts and Tutorials.

DIAGNOSTICS
Use help(!) for explanations.

- ! -

UNIQ(l) UNIQ(l)

NAME
uniq - report repeated lines in a file

SYNOPSIS
uniq [-udc [+n I [-n II [input [output II

HP-UX COMPATIBILITY
Level: HP-Ux/STANDARD

Origin: System V

DESCRIPTION
Uniq reads the input file and compares adjacent lines. In the normal case, the second and succeeding
copies of repeated lines are removed; the remainder is written on the output file. Input and output
should always be different. Note that repeated lines must be adjacent in order to be found; see sort(l).

The options are:

-u causes only the lines that are not repeated in the original file to be output.

-d specifies that one copy of just the repeated lines is to be written.

-c supersedes -u and -d and generates an output report in default style but with each line
preceded by a count of the number of times it occurred.

-n the first n fields, together with any blanks before each, are ignored. A field is defined as
a string of non-space, non-tab characters separated by tabs and spaces from its
neighbors.

+ n The first n characters are ignored. Fields are skipped before characters.

The normal mode output is the union of the -u and -d mode outputs.

SEE ALSO
comm(l), sort(l).

- 1 -

UNITS(l) UNITS(l)

NAME
units - conversion program

SYNOPSIS
units

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System V

DESCRIPTION

FILES

Units converts quantities expressed in various standard scales to their equivalents in other scales. It
works interactively in this fashion:

You have: inch
You want: cm

* 2.S40000e + 00
13.937008e-0l

A quantity is specified as a multiplicative combination of units optionally preceded by a numeric
multiplier. Powers are indicated by suffixed positive integers, and division by the usual sign:

You have: 15 lbs force/in2
You want: atm

* 1.02068ge+00
19.79729ge-Ol

Units only does multiplicative scale changes; thus it can convert Kelvin to Rankine, but not Celsius to
Fahrenheit. Most familiar units, abbreviations, and metric prefixes are recognized, together with a
generous leavening of exotica and a few constants of nature including:

pi ratio of circumference to diameter
c speed of light
e
9
force
mole
water
au

charge on an electron
acceleration of gravity
sameasg
Avogadro's number
pressure head per unit height of water
astronomical unit.

Pound is not recognized as a unit of mass; lb is. Compound names are run together, (e.g., light year).
British units that differ from their U.S. counterparts are prefixed thus: brgallon. For a complete list of
units, type:

cat lusrllib/unitlab

lusrllib/unitlab

- 1 -

UPM(l) Series 500 Only UPM(l)

NAME
upm - unpack cpio archives from HP media

SYNOPSIS
upm -E [cdmtuvx] pathname chardevice [patterns]

upm -iM [cdmtuvx] [patterns] </devlrmf?

HP-UX COMPATIBILITY
Level: HP-UXlEXTENDED

Origin: HP

Remarks: Upm is implemented on the Series 500 only.

DESCRIPTION
Upm is similar to cpia(l), and is included to enable you to restore files from 88140LlS tape cartridges or
5.25-inch flexible discs more efficiently.

Upm -E (copy in from tape cartridge) extracts all files specified by patterns from the file named by path­
name (assumed to be the product of a previous cpia -0). Patterns is a series of zero or more blank­
separated character strings given in the name-generating notation of sh(1). Note that the metacharacters
?, *, and [...] match the slash (I) when used in patterns. The default pattern is '*', which selects all files.
Chardevice identifies the character special device file describing the volume containing pathname. (Note
that, if this volume is not the root, it must be mounted at the time upm is used, and pathname must
include the directory name on which the volume is mounted.)

Upm -iM (copy in) extracts all files selected by zero or more of the specified patterns (see above for a
description of patterns). The files are extracted from the standard input, which is redirected from a raw
miniature flexible disc device Idevlrmf? The resulting standard input is assumed to be the product of a
previous cpia-o.

Any other options specified must be concatenated with the initial E or iM options. The options have the
following meanings:

c read header information which was previously written in ASCII character form for portability;
d directories are to be created as needed;
m retain previous file modification time. This option is ineffective on directories that are being copied;
t print a table of contents of the input; no files are created;
u copy unconditionally (normally, an older file will not replace a newer file with the same name);
v verbose; causes a list of file names to be printed. When used with the t option, the table of contents

looks like the output of an Is -I command (see ls(l));
x restore device special files; mknad(2) is used to recreate these files, and thus -Ex or -iMx can only

be used by the super-user. Restoring device files onto a different system can be very dangerous.
This is intended for backup use;

When the end of a volume is reached, upm will prompt the user for the next flexible disc and continue.

The number of blocks reported by upm is always in units of 512-byte blocks, regardless of the block size
of the initialized media.

SEE ALSO
cpio(l}, tcio(l}, mknod(2}.

WARNING

BUGS

The -B option must not be used when performing raw 110 using the HP 9130K miniature flexible disc
drive.

Only the super-user can copy special files.

H Idevltty is not accessible, upm issues a complaint, or refuses to work.

-1-

UPM(l) Series 500 Only UPM(l)

The -Edr and -iMdr options will not make empty directories.

-2-

UUCICO(lC) UUCICO(lC)

NAME
uucico - uucp copy in and copy out

SYNOPSIS
lusr/lib/uucp/uucico [-rl 1 [-ssys 1 [-xnum 1

HP-UX COMPATIBILITY
Level: Data Communications - HP-UXIST ANDARD

Origin: System III

DESCRIPTION

FILES

Uucico scans the IUSTlspool directory for work files. If such files exist, a connection to a remove system is
attempted using the line protocol for the remote system specified in the L.sys file. Uucico then executes
all requests for work and logs the results.

The options are as follows:

-r 1 Start uucico in the MASTER mode; The default is SLAVE mode.

-ssys Do work only for the system specified by sys. If there is no work for sys on the local spool
directory, initiate a connection to sys to determine if sys has work for the local system.

-xnum Use debugging option. Num is an integer in the range 1 - 9. More debugging information
is given for larger values of num.

Uucico is usually started by a local program (cron(8), uucp(lC), uuc(lC), uuxqt(lC), or uucico(lC)). It
should only be directly initiated by a user when debugging.

When started by a local program, uucico is considered the MASTER and attempts a connection to a
remote system. If uucico is started by a remote system, it is considered to be in SLAVE mode.

For the uucico connection to a remote system to be successful, there must be an entry in the letclpasswd
file on the remote system of the form:

uucp: :5:5: :/usrlspool/uucppublic:/usr/lib/uucp/uucico

Refer to Uucp File System chapter in the HP-UX Asynchronous Communications Guide.

SEE ALSO
HP-UX Asynchronous Communications Guide.

- 1 -

UUCP(lC) UUCP(lC)

NAME
uucp, uulog, uuname - UNIX to UNIX copy; file transfer

SYNOPSIS
uucp [option 1 ... source-file ... destination-file

uulog [option 1
uuname

HP-UX COMPATIBILITY
Level: Data Communications - HP-UXISTANDARD

Origin: System III

DESCRIPTION
Uucp copies files named by the source-file arguments to the destination-file argument. A file name may
be a path name on your machine, or may have the form:

system-name!path-name

where system-name is taken from a list of system names in the L.sys file which uucp knows about. Shell
metacharacters? * [1 appearing in path-name will be expanded on the appropriate system.

Path names may be one of:

(1) a full path name;

(2) a path name preceded by -user where user is a login name on the specified system and is
replaced by that user's login directory;

(3) a path name preceded by -Iuser where user is a login name on the specified system and is
replaced by that user's directory under PUBDIR (see FILES);

(4) anything else is prefixed by the current directory.

The local and remote system access to the path name is specified in the USERFILE. If the result is an
erroneous path name for the remote system the copy will fail. If the destination-file is a directory, the last
part of the source-file name is used. The accessibility of the file or path name is specified in USERFILE.

Uucp preserves execute permissions across the transmission and gives 0666 read and write permissions
(see chmod(2)).

The following options are interpreted by uucp:

-d Make all necessary directories for the file copy (default).

-f Do not make intermediate directories for the file copy.

-c Use the source file when copying out rather than copying the file to the spool directory
(default).

-C Copy the source file to the spool directory immediately and use the copy.

-m Send mail to the requester when the copy is complete.

-nuser Notify user on the remote system that a file was sent.

-esys Send the uucp command to system sys to be executed there. (Note - this will only be successful
if the remote machine allows the uucp command to be executed by lusrllib/uucp/uuxqt.)

-ggrade Request grade as a priority for the work sequencing. Grades are specified in the order A - Z, a­
z, with A specifying that the work should be done first, and z specifying that the work should be
done last. All other grades specify a sequence somewhere in between. The default is n.

-r create the necessary files for the transfer to take place, but do not attempt to call the remote
system (Le. suppress calling uucico(IC)). This option is useful for systems which must wait to be
called (passive systems).

- 1-

UU\...Y\l\...J UUCP(lC)

FILES

Uulog maintains a summary log of uucp and uux(lC) transactions in the file lusrlspool/uucp/LOGFILE
by gathering information from partial log files named lusrlspool/uucp/LOG.*.? (These files will only be
created if the LOGFlLE is being used by another process when a uucp, uux, uucico, or uuxqt process
needs to log an entry.) It removes the partial log files only if issued with no parameters.

The options cause uulog to print logging information:

-ssys Print information about work involving system sys.

-uuser Print information about work done for the specified user.

Uuname lists the uucp names of known systems. Duplicate lines are not shown. but blank lines are. The
-I option returns the local system name.

lusrlspool/u\lcp ,
lusrlspool/uucppublic
lusrllib/uucpl *

spool directory
public directory for receiving and sending (PUBDIR)
other data and program files

SEE ALSO
mail(l), uux(1C).

HP-UX Asynchronous Communications Guide.

WARNING

BUGS

The domain of remotely accessible files can be (and for obvious security reasons, usually should be)
severely restricted. You will very likely not be able to fetch files by path name; ask a responsible person
on the remote system to send them to you. For the same reasons you will probably not be able to send
files to arbitrary path names. As distributed, the remotely accessible files are those whose names begin
lusrlspool/uucppublic (equivalent to -uucp or just -). Note that, if letc/passwd contains a blank line, a
null user entry, or an entry ior --uucp, then - and -uucp will not expand properly. Because of this, the
uuto script will not send files to the proper directory.

All files received by uucp will be owned by uucp.

The -m option will only work sending files or receiving a single file. (Receiving multiple files specified by
special shell characters ?*[] will not activate the -m option.)

If uulog is issued with no parameters when a uucp process is writing to a temporary logfile, some log
information (that information written after the LOG. * files are unlinked) may be lost.

Uucp, when used to copy files locally, will create the new file with mode 644 instead of 666.

-2-

UUSTAT(lC) UUSTAT(lC)

NAME
uustat - uucp status inquiry and job control

SYNOPSIS
uustat [[-jail -vl I -jail I -mmch I -kjobn I -chour 1 I [-uuser -ssys -ohour -yhour -v 1

HP-UX COMPATIBILITY
Level:

Origin:

DESCRIPTION

Data Communications - HP-UXISTANDARD

System III

Uustat will display the status of, or cancel, previously specified uucp commands, or provide general
status on uucp connections to other systems. At most one of the following options may be specified:

-jail
-mmch

-kjobn

-chour

Report the status of all uucp requests. The -v option may appear with -jail.
Report the status of accessibility of machine mch. If mch is specified as all, then the status
of all machines known to the local uucp are provided.
Kill the uucp request whose job number isjobn. The killed uucp request must belong to
the person issuing the uustat command unless he is the super-user.
Remove the status entries (i.e. spool files in lusrlspoolluucp) which are older than hour
hours. This administrative option can only be initiated by the user uucp or the super-user.

If none of the above options are specified, any or all of the following options may appear:

-uuser Report the status of all uucp requests issued by user.
-ssys
-ohour

Report the status of all uucp requests which communicate with remote system sys.
Report the status of all uucp requests which are older than hour hours.

-yhour Report the status of all uucp requests which are younger than hour hours.
-v Report the uucp status verbosely. If this option is not specified, a status code is printed

with each uucp request.

When no options are given, uustat outputs the status of all uucp requests issued by the current user.

For example, the command

uustat -uhdc -smhtsa -y72 -v

will print the verbose status of all uucp requests that were issued by user hdc to communicate with
system mhtsa within the last 72 hours. The meanings of the job request status are:

job-number user remote-system command-time status-time status

where the status may be either an octal number or a verbose description. The octal code corresponds to
the follOWing description:

OCTAL STATUS
00001 the copy failed, but the reason cannot be determined
00002 permission to access local file is denied
00004 permission to access remote file is denied
00010 bad uucp command is generated
00020 remote system cannot create temporary file
00040 cannot copy to remote directory
00100 cannot copy to local directory
00200 local system cannot create temporary file
00400 cannot execute uucp
01000 copy succeeded
02000 copy finished, job deleted
04000 job is queued

The meanings of the machine accessibility status are:

- 1 -

UUSTAT(lC) UUSTAT(lC)

system-name time status

where time is the latest status time and status is a self-explanatory description of the machine status.

FILES
lusrlspool/uucp
lusrllib/uucplL-stat
lusrllib/uucp/R..stat

SEE ALSO
uucp(lC).

spool directory
system status file
request status file

HP-UX Asynchronous Communications Guide.

-2-

UUTO(lC) UUTO(lC)

NAME
uuto, uupick - public UNIX-to-UNIX file copy

SYNOPSIS
uuto [options 1 source-files destination
uupick [-s system 1

HP-UX COMPATIBILITY
Level: Data Communications - HP-UXISTANDARD

Origin: System III

DESCRIPTION

FILES

Uuto sends source-files to destination. Uuto uses the uucp(lC) facility to send files, while it allows the
local system to control the file access. A source-file name is a path name on your machine. Destination
has the form:

system!user

where system is taken from a list of system names that uucp knows about (see uucp(lC)). User is the
login name of someone on the specified system.

Two options are available:

-p Copy the source file into the spool directory immediately, and send the copy.
-m Send mail to the requester when the copy is complete.

The files (or sub-trees if directories are specified) are sent to PUBDIR on system, where PUBDIR is the uucp
public directory (/usrlspool/uucppublic). Specifically the files are sent to

PUBDIRIreceiveluserlmysystemlfiles.

The recipient is notified by mail (1) of the arrival of files.

Uupick accepts or rejects the files transmitted to the recipient. Specifically, uupick searches PUBDIR for
files destined for the user. For each entry (file or directory) found, the following message is printed on
the standard output:

from system: [filefile-namel [dirdimamel?

Uupick then reads a line from the standard input to determine the disposition of the file:

<new-line>

d

m[dir 1

a [dir 1
p

q

EOT (control-d)

!command

*

Go on to next entry.

Delete the entry.

Move the entry to named directory dir (current directory is default). Note that, if the
current working directory is desired for dir, you should not specify any parameter
with m. A construction like m. is erroneous, and results in loss of data.

Same as m except move all the files sent from system.

Print the contents of the file.

Stop.

Same as q.

Escape to the shell to do command.

Print a command summary.

Uupick invoked with the -ssystem option will only search PUBDIR for files sent from system.

PUBDIR = lusrlspool/uucppublic public directory

- 1 -

UUIU\lC) UUTO(lC)

SEE ALSO
mail(I), uucp(IC), uustat(IC), uux(IC), uuclean(8).

HP-UX Asynchronous Communications Guide.

-2-

UUX(lC) UUX(lC)

NAME
uux - UNIX to UNIX command execution

SYNOPSIS
lusrlbinluucp/uux [- 1 [- z 1 [- n 1 [- r 1 command-string

HP-UX COMPATIBILITY
Level: Data Communications - HP-UXISTANDARD

Origin: System III

DESCRIPTION

FILES

Uux will gather zero or more files from various systems, execute a command on a specified system and
then send standard output to a file on a specified system. Note that, for security reasons, many
installations will limit the list of commands executable on behalf of an incoming request from uux. Many
sites will permit litt!~ more than the receipt of mail (see mail(l» via uux.

The command-string is made up of one or more arguments that look like a Shell command line, except
that the command and file names may be prefixed by system-name!. A null system-name is interpreted as
the local system.

File names may be one of

(1) a full path name;

(2) a path name preceded by -xxx where xxx is a login name on the specified system and
is replaced by that user's login directory;

(3) anything else is prefixed by the current directory.

The - option will cause the standard input to the uux command to be the standard input to the
command-string. For example, the command

uux "!diff usg!/usr/dan/fl pwba!la4/dan/fl > !f1.diff"

will get the f1 files from the "usg" and "pwba" machines, execute a dif! command and put the results
in fl.diff in the local directory.

Any special shell characters such as <>; should be quoted either by quoting the entire command-string,
or quoting the special characters as individual arguments.

Uux will attempt to get all files to the execution system. For files which are output files, the file name
must be escaped using parentheses. For example, the command

uux a!uucp b!lusr/file ,,(c!/usr/file,,)

will send a uucp command to system "a" to get lusr/file from system "b" and send it to system "c" .

Uux notifies you of the execution status (success or failure) of all commands except mail. The response
comes by remote mail from the remote machine.

The options are:

-z reduces the amount of mail notification; the remote system is notified only if the
command fails.

-n disables notification completely.

-r create the necessary files for the transfer to take place, but do not attempt to call the
remote system (i.e. suppresses calling uucico(1C».

lusr/binluucp/spool
lusr/binluucp/*

spool directory
other data and programs

- 1 -
09000-90007, rev: 1/85

UUX(lC) UUX(lC)

SEE ALSO

BUGS

uucp(lC), uuc\ean(8).

HP-UX Asynchronous Communications Guide.

Only the first command of a shell pipeline may have a system-name!. All other commands are executed
on the system of the first command.
The use of the shell metacharacter * will probably not do what you want it to do. The shell tokens < <
and> > are not implemented.

-2-

UUXQT(lC) UUXQT(lC)

NAME
uuxqt - uucp command execution

SYNOPSIS
lusr/lib/uucp/uuxQt [-xnum 1

HP-UX COMPATIBILITY
Level: Data Communications - HP-Ux/STANDARD

Origin: System \II

DESCRIPTION

FILES

The uuxqt daemon performs local command execution of execution files (X.*l on the lusrlspoolluucp
directory. Uux generates work files with an execution (Xl grade which become execution files when
transferred to the remote system. The command requested by the execution file is checked against the
list of remotely executable commands in the COMMANDS file. The USERFILE is then searched to find
the first NULL system field for path access permission.

The option -xnum is a parameter specifying debugging information. Num is an integer in the range 1-
9. The amount of debugging information increases as the value of num increases.

Refer to the Uucp File System chapter in the HP-UX Asynchronous Communications Guide.

SEE ALSO
HP-UX Asynchronous Communications Guide.

- 1 -

VAL(I) VAL(I)

NAME
val- validate sees file

SYNOPSIS
val-
val [-5] [-rSID] [-mname] [-ytype] files

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System 1lI

DESCRIPTION

Val determines if the specified file is an sees file meeting the characteristics specified by the optional
argument list. Arguments to val may appear in any order. The arguments consist of keyletter
arguments, which begin with a -, and named files.

Val has a special argument, -, which causes reading of the standard input until an end-of-file condition
is detected. Each line read is independently processed as if it were a command line argument list.

Val generates diagnostic messages on the standard output for each command line and file processed
and also returns a single 8-bit code upon exit as described below.

The keyletter arguments are defined as follows. The effects of any keyletter argument apply
independently to each named file on the command line.

-5

-rSID

-mname

-ytype

The presence of this argument silences the diagnostic message normally
generated on the standard output for any error that is detected while processing
each named file on a given command line.

The argument value SID (SeeS IDentification String) is an sees delta
number. A check is made to determine if the SID is ambiguous (e. g., rl is
ambiguous because it physically does not exist but implies 1.1, 1.2, etc. which
may exist) or invalid (e. g., r 1. 0 and r 1.1. 0 are invalid because neither case can
exist as a valid delta number). If the SID is valid and not ambiguous, a check is
made to determine if it actually exists.

The argument value name is compared with the sees %M% keyword in file.

The argument value type is compared with the sees % Y% keyword in file.

The 8-bit code returned by val is a disjunction of the possible errors, i.e., can be interpreted as a bit
string where (moving from left to right) set bits are interpreted as follows:

bit 0 = missing file argument;
bit 1 = unknown or duplicate keyletter argument;
bit 2 = corrupted sees file;
bit 3 = can't open file or file not sees;
bit 4 = SID is invalid or ambiguous;
bit 5 = SID does not exist;
bit 6 = % Y%, -y mismatch;
bit 7 = %M%, -m mismatch;

Note that val can process two or more files on a given command line and in turn can process multiple
command lines (when reading the standard input). In these cases an aggregate code is returned - a
logical OR of the codes generated for each command line and file processed.

SEE ALSO
admin(l), delta(l), get(l), prs(l).

sees User's Guide in HP-UX Concepts and Tutorials.

- 1 -

VAL(I) VAL(I)

DIAGNOSTICS

BUGS

Use help (1) for explanations.

Val can process up to 50 files on a single command line. Any number above 50 will produce a fatal
error.

- 2 -

VI(l) VI(l)

NAME
vi, view - visual text editor

SYNOPSIS
vi [-t tagl [-rl [+commandl [-11 [-wnl [-RI [-xl name ...

view [vi options I
HP-UX COMPATIBILITY

Level: HP-UXISTANDARD

Origin: UCB

DESCRIPTION
Vi (visual) is a display oriented text editor based on ex{l). Ex and vi run the same code; it is possible to
get to the command mode of ex from within vi, and vice-versa. View is a read-only version of vi. The
folloWing options are recognized:

-ttag equivalent to an initial tag command. The file containing the tag is edited, with the editor
positioned at the definition of the tag.

-r used to recover from the last editor or system crash. The last saved version of name is
retrieved, or, if no name is specified, a list of saved files is printed.

+ command The editor begins the editing session by executing the specified ex{l) command. If
command is omitted, it defaults to $, positioning the editor at the last line of the current file.

-I automatically sets the showmatch and lisp options.

-wn sets the default window size to n lines.

-R sets the readonly option at the start of the editing session.

-x causes vi to prompt for a key, which is used to encrypt and decrypt the contents of the file
(which should already be encrypted USing the same key).

The Vi Editor provides full details on using vi.

HARDWARE DEPENDENCIES
Series 500:

The CTRL-f command does not work if ENQ-ACK handshake is enabled.

SEE ALSO
ex{l).

BUGS

The Vi Editor in HP-UX Concepts and Tutorials.

Software tabs using I work only immediately after the autoindent.

Left and right shifts on intelligent terminals do not make use of insert and delete character operations in
the terminal.

The wrapmargin option can be fooled since it looks at output columns when blanks are typed. If a long
word passes through the margin and onto the next line without a break, then the line will not be broken.

Insert/delete within a line can be slow if tabs are present on intelligent terminals, since the terminals need
help in doing this correctly.

Saving text on deletes in the named buffers is somewhat inefficient.

The source command does not work when executed as :source; there is no way to use the :append,
:change, and :insert commands, since it is not possible to give more than one line of input to a : escape.
To use these on a :global you must Q to ex command mode, execute them, and then reenter the screen
editor with vi or open.

- 1 -

VI(I) VI(I)

If the system crashes or vi is killed accidentally, the terminal may be left in raw mode. To get out of raw
mode, type the following sequence:

CTRL-j
stty sane
CTRL-j

This sequence may alter the baud rate and the erase and kill characters (see st~(l». To restore the
erase and kill characters, type:

. /etdprofile
cd
.. profile

On systems which do not support crypt(l), the -x option is not available.

~ -2-
09000-90007, "w: 1/85

WAIT(1)

NAME
wait - await completion of process

SYNOPSIS
wait

HP-UX COMPATmlLlTY
Level: HP-UXINUCLEUS

Origin: System III

DESCRIPTION

WAIT(1)

Wait waits until all processes started with & have completed, and reports on abnormal terminations.

Because the wait(2) system call must be executed in the parent process, the shell itself executes wait,
without creating a new process.

SEE ALSO
shIll.

BUGS
Not all the processes of a 3- or more-stage pipeline are children of the shell, and thus cannot be waited
for.

- 1 -

WALL(1)

NAME
wall- write to all users

SYNOPSIS
letc!wall

HP-lJX COMPATIBILITY
Level: HP-lJXlSTANDARD

Origin: System III

DESCRIPTION

WALL(l)

Wall reads its standard input until an end-of-file. It then sends this message to all currently logged in
users preceded by "Broadcast Message from ... ". It is used to warn all users, typically prior to shutting
down the system.

The sender should be super-user to override any protections the users may have invoked.

Wall has timing delays, and will take at least 30 seconds to complete.

FILES
Idev/tty*

SEE ALSO
mesg(1), write (1).

DIAGNOSTICS
" Cannot send to ... " when the open on a user's tty file fails.

-1-

WC(l) WC(l)

NAME
wc - word, line, and character count

SYNOPSIS
wc[-Iwc][file ...]

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System V

DESCRIPTION

BUGS

We counts lines, words and characters in the namedfile(s), or in the standard input if no files appear. It
also keeps a total count for all named files. A word is a maximal string of characters delimited by spaces,
tabs, or new-lines.

The options are:

-I count only lines in the namedfile(s);

-w count only words in the namedfile(s);

-c count only characters in the namedfile(s).

These options may be used in any combination. The default is -Iwc.

When multiple files are specified on the command line, they will be printed along with the counts.

We counts the number of new-lines to determine the line count. If an ASCII text file has a final line that is
not terminated with a new-line character, the count will be off by one.

If there are very many characters, words, and!or lines in an input file, the output may be hard to read.
This is because we reserves a fixed column width for each count.

- 1 -

WHAT(l) WHAT(l)

NAME
what - identify files for SCCS information

SYNOPSIS
what files

HP·UX COMPATIBILITY
Level: Hp·UXlSTANDARD

Origin: System III

DESCRIPTION
What searches the given files for all occurrences of the pattern that get(l) substitutes for %2% (this is
@(#) at this printing) and prints out what follows until the first " , >, new·line, '\.., or null character. For
example, if the C program in file f.c contains

char ident[] = "@(#)identification information ";

and f.e is compiled to yield f.o and a.out, then the command

what f.c f.o a.out

will print

f.c:
identification information

f.o:
identification information

a.out:
identification information

What is intended to be used in conjunction with the command get(I), which automatically inserts
identifying information, but it can also be used where the information is inserted manually.

SEE ALSO
get(I), help(l).

sees User's Guide in HP-UX Concepts and Tutorials.

DIAGNOSTICS

BUGS

Use help (1) for explanations.

It's possible that an unintended occurrence of the pattern @(#) could be found just by chance, but this
causes no harm in nearly all cases.

- 1 -

WHEREIS(l) WHEREIS(1)

NAME
whereis -locate source, binary, and/or manual for program

SYNOPSIS
wherei5 [-sbm 1 [-u 1 [-SBM dir... -f 1 file ...

HP-UX COMPATIBILITY
Level: HP-ux/STANDARD

Origin: UCB

DESCRIPTION
Whereis locates sourcelhinary and manuals sections for the specified files. The supplied filenames are
first stripped of leading pathname components and any (single) trailing extension of the form ".ext",
e.g. ".C ". Prefixes of II s. II resulting from use of sces are also dealt with. Whereis then attempts to
locate the desired file in a list of standard places.

The options are:

-5 find only the source version offile;

-b find only the binary version ofjile;

-m find only the manual section(s) applicable to file.

The -5, -b, and -m options can be specified alone or in any combination of two.

-u search for unusual entries. A file is said to be unusual if it does not have one entry
of each requested type. Thus

-Sdir

-Bdir

-Mdir

-f

whereis -m -u *

asks for those files in the current directory which have no documentation.

search for source versions of files in the given directory;

search for binary versions of files in the given directory;

search for manual sections for files in the given directory.

terminates the last directory list (given by -S, -B, and/or -M) and signals the start
of file names.

EXAMPLE

FILES

BUGS

The follOWing finds all the files in lusrlhin which are not documented in lusr/man/manl with source in
lusrlsre/cmd:

cd lusrlhin
whereis -u -M lusr/man/manl -S lusrlsre/cmd -f *

lusrlsrc/*
lusr/docl*
lusr/man/*
!lib
lete
lusr!lib
lusrlhin
lusr/ucb
lusr/old
lusr/new
lusrllocal

Directories given with the -S, -B, and -M options must be absolute pathnames.

- 1 -

WHO(l) WHO(l)

NAME
who -list which users are on the system

SYNOPSIS
who [who-file 1 I [am I 1

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

DESCRIPTION

FILES

Who, without an argument, lists the login name, terminal name, and login time for each current HP-UX
user. Who examines letc!utmp to obtain its information.

If a single argument is given, who assumes it is the name of a file which is to be used instead of I etc!utmp.
Typically the given file is lusTladmlwtmp, which contains a record of all the logins since it was created. If
lusTladmlwtmp is given, who lists logins, logouts, and crashes since the creation of the wtmp file. Each
login is listed with user name, terminal name (with Idevl suppressed), and date and time. When an
argument is given, logouts produce a similar line without a user name. Reboots produce a line with x in
the place of the device name, and a fossil time indicative of when the system went down.

If two arguments are given (it doesn't matter what they are - "am i" is suggested), who tells who you
are logged in as.

letc/utmp

SEE ALSO
getuid(2), utmp(5).

- 1 -

WHODO(l)

NAME
whodo - which users are doing what

SYNOPSIS
letc/whodo

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System JIl

DESCRIPTION

WHODO(l)

Whodo produces merged, reformatted, and dated output from the who(l) andps(l) commands.

SEE ALSO
ps(l), who(l).

-1-

WRITE(1) WRITE(l)

NAME
write - interactively write (talk) to another user

SYNOPSIS
write user [tty 1

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System 111

DESCRIPTION

FILES

Write copies lines from your terminal to that of another user. When first called, it sends the message:

Message from your-logname your-tty ...

The recipient of the message should write back at this point. Communication continues until an end of
file is read from the terminal or an interrupt is sent. At that point, write writes EOF on the other terminal
and exits.

If you want to write to a user who is logged in more than once, the tty argument may be used to indicate
the appropriate terminal.

Permission to write may be denied or granted by use of the mesg(1) command. At the outset, writing is
allowed. Certain commands, in particular nroff(1) and pr(l), disallow messages in order to prevent
messy output.

If the character! is found at the beginning of a line, write calls the shell to execute the rest of the line as a
command.

The following protocol is suggested for using write: when you first write to another user, wait for him or
her to write back before starting to send. Each party should end each message with a distinctive signal
((0) for "over" is conventional), indicating that the other may reply; (00) for "over and out" is sug­
gested when conversation is to be terminated.

/etciutmp
/bin/sh

to find user
to execute!

SEE ALSO
mail(1), mesg(l), who(1).

-1-

XARGS(l) XARGS(l)

NAME
xargs - construct argument list(s) and execute command

SYNOPSIS
xargs [flags 1 [command [initial-arguments 1 1

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System V

DESCRIPTION
Xargs combines the fixed initial-arguments with arguments read from standard input to execute the
specified command one or more times. The number of arguments read for each command invocation
and the manner in which they are combined are determined by the flags specified.

Command, which may be a shell script, is searched for, using your $PATH. If command is omitted,
IbiD/echo is used.

Arguments read in from standard input are defined to be contiguous strings of characters delimited by
one or more blanks, tabs, or new-lines; empty lines are always discarded. Blanks and tabs may be
embedded as part of an argument if escaped or quoted. Characters enclosed in quotes (single or
double) are taken literally, and the delimiting quotes are removed. Outside of quoted strings a
backslash (,,) escapes the next character.

Each argument list is constructed starting with the initial-arguments, followed by some number of
arguments read from standard input (Exception: see -i flag). Flags -i, -I, and -n determine how
arguments are selected for each command invocation. When none of these flags are coded, the initial­
arguments are followed by arguments read continuously from standard input until an internal buffer is
fuii, and then command is executed with the accumulated args. This process is repeated until there are
no more args. When there are flag conflicts (e.g., -I vs. -D), the last flag has precedence. Flag values
are:

-Inumber

-ireplstr

-nnumber

-t

-p

Command is executed for each non-empty number lines of arguments from standard
input. The last invocation of command will be with fewer lines of arguments if fewer than
number remain. A line is considered to end with the first new-line unless the last character
of the line is a blank or a tab; a trailing blank/tab signals continuation through the next
non-empty line. If number is omitted, 1 is assumed. Option -x is forced.

Insert mode: command is executed for each line from standard input, taking the entire
line as a single arg, inserting it in initial-arguments for each occurrence of replstr. A
maximum of 5 arguments in initial-arguments may each contain one or more instances
of replstr. Blanks and tabs at the beginning of each line are thrown away. Constructed
arguments may not grow larger than 255 characters, and option -x is also forced. {} is
assumed for replstr if not specified.

Execute command using as many standard input arguments as possible, up to number
arguments maximum. Fewer arguments are used if their total size is greater than size
characters, and for the last invocation if there are fewer than number arguments
remaining. If option -x is also coded, each number arguments must fit in the size
limitation, else xargs terminates execution.

Trace mode: The command and each constructed argument list are echoed to file
deSCriptor 2 just prior to their execution.

Prompt mode: You are asked whether to execute command each invocation. Trace
mode (-t) is turned on to print the command instance to be executed, followed by a ? ..
prompt. A reply of y (optionally followed by anything) executes the command; anything
else, including just a carriage return, skips that particular invocation of command.

- 1 -

XARGS(1)

-x

-sslZe

-eeo/str

XARGS(1)

Causes xargs to terminate if any argument list would be greater than size characters; -x is
forced by the options -i and -I. When neither of the options -i, -I, or -n are coded, the
total length of all arguments must be within the size limit.

The maximum total size of each argument list is set to size characters; size must be a
positive integer less than or equal to 470. If -s is not coded, 470 is taken as the default.
Note that the character count for size includes one extra character for each argument
and the count of characters in the command name.

Eo/str is taken as the logical end-of-file string. Underbar (_) is assumed for the logical
EOF string if -e is not coded. The value --e with no eo/str coded turns off the logical EOF
string capability (underbar is taken literally). Xargs reads standard input until either
end-of-file or the logical EOF string is encountered.

Xargs terminates if it receives a return code of -1 from, or if it cannot execute, command. When
command is a shell script, it should explicitly exit (see sh(1)} with an appropriate value to avoid
aCcidentally returning with -1.

EXAMPLES
The following moves all files from directory $1 to directory $2, and echos each mv command just before
doing it:

Is $1 I xargs -i -t mv $1I{} $2/{}

The following combines the output of the parenthesized commands onto one line, which is then echoed
to the end of file log:

(logname; date; echo $0 $*) I xargs »log

This example asks you which files in the current directory are to be archived and archives them into arch
(1.) one at a time, or (2.) many at a time.

1. Is I xargs -p -1 ar r arch
2. Is I xargs -p -1 I xargs ar r arch

The following executes dif/(I} with successive pairs of arguments originally typed as shell arguments:

echo $ * I xargs -n2 diff

SEE ALSO
sh(l}.

DIAGNOSTICS
Self-explanatory.

-2-

1~\.A,\1} YACC(l)

NAME
yacc - yet another compiler-compiler

SYNOPSIS
yacc [-dv 1 grammar

HP-UX COMPATIBILITY
Level: HP-UXISTANDARD

Origin: System III

DESCRIPTION

FILES

Yaee converts a context-free grammar into a set of tables for a simple automaton which executes an
LR(l) parsing algorithm. The grammar may be ambiguous; specified precedence rules are used to break
ambiguities.

The output file, y.tab.c, must be compiled by the C compiler to produce a program yyparse. This
program must be loaded with the lexical analyzer program, yylex, as well as main and yyerror, an error
handling routine. These routines must be supplied by the user; lex(l) is useful for creating lexical
analyzers usable by yaee.

The options are:

-d produces the file y.tab.h, containing the #define statements that associate the yaee­
assigned "token codes" with the user-declared "token names". This allows source
files other than y.tab.c to access the token codes.

-v produces the file y.output, which contains a description of the parsing tables and a
report on conflicts generated by ambiguities in the grammar.

y.output
y.tab.c
y.tab.h
yacc.tmp, yacc.acts
/usrllib/yaccpar

definitions (#define's) for token names
temporary files
parser prototype for C programs

SEE ALSO
lex(l).

YACC - Yet Another Compiler Compiler in HP-UX Concepts and Tutorials.

DIAGNOSTICS

BUGS

The number of reduce-reduce and shift-reduce conflicts is reported on the standard output; a more
detailed report is found in the y.output file. Similarly, if some rules are not reachable from the start
symbol, this is also reported.

Because file names are fixed, at most one yaee process can be active in a given directory at a time.

- 1 -

PERMUTED INDEX

[... test(l)
2640/2621 series terminals, handle special functions of ... hp(l)
2680/2688 laser printer, description of driver for.. .. laser(4)
a641 .. a641(3C)
abort ... abort(3C)
abort activity on HP-IB bus .. hpib_abort(3)
abs ... abs(3C)
absolute value, floating point. ... floor(3M)
absolute value, integer.. .. abs(3C)
accept .. accept(8)
access .. access(2)
access modes, change memory segment .. memchmd(2)
accessing discs, description of blocked/unblocked disc interface .. disc(4)
accounting, convert binary wtmp records to ASCII .. fwtmp(8)
accounting, correct time/date stamps on wtmp records .. fwtmp(8)
accounting, record login names and times .. utmp(5)
acos .. '" .. trig(3M)
activity, terminate all current system activity ... shutdown(8)
adb .. adb(l)
add backing store devices .. vson(2)
address space, allocate and free ... memallc(2)
address space, lock/unlock for process .. memlck(2)
addresses, get for program ... end(3C)
admin .. admin(l)
advance .. regexp(7)
advise OS about segment reference patterns ... memadvise(2)
alarm .. alarm(2)
alarm clock, set.. .. alarm(2)
allocate a block of memory .. malloc(3C)
allocate and free address space .. memallc(2)
allocate backing store space to backing store device ... vsadv(2)
allocate data segment space for process ... brk(2)
allocate fast disc storage ... prealloc(2)
a.out file format, description of .. a.out(5)
append to an existing operating system .. oscp(8)
appointments, reminder service for. ... calendar(l)
ar .. ar(l)
arbitrary-precision arithmetic language .. bc(l), dc(l)
arc cosine function ... trig(3M)
arc sine function ... trig(3M)
arc tangent function .. trig(3M)
archive file format, description of ... ar(5)
archive file format, description of cpio archive file format .. cpio(5)
archive files on tape .. tar(l)
archive library, find ordering relation for .. lorder(l)
archive, table of contents format description ... ranlib(S)
archives and libraries, create and maintain ... ar(1)
archives, convert to random libraries .. ranlib(l)
archives, copy out to media .. cpio(1)
archives, create table of contents for. .. ranlib (1)
archives, extract archive files from media .. cpio(l)
argument lists, construct and execute command ... xargs(1)
argv, get next option letter from .. getopt(3C)
arithmetic, language for arbitrary-precision .. bc(l), dc(l)
array, allocate memory space for ... malloc(3C)

-1-

Permuted Index

array, print formatted data into ... printf(3S)
array, read and format data from .. scanf(3S)
as ... as(1)
ASA carriage control characters, interpret .. asa(l)
asa .. asa(1)
ASCII strings, locate in binary file .. strings(1)
ASCII, convert base 64 ASCII to long integer .. a641(3C)
ASCII, convert binary wtmp records to .. fwtrnp(8)
ASCII, convert floating point value to ... ecvt(3C)
ASCII, convert non-ASCII to ASCII .. conv(3C)
ASCII, convert to floating point, integer, or long integer .. atof(3C)
asctime ... ctime(3C)
asin .. trig(3M)
assembler for MC68000 .. as(l)
assemblerllinker executable output file, description of ... a.out(S)
assembly language, translate ... atrans(1)
assert .. assert(3X)
assign buffering to an open file .. setbuf(3S)
assistance, get for SCCS .. help(1)
asynchronous terminal emulation ... aterm(IC)
at .. at(I)
atan ... trig(3M)
atan2 ... trig(3M)
aterm ... aterm(IC)
atof .. '" ... atof(3C)
atoi. ... atof(3C)
atol. .. , atof(3C)
atrans ... atrans(I)
attributes, change program's internal .. chatr(I)
awk ... awk(l)
backing store devices, add/remove device from those available .. vson(2)
backing store devices, allocate backing store space to ... vsadv(2)
backing store usage, advise system about. .. vsadv(2)
backspaces and reverse line-feeds, interpret for nroff(I) .. col(l)
backup ... backup(8)
backup Command Set 80 cartridge tape ... tcio(l)
backup or archive file system ... backup(8)
banner .. banner(1)
banners, make using large letters ... banner(1)
base-64 ASCII, convert to long integer .. a64I(3C)
basename .. basename(I)
baud rate, settings for terminal .. tty (4)
bc ... bc(I)
bdiff .. bdiff(1)
Berkeley compatibility for magnetic tape, description of .. mt(4)
bessel functions ... bessel(3M)
binary file, locate printable strings in .. strings(1)
bit bucket, special file equivalent to ... null(4)
block count, print file ... sum(I)
block of memory, allocate .. malloc(3C)
block of memory, change size of .. malloc(3C)
block of memory, deallocate .. malloc(3C)
block size, find for mounted file system .. ustat(2)
block special file, create .. mknod(2), mknod(8)

-2-

Permuted Index

blocked disc interface, description of. .. disc(4)
blocks, find number of free blocks for mounted file system ... ustat(2)
blocks, report number of free disc blocks ... df(1)
boot area, allocate bytes for. .. sdfinit(8)
boot area, copy OS from one or more SDF boot areas to another .. oscp(8)
boot area, set or get current settings for system parameters in ... uconfig(8)
break .. sh(1)
break value, get maximum for process ... ulimit(2)
break value, set or get ... brk(2)
break-point debugging, enable for child process ptrace(2)
brk .. brk(2)
bs ... bs(l)
buffered file 1/0 package, description of ... stdio(3S)
buffering, assign to open file .. setbuf(3S)
buffers, flush those associated with an open filefc1ose(3S)
byte offset of next I/O operation on file, set .. .fseek(3S)
byte swapping ... swab(3C)
C compiler .. cc(l)
C compiler, preprocessor for ... cpp(1)
C preprocessor ... cpp(1)
C program checkerlverifier .. lint(l)
C program formatter. .. cb(l)
C program, error message generator for ... perror(3C)
C symbolic debugger .. cdb(l)
cache buffers, specify size and number of .. uconfig(8)
cal ... ca1(1)
calculator, arbitrary-precision .. dc(l)
calendar .. calendar(1)
calendar, print for month or year .. cal(l)
call another UNIXlHP-UX system ... cu(lC)
calloc .. malloc(3C)
cancel .. .lp(l)
cancel previous uucp commands .. uustat(lC)
carriage control characters, interpret ASA .. asa(1)
cartridge tape, Command Set 80 utility ... tcio(l)
cartridge tape, perform input/output from/to tcio(l)
cartridge tape, unpacklextract files from Command Set 80 ... upm(l)
cat ... cat(l)
catman ... catman(8)
cb ... cb(l)
cc ... cc(1)
cd ... cd(l), sh(l)
cdb .. cdb(l)
cdc ... cdc(1)
ceil ... floor(3M)
certify SDF volume ... sdfinit(8)
certify file system consistencyfsck(8)
change SCCS file parameters ... admin(l)
change bars, create file containing ... diffmk(l)
change data segment space allocation ... brk(2)
change delta commentary of SCCS delta .. cdc(1)
change file mode .. chmod(l), chmod(2)
change file owner or group .. chown(l), chown(2)
change group ID of user .. newgrp(l), sh(1)

- 3-

Permuted Index

change login password .. passwd(l)
change memory segment access modes ... memchmd(2)
change program's internal attributes ... chatr(l)
change root directory for duration of command .. chroot(1), chroot(2)
change size of previously-allocated block of memory .. malloc(3C)
change system state .. .init(8)
change to another user ... su(1)
change to different operating system or version .. chsys(8)
change working directory .. cd(l), sh(l), chdir(2)
channel device file, write toio_write(3)
character classification ... ctype(3C)
character conversion, lower-case to upper-case .. conv(3C)
character conversion, non-ASCII to ASCI!. ... conv(3C)
character conversion, upper-case to lower-case .. conv(3C)
character size, settings for terminal .. tty(4)
character special file, create .. mknod(2), mknod(8)
character, description of special characters in terminal interface ... tty(4)
character, push back into input stream ... ungetc(3S)
character, read from buffered open file ... getc(3S)
character, search for in string ... string(3C)
character, write on buffered open file or standard output.. .. putc(3S)
characters, count number contained in file .. wc(1)
characters, process characters from regular expression ... regexp(7)
characters, translate into other characters ... tr(l)
chatr .. chatr(l)
chdir .. chdir(2)
check C program ... lint(1)
check file for accessibility .. access(2)
check file system consistency .. fsck(8)
check integrity of OS in SDF boot area(s) ... osck(8)
check internal revision numbers of HP-UX files ... revck(8)
check password and group files .. pwck(8)
checklist, list of file systems to be checked by fsck(8) ... checklist(5)
checksum, print file .. sum(1)
chgrp ... chown(l)
child process, enable break-point debugging of ... ptrace(2)
child process, time execution of .. times(2)
child process, wait for termination of ... sh(1)
chmod ... chmod(l), chmod(2)
chown ... chown(l), chown(2)
chroot. ... chroot(l), chroot(2)
chsys ... chsys(8)
clean up uucp spool directory ... uuclean(8)
clear error indicator on open file ... ferror(3S)
clear i-node by zeroing it out .. clri(8)
clearerrferror(3S)
clock, set/print time and date .. date(l)
close .. close(2)
close a file descriptor ... close(2)
close entity identifier for 110 channeL .. .io-<:lose(3)
close group file .. getgrent(3C)
close or flush a stream ... fclose(3S)
close password1Ue ... getpwent(3C)
close pipe between process and command ... popen(3S)

-4-

Permuted Index

closedir .. directory(3X)
close-on-exec flag, get/set .. fcntl(2)
clri ... clri(8)
cmp .. cmp(1)
code portability between HP-UX implementations, typedefs for .. modeI(5)
code segments, specify maximum number of .. uconfig(8)
col ... co1(1)
colon (:) command ... sh(1)
combine object files into program .. ld(1)
comm ... " comm(1)
Command Set 80 Cartridge Tape Utility .. tcio(1)
command interpreter, restricted ... rsh(1)
command interpreter, standard ... sh(1)
command line options, parse .. getopt(1)
command substitution .. sh(1)
command, construct argument list for and execute .. xargs(1)
command, create/close pipe between process and command .. popen(3S)
command, execute from program .. system(3S)
command, execute on another system ... uux(1C)
command, execute uucp commands on local system ... uuxqt(1C)
command, execute with different root directory .. chroot(1), chroot(2)
command, report error information for ... err(1)
command, run at lower or higher priority ... nice(1), nice(2)
command, run immune to hangups, logouts, and qUits ... nohup(1)
command, send command bytes over HP-IB bus ... hpib-sencLchmd(3)
command, set environment for ... env(1)
command, time the execution of .. time(1)
commands, execute at specified date(s) and time(s) .. at(1), cron(8)
commands, install in file systeminstall(8)
commands, schedule for cron(8) ... crontab(5)
common lines, find after comparing two files ... comm(1)
common logarithm .. exp(3M)
communication, establish interactive communication with another UNIXlHP-UX system cu(1C)
compare two directories ... dircmp(1)
compare two files .. bdiff(1), cmp(1), diff(1)
compare two strings .. string(3C)
compare two versions of SCCS file .. sccsdiff(1)
compile ... regexp(7)
compile regular expression ... regex(3)
compiler development. .. yacc(1)
compiler, C ... cc(1)
compiler, FORTRAN 77 ... """"""'''''''' fc(1), f77(1)
compiler, Pascal ... pc(1)
compiler, bs .. bs(1)
compiler-compiler ... yacc(1)
compress contents of a file ... pack(1)
concatenate lines in one or more files .. paste(1)
concatenate two strings .. """"""""""'' ... string(3C)
concatenate, copy, and/or print files ... cat(1)
conditional expressions, evaluate and test.. .. sh(1), test(1)
construct file system on special file '"'' mkfs(8)
contents of directory, list.Is(1)
context-free grammar, create ... yacc(1)
continue ... sh(l)

-5-

Permuted Index

control characters, interpret ASA carriage .. asa(1)
control device ... ioctl(2), stty(2)
control lines of GPID card, set... ... gpio....seLctl(3)
control-flow constructs, shell programming language ... sh(1)
controller, change active controller for HP-IB bus .. hpib_pass_ctl(3)
conventional terminal names ... term(7)
convert ASCII to floating point, integer, or long integer ... atof(3C)
convert between 3-byte integers and long integers .. .l3tol(3C)
convert between long and base-64 ASCII... ... a641(3C)
convert between various units ... units(l)
convert binary wtrnp records into ASCII .. fwtmp(8)
convert date and time to ASCII .. ctime(3C)
convert floating point value to ASCII string ecvt(3C)
convert tape file .. ddt 1)
convert, reblock, translate, and copy a (tape) file ... dd(l)
copy an open file descriptor ... dup(2), fcntl(2)
copy files between two systems .. uucp(lC), uuto(lC)
copy files out to media ... cpio(l)
copy files while simultaneously editing them .. sed(l)
copy line from standard input to standard output.line(1)
copy operating system from one or more SDF boot areas to another .. oscp(8)
copy string .. string(3C)
copy tape file .. dd(l)
copy to or from LIF files ... lifcp(l)
copy, concatenate, and/or print files ... cat(1)
copy,link,ormovefiles.. ",., .. cp(l)
core image file, description of.. ... core(5)
core image, examine and/or modify for child process ... ptrace(2)
cos ... trig(3M)
cosh ... , ... , .. , .. sinh(3M)
cosine function ... trig(3M)
cosine, hyperbolic ... sinh(3M)
cp ... cp(l)
cpio ... cpio(1)
cpio archive format, description of.. .. cpio(5)
cpio archives, unpack/extract from 5.25" flexible discs .. upm(l)
cpio archives, unpack/extract from Command Set 80 cartridge tape ... upm(l)
cpp .. cpp(l)
creat ... creat(2)
create a directory ... mkdir(l)
create a name for a temporary file .. tmpnam(3S)
create a new process .. fork(2)
create a special file entry .. mknod(5)
create an interprocess channel ... pipe(2)
create and open temporary file .. tmpfile(3S)
create cat files for the manual .. catman(8)
create delta (change) for SCCS file .. delta(l)
create device files mkdev(8)
create directory, block/character special, fifo, or ordinary file ... mknod(2), mknod(8)
create encryption key ... makekey(8)
create libraries, archives .. art 1)
create link to file .. link(l), link(2)
create mnttab table .. setmnt(8)
create new file, overwrite existing file ... creat(2)

- 6-

Permuted Index

create new operating system from ordinary files ... oscp(8)
create new process in efficient way .. vfork(2)
create or change parameters of SCCS files .. admin(1)
create unique file name ... mktemp(3C)
creation mask, get/set for file ... sh(l), umask(l), umask(2)
cron .. cron(8)
cron(8), schedule commands for cron(8) .. crontab(5)
crontab .. crontab(5)
CRT, facilitate viewing of continuous text on ... more(l)
CRT, information about graphics devices with .. graphics(4)
crypt .. crypt(l), crypt(3C)
ctermid ... ctermid(3S)
ctime ... ctime(3C)
cu .. cu(lC)
current directory, print name of '" ... pwd(1)
current events, print ... news(1)
current working directory, change ... cd(1), sh(1), chdir(2)
current working directory, print name of ... pwd(1)
cuserid '" , .. " cuserid (3S)
cut. .. cut(1)
cut out selected fields of each line of a file ... cut(1)
daemon, line printerlpd(l)
Data Encryption Standard .. crypt(3C)
data base, relational data base operator .. join(l)
data path, set width of for particular interface .. .io-xfeLmode(3)
data segment, change space allocation for ... brk(2)
data segments, specify maximum number of ... uconfig(8)
data transfer speed, inform system of .. io-xfer-speed(3)
data types, include file defining data types for system code .. types(7)
data, move to permanent storage device ... fsync(2)
datacomm, accept/reject files received through uucp or uuto ... uuto(1 C)
datacomm, copy files between two systems .. uucp(1 C), uuto(1 C)
datacomm, execute command on another system .. uux(1 C)
datacomm, get status of, or cancel, previous uucp commands ... uustat(1 C)
datacomm, list of known system names .. uucp(1 C)
datacomm, log of uucp and uux transactions .. uucp(1 C)
date ... date(1)
date and time, convert to ASCII string .. ctime(3C)
date, set ... stime(2)
date, set andlor print. ... date(l)
dates, reminder service for important.. ... calendar(1)
daylight ... ctime(3C)
daylight saving time, time corrected for .. ctime(3C)
dc ... dc(l)
dd .. dd(1)
deallocate a block of memory .. malloc(3C)
debug damaged file system .. fsdb(8)
debugger ... adb(l), cdb(l)
debugging, enable break-point debugging for child process ... ptrace(2)
delays, settings and controls for terminal output .. tty(4)
delta ... delta(l)
delta, add to SCCS file .. delta(l)
delta, change commentary of SCCS .. cdc(1)
delta, inform user of any deltas being created for specific SCCS file ... sact(l)

Permuted Index

delta, remove from SCCS file .. rmdel(l)
demand loadable, set for program .. chatr(1)
deroff .. deroff(l)
DES encryption ... crypt(3C)
description of /etc/passwd, pwd.h files ... passwd(5)
description of as management commands ... osmgr(8)
description of environment ... environ(7)
description of group file ... group(5)
description of magic.h and magic numbers .. magic(5)
descriptor, close file .. close(2)
descriptor, copy/duplicate file .. dup(2), fcntl(2)
deSCriptor, get value of file ... ferror(3S)
desk calculator .. dc(1)
device driver, select virtual device driver .. uconfig(8)
device drivers, list ... lsdev(1)
device file, create block/character ... mknod(2), mknod(8)
device files, create .. mkdev(8)
device files, perform functions onioctl(2), stty(2)
device names, pack/unpack for mknod(2) ... mknod(5)
device, description of hpib interface to ... hpib(4)
deVices, backing store ... vson(2)
devices, information about those with graphics crt's .. graphics(4)
devnm .. devnm(8)
df .. df(l)
diagnostics, add to program ... assert(3X)
diff .. diif(1)
differences between files, mark ... diffmk(l)
diffh .. diff(1)
diffmk .. diffmk(l)
digitizer, deSCription of hpib interface to ... hpib(4)
dircmp .. dircmp(l)
directory clean-up for uucp spool directory ... uuclean(8)
directory, change root for duration of command ... chroot(l), chroot(2)
directory, change working ... cd(l), sh(l), chdir(2)
directory, compare two .. dircmp(l)
directory, create ... mkdir(l), mknod(2)
directory, description of internal SDF format of ... dir(5)
directory, extract from path name ... basename(1)
directory, list contents of .. .Is(l)
directory, list contents of LIF .. lifls(l)
directory, move ... mvdir(l)
directory, print name of current working ... pwd(1)
directory, read/process contents of .. directory(3X)
directory, remove ... rm(l)
dirname ... basename(l)
disable ... enable(l)
disable integer trap handler on Series 500 ... intrapoff(3M)
disc blocks, report number of free .. df(1)
disc drivers, information about blocked/unblocked interface .. disc(4)
disc usage, summarize .. du(l)
disc, allocate fast memory on .. prealloc(2)
disc, write current contents of memory to .. sync(2), sync(8)
display buffering, specify number of pages of ... uconfig(8)
documentation, on-line ... man(l)

Permuted Index

documents, print using mm macros .. mm(1)
dot (.) command ... , .. sh(l)
driver, information about blocked/unblocked disc interface ... disc(4)
drivers, list device ... Isdev(1)
du .. du(1)
dump, format trace dump from r2780(lC) ... r2780trace(1)
dump, octal or hexadecimal ... od(l)
dup .. dup(2)
duplicate an open file deSCriptor .. dup(2), fcntl(2)
e .. ex(1)
echo ... echo(l)
echo (print) arguments after shell interpretation ... echo(1)
ecvt ... ecvt(3C)
ed .. ed(1)
edata ... end(3C)
edit. .. ex(1)
editing activity, print for SCCS file ... sact(l)
editor, stream text ... sed(l)
editor, text. ... ed(l), ex(l)
editor, visual text ... vi (1)
effective user/group ID's, get for process .. getuid(2)
egrep .. grep(l)
EMS .. ems(2)
EMS, description of .. ems(2)
emulation of asynchronous terminal... ... aterm(1 C)
emulation, IBM 2780/3780 terminals ... r2780(1C)
enable ... enable(l)
enable integer trap handler on Series 500 .. .intrapoff(3M)
encode/decode files .. crypt(l)
encrypt .. crypt(3C)
encrypt/decrypt files ... crypt(1)
encryption key, generate .. makekey(8)
end ... end(3C)
endgrent ... getgrent(3C)
endpwent. ... getpwent(3C)
entity identifer, create for open channel .. .io_open(3)
entity identifier, close for channel .. .io_close(3)
env ... env(1)
environment variable, get value of ... getenv(3C)
environment, description of parameters and usage .. sh(l), environ(7)
environment, install parameters in ... sh(l)
environment, print current .. env(1)
environment, print out the current ... printenv(1)
environment, set for duration of one command ... env(1)
environment, set up at login time .. profile(5)
EOF (end-of-file) character, deSCription of.. ... tty(4)
EOF, indicate receipt of when reading fileferror(3S)
EOI mode, enable/disabie for HP-IB device file .. hpib_eoLctl(3)
EOL (end-of-line) character, description of ... tty(4)
eqn, tbl, moff, troff constructs, remove from text.. .. deroff(1)
erase character, description of ... tty(4)
err ... err(l)
errfile .. errfile(5)
errinfo .. errinfo(2)

Permuted Index

errinfo, report value for last command failure .. err(l)
errno ... errno(2)
errno, report value for last command failure .. err(1)
ERROR ... regexp(7)
error indicator .. errinfo(2)
error indicator for system calls .. errno(2)
error indicator while reading file .. .ferror(3S)
error indicator, reset status of ... ferror(3S)
error information on last command failure .. err(1)
error logging file for system .. errfile(5)
error message generator from C programs , , , perror(3C)
etext .. end(3C)
eval .. sh(1)
evaluate arguments as an expression ... expr(1)
ex ... ex(l)
examine text, facilitate on soft~copy terminals ... more(l)
exec .. sh(I), exec(2)
exed ... exec(2)
exede ... exec(2)
exedp ... exec(2)
executable file, extract symbol table (name list) entries from ... nlist(3C)
executable file, get size of .. size(l)
executable linker/assembler output file, description of ... a.out(5)
execute a file in current process ... exec(2)
execute command at lower or higher priority .. nice(1), nice(2)
execute command immune to hangups, logouts, and quits ... nohup(l)
execute command on another system .. uux(1 C)
execute command using different root directory .. chroot(1)
execute command with constructed argument list ... xargs(l)
execute commands at specified date(s) and time(s) ... at(I), cron(8)
execute commands from file ... sh(l)
execute new program in existing process .. sh (1), exec(2)
execute regular expression ... regex(3)
execute uucp commands on local system .. uuxqt(IC)
execute work requests on remote system ... uucico(IC), uux(IC)
execution profile, create for program ... profil(2), monitor(3C)
execution, suspend process execution for time interval ... sleep(I), sleep(3C)
execv .. exec(2)
execve .. exec(2)
execvp .. exec(2)
_exit ... exit(2)
exit ... sh(I), exit(2)
exit from enclosing for or while loop .. sh(l)
exp ... exp(3M)
expand ... expand(l)
expand tabs to spaces, and vice versa .. expand(l)
exponent, raise 2 to a power .. frexp(3C)
exponential function .. exp(3M)
export .. sh(l)
expr .. expr(1)
expreserve ... ex(l)
expression, evaluate arguments as ... expr(l)
exrecover ... ex(l)
Extended Memory System deSCription ... ems(2)

-10 -

Permuted Index

external symbols, examine execution profile for .. prof(l)
extract entries from symbol table (name list) of executable file ... nlist(3C)
extract files from 5.25" flexible discs .. upm(l)
extract files from Command Set 80 cartridge tape archives ... upm(1)
extract files from media .. cpio(1)
extract portions of path names .. basename(1)
f77f77(1)
fabs ... floor(3M)
factor .. factor(1)
false ... true(1)
fc ... fc(l)
fclose .. fclose(3S)
fcntl ... fcntl(2)
fcntl(2), description of requests and arguments for .. fcntl(7)
fcntl. h, description of ... fcntl(7)
fcvt. ecvt(3C)
fdb ... cdb(l)
fdopen .. fopen(3S)
feof ... ferror(3S)
ferror ... '" ferror(3S)
fflush ... fclose(3S)
fgetc .. getc(3S)
fgets ... gets(3S)
fgrep ... grep(l)
fifo special file, create ... mknod(2), mknod(8)
file ... file(1)
file attributes file, description offs(5)
file control ... "" .. " .. ""."".""""""""."." .. ".""" .. "."."."."."".".""" . .fcntl(2)
file control constants, file containing definitions of .. .fcntl(7)
file creation mask, set '"'' sh(l), umask(1), umask(2)
file descriptor, assign stream to ""'' fopen(3S)
file deSCriptor, close ... ""'''''''' ... close(2)
file descriptor, copy/duplicate ... ""'''''''''''''''' dup(2), fcntl(2)
file deSCriptor, create file pointer using .. .fopen(3S)
file deSCriptor, determine if associated with terminal ... ttyname(3C)
file deSCriptor, get value of ... ferror(3S)
file name, create file name vs. i-node list.. ... ncheck(l)
file name, create unique .. mktemp(3C)
file name, extract from path name ... basename(l)
file name, find special file for mounted file system on which file lies ... devnm(8)
file name, generate for temporary file ... trnpnam(3S)
file name, generate for terminaL .. ctermid(3S)
file pointer, create using file descriptor .. .fopen(3S)
file pointer, move read/write (seek) ... lseek(2)
file pOinter, obtain for file .. .fopen(3S)
file pOinter, re-assign to another file """"""'' fopen(3S)
file size limit, get for process .. ulimit(2)
file system consistency check and interactive repair .. .fsck(8)
file system debugger .. fsdb(8)
file system name, get for mounted ""'' ustat(2)
file system pack name, get for mounted ... ustat(2)
file system, backup file system on cpio archive ... backup(8)
file system, construct on special file .. mkfs(8)
file system, find special file associated with ... devnm(8)

_ 11 _

Permuted Index

file system, install commands in .. install(8)
file system, list of those to be checked by fsck(8) ... checklist(5)
file system, mount or unmount .. mount(I), mount(2), umount(2)
file system, table of mounted file systems ... mnttab(5)
file type, determine .. filet 1)
file, assign another file name to already open filefopen(3S)
file, assign buffering to open .. setbuf(3S)
file, buffered read from ... fread(3S)
file, buffered write tofread(3S)
file, change group ID of ... chown(1), chown(2)
file, change mode of ... chmod(I), chmod(2)
file, change owner ... chown(l), chown(2)
file, change permission bits ... chmod(I), chmod(2)
file, check revision number for. ... revck(8)
file, close a buffered open file ... fclose(3S)
file, copy LIF in or out .. lifcp(1)
file, copy to tape while performing certain conversions .. dd(l)
file, count words, lines, and characters contained therein .. wc(1)
file, create and open temporary ... tmpfile (3S)
file, create device/special. ... mkdev(8)
file, create or overwrite ordinary .. creat(2)
file, create or remove link to/from .. link(I), link(2), unlink(2)
file, create ordinary .. mknod(2)
file, description of sees file format... ... sccsfile(5)
file, description of buffered 110 .. stdio(3S)
file, description of password file, letc/passwd .. passwd(5)
file, determine accessibility of .. access(2)
file, error logging file for system .. errfile(5)
file, find and/or remove duplicate lines in ... uniq(l)
file, find spelling errors in ... spell(1)
file, generate name for temporary .. tmpnam(3S)
file, get information about ... stat(2)
file, get/set status flags for .. .fcntl(2)
file, indicate the occurrence of an error while reading ... '" .ferror(3S)
file, indicate when EOF is encountered when reading from ... ferror(3S)
file, locate in file system .. find(l)
file, locate printable strings in binary .. strings(1)
file, move to new position in .. lseek(2)
file, number lines of ... nl(1)
file, open for reading or writing ... open(2)
file, open with assigned buffering .. .fopen(3S)
file, print checksum and block count for .. sum(1)
file, print first few lines of. .. head(1)
file, printlastpartof.. .. tail(l)
file, put line length specifications in text files .. fspec(5)
file, put margin specifications in text files .. .fspec(5)
file, put tab specifications in text files ... fspec(5)
file, read and execute commands from .. sh(l)
file, read and format data from .. scanf(3S)
file, read character from ... getc(3S)
file, read from .. read(2)
file, read string from ... gets(3S)
file, read word from ... getc(3S)
file, remove .. rm(l)

- 1? -

Permuted Index

file, remove a LIF .. lifrm{l)
file, remove extra new-line characters from .. rmnl(l)
file, remove selected fields from each line in ... cut(1)
file, remove selected table column entries from ... cut{ 1)
file, rename LIF ... lifrename{l)
file, reverse lines in .. rev{ 1)
file, rewind before next I/O operationfseek{3S)
file, search contents of for specified string{s) ... grep{l)
file, set/clear set-user-ID, set-group-JD, sticky bits .. chmod{l), chmod(2)
file, sort contents of.. ... sort{l)
file, split into pieces .. split{l)
file, store contents in compressed form .. pack{ 1)
file, system's "bit bucket" special file .. null{ 4)
file, truncate to certain length ... truncate(2)
file, update access/modification/change times of .. touch{l), utime(2)
file, write LIF volume header on .. lifinit{ 1)
file, write character onto .. putc{3S)
file, write formatted data onto ... printf{3S)
file, write string onto .. puts{3S)
file, write to ... write(2)
file, write word onto ... putc{3S)
file-creation mode mask, get/set ... umask(1), umask(2)
fileno ... ferror{3S)
files, archive on tape ... tar{l)
files, check password and group files ... pwck(8)
files, compare two ... bdiff{l), cmp{l), diff{l)
files, compare two and create change bars ... diffmk(l)
files, compare two and find lines common to both ... comm(l)
files, compare two and find lines unique to each .. comm(l)
files, concatenate two or more .. cat{l)
files, copy .. cat(l)
files, copy and simultaneously edit. .. sed(l)
files, copy between two systems ... uucp(1 C), uuto(1 C)
files, copy out to media .. cpio(l)
files, description of /etc/profile and $HOME/.profile ... profile(5)
files, encrypt/decrypt (encode/decode) contents of .. crypt(l)
files, extract from media ... cpio{ 1)
files, format and print .. pr{ 1)
files, merge lines in one or more ... paste(l)
files, move, link, or copy ... cpt 1)
files, print. .. cat{ 1)
files, queue for printing ... lpr(l)
files, unpack/extract from 5.25" flexible discs .. upm{l)
files, unpack/extract from Command Set 80 cartridge tape archives ... upm(l)
filter reverse line-feeds and backspaces .. col{l)
find .. find(l)
find duplicate lines in file .. uniq{l)
find files ... find{1)
find hyphenated words ... hyphen{l)
find name of a terminal.. .. ttyname(3C)
flag, get/set close-on-exec .. fcntl(2)
flags, mapping pwbN6 UNIX terminal flags into current HP-UX .. tty(4)
flags, setshell .. sh(l)
flexible discs, unpack/extract files from ... upm(l)

1'2

Permuted Index

floating point number, split into integer and fractional parts .. .frexp(3C)
floating point to ASCII conversion ... ecvt(3C)
floor. .. floor(3M)
flush buffers associated with an open filefclose(3S)
fmod .. floor(3M)
fopen .. fopen(3S)
for loop, exit from enclosing .. sh (1)
for loop, resume the next iteration of ... sh(1)
fork .. fork(2)
format C program ... cb(l)
format SDF volume ... sdfinit(8)
format and print files ... pr(1)
format data into string .. printf(3S)
format data on buffered open file ... printf(3S)
format data on standard output .. printf(3S)
format of SCCS file, description of ... sccsfile(5)
format of a.out file, description of .. a.out(5)
format of an i-node, description of .. .inode(5)
format of core image file, description of .. core(5)
format of cpio archive, description of .. cpio(5)
format of library/archive file, description of ... ar(5)
format specifications, put in text file .. .fspec(5)
format tables for nroff or troff .. tbl(l)
format text .. nroff(1)
format trace dump from r2780(IC) ... r2780trace(l)
formatting text with the man macros .. man(7)
formatting text with the mm macros .. mm(7)
FORTRAN 77 compiler .. fc(I), f77(I)
FORTRAN symbolic debugger ... cdb(l)
FORTRAN, rational dialect.. ... ratfor(l)
fprintf .. printf(3S)
fputc ... putc(3S)
fputs .. puts(3S)
fread .. fread(3S)
free ... malloc(3C)
free blocks, find for mounted file system .. ustat(2)
free disc blocks, report number of .. df(l)
free i-nodes, find for mounted file system ... ustat(2)
free memory space .. memallc(2)
freopen ... fopen(3S)
frexp ... frexp(3C)
fscanf , .. , ... scanf(3S)
fsck .. fsck(8)
fsck .. fsck(8)
fsck(8), list of file systems to be checked by .. checklist(5)
fsdb ... fsdb(8)
fseek .. fseek(3S)
fstat .. stat(2)
fstat(2)/stat(2), description of structure returned by these calls .. stat(7)
fsync .. fsync(2)
ftell .. fseek(3S)
ftruncate .. truncate(2)
fwrite ... fread(3S)
fwtrnp .. fwtmp(8)

-14-

Permuted Index

gamma .. gamma(3M)
gcvt. .. ecvt(3C)
generate encryption key ... makekey(8)
get. .. get(1)
get entries from symbol table (name list) of executable file .. nlist(3C)
get name of current host ... gethostname(2)
get password file entry ... getpwent(3C)
get real/effective user, real/effective group IDs .. getuid(2)
GETC ... regexp(7)
getc ... getc(3S)
getchar .. getc(3S)
getegid ... getuid(2)
getenv ... getenv(3C)
geteuid ... getuid(2)
getgid ... getuid(2)
getgrent .. getgrent(3C)
getgrgid .. getgrent(3C)
getgrnam .. getgrent(3C)
gethostname .. gethostname(2)
getiogin ... getlogin(3C)
getopt .. getopt(1)
getopt .. getopt(3C)
getpass ... getpass(3C)
getpgrp ... getpid(2)
getpid ... getpid(2)
getppid ... getpid(2)
getpw ... getpw(3C)
getpwent ... getpwent(3C)
getpwnam ... getpwent(3C)
getpwuid ... getpwent(3C)
gets .. gets(3S)
getty ... getty(8)
getty, determine speed and terminal settings for .. gettydefs(S)
gettydefs .. gettydefs(S)
getuid ... getuid(2)
getw .. getc(3S)
gmtime ... ctime(3C)
goto, non-local .. seijmp(3C)
GPIO card, return status lines of ... gpio_geLstatus(3)
GPIO card, set control lines of .. gpio-seLctl(3)
gpio_geLstatus .. gpio_geLstatus(3)
gpio-seLcti ... gpio_seLcti(3)
grammar, create context-free ... yacc(I)
graphics devices, information for those with crt's .. graphics(4)
grep .. grep(I)
group .. group(S)
group ID, change for file .. chown(I), chown(2)
group ID, change for user .. newgrp(I), sh(I)
group ID, get for process ... getpid(2)
group ID, print. .. id(I)
group ID, search group file for matching .. getgrent(3C)
group ID, set ... setuid(2)
group ID, set for process .. setpgrp(2)
group file, close ... getgrent(3C)

_ 1 <:; _

Permuted Index

group file, description of /etc/group .. group(S)
group file, read one line from ... getgrent(3C)
group file, rewind .. getgrent(3C)
group file, search for matching group ID .. getgrent(3C)
group file, search for matching group name ... getgrent(3C)
group name, search group file for matching ... getgrent(3C)
group, change 10 of user ... newgrp(l)
group/password file checkers .. pwck(8)
grpck ... pwck(8)
grp.h ... group(S)
gsignal.. ... ssignal(3C)
gtty ... stty(2)
hangups, run command immune to .. nohup(l)
hardware name, get. ... uname(l), uname(2)
hardware trap numbers, list of ... , trapno(2)
head .. head(l)
header, write LIFvolume on file .. lifinit(l)
heap size, change for program .. chatr(1)
help .. help(l)
help, get for SCCS routines ... help(1)
hexadecimal, octal dump ... 0d(1)
host name, get. ... gethostname(2)
host name, set .. sethostname(2)
host system, set/print name of current .. hostname(1)
hostname .. hostname(1)
hp .. , .. ,', .. ,' """hp(l)
HP-IB bus, abort activity on ... hpib~bort(3)
HP-IB bus, change active controllers on ... hpib_pass_ctl(3)
HP-IB bus, conduct a serial poll on ... hpib-spoll(3)
HP-IB bus, conduct parallel poll on .. hpib_ppoll(3)
HP-IB bus, control response to parallel poll on ... hpib_ppolLresp(3)
HP-IB bus, control the Remote Enable line on ... hpibJen_ctl(3)
HP-IB bus, enable SRQ line on .. hpibJqsurvce(3)
HP-IB bus, perform I/O from or to .. hpib.Jo(3)
HP-IB bus, send command bytes over ... hpib-sencLchmd(3)
HP-IB bus, wait for parallel poll response ... hpib_waiLon_ppoll(3)
HP-IB bus, waitfor requested status condition to be true ... hpib_waiLon-status(3)
HP-IB device file, enable/disable EOI mode on .. hpib_eoLctl(3)
HP-IB interface, return status of. .. hpib_buS--Status(3)
hpib interface, description of ... hpib(4)
hpib~bort .. hpib_abort(3)
hpib_bus-status .. hpib_bus-status(3)
hpib_eoLctl .. hpib_eoLctl(3)
hpib.Jo .. hpib.Jo(3)
hpib_pass_ctl .. hpib_pasLctl(3)
hpib_ppoll. .. hpib_ppoll(3)
hpib_ppoILresp .. hpib_ppoILresp(3)
hpibJeI1-ctl ... hpibJen_ctl(3)
hpibJqsurvce ... hpibJqsLsrvce(3)
hpib-sencLchmd .. hpib-sencLchmd(3)
hpib-spoll .. hpib-spoll(3)
hpib_waiLon_ppoll .. hpib_waiLon_ppoll(3)
hpib_waiLon--Status ... , hpib_waiLon--Status(3)
HP-UX implementations, conditional compilation depending on ... model(S)

- 16-

Permuted Index

HP-UX implementations, definition of constants which identify ... modeI(5)
HP-UX machine identification .. model(5)
HP-UX revision information, get. .. revision(l)
HP-UX version name, geL .. uname(l), uname(2)
hyperbolic functions .. sinh(3M)
hyphen .. hyphen(l)
hyphenated words, find .. hyphen(l)
hypot ... hypot(3M)
hypotenuse, function for calculating .. hypot(3M)
IBM 2780/3780 terminal emulation .. r2780(lC)
id .. id(l)
!D's, set user and group ... setuid(2)
index, generate permuted .. ptx(l)
INIT .. regexp(7)
init. .. init(8)
init(8), control information for .. .inittab(5)
initialization of system state and processesinit(8)
initialize SDF volume ... sdfinit(8)
initialize operating system .. rc(8)
initialize terminal type and mode on login .. tset(1)
inittab , .. inittab(5)
i-node, clear i-node by zeroing it out.. ... clri(8)
i-node, description of i-node format .. .inode(5)
i-node, enable access to i-node for file system repair .. .fsdb(8)
i-nodes, create file name vs. i-node list ... ncheck(l)
i-nodes, find number of free i-nodes in mounted file system ... ustat(2)
input and format data from buffered open file ... scanf(3S)
input and format data from standard input.. .. scanf(3S)
input and format data from string .. scanf(3S)
input commands to shell ... sh(l)
input control, description of input control for terminal. ... tty (4)
input/output between process and command ... popen(3S)
input/output operation, get current byte offset of...fseek(3S)
input/output operation, reposition next.. .. .fseek(3S)
input/output redirection .. sh(l)
input/output, description of buffered file .. stdio(3S)
input/output, output character/word to open file or standard output ... putc(3S)
input/output, push character back into input stream .. ungetc(3S)
input/output, write string to open file or standard output ... puts(3S)
install ... , .. install(8)
install commands into file system .. .install(8)
instal!lupdate optional HP-UX products .. optinstall(8)
integer trap handler, enable/disable for Series 500 .. intrapoff(3M)
integer, get largest integer smaller than x ... floor(3M)
integer, get smallest integer larger than x ... floor(3M)
integers, convert between 3-byte and long .. .l3tol(3C)
integrity check of operating system in SDF boot area(s) .. osck(8)
interactively write (talk) to another user ... write(1)
interface data path, set width of.. ... io-xfeLmode(3)
interface to blocked/unblocked diSC, description of. ... disc(4)
interface to terminal !lO, description of .. tty(4)
interface, description of hpib .. hpib(4)
interleave factor, establish for SDF volume .. sdfinit(8)
interpreter, bs ... bs(1)

-17-

Permuted Index

interprocess communication, create ... pipe(2)
interrupt character, description of ... tty(4)
intrapoff , ... '" ... intrapoff(3M)
intrapon ... , .. .intrapoff(3M)
110 between process and command .. popen(3S)
110 channel, close entity identifier forio_close(3)
110 channel, open .. .io_open(3)
110 channel, read from .. io_read(3)
1/0 interface, reset.. .. io_reset(3)
110 operation, get current byte offset of ... fseek(3S}
I/O operation, reposition next ... fseek(3S)
1/0 operations, set time limit for ,io---seLtimeout(3}
I/O redirection .. sh(1)
1/0, description of buffered file .. stdio(3S)
110, output character/word to open file or standard output ... putc(3S}
1/0, push character back into input stream .. ungetc(3S}
I/O, write string to open file or standard output ... puts(3S}
io_close ... io_close(3}
ioctl ... ioctl(2)
ioctl(2} system calls, description of .. tty(4)
io_geLtermJeasonio_geLtermJeason(3)
io_open .. io_open(3)
iOJeadioJead(3}
io_reset. .. .io_reset(3)
io---SeLeol .. io---SeLeol(3}
io---seUimeout ... io-seLtimeout(3)
io_write ... io_write(3)
io-xfeLmode ... io-xfeLmode(3}
io-xfer---speed .. io-xfer---Speed(3}
isalnum ... ctype(3C)
isalpha .. ctype(3C)
isascii .. ctype(3C)
isatty ... ttyname(3C}
iscntrl .. ctype(3C}
isdigit .. ctype(3C}
isgraph .. ctype(3C}
islower .. ctype(3C)
isprint. ... ctype (3C)
ispunct .. ctype(3C}
isspace .. ctype(3C)
isupper .. ctype(3C)
isxdigit .. ctype(3C)
jO ... besse1(3M)
jI ... bessel(3M}
jn ... bessel(3M)
join .. join(I)
join, perform join of two data base relations .. '" join(1)
key, generate encryption .. makekey(8)
kill ... kill(I}
kill character, description of .. tty(4}
killall .. killall(8)
I ... 15(1)
13tol .. 13tol(3C)
164a .. a64I(3C)

- 18-

Permuted Index

language for computing arbitrary-precision arithmetic ... bc(1), dc(1)
language, compiler/interpreter for bs ... bs(1)
laser printer, description of printer for .. laser(4)
last. ... last(1)
last-accessed time, update for file .. touch(1), utime(2)
last-changed time, update for file ... touch(1)
last-modified time, update for file .. touch(1), utime(2)
ld .. ld(1)
ldexp ... frexp(3C)
length of string, get .. string(3C)
lex .. .1ex(1)
lexical analysis of text, generate programs for .. .1ex(1)
libraries and archives, create and maintain ... ar(1)
library file format, description of ... ar(5)
library file format, description of cpio archive format.. ... cpio(5)
library, find ordering relation for object .. 1order(1)
library, table of contents format description .. ranlib(5)
LIF .. lif(1)
LIF directory, list contents of .. lifls(1)
LIF file, remove ... lifrm(1)
LIF file, rename ... lifrename(1)
LIF files, copy in or out.. .. .lifcp(1)
LIF volume header, write on file .. lifinit(1)
LIF, description of .. lif(1)
lifep ... lifcp(1)
lifinit .. .1ifinit(1)
lifls .. lifls(1)
lifrename ... lifrename(1)
lifrm1ifrm(1)
line ... line(1)
line length, put line length specifications in text files .. .fspec(5)
line printer daemon ... lpd(1)
line printer spooler ... lpr(1)
line printer spooler requests, schedule ... lpsched(8)
line printer spooler system, accept/reject requests for ... accept(8)
line printer spooler system, configure ... lpadmin(8)
line printer spooler system, enable/disable printers on ... enable(1)
line printer spooler, get status of..lpstat(1)
line printer spooler, move requests between different printers .. lpsched(8)
line printer spooler, schedule/cancel files for printing on ... lp(1)
line printer spooler, shut down .. lpsched(8)
line, copy from standard input to standard output.. .. line(1)
line-numbering filter .. '" nl(1)
lines, count number contained in file .. wc(1)
lines, find common lines in two files ... comm (1)
lines, find unique lines in two files .. comm(1)
lines, merge in one or more files ... paste(1)
link ... link(1), link(2)
link editor1d(1)
link, copy, ormovefiles .. cp(1)
link, create to or remove from file ... link(1), link(2), unlink(2)
linker .. ld(1)
linker/assembler executable output file, description of ... a.out(5)
lint.lint(1)

r-ermurea maex

list active processes in system .. ps (1)
list contents of LIF directory ... lifls(1)
list contents of directories .. .Is(1)
list current users on system ... who(1)
list device drivers .. lsdev(1)
list file names with associated i-nodes ... ncheck(l)
list users and their current processes ... whodo(l)
II .. ls(l)
In ... cp(l)
localtime ... ctime(3C)
locate files in file system .. find(l)
locate source, binary, and/or manual for program ... whereis(l)
lock/unlock process address space or segment .. memlck(2)
log .. '" exp(3M)
log gamma function ... gamma(3M)
log results of work requests on remote system .. uucico(1 C)
log10 .. exp(3M)
logarithm, common ... exp(3M)
logarithm, natural .. exp(3M)
logging file for system errors ... errfile(5)
logging in on HP-UX ... 10gin(1)
Logical Interchange Format descriptionIif(l)
logical block, set number of bytes per logical block ... sdfinit(8)
login .. .Iogin(l)
login name, get ,Iogname(l), getiogin(3C)
login name, get ASCII string representing .. cuserid(3S)
iogin name, print .. .id(l)
login name, record for each user (accounting) ... utmp(5)
login sessions, print history of for user .. last(1)
lOgin time, record for each user (accounting) ... utmp(5)
login, establish baud rate and communication with terminal during .. getty(8)
logname .. .logname(l)
logouts, run command immune to .. nohup(l)
long integer, convert to base-64 ASCII .. a641(3C)
long integers, convert tolfrom 3-byte integers .. 13tol(3C)
longjmp ... seqmp(3C)
lorder. .. .Iorder(1)
lower-case to upper-case character conversion ... conv(3C)
LP spooler requests, schedule ... lpsched(8)
LP spooler system, enable/disable printers on ... enable(l)
LP spooler system, get status ofIpstat(1)
LP spooler system, move requests between different printersIpsched(8)
LP spooler system, schedule/cancel files for printing on. '"Ip(l)
LP spooler system, shut down1psched(8)
LP spooler, accept/reject requests for. ... accept(8)
LP spooler, configure .. .Ipadmin(8)
lp1p(l)
Ipadmin '" ,lpadmin(8)
Ipd .. lpd(1)
lpmove ... lpsched(8)
lprIpr(l)
lpsched .. lpsched(8)
lpshut. .. lpsched(8)
lpstat. .. .Ipstat(1)

- 20-

Permuted Index

Is ... 1s(l)
Isdevlsdev(l)
Iseek. .. lseek(2)
Isf .. Is(1)
Isr .. ls(l)
Isx .. ls(l)
ItoI3 .. 13tol(3C)
machine ID, get .. uname(l), uname(2)
macros for formatting entries in the HP-UX Reference manual ... man(7)
macros for formatting text.. ... mm(7)
magic numbers, description of ... magic (5)
magic.h, description of .. magic(5)
magnetic tape, description of raw interface and controls .. mt(4)
magnetic tape, manipulate and/or pOsition .. mt(1)
mail ... mail(l)
mail, read or send to other users .. mail(l), mailx(l)
mailx ... mailx(l)
maintain libraries, archives .. ar(l)
maintain, update, recompile programs ... make(l)
make ... make(l)
make file system on special file .. mkfs(8)
make posters in large letters ... banner(1)
makekey .. makekey(8)
malloc ... malloc(3C)
man .. man(l)
man macros, description of .. man(7)
manipulate wtmp records ... fwtmp(8)
mantissa, get from floating point valuefrexp(3C)
manual page (on-line), locate for program .. whereis(l)
manual, create preformatted manual pages for on-line ... catman(8)
manual, on-line ... man(l)
map characters into other characters during copy to standard output.. ... tr(1)
margins, put margin specifications in text filesfspec(5)
mark Command Set 80 cartridge tape ; ... tcio(1)
mark SDF operating system file as loadable/non-Ioadable .. osmark(8)
mark/unmark volume as HP-UX root volume ... rootmark(8)
mask, get/set file-creation ... sh(l), umask(l), umask(2)
MC68000 assembler ... as(1)
memadvise ... memadvise(2)
memallc ... , '" .. memallc(2)
memchmd ... memchmd(2)
memfree ... memallc(2)
memlck. ... memlck(2)
memory management, inform operating system about segment reference patterns memadvise(2)
memory management, modify segment length ... memvary(2)
memory segment access modes, change .. memchmd(2)
memory space, allocate and free .. memallc(2)
memory, allocate a block of ... malloc(3C)
memory, allocate for array ... malloc(3C)
memory, change size of previously-allocated block. .. malloc(3C)
memory, deallocate block of .. malloc(3C)
memory, write to disc ... sync(2), sync(8)
memulck. ... memlck(2)
memvary , .. memvary(2)

- 21 -

Permuted Index

merge contents of several files ... sort(1)
merge lines in one or more files .. paste(l)
mesg .. mesg(l)
messages, permit/deny to your terminal. ... mesg(l)
messages, read or send to other users .. mail(1), mailx(1)
messages, send to all users ... wall(l)
messages, send to another user interactively .. write(1)
mkdev ... mkdev(8)
mkdir .. mkdir(l)
mkfs ... mkfs(8)
mknod ... mknod(2), mknod(8)
mknod.h, description of ... mknod(5)
mktemp .. mktemp(3C)
mm .. mm(l)
mm macros, description of ... mm(7)
mm macros, print documents formatted with .. mm(l)
mnttab table, create ... setmnt(8)
mnttab.h, description of ... mnttab(5)
mod function, floating point ... floor(3M)
mode, change for file .. chmod(l), chmod(2)
model.h, description of ... model(5)
modf ... frexp(3C)
modify parameters of SCCS files .. admin(l)
modify segment length memvary(2)
monitor ... monitor(3C)
monitor uucp network ... uusub(8)
month, print calendar for .. cal(l)
more .. more(l)
mount ... mount(l), mount(2)
mount or un mount file system ... : mount(l), mount(2), umount(2)
mounted devices, create table of .. setmnt(8)
mounted devices, table of those mounted by mount(l) .. mnttab(5)
mounted file system statistics ... ustat(2)
mounted file system, find special file associated with ... devnm(8)
move LP requests to different destination printers ... lpsched(8)
move a directory mvdir(l)
move read/write file pointer; seeklseek(2)
move to new working directory ... cd(l), sh(l), chdir(2)
move, link, or copy files .. cp(l)
mt. ... mt(l)
mv ... cp(l)
mvdir .. mvdir(1)
name list (symbol table), extract entries from executable file's name list.. ... nlist(3C)
name list (symbol table), print from object file .. nm(l)
name, get loginlogname(l), getlogin(3C)
natural logarithm ... exp(3M)
ncheck .. ncheck(l)
ndir.h, description of .. directory(3X)
network special file, create .. mknod(2), mknod(8)
network, monitor uucp activity on ... uusub(8)
newgrp ... newgrp(l), sh(l)
new-line character, description of ... tty (4)
new-line characters, remove extras from file ... rmnl(l)
news .. news(l)

- 22-

Permuted Index

news, print current events ... news(l)
nice ... nice(I), nice(2)
nl .. nl(l)
nlist ... nlist(3C)
nm .. nm(l)
nodename, get ... revision(l), uname(I), uname(2)
nodename, set/print name of current. .. hostname(l)
nohup .. nohup(l)
nroff ... nroff(l)
nroff, format tables for .. tbl(I)
nroff, interpret output from nroff for printing ... col(l)
nroff, troff, tbl, eqn constructs, remove from text.. .. deroff(l)
number, factor using primes ... factor(I)
object code, locate for program ... whereis(l)
object file, debugger for .. adb(I), cdb(l)
object file, extract symbol table (name list) entries from ... nlist(3C)
object file, get size of ... size(l)
object file, print symbol table (name list) of.. ... nm(1)
object file, remove symbol table and relocation bits from .. strip(l)
object files, combine into program .. .1d(l)
object library, find ordering relation for1order(l)
octal, hexadecimal dump ... 0d(l)
od .. od(l)
on-line manual command .. man(l)
on-line manual, create preformatted manual pages for.. ... catrnan(8)
open .. open(2)
open a file and assign buffering to it ... fopen(3S)
open file for reading or writing .. open(2)
open file, assign buffering to .. setbuf(3S)
opendir .. directory(3X)
operating system management package description .. osmgr(8)
operating system, append to an existing operating system .. oscp(8)
operating system, change to different OS or different version of same OS .. chsys(8))
operating system, check integrity of OS in SDF boot area(s) ... osck(8)
operating system, copy from one or more SDF boot areas to another ... oscp(8)
operating system, create new operating system from ordinary files ... oscp(8)
operating system, mark as loadable or non-loadable .. osmark(8)
operating system, perform start-up tasks for and initialize .. rc(8)
operating system, shut down OS with optional re-boot.. ... stopsys(8)
operating system, split into one or more ordinary files .. oscp(8)
optarg .. getopt(3C)
opterr .. getopt(3C)
optind .. getopt(3C)
optinstall .. optinstall(8)
option letter, get from argv ... getopt(3C)
options, parse command line .. getopt(l)
options, set for termina1. .. stty(l)
options, set shell ... sh(l)
optupdate .. optinstall(8)
ordering relation, find for object library or archive file ... lorder(l)
ordinary file, create .. mknod(2)
ordinary file, create or overwrite .. creat(2)
OS management package description ... osmgr(8)
OS, append to an existing operating system ... oscp(8)

Permuted Index

as, change to different as or different version of same as .. chsys(8)
as, check integrity of operating system in SDF boot area(s) ... osck(8)
as, copy from one or more SDF boot areas to another .. oscp(8)
as, create new operating system from ordinary files .. oscp(8)
as, mark as loadable or non-Ioadable ... osmark(8)
as, perform start-up tasks for and initialize .. rc(8)
as, shut down operating system with optional re-boot.. .. stopsys(8)
as, split operating system into one or more ordinary files .. oscp(8)
osck .. osck(8)
oscp .. oscp(8)
osmark ... osmark(8)
osmgr ... osmgr(8)
output character or word to open file or standard output .. putc(3S)
output string to open file or standard output ... puts(3S)
output, description of formatted/unformatted output to printer ... lp(4)
output, description of system handling of terminal output.. .. tty(4)
output, print formatted data into string .. printf(3S)
output, print formatted data on buffered open file ... printf(3S)
output, print formatted data on standard output ... printf(3S)
overlay program onto existing process and execute .. sh(1), exec(2)
owner, change for file .. chown(l), chown(2)
pack ... pack(l)
page .. more(l)
page size, set for paged data .. uconfig(8)
paged data, set for program .. chatr(l)
parallel poll, conduct on HP-IB bus .. hpib_ppoll(3)
parallel poll, control response to on HP-IB bus ... hpib_ppolLresp(3)
parallel poll, wait for occurrence of on HP-IB bus ... hpib_waiLorLppoll(3)
parameter substitution .. sh(1)
parameters, environment. ... sh(l), environ(7)
parameters, install in environment. .. sh(l)
parameters, mark as readonly ... sh(l)
parameters, perform left-shift on positional. ... sh(l)
parameters, set for terminal ... stty(1)
parameters, set for terminal on login .. tset(1)
parent process ID, get for process .. getpid(2)
parity, settings for terminal .. tty (4)
parse command line options ... getopt(1)
Pascal compiler .. pc(l)
Pascal symbolic debugger ... cdb(1)
passwd ... passwd(1)
password file, close .. getpwent(3C)
password file, description of .. passwd(5)
password file, get line containing matching user ID .. getpw(3C)
password file, output line similar to those contained in ... putpwent(3C)
password file, read one line from .. getpwent(3C)
password file, rewind ... getpwent(3C)
password file, search for matching user ID .. getpwent(3C)
password file, search for matching user name ... getpwent(3C)
password, change login ... passwd(1)
password, encrypt. ... crypt(3C)
password, read from /dev/tty or standard input ... getpass(3C)
password/group file checkers .. pwck(8)
paste .. paste(1)

Permuted Index

path name, get for terminal. ... ttyname(3C)
path name, isolate directory name from .. basename(1)
path name, isolate file name from ... basename(l)
pattern, compile and execute ... regex(3)
pattern, find and process within text ... awk(1)
pattern, search contents of file for .. grep(l)
pause .. '" ... pause(2)
pause, suspend process for interval .. sleep(3C)
pc ... pc(l)
pcat .. pack(1)
pclose .. popen(3S)
pdb .. cdb(l)
PEEKC .. regexp(7)
permission bits, change for file .. chmod(l), chmod(2)
permuted index, generate .. ptx(l)
perror .. perror(3C)
pipe .. pipe(2)
pipe, create/close between process and command .. popen(3S)
pipe, get intermediate data from ... tee(l)
pipeline, create .. pipe(2)
pipeline, get intermediate data from ... tee(l)
plotter, description of hpib interface to ... hpib(4)
poll, conduct parallel poll on HP-IB bus ... hpib_ppoll(3)
poll, conduct serial poll on HP-IB bus ... hpib_spoll(3)
poll, control response to parallel poll on HP-IB bus .. hpib_ppoILresp(3)
poll, wait for occurrence of parallel poll on HP-IB bus .. hpib_waiLolLppoll(3)
popen .. popen(3S)
port, database listing terminal type connected to each ... tty type (5)
portable code between HP-UX implementations, typedefs for ... model(5)
pOSition magnetic tape ... mt(l)
positional parameters, perform left-shift on .. sh(l)
posters, make using large letters ... banner(l)
pow .. exp(3M)
power function .. exp(3M)
pr ... pr(1)
prealloc .. prealloc(2)
preprocessor for C compiler.. .. cpp(1)
primes ... factor(1)
print and format files ... pr(1)
print and summarize an SCCS file .. prs(l)
print arguments after shell interpretation .. echo(1)
print compressed contents of a file ... pack(1)
print current SCCS file editing activity ... sact(1)
print current environment .. printenv(1)
print documents formatted with mm macros ... mm(l)
print first few lines of file .. head(l)
print formatted data on standard output, open file, or string .. printf(3S)
print last part of file ... tail(l)
print list of users and their current processes ... whodo(1)
print name list (symbol table) of object file .. nm(l)
print name of current working directory .. pwd(l)
print news items ... news(1)
print prime numbers .. factor(1)
print time and date .. date(l)

Permuted Index

print user, group IDs and names .. .id(l)
print, copy, and/or concatenate files ... cat(l)
printable strings, locate in binary file .. strings(l)
printenv .. printenv(1)
printer daemon .. .lpd(l)
printer spooler .. lpr(1)
printer spooler system, accept/reject requests for ... accept(8)
printer spooler system, configurelpadmin(8)
printer spooler system, enable/disable printers on ... enable(1)
printer spooler system, schedule requests for .. .lpsched(8)
printer spooler system, shut down ... 1psched(8)
printer spooler, get status of LP ... lpstat(1)
printer spooler, move requests between different printerslpsched(8)
printer spooler, schedule/cancel files for printing on LP .. lp(1)
printer, description of formatted/unformatted output.. .. lp(4)
printer, description of hpib interface to ... hpib(4)
printer, description of laser printer driver .. laser(4)
printf .. , , printf(3S)
priority, run command at lower or higher ... nice(1), nice(2)
process and system state initialization .. .init(8)
process group lD, set.. ... setpgrp(2)
process number, get ... getpid(2)
process status, report .. ps(l)
process, change data segment space allocation for ... brk(2)
process, change root directory of .. chroot(l), chroot(2)
process, create a new fork(2)
process, create/close pipe between process and command .. popen(3S)
process, enable break-point debugging of child process ... ptrace(2)
process, format of core image of terminated process ... core(S)
process, get lD, group lD, and parent process ID of.. .. getpid(2)
process, get real/effective user and real/effective group ID's for .. getuid(2)
process, get/set file size limit for .. ulimit(2)
process, lock/unlock address space or segment ... memlck(2)
process, overlay new program onto existing ... sh(l), exec(2)
process, print accumulated user and system time elapsed for ... sh (1)
process, send SIGlOT to .. abort(3C)
process, send signal to .. kill(l), kill(2), abort(3C)
process, set group ID for .. setpgrp(2)
process, spawn new process in efficient way .. vfork(2)
process, suspend execution for interval of time ... sIeep(1), sleep(3C)
process, suspend until signaL ... pause(2)
process, terminate ... kill(l), sh(l), exit(2), kill(2), abort(3C)
process, time execution of .. times(2)
process, wait for completion of ... sh(1), wait(1), wait(2)
processes, list active .. ps(1)
processes, send signal to all user processes .. killall(8)
processes, specify maximum number of processes per user .. uconfig(8)
processes, terminate all user processes ... shutdown(8)
products, install/update optional HP-UX products ... optinstall(8)
prof ... prof(l)
profil .. , ... profil(2)
profile data, display .. prof(1)
profile files, description of /etc/profile and $HOME/.profile .. profile(S)
profile, create for program during execution ... profil(2), monitor(3C)

-26-

Permuted Index

program verification .. assert(3X)
program, add diagnostics to ... assert(3X)
program, change internal attributes of ... chatr(1)
program, check/verify C .. lint(l)
program, create execution profile for ... profi1(2), monitor(3C)
program, create from object files .. ld(l)
program, debugger for ... adb(l), cdb(l)
program, execute command from .. system(3S)
program, force action associated with signal to be taken ... ssigna1(3C)
program, format C ... cb(l)
program, generate for lexical analysis of text.. ... lex(1)
program, get particular addresses associated with ... end(3C)
program, get size of ... size(1)
program, locate source, binary, and/or on-line manual page for ... whereis(l)
program, maintain, update, and recompile ... make(l)
program, overlay onto existing process and execute ... sh(1), exec(2)
program, run immune to hangups, logouts, and quits ... nohup(l)
program, set up signal handling for ... signa1(2), sSignal(3C)
prs ... prs(l)
ps ... ps(l)
ptrace ... ptrace(2)
ptx .. ptx(l)
public UNIX-to-UNIX file copy ... uuto(lC)
push character back into input stream .. ungetc(3S)
putc .. putc(3S)
putchar ... putc(3S)
putpwent ... '" putpwent(3C)
puts ... puts(3S)
putw ... putc(3S)
pwck .. pwck(S)
pwd .. pwd(l)
pwd. h ... passwd(5)
Pythagorean theorem function ... hypot(3M)
qsort .. qsort(3C)
queue files for printing .. lpr(1)
quit character, description of ... tty(4)
quits, run command immune to .. nohup(l)
quoting, as used by the shell .. sh(l)
r27S0 ... r27S0(lC)
r27S0, format trace dump from .. r27S0trace(1)
r27S0trace .. r27S0trace(1)
rand ... rand(3C)
random number generator ... rand(3C)
randomize an archive .. ranlib(l)
randomized library/archive, table of contents format description ... ranlib(5)
ranlib .. ranlib(l)
ranlib. h, description of ... ranlib(5)
ratfor ... ratfor(l)
rational FORTRAN dialect.. .. ratfor(l)
raw interface to disc, description of ... disc(4)
raw mode, deSCription of raw mode interface to magnetic tape .. mt(4)
raw mode, description of raw output to printer ... lp(4)
rc .. rc(S)
read .. sh(l), read(2)

-'J.7-

Permuted Index

read and format data from buffered open file ... , scanf(3S)
read and format data from standard input.. ... scanf(3S)
read and format data from string ... scanf(3S)
read character from buffered open file .. getc(3S)
read error indicator on open file ... ferror(3S)
read from HP-IB bus .. hpib-lo(3)
read from 110 channel...io_read(3)
read from a file using buffers .. .fread(3S)
read from file ... read(2)
read from standard input. .. sh(1)
read operation, determine how last read terminated ... io_geLtelTl1Jeason(3)
read operation, reposition next .. .fseek(3S)
read password from Idev/tty or standard input .. getpass(3C)
read termination character, create for device file .. h . ..seLeol(3)
read text in convenient chunks on soft-copy terminal .. more(l)
read word from buffered open file .. getc(3S)
read-ahead, set number of buffers allocated to .. uconfig(8)
readdir ... directory(3X)
readonly ... sh(l)
read/write file pointer, move (seek) ... lseek(2)
real group ID, get for process ... getuid(2)
real user!D, get for process ... getuid(2)
realloc ... malloc(3C)
reblock tape file .. dd(l)
re-boot operating system after shut-down .. stopsys(8)
record login names, login times, and tty names for user ... utmp(5)
regcmp .. regex(3)
regex ... regex(3)
regexp.h, description of ... regexp(7)
regular expression compile and match routines .. regexp(7)
regular expression, compile and execute .. regex(3)
reject. ... accept(8)
relational database operator .. join(l)
release Command Set 80 cartridge tape .. tcio(1)
release number, get current .. revision(l), uname(l), uname(2)
relocation bits, remove from object file ... strip(l)
reminder service ... calendar(1)
remote system, execute work requests on .. uucico(lC), uux(lC)
Remove Enable line, control on HP-IB bus ... hpibJen_ctl(3)
remove a LIF file ... lifrm(l)
remove backing store devices .. vson(2)
remove delta from SCCS file ... rmdeI(l)
remove duplicate lines in file .. uniq(l)
remove extra new-line characters from file ... rrnnI(1)
remove files or directories ... rrn(l)
remove link to file .. link(l), unlink(2)
remove nroff/troff, tbl, and eqn constructs .. deroff(1)
remove selected fields from each line of a file .. cut(l)
remove selected table column entries from file .. cut(l)
remove symbol table and relocation bits from object file ... strip(1)
rename LIF files ... lifrename(l)
repair file system inconsistenciesfsck(8), fsdb(8)
reset 110 interface ... ioJeset(3)
reset error indicator on open file .. .ferror(3S)

- 2R-

Permuted Index

restricted shell (command interpreter) .. rsh(1)
RETURN ... regexp(7)
rev .. rev(l)
revck ... revck(8)
reverse line-feeds and backspaces, interpret for moff(l). ... col(l)
reverse lines in file ... rev(l)
reverse previous get(1) of sees file ... unget(1)
revision .. revision(l)
revision information, get HP-UX ... revision(l)
revision numbers, check for HP-UX files ... revck(8)
rewind ... fseek(3S)
rewind a file ... fseek(3S)
rewind group file ... getgrent(3e)
rewind magnetic tape ... mt(1)
rewind password file .. getpwent(3e)
rewinddir ... cIirectory(3X)
rm ... rm(1)
rmail. ... mail(l)
rmdel .. rmdel(1)
rmdir ... rm(l)
rmnl. ... rmnl(l)
root directory, change for duration of command ... chroot(1), chroot(2)
root volume, mark/unmark volume as HP-UX root volume ... rootmark(8)
rootmark. ... rootmark(8)
rsh ... rsh(l)
run a command at low priority ... nice(l), nice(2)
run a command immune to hangups, logouts, and quits ... nohup(l)
sact .. sact(l)
sbrk .. brk(2)
scan text for pattern and process ... awk(1)
scanf .. scanf(3S)
sees file, change delta commentary of .. cdc(l)
sees file, check for validity ... val(1)
sees file, compare two versions of ... sccsdiff(1)
sees file, create delta (change) for.. ... deIta(1)
sees file, description of sees file format ... sccsfile(5)
sees file, get identification information from .. what(1)
sees file, get version of .. get(1)
sees file, print and summarize ... prs(1)
sees file, print current editing activity for ... sact(1)
sees file, print delta summary of .. get(l)
sees file, remove delta from .. rmdei(1)
sees file, reverse previous get(l) of .. unget(l)
sees files, create or change parameters of ... admin(l)
sees, ask for help concerning .. help(l)
sccsdiff .. sccsdiff(l)
schedule LP spooler requests .. lpsched(8)
schedule commands at specified daters) and timers) ... at(l), cron(8)
schedule commands for cron(8), description of crontab ... crontab(5)
sconfig .. sconfig(8)
SDF boot area, copy as from one or more SDF boot areas to another.. ... oscp(8)
SDF volume, format, initialize, and certify .. sdfinit(8)
SDF, description of .. dir(5)
SDF, description of SDF volume .. '" '"fs(5)

<)0

Permuted Index

sdfinit. ... sdfinit(8)
search an ASCII file for pattern ... grep(1)
sed ... sed(l)
seek to new position in file " ,lseek(2)
seekdir ... directory(3X)
segment length, modify .. memvary(2)
segment reference patterns, inform operating system about.. ... memadvise(2)
segment, lock/unlock for process .. memlck(2)
select/reject common lines of two files ... comm(l)
send mail to users or read mail.. ... mail(l), mailx(l)
send signal to all user processes .. killall(8)
sequential 110, allocate disc storage for ... prealloc(2)
serial poll, conduct on HP-IB bus .. hpib-Spoll(3)
set , .. , .. , , sh(1)
set name of host cpu ... sethostname (2)
set options for terminal port ... stty(l)
set or print name of current host system ... hostname(1)
set process's alarm clock .. alarm(2)
set system parameters ... uconfig(8)
set tabs on a terminal ... tabs(1)
set the modes of a terminal.. .. getty(8)
set time and date ... date(l), stime(2)
set user and group IDs ... setuid(2)
setbuf ... setbuf(3S)
setgid .. setuid(2)
setgrent. ... _.__ __ ... getgrent(3C)
set-group-ID bit, set/clear for file ... chmod(l), chmod(2)
sethostname ... sethostname (2)
seijmp ... seijmp(3C)
setkey .. crypt(3C)
setmnt ... setmnt(8)
setpgrp ... setpgrp(2)
setpwent ... , ... getpwent(3C)
setuid .. setuid(2)
set-user-ID bit, set/clear for file .. chmod(l), chmod(2)
sh ... sh(l)
shareable, mark or unmark program code as ... chatr(l)
shell .. sh(1)
shell command, issue from program ... system(3S)
shell programming language ... sh(l)
shell, input commands to .. sh(1)
shell, restricted ... rsh (1)
shell, set/clear flags to .. sh(l)
shift .. sh (1)
shut down operating system with optional re-boot ... stopsys(8)
shutdown ... shutdown(8)
sign on .. .login(l)
signal , ... signaI(2)
signal handling for program, set up ... signal(2), ssignal(3C)
signal, force action associated with signal to be taken .. ssignal(3C)
signal, send SIGIOT to process .. abort(3C)
signal, send to all user processes ... killall(8)
signal, send to process .. kill(l), kill(2), abort(3C)
signal, set trap for .. sh (1)

-30 -

Permuted Index

signal, suspend process until receipt of ... pause(2)
signgam ... gamma(3M)
signs, make using large letters .. banner(1)
sin .. trig(3M)
sine function ... trig(3M)
sine, hyperbolic .. sinh(3M)
sinh .. sinh(3M)
size ... size(1)
size of an object file ... size(l)
sleep .. sleep(l)
sleep ... sleep(3C)
sort ... sort(1)
sort algorithm ... qsort(3C)
sort and/or merge files .. sort(l)
sort, topological ... tsort(1)
source code, locate for program .. whereis(l)
spaces, convert to tabs, and vice versa ... expand(1)
special characters in terminal interface, description of .. tty(4)
special file, create block/character/network. .. mkdev(8), mknod(2), mknod(8)
special file, create fifo ... mknod(2), mknod(8)
special file, identify for file name on mounted file system ... devnm(8)
special file, system "bit bucket" .. null(4)
special files, perform functions on .. .ioctl(2), stty(2)
special files, utilities used in creating special files ... mknod(5)
spell .. spell(l)
spellin ... spell(l)
spelling errors, find .. spell(l)
spellout ... spell(l)
split. ... split(1)
split a file into pieces ... split(l)
split operating system into one or more ordinary files ... oscp(8)
spool directory clean-up for uucp ... uuclean(8)
spooler, accept/reject requests for line printer .. accept(8)
spooler, configure LP .. .lpadmin(8)
spooler, enable/disable printers on LP .. enable(l)
spooler, get status of LP ... Ipstat(1)
spooler, move LP requests between different printers .. lpsched(8)
spooler, schedule LP requests ... lpsched(8)
spooler, schedule/cancel files for printing on LP .. .lp(l)
spooler, shut down LPlpsched(8)
sprintf .. printf(3S)
sqrt ... exp(3M)
square root function .. exp(3M)
srand .. rand(3C)
SRQ line, enable on HP-IB bus .. hpib_rqsLsrvce(3)
sscanf .. scanf(3S)
ssignal ... ssignal(3C)
stack size, specify size in bytes .. uconfig(8)
standard input, copy one line from to standard output ... line(1)
standard input, read from .. sh(l)
start character, resume output, description of .. tty(4)
stat ... stat(2)
stat(2)/fstat(2), description of structure returned by these calls .. stat(7)
state, defining system states for init(8)inittab(5)

_ Q1 _

Permuted Index

state, initialization of system state and processes ... init(8)
stat.h, description of .. stat(7)
status condition, wait for true status condition on HP-IB .. hpib_waiLon-status(3)
status flags, get/set for file " .. .fcntl(2)
status lines of GPIO card, return ... gpio_geutatus(3)
status of HP-IB interface, return ... " " hpib_bus-status(3)
status, get for file ... stat(2)
status, get for previous uucp commands .. uustat(1 C)
stdio .. , .. stdio(3S)
step ... regexp(7)
sticky bit, set/clear for file .. , ... chmod(l), chmod(2)
stime .. stime(2)
stop activity on HP-lB bus ... hpib_abort(3)
stop character, suspend output, description of ... tty (4)
stop operating system with optional re-boot. .. stopsys(8)
stopsys .. stopsys(8)
storage device, move data to permanent. .. fsync(2)
strcat ... string(3C)
strchr .. string(3C)
strcmp ... string(3C)
strcpy .. string(3C)
strcspn .. string(3C)
stream text editor .. sed(l)
stream, close or flush ... , fclose(3S)
string, copy ... string(3C)
string, get length of .. string(3C)
string, print formatted data into .. printf(3S)
string, read and format data from .. scanf(3S)
string, read from buffered open file ... gets(3S)
string, search contents of file for specified ... grep(1)

string, search for particular character in '"'' string(3C)
string, write to open file or standard output.. ... puts(3S)
strings .. strings(l)
strings, compare two , ... string(3C)
strings, concatenate two .. string(3C)
strip ... strip(1)
strlen ... string(3C)
strncat ... string(3C)
strncmp ... string(3C)
strncpy .. string(3C)
strpbrk .. string(3C)
strrchr ... string(3C)
strspn .. string(3C)
strtok .. string(3C)
structure, definition of structure returned by stat(2) and fstat(2) .. stat(7)
Structured Directory Format volume, format, initialize, and certify .. sdfinit(8)
Structured Directory Format, description of ... , dir(5)
Structured Directory Format, description of SDF volumefs(5)
stty ... stty(l)
stty ... stty(2)
su ... su(l)
sum ... sum(l)
summarize and print SCCS file .. prs(1)
superblock, deSCription of superblock in SDF volume ... fs(5)

- 32-

Permuted Index

suspend process execution for interval of time .. sleep(l), sleep(3C)
suspend process until signal. .. pause(2)
swab ... swab(3C)
swap bytes ... swab(3C)
swap parameters, reconfigure .. sconfig(8)
swap space reconfiguration .. sconfig(8)
swap time, set for virtual segment .. uconfig(8)
symbol table, extract entries from executable file's symbol table (name list) ... nlist(3C)
symbol table, print from object file ... nm(l)
symbol table, remove from object file ... strip(1)
symbolic debugger ... cdb(1)
symbols, examine execution profile for ... prof(1)
sync ... sync(2), sync(8)
sys-errlist. .. perror(3C)
sys-nerr ... perror(3C)
System 1II compatibility for magnetic tape, description of.. ... mt(4)
system ... system(3S)
system activity, terminate all current activity ... shutdown(8)
system calls, error indicator for ... errno(2)
system error logging file ... errfile(5)
system initialization shell script ... rc(8)
system name, get. ... revision(l), uname(l), uname(2)
system names, list of those known to uucp .. uucp(lC)
system parameters, set or list ... uconfig(8)
system reconfiguration .. uconfig(8)
system state, defining states for init(8) .. inittab(5)
system state, initialization of .. .init(8)
system swap space reconfiguration .. sconfig(8)
table of contents format deSCription for archivesllibraries .. ranlib(5)
table of contents, create for archive .. ranlib(l)
table of devices mounted by mount(l) ... mnttab(5)
table of mounted devices, create .. setmnt(8)
tables, format for nroffltroff ... tbl(l)
tabs ... tabs(l)
tabs, expand to spaces, and vice versa ... expand(1)
tabs, put tab specifications in text files ... fspec(5)
tabs, set on terminal ... tabs(1)
tail ... tail(1)
tan , ... trig(3M)
tangent function ... trig(3M)
tangent, hyperbolic ... sinh(3M)
tanh .. sinh(3M)
tape denSity, how to set for magnetic tape ... mt(4)
tape file archiver ... tar(l)
tape file, convert, reblock, translate and/or copy ... dd(l)
tape, Command Set 80 cartridge utility ... tcio(1)
tape, archive files on ... tar(1)
tape, description of magnetic tape raw interface and controls ... mt(4)
tape, manipulate and/or position .. mt(l)
tape, unpack/extract files from Command Set 80 cartridge ... upm(1)
tar .. tar(l)
tbl .. tbl(l)
tbl, nroff, troff, eqn constructs, remove from text.. .. deroff(1)
tcio ... tcio(1)

- 33-

Permuted Index

tee ... tee(l)
telldir ... directory(3X)
temporary file, create and open ... tmpfile(3S)
temporary file, generate name for .. tmpnam (35)
termcap ... termcap(5)
terminal capabilities in termcap(5), access ... termcap(3)
terminal capabilities, database for vi editor .. '" .. termcap(5)
terminal commands, description of ioctl(2) system call commands ... tty(4)
terminal dependent initialization .. tset(1)
terminal emulation, IBM 2780/3780 r2780(lC)
terminal emulation, asynchronous .. aterm(lC)
terminal flags, mapping between pwbN6 UNIX and current HP-UX ... , tty(4)
terminal input control, description of ... tty(4)
terminal, database listing terminal type for each port ... ttytype(5)
terminal, description of general interface to ... tty (4)
terminal, determine speed and settings for getty .. gettydefs(5)
terminal, establish communication with terminal for login .. getty(8)
terminal, facilitate viewing of continuous text on ... more(l)
terminal, find baud rate of terminal during login process .. getty(8)
terminal, generate file name for. .. ctermid(3S)
terminal, get path name of ... ttyname(3C)
terminal, get path name of user's .. tty(1)
terminal, permit/deny messages to .. mesg(l)
terminal, set options for ... stty(l)
terminal, set tabs on ... tabs(1)
terminal, set type and mode on login ... tset{ 1)
terminal, test file descriptor for association with .. ttyname(3C)
terminals, handle special functions of HP 2640/2621 hp(l)
terminals, list of recognized terminal names .. term(7)
terminals, list of supported terminals in termcap(5) ... term(7)
terminate a process ... kill(l), sh(l), exit(2), kill(2), abort(3C)
terminate all users' processes ... shutdown(8)
test. ... sh(l), test(l)
test conditional expressions ... sh(l), test(l)
text editor ... ed(l), ex(l)
text editor, database of terminal capabilities for vi termcap(5)
text editor, stream ... sed(l)
text editor, visual ... vi(l)
text file, put format specifications in .. .fspec(5)
text format specifications, put in text filefspec(5)
text formatter .. nroff(1)
text formatting, description of man macros ... man(7)
text formatting, description of mm macros .. mm(7)
text formatting, remove nroffitroffitbl/eqn constructs from text ... deroff(l)
text pattern scanning and processing language .. awk(1)
text, facilitate CRT viewing of continuous .. more(1)
text, find spelling errors in .. spell(l)
text, generate programs for lexical analysis of ... lex(1)
text, print using mm macros .. mm(l)
tgetent ... termcap(3)
tgetflag .. termcap(3)
tgetnum ... termcap(3)
tgetstr .. termcap(3)
tgoto ... termcap(3)

-34 -

Permuted Index

time ... time(1 }
time ... time(2}
time a command .. time(1}
time and date, convert to ASCII string .. ctime(3C}
time execution of a process and its child processes .. times(2}
time zone, time corrected for '" ... ctime(3C}
time, corrected for daylight saving time and time zone .. ctime(3C}
time, get seconds since 00:00:00 GMT, January 1, 1970 .. time(2}
time, print elapsed user and system time for process .. sh(l}
time, set and/or print ... date(I}, stime(2}
time/date stamps, correct those on wtmp records .. fwtmp(8}
timeout, set for 110 operations '" .. ,io-seLtimeout(3}
times .. sh(l}, times(2}
timezone ... ctime(3C}
tmpfile ... tmpfile(3S}
tmpnam .. tmpnam(3S}
toascii conv(3C}
_tolower '" conv(3C}
tolower conv(3C}
topological sort .. tsort(I}
touch .. touch(l}
_toupper ... '" conv(3C}
toupper conv(3C}
tputs .. termcap(3}
tr ... tr(I)
trace dump, format from r2780(1 C) .. r2780trace(I}
transfer files between two systems .. uucp(lC}, uuto(lC}
transfer speed, inform system of .. io-xfer-speed(3}
translate assembly language .. atrans(I}
translate characters during copy from standard input to standard output... ... tr(I}
translate tape file .. dd(l}
trap .. sh(l}
trap handler, enable/disable integer trap handler on Series 500 .. .intrapoff(3M}
trap numbers for hardware '" ... '" trapno(2}
trap, set for particular signal.. ... sh(l}, signal(2}, sSignal(3C}
trapno '" ... '" '" , .. trapno(2}
trapno, report value for last command failure .. err(l}
trigonometric functions ... trig(3M}
troff, format tables for ... tbl(I}
troff, nroff, tbl, eqn constructs, remove from text.. .. deroff(l}
true .. true(I}
truncate ... truncate(2}
truth values .. true(I}
tset ... tset(1 }
tsort .. '" .. tsort(1 }
tty .. tty(l}
tty name, record for each user (accounting) .. utmp(5}
tty port, database listing terminal type connected to each .. ttytype(5}
ttyname .. ttyname(3C}
type declarations, data type definitions for system code ... types(7)
typedefs for code portability between HP-UX implementations ... mode1(5}
types.h, description of .. types(7}
tzname .. ctime(3C}
tzset .. ctime(3C}

Permuted Index

uconfig , .. uconfig(8)
ul .. u1(1)
ulimit. .. ulimit(2)
umask .. sh(I), umask(1), umask(2)
umount ... mount(I), umount(2)
uname ... uname(I), uname(2)
unblocked disc interface, description of.. " .. disc(4)
underlining, translate underscores to terminal escape sequence .. ul(l)
underscores, translate to terminal escape sequence forunderlining ... ul(l)
unexpand ... expand(l)
unget .. unget(l)
UNGETC .. regexp(7)
ungetc ... ungetc(3S)
uniq .. uniq(l)
unique lines, find after comparing two files .. " , comm(l)
units ... units(l)
UNIXlHP-UX system, establish communication with another .. cu(IC)
unlink ... link(I), unlink(2)
unlock/lock process address space or segment .. memlck(2)
unmount or mount file system ... mount(I), mount(2), umount(2)
unpack ... unpack(l)
unpack cpio archives from HP media ... upm(l)
update access/modification/change times of file , " touch(I), utime(2)
update optional HP-UX products , ... optinstall(8)
update super-block ... " " ... , , sync(2), sync(8)
update, maintain, recompile programs ,. , ... make(1)
upm .. upm(l)
upper-case to lower-case character conversion ... conv(3C)
user ID, get line from password file with matching ... getpw(3C)
user ID, print """"",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, .. id(l)
user ID, search password file for matching .. getpwent(3C)
user ID, set... ... " " setuid(2)
user environment, description of.. ... environ(7)
user name, print .. id(l)
user name, search password file for matching .. " getpwent(3C)
user processes, terminate all .. shutdown(8)
user, print history of logins/logouts for .. last(l)
user, switch to another ... , .. , su(1)
users, print list of current.. .. who(l)
users, print list of users and their current processes ... whodo(l)
ustat .. '" .. ustat(2)
utime .. utime(2)
utmp accounting file, description of " .. utmp(5)
utmp.h, description of .. utmp(5)
uucico ... uucico(IC)
uuclean .. uuclean(8)
uucp .. uucp(IC)
uucp command execution .. uuxqt(1 C)
uucp connections, get status of ... uustat(lC)
uucp network, monitor activity """""'''''''''''''''''''''''''''''' .. uusub(8)
uucp spool directory clean-up .. uuclean(8)
uucp status inquiry and job control """"'' uustat(IC)
uucp system names, list of .. uucp(IC)
uucp/uux transactions, log of.. .. , , uucp(lC)

- 36-

Permuted Index

uulog ... uucp(lC)
uuname ... uucp(lC)
uupick .. uuto(lC)
uustat. .. uustat(lC)
uusub ... uusub(8)
uuto ... uuto(lC)
uux ... uux(lC)
uuxqt ... uuxqt(lC)
val ... va1(1)
validate SCCS file .. val(l)
validate password and group files ... pwck(8)
verify C program ... lint(l)
verify Command Set 80 cartridge tape .. tcio(1)
verify file system consistency .. .fsck(8)
verify password and group files ... pwck(8)
version name, get for HP-UX .. uname(l), uname(2)
version number, get ... revision(1)
versions, compare two SCCS file versions .. sccsdiff(l)
vfork .. fork(2)
vfork .. vfork(2)
vi ... vi(l)
vi editor, database of terminal capabilities for. ... termcap(5)
view .. vi(l)
viewing text, facilitate on soft-copy terminals ... more(1)
virtual memory page pool, specify maximum size of ... uconfig(8)
virtual memory usage, set or clear for program .. chatr(1)
virtual memory working set ratio, set ... uconfig(8)
virtual segment, establish time segment remains memory resident.. .. uconfig(8)
visual text editor .. vi (1)
volume header, write LIF on file .. lifinit(l)
volume, description of SDF volume superblock .. fs(5)
volume, format, initialize, and certify SDF volume .. sdfinit(8)
volume, mark/unmark as HP-UX root volume .. rootmark(8)
vsadv .. vsadv(2)
vsoff ... vson(2)
vson ... vson(2)
wait ... sh(l), wait(l), wait(2)
wait for completion of process .. sh(l), wait(l), wait(2)
wall .. wall(l)
wc ... wc(1)
what. .. what(l)
whereis .. whereis(1)
while loop, exit from enclosing .. sh(1)
while loop, resume the next iteration of ... sh(l)
who .. who(l)
whodo .. whodo(l)
width of data path, set for interface .. io-xfeLmode(3)
word, read from buffered open file ... getc(3S)
word, write on buffered open file or standard output .. putc(3S)
words, count number contained in file .. wc(1)
words, find all hyphenated .. hyphen(1)
working directory, change ... cd(1), sh(l), chdir(2)
working directory, print name of .. pwd(l)
write ... write(l), write(2)

- 37-

Permuted Index

write L1F volume header on file ... lifinit(l)
write character on buffered open file or standard output.. ... putc(3S)
write current contents of memory to disc ... sync(2), sync(8)
write interactively to another user .. write(l)
write on a file .. write(2)
write operation, repOSition next .. fseek(3S)
write password file entry .. putpwent(3C)
write string to open file or standard output.. .. puts(3S)
write to HP-IB bus .. hpib--io(3)
write to a file using buffersfread(3S)
write to all users .. waIl(l)
write to channel device file ... io_write(3)
write word on~uffered open file or standard output ... putc(3S)
wtmp accounting file, description of.. .. utmp(5)
wtmp records, convert from binary to ASCII ... fwtmp(8)
wtmp records, correct time/date stamps on .. fwtmp(8)
wtmpfix .. fwtmp(8)
xargs .. xargs(l)
xd .. od(1)
yO .. bessel(3M)
yl .. bessel(3M)
yacc .. yacc(l)
year, print calendar for ... cal(l)
yn .. bessel(3M)

- 38-

Manual Comment Card
If you have any comments or questions regarding this manual, write them
on this comment card and place it in the mail. Include page numbers with
your comments wherever possible. Enter the last date from the Printing
History page on the line above your name. Also include a return address so
that we can respond as soon as possible.

HP-UX Reference
for the HP 9000 Series 2001500

09000-90007 March 1985

Last Date: ______ _
(See the Printing History in the front of the manual)

Name: ________________________ __

Company: _____________________ ___

Address: _____________________ _

Phone No: _____________ _


~~~~~ ~~.~ NO~7E~~y'O. ~l~~~J 
POSTAGE WILL BE PAID BY ADDRESSEE 

Hewlett-Packard Company 
Fort Collins Systems Division 
Attn: Customer Documentation 
3404 East Harmony Road 
Fort Collins, Colorado 80525 

II 
NO POSTAGE 
NECESSARY 

IF MAILED 
INTHE 

UNITED STATES 

----------------------------------------------------------------------



Manual Comment Card 
If you have any comments or questions regarding this manual, write them 
on this comment card and place it in the mail. Include page numbers with 
your comments wherever possible. Enter the last date from the Printing 
History page on the line above your name. Also include a return address so 
that we can respond as soon as possible. 

HP-UX Reference 
for the HP 9000 Series 2001500 

09000-90007 March 1985 

Last Date: ______ _ 
(See the Printing History in the front of the manual) 

Name: ________________________ __ 

Company: ______________ ~ ______ ___ 

Address: _____________________ _ 

Phone No: _____________ _ 



~~~Is~~~~ No~E~~Y.D. ~L~~~J 
POSTAGE WILL BE PAID BY ADDRESSEE

Hewlett-Packard Company
Fort Collins Systems Division
Attn: Customer Documentation
3404 East Harmony Road
Fort Collins, Colorado 80525

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

--

Manual Comment Card
If you have any comments or questions regarding this manual, write them
on this comment card and place it in the mail. Include page numbers with
your comments wherever possible. Enter the last date from the Printing
History page on the line above your name. Also include a return address so
that we can respond as soon as possible.

HP-UX Reference
for the HP 9000 Series 2001500

09000-90007 March 1985

Last Date: ______ _
(See the Printing History in the front of the manual)

Name: __ _

Company: _____________________ ___

Address: _____________________ __

Phone No: ____________ _


~~~~~ ~!?~ NO~7E~~y'O. ~~!~J 
POSTAGE WILL BE PAID BY ADDRESSEE 

Hewlett-Packard Company 
Fort Collins Systems Division 
Attn: Customer Documentation 
3404 East Harmony Road 
Fort Collins, Colorado 80525 

II 
NO POSTAGE 
NECESSARY 

IF MAILED 
IN THE 

UNITED STATES 





Part No. 09000-90007 
E0385 

Microfiche No. 09000-99007 

F/iOW HEWLETT 
a!~ PACKARD 

Printed in U.SA 
Edition 1 with update 

March 1985 


