
Device I/O and User Interfacing
HP-UX Concepts and Tutorials

HP Part Number 97089-90052

r/i~ HEWLETT
a!~ PACKARD

Hewlett-Packard Company
3404 East Harmony Road, Fort Collins, Colorado 80525

NOTICE
The information contained in this document is subject to change without notice.

HEWLETT -PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MANUAL, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable
for errors contained herein or direct, indirect, special, incidental or consequential damages in connection with the furnishing, performance,
or use of this material.

WARRANTY
A copy of the specific warranty terms applicable to your Hewlett-Packard product and replacement parts can be obtained from your local
Sales and Service Office.

Copyright 0 Hewlett-Packard Company 1986, 1987

This document contains Information which is protected by copyright. All rights are reserved. Reproduction, adaptation, or translation without
prior written premission is prohibited, except as allowed under the copyright laws.

Restricted Rights Legend

Use, duplication or disclosure by the U.S. Government Department of Defense is subject to restrictions as set forth in paragraph (b)(3)(ii) of the
Rights in Technical Data and Software clause in FAR 52.227-7013.

Copyright © AT&T, Inc. 1980, 1984

Copyright C0 The Regents of the University of California 1979,1980,1983

This software and documentation is based in part on the Fourth Berkeley Software Distribution under license from the Regents of the University
of California.

ii

Printing History
New editions of this manual will incorporate all material updated since the previous
edition. Update packages may be issued between editions and contain replacement and
additional pages to be merged into the manual by the user. Each updated page will be
indicated by a revision date at the bottom of the page. A vertical bar in the margin
indicates the changes on each page. Note that pages which are rearranged due to changes
on a previous page are not considered revised.

The manual printing date and part number indicate its current edition. The printing
date changes when a new edition is printed. (Minor corrections and updates which are
incorporated at reprint do not cause the date to change.) The manual part number
changes when extensive technical changes are incorporated.

September 1986 ... Edition 1

December 1986 ... Update 1. Device I/O Library tutorial rewritten and expanded to clarify
hardware/software operation and to document new subroutines added at Series
300 HP-UX Release 5.2. Appendix F added to include a non-trivial applications
programming example.

June 1987 ... Edition 2. Update incorporated. Native Language Support tutorial added for
Series 300 and Series 800 HP-UX. UUCP tutorial rewritten to include new UUCP
procedures, remove duplicate material and reorganize chapters.

October 1987 ... Edition 3. This new edition incorporates new features, more information
and more examples.

97089-90052, rev: 10/87 Printing History iii

iv Printing History

Table of Contents

Chapter 1: Interfacing Concepts
Variation Between Computer Systems " 1
Manual Organization .. 2
DIL Interfacing Subroutines .. 3

Linking DIL Routines ... 3
Calling DIL Routines from Pascal 4
Calling DIL Routines from FORTRAN '" , 4

General Interface Concepts. .. 5
Definition .. 5
Interface Functions. .. 6
Handshake I/O .. 7
HP -IB Protocol. .. 8

The HP-IB Interface .. 9
General Structure .. 9
Handshake Lines. .. 10
Bus Management Control Lines. .. 14

The GPIO Interface .. 15

Chapter 2: General-Purpose Routines
Background Basics .. 18

Interface Special Files .. 18
Entity Identifiers (eid) .. 18
Programming Model ... 18
General-Purpose Routines ... 19

Opening Interface Special Files .. 20
Closing Interface Special Files 22
Low-Level Read/Write Operations 23
Designing Error Checking Routines. .. 25

The errno Variable ... 25
Using errno ... 26

Resetting Interfaces .. 28
Locking an Interface. .. 29

Table of Contents

Chapter 2: General-Purpose Routines (continued)
Controlling I/O Parameters .. , 30

Setting I/O Timeout ... 31
Setting Data Path Width 32
Setting Minimum Data Transfer Rate 34
Setting the Read Termination Pattern .. 34
Disabling a Read Termination Pattern. .. 37

Determining Why a Read Terminated 38
Interrupts ... 41

Integral PC Interrupt Support . '.' , 41
Series 300 and 500 Interrupt Support 41

Chapter 3: Controlling the HP-IB Interface
Overview of HP-IB Commands " 46
Overview of HP-IB DIL Routines .. 50

Standard DIL Routines ... 50
HP-IB: The Computer's Role " 51

Bus Citizenship: Surviving Multi-Device/Multi-Process HP-IB 53
io_lock and io_ unlock. .. 54
io_burst .. 54
hpib_io ... 54

Opening the HP-IB Interface File .. 55
Sending HP -IB Commands. .. 55
Active Controller Role .. 58

Determining Active Controller .. 58
Setting Up Talkers and Listeners. .. 59
Remote Control of Devices .. 63
Locking Out Local Control. .. 63
Enabling Local Control .. 64
Triggering Devices ... 64
Transferring Data .. 65
Clearing HP -IB Devices. .. 66
Responding to Service Requests. .. 67
Parallel Polling .. 69
Waiting For a Parallel Poll Response 75
Serial Polling .. 79
Passing Control. .. 81

ii Table of Contents

Chapter 3: Controlling the HP-IB Interface (continued)
System Controller Role ... " 83

Determining System Controller .. 83
System Controller's Duties .. 84

The Computer As a Non-Active Controller 86
Checking Controller Status. .. 86
Requesting Service .. 87
Responding to Parallel Polls. .. 89
Disabling Parallel-Poll Response .. 92
Accepting Active Control ... 92
Determining When You Are Addressed 94

Combining I/O Operations into a Single Subroutine Call 98
lodetail: The I/O Operation Template 99
Allocating Space .. 102
Example .. " 103
Locating Errors in Buffered I/O Operations 105

Chapter 4: Controlling the GPIO Interface
Configuring the GPIO Interface ... 107

Configuring the Integral PC GPIO , 107
Setting Interface Switches ... , 108
Creating the GPIO Interface File 108

Interface Control Limitations .. , 109
Using DIL Subroutines .. 110

Resetting the Interface .. , 111
Performing Data Transfers .. , 112
U sing Status and Control Lines .. 113
Controlling Data Path Width 115
Controlling Transfer Speed ... 115
Burst Transfers ... 116
Read Terminations .. 116
Interrupts .. 116

Interrupt-Driven Transfer Mode .. 117

Table of Contents iii

Appendix A: Series 500 Dependencies
Device I/O Library Location ... 119
The GPIO Interface ... 120

Data Lines ... 120
Handshake Lines. .. 120
Special-Purpose (Control and Status) Lines 121
Data Handshake Methods. .. 121
Latching Data 'fransfers .. , 121

Creating the Interface Special File 122
Creating an Interface File .. 122

Determining Interface Card Bus Address 125
Effects of Resetting (via io_reset) 125
Entity Identifiers. .. 126
DIL Subroutine Use Restrictions .. 126

hpib_bus_status .. 126
hpib_card_ppoILresp .. 127
hpib_rqst_srvce ... 128
hpib_send_cmnd .. 128
hpib_status_ wait ... , 128
hpib_ wait_on_ppoll. .. 128
io_get_term_reason .. 129
io_on_interrupt .. 130
io_timeout_ctl ... , 130
io_speed_ctl .. 130
io_ width_ctl .. 130

Performance Tips .. 131

Appendix B: Series 200/300 Dependencies
Location of the DIL Subroutines .. 133
Linking DIL Subroutines. .. 134
The GPIO Interface ... 134

Data Lines .. 134
Handshake Lines. .. 135
Special-Purpose Lines ... 135
Data Handshake Methods. .. 135
Data-In Clock Source .. 136

Creating the Interface Special File 137
Creating the Special File. .. 137

Effects of Resetting (via io_reset) 140
Entity Identifiers. .. 140

iv Table of Contents

Appendix B: Series 200/300 Dependencies (continued)
Restrictions Using the DIL Subroutines " 141

hpib_io .. 141
hpib_send_cmnd .. 141
hpib_status .. 141
io_interrupt_ctl ... " 141
io_on_interrupt ... 141
io_reset .. 142
io_speed_ctl .. 142
io_timeout_ctl .. 142

Performance Tips ... 143
Simulating Interrupts for the HP-IB Interface 144
Simulating Interrupts on the GPIO Interface 146

Appendix C: Integral PC Dependencies
Location of the DIL Routines ... " 150
The GPIO Interface ... 150
Creating an Interface Special File 151

GPIO Interface Files .. 151
HP-IB Interface Files .. 151
Unloading the DIL Drivers ... 151

Interrupts .. " 152
Controlling the HP-IB Interface ... 152

Limitations on the HP-IB Interface 152
The Computer as a Non-Active Controller 152

Non-Standard DIL Routines .. 153
General-Purpose Routines .. 153
Non-Standard HP-IB Routines 153
Non-Standard GPIO Routines 153

Restrictions Using the DIL Routines 154
hpib_bus_status .. 154
hpib_card_ppoILresp .. 154
hpib_ppoILresp_ctl. .. 154
io_eol_ctl .. 154
io_reset .. 154
io_speed_ctl .. 155
io_timeout_ctl .. 155
io_ width_ctl .. 156
open(2) .. 156
read(2) and write(2) ... 156

Table of Contents v

Appendix D: Series 800 Model 840 Dependencies
Compiling Programs That Use DIL 158
Accessing the Interface Special Files 158

Major Numbers. .. 158
Minor Numbers and Logical Unit Numbers 159
Listing Special Files .. 160
Naming Conventions for Interface Special Files 161

Creating Interface Special Files .. 162
Hardware Effects on DIL Routines 163

hpib_rqst_srvce .. 163
io_eol_ctl .. 163
io_reset .. 163
io_speed_ctl .. 164
io_timeout_ctl .. 164
io_ width_ctl .. 164
Return Values for Special Error Conditions 164

DIL Support of HP-IB Auto-Addressed Files 165
hpib_card_ppoILresp .. 167
hpib_io .. 167
hpib_ren_ctl .. 167
hpib_send_cmd .. 167
hpib_spoll. .. 167
hpib_ wait_on_ppoll. .. 167
io_on_interrupt .. 167

Performance Tips .. 168
Process Locking .. 168
Setting Real-Time Priority .. 169
Preallocating Disc Space ... 169
Reducing System Call Overhead .. 170
Setting Up Faster Data Transfers 170

Appendix E: ASCII Character Codes

Appendix F: DIL Programming Example

vi Table of Contents

Interfacing Concepts 1
This tutorial explains how to access arbitrary I/O devices from HP-UX through HP-IB
(Hewlett-Packard Interface Bus) and GPIO (General-Purpose I/O) interfaces by using
subroutines contained in the HP-UX Device I/O Library (DIL). Topics discussed include
general I/O programming strategies, as well as strategies related specifically to HP-IB
and GPIO interfaces.

It is assumed that communication with I/O devices is handled through calls to DIL
subroutines from C, Pascal, or FORTRAN programs. Examples shown in this tutorial
are written in C, but the techniques illustrated are easily converted for use with Pascal
or FORTRAN by adding a little extra code.

Variation Between Computer Systems
In general, DIL subroutines function identically on all HP-UX computers, whether In­
tegral PC, Series 200/300, 500, or 800. However, because of certain inherent differences
between processors and other hardware, some differences do exist. When such differences
arise during an explanation, they are clearly identified by introductory headings such as:

• Series 500 Only:

• Integral PC Only:

• Series 200/300 Only:

Additional major differences related to a specific model or series are identified in a
separate appendix for that model or series. Appendices are provided for Series 200/300,
500, 800, and the Integral PC.

Interfacing Concepts 1

Manual Organization
Chapter 1: Interfacing Concepts presents basic I/O programming concepts and a de­
scription of the HP-IB and GPIO interfaces.

Chapter 2: General-Purpose Routines discusses how to access interfaces from HP-UX
environment and how to implement I/O transfers.

Chapter 3: Controlling the HP-IB Interface describes I/O programming techniques for
the HP-IB interface.

Chapter 4: Controlling the GPIO Interface discusses I/O programming techniques for
the GPIO interface.

Appendix A: Series 500 Dependencies discusses hardware- and system-dependent char­
acteristics of DIL subroutines when used with Series 500 computers. If you are using a
Series 500 HP-UX system, check this appendix to ensure correct use of DIL subroutines.

Appendix B: Series 200/300 Dependencies is similar to Appendix A, but for Series
200/300 computers. Use this appendix to ensure the correct use of DIL subroutines
on Series 200/300 systems.

Appendix C: Integral PC Dependencies describes hardware- and system-dependent char­
acteristics related to the Integral PC. refer to this appendix to ensure the proper usage
of DIL routines on the Integral PC.

Appendix D: Series 800 Dependencies is similar to other appendices, but for Series 800
computers. Use this appendix to ensure the correct use of DIL subroutines on Series 800
systems.

Appendix E: Character Codes

Appendix F: DIL Programming Example shows a non-trivial example of an Amigo­
protocol HP-IB device driver suitable for driving HP-IB line printers that support Amigo
protocol (commonly used on certain HP-IB disc drives and line printers). This example
program shows good HP-UX programming practice, and illustrates a number of other
techniques and features such as parsing a command with arguments.

2 Interfacing Concepts

OIL Interfacing Subroutines
As mentioned previously, Device I/O Library (DIL) subroutines provide a means for
directly accessing peripheral devices through HP-IB and/or GPIO interfaces connected
to your computer system. Some routines are general-purpose and can be used with any
interface supported by the library, while others provide control of only certain specific
HP-IB or GPIO interfaces.

Linking OIL Routines
DIL routines can be called from C, Pascal, or FORTRAN programs. However, the -1
flag must be given when invoking the C, Pascal, or FORTRAN compiler, cc(l), pc(l), or
fc(l). Otherwise, library subroutines are not automatically linked with your program.
To link DIL subroutines to a compiled C program, invoke the C compiler as follows:

cc -ldvio program.c

Similarly, for a Pascal program, use:

pc -ldvio program.p

and for a FORTRAN program, use:

fc -ldvio program.f

In all three cases, the -1 option is passed to the HP-UX linker, causing it to link any DIL
routines called by the program being compiled. To determine the exact location of DIL
library on your HP-UX system, refer to the corresponding hardware-specific appendix in
this tutorial.

Interfacing Concepts 3

Calling OIL Routines from Pascal
You must provide an external declaration for each DIL subroutine called from a Pascal
program. An external declaration consists of the subroutine heading, including a formal
parameter list and result type, followed by the Pascal EXTERNAL directive. For example,
the C description of open(2) is:

int open (path. of lag)
char *path;
int of lag;

The equivalent external declaration for the same subroutine in a Pascal program is:

TYPE
PATHNAME = PACKED ARRAY [0 .. 50] OF CHAR;

FUNCTION open
(VAR path: PATHNAME;
of lag: INTEGER):
INTEGER;
EXTERNAL;

Note that the path parameter is a VAR parameter, indicating that the parameter is passed
by reference. This simulates the passing of a pointer, which is what open(2) expects. In
general, declaring a C routine from Pascal is straightforward.

Calling OIL Routines from FORTRAN
C and FORTRAN subroutine calls are not compatible because C passes parameters by
value while FORTRAN passes them by reference. This incompatibility can be easily
circumvented by directing the compiler to generate a call by value through the use of
FORTRAN's $ALIAS option. For example:

$ALIAS close = 'close' (%val)

If the FORTRAN compiler on your system does not support this form of $ALIAS, the
parameter-passing differences can be resolved by writing an onionskin routine which is a
C-Ianguage function written for the purpose of resolving parameter-passing irregularities
between C and other languages.

4 Interfacing Concepts

For example, to access close(2) through an onionskin routine, use:

$ALIAS close = '_my_io_close'

then write the onionskin routine:

int my_io_close (eid)
/* the compiler will create the external symbol n_my_io_close n

based on the above declaration*/
int *eid;
{

return (close (*eid»;
}

General Interface Concepts
The remainder of this chapter discusses interfaces in general and the HP-IB and GPIO
interfaces in particular. This background information is helpful for understanding system
operation, but is not prerequisite to being able to successfully use DIL routines.

Definition
An interface is a built-in or plug-in electronic subassembly that manages the transfer
of information between the computer and one or more peripheral devices. It converts
electrical signals from the computer to a form that is compatible with the requirements
of the peripheral device and converts signals from the peripheral device to a form that
can be used by the computer. The interface also controls information transfer paths and
transfer timing such that data flows in an orderly manner in correct sequence.

HP 9000 computers are equipped with both built-in as well as plug-in interfaces that
can be purchased as standard or optional items. Separate interface cabling connects the
peripheral device(s) to the interface unless the peripheral device is built into the computer
housing. The following functional block diagram illustrates the functional architecture
of a typical interface:

Interfacing Concepts 5

r------------------------,

Computer

I/O
Backplane
Connector
r---

Interface Logic
r--- and -

Control Circuitry

Electrical
Level Conversion
Circuitry
r----

I/O
Device
Connector
-

-

Figure 1-1. Interface Functional Diagram

Interface Functions
A usable interface must fill the following system requirements:

Peripheral
Device

• Electrical Compatibility: The interface must convert electrical signal voltages, cur­
rents, frequencies, and timing from the computer to a form that is useful to the
peripheral device, and vice-versa (unless no conversions are necessary). It must
also provide any special protection that might be necessary to protect circuitry
within the computer or peripheral from damage due to external effects related to
the interface cable or power source.

• Mechanical Compatibility: The interface must be mechanically structured so that it
is readily connected to both the computer and the peripheral device. This is usually
accomplished by means of an interface cable that has appropriate connectors on
each end.

• Data Compatibility. Just as two people must speak a common language before
they can communicate well, the computer and peripheral must use compatible
forms of communication. While in most cases, the computer operating system and
the programmer are responsible for general data format, communication protocols
such as those used in data communication networks and HP-IB interconnections are
usually managed by the interface card, based upon various signals and commands
from the computer and the peripheral device.

6 Interfacing Concepts

• Timing Compatibility. Peripheral devices within a given system rarely have iden­
tical data transfer rates and data transfer timing requirements. They also rarely
match the timing and transfer rates in the computer or other devices in the system.
For this reason, one of the most important functions of the interface is to manage
and coordinate the interaction between the computer and the interface as well as
timing between the interface and peripheral devices by using special timing signals
that are inserted into the data being transferred (most common in data commu­
nication interfaces) or carried on separate control signal lines (typical for HP-IB
and GPIO interfaces). These timing signals are used to coordinate when a transfer
begins and at what rate the information is handled.

• Processor Overhead Reduction: Another important function of the interface card
is to relieve the computer of low-level tasks, such as performing data transfer hand­
shakes. This distribution of tasks eases some of the computer's burden and de­
creases the otherwise stringent response-time requirements of external devices. The
actual tasks performed by each type of interface card vary widely. The remainder
of this chapter concentrates on the functions of two particular interfaces: HP-IB
and GPIO.

Handshake I/O
Most HP-IB and GPIO interfaces operate by means of handshake transfers which operate
generally as follows:

Handshake Output

• Computer sets input/output control to output and places first word or byte on I/O
bus to interface.

• Computer asserts peripheral control line to interface to start transfer.

• Interface recognizes asserted control signal from computer and transfers data to
output drivers and interface cable.

• Interface asserts output timing signals to peripheral device and waits for response.

• Peripheral accepts output timing signals, inputs data from interface cable, then
returns flag signal indicating data has been accepted.

• Interface recognizes flag and sets flag to computer indicating the transaction is
complete. If the sender and receiver do not agree upon start time and transfer rate,
then the transfer is carried out via a handshake process: the transfer proceeds one
data item at a time with the receiving device acknowledging that it received the
data and that the sender can transfer the next data item. Both types of transfers
are utilized with different interfaces.

Interfacing Concepts 7

Handshake Input

• Computer sets input/output control to input.

• Computer asserts peripheral control line to interface to start transfer.

• Interface recognizes asserted control signal from computer, sends data input com­
mand sequence to peripheral device, and waits for response.

• Peripheral accepts input command sequence, places data on interface cable, then
returns flag signal indicating data is available.

• Interface recognizes flag, moves data to computer I/O bus, and sets flag to computer
indicating the transaction is complete.

Different interfaces support variations on this basic sequence. For example, more sophis­
ticated data communication and HP-IB cards may be equipped with a microprocessor
and shared memory that is directly accessible to the computer and the interface pro­
cessor. The computer moves data to and from shared memory according to program
needs, while the interface processor performs similar operations to meet the demands
of any data transfers in progress. Shared pointers and other flags prevent collisions be­
tween conflicting demands from the two processors, and the increased efficiency of a
"smart" interface greatly reduces the complexity and overhead related to more mundane
approaches to interrupt-driven handshake I/O.

For example, instead of handling each character or word as a single transaction, the
computer can load a block of data into the shared memory then signal the interface that
data is ready for transfer. The interface then uses the shared pointers or other means
to determine how much data to transfer, handles the transfer, then signals the computer
that the task is complete.

HP-IB Protocol
When a single interface is shared by multiple peripheral devices, additional signalling
must be used to control which devices respond to each transaction as in HP-IB interfacing.
A selection of protocol signals and device commands are used to activate or deactivate
various devices on the HP-IB bus according to the needs of the bus controller (controlling
interface). This signals, their functions, and the sequences in which they are used are
discussed in greater detail throughout this tutorial.

8 Interfacing Concepts

The HP-IB Interface
The Hewlett-Packard Interface Bus (HP-IB) was developed at HP as the solution to an
expanding need for a universal interfacing technique that could be readily adapted to
a wide variety of electronic instruments. It was later expanded to include high-speed
disc drives and other high-performance computer peripherals. The HP-IB architecture
was subsequently proposed to and accepted by the Institute of Electrical and Electronic
Engineers (IEEE) and is now widely used throughout the electronic industry. HP-IB is
compatible with IEEE standard 488-1978. The number of devices that can be connected
to a given HP-IB interface depends on the loading factor of each device, but in general up
to 15 devices (including the interface) can be connected together while still maintaining
electrical, mechanical, and timing compatibility requirements on the bus.

General Structure
IEEE Standard 488-1978 defines a set of communication rules called "bus protocol" that
governs data and control operations on the bus. The defined protocol is necessary in
order to ensure orderly information traffic over the bus.

Each device (peripheral or computer interface) that is connected to the HP-IB can func­
tion in one or more of the following roles:

System Controller Master controller of the HP-IB. The computer interface is usually
the bus controller when all peripheral devices on the bus are slaves
to the system computer. However, any other device can become the
active controller if it is equipped to act as a controller and control
is passed to it by the System Controller. The System Controller is
always the active bus controller at power-up.

Active Controller Current controller of the HP-IB. At power-up or whenever IFC (In­
terFace Clear) is asserted by the System Controller, the System Con­
troller is the active controller. Under certain conditions, the System
controller may pass control to another device that is capable of man­
aging the bus in which case that device becomes the new active
controller. The active controller can then pass control to another
controller or back to the System Controller. If the System Controller
asserts IFC, the active controller immediately relinquishes control of
the bus.

Talker A device that has been authorized by the current active controller to
place data on the bus. Only one talker can be authorized at a time.

Interfacing Concepts 9

Listener Any device that has been programmed by the active controller to
accept data from the bus. Any number of devices on the bus can be
programmed by the active controller to listen simultaneously at any
given time.

In typical systems, an HP-IB interface in the computer can act as a controller, talker,
and listener. If more than one computer is connected to the same bus, only one interface
can be configured as System Controller to prevent conflicts at power-up (this is usually
accomplished by a switch or wire jumper on the interface card). A device that can only
accept data from the bus (such as a line printer) usually operates as a listener, while a
device that can only supply data to the bus (such as a voltmeter) usually operates as a
talker. However, before any device can talk or listen (after power-up initialization), it
must be authorized to do so by the current active controller. Bus configuration varies,
depending on the type of activity that is prevalent at the time. However, in any case,
the bus can have only one Active Controller and only one talker at a given time, though
it can have any number of listeners.

HP-IB is composed of 16 lines (plus ground) that are divided into 3 groups:

• Eight data lines form a bi-directional data path to carry data, commands, and
device addresses.

• Three handshake lines control the transfer of data bytes.

• The five remaining lines control bus management.

Handshake Lines
The handshake lines used to synchronize data transfers are:

DAta Valid: Valid data has been placed on bus by talker.

Not Ready For Data: One or more listeners not yet ready to accept data
from the bus.

Not Data ACcepted: One or more listeners has not yet accepted the data
currently on the bus.

10 Interfacing Concepts

NOTE

The HP-IB interface uses negative (ground-true) logic for hand­
shake, data, and bus management lines. This means that when
the voltage on a line is at a logic LOW level, the line is asserted
(true). When a logic HIGH voltage level is present on the line, the
line is not asserted (false).

In general, software documentation refers to handshake and other
lines by their name acronym such as DAV, NRFD, NDAC, etc.
When discussing these same signal lines in hardware documents, it
is customary to refer to ground-true (low-true) logic lines by their
name acronym with a bar across the top such as DAV, NRFD,
NDAC, etc. In this document, both versions are used. The over­
bar is usually present when discussing hardware operation, but
usually absent when software is being treated. In this tutorial,
only the name is significant; signal names are synonymous with or
without the overbar unless specifically noted otherwise - the over­
bar is used for the convenience of those readers whose experience
is oriented more toward hardware than software.

Interfacing Concepts 11

The timing diagram in Figure 1-2 shows how handshake lines are used to complete a
data item transfer. The discussion which follows is based on the contents of Figure 1-2.

Data

DAV

NRFD_~/:

;fr~ --~----~--- FALSE

~--~--------------~ TRUE

FALSE

~------------~------~--------- TRUE

NDAC _~_~~_~ __ ---.-J/: FALSE
1----....;....-.___ TRU E

®®©@ ®®©®
Figure 1-2. The HP-IB Handshake

All handshake lines are electrically connected in a "wired-OR" configuration which means
that any device can pull the line low (active or asserted) at any time, and more than one
device may pull the line low simultaneously or later in a given handshake cycle. The line
then remains low until every device that was previously pulling the line low has released
the line, allowing it to float to its high state. At the start of the handshake cycle (point
A), the handshake lines are in the following states:

• DAV is false (high), meaning that the current talker has not yet placed valid data
on the bus.

• NRFD is true (low), meaning that one or more listeners is not yet ready to accept
data from the bus.

• NDACis true (low), meaning that bus data has not yet been accepted by every
listener on the bus.

12 Interfacing Concepts

When a listener is ready to accept data, it releases NRFD, allowing it to go high provided
no other listener is still holding the line low. However (due to the "wired-OR" intercon­
nection scheme used by HP-IB), NRFD remains LOW (true) until every listener releases
it. When every listener is ready to accept data (indicated by NRFD being released by
every listener), NRFD changes to its logic HIGH (false) state as indicated by point B in
Figure 1-2.

By monitoring NRFD, the talker can determine when to send data: NRFD false means
that every listener is ready to accept data. The talker then places data on the data lines
and asserts DAV (point C), indicating to the listeners that valid data is available on the
data lines for them to accept.

As soon as each listener detects that DAV has been asserted, it asserts NRFD (point D),
driving it low (true) unless NRFD has already been driven low by another listener in the
same cycle.

After driving NRFD low, each listener inputs and processes the data from the data lines.
When it has accepted the data, the listener releases NDAC. As with the NRFD line at
point B, NDAC remains low (true) until every listener on the bus has released the line,
allowing it to go high (false). When NDAC goes high, the false logic state indicates to
the talker that every listener has accepted the data (point E).

When the talker determines that every listener has accepted the data, it releases the
DAV line which rises to its high (false) state. At the same time, the talker disables its
outputs to the data lines, allowing them to rise to their high (false) state (point F).

When DAV goes false, the listeners assert NDAC (point G), driving it low. This signifies
the end of the handshake (point H), at which time all bus logic lines are again at the
same state as they were before the handshake started (point A).

Interfacing Concepts 13

Bus Management Control Lines
There are five bus management control lines:

ATN ATtentioN: Theat data on data lines as commands, not data.

IFC InterFace Clear: Unconditionally terminate all current bus activity.

REN Remote ENable: Place all current listeners in Remote operating mode.

EOI End Or Identify: End of data message. If ATN is true (low), Active Con­
troller is conducting a parallel poll (Identify) of devices on the bus.

SRQ Service ReQuest: Bus device is requesting service from current Active Con­
troller.

ATN: The Attention Line
Command messages are encoded on the data lines as 7-bit ASCII characters, and are
distinguished from the normal data characters by the attention (ATN) line's logic state.
That is, when ATN is false, the states of the data lines are interpreted as data. When
ATN is true, the data lines are interpreted as commands.

IFC: The Interface Clear Line
Only the System Controller sets the IFC line true. By asserting IFC, all bus activity is
unconditionally terminated, the System Controller becomes the Active Controller, and
any current talker and all listeners become unaddressed. Normally, this line is used to
terminate all current operations, or to allow the System Controller to regain control of
the bus. It overrides any other activity currently taking place on the bus.

REN: The Remote Enable Line
This line allows instruments on the bus to be programmed remotely by the Active Con­
troller. Any device addressed to listen while REN is true is placed in its remote mode of
operation.

EOI: The End or Identify Line
If ATN is false, EOI is used by the current talker to indicate the end of a data message.
Normally, data messages sent over the HP-IB are sent using strings of standard ASCII
code terminated by the ASCII line-feed character. However, certain devices must handle
blocks of information containing data bytes within the data message that are identical to
the line-feed character bit pattern, thus making it inappropriate to use a line-feed as the
terminating character. For this reason, EOI is used to mark the end of the data message.

The Active Controller can use EOI with ATN true to conduct a parallel poll on the bus.

14 Interfacing Concepts

SRQ: The Service Request Line
The Active Controller is always in charge of overall bus activity, performing such tasks as
determining which devices are talkers and listeners, and so forth. If a device on the bus
needs assistance from the Active Controller, it asserts SRQ, driving the line low (true).
SRQ is a request for service, not a demand, so the Active Controller has the option of
choosing when and how the request is to be serviced. However, the device continues to
assert SRQ until it has been satisfied (or until an interface clear command disables the
request). Exactly what satisfies a service request depends on the requesting device, and
is explained in the operating manual for the device.

The GPIO Interface
The GPIO (General Purpose Input/Output) interface is a very flexible parallel interface
that can be used to communicate with a variety of devices. The GPIO interface utilizes
data, handshake, and special-purpose lines to perform data transfers by means of various
user-selectable handshaking methods.

While the GPIO interfaces used on various HP-UX computers are electrically very similar,
they differ in certain important aspects. Refer to the appendices for Series 200/300, 500,
800, or the Integral PC for information pertaining to your specific application.

Interfacing Concepts 15

16 Interfacing Concepts

General-Purpose Routines 2
The DIL library contains several general-purpose subroutines that can be used with
any interface supported by the library (see Table 2-1 for a complete list). This chapter
explains how to use these subroutines in application programs. Specifically, the following
topics are presented:

• Basic introductory background concepts that are essential to understanding correct
use of DIL library routines.

• Opening interface special files.

• Closing interface special files.

• Read/write operations to interface special files.

• Designing error-checking routines.

• Resetting an interface.

• Controlling input/output parameters.

• Determining why a read terminated.

• Handling interrupts.

General-Purpose Routines 17

Background Basics

Interface Special Files
HP-UX handles I/O to an interface or system peripheral device much like it handles
read/write operations to disc storage files: every I/O interface or device is associated
with an entity generally referred to as a device file, special file, or device special file.
All three terms are used interchangeably and are usually synonymous. Any program
that accesses subroutines in the DIL library cannot be used unless an appropriate device
special file has been created for the corresponding interface. While the program can be
written before the file exists, it cannot be used. The method used to create an interface
special file depends on the model of computer being used. Refer to the appropriate
hardware-specific appendix for information about creating interface special files on your
system.

Entity Identifiers (eid)
Nearly all DIL routines require an entity identifier (eid) as a parameter. The entity
identifier is an integer returned by the open(2) system call when opening the interface
special file (eid is the file descriptor for the opened special file on Series 200/300 and
500). The eid supplied as a parameter to a DIL subroutine tells the subroutine which
interface special file to use.

Programming Model
As a general rule, all programs containing DIL subroutine calls for a specific interface
conform to the following structure:

1. Use an open system call to obtain the interface entity identifier (eid) for the special
file being used. Opening an interface special file is discussed later in this chapter.

2. Use the returned eid as a parameter in DIL subroutine calls to perform desired tasks
through the corresponding interface. Suitable techniques are discussed throughout
the remainder of this tutorial.

3. When the necessary DIL subroutine calls have been completed, close the interface
special file that was opened in step 1 above as discussed later in this chapter.

18 General-Purpose Routines

General-Purpose Routines
Table 2-1 provides a brief synopsis of the standard general-purpose routines discussed
in this chapter. Several system calls related to the use of DIL subroutines, are also
discussed: open,(2) close(2), read(2), and write(2).

Table 2-1. General-Purpose Routines.

Routine Description

io_reset Reset a specified interface.

io _ timeouC ctl Establish a timeout period for any operation performed on a specified
interface by a DIL routine.

io_ width_ctl Set the data path width for a specified interface.

io_speed_ctl Select a data transfer speed for a specified interface.

io_eoLctl Set up a read termination character for data read from a specified
interface.

io_geCtermJeason Determine how the last read terminated for the specified interface.

io_ on_ interrupt Set up interrupt handling for a program.

io_ interrupC ctl Enable or disable interrupts for a specified interface.

io_lock Lock an interface for exclusive use by the calling process.

io_unlock Unlock an interface so it can be used by other processes.

Series 200/300 computers support an additional subroutine: io_burst. Refer to the
io_burst(3I) page in the HP-UX Reference for details on using this subroutine.

The Integral PC DIL library supports several non-standard DIL subroutines in addition
to the standard subroutines in Table 2-1. Refer to the "Integral PC Dependencies"
appendix for details on their use.

General-Purpose Routines 19

Opening Interface Special Files
With the exception of the default standard input, standard output, and standard error
files, all read/write operations to any file from inside C, FORTRAN, or Pascal programs
require that the file(s) be explicitly opened before they can be used. The HP-UX open(2)
system call is used to accomplish this as follows:

#include <fcntl.h>
int eid;

eid = open (filename , of lag);

filename is either a character string containing the device file's external HP-UX name or
a pointer to a buffer containing the external name.

Integral PC Only: filename is the special device name for the specific GPIO or HP-IB
interface created by load_gpio or load_hpib. Note that each GPIO port has a separate
device file name. Refer to Appendix C, "Integral PC Dependencies," for details on using
load_gpio and load_hpib to create special files for GPIO and HP-IB interfaces.

The integer variable oflag specifies the access mode for the opened file, and can have one
of six possible values, as defined in the lusr lincludelfcntl. h header file: O_RDONLY (value =
0) requests read-only access, O_WRONLY (value = 1) requests write-only access, and O_RDWR
(value = 2) requests both read and write access (three values with O_NDELAY not set,
three values with O_NDELAY set - see io_lock(3I) in the HP-UX Reference, for a total
of six values}. To use these constants in a programs, the #include C-compiler directive
must be present as shown in the example above.

An open system call on an interface special file returns an integer representing the entity
identifier (eid) for the opened interface. As mentioned earlier, the entity identifier is
required as a parameter in all DIL subroutine calls. It is also required as a parameter
for all read/write operations to the opened file.

The following code defines an entity identifier called eid and opens an interface file called
Idev/raw_hpib with access enabled for both reading and writing:

#include <fcntl.h>
int eid;

eid = open("/dev/raw_hpib", O_RDWR);

20 General-Purpose Routines

Special files can also be opened by placing the character string name of the file being
opened in a string variable, then executing the open system call with a pointer to the
variable as shown in the following code segment:

#include <fcntl.h>
int eid;
char *buffer;

buffer = "/dev/raw_hpib";
eid = open (buffer , O_RDWR);

If the call to open succeeds, a non-negative integer is returned as the entity identifier. If
an error occurs and the file is not opened, -1 is returned and errno is set to indicate the
error.

General-Purpose Routines 21

Closing Interface Special Files
Good programming practice dictates that an open interface special file should be closed
when a program is through using it by executing a close(2) system call. This guideline
is valid even though any open files are automatically closed by the HP-UX operating
system when a process terminates (via exit(2) or a return from the main routine).

NOTE

HP-UX limits the number of files a given process (program)
can have open at one time to NO_FILE as defined in the
lusT jincludejpaTam.h header file. Series 300 systems limit the
number of open D1L files in the entire system to the value of ND1L­
BUFFERS (default is 30). On Series 200 systems, the maximum
number of open D 1L files is limited to 10.

The close system call requires the entity identifier corresponding to the open interface
special file that is being closed. The following code segment shows how to open and close
an HP-1B interface:

#include <fcntl.h>
mainO
{

int eid;

eid = open("/dev/raw_hpib". O_RDWR);

/* Code to perform I/O operations
(read/write in this case) on the open interface. */

close(eid);
}

Upon completion of the close system call, the entity identifier is no longer valid and is
available for the system to assign to another file. If the file is again opened later in the
program, the system mayor may not assign the same eid value, so appropriate caution
in using eid values is in order.

22 General-Purpose Routines

close(2) returns a value of zero if the file is successfully closed. Otherwise, it returns a
-1 and the external error variable errno(2) is set to indicate the error (error handling
is discussed later in this chapter). The most common error returned by close is related
to an invalid value for eid meaning that the wrong value was used or the file is already
closed.

Low-Level Read/Write Operations
Most HP-UX I/O operations to system peripheral devices is handled at a fairly high level
where the system automatically provides buffering and other services that are not under
the direct control of the user or program being run. However, some situations that are
commonly encountered by DIL users require a much more intimate control of individual
I/O transactions. These low-level operations provide no buffering or other services, and
are a direct entry into the operating system. The two HP-UX system calls, read(2) and
write(2), provide low-level I/O read/write capabilities. Both require three arguments:

• The entity identifier for an open file

• A buffer (string variable) in the program where data is to come from during write
or go to during read (write empties a buffer; read fills a buffer).

• The number of bytes to be transferred.

Calls to read have the form:

#inc1ude <fcnt1.h>
maine)
{

int eid; /*the entity identifier*/
char buffer [10] ; /*buffer in which the read data will be p1aced*/
eid = open ("/dev/raw_hpib", O_RDWR);

/*estab1ish communication with the raw HP-IB device file
as described in Chapter 3, "Controlling the HP-IB interface"*/

read(eid, buffer, 10); /*reads 10 bytes from a previously opened*/
} /*fi1e with the entity identifier "eid". */

General-Purpose Routines 23

Calls to write are very similar:

#include <fcntl.h>
mainO
{

int eid; I*the entity identifier*1

}

char *buffer; 1* the buffer containing data to be written to a file*1
eid = open ("/dev/raw_hpib", O_RDWR);

/*establish communication with the HP-IB interface as described
in Chapter 3, "Controlling the HP-IB Interface"*1

buffer = "data message";
write(eid, buffer, 12);

I*message to be sent*1
1*12 bytes are written to previously*/
I*opened file with the entity identifier "eid"*1

Although read and write require the number of bytes to be transferred as their third
argument, other parameters (discussed later) associated with the interface file eid can
end the transfer before this number is reached.

Integral PC Only: When performing a read or write operation to a 16- or 32-bit GPIO
port, the data must start on a word boundary.

Example
Assume that you have already created an auto-addressed special file, /dev/hpib_dev, for
an HP-IB device. Your program must first open the interface file /dev/hpib_dev for
reading and writing:

int eid;
eid = open("/dev/hpib_dev", O_RDWR);

To place data on the bus, use write:

write(eid, "This is a test", 14);

In this example, 14 characters are sent through eid. The literal string expression This
is a test is placed in a data storage area by the compiler for later handling by the call
to write. On output, if the number of characters requested does not match the length of
the data storage space, the message is truncated (if the byte count is smaller than the
data block) or extended into the next data block assigned by the compiler (if the byte
count is larger than the data block).

24 General-Purpose Routines

To receive 10 bytes of data from the bus and place them in buffer, use:

char buffer [10] ;
read(eid, buffer, 10);

In this code segment, the read routine will attempt to read up to 10 bytes of data from
the interface and place it in buffer.

Designing Error Checking Routines
All Device I/O Library routines return -1 and set an external HP-UX variable called
errno if an error occurs during execution.

The errno Variable
errno is an integer variable whose value indicates what error caused the failure of a
system or library routine call. It is not reset after successful routine calls, and should
never be checked for value until after you have determined that an error has occurred.

Well-designed programs always include adequate error checking. However, most examples
shown in this tutorial (other than in this section) do not verify successful completion of
subroutine calls.

Refer to the errno(2) page in the HP- UX Reference for complete definitions of the various
errors returned when a system call fails.

General-Purpose Routines 25

Using errno
The following code segment must be present in the early part of any program that accesses
errno:

#include <errno.h>

The errno.h Header File
Header file /usr/include/errno.h uses error numbers defined in header file
/usr/include/sys/errno.h. For a complete list of errors and their associated meanings,
refer to errno(2) in the HP-UX Reference.

Displaying errno
Once errno has been declared in a program, there are two ways to check its value if a
routine fails. The simplest approach is to check the return value to determine whether or
not the routine failed, then print out the value of errno and exit if it did. The following
example illustrates this strategy:

#include <errno.h>
#include <fcntl.h>
mainO
{

}

int eid;

if «eid = open(1I Idev/raw_hpib", O_RDWR)) == -1)
{

}

printf("Error occurred. Errno = %d", errno);
exit(1);

When this method is used, the program user must refer to the errno(2) entry in the
HP- UX Reference to determine what the printed value of errno means.

Error Handlers
Another approach that is more complex for the programmer but much more convenient
for the user is to check for specific values of errno and execute error routines related to
the value. In most cases, only a limited number of situations can cause a particular a
subroutine to fail, so there is a correspondingly small number of errno values that can be
encountered upon failure. Possible error values are usually listed in the HP-UX Reference
on the manual page for the failed subroutine.

26 General-Purpose Routines

For example, checking open(2) in the HP-UX Reference reveals that errno is set to ENOENT
(defined in the errno. h header file) if you attempt to open a file that does not exist and
you have not given the system call permission to create a new file. Armed with this
information, you can incorporate the following code segment in your program:

#include <errno.h>
#include <fcntl.h>
mainO
{

}

int eid;

if «eid = open ("/dev/raw_hpib", O_RDWR» -1)
{

}

if (errno == ENOENT)
printf("Error: cannot open; file does not exist");

else
printf("Error: file exists but cannot open");

exit (1) ;

Note that the print statements in the example above could be replaced with calls to more
sophisticated error-handling routines such as perror(3C) (see the HP-UX Reference).

General-Purpose Routines 21

Resetting Interfaces
The DIL routine io_reset can be used to reset both HP-IB and GPIO interfaces.

The following example call to io_ reset resets the interface whose entity identifier is eid
where eid is the value that was returned when the interface special file was opened.

io_reset(eid);

1o_reset resets the interface whose entity identifier is eid. Refer to the appropriate
hardware-specific appendix for more information about the exact effects of io_reset on
HP-IB and GPIO interfaces when used with various computer models.

For example, suppose that after opening an interface file you want to make sure the
interface has been properly initialized. This is done by calling io_reset and looking at its
return value:

#include <fcntl.h>
mainO
{

}

int eid;

eid = open("/dev/raw_hpib". O_RDWR);
if (io_reset(eid) ~= -1)
{

}

printf("Possible problem with interface");
exit (1) ;

/* program continues if "io_reset" was successful */

28 General-Purpose Routines

Locking an Interface
U sing a single interface to control multiple peripheral devices provides many advan­
tages in convenience, cost and system operating characteristics. However, when several
programs and/or several users need simultaneous access to peripherals sharing a single
interface, conflicts arise. This problem is especially annoying when one user needs exclu­
sive control of the interface during a set of critical I/O operations. Unless a mechanism
is provided to lock out other users during critical program steps, useful results may be
unobtainable in some cases.

Two DIL subroutines, io_lock and io_ unlock are provided for this purpose. The first
locks the interface so that only the process that locked it can use the interface until it is
unlocked. The second unlocks the interface so other processes can again access it.

When another process attempts to access a locked interface, the process will sleep until
the interface is unlocked (or a timeout occurs) if the 0 _ND ELA Y flag was not set at the
time the requesting process executed the open(2) system call. If the O_NDELAY flag
was set during the call to open(2) and the interface is locked, any attempts to access the
locked interface fail and the DIL subroutine call from the process returns with an error.

Locks on an interface are owned by the process, and are not associated with the eid.
This means that the same process can access a given interface through another eid if
another open is performed on the device. If a process uses a fork(2) system call to create
a child process that uses the same interface, the child does not inherit the current lock
from the parent. Since it has a different process ID than the parent, it also cannot access
the locked interface file until the parent unlocks it.

For good programming practice, any locks created by a process should be unlocked
through a call to io_unlock before terminating. However, any locks held by a process are
released when the process terminates, whether or not a call to io_ unlock was executed.
Refer to io_lock(2) in the HP- UX Reference for more information about locking and
unlocking interfaces.

CAUTION

Do not place a lock on any interface that supports the system disc
or swap device. Interface locks are enforced by the system, and
such a condition may require rebooting in order to recover.

General-Purpose Routines 29

Controlling 1/0 Parameters
The Device I/O Library provides four subroutines that perform I/O control operations
pertaining to timeout, data path width (usually 8 or 16 bits), transfer speed, and read
termination (end-of-line) pattern. The subroutines and their functions are as follows:

Subroutine

io_timeouLctl

Controlled I/O Function

Timeout: Assign a timeout value in microseconds for I/O opera­
tions (actual timeout resolution may be limited by system hard­
ware).

Data Path Width: Specify width of the interface's data path or
switch between supported widths for various operations.

io_speed_ctl Transfer Speed: Request a minimum speed for data transfers
through the interface in kilobytes (Kbytes) per second.

io_eoLctl Read Termination Pattern: Assign a pattern to be recognized as a
read termination pattern.

Note

It is not uncommon for a single process to have multiple eids
open simultaneously (resulting from multiple calls to open in
a single program. The subroutines io_timeouLctl, io_width_ctl,
io_speed_ctl,and io_eoLctl, can be used to conveniently configure
different values for timeout, width, speed, and termination pattern
on any given eid without disturbing the previously configured (or
default) values associated with other eids.

Unless specifically altered by calls to one or more of these subrou­
tines, interface file operation uses system defaults for each eid.

Opening multiple eids on a given interface file, then configuring each independently is
an easy way to handle multiple devices that use different data formats without having
to reconfigure each individual I/O operation.

30 General-Purpose Routines

Setting I/O Timeout
I/O timeout determines how long the system waits for a response from the interface or
peripheral device each time an I/O operation is initiated. If the timeout limit is exceeded,
the operation is aborted and a timeout error is returned. The default timeout is set to
o which disables timeout errors.

If timeout is disabled (zero) and an error condition occurs that prevents successful com­
pletion of a data transfer or other I/O operation, the calling program may hang. There­
fore, use of a non-zero timeout value is strongly recommended as good programming
practice. To set or change the timeout use io_timeouCctl as follows:

#include <fcntl.h>
mainO
{

}

int eid;
long time;

eid = open("/dev/raw_hpib". O_RDWR);
time = 1000000; /*set timeout of 1 second*/
io_timeout_ctl(eid. time);

/*data transfers using "eid" are controlled by the
timeout value "time"*/

eid is the entity identifier associated with the open interface file, and time is a 32-bit
long integer specifying the length of the timeout in microseconds.

Each time an I/O operation is initiated, timeout is restarted. For example, when setting
up bus addressing, the system allows timeout microseconds for completion. Each subse­
quent data transfer (in or out) is given the same time limit. If a given operation is not
completed within the time limit specified by the timeout value, the operation is aborted
and an error indication is returned (return value of -1) and errno is set to EIO (not to
be confused with EOI).

Note

Be sure that the timeout limit is set to a value higher than the
longest expected time to complete a transfer. If a normal transfer
takes longer than the timeout limit, the operation is aborted even
though system operation is correct.

General-Purpose Routines 31

Timeout is specified in microseconds (Jlsec) in the call to io_timeouLctl, but the actual
timeout used and its resolution is system-dependent. The timeout value is always rounded
up to the nearest normal time resolution interval supported by the system executing the
operation. For example, if the available system resolution is 10 milliseconds and a timeout
of 25000 microseconds (25 milliseconds) is requested, the actual timeout value used is 30
milliseconds. To determine timeout resolution for your system, refer to the appropriate
hardware-specific appendix.

IMPORTANT

A timeout value of 0 microseconds is meaningless because no device
can respond with data in less than zero time. For this reason, the
default or a specified timeout value of zero is treated as a request
to disable timeout and any condition that would normally cause
a timeout termination is ignored by the system, usually causing
the program to hang. Specifying a timeout of zero is not recom­
mended.

Any interface file eid obtained by using the dup(2) system call or inherited by a fork(2)
request shares the same timeout as the original interface file eid obtained from open(2).
If the child process resulting from a fork inherits an eid then changes the timeout, the
eid used by the parent process is likewise affected.

Setting Data Path Width
When you create an interface file and open it for the first time, the data path width
defaults to 8 bits. Once the file is opened, io_width_ctl can be used to select a new
width. Allowable widths vary, depending on the computer model and interface. Refer
to the appropriate hardware-specific appendix to determine what widths are supported
by specific interfaces.

32 General-Purpose Routines

Assuming that the open interface file has the entity identifier eid, io_width_ctl is called
using a code segment similar to the following:

int eid. width;

where width is the number of parallel bits in the new data path. The io_width_ctlreturns
-1 to indicate an error if the specified width is not supported on the interface identified
by eid.

For example, to reconfigure a GPIO interface to use all 16 data lines in the interface
cable instead of the default lower 8 bits, use a a code segment similar to the following:

#include <fcntl.h>
mainO
{

}

int eid. width;
width = 16; /*width of new data path */

eid = open("/dev/raw_gpio". O_ROWR);
io_width_ctl(eid. width); /*assign new width for GPIO bus*/

/*data transfers using "/dev/raw_gpio" will now
use a 16-bit bus*/

Use of io_width_ctl to change interface data path width affects all users of the interface.
Once the data path width is altered, it remains at the new value for each future opening
of the file, independent of eid. Use io_reset or io_width_ctl to restore the default 8-bit
path width. It should be obvious from this discussion that if any program on the system
alters the data path width for a given interface from its default value, all programs using
the interface should include a call to io_width_ctl to ensure correct operation. However,
if a given interface requires operation at a fixed but not default path width, and is used
identically by all calling programs (such as a 16-bit GPIO card connected to a single
peripheral device), the call to io_width_ctl could be easily included in a system start-up
configuration program that is executed automatically each time the system is rebooted
or restarted for any reason.

General-Purpose Routines 33

Setting Minimum Data Transfer Rate
DIL provides a means for specifying a minimum acceptable data transfer rate for a given
interface special file within the limits of available hardware by use of io_speed_ctl. The
calling sequence is as follows:

io_speed_ctl(eid. speed);

where eid is the entity identifier for the open interface file, speed is an integer indicating
a minimum speed in Kbytes per second, and a kilobyte equals 1 024 bytes.

Io_speed_ctl returns a 0 if successful, or -1 if an error occurred. For example:

io_speed_ctl(eid. 1);

requests a minimum speed of 1 024 bytes per second. While the system may use a faster
transfer rate if possible, you are at assured that the rate will not be less than the specified
speed.

The transfer method (such as DMA or interrupt) chosen by the system is determined
by the minimum speed requested. The system selects a transfer method that is as fast
or faster than the requested speed. If the requested speed is beyond system limitations,
the fastest available transfer method is used. Refer to the appropriate hardware-specific
appendix for details.

Setting the Read Termination Pattern
During read operations on an open interface file, the interface recognizes certain condi­
tions as the end of a data transfer from the sending device. DIL supports three methods
for identifying the end of an input operation:

• Input data byte count limit is reached.

• Hardware condition is used to identify end of data.

• Predetermined character or sequence of characters is used to identify the end of a
data record.

Input termination occurs when the first termination condition is recognized, independent
of the type of condition. If two or more conditions occur simultaneously, the first con­
dition detected terminates the operation. However, this first condition along with any
other simultaneous events that would also have caused termination are recorded during
clean-up at the end of the transfer for possible later use by io_geLterm_reason.

34 General-Purpose Routines

Termination on Byte Count
Any call to read must specify the maximum number of data bytes that are to be accepted.
When the specified number of bytes have been read, the data transfer is unconditionally
terminated, whether the data is complete or not.

Termination on Hardware Condition
In many cases, the number of bytes being transferred is controlled by the peripheral
device and cannot be predetermined. To make sure that no data is lost, the byte limit
is set to a value higher than the longest expected input data record, and the interface
is configured to recognize a condition, character, or set of characters (one or two bytes
only) as the end of the incoming data. For instance, if an HP-IB interface detects that
the EOI line has been asserted, it knows that the last data byte has been transferred and
halts the read operation, whether or not the specified byte count has been reached.

Termination on Data Pattern
The DIL routine io_eoLctl configures an interface to recognize a particular character or
pair of characters as a read termination pattern. Whether one or two bytes are used for
the pattern depends on whether the data path width is set to 8 or 16 bits. The read
termination pattern is in addition to any other conditions that may already be in effect
for the interface. The call to io_eoLctl has the form:

int eid. flag. match;

where eid is the entity identifier for the open interface file and flag, depending on its
value, enables or disables the interface's ability to recognize a read termination pattern.

When flag is zero, termination pattern recognition is disabled and only EOI or a satisfied
byte count can terminate a normal transfer. If flag is non-zero, match defines the new
termination pattern. When using flag = 0 to disable eol pattern recognition, the third
parameter (match) in the subroutine call is not used. However, it is recommended that
a value (such as zero) be provided as good programming practice.

When flag is non-zero to enable end-of-line recognition (for example, flag = 1) and the
interface data path width is set to 8 bits, the least-significant byte of the 4-byte integer
value of match defines the termination pattern used to identify an end-of-line condition.

On the other hand, if the interface data path width is set to 16 bits (such as with a
GPIO interface), then, for most systems, the termination pattern is also 16 bits, defined
by the two lower (least-significant) bytes of the 4-byte integer value defined by match.

General-Purpose Routines 35

Remember that any other read termination conditions defined for the interface are in
effect (such as EOI for an HP-IB interface), any event that matches a currently active
termination condition can cause a read operation to halt, independent of whether the
defined eol condition has been met. Also note that the read termination pattern defined
by io_ eot ctl is accepted as part of the valid incoming data, meaning that it is transferred
to the data storage area along with the rest of the transferred data. In other words, when
the interface encounters transferred data matching the match value, it treats the data as
part of the data message but does not attempt any further data input after the matching
data pattern is found. This means that if data within an incoming data stream happens
to match the pattern defined by match, the read is terminated whether the data message
is complete or not. For this reason, care must be exercised when defining eol character
sequences for data transfer.

To illustrate how to use io_eotctl, suppose an HP-IB interface is being configured to rec­
ognize a backslash-n (\n) as a read termination pattern. First, open the HP-IB interface
file and obtain the entity identifier eid. Second, make the call to io_eotctl using eid as
the entity identifier, ENABLE as the flag, and \n as the match (\n is a one-byte value, and
the data path width for all HP-IB devices is 8 bits):

#include <fcntl.h>
#define ENABLE 1
main()
{

}

int eid;

eid = open("/dev/raw_hpib", O_RDWR);
io_eol_ctl(eid, ENABLE, '\n');

/*data transfers using "eid" terminate with a '\n'*/

Interface file /dev/raw_hpib is now configured to terminate read operations when any
one of the following occurs:

• The byte count specified in the call to read is reached.

• The HP-IB EOI line is asserted. When the interface detects that the EOI line has
been asserted, the character currently on the bus becomes the last byte in the data
message.

• backslash-n (\n) is detected in incoming data. The \n becomes the last byte in the
stored data message.

36 General-Purpose Routines

Integral PC Only: On the Integral PC, a read operation from a GPIO interface terminates
only when a specified number of read operations have been performed or when the read
termination pattern has been found (EOI is not recognized on the GPIO interface).

An interface file entity identifier returned by a dup(2) system call or inherited by a fork
request shares the same read termination pattern as the entity identifier returned by the
original call to open. If the child process resulting from a fork inherits an entity identifier
then sets a read termination pattern for that e£d, the e£d used by the parent process is
also affected.

Series 200, 300, and 500 Only: If a single program or process executes more than one
open system call on the same interface file, each entity identifier returned by open can
have its own associated read termination pattern. Using £o_eotctl on a given e£d does
not effect the others. Thus, multiple entity identifiers can be set up for a single interface
to facilitate recognition of various termination characters during program execution.

Disabling a Read Termination Pattern
To disable the read termination pattern, call £o_eotctl with the flag parameter disabled
(set to 0):

where xx represents a "don't care" value for the match argument. If the flag argument
is 0, the match argument is ignored.

The following code segment defines the ASCII'.' character (decimal value 46) as a termi­
nation pattern, performs a read operation, then disables termination pattern recognition.

#include <fcntl.h>
maine)
{

}

int eid;
char buffer [12] ;

eid = open("/dev/hpib_dev", O_RDWR);
io_eol_ctl(eid, 1,46);
read(eid, buffer, 12); /*Read operation halts when a period character

"." is read or when the 12th byte is read*/
io_eol_ctl(eid, 0, 0); /*termination pattern recognition is disabled*/

General-Purpose Routines 37

Determining Why a Read Terminated
Various situations can cause termination of read operations through an interface. Upon
completion of a read, you may want to include code to verify that the reason for termi­
nation is what you expected. This is done by using the DIL routine io_geCterm_reason.

io_geCterm_reason uses a single argument: the interface file entity identifier eid, and
returns an integer. The returned value indicating how the last read operation ended, is
interpreted as follows:

Returned
Value

-1

o

1

2

4

Meaning

An error during the subroutine call.

Read terminated abnormally (for some reason other than the ones listed
here).

Byte count limit caused termination.

End-of-line character pattern caused termination

Device-imposed condition (such as EOI asserted on HP-IB interface) caused
termination.

If more than one termination condition occurred simultaneously, the bit corresponding to
the above values is set for each condition, and the aggregate value of the lower three bits
represents a sum equal to the combined values of the individual conditions. The three
least-significant bits of the lowest byte have meanings as indicated by their associated
decimal values in the table above. For example, if io_geCterm_reason returns a value of
7, all three conditions: byte count limit, hardware termination, and termination pattern
recognition occurred simultaneously.

Note

If no read is performed on an open interface file prior to a call to
io_geCterm_reason, a value of zero is returned.

38 General-Purpose Routines

All entity identifiers descending from a single open request (such as from dup or fork)
affect the status returned by this routine. For example, suppose that an entity identifier is
inherited by a child process through a fork. If the parent process calls io_geCterm_reason,
the last read operation of either the parent or the child is looked at, depending on which
is more recent.

Example
Suppose you want to read data through an open HP-IB interface file, but want a printout
indicating the reason for termination on every transfer, whether the termination was
normal or abnormal. The following code segment provides that capability:

#include <fcntl.h>
#include <errno.h>

1*
** possible termination reasons
** returned by io_get_term_reason
*1
#define TR_ABNORMAL 0 1* abnormal *1
#define TR_COUNT 1 1* requested count was satisfied *1
#define TR_MATCH 2 1* specified eol character was matched *1
#define TR_CNT_MCH 3 1* TR_COUNT + TR_MATCH *1
#define TR_END 4 1* EOr was detected *1
#define TR_CNT_END 5 1* TR_COUNT + TR_END *1
#define TR_MCH_END 6 1* TR_MATCH + TR_END *1
#define TR_CNT_MCH_END 7 1* TR_COUNT + TR_MATCH + TR_END *1

mainO
{

int eid, termination_reason, bytes_read;
char buffer [50] ;

if «eid = open (II Idev/raw_hpib", O_RDWR» < 0) {

}

printf("Open of Idev/raw_hpib failed - errno %d\n", errno);
exit (1) ;

bytes_read = read(eid, buffer, 50);
termination_reason = io_get_term_reason(eid);
switch (termination_reason) {

case TR_ABNORMAL: 1* abnormal *1
printf("Abnormal read termination, bytes_read = %d, errno

%d\n", bytes_read, errno);
break;

case TR_COUNT: 1* requested count was satisfied *1
printf("Count satisfied.\n");
break;

case TR_MATCH: 1* specified eol character was matched *1

General-Purpose Routines 39

detected.\n");

printf("EOL character satisfied.\n");
break;

case TR_CNT_MCH: 1* TR_COUNT + TR_MATCH *1
printf("Count and EOL character satisfied.\n");
break;

case TR_END: 1* EO! was detected *1
printf("EO! detected.\n");
break;

case TR_CNT_END: 1* TR_COUNT + TR_END *1
printf("Count satisfied and EO! detected.\n");
break;

case TR_MCH_END: 1* TR_MATCH + TR_END *1
printf("EOL character satisfied and EO! detected.\n");
break;

case TR_CNT_MCH_END: 1* TR_COUNT + TR_MATCH + TR_END *1
printf("Count and EOL character satisfied and EO!

break;
default: 1* io_get_term_reasoned failed *1

printf(lIio_get_term_reason failed. bytes_read = %d. errno
%d\n". bytes_read. errno);

break;
}

}

Series 500 Only: On Series 500 computers, the value returned by io_geCterm_reason only
indicates the termination cause with the highest value; other causes with lower values
could have occurred at the same time. See Appendix A, "Series 500 Dependencies" for
more information.

40 General-Purpose Routines

Interrupts
DIL provides an interrupt mechanism for HP-IB and GPIO interfaces that is similar to
HP-UX signal handling. Thus interrupt handlers can be included in programs such that
they are invoked \~vhen certain conditions occur.

Currently, interrupts are supported only on the Integral PC, Series 300, and Series 500
computers. However, interrupts can be simulated on Series 200 systems. Refer to the
appropriate hardware-specific appendix for any restrictions that may apply.

Integral PC Interrupt Support
The only interrupt condition available on the Integral PC is PIR: interrupt on assertion
of the Peripheral Interrupt Request line. For hardware restrictions related to using the
HP-IB interrupts on the Integral PC, refer to the io_on_interrupt.3d (or .3i if the .3d
suffix is not present) file in the doc folder on the DIL disc.

Series 300 and 500 Interrupt Support
HP-IB Interrupts
Series 300 and 500 computers recognize the following HP-IB interrupt conditions:

signal

SRQ

TLK

LTN

CIC

IFC

REN

DCL

GET

PPOLL

Condition

SRQ line has been asserted.

Computer HP-IB interface has been addressed to talk.

Computer HP-IB interface has been addressed to listen.

Computer HP-IB interface has received control of the bus.

IFC line has been asserted.

Remote enable line has been asserted.

Computer HP-IB interface has received a device clear command.

Computer HP-IB interface has received a group execution trigger com­
mand.

A specific parallel poll response occurred.

General-Purpose Routines 41

Series 300 GPIO
Series 300 computers recognize the following GPIO interrupt conditions:

EIR EIR line has been asserted.

Series 500 GPIO
Series 500 computers recognize the following GPIO interrupt conditions:

SIEO Status line 0 has been asserted.

SIEl Status line 1 has been asserted.

io_on_interrupt
DIL provides two subroutines for controlling interrupts: io_on_interrupt and
io_ interrupL etl. The first, io_ OTt_ interrupt, sets up interrupt conditions and has the
form:

where eid is the interface entity identifier for a GPIO or raw HP-IB interface. handler
points to the function that is to be invoked when the interrupt condition occurs, and
eause_ vee is a pointer to a structure of the form:

struct interrupt_struct {
int cause;
int mask;

};

The interrupt_struct structure is defined in the include file dvio.h.

cause is a bit vector specifying which selectable interrupt or fault events will cause the
handler routine to be invoked. Available interrupt causes are usually specific to the type
of interface being considered. In addition, certain exception (error) conditions can be
handled by the io_on_interrupt subroutine. If the cause vector has a zero value, it, in
effect, disables interrupts for that eid.

mask is an integer value that is used to define which parallel-poll response lines are to
be recognized in an HP-IB parallel poll interrupt. The value for mask is formed from
an 8-bit binary number, each bit of which corresponds to one of the eight parallel-poll
response lines. For example, to invoke an interrupt handler for a response on line 2 or 6,
the correct binary number is 01000100 which converts to a decimal equivalent of 68, the
correct value for mask.

42 General-Purpose Routines

When the enabled interrupt condition occurs on the specified eid, the process that set up
the interrupt executes the interrupt-handler routine pointed to by handler. The entity
identifier eid and the interrupt condition cause are returned to handler as the first and
second parameters respectively.

Whenever an interrupt condition occurs for a given eid, the interrupt is recognized, inter­
rupts are disabled for that eid, then the interrupt handler is executed. After processing
the interrupt, interrupts can be re-enabled for that eid by calling io_interrupLctl.

Each call to io_on_interrupt returns a pointer to the previous handler if the new handler
is successfully installed, otherwise it returns -1 and errno is set.

The following example illustrates how an interrupt handler can be set up to handle
requests on the HP-IB service request line (SRQ):

#include <dvio.h>
#include <fcntl.h>
#include <stdio.h>
maine)
{

}

int eid;
struct interrupt_struct cause_vec;

eid = open ("/dev/raw_hpib", O_RDWR);
cause_vec.cause = SRQ;
io_on_interrupt(eid, cause_vec, handler);

handler (eid, cause_vec);
int eid;
struct interrupt_struct cause_vec;
{

if (cause_vec.cause == SRQ)
service_routine(); /* application-specific service routine*/

}

General-Purpose Routines 43

io_interrupLctl
Subroutine io_ interrupL ctl provides a convenient means for enabling and disabling in­
terrupts on a specific eid. Since interrupts are automatically disabled when an inter­
rupt occurs, io_interrupLctl is commonly used to re-enable interrupts during a series
of repetitive operations that are being handled under interrupt control. The call to
io_interrupLctl has the following form:

where eid is the entity identifier for an open GPIO or raw HP-IB interface (device) file.
The value of enable_flag determines whether interrupts are to be enabled or disabled: if
enable_flag is non-zero, interrupts are enabled on the eid; if enable_flag is zero, interrupts
are disabled. Attempting to use io_interrupLctl on an eid fails when no previous call has
been made to io_ on_ interrupt for the same eid.

The following code segment shows how the previous example can be modified slightly so
that interrupts are re-enabled at the end of the interrupt service routine:

handler(eid. cause_vee);
int eid;
struct interrupt_struct cause_vec;
{

if (cause_vec.cause == SRQ)

service_routine(); /* application-specific service routine*/

}

44 General-Purpose Routines

Controlling the HP-IB Interface 3
The general-purpose subroutines discussed in Chapter 2 are used to set up and handle
data transfers at a high level. However, they do not control the lower-level interface
operations that are necessary to maintain proper bus operation and control interaction
between HP-IB devices.

This chapter explains the use of subroutines in the Device I/O Library that are directly
related to HP-IB interface control. Chapter 4 covers comparable material for the GPIO
interface. This chapter presents a brief overview of HP-IB commands, followed by a
detailed discussion of HP-IB DIL subroutines including how they are used to control bus
activity and manage bus traffic.

Controlling the HP-IB Interface 45

Overview of HP-IB Commands
HP-IB commands consist of various data sequences that are sent over the eight
HP-IB data lines while the ATN line is asserted (held LOW). The DIL subroutine
hpz"b_send_cmnd provides a convenient means for sending bus commands by automat­
ically handling the ATN line and the necessary handshaking operations between devices.
However, hpz"b_send_cmnd can be used only when the computer interface to the bus is
the active controller. Techniques for using hpib_send_cmnd are discussed later in this
chapter.

Any device that is the intended recipient of an HP-IB command must have its remote
enable line (REN) enabled by the System Controller (unless altered by the System Con­
troller, REN is enabled, by default). Only the System Controller can alter the state of
the REN line (see "System Controller's Duties" section later in this chapter).

HP-IB Data Bus Commands fall into four categories:

• Universal commands cause every properly equipped device on the bus to perform
the specified interface operation, whether addressed to listen or not.

• Addressed commands are similar to universal commands, but are accepted only by
bus devices that are currently addressed as listeners.

• Talk and listen addresses are commands that assign talkers and listeners on the
bus.

• Secondary commands are commands that must always be used in conjunction with
a command from one of the above groups.

46 Controlling the HP -IB Interface

The following table lists commands that can be sent with hpib_send_cmnd, along with
the decimal and ASCII character equivalents of each command. This table is useful
for reference when determining what values to use as parameters in hpib_send_cmnd
subroutine calls.

Tabie 3.1 HP-IB Bus Commands

Decimal
Command Value ASCII Character

Universal Commands:

UNLISTEN 63 ?

UN TALK 95 -
DEVICE CLEAR 20 DC4

LOCAL LOCKOUT 17 DC1

SERIAL POLL EN ABLE 24 CAN

SERIAL POLL DISABLE 25 EM

PARALLEL POLL UN CONFIGURE 21 NAK

Addressed Commands:

TRIGGER 8 BS

SELECTED DEVICE CLEAR 4 EOT

GO TO LOCAL 1 SOH

PARALLEL POLL CONFIGURE 5 ENQ

TAKE CONTROL 9 HT

Talk and Listen Addresses:

Talk Addresses 0-30 64-94 @ thru A

(uppercase ASCII)

Listen Addresses 0-30 32-62 space thru >

(numbers and special characters)

Secondary Commands: (If a secondary
command follows the PARALLEL POLL
CONFIGURE command then it is inter-
preted as follows, otherwise its meaning is
device dependent)

PARALLEL POLL ENABLE 96-111 ' thru 0

(lowercase ASCII)

PARALLEL POLL DISABLE 112 p

Controlling the HP -IB Interface 47

UNLISTEN
UNLISTEN unaddresses all current listeners on the bus. No means is available for un­
addressing a given listener without unaddressing all listeners on the bus. This command
ensures that the bus is cleared of all listeners before addressing a new listener or group
of listeners.

UNTALK
UNTALK unaddresses all current talkers on the bus. No means is available for un­
addressing a given talker without un addressing all talkers on the bus. This command
ensures that the bus is cleared of all talkers before addressing a new talker.

DEVICE CLEAR
DEVICE CLEAR causes all devices that recognize this command to return to a pre­
defined, device-dependent state, independent of any previous addressing. The reset state
for any given device after accepting this command is documented in the operating manual
for the device in question.

LOCAL LOCKOUT
LOCAL LOCKOUT disables local (front panel) control on all devices that recognize this
command, whether the devices have been addressed or not.

SERIAL POLL ENABLE
SERIAL POLL ENABLE establishes serial poll mode for all devices that are capable of
being bus talkers, provided they recognize and support the command. This command
operates independent of whether the devices being polled have been addressed to talk.
When a device is addressed to talk, it returns an 8-bit status byte message.

This command is handled through the DIL subroutine hpib_spoll, as discussed later in
this chapter.

SERIAL POLL DISABLE
SERIAL POLL DISABLE terminates serial poll mode for all devices that support this
command, whether or not the individual devices have been addressed.

The DIL subroutine hpib_spoll that performs this function is discussed at length later in
this chapter.

48 Controlling the HP-IB Interface

TRIGGER (Group Execute Trigger)
TRIGGER causes devices currently addressed as listeners to initiate a preprogrammed,
device-dependent action if they are capable of doing so. Use of this function and pro­
gramming procedures are documented in operating manuals for devices that support
it.

SELECTED DEVICE CLEAR
SELECTED DEVICE CLEAR resets devices currently addressed as listeners to a device­
dependent state, provided they support the command. Refer to the device operating
manual for more information about programming and the resulting state(s).

GO TO LOCAL
GO TO LOCAL causes devices currently addressed as listeners to return to the local­
control state (exit from the remote state). Devices return to remote state next time they
are addressed.

PARALLEL POLL CONFIGURE
PARALLEL POLL CONFIGURE tells devices currently addressed as listeners that a sec­
ondary command follows. This secondary command must he either PARALLEL POLL
ENABLE or PARALLEL POLL DISABLE.

PARALLEL POLL ENABLE
PARALLEL POLL ENABLE configures devices addressed by PARALLEL POLL CON­
FIGURE to respond to parallel polls with a predefined logic level on a particular data
line. On some devices, the response is implemented in a local form (such as by using
hardware jumper wires) that cannot be changed.

Use of this command must be preceded by a PARALLEL POLL CONFIGURE command.

PARALLEL POLL DISABLE
The PARALLEL POLL DISABLE command prevents devices previously addressed by
a PARALLEL POLL CONFIGURE command from responding to parallel polls. This
command must be preceded by the PARALLEL POLL CONFIGURE command.

Controlling the HP-IB Interface 49

Overview of HP-IB OIL Routines

Standard OIL Routines
These 14 subroutines, in addition to the general-purpose subroutines discussed in Chapter
2, provide full capabilities for controlling and using the HP-IB interface.

Subroutine

hpib_abort

hpib_io

hpib_ppoll

hpib_spoll

hpib_bus_status

hpib_ eoi_ ctl

hpib _pass_ ctl

hpib _ card_ppolL resp

hpib_ren_ctl

hpib_rqsLsrvce

hpib _ send_ cmnd

hpib_status_ wait

hpib_ppolL resp_ ctl

Description

Stop activity on specified HP-IB select code.

Perform a series of HP-IB read, write, and SEND_CMD operations
from a single subroutine call (with some loss of execution speed).

Conduct parallel poll on HP-IB.

Cond uct serial poll on HP -lB.

Return status on HP-IB interface.

Control EOI mode for data transfers.

Pass bus control to another device on the bus.

Define HP-IB card's response to a parallel poll.

Assert or release HP-IB remote-enable (REN) line on HP-IB.

Initiate a service request (SRQ) when interface is not Active Controller.

Send command message on HP-IB data lines while asserting the at­
tention (ATN) line.

Wait until a specified device responds on its assigned parallel poll
response line indicating that it needs service.

Wait until any device on the bus asserts SRQ.

Configure and enable or disable the parallel poll response circuit on
the specified device (determines how the device will respond to the
next parallel poll from a remote active controller).

Additional Series 200/300 and Integral PC Routines
The Integral PC and Series 200/300 support high-speed burst I/O on HP-IB and GPIO
through th(> following DIL subroutine:

50 Controlling the HP -IB Interface

Subroutine Description

io_buTst(eid,Jlag) Control the data path between computer memory and an HP-IB or
GPIO interface. If flag = 0, all data is handled through kernel calls
with the normal associated overhead. If flag is non-zero, burst mode
locks the interface and data is transferred directly between memory
and the I/O mapped interface until the transfer is completed. Burst
mode yields substantial improvement in efficiency when handling small
amounts of data or high-speed data acquisition.

This subroutine handles high-speed transfers on both HP-IB and GPIO
I/O.

HP-IB: The Computer's Role
Most HP-IB applications consist of a single computer and several peripheral devices
connected to a given bus. However, some situations may require two or more computers
on the same bus along with various shared and/or dedicated peripheral devices. This
discussion applies to both configurations.

Ground Rules
The following rules are mandatory for proper HP-IB interaction:

• HP-IB allows only one System Controller per bus.

• Only one device on the bus can be active controller at any given time.

• All other devices capable of controlling the bus must be non-active controllers unless
control is passed from another active controller.

• The computer interface is configured as System Controller. If two or more comput­
ers are interfaced to a single bus, only one can be configured as System Controller.
All other interfaces must be configured as non-controllers (incapable of acting as
System Controller). This is usually accomplished by programming a switch or
jumper on the HP-IB interface card.

At power-up, the System Controller is the Active Controller. All other controllers on the
bus are non-active controllers. If the computer interface passes control to another device,
the device receiving control becomes the new active controller and the computer interface
becomes a non-active controller although it remains System Controller at all times and
can regain control of the bus by asserting IFC (InterFace Clear). Once control has been
passed to another device, the computer remains non-active controller until control is
passed back or IFC is asserted.

Controlling the HP-IB Interface 51

Available Subroutines versus Controller Role
Which DIL subroutines can be used depends on the computer's role on the HP-IB at the
time. Given the three possible roles, Table 3-2 indicates which subroutines can be used
with each.

Table 3-2. DIL Subroutine Availability Based on Interface Role.

System Active Non-Active
Subroutine Controller Controller Controller

hpib_abort •
hpib_io •
hpib_ppoll •
hpib_spoll •
hpib_bus_status Note 1 • •
hpib_ eoi_ ctl •
hpib_pass_ ctl •
hpib_ card_ppolL resp Note 2 •
hpib_ ren_ ctl •
hpib_ rqsCsrvce Note 2 •
hpib_send_cmnd •
hpib _ waiC on_ppoll •
hpib_status_ wait Note 1 • •
hpib_ppolL resp_ ctl Note 2 •

Note 1 This command is available to the System controller, but the availability is
meaningless because this command is available to any interface on the bus,
independent of its role as an active or non-active controller.

Note 2 This command is available to the interface while it is active controller,
but the command is meaningless except when the interface is acting in the
non-active controller role.

52 Controlling the HP-IB Interface

Bus Citizenship:
Surviving Multi-Device/Multi-Process HP-IB
HP-UX provides a powerful environment for creative programming. As a result, one or
more users can create a large number of processes that may be running simultaneously.
At the same time, HP-IB provides the capability of combining multiple devices on a single
I/O channel or interface. As long as only auto-addressed HP-IB interface files are used,
problems are few and infrequent. However, when processes that use DIL subroutines start
accessing raw-mode HP-IB interface files, a splendid opportunity arises for competing
processes to create bus addressing and access conflicts. If certain precautions are not
carefully maintained, performance quickly decays to chaos.

The Device I/O Library contains several subroutines that are provided specifically for
maintaining orderly HP-IB traffic and good I/O efficiency. Correct use of these subrou­
tines is especially important when using raw interface files. They include:

• io_lock and io_ unlock to take exclusive control of the HP-IB channel for the duration
of a transfer,

• io_burst to efficiently handle short transfers without consuming large amounts of
HP-UX kernel overhead,

• hpib_ io to structure a complete bus transfer including configuration and control
operations in a buffer then handle the transfer as a single subroutine call through
an interface file that is automatically locked at the beginning and released at the
end of the transfer.

These subroutines are discussed at length later in this chapter, but are treated here from
the point of view of overall bus applications efficiency as it pertains to programming
practice.

Controlling the HP-IB Interface 53

io_lock and io_unlock
When handling raw-mode (as opposed to auto-addressed) HP-IB transfers, devices must
be set up to communicate (preamble) before the transfer (read/write) can be initiated,
then the necessary clean-up (postamble) operations must be performed to leave the bus
in an acceptable state for the next process. If you do not notify other processes that you
are using the bus, they might initiate a different transfer while you are preparing for your
next DIL subroutine call. A command sequence from another process (through a different
e'id but through the same interface) could completely scramble your bus configuration so
your transfer request results in no data, erroneous data, or possibly even more serious
results, depending on the nature of tile transfer.

A simple call to 'io_lock prior to your first call to an HP-IB subroutine and a matching
call to 'io_unlock after your last HP-IB subroutine call keeps competing processes from
using the bus while you have control. As soon as the interface file is unlocked, it can be
accessed by the next process that needs it.

io_burst
Series 200/300 systems support burst I/O (also called fast handshake) which bypasses
the kernel by performing a high-speed non-interrupt transfer. This method can produce
considerable performance improvement when handling short transfers to or from high­
speed HP-IB devices. See the Series 200/300 Appendix for more information about burst
I/O.

hpib_io
The DIL subroutine hp'ib_'io is used to perform bus configuration, data transfer, and
bus clean-up as a single operation through a locked interface file. When using hp'ib_'io,
control commands (the preamble), data to be written or a buffer for incoming data (the
data message), and clean-up commands (postamble) are placed in a data structure prior
to calling hpib_ io. hpib_ io then locks the interface, handles the transfer as defined in
the data structure (which configures the HP-IB and handles the transfer and clean-up)
unlocks the interface, then returns with the result (transfer complete or transfer failed).
While hpib_ io often makes programs shorter and simpler, the added overhead associated
with hpib_io is less efficient than when using individual DIL subroutine calls.

54 Controlling the HP-IB Interface

Opening the HP-IB Interface File
Before DIL subroutines can be used on an HP-IB interface, the interface special file must
exist and the program must obtain a corresponding entity identifier. The procedures for
opening interface special files and obtaining entity identifiers is discussed in Chapter 2,
"General-Purpose Routines."

Sending HP-IB Commands
Once the HP-IB interface special file has been opened and the entity identifier has been
obtained, DIL subroutines can be used to send HP-IB commands to control the inter­
face. If the computer is Active Controller, hpib_send_cmnd can be used to place HP-IB
commands on the data bus.

One method of using this routine is to first set up a character array containing the
commands being sent. Assign the decimal value of each command to an element in the
array, then use a subroutine call having the form:

hpib_send_cmnd{eid, command, number);

where eid is the entity identifier for the open interface file, command is a character
pointer to the first element of the array containing the HP-IB commands, and number
is the number of elements (commands) in the array. The subroutine hpib_send_cmnd
places each of the commands stored in the array on the bus with ATN asserted.

Notice that by changing the number argument and moving the command pointer you can
send subsets of command arrays. Suppose you create an array that contains 10 HP-IB
commands, command[O] through command[9]. You can now specify that only the last 5
commands in the array be sent by using:

hpib_send_cmnd{eid, command + 5, 5);

Controlling the HP-IB Interface 55

This method of sending HP -IB commands by storing them in an array uses their decimal
values. Alternatively, ASCII command characters can be used by specifying a character
string and using a subroutine call of the form:

where eid and number are the same as before but the commands to be sent are now
specified by each character in the string command_string.

To illustrate the two methods, assume that you want to send the HP-IB UNLISTEN and
UNTALK commands. With the decimal array method, first set up an array having two
elements, place the decimal value for each command in the appropriate location in the
array, then call hpib_send_cmnd:

#include <fcntl.h>
mainO
{

int eid;
char command[2]; /*command array*/

eid = open (II/dev/raw_hpib ll
, O_RDWR);

command[O] = 63; /*decimal value for UNLISTEN*/
command [1] = 95; /*decimal value for UNTALK*/
hpib_send_cmnd(eid, command, 2);

}

U sing the ASCII character string method, the same effect is achieved using:

#include <fcntl.h>
mainO
{

int eid;

eid = open (II/dev/raw_hpib ll
, O_RDWR);

hpib_send_cmnd(eid, 111_11, 2); /*1 is ASCII for UNLISTEN and*/
/*_ is ASCII for UNTALK */

}

The array method is usually preferred when sending a large number of commands or
sending the same set of commands several times in the program because the entire
set of commands can be stored once then used whenever needed. When the string
method is used, the entire set of commands must be specified as a string in each call to
hpib_send_cmnd. It is preferred when sending only a few commands or sending a set of
commands only once in a program.

56 Controlling the HP-IB Interface

Errors While Sending Commands
Normally, hpib_send_ cmnd returns a 0 if successful. It returns a -1 if anyone of the
following error conditions exist:

• Computer interface is not Active Controller.

• eid entity identifier does not refer to an HP-IB raw interface file.

• e£d entity identifier does not refer to an open file.

To determine which of these conditions caused the error, cheek the value of errno, an
external integer variable used by HP-UX system calls. Error-checking routines are dis­
cussed at length in Chapter 2.

The following table lists errno values corresponding to the conditions above when de­
tected by hpib_send_cmnd:

errno Value

EBADF

ENOTTY

EIO

Error Condition

eid did not refer to an open file

eid did not refer to a raw interface file

The interface was not the Active Controller

Controlling the HP-IB Interface 57

Active Controller Role
The Active Controller is responsible for originating all commands handled on the bus
and responding to requests for service from other devices. hpib_send_cmnd is used to
send HP-IB commands. Other DIL subroutines are used for the remaining bus control
tasks. Active Controller operations discussed in this chapter include:

• Addressing individual devices to talk or listen.

• Switching devices to remote control operation.

• Locking out local front-panel control on devices.

• Switching devices to local front-panel control.

• Triggering devices to initiate device-dependent operations.

• Transferring data in or out.

• Clearing (resetting) devices

• Responding to service requests from devices.

• Conducting parallel and serial polls.

• Passing active control of the bus to another device.

Determining Active Controller
A computer interface must be the Active Controller before it can handle any bus manage­
ment activities. If any other device on the bus is capable of being Active Controller, use
the hp";b_bus_status subroutine to determine whether the interface is the current Active
Controller. Use the following subroutine call form:

where eid is the entity identifier for the opened HP-IB interface device file and 4 tells
the subroutine to examine interface status and determine whether or not the card is the
Active Controller. The value returned by the subroutine can be tested as indicated in
the example source code which fullows.

hpib_bus_status returns 0 if the condition being tested is false; 1 if true, and -1 if an
error occurred. The code that follows shows a straightforward way of interpreting the
returned value:

58 Controlling the HP -IB Interface

#include <fcntl.h>
main()
{

int eid. status;
eid = open(lI/dev/raw_hpib li

• O_RDWR);

}

if «status = hpib_bus_status(eid.4» == -1)

else if (status

else

/*an error occurred; error-handling code*/

/*goes here.
0)

/*not Active Controller; code to request */

/*Active Controller status goes here */

/*Active Controller; bus-management code */

/*goes here */

Setting Up Talkers and Listeners
Before data can be transferred over HP-IB, one talker and one or more listeners must be
assigned to handle the transfer. In addition, some HP-IB commands are recognized only
by those devices that are currently addressed as listeners, which means that the Active
Controller must specify the listeners before sending such commands. Only one talker at
a time is allowed on the bus, but the number of listeners is not restricted.

Series 200/300 and 500 computers provide two methods for addressing listeners and
talkers on HP-IB: auto-addressing and command addressing.

When an HP-IB interface device file is set up as an auto-addressed file (determined by
the value of the minor number used when creating the file), any read/write operations
to or from the file automatically set up the bus talk and listen address commands prior
to transferring data. The interface must be the Active Controller when auto-addressing
is used.

The alternate method uses hpib_send_cmnd to directly control the bus from the user
program itself. However, this method of control can only be used on raw device special
files.

The Integral PC does not support auto-addressing. Alt HP-IB interface files on the Inte­
gral PC are raw special files and do not support auto-addressing. Hence hpib_send_cmnd
must be used for all HP-IB bus control operations.

Controlling the HP -IB Interface 59

Auto-Addressing on Series 200/300 and 500
Much of the tedium of addressing devices to talk or listen can be avoided by using auto­
addressed device special files to take advantage of HP-UX auto-addressing capabilities for
many peripherals. Auto-addressing is performed only on auto-addressed HP-IB device
files. Some DIL subroutines require a raw HP-IB device file, and will fail if you attempt
to use them on an auto-addressed device file. DIL subroutines that can be used with non­
raw device files include hpib_eoi_ctl, hpib_eoLctl, io_burst, io_geCterm_reason, io_lock,
io_unlock, io_speed_ctl, and io_timeouCctl,

Series 200, 300, and 500 systems determine whether a device file is raw or auto-addressed
by the address parameter used when the file is created. Address 31 (hexadecimal If) is
reserved for raw files. Any address in the range 0 through 30·is auto-addressed. Refer to
the appropriate appendix for procedures used to create device and interface special files.

For example, suppose you are using a Series 500 computer with an HP 27110A/B HP­
IB card on select code 01 to access a peripheral device located at bus address 03. Use
mknod to create a new device file named device for the peripheral device and place the
file in directory dev underneath the root directory as explained in Appendix A (a similar
procedure described in Appendix B is used for Series 200/300):

mknod /dev/device c 12 Ox010300

Once the file exists, it can be listed by using the 1l(1) command. In this case, the device
file named / dev / device is listed (along with other files in the / dev directory) together
with its permissions and attributes:

crw-rw-rw- 1 root other 12 Ox010300 Nov 22 1986 /dev/device

Since the bus address is less than decimal 31, the file is a non-raw device file and is
auto-addressable. The following code segment illustrates how to use auto-addressing
with such a device file:

main()
{

}

int eid;
eid = open("/dev/device".O_RDWR);

/*Assuming "/dev/device" has the minor number (Ox010300). the*/
/*system automatically addresses the interface card at select code 1*/
/*as a talker and the device at bus address 3 as a listener before*/
/*sending data*/

write(eid. "test data".9);

60 Controlling the HP-IB Interface

Using hpib_send_cmnd
Talkers and listeners can be configured under program control by forming HP-IB com­
mand sequences from the talk and listen addresses of the devices being used. How­
ever, before addressing talkers and listeners, clear the bus of any talkers and listeners
that might be left over from previous transactions by issuing UN TALK and UNLISTEN
commands (whenever a talk address appears on the bus, wen-mannered devices should
recognize the address and automatically untalk if the address is for a different device.
However, not all devices are necessarily well-mannered, so an UNTALK is considered
good programming practice). To configure a new talker and listeners:

1. Send an UNTALK command to remove any previous talkers.

2. Send an UNLISTEN COlIlIIland to remove any previous listeners.

3. Send the talk address of the device that will be sending data. There can only be
one talker.

4. Send the listen address of each device that is to receive the data.

After data transfer is complete, issue an UNTALK and UNLISTEN command on the
bus (repeat steps 1 and 2) to leave it in a clean state for subsequent transactions.

DIL subroutine hpib_send_cmnd is used to perform these tasks.

Calculating Talk and Listen Addresses
Before devices can be addressed to talk or listen, their HP-IB bus addresses must
be known. The bus address of the computer interface is easily obtained by using
hpib_bus_status as shown in this program code segment:

#include <fcntl.h>
main()
{

}

int eid. address;
eid = open("/dev/raw_hpib". O_RDWR);
address = hpib_bus_status(eid. 7);

where eid is the entity identifier for the interface file and 7 indicates a request for the
interface HP-IB bus address.

To determine the bus address of other devices on the bus, refer to installation and
operating manuals for each device being used (certain HP-IB addresses may be reserved
for specific devices on some systems).

Controlling the HP-IB Interface 61

Once device addresses are known for all devices of interest, setting up talk and listen
addresses is a fairly simple matter.

HP-IB commands are set up as a single ASCII character transmitted while ATN is
asserted. However, it is usually much easier to calculate addresses based on bus ad­
dress rather than looking up the corresponding ASCII character for each address. Bus
addresses range from 0 through 30, and talk and listen addresses are derived through
decimal addition as follows:

talk_address = 64 + bus_address
listen_address = 32 + bus_address

where talk ... address is the decimal equivalent of the binary bit pattern that represents
the ASCII talk address command character. Likewise, listen_address is the decimal
representation of the ASCII listen address command character. bus_ address is the decimal
value of the HP-IB bus address for the device being addressed.

The talk and listen addresses MTA ("my talk address") and MLA ("my listen address")
for the computer interface are derived similarly as follows:

MTA = hpib_bus_status(eid. 7) + 64;
MLA = hpib_bus_status(eid. 7) + 32;

An Example Configuration
Assuming that the computer's HP-IB interface is currently the Active Controller, the
following code segment establishes the interface as the bus talker. Two devices at HP-IB
addresses 4 and 8 are designated as bus listeners.

#include <fcntl.h>
mainO
{

}

int eid. MTA;
char command[5];
eid = open("/dev/raw_hpib". O_RDWR);
MTA = hpib_bus_status(eid. 7) + 64; /*calculate My Talk Address*/
command[O] = 95; /* UNTALK command*/
command[l] = 63; /* UNLISTEN command*/
command [2] MTA; /* interface talk address*/
command[3] = 32 + 4; /* listen address for device at bus address 4*/
command[4] = 32 + 8; /* listen address for device at bus address 8*/
hpib_send_cmnd(eid. command. 5);

62 Controlling the HP-IB Interface

Remote Control of Devices
Most HP-IB devices can be controlled from either their front panel or the bus. If the
device's front-panel controls are currently operational, the device is in local state. If
it is being controlled through the HP-IB, it is in remote state. Pressing the device's
front-panel LOCAL key returns the device to local control unless it has been placed in
local lockout state (described in the next section).

Whether the HP-IB remote enable (REN) line is asserted or not determines whether or
not a device can respond to remote program control. While REN is asserted, any device
that is addressed to listen is automatically' placed in remote state. Only the System
Controller can assert or release the REN line. REN, by default, is asserted at power-up
and remains asserted unless changed as discussed later in this chapter under the topic
System Controller Operations.

Locking Out Local Control
The LOCAL LOCKOUT command inhibits the LOCAL key or switch present on the
front panel of most HP-IB devices, thus preventing anyone from interfering with system
operations by pressing front-panel control buttons. All devices that support local lockout
are locked, whether addressed or not, and cannot be returned to local control from their
front panels.

The following code segment shows one method for sending the LOCAL LOCKOUT
command:

command[O] = 17; 1* Decimal value of LOCAL LOCKOUT*I
hpib_send_cmnd(eid. command, 1);

The GO TO LOCAL command can be used to place a device in local (front-panel control)
state.

Controlling the HP-IB Interface 63

Enabling Local Control
During system operation, it may be necessary to place certain devices in local state for
direct operator control such as when making special tests or troubleshooting. The GO
TO LOCAL command returns all devices currently addressed as listeners to their local
state.

For example, the following code segment places devices at bus addresses 3 and 5 in local
state.

command [0] 63;
command [1] 32 + 3;
command [2] 32 + 5;
command[3] = 1;
hpib_send_cmnd(eid, command,

Triggering Devices

1* the UNLISTEN command*1
1* listen address for device at address 3*1
1* listen address for device at address 5*1
1* the GO TO LOCAL command*1
4);

The HP-IB TRIGGER command tells devices currently addressed as listeners to initiate
some device-dependent action. A typical use is triggering a measurement cycle on a
digital voltmeter. Since device response to a TRIGGER command is strictly device­
dependent, HP-IB has no direct control over the type of action being initiated.

The following code triggers the device at bus address 5:

command[O] = 63; 1* UNLISTEN command*1
command[l] = 32 + 5; 1* listen address for device at address 5*1
command[2] = 8; 1* TRIGGER command*1
hpib_send_cmnd(eid, command, 3);

64 Controlling the HP-IB Interface

Transferring Data
Data Output
To output data from an Active Controller the controller must:

1. Send a bus UNTALK command.

2. Send a bus UNLISTEN command.

3. Send its own talk address (MTA).

4. Send the listen address of the device that is to receive the data. One listen address
is sent for every device that is to receive the data.

5. Send the data.

6. Repeat steps 1 and 2 to clean up the bus.

The first 3 steps are accomplished using hpib_send_cmnd. The system subroutine write
takes care of the fourth.

The following code segment illustrates how character data can be sent to a device at
HP-IB address 5.

#include <fcntl.h>
mainO
{

int eid. MTA;
char command [50] ;

eid = open("/dev/raw_hpib". O_RDWR);
MTA = hpib_bus_status(eid. 7) + 64;
command[O] = 95;
command[l] = 63;
command[2] = MTA;
command [3] = 32 + 5;

/*calculate MTA*/
/*UNTALK command*/
/*UNLISTEN command*/
/*address interface to talk*/
/*listen address of device at*/
/*address 5 */

hpib_send_cmnd(eid. command. 4);
write(eid. "data message". 12);
hpib_send_cmnd(eid. command. 2);

/*send the data*/
/*clear talkers and listeners*/

}

Controlling the HP-IB Interface 65

Data Input
Assume that you expect to receive 50 bytes of data from another device on the bus. The
following code segment programs the interface to receive character data from a device at
bus address 5. The integer variable MLA contains the interface listen address.

#include <fcntl.h>
main{)
{

}

int eid. MLA. len;
char buffer [51] ;
char command[4];

eid = open{"/dev/raw_hpib". O_RDWR);
MLA = hpib_bus_status{eid. 7) + 32;
command[O] = 95;
command[l] = 63;
command[2] =-64 + 5;

command[3] = MLA;
hpib_send_cmnd{eid. command. 4);
len = read{eid. buffer. 50);
buffer[len] = '\0';
hpib_send_cmnd{eid. command. 2);
printf{"Data read is: %S". buffer);

Clearing HP-IB Devices

/*storage for data*/

/*calculate MLA*/
/*UNTALK command*/
/*UNLISTEN command*/
/*address device at address 5*/
/*to talk */
/*address interface to listen*/

/*store the data in "buffer"*/
/*terminate with NULL for printf*/

/*print message*/

Two HP-IB commands are used to reset devices to pre-defined, device-dependent states.
The first, DEVICE CLEAR, causes all devices that recognize the command to be reset,
whether addressed or not.

To reset all devices on an HP-IB accessed through an interface file having entity identifier
eid, use a code segment similar to:

command[O] = 20; /* DEVICE CLEAR command*/
hpib_send_cmnd{eid. command. 1);

The second command for resetting devices is SELECTED DEVICE CLEAR. This com­
mand resets only those devices that are currently addressed as listeners.

To reset a device at HP-IB address 7, use a code segment such as this (the interface must
already be addressed to talk):

66 Controlling the HP-IB Interface

command[O] = 63;
command[l] = 32 + 7;

command[2] = 4;
hpib_send_cmnd(eid, command,

1* the UNLISTEN command*1
1* the listen address for device at*1
1* address 7 *1
1* the SELECTED DEVICE CLEAR command*!

3);

Responding to Service Requests
Most HP-IB devices, such as voltmeters, frequency counters, and spectrum analyzers,
are capable of generating a service request when they require the Active Controller to
take some action. Service requests are generally made after the device has completed a
task (such as taking a measurement) or when an error condition exists (such as a printer
being out of paper). The operating or programming manual for each device describes the
device's capability to request service and the conditions under which it requests service.

Monitoring the SRQ Line
To request service, a device asserts the bus Service Request (SRQ) line. To determine if
SRQ is being asserted, check the status of the line, wait for SRQ, or set up an interrupt
handler for SRQ. The hpib_status_ wait subroutine provides a means for suspending pro­
gram operation until the SRQ line is asserted then continuing. To structure a program
so that it waits until SRQ line is asserted, invoke hpib_status_ wait as follows:

hpib_status_wait(eid, 1);

where eid is the entity identifier for the open interface file and 1 indicates that the event
that you are waiting for is the assertion of SRQ. The subroutine returns 0 when the
condition requested becomes true or -1 if a timeout or an error occurred.

Controlling the HP-IB Interface 67

The following code segment illustrates the use of hpib_status_ wait:

#include <fcntl.h>
mainO
{

int eid;
eid = open(l/dev/raw_hpib". O_RDWR);
io_timeout_ctl(eid.10000000); I*Set a 10-second timeout*1
if (hpib_status_wait(eid. 1) == 0)

service_routine() ; I*SRQ is asserted; service the request*1
else

printf("Either a timeout or an error occurred");
}

Another solution is to periodically check the value of the SRQ line by calling
hpib_bus_status as follows:

where, as before, eid is the entity identifier for the open interface file and 1 indicates that
you want the logical value of the SRQ line returned. hpib_bus_status returns 1 if SRQ is
asserted, 0 if not, and -1 if an error occurred.

The most practical way to monitor SRQ is to set up an interrupt handler for that
condition (see "Interrupts" section of Chapter 2).

Processing the Service Request
Once a device has asserted the SRQ line, it continues to assert the line until its request
has been satisfied. How a service request is satisfied is device-dependent. Serial polling
the device can provide the information as to what kind of service it requires.

Many devices are designed so that they automatically clear their SRQ output whenever
they are serially polled. These devices treat the serial poll as an acknowledgement from
the Active Controller that the request has been recognized and is being processed by the
Active Controller.

If there is more than one device on the bus when SRQ is asserted, the Active Controller
must first determine which device needs service before it can properly undertake any
service related activity. There are two strategies for doing this:

• Serial poll each individual device in sequence until the one that is requesting service
is found. This approach is reasonable if there are only a few devices on the bus.

68 Controlling the HP -IB Interface

• Conduct a parallel poll to locate the device requesting service. Normally each
device (when capable) is programmed to respond on a given data line. However,
up to 15 devices can reRide on the bus which has only 8 data lines. Therefore it is
sometimes necessary for more than one device to respond on a given line.

If t\VO or more devices are programmed to respond on a given parallel poll line and
the parallel poll shows that line asserted, the Active Controller must then serially
poll each device that is programmed to respond on that line until it determines
which device is requesting service.

Thus, the Active Controller responds to SRQ by:

• Conducting a serial poll of individual devices on the bus,

• Conducting a parallel poll of return data lines to determine which line is being
asserted, or

• Conducting a parallel poll to identify the asserted data line followed by a serial poll
of devices programmed to assert that line when SRQ is being asserted by the same
device.

HP-IB parallel and serial polls are conducted by the DIL subroutines hpib_ppoll and
hpib_spoU, respectively. The next section explains how to use these subroutineR.

Parallel Polling
The parallel poll is the fastest means of determining which device needs service when
several devices are connected to the bus. Each device on the bus that is capable of
responding to parallel pools can be programmed to respond to parallel polls by asserting
a given data line, thus making it possible to obtain the status of several devices in a
single operation. If a given device responds to the poll with a data line response (I need
service), more information about its specific status can be obtained by conducting a
subsequent serial poll of that device.

Integral PC Only: The parallel poll response in the HP 82998A HP-IB interface can only
be set using the hpib_card_ppoltresp subroutine.

Controlling the HP-IB Interface 69

Configuring Parallel Poll Responses
HP-IB devices fall into three general categories:

1. Those devices that can be remotely programmed by the Active Controller to re­
spond to a parallel poll in a certain way, The next several pages explain how to
program these devices.

2. Devices whose parallel poll response is configured by internal hardware, whether
by setting a of configuration switches, or based on device bus address. A significant
number of Hewlett-Packard products fall into this grouping. In general, they are
HP-IB devices that support secondary commands such as SS/80 and CS/80 mass
storage devices, CYPER printers, and Amigo protocol devices including several
disc drives and printers. Some important information about these devices follows
in the next few paragraphs.

3. Devices that are not capable of responding to parallel polls, so discussing their
configuration is meaningless.

A number of operating rules have been established for devices in Category 2:

• No two devices can respond on the same data line. This means that only eight or
fewer devices in this category can reside simultaneously on a given bus. If fewer
than eight are present, data lines not used by these devices for parallel poll response
can be shared among remaining devices on the bus if any are present.

• Each device in this category responds to a parallel poll on an assigned data line
determined by the device's HP-IB address. Devices residing at HP-IB addresses 0
through 7 respond on data lines DI7 through DID, respectively (note the reversed
numbering sequencing).

• Devices in this category respond to parallel polls when they need service by driving
the specified data line LOW to its ground-true logic state (the sense cannot be
reversed to high-true).

Note also that some models of HP-IB devices can be switched between normal HP­
IB operating mode and "Amigo" or "Secondary" mode (terminology varies as well as
the implementation). Refer to the device installation and operating manuals for more
information about how to configure the device for your application and to determine
whether the device supports remote configuration by the Active Controller, uses internal
configuration, or does not support parallel poll.

70 Controlling the HP-IB Interface

To configure the parallel poll response for a given device by remote control from the
Active Controller, use the HP-IB command sequences PARALLEL POLL CONFIGURE
followed by PARALLEL POLL ENABLE. This combination of two commands tells all
devices currently addressed as listeners to respond to any future parallel polls by asserting
a specific data line with a specific logic level. Most devices that do not support remote
configuration programming have internal configuration switches or jumpers that perform
an equivalent function but which cannot be changed remotely by the Active Controller.

Devices that can be remotely configured can be programmed to respond with a logic 0
or logic 1 level on anyone of eight data lines. Thus there are 16 possible combinations of
lines and logic levels since there are two possible levels on each line and only one line can
be asserted during a parallel poll. The PARALLEL POLL ENABLE command consists
of an 8-bit byte whose bits are arranged as follows (the decimal equivalent value of the
byte falls in the range of 96 through 111):

D7 D6 D5 D4 D3 D2 Dl DO Decimal Range

0 1 1 0 L X X X 96-111

where:

• The upper four bits are a fixed pattern of logical 0 (bits D7 and D4) and logical 1
(bits D6 and D5).

• Bit D3 (response logic level) determines whether data line D3 is to be asserted
(driven to its ground-true state) or released (allowed to float to its high-false state)
by the device when responding to a parallel poll if service is needed. If bit D3 is set
(1), the device responding to the poll drives the data line low if service is -needed.
If D3 is not set (0), the device responding to the poll drives the data line low if
service is not needed (bit value = 0). This bit is most commonly set to a value of
1.

• Bits D2, D1, and DO are the 3-bit (value range 0 through 7) value representing
which data line (DO through D7 respectively) is to be used when responding to a
parallel poll.

For example, to program a given device to respond to a parallel poll by placing a logic
1 on data line DO if it needs service, use a PARALLEL POLL ENABLE command with
a decimal value of 104 (binary 01101000).

Controlling the HP -IB Interface 71

The following code segment shows how to configure a device at bus address 5 to respond
to a parallel poll by asserting data line D1 with a logic 1 if it needs service.

#include <fcntl.h>
mainO
{

}

int eid. MTA;
char command[50];

eid = open("/dev/raw_hpib". O_RDWR);
MTA = hpib_bus_status(eid. 7) + 64; /*calculate MTA*/
command[O] = MTA; /*talk address of interface*/
command [1] 63; /* the UNLISTEN command*/
command [2] 32 + 5; /* the listen address for device at*/

/* address 5 */
command [3] 5; /* the PARALLEL POLL CONFIGURE command*/
command [4] 105; /* the PARALLEL POLL ENABLE command*/
hpib_send_crnnd(eid. command. 5);

Notice that the bit pattern for the PARALLEL POLL ENABLE command 105 used
above is:

o 1 o 1 001

LlLThese 3 bits indicate that the device should
respond on 01.

~--------This bit indicates that the device respond with
a 1 to request service.

~......I,_.....&.._"""'----------These 4 bits indicate that this is a PARALLEL
POLL ENABLE command.

When the computer interface is the Active Controller, it can configure its own parallel
poll response by addressing itself as both talker and listener. However, the configura­
tion is meaningless until the interface is no longer Active Controller because the Active
Controller never responds to parallel polls.

72 Controlling the HP-IB Interface

Disabling Parallel Poll Responses
A device whose parallel poll response can be remotely configured by the Active Controller
can also be disabled from responding.

To disable a device from responding to subsequent parallel polls, the Active Controller
must first send a PARALLEL POLL CONFIGURE command followed by PARALLEL
POLL DISABLE. This sequence disables all devices that are currently addressed to listen.

In the previous example a device at bus address 5 was configured to respond to parallel
polls on data line Dl. To disable parallel poll response on the same device, use a code
segment similar to the following:

command[O] = MTA;
command[l] = 63;
command[2] = 32 + 5;

/*talk address of interface*/
/* the UNLISTEN command*/
/* the listen address for device at*/
/* address 5 */
/* the PARALLEL POLL CONFIGURE command*/
/* the PARALLEL POLL DISABLE command*/

command[3] = 5;
command [4] = 112;
hpib_send_cmnd(eid. command. 5);

Conducting a Parallel Poll
Once parallel poll responses have been (remotely or internally) configured for all devices
on the bus that are capable of responding to parallel polls, you can use hpib_ppoll to
conduct a parallel poll on the bus, provided the computer is the current Active Controller.

The hpib_ppoll subroutine returns an integer whose least significant byte contains the
8-bit response to the parallel poll. Each device that is enabled to respond to a parallel
poll places its status bit (service needed or not needed) on the data line defined by its
current parallel poll response configuration. The subroutine returns -1 if an error occurs
during the poll.

hpib_ppoll is invoked as follows:

hpib_ppoll(eid);

where eid is the entity identifier for the open interface file associated with the bus.

Controlling the HP-IB Interface 73

The following code segment shows how to interpret the byte returned by hpib_ppoll.
Suppose a device at address 6 was previously configured to respond to a parallel poll by
setting DO to logic 1 (low) level if it needs service and a device at address 7 was configured
to respond similarly on D 1. Assuming that these are the only two devices capable of
responding to a parallel poll, only the values of the 2 least significant bits of the integer
returned by hpib_ppoll are of interest. This example code segment handles the results of
the parallel poll, but does not include the code needed to handled the requested service.

#include <fcntl.h>
maine)
{

}

int eid. status. byte;
eid = open("/dev/raw_hpib". O_RDWR);

if «status = hpib_ppoll(eid)) == -1) /*conduct the parallel poll*/
{

printf("error taking ppoll"); /*if -1 returned then error occurred*/
exit (1) ;

}

byte = status & 3;

switch (byte) {

}

case 0:

break;
case 1:

break;
case 2:

break;
case 3:

break;

/*set all but the least significant*/
/*2 bits to zero */

/*neither device is requesting service*/

/*device at address 6 wants service*/

/*device at address 7 wants service*/

/*both devices want service*/

74 Controlling the HP -IB Interface

Errors During Parallel Polls
hpib_ppoll returns the value -1 if anyone of the following error conditions are encoun­
tered:

• Timeout defined by io_timeouLctl occurred before all devices responded.

• Computer's interface is not the Active Controller.

• Entity identifier eid does not refer to a raw HP-IB interface file.

• Entity identifier eid does not refer to an open file.

To find out which of these conditions caused the error, your program should check for
the following values of errno:

errno Value

EBADF

ENOTTY

EIO

Error Condition

eid does not refer to an open file.

eid does not refer to a raw interface file.

Interface is not Active Controller or a timeout occurred.

Waiting For a Parallel Poll Response
Subroutine hpib_waiLon_ppoll allows you to wait for a specific parallel poll response
from one or more devices. The effect of this is similar to using hpib_status_ wait to wait
for assertion of SRQ as discussed earlier. hpib_waiLon_ppoll provides a mechanism for
waiting until a specific device requests service while hpib_status_ wait only waits until any
device requests service.

To call hpib_waiLon_ppoll, use the form:

where eid is the entity identifier for an open interface file, mask is an integer whose binary
value identifies which parallel poll lines are to be monitored for a request, and sense is
an integer whose binary value identifies which lines respond with an inverted logic sense
(device responds with 0 when it wants service instead of the usual 1). hpib_waiLon_ppoll
returns the response byte XORed with the sense value then ANDed with the mask value,
unless an error occurs, in which case it returns -1.

Controlling the HP-IB Interface 75

Calculating the mask
hpib_waiLon_ppoll uses only the least significant byte of the mask integer which means
that the integer's remaining bytes can contain anything. For simplicity, the examples in
this discussion set the upper bytes to zero.

The value for mask is determined as follows:

1. Decide which parallel poll lines (the 8 data lines labelled DO through D7) are to be
monitored for service requests.

2. Set up an 8-bit binary number where the bits associated with each line being
monitored are set to 1 and all remaining bits are O. (DO is associated with the least
significant bit of the binary number, and D7 with the most significant.)

3. Given the binary number from step 2, calculate its decimal value. The result is the
correct value for mask.

For example, suppose that you want to wait for device A or device B to request service.
You know that device A has been configured to respond on parallel poll line DO and
device B has been configured to respond on line D4. The correct binary value for mask
is:

D7 D6 D5 D4 D3 D2 Dl DO

a a a 1 a a a 1

The decimal equivalent of this binary number is 17; the correct value for mask.

Consider a mask value of 0 which indicates that you do not want to wait for a request on
any of the parallel poll lines. In such a case, a call to hpib_waiLon_ppoll using a mask of
o is meaningless and has no effect.

76 Controlling the HP -IB Interface

Calculating the sense
The subroutine hpib_waiLon_ppoll also only looks at the least significant byte of the
sense integer. For simplicity, the examples in this discussion set the upper bytes to zero.

The value for sense is determined as follows:

1. Decide which parallel poll lines (the 8 data lines) are to be monitored for service
requests as discussed earlier.

2. Determine which of these lines will indicate a service request by a logic 0 response.
This means that you must know the sense with which the associated devices are
configured to respond to parallel polls.

3. Define an 8-bit binary number where the bits associated with the lines that use a
o to indicate a service request are set to 1 and all of remaining bits are O. (DO
is associated with the least significant bit of the binary number, and D7 with the
most significant.)

4. Given the binary number from step 3, calculate its decimal value. The resulting
value is the sense integer you should use with hpib_ waiL on_ppoll.

U sing the previous example for calculating the mask value, device A is configured to
respond on line DO with a 1 when it wants service, but device B requests service by
placing a 0 on line D4. The binary value for sense is:

D7 D6 D5 D4 D3 D2 Dl DO

a a a 1 a a o o

The decimal equivalent of this number is 16; the correct value for sense.

If all devices on the bus respond to parallel polls with a 1 to request service, the value
for sense can always be 0, regardless of which parallel poll lines are being monitored. If,
on the other hand, all of devices request service with a 0, the sense value can always be
255 (11111111 in binary). You need calculate a special value for sense only if various
devices on the bus respond with dissimilar logic senses.

Controlling the HP-IB Interface 77

Example
Assume that you want to use hpib_waiLon_ppoli to wait for one of the four devices on a
bus to request service where the bus is configured as follows:

Parallel Poll Requests Service
Device Bus Address Response Line with a:

A 5 DO 1

B 7 Dl 0

C 9 D2 0

D 11 D3 1

Begin by calculating the mask value for hpib_ waiLon_ppoli. Since responses can be
expected on lines DO, D1, D2, and D3, the correct mask value is:

Binary: Decimal:

o 0 001 1 1 1 15

The four devices on the bus use mixed (both ground- and high-true logic), the sense value
must be determined. Devices responding on lines D1 and D2 use 0 to request service, so
the sense value is:

Binary: Decimal:

o 0 0 0 0 1 1 0 6

Now that the mask and sense values have been determined, the code segment that makes
the call to hpib_ waiL on_ppoll can be written:

#include <fcntl.h>
mainO
{

}

int eid;
eid = open (It/dev/raw_hpib lt , O_RDWR);
io_timeout_ctl(eid,10000000); /*Set a 10-second timeout*/

if (hpib_wait_on_ppoll(eid, 15, 6) == -1)
printf(lteither a timeout or error occurred lt);

else
service_routine();

78 Controlling the HP-IB Interface

In the code segment shown, service_routine is executed only if one of the four devices
requests service during the parallel poll. Service_ routine should contain code segments
to service all devices on the bus, either individually or as a group. See the appropriate
hardware-specific appendix for any restrictions that may apply to your system.

Serial Polling
A sequential poll of individual devices on the bus is known as a serial poll. One entire
status byte is returned by the polled device in response to a serial poll. This byte is
called the status byte message and, depending on the device, may indicate an overload, a
request for service, printer out of paper, or some other condition. The particular response
of each device depends on the device.

Not all devices can respond to a serial poll. To find out whether a particular device can
be serially polled, consult operating manuals for the device. Attempting to serially poll
a device that cannot respond to the poll causes a timeout or suspends your program
indefinitely.

The Active Controller cannot poll itself.

Unlike parallel poll responses, serial poll responses cannot be configured remotely by the
Active Controller. Responses vary, depending on the type of device being polled. Refer
to device manual for more information.

Conducting a Serial Poll
Subroutine hpib_spoll performs a serial poll on a specified device. It is called with the
form:

hpib_spoll(eid, address);

where eid is the entity identifier for an open interface file and address is the bus address
of the device being polled. The subroutine returns an integer, the lowest byte of which
contains the status byte message (the serial poll response) from the addressed device.
Only one device can be polled per call to hpib_spoll.

Although the status byte message supplied by the addressed device is device-dependent,
bit D6 (of bits DO through D7) always indicates whether or not the device is currently
asserting SRQ. If SRQ is currently being asserted by the device, indicating that it needs
service, be sure to handle the request properly because the serial poll also clears SRQ so
that a subsequent poll will show no service request, whether or not the current request
has been satisfied.

Controlling the HP-IB Interface 79

The following code segment shows how hpib_spoll can be used to determine whether
a device at bus address 5 is requesting service. The determination is made by simply
examining D6 which indicates whether SRQ is being asserted.

#include <fcntl.h>
maine)
{

int eid. status;
eid = open(l/dev/raw_hpib". O_ROWR);
io_timeout_ctl(eid.100000); I*Set a O.1-second timeout*1

if «status = hpib_spoll(eid. 5» == -1)
{ printf("error during serial poll");

exit(1);
}

I*conduct serial poll*1

if (status It 64)

service_routine();

I*after setting every bit except 06*1
I*to zero; if 06 is set the device*1
I*is requesting service *1

}

Errors During Serial Poll
If any of the following error conditions are encountered during a call to hpib_spoll, the
subroutine returns -1:

• Addressed device did not respond to serial poll before the timeout limit defined by
io_timeouLctl was exceeded.

• Computer interface is not current Active Controller.

• Entity identifier eid does not refer to an HP-IB raw interface file.

• Entity identifier eid does not refer to an open file.

• Address is outside the range [0,30].

To determine which of these conditions caused the error, your program should check for
the following values of errno:

errno Value

EBADF

ENOTTY

EIO

EINVAL

Error Condition

eid does not refer to an open file.

eid does not refer to a raw interface file.

The device polled did not respond before the timeout or the interface
is not Active Controller.

Invalid bus address.

80 Controlling the HP -IB Interface

Passing Control
The subroutine hpib_pass_ ctl can be used to pass control of the bus from the computer
(which must be the current Active Controller) to a Non-Active Controller. A Non-Active
Controller is a device capable of becoming Active Controller, which usually means it is
another computer.

hpib_pass_ctl is called as follows:

hpib_pass_ctlCeid. address);

where eid is the entity identifier for an open interface file that is currently the Active
Controller and address is the bus address of a Non-Active Controller. Upon completion1

the Non-Active Controller becomes the new Active Controller and the local interface is
a Non-Active Controller.

While hpib_pass_ctl can pass active control capability, it cannot pass system control
capability.

What If Control Is Not Accepted?
Your program is not suspended if the Non-Active Controller that you address does not
accept active control of the bus, but the computer still loses active control meaning that
the bus no longer has an Active Controller. If this happens, the computer must use
its position as System Controller to assume the role of Active Controller by executing
hpib_abort (see System Controller Role section which follows) or io_reset.

No error is returned by hpib_pass_ ctl if the device that you address does not accept
active control, and there is no direct way to determine in advance whether a given
device can accept active control. There is also no way for the computer, after initiating
hpib_pass_ ctl, to determine whether active control has been accepted. However, if the
computer that has passed control immediately requests service after passing control and
detects a timeout before the request is acknowledged, this indicates that active control
may not have been accepted.

Errors While Passing Control
If any of the following errors are encountered, hpib_pass_ctl returns -1:

• Computer interface is not Active Controller.

• Entity identifier eid does not refer to an HP-IB raw interface file.

• Entity identifier eid does not refer to an open file.

• Address is outside the range [0,30].

Controlling the HP-IB Interface 81

To find out which of these conditions caused the error, your program should check for
the following values of errno:

errno Value

EBADF

ENOTTY

EIO

EINVAL

Error Condition

eid does not refer to an open file.

eid does not refer to a raw interface file.

Interface is not Active Controller.

Invalid bus address.

82 Controlling the HP-IB Interface

System Controller Role
\Vhen the HP-IBs System Controller is first powered on or is reset, it assumes the role
of Active Controller. An HP-IB can have only one System Controller. The System
Controller cannot pass system control to any other controller (computer) on the bus.
However, it can pass active control to another controller.

Integral PC Only: The HP 82998A HP-IB interface can be configured to power-on in
the non-system-controller state by setting a switch on the interface card. Refer to the
HP 82923A HP-IB Interface Owner's Manual for instructions. The built-in HP-IB inter­
face on the Integral PC will always power-on in the system-controller state.

Determining System Controller
To determine whether your computer's HP-IB interface is the System Controller, use the
hpib_bus_status subroutine which must be called as follows:

hpib_bus_status(eid. 3);

where eid is the entity identifier for an open interface file and 3 indicates that you want
to determine whether it is the System Controller. The subroutine returns 1 if it is the
System Controller, 0 if not, and -1 if an error occurs.

The following code segment prints a message indicating whether the interface is System
Controller:

#include <fcntl.h>
mainO
{

}

int eid. status;
eid = open("/dev/raw_hpib". O_ROWR);

if «status = hpib_bus_status(eid. 3» == -1)
printf("Error occurred during bus status subroutine");

else if (status == 1)
printf("Interface is the System Controller");

else
printf("Interface is not the System Controller");

Controlling the HP-IB Interface 83

System Controller's Duties
The HP-IB System Controller has three major functions:

• It assumes the role of Active Controller at power-up and reset.

• It can cancel talkers and listeners from the bus and assume the role of Active
Controller by executing hpib_abort.

• It can control the logic level of the remote enable line (REN) with hpib_ren_ctl.

hpib_abort
A call to hpib_ abort performs the following actions:

• Terminates activity on the bus by pulsing the Interface Clear (IFC) line. This
unaddresses all talkers and listeners on the bus.

• Sets the REN line so that devices on the bus will be placed in their remote state
when addressed as listeners.

• Clears the ATN line if it was left set by the previous Active Controller.

• System Controller then becomes Active Controller.

• Returns all devices on the bus to their local state.

hpib_abort leaves the SRQ line unchanged, meaning that any device requesting service
before hpib_abort is executed is still requesting service when the subroutine is finished.

To use hpib_abort on a particular HP-IB, the computer must be the System Controller
of that bus. It does not have to be the Active Controller.

One situation where hpib_abort is useful is when the current Active Controller passes
active control to another device, but the device does not accept active control (this can
occur when the device addressed to receive control is not another controller). Conse­
quently, the bus is left without any Active Controller, leaving the System Controller to
assume that role by using hpib_ abort.

hpib_ abort is called as follows:

hpib_abort(eid);

where eid is the entity identifier for an open interface file.

84 Controlling the HP-IB Interface

hpib_ren_ctl
hpib_ren_ctl is used to enable or disable the REN line on the HP-IB. If the REN is
enabled, all devices capable of remote operation (meaning that they can interpret HP-IB
commands) can be placed in their remote state by the Active Controller addressing them
as talkers or listeners. When REN is disabled, all devices on the bus return to their local
state and cannot be accessed remotely.

The REN line is enabled by default by the System Controller at power-up or reset. It is
also enabled whenever the System Controller executes hpib_abort.

To use hpib_ren_ctl on a particular HP-IB, the computer must System Controller on that
bus. It does not have to be the Active Controller.

hpib_ren_ctl is called as follows:

hpib_ren_ctl(eid, flag);

where eid is the file descriptor for an open interface file and flag is an integer. If flag is
zero, the REN line is disabled. If it has any other value, REN is enabled.

Errors During hpib_abort and hpib_ren_ctl
If any of the following errors is encountered, hpib_abort and hpib_ren_ctl both return -1:

• Computer interface is not System Controller.

• Entity identifier eid does not refer to an HP-IB raw interface file.

• Entity identifier eid does not refer to an open file.

To determine which of these conditions caused the error, your program should check for
the following values of errno:

errno Value

EBADF

ENOTTY

EIO

Error Condition

eid does not refer to an open file.

eid does not refer to a raw interfac.e file.

Interface is not System Controller.

Controlling the HP -IB Interface 85

The Computer As a Non-Active Controller
The information described in this section is accurate for Series 200/300 and 500 comput­
ers. For details specific to the Integral PC, refer to Appendix C, "Integral PC Depen­
dencies."

Checking Controller Status
Subroutine hpib_bus_status is used to obtain information about the current status of the
HP-IB interface card and the HP-IB, and can be used by any controller on the bus,
whether it is the current Active Controller or System Controller or not. hpib_bus_status
is mentioned briefly in previous discussions about Active and System Controllers. The
discussion that follows is a broader treatment of how the routine is used.

The call to hpib_bus_status has the form:

where eid is the entity identifier for an open interface file and status_question is an integer
that indicates what question you want answered. The value of status_question must be
within the range of 0 through 7 where the relationship between value and the nature of
the status inquiry are as follows:

Value

o
1

2

3

4

5

6

7

Status Question

Is the interface in its remote state?

Are any devices currently requesting service? (Is SRQ asserted?)

Is there a listener that is not ready for data? (Is NDAC asserted?)

Is the interface the current System Controller?

Is the interface the current Active Controller?

Is the interface currently addressed as a talker?

Is the interface currently addressed as a listener?

What is the interface's bus address?

If the value of status_question is in the range 0-6, hpib_bus_status returns 1 if the answer
to the question is yes, or 0 if the answer is no. If the value of status_question is 7,
hpib_bus_status returns the bus address of the computer's HP-IB interface. If the value
of status_question is outside the allowable range of 0 through 7, -1 is returned, indicating
an error.

86 Controlling the HP -IB Interface

For example, to determine if your interface is a Non-Active Controller on the bus, use a
calling sequence similar to the following code segment:

if «status = hpib_bus_status(eid, 4» == -1)
printf(IIError occurred while checking status U);

else if (status == 0)
printf("Computer is a Non-Active Controller");

else
printf("Computer is the Active Controller");

Requesting Service
When your computer is a Non-Active Controller it can request service from the current
Active Controller by asserting the SRQ line. This is done with the hpib_ rqsCsrvce routine
which is called as follows:

hpib_rqst_srvce(eid, response);

where eid is the entity identifier for an open interface file and the lowest byte of response
is the integer value of the 8-bit response that the computer gives if it is serially polled.
The upper bytes of response are ignored by the hpib_rqsCsrvce. Using the labels dO
through D7 for the data bus byte, bit D6 sets SRQ line. The defined values for the
remaining 7 bits varies, depending on the application. This section only discusses how
to use D6 (integer value of 64) to set and clear the SRQ line.

To request service, invoke hpib_rqsCsrvce as follows:

#include <fcntl.h>
maine)
{

int eid;

eid = open("/dev/raw_hpib", O_RDWR);
hpib_rqst_srvce(eid, 64); /*Bit 6 of serial poll response is set*/

/*and SRQ is asserted */
}

Note that by setting response to 64, the only information that the Active Controller
receives when it serially polls your computer is that you are asserting the SRQ line.
Therefore, other data bits in response must be set or cleared to indicate the type of
service you are requesting, and the program controlling the current Active Controller
must be capable of interpreting the data correctly before transfer of control between
computers connected to the same bus can be handled in an orderly manner.

Controlling the HP-IB Interface 87

hpib_ rqsLsrvce returns 0 if it executes correctly or -1 if an error occurred.

Once you have asserted SRQ, the line remains asserted until the Active Controller serially
polls you or you call hpib_ rqsLsrvce again and clear bit 6 using a sequence such as
hpib_ rqsLsrvce (eid, 0). Once the serial poll response is configured, your computer's
HP-IB interface responds automatically to any serial polls from the Active Controller.

A couple of notes of caution are in order here:

If another device on the bus is also asserting SRQ when your service request is detected
by the current Active Controller, SRQ remains asserted, even after your service request
is processed by the Active Controller. Thus, if you receive control of the bus before the
requesting device is serviced, you must handle that device's service request correctly in
order to maintain correct bus operation.

On the other hand, if you call hpib_rqsLsrvce while you are Active Controller, the inter­
face receives the service request sequence from the computer but does not place an SRQ
on the bus as long as you are still Active Controller. However, if active control is passed
to another controller on the bus, as soon as the interface changes to non-controller it
immediately sets SRQ and readies the specified response data byte for the first serial poll
from the new Active Controller.

When an Active Controller detects an asserted SRQ line, it usually conducts a parallel
poll of devices on the bus to determine which one is requesting service. The next section
discusses how to configure the HP-IB interface card for correct response to parallel polls.

When an HP-IB device responds to a parallel poll with an I need service message, the
Active Controller then performs a serial poll to determine what type of service is required.
If two or more devices are configured to respond to a parallel poll on a single data line and
the Active Controller detects a service request on that line, the controller must perform
a serial poll of all devices that respond on that line in order to determine which device
is requesting service.

88 Controlling the HP-IB Interface

Errors While Requesting Service
If any of the following error conditions occurs, hpib_rqsCsrvce returns -1:

• Entity identifier eid does not refer to an HP-IB raw interface file.

• Entity identifier eid does not refer to an open file.

To determine which of these conditions caused the error, your program should check for
the following values of errno:

errno Value

EBADF

ENOTTY

Error Condition

eid does not refer to an open file.

eid does not refer to a raw interface file.

Responding to Parallel Polls
Before the HP-IB interface on your computer can respond correctly to a parallel poll
from another Active Controller, the response must be configured on the interface. This
can be programmed remotely by the Active Controller as discussed previo1lsly in the
Active Controller section of this chapter, or locally using hpib_card_ppoILresp.

To configure a parallel-poll response:

• Specify the logic sense of the response (Le. whether a 1 means the device does or
doesn't need service).

• Specify which data line the device responds on. Two or more devices can be con­
figured to respond on a single line.

To locally configure how your computer responds to parallel polls, call
hpib_ card_ppolL resp as follows:

where eid is the entity identifier of an open interface file and response is an integer whose
binary value configures the response.

Controlling the HP -IB Interface 89

Calculating the Response
The value for response is found by first forming an 8-bit binary number, then using the
decimal equivalent of that number where the bits in the binary number are defined as
follows:

D7 D6 D5 D4 D3 D2 Dl DO

o o o o s p p p

where:

S sets the logic sense of the response. Thus, if Sis 1, the device responds with a
logic 1 in response to a parallel poll if it requires service. Likewise, if Sis 0, the
interface places a logic 0 on the assigned data line in response to a parallel poll if
it requires service.

P is a 3-bit binary number (value range from 0 through 7) that specifies which of the
eight available parallel poll response lines (DO-D7) is to be used when responding
to a parallel poll.

Of course, this configuration capability is possible only on those interfaces that support
it. Refer to the appropriate appendix for more information about specific systems.

Limitations of hpib_card_ppoILresp
Hardware limitations on certain devices restrict the use of hpib_card_ppoILresp to config­
ure parallel poll responses. Refer to the Appendix related to for your system to find out
if any restrictions apply. If there are restrictions on your system, you may find it easier
to configure the interface parallel poll response remotely from another Active Controller.
Don't forget that the Active Controller can configure its own response, but the response
remains dormant until control is passed to another device.

Error Conditions
If any of the following error conditions is encountered by hpib_card_ppoILresp, it returns
-1:

• Entity identifier eid does not refer to an HP-IB raw interface file.

• Entity identifier eid does not refer to an open file.

• Series 500 Only: Interface parallel poll response cannot be altered under local
program control.

90 Controlling the HP-IB Interface

To find out which of these conditions caused the error, your program should check for
the following values of errno:

errno Value

ENOTTY

EINVAL

hpib_ppoILresp_ctl

Error Condition

eid does not refer to an open file.

eid does not refer to a raw interface file.

(Series 500 Only:) Interface cannot respond on the line indicated by
response

The subroutine hpib_ppoILresp_ctlis used to control how the HP-IB interface will respond
to the next parallel poll:

• Assert the assigned data line with the previously configured logic sense if service is
required, or

• Place the opposite logic level on the same data line if the interface does not need
to interact with the Active Controller.

Parallel poll response is set as follows:

where eid is the entity identifier of an open interface file and response_value is an integer
that indicates how the interface is to respond to the next parallel poll. If response_ value is
non-zero, the computer will respond to the next parallel poll with a request for service. If
response_ value is zero, the next response will be set to indicate that no service is needed.

Controlling the HP-IB Interface 91

Disabling Parallel-Poll Response
You can also disable responses to parallel polls from another Active Controller by using
hpib_card_ppoILresp by setting bit D4 in the routine's response value. When D4 is 0 the
interface is set to respond to parallel polls with a service-needed logic level. When D4
is 1, the interface responds to parallel polls with the opposite (service not needed) level.
Thus, a flag value of 16 disables the need-service response.

For example, the subroutine call:

I*disable parallel poll response*1

disables the HP-IB interface associated with entity identifier eid from responding to any
parallel polls with a service request.

Accepting Active Control
Any Active Controller can pass control to any other device on the bus, but only a Non­
Active Controller can accept control. When an Active Controller interface passes control
to a Non-Active Controller interface, the Non-Active interface automatically accepts
control and the former Active Controller becomes a N on-Active Controller. However,
when this transfer of control occurs, the interface receiving control does not automati­
cally notify the computer that control has been received unless the necessary interrupts
have been set up by the application program by use of subroutines hpib_bus_status,
hpib_status_ wait, and io_ on_ interrupt.

hpib_status_ wait has been mentioned in previous discussions about the Active Controller
and System Controller. The following discussion provides a look at its uses.

92 Controlling the HP -IB Interface

Call hpz'b_status_ waz't as follows:

hpib_status_wait(eid. status);

where ez'd is the entity identifier for an open interface file and status is an integer indi­
cating what condition you want to wait for. The following values for status are defined:

Value Wait Condition

1

4

5

6

Wait until the SRQ line is asserted

Wait until this computer is the Active Controller

Wait until this computer is addressed as a talker

Wait until this computer is addressed as a listener

Suppose you are designing a program to handle a situation where the current Active
Controller is programmed such that when your computer requests service, it passes active
control to you. The following code segment shows how you can program your computer to
request service then wait until it becomes the new Active Controller before it continues.

#include <fcntl.h>
mainO
{

}

int eid;

eid = open(l/dev/raw_hpib". O_RDWR);
if (hpib_rqst_srvce(eid. 64) == -1) I*set SRQ line to request service*1
{

}

printf("Error while requesting service");
exit (1) ;

if (hpib_status_wait(eid. 4) == -1) I*wait until Active Controller*1
{

}

printf("Error while waiting for status");
exit (1) ;

I*Computer is now the Active Controller*1

Note that for hpz'b_status_waz't to have returned -1 (caused by an unexpected timeout),
a timeout value would have to have been set using z'o_tz'meouLcti after the interface file
was opened. Since this example does not contain a call to z'o_ tz'meouL cti, no timeout
occurs.

Controlling the HP-IB Interface 93

Errors While Waiting on Status
hpib_status_ wait returns -1 indicating an error if any of the following error conditions
are encountered:

• A timeout occurred before the condition the routine was waiting for became true.

• The value specified by status is undefined.

• Entity identifier eid does not refer to a raw HP-IB interface file.

• Entity identifier eid does not refer to an open file.

To find out which of these conditions caused the error, your program should check for
the following values of errno:

errno Value

EBADF

ENOTTY

EINVAL

EIO

Error Condition

eid does not refer to an open file.

e£d does not refer to a raw HP-IB interface file.

status contains an invalid value.

The specified condition did not become true before a timeout oc­
curred.

Determining When You Are Addressed
As a N on-Active Controller you may be addressed at any time by the current Ac­
tive Controller to become a bus talker or listener for data transfer. The DIL routines
hpib_ bus_status, hpib_status_ wait, and io_ on_ interrupt are used to determine that the
interface is currently being addressed and provide proper notification to the controlling
program.

94 Controlling the HP -IB Interface

The following code segment determines whether the interface is currently addressed as a
bus talker:

#include <fcntl.h>
maine)
{

int eid;

eid = open ("/dev/raw_hpib", O_RDWR);
if (hpib_bus_status(eid, 5) == 1)
{

printf("the interface is addressed as a talker");
write(eid, "data message ll

, 12); /*do the expected data transfer*/
}

else
printf("the interface is not addressed as a talker");

}

In the above call to hpib_bus_status, eid is the entity identifier for the interface device
file and 5 indicates that you want to know if it is addressed to talk. The routine returns
the value 1 if the answer is yes; 0 if not.

To determine whether the interface is currently addressed as a bus listener use the fol­
lowing:

if (hpib_bus_status(eid, 6) == 1)
{

printf("the interface is addressed as a listener");
read(eid, buffer, 12); /*do the data transfer*/

}

else
printf("the interface is not addressed as a listener");

If you need to wait until the interface is addressed as either a talker or listener, then
handle an appropriate data transfer, use the DIL subroutine hpib_status_ wait, specifying
both the entity identifier of the interface device file and the bus condition that is being
used to terminate the wait.

hpib_status_wait(eid, condition);

Controlling the HP-IB Interface 95

As with hpib_bus_status, a condition value of 5 causes the program to wait until the
interface is addressed as a talker. With a condition value of 6 the routine waits until it
is addressed to listen. How maximum time that the routine can wait for the specified
condition is controlled by the timeout value that was previously set for the entity identifier
using subroutine io_timeouLctl (discussed in Chapter 2). hpib_status_wait returns 0 if
the wait condition terminated the wait or -1 if a timeout or other error occuered before
the wait condition was fulfilled.

In the following example code segment, the program waits for the interface to become a
bus listener, then reads a 50-byte message.

#include <fcntl.h>
mainO
{

}

int eid, len;
char buffer [51] ; I*storage for message*/
eid = open ("/dev/raw_hpib", O_RDWR);
io_timeout_ctl(eid,5000000); /*5-second timeout*/

if (hpib_status_wait(eid, 6) -1)
{

printf("Either a timeout or an error occurred");
exit(l);

}

len = read(eid, buffer, 50);
buffer[len] = '\0';
printf("Message is: Yes", buffer);

/*read data into buffer*/

/*print data message*/

Note that in this example a timeout value is set for the interface file's entity identifier so
that the program cannot hang indefinitely while waiting for the interface to be addressed
as a bus listener should the condition not occur as expected.

96 Controlling the HP -IB Interface

The following example illustrates how to use io_on_interrupt to set up an interrupt
handler to handle a data transfer:

#include <dvio.h>
#include <fcntl.h>
int eid;
char buffer [50] ;
main()
{

}

int handler 0 ;
int eid;
struct interrupt_struct cause_vec;

eid = open(l/dev/raw_hpib",O_RDWR);
cause_vec.cause = LTN;
io_on_interrupt(eid, cause_vec, handler);

handler(eid, cause_vec);
int eid;
struct interrupt_struct cause_vec;
{

}

if (cause_vec.cause == LTN)
read(eid, data, 50);

Controlling the HP-IB Interface 97

Combining 1/0 Operations
into a Single Subroutine Call
hpib_io is a high-level DIL subroutine that provides a mechanism for conveniently col­
lecting a series of HP-IB I/O operations in a data structure then using a simple sub­
routine call to hpib_io to handle interface and bus management operations. This feature
eliminates the need for using several long tedious series of subroutine calls to io_lock,
hpib_send_cmnd, read, write, and io_unlock.

A call to hpib_io has the form:

#include <dvio.h>
/* on the Integral PC. the include directive would be:

*
* #include <libdvio.h>
*/

MainO
{

}

int eid;
struct iodetail *iovec;
int iolen;

hpib_ioCeid. iovec. iolen);

where eid is the entity identifier of an open interface file, iovec is a pointer to an array of
I/O operation structures, and iolen is the number of structures in the array. The name
of the template for the I/O operation structures is iodetail and it is defined in the include
file dvio.h.

On the Integral PC, the include file is libdvio.h instead of dvio.h, as shown in the example
above.

98 Controlling the HP -IB Interface

lodetail: The I/O Operation Template
The form of the iodetail structure that holds I/O operations is:

struct iodetail {
char mode;
char terminator;
int count;
char *buf;

};

Where the components in structure iode~ail have the following meanings:

mode

terminator

count

buf

Describes what kind of I/O operation the structure contains.

Specifies whether or not there is a read termination character for the
I/O operation, and if so it specifies the value.

How many bytes are to be transferred during the I/O operation.

A pointer to an array containing the bytes of data to be transferred.

Components of a particular iodetail structure are referenced with:

iovec->component

where iovec is a pointer to an array of iodetail structures and component is either mode,
terminator, count, or buf

The Mode Component
The mode describes what type of I/O operation is to be performed on the data pointed
to by the buf component. To determine its value, OR appropriate constants from a set
defined in the include file dvio. h. You can choose from the following constants:

Controlling the HP -IB Interface 99

Name Description

HPIBREAD Perform a read operation and place the data into the accompanying buffer
pointed to by buf. Can be by itself or OR-ed with HPIBCHAR.

HPIBWRITE Perform a write operation using the data in the accompanying buffer
pointed to by buf. Can be by itself or OR-ed with either HPIBATN or
HPIBEOI but not both.

HPIBATN

HPIBEOI

If you are performing a write operation, the data is placed on the bus with
ATN asserted (you are sending a bus command). It only has effect if you
also specify HPIBWRITE.

If you are performing a write operation, the EOI line is asserted when the
last byte of data is sent. It only has effect if you also specify HPIBWRITE.

HPIBCHAR If you are performing a read operation, the transfer is halted when the
terminator component value of the iodetail structure is read. The terminator
component only has effect if you OR HPIBCHAR and HPIBREAD. The
HPIBCHAR constant only has effect if also specify HPIBREAD.

Note

When you construct mode, you must use either HPIBREAD or
HPIBWRITE, but not both. Optionally, you can OR one of the
other three constants with either HPIBREAD or HPIBWRITE,
but they are not required. HPIBCHAR has effect only when it
is ORed with HPIBREAD, while HPIBATN and HPIBEOI have
effect only when they are ORed with HPIBWRITE (but not both
at the same time).

100 Controlling the HP-IB Interface

The mode component allows you to specify conditions under which an I/O operation
terminates. All I/O operations terminate when the maximum number of bytes speci­
fied by the count component of the iodetail structure is reached. However, additional
termination conditions are possible:

e If you specify HPIBREA.D and HPIBCHAR: detection of the termination character
defined by the terminator component also causes termination .

• If you specify HPIBWRITE and HPIBEOI: when the count value is reached EOI
is asserted at the time that the last byte of data is sent (unless you also specify
HPIBATN).

To illustrate, assume that iovec points to an iodetail structure that you are building and
you want the structure to send several HP-IB commands. The mode component of the
structure is assigned the necessary value as follows:

iovec->mode = HPIBWRITE I HPIBATN;

The Terminator Component
The terminator component of the iodetaz"l structure specifies a character that causes the
termination of a read operation when it is detected. The terminator only has effect if
HPIBREAD I HPIBCHAR is specified as the structure's associated mode component.

Assign a value to the terminator component in the structure pointed to by iovec with:

iovec->terminator = value;

For example, to define the ASCII period character (.) the termination character, use
the statement:

iovec->terminator

The Count Component
count is an integer that defines the maximum number of bytes to be transferred during
the structure's I/O operation. Reading or writing always terminates when this value
is reached, but additional termination conditions can be set up using the structure's
associated mode component.

To set a maximum number of bytes for a structure's data transfer:

iovec->count = max_value;

where iovec is a pointer to the structure and max_value is an integer.

Controlling the HP-IB Interface 101

The Buf Component
The buf component points to a character array where data is to be stored from a read
operation (HPIBREAD) or a character array containing data to be written to during a
write operation (HPIBWRITE).

Note

The value of a structure's count component should never exceed
the size of the array. If this restriction is violated, unpredictable
results and/or data loss are likely.

One way to store a message in the buf array is:

iovec->buf = IIdata message ll
;

Allocating Space
Before building iodetail structures for I/O operations, storage space in memory must be
allocated. The easiest way to do this (if you are programming in C) is to write a routine
that allocates space for n iodetail structures and returns a pointer to the first one.

Here is a sample code segment for such a routine, io_alloc:

struct iodetail *io_alloc(n)
int n;
{

char *malloc 0 ;
return«struct iodetail *) malloc(sizeof(struct iodetail) * n»;

}

Refer to the HP-UX Reference for a description of malloc(3C).

For example, to use io_alloc to allocate memory space for 10 iodetail structures your
program should contain the statements:

struct iodetail *iovec;
iovec = io_alloc(10);

I*define an iodetail pointer*1
I*allocate space for 10 iodetail structures*1

102 Controlling the HP-IB Interface

Example
Assume the HP-IB interface is Active Controller and located at HP-IB address 30. A
data message is to be sent to a device at HP-IB address 7 then a subsequent message is
to be received from the same device by use of the hpib_io subroutine. Such a sequence
requires four iodetail structures:

1. The first structure configures the bus so that the interface is the talker and the
device at address 7 is the listener.

2. The second structure sends the data message from the interface to the device.

3. The third structure configures the bus so that the device at address 7 is the talker
and the interface is the listener.

4. The fourth structure receives the data message from the device.

The following code segment illustrates how the 4 structures can be built and implemented.

#include <fcntl.h>
#include <dvio.h> /*contains definitions for iodetail*/
struct iodetail *io_alloc(n)
int n;
{

char *mallocO;
return «struct iodetail *) malloc(sizeof (struct iodetail) *n»;

}

mainO
{

extern int errno;
int eid;
char buffer[4] [12] ;
struct iodetail *iovec. *temp; /*2 pointers to iodetail structures*/

/*Allocate space for 4 iodetail structures*/
iovec = io_alloc(4); /* use the routine described earlier */
temp = iovec;

/*Build structure 1 -- Configuring the bus*/
temp->mode = HPIBWRITE I HPIBATN; /*you want to send commands*/
strcpy(buffer[OJ."?-"'); /*address computer to talk and bus address to

listen*/
temp->buf = buffer [0] ;
temp->count = strlen(temp->buf);

Controlling the HP-IB Interface 103

/*Build structure 2 -- Sending the data message*/
temp++; /*use temp pointer so that iovec remains pointing to the*/

/*first structure but temp now pOints to the next one*/

temp->mode = HPIBWRITE I HPIBEOI; /*assert EOI when the transfer is
complete*/

strcpy(buffer[l] . "data message");
temp->buf = buffer [1] ;
temp->count = strlen(temp->buf);

/*Build structure 3 -- Configuring the
temp++;

bus*/
/*increment structure pointer*/
/*to send commands*/ temp->mode = HPIBWRITE I HPIBATN;

strcpy(buffer[2] ."?G>");
temp->buf = buffer [2] ;
temp->count = strlen(temp->buf);

/*Build structure 4 -- Receiving data message*/
temp++; /*increment structure pointer*/
temp->mode = HPIBREAD; /*read data until count limit is reached*/
temp->count = 10; /*accept message up to 10-bytes in length*/
temp->buf = buffer [3] ;

/*Implement the I/O operations stored in the iodetail structures*/
eid = open("/dev/raw_hpib". O_RDWR);

}

if (hpib_io(eid. iovec. 4) == -1)
{

}

printf ("hpib_io failed\n");
printf ("errno %d\n".errno);
exit (1) ;

/*Print data message received from the device. Note that temp still*/
/*points to the last iodetail structure. the one that did the read */

printf("%s". temp->buf);

104 Controlling the HP-IB Interface

One comment about the C language: subroutine parameters are passed by value; not
by reference. This means that after hpib_io is executed, the iovec parameter still points
to the first iodetail structure, just as it did before the subroutine was executed. Thus,
another way to print out the data message that was read into the bu/ component of the
fourth iodetail structure in the example above is:

printf(lI%sll, (iovec + 3)->buf);

Locating Errors in Buffered 1/0 Operations
If all I/O operations specified in the array of iodetail strllctureR complete successfully,
hpib_ io returns 0 and updates the count component of each structure to reflect the actual
number of bytes read or written.

If an error occurs during one of the I/O operations, hpib_io immediately returns a -1
indicating the error. To determine which iodetail structure operation was associated with
the error, examine the structures' count components. When hpib_io encounters an error,
it updates the count component of the structure that caused the error is changed to -l.
Thus, once you have located a structure with a count of -1, you know that all previous
structures were completed successfully and all of the structures after it were not executed
at all.

Controlling the HP-IB Interface 105

For example, suppose an array of 10 iodetail structures has been built to execute a
sequence of I/O operations. The following code segment executes the operations then
checks for errors. If an error occurs, the number of the structure that caused it (the first
structure in the array is number 1) is printed.

#include <fcntl.h>
#include <dvio.h>
main()
{

}

int FOUND, number, eid;
struct iodetail *iovec, *temp;

/*space is allocated for the 10 structures then they are*/
/*built. "Iovec" is left pointing to the first structure*/

eid = open(lI/dev/raw_hpib", O_RDWR); /*open the interface file*/

if (hpib_io(eid, iovec, 10) == -1) /*execute the operations. If a -1*/
/*is returned, an error occurred*/

{

}
else

number = 1; /*initialize counter*/
FOUND = 0; /*initialize Boolean flag*/
temp = iovec; /*set temporary pOinter to first structure*/
while (number <= 10 && FOUND != 1)

if (temp->count == -1) /*found structure that caused error*/
FOUND = 1;

else
{

}

temp++;
number++;

if (FOUND == 1)

/*move pOinter to next structure*/
/*increment counter*/

printf("Structure number %d caused error II , number);
else

printf("Error but couldn't find structure that caused it");

printf("No error occurred during execution of hpib_io");

106 Controlling the HP-IB Interface

Controlling the GPIO Interface 4
This chapter briefly describes how to configure the GPIO interface before accessing it
from a program by use of DIL subroutines. It then discusses the capabilities and limita­
tions of DIL subroutines when controlling the GPIO interface.

Configuring the GPIO Interface
On Series 200/300 and 500 computers, the GPIO interface is configured by setting several
switches on the interface card. On the other hand, the HP 82923A GPIO interface used
on the Integral PC is configured by using DIL routines instead of switches.

Configuring the Integral PC GPIO
As mentioned, DIL subroutines are used to configure the the HP 82923A GPIO interface
on the Integral PC. The functions that can be configured are:

• Data logic sense (use gpz'o_ normalz'ze subroutine),

• Data handshake mode (use gpz'o_handshake_ctl subroutine),

• Delay time (use gpz'o_delay_tz'me_ctl subroutine).

For information about these routines, refer to the documentation files in the doc folder
on the DIL disc.

Controlling the GPIO Interface 107

Setting Interface Switches
Series 200/300 and 500 computer GPIO interface cards have several configuration
switches that are used to set up the interface. The interface installation manual ex­
plains how each switch is used and how it should be configured. Configurable functions
associated with these switches include:

• Data logic sense,

• Data handshake mode,

• Input data clock source.

Set the configuration switches according to the directions found in the GPIO interface
installation manual.

Note

On Series 200/300 systems, the GPIO interface select code is de­
termined by a switch setting on the interface card. Refer to the
appropriate hardware-specific appendix to see if a switch config­
uration is required. On Series 500 systems, no switch setting is
required; the select code is determined by which I/O slot you use
when installing the interface card.

Creating the GPIO Interface File
After setting the necessary switches on your GPIO interface, install the card in the
computer then create an interface file for it as explained in Chapter 2. An appropriate
interface file must be created before the interface can be accessed from HP-UX.

108 Controlling the GPIO Interface

Interface Control Limitations
Device I/O Library (DIL) subroutines provide a means for using a GPIO interface to
communicate with devices that are not supported on your HP-UX system. However,
they do not provide full control of the interface, so you are faced with the following
limitations:

• There is no direct access to interface handshake lines: Peripheral Control (PCTL)
line, Peripheral Flag (PFLG) line, and Input/Output (I/O) line.

• You cannot read the value of the Peripheral Status line (PSTS) directly.

• Series 500 Only: You cannot rpcognir,e interrupts sent by the peripheral over the
External Interrupt Request line (EIR).

Integral PC Only: The HP 82923A GPIO card has several capabilities not supported by
the DIL routines. Because of this, the following limitations exist:

• 24-bit port paths are not supported,

• Flag line cannot be read directly,

• Fast-handshake transfer mode described in the HP 82923A GPIO Interface Owner '8

Manual is not supported.

Controlling the GPIO Interface 109

Using OIL Subroutines
Several DIL subroutines can be used to control the GPIO interface. They are divided
into two groups:

• General-purpose routines usable with both HP-IB and GPIO interfaces,

• GPIO routines: routines specifically designed for use with a GPIO interface.

General-purpose routines are listed and described in detail in Chapter 2. They are used
in this chapter to illustrate various aspects of controlling GPIO interfaces from an HP-UX
process.

Two DIL routines used exclusively with GPIO interfaces:

• gpio_geCstatus

• gpio_seCctl.

The GPIO interface has four special-purpose lines that are used in various ways, depend­
ing on the needs of the device connected to the interface. Two incoming lines, STIO and
STIl, are driven by the peripheral device and are usually used to provide device status
information. Two outgoing lines, CTLO and CTLI are driven by the computer, usually
to control the device.

The subroutines gpio_geCstatus and gpio_seCctl are used to access these four special­
purpose lines. gpio_geCstatus reads STIO and STIl, and gpio_seCctl sets the values of
CTLO and CTLl. Both routines are described later in this chapter in the section Using
Status and Control Lines.

110 Controlling the GPIO Interface

By using the DIL general-purpose routines and these two GPIO-specific routines you
can:

• Reset the interface,

• Perform data transfers,

• Use the interface's 4 special purpose lines,

• Control the data path width and data transfer speed,

• Set a timeout for data transfers,

• Set a read termination character,

• Get the termination reason,

• Set up the interrupts,

• Enable or disable interrupts.

In addition to these standard GPIO DIL routines, the Integral PC supports non-standard
routines for controlling the HP 82923A GPIO interface. Refer to the appendix "Integral
PC Depenrlencies" for information about these routines.

Resetting the Interface
The interface should always be reset before it is used, to ensure that it is in a known
state. All interfaces are automatically reset when the computer is powered up, but you
can also reset them from your I/O process by using the io_reset subroutine. For example,
the following code segment resets a GPIO interface:

int eid; /*entity identifier*/
eid = open("/dev/raw_gpio". O_RDWR); /*open GPIO interface file*/
io_reset(eid); /*reset the interface*/

This has the following effect:

• Peripheral Reset line (PRESET) is pulsed low,

• PCTL line is placed in the clear state,

• If the DOUT CLEAR jumper is installed, the Data Out lines are all cleared (set to
logical 0),

• Interrupts are disabled on Series 200/300.

Controlling the GPIO Interface 111

Lines that are left unchanged are:

• CTLO and CTL1 output lines,

• I/O line,

• Data Out lines if the DOUT CLEAR jumper is not installed.

Integral PC Only: The io_reset routine has the following effect OIl the HP 82923A GPIO
interface:

• Read termination character is cleared,

• Timeout value is set to 0,

• Width for all ports is set to 8 bits,

• Normalization is set to positive true,

• Delay time is set to 1 J.1-sec,

• Handshake mode is set to 1,

• Data lines are set to 0,

• Speed is set to the flag transfer mode,

• I/O line remains unchanged.

Performing Data Transfers
DIL subroutines read and write are used to transfer ASCII data to and from the GPIO
interface. The following code segment illustrates how to use these routines to write 16
bytes to the interface, then read 16 bytes back in.

main()
{

int eid; /*entity identifier*/
char read_buffer [16] , write_buffer [16] ; /*buffers to hold data*/

}

eid = open("/dev/raw_gpio", O_RDWR);
write_buffer = "message to write";
write(eid,write_buffer, 16);
read(eid, read_buffer, 16);
printf("%s", read_buffer);

112 Controlling the GPIO Interface

/*open interface file*/
/*data message to send*/
/*send message*/
/*receive message*/
/*print received message*/

Using Status and Control Lines
Four special-purpose (status and control) signal lines are available for a variety of uses.
Two of the lines are for output (CTLO and CTL1), and two are for input (STIO and
STH). The routine gpio_seCctl allows you to control the values of CTLO and CTL1,
while the routine gpio_geLstatus allmvs you to read the values of STIO and STIl.

The Integral PC's HP 82923A GPIO interface does not provide any equivalent special­
purpose lines. Each port, however, does have a single status line and a single control line.
The status and control lines in unused ports can be used with active ports to perform
the same function as the special-purpose lines. For example, if you have specified a port
b data width of 16 bits, both ports a and b will be active. The status and control lines
on ports c and d can then be used by first opening either port c or d then using the
gpio_geCstatus and gpio_seCctl routines to monitor or control those lines.

Driving CTLO and CTLI
The call to gpio_seCctl has the following form:

where eid is the entity identifier for an open GPIO interface file and value is an integer
whose least significant two bits are mapped to CTLO (bit 0) and CTLI (bit 1). Both
CTLO and CTLI are ground-true logic meaning that they are at a logic LOW level when
asserted. This logic polarity cannot be changed. Logic sense of the two lines is related
to value as follows:

• If value =0: CTLO and CTLI both false (HIGH logic level)

• If value =1: CTLO true (LOW logic level) and CTLI false (HIGH logic level)

• If value =2: CTLO false (HIGH logic level) and CTLI true (LOW logic level)

• If value =3: CTLO and CTLI both true (LOW logic level)

This example code segment asserts both lines, setting them at a logic LOW level:

int eid; /*entity identifier*/
eid = open("/dev/raw_gpio". O_ROWR); /*open interface file*/
gpio_set_ctl(eid. 3); /*assert CTLD and CTL1*/

To set both lines to a logic HIGH level, call gpio_seCctl as follows:

gpio_set_ctl(eid. D);

Controlling the GPIO Interface 113

Reading STIO and STI1
The call to gpio_geCstatus has the following form:

int eid. value;
value = gpio_get_status(eid);

where eid is the entity identifier for an open GPIO interface file. gpio_geCstatus returns
an integer whose least significant two bits are the values of STIO and STU.

Like CTLO and CTL1, STIO and STU are ground-true logic meaning they are at a logic
LOW level when asserted. Thus the value returned by gpio_geCstatus is as follows (be
sure to AND value with 3 to clear upper bits before testing):

• If value =0: STIO and STU both false (HIGH logic level)

• If value =1: .STIO true (LOW logic level) and STU false (HIGH logic level)

• If value =2: STIO false (HIGH logic level) and STU true (LOW logic level)

• If value =3: STIO and STU both true (LOW logic level)

To illustrate:

int eid; /*entity identifier*/
int value. bits;
eid = open(It/dev/raw_gpio lt

• O_ROWR); /*open interface file*/
value = gpio_get_status(eid); /*look at STIO and STI1*/
bits = value & 03 /*clear all but the 2 least significant bits*/
if (bits == 3) /*and see if they are both set*/

/*insert code that handles case when both STIO and STI1 are asserted*/
else if (bits == 1) /*only STIO is asserted*/

/*insert code that handles case when STIO is asserted*/

else if (bits == 2) /*only STI1 is asserted*/

/*insert code that handles case when STI1 is asserted*/

else /*neither are asserted*/

I*insert code that handles case when neither STIO nor STI1 is asserted*/

114 Controlling the GPIO Interface

Controlling Data Path Width
DIL subroutine io_width_ctl is used to specify 8-bit or 16-bit data path widths for the
GPIO interface. The call has the following form:

where eid is the entity identifier for an open GPIO interface file and width is either 8
or 16. If any other width value is specified, io_width_ctl returns -1 and sets errno to
EINVAL. The GPIO interface is set to a default 8-bit path width when the interface file
is opened.

The following code segment illustrates data transfers using a 16-bit data path width.

int eid;

eid = open ("/dev/raw_gpio", O_RDWR);
io_width_ctl(eid, 16);
write(eid, "data message ll

, 12);

/*open the interface file*/
/*set path width to 16 bits*/
/*perform data transfer*/

Since the interface data path width is 16 bits, 2 ASCII characters are transferred during
each handshake cycle. In the first 16-bit transfer, d is sent in the upper byte and a is
sent in the lower. The actual logic sense (ground-true or high-true) of the GPIO data
output lines depends on how the lines were configured during interface card installation.

Controlling Transfer Speed
You can request a minimum speed for the data transfer across a GPIO interface by issuing
a call to io_speed_ctl. Your system rounds the specified speed up to the nearest defined
speed. If you specify a speed that is faster than your system allows, the highest available
speed is used instead. Refer to Chapter 2 for more information about io_speed_ ctl. Series
500 systems always use DMA, so use of this subroutine on Series 500 is meaningless,
although it is supported for software compatibility reasons.

GPIO Timeouts
If a non-zero timeout limit has been established for a given eid and that limit is exceeded
during a data transfer request, an error condition results. When the subroutine handling
the transfer detects the timeout error, it returns -1 and sets errno to EIO. When a
timeout error occurs, use io_ reset to reset the GPIO interface before attempting another
transfer.

Controlling the GPIO Interface 115

Burst Transfers
The Integral PC and Series 200/300 support high-speed burst I/O on HP-IB and GPIO
interfaces. Burst I/O is meaningless on Series 500 systems because they use DMA for
GPIO transfers. The call to io_burst is structured as follows:

io_burst(eid.flag)

io_burst controls the data path between computer memory and the HP-IB or GPIO
interface. If flag = 0, all data is handled through kernel calls with the normal associated
overhead. If flag is non-zero, burst mode locks the interface and data is transferred
directly between memory and the I/O mapped interface until the transfer is completed.
Burst mode yields substantial improvement in efficiency when handling small amounts
of data or high-speed data acquisition.

Read Terminations
Determining Why a Read Operation Terminated
Subroutine io_geLterm_reason, described in Chapter 2, is used to determine why the
last read performed on a particular eid terminated. Possible reasons include:

• The requested number of bytes were read

• A specified read termination character was seen

• A assertion of the PSTS was seen

• Some abnormal condition occurred, such as an I/O timeout.

Specifying a Read Termination Pattern
Chapter 2 describes subroutine io_eoLctl which is used to specify a character or string
of characters (called a read termination pattern) that, when encountered during a read,
terminates the read operation currently underway on a particular GPIO interface file
eid.

Interrupts
Subroutines £o_on_interrupt and ";o_£nterrupLctl are described in Chapter 2. They are
used to set up and control interrupt handlers for the GPIO status line or for a particular
GPIO interface file eid.

116 Controlling the GPIO Interface

Interrupt-Driven Transfer Mode
Implemented on Integral PC Only:
The Integral PC supports two transfer modes on the HP 82923A GPIO interface: flag­
driven mode and interrupt-driven mode. To select interrupt-driven mode, set the speed
to zero using the io_speed_ctl subroutine.

When operating in interrupt-driven mode, read and write calls to the GPIO interface
cause the calling process to go to sleep until an interrupt occurs at the completion of the
read or write.

Controlling the GPIO Interface 117

118 Controlling the GPIO Interface

Series 500 Dependencies A
This appendix contains the following information which is specific to Series 500 systems:

• Location of the DIL routines,

• Information about creating interface special files used by DIL subroutines,

• Relationship between entity identifiers and file descriptors,

• Hardware-imposed restrictions on use of DIL subroutines,

• Techniques for improving data transfer performance when using DIL subroutines.

Device I/O Library Location
The DIL subroutine library is contained in file /usr/lib/libdvio.a. Some of these subrou­
tines are general-purpose and can be used with any interface supported by the library,
while others provide control of specific interfaces. The Device I/O Library (DIL) cur­
rently supports HP-IB and GPIO interfaces.

Series 500 Dependencies 119

The GPIO Interface
The GPIO (General Purpose Input/Output) interface is a very flexible parallel interface
that supports communication with a variety of devices. On Series 500 systems, the inter­
face sends and receives up to 16 bits of parallel data with a choice of several handshake
methods. External interrupt and user-definable signal lines provide additional flexibility.

The GPIO interface provides the following lines data and signalling lines:

• 16 parallel data input lines

• 16 parallel data output lines

• 4 handshake lines

• 4 special-purpose (status and control) lines.

Data Lines
There are 32 separate data lines: 16 for input and 16 for output. These lines normally use
ground-true logic (LOW indicates true, HIGH indicates false). The logic can be changed
so that a HIGH indicates true by changing the setting of the interface configuration
option switches. Refer to the GPIO interface installation manual for more information.

Handshake Lines
Although four lines fall into this group, only three are used for controlling data transfers:

• PCTL - Peripheral ConTroL

• PFLG - Peripheral FLaG

• I/O - Input/Output.

The Peripheral Control (PCTL) line is driven by the interface and used to initiate data
transfers. The Peripheral Flag (PFLG) line is driven by the peripheral device and used
to indicate that a signal from the computer interface has been received and processed by
the peripheral and the peripheral is ready for the next operation.

The Input/Output (I/O) line is used to indicate direction of data flow.

The fourth handshake line is the External Interrupt Request (EIR) line. This line is used
by the peripheral to signal interrupt service requests to the computer.

120 Series 500 Dependencies

Special-Purpose (Control and Status) Lines
Four interface signal lines are available for any use you desire. Two are driven by the
peripheral device and sensed by the computer; the other two are driven by the computer
and sensed by the peripheral. These lines are most commonly used to transmit and
receive control and status information beyond that which is normally available through
PCTL and PFLG, hence their names CTLO, CTLl, STIO, and STIO

Data Handshake Methods
PCTL and PFLG support two handshake methods used to synchronize data transfers:
pulse-mode and full-mode handshaking. If the peripheral uses pulses to handshake data
transfers and meets certain hardware timing requirements, the pulse-mode handshake
is used. Full-mode handshake should be used if the peripheral does not meet pulse­
mode timing requirements. Refer to the GPIO interface installation manual for more
information.

Latching Data Transfers
The GPIO interface design assumes very little on the part of the peripheral device. It
has built-in data latching to hold data to and from the peripheral to ensure that no data
is lost. Latching is performed as follows:

• When data is being output to the peripheral, the interface output register latches
the data and holds it. The interface then asserts PCTL with I/O held LOW to
indicate an output operation is in progress, and holds the data until PFLG is
returned by the peripheral. The peripheral device must make proper use of the
data, storing it if necessary, before data is removed upon receipt of PFLG .

• When data is being input from the peripheral, PCTL signals the peripheral (with
I/O held HIGH to indicate an input operation) that th~ computer is ready to receive
data. The peripheral must then place input data on the input lines to the computer
then assert PFLG to indicate that the data is valid. PFLG is used to clock the
input latches which means the peripheral can remove the data from the lines as
soon as it has asserted PFLG.

The logic sense (ground-true or high-true logic) of the 'Control and flag lines PCTL and
PFLG is defined by the configuration switch for each line on the interface card. Consult
the interface installation manual for more information about switch settings.

Series 500 Dependencies 121

Creating the Interface Special File
HP-UX handles I/O to an interface the same way it handles I/O to any peripheral device:
the interface must have a device special file. The general process of creating special files
is described in the HP-UX System Administrator Manualfor your system. The following
discussion points out specific requirements for special files associated with an interface.

Creating an Interface File
Special files are created using the mknod(1M) command which requires super-user access.
When creating an interface special file, mknod has the following syntax:

mknod pathname c major_number minor_number

The c parameter to mknod tells the system to create the file as a character special file.
The remaining parameters in the mknod command are as follows:

pathname
The pathname parameter specifies the name being given to the new interface special file.
pathname identifies the interface file itself, not a peripheral connected to the interface.
Special files are usually kept in the directory /dev. This HP-UX convention is used
because some commands expect to find device special files in the / dev directory and fail
if the file is not there.

majocnumber
The major number specifies which device driver to use with the interface. The following
table shows the major number used for each supported interface:

Major Number

12

18

37

Interface

HP 27110A/B HP-IB Interface

HP 27110A GPIO Interface

Model 550 Internal HP-IB Interface.

122 Series 500 Dependencies

minocnumber
The minor number parameter identifies the location of the interface for mknod. The
minor number is constructed as follows:

OxScAdUV

where:

Ox Identifies the remainder of the expression as a hexadecimal number. The two
characters (zero followed by x) are entered exactly as shown.

Sc A two-digit hexadecimal value specifying the select code of the interface card.
The select code corresponds to the I/O slot in which the interface card resides.

Ad A two-digit hexadecimal value specifying the device bus address. To use DIL
subroutines with the interface, the special file should be created as a raw special
file: the Ad component of the minor number should be 31 (If in hexadecimal).
If Ad is less than 31, the file is not created as a raw file but rather as an auto­
addressable file (in which case, Ad specifies the bus address of the device for which
the special file is created). If only one device can be connected to the interface
(as when using the GPIO interface), this component of the minor Humber is
ignored (use 00 instead of a device bus address).

U A single-digit hexadecimal value specifying a secondary address such as a device
unit number. This component of the minor number is not used when creating
interface special files; set it to O.

V A single-digit hexadecimal value specifying a secondary address such as a device
volume number. This component of the minor number is not used when creating
interface special files; set it to O.

Creating an HP-IB Interface File
Suppose you need to create an HP-IB interface special file with the following character­
istics:

• Pathname is /dev/raw_hpib.

• Internal HP-IB interface has major number 12.

• Interface card is located in slot 2 (select code 02), so the Sc component of the minor
number is 02.

• Special file must be a raw special file in order to use DIL subroutines with it which
means that the Ad portion of the minor number must be 31 (If in hexadecimal).

Series 500 Dependencies 123

Based on this information, use mknod as follows to create the special file for the interface:

mknod /dev/raw_hpib c 12 Ox021fOO

To further illustrate the use of mknod, suppose you have two HP 27110A HP-IB interface
cards (major number = 12) installed in slots 2 and 3. The following two mknod commands
set up a special file for'the interface at select code 02 (/dev/raw_hpibl) and select code
03 (jdev/raw_hpib2):

mknod /dev/raw_hpib1 c 12 Ox021fOO
mknod /dev/raw_hpib2 c 12 Ox031fOO

Creating a GPIO Interface File
Now suppose you also have a GPIO interface on the same Series 500 computer that you
want to access using DIL subroutines.

The GPIO interface is does not use a bus architecture, so the usual bus address (Ad) and
secondary address (uv) components of the minor number are ignored, and you need only
determine the select code value before using mknod.

Assume that the GPIO interface is located in the I/O slot corresponding to select code
04 on your Series 500. The following mknod command creates the appropriate special
file, named /dev/raw_ypio:

mknod /dev/raw_gpio c 18 Ox040000

124 Series 500 Dependencies

Determining Interface Card Bus Address
The HP 27110A/B card always assumes bus address 30 when it is Active Controller.
If control is passed to another device, the card assumes the address specified by the
interface card configuration switch setting. The value of the current setting is easily
determined by a call to hpib_bus_status which always returns the current bus address.

Effects of Resetting (via io_reset)
When io_reset is used on a Series 500 HP-IB interface,

• REN is cleared,

• The Interface Clear (IFC) line is pulsed,

• REN is reset,

• Interrupt mask is cleared, and

• The Peripheral Reset line (PRESET) is pulsed.

In addition, an interface self-test is performed. If the test fails, io_reset returns -1. If
the interface successfully resets and completes self-test, io_reset returns o.

Series 500 Dependencies 125

Entity Identifiers
On Series 500, interface file entity identifiers used by DIL subroutines are equivalent
to HP-UX file descriptors. This means that you can obtain entity identifiers for your
interface files with the system routines dup, lentl, and pipe as well as open.

OIL Subroutine Use Restrictions
This section presents various restrictions related to using DIL subroutines on Series 500
computers. Restrictions are arranged under headings named after the subroutine to
which they apply. Subroutine names are treated in alphabetical order.

hpib_bus_status
A bug in the HP 27110A HP-IB interface card can cause an erroneous SRQ line state re­
port. This error can occur during a narrow time window that allows hpib_bus_status(eid,
1) to report that the line is clear when in reality it is set. Since the subroutine never
can report that the line is set when in reality it is clear, ORing successive readings of the
SRQ line state minimizes the possibility of error. ORing five successive readings provides
a result that is approximately 99% accurate. This bug has been fixed in the HP 27110B
card.

On Series 500 systems, it is possible to check the SRQ line using hpib_bus_status and not
see it asserted when it actually is. Because of this, the SRQ line should be checked at
least 5 times to accurately determining whether or not it is asserted. If it is true any
one of the 5 times, then the line is asserted (it never can be reported as asserted when it
actually isn't). For example:

126 Series 500 Dependencies

#include <fcntl.h>
mainO
{

}

int eid, value, i;

eid = open(l/dev/raw_hpib", O_ROWR);
value = 0;
for (i=O; i<5; ++i)

value = hpib_bus_status(eid,l) + value;
I*Note that if SRQ is ever true during this test, "value" will be
greater than 0*1

if (value>O)
service_routine();

else
I*SRQ is asserted; service the request*1

printf("No one is requesting service");

hpib_card_ppoILresp
HP 27110A/B HP-IB interface cards do not support configuration of their parallel poll
response under program control by use of hpib_card_ppoILresp. Configuration call oIlly
be performed by the current Active Controller.

Unless programmed otherwise by the Active Controller, default sense of the HP
27110A/B interface's parallel poll response is always 1. If the interface's bus address
(when not Active Controller) is 7 or less, the address determines the response line num­
ber as follows: bus data lines are labeled DO through D7 corresponding to addresses 7
through 0, respectively (note the reverse order).

Thus, the parallel poll response of an HP 27110A/B at bus address 0 is a logic 1 on data
line D7. An identical interface at bus address 7 responds with a 1 on line DO. If the
address of the interface is greater than 7, there is no default line for it to respond on, so,
unless its response is configured remotely by the Active Controller, it cannot respond at
all.

If you want the interface to respond with a sense of 0 or on a different (non-default)
line; it must be remotely configured by an Active Controller (this can be done by using
hpib_send_cmnd while the interface is Active Controller).

Series 500 Dependencies 127

hpib_rqsLsrvce
This subroutine provides the capability for configuring an HP-IB interface's 8-bit re­
sponse to serial polls. However, the HP 27110A/B HP-IB interface only allows you to
set bit 6 of the response; all the other bits are cleared. If you set bit 6 of the serial
response (where the response bits are labeled bit DO-D7) and the interface is not the
Active Controller, the SRQ line is immediately asserted. The line remains asserted until
the interface is serially polled or you clear bit 6 with hpib_rqsCsrvce. If you set bit 6 and
the interface is Active Controller, the interface remembers the response and asserts SRQ
as soon as control passes to another controller.

Since you can only control bit 6 of the serial poll response, only the bit corresponding to
decimal 64 in the response argument for hpib_ rqsCsrvce has any effect. Thus:

hpib_rqst_srvce(eid.64);

sets bit 6 of the interface's serial poll response and:

hpib_rqst_srvce(eid.O);

clears it.

hpib_send_cmnd
HP 27110A/B HP-IB and Model 550 Internal HP-IB interfaces send all hpib_send_cmnd
commands with odd parity by overwriting the most significant bit of each command byte
with a parity bit. This should not cause a problem since all HP-IB commands use only
7 bits, and the eighth is free for use as parity.

hpib_status_ wait
hpib_status_ wait holds off all other activity on the interface card associated with eid
while it is in progress. Any other processes attempting to access the same interface will
hang until the wait is terminated. Therefore, it is strongly recommended that a non-zero
timeout be activated before calling hpib_status_ wait.

hpib_ wait_on_ppoll
hpib_ waiCon_ppoli also holds off all other activity on the interface card while execut­
ing. As with hpib_status_ wait, other processes attempting to access the interface card
will hang, so it is recommended that a non-zero timeout be in effect before calling
hpib_ waiC on_ppoll.

128 Series 500 Dependencies

io_geLterm_reason
Subroutine io_geCterm_reason is able to indicate one, two, or three reasons for a read
termination by combining each reason into the three least significant bits in the returned
value:

Set Bit Decimal Meaning

(none) 0 Abnormal terminaion.

Bit 0 1 Number of bytes requested were read.

Bit 1 2 Specified termination character was detected.

Bit 2 4 Device-imposed termination condition was detected (e.g., EOI on
HP-IB).

For example, if io_geCterm_reason returns 7 you know that the read terminated for three
reasons: the byte count was reached, a termination character was encountered, and a
termination condition was detected.

However, the Series 500 HP-IB interface does not return more than one termination
reason to io_geCterm_reason, but, rather, returns only the highest numbered reason.
Consequently, io_geCterm_reason can only return the values .0, 1, 2, or 4 (or -1 if
an error occurs). For instance, if a 4 is returned, it indicates that a device-imposed
termination condition occurred, but no mechanism exists for determining whether the
byte count was reached or if a termination character was read as well.

When a Series 500 GPIO interface is set to use a 16-bit data path width, the termination
character is only OIl byte (8 bits) wide (the least significant byte of the match value).
During read operations, if the termination character arrives as the lower byte in a data
transfer, data is handled and stored smoothly; both the upper and lower bytes of the
transfer are received and the count of received bytes is incremented by two. However,
if the termination character arrives in the upper-byte position of the transfer, both the
upper byte and the lower byte are still read. However, the count of received bytes is only
incremented by one, indicating that the termination character was located in the upper
byte position.

Series 500 Dependencies 129

io_on_interrupt
The internal HP-IB interface supplied with the Model 550 does not support talker­
addressed, listener-addressed, controller-in-charge, or remote-enable interrupts. GPIO
interrupts on the EIR line also are not supported.

io_timeouLctl
io_timeouLctl is used to set a time limit for I/O operations on a given entity identifier
associated with an interface file. The timeout value specified in the subroutine call is a 32-
bit long integer that determines the maximum timeout waiting period in microseconds.
However, the effective timing resolution for timeouts is system-dependent. On Series 500
systems, timeout is rounded up to the nearest 100millisecond boundary which means, for
example, that if you specify a timeout of 155000 microseconds (155 milliseconds), the
effective timeout is rounded up to 160 milliseconds.

When an I/O operation is aborted due to a timeout, errno is set to EIO. However, EIO
is defined as a general I/O error, and can be set by many other error conditions. On
Series 500 systems, more information can be obtained by looking at the external HP-UX
variable errinfo which is set to the value 56 when a timeout occurs.

io_speed_ctl
The Series 500 always uses DMA for HP-IB and GPIO transfers, thus ensuring the fastest
possible I/O speeds. Consequently, io_speed_ctl is meaningless when used in software
intended for use on Series 500 systems. However, it is included in the Series 500 Device
I/O Library to enhance software compatibility with Series 200/300 and other systems.

io_width_ctl
Although this subroutine can be called for any interface, the path width specified in the
call to io_width_ctlmust be compatible with the related interface. On Series 500 systems,
only the GPIO interface supports multiple data path widths and only two widths are
supported: 8 bits and 16 bits. io_ width_ctl returns an error if a width is specified that is
not available on the interface.

130 Series 500 Dependencies

Performance Tips
When using DIL subroutines on Series 500 systems, overall I/O performance can be
improved by following the basic guidelines listed in this section.

• Use buffers to hold data being written to an interface. Transferring data previously
stored in a buffer is considerably faster than specifying a data string when invoking
the transfer. For example, a data transfer handled by this code segment:

int eid;
char *buffer;

/*entity identifier descriptor*/
/*data storage buffer*/

eid = open("/dev/raw_hpib". O_RDWR);
buffer = "data message"; /*store data in buffer*/
write(eid. buffer. 12); /*transfer data*/

is faster than a data transfer handled by this equivalent code segment;

int eid; /*entity identifier descriptor*/

eid = open("/dev/raw_hpib". O_RDWR);
write(eid. "data message". 12); /*transfer data*/

• Make the number of bytes transferred equal to an integer multiple of the number of
bytes per word in system memory. Data transfers, both in and out, are faster if the
number of bytes being transferred fall on a word boundary. Series 500 memory is
arranged in 4-byte words which means that the following code segment will perform
optimally because the byte counts are integer multiples of 4.

write(eid. buffer1. 12);
read(eid. buffer2. 40);

• If you are super-user, you can use the memlck(2) routine (see HP-UX Reference:
Section 2) to lock I/O process address space into physical memory. Data transfer
times are reduced because transfers are handled directly from the user area without
first moving data to the system area. However, one cannot lock an arbitrarily large
amount of space for a given process because there is a point at which system
performance begins to degrade.

• If a given process is running with an effective user ID of super-user, the process can
be locked in memory by using plock(2) described in the HP-UX Reference. This
lock is different than memlck mentioned previously. plock(2) informs the system
that the process code, data, or both are not to be swapped out of memory. The
following example illustrates the use of plock:

Series 500 Dependencies 131

#include <sys/lock.h>
main()
{

int plock{);
plock(PROCLOCK); /* lock text and data segments into memory*/

plock(UNLOCK); /* unlock the process*/
}

• Use auto-addressing for all read and write operations (see the Chapter 3 section
"Setting up Talkers and Listeners" for details) .

• rtprio(2) can be used to increase the system priority of an I/O process. rtprio
requires that the process be running with an effective user ID of super-user. The
real-time priorities available with rtprio arc non-degrading priorities. However,
caution must be observed when using real time priorities because one can increase
their priority above system processes resulting in possibly undesirable behavior.

For example, if you request a real-time priority for your process that lies in the
range of 0 through 63, your process has a higher priority than the system process
that handles DIL interrupts. Such condition would cause interrupts to be lost if
demand for CPU time became high enough that there was no available time to
handle the interrupt.

The following example code segment places the calling process at the lowest (least
important) real time priority:

#include <sys/rtprio.h>
mainO
{

int rtprio(), my_proc;

my_proc = 0;
to */

/* a zero process number tells rtprio to refer

/* the calling process. */
rtprio(my_proc, 127); /* priority 127 = lowest real-time priority*/

rtprio(my_proc, RTPRIO_RTOFF); /* disable real-time priority*/
}

132 Series 500 Dependencies

Series 200/300 Dependencies B
The following information, specific to Series 200/300 computers, is discussed in this
appendix:

• Location of the DIL subroutines,

• Information about creating interface special files used by DIL subroutines,

• Relationship between entity identifiers and file descriptors,

• Restrictions imposed by the hardware on using the DIL subroutines,

• Techniques for improving data transfer performance when using DIL subroutines.

• Information on how to simulate I/O interrupt programming on Series 200/300 com­
puters.

Location of the OIL Subroutines
The DIL subroutines that provide direct control of your computer's interfaces are con­
tained in the library /usr/lib/libdvio.a. Some of these subroutines are general-purpose
and can be used with any interface supported by the library, while others provide control
of specific interfaces. The Device I/O Library (DIL) currently supports the HP-IB and
GPIO interfaces.

Series 200/300 Dependencies 133

Linking OIL Subroutines
The libdvio. a library redefines the read, write, lentl, dup, and ioetl entry points. For DIL
to work properly, the DIL library must be linked before libe.

The GPIO Interface
The GPIO (General Purpose Input/Output) interface is a very flexible parallel interface
that allows communication with a variety of devices. On Series 200/300 computers, the
interface sends and receives up to 16 bits of data with a choice of several handshake
methods. External interrupt and user-definable signal lines provide additional flexibility.

The GPIO interface is comprised of the following lines:

• 16 parallel data input lines

• 16 parallel data output lines

• 4 handshake lines

• 4 special-purpose lines.

Data Lines
There are 32 data lines: 16 for input and 16 for output. These lines normally use negative
logic (0 indicates true, 1 indicates false). The logic can be changed so that a 1 indicates
true with the interface's Option Switches. Refer to your GPIO interface manual to see
how to do this.

134 Series 200/300 Dependencies

Handshake Lines
Although four lines fall into this group, only three are used for controlling the transfer
of data:

• PCTL - Peripheral ConTroL

• PFLG - Peripheral FLaG

• I/O - Input/Output.

The Peripheral Control (PCTL) line is controlled by the interface and used to initiate data
transfers. The Peripheral Flag (PFLG) line is controlled by the peripheral device and used
to signal the peripheral's readiness to continue the transfer process. The Input/Output
(I/O) line is used to indicate direction of data flow.

Special-Purpose Lines
Four lines are available for any purpose you desire; two are controlled by the peripheral
device and sensed by the computer, and two are controlled by the computer and sensed
by the peripheral.

Data Handshake Methods
There are two handshake methods using PCTL and PFLG to synchronize data transfers:
pulse-mode handshakes and full-mode. If the peripheral uses pulses to handshake data
transfers and meets certain hardware timing requirements, the pulse-mode handshake
is used. The full-mode handshake should be used if the peripheral does not meet the
pulse-mode timing requirements. Refer to the GPIO interface's documentation for a
description of these handshake methods.

Series 200/300 Dependencies 135

Data-In Clock Source
Ensuring that data is valid when read by the receiving device differs slightly depending
on what direction the data is flowing. When writing data out from the computer the
interface generally holds data valid while PCTL is in the asserted state, the peripheral
must read the data during this period.

When reading data from the peripheral, the peripheral must hold the data valid until
it can signal that the data is valid or until the data is read by the computer. The
peripheral signals that the data is valid using the PFLG line. This clocks the data into
the interface's Data-In registers.

You can specify the logic level of the PFLG line that indicates valid data by setting the
FLAG switches on the interface card. Refer to the card's installation manual to find out
how to do this.

136 Series 200/300 Dependencies

Creating the Interface Special File
HP-UX treats I/O to an interface the same way it treats I/0 to any input/output device:
the interface must have a special file. The general process of creating special files is
described in the HP-UX System Administrator l'l'fanual for your system. The following
discussion points out specific requirements needed for a special file associated with an
interface.

Creating the Special File
Special files are created using the mknod(lM) command; you must be super-user to
execute this command. When used to create an interface special file, mknod has the
following syntax:

mknod pathname c maJor_number minor_number

The c parameter to mknod tells the system to create the file as a character special file.
Descriptions of the remaining parameters to the mknod command follow.

pathname
The pathname parameter specifies the name to be given to the newly created interface
special file. The pathname identifies the interface itself, not a peripheral on the inter­
face. Special files are usually kept in the directory /dev. This is basically an HP-UX
convention; some commands expect to find special files in the / dev directory and fail if
they are not there.

majoLnumber
The maJor number specifies which device driver to use with the interface. The following
table shows the major number used for each supported interface:

Major Number

21

22

Interface

HP-IB Interface

G PI ° Interface

Series 200/300 Dependencies 137

minocnumber
The minor number parameter tells mknod the location of the interface. The minor number
has the following syntax:

OxSeAdUV

where:

Ox specifies that the characters which follow represent hexadecimal values. These
two characters (zero and x) are entered as shown.

Se a two-digit hexadecimal value specifying the select code of the interface card.
The select code is determined by switch settings on the HP-IB interface card.

Ad a two-digit hexadecimal value specifying a bus address. To use DIL routines
with the interface, the special file should be created as a raw special file: the
Ad component of the minor number should be 31 (1£ in hexadecimal). If Ad is
less than 31, then the file is not created as a raw file; it is created as an auto­
addressable file. (In this case, Ad specifies the bus address of the device for which
the special file is created.) If only one device can be connected to the interface
(e.g., the GPIO interface), the component of the minor number is ignored.

u a single-digit hexadecimal value specifying a secondary address. This component
of the minor number is ignored when the special file you are creating is for an
interface; you should set it to o.

V a single-digit hexadecimal value specifying a secondary address, such as the
volume number in a multi-volume drive. This component of the minor number
is ignored also; you should set it to o.

Creating an HP-IB Interface File
Suppose you wish to create an HP-IB interface special file with the following character­
istics:

• the pathname is /dev/raw_hpib

• because the interface is HP-IB, the major number is 21

• the card's select code switches are set to select code 2-Le., the Se component of
the minor number is 02

• the special file must be a raw special file in order to use DIL subroutines with it;
therefore, the Ad portion of the minor number must be 31 (1£ in hexadecimal).

138 Series 200/300 Dependencies

Based on this information, you would use mknod as follows to create the special file for
the interface:

mknod /dev/raw_hpib c 21 Ox021fOO

To further illustrate the use of mknod, suppose you have two HP-IB interfaces (ma­
jor number = 21) installed in slots 2 and 3. The following mknod commands set up
a special file for the interface at select code 02 (/dev/raw_hpibl) and select code 03
(/dev/raw_hpib2):

mknod /dev/raw_hpib1 c 21 Ox021fOO

mknod /dev/raw_hpib2 c 21 Ox031fOO

Creating a GPIO Interface File
Now suppose you have a GPIO interface that you want to access with the DIL subroutines
on the same computer.

Because the GPIO interface is does not use a bus architecture, the usual bus address
(Ad) and secondary address (uv) components of mknod's minor number are ignored, and
you need only determine the select corle value.

Assuming that you have set the interface select code switches to 04 on the Series 200/300
GPIO card, the following mknod command will create the appropriate special file, named
/dev/raw_gpio:

mknod /dev/raw_gpio c 22 Ox040000

Series 200/300 Dependencies 139

Effects of Resetting (via io_reset)
For an HP-IB interface on Series 200/300 computers, resetting involves clearing REN,
pulsing its Interface Clear line (IFC), and resetting REN; for a GPIO interface the
Peripheral Reset line (PRESET) is pulsed. If it fails, the routine returns a -1; otherwise
the routine returns a O.

Entity Identifiers
On Series 200/300 computers, an entity identifier for a file used by a DIL routine is
equivalent to an HP-UX file descriptor. This means that you can obtain entity identifiers
for your interface files with the system subroutines dup, Icntl, and creat, in addition to
open.

140 Series 200/300 Dependencies

Restrictions Using the OIL Subroutines
This section presents some restrictions on using the DIL subroutines on Series 200/300
computers. These restrictions are organized under the routine to which they apply. The
subroutines are presented in alphabetical order.

hpib_io
After calling hpib_io, the effects of any previous calls to hpib_eoi_ctl and io_eoLctl are
nullified. In other words, EOI mode is disabled for the specified eid and the read termi­
nation pattern is disabled. Therefore, if you want these to remain in effect after calling
hpib_io, you must set them again with hpib_eoi_ctl and io_eoLctl.

hpib_send_cmnd
The Series 200/300 HP-IB interface card uses odd parity when you send commands via
hpib_send_cmd. To do this, it overwrites the most-significant bit of each command byte
with a parity bit. This should not cause a problem since all HP-IB commands use only
7 bits, and the eighth is free for use as a parity bit.

hpib_status
The hpib_status routine cannot sense lines being driven (output) by the interface. In
other words, listeners cannot senses NDAC and non-controllers cannot sense SRQ.

io_interrupLctl
The io_interrupLctl routine is not supported on Series 200/300 computers.

io_on_interrupt
The io_on_interrupt routine is not supported on Series 200/300 computers.

Series 200/300 Dependencies 141

io_reset
When an HP-IB interface is reset via io_reset, the interrupt mask is set to 0, the parallel
poll response is set to 0, the serial poll response is set to 0, the HP-IB address is assigned,
the IFC line is pulsed (if system controller), the card is put on line, and REN is set (if
system controller).

When a GPIO interface is reset, the peripheral request line is pulled low, the PTCL line
is placed in the clear state, and if the DOUT CLEAR jumper is installed, the data out
lines are all cleared. The interrupt enable bit is also cleared.

io_speed_ctl
If the I/O transfer speed is set less than 7Kb/sec (Le., the speed parameter is less than
7), then the interface will use interrupt transfer mode. If the transfer speed is set greater
than 140Kb/sec (speed> 140), then the system chooses the fastest mode possible. If the
speed is between 7Kb and 140Kb/sec (7Kb ~ speed ~ 140), then DMA transfer mode is
used.

IMPORTANT

If you are using pattern termination, via io_eoLctl, then you'll
always get interrupt mode, regardless of speed.

io_timeouLctl
This routine allows you to set a time limit for I/O operations on an entity identifier
associated with an interface file. The timeout value that you specify is a 32-bit long
integer that indicates the length of the timeout in microseconds. However, the resolution
of the effective timeout is system-dependent. On the Series 200/300 computers the
timeout is rounded up to the nearest 20-millisecond boundary. For example, if you
specify a timeout of 150000 microseconds (150 milliseconds), the effective timeout is
rounded up to 160 milliseconds.

142 Series 200/300 Dependencies

Performance Tips
The performance of your I/O process on a Series 200/300 computer using DIL subroutines
can be improved by following the guidelines below:

• Use the io_burst routine for small data transfers. ("Small;; on a Series 300 Model
310 is less than lKb; "small" on a Series 300 Model 320 is less than 4Kb.)

• If you are the super-user, you can use the memlck{2} routine (see HP-UX Reference:
Section 2) to lock your I/O process's address space into physical memory. Data
transfer times are reduced because they are carried out directly from the user area
and do not have to be first moved to the system area. However, you cannot lock
an arbitrarily large amount of space for your process since there is a point at which
your system's performance will begin to degrade.

• For processes running with an effective user ID of super-user, it is possible to lock
the process in memory with plock{2} (see HP-UX Reference). This lock is different
than memlck (as mentioned above). plock{2} informs the system that the process
code, data, or both are not to be swapped out of memory. The following example
illustrates the use of plock:

#include <sys/lock.h>
maine)
{

int plockO;
plock(PROCLOCK); /* lock text and data semnets into memory*/

plock(UNLOCK); /* unlock my process*/
}

• Use auto-addressing for all read and write operations. (See the section "Setting
up Talkers and Listeners" of Chapter 3, "Controlling the HP-IB Interface," for
details.)

• Increasing the system priority of an I/O process can be accomplished by using
rtprio{2}. rtprio requires the process to be running with an effective user ID of
super-user. The real time priorities available with rtprio are non-degrading pri­
orities. Caution must be observed when using real time priorities since one can
increase their priority above system processes. This may cause undesirable behav­
ior. For example, requesting a real time priority in the range of 0-63 places your
process in a higher priority than the DIL interrupt handler system process. This
means that interrupts could be lost if there is not sufficient CPU resource available.
The following example places the calling process at the lowest (least important) real
time priority:

Series 200/300 Dependencies 143

#include <sys/rtprio.h>
maine)
{

}

int rtprio(). my_proc;

my_proc = 0; /* a zero process # tells rtprio to refer to the */
/* calling process. */

rtprio(my_proc. 127); /* priority 127 = lowest real time priority*/

rtprio(my_proc. RTPRIO_RTOFF); /* turn off real time priority*/

Simulating Interrupts for the HP-IB Interface
Although Series 200 HP-UX does not allow you to set interrupts, the use of four system
subroutines fork{2} , signal{2}, kill{2} , and getpid{2} allows you to simulate their effect.
The purpose of this section is not to describe how these subroutines work, but merely to
present a specific application that uses them. Refer to HP- UX Reference: Section 2 for
a complete description of the four system subroutines.

You can simulate setting an interrupt by creating a child process that waits for the
interrupt condition. When that condition occurs, the child process sends a signal back
to the parent process and then terminates. While the child process is waiting for the
specified condition, the parent process can continue executing until it receives the signal
from the child, at which time it jumps to a specified service routine.

The code below illustrates how you can use fork to spawn a child process that waits for
a particular bus condition. Here the child process calls hpib_status_ wait to wait until the
SRQ line is asserted. Since no timeout has been set for the interface file's entity identifier,
there is no limit to how long the child process waits for the specified condition. When
the SRQ line is seen, the child process sends the signal SIGINT to the parent process
using kill. Since kill requires the process ID of the process that is to receive the signal,
getpid is called. Getpid returns the process ID of the calling process's parent process.
The child process terminates after the signal is sent. Signal allows you to specify in the
parent process what signal it is to look for and what routine it is to execute when the
signal is received. The code for service_ routine is not shown here. After service_ routine
is executed, the parent process resumes execution at the point where it was interrupted.

144 Series 200/300 Dependencies

#include <signal.h> I*defines various signals*1
main 0
{

}

int eid;
eid = open("/dev/raw_hpib", O_RDWR); /*open interface file*/

I*create a new process that will look for service requests*1
if (fork() == 0) I*this is the child process*1
{

}

else
{

kill (getpid(), SIGINT);

signal (SIGINT, service_routine);

I*note that no timeout is set--it
will wait indefinitely for SRQ*I

I*this is the parent*1

I*parent process can now do other things while the child waits

}

for SRQ. When the parent receives the SIGINT signal the function
service_routine will be executed,*1

Some additional points about simulating interrupts in this way are:

• The code for the child process can be distinguished from that of the parent process
by the value returned by fork. Fork returns a 0 in the child process and the process
ID of the child process to the parent process.

• The include file signal. h must appear near the beginning of your program if the
program calls signal.

• If the interface file is opened before the fork call, the child process inherits the file's
entity identifier. If fork is called before the interface file is opened, then both the
child and the parent processes must open it.

Series 200/300 Dependencies 145

Simulating Interrupts on the GPIO Interface
Chapter 3: Controlling the HP-IB Interface discusses the use of four system subroutines
fork, signal, kill and getpid to simulate the effect of an interrupt when a certain condition
occurs on an HP-IB interface. This same technique can be used to simulate an interrupt
given a certain condition on a GPIO interface, such as a certain value of the STIO and
STH special purpose status lines.

Fork is used to spawn a child process that waits for a specified condition to occur, leaving
the parent free to continue executing. When the condition occurs, the child process sends
a signal via kill to the parent which then implements whatever service routine is required.
The parent process uses signal to recognize when the signal is sent and the child process
uses getpid to find out the process ID of the parent so that it knows where to send the
signal. The code below illustrates generating an interrupt when a peripheral connected
to the GPIO interface asserts STIO.

146 Series 200/300 Dependencies

#include <signal.h>
mainO

/*defines various signals*/

{

}

int eid; /*entity identifier*/

eid = open("/dev/raw_gpio". O_RDWR); /*open GPIO interface file*/
/*create a child process that looks for assertion of STIO*/

if (forkO == 0)
{

/*this is the child process*/

}

wait_on_STIO(eid);
kill(getpid(). SIGINT);

/*call a routine that waits for STIO*/
/*send signal to parent process*/

else /*this is the parent process*/
{

}

signal (SIGINT. service_routine(»;

/*parent process can now do other things while the child waits for
STIO. When the parent receives the signal SIGINT. the function
"service_routine" will be executed*/ } } /*end of main*/

/*"wait_on_STIO" repeatedly calls gpio_get_status until it sees that
STIO is asserted and then it returns to the calling routine*/

wait_on_STIO(eid)
int eid;

{

int value;
int flag = 0;

while (flag == 0)
{

/*Variable to hold value of STIO and STI1*/
/*Boolean flag initialized to 0 (false)*/

value = gpio_get_status(eid); /*read STIO and STI1 lines*/
if (value & 1) /*clear all but the first bit*/

flag = 1; /*when STIO is asserted. set flag to 1*/

Series 200/300 Dependencies 147

148 Series 200/300 Dependencies

Integral PC Dependencies c
The following information, specific to the Integral PC, is discussed in this appendix:

• location of the DIL routines

• the GPIO interface

• creating an interface special file

• interrupts

• controlling the HP-IB interface

• non-standard DIL routines

• restrictions using the DIL routines

Integral PC Dependencies 149

Location of the OIL Routines
The DIL routines are supplied in the libdvio. a library on the DIL disc. To use this
library with your compiler, move the libdvio.a library, along with the include files, to the
appropriate folder for your compiler, usually /usr/lib.

The GPIO Interface
The HP 82923A GPIO interface used on the Integral PC is different in a number of key
areas from the GPIO used on Series 200/300 and 500 computers. Refer to the HP 82923A
GPIO Interface Owner's Manual for a complete description of the hardware. Note that
the HP 82923A GPIO interface has the following features:

• parameters are set using DIL routines, not switches; these DIL routines are non­
standard DIL routines and are only provided on the Integral PC

• four 8-bit bidirectional data ports (which can be configured in 8-, 16-, or 32-bit
ports)

• 2 handshaking lines for each port

• 1 peripheral interrupt line (PIR) for each port

• 1 reset line (RES) for each port

• 1 status line for each port

• 1 data direction line (I/O) for each port.

The HP 82923A GPIO interface has six handshake types. The handshake type is selected
using the gpio_handshake_ctl routine.

150 Integral PC Dependencies

Creating an Interface Special File
Two utility programs, load_hpib and load_gpio, must be used to create the appropriate
special files for your HP-IB and GPIO interfaces, respectively. These routines create a
special (device) file for each HP-IB or GPIO interface found, and load the appropriate
DIL driver. The data files containing the DIL drivers, dhpib.data and dgpio.data, must
be in the search path defined by your PATH variable when the load utility is invoked.
For more information on load_hpib and load_gpio refer to the load_hpib.l and load_gpio.l
files provided in the doc folder on the DIL disc.

GPIO Interface Files
The special files for GPIO interfaces have the following form:

/dev/gpioGPIO_port.IO_port

where GPIO_port is the letter designation for GPIO ports a, b, c, or d; and 10_port is
a one- or two-character designation (a, 0, ai, a2, ...) for the Integral PC I/O port. Note
that the top port on the Integral PC is port a, the bottom port is port b, while the bus
expander ports have a combination letter and number designation as shown below.

HP-IB Interface Files
The special (device) files for HP-IB interfaces have two forms:

/dev/dhpib. i for the built-in HP-IB interface

/dev/dhpib.IO_port for the plug-in HP-IB interface, where 10_port is the Integral PC
I/O port designator (a, b, ai, a2, ...) described above.

Unloading the OIL Drivers
Two additional utilities, unload_hpib and unload_gpio, are provided on the DIL disc.
These utilities are used to remove both the DIL drivers and the special files created by
load_hpib and load_gpio. For more information on using these utility programs, refer to
load_hpib.l and load_gpio.l in the doc folder on the DIL disc.

Integral PC Dependencies 151

Interrupts
Unlike the Series 500, the Integral PC supports only one interrupt condition, PIR, mean­
ing that the Peripheral Interface Request line has been asserted. For hardware restrictions
on using the HP-IB interrupts on the Integral PC, refer to the io_on_interrupt.3d file in
the doc folder on the DIL disc.

Controlling the HP-IB Interface

Limitations on the HP-IB Interface
The use of DIL routines with the built-in HP-IB interface has the following limitations:

• The user must not pass control when using the DIL routines with the built-in
HP-IB interface. The built-in HP-IB interface must always be the System Con­
troller / Active Controller .

• Loading the DIL drivers and then opening the built-in HP-IB interface special file
prevents the operating system from accessing printers, plotters, and mass-storage
drives on the built-in HP-IB interface until the built-in HP-IB interface special file
is closed. This means that any operation using a printer, plotter, or mass-storage
device on the built-in HP-IB interface will be suspended until the built-in HP­
IB device file is closed. This limitation can result in a deadlock situation if your
program both uses the DIL routines with the built-in HP-IB interface and attempts
to use a printer, plotter, or mass-storage drive on the built-in HP-IB interface.

To avoid these limitations, we recommend that you use the HP-IB DIL routines only
with the HP 82998A HP-IB interface.

The Computer as a Non-Active Controller
The built-in HP-IB interface must be in the system controller, active controller state to
use the DIL routines on the Integral PC.

152 Integral PC Dependencies

Non-Standard OIL Routines
The Integral PC DIL library supports several routines that are not part of the DIL
standard. This section describes these routines.

General-Purpose Routines
In addition to the standard DIL routines, the Integral PC DIL library supports the
following two routines:

Locks the interface port tb the calling process until the io_ unlock routine
is called.

io_unlock Used by the calling process to remove the lock created by io_lock.

For details on using these routines, refer to the io_lock.3d file located in the doc folder
on the DIL disc supplied with your Integral PC.

Non-Standard HP-IB Routines
In addition to the F;tandard OTL routines for controlling the HP-IB interface, the Integral
PC supports the following non-standard DIL routine:

io_burst(eid, flag) Used to control the high-speed HP-IB mode. If flag = 0, high­
speed mode is turned off; otherwise it is turned on.

For information on the io_burst routine, refer to the io_burst.3d file in the doc folder on
the DIL disc.

Non-Standard GPIO Routines
The following non-standard DIL routines have been added to control the HP 82923A
GPIO interface:

• gpio_handshake_ctl

• gpio_ normalize_ ctl

• gpio_delay_time_ctl

A description of these routines is provided in the doc folder on the DIL disc.

Integral PC Dependencies 153

Restrictions Using the OIL Routines
This section presents some restrictions on using DIL routines with the Integral PC com­
puter. Restrictions on using system routines, such as open(2), are also discussed here.
These restrictions are organized under the routine to which they apply; the routines are
presented in alphabetical order.

hpib_bus_status
On the Integral PC, it is not possible to determine the status of the NDAC and SRQ
lines under certain conditions. This can result in incorrect results when using the
hpib_bus_status routine to determine the status of these two lines. If the HP-IB in­
terface is talk-addressed, the SRQ status is incorrect; if it is listen-addressed, the NDAC
status is incorrect.

hpib_card_ppoILresp
The parallel poll response of the HP 82998A HP-IB interface can not be remotely pro­
grammed. Instead, use the hpib_card_ppoILresp routine.

hpib_ppoILresp_ctl
The "sense" bit of the flag value for the hpib_ppoILresp_ctl routine determines whether
a zero or non-zero "response value" means that the computer requires service. If the "s"
bit is a 0, then a zero response value means service is needed.

io_eoLctl
On the Integral PC, a read operation from a GPIO interface will terminate only when a
specified number of read operations have been performed, or when the read termination
pattern ,has been found.

The Integral PC does not support different read termination patterns on multiple opens
to the same eid.

io_reset
When used to reset a GPIO interface, the io_reset routine will pulse the RES (reset) line
only on the GPIO controller port specified by the eid.

154 Integral PC Dependencies

io_speed_ctl
GPIO
Setting the speed on a GPIO interface determines the transfer mode used by the driver:
either interrupt-driven, flag-driven handshake, or "fast handshake" mode. (N ote that
the driver's fast handshake mode is not the same as the fast handshake mode described
in the HP 82923A GPIO Owner's Manual; it refers to a flag-driven mode where the EOL
and timeout settings are ignored to achieve a faster transfer rate.)

DMA transfers are not available on the Integral PC.

Interrupt-Driven Transfer Mode
Two transfer modes exist between the Integral PC and the HP 82923A GPIO interface:
flag-driven mode and interrupt-driven mode. To select the interrupt-driven mode, use
io_speed_ctl to set the speed to o.

While in the interrupt-driven mode, read and write calls to the GPIO interface will cause
the user's process to go to sleep until an interrupt occurs at the completion of the read
or write.

HP-IB
The DIL routines on the Integral PC support two HP-IB transfer modes: flag-driven
mode and high-speed transfer mode. The default mode is the flag-driven mode until it
is set to the high-speed transfer mode using the io_ burst routine.

In the high-speed transfer mode, the driver talks directly to the interface without going
through the operating system. For more information on io_burst, refer to the documen­
tation provided in the io_burst.3d file in the doc folder on the DIL disc.

io_timeouLctl
This routine allows you to set a time limit for operations carried out by DIL routines on
a specified entity identifier. The timeout value you specify is a 32-bit long integer that
indicates the length of the timeout in microseconds ({l-secs). However, the resolution of
the effective timeout is system-dependent. On the Integral PC, the timeout resolution on
both the HP 82923A GPIO interface and the HP 82998A HP-IB interface is 1 millisecond
(msee).

For example, suppose you specify a timeout of 99 999 microseconds (99.999 milliseconds).
Then the effective timeout is rounded up to 100 milliseconds.

Integral PC Dependencies 155

io_ width_ctl
The data path width for the HP-IB interface is always 8 bits on the Integral PC. However,
the four 8-bit ports on the HP 82923A GPIO interface can be combined to form 8-, 16-,
or 32-bit data paths.

For 16- or 32-bit ports, only one port acts as a controller; that port's eid is used in the
io_ width_ctl routine. The allowable data path widths for each port are shown in the
following table.

GPIO Data Path Widths

Data Path Controller Data
Width Port Ports·

8-bit a a

b b

e e

d d

16-bit b ba

d de

32-bit b bade

* Data ports are listed in order, left to right, from most-significant byte to least-significant
byte.

Combinations of 8- and 16-bit or two 16-bit ports are also allowed on the same GPIO
interface. 24-bit ports are not allowed.

open(2)
When opening the special file for an interface, you must use the special file name for
the specific GPIO or HP-IB interface created by load_hpib or load_gpio. Note that each
GPIO port has a separate special file name. For details on interface special file names,
see the previous section "Creating an Interface Special File."

read(2) and write(2)
During a read or write operation to a 16- or 32-bit GPIO port, the data must start on
a word boundary. This restriction applies only to the GPIO interface.

156 Integral PC Dependencies

Series 800 Dependencies D
,.,.." t- 11 • .,.. _ J. _ _ __ .,.. j _ j 1 _ T"'\. _ • __ T If"'\. T ~1_ __ _ __ IT""\.TT \ n __ ~ Cll"\.£\ Ine IOllowmg mIOrma"(;lOn, speClIlC "(;0 "(;ue veVIce 1/V LlUfafY ~V1L) on ;:,enes OUU COIIl-

puters, is discussed in this appendix:

• compiling programs that use DIL routines

• accessing the special files for the interfaces that you plan to use with DIL

• creating special files for the interfaces that you plan to use with DIL

• DIL routines affected by the Series 800 hardware

• DIL support of HP-IB auto-addressed files

• improving performance of DIL programs

Series 800 Dependencies 157

Compiling Programs That Use OIL
The DIL routines are located in the library /usr/lib/libdvio.a. Thus, programs can be
linked as:

CC test.c -ldvio

Accessing the Interface Special Files
The Series 800 kernel is shipped with a default I/O configuration. This means a default
set of special files is made for you. For example, the /dev/hpib directory contains special
files created for use with HP-IB instruments connected to the HP 27110B HP-IB interface.
The special file /dev/gpioO is created for use with instruments or peripherals connected
to the HP27114A Asynchronous FIFO interface (AFI). The insf command is used to
install these special files all at one time. Mknod could also be used to create them one
at a time. For more information on insf and mknod refer to the HP- UX Reference.

Major Numbers
Major numbers map the hardware I/O cards to the software I/O driver for the type
of I/O application the card will be doing. The driver used to talk to the HP-IB card
for instrument I/O is called instrO, and corresponds to major number 21. The HP-IB
card talks to different drivers (which use different major numbers) to do I/O to other
kinds of devices, such as disc drives or printers. All default special files in the /dev/hpib
directory use major number 21. The driver that talks to the AFI card is called gpioO,
and corresponds to major number 22. The /dev/gpioO special file uses major number 22.

158 Series 800 Dependencies

Minor Numbers and Logical Unit Numbers
Drivers use minor numbers to map the hardware I/O cards to their locations in the
Model 840 I/O backplane. The default I/O configuration shipped with your Model 840
creates special files accessing a subset of the available backplane slots. For the HP-IB
card, t\:tlO slots are available for instrument I/O, and one slot is available for the .lA1FI

card. Slot information is accessed through the device's logical unit number. The logical
unit number is mapped into the special file's minor number. For HP-IB special files, the
HP-IB bus address is also mapped into the minor number.

The minor number syntax for an HP-IB special file is:

OxOOLuBa

where Lu is the device's logical unit number, and Ba is the bus address of the HP-IB
device. Both numbers are in hexadecimal.

The minor number syntax for an AFI special file is:

OxOOLuOO

where Lu is the device's logical unit number in hexadecimal.

For example, a long listing of the special file /dev/hpib/Oa16 shows

$ 11 /dev/hpib/Oa16
crw-rw-rw- 1 root root 21 Ox000010 Mar 11 15:19 Oa16

The logical unit number is 0, and bus address 16 is 10 in hexadecimal.

Series 800 Dependencies 159

Listing Special Files
The Series BOO I/O architecture is based on a hierarchical design. The use of logical
numbers in conjunction with the major and minor number allows the system to keep
track of all the information about the I/O structure. The Issf command, list special file,
is a tool that makes it easy to read information about a special file without decoding it
by hand.

The syntax of issf is:

lssf [-f dey _file] path

where path is the pathname of the special file. Lssf uses the major number from the
special file to find the name of the device driver in a file called /etc/devices. If you use
the -f option, issf looks in dey _file instead of jete/devices. It then decodes the minor
number, outputs the logical unit number, the device bus address (if there is one), and
the corresponding CIO slot address for the actual card in the I/O backplane.

Using the default special file /dev/hpib/Oa16 as an example, the following output is
produced:

$ lssf /dev/hpib/Oa16
instrO lu 0 bus address 16 address 8.2.16 /dev/hpib/Oa16

where instrO is the name of the instrument HP-IB driver, the logical unit number is 0,
the HP-IB bus address is 16, and the backplane address of the HP-IB card is 8.2.16.
This says that the CIO channel card is in mid-bus address 8, and the HP-IB card should
be in slot 2 of that CIO channel. There are 12 CIO slots available, numbered 0-11. The
last digit, in this case 16, is the HP-IB bus address of the device Oa16.

The default HP-IB special files are set up for cards in slot 2 or slot 7 of the CIO channel
at mid-bus address B. A special file for each possible bus address (0-31) is made for each
card. The special files for the card at slot 2 all have a logical unit number of 0, and the
special files for the card in slot 7 all have a logical unit number of 1.

The default GPIO special file is set up for an AFI card in slot 5 of the CIO channel at
mid-bus address B, and uses a logical unit number of O.

For more information on issf refer to the HP- UX Reference.

160 Series BOO Dependencies

Naming Conventions for Interface Special Files
If your Series 800 computer was configured correctly, the special files discussed above
will already have been created.

By convention, HP-IB special files reside in the /dev/hpib directory, Also by con­
vention, the default special files for the HP-IB raw bus (a HP-IB card itself) are
named /dev/hpib/X, where X is the bus's logical unit. Auto-addressed files are named
/dev/hpib/XaY, where X is the logical unit, a stands for an auto-addressed file, and Y is
the file's associated HP-IB bus address (see the "DIL Support of HP-IB Auto-Addressed
Files" section of this appendix).

The naming convention for the GPIO default special files is /dev/gpioX, where X is the
device's logical unit.

If you cannot locate the default special files on your system, refer to the next section for
how to create them.

Series 800 Dependencies 161

Creating Interface Special Files
If the special files you need for HP-IB or GPIO are not available on your system, you
can use the mksf command to create them. Mksf is a high-level command implemented
for the Series 800, that can be used instead of mknod. Like Issf, mksf frees you from
having to know the major number and minor number format. Mksf makes the special
file creation process consistent for all classes of devices. The syntax of mksf is:

mksf -d driver -llu other_flags ... sfname

where driver is the name of the driver associated with the special file, lu is the file's
logical unit, and sf name is the name of the special file you wish to create.

Each class of device can have additional class-dependent attributes (such as the bus
address for an HP-IB auto-addressed file).

For HP-IB devices, the driver is instrO. Thus, to create a special file named /dev/bus for
HP-IB lu 1, you use the command:

mksf -d instrO -1 1 /dev/bus

When creating auto-addressed HP-IB special files, you add another option -a to associate
the address with the device. For example, to create an auto-addressed special file called
/dev/plotter, at bus address 7 on HP-IB lu 2, you could type:

mksf -d instrO -1 2 -a 7 /dev/p1otter

For the AFI card, the driver is gpioO. Thus, to create a special file named /dev/afi for
GPIO lu 0, you could use the command:

mksf -d gpioO -1 0 /dev/afi

For more information on mksf or mknod, refer to the HP- UX Reference.

162 Series 800 Dependencies

Hardware Effects on OIL Routines
The HP-IB card supported on the Series 800 is the HP 27110B HP-IB interface; the
GPIO card is the HP 27114A Asynchronous FIFO Interface (AFJ).

This section presents some restrictions on using the DIL routines on Series 800 comput­
ers. These restrictions are organized under the DIL routine to which they apply. The
routines are presented in alphabetical order. A list of errno error names can be found
in section two of the HP- UX Reference. Errno numeric values are defined in the file
jusr jincludejsysjerrno.h.

hpib_rqsLsrvce
The hpib_ rqsLsrvce routine only permits bit 6 of the serial poll response to be set. If
hpib_rqsLsrvce is called with a response having bit 6 set, the interface sends <01000000>
(64 decimal) in response to serial poll; if bit 6 is not set in response, the interface sends
<10000000> (128 decimal). See "The Computer as a Non-Active Controller" in Chapter
3.

io_eoLctl
The AFI driver does not support pattern matching on reads; all io_eoLctl calls return -1
and set errno to EINVAL.

io_reset
When an HP-IB interface is reset via io_reset, the card's parallel poll response is set
to 0; its serial poll response is set to 128; its HP-IB address is read off the hardware
switches; and the card is put on-line. Any enabled interrupts are preserved. If the
card is configured as system controller, then Interface Clear (IFC) is pulsed and Remote
Enable (REN) is asserted.

When an AFI interface is reset via io_ reset, each of the three control output lines is reset
to zero, the incoming Attention Request (ARQ) is disabled, the ARQ flip flop is cleared,
the ARQ enable flip flop and the handshake to the peripheral are disabled, and the FIFO
buffer is flushed out.

Series 800 Dependencies 163

io_speed_ctl
The io_speed_ctl routine is not supported on Series 800 computers; transfer is always
done via DMA.

io_timeouLctl
On Series 800 computers, the timeout you specify via io_timeouLctl is rounded up to
the nearest 10-millisecond boundary. For example, if you specify a timeout of 125000
microseconds (125 milliseconds), the effective timeout is rounded up to 130 milliseconds.

DIL functions, read, or write requests that time out, return a value of -1 and set errno
to either ETIMEDOUT or EINTR. If the request can be aborted normally, then errno
is set to ETIMEDOUT . Otherwise, the HP-IB card is reset and EINTR is returned.

io_ width_ctl
The only allowable data path width for HP-IB devices is 8. AFI devices support 8-bit
and 16-bit data paths. If you specify any other width, io_ width_ ctl returns an error
indication.

Return Values for Special Error Conditions
On specific error conditions, the Series 800 sets errno values which are different from
what is expected from the DIL as documented in the HP-UX Standard. For example,
when any request times out, errno is set to ETIMEDOUT ("connection timed out")
or instead of setting it to EO!. Also, upon HP-IB requests that require the interface
to be the active controller or the system controller, set errno to EACCES ("permission
denied"). Requests that are aborted due to system power failure set errno to EINTR
("interrupted system call"); in addition, your process receives the signal SIGPWR, which
indicates recovery of system power.

164 Series 800 Dependencies

OIL Support of HP-IB Auto-Addressed Files

As noted in Chapter 3 in the section called "Setting Up Talkers and Listeners," one class
of HP-IB special files, known as auto-addressed files, are associated with a given address
on the bus. For read and write requests to these files, addressing is done automatically;
that is, the sequence of talk and listen bus commands is generated for you.

In general, the DIL functions are not defined for auto-addressed files. On the Series 800,
however, many of them are implemented, but with more device-oriented actions.

Important

The DIL Standard does not currently specify a functional defi­
nition for the support of auto-addressed files. When support for
auto-addressed files becomes part of the DIL Standard, the specific
functionality implemented may differ from the implementation de­
scribed here for the Series 800. Please keep this in mind when
developing programs which take advantage of this new functional­
ity.

The following table shows which DIL functions are supported on auto-addressed files.
Entries in the first column work the same on both auto-addressed and non-au to-addressed
(also called raw bus) files. Entries in the second column are somewhat different for auto­
addressed files; entries in the third column are not supported on HP-IB auto-addressed
files and will return an error indication if used.

Series 800 Dependencies 165

Routine Same Effect Different Effect Not Allowed

hpib_abort X

hpib_bus_status X

hpib_card_ppoILresp X

hpib_eoLctl X

hpib_io X

hpib_pass_ctl X

hpib_ppoll X

hpib_ppoILresp_ctl X

hpib_ren_ctl X

hpib_rqst_srvce X

hpib_send_cmd X

hpib_spoll X

hpib_status_ wait X

hpib_ wait_on_ppoll X

io_eoLctl X

io_get_term_reason X

io_interrupLctl X

io_on_interrupt X

io_reset X

io_speed_ctl X

io_ timeouLctl X

io_ width_ctl X

Those functions in the second column, which operate differently on raw bus and auto­
addressed special files, are discussed below.

166 Series 800 Dependencies

hpib_card_ppoILresp
Calling hpib_card_ppoltresp on an auto-addressed file does not configure the HP-IB in­
terface card; rather, it configures the device associated with the file with the appropriate
addressing and Parallel Poll configuration commands.

hpib_io
For those iodetail structures that send commands (by setting the mode flag to HPIB­
WRITE or HPIBATN), hpib_io prefixes the command buffer buf with the appropriate
device addressing (see hpib_send_cmd, below). For data transfers (with mode set to
HPIBREAD or HPIBWRITE) using auto-addressed files, the addressing is also done for
you.

hpib_ren_ctl
Setting REN (by setting the flag parameter to a non-zero value) on an auto-addressed
file addresses the associated device before asserting REN. Clearing REN (by setting flag
to a zero) addresses the device and sends it a Go To Local command, in lieu of clearing
REN.

hpib_send_cmd
Sending HP-IB commands to an auto-addressed file via hpib_send_cmd does the appro­
priate device addressing for you. The command buffer you pass down to the device is
preceded by the commands necessary to remove any previous listeners on the bus, address
the Active Controller to talk, and configure the file's associated device to listen.

hpib_spoll
Performing a serial poll on an auto-addressed file polls the associated device; any bus
address passed via the ba argument is ignored.

hpib_waiLon_ppoll
For auto-addressed files, the mask argument is ignored; only the address associated with
the device is polled. In addition, the sense argument only specifies the sense of the
particular device's assertion. Successful completion of the hpib_waiCon_ppoli request
implies that the device responded to parallel poll.

io_on_interrupt
The only allowable interrupt for auto-addressed files is SRQ.

Series 800 Dependencies 167

Performance Tips
DIL performance improvements for the Series 800 fall into two categories: those that
keep your process from waiting for resources, and those that actually improve your I/O
performance. The first three of the tips described below fall into the first category; the
last two are in the second category.

Process Locking
Normally, the operating system swaps processes in and out of memory; you can circum­
vent this swapping by using the plock system call.

If you are running as the super-user (or have the PRIV _MLOCK capability), you can
use plock to lock your process in memory; plock prevents the system from swapping out
the process's code, data, or both.

The following example illustrates its use:

#include <sys/lock.h>
int plock();

mainO {

plock(PROCLOCK);

plock(UNLOCK);
}

/* lock text and data segments into memory */

/* unlock the process */

Refer to plock{2} and getprivgrp{2} in the HP-UX Reference for more information.

168 Series 800 Dependencies

Setting Real-Time Priority
The operating system schedules processes based on their priority. Under normal circum­
stances, the priority of a process drops over time, allowing newer processes a greater
share of CPU time. You can assign a higher priority to your process and keep its priority
from dropping by using the rtprio system call.

If you are running as the super-user (or have the PRIV _RTPRIO capability), you can
use rtprio to give your process a real-time priority. Real-time processes run at a higher
priority than normal user processes; they get preempted only by voluntarily giving up
the CPU or by being interrupted by a higher priority process or interrupt.

You must be careful when using real-time priorities because you can increase your priority
above those of important system processes. The following example places the calling
process at the lowest (least important) real-time priority:

#include <sys/rtprio.h>
#define ME 0 /* a zero process ID means this process */
int rtprio 0 ;

mainO {
rtprio(ME, 127); /* Turn on real-time priority for ME */

rtprio(ME, RTPRIO_RTOFF); /* Turn off real-time priority for ME */
}

Refer to rtprio{2} and getprivgrp{2} in the HP-UX Reference for more information.

Preallocating Disc Space
If your process is reading large amounts of data and writing it to a file, you can block
while the operating system allocates disc space. However, you can allocate disc space
in advance by using the prealloc system call. The following example opens a file and
preallocates 65536 bytes of space for that file:

#include <fcntl.h>
#define MAX_SIZE 65536
int prealloc 0 ;

mainO {
int eid;

eid = open ("data_file" , O_WRONLY);
prealloc(eid, MAX_SIZE); /* preallocate space to write into */

}

Series 800 Dependencies 169

Refer to prealloc{2} in the HP- UX Reference for more information.

Reducing System Call Overhead
Most DIL function calls you make on the Series 800 map into system calls. Therefore, you
can cut down on operating system overhead by using fewer library calls. In particular,
use auto-addressed files for all read and write operations, rather than using an extra call
to hpib_send_cmd to do addressing.

Setting Up Faster Data Transfers
Because of the I/O architecture of the Series 800, data transfers run more efficiently if
your data buffers are aligned on a page boundary. The number of bytes per page is
defined as NBPG and can be referenced by including <sys/param.h>. The following
example shows how to allocate and page-align a data buffer:

#include <sys/param.h>
#define REAL_SIZE 1024
char *malloc 0 ;

mainO {

/* defines NBPG and roundup(x. y) */
/* amount of memory we want to page-align */

char *malloc_ptr. *align_ptr;

}

malloc_ptr = malloc(NBPG + REAL_SIZE); /* allocate memory */
align_ptr roundup(malloc_ptr. NBPG); /* and round up the ptr */

/* in future data transfers. use align_ptr */

free(malloc_ptr); /* when we're done with the data */

In addition, even count transfers run more quickly than odd count transfers.

170 Series 800 Dependencies

ASCII Character Codes E
i i i

ASCII
EQUIVALENT FORMS

HP-IB ASCII EQUIVALENT FORMS HP-IB
Char. Dec Binary Oct Hex Char. Dac Binary Oct Hex

NUL 0 00000000 000 00 space 32 00100000 040 20 LAO

SOH 1 00000001 001 01 GTL ! 33 00100001 041 21 LAl

STX 2 00000010 " 002 02 34 00100010 042 22 LA2

ETX 3 00000011 003 03 /; 35 00100011 043 23 LA3

EOT 4 00000100 004 04 SOC $ 36 00100100 044 24 LA4

ENQ 5 00000101 005 05 PPC % 37 00100101 045 25 LA5

ACK 6 00000110 006 06 & 38 00100110 046 26 LA6

BEL 7 00000111 007 07 39 00100111 047 27 LA7

BS 8 00001000 010 08 GET (40 00101000 050 28 LA8

HT 9 00001001 011 09 TCT) 41 00101001 051 29 LA9

LF 10 00001010 012 OA * 42 00101010 052 2A LAlO

VT 11 00001011 013 OB + 43 00101011 053 2B LAll

FF 12 00001100 014 OC 44 00101100 054 2C LA12

CR 13 00001101 015 00 - 45 00101101 055 20 LA13

SO 14 00001110 016 OE 46 00101110 056 2E LA14

SI 15 00001111 017 OF I 47 00101111 057 2F LA15

OLE 16 00010000 020 10 0 48 00110000 060 30 LA16

OCl i7 00010001 021 11 LLO i 49 00110001 061 31 LA17

OC2 18 00010010 022 12 2 50 00110010 062 32 LA18

OC3 19 00010011 023 13 3 51 00110011 063 33 LA19

OC4 20 00010100 024 14 OCL 4 52 00110100 064 34 LA20

NAK 21 00010101 025 15 PPU 5 53 00110101 065 35 LA21

SYNC 22 00010110 026 16 6 54 00110110 066 36 LA22

ETB 23 00010111 027 17 7 55 00110111 067 37 LA23

CAN 24 00011000 030 18 SPE 8 56 00111000 070 38 LA24

EM 25 00011001 031 19 SPO 9 57 00111001 071 39 LA25

SUB 26 00011010 032 lA 58 00111010 072 3A LA26

ESC 27 00011011 033 lB 59 00111011 073 3B LA27

FS 28 00011100 034 lC < 60 00111100 074 3C LA28

GS 29 00011101 035 10 = 61 00111101 075 3D LA29

RS 30 00011110 036 lE > 62 00111110 076 3E LA30

US 31 00011111 037 IF ? 63 00111111 077 3F UNL

ASCII Character Codes 171

Character Codes (cont.)

ASCII EQUIVALENT FORMS
HP-IB ASCII EQUIVALENT FORMS

HP-IB
Char. Dec Binary Oct Hex Char. Dec Binary Oct Hex

@' 64 01000000 100 40 TAO 96 01100000 140 60 SCO

A 65 01000001 101 41 TAl a 97 01100001 141 61 SCl

8 66 01000010 102 42 TA2 b 98 01100010 142 62 SC2

C 67 01000011 103 43 TA3 c 99 01100011 143 63 SC3

0 68 01000100 104 44 TA4 d 100 01100100 144 64 SC4

E 69 01000101 105 45 TA5 e 101 01100101 145 65 SC5

F 70 01000110 106 46 TA6 f 102 01100110 146 66 SC6

G 71 01000111 107 47 TA7 9 103 01100111 147 67 SC7

H 72 01001000 110 48 TA8 h 104 01101000 150 68 SC8

I 73 01001001 111 49 TA9 i 105 01101001 151 69 SC9

J 74 01001010 112 4A TAlO J 106 01101010 152 6A SClO

K 75 01001011 113 48 TAll k 107 01101011 153 68 SCll

L 76 01001100 114 4C TA12 I 108 01101100 154 6C SC12

M 77 01001101 115 40 TA13 m 109 01101101 155 60 SC13

N 78 01001110 116 4E TA14 n 110 01101110 156 6E SC14

0 79 01001111 117 4F TA15 0 111 01101111 157 6F SC15

P 80 01010000 120 50 TA16 P 112 01110000 160 70 SC16

Q 81 01010001 121 51 TA17 q 113 01110001 161 71 SC17

R 82 01010010 122 52 TA18 r 114 01110010 162 72 SC18

S 83 01010011 123 53 TA19 s 115 01110011 163 73 SC19

T 84 01010100 124 54 TA20 t 116 01110100 164 74 SC20

U 85 01010101 125 55 TA21 u 117 01110101 165 75 SC21

V 86 01010110 126 56 TA22 v 118 01110110 166 76 SC22

W 87 01010111 127 57 TA23 w 119 01110111 167 77 SC23

X 88 01011000 130 58 TA24 x 120 01111000 170 78 SC24

Y 89 01011001 131 59 TA25 Y 121 01111001 171 79 SC25

Z 90 01011010 132 5A TA26 z 122 01111010 172 7A SC26

[91 01011011 133 58 TA27 I 123 01111011 173 78 SC27

"- 92 01011100 134 5C TA28 I 124 01111100 174 7C SC28

1 93 01011101 135 50 TA29 } 125 01111101 175 70 SC29

. 94 01011110 136 5E TA30 - 126 01111110 176 7E SC30

- 95 01011111 137 5F UNT DEL 127 01111111 177 7F SC31

172 ASCII Character Codes

OIL Programming Example F
ThIS appendix contains a program lIstmg for an tlt"-ltl drIver that uses Device IjO
Library subroutines to drive various models of Hewlett-Packard Amigo protocol HP-IB
printers. It is provided solely for illustrative use, and is not to be construed as optimum
programming technique nor necessarily totally bug-free althougp the program has been
extensively tested.

It contains not only examples of DIL subroutine usage, but also other useful programming
techniques and structures that can make the task of writing specialized I/O programs
much easier.

1
2
3
4
5
6
7
8
9

10
11
12
13
14

/***/
/* This example Amigo printer driver uses a byte stream as standard */
/* input and Amigo protocol as output to HP-IB driver (21). Any special */
/* character handling should be done by a filter that feeds this driver. */
/* */
/* This example program is provided for solely illustrative purposes to */
/* demonstrate typical use of Device I/O Library (OIL) subroutines. No */
/* representations are made as to its suitability for any given */
/* application. */
/* */
/* While the program is intended to show good programming practice, it */
/* does not necessarily represent optimum programming efficiency. */
/***/

15 #include <sys/types.h>
16 #include <sys/stat.h>
17 #include <stdio.h>
18 #include <fcntl.h>
19 #include <errno.h>
20 #include <sys/sysmacros.h>
21
22
23
24
25
26

/* HP-IB addressing group bases */
#define LAG_BASE Ox20
#define TAG_BASE Ox40
#define SCG_BASE Ox60

27
28
29
30
31
32
33

/* HP-IB command equates in odd parity
#define GTL Ox01 /*
#define SOC Ox04 /*
#define DCL Ox94 /*
#define UNL Oxbf /*
#define UNT Oxdf /*

listener address base */
talker address base */
secondary address base *i

*/
go to local */
selective device clear */
device clear */
unlisten */
untalk */

DIL Programming Example 173

34 /* HP-IB
35
36
37
38
39
40

#define
#define
#define
#define
#define

secondary commands */
PR_SEC_DSJ
PR_SEC_DATA
PR_SEC_RSTA
PR_SEC_MASK
PR_SEC_STRD

41
42
43
44

/* output of DSJ
#define

operation 2608A
PR_ATTEN
PR_RIBBON
PR_ATT_PAR
PR_PAPERF
PR_SELF
PR_PRINT

#define
#define

45 #define
46
47
48

#define
#define

SCG_BASE+16
SCG_BASE+O
SCG_BASE+14
SCG_BASE+Ol
SCG_BASE+l0

*/
OxOOOl
Ox0002
Ox0003
Ox0010
Ox0020
Ox0040

/* 2608A */

49
50
51
52
53

/* output of DSJ operation the rest of the printers */

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

#define PR_RFDATA OxOOOO
#define PR_SDS OxOOOl
#define PR_RIOSTAT Ox0002

/* ppoll mask bits
#define
#define
#define
#define

*/
PR_M_RFD
PR_M_STATUS
PR_M_POWER
PR_M_PAPER

/* default parallel poll mask */

Ox0010
Ox0020
Ox0040
Ox0080

unsigned char pmask[l] = {PR_M_PAPER+PR_M_POWER+PR_M_STATUS+PR_M_RFD};

/* masks for io status byte in case of 2608A */
#define PR_I_POW OxOOOl
#define PR_I_OPSTAT
#define PR_I_LINE

Ox0040
Ox0080

/* masks for io status byte the rest of the printers */
69 #define PR_I_POWER OxOOOl
70
71
72
73
74
75
76
77
78
79
80
81
82
83

#define
#define
#define
#define

/* define printer
#define T2608A
#define T2631A
#define T2631B
#define T2673A
#define QjetPlus
#define T2632A
#define T2634A

PR_I_PAPER
PR_I_PARITY
PR_I_RFD
PR_I_ONLINE

types */

5

1
2
3
4

6
7

174 DIL Programming Example

Ox0002
Ox0008
Ox0040
Ox0080

84 int ptr_type; /* type of printer */
85
86 /* setup defines for fatal returns */
87 #define F_RTRN 1
88 #define F_EXIT 0
89
90 /* setup defines for HP-IB_msg */
91 #define H_READ 1
92 #define H_WRITE 2
93 #define H_CMND 4
94
95 /* default timeout value (in seconds) to infinity */
96 int timeout = 0;
97
98 /* default size of output buffer to printer */
99 int bufsz 32;

100
101 /* device file suffix for raw hpib dey */
102 char ptr_raw[] = 11_00 11 ;
103
104 /* default output dey to printer */
105 char ptr_dev[100] = II/dev/lpll;
106
107 extern char *optarg;
108 extern int optind;
109 extern int errno;
110
111 /* file id for raw HP-IB dey */
112 int eid;
113
114 /* configured listen and talk commands */
115 int MTA; /* my talk address */
116 int MLA; /* my listen address */
117 int DTA; /* device (printer) talk address */
118 int DLA; /* device (printer) listen address */
119
120 /* device bus address k my bus address */
121 int devba. myba;
122
123 /* my name */
124 char *procnam;
125
126 int Debug = 0;
127
128 main(argc. argv)
129 int argc;
130 char *argv[];
131 {
132
133 register i. c;

DIL Programming Example 175

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173

register unsigned char *outbuf; /* output buffer pointer */
int status;
int selcode; /* select code of printer */
struct stat statbuf;
int errflg = 0;

procnam = argv[O]; /* save pOinter to my name */

/* GET USER SUPPLIED OPTIONS AND PRINTER FILE NAME */
while «i = getopt(argc. argY, Ib:t:P:D"» != EOF) {

switch (i) {

}

/* set the buffer size to output to printer */
case 'b': if «bufsz atoi(optarg» <= 0) errflg++;

break;

/* get the new timeout value in seconds */
case 't': if «timeout ='atoi(optarg» < 0) errflg++;

break;

/* Set the parallel poll pmask (mostly for debugging) */
case 'p': if «pmask[O] = atoi(optarg» < 0) errflg++;

break;

case 'D': Debug++; break;

case '?': errflg++;break;
}

/* get printer dey if supplied */
if (optind < argc)

strcpy(ptr_dev. argv[optind]);

if (errflg) {
fprintf(stderr. "usage: %s [-bbufsz -ttmout] [printer_dev]\n". procnam);
fprintf(stderr. "-b bufsz > Output buf size to printer (%d)\n". bufsz);
fprintf(stderr. II_t tmout > Max seconds to output buffer (%d)\n". timeout);
fprintf(stderr. "printer_dev > Printer device file (%s)\n". ptr_dev);
fprintf(stderr. "_p ppoll_mask > Parallel poll mask (Ox%02x)\n".pmask[0]);

exit(2);
}

174 /* get memory for the output buffer */
175 outbuf = (unsigned char *)malloc (bufsz + 4);
176 /*
177 NOTE: Printer device file (/dev/lp) is used only to get printer select
178 code and HP-IB bus address. This is because attention-true (ATN)
179 requests can only be sent to an "HP-IB raw bus device file". Therefore
180 after getting the SC and BA we will use a "HP-IB raw bus device file" to
181 do all the work. but it must exist with a name similar to the printer
182 device; i.e. "/dev/lp" is changed to "/dev/lp_07". where the "07" is the
183 select code.

176 DIL Programming Example

184 *1
185 1* check if printer device exists *1

if (stat (ptr_dev , lstatbuf) < 0) 186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233

fatal_err ("stat", ptr_dev, F_EXIT);

1* check if it is a character device file */
if «statbuf.st_mode l S_IFMT) != S_IFCHR)

fatal_err(IIMust be a char_special file", ptr_dev, F_EXIT);

1* extract selectcode from the printer device *1
selcode m_selcode(statbuf.st_rdev);

1* make the HP-IB raw bus device file name from selectcode *1
ptr_raw[l] += selcode I 16;
ptr_raw[2] += selcode % 16;
if «selcode % 16) >= 10) ptr_raw[2] += ('a' - '0' -10);
strcat(ptr_dev, ptr_raw);

1* get device BA from the printer device and config control bytes *1
devba = m_busaddr(statbuf.st_rdev);
DLA LAG_BASE + devba; 1* device listen address *1
DTA = TAG_BASE + devba; 1* device talk address *1

1* open the HP-IB raw bus device *1
if «eid = open (ptr_dev, O_RDWR» <0) {

fatal_err(IIRaw HP-IB open II , ptr_dev, F_RTRN);
fprintf(stderr,
II The following commands executed as a super user may be necessary\n\n");
fprintf(stderr, II # mknod %s c 21 Ox%slfOO\n", ptr_dev, lptr_raw[l]);
fprintf(stderr, II # chmod 555 %s\n", ptr_dev);
fprintf(stderr, II # chown lp %s\n", ptr_dev);

exit(2);
}

1* get (my) BA of the controller and configure control bytes *1
if «myba = hpib_bus_status(eid, 7» < 0)

MLA
MTA

fatal_err(IIMust be raw hpib driver (21)", ptr_dev,F_EXIT);
LAG_BASE + myba; 1* controller (my) listen address *1
TAG_BASE + myba; 1* controller (my) talk address *1

1* go do the Amigo identify *1
ptr_type amigo_identify();

if (Debug) {
printf("%s Identified ", ptr_dev);
switch(ptr_type) {
case T2608A: printf(12608A");
case T2631A: printf(12631A");
case T2631B: printf(12631B");
case T2673A: printf(12673A");
case QjetPlus: printf("QuietJet

break;
break;
break;
break;

Plus");break;

DIL Programming Example 177

case T2632A: printf("2632A"); break;
case T2634A: printf("2634A"); break;
default: printf("You forgot one dummy"); break;
}
printf(" printer\n");

}
/* set the timeout to user requested value */
if (io_timeout_ctl(eid. timeout * 1000000) < 0)

fatal_err("io_timeout_ctl". ptr_dev. F_EXIT);

/* always tag last output data byte with EOI */
if (hpib_eoi_ctl(eid. 1) < 0)

fatal_err("hpib_eoi_ctl". ptr_dev. F_EXIT);

/* clear out the status bits */
amigo_clear 0 ;

/* check the status bits */
status = amigo_status();
if (Debug) printf("%s Printer status = Ox%x\n". ptr_dev. status);

/* set the ppoll mask required by some printers */
amigo_set_pmask();

/* MAIN OUTPUT LOOP */
i = 0;
while ((c = getchar(» != EOF) {

if (i == bufsz) {
amigo_write(outbuf.
i = 0;

}
outbuf[i++] = c;

}

/* post remaining buffer */
if (i) amigo_write(outbuf. i);
exit(O);

i) ;

234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270 }
271
272
273
274
275
276
277
278
279
280
281
282
283

/* ROUTINE TO DO THE MAIN I/O TO THE BUSS */
/* lock bus. do preamble. read/write. do postamble and unlock bus */
/* preamble must be 3 or 4 bytes. postamble must be 1 or 2 bytes */
int
HPIB_msg(rw_flag. pcml. pcm2. pcm3. buffer. length. ocmO. ocml)
int rw_flag;
int pcml;
int pcm2;
int pcm3;
char *buffer;
int length;
int ocmO;

178 DIL Programming Example

284 int ocml;
285 {
286 unsigned char pre_cmd[4] ;
287 unsigned char post_cmd[2];
288 int tlog = -1;
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325

pre_cmd[O] = UNL;
pre_cmd[l] = pcml;
pre_cmd[2] = pcm2;
pre_cmd[3] = pcm3;

post_cmd [0]
post_cmd [1]

ocmO;
ocml;

/* always issue unlisten command first */

/* first get exclusive use of the bus */
if (io_lock(eid) < 0)

fatal_err("io_lock". ptr_dev. F_EXIT);

/* send the preamble 3 or 4 bytes with attention true */
if (hpib_send_cmnd(eid. pre_cmd. (pcm3 ? 4 : 3» < 0)

fatal_err(IIhpib_send_cmnd preamble". ptr_dev. F_EXIT);

switch (rw_flag) {
case H_READ:

if ((tlog = read(eid. buffer. length» < 0)
fatal_err("read". ptr_dev. F_EXIT);

break;

case H_WRITE:
if ((tlog = write(eid. buffer. length» < 0)

fatal_err("write". ptr_dev. F_EXIT);
break;

case H_CMND:
return(O);

default:
return(-l);

}
/* send the postamble 1 or 2 bytes with attention true */
if (hpib_send_cmnd(eid. post_cmd. (ocml ? 2 : 1» < 0)

fatal_err(IIhpib_send_cmnd postamble". ptr_dev. F_EXIT);

326 /* at last unlock the bus so other bus users can access it */
327 if (io_unlock(eid) < 0)
328 fatal_err("io_unlock". ptr_dev. F_EXIT);
329
330 return(tlog);
331 }
332
333 int

DIL Programming Example 179

amigo_identify()
{

unsigned char identify[2];

/* TLK31 (UNT) is special for amigo identify */

334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368 }
369
370
371
372
373
374
375
376
377
378
379
380 }
381
382
383

/* finish with a MTA (UNT is not save for non-amigo devices) */
HPIB_msg(H_READ. MLA. UNT. SCG_BASE + devba. identify. 2. MTA. 0);

switch(identify[O]) {
case 32:

/* Amigo identify */
switch(identify[l]) {
case 1: return(T2608A);
case 2: return(T2631A);
case 9: return(T2631B);
case 11: return(T2673A);
case 13: return(QjetPlus);
case 16: return(T2632A);
case 17: return(T2634A);
default:

}

break;
case 33:

printf("Unrecognized Amigo printer. ID2
identify[l]); break;

if (identify[l] == 1)

%d\n".

printf("Ciper printer not supported yet!\n");
break;

default:
printf("Unrecognized Amigo Printer identify. IDl = %d. ID2 = %d\n".

identify [0] . identify[l]);

}
exit(2);

break;

/* set the parallel poll mask value */
amigo_set_pmask()
{

}

/* do the amigo clear followed by selective device clear */
amigo_clear 0
{

HPIB_msg(H_WRITE. MTA. DLA. SCG_BASE + 16. "\0". 1. SDC. UNL);

/* get the dsj byte */
int

180 DIL Programming Example

unsigned char dsj_byte[l] ;

384
385
386
387
388
389
390 }

HPIB_msg(H_READ, MLA, DTA, PR_SEC_DSJ, dsj_byte, 1, UNT, 0);
return(dsj_byte[O]);

391
392 /* return the amigo status byte */

int
amigo_status 0
{

unsigned char status_byte [1] ;

393
394
395
396
397
398
399
400 }
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425 }
426
427
428
429
430
431
432
433

HPIB_msg(H_READ, MLA, DTA, PR_SEC_RSTA, status_byte, 1, UNT, 0);
return(status_byte[O]);

/* output a buffer to printer */
amigo_write (buffer , length)
char *buffer;
int length;
{

int status, dsj = 0; /'

/* write the buffer */
HPIB_msg(H_WRITE, MTA, DLA, PR_SEC_DATA, buffer, length, UNL, 0);

again:
/* now wait for parallel poll response */
if (Debug) printf("Xs Ppoll wait\n" , ptr_dev);
if (hpib_wait_on_ppoll(eid, Ox80»devba, 0) < 0)

fatal_err ("hpib_wait_on_ppoll", ptr_dev, F_EXIT);

/* a DSJ is required to remove the ppoll response from device */
if (dsj = amigo_dsj(» {

}

if (Debug) printf("Xs DSJ = OxXx\n" , ptr_dev, dsj);

status = amigo_status();
if (Debug) printf("Xs STATUS
go"to again;

OxXx\n" , ptr_dev, status);

/* output error message and conditionally abort */
fatal_err (message , fname, flag)
char *message;
char *fname;
{

fprintf(stderr, "Xs: Error - Xs of Xs "
if (errno) perror("");

procnam, message, fname);

DIL Programming Example 181

434
435
436
437
438
439 }

else fprintf(stderr, "\n");

if (flag == F_RTRN) return;
if (flag == F_EXIT) exit(2);
exit(3);

182 DIL Programming Example

Index

Active controller
Active controller:

a
58-82

an example configuration ... 62
auto-addressing on Series 200/300 and 500 60
calculating talk and listen addresses 61
clearing HP-IB devices ... 66
conducting a parallel poll 73-75
conducting a serial poll .. 79
configuring parallel poll response 70-72
determining active controller .. 58
disabling parallel poll response .. 73
enabling local control .. 64
errors during parallel poll .. 75
errors during serial poll .. 80
locking out local control .. 63
monitoring the SRQ line ... 67
parallel poll for device status ... 69
passing control to non-active controller 81-82
remote control of devices ... 63
serial polling ... 79-81
servicing requests .. 67-68
setting up talkers and listeners .. 59
SRQ serial/parallel poll service routine 68-69
transferring data .. 65
triggering devices 64
using hpib_send_cmd .. 61
waiting for parallel poll response 75-79

ASCII character codes .. 171-172

Index 183

b
buffered HP-IB I/O ... 98-106
buffered HP-IB I/O example ... 103-104
buffered HP-IB I/O, locating errors in 105
Burst 'I'ransfers .. 116

c
character codes, ASCII .. 171-172
closing an interface special file .. 22
controller, HP-IB, active or non-active 51

d
data path width, setting ... 30, 32
DEVICE CLEAR ... 48
device file (see special file or interface special file) 18
differences between computers ... 1
DIL routines:

calling from Fortran .. 4
calling from Pascal ... 4
calling program structure '" .. 18
general-purpose routines ... 19
HP-IB DIL routines .. 46-47
linking .. 3

e
entity identifier ... 18
errno, using .. 26
errno variable ... 25
error-checking routines ... 25

f
Fortran calls to DIL routines .. 4

184 Index

9
GO TO LOCAL .. 49
GPIO interface .. 15
GPIO interface:

configuration and set-up .. 107-108
controlling data path width .. 115
controlling the transfer speed .. 115
creating special file for .. 108
interrupt transfers .. 117
limitations in controlling .. 109
performing data transfers ... 112
read terminations .. 116
resetting the interface ... 111
timeouts .. 115
using DIL routines ... 110
using the status and control lines ... 113

h
handshake I/O ... 7
HP -IB commands .. 46-49
HP-IB commands:

errors while sending ... 57
sending .. 55-57

HP-IB DIL routines .. 50-51
HP-IB interface .. 9
HP -IB interface:

bus management control lines .. 14-15
general structure .. 9-15
handshake lines .. 10-13

HP-IB I/O, buffered ... 98-106
HP-IB I/O, buffered, example ... 103-104
HP-IB I/O, buffered, locating errors in 105
hpib_io ... 53-54, 98-106
hpib_send_cmd ... 46

Index 185

· I
Integral PC operating dependencies and characteristics " 149-156
interface device file (see interface special file) 18
interface functions .. 7
interface locking .. 29
interface special file 18, 20, 22
interfaces .. 5
interrupt, hardware availability ... 41
io_burst ... 53-54
iodetail storage space allocation .. 102
iodetail, the I/O operation template ... 99
io_get_term_reason ... 38-40
io_interrupt_ctl ... 44
io_lock .. 53-54
io_on_interrupt .. 42-43
io_unlock .. 53-54

linking DIL routines
LOCAL LOCKOUT
locking an interface

Non-Active controller:

I
.. 3
... 48

29

n
accepting active control ... 92-94
determining controller status ... 86
determining when addressed ... 94-97
disabling parallel poll response by remote 91
errors while requesting service .. 88
requesting service ... 87
responding to parallel polls ... 89

o
opening an interface special file ... 20
opening HP-IB interface special file .. 55

186 Index

P
PARALLEL POLL CONFIGURE ... 49
PARALLEL POLL DISABLE .. 49
PARALLEL POLL ENABLE ... 49
Pascal calls to DIL routines .. 4

r
read termination, cause ... 35-40
read termination pattern, removing .. 37
read termination pattern, setting .. 30, 34
read/write to an interface .. 23
removing read termination pattern .. 37
resetting interfaces .. 28

S
SELECTED DEVICE CLEAR .. 49
sending HP-IB commands ... 55-57
SERIAL POLL DISABLE .. 48
SERIAL POLL ENABLE .. 48
Series 200/300 operating dependencies and characteristics 133-147
Series 500 operating dependencies and characteristics 119-132
Series 800 operating dependencies and characteristics 157-170
setting data path width .. 30, 32
setting read termination pattern .. 30, 34
setting timeout ... 30, 31
setting transfer speed .. 30, 34
special file ... 18, 20, 22
System controller:

determining if system controller ... 83
hpib_abort .. 84-85
hpib_ren_ctl .. 85
system controller's duties ... 84

Index 187

t
timeout, setting ... 30
transfer speed, setting ... 30, 34
TRIGGER (Group Execute Trigger) ... 49

U
UNLISTEN .. 48
UNTALK .. 48
using errno ... 26

w
write/read to an interface .. 23

188 Index

