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Interfacing Concepts 1 
This tutorial explains how to access arbitrary I/O devices from HP-UX through HP-IB 
(Hewlett-Packard Interface Bus) and GPIO (General-Purpose I/O) interfaces by using 
subroutines contained in the HP-UX Device I/O Library (DIL). Topics discussed include 
general I/O programming strategies, as well as strategies related specifically to HP-IB 
and GPIO interfaces. 

It is assumed that communication with I/O devices is handled through calls to DIL 
subroutines from C, Pascal, or FORTRAN programs. Examples shown in this tutorial 
are written in C, but the techniques illustrated are easily converted for use with Pascal 
or FORTRAN by adding a little extra code. 

Variation Between Computer Systems 
In general, DIL subroutines function identically on all HP-UX computers, whether In­
tegral PC, Series 200/300, 500, or 800. However, because of certain inherent differences 
between processors and other hardware, some differences do exist. When such differences 
arise during an explanation, they are clearly identified by introductory headings such as: 

• Series 500 Only: 

• Integral PC Only: 

• Series 200/300 Only: 

Additional major differences related to a specific model or series are identified in a 
separate appendix for that model or series. Appendices are provided for Series 200/300, 
500, 800, and the Integral PC. 
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Manual Organization 
Chapter 1: Interfacing Concepts presents basic I/O programming concepts and a de­
scription of the HP-IB and GPIO interfaces. 

Chapter 2: General-Purpose Routines discusses how to access interfaces from HP-UX 
environment and how to implement I/O transfers. 

Chapter 3: Controlling the HP-IB Interface describes I/O programming techniques for 
the HP-IB interface. 

Chapter 4: Controlling the GPIO Interface discusses I/O programming techniques for 
the GPIO interface. 

Appendix A: Series 500 Dependencies discusses hardware- and system-dependent char­
acteristics of DIL subroutines when used with Series 500 computers. If you are using a 
Series 500 HP-UX system, check this appendix to ensure correct use of DIL subroutines. 

Appendix B: Series 200/300 Dependencies is similar to Appendix A, but for Series 
200/300 computers. Use this appendix to ensure the correct use of DIL subroutines 
on Series 200/300 systems. 

Appendix C: Integral PC Dependencies describes hardware- and system-dependent char­
acteristics related to the Integral PC. refer to this appendix to ensure the proper usage 
of DIL routines on the Integral PC. 

Appendix D: Series 800 Dependencies is similar to other appendices, but for Series 800 
computers. Use this appendix to ensure the correct use of DIL subroutines on Series 800 
systems. 

Appendix E: Character Codes 

Appendix F: DIL Programming Example shows a non-trivial example of an Amigo­
protocol HP-IB device driver suitable for driving HP-IB line printers that support Amigo 
protocol (commonly used on certain HP-IB disc drives and line printers). This example 
program shows good HP-UX programming practice, and illustrates a number of other 
techniques and features such as parsing a command with arguments. 
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OIL Interfacing Subroutines 
As mentioned previously, Device I/O Library (DIL) subroutines provide a means for 
directly accessing peripheral devices through HP-IB and/or GPIO interfaces connected 
to your computer system. Some routines are general-purpose and can be used with any 
interface supported by the library, while others provide control of only certain specific 
HP-IB or GPIO interfaces. 

Linking OIL Routines 
DIL routines can be called from C, Pascal, or FORTRAN programs. However, the -1 
flag must be given when invoking the C, Pascal, or FORTRAN compiler, cc(l), pc(l), or 
fc(l). Otherwise, library subroutines are not automatically linked with your program. 
To link DIL subroutines to a compiled C program, invoke the C compiler as follows: 

cc -ldvio program.c 

Similarly, for a Pascal program, use: 

pc -ldvio program.p 

and for a FORTRAN program, use: 

fc -ldvio program.f 

In all three cases, the -1 option is passed to the HP-UX linker, causing it to link any DIL 
routines called by the program being compiled. To determine the exact location of DIL 
library on your HP-UX system, refer to the corresponding hardware-specific appendix in 
this tutorial. 
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Calling OIL Routines from Pascal 
You must provide an external declaration for each DIL subroutine called from a Pascal 
program. An external declaration consists of the subroutine heading, including a formal 
parameter list and result type, followed by the Pascal EXTERNAL directive. For example, 
the C description of open(2) is: 

int open (path. of lag) 
char *path; 
int of lag; 

The equivalent external declaration for the same subroutine in a Pascal program is: 

TYPE 
PATHNAME = PACKED ARRAY [0 .. 50] OF CHAR; 

FUNCTION open 
(VAR path: PATHNAME; 
of lag: INTEGER): 
INTEGER; 
EXTERNAL; 

Note that the path parameter is a VAR parameter, indicating that the parameter is passed 
by reference. This simulates the passing of a pointer, which is what open(2) expects. In 
general, declaring a C routine from Pascal is straightforward. 

Calling OIL Routines from FORTRAN 
C and FORTRAN subroutine calls are not compatible because C passes parameters by 
value while FORTRAN passes them by reference. This incompatibility can be easily 
circumvented by directing the compiler to generate a call by value through the use of 
FORTRAN's $ALIAS option. For example: 

$ALIAS close = 'close' (%val) 

If the FORTRAN compiler on your system does not support this form of $ALIAS, the 
parameter-passing differences can be resolved by writing an onionskin routine which is a 
C-Ianguage function written for the purpose of resolving parameter-passing irregularities 
between C and other languages. 
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For example, to access close(2) through an onionskin routine, use: 

$ALIAS close = '_my_io_close' 

then write the onionskin routine: 

int my_io_close (eid) 
/* the compiler will create the external symbol n_my_io_close n 

based on the above declaration*/ 
int *eid; 
{ 

return (close (*eid»; 
} 

General Interface Concepts 
The remainder of this chapter discusses interfaces in general and the HP-IB and GPIO 
interfaces in particular. This background information is helpful for understanding system 
operation, but is not prerequisite to being able to successfully use DIL routines. 

Definition 
An interface is a built-in or plug-in electronic subassembly that manages the transfer 
of information between the computer and one or more peripheral devices. It converts 
electrical signals from the computer to a form that is compatible with the requirements 
of the peripheral device and converts signals from the peripheral device to a form that 
can be used by the computer. The interface also controls information transfer paths and 
transfer timing such that data flows in an orderly manner in correct sequence. 

HP 9000 computers are equipped with both built-in as well as plug-in interfaces that 
can be purchased as standard or optional items. Separate interface cabling connects the 
peripheral device(s) to the interface unless the peripheral device is built into the computer 
housing. The following functional block diagram illustrates the functional architecture 
of a typical interface: 
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Figure 1-1. Interface Functional Diagram 

Interface Functions 
A usable interface must fill the following system requirements: 

Peripheral 
Device 

• Electrical Compatibility: The interface must convert electrical signal voltages, cur­
rents, frequencies, and timing from the computer to a form that is useful to the 
peripheral device, and vice-versa (unless no conversions are necessary). It must 
also provide any special protection that might be necessary to protect circuitry 
within the computer or peripheral from damage due to external effects related to 
the interface cable or power source. 

• Mechanical Compatibility: The interface must be mechanically structured so that it 
is readily connected to both the computer and the peripheral device. This is usually 
accomplished by means of an interface cable that has appropriate connectors on 
each end. 

• Data Compatibility. Just as two people must speak a common language before 
they can communicate well, the computer and peripheral must use compatible 
forms of communication. While in most cases, the computer operating system and 
the programmer are responsible for general data format, communication protocols 
such as those used in data communication networks and HP-IB interconnections are 
usually managed by the interface card, based upon various signals and commands 
from the computer and the peripheral device. 
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• Timing Compatibility. Peripheral devices within a given system rarely have iden­
tical data transfer rates and data transfer timing requirements. They also rarely 
match the timing and transfer rates in the computer or other devices in the system. 
For this reason, one of the most important functions of the interface is to manage 
and coordinate the interaction between the computer and the interface as well as 
timing between the interface and peripheral devices by using special timing signals 
that are inserted into the data being transferred (most common in data commu­
nication interfaces) or carried on separate control signal lines (typical for HP-IB 
and GPIO interfaces). These timing signals are used to coordinate when a transfer 
begins and at what rate the information is handled. 

• Processor Overhead Reduction: Another important function of the interface card 
is to relieve the computer of low-level tasks, such as performing data transfer hand­
shakes. This distribution of tasks eases some of the computer's burden and de­
creases the otherwise stringent response-time requirements of external devices. The 
actual tasks performed by each type of interface card vary widely. The remainder 
of this chapter concentrates on the functions of two particular interfaces: HP-IB 
and GPIO. 

Handshake I/O 
Most HP-IB and GPIO interfaces operate by means of handshake transfers which operate 
generally as follows: 

Handshake Output 

• Computer sets input/output control to output and places first word or byte on I/O 
bus to interface. 

• Computer asserts peripheral control line to interface to start transfer. 

• Interface recognizes asserted control signal from computer and transfers data to 
output drivers and interface cable. 

• Interface asserts output timing signals to peripheral device and waits for response. 

• Peripheral accepts output timing signals, inputs data from interface cable, then 
returns flag signal indicating data has been accepted. 

• Interface recognizes flag and sets flag to computer indicating the transaction is 
complete. If the sender and receiver do not agree upon start time and transfer rate, 
then the transfer is carried out via a handshake process: the transfer proceeds one 
data item at a time with the receiving device acknowledging that it received the 
data and that the sender can transfer the next data item. Both types of transfers 
are utilized with different interfaces. 
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Handshake Input 

• Computer sets input/output control to input. 

• Computer asserts peripheral control line to interface to start transfer. 

• Interface recognizes asserted control signal from computer, sends data input com­
mand sequence to peripheral device, and waits for response. 

• Peripheral accepts input command sequence, places data on interface cable, then 
returns flag signal indicating data is available. 

• Interface recognizes flag, moves data to computer I/O bus, and sets flag to computer 
indicating the transaction is complete. 

Different interfaces support variations on this basic sequence. For example, more sophis­
ticated data communication and HP-IB cards may be equipped with a microprocessor 
and shared memory that is directly accessible to the computer and the interface pro­
cessor. The computer moves data to and from shared memory according to program 
needs, while the interface processor performs similar operations to meet the demands 
of any data transfers in progress. Shared pointers and other flags prevent collisions be­
tween conflicting demands from the two processors, and the increased efficiency of a 
"smart" interface greatly reduces the complexity and overhead related to more mundane 
approaches to interrupt-driven handshake I/O. 

For example, instead of handling each character or word as a single transaction, the 
computer can load a block of data into the shared memory then signal the interface that 
data is ready for transfer. The interface then uses the shared pointers or other means 
to determine how much data to transfer, handles the transfer, then signals the computer 
that the task is complete. 

HP-IB Protocol 
When a single interface is shared by multiple peripheral devices, additional signalling 
must be used to control which devices respond to each transaction as in HP-IB interfacing. 
A selection of protocol signals and device commands are used to activate or deactivate 
various devices on the HP-IB bus according to the needs of the bus controller (controlling 
interface). This signals, their functions, and the sequences in which they are used are 
discussed in greater detail throughout this tutorial. 
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The HP-IB Interface 
The Hewlett-Packard Interface Bus (HP-IB) was developed at HP as the solution to an 
expanding need for a universal interfacing technique that could be readily adapted to 
a wide variety of electronic instruments. It was later expanded to include high-speed 
disc drives and other high-performance computer peripherals. The HP-IB architecture 
was subsequently proposed to and accepted by the Institute of Electrical and Electronic 
Engineers (IEEE) and is now widely used throughout the electronic industry. HP-IB is 
compatible with IEEE standard 488-1978. The number of devices that can be connected 
to a given HP-IB interface depends on the loading factor of each device, but in general up 
to 15 devices (including the interface) can be connected together while still maintaining 
electrical, mechanical, and timing compatibility requirements on the bus. 

General Structure 
IEEE Standard 488-1978 defines a set of communication rules called "bus protocol" that 
governs data and control operations on the bus. The defined protocol is necessary in 
order to ensure orderly information traffic over the bus. 

Each device (peripheral or computer interface) that is connected to the HP-IB can func­
tion in one or more of the following roles: 

System Controller Master controller of the HP-IB. The computer interface is usually 
the bus controller when all peripheral devices on the bus are slaves 
to the system computer. However, any other device can become the 
active controller if it is equipped to act as a controller and control 
is passed to it by the System Controller. The System Controller is 
always the active bus controller at power-up. 

Active Controller Current controller of the HP-IB. At power-up or whenever IFC (In­
terFace Clear) is asserted by the System Controller, the System Con­
troller is the active controller. Under certain conditions, the System 
controller may pass control to another device that is capable of man­
aging the bus in which case that device becomes the new active 
controller. The active controller can then pass control to another 
controller or back to the System Controller. If the System Controller 
asserts IFC, the active controller immediately relinquishes control of 
the bus. 

Talker A device that has been authorized by the current active controller to 
place data on the bus. Only one talker can be authorized at a time. 
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Listener Any device that has been programmed by the active controller to 
accept data from the bus. Any number of devices on the bus can be 
programmed by the active controller to listen simultaneously at any 
given time. 

In typical systems, an HP-IB interface in the computer can act as a controller, talker, 
and listener. If more than one computer is connected to the same bus, only one interface 
can be configured as System Controller to prevent conflicts at power-up (this is usually 
accomplished by a switch or wire jumper on the interface card). A device that can only 
accept data from the bus (such as a line printer) usually operates as a listener, while a 
device that can only supply data to the bus (such as a voltmeter) usually operates as a 
talker. However, before any device can talk or listen (after power-up initialization), it 
must be authorized to do so by the current active controller. Bus configuration varies, 
depending on the type of activity that is prevalent at the time. However, in any case, 
the bus can have only one Active Controller and only one talker at a given time, though 
it can have any number of listeners. 

HP-IB is composed of 16 lines (plus ground) that are divided into 3 groups: 

• Eight data lines form a bi-directional data path to carry data, commands, and 
device addresses. 

• Three handshake lines control the transfer of data bytes. 

• The five remaining lines control bus management. 

Handshake Lines 
The handshake lines used to synchronize data transfers are: 

DAta Valid: Valid data has been placed on bus by talker. 

Not Ready For Data: One or more listeners not yet ready to accept data 
from the bus. 

Not Data ACcepted: One or more listeners has not yet accepted the data 
currently on the bus. 
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NOTE 

The HP-IB interface uses negative (ground-true) logic for hand­
shake, data, and bus management lines. This means that when 
the voltage on a line is at a logic LOW level, the line is asserted 
(true). When a logic HIGH voltage level is present on the line, the 
line is not asserted (false). 

In general, software documentation refers to handshake and other 
lines by their name acronym such as DAV, NRFD, NDAC, etc. 
When discussing these same signal lines in hardware documents, it 
is customary to refer to ground-true (low-true) logic lines by their 
name acronym with a bar across the top such as DAV, NRFD, 
NDAC, etc. In this document, both versions are used. The over­
bar is usually present when discussing hardware operation, but 
usually absent when software is being treated. In this tutorial, 
only the name is significant; signal names are synonymous with or 
without the overbar unless specifically noted otherwise - the over­
bar is used for the convenience of those readers whose experience 
is oriented more toward hardware than software. 
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The timing diagram in Figure 1-2 shows how handshake lines are used to complete a 
data item transfer. The discussion which follows is based on the contents of Figure 1-2. 

Data 

DAV 

NRFD_~/: 

;fr~ --~----~--- FALSE 

~--~--------------~ TRUE 

FALSE 

~------------~------~--------- TRUE 

NDAC _~_~~_~ __ ---.-J/: FALSE 
1----....;....-.___ TRU E 

®®©@ ®®©® 
Figure 1-2. The HP-IB Handshake 

All handshake lines are electrically connected in a "wired-OR" configuration which means 
that any device can pull the line low (active or asserted) at any time, and more than one 
device may pull the line low simultaneously or later in a given handshake cycle. The line 
then remains low until every device that was previously pulling the line low has released 
the line, allowing it to float to its high state. At the start of the handshake cycle (point 
A), the handshake lines are in the following states: 

• DAV is false (high), meaning that the current talker has not yet placed valid data 
on the bus. 

• NRFD is true (low), meaning that one or more listeners is not yet ready to accept 
data from the bus. 

• NDACis true (low), meaning that bus data has not yet been accepted by every 
listener on the bus. 
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When a listener is ready to accept data, it releases NRFD, allowing it to go high provided 
no other listener is still holding the line low. However (due to the "wired-OR" intercon­
nection scheme used by HP-IB), NRFD remains LOW (true) until every listener releases 
it. When every listener is ready to accept data (indicated by NRFD being released by 
every listener), NRFD changes to its logic HIGH (false) state as indicated by point B in 
Figure 1-2. 

By monitoring NRFD, the talker can determine when to send data: NRFD false means 
that every listener is ready to accept data. The talker then places data on the data lines 
and asserts DAV (point C), indicating to the listeners that valid data is available on the 
data lines for them to accept. 

As soon as each listener detects that DAV has been asserted, it asserts NRFD (point D), 
driving it low (true) unless NRFD has already been driven low by another listener in the 
same cycle. 

After driving NRFD low, each listener inputs and processes the data from the data lines. 
When it has accepted the data, the listener releases NDAC. As with the NRFD line at 
point B, NDAC remains low (true) until every listener on the bus has released the line, 
allowing it to go high (false). When NDAC goes high, the false logic state indicates to 
the talker that every listener has accepted the data (point E). 

When the talker determines that every listener has accepted the data, it releases the 
DAV line which rises to its high (false) state. At the same time, the talker disables its 
outputs to the data lines, allowing them to rise to their high (false) state (point F). 

When DAV goes false, the listeners assert NDAC (point G), driving it low. This signifies 
the end of the handshake (point H), at which time all bus logic lines are again at the 
same state as they were before the handshake started (point A). 
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Bus Management Control Lines 
There are five bus management control lines: 

ATN ATtentioN: Theat data on data lines as commands, not data. 

IFC InterFace Clear: Unconditionally terminate all current bus activity. 

REN Remote ENable: Place all current listeners in Remote operating mode. 

EOI End Or Identify: End of data message. If ATN is true (low), Active Con­
troller is conducting a parallel poll (Identify) of devices on the bus. 

SRQ Service ReQuest: Bus device is requesting service from current Active Con­
troller. 

ATN: The Attention Line 
Command messages are encoded on the data lines as 7-bit ASCII characters, and are 
distinguished from the normal data characters by the attention (ATN) line's logic state. 
That is, when ATN is false, the states of the data lines are interpreted as data. When 
ATN is true, the data lines are interpreted as commands. 

IFC: The Interface Clear Line 
Only the System Controller sets the IFC line true. By asserting IFC, all bus activity is 
unconditionally terminated, the System Controller becomes the Active Controller, and 
any current talker and all listeners become unaddressed. Normally, this line is used to 
terminate all current operations, or to allow the System Controller to regain control of 
the bus. It overrides any other activity currently taking place on the bus. 

REN: The Remote Enable Line 
This line allows instruments on the bus to be programmed remotely by the Active Con­
troller. Any device addressed to listen while REN is true is placed in its remote mode of 
operation. 

EOI: The End or Identify Line 
If ATN is false, EOI is used by the current talker to indicate the end of a data message. 
Normally, data messages sent over the HP-IB are sent using strings of standard ASCII 
code terminated by the ASCII line-feed character. However, certain devices must handle 
blocks of information containing data bytes within the data message that are identical to 
the line-feed character bit pattern, thus making it inappropriate to use a line-feed as the 
terminating character. For this reason, EOI is used to mark the end of the data message. 

The Active Controller can use EOI with ATN true to conduct a parallel poll on the bus. 
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SRQ: The Service Request Line 
The Active Controller is always in charge of overall bus activity, performing such tasks as 
determining which devices are talkers and listeners, and so forth. If a device on the bus 
needs assistance from the Active Controller, it asserts SRQ, driving the line low (true). 
SRQ is a request for service, not a demand, so the Active Controller has the option of 
choosing when and how the request is to be serviced. However, the device continues to 
assert SRQ until it has been satisfied (or until an interface clear command disables the 
request). Exactly what satisfies a service request depends on the requesting device, and 
is explained in the operating manual for the device. 

The GPIO Interface 
The GPIO (General Purpose Input/Output) interface is a very flexible parallel interface 
that can be used to communicate with a variety of devices. The GPIO interface utilizes 
data, handshake, and special-purpose lines to perform data transfers by means of various 
user-selectable handshaking methods. 

While the GPIO interfaces used on various HP-UX computers are electrically very similar, 
they differ in certain important aspects. Refer to the appendices for Series 200/300, 500, 
800, or the Integral PC for information pertaining to your specific application. 
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General-Purpose Routines 2 
The DIL library contains several general-purpose subroutines that can be used with 
any interface supported by the library (see Table 2-1 for a complete list). This chapter 
explains how to use these subroutines in application programs. Specifically, the following 
topics are presented: 

• Basic introductory background concepts that are essential to understanding correct 
use of DIL library routines. 

• Opening interface special files. 

• Closing interface special files. 

• Read/write operations to interface special files. 

• Designing error-checking routines. 

• Resetting an interface. 

• Controlling input/output parameters. 

• Determining why a read terminated. 

• Handling interrupts. 
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Background Basics 

Interface Special Files 
HP-UX handles I/O to an interface or system peripheral device much like it handles 
read/write operations to disc storage files: every I/O interface or device is associated 
with an entity generally referred to as a device file, special file, or device special file. 
All three terms are used interchangeably and are usually synonymous. Any program 
that accesses subroutines in the DIL library cannot be used unless an appropriate device 
special file has been created for the corresponding interface. While the program can be 
written before the file exists, it cannot be used. The method used to create an interface 
special file depends on the model of computer being used. Refer to the appropriate 
hardware-specific appendix for information about creating interface special files on your 
system. 

Entity Identifiers (eid) 
Nearly all DIL routines require an entity identifier (eid) as a parameter. The entity 
identifier is an integer returned by the open(2) system call when opening the interface 
special file (eid is the file descriptor for the opened special file on Series 200/300 and 
500). The eid supplied as a parameter to a DIL subroutine tells the subroutine which 
interface special file to use. 

Programming Model 
As a general rule, all programs containing DIL subroutine calls for a specific interface 
conform to the following structure: 

1. Use an open system call to obtain the interface entity identifier (eid) for the special 
file being used. Opening an interface special file is discussed later in this chapter. 

2. Use the returned eid as a parameter in DIL subroutine calls to perform desired tasks 
through the corresponding interface. Suitable techniques are discussed throughout 
the remainder of this tutorial. 

3. When the necessary DIL subroutine calls have been completed, close the interface 
special file that was opened in step 1 above as discussed later in this chapter. 
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General-Purpose Routines 
Table 2-1 provides a brief synopsis of the standard general-purpose routines discussed 
in this chapter. Several system calls related to the use of DIL subroutines, are also 
discussed: open,(2) close(2), read(2), and write(2). 

Table 2-1. General-Purpose Routines. 

Routine Description 

io_reset Reset a specified interface. 

io _ timeouC ctl Establish a timeout period for any operation performed on a specified 
interface by a DIL routine. 

io_ width_ctl Set the data path width for a specified interface. 

io_speed_ctl Select a data transfer speed for a specified interface. 

io_eoLctl Set up a read termination character for data read from a specified 
interface. 

io_geCtermJeason Determine how the last read terminated for the specified interface. 

io_ on_ interrupt Set up interrupt handling for a program. 

io_ interrupC ctl Enable or disable interrupts for a specified interface. 

io_lock Lock an interface for exclusive use by the calling process. 

io_unlock Unlock an interface so it can be used by other processes. 

Series 200/300 computers support an additional subroutine: io_burst. Refer to the 
io_burst(3I) page in the HP-UX Reference for details on using this subroutine. 

The Integral PC DIL library supports several non-standard DIL subroutines in addition 
to the standard subroutines in Table 2-1. Refer to the "Integral PC Dependencies" 
appendix for details on their use. 
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Opening Interface Special Files 
With the exception of the default standard input, standard output, and standard error 
files, all read/write operations to any file from inside C, FORTRAN, or Pascal programs 
require that the file(s) be explicitly opened before they can be used. The HP-UX open(2) 
system call is used to accomplish this as follows: 

#include <fcntl.h> 
int eid; 

eid = open (filename , of lag); 

filename is either a character string containing the device file's external HP-UX name or 
a pointer to a buffer containing the external name. 

Integral PC Only: filename is the special device name for the specific GPIO or HP-IB 
interface created by load_gpio or load_hpib. Note that each GPIO port has a separate 
device file name. Refer to Appendix C, "Integral PC Dependencies," for details on using 
load_gpio and load_hpib to create special files for GPIO and HP-IB interfaces. 

The integer variable oflag specifies the access mode for the opened file, and can have one 
of six possible values, as defined in the lusr lincludelfcntl. h header file: O_RDONLY (value = 
0) requests read-only access, O_WRONLY (value = 1) requests write-only access, and O_RDWR 
(value = 2) requests both read and write access (three values with O_NDELAY not set, 
three values with O_NDELAY set - see io_lock(3I) in the HP-UX Reference, for a total 
of six values}. To use these constants in a programs, the #include C-compiler directive 
must be present as shown in the example above. 

An open system call on an interface special file returns an integer representing the entity 
identifier (eid) for the opened interface. As mentioned earlier, the entity identifier is 
required as a parameter in all DIL subroutine calls. It is also required as a parameter 
for all read/write operations to the opened file. 

The following code defines an entity identifier called eid and opens an interface file called 
Idev/raw_hpib with access enabled for both reading and writing: 

#include <fcntl.h> 
int eid; 

eid = open("/dev/raw_hpib", O_RDWR); 
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Special files can also be opened by placing the character string name of the file being 
opened in a string variable, then executing the open system call with a pointer to the 
variable as shown in the following code segment: 

#include <fcntl.h> 
int eid; 
char *buffer; 

buffer = "/dev/raw_hpib"; 
eid = open (buffer , O_RDWR); 

If the call to open succeeds, a non-negative integer is returned as the entity identifier. If 
an error occurs and the file is not opened, -1 is returned and errno is set to indicate the 
error. 
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Closing Interface Special Files 
Good programming practice dictates that an open interface special file should be closed 
when a program is through using it by executing a close(2) system call. This guideline 
is valid even though any open files are automatically closed by the HP-UX operating 
system when a process terminates (via exit(2) or a return from the main routine). 

NOTE 

HP-UX limits the number of files a given process (program) 
can have open at one time to NO_FILE as defined in the 
lusT jincludejpaTam.h header file. Series 300 systems limit the 
number of open D1L files in the entire system to the value of ND1L­
BUFFERS (default is 30). On Series 200 systems, the maximum 
number of open D 1L files is limited to 10. 

The close system call requires the entity identifier corresponding to the open interface 
special file that is being closed. The following code segment shows how to open and close 
an HP-1B interface: 

#include <fcntl.h> 
mainO 
{ 

int eid; 

eid = open( "/dev/raw_hpib". O_RDWR); 

/* Code to perform I/O operations 
(read/write in this case) on the open interface. */ 

close(eid); 
} 

Upon completion of the close system call, the entity identifier is no longer valid and is 
available for the system to assign to another file. If the file is again opened later in the 
program, the system mayor may not assign the same eid value, so appropriate caution 
in using eid values is in order. 
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close(2) returns a value of zero if the file is successfully closed. Otherwise, it returns a 
-1 and the external error variable errno(2) is set to indicate the error (error handling 
is discussed later in this chapter). The most common error returned by close is related 
to an invalid value for eid meaning that the wrong value was used or the file is already 
closed. 

Low-Level Read/Write Operations 
Most HP-UX I/O operations to system peripheral devices is handled at a fairly high level 
where the system automatically provides buffering and other services that are not under 
the direct control of the user or program being run. However, some situations that are 
commonly encountered by DIL users require a much more intimate control of individual 
I/O transactions. These low-level operations provide no buffering or other services, and 
are a direct entry into the operating system. The two HP-UX system calls, read(2) and 
write(2), provide low-level I/O read/write capabilities. Both require three arguments: 

• The entity identifier for an open file 

• A buffer (string variable) in the program where data is to come from during write 
or go to during read ( write empties a buffer; read fills a buffer). 

• The number of bytes to be transferred. 

Calls to read have the form: 

#inc1ude <fcnt1.h> 
maine) 
{ 

int eid; /*the entity identifier*/ 
char buffer [10] ; /*buffer in which the read data will be p1aced*/ 
eid = open ("/dev/raw_hpib", O_RDWR); 

/*estab1ish communication with the raw HP-IB device file 
as described in Chapter 3, "Controlling the HP-IB interface"*/ 

read(eid, buffer, 10); /*reads 10 bytes from a previously opened*/ 
} /*fi1e with the entity identifier "eid". */ 
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Calls to write are very similar: 

#include <fcntl.h> 
mainO 
{ 

int eid; I*the entity identifier*1 

} 

char *buffer; 1* the buffer containing data to be written to a file*1 
eid = open ("/dev/raw_hpib", O_RDWR); 

/*establish communication with the HP-IB interface as described 
in Chapter 3, "Controlling the HP-IB Interface"*1 

buffer = "data message"; 
write(eid, buffer, 12); 

I*message to be sent*1 
1*12 bytes are written to previously*/ 
I*opened file with the entity identifier "eid"*1 

Although read and write require the number of bytes to be transferred as their third 
argument, other parameters (discussed later) associated with the interface file eid can 
end the transfer before this number is reached. 

Integral PC Only: When performing a read or write operation to a 16- or 32-bit GPIO 
port, the data must start on a word boundary. 

Example 
Assume that you have already created an auto-addressed special file, /dev/hpib_dev, for 
an HP-IB device. Your program must first open the interface file /dev/hpib_dev for 
reading and writing: 

int eid; 
eid = open("/dev/hpib_dev", O_RDWR); 

To place data on the bus, use write: 

write(eid, "This is a test", 14); 

In this example, 14 characters are sent through eid. The literal string expression This 
is a test is placed in a data storage area by the compiler for later handling by the call 
to write. On output, if the number of characters requested does not match the length of 
the data storage space, the message is truncated (if the byte count is smaller than the 
data block) or extended into the next data block assigned by the compiler (if the byte 
count is larger than the data block). 
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To receive 10 bytes of data from the bus and place them in buffer, use: 

char buffer [10] ; 
read(eid, buffer, 10); 

In this code segment, the read routine will attempt to read up to 10 bytes of data from 
the interface and place it in buffer. 

Designing Error Checking Routines 
All Device I/O Library routines return -1 and set an external HP-UX variable called 
errno if an error occurs during execution. 

The errno Variable 
errno is an integer variable whose value indicates what error caused the failure of a 
system or library routine call. It is not reset after successful routine calls, and should 
never be checked for value until after you have determined that an error has occurred. 

Well-designed programs always include adequate error checking. However, most examples 
shown in this tutorial (other than in this section) do not verify successful completion of 
subroutine calls. 

Refer to the errno(2) page in the HP- UX Reference for complete definitions of the various 
errors returned when a system call fails. 
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Using errno 
The following code segment must be present in the early part of any program that accesses 
errno: 

#include <errno.h> 

The errno.h Header File 
Header file /usr/include/errno.h uses error numbers defined in header file 
/usr/include/sys/errno.h. For a complete list of errors and their associated meanings, 
refer to errno(2) in the HP-UX Reference. 

Displaying errno 
Once errno has been declared in a program, there are two ways to check its value if a 
routine fails. The simplest approach is to check the return value to determine whether or 
not the routine failed, then print out the value of errno and exit if it did. The following 
example illustrates this strategy: 

#include <errno.h> 
#include <fcntl.h> 
mainO 
{ 

} 

int eid; 

if «eid = open(1I Idev/raw_hpib", O_RDWR)) == -1) 
{ 

} 

printf("Error occurred. Errno = %d", errno); 
exit(1); 

When this method is used, the program user must refer to the errno(2) entry in the 
HP- UX Reference to determine what the printed value of errno means. 

Error Handlers 
Another approach that is more complex for the programmer but much more convenient 
for the user is to check for specific values of errno and execute error routines related to 
the value. In most cases, only a limited number of situations can cause a particular a 
subroutine to fail, so there is a correspondingly small number of errno values that can be 
encountered upon failure. Possible error values are usually listed in the HP-UX Reference 
on the manual page for the failed subroutine. 
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For example, checking open(2) in the HP-UX Reference reveals that errno is set to ENOENT 
(defined in the errno. h header file) if you attempt to open a file that does not exist and 
you have not given the system call permission to create a new file. Armed with this 
information, you can incorporate the following code segment in your program: 

#include <errno.h> 
#include <fcntl.h> 
mainO 
{ 

} 

int eid; 

if «eid = open ("/dev/raw_hpib", O_RDWR» -1) 
{ 

} 

if (errno == ENOENT) 
printf("Error: cannot open; file does not exist"); 

else 
printf("Error: file exists but cannot open"); 

exit (1) ; 

Note that the print statements in the example above could be replaced with calls to more 
sophisticated error-handling routines such as perror(3C) (see the HP-UX Reference). 
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Resetting Interfaces 
The DIL routine io_reset can be used to reset both HP-IB and GPIO interfaces. 

The following example call to io_ reset resets the interface whose entity identifier is eid 
where eid is the value that was returned when the interface special file was opened. 

io_reset(eid); 

1o_reset resets the interface whose entity identifier is eid. Refer to the appropriate 
hardware-specific appendix for more information about the exact effects of io_reset on 
HP-IB and GPIO interfaces when used with various computer models. 

For example, suppose that after opening an interface file you want to make sure the 
interface has been properly initialized. This is done by calling io_reset and looking at its 
return value: 

#include <fcntl.h> 
mainO 
{ 

} 

int eid; 

eid = open( "/dev/raw_hpib". O_RDWR); 
if (io_reset(eid) ~= -1) 
{ 

} 

printf("Possible problem with interface"); 
exit (1) ; 

/* program continues if "io_reset" was successful */ 
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Locking an Interface 
U sing a single interface to control multiple peripheral devices provides many advan­
tages in convenience, cost and system operating characteristics. However, when several 
programs and/or several users need simultaneous access to peripherals sharing a single 
interface, conflicts arise. This problem is especially annoying when one user needs exclu­
sive control of the interface during a set of critical I/O operations. Unless a mechanism 
is provided to lock out other users during critical program steps, useful results may be 
unobtainable in some cases. 

Two DIL subroutines, io_lock and io_ unlock are provided for this purpose. The first 
locks the interface so that only the process that locked it can use the interface until it is 
unlocked. The second unlocks the interface so other processes can again access it. 

When another process attempts to access a locked interface, the process will sleep until 
the interface is unlocked (or a timeout occurs) if the 0 _ND ELA Y flag was not set at the 
time the requesting process executed the open(2) system call. If the O_NDELAY flag 
was set during the call to open(2) and the interface is locked, any attempts to access the 
locked interface fail and the DIL subroutine call from the process returns with an error. 

Locks on an interface are owned by the process, and are not associated with the eid. 
This means that the same process can access a given interface through another eid if 
another open is performed on the device. If a process uses a fork(2) system call to create 
a child process that uses the same interface, the child does not inherit the current lock 
from the parent. Since it has a different process ID than the parent, it also cannot access 
the locked interface file until the parent unlocks it. 

For good programming practice, any locks created by a process should be unlocked 
through a call to io_unlock before terminating. However, any locks held by a process are 
released when the process terminates, whether or not a call to io_ unlock was executed. 
Refer to io_lock(2) in the HP- UX Reference for more information about locking and 
unlocking interfaces. 

CAUTION 

Do not place a lock on any interface that supports the system disc 
or swap device. Interface locks are enforced by the system, and 
such a condition may require rebooting in order to recover. 
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Controlling 1/0 Parameters 
The Device I/O Library provides four subroutines that perform I/O control operations 
pertaining to timeout, data path width (usually 8 or 16 bits), transfer speed, and read 
termination (end-of-line) pattern. The subroutines and their functions are as follows: 

Subroutine 

io_timeouLctl 

Controlled I/O Function 

Timeout: Assign a timeout value in microseconds for I/O opera­
tions (actual timeout resolution may be limited by system hard­
ware). 

Data Path Width: Specify width of the interface's data path or 
switch between supported widths for various operations. 

io_speed_ctl Transfer Speed: Request a minimum speed for data transfers 
through the interface in kilobytes (Kbytes) per second. 

io_eoLctl Read Termination Pattern: Assign a pattern to be recognized as a 
read termination pattern. 

Note 

It is not uncommon for a single process to have multiple eids 
open simultaneously (resulting from multiple calls to open in 
a single program. The subroutines io_timeouLctl, io_width_ctl, 
io_speed_ctl,and io_eoLctl, can be used to conveniently configure 
different values for timeout, width, speed, and termination pattern 
on any given eid without disturbing the previously configured (or 
default) values associated with other eids. 

Unless specifically altered by calls to one or more of these subrou­
tines, interface file operation uses system defaults for each eid. 

Opening multiple eids on a given interface file, then configuring each independently is 
an easy way to handle multiple devices that use different data formats without having 
to reconfigure each individual I/O operation. 
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Setting I/O Timeout 
I/O timeout determines how long the system waits for a response from the interface or 
peripheral device each time an I/O operation is initiated. If the timeout limit is exceeded, 
the operation is aborted and a timeout error is returned. The default timeout is set to 
o which disables timeout errors. 

If timeout is disabled (zero) and an error condition occurs that prevents successful com­
pletion of a data transfer or other I/O operation, the calling program may hang. There­
fore, use of a non-zero timeout value is strongly recommended as good programming 
practice. To set or change the timeout use io_timeouCctl as follows: 

#include <fcntl.h> 
mainO 
{ 

} 

int eid; 
long time; 

eid = open( "/dev/raw_hpib". O_RDWR); 
time = 1000000; /*set timeout of 1 second*/ 
io_timeout_ctl(eid. time); 

/*data transfers using "eid" are controlled by the 
timeout value "time"*/ 

eid is the entity identifier associated with the open interface file, and time is a 32-bit 
long integer specifying the length of the timeout in microseconds. 

Each time an I/O operation is initiated, timeout is restarted. For example, when setting 
up bus addressing, the system allows timeout microseconds for completion. Each subse­
quent data transfer (in or out) is given the same time limit. If a given operation is not 
completed within the time limit specified by the timeout value, the operation is aborted 
and an error indication is returned (return value of -1) and errno is set to EIO (not to 
be confused with EOI). 

Note 

Be sure that the timeout limit is set to a value higher than the 
longest expected time to complete a transfer. If a normal transfer 
takes longer than the timeout limit, the operation is aborted even 
though system operation is correct. 
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Timeout is specified in microseconds (Jlsec) in the call to io_timeouLctl, but the actual 
timeout used and its resolution is system-dependent. The timeout value is always rounded 
up to the nearest normal time resolution interval supported by the system executing the 
operation. For example, if the available system resolution is 10 milliseconds and a timeout 
of 25000 microseconds (25 milliseconds) is requested, the actual timeout value used is 30 
milliseconds. To determine timeout resolution for your system, refer to the appropriate 
hardware-specific appendix. 

IMPORTANT 

A timeout value of 0 microseconds is meaningless because no device 
can respond with data in less than zero time. For this reason, the 
default or a specified timeout value of zero is treated as a request 
to disable timeout and any condition that would normally cause 
a timeout termination is ignored by the system, usually causing 
the program to hang. Specifying a timeout of zero is not recom­
mended. 

Any interface file eid obtained by using the dup(2) system call or inherited by a fork(2) 
request shares the same timeout as the original interface file eid obtained from open(2). 
If the child process resulting from a fork inherits an eid then changes the timeout, the 
eid used by the parent process is likewise affected. 

Setting Data Path Width 
When you create an interface file and open it for the first time, the data path width 
defaults to 8 bits. Once the file is opened, io_width_ctl can be used to select a new 
width. Allowable widths vary, depending on the computer model and interface. Refer 
to the appropriate hardware-specific appendix to determine what widths are supported 
by specific interfaces. 
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Assuming that the open interface file has the entity identifier eid, io_width_ctl is called 
using a code segment similar to the following: 

int eid. width; 

where width is the number of parallel bits in the new data path. The io_width_ctlreturns 
-1 to indicate an error if the specified width is not supported on the interface identified 
by eid. 

For example, to reconfigure a GPIO interface to use all 16 data lines in the interface 
cable instead of the default lower 8 bits, use a a code segment similar to the following: 

#include <fcntl.h> 
mainO 
{ 

} 

int eid. width; 
width = 16; /*width of new data path */ 

eid = open("/dev/raw_gpio". O_ROWR); 
io_width_ctl(eid. width); /*assign new width for GPIO bus*/ 

/*data transfers using "/dev/raw_gpio" will now 
use a 16-bit bus*/ 

Use of io_width_ctl to change interface data path width affects all users of the interface. 
Once the data path width is altered, it remains at the new value for each future opening 
of the file, independent of eid. Use io_reset or io_width_ctl to restore the default 8-bit 
path width. It should be obvious from this discussion that if any program on the system 
alters the data path width for a given interface from its default value, all programs using 
the interface should include a call to io_width_ctl to ensure correct operation. However, 
if a given interface requires operation at a fixed but not default path width, and is used 
identically by all calling programs (such as a 16-bit GPIO card connected to a single 
peripheral device), the call to io_width_ctl could be easily included in a system start-up 
configuration program that is executed automatically each time the system is rebooted 
or restarted for any reason. 
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Setting Minimum Data Transfer Rate 
DIL provides a means for specifying a minimum acceptable data transfer rate for a given 
interface special file within the limits of available hardware by use of io_speed_ctl. The 
calling sequence is as follows: 

io_speed_ctl(eid. speed); 

where eid is the entity identifier for the open interface file, speed is an integer indicating 
a minimum speed in Kbytes per second, and a kilobyte equals 1 024 bytes. 

Io_speed_ctl returns a 0 if successful, or -1 if an error occurred. For example: 

io_speed_ctl(eid. 1); 

requests a minimum speed of 1 024 bytes per second. While the system may use a faster 
transfer rate if possible, you are at assured that the rate will not be less than the specified 
speed. 

The transfer method (such as DMA or interrupt) chosen by the system is determined 
by the minimum speed requested. The system selects a transfer method that is as fast 
or faster than the requested speed. If the requested speed is beyond system limitations, 
the fastest available transfer method is used. Refer to the appropriate hardware-specific 
appendix for details. 

Setting the Read Termination Pattern 
During read operations on an open interface file, the interface recognizes certain condi­
tions as the end of a data transfer from the sending device. DIL supports three methods 
for identifying the end of an input operation: 

• Input data byte count limit is reached. 

• Hardware condition is used to identify end of data. 

• Predetermined character or sequence of characters is used to identify the end of a 
data record. 

Input termination occurs when the first termination condition is recognized, independent 
of the type of condition. If two or more conditions occur simultaneously, the first con­
dition detected terminates the operation. However, this first condition along with any 
other simultaneous events that would also have caused termination are recorded during 
clean-up at the end of the transfer for possible later use by io_geLterm_reason. 
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Termination on Byte Count 
Any call to read must specify the maximum number of data bytes that are to be accepted. 
When the specified number of bytes have been read, the data transfer is unconditionally 
terminated, whether the data is complete or not. 

Termination on Hardware Condition 
In many cases, the number of bytes being transferred is controlled by the peripheral 
device and cannot be predetermined. To make sure that no data is lost, the byte limit 
is set to a value higher than the longest expected input data record, and the interface 
is configured to recognize a condition, character, or set of characters (one or two bytes 
only) as the end of the incoming data. For instance, if an HP-IB interface detects that 
the EOI line has been asserted, it knows that the last data byte has been transferred and 
halts the read operation, whether or not the specified byte count has been reached. 

Termination on Data Pattern 
The DIL routine io_eoLctl configures an interface to recognize a particular character or 
pair of characters as a read termination pattern. Whether one or two bytes are used for 
the pattern depends on whether the data path width is set to 8 or 16 bits. The read 
termination pattern is in addition to any other conditions that may already be in effect 
for the interface. The call to io_eoLctl has the form: 

int eid. flag. match; 

where eid is the entity identifier for the open interface file and flag, depending on its 
value, enables or disables the interface's ability to recognize a read termination pattern. 

When flag is zero, termination pattern recognition is disabled and only EOI or a satisfied 
byte count can terminate a normal transfer. If flag is non-zero, match defines the new 
termination pattern. When using flag = 0 to disable eol pattern recognition, the third 
parameter (match) in the subroutine call is not used. However, it is recommended that 
a value (such as zero) be provided as good programming practice. 

When flag is non-zero to enable end-of-line recognition (for example, flag = 1) and the 
interface data path width is set to 8 bits, the least-significant byte of the 4-byte integer 
value of match defines the termination pattern used to identify an end-of-line condition. 

On the other hand, if the interface data path width is set to 16 bits (such as with a 
GPIO interface), then, for most systems, the termination pattern is also 16 bits, defined 
by the two lower (least-significant) bytes of the 4-byte integer value defined by match. 
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Remember that any other read termination conditions defined for the interface are in 
effect (such as EOI for an HP-IB interface), any event that matches a currently active 
termination condition can cause a read operation to halt, independent of whether the 
defined eol condition has been met. Also note that the read termination pattern defined 
by io_ eot ctl is accepted as part of the valid incoming data, meaning that it is transferred 
to the data storage area along with the rest of the transferred data. In other words, when 
the interface encounters transferred data matching the match value, it treats the data as 
part of the data message but does not attempt any further data input after the matching 
data pattern is found. This means that if data within an incoming data stream happens 
to match the pattern defined by match, the read is terminated whether the data message 
is complete or not. For this reason, care must be exercised when defining eol character 
sequences for data transfer. 

To illustrate how to use io_eotctl, suppose an HP-IB interface is being configured to rec­
ognize a backslash-n (\n) as a read termination pattern. First, open the HP-IB interface 
file and obtain the entity identifier eid. Second, make the call to io_eotctl using eid as 
the entity identifier, ENABLE as the flag, and \n as the match (\n is a one-byte value, and 
the data path width for all HP-IB devices is 8 bits): 

#include <fcntl.h> 
#define ENABLE 1 
main() 
{ 

} 

int eid; 

eid = open("/dev/raw_hpib", O_RDWR); 
io_eol_ctl(eid, ENABLE, '\n'); 

/*data transfers using "eid" terminate with a '\n'*/ 

Interface file /dev/raw_hpib is now configured to terminate read operations when any 
one of the following occurs: 

• The byte count specified in the call to read is reached. 

• The HP-IB EOI line is asserted. When the interface detects that the EOI line has 
been asserted, the character currently on the bus becomes the last byte in the data 
message. 

• backslash-n (\n) is detected in incoming data. The \n becomes the last byte in the 
stored data message. 
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Integral PC Only: On the Integral PC, a read operation from a GPIO interface terminates 
only when a specified number of read operations have been performed or when the read 
termination pattern has been found (EOI is not recognized on the GPIO interface). 

An interface file entity identifier returned by a dup(2) system call or inherited by a fork 
request shares the same read termination pattern as the entity identifier returned by the 
original call to open. If the child process resulting from a fork inherits an entity identifier 
then sets a read termination pattern for that e£d, the e£d used by the parent process is 
also affected. 

Series 200, 300, and 500 Only: If a single program or process executes more than one 
open system call on the same interface file, each entity identifier returned by open can 
have its own associated read termination pattern. Using £o_eotctl on a given e£d does 
not effect the others. Thus, multiple entity identifiers can be set up for a single interface 
to facilitate recognition of various termination characters during program execution. 

Disabling a Read Termination Pattern 
To disable the read termination pattern, call £o_eotctl with the flag parameter disabled 
(set to 0): 

where xx represents a "don't care" value for the match argument. If the flag argument 
is 0, the match argument is ignored. 

The following code segment defines the ASCII'.' character (decimal value 46) as a termi­
nation pattern, performs a read operation, then disables termination pattern recognition. 

#include <fcntl.h> 
maine) 
{ 

} 

int eid; 
char buffer [12] ; 

eid = open("/dev/hpib_dev", O_RDWR); 
io_eol_ctl(eid, 1,46); 
read( eid, buffer, 12); /*Read operation halts when a period character 

"." is read or when the 12th byte is read*/ 
io_eol_ctl( eid, 0, 0); /*termination pattern recognition is disabled*/ 
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Determining Why a Read Terminated 
Various situations can cause termination of read operations through an interface. Upon 
completion of a read, you may want to include code to verify that the reason for termi­
nation is what you expected. This is done by using the DIL routine io_geCterm_reason. 

io_geCterm_reason uses a single argument: the interface file entity identifier eid, and 
returns an integer. The returned value indicating how the last read operation ended, is 
interpreted as follows: 

Returned 
Value 

-1 

o 

1 

2 

4 

Meaning 

An error during the subroutine call. 

Read terminated abnormally (for some reason other than the ones listed 
here). 

Byte count limit caused termination. 

End-of-line character pattern caused termination 

Device-imposed condition (such as EOI asserted on HP-IB interface) caused 
termination. 

If more than one termination condition occurred simultaneously, the bit corresponding to 
the above values is set for each condition, and the aggregate value of the lower three bits 
represents a sum equal to the combined values of the individual conditions. The three 
least-significant bits of the lowest byte have meanings as indicated by their associated 
decimal values in the table above. For example, if io_geCterm_reason returns a value of 
7, all three conditions: byte count limit, hardware termination, and termination pattern 
recognition occurred simultaneously. 

Note 

If no read is performed on an open interface file prior to a call to 
io_geCterm_reason, a value of zero is returned. 
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All entity identifiers descending from a single open request (such as from dup or fork) 
affect the status returned by this routine. For example, suppose that an entity identifier is 
inherited by a child process through a fork. If the parent process calls io_geCterm_reason, 
the last read operation of either the parent or the child is looked at, depending on which 
is more recent. 

Example 
Suppose you want to read data through an open HP-IB interface file, but want a printout 
indicating the reason for termination on every transfer, whether the termination was 
normal or abnormal. The following code segment provides that capability: 

#include <fcntl.h> 
#include <errno.h> 

1* 
** possible termination reasons 
** returned by io_get_term_reason 
*1 
#define TR_ABNORMAL 0 1* abnormal *1 
#define TR_COUNT 1 1* requested count was satisfied *1 
#define TR_MATCH 2 1* specified eol character was matched *1 
#define TR_CNT_MCH 3 1* TR_COUNT + TR_MATCH *1 
#define TR_END 4 1* EOr was detected *1 
#define TR_CNT_END 5 1* TR_COUNT + TR_END *1 
#define TR_MCH_END 6 1* TR_MATCH + TR_END *1 
#define TR_CNT_MCH_END 7 1* TR_COUNT + TR_MATCH + TR_END *1 

mainO 
{ 

int eid, termination_reason, bytes_read; 
char buffer [50] ; 

if «eid = open (II Idev/raw_hpib", O_RDWR» < 0) { 

} 

printf("Open of Idev/raw_hpib failed - errno %d\n", errno); 
exit (1) ; 

bytes_read = read(eid, buffer, 50); 
termination_reason = io_get_term_reason(eid); 
switch (termination_reason) { 

case TR_ABNORMAL: 1* abnormal *1 
printf("Abnormal read termination, bytes_read = %d, errno 

%d\n", bytes_read, errno); 
break; 

case TR_COUNT: 1* requested count was satisfied *1 
printf("Count satisfied.\n"); 
break; 

case TR_MATCH: 1* specified eol character was matched *1 
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detected.\n"); 

printf("EOL character satisfied.\n"); 
break; 

case TR_CNT_MCH: 1* TR_COUNT + TR_MATCH *1 
printf("Count and EOL character satisfied.\n"); 
break; 

case TR_END: 1* EO! was detected *1 
printf("EO! detected.\n"); 
break; 

case TR_CNT_END: 1* TR_COUNT + TR_END *1 
printf("Count satisfied and EO! detected.\n"); 
break; 

case TR_MCH_END: 1* TR_MATCH + TR_END *1 
printf("EOL character satisfied and EO! detected.\n"); 
break; 

case TR_CNT_MCH_END: 1* TR_COUNT + TR_MATCH + TR_END *1 
printf("Count and EOL character satisfied and EO! 

break; 
default: 1* io_get_term_reasoned failed *1 

printf(lIio_get_term_reason failed. bytes_read = %d. errno 
%d\n". bytes_read. errno); 

break; 
} 

} 

Series 500 Only: On Series 500 computers, the value returned by io_geCterm_reason only 
indicates the termination cause with the highest value; other causes with lower values 
could have occurred at the same time. See Appendix A, "Series 500 Dependencies" for 
more information. 
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Interrupts 
DIL provides an interrupt mechanism for HP-IB and GPIO interfaces that is similar to 
HP-UX signal handling. Thus interrupt handlers can be included in programs such that 
they are invoked \~vhen certain conditions occur. 

Currently, interrupts are supported only on the Integral PC, Series 300, and Series 500 
computers. However, interrupts can be simulated on Series 200 systems. Refer to the 
appropriate hardware-specific appendix for any restrictions that may apply. 

Integral PC Interrupt Support 
The only interrupt condition available on the Integral PC is PIR: interrupt on assertion 
of the Peripheral Interrupt Request line. For hardware restrictions related to using the 
HP-IB interrupts on the Integral PC, refer to the io_on_interrupt.3d (or .3i if the .3d 
suffix is not present) file in the doc folder on the DIL disc. 

Series 300 and 500 Interrupt Support 
HP-IB Interrupts 
Series 300 and 500 computers recognize the following HP-IB interrupt conditions: 

signal 

SRQ 

TLK 

LTN 

CIC 

IFC 

REN 

DCL 

GET 

PPOLL 

Condition 

SRQ line has been asserted. 

Computer HP-IB interface has been addressed to talk. 

Computer HP-IB interface has been addressed to listen. 

Computer HP-IB interface has received control of the bus. 

IFC line has been asserted. 

Remote enable line has been asserted. 

Computer HP-IB interface has received a device clear command. 

Computer HP-IB interface has received a group execution trigger com­
mand. 

A specific parallel poll response occurred. 
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Series 300 GPIO 
Series 300 computers recognize the following GPIO interrupt conditions: 

EIR EIR line has been asserted. 

Series 500 GPIO 
Series 500 computers recognize the following GPIO interrupt conditions: 

SIEO Status line 0 has been asserted. 

SIEl Status line 1 has been asserted. 

io_on_interrupt 
DIL provides two subroutines for controlling interrupts: io_on_interrupt and 
io_ interrupL etl. The first, io_ OTt_ interrupt, sets up interrupt conditions and has the 
form: 

where eid is the interface entity identifier for a GPIO or raw HP-IB interface. handler 
points to the function that is to be invoked when the interrupt condition occurs, and 
eause_ vee is a pointer to a structure of the form: 

struct interrupt_struct { 
int cause; 
int mask; 

}; 

The interrupt_struct structure is defined in the include file dvio.h. 

cause is a bit vector specifying which selectable interrupt or fault events will cause the 
handler routine to be invoked. Available interrupt causes are usually specific to the type 
of interface being considered. In addition, certain exception (error) conditions can be 
handled by the io_on_interrupt subroutine. If the cause vector has a zero value, it, in 
effect, disables interrupts for that eid. 

mask is an integer value that is used to define which parallel-poll response lines are to 
be recognized in an HP-IB parallel poll interrupt. The value for mask is formed from 
an 8-bit binary number, each bit of which corresponds to one of the eight parallel-poll 
response lines. For example, to invoke an interrupt handler for a response on line 2 or 6, 
the correct binary number is 01000100 which converts to a decimal equivalent of 68, the 
correct value for mask. 
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When the enabled interrupt condition occurs on the specified eid, the process that set up 
the interrupt executes the interrupt-handler routine pointed to by handler. The entity 
identifier eid and the interrupt condition cause are returned to handler as the first and 
second parameters respectively. 

Whenever an interrupt condition occurs for a given eid, the interrupt is recognized, inter­
rupts are disabled for that eid, then the interrupt handler is executed. After processing 
the interrupt, interrupts can be re-enabled for that eid by calling io_interrupLctl. 

Each call to io_on_interrupt returns a pointer to the previous handler if the new handler 
is successfully installed, otherwise it returns -1 and errno is set. 

The following example illustrates how an interrupt handler can be set up to handle 
requests on the HP-IB service request line (SRQ): 

#include <dvio.h> 
#include <fcntl.h> 
#include <stdio.h> 
maine) 
{ 

} 

int eid; 
struct interrupt_struct cause_vec; 

eid = open ("/dev/raw_hpib", O_RDWR); 
cause_vec.cause = SRQ; 
io_on_interrupt(eid, cause_vec, handler); 

handler (eid, cause_vec); 
int eid; 
struct interrupt_struct cause_vec; 
{ 

if (cause_vec.cause == SRQ) 
service_routine(); /* application-specific service routine*/ 

} 
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io_interrupLctl 
Subroutine io_ interrupL ctl provides a convenient means for enabling and disabling in­
terrupts on a specific eid. Since interrupts are automatically disabled when an inter­
rupt occurs, io_interrupLctl is commonly used to re-enable interrupts during a series 
of repetitive operations that are being handled under interrupt control. The call to 
io_interrupLctl has the following form: 

where eid is the entity identifier for an open GPIO or raw HP-IB interface (device) file. 
The value of enable_flag determines whether interrupts are to be enabled or disabled: if 
enable_flag is non-zero, interrupts are enabled on the eid; if enable_flag is zero, interrupts 
are disabled. Attempting to use io_interrupLctl on an eid fails when no previous call has 
been made to io_ on_ interrupt for the same eid. 

The following code segment shows how the previous example can be modified slightly so 
that interrupts are re-enabled at the end of the interrupt service routine: 

handler(eid. cause_vee); 
int eid; 
struct interrupt_struct cause_vec; 
{ 

if (cause_vec.cause == SRQ) 

service_routine(); /* application-specific service routine*/ 

} 
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Controlling the HP-IB Interface 3 
The general-purpose subroutines discussed in Chapter 2 are used to set up and handle 
data transfers at a high level. However, they do not control the lower-level interface 
operations that are necessary to maintain proper bus operation and control interaction 
between HP-IB devices. 

This chapter explains the use of subroutines in the Device I/O Library that are directly 
related to HP-IB interface control. Chapter 4 covers comparable material for the GPIO 
interface. This chapter presents a brief overview of HP-IB commands, followed by a 
detailed discussion of HP-IB DIL subroutines including how they are used to control bus 
activity and manage bus traffic. 
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Overview of HP-IB Commands 
HP-IB commands consist of various data sequences that are sent over the eight 
HP-IB data lines while the ATN line is asserted (held LOW). The DIL subroutine 
hpz"b_send_cmnd provides a convenient means for sending bus commands by automat­
ically handling the ATN line and the necessary handshaking operations between devices. 
However, hpz"b_send_cmnd can be used only when the computer interface to the bus is 
the active controller. Techniques for using hpib_send_cmnd are discussed later in this 
chapter. 

Any device that is the intended recipient of an HP-IB command must have its remote 
enable line (REN) enabled by the System Controller (unless altered by the System Con­
troller, REN is enabled, by default). Only the System Controller can alter the state of 
the REN line (see "System Controller's Duties" section later in this chapter). 

HP-IB Data Bus Commands fall into four categories: 

• Universal commands cause every properly equipped device on the bus to perform 
the specified interface operation, whether addressed to listen or not. 

• Addressed commands are similar to universal commands, but are accepted only by 
bus devices that are currently addressed as listeners. 

• Talk and listen addresses are commands that assign talkers and listeners on the 
bus. 

• Secondary commands are commands that must always be used in conjunction with 
a command from one of the above groups. 
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The following table lists commands that can be sent with hpib_send_cmnd, along with 
the decimal and ASCII character equivalents of each command. This table is useful 
for reference when determining what values to use as parameters in hpib_send_cmnd 
subroutine calls. 

Tabie 3.1 HP-IB Bus Commands 

Decimal 
Command Value ASCII Character 

Universal Commands: 

UNLISTEN 63 ? 

UN TALK 95 -
DEVICE CLEAR 20 DC4 

LOCAL LOCKOUT 17 DC1 

SERIAL POLL EN ABLE 24 CAN 

SERIAL POLL DISABLE 25 EM 

PARALLEL POLL UN CONFIGURE 21 NAK 

Addressed Commands: 

TRIGGER 8 BS 

SELECTED DEVICE CLEAR 4 EOT 

GO TO LOCAL 1 SOH 

PARALLEL POLL CONFIGURE 5 ENQ 

TAKE CONTROL 9 HT 

Talk and Listen Addresses: 

Talk Addresses 0-30 64-94 @ thru A 

(uppercase ASCII) 

Listen Addresses 0-30 32-62 space thru > 

(numbers and special characters) 

Secondary Commands: (If a secondary 
command follows the PARALLEL POLL 
CONFIGURE command then it is inter-
preted as follows, otherwise its meaning is 
device dependent) 

PARALLEL POLL ENABLE 96-111 ' thru 0 

(lowercase ASCII) 

PARALLEL POLL DISABLE 112 p 
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UNLISTEN 
UNLISTEN unaddresses all current listeners on the bus. No means is available for un­
addressing a given listener without unaddressing all listeners on the bus. This command 
ensures that the bus is cleared of all listeners before addressing a new listener or group 
of listeners. 

UNTALK 
UNTALK unaddresses all current talkers on the bus. No means is available for un­
addressing a given talker without un addressing all talkers on the bus. This command 
ensures that the bus is cleared of all talkers before addressing a new talker. 

DEVICE CLEAR 
DEVICE CLEAR causes all devices that recognize this command to return to a pre­
defined, device-dependent state, independent of any previous addressing. The reset state 
for any given device after accepting this command is documented in the operating manual 
for the device in question. 

LOCAL LOCKOUT 
LOCAL LOCKOUT disables local (front panel) control on all devices that recognize this 
command, whether the devices have been addressed or not. 

SERIAL POLL ENABLE 
SERIAL POLL ENABLE establishes serial poll mode for all devices that are capable of 
being bus talkers, provided they recognize and support the command. This command 
operates independent of whether the devices being polled have been addressed to talk. 
When a device is addressed to talk, it returns an 8-bit status byte message. 

This command is handled through the DIL subroutine hpib_spoll, as discussed later in 
this chapter. 

SERIAL POLL DISABLE 
SERIAL POLL DISABLE terminates serial poll mode for all devices that support this 
command, whether or not the individual devices have been addressed. 

The DIL subroutine hpib_spoll that performs this function is discussed at length later in 
this chapter. 
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TRIGGER (Group Execute Trigger) 
TRIGGER causes devices currently addressed as listeners to initiate a preprogrammed, 
device-dependent action if they are capable of doing so. Use of this function and pro­
gramming procedures are documented in operating manuals for devices that support 
it. 

SELECTED DEVICE CLEAR 
SELECTED DEVICE CLEAR resets devices currently addressed as listeners to a device­
dependent state, provided they support the command. Refer to the device operating 
manual for more information about programming and the resulting state(s). 

GO TO LOCAL 
GO TO LOCAL causes devices currently addressed as listeners to return to the local­
control state (exit from the remote state). Devices return to remote state next time they 
are addressed. 

PARALLEL POLL CONFIGURE 
PARALLEL POLL CONFIGURE tells devices currently addressed as listeners that a sec­
ondary command follows. This secondary command must he either PARALLEL POLL 
ENABLE or PARALLEL POLL DISABLE. 

PARALLEL POLL ENABLE 
PARALLEL POLL ENABLE configures devices addressed by PARALLEL POLL CON­
FIGURE to respond to parallel polls with a predefined logic level on a particular data 
line. On some devices, the response is implemented in a local form (such as by using 
hardware jumper wires) that cannot be changed. 

Use of this command must be preceded by a PARALLEL POLL CONFIGURE command. 

PARALLEL POLL DISABLE 
The PARALLEL POLL DISABLE command prevents devices previously addressed by 
a PARALLEL POLL CONFIGURE command from responding to parallel polls. This 
command must be preceded by the PARALLEL POLL CONFIGURE command. 
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Overview of HP-IB OIL Routines 

Standard OIL Routines 
These 14 subroutines, in addition to the general-purpose subroutines discussed in Chapter 
2, provide full capabilities for controlling and using the HP-IB interface. 

Subroutine 

hpib_abort 

hpib_io 

hpib_ppoll 

hpib_spoll 

hpib_bus_status 

hpib_ eoi_ ctl 

hpib _pass_ ctl 

hpib _ card_ppolL resp 

hpib_ren_ctl 

hpib_rqsLsrvce 

hpib _ send_ cmnd 

hpib_status_ wait 

hpib_ppolL resp_ ctl 

Description 

Stop activity on specified HP-IB select code. 

Perform a series of HP-IB read, write, and SEND_CMD operations 
from a single subroutine call (with some loss of execution speed). 

Conduct parallel poll on HP-IB. 

Cond uct serial poll on HP -lB. 

Return status on HP-IB interface. 

Control EOI mode for data transfers. 

Pass bus control to another device on the bus. 

Define HP-IB card's response to a parallel poll. 

Assert or release HP-IB remote-enable (REN) line on HP-IB. 

Initiate a service request (SRQ) when interface is not Active Controller. 

Send command message on HP-IB data lines while asserting the at­
tention (ATN) line. 

Wait until a specified device responds on its assigned parallel poll 
response line indicating that it needs service. 

Wait until any device on the bus asserts SRQ. 

Configure and enable or disable the parallel poll response circuit on 
the specified device (determines how the device will respond to the 
next parallel poll from a remote active controller). 

Additional Series 200/300 and Integral PC Routines 
The Integral PC and Series 200/300 support high-speed burst I/O on HP-IB and GPIO 
through th(> following DIL subroutine: 
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Subroutine Description 

io_buTst(eid,Jlag) Control the data path between computer memory and an HP-IB or 
GPIO interface. If flag = 0, all data is handled through kernel calls 
with the normal associated overhead. If flag is non-zero, burst mode 
locks the interface and data is transferred directly between memory 
and the I/O mapped interface until the transfer is completed. Burst 
mode yields substantial improvement in efficiency when handling small 
amounts of data or high-speed data acquisition. 

This subroutine handles high-speed transfers on both HP-IB and GPIO 
I/O. 

HP-IB: The Computer's Role 
Most HP-IB applications consist of a single computer and several peripheral devices 
connected to a given bus. However, some situations may require two or more computers 
on the same bus along with various shared and/or dedicated peripheral devices. This 
discussion applies to both configurations. 

Ground Rules 
The following rules are mandatory for proper HP-IB interaction: 

• HP-IB allows only one System Controller per bus. 

• Only one device on the bus can be active controller at any given time. 

• All other devices capable of controlling the bus must be non-active controllers unless 
control is passed from another active controller. 

• The computer interface is configured as System Controller. If two or more comput­
ers are interfaced to a single bus, only one can be configured as System Controller. 
All other interfaces must be configured as non-controllers (incapable of acting as 
System Controller). This is usually accomplished by programming a switch or 
jumper on the HP-IB interface card. 

At power-up, the System Controller is the Active Controller. All other controllers on the 
bus are non-active controllers. If the computer interface passes control to another device, 
the device receiving control becomes the new active controller and the computer interface 
becomes a non-active controller although it remains System Controller at all times and 
can regain control of the bus by asserting IFC (InterFace Clear). Once control has been 
passed to another device, the computer remains non-active controller until control is 
passed back or IFC is asserted. 
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Available Subroutines versus Controller Role 
Which DIL subroutines can be used depends on the computer's role on the HP-IB at the 
time. Given the three possible roles, Table 3-2 indicates which subroutines can be used 
with each. 

Table 3-2. DIL Subroutine Availability Based on Interface Role. 

System Active Non-Active 
Subroutine Controller Controller Controller 

hpib_abort • 
hpib_io • 
hpib_ppoll • 
hpib_spoll • 
hpib_bus_status Note 1 • • 
hpib_ eoi_ ctl • 
hpib_pass_ ctl • 
hpib_ card_ppolL resp Note 2 • 
hpib_ ren_ ctl • 
hpib_ rqsCsrvce Note 2 • 
hpib_send_cmnd • 
hpib _ waiC on_ppoll • 
hpib_status_ wait Note 1 • • 
hpib_ppolL resp_ ctl Note 2 • 

Note 1 This command is available to the System controller, but the availability is 
meaningless because this command is available to any interface on the bus, 
independent of its role as an active or non-active controller. 

Note 2 This command is available to the interface while it is active controller, 
but the command is meaningless except when the interface is acting in the 
non-active controller role. 
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Bus Citizenship: 
Surviving Multi-Device/Multi-Process HP-IB 
HP-UX provides a powerful environment for creative programming. As a result, one or 
more users can create a large number of processes that may be running simultaneously. 
At the same time, HP-IB provides the capability of combining multiple devices on a single 
I/O channel or interface. As long as only auto-addressed HP-IB interface files are used, 
problems are few and infrequent. However, when processes that use DIL subroutines start 
accessing raw-mode HP-IB interface files, a splendid opportunity arises for competing 
processes to create bus addressing and access conflicts. If certain precautions are not 
carefully maintained, performance quickly decays to chaos. 

The Device I/O Library contains several subroutines that are provided specifically for 
maintaining orderly HP-IB traffic and good I/O efficiency. Correct use of these subrou­
tines is especially important when using raw interface files. They include: 

• io_lock and io_ unlock to take exclusive control of the HP-IB channel for the duration 
of a transfer, 

• io_burst to efficiently handle short transfers without consuming large amounts of 
HP-UX kernel overhead, 

• hpib_ io to structure a complete bus transfer including configuration and control 
operations in a buffer then handle the transfer as a single subroutine call through 
an interface file that is automatically locked at the beginning and released at the 
end of the transfer. 

These subroutines are discussed at length later in this chapter, but are treated here from 
the point of view of overall bus applications efficiency as it pertains to programming 
practice. 
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io_lock and io_unlock 
When handling raw-mode (as opposed to auto-addressed) HP-IB transfers, devices must 
be set up to communicate (preamble) before the transfer (read/write) can be initiated, 
then the necessary clean-up (postamble) operations must be performed to leave the bus 
in an acceptable state for the next process. If you do not notify other processes that you 
are using the bus, they might initiate a different transfer while you are preparing for your 
next DIL subroutine call. A command sequence from another process (through a different 
e'id but through the same interface) could completely scramble your bus configuration so 
your transfer request results in no data, erroneous data, or possibly even more serious 
results, depending on the nature of tile transfer. 

A simple call to 'io_lock prior to your first call to an HP-IB subroutine and a matching 
call to 'io_unlock after your last HP-IB subroutine call keeps competing processes from 
using the bus while you have control. As soon as the interface file is unlocked, it can be 
accessed by the next process that needs it. 

io_burst 
Series 200/300 systems support burst I/O (also called fast handshake) which bypasses 
the kernel by performing a high-speed non-interrupt transfer. This method can produce 
considerable performance improvement when handling short transfers to or from high­
speed HP-IB devices. See the Series 200/300 Appendix for more information about burst 
I/O. 

hpib_io 
The DIL subroutine hp'ib_'io is used to perform bus configuration, data transfer, and 
bus clean-up as a single operation through a locked interface file. When using hp'ib_'io, 
control commands (the preamble), data to be written or a buffer for incoming data (the 
data message), and clean-up commands (postamble) are placed in a data structure prior 
to calling hpib_ io. hpib_ io then locks the interface, handles the transfer as defined in 
the data structure (which configures the HP-IB and handles the transfer and clean-up) 
unlocks the interface, then returns with the result (transfer complete or transfer failed). 
While hpib_ io often makes programs shorter and simpler, the added overhead associated 
with hpib_io is less efficient than when using individual DIL subroutine calls. 
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Opening the HP-IB Interface File 
Before DIL subroutines can be used on an HP-IB interface, the interface special file must 
exist and the program must obtain a corresponding entity identifier. The procedures for 
opening interface special files and obtaining entity identifiers is discussed in Chapter 2, 
"General-Purpose Routines." 

Sending HP-IB Commands 
Once the HP-IB interface special file has been opened and the entity identifier has been 
obtained, DIL subroutines can be used to send HP-IB commands to control the inter­
face. If the computer is Active Controller, hpib_send_cmnd can be used to place HP-IB 
commands on the data bus. 

One method of using this routine is to first set up a character array containing the 
commands being sent. Assign the decimal value of each command to an element in the 
array, then use a subroutine call having the form: 

hpib_send_cmnd{eid, command, number); 

where eid is the entity identifier for the open interface file, command is a character 
pointer to the first element of the array containing the HP-IB commands, and number 
is the number of elements (commands) in the array. The subroutine hpib_send_cmnd 
places each of the commands stored in the array on the bus with ATN asserted. 

Notice that by changing the number argument and moving the command pointer you can 
send subsets of command arrays. Suppose you create an array that contains 10 HP-IB 
commands, command[O] through command[9]. You can now specify that only the last 5 
commands in the array be sent by using: 

hpib_send_cmnd{eid, command + 5, 5); 

Controlling the HP-IB Interface 55 



This method of sending HP -IB commands by storing them in an array uses their decimal 
values. Alternatively, ASCII command characters can be used by specifying a character 
string and using a subroutine call of the form: 

where eid and number are the same as before but the commands to be sent are now 
specified by each character in the string command_string. 

To illustrate the two methods, assume that you want to send the HP-IB UNLISTEN and 
UNTALK commands. With the decimal array method, first set up an array having two 
elements, place the decimal value for each command in the appropriate location in the 
array, then call hpib_send_cmnd: 

#include <fcntl.h> 
mainO 
{ 

int eid; 
char command[2]; /*command array*/ 

eid = open (II/dev/raw_hpib ll
, O_RDWR); 

command[O] = 63; /*decimal value for UNLISTEN*/ 
command [1] = 95; /*decimal value for UNTALK*/ 
hpib_send_cmnd(eid, command, 2); 

} 

U sing the ASCII character string method, the same effect is achieved using: 

#include <fcntl.h> 
mainO 
{ 

int eid; 

eid = open (II/dev/raw_hpib ll
, O_RDWR); 

hpib_send_cmnd(eid, 111_11, 2); /*1 is ASCII for UNLISTEN and*/ 
/*_ is ASCII for UNTALK */ 

} 

The array method is usually preferred when sending a large number of commands or 
sending the same set of commands several times in the program because the entire 
set of commands can be stored once then used whenever needed. When the string 
method is used, the entire set of commands must be specified as a string in each call to 
hpib_send_cmnd. It is preferred when sending only a few commands or sending a set of 
commands only once in a program. 
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Errors While Sending Commands 
Normally, hpib_send_ cmnd returns a 0 if successful. It returns a -1 if anyone of the 
following error conditions exist: 

• Computer interface is not Active Controller. 

• eid entity identifier does not refer to an HP-IB raw interface file. 

• e£d entity identifier does not refer to an open file. 

To determine which of these conditions caused the error, cheek the value of errno, an 
external integer variable used by HP-UX system calls. Error-checking routines are dis­
cussed at length in Chapter 2. 

The following table lists errno values corresponding to the conditions above when de­
tected by hpib_send_cmnd: 

errno Value 

EBADF 

ENOTTY 

EIO 

Error Condition 

eid did not refer to an open file 

eid did not refer to a raw interface file 

The interface was not the Active Controller 
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Active Controller Role 
The Active Controller is responsible for originating all commands handled on the bus 
and responding to requests for service from other devices. hpib_send_cmnd is used to 
send HP-IB commands. Other DIL subroutines are used for the remaining bus control 
tasks. Active Controller operations discussed in this chapter include: 

• Addressing individual devices to talk or listen. 

• Switching devices to remote control operation. 

• Locking out local front-panel control on devices. 

• Switching devices to local front-panel control. 

• Triggering devices to initiate device-dependent operations. 

• Transferring data in or out. 

• Clearing (resetting) devices 

• Responding to service requests from devices. 

• Conducting parallel and serial polls. 

• Passing active control of the bus to another device. 

Determining Active Controller 
A computer interface must be the Active Controller before it can handle any bus manage­
ment activities. If any other device on the bus is capable of being Active Controller, use 
the hp";b_bus_status subroutine to determine whether the interface is the current Active 
Controller. Use the following subroutine call form: 

where eid is the entity identifier for the opened HP-IB interface device file and 4 tells 
the subroutine to examine interface status and determine whether or not the card is the 
Active Controller. The value returned by the subroutine can be tested as indicated in 
the example source code which fullows. 

hpib_bus_status returns 0 if the condition being tested is false; 1 if true, and -1 if an 
error occurred. The code that follows shows a straightforward way of interpreting the 
returned value: 
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#include <fcntl.h> 
main() 
{ 

int eid. status; 
eid = open(lI/dev/raw_hpib li

• O_RDWR); 

} 

if «status = hpib_bus_status(eid.4» == -1) 

else if (status 

else 

/*an error occurred; error-handling code*/ 

/*goes here. 
0) 

/*not Active Controller; code to request */ 

/*Active Controller status goes here */ 

/*Active Controller; bus-management code */ 

/*goes here */ 

Setting Up Talkers and Listeners 
Before data can be transferred over HP-IB, one talker and one or more listeners must be 
assigned to handle the transfer. In addition, some HP-IB commands are recognized only 
by those devices that are currently addressed as listeners, which means that the Active 
Controller must specify the listeners before sending such commands. Only one talker at 
a time is allowed on the bus, but the number of listeners is not restricted. 

Series 200/300 and 500 computers provide two methods for addressing listeners and 
talkers on HP-IB: auto-addressing and command addressing. 

When an HP-IB interface device file is set up as an auto-addressed file (determined by 
the value of the minor number used when creating the file), any read/write operations 
to or from the file automatically set up the bus talk and listen address commands prior 
to transferring data. The interface must be the Active Controller when auto-addressing 
is used. 

The alternate method uses hpib_send_cmnd to directly control the bus from the user 
program itself. However, this method of control can only be used on raw device special 
files. 

The Integral PC does not support auto-addressing. Alt HP-IB interface files on the Inte­
gral PC are raw special files and do not support auto-addressing. Hence hpib_send_cmnd 
must be used for all HP-IB bus control operations. 
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Auto-Addressing on Series 200/300 and 500 
Much of the tedium of addressing devices to talk or listen can be avoided by using auto­
addressed device special files to take advantage of HP-UX auto-addressing capabilities for 
many peripherals. Auto-addressing is performed only on auto-addressed HP-IB device 
files. Some DIL subroutines require a raw HP-IB device file, and will fail if you attempt 
to use them on an auto-addressed device file. DIL subroutines that can be used with non­
raw device files include hpib_eoi_ctl, hpib_eoLctl, io_burst, io_geCterm_reason, io_lock, 
io_unlock, io_speed_ctl, and io_timeouCctl, 

Series 200, 300, and 500 systems determine whether a device file is raw or auto-addressed 
by the address parameter used when the file is created. Address 31 (hexadecimal If) is 
reserved for raw files. Any address in the range 0 through 30·is auto-addressed. Refer to 
the appropriate appendix for procedures used to create device and interface special files. 

For example, suppose you are using a Series 500 computer with an HP 27110A/B HP­
IB card on select code 01 to access a peripheral device located at bus address 03. Use 
mknod to create a new device file named device for the peripheral device and place the 
file in directory dev underneath the root directory as explained in Appendix A (a similar 
procedure described in Appendix B is used for Series 200/300): 

mknod /dev/device c 12 Ox010300 

Once the file exists, it can be listed by using the 1l(1) command. In this case, the device 
file named / dev / device is listed (along with other files in the / dev directory) together 
with its permissions and attributes: 

crw-rw-rw- 1 root other 12 Ox010300 Nov 22 1986 /dev/device 

Since the bus address is less than decimal 31, the file is a non-raw device file and is 
auto-addressable. The following code segment illustrates how to use auto-addressing 
with such a device file: 

main() 
{ 

} 

int eid; 
eid = open("/dev/device".O_RDWR); 

/*Assuming "/dev/device" has the minor number (Ox010300). the*/ 
/*system automatically addresses the interface card at select code 1*/ 
/*as a talker and the device at bus address 3 as a listener before*/ 
/*sending data*/ 

write(eid. "test data".9); 
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Using hpib_send_cmnd 
Talkers and listeners can be configured under program control by forming HP-IB com­
mand sequences from the talk and listen addresses of the devices being used. How­
ever, before addressing talkers and listeners, clear the bus of any talkers and listeners 
that might be left over from previous transactions by issuing UN TALK and UNLISTEN 
commands (whenever a talk address appears on the bus, wen-mannered devices should 
recognize the address and automatically untalk if the address is for a different device. 
However, not all devices are necessarily well-mannered, so an UNTALK is considered 
good programming practice). To configure a new talker and listeners: 

1. Send an UNTALK command to remove any previous talkers. 

2. Send an UNLISTEN COlIlIIland to remove any previous listeners. 

3. Send the talk address of the device that will be sending data. There can only be 
one talker. 

4. Send the listen address of each device that is to receive the data. 

After data transfer is complete, issue an UNTALK and UNLISTEN command on the 
bus (repeat steps 1 and 2) to leave it in a clean state for subsequent transactions. 

DIL subroutine hpib_send_cmnd is used to perform these tasks. 

Calculating Talk and Listen Addresses 
Before devices can be addressed to talk or listen, their HP-IB bus addresses must 
be known. The bus address of the computer interface is easily obtained by using 
hpib_bus_status as shown in this program code segment: 

#include <fcntl.h> 
main() 
{ 

} 

int eid. address; 
eid = open("/dev/raw_hpib". O_RDWR); 
address = hpib_bus_status(eid. 7); 

where eid is the entity identifier for the interface file and 7 indicates a request for the 
interface HP-IB bus address. 

To determine the bus address of other devices on the bus, refer to installation and 
operating manuals for each device being used (certain HP-IB addresses may be reserved 
for specific devices on some systems). 
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Once device addresses are known for all devices of interest, setting up talk and listen 
addresses is a fairly simple matter. 

HP-IB commands are set up as a single ASCII character transmitted while ATN is 
asserted. However, it is usually much easier to calculate addresses based on bus ad­
dress rather than looking up the corresponding ASCII character for each address. Bus 
addresses range from 0 through 30, and talk and listen addresses are derived through 
decimal addition as follows: 

talk_address = 64 + bus_address 
listen_address = 32 + bus_address 

where talk ... address is the decimal equivalent of the binary bit pattern that represents 
the ASCII talk address command character. Likewise, listen_address is the decimal 
representation of the ASCII listen address command character. bus_ address is the decimal 
value of the HP-IB bus address for the device being addressed. 

The talk and listen addresses MTA ("my talk address") and MLA ("my listen address") 
for the computer interface are derived similarly as follows: 

MTA = hpib_bus_status(eid. 7) + 64; 
MLA = hpib_bus_status(eid. 7) + 32; 

An Example Configuration 
Assuming that the computer's HP-IB interface is currently the Active Controller, the 
following code segment establishes the interface as the bus talker. Two devices at HP-IB 
addresses 4 and 8 are designated as bus listeners. 

#include <fcntl.h> 
mainO 
{ 

} 

int eid. MTA; 
char command[5]; 
eid = open("/dev/raw_hpib". O_RDWR); 
MTA = hpib_bus_status(eid. 7) + 64; /*calculate My Talk Address*/ 
command[O] = 95; /* UNTALK command*/ 
command[l] = 63; /* UNLISTEN command*/ 
command [2] MTA; /* interface talk address*/ 
command[3] = 32 + 4; /* listen address for device at bus address 4*/ 
command[4] = 32 + 8; /* listen address for device at bus address 8*/ 
hpib_send_cmnd(eid. command. 5); 
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Remote Control of Devices 
Most HP-IB devices can be controlled from either their front panel or the bus. If the 
device's front-panel controls are currently operational, the device is in local state. If 
it is being controlled through the HP-IB, it is in remote state. Pressing the device's 
front-panel LOCAL key returns the device to local control unless it has been placed in 
local lockout state (described in the next section). 

Whether the HP-IB remote enable (REN) line is asserted or not determines whether or 
not a device can respond to remote program control. While REN is asserted, any device 
that is addressed to listen is automatically' placed in remote state. Only the System 
Controller can assert or release the REN line. REN, by default, is asserted at power-up 
and remains asserted unless changed as discussed later in this chapter under the topic 
System Controller Operations. 

Locking Out Local Control 
The LOCAL LOCKOUT command inhibits the LOCAL key or switch present on the 
front panel of most HP-IB devices, thus preventing anyone from interfering with system 
operations by pressing front-panel control buttons. All devices that support local lockout 
are locked, whether addressed or not, and cannot be returned to local control from their 
front panels. 

The following code segment shows one method for sending the LOCAL LOCKOUT 
command: 

command[O] = 17; 1* Decimal value of LOCAL LOCKOUT*I 
hpib_send_cmnd(eid. command, 1); 

The GO TO LOCAL command can be used to place a device in local (front-panel control) 
state. 
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Enabling Local Control 
During system operation, it may be necessary to place certain devices in local state for 
direct operator control such as when making special tests or troubleshooting. The GO 
TO LOCAL command returns all devices currently addressed as listeners to their local 
state. 

For example, the following code segment places devices at bus addresses 3 and 5 in local 
state. 

command [0] 63; 
command [1] 32 + 3; 
command [2] 32 + 5; 
command[3] = 1; 
hpib_send_cmnd(eid, command, 

Triggering Devices 

1* the UNLISTEN command*1 
1* listen address for device at address 3*1 
1* listen address for device at address 5*1 
1* the GO TO LOCAL command*1 
4); 

The HP-IB TRIGGER command tells devices currently addressed as listeners to initiate 
some device-dependent action. A typical use is triggering a measurement cycle on a 
digital voltmeter. Since device response to a TRIGGER command is strictly device­
dependent, HP-IB has no direct control over the type of action being initiated. 

The following code triggers the device at bus address 5: 

command[O] = 63; 1* UNLISTEN command*1 
command[l] = 32 + 5; 1* listen address for device at address 5*1 
command[2] = 8; 1* TRIGGER command*1 
hpib_send_cmnd(eid, command, 3); 
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Transferring Data 
Data Output 
To output data from an Active Controller the controller must: 

1. Send a bus UNTALK command. 

2. Send a bus UNLISTEN command. 

3. Send its own talk address (MTA). 

4. Send the listen address of the device that is to receive the data. One listen address 
is sent for every device that is to receive the data. 

5. Send the data. 

6. Repeat steps 1 and 2 to clean up the bus. 

The first 3 steps are accomplished using hpib_send_cmnd. The system subroutine write 
takes care of the fourth. 

The following code segment illustrates how character data can be sent to a device at 
HP-IB address 5. 

#include <fcntl.h> 
mainO 
{ 

int eid. MTA; 
char command [50] ; 

eid = open("/dev/raw_hpib". O_RDWR); 
MTA = hpib_bus_status(eid. 7) + 64; 
command[O] = 95; 
command[l] = 63; 
command[2] = MTA; 
command [3] = 32 + 5; 

/*calculate MTA*/ 
/*UNTALK command*/ 
/*UNLISTEN command*/ 
/*address interface to talk*/ 
/*listen address of device at*/ 
/*address 5 */ 

hpib_send_cmnd(eid. command. 4); 
write(eid. "data message". 12); 
hpib_send_cmnd(eid. command. 2); 

/*send the data*/ 
/*clear talkers and listeners*/ 

} 
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Data Input 
Assume that you expect to receive 50 bytes of data from another device on the bus. The 
following code segment programs the interface to receive character data from a device at 
bus address 5. The integer variable MLA contains the interface listen address. 

#include <fcntl.h> 
main{) 
{ 

} 

int eid. MLA. len; 
char buffer [51] ; 
char command[4]; 

eid = open{"/dev/raw_hpib". O_RDWR); 
MLA = hpib_bus_status{eid. 7) + 32; 
command[O] = 95; 
command[l] = 63; 
command[2] =-64 + 5; 

command[3] = MLA; 
hpib_send_cmnd{eid. command. 4); 
len = read{eid. buffer. 50); 
buffer[ len] = '\0'; 
hpib_send_cmnd{eid. command. 2); 
printf{"Data read is: %S". buffer); 

Clearing HP-IB Devices 

/*storage for data*/ 

/*calculate MLA*/ 
/*UNTALK command*/ 
/*UNLISTEN command*/ 
/*address device at address 5*/ 
/*to talk */ 
/*address interface to listen*/ 

/*store the data in "buffer"*/ 
/*terminate with NULL for printf*/ 

/*print message*/ 

Two HP-IB commands are used to reset devices to pre-defined, device-dependent states. 
The first, DEVICE CLEAR, causes all devices that recognize the command to be reset, 
whether addressed or not. 

To reset all devices on an HP-IB accessed through an interface file having entity identifier 
eid, use a code segment similar to: 

command[O] = 20; /* DEVICE CLEAR command*/ 
hpib_send_cmnd{eid. command. 1); 

The second command for resetting devices is SELECTED DEVICE CLEAR. This com­
mand resets only those devices that are currently addressed as listeners. 

To reset a device at HP-IB address 7, use a code segment such as this (the interface must 
already be addressed to talk): 
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command[O] = 63; 
command[l] = 32 + 7; 

command[2] = 4; 
hpib_send_cmnd(eid, command, 

1* the UNLISTEN command*1 
1* the listen address for device at*1 
1* address 7 *1 
1* the SELECTED DEVICE CLEAR command*! 

3); 

Responding to Service Requests 
Most HP-IB devices, such as voltmeters, frequency counters, and spectrum analyzers, 
are capable of generating a service request when they require the Active Controller to 
take some action. Service requests are generally made after the device has completed a 
task (such as taking a measurement) or when an error condition exists (such as a printer 
being out of paper). The operating or programming manual for each device describes the 
device's capability to request service and the conditions under which it requests service. 

Monitoring the SRQ Line 
To request service, a device asserts the bus Service Request (SRQ) line. To determine if 
SRQ is being asserted, check the status of the line, wait for SRQ, or set up an interrupt 
handler for SRQ. The hpib_status_ wait subroutine provides a means for suspending pro­
gram operation until the SRQ line is asserted then continuing. To structure a program 
so that it waits until SRQ line is asserted, invoke hpib_status_ wait as follows: 

hpib_status_wait(eid, 1); 

where eid is the entity identifier for the open interface file and 1 indicates that the event 
that you are waiting for is the assertion of SRQ. The subroutine returns 0 when the 
condition requested becomes true or -1 if a timeout or an error occurred. 
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The following code segment illustrates the use of hpib_status_ wait: 

#include <fcntl.h> 
mainO 
{ 

int eid; 
eid = open(l/dev/raw_hpib". O_RDWR); 
io_timeout_ctl(eid.10000000); I*Set a 10-second timeout*1 
if (hpib_status_wait(eid. 1) == 0) 

service_routine() ; I*SRQ is asserted; service the request*1 
else 

printf("Either a timeout or an error occurred"); 
} 

Another solution is to periodically check the value of the SRQ line by calling 
hpib_bus_status as follows: 

where, as before, eid is the entity identifier for the open interface file and 1 indicates that 
you want the logical value of the SRQ line returned. hpib_bus_status returns 1 if SRQ is 
asserted, 0 if not, and -1 if an error occurred. 

The most practical way to monitor SRQ is to set up an interrupt handler for that 
condition (see "Interrupts" section of Chapter 2). 

Processing the Service Request 
Once a device has asserted the SRQ line, it continues to assert the line until its request 
has been satisfied. How a service request is satisfied is device-dependent. Serial polling 
the device can provide the information as to what kind of service it requires. 

Many devices are designed so that they automatically clear their SRQ output whenever 
they are serially polled. These devices treat the serial poll as an acknowledgement from 
the Active Controller that the request has been recognized and is being processed by the 
Active Controller. 

If there is more than one device on the bus when SRQ is asserted, the Active Controller 
must first determine which device needs service before it can properly undertake any 
service related activity. There are two strategies for doing this: 

• Serial poll each individual device in sequence until the one that is requesting service 
is found. This approach is reasonable if there are only a few devices on the bus. 
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• Conduct a parallel poll to locate the device requesting service. Normally each 
device (when capable) is programmed to respond on a given data line. However, 
up to 15 devices can reRide on the bus which has only 8 data lines. Therefore it is 
sometimes necessary for more than one device to respond on a given line. 

If t\VO or more devices are programmed to respond on a given parallel poll line and 
the parallel poll shows that line asserted, the Active Controller must then serially 
poll each device that is programmed to respond on that line until it determines 
which device is requesting service. 

Thus, the Active Controller responds to SRQ by: 

• Conducting a serial poll of individual devices on the bus, 

• Conducting a parallel poll of return data lines to determine which line is being 
asserted, or 

• Conducting a parallel poll to identify the asserted data line followed by a serial poll 
of devices programmed to assert that line when SRQ is being asserted by the same 
device. 

HP-IB parallel and serial polls are conducted by the DIL subroutines hpib_ppoll and 
hpib_spoU, respectively. The next section explains how to use these subroutineR. 

Parallel Polling 
The parallel poll is the fastest means of determining which device needs service when 
several devices are connected to the bus. Each device on the bus that is capable of 
responding to parallel pools can be programmed to respond to parallel polls by asserting 
a given data line, thus making it possible to obtain the status of several devices in a 
single operation. If a given device responds to the poll with a data line response (I need 
service), more information about its specific status can be obtained by conducting a 
subsequent serial poll of that device. 

Integral PC Only: The parallel poll response in the HP 82998A HP-IB interface can only 
be set using the hpib_card_ppoltresp subroutine. 
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Configuring Parallel Poll Responses 
HP-IB devices fall into three general categories: 

1. Those devices that can be remotely programmed by the Active Controller to re­
spond to a parallel poll in a certain way, The next several pages explain how to 
program these devices. 

2. Devices whose parallel poll response is configured by internal hardware, whether 
by setting a of configuration switches, or based on device bus address. A significant 
number of Hewlett-Packard products fall into this grouping. In general, they are 
HP-IB devices that support secondary commands such as SS/80 and CS/80 mass 
storage devices, CYPER printers, and Amigo protocol devices including several 
disc drives and printers. Some important information about these devices follows 
in the next few paragraphs. 

3. Devices that are not capable of responding to parallel polls, so discussing their 
configuration is meaningless. 

A number of operating rules have been established for devices in Category 2: 

• No two devices can respond on the same data line. This means that only eight or 
fewer devices in this category can reside simultaneously on a given bus. If fewer 
than eight are present, data lines not used by these devices for parallel poll response 
can be shared among remaining devices on the bus if any are present. 

• Each device in this category responds to a parallel poll on an assigned data line 
determined by the device's HP-IB address. Devices residing at HP-IB addresses 0 
through 7 respond on data lines DI7 through DID, respectively (note the reversed 
numbering sequencing). 

• Devices in this category respond to parallel polls when they need service by driving 
the specified data line LOW to its ground-true logic state (the sense cannot be 
reversed to high-true). 

Note also that some models of HP-IB devices can be switched between normal HP­
IB operating mode and "Amigo" or "Secondary" mode (terminology varies as well as 
the implementation). Refer to the device installation and operating manuals for more 
information about how to configure the device for your application and to determine 
whether the device supports remote configuration by the Active Controller, uses internal 
configuration, or does not support parallel poll. 
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To configure the parallel poll response for a given device by remote control from the 
Active Controller, use the HP-IB command sequences PARALLEL POLL CONFIGURE 
followed by PARALLEL POLL ENABLE. This combination of two commands tells all 
devices currently addressed as listeners to respond to any future parallel polls by asserting 
a specific data line with a specific logic level. Most devices that do not support remote 
configuration programming have internal configuration switches or jumpers that perform 
an equivalent function but which cannot be changed remotely by the Active Controller. 

Devices that can be remotely configured can be programmed to respond with a logic 0 
or logic 1 level on anyone of eight data lines. Thus there are 16 possible combinations of 
lines and logic levels since there are two possible levels on each line and only one line can 
be asserted during a parallel poll. The PARALLEL POLL ENABLE command consists 
of an 8-bit byte whose bits are arranged as follows (the decimal equivalent value of the 
byte falls in the range of 96 through 111): 

D7 D6 D5 D4 D3 D2 Dl DO Decimal Range 

0 1 1 0 L X X X 96-111 

where: 

• The upper four bits are a fixed pattern of logical 0 (bits D7 and D4) and logical 1 
(bits D6 and D5). 

• Bit D3 (response logic level) determines whether data line D3 is to be asserted 
(driven to its ground-true state) or released (allowed to float to its high-false state) 
by the device when responding to a parallel poll if service is needed. If bit D3 is set 
(1), the device responding to the poll drives the data line low if service is -needed. 
If D3 is not set (0), the device responding to the poll drives the data line low if 
service is not needed (bit value = 0). This bit is most commonly set to a value of 
1. 

• Bits D2, D1, and DO are the 3-bit (value range 0 through 7) value representing 
which data line (DO through D7 respectively) is to be used when responding to a 
parallel poll. 

For example, to program a given device to respond to a parallel poll by placing a logic 
1 on data line DO if it needs service, use a PARALLEL POLL ENABLE command with 
a decimal value of 104 (binary 01101000). 
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The following code segment shows how to configure a device at bus address 5 to respond 
to a parallel poll by asserting data line D1 with a logic 1 if it needs service. 

#include <fcntl.h> 
mainO 
{ 

} 

int eid. MTA; 
char command[50]; 

eid = open("/dev/raw_hpib". O_RDWR); 
MTA = hpib_bus_status(eid. 7) + 64; /*calculate MTA*/ 
command[O] = MTA; /*talk address of interface*/ 
command [1] 63; /* the UNLISTEN command*/ 
command [2] 32 + 5; /* the listen address for device at*/ 

/* address 5 */ 
command [3] 5; /* the PARALLEL POLL CONFIGURE command*/ 
command [4] 105; /* the PARALLEL POLL ENABLE command*/ 
hpib_send_crnnd(eid. command. 5); 

Notice that the bit pattern for the PARALLEL POLL ENABLE command 105 used 
above is: 

o 1 o 1 001 

LlLThese 3 bits indicate that the device should 
respond on 01. 

~--------This bit indicates that the device respond with 
a 1 to request service. 

~......I,_.....&.._"""'----------These 4 bits indicate that this is a PARALLEL 
POLL ENABLE command. 

When the computer interface is the Active Controller, it can configure its own parallel 
poll response by addressing itself as both talker and listener. However, the configura­
tion is meaningless until the interface is no longer Active Controller because the Active 
Controller never responds to parallel polls. 
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Disabling Parallel Poll Responses 
A device whose parallel poll response can be remotely configured by the Active Controller 
can also be disabled from responding. 

To disable a device from responding to subsequent parallel polls, the Active Controller 
must first send a PARALLEL POLL CONFIGURE command followed by PARALLEL 
POLL DISABLE. This sequence disables all devices that are currently addressed to listen. 

In the previous example a device at bus address 5 was configured to respond to parallel 
polls on data line Dl. To disable parallel poll response on the same device, use a code 
segment similar to the following: 

command[O] = MTA; 
command[l] = 63; 
command[2] = 32 + 5; 

/*talk address of interface*/ 
/* the UNLISTEN command*/ 
/* the listen address for device at*/ 
/* address 5 */ 
/* the PARALLEL POLL CONFIGURE command*/ 
/* the PARALLEL POLL DISABLE command*/ 

command[3] = 5; 
command [4] = 112; 
hpib_send_cmnd(eid. command. 5); 

Conducting a Parallel Poll 
Once parallel poll responses have been (remotely or internally) configured for all devices 
on the bus that are capable of responding to parallel polls, you can use hpib_ppoll to 
conduct a parallel poll on the bus, provided the computer is the current Active Controller. 

The hpib_ppoll subroutine returns an integer whose least significant byte contains the 
8-bit response to the parallel poll. Each device that is enabled to respond to a parallel 
poll places its status bit (service needed or not needed) on the data line defined by its 
current parallel poll response configuration. The subroutine returns -1 if an error occurs 
during the poll. 

hpib_ppoll is invoked as follows: 

hpib_ppoll(eid); 

where eid is the entity identifier for the open interface file associated with the bus. 
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The following code segment shows how to interpret the byte returned by hpib_ppoll. 
Suppose a device at address 6 was previously configured to respond to a parallel poll by 
setting DO to logic 1 (low) level if it needs service and a device at address 7 was configured 
to respond similarly on D 1. Assuming that these are the only two devices capable of 
responding to a parallel poll, only the values of the 2 least significant bits of the integer 
returned by hpib_ppoll are of interest. This example code segment handles the results of 
the parallel poll, but does not include the code needed to handled the requested service. 

#include <fcntl.h> 
maine) 
{ 

} 

int eid. status. byte; 
eid = open("/dev/raw_hpib". O_RDWR); 

if «status = hpib_ppoll( eid)) == -1) /*conduct the parallel poll*/ 
{ 

printf("error taking ppoll"); /*if -1 returned then error occurred*/ 
exit (1) ; 

} 

byte = status & 3; 

switch (byte) { 

} 

case 0: 

break; 
case 1: 

break; 
case 2: 

break; 
case 3: 

break; 

/*set all but the least significant*/ 
/*2 bits to zero */ 

/*neither device is requesting service*/ 

/*device at address 6 wants service*/ 

/*device at address 7 wants service*/ 

/*both devices want service*/ 
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Errors During Parallel Polls 
hpib_ppoll returns the value -1 if anyone of the following error conditions are encoun­
tered: 

• Timeout defined by io_timeouLctl occurred before all devices responded. 

• Computer's interface is not the Active Controller. 

• Entity identifier eid does not refer to a raw HP-IB interface file. 

• Entity identifier eid does not refer to an open file. 

To find out which of these conditions caused the error, your program should check for 
the following values of errno: 

errno Value 

EBADF 

ENOTTY 

EIO 

Error Condition 

eid does not refer to an open file. 

eid does not refer to a raw interface file. 

Interface is not Active Controller or a timeout occurred. 

Waiting For a Parallel Poll Response 
Subroutine hpib_waiLon_ppoll allows you to wait for a specific parallel poll response 
from one or more devices. The effect of this is similar to using hpib_status_ wait to wait 
for assertion of SRQ as discussed earlier. hpib_waiLon_ppoll provides a mechanism for 
waiting until a specific device requests service while hpib_status_ wait only waits until any 
device requests service. 

To call hpib_waiLon_ppoll, use the form: 

where eid is the entity identifier for an open interface file, mask is an integer whose binary 
value identifies which parallel poll lines are to be monitored for a request, and sense is 
an integer whose binary value identifies which lines respond with an inverted logic sense 
(device responds with 0 when it wants service instead of the usual 1). hpib_waiLon_ppoll 
returns the response byte XORed with the sense value then ANDed with the mask value, 
unless an error occurs, in which case it returns -1. 
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Calculating the mask 
hpib_waiLon_ppoll uses only the least significant byte of the mask integer which means 
that the integer's remaining bytes can contain anything. For simplicity, the examples in 
this discussion set the upper bytes to zero. 

The value for mask is determined as follows: 

1. Decide which parallel poll lines (the 8 data lines labelled DO through D7) are to be 
monitored for service requests. 

2. Set up an 8-bit binary number where the bits associated with each line being 
monitored are set to 1 and all remaining bits are O. (DO is associated with the least 
significant bit of the binary number, and D7 with the most significant.) 

3. Given the binary number from step 2, calculate its decimal value. The result is the 
correct value for mask. 

For example, suppose that you want to wait for device A or device B to request service. 
You know that device A has been configured to respond on parallel poll line DO and 
device B has been configured to respond on line D4. The correct binary value for mask 
is: 

D7 D6 D5 D4 D3 D2 Dl DO 

a a a 1 a a a 1 

The decimal equivalent of this binary number is 17; the correct value for mask. 

Consider a mask value of 0 which indicates that you do not want to wait for a request on 
any of the parallel poll lines. In such a case, a call to hpib_waiLon_ppoll using a mask of 
o is meaningless and has no effect. 
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Calculating the sense 
The subroutine hpib_waiLon_ppoll also only looks at the least significant byte of the 
sense integer. For simplicity, the examples in this discussion set the upper bytes to zero. 

The value for sense is determined as follows: 

1. Decide which parallel poll lines (the 8 data lines) are to be monitored for service 
requests as discussed earlier. 

2. Determine which of these lines will indicate a service request by a logic 0 response. 
This means that you must know the sense with which the associated devices are 
configured to respond to parallel polls. 

3. Define an 8-bit binary number where the bits associated with the lines that use a 
o to indicate a service request are set to 1 and all of remaining bits are O. (DO 
is associated with the least significant bit of the binary number, and D7 with the 
most significant.) 

4. Given the binary number from step 3, calculate its decimal value. The resulting 
value is the sense integer you should use with hpib_ waiL on_ppoll. 

U sing the previous example for calculating the mask value, device A is configured to 
respond on line DO with a 1 when it wants service, but device B requests service by 
placing a 0 on line D4. The binary value for sense is: 

D7 D6 D5 D4 D3 D2 Dl DO 

a a a 1 a a o o 

The decimal equivalent of this number is 16; the correct value for sense. 

If all devices on the bus respond to parallel polls with a 1 to request service, the value 
for sense can always be 0, regardless of which parallel poll lines are being monitored. If, 
on the other hand, all of devices request service with a 0, the sense value can always be 
255 (11111111 in binary). You need calculate a special value for sense only if various 
devices on the bus respond with dissimilar logic senses. 
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Example 
Assume that you want to use hpib_waiLon_ppoli to wait for one of the four devices on a 
bus to request service where the bus is configured as follows: 

Parallel Poll Requests Service 
Device Bus Address Response Line with a: 

A 5 DO 1 

B 7 Dl 0 

C 9 D2 0 

D 11 D3 1 

Begin by calculating the mask value for hpib_ waiLon_ppoli. Since responses can be 
expected on lines DO, D1, D2, and D3, the correct mask value is: 

Binary: Decimal: 

o 0 001 1 1 1 15 

The four devices on the bus use mixed (both ground- and high-true logic), the sense value 
must be determined. Devices responding on lines D1 and D2 use 0 to request service, so 
the sense value is: 

Binary: Decimal: 

o 0 0 0 0 1 1 0 6 

Now that the mask and sense values have been determined, the code segment that makes 
the call to hpib_ waiL on_ppoll can be written: 

#include <fcntl.h> 
mainO 
{ 

} 

int eid; 
eid = open (It/dev/raw_hpib lt , O_RDWR); 
io_timeout_ctl(eid,10000000); /*Set a 10-second timeout*/ 

if (hpib_wait_on_ppoll(eid, 15, 6) == -1) 
printf(lteither a timeout or error occurred lt ); 

else 
service_routine(); 
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In the code segment shown, service_routine is executed only if one of the four devices 
requests service during the parallel poll. Service_ routine should contain code segments 
to service all devices on the bus, either individually or as a group. See the appropriate 
hardware-specific appendix for any restrictions that may apply to your system. 

Serial Polling 
A sequential poll of individual devices on the bus is known as a serial poll. One entire 
status byte is returned by the polled device in response to a serial poll. This byte is 
called the status byte message and, depending on the device, may indicate an overload, a 
request for service, printer out of paper, or some other condition. The particular response 
of each device depends on the device. 

Not all devices can respond to a serial poll. To find out whether a particular device can 
be serially polled, consult operating manuals for the device. Attempting to serially poll 
a device that cannot respond to the poll causes a timeout or suspends your program 
indefinitely. 

The Active Controller cannot poll itself. 

Unlike parallel poll responses, serial poll responses cannot be configured remotely by the 
Active Controller. Responses vary, depending on the type of device being polled. Refer 
to device manual for more information. 

Conducting a Serial Poll 
Subroutine hpib_spoll performs a serial poll on a specified device. It is called with the 
form: 

hpib_spoll(eid, address); 

where eid is the entity identifier for an open interface file and address is the bus address 
of the device being polled. The subroutine returns an integer, the lowest byte of which 
contains the status byte message (the serial poll response) from the addressed device. 
Only one device can be polled per call to hpib_spoll. 

Although the status byte message supplied by the addressed device is device-dependent, 
bit D6 (of bits DO through D7) always indicates whether or not the device is currently 
asserting SRQ. If SRQ is currently being asserted by the device, indicating that it needs 
service, be sure to handle the request properly because the serial poll also clears SRQ so 
that a subsequent poll will show no service request, whether or not the current request 
has been satisfied. 
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The following code segment shows how hpib_spoll can be used to determine whether 
a device at bus address 5 is requesting service. The determination is made by simply 
examining D6 which indicates whether SRQ is being asserted. 

#include <fcntl.h> 
maine) 
{ 

int eid. status; 
eid = open(l/dev/raw_hpib". O_ROWR); 
io_timeout_ctl(eid.100000); I*Set a O.1-second timeout*1 

if «status = hpib_spoll(eid. 5» == -1) 
{ printf("error during serial poll"); 

exit(1); 
} 

I*conduct serial poll*1 

if (status It 64) 

service_routine(); 

I*after setting every bit except 06*1 
I*to zero; if 06 is set the device*1 
I*is requesting service *1 

} 

Errors During Serial Poll 
If any of the following error conditions are encountered during a call to hpib_spoll, the 
subroutine returns -1: 

• Addressed device did not respond to serial poll before the timeout limit defined by 
io_timeouLctl was exceeded. 

• Computer interface is not current Active Controller. 

• Entity identifier eid does not refer to an HP-IB raw interface file. 

• Entity identifier eid does not refer to an open file. 

• Address is outside the range [0,30]. 

To determine which of these conditions caused the error, your program should check for 
the following values of errno: 

errno Value 

EBADF 

ENOTTY 

EIO 

EINVAL 

Error Condition 

eid does not refer to an open file. 

eid does not refer to a raw interface file. 

The device polled did not respond before the timeout or the interface 
is not Active Controller. 

Invalid bus address. 
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Passing Control 
The subroutine hpib_pass_ ctl can be used to pass control of the bus from the computer 
(which must be the current Active Controller) to a Non-Active Controller. A Non-Active 
Controller is a device capable of becoming Active Controller, which usually means it is 
another computer. 

hpib_pass_ctl is called as follows: 

hpib_pass_ctlCeid. address); 

where eid is the entity identifier for an open interface file that is currently the Active 
Controller and address is the bus address of a Non-Active Controller. Upon completion1 

the Non-Active Controller becomes the new Active Controller and the local interface is 
a Non-Active Controller. 

While hpib_pass_ctl can pass active control capability, it cannot pass system control 
capability. 

What If Control Is Not Accepted? 
Your program is not suspended if the Non-Active Controller that you address does not 
accept active control of the bus, but the computer still loses active control meaning that 
the bus no longer has an Active Controller. If this happens, the computer must use 
its position as System Controller to assume the role of Active Controller by executing 
hpib_abort (see System Controller Role section which follows) or io_reset. 

No error is returned by hpib_pass_ ctl if the device that you address does not accept 
active control, and there is no direct way to determine in advance whether a given 
device can accept active control. There is also no way for the computer, after initiating 
hpib_pass_ ctl, to determine whether active control has been accepted. However, if the 
computer that has passed control immediately requests service after passing control and 
detects a timeout before the request is acknowledged, this indicates that active control 
may not have been accepted. 

Errors While Passing Control 
If any of the following errors are encountered, hpib_pass_ctl returns -1: 

• Computer interface is not Active Controller. 

• Entity identifier eid does not refer to an HP-IB raw interface file. 

• Entity identifier eid does not refer to an open file. 

• Address is outside the range [0,30]. 
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To find out which of these conditions caused the error, your program should check for 
the following values of errno: 

errno Value 

EBADF 

ENOTTY 

EIO 

EINVAL 

Error Condition 

eid does not refer to an open file. 

eid does not refer to a raw interface file. 

Interface is not Active Controller. 

Invalid bus address. 
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System Controller Role 
\Vhen the HP-IBs System Controller is first powered on or is reset, it assumes the role 
of Active Controller. An HP-IB can have only one System Controller. The System 
Controller cannot pass system control to any other controller (computer) on the bus. 
However, it can pass active control to another controller. 

Integral PC Only: The HP 82998A HP-IB interface can be configured to power-on in 
the non-system-controller state by setting a switch on the interface card. Refer to the 
HP 82923A HP-IB Interface Owner's Manual for instructions. The built-in HP-IB inter­
face on the Integral PC will always power-on in the system-controller state. 

Determining System Controller 
To determine whether your computer's HP-IB interface is the System Controller, use the 
hpib_bus_status subroutine which must be called as follows: 

hpib_bus_status(eid. 3); 

where eid is the entity identifier for an open interface file and 3 indicates that you want 
to determine whether it is the System Controller. The subroutine returns 1 if it is the 
System Controller, 0 if not, and -1 if an error occurs. 

The following code segment prints a message indicating whether the interface is System 
Controller: 

#include <fcntl.h> 
mainO 
{ 

} 

int eid. status; 
eid = open("/dev/raw_hpib". O_ROWR); 

if «status = hpib_bus_status(eid. 3» == -1) 
printf("Error occurred during bus status subroutine"); 

else if (status == 1) 
printf("Interface is the System Controller"); 

else 
printf("Interface is not the System Controller"); 
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System Controller's Duties 
The HP-IB System Controller has three major functions: 

• It assumes the role of Active Controller at power-up and reset. 

• It can cancel talkers and listeners from the bus and assume the role of Active 
Controller by executing hpib_abort. 

• It can control the logic level of the remote enable line (REN) with hpib_ren_ctl. 

hpib_abort 
A call to hpib_ abort performs the following actions: 

• Terminates activity on the bus by pulsing the Interface Clear (IFC) line. This 
unaddresses all talkers and listeners on the bus. 

• Sets the REN line so that devices on the bus will be placed in their remote state 
when addressed as listeners. 

• Clears the ATN line if it was left set by the previous Active Controller. 

• System Controller then becomes Active Controller. 

• Returns all devices on the bus to their local state. 

hpib_abort leaves the SRQ line unchanged, meaning that any device requesting service 
before hpib_abort is executed is still requesting service when the subroutine is finished. 

To use hpib_abort on a particular HP-IB, the computer must be the System Controller 
of that bus. It does not have to be the Active Controller. 

One situation where hpib_abort is useful is when the current Active Controller passes 
active control to another device, but the device does not accept active control (this can 
occur when the device addressed to receive control is not another controller). Conse­
quently, the bus is left without any Active Controller, leaving the System Controller to 
assume that role by using hpib_ abort. 

hpib_ abort is called as follows: 

hpib_abort(eid); 

where eid is the entity identifier for an open interface file. 
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hpib_ren_ctl 
hpib_ren_ctl is used to enable or disable the REN line on the HP-IB. If the REN is 
enabled, all devices capable of remote operation (meaning that they can interpret HP-IB 
commands) can be placed in their remote state by the Active Controller addressing them 
as talkers or listeners. When REN is disabled, all devices on the bus return to their local 
state and cannot be accessed remotely. 

The REN line is enabled by default by the System Controller at power-up or reset. It is 
also enabled whenever the System Controller executes hpib_abort. 

To use hpib_ren_ctl on a particular HP-IB, the computer must System Controller on that 
bus. It does not have to be the Active Controller. 

hpib_ren_ctl is called as follows: 

hpib_ren_ctl(eid, flag); 

where eid is the file descriptor for an open interface file and flag is an integer. If flag is 
zero, the REN line is disabled. If it has any other value, REN is enabled. 

Errors During hpib_abort and hpib_ren_ctl 
If any of the following errors is encountered, hpib_abort and hpib_ren_ctl both return -1: 

• Computer interface is not System Controller. 

• Entity identifier eid does not refer to an HP-IB raw interface file. 

• Entity identifier eid does not refer to an open file. 

To determine which of these conditions caused the error, your program should check for 
the following values of errno: 

errno Value 

EBADF 

ENOTTY 

EIO 

Error Condition 

eid does not refer to an open file. 

eid does not refer to a raw interfac.e file. 

Interface is not System Controller. 
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The Computer As a Non-Active Controller 
The information described in this section is accurate for Series 200/300 and 500 comput­
ers. For details specific to the Integral PC, refer to Appendix C, "Integral PC Depen­
dencies." 

Checking Controller Status 
Subroutine hpib_bus_status is used to obtain information about the current status of the 
HP-IB interface card and the HP-IB, and can be used by any controller on the bus, 
whether it is the current Active Controller or System Controller or not. hpib_bus_status 
is mentioned briefly in previous discussions about Active and System Controllers. The 
discussion that follows is a broader treatment of how the routine is used. 

The call to hpib_bus_status has the form: 

where eid is the entity identifier for an open interface file and status_question is an integer 
that indicates what question you want answered. The value of status_question must be 
within the range of 0 through 7 where the relationship between value and the nature of 
the status inquiry are as follows: 

Value 

o 
1 

2 

3 

4 

5 

6 

7 

Status Question 

Is the interface in its remote state? 

Are any devices currently requesting service? (Is SRQ asserted?) 

Is there a listener that is not ready for data? (Is NDAC asserted?) 

Is the interface the current System Controller? 

Is the interface the current Active Controller? 

Is the interface currently addressed as a talker? 

Is the interface currently addressed as a listener? 

What is the interface's bus address? 

If the value of status_question is in the range 0-6, hpib_bus_status returns 1 if the answer 
to the question is yes, or 0 if the answer is no. If the value of status_question is 7, 
hpib_bus_status returns the bus address of the computer's HP-IB interface. If the value 
of status_question is outside the allowable range of 0 through 7, -1 is returned, indicating 
an error. 

86 Controlling the HP -IB Interface 



For example, to determine if your interface is a Non-Active Controller on the bus, use a 
calling sequence similar to the following code segment: 

if «status = hpib_bus_status(eid, 4» == -1) 
printf(IIError occurred while checking status U); 

else if (status == 0) 
printf("Computer is a Non-Active Controller"); 

else 
printf("Computer is the Active Controller"); 

Requesting Service 
When your computer is a Non-Active Controller it can request service from the current 
Active Controller by asserting the SRQ line. This is done with the hpib_ rqsCsrvce routine 
which is called as follows: 

hpib_rqst_srvce(eid, response); 

where eid is the entity identifier for an open interface file and the lowest byte of response 
is the integer value of the 8-bit response that the computer gives if it is serially polled. 
The upper bytes of response are ignored by the hpib_rqsCsrvce. Using the labels dO 
through D7 for the data bus byte, bit D6 sets SRQ line. The defined values for the 
remaining 7 bits varies, depending on the application. This section only discusses how 
to use D6 (integer value of 64) to set and clear the SRQ line. 

To request service, invoke hpib_rqsCsrvce as follows: 

#include <fcntl.h> 
maine) 
{ 

int eid; 

eid = open("/dev/raw_hpib", O_RDWR); 
hpib_rqst_srvce(eid, 64); /*Bit 6 of serial poll response is set*/ 

/*and SRQ is asserted */ 
} 

Note that by setting response to 64, the only information that the Active Controller 
receives when it serially polls your computer is that you are asserting the SRQ line. 
Therefore, other data bits in response must be set or cleared to indicate the type of 
service you are requesting, and the program controlling the current Active Controller 
must be capable of interpreting the data correctly before transfer of control between 
computers connected to the same bus can be handled in an orderly manner. 

Controlling the HP-IB Interface 87 



hpib_ rqsLsrvce returns 0 if it executes correctly or -1 if an error occurred. 

Once you have asserted SRQ, the line remains asserted until the Active Controller serially 
polls you or you call hpib_ rqsLsrvce again and clear bit 6 using a sequence such as 
hpib_ rqsLsrvce (eid, 0). Once the serial poll response is configured, your computer's 
HP-IB interface responds automatically to any serial polls from the Active Controller. 

A couple of notes of caution are in order here: 

If another device on the bus is also asserting SRQ when your service request is detected 
by the current Active Controller, SRQ remains asserted, even after your service request 
is processed by the Active Controller. Thus, if you receive control of the bus before the 
requesting device is serviced, you must handle that device's service request correctly in 
order to maintain correct bus operation. 

On the other hand, if you call hpib_rqsLsrvce while you are Active Controller, the inter­
face receives the service request sequence from the computer but does not place an SRQ 
on the bus as long as you are still Active Controller. However, if active control is passed 
to another controller on the bus, as soon as the interface changes to non-controller it 
immediately sets SRQ and readies the specified response data byte for the first serial poll 
from the new Active Controller. 

When an Active Controller detects an asserted SRQ line, it usually conducts a parallel 
poll of devices on the bus to determine which one is requesting service. The next section 
discusses how to configure the HP-IB interface card for correct response to parallel polls. 

When an HP-IB device responds to a parallel poll with an I need service message, the 
Active Controller then performs a serial poll to determine what type of service is required. 
If two or more devices are configured to respond to a parallel poll on a single data line and 
the Active Controller detects a service request on that line, the controller must perform 
a serial poll of all devices that respond on that line in order to determine which device 
is requesting service. 
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Errors While Requesting Service 
If any of the following error conditions occurs, hpib_rqsCsrvce returns -1: 

• Entity identifier eid does not refer to an HP-IB raw interface file. 

• Entity identifier eid does not refer to an open file. 

To determine which of these conditions caused the error, your program should check for 
the following values of errno: 

errno Value 

EBADF 

ENOTTY 

Error Condition 

eid does not refer to an open file. 

eid does not refer to a raw interface file. 

Responding to Parallel Polls 
Before the HP-IB interface on your computer can respond correctly to a parallel poll 
from another Active Controller, the response must be configured on the interface. This 
can be programmed remotely by the Active Controller as discussed previo1lsly in the 
Active Controller section of this chapter, or locally using hpib_card_ppoILresp. 

To configure a parallel-poll response: 

• Specify the logic sense of the response (Le. whether a 1 means the device does or 
doesn't need service). 

• Specify which data line the device responds on. Two or more devices can be con­
figured to respond on a single line. 

To locally configure how your computer responds to parallel polls, call 
hpib_ card_ppolL resp as follows: 

where eid is the entity identifier of an open interface file and response is an integer whose 
binary value configures the response. 
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Calculating the Response 
The value for response is found by first forming an 8-bit binary number, then using the 
decimal equivalent of that number where the bits in the binary number are defined as 
follows: 

D7 D6 D5 D4 D3 D2 Dl DO 

o o o o s p p p 

where: 

S sets the logic sense of the response. Thus, if Sis 1, the device responds with a 
logic 1 in response to a parallel poll if it requires service. Likewise, if Sis 0, the 
interface places a logic 0 on the assigned data line in response to a parallel poll if 
it requires service. 

P is a 3-bit binary number (value range from 0 through 7) that specifies which of the 
eight available parallel poll response lines (DO-D7) is to be used when responding 
to a parallel poll. 

Of course, this configuration capability is possible only on those interfaces that support 
it. Refer to the appropriate appendix for more information about specific systems. 

Limitations of hpib_card_ppoILresp 
Hardware limitations on certain devices restrict the use of hpib_card_ppoILresp to config­
ure parallel poll responses. Refer to the Appendix related to for your system to find out 
if any restrictions apply. If there are restrictions on your system, you may find it easier 
to configure the interface parallel poll response remotely from another Active Controller. 
Don't forget that the Active Controller can configure its own response, but the response 
remains dormant until control is passed to another device. 

Error Conditions 
If any of the following error conditions is encountered by hpib_card_ppoILresp, it returns 
-1: 

• Entity identifier eid does not refer to an HP-IB raw interface file. 

• Entity identifier eid does not refer to an open file. 

• Series 500 Only: Interface parallel poll response cannot be altered under local 
program control. 
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To find out which of these conditions caused the error, your program should check for 
the following values of errno: 

errno Value 

ENOTTY 

EINVAL 

hpib_ppoILresp_ctl 

Error Condition 

eid does not refer to an open file. 

eid does not refer to a raw interface file. 

(Series 500 Only:) Interface cannot respond on the line indicated by 
response 

The subroutine hpib_ppoILresp_ctlis used to control how the HP-IB interface will respond 
to the next parallel poll: 

• Assert the assigned data line with the previously configured logic sense if service is 
required, or 

• Place the opposite logic level on the same data line if the interface does not need 
to interact with the Active Controller. 

Parallel poll response is set as follows: 

where eid is the entity identifier of an open interface file and response_value is an integer 
that indicates how the interface is to respond to the next parallel poll. If response_ value is 
non-zero, the computer will respond to the next parallel poll with a request for service. If 
response_ value is zero, the next response will be set to indicate that no service is needed. 
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Disabling Parallel-Poll Response 
You can also disable responses to parallel polls from another Active Controller by using 
hpib_card_ppoILresp by setting bit D4 in the routine's response value. When D4 is 0 the 
interface is set to respond to parallel polls with a service-needed logic level. When D4 
is 1, the interface responds to parallel polls with the opposite (service not needed) level. 
Thus, a flag value of 16 disables the need-service response. 

For example, the subroutine call: 

I*disable parallel poll response*1 

disables the HP-IB interface associated with entity identifier eid from responding to any 
parallel polls with a service request. 

Accepting Active Control 
Any Active Controller can pass control to any other device on the bus, but only a Non­
Active Controller can accept control. When an Active Controller interface passes control 
to a Non-Active Controller interface, the Non-Active interface automatically accepts 
control and the former Active Controller becomes a N on-Active Controller. However, 
when this transfer of control occurs, the interface receiving control does not automati­
cally notify the computer that control has been received unless the necessary interrupts 
have been set up by the application program by use of subroutines hpib_bus_status, 
hpib_status_ wait, and io_ on_ interrupt. 

hpib_status_ wait has been mentioned in previous discussions about the Active Controller 
and System Controller. The following discussion provides a look at its uses. 
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Call hpz'b_status_ waz't as follows: 

hpib_status_wait(eid. status); 

where ez'd is the entity identifier for an open interface file and status is an integer indi­
cating what condition you want to wait for. The following values for status are defined: 

Value Wait Condition 

1 

4 

5 

6 

Wait until the SRQ line is asserted 

Wait until this computer is the Active Controller 

Wait until this computer is addressed as a talker 

Wait until this computer is addressed as a listener 

Suppose you are designing a program to handle a situation where the current Active 
Controller is programmed such that when your computer requests service, it passes active 
control to you. The following code segment shows how you can program your computer to 
request service then wait until it becomes the new Active Controller before it continues. 

#include <fcntl.h> 
mainO 
{ 

} 

int eid; 

eid = open(l/dev/raw_hpib". O_RDWR); 
if (hpib_rqst_srvce(eid. 64) == -1) I*set SRQ line to request service*1 
{ 

} 

printf("Error while requesting service"); 
exit (1) ; 

if (hpib_status_wait(eid. 4) == -1) I*wait until Active Controller*1 
{ 

} 

printf("Error while waiting for status"); 
exit (1) ; 

I*Computer is now the Active Controller*1 

Note that for hpz'b_status_waz't to have returned -1 (caused by an unexpected timeout), 
a timeout value would have to have been set using z'o_tz'meouLcti after the interface file 
was opened. Since this example does not contain a call to z'o_ tz'meouL cti, no timeout 
occurs. 
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Errors While Waiting on Status 
hpib_status_ wait returns -1 indicating an error if any of the following error conditions 
are encountered: 

• A timeout occurred before the condition the routine was waiting for became true. 

• The value specified by status is undefined. 

• Entity identifier eid does not refer to a raw HP-IB interface file. 

• Entity identifier eid does not refer to an open file. 

To find out which of these conditions caused the error, your program should check for 
the following values of errno: 

errno Value 

EBADF 

ENOTTY 

EINVAL 

EIO 

Error Condition 

eid does not refer to an open file. 

e£d does not refer to a raw HP-IB interface file. 

status contains an invalid value. 

The specified condition did not become true before a timeout oc­
curred. 

Determining When You Are Addressed 
As a N on-Active Controller you may be addressed at any time by the current Ac­
tive Controller to become a bus talker or listener for data transfer. The DIL routines 
hpib_ bus_status, hpib_status_ wait, and io_ on_ interrupt are used to determine that the 
interface is currently being addressed and provide proper notification to the controlling 
program. 
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The following code segment determines whether the interface is currently addressed as a 
bus talker: 

#include <fcntl.h> 
maine) 
{ 

int eid; 

eid = open ("/dev/raw_hpib", O_RDWR); 
if (hpib_bus_status(eid, 5) == 1) 
{ 

printf("the interface is addressed as a talker"); 
write(eid, "data message ll

, 12); /*do the expected data transfer*/ 
} 

else 
printf("the interface is not addressed as a talker"); 

} 

In the above call to hpib_bus_status, eid is the entity identifier for the interface device 
file and 5 indicates that you want to know if it is addressed to talk. The routine returns 
the value 1 if the answer is yes; 0 if not. 

To determine whether the interface is currently addressed as a bus listener use the fol­
lowing: 

if (hpib_bus_status(eid, 6) == 1) 
{ 

printf("the interface is addressed as a listener"); 
read(eid, buffer, 12); /*do the data transfer*/ 

} 

else 
printf("the interface is not addressed as a listener"); 

If you need to wait until the interface is addressed as either a talker or listener, then 
handle an appropriate data transfer, use the DIL subroutine hpib_status_ wait, specifying 
both the entity identifier of the interface device file and the bus condition that is being 
used to terminate the wait. 

hpib_status_wait(eid, condition); 
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As with hpib_bus_status, a condition value of 5 causes the program to wait until the 
interface is addressed as a talker. With a condition value of 6 the routine waits until it 
is addressed to listen. How maximum time that the routine can wait for the specified 
condition is controlled by the timeout value that was previously set for the entity identifier 
using subroutine io_timeouLctl (discussed in Chapter 2). hpib_status_wait returns 0 if 
the wait condition terminated the wait or -1 if a timeout or other error occuered before 
the wait condition was fulfilled. 

In the following example code segment, the program waits for the interface to become a 
bus listener, then reads a 50-byte message. 

#include <fcntl.h> 
mainO 
{ 

} 

int eid, len; 
char buffer [51] ; I*storage for message*/ 
eid = open ("/dev/raw_hpib", O_RDWR); 
io_timeout_ctl(eid,5000000); /*5-second timeout*/ 

if (hpib_status_wait(eid, 6) -1) 
{ 

printf("Either a timeout or an error occurred"); 
exit(l); 

} 

len = read(eid, buffer, 50); 
buffer[ len] = '\0'; 
printf("Message is: Yes", buffer); 

/*read data into buffer*/ 

/*print data message*/ 

Note that in this example a timeout value is set for the interface file's entity identifier so 
that the program cannot hang indefinitely while waiting for the interface to be addressed 
as a bus listener should the condition not occur as expected. 
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The following example illustrates how to use io_on_interrupt to set up an interrupt 
handler to handle a data transfer: 

#include <dvio.h> 
#include <fcntl.h> 
int eid; 
char buffer [50] ; 
main() 
{ 

} 

int handler 0 ; 
int eid; 
struct interrupt_struct cause_vec; 

eid = open(l/dev/raw_hpib",O_RDWR); 
cause_vec.cause = LTN; 
io_on_interrupt(eid, cause_vec, handler); 

handler(eid, cause_vec); 
int eid; 
struct interrupt_struct cause_vec; 
{ 

} 

if (cause_vec.cause == LTN) 
read(eid, data, 50); 
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Combining 1/0 Operations 
into a Single Subroutine Call 
hpib_io is a high-level DIL subroutine that provides a mechanism for conveniently col­
lecting a series of HP-IB I/O operations in a data structure then using a simple sub­
routine call to hpib_io to handle interface and bus management operations. This feature 
eliminates the need for using several long tedious series of subroutine calls to io_lock, 
hpib_send_cmnd, read, write, and io_unlock. 

A call to hpib_io has the form: 

#include <dvio.h> 
/* on the Integral PC. the include directive would be: 

* 
* #include <libdvio.h> 
*/ 

MainO 
{ 

} 

int eid; 
struct iodetail *iovec; 
int iolen; 

hpib_ioCeid. iovec. iolen); 

where eid is the entity identifier of an open interface file, iovec is a pointer to an array of 
I/O operation structures, and iolen is the number of structures in the array. The name 
of the template for the I/O operation structures is iodetail and it is defined in the include 
file dvio.h. 

On the Integral PC, the include file is libdvio.h instead of dvio.h, as shown in the example 
above. 
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lodetail: The I/O Operation Template 
The form of the iodetail structure that holds I/O operations is: 

struct iodetail { 
char mode; 
char terminator; 
int count; 
char *buf; 

}; 

Where the components in structure iode~ail have the following meanings: 

mode 

terminator 

count 

buf 

Describes what kind of I/O operation the structure contains. 

Specifies whether or not there is a read termination character for the 
I/O operation, and if so it specifies the value. 

How many bytes are to be transferred during the I/O operation. 

A pointer to an array containing the bytes of data to be transferred. 

Components of a particular iodetail structure are referenced with: 

iovec->component 

where iovec is a pointer to an array of iodetail structures and component is either mode, 
terminator, count, or buf 

The Mode Component 
The mode describes what type of I/O operation is to be performed on the data pointed 
to by the buf component. To determine its value, OR appropriate constants from a set 
defined in the include file dvio. h. You can choose from the following constants: 
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Name Description 

HPIBREAD Perform a read operation and place the data into the accompanying buffer 
pointed to by buf. Can be by itself or OR-ed with HPIBCHAR. 

HPIBWRITE Perform a write operation using the data in the accompanying buffer 
pointed to by buf. Can be by itself or OR-ed with either HPIBATN or 
HPIBEOI but not both. 

HPIBATN 

HPIBEOI 

If you are performing a write operation, the data is placed on the bus with 
ATN asserted (you are sending a bus command). It only has effect if you 
also specify HPIBWRITE. 

If you are performing a write operation, the EOI line is asserted when the 
last byte of data is sent. It only has effect if you also specify HPIBWRITE. 

HPIBCHAR If you are performing a read operation, the transfer is halted when the 
terminator component value of the iodetail structure is read. The terminator 
component only has effect if you OR HPIBCHAR and HPIBREAD. The 
HPIBCHAR constant only has effect if also specify HPIBREAD. 

Note 

When you construct mode, you must use either HPIBREAD or 
HPIBWRITE, but not both. Optionally, you can OR one of the 
other three constants with either HPIBREAD or HPIBWRITE, 
but they are not required. HPIBCHAR has effect only when it 
is ORed with HPIBREAD, while HPIBATN and HPIBEOI have 
effect only when they are ORed with HPIBWRITE (but not both 
at the same time). 
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The mode component allows you to specify conditions under which an I/O operation 
terminates. All I/O operations terminate when the maximum number of bytes speci­
fied by the count component of the iodetail structure is reached. However, additional 
termination conditions are possible: 

e If you specify HPIBREA.D and HPIBCHAR: detection of the termination character 
defined by the terminator component also causes termination . 

• If you specify HPIBWRITE and HPIBEOI: when the count value is reached EOI 
is asserted at the time that the last byte of data is sent (unless you also specify 
HPIBATN). 

To illustrate, assume that iovec points to an iodetail structure that you are building and 
you want the structure to send several HP-IB commands. The mode component of the 
structure is assigned the necessary value as follows: 

iovec->mode = HPIBWRITE I HPIBATN; 

The Terminator Component 
The terminator component of the iodetaz"l structure specifies a character that causes the 
termination of a read operation when it is detected. The terminator only has effect if 
HPIBREAD I HPIBCHAR is specified as the structure's associated mode component. 

Assign a value to the terminator component in the structure pointed to by iovec with: 

iovec->terminator = value; 

For example, to define the ASCII period character (.) the termination character, use 
the statement: 

iovec->terminator 

The Count Component 
count is an integer that defines the maximum number of bytes to be transferred during 
the structure's I/O operation. Reading or writing always terminates when this value 
is reached, but additional termination conditions can be set up using the structure's 
associated mode component. 

To set a maximum number of bytes for a structure's data transfer: 

iovec->count = max_value; 

where iovec is a pointer to the structure and max_value is an integer. 
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The Buf Component 
The buf component points to a character array where data is to be stored from a read 
operation (HPIBREAD) or a character array containing data to be written to during a 
write operation (HPIBWRITE). 

Note 

The value of a structure's count component should never exceed 
the size of the array. If this restriction is violated, unpredictable 
results and/or data loss are likely. 

One way to store a message in the buf array is: 

iovec->buf = IIdata message ll
; 

Allocating Space 
Before building iodetail structures for I/O operations, storage space in memory must be 
allocated. The easiest way to do this (if you are programming in C) is to write a routine 
that allocates space for n iodetail structures and returns a pointer to the first one. 

Here is a sample code segment for such a routine, io_alloc: 

struct iodetail *io_alloc(n) 
int n; 
{ 

char *malloc 0 ; 
return«struct iodetail *) malloc(sizeof(struct iodetail) * n»; 

} 

Refer to the HP-UX Reference for a description of malloc(3C). 

For example, to use io_alloc to allocate memory space for 10 iodetail structures your 
program should contain the statements: 

struct iodetail *iovec; 
iovec = io_alloc(10); 

I*define an iodetail pointer*1 
I*allocate space for 10 iodetail structures*1 
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Example 
Assume the HP-IB interface is Active Controller and located at HP-IB address 30. A 
data message is to be sent to a device at HP-IB address 7 then a subsequent message is 
to be received from the same device by use of the hpib_io subroutine. Such a sequence 
requires four iodetail structures: 

1. The first structure configures the bus so that the interface is the talker and the 
device at address 7 is the listener. 

2. The second structure sends the data message from the interface to the device. 

3. The third structure configures the bus so that the device at address 7 is the talker 
and the interface is the listener. 

4. The fourth structure receives the data message from the device. 

The following code segment illustrates how the 4 structures can be built and implemented. 

#include <fcntl.h> 
#include <dvio.h> /*contains definitions for iodetail*/ 
struct iodetail *io_alloc(n) 
int n; 
{ 

char *mallocO; 
return «struct iodetail *) malloc(sizeof (struct iodetail) *n»; 

} 

mainO 
{ 

extern int errno; 
int eid; 
char buffer[4] [12] ; 
struct iodetail *iovec. *temp; /*2 pointers to iodetail structures*/ 

/*Allocate space for 4 iodetail structures*/ 
iovec = io_alloc(4); /* use the routine described earlier */ 
temp = iovec; 

/*Build structure 1 -- Configuring the bus*/ 
temp->mode = HPIBWRITE I HPIBATN; /*you want to send commands*/ 
strcpy(buffer[OJ."?-"'); /*address computer to talk and bus address to 

listen*/ 
temp->buf = buffer [0] ; 
temp->count = strlen(temp->buf); 
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/*Build structure 2 -- Sending the data message*/ 
temp++; /*use temp pointer so that iovec remains pointing to the*/ 

/*first structure but temp now pOints to the next one*/ 

temp->mode = HPIBWRITE I HPIBEOI; /*assert EOI when the transfer is 
complete*/ 

strcpy(buffer[l] . "data message"); 
temp->buf = buffer [1] ; 
temp->count = strlen(temp->buf); 

/*Build structure 3 -- Configuring the 
temp++; 

bus*/ 
/*increment structure pointer*/ 
/*to send commands*/ temp->mode = HPIBWRITE I HPIBATN; 

strcpy(buffer[2] ."?G>"); 
temp->buf = buffer [2] ; 
temp->count = strlen(temp->buf); 

/*Build structure 4 -- Receiving data message*/ 
temp++; /*increment structure pointer*/ 
temp->mode = HPIBREAD; /*read data until count limit is reached*/ 
temp->count = 10; /*accept message up to 10-bytes in length*/ 
temp->buf = buffer [3] ; 

/*Implement the I/O operations stored in the iodetail structures*/ 
eid = open("/dev/raw_hpib". O_RDWR); 

} 

if (hpib_io(eid. iovec. 4) == -1) 
{ 

} 

printf ("hpib_io failed\n"); 
printf ("errno %d\n".errno); 
exit (1) ; 

/*Print data message received from the device. Note that temp still*/ 
/*points to the last iodetail structure. the one that did the read */ 

printf("%s". temp->buf); 
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One comment about the C language: subroutine parameters are passed by value; not 
by reference. This means that after hpib_io is executed, the iovec parameter still points 
to the first iodetail structure, just as it did before the subroutine was executed. Thus, 
another way to print out the data message that was read into the bu/ component of the 
fourth iodetail structure in the example above is: 

printf(lI%sll, (iovec + 3)->buf); 

Locating Errors in Buffered 1/0 Operations 
If all I/O operations specified in the array of iodetail strllctureR complete successfully, 
hpib_ io returns 0 and updates the count component of each structure to reflect the actual 
number of bytes read or written. 

If an error occurs during one of the I/O operations, hpib_io immediately returns a -1 
indicating the error. To determine which iodetail structure operation was associated with 
the error, examine the structures' count components. When hpib_io encounters an error, 
it updates the count component of the structure that caused the error is changed to -l. 
Thus, once you have located a structure with a count of -1, you know that all previous 
structures were completed successfully and all of the structures after it were not executed 
at all. 
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For example, suppose an array of 10 iodetail structures has been built to execute a 
sequence of I/O operations. The following code segment executes the operations then 
checks for errors. If an error occurs, the number of the structure that caused it (the first 
structure in the array is number 1) is printed. 

#include <fcntl.h> 
#include <dvio.h> 
main() 
{ 

} 

int FOUND, number, eid; 
struct iodetail *iovec, *temp; 

/*space is allocated for the 10 structures then they are*/ 
/*built. "Iovec" is left pointing to the first structure*/ 

eid = open(lI/dev/raw_hpib", O_RDWR); /*open the interface file*/ 

if (hpib_io(eid, iovec, 10) == -1) /*execute the operations. If a -1*/ 
/*is returned, an error occurred*/ 

{ 

} 
else 

number = 1; /*initialize counter*/ 
FOUND = 0; /*initialize Boolean flag*/ 
temp = iovec; /*set temporary pOinter to first structure*/ 
while (number <= 10 && FOUND != 1) 

if (temp->count == -1) /*found structure that caused error*/ 
FOUND = 1; 

else 
{ 

} 

temp++; 
number++; 

if (FOUND == 1) 

/*move pOinter to next structure*/ 
/*increment counter*/ 

printf("Structure number %d caused error II , number); 
else 

printf("Error but couldn't find structure that caused it"); 

printf("No error occurred during execution of hpib_io"); 
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Controlling the GPIO Interface 4 
This chapter briefly describes how to configure the GPIO interface before accessing it 
from a program by use of DIL subroutines. It then discusses the capabilities and limita­
tions of DIL subroutines when controlling the GPIO interface. 

Configuring the GPIO Interface 
On Series 200/300 and 500 computers, the GPIO interface is configured by setting several 
switches on the interface card. On the other hand, the HP 82923A GPIO interface used 
on the Integral PC is configured by using DIL routines instead of switches. 

Configuring the Integral PC GPIO 
As mentioned, DIL subroutines are used to configure the the HP 82923A GPIO interface 
on the Integral PC. The functions that can be configured are: 

• Data logic sense (use gpz'o_ normalz'ze subroutine), 

• Data handshake mode (use gpz'o_handshake_ctl subroutine), 

• Delay time (use gpz'o_delay_tz'me_ctl subroutine). 

For information about these routines, refer to the documentation files in the doc folder 
on the DIL disc. 
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Setting Interface Switches 
Series 200/300 and 500 computer GPIO interface cards have several configuration 
switches that are used to set up the interface. The interface installation manual ex­
plains how each switch is used and how it should be configured. Configurable functions 
associated with these switches include: 

• Data logic sense, 

• Data handshake mode, 

• Input data clock source. 

Set the configuration switches according to the directions found in the GPIO interface 
installation manual. 

Note 

On Series 200/300 systems, the GPIO interface select code is de­
termined by a switch setting on the interface card. Refer to the 
appropriate hardware-specific appendix to see if a switch config­
uration is required. On Series 500 systems, no switch setting is 
required; the select code is determined by which I/O slot you use 
when installing the interface card. 

Creating the GPIO Interface File 
After setting the necessary switches on your GPIO interface, install the card in the 
computer then create an interface file for it as explained in Chapter 2. An appropriate 
interface file must be created before the interface can be accessed from HP-UX. 
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Interface Control Limitations 
Device I/O Library (DIL) subroutines provide a means for using a GPIO interface to 
communicate with devices that are not supported on your HP-UX system. However, 
they do not provide full control of the interface, so you are faced with the following 
limitations: 

• There is no direct access to interface handshake lines: Peripheral Control (PCTL) 
line, Peripheral Flag (PFLG) line, and Input/Output (I/O) line. 

• You cannot read the value of the Peripheral Status line (PSTS) directly. 

• Series 500 Only: You cannot rpcognir,e interrupts sent by the peripheral over the 
External Interrupt Request line (EIR). 

Integral PC Only: The HP 82923A GPIO card has several capabilities not supported by 
the DIL routines. Because of this, the following limitations exist: 

• 24-bit port paths are not supported, 

• Flag line cannot be read directly, 

• Fast-handshake transfer mode described in the HP 82923A GPIO Interface Owner '8 

Manual is not supported. 
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Using OIL Subroutines 
Several DIL subroutines can be used to control the GPIO interface. They are divided 
into two groups: 

• General-purpose routines usable with both HP-IB and GPIO interfaces, 

• GPIO routines: routines specifically designed for use with a GPIO interface. 

General-purpose routines are listed and described in detail in Chapter 2. They are used 
in this chapter to illustrate various aspects of controlling GPIO interfaces from an HP-UX 
process. 

Two DIL routines used exclusively with GPIO interfaces: 

• gpio_geCstatus 

• gpio_seCctl. 

The GPIO interface has four special-purpose lines that are used in various ways, depend­
ing on the needs of the device connected to the interface. Two incoming lines, STIO and 
STIl, are driven by the peripheral device and are usually used to provide device status 
information. Two outgoing lines, CTLO and CTLI are driven by the computer, usually 
to control the device. 

The subroutines gpio_geCstatus and gpio_seCctl are used to access these four special­
purpose lines. gpio_geCstatus reads STIO and STIl, and gpio_seCctl sets the values of 
CTLO and CTLl. Both routines are described later in this chapter in the section Using 
Status and Control Lines. 
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By using the DIL general-purpose routines and these two GPIO-specific routines you 
can: 

• Reset the interface, 

• Perform data transfers, 

• Use the interface's 4 special purpose lines, 

• Control the data path width and data transfer speed, 

• Set a timeout for data transfers, 

• Set a read termination character, 

• Get the termination reason, 

• Set up the interrupts, 

• Enable or disable interrupts. 

In addition to these standard GPIO DIL routines, the Integral PC supports non-standard 
routines for controlling the HP 82923A GPIO interface. Refer to the appendix "Integral 
PC Depenrlencies" for information about these routines. 

Resetting the Interface 
The interface should always be reset before it is used, to ensure that it is in a known 
state. All interfaces are automatically reset when the computer is powered up, but you 
can also reset them from your I/O process by using the io_reset subroutine. For example, 
the following code segment resets a GPIO interface: 

int eid; /*entity identifier*/ 
eid = open( "/dev/raw_gpio". O_RDWR); /*open GPIO interface file*/ 
io_reset(eid); /*reset the interface*/ 

This has the following effect: 

• Peripheral Reset line (PRESET) is pulsed low, 

• PCTL line is placed in the clear state, 

• If the DOUT CLEAR jumper is installed, the Data Out lines are all cleared (set to 
logical 0), 

• Interrupts are disabled on Series 200/300. 
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Lines that are left unchanged are: 

• CTLO and CTL1 output lines, 

• I/O line, 

• Data Out lines if the DOUT CLEAR jumper is not installed. 

Integral PC Only: The io_reset routine has the following effect OIl the HP 82923A GPIO 
interface: 

• Read termination character is cleared, 

• Timeout value is set to 0, 

• Width for all ports is set to 8 bits, 

• Normalization is set to positive true, 

• Delay time is set to 1 J.1-sec, 

• Handshake mode is set to 1, 

• Data lines are set to 0, 

• Speed is set to the flag transfer mode, 

• I/O line remains unchanged. 

Performing Data Transfers 
DIL subroutines read and write are used to transfer ASCII data to and from the GPIO 
interface. The following code segment illustrates how to use these routines to write 16 
bytes to the interface, then read 16 bytes back in. 

main() 
{ 

int eid; /*entity identifier*/ 
char read_buffer [16] , write_buffer [16] ; /*buffers to hold data*/ 

} 

eid = open( "/dev/raw_gpio", O_RDWR); 
write_buffer = "message to write"; 
write( eid,write_buffer, 16); 
read( eid, read_buffer, 16); 
printf("%s", read_buffer); 
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Using Status and Control Lines 
Four special-purpose (status and control) signal lines are available for a variety of uses. 
Two of the lines are for output (CTLO and CTL1), and two are for input (STIO and 
STH). The routine gpio_seCctl allows you to control the values of CTLO and CTL1, 
while the routine gpio_geLstatus allmvs you to read the values of STIO and STIl. 

The Integral PC's HP 82923A GPIO interface does not provide any equivalent special­
purpose lines. Each port, however, does have a single status line and a single control line. 
The status and control lines in unused ports can be used with active ports to perform 
the same function as the special-purpose lines. For example, if you have specified a port 
b data width of 16 bits, both ports a and b will be active. The status and control lines 
on ports c and d can then be used by first opening either port c or d then using the 
gpio_geCstatus and gpio_seCctl routines to monitor or control those lines. 

Driving CTLO and CTLI 
The call to gpio_seCctl has the following form: 

where eid is the entity identifier for an open GPIO interface file and value is an integer 
whose least significant two bits are mapped to CTLO (bit 0) and CTLI (bit 1). Both 
CTLO and CTLI are ground-true logic meaning that they are at a logic LOW level when 
asserted. This logic polarity cannot be changed. Logic sense of the two lines is related 
to value as follows: 

• If value =0: CTLO and CTLI both false (HIGH logic level) 

• If value =1: CTLO true (LOW logic level) and CTLI false (HIGH logic level) 

• If value =2: CTLO false (HIGH logic level) and CTLI true (LOW logic level) 

• If value =3: CTLO and CTLI both true (LOW logic level) 

This example code segment asserts both lines, setting them at a logic LOW level: 

int eid; /*entity identifier*/ 
eid = open("/dev/raw_gpio". O_ROWR); /*open interface file*/ 
gpio_set_ctl( eid. 3); /*assert CTLD and CTL1*/ 

To set both lines to a logic HIGH level, call gpio_seCctl as follows: 

gpio_set_ctl( eid. D); 
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Reading STIO and STI1 
The call to gpio_geCstatus has the following form: 

int eid. value; 
value = gpio_get_status(eid); 

where eid is the entity identifier for an open GPIO interface file. gpio_geCstatus returns 
an integer whose least significant two bits are the values of STIO and STU. 

Like CTLO and CTL1, STIO and STU are ground-true logic meaning they are at a logic 
LOW level when asserted. Thus the value returned by gpio_geCstatus is as follows (be 
sure to AND value with 3 to clear upper bits before testing): 

• If value =0: STIO and STU both false (HIGH logic level) 

• If value =1: .STIO true (LOW logic level) and STU false (HIGH logic level) 

• If value =2: STIO false (HIGH logic level) and STU true (LOW logic level) 

• If value =3: STIO and STU both true (LOW logic level) 

To illustrate: 

int eid; /*entity identifier*/ 
int value. bits; 
eid = open(It/dev/raw_gpio lt

• O_ROWR); /*open interface file*/ 
value = gpio_get_status(eid); /*look at STIO and STI1*/ 
bits = value & 03 /*clear all but the 2 least significant bits*/ 
if (bits == 3) /*and see if they are both set*/ 

/*insert code that handles case when both STIO and STI1 are asserted*/ 
else if (bits == 1) /*only STIO is asserted*/ 

/*insert code that handles case when STIO is asserted*/ 

else if (bits == 2) /*only STI1 is asserted*/ 

/*insert code that handles case when STI1 is asserted*/ 

else /*neither are asserted*/ 

I*insert code that handles case when neither STIO nor STI1 is asserted*/ 
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Controlling Data Path Width 
DIL subroutine io_width_ctl is used to specify 8-bit or 16-bit data path widths for the 
GPIO interface. The call has the following form: 

where eid is the entity identifier for an open GPIO interface file and width is either 8 
or 16. If any other width value is specified, io_width_ctl returns -1 and sets errno to 
EINVAL. The GPIO interface is set to a default 8-bit path width when the interface file 
is opened. 

The following code segment illustrates data transfers using a 16-bit data path width. 

int eid; 

eid = open ("/dev/raw_gpio", O_RDWR); 
io_width_ctl( eid, 16); 
write( eid, "data message ll

, 12); 

/*open the interface file*/ 
/*set path width to 16 bits*/ 
/*perform data transfer*/ 

Since the interface data path width is 16 bits, 2 ASCII characters are transferred during 
each handshake cycle. In the first 16-bit transfer, d is sent in the upper byte and a is 
sent in the lower. The actual logic sense (ground-true or high-true) of the GPIO data 
output lines depends on how the lines were configured during interface card installation. 

Controlling Transfer Speed 
You can request a minimum speed for the data transfer across a GPIO interface by issuing 
a call to io_speed_ctl. Your system rounds the specified speed up to the nearest defined 
speed. If you specify a speed that is faster than your system allows, the highest available 
speed is used instead. Refer to Chapter 2 for more information about io_speed_ ctl. Series 
500 systems always use DMA, so use of this subroutine on Series 500 is meaningless, 
although it is supported for software compatibility reasons. 

GPIO Timeouts 
If a non-zero timeout limit has been established for a given eid and that limit is exceeded 
during a data transfer request, an error condition results. When the subroutine handling 
the transfer detects the timeout error, it returns -1 and sets errno to EIO. When a 
timeout error occurs, use io_ reset to reset the GPIO interface before attempting another 
transfer. 
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Burst Transfers 
The Integral PC and Series 200/300 support high-speed burst I/O on HP-IB and GPIO 
interfaces. Burst I/O is meaningless on Series 500 systems because they use DMA for 
GPIO transfers. The call to io_burst is structured as follows: 

io_burst(eid.flag) 

io_burst controls the data path between computer memory and the HP-IB or GPIO 
interface. If flag = 0, all data is handled through kernel calls with the normal associated 
overhead. If flag is non-zero, burst mode locks the interface and data is transferred 
directly between memory and the I/O mapped interface until the transfer is completed. 
Burst mode yields substantial improvement in efficiency when handling small amounts 
of data or high-speed data acquisition. 

Read Terminations 
Determining Why a Read Operation Terminated 
Subroutine io_geLterm_reason, described in Chapter 2, is used to determine why the 
last read performed on a particular eid terminated. Possible reasons include: 

• The requested number of bytes were read 

• A specified read termination character was seen 

• A assertion of the PSTS was seen 

• Some abnormal condition occurred, such as an I/O timeout. 

Specifying a Read Termination Pattern 
Chapter 2 describes subroutine io_eoLctl which is used to specify a character or string 
of characters (called a read termination pattern) that, when encountered during a read, 
terminates the read operation currently underway on a particular GPIO interface file 
eid. 

Interrupts 
Subroutines £o_on_interrupt and ";o_£nterrupLctl are described in Chapter 2. They are 
used to set up and control interrupt handlers for the GPIO status line or for a particular 
GPIO interface file eid. 
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Interrupt-Driven Transfer Mode 
Implemented on Integral PC Only: 
The Integral PC supports two transfer modes on the HP 82923A GPIO interface: flag­
driven mode and interrupt-driven mode. To select interrupt-driven mode, set the speed 
to zero using the io_speed_ctl subroutine. 

When operating in interrupt-driven mode, read and write calls to the GPIO interface 
cause the calling process to go to sleep until an interrupt occurs at the completion of the 
read or write. 
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Series 500 Dependencies A 
This appendix contains the following information which is specific to Series 500 systems: 

• Location of the DIL routines, 

• Information about creating interface special files used by DIL subroutines, 

• Relationship between entity identifiers and file descriptors, 

• Hardware-imposed restrictions on use of DIL subroutines, 

• Techniques for improving data transfer performance when using DIL subroutines. 

Device I/O Library Location 
The DIL subroutine library is contained in file /usr/lib/libdvio.a. Some of these subrou­
tines are general-purpose and can be used with any interface supported by the library, 
while others provide control of specific interfaces. The Device I/O Library (DIL) cur­
rently supports HP-IB and GPIO interfaces. 
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The GPIO Interface 
The GPIO (General Purpose Input/Output) interface is a very flexible parallel interface 
that supports communication with a variety of devices. On Series 500 systems, the inter­
face sends and receives up to 16 bits of parallel data with a choice of several handshake 
methods. External interrupt and user-definable signal lines provide additional flexibility. 

The GPIO interface provides the following lines data and signalling lines: 

• 16 parallel data input lines 

• 16 parallel data output lines 

• 4 handshake lines 

• 4 special-purpose (status and control) lines. 

Data Lines 
There are 32 separate data lines: 16 for input and 16 for output. These lines normally use 
ground-true logic (LOW indicates true, HIGH indicates false). The logic can be changed 
so that a HIGH indicates true by changing the setting of the interface configuration 
option switches. Refer to the GPIO interface installation manual for more information. 

Handshake Lines 
Although four lines fall into this group, only three are used for controlling data transfers: 

• PCTL - Peripheral ConTroL 

• PFLG - Peripheral FLaG 

• I/O - Input/Output. 

The Peripheral Control (PCTL) line is driven by the interface and used to initiate data 
transfers. The Peripheral Flag (PFLG) line is driven by the peripheral device and used 
to indicate that a signal from the computer interface has been received and processed by 
the peripheral and the peripheral is ready for the next operation. 

The Input/Output (I/O) line is used to indicate direction of data flow. 

The fourth handshake line is the External Interrupt Request (EIR) line. This line is used 
by the peripheral to signal interrupt service requests to the computer. 
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Special-Purpose (Control and Status) Lines 
Four interface signal lines are available for any use you desire. Two are driven by the 
peripheral device and sensed by the computer; the other two are driven by the computer 
and sensed by the peripheral. These lines are most commonly used to transmit and 
receive control and status information beyond that which is normally available through 
PCTL and PFLG, hence their names CTLO, CTLl, STIO, and STIO 

Data Handshake Methods 
PCTL and PFLG support two handshake methods used to synchronize data transfers: 
pulse-mode and full-mode handshaking. If the peripheral uses pulses to handshake data 
transfers and meets certain hardware timing requirements, the pulse-mode handshake 
is used. Full-mode handshake should be used if the peripheral does not meet pulse­
mode timing requirements. Refer to the GPIO interface installation manual for more 
information. 

Latching Data Transfers 
The GPIO interface design assumes very little on the part of the peripheral device. It 
has built-in data latching to hold data to and from the peripheral to ensure that no data 
is lost. Latching is performed as follows: 

• When data is being output to the peripheral, the interface output register latches 
the data and holds it. The interface then asserts PCTL with I/O held LOW to 
indicate an output operation is in progress, and holds the data until PFLG is 
returned by the peripheral. The peripheral device must make proper use of the 
data, storing it if necessary, before data is removed upon receipt of PFLG . 

• When data is being input from the peripheral, PCTL signals the peripheral (with 
I/O held HIGH to indicate an input operation) that th~ computer is ready to receive 
data. The peripheral must then place input data on the input lines to the computer 
then assert PFLG to indicate that the data is valid. PFLG is used to clock the 
input latches which means the peripheral can remove the data from the lines as 
soon as it has asserted PFLG. 

The logic sense (ground-true or high-true logic) of the 'Control and flag lines PCTL and 
PFLG is defined by the configuration switch for each line on the interface card. Consult 
the interface installation manual for more information about switch settings. 
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Creating the Interface Special File 
HP-UX handles I/O to an interface the same way it handles I/O to any peripheral device: 
the interface must have a device special file. The general process of creating special files 
is described in the HP-UX System Administrator Manualfor your system. The following 
discussion points out specific requirements for special files associated with an interface. 

Creating an Interface File 
Special files are created using the mknod(1M) command which requires super-user access. 
When creating an interface special file, mknod has the following syntax: 

mknod pathname c major_number minor_number 

The c parameter to mknod tells the system to create the file as a character special file. 
The remaining parameters in the mknod command are as follows: 

pathname 
The pathname parameter specifies the name being given to the new interface special file. 
pathname identifies the interface file itself, not a peripheral connected to the interface. 
Special files are usually kept in the directory /dev. This HP-UX convention is used 
because some commands expect to find device special files in the / dev directory and fail 
if the file is not there. 

majocnumber 
The major number specifies which device driver to use with the interface. The following 
table shows the major number used for each supported interface: 

Major Number 

12 

18 

37 

Interface 

HP 27110A/B HP-IB Interface 

HP 27110A GPIO Interface 

Model 550 Internal HP-IB Interface. 
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minocnumber 
The minor number parameter identifies the location of the interface for mknod. The 
minor number is constructed as follows: 

OxScAdUV 

where: 

Ox Identifies the remainder of the expression as a hexadecimal number. The two 
characters (zero followed by x) are entered exactly as shown. 

Sc A two-digit hexadecimal value specifying the select code of the interface card. 
The select code corresponds to the I/O slot in which the interface card resides. 

Ad A two-digit hexadecimal value specifying the device bus address. To use DIL 
subroutines with the interface, the special file should be created as a raw special 
file: the Ad component of the minor number should be 31 (If in hexadecimal). 
If Ad is less than 31, the file is not created as a raw file but rather as an auto­
addressable file (in which case, Ad specifies the bus address of the device for which 
the special file is created). If only one device can be connected to the interface 
(as when using the GPIO interface), this component of the minor Humber is 
ignored (use 00 instead of a device bus address). 

U A single-digit hexadecimal value specifying a secondary address such as a device 
unit number. This component of the minor number is not used when creating 
interface special files; set it to O. 

V A single-digit hexadecimal value specifying a secondary address such as a device 
volume number. This component of the minor number is not used when creating 
interface special files; set it to O. 

Creating an HP-IB Interface File 
Suppose you need to create an HP-IB interface special file with the following character­
istics: 

• Pathname is /dev/raw_hpib. 

• Internal HP-IB interface has major number 12. 

• Interface card is located in slot 2 (select code 02), so the Sc component of the minor 
number is 02. 

• Special file must be a raw special file in order to use DIL subroutines with it which 
means that the Ad portion of the minor number must be 31 (If in hexadecimal). 
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Based on this information, use mknod as follows to create the special file for the interface: 

mknod /dev/raw_hpib c 12 Ox021fOO 

To further illustrate the use of mknod, suppose you have two HP 27110A HP-IB interface 
cards (major number = 12) installed in slots 2 and 3. The following two mknod commands 
set up a special file for'the interface at select code 02 (/dev/raw_hpibl) and select code 
03 (jdev/raw_hpib2): 

mknod /dev/raw_hpib1 c 12 Ox021fOO 
mknod /dev/raw_hpib2 c 12 Ox031fOO 

Creating a GPIO Interface File 
Now suppose you also have a GPIO interface on the same Series 500 computer that you 
want to access using DIL subroutines. 

The GPIO interface is does not use a bus architecture, so the usual bus address (Ad) and 
secondary address (uv) components of the minor number are ignored, and you need only 
determine the select code value before using mknod. 

Assume that the GPIO interface is located in the I/O slot corresponding to select code 
04 on your Series 500. The following mknod command creates the appropriate special 
file, named /dev/raw_ypio: 

mknod /dev/raw_gpio c 18 Ox040000 
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Determining Interface Card Bus Address 
The HP 27110A/B card always assumes bus address 30 when it is Active Controller. 
If control is passed to another device, the card assumes the address specified by the 
interface card configuration switch setting. The value of the current setting is easily 
determined by a call to hpib_bus_status which always returns the current bus address. 

Effects of Resetting (via io_reset) 
When io_reset is used on a Series 500 HP-IB interface, 

• REN is cleared, 

• The Interface Clear (IFC) line is pulsed, 

• REN is reset, 

• Interrupt mask is cleared, and 

• The Peripheral Reset line (PRESET) is pulsed. 

In addition, an interface self-test is performed. If the test fails, io_reset returns -1. If 
the interface successfully resets and completes self-test, io_reset returns o. 
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Entity Identifiers 
On Series 500, interface file entity identifiers used by DIL subroutines are equivalent 
to HP-UX file descriptors. This means that you can obtain entity identifiers for your 
interface files with the system routines dup, lentl, and pipe as well as open. 

OIL Subroutine Use Restrictions 
This section presents various restrictions related to using DIL subroutines on Series 500 
computers. Restrictions are arranged under headings named after the subroutine to 
which they apply. Subroutine names are treated in alphabetical order. 

hpib_bus_status 
A bug in the HP 27110A HP-IB interface card can cause an erroneous SRQ line state re­
port. This error can occur during a narrow time window that allows hpib_bus_status(eid, 
1) to report that the line is clear when in reality it is set. Since the subroutine never 
can report that the line is set when in reality it is clear, ORing successive readings of the 
SRQ line state minimizes the possibility of error. ORing five successive readings provides 
a result that is approximately 99% accurate. This bug has been fixed in the HP 27110B 
card. 

On Series 500 systems, it is possible to check the SRQ line using hpib_bus_status and not 
see it asserted when it actually is. Because of this, the SRQ line should be checked at 
least 5 times to accurately determining whether or not it is asserted. If it is true any 
one of the 5 times, then the line is asserted (it never can be reported as asserted when it 
actually isn't). For example: 
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#include <fcntl.h> 
mainO 
{ 

} 

int eid, value, i; 

eid = open(l/dev/raw_hpib", O_ROWR); 
value = 0; 
for ( i=O; i<5; ++i) 

value = hpib_bus_status(eid,l) + value; 
I*Note that if SRQ is ever true during this test, "value" will be 
greater than 0*1 

if (value>O) 
service_routine(); 

else 
I*SRQ is asserted; service the request*1 

printf("No one is requesting service"); 

hpib_card_ppoILresp 
HP 27110A/B HP-IB interface cards do not support configuration of their parallel poll 
response under program control by use of hpib_card_ppoILresp. Configuration call oIlly 
be performed by the current Active Controller. 

Unless programmed otherwise by the Active Controller, default sense of the HP 
27110A/B interface's parallel poll response is always 1. If the interface's bus address 
(when not Active Controller) is 7 or less, the address determines the response line num­
ber as follows: bus data lines are labeled DO through D7 corresponding to addresses 7 
through 0, respectively (note the reverse order). 

Thus, the parallel poll response of an HP 27110A/B at bus address 0 is a logic 1 on data 
line D7. An identical interface at bus address 7 responds with a 1 on line DO. If the 
address of the interface is greater than 7, there is no default line for it to respond on, so, 
unless its response is configured remotely by the Active Controller, it cannot respond at 
all. 

If you want the interface to respond with a sense of 0 or on a different (non-default) 
line; it must be remotely configured by an Active Controller (this can be done by using 
hpib_send_cmnd while the interface is Active Controller). 
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hpib_rqsLsrvce 
This subroutine provides the capability for configuring an HP-IB interface's 8-bit re­
sponse to serial polls. However, the HP 27110A/B HP-IB interface only allows you to 
set bit 6 of the response; all the other bits are cleared. If you set bit 6 of the serial 
response (where the response bits are labeled bit DO-D7) and the interface is not the 
Active Controller, the SRQ line is immediately asserted. The line remains asserted until 
the interface is serially polled or you clear bit 6 with hpib_rqsCsrvce. If you set bit 6 and 
the interface is Active Controller, the interface remembers the response and asserts SRQ 
as soon as control passes to another controller. 

Since you can only control bit 6 of the serial poll response, only the bit corresponding to 
decimal 64 in the response argument for hpib_ rqsCsrvce has any effect. Thus: 

hpib_rqst_srvce(eid.64); 

sets bit 6 of the interface's serial poll response and: 

hpib_rqst_srvce(eid.O); 

clears it. 

hpib_send_cmnd 
HP 27110A/B HP-IB and Model 550 Internal HP-IB interfaces send all hpib_send_cmnd 
commands with odd parity by overwriting the most significant bit of each command byte 
with a parity bit. This should not cause a problem since all HP-IB commands use only 
7 bits, and the eighth is free for use as parity. 

hpib_status_ wait 
hpib_status_ wait holds off all other activity on the interface card associated with eid 
while it is in progress. Any other processes attempting to access the same interface will 
hang until the wait is terminated. Therefore, it is strongly recommended that a non-zero 
timeout be activated before calling hpib_status_ wait. 

hpib_ wait_on_ppoll 
hpib_ waiCon_ppoli also holds off all other activity on the interface card while execut­
ing. As with hpib_status_ wait, other processes attempting to access the interface card 
will hang, so it is recommended that a non-zero timeout be in effect before calling 
hpib_ waiC on_ppoll. 
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io_geLterm_reason 
Subroutine io_geCterm_reason is able to indicate one, two, or three reasons for a read 
termination by combining each reason into the three least significant bits in the returned 
value: 

Set Bit Decimal Meaning 

(none) 0 Abnormal terminaion. 

Bit 0 1 Number of bytes requested were read. 

Bit 1 2 Specified termination character was detected. 

Bit 2 4 Device-imposed termination condition was detected (e.g., EOI on 
HP-IB). 

For example, if io_geCterm_reason returns 7 you know that the read terminated for three 
reasons: the byte count was reached, a termination character was encountered, and a 
termination condition was detected. 

However, the Series 500 HP-IB interface does not return more than one termination 
reason to io_geCterm_reason, but, rather, returns only the highest numbered reason. 
Consequently, io_geCterm_reason can only return the values .0, 1, 2, or 4 (or -1 if 
an error occurs). For instance, if a 4 is returned, it indicates that a device-imposed 
termination condition occurred, but no mechanism exists for determining whether the 
byte count was reached or if a termination character was read as well. 

When a Series 500 GPIO interface is set to use a 16-bit data path width, the termination 
character is only OIl byte (8 bits) wide (the least significant byte of the match value). 
During read operations, if the termination character arrives as the lower byte in a data 
transfer, data is handled and stored smoothly; both the upper and lower bytes of the 
transfer are received and the count of received bytes is incremented by two. However, 
if the termination character arrives in the upper-byte position of the transfer, both the 
upper byte and the lower byte are still read. However, the count of received bytes is only 
incremented by one, indicating that the termination character was located in the upper 
byte position. 
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io_on_interrupt 
The internal HP-IB interface supplied with the Model 550 does not support talker­
addressed, listener-addressed, controller-in-charge, or remote-enable interrupts. GPIO 
interrupts on the EIR line also are not supported. 

io_timeouLctl 
io_timeouLctl is used to set a time limit for I/O operations on a given entity identifier 
associated with an interface file. The timeout value specified in the subroutine call is a 32-
bit long integer that determines the maximum timeout waiting period in microseconds. 
However, the effective timing resolution for timeouts is system-dependent. On Series 500 
systems, timeout is rounded up to the nearest 100millisecond boundary which means, for 
example, that if you specify a timeout of 155000 microseconds (155 milliseconds), the 
effective timeout is rounded up to 160 milliseconds. 

When an I/O operation is aborted due to a timeout, errno is set to EIO. However, EIO 
is defined as a general I/O error, and can be set by many other error conditions. On 
Series 500 systems, more information can be obtained by looking at the external HP-UX 
variable errinfo which is set to the value 56 when a timeout occurs. 

io_speed_ctl 
The Series 500 always uses DMA for HP-IB and GPIO transfers, thus ensuring the fastest 
possible I/O speeds. Consequently, io_speed_ctl is meaningless when used in software 
intended for use on Series 500 systems. However, it is included in the Series 500 Device 
I/O Library to enhance software compatibility with Series 200/300 and other systems. 

io_width_ctl 
Although this subroutine can be called for any interface, the path width specified in the 
call to io_width_ctlmust be compatible with the related interface. On Series 500 systems, 
only the GPIO interface supports multiple data path widths and only two widths are 
supported: 8 bits and 16 bits. io_ width_ctl returns an error if a width is specified that is 
not available on the interface. 
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Performance Tips 
When using DIL subroutines on Series 500 systems, overall I/O performance can be 
improved by following the basic guidelines listed in this section. 

• Use buffers to hold data being written to an interface. Transferring data previously 
stored in a buffer is considerably faster than specifying a data string when invoking 
the transfer. For example, a data transfer handled by this code segment: 

int eid; 
char *buffer; 

/*entity identifier descriptor*/ 
/*data storage buffer*/ 

eid = open("/dev/raw_hpib". O_RDWR); 
buffer = "data message"; /*store data in buffer*/ 
write(eid. buffer. 12); /*transfer data*/ 

is faster than a data transfer handled by this equivalent code segment; 

int eid; /*entity identifier descriptor*/ 

eid = open("/dev/raw_hpib". O_RDWR); 
write(eid. "data message". 12); /*transfer data*/ 

• Make the number of bytes transferred equal to an integer multiple of the number of 
bytes per word in system memory. Data transfers, both in and out, are faster if the 
number of bytes being transferred fall on a word boundary. Series 500 memory is 
arranged in 4-byte words which means that the following code segment will perform 
optimally because the byte counts are integer multiples of 4. 

write(eid. buffer1. 12); 
read(eid. buffer2. 40); 

• If you are super-user, you can use the memlck(2) routine (see HP-UX Reference: 
Section 2) to lock I/O process address space into physical memory. Data transfer 
times are reduced because transfers are handled directly from the user area without 
first moving data to the system area. However, one cannot lock an arbitrarily large 
amount of space for a given process because there is a point at which system 
performance begins to degrade. 

• If a given process is running with an effective user ID of super-user, the process can 
be locked in memory by using plock(2) described in the HP-UX Reference. This 
lock is different than memlck mentioned previously. plock(2) informs the system 
that the process code, data, or both are not to be swapped out of memory. The 
following example illustrates the use of plock: 
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#include <sys/lock.h> 
main() 
{ 

int plock{); 
plock(PROCLOCK); /* lock text and data segments into memory*/ 

plock(UNLOCK); /* unlock the process*/ 
} 

• Use auto-addressing for all read and write operations (see the Chapter 3 section 
"Setting up Talkers and Listeners" for details) . 

• rtprio(2) can be used to increase the system priority of an I/O process. rtprio 
requires that the process be running with an effective user ID of super-user. The 
real-time priorities available with rtprio arc non-degrading priorities. However, 
caution must be observed when using real time priorities because one can increase 
their priority above system processes resulting in possibly undesirable behavior. 

For example, if you request a real-time priority for your process that lies in the 
range of 0 through 63, your process has a higher priority than the system process 
that handles DIL interrupts. Such condition would cause interrupts to be lost if 
demand for CPU time became high enough that there was no available time to 
handle the interrupt. 

The following example code segment places the calling process at the lowest (least 
important) real time priority: 

#include <sys/rtprio.h> 
mainO 
{ 

int rtprio(), my_proc; 

my_proc = 0; 
to */ 

/* a zero process number tells rtprio to refer 

/* the calling process. */ 
rtprio(my_proc, 127); /* priority 127 = lowest real-time priority*/ 

rtprio(my_proc, RTPRIO_RTOFF); /* disable real-time priority*/ 
} 
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Series 200/300 Dependencies B 
The following information, specific to Series 200/300 computers, is discussed in this 
appendix: 

• Location of the DIL subroutines, 

• Information about creating interface special files used by DIL subroutines, 

• Relationship between entity identifiers and file descriptors, 

• Restrictions imposed by the hardware on using the DIL subroutines, 

• Techniques for improving data transfer performance when using DIL subroutines. 

• Information on how to simulate I/O interrupt programming on Series 200/300 com­
puters. 

Location of the OIL Subroutines 
The DIL subroutines that provide direct control of your computer's interfaces are con­
tained in the library /usr/lib/libdvio.a. Some of these subroutines are general-purpose 
and can be used with any interface supported by the library, while others provide control 
of specific interfaces. The Device I/O Library (DIL) currently supports the HP-IB and 
GPIO interfaces. 
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Linking OIL Subroutines 
The libdvio. a library redefines the read, write, lentl, dup, and ioetl entry points. For DIL 
to work properly, the DIL library must be linked before libe. 

The GPIO Interface 
The GPIO (General Purpose Input/Output) interface is a very flexible parallel interface 
that allows communication with a variety of devices. On Series 200/300 computers, the 
interface sends and receives up to 16 bits of data with a choice of several handshake 
methods. External interrupt and user-definable signal lines provide additional flexibility. 

The GPIO interface is comprised of the following lines: 

• 16 parallel data input lines 

• 16 parallel data output lines 

• 4 handshake lines 

• 4 special-purpose lines. 

Data Lines 
There are 32 data lines: 16 for input and 16 for output. These lines normally use negative 
logic (0 indicates true, 1 indicates false). The logic can be changed so that a 1 indicates 
true with the interface's Option Switches. Refer to your GPIO interface manual to see 
how to do this. 
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Handshake Lines 
Although four lines fall into this group, only three are used for controlling the transfer 
of data: 

• PCTL - Peripheral ConTroL 

• PFLG - Peripheral FLaG 

• I/O - Input/Output. 

The Peripheral Control (PCTL) line is controlled by the interface and used to initiate data 
transfers. The Peripheral Flag (PFLG) line is controlled by the peripheral device and used 
to signal the peripheral's readiness to continue the transfer process. The Input/Output 
(I/O) line is used to indicate direction of data flow. 

Special-Purpose Lines 
Four lines are available for any purpose you desire; two are controlled by the peripheral 
device and sensed by the computer, and two are controlled by the computer and sensed 
by the peripheral. 

Data Handshake Methods 
There are two handshake methods using PCTL and PFLG to synchronize data transfers: 
pulse-mode handshakes and full-mode. If the peripheral uses pulses to handshake data 
transfers and meets certain hardware timing requirements, the pulse-mode handshake 
is used. The full-mode handshake should be used if the peripheral does not meet the 
pulse-mode timing requirements. Refer to the GPIO interface's documentation for a 
description of these handshake methods. 

Series 200/300 Dependencies 135 



Data-In Clock Source 
Ensuring that data is valid when read by the receiving device differs slightly depending 
on what direction the data is flowing. When writing data out from the computer the 
interface generally holds data valid while PCTL is in the asserted state, the peripheral 
must read the data during this period. 

When reading data from the peripheral, the peripheral must hold the data valid until 
it can signal that the data is valid or until the data is read by the computer. The 
peripheral signals that the data is valid using the PFLG line. This clocks the data into 
the interface's Data-In registers. 

You can specify the logic level of the PFLG line that indicates valid data by setting the 
FLAG switches on the interface card. Refer to the card's installation manual to find out 
how to do this. 
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Creating the Interface Special File 
HP-UX treats I/O to an interface the same way it treats I/0 to any input/output device: 
the interface must have a special file. The general process of creating special files is 
described in the HP-UX System Administrator l'l'fanual for your system. The following 
discussion points out specific requirements needed for a special file associated with an 
interface. 

Creating the Special File 
Special files are created using the mknod(lM) command; you must be super-user to 
execute this command. When used to create an interface special file, mknod has the 
following syntax: 

mknod pathname c maJor_number minor_number 

The c parameter to mknod tells the system to create the file as a character special file. 
Descriptions of the remaining parameters to the mknod command follow. 

pathname 
The pathname parameter specifies the name to be given to the newly created interface 
special file. The pathname identifies the interface itself, not a peripheral on the inter­
face. Special files are usually kept in the directory /dev. This is basically an HP-UX 
convention; some commands expect to find special files in the / dev directory and fail if 
they are not there. 

majoLnumber 
The maJor number specifies which device driver to use with the interface. The following 
table shows the major number used for each supported interface: 

Major Number 

21 

22 

Interface 

HP-IB Interface 

G PI ° Interface 
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minocnumber 
The minor number parameter tells mknod the location of the interface. The minor number 
has the following syntax: 

OxSeAdUV 

where: 

Ox specifies that the characters which follow represent hexadecimal values. These 
two characters (zero and x) are entered as shown. 

Se a two-digit hexadecimal value specifying the select code of the interface card. 
The select code is determined by switch settings on the HP-IB interface card. 

Ad a two-digit hexadecimal value specifying a bus address. To use DIL routines 
with the interface, the special file should be created as a raw special file: the 
Ad component of the minor number should be 31 (1£ in hexadecimal). If Ad is 
less than 31, then the file is not created as a raw file; it is created as an auto­
addressable file. (In this case, Ad specifies the bus address of the device for which 
the special file is created.) If only one device can be connected to the interface 
(e.g., the GPIO interface), the component of the minor number is ignored. 

u a single-digit hexadecimal value specifying a secondary address. This component 
of the minor number is ignored when the special file you are creating is for an 
interface; you should set it to o. 

V a single-digit hexadecimal value specifying a secondary address, such as the 
volume number in a multi-volume drive. This component of the minor number 
is ignored also; you should set it to o. 

Creating an HP-IB Interface File 
Suppose you wish to create an HP-IB interface special file with the following character­
istics: 

• the pathname is /dev/raw_hpib 

• because the interface is HP-IB, the major number is 21 

• the card's select code switches are set to select code 2-Le., the Se component of 
the minor number is 02 

• the special file must be a raw special file in order to use DIL subroutines with it; 
therefore, the Ad portion of the minor number must be 31 (1£ in hexadecimal). 
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Based on this information, you would use mknod as follows to create the special file for 
the interface: 

mknod /dev/raw_hpib c 21 Ox021fOO 

To further illustrate the use of mknod, suppose you have two HP-IB interfaces (ma­
jor number = 21) installed in slots 2 and 3. The following mknod commands set up 
a special file for the interface at select code 02 (/dev/raw_hpibl) and select code 03 
(/dev/raw_hpib2): 

mknod /dev/raw_hpib1 c 21 Ox021fOO 

mknod /dev/raw_hpib2 c 21 Ox031fOO 

Creating a GPIO Interface File 
Now suppose you have a GPIO interface that you want to access with the DIL subroutines 
on the same computer. 

Because the GPIO interface is does not use a bus architecture, the usual bus address 
(Ad) and secondary address (uv) components of mknod's minor number are ignored, and 
you need only determine the select corle value. 

Assuming that you have set the interface select code switches to 04 on the Series 200/300 
GPIO card, the following mknod command will create the appropriate special file, named 
/dev/raw_gpio: 

mknod /dev/raw_gpio c 22 Ox040000 
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Effects of Resetting (via io_reset) 
For an HP-IB interface on Series 200/300 computers, resetting involves clearing REN, 
pulsing its Interface Clear line (IFC), and resetting REN; for a GPIO interface the 
Peripheral Reset line (PRESET) is pulsed. If it fails, the routine returns a -1; otherwise 
the routine returns a O. 

Entity Identifiers 
On Series 200/300 computers, an entity identifier for a file used by a DIL routine is 
equivalent to an HP-UX file descriptor. This means that you can obtain entity identifiers 
for your interface files with the system subroutines dup, Icntl, and creat, in addition to 
open. 
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Restrictions Using the OIL Subroutines 
This section presents some restrictions on using the DIL subroutines on Series 200/300 
computers. These restrictions are organized under the routine to which they apply. The 
subroutines are presented in alphabetical order. 

hpib_io 
After calling hpib_io, the effects of any previous calls to hpib_eoi_ctl and io_eoLctl are 
nullified. In other words, EOI mode is disabled for the specified eid and the read termi­
nation pattern is disabled. Therefore, if you want these to remain in effect after calling 
hpib_io, you must set them again with hpib_eoi_ctl and io_eoLctl. 

hpib_send_cmnd 
The Series 200/300 HP-IB interface card uses odd parity when you send commands via 
hpib_send_cmd. To do this, it overwrites the most-significant bit of each command byte 
with a parity bit. This should not cause a problem since all HP-IB commands use only 
7 bits, and the eighth is free for use as a parity bit. 

hpib_status 
The hpib_status routine cannot sense lines being driven (output) by the interface. In 
other words, listeners cannot senses NDAC and non-controllers cannot sense SRQ. 

io_interrupLctl 
The io_interrupLctl routine is not supported on Series 200/300 computers. 

io_on_interrupt 
The io_on_interrupt routine is not supported on Series 200/300 computers. 
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io_reset 
When an HP-IB interface is reset via io_reset, the interrupt mask is set to 0, the parallel 
poll response is set to 0, the serial poll response is set to 0, the HP-IB address is assigned, 
the IFC line is pulsed (if system controller), the card is put on line, and REN is set (if 
system controller). 

When a GPIO interface is reset, the peripheral request line is pulled low, the PTCL line 
is placed in the clear state, and if the DOUT CLEAR jumper is installed, the data out 
lines are all cleared. The interrupt enable bit is also cleared. 

io_speed_ctl 
If the I/O transfer speed is set less than 7Kb/sec (Le., the speed parameter is less than 
7), then the interface will use interrupt transfer mode. If the transfer speed is set greater 
than 140Kb/sec (speed> 140), then the system chooses the fastest mode possible. If the 
speed is between 7Kb and 140Kb/sec (7Kb ~ speed ~ 140), then DMA transfer mode is 
used. 

IMPORTANT 

If you are using pattern termination, via io_eoLctl, then you'll 
always get interrupt mode, regardless of speed. 

io_timeouLctl 
This routine allows you to set a time limit for I/O operations on an entity identifier 
associated with an interface file. The timeout value that you specify is a 32-bit long 
integer that indicates the length of the timeout in microseconds. However, the resolution 
of the effective timeout is system-dependent. On the Series 200/300 computers the 
timeout is rounded up to the nearest 20-millisecond boundary. For example, if you 
specify a timeout of 150000 microseconds (150 milliseconds), the effective timeout is 
rounded up to 160 milliseconds. 
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Performance Tips 
The performance of your I/O process on a Series 200/300 computer using DIL subroutines 
can be improved by following the guidelines below: 

• Use the io_burst routine for small data transfers. ("Small;; on a Series 300 Model 
310 is less than lKb; "small" on a Series 300 Model 320 is less than 4Kb.) 

• If you are the super-user, you can use the memlck{2} routine (see HP-UX Reference: 
Section 2) to lock your I/O process's address space into physical memory. Data 
transfer times are reduced because they are carried out directly from the user area 
and do not have to be first moved to the system area. However, you cannot lock 
an arbitrarily large amount of space for your process since there is a point at which 
your system's performance will begin to degrade. 

• For processes running with an effective user ID of super-user, it is possible to lock 
the process in memory with plock{2} (see HP-UX Reference). This lock is different 
than memlck (as mentioned above). plock{2} informs the system that the process 
code, data, or both are not to be swapped out of memory. The following example 
illustrates the use of plock: 

#include <sys/lock.h> 
maine) 
{ 

int plockO; 
plock(PROCLOCK); /* lock text and data semnets into memory*/ 

plock(UNLOCK); /* unlock my process*/ 
} 

• Use auto-addressing for all read and write operations. (See the section "Setting 
up Talkers and Listeners" of Chapter 3, "Controlling the HP-IB Interface," for 
details. ) 

• Increasing the system priority of an I/O process can be accomplished by using 
rtprio{2}. rtprio requires the process to be running with an effective user ID of 
super-user. The real time priorities available with rtprio are non-degrading pri­
orities. Caution must be observed when using real time priorities since one can 
increase their priority above system processes. This may cause undesirable behav­
ior. For example, requesting a real time priority in the range of 0-63 places your 
process in a higher priority than the DIL interrupt handler system process. This 
means that interrupts could be lost if there is not sufficient CPU resource available. 
The following example places the calling process at the lowest (least important) real 
time priority: 
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#include <sys/rtprio.h> 
maine) 
{ 

} 

int rtprio(). my_proc; 

my_proc = 0; /* a zero process # tells rtprio to refer to the */ 
/* calling process. */ 

rtprio(my_proc. 127); /* priority 127 = lowest real time priority*/ 

rtprio(my_proc. RTPRIO_RTOFF); /* turn off real time priority*/ 

Simulating Interrupts for the HP-IB Interface 
Although Series 200 HP-UX does not allow you to set interrupts, the use of four system 
subroutines fork{2} , signal{2}, kill{2} , and getpid{2} allows you to simulate their effect. 
The purpose of this section is not to describe how these subroutines work, but merely to 
present a specific application that uses them. Refer to HP- UX Reference: Section 2 for 
a complete description of the four system subroutines. 

You can simulate setting an interrupt by creating a child process that waits for the 
interrupt condition. When that condition occurs, the child process sends a signal back 
to the parent process and then terminates. While the child process is waiting for the 
specified condition, the parent process can continue executing until it receives the signal 
from the child, at which time it jumps to a specified service routine. 

The code below illustrates how you can use fork to spawn a child process that waits for 
a particular bus condition. Here the child process calls hpib_status_ wait to wait until the 
SRQ line is asserted. Since no timeout has been set for the interface file's entity identifier, 
there is no limit to how long the child process waits for the specified condition. When 
the SRQ line is seen, the child process sends the signal SIGINT to the parent process 
using kill. Since kill requires the process ID of the process that is to receive the signal, 
getpid is called. Getpid returns the process ID of the calling process's parent process. 
The child process terminates after the signal is sent. Signal allows you to specify in the 
parent process what signal it is to look for and what routine it is to execute when the 
signal is received. The code for service_ routine is not shown here. After service_ routine 
is executed, the parent process resumes execution at the point where it was interrupted. 
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#include <signal.h> I*defines various signals*1 
main 0 
{ 

} 

int eid; 
eid = open( "/dev/raw_hpib", O_RDWR); /*open interface file*/ 

I*create a new process that will look for service requests*1 
if (fork() == 0) I*this is the child process*1 
{ 

} 

else 
{ 

kill (getpid(), SIGINT); 

signal (SIGINT, service_routine); 

I*note that no timeout is set--it 
will wait indefinitely for SRQ*I 

I*this is the parent*1 

I*parent process can now do other things while the child waits 

} 

for SRQ. When the parent receives the SIGINT signal the function 
service_routine will be executed,*1 

Some additional points about simulating interrupts in this way are: 

• The code for the child process can be distinguished from that of the parent process 
by the value returned by fork. Fork returns a 0 in the child process and the process 
ID of the child process to the parent process. 

• The include file signal. h must appear near the beginning of your program if the 
program calls signal. 

• If the interface file is opened before the fork call, the child process inherits the file's 
entity identifier. If fork is called before the interface file is opened, then both the 
child and the parent processes must open it. 
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Simulating Interrupts on the GPIO Interface 
Chapter 3: Controlling the HP-IB Interface discusses the use of four system subroutines 
fork, signal, kill and getpid to simulate the effect of an interrupt when a certain condition 
occurs on an HP-IB interface. This same technique can be used to simulate an interrupt 
given a certain condition on a GPIO interface, such as a certain value of the STIO and 
STH special purpose status lines. 

Fork is used to spawn a child process that waits for a specified condition to occur, leaving 
the parent free to continue executing. When the condition occurs, the child process sends 
a signal via kill to the parent which then implements whatever service routine is required. 
The parent process uses signal to recognize when the signal is sent and the child process 
uses getpid to find out the process ID of the parent so that it knows where to send the 
signal. The code below illustrates generating an interrupt when a peripheral connected 
to the GPIO interface asserts STIO. 
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#include <signal.h> 
mainO 

/*defines various signals*/ 

{ 

} 

int eid; /*entity identifier*/ 

eid = open("/dev/raw_gpio". O_RDWR); /*open GPIO interface file*/ 
/*create a child process that looks for assertion of STIO*/ 

if (forkO == 0) 
{ 

/*this is the child process*/ 

} 

wait_on_STIO(eid); 
kill(getpid(). SIGINT); 

/*call a routine that waits for STIO*/ 
/*send signal to parent process*/ 

else /*this is the parent process*/ 
{ 

} 

signal (SIGINT. service_routine(»; 

/*parent process can now do other things while the child waits for 
STIO. When the parent receives the signal SIGINT. the function 
"service_routine" will be executed*/ ...... } } /*end of main*/ 

/*"wait_on_STIO" repeatedly calls gpio_get_status until it sees that 
STIO is asserted and then it returns to the calling routine*/ 

wait_on_STIO(eid) 
int eid; 

{ 

int value; 
int flag = 0; 

while (flag == 0) 
{ 

/*Variable to hold value of STIO and STI1*/ 
/*Boolean flag initialized to 0 (false)*/ 

value = gpio_get_status(eid); /*read STIO and STI1 lines*/ 
if (value & 1) /*clear all but the first bit*/ 

flag = 1; /*when STIO is asserted. set flag to 1*/ 
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Integral PC Dependencies c 
The following information, specific to the Integral PC, is discussed in this appendix: 

• location of the DIL routines 

• the GPIO interface 

• creating an interface special file 

• interrupts 

• controlling the HP-IB interface 

• non-standard DIL routines 

• restrictions using the DIL routines 
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Location of the OIL Routines 
The DIL routines are supplied in the libdvio. a library on the DIL disc. To use this 
library with your compiler, move the libdvio.a library, along with the include files, to the 
appropriate folder for your compiler, usually /usr/lib. 

The GPIO Interface 
The HP 82923A GPIO interface used on the Integral PC is different in a number of key 
areas from the GPIO used on Series 200/300 and 500 computers. Refer to the HP 82923A 
GPIO Interface Owner's Manual for a complete description of the hardware. Note that 
the HP 82923A GPIO interface has the following features: 

• parameters are set using DIL routines, not switches; these DIL routines are non­
standard DIL routines and are only provided on the Integral PC 

• four 8-bit bidirectional data ports (which can be configured in 8-, 16-, or 32-bit 
ports) 

• 2 handshaking lines for each port 

• 1 peripheral interrupt line (PIR) for each port 

• 1 reset line (RES) for each port 

• 1 status line for each port 

• 1 data direction line (I/O) for each port. 

The HP 82923A GPIO interface has six handshake types. The handshake type is selected 
using the gpio_handshake_ctl routine. 
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Creating an Interface Special File 
Two utility programs, load_hpib and load_gpio, must be used to create the appropriate 
special files for your HP-IB and GPIO interfaces, respectively. These routines create a 
special (device) file for each HP-IB or GPIO interface found, and load the appropriate 
DIL driver. The data files containing the DIL drivers, dhpib.data and dgpio.data, must 
be in the search path defined by your PATH variable when the load utility is invoked. 
For more information on load_hpib and load_gpio refer to the load_hpib.l and load_gpio.l 
files provided in the doc folder on the DIL disc. 

GPIO Interface Files 
The special files for GPIO interfaces have the following form: 

/dev/gpioGPIO_port.IO_port 

where GPIO_port is the letter designation for GPIO ports a, b, c, or d; and 10_port is 
a one- or two-character designation (a, 0, ai, a2, ... ) for the Integral PC I/O port. Note 
that the top port on the Integral PC is port a, the bottom port is port b, while the bus 
expander ports have a combination letter and number designation as shown below. 

HP-IB Interface Files 
The special (device) files for HP-IB interfaces have two forms: 

/dev/dhpib. i for the built-in HP-IB interface 

/dev/dhpib.IO_port for the plug-in HP-IB interface, where 10_port is the Integral PC 
I/O port designator (a, b, ai, a2, ... ) described above. 

Unloading the OIL Drivers 
Two additional utilities, unload_hpib and unload_gpio, are provided on the DIL disc. 
These utilities are used to remove both the DIL drivers and the special files created by 
load_hpib and load_gpio. For more information on using these utility programs, refer to 
load_hpib.l and load_gpio.l in the doc folder on the DIL disc. 
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Interrupts 
Unlike the Series 500, the Integral PC supports only one interrupt condition, PIR, mean­
ing that the Peripheral Interface Request line has been asserted. For hardware restrictions 
on using the HP-IB interrupts on the Integral PC, refer to the io_on_interrupt.3d file in 
the doc folder on the DIL disc. 

Controlling the HP-IB Interface 

Limitations on the HP-IB Interface 
The use of DIL routines with the built-in HP-IB interface has the following limitations: 

• The user must not pass control when using the DIL routines with the built-in 
HP-IB interface. The built-in HP-IB interface must always be the System Con­
troller / Active Controller . 

• Loading the DIL drivers and then opening the built-in HP-IB interface special file 
prevents the operating system from accessing printers, plotters, and mass-storage 
drives on the built-in HP-IB interface until the built-in HP-IB interface special file 
is closed. This means that any operation using a printer, plotter, or mass-storage 
device on the built-in HP-IB interface will be suspended until the built-in HP­
IB device file is closed. This limitation can result in a deadlock situation if your 
program both uses the DIL routines with the built-in HP-IB interface and attempts 
to use a printer, plotter, or mass-storage drive on the built-in HP-IB interface. 

To avoid these limitations, we recommend that you use the HP-IB DIL routines only 
with the HP 82998A HP-IB interface. 

The Computer as a Non-Active Controller 
The built-in HP-IB interface must be in the system controller, active controller state to 
use the DIL routines on the Integral PC. 
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Non-Standard OIL Routines 
The Integral PC DIL library supports several routines that are not part of the DIL 
standard. This section describes these routines. 

General-Purpose Routines 
In addition to the standard DIL routines, the Integral PC DIL library supports the 
following two routines: 

Locks the interface port tb the calling process until the io_ unlock routine 
is called. 

io_unlock Used by the calling process to remove the lock created by io_lock. 

For details on using these routines, refer to the io_lock.3d file located in the doc folder 
on the DIL disc supplied with your Integral PC. 

Non-Standard HP-IB Routines 
In addition to the F;tandard OTL routines for controlling the HP-IB interface, the Integral 
PC supports the following non-standard DIL routine: 

io_burst(eid, flag) Used to control the high-speed HP-IB mode. If flag = 0, high­
speed mode is turned off; otherwise it is turned on. 

For information on the io_burst routine, refer to the io_burst.3d file in the doc folder on 
the DIL disc. 

Non-Standard GPIO Routines 
The following non-standard DIL routines have been added to control the HP 82923A 
GPIO interface: 

• gpio_handshake_ctl 

• gpio_ normalize_ ctl 

• gpio_delay_time_ctl 

A description of these routines is provided in the doc folder on the DIL disc. 
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Restrictions Using the OIL Routines 
This section presents some restrictions on using DIL routines with the Integral PC com­
puter. Restrictions on using system routines, such as open(2), are also discussed here. 
These restrictions are organized under the routine to which they apply; the routines are 
presented in alphabetical order. 

hpib_bus_status 
On the Integral PC, it is not possible to determine the status of the NDAC and SRQ 
lines under certain conditions. This can result in incorrect results when using the 
hpib_bus_status routine to determine the status of these two lines. If the HP-IB in­
terface is talk-addressed, the SRQ status is incorrect; if it is listen-addressed, the NDAC 
status is incorrect. 

hpib_card_ppoILresp 
The parallel poll response of the HP 82998A HP-IB interface can not be remotely pro­
grammed. Instead, use the hpib_card_ppoILresp routine. 

hpib_ppoILresp_ctl 
The "sense" bit of the flag value for the hpib_ppoILresp_ctl routine determines whether 
a zero or non-zero "response value" means that the computer requires service. If the "s" 
bit is a 0, then a zero response value means service is needed. 

io_eoLctl 
On the Integral PC, a read operation from a GPIO interface will terminate only when a 
specified number of read operations have been performed, or when the read termination 
pattern ,has been found. 

The Integral PC does not support different read termination patterns on multiple opens 
to the same eid. 

io_reset 
When used to reset a GPIO interface, the io_reset routine will pulse the RES (reset) line 
only on the GPIO controller port specified by the eid. 
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io_speed_ctl 
GPIO 
Setting the speed on a GPIO interface determines the transfer mode used by the driver: 
either interrupt-driven, flag-driven handshake, or "fast handshake" mode. (N ote that 
the driver's fast handshake mode is not the same as the fast handshake mode described 
in the HP 82923A GPIO Owner's Manual; it refers to a flag-driven mode where the EOL 
and timeout settings are ignored to achieve a faster transfer rate.) 

DMA transfers are not available on the Integral PC. 

Interrupt-Driven Transfer Mode 
Two transfer modes exist between the Integral PC and the HP 82923A GPIO interface: 
flag-driven mode and interrupt-driven mode. To select the interrupt-driven mode, use 
io_speed_ctl to set the speed to o. 

While in the interrupt-driven mode, read and write calls to the GPIO interface will cause 
the user's process to go to sleep until an interrupt occurs at the completion of the read 
or write. 

HP-IB 
The DIL routines on the Integral PC support two HP-IB transfer modes: flag-driven 
mode and high-speed transfer mode. The default mode is the flag-driven mode until it 
is set to the high-speed transfer mode using the io_ burst routine. 

In the high-speed transfer mode, the driver talks directly to the interface without going 
through the operating system. For more information on io_burst, refer to the documen­
tation provided in the io_burst.3d file in the doc folder on the DIL disc. 

io_timeouLctl 
This routine allows you to set a time limit for operations carried out by DIL routines on 
a specified entity identifier. The timeout value you specify is a 32-bit long integer that 
indicates the length of the timeout in microseconds ({l-secs). However, the resolution of 
the effective timeout is system-dependent. On the Integral PC, the timeout resolution on 
both the HP 82923A GPIO interface and the HP 82998A HP-IB interface is 1 millisecond 
(msee). 

For example, suppose you specify a timeout of 99 999 microseconds (99.999 milliseconds). 
Then the effective timeout is rounded up to 100 milliseconds. 
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io_ width_ctl 
The data path width for the HP-IB interface is always 8 bits on the Integral PC. However, 
the four 8-bit ports on the HP 82923A GPIO interface can be combined to form 8-, 16-, 
or 32-bit data paths. 

For 16- or 32-bit ports, only one port acts as a controller; that port's eid is used in the 
io_ width_ctl routine. The allowable data path widths for each port are shown in the 
following table. 

GPIO Data Path Widths 

Data Path Controller Data 
Width Port Ports· 

8-bit a a 

b b 

e e 

d d 

16-bit b ba 

d de 

32-bit b bade 

* Data ports are listed in order, left to right, from most-significant byte to least-significant 
byte. 

Combinations of 8- and 16-bit or two 16-bit ports are also allowed on the same GPIO 
interface. 24-bit ports are not allowed. 

open(2) 
When opening the special file for an interface, you must use the special file name for 
the specific GPIO or HP-IB interface created by load_hpib or load_gpio. Note that each 
GPIO port has a separate special file name. For details on interface special file names, 
see the previous section "Creating an Interface Special File." 

read(2) and write(2) 
During a read or write operation to a 16- or 32-bit GPIO port, the data must start on 
a word boundary. This restriction applies only to the GPIO interface. 
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puters, is discussed in this appendix: 

• compiling programs that use DIL routines 

• accessing the special files for the interfaces that you plan to use with DIL 

• creating special files for the interfaces that you plan to use with DIL 

• DIL routines affected by the Series 800 hardware 

• DIL support of HP-IB auto-addressed files 

• improving performance of DIL programs 
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Compiling Programs That Use OIL 
The DIL routines are located in the library /usr/lib/libdvio.a. Thus, programs can be 
linked as: 

CC test.c -ldvio 

Accessing the Interface Special Files 
The Series 800 kernel is shipped with a default I/O configuration. This means a default 
set of special files is made for you. For example, the /dev/hpib directory contains special 
files created for use with HP-IB instruments connected to the HP 27110B HP-IB interface. 
The special file /dev/gpioO is created for use with instruments or peripherals connected 
to the HP27114A Asynchronous FIFO interface (AFI). The insf command is used to 
install these special files all at one time. Mknod could also be used to create them one 
at a time. For more information on insf and mknod refer to the HP- UX Reference. 

Major Numbers 
Major numbers map the hardware I/O cards to the software I/O driver for the type 
of I/O application the card will be doing. The driver used to talk to the HP-IB card 
for instrument I/O is called instrO, and corresponds to major number 21. The HP-IB 
card talks to different drivers (which use different major numbers) to do I/O to other 
kinds of devices, such as disc drives or printers. All default special files in the /dev/hpib 
directory use major number 21. The driver that talks to the AFI card is called gpioO, 
and corresponds to major number 22. The /dev/gpioO special file uses major number 22. 
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Minor Numbers and Logical Unit Numbers 
Drivers use minor numbers to map the hardware I/O cards to their locations in the 
Model 840 I/O backplane. The default I/O configuration shipped with your Model 840 
creates special files accessing a subset of the available backplane slots. For the HP-IB 
card, t\:tlO slots are available for instrument I/O, and one slot is available for the .lA1FI 

card. Slot information is accessed through the device's logical unit number. The logical 
unit number is mapped into the special file's minor number. For HP-IB special files, the 
HP-IB bus address is also mapped into the minor number. 

The minor number syntax for an HP-IB special file is: 

OxOOLuBa 

where Lu is the device's logical unit number, and Ba is the bus address of the HP-IB 
device. Both numbers are in hexadecimal. 

The minor number syntax for an AFI special file is: 

OxOOLuOO 

where Lu is the device's logical unit number in hexadecimal. 

For example, a long listing of the special file /dev/hpib/Oa16 shows 

$ 11 /dev/hpib/Oa16 
crw-rw-rw- 1 root root 21 Ox000010 Mar 11 15:19 Oa16 

The logical unit number is 0, and bus address 16 is 10 in hexadecimal. 
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Listing Special Files 
The Series BOO I/O architecture is based on a hierarchical design. The use of logical 
numbers in conjunction with the major and minor number allows the system to keep 
track of all the information about the I/O structure. The Issf command, list special file, 
is a tool that makes it easy to read information about a special file without decoding it 
by hand. 

The syntax of issf is: 

lssf [-f dey _file] path 

where path is the pathname of the special file. Lssf uses the major number from the 
special file to find the name of the device driver in a file called /etc/devices. If you use 
the -f option, issf looks in dey _file instead of jete/devices. It then decodes the minor 
number, outputs the logical unit number, the device bus address (if there is one), and 
the corresponding CIO slot address for the actual card in the I/O backplane. 

Using the default special file /dev/hpib/Oa16 as an example, the following output is 
produced: 

$ lssf /dev/hpib/Oa16 
instrO lu 0 bus address 16 address 8.2.16 /dev/hpib/Oa16 

where instrO is the name of the instrument HP-IB driver, the logical unit number is 0, 
the HP-IB bus address is 16, and the backplane address of the HP-IB card is 8.2.16. 
This says that the CIO channel card is in mid-bus address 8, and the HP-IB card should 
be in slot 2 of that CIO channel. There are 12 CIO slots available, numbered 0-11. The 
last digit, in this case 16, is the HP-IB bus address of the device Oa16. 

The default HP-IB special files are set up for cards in slot 2 or slot 7 of the CIO channel 
at mid-bus address B. A special file for each possible bus address (0-31) is made for each 
card. The special files for the card at slot 2 all have a logical unit number of 0, and the 
special files for the card in slot 7 all have a logical unit number of 1. 

The default GPIO special file is set up for an AFI card in slot 5 of the CIO channel at 
mid-bus address B, and uses a logical unit number of O. 

For more information on issf refer to the HP- UX Reference. 
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Naming Conventions for Interface Special Files 
If your Series 800 computer was configured correctly, the special files discussed above 
will already have been created. 

By convention, HP-IB special files reside in the /dev/hpib directory, Also by con­
vention, the default special files for the HP-IB raw bus (a HP-IB card itself) are 
named /dev/hpib/X, where X is the bus's logical unit. Auto-addressed files are named 
/dev/hpib/XaY, where X is the logical unit, a stands for an auto-addressed file, and Y is 
the file's associated HP-IB bus address (see the "DIL Support of HP-IB Auto-Addressed 
Files" section of this appendix). 

The naming convention for the GPIO default special files is /dev/gpioX, where X is the 
device's logical unit. 

If you cannot locate the default special files on your system, refer to the next section for 
how to create them. 
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Creating Interface Special Files 
If the special files you need for HP-IB or GPIO are not available on your system, you 
can use the mksf command to create them. Mksf is a high-level command implemented 
for the Series 800, that can be used instead of mknod. Like Issf, mksf frees you from 
having to know the major number and minor number format. Mksf makes the special 
file creation process consistent for all classes of devices. The syntax of mksf is: 

mksf -d driver -llu other_flags ... sfname 

where driver is the name of the driver associated with the special file, lu is the file's 
logical unit, and sf name is the name of the special file you wish to create. 

Each class of device can have additional class-dependent attributes (such as the bus 
address for an HP-IB auto-addressed file). 

For HP-IB devices, the driver is instrO. Thus, to create a special file named /dev/bus for 
HP-IB lu 1, you use the command: 

mksf -d instrO -1 1 /dev/bus 

When creating auto-addressed HP-IB special files, you add another option -a to associate 
the address with the device. For example, to create an auto-addressed special file called 
/dev/plotter, at bus address 7 on HP-IB lu 2, you could type: 

mksf -d instrO -1 2 -a 7 /dev/p1otter 

For the AFI card, the driver is gpioO. Thus, to create a special file named /dev/afi for 
GPIO lu 0, you could use the command: 

mksf -d gpioO -1 0 /dev/afi 

For more information on mksf or mknod, refer to the HP- UX Reference. 
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Hardware Effects on OIL Routines 
The HP-IB card supported on the Series 800 is the HP 27110B HP-IB interface; the 
GPIO card is the HP 27114A Asynchronous FIFO Interface (AFJ). 

This section presents some restrictions on using the DIL routines on Series 800 comput­
ers. These restrictions are organized under the DIL routine to which they apply. The 
routines are presented in alphabetical order. A list of errno error names can be found 
in section two of the HP- UX Reference. Errno numeric values are defined in the file 
jusr jincludejsysjerrno.h. 

hpib_rqsLsrvce 
The hpib_ rqsLsrvce routine only permits bit 6 of the serial poll response to be set. If 
hpib_rqsLsrvce is called with a response having bit 6 set, the interface sends <01000000> 
(64 decimal) in response to serial poll; if bit 6 is not set in response, the interface sends 
<10000000> (128 decimal). See "The Computer as a Non-Active Controller" in Chapter 
3. 

io_eoLctl 
The AFI driver does not support pattern matching on reads; all io_eoLctl calls return -1 
and set errno to EINVAL. 

io_reset 
When an HP-IB interface is reset via io_reset, the card's parallel poll response is set 
to 0; its serial poll response is set to 128; its HP-IB address is read off the hardware 
switches; and the card is put on-line. Any enabled interrupts are preserved. If the 
card is configured as system controller, then Interface Clear (IFC) is pulsed and Remote 
Enable (REN) is asserted. 

When an AFI interface is reset via io_ reset, each of the three control output lines is reset 
to zero, the incoming Attention Request (ARQ) is disabled, the ARQ flip flop is cleared, 
the ARQ enable flip flop and the handshake to the peripheral are disabled, and the FIFO 
buffer is flushed out. 
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io_speed_ctl 
The io_speed_ctl routine is not supported on Series 800 computers; transfer is always 
done via DMA. 

io_timeouLctl 
On Series 800 computers, the timeout you specify via io_timeouLctl is rounded up to 
the nearest 10-millisecond boundary. For example, if you specify a timeout of 125000 
microseconds (125 milliseconds), the effective timeout is rounded up to 130 milliseconds. 

DIL functions, read, or write requests that time out, return a value of -1 and set errno 
to either ETIMEDOUT or EINTR. If the request can be aborted normally, then errno 
is set to ETIMEDOUT . Otherwise, the HP-IB card is reset and EINTR is returned. 

io_ width_ctl 
The only allowable data path width for HP-IB devices is 8. AFI devices support 8-bit 
and 16-bit data paths. If you specify any other width, io_ width_ ctl returns an error 
indication. 

Return Values for Special Error Conditions 
On specific error conditions, the Series 800 sets errno values which are different from 
what is expected from the DIL as documented in the HP-UX Standard. For example, 
when any request times out, errno is set to ETIMEDOUT ("connection timed out") 
or instead of setting it to EO!. Also, upon HP-IB requests that require the interface 
to be the active controller or the system controller, set errno to EACCES ("permission 
denied" ). Requests that are aborted due to system power failure set errno to EINTR 
("interrupted system call"); in addition, your process receives the signal SIGPWR, which 
indicates recovery of system power. 
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OIL Support of HP-IB Auto-Addressed Files 

As noted in Chapter 3 in the section called "Setting Up Talkers and Listeners," one class 
of HP-IB special files, known as auto-addressed files, are associated with a given address 
on the bus. For read and write requests to these files, addressing is done automatically; 
that is, the sequence of talk and listen bus commands is generated for you. 

In general, the DIL functions are not defined for auto-addressed files. On the Series 800, 
however, many of them are implemented, but with more device-oriented actions. 

Important 

The DIL Standard does not currently specify a functional defi­
nition for the support of auto-addressed files. When support for 
auto-addressed files becomes part of the DIL Standard, the specific 
functionality implemented may differ from the implementation de­
scribed here for the Series 800. Please keep this in mind when 
developing programs which take advantage of this new functional­
ity. 

The following table shows which DIL functions are supported on auto-addressed files. 
Entries in the first column work the same on both auto-addressed and non-au to-addressed 
(also called raw bus) files. Entries in the second column are somewhat different for auto­
addressed files; entries in the third column are not supported on HP-IB auto-addressed 
files and will return an error indication if used. 
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Routine Same Effect Different Effect Not Allowed 

hpib_abort X 

hpib_bus_status X 

hpib_card_ppoILresp X 

hpib_eoLctl X 

hpib_io X 

hpib_pass_ctl X 

hpib_ppoll X 

hpib_ppoILresp_ctl X 

hpib_ren_ctl X 

hpib_rqst_srvce X 

hpib_send_cmd X 

hpib_spoll X 

hpib_status_ wait X 

hpib_ wait_on_ppoll X 

io_eoLctl X 

io_get_term_reason X 

io_interrupLctl X 

io_on_interrupt X 

io_reset X 

io_speed_ctl X 

io_ timeouLctl X 

io_ width_ctl X 

Those functions in the second column, which operate differently on raw bus and auto­
addressed special files, are discussed below. 
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hpib_card_ppoILresp 
Calling hpib_card_ppoltresp on an auto-addressed file does not configure the HP-IB in­
terface card; rather, it configures the device associated with the file with the appropriate 
addressing and Parallel Poll configuration commands. 

hpib_io 
For those iodetail structures that send commands (by setting the mode flag to HPIB­
WRITE or HPIBATN), hpib_io prefixes the command buffer buf with the appropriate 
device addressing (see hpib_send_cmd, below). For data transfers (with mode set to 
HPIBREAD or HPIBWRITE) using auto-addressed files, the addressing is also done for 
you. 

hpib_ren_ctl 
Setting REN (by setting the flag parameter to a non-zero value) on an auto-addressed 
file addresses the associated device before asserting REN. Clearing REN (by setting flag 
to a zero) addresses the device and sends it a Go To Local command, in lieu of clearing 
REN. 

hpib_send_cmd 
Sending HP-IB commands to an auto-addressed file via hpib_send_cmd does the appro­
priate device addressing for you. The command buffer you pass down to the device is 
preceded by the commands necessary to remove any previous listeners on the bus, address 
the Active Controller to talk, and configure the file's associated device to listen. 

hpib_spoll 
Performing a serial poll on an auto-addressed file polls the associated device; any bus 
address passed via the ba argument is ignored. 

hpib_waiLon_ppoll 
For auto-addressed files, the mask argument is ignored; only the address associated with 
the device is polled. In addition, the sense argument only specifies the sense of the 
particular device's assertion. Successful completion of the hpib_waiCon_ppoli request 
implies that the device responded to parallel poll. 

io_on_interrupt 
The only allowable interrupt for auto-addressed files is SRQ. 
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Performance Tips 
DIL performance improvements for the Series 800 fall into two categories: those that 
keep your process from waiting for resources, and those that actually improve your I/O 
performance. The first three of the tips described below fall into the first category; the 
last two are in the second category. 

Process Locking 
Normally, the operating system swaps processes in and out of memory; you can circum­
vent this swapping by using the plock system call. 

If you are running as the super-user (or have the PRIV _MLOCK capability), you can 
use plock to lock your process in memory; plock prevents the system from swapping out 
the process's code, data, or both. 

The following example illustrates its use: 

#include <sys/lock.h> 
int plock(); 

mainO { 

plock(PROCLOCK); 

plock(UNLOCK); 
} 

/* lock text and data segments into memory */ 

/* unlock the process */ 

Refer to plock{2} and getprivgrp{2} in the HP-UX Reference for more information. 
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Setting Real-Time Priority 
The operating system schedules processes based on their priority. Under normal circum­
stances, the priority of a process drops over time, allowing newer processes a greater 
share of CPU time. You can assign a higher priority to your process and keep its priority 
from dropping by using the rtprio system call. 

If you are running as the super-user (or have the PRIV _RTPRIO capability), you can 
use rtprio to give your process a real-time priority. Real-time processes run at a higher 
priority than normal user processes; they get preempted only by voluntarily giving up 
the CPU or by being interrupted by a higher priority process or interrupt. 

You must be careful when using real-time priorities because you can increase your priority 
above those of important system processes. The following example places the calling 
process at the lowest (least important) real-time priority: 

#include <sys/rtprio.h> 
#define ME 0 /* a zero process ID means this process */ 
int rtprio 0 ; 

mainO { 
rtprio(ME, 127); /* Turn on real-time priority for ME */ 

rtprio(ME, RTPRIO_RTOFF); /* Turn off real-time priority for ME */ 
} 

Refer to rtprio{2} and getprivgrp{2} in the HP-UX Reference for more information. 

Preallocating Disc Space 
If your process is reading large amounts of data and writing it to a file, you can block 
while the operating system allocates disc space. However, you can allocate disc space 
in advance by using the prealloc system call. The following example opens a file and 
preallocates 65536 bytes of space for that file: 

#include <fcntl.h> 
#define MAX_SIZE 65536 
int prealloc 0 ; 

mainO { 
int eid; 

eid = open ("data_file" , O_WRONLY); 
prealloc(eid, MAX_SIZE); /* preallocate space to write into */ 

} 
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Refer to prealloc{2} in the HP- UX Reference for more information. 

Reducing System Call Overhead 
Most DIL function calls you make on the Series 800 map into system calls. Therefore, you 
can cut down on operating system overhead by using fewer library calls. In particular, 
use auto-addressed files for all read and write operations, rather than using an extra call 
to hpib_send_cmd to do addressing. 

Setting Up Faster Data Transfers 
Because of the I/O architecture of the Series 800, data transfers run more efficiently if 
your data buffers are aligned on a page boundary. The number of bytes per page is 
defined as NBPG and can be referenced by including <sys/param.h>. The following 
example shows how to allocate and page-align a data buffer: 

#include <sys/param.h> 
#define REAL_SIZE 1024 
char *malloc 0 ; 

mainO { 

/* defines NBPG and roundup(x. y) */ 
/* amount of memory we want to page-align */ 

char *malloc_ptr. *align_ptr; 

} 

malloc_ptr = malloc(NBPG + REAL_SIZE); /* allocate memory */ 
align_ptr roundup(malloc_ptr. NBPG); /* and round up the ptr */ 

/* in future data transfers. use align_ptr */ 

free(malloc_ptr); /* when we're done with the data */ 

In addition, even count transfers run more quickly than odd count transfers. 
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ASCII Character Codes E 
i i i 

ASCII 
EQUIVALENT FORMS 

HP-IB ASCII EQUIVALENT FORMS HP-IB 
Char. Dec Binary Oct Hex Char. Dac Binary Oct Hex 

NUL 0 00000000 000 00 space 32 00100000 040 20 LAO 

SOH 1 00000001 001 01 GTL ! 33 00100001 041 21 LAl 

STX 2 00000010 " 002 02 34 00100010 042 22 LA2 

ETX 3 00000011 003 03 /; 35 00100011 043 23 LA3 

EOT 4 00000100 004 04 SOC $ 36 00100100 044 24 LA4 

ENQ 5 00000101 005 05 PPC % 37 00100101 045 25 LA5 

ACK 6 00000110 006 06 & 38 00100110 046 26 LA6 

BEL 7 00000111 007 07 39 00100111 047 27 LA7 

BS 8 00001000 010 08 GET ( 40 00101000 050 28 LA8 

HT 9 00001001 011 09 TCT ) 41 00101001 051 29 LA9 

LF 10 00001010 012 OA * 42 00101010 052 2A LAlO 

VT 11 00001011 013 OB + 43 00101011 053 2B LAll 

FF 12 00001100 014 OC 44 00101100 054 2C LA12 

CR 13 00001101 015 00 - 45 00101101 055 20 LA13 

SO 14 00001110 016 OE 46 00101110 056 2E LA14 

SI 15 00001111 017 OF I 47 00101111 057 2F LA15 

OLE 16 00010000 020 10 0 48 00110000 060 30 LA16 

OCl i7 00010001 021 11 LLO i 49 00110001 061 31 LA17 

OC2 18 00010010 022 12 2 50 00110010 062 32 LA18 

OC3 19 00010011 023 13 3 51 00110011 063 33 LA19 

OC4 20 00010100 024 14 OCL 4 52 00110100 064 34 LA20 

NAK 21 00010101 025 15 PPU 5 53 00110101 065 35 LA21 

SYNC 22 00010110 026 16 6 54 00110110 066 36 LA22 

ETB 23 00010111 027 17 7 55 00110111 067 37 LA23 

CAN 24 00011000 030 18 SPE 8 56 00111000 070 38 LA24 

EM 25 00011001 031 19 SPO 9 57 00111001 071 39 LA25 

SUB 26 00011010 032 lA 58 00111010 072 3A LA26 

ESC 27 00011011 033 lB 59 00111011 073 3B LA27 

FS 28 00011100 034 lC < 60 00111100 074 3C LA28 

GS 29 00011101 035 10 = 61 00111101 075 3D LA29 

RS 30 00011110 036 lE > 62 00111110 076 3E LA30 

US 31 00011111 037 IF ? 63 00111111 077 3F UNL 
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Character Codes (cont.) 

ASCII EQUIVALENT FORMS 
HP-IB ASCII EQUIVALENT FORMS 

HP-IB 
Char. Dec Binary Oct Hex Char. Dec Binary Oct Hex 

@' 64 01000000 100 40 TAO 96 01100000 140 60 SCO 

A 65 01000001 101 41 TAl a 97 01100001 141 61 SCl 

8 66 01000010 102 42 TA2 b 98 01100010 142 62 SC2 

C 67 01000011 103 43 TA3 c 99 01100011 143 63 SC3 

0 68 01000100 104 44 TA4 d 100 01100100 144 64 SC4 

E 69 01000101 105 45 TA5 e 101 01100101 145 65 SC5 

F 70 01000110 106 46 TA6 f 102 01100110 146 66 SC6 

G 71 01000111 107 47 TA7 9 103 01100111 147 67 SC7 

H 72 01001000 110 48 TA8 h 104 01101000 150 68 SC8 

I 73 01001001 111 49 TA9 i 105 01101001 151 69 SC9 

J 74 01001010 112 4A TAlO J 106 01101010 152 6A SClO 

K 75 01001011 113 48 TAll k 107 01101011 153 68 SCll 

L 76 01001100 114 4C TA12 I 108 01101100 154 6C SC12 

M 77 01001101 115 40 TA13 m 109 01101101 155 60 SC13 

N 78 01001110 116 4E TA14 n 110 01101110 156 6E SC14 

0 79 01001111 117 4F TA15 0 111 01101111 157 6F SC15 

P 80 01010000 120 50 TA16 P 112 01110000 160 70 SC16 

Q 81 01010001 121 51 TA17 q 113 01110001 161 71 SC17 

R 82 01010010 122 52 TA18 r 114 01110010 162 72 SC18 

S 83 01010011 123 53 TA19 s 115 01110011 163 73 SC19 

T 84 01010100 124 54 TA20 t 116 01110100 164 74 SC20 

U 85 01010101 125 55 TA21 u 117 01110101 165 75 SC21 

V 86 01010110 126 56 TA22 v 118 01110110 166 76 SC22 

W 87 01010111 127 57 TA23 w 119 01110111 167 77 SC23 

X 88 01011000 130 58 TA24 x 120 01111000 170 78 SC24 

Y 89 01011001 131 59 TA25 Y 121 01111001 171 79 SC25 

Z 90 01011010 132 5A TA26 z 122 01111010 172 7A SC26 

[ 91 01011011 133 58 TA27 I 123 01111011 173 78 SC27 

"- 92 01011100 134 5C TA28 I 124 01111100 174 7C SC28 

1 93 01011101 135 50 TA29 } 125 01111101 175 70 SC29 

. 94 01011110 136 5E TA30 - 126 01111110 176 7E SC30 

- 95 01011111 137 5F UNT DEL 127 01111111 177 7F SC31 

172 ASCII Character Codes 



OIL Programming Example F 
ThIS appendix contains a program lIstmg for an tlt"-ltl drIver that uses Device IjO 
Library subroutines to drive various models of Hewlett-Packard Amigo protocol HP-IB 
printers. It is provided solely for illustrative use, and is not to be construed as optimum 
programming technique nor necessarily totally bug-free althougp the program has been 
extensively tested. 

It contains not only examples of DIL subroutine usage, but also other useful programming 
techniques and structures that can make the task of writing specialized I/O programs 
much easier. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

/*************************************************************************/ 
/* This example Amigo printer driver uses a byte stream as standard */ 
/* input and Amigo protocol as output to HP-IB driver (21). Any special */ 
/* character handling should be done by a filter that feeds this driver. */ 
/* */ 
/* This example program is provided for solely illustrative purposes to */ 
/* demonstrate typical use of Device I/O Library (OIL) subroutines. No */ 
/* representations are made as to its suitability for any given */ 
/* application. */ 
/* */ 
/* While the program is intended to show good programming practice, it */ 
/* does not necessarily represent optimum programming efficiency. */ 
/*************************************************************************/ 

15 #include <sys/types.h> 
16 #include <sys/stat.h> 
17 #include <stdio.h> 
18 #include <fcntl.h> 
19 #include <errno.h> 
20 #include <sys/sysmacros.h> 
21 
22 
23 
24 
25 
26 

/* HP-IB addressing group bases */ 
#define LAG_BASE Ox20 
#define TAG_BASE Ox40 
#define SCG_BASE Ox60 

27 
28 
29 
30 
31 
32 
33 

/* HP-IB command equates in odd parity 
#define GTL Ox01 /* 
#define SOC Ox04 /* 
#define DCL Ox94 /* 
#define UNL Oxbf /* 
#define UNT Oxdf /* 

listener address base */ 
talker address base */ 
secondary address base *i 

*/ 
go to local */ 
selective device clear */ 
device clear */ 
unlisten */ 
untalk */ 
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34 /* HP-IB 
35 
36 
37 
38 
39 
40 

#define 
#define 
#define 
#define 
#define 

secondary commands */ 
PR_SEC_DSJ 
PR_SEC_DATA 
PR_SEC_RSTA 
PR_SEC_MASK 
PR_SEC_STRD 

41 
42 
43 
44 

/* output of DSJ 
#define 

operation 2608A 
PR_ATTEN 
PR_RIBBON 
PR_ATT_PAR 
PR_PAPERF 
PR_SELF 
PR_PRINT 

#define 
#define 

45 #define 
46 
47 
48 

#define 
#define 

SCG_BASE+16 
SCG_BASE+O 
SCG_BASE+14 
SCG_BASE+Ol 
SCG_BASE+l0 

*/ 
OxOOOl 
Ox0002 
Ox0003 
Ox0010 
Ox0020 
Ox0040 

/* 2608A */ 

49 
50 
51 
52 
53 

/* output of DSJ operation the rest of the printers */ 

54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 

#define PR_RFDATA OxOOOO 
#define PR_SDS OxOOOl 
#define PR_RIOSTAT Ox0002 

/* ppoll mask bits 
#define 
#define 
#define 
#define 

*/ 
PR_M_RFD 
PR_M_STATUS 
PR_M_POWER 
PR_M_PAPER 

/* default parallel poll mask */ 

Ox0010 
Ox0020 
Ox0040 
Ox0080 

unsigned char pmask[l] = {PR_M_PAPER+PR_M_POWER+PR_M_STATUS+PR_M_RFD}; 

/* masks for io status byte in case of 2608A */ 
#define PR_I_POW OxOOOl 
#define PR_I_OPSTAT 
#define PR_I_LINE 

Ox0040 
Ox0080 

/* masks for io status byte the rest of the printers */ 
69 #define PR_I_POWER OxOOOl 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 

#define 
#define 
#define 
#define 

/* define printer 
#define T2608A 
#define T2631A 
#define T2631B 
#define T2673A 
#define QjetPlus 
#define T2632A 
#define T2634A 

PR_I_PAPER 
PR_I_PARITY 
PR_I_RFD 
PR_I_ONLINE 

types */ 

5 

1 
2 
3 
4 

6 
7 
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84 int ptr_type; /* type of printer */ 
85 
86 /* setup defines for fatal returns */ 
87 #define F_RTRN 1 
88 #define F_EXIT 0 
89 
90 /* setup defines for HP-IB_msg */ 
91 #define H_READ 1 
92 #define H_WRITE 2 
93 #define H_CMND 4 
94 
95 /* default timeout value (in seconds) to infinity */ 
96 int timeout = 0; 
97 
98 /* default size of output buffer to printer */ 
99 int bufsz 32; 

100 
101 /* device file suffix for raw hpib dey */ 
102 char ptr_raw[] = 11_00 11 ; 
103 
104 /* default output dey to printer */ 
105 char ptr_dev[100] = II/dev/lpll; 
106 
107 extern char *optarg; 
108 extern int optind; 
109 extern int errno; 
110 
111 /* file id for raw HP-IB dey */ 
112 int eid; 
113 
114 /* configured listen and talk commands */ 
115 int MTA; /* my talk address */ 
116 int MLA; /* my listen address */ 
117 int DTA; /* device (printer) talk address */ 
118 int DLA; /* device (printer) listen address */ 
119 
120 /* device bus address k my bus address */ 
121 int devba. myba; 
122 
123 /* my name */ 
124 char *procnam; 
125 
126 int Debug = 0; 
127 
128 main(argc. argv) 
129 int argc; 
130 char *argv[]; 
131 { 
132 
133 register i. c; 
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134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 

register unsigned char *outbuf; /* output buffer pointer */ 
int status; 
int selcode; /* select code of printer */ 
struct stat statbuf; 
int errflg = 0; 

procnam = argv[O]; /* save pOinter to my name */ 

/* GET USER SUPPLIED OPTIONS AND PRINTER FILE NAME */ 
while «i = getopt(argc. argY, Ib:t:P:D"» != EOF) { 

switch (i) { 

} 

/* set the buffer size to output to printer */ 
case 'b': if «bufsz atoi(optarg» <= 0) errflg++; 

break; 

/* get the new timeout value in seconds */ 
case 't': if «timeout ='atoi(optarg» < 0) errflg++; 

break; 

/* Set the parallel poll pmask (mostly for debugging) */ 
case 'p': if «pmask[O] = atoi(optarg» < 0) errflg++; 

break; 

case 'D': Debug++; break; 

case '?': errflg++;break; 
} 

/* get printer dey if supplied */ 
if (optind < argc) 

strcpy(ptr_dev. argv[optind]); 

if (errflg) { 
fprintf(stderr. "usage: %s [-bbufsz -ttmout] [printer_dev]\n". procnam); 
fprintf(stderr. "-b bufsz > Output buf size to printer (%d)\n". bufsz); 
fprintf(stderr. II_t tmout > Max seconds to output buffer (%d)\n". timeout); 
fprintf(stderr. "printer_dev > Printer device file (%s)\n". ptr_dev); 
fprintf(stderr. "_p ppoll_mask > Parallel poll mask (Ox%02x)\n".pmask[0]); 

exit(2); 
} 

174 /* get memory for the output buffer */ 
175 outbuf = (unsigned char *)malloc (bufsz + 4); 
176 /* 
177 NOTE: Printer device file (/dev/lp) is used only to get printer select 
178 code and HP-IB bus address. This is because attention-true (ATN) 
179 requests can only be sent to an "HP-IB raw bus device file". Therefore 
180 after getting the SC and BA we will use a "HP-IB raw bus device file" to 
181 do all the work. but it must exist with a name similar to the printer 
182 device; i.e. "/dev/lp" is changed to "/dev/lp_07". where the "07" is the 
183 select code. 
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184 *1 
185 1* check if printer device exists *1 

if (stat (ptr_dev , lstatbuf) < 0) 186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
201 
202 
203 
204 
205 
206 
207 
208 
209 
210 
211 
212 
213 
214 
215 
216 
217 
218 
219 
220 
221 
222 
223 
224 
225 
226 
227 
228 
229 
230 
231 
232 
233 

fatal_err ("stat", ptr_dev, F_EXIT); 

1* check if it is a character device file */ 
if «statbuf.st_mode l S_IFMT) != S_IFCHR) 

fatal_err(IIMust be a char_special file", ptr_dev, F_EXIT); 

1* extract selectcode from the printer device *1 
selcode m_selcode(statbuf.st_rdev); 

1* make the HP-IB raw bus device file name from selectcode *1 
ptr_raw[l] += selcode I 16; 
ptr_raw[2] += selcode % 16; 
if «selcode % 16) >= 10) ptr_raw[2] += ('a' - '0' -10); 
strcat(ptr_dev, ptr_raw); 

1* get device BA from the printer device and config control bytes *1 
devba = m_busaddr(statbuf.st_rdev); 
DLA LAG_BASE + devba; 1* device listen address *1 
DTA = TAG_BASE + devba; 1* device talk address *1 

1* open the HP-IB raw bus device *1 
if «eid = open (ptr_dev, O_RDWR» <0) { 

fatal_err(IIRaw HP-IB open II , ptr_dev, F_RTRN); 
fprintf(stderr, 
II The following commands executed as a super user may be necessary\n\n"); 
fprintf(stderr, II # mknod %s c 21 Ox%slfOO\n", ptr_dev, lptr_raw[l]); 
fprintf(stderr, II # chmod 555 %s\n", ptr_dev); 
fprintf(stderr, II # chown lp %s\n", ptr_dev); 

exit(2); 
} 

1* get (my) BA of the controller and configure control bytes *1 
if «myba = hpib_bus_status(eid, 7» < 0) 

MLA 
MTA 

fatal_err(IIMust be raw hpib driver (21)", ptr_dev,F_EXIT); 
LAG_BASE + myba; 1* controller (my) listen address *1 
TAG_BASE + myba; 1* controller (my) talk address *1 

1* go do the Amigo identify *1 
ptr_type amigo_identify(); 

if (Debug) { 
printf("%s Identified ", ptr_dev); 
switch(ptr_type) { 
case T2608A: printf(12608A"); 
case T2631A: printf(12631A"); 
case T2631B: printf(12631B"); 
case T2673A: printf(12673A"); 
case QjetPlus: printf("QuietJet 

break; 
break; 
break; 
break; 

Plus");break; 
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case T2632A: printf("2632A"); break; 
case T2634A: printf("2634A"); break; 
default: printf("You forgot one dummy"); break; 
} 
printf(" printer\n"); 

} 
/* set the timeout to user requested value */ 
if (io_timeout_ctl(eid. timeout * 1000000) < 0) 

fatal_err("io_timeout_ctl". ptr_dev. F_EXIT); 

/* always tag last output data byte with EOI */ 
if (hpib_eoi_ctl(eid. 1) < 0) 

fatal_err("hpib_eoi_ctl". ptr_dev. F_EXIT); 

/* clear out the status bits */ 
amigo_clear 0 ; 

/* check the status bits */ 
status = amigo_status(); 
if (Debug) printf("%s Printer status = Ox%x\n". ptr_dev. status); 

/* set the ppoll mask required by some printers */ 
amigo_set_pmask(); 

/* MAIN OUTPUT LOOP */ 
i = 0; 
while ((c = getchar(» != EOF) { 

if (i == bufsz) { 
amigo_write(outbuf. 
i = 0; 

} 
outbuf[i++] = c; 

} 

/* post remaining buffer */ 
if (i) amigo_write(outbuf. i); 
exit(O); 

i) ; 

234 
235 
236 
237 
238 
239 
240 
241 
242 
243 
244 
245 
246 
247 
248 
249 
250 
251 
252 
253 
254 
255 
256 
257 
258 
259 
260 
261 
262 
263 
264 
265 
266 
267 
268 
269 
270 } 
271 
272 
273 
274 
275 
276 
277 
278 
279 
280 
281 
282 
283 

/* ROUTINE TO DO THE MAIN I/O TO THE BUSS */ 
/* lock bus. do preamble. read/write. do postamble and unlock bus */ 
/* preamble must be 3 or 4 bytes. postamble must be 1 or 2 bytes */ 
int 
HPIB_msg(rw_flag. pcml. pcm2. pcm3. buffer. length. ocmO. ocml) 
int rw_flag; 
int pcml; 
int pcm2; 
int pcm3; 
char *buffer; 
int length; 
int ocmO; 
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284 int ocml; 
285 { 
286 unsigned char pre_cmd[4] ; 
287 unsigned char post_cmd[2]; 
288 int tlog = -1; 
289 
290 
291 
292 
293 
294 
295 
296 
297 
298 
299 
300 
301 
302 
303 
304 
305 
306 
307 
308 
309 
310 
311 
312 
313 
314 
315 
316 
317 
318 
319 
320 
321 
322 
323 
324 
325 

pre_cmd[O] = UNL; 
pre_cmd[l] = pcml; 
pre_cmd[2] = pcm2; 
pre_cmd[3] = pcm3; 

post_cmd [0] 
post_cmd [1] 

ocmO; 
ocml; 

/* always issue unlisten command first */ 

/* first get exclusive use of the bus */ 
if (io_lock(eid) < 0) 

fatal_err("io_lock". ptr_dev. F_EXIT); 

/* send the preamble 3 or 4 bytes with attention true */ 
if (hpib_send_cmnd(eid. pre_cmd. (pcm3 ? 4 : 3» < 0) 

fatal_err(IIhpib_send_cmnd preamble". ptr_dev. F_EXIT); 

switch (rw_flag) { 
case H_READ: 

if ((tlog = read(eid. buffer. length» < 0) 
fatal_err("read". ptr_dev. F_EXIT); 

break; 

case H_WRITE: 
if ((tlog = write(eid. buffer. length» < 0) 

fatal_err("write". ptr_dev. F_EXIT); 
break; 

case H_CMND: 
return(O); 

default: 
return(-l); 

} 
/* send the postamble 1 or 2 bytes with attention true */ 
if (hpib_send_cmnd(eid. post_cmd. (ocml ? 2 : 1» < 0) 

fatal_err(IIhpib_send_cmnd postamble". ptr_dev. F_EXIT); 

326 /* at last unlock the bus so other bus users can access it */ 
327 if (io_unlock(eid) < 0) 
328 fatal_err("io_unlock". ptr_dev. F_EXIT); 
329 
330 return(tlog); 
331 } 
332 
333 int 
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amigo_identify() 
{ 

unsigned char identify[2]; 

/* TLK31 (UNT) is special for amigo identify */ 

334 
335 
336 
337 
338 
339 
340 
341 
342 
343 
344 
345 
346 
347 
348 
349 
350 
351 
352 
353 
354 
355 
356 
357 
358 
359 
360 
361 
362 
363 
364 
365 
366 
367 
368 } 
369 
370 
371 
372 
373 
374 
375 
376 
377 
378 
379 
380 } 
381 
382 
383 

/* finish with a MTA (UNT is not save for non-amigo devices) */ 
HPIB_msg(H_READ. MLA. UNT. SCG_BASE + devba. identify. 2. MTA. 0); 

switch(identify[O]) { 
case 32: 

/* Amigo identify */ 
switch(identify[l]) { 
case 1: return(T2608A); 
case 2: return(T2631A); 
case 9: return(T2631B); 
case 11: return(T2673A); 
case 13: return(QjetPlus); 
case 16: return(T2632A); 
case 17: return(T2634A); 
default: 

} 

break; 
case 33: 

printf("Unrecognized Amigo printer. ID2 
identify[l]); break; 

if (identify[l] == 1) 

%d\n". 

printf("Ciper printer not supported yet!\n"); 
break; 

default: 
printf("Unrecognized Amigo Printer identify. IDl = %d. ID2 = %d\n". 

identify [0] . identify[l]); 

} 
exit(2); 

break; 

/* set the parallel poll mask value */ 
amigo_set_pmask() 
{ 

} 

/* do the amigo clear followed by selective device clear */ 
amigo_clear 0 
{ 

HPIB_msg(H_WRITE. MTA. DLA. SCG_BASE + 16. "\0". 1. SDC. UNL); 

/* get the dsj byte */ 
int 

180 DIL Programming Example 



unsigned char dsj_byte[l] ; 

384 
385 
386 
387 
388 
389 
390 } 

HPIB_msg(H_READ, MLA, DTA, PR_SEC_DSJ, dsj_byte, 1, UNT, 0); 
return(dsj_byte[O]); 

391 
392 /* return the amigo status byte */ 

int 
amigo_status 0 
{ 

unsigned char status_byte [1] ; 

393 
394 
395 
396 
397 
398 
399 
400 } 
401 
402 
403 
404 
405 
406 
407 
408 
409 
410 
411 
412 
413 
414 
415 
416 
417 
418 
419 
420 
421 
422 
423 
424 
425 } 
426 
427 
428 
429 
430 
431 
432 
433 

HPIB_msg(H_READ, MLA, DTA, PR_SEC_RSTA, status_byte, 1, UNT, 0); 
return(status_byte[O]); 

/* output a buffer to printer */ 
amigo_write (buffer , length) 
char *buffer; 
int length; 
{ 

int status, dsj = 0; /' 

/* write the buffer */ 
HPIB_msg(H_WRITE, MTA, DLA, PR_SEC_DATA, buffer, length, UNL, 0); 

again: 
/* now wait for parallel poll response */ 
if (Debug) printf("Xs Ppoll wait\n" , ptr_dev); 
if (hpib_wait_on_ppoll(eid, Ox80»devba, 0) < 0) 

fatal_err ("hpib_wait_on_ppoll", ptr_dev, F_EXIT); 

/* a DSJ is required to remove the ppoll response from device */ 
if (dsj = amigo_dsj(» { 

} 

if (Debug) printf("Xs DSJ = OxXx\n" , ptr_dev, dsj); 

status = amigo_status(); 
if (Debug) printf("Xs STATUS 
go"to again; 

OxXx\n" , ptr_dev, status); 

/* output error message and conditionally abort */ 
fatal_err (message , fname, flag) 
char *message; 
char *fname; 
{ 

fprintf(stderr, "Xs: Error - Xs of Xs " 
if (errno) perror(""); 

procnam, message, fname); 
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434 
435 
436 
437 
438 
439 } 

else fprintf(stderr, "\n"); 

if (flag == F_RTRN) return; 
if (flag == F_EXIT) exit(2); 
exit(3); 
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