
HP Pascal/HP-UX Programmer's Guide

ABCDE

HP Part No. 92431-90006

Printed in U.S.A. August 1992

Sixth Edition

E0892

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD
TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. Hewlett-Packard shall not be liable for errors contained herein or for
incidental or consequential damages in connection with the furnishing, performance, or use
of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on
equipment that is not furnished by Hewlett-Packard.

This document contains information which is protected by copyright. All rights are
reserved. Reproduction, adaptation, or translation without prior written permission is
prohibited, except as allowed under the copyright laws.

Restricted Rights Legend

Use, duplication or disclosure by the U.S. Government is subject to restrictions as set
forth in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software
clause at DFARS 252.227-7013.

HEWLETT-PACKARD COMPANY
3000 Hanover Street
Palo Alto, California 94304 U.S.A.

Rights for non-DOD U.S. Government Departments and Agencies are set forth in
FAR 52.227-19(c)(1,2).

Copyright c
 1987 - 1992 by Hewlett-Packard Company

Printing History

New editions are complete revisions of the manual. Update packages may be issued between
editions.

The software code printed alongside the date indicates the version level of the software
product at the time the manual was issued. Many product updates and �xes do not require
manual changes and, conversely, manual corrections may be done without accompanying
product changes. Therefore, do not expect a one-to-one correspondence between product
updates and manual updates.

First Edition March 1987 MPE XL: 31502A.01.01
HP-UX: 31502A.00.03

Second Edition November 1987 MPE XL: 31502A.01.06
HP-UX: 92431A.01.09

Third Edition January 1988 MPE XL: 31502A.01.06
HP-UX: 92431A.01.12

Fourth Edition October 1988 MPE XL: 31502A.01.19
HP-UX: 92431A.03.04

Fifth Edition January 1991 MPE XL: 31502A.03.10
HP-UX: 92431A.08.00

Sixth Edition June 1992 MPE/iX: 31502A.04.05
August 1992 HP-UX: 92431A.09.07

iii

iv

Preface

This HP Pascal/HP-UX Programmer's Guide for the Hewlett-Packard HP Pascal/iX and HP
Pascal/HP-UX programming languages is intended for programmers with at least six months
of Pascal programming experience, but no HP Pascal/iX or HP Pascal/HP-UX programming
experience. It discusses selected HP Pascal/iX and HP Pascal/HP-UX topics in detail, and
explains statement interaction where necessary. It does not explain every feature of HP
Pascal/iX or HP Pascal/HP-UX, as the HP Pascal/HP-UX Reference Manual does.

MPE/iX, Multiprogramming Executive with Integrated POSIX, is the latest in a series of
forward-compatible operating systems for the HP 3000 line of computers.

In HP documentation and in talking with HP 3000 users, you will encounter references to
MPE XL, the direct predecessor of MPE/iX. MPE/iX is a superset of MPE XL. All programs
written for MPE XL will run without change under MPE/iX. You can continue to use
MPE XL system documentation, although it may not refer to features added to the operating
system to support POSIX (for example, hierarchical directories).

Finally, you may encounter references to MPE V, the operating system for HP 3000s.
MPE V is not based on the PA-RISC architecture; however, MPE V software can be run on
the PA-RISC (Series 900) HP 3000s in what is known as compatibility mode.

Throughout this manual, the term HP Pascal refers to both HP Pascal/iX and HP
Pascal/HP-UX. The following is a short description of each chapter and appendix.

Chapter 1 Describes HP Pascal/iX and HP Pascal/HP-UX and explains their
relationship to HP Standard Pascal and its subsets.

Chapter 2 Describes HP Pascal program structure in terms of syntax and
compilation units, and explains how your program can interface with
its external environment.

Chapter 3 Explains how program input/output works.

Chapter 4 Gives the ranges of the prede�ned data types of HP Pascal and
explains the types which HP Pascal does not share with older Pascal
implementations.

Chapter 5 Explains how HP Pascal allocates space for and aligns static data
structures.

Chapter 6 Explains dynamically allocated HP Pascal data structures.

Chapter 7 Discusses HP Pascal parameters.

Chapter 8 Explains procedure options, which allow routines to have optional
parameters and default parameter values.

Chapter 9 Explains how your program can use external routines.

v

Chapter 10 Explains how your program can use intrinsics.

Chapter 11 Explains how to write error recovery code that allows your program to
handle its own run-time errors. Explains how to debug your program.

Chapter 12 Explains how to use the optimizer to improve your program.

Appendix A Explains how HP Pascal/iX works on the MPE/iX operating system.

Appendix B Explains how HP Pascal/HP-UX works on the HP-UX operating
system.

Refer to the following manuals for further information on HP Pascal:

HP Pascal/HP-UX Reference Manual (92431-90005)

HP Pascal/HP-UX Migration Guide (92431-90004)

This manual also refers to the following non-HP Pascal manuals:

ALLBASE/SQL Pascal Application Programming Guide (36216-90007)

HP C Programmer's Guide (92434-90002)

HP Link Editor/XL Reference Manual (32650-90030)

HP System Dictionary/XL General Reference Manual (32256-90004)

HP TOOLSET/XL Reference Manual (36044-90001)

HP-UX Floating-Point Guide (B2355-90024)

HP-UX Reference (B2355-90004)

Introduction to MPE XL for MPE V Programmers (30367-90005)

MPE/iX Commands Reference Manual, Volumes 1 and 2 (32650-90003 and 32650-90364)

MPE/iX Intrinsics Reference Manual (32650-90028)

MPE/iX Symbolic Debugger User's Guide (31508-90003)

MPE/iX System Debug Reference Manual (32650-90013)

Programming on HP-UX (B2355-90026)

Switch Programming Guide (32650-90014)

Trap Handling Programmer's Guide (32650-90026)

TurboIMAGE/XL Reference Manual (30391-90001)

Using VPLUS/V: Introduction to Forms Designs (32209-90004)

If you have suggestions for improving this manual, please send us the Reader Comment Card,
located at the front of this manual.

vi

Conventions

UPPERCASE In a syntax statement, commands and keywords are shown in
uppercase characters. The characters must be entered in the order
shown; however, you can enter the characters in either upper or
lowercase. For example:

COMMAND

can be entered as any of the following:

command Command COMMAND

It cannot, however, be entered as:

comm com_mand comamnd

italics In a syntax statement or an example, a word in italics represents a
parameter or argument that you must replace with the actual value.
In the following example, you must replace FileName with the name of
the �le:

COMMAND FileName

punctuation In a syntax statement, punctuation characters (other than brackets,
braces, vertical bars, and ellipses) must be entered exactly as shown.
In the following example, the parentheses and colon must be entered:

(FileName):(FileName)

{ } In a syntax statement, braces enclose required elements. When several
elements are stacked within braces, you must select one. In the
following example, you must select either ON or OFF:

COMMAND

�
ON

OFF

�

[] In a syntax statement, brackets enclose optional elements. In the
following example, OPTION can be omitted:

COMMAND FileName [OPTION]

When several elements are stacked within brackets, you can select
one or none of the elements. In the following example, you can select
OPTION or Parameter or neither. The elements cannot be repeated.

COMMAND FileName

�
OPTION

Parameter

�

vii

Conventions (continued)

[. . .] In a syntax statement, horizontal ellipses enclosed in brackets indicate
that you can repeatedly select the element(s) that appear within the
immediately preceding pair of brackets or braces. In the example
below, you can select Parameter zero or more times. Each instance of
Parameter must be preceded by a comma:

[,Parameter][...]

In the example below, you only use the comma as a delimiter if
Parameter is repeated; no comma is used before the �rst occurrence of
Parameter :

[Parameter][,...]

| . . . | In a syntax statement, horizontal ellipses enclosed in vertical bars
indicate that you can select more than one element within the
immediately preceding pair of brackets or braces. However, each
particular element can only be selected once. In the following example,
you must select A, AB, BA, or B. The elements cannot be repeated.

�
A

B

�
| . . . |

. . . In an example, horizontal or vertical ellipses indicate where portions of
an example have been omitted.

4 In a syntax statement, the space symbol 4 shows a required blank. In
the following example, Parameter and Parameter must be separated
with a blank:

(Parameter)4(Parameter)

� � The symbol � � indicates a key on the keyboard. For example,
�RETURN� represents the carriage return key.

base pre�xes The pre�xes %, #, and $ specify the numerical base of the value that
follows:

%num speci�es an octal number.
#num speci�es a decimal number.
$num speci�es a hexadecimal number.

If no base is speci�ed, decimal is assumed.

viii

Pascal Speci�c Conventions

The conventions followed in this manual are summarized below:

For Text:

The term PAC is used for the type PACKED ARRAY OF CHAR with the lower bound equal to 1.

Reserved words and directives are in all uppercase letters.

Examples: BEGIN, REPEAT, FORWARD

Standard identi�ers are in all lowercase letters.

Examples: readln, maxint, text

General information concerning an area of programming (topic) appears as a heading with
initial capitalization. All headings that are not reserved words or standard identi�ers appear
with initial capitalization.

For Syntax Diagrams:

Syntactic entities that are to be replaced by user-supplied entities are represented by
sequences of lowercase letters and embedded underscore characters ().

Example: identifier

Keywords, prede�ned symbolic names and special symbols that must be supplied exactly as
given are shown in apostrophes. Usually, letters may be entered in uppercase or lowercase.

Example: 'IMPORT', ','

The diagrams are in the form of lines with directional arrows, known as \railroad tracks."
Alternative paths are indicated by switches in the tracks.

Example:

Note Some diagrams and tables have a number in the lower left or right corner,
such as the number LG200009 036 in the diagram above. This number is not
part of the diagram or table. It just identi�es the artwork.

ix

Contents

1. Introduction

2. Program Structure
Syntactic Structure . 2-1
Program Heading . 2-1
Program Block . 2-2

Compilation Unit Structure . 2-4
Modules . 2-4
Global, Subprogram, and External Compilation Units 2-10

Separate Compilation . 2-11
Using Modules . 2-11
When to Use Modules . 2-11
Advantages of Using Modules . 2-11

Using SUBPROGRAM . 2-12
When to Use SUBPROGRAM 2-12
SUBPROGRAM Advantages . 2-12
SUBPROGRAM Limitations . 2-12

Using GLOBAL/EXTERNAL . 2-12
When to Use GLOBAL/EXTERNAL 2-13
GLOBAL/EXTERNAL Advantages 2-13
GLOBAL/EXTERNAL Limitations 2-13

Using SUBPROGRAM with GLOBAL 2-13
When to Use SUBPROGRAM with GLOBAL 2-13
SUBPROGRAM with GLOBAL Advantages 2-13

External Interfaces . 2-14

3. Input/Output
General File Information . 3-3
Physical Files . 3-3
Logical Files . 3-4
Text�les . 3-4
Current Position Indexes . 3-5
File Bu�er Variables and Selectors 3-5

Opening Files . 3-6
Associate Procedure . 3-10
Disassociate Procedure . 3-15
Sequential Input/Output . 3-16
Text�le Input/Output . 3-22
Direct Input/Output . 3-25
Closing Files . 3-29

Contents-1

4. Prede�ned Pascal Constants, Data Types, and Modules
Values of Prede�ned Constants . 4-1
Ranges of Prede�ned Data Types . 4-2
Bit16 . 4-3
Bit32 . 4-4
Bit52 . 4-6
Shortint . 4-8
Longint . 4-9
Prede�ned Modules . 4-10
stdinput . 4-10
stdoutput . 4-10
stderr . 4-11
arg . 4-12
pas hp1000 . 4-13

5. Allocation and Alignment
Allocation, Alignment, and Packing Algorithm 5-3
Unpacked Variables . 5-4
Packed Variables . 5-5
Arrays . 5-7
Records . 5-8
Packed Arrays . 5-12
Packed Records . 5-15
Crunched Arrays and Records . 5-18
Crunched Sets . 5-21
Enumerations and Subranges . 5-22
Unpacked Enumeration or Unsigned Subranges 5-22
Packed Array Elements of Enumeration or Subrange Types 5-24
Packed Record Elements of Enumeration or Subrange Types 5-26

Files . 5-27
Sets . 5-28
Strings . 5-31

6. Dynamic Variables
GLOBALANYPTR Variables . 6-2
LOCALANYPTR Variables . 6-4
New Procedure . 6-6
Dispose Procedure . 6-12
Mark and Release Procedures . 6-15
P getheap and P rtnheap Procedures 6-19
Getheap and Rtnheap Procedures . 6-23

Contents-2

7. Parameters
Value versus Reference Parameters 7-1
ANYVAR Parameters . 7-4
READONLY Parameters . 7-6
Conformant Array Parameters . 7-7
Routines as Parameters . 7-10
Routine Parameters . 7-10
Parameters of Routine Types . 7-12
Variables of Routine Types . 7-15
Call Procedure . 7-20
Fcall Function . 7-21

Congruent Parameter Lists . 7-22
Hidden Parameters . 7-27
ANYVAR Parameters . 7-27
Generic String Parameters . 7-29
Extensible Parameter List . 7-30
Multidimensional Conformant Array Parameters 7-31
Routine Parameters . 7-32
EXTERNAL SPL VARIABLE . 7-34

8. Procedure Options
EXTENSIBLE . 8-2
DEFAULT PARMS . 8-6
Haveoptvarparm Function . 8-9
Haveextension Function . 8-11

UNCHECKABLE ANYVAR . 8-13
UNRESOLVED . 8-14
INLINE . 8-15

9. External Routines
EXTERNAL Directive . 9-1
Calling HP C from HP Pascal . 9-5
Calling COBOL II from HP Pascal 9-10
Calling FORTRAN 77 from HP Pascal 9-12
Calling FORTRAN 66/V from HP Pascal 9-15
Calling SPL from HP Pascal . 9-16
Switch Stubs . 9-20
How Non-Pascal Programs Call Pascal Routines 9-21
How To Do Pascal I/O with a Non-Pascal Outer Block 9-26

10. Intrinsics
Using Intrinsics . 10-1
Specifying Intrinsic Files . 10-2
INTRINSIC Directive . 10-2
Actual and Intrinsic Parameter Compatibility 10-3
Reference Parameter Compatibility 10-4
Value Parameter Compatibility 10-5
Function and Procedure Parameter Compatibility 10-6
Using Strings as Actual Parameters 10-6

Formal and Intrinsic Function Type Compatibility 10-8
User-De�ned Formal Parameters 10-9

Contents-3

Reference Parameter Compatibility 10-10
Value Parameter Compatibility 10-12

Using Intrinsic Functions as Procedures 10-14
De�ning Intrinsics . 10-15
How to Build or Change an Intrinsic File 10-17

11. Error Recovery and Debugging
Error Recovery . 11-2
Escape Procedure . 11-2
Escapecode Function . 11-4
TRY-RECOVER Construct . 11-4
TRY-RECOVER and Optimization 11-9
Assert Procedure . 11-10

Traps . 11-13
ARITRAP and HPENBLTRAP Intrinsics 11-14
XLIBTRAP Intrinsic . 11-15
XARITRAP Intrinsic . 11-18
Integer Over
ow Trap . 11-21
Decimal Over
ow Trap . 11-22
Invalid ASCII Digit and Invalid Decimal Digit 11-22
IEEE Floating Point Traps . 11-22
Compatibility Mode Floating-Point Traps 11-24

XCONTRAP Intrinsic . 11-26
HP TOOLSET/XL and HP Symbolic Debuggers 11-28
System Debuggers . 11-29

12. The Optimizer
When to Use the Optimizer . 12-1
Invoking the Optimizer . 12-3
Basic Blocks . 12-3

Level One Optimization . 12-4
Branch Optimization . 12-4
Dead Code Elimination . 12-6
Faster Register Allocation . 12-7
Instruction Scheduling . 12-7
Peephole Optimization . 12-8
Real Expression Folding . 12-8

Level Two Optimization . 12-9
Coloring Register Allocation . 12-9
Induction Variable Elaboration and Strength Reduction 12-10
Common Subexpression Elimination 12-10
Constant Folding . 12-10
Loop-Invariant Code Motion . 12-11
Store-Copy Optimization . 12-12
Unused De�nition Elimination . 12-13

Optimizer Assumptions . 12-14
Writing Programs That Are Easily Optimized 12-15
What to Do If the Optimized Program Fails 12-16

Contents-4

A. MPE/iX Dependencies
System-Dependent Features . A-1
Compiler Options . A-1
File Names . A-2
Associating Logical and Physical Files A-2
Using File Equations . A-5
Default File Attributes . A-6
Standard Modules . A-6
Additional Features . A-7
Restrictions on Using Executable Libraries (XLs) A-9

MPE/iX Extensions . A-10
ccode Function . A-10
Fnum Function . A-11
Get alignment Function . A-12
Statement number Function . A-13
Setconvert Procedure . A-14
Strconvert Procedure . A-15
Pascal/V Packing Algorithm . A-16
Unpacked Variables . A-16
Packed Variables . A-18
Arrays . A-20
Files . A-21
Records . A-21
Sets . A-23
Strings . A-26
Packed Enumerations . A-27
Packed Subranges of Enumerations A-30
Packed Subranges of Integers . A-32

Compiling, Linking, and Running Your Program A-34
Command Files . A-36
:RUN PASCALXL.PUB.SYS . A-38
Run-Time Parameters . A-40

B. HP-UX Dependencies
System Dependent Features . B-1
Compiler Options . B-1
File Names . B-2
Standard Modules . B-3
Additional Features . B-4

HP-UX Extensions . B-6
Accessing Special Global Variables B-6
Fnum Function . B-7
Get alignment Function . B-8
Statement number Function . B-9

Compiling, Linking, and Running Your Program B-10
pc Command . B-12
Run-Time Parameters . B-20
Associating Program Header Files with Run-Time Parameters B-22
Interrupt Handling . B-22
Run-Time Error Handling . B-24

Compiling for Di�erent Versions of the PA-RISC Architecture B-25

Contents-5

Using +DA to Generate Code for a Speci�c Version of PA-RISC B-25
Using +DS to Specify Instruction Scheduling B-25
Guidelines for Using +DA and +DS B-25
Compiling in Networked Environments B-26

Glossary

Index

Contents-6

Figures

1-1. Relationship Between HP Pascal and Other Pascals 1-1
2-1. Syntactic Structure of a Program 2-1
2-2. Syntactic Structure of a Module 2-5
2-3. What a Module Can Access . 2-7
3-1. Relationships Between I/O Varieties and File Types 3-1
3-2. File Relationships . 3-3
3-3. Relationship Between Current Position Index and Current Component . . . 3-5
3-4. E�ect of Associate Procedure on Open File 3-12
9-1. How a Switch Stub Works . 9-20
11-1. How the Prede�ned Procedure Assert Works 11-11
A-1. How Source Code Becomes a Running Program on MPE/iX A-35
B-1. How a File Becomes a Running Program on HP-UX B-11

Contents-7

Tables

3-1. Categories of Input/Output Routines 3-2
3-2. Characteristics of File-Opening Procedures 3-9
3-3. Characteristics of Associate Procedure 3-11
3-4. Characteristics of Sequential I/O Procedures 3-16
3-5. Characteristics of Sequential File Functions 3-20
3-6. Characteristics of Text�le I/O Procedures 3-22
3-7. Characteristics of Text�le Functions 3-23
3-8. Characteristics of Direct I/O Procedures 3-25
3-9. Characteristics of Direct File Functions 3-27
4-1. Ranges and Sizes of Prede�ned HP Pascal Types 4-2
5-1. Allocation and Alignment of Unpacked Variables (HP Pascal Packing

Algorithm) . 5-4
5-2. Allocation and Alignment of Packed Variables (HP Pascal Packing Algorithm) 5-5
5-3. Allocation and Alignment of Packed Array Elements (HP Pascal Packing

Algorithm) . 5-12
5-4. Allocation and Alignment of Packed Record Fields (HP Pascal Packing

Algorithm) . 5-15
5-5. Allocation of Crunched Array Elements and Record Fields (HP Pascal

Packing Algorithm) . 5-18
5-6. Allocation and Alignment of Crunched Sets in Arrays and Records (HP Pascal

Packing Algorithm) . 5-21
5-7. Allocation and Alignment of Unpacked Enumeration or Unsigned Subrange

Variables (HP Pascal Packing Algorithm) 5-22
5-8. Allocation and Alignment of Packed Array Elements of Enumeration or

Subrange Type (HP Pascal Packing Algorithm) 5-24
5-9. Allocation of File Components (HP Pascal Packing Algorithm) 5-27
5-10. How Set Chunk Size Is Determined (HP Pascal Packing Algorithm) 5-28
5-11. Bit and Set Chunk Requirements for Boolean, Char, and Integer Types (HP

Pascal Packing Algorithm) . 5-28
6-1. Dynamic versus Static Variables 6-1
7-1. Comparison of Kinds of Formal Parameters 7-3
7-2. Routine Parameters versus Parameters of Routine Type 7-10
7-3. Hidden Parameters . 7-27
8-1. Values Passed to Formal Parameter x 8-8
8-2. Values Returned by Haveoptvarparm(x) 8-10
8-3. Values Returned by Haveextension(x) 8-12
9-1. Corresponding HP Pascal and HP C Types 9-5
9-2. Corresponding HP Pascal and Cobol II Types 9-10
9-3. Corresponding HP Pascal and FORTRAN 77 or FORTRAN 66/V Types . . 9-12
9-4. Corresponding HP Pascal and SPL Types 9-16
10-1. Intrinsic-Compatible Intrinsic and Actual Reference Parameter Types . . . 10-4
10-2. Intrinsic-Compatible Intrinsic and Actual Value Parameter Types 10-5
10-3. Intrinsic-Compatible Intrinsic and Formal Reference Parameter Types . . . 10-11

Contents-8

10-4. Compatible Intrinsic and Formal Reference Parameter Types 10-12
10-5. Intrinsic-Compatible Intrinsic and Formal Value Parameter Types 10-13
12-1. Unoptimized and Optimized Branch Instruction Sequences 12-4
A-1. Default File Attributes . A-6
A-2. Allocation and Alignment of Unpacked Variables (Pascal/V Packing

Algorithm) . A-17
A-3. Allocation and Alignment of Packed Array Elements (Pascal/V Packing

Algorithm) . A-18
A-4. Allocation and Alignment of Packed Record Fields (Pascal/V Packing

Algorithm) . A-19
A-5. Bit and Byte Pair Requirements for Boolean, Char, and Integer Base Types

(Pascal/V Packing Algorithm) A-23
A-6. Allocation and Alignment of Enumeration Elements of Packed Arrays

(Pascal/V Packing Algorithm) A-27
A-7. Allocation and Alignment of Enumeration Fields of Packed Records (Pascal/V

Packing Algorithm) . A-28
A-8. Allocation and Alignment of Enumeration-of-Subrange Elements of Packed

Arrays (Pascal/V Packing Algorithm) A-30
A-9. Allocation and Alignment of Elements of Packed Arrays of Subrange Type

(Pascal/V Packing Algorithm) A-32
A-10. MPE/iX Command Files That Compile, Link, and Run a Program A-36
A-11. Equivalent MPE V Commands and MPE/iX Command Files A-36
A-12. PARM Values and Their Meanings A-39

Contents-9

1

Introduction

HP Pascal/iX and HP Pascal/HP-UX are supersets of HP Standard Pascal, the Pascal
language that runs on all HP computers. HP Pascal/iX runs on the MPE/iX operating
system and HP Pascal/HP-UX runs on the HP-UX operating system. Both operating systems
run on HP PA-RISC computers, and both achieve ISO and ANSI validation. HP Pascal takes
advantage of the architecture of these computers and has system programming extensions to
HP Standard Pascal.

As a superset of HP Standard Pascal, HP Pascal accepts the syntax of the HP Standard
Pascal subsets ISO Pascal and ANSI Standard Pascal. You can instruct the HP Pascal
compiler to accept only the syntax of an HP Pascal subset. Refer to the HP Pascal/iX
Reference Manual or the HP Pascal/HP-UX Reference Manual for information on the
STANDARD LEVEL compiler option.

Figure 1-1 shows the relationship between HP Pascal, HP Standard Pascal, ISO Pascal, and
ANSI Standard Pascal.

Figure 1-1. Relationship Between HP Pascal and Other Pascals

Introduction 1-1

HP Pascal can interface with any subsystem that can be accessed through intrinsics. Some of
the HP subsystems HP Pascal can interface with are listed below:

Subsystem Description of Subsystem Reference

TurboIMAGE/XL Network database management
system. Your HP Pascal program
accesses TurboIMAGE/XL routines
with intrinsic calls.

TurboIMAGE/XL Reference Manual

SQL Relational database management
system whose Pascal preprocessor
has macros that generate calls to
SQL.

ALLBASE/SQL Pascal Application
Programming Guide

HP System
Dictionary/XL

Dictionary of MPE/iX data
elements.

HP System Dictionary/XL General
Reference Manual

VPLUS Forms generator. Your HP Pascal
program accesses VPLUS routines
with intrinsic calls.

Using VPLUS/V: Introduction to
Form Designs

HP Pascal can interface with several system debuggers. Some of the debuggers are listed
below:

Subsystem Description of Subsystem Reference

HP Symbolic Debugger A symbolic debugger available on
both the MPE/iX and HP-UX
operating systems. It supports HP
Pascal features.

MPE/iX Symbolic Debugger User's
Guide

DEBUG MPE/iX System Debugger. MPE/iX System Debug Reference
Manual

HP TOOLSET/XL A programming environment for
developing programs. It provides
source management, a symbolic
debugger, and an editor. The
symbolic debugger in HP
TOOLSET/XL does not support all
the features of HP Pascal.

HP TOOLSET/XL Reference
Manual

1-2 Introduction

2

Program Structure

This chapter summarizes program structure|in terms of syntax and in terms of compilation
units. For complete syntactic de�nitions of programs and their components, refer to the
HP Pascal/iX Reference Manual or the HP Pascal/HP-UX Reference Manual , depending on
your implementation.

Syntactic Structure

Syntactically, every HP Pascal program is composed of two major parts: the program heading
and the program block. The program block contains an optional declaration part and a
statement (executable) part.

Figure 2-1 illustrates the syntactic structure of an HP Pascal program. For the exact syntax
of a program and its components, refer to the HP Pascal/iX Reference Manual or the
HP Pascal/HP-UX Reference Manual , depending on your implementation.

Figure 2-1. Syntactic Structure of a Program

Program Heading

The program heading contains the keyword PROGRAM, the program name, and any program
parameters. The program name can be any identi�er. If your program uses the standard
text�les input and output (the default sequential I/O �les), these text�les must be program
parameters.

Program parameters|except the standard text�les input, output, and stderr|must also be
declared in the declaration part of the program block.

Program Structure 2-1

Example

See the example in the section \Program Block".

For more information about program parameters, see Appendix A and Appendix B.

Program Block

The program block consists of an optional declaration part and a statement (executable) part.

The declaration part de�nes whatever labels, constants, data types, variables (including
program parameters), procedures, functions, or modules you want. It can also rede�ne
standard constants, data types, variables, and routines in the declaration part; however, if
you do rede�ne them, you cannot use their original de�nitions. You cannot rede�ne reserved
words. For a list of HP Pascal reserved words, refer to the HP Pascal/iX Reference Manual or
the HP Pascal/HP-UX Reference Manual , depending on your implementation.

The statement part is a compound statement (for the de�nition of compound statement, see
the HP Pascal/iX Reference Manual or the HP Pascal/HP-UX Reference Manual , depending
on your implementation).

2-2 Program Structure

Example

Program Structure 2-3

Compilation Unit Structure

A compilation unit is a unit of source code that can be compiled independently of other code
(for example, a program is a compilation unit; a block is not).

You can design your program in two ways:

As a single compilation unit. In this case you must compile the entire program at once.

As two or more compilation units. In this case you can compile one unit at a time, or you
can compile in groups. This is also known as separate compilation.

If your program is small, design it as a single compilation unit; it will compile quickly because
it is small. (The example program in the section \Program Block" is a single compilation
unit.) If your program is large, design it as two or more compilation units. This saves
compilation time over the course of program development because you can correct and
recompile one unit without recompiling the whole program.

The recommended design for a program with separate compilation units is modular ; in other
words, it is composed of separate compilation units called modules . For compatibility with
Pascal/V, HP Pascal also supports global and external compilation units. You can design
your program using these separate compilation units, if you prefer. You can mix modules and
global and external compilation units.

Modules

A module is a compilation unit that de�nes whatever constants, data types, variables,
functions, and procedures you want. A program or another module can import the module,
thereby gaining access to the de�nitions that the module exports . The de�nitions that the
module does not export are accessible only to the module itself.

2-4 Program Structure

Figure 2-2 illustrates the syntactic structure of a module. For the exact syntax of a module
and its components, refer to the HP Pascal/iX Reference Manual or the HP Pascal/HP-UX
Reference Manual , depending on your implementation.

Figure 2-2. Syntactic Structure of a Module

A module's import declaration speci�es the other modules that it imports. It can access items
in the imported modules' export declarations. The import declaration can also be used to
specify export of entire modules a second time.

A module's export declaration speci�es the constants, data types, variables, functions, and
procedures that it exports to the modules or programs that import it. A module de�nes its
exportable routines in its implement part.

A module's implement part de�nes constants, data types, variables, and routines. The
routines are accessible only to the module itself, unless they are exported in the export
declaration.

Program Structure 2-5

Example

2-6 Program Structure

Figure 2-3. shows what a module can access.

Figure 2-3. What a Module Can Access

A module must be compiled before a program or another module imports it (therefore, two
modules cannot import each other).

For the compiler to compile a module with a program, the program must de�ne the module in
its declaration part. After de�ning this module, the program can import it.

When compiling a module independently of a program, the compiler stores the compiled
module in the object �le or in an alternate �le named in the MLIBRARY option (if the
MLIBRARY option is speci�ed).

When compiling modules separately or with a program, the placement of the compiler
output depends on whether the MLIBRARY option is used. If MLIBRARY is used, the
module-text (in the IMPORT and EXPORT declaration) is placed in the �le speci�ed with
the MLIBRARY option.

If MLIBRARY is not used, the module-text is placed into the object �le along with the object
code. The module-text present in object �les also occurs in RLs (archive libraries), shared
libraries, XLs, and program �les that were created from these object �les unless stripped or
the Linkeditor's NODEBUG option is used. Even though the module-text is an unloadable
space, it does take up room in the �le.

The compiler can extract the module-text from Mlibraries or from any of the binary �les
discussed above.

Note The compiler may not be able to extract this information if the �le is loaded.

The importing program uses the compiler option SEARCH to tell the compiler where to �nd
the module. The compiler options MLIBRARY and SEARCH cannot specify the same library.

Program Structure 2-7

For more information on MLIBRARY and SEARCH, refer to the HP Pascal/iX Reference
Manual or the HP Pascal/HP-UX Reference Manual , depending on your implementation.

A program can de�ne a module with the same name as a module in the library that SEARCH
speci�es. In that case, the program imports the module that it de�nes, rather than the
library module with the same name. If a library contains two modules with the same name,
the second one overrides the �rst. The compiler does not warn you when you are about to
override an existing module.

When a program imports a module, the module and its exported items (including the
module's exported modules) belong to the global scope of the program. The items that the
module does not export (those in its implement part) also exist for the same lifetime as the
exported items that were compiled at the simultaneously, even though the program cannot
access them.

These non-exported items will not be put in the global symbol table if each module is
separately compiled.

Note An exception to this rule occurs if any INLINE routines are exported. In this
case all items in the implement part are placed in the module-text and the
symbol table when imported. This includes any references to intrinsics, even
those not used by the INLINE routines. This also means that any $SYSINTR$

option used by the imported module must also be present in the importing
module or program, along with the intrinsic �le itself. Because of this, you
may want to create multiple smaller modules, one of which will contain the
inline routines, but without any intrinsics declared.

2-8 Program Structure

Example

Independently compiled modules (to be compiled together in a single compilation unit):

MODULE Mod1; {Mod1 is in Mod1.o}

EXPORT

.

:

IMPLEMENT

.

:

END; {Mod1}

MODULE Mod2; {Mod2 is in Mod1.o}

IMPORT

Mod1; {Mod2 imports Mod1}

EXPORT

.

:

IMPLEMENT

.

:

END; {Mod2}

MODULE Mod3; {This Mod3 is in Mod1.o}

EXPORT

.

:

END. {Mod3}

Program (to be compiled as a compilation unit that does not contain the above modules -- the
program imports the modules from the above compilation unit):

PROGRAM prog;

.

:

MODULE Mod3; {The program defines this Mod3}

.

:

END; {Mod3}

$SEARCH 'Mod1.o'$

IMPORT

Mod2, {Mod2 comes from the library Mod1.o}

Mod3; {Mod3 is the one that the program defined}

BEGIN

.

:

END.

Program Structure 2-9

Global, Subprogram, and External Compilation Units

A global compilation unit de�nes global constants, data types, and variables within a Pascal
program. It also contains the body of the main program. Syntactically, it is a program that
begins with the GLOBAL compiler option. For more information on the GLOBAL compiler
option, refer to the HP Pascal/iX Reference Manual or the HP Pascal/HP-UX Reference
Manual , depending on your implementation.

A subprogram compilation unit de�nes subprogram constants, data types, and variables
within a Pascal program. Syntactically, it is a program that begins with the SUBPROGRAM
compiler option. For more information on the SUBPROGRAM compiler option, refer to the
HP Pascal/iX Reference Manual or the HP Pascal/HP-UX Reference Manual , depending on
your implementation.

An external compilation unit declares the global variables that it needs and de�nes routines
that the global compilation unit and other external compilation units can access using the
EXTERNAL directive. Syntactically, it is a program that begins with the EXTERNAL
compiler option and has an empty outer block.

Note The EXTERNAL directive and the EXTERNAL compiler option are not
the same. For more information, see Chapter 9 in this manual and the HP
Pascal/iX Reference Manual or the HP Pascal/HP-UX Reference Manual ,
depending on your implementation.

You must compile global and external compilation units separately. For more information on
program preparation see Appendix A and Appendix B.

For more information on the EXTERNAL compiler option, refer to the HP Pascal/iX
Reference Manual or the HP Pascal/HP-UX Reference Manual , depending on your
implementation.

2-10 Program Structure

Separate Compilation

Separate compilation is the process of separating the source for a large program into pieces
that can be compiled independently of other pieces.

There are several reasons why compiling pieces of a program separately is practical:

When the program is too long to compile.

When the program is too complex to manage.

When the program is being worked on by more than one programmer or by a team of
programmers.

There are four methods used for separate compilation. They are performed by using modules
and by using the compiler options SUBPROGRAM, GLOBAL, and EXTERNAL.

Using modules is the preferred method for separate compilation from a structured
programming point of view. However, using modules does have certain limitations, as does
using SUBPROGRAM, GLOBAL, and EXTERNAL. You must decide which method works in
the way you prefer for your speci�c situation.

The remainder of this section addresses separate compilation using modules and each compiler
option. The uses, advantages, and disadvantages of each method are discussed to help you
determine which one to use.

For detailed information on SUBPROGRAM, GLOBAL, and EXTERNAL, refer to the HP
Pascal/iX Reference Manual or the HP Pascal/HP-UX Reference Manual , depending on your
implementation. For more information on modules, see \Using Modules" in this chapter.

Using Modules

Once a module is created, the import statement makes that module available to any other
program or module. The importing compilation unit receives the constant, type, variable,
procedure, and function declarations that are exported by the imported module.

When to Use Modules

Use modules for separate compilation when you have an extremely large program, when you
would like easy accessibility to libraries, or when you are building shared or executable (XLs)
libraries.

Advantages of Using Modules

Some advantages to separate compilation with modules are:

Many modules can exist within an executable program, but with only one main program.

When a module changes, you only need to recompile units that refer to the module.

You can import types and variables from a module without distributing the source. For
example, you can extract information from an object �le, archive library, or MLIBRARY.

The types and the object code are in sync. There's no possibility of a mismatch.

The constant, type, variable, procedure, and function declarations that are not exported are
hidden.

Modules can be placed in shared libraries or XLs.

Program Structure 2-11

Using SUBPROGRAM

The SUBPROGRAM compiler option turns a Pascal program into a subprogram compilation
unit.

For separate compilation, SUBPROGRAM must be included in all compilation units, except
the compilation unit containing the outer block. No code is generated for the outer block if
used.

When to Use SUBPROGRAM

SUBPROGRAM is recommended for use in compilation units where the global variables won't
change much.

SUBPROGRAM Advantages

Using SUBPROGRAM results in smaller object �les and less link time. You also get faster
access to the �rst 8K bytes of globals. The SUBPROGRAM option can also be speci�ed with
a list of routines to compile as few as one procedure, if RLFILE is used.

SUBPROGRAM Limitations

The variables must be in the exact same order and must be declared with the same types.
Otherwise, at run time the global variables used in one compilation unit may not match the
actual memory that matches the global variables in a di�erent compilation unit.

To avoid this problem, place all global variable, type, and constant declarations in a �le and
include ($INCLUDE$) those �les in all compilation units. If you do not ensure that the variable,
type, and constant declarations match in all compilation units, your execution results will be
incorrect, but no error will occur at compile time or at link time. Note that global variables,
compiled with this option, can not be placed in shared libraries or XLs.

Using GLOBAL/EXTERNAL

The GLOBAL and EXTERNAL compiler options turn Pascal programs into global and
external compilation units. The compiler options must precede the reserved word program.

The GLOBAL compiler option:

Generates symbolic de�nitions for the global variables in the compilation units.

Generates code for the outer block and any procedures.

The EXTERNAL compiler option:

Generates symbolic references for the global variables in the compilation unit.

Prevents the compiler from generating storage for global variables.

Does not generate code for the outer block and prevents the compiler from generating an
outer block. If there are statements in an outer block, they are ignored.

2-12 Program Structure

When to Use GLOBAL/EXTERNAL

Use GLOBAL/EXTERNAL when sharing global information with another language, when the
number of global variables are too large to recompile each time, and when building shared
libraries or XLs.

GLOBAL/EXTERNAL is also useful when global variables will change often.

GLOBAL/EXTERNAL Advantages

The following are some advantages of using GLOBAL/EXTERNAL:

When you use GLOBAL/EXTERNAL for separate compilation, the global variables do not
need to be listed in the same order.

Because the variables are matched by name, only as many globals as used need to be
declared when using EXTERNAL.

The storage for globals does not take up space in the program �le.

The global variables can be placed in shared libraries.

GLOBAL/EXTERNAL Limitations

The following are some limitations of using GLOBAL/EXTERNAL:

All global variables must be declared in the GLOBAL compilation unit.

Using GLOBAL/EXTERNAL results in slower link time.

Code that references global variables is not as e�cient as code that does not use
GLOBAL/EXTERNAL.

Using SUBPROGRAM with GLOBAL

The SUBPROGRAM with GLOBAL compiler options result in Pascal programs that are a
mixture of subprogram and global compilation units. These compiler options must precede the
reserved word PROGRAM.

Global variables declared here can be referenced in external compilation units.

When to Use SUBPROGRAM with GLOBAL

Use SUBPROGRAM with GLOBAL to allow multiple declarations of additional global
variables instead of using just the outer block.

SUBPROGRAM with GLOBAL Advantages

When you use SUBPROGRAM with GLOBAL, you do not have to recompile the outer
block if you are not using GLOBAL. This method of separate compilation is similar to using
modules.

You do not have to share all variables with other languages, you can share only a few
variables, if you wish.

If any of the global variables change, you only need to recompile the units that refer to them.

You can use this to put globals into shared libraries or XLs.

Program Structure 2-13

External Interfaces

Your program can interface with its external environment (other routines and �les supported
by the operating system) by using physical �les, external routines, and intrinsics.

A physical �le is a program-independent entity that the operating system maintains. It can
be a permanent �le on a disk or other medium, or it can be an interactive �le created at a
terminal. Your program can manipulate a physical �le by associating it with a logical �le (a
�le that the program declares). Chapter 3, \Input/Output," explains physical and logical �les,
which HP Pascal programs use for input/output.

An external routine is a routine that is not in the compilation unit that calls it. Its source
language can be HP Pascal, HP C, HP COBOL II/XL, HP FORTRAN 66/V, HP FORTRAN
77, or SPL. Your program can access an external routine by declaring it with the EXTERNAL
directive. Chapter 9 explains external routines.

An intrinsic is an external routine that can be called by a program written in any language
that the operating system supports. An intrinsic can be written in any supported language,
but its formal parameters must be of types that have counterparts in all the other supported
languages. Your program can access an intrinsic by declaring it with the INTRINSIC
directive. You need not declare the intrinsic's entire parameter list, and your program can
use an intrinsic function as either a function or a procedure. Refer to Chapter 10 for more
information on intrinsics.

2-14 Program Structure

3

Input/Output

Input/output depends on �les: your program reads input from �les and writes output to �les.
The terms that describe the three varieties of input/output|sequential, text�le, and direct|
also describe the associated �les.

This chapter:

Gives general information about �les.

Explains the prede�ned �le-opening procedures and how they determine whether �les are
sequential or direct, for input or for output.

De�nes sequential as it applies to input/output and �les, and explains the prede�ned
routines that support sequential I/O.

Explains text�le input/output and �les, which are subsets of sequential I/O and �les
(respectively), and explains the routines peculiar to them.

De�nes direct as it applies to input/output and �les, and explains the prede�ned routines
that support direct I/O.

Gives the conditions under which �les are closed, and tells what happens when a �le closes.

Figure 3-1 illustrates the relationships between sequential, text�le, and direct input/output
and sequential �les, text�les, and direct �les.

Figure 3-1. Relationships Between I/O Varieties and File Types

Input/Output 3-1

Input/output also depends upon the procedures that manipulate �les and the functions that
return information about them.

Table 3-1 categorizes the prede�ned input/output routines two ways: by purpose (for
example, input or output) and by I/O type (sequential, text�le, or direct).

Table 3-1. Categories of Input/Output Routines

Sequential I/O Text�le I/O Direct I/O

Opening
Procedures

reset
rewrite
append

reset
rewrite
append

open

Input
Procedures

get
read

get
read
readln

get
read
readdir

Output
Procedures

put
write

put
write
writeln
page
prompt
overprint

put
write
writedir

Positioning
Procedure

None None seek

Association
Procedures

associate
disassociate

associate
disassociate

associate
disassociate

Status Functions eof

position

eof
eoln
linepos

eof
lastpos
maxpos
position

Closing
Procedure

close close close

3-2 Input/Output

General File Information

You need the general �le information in this section to understand the rest of this chapter.
Examine Figure 3-2, and then read the explanations of the entities in italics, whose
relationships it shows.

Figure 3-2 illustrates the relationship between physical �les (in the operating system
environment) and logical �les (in the program environment). It also shows how logical �les,
text�les, and the standard text�les input and output are related.

Figure 3-2. File Relationships

Physical Files

A physical �le is a program-independent entity that the operating system controls. It can be
a �le on a disk or other medium, or an interactive �le created at a terminal (refer to your
operating system manual for information on creating and controlling physical �les).

Your program can manipulate a physical �le if the physical �le is associated with one of the
program's logical �les. In this case, the physical �le assumes the characteristics of the logical
�le.

Input/Output 3-3

Logical Files

A logical �le is a data structure that a program declares and controls. It is a sequence of
components of the same type.

The declaration of a logical �le determines the type of its components but not their number.
A logical �le that is declared FILE OF x has components of type x . File operations can
change the number of �le components.

A logical �le does not exist outside the main program or routine that declares it. If it is
associated with a physical �le, however, anything that happens to the logical �le within the
program also happens to the physical �le. This is how a program can manipulate its external
environment.

Note In subsequent sections of this chapter, the term �le refers to a logical �le
unless otherwise noted.

Textfiles

A text�le is a logical �le that is subdivided into lines, each of which ends with an end-of-line
marker. The components of a text�le are of type char , but a text�le declaration speci�es the
type text , not FILE OF char .

The standard �les input and output are text�les. If you declare them in the program header,
they are the default �le parameters for all of the sequential input and output procedures,
respectively.

Example

PROGRAM prog (input,output);

VAR

tfile : text;

c : char;

BEGIN

.

.

.

read(tfile, c); {Reads from tfile}

read(c); {Reads from input}

write(c); {Writes to output}

END.

The preceding program has three text�les: the standard text�les input and output, and the
�le tfile.

End-of-line markers are not �le components, and are not of type char. The prede�ned
procedure writeln writes them to the �le (see \Text�le Input/Output"). An end-of-line
marker always precedes the end-of-�le mark in a text�le, whether writeln wrote the last
component to the �le or not.

3-4 Input/Output

Current Position Indexes

Every logical �le has a current position index that indicates either its current component,
an end-of-�le marker, or (in a text�le) an end-of-line marker. This index is an integer|
the ordinal number of the current component or marker. A �le's current component is the
component that the next I/O operation on that �le will input or output.

Figure 3-3 illustrates the relationship between current position index and current component.

Figure 3-3.

Relationship Between Current

Position Index and Current Component

File Buffer Variables and Selectors

Every logical �le has a �le bu�er variable, or bu�er , which is a variable of the same type as
the �le components. Some �le operations assign the value of the current component to the
bu�er; other operations leave the bu�er unde�ned.

When the bu�er is de�ned, you can access its value with its �le bu�er selector . The �le bu�er
selector for the �le f is f^ or f@.

Accessing an unde�ned bu�er causes an error.

Input/Output 3-5

Opening Files

Except when using input and output �les, your program must open �les before it can use
them. A call to a prede�ned �le-opening procedure has the following syntax and parameters.

Syntax

8>><
>>:

reset

rewrite

append

open

9>>=
>>;
(logical �le

�
, physical �le

�
, open options

� �
)

Parameters

reset, rewrite,
append, open

The names of the prede�ned �le-opening procedures. See Table 3-2 for
more information on them.

logical �le The name of the logical �le to be opened.

physical �le A string or PAC expression whose value is the name of the physical
�le to be opened. The syntax of the �le name is system-dependent
(see Appendix A for the MPE/iX operating system or Appendix B for
the HP-UX operating system).

open options A string or PAC expression whose value is a list of �le attributes.
The syntax of the list is system-dependent (see Appendix A for the
MPE/iX operating system or Appendix B for the HP-UX operating
system).

Example 1

reset(logfile);

rewrite(logfile2,physfile2);

append(lfile1,pfile1,'SHARED'); {HP-UX operating system ignores 'SHARED'}

open(lfile1);

If you specify physical �le , the system associates it with logical �le . If logical �le was
previously associated with another physical �le, the system closes the other physical �le with
its data intact and opens a new physical �le.

3-6 Input/Output

Example 2

PROGRAM prog;

VAR

datafile : FILE OF integer;

BEGIN

open (datafile, 'file1'); {Logical file datafile is associated with

physical file file1.}

open (datafile, 'file2'); {Physical file file1 is closed.

Logical file datafile is associated with

physical file file2.}

END.

If logical �le is not a program parameter, and physical �le is not speci�ed, logical �le remains
associated with its previously associated physical �le. If logical �le was not previously
associated with a physical �le, the system associates logical �le with a temporary, nameless
physical �le.

Example 3

PROGRAM prog; {Logical files logfile1 and logfile2 are not

program parameters}

VAR

logfile1,

logfile2 : text;

BEGIN

reset(logfile1,'file1'); {Logical file logfile1 is associated with
physical file file1.}

rewrite(logfile1); {No physical file is specified, so logical file

logfile1 remains associated with physical file file1.}

rewrite(logfile2); {No physical file is specified, and logical file

logfile2 is not associated with a physical file,

so logfile2 is associated with a temporary,

nameless physical file.}

END.

If logical �le is a program parameter, and physical �le is not speci�ed, the system opens the
physical �le that has the same name as logical �le (with the lowercase letters upshifted|see
Appendix B for HP-UX implications). If no such physical �le exists, the result depends on
whether either append or rewrite opened the logical �le. If so, the system creates the physical
�le. If not, it is an error.

Input/Output 3-7

Example 4

For this example, assume that the physical �le file1 exists, but the physical �le file2 does
not.

PROGRAM prog (file1,file2); {Logical files file1 and file2

are program parameters.}

VAR

file1,

file2 : text;

BEGIN

rewrite(file1); {Logical file file1 is associated with the

physical file file1.}

rewrite(file2); {Logical file file2 is associated with a

physical file file2. }

END.

A temporary, nameless physical �le cannot be saved. It becomes inaccessible when the main
program or routine that declared logical �le terminates, or when you associate logical �le
with a new physical �le.

Your program does not need to open the standard text�les input and output. When they are
program parameters, the operating system opens them with reset and rewrite, respectively.

The standard text�les input and output are bound to speci�c system �les. For the MPE/iX
operating system, see Appendix A; for the HP-UX operating system, see Appendix B.

3-8 Input/Output

Table 3-2 summarizes the characteristics of the four prede�ned �le-opening procedures.

Table 3-2. Characteristics of File-Opening Procedures

Procedure Reset Rewrite Append Open

Type of �le
That it Can
Open

Any Any except
text�le

State in
Which it
Opens File

Read-only
Write-only Read-Write

Manner in
Which �le
Can Be
Accessed

Sequentially Directly

Purpose for
Which it
Opens File

Input
Output
over old
contents

Output at
end of old
contents

Input
and
output

Where it Puts
Current
Position
Index *

First
component

Before
�rst
component

After
last
component

Before
�rst
component

Value of eof
for File *

False True False

Erases Old
File Contents

No Yes No

File Bu�er
Variables *

Contains
value of
�rst
component

Unde�ned

* For a nonempty �le. For an empty �le, every �le-opening procedure puts the current
position index before the [nonexistent] �rst component, eof returns true, and the �le
bu�er variable is unde�ned.

Input/Output 3-9

Associate Procedure

The prede�ned procedure associate associates a logical �le with an open physical �le, and puts
the current position index at the �rst component.

Syntax

associate (logical �le, �le number, open options)

Parameters

logical �le The name of the logical �le.

�le number The �le number of the open physical �le. The physical �le must have been
opened with a direct call to an operating system routine or a non-Pascal
routine. You cannot call the associate procedure with the �le number of
a closed �le or a �le that was opened with the Pascal procedure append,
associate, open, reset, or rewrite.

open options One of the following options. It must be a string literal:

'READ' Associate with sequential access �le with read-only
access.

'WRITE' Associate with sequential access �le with write-only
access.

'READ,DIRECT' Associate with direct access �le with read-only access.

'WRITE,DIRECT' Associate with direct access �le with write-only access.

'READ,WRITE,DIRECT' Associate with direct access �le with read-write access.

'DIRECT' Associate with direct access �le with read-write access
(same as 'READ, WRITE, DIRECT').

'NOREWIND' Associates with a �le without changing the current �le
position.

You must specify one of the above strings for open options . The
system-dependent open options listed in Appendix A (for MPE/iX) and
Appendix B (for HP-UX) apply to the �le-opening procedures append,
open, reset, and rewrite. Pascal ignores them when they are used with
associate.

You cannot specify read access if the physical �le is not open for read access, or to specify
write access if it is not open for write access. If you associate a logical �le with an empty
physical �le, for read access, the next read causes an error.

3-10 Input/Output

Table 3-3 summarizes the characteristics of the prede�ned procedure associate.

Table 3-3. Characteristics of Associate Procedure

Type of File That it Can Open Any.

State in Which it Opens File Speci�ed in open options.

Manner in Which File Can Be
Accessed

Either|De�ned by characteristics
of physical �le.

Purpose for Which it Opens File Input, output or both.

Where it Puts Current Position
Index

Before �rst component.

Value of eof for File * False unless opened for write, in
which case eof returns true despite
possible old data after the current
component.

Erases Old �le Contents No.

File Bu�er Variables * First component for a text�le that
is open for reading; unde�ned
otherwise.

* For a nonempty �le. For an empty �le, every �le-opening procedure puts the current
position index before the [nonexistent] �rst component, eof returns true, and the �le
bu�er variable is unde�ned.

If the physical �le is not empty, the �rst reference to its �le bu�er variable loads its �le bu�er
with its �rst component. If the physical �le is empty, the �rst reference to its �le bu�er
variable causes an error.

Input/Output 3-11

Figure 3-4 illustrates the e�ect of the associate procedure on the open �le whose �le number is
�le num:

Condition of �le:

After associate(examp �le,�le num,'READ'), the �le is open in the read-only state and looks
like this:

Now examp �le is open in the read-only state.

Figure 3-4. Effect of Associate Procedure on Open File

3-12 Input/Output

Example 1

This example applies to HP Pascal on the MPE/iX operating system only. For a description
of the MPE/iX intrinsic FOPEN, refer to the MPE/iX Intrinsics Reference Manual .

PROGRAM test;

TYPE

pac100 = PACKED ARRAY [1..100] OF char;

VAR

f : FILE OF integer; {f is not a textfile}

buffer : pac100;

name : pac100;

fnum : integer;

j : integer;

e,g,h : text;

FUNCTION FOPEN : shortint; INTRINSIC; {MPE/&XL; file-opening intrinsic}

BEGIN

fnum := FOPEN(,0,octal('44'),-4); {open direct access read-write temp. file}

associate(f,fnum,'READ,WRITE,DIRECT'); {associate with file for

read-write direct access}

writedir(f,3,5);

readdir(f,3,j);

rewrite(e,'UDC'); {create file 'UDC'}

writeln('This is a test');

close(e,'SAVE'); {close file 'UDC'}

name := 'UDC';

fnum := FOPEN(name,octal('40')); {open 'UDC' for sequential read access}

associate(g,fnum,'READ'); {associate with 'UDC' for seq. read access}

read(g,buffer);

fnum := FOPEN(,4,octal('101')); {open write access sequential temp. file}

associate(h,fnum,'WRITE'); {associate for sequential write access}

writeln(h,'This is a test');

END.

Input/Output 3-13

Example 2

This example applies to HP Pascal on the HP-UX operating system only. For descriptions of
the HP-UX routines tmpnam and open, refer to the HP-UX Reference manual.

PROGRAM test;

TYPE

pac100 = PACKED ARRAY [1..100] OF char;

VAR

f : FILE OF integer; {f is not a textfile}

buffer : pac100;

name : pac100;

mode : integer;

fnum : integer;

j : integer;

e,g,h : text;

option : integer;

{External HP-UX routine that returns a unique file name}

PROCEDURE tmpnam (VAR fpathname : pac100); EXTERNAL;

{External HP-UX routine that opens a file}

FUNCTION file_open $ALIAS 'open'$ {use alias to avoid conflict w/Pascal open}

(VAR fpathname : pac100;

foption : integer;

mode : integer) : integer; EXTERNAL;

BEGIN

tmpnam(name); {get unique name for temporary file}

mode := octal('666'); {read-write access for file}

option := octal('402'); {specify read-write access}

fnum := file_open(name,option,mode); {open the file}

associate(f,fnum,'READ,WRITE,DIRECT');{associate with file for

read-write direct access}

writedir(f,3,5);

readdir(f,3,j);

rewrite(e,'UDC'); {create text file 'UDC'}

writeln('This is a test'); {write to file}

close(e,'SAVE'); {close text file 'UDC'}

name := 'UDC'#0; {open the same file through HP-UX}

mode := octal('666');

fnum := file_open(name,0,mode);

associate(g,fnum,'READ'); {associate with 'UDC' for seq. read access}

read(g,buffer);

tmpnam(name); {open text file through HP-UX}

mode := octal('666');

option := octal('401'); {specify write access}

fnum := file_open(name,option,mode);

associate(h,fnum,'WRITE'); {associate for sequential write access}

writeln(h,'This is a test');

END.

3-14 Input/Output

Disassociate Procedure

The prede�ned procedure disassociate removes the logical-physical �le association that was
previously created with the standard procedure associate. As a result, you can no longer use
the �le f with Pascal input and output routines.

Syntax

disassociate (f)

Parameters

f A variable of type �le.

Normally, a �le is closed on exit from the block in which it is declared. A disassociated �le,
however, remains open until it is closed with a direct call to an operating system routine.

Disassociate is useful on a �le that is opened by a non-Pascal routine that is passed to a
Pascal routine and must remain open on exit from the Pascal routine.

Input/Output 3-15

Sequential Input/Output

Sequential input/output is input/output that is performed with sequential �les; that is, �les
whose current position indexes advance one component at a time. Sequential input comes
from read-only �les that the procedure reset opened. Sequential output goes to write-only �les
that the procedure rewrite or append opened.

Table 3-4 summarizes the characteristics of the prede�ned sequential input/output procedures.

Table 3-4. Characteristics of Sequential I/O Procedures

Procedure get read put write

State that �le
must be in *

Read-only or read-write Write-only or read-write

Assigns value of Current component Bu�er Speci�ed
variable

To Bu�er Speci�ed
variable

Current component

Advances
current position
index

To next component **

After call, bu�er
is unde�ned

No Yes

* For sequential I/O, the state must be read-only or write-only. The state read-write is
included here because these sequential I/O procedures work the same way on direct
(read-write) �les (see \Direct Input/Output").

** For all the procedures except get , the current position index is advanced to the
component after the assignment. See the explanation of deferred get that follows this
table.

The procedures get and read assign values to the bu�er with deferred get . Deferred get
allows HP Pascal to maintain the original Pascal de�nition of get while avoiding unexpected
behavior with input from interactive I/O devices (such as terminals).

The procedure get advances the current position index to the next component and moves the
next component into the bu�er variable.

The procedure reset opens a �le for sequential input, positions the �le at the �rst
component, and performs a get.

If the get (Pascal de�nition) is performed after a reset to a terminal, a physical read is
required to �ll the bu�er variable. Consequently, a program is paused for input from the
terminal before the program requests an input operation.

The deferred get avoids this problem. With deferred get, the procedure get advances the
current position index to the next component and, on the next reference to the bu�er variable,
moves the current component into the bu�er variable. The reference to the bu�er variable can
be explicit (f^) or implicit. For example, read(f,v) or eof(f).

3-16 Input/Output

Example 1

PROGRAM prog;

TYPE

seqfile = FILE OF char;

VAR

f1,f2,f3 : seqfile;

c1,c2 : char;

BEGIN

reset(f1); {Opens f1 for sequential input.

First component of f1 becomes its current component.}

c1 := f1^; {Assigns f1's first component to f1's buffer.

Assigns f1's buffer (first component) to c1.}

get(f1); {Advances f1's current position index.

Second component of f1 becomes its current component.}

read(f1,c2); {Implicit reference to f1's buffer --

deferred get from get(f1) assigns

f1's current (second) component to f1's buffer.

Read(f1,c2) assigns f1's current (second) component to c2

and advances f1's current position index.

Third component of f1 becomes its current component.}

rewrite(f2); {Opens f2 for sequential output (write-only).

Erases old contents.

Leaves f2's buffer undefined.}
get(f2); {Illegal -- rewrite(f2) made f2 write-only.}

f2^ := c1; {Assigns c1 to f2's buffer.}

put(f2); {Assigns f2's buffer (c1) to f2's current (first) component.

Advances f2's current position index to position two,

where its second component will be after write(f2,c2).}

write(f2,c2); {Assigns c2 to f2's current (second) component.

Advances f2's current position index to position three,

where its third component will be.}

append(f3); {Opens f3 for sequential output (write only).

Does not erase old contents, which end with component n.

Leaves f3's buffer undefined.}

(Example is continued on next page.)

Input/Output 3-17

get(f3); {Illegal -- append(f3) made f3 write-only.}

f3^ := c1; {Assigns c1 to f3's buffer.}

put(f3); {Assigns f3's buffer (c1) to f3's current (n+1st) component.

Advances f3's current position index to position n+2,

where its n+2nd component will be after write(f3,c2).}

write(f3,c2); {Assigns c2 to f3's current (n+2nd) component.

Advances f3's current position index to position n+3,

where its n+3rd component will be.}

END.

The preceding program reads values from the �rst and second components of the �le f1
into the variables c1 and c2 (respectively). Then it writes c1 and c2 to the �rst and second
components of the �le f2 (respectively), and appends them to the �le f3.

The get associated with read is implicit; your program need not call get explicitly. If it does,
a component is skipped.

3-18 Input/Output

Example 2

PROGRAM prog;

TYPE

intfile = FILE OF integer;

VAR

f : intfile;

x,y,z : integer;

BEGIN

reset(f); {Opens f for sequential input.

First component becomes current component.}

read(f,x); {Implicit reference to f's buffer -- deferred get

from reset(f), above -- assigns current (first)

component to buffer. Then read(f,x) assigns

current (first) component to x.

Second component becomes current component.}

read(f,y); {Implicit reference to buffer --

deferred get from read(f,x) assigns

current (second) component to buffer.

Read(f,y) assigns current (second) component to y

and advances current position pointer.

Third component becomes current component.}

get(f); {Explicit reference to buffer --

because get(f) follows read(f,y),

it advances the current position pointer.

Fourth component becomes the current component.}

read(f,z); {Implicit reference to buffer --

deferred get from get(f) assigns current (fourth)

component to buffer.

Read(f,z) assigns current (fourth) to z.

Fifth component becomes the current component.}

END.

The preceding program assigns the �rst, second, and fourth components of the �le f to the
variables x, y, and z, respectively. The program skips the third component.

Input/Output 3-19

Table 3-5 gives the characteristics of the prede�ned sequential �le functions.

Table 3-5. Characteristics of Sequential File Functions

Function Eof Position

Returns: True if the current position index is
at the end-of-�le marker; false
otherwise (always true for a
write-only �le).

Current position
index (an integer).

E�ect on
bu�er:

If eof returns false, and the bu�er
does not have a value, then eof
assigns the value of the current
component to the bu�er; otherwise,
no e�ect.

None.

Trying to read from �le f when eof(f) is true causes a run-time error. You can prevent it by
calling eof(f) before attempting to read from f, and taking appropriate action if eof(f) is
true.

Example 3

PROGRAM prog;

TYPE

seqfile = FILE OF real;

VAR

f : seqfile;

i : integer;

a : ARRAY [1..100] OF real;

BEGIN

reset(f); {Open f}

i := 1;

WHILE not eof(f) AND (i<=100) DO {Read array values from f}

BEGIN

read(f,a[i]);

i := i+1;

END;

END;

END.

If f is a terminal, the appropriate action for eof is a device read. The next read or readln of f
accesses the component in the bu�er, without performing another device read.

3-20 Input/Output

Example 4

PROGRAM prog (input); {for this example, assume input is from terminal}

TYPE

readbuf = PACKED ARRAY [1..80] OF char; {for device read}

VAR

x : char;

i : 1..100;

a : readbuf;

BEGIN

i := 1;

WHILE (NOT eof) AND (i <= 100) DO

BEGIN

readln(a); {perform device read}

i := i + 1;

END;

END.

By default, eof and readln apply to the standard text�le input. The user running the
program terminates input by pressing �RETURN�. An input line can have up to 80 characters.

Input/Output 3-21

Textfile Input/Output

Text�le input/output is sequential input/output that is performed with text�les (a subset
of sequential �les). The program reads text�le input from read-only text�les opened by the
procedure reset, or from the standard text�le input. The program writes text�le output to
write-only text�les opened by the procedure rewrite or append, or to the standard text�le
output.

Table 3-6 summarizes the characteristics of the prede�ned text�le input/output procedures.

Table 3-6. Characteristics of Textfile I/O Procedures

Procedure readln1 writeln2 page overprint prompt

State that �le
must be in

Read-only Write-only

Writes or
Reads

Value of
current
component

Speci�ed
expression

End-of-line
marker

Page-eject
character 3

Line-feed
suppression
character4

Bu�er

To/after To speci�ed
variable

To current
component

After
current
component

After current component To output
device

Advances
current
position index

To beginning
of next line

To beginning of next line To next
component

To beginning
of same line

No

After call,
bu�er is
unde�ned

No Yes

1. readln and read perform implicit data conversion if the speci�ed variable is of any simple
type other than char (see the HP Pascal/iX Reference Manual or the HP Pascal/HP-UX
Reference Manual for details).

2. writeln and write format the speci�ed variable (see the HP Pascal/iX Reference Manual
or the HP Pascal/HP-UX Reference Manual for details).

3. The page-eject character causes devices to skip to the top of the next page when it prints
the text�le.

4. The line-feed suppression character prevents the device from moving to the next line after
it prints the parameter of overprint ; thus the sequence

overprint('ABC');

writeln('XYZ');''

prints ABC and then prints XYZ on top of it.

The �le-opening procedures rewrite and append and the text�le output procedures writeln,
page, overprint, and prompt leave the bu�er unde�ned.

3-22 Input/Output

Example 1

PROGRAM prog (in,out);

VAR

in,out : text;

w,x,y,z : char;

BEGIN

reset(in); {Open in for textfile input}

rewrite(out); {Open out for textfile output}

readln(in,x,y,z); {Read x, y, and z from in}

write(out,x); {Write x to out}

overprint(out); {Write buffer and line-feed suppression to out}

writeln(out,y); {Write y to out and advance to next line}

page(out); {Write page-eject character to out}

writeln(out,z); {Write z to out and advance to next line}

prompt(out,'?'); {Write '?' to out, without carriage control}

readln(in,w); {Read user's answer to '?' from in}

writeln(out,w); {Write user's answer to out}

END.

When a device prints the �le out, it prints the value of y over the value of x, and it prints the
values of z and w on the next page.

Table 3-7 summarizes the characteristics of the prede�ned text�le functions.

Table 3-7. Characteristics of Textfile Functions

Function Eoln Linepos

State that �le must be
in

Read-only Read-only Write-only

Returns True if the current
position index is at an
end-of-line marker; false
otherwise.

Number of characters
read from �le since last
end-of-line marker
(excluding character in
bu�er).

After readln, or when
current position index is
at end-of-line marker,
this number is zero.

Number of characters
written to �le since last
end-of-line marker
(excluding character in
bu�er).

After writeln, or when
current position index is
at end-of-line marker,
this number is zero.

E�ect on bu�er If eoln returns true, it
assigns a blank
character to the bu�er

None

Input/Output 3-23

Example 2

PROGRAM prog (infile,outfile,output);

VAR

infile,

outfile : text;

i : integer;

c : char;

BEGIN

reset(infile); {Open infile for input}

rewrite(outfile); {Open outfile for output}

WHILE not(eof(infile)) DO BEGIN {If infile is not at end-of-file}

IF eoln(infile) THEN BEGIN {but the current line of in has ended,}

writeln(linepos(infile)); {print the number of characters read

from the current line of infile,}

readln(infile); {and advance to the next line.}

writeln(linepos(outfile)); {Also, print the number of characters

written to outfile,}

writeln(outfile); {and start a new line of outfile.}

END {IF} {If the current line of infile has not ended,}

ELSE BEGIN

read(in,c); {read the next character of infile,}

write(out,c); {and write it to outfile.}

END;

END; {WHILE}

END.

The preceding program copies the text�le infile to the text�le outfile, writing the values
of linepos(infile) and linepos(outfile) to the standard text�le output whenever
eoln(infile) is true.

Except for the position function, every sequential I/O procedure and sequential �le function
applies to text�les (see \Sequential Input/Output"). Sequential �les work the same way,
except that for text�les, read (like readln) sometimes performs implicit data conversion,
and write (like writeln) can format the output value. See the HP Pascal/iX Reference
Manual or the HP Pascal/HP-UX Reference Manual , depending on your implementation, for
information on implicit data conversion and formatting output values.

3-24 Input/Output

Direct Input/Output

Direct input/output is input/output that is performed with direct �les; that is, �les whose
current position indices can be manipulated directly by the program. Direct input and output
come from read-write �les opened by the procedure open (they cannot be text�les). Your
program can use the same direct �le for input and output.

Table 3-8 summarizes the characteristics of the prede�ned direct I/O procedures. (The I/O
procedures in Table 3-3 also work on direct access �les.)

Table 3-8. Characteristics of Direct I/O Procedures

Procedure Readdir Writedir Seek

State that
�le must
be in

Read-write

Assigns
value of

Speci�ed
component

Speci�ed
variable

Not applicable

To Speci�ed
variable

Speci�ed
component

Not applicable

Advances
current
position
index

To component following speci�ed
component

To speci�ed
component

After call,
bu�er is
unde�ned

No Yes

The procedures readdir, writedir, seek, read, and write have this relationship:

This Is equivalent to this

readdir(f,i,x); seek(f,i);

read(f,x);

writedir(f,i,x); seek(f,i);

write(f,x);

Input/Output 3-25

Example 1

PROGRAM prog;

TYPE
dirfile = FILE OF integer;

VAR

f : dirfile;

i1,i2,i3,i4 : integer;

BEGIN

open(f); {Opens f for direct input/output}

{READ TWO SPECIFIC COMPONENTS USING readdir AND read}

readdir(f,50,i1); {Puts the current position index at component 50.

Assigns component 50 to i1.

Advances the current position index.

Component 51 becomes the current component.}

read(f,i2); {Assigns component 51 to i2.}

{READ TWO SPECIFIC COMPONENTS USING seek AND read}

seek(f,70); {Puts the current position index at component 70.}

read(f,i3); {Assigns component 70 to i3.

Advances the current position index.

Component 71 becomes the current component.}

read(f,i4); {Assigns component 71 to i4.}

{WRITE TWO SPECIFIC COMPONENTS USING writedir AND write}

writedir(f,10,i1); {Puts the current position index at component 10.

Assigns i1 to component 10.

Advances the current position index.

Component 11 becomes the current component.}

write(f,i2); {Assigns i2 to component 11.}

{WRITE TWO SPECIFIC COMPONENTS USING seek AND write}

seek(f,30); {Puts the current position index at component 30.}

write(f,i3); {Assigns i3 to component 30.

Advances the current position index.

Component 31 becomes the current component.}

write(f,i4); {Assigns i4 to component 31.}

END.

All of the sequential I/O procedures work the same way on direct �les; that is, they treat
them like sequential �les. If you use both sequential and direct I/O procedures on a �le, the
following guidelines apply:

After the sequential input procedure read , any reference to the bu�er|even an explicit
assignment to the bu�er such as f^ := 30|assigns the value of the next component to the
bu�er.

Because the components of a direct �le can be written in any order, your program can skip
components when it writes to a �le directly. If your program reads the �le sequentially
later, the values of the skipped components are unpredictable.

3-26 Input/Output

The �le-opening procedure open and the direct I/O procedures seek and writedir leave
the bu�er unde�ned. After calling one of these procedures, your program must call get,
read, or readdir before referencing the bu�er implicitly (with a sequential I/O procedure)
or explicitly.

Table 3-9 summarizes the characteristics of the prede�ned direct �le functions.

Table 3-9. Characteristics of Direct File Functions

Function Lastpos Maxpos Eof

State that �le
must be in

Read-write

Returns Position number of
highest-numbered
component that you can
read (the last
component ever written)

Position number of
highest-numbered
component that you can
write

Returns true if current
position index is after
lastpos; false otherwise

All of the sequential �le functions work the same way on direct �les, except for a subtle
di�erence in the eof function (compare Table 3-5 and Table 3-9).

Input/Output 3-27

Example 2

PROGRAM prog;

TYPE

cfile = FILE OF char;

VAR

f : cfile;

c : char;

BEGIN

reset(f); {Opens file for sequential input.}

WHILE not(eof(f)) DO read(f,c); {Reads until eof is true.}

read(f,c); {ERROR -- cannot read when eof is true.

This statement would abort the program.}

open(f); {Opens file for direct input/output.}

IF lastpos(f) < maxpos(f) THEN BEGIN

seek(f,lastpos(f)+1); {Puts current position index beyond

last component, making eof true.}

read(f,c); {ERROR -- cannot read beyond lastpos(f).}

write(f,c); {Writes beyond last component.

The component written becomes the last.}

END;

END.

3-28 Input/Output

Closing Files

When your program closes a �le, it breaks the association between the logical �le and the
physical �le; therefore, it cannot access the �le or �le bu�er variable. It must reopen the �le
before attempting to operate on it in any other way, or it is a run-time error. One way to
close a �le is with the prede�ned procedure close. A call to close has the following syntax
and parameters.

Syntax

close (logical �le [, close option])

Parameters

logical �le The name of the logical �le to be closed.

close option A string or PAC expression whose value is one of the following:

SAVE or LOCK The �le is saved permanently.

TEMP or NORMAL The �le is saved temporarily. What happens to the
temporary �le when the current session or job ends is
system-dependent. For the MPE/iX operating system, see
Appendix A; for HP-UX, see Appendix B.

CRUNCH The e�ect of this option on the space after the end-of-�le
marker is system-dependent. See Appendix A (MPE/iX)
or Appendix B (HP-UX).

PURGE The �le is removed.

A program also closes a logical �le and its associated physical �le when the program:

Terminates.

Exits the routine that declares the �le, either because the routine ends, because it executes
a goto statement that transfers control to a routine outside its scope, or it calls the
prede�ned procedure escape because of a run-time error Chapter 11 explains escape).

Reopens the �le (in which case the �le is closed before it is reopened).

Also, a program closes a �le that is stored on the heap when it deallocates the �le's heap
space by calling the prede�ned procedure dispose or release with the appropriate parameter
(see Chapter 6).

A program closes a pre-existing physical �le (one that it did not create) in the same state that
it was in before the program opened it. If a program creates a �le, however, it can specify the
state in which the close procedure closes it.

Input/Output 3-29

Example

PROGRAM prog;

LABEL

9999;

TYPE

ftype = FILE OF integer;

VAR

f1 : ftype;

PROCEDURE p;

VAR

f2 : ftype;

BEGIN

reset(f2); {Opens f2}

goto 9999; {Closes f2 and f3}

END;

PROCEDURE q;

VAR

f3 : ftype;

BEGIN

open(f3); {Opens f3}

p;

{p never returns here}

END;

BEGIN

rewrite(f1); {Opens f1}
q;

9999 : reset(f1); {Closes and reopens f1}

close(f1); {Closes f1}

END.

3-30 Input/Output

4
Predefined Pascal Constants, Data Types, and
Modules

This chapter:

Gives the value of each prede�ned constant.

Gives the range of each prede�ned data type.

Explains in detail the prede�ned data types bit16 , bit32 , bit52 , longint , and shortint , which
are unique to HP Pascal.

Explains each prede�ned module.

Values of Predefined Constants

HP Pascal's two prede�ned constants and their values are:

Constant Value

minint -2147483648

maxint 2147483647

When you wish to use the minimum integer, you must use the prede�ned constant minint and
not the actual value.

Predefined Pascal Constants, Data Types, and Modules 4-1

Ranges of Predefined Data Types

Table 4-1 gives the range and size of each prede�ned data type available to HP Pascal. The
data types are in alphabetical order and the sizes are in bits. To get a size in bytes, divide the
number of bits by eight.

Table 4-1. Ranges and Sizes of Predefined HP Pascal Types

Type Range Unpacked
Size in Bits

Bit16 0..65535 16

Bit32 0..232-1 32

Bit52 0..252-1 64

Boolean FALSE or TRUE, where FALSE=0 and TRUE=1 8

Char ASCII character set 8

Integer -231..231-1 32

Longreal y -1.797693134862315*10308..-4.940656458412466*10-324,
0,
4.940656458412466*10-324..1.797693134862315*10308

64

Real y -3.402823*1038..-1.401298*10-45,
0,
1.401298*10-45..3.402823*1038

32

Shortint -32768..32767 16

Longint -263..263-1 64

y The range of values for longreal and real include denormalized numbers.

Note HP and IEEE
oating point numbers are identical. HP3000 16
oating point
numbers are di�erent from HP and IEEE
oating point numbers. For details,
refer to the Introduction to MPE XL for MPE V Programmers.

4-2 Predefined Pascal Constants, Data Types, and Modules

Bit16

The prede�ned data type bit16 is a subrange, 0..65535, that is stored in 16 bits. bit16 is a
unique HP Pascal type because arithmetic operations on bit16 data are truncated to modulo
65535 when stored.

To determine if a type T is assignment compatible with bit16 , treat bit16 as a subrange of
integer:

If variable v is of type T and variable b16 is of type bit16 , then the assignment b16 := v is
legal if the value of v is within the range 0..65535.

If the ranges of T and bit16 do not overlap, the assignment b16 := v causes a compile-time
error.

If the ranges of T and bit16 do overlap, but the value of v is outside the range of bit16 , then
the assignment b16 := v causes a run-time error.

Example

PROGRAM prog;

TYPE

T1 = integer; {overlaps bit16 range }

T2 = -32768..-1; {does not overlap bit16 range}

T3 = 0..65535; {overlaps bit16 range }

VAR

v1 : T1; {b16:=v1 may be legal, depending on value of v1}

v2 : T2; {b16:=v2 is never legal}

v3 : T3; {b16:=v3 is always legal}

b16 : bit16;

BEGIN {prog}

v1 := 65535;

b16 := v1; {legal}

b16 := b16 + 5; {legal; now b16 = (65540 MOD 65535) = 4}

b16 := b16 - 5; {legal; now b16 = 65535}

v3 := 65535;

v3 := v3 + 4; {causes run-time error}

v3 := 4;

v3 := v3 - 5; {causes run-time error}

v1 := -20;

b16 := v1; {causes run-time error}

v2 := -30;

b16 := v2; {causes compile-time error}

END. {prog}

Predefined Pascal Constants, Data Types, and Modules 4-3

Bit32

The prede�ned data type bit32 is a subrange, 0..232-1, that is stored in 32 bits. bit32 is a
unique HP Pascal type because arithmetic operations on bit32 data are performed as unsigned
32-bit integers. Unsigned addition and subtraction do not over
ow. Unsigned multiply can
over
ow unless the compiler option OVFLCHECK is used.

Note that there are no bit32 constants in the compiler. Therefore, numbers in the range
maxint + 1..232 -1 can not be expressed directly. The function hex can be used with the
compiler options TYPE COERCION and RANGE to provide bit32 constants. The compiler
option TYPE COERCION is also needed when initializing a bit32 constant �eld. In this case,
bit32() is not used. When bit32 is used in an executable statement, RANGE OFF must be used.

To determine if a type T is assignment compatible with bit32 :

If variable v is of type T and variable b32 is of type bit32, then the assignment b32 := v is
legal if the value of v is within the range 0..232-1.

If the ranges of T and bit32 do not overlap, the assignment b32 := v causes a compile-time
error.

If the ranges of T and bit32 do overlap, but the value of v is outside the range of bit32, then
the assignment b32 := v causes a run-time error.

4-4 Predefined Pascal Constants, Data Types, and Modules

Example

$standard_level 'hp_modcal'$

program prog_bit32(output);

var i : integer;

b : bit32;

type rec = record

f1 : bit32;

end;

$push; type_coercion 'conversion'$

const v_rec = rec[f1: hex('ffffffff')]; { bit32 constant field }

pop

begin

b := hex('ffffffff'); { compile-time error }

i := -1;

try

b := i; { run-time error }

recover ;

$push; type_coercion 'conversion'; range off$

b := bit32(i) + 1; { zero is stored }

b := bit32(hex('ffffffff'));

pop

try

i := b; { run-time error }

recover ;

try

i := b + i; { b and i are converted to longint and are }

{ too big to fit back into i }

recover ;

i := hex('ffffffff'); { both b and i now have all bits on }

{ the following never prints since i is sign extended to longint and

b is zero extended to longint }

if i = b then writeln('equal');

end.

Predefined Pascal Constants, Data Types, and Modules 4-5

Bit52

The prede�ned data type bit52 is a subrange, 0..252-1, that is stored in 64 bits. bit52 is a
unique HP Pascal type because arithmetic operations on bit52 data are performed as unsigned
64-bit integers. Unsigned addition and subtraction do not over
ow. Unsigned multiply may
over
ow. The compiler option OVFLCHECK has no e�ect.

Note that there are no bit52 constants in the compiler. Therefore, numbers in the range
maxint + 1..252 -1 can not be expressed directly. The function hex can be used with the
compiler options TYPE COERCION and RANGE to �ll part of this range. The compiler
option TYPE COERCION is also needed when initializing a bit52 constant �eld. In this case,
bit52() is not used. When bit52 is used in an executable statement, RANGE OFF must be used.

For number in the range of 232..252-1, a run-time computation must be done. If the numbers
are all constants, they must be type coerced to bit52 so they do not integer over
ow.

Variant records can also be used to build up these large constants.

To determine if a type T is assignment compatible with bit52 .

If variable v is of type T and variable b52 is of type bit52 , then the assignment b52 := v is
legal if the value of v is within the range 0..252-1.

If the ranges of T and bit52 do not overlap, the assignment b52 := v causes a compile-time
error.

If the ranges of T and bit52 do overlap, but the value of v is outside the range of bit52 , then
the assignment b52 := v causes a run-time error.

Example

$standard_level 'hp_modcal'$

program prog_bit52(output);

var i : integer;

b : bit52;

type rec = record

f1 : bit52;

end;

$push; type_coercion 'conversion'$

const v_rec = rec[f1: hex('ffffffff')]; { bit52 constant field }

pop

begin

b := hex('ffffffff'); { compile-time error }

i := -1;

try

b := i; { run-time error }

recover ;

(Example is continued on next page.)

4-6 Predefined Pascal Constants, Data Types, and Modules

$push; type_coercion 'conversion'; range off$

b := bit52(i) + 1; { zero is stored }

b := bit52(hex('ffffffff'));

pop

try

i := b; { run-time error }

recover ;

try

i := b + i; { b and i are converted to longint and are }

{ too big to fit back into i }

recover ;

i := hex('ffffffff'); { both b and i now have all bits on }

{ the following never prints since i is sign extended to longint and

b is zero extended to longint }

$push; type_coercion 'conversion'$

if longint(i) = b then writeln('equal');

pop

end.

Predefined Pascal Constants, Data Types, and Modules 4-7

Shortint

The prede�ned data type shortint is an integer in the range -32768..32767 that is stored in 16
bits. (In contrast, if you declare a variable to be in that range, it is stored in 32 bits.) The
type shortint has the following uses:

If you want to access an external non-Pascal routine that has a formal parameter of a type
whose range is -32768..32767, and uses 16-bits of storage, you can declare a corresponding
formal Pascal parameter of type shortint , and it will be compatible.

For Pascal/V compatibility.

To determine whether a type T is assignment compatible with the type shortint , you can treat
shortint as a subrange of integer . This means that you can assign a variable v of type T to a
variable sv of type shortint if:

The type T is integer or a subrange of integer .

The value of v is within the range of shortint (-32768..32767).

If the ranges of T and shortint do not overlap, the assignment sv:=v causes a compile-time
error. If the ranges of T and shortint do overlap, but the value of v is outside the range of
shortint the assignment sv:=v causes a run-time error.

Example

PROGRAM prog;

TYPE

T1 = integer; {overlaps shortint range}

T2 = -10..40000; {overlaps shortint range}

T3 = 40000..50000; {does not overlap shortint range}

VAR

v1 : T1; {sv:=v1 may be legal, depending on value of v1}

v2 : T2; {sv:=v2 may be legal, depending on value of v2}

v3 : T3; {sv:=v3 is never legal}

sv : shortint;

BEGIN

v1 := 10;

sv := v1; {legal assignment}

v1 := 45000;

sv := v1; {causes run-time error}

v2 := 400;

sv := v2; {legal assignment}

v2 := 35000;

sv := v2; {causes run-time error}

v3 := 40000;

sv := v3; {causes compile-time error}

END.

4-8 Predefined Pascal Constants, Data Types, and Modules

Longint

The prede�ned data type longint is an integer in the range -263..263-1 that is stored in 64 bits.
The compiler option OVFLCHECK has no e�ect on 64 bit multiply.

Note that there are no longint constants in the compiler. Therefore, numbers outside
of the range minint .. maxint can not be expressed directly. The compiler option
TYPE COERCION must be used with a run-time computation. If the numbers are constants,
they must be typed coerced to longint so they do not integer over
ow.

Example

$standard_level 'hp_modcal'$

program prog_longint(output);

var i : integer;

b : longint;

type rec = record

case integer of

0:(l : longint);

1:(f1,f2: integer);

end;

const v_rec = rec[f1: hex('1'),

f2: hex('ffffffff')]; { longint constant field }

begin

b := v_rec.l;

writeln(b);

try
i := b; { run-time error }

recover ;

$push; type_coercion 'conversion'$

b := longint(1000000) * 1000000;

pop

writeln(b);

end.

Output:

8589934591

1000000000000

Predefined Pascal Constants, Data Types, and Modules 4-9

Predefined Modules

On both the MPE/iX and HP-UX operating systems, HP Pascal has these prede�ned
modules:

stdinput

stdoutput

On the HP-UX operating system only, HP Pascal has these additional prede�ned modules:

stderr

arg

pas_hp1000

In its import declaration section, your program can import any or all of the prede�ned
modules supported by the operating system on which it runs.

This section shows the actual declarations in the prede�ned modules for your information
only. Do not include these declarations in your program. Instead, import the prede�ned
modules as shown on the following page.

stdinput

The stdinput module contains the declaration for the prede�ned global variable (standard
text�le) input. It allows an independent module (which has no program header) to use input.
Importing the stdinput module into an independent module is the same as declaring input in
the program header of a program.

The content of the prede�ned module stdinput is:

VAR

input : text;

stdoutput

The stdoutput module contains the declaration for the prede�ned global variable (standard
text�le) output. It allows an independent module (which has no program header) to use
output. Importing the stdoutput module into an independent module is the same as
declaring output in the program header of a program.

The content of the prede�ned module stdoutput is:

VAR

output : text;

4-10 Predefined Pascal Constants, Data Types, and Modules

stderr

The stdrrr module contains the declaration for the prede�ned global variable (standard
text�le) stderr . It allows an independent module (which has no program header) to use
stderr . Importing the stderr module into an independent module is the same as declaring
stderr in the program header of a program.

The content of the prede�ned module stderr is:

VAR

stderr : text;

The prede�ned module stderr is only available on the HP-UX operating system.

The main use of stdinput, stdoutput, and stderr is to allow a module to perform a read or
write operation to either standard input �les, standard output �les, or, on HP-UX, standard
error �les. The module must import the corresponding stdinput, stdoutput, or stderror
modules, and the program must have input, output, or stderr in the program header.
A main program does not need to import these standard modules, but the corresponding
program parameter must be present in the program header.

The following example shows a program importing a module that imports stdinput,
stdoutput, and, on HP-UX, stderr.

MODULE A;

EXPORT

Procedure getnum (var n:integer);

IMPLEMENT

IMPORT

stdinput, stdoutput, stderr;
Procedure getnum (var n: integer);

BEGIN

Writeln ('Enter a positive number') {Writes to output.}

Readln (n); {Reads from input.}

IF n < 0 THEN

Writeln (stderr, 'Incorrect input') {Writes to stderr.}

END;

END.

The program below shows how module A is imported. It is compiled into �le A.o. The
program parameters input, output, and stderr must be present since module A imports
them. arg and pas_hp1000 do not need to be present if they are imported.

Program Test (input, output, stderr);

$search 'A.o'$ { search A.o for module A }

IMPORT A:

VAR

m : integer;

BEGIN

getnum(m);

.

.

.

END.

Predefined Pascal Constants, Data Types, and Modules 4-11

arg

The arg module contains routines that access HP-UX command line arguments. (It also
contains the types that these routines use, but only the routines are presented here.)

The routines in the prede�ned module arg are:

Routine E�ect and Declaration

argc Returns the total number of arguments to the program (the name of the
program is considered to be the �rst argument).

Declaration:

FUNCTION argc : integer;

argv Returns a pointer to an array of pointers to the actual arguments.

Declaration:

FUNCTION argv : argarrayptr;

argn A speci�c argument, in the form of a Pascal string.

Declaration:

FUNCTION argn (argnum : integer) : String1024;

The prede�ned module arg is only available on the HP-UX operating system.

4-12 Predefined Pascal Constants, Data Types, and Modules

pas hp1000

The pas_hp1000 module contains routines that help you migrate Pascal/1000 programs to
HP Pascal/HP-UX on the HP 9000 Series 700 or 800 machine. They emulate user-callable
routines in the Pascal/1000 run-time library.

The routines in the prede�ned module pas_hp1000 are:

Routine E�ect and Declaration

pas_init_hp1000_args Only for programs running under the RTE shell on the HP 9000
Series 700 or 800. Using command line arguments, it sets up an
HP-UX-like argument array for use in argument-accessing routines.

Declaration:

PROCEDURE pas_init_hp1000_args;

pas_parameters Returns a speci�c argument to the program as a Pascal PACKED
ARRAY OF CHAR.

Declaration:

FUNCTION pas_parameters

(position : shortint;

ANYVAR Parameter : Pas_PAC80; {any PAC}

maxlen : shortint

) : shortint;

pas_sparameters Returns a speci�c argument to the program as a Pascal string.

Declaration:

FUNCTION pas_sparameters

(position : shortint;

VAR Parameter : String; {Any string}

) : shortint;

pas_numericparms Interprets the arguments to the program as an array of numeric
strings and returns an array of numbers corresponding to these
strings.

Declaration:

PROCEDURE pas_numericparms
(ANYVAR ParmArray : Pas_ParmArray);

pas_getnewparms Only for programs running under the RTE shell on the HP 9000
Series 700 or 800. Reinitializes the argument data structures when
the program has been rescheduled after being suspended.

Declaration:

PROCEDURE pas_getnewparms;

Predefined Pascal Constants, Data Types, and Modules 4-13

pas_filenamr Returns the name of the physical �le associated with the speci�ed
logical �le.

Declaration:

FUNCTION pas_filenamr

(ANYVAR f : text) : pas_nametype;

pas_timestring Returns the time of day as a 26-character PACKED ARRAY OF
CHAR.

Declaration:

PROCEDURE pas_timestring

(ANYVAR f : pas_timestringtype);

pas_traceback Produces a stack trace of the program and writes it to stderr.

Declaration:

PROCEDURE pas_traceback

(dummy : shortint); {parameter is ignored}

pas_stringdata1

pas_stringdata2

Return pointers to the data portion of a string. Functionally
identical; provided as di�erent entry points for consistency with
Pascal/1000 names.

Declarations:

FUNCTION pas_stringdata1

(VAR s : String) : localanyptr;

FUNCTION pas_stringdata2

(VAR s : String) : localanyptr;

The prede�ned module pas_hp1000 is only available on the HP-UX operating system.

4-14 Predefined Pascal Constants, Data Types, and Modules

5

Allocation and Alignment

This chapter:

De�nes allocation, alignment, and packing algorithm.

Shows how unpacked and packed variables are allocated and aligned.

Tells how entire arrays and records are allocated and aligned (whether they are unpacked,
packed, or crunched).

Shows how array elements and record �elds are allocated and aligned when they are
unpacked, packed, and crunched.

Explains how enumeration and subrange types are related and shows how they are allocated
and aligned.

Explains how �les, sets, and strings are allocated and aligned.

Note This chapter applies to the HP Pascal packing algorithm, which is the default.
On the MPE/iX operating system, the compiler option HP3000 16 speci�es
the Pascal/V packing algorithm instead. For information on the HP3000 16
compiler option, refer to the HP Pascal/iX Reference Manual . For information
on the Pascal/V packing algorithm, see Appendix A in this manual.

In diagrams in this section, bold lines are byte boundaries and �ne lines are bit boundaries.
Unused bits and bytes are shaded.

Example

Note that:

Zero represents the Boolean value FALSE, and one represents TRUE.

The leftmost bit represents the sign of a signed integer value.

Allocation and Alignment 5-1

Byte boundaries are broken where a variable crosses them. Bit boundaries are omitted where
a variable crosses them. A space that is allocated to a variable contains the variable's name.
If the name does not �t the space, it is printed outside, with an arrow pointing to the space.

Example

The variables a and b occupy one bit each, c occupies six bits, d and e occupy two bytes each,
f occupies three bytes, and g occupies eight bytes.

5-2 Allocation and Alignment

Allocation, Alignment, and Packing Algorithm

Allocation is the assignment of memory to variables. When the compiler assigns one byte of
memory to the variable x, you can say that both the byte and x are allocated (the byte is
allocated to x, and x is allocated one byte of memory).

Alignment refers to the position at which a variable's share of memory begins. There are
several types of alignment.

Bit-aligned: If the byte that the compiler allocates to x can begin on a bit boundary.

1-byte-aligned: If the byte that the compiler allocates must begin on a byte boundary.

2-byte-aligned: If the byte that the compiler allocates must begin on a 2-byte boundary.

4-byte-aligned: If the byte that the compiler allocates must begin on a 4-byte boundary.

8-byte-aligned: If the byte that the compiler allocates must begin on a 8-byte boundary.

For the list of possible alignments, refer to \ALIGNMENT" in the HP Pascal/iX Reference
Manual or the HP Pascal/HP-UX Reference Manual , depending on your implementation.

Example

The variables c and d are allocated one byte each, but c is bit-aligned and d is byte aligned.

A packing algorithm determines a variable's allocation and alignment, and the allocation and
alignment of its elements or �elds, if it has them. The HP Pascal packing algorithm uses the
following factors to allocate and align a particular variable:

Variable type.

Whether the variable (if it is an array, record, or set) is unpacked, packed, or crunched.

When the compiler options TABLES or MAPINFO are ON, the program listing contains
packing information. Refer to the HP Pascal/iX Reference Manual or the HP Pascal/HP-UX
Reference Manual , depending on your implementation, for more information on compiler
options.

Allocation and Alignment 5-3

Unpacked Variables

An unpacked variable is either not part of an array or record, or it is part of an unpacked
array or record.

Table 5-1 shows how the HP Pascal packing algorithm allocates and aligns unpacked variables
of each HP Pascal type. The variable types are in alphabetical order. Sections that Table 5-1
references are in this chapter.

Table 5-1.

Allocation and Alignment of Unpacked Variables

(HP Pascal Packing Algorithm)

Variable Type Allocation Alignment

Anyptr 8 bytes 4-byte

Array See \Arrays"

Bit16 2 bytes 2-byte

Bit32 4 bytes 4-byte

Bit52 8 bytes 4-byte

Boolean 1 byte Byte

Char 1 byte Byte

Enumeration See \Enumerations and Subranges"

File See \Files" 8-byte

Function 8 bytes 4-byte

Globalanyptr 8 bytes 4-byte

Integer 4 bytes 4-byte

Localanyptr 4 bytes 4-byte

Longint 8 bytes 4-byte

Longreal 8 bytes 8-byte

Pointer 4 bytes 4-byte

Procedure 8 bytes 4-byte

Real 4 bytes 4-byte

Record See \Records"

Set See \Sets"

Shortint 2 bytes 2-byte

String See \Strings" 4-byte

Subrange See \Enumerations and Subranges"

5-4 Allocation and Alignment

Packed Variables

A packed variable is the element of a packed array or the �eld of a packed record.

Table 5-2 shows how the HP Pascal packing algorithm allocates and aligns packed variables
of each HP Pascal type. The variable types are in alphabetical order. The sections that
Table 5-2 references are in this chapter.

Table 5-2.

Allocation and Alignment of Packed Variables

(HP Pascal Packing Algorithm)

Variable Type Allocation Alignment

Anyptr 8 bytes 4-byte

Array See \Arrays" for information on entire array and \Packed
Arrays" for information on elements.

Bit16 2 bytes 2-byte

Bit32 4 bytes 4-byte

Bit52 8 bytes 4-byte

Boolean 1 bit Bit

Char 1 byte Byte in array, bit in

record

Enumeration See \Enumerations and Subranges"

File See "Files" 8-byte

Function 8 bytes 4-byte

Globalanyptr 8 bytes 4-byte

Integer 4 bytes 4-byte

Localanyptr 4 bytes 4-byte

Longint 8 bytes 4-byte

Longreal 8 bytes 8-byte

Pointer 4 bytes 4-byte

Procedure 8 bytes 4-byte

Real 4 bytes 4-byte

Allocation and Alignment 5-5

Table 5-2.

Allocation and Alignment of Packed Variables

(HP Pascal Packing Algorithm) (continued)

Variable Type Allocation Alignment

Record See \Records" for information on entire record and
\Packed Records" for information on �elds.

Set See \Sets"

Shortint 2 bytes 2-byte

String See \Strings" 4-byte

Subrange See \Enumerations and Subranges".

5-6 Allocation and Alignment

Arrays

Arrays are stored in row-major order . This means that an array is stored a row at a time,
rather than a column at a time (column-major order).

Example

VAR

a : ARRAY [1..2,1..3] OF char;

Row-major order:

Column-major order:

The HP Pascal packing algorithm uses this formula to allocate an array:

number of elements * space for one element

The space for one element depends upon the array element type and whether the array is
unpacked, packed, or crunched. The same factors determine element alignment. See the tables
indicated below:

If the array is: See: In the section:

Unpacked Table 5-1 \Unpacked Variables"

Packed Table 5-3 \Packed Arrays"

Crunched Table 5-5 \Crunched Arrays and
Records"

Allocation and Alignment 5-7

Records

A record allocation is the sum of the allocations of the �elds in the �xed part and (if the
record has them) the allocations of the tag �eld and the largest �eld in the variant part, plus
trailing bits.

Field allocation depends on �eld type and whether the record is unpacked, packed, or
crunched. The same factors determine �eld alignment. See the tables indicated below:

If the array is: See: In the section:

Unpacked Table 5-1 \Unpacked Variables"

Packed Table 5-4 \Packed Records"

Crunched Table 5-5 \Crunched Arrays and
Records"

The HP Pascal packing algorithm uses these two rules to align a record:

The entire record is aligned on the same boundary as its most restricted �eld.

The variant part of a record is aligned on the same boundary as the most restricted �rst
�eld of all variants.

Example

TYPE

Rec = RECORD

CASE b : Boolean OF

TRUE : (c : char; {1 byte, 1-byte-aligned}

l : longreal; {8 bytes, 8-byte-aligned}

);

FALSE : (i : integer; {4 bytes, 4-byte-aligned}

);

END;

A record of the type Rec is 8-byte-aligned because its most restricted �eld, l, must be
8-byte-aligned.

The variant part of a record of type Rec is 4-byte-aligned, because the most restricted �rst
�eld of the two variants, i, must be 4-byte-aligned.

5-8 Allocation and Alignment

A variable of type Rec is allocated 16 bytes. The TRUE and FALSE variants are aligned like
this:

TRUE Variant

FALSE Variant

Sometimes you can reduce the space that a record takes by declaring its �elds in di�erent
order.

Allocation and Alignment 5-9

Example

VAR

upr1 : RECORD
bf : Boolean;

pf : 0..32767;

cf : char;

END;

upr2 : RECORD

bf : Boolean;

cf : char;

pf : 0..32767;

END;

The only di�erence between the variables upr1 and upr2 is the order of their �elds.

The variable upr1 takes six bytes:

Because pf must be 2-byte-aligned, it cannot start in the second byte. The extra byte after cf
is allocated because the most restricted element, pf, is 2-byte-aligned.

The variable upr2 takes four bytes:

Sometimes you cannot reduce the space that a record takes by declaring its �elds in di�erent
order.

5-10 Allocation and Alignment

Example

VAR

pr1 : PACKED RECORD
srf : 0..32;

b : Boolean;

pf : 0..32767;

cf : char;

END;

pr2 : PACKED RECORD

srf : 0..32;

b : Boolean;

cf : char;

pf : 0..32767;

END;

The only di�erence between the variables pr1 and pr2 is the order of their �elds.

The variable pr1 takes four bytes:

The variable pr2 also takes four bytes:

Allocation and Alignment 5-11

Packed Arrays

Table 5-3 shows how the HP Pascal packing algorithm allocates and aligns the elements of a
packed array. The element types are in alphabetical order.

Table 5-3.

Allocation and Alignment of Packed Array Elements

(HP Pascal Packing Algorithm)

Element Type Allocation Alignment

Anyptr 8 bytes 4-bytes

Array, crunched Same as crunched array that is not part of an array or
record (see Table 5-9); then padded to the nearest byte.

Byte

Array, packed Same as packed array that is not part of an array or record
(�nd element type in this table and use formula in section
\Arrays"); then padded to alignment boundary.

Same as element,
or byte, whichever
is larger.

Array, unpacked Same as unpacked array that is not part of an array or
record (�nd element type in this table and use formula in
section \Arrays").

Same as element.

Bit16 2 bytes 2-byte

Bit32 4 bytes 4-byte

Bit52 8 bytes 4-byte

Boolean 1 bit 1 bit

Char 1 byte 1-byte

Enumeration See \Enumerations and Subranges".

File See \Files". 8-byte

Function 8 bytes 4-byte

Integer 4 bytes 4-byte

Globalanyptr 8 bytes 4-byte

Localanyptr 4 bytes 4-byte

Longint 8 bytes 4-byte

Longreal 8 bytes 8-byte

Pointer 4 bytes 4-byte

Procedure 8 bytes 4-byte

Real 4 bytes 4-byte

Record, crunched Fields are allocated by type, and record is padded to byte
boundary.

Byte

5-12 Allocation and Alignment

Table 5-3.

Allocation and Alignment of Packed Array Elements

(HP Pascal Packing Algorithm) (continued)

Element Type Allocation Alignment

Record, packed Fields are allocated by type, and record is padded to the
alignment boundary.

Largest alignment
boundary of any
�eld, or byte,
whichever is larger.

Record, unpacked Fields are allocated by type, and record is padded to the
alignment boundary.

Largest alignment
boundary of any
�eld.

Set See \Sets".

Shortint 2 bytes 2-byte

Strings See \Strings". 4-byte

Subrange See \Enumerations and Subranges".

Allocation and Alignment 5-13

Example

VAR

uba : ARRAY [1..3] OF Boolean;
pba : PACKED ARRAY [1..3] OF Boolean;

The array uba takes three bytes:

The array pba takes three bits:

If an array is not within a crunched structure, the compiler aligns the entire array on the same
boundary as its �rst element, or on a byte boundary.

Declaring an array PACKED has no e�ect on its elements if the elements are unpacked
structures.

5-14 Allocation and Alignment

Packed Records

Table 5-4 shows how the HP Pascal packing algorithm allocates and aligns the �elds of a
packed record. The �eld types are in alphabetical order.

Table 5-4.

Allocation and Alignment of Packed Record Fields

(HP Pascal Packing Algorithm)

Field Type Allocation Field Alignment

Anyptr 8 bytes 4-byte

Array, crunched Minimum number of bits required to represent any value of
the element type.

Bit

Array, packed Use formula in \Arrays" section and then pad to alignment
boundary.

Same as element or
byte, whichever is
larger.

Array, unpacked Use formula in \Arrays" section and then pad to alignment
boundary.

Same as element.

Bit16 2 bytes Bit

Bit32 4 bytes 4-byte

Bit52 8 bytes 4-byte

Boolean 1 bit Bit

Char 1 byte Bit

Enumeration See \Enumerations and Subranges".

File See \Files". 8-byte

Function 8 bytes 4-byte

Integer 4 bytes 4-byte

Globalanyptr 8 bytes 4-byte

Localanyptr 4 bytes 4-byte

Longint 8 bytes 4-byte

Longreal 8 bytes 8-byte

Pointer 4 bytes 4-byte

Procedure 8 bytes 4-byte

Real 4 bytes 4-byte

Allocation and Alignment 5-15

Table 5-4.

Allocation and Alignment of Packed Record Fields

(HP Pascal Packing Algorithm) (continued)

Field Type Allocation Field Alignment

Record, packed Fields are allocated by type, and record is padded to the
alignment boundary.

Largest alignment
of any �eld or byte,
whichever is larger.

Record, unpacked Fields are allocated by type, and record is padded to the
alignment boundary.

Largest alignment
of any �eld.

Set See \Sets".

Shortint 2 bytes 2-byte

Strings See \Strings". 4-byte

Subrange See \Enumerations and Subranges".

The �eld that is aligned on the largest boundary determines the alignment of the entire
record. For example, if a record has three �elds|one byte-aligned �eld, one 2-byte-aligned
�eld, and one 4-byte-aligned �eld|the entire record is 4-byte-aligned.

Packing a record has no e�ect on �elds that are unpacked structures.

5-16 Allocation and Alignment

Example

TYPE

ua = ARRAY [1..4] OF Boolean;
ur1 = RECORD

i : integer;

c : char;

END;

VAR

ur2 : RECORD

c : char;

a : ua;

r : ur1;

END;

pr : PACKED RECORD

c : char;

a : ua;

r : ur1;

END;

The �elds in ur2 and pr are allocated and aligned identically.

Allocation and Alignment 5-17

Crunched Arrays and Records

Crunched packing, a systems programming extension, packs a record or array as tightly as
possible: it bit-aligns every �eld or element.

Table 5-5 shows how the HP Pascal packing algorithm allocates elements of crunched arrays
or �elds of crunched records. If a type is not in Table 5-5, a crunched array or record cannot
have elements or �elds of that type.

Table 5-5.

Allocation of Crunched Array Elements

and Record Fields

(HP Pascal Packing Algorithm)

Element or Field Type Allocation

Bit16 2 bytes

Bit32 4 bytes

Bit52 52 bits

Boolean 1 bit

Char 1 byte

Integer1 4 bytes

Longint 8 bytes

Shortint 2 bytes

Crunched array2 * Minimum #

Crunched record2 * Minimum #

Crunched set1 * Minimum #

Subrange1,3 * Minimum #

(* Minimum number of bits required to represent value.)

1. The value representation has the most signi�cant bit �rst and the least signi�cant bit last
(no byte swapping).

2. If a record or array contains a crunched structure, it must be crunched itself.

3. The value zero is always included in the subrange when calculating the minimum number
of bits; for example, this record takes seven bits:

CRUNCHED RECORD

f : 100..101;
END;

5-18 Allocation and Alignment

If any element can be negative, an extra bit is allocated for the sign; for example, this
record takes three bits:

CRUNCHED RECORD
f : -4..3;

END;

Example

A record that is de�ned:

TYPE

u_rec = RECORD {4-byte aligned}

a,b : Boolean;

c : char;

d : minint..maxint;

e : Boolean;

END;

is allocated and aligned this way:

A record that is de�ned:

TYPE

p_rec1 = PACKED RECORD {Byte-aligned}

a,b : Boolean;

c : char;

d : minint..maxint;

e : Boolean;

END;

is allocated and aligned this way:

Allocation and Alignment 5-19

A record that is de�ned:

p_rec2 = PACKED RECORD {4-byte-aligned}

a,b : Boolean;
c : char;

d : integer;

e : Boolean;

END;

is allocated and aligned this way:

A record that is de�ned:

TYPE

c_rec1 = CRUNCHED RECORD

a,b : Boolean;

c : char;

d : minint..maxint;

e : Boolean

END;

Or:

TYPE

c_rec2 = CRUNCHED RECORD

a,b : Boolean;

c : char;

d : integer;

e : Boolean

END;

is allocated and aligned this way:

The bits containing question marks are not allocated if the type is used inside another
crunched structure.

5-20 Allocation and Alignment

Crunched Sets

Table 5-6 shows how the HP Pascal packing algorithm allocates and aligns a crunched set
when it is the element of an array or the �eld of a record.

Table 5-6.

Allocation and Alignment of Crunched Sets in Arrays and Records

(HP Pascal Packing Algorithm)

Structure Containing Set Allocation Alignment

Unpacked array * Minimum # Byte

Unpacked record * Minimum # Byte

Packed array * Minimum # Byte

Packed record * Minimum # Bit

* Minimum number of bits required to represent every member of the set.

Allocation and Alignment 5-21

Enumerations and Subranges

HP Pascal allocates and aligns variables of enumeration and subrange types the same way.
An enumeration of n elements and the subrange 0..n-1 are equivalent. The allocation and
alignment are based on the values of the subrange or the ordinal value of the enumeration.

Example

TYPE

enum_type = (red,blue,yellow); {enumeration of 3 elements}

subr_type = 0..2; {subrange 0..(3-1)}

VAR

enum_var : enum_type;

subr_var : subr_type;

The compiler allocates and aligns the variables enum_var and subr_var the same way.

The allocation and alignment of an enumeration or subrange variable depends on whether it
is:

Unpacked.
An element of a packed array.
A �eld of a packed record.
In a crunched structure.

Unpacked Enumeration or Unsigned Subranges

Table 5-7 shows how the HP Pascal packing algorithm allocates and aligns unpacked
enumeration or unsigned subrange variables.

Table 5-7.

Allocation and Alignment of Unpacked Enumeration or Unsigned Subrange

Variables

(HP Pascal Packing Algorithm)

Values in Enumeration or Subrange
Allocation Alignment

0..255 1 byte byte

256..65535 2 bytes 2-byte

65536..maxint 4 bytes 4-byte

An unpacked, signed subrange is always allocated four bytes.

5-22 Allocation and Alignment

Example

The value zero is always included in the subrange when the minimum number of bits is
calculated.

TYPE

enum_type = (red,blue,yellow); {3 elements}

subr_type1 = 1..300; {Including zero, 2 bytes}

subr_type2 = 1..66000; {Including zero, 4 bytes}

subr_type3 = 100000..100010; {Including zero, 4 bytes}

subr_type4 = -1..200; {4 bytes}

VAR

enum_var : enum_type; {Allocated 1 byte, byte-aligned}

subr_var1 : subr_type1; {Allocated 2 bytes, 2-byte-aligned}

subr_var2 : subr_type2; {Allocated 4 bytes, 4-byte-aligned}

subr_var4 : subr_type4; {Allocated 4 bytes, 4-byte-aligned}

unpacked_array : ARRAY [1..3] OF enum_type; {Each element is

allocated one byte

and is byte-aligned}

unpacked_record : RECORD

f1 : subr_type1; {Allocated 2 bytes,

2-byte-aligned}

f2 : subr_type2; {Allocated 4 bytes,

4-byte-aligned}

END;

Allocation and Alignment 5-23

Packed Array Elements of Enumeration or Subrange Types

A packed enumeration or subrange variable requires the minimum number of bits needed to
represent its values in a record. It is bit-aligned.

If the enumeration or subrange variable belongs to a packed array, the HP Pascal packing
algorithm allocates it the smallest power of two bits that is greater than or equal to the
number of bits it requires, and aligns it on that boundary.

Table 5-8 shows the relationship between the number of bits that a packed array element of an
enumeration- or subrange-type array requires, the number of bits that the HP Pascal packing
algorithm allocates to it, and its alignment.

Table 5-8.

Allocation and Alignment of Packed Array Elements of Enumeration or

Subrange Type

(HP Pascal Packing Algorithm)

Required Number of
Bits Per Element

Number of Bits
Allocated Per Element

Alignment

1 1 Bit

2 2 2-bit

3 or 4 4 4-bit

5 to 8 8 (1 byte) Byte

9 to 16 16 (2 bytes) 2-byte

17 to 32 32 (4 bytes) 4-byte

5-24 Allocation and Alignment

Example

TYPE

direction = (north,south,east,west);
day = (sun,mon,tues,wed,thurs,fri,sat);

VAR

pa1 = PACKED ARRAY [1..5] OF direction;

pa2 = PACKED ARRAY [1..5] OF day;

Each element of the array pa1 requires two bits. Two is a power of two, so each element is
allocated two bits. The entire array occupies 10 bits. It is allocated two bytes:

Each element of the array pa2 requires three bits. The smallest power of two that is greater
than or equal to three is four, so each element is allocated four bits. The entire array occupies
20 bits. It is allocated three bytes:

Allocation and Alignment 5-25

Packed Record Elements of Enumeration or Subrange Types

If the variable belongs to a packed record, the HP Pascal packing algorithm allocates it as
many bits as it requires, and bit-aligns it.

Example

TYPE

day = (sun,mon,tues,wed,thurs,fri,sat);

VAR

r : PACKED RECORD

f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11 : day;

END;

Each �eld of the record r requires three bits. The entire record occupies 33 bits. It is
allocated �ve bytes:

Note Subranges can cross 4-byte boundaries, but code is less e�cient when they do.

Packed records (such as those above) are byte-aligned. Code is more e�cient
when their alignment is speci�ed with the ALIGNMENT compiler option.

5-26 Allocation and Alignment

Files

When your program declares a �le, the compiler allocates space for the �le control block
and the �le bu�er variable. The amount of space allocated to each is �xed by the packing
algorithm. The �le is 8-byte-aligned.

Table 5-9 shows how the HP Pascal packing algorithm allocates �le components for text�les
and nontext�les.

Table 5-9.

Allocation of File Components

(HP Pascal Packing Algorithm)

File Component Text�le Nontext�le

Control block 324 bytes 320 bytes

Buffer variable 254 bytes Size of component type

Sometimes you can reduce �le bu�er size or increase �le operation speed by the way you
declare a �le. Compare the following �le de�nitions, their bu�er sizes, and how you can write
100 integers to them.

Declaration Bu�er Size How to Write 100 Integers to the File

VAR

f : FILE OF integer;

4 bytes FOR i:=1 TO 100 DO write(f,i);

(100 calls to put)

VAR

f : FILE OF

ARRAY [1..100]

OF integer;

400 bytes
FOR i:=1 TO 100 DO f^[i]:=i;

put(f);

(One call to put)

Allocation and Alignment 5-27

Sets

The HP Pascal packing algorithm allocates sets in units called set chunks . Set chunk size
depends on the number of bits required to represent the set and whether the set is unpacked,
packed, or crunched.

The number of bits required to represent the set is determined by the formula:

bits required for set = ord(largest value in set) -

ord(smallest value in set) + 1

Table 5-10 shows how the HP Pascal packing algorithm determines set chunk size.

Table 5-10.

How Set Chunk Size Is Determined (HP Pascal Packing Algorithm)

Number of Bits
Required

To Represent Set

Set Chunk Size

Set is not PACKED Set is PACKED Set is CRUNCHED

1 to 8 32 bits 8 bits 1 bit

9 to 16 32 bits 16 bits 1 bit

17 or more 32 bits 32 bits 1 bit

The number of set chunks allocated to a set depends on its type. For the types Boolean, char,
enumeration, and integer, the formula for the number of set chunks is:

number of set chunks = ceil(bits required for set/set chunk size)

(where ceil(x) means the integer closest to x that is greater than or equal to x).

Table 5-11 gives the values for bits required for set and number of set chunks for Boolean,
char, and integer base types. For enumerated sets, bits required for set is the number of
elements in the set, and you must use the formula to determine number of set chunks .

Table 5-11.

Bit and Set Chunk Requirements for Boolean,

Char, and Integer Types

(HP Pascal Packing Algorithm)

Base Type bits required for set number of set chunks

Boolean 2 1

Char 256 8

Integer y 256 (by default) * 8

y Same for bit16, bit32, bit52, shortint, and longint.

* Integers outside the range 0..255 cannot belong to the set.

5-28 Allocation and Alignment

Example 1

VAR

days = SET OF (sun,mon,tues,wed,thurs,fri,sat);
months = PACKED SET OF (ja,f,mr,ap,ma,jn,jl,au,s,o,n,d);

set_33 = SET OF (e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,

e12,e13,e14,e15,e16,e17,e18,e19,e20,e21,e22,

e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33);

p_set_33 = PACKED SET OF (e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,

e12,e13,e14,e15,e16,e17,e18,e19,e20,e21,e22,

e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33);

The set days has seven elements and requires seven bits. Its set chunk size is four bytes
(32 bits), so days is allocated one set chunk.

Each element is represented by one bit, like this:

The set months has 12 elements and requires 12 bits. Its set chunk size is two bytes, so
months is allocated one set chunk (ceil(12/(2*8))=1). Each element is represented by one bit.

Each of the sets set_33 and p_set_33 has 33 elements and requires 33 bits. The set chunk
size is four bytes, so set_33 is allocated two set chunks (ceil(33/(4*8))=2). Each element is
represented by one bit.

If the type is a subrange, the formula for the number of set chunks is:

number of set chunks = (upper bound set chunk number -

lower bound set chunk number) + 1

The upper bound of the subrange determines upper bound set chunk number , and the lower
bound determines lower bound set chunk number . The formula is:

set chunk number =
oor(bound/set chunk size)

(where
oor(x) means the integer closest to x that is less than or equal to x).

Allocation and Alignment 5-29

Example 2

VAR

s : SET OF -7..18;

The set s is unpacked, so it has a 32-bit set chunk (see Table 5-10). The upper bound of the
subrange is 18, so upper bound set chunk number is zero (
oor(18/32=0)). The lower bound
of the subrange is -7, so lower bound set chunk number is -1 (
oor(-7/32)=-1). The set s is
allocated two set chunks ((0-(-1))+1=2).

Each set element is represented by one bit, like this:

To minimize storage space, avoid base types that are small subranges that overlap set chunk
boundaries.

Example 3

VAR

s1 : SET OF 31..32;

s2 : PACKED SET OF 15..16;

The set s1 takes two 32-bit set chunks, using 64 bits to represent a set that requires only two
bits. The arithmetic is: (
oor(32/32) -
oor(31/32)) + 1 = (1-0) + 1 = 2.

The PACKED set s2 takes two 8-bit set chunks, using 16 bits to represent a set that requires
only two bits. The arithmetic is: (
oor(16/8) -
oor(15/8)) + 1 = (2-1)+1 = 2.

5-30 Allocation and Alignment

Strings

A string is allocated four bytes for its current length (an integer), one byte per character, and
one \housekeeping" byte. The number of characters is the string's declared maximum length.
The \housekeeping" byte is only accessible to some of the standard string functions.

The HP Pascal packing algorithm aligns strings on 4-byte boundaries in all structures.
Because the current length (an integer) is allocated four bytes, eight bytes is the smallest
possible string allocation.

The formula for the number of bytes allocated to a string is:

Example

VAR

s1 : string[10];

s2 : string[7];

The string s1 takes 16 bytes:

(((4 + 10 + 1) + 3) DIV 4) * 4 =

(18 DIV 4) * 4 =

4 * 4 = 16

The allocation is:

Allocation and Alignment 5-31

The string s2 takes 12 bytes:

(((4 + 7 + 1) + 3) DIV 4) * 4 =

(15 DIV 4) * 4 =
3 * 4 = 12

The allocation is:

5-32 Allocation and Alignment

6

Dynamic Variables

A dynamic variable is allocated during program execution. In contrast, a global, module, or
local variable is allocated when the block containing its declaration is activated.

Table 6-1 shows the di�erences between dynamic and static variables.

Table 6-1. Dynamic versus Static Variables

Dynamic
Variable

Global or
Module
Variable

Local Variable

Declared? No Yes Yes

Referenced by Pointer (which is
declared).

Name Name

Allocated During
execution, with
the function
new .

Before
compilation unit
executes.

Upon entering
procedure or
function that
declares it.

Stored on the Heap Static area Stack

Deallocated During
execution, with
the procedure
dispose or
release.

After program
has executed.

After exiting the
procedure or
function that
declares it.

This chapter explains:

Pointer types peculiar to HP Pascal (globalanyptr, anyptr , and localanyptr).

HP Pascal procedures new and dispose, which allocate and deallocate dynamic variables.

HP Pascal procedures mark and release, which allow an HP Pascal program to deallocate a
region of the heap that it no longer needs.

Intrinsic procedures p getheap and p rtnheap, which allow a program written in any
language that runs on the operating system to allocate and deallocate a region of the HP
Pascal heap.

Dynamic Variables 6-1

GLOBALANYPTR Variables

The pointer type globalanyptr is assignment compatible with every pointer type and the value
nil . Anyptr is another name for the same type, provided for compatibility with older Pascals.
This manual uses the term globalanyptr exclusively, but anyptr can be substituted wherever it
appears.

A variable of type globalanyptr is not bound to a speci�c pointer type. You can assign it any
pointer-type value, or compare it to any pointer-type value with the operator = or <>, but you
cannot dereference it.

Because a globalanyptr variable can be assigned any pointer-type value, the compiler allocates
it 64 bits. If your program does not use extended address pointers, you can save space by
substituting localanyptr for globalanyptr .

Your program uses extended address pointers if it declares a type or variable with the
EXTNADDR compiler option. Refer to the HP Pascal/iX Reference Manual or the
HP Pascal/HP-UX Reference Manual , depending on your implementation, for detailed
information on compiler options.

Example

This program works the same way and takes the same amount of space if you substitute
anyptr for any or every occurrence of globalanyptr. This would be true even if the program
had extended address pointers.

Since the program does not have extended address pointers, it works the same way if you
substitute localanyptr for any or every occurrence of globalanyptr|but it takes less space.
(Compare this program with the one in the section \LOCALANYPTR Variables".)

6-2 Dynamic Variables

PROGRAM prog (input);

TYPE

iptr = ^integer;
rec = RECORD

f1, f2 : real;

END;

rptr = ^rec;

VAR

v1, d1 : iptr;

v2, d2 : rptr;

anyv : globalanyptr;

b : Boolean;

BEGIN

{Initialize v1 and v2}

new(v1);

new(v2);

v1^ := 0;

WITH v2^ DO BEGIN

f1 := 0;

f2 := 0;

END;

{Set anyv to v1 or v2, depending on b}

read(b);

IF b THEN anyv := v1 ELSE anyv := v2;

{You cannot dereference anyv, because it is a globalanyptr.

This is how you can access its data:}

IF anyv = v1 THEN BEGIN

d1 := anyv;

d1^ := d1^ + 1;
END

ELSE BEGIN

d2 := anyv;

WITH d2^ DO BEGIN

f1 := 34.6;

f2 := 91.2;

END;

END;

END.

Dynamic Variables 6-3

LOCALANYPTR Variables

The pointer type localanyptr is similar to the type globalanyptr (or anyptr) in that it is
assignment compatible with every pointer type and the value nil .

A localanyptr variable di�ers from a globalanyptr variable in that the compiler allocates it 32
bits instead of 64 bits. If your program does not use extended address pointers, you can save
space by using localanyptr instead of globalanyptr .

Like a globalanyptr variable, a localanyptr variable is not bound to a speci�c pointer type.
You can assign it any pointer-type value, but you can not assign it an extended address
pointer that cannot be converted to a 32-bit value.

You can compare a localanyptr variable to any pointer-type value (even one that you cannot
assign to it) with the operator = or <>.

You cannot dereference a localanyptr.

Example

This program is the same as the one in the section \GLOBALANYPTR Variables", except
that localanyptr replaces every occurrence of globalanyptr . The two programs work the same
way, but this one takes less space.

6-4 Dynamic Variables

PROGRAM prog (input);

TYPE
iptr = ^integer;

rec = RECORD

f1, f2 : real;

END;

rptr = ^rec;

VAR

v1,

d1 : iptr;

v2,

d2 : rptr;

anyv : localanyptr;

b : Boolean;

BEGIN

{Initialize v1 and v2}

new(v1);

new(v2);

v1^ := 0;

WITH v2^ DO BEGIN

f1 := 0;

f2 := 0;

END;

{Set anyv to v1 or v2, depending on b}

read(b);

IF b THEN anyv := v1 ELSE anyv := v2;

{You cannot dereference anyv, because it is a localanyptr.
This is how you can access its data:}

IF anyv = v1 THEN BEGIN

d1 := anyv;

d1^ := d1^ + 1;

END

ELSE BEGIN

d2 := anyv;

WITH d2^ DO BEGIN

f1 := 34.6;

f2 := 91.2;

END;

END;

END.

Dynamic Variables 6-5

New Procedure

The prede�ned procedure new takes a pointer variable as a parameter, allocates a variable of
the type that the pointer references, and \points" the pointer at the new variable (that is, new
assigns the address of the new variable to the pointer). The program can then access the new
variable by dereferencing the pointer.

Example 1

PROGRAM prog;

TYPE

iptr = ^integer;

cptr = ^char;

rptr = ^real;

VAR

ivar : iptr; {pointer to a dynamic integer variable}

cvar : cptr; {pointer to a dynamic character variable}

rvar : rptr; {pointer to a dynamic real variable}

BEGIN

new(ivar); {allocate new integer variable on heap}

new(cvar); {allocate new character variable on heap}

new(rvar); {allocate new real variable on heap}

ivar^ := 375; {assign value to new integer variable}

cvar^ := 'c'; {assign value to new character variable}

rvar^ := 3.7; {assign value to new real variable}

END.

The new variable is allocated space on the heap. A run-time error occurs if the heap cannot
accommodate the variable.

If the new variable is a record with variant �elds, you can specify the variant that you want
with a tag. The tag only tells the new procedure how much space to allocate; it does not
cause the new procedure to assign the value of the tag to the new variable's tag �eld.

Example 2

PROGRAM prog;

TYPE

marital_status = (single, married);

rec = RECORD

lname,

fname : string[30];

kids : 1..20;

(Example is continued on next page.)

6-6 Dynamic Variables

CASE mstat : marital_status OF

single : (divorced,

widowed,
engaged : Boolean);

married : (how_many_times: 1..10;

how_long_this_time : 1..100);

END;

recptr = ^rec;

VAR

person1,

person2,

person3 : recptr;

BEGIN

new(person1,single);

WITH person1^ DO BEGIN

lname := 'Doe';

fname := 'John';

kids := 0;

mstat := single; {New does not make this assignment}

divorced := FALSE;

widowed := FALSE;

engaged := FALSE;

END;

new(person2,married);

WITH person2^ DO BEGIN
lname := 'Smith';

fname := 'Jane';

kids := 3;

mstat := married; {New does not make this assignment}

how_many_times := 1;

how_long_this_time := 9;

END;

new(person3);

END.

The new record variable person1^ has space for the �xed �elds lname, fname, kids, and
mstat, and for the single variant �elds divorced, widowed, and engaged.

The new record variable person2^ has space for the same �xed �elds, and for the married
variant �elds how_many_times and how_long_this_time.

Dynamic Variables 6-7

If the new variable is a record with nested variant �elds, you can specify a tag for each
variant. If you do, you must specify them in the order that they are declared, and you cannot
leave gaps in the sequence.

Example 3

In this program, the declaration order of the tag �elds is obviously t1, t2 or t1, t3.

PROGRAM prog;

TYPE

r = RECORD

f1 : integer;

CASE t1 : (a,b) OF

a : (arec : RECORD

i : integer;

CASE t2 : (c,d) OF

c : (j : integer);

d : (k : real);

END {arec}

);

b : (brec : RECORD

CASE t3 : (e,f) OF

e : (l : real);

f : (m : char);

END {brec}

);

END; {r}

rptr = ^r;

VAR
v : rptr;

BEGIN

new(v);

new(v,a);

new(v,a,c);

new(v,a,d);

new(v,,d); {illegal -- must specify a}

new(v,d); {illegal -- must specify a}

new(v,b);

new(v,b,e);

new(v,e,b); {illegal -- tags are not in order of declaration}

new(v,b,f);

new(v,a,f); {illegal -- with variant a, variant f is impossible}

END.

6-8 Dynamic Variables

Example 4

This program is semantically equivalent to the program in the immediately preceding example
(Example 3), and the declaration order of the tag �elds is the same.

PROGRAM prog;

TYPE

arectype = RECORD

i : integer;

CASE t2 : (c,d) OF

c : (j : integer);

d : (k : real);

END;

brectype = RECORD

CASE t3 : (e,f) OF

e : (l : real);

f : (m : char);

END;

r = RECORD

f1 : integer;

CASE t1 : (a,b) OF

a : (arec : arectype);

b : (brec : brectype);

END;

rptr = ^r;

VAR
v : rptr;

BEGIN

new(v);

new(v,a);

new(v,a,c);

new(v,a,d);

new(v,,d); {illegal -- must specify a}

new(v,d); {illegal -- must specify a}

new(v,b);

new(v,b,e);

new(v,e,b); {illegal -- tags are not in order of declaration}

new(v,b,f);

new(v,a,f); {illegal -- with variant a, variant f is impossible}

END.

Dynamic Variables 6-9

You do not have to specify tag �elds. If you omit them, new allocates enough space for the
largest possible variant, wherever there are variants. This allocation is the default allocation
for variables of the particular record type.

If you use tags to specify smaller variants, new allocates less than the default allocation to
the new variable. The advantage to using tags is that you save space. The disadvantage is
that the new variable cannot appear in an assignment statement, or as an actual parameter.
(Assignment statements and formal parameters use the default allocation.) It is legal for the
�elds of the new variable to appear as actual parameters, and to be used in a �eld by �eld
assignment.

Example 5

PROGRAM prog;

TYPE

rec = RECORD

CASE t : (a,b) OF

a : (a1,a2 : integer);

b : (b1,b2,b3,b4,b5,b6 : integer);

END;

recptr = ^rec;

VAR

small,

small2,

large,

default : recptr;

PROCEDURE p (r : rec); EXTERNAL;

BEGIN

new(small,a); {allocates only enough space for smaller variant, a}

new(small2,a); {allocates only enough space for smaller variant, a}

new(large,b); {allocates enough space for larger variant, b}

new(default); {allocates enough space for larger variant by default}

WITH small^ DO BEGIN

t := a;

a1 := 350;

a2 := 609;

END;

WITH large^ DO BEGIN

t := b;

b1 := 350;

b2 := 609;

END;

(Example is continued on next page.)

6-10 Dynamic Variables

default^.t := a;

default^ := small^; {illegal}

default^.t := b;
default^ := large^; {illegal}

small2^ := small^ {still illegal even though the spaces are allocated }

{using the same tag }

small2^.a1 := small^.a1 {legal}

small2^.a2 := small^.a2 {legal}

p(small^); {illegal}

p(large^); {illegal}

p(default^); {legal}

END.

The pointer parameter of new can belong to a PACKED structure.

Example 6

PROGRAM prog;

TYPE

ptr = ^integer;

pa = PACKED ARRAY [1..10] OF ptr;

pr = PACKED RECORD

f1,f2 : ptr;

END;

VAR

v1 : pa;

v2 : pr;

BEGIN

new(v1[5]);
new(v2.f1);

END.

A pointer created by new can be compared to another pointer for equality or inequality only.
This is also true of a pointer created by mark . For more information on relational operators,
refer to the HP Pascal/iX Reference Manual or the HP Pascal/HP-UX Reference Manual ,
depending on your implementation.

Dynamic Variables 6-11

Dispose Procedure

The prede�ned procedure dispose takes a pointer variable as a parameter and deallocates the
dynamic variable that it references. When the variable is deallocated, it is inaccessible, and
the pointer is unde�ned. Files in the deallocated space are closed.

The procedure new can only reallocate the space that dispose has deallocated if the program
contains the compiler option HEAP DISPOSE. For more information, refer to the
HP Pascal/iX Reference Manual or the HP Pascal/HP-UX Reference Manual , depending on
your implementation.

It is an error to call dispose with a pointer that is:

Unde�ned.

Nil.

The dynamic variable referenced by a pointer that is the actual parameter, passed by
reference, of a currently executing routine.

The dynamic variable referenced by a pointer that is in the record variable list of a
currently executing WITH statement.

Example 1

PROGRAM prog;

TYPE

rec = RECORD

f1,f2,f3 : integer;

END;

recptr = ^rec;

VAR

v1,v2,v3,v4,v5 : recptr;

PROCEDURE p (VAR x : rec);

BEGIN

dispose(v4); {illegal -- disposes x's actual parameter}

END;

PROCEDURE q;

BEGIN
dispose(v4); {illegal -- v4^ is in the record variable

list of an active WITH statement}

END;

(Example is continued on next page.)

6-12 Dynamic Variables

PROCEDURE r (VAR z : recptr);

PROCEDURE s;

BEGIN
dispose(v4); {illegal -- v4^ is the actual parameter for z}

END;

BEGIN

s;

END;

BEGIN

new(v1);

WITH v1^ DO BEGIN

f1 := 0;

f2 := 0;

f3 := 0;

END;

dispose(v1);

dispose(v1); {illegal -- v1 is undefined}

new(v2);

dispose(v2);

new(v3);

v3 := nil;

dispose(v3); {illegal -- v3 is nil}

new(v4);

p(v4^);

new(v4);

r(v4); {s (within r) disposes r's actual parameter v4,

which is illegal}
new(v4);

new(v5);

WITH v4^,v5^ DO BEGIN

f1 := 1;

f2 := 2;

f3 := 3;

q; {illegal -- q disposes v4 while the WITH statement

whose record variable list it is in

is active}

dispose(v5); {illegal -- v5 is in the record variable list

of an active WITH statement}

END;

END.

Dynamic Variables 6-13

If you specify tags when you allocate a variable with new , you must specify the same tags in
the same order when you deallocate the variable with dispose.

Example 2

PROGRAM prog;

TYPE

rec = RECORD

CASE t1 : (a,b) OF

a : (a1,a2 : integer);

b : (b1 : RECORD

CASE t2 : (c,d) OF

c : (c1 : char);

d : (d1,d2 : real);

END

);

END;

recptr = ^rec;

VAR

v1,v2,v3,v4,v5 : recptr;

BEGIN

new(v1);

new(v2,a);

new(v3,b);

new(v4,b,c);

new(v5,b,d);

dispose(v1);
dispose(v2,a);

dispose(v3,b);

dispose(v4,b,c);

dispose(v5,b,d);

new(v1);

new(v2,a);

new(v3,b);

new(v4,b,c);

new(v5,b,d);

dispose(v1,a); {illegal -- a not specified on new}

dispose(v2,b); {illegal -- b not specified on new}

dispose(v3); {illegal -- b specified on new, but not here}

dispose(v4,b); {illegal -- c specified on new, but not here}

dispose(v5,d,b); {illegal -- b and d are in the wrong order}

END.

6-14 Dynamic Variables

Mark and Release Procedures

The prede�ned procedure mark takes a pointer variable p as a parameter, marks the state of
the heap, and sets the value of p to specify that state.

The pointer variable p is called a mark (once a pointer variable becomes a mark, you cannot
dereference it). You can allocate heap space beyond the mark, and then deallocate that space
with the prede�ned procedure release.

The prede�ned procedure release takes a mark pointer variable as a parameter and deallocates
the heap space that was dynamically allocated after the mark was set. Variables in that
space become inaccessible. Files in that space are closed. After release executes, the mark
pointer variable is unde�ned. The procedure new can reallocate the released space (even if the
program does not contain the compiler option HEAP DISPOSE).

Dynamic Variables 6-15

Example 1

PROGRAM prog;

TYPE

ftype = FILE OF integer;

ptype1 = ^ftype;

ptype2 = ^integer;

VAR

fptr : ptype1;

iptr1,

iptr2,

m,

iptr3,

iptr4: ptype2;

BEGIN

new(iptr1); {Allocate heap space to iptr1^}

new(iptr2); {Allocate heap space to iptr2^}

iptr1^ := 0;

iptr2^ := 0;

mark(m); {Mark the heap with m}

new(iptr3); {Allocate heap space to iptr3^}

new(iptr4); {Allocate heap space to iptr4^}

new(fptr); {Allocate heap space to fptr^, a file}

iptr3^ := 0;

iptr4^ := 0;
reset(fptr^); {Open fptr^}

release(m); {Close fptr^, deallocating heap after m}

iptr1^ := 1;

iptr2^ := 2;

iptr3^ := 3; {illegal -- iptr3^ was deallocated}

iptr4^ := 4; {illegal -- iptr4^ was deallocated}

write(fptr^,5); {illegal -- iptr5^ was deallocated}

m^ := 0; {illegal -- cannot assign value to mark pointer}

END.

6-16 Dynamic Variables

The parameter of mark (the mark) can be any pointer variable.

The parameter of release must be a mark|a pointer variable whose current value was
assigned by the mark procedure. It is an error to call release with a pointer whose current
value was not assigned by the mark procedure.

Example 2

PROGRAM prog;

TYPE

ptr1 = ^integer;

ptr2 = ^real;

ptr3 = ^char;

ptr4 = ^ptr3;

VAR

m1 : ptr1;

m2 : ptr2;

m3 : ptr3;

m4 : ptr4;

m6 : ptr1;

r : RECORD

i : integer;

m5 : ptr1;

END;

BEGIN

mark(m1);

mark(m2);

mark(m3);

new(m4); {m4^ is of type ptr3}

mark(m4^);

mark(r.m5);

new(m6);

release(m6); {illegal -- current value of m6 was assigned by new}

END.

Dynamic Variables 6-17

If you set several marks, and release one of them, those set after it are also released.

Example 3

PROGRAM prog;

TYPE

ptr = ^integer;

VAR

m1, m2,

i1, i2, i3,

j1, j2, j3,

k1, k2, k3 : ptr;

BEGIN

new(i1);

new(i2);

new(i3);

mark(m1);

new(j1);

new(j2);

new(j3);

mark(m2);

new(k1);

new(k2);

new(k3);

release(m1); {deallocates j1,j2,j3,k1,k2,k3; releases m1 and m2}

release(m2); {illegal -- m2 is undefined because it was released

with m1}

END.

6-18 Dynamic Variables

P getheap and P rtnheap Procedures

The procedures p getheap and p rtnheap are intrinsics in the Pascal run-time library. Any
program that runs on the operating system can call them, regardless of the language in which
it is written. (For more information on intrinsics, Chapter 10).

The procedure p getheap tries to allocate a region of heap space of a speci�ed size and
alignment. If it succeeds, it \points" its VAR pointer parameter at the �rst element of the
region and assigns its VAR Boolean parameter the value true. If it fails, it assigns its VAR
Boolean parameter the value false.

Syntax

p_getheap (VAR regptr : localanyptr;

regsize : integer;

alignment : integer;

VAR ok : Boolean);

Parameters

regptr If p getheap can allocate the region of heap space, it \points" regptr at the
�rst element of the region (that is, p getheap assigns the address of the �rst
element of the region to regptr).

regsize The size of the region of heap space, in bytes.

alignment Integer: Speci�es the region of heap space to be:

1 Byte-aligned

2 Halfword-aligned

4 Word-aligned

8 Double-word-aligned

16 16-byte aligned

32 32-byte aligned

64 64-byte aligned

2048 Page-aligned

ok If p getheap can allocate the region of heap space, it assigns ok the value true;
if not, it assigns ok the value false.

Dynamic Variables 6-19

The procedure p rtnheap tries to deallocate a region of heap space that the p getheap
procedure allocated. If it succeeds, it assigns its VAR Boolean parameter the value true. If
it fails, it assigns its VAR Boolean parameter the value false. P rtnheap does not close �les
residing in the region allocated by p getheap.

Syntax

p_rtnheap (VAR regptr : localanyptr;

regsize : integer;

alignment : integer;

VAR ok : Boolean);

Parameters

regptr A pointer whose current value was assigned to it by the procedure p getheap.

regsize The size in bytes of the region of heap space that p getheap assigned to
regptr .

alignment The number that speci�ed the alignment of the region of heap space that
p getheap assigned to regptr .

ok If p rtnheap can deallocate the region of heap space, it assigns ok the value
true; if not, it assigns ok the value false.

6-20 Dynamic Variables

Example 1

$STANDARD_LEVEL 'HP_MODCAL'$

PROGRAM prog;

TYPE

intpointer = ^integer;

VAR

b : Boolean;

i : integer;

ptr1,

ptr2 : intpointer;

PROCEDURE p_getheap (VAR regptr : intpointer;

regsize : integer;

alignment : integer;

VAR ok : Boolean); EXTERNAL;

PROCEDURE p_rtnheap (VAR regptr : intpointer;

regsize : integer;

alignment : integer;

VAR ok : Boolean); EXTERNAL;

BEGIN

p_getheap(ptr1,40,4,b); {allocate a 40-byte region}

ptr2 := ptr1; {save ptr1 for later call to p_rtnheap}

FOR i := 1 TO 10 DO BEGIN

ptr2^ := i;

ptr2 := addtopointer(ptr2,4);
END;

p_rtnheap(ptr1,40,4,b); {deallocate the 40-byte region}

p_getheap(ptr1,50,2,b);

p_rtnheap(ptr1,20,2,b); {illegal -- 20 must be 50}

p_getheap(ptr1,16,8,b);

p_rtnheap(ptr1,16,1,b); {illegal -- 1 must be 8}

END.

Dynamic Variables 6-21

The procedures p getheap and p rtnheap are independent from the procedures mark, release,
new, and dispose.

Example 2

$STANDARD_LEVEL 'HP_MODCAL'$

PROGRAM prog;

VAR

i : integer;

b : Boolean;

p1,p2,p3,

ptr1, ptr2, ptr3 : ^integer;

PROCEDURE p_getheap; INTRINSIC;

PROCEDURE p_rtnheap; INTRINSIC;

BEGIN

p_getheap(ptr1,28,4,b); {allocate a 28-byte region}

ptr3 := ptr1; {assign values in the 28-byte region}

FOR i := 1 TO 7 DO BEGIN

ptr3^ := i;

ptr3 := addtopointer(ptr3,4);

END;

ptr3 := ptr1;

mark(ptr2); {mark the heap}

new(p1); {allocate p1, p2, and p3}

new(p2);

new(p3);

p_rtnheap(ptr1,28,4,b); {deallocate the 28-byte region}

ptr3^ := 0; {illegal -- p_rtnheap deallocated ptr3^}

p1^ := 1; {p_rtnheap did not deallocate p1, p2, or p3;}

p2^ := 2; {they are still accessible}

p3^ := 3;

p_getheap(ptr1,4,4,b); {allocate a 4-byte region}

(Example continued on next page.)

6-22 Dynamic Variables

release(ptr2);

ptr1^ := 0; {The 4-byte region was not
deallocated, and the values

in it are still accessible}

p1^ := p2^ + p3^; {illegal -- p1, p2, and p3 were deallocated}

END.

Getheap and Rtnheap Procedures

The procedures getheap and rtnheap are intrinsics in the Pascal run-time library. They are
provided only for compatibility with existing source code that was written for the MPE V
operating system and only exists on MPE/iX. If you are writing a new program, use the
prede�ned procedures p getheap and p rtnheap instead.

The procedure getheap allocates a region of heap space, and the procedure rtnheap deallocates
the region.

Syntax

getheap (VAR regptr : localanyptr;

VAR regsize : shortint;

VAR ok : shortint);

rtnheap (VAR regptr : localanyptr;

regsize : shortint;

VAR ok : shortint);

Dynamic Variables 6-23

7

Parameters

This chapter explains:

The di�erences between value and reference parameters.

ANYVAR and READONLY reference parameters (which are HP Pascal system
programming extensions).

Conformant array parameters.

Routines (procedures and functions) as parameters.

Congruent parameter lists.

Hidden parameters (which a�ect debugging and interfacing with external non-Pascal
routines).

Note This chapter is intended for system software developers who already
understand the systems for which they are programming. Its purpose is to
explain the HP Pascal features of which they must be aware. It does not
attempt to teach systems programming.

Value versus Reference Parameters

The terms value and reference must be explained in terms of formal and actual parameters. A
formal parameter is de�ned in a routine header. An actual parameter is passed in a call to a
routine.

Example 1

PROGRAM prog;

VAR

a : integer;

PROCEDURE p (f : integer); {f is a formal parameter}

BEGIN

END;

BEGIN

p(a); {a is an actual parameter}

END;

A value parameter is passed by value; that is, the value of the actual parameter is passed to
the routine and assigned to the formal parameter. If the routine changes the value of the
formal parameter, it does not change the value of the actual parameter. An actual value
parameter can be a constant, an expression, a variable, or a function result.

Parameters 7-1

A reference parameter is passed by reference; that is, the address of the actual parameter
is passed to the routine and associated with the formal parameter. If the routine changes
the value of the formal parameter, it changes the value of the actual parameter. An actual
reference parameter must be a variable access (a variable name or the name of a component of
an unpacked structure).

HP Pascal without system programming extensions has one kind of reference parameter:
VAR. For more information on VAR parameters, refer to the HP Pascal/iX Reference Manual
or the HP Pascal/HP-UX Reference Manual , depending on your implementation.

HP Pascal with system programming extensions has two additional kinds of reference
parameters: ANYVAR and READONLY. An actual READONLY parameter can be a
constant, an expression, or a function result.

Example 2

PROGRAM prog;

VAR

a,b : integer;

PROCEDURE p (x : integer; {x is a value parameter}

VAR y : integer); {y is a reference parameter}

BEGIN

x := x+1; {this does not change x's actual parameter}

y := y+1; {this does change y's actual parameter}

writeln(x); {this writes 41}

writeln(y); {this writes 61}

END;

BEGIN

a := 40;

b := 60;

p(a,b);

writeln(a); {this writes 40}

writeln(b); {this writes 61}

END.

7-2 Parameters

Table 7-1 compares the four kinds of formal parameters.

Table 7-1. Comparison of Kinds of Formal Parameters

Kind of
Formal

Parameters
STANDARD LEVEL

Actual
Parameter Can

Be

Actual
Parameter
Is Passed By

Routine Can Modify

Parameter Actual
Parameter

Value ANSI Constant,
expression
variable, or
function result

Value Yes No

Var ANSI Variable only Reference Yes Yes

ANYVAR HP MODCAL Variable only Reference Yes Yes

READONLY HP MODCAL Constant,
expression,
variable, or
function result

Reference No No

Parameters 7-3

ANYVAR Parameters

An ANYVAR parameter is similar to a VAR parameter in that its actual parameter is passed
by reference and must be a variable access. If the routine changes the value of a formal
ANYVAR parameter, it changes the value of the actual parameter.

An ANYVAR parameter di�ers from a VAR parameter in that its actual parameter can be of
any type. HP Pascal treats the actual parameter as if it were of the data type of the formal
ANYVAR parameter. This is implicit type coercion.

Example 1

$STANDARD_LEVEL 'HP_MODCAL'$

PROGRAM prog;

TYPE

type1 = ARRAY [1..10] OF integer;

type2 = ARRAY [1..20] OF integer;

type3 = ARRAY [1..11] OF real;

VAR
var1 : type1;

var2 : type2;

var3 : type3;

PROCEDURE p (VAR parm1 : type1;

ANYVAR parm2 : type2); EXTERNAL;

BEGIN

p(var1, {legal}

var1); {legal}

p(var2, {illegal -- must be of type1}

var2); {legal}

p(var3, {illegal -- must be of type1}

var3); {legal}

END.

The formal VAR parameter parm1 must have an actual parameter of type type1. The formal
ANYVAR parameter parm2 can have an actual parameter of any type.

The �rst call to procedure p passes the variable var1 (a 10-element integer array) to parm2 (a
20-element integer array). This is legal because parm2 is an ANYVAR parameter; however,
parm2[11] through parm2[20] are unde�ned. Accessing them causes unpredictable results.

The second call to p passes the variable var2 to parm2. Both are 20-element integer arrays.
The procedure p can access all 20 elements of parm2.

The third call to p passes the variable var3 (an 11-element real array) to parm2 (a 20-element
integer array). Although this is legal, p must not try to access any of the nonexistent elements
parm2[12] through parm2[20]. The procedure p treats the elements of parm2 as if they were
integers (although the elements of var3 are real).

The implicit type coercion requires that the actual parameter be aligned on a boundary
that is the same or larger than the boundary on which the formal parameter is aligned (for
example, if the formal parameter is 2-byte-aligned, the actual parameter can be 2-byte-aligned
or 4-byte-aligned, but it cannot be byte-aligned).

7-4 Parameters

Example 2

PROGRAM prog;

VAR
c : PACKED ARRAY [1..2] OF char;

j : shortint;

i : integer;

PROCEDURE show_anyvar_alignment

(ANYVAR anyvar_parm : shortint);

EXTERNAL;

BEGIN

show_anyvar_alignment(c); {illegal -- must be 2-byte-aligned}

show_anyvar_alignment(j); {legal}

show_anyvar_alignment(i); {legal -- references high-order 2 bytes}

END.

When HP Pascal passes an actual parameter to a formal ANYVAR parameter, it also passes
a hidden parameter. The hidden parameter can be used to determine the size of the actual
parameter. See \Hidden Parameters" for more information.

Parameters 7-5

READONLY Parameters

A READONLY parameter is similar to a value parameter in that the routine cannot
directly modify its actual parameter, which can be a constant, an expression, or a variable.
READONLY di�ers from a value parameter in that the routine cannot modify the formal
parameter: you cannot assign a value to the formal READONLY parameter, pass it to a VAR
or ANYVAR parameter, or pass it to either of the prede�ned functions addr , baddress , or
waddress .

A READONLY parameter is similar to a VAR or ANYVAR parameter in that its actual
parameter is passed by reference. If the actual parameter is an expression or constant, a copy
of its value is passed by reference.

Example

PROGRAM prog;

$STANDARD_LEVEL 'HP_MODCAL'$

TYPE

arraytype = ARRAY [1..10] OF integer;

CONST

arrayconst = arraytype [10 OF 0];

VAR

arrayvar : arraytype;

FUNCTION arrayfunc : arraytype; EXTERNAL;

PROCEDURE p (valuep : arraytype;

VAR varp : arraytype;

READONLY readonlyp : arraytype); EXTERNAL;

BEGIN

p(arrayconst, {value is passed}

arrayconst, {illegal -- must be a variable}

arrayconst); {address of copy of value is passed}

p(arrayvar, {value is passed}

arrayvar, {address is passed}

arrayvar); {address is passed}

p(arrayfunc, {value is passed}

arrayfunc, {illegal -- must be a variable}

arrayfunc); {address of copy of value is passed}

END.

The comments in the preceding program explain the di�erences in passing a constant
(arrayconst), a variable (arrayvar), and an expression (a call to the function arrayfunc)
to a value parameter (valuep), a VAR parameter (varp), and a READONLY parameter
(readonlyp).

7-6 Parameters

Conformant Array Parameters

A conformant array parameter is a formal array parameter de�ned by a conformant array
schema (the syntax appears in the HP Pascal/iX Reference Manual or the HP Pascal/HP-UX
Reference Manual). Its actual parameter must be an array variable that conforms to the
schema.

An array variable conforms to a conformant array schema if all of the following are true:

The variable and the schema are both PACKED, or neither is PACKED.

The index types of the variable and the schema are compatible (as de�ned in the
HP Pascal/iX Reference Manual or the HP Pascal/HP-UX Reference Manual).

The bounds of the index type of the variable are within the bounds of the index type of the
schema.

The element types of the variable and the schema are the same, unless the element type of
the schema is another schema. If the element type of the schema is another schema, the
element type of the variable conforms to the other schema.

Example 1

TYPE

itype = 0..20;

jtype = 'a'..'z';

ktype = 0..5;

VAR

var1 : ARRAY [0..10] OF integer;

PROCEDURE p (yes : ARRAY [lb1..ub1 : itype] OF integer;

no1 : PACKED ARRAY [lb3..ub3 : itype] OF integer;

no2 : ARRAY [lb4..ub4 : jtype] OF integer;

no3 : ARRAY [lb5..ub5 : ktype] OF integer;

no4 : ARRAY [lb6..ub6 : itype] OF real;

no5 : ARRAY [lb7..ub7 : itype;

lb8..ub8 : itype] OF integer);

The array variable var1 conforms to the schemas of the conformant array parameter yes.
Var1 and the schema of yes have the same element type, and 0..10 is within the bounds of
itype.

The variable var1 does not conform to the schemas of conformant array parameters no1, no2,
no3, no4, and no5. The following table gives the reasons for nonconformance.

Parameters 7-7

Parameter Why var1 Does Not Conform to Schema

no1 Schema is PACKED and var1 is not PACKED.

no2 Index types of var1 and schema are not compatible.

no3 Bounds of index type of var1 are not within bounds of index type of schema.

no4 Element types of var1 and schema are di�erent.

no5 Schema speci�es two dimensions, and var has only one dimension.

Like array declarations, schemas can specify dimensions in syntactically di�erent but
structurally equivalent ways.

Example 2

VAR

var1 : ARRAY [3..5,1..10] OF integer;

var2 : ARRAY [3..5] OF ARRAY [1..10] OF integer;

PROCEDURE p (yes1 : ARRAY [lb1..ub1 : itype] OF

ARRAY [lb2..ub2 : itype] OF integer;

yes2 : ARRAY [lb3..lb3 : itype;

lb4..ub4 : itype] OF integer;

no1 : ARRAY [lb5..ub5 : itype] OF integer;

no2 : ARRAY [lb6..ub6 : itype;

lb7..ub7 : itype;

lb8..ub8 : itype] OF integer);

The declarations of the array variables var1 and var2 are structurally equivalent, as are the
schemas of conformant array parameters yes1 and yes2. Both var1 and var2 conform to the
schemas of yes1 and yes2. Neither var1 nor var2 conforms to the schema of no1 or no2.

When a conformant array schema is a formal parameter, its bounds are also formal
parameters. They are read-only parameters. The actual parameter for the formal conformant
array schema is an array, and its bounds are the actual parameters of the formal bounds
parameters.

7-8 Parameters

Example 3

TYPE

itype = 0..20;

VAR

v : ARRAY [0..10] OF integer;

PROCEDURE p (x : ARRAY [lb..ub : itype] OF integer);

BEGIN

p(v);

END;

The conformant array schema x is a formal parameter, so its bounds, lb and ub are
read-only formal parameters. The array v is the actual parameter for x. The lower bound of
v, zero, is the actual parameter for lb. The upper bound of v (10) is the actual parameter
for ub.

When HP Pascal passes an actual parameter to a formal conformant array parameter of more
than one dimension, it also passes one hidden parameter for each inner dimension that is itself
a conformant array. See \Hidden Parameters" for more information.

Parameters 7-9

Routines as Parameters

A routine can be a parameter in two ways: it can be a routine parameter (a procedure or
function parameter, as de�ned by ANSI Pascal), or it can be a routine that is passed as a
parameter (as de�ned by the systems programming extensions of HP Pascal).

Table 7-2 di�erentiates between routine parameters and parameters of routine types.

Table 7-2. Routine Parameters versus Parameters of Routine Type

Routine Parameter Parameter of Routine Type

Availability ANSI Pascal System programming extensions.

Where De�ned Formal parameter list of
routine.

Parameter is de�ned in formal parameter list
of routine, but its type is de�ned �rst in a
type declaration section.

Corresponding Actual
Parameter

User-de�ned routine. addr applied to user-de�ned routine, or
variable of a routine type.

Referenced By Name Fcall or call routine.

Routine Parameters

Routine parameters (procedure or functions parameters) are parameters that are routines
(procedures or functions, respectively). They are completely de�ned in the formal parameter
lists of other routines, which reference them by name.

A formal function parameter is a function de�nition. Its actual parameter is the name of a
user-de�ned function with a congruent parameter list and the same result type.

A formal procedure parameter is a procedure de�nition. Its actual parameter is the name of a
user-de�ned procedure with a congruent parameter list.

Prede�ned routines cannot be passed to routine parameters.

7-10 Parameters

Example

PROGRAM prog;

VAR
s : char;

PROCEDURE p (PROCEDURE procparm1 (a,b : integer);

{formal procedure parameter}

FUNCTION funcparm1 (c : integer) : char);

VAR

ch : char;

BEGIN

procparm1(1,2);

ch := funcparm1(3);

END;

FUNCTION f (PROCEDURE procparm2; {formal procedure parameter}

FUNCTION funcparm2 : integer); {formal function parameter}

VAR

i : integer;

BEGIN

procparm2;

i := funcparm2;

END;

PROCEDURE actual_procparm1 (x,y : integer); {user-defined procedure}

BEGIN

.

.

END;

FUNCTION actual_funcparm1 (z : integer) : char; {user-defined function}

BEGIN

.

.

END;
PROCEDURE actual_procparm2; {another user-defined procedure}

BEGIN

.

.

END;

FUNCTION actual_funcparm2 : integer; {another user-defined function}

BEGIN

.

.

END;

BEGIN {prog}

p(actual_procparm1, {actual parameter for procparm1}

actual_funcparm1); {actual parameter for funcparm1}

s := f(actual_procparm2, {actual parameter for procparm2}

actual_funcparm2); {actual parameter for funcparm2}

END. {prog}

Parameters 7-11

Parameters of Routine Types

Parameters of routine types (procedure or function types) are like parameters of other
user-de�ned types. They are de�ned in the formal parameter lists of other routines, but their
types|routine types|are de�ned in type declaration sections. The types must be declared
�rst (see the HP Pascal/iX Reference Manual or the HP Pascal/HP-UX Reference Manual ,
depending on your implementation, for more information on declaring routine types).

The actual parameter for a formal parameter of function type is either:

The result of the function addr when applied to the name of a user-de�ned function.

The name of a variable of function type (in which case the value of the variable must be a
user-de�ned function).

In either case, the user-de�ned function and the formal parameter must have congruent
parameter lists and the same result type.

The actual parameter for a formal parameter of procedure type is either:

The result of the function addr when applied to the name of a user-de�ned procedure.

The name of a variable of procedure type (in which case the value of the variable must be a
user-de�ned procedure).

In either case, the user-de�ned procedure and the formal parameter must have congruent
parameter lists.

Prede�ned routines cannot be actual parameters for formal parameters of routine types. For
information on variables of routine types, see \Variables of Routine Types."

Example

The procedure p has a parameter of procedure type, procparm1, and a parameter of function
type, funcparm1. The function f has a parameter of procedure type, procparm2, and a
parameter of function type, funcparm2. Compare this example to the example in \Routine
Parameters". See \Congruent Parameter Lists" for examples of congruent parameter lists.
See \Fcall Function" and \Call Procedure" for information on the fcall function and call
procedure.

7-12 Parameters

$STANDARD_LEVEL 'HP_MODCAL'$

PROGRAM prog;

TYPE

proctype1 = PROCEDURE (a,b : integer);

functype1 = FUNCTION (c : integer) : char;

proctype2 = PROCEDURE;

functype2 = FUNCTION : integer;

VAR

s : char;

PROCEDURE p (procparm1 : proctype1;

funcparm1 : functype1);

VAR

ch : char;

BEGIN

call(procparm1,1,2);

ch := fcall(funcparm1,3);

END;

FUNCTION f (procparm2 : proctype2;

funcparm2 : functype2);

VAR

i : integer;

BEGIN

call(procparm2);

i := fcall(funcparm2);

END;

PROCEDURE actual_procparm1 (x,y : integer);

BEGIN

.

.

.

END;

FUNCTION actual_funcparm1 (z : integer) : char;

BEGIN

.

.

.

END;

(Example is continued on next page.)

Parameters 7-13

PROCEDURE actual_procparm2;

BEGIN

.

.

.

END;

FUNCTION actual_funcparm2 : integer;

BEGIN

.

.

.

END;

BEGIN {prog}

p(addr(actual_procparm1), addr(actual_funcparm1));

s := f(addr(actual_procparm2), addr(actual_funcparm2));

END. {prog}

7-14 Parameters

Variables of Routine Types

Variables of routine types (procedure and function types) can be actual parameters for formal
parameters of routine types (function and procedure types, respectively). See \Parameters of
Routine Types".

The values that you can assign to a function variable are:

The value nil .

The value returned by the prede�ned function addr when you call it with the name of an
appropriate function (appropriate is de�ned below).

The value returned by any function whose return type is the same function type as that of
the variable.

Another function variable of the same type.

The values that you can assign to a procedure variable are:

The value nil .

The value returned by the prede�ned function addr when you call it with the name of an
appropriate procedure (appropriate is de�ned below).

The value returned by any function whose return type is the same procedure type as that of
the variable.

Another procedure variable.

A routine is an appropriate parameter for addr under these conditions:

The routine and the variable have congruent parameter lists.

In the case of a function and a function variable, if they have the same result type.

The routine is declared at the same or a higher level than the variable.

The routine is not prede�ned.

Routine variables are system programming extensions. To use them, specify $STANDARD_LEVEL

'HP_MODCAL'$. Refer to the HP Pascal/iX Reference Manual or the HP Pascal/HP-UX
Reference Manual , depending on your implementation, for more information on compiler
options.

Parameters 7-15

Example 1

This program uses the prede�ned function addr to assign appropriate functions to a variable
of function type and appropriate procedures to a variable of procedure type.

$STANDARD_LEVEL 'HP_MODCAL'$

PROGRAM proc (input);

TYPE

proctype = PROCEDURE (x,y : integer);

functype = FUNCTION (x,y : integer) : integer;

VAR

procvar : proctype;

funcvar : functype;

b : Boolean;

i : integer;

PROCEDURE p1 (a,b : integer); EXTERNAL;

PROCEDURE p2 (a,b : integer); EXTERNAL;

FUNCTION f1 (a,b : integer) : integer; EXTERNAL;

FUNCTION f2 (a,b : integer) : integer; EXTERNAL;

BEGIN

read(b);

IF b THEN BEGIN

procvar := addr(p1);

funcvar := addr(f1);

END

ELSE BEGIN
procvar := addr(p2);

funcvar := addr(f2);

END;

call(procvar,10,20);

i := fcall(funcvar,10,20);

END.

7-16 Parameters

Example 2

This program declares procedures and procedure variables at di�erent levels and assigns each
procedure visible to each variable. The comments tell you which assignments are illegal and
why.

$STANDARD_LEVEL 'HP_MODCAL'$

PROGRAM prog;

TYPE

proctype = PROCEDURE (x,y : integer);

VAR

procvar : proctype;

PROCEDURE p1 (a,b : integer);

VAR

pvar1 : proctype;

PROCEDURE p2 (c,d : integer);

VAR

pvar2 : proctype;

PROCEDURE p3 (e,f : integer);

VAR

pvar3 : proctype;

BEGIN {p3}

pvar3 := addr(p1);

pvar3 := addr(p2);

pvar3 := addr(p3);

END; {p3}

BEGIN {p2}

pvar2 := addr(p1);

pvar2 := addr(p2);

pvar2 := addr(p3); {illegal -- p3 is at a lower level than pvar2}

END; {p2}

BEGIN {p1}

pvar1 := addr(p1);

pvar1 := addr(p2); {illegal -- p2 is at a lower level than pvar1}

END; {p1}

BEGIN {prog}

procvar := addr(p1);

END. {prog}

Parameters 7-17

Example 3

This program uses functions whose return types are function and procedure types to assign
values to routine variables. The comments tell you which assignments are illegal and why.

$STANDARD_LEVEL 'HP_MODCAL'$

PROGRAM proc;

TYPE

proctype1 = PROCEDURE (x : integer);

proctype2 = PROCEDURE (x,y : integer);

functype1 = FUNCTION (y : real) : integer;

functype2 = FUNCTION (y : real) : real;

VAR

procvar : proctype1;

funcvar : functype1;

FUNCTION returnproc1 (z : integer) : proctype1; EXTERNAL;

FUNCTION returnproc2 (z : integer) : proctype2; EXTERNAL;

FUNCTION returnfunc1 : functype1; EXTERNAL;

FUNCTION returnfunc2 : functype2; EXTERNAL;

BEGIN

procvar := returnproc1(1);

procvar := returnproc2(2); {illegal -- function returns wrong type}

funcvar := returnfunc1;

funcvar := returnfunc2; {illegal -- function returns wrong type}

END.

7-18 Parameters

Example 4

Unde�ned routine variables are undetectable, and cause unpredictable results. The following
program avoids problems caused by such unde�ned variables by assigning the value nil to
those variables.

$STANDARD_LEVEL 'EXT_MODCAL'$

PROGRAM prog (input,output);

VAR

i,j : integer;

procvar1 : PROCEDURE (a,b : integer);

procvar2 : PROCEDURE (VAR c,d : integer);

PROCEDURE alpha (x,y: integer); EXTERNAL;

PROCEDURE beta (x,y: integer); EXTERNAL;

PROCEDURE gamma (VAR x,y: integer); EXTERNAL;

PROCEDURE delta (VAR x,y: integer); EXTERNAL;

BEGIN

read(i,j);

{initialize variables of procedure type}

procvar1 := nil;

procvar2 := nil;

{If -100 <= i <= -1, procvar1 is alpha;

if 0 <= i <= 100, procvar1 is beta}

IF (i IN [-100..-1] THEN procvar1 := addr(alpha)

ELSE IF i IN [0..100] THEN procvar1 := addr(beta);

{If -10 <= j <= -1, procvar2 is gamma;

if 0 <= j <= 10, procvar2 is delta}

IF j IN [-10..-1] THEN procvar2 := addr(gamma)

ELSE IF j IN [0..10] THEN procvar2 := addr(delta);

{Call procvar1 and procvar2, unless they are nil}

IF procvar1 = nil THEN writeln('i is out of range')

ELSE call(procvar1,i,j);

IF procvar2 = nil THEN writeln('j is out of range')

ELSE call(procvar2,i,j);

END.

Parameters 7-19

Call Procedure

The prede�ned procedure call executes a call to the procedure speci�ed by a procedure
variable. Its parameters are a procedure variable and the actual parameters with which the
procedure is to be called. Just as a pointer is dereferenced with ^, a procedure variable is
dereferenced with call .

Example

$STANDARD_LEVEL 'EXT_MODCAL'$

PROGRAM prog;

TYPE

proctype = PROCEDURE (x,y : integer);

VAR

procvar : proctype;

PROCEDURE p (a,b : integer);

BEGIN

.

.

.

END;

BEGIN

procvar := addr(p);

call(procvar,1000,3500);

p(1000,3500);

END.

The calls to the procedures call and p are semantically equivalent.

The �rst parameter to call (procedure variable) cannot have the value nil or be unde�ned.

7-20 Parameters

Fcall Function

The prede�ned function fcall executes a call to the function speci�ed by a function variable.
Its parameters are a function variable (which speci�es the function to be called) and the
actual parameters with which the function is to be called. Just as a pointer is dereferenced
with ^, a function variable is dereferenced with fcall .

Example

$STANDARD_LEVEL 'EXT_MODCAL'$

PROGRAM prog;

TYPE

functype = FUNCTION (x,y : integer) : integer;

VAR

funcvar : functype;

v1 : ^integer;

FUNCTION f (a,b : integer) : integer;

BEGIN

f := (a+b)*(a-b);

END;

BEGIN

new(v1);

funcvar := addr(f);

v1^ := fcall(funcvar,27,94);

v1^ := f(27,94);

END.

The calls to the functions fcall and f are semantically equivalent.

The �rst parameter to fcall (the function variable) cannot have the value nil or be unde�ned.

Parameters 7-21

Congruent Parameter Lists

Two parameter lists are congruent if they have the same number of parameters, and if
parameters in the same positions are equivalent.

Two parameters are equivalent if any one of the following is true:

They are value parameters of identical type.

They are VAR parameters of identical type.

They are parameters of procedure type with congruent parameter lists.

They are parameters of function type with congruent parameter lists and identical result
types.

They are value conformant array parameters with equivalent schemas.

They are VAR conformant array parameters with equivalent schemas.

Two conformant array schemas are equivalent if all of the following are true:

Both are PACKED, or neither is PACKED.

Corresponding index type speci�cations specify the same type.

They have the same element type. If they have schemas for element types, then those
schemas are equivalent.

7-22 Parameters

Example 1

This program uses procedure parameters whose own parameter lists do not include
conformant array parameters, function parameters, or other procedure parameters.

PROGRAM prog;

VAR

r : real;

PROCEDURE proc (PROCEDURE procvar (x : integer; VAR y : char));

BEGIN

.

.

END;

FUNCTION func (PROCEDURE pvar (x : integer)) : real;

BEGIN

.

.

END;

PROCEDURE p1 (a : integer; VAR b : char); EXTERNAL;

PROCEDURE p2 (a : integer; VAR b : real); EXTERNAL;

PROCEDURE p3 (VAR a : integer; b : char); EXTERNAL;

PROCEDURE p4 (a,b : integer); EXTERNAL;

PROCEDURE p5 (a : integer); EXTERNAL;

BEGIN

proc(p1);

proc(p2); {illegal}

proc(p3); {illegal}
proc(p4); {illegal}

proc(p5); {illegal}

r := func(p5);

r := func(p4); {illegal}

r := func(p3); {illegal}

r := func(p2); {illegal}

r := func(p1); {illegal}

END.

The procedure proc has a procedure parameter, procvar. The parameter list of procvar is
congruent with the parameter list of the procedure p1, but not with those of p2, p3, p4, or p5.
Therefore, p1 can be an actual parameter for procvar, but p2, p3, p4, and p5 cannot.

The function func has a procedure parameter, pvar. The parameter list of pvar is congruent
with the parameter list of the procedure p5, but not with those of p1, p2, p3, or p4.
Therefore, p5 can be an actual parameter for pvar, but p1, p2, p3, and p4 cannot.

Parameters 7-23

Example 2

This program uses function parameters whose own parameter lists do not include conformant
array parameters, procedure parameters, or other function parameters.

PROGRAM prog;

VAR

r : real;

PROCEDURE proc (FUNCTION funcvar : (a,b,c : char) : Boolean);

BEGIN

.

.

.

END;

FUNCTION func (FUNCTION fvar : (a,b,c : char) : real) : real;

BEGIN

.

.

.

END;

FUNCTION f1 (x,y,z : char) : Boolean; EXTERNAL;

FUNCTION f2 (x,y,z : char) : real; EXTERNAL;

BEGIN

proc(f1);

proc(f2); {illegal}

r := func(f2);
r := func(f1); {illegal}

END.

The procedure proc has a function parameter, funcvar. The parameter list of funcvar is
congruent with the parameter list of the function f1, but not with that of f2. Therefore, f1
can be an actual parameter for funcvar, but f2 cannot.

The function func has a function parameter, fvar. The parameter list of fvar is congruent
with the parameter list of the function f2, but not with that of f1. Therefore, f2 can be an
actual parameter for fvar but f1 cannot.

7-24 Parameters

Example 3

This program uses a procedure parameter, procvar. The parameter list of procvar includes
conformant array parameters, w and x, another procedure parameter, p1, and another function
parameter, f1.

PROGRAM prog;

TYPE

itype = 1..10;

VAR

a : ARRAY [1..6] OF integer;

b : PACKED ARRAY [3..7] OF integer;

PROCEDURE alpha (m : integer); EXTERNAL;

FUNCTION beta (n : real) : integer; EXTERNAL;

PROCEDURE p (VAR cvar1 : ARRAY [a..b : itype] OF integer;

cvar2 : PACKED ARRAY [c..d : itype] OF integer;

PROCEDURE pvar (e : integer);

FUNCTION fvar (f : real) : integer;

); EXTERNAL;

PROCEDURE proc (PROCEDURE procvar

(VAR w : ARRAY [g..h : itype] OF integer;

x : PACKED ARRAY [i..j : itype] OF integer;

PROCEDURE p1 (x1 : integer);

FUNCTION f1 (x2 : real) : integer

)

);
BEGIN

procvar(a,b,alpha,beta);

END;

BEGIN

proc(p);

END.

The parameter lists of the formal procedure parameter procvar and the procedure p are
congruent: cvar1 and w are reference conformant array parameters, cvar2 and x are value
conformant array parameters, pvar and function p1 are procedure parameters with congruent
parameter lists, and fvar and function f1 are function parameters with congruent parameter
lists.

Passing a routine as an actual parameter does not change its scope. If it has access to a
nonlocal entity before being passed as an actual parameter, then it has access to that entity
after being passed|even if the entity is outside the scope of the routine to which the routine
is passed.

Parameters 7-25

Example 4

PROGRAM prog (output);

PROCEDURE outer2 (PROCEDURE procvar (v : integer));

BEGIN {outer2}

procvar(7);

END; {outer2}

PROCEDURE outer1 (p : integer);

VAR

x : integer;

PROCEDURE inner (i : integer);

BEGIN {inner}

writeln(x,i,x+i,p);

END; {inner}

BEGIN {outer1}

x := 5;

outer2(inner);

END; {outer1}

BEGIN {prog}

outer1(2);

END. {prog}

The preceding program prints:

5 7 12 2

Because the procedure inner has access to the nonlocal variables x and p before being passed
to outer2, it has access to x and p after being passed to outer2 (even though x and p are
outside the scope of outer2).

7-26 Parameters

Hidden Parameters

Hidden parameters do not appear in formal or actual parameter lists, but are nevertheless
passed to routines. They are always integers.

You must know about hidden parameters in order to debug your program at the assembly
language level, and you must include them in the parameter lists of external routines that are
not written in Pascal. (For information, see Chapter 9.)

Table 7-3 shows which routines receive hidden parameters, how many hidden parameters they
receive, where the hidden parameters are in the physical parameter order, and the values of
the hidden parameters.

Table 7-3. Hidden Parameters

Routine With Receives Location of Hidden
Parameters in
Physical Order

Value of [Each]
Hidden Parameter

ANYVAR parameters One hidden parameter
for each ANYVAR
parameter.

Each one follows its
corresponding
ANYVAR parameter.

Size in bytes of the
actual parameter.

Generic string
parameters (not (PACs)

One hidden parameter
for each generic string
parameter.

Each one follows its
corresponding generic
string parameter.

Maximum length of
string.

Extensible parameter
list

One hidden parameter. First parameter. Number of actual
parameters passed
(excluding hidden
parameters).

Multi-dimensional
conformant array
parameters

One hidden parameter
for each nested
conformant array.

Each one follows bounds
values of corresponding
nested conformant
array.

Element size, in units
meaningful to the code
that indexes the array.

Routine parameters One hidden parameter
for each routine
parameter.

Last parameters. Static link for
containing routine.

External SPL variable One hidden parameter First parameter Same as SPL

ANYVAR Parameters

If a routine has ANYVAR parameters, its physical parameter order contains one hidden
parameter for each. In the physical parameter order, each hidden parameter follows its
corresponding ANYVAR parameter. The value of each hidden parameter is the size of the
corresponding ANYVAR parameter (in bytes).

If the routine speci�es the UNCHECKABLE ANYVAR option, no hidden parameters are
passed for ANYVAR parameters.

The UNCHECKABLE ANYVAR option is used when calling routines that were not written
in Pascal.

Parameters 7-27

Example 1

$STANDARD_LEVEL 'HP_MODCAL'$

PROGRAM prog;

VAR

x,y,z : integer;

PROCEDURE p (a : integer;

ANYVAR b, c : integer;

d : integer;

ANYVAR e : integer);

BEGIN {p}

.

.

.

END; {p}

BEGIN {prog}

x := 2;

y := 3;

z := 5;

p(1,x,y,4,z);

END. {prog}

Including hidden parameters (
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
highlighted), the parameter list that appears as

p(1,x,y,4,z) in the preceding program is:

Value 1

Address of x
NNNNNNNNNNNNNNNNNNNNNNNNNN
Size of x

Address of y
NNNNNNNNNNNNNNNNNNNNNNNNNN
Size of y

Value 4

Address of z
NNNNNNNNNNNNNNNNNNNNNNNNNN
Size of z

You can access these hidden parameters with the prede�ned functions bitsizeof and sizeof . If
the UNCHECKABLE ANYVAR procedure option is speci�ed, bitsizeof and sizeof return
the size of the formal parameter (for more information on UNCHECKABLE ANYVAR, see
Chapter 8).

7-28 Parameters

Example 2

$STANDARD_LEVEL 'EXT_MODCAL'$

PROGRAM prog (output);

TYPE

t1 = ARRAY [1..20] OF integer;

t2 = ARRAY [1..11] OF integer;

VAR

v : t1;

PROCEDURE p1 (ANYVAR parm : t2);

BEGIN {p1}

writeln('Size of actual parameter = ', sizeof(parm):1);

writeln('Bit size of actual parameter = ', bitsizeof(parm):1);

END; {p2}

PROCEDURE p2 (ANYVAR parm : t2);

OPTION UNCHECKABLE_ANYVAR;

BEGIN {p2}

writeln('Size of formal parameter = ', sizeof(parm):1);

writeln('Bit size of formal parameter = ', bitsizeof(parm):1);

END; {p2}

BEGIN {prog}

p1(v);

p2(v);

END. {prog}

The preceding program prints:

Size of actual parameter = 80
Bit size of actual parameter = 640

Size of formal parameter = 44

Bit size of formal parameter = 352

The procedure p1 does not specify the option UNCHECKABLE ANYVAR, so it can access
the hidden parameter associated with the actual parameter v. The functions sizeof(parm)
and bitsizeof(parm) return the size of the actual parameter v.

The procedure p2 speci�es the option UNCHECKABLE ANYVAR, so it cannot access the
hidden parameter associated with the actual parameter v, because it is omitted from the
physical parameter order. The functions sizeof(parm) and bitsizeof(parm) return the size
of the formal parameter parm (that is, the sizes of the type t2).

Generic String Parameters

If a routine has generic string parameters, its physical parameter order contains one hidden
parameter for each. In the physical parameter order, each hidden parameter follows its
corresponding actual string parameter. The value of each hidden parameter is the maximum
length of the corresponding actual string parameter.

Parameters 7-29

Extensible Parameter List

If a routine has an extensible parameter list, its physical parameter order begins with a hidden
parameter. The value of the hidden parameter is the number of actual parameters passed,
excluding hidden parameters. This value is always greater than or equal to the number of
nonextension parameters, because the routine must have a value for each of them.

Example

$STANDARD_LEVEL 'EXT_MODCAL'$

PROGRAM prog;

PROCEDURE p (x : integer;
y : real);

OPTION EXTENSIBLE 1

DEFAULT_PARMS (x := 0,

y := 1.0);

BEGIN

.

.

END;

BEGIN

p; {value of hidden parameter is one}

p(9); {value of hidden parameter is one}

p(9, 2.7); {value of hidden parameter is two}

p(, 2.7); {value of hidden parameter is two}

END.

The procedure p has one nonextension parameter, so the value of the hidden parameter for
any call to p is at least one.

In the �rst call above, p receives one value from DEFAULT PARMS; the value of the hidden
parameter is one.

In the second call, p receives one value from the actual parameter list; the value of the hidden
parameter is one.

In the third call, p receives two values from the actual parameter list; the value of the hidden
parameter is two.

In the fourth call, p receives one value from DEFAULT PARMS and one from the actual
parameter list; the value of the hidden parameter is two. For more information on OPTION
EXTENSIBLE and OPTION DEFAULT PARMS, see Chapter 8.

7-30 Parameters

Multidimensional Conformant Array Parameters

If a routine has multidimensional conformant array parameters, its physical parameter order
contains one hidden parameter for each nested conformant array element. In the physical
parameter order, each hidden parameter follows the actual parameters for the bounds of its
corresponding dimension. The value of each hidden parameter is the size of its corresponding
dimension. These hidden parameters are not accessible to the programmer. The program uses
them to calculate values of the sizeof function.

Example

PROGRAM prog;

TYPE
t = 1..10;

VAR

a : ARRAY [1..3,1..8,1..4] OF integer;

PROCEDURE p (b : ARRAY [lb1..ub1 : t;

lb2..ub2 : t;

lb3..ub3 : t] OF integer; EXTERNAL;

BEGIN

p(a);

END.

The call p(a) passes two hidden parameters to p, one for each nested conformant array

dimension. Including hidden parameters (
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
highlighted), the parameter list that appears in

the preceding program as p(a) is:

Address of a

Value 1 (lb1)

Value 3 (ub1)

Value 1 (lb2)

Value 8 (ub2)
NNN
(UB2-LB2+1) *(UB3)

Value 1 (lb3)

Value 4 (ub3)
NNNNNNNNNNNNNNNN
(UB3)

Parameters 7-31

Routine Parameters

If a routine has routine parameters, its physical parameter order contains one hidden
parameter for each routine parameter. (This is not true of parameters that are routine
variables.) These hidden parameters are at the end of the physical parameter order, in the
same order as their corresponding routine parameters. The value of a hidden parameter for a
speci�c routine parameter is the static link. This static link allows access to the variables and
parameters of the enclosing routines.

Note Level one routines do not require static links. Therefore, they are the only
type of routine parameters that can be passed to extensible parameters.

Example

PROGRAM prog (input,output);

PROCEDURE p (PROCEDURE param1 (x : integer);

PROCEDURE param2 (y : integer);

FUNCTION param3 (z : integer) : integer;

v : integer);

VAR

i : integer;

BEGIN {p}

param1(v);

param2(v);

i := param3(v);

END; {p}

PROCEDURE actual1 (a : integer);

PROCEDURE actual2 (b : integer);

FUNCTION actual3 (c : integer) : integer;

BEGIN {actual3}

p(actual1,actual2,actual3,100);

END; {actual3}

BEGIN {actual2}

.

.

END; {actual2}

BEGIN {actual1}

.

.

END; {actual1}

BEGIN
.

.

.

END.

7-32 Parameters

Including hidden parameters (
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
highlighted), the physical parameter order that appears in

the preceding program as p(actual1,actual2,actual3,100) is:

Procedure label for procedure actual1

Procedure label for procedure actual2

Function label for function actual3

Value 100
NN
Static link for procedure actual1 (nil)
NN
Static link for procedure actual2 (actual1's locals)
NNN
Static link for function actual3 (actual2's locals)

Parameters 7-33

EXTERNAL SPL VARIABLE

The EXTERNAL SPL VARIABLE directive causes the compiler to pass a hidden parameter
that speci�es the presence of parameters. The hidden parameter is a 32 bit integer with the
mask right justi�ed as required by SPL/V.

Example

program prog1;

var count : integer;

procedure ext_spl(p1, p2, p3 : integer);

external spl variable;

begin

ext_spl(1,,count);

ext_spl(1);

end.

Including hidden parameters (highlighted), the physical parameter order that appears in the
preceding program as ext_spl(1,,i) is:

NNNNNNNNNNNNNNNNNNNNN
Value 5

Value 1

Value 0 (space holder)

Value of count

7-34 Parameters

8

Procedure Options

Procedure options, which immediately follow a routine head, can specify:

That the routine has an extensible parameter list|that is, one or more optional parameters
(EXTENSIBLE option).

Default values for formal parameters, allowing their actual parameters to be left out of
actual parameter lists (DEFAULT PARMS option).

That formal ANYVAR parameters do not have the usual hidden parameters that specify
their sizes (UNCHECKABLE ANYVAR option).

That the loader does not resolve the routine until run time (UNRESOLVED option).

That the routine is duplicated in-line wherever the program calls it (INLINE option).

A routine heading can specify any combination of procedure options.

Example

PROCEDURE alpha (a,b,c : integer)

OPTION EXTENSIBLE 2;

FUNCTION beta (x : integer; y : real) : boolean

OPTION DEFAULT_PARMS (x:=0, y:=0);

FUNCTION delta (i,j,k : integer) : integer

OPTION EXTENSIBLE 1

DEFAULT_PARMS (i:=0, j:=1, k:=1)

UNRESOLVED;

PROCEDURE gamma (ANYVAR r,s : char)

OPTION UNCHECKABLE_ANYVAR;

PROCEDURE epsilon (ANYVAR t : real)

OPTION UNRESOLVED
UNCHECKABLE_ANYVAR;

FUNCTION zeta (ANYVAR u : real) : integer

OPTION UNCHECKABLE_ANYVAR

DEFAULT_PARMS (u:=nil)

UNRESOLVED;

Procedure Options 8-1

EXTENSIBLE

The EXTENSIBLE routine option identi�es a procedure that has an extensible parameter list.

An extensible parameter list has a �xed number of nonextension parameters and a variable
number of extension parameters. The integer n after the keyword EXTENSIBLE speci�es
that the �rst n parameters in the formal parameter list are nonextension parameters (n can
be zero). Any other parameters are extension parameters.

A nonextension parameter is required. Every call to the routine must provide an actual
parameter for it.

An extension parameter is optional. A call to the routine can omit its actual parameter from
the actual parameter list. However, if the actual parameter list contains an actual parameter
for the xth extension parameter, it must contain actual parameters for those before it.

Note You can pass only level 1 procedures to EXTENSIBLE.

You cannot pass large (greater than 8 bytes) value parameters to an extension
parameter.

Example

PROGRAM prog;

$STANDARD_LEVEL 'EXT_MODCAL'$

VAR

b : boolean;

FUNCTION f (i,j : integer) : boolean

OPTION EXTENSIBLE 2; {both parameters are required}

BEGIN

.

.

END;

PROCEDURE p (x,y : integer)

OPTION EXTENSIBLE 0; {no parameters are required}

BEGIN

.

.

END;

PROCEDURE q (a : integer;

b : real;

c : char;

d : integer)

OPTION EXTENSIBLE 2; {first two parameters are required}

BEGIN

.

.
END;

(Example is continued on the next page.)

8-2 Procedure Options

BEGIN

b := f(36,45); {legal}

b := f(20); {illegal}
b := f(,66); {illegal}

b := f; {illegal}

p; {legal}

p(); {legal}

p(100); {legal}

p(250,13); {legal}

p(,60); {illegal}

q(5,9.4); {legal}

q(4,3.0,'z'); {legal}

q(7,8.8,'w',55); {legal}

q(2,1.1,,93); {illegal}

q(,); {illegal}

q(,,45); {illegal}

q(400,,22); {illegal}

END.

Both parameters of the function f are nonextension parameters. Every call to f must specify
actual parameters for them.

Both parameters of the procedure p are extension parameters. A call to p can specify or omit
actual parameters for them. If the second actual parameter is speci�ed, the �rst must also be
speci�ed.

The �rst two parameters of the procedure q are nonextension parameters; the last two are
extension parameters. A call to q must specify actual parameters for the �rst two parameters,
but it can specify or omit actual parameters for the last two parameters. If the fourth actual
parameter is speci�ed, the third must also be speci�ed.

The number of extension parameters in an extensible parameter list is
exible: you can add
new ones later, and you need not recompile programs that call the routine. The updated
version of the routine can use the prede�ned function haveextension to determine whether it
was passed values for speci�c extension parameters.

Without the DEFAULT PARMS procedure option, the prede�ned function haveextension
returns true and false under these conditions:

Function Returns true Returns false

haveextension(x) where x is a
formal parameter of the
routine that called
haveextension .

If the routine was passed an
actual parameter for x .

If the routine was not passed
an actual parameter for x .

Note A parameter cannot be referenced when haveextension would return false.

Procedure Options 8-3

Example

The procedure p has two nonextension parameters:

PROCEDURE p (n1,n2 : integer)

OPTION EXTENSIBLE 2;

BEGIN {p}

.

.

END; {p}

The program oldprog calls the procedure p:

PROGRAM oldprog;

PROCEDURE p (n1,n2 : integer)

OPTION EXTENSIBLE 2;

EXTERNAL;

BEGIN

p(1,2);

END.

The procedure p is updated and two new parameters are added. It uses the prede�ned
function haveextension to determine whether its two new extension parameters were passed to
it.

PROCEDURE p (n1,n2,e1,e2 : integer)

OPTION EXTENSIBLE 2;

BEGIN {p}

IF haveextension(e1) AND haveextension(e2) THEN BEGIN

.

.

END;

END; {p}

The procedure p must be recompiled, but the program oldprog need not be. Its call to p is
still legal, as is the call to p from the program newprog:

PROGRAM newprog;

PROCEDURE p (n1,n2,e1,e2 : integer)

OPTION EXTENSIBLE 2;

EXTERNAL;

BEGIN

p(1,2,3,4);

END.

A call to a routine with an extensible parameter list contains a hidden parameter. See
Chapter 7 for details.

8-4 Procedure Options

Note A routine with n extensible parameters is not the same as a procedure with n
parameters that does not have EXTENSIBLE, even if the two procedures are
otherwise identical. For example, these procedures are not the same:

PROCEDURE proc (a,b : char) PROCEDURE proc (a,b : char);

OPTION EXTENSIBLE 2;

BEGIN BEGIN

END; END;

Procedure Options 8-5

DEFAULT PARMS

The DEFAULT PARMS procedure option speci�es default values to be assigned to formal
parameters when actual parameters are not passed to them. If a nonextension parameter
has a default value, its actual parameter can be left out of the actual parameter list, and its
default value will be assigned to the formal parameter.

A default value must be a constant expression that is assignment compatible with its
parameter. The value nil is the only legal default for a VAR, ANYVAR, function or procedure
parameter.

Example

PROGRAM prog;

PROCEDURE p (a,b,c : integer)

OPTION DEFAULT_PARMS (b:=2,c:=3); {two have default values}

BEGIN

.

.

.
END;

BEGIN

p(10); {a:=10, b:=2 (default), c:=3 (default)}

p(10,20); {a:=10, b:=20, c:=3 (default)}

p(10,,30); {a:=10, b:=2 (default), c:=30}

p(); {illegal}

p(,20); {illegal}

END.

If an extension parameter has a default value, its actual parameter can be left out of the
middle or o� the end of the actual parameter list. If it is left out of the middle, its default
value is assigned to the formal parameter. If it is left o� the end, no value is assigned to the
formal parameter.

8-6 Procedure Options

Example

PROGRAM prog;

PROCEDURE p (a,b,c : integer)

OPTION EXTENSIBLE 0 {all parameters are extensible}

DEFAULT_PARMS (a:=1,b:=2,c:=3); {all have default values}

BEGIN

.

.

.

END;

BEGIN

p(9,,5); {a:=9, b:=2 (default), c:=5}

p(6,7); {a:=6, b:=7, no value assigned to c}

p(8); {a:=8, no value assigned to b or c}

p(,4,5); {a;=1 (default), b:=4, c:=5}

END.

Procedure Options 8-7

Table 8-1 tells the value that is passed to a formal parameter, x , when x is:

Nonextension or extension.

Its actual parameter is speci�ed or not speci�ed.

It is before, the same as, or after the parameter n, where n is the last parameter for which
an actual parameter is speci�ed.

Table 8-1. Values Passed to Formal Parameter x

Type of
Parameter

Actual
Parame-
ter for x
is
Speci�ed

Position of x informal parameter list
p(..,n,..) where n is the last actual
parameter speci�ed in the actual
parameter list p(..,n)

x is before n:
p(.x.,n,..)

x is n:
p(..,x,..)

x is after n:
p(..,n,.x.)

Nonextension
Parameter

Yes Actual value Actual value Impossible
because x > n

Nonextension
Parameter

No Default value
if speci�ed;
error
otherwise

Impossible
because x=n

Illegal unless
defaulted,
then
defaulted
value

Extension
Parameter

Yes Actual value Actual value Impossible
because x > n

Extension
Parameter

No Default value
if speci�ed;
error
otherwise

Impossible
because x=n

No value

8-8 Procedure Options

Haveoptvarparm Function

A routine can use the prede�ned function haveoptvarparm to determine whether the value
that it received for a formal reference parameter was passed as an actual parameter or
defaulted.

The prede�ned function haveoptvarparm returns true and false under these conditions:

Function Returns true Returns false

haveoptvarparm(x) where x is
a formal reference parameter
of the routine that called
haveoptvarparm

If the routine was passed an
actual parameter for x

If the routine was not passed
an actual parameter for x (in
which case, x assumes its
default value, nil)

Example

PROGRAM prog;

$STANDARD_LEVEL 'EXT_MODCAL'$

VAR

i : integer;

PROCEDURE p (VAR x,y : integer)

OPTION DEFAULT_PARMS (x := nil, y := nil);

VAR

b : boolean;

BEGIN

b := haveoptvarparm(x); {b := true for p(i)}

b := haveoptvarparm(y); {b := false for p(i)}

END;

BEGIN

p(i); {x=i, y=nil (default)}

END.

Procedure Options 8-9

Table 8-2 tells the value of haveoptvarparm(x) when the formal parameter x meets the
following conditions:

Nonextension or extension.

Its actual parameter is speci�ed or not speci�ed.

It is before, the same as, or after the parameter n, where n is the last parameter for which
an actual parameter is speci�ed.

Table 8-2. Values Returned by Haveoptvarparm(x)

Type of
Parameter

Actual
Parame-
ter for x

is
Speci�ed

Position of x in formal parameter list
p(..,n,..) where n is the last actual
parameter speci�ed in the actual
parameter list p(..,n)

x is before n:
p(.x.,n,..)

x is n:
p(..,x,..)

x is after n:
p(..,n,.x.)

Nonextension
Parameter

Yes true true Impossible x
> n

Nonextension
Parameter

No false Impossible,
because x=n

false

Extension
Parameter

Yes true true Impossible, x
> n

Extension
Parameter

No false Impossible,
because x=n

false

8-10 Procedure Options

Haveextension Function

With the DEFAULT PARMS procedure option, the prede�ned function haveextension returns
true and false under these conditions:

Function Returns true Returns false

haveextension(x) where x is a
formal parameter of the
routine that called
haveextension .

If the routine was passed an
actual parameter for x , or if
DEFAULT PARMS speci�ed
a default for x .

If the routine was not passed
an actual parameter for x ,
and no default was speci�ed
for x with
DEFAULT PARMS.

Example

PROGRAM prog;

$STANDARD_LEVEL 'EXT_MODCAL'$

PROCEDURE p (a,b,c : integer)

OPTION EXTENSIBLE 2

DEFAULT_PARMS (b:=2);

BEGIN

END;

BEGIN {haveextension(b)} {haveextension(c)}

p(10,20); {true} {false}

p(10,20,30); {true} {true}

p(10); {true} {false}

END.

Table 8-3 tells the value of haveextension(x) when the formal parameter x is:

Nonextension or extension.

Its actual parameter is speci�ed or not speci�ed.

It is before, the same as, or after the parameter n, where n is the last parameter for which
an actual parameter is speci�ed.

Procedure Options 8-11

Table 8-3. Values Returned by Haveextension(x)

Type of Parameter

Actual
Parameter for
x is Speci�ed

Position of x informal parameter list p(..,n,..) where n is
the last actual parameter speci�ed in the actual parameter

list p(..,n)

x is before n:
p(.x.,n,..)

x is n: p(..,x,..) x is after n:
p(..,n,.x.)

Nonextension
Parameter

Yes
No

Calling haveextension(x) causes a compile-time error.

Extension Parameter Yes true true Impossible

No true Impossible, because
x=n

false

8-12 Procedure Options

UNCHECKABLE ANYVAR

The UNCHECKABLE ANYVAR procedure option speci�es that ANYVAR hidden
parameters will not be created for a routine. This allows its parameter list to be compatible
with the parameter list of a routine written in a language other than HP Pascal. (See
Chapter 7 for an explanation of ANYVAR parameters.)

Example

PROCEDURE cproc (ANYVAR ip1,ip2 : integer)

OPTION UNCHECKABLE_ANYVAR;

EXTERNAL C;

The disadvantage of UNCHECKABLE ANYVAR is that it causes the prede�ned functions
sizeof and bitsizeof to return the sizes of the types of the formal ANYVAR parameters,
instead of the sizes of the actual parameters.

Example

PROGRAM prog;

TYPE

t1 : PACKED ARRAY [1..50] OF char;
t2 : PACKED ARRAY [1..100] OF char;

VAR

y : t1;

PROCEDURE p1 (ANYVAR a : t2)

OPTION UNCHECKABLE_ANYVAR;

VAR

b : t1;

i : 1..100;

BEGIN {p1}

x := sizeof(a); {x is always 100}

END; {p1}

BEGIN {prog}

END. {prog}

The UNCHECKABLE ANYVAR option is illegal with a routine that has no ANYVAR
parameters.

Procedure Options 8-13

UNRESOLVED

The UNRESOLVED procedure option prevents the compiler/linker/loader from resolving a
routine until the program calls it. The routine must be at level one.

To resolve a routine is to associate it with its system name. Calling an OPTION
UNRESOLVED routine implicitly resolves it at run-time, before it is called. The routine must
be resolvable.

Alternatively, an OPTION UNRESOLVED routine can be explicitly resolved by calling the
prede�ned function addr with the routine name as its parameter. Then addr returns a routine
reference that can be assigned to a routine variable and called with the prede�ned procedure
call or fcall . If the routine cannot be resolved, addr returns nil .

Example

PROGRAM p (output);

VAR

pv : PROCEDURE;

PROCEDURE p

OPTION UNRESOLVED;

EXTERNAL;

BEGIN {p}

p; {This ...}

call(addr(p)); {is equivalent to this ...}

pv := addr(p); {and this}

call(pv);

END. {p}

Note On the HP-UX operating system, the UNRESOLVED option causes the addr
function to return nil whether or not the speci�ed routine is resolved.

8-14 Procedure Options

INLINE

The INLINE procedure option duplicates a routine wherever the program calls it. It makes
your program bigger, but faster. It is worthwhile for short routines and when speed is more
important than size.

Example

The program:

$STANDARD_LEVEL 'EXT_MODCAL'$

PROGRAM prog;

VAR

i,j,k : integer;

PROCEDURE max (l1,l2: integer;

VAR l3 : integer)

OPTION INLINE;

BEGIN

IF l1 > l2 THEN

l3 := l1
ELSE

l3 := l2 ;

END;

BEGIN

max(10,20,i);

max(i,j,k);

END.

is equivalent to the program:

PROGRAM prog;

VAR

i,j,k : integer;

BEGIN

{max(10,20,i)}

IF 10 > 20 THEN

i := 10

ELSE

i := 20;

{max(i,j,k)}

IF i > j THEN

k := i

ELSE

k := j;
END.

Procedure Options 8-15

The INLINE procedure option requires STANDARD LEVEL 'EXT MODCAL'. The
equivalent INLINE compiler option does not. Refer to the HP Pascal/iX Reference Manual
or the HP Pascal/HP-UX Reference Manual , depending on your implementation, for more
information on the INLINE compiler option.

You cannot debug inline routines with a symbolic debugger. You can debug routines that call
inline routines, but the inlined code is treated as a single statement and skipped. Breakpoints
can only be set before or after the inlined code.

8-16 Procedure Options

9

External Routines

An external routine is a routine that is not in the compilation unit that calls it. Its source
language can be the same as that of the calling compilation unit or it can be di�erent. This
chapter explains:

The EXTERNAL directive, which allows an HP Pascal compilation unit to access an
external routine.

How an HP Pascal program accesses external routines written in C, COBOL II, FORTRAN
77, FORTRAN 66/V, and SPL.

How a switch stub allows a Native Mode HP Pascal program to access an external routine
in a Compatibility Mode SL.

How a program written in C, COBOL II, FORTRAN 66/V, FORTRAN 77, or SPL accesses
an external HP Pascal routine.

EXTERNAL Directive

The EXTERNAL directive allows an HP Pascal compilation unit to access an external routine
(a routine in another compilation unit). The source code of the external routine can be any
one of the following languages:

HP Pascal
HP Pascal/V
HP C
HP COBOL II
FORTRAN 66/V
HP FORTRAN 77
SPL

Syntax

EXTERNAL

2
66666664

C

COBOL

FORTRAN

FTN77

SPL

SPL VARIABLE

3
77777775

External Routines 9-1

Parameters

None The source code of the external routine is HP Pascal or Pascal/V.

C The source code of the external routine is C. See Table 9-1 for
corresponding HP Pascal and C types.

COBOL The source code of the external routine is COBOL II. See Table 9-2 for
corresponding HP Pascal and COBOL II types.

FORTRAN The source code of the external routine is FORTRAN 66/V. The
compilation unit that makes the call must also contain the compiler
option HP3000 16 (see compiler options in the HP Pascal/iX Reference
Manual or the HP Pascal/HP-UX Reference Manual). See Table 9-3 for
corresponding HP Pascal and FORTRAN 66/V types.

FTN77 The source code of the external routine is FORTRAN 77. See Table 9-3
for corresponding HP Pascal and FORTRAN 77 types.

SPL The source code of the external routine is SPL, without option variable
parameters. The compilation unit that makes the call must also contain
the compiler option HP3000 16 (see compiler options in the HP Pascal/iX
Reference Manual or the HP Pascal/HP-UX Reference Manual). See
Table 9-4 for corresponding HP Pascal and SPL types.

SPL VARIABLE The source code of the external routine is SPL, with optional variable
parameters. You must specify SPL VARIABLE (rather than SPL) if
the external routine has option parameters, even if you do not omit
parameters when you call the routine. The compilation unit that makes
the call must also contain the compiler option HP3000 16 (see compiler
options in the HP Pascal/iX Reference Manual or the HP Pascal/HP-UX
Reference Manual). See Table 9-4 for corresponding HP Pascal and SPL
types.

The programmer is responsible for matching the formal parameters and result type of the
routine containing the EXTERNAL directive with the formal parameters and result type of
the external routine. The matching rules are:

Corresponding formal parameter lists must have the same number of parameters in the
same order.

Corresponding formal parameters must be of corresponding types. (Correspondence depends
upon the source language of the external routine. See the parameter descriptions, below.)

Corresponding formal parameters can have di�erent names.

The INTRINSIC directive is more
exible about matching. See Chapter 10 for details.

9-2 External Routines

The EXTERNAL directive replaces the block in a routine declaration (see the HP Pascal/iX
Reference Manual or the HP Pascal/HP-UX Reference Manual for details). The declaration
containing the EXTERNAL directive can be at any level, but the external routine itself must
be at level one in its own compilation unit.

Example 1

The Pascal program Pascal_Pascal calls the external Pascal procedure psubproc. This is the
program:

$GLOBAL$

PROGRAM Pascal_Pascal(output);

CONST

looplimit = 10;

TYPE

loopbound = 1..looplimit;

VAR

loop : loopbound;

global,

dynamic,

static : integer;

PROCEDURE psubproc (parm1 : integer;

VAR parm2 : integer); EXTERNAL;

BEGIN {pascal_pascal}

dynamic := 0;

FOR loop := 1 to looplimit DO BEGIN

IF loop <= 5 THEN

static := 10

ELSE

static := 20;

global := loop;

psubproc(static,dynamic);

write('Cycle = ', loop, 'Total = ', dynamic);
END;

write('Finish processing');

END. {pascal_pascal}

External Routines 9-3

This is the external Pascal procedure:

$EXTERNAL$

PROGRAM PASCALSUB;
VAR

global : integer;

PROCEDURE psubproc (adder : integer;

VAR total : integer);

VAR

localconstant : integer;

BEGIN {psubproc}

IF (global MOD 2) = 0 THEN

localconstant := adder * 2

ELSE

localconstant := adder;

total := total + localconstant;

END; {psubproc}

BEGIN

END.

You can use the EXTERNAL directive with procedure declarations in the implement part of a
module. In such a procedure declaration, repeating the formal parameters is optional. If you
do repeat them, they must be identical to those in the export section.

Example 2

MODULE m;

EXPORT

PROCEDURE proc1 (VAR parm1 : integer;

VAR parm2 : char);

PROCEDURE proc2 (VAR parm1 : integer);

IMPLEMENT

PROCEDURE proc1; {formal parameters omitted}

EXTERNAL;

PROCEDURE proc2 (VAR parm1 : integer); {formal parameter repeated}

EXTERNAL;

END;

Use the EXTERNAL directive in exported procedures to link routines written in other
languages into your program. You are responsible for ensuring that the formal parameters of
the exported procedure correspond to those of the actual external procedure.

Note Do not confuse the EXTERNAL directive with the EXTERNAL
compiler option. Refer to the HP Pascal/iX Reference Manual or the HP
Pascal/HP-UX Reference Manual , depending on your implementation, for
information on the EXTERNAL compiler option.

9-4 External Routines

Calling HP C from HP Pascal

The table and example in this section assume that the HP Pascal program and the C routine
that it calls are both compiled in Native Mode. If the C routine is in a Compatibility Mode
SL instead, you must write a switch stub to access it from your HP Pascal program (see
\Switch Stubs").

For more information on C types, please refer to the HP C Programmer's Guide.

Table 9-1 matches corresponding HP Pascal and C types. It contains only the types that are
acceptable for formal intrinsic parameters. The variable n is an integer.

Table 9-1. Corresponding HP Pascal and HP C Types

HP Pascal Type Corresponding HP C Types

Array: Not PACKED Array of corresponding type1

Array: PACKED Array of corresponding type1

Bit16 unsigned short

Bit32 unsigned int

Bit52 struct with two unsigned ints

Boolean (false = 0, true = 1) Character or integer (false = 0, true <> 0)2

Char unsigned char

Enumerated 256 or fewer elements unsigned char3

Enumerated 257 or more elements unsigned short or int3

File Not available8

Function Function

Function parameter or variable Pass a pointer that references a C function6

Integer int or long

Longint struct with two unsigned ints

Longreal double or long float

PAC of n characters Array of char, index = 1..n-1

Pointer: Not EXTNADDR Pointer to corresponding type

Pointer: EXTNADDR Long ptr to corresponding type7

Procedure void function

Procedure parameter or variable Pass a pointer that references a C function6

Real float9

Record struct or union4

External Routines 9-5

Table 9-1. Corresponding HP Pascal and HP C Types (continued)

HP Pascal Type Corresponding HP C Types

Set Not available

Shortint short

String char *5

String[n] char *5

VAR parameter: Not EXTNADDR Pointer to parameter

VAR parameter: EXTNADDR Long pointer to parameter7

0..65535 unsigned short

Table 9-1 Notes

1. The lower bound of an HP Pascal array can be any integer, but the lower bound of a C
array must be zero.

2. HP Pascal allocates one byte for a Boolean variable. It stores the value in the rightmost
bit.

3. A C enumerated variable corresponds to an HP Pascal integer , but an HP Pascal
enumerated variable corresponds to a C unsigned char if it is one byte, a C unsigned short
if it is two bytes, and a C unsigned int if it is four bytes.

4. A C union type corresponds to the variant part of an HP Pascal record type. For example:

The C type union

typedef union

{

int In ;

real Re ;

unsigned char Ch ;

} UnionType ;

corresponds to the untagged HP Pascal record variant

UnionType = RECORD CASE integer OF

1 : (In : integer) ;

2 : (Re : real) ;

3 : (Ch : char) ;

END ;

while the tagged HP Pascal record variant

Tagged_UnionType = RECORD CASE Tag : integer OF

1 : (In : integer) ;

2 : (Re : real) ;

END ;

9-6 External Routines

corresponds to the C struct type

typedef struct

{
Tag : int ;

union

{

int : In ;

float : Re ;

}

} Tagged_UnionType ;

5. The value of an HP C variable of type (char *) ends with a NULL. The HP Pascal type
string[n] , where n is the maximum length, corresponds to the HP C type (char *), but has
a di�erent layout.

HP Pascal treats string parameters to external C routines di�erently. Just before the call
to the C routine, HP Pascal puts a NULL character after the current length of the HP
Pascal string parameter. The address sent to the C routine is that of the data part of
the HP Pascal string parameter. When the C routine returns to the HP Pascal program,
HP Pascal strips the NULL character from the HP Pascal string and updates its current
length.

6. To pass an actual parameter of this type to a C routine, declare the formal parameter in
the EXTERNAL declaration to be of type integer (in the Pascal compilation unit that
makes the call). Before calling the C routine, call the prede�ned function waddress to get
the integer address of the Pascal routine. Pass the integer address to the C routine. For
example:

A C function:

int Signal (Sig , Func)

int Sig ;

int (*Func) () ; /* functional parameter */

{

...

}

A portion of the HP Pascal program that calls the C function:

{ EXTERNAL declaration for C function Signal }

FUNCTION Signal (Sig : integer ; Func : integer) ;

EXTERNAL C ;

{ Procedure whose address is passed to C function Signal }

PROCEDURE Signal_Handler (Sig : integer) ;

BEGIN

...
END ;

BEGIN { main program }

{ Actual call to C function Signal }

Dummy := Signal(3 , waddress(Signal_Handler)) ;

END .

External Routines 9-7

7. Declaring a long pointer in C is analogous to declaring an ordinary pointer in Pascal,
except that the *" is replaced by \^". For example,

int Func (Rec)

struct Stat ^Rec ;

declares Rec to be a VAR $EXTNADDR$ of type Stat.

8. Limited compatibility exists if the callee is written in C to do raw I/O (using read(2) or
write(2)) on a Pascal �le. Such functions can be called from Pascal by passing the result of
a call to fnum(pascal �le) to the C function.

9. If you are passing a real parameter to a C routine that expects a
oat you must compile
the routine in ANSI mode or with the +r option to the C compiler. This insures that
oats
are not promoted to doubles. Otherwise, you should pass a longreal value. (For more
information refer to the HP C Programmer's Guide.

Example 1

The Pascal program Pascal_C calls the external C routine add, passing a VAR parameter.

Pascal program:

PROGRAM Pascal_C (input,output);

VAR

int1,

int2,

int3 : integer;

PROCEDURE add (parm1 : integer;

parm2 : integer;

VAR parm3 : integer); EXTERNAL C;

BEGIN

int1 := 25000;

int2 := 30000;

add(int1,int2,int3);
writeln(int3);

END.

C routine:

void add (a,b,c)

int a,b;

int *c;

{

*c = a + b;

}

9-8 External Routines

Example 2

The Pascal program Pascal_C2 calls the external C routine cread. The Pascal program
passes a string parameter to the C routine.

Pascal program:

PROGRAM Pascal_C2 (output);

VAR

str : string[40];

FUNCTION c_read (VAR s : string) : Boolean; EXTERNAL C;

BEGIN

setstrlen(str,0);

IF c_read(str) THEN

writeln('str = ', str)

ELSE

writeln('couldn''t read str');

END.

C routine:

#include <stdio.h>

int c_read(s) /* no Boolean type in C */

char *s;

{

return (fgets(stdin,s) >= 0);

}

External Routines 9-9

Calling COBOL II from HP Pascal

The table and example in this section assume that the HP Pascal program and the COBOL
II routine that it calls are both compiled in Native Mode. If the COBOL II routine is in a
Compatibility Mode SL instead, you must write a switch stub to access it from your HP
Pascal program (see \Switch Stubs").

Table 9-2 matches corresponding HP Pascal and COBOL II types. (It contains only the types
that are acceptable for formal intrinsic parameters.) The variable n is an integer.

Table 9-2. Corresponding HP Pascal and Cobol II Types

HP Pascal Type Corresponding Cobol II Types

Array: Not PACKED Array of corresponding type.
Specify SYNC.

Array: PACKED Array of corresponding type.
Do not specify SYNC.

Boolean (false = 0, true = 1) Not available.

Char PIC X (8 bits).

Enumeration Not available.

File Not available.

Function Not available.

Function parameter or variable Not available.

Integer (1) PIC S9(5) to S9(9)
(2) Level 01, 77, or SYNC without
$CONTROL SYNC 16

(3) COMP or BINARY

Longreal Not available.

PAC of n characters PIC X(n) (8 bits).

Pointer Not available.

Procedure Not available.

Procedure parameter or variable Not available.

Real Not available.

Record Build equivalent record.

Set Not available.

Shortint Any one of the following:
(1) PIC S9 to S9(4)
(2) LEVEL 01, 77, or SYNC
without $CONTROL SYNC 16

(3) COMP or BINARY

String Not available.

String[n] Build equivalent record.

VAR parameter Default.

9-10 External Routines

Example

The Pascal program Pascal_COBOL calls the external COBOL II routine subprog1.

Pascal program:

PROGRAM Pascal_COBOL (input,output);

VAR

int1,

int2,

int3 : integer;

PROCEDURE subprog1 (VAR parm1 : integer;

VAR parm2 : integer;

VAR parm3 : integer); EXTERNAL COBOL;

BEGIN

int1 := 25000;

int2 := 30000;

subprog1(int1,int2,int3);

writeln(int3);

END.

COBOL routine:

$CONTROL SUBPROGRAM

IDENTIFICATION DIVISION.

PROGRAM-ID. SUBPROG1.

AUTHOR. BP.

DATA DIVISION.

LINKAGE SECTION.

77 IN1 PIC S9(07) COMP.

77 IN2 PIC S9(07) COMP.
77 OUT PIC S9(07) COMP.

PROCEDURE DIVISION USING IN1, IN2, OUT.

PARA-1.

ADD IN1, IN2, GIVING OUT.

EXIT PROGRAM.

External Routines 9-11

Calling FORTRAN 77 from HP Pascal

The table and example in this section assume that the HP Pascal program and the
FORTRAN 77 routine that it calls are both compiled in Native Mode. If the FORTRAN 77
routine is in a Compatibility Mode SL instead, you must write a switch stub to access it from
your HP Pascal program (see \Switch Stubs").

Table 9-3 matches corresponding HP Pascal and FORTRAN 77 or FORTRAN 66/V types. (It
contains only the types that are acceptable for formal intrinsic parameters.) The variable n is
an integer.

Table 9-3.

Corresponding HP Pascal and FORTRAN 77 or FORTRAN 66/V Types

HP Pascal Type Corresponding FORTRAN 77 or
FORTRAN 66/V Type

Array: Not PACKED An array of a corresponding type. (Pascal
arrays are stored in row-major order;
FORTRAN arrays are stored in
column-major order.)

Array: PACKED Not available

Boolean (false = 0, true = 1) LOGICAL*1 (false = 0, true = 1)

Char CHARACTER

Enumeration Not available

File Not available

Function Function3

Function parameter or variable Not available

Integer INTEGER*4

Longreal REAL*8 or DOUBLE PRECISION

PAC of n characters CHARACTER*x, x in 1..n 1,2

Pointer Not available

Procedure Subroutine3

Procedure parameter or variable Not available

Real REAL or REAL*4

Record Build equivalent record

Set Not available

9-12 External Routines

Table 9-3.

Corresponding HP Pascal and FORTRAN 77 or FORTRAN 66/V Types

(continued)

HP Pascal Type Corresponding FORTRAN 77 or
FORTRAN 66/V Type

Shortint INTEGER*2

String CHARACTER*(*)2

String[n] CHARACTER*(*)2

VAR parameter Default parameter mechanism

RECORD
real part : real ;
imaginary part : real ;
END ;

COMPLEX

Table 9-3 Notes

1. When you call a Pascal routine from a FORTRAN routine, use the FORTRAN directive
$ALIAS in the FORTRAN compilation unit to specify a nonstandard calling sequence for
the Pascal routine. Specify %REF for each character string parameter (the FORTRAN
default for character strings is %DESCR). See the example in \How Non-Pascal Programs
Call Pascal Routines".

2. For calling FORTRAN 77 from Pascal only. In the FORTRAN 77 compilation unit, declare
the parameter as CHARACTER*n or CHARACTER*(*). For a PAC type HP Pascal
parameter, HP Pascal passes the address followed by the length. For either string type HP
Pascal parameter, HP Pascal passes the address of the data part of the string followed by
its current length. The current length is loaded from the length �eld. For example:

A FORTRAN 77 routine:

CHARACTER*40 FUNCTION F77_Func (Str1,Str2)

CHARACTER*80 Str1

CHARACTER*(*) Str2

...

RETURN

END

An HP Pascal program that calls the FORTRAN 77 routine:

TYPE

Str40 = string[40] ;

Pac80 = PACKED ARRAY [1..80] OF char ;

FUNCTION F77_Func (VAR Str1 : Pac80 ;

VAR Str2 : Str40) : Str40 ;

EXTERNAL FTN77 ;

VAR
Vbl1, Vbl2 : Str40 ;

Pac1 : Pac80 ;

External Routines 9-13

BEGIN { main program }

...
Vbl2 := strrtrim(F77_Func(Vbl1,Pac1)) ;

...

END ;

3. This is not correctly implemented in FORTRAN 77.

Example

The Pascal program Pascal Fort calls the external FORTRAN 77 routine FORTPRC .

Pascal program:

PROGRAM Pascal_Fort (input,output);

TYPE

char_str = PACKED ARRAY [1..20] OF char;

VAR
a_str : char_str;

int1,

int2,

sum : integer;

PROCEDURE fortprc (VAR cstr : char_str;

VAR inta : integer;

VAR intb : integer;

VAR total : integer); EXTERNAL FTN77;

BEGIN

a_str := 'Add these 2 numbers:';

int1 := 25;

int2 := 15;

writeln(a_str,int1,int2);

fortprc(a_str,int1,int2,sum);

writeln(a_str,sum);

END.

FORTRAN 77 routine:

SUBROUTINE FORTPRC(CSTR,INT1,INT2,SUM)

INTEGER INT1, INT2, SUM

CHARACTER CSTR*20

SUM = INT1 + INT2

CSTR = "SUM OF TWO NUMBERS: "

RETURN
END

Note that on HP-UX, you must compile this code with f77 +800 command-line option or the
FORTRAN $HP9000_800 directive.

9-14 External Routines

Calling FORTRAN 66/V from HP Pascal

FORTRAN 66/V is a Compatibility Mode language only. The FORTRAN 66/V routine that
your HP Pascal program calls must reside in a Compatibility Mode SL, and you must write a
switch stub to access it from your HP Pascal program (see \Switch Stubs").

The directive EXTERNAL FORTRAN passes parameters the same way in HP Pascal as it
does in FORTRAN 66/V.

For corresponding HP Pascal and FORTRAN 66/V types, see Table 9-3 in \Calling
FORTRAN 77 from HP Pascal".

Example

The Pascal program Pass_heap_var calls the external FORTRAN 66/V routine FORT.

Pascal program:

$HP3000_16$

PROGRAM Pass_heap_var (input,output);

TYPE

ptr = ^arr;

arr = PACKED ARRAY [1..80] OF char;

VAR

aptr : ptr;

PROCEDURE fort (VAR arrptr : arr); EXTERNAL FORTRAN;

BEGIN

new(aptr);

aptr^ := 'I am a dynamic variable';

fort (aptr^);

END.

FORTRAN 66/V routine:

SUBROUTINE FORT(PTRARR)

CHARACTER PTRARR(80)

DISPLAY PTRARR

RETURN

END

External Routines 9-15

Calling SPL from HP Pascal

SPL is a Compatibility Mode language only. The SPL routine that your HP Pascal program
calls must reside in a Compatibility Mode SL, and you must write a switch stub to access
it from your HP Pascal program. The switch stub cannot be written in SPL. (See \Switch
Stubs".)

The directive EXTERNAL SPL passes parameters the same way in HP Pascal as it does in
Pascal/V.

Table 9-4 matches corresponding HP Pascal and SPL types. (It contains only the types that
are acceptable for formal intrinsic parameters.) The variable n is an integer.

Table 9-4. Corresponding HP Pascal and SPL Types

HP Pascal Type Corresponding SPL Type

Array: Not PACKED Array of corresponding type.

Array: PACKED Array of corresponding type.

Bit16 Logical.

Bit32 Array of logical

Bit52 Array of logical

Boolean (false = 0, true = 1) Byte (odd is false, even is true).

Char Byte.

Enumeration 256 or fewer elements Byte.

Enumeration 257 or more elements Logical.

File Not available.

Function Typed procedure.

Function parameter or variable Not available.

Integer Double.

Longint Array of logical

Longreal (HP3000 16) Longreal.

PAC of n characters Byte array.

Pointer Not EXTNADDR Not available.

Pointer EXTNADDR Not available.

Procedure Procedure.

Procedure parameter or variable Not available.

Real (HP3000 16) Real.

9-16 External Routines

Table 9-4. Corresponding HP Pascal and SPL Types (continued)

HP Pascal Type Corresponding SPL Type

Record Not available, but you can lay out the equivalent.

Set Not available.

Shortint Integer.

String Not available, but you can lay out the equivalent.

String[n] (by value only) Not available, but you can lay out the equivalent.

VAR parameter Not EXTNADDR Address of parameter.

VAR parameter EXTNADDR Not available.

-32768..32767 Integer.

0..65535 Logical.

External Routines 9-17

Example 1

The Pascal program Pascal_SPL calls the external SPL routine splprc.

Pascal program:

$HP3000_16$

PROGRAM Pascal_SPL (input,output);

TYPE

char_str = PACKED ARRAY [1..20] OF char;

small_int = -32768..32767;

VAR

a_str : char_str;

int1,

int2,

sum : small_int;

PROCEDURE splprc (VAR cstr : char_str;

inta : small_int;

intb : small_int;

VAR total : small_int); EXTERNAL SPL;

BEGIN

a_str := 'Add these 2 numbers:';

int1 := 25;

int2 := 15;

writeln(a_str,int1,int2);

splprc(a_str,int1,int2,sum);

writeln(a_str,sum);

END.

SPL routine:

$CONTROL SUBPROGRAM

BEGIN

PROCEDURE splprc(cstr,int1,int2,sum);

VALUE int1,int2;

INTEGER int1,int2,sum;

BYTE ARRAY cstr;

BEGIN

sum := int1 + int2;

MOVE cstr := "Sum of two numbers: ";

END;

END.

9-18 External Routines

Example 2

The Pascal program Pascal_SPL_V calls splprv, an external SPL routine with variable
parameters.

Pascal program:

$HP3000_16$

PROGRAM Pascal_SPL_V (input,output);

TYPE

char_str = PACKED ARRAY [1..20] OF char;

small_int = -32768..32767;

VAR

a_str : char_str;

int1,

int2,

sum : small_int;

PROCEDURE splprv (VAR cstr : char_str;

inta : small_int;

intb : small_int;

VAR total : small_int);

EXTERNAL SPL VARIABLE;

BEGIN

a_str := 'Add these 2 numbers:';

int1 := 25;

int2 := 15;

writeln(a_str,int1,int2);

splprv(a_str,int1,int2,sum);

writeln(a_str,sum);
END.

SPL routine with variable parameters:

$CONTROL SUBPROGRAM

BEGIN

PROCEDURE splprv(cstr,int1,int2,sum); OPTION VARIABLE;

VALUE int1,int2;

INTEGER int1,int2,sum;

BYTE ARRAY cstr;

BEGIN

sum := int1 + int2;

MOVE cstr := "Sum of two numbers: ";

END;

END.

External Routines 9-19

Switch Stubs

A switch stub is a program that allows your HP Pascal program, which is compiled in Native
Mode (the default on PA-RISC machines) to call a routine compiled in Compatibility Mode
(the default on earlier HP 3000 machines). The routine must reside in a Compatibility Mode
SL.

Figure 9-1 shows how a switch stub works. When the program calls the routine, what actually
happens is that the program calls the switch stub (in Pascal) and the switch stub calls the
routine in the Compatibility Mode SL. This is transparent to the program and routine (except
for performance, which is slower). It is the responsibility of the switch stub to make whatever
transformations are necessary to call the Compatibility Mode routine.

Figure 9-1. How a Switch Stub Works

You must write a switch stub for each Compatibility Mode routine that your program calls.
The Switch Assist Tool (SWAT), an interactive utility, can help you write your switch stubs
(see step 2 of the example in \Calling SPL from HP Pascal"). For more information, refer to
the Switch Programming Guide.

9-20 External Routines

How Non-Pascal Programs Call Pascal Routines

A program written in C, COBOL II, FORTRAN 66/V, FORTRAN 77, or SPL can call an
external routine written in HP Pascal. You must match the formal parameters and result type
of the HP Pascal routine with those that the calling program speci�es.

The matching rules are:

Corresponding formal parameter lists must have the same number of parameters in the
same order. If the Pascal routine requires hidden parameters, the non-Pascal routine must
have actual parameters that correspond to them (see Chapter 7 for details).

Corresponding formal parameters must be of corresponding types. Correspondence depends
upon the source language of the external routine. See the parameter descriptions in
\EXTERNAL Directive".

Corresponding formal parameters can have di�erent names.

Example 1

This C program calls the external Pascal procedure pas:

main()

{ extern void pas(); /*This is non ANSI C */

char carr[21];

short sint1, sint2;

short sum;

strcpy(carr, "Add these 2 numbers ");

sint1 = 25;
sint2 = 15;

pas(carr, sint1, sint2, &sum);

}

This Pascal program contains the procedure pas:

$SUBPROGRAM$

PROGRAM Pas_Proc;

TYPE

arr = PACKED ARRAY [1..21] OF char;

PROCEDURE pas (VAR carr : arr;

sint1 : shortint;

sint2 : shortint;

VAR sum : shortint);

BEGIN

carr := 'Sum of two numbers: '#0;

sum := sint1 + sint2;

END;

BEGIN

END.

External Routines 9-21

Example 2

The COBOL II program COBOL-TO-PASCAL calls the external Pascal procedure pasprog.

COBOL II program:

IDENTIFICATION DIVISION.

PROGRAM-ID. COBOL-TO-PASCAL.

AUTHOR. BP.

DATA DIVISION.

WORKING-STORAGE SECTION.

77 ASTRING PIC X(16) VALUE "A COBOL STRING!".

77 ANUM PIC 9(04) USAGE COMP.

77 ANUM2 PIC 9(04) USAGE COMP.

77 RESULT PIC -ZZZZ.

PROCEDURE DIVISION.

FIRST-PARA.

MOVE 9999 TO ANUM.

DISPLAY ASTRING.

CALL "PASPROG" USING ASTRING, \ANUM\, ANUM2.

MOVE ANUM2 TO RESULT.

DISPLAY ASTRING, RESULT.

STOP RUN.

Pascal procedure:

$SUBPROGRAM$

PROGRAM pas_proc;

TYPE

charstr = PACKED ARRAY [1..16] OF char;

PROCEDURE pasprog(VAR astr : charstr;
num : short_int;

VAR num2 : short_int);

BEGIN

astr := 'A PASCAL STRING!';

num2 := num;

END;

BEGIN

END.

9-22 External Routines

Example 3

The following FORTRAN 66/V program calls the external Pascal procedure pas:

INTEGER INT1, INT2, ISUM

CHARACTER CSTR*20

CSTR = "Add these 2 numbers"

INT1 = 25

INT2 = 15

DISPLAY CSTR, INT1, INT2

CALL PAS(CSTR,\INT1\,\INT2\,ISUM)

DISPLAY CSTR, ISUM

STOP

END

Pascal procedure:

$SUBPROGRAM$

PROGRAM example(input,output);

TYPE

arr = PACKED ARRAY [1..20] OF char;

small_int = -32768..32767;

PROCEDURE pas $CHECK_ACTUAL_PARM 0; CHECK_FORMAL_PARM 0$

(VAR carr : arr;

sint : small_int;

sint2 : small_int;

VAR sum : small_int);

BEGIN

carr := 'Sum of two numbers: ';

sum := sint1 + sint2;

END;

BEGIN

END.

External Routines 9-23

Example 4

The following FORTRAN77 program calls the external Pascal procedure pas:

$ALIAS PAS(%REF,%VAL,%VAL,%REF)

INTEGER INT1, INT2, ISUM

CHARACTER CSTR*20

CSTR = "Add these 2 numbers"

INT1 = 25

INT2 = 15

PRINT *, CSTR, INT1, INT2

CALL PAS(CSTR, INT1, INT2, ISUM)

PRINT *, CSTR, ISUM

STOP

END

Pascal procedure:

$SUBPROGRAM$

PROGRAM example;

TYPE

arr = PACKED ARRAY [1..20] OF char;

small_int = -32768..32767;

PROCEDURE pas(VAR carr : arr;

sint : small_int;

sint2 : small_int;

VAR sum : small_int);

BEGIN

carr := 'Sum of two numbers: ';

sum := sint1 + sint2;

END;

BEGIN

END.

9-24 External Routines

Example 5

The following SPL program calls the external Pascal procedure pas:

BEGIN

LOGICAL ARRAY chr(0:9) := "Add these 2 numbers:";

BYTE ARRAY bchr(*) = chr;

INTEGER sint:=15,sint2:=25,len;

INTEGER int, int2, sum;

BYTE ARRAY csum(0:1), cint(0:1), cint2(0:1);

INTRINSIC PRINT,ASCII

PROCEDURE pas(chr,sint,sint2,sum);

VALUE sint,sint2;

INTEGER sint,sint2,sum;

BYTE ARRAY chr;

OPTION EXTERNAL;

PRINT(chr,10,0);

len := ASCII(sint,-10,cint);

len := ASCII(sint2,-10,cint2);

PRINT(cint,-2,0);

PRINT(cint2,-2,0);

pas(chr,sint,sint2,sum);

PRINT(chr,10,0);

len := ASCII(sum,-10,csum);

PRINT(csum,-2,0);

END.

Pascal procedure:

$HP3000_16$

$SUBPROGRAM$

PROGRAM example;

TYPE

arr = PACKED ARRAY [1..20] OF char;

small_int = -32768..32767;

PROCEDURE pas(VAR carr : arr;

sint : small_int;

sint2 : small_int;

VAR sum : small_int);

BEGIN

carr := 'Sum of two numbers: ';

sum := sint1 + sint2;

END;

BEGIN

END.

External Routines 9-25

How To Do Pascal I/O with a Non-Pascal Outer Block

Normally, the outer block of a Pascal program allocates space for the default text �les stdin,
stdout, and stderr. The outer block allocates space even if these �les are referenced through
Pascal modules (see Appendix A and Appendix B). The outer block also opens these standard
�les.

In addition, the outer block performs initialization for trap handling for TRY RECOVER and
for the standard Pascal module arg.

If the outer block is non-Pascal, the following routine can be used to allocate space, open the
default �les, and initialize trap handling and the module arg.

Example

To compile on MPE/iX, on the command line type:

pasxl initstuf,,$null;info="set 'hpux=false'"

To compile on HP-UX, on the command line type:

pc -c -Dhpux=true init_stuff.p

The �le (initstuf on MPE/iX or init_stuff.p on HP-UX) is as follows:

{ how to have a non-pascal outer block and still do pascal i/o }

$if 'hpux'$

{ pascal doesn't buffer these files, uses hp-ux system calls }

{ also initialize the data for the module arg, and so that

the names on the command line are used for file opens. }

$endif$

$global; subprogram$ { allocates text files }

$literal_alias on$

program dick(input,output

$if 'hpux'$,stderr $endif$);

$if 'hpux'$

type argtype = packed array[1..32000] of char;

argarray= array[0..32000] of ^argtype;

argarrayptr = ^argarray;

var argc $alias '__argc_value'$: integer;
argv $alias '__argv_value'$: argarrayptr;

env $alias '_environ'$: argarrayptr;

procedure p_init_args $alias 'P_INIT_ARGS'$(c:integer;

v,e:argarrayptr); external;

$endif$

procedure u_init_traps $alias 'U_INIT_TRAPS'$; external;

(Example continued on next page.)

9-26 External Routines

procedure initialize_pascal_standard_files;

begin

$if 'hpux'$
p_init_args(argc,argv,env); { initialize for module arg }

$endif$

u_init_traps; { initialize for trap handling }

{ now open standard files }

reset(input,'$stdin','shared');

rewrite(output,'$stdlist');

$if 'hpux'$

rewrite(stderr,'$stderr');

$endif$

end;

begin end.

External Routines 9-27

10

Intrinsics

An intrinsic is an external routine that can be called by a program written in any language
that the operating system supports. An intrinsic can be written in any supported language,
but its formal parameters must be of types that have counterparts in the other supported
languages.

An intrinsic de�nition resides in an intrinsic �le (though its code resides in a library). You can
use existing intrinsics as they are, modify them, or de�ne new intrinsics. You can put new
intrinsics in new or existing intrinsic �les and libraries. Your program can access any intrinsic
by declaring it and specifying the intrinsic �le that de�nes it.

This chapter:

Explains how your program can use intrinsics.
Tells you how to de�ne an intrinsic.
Tells you how to build or change an intrinsic �le.

Using Intrinsics

To use an intrinsic, your program must specify the intrinsic �le in which its de�nition resides
and declare the intrinsic with the INTRINSIC directive. How your program can declare the
intrinsic as a routine|specifying all, part, or none of its formal parameters|depends upon its
de�nition in the intrinsic �le.

This section explains:

How to specify intrinsic �les.

How to declare an intrinsic with the INTRINSIC directive.

Actual and intrinsic parameter compatibility.

How to declare formal function types for an intrinsic.

How to declare formal parameters for an intrinsic to ensure stricter type checking for actual
parameters.

How to use an intrinsic function as a procedure.

Intrinsics 10-1

Specifying Intrinsic Files

When compiling a program that references an intrinsic, the compiler reads the intrinsic
de�nition from an intrinsic �le. The intrinsic �le can be the default intrinsic �le for the
system, or it can be one that you or another programmer built (see \How to Build or Change
an Intrinsic File"). The program can specify di�erent intrinsic �les for di�erent intrinsics.

The SYSINTR compiler option determines the intrinsic �le. If the program does not
contain a SYSINTR option, or if the SYSINTR option does not specify a �le name, the
compiler reads intrinsic de�nitions from the default intrinsic �le. (The default intrinsic �le is
system-dependent. See Appendix A for the MPE/iX operating system; Appendix B for the
HP-UX operating system.) Otherwise, the compiler reads intrinsic de�nitions from the �le
that the SYSINTR option speci�es, until another SYSINTR option speci�es another �le. (See
the HP Pascal/iX Reference Manual or the HP Pascal/HP-UX Reference Manual , depending
on your implementation, for more information on the SYSINTR compiler option.)

To list an intrinsic �le, use the LISTINTR compiler option (refer to the HP Pascal/iX
Reference Manual the HP Pascal/HP-UX Reference Manual , depending on your
implementation, for more information on the LISTINTR compiler option).

Note The compiler options LITERAL ALIAS and UPPERCASE apply to all
external routine names, including intrinsic names. When either of these
options is set, the compiler performs a case-sensitive search of the intrinsic �le
for the intrinsic names.

INTRINSIC Directive

The INTRINSIC directive allows a program to access an intrinsic routine. It follows the
routine declaration.

Example

PROGRAM p;

VAR

f,m : shortint;

PROCEDURE FSETMODE; INTRINSIC;

BEGIN

FSETMODE(f,m);

END.

The program p can call the intrinsic procedure FSETMODE because it declares it with the
INTRINSIC directive.

The system name of an intrinsic is the name by which the operating system recognizes it, the
name that it has in the intrinsic �le.

The system names of some intrinsics are illegal in HP Pascal. If you want to use such an
intrinsic in your program, give it a legal name in your program and specify its system
name with the ALIAS compiler option (refer to the HP PascaliX Reference Manual the HP
Pascal/HP-UX Reference Manual , depending on your implementation, for more information
on ALIAS).

10-2 Intrinsics

Example

$SYSINTR 'myintr'$ {myintr contains the intrinsic P'F'INFO}

PROGRAM q (output);

PROCEDURE pfileinfo $ALIAS 'P''F''INFO'$; INTRINSIC;

BEGIN

pfileinfo;

END.

The name P'F'INFO is illegal in HP Pascal because it contains single quotes. The program q
can call the intrinsic procedure P'F'INFO by the name p�leinfo because it declares it with the
INTRINSIC directive and speci�es its system name with the ALIAS compiler option.

Actual and Intrinsic Parameter Compatibility

An intrinsic's actual parameters are those with which your program calls it. Its intrinsic
parameters are those in its de�nition, in the intrinsic �le. Its formal parameters are those that
your program declares for it.

Formal parameters are optional. If you do not declare them, you can pass the intrinsic actual
parameters of types that would otherwise be incompatible. Usually, programmers want this

exibility; therefore, they rarely declare formal parameters.

If you do not declare a formal parameter, its actual parameters are type-checked against
their corresponding intrinsic parameters. Type checking depends upon whether the intrinsic
parameter is a reference, value, or function or procedure parameter. The following subsections
explain these three cases, using these terms:

alignment-compatible An actual and intrinsic parameter are alignment-compatible if the
actual parameter is aligned on the same or a larger boundary
than the intrinsic parameter. For example, a 2- or 4-byte-aligned
actual parameter is alignment-compatible with a 2-byte-aligned
intrinsic parameter. A byte-aligned actual parameter is not
alignment-compatible with a 2-byte-aligned intrinsic parameter.

size-compatible An actual and intrinsic parameter are size-compatible if the actual
parameter is allocated more or the same amount of space as the
intrinsic parameter. For example, a 2- or 4-byte actual parameter is
size-compatible with a 2-byte intrinsic parameter. A 1-byte actual
parameter is not size-compatible with a 2-byte intrinsic parameter.

intrinsic-compatible See Table 10-1 for reference parameters; Table 10-2 for value
parameters.

Intrinsics 10-3

Reference Parameter Compatibility

A reference parameter is a parameter that is passed by reference. VAR, ANYVAR, and
READONLY parameters are reference parameters.

All actual reference parameters must be alignment-compatible with their corresponding
intrinsic parameters. Actual VAR and READONLY parameters must also be size-compatible
and intrinsic-compatible with their corresponding intrinsic parameters.

An intrinsic and an actual reference parameter are intrinsic-compatible if their types are in the
same row of Table 10-1. The intrinsic parameter type is the type of the intrinsic parameter, as
the intrinsic �le declares it. The actual parameter type is the type of the actual parameter.

Table 10-1.

Intrinsic-Compatible Intrinsic and Actual Reference Parameter Types

Intrinsic Parameter Type Actual Parameter Type

Array Any type

Boolean Boolean

Char Char

Integer Integer

Integer Integer subrange m..n with either
m < 0 or m >= 0 and n >65535

Integer subrange
m..n

m < 0, or m >= 0,
n > 65535

Integer, or integer subrange m..n with either
m < 0 or m >= 0 and n >65535

Integer Bit32

Integer subrange
m..n

m >= 0 and n <= 65535 Integer subrange m..n with m >= 0 and
n <= 65535

Integer subrange
m..n

m >= 0 and n <= 65535 Bit16

Longreal Longreal

Real Real

Record Any type

Set Any type

Shortint Bit16

Shortint Shortint

Shortint Integer

Shortint Integer subrange m..n (except where m>=0 and
n<=255)

10-4 Intrinsics

Value Parameter Compatibility

A value parameter is a parameter that is passed by value. All parameters except VAR,
ANYVAR, READONLY, function, and procedure parameters are value parameters.

An actual value parameter of a structured type (array, record, or set) must be the same size
as its corresponding intrinsic parameter. An actual value parameter of an unstructured type
must be assignment-compatible with its corresponding intrinsic parameter.

Table 10-2 shows which intrinsic and actual value parameter types are intrinsic-compatible. It
also shows, for each intrinsic parameter type, which of the compatible actual parameter types
are converted to that intrinsic parameter type, and which are not. The intrinsic parameter
type is the type of the parameter as the intrinsic �le declares it. The actual parameter type is
the type of the actual parameter.

Table 10-2. Intrinsic-Compatible Intrinsic and Actual Value Parameter Types

Intrinsic
Parameter Type

Actual Parameter Type

Not Converted to
Intrinsic Type

Converted to Intrinsic
Type

Array Any type

Boolean Boolean

Char Char

Integer or
Integer Subrange

Array
Bit16
Bit32
Bit52
Integer
Integer Subrange
Longint
Record
Set
Shortint

Longreal Longreal Bit16
Bit32
Bit52
Integer
Integer Subrange
Longint
Real
Shortint

Intrinsics 10-5

Table 10-2.

Intrinsic-Compatible Intrinsic and Actual Value Parameter Types (continued)

Intrinsic
Parameter Type

Actual Parameter Type

Not Converted to
Intrinsic Type

Converted to Intrinsic
Type

Real Real Bit16
Bit32
Bit52
Integer
Integer Subrange
Longint
Longreal
Shortint

Record Any Type

Set Any Type

Shortint Array
Bit16
Bit32
Bit52
Integer
Integer Subrange
Longint
Record
Set
Shortint

Function and Procedure Parameter Compatibility

A function or procedure parameter is a parameter that is a routine. The compiler only
checks that the actual parameter for a function or procedure parameter is a routine. You are
responsible for making sure that the actual parameter is what the intrinsic expects.

Using Strings as Actual Parameters

If you use a string variable as an actual value parameter to an intrinsic routine, HP Pascal
passes a copy of the data portion only of the string. The length portion is ignored.

If you use a string variable as an actual reference parameter to an intrinsic routine, HP Pascal
passes the address of the data portion of the string, and not the string length. If the intrinsic
returns data in the string variable, you must determine and update the length of the string
when the intrinsic returns control to your program.

10-6 Intrinsics

There are a number of ways to obtain and update the string length:

If the intrinsic returns the correct length as a parameter or function return, use the
setstrlen procedure with the returned value.

If the length is de�ned in documentation of the intrinsic, use the setstrlen procedure with
that value.

If the intrinsic appends some end-of-string character (such as NUL), scan for the character
and set the string length with the setstrlen procedure to one less than the character's
position.

If the intrinsic does not provide any length indication, you can use the strrpt function
to �ll the string with blanks to its full physical length, call the intrinsic, and then use the
strrtrim function to get rid of the trailing blanks and update the string length.

Example

This example demonstrates the sequence of �lling a string with blanks, calling an intrinsic
that returns a value in the string, and updating the string length.

PROGRAM TestIntrin ;

VAR

Str : string [80] ;

PROCEDURE Dateline ; INTRINSIC ;

BEGIN { main program }

...

Str := strrpt (' ' , 80) ; { fill string with blanks }

Dateline (Str) ; { call intrinsic }

Str := strrtrim (Str) ; { remove trailing blanks }

...

END .

Intrinsics 10-7

Formal and Intrinsic Function Type Compatibility

A function type must be speci�ed when using the intrinsic directive with functions. A formal
function type is compatible with an intrinsic function type as long as the size of the formal
type matches the size of the intrinsic type.

Note In general, the formal type and the intrinsic type should match the function
return type. If the types do not match, they are the same as a free union type
coercion. This can cause problems for signed versus unsigned types.

Example

program m(output);

var a,b:shortint;
buf:packed array[1..16] of char;

i:integer;

function calendar:shortint; intrinsic;

function cal_16 $alias 'calendar'$:bit16; intrinsic;

function neg:shortint;

begin

neg:=-1;

end;

begin

a := calendar;

b := calendar;

writeln(a = calendar,' ',a = b);

end.

Assuming the date did not change, the output is unexpected:

FALSE TRUE

Function cal_16 shows the correct de�nition; a and b should be declared as bit16.

10-8 Intrinsics

User-Defined Formal Parameters

If you want stricter type checking for an intrinsic's actual parameters, you can declare
formal parameters for some or all of its intrinsic parameters. Then, actual parameter types
are compared to their corresponding formal parameter types, not to their corresponding
intrinsic parameter types. This type checking is as strict as that for the parameter of a
nonintrinsic routine: if the actual parameter is a reference parameter, it must be of the
same type as the formal parameter; if the actual parameter is a value parameter, it must be
assignment-compatible with the formal parameter.

If an intrinsic is de�ned without an extensible parameter list, you cannot declare it with one.

If an intrinsic is de�ned with an extensible parameter list, you can declare it with or without
one. If you declare the intrinsic with an extensible parameter list, you must declare at least as
many nonextensible (required) parameters as the de�nition does. If you declare the intrinsic
without an extensible parameter list, you must declare all of its nonextensible (required)
parameters.

Example 1

The intrinsic �le de�nes the intrinsic Pascal procedure intr this way:

PROCEDURE intr (a, b, c, d, e : integer)

OPTION EXTENSIBLE 2;

The program can declare intr in any of these ways:

PROCEDURE intr (a, b, c, d, e : integer); {All parameters}

INTRINSIC;

PROCEDURE intr (a, b : integer); {Required parameters only}

INTRINSIC;

PROCEDURE intr (a, b, c : integer); {First extensible parameter}

INTRINSIC;

PROCEDURE intr (a, b, c, d : integer); {Extensible parameters}

INTRINSIC;

The program cannot declare intr in any of these ways:

PROCEDURE intr (a : integer); {Without second nonextensible parameter}

INTRINSIC;

PROCEDURE intr (a, b, c, d : integer) {Fewer required parameters than}

OPTION EXTENSIBLE 1; {in the intrinsic definition}
INTRINSIC;

If you supply default values for the formal parameters that you declare, your default values
override those supplied by the intrinsic de�nition.

Intrinsics 10-9

Example 2

The intrinsic �le de�nes the intrinsic Pascal procedure intr this way:

PROCEDURE intr (a, b : integer)

OPTION EXTENSIBLE 2

DEFAULT_PARMS (a := 10, b := 20);

If the program declares intr this way

PROCEDURE intr (a, b: integer)

OPTION EXTENSIBLE 2

DEFAULT_PARMS (a := 35, b := 60);

INTRINSIC;

Then the default value of a is 35 (not 10) and the default value of b is 60 (not 20).

If you declare a formal parameter, you must give it a type that is compatible with the type of
its corresponding intrinsic parameter. Compatibility rules are di�erent for reference and value
parameters.

Reference Parameter Compatibility

A formal reference parameter is compatible with its corresponding intrinsic parameter if any
of the following is true:

Their types (Boolean, integer, etc.) are intrinsic-compatible (see Table 10-3).

They are alignment-compatible.

Their types (VAR, ANYVAR, UNCHECKABLE ANYVAR, READONLY) are compatible.

If the intrinsic parameter is a VAR or READONLY array, record, or set, then:

sizeof (formal parameter) <= sizeof (intrinsic parameter)

10-10 Intrinsics

An intrinsic and a formal reference parameter are intrinsic-compatible if their types are in the
same row of Table 10-3. The intrinsic parameter type is the type of the intrinsic parameter, as
the intrinsic �le declares it. The formal parameter type is the type of the formal parameter in
your program.

Table 10-3.

Intrinsic-Compatible Intrinsic and Formal Reference Parameter Types

Intrinsic Parameter Type Formal Parameter Type

Array Any type

Boolean Boolean

Char Char

Integer Integer

Integer Bit32

Integer Integer subrange m..n with either
m < 0 or m >= 0 and n >65535

Integer subrange
m..n

m < 0, or m >= 0,
n > 65535

Integer, or integer subrange m..n with either
m < 0 or m >= 0 and n >65535

Integer subrange
m..n

m >= 0 and n <= 65535 Integer subrange m..n with m >= 0 and
n <= 65535

Integer subrange
m..n

m >= 0 and n <= 65535 Bit16

Longreal Longreal

Real Real

Record Any type

Set Any type

Shortint Bit16

Shortint Shortint

Shortint Integer

Shortint Integer subrange m..n
(except where m>=0 and n<=255)

Intrinsics 10-11

Table 10-4 shows which intrinsic and formal reference parameter types are compatible. The
intrinsic parameter type is the type that the intrinsic parameter has in the intrinsic �le; the
formal parameter types are the types that you can give the formal parameter when you declare
it in your program.

Table 10-4. Compatible Intrinsic and Formal Reference Parameter Types

Intrinsic Parameter Type Formal Parameter Type

VAR VAR

ANYVAR ANYVAR
VAR

UNCHECKABLE ANYVAR UNCHECKABLE ANYVAR
VAR

READONLY READONLY
VAR

Value Parameter Compatibility

A formal value parameter is compatible with its corresponding intrinsic parameter if any of
the following is true:

They are intrinsic-compatible (see Table 10-5).

If the intrinsic parameter is an array, record, or set, then:

sizeof (formal parameter) = sizeof (intrinsic parameter)

10-12 Intrinsics

An intrinsic and formal value parameter are intrinsic-compatible if their types are in the same
row of Table 10-5. The intrinsic parameter type is the type of the intrinsic parameter, as the
intrinsic �le declares it. The formal parameter type is the type of the formal parameter.

Table 10-5. Intrinsic-Compatible Intrinsic and Formal Value Parameter Types

Intrinsic Parameter Type Formal Parameter Type

Array Array
Record

Boolean Boolean

Char Char

Integer Bit16
Bit32
Bit52
Integer
Integer subrange
Longint
Shortint

Integer subrange Bit16
Bit32
Bit52
Integer
Integer subrange
Longint
Shortint

Longreal Longreal

Real Real

Record Record
Array

Set Set

Shortint Bit16
Bit32
Bit52
Integer
Integer subrange
Longint
Shortint

Intrinsics 10-13

Using Intrinsic Functions as Procedures

Your program must use an intrinsic procedure as a procedure, but it can use an intrinsic
function as a function, a procedure, or both.

To use an intrinsic function as a function, declare it as a function in your program, including
its result type in the declaration. To use an intrinsic function as a procedure, declare it as
a procedure in your program, omitting the result type. To use an intrinsic function as both
a function and a procedure, declare it both ways, giving the routine di�erent names in your
program. Use the ALIAS compiler option to associate the intrinsic's system name with the
names you have given it.

If you declare an intrinsic function as a procedure only, you cannot call it as a function.

Example

The intrinsic �le de�nes the intrinsic Pascal functions f1 and f2 this way:

FUNCTION f1 (i1 : integer) : integer;

FUNCTION f2 (i1,i2 : integer) : Boolean;

The Pascal program prog declares the function f1 as a procedure. It cannot call it as a
function. It declares the function f2 as a function (which it calls ffunc) and as a procedure
(which it calls fproc), using the compiler option ALIAS to associate them with the system
name f2. The program cannot call fproc as a function.

PROGRAM prog;

VAR

x : Boolean;

y,z : integer;

PROCEDURE f1 (a : integer) INTRINSIC;

FUNCTION $ALIAS 'f2'$ ffunc : Boolean; INTRINSIC;

PROCEDURE $ALIAS 'f2'$ fproc; INTRINSIC;

BEGIN

f1(y);

x := ffunc(y,z);

fproc(y,z);

z := f1(y); {illegal -- declared as a procedure}

END.

10-14 Intrinsics

Defining Intrinsics

Syntactically, an intrinsic is de�ned in the same way as any other routine. (Refer to the
HP Pascal/iX Reference Manual or the HP Pascal/HP-UX Reference Manual for details.)
Because an intrinsic can be called by a program written in any language that the operating
system supports, its intrinsic parameters must be of types that have counterparts in the other
supported languages.

These HP Pascal types are acceptable for intrinsic parameters and function returns:

Array
Boolean
Char
Function
Integer
Longreal
Procedure
Real
Record
Set
Shortint
Subrange m..n except where m>=0 and n<=255

These HP Pascal types are not acceptable for intrinsic parameters or function returns:

Anyptr
Bit16
Bit32
Bit52
Longint
Conformant array
Enumeration
File
Function type
Globalanyptr
Localanyptr
PAC, with the directive EXTERNAL FTN77 *
Pointer
Procedure type
String
Subrange m..n where m>=0 and n<=255

* An intrinsic parameter of type PAC is not an acceptable intrinsic parameter when used in
an external procedure declaration with the directive EXTERNAL FTN77.

Intrinsics 10-15

If you de�ne your own intrinsics, restrict system programming extensions to:

Compiler options ALIGNMENT and EXTNADDR (refer to the HP Pascal/iX Reference
Manual or the HP Pascal/HP-UX Reference Manual).

ANYVAR and READONLY intrinsic parameters (explained in Chapter 7).

Procedure options EXTENSIBLE, UNCHECKABLE ANYVAR, and DEFAULT PARMS
(explained in Chapter 8).

An intrinsic de�nition can specify default values for some or all of its parameters with the
procedure option DEFAULT PARMS. If programs that use the intrinsic do not provide actual
parameters for these intrinsic parameters, the intrinsic parameters receive their default values.

An intrinsic de�nition can specify that a given number of its parameters are nonextensible
(required) with the procedure option EXTENSIBLE. Programs that use the intrinsic need
not provide actual parameters for extensible intrinsic parameters; they must provide actual
parameters for nonextensible parameters|although the actual parameters can be empty if the
DEFAULT PARMS procedure option speci�es default values for them. (See Chapter 8 for
more information on the procedure options DEFAULT PARMS and EXTENSIBLE.)

Compile your intrinsics and create an object �le. This object �le can be linked with other
object �les or used to build a library.

10-16 Intrinsics

How to Build or Change an Intrinsic File

You can build an intrinsic �le, or change an existing intrinsic �le, with the BUILDINT
compiler option and the EXTERNAL directive.

To build a new intrinsic �le:

1. Put the BUILDINT option at the front of the compilation unit. Specify a new name for
your intrinsic �le|do not give it the name of an existing �le. (Refer to the HP Pascal/iX
Reference Manual or the HP Pascal/HP-UX Reference Manual , depending on your
implementation, for more information on BUILDINT.)

2. Declare the constants, types, and variables that will appear in your intrinsic routines
headings.

3. Declare your intrinsics as you would declare external routines (explained in Chapter 9),
except:

Use only the acceptable intrinsic parameter types listed in \De�ning Intrinsics".

Use only these forms of the EXTERNAL directive:

EXTERNAL

EXTERNAL C

EXTERNAL COBOL

EXTERNAL FTN77

4. Leave the outer block of the compilation unit empty.

Intrinsics 10-17

Example 1

This program builds an intrinsic �le.

$BUILDINT 'myintr'$

$STANDARD_LEVEL 'EXT_MODCAL'$

PROGRAM build_intrinsic_file;

TYPE

t_integer_1 = $ALIGNMENT 1$ integer; {allows byte-aligned integer}

t_barray = PACKED ARRAY [1..1024] OF CHAR;

t_status = RECORD

f1 : shortint;

f2 : shortint;

END;

PROCEDURE proc1 (i : integer;

VAR b : integer

);

EXTERNAL;

PROCEDURE proc2 (ANYVAR $EXTNADDR$ parm1 : t_barray;

parm2 : shortint

)

OPTION DEFAULT_PARMS (parm1 := NIL,

parm2 := 0

)

UNCHECKABLE_ANYVAR;

EXTERNAL;

PROCEDURE proc3 (parm1 : integer;

VAR parm2 : t_status

)

OPTION EXTENSIBLE 1;

EXTERNAL;

PROCEDURE cob_proc (VAR i : t_integer_1); EXTERNAL COBOL;

BEGIN

{empty body}

END.

10-18 Intrinsics

To change an existing intrinsic �le:

1. Put the BUILDINT option at the front of the compilation unit. Specify the name of the
intrinsic �le that you want to change.

2. Declare any new constants, types, or variables that will appear in new or changed intrinsic
routines headings.

3. Declare any new intrinsic routines (see the third instruction for building an intrinsic �le). If
a new routine has the same name as one that is already in the �le, the new one replaces the
old one; otherwise, the new one is added to the �le.

4. Leave the outer block of the compilation unit empty.

Example 2

This program changes the intrinsic �le that the preceding example built, replacing the
procedure proc1 and adding the function func1.

$BUILDINT 'myintr'$

$STANDARD_LEVEL 'EXT_MODCAL'$

PROGRAM change_intrinsic_file;

PROCEDURE proc1 (i : shortint;

VAR b : shortint;
VAR c : integer;

);

EXTERNAL;

FUNCTION func1 (p : integer) : shortint; EXTERNAL;

BEGIN

{empty body}

END.

To list an intrinsic �le that you have built, use the compiler option LISTINTR (for
information on compiler options, refer to the HP Pascal/iX Reference Manual or the HP
Pascal/HP-UX Reference Manual , depending on your implementation.

Intrinsics 10-19

11

Error Recovery and Debugging

There are three types of Pascal errors. They are:

An error , which violates the de�nition of the HP Pascal language.

A compile-time error , which occurs when you compile your program (as in the case of a
syntax error).

A run-time error, which occurs when you run your program (as in the case of a value out of
range).

Errors are not to be confused with notes and warnings, both of which occur at compile time.
A note gives you information that may help you make your program more e�cient. A warning
alerts you to a situation that could cause a run-time error (the compiler cannot tell if it will).

This chapter explains:

How to write error recovery code for your program, so that it can handle run-time errors
that would otherwise cause it to abort (error recovery code does not catch compile-time
errors, warnings, or notes).

How to use the MPE/iX traps that you can use with HP Pascal.

How to compile your program for use with the HP TOOLSET/XL debugger, the HP
Symbolic Debugger, or the system debuggers.

Error Recovery and Debugging 11-1

Error Recovery

The system programming extensions that support error recovery are the prede�ned procedure
escape, the prede�ned function escapecode, and the TRY-RECOVER construct. They are
interdependent. A typical TRY-RECOVER construct has the form:

TRY

statement;

{statement;}

.

.

.

RECOVER

BEGIN {error-handling code}

temp := escapecode; {save escapecode value, which can change}

CASE temp OF {handle error}

{handle expected values of temp here}

OTHERWISE

escape(temp); {cannot handle this error here;
pass to any enclosing TRY-RECOVER construct}

END; {CASE}

END; {error-handling code}

Escape Procedure

The prede�ned procedure escape is called by your program, a library routine, or the operating
system when a run-time error occurs. If a TRY-RECOVER construct is active when the
system calls escape, the program executes the statement associated with the RECOVER part
(see \TRY-RECOVER Construct"). If no TRY-RECOVER construct is active, the program
aborts. A TRY-RECOVER construct is active if the TRY statement has been executed, but
the RECOVER statement has not.

The procedure escape has one parameter, error code, which is an integer expression. Escape
sets error code, whose value you can then access with the prede�ned function escapecode.

11-2 Error Recovery and Debugging

Example

PROGRAM p;

VAR
x : integer;

ecode : integer;

.

.

PROCEDURE PUTJCW; INTRINSIC;

PROCEDURE proc (n : integer);

BEGIN {proc}

{Test for erroneous parameter}

IF NOT (n IN [0..100]) THEN

escape(-755);

.

.

putjcw(jcwname,jcwvalue,error); {system call}

IF error > 0 THEN

escape(error); {system call failed}

.

.

END; {proc}

BEGIN {main program}

TRY

proc(x);

RECOVER

ecode := escapecode; {See note in "Escapecode Function"}

IF ecode = -775 THEN
{Report bad value of m}

ELSE IF ecode = -3550 THEN

{Report failure of system call}

ELSE

halt(ecode);

END. {main program}

Error Recovery and Debugging 11-3

Escapecode Function

The prede�ned function escapecode returns the integer value of error code, the parameter of
the prede�ned procedure escape (see \Escape Procedure").

The result of escapecode is unde�ned if escape was never called, and after exit from the
TRY-RECOVER construct by normal, sequential means (rather than exit by explicit escape,
exit, or goto). If you call escapecode when its result is unde�ned, the result is indeterminate
and meaningless. Access escapecode only in the RECOVER part of a TRY-RECOVER
construct.

To see the symbolic names for the escape codes that the Pascal subsystem returns, list the �le
PASESC.PUB.SYS (on MPE/iX) or /usr/include/pasesc.ph (on HP-UX).

TRY-RECOVER Construct

The TRY-RECOVER construct de�nes a group of statements as error recovery code.

Syntax

TRY statement [; statement]... RECOVER statement

Parameter

statement Labeled or unlabeled statement.

If an error occurs when the program executes a statement (or any routines called by the
statement in the TRY part):

1. The subsystem in which the error occurred (the program, a library, or the operating
system) calls the prede�ned procedure escape with error code as its parameter. The
parameter error code is an integer expression whose value represents the error.

2. The procedure escape sets error code and saves it.

3. The program's run-time environment reverts to that of the program unit (main program,
procedure, or function) that contains the TRY-RECOVER construct.

4. The program executes the statement of the RECOVER part (skipping any statements
between the statement where the error occurred and the RECOVER's statement).

If no statement causes an error, the program skips the RECOVER's statement and executes
the statement that follows the TRY-RECOVER construct.

11-4 Error Recovery and Debugging

Example 1

PROGRAM prog (input,output);

$STANDARD_LEVEL 'HP_MODCAL'$

VAR

i,j,k,l : integer;

PROCEDURE proc;

BEGIN

i := 0;

j := 0;

k := 0;

END;

BEGIN

TRY

read(i); {Error here transfers control to proc.}

read(j); {Executed only if no error occurs for read(i).

Error here transfers control to proc.}

read(k); {Executed only if no error occurs for read(i) or read(j).

Error here transfers control to proc.}

RECOVER

proc; {Executed only if an error occurs

for read(i), read(j), or read(k).}

l := i+j+k; {Always executed.}

END.

If the RECOVER's statement is empty, the person who is running the program will not know
when the TRY-RECOVER construct has handled an error.

If an error occurs when the program executes the RECOVER's statement , the program
aborts|unless the TRY-RECOVER construct is within another TRY-RECOVER construct.
In that case, the program executes the RECOVER statement of the outer TRY-RECOVER
construct.

Error Recovery and Debugging 11-5

Example 2

PROGRAM prog (input,output);

$STANDARD_LEVEL 'HP_MODCAL'$

VAR

i,j : integer;

iok : Boolean;

PROCEDURE newj;

BEGIN

writeln('That value is illegal.');

prompt('Please enter an integer for j:');

read(j);

END;

PROCEDURE newij;

BEGIN

IF NOT iok THEN i := 0 ELSE newj;

END;

BEGIN {prog}

iok := FALSE;

TRY

prompt('Enter an integer for i:');

read(i); {An error here transfers control to newij}

iok := TRUE; {Not executed if read(i) causes an error}

TRY

read(j); {An error here transfers control to newj}

RECOVER
newj; {An error here transfers control to newij}

RECOVER

newij; {An error here aborts the program}

END. {prog}

11-6 Error Recovery and Debugging

Example 3

The following example illustrates how nested TRY-RECOVER statements divide the
responsibility of error recovery.

The diagram below shows when, in time, the TRY-RECOVER statements labeled A, B1, B2,
and C in the preceding program are active. When more than one TRY-RECOVER statement
is active, the innermost one takes precedence.

The RECOVER's statement can use the prede�ned function escapecode to determine the
error that occurred and act accordingly.

Error Recovery and Debugging 11-7

Example 4

PROGRAM system;

IMPORT

system_escapecodes; {see note following example}

PROCEDURE support;

BEGIN

IF error THEN escape(88);

END;

PROCEDURE userprogram;

BEGIN

support;

END;

BEGIN {system}

TRY userprogram

RECOVER

CASE escapecode OF

minuser..maxuser : writeln('Software detected errors');

range : writeln('Value range error');

stackoverflow : writeln('Stack overflow');

ioverflow : writeln('Integer overflow');

idivbyzero : writeln('Integer divide by zero');

roverflow : writeln('Real overflow');

runderflow : writeln('Real underflow');

rdivbyzero : writeln('Real divide by zero');

nilpointer : writeln('Nil pointer reference');

casebounds : writeln('Case expression bounds error');

stroverflow : writeln('String overflow');
filerror : writeln('File I/O error');

OTHERWISE

writeln('Unrecognized error');

END; {CASE}

END. {system}

Note This is only an example. The operating system on which HP Pascal runs
does not use the constants that represent error codes in the example above
(iover
ow, rover
ow, and so on).

A program can access error_code only by calling the prede�ned function escapecode.

11-8 Error Recovery and Debugging

TRY-RECOVER and Optimization

If the OPTIMIZE compiler option is used with the TRY-RECOVER construct, the following
information explains what will or will not work at di�erent levels.

If an ESCAPE is done in the TRY block, or in any procedure called from within the TRY
block, all values on the left side of an assignment statement, appearing before an ESCAPE
or a procedure call, are stored.

If a trap occurs instead of an ESCAPE, the above statement is not true.

Example

The following example uses the local variable flag to indicate how far the program gets
before an error. It is used to undo or unlock a resource.

$standard_level 'ext_modcal'$

$ovflcheck off$

program dick;

type iptr=^integer;

procedure lock; external;

procedure plock $alias 'lock'$; begin end;

procedure proc(j:integer;p:iptr);

var flag: {$VOLATILE$} boolean;

i:integer;

begin

flag:=false;

try

lock;

flag:=true;

i:=maxint;

i:=i + j + p^;

if j < 0 then escape(i);

recover

begin

if not flag then halt(1); { should not halt }

end;

end;

begin
proc(1,nil);

end.

This program does not work correctly with optimization because the store to the variable
flag is done after the trap. To run the program correctly, use $VOLATILE$ so that flag is
stored before the trap occurs. See Chapter 12 for more information on the optimizer.

Error Recovery and Debugging 11-9

Assert Procedure

The prede�ned procedure assert allows your program to test assumptions, specify invariant
conditions, and check data structure integrity.

Syntax

assert (b, i [, p])

Parameters

b A Boolean expression that assert evaluates. If its value is true, the program executes
the statement following the call to assert . If its value is false, the program's action
depends upon whether p is speci�ed and whether the ASSERT HALT compiler
option is OFF or ON (see Figure 11-1).

If the compiler can determine that b is a constant expression whose value is true,
then it does not generate code for the call to assert .

i An integer expression. If the value of b is false and p is speci�ed, procedure p is
called with i as the actual value parameter. If b is false and p is not speci�ed, the
system issues a run-time error message that includes the value of i .

A call to the prede�ned function statement number is a useful integer expression
for i . It returns the statement number (as shown on the compiler listing) for the
statement from which it is called (in this case, the call to assert).

p The name of a procedure whose heading has the syntax

PROCEDURE p (parameter name : integer);

If the value of b is false and p is speci�ed, the system executes the call p(i).

11-10 Error Recovery and Debugging

Figure 11-1 illustrates how the prede�ned procedure assert works.

Figure 11-1. How the Predefined Procedure Assert Works

The default for the ASSERT HALT compiler option is OFF (see the HP Pascal/iX Reference
Manual or HP Pascal/HP-UX Reference Manual for more information).

Error Recovery and Debugging 11-11

Example

PROCEDURE my_assert (value : integer);

BEGIN
writeln('my_assert #', value);

END;

PROCEDURE x (p : ptrtype; n : integer);

BEGIN

assert(p <> nil, 80101, my_assert);

assert(n >= 0, 80102);

END;

11-12 Error Recovery and Debugging

Traps

Your HP Pascal program can use these MPE/iX traps:

MPE/iX intrinsic XLIBTRAP, which traps library errors.

MPE/iX intrinsic XARITRAP, which traps arithmetic errors.

MPE/iX intrinsics ARITRAP and HPENBLTRAP, which allow you to enable and disable
trap conditions.

MPE intrinsic XCONTRAP, which speci�es a user-de�ned routine to handle the subsystem
break (�CONTROL� Y).

The subsections of this section explain how to use these traps.

Note The user trap-handling routines whose addresses are passed to the traps in
this section must be level-one routines.

Note The XLIBTRAP, XARITRAP, ARITRAP, and HPENBLTRAP routines can
also be use on HP-UX.

Error Recovery and Debugging 11-13

ARITRAP and HPENBLTRAP Intrinsics

The MPE/iX intrinsics ARITRAP and HPENBLTRAP are supported by the Trap Subsystem.
ARITRAP allows a user program to enable or disable traps collectively. HPENBLTRAP is a
new MPE/iX intrinsic that allows a user program to enable selected trap conditions.

These terms apply to trap conditions:

Term Meaning

enable To allow a trap to be raised if the trap condition occurs.

arm To specify that a particular trap handler is to be called if a certain trap is raised
(the trap must be enabled to be raised).

disable To prevent a trap from being raised, even if the trap condition occurs.

By default, all traps except IEEE
oating-point traps are enabled. (This complies with the
IEEE
oating-point standard, which stipulates that IEEE traps are to remain disabled by
default.)

Syntax

ARITRAP (
ag);

HPENBLTRAP (mask, oldmask);

Parameters

ag 32-bit integer, passed by value. If
ag is zero, all traps are disabled; otherwise, all
traps are enabled.

mask 32-bit integer, passed by value, whose bits specify which trap conditions are
enabled. The assignment of each position in the bit mask is described in
\XARITRAP Intrinsic."

oldmask 32-bit integer, passed by reference, in which the old value of mask is returned.

On MPE/iX, declare ARITRAP and HPENBLTRAP as external procedures this way:

PROCEDURE ARITRAP; INTRINSIC;

PROCEDURE HPENBLTRAP; INTRINSIC;

On HP-UX, declare ARITRAP and HPENBLTRAP as external procedures this way:

$PUSH; UPPERCASE ON$

PROCEDURE ARITRAP (Flag : integer); EXTERNAL;

PROCEDURE HPENBLTRAP (Mask : integer;

VAR OldMask : integer

); EXTERNAL;

POP

Example

ARITRAP (1); {enables all traps}

HPENBLTRAP (Hex('0007C000'), OldMask); {enables IEEE floating-point traps}

11-14 Error Recovery and Debugging

XLIBTRAP Intrinsic

The MPE/iX intrinsic XLIBTRAP is supported by the HP Pascal run-time library. It
enables a user program to arm a library trap handling procedure (Library Trap Handler).
Subsequently, any Pascal library error causes this Library Trap Handler to be called, allowing
the user to decide whether to abort or continue the program, or correct the error.

Syntax

XLIBTRAP (plabel, oldplabel);

Parameters

plabel 32-bit integer, passed by value, which is the address of the Library Trap
Handler.

oldplabel 32-bit integer, passed by reference, in which the old value of plabel is returned.

On MPE/iX, declare XLIBTRAP as an external procedure this way:

PROCEDURE XLIBTRAP; INTRINSIC;

On HP-UX, declare XLIBTRAP as an external procedure this way:

$PUSH; UPPERCASE ON$

PROCEDURE XLIBTRAP (PLabel : INTEGER;

VAR OldPLabel : INTEGER
); EXTERNAL;

POP

XLIBTRAP stores the address of the Library Trap Handler (plabel) so that the library
routines can �nd the routine to call if an error occurs. The old value of PLabel is returned in
the parameter OldPLabel.

The only ways to leave a trap handler is by a normal return or by an escape. Your library
trap handler cannot execute a nonlocal goto (a goto whose destination is outside the
procedure).

Note This routine is available on the MPE/iX and HP-UX operating systems. On
MPE/iX, it expects an MPE-style plabel ; on HP-UX, it expects plabel to
be the actual address of the Library Trap Handler. To make your program
portable, use baddress (Library Trap Handler name) as plabel.

Note The result record will be di�erent if the trap has been raised outside of the
Pascal run time library.

Error Recovery and Debugging 11-15

The user's trap handler must be declared this way:

TYPE

PStkMrk = RECORD {Stack Marker}
users_PCS : integer; {space id of users code space}

users_PCO : integer; {program counter offset within the

code space}

users_SP : integer; {stack pointer of the user's

routine that called the library

routine where the error occurred}

users_DP : integer; {data pointer for the above routine}

{future implementations may have further fields to return

more information to the user's trap handler. If so, they

will not affect existing code that uses the above fields.}

END;

PROCEDURE My_Library_Trap_Handler (VAR StkRec : PStkMrk;

VAR ErrorCode : Integer;

VAR AbortFlag : Integer

);

BEGIN {My_Library_Trap_Handler}

.

.

.

END; {My_Library_Trap_Handler}

Where

StkRec A structure, as described above, passed by reference. Any changes to the �elds
of this structure are not re
ected in the actual contents of the machine registers,
when and if the program resumes normal execution.

ErrorCode 32-bit integer, passed by reference, which contains the error code. For a
complete list of error codes generated by the Pascal run-time library, see the �le
PASESC.PUB.SYS (on MPE/iX) or /usr/include/pasesc.ph (on HP-UX). Either
of these �les can be directly included in a user program.

AbortFlag 32-bit integer, passed by reference. If AbortFlag is zero when the Library Trap
Handler is exited, the program continues to execute. If AbortFlag is not zero, the
Pascal run-time library prints an error message and aborts the program.

To trap all run-time library errors and have them invoke your Library Trap Handler, call
XLIBTRAP this way:

XLIBTRAP (baddress(My Library Trap Handler), OldPLabel);

To disable your Library Trap Handler, pass zero to XLIBTRAP as the �rst parameter.

11-16 Error Recovery and Debugging

Example

{the user declares the following Pascal record for the PStkMrk record}

TYPE

PStkMrk = RECORD {"Stack Marker"}

users_PCS,

users_PCO,

users_SP,

users_DP : integer;

END;

$INCLUDE '/usr/include/pasesc.ph'$ {this file lists all the Pascal

run-time library error codes

for the HP-UX operating system}

PROCEDURE My_Library_Trap_Handler (VAR StkRec : PStkMrk;

VAR ErrorCode : Integer;

VAR AbortFlag : Integer

);

BEGIN {My_Library_Trap_Handler}

{ignore file close errors, abort on all others}

IF (ErrorCode = PasErr_CloseError) THEN BEGIN

writeln ('Oops! File close error, continue execution');

AbortFlag := 0; {no abort}

END

ELSE

AbortFlag := 1; {print message and abort}

END; {My_Library_Trap_Handler}

Error Recovery and Debugging 11-17

XARITRAP Intrinsic

The MPE/iX intrinsic XARITRAP is supported by the Trap Subsystem. XARITRAP enables
your program to arm an arithmetic trap handling procedure (Arithmetic Trap Handler).
Subsequently, any arithmetic error causes this Arithmetic Trap Handler to be called, allowing
the user to decide whether to abort or continue the program, or correct the error.

For more information on trap handling, see the Trap Handling Programmer's Guide.

Syntax

To arm your Arithmetic Trap Handler, call XARITRAP this way:

XARITRAP (mask, plabel, oldmask, oldplabel);

Parameters

mask 32-bit integer by value, whose bits specify which trap condition gets armed.
The assignment of each position in the bit mask is as follows:

Bit Error Trap

31 Compatibility Mode
oating-point divide by zero
30 Integer divide by zero
29 Compatibility Mode
oating-point under
ow
28 Compatibility Mode
oating-point over
ow
27 Integer Over
ow
26 Compatibility Mode double precision over
ow
25 Compatibility Mode double precision under
ow
24 Compatibility Mode double precision divide by zero
23 Decimal Over
ow (COBOL)
22 Invalid ASCII digit (COBOL)
21 Invalid decimal digit (COBOL)
20-19 Reserved
18 Decimal divide by zero
17 IEEE
oating-point inexact result
16 IEEE
oating-point under
ow
15 IEEE
oating-point over
ow
14 IEEE
oating-point divide by zero
13 IEEE
oating-point invalid operation
12 Range error (subrange violations, etc)
11 NIL pointer dereference
10 Result of pointer arithmetic is misaligned or error in conversion from

long to short pointer
9 Unimplemented condition traps
8 Paragraph stack over
ow (COBOL)
7-1 Reserved
0 Assertion Trap

plabel 32-bit integer, passed by value, which is the address of the Arithmetic Trap
Handler.

oldmask 32-bit integer, passed by reference, in which the old value of mask is returned.

old plabel 32-bit integer, passed by reference, in which the old value of plabel is returned.

11-18 Error Recovery and Debugging

On MPE/iX, declare XARITRAP as an external procedure this way:

PROCEDURE XARITRAP; INTRINSIC;

On HP-UX, declare XARITRAP as an external procedure this way:

$PUSH; UPPERCASE ON$

PROCEDURE XARITRAP (Mask,

plabel : integer;

VAR OldMask,

OldPlabel : integer

); EXTERNAL;

POP

XARITRAP stores the address of the Arithmetic Trap Handler (plabel) so that the system
trap handler can �nd the routine to call if an error occurs. The old value of plabel is returned
in the parameter OldPLabel.

The only ways to leave a trap handler is by a normal return or by an escape. Your library
trap handler cannot execute a nonlocal goto (a goto whose destination is outside the
procedure).

Note This routine is available on both the MPE/iX and HP-UX operating systems.
On MPE/iX, it expects an MPE-style plabel ; on HP-UX, it expects plabel to
be the actual address of your Library Trap Handler. To make your program
portable, use baddress(Arithmetic Trap Handler name) as plabel.

IEEE
oating-point numbers are the default (native) real numbers in HP
Precision Architecture. Compatibility Mode
oating-point numbers have the
format of reals on the MPE V system. The compiler options HP3000 32 and
HP3000 16 specify native and compatibility Mode real numbers, respectively.
For more information on HP3000 32 and HP3000 16, see the HP Pascal/iX
Reference Manual or the HP Pascal/HP-UX Reference Manual , depending on
your implementation.

Error Recovery and Debugging 11-19

The user's trap handler must be declared this way:

TYPE
TrapInfo= RECORD

Instruction : integer; {the actual instruction word that

caused the arithmetic trap}

PC_Offset : integer; {offset of the above instruction

within the user's code space}

PC_Space : integer; {space id of user's code space}

Error_Code : integer; {Trap type. This word is formed

by setting the bit corresponding

to the trap condition in a 32-bit

integer, with all other bits zero.

More than 1 bit will be turned on

if multiple traps occur together}

{more fields are returned for certain of the trap conditions.

See below for details}

END;

PROCEDURE My_Arith_Trap_Handler (VAR Info : TrapInfo);

BEGIN {My_Arith_Trap_Handler}

.

.

.

END; {My_Arith_Trap_Handler}

To enable (for example) all integer and IEEE
oating-point traps (except inexact results), as
well as all pointer traps, call XARITRAP this way:

XARITRAP (

{bit 0 1 2 3 }

{ 01234567890123456789012345678901}

Binary ('00000000001111111000000000010010'),

BAddress (My_Arith_Trap_Handler),

OldMask,

OldPLabel

);

11-20 Error Recovery and Debugging

Note In the preceding example, the IEEE inexact result trap is not enabled.

HP Precision Architecture has only three distinct hardware arithmetic
trap conditions: condition, [integer] over
ow, and assist exception (IEEE

oating-point traps are in the last category). The system is able to categorize
most integer and decimal traps (except integer over
ow) because each category
has its own unique trapping instructions. If a condition trap occurs, and the
system cannot categorize it, unimplemented condition trap (bit 9) is raised.

The IEEE inexact result trap (bit 17), a trap required by the IEEE

oating-point standard, indicates that a
oating-point operation may have
caused an inexact result (for example, the result of 10.0/3.0 is 3.333 . . .
regardless of the number of bits of precision you use). This trap is useful only
for specialty number-crunching programs. Indiscriminate arming of this trap
can severely degrade program performance, because almost any
oating-point
operation you perform will cause this trap to be raised.

To disable your Arithmetic Trap Handler, pass zero to XARITRAP as the second parameter.

For the following traps, the system trap handler passes your Arithmetic Trap Handler more
�elds than the four de�ned above in the TrapInfo record, and you must adjust TrapInfo
accordingly.

Integer overflow trap

Decimal overflow trap

Invalid ASCII digit trap

Invalid decimal digit trap

IEEE floating-point traps

Compatibility Mode floating-point traps

The following sections describe the extra parameters.

Integer Overflow Trap

The TrapInfo record must have one extra �eld, SubCode. SubCode (word #5) contains one of
the following codes, which tells what kind of integer over
ow occurred.

SubCode
Value

Type of Over
ow

1 32/64-bit over
ow

2 16-bit over
ow

3 8-bit over
ow

4 over
ow on conversion from a compatibility-mode
oating-point number

5 over
ow on conversion from an IEEE
oating-point number

Error Recovery and Debugging 11-21

Decimal Overflow Trap

The TrapInfo record must have one extra �eld, SubCode.

SubCode (word #5) contains one of the following codes, which tells what kind of decimal
over
ow occurred.

Subcode
Value

Type of Over
ow

1 over
ow in decimal arithmetic operation

2 over
ow in conversion from ASCII to decimal

Invalid ASCII Digit and Invalid Decimal Digit

The TrapInfo record has three extra �elds:

1. Subcode (word #5) contains a code 0..3. Refer to the Trap Handling Programmer's Guide
for more information.

2. Address (word #6) contains the address of the �rst digit of the number
3. Count (word #7) contains the digit count

IEEE Floating Point Traps

The TrapInfo record has six extra �elds:

1. Status (word #5) contains the value in the status register of the IEEE
oating-point
coprocessor. Any change in this �eld is re
ected in the value of the status register when the
program resumes execution.

2. Operation (word #6) contains one of the following codes, which tells the type of

oating-point operation that caused the trap.

Value Type of Operation

3 ABS

4 SQRT

5 RND

8 CNVFF

9 CNVXF

10 CNVFX

16 CMP

24 ADD

25 SUB

26 MPY

27 DIV

28 REM

11-22 Error Recovery and Debugging

3. Format (word #7) contains the type of the operands (single, double, or quadruple). If the
operation was CONVERT (CNVxx), then the following values are returned:

Value Types of Operands

1 Source is single, result is double

3 Source is single, result is quadruple

4 Source is double, result is quadruple

If the operation was NOT a CONVERT (CNVxx), then the following values are returned:

Value Type of Operand

0 Single

1 Double

3 Quadruple

4. source op1 ptr (word #8) contains the address of the �rst operand, which can be a single-,
double- or quadruple-word
oating-point number, depending on the operation and the
format.

5. source op2 ptr (word #9) contains the address of the second operand, which can be a
single-, double-, or quadruple-word
oating-point number, depending on the operation and
the format.

6. result ptr (word #10) contains the address of the result of the operation, which can be a
single-, double-, or quadruple-word
oating-point number depending on the operation and
the format. You can examine and replace the contents of the area referenced by result ptr ,
and the Trap Subsystem will ensure that the change is re
ected in the appropriate place.

Error Recovery and Debugging 11-23

Compatibility Mode Floating-Point Traps

The TrapInfo record has one extra �eld, Result ptr .

Result ptr (word #5) contains the address of the result of the operation, which can be a
single- or double-word
oating-point number, depending on the type of trap. You can examine
and replace the contents of the area referenced by result ptr , and the Trap Subsystem will
ensure that the change is re
ected in the appropriate place.

Example

{user declares the following Pascal record for the TrapInfo record}

TYPE

real_ptr = real; long_ptr = longreal;

TrapInfo = RECORD

{ 1} instruction,

{ 2} pc_offset,

{ 3} pc_space,

{ 4} error_code,

{ 5} status,

{ 6} operation,

{ 7} format : integer;

{ 8} source1_ptr,

{ 9} source2_ptr,

{10} result_ptr : localanyptr;

END;

CONST

IEEE_mask = hex('0007C000');

fdiv_zero = hex('00002000'); {the error code for fl. pt. div. by 0}

{trap handler routine}

PROCEDURE IEEE_trap_handler (VAR Info : TrapInfo);

VAR

long_res_ptr : long_ptr;

real_res_ptr : real_ptr;

(Example continued on next page.)

11-24 Error Recovery and Debugging

CONST

max_real = 3.402823E+38;

max_longreal = 1.797693L+308;

BEGIN {IEEE_trap_handler}

{handle only divide-by-zero, ignore others}

WITH Info DO

IF (Error_Code = fdiv_zero) THEN

BEGIN {divide by zero}

{change the value of the result}

IF (format = 0) THEN

BEGIN {real operation}

real_res_ptr := result_ptr;

real_res_ptr^ := maxreal;

END {real operation}

ELSE IF (format = 1) THEN

BEGIN {longreal operation}

long_res_ptr := result_ptr;

long_res_ptr^ := maxlongreal;

END; {longreal operation}

END; {divide by zero}

END; {IEEE_trap_handler}

{user main program}

VAR

l1, l2, l3 : longreal;

oldmask,

oldplabel : integer;

BEGIN {main program}

ARITRAP (1); {see "ARITRAP and HPENBLTRAP Intrinsics" for details}

XARITRAP (IEEE_mask, BAddress (IEEE_trap_handler), oldmask, oldplabel);

l1 := 233.0;

l2 := 0.0;

l3 := l1/l2; {oops! divide by zero!}

writeln (l3); {the trap handler should have fixed the result of the

previous operation to maxlongreal (1.79769e+308)}

END. {main program}

Error Recovery and Debugging 11-25

XCONTRAP Intrinsic

The MPE intrinsic XCONTRAP speci�es a user-de�ned routine (Subsystem Break Handler)
that will be called when the user enters a subsystem break (�CONTROL� Y) on the keyboard.
When XCONTRAP is enabled and the user enters �CONTROL� Y:

Program control is transferred to the speci�ed user-de�ned routine.

The subsystem break function is temporarily disabled to reduce the chance of race
conditions.

If normal program execution is to resume after the interrupt, the user-de�ned routine must
re-enable the subsystem break by calling the intrinsic RESETCONTROL just before it ends.
On MPE/iX, a normal exit from the user-de�ned routine is su�cient to return control to the
point in the program where the subsystem break was trapped.

Syntax

To arm your Subsystem Break Handler, call XCONTRAP this way:

XCONTRAP (plabel, oldplabel);

Call RESETCONTROL this way:

RESETCONTROL;

Declare XCONTRAP and RESETCONTROL this way:

PROCEDURE XCONTRAP; INTRINSIC;

PROCEDURE RESETCONTROL; INTRINSIC;

Parameters

oldplabel A 32-bit integer, passed by reference, in which the old value of plabel is
returned. If the subsystem break handler is not armed, this value is zero.

plabel A 32-bit integer, passed by value, which is the address of your Subsystem
Break Handler.

11-26 Error Recovery and Debugging

Example

The main program is a loop. Whenever the user enters �CONTROL� Y on the keyboard, control
transfers to the procedure control_y_handler, which writes the current loop counter value,
then re-enables the subsystem break, and returns to the point in the loop where the interrupt
occurred.

PROGRAM control_y_test (output);

VAR

count : integer;

i : integer;

oldplabel : integer;

{Intrinsic Declarations}

PROCEDURE XCONTRAP; INTRINSIC;

PROCEDURE RESETCONTROL; INTRINSIC;

{User-defined Subsystem Break Handler}

PROCEDURE control_y_handler;

BEGIN

writeln('<Control-Y>: Count = ', count:1); {write counter value}

RESETCONTROL; {re-enable subsystem break}

END;

BEGIN

{Arm the Subsystem Break Handler,

specifying control_y_handler as the user-defined routine}

XCONTRAP (BAddress (control_y_handler), oldplabel);

{Loop}

FOR i := 1 TO 30000000 DO

count := i;

END.

If you compile, link, and run the preceding program on an MPE/iX system and press
�CONTROL� Y several times while it is running, the program prints the value of count each time
you press �CONTROL� Y. For example:

�CONTROL� Y: Count = 121765

�CONTROL� Y: Count = 2731435

�CONTROL� Y: Count = 5789345

�CONTROL� Y: Count = 10135467

�CONTROL� Y: Count = 23618560

Error Recovery and Debugging 11-27

HP TOOLSET/XL and HP Symbolic Debuggers

The HP TOOLSET/XL debugger is available on the MPE/iX operating system. The HP
Symbolic Debugger is available on both the HP-UX and MPE/iX operating systems. The
HP TOOLSET/XL debugger supports a subset of HP Pascal features. The HP Symbolic
Debugger supports the HP Pascal language.

To debug your program with HP TOOLSET/XL or HP Symbolic Debugger, you must compile
it with the compiler option SYMDEBUG. SYMDEBUG causes the compiler to generate the
symbolic debug information that either debugger needs.

HP TOOLSET/XL and HP Symbolic Debugger need di�erent information; if you compile part
of your program for HP TOOLSET/XL and part of it for HP Symbolic Debugger, neither HP
TOOLSET/XL nor HP Symbolic Debugger will work with it.

For more information on the SYMDEBUG compiler option, refer to the HP Pascal/iX
Reference Manual or the HP Pascal/HP-UX Reference Manual , depending on your
implementation. For information on HP TOOLSET/XL, refer to the HP TOOLSET/XL
Reference Manual . For more information on HP Symbolic Debugger, refer to the
MPE/iX Symbolic Debugger User's Guide.

11-28 Error Recovery and Debugging

System Debuggers

The compiler listing of your program is an indispensable debugging aid. The following
compiler options provide the listing with additional information, as noted.

The system debuggers are adb on HP-UX and NM Debug on MPE/iX.

Compiler Option E�ect

CODE OFFSETS For the main program and each routine, the CODE OFFSETS option
produces a table for every executable statement in which the value of the
program counter for the �rst machine instruction that corresponds to the
statement appears beside the statement number. The tables appear at
the end of the compiler listing.

Each program counter value is o�set from the entry point of the
procedure that contains the statement to which it corresponds.

Program counter values are useful when debugging your program.

LIST CODE This option produces a mnemonic listing of the object code for each
routine in the program. The mnemonic listing appears after the listing of
the compilation unit.

TABLES This option produces an identi�er map for each routine and main
program that the compiler parsed while the option was ON. An identi�er
map shows each identi�er that the block declares and its class, type,
address or constant value, size, alignment, and (if appropriate) �eld
o�set.

Note Program counter values are not exact when you use optimization.

See the HP Pascal/iX Reference Manual or the HP Pascal/HP-UX Reference Manual ,
depending on your implementation, for more information on the compiler options
CODE OFFSETS, LIST CODE, and TABLES.

You must debug your code before you compile it with optimization. CODE OFFSETS and
SYMDEBUG cannot be used in an optimized program, because the optimizer transforms the
machine code so that the mapping of source code to machine code is not one-to-one.

Error Recovery and Debugging 11-29

12

The Optimizer

The optimizer is an optional part of the compiler that modi�es your program so that it uses
machine resources more e�ciently, using less space and running faster.

This chapter explains:

When and how to use the optimizer.
Level one and level two optimization.
Optimizer assumptions and what cannot be optimized.
How to write code that is easily optimized.
What to do if your optimized program fails.

In examining the examples in this chapter, please note:

The optimizer operates on machine code rather than source code, but the examples use
source code wherever possible because it is easier to understand. Transformations that
cannot be shown at the source code level are shown in mnemonic assembly language.

The optimizer's e�ectiveness depends strongly on interaction between transformations, but
each example illustrates a single transformation for the sake of clarity.

When to Use the Optimizer

Compile your program with optimization only after you have debugged it. The optimizer can
transform error-free programs only.

A warning indicates a possible source of run-time errors. If compiling your program produces
warnings, do one of the following:

Be sure that your program will never satisfy the conditions that the warnings specify (see
the next example).

Change your program so that compiling it does not produce warnings.

When you request optimization, the compiler issues warnings for local variables that are used
before they are initialized.

The Optimizer 12-1

Example

FUNCTION f (p : integer) : integer;

VAR

v : integer;

BEGIN

f := p;

IF p < 0 THEN

f := v;

END;

The preceding program causes the compiler to issue the warning ACCESSED, BUT NOT

INITIALIZED (535), which applies to the variable v. A run-time error occurs if v is accessed.
If you are sure p will never have a value less than zero, you can ignore the warning, because
the run-time error will never occur.

If you are sure that your program will never produce an out-of-range error, specify
RANGE OFF before compiling it with optimization. When the compiler does not generate
range-checking code, it compiles faster and can perform more optimizations. The compiled
program runs faster without range-checking code, whether or not it is optimized. (See the HP
Pascal/iX Reference Manual or the HP Pascal/HP-UX Reference Manual , depending on your
implementation, for information on the RANGE compiler option.)

Once you have compiled your program with optimization, you cannot use the symbolic
debugger to debug it, because:

Debug information will be missing from it (the compiler cannot generate debug information
and perform optimizations at the same time).

Level two optimization radically reorders the code, sometimes keeping in registers the values
of variables that you may want to examine.

12-2 The Optimizer

Invoking the Optimizer

You can invoke the optimizer in the source code or in the compiler command. To invoke the
optimizer in the source code, use the OPTIMIZE compiler option as follows:

For Use the Form

Level one optimization OPTIMIZE 'LEVEL1'

Level two optimization OPTIMIZE 'LEVEL2' or OPTIMIZE ON

(For more information on the OPTIMIZE compiler option, see the HP Pascal/iX Reference
Manual or the HP Pascal/HP-UX Reference Manual , depending on your implementation.)

To invoke the optimizer in the compiler command on the MPE/iX operating system, include
the OPTIMIZE compiler option in the INFO string (see Appendix A).

To invoke the optimizer in the compiler command on the HP-UX operating system, append
one of the following options to the compiler command (see Appendix B).

For Append the Option

Level one optimization +O1

Level two optimization +O2 or -O

Basic Blocks

The compiler behaves di�erently on large procedures when you optimize at Level 2. Any
procedure containing more than 500 basic blocks causes the optimizer to drop down to Level 1
optimization for that procedure. A warning is emitted for that procedure:

Optdriver: <num> basic blocks; dropping to level 1 optimization for <proc>. (6059)

You can request Level 2 optimization and change the number of basic blocks at which the
optimizer drops down to Level 1 optimization by specifying num in the compiler option:

$OPTIMIZE 'BASIC_BLOCKS num'$

You can change the default level (500) at which the optimizer drops down to Level 1
optimization (without requesting any level of optimization) by specifying num in the compiler
option:

$OPTIMIZE 'BASIC_BLOCK_FENCE num'$

For more information on basic blocks, refer to the HP Pascal/iX Reference Manual or the
HP Pascal/HP-UX Reference Manual , depending on your implementation.

The Optimizer 12-3

Level One Optimization

Level one optimization transforms small sections of code quickly, using little compile-time
storage. Compile your program with level one optimization when you want to improve
run-time performance with little increase in compile time.

The functions of the �ve level one optimizer transformations are:

Branch optimization
Dead code elimination
Faster register allocation (including copy elimination)
Instruction scheduling
Peephole optimization

Branch Optimization

The branch optimization transformation makes branch instruction sequences more e�cient
wherever possible.

Table 12-1 gives examples of equivalent unoptimized and optimized branch instruction
sequences.

Table 12-1. Unoptimized and Optimized Branch Instruction Sequences

Unoptimized Sequence Optimized Sequence

Branch target is the default, as in:

IF b THEN GOTO 100;

100 : writeln('Hi');

Branch is deleted:

100 : writeln('Hi');

Branch target is an unconditional branch, as in:

IF b1 THEN

IF 2<5 THEN p(5);

Target of unconditional branch is target of
conditional branch:

IF b1 THEN p(5);

Target of an unconditional branch at the bottom
of a loop is a conditional branch at the top of a
loop, as in:

100 : IF b THEN BEGIN

.

.

.

GOTO 100;

END;

Conditional branch at the bottom of the loop:

IF b THEN BEGIN

100 :

BEGIN

.

.

.

IF b THEN GOTO 100;

END;

END;

12-4 The Optimizer

Table 12-1.

Unoptimized and Optimized Branch Instruction Sequences (continued)

Unoptimized Sequence Optimized Sequence

Target of unconditional branch is a routine exit,
as in:

PROCEDURE p;

BEGIN

.

.

.

GOTO 99;

.

.

.

99: END;

Unconditional branch is an exit sequence, if
possible. (This cannot be shown at the source
code level.)

Branch over a single instruction, as in:

IF b THEN GOTO 1;

i := 0; {single instruction}

1: j := j+1;

Which has the machine code:

LDB "b",r1

BB,>=,N r1,31,false_if

B,N label_1

false_if STW r0,"i"

label_1 LDW "j",r31

ADDIO 1,r31,r19

STW r19,"j"

Conditional nulli�cation of the instruction
preceding the skipped instruction:

IF NOT b THEN i:=0;

1: j := j+1;

Which has the machine code:

LDB "b",r1

EXTRS,< r1,31,1,r0

STW r0,"i"

LDW "j",r31

ADDIO 1,r31,r19

STW r19,"j"

Conditional branch over an unconditional branch,
as in:

IF b THEN GOTO 100;

GOTO 110;

100: writeln('Hi');

110: writeln('Bye');

The condition in the conditional branch is
inverted, and the unconditional branch is deleted:

IF NOT b THEN GOTO 110;

writeln('Hi');

110: writeln('Bye');

The Optimizer 12-5

Dead Code Elimination

The dead code elimination transformation eliminates code that will never be executed. For
example:

a := 2;

goto 1;

writeln('debug_patch_01',a);

1:

becomes:

a := 2;

Do not depend on dead code because the compiler can eliminate dead code even without
optimization. The current compiler performs the following transformation without
optimization:

The code:

IF 2>3 THEN a ELSE b;

WHILE 2>3 DO c;

FOR i := 7 TO 0 DO d;

CASE 1 OF

1: e;

2: f;

END;

REPEAT g UNTIL 3>2;

becomes:

b;

e;

g;

12-6 The Optimizer

Faster Register Allocation

The faster register allocation transformation:

Inserts entry and exit code.
Generates code for operations (such as multiplication and division).
Eliminates unnecessary copy instructions.
Allocates actual registers to the dummy registers in instructions.

The faster register allocation transformation analyzes register use faster than the coloring
register allocation transformation (at level two) does.

Instruction Scheduling

The instruction scheduling transformation:

Reorders the instructions in a basic block to minimize waiting. (A basic block is an
instruction sequence that can be entered only at the �rst instruction and exited only from
the last instruction.)

Follows a branch instruction with a useful instruction that can be executed as the branch
occurs, where possible.

Schedules
oating-point instructions.

Example

The code:

in which ADDI must wait an extra machine cycle for r1 to be loaded with its new value,
becomes:

which does not immediately use r1 and, therefore, does not have to wait.

The Optimizer 12-7

Peephole Optimization

The peephole optimization transformation makes one pass through the program, shortening
instruction sequences in small windows of code by:

Changing the addressing modes of instructions, so that they use shorter sequences.

Substituting smaller, equivalent instruction sequences.

Example

The code:

LDI 32,r3

AND r1,r3,r2

COMIB,= 0,r2,L1 {COMpare Immediate; Branch if equal}

becomes:

BB,>= r1,26,L1 {Branch on Bit 26}

Real Expression Folding

The real expression folding transformation simpli�es real expressions as follows:

Real Expressions of the Form: Become:

r1 * 1

1 * r1

r1 + 0

0 + r1

r1 - 0

r1 / 1

r1

r1 * 0

0 * r1

0

0 - r1 -r1

Note Folding real expressions violates the IEEE Real Standard, which disallows
operations for certain real values (for example, in�nity and NAN). The real
expression folding transformation assumes that r1 does not have any of these
values. The above expressions are not folded if optimization is turned o�.

12-8 The Optimizer

Level Two Optimization

Level two optimization transforms each routine as a unit, causing the compiler to use more
compile-time storage and take longer than level one optimization or no optimization would.
Compile your program with level two optimization when you want maximum run-time
performance and compilation speed is not important.

The functions of the seven level two optimizer transformations are:

Coloring register allocation.

Induction variable elaboration and strength reduction.

Common subexpression elimination.

Constant folding.

Loop invariant code motion.

Store-copy optimization.

Unused de�nition elimination.

Coloring Register Allocation

The coloring register allocation transformation:

Inserts entry and exit code.

Generates code for operations (such as multiplication and division).

Eliminates unnecessary copy instructions.

Allocates actual registers to the dummy registers in instructions.

The coloring register allocation transformation analyzes register use more slowly than the
faster register allocation transformation (at level one), because it must handle the more
extensive register usage caused by level two optimizations.

Example

The code:

LDI 2,r104

COPY r104,r103
LDO 5(r103),r106

COPY r106,r105

LDO 10(r105),r107

becomes:

LDI 2,r25

LDO 5(r25),r26

LDO 10(r26),r31

The Optimizer 12-9

Induction Variable Elaboration and Strength Reduction

The induction variables and strength reduction transformation:

Replaces loop counters with induction variables where appropriate (in the following
example, the loop counter i is replaced by an o�set into the array r).

Substitutes addition for multiplication where possible.

Example

The code:

FOR i := 1 TO 10000 DO BEGIN

r[i] := i * k;

END;

becomes:

t1 := k;

FOR i := 1 TO 10000 DO BEGIN

r[i] := t1;

t1 := t1 + k;

END;

Common Subexpression Elimination

The common subexpression elimination transformation identi�es expressions that appear
more than once and have the same result, computes the result, and substitutes it for each
occurrence of the expression.

Example

The code:

a := x + y + z;

b := x + y + w;

becomes:

t1 := x + y;

a := t1 + z;

b := t1 + w;

Constant Folding

The constant folding transformation replaces constant expressions with their values within
basic blocks.

Example

The code:

a := 1;
b := 2;

c := a + b;

12-10 The Optimizer

becomes:

a := 1;

b := 2;
c := 3;

Loop-Invariant Code Motion

The loop-invariant code motion transformation moves loop-invariant code out of the loop
(loop-invariant code is code whose e�ect is independent of the value of the loop counter).

Example

The code:

FOR i := 1 TO 100 DO BEGIN

a[i] := (4 * x) + i;

END;

becomes:

t1 := 4 * x;

FOR i := 1 TO 100 BEGIN

a[i] := t1 + i;

END;

Because optimization a�ects the machine code, but not the source code, error messages
associated with loop-invariant source code inside the loop appear outside the loop after
optimization.

Example

Unoptimized program:

i := 1;

REPEAT

a[i] := i;

b[i] := b[i] + x/y;

UNTIL i = 10;

Optimized program:

i := 1;

t := x/y;

REPEAT

a[i] := i;

b[i] := b[i] + t;

UNTIL i = 10;

If y is zero, the unoptimized program causes an error within the loop, at the assignment
of b[1]. The optimized program causes an error before the loop is entered, before b[1] is
assigned a value. This error occurs before the program enters the loop.

The Optimizer 12-11

Store-Copy Optimization

The store-copy optimization transformation substitutes registers for memory locations where
possible, by replacing store instructions with copy instructions and deleting load instructions.

Example

Source code:

t1 := x + y;

a := t1 + z;

b := t1 + w;

Unoptimized code:

LDW "x",r104
LDW "y",r105

ADD r104,r105,r106

STW r106,"t1"

LDW "t1",r106

LDW "z",r107

ADD r106,r107,r108

STW r108,"a"

LDW "t1",r106

LDW "w",r109

ADD r106,r107,r110

STW r110,"b"

Optimized code:

LDW "x",r104

LDW "y",r105

ADD r104,r105,r106

LDW "z",r107

ADD r106,r107,r108

STW r108,"a"

LDW "w",r109

ADD r106,r107,r110

STW r110,"b"

12-12 The Optimizer

Unused Definition Elimination

The unused de�nition elimination transformation removes unused memory location and
register de�nitions (which are often the by-products of other optimizations).

Example

The function:

FUNCTION f (x : integer) : integer;

VAR

a,b,c : integer;

BEGIN

a := 1;

b := 2;
c := 0;

c := x * b;

f := c;

END;

becomes:

FUNCTION f (x : integer) : integer;

VAR

a,b,c : integer;

BEGIN

b := 2;

c := x * b;

f := c;

END;

All the level two optimizations combined produce:

FUNCTION f (x : integer) : integer;

VAR

a,b,c : integer;

BEGIN

f := x * 2;

END;

The Optimizer 12-13

Optimizer Assumptions

The optimizer makes the following assumption about variable use when it optimizes a
program: inside a routine, the only variables that can be accessed indirectly (through a
pointer or by another function) are:

Global variables.

Reference parameters.

Local variables that are passed to other routines by reference.

Local variables or value parameters that are passed to other routines by reference.

Local variables or value parameters used by the prede�ned function addr . You will violate
this assumption if you use baddress or waddress .

If your program violates this assumption, it will fail when optimized.

You can make the optimizer's job easier by telling it what other assumptions it can make. To
do this, use the compiler option ASSUME (refer to the HP Pascal/iX Reference Manual or
the HP Pascal/HP-UX Reference Manual , depending on your implementation).

You can derive the assumptions for your program without the overhead of level two
optimization by following these directions:

1. Specify level one optimization. The compiler does not collect information that only level
two requires, but it does collect su�cient information about the source program to issue
notes that tell you which assumptions you can add to forward and external declarations to
make your program easier to optimize.

2. If you only want to see warnings and not notes, use NOTES OFF (for more information
on the NOTES compiler option, refer to the HP Pascal/iX Reference Manual or the HP
Pascal/HP-UX Reference Manual , depending on your implementation). NOTES OFF does
not suppress warnings, which the compiler issues if assumptions in routine headings are
invalid. (Chapter 11 explains the di�erence between notes and warnings.)

12-14 The Optimizer

Writing Programs That Are Easily Optimized

To maximize the opportunities for optimization and the speed with which your program is
optimized, observe the following guidelines whenever possible:

Specify all possible assumptions with the ASSUME compiler option.

Do not use system programming extensions (specify ASSUME 'PASCAL FEATURES').

Use local variables and parameters instead of global variables (this helps the optimizer
promote variables to registers).

Don't use CRUNCHED, PACKED, or shortint variables.

Don't put pointer �elds in variant parts of records.

Use unique types as often as possible (this helps the optimizer determine which variables are
possible actual parameters for the formal parameters of routines).

Make routines relatively small|approximately 50 executable lines maximum (this allows the
optimizer to use registers more e�ciently).

Expand in-line any routine of fewer than �ve lines and any relatively small routine that your
program calls only once (see \INLINE" in Chapter 8).

Do not write a loop that contains only a routine call; put the loop in the routine instead, or
use the INLINE compiler option.

Design loops that terminate when their control values are zero or nil .

Use WITH statements.

Do not use the FORWARD and EXTERNAL directives without the ASSUME compiler
option.

Do not use the GOTO statement.

The Optimizer 12-15

What to Do If the Optimized Program Fails

Occasionally, a program works di�erently after optimization. If your program fails after
optimization:

1. Make sure that the program does not violate the optimizer assumptions. Check for
program errors that may not occur without optimization, such as uninitialized variables
and misaligned data.

2. If the program violates the optimizer assumptions, either correct and recompile it, or
recompile it without optimization.

3. If the program does not violate the optimizer assumptions, isolate the problem code and
recompile it with level one optimization. If the program still fails, recompile it without
optimization.

On the HP-UX operating system, if the compiler runs out of space during optimization:

1. Split your program into smaller compilation units.

2. Run fewer concurrent processes when compiling with optimization.

3. Change the system con�guration, increasing the amount of swap space on the disk.

12-16 The Optimizer

A

MPE/iX Dependencies

This appendix explains how the HP Pascal compiler and HP Pascal programs work on the
MPE/iX operating system. It explains:

How MPE/iX a�ects system dependent HP Pascal features.

MPE/iX extensions to HP Pascal.

How to compile, link, and run your HP Pascal program on MPE/iX.

System-Dependent Features

System dependent features are available to all HP Pascal programs (regardless of the system
on which the compiler is running), but the system a�ects their de�nitions and behavior.
System dependent HP Pascal features fall into these categories:

Compiler options.

File names.

Associating logical and physical �les.

Using �le equations.

Default �le attributes.

Standard modules.

Miscellaneous.

Compiler Options

The following compiler options are available only to programs that are compiled by the HP
Pascal compiler running on the MPE/iX operating system and contain the compiler option OS
'MPE/XL'.

FONT

HP3000_16

HP3000_32

The compiler option INCLUDE is available to programs compiled by the HP Pascal compiler
running on either the MPE/iX or HP-UX operating system, but it works di�erently on the
two systems.

Refer to the HP Pascal/iX Reference Manual for more information on the compiler options
FONT, HP3000 16, HP3000 32, and INCLUDE.

MPE/iX Dependencies A-1

File Names

An MPE/iX �le name has the syntax

�lename [/lockword][.group[.account]][:nodename]

where each of �lename, lockword , group, account and node is a string of one to eight
alphanumeric characters. The �rst character in the string is a letter, and each of domain and
organization is a string of one to 16 alphanumeric characters, the �rst of which is a letter.
The entire �le name cannot have more than 86 characters. MPE/iX does not distinguish
between uppercase and lowercase letters.

Example

For more information on MPE/iX �le names, refer to the MPE/iX Commands Reference
Manual .

Associating Logical and Physical Files

Your program does not a�ect its external environment unless its logical �les are associated
with physical �les at run-time. If they are, �le operations work concurrently on logical and
physical �les (see Chapter 3).

In HP Pascal on the MPE/iX operating system, a logical �le is associated with a physical �le
under any one of the following conditions:

1. The name of the logical �le is both a program parameter and the �rst parameter of a
prede�ned �le-opening procedure. The prede�ned �le-opening procedure has no second
parameter.

The operating system associates the logical �le name with a default physical �le, whose
name consists of the �rst eight characters of the logical �le name. This name must be an
acceptable MPE/iX �le name (for example, it cannot contain an underscore character ()).
If the default physical �le does not exist, HP Pascal creates a temporary physical �le with
that name.

A-2 MPE/iX Dependencies

Example

PROGRAM case_one (input,output,file1);

VAR

file1 : FILE OF integer;

BEGIN

reset(file1);

.

.

.

END.

The operating system associates the logical �le file1 with the physical �le FILE1. If FILE1
does not exist, HP Pascal creates a temporary �le named FILE1.

The standard �les input and output are exceptions to this scheme. When they are program
parameters, the operating system associates them with the physical �les $STDIN and
$STDLIST, respectively.

If a logical �le name is not a program parameter, but is the �rst parameter of a �le-opening
procedure that has no second parameter, the operating system associates the logical �le
with a temporary, nameless physical �le (assuming that the logical �le is not already
associated with a physical �le). You cannot save the temporary �le. When the program
ends or the logical �le is associated with another physical �le, the temporary �le is
inaccessible.

2. The names of the logical and physical �les are the �rst and second parameters, respectively,
of a prede�ned �le-opening procedure. It does not matter whether the logical �le name is a
program parameter or not.

Example

PROGRAM case_two (input,output); {logical file name is not a

program parameter}

VAR

file1 : FILE OF integer;

BEGIN

rewrite(file1,'numfile');

.

.

.

END.

The operating system associates the logical �le file1 with the physical �le numfile.

This association holds, even if the logical �le name is a program parameter.

MPE/iX Dependencies A-3

Example

PROGRAM case_three (input,output,file1); {logical file name is a

program parameter}
VAR

file1 : FILE OF integer;

fname : PACKED ARRAY [1..8] OF char;

BEGIN

fname := 'numfile';

rewrite(file1,fname);

.

.

.

END.

The operating system still associates file1 with numfile, not FILE1.

The second parameter of a �le-opening procedure need not be a string literal. It can also
be a PAC variable or string expression.

A-4 MPE/iX Dependencies

Using File Equations

The MPE/iX FILE command redirects the association of one physical �le to another physical
�le and speci�es additional �le attributes, which are MPE/iX dependent.

Example

PROGRAM prog (outfile);

VAR

i : integer;

outfile : text;

BEGIN

rewrite(outfile);

FOR i := 1 TO 20000 DO

writeln(outfile,i);

END.

If PRG is the program �le for prog and you execute the MPE/iX command sequence

:FILE OUTFILE = FILE2

:RUN PRG

then output goes to FILE2 instead of OUTFILE.

If you execute the MPE/iX command sequence

FILE OUTFILE; DISC=21000; REC=-20,,F,ASCII

RUN PROG

then a nondefault attribute �le is created.

MPE/iX Dependencies A-5

Default File Attributes

When HP Pascal creates a �le, the physical �le attributes depend on the �le component type.

Table A-1 gives the default �le attributes of �les built by HP Pascal programs. After the
program has executed, the MPE/iX command LISTF shows these values for the �les that the
program built (LISTF attribute names are in parentheses).

Table A-1. Default File Attributes

How Program
Declares File

Default File Attribute

Record Size
(SIZE)

File Type (TYP) Current File Size
(EOF)

Maximum File
Size (LIMIT)

FILE OF type Component size Fixed length
binary (FB)

Number of
components
written

1023

Text 256 bytes Variable length
ASCII with
carriage control
(VAC)

Number of lines
written

1023

Standard Modules

Two standard modules are available on MPE/iX: stdinput and stdoutput .

If a module imports the stdinput module, it can use the prede�ned �le input in I/O
statements such as read and readln .

If a module imports the stdoutput module, it can use the prede�ned �le output in I/O
statements such as write and writeln.

Example

MODULE mymod;

IMPORT

stdinput, stdoutput;

EXPORT

FUNCTION myproc : integer;

IMPLEMENT

FUNCTION myproc : integer;

VAR

i : integer;

BEGIN

prompt('enter number:'); {need not specify output file}

readln(i); {need not specify input file}

myproc := i;

END;

END.

A-6 MPE/iX Dependencies

Additional Features

The HP Pascal features in the left-hand column depend on the MPE/iX operating system in
the ways explained in the right hand column.

Feature MPE/iX Dependency

Close options The optional third parameter of the prede�ned procedure
close can be SAVE, LOCK, TEMP, NORMAL, CRUNCH,
or PURGE, whose meanings are:

SAVE LOCK The �le is saved as a permanent �le after it
is closed.

TEMP
NORMAL

The �le is saved as a temporary �le after it
is closed.

CRUNCH Space after end-of-�le marker is removed
when the �le is closed.

PURGE The �le is purged after it is closed.

Halt MPE/iX calls the intrinsic QUIT with an integer
parameter.

Internal table size The Job Control Word (JCW) PASXDATA is the number
of pages to allocate to each internal table (there is one
internal table for identi�ers and another for structured
constants). The default internal table size is 100 pages. To
set the internal table size to n pages, use the command:

:SETJCW PASXDATA n

Write If the �le being written is $STDLIST (the default output
�le), the output is unbu�ered; therefore, a write to
$STDLIST has the same behavior as prompt.

Input The standard program parameter and text�le input is
$STDIN.

Maxpos The call maxpos(f) returns the position number of the last
component of the �le f that the program can access. It is
an error if the �le f is not open for direct access.

MPE/iX Dependencies A-7

Open options The third parameter of the prede�ned �le-opening
procedures append , associate, open, read , reset , rewrite,
and write. They and their meanings are:

Option Meaning

CCTL The �le has carriage control. (Ignored for
associate.)

DIRECT The �le is open for read and write access
(associate only).

NOCCTL The �le does not have carriage control.
(Ignored for associate.)

READ The �le is open for read access only
(associate and open only).

WRITE The �le is open for write access only
(associate and open only).

SHARED The �le can be open to more than one
program at a time. (Ignored for associate.)

EXCLUS The �le cannot be open to more than one
program at a time. (Ignored for associate.)

LOCK The �le is locked. If the �le is already
locked, the program waits until it is
unlocked. (Ignored for associate.)

At least one open option is required for associate; for all
other �le-opening procedures, open options are optional.
You can specify more than one open option (separate them
with commas).

If the physical �le speci�ed in the associate procedure
has one or more of the characteristics speci�ed by the
open options, then the logical �le assumes the same
characteristics. If not, the associate procedure does not
associate the new physical �le with the logical �le.

Output The standard program parameter and text�le output is
$STDLIST.

System intrinsic �le SYSINTR.PUB.SYS

System default module library PASLIB.PUB.SYS

A-8 MPE/iX Dependencies

Restrictions on Using Executable Libraries (XLs)

Global variables cannot be referenced across load modules. This applies to globals declared
through normal, global, external, and module subprogram compilation units. In particular,
you cannot use the standard �les input or output .

If a subprogram compilation unit is put in an XL, memory is overwritten. You cannot put
an external compilation unit in an XL. Using MODULE or SUBPROGRAM with global
compilation units will cause separate storage locations to be allocated.

A non-local GOTO from an XL cannot branch to a label in the outer block.

MPE/iX Dependencies A-9

MPE/iX Extensions

MPE/iX extensions are available only to programs that are run on the MPE/iX operating
system or contain the compiler option OS 'MPE/XL'. They are:

Prede�ned function ccode

Prede�ned function fnum

Prede�ned function get alignment

Prede�ned function statement number

Prede�ned procedure setconvert

Prede�ned procedure strconvert

Pascal/V packing algorithm

ccode Function

The prede�ned function ccode returns an integer in the range 0..2, which represents the
condition code set by the most recently executed intrinsic or external SPL routine.

The correspondence between possible return values and condition codes is:

Value Condition Code

0 CCG

1 CCL

2 CCE

For the meanings of the condition codes, refer to the MPE/iX Intrinsics Reference Manual .

The value that ccode returns is valid between the time that the intrinsic or external SPL
routine returns and any subsequent calls that can change the value of ccode, which are:

Another intrinsic or external SPL routine.

Any prede�ned routine.

An HP Pascal error condition.

Note The scope rules for ccode are di�erent in MPE/iX and MPE V.

A-10 MPE/iX Dependencies

Example

PROGRAM prog (output);

PROCEDURE intrin; INTRINSIC;
PROCEDURE extspl; EXTERNAL SPL;

PROCEDURE p;

BEGIN

writeln(ccode); {Garbage -- no intrinsic or external SPL

intrin;

writeln(ccode); {Returns condition code that intrin set}

extspl;

writeln(ccode); {Returns condition code that extspl set}

END;

BEGIN

p;

END.

Fnum Function

The prede�ned function fnum returns the MPE/iX �le number of the physical �le currently
associated with a given logical �le. You can use this �le number in calls to MPE/iX �le
system intrinsics.

Syntax

fnum (�lename)

Parameter

�lename The name of the logical �le. This parameter is required, even if the logical �le
is the standard �le input or output. The logical �le must be associated with a
physical �le.

Example

PROGRAM aaa (output,f);

VAR

f : text;

file_number : integer;

file_name : PACKED ARRAY [1..86] OF char;

PROCEDURE fgetinfo; INTRINSIC;

BEGIN

reset(f);

file_number := fnum(f);

file_name := ' ';

fgetinfo(file_number,file_name);

writeln('File name of f is', file_name);

END.

MPE/iX Dependencies A-11

Get alignment Function

The prede�ned function get alignment returns the alignment requirement of a given type or
variable. For a type, get alignment returns the minimum possible alignment. For a variable,
it returns the actual alignment.

Syntax

get_alignment (

�
variable

type

�
)

Parameters

variable Any variable. The function get alignment returns its alignment requirement.

type Any type identi�er (the name of any type). The function get alignment
returns its alignment requirement.

Example

$OS 'MPE XL'$

PROGRAM prog;

TYPE
Rec = $ALIGNMENT 8$

RECORD

f1 : integer;

f2 : shortint;

f3 : real;

END;

integer_ = $ALIGNMENT 2$ integer;

VAR

ptr : ^integer_;

BEGIN

i := get_alignment(rec);

IF get_alignment(ptr^) <> 2 THEN ...

END.

A-12 MPE/iX Dependencies

Statement number Function

The prede�ned function statement number returns the statement number of the statement
that calls it, as shown on the compiled listing. It is a useful debugging aid, especially when
used with the prede�ned procedure assert .

Syntax

statement_number

Example

PROGRAM prog (output);

VAR

i : integer;

BEGIN

i := statement_number;

writeln('Current Statement Number is ', i);

assert(a > b, statement_number);

END.

MPE/iX Dependencies A-13

Setconvert Procedure

The prede�ned procedure setconvert converts a set from HP Pascal packing algorithm
(HP3000 32) format to Pascal/V packing algorithm (HP3000 16) format, or vice versa. It is
enabled by the HP3000 16 compiler option.

Syntax

setconvert(set1,set2)

Parameters

set1 The name of the set variable to be converted.

set2 The name of the set variable into which the converted set is to be stored.

The sets set1 and set2 can vary only in packing algorithm format. Their packing (unpacked,
packed, or crunched) and base types must be the same. Their packing algorithm formats
cannot be the same.

Example

PROGRAM prog;

$HP3000_16$ {Enables setconvert procedure}

TYPE

hp3000_16_set1 = SET OF char;

hp3000_32_set1 = $HP3000_32$ SET OF char;

hp3000_32_set2 = $HP3000_32$ PACKED SET OF char;

hp3000_32_set3 = $HP3000_32$ SET OF integer;

VAR

set16_1,

set16_2 : hp3000_16_set1;

set32_1 : hp3000_32_set1;

set32_2 : hp3000_32_set2;

set32_3 : hp3000_32_set3;

BEGIN
setconvert(set16_1,set32_1); {convert from Pascal/V to HP Pascal}

setconvert(set32_1,set16_1); {convert from HP Pascal to Pascal/V}

setconvert(set16_1,set32_2); {Illegal -- different packings}

setconvert(set16_1,set32_3); {Illegal -- different base types}

setconvert(set16_1,set16_2); {Illegal -- same packing algorithm format}

END.

A-14 MPE/iX Dependencies

Strconvert Procedure

The prede�ned procedure strconvert converts a string from Pascal/V packing algorithm
(HP3000 16) format to HP Pascal packing algorithm (HP3000 32) format. It is enabled by
the HP3000 16 compiler option.

Syntax

strconvert(string1,string2)

Parameters

string1 The name of the string variable to be converted. The string variable must be
in Pascal/V packing algorithm (HP3000 16) format.

string2 The name of the string variable into which the converted string is to
be stored. The string variable must be in HP Pascal packing algorithm
(HP3000 32) format.

Example

PROGRAM prog;

$HP3000_16$ {Enables strconvert procedure}

TYPE

str16_20=string[20]; {Pascal/V packing algorithm (HP3000_16)}
str32_40=$HP3000_32$ string[40]; {HP Pascal packing algorithm (HP3000_32)}

VAR

sv32_1,

sv32_2 : str32_40;

sv16_1,

sv16_2 : str16_20;

BEGIN

strconvert(sv16_1,sv32_1);

strconvert(sv32_2,sv32_1); {Illegal}

strconvert(sv16_1,sv16_2); {Illegal}

END.

MPE/iX Dependencies A-15

Pascal/V Packing Algorithm

The Pascal/V packing algorithm is an alternative to the default HP Pascal packing algorithm
that Chapter 5 explains. If you want the compiler to use the Pascal/V packing algorithm,
include the compiler option HP3000 16 in your program (see the HP Pascal/iX Reference
Manual for more information on the compiler option HP3000 16). HP3000 16 causes the
compiler to use the Pascal/V packing algorithm, with these exceptions:

Pointers are allocated four bytes each and are 4-byte-aligned.

Files are aligned according to the HP Pascal packing algorithm. File control blocks are
determined by the HP Pascal packing algorithm. Bu�er size is determined by the Pascal/V
packing algorithm.

Variables of types that specify the HP3000 32 compiler option are allocated and aligned
according to the HP Pascal packing algorithm.

Unpacked Variables

An unpacked variable is either not part of an array or record, or it is part of an unpacked
array or record. In either case, it is allocated and aligned the same way.

Table A-2 shows how the Pascal/V packing algorithm allocates and aligns the elements of
an unpacked array or the �elds of an unpacked record. The element or �eld types are in
alphabetical order. Subsections that Table A-2 references are in this section, \Pascal/V
Packing Algorithm".

A-16 MPE/iX Dependencies

Table A-2.

Allocation and Alignment of Unpacked Variables

(Pascal/V Packing Algorithm)

Variable Type Allocation Alignment

Array Use formula in \Arrays" Byte or 2-byte

Bit16 2 bytes 2-byte

Bit32 4 bytes 2-byte

Bit52 8 bytes 2-byte

Boolean 1 byte Byte

Char 1 byte

Enumeration 1-256 elements

Enumeration 1 byte Byte

Enumeration 257 or more elements

Enumeration 2 bytes 2-byte

File See \Files" 8-byte

Integer 4 bytes 2-byte

Longint 8 bytes 2-byte

Longreal 8 bytes 2-byte

Pointer HP3000 16 does not a�ect pointers. See Table 5-1.

Real 4 bytes 2-byte

Record Each �eld is allocated by type
and record is padded to nearest
2-byte boundary

2-byte

Set See \Sets"

String See \Strings" 2-byte

Subrange of enumeration Same as base type Byte or 2-byte

Subrange of integer Inside range -32768..32767

Subrange of integer 2 bytes 2-byte

Subrange of integer Outside range -32768..32767

Subrange of integer 4 bytes 2-byte

MPE/iX Dependencies A-17

Packed Variables

A packed variable is the element of a packed array or the �eld of a packed record. Packed
elements and packed �elds are allocated and aligned di�erently.

Table A-3 shows how the Pascal/V packing algorithm allocates and aligns the elements of
a packed array. The element types are in alphabetical order. Subsections that Table A-3
references are in this section, \Pascal/V Packing Algorithm".

Table A-3.

Allocation and Alignment of Packed Array Elements

(Pascal/V Packing Algorithm)

Element Type Allocation Alignment

Array Use formula in \Arrays" Byte if element is allocated 8
bits; 2-byte otherwise

Bit16 2 bytes 2-byte

Bit32 4 bytes 2-byte

Bit52 8 bytes 2-byte

Boolean 1 bit Bit

Char 1 byte Byte

Enumeration See \Packed Enumerations"

File See \Files" 8-byte

Integer 4 bytes 2-byte

Longint 8 bytes 2-byte

Longreal 8 bytes 2-byte

Pointer HP3000 16 does not a�ect pointers.

Real 4 bytes 2-byte

Record Each �eld is allocated by type
and record is padded to nearest
2-byte boundary

2-byte

Set See \Sets"

String See \Strings"

Subrange of enumeration See \Packed Subranges of Enumerations"

Subrange of integer See \Packed Subranges of Integers"

A-18 MPE/iX Dependencies

Table A-4 shows how the Pascal/V packing algorithm allocates and aligns the �elds of
a packed record. The �eld types are in alphabetical order. Subsections that Table A-4
references are in this section, \Pascal/V Packing Algorithm".

Table A-4.

Allocation and Alignment of Packed Record Fields

(Pascal/V Packing Algorithm)

Variable Type Allocation Alignment

Array Use formula in \Arrays" Byte if element is allocated 8
bits; 2-byte otherwise

Bit16 2 bytes 2-byte

Bit32 4 bytes 2-byte

Bit52 8 bytes 2-byte

Boolean 1 bit Bit

Char 8 bits Bit, but does not cross 2-byte
boundary

Enumeration See \Packed Enumerations"

File See \Files" 8-byte

Integer 4 bytes 2-byte

Longint 8 bytes 2-byte

Longreal 8 bytes 2-byte

Pointer HP3000 16 does not a�ect pointers. See Table 5-1

Real 4 bytes 2-byte

Record Each �eld is allocated by type
and record is padded to nearest
2-byte boundary

2-byte

Set See \Sets"

String See \Strings"

Subrange of enumeration See \Packed Subranges of Enumerations"

Subrange of integer See \Packed Subranges of Integers"

MPE/iX Dependencies A-19

Arrays

This section applies to the allocation of unpacked and packed arrays. For alignment, see
Table A-2 and Table A-3.

The Pascal/V packing algorithm stores arrays in row-major order (for a de�nition of
row-major order, see Chapter 5).

The Pascal/V packing algorithm uses this formula to allocate an array:

(number of elements * space for one element)

+

number of internal unused bits

+

number of trailing pad bits

The space for one element depends on the element type and whether the array is unpacked
or packed. If the array is unpacked, �nd its type in Table A-2. If the array is packed, �nd its
type in Table A-3.

If space for one element is less than 16 bits, the number of internal unused bits is

16-((16 DIV space for one element) * space for one element)

otherwise, it is zero.

The number of trailing pad bits is the number of leftover bits in the last byte or word
(whichever each element is allocated).

Example

TYPE

day = (sun,mon,tues,wed,thurs,fri,sat);

VAR

ua : ARRAY [1..8] OF day;

pa : PACKED ARRAY [1..8] OF day;

Each element of ua takes one byte. The entire array takes eight bytes, with no internal unused
bits and no trailing pad bits. The array ua is allocated and aligned like this:

A-20 MPE/iX Dependencies

Each element of pa takes three bits. No element can cross a 2-byte boundary, so the bit
following pa[5] is unused. The entire array takes four bytes, with one internal unused bit and
seven trailing pad bits. It is allocated and aligned like this:

Files

The HP Pascal compiler allocates space for an HP3000 16 �le this way:

The �le control block is allocated according to the HP Pascal packing algorithm.

The �le bu�er variable size is allocated according to the Pascal/V packing algorithm.

The �le is 8-byte-aligned.

Records

This section applies to unpacked and packed records unless otherwise noted.

The Pascal/V packing algorithm does not always align variant parts of �elds on the same
boundary. Each variant part's boundary depends on its type.

Example

TYPE

Rec = PACKED RECORD

i : integer;

CASE b : boolean OF

TRUE : (f1 : char);

FALSE : (f2 : ARRAY[1..2] OF -32768..32767;

END;

A variable of type Rec is allocated 10 bytes. The TRUE and FALSE variants are aligned like
this:

TRUE Variant

MPE/iX Dependencies A-21

FALSE Variant

The variants f1 and f2 do not start on the same boundary; therefore, f1 cannot be overlaid
with f2.

Sometimes you can reduce the space that a record takes by declaring its �elds in di�erent
order.

Example

VAR

upr1 : RECORD

b : boolean;

p : 0..32767;

c : char;

END;

upr2 : RECORD

b : boolean;

c : char;
p : 0..32767;

END;

The only di�erence between the variables upr1 and upr2 above is the order of their �elds.

The variable upr1 takes six bytes:

Because p must be 2-byte-aligned, it cannot start in the second byte. The sixth byte is
allocated to upr1 also, because records are 2-byte-aligned.

The variable upr2 takes four bytes:

A-22 MPE/iX Dependencies

Sets

The Pascal/V packing algorithm allocates sets in byte pairs. The number of byte pairs
allocated to a set depends on its type. For the types Boolean, char, enumeration, and integer,
the formula for the number of byte pairs is:

number of byte pairs = ceil(bits required for set/16)

(where ceil(x) means the integer closest to x that is greater than or equal to x). Table A-5
gives the values for bits required for set and number of byte pairs for Boolean, char, and
integer types.

Table A-5.

Bit and Byte Pair Requirements for Boolean, Char, and Integer Base Types

(Pascal/V Packing Algorithm)

Base Type bits required for set number of byte pairs

Boolean 2 1

Char 256 16

Integer y 256 (by default) * 16

y Same as bit16, bit32, bit52, shortint, and longint.

* Integers outside the range 0..255 cannot belong to the set.

For enumerated sets, bits required for set is the number of elements in the set, and you must
use the formula to determine number of byte pairs .

Example

VAR

days = SET OF (sun,mon,tues,wed,thurs,fri,sat);

months = SET OF (ja,f,mr,ap,ma,jn,jl,au,s,o,n,d);

set_33 = SET OF (e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,

e12,e13,e14,e15,e16,e17,e18,e19,e20,e21,e22,

e23,e24,e25,e26,e27,e28,e29,e30,e31,e32,e33);

MPE/iX Dependencies A-23

The set days has seven elements and requires seven bits. It is allocated one byte pair
(ceil(7/16) = 1).

Each element is represented by one bit, like this:

The set months has 12 elements and requires 12 bits. It is allocated one byte pair
(ceil(12/16) = 1). Each element is represented by one bit.

The set set_33 has 33 elements and requires 33 bits. It is allocated three byte pairs
(ceil(33/16) = 3). Each element is represented by one bit.

For integer subrange sets, the formula for the number of byte pairs is:

number of byte pairs = (upper bound byte pair number -

lower bound byte pair number) + 1

The upper bound of the integer subrange determines upper bound byte pair number , and the
lower bound determines lower bound byte pair number . The formula is:

byte pair number = floor(bound / 16)

(where floor(x) means the integer closest to x that is less than or equal to x).

Example

VAR

s : SET OF -7..18;

The upper bound of the subrange is 18, so upper bound byte pair number
is 1 (floor(18/16)=1). The lower bound of the subrange is -7, so
lower bound byte pair number is -1 (floor(-7/16)=-1). The set s is allocated
three byte pairs ((1-(-1))+1=3).

A-24 MPE/iX Dependencies

Each set element is represented by one bit, like this:

To minimize storage space, avoid base types that are small subranges that overlap byte pair
boundaries.

Example

VAR

s : SET OF 31..32;

The set s takes two byte pairs, using 32 bits to represent a set that requires only two bits.
The arithmetic is:

floor(32/16) - floor31/16) + 1 = (2-1)+1 = 2.

MPE/iX Dependencies A-25

Strings

The Pascal/V packing algorithm aligns strings on 2-byte boundaries. Because the current
length (0..32767) is allocated two bytes, four bytes is the smallest possible string allocation.

The formula for the number of bytes allocated to a string is:

Example

VAR

s1 : string[10];

s2 : string[7];

The string s1 takes 14 bytes:

2+10+{2-ORD[ODD(10)]} =
12+[2-ORD(FALSE)] =

12+(2-0) = 14

The allocation is:

The string s2 takes 10 bytes:

2+7+{2-ORD[ODD(7)]} =

9+[2-ORD(TRUE)] =

9+(2-1) = 10

A-26 MPE/iX Dependencies

The allocation is:

Packed Enumerations

This subsection explains how the Pascal/V packing algorithm allocates and aligns packed
enumeration variables. A packed enumeration variable is either the element of a packed array
or the �eld of a packed record. The algorithm treats the two cases di�erently.

Table A-6 shows the relationship between the number of bits that an enumeration element of
a packed array requires, the number of bits that the Pascal/V packing algorithm allocates it,
and its alignment. A bit-aligned element never crosses a 2-byte boundary.

Table A-6.

Allocation and Alignment of Enumeration Elements of Packed Arrays

(Pascal/V Packing Algorithm)

Required Number of Bits
Per Element

Number of Bits Allocated
Per Element

Element Alignment

1 1 Bit

2 2 Bit

3 3 Bit

4 4 Bit

5 5 Bit

6 to 8 8 (1 byte) Byte

9 to 16 16 (2 bytes) 2-byte

MPE/iX Dependencies A-27

Table A-7 shows the relationship between the number of bits that an enumeration �eld of a
packed record requires, the number of bits that the Pascal/V mapping algorithm allocates it,
and its alignment. A bit-aligned �eld never crosses a 2-byte boundary.

Table A-7.

Allocation and Alignment of Enumeration Fields of Packed Records

(Pascal/V Packing Algorithm)

Required Number of Bits Number of Bits Allocated Field Alignment

1 1 Bit

2 2 Bit

3 3 Bit

4 4 Bit

5 5 Bit

6 6 Bit

7 7 Bit

8 8 Bit

9 9 Bit

10 10 Bit

11 11 Bit

12 12 Bit

13 13 Bit

14 14 Bit

15 15 Bit

16 (2 bytes) 2 bytes 2-byte

A-28 MPE/iX Dependencies

Example

TYPE

day = (sun,mon,tues,wed,thurs,fri,sat);
enum_32 = (e1,e2,e3,e4,e5,e6,e7,e8,

e9,e10,e11,e12,e13,e14,e15,e16,

e17,e18,e19,e20,e21,e22,e23,e24,

e25,e26,e27,e28,e29,e30,e31,e32);

VAR

a : PACKED ARRAY [1..11] OF day;

r : PACKED RECORD

f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11 : day;

END;

aa : PACKED ARRAY [1..4] OF enum_32;

rr : PACKED RECORD

f1,f2,f3,f4 : enum_32;

END;

Each element of the array a requires three bits, and no element can cross a 2-byte boundary.
The entire array occupies 35 bits, and is allocated six bytes.

Each element of the record r requires three bits, and no element can cross a 2-byte boundary.
The entire record occupies 35 bits, and is allocated six bytes.

Each element of the array aa requires six bits, but is allocated eight bits (one byte) and is
byte-aligned. The entire array takes four bytes:

MPE/iX Dependencies A-29

Each �eld of the record rr requires and is allocated six bits, and no �eld can cross a 2-byte
boundary. The entire record occupies 26 bits, and is allocated four bytes:

Packed Subranges of Enumerations

This subsection explains how the Pascal/V packing algorithm allocates and aligns packed
variables whose types are subranges of enumerations. These packed variables are either the
elements of packed arrays or the �elds of packed records. The algorithm treats the two cases
di�erently.

The number of bits that an enumeration of a subrange type requires is determined by
ord(upper bound of enumerated subrange).

Table A-8 shows the relationship between the number of bits that an enumeration-of-subrange
element of a packed array requires, the number of bits that the Pascal/V packing algorithm
allocates it, and its alignment. No element crosses a 2-byte boundary.

Table A-8.

Allocation and Alignment of Enumeration-of-Subrange Elements of Packed

Arrays

(Pascal/V Packing Algorithm)

Required Number of Bits
Per Element

Number of Bits Allocated
Per Element

Alignment

1 1 Bit

2 2 Bit

3 3 Bit

4 4 Bit

5 5 Bit

6 to 8 8 (1 byte) Byte

9 to 16 16 (2 bytes) 2-byte

A-30 MPE/iX Dependencies

Example

TYPE

enum_32 = (e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,
e11,e12,e13,e14,e15,e16,e17,e18,e19,e20,

e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,

e31,e32);

VAR

a : PACKED ARRAY [1..4] OF e7..e15;

b : PACKED ARRAY [1..4] OF e24..e31;

Each element of array a requires and is allocated four bits (see Table A-6). The elements are
bit-aligned, and the entire array occupies 16 bits. It is allocated two bytes:

Each element of array b requires and is allocated �ve bits (see Table A-6). The elements are
bit-aligned, and the entire array occupies 21 bits. It is allocated four bytes.

To the enumeration-of-subrange �eld of a packed record, the Pascal/V packing algorithm
allocates the required number of bits. Any allocation from one bit to two bytes is possible.
The �eld is bit-aligned, but never crosses a 2-byte boundary.

Example

TYPE

enum_32 = (e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,

e11,e12,e13,e14,e15,e16,e17,e18,e19,e20,

e21,e22,e23,e24,e25,e26,e27,e28,e29,e30,

e31,e32);

VAR

a : PACKED RECORD

f1,f2,f3,f4 : e7..e15;

END;

b : PACKED RECORD

f1,f2,f3,f4 : e24..e31;

END;

MPE/iX Dependencies A-31

Each �eld of record a requires and is allocated four bits. The �elds are bit-aligned, but cannot
cross 2-byte boundaries. The entire record is allocated two bytes:

Each �eld of record b requires and is allocated �ve bits. The �elds are bit-aligned, but cannot
cross 2-byte boundaries. The entire record occupies 21 bits. It is allocated four bytes:

Packed Subranges of Integers

This subsection explains how the Pascal/V packing algorithm allocates and aligns packed
variables whose types are subranges of integers. These packed variables are either the
elements of packed arrays or the �elds of packed records.

To the integer subrange variable of a packed array or packed record, the Pascal/V packing
algorithm allocates the required number of bits (if the subrange is, or is included in,
-32768..32767) or four bytes (if the subrange is outside that range).

Table A-9 shows the relationship between the number of bits that an element of a PACKED
array of subrange type requires, the number of bits that the Pascal/V mapping algorithm
allocates it, and its alignment.

Table A-9.

Allocation and Alignment of Elements of Packed Arrays of Subrange Type

(Pascal/V Packing Algorithm)

Required Number of Bits
Per Element *

Number of Bits Allocated
Per Element

Alignment

1 1 Bit

2 2 Bit

3 3 Bit

4 4 Bit

5 5 Bit

6 to 8 8 (1 byte) Byte

9 to 16 16 (2 bytes) 2-byte

32 32 (4 bytes) 2-byte

* Only if the subrange is, or is included in, -32768..32767; four bytes otherwise.

A-32 MPE/iX Dependencies

Example

VAR

a : PACKED ARRAY [1..4] OF 0..16;
b : PACKED ARRAY [1..4] OF 0..32;

Each element of the array a requires and is allocated �ve bits, and is bit-aligned (see
Table A-8). The entire array occupies 20 bits. It is allocated four bytes:

Each element of the array b requires six bits, is allocated one byte, and is byte-aligned (see
Table A-8). The entire array occupies four bytes.

For the integer subrange type of a packed record, any bit allocation from one bit to 15 bits is
possible, as are allocations of two and four bytes. Bit allocations are bit-aligned, but never
cross 2-byte boundaries. Two- and 4-byte allocations are 2-byte aligned. See \Records" for
more information.

Example

VAR

r : PACKED RECORD

a : 0..1; {Requires 1 bit}

b : 0..255; {Requires 8 bits}

c : 0..16; {Requires 5 bits}

d : 0..4; {Requires 3 bits}

e : 10..40000; {Requires 4 bytes}

f : 0..MAXINT; {Requires 4 bytes}

END;

The �elds of the record r are allocated the bits that they require. Fields a, b, c, and d are
bit-aligned, but cannot cross 2-byte boundaries (notice where d and e start). Fields e and f
are 2-byte-aligned.

MPE/iX Dependencies A-33

Compiling, Linking, and Running Your Program

To make your HP Pascal program a valid MPE/iX process, you must compile, link, and run
it.

The HP Pascal compiler compiles your source program, which is in a text�le. It translates
your source code to binary form and stores it in an object �le or in an RL.

The MPE/iX linker prepares the object �le for execution by binding the procedures in the
object modules together and de�ning the initial requirements of the user data stack.

The MPE/iX operating system allocates space for the program, binds its external routines to
it, and runs it. (The external routines are in executable libraries).

Additionally, the compiler looks for a system-wide �le called PASCNTL.PUB.SYS. If the �le
exists and is not empty, the compiler opens and reads the �le. The �le should contain only
compiler options and comments. If there is anything else in the �le, the compiler emits an
error message. If the �le is empty, which is the default, the compiler does not attempt to open
it. For more information on the system-wide �le, refer to the section on compiler options in
the HP Pascal/iX Reference Manual .

A-34 MPE/iX Dependencies

Figure A-1 shows how a source program (in a text�le) becomes a running program on
MPE/iX.

Figure A-1. How Source Code Becomes a Running Program on MPE/iX

This section explains:

The MPE/iX command �les that perform the steps shown in Figure A-1.

How to run the HP Pascal compiler with the MPE/iX command
:RUN PASCALXL.PUB.SYS.

How to pass run-time parameters to your program.

MPE/iX Dependencies A-35

Command Files

Table A-10 shows the MPE/iX command �les that you can use to perform the steps shown in
Figure A-1. Each command or command �le in the right-hand column of Table A-1 performs
the step or steps in the left-hand column (for example, the command :PASXL performs the
compilation step, the command :PASXLLK performs the compilation and linking steps, and
the command :PASXLGO performs the compilation, linking, and running steps).

Table A-10.

MPE/iX Command Files That Compile,

Link, and Run a Program

Steps MPE/iX Commands
or Command Files

To Compile :PASXL

To Link :LINK

To Run :RUN

To Compile and Link :PASXLLK

To Compile, Link, and Run :PASXLGO

If you plan on linking as a separate step and would like more information on linking, refer to
the HP Link Editor/XL Reference Manual .

Table A-11 gives the MPE/iX command �les that are equivalent to the MPE V commands
PASCAL, PASCALPREP, and PASCALGO. (Each command �le name has group \pub" and
account \sys"|see \File Names".)

Table A-11. Equivalent MPE V Commands and MPE/iX Command Files

MPE V Command MPE/iX Command File

:PASCAL :PASXL

:PASCALPREP :PASXLLK

:PASCALGO :PASXLGO

A-36 MPE/iX Dependencies

Syntax

PASXL [text�le][,[object�le][,[list�le][,lib�le]]][; INFO="options"]

PASXLLK [text�le][,[prog�le][,[list�le][,lib�le]]][; INFO="options"]

PASXLGO [text�le][,[list�le][,lib�le]][; INFO="options"]

Parameters

text�le The name of the text�le that contains the source code to be compiled.

If you are running HP Pascal from your terminal, text�le is usually a �le, but
the default is $STDIN. $STDIN is the current input device, usually your terminal.

When text�le is the terminal, you can enter source code interactively in
response to the prompt \>." When you have entered every line of your source
code, type a colon (:) in response to the prompt.

The source code to be compiled can be either a program or a list of modules. A
list of modules has the syntax:

module1[; module2 [; ... [; modulen]]...]

where module1 through modulen are module bodies.

object�le The name of the object �le or RL on which the compiler writes the binary form
of the source code that is in text�le. The default is $OLDPASS or $NEWPASS.

list�le The name of the �le on which the compiler writes the program listing. It can
be any ASCII �le. The default is $STDLIST. $STDLIST is usually the terminal if
you are running HP Pascal from a terminal; it is usually the job spool �le if you
are running a batch job.

If your terminal is both text�le and list�le , the compiler does not write the
program listing on the terminal. If this is a permanent disk �le, excess space is
released with the CRUNCHED close option. See \Additional Features" earlier
in this appendix.

If list�le is $NULL or a �le other than $STDLIST, the compiler displays lines
that contain errors on $STDLIST.

options A string of 132 or fewer characters, whose value is a list of compiler options.
The compiler encloses the list in dollar signs and inserts it before the �rst line
of code in text�le. The default is the empty string.

prog�le The name of the program �le on which the MPE/iX linker writes the linked
program. The default is $NEWPASS.

lib�le The name of the Pascal library �le that the compiler searches if a search path
is not speci�ed with the compiler option SEARCH. The default is PASLIB in
your group and account.

MPE/iX Dependencies A-37

:RUN PASCALXL.PUB.SYS

The HP Pascal/XL compiler is a program �le named PASCALXL.PUB.SYS. You can use
the MPE/iX command :RUN to execute PASCALXL.PUB.SYS (that is, to invoke the HP
Pascal/iX compiler).

The compiler �les and their defaults are:

File Default

Source �le $STDIN

Object �le $OLDPASS or $NEWPASS

Listing �le $STDLIST

Library �le PASLIB

To override the defaults:

1. Use the MPE/iX command :FILE to equate the nondefault �le with its formal �le
designator (the :FILE parameter formaldesignator). Use one :FILE command for each
nondefault �le.

2. Tell the MPE/iX command :RUN which �les are not to be defaulted by passing the
appropriate value to its PARM parameter.

The compiler �les and their formal �le designators are:

Compiler File Formal File Designator

Source �le PASTEXT

Object �le PASOBJ

Listing �le PASLIST

Library �le PASLIB

A-38 MPE/iX Dependencies

Table A-12 lists the possible values for the PARM parameter and gives their meanings.

Table A-12. PARM Values and Their Meanings

PARM Value Means \File equations exist for the following �les:"

Object Listing Source

0 y

1 *

2 *

3 * *

4 *

5 * *

6 * *

7 * * *

y PARM=0 is equivalent to the command :PASXL (without parameters).

Example

:RUN PASCALXL.PUB.SYS

:FILE PASTEXT=Program1

:FILE PASOBJ=Object1

:FILE PASLIST=List1

:FILE PASLIB=Library1

:RUN PASCALXL.PUB.SYS;PARM=7;INFO="TABLES ON"

:FILE PASTEXT=Program2

:FILE PASLIST=List2

:RUN PASCALXL.PUB.SYS;PARM=3

:FILE PASLIST=List3

:FILE PASOBJ=Object3

:RUN PASCALXL.PUB.SYS;PARM=6;INFO="TABLES ON,TITLE 'Program 3'"

It is an error if you specify in the :RUN command that the compiler not use the default for
one of the compiler �les, and you do not provide a �le equation for that �le.

Example

:FILE PASTEXT=Program2

:FILE PASLIST=List2

:RUN PASCALXL.PUB.SYS;PARM=7

The above command sequence causes the compilation to abort with an error because PARM=7
speci�es that the :RUN statement not default the source, listing, or object �le and no �le
equation is provided for the object �le.

MPE/iX Dependencies A-39

Run-Time Parameters

You can pass the run-time parameters PARM and INFO to your program with the RUN
command. For each parameter that you want your program to access, you must:

Specify a program parameter in the program heading (the position of the variable is not
important).

Declare the program parameter as a global variable.

The program parameter that corresponds to PARM must be of type shortint .

The program parameter that corresponds to INFO must be of type string or PAC .

MPE/iX checks the ranges of the actual program parameters for PARM and INFO if the
RANGE compiler option is ON when the compiler encounters the �rst line of the statement
part of the main program. (For more information on the RANGE compiler option, see the
HP Pascal/iX Reference Manual .)

Example

If the progfile named ex1 contains code for the program:

PROGRAM example_1 (parm,info);

VAR

parm : integer;

info : PACKED ARRAY [1..255] OF char;

BEGIN

END.

then the command:

:RUN ex1; PARM=3; INFO="abc"

assigns the value 3 to parm and the value abc to info before executing the program
example_1.

A-40 MPE/iX Dependencies

B

HP-UX Dependencies

This appendix explains how the HP Pascal compiler works on the HP-UX operating system.
It explains:

How HP-UX a�ects system dependent HP Pascal features.

HP-UX extensions to HP Pascal.

How to compile, prepare, and run your HP Pascal program on HP-UX.

System Dependent Features

System dependent features are available to all HP Pascal programs (regardless of the system
on which the compiler is running), but the system a�ects their de�nitions and behavior.
System dependent HP Pascal features fall into these categories:

Compiler options.

File names.

Input/output.

Miscellaneous.

Compiler Options

The following compiler options are available to programs compiled by the HP Pascal compiler
running on either the HP-UX or MPE/iX operating system, but they work di�erently on the
two systems.

INCLUDE

SYMDEBUG

See the HP Pascal/HP-UX Reference Manual for more information on these compiler options.

HP-UX Dependencies B-1

File Names

Syntax

[/][pathname]... {identi�er}

Parameter

pathname Refer to the HP-UX Reference for syntax of pathname.

identi�er The name of the main source �le must end with \.p". Included �les need not
end with \.p".

Example

x.p

Pascal/tsource/tabort.p

/mnt/shankar/junk/t.p

For more information on HP-UX �le names, refer to the HP-UX Reference manual.

Note The HP-UX operating system is case-sensitive. HP Pascal is not
case-sensitive, except within string literals (such as \HP Pascal") and when
you open a �le without explicitly associating it with a physical �le (that is,
when you do not specify the second parameter to open or reset). In the latter
case, the �le name (identi�er) is upshifted. The HP-UX operating system may
not recognize the �le by this new name. To avoid this problem, use all-capital
names in the operating system environment for �les that HP Pascal programs
will use (for example, name an external �le FILE1, not File1).

B-2 HP-UX Dependencies

Standard Modules

Three standard modules are available on HP-UX: stdinput , stdoutput, and stderr .

If a module imports the stdinput module, it can use the prede�ned �le input in I/O
statements such as read and readln .

If a module imports the stdoutput module, it can use the prede�ned �le output in I/O
statements such as write and writeln.

If a module imports the stderr module, it can use the prede�ned �le stderr in I/O statements
such as write and writeln.

Example

MODULE mymod;
IMPORT

StdInput, StdOutput;

EXPORT

FUNCTION myproc : integer;

IMPLEMENT

FUNCTION myproc : integer;

VAR

i : integer;

BEGIN

prompt('enter number:'); {need not specify output file}

readln(i); {need not specify input file}

myproc := i;

END;

END.

HP-UX Dependencies B-3

Additional Features

The HP Pascal features in the left-hand column depend on the HP-UX operating system in
the ways explained in the right hand column.

Feature HP-UX Dependency

Close options The optional third parameter of the prede�ned procedure close
can be SAVE, LOCK, TEMP, NORMAL, CRUNCH, or PURGE,
whose meanings are:

SAVE
LOCK
TEMP
NORMAL

The �le is saved as a permanent �le after it is closed.

CRUNCH This option is ignored.

PURGE The �le is purged after it is closed.

Halt HP-UX calls the system routine exit(2) with an integer parameter.

Input The standard program parameter and text�le input is stdin.

Internal table size The environment variable PASXDATA is the number of pages
to allocate to each internal table (there is one internal table for
identi�ers and another for structured constants). The default
internal table size is 100 pages. To set the internal table size to n
pages, use the command:

setenv PASXDATA n

or the command:

PASXDATA=n

export PASXDATA

Maxpos The call maxpos(f) returns maxint , regardless of f .

Open options The third parameter of the prede�ned �le-opening procedures
append, associate, open, read, reset, rewrite, and write. It is
optional for all but associate, for which it must have one of the
values listed in \Associate Procedure" in Chapter 3.

Ord At the STANDARD LEVEL 'EXT MODCAL' ord allows short
pointers as arguments.

B-4 HP-UX Dependencies

Output The standard program parameter and text�le output is stdout.

Stderr The standard program parameter and text�le stderr is the HP-UX
�le stderr .

System intrinsic �le ../../sys/pub/sysintr

System default module
library

/usr/lib/paslib

Temporary �les If the environment variable TMPDIR is de�ned (as a path to a
directory to hold temporary �les), temporary �les are placed
in that directory; otherwise, temporary �les are created in the
directory /usr/tmp. (See the standard HP-UX entry point
tempdir(2).)

Write If the �le being written is a terminal, the output is unbu�ered.
This means that write to a terminal has the same behavior as
prompt.

HP-UX Dependencies B-5

HP-UX Extensions

HP-UX extensions are available only to programs that are compiled by the HP Pascal
compiler running on the HP-UX operating system. The programs themselves must also run on
the HP-UX operating system. The HP-UX extensions are:

Access to special global variables through the EXTERNAL directive.

The prede�ned function get alignment , which returns the alignment requirement of a given
type or variable.

The prede�ned function statement number , which returns the statement number of the
statement that calls it.

Accessing Special Global Variables

The global variable errno is special in that a program can access it through the EXTERNAL
directive.

Example

$EXTERNAL$

PROGRAM ErrorNo_Example;

VAR

ErrorNumber $ALIAS 'errno'$: INTEGER;

FUNCTION Pas_Errno : integer;

BEGIN
Pas_Errno := ErrorNumber;

END;

BEGIN

END.

When another compilation unit is linked with the preceding program, it can access the
function Pas Errno, which returns the value of the global variable errno.

B-6 HP-UX Dependencies

Fnum Function

The prede�ned function fnum returns the HP-UX �le number of the physical �le currently
associated with a given logical �le. You can use this �le number in system calls.

Syntax

fnum (�lename)

Parameter

�lename The name of the logical �le. This parameter is required, even if the logical �le
is the standard �le input or output. The logical �le must be associated with a
physical �le.

Example

program xref(output);

const SEEK_SET=0; { Set file pointer to "offset" }

SEEK_CUR=1; { Set file pointer to current plus "offset" }

SEEK_END=2; { Set file pointer to EOF plus "offset" }

var s_file : text;

max : integer;

f : integer;

function lseek(fildes:integer; offset:integer; whence:integer): integer;

external;

begin

reset(s_file,'foo');

f:=fnum(s_file);

max:=lseek(f,0,seek_end);

writeln('file#:',f:1,', max bytes=',max:1);

end.

Output:

file#:3, max bytes=487

HP-UX Dependencies B-7

Get alignment Function

The prede�ned function get alignment returns the alignment requirement of a given type or
variable.

Syntax

get_alignment (

�
variable

type

�
)

Parameters

variable Any variable. The function get_alignment returns its alignment requirement.

type Any type identi�er (the name of any type). The function get_alignment

returns its alignment requirement.

Example

PROGRAM prog;

TYPE

Rec = $ALIGNMENT 8$

RECORD

f1 : integer;

f2 : shortint;

f3 : real;
END;

integer_ = $ALIGNMENT 2$ integer;

VAR

ptr : ^integer_;

BEGIN

i := get_alignment(rec);

IF get_alignment(ptr^) <> 2 THEN

.

.

.

END.

B-8 HP-UX Dependencies

Statement number Function

The prede�ned function statement number returns the statement number of the statement
that calls it, as shown on the compiled listing. It is a useful debugging aid, especially when
used with the prede�ned procedure assert .

Syntax

statement_number

Example

PROGRAM prog (output);

VAR
i : integer;

BEGIN

i := statement_number;

writeln('Current Statement Number is ', i);

assert(a > b, statement_number);

END.

HP-UX Dependencies B-9

Compiling, Linking, and Running Your Program

To make your HP Pascal program a valid HP-UX process, you must compile, link (and load),
and run it.

The HP-UX command pc coordinates the HP Pascal compiler (/usr/lib/pascomp) and the
HP-UX linker loader (/bin/ld).

The name of the �le containing your source program must end with .p (for example, prog.p).
The extension .p causes the pc command to call the HP Pascal compiler, which compiles your
program and stores the resultant code in an object �le. The name of the object �le ends in .o

(if the source �le name is prog.p, the object �le name is prog.o). If prog.p is the only �le
parameter of a particular pc command, and it compiles and links successfully, then the object
�le is not saved.

If the compiler does not �nd errors in the program, the pc command calls the linker, ld , which
links the object �le with required library �les into a program �le. The name of the program
�le is a.out (unless you specify another name in the pc command) and it resides in the
directory from which pc was invoked. The program �le is ready to run.

B-10 HP-UX Dependencies

Figure B-1 shows how a �le named prog.p becomes a running program on HP-UX.

Figure B-1. How a File Becomes a Running Program on HP-UX

This section explains:

The HP-UX pc command.

How to pass run-time parameters to your program.

How HP-UX handles interrupts.

How HP-UX handles run-time errors.

HP-UX Dependencies B-11

pc Command

The HP-UX command pc coordinates the HP Pascal compiler (/usr/lib/pascomp) and the
HP-UX linker loader (/bin/ld).

Additionally, the compiler looks for a system-wide �le called /usr/lib/pasopts. If the �le
exists and is not empty, the compiler opens and reads the �le. The �le should contain only
directives and comments. If there is anything else in the �le, the compiler emits an error
message. If the �le is empty, which is the default, the compiler does not attempt to open it.
For more information on the system-wide �le, refer to the section on compiler options in the
HP Pascal/HP-UX Reference Manual .

Syntax

pc

�
�le

option

��
. . .

�

Parameters

�le At least one �le is required.

option Any of the following instructions to the compiler:

-A Produce warnings when non-ANSI Pascal features are found
(same as ANSI ON).

+a Cause the compiler to generate archived object (.a) �les instead
of simple object (.o) �les. This option exists for compatibility
with the Series 300 pc command.

-C Suppress code generation. No object (.o) �les will be created
and linking will be suppressed. This is e�ectively a request for
syntax/semantics checking only (same as CODE OFF).

+C Convert MPE/iX format �le names in the compiler options
BUILDINT, INCLUDE, LISTINTR, SPLINTR, and SYSINTR
to HP-UX-format �le names. Fully quali�ed HP-UX-format �le
names (those that begin with slash, like /mnt/srf/file) are
not converted. This option is the same as the compiler option
CONVERT MPE NAMES

This option assumes an HP-UX directory structure that is
modeled after the MPE/iX accounting structure, in which all �les
reside in group-level directories and groups are subdirectories
of accounts. This option converts MPE/iX format �le names to
lower case letters.

For example, assume the HP-UX directory structure
account/group, where group is a directory containing the �le f.
If a Pascal source program contains the statement

$INCLUDE 'F.Group.Account'$

then the compiler appends the appropriate path information
to f and searches for the resulting name (for example,
root/account/group/f, where root is the parent of the
account-level directories).

B-12 HP-UX Dependencies

-c Suppress linking and only produce object (.o) �les from source
�les.

-Dname=bool,
-Dname

De�nes name is as if it has been set (with $SET) to the nth
line on the source �le. bool can be either TRUE or FALSE; if
bool in not speci�ed, name is set to TRUE. name and bool can
be uppercase or lowercase. The order in which the compiler
encounters $SETs (regardless of relative order on the command
line) is:

1. -Dname=bool

2. +Q d�le

3. source �le

The compiler overrides -Dname=bool with any subsequent
duplicate use of $SET, always taking the last one and issuing a
warning.

+DAmodel Generates object code for a speci�c version of the PA-RISC
architecture. model can be a model number such as 750 or 870,
or one of the following architecture speci�cations:

1.0 Generates object code for PA-RISC 1.0 architecture or
higher. This is the default for all Series 800 models.

1.1 Generates object code for PA-RISC 1.1 architecture.
This is the default for all Series 700 models.

Note that object code generated for PA-RISC 1.1 will not execute
on PA-RISC 1.0 implementations.

See the �le /usr/lib/sched.models for model numbers and their
architectures. You can use the command uname -m to determine
the model number of your system.

+DAmodel also speci�es the appropriate library search path for
HP-UX math libraries. If your program calls any of the standard
Pascal Arithmetic functions, using +DA1.0 links the PA-RISC 1.0
version of the math library and using +DA1.1 links the PA-RISC
1.1 version of the library. The PA-RISC 1.1 libraries have
performance enhancements and new routines that the PA-RISC
1.0 libraries lack. See the HP-UX Floating-Point Guide for more
information about using math libraries.

HP-UX Dependencies B-13

+DSmodel Perform instruction scheduling appropriate for a speci�c
implementation of the PA-RISC architecture. model can be
a model number such as 750 or 870, or one of the following
architecture speci�cations:

1.0 Perform scheduling tuned to one implementation of
PA-RISC 1.0.

1.1 Perform scheduling tuned to one implementation of
PA-RISC 1.1.

See the �le /usr/lib/sched.models for model numbers and their
architectures. The compiler determines the default scheduling
based on the model number returned by uname(2).

This option a�ects only performance of the object code by
scheduling the code based on the speci�c latencies of the target
implementation. The resulting code executes correctly on other
PA-RISC implementation, subject to the +DA option.

+FP
ag Specify how the run time environment for
oating-point
operations should be initialized at program start up.
ag is a
series of upper or lower case letters from the set [VvZzOoUuIiDd]
with no embedded white-space. If the upper-case letter is
selected, that behavior is enabled. If the lower-case letter is
selected or if the letter is not present in
ag , the behavior is
disabled. The default is that all behaviors are disabled. The list
below describes the behaviors:

V Trap on invalid
oating-point operations.

Z Trap on divide by zero.

O Trap on
oating-point over
ow.

U Trap on
oating-point under
ow.

I Trap on
oating-point operations that produce inexact
results.

D Enable sudden under
ow (
ush to zero) of denormalized
values.

Enabling sudden under
ow is possible only on
implementations of PA-RISC 1.1 or higher; it is not
possible on PA-RISC 1.0.

To dynamically change these settings at run time, refer to
\ARITRAP and HPENBLTRAP Intrinsics" in Chapter 11 or
fpgetround(3M).

B-14 HP-UX Dependencies

-G Prepare object �les for pro�ling with the gprof utility (see
\GPROF" in the HP Pascal/HP-UX Reference Manual).

-g Generate additional information for the symbolic debugger, and
ensure that the program is linked as required for the symbolic
debugger.

-Idir Add dir to the list of directories that search for $INCLUDE �les
whose names do not begin with /. The search is performed in the
following order:

1. The directory containing the source �le.

2. Directories speci�ed with the -I option.

3. The current working directory.

4. The standard directory /usr/include.

-L Write a program listing to stdout.

-lx Cause the linker to search the libx.sl or libx.a libraries in
an attempt to resolve currently unresolved external references.
Because a library is searched when its name is encountered,
placement of a -l is signi�cant. If a �le contains an unresolved
external reference, the library containing the de�nition must be
placed after the �le on the command line. See ld(1) for more
information.

-N Cause the output �le from the linker to be marked as unsharable
(see -n).

-n Cause the output �le from the linker to be marked as shareable
(see -N).

-O Turn on optimization. The compiler performs level 2
optimization. See +Oopt.

+Oarg Perform optimizations selected by arg . There are two kinds of
arguments to the +O optimization option. Those in the �rst group
can have arg de�ned as:

1 Perform level 1 optimizations. These include branch
optimizations, dead code elimination, instruction
scheduling, and peephole optimization.

2 Perform level 2 optimizations. These include common
subexpression elimination, constant folding, loop
invariant code motion, coloring register allocation, and
store-copy optimization. Level 2 optimizations are a
superset of level 1 optimizations. The -O option is
equivalent to the +O2 option.

3 Perform level 3 optimizations. These include, but are not
limited to, interprocedural global optimizations. Level 3
optimizations are a superset of level 2 optimizations.

HP-UX Dependencies B-15

Those in the second group can have arg de�nes as:

s Suppress optimizations which tend to increase the
generated code size. Currently, these optimizations
include software pipelining and loop unrolling.

bbnum Specify the maximum number of basic blocks allowed
in a procedure that is to be optimized at level 2. If
a procedure contains more than num basic blocks,
level 1 optimization is performed for that procedure.
The default value for num is 500 (same as $OPTIMIZE
'BASIC_BLOCKSnum'$).

The arguments in the second group implicitly request level 2
optimizations, but an argument from the �rst group overrides
the implicit level 2 regardless of their relative positions on the
command line.

-o out�le Name the output �le from the linker out�le instead of a.out.

-P lines Allow lines lines per page of compiler listing, including header or
trailer (same as the LINES compiler option).

-p Prepare object �les for pro�ling with the prof utility.

-Q Cause the output �le from the linker to be marked as not demand
loadable (see -q).

-q Cause the output �le from the linker to be marked as demand
loadable (see -Q).

+Q d�le Cause d�le to be read before compilation of each source �le. The
�le d�le can only contain compiler options.

+R Turns o� range checking (same as the compiler option RANGE
OFF).

-S Output an assembly �le. This �le is named �lename.s, where
�lename is the base name of the source �le.

-s Cause the output of the linker to be stripped of symbol table
information. See strip(1) in linker documentation. This option is
incompatible with symbolic debugging.

B-16 HP-UX Dependencies

-t x,name Substitute or insert subprocess x with name where x is one or
more of an implementation-de�ned set of identi�ers indicating the
subprocesses. This option works in the following modes:

If x is a single identi�er, name represents the full path name of
the new subprocess.

If x is a set of identi�ers, name represents a pre�x to which
the standard su�xes are concatenated to construct the full
pathname of the new subprocesses.

The values x can assume are:

c Compiler body (standard su�x is pascomp).

0 Same as c.

l Linker (standard su�x is ld).

-v Enable verbose mode, producing a step-by-step description of the
compilation process on stderr .

-w Turn o� warning messages (same as the compiler option WARN
OFF).

-Wc,arg1 [,arg2,...
argn]

Cause arg1 through argn to be handed o� to subprocess c. The
arg parameters are of the form:

-argoption[,argvalue]

where argoption is the name of an option recognized by
subprocess c and argvalue is a parameter for argoption (if it has
one). The parameter c can have these values:

Value Meaning

c Compiler body (standard su�x is pascomp).
0 Same as c.
d Driver program.
l Linker (standard su�x is ld).

For example, the speci�cation to pass the -r option (preserve
rotation information) to the linker is -Wl,-r .

-Y Enable 16-bit Native Language Support when parsing
string literals and comments (same as the compiler option
NLS SOURCE). Note that 8-bit parsing is always supported.

Other options|instructions to the linker|are also allowed. See
pc(1) in the HP-UX Reference for details.

HP-UX Dependencies B-17

-y Generate additional information needed by static analysis tools
and ensure that the program is linked as required for static
analysis. This option is incompatible with optimization.

+z, +Z Both of these options cause the compiler to generate position
independent code (PIC) for use in building shared libraries.
However, you must use +z to generate PIC, unless certain limits
are exceeded. Use +Z when limits are exceeded. If both +z and
+Z are speci�ed, only the last one encountered will apply. Note
that +z is the same as $SHLIB_CODE ON$ and +Z is the same as
$SHLIB_CODE 2$.

The options -G and -p are ignored if you use either +Z or +z.

For more information about PIC , refer to Programming on
HP-UX .

�le The name of a text�le that contains source code for an HP Pascal program, or the
name of an object �le. The text�le name ends with .p; the object �le name ends
with .o.

For each text�le, the pc command calls the HP Pascal compiler, which tries to
compile it. If the compiler compiles the text�le named prog1.p without errors, it
produces an object �le named prog1.o (which resides in the current directory).

If each text�le compiles successfully, the pc command calls the HP-UX Linker Loader,
ld , which links all of the object �les (pc command parameters and those resulting
from compiles) into the �nal program �le.

If prog.p is the only �le parameter of a particular pc command, and it compiles and
links successfully, then its object �le, prog.o, is not saved.

B-18 HP-UX Dependencies

Example

The command:

pc main.p ext1.p ext2.p

compiles the object �les main.o, ext1.o, and ext2.o, into the �nal program �le a.out. It is
equivalent to the command sequence:

pc -c main.p

pc -c ext1.p

pc -c ext2.p

pc main.o ext1.o ext2.o

Note The HP Pascal compiler ignores the following Series 300 pc command options
without warning:

+X

+x

+M

+b

+bfpa

+f

+ffpa

HP-UX Dependencies B-19

Run-Time Parameters

You can pass run-time parameters to your program as HP-UX command-line arguments when
starting your program.

No arguments are automatically bound to program parameters. Even the three pre-opened
(standard) �les, stdin, stdout, and stderr are only bound to the HP Pascal text�les input,
output, and stderr if the program heading declares the text�les.

Other run-time parameters must be obtained from the command line arguments by importing
the prede�ned module arg and using the routines that it exports, which are:

Function Return Value

argc The total number of program arguments. (This integer is greater than
or equal to one, because every HP-UX program has at least one program
parameter, the program name.)

argn An HP Pascal string that contains the nth program argument, where n is an
argument to argn and must be in the range 0..argc - 1. If n is outside this
range, the run-time library generates a range error. The call argn(0) returns
the program name.

argv A pointer to a null-terminated array of pointers, each of which points to a
null-terminated PAC that contains an argument (see the export section of the
arg module, on the next page).

The module arg belongs to the default module library /usr/lib/paslib; therefore, your
program can import it without specifying a library with the SEARCH compiler option.

B-20 HP-UX Dependencies

The export section for the module arg is:

MODULE arg;

EXPORT

TYPE

arg_string1024 = string[1024];

arg_type = PACKED ARRAY[1..32000] OF char;

argarray = ARRAY[0..32000] OF ^argtype;

argarrayptr = ^argarray;

FUNCTION argv : argarrayptr;

FUNCTION argc : integer;

FUNCTION argn (n : integer) : arg_string1024;

IMPLEMENT

.

.

.

.

END.

Example

$STANDARD_LEVEL 'HP_MODCAL'$

PROGRAM arg_demo (input, output);

VAR

f : text;

line : string[255];

fname : string[80];

IMPORT arg;

BEGIN

IF argc > 1 THEN BEGIN {If a program argument was passed ...}

fname := argn(1); {assign it to fname ...}

reset(f,fname); {reset the file fname ...}

WHILE NOT eof(f) DO BEGIN {and list its contents.}

readln(f,line);

writeln(line);

END;

END; {IF}

END. {arg_demo}

HP-UX Dependencies B-21

Associating Program Header Files with Run-Time Parameters

On HP-UX, �les de�ned in the program header are implicitly associated with run-time
parameters. For example, if the program header is:

PROGRAM myprog (input, output, file1, file2);

then when the program myprog is run with command-line arguments, file1 is bound to the
�rst argument, and file2 is bound to the second. The prede�ned �les input, output, and
stderr are not subject to this implicit association.

Other command-line arguments that are not subject to this implicit association are those that
begin with plus (+) and minus (-). For example, if the compiled program produced from the
above example is run with the command:

a.out -opt1 arg1 +opt2 arg2 arg3

then file1 is bound to arg1 and file2 is bound to arg2. Therefore, if the program executes
the statement:

reset (file1);

it is equivalent to the statement:

reset (file1, 'arg1');

If there is no run-time argument for a program header �le, then the upshifted formal name
of the �le is implicitly associated with it. For example, if the program above is run with the
command:

a.out arg1

then there is no run-time argument for file2, so it is associated with the �le named FILE2.
Of course, if you provide an explicit association, it overrides this implicit association. Also,
if the �le is already open before the statement executes, the usual rules apply (that is, the
previous association is maintained).

Interrupt Handling

Your program can trap HP-UX interrupts (SIGINT and SIGQUIT, for example). The
recommended way to trap these signals is to make explicit calls to the HP-UX system routine
signal .

Note The HP9000 series 200 run-time routine catch signals is supported, but a call
to this routine will severely a�ect the error-handling mechanisms described
in Chapter 11, because those depend on trapping certain HP-UX signals
themselves (namely, SIGILL, SIGFPE, SIGBUS, SIGSEGV, and SIGSYS).
Use of this routine is strongly discouraged.

B-22 HP-UX Dependencies

Example

PROGRAM prog;

CONST

BADSIG = -1;

SIG_DFL = 0;

SIG_IGN = 1;

SIG_INT = 2;

SIG_QUIT = 3;

VAR

Old_Action : integer;

FUNCTION signal (SignalNum : integer;

ProcAddress : integer) : integer; EXTERNAL;

The function signal accepts a signal number, SignalNum, and a procedure address,
ProcAddress. Whenever the signal with the number SignalNum is raised, the function
transfers control to the procedure with the address ProcAddress. The function signal returns
the old stored value of ProcAddress.

PROCEDURE InterruptHandler (SignalNum : integer); EXTERNAL;

BEGIN

Old_Action := signal (SIGINT, Baddress (InterruptHandler));

IF Old_Action = SIG_IGN THEN

Old_Action := signal (SIGINT, SIG_IGN)

ELSE IF Old_Action = BADSIG THEN

{An invalid SignalNum or ProcAddress was passed};

Old_Action := signal (SIGQUIT, Baddress (InterruptHandler));

IF Old_Action = SIG_IGN THEN

Old_Action := signal (SIGQUIT, SIG_IGN)

ELSE IF Old_Action = BADSIG THEN

{An invalid SignalNum or ProcAddress was passed};

END.

When either of the signals SIGINT or SIGQUIT is raised (by entering �CONTROL� C on the
keyboard, for example), the procedure InterruptHandler is called.

Note In the preceding example, if InterruptHandler is to return to the main
program, its �rst action must be to rearm the signal mechanism (in the
manner described above) for the signal that was trapped. This is necessary
because every time a signal is trapped, the HP-UX operating system resets
its action information (the stored value of ProcAddress) to SIG DFL (the
default action). The program cannot resume normal execution and trap
interrupts again unless it rearms the signal handler.

HP-UX Dependencies B-23

Run-Time Error Handling

If HP-UX detects a run-time error, it aborts the program unless the program de�nes error
recovery code. Error recovery code can catch run-time errors that originate from:

In-line compiled code (for example: range violation errors, nil pointer errors, math over
ow
errors).
Run-time support routines (for example: string, set, math).
Pascal �le system (I/O errors).
HP-UX �le system support (system errors).
Hardware (signals), except the kill signal.

When compiling a program, the compiler generates code that will call the prede�ned
procedure escape if HP-UX detects a run-time error in the compiled program. The procedure
escape transfers control to the program's error recovery code (if the program has no error
recovery code, the program aborts). For a complete explanation of error recovery code, see
Chapter 11.

Run-time errors in in-line compiled code are unique in that they can be suppressed|that is,
you can tell the compiler not to generate code to catch them (see the compiler option RANGE
in the HP Pascal/HP-UX Reference Manual). Run-time errors from other sources cannot be
suppressed.

Most run-time errors that arise from interaction between in-line compiled code and run-time
support routines are I/O errors. A few are system errors.

B-24 HP-UX Dependencies

Compiling for Different Versions of the PA-RISC Architecture

Di�erent HP 9000 systems use di�erent versions of the PA-RISC architecture. Some models
use PA-RISC 1.0 while other models use PA-RISC 1.1. The instruction set on PA-RISC 1.1
is a superset of the instruction set on PA-RISC 1.0. As a result, code generated for PA-RISC
1.0 systems will run on PA-RISC 1.1 systems, though possibly less e�ciently than if it were
speci�cally generated for PA-RISC 1.1. However, code generated for PA-RISC 1.1 systems will
not run on PA-RISC 1.0.

By default, compiling on any series 800 system generates PA-RISC 1.0 code and compiling on
any series 700 system generates PA-RISC 1.1 code. Use the +DA option to change this default
behavior.

In addition, the instruction scheduling is di�erent on some implementations of these
architectures. You can improve performance on a particular model of the HP 9000 by
requesting that the compiler use instruction scheduling tuned to that particular model.
However, in contrast with the di�erent instruction sets discussed above, using scheduling for
one model does not prevent your program from executing on another model.

By default, the compiler uses scheduling tuned for the system where you are compiling. Use
the +DS option to change this default behavior.

Using +DA to Generate Code for a Specific Version of PA-RISC

Use the +DA option to specify which PA-RISC instruction set the compiler should use when
generating code. Specifying +DA1.0 ensures your code will run on all HP 9000 models,
although the performance of your program may not be as good as it could be on PA-RISC 1.1
systems. Specifying +DA1.1 may give better performance on PA-RISC 1.1 systems, but the
executable �le generated with this option will not run on PA-RISC 1.0 systems.

Using +DS to Specify Instruction Scheduling

Use the +DS option to specify instruction scheduling tuned to a particular implementation of
PA-RISC. For example, to specify instruction scheduling for the model 867, use +DS867.

Guidelines for Using +DA and +DS

When you use the +DA and +DS options depends on your particular circumstances. Here are
some possibilities.

If you plan to run your program on the same system where you are compiling, you do not
need to use either the +DA or +DS option. The compiler generates code tuned for your
system.

If you plan to run your program on one particular model of the HP 9000 and that model is
di�erent from the one where you compile your program, use the following combination:

+DAmodel with the model number of the target system, and
+DSmodel with the model number of the target system.

For example, if you are compiling on a 720 and your program will run on an 855, you should
use +DA855 +DS855. This will give you the best performance on the 855.

HP-UX Dependencies B-25

If you plan to run your program on many models of the HP 9000, you could use the
following combination:

+DA1.0 to ensure portability, and
+DSmodel with the model number of the fastest system you will be running your
application on.

For example, using +DA1.0 +DS897 ensures your program can run on all series 700s and
800s, and uses scheduling for the model 897. You might want to use scheduling for a
high-performance system (such as the 897), assuming your customers with high-performance
systems want the fastest performance from your application.

See the �le /usr/lib/sched.models for model numbers and their architectures. You can use
the command uname -m to determine the model number of your system.

Compiling in Networked Environments

When compiles are performed using diskless workstations or NFS-mounted �le systems, it is
important to note that the default code generation and scheduling are based on the local host
processor. The system model numbers of the hosts where the source or object �les reside do
not a�ect the default code generation and scheduling.

B-26 HP-UX Dependencies

Glossary

actual parameter
An argument that is passed to a procedure, function, or subprogram. Contrast with formal
parameter .

address
An exact location in memory. A program can store or retrieve data from this address.

algorithm
A procedure used to solve a task. It describes the sequence of steps or operations, done in
a �nite number of steps.

allocate
To set up a memory location to hold variable values.

alpha character
A character in the range of A through Z and a through z.

alphanumeric character
A character in the range of A through Z, a through z, and 0 through 9.

argument
A variable or constant whose value is passed to a procedure or function. See actual
parameter , formal parameter , or parameter .

arithmetic expression
An expression that performs arithmetic operations and consists of constants, variables, and
arithmetic operators.

array
A data structure in which consecutive memory locations contain data items of the same
type.

ASCII
American Standard Code for Information Interchange; a seven-bit code representing a
prescribed set of characters.

assembly language
A programming language in which each operation performed by the Central Processing
Unit (CPU) is written as a symbolic instruction. Assembly language is a convenient
means of representing machine language. A program known as an assembler translates
instructions written in assembly language into machine language.

Glossary-1

assignment statement
Assigns a value to a variable or function by using the special Pascal symbol \:=".

binary
The method used to represent numbers, alphabetic characters, and symbols in digital
computers. It is a base two numbering system that uses only two digits, 0's and 1's, to
express numeric quantities.

bit
A unit of information with a value of 1 or 0. Usually eight bits equal one byte. A bit is
the smallest unit of information in a digital computer.

block
Blocks contain groups of statements for programs, procedures, and functions, and are
enclosed with the reserved words begin and end .

boolean expression
An expression that evaluates to a value of true or false.

bu�er
The part of a computer or device memory where data is held temporarily until it can
be processed or transmitted elsewhere. A bu�er usually refers to a memory area that is
reserved for I/O operations.

byte
A combination of eight consecutive bits treated as a unit. A byte represents one letter or
number within the computer.

C
A high-level computer programming language that can do low-level manipulations.

COBOL
COmmon Business Oriented Language. A high-level computer language primarily used for
business applications.

collating sequence
The \alphabetical order" of all characters used by a computer. They include digits,
punctuation marks, and special characters. The collating sequence uses the same order of
precedence as the numeric codes for characters, either in ASCII or EBCDIC.

comment
Information in a computer program that is ignored by the compiler, but is included for
documenting the program for human readers.

compile time
The time during which a source program is translated by a compiler to an object program.
Compile time is usually used to indicate things that happen when a program is compiled.

compile-time error
An error that occurs or that is detected at compile time.

Glossary-2

compiler
A program that translates source code into machine instructions. The compiler also
diagnoses and reports syntax errors found in the application program.

compound statement
A group of statements enclosed with the reserved words begin and end , and which are
treated as a single statement.

concatenation
The operation of joining two or more character strings together.

constant
A �xed value, as opposed to a variable which is a symbol for a changing value.

construct
A structured constant; a construct speci�es the value of a declared constant.

data
One or more items of information.

debug
To �nd and correct mistakes in a computer program.

decimal
The base 10 numbering system in which the numbers 0 through 9 are used.

default
A value or condition that is assumed by the operating system or compiler if no other value
or condition is speci�ed.

delimiter
A symbol that marks the beginning and end of a syntactic unit in source code.

disk
A circular plate used to store computer data; the disk can be �xed, removable, hard, or

exible.

dynamic variable
A variable which is not declared and cannot be referred to by name. A dynamic variable is
created during execution of a program.

error recovery
The process of writing code that prevents a program from aborting due to run-time errors.
Error recovery code does not catch compile-time errors, warnings, or notes.

executable object
A program or procedure that is ready to be executed.

execute
The act of a computer carrying out a set of instructions given by a program.

Glossary-3

expression
A construct composed of operators and operands that represent the computation of a
result of a particular type.

external routine
A routine de�ned in another compilation unit.

�le-equate
To redirect the association of one physical �le to another physical �le, or to specify
additional �le attributes using the MPE XL FILE command.

formal parameter
A parameter which is de�ned in a procedure, function, or subprogram header.

function
A block that is invoked with a function call and returns a value.

function call
A call that invokes the block of a function and returns a value to the calling point of the
program

function heading
Consists of the reserved word FUNCTION, an identi�er that speci�es a function name, an
optional formal parameter list, and a result type.

hexadecimal
The base 16 numbering system in which the numbers 0 through 15 are used. 10 through
15 are represented by the letters A through F.

identi�er
Used to denote declared constants, types, variables, procedures, functions, modules, and
programs, and consists of a letter preceding an optional character sequence of letters,
digits, or the underscore character ().

initialize
To give an initial value to a variable in a program.

intrinsic
An external routine that can be called by a program written in any language that your
operating system supports.

literal
A value in a program that is represented by it's actual value rather than a variable or a
constant.

loop
When a program performs a statement over and over a speci�ed number of times or while
certain conditions are met.

maxint
The maximum value that an integer variable can contain.

Glossary-4

minint
The minimum value that an integer can contain.

NLS
An acronym for Native Language Support.

operand
The variables, constants, or literals that are used in an operation.

operator
De�nes the action to be performed on one or more operands.

optimization
The process which the compiler uses to modify your program so that it uses machine
resources more e�ciently.

parameter
The argument used for sending and receiving information to and from functions and
procedures.

parameter list
The location in a program where the parameters and their values are declared.

PIC
An acronym for Position Independent Code.

precedence
Rules that determine the required order of operations.

procedure
A block of statements that are invoked with a procedure call .

procedure call
The call in a program that invokes the procedure block.

real number
Numbers that are whole or fractional. A real number can also have an exponent.

recursion
A programming technique in which a procedure calls itself.

relational operator
An operator that compares two operands and returns a Boolean result.

reserved word
Prede�ned terms that have special meaning to the Pascal language, and which can only be
used for their speci�ed purpose.

run-time error
An error the computer system �nds in a program during run time.

Glossary-5

semantic error
An error which is caused by using the wrong wording in a program.

separate compilation
The process of separating the source for a large program into pieces that can be compiled
independently of other pieces.

source code
The input program that is to be translated by the compiler.

Standard Pascal
All of the rules and de�nitions of Pascal as de�ned by the ANSI standard.

statement
Pascal's single unit of activity. Each statement is separated by a semicolon.

static variable
A variable which is declared in the declaration part of a program block.

subprogram
See procedure.

top-down design
The process of breaking a problem into pieces that can be easily solved.

variable
A memory location that holds data values, and which is referenced by a variable name.
Information in this location can be changed.

warning
The compiler produces warnings to indicate a possible source of run-time errors.

word
Four consecutive bytes. Some numeric items are de�ned in terms of words, and many
items must start at a word boundary in memory.

Glossary-6

Index

1

16-bit Native Language Support
enabling, B-17

A

accessing an external routine, 9-1
actual parameters, 7-1
intrinsics, 10-3{7
string, 10-6

addr function, 7-15, 8-14
algorithm
HP Pascal packing, 5-1, 5-3
Pascal/V packing, A-16{33

ALIAS compiler option, 10-2
used with intrinsic system names, 10-14

$ALIAS directive, 9-13
alignment
arrays, 5-7
compatibility, 10-3
crunched arrays and records, 5-18{20
crunched sets, 5-21
de�nition of, 5-3
enumerations, 5-22{26
�les, 5-27
HP-UX extensions, B-8
implicit type coercion, 7-4
of variables, 5-1{32
packed arrays, 5-12{14
packed records, 5-15{17
packed variables, 5-5{6, A-18
Pascal/V packing algorithm, A-16, A-21
records, 5-8{11
sets, 5-28{30
strings, 5-31{32
subranges, 5-22{26
types of, 5-3
unpacked variables, 5-4, A-16

allocation
arrays, 5-7
crunched arrays and records, 5-18{20
crunched sets, 5-21
de�nition of, 5-3
dynamic variables, 6-1{23
enumerations, 5-22{26
�les, 5-27

heap, 6-6{7, 6-15
of memory, 5-1{32
packed arrays, 5-12{14
packed records, 5-15{17
packed variables, 5-5{6, A-18
Pascal/V packing algorithm, A-16, A-21
records, 5-8{11
sets, 5-28{30
strings, 5-31{32
subranges, 5-22{26
unpacked variables, 5-4, A-16

anyptr variables, 6-2
ANYVAR parameter, 7-27{29
ANYVAR parameters, 7-3, 7-4, 8-13
TYPE COERCION compiler option, 7-4

append procedure, 3-2
archived object �les, B-12
argc function, 4-12, B-20
arg module, 4-12, B-20
argn function, 4-12, B-20
argv function, 4-12, B-20
arithmetic trap handler, 11-18{25
ARITRAP intrinsic, 11-14
arming traps, 11-14
arrays
allocation and alignment, 5-7, A-20
conformant, 7-7{9
crunched, 5-18{20
enumeration elements allocation and alignment,

A-27
enumeration-of-subrange elements, A-30
packed, 5-12{14, 5-24{25
Pascal/V packing algorithm, A-20
subrange type elements, A-32

assembly �les, B-16
assert procedure, 11-10{12
associate procedure, 3-2, 3-10{14
characteristics, table of, 3-11
HP-UX example, 3-14
MPE/iX example, 3-13
options, 3-10

associating logical and physical �les, A-2{4
assumptions
optimizer, 12-14

assumptions, testing, 11-10

Index-1

B

baddress function, 7-6
basic blocks, 12-3
bit16 data type, 4-2, 4-3
bit32 data type, 4-2, 4-4
bit52 data type, 4-2, 4-6
bits
pair requirements, table of, A-23

bitsize function, 7-5, 7-27
block, program, 2-2
Boolean data type, 4-2
branch optimization, 12-4
break handler
subsystem, 11-26

bu�ers
�le, 3-5

BUILDINT compiler option, 10-17{19
bytes
pair requirements, table of, A-23

C

calling COBOL II from HP Pascal, 9-10{11
calling FORTRAN 66/V from HP Pascal, 9-15
calling FORTRAN 77 from HP Pascal, 9-12{14
calling HP C from HP Pascal, 9-5{9
calling Pascal routines from non-Pascal programs,

9-21{25
calling SPL from HP Pascal, 9-16{19
call procedure, 7-20
ccode function, A-10
ceil, 5-28, 5-29, A-23
C external routines, 9-5{9
characters
overprinting, 3-22

char data type, 4-2
close option feature, MPE/iX, A-7
close options feature, HP-UX, B-4
close procedure, 3-2, 3-29
closing �les, 3-29{30
COBOL II
calling from HP Pascal, 9-10{11

COBOL II external routines, 9-10{11
COBOL II types, 9-10{11
code
generation for multiplication and division,

12-7
suppression of generation, B-12

code generation
+DA, B-25

CODE OFFSETS compiler option, 11-29
coloring register allocation, 12-9
column-major order, arrays, 5-7
command �les
LINKEDIT, A-36

MPE/iX, A-36{37
parameters, A-37
PASCAL, A-36
PASCALPREP, A-36
PASXL, A-36
PASXLGO, A-36
PASXLLNK, A-36
RUN, A-36

commands
pc, HP-UX, B-10, B-12
RUN, A-40

common subexpression elimination, 12-10
compatibility
alignment, 10-3
intrinsic parameters, 10-3{7
parameter, 10-10, 10-13
parameters, 10-4, 10-5
reference parameters, 10-4, 10-10
size, 10-3
value parameters, 10-12

compatibility mode, A-37
compilation
HP-UX, B-10{24
MPE/iX, A-34{40
separate, 2-4, 2-11{13
separate, reasons, 2-11
separate, using GLOBAL/EXTERNAL,

2-12{13
separate, using modules, 2-11{12
separate, using SUBPROGRAM, 2-12
separate, using SUBPROGRAM with

GLOBAL, 2-13
compilation units
external, 2-4, 2-10, 2-13
global, 2-4, 2-10, 2-13
modules, 2-4
structure, 2-4
subprogram, 2-10

compiler �le defaults, A-38
compiler mode, A-37
compiler options, B-12{18
ALIAS, 10-2
BUILDINT, 10-17{19
CODE OFFSETS, 11-29
debugging, 11-28
EXTERNAL, 2-10, 2-12, B-6
EXTNADDR, 6-2
FONT, A-1
GLOBAL, 2-10, 2-12
HEAP DISPOSE, 6-12
HP3000 16, A-1
HP3000 32, A-1
INCLUDE, A-1, B-1
LIST CODE, 11-29
MLIBRARY, 2-7

Index-2

MPE/iX dependencies, A-1{40
NOTES, 12-14
OPTIMIZE, 12-3
RANGE, A-40
SEARCH, 2-7
SUBPROGRAM, 2-12
SYMDEBUG, 11-28, B-1
SYSINTR, 10-2
TABLES, 11-29
TYPE COERCION, ANYVAR parameters,

7-4
compiling
di�erent versions of PA-RISC architecture,

B-25
large programs, 2-11{13
modules, 2-7
networked environments, B-26

condition code, A-10
conformant array parameters, 7-1, 7-7{9
conformant array schemas, 7-7{9
equivalent, 7-22

congruent parameter lists, 7-22
constants
folding, 12-10
maxint, 4-1
minint, 4-1
prede�ned, 4-1{14

control-y, 11-26
control-y handling, 11-26
conversion
implicit data, 3-22, 3-24

converting �les, B-12
crunched packing, 5-18
crunched structures
arrays, 5-18{20
optimization, 12-15
records, 5-18{20
sets, 5-21

C types, 9-5{9
current component, 3-5
current position index, 3-5, 3-12
advancing, 3-16

D

data
conversion, 3-22, 3-24

data structure
integrity checking, 11-10

data types
bit16, 4-2, 4-3
bit32, 4-2, 4-4
bit52, 4-2, 4-6
Boolean, 4-2
char, 4-2
integer, 4-2

longint, 4-2, 4-9
longreal, 4-2
prede�ned, 4-1{14
ranges, 4-2
ranges and sizes, table of, 4-2
real, 4-2
shortint, 4-2, 4-8

dead code elimination, 12-6
deallocation
heap, 6-12{14, 6-15

debuggers
HP Symbolic, 11-28
HP TOOLSET/XL, 11-28
system, 11-29

debugging, 11-1{29
optimized code, 11-29

decimal over
ow trap, 11-22
declarations
export, 2-5
import, 2-5

default
HP Pascal packing algorithm, 5-1

DEFAULT PARMS procedure option, 8-6{12,
10-16

defaults
compiler �les, A-6, A-38
�le attributes, A-6
intrinsics, 10-9
parameters, 8-6{12

deferred get, de�nition, 3-16
de�ning intrinsics, 10-15{16
dependencies
HP-UX, B-1{24

device read, 3-20
direct
�le functions, table of characteristics, 3-27

direct �le access, 3-25
direct input/output, 3-2, 3-25{28
directives
EXTERNAL, 2-10, 9-1{4, 10-17
EXTERNAL SPL VARIABLE, 7-34
FORTRAN, $ALIAS, 9-13
INTRINSIC, 10-2
optimization, 12-15

disabling traps, 11-14
disassociate procedure, 3-2, 3-15
dispose procedure, 3-29, 6-12{14
duplicate names, modules, 2-8
duplicating a routine, 8-15{16
dynamic allocation
anyptr variables, 6-2
globalanyptr variables, 6-2{3
localanyptr variables, 6-4{5
variables, 6-1{23

Index-3

E

enabling traps, 11-14
end-of-line markers, 3-4
enumerations
allocation and alignment, 5-22{26, A-27{30
packed, A-27{30
packed subranges, A-30{32
unpacked, allocation and alignment, 5-22

eof function, 3-2, 3-19, 3-27
eoln function, 3-2, 3-23
equivalent conformant array schemas, 7-22
equivalent parameters, 7-22
error recovery, 11-2{12
escapecode function, 11-2
escape procedure, 11-2
TRY-RECOVER, 11-2
TRY-RECOVER construct, 11-4{9

errors
compile-time, 11-1
de�nition of, 11-1
recovery, 11-1{29
run-time, 11-1
run-time, HP-UX, B-24
trapping, 11-13{27
vs. notes and warnings, 11-1

escapecode function, 11-2, 11-4
escape procedure, 11-2
executable libraries (XLs), 2-11{13, A-9
export declarations, 2-5
exported de�nitions, 2-4
exported items, scope, 2-8
expressions
common subexpression elimination, 12-10

extended address pointers, 6-2
extensible parameter list, 8-2
extensible parameter lists, 7-30
intrinsics, 10-9

EXTENSIBLE procedure option, 8-2{5, 10-16
extension parameters, 8-2
adding new ones, 8-3

extensions
ccode function, A-10
fnum function, A-11, B-7
get alignment function, A-12
get alignment function, HP-UX, B-8
HP-UX, B-6{9
MPE/iX, A-10{33
setconvert procedure, A-14
special global variable access, B-6
statement number function, A-13
statement number function, HP-UX, B-9
strconvert procedure, A-15

external
COBOL II routines, 9-10{11

compilation units, 2-4, 2-10
C routines, 9-5{9
FORTRAN 66/V routines, 9-15
FORTRAN 77 routines, 9-12{14
routines, 2-14, 9-1{25, 10-1
SPL routines, 9-16{19

EXTERNAL
compiler option, 2-10, 2-12
directive, 2-10
separate compilation, 2-12

external compilation unit, A-9
external compilation units, 2-13
EXTERNAL compiler option, B-6
EXTERNAL directive, 9-1{4, 10-17
in modules, 9-4
optimization, 12-15
use in exported procedures, 9-4
use with procedure declarations, 9-4

external interfaces
external routines, 2-14
intrinsic routines, 2-14
physical �les, 2-14

external routines
binding to program, A-34

EXTERNAL SPL VARIABLE directive, 7-34
EXTNADDR compiler option, 6-2

F

failure of optimized programs, 12-16
FALSE variant, 5-9
faster register allocation, 12-7
fcall function, 7-21
�eld allocation, 5-8
FILE command, A-5
�le equations, A-5
�le names
HP-UX, B-2
MPE/iX, A-2

�le-opening procedures, 3-6{9
�les
alignment, A-16
allocation and alignment, 5-27, A-21
archived object, generation, B-12
assembly, B-16
bu�er selectors, 3-5
bu�er size, A-16
bu�er variables, 3-5
building an intrinsic �le, 10-17{19
changing an intrinsic �le, 10-17{19
closing, 3-29{30
command, A-36{37
compiler, A-38
control blocks, A-16
conversion, B-12
current position indexes, 3-5

Index-4

demand loadable, B-16
direct access, 3-25
direct �le functions, characteristics, 3-27
�le-opening procedures, table of, 3-9
formal �le designators, A-38
general information, 3-3
HP-UX, B-2
intrinsic, 10-1, 10-2
logical, 3-4
MPE/iX, A-2
object, A-34, B-13
opening, 3-6{9
physical, 2-14, 3-3
program, HP Pascal/iX, A-38
relationship between input/output and �le

types, 3-1
relationships between physical and logical,

3-3
sequential �le input/output, 3-16{21
sequential I/O procedure characteristics, 3-16
stderr, B-5
system association, 3-6
temporary, 3-7
temporary, HP-UX, B-5
text�le access, 3-22
text�les, 3-4
type, 3-1

oating-point traps
compatibility mode, 11-24
IEEE, 11-22

oor, 5-29, A-24
fnum function, A-11, B-7
FONT compiler option, A-1
formal �le designators, A-38
PASLIB, A-38
PASLIST, A-38
PASOBJ, A-38
PASTEXT, A-38

formal function type compatibility, 10-8
formal parameters, 7-1
comparison of kinds, 7-3
intrinsics, 10-9{13, 10-15

formatting
output, 3-24
variables, 3-22

FORTRAN 66/V
calling from HP Pascal, 9-15
types, 9-12

FORTRAN 66/V external routines, 9-15
FORTRAN 77
calling from HP Pascal, 9-12{14

FORTRAN 77 external routines, 9-12{14
FORTRAN 77 types, 9-12{14
FORWARD directive
optimization, 12-15

func function, 7-24
function parameters, 7-10
functions
addr, 7-15
argc, 4-12, B-20
argn, 4-12, B-20
argv, 4-12, B-20
baddress, 7-6
bitsize, 7-5, 7-27
direct �le, 3-27
eof, 3-2, 3-19, 3-27
eoln, 3-2, 3-23
escapecode, 11-2, 11-4
fcall, 7-21
func, 7-24
get alignment, B-8
haveextension, 8-3, 8-11
haveoptvarparm, 8-9
hidden parameters, 7-32{33
intrinsic parameters, 10-6
lastpos, 3-2, 3-27
linepos, 3-2
maxpos, 3-2, 3-27
optimization and, 12-15
pas �lenamr, 4-14
pas getnewparms, 4-13
pas init hp1000 args, 4-13
pas numericparms, 4-13
Pas Parameters, 4-13
pas sparameters, 4-13
pas stringdata1, 4-14
pas stringdata2, 4-14
pas timestring, 4-14
pas traceback, 4-14
position, 3-2, 3-19
sequential �le, 3-19
size, 7-5, 7-27
statement number, B-9
status, table of, 3-2
text�le characteristics, table of, 3-23

function types
parameters, 7-12
variables, 7-15{19

G

generic string parameter, 7-29
get alignment function, A-12
HP-UX, B-8

getheap procedure, 6-23
get procedure, 3-2, 3-16
global
compilation units, 2-4, 2-10

GLOBAL
compiler option, 2-12
separate compilation, 2-12

Index-5

globalanyptr variables, 6-2{3
global compilation units, 2-13
GLOBAL compiler option, 2-10
global variables, 6-1
GOTO statement
optimization and, 12-15

H

halt feature, HP-UX, B-4
halt feature, MPE/iX, A-7
haveextension function, 8-3, 8-11
values returned by, 8-11

haveoptvarparm function, 8-9
values returned by, 8-10

heading, program, 2-1
heap
allocation, 6-6{7, 6-15
deallocation, 6-12{14, 6-15
marks, 6-15

HEAP DISPOSE compiler option, 6-12
hidden parameters, 7-1, 7-27, 7-34
ANYVAR, 7-27{29, 7-31
ANYVAR parameters, 7-5
extensible parameter lists, 7-30
function, 7-32{33
generic string, 7-29
multidimensional conformant array, 7-31
procedure, 7-32{33

HP3000 16 compiler option, A-1
HP3000 32 compiler option, A-1
HP C
calling from HP Pascal, 9-5{9
long pointers, 9-8

HPENBLTRAP intrinsic, 11-14
HP Pascal
packing algorithm, 5-1
relationship with other Pascals, 1-1

HP Pascal/iX program �le, A-38
HP Symbolic Debugger, 11-28
HP TOOLSET/XL debugger, 11-28
HP-UX
close options feature, B-4
compiler options, B-1
compiling your program, B-10{24
dependencies, B-1{24
extensions, B-6{9
�le names, B-2
fnum function, B-7
get alignment function, B-8
halt feature, B-4
input feature, B-4
internal table size feature, B-4
interrupt handling, B-22
linker loader, coordination with HP Pascal

compiler, B-12

linking your program, B-10{24
maxpos feature, B-4
miscellaneous features, B-4
open options feature, B-4
optimizer, invoking, 12-3
ord feature, B-4
output feature, B-5
PASXDATA, B-4
pc command, B-12
prede�ned modules, 4-10
program header �les, B-22
running out of space during optimization,

12-16
running your program, B-10{24
run-time error handling, B-24
run-time parameters, B-20, B-22
special global variable access, B-6
standard modules, B-3
statement number function, B-9
stderr �le, B-5
system-dependent features, B-1{24
temporary �les, B-5
write feature, B-5

I

IEEE
oating-point traps, 11-20
implement parts, 2-5
implicit data conversion, 3-22, 3-24
implicit type coercion, 7-4
alignment in, 7-4

import declarations, 2-5
imported de�nitions, 2-4
INCLUDE compiler option, A-1, B-1
index
current position, 3-12

indexes, current position, 3-5
induction variable elaboration, 12-10
INLINE procedure option, 8-15{16, 12-15
inline routine duplication, 8-15{16
inline routines, 2-8
input, 3-1{30
direct, 3-25{28
direct I/O procedures, table of, 3-25
from terminal, 3-20
HP-UX feature, B-4
MPE/iX feature, A-7
sequential �les, 3-16{21
text�le, opening, 3-8
text�les, 3-22{24
text�les, independent module, 4-10

input/output (I/O), 3-1{30
categories of routines, table of, 3-2
direct, 3-2, 3-25{28
�les, 3-1
sequential, 3-2, 3-16{21

Index-6

text�le, 3-2
text�les, 3-22{24

input text�le, 3-4
instruction scheduling, 12-7
+DS, B-25

integer data type, 4-2
integer over
ow trap, 11-21
integers
packed subranges, A-32{33

internal table size
HP-UX, B-4

internal table size feature, MPE/iX, A-7
interrupt handling
HP-UX, B-22
MPE/iX, 11-26

INTRINSIC directive, 10-2
intrinsic function type compatibility, 10-8
intrinsic routines, 2-14
intrinsics, 2-8, 10-1
accessing a routine, 10-2
ARITRAP, 11-14
building a �le, 10-17{19
changing a �le, 10-17{19
compatibility, 10-4
de�ning, 10-15{16
determining �les, 10-2
formal parameters, 10-9{13, 10-15
function parameters, 10-6
HPENBLTRAP, 11-14
parameter compatibility, 10-3{7
procedure parameters, 10-6
specifying �les, 10-2
usage, 10-1
using functions as procedures, 10-14
XARITRAP, 11-18{25
XCONTRAP, 11-26{27
XLIBTRAP, 11-15

invalid ASCII digits
trapping, 11-22

invalid decimal digits
trapping, 11-22

invariant conditions, specifying, 11-10

L

lastpos function, 3-2, 3-27
level one optimization, 12-4
branch optimization, 12-4
dead code elimination, 12-6
faster register allocation, 12-7
functions, list of, 12-4
instruction scheduling, 12-7
peephole optimization, 12-8
real expression folding, 12-8

level two optimization, 12-9
coloring register allocation, 12-9

common subexpression elimination, 12-10
constant folding, 12-10
functions, list of, 12-9
induction variable elaboration, 12-10
loop-invariant code motion, 12-11
store-copy optimization, 12-12
strength reduction, 12-10
unused de�nition elimination, 12-13

lib�le
parameters, A-37

library trap handler, 11-15
line-feed suppression, 3-22
linepos, 3-23
linepos function, 3-2, 3-23
LINKEDIT command �le, A-36
linker, A-34
loader, coordination with HP Pascal compiler,

B-12
linking
HP-UX, B-10{24
MPE/iX, A-34{40
suppression, B-13

linking routines, 9-4
LIST CODE compiler option, 11-29
list�le
parameters, A-37

load modules, A-9
localanyptr variables, 6-4{5
local variables, 6-1
logical �les, 3-4
associating with physical �les, 3-6
MPE/iX dependencies, A-2{4
relationship to physical �les, 3-3

longint data type, 4-2, 4-9
long pointer, 9-8
longreal data type, 4-2
loop-invariant code motion, 12-11
loops
optimization, 12-15

M

markers
end-of-line, 3-4

mark procedure, 6-15{18
maxint, 4-1
maxpos feature, HP-IX, B-4
maxpos feature, MPE/iX, A-7
maxpos function, 3-2, 3-27
memory allocation, 5-1{32
migration routines, 4-13
minint, 4-1
MLIBRARY compiler option, 2-7
MODULE
intrinsics, 2-8

modules, 2-4

Index-7

access, 2-7
arg, 4-12, B-20
compiling, 2-7
duplicate names, 2-8
export declarations, 2-5
HP-UX, 4-10
implement parts, 2-5
import declarations, 2-5
MPE/iX, 4-10
object, A-34
pas hp1000, 4-13
prede�ned, 4-10{14
scope, 2-8
separate compilation, 2-11
standard, HP-UX, B-3
standard, MPE/iX, A-6
stderr, 4-11
stdinput, 4-10
stdoutput, 4-10
syntactic structure, 2-5

module-text, 2-7
module variables, 6-1
modulo 65535, 4-3
MPE/iX
ccode function, A-10
close option, A-7
command �les, A-36{37
compiler dependencies, A-1{40
compiler options, A-1
compiling your program, A-34{40
default �le attributes, A-6
extensions, A-10{33
�le equations, A-5
�le names, A-2
fnum function, A-11
get alignment function, A-12
halt feature, A-7
input feature, A-7
internal table size feature, A-7
linker, A-34
linking your program, A-34{40
logical �le association, A-2{4
maxpos feature, A-7
miscellaneous features, A-7
MPE V command �le equivalents, A-36
open options feature, A-8
optimizer, invoking, 12-3
output feature, A-8
physical �le association, A-2{4
prede�ned modules, 4-10
running programs, A-35
running your program, A-34{40
setconvert procedure, A-14
standard modules, A-6
statement number function, A-13

strconvert procedure, A-15
system-dependent features, A-1{8
write feature, A-7

MPE V
MPE/iX command �le equivalents, A-36

multidimensional conformant array parameter,
7-31

N

native mode, A-37
new procedure, 6-6{7, 6-12
nonextension parameters, 8-2
non-Pascal programs calling Pascal routines,

9-21{25
NOTES compiler option, 12-14
notes vs. errors and warnings, 11-1

O

object �le
producing, B-13

object�le
parameters, A-37

object �les, A-34
pro�ling, B-15

object modules, A-34
opening �les, 3-6{9
open options feature, HP-UX, B-4
open options feature, MPE/iX, A-8
open procedure, 3-2
optimization
invoking, B-16
TRY-RECOVER, 11-9
turning on, B-15

OPTIMIZE compiler option, 12-3
optimized code
debugging, 11-29

optimizer, 12-1{16
assumptions, 12-14
branch instruction sequences, 12-4
coloring register allocation, 12-9
common subexpression elimination, 12-10
constant folding, 12-10
dead code elimination, 12-6
failure of optimized program, 12-16
faster register allocation, 12-7
guidelines, 12-15
induction variable elaboration, 12-10
instruction scheduling, 12-7
invoking, 12-3
level one, 12-4
level two, 12-9
loop-invariant code motion, 12-11
peephole optimization, 12-8
real expression folding, 12-8
running out of space (HP-UX), 12-16

Index-8

store-copy optimization, 12-12
strength reduction, 12-10
unused de�nition elimination, 12-13
when to use, 12-1
writing programs for, 12-15

options
parameters, A-37
procedure, 8-1{16

ord feature, HP-UX, B-4
outer block
non-Pascal, 9-26

output, 3-1{30
direct, 3-25{28
direct I/O procedures, table of, 3-25
HP-UX feature, B-5
marking �les as demand loadable, B-16
marking �les as not demand loadable, B-16
marking �les as shareable, B-15
marking �les as unsharable, B-15
MPE/iX feature, A-8
sequential �les, 3-16{21
text�le, opening, 3-8
text�les, 3-22{24
text�les, independent module, 4-10

output text�le, 3-4
overprinting characters, 3-22
overprint procedure, 3-2, 3-22

P

packed arrays, 5-24{25
packed data structures
arrays, 5-12{14
enumerations, A-27{30
optimization, 12-15
packed subranges of enumerations, A-30{32
records, 5-15{17
subranges of integers, A-32{33
variables, 5-5{6, A-18

packed records, 5-26
enumeration �eld allocation and alignment,

A-28
packed subranges, 5-24{25
packing algorithm
de�nition of, 5-3
HP Pascal, 5-1
Pascal/V, A-16{33

page
eject, 3-22

page procedure, 3-2, 3-22
parameters, 7-1{33
actual, 7-1, 10-3{7
ANYVAR, 7-3, 7-4, 7-27{29, 7-31
compatibility, 10-4, 10-5, 10-10, 10-12, 10-13
conformant array, 7-1, 7-7{9
congruent, 7-22

default values, 8-6{12
equivalent, 7-22
extension, 8-2
formal, 7-1, 7-3, 10-9{13
function, 7-10
function type, 7-12
generic string, 7-29
hidden, 7-1, 7-5, 7-27, 8-13
intrinsic, 10-3{7
matching rules, 9-2
multidimensional conformant array, 7-31
nonextension, 8-2
optimization, 12-15
PARM values and meanings, A-39
pc command, B-12{18
procedure, 7-10
procedure type, 7-12
program, A-40
READONLY, 7-3, 7-6
reference, 7-1, 10-4, 10-10
routine, 7-10, 7-32{33
routine type, 7-12{14
run-time, A-40, B-20
using strings as actual parameters, 10-6
value, 7-1, 7-3, 10-5, 10-12
VAR, 7-3

PA-RISC architecture
code generation with +DA, B-25
compiling for di�erent versions, B-25
instruction scheduling with +DS, B-25

PARM parameter values, A-39
PASCAL command �le, A-36
Pascal I/O
with a non-Pascal outer block, 9-26

PASCALPREP command �le, A-36
Pascal/V packing algorithm, A-16{33
arrays, A-20
�les, A-21
packed enumerations, A-27{30
packed subranges of enumerations, A-30{32
packed subranges of integers, A-32{33
packed variables, A-18
records, A-21
sets, A-23{25
strings, A-26{27
unpacked variables, A-16

pas �lenamr function, 4-14
pas getnewparms function, 4-13
pas hp1000 module, 4-13
pas init hp1000 args procedure, 4-13
pas numericparms function, 4-13
Pas Parameters function, 4-13
pass by reference, 7-1
to intrinsic, 10-4

pass by value, 7-1

Index-9

to intrinsic, 10-5
passing strings, 10-6
pas sparameters function, 4-13
pas stringdata1 function, 4-14
pas stringdata2 function, 4-14
pas timestring function, 4-14
pas traceback function, 4-14
PASXDATA
HP-UX, B-4
MPE/iX, A-7

PASXL command �le, A-36
PASXLGO command �le, A-36
PASXLLNK command �le, A-36
pc command, B-10, B-12
parameters, B-12{18

peephole optimization, 12-8
p getheap procedure, 6-19{23
physical �le, 2-14
physical �les, 3-3
associating with logical �les, 3-6
MPE/iX dependencies, A-2{4
relationship to logical �les, 3-3

pointers
globalanyptr variables, 6-2{3
long, declaring in C, 9-8
returning to the data portion of a string, 4-14
types peculiar to HP Pascal, 6-1

pointers, current position, 3-5
position function, 3-2, 3-19
position independent code (PIC), B-18
prede�ned constants, 4-1{14
prede�ned data types, 4-1{14
prede�ned modules, 4-10{14
arg, 4-12
HP-UX, 4-10
MPE/iX, 4-10
pas hp1000, 4-13
stderr, 4-11
stdinput, 4-10
stdoutput, 4-10

printing
overprinting characters, 3-22
page-eject, 3-22

procedure
options, 8-1{16

procedure options
DEFAULT PARMS, 8-6, 10-16
EXTENSIBLE, 10-16
INLINE, 8-15{16, 12-15
UNCHECKABLE ANYVAR, 7-5, 7-27
UNCHECKABLE ANYVAR, 8-13
UNRESOLVED, 8-14

procedure parameters, 7-10
procedures
append, table of characteristics, 3-9

as parameters, 7-10
assert, 11-10{12
associate, 3-10{14
associate, HP-UX example, 3-14
associate, MPE/iX example, 3-13
call, 7-20
categories of input/output routines, table of,

3-2
characteristics of sequential input/output,

3-16
close, 3-29
direct input/out characteristics, 3-25
disassociate, 3-15
dispose, 3-29, 6-1, 6-12{14
escape, 11-2
�le-opening, 3-6{9
�le-opening, table of, 3-9
get, 3-16
getheap, 6-23
hidden parameters, 7-32{33
intrinsic, 6-1
intrinsic parameters, 10-6
mark, 6-1, 6-15{18
new, 6-1, 6-6{7, 6-12
open, table of characteristics, 3-9
optimization and, 12-15
overprint, 3-22
page, 3-22
p getheap, 6-19{23
proc, 7-24
prompt, 3-22
p rtnheap, 6-19{23
put, 3-16
read, 3-16
readdir, 3-25
readln, 3-22
release, 3-29, 6-1, 6-15{18
reset, 3-8
reset, table of characteristics, 3-9
rewrite, 3-8
rewrite, table of characteristics, 3-9
rtnheap, 6-23
seek, 3-25
setconvert, A-14
strconvert, A-15
text�le input/output characteristics, table of,

3-22
using intrinsic functions, 10-14
write, 3-16
writedir, 3-25
writeln, 3-4, 3-22

procedure types
parameters, 7-12
variables, 7-15{19

proc procedure, 7-24

Index-10

prog�le
parameters, A-37

program
block, 2-2
heading, 2-1
name, 2-1
parameters, 2-1

program arguments, B-20
program header �les
association with run-time parameters, B-22
HP-UX, B-22

program listing, B-15
program parameters
HP-UX, B-20
MPE/iX, A-40

programs
failure of optimized, 12-16
writing for optimizer, 12-15

program structure, 2-1{14
compilation unit, 2-4
syntactic, 2-1

prompt procedure, 3-2, 3-22
p rtnheap procedure, 6-19{23
put procedure, 3-2, 3-16

R

range checking
turning o�, B-16

RANGE compiler option, A-40
ranges
prede�ned data types, 4-2

read
device, 3-20

readdir procedure, 3-2, 3-25
readln procedure, 3-2, 3-22
READONLY parameters, 7-3, 7-6
read procedure, 3-2, 3-16
real data type, 4-2
real expression folding, 12-8
records
allocation and alignment, 5-8{11, A-21
crunched, 5-18{20
enumeration �eld allocation and alignment of

packed, A-28
packed, 5-15{17, 5-26, A-21
Pascal/V packing algorithm, A-21
unpacked, A-21

RECOVER, 11-4{9
reference parameters, 7-1
compatibility, 10-10
intrinsics, 10-4

release procedure, 3-29, 6-15{18
reset procedure, 3-2, 3-8
resolution of system names, 8-14
resolving routines, 8-14

rewrite procedure, 3-2, 3-8
routine parameters, 7-10, 7-32{33
routines
argc, 4-12
argn, 4-12
argv, 4-12
as parameters, 7-10
C, 9-5{9
COBOL II, 9-10{11
external, 2-14, 9-1{25, 10-1
FORTRAN 66/V, 9-15
FORTRAN 77, 9-12{14
heading, 8-1
intrinsic, 2-14
linking, 9-4
size for optimization, 12-15
SPL, 9-16{19

routine types
parameters, 7-12{14
variables, 7-15{19

row-major order, arrays, 5-7
rtnheap procedure, 6-23
RUN command, A-40
RUN command �le, A-36
running programs
HP-UX, B-10{24
MPE/iX, A-34{40
RUN PASCAL.PUB.SYS, A-38

RUN PASCAL.PUB.SYS program �le, A-38
run-time error handling
HP-UX, B-24

run-time parameters
association with program header �les, B-22
HP-UX, B-20
MPE/iX, A-40

S

scheduling
instruction, 12-7

schemas
conformant array, 7-7{9, 7-22
equivalent, 7-22

SEARCH compiler option, 2-7
seek procedure, 3-2, 3-25
selectors
�le bu�er, 3-5

separate compilation, 2-4, 2-11{13
reasons, 2-11
SUBPROGRAM with GLOBAL, 2-13
using GLOBAL/EXTERNAL, 2-12{13
using modules, 2-11{12
using SUBPROGRAM, 2-12

sequential �les
access, 3-16{21

Index-11

characteristics of input/output procedures,
3-16

functions, characteristics of, 3-19
sequential input/output, 3-2
set chunks
de�nition of, 5-28
size determination, 5-28

setconvert procedure, A-14
sets
allocation and alignment, 5-28{30, A-23{25
crunched, 5-21
Pascal/V packing algorithm, A-23{25

shared libraries, 2-11{13
shortint data type, 4-2, 4-8
signal routine, B-22
size compatibility, 10-3
size function, 7-5, 7-27, 7-31
SPL
calling from HP Pascal, 9-16{19
hidden parameters, 7-34

SPL external routines, 9-16{19
SPL types, 9-16
stack trace, 4-14
standard modules
HP-UX, B-3
MPE/iX, A-6

standard text�les, 3-4
opening, 3-8

statement number function, A-13
HP-UX, B-9

static link, 7-32
static variables, 6-1
status functions, table of, 3-2
stderr �le, B-5
stderr module, 4-11
stdinput module, 4-10
stdoutput module, 4-10
store-copy optimization, 12-12
strconvert procedure, A-15
strength reduction, 12-10
string parameters
intrinsics, 10-6
to external C routines, 9-7

strings
allocation and alignment, 5-31{32, A-26{27

subexpression elimination, 12-10
subprogram
compilation units, 2-10

SUBPROGRAM
separate compilation, 2-12
with GLOBAL, 2-13

subprogram compilation unit, A-9
subranges
allocation and alignment, 5-22{26
enumerations, A-30{32

integers, A-32{33
packed, 5-24{25
unsigned variable, allocation and alignment,

5-22
subsystem break handler, 11-26
subsystems
ALLBASE/SQL, 1-2
DEBUG, 1-2
HP Symbolic Debugger, 1-2
HP System Dictionary/XL, 1-2
HP TOOLSET/XL, 1-2
SQL, 1-2
TurboIMAGE/XL, 1-2
VPLUS, 1-2

supersets
HP Pascal/HP-UX, 1-1
HP Pascal/iX, 1-1

suppressing code generation, B-12
switch stubs, 9-20
symbolic debugger, 11-28, B-15
symbolic de�nitions, generation of, 2-12
SYMDEBUG compiler option, 11-28, B-1
syntactic structure, 2-1
syntax
module, 2-4
program, 2-1

SYSINTR, 2-8
SYSINTR compiler option, 10-2
system debuggers, 11-29
system-dependent features
close option, MPE/iX, A-7
close options, HP-UX, B-4
compiler options, A-1, B-1
default �le attributes, A-6
�le equations, A-5
�le names, A-2, B-2
halt, HP-UX, B-4
halt, MPE/iX, A-7
HP-UX, B-1{24
input, HP-UX, B-4
input, MPE/iX, A-7
internal table size feature, HP-UX, B-4
internal table size, MPE/iX, A-7
logical �le association, A-2{4
maxpos, HP-UX, B-4
maxpos, MPE/iX, A-7
miscellaneous, MPE/iX, A-7
MPE/iX, A-1{8
open options feature, HP-UX, B-4
open options, MPE/iX, A-8
ord, HP-UX, B-4
output, HP-UX, B-5
output, MPE/iX, A-8
physical �le association, A-2{4
standard modules, A-6

Index-12

stderr �le, HP-UX, B-5
temporary �les, HP-UX, B-5
write feature, HP-UX, B-5
write feature, MPE/iX, A-7

system names
of intrinsics, 10-2
resolution of, 8-14

T

TABLES compiler option, 11-29
temporary �les, 3-7
HP-UX, B-5

terminal, input from, 3-20
terminating a program, 3-29
text�le input/output, 3-2
text�les, 3-4
access, 3-22
allocation of �le components, 5-27
function characteristics, table of, 3-23
input, independent module, 4-10
input/output, 3-2, 3-4, 3-22{24
input/output procedures, table of, 3-22
output, independent module, 4-10
parameters, A-37
standard, 3-4, 3-8

text type, 3-4
TMPDIR environment variable, B-5
transforming programs, 12-1
trap
control-y, 11-26

trapping errors, 11-13{27
traps, 11-13{27
arithmetic trap handler, 11-18{25
arming, 11-14
compatibility mode
oating-point, 11-24
decimal over
ow, 11-22
disabling, 11-14, 11-21
enabling, 11-14, 11-20
IEEE
oating-point, 11-20
IEEE
oating point, 11-22
integer over
ow, 11-21
invalid ASCII digit, 11-22
invalid decimal digit, 11-22
library trap handlers, 11-15
subsystem break, 11-26
unimplemented condition, 11-20

TRUE variant, 5-9
TRY-RECOVER and Optimization, 11-9
TRY-RECOVER construct, 11-2, 11-4{9
type checking
intrinsic parameters, 10-9{13

type coercion
ANYVAR parameters, 7-4
implicit, 7-4

TYPE COERCION compiler option, 7-4

type compatibility, 10-8
types
bit and byte pair requirements, A-23
C, 9-5{9
COBOL II, 9-10{11
corresponding HP Pascal and COBOL II,

9-10{11
corresponding HP Pascal and FORTRAN

66/V, 9-12
corresponding HP Pascal and FORTRAN 77,

9-12{14
corresponding HP Pascal and HP C, 9-5{9
corresponding HP Pascal and SPL, 9-16
FORTRAN 66/V, 9-12
FORTRAN 77, 9-12{14
function, 7-12, 7-15
optimization, 12-15
prede�ned data, 4-1
procedure, 7-12, 7-15
routine, 7-12, 7-15
SPL, 9-16

U

UNCHECKABLE ANYVAR procedure option,
7-5, 7-27

UNCHECKABLE ANYVAR procedure option,
8-13

unimplemented condition trap, 11-20
uninitialized variables, 12-1
unpacked enumerations, allocation and alignment,

5-22
unpacked variables
allocation and alignment, 5-4, A-16

UNRESOLVED procedure option, 8-14
unsigned subranges, allocation and alignment,

5-22
unused de�nition elimination, 12-13

V

value parameters, 7-1, 7-3, 10-12
intrinsics, 10-5

values
function variable, 7-15
procedure variable, 7-15

variables
access, 7-1
allocation and alignment, 5-1{32, A-16
dynamic versus static, table, 6-1
�le bu�er, 3-5
formatting, 3-22
function type, 7-15{19
global, 6-1
globalanyptr, 6-2{3
local, 6-1

Index-13

localanyptr, 6-4{5
module, 6-1
optimization, 12-15
packed, 5-5{6, A-18
packed enumerations, A-27{30
procedure type, 7-15{19
routine type, 7-15{19
special global access, B-6
uninitialized, 12-1
unpacked, 5-4, A-16

variants
FALSE, 5-9
TRUE, 5-9

VAR parameters, 7-3
verbose mode
enabling, B-17

W

warnings
non-ANSI Pascal features, B-12
optimizer, 12-1
turning o� messages, B-17
vs notes and errors, 11-1

WITH statement
optimization and, 12-15

writedir procedure, 3-2, 3-25
write feature, HP-UX, B-5
write feature, MPE/iX, A-7
writeln procedure, 3-2, 3-4, 3-22
write procedure, 3-2, 3-16

X

XARITRAP intrinsic, 11-18{25
compatibility mode
oating-point traps, 11-24
decimal over
ow trap, 11-22
disabling, 11-21
enabling, 11-20
extra parameters, 11-21
IEEE
oating-point traps, 11-22
integer over
ow trap, 11-21
invalid ASCII digit trap, 11-22
invalid decimal digit trap, 11-22

XCONTRAP intrinsic, 11-26{27
XLIBTRAP intrinsic, 11-15
XLs (executable libraries), 2-11{13

restrictions on using, A-9

Index-14

