Configuring HP-UX for Peripherals

HP 9000

First Edition (E0195)

Manufacturing Part Number: B2355-90053 January 1995

© Copyright 1995, Hewlett-Packard Company.

Legal Notices

The information contained within this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Hewlett-Packard shall not be liable for errors contained herein nor for incidental consequential damages in connection with the furnishing, performance, or use of this material.

Warranty. A copy of the specific warranty terms applicable to your Hewlett-Packard product and replacement parts can be obtained from your local Sales and Service Office.

Restricted Rights Legend. Use, duplication, or disclosure by the U.S. Government Department is subject to restrictions as set forth in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 for DOD agencies, and subparagraphs (c) (1) and (c) (2) of the Commercial Computer Software Restricted Rights clause at FAR 52.227-19 for other agencies.

HEWLETT-PACKARD COMPANY

3000 Hanover Street

Palo Alto, California 94304 U.S.A.

Use of this manual and flexible disk(s) or tape cartridge(s) supplied for this pack is restricted to this product only. Additional copies of the programs may be made for security and back-up purposes only. Resale of the programs in their present form or with alterations, is expressly prohibited.

Copyright Notices. (C)copyright 1983-95 Hewlett-Packard Company, all rights reserved.

This documentation contains information that is protected by copyright. All rights are reserved. Reproduction, adaptation, or translation without written permission is prohibited except as allowed under the copyright laws.

(C)Copyright 1979, 1980, 1983, 1985-1993 Regents of the University of California.

This software is based in part on the Fourth Berkeley Software Distribution under license from the Regents of the University of California.

- (C)copyright 1980, 1984, 1986 Novell, Inc.
- (C)copyright 1986-1992 Sun Microsystems, Inc.
- (C)copyright 1985-86, 1988 Massachusetts Institute of Technology.
- (C)copyright 1989-93 The Open Software Foundation, Inc.
- (C)copyright 1986 Digital Equipment Corporation.
- (C)copyright 1990 Motorola, Inc.
- (C)copyright 1990, 1991, 1992 Cornell University
- (C)copyright 1989-1991 The University of Maryland.
- (C)copyright 1988 Carnegie Mellon University.

Trademark Notices. UNIX is a registered trademark in the United States and other countries, licensed exclusively through X/Open Company Limited.

X Window System is a trademark of the Massachusetts Institute of Technology.

MS-DOS and Microsoft are U.S. registered trademarks of Microsoft Corporation.

OSF/Motif is a trademark of the Open Software Foundation, Inc. in the U.S. and other countries.

Printing History

The manual printing date and part number indicate its current edition. The printing date will change when a new edition is printed. Minor changes may be made at reprint without changing the printing date. The manual part number will change when extensive changes are made.

Manual updates may be issued between editions to correct errors or document product changes. To ensure that you receive the updated or new editions, you should subscribe to the appropriate product support service. See your HP sales representative for details.

First Edition: January 1995 (HP-UX Release 10.0)

November 2002: This version does not update any content, it was modified to allow easier on-line viewing. No changes were made to the content. There may be some differences in format and structure, due to the differences in the versions of the authoring and presentation tools used. Figures were added back into the pdf version.

1. Getting Started	
Peripheral Configuration in its Simplest Terms 1	13
Using SAM to Configure Peripherals	13
Using HP-UX Commands to Configure Peripherals	۱4
Understanding I/O Convergence 1	١5
Understanding Device Special File Names	١6
Sample Device Special File Names	17
Decoding Device Special Files with lssf	18
Viewing the System Configuration with ioscan	9
Terse Listing of ioscan	١9
Full Listing of ioscan	21
Configuring HP-UX for any Peripheral (A Summary)	25
2. Configuring Interface Cards	
Planning to Configure an Interface Card 2	29
Maximum Configurations 3	31
Selecting Device Drivers for Your Interface Cards	32
Asynchronous Data Communication Configuration Guidelines	32
Centronics (Parallel) Configuration Guidelines	37
EISA Configuration Guidelines	38
Graphics Card Configuration Guidelines	39
Maintaining the Accuracy of Customized Graphics Configurations	ł1
HP-FL Configuration Guidelines 4	12
HP-IB Configuration Guidelines	14
Networking Configuration Guidelines	16
SCSI Configuration Guidelines	18
Configuring an Interface Card 5	55
For Further Information on Interface Cards	57
3. Configuring Terminals and Modems	
Planning to Configure a Terminal or Modem 6	31
Planning to Configure a Port for a Terminal	31
Planning to Configure a non-HP Terminal	32
Planning to Configure a Port for a Modem	32
Selecting Device Drivers for Terminals and Modems	34

67 69 69
69
70
81
83
85
86
86
88
90
93
93
94
94
95
96
96
97
98
. 101
. 102
. 104
. 105
. 106
. 107
. 109
. 111
. 114
. 119
. 121

5. Configuring Magneto-Optical Devices	
Planning to Configure a Magneto-Optical Device	125
Characteristics of Magneto-Optical Devices	125
Understanding Magneto-Optical Media Capacity	126
Magneto-Optical Disk Configuration Guidelines	127
Configuring HP-UX for a Magneto-Optical Disk	128
Magneto-Optical Disk Library Configuration Guidelines	129
Configuring HP-UX for a Magneto-Optical Disk Library	130
After Configuring a Magneto-Optical Device	132
6. Configuring Tape Drives	
Selecting Device Drivers for a Tape Device and Interface	135
HP-IB Tape Drive Configuration Guidelines	135
SCSI Tape Drive Configuration Guidelines	138
Configuring HP-UX for a Tape Drive	140
Creating Customized Device Special Files for Tape Devices	142
Examples	142
After Configuring a Tape Drive	144
7. Configuring Printers and Plotters	
Preparing to Configure HP-UX for a Printer or Plotter	149
Choosing Means of Access	
Hardware Concerns	
Software Concerns	151
Selecting Device Drivers for Your Printer or Plotter	152
Guidelines for Configuring a Printer or Plotter to an HP-IB Interface	
Guidelines for Configuring a Printer or Plotter to a Serial Interface	
Guidelines for Configuring a Printer or Plotter to a Parallel (Centronics) Inter 158	face .
Guidelines for Configuring a Printer to a SCSI Interface	159
Configuring a Printer Using HP-UX Commands	161
Creating a Device Special File for a Printer or Plotter Configured to a Serial P	ort 164
Creating a Device Special File for an HP-IB Printer	
Guidelines for Configuring a Non-HP Printer to a Parallel Port	167
Configuring a Plotter or other Non-Automatically Configurable Output Devices HP-UX Commands	_

	Moving a Printer or Plotter	170
	For Further Information on Printer-Related Tasks	172
	For Further Information on Plotter-Related Tasks	174
8. C	Configuring Uninterruptible Power Systems	
	Planning to Configure a UPS	177
	Hardware Considerations	177
	Software Considerations	179
	Selecting Drivers for a UPS	180
	Configuring a PowerTrust UPS	181
	Configuring UPS to Cycle Power During Non-Work Hours	183
	After Configuring the PowerTrust UPS	185
	Troubleshooting the UPS	185
A. E	EISA Board Configuration	
	E/ISA Boards and CFG Files	189
	Configuring the Software Required by the E/ISA Board	191
	Configuring E/ISA Boards Using Interactive Mode	192
	Sample Interactive Session to Add an E/ISA Card	193
	Moving an E/ISA Board	201
	Removing an E/ISA Board	202
	Creating Identical E/ISA Configurations on Other Workstations	203
	Troubleshooting E/ISA Board Configuration	204
	Verifying the Syntax of a CFG File	204
	Board Stops Working or No Non-Volatile Memory (NVM) Driver	204
	Added or Moved Board Does Not Work	205
	Board Configuration Conflicts	205
	Two CFG Files Have the Same Name	206
	E/ISA Board Power-Up Messages	207
B. E	Bus Architectures	
	Series 700 Bus Architecture	212
	Model 712	213
	Model 725/100	214
	Model 770 (J Series)	216

	Series 800 Bus Architecture	217
	Model E Systems	217
	Models F/G/H/I and 8x7 Systems	219
	Models 890 and T500 Systems	220
	Models 8x9 (K Series)	222
С. М	ajor and Minor Numbers	
	Understanding how the Kernel Associates Drivers to Device	225
	Major Numbers	226
	Minor Numbers	226
	Understanding the Construction of Device Special Files	227
	Examples of Minor Number Creation	229
	Minor Number Bit Assignments	231
	Associating a Custom Driver with a Peripheral	235
	Creating Device Special Files using mknod	238
D. W	orksheets	
	Interface Cards	240
	Terminals and Modems	241
	Disk Drives	242
	Tape Drives	244
	Printers and Plotters	245
	Uninterruptible Power Systems (UPS)	246
-	•	0.45

1 Getting Started

Before physically *installing* a disk drive, tape drive, printer, or other peripheral device, you must *configure* the HP-UX operating system to communicate with it. *Configuring HP-UX for Peripherals* provides the software information needed for system administrators to configure the many peripheral devices supported on HP-UX.

Read this chapter for:

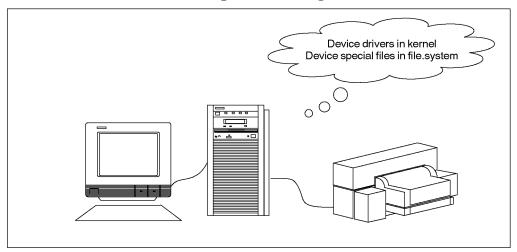
- an overview of peripheral configuration
- explanation of I/O convergence
- · syntax of device special file names.
- information on associating device special files with their peripheral devices, by using lssf and ioscan.

Keep this manual and the following others available for reference when installing and configuring peripheral devices:

- The installation manuals shipped with the device.
- HP-UX System Administration Tasks
- HP-UX Reference

Commands such as mksf, insf, and ioscan (now available on both Series 700 and 800 systems) now make it largely unnecessary to manipulate the minor number literally. However, if you are configuring a peripheral for unusual circumstances, you might wish to consult the appendices at the back of this book.

NOTE


Configuring a peripheral device requires that you operate with root privileges. In consideration for others on the system, exercise caution when acting as superuser.

Peripheral Configuration in its Simplest Terms

Any peripheral device requires three steps to communicate with an HP-UX system: configure, install, reboot.

- Configure the device drivers into the kernel. Device drivers are like translators
 that speak both the language of the peripheral device and the language of the
 computer.
- 2. **Install the hardware**. Perform any hardware-specific installation procedures required to physically connect the peripheral device to your computer. Then, turn on the power to the peripheral devices and *then* to the computer.
- 3. **Reboot the system.** As the system reboots, HP-UX automatically creates the necessary device special files required for the peripheral. At least one device special file must exist for the device driver to communicate with the peripheral device. Device special files tell the operating system which device driver to use, how to find the peripheral device, and what special characteristics the peripheral device employs.

Figure 1-1 The Essentials of Peripheral Configuration

NOTE

Often, if you anticipate having to add a new external peripheral device, you can configure the device drivers into the kernel at a time when no one else is on the system. Then, when the peripheral arrives, you can physically install it with minimal user disruption.

Using SAM to Configure Peripherals

The HP-UX System Administration Manager (SAM) provides the easiest way to:

- view your system's configuration.
- configure the peripheral device's drivers into the kernel.
- regenerate the kernel after configuring the software.

To invoke SAM, type /usr/sbin/sam.

SAM's user interface and online help system allow you to discover the configuration information as you proceed through its screens. Once you provide SAM with basic information about the device being configured,

- SAM checks your currently running kernel configuration file for the required device drivers,
- reports whether or not the drivers are present,
- adds them if necessary, and
- reconfigures the kernel.

For some devices, SAM also automates other necessary steps. For example, when adding a terminal to your system, SAM edits the /etc/inittab file to add the terminal entry. You have to perform this step manually if you are not using SAM to configure the terminal.

Using HP-UX Commands to Configure Peripherals

You must use HP-UX commands to configure peripherals to the system if the device cannot be automatically configured or if SAM is not on your system.

Virtually all Hewlett-Packard disk drives, tape drives, printers, plotters and terminals are configurable automatically. Each peripheral-specific chapter of this book gives procedures for using HP-UX commands for configuration.

Exceptions: Drivers insf Cannot Recognize

Third-party drivers and certain drivers used for instrumentation or black-box applications are not recognized by insf to create device files automatically during the reboot process.

If you are adding a peripheral device requiring a driver that cannot be configured automatically, you must configure the device driver and create the device files using the ioscan and mksf or mknod commands.

For guidance in these cases, consult "Appendix C: Major and Minor Numbers," at the end of this book. "Chapter 7: Configuring Printers and Plotters" also has information on configuring instruments that require manual manipulation.

Understanding I/O Convergence

As of Release 10.0, the HP-UX I/O system is largely converged, allowing for an environment that supports a greater flexibility of bus architectural combinations. This is seen most dramatically on Model K (8x9) systems, which have capabilities previously found only on Series 700 workstations.

From an administrative perspective, I/O convergence means that the vast majority of configuration tasks are now performed identically, whether for a Series 700 or Series 800 system. Device file names on both architectures are consistent (the naming convention is explained in the next section), and drivers have been streamlined to work in this converged environment.

Think of the drivers as belonging to one of two broad categories, according to the PA-RISC bus architecture on which they run — the Server I/O (SIO) system and the Workstation I/O (WSIO) system. The SIO driver environment includes Series 800 CIO and HP-PB bus architectures. The WSIO driver environment supports bus architectures traditionally associated with Series 700 workstations, and provides greater openness for use of third-party interfaces and devices.

Throughout this manual, the terms Series 700 and 800 continue to be used, as the command uname —m continues to report Series 700 or 800 model numbers. Although we use the terms Series 700 and Series 800 when we describe drivers, we are really implying WSIO or SIO driver environments. These separate environments permit only those drivers required by a given bus architecture to be configured into the kernel as needed (for example, only WSIO drivers on a legacy Series 700 system or SIO d WSIO drivers on a Series 800 system).

Read the /usr/conf/master.d/core-hpux file to better understand the architectural context dependencies. Also, consult *master*(4) in the *HP-UX Reference*.

Understanding Device Special File Names

Device special files tell the operating system which device driver to use, how to find the peripheral device, and what characteristics the peripheral device should employ. Characteristics vary by device. Thus, device special files for magneto-optical devices show the surface being addressed, while those for tape drives show rewind and density.

Most device special file names contain the location of the device on the bus architecture. To see this, display the files in any subdirectory of the /dev directory. Note, all mass storage devices adhere to a syntax that includes c#t#d#[s#] (other kinds of device files use a related convention):

represents the **card instance** number for the *class of interface card* to which the device is connected. Classes of interface cards include ext_bus, graphics, tty, lan, and others. The card instance of an interface card is unique for its specific class. There is no relationship between the instance number and the slot number of the interface card in the card cage.

Class and instance number can be seen in the first two columns of /usr/sbin/ioscan -f output. When interpreting a device special file, the *only* significant instance number is the card instance (that is, the instance number for the *class of interface* to which a device is attached). Thus, in a sample disk device file /dev/rdsk/clt4d0, the cl refers to the card instance, *not* to an LU number (as in previous releases).

represents the **target address** of the device on the interface bus, and can range from 0 to 7 maximum. Typically t# is the address set with jumpers or dip switches on the device itself.

represents the **device number**, and can range from 0 to 7 maximum. On SCSI devices, d# is the SCSI LUN; on HP-FL and HP-IB, it is the unit number. Except for multi-function devices, d# is typically d0.

specifies **section** number (optional; made available for backward compatibility). Note, section 0 now represents the *entire* disk, while section 2 represents a small disk section (previously section 0). If the s# is not shown, the device special file refers to the entire disk.

c#

t#

d#

s#

Sample Device Special File Names

Every peripheral-specific chapter in this book has tables of configuration requirements that show the default device special file names for that class of device. Here are some sample device special files and their possible meanings:

/dev/rdsk/c0t6d0	Entire disk accessed in character (raw) mode through SCSI card instance 0, target 6, LUN 0.
/dev/dsk/c3t2d4	Entire disk accessed in block mode through HP-FL card instance 3, address 2, Unit 4.
/dev/rac/c0t0d0_11a	Surface 11a of a magneto-optical disk whose autochanger in a disk library accessed in raw mode through card instance 0, target 0, LUN 0.
/dev/rmt/c1t0d0BESTnb	Tape drive accessed through card instance 1, target 0, LUN 0. Tape writes at best available density/format, no rewind, Berkeley-style close.
/dev/rmt/0mnb	Tape drive device special file with identical characteristics (linked) to /dev/rmt/clt0d0BESTnb.
/dev/floppy/clt3d0	Entire floppy disk drive accessed in block mode through SCSI card instance 1 located in slot 13, with target 3, LUN 0.
/dev/tty0p0	Serial port of built-in card instance 0 port 0, hardwired at address 56.0; accessed through driver mux4.
/dev/c1t0d0_lp	Parallel port on core I/O card 1, set to handshake mode 2.
/dev/lp	Parallel port on core I/O card 1, set to handshake mode 2; device file is linked to /dev/clt0d0_lp.

Both lssf and ioscan commands display the interface to which a device is connected. These are discussed in the next sections.

Decoding Device Special Files with Issf

Use the /usr/sbin/lssf command to decode device special files. The following figure compares 11 and lssf output.

NOTE

Throughout this manual, examples of commands usage are shown as **bold text**.

```
ll /dev/rdsk/c11t2d0
crw-r---- 1 bin
                                175 0x0b2000 Mar 25 15:46 /dev/rdsk/c11t2d0
                       bin
/usr/sbin/lssf /dev/rdsk/c11t2d0
disc2 card instance 11 HPFL address 2 unit 0 section 0
  at address 6/8.4.2 /dev/rdsk/c11t2d0
11 /dev/rct/c0t3d1
crw-r----
            1 bin
                                 214 0x003140 Mar 25 12:41 /dev/rct/c0t3d1
                        hin
/usr/sbin/lssf /dev/rct/c0t3d1
disc1 card instance 0 HPIB address 3 unit 1 cartridge tape section 0
  at address 2/4.0.3 /dev/rct/c0t3d1
11 /dev/rmt/c0t1d0NOMOD
crw-rw--rw--
               1 bin
                          bin
                                   205 0x00100f May 4 11:31
/dev/rmt/c0t1d0NOMOD
/usr/sbin/lssf /dev/rmt/c0t1d0NOMOD
stape card instance 0 SCSI target 1 SCSI LUN 0 at&t keep existing
density/format
  at address 2/0/1.1.0 /dev/rmt/c0t1d0NOMOD
11 /dev/rmt/c0t1d0BESTb
crw-rw--rw--
               2 bin
                          bin
                                   205 0x001080 Apr 28 17:24
/dev/rmt/c0t1d0BESTb
/usr/sbin/lssf /dev/rmt/c0t1d0BESTb
stape card instance 0 SCSI target 1 SCSI LUN 0 berkeley best density
available
  at address 2/0/1.1.0 /dev/rmt/c0t1d0BESTb
11 /dev/rac/c1t1d0 2a
crw-r--r-- 1 root
                       users
```

crw-r--r-- 1 root users 230 0x011003 May 3 16:46 /dev/rac/c1t1d0_2a
/usr/sbin/lssf /dev/rac/c1t1d0_2a
autox0 card instance 1 SCSI target 1 SCSI LUN 0 optical disk 2 side a

18 Chapter 1

at address 52.1.0 /dev/rac/c1t1d0_2a214

Viewing the System Configuration with ioscan

The /usr/sbin/ioscan command is the single most versatile tool in HP-UX for displaying your system configuration. For example, you can use ioscan to identify available hardware addresses.

Terse Listing of ioscan

In its simplest form, /usr/sbin/ioscan displays hardware path, device class, and description. The -u (usable devices) or -k (kernel structures) options give fastest response, because they do not probe the hardware.

The following example shows devices on a Series 800 Model E, connected through the HP-PB bus converter at address 56. The 56/52 is the address of the single-ended SCSI interface. The shaded digits below are the addresses already being used on the card. Note that there is no 56/52.4.0. If you attach another SCSI device to this card, you can set its address to 4.

/usr/sbin/ioscan -k

H/W Path	Class	Description					
=======	=======================================						
56	bc	Bus Converter					
56/52	ext_bus	HP 28655A - SCSI Interface					
56/52.0	target						
56/52.0.0	tape	SCSI Tape					
56/52.1	target						
56/52.1.0	disk	HP C2247M1 - SCSI Disk					
56/52.2	target						
56/52.2.0	disk	HP C2247M1 - SCSI Disk					
56/52.3	target						
56/52.3.0	disk	TEAC FC-1 SCSI Disk					
56/52.5	target						
56/52.5.0	disk	HP C2247M1 - SCSI Disk					
56/52.6	target						
56/52.6.0	disk	HP C2247M1 - SCSI Disk					

Understanding Hardware Addresses

You can identify each piece of hardware configured to an HP-UX computer by its **hardware address** (shown in ioscan as H/W Path).

The length of these numerical sequences differ by system model and architecture, but every hardware path leads you through the bus structure, starting from the bus closest to the system processor and ending at the output device.

ioscan -H hardware_path shows you the sequence of connection to or from the specified location. In the following example,, which displays output from a Model 770, a disk attached to the GSC built-in Fast/Wide SCSI Interface has the hardware address 8/0.5.0.

/usr/sbin/ioscan -H 8/0.5.0

H/W Path	Class	Description
=========	=======================================	==========
	bc	
8	bc	I/O Adapter
8/0	ext_bus	GSC built-in Fast/Wide SCSI Interface
8/0.5	target	
8/0.5.0	disk	DEC DSP3210SW

The hardware path can be decoded as follows:

8	8	identifies the bus adapter connecting the GSC+ bus to the system bus.
()	identifies the slot number of the Fast/Wide SCSI interface. (See Figure B-3 in Appendix B, Bus Architectures.)
ļ	5	represents the "target", or SCSI address, set on the disk device itself. $ \\$
(0	indicates a unit number or SCSI LUN number.

Field separators (slash (/) or dot (.)) separate the numbers of the hardware address and have no bearing on system administration. The displayed classes are more meaningful in the context of instance numbers, which are visible in ioscan -f listings, and will be discussed shortly. Explanation of hardware addresses on multi-function cards is in Appendix B.

Understanding the Description in ioscan

The description field displayed by ioscan derives from the peripheral device itself, and is sometimes more cryptic than is ideal. Typically, a numeric description refers to the manufacturer's vendor ID, and in some cases, this number corresponds to more than one model number. If you are troubleshooting a peripherals problem, the description is often useful information to an HP support engineer.

Full Listing of ioscan

ioscan -f displays full information about the system configuration, including instance number, device/interface driver, software state, and hardware type. The -fn option displays the device special files also.

/usr/sbin/ioscan -f							
Class	I	H/W Path	Driver	S/W State	H/W Type	Descrip	tion
========	===	========	=======	=======	=======	======	====
ext_bus	0	8/0	c720	CLAIMED	INTERFACE	F/W SCS	I
target	0	8/0.5	tgt	CLAIMED	DEVICE		
disk	0	8/0.5.0	sdisk	CLAIMED	DEVICE	HP	C2247
ba	0	8/12	bus_adapter	CLAIMED	BUS_NEXUS	Core I/	O Adapter
ext_bus	2	8/12/0	CentIf	CLAIMED	INTERFACE	Paralle	l Interface
audio	0	8/12/1	audio	CLAIMED	INTERFACE	Audio	
tty	0	8/12/4	asio0	CLAIMED	INTERFACE	RS-232C	
ext_bus	1	8/12/5	c700	CLAIMED	INTERFACE	SCSI	
target	1	8/12/5.0	tgt	CLAIMED	DEVICE		
disk	1	8/12/5.0.0	sflop	CLAIMED	DEVICE	TEAC	FC-1
lan	0	8/12/6	lan2	CLAIMED	INTERFACE	LAN	
bc	2	10	ccio	CLAIMED	BUS_NEXUS	I/O Ada	pter
graphics	0	10/0	graph3	CLAIMED	INTERFACE	Graphic	S

Understanding Class and Instance

The following ioscan output shows just the ext_bus class of a sample Model 770 system. The card instance numbers are listed under I and are highlighted.

For device file naming and hardware mapping, the *only* significant instance numbers are those associated with the INTERFACE hardware type.

Class	Ι	H/W Path	Driver	S/W Stat	e H/W Type	Description	on
=======	===	=======	=======			=======	====
ext_bus	0	8/0	c720	CLAIMED	INTERFACE	F/W SCSI	
ext_bus	2	8/12/0	CentIf	CLAIMED	INTERFACE	Parallel	Interface
ext bus	1	8/12/5	c700	CLAIMED	INTERFACE	SCSI	

The card instance number is assigned by the operating system to the interface card and reflects the order ioconfig binds that class of interface card to its driver when it boots.

Instance is stored in two files — /etc/ioconfig and /stand/ioconfig. These files retain their information across reboots, unless one is corrupted or missing, in which case, ioinit will rebuild the entire /dev structure. (If this occurs, you would have to recreate any customized permissions or files.)

For further explanation of card instance, read the white paper entitled *HP-UX 10.0 Device File Naming Convention*.

An Example Showing Correlation Between Card Instance and Device Files

The following example shows ioscan output taken from a Model 735. The shaded numbers show how card instance number and hardware path elements map directly into the device special file /dev/dsk/clt5d0 as card instance, target number, and device number.

Typically, the card instance maps as the digit after the letter c (or for terminals, the number after tty), as shown in the following example.

Note, the card instance designated in the device special file refers to the interface card, *not* to the instance number of the peripheral device attached to the card. (Ignore those numbers. This is a departure from the LU concept of previous HP-UX Series 800 releases. LU numbers were similar to device instance numbers and *are not used*.)

The card instance number is unique *only* for the specific class (in this case, ext_bus) of interface. Thus, for example, the tty class of interface has its own sequence of card instance numbers, beginning with zero, which appear in its device files.

/usr/sbin/ioscan -fn -H 2/0/7								
Class	I	H/W Path	Driver	S/W State	H/W Type	Descript	tion	
========	===:	=======	========	========	========	======	====	
ext_bus	1	2/0/7	c700	CLAIMED	INTERFACE	Built-i	n F/W SCSI	
target	3	2/0/7.5	target	CLAIMED	DEVICE			
disk	2	2/0/7.5.0	sdisk	CLAIMED	DEVICE	HP	C2247	
		/dev/	dsk/c1t5d0	/dev/rdsk/c1t5d0				

Identifying Device Special Files Associated with a Peripheral Device

You can use ioscan -fn (or -fkn or -fun) to show device special file names associated with a peripheral. You can also add other ioscan options (such as -H, -C, -d, or -I) to limit your output to specific elements in your configuration.

The following example, using -C tape, shows the device files available for tape class, as well as the location and type of tape device. Note too, the new tape device file naming convention. These are explained in Chapter 6, "Configuring Tape Drives," and on the mt(7) manpage.

Consult the *ioscan*(1M) manpage for further information about this tool.

Configuring HP-UX for any Peripheral (A Summary)

Prepare by gathering information required for the successful configuration of the peripheral. Considerations vary and are discussed in each peripheral-specific chapter. For example:

- Have you prepared the physical location for the peripheral device?
- To what interface are you connecting the peripheral?
- What device drivers are required by the peripheral device?

In virtually all cases, the System Administration Manager (SAM) provides the simplest interface for configuring HP-UX for any standard peripheral device. If you must use the command line interface instead of SAM, the following procedure will familiarize you with the task.

1. Determine the device drivers needed for your peripheral device and interface by consulting the tables in the chapter devoted to that class of peripheral device. If any necessary device driver is absent from the kernel, you will need to rebuild the kernel to include it.

Here is how to rebuild the kernel:

a. Change directory to the build environment (/stand/build). There, execute a system preparation script, system_prep. system_prep writes a system file based on your current kernel in the current directory. (That is, it creates /stand/build/system.) The -v provides verbose explanation as the script executes.

```
cd /stand/build
/usr/lbin/sysadm/system_prep -v -s system
```

- b. Edit the /stand/build/system file to add the absent driver(s).
- c. Build the kernel by invoking the mk_kernel command. This creates /stand/build/vmunix test, a kernel ready for testing.

```
/usr/sbin/mk_kernel -s system
```

d. Save the old system file and kernel by moving them. Thus, if anything goes wrong, you still have a bootable kernel.

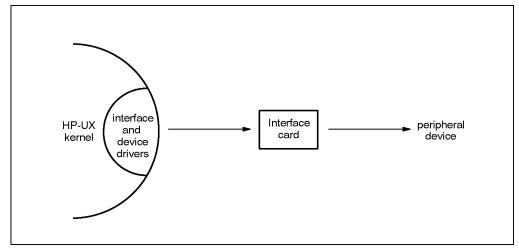
```
mv /stand/system /stand/system.prev
mv /stand/vmunix /stand/vmunix.prev
```

e. Move the new system file and new kernel into place, ready to be used when you reboot the system.

```
mv /stand/build/system /stand/system
mv /stand/build/vmunix_test /stand/vmunix
```

- 2. Notify users that the system must be rebooted.
- 3. Shut down and halt the system using the /usr/sbin/shutdown -h command.
 - a. When HALTED, you may cycle power appears on the screen, turn off the computer and unplug the power cord. This is recommended for all devices; for SCSI devices and interface cards, it is *required*.

Configuring HP-UX for any Peripheral (A Summary)


- b. Install the peripheral device, following directions in the supplied hardware documentation.
- c. Power on the peripheral devices and wait for them to signal ready; *then* power on the computer system, which will cause your system to reboot. As HP-UX reboots, it will create the device special files required by the new peripheral device in the appropriate /dev directories.
- 4. Verify the configuration by invoking the ioscan command, as discussed earlier in this chapter.

2 Configuring Interface Cards

Configuring an interface card or device adapter may provide new connectivity to external devices or instruments. For this to occur, the interface driver for the card must be present in the kernel. When the system is booted, HP-UX associates the driver (software module) with the card (hardware path) to provide communication for the external device or instrument.

Chapter 2 27

Figure 2-1 Role of Drivers in Configuring Interface Cards and Peripheral Devices

This chapter gives guidelines and configuration procedures for each type of HP interface card. If you are configuring an EISA or ISA card, also consult Appendix A, EISA Board Configuration. If you are configuring a custom SIO-style driver, consult Appendix C, Major and Minor Numbers.

Planning to Configure an Interface Card

- **Read the instructions** to be sure you understand them before proceeding. Have available the documentation supplied with the interface card.
- **Observe anti-static precautions** when handling interface cards. Interface cards and device adapters are susceptible to damage by electrostatic discharge, which can result in degraded performance or loss of operation.
 - Keep the card in or on its anti-static packaging until you install it, or use a static-free workstation, HP part number 9300-0933.
 - Use a grounding wrist strap when handling the interface card.
 - Handle the card only by its non-connector edges, faceplate (bulkhead), or extractor levers.
 - If necessary, store interface cards and device adapters in their original shipping containers or equivalent anti-static packaging. The storage area should be clean, dry, and free of corrosive elements.
- Create a detailed record of your configuration.
 - Use a worksheet in the back of this book to record the data provided on the stickers attached to the card. If problems arise, the codes provide service engineers with manufacturing version. The following information typically appears on the stickers:
 - Part number
 - Version and date, encoded in a five-digit alphanumeric string
 - Serial number, encoded in a ten-digit alphanumeric string
 - Other production identification information.
 - Record the firmware revision of the interface card.
 - Record the link level address for the processor. It comes with the shipping. The /usr/sbin/lanadmin command reports back the station address.
 - Record any dip switches or address settings you make on any cards or external devices.
 - Keep a current copy of output from /usr/sbin/ioscan -f, for a total picture of your system's configuration, including use of hardware slots and configured device drivers.

NOTE

The HP Precision Bus (HP-PB) backplane is a slot-priority based system. The higher the slot number in which a card is installed, the higher the card's priority for gaining access to and communicating over the backplane. Thus, a card installed at slot 10 has a higher priority than a card at slot 1.

 Observe HP recommendations regarding hardware limitations and requirements.

Chapter 2 29

Planning to Configure an Interface Card

- Do not exceed recommended cabling lengths or maximum number of peripheral devices connected to an interface card. Note, these limitations vary widely depending on bus traffic, kind of I/O, and system. For explicit information, consult "Maximum Configurations" or other HP-published configuration guidelines.
- Take care that total power consumption of all voltages does not exceed card-cage limitations.
- Terminate SCSI devices as required. (See "SCSI Signal Termination", later in this chapter, for explanation of SCSI terminators.)
- If desired, install application software before physically installing the card. Use the command /usr/sbin/swinstall and then reboot the system.
- **Warn users in advance** that you plan to bring the system down for installation. On a multiuser system, you can use the *wall*(1M) command.
- Do not connect or disconnect a device while the system is running. Do not turn power on or off to a mass storage device connected to a powered-up system. Doing so could result in data corruption or a system panic.

Maximum Configurations

Depending on interface, multiple peripheral devices can be connected to any interface card. However, because maximum device connections are device- and platform-dependent, the following information represents basic guidelines *only*. For detailed information, contact an HP Customer Engineer or field office, which should have access to recent information published in the HP 9000 configuration and price guides.

Table 2-1 Maximum Recommended Device Connections by Interface

Type of Interface	Maximum Devices per Card	Maximum Cabling
HP-IB	Varies ^a	20m
SCSI (Single-Ended)	7	6m ^b
SCSI (Differential)	7	25m ^b
SCSI (Fast-Wide)	15	25m ^b
HP-FL	8	(see note) ^c

- a. Depending on type of peripheral device. HP-IB electrical specification permits up to 14 devices connected simultaneously. Devices requiring parallel polling protocol require use of addresses 0-7 only. Instruments can use addresses 0-29.
- b. Including internal cable length
- c. P-bus electrical cables limit intra-device distances; a maximum of 500m fiber-optic cable can connect devices to the server.

Chapter 2 31

Selecting Device Drivers for Your Interface Cards

The following sections describe each interface and their connectivity to peripherals.

Asynchronous Data Communication Configuration Guidelines

HP-UX multiplexers provide asynchronous data communication using protocols RS-232-C, RS-422, or RS-423 (depending on the card). All HP-UX computers are equipped with RS-232-C serial ports. Additional serial cards increase the number of connections possible between the SPU and terminals, modems, printers, and uninterruptable power system (UPS). Table 2-2 summarizes the scope of HP cards, architecture, and drivers available. It also identifies the distribution panels available for each serial card.

 Table 2-2
 Multiplexer Connectivity Configuration Requirements

Card	Ports, Protocol	Architecture	Device Drivers	Available Distribution Panels
(internal)	2-port MUX RS-232-C	Series 700	asio0	none
98190A	16-port MUX RS-232-C	Series 800 CIO	mux0 ^a	ADP 5062-3070
28639-50001	2-port MUX ^b	Models 890, T500	mux4 ^c	none
40299B	8-port MUX RS-232-C or RS-422 $^{\rm d}$	Series 800 HP-PB	mux2 e	ADP 5062-3070 ADP422 5062-3085
J2092A	16-port RS-232-C ^f	НР-РВ	mux2 ^e	DDP 5062-3066 DDP 5181-2085 RJ45 0950-2431
J2093A	32-port MUX RS423 or RS422 $^{\mathrm{g}}$	НР-РВ	mux2 ^e	DDP 5062-3066 DDP 5181-2085 RJ45 0950-2431
J2094A	16-port MUX RS-232-C ^h	HP-PB	mux2 ^e	MDP 5062-3054
J2096A	32-port MUX RS-232-C ^f	НР-РВ	mux2 ^e	DDP 5062-3066 DDP 5181-2085 RJ45 0950-2431
A1703-60003	2-port MUX ⁱ	Series 800 Models F/G/H/I	mux4 ^c	none
A1703-60022	16-port MUX ^j	Series 800 Models E/F/G/H/I	mux2 ^e	MDP 5062-3054 DDP 5062-3066 DDP 5181-2085

a. Specifying mux0 causes cio_ca0, sio, pfail, and pa to be included in the kernel.

b. The two ports can be used for console and remote console only; card also includes access port (AP).

- c. Specifying mux4 causes lanmux0, lantty0, sio, pfail, and pa to be included in the kernel.
- d. Card also includes console and access port (AP)
- e. Specifying mux2 causes sio, pfail, and pa to be included in the kernel.
- f. Peripheral devices must be local (up to 15m distance); does not support modem signals.
- g. up to 1200m.
- h. Peripherals may be connected locally (up to 15m) using data and modem signals, or remotely using asynchronous modems.
- i. Personality card also includes AP, SCSI, LAN. The two ports of this card can be used for console and remote console only.
- j. Personality card also includes AP, SCSI, parallel.

Distribution Panels for Asynchronous Connectivity

Distribution panels (DDPs, ADP/MDPs) can be used to expand the connectivity between serial interface card and peripheral device. Data communications and terminal controllers (DTCs) provide additional serial connectivity for local or remote devices directly to the LAN. These mechanisms are illustrated in Figure 2-2.

Figure 2-2 Serial Connectivity via Distribution Panels or DTC



Table 2-3 summarizes the distribution panels and their capabilities. All distribution panels listed provide connectivity for terminals, printers, and plotters. Those with full duplex modem control provide connectivity for modems also.

Chapter 2 33

Table 2-3 Distribution Panels

Model	Type of Distribution Panel	Compatible Protocols	Complexity	No.Por ts, Conne ctors	Form Factor	Duplex Modem Control
0950-2431	Direct (DDP)	RS-232-C ^a RS-423 ^b	pass-through	16 RJ45	19in. rack- mount	no
5062-3054	Modem (MDP) ^c	RS-232-C ^a	added logic	8 DB25 female	10.25 x 4.25in.	yes
5062-3070	Active (ADP)	RS-232-C ^a	added logic	8 DB25 female	10.25 x 4.25in.	yes
5062-3085	Active (ADP)	RS-422 ^b	added logic	8 DB25 female	10.25 x 4.25in.	yes
5181-2085	Direct (DDP)	RS-232-C ^a RS-423 ^b	pass-through	8 DB25 female	19in. rack-mount	no
28659-60005	Modem ^d	RS-232-C ^a	added logic	6 DB25 female	8.5 x 4in.	yes

- a. 3 pins: transmit, receive, ground.
- b. 4 pins: transmit, transmit ground, receive, receive ground
- c. formerly ADP II
- d. Used on CIO-based systems only.

Data Communication and Terminal Controllers (DTC)

Data communication and terminal controllers (DTCs) are stand-alone boxes that connect to the LAN to provide additional serial connections for local or remote devices. Unlike serial interface cards, which communicate directly with the core operating system, DTCs use Telnet-TCP/IP protocols to communicate with the peripheral devices. Therefore DTCs provide most, but not all, the same functionality. Two types of DTCs are available:

- DTC 16TN/MX telnet terminal server (J2060A/J2063A), providing direct connection for LAN, diagnostics, and up to 16 serial-connected peripherals.
- DTC 72MX communications server (J2070A), providing LAN, telnet access, X.25 access, and connection for up to 72 serial-connected peripherals via an asynchronous processor board.

DTCs must be configured by one of two DTC software products, HP OpenView DTC Manager (HP part number D2355A) and HP DTC Manager/UX (HP part number J2120A), both of which can be used with HP-UX systems. Consult your HP Sales Representative for full information.

RS-232-C Cabling Guidelines

For cabling purposes, serial devices may be thought of as Data Communications Equipment (DCE) or Data Terminal Equipment (DTE). Historically, DCEs were modems, and DTEs were whatever terminated the data path, typically a terminal at one end, and computer at the other. When transmitting remotely, the circuit may be shown diagramically as follows, with the active pins listed in Table 2-4.

Computer[DTE]-{ DCE~~phone lines~~DCE }-[DTE] terminal

Table 2-4 DCE and DTE Pin Assignments

	DCE pins	DTE pins
Transmit ^a	3	2
Receive	2	3
Monitor	4,20	5,6,8,22
Assert	5,6,8,22	4,20
Ground	7	7

a. For simple serial I/O, only transmit, receive, and ground are required.

Table 2-5 provides a quick reference to RS-232-C cabling between serial devices and an HP-UX system. Neither RS-422 nor direct CPU-to-CPU connections are tabulated.

Chapter 2 35

Table 2-5 RS-232-C Interconnections

Host Computer Connection ^a	Device Connection	Cable Suggested
DTE-4F	DCE-25F	Not recommended for DCEs. Use 92219T + 17255=D.
DTE-4F	DTE-25F	92219T
DTE-4F	DTE-25M	92219T + 92224F adapter
DTE-9F	DCE-25F	92221M, or 98561-61604 + 40242M
DTE-9F	DTE-25F	92221P, or 98561-61604 + 40242G
DTE-9F	DTE-25M	98561-61604 + 40242C
DTE-9M	DCE-25F	24542M, or 98574-61606 + 92221M, or 98574-61606 + 98561-61604 + 40242M
DTE-9M	DTE-25F	24542G, or 98574-61606 + 92221P, or 98574-61606 + 98561-61604 + 40242G
DTE-9M	DTE-25M	24542H, or 98574-61606 + 98561-61604 + 40242C
DCE-25F	DCE-25F	40242G
DCE-25F	DTE-25F	40242M or 92224M adapter, if cables present
DCE-25F	DTE-25M	40242C or connect directly, if cables present
DCE-25F	DCE-25F	92219Q
DTE-25F	DCE-25F	40242M, or 92224M adapter, if cables present
DTE-25F	DTE-25F	40242G
DTE-25F	DTE-25M	17255D
DTE-50F	DCE-25F	5061-4215
DTE-50F	DTE-25F	5061-4216 + 92224M
DTE-50F	DTE-25M	5061-4216

a. F denotes female receptacle; M, male plug. 4 denotes USOC RJ-11C connector (as on contemporary consumer telephones), 9 denotes 9-pin DB-0 subminiature D-style connector, 25 denotes 25-pin DB-25 subminiature D-style connector, 50 denotes 50-pin amp "blue ribbon" D-style connector.

Centronics (Parallel) Configuration Guidelines

The centronics (parallel) interface allows characters to transfer over multiple data lines, one bit per line. This results in faster speed than serial transmission and is preferred for configuring printers, plotters, and scanners.

On Series 700 workstations, the centronics (parallel) interface is provided as a standard feature; Series 800 systems may have a parallel interface on the multi-functional I/O card (personality card) supplied standard with the computer or on an optional SCSI/Centronics interface card. Centronics is not supported on Series 800 CIO systems.

Table 2-6 Centronics Configuration Requirements

Architecture	Interface card	Interface Driver	
Series 700 Core I/O	(internal)	CentIf ^a	
Series 800 HP-PB	28655A	lpr0	

a. Specifying CentIf causes ChrDrv to be included in the kernel.

EISA Configuration Guidelines

When configuring an interface card to the EISA bus, the eisa device driver must be present in the kernel, that is, it must be listed in /stand/system.

Because EISA is a set of services used by other interfaces, configuring EISA cards is done differently than for other HP-UX interfaces. Refer to Appendix A, "EISA Configuration," for detailed information on configuring EISA cards and using the /sbin/eisa_config utility.

Swapping to an EISA Device

If you are adding a device to your system that you plan to use as a primary swap device, and the device will be connected to an EISA card, you *must* perform the task in the following order:

- 1. Shut down the system without changing the kernel (still swapping to the original swap device).
- 2. Add the EISA card and connect the new device.
- 3. Boot the system, which is still swapping to the original swap device.
- 4. Configure the kernel to swap to the new EISA device.
- 5. Reboot the system.
- 6. If the new swap device is connected to an EISA card, it will be configured automatically by /sbin/eisa_config. If the new card creates a resource conflict with EISA cards already configured, you must run eisa_config manually to resolve the conflict. If the new swap device is connected to an ISA card, you must run eisa_config manually to configure the new swap device.

Graphics Card Configuration Guidelines

The following table shows the driver and device special files used by graphics cards and subsystems.

Table 2-7 Graphics Card Configuration Requirements

Architecture	Required Drivers	Default Device Special Files
Series 700 all models Series 800 Models 8x9	graph3 ^a	/dev/crt /dev/crt0 /dev/crt1 /dev/crt2 /dev/crt3 /dev/ocrt /dev/ocrt0 /dev/ocrt1 /dev/ocrt2 /dev/ocrt3

a. Specifying graph3 causes wsio, ite, and framebuf to be included in the kernel.

During system bootup, ioinit creates the default device special files shown in this table when it encounters the framebuf driver.

If for any reason these device files are insufficient for your purposes, you can create new ones using mknod. As shown in /usr/conf/master.d/core-hpux, the major number for framebuf (the driver that provides the additional graphics capability) is 174. A character (raw) device special file is required. Use the bit assignments shown for graph3 interface driver in Table C-5 in Appendix C of this manual.

Graphics capabilities can be enhanced by installation of any of a growing family of cards and subsystems. Table 2-8 is intended only to give a rough idea of the possibilities available on HP workstations. Consult your HP Sales Representative for information targeted to your specific needs.

 Table 2-8
 Graphics Enhancement Capabilities

Product	Compatibility	Provision
98768A CRX subsystem	Series 700	Upgrades to CRX color graphics
90700A CITA Subsystem	Series 700	workstation
A1439 24-bit Z Buffer and Graphics Accelerator card	Models 720, 730, 735, 750 or 755	Converts CRX-24 workstation to a CRX-24Z configuration.
A2269A Dual CRX Graphics card	Models 720, 730, 735, 750, 755.	Upgrades Model 750 or 755 from dual CRX workstation to a quad-CRX (four-monitor) configuration; provides connectivity for two graphics displays on a single card.
A2270A/A2271A/A2272A	Models 720, 730, 735, 750, 755	Upgrades Model 750 or 755 CRX-24 to a dual CRX-24 (two-monitor) configuration. Upgrades Models 720, 730, 735, 750, or 755 to CRX-24 workstations. A2272A upgrades a Series 700 PVRX workstation to CRX-24 configuration.
A2666A CRX-48Z subsystem	Models 735 or 755	Upgrades from CRX-24Z to CRX-48Z configuration.
A2667A CRX-48Z subsystem	Model 735 or 755	Upgrades PVRX to CRX-48Z configuration.
A2673A CRX-24 subsystem	Model 715 or 725 EISA	Upgrades to CRX-24 configuration.
A2674A 24-bit Z Buffer and Graphics Accelerator	Model 715 or 725	Upgrades a color workstation to a CRX-24Z configuration.
A2675A CRX-48Z subsystem	Model 715/50 or 725 EISA	Upgrades to CRX-48Z configuration.
Z1100A VideoLive card	Series 700 EISA	Provides live video output.
A4070A HyperCRX8 Graphics Adapter	Series 700 GSE bus	Provides double buffered 8-bit plane graphics with 8 overlay planes, color recovery
A4071A HCRX24 Graphics Adapter	Series 700	Provides 24-bit plane color with 8 overlay planes.
A4072A 3D accelerator	Series 700	Accelerates HyperCRX series graphics adapters.
A4073A GSIC	Model 715/100	Allows CRX-48Z upgrade/use.

Graphics Cable Extensions

The following extensions are available for placing the CRT a distance away from the SPU:

46082A/B RGB extension 46080/81A HIL extension

1250-1287 Use three of these connectors to extend RGB cable for a Model 712.

There is no PS/2 keyboard or mouse extension available for the Model 712.

Maintaining the Accuracy of Customized Graphics Configurations

Any time you modify your graphics configuration, be sure to update the configuration files used by your application programs.

For example, if you are adding a CRX24 (or CRX48) and using it as a console, you must

- 1. Note the hardware path in which you insert the card.
- 2. Identify the device special file for the CRX24. By default, the minor number of the console device special file is 0×0000000 .
- 3. Make sure the files in the /etc/X11 directory refer to the correct device special file for the console.
- 4. Change the console path in BOOT_ADMIN to match the hardware path into which you insert the card. For example,

```
BOOT_ADMIN> path console graphics2
```

You can display the correlation between the PDC names and hardware paths by using the info query at the BOOT_ADMIN prompt.

HP-FL Configuration Guidelines

The HP-FL interface, based on fiber-optic technology, is used where radio-frequency interference poses problems or for high security since communication between the SPU and disks transmit without radiated signals. HP-FL is suited to large-disk configurations, particularly when the SPU is distant from the source of data.

HP-FL is not supported on Series 700 computers.

Table 2-9 HP-FL Interface Cards and Configuration Requirements

Architecture	Interface Card	Interface Driver
Series 800 CIO	A27111A	disc2ª
ChannelSpan Series 800 CIO emulation on HP-PB ^b	A1749A	disc2ª
Series 800 HP-PB ^b	28615A	disc4 ^c

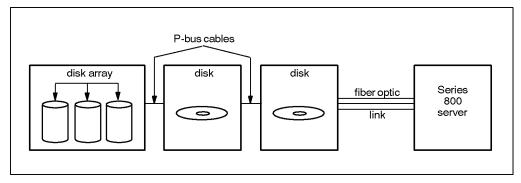
- a. Specifying disc2 causes hpfl0, cio_ca0, sio, pfail, and pa to be included in the kernel.
- b. HP-FL is not supported on F10, F20, F30, 807, 817, and 837 business servers.
- c. Specifying disc4 causes disc3, hpfl1, and target to be included in the kernel.

HP-FL Cables and Accessories

Peripheral devices (such as disks) connect to the HP-FL interface port via fiber-optic link (up to 500 meters). The HP-FL peripheral devices themselves are daisy-chained to one another using electrical PBus cables. This is shown in Figure 2-3.

Fiber-optic cable can be ordered from Hewlett-Packard to custom length; specify HFBR-AWSxxx, where xxx is the length in increments of one meter from 001 to 500 meters.

HP 1005-0078 30-meter fiber-optic cable with 905-type SMA connectors.


HP 5061-3151 PBus terminators (2 per package).

HP 5061-3174 PBus electrical cable.

NOTE

Do not bend, twist, or lay objects on fiber-optic cable. Protect the cable from foot traffic and sharp objects. Do not stress or damage the cable during or after installation.

Figure 2-3 HP Fiber-Optic Connectivity

HP-IB Configuration Guidelines

The Hewlett-Packard Interface Bus (IEEE Standard 488-1980) provides connectivity for up to four peripherals on the same card, including disks, cartridge tape subsystems, magnetic tape units, plotters, and printers.

Table 2-10 HP-IB Configuration Requirements

Architecture	Interface Card	Interface Drivers
Series 700 EISA	25560A	hshpib ^a
Series 800 CIO	27110B	hpib0 ^b
Series 800 HP-PB	28650A/B ^c	hpib1 ^d

- a. Specifying hshpib causes eisa, eeprom, wsio, and core to be included in the kernel.
- b. Specifying hpib0 causes cio_ca0, sio, pfail, and pa to be included in the kernel.
- c. HP 28650A is used in Models 808, 815, and 8*x*2; HP 28650B is used in other HP-PB systems. Neither card supports printers.
- d. Specifying hpib1 causes sio, pfail, and pa to be included in the kernel.

Instrumentation Access to HP-IB

Two Series 700 EISA HP-IB cards, E2070A and E2071B, are available for instruments. Both use drivers that are packaged as part of the Standard Instrument Control Library (SICL) and a graphical processing environment (VEE-TEST). See your HP Sales Representative for information on these products.

For Series 800 HP-IB cards only, you can access the entire card and all activity on the HP-IB bus by including the <code>instr0</code> driver in your kernel. For example, you can set medium or fast signal transmission on the HP-IB bus using the <code>instr0</code> driver. (Disks and tape drives require high-speed signal transmission, while printers and plotters require medium speed.) For specification of the I/O controls, consult the hpib(7) manpage of the HP-UX Reference.

HP-IB Cabling

An HP-IB device can be cabled directly to its port on the back of the computer, or to other HP-IB devices only in a daisy-chained arrangement. HP-IB cable is available in the following lengths:

- HP 10833A 1.0 meter
- HP 10833B 2.0 meter
- HP 10833C 4.0 meter
- HP 10833D 0.5 meter

Cabling of medium-speed devices is limited to two meters per device or 20 meters total, whichever is less.

Cabling of high-speed devices is limited to one meter per device or 10 meters total, whichever is less.

Transmission distance between an HP-IB interface and peripheral devices can be extended to a maximum of 1.25km using the HP 37204A Multipoint HP-IB extender with coaxial or fiber-optic cable. Consult your HP Sales Representative for information.

Changing HP-IB Address Switch Settings

- 1. *First* shut down and halt the system using /usr/sbin/shutdown -h; turn off the computer and its battery backup (if equipped) and unplug its power cord.
- 2. *Then* turn off the peripheral device.
- 3. Change the switch settings on the device.
- 4. Turn on the device.
- 5. Turn on your system.

Networking Configuration Guidelines

HP Series 700 and 800 systems shipped with LAN ports on the personality (multi-functional) or core I/O boards provide network access through AUI LAN, ThinLAN, or EtherTwist. (Note, the two ports on the standard LAN personality card are mutually exclusive; you can use either, but not both ports simultaneously.)

Additional networking options are available for HP-UX systems. Table 2-11 summarizes their initial configuration requirements.

All network products require a layered set of software — links, transports, and services — whose details fall beyond the scope of this book. Consult networking documentation for further information.

Table 2-11 Network Interfaces and initial Configuration Requirements

Card	Supported Models	Bus Architecture	Drivers
25567B LAN/9000	Series 700	EISA	lan2
28640 LAN/9000	Series 800	НР-РВ	lan3
36960A X.25Link	Series 800	НР-РВ	pdn0 x25ip x25pa
36967A LANLink	Series 800	CIO	cio_ca0 lan0
A2544A Apollo TokenRing	Models 730, 750	EISA	token1
J2104A, J2109A HP ISDN Link	Series 700	EISA	isdnnetd isdnx25 isdn isdnsn
J2069A HP HIPPI Link	Series 700	EISA	hippi
J2146A LANLink	Series 800	HP-PB	lan3
J2156A FDDI/9000	Series 700	EISA	fddi
J2157A FDDI	Series 800	НР-РВ	fddi

Table 2-11 Network Interfaces and initial Configuration Requirements

Card	Supported Models	Bus Architecture	Drivers
J2159A X.25/9000	Series 700	EISA	pdn0
A.25/9000			x25ip
			x25pa
J2165A HP TokenRing 9000	Series 700	EISA	token1
J2166A HP TokenRing 9000	Series 800	НР-РВ	token2
J2220A SNAplus Link	Series 800	НР-РВ	psi0 sna_router sna_trace sna_access sna_NODE sna_SDLC sna_QLLC sna_LAN
J2226A SNAplus Link	Series 700	EISA	psil sna_router sna_trace sna_access sna_NODE sna_SDLC sna_QLLC sna_LAN

SCSI Configuration Guidelines

Small Computer System Interface (SCSI) is an ANSI standard for connecting computers and peripheral devices. HP Series 700 and 800 computers support three implementations of SCSI-2, as shown in Table 2-12.

Table 2-12 Types of SCSI and Characteristics

SCSI Type	SCSI Single-Ended	SCSI Differential	SCSI Fast/Wide
Bus Support	Series 700: Core I/O, EISA Series 800: CIO, HP-PB	Series 700: Core I/O, EISA	Series 700: Models 735, 755 Series 800: HP-PB, 890, T500
Line Out	Single line (plus ground) per 8 bits	Two lines (plus ground) per 8 bits; less susceptible to spikes; faster data transmission.	Same as Differential
Bus Width	8 bits	8 bits	16 bits (can run 8 bits)

Table 2-13 lists HP SCSI cards, the architecture on which they are supported, and the configuration requirements of the cards and attached SCSI devices.

Table 2-13 SCSI Configuration Requirements

Architecture	Interface Card (SCSI Type)	Interface Driver
Series 700 EISA	25525A/B (Differential)	sctl ^a
Series 800 CIO	27147A (Single-Ended)	scsi2 ^b
Series 800 HP-PB	28655A (Single-Ended)	scsi1 ^c
Series 800 HP-PB	28696A (Fast/Wide)	scsi3 ^c

- a. Specifying sctl causes c700, c720, wsio, core, eisa, and eeprom to be included in the kernel.
- b. Specifying scsi2 causes cio_ca0, sio, pfail, and pa to be included in the kernel.
- c. Specifying scsil or scsil causes sio, pfail, and pa to be included in the kernel.

SCSI Addressing

Up to seven single-ended SCSI or fifteen fast-wide SCSI devices can be configured to a single SCSI device adapter. Each device requires a unique bus address.

- For single-ended SCSI, addresses range from 7 to 0 with 7 (highest priority) reserved for the adapter itself and 0 being the lowest priority.
- For fast-wide SCSI, addresses range from 7 to 0 with 7 (highest priority) reserved for the adapter itself and 14 to 8 (lowest priority).

Although most peripheral devices require only one address, the Optical Disk Library System (HP C17xxA) uses three SCSI addresses (two for the magnet-optical drives and one for the autochanger picker).

SCSI Cabling

Multiple SCSI peripheral devices can be connected to a single SCSI interface using a daisy-chain configuration. The final SCSI device in the daisy chain requires the proper terminator, discussed later in "SCSI Signal Termination."

NOTE

The SCSI bus should be kept as short as possible. Total cable length for *single-ended* SCSI must *not* exceed six meters. Total cable length for *fast/wide* SCSI must *not* exceed 25 meters. These limitations include both internal and external cables, Refer to the documentation that came with your device for internal cable lengths.

Table 2-14 SCSI Cables

Product Number	Length	Connectivity Description
Adapter-to-	Peripheral S	CSI Cables
K2296 ^a	1.0 m	High-density (HD) screw to low-density (LD) bail-lock male-male
K2297 ^a	1.5 m	HD screw to LD bail-lock male-male
Peripheral-t	to-Periphera	l SCSI Cables
92222A	0.5 m	LD bail-lock male-male
92222B	1.0 m	LD bail-lock male-male
92222C	2.0 m	LD bail-lock male-male
SCSI Exten	der Cables	
92222D	1.0 m	LD male-female
C2900A	3.0 m	LD bail-lock male-female ^b
C2901A	5.0 m	LD bail-lock male-female ^b
C2902A	10.0 m	LD bail-lock male-female ^b
C2903A	20.0 m	LD bail-lock male-female ^b
C2906A	2.0 m	LD male-male ^c

- a. This is a replacement number for the SCSI cable included with the host adapter.
- b. Recommended for use with HP EISA cards.
- c. SCSI-II (50-pin) to SCSI-III (68-pin) cable, to connect Series 700 workstations to C2425J/JK, C2427J/JK.

Cabling options can be ordered for the HP fast/wide/differential host adapter (HP 28696A) to extend standard cabling and for SwitchOver configurations (V-cables, male-male to daisy-chain multiple hosts). Table 2-15 show additional cables available to connect a Fast/Wide SCSI adapter-to-peripheral or peripheral-to-peripheral.

Table 2-15 Fast/Wide SCSI Cables

Product Number	Length	Product Compatibility
C2911A	0.9 m	C2425JK, C2427JK, C3034T, C3035T, C3036T
C2924A	2.5 m	C3034T, C3035T, C3036T
C2925A	10.0 m	C3034T, C3035T, C3036T
C2926A	20.0 m	C3034T, C3035T, C3036T

The HP 28643A SCSI Fiber-Optic Extender overcomes SCSI distance limitation to a maximum of 100 meters. Note, however, this device is single-ended SCSI and is recommended for printers, optical libraries, and magnetic tape drives only. It is not supported for SwitchOver configurations.

SCSI cable impedance and construction have a significant impact on signal quality; use only HP cables.

Calculating SCSI Cable Length

Table 2-16 demonstrates how to calculate SCSI bus cable lengths for a typical installation. $\,$

Table 2-16 Example of SCSI Cable Length Calculation

Starting Point Device	Cable to Next Device		Internal Cable	Cumulat iveCable Length
SCSI host adapter	5062-33 83	1.0m	0.1m	1.1m
HP device #1	92222A	0.5m	0.2m	1.8m
HP device #2	92222A	0.5m	0.4m	2.7m
HP device #3	92222A	0.5m	0.3m	3.5m
HP device #4	none		0.4m	3.9m
Total				3.9m

All devices must be connected to a common (single point) system reference ground. The system ground must be isolated from other electrical devices such as copying machines, arc welders and air conditioners. Cables supplied by HP have correct grounding.

SCSI Signal Termination

Make sure there are no unterminated cables (that is, that all cables are attached to a device at both ends).

Because a closed loop is required by the SCSI bus for successful signal transmission, the last SCSI device in the chain must have a terminator installed on its second connector. The terminator is (or acts as) a small resistor that provides matching impedance on the bus circuit. Without such termination, data traveling on the bus is likely to be corrupted and the protocol upset to the point that it hangs the bus.

Some devices (particularly host adapters) contain internal SCSI bus terminators or require special terminators. If two devices supply termination power, locate them at each end of the SCSI bus. Refer to the specific hardware manuals of host adapters and the devices on the bus for instructions on how to prevent excessive or improper SCSI bus termination.

CAUTION

Only the two ends of a SCSI bus should be terminated. Excessive or improper termination overloads the SCSI port's termination power (TERMPWR) circuitry. This can result in blowing the TERMPWR fuse on the adapter, or damaging transceivers on any attached device, including the adapter.

All HP SCSI products are shipped with appropriate terminators. Table 2-17 might be helpful if you need to order additional termination.

Table 2-17 SCSI Terminators

Part Number	Kind of Terminator	No. Pins	Application
C2904A	high-density w/ thumb screw	50	Active SCSI-II
C2905A	high-density w/ thumb screw	68	Active SCSI-III
K2290	low-density w/ thumb screw	50	Passive SCSI-II
K2291	low-density w/ bail connector (wide mouth)	50	Passive SCSI-II

SCSI Parity

All devices on a SCSI bus must be consistent in parity-checking capability. If any device on the SCSI bus does not generate parity, all devices on the bus, including the adapter, must not check parity. (Although parity-checking is selectable, the adapter always generates parity.)

If a SCSI device cannot match the parity-checking capability of other devices on the bus, it must be installed on a separate SCSI bus.

Changing the Bus Address of a SCSI Device

- 1. Shut down and halt the system using the /usr/sbin/shutdown -h command. On systems with powerfail mode, be sure to also turn off the battery backup.
- 2. TURN OFF the computer and unplug the power cord.
- 3. Turn off the device.
- 4. Change the bus ID on the device.
- 5. Turn on the device.
 - Power on all SCSI peripherals and allow them to complete their selftest before powering on the SPU (System Processor Unit).
- 6. Turn on your system.

Use of non-Hewlett-Packard peripherals is not supported by Hewlett-Packard's standard support process.

Configuring an Interface Card

1. Determine the interface driver needed for your interface card by consulting the tables in "Selecting Device Drivers for Your Interface Cards".

Look at your /stand/system file to see if the required driver is present. (If you are also adding an external device such as a printer, consult the tables in the appropriate chapter and look for the presence of those drivers in /stand/system also.)

If any necessary driver is absent, you will need to rebuild the kernel to include it.

a. Change directory to the build environment (/stand/build). There, execute a system preparation script, system_prep. system_prep writes a system file based on your current kernel in the current directory. (That is, it creates /stand/build/system.) The -v provides verbose explanation as the script executes.

```
cd /stand/build
/usr/lbin/sysadm/system_prep -v -s system
```

- b. Edit the /stand/build/system file to add the absent driver(s).
- c. Build the kernel by invoking the mk_kernel command. This creates /stand/build/vmunix_test, a kernel ready for testing.

```
/usr/sbin/mk_kernel -s system
```

d. Save the old system file and kernel by moving them. Thus, if anything goes wrong, you still have a bootable kernel.

```
mv /stand/build/system /stand/system.prev
mv /stand/build/vmunix_test /stand/vmunix.prev
```

e. Move the new system file and new kernel into place, ready to be used when you reboot the system.

```
mv /stand/build/system /stand/system
mv /stand/build/vmunix_test /stand/vmunix
```

- 2. Notify users that the system will be shut down to configure the new interface card and any related peripheral device. You can use the wall command and/or the interactive capabilities of the shutdown command to broadcast a message to users before the system goes down. See wall(1M) or shutdown(1M) in the HP-UX Reference.
- 3. Bring the system to a halt, using the shutdown command.
- 4. Turn off the power to all peripheral devices and *then* to the SPU. On systems with powerfail mode, turn off the battery back-up also. Unplug the power cords.
- 5. Select an appropriate slot in the I/O card cage and install the interface card, following instructions provided with the card and computer hardware manual.
 - If you are also configuring a peripheral device to the card, install it at this time also. Use the cabling recommended in the hardware documentation.
- 6. Record all pertinent information about the installation and configuration on a worksheet at the back of this book. Keep accurate records of the interface (as shown on the ID stickers), slot number, power requirements, and bus address.

Configuring an Interface Card

- 7. Turn on the power to all peripheral devices. Wait for them to become "ready", *then* turn on power to the card cages and SPU.
 - On booting up, HP-UX detects the new interface and peripheral device and associates them with their device drivers. insf creates the device special files required to communicate with the devices.
- 8. Verify the configuration by invoking the ioscan command to confirm that the interface card (and any peripheral devices you configured) are present and device special files have been created.

In the following sample ioscan output, the LAN card installed in slot 14 of a Model 887 is displayed as hardware path 56 (slot number times 4).

For more information on using ioscan, consult Chapter 1, "Getting Started," and the *ioscan*(1M) manpage.

For Further Information on Interface Cards

For information on any device drivers, consult the Section 7 manpages in the *HP-UX Reference*, most of which deals with interfaces.

For further information on DTCs, consult the following manpages in the HP-UX Reference:

dp(4) Dedicated ports file, used by DDFA and DTC port ID

ddfa(7) DTC device file access software

Another useful resource for RS-232-C connectivity is the *Racking and Cabling Guide for DTCs*, HP part number 5961-0373.

For information on graphics configuration and use, consult the HP Starbase, X Windows, and RTAP/Plus documentation sets, as well as any other documentation pertinent to the application programs you are running.

Configuring Interface Cards

For Further Information on Interface Cards

3 Configuring Terminals and Modems

This chapter contains the procedures for configuring terminals and modems to serial (RS-232-C) ports.

For HP-UX to communicate with a terminal or modem, the following conditions must be met:

Chapter 3 59

- The serial device driver required to communicate with the device must be part of the kernel.
- The terminal or modem must be physically attached and configured to the port.
- A device special file must be created to communicate through the port.
- A *getty* process must be run against the (terminal) port to solicit logins.

For procedures on configuring terminals and modems attached to HP terminal controllers (DTCs) on the network, refer to the following resources:

- *Using the HP DTC Manager/UX* (part number J2120-62000), for managing terminals and modems from a host HP-UX system.
- *Using HP OpenView DTC Manager* (part number D2355-90001), for managing terminals and modems from a personal computer.
- documentation accompanying your third-party terminal server.

For procedures to configure X-terminals and modems attached to an X-terminal, see *HP VUE 3.0 User's Guide* (part number B1171-90061).

Planning to Configure a Terminal or Modem

Plan ahead before configuring a terminal or modem. Read the hardware documentation shipped with the peripheral device and understand what you need to do before getting started.

Planning to Configure a Port for a Terminal

Consider the following:

- Are you configuring the device directly to a serial (RS-232-C) port or to a terminal server through the LAN?
- Will other users be affected by the configuration? If so, notify them before you bring the system down.
- Observe HP recommendations concerning maximum recommended cabling distances and maximum number of terminals per interface.
- Decide whether you will be running uucp on the device.
- Invoke /usr/sbin/ioscan -f before beginning your configuration to figure out to
 which interface card or MUX you are adding the terminal or modem. Note which
 ports are already used. Attempt to distribute the peripherals among your cards, if
 possible.

HP systems are shipped so that you can use the HP console terminal immediately after plugging it into an SPU.

The simplest way to configure any HP terminal or a modem is to use the System Administration Manager (/usr/sbin/sam). SAM's self-explanatory menus and help system prompt you for all the software requirements, to ensure the terminal or modem is configured properly and with appropriate security settings. If SAM is not loaded on your system or if you prefer to use the command-line interface, the following procedure will guide you through the task. Familiarize yourself with the instructions before getting started.

Chapter 3 61

Planning to Configure a non-HP Terminal

NOTE

As of 10.0, HP provides limited support for non-HP terminals. Their configuration and limitations are discussed in the section, "Configuring a Non-HP Terminal as a Console", later in this chapter.

The following non-standard terminal emulations are provided for HP-UX:

- DEC VT100, VT320
- VT420 terminals in VT100 or VT320 modes
- Wyse 60
- HP terminal 700/60 in VT100, VT320, and Wyse 60 modes.

Note, the less expensive DEC and Wyse terminals lack certain capabilities standard to full-featured HP terminal firmware. See "Limitations to Non-HP Terminal Emulation" for information on the differences.

Planning to Configure a Port for a Modem

To add a modem to an HP system, you need to configure both the serial port for HP-UX to recognize the modem and the modem's protocol. Regardless of whether you configure using SAM (recommended) or HP-UX command-line interface, read the procedure and modem documentation beforehand.

Consider the following choices:

- The hardware path (including port number) of the serial interface to be used by the modem. You can identify potential ports by invoking /usr/sbin/ioscan -C tty or list /dev/ttyxp*, where x is the mux card instance and p* shows all existing ports.
- The modem's baud rate.
- Whether the modem will be used for outgoing calls.
- Whether the modem will receive incoming calls.
- Whether the modem requires CCITT (required *only* by certain European government protocols). For standard Hayes-compatible modems that use CCITT modulation and compression standards, do *not* use CCITT mode. See *modem*(7) for details of RS-232-C signaling characteristic of simple and CCITT modems.
- Whether you need to configure for UUCP connectivity.

You will need to create device special files with /usr/sbin/mksf specifically for modem use.

mksf provides options for CCITT for special European protocol requirements (most US customers should *not* use the CCITT option), -i option for a UUCP dialer (used with access mode 0), and hardware flow control (an alternative to XON/XOFF pacing). The mksf options for the asio0 device driver allows for incoming and outgoing hardware buffering.

An example of creating modem device special files is provided in "Additionally Configuring HP-UX for a Modem", later in this chapter.

See the mksf(1M), modem(7), and termio(7) manpages in the HP-UX Reference for bit values and use. Also review "Requirements for Modems to Work on HP-UX" to ensure proper functioning.

Chapter 3 63

Selecting Device Drivers for Terminals and Modems

Use Table 3-1 on the next page to identify the interface and device drivers required to configure a terminal or modem to a serial port.

For information on increasing the number of available serial ports, see Chapter 2, "Configuring Interface Cards."

Table 3-1 Serial Configurations for Terminals and Modems

Architecture a	Interface Cards	Drivers	Device Files (for terminals b)	H/W Flow Control ^c
Series 700	(internal)	asio0	/dev/mux# /dev/tty#p# ^d	Yes
Series 800 CIO	98190A 98196A	mux0 ^e	(same as above)	No
Series 800 HP-PB	40299B J2092A J2093A J2094A J2096A A1703-60022 ^f	mux2 ^g	(same as above)	40299B - No J2092A - No h J2093A - No J2094A - Yes J2096A - Noh A1703-60022 - Yes ⁱ
Series 800 HP-PB	A1703-60003 ^j 28639-60001 ^f	mux4 ^k	(same as above)	No

- a. The following terminals are supported for HP-UX: C1006A/G/W, C1007A/G/W, C1017A/G/W, C1064A/G/GX/W/WX, C1065A/G/W, C1080A/G/W, C1083W, C1084W, C1085W, VT100, VT320, WYSE60, 700/60, 700/96, 700/98. HP-UX supports numerous third-party modems.
- b. Device special files for modems are not created by default. See Table 3-7 for information on creating them using mksf
- c. See termio(7) and termiox(7) for information.
- d. mux# and tty#p# derive from ioscan output: The numeral after mux and tty is the card instance for the tty class of interface card to which the terminal is connected; the numeral after p is the port number of the serial interface.
- e. Specifying mux0 causes cio_ca0, sio, pfail, and pa to be included in the kernel.
- f. The A1703-60022 and 28639-60001 personality cards are used for console connection.
- g. Specifying mux2 causes sio, pfail, and pa to be included in the kernel.
- h. J2092A and J2096A do not support modems.
- i. Hard ware flow control is supported on the A1703-60022 for the first eight (of 16) ports only.
- j. Personality card used for console and remote console connection.
- k. Specifying mux4 causes lanmux0, lantty0, sio, pfail, and pa to be included in the kernel.

- 1. Determine which driver is required for the terminal or modem by consulting
- 2. Determine whether the driver is present in the kernel by invoking the command, /usr/sbin/ioscan -fn -C tty, from the system console or any login to the system using an active terminal.
 - If the necessary driver is present in the kernel (likely), the ioscan output of a Series 700 might resemble this:

/usr/sbin/ioscan -d asio0 -fn

Table 3-1.

Class	I	H/W Path	Driver	S/W State	H/W Type	Description
tty	0	2/0/4	asio0 /dev/tty0p0	CLAIMED	INTERFACE	Built-in RS-232-C
tty	1	2/0/5	asio0 /dev/tty1p0	CLAIMED	INTERFACE	Built-in RS-232-C

Similarly, the ioscan output of a Series 800 system might resemble this:

/usr/sbin/ioscan -d mux4 -fn Class I H/W Path Driver S/W State H/W Type Description tty 0 56/0 mux4 CLAIMED INTERFACE MUX /dev/diag/mux0 /dev/diag/tty0p0 /dev/tty0p0 /dev/diag/tty0p1 /dev/mux0 /dev/tty0p1

The -fn option caused ioscan to display the device special files created by insf. insf automatically creates device special files appropriate for terminals at each serial port. The sample device special file highlighted communicates with port 1 (p1) of the MUX card found at card instance 0 of tty class.

You can display the device file's characteristics by invoking /usr/sbin/lssf on the file. By comparing lssf and 11 output, you can see that bits 16 to 23 of the minor number (0x000100) correspond to the port number of 1. (See Appendix C for explanation of bit assignments.)

```
/usr/sbin/lssf /dev/tty0p1
mux4 card instance 0 port 1 hardwired at address 56/0 /dev/tty0p1

11 /dev/tty0p1
crw-rw-rw- 1 bin bin 178 0x000100 Mar 16 18:29 /dev/tty0p1
```

- If you are configuring a terminal without having to install an interface card, you can physically connect the terminal, as described in its owner's manual. Then, skip ahead to "Additionally Configuring HP-UX for a Terminal", the next section.
- If you are configuring a modem to an existing port, note the hardware address (or card instance number) and port number you will be using from the ioscan output. Then, skip ahead to "Additionally Configuring HP-UX for a Modem", later in this chapter.

Chapter 3 65

- If the necessary driver is not present in the kernel, you will need to rebuild the kernel to include the additional driver. (This might occur if you have to add hardware to configure additional terminals or if you are running a minimal kernel.)
- 3. To rebuild your kernel and include an additional driver, here is what to do:
 - a. Identify the needed driver by consulting the table in "Selecting Device Drivers for Terminals and Modems", earlier in this chapter.
 - b. Change directory to the build environment (/stand/build). There, execute a system preparation script, system_prep, which extracts the system file from the current kernel and writes a system file in your current directory. (That is, it creates /stand/build/system.) The -v provides verbose explanation as the script executes.

```
cd /stand/build
/usr/lbin/sysadm/system_prep -v -s system
```

- c. Edit the /stand/build/system file to add the absent driver(s).
- d. Build the kernel by invoking the mk_kernel command. This creates /stand/build/vmunix_test, a kernel ready for testing.

```
/usr/sbin/mk_kernel -s system
```

e. Save the old system file and kernel by moving them. Thus, if anything goes wrong, you still have a bootable kernel.

```
mv /stand/system /stand/system.prev
mv /stand/vmunix /stand/vmunix.prev
```

f. Move the new system file and new kernel into place, ready to be used when you reboot the system.

```
mv /stand/build/system /stand/system
mv /stand/build/vmunix_test /stand/vmunix
```

4. Bring down the system with sufficient grace period to allow users to exit their files. You can execute /usr/sbin/shutdown -r or /usr/sbin/reboot.

If you are installing an interface card, bring the system to a halt (that is, use the -h option). See shutdown(1M) or reboot(1M) in the HP-UX Reference. Power off all peripherals, and then the SPU. Perform the physical installation, as described in the hardware manual accompanying the interface card or other device. Power on all peripherals, and then the SPU.

Once the system boots from the newly created kernel, HP-UX detects the new terminal and associates it with its driver. insf automatically creates the device special files necessary to communicate directly with the terminal.

- 5. Invoke /usr/sbin/ioscan -C tty -fn to confirm that the I/O subsystem finds the terminal. Your output should now resemble the ioscan output shown in step 2.
- 6. Proceed to "Additionally Configuring HP-UX for a Terminal" or "Additionally Configuring HP-UX for a Modem" (later in this chapter), depending on which device you are configuring.

Additionally Configuring HP-UX for a Terminal

The previous procedure ensured the system side was set up properly; now you are setting up the terminal side.

- If the terminal will be used as a console, the default configuration is likely to be correct.
- If the terminal will not be used as a console (but rather as an additional serial terminal), you might have to set configuration modes.
- 1. From the new terminal, use the function keys to set the terminal's features. In most cases, default settings will be sufficient.

NOTE

Newer terminals have default modes correct for communicating with HP-UX. If you are uncertain the terminal is configured in default mode,

- a. Power off the terminal.
- b. Hold D key down while powering on.

The terminal will power on with correct default modes. Make any adjustments that might be necessary.

2. Add a getty entry for each new terminal in /etc/inittab. Entries must conform to the pattern id:run_state:action:process, as documented on the *inittab*(4) manpage. A sample terminal entry resembles the following:

ttp3:2:respawn:/usr/sbin/getty -h -t 60 tty0p3 9600

- ttp3 is a label used by init to identify the action uniquely (see init(1M)).
- The 2 is the run state. Systems are shipped with the multi-user run state (see the initdefault entry in inittab). When the system is running in single-user mode (state s), this process is not executed.
- The respawn tells init to restart the process if it exits.
- The /usr/sbin/getty is the process used to set up serial terminal and modem ports and provide the initial login prompt.
- The -h option ensures that the getty will not hang up the line before setting the port speed.
- The -t 60 is a security option to require that the user login name and password is typed within 60 seconds.
- ttyOp3 identifies the port in /dev to which the getty attaches.
- The 9600 (highlighted) does *not* represent the baud rate. It is a pointer into the /etc/gettydefs file, telling the system side what entry to use. An H entry is also provided for hard-wired terminals. See *gettydefs*(4).
- 3. Invoke the following command to activate the updated /etc/inittab file:

/sbin/init q

Chapter 3 67

Additionally Configuring HP-UX for a Terminal

4. Add an (optional) entry to /etc/ttytype. Entries should conform to the format documented on the *ttytype*(4) manpage. In the following example, 2392 is the terminal type; console and tty0p3 are the device file names in the /dev directory.

2392 console2392 tty0p3

- 5. Now that HP-UX is set to communicate with the new terminal, verify that the communication parameters for the terminal correspond to their /etc/gettydefs entries. Instructions on necessary changes will be discussed in "Differences between Console and Terminal Configuration", the next section.
- 6. With the configuration complete, your terminal should display a login prompt. If no login is displayed, press **Return** several times. If a prompt fails to appear, consult the "Troubleshooting Terminal Problems" toward the end of this chapter.

Differences between Console and Terminal Configuration

As shipped, HP terminals are configured properly for use as a system console. To use the terminal as a serial terminal, the parameters shown in Table 3-2 might require configuration in /etc/gettydefs.

Table 3-2 Key Terminal Configuration Parameters

Parameter	Console (as shipped)	Serial Terminal (hard-wired) ^a	Serial Terminal (via modem)
Data bits	8	8	7
Parity	no	no	even
Default speed	9600 ^b	9600	300 _p

- a. These are the parameters set for the H entry in /etc/gettydefs, and can be used for terminal configuration in /etc/inittab.
- b. Sending a **Break** will cause the speed to change in the sequence shown in /etc/gettydefs.

Running Screen-Oriented Applications on a Terminal

To run screen-oriented applications (such as SAM or swinstall) on a terminal that is not being used as a console, you can use the H setting in /etc/gettydefs. As shown in Table 3-2, this will give you 8 data bits and no parity, which are required by screen-oriented applications.

1. Edit the getty entry in /etc/inittab so that the device special file for the terminal points to the H entry in /etc/gettydefs.

ttp2:234:respawn:/usr/sbin/getty -h tty0p2 H

2. Reissue the /sbin/init q command to activate the updated /etc/inittab file.

See gettydefs(4) in the HP-UX Reference.

Chapter 3 69

Configuring a Non-HP Terminal as a Console

HP supports Wyse 60 terminals with native ASCII keyboards, VT320, and VT100 compatible (as defined by DEC VT420) terminals, in their default power-on configuration as system consoles for HP 9000 Series 800 E Family computers. Also, HP 700/60 terminals can be configured to emulate the non-HP consoles. Only HP terminals are supported as system consoles on other HP 9000 Series 800 computers.

Two HP MUX interface modules support configuration of a non-HP terminal console, provided you have the correct firmware version:

- Access port MUX16 (part number A1703-60022 for Series 800 HP-PB) with firmware version Rev 2.30 datecode 3341. (If you installed the card, you should have recorded the firmware revision on a worksheet in Appendix D.)
- The access port MUX module integrated into the core I/O card of Model I computers.

If you are configuring a non-HP terminal or terminal emulation, proceed through the instructions provided in the following sections, and note the limitations described in "Limitations to Non-HP Terminal Emulation".

Configuring a DEC 420 Terminal to Emulate VT100 or VT320 Mode

The DEC VT100 and VT320 terminals will work in their default settings with HP-UX. For a VT420 terminal to work in HP-UX, it must be configured to emulate either a VT100 or VT320 terminal, as follows:

- 1. Install the hardware, as described in the terminal's manual.
- 2. Enter set-up mode by pressing the F3 key.
 - a. Select Default and press Return.
 - b. Select General and press Return.
 - c. Set the Mode.
 - To emulate a VT320, select VT400 Mode, 7 bit Controls.
 - To emulate a VT100, press Return until the selection reads "VT100 Mode."
 - d. Set the ID.
 - To emulate a VT320, select *VT320 ID*.
 - To emulate a VT100, select *VT100 ID*.
 - e. Return to the main settings and save the configuration. Then press the F3 key to exit set-up mode.

Table 3-3 shows the correct values for a Model VT420 terminal set up to emulate a VT100.

Table 3-3 Configuration Values for vt100 Compatibility

Global Set-Up	On-Line
	S1-Comm1
	CRT Saver
	Printer Shared
	70 Hz

Chapter 3 71

Table 3-3 Configuration Values for vt100 Compatibility

Display Set-Up 80-Columns Interpret Controls No Auto Wrap Smooth-2 Scroll Dark Screen Cursor Block Cursor Style No_Status_Display Cursor_Blink 6x24 Pages 24 Lines/Screen Vertical Coupling Page Coupling No Auto Resize Screen VT100 IDa User-Defined Keys Unlocked User Features Unlocked Numeric Keypad Normal Cursor Keys No New Line UPSS DEC Supplemental When Available Update		T
No Auto Wrap Smooth-2 Scroll Dark Screen Cursor Block Cursor Style No_Status_Display Cursor_Blink 6x24 Pages 24 Lines/Screen Vertical Coupling Page Coupling No Auto Resize Screen VT100 IDa User-Defined Keys Unlocked User Features Unlocked Numeric Keypad Normal Cursor Keys No New Line UPSS DEC Supplemental When Available Update Printer Set-Up Speed=4800 No Printer to Host Normal Print Mode XOFF 8 Bits, No Parity 1 Stop Bit Print Full Page Print National Only	Display Set-Up	80-Columns
Smooth-2 Scroll Dark Screen Cursor Block Cursor Style No_Status_Display Cursor_Blink 6x24 Pages 24 Lines/Screen Vertical Coupling Page Coupling No Auto Resize Screen VT100 IDa User-Defined Keys Unlocked User Features Unlocked Numeric Keypad Normal Cursor Keys No New Line UPSS DEC Supplemental When Available Update Printer Set-Up Speed=4800 No Printer to Host Normal Print Mode XOFF 8 Bits, No Parity 1 Stop Bit Print Full Page Print National Only		Interpret Controls
Dark Screen Cursor Block Cursor Style No_Status_Display Cursor_Blink 6x24 Pages 24 Lines/Screen Vertical Coupling Page Coupling No Auto Resize Screen VT100 IDa User-Defined Keys Unlocked User Features Unlocked Numeric Keypad Normal Cursor Keys No New Line UPSS DEC Supplemental When Available Update Printer Set-Up Speed=4800 No Printer to Host Normal Print Mode XOFF 8 Bits, No Parity 1 Stop Bit Print Full Page Print National Only		No Auto Wrap
Cursor Block Cursor Style No_Status_Display Cursor_Blink 6x24 Pages 24 Lines/Screen Vertical Coupling Page Coupling No Auto Resize Screen VT100 Mode a VT100 IDa User-Defined Keys Unlocked User Features Unlocked Numeric Keypad Normal Cursor Keys No New Line UPSS DEC Supplemental When Available Update Printer Set-Up Speed=4800 No Printer to Host Normal Print Mode XOFF 8 Bits, No Parity 1 Stop Bit Print Full Page Print National Only		Smooth-2 Scroll
Block Cursor Style No_Status_Display Cursor_Blink 6x24 Pages 24 Lines/Screen Vertical Coupling Page Coupling No Auto Resize Screen VT100 Mode a VT100 IDa User-Defined Keys Unlocked User Features Unlocked Numeric Keypad Normal Cursor Keys No New Line UPSS DEC Supplemental When Available Update Printer Set-Up Speed=4800 No Printer to Host Normal Print Mode XOFF 8 Bits, No Parity 1 Stop Bit Print Full Page Print National Only		Dark Screen
No_Status_Display Cursor_Blink 6x24 Pages 24 Lines/Screen Vertical Coupling Page Coupling No Auto Resize Screen VT100 Mode a VT100 IDa User-Defined Keys Unlocked User Features Unlocked Numeric Keypad Normal Cursor Keys No New Line UPSS DEC Supplemental When Available Update Printer Set-Up Speed=4800 No Printer to Host Normal Print Mode XOFF 8 Bits, No Parity 1 Stop Bit Print Full Page Print National Only		Cursor
24 Lines/Screen Vertical Coupling Page Coupling No Auto Resize Screen VT100 Mode a VT100 IDa User-Defined Keys Unlocked User Features Unlocked Numeric Keypad Normal Cursor Keys No New Line UPSS DEC Supplemental When Available Update Printer Set-Up Speed=4800 No Printer to Host Normal Print Mode XOFF 8 Bits, No Parity 1 Stop Bit Print Full Page Print National Only		No_Status_Display
Vertical Coupling Page Coupling No Auto Resize Screen VT100 Mode a VT100 IDa User-Defined Keys Unlocked User Features Unlocked Numeric Keypad Normal Cursor Keys No New Line UPSS DEC Supplemental When Available Update Printer Set-Up Speed=4800 No Printer to Host Normal Print Mode XOFF 8 Bits, No Parity 1 Stop Bit Print Full Page Print National Only		6x24 Pages
Page Coupling No Auto Resize Screen VT100 Mode a VT100 IDa User-Defined Keys Unlocked User Features Unlocked Numeric Keypad Normal Cursor Keys No New Line UPSS DEC Supplemental When Available Update Printer Set-Up Speed=4800 No Printer to Host Normal Print Mode XOFF 8 Bits, No Parity 1 Stop Bit Print Full Page Print National Only		24 Lines/Screen
General Set-Up VT100 Mode a VT100 IDa User-Defined Keys Unlocked User Features Unlocked Numeric Keypad Normal Cursor Keys No New Line UPSS DEC Supplemental When Available Update Printer Set-Up Speed=4800 No Printer to Host Normal Print Mode XOFF 8 Bits, No Parity 1 Stop Bit Print Full Page Print National Only		Vertical Coupling
General Set-Up VT100 Mode a VT100 IDa User-Defined Keys Unlocked User Features Unlocked Numeric Keypad Normal Cursor Keys No New Line UPSS DEC Supplemental When Available Update Printer Set-Up Speed=4800 No Printer to Host Normal Print Mode XOFF 8 Bits, No Parity 1 Stop Bit Print Full Page Print National Only		Page Coupling
VT100 IDa User-Defined Keys Unlocked User Features Unlocked Numeric Keypad Normal Cursor Keys No New Line UPSS DEC Supplemental When Available Update Printer Set-Up Speed=4800 No Printer to Host Normal Print Mode XOFF 8 Bits, No Parity 1 Stop Bit Print Full Page Print National Only		No Auto Resize Screen
User-Defined Keys Unlocked User Features Unlocked Numeric Keypad Normal Cursor Keys No New Line UPSS DEC Supplemental When Available Update Printer Set-Up Speed=4800 No Printer to Host Normal Print Mode XOFF 8 Bits, No Parity 1 Stop Bit Print Full Page Print National Only	General Set-Up	VT100 Mode ^a
Unlocked User Features Unlocked Numeric Keypad Normal Cursor Keys No New Line UPSS DEC Supplemental When Available Update Printer Set-Up Speed=4800 No Printer to Host Normal Print Mode XOFF 8 Bits, No Parity 1 Stop Bit Print Full Page Print National Only		VT100 ID ^a
User Features Unlocked Numeric Keypad Normal Cursor Keys No New Line UPSS DEC Supplemental When Available Update Printer Set-Up Speed=4800 No Printer to Host Normal Print Mode XOFF 8 Bits, No Parity 1 Stop Bit Print Full Page Print National Only		User-Defined Keys
Numeric Keypad Normal Cursor Keys No New Line UPSS DEC Supplemental When Available Update Printer Set-Up Speed=4800 No Printer to Host Normal Print Mode XOFF 8 Bits, No Parity 1 Stop Bit Print Full Page Print National Only		Unlocked
Normal Cursor Keys No New Line UPSS DEC Supplemental When Available Update Printer Set-Up Speed=4800 No Printer to Host Normal Print Mode XOFF 8 Bits, No Parity 1 Stop Bit Print Full Page Print National Only		User Features Unlocked
No New Line UPSS DEC Supplemental When Available Update Printer Set-Up Speed=4800 No Printer to Host Normal Print Mode XOFF 8 Bits, No Parity 1 Stop Bit Print Full Page Print National Only		Numeric Keypad
UPSS DEC Supplemental When Available Update Printer Set-Up Speed=4800 No Printer to Host Normal Print Mode XOFF 8 Bits, No Parity 1 Stop Bit Print Full Page Print National Only		Normal Cursor Keys
When Available Update Printer Set-Up Speed=4800 No Printer to Host Normal Print Mode XOFF 8 Bits, No Parity 1 Stop Bit Print Full Page Print National Only		No New Line
Printer Set-Up Speed=4800 No Printer to Host Normal Print Mode XOFF 8 Bits, No Parity 1 Stop Bit Print Full Page Print National Only		UPSS DEC Supplemental
No Printer to Host Normal Print Mode XOFF 8 Bits, No Parity 1 Stop Bit Print Full Page Print National Only		When Available Update
Normal Print Mode XOFF 8 Bits, No Parity 1 Stop Bit Print Full Page Print National Only	Printer Set-Up	Speed=4800
XOFF 8 Bits, No Parity 1 Stop Bit Print Full Page Print National Only		No Printer to Host
8 Bits, No Parity 1 Stop Bit Print Full Page Print National Only		Normal Print Mode
1 Stop Bit Print Full Page Print National Only		XOFF
Print Full Page Print National Only		8 Bits, No Parity
Print National Only		1 Stop Bit
·		Print Full Page
No Terminator		Print National Only
		No Terminator

Table 3-3 Configuration Values for vt100 Compatibility

Communications Set-Up Comm1	Transmit=9600 Receive=Transmit
	XOFF at 64
	8 Bits, No Parity (console) 1 Stop Bit (console)
	No Local Echo
	Data Leads Only
	Limited Transmit
	No Auto Answerback Answerback=
	Not Concealed
Keyboard Set-Up	Caps Lock
	Auto Repeat
	Keyclick High
	Margin Bell Off
	Warning Bell High Character Mode
	<x <sup="" backspace="">b</x>
	Local Compose
	Ignore Alt
	F1=Hold
	F2=Print
	F3=Set-Up
	F4=Session
	F5=Break
	,< and .> Keys
	<> Key
	`~ Key
Tabs Set-Up	8 spaces apart, starting in column 9

- a. The mode and ID can be VT100 or VT320, depending on which model is being emulated.
- b. You may need to configure this key from Delete to Backspace. To do so, use the stty command as follows: stty erase <backspace_key>.

Your VT420 terminal is now configured for use as an HP-UX system console. Please be aware that the configuration is based solely on the VT100 default configuration.

You may notice the following differences between the DEC VT100, VT320, or VT420 terminals and an HP terminal:

Table 3-4 Unique Definitions of VT100 Keys

Key	Meaning
Backspace	Sends Delete character (octal \177) instead of Backspace
Alt Char	Escape
Er Line	New Line or Line Feed
F1-F5	(Consult DEC manual for captive meanings)
F6 (Inter/Halt) F7 (Resume)	Inoperative in vt100 mode
F8 (Cancel)	
F9 (Main Screen) F10 (Exit) F15-F20 FindSelect Remove Insert Here PrevNext	

Using an HP 700/60 Terminal in DEC Mode

If you have reason to use an HP 700/60 terminal in DEC-emulation mode, you might wish to change the operation of the Backspace key. You can do so by using the HP 700/60 terminal's set-up menu.

- 1. Enter the Setup menu and proceed to the Keyboard Configuration menu.
- 2. Set the Backspace key from Delete to Backspace.
- 3. Save the Keyboard Configuration.
- 4. Log out, then log back in again. Your keyboard will now be set to erase characters correctly.

By default, the backspace key on both DEC terminals and emulation is configured as DEL, echoes ^? on the screen, and does not erase. To set the key to erase, execute an stty command as follows:

stty erase "^?"

Input the ^ and ? characters as separate keystrokes and be sure to enclose them in quotation marks.

HP 700/60 terminals in VT320 mode uses control-H for backspace.

You can set this up in your .profile or .login file.

Configuring the Wyse 60 Terminal

Configure the Wyse 60 terminal for use as an HP console by executing the following set of instructions:

- 1. Install the hardware, as described in the terminal's manual.
- 2. Configure HP-UX to use the Wyse 60 terminfo file to communicate with the terminal. To do so, set the TERM variable to wy60 by executing the following command for Posix or Korn shell:

export TERM=wy60

Your Wyse 60 terminal is now configured for use as an HP system terminal. Please be aware that the configuration is based solely on the Wyse 60 default configuration. If further adjustment is required, use the terminal values provided in Table 3-5.

Table 3-5 Wyse 60 Default Configuration Values

Display F1	Columns	80
	Lines	24
	Page Length	1*Lines
	Attributes	Char Standard
	Status Line	Jump
	Scroll Speed	Blink Block
	Cursor	Off
	Answerback Mode	Dark
	Background	On
	Screen Saver	On
	Display Cursor	Off
	Answerback Conceal	
General F2	Personality	Wy60
	Comm mode Data/Printer	Full Duplex Modem/Aux
	Revd CR	CR
		On
	Enhance End-of-Line-Wrap	On
	Auto Scroll	On
	Monitor	Off
	Font Load	On
	Send Ack	On
	Init Tabs	Off
	Width Change Clear	Off

Table 3-5 Wyse 60 Default Configuration Values (Continued)

Keyboard F3	Keyclick	On
	Return	CR
	XMT Limit	None
	Wyse Word	Off
	Keylock	Caps
	Enter	CR
	Fkey Xmit Limit Language	No US
	Key Repeat	On
	Corner Key	Funct
	Break	250 ms
	Margin Bell	Off
Comm F4	Baud Rate	9600
	Rcv Handshake	None
	Aux Baud Rate	9600
	Aux Rcv Handshake	DSR
	Data/Stop Bits	8/1
	XMT Handshake	None
	Aux Data/Stop bits	8/1
	Aux Xmt Handshake Parity	None
	XPC Handshake	None
	Aux Parity	Off
		None
Misc F5	Block End	us/cr
	Auto Page	Off
	TVI 955 Attribute	No Space
	VPG0 Blk End	None
	Labels	Off
	Save Labels	Off
	Page Edit	Off
	WPRT Intensity	Normal
	WPRT Reverse	Off
	WPRT Underline	Off
	Test	Off

Table 3-5 Wyse 60 Default Configuration Values (Continued)

Tabs F6	Tabs	(undefined)
Answerback F7	Answerback	(blank)
FKeys F8	All FKeys definition	(undefined)
FKey Labels F9	All FKey labels	(undefined)

Limitations to Non-HP Terminal Emulation

Non-HP terminal support has limitations to usage, particularly in the area of keyboard differences. Observe the following:

- The CUE startup screen will work with non-HP terminals only if the -T option is used with cuegetty (see *cue*(1) and *cuegetty*(1M) in the *HP-UX Reference*).
- All HP terminals use screen buffers for the page-up/Prev and page-down/Next functions. Non-HP terminals and terminal emulations do not provide these keys; they rely on applications to handle them.

Wyse 60 Emulation Limitations

- The Wyse 60 overloads the meaning of various ASCII control characters. As a result, the behavior of some control characters may not be as the user expects.
- Use the DEL key (located next to Backspace) to backspace. If using HP 700/60 with a PC-AT keyboard in Wyse60 mode, the DEL key is located in the bottom row of the number pad.
- Unlike HP terminals, which provide two lines, Wyse 60 terminals provide a single line to display softkey labels. Sometimes, this may result in truncated softkey labels. For example, the "Help on Context" label for F1 might appear as "Help on C."

DEC VT-Series Limitations

• Two different kinds of keyboards are available for DEC terminals — a DEC/ANSI keyboard with programmable function (PF) keys and a PC-AT keyboard, which does not provide programmable function keys.

The function keys F1 through F4 on the DEC/ANSI keyboard are preassigned. Different keys are used for its programmable function (PF) keys. Certain applications, such as Dialog Manager based applications, will remap some of the keys. Other commands may or may not have any keyboard remapping.

The DEC PC-AT keyboard does not provide PF1, PF2, PF3, or PF4 keys. PF4 can be mapped on a DEC PC-AT keyboard to the - key.

Table 3-6 compares use of function keys on the DEC/ANSI keyboard, DEC PC-AT keyboard, and an HP keyboard. (Function keys on Wyse keyboards are consistent with HP keyboards.)

Table 3-6 Function Key Mappings

HP or Wyse60	DEC/ANSI keyboard in VT100 or HP700/60 in VT100 mode	DEC/ANSI keyboard in VT320 or HP700/60 in VT320 mode	DEC PC-AT keyboard
F1	PF2	PF2	/ key
F2	PF1	PF1	NumLock
F3	space bar	space bar	space bar
F4	PF3	PF3	* key
F5	return	F10, [exit]	F5
F6	none	none	none
F7	none	F18	first unlabeled key to right of Pause/Break
F8	none	F19	second unlabeled key to right of Pause/Break

- Many applications use **Tab** for forward navigation and **ShiftTab** for backward navigation when moving from one field to another. Users having DEC terminals or using terminals in DEC emulation modes will find that these two actions are indistinguishable. Therefore, you must navigate in a circular fashion to return to a desired field (that is, **Tab** forward through the menus).
- DEC terminals do not support softkey menus; thus, no such menus are displayed on these terminals.

Additionally Configuring HP-UX for a Modem

- 1. If you are configuring a modem to the single modem port on a Series 800 multi-function card, you need to ensure that the modem port is not locked.
 - Execute a control-B on the console to get into command mode. This will give you a CM> prompt.
 - b. Execute a ur command to unlock the remote access port.
 - c. Execute a dr command to disable the remote access port.
 - d. Execute a co command to return to the console mode.
- 2. Execute the ioscan -C tty -fn command to identify again the card instance, hardware path, and port number for the modem port.
- 3. Create device special files for the modem based on the card instance (or hardware path) and port number. You can use SAM to create the device special files (recommended) or use mksf. Modem device files have the following format:

Table 3-7 Device Special Files for Modems

Access Mode a	Port Access	Device File Format
0	Direct connect	/dev/cuainstance#pport#b
1	Dial-out port ^c	/dev/culinstance#pport#
2	Dial-in modem ^c	/dev/ttydinstance#pport#

- a. See *mksf*(1M) -a option of asio0 and muxx drivers.
- b. Instance number derives from ioscan -f output; use the card instance shown for the tty class of interface card to which the modem is being attached.
- c. Required for all modems.

NOTE

By default, mkfs creates a device special file for access mode 0 appropriate for terminals. To create a device file with modem syntax (that is, /dev/cua#p#), you need to execute mksf with the -i option. The -i is used for only direct connect; it is not necessary for dial-out or dial-in modem files.

Here is an example of creating device special files with mksf for a Series 700 whose modem is connected to hardware path 2/0/4. Note that one file each is created for direct connect (-a0), dial-out modem (-a1) and dial-in modem (-a2).

```
/usr/sbin/mksf -d asio0 -H 2/0/4 -a0 -i -v making cua0p0 c 1 0x0000000 /usr/sbin/mksf -d asio0 -H 2/0/4 -a1 -v making cu10p0 c 1 0x000001 /usr/sbin/mksf -d asio0 -H 2/0/4 -a2 -v making ttyd0p0 c 1 0x0000002
```

Additionally Configuring HP-UX for a Modem

Series 800 requires yet another additional option when creating device special files for a modem: you must cite the port number for the Series 800 in your mksf command. (In the following example, the card instance is used instead of the hardware path and the port is 2.)

```
/usr/sbin/mksf -d mux2 -I 0 -a0 -p2 -i -v making cua0p2 c 193 0x000201 /usr/sbin/mksf -d mux2 -I 0 -a1 -p2 -v making cu10p2 c 193 0x000201 /usr/sbin/mksf -d mux2 -I 0 -a2 -p2 -v making ttyd0p2 c 193 0x000202
```

4. Verify the creation of the device special files by using the lssf command.

For the Series 700 example,

```
/usr/sbin/lssf /dev/cua0p0
asio0 card instance 0 hardwired at address 2/0/4 /dev/cua0p0
/usr/sbin/lssf /dev/cul0p0
asio0 card instance 0 callout at address 2/0/4 /dev/cul0p0
/usr/sbin/lssf /dev/ttyd0p0
asio0 card instance 0 callin at address 2/0/4 /dev/cul0p0
```

For the Series 800 example,

```
/usr/sbin/lssf /dev/cua0p2
mux2 card instance 0 port 2 hardwired at address 56/0 /dev/cua0p2
/usr/sbin/lssf /dev/cul0p2
mux2 card instance 0 port 2 callout at address 56/0 /dev/cul0p2
/usr/sbin/lssf /dev/ttyd0p2
mux2 card instance 0 port 2 callin at address 56/0 /dev/cul0p2
```

5. With your modem still *disconnected* from the port, edit the /etc/inittab file to add a getty entry for the modem port that will receive incoming calls. The entries must conform to the format documented on the *inittab*(4) manpage of the *HP-UX Reference*. For example:

```
p5:234:respawn:/usr/sbin/getty -h -t 240 ttyd2p5 9600
```

- The p5 is a label used to uniquely identify the entry.
- This getty is executed when the system is in both run states 1 and 2.
- The respawn tells init to restart the process if it dies for any reason.
- The /usr/sbin/getty is the process used to open the port and provide the initial login prompt.
- The -h option ensures that the getty will set the port speed before resetting the port, which is crucial for the modem to work properly.
- The -t 240 is a security option to require that the user login name and password is typed within 240 seconds.
- The ttyd2p5 is the device for modem port through which the getty will receive
 incoming calls. (getty will complete the device name by prefixing /dev to the
 port designation.)
- The 9600 does *not* represent the baud rate, but represents a label in the /etc/gettydefs file. See *gettydefs*(4).
- 6. After saving the file, invoke the following command to activate the updated /etc/inittab file:

/sbin/init q

- 7. To verify that getty is running on the port in a pending state, execute ps-ef | grep ttyd2p5 (using the device file name for which the getty was created). You should see a question mark in the tty field.
- 8. With modem still disconnected from the port, but powered on, the DTR or TR light should be off. Connect the modem to its port. DTR or TR light should come on. This verifies that the port (not the modem) is setting DTR or TR. If DTR or TR light remains on all the time, the modem has DTR strapped high and setting should be changed. Check the modem users' manual for procedure on how to change strapping.
- 9. Execute another ps -ef | grep ttyd2p5 command to verify that getty is still in a pending state. If getty has a port number in the tty field instead of a question mark, the modem has carrier detect (CD) strapped high. Check the modem users' manual for procedure on how to change strapping.

At this point the modem is ready for call-in use.

10. To set up the modem for call-out use, you must add entries to the /etc/uucp/Devices file. (This file does not have an associated manpage; follow the examples given in the file itself.)

Edit /etc/uucp/Devices to include an entry for the /dev/culnpp file created earlier. For example,

```
ACU cul2p5 - 2400 hayesDirect cul2p5 - 2400 direct
```

11. After saving the file, you can test the modem's call-out ability executing the following cu command:

```
/usr/bin/cu -s2400 -lcul2p5 dir
```

You should get a message indicating that you are connected. If you enter AT Return, the system will respond with OK. If it does not, the modem might have its echo turned off. Enter ATDTtelephone_number and listen to the modem to hear if it dials. If the modem does not dial, refer to your modem user's manual or have the modem hardware checked out.

The modem is now ready for call-out using cu -s2400 telephone number.

Requirements for Modems to Work on HP-UX

Your modem hardware documentation will be your primary resource for setting switch positions and commands for proper functioning of your modem. However, note the following information specific to HP-UX:

- The modem should not ignore DTR, but instead autoanswer when HP computer raises DTR. Modem should hang up the line, disable autoanswer, and return to command state when computer drops DTR. (This is AT&D2 on Hayes modem protocol). Do not have the modem do power-on reset when DTR is dropped, as some modems temporarily raise CD during reset. (On Hayes modems, do *not* use AT&D3.)
- Modem should assert carrier detect only when there is a carrier and should drop CD when carrier is lost. (This is AT&C1 on Hayes modem).
- Modem should pass through BREAK, because the BREAK key is used for the interrupt signal as well as for baud-rate switching.

Additionally Configuring HP-UX for a Modem

- Modem speed between modem and terminal should be known; however, speed can be
 negotiated in modem-to-modem connections (using the modems' autobauding speed
 detection). Initially, features such as hardware flow control (CTS/RTS) and error
 correct should be turned off. Once you have established that the modem
 communicates properly, add these features one at a time.
- If modems connect but no data appears, turn off all compression, reliability, MNP, PEP, LAP, and other advanced features. Set the modem as simply as possible. Once working, add the advanced features.
- Do not use CCITT control signals on modem or HP computer. Note that this does not
 affect the modem use of CCITT modulation or compression standards such as V.22,
 V.32, V.22bis, V.32bis, V34, V.42, or V.42bis.
- Save modem settings in non-volatile memory on modem so modem remembers setup after power loss. (Use AT&W on Hayes modems).
- Record modem settings on a worksheet in Appendix D for future reference.

Removing or Moving a Terminal or Modem

NOTE

Removing the system console is not supported.

Terminals and modems are most easily removed using SAM, because SAM also removes the getty entries in /etc/inittab and ensures that inittab is reread.

However, it is also a simple matter to remove a terminal or modem using HP-UX commands.

- 1. If users will be affected, notify them in advance about the change. The terminal or modem to be removed cannot be in use; it must be inactive.
- 2. Create a backup copy of the /etc/inittab file by copying it.
- 3. Edit the /etc/inittab file to remove or modify any getty entries for the terminal. Refer to *inittab*(4) in the *HP-UX Reference*.
- 4. Activate the updated /etc/inittab file by typing

/sbin/init q

- 5. Update any software application configurations that use the moved terminal or modem. Refer to your software application documentation for specific instructions.
- 6. If you are removing the terminal or modem, unplug and disconnect it.

If you are moving the terminal or modem, add the terminal or modem to the system at the new hardware location, following the instructions found in "Configuring HP-UX for an HP Terminal or for a Modem", earlier in this chapter.

Troubleshooting Terminal Problems

This section addresses problems with alphanumeric display terminals; however, the techniques can be applied to problems with terminal emulators such as AdvanceLink or X-Windows terminal processes (such as hpterm and xterm).

Unresponsive Terminals

Several conditions can cause a terminal not to display any characters except for those it echoes when you type. Proceed through these steps (working from an active terminal) to solve many of them.

1. Check the status of the system. If the system is still running, try resetting the terminal.

If the system is in single-user mode, the only active terminal will be the system console; other terminals will not respond. Switch to a multi-user state. Consult the *init*(1m) manpage in the *HP-UX Reference* for information on changing run levels.

Check your system run-level as follows:

```
who -r
. run-level 2 Sep 28 10 07:10  2  0  S
```

The current state of the machine (run-level 2 in this example) is shown in the highlighted field. For complete information on each of the fields, consult the who(1) manpage.

2. **Look for an editor running on the terminal.** Examine the active processes associated with the unresponsive terminal and look for an editor (such as an active vi process). For example, for terminal tty0p1,

```
/etc/fuser /dev/tty0p1
or
ps -t tty0p1 -f
```

If you find an active editor process running at the terminal, it is probably in a text-entry mode. You will need to save the work to a temporary file and exit the editor. If you are not sure of the status of the work being edited, do *not* simply save the file and exit. You will overwrite the previous contents of the file with unknown text. Save the work-in-progress to a temporary file so that both the original and edited versions of the file are accessible. If all else fails, kill the editor process from the console, as described in step 8.)

3. Enter Ctrl-Q at the terminal keyboard. If output to the unresponsive terminal was stopped because an XOFF signal (Ctrl-S) was sent from the terminal to the computer, you can restart it by sending an XON signal (Ctrl-Q).

If an application program is looping or functioning improperly, press the **Break** key and then **Ctrl-C** to attempt to regain a shell prompt.

If the unresponsive terminal uses something other than **CtrI-C** as the interrupt character, you can identify it by logging into another terminal and executing the command stty -a against the device special file of the unresponsive terminal. Use the stty command *only* with device file names for *currently active* terminal device files. (Use who to see which device files are active.) Executing stty with an inactive device file will hang the terminal from which you enter the command. For example,

```
stty -a < /dev/tty0p1
```

Compare the baud rate shown in the stty output and that set on the terminal. They should match.

- 4. **Reset the terminal.** On an HP terminal, try a soft reset of Shift-Reset. If the terminal is stuck in an unusable state, power the terminal off, wait for a few seconds, and power it back on. This will reset the terminal, though the terminal owner's manual may have information on a better way to do it. You also might need to set the tabs with the tabs command.
- 5. On an HP terminal, use the menu keys to examine the modes configuration.
 - Is the terminal in Remote * mode? *It should be.*
 - Is Block * mode turned ON? If so, turn it OFF
 - Is Line * mode turned ON? If so, turn it OFF
 - Is Modify * mode turned ON? If so, turn it OFF
- 6. Check the physical connection of the terminal to ensure that all cables are firmly attached and properly located, all interface cards are firmly seated, the power cord is firmly connected, and the power switch is turned on.
- 7. **Send a short ASCII file to the unresponsive terminal's device file.** Execute this in the background to retain the current terminal's responsiveness. For example, for an unresponsive terminal associated with the device file ttydlp4,

```
cat /etc/motd > /dev/ttyd1p4 &
```

If you have solved the problem, you will see the contents of the file /etc/motd displayed on the terminal associated with /dev/ttyd1p4.

8. **Kill processes associated with the problem terminal.** Before killing processes use *extreme caution* to be sure you are not killing a valid process that just happens to be taking a long time to complete. First examine the system's active processes, as shown. Then, to kill all processes associated with a specific TTY device (for example, ttyd2p5), execute the kill command to force specified process IDs (PID) to terminate. Execute the kill command in the following sequence: kill -15, kill -3, kill -1, kill -9. (See *signal*(5) for definitions.) c

```
ps -ef
UID
     PID PPID C
                     STIME TTY
                                    TIME COMMAND
. . .
       94
              1 0 Jul 20 tty0p5
                                   0:00 /usr/sbin/getty -h tty0p5 9600
root
root 14517
              1
                0 Jul 21 ttydlp4 0:01 -csh [csh]
                 0 11:20:24 ttyd2p5 0:00 -csh [csh]
jaz 20133
              1
root 22147
              1
                 0 13:33:45 ?
                                     0:00 /etc/getty -h ttyd2p3 9600
jaz 21234 20133 0 12:22:05 ttyd2p5 0:01 rlogin remote
jaz 21235 21234 0 12:22:12 ttyd2p5 0:04 rlogin remote
kill -15 21235 21234 20133
```

Once the processes terminate, init restarts a new getty process for that terminal (provided its /etc/inittab entry contains respawn).

9. Check the parameters of the unresponsive terminal's device file. Like all files, device special files have access permissions that must be set to allow you access. For example, permissions set to 622 (crwww-) are appropriate for a terminal. Make certain the file is a character device file.

- 10. **Make sure your** inittab **entries are active.** To force init to update its initialization tables from /etc/inittab, execute the command init q.
- 11. **Make sure the** /dev/muxn and /dev/tty files are present. The /dev/muxn is the device file associated with the interface card. The /dev/tty is a pseudo-device used in many places to refer to the login terminal.

12. Check the functionality of your hardware.

- a. If the unresponsive terminal has a self-test feature, activate it. If not, power the terminal off, wait several seconds, and power the terminal back on.
- b. Swap the unresponsive terminal with one known to be functioning. Swap *only* the terminal and keyboard. Attach the properly functioning terminal to the *same cable* the unresponsive terminal used. Plug the unresponsive terminal and keyboard to the same cable used by the properly functioning terminal and see if it works there.
 - If the properly functioning terminal does not work on the unresponsive terminal's cable and the unresponsive terminal works at the new location, the unresponsive terminal is not the problem.
- c. Check the cable connecting the unresponsive terminal to the computer. Swap the suspect cable with a known good one. If this solves the problem, the cable is bad or is not wired correctly. If this does not solve the problem, your MUX, port, or interface card might be malfunctioning.
- d. On Series 800 multiplexers, problems occur when
 - /dev/muxn is deleted or has inappropriate permissions.
 - the download firmware is deleted or has inappropriate permissions.
 - /sbin/dasetup is not run from /etc/inittab. dasetup should *only* be run from inittab. Do *not* run it in any state other than single-user mode.

Garbage Displayed on the Terminal Screen

If garbage is mixed with valid data, the problem might be:

- Noise on the data line, because
 - RS-232-C cable is too long (maximum recommended length is 50 feet or 15 meters at 9600 baud).
 - data cable is situated near electrically noisy equipment, such as motors.
 - wires are partially shorted or broken within the cable.
 - telephone connection is noisy
- Parity is incorrectly set. (See "Differences between Console and Terminal Configuration".)
- Hardware problem with a modem, interface card, or the terminal itself
- The program performing I/O might be sending the garbage
- The Display Functns* feature of your terminal is enabled (which displays characters that would not normally print)
- You might be displaying a non-ASCII file.

If everything printed is garbage, examine these possible causes:

- Baud-rate mismatch (*most likely*)
 If your terminal's speed setting differs from that read by the stty command, garbage will appear on your screen.
 - If you have not yet logged in, press the Break key, followed by Return, Return, to force getty to try the next entry in /etc/gettydefs. Typically, the gettydefs file is set up so that each time you press the Break key, getty tries the next speed setting, as defined in /etc/gettydefs. When getty matches the speed set to your terminal, you will get a readable login prompt.
- Parity generation/checking mismatch. Use stty to determine the proper settings for the terminal.
- The TERM environment variable is incorrectly set. If you have an HP terminal, try setting the TERM value to hp using your shell's set command.
- A running process is producing garbage output.
- The cable might be miswired or the data line might be noisy.
- You might have a hardware failure in your interface card, modem, MUX or other device.

The TERM environment variable is required for software compatibility with the terminal. At the time of login, HP-UX software reads the terminfo setting. If you have changed the configuration during a terminal session, you need to alert the software to the change by exporting the TERM variable. For example, in Korn shell, export TERM=vt100

Refer to the terminfo(4) manpage for further explanation.

For Further Information on Terminals and Modems

The following manpages specify terminal- and modem-related functionality:

mesg(1)Permit or deny messages to a terminal pg(1)File paginator for video terminals stty(1)Set options for a terminal port tabs(1)Set tabs on a terminal telnet(1)User interface to the telnet protocol tput(1)Generate terminal-specific functions tset(1)Terminal-dependent initialization tsm(1)Terminal Session Manager Get the name of the terminal or pseudo-terminal tty(1)ttytype(1)Terminal identification program captoinfo(1M)Convert a termcap description into a terminfo description dpp(1M)Dedicated port parser, used by DDFA software Set terminal type, modes, speed, line discipline getty(1M) mksf(1M)Make special files rlogind(1M)Remote login server tic(1M)terminal escape sequence (terminfo) compiler untic(1M) terminal escape sequence (terminfo) extractor uugetty(1M) Set terminal type, modes, speed, line discipline gettydefs(4)Speed and terminal settings used by getty Format of compiled terminal file term(4)terminfo(4)Terminal capability database ttytype(4)Database of terminal types by port environ(5)User environment variables Asynchronous serial modem line control modem(7)Pseudo-terminal driver pty(7)General terminal interface termio(7)tty(7)Controlling terminal interface

The following manuals provide additional information:

- Terminal Control User's Guide
- Using Serial Connections Technical Guide
- Terminal Session Manager User's Guide
- DTC Device File Access Utilities and Telnet Port Identification

4 Configuring Disk Drives, Disk Arrays, and CD-ROM Drives

This chapter gives procedures and guidelines for configuring hard and floppy disk drives and disk arrays, to HP-IB, HP-FL, and SCSI interfaces. Procedures and guidelines are also provided for configuring CD-ROM drives to HP-IB and SCSI interfaces.

When configuring a disk drive, disk array, or CD-ROM drive, have available the following additional documentation:

- HP-UX System Administration Tasks
- HP-UX Reference
- Pertinent hardware documentation for the computer, device adapter, and peripheral device
- Record of your disk configuration

NOTE

You can use /usr/sbin/ioscan -C disk to identify disks configured on your system. You can use /usr/sbin/diskinfo to find out disk characteristics. Once you have configured a disk and are creating a file system, HP-UX uses the correct disk geometry, without requiring you to cite an explicit /etc/disktab entry. For backward compatibility, you can still consult /etc/disktab for disk geometry information on older disks.

Planning to Configure a Disk Drive

Review the material discussed in this chapter for each kind of disk drive.

Identify the device driver(s) that must be present in the kernel for the interface and disk device you are installing. You will find the device drivers listed in "Selecting Device Drivers for a Disk Device and Interface".

Once you have planned your disk configuration, proceed to the section, "Configuring HP-UX for a New Disk Device".

Performance

Overall system performance depends partly on how your disks are arranged on your system.

To optimize performance, consider the distribution of data on your disks. If possible, use several smaller disks instead of a single larger-capacity disk for all disk needs. Configure a mid-sized disk (for example, 677MB or 1GB) for / and /usr file systems and for any software applications. Use separate disks for user files, database files, and anything else that grows. This allows the system to perform more efficiently by distributing I/O across spindles and shortens the time for file-system integrity check.

Do not exceed HP-recommended guidelines for maximum number of disks or disk arrays per interface card. Note too that the kind of disk access (random vs. sequential), CPU overhead and total system capacity, cabling distance, disk-array configuration, and block size all affect performance.

When configuring a disk drive to an HP-IB interface, do not put it on the same interface card as a device (such as a tape drive) requiring slower access to the bus. You cannot mix HP-IB disks and disks of other interfaces in the same LVM volume group.

Consult your HP sales representative for information on performance expectations, based on your predominant system I/O workload and disk characteristics.

Considerations for Configuring a Disk Array

You *must* use SAM to configure and manage the HP A3231A and A3232A disk arrays. The configuration utilities for these devices are unavailable using a command-line interface.

If you are configuring any other disk arrays, be sure that you have loaded onto your system the C2400-UTIL fileset containing the disk array configuration tools.

Consult the hardware documentation to find out what degree of data protection is provided by the RAID level in which the disk array is shipped. If you need to modify the RAID level, use the disk array utilities provided.

If you are configuring a disk array with more than one controller, you will be using more than one target address. Be sure you choose a SCSI interface with sufficient bus addresses available.

Do not attempt to use disk space larger than 4GB without apportioning the space with LVM. HP-UX cannot address disk space in excess of 4GB; any remaining disk space would be unusable. Given this maximum-size limitation, hard partitions will work. Similarly, boot, dump, or primary swap cannot be greater than 2GB.

You can use Logical Volume Manager (LVM) to partition disk arrays into logical volumes, manage mirrored file systems, and deal with file systems on disk arrays in independent mode. See *HP-UX System Administration Tasks* for documentation on configuring and managing file systems on LVM.

Take care to terminate all busses. Keep cabling (including internal SCSI cabling) to within recommended bounds.

Considerations for Configuring a CD-ROM Drive

CD-ROM drives are configured like a standard disk using SAM or command-line interface, but because CD-ROMs hold read-only file systems,

- You cannot use a CD-ROM for swap space.
- Users cannot create a new file system on a CD-ROM disk.

Considerations for Configuring a Floppy Disk Drive

Floppy disk drives are installed as internal devices on some HP-UX systems. You might need to configure the device drivers into the system for HP-UX to be able to communicate with the media. (See *floppy*(7) in the *HP-UX Reference* and "Floppy Disk Drive Configuration Guidelines" later in this chapter for device driver information.)

- Floppy disks are not supported as boot disks.
- HP-IB floppy disks are no longer supported.
- If using SAM, choose the action, Add -> Not Using LVM. LVM functionality is not supported on floppy disks.
- Unlike HP hard disks, which are typically initialized before shipping, you must initialize floppy-disk media, using the mediainit command. See *mediainit*(1M) in the *HP-UX Reference* for information.
- Do not use low-density floppy disks. Supported disk formats vary by system model and are documented on the *floppy*(7) manpage.
- Floppy drives are supported on HP-UX primarily for transferring raw data. Thus, commands such as tar can be used effectively with floppy disks. You must know in what format your media is written.
- In some respects, using a floppy disk drive on an HP-UX system differs significantly from using a floppy disk drive on a personal computer:
 - Unlike personal-computer floppies, you can make a file system on an HP-UX floppy disk. Use newfs to create the file system. Consult /etc/disktab to choose an entry (for example, ibm1440) appropriate for the capacity of the floppy disk.
 - To access a file system on a floppy disk, you must mount it first.
 - Media removal and replacement while the device is open is *not* supported. A floppy disk containing a mounted file system must not be removed prior to being unmounted. Removal of floppy disks while the device is open is likely to result in file system errors and system crashes.
 - If an application requires that you insert and remove media while the program is running, the floppy disk should work properly.

Selecting Device Drivers for a Disk Device and Interface

The following sections (covering HP-IB, HP-FL, and SCSI interfaces, and floppy disk drives) identify the device drivers that must be present in the kernel for HP-UX to communicate with your disk device. Choose the device drivers based on the interface to which you are configuring the disk device.

If you are configuring a custom-written device driver on a Series 700, consult the *Driver Development Guide* for guidelines.

Once you have identified your device drivers, proceed to "Configuring HP-UX for a New Disk Device".

HP-IB Disk Configuration Guidelines

Series 700 does not accept HP-IB disks.

Up to four HP-IB disks can be configured for each Series 800 HP-IB interface card. Table 4-1 lists the device drivers required for configuring an HP-IB disk or CD-ROM for each supported interface.

Table 4-1 HP-IB Disk Configuration Requirements

Architect ure	Interfa ce Card	Interface and Device Drivers	Default Device File
Series 800 CIO ^a	27110B 27113B	hpib0 ^b disc1	/dev/[r]dsk/c#t#d#[s#] ^c
Series 800 HP-PB ^a	28650B	hpibl ^d discl	(same as above)

- a. The following disk drives can be configured to a Series 800 high-speed HP-IB interface: (7907A), (7914CT/P), (7933H), (7935H), (7936H), (7937H), (7957A/B), (7958A/B), (7959B), (7962B), 9262B, 9263B, (97902B), (97903B), (97962B), C1707A, C2200A, C2203A. The following disk drives can be configured to a Series 800 medium-speed HP-IB interface: (7963B), (9127A). (Models shown in parenthesis are obsolete and are listed for reference only.)
- b. Specifying hpib0 causes cio_ca0, sio, pfail, and pa to be included automatically into the kernel.
- c. c#t#d#[s#] derives from ioscan output: c# is the card instance for the ext_bus class of interface card to which the disk is attached, t# is the address of the device on the interface, d# is the device unit number. s# specifies section number and is provided for backward compatibility; the entire disk (s0) is assumed when s# is unspecified. (See the disk(7) manpage.)
- d. Specifying hpibl causes sio, pfail, and pa to be included automatically into the kernel.

HP-FL Disk Configuration Guidelines

Series 700 does not accept HP-FL disks.

Table 4-2 lists the device drivers required for configuring an HP-FL disk device for each supported architecture.

Table 4-2 HP-FL Disk Configuration Requirements n

Architecture	Interface Card	Interf ace and Device Driver s	Default Device File
Series 800 CIO ^a	27111A	disc2 ^b	/dev/[r]dsk/c#t#d#[s #] ^c
Series 800 CIO emulation on HP-PB ^a	HP A1749A	disc2 ^b	(same as above)
Series 800 HP-PB ^d	28615A	disc4 ^e	(same as above)

- a. The following disk drives can be configured to a Series 800 CIO HP-FL interface: (7936FL), (7937FL), C2201A, C2204A, C2252B/BZ/HA/HZ, C2254B/BZ/HA/HZ. (Models shown in parenthesis are obsolete and are listed for reference only.)
- b. disc2 supports disk arrays only in striped mode; it does not support independent mode. Specifying disc2 causes cio_ca0, sio, pfail, pa, and hpfl0 to be included in the kernel.
- c. c#t#d#[s#] derives from ioscan output: c# is the card instance for the ext_bus class of interface card to which the disk is attached, t# is the address of the device on the interface, d# is the device unit number. s# specifies section number and is provided for backward compatibility; the device file addresses the entire disk (s0) when s# is unspecified. (See the disk(7) manpage.)
- d. The following disk drives can be configured to a Series 800 HP-PB HP-FL interface: (7936FL), (7937FL), C2201A, C2204A, C2252B/BZ/HA/HZ, C2254B/BZ/HA/HZ, C2257A, C2258B/HA, C2259B/HA. (Models shown in parenthesis are obsolete and are listed for reference only.)
- e. Specifying disc4 causes disc3, hpfl1, target, sio, pfail, and pa to be included in the kernel.

SCSI Disk Configuration Guidelines

The SCSI address of a device dictates the device's priority when arbitrating for the SCSI bus. Use SCSI address 7 for the highest priority device (usually the host), followed by subsequent addresses in descending order: 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8.

Each fast/wide/differential SCSI-II card can support up to 15 peripherals, including up to 7 disk arrays. Due to limitations in SCSI-II, disk arrays can be connected to addresses 0 through 7 only; do not connect disk arrays to addresses 8 through 15.

HP-UX recommends UPS for powerfail protection of fast/wide/differential disk arrays.

Do not exceed 6 meters maximum cabling for single-ended SCSI and 25 meters maximum for fast/wide/differential SCSI configurations.

Make sure that every SCSI bus is properly terminated.

Table 4-3 lists the HP disk and CD-ROM devices configurable through the SCSI interface on Series 700 and 800 systems.

Note, the <code>c#t#d#[s#]</code> syntax used in default device special files derives from <code>ioscan</code> output: <code>c#</code> is the card instance for the <code>ext_bus</code> class of interface card to which the device is attached, <code>t#</code> is the target (SCSI address) of the disk device on the interface, <code>d#</code> is the device unit number. <code>s#</code> specifies section number and is provided for backward compatibility; the device file addresses the entire disk (s0) when <code>s#</code> is unspecified. (See the disk(7) manpage.)

Table 4-3 SCSI-II Disk Configuration Requirements

Architecture (SCSI-II Type)	Interface Card	Interface and Device Drivers	Default Device File
Series 700 Core I/O (Single-Ended) ^a	(internal)	sdisk ^b	/dev/[r]disk/c#t#d#[s#]
Series 700 EISA	25525B	eisa	(same as above)
(Fast/Narrow/Differential) ^c		sdisk ^b	
Series 700 Models 735, 755 ^d	(internal)	sdisk ^b	(same as above)
(Fast/Wide/Differential)			
Series 800 CIO	27147A	scsi2 ^f	(same as above)
Single-Ended) ^e		disc3 ^g	
Series 800 HP-PB	28655A	scsil	(same as above)
Single-Ended) ^h		disc3 ^g	
Series 800 HP-PB	25525B	scsi3	(same as above)
(Fast/Wide/Differential) ⁱ		disc3 ^g	

- a. The following disk devices can be configured to a Series 700 Single-Ended SCSI-II interface: A1999A, A2655A, 2657A, C2214B, C2216T, C2217C, C2291A, C2293A/T/U, C2295B, C2473T, C2963A, C2964A, C3020T, C3021T, C3023T, C3024T, C3027TU, C3028U, A3182A.
- b. Specifying sdisk causes sctl, c700, and c720 to be included automatically in the kernal.
- c. The following disk devices can be configured to a Series 700 Fast/Narrow/Differential EISA/SCSI-II: C2425JK, C2427JK, C2435A, C2436HA/HZ, C2438A, C24239HA/HZ/JA/JZ, C2440HA/HZ/JA/JZ, C2474J, C2481A, C2482A, C2491A, C2492A.
- d. The following disk devices can be configured to a Series 700 Fast/ Wide/Differential SCSI-II interface: C2435A, C2436HA/HZ, C2437HA/HZ, C2438A, C2439HA/HZ/JA/JZ, C2440HA/HZ/JA/JZ, C3032T, C3033T, C3034T, C3035T, C3036T, C3037U, C3038U, A3058A. the C2425JK and C2427JK can also be connected, but will not use the Wide SCSI capability.
- e. The following disk devices can be configured to a Series 800 CIO Single-Ended SCSI-II interface: C2462F/R, C2474F/R/S, C2476F/R, A3182A.
- f. Specifying scsi2 causes cio ca0 to be included automatically in the kernal.
- g. Specifying disc3 causes target tobe included automatically in the kernal.

Selecting Device Drivers for a Disk Device and Interface

- h. The following disk devices can be configured to a Series 800 HP-PB Single-Ended SCSI-II interface: (7957B), (7958B), (7959B), A1999A, A2655A, C2212A, C2213A, C2281A, C2282A, C2290A, C2291A, C2460F/R, C2461F/R, C2470S, C2471S, C2472F/R/S, C2473F/R/S, C3020T, C3022R/T, C3023R/RZ/T, C3024R/RZ/T, C3027U, C3028U, C3040R/T, C3041R/T, C3044U, A3182A, C3560U. (Models shown in parenthesis are obsolete and are listed for reference only.)
- The following disk devices can be configured to a Series 800 Fast/ Wide/Differential SCSI-II interface: C2435A, C2436HA/HZ, C2437HA/HZ, C2438A, C2439HA/HZ/JA/JC, C2440HA/HZ/JA/JZ, C3032R/T, C3035R/T, C3036T, C3037U, C3050R/T, C3051R/T, A3051A, A3231A, A3232A, C3550R/T, C3551R/T, C3553RZ, C3554U.

Floppy Disk Drive Configuration Guidelines

Although floppy disk drives are installed internally, the following table is included to ensure that you have the device-driver information necessary to access the drive.

Note that a PC floppy is installed on a Model 712 system, while SCSI floppy disk drives are installed on some Series 700 and E-class (Series 800) computers. HP-IB floppy disk drives are no longer supported on HP-UX.

(See also "Considerations for Configuring a Floppy Disk Drive" for information about using a floppy disk drive with HP-UX.)

Table 4-4 Floppy Disk Drive Configuration Requirements

Architecture	Interface Card	Interface and Device Drivers	Default Device File
Model 712	(internal)	pcfdc pcfloppy	/dev/[r]floppy/c#t#d# ^a
Series 700 Single-Ended SCSI	(internal)	sflop	(same as above)
Model E Single-Ended SCSI	(internal)	disc3 b	(same as above)

- a. c#t#d# derives from ioscan output: c# is the card instance for the ext_bus class of interface card to which the device is attached, t# is the target (SCSI address) of the disk device on the interface, d# is the device unit number. See disk(7).
- b. Specifying disc3 causes target to be included automatically in the kernel.

Configuring HP-UX for a New Disk Device

The simplest way to configure a disk device (hard disk, floppy disk, disk array, or CD-ROM) is to use SAM (/usr/sbin/sam). If SAM is not loaded on your system or if you prefer to use the command-line interface, the following procedure will guide you through the task. Familiarize yourself with the instructions before getting started.

1. Invoke /usr/sbin/ioscan -fn to figure out what addresses are available on the interface card to which you will be attaching the disk.

For examples of ioscan usage, consult "Using ioscan to Display your I/O Configuration," in Appendix B of this book.

- 2. Consult the tables in the previous section ("Selecting Device Drivers for a Disk Device and Interface") to determine the device driver(s) needed for your disk and interface. (If you are configuring a magneto-optical device, use the table in the section, Magneto-Optical Disk Configuration Guidelines, found in the next chapter.) If any necessary device driver is absent from the kernel, you will need to rebuild the kernel to include it. Here is how to rebuild the kernel:
 - a. Change directory to the build environment (/stand/build). There, execute a system preparation script, system_prep, which extracts the system file from the current kernel, as follows:

```
cd /stand/build
/usr/lbin/sysadm/system_prep -v -s system
```

The system_prep script writes a system file in your current directory (that is, it creates /stand/build/system). The -v gives verbose explanation as the script executes.

- b. Edit the /stand/build/system file to add the absent driver(s).
- c. Build the kernel by invoking the command,

```
/usr/sbin/mk_kernel -s system
```

The mk_kernel command creates /stand/build/vmunix_test, a kernel ready for testing.

d. Save the old system file and kernel by moving them. Thus, if anything goes wrong, you still have a bootable kernel.

```
mv /stand/system /stand/system.prev
mv /stand/vmunix /stand/vmunix.prev
```

e. Move the new system file and new kernel into place, ready to be used when you reboot the system.

```
mv /stand/build/system /stand/system
mv /stand/build/vmunix test /stand/vmunix
```

- 3. Notify users that the system will be shut down to configure the disk. You can use the wall command and/or the interactive capabilities of the shutdown command to broadcast a message to users before the system goes down. See wall(1M) or shutdown(1M) in the HP-UX Reference.
- 4. Bring the system down to a halt, using the shutdown command.
- 5. Turn off the power to all peripheral devices and *then* to the SPU.

- 6. Install the hardware, following instructions provided in the hardware documentation. When attaching the disk, set the switches on the disk to an unused target address, which you will have determined from ioscan output. Use the cabling recommended in the hardware documentation. If installing a SCSI device make sure the last device in the SCSI chain is terminated.
- 7. Turn on the power to all peripheral devices. Wait for them to become "ready", *then* turn on power to the SPU.
 - On booting up, HP-UX detects the new disk and associates it with its device driver.
 - Also during boot-up, insf creates the character and block device special (/dev) files required to communicate with the disk. For a disk array in independent mode, insf creates device special files for each disk; in striped mode, insf treats the entire array as a single disk.
- 8. Verify the configuration by executing ioscan. If you are configuring a hard disk, you have finished the initial configuration.
 - If you are configuring a floppy disk drive, initialize the floppy disk by invoking the mediainit command on the character device special file.

Planning to Configure into your System a Disk Already Containing Data

When configuring a new disk onto either Series 700 or 800 system, both SAM and insf now treat the disk in its entirety and create a single block device special file in /dev/dsk and a single character device special file in /dev/rdsk. As of HP-UX 10.0, to apportion disk space on both Series 700 and 800 systems, use Logical Volume Manager (LVM), which is documented in the *HP-UX System Administration Tasks* manual.

Configuring a disk already containing data into HP-UX 10.0 requires some attention to detail, because the I/O system is largely converged and the HP-UX file system layout (that is, the locations of system files and directories) has changed.

Approach the task in two stages:

- 1. Examine the files and data on the disk for possible clashes with the HP-UX 10.0, and take the necessary precautions, as documented in "Ensuring Against Clashes with HP-UX 10.0", the next section.
- 2. Configure the disk into HP 10.0.

Once 9.x Series 700 whole disks and Series 800 disks with hard partitions are successfully configured, HP-UX 10.0 accesses their data using a compatibility pseudo-driver (cpd).

Ensuring Against Clashes with HP-UX 10.0

Before you configure a disk containing 9.*x* data to a 10.0 system, it is *essential* that you make sure you will not be introducing file-system inconsistencies. This precaution is necessary because the file-system layout has changed dramatically from HP-UX 9.*x* to 10.0. Former system files and device files will not work in the new operating system and might cause serious problems if they are used.

The new file-system hierarchy is based on AT&T V.4 and OSF/1. The organization of files and directories are explained in a white paper entitled *HP-UX 10.0 File System Layout*.

To ensure against incompatibilities with HP-UX 10.0:

- 1. Examine the files on the 9.x disk to make *absolutely* sure you do not mount system directories and structural files. System directories include /usr, /dev, /etc, /system, /bin, and /lib. Structural files include files such as /etc/checklist and dfile. Never attempt to use 9.x device special files on a 10.x system. They will fail. Delete or rename any system files and directories you find.
- 2. Examine user scripts for occurrences of 9.*x*-specific path names and commands that are invalid or obsolete for 10.0. Do this *before* mounting the 9.*x* disk.

HP has some tools on 10.0 to help identify and correct changed or unsupported path names. These tools are shipped in the following filesets:

- Upgrade.UPG-ANALYSIS
- Upgrade.UPG-MAN

On a 10.0 system, the tools are installed in the <code>/opt/upgrade/bin</code> directory. The manpages are installed in <code>/opt/upgrade/share/man</code>. If you have obtained the filesets to be loaded onto an 9.x system, the filesets will be installed into <code>/upgrade/bin</code> and <code>/usr/man</code>.

Consult the manual, *Moving HP-UX 9.x Code and Scripts to 10.x: Using the Analysis and Conversion Tools* and the upgrade manpages for further guidance on preparing 9.x files for HP-UX 10.0.

Understanding How to Configure a Disk Already Containing Data

Accessing 9.*x* data might require that you configure one of the following 9.*x* disk types to HP-UX 10.0:

- Series 700 disks using Software Disk Striping (SDS). SDS is not supported on HP-UX 10.0. The safest way to import 9.*x* data from an SDS disk is as follows:
 - 1. Isolate the specific files of data.
 - 2. Examine the files for presence of system and structural files (as documented in the previous section) and remove any invalid references.
 - 3. Copy the information onto a 10.0-configured disk.
- Series 700 whole disks.
 - 1. Examine all files for the presence of system and structural files (as documented in the previous section) and remove any invalid references.
 - 2. Configure the disk as documented in "Configuring into your System an Unpartitioned Disk Already Containing Data", shortly. insf creates the required device special files to access the whole disks. If the disk is used in its entirety (as it was on 9.x), the data will be accessed using the cpd.
- Series 800 disks with hard partitions/sections.
 - 1. Examine all files for the presence of system and structural files (as documented in the previous section) and remove any invalid references.
 - 2. Configure the disks with Series 800 hard partitions by following the procedure "Configuring into Your System a Partitioned Disk Already Containing Data", later in this chapter. You will create device special files for each section using mksf or mknod. The cpd will enable you to access the partitioned data.
- Series 800 LVM disks.
 - 1. Examine all files for the presence of system and structural files (as documented in the previous section) and remove any invalid references.
 - 2. Add Series 800 LVM disks to a 10.0 system by importing the LVM information, as documented in "Configuring into your System an LVM Disk Already Containing Data".

Configuring into your System an Unpartitioned Disk Already Containing Data

NOTE

This procedure is provided for configuring a Series 700 legacy disk into HP-UX 10.0. Before proceeding, make sure you have read "Planning to Configure into your System a Disk Already Containing Data" and have performed the examination documented in "Ensuring Against Clashes with HP-UX 10.0".

- 1. Back up the data on the disk being configured into the system; see the backup chapter in *HP-UX System Administration Tasks*.
- 2. Create a record of the system's current disk configuration for later use:

```
/usr/sbin/ioscan -fun -C disk
```

Note whether the current configuration includes the device driver needed to communicate with the disk you intend to configure. Consult "Selecting Device Drivers for a Disk Device and Interface" for guidelines on compatible disks, device drivers, and interfaces.

If any necessary device driver is absent from the kernel, you will need to rebuild the kernel to include it. Here is how you rebuild the kernel:

a. Change directory to the build environment (/stand/build). Execute a system preparation script, system_prep, which extracts the system file from the current kernel and writes a system file in your current directory. (That is, it creates /stand/build/system.) The -v gives verbose explanation as the script executes.

```
cd /stand/build
/usr/lbin/sysadm/system_prep -v -s system
```

- b. Edit the /stand/build/system file to add the absent driver(s).
- c. Build the kernel by invoking the mk_kernel command. This creates /stand/build/vmunix_test, a kernel ready for testing.

```
/usr/sbin/mk_kernel -s system
```

d. Save the old system file and kernel by moving them. Thus, if anything goes wrong, you still have a bootable kernel.

```
mv /stand/system /stand/system.prev
mv /stand/vmunix /stand/vmunix.prev
```

e. Move the new system file and new kernel into place, ready to be used when you reboot the system.

```
mv /stand/build/system /stand/system
mv /stand/build/vmunix test /stand/vmunix
```

3. Bring the system down and physically install the disk device.

Configuring into your System an Unpartitioned Disk Already Containing Data

- 4. Turn on the power to all peripheral devices. Wait for them to become "ready", *then* turn on power to the SPU. On booting up, HP-UX detects the new disk and associates it with its device driver. insf creates the character and block device special (/dev) files required to communicate with the disk.
- 5. Execute /usr/sbin/ioscan -fun -C disk again, to identify the newly configured disk device and its device special files.

Configuring into Your System a Partitioned Disk Already Containing Data

NOTE

This procedure is provided for configuring a Series 800 legacy hard-partitioned disk into HP-UX 10.0. Before proceeding, make sure you have read "Planning to Configure into your System a Disk Already Containing Data" and have performed the examination documented in "Ensuring Against Clashes with HP-UX 10.0".

- 1. *Before you move a disk from one system to another*, you must create a clear record of how the disk is set up on its original system. Make a record of the following output:
 - bdf, for information on what file systems are mounted.
 - /etc/fstab, for information about the file systems mounted on the disk at boot time. (If the disk is being moved from a 9.x system, the equivalent file will have been called /etc/checklist. If the disk being moved is partitioned, /etc/checklist will be your *only* source of information for what partitions (sections) are being used.)
 - swapinfo, for information on device and file-system swap space enabled on the disk.
 - If the disk is used for a database, make a record of the database configuration file.
- 2. Back up the data on the disk; see the backup chapter in *HP-UX System Administration Tasks*.
- 3. Create a record of your system's current disk configuration for later comparison:

/usr/sbin/ioscan -fun -C disk

- 4. Note whether the current configuration includes the device driver(s) needed to communicate with the disk you intend to configure. Consult the tables in "Selecting Device Drivers for a Disk Device and Interface" for guidelines on compatible disks, device drivers, and interfaces. If any necessary device driver is absent from the kernel, you will need to rebuild the kernel to include it. Here is how you rebuild the kernel:
 - a. Change directory to the build environment (/stand/build). There, execute a system preparation script, system_prep. system_prep writes a system file based on your current kernel in the current directory. (That is, it creates /stand/build/system.) The -v provides verbose explanation as the script executes.

cd /stand/build
/usr/lbin/sysadm/system_prep -v -s system

- b. Edit the /stand/build/system file to add the absent driver(s).
- c. Build the kernel by invoking the mk_kernel command. This creates /stand/build/vmunix_test, a kernel ready for testing.

/usr/sbin/mk_kernel -s system

Chapter 4 109

Configuring into Your System a Partitioned Disk Already Containing Data

d. Save the old system file and kernel by moving them. Thus, if anything goes wrong, you still have a bootable kernel.

```
mv /stand/system /stand/system.prev
mv /stand/vmunix /stand/vmunix.prev
```

e. Move the new system file and new kernel into place, ready to be used when you reboot the system.

```
mv /stand/build/system /stand/system
mv /stand/build/vmunix test /stand/vmunix
```

- 5. Bring the system down and physically install the disk device.
- 6. Turn on the power to all peripheral devices. Wait for them to become "ready", *then* turn on power to the SPU.

On booting up, HP-UX detects the new disk and associates it with its device driver. insf creates a single character device special file and a single block device special file to communicate with the entire disk.

- 7. Execute /usr/sbin/ioscan -fun -C disk again, to verify that the disk device configured successfully and to identify its whole-disk device special files (/dev/[r]dsk/c#t#d#).
- 8. Use the mksf command to create device special files for each individual section being used on the disk. (Refer to the printout of /etc/checklist to identify the sections.)

Note, as of HP-UX 10.0, sections 2 and 0 have been switched: s0 now specifies whole disk; s2 specifies the portion of the disk that was previously represented by s0. Also, since sections are only minimally supported at 10.0, consult earlier documentation or version of /etc/disktab for disk sectioning geometry.

For example,

```
/sbin/mksf -C disk [ -H hardware_path -I instance ] -s section_number /sbin/mksf -C disk [ -H hardware_path -I instance ] -r -s section_number
```

9. Execute /usr/sbin/ioscan -fun -H hardware_path to verify that the device special files were created successfully.

Configuring into your System an LVM Disk Already Containing Data

NOTE

This procedure is provided for configuring a Series 800 legacy LVM disk into HP-UX 10.0. Before proceeding, make sure you have read "Planning to Configure into your System a Disk Already Containing Data" and have performed the examination documented in "Ensuring Against Clashes with HP-UX 10.0".

- 1. Back up the data on the disk; see the backup chapter in *HP-UX System Administration Tasks*.
- 2. Unmount any file systems residing on the LVM disk by using the umount command.
- 3. Deactivate the disk's volume group by using the vgchange command.
- 4. Remove the volume group of the disk from its current configuration and prepare to export it using the vgexport command. The -m option creates a mapfile that retains the names of the logical volumes in the volume group.

```
/usr/sbin/umount /dev/vg01/lvol1
/usr/sbin/vgchange -a n /dev/vg01
/usr/sbin/vgexport -m mapfile /dev/vg01
```

- 5. Copy the mapfile to the new system on which the disk will reside. On a networked system, you can use rcp or ftp.
- 6. Create a record of your system's *current* disk configuration for later use.

```
/usr/sbin/ioscan -fun -C disk
```

- 7. Note whether the current configuration includes the device driver needed to communicate with the disk being configured. If any necessary driver is absent from the kernel, you will need to rebuild the kernel to include it. Here is how you rebuild the kernel:
 - a. Change directory to the build environment (/stand/build). There, execute a system preparation script, system_prep, which extracts the system file from the current kernel and writes a system file in your current directory. (That is, it creates /stand/build/system.) The -v gives verbose explanation as the script executes.

```
cd /stand/build
/usr/lbin/sysadm/system_prep -v -s system
```

- b. Edit the /stand/build/system file to add the absent driver(s).
- c. Build the kernel by invoking the mk_kernel command. This creates /stand/build/vmunix_test, a kernel ready for testing.

```
/usr/sbin/mk_kernel -s system
```

d. Save the old system file and kernel by moving them. Thus, if anything goes wrong, you still have a bootable kernel.

Chapter 4 111

```
mv /stand/system /stand/system.prev
mv /stand/vmunix /stand/vmunix.prev
```

e. Move the new system file and new kernel into place, ready to be used when you reboot the system.

```
mv /stand/build/system /stand/system
mv /stand/build/vmunix_test /stand/vmunix
```

- 8. Bring the system down and physically install the disk device.
- 9. Turn on the power to all peripheral devices. Wait for them to become "ready", *then* turn on power to the SPU.
- 10. Watch the bootup sequence and record the name of the block device special file created for the new LVM disk.

You can also identify the disk device by using the ioscan command. /usr/sbin/ioscan -fn -C disk will display all disks and their device special files. Or, you can use /usr/sbin/ioscan -H hardware_path -fn to identify the disk device by location.

11. Scan your current system to identify all disks by their volume groups.

```
/usr/sbin/vgscan -v
```

12. Create a directory for the volume group to which the new LVM disk will belong. For example, a new volume group might be called vg06.

```
mkdir /dev/vg06
```

13. Check to make sure that you are creating a unique minor number for the new group file. Then create a character device special file for the new volume group's group file. The character major number for LVM is 64. In the minor number, *n* must be in the range between 0 and 9, because the maximum number of volume groups by default allowed on a system is ten. You can increase the number by changing the operating-system parameter maxvgs in /usr/conf/master.d/core-hpux or by using SAM.

```
11 /dev/*/group
mknod /dev/vg06/group c 64 0x0n0000
```

14. Import the LVM disk to the current system, citing the the block device special file name you noted when the system booted up and the mapfile you created when invoking vgexport at the beginning of the procedure. You can preview the effect of the import by using the -p option.

```
vgimport -pv -m mapfile /dev/vg06 block_device_special_file
vgimport -v -m mapfile /dev/vg06 block_device_special_file
```

The vgimport command adds the volume group name to the /etc/lvmtab file. It also adds the device special files associated with the volume group's logical volumes to the system.

15. Activate the new volume group.

```
/usr/sbin/vgchange -a y /dev/vg06
```

16. Mount the logical volumes to their new mount point. For further information on mounting and unmounting, consult the *HP-UX System Administration Tasks* manual.

mkdir /new_locationmount /dev/vg06/lvol1 /new_location

Chapter 4 113

Moving a Disk Drive to a Different Address

Occasionally, you might find yourself having to move a disk from one interface card to another. This procedure explains how to do so.

NOTE

Moving the root disk and moving an LVM root disk are special cases. You will find additional instructions at several points in this procedure to cover these requirements.

To move a disk drive using HP-UX commands:

- 1. Back up the files on the disk drive to be moved; see the backup chapter in *HP-UX* System Administration Tasks.
- 2. If you are moving a root LVM disk, execute the lvlnboot -v command to view the current configuration. Record the information. For example,

/usr/sbin/lvlnboot -v

Boot Definitions for Volume Group /dev/vg00: Physical Volumes belonging in Root Volume Group: /dev/dsk/c0t6d0 (56/52.6.0) Boot DiskRoot: lvol1 on: /dev/dsk/c0t6d0 Swap: lvol2 on: /dev/dsk/c0t6d0 Dump: lvol3 on: /dev/dsk/c0t6d0

- 3. Notify users that the system will be shut down to move the disk. You can use the wall command and/or the interactive capabilities of the shutdown command to broadcast a message to users before the system goes down. See *wall*(1M) or *shutdown*(1M) in the *HP-UX Reference*.
- 4. If your system is an NFS server and file systems on the disk you are moving are exported,
 - a. Find the NFS clients by logging in to the NFS server and looking at the /etc/exports file. Refer to *exports*(4) in the *HP-UX Reference*.
 - b. Notify the users on the NFS client systems that data on the disk being relocated will be inaccessible temporarily (users on a diskless system will be unable to use their system at all).
 - c. Unmount the file systems from the NFS client. If you do not unmount the file systems from the client, the client will receive NFS error messages when accessing the files on the disk.

There are several methods to unmount the NFS client file systems:

- Enter the Remote Administration area of SAM on the NFS server and unmount the file systems remotely.
- Log in directly to each NFS client and unmount the file systems using either SAM or HP-UX commands.

Refer to the file systems chapter of the *HP-UX System Administration Tasks* for specific instructions on unmounting file systems. For detailed information on Network File Systems, refer to *Installing and Administering NFS Services*.

5. If you are moving an LVM disk which is not being used for the root file system,

- a. Execute a vgdisplay -v command to display the contents of the active volume groups. (When moving an LVM disk, most of your LVM commands will be based on the volume group to which the disk belongs.)
- b. Execute lvdisplay -v for every logical volume in the volume group of the disk being removed to locate any logical volumes currently straddling the disk being moved and another disk. If you find any,
 - Back up the data and remove the logical volume, by executing an lvremove command.
 - Or, if the logical volume is mirrored,
 - Remove the mirroring, by executing an lvreduce -m 0 command.
- c. Execute a vgchange command to deactivate the volume group to which the disk is being added.
- d. If the disk comprises an entire volume group, execute a vgexport command to remove it from the current configuration.

If the disk comprises a portion of a volume group, execute a vgreduce command.

The disk is now free to be used as desired.

- 6. Determine the hardware address for the new location. Look at the Hardware Path field of ioscan output to make sure you choose an unused hardware address.
- 7. If you are moving a disk drive containing the *root* file system (and you want to continue to use it as root), you will need to make sure the AUTO file on the root disk boot area does not specify a hard-coded hardware path. To check this,
 - a. Locate the root disk by executing mount or bdf and looking for the / entry.
 - b. View the current contents of the AUTO file by executing the lifcp command and using to display the output. For example,

bdf

```
Filesystem kbytes used avail %used Mounted on /dev/dsk/c1t6d0 1813487 467756 1164382 29% / hera:/users 3916236 2978782 545830 85% /hera/home ...
/usr/bin/lifcp /dev/dsk/c1t6d0:AUTO - hpux (;0)/stand/vmunix
```

The output from lifcp should appear just as in this example. If instead, you see output that shows an explicit hardware path (for example, hpux (56.6.0;0)/stand/vmunix), you will need to update the AUTO file. To do so, execute the mkboot command with the -a option and verify your results:

```
/usr/sbin/mkboot -a "hpux (;0)/stand/vmunix" /dev/dsk/c1t6d0
/usr/bin/lifcp /dev/dsk/c1t6d0:AUTO -
    hpux (;0)/stand/vmunix
```

- Once the hardware path is removed, the system will boot using the path selected from processor-dependent code.
- The ; 0 specifies that you are dealing with the entire disk.
- /dev/dsk/clt6d0 is the device special file for the current location of the root disk.

Chapter 4 115

CAUTION

The mkboot command overwrites the contents of the autoboot string.

- 8. If your /stand/system file includes (optionally) an explicit reference to the location of swap and/or dump, and these are located on the disk being moved, your kernel will have to be rebuilt for the operating system to find the new locations.
 - a. Change directory to the build environment (/stand/build). There, execute a system preparation script, system_prep, which extracts the system file from the current kernel, as follows:

```
cd /stand/build
/usr/lbin/sysadm/system_prep -v -s system
```

The system_prep script writes a system file in your current directory (that is, it creates /stand/build/system). The -v gives verbose explanation as the script executes.

- b. Edit the /stand/build/system file to reflect the new hardware path(s).
- c. Build the kernel by invoking the command,

```
/usr/sbin/mk_kernel -s system
```

The mk_kernel command creates /stand/build/vmunix_test, a kernel ready for testing.

d. Save the old system file and kernel by moving them. Thus, if anything goes wrong, you still have a bootable kernel.

```
mv /stand/system /stand/system.prev
mv /stand/vmunix /stand/vmunix.prev
```

e. Move the new system file and new kernel into place, ready to be used when you reboot the system.

```
mv /stand/build/system /stand/system
mv /stand/build/vmunix_test /stand/vmunix
```

- 9. Shut down and halt your system using the shutdown command.
- 10. Turn off the peripheral devices (including the disk drive) and then your SPU.
- 11. Physically move the disk drive and write down its new hardware location
- 12. Power up all peripheral devices, wait for them to indicate "ready", and *then* power on the SPU.
- 13. If you are moving a disk containing the *root* file system, you must change the hardware path that is read from stable storage:
 - a. Start up your system, but *override the autoboot*. Do not boot from the primary or alternate boot path. Instead, enter Boot Administration mode. (Note, boot ROM administration is system-dependent, and thus differs for Series 700 and 800 systems. The boot ROM menus, however, are self-explanatory. Use one of the help commands (Help or ?) whenever you are uncertain of what to do.
 - b. On a Series 700, boot from the new hardware address of your root disk by using the Boot command and proceed to the initial system loader. For example,

```
BOOT-ADMIN> boot 2/0/1.4.0 is
```

On a Series 800, enter the new hardware address of your root disk and boot your system. For example, if your new hardware address is 52.1, enter b 52.1.

Answer Y to the prompt: Interact with IPL? This will invoke the initial program loader.

- c. Set the system's primary boot path in stable storage to the new hardware address, by using the primpath command at the ISL> prompt. The system will prompt you to enter the primary boot path.
- d. Verify the contents of your AUTO file, this time, by executing the lsautofl command. You should see hpux (;0)/stand/vmunix.
- e. Boot your system by typing in the contents of the AUTO file. Note, if you have moved a root LVM disk, boot to LVM maintenance mode by using the -lm option.

For example,

```
ISL> hpux boot (;0)/stand/vmunix
or
ISL> hpux -lm boot (;0)/stand/vmunix
```

This command loads the kernel from the HP-UX file system and transfers control to the loaded device. On booting up, insf identifies all devices it finds (including the newly moved disk) and creates /dev files for them.

- 14. Log in.
- 15. If you have moved an LVM root disk, proceed through the following sequence of commands to gain access to the root disk at the new location:
 - a. Execute a vgchange command to reactivate the root volume group.
 - b. Execute an lvlnboot command to view the logical volumes in the volume group.
 - c. Execute an lvrmboot command to remove the current definitions of root, swap, and dump from the disk's Boot Data Reserved Area.
 - d. Execute lvlnboot commands to redefine root, swap, and dump. Use the -v option for verbose output.
 - e. Execute a vgchange command to deactivate the root volume.
 - f. Reboot the system.

For example, if root is redefined as lvol1, swap as lvol2, and dump as lvol3,

```
/usr/sbin/vgchange -a y /dev/vg00
/usr/sbin/lvlnboot -v
/usr/sbin/lvrmboot -r /dev/vg00
/usr/sbin/lvlnboot -r /dev/vg00/lvol1
/usr/sbin/lvlnboot -s /dev/vg00/lvol2
/usr/sbin/lvlnboot -d /dev/vg00/lvol3
/usr/sbin/vgchange -a n /dev/vg00
/usr/sbin/reboot
```

16. Identify the device files corresponding to the newly moved disk, by using /usr/sbin/ioscan -fun -C disk and looking for the disk's hardware path. Write down the name of the new block device special file.

Chapter 4 117

Moving a Disk Drive to a Different Address

17. Create a backup copy of the /etc/fstab file:

cp /etc/fstab /etc/fstab.old

18. Edit /etc/fstab to include the block device special file of the disk at its new location.

Once edited, the /etc/fstab file will provide accurate information to the mount command. If the newly located disk is *not* the root disk, you may now mount it. (If the newly located disk *is* the root disk, it has been mounted already by other means.)

/usr/sbin/mount -a

- 19. If your system is an NFS server, remount the file systems on its clients. Do so by executing the mount command on the NFS client systems.
- 20. Update any software application configurations that use the relocated disk drive to make sure they use the new device files. Refer to your software application documentation for specific instructions.

Removing a Disk Drive

- 1. Back up the data on the disk drive; see the backup chapter of *HP-UX System Administration Tasks*.
- If your system is an NFS server and file systems on the disk you are moving are exported,
 - a. Find the NFS clients by logging in to the NFS server and looking at the /etc/exports file. Refer to *exports*(4) in the *HP-UX Reference*.
 - b. Notify the users on the NFS client systems that data on the disk being relocated will be inaccessible temporarily (users on a diskless system will be unable to use their system at all).
 - c. Unmount the file systems from the NFS client. If you do not unmount the file systems from the client, the client will receive NFS error messages when accessing the files on the disk.

There are several methods to unmount the NFS client file systems:

- 1. Enter the Remote Administration area of SAM on the NFS server and unmount the file systems remotely.
- 2. Log in directly to each NFS client and unmount the file systems using either SAM or HP-UX commands.

Refer to the file systems chapter of the *HP-UX System Administration Tasks* for specific instructions on unmounting file systems. For detailed information on Network File Systems, refer to *Installing and Administering NFS Services*.

3. Create a backup copy of the /etc/fstab file (cp /etc/fstab /etc/fstab.old).

Edit /etc/fstab to remove any mount entries for the disk being removed. Update the /etc/fstab on all NFS client systems to remove the mount entries for file systems that are on the disk drive being removed.

- 4. If you are removing an LVM disk,
 - a. Execute a vgdisplay -v command to display the contents of the active volume groups. (When moving an LVM disk, most of your LVM commands will be based on the volume group to which the disk belongs.)
 - b. Execute lvdisplay -v for every logical volume in the volume group of the disk being removed to locate any logical volumes currently straddling the disk being moved and another disk. If you find any,
 - Back up the data and remove the logical volume, by executing an lvremove command.
 - Or, if the logical volume is mirrored,
 - Remove the mirroring, by executing an lyreduce -m 0 command.
 - c. Execute a vgchange command to deactivate the volume group to which the disk is being added.
 - d. If the disk comprises an entire volume group, execute a vgexport command to remove it from the current configuration.

Chapter 4 119

Removing a Disk Drive

If the disk comprises a portion of a volume group, execute a vgreduce command. The disk can now free be removed.

- 5. Notify the users on the system about system shutdown as a result of removing the disk drive.
- 6. Shut down and bring your system into single-user mode using the shutdown command.
- 7. If you are removing the disk drive your kernel uses for primary swap and dump, reconfigure the kernel to reassign them. Refer to the file systems chapter of the *System Administration Tasks*.
- 8. Halt the system:

/usr/sbin/reboot -h

- 9. Turn off any peripherals attached to the computer system and then the SPU.
- 10. Turn off, unplug, and disconnect the disk drive.
- 11. Turn on any peripherals attached to the computer system and *then* the SPU. On booting up, insf identifies all devices it finds and creates /dev files for them.
- 12. Log in.
- 13. Update any software application configurations that use the removed disk drive. Refer to your software application documentation for specific instructions.

Finding Out the Disk Model Number and Other Information

The diskinfo command displays useful information about a disk. Execute it specifying the disk's character device special file. For example,

/usr/sbin/diskinfo /dev/rdsk/c1t2d0

SCSI disks can be further identified by the product ID field. The number displayed does not correspond to the HP model number of the disk, but rather to an "inquiry response" derived from querying the disk firmware itself using a SCSI inquiry command. The inquiry response often resembles a product number or product number family. (For example, disks C243x and C2440 all report C2430D.)

If you have a disk hardware problem and are working with an HP service engineer, reporting the inquiry response gives him or her with useful information such as firmware revision, disk mechanism, form factor, and capacity.

Chapter 4 121

After Configuring HP-UX for the Disk Device

After configuring HP-UX for a disk device, you may complete the tasks required to put it to use. These include:

- Setting up powerfail capabilities for the disk or disk array.
- Setting up or modifying RAID levels for a disk array, if necessary.
- Adding a disk to an LVM volume group.
- Mirroring the disk.
- Defining logical volumes in LVM.
- Making the disk available for swapping.
- Creating or moving file systems onto the disk.
- Exporting the disk using NFS capabilities.
- Controlling access to the information on the disk.
- Controlling disk usage by implementing disk quotas.
- Integrating the disk into your backup strategy.
- Restoring data to the disk from other disks.
- Moving file systems to more equitably use your disk space.
- Arrange to mount file systems on the disk at bootup.
- Creating a recovery system for the data on the disk, particularly if this is the root disk.

For these tasks, refer to information in the hardware manuals, *HP-UX System Administration Tasks* manual and the *HP-UX Reference*.

5 Configuring Magneto-Optical Devices

Magneto-optical disks and magneto-optical disk library systems are SCSI devices used for high-capacity read-write applications. The ability of magneto-optical devices to randomly access vast amounts of data makes them best suited for fast retrieval of infrequently accessed archival data, unattended backup, and storage of large data files such as electronic images.

Chapter 5 123

Data can be written to the optical disks in raw mode or as files; cpio, dd, and other HP-UX commands can access optical disks in raw or block mode. LVM can be used to configure partitions on magneto-optical devices. Note, however, that LVM is not supported for spanning disks on magneto-optical devices.

Typically, magneto-optical disk libraries require installation by an HP Service Engineer.

NOTE

Magneto-optical devices are shipped with a shipping screw in place to ensure that the product is not damaged in transit. Consult the hardware documentation for instructions on removing the shipping screw before configuring the device.

Planning to Configure a Magneto-Optical Device

Magneto-optical disk devices are configured into the operating system much like a SCSI hard disk drive. Choose the device drivers that must be present in the kernel for HP-UX to communicate with your magneto-optical device based on:

- whether you are configuring a single disk or a magneto-optical disk library
- the architecture and interface to which you are configuring the device.

Characteristics of Magneto-Optical Devices

Magneto-optical devices yield good performance if data is distributed properly within its structural framework.

The size of an individual magneto-optical disk device makes it suitable for use as a boot disk, though its performance does not match that of a standard hard disk. Series 800 systems cannot be booted from magneto-optical devices.

Magneto-optical disk libraries contain multiple optical disks and multiple optical drives. HP offers several magneto-optical disk library products, with various capacity ranges and hardware configurations.

Each magneto-optical disk has two surfaces (sides), each of which appears to HP-UX as if it were an entire disk that can be used for a mountable file system or for raw access. Optical disk surfaces may be kept on- or off-line, as use requires. You may access simultaneously *only as many autochanger surfaces are there are autochanger drives*. (This is a change in implementation.) SAM will also allow access to only as many surfaces as there are drives.

NOTE

If you exceed the number of drives, the request for the additional surface will either wait (sleep) without timeouts, or it will fail with an EBUSY error (indicating the device is currently busy). The resultant behavior depends on the specific operation. Requests to execute mount, mediainit, or newfs on surfaces will fail with an EBUSY error when all the drives are used. Other commands (such as raw access with cpio or dd) will wait (sleep) until a drive is available.

Chapter 5 125

Understanding Magneto-Optical Media Capacity

Magneto-optical disk mechanisms support several different capacities:

- C17xxA and C17xxC products support 1X capacity disks.
- C17xxT and C11xxA products support 1X and 2X capacity disks.

HP-UX supports disks with 512 or 1024 bytes per sector, for both 1X and 2X capacity. Disks with 1024 bytes per sector give more storage space per disk, due to a smaller amount of sector overhead.

Table 5-1 Magneto-Optical Media Capacity by Size

Sector Size	Total Size 1X Capacity	Total Size 2X Capacity
512 bytes	600 MB	1.2 GB
1024 bytes	650 MB	1.3 GB

You can determine the media by executing the diskinfo command. diskinfo output for magneto-optical disks shows the information for the specific *surface* queried, not for the disk as a whole. The size in this example corresponds to the number of bytes on one surface of a 1X-capacity magneto-optical disk, with a sector size of 1024 bytes. (A 2X-capacity magneto-optical disk would show 581668 Kbytes.)

/usr/sbin/diskinfo /dev/rac/c0t1d0_4a

SCSI describe of /dev/rac/c0t1d0_4a:

vendor: HP product id: C1716T

type: optical memory size: 314568 Kbytes

bytes per sector: 1024

Magneto-Optical Disk Configuration Guidelines

This section identifies the device drivers that must be configured into HP-UX for it to communicate with *single* magneto-optical disks. If you are configuring a magneto-optical disk *library* or adding an optical disk to an existing magneto-optical disk library, refer to the section, "Magneto-Optical Disk Library Configuration Guidelines."

Table 5-2 lists the device drivers required to configure a magneto-optical disk to single-ended SCSI interface for each supported architecture.

Table 5-2 Magneto-Optical Disk Configuration Requirements

Architecture	Interface Card	Interface and Device Drivers	Default Device File
Series 700 ^a (core I/O only)	(internal)	sdisk ^b	/dev/[r]dsk/c#t#d#[s#] ^c
Series 800 CIO ^a	27147A	scsi2 ^d disc3 ^e	(same as above)
Series 800 HP-PB ^a	28655A	scsi1 ^f disc3 ^e	(same as above)

- a. The following optical disks [listed with their respective product ID strings returned by SCSI Inquiry] can be configured to a Series 700 single-ended SCSI interface, Series 800 CIO or HP-PB single-ended SCSI interface: C1701A [S6300.650A], C1701C [C1716C], C2550B [C1716T].
- b. Specifying sdisk causes sctl, c700, and wsio drivers to be included automatically in the kernel.
- c. c#t#d#[s#] derives from ioscan output: c# is the card instance for the class of interface card to which the device is attached, t# is the address of the device on the interface, d# is the device unit number. s# specifies section number and is shown for backward compatibility; the entire disk (s0) is assumed when s# is unspecified.
- d. Specifying scsi2 causes cio ca0 to be included in the kernel.
- e. Specifying disc3 causes target to be included in the kernel.
- f. Specifying scsil causes sio, pfail, and pa drivers to be included in the kernel.

Chapter 5 127

Configuring HP-UX for a Magneto-Optical Disk

This section gives instructions on configuring HP-UX for a *single* magneto-optical disk. Configuring a single magneto-optical disk is done almost identically to configuring any hard disk to a single-ended SCSI interface card:

- 1. Select the device drivers from the table, "Magneto-Optical Disk Configuration Guidelines," in the previous section.
- 2. Follow the procedure, "Configuring HP-UX for a New Disk Device," in Chapter 4, "Configuring Disk Devices, Disk Arrays, and CD-ROM Drives."
- 3. Unless you have purchased the disk preformatted, you may need to run mediainit to initialize the media. Refer to the hardware documentation or *mediainit*(1) in the *HP-UX Reference*.

If you are configuring an magneto-optical disk library, refer to the next section, "Magneto-Optical Disk Library Configuration Guidelines."

CAUTION

If you are configuring an existing 9.x magneto-optical disk to an HP-UX 10.0 system, be sure to read and follow the precautions detailed in the sections entitled "Planning to Configure into your System a Disk Already Containing Data" and "Ensuring Against Clashes with HP-UX 10.0," both located in Chapter 4, "Configuring Disk Drives, Disk Arrays, and CD-ROM Drives," of this manual.

Magneto-Optical Disk Library Configuration Guidelines

This section gives information pertinent to configuring a magneto-optical disk *library*. If you are configuring a *single* magneto-optical disk, refer to the previous section, "Magneto-Optical Disk Configuration Guidelines."

Table 5-3 lists the device drivers required to configure a magneto-optical disk library to a single-ended SCSI interface for each supported architecture.

Table 5-3 Magneto-Optical Disk Library Configuration Requirements

Architecture	Interface Card	Interface and Device Drivers	Default Device Files
Series 700 ^a (core I/O only)	(internal)	ssrfc ^b sc hgr sdisk ^c	/dev/[r]ac/c#t#d#_#[a b] ^d
Series 800 CIO ^e	27147A	scsi2 ^e ssrfc ^b au tox0disc 3 ^f	(same as above)
Series 800 HP-PB ^a	28655A	scsi1 ^g ssrfc ^b au tox0 disc3 ^f	(same as above)

- a. The following optical disk libraries are supported on Series 700 (core single-ended SCSI only) and Series 800 HP-PB buses: C1100A, C1150A, C1160A, C1170A, C1700C/T, C1704A/C/T, C1705A/C/T, C1708C/T.
- b. Disks in an optical disk library must be accessed through the ssrfc driver; lthey cannot be accessed directly through the SCSI disk driver (sdisk or disc3). Also see *autochanger*(7).
- c. Specifying schgr or sdisk causes sctl, c700, and wsio to be included in the kernel.
- d. c#t#d# derives from ioscan output: c# is the card instance for the class of interface card to which the device is attached, t# is the address of the device on the interface, d# is the device unit number. #[a|b] specifies disk platter number and surface.
- e. Specifying scsi2 causes cio_ca0 to be included automatically in the kernel.
- f. Specifying disc3 causes target to be included automatically in the kernel.
- g. Specifying scsil causes sio, pfail, and pa drivers to be included in the kernel.

Chapter 5 129

Configuring HP-UX for a Magneto-Optical Disk Library

The simplest way to configure a magneto-optical disk library is to use SAM (/usr/sbin/sam). If SAM is not loaded on your system or if you prefer to use the command-line interface, the following procedure will guide you through the task. Understand the instructions before getting started.

1. On your host computer system, invoke /usr/sbin/ioscan -fn to figure out what addresses are available on the SCSI interface to which you'll be attaching the optical disk library.

Observe the following single-ended SCSI guidelines:

- Each host adapter card has a maximum of seven available SCSI addresses (6-0) in order of descending priority, with address seven reserved for the host adapter.
- The optical disk library systems (C11x0A and C17xxA/C/T) use up to five SCSI addresses one for each of the magneto-optical disk drives and one for the autochanger mechanism.
- Observe the maximum single-ended SCSI cable length of six meters.
- 2. Using the hardware documentation as your primary source:
 - Physically set up the optical disk library (separate from the host system).
 - Assign unique SCSI addresses to each disk drive and autochanger mechanism and record the information.
 - Run the recommended tests.
- 3. Consult Table 5-3 to determine the device drivers needed for your magneto-optical disk library and interface. If any necessary device driver is absent from the kernel, you will need to rebuild the kernel to include it. Here is how to do so:
 - a. Change directory to the build environment (/stand/build). Execute a system preparation script, system_prep, which extracts the system file from the current kernel and writes a system file in your current directory. (That is, it creates /stand/build/system.) The -v gives verbose explanation as the script executes.

```
cd /stand/build
/usr/lbin/sysadm/system prep -v -s system
```

- b. Edit the /stand/build/system file to add the absent driver(s).
- c. Build the kernel by invoking the mk_kernel command. This creates /stand/build/vmunix_test, a kernel ready for testing.

```
/usr/sbin/mk_kernel -s system
```

d. Save the old system file and kernel by moving them. Thus, if anything goes wrong, you still have a bootable kernel.

```
mv /stand/system /stand/system.prev
mv /stand/vmunix /stand/vmunix.prev
```

e. Move the new system file and new kernel into place, ready to be used when you reboot the system.

```
mv /stand/build/system /stand/system
mv /stand/build/vmunix_test /stand/vmunix
```

- 4. Notify users that the system will be shut down to configure the optical disk library. You can use the wall command and/or the interactive capabilities of the shutdown command to broadcast a message to users before the system goes down. (See wall(1M) or shutdown(1M) in the HP-UX Reference.)
- 5. Bring the system down to a halt using the shutdown command.
- 6. Turn off the power to all peripheral devices and *then* to the SPU.
- 7. Attach the optical disk library to the host computer system, following the instructions and using the cabling recommended in the hardware documentation. Make sure the last device in the SCSI chain is terminated.
- 8. Turn on the power to all peripheral devices, including the optical disk library. Wait for the peripheral devices to become ready, *then* turn on power to the SPU.

On booting up, HP-UX detects the optical disk library and associates it with its device drivers. insf creates the character and block device special (/dev) files required to communicate with each disk surface in the optical disk library. By default, insf creates device special files for 32 optical disks (64 device special files for the surfaces plus a device special file for the autochanger).

If you are configuring a larger-capacity magneto-optical library system, you will need to create device files for the remaining slots, by executing the following command:

```
/usr/sbin/insf -e -p <first_optical disk:last_optical disk> -H <H/W_path>
```

9. Verify the configuration by invoking the ioscan command on the address to which the disk library was configured.

As shown in excerpted output run on a Series 700, a magneto-optical autochanger displays two entries — one for the autochanger mechanism (in this case, C1708C) and one for the disk mechanism (C1716C) — each with its own set of block and character device special files.

/usr/sbin	/io	scan -H 2/0)/1 -fn				
Class	I	H/W Path	Driver	S/W State	e H/W Type	Descri	ption
=======	===	=======		=======	========		=====
ext_bus	0	2/0/1	c700	CLAIMED	INTERFACE	Built-	in SCSI
target	2	2/0/1.0	target	CLAIMED	DEVICE		
autoch	0	2/0/1.0.0	schgr	CLAIMED	DEVICE	HP	C1708C
			/dev/ac/c0t0	d0_10a	/dev/rac/c0t0d	10_10a	
			/dev/ac/c0t0	d0_10b	/dev/rac/c0t0d	10_10b	
			/dev/ac/c0t0	d0_11a	/dev/rac/c0t0d	10_11a	
			/dev/ac/c0t0	d0_11b	/dev/rac/c0t0d	10_11b	
			/dev/ac/c0t0	d0_12a	/dev/rac/c0t0d	10_12a	
			/dev/ac/c0t0	d0 31b	/dev/rac/c0t0d	10 31b	
			/dev/ac/c0t0	d0 32a	/dev/rac/c0t0d	- 10 32a	
			/dev/ac/c0t0	d0 32b	/dev/rac/c0t0d	- 10 32b	
			/dev/rac/c0t	_		_	
/usr/sbin	/io	scan -H 2/0)/1.1.0 -fn				
Class		H/W Path	Driver	S/W State	e H/W Type	Descri	ption
=======	===	=======		=======			-
disk	0	2/0/1.1.0	sdisk	CLAIMED	DEVICE	HP	C1716C
			/dev/dsk/c0t	1d0 /	dev/rdsk/c0t1d	10	

Chapter 5 131

After Configuring a Magneto-Optical Device

Once you have configured a magneto-optical disk, it can be used like any other disk. You will find its performance somewhat slower than a hard disk but faster than a floppy disk.

Consult the *Optical Disk Library System Administrator's Guide* that accompanied the hardware for procedures on the following:

- initializing the disk surfaces.
- creating file systems on the optical disk devices.
- mounting the optical disk surfaces.
- using the optical disk library as a boot or swap device.
- using write-once disks.
- removing the optical disk library.

Also, refer to the section, "After Configuring HP-UX for the Disk Device" for a list of potentially pertinent tasks.

6 Configuring Tape Drives

Several kinds of tape drives, having different recording methods and formats, can be configured to HP-UX:

- nine-track reel-to-reel tape drive
- cartridge tape drive (configured like a disk device)

Chapter 6 133

- QIC tape drive
- DDS (DAT) tape drive
- 8mm Exabyte tape drive
- 3480-style cartridge tape drive

Despite their differences, any of these tape drives can be configured into HP-UX by the same basic procedure:

- 1. Select the device drivers, based on the interface (HP-IB or SCSI) to which the tape drive is attached, and include them in the kernel.
- 2. Set the tape drive to a unique address on the interface bus.
- 3. Follow the steps documented in this chapter to configure HP-UX for the device.

Once you reboot the system with the tape driver installed and configured, insf automatically creates the device special files that enable you to use the features of the specific tape drive technologies.

You will create customized device special files (using mksf) only for special circumstances, such as when you have to write a tape on a tape drive that supports data compression, but you intend to read it on a tape drive that does not support data compression. Examples are given in "Creating Customized Device Special Files for Tape Devices" later in this chapter.

Selecting Device Drivers for a Tape Device and Interface

The following sections will help you identify the device drivers needed to configure a tape drive. Choose the drivers based on the interface to which the tape drive is being connected.

Table 6-1 and Table 6-2 show default device special file names created for tape drives, depending on whether your HP-UX system is configured with long or short file names. Limited 9.*x* device-file notation is also shown for backward compatibility.

HP-IB Tape Drive Configuration Guidelines

HP-IB tape drives can be configured to a Series 800 CIO or HP-PB HP-IB interface card. Note, the EISA bus does not support HP-IB tape drivers; thus you cannot configure most tape drives to the EISA HP-IB card. (See Table 6-2 for exceptions.)

Although the HP-IB bus can accommodate as many as 30 addresses, HP tape drives use a protocol called parallel polling that requires they be configured to addresses in the range of 0 to 7. Performance might decline if more than four tape devices are connected to an HP-IB interface.

Do not install HP-IB tape drives to the same interface as the root device (main disk drive), particularly on Series 800 CIO servers. Doing so can severely degrade your disk drive's performance.

Table 6-1 lists the drivers required for configuring an HP-IB tape drive for each supported architecture. It also shows the device special files that insf creates when tape devices are configured.

Chapter 6 135

Table 6-1 HP-IB Tape Drive Configuration Requirements

Architecture	Interface Card	Interface and Device Drivers	Default Device Special Files
Series 800 CIO ^a	27110B	hpib0 ^b tape1	/dev/rmt/c#t#d#BEST[b n nb] ^c /dev/rmt/c#t#d#[f# i#][b n nb] d /dev/rmt/#m[b n nb] ^e
Series 800 HP-PB ^a	28650B	hpib1 ^f tape1	(same as above)

- a. The following model tape drives are supported for HP-UX on the Series 800 CIO and HP-PB HP-IB interfaces: 7980A/XC, (C1511A). (Models shown in parenthesis are obsolete and are listed for reference only.)
- b. Specifying hpib0 causes cio_ca0, sio, pfail, and pa to be included automatically in the kernel.
- c. Naming convention for systems installed with long file names. c#t#d# derives from ioscan output: c# is the card instance for the ext_bus class of interface card to which the tape drive is attached, t# is the address of the tape device on the HP-IB bus, d# is the device number (typically d0). BEST represents the operational capabilities likely to be required, including the highest density/format and data compression, if the device supports it. [b|n|nb] designates style of tape positioning: b is Berkeley-style tape positioning; that is, after file close, the tape is not repositioned in any way. If b is not designated, AT&T-style tape closing occurs; that is the tape might be positioned after the next end-of-file (EOF) point. n designates no rewind.
- d. Naming convention for systems installed with short file names. For c#t#d#, see footnote 88. f# represents the highest density/format and data compression, if the device supports it. Or, i# represents a pointer into a tape-device property table. For [b|n|nb], see footnote 88.
- e. Syntax available for backward compatibility. # designates tape drive at # card instance. The #m, #mb, #mn, and #mnb device special files are linked to c#t#d#BEST, c#t#d#BESTb, c#t#d#BESTh, and c#t#d#BESTnb, respectively, or their equivalent short file names.
- f. Specifying hpib1 causes sio, pfail, and pa to be included automatically in the kernel.

Older-style command-set 80 (CS/80) HP-IB cartridge tape drives are supported for HP-UX on both the Series 700 and 800 HP-IB interface, using disk device drivers. They are shown in Table 6-2. Note, these devices have a much more limited range of capabilities than are available for tape drives configured through the stape, tape1, and tape2 drivers. See ct(7) in the HP-UX Reference.

Table 6-2	HP-IB Cartridge Tape Drive Configuration Requirements
-----------	---

Architecture	Interface Card	Interface and Device Drivers	Default Device Special Files
Series 700 EISA ^a	25560A	cs80 ^b	/dev/[r]ct/c#t#d# ^c
Series 800 CIO ^a	27110B	hpib0 ^d disc1 ^e	(same as above)
Series 800 HP-PB ^a	28650B	hpib1 ^f	(same as above)

- a. The following models can be configured to EISA, CIO, and HP-PB HP-IB interfaces: (35401), (7914CT), 7946, (7974A), (7978B), 7979A, 7980A, (9144A), (9145A). (Models shown in parenthesis are obsolete and are listed for reference only.)
- b. Specifying cs80 causes hshpib, wsio, eisa, core, and eeprom to be included automatically into the kernel.
- c. c#t#d# derives from ioscan output: c# is the card instance for the ext_bus class of interface card to which the tape drive is attached, t# is the address of the tape device on the HP-IB bus, d# is the device number (d1 must be used to address cartridge tape-drive component of the disk/tape combination devices, such as 7946). For cartridge tape drives to communicate through HP-UX, minor number bit 25 of the device special file must be set. (See Appendix C for mapping of disc1 minor number bit assignments.)
- d. Specifying hpib0 causes cio_ca0, sio, pfail, and pa to be included automatically in the kernel.
- e. Specifying disc1 causes disc1_included to be configured automatically in the kernel.
- f. Specifying hpib1 causes sio, pfail, and pa to be included automatically in the kernel.

Chapter 6 137

SCSI Tape Drive Configuration Guidelines

Each single-ended SCSI interface card has a maximum of eight SCSI addresses, ranging in order of decreasing priority from 7 to 0, with SCSI address 7 reserved for the host adapter card. Use 0, the lowest priority address available, for low-performance tape-drive configuration. High-performance tape drives will need a higher priority.

When using an STK 3480 tape drive, connect the device to its own external SCSI host adapter in the SPU to prevent the possibility of data corruption if the bus glitches when the tape drive is powered down. Follow manufacturer's recommendations in hardware manuals.

3480 devices are supported as "reference" devices on HP-UX; that is, they are supported to a limited degree. A third-party application is needed to read/write IBM-compatible tapes on HP-UX systems. (See mt(7) in the HP-UX Reference for additional limitations.)

Where possible, connect the 7980S/SX and C2463F/R tape devices to their own external SCSI bus, to prevent possible data corruption from controller glitches.

NOTE

By default, insf creates device special files that write tapes with data compression enabled if the tape drive doing the writing supports data compression. If you have to write a tape on a tape drive that supports data compression, but you need to read it on a tape drive that does not support data compression, you must create the tape using a device special file with data compression disabled, using mksf. See "Creating Customized Device Special Files for Tape Devices", later in this chapter, for an example.

Table 6-3 shows the configuration requirements for the single-ended SCSI tape drives.

Table 6-3	SCSI Tape Drive Configuration Requirements
-----------	--

Architecture	Interface Card	Interface and Device Drivers	Default Device Special Files
Series 700 Core I/O ^a	(internal)	stape ^b	
Series 700 EISA ^a	25525A/B	stape ^b	(same as above)
Series 800 CIO ^a	27147A	scsi2 ^f tape2 ^g	(same as above)
Series 800 HP-PB ^h	28655A	scsil ⁱ tape2 ^g	(same as above)

- a. The following tape drives are supported for HP-UX on a single-ended SCSI interface: 7980S/SX, A2311A, A2656A, A2944A, A2944A, A3024A, (C1502A), C1503A/B/C, C1504A/B/C, (C1512A), C1520A/B, C1521B, C1530B, C1533A, C1534A, C1535A, C1553A, C2292A, C2297T/U, C2298A, (C2463F/R), C2464F/R, C2465R, C2466F/R, C2467F/R, C2477F/R/S/U, C2478U, C2954A. (Obsolete models are shown in parenthesis for reference only.)
- b. Specifying stape causes sctl, c700, wsio, and core drivers to be included automatically in the kernel.
- c. Naming convention for systems installed with long file names. c#t#d# derives from ioscan output: c# is the card instance number for the ext_bus class of interface card to which the tape drive is attached, t# is the SCSI address, d# is the device number. BEST represents the operational capabilities likely to be required, including the highest density/format and data compression, if supported by the device. [b|n|nb] designates tape positioning: b is Berkeley-style; that is, after file close, the tape is not repositioned in any way. If b is not designated, AT&T-style tape closing occurs; that is the tape might be positioned after the end-of-file (EOF) point. n designates no rewind.
- d. Naming convention for systems installed with short file names. For c#t#d#, see footnote 100. f# represents the highest density/format and data compression, if the device supports it. Or, i# represents a pointer into a tape-device property table. For [b|n|nb], see footnote 100.
- e. Syntax available for backward compatibility. # designates tape drive at # card instance. The #m, #mb, #mn, and #mnb device special files are linked to c#t#d#BEST, c#t#d#BESTb, c#t#d#BESTh, and c#t#d#BESTnb, respectively.
- f. Specifying scsi2 causes cio_ca0, sio, pfail, and pa drivers to be included automatically in the kernel.
- g. Specifying tape2 causes tape2_included to be included automatically in the kernel.
- h. Tape drives listed in footnote 1 are supported on Series 800 HP-PB architecture, as are A2311A and A2312A. StorageTek models 4220 and 4280 tape drives will also configure successfully using the HP-PB single-ended SCSI device driver; however, these tape drives must be the only peripheral device on their SCSI bus.
- i. Specifying scsil causes sio, pfail, and pa drivers to be included automatically in the kernel.

Chapter 6 139

Configuring HP-UX for a Tape Drive

The simplest way to configure a tape drive is to use SAM (/usr/sbin/sam). If SAM is not loaded on your system or if you prefer to use the command-line interface, the following procedure will guide you through the task. Understand the instructions before getting started.

- 1. Invoke /usr/sbin/ioscan -fn to figure out what addresses are available on the interface card to which you will be attaching the tape drive.
 - For examples of ioscan usage, consult "Using ioscan to Display Your I/O Configuration," in Appendix B of this book.
- 2. Determine the device drivers needed for your tape drive and interface by consulting ,Table 6-1,Table 6-2, or Table 6-3 in the previous section, "Selecting Device Drivers for a Tape Device and Interface". If any necessary device driver is absent from the kernel, you will need to rebuild the kernel to include it.
 - a. Change directory to the build environment (/stand/build). There, execute a system preparation script, system_prep, which extracts the system file from the current kernel and writes a system file in your current directory. (That is, it creates /stand/build/system.) The -v gives verbose explanation as the script executes.

```
cd /stand/build
/usr/lbin/sysadm/system_prep -v -s system
```

- b. Edit the /stand/build/system file to add the absent driver(s).
- c. Build the kernel by invoking the mk_kernel command. This creates /stand/build/vmunix_test, a kernel ready for testing.

```
/usr/sbin/mk_kernel -s system
```

d. Save the old system file and kernel by moving them. Thus, if anything goes wrong, you still have a bootable kernel.

```
mv /stand/system /stand/system.prev
mv /stand/vmunix /stand/vmunix.prev
```

e. Move the new system file and new kernel into place, ready to be used when you reboot the system.

```
mv /stand/build/system /stand/system
mv /stand/build/vmunix_test /stand/vmunix
```

- 3. Notify users that the system will be shut down to configure the tape drive. You can use the wall command and/or the interactive capabilities of the shutdown command to broadcast a message to users before the system goes down. See *wall*(1M) or *shutdown*(1M) in the *HP-UX Reference*.
- 4. Bring the system to a halt, using the shutdown command.
- 5. Turn off the power to all peripheral devices and *then* to the SPU.

- 6. Install the hardware, following instructions shown in the hardware documentation. When attaching the tape drive, set the switches on the tape drive to an unused address, which you will have determined from ioscan output. Use the cabling recommended in the hardware documentation. If installing a SCSI device, make sure the last device in the SCSI chain is terminated.
- 7. Turn on the power to all peripheral devices. Wait for them to become "ready", *then* turn on power to the SPU.
 - On booting up, HP-UX detects the new tape drive and associates it with its device driver. insf creates the character device special files required to communicate with the tape drive.
- 8. Verify the configuration by invoking the ioscan command to confirm that the tape device is present and device special files have been created for it.

In the sample output shown, the tape driver at hardware path 2/0/1.3.0 can be accessed by one of eight device files.

/usr/sbin/ioscan -C tape -fun

Class	I	H/W Path	Driver	S/W State	H/W Type	Description
=======	===	========	:========	========	:========	=======
==						
tape	0	2/0/1.3.0	stape	CLAIMED	DEVICE	HP35480A
			/dev/rmt/0m	/dev/	rmt/c0t3d0BES	STn
			/dev/rmt/0mb	/dev/	rmt/c0t3d0BES	ST
			/dev/rmt/0mn	/dev/	rmt/c0t3d0BES	STb
			/dev/rmt/0mnb	/dev/	rmt/c0t3d0BES	STnb

9. You can also use the tar command to verify that you can read and write to and from the device. In the following example, the first tar command writes the /etc/passwd file to tape using a device special file shown in the ioscan output. The second tar command displays the contents of the tape.

```
/usr/bin/tar cvf /dev/rmt/c0t3d0BEST /etc/passwd
a /etc/passwd 2 blocks
/usr/bin/tar tvf /dev/rmt/c0t3d0BEST
r--r--r-- 2/2 601 June 6 16:40 1994 /etc/passwd
```

Chapter 6 141

Creating Customized Device Special Files for Tape Devices

The default device special files created by insf handle most routine tape-drive requirements. For special circumstances, however, you can use SAM or the tape driver options of the mksf command to create device special files. For complete syntax information, consult the SAM online help or *mksf*(1M) manpage in the *HP-UX Reference*.

Examples

In each example, the tape device is at card instance 1 for the ext_bus class of interface card to which the tape device is attached, as shown by /usr/sbin/ioscan -fn output.

Reading a Tape on a Different Format Device

Typically, a tape written on a Wangtek QIC 1000 device cannot be read on a Wangtek QIC 525 device. This is because the default device special file /dev/rmt/c#t#d#BEST will write in QIC 1000 format.

To create the device file needed for writing QIC 525 format, use the following command. Also shown are the resulting device special files.

NOTE	In short file name notation, f# (or i#, shown in next example) denotes device-dependent values. See $mt(7)$ in the $HP\text{-}UX$ Reference for explanation.
NOTE	QIC tape drives are SCSI devices and are based on a different technology than older HP-IB cartridge drives. The media used by the two types of tape drives are incompatible.

Allowing for Trial and Error

If you are attempting to use a new tape device with the stape driver and you do not know exactly how to configure it, you can use the -e option to create a device file that will let the driver try several configurations to find one that will work.

The following shows the command line and resulting device special files:

```
/usr/sbin/mksf -C tape -I 1 -e
/dev/rmt/c#t#d#eBEST on a system allowing long file names, or
/dev/rmt/c#t#d#i# on a system requiring short file names
```

Avoiding Data Compression

Sometimes an operation requires use of a device special file that writes data without compression. For example,

- On HP-UX, the STK 3480 tape drive requires that if data cannot be compressed to fewer than 102,400 bytes, it must be written to tape without compression.
- A tape created on an HP35480A will have been written with data compression enabled. To read the tape on an HP35470A tape drive, you must use a device special file that does not compress data.

To accomplish this, you cannot use the default BEST density because it will automatically compress the data.

To create device special files for the STK 3480 that write data in uncompressed form, use the following sample command. Also shown are the resulting device special files.

To create device special files for the HP35480A to write a tape in uncompressed form, use the following sample command. Also shown are the resulting device special files.

```
/usr/sbin/mksf -I 8 -C tape -b DDS1
/dev/rmt/c#t#d#DDS1 on a system allowing long file names, or
/dev/rmt/c#t#d#f1 on a system requiring short file names
```

This tape can now be read on a tape drive, regardless of whether or not it supports data compression.

Chapter 6 143

After Configuring a Tape Drive

The following manpages, found in the *HP-UX Reference* give specifications related to typical tape drive tasks and capabilities:

cpio(1) Copy file archives in and out (cpio is not recommended for use with

3480 products.)

dd(1) Convert, reblock, translate, and copy a file

ftio(1) Faster tape I/O

mediainit(1) Initialize disk or cartridge tape media; partition DDS

mt(1) Magnetic tape manipulating program

nohup(1) Run a command immune to hangups, logouts, and quits

pax(1) Portable archive exchange

tar(1) tape file archiver

tcio(1) Command set/80 (CS/80) cartridge tape utility

backup(1M) Backup or archive file system

cstm(1M) Command-line interface to the Support Tool Manager dump(1M) Incremental file-system dump, local or across network

fbackup(1M) Selectively back up filesfrecover(1M) Selectively recover files

install(1M) Install commands ioscan(1M) Scan I/O system lssf(1M) List a special file

 $mk_kernel(1M)$ Build a bootable HP-UX kernel mkrs(1M) Construct a recovery system

mksf(1M) Make a special file

restore(1M) Restore file-system incrementally, local or across network

rmt(1M) Remote magnetic-tape protocol module savecore(1M) Save a core dump of the operating system

scsictl(1M) Control a SCSI device swinstall(1M) Install HP-UX software tar(4) Format of tar tape archive

ct(7) Command set/80 (CS/80) cartridge tape access

mt(7) Magnetic tape interface and controls

scsi(7) Small Computer System Interface device drivers

 $scsi_ctl(7)$ SCSI device control device driver

 $scsi_tape(7)$ SCSI sequential access (stape) device driver

Other sources you may wish to consult include:

- HP-UX System Administration Tasks
- Managing HP-UX Software
- $\bullet \quad \textit{HP OpenView Software Distributor Administrator's Guide}$
- HP OmniBack, Turbo-Store documentation
- Documentation for any products you intend to install from tape media.

Chapter 6 145

Configuring Tape Drives

After Configuring a Tape Drive

7 Configuring Printers and Plotters

Because they are output-only devices, printers and plotters are configured somewhat differently than other peripheral devices.

There are three basic steps to printer and plotter configuration:

- physically installing the printer or plotter (documented in the hardware manual shipped with the device).
- configuring the HP-UX kernel for the device drivers to communicate with the printer or plotter.
- setting up the HP-UX LP spooler to send print jobs to the printer or plotter and to recognize the printer or plotter's features.

Printers and plotters are most easily configured for local, remote, or network access using SAM (/usr/sbin/sam). SAM creates the appropriate device files when adding a local printer and helps identify missing drivers if it cannot find a particular interface.

If you configure a printer or plotter using the HP-UX command-line approach, you can use this chapter for the kernel configuration and then refer to the *HP-UX System Administration Tasks* manual for instructions on setting up the LP spooler.

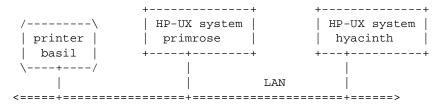
If you are using something other than the default HP-UX spooler, consult the documentation accompanying that application for instructions on setting it up.

Familiarize yourself with the various pieces of documentation *before* proceeding with the installation and configuration.

Preparing to Configure HP-UX for a Printer or Plotter

Choosing Means of Access

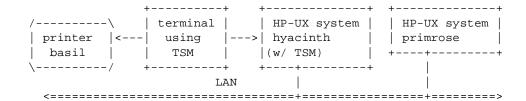
Printers and plotters can be connected to the system to be accessed locally, remotely, or through the network. In the following example, the printer basil is physically connected to a system named primrose.



The physical connection might be serial (RS-232-C), parallel, SCSI, or HP-IB, depending on the system interface and printer. Basil is connected as a local printer to primrose. The LP spooler on primrose is configured to include the local printer basil. Print requests generated on primrose are spooled directly to basil.

Users on a system called hyacinth can also access printer basil as a remote printer, provided the LP spooler on hyacinth is so configured. (The remote printer can be named anything for users on hyacinth, but consistency in naming simplifies the configuration.)

If you use the HP-UX command-line interface, the complexities of setting up remote access are accomplished using the lpadmin(1M) and rlpdaemon(1M) commands.


In the following example, the printer basil is accessed by both primrose and hyacinth as a network printer. Basil is connected directly to the LAN and has its own IP address. There is no direct connection (RS-232-C, parallel, HP-IB, or SCSI) between the printer and any HP-UX system (primrose or hyacinth).

Configuring access to a network printer is more complex than configuring access to a local printer; HP recommends using the HP JetDirect Network Interface, an optional product. SAM requires JetDirect configuration and hides any additional complexities.

When a user generates a request to a configured network printer, the LP spooler on the system from which the request is generated sends the print request over the LAN to the printer.

If printer basil is configured to a terminal using Terminal Session Manager (TSM) as shown in the following exampe, only the user logged into that terminal has access to the printer.

This chapter discusses configuration of local and remote printers and plotters only. For network configuration, use SAM and HP JetDirect. For TSM configuration, use the *Terminal Session Manager User's Guide*. Consult the *X Station User's Guide for the HP 700/RX* or *HP VUE 3.0 User's Guide* for information on configuring a printer into an X or VUE environment.

Hardware Concerns

- Some plotters (particularly electrostatic plotters with vector-to-raster converters) are *not* customer installable. Attempting to install them might introduce defects which will invalidate your warranty. These prohibitions should be clearly noted in the documentation accompanying the plotter. Call your local HP Sales and Support Office for a certified representative to install and set up the HP plotter properly. A list of worldwide HP offices is included in the accessories package accompanying the plotter.
- As shipped from the factory, the printer is likely to be set up to operate in parallel
 mode; if you intend to connect the printer to any other interface (that is, serial, SCSI,
 HP-IB, or using the network), you may need to reset hardware switches. Consult the
 printer hardware manual for information.
- Follow any interface-specific recommendations given in the hardware documentation regarding setting device address.

Software Concerns

- Consult the tables in "Selecting Device Drivers for Your Printer or Plotter" to
 identify the drivers compatible with the printer or plotter and interface to which it is
 being connected.
- Once you have determined all of these items, proceed to the sections, "Configuring a Printer Using HP-UX Commands" and "Configuring a Plotter or other Non-Automatically Configurable Output Devices Using HP-UX Commands".

Selecting Device Drivers for Your Printer or Plotter

Use this section to identify the device drivers required for your printer configuration, based on the model of printer or plotter and the interface to which it is attached.

Guidelines for Configuring a Printer or Plotter to an HP-IB Interface

- Determine which HP-IB address(es) are being used by other devices on the HP-IB card. Use the worksheet at the end of this book to keep track of addresses.
- You are limited to eight devices per HP-IB card, addresses 0 through 7.
- Do *not* place a plotter on the same HP-IB interface used by your disk or tape drives; it will substantially diminish the disk or tape's performance. A dedicated HP-IB interface is recommended for a plotter.
- On Series 800 CIO systems, HP-IB printers default to Ciper and Amigo protocol, although some devices can be configured using the instr0 device driver. Other options are to consider converting the printer to a parallel interface or configuring the printer to the LAN via an HP JetDirect card.
- On Series 700 systems, printers attached to an HP-IB EISA interface do not have their device files created automatically by insf. If not using SAM, you will need to create the device special files using mknod. Since hpib is the driver that actually controls the printer, use the hpib driver as the basis for the device special file. A sample procedure, "Creating a Device Special File for an HP-IB Printer", is provided later in this chapter.

Table 7-1 HP-IB Printer Configuration Requirements

Architecture	Interface Card	Interface and Device Drivers	Default Device File
Series 700 EISA	25560A ^a	cs80 hshpib hpib ^b	(see note) ^c
Series 800 CIO	27110B ^d	hpib0 lpr0 or lpr1 ^e	/dev/c#t#d#_lp f

- a. The following models can be configured to the HP 25560A Series 700 EISA HP-IB interface card: C1602A, 3630A. eisa_config identifies the card as HWPOC70.
- b. When these drivers are specified, the following additional drivers are also included in the kernel: wsio, core, eisa, eeprom.
- c. insf does not create a default device file for the Series 700 hpib driver. Use /usr/sbin/mknod or /usr/sbin/sam to create the printer's device special file. (See Appendix C for a mknod example.)
- d. The following models can be configured to 27110B, the Series 800 CIO HP-IB interface card: 2227B, 2235B/C/D, 2354A, 2562C, 2563C, 2564B/C, 2565A, 2566B/C, (2567B), 2567C, 2932A, 2934A, C1202A, C1602A, C2010A. (Obsolete models are shown in parenthesis and are listed for reference only.)
- e. 1pr0 is required for CIPER protocol printers, models 256x. 1pr1 is required for AMIGO protocol printers, models 2235, 2602, 2673A, 2931B/G, 2932A, 2933/34A, 3630A. Specifying the drivers listed here also cause the following additional drivers to be included in the kernel: cio_ca0, sio, pfail, pa.
- f. c#t#d# derives from the hardware path, as shown in ioscan output: c# is the card instance for the ext_bus class of interface card to which the device is attached, t# is the HP-IB unit number, d# is the device number.

NOTE	Series 800 HP-PB architecture d	loes not support HP-IB [.]	printer configuration.

Table 7-2 HP-IB Plotter Configuration Requirements

Architecture	Interface Card	Interface and Device Drivers	Default Device Files
Series 700 EISA	25560A (HWP0C70) ^a	hshpib hpib	(see note) b
Series 800 CIO	27110B ^c	cio_ca0 hpib0 instr0	/dev/hpib/c#t#d0 /dev/hpib/c# ^d
Series 800 HP-PB	28650A/B ^c	hpibl instr0	(same as CIO)

- a. The following model plotters can be configured to HP 25560A, the Series 700 EISA HP-IB interface card: 7596A/C, C1620A, C1625A, C1627A. Note, eisa_config identifies the 25560A card as HWPOC70.
- b. insf does not create a default device file for the Series 700 hpib driver. Use /usr/sbin/mknod or /usr/sbin/sam to create the plotter's device special file.
- c. The following model plotters can be configured to HP 27110B, the Series 800 CIO HP-IB interface card, and to Series 800 HP-PB interface cards 28650A/B and 28651A: 7440A, 7475A, (7550A), 7550B, (7586B), (7595A/B), (7596A/B), (7599A), (C1600A), (C1601A), C1620A, C1625A, C1627A. (Obsolete models are shown in parenthesis and are listed for reference only.)
- d. insf produces 31 device specials files for instr0 in the first syntax shown, where c# represents the card instance for the instr class of interface card and t# represents HP-IB addresses 0 to 31. The device number d is always zero. A 32nd device file has the second syntax shown, encoding only the card instance of instr class.

Guidelines for Configuring a Printer or Plotter to a Serial Interface

- Check /etc/inittab to make sure you do *not* have a getty (for a terminal) spawned on the same serial port to which you are configuring a printer or plotter.
- Configure the printer or plotter's RS-232-C data transmission values to be consistent with your computer's requirements. (These requirements are documented in the printer/plotter manual.)
 - baud rate
 - parity
 - data length
 - handshake
 - symbol or character set
- Additional steps may be required when configuring a printer or plotter to communicate through an HP Datacommunications and Terminal Controller (DTC) or telnet port access. (Such asynchronous communication is useful when connecting a printer to an X terminal, for example.)
 - Refer to the chapter "Setting up Printers Using the HP-UX Spooler," in the *DTC Device File Access Utilities and Telnet Port Identification* manual.
- Once you have configured a printer or plotter to a serial port, follow the procedure "Creating a Device Special File for a Printer or Plotter Configured to a Serial Port".

Table 7-3 Serial Printer Configuration Requirements

Architecture	Interface Card	Interface and Device Drivers	Default Device File	
Series 700	(internal) ^a	asio0	/dev/tty#p# ^b	
Series 800 CIO	98196A ^c 98190A	mux ^d	(same as above)	
Series 800 HP-PB	40299B ^c J2092 A J2093A J2094A J2096A A1703-60022	mux2 ^e	(same as above)	
Series 800 HP-PB	A1703-60003 ^f 28639-60001	mux4 ^g	(same as above)	

- a. The following model printers can be configured to the Series 700 serial interface: 2562C, 2563C, 2566B/C, 2567C, 33449A, 33459A, C1645A, C1676A, C2001A, C2010A, C2106A, C2113A, C2354A, C2356A.
- b. By default, insf creates the standard tty device file shown. For ease in system administration, HP recommends that you create the line-printer device file /dev/c#p#_lp, using /usr/sbin/mksf, as explained in "Creating a Device Special File for a Printer or Plotter Configured to a Serial Port". The device naming convention derives from ioscan output: c# is the card instance for the tty class of interface card to which the device is attached and p# is the port to which the printer is attached.
- c. The following printer models can be configured to the Series 800 serial interfaces: 2225D, 2227A, 2228A, 2235A/B/C/D, 2276A, 2277A, 2562A/C, 2563A/B/C, 2564B/C, 2565A, (2566A), 2566B/C, (2567B), 2567C, 2684A, 2686A/D, (2932A), 2934A, (33440A), 33447A, 33449A, 33459A, 33471A, 3630A, 41063A, C1200A, C1602A, C2001A, C2106A, C2354A. (Obsolete models are shown in parenthesis and are listed for reference only.)
- d. Specifying mux0 causes cio_ca0, sio, pfail, and pa to be included in the kernel.
- e. Specifying mux2 causes sio, pfail, and pa to be included in the kernel.
- f. These cards are typically used for console and remote console. If the second port is not being used for remote console, a printer may be attached.
- g. Specifying mux4 causes lanmux0, lantty0, lan3, sio, pfail, and pa to be included in the kernel.

Table 7-4	Serial Plotter	Configuration	Requirements
-----------	----------------	---------------	--------------

Architecture	Interface Card	Interface and Device Drivers	Default Device File
Series 700	(internal) ^a	asio0	/dev/tty#p# ^b
Series 800 CIO	98196A ^c 98190A	mux0 ^d	(same as above)
Series 800 HP-PB	40299B ^c J2092 A J2093A J2094A J2096A A1703-60022	mux2 ^e	(same as above)
Series 800 HP-PB	A1703-60003 ^f 28639-60001	mux4 ^g	(same as above)

- a. The following model plotters can be configured to the Series 700 serial interface: 7440A, 7475A, 7550A, 7558, 7570A, 7576A, 7596C, C1620A, C1625A, C1627A, C1629A, C2847A, C2848A, C2858A, C2859A, C3170A, C3171A, C3180A, C3181A.
- b. The device file created by default is the standard /dev/ttyinstance#pport#. For ease of system administration, HP recommends that you create a line-printer device file (/dev/c#p#_lp) using mksf, as explained in "Creating a Device Special File for a Printer or Plotter Configured to a Serial Port". The device naming convention derives from ioscan output: c# is the card instance for the tty class of interface card to which the device is attached and p# is the port to which the plotter is attached.
- c. The following plotter models can be configured to the Series 800 RS-232-C serial interface: 7440A, 7475A, 7550A/B, 7558, 7586B, 7595A, 7595B, 7596A, 7596B, 7599A, C1620A, C1625A, C1627A. HP plotter models 7595A and 7596A can also be configured to an RS-422 interface.
- d. Specifying mux0 causes cio_ca0, sio, pfail, and pa to be included in the kernel.
- e. Specifying mux2 causes sio, pfail, and pa to be included in the kernel.
- f. These cards are typically used for console and remote console. If the second port is not being used for remote console, a plotter may be attached.
- g. Specifying mux4 causes lanmux0, lan3, lantty0, sio, pfail, and pa to be included in the kernel.

Guidelines for Configuring a Printer or Plotter to a Parallel (Centronics) Interface

Table 7-5 Parallel Printer Configuration Requirements

Architecture	Interface Card	Interface and Device Drivers	Default Device File
Series 700 Core I/O	(internal) ^a	CentIf ^b	/dev/c#t#d0_lp ^c
Series 800 HP-PB	28655A ^d	lpr2 ^e	(same as above)

- a. The following printer models can be configured to the Series 700 parallel interface: 2562C, 2563C, 2566C, 2567C, 33449A, 33459A, C1645A, C1656A, C1686A, C2010A, C2011A, C2021A, C2040A, C2106A, C2113A, C2114A, C2121A, C2356A
- b. Specifying CentIf causes CharDrv to be included in the kernel.
- c. c#t#d# derives from the hardware path, as shown in ioscan output: c# is the card instance for the ext_bus class of interface card to which the printer is attached, t# is the target number, d# is the device number.
- d. The following printer models can be configured to the Series 800 HP-PB parallel interface: 2225C/P, 2227A, 2228A, 2235A, (2276A), (2277A), 2562C, (2563A/B/C), (2564B/C), (2565A), (2566B), 2566C, (2567B), 2567C, (2684A/P), (2686A/D), 2932A, 2934A, (33438P), (33440A), (33447A), 33449A, 33459A, 33471A, 3630A, C1202A, C1602A, C2106A. (Obsolete models are shown in parenthesis and are listed for reference only.)
- e. Specifying lpr2 causes sio, pfail, and pa to be included in the kernel.

NOTE Neither Series 700 EISA nor Series 800 CIO architectures support a parallel interface.

Table 7-6 Parallel Plotter Configuration Requirements

Architecture	Interface Card	Interface and Device Drivers	Default Device File	
Series 700 Core I/O	(internal) ^a	CentIf ^b	/dev/c#t#d0_lp ^c	
Series 800 HP-PB	28655A ^d	lpr2 ^e	(same as above)	

- a. The following plotter models can be configured to the Series 700 parallel interface: 7440A, C1631A, C2859A, C1620A, C1633A, C3170A, C1625A, C2847A, C3171A, C1627A, C2848A, C3180A, C1629A, C2858A, C3181A
- b. Specifying CentIf causes CharDrv to be included in the kernel.
- c. c#t#d# derives from the hardware path, as shown in ioscan output: c# is the card instance of the ext_bus class of interface card to which the plotter is attached, t# is the target number, d# is the device number.
- d. The following plotter models can be configured to the Series 800 HP-PB parallel interface: 7550B, C1600A, C1601A, C1620A, C1625A, C1627A
- e. Specifying 1pr2 causes sio, pfail, and pa to be included in the kernel.

NOTE

Neither Series 700 EISA nor Series 800 CIO architectures support a parallel interface.

Guidelines for Configuring a Printer to a SCSI Interface

Table 7-7 SCSI Printer Configuration Requirements

Architecture	Interface Card	Interface and Device Drivers	Default Device Files
Series 800 CIO	27147-60002 ^a	scsi2 ^b lpr3 ^c	/dev/c#t#d#_lp ^d
Series 800 HP-PB	28655A ^a	scsi1 ^e lpr3 ^c	(same as above)

- a. The following printer models can be configured to the Series 800 SCSI interface: C2001A, C2106A, C2114A, C2753A, C2754A, C2755A, C2776A, C2777A, C2777A, C2777A
- b. Specifying scsi2 causes cio_ca0, sio, pfail, and pa to be included in the kernel.
- c. Specifying lpr3 causes target, sio, pfail, and pa to be included in the kernel.
- d. c#t#d# derives from the hardware path, as shown in ioscan output: c# is the card instance of the ext_bus class of interface card to which the printer is attached, t# is the SCSI ID number, d# is the device number.
- e. Specifying scsil causes sio, pfail, and pa to be included in the kernel.

NOTE

There is no SCSI printer driver for Series 700. Also, SAM does not support SCSI printers.

Configuring a Printer Using HP-UX Commands

First configure the software for the operating system. Then, if necessary, bring down the system to install hardware. When you reboot, HP-UX will automatically bind the drivers to the peripherals it finds.

- 1. Consult the tables in "Selecting Device Drivers for Your Printer or Plotter" to identify which drivers need to be present in your kernel for HP-UX to communicate through the intended interface with the printer.
- 2. Execute /usr/sbin/lsdev -d *printer_driver* to see whether the driver is already in the kernel. If it is, you might see output resembling the following (shown for a Series 700 parallel interface):

/usr/sbin/lsdev -d CentIf

```
Character Block Driver Class
216 -1 CentIf ext_bus
```

For a Series 800 parallel interface, executing /usr/sbin/lsdev -d lpr2 might show similar output, but the character major number is 181. In both Series 700 and 800 systems, the interface class is ext_bus.

- 3. Determine how much additional configuration is needed for the printer by invoking the command, /usr/sbin/ioscan -fn -dprinter_driver.
 - If the necessary drivers are already present in the kernel, the ioscan output of a Series 700 might resemble this:

```
/usr/sbin/ioscan -fn -d CentIf
```

Similarly, the ioscan output for a Series 800 might resemble this:

/usr/sbin/ioscan -fn -d lpr2

Both cases show that the drivers and device special files are present, allowing HP-UX to communicate with the printer.

You can attach your printer without further operating-system configuration and without bringing down the system.

Your next task is to configure the LP spooler, to enable you to send print jobs to the printer or plotter. To do so, see "Managing Printers and Printer Output," in *HP-UX System Administration Tasks*.

• If any necessary driver is absent from the kernel (for example, if configuring the printer also involves adding an interface card, or if you are configuring the printer to an interface not previously used for a printer), the ioscan output of a Series 800 might resemble this:

/usr/sbin/ioscan -fn

Notice in this example, the Driver field for the parallel interface is blank, the class and hardware type are unknown and no device special file is displayed.

If the printer driver is absent, you will need to rebuild the kernel to include it.

Here is how to do so:

a. Change directory to the build environment (/stand/build). There, execute a system preparation script, system_prep. system_prep writes a system file based on your current kernel in the current directory. (That is, it creates /stand/build/system.) The -v provides verbose explanation as the script executes.

```
cd /stand/build
/usr/lbin/sysadm/system_prep -v -s system
```

- b. Edit the /stand/build/system file to add any absent driver(s). (If you are adding an interface card also, make sure to add the interface driver, as documented in Chapter 2.)
- c. Build the kernel by invoking the mk_kernel command. This creates /stand/build/vmunix_test, a kernel ready for testing.

```
/usr/sbin/mk_kernel -s system
```

d. Save the old system file and kernel by moving them. Thus, if anything goes wrong, you still have a bootable kernel.

```
mv /stand/system /stand/system.prev
mv /stand/vmunix /stand/vmunix.prev
```

e. Move the new system file and new kernel into place, ready to be used when you reboot the system.

```
mv /stand/build/system /stand/system
mv /stand/build/vmunix_test /stand/vmunix
```

- f. If your printer installation also requires that you install an E/ISA card, you need to run eisa_config at this time to configure the EISA or ISA bus. Consult "Appendix A, EISA Configuration" of this manual for tutorial and procedures and <code>eisa_config(1M)</code> in the <code>HP-UX Reference</code>.
- 4. Once the software configuration is complete, bring down the system with sufficient grace period to allow users to exit their files. You can execute /usr/sbin/shutdown -r or /usr/sbin/reboot.

If you have to install an interface card, bring the system to a complete halt (that is, use /usr/sbin/shutdown -h or /usr/sbin/reboot -h). See shutdown(1M) or reboot(1M) in the HP-UX Reference.

- a. Power off and unplug all peripherals, *then* the SPU.
- b. Install the hardware, as described in the manual accompanying the (card and) printer.
- c. Connect the printer to the card.
- d. Plug in and power up the printer.
- e. Set the hardware switches for the printer address.
- f. Plug in and power on any other peripherals and then the SPU.

When the system reboots from the new kernel, HP-UX detects the printer and associates it with its driver.

In most instances, insf automatically creates the device special files necessary to communicate with the printer, although in some cases you will need to create the device special files as a separate operation. (Two cases — configuring a printer to a serial port and guidelines for configuring a non-HP printer to a parallel port — are documented following this procedure.) Also refer to Appendix C, Major and Minor Numbers, for instructions on using mknod to create a custom device special file, if needed.

5. Invoke /usr/sbin/ioscan -fn -dprinter_driver again to confirm that the I/O subsystem finds the printer and has created the necessary device special files. Your output should now resemble that shown in step 3.

Your next task is to configure the LP spooler to enable you to send print jobs to the printer or plotter. See "Managing Printers and Printer Output," in *HP-UX System Administration Tasks*.

Creating a Device Special File for a Printer or Plotter Configured to a Serial Port

By default, insf creates device special files for parallel, HP-IB, and SCSI ports that can be easily associated with a printer or plotter.

However, the device special files insf creates for serial ports (ports controlled by asio0, mux0, mux2, and mux4) are named to accommodate terminals more intuitively than printers or plotters. To use the serial port for a line printer, you should create a new device special file with a line printer name.

1. Execute ioscan -fn -C tty to identify the device file currently associated with the port. Note in the following excerpted output, the sample device special file representing port 3 has a name consistent with the device-file format used by terminals and modems.

/usr/sbin/ioscan -fn -C tty

2. Create a new device special for the port to which you are attaching the printer by invoking /usr/sbin/mksf and specifying the device driver (-d), hardware path (-H), and serial port (-p). Use -1 to create a device special file with a line-printer name and -v for verbose output.

For example, the following command line creates a new device special file for port 3 with a line-printer name.

```
/usr/sbin/mksf -d mux2 -H 56/56 -p3 -1 -v
making c0p3_lp c 193 0x000300
```

If your manual states that your printer uses hardware flow control (RTS/CTS) and you wish to employ it, you can execute mksf with the -f option to enable the feature.

```
/usr/sbin/mksf -d mux2 -H 56/56 -p3 -f -l -v making c0p3_lp c 193 0x000310
```

3. Invoke /sbin/ioscan -fn again to display the new device special file, whose name will now be consistent with other line printer device special files.

```
Class I H/W Path Driver S/W State H/W Type Description

...

tty 0 56/56 mux2 CLAIMED INTERFACE MUX

...

/dev/c0p3_lp
```

You can also confirm the file's characteristics by invoking /usr/sbin/lssf on the new file or viewing the long listing (11).

```
/usr/sbin/lssf /dev/c0p3_lp
mux2 card instance 0 port 3 hardwired at address 56/56 /dev/c0p3_lp
```

In the minor number (0x000300, shown in the long listing), you can see that the 3 corresponds to the port number for the mux2 card at card instance 0.

If you have enabled hardware flow control, your output will resemble the following:

In the minor number (0x000310, shown in the long listing), you can see that the 3 corresponds to the port number for the mux2 card at card instance 0 and that bit 27 is set. (For minor number bit assignments, see Appendix C, "Major and Minor Numbers.")

Your next task will be to configure the LP spooler to enable you to send print jobs to the printer or plotter. See "Managing Printers and Printer Output," in *HP-UX System Administration Tasks*.

Creating a Device Special File for an HP-IB Printer

When the system boots, insf is unable to create default device special files for any printer attached to an EISA HP-IB interface. You will need to create a character device file using mknod.

To do so,

- 1. Change directory to /dev.
- 2. Determine the major number by invoking the 1sdev command. You will see that hpib has a character major number of 21.
- 3. Construct a minor number for the device by using the bit assignments for the hpib device driver, found in in Appendix C.
- 4. Create the device special file using mknod, which has the following syntax:

/usr/sbin/mknod file_name b|c major# minor#

- Name the file something easily associated with the device.
- Use c for character device special file.
- Use the character major number reported by 1sdev.
- Use the minor number constructed from the bit assignment tables.

The minor number for hpib has the syntax 0xABC000, where

- 0x is the prefix indicating hexadecimal format.
- AB is the card instance number.
- C is the HP-IB device.

Execute ioscan -f to identify the card instance number for the EISA HP-IB card. In the following sample output, the card instance number is 3.

/usr/sbin/ioscan -f -d hpib

Set the HP-IB printer device number on the printer itself. Assuming for this example that the HP-IB device is set to 2, the command line for a device special file called /dev/hpib_printer would be as follows:

```
/usr/sbin/mknod /dev/hpib_printer c 21 0x032000
```

5. Once you create the device special file, HP-UX will be able to communicate with the printer. Plug in the printer, turn it on, and send it a short file. It should print.

Guidelines for Configuring a Non-HP Printer to a Parallel Port

Compatibility problems typical when configuring non-HP peripherals to the parallel interface usually involve the handshake mode. The CentIf driver provides six handshake modes that can be accessed for different implementations. To use them, create a custom device special file using specific bits in the minor number.

When a peripheral is unable to communicate via the parallel port, be sure to use the cat command and not lp as a starting point. This eliminates problems with model scripts and lpsched. If this fails, and the peripheral is known to work, substitute an HP LaserJet or DeskJet printer and test again. If the HP product works, the problem may be in the handshake method. (Be sure that the problem is communication and not the text going to the printer — a PostScript printer will always report an error if an ASCII file is sent to it.)

Table C-4 of Appendix C shows the the bit assignments for the CentIf driver. Bits 28-31 encode the handshake mode, as follows:

Handshake using nACK and BUSY lines.
 Handshake using BUSY line only.
 Bidirectional read/write for ScanJet support.
 Streaming mode. Setup = 1 usec, hold = 1 usec. This mode is commonly used by Tektronix (Phasor and others) printers.
 Pulsed mode. Similar to mode 1, but nSTROBE is 1 usec.
 Pulsed mode. Similar to mode 2, but nSTROBE is 1 usec.

Modes 5 and 6 are used to resolve deadlock situations that may occur in modes 1 and 2. Products that work well with modes 5 and 6 are the HP 293x family of printers, and some printers from NEC and Qume.

Note, these modes are for *reference use only*. No support (beyond mode 2 for HP LaserJets) is implied; however, the user may test these modes for possible success with other vendor devices. For more information on the Centronics interface, consult the *cent*(7) manpage.

Configuring a Plotter or other Non-Automatically Configurable Output Devices Using HP-UX Commands

NOTE

Although this procedure refers explicitly to plotters, it can be used to configure other devices that need the instr0 device driver on a Series 800 computer.

Unlike printers, plotters cannot be automatically configured by the kernel. Instead, you must manually ensure that the driver is associated with the hardware path by using the capabilities of ioscan.

- 1. Connect your plotter, noting the hardware address to which you are connecting it and the HP-IB address to which you are setting the plotter. In this example, we are configuring an HP 7596A Draftmaster II to an HP-IB interface located in card-cage slot 12 in a Model 806 computer. The HP-IB address is set to 5.
- 2. Identify the hardware path to the plotter by invoking ioscan. An excerpt of the output might resemble the following:

/usr/sbin/ioscan -f

Class	I	H/W Path	Driver	S/W State	H/W Type	Description
======	===	========	=======	========	========	=========
bc	0		root	CLAIMED	BUS_NEXUS	
bc	1	56	bc	CLAIMED	BUS_NEXUS	Bus Converter
ext_bus	1	56/40	hpfl1	CLAIMED	INTERFACE	HP 28615A - HP-FL Interface
lanmux	0	56/44	lanmux0	CLAIMED	INTERFACE	HP J2146A - 802.3 LAN
lan	1	56/44.1	lan3	CLAIMED	INTERFACE	
ext_bus	2	56/48	hpib1	CLAIMED	INTERFACE	HP 28650B - HP-IB Interface

The interface driver is hpib1 and the hardware path of interface card to which the plotter is connected is 56/48 (hardware path equals slot number times four; the bus converter is in slot 14, the interface card is in slot 12). Neither the HP-IB address of the plotter nor the instr0 device driver is shown.

- 3. Rebuild the kernel to include the instr0 driver. Here is how to do so:
 - a. Change directory to the build environment (/stand/build). There, execute a system preparation script, system_prep, which extracts the system file from the current kernel and writes a system file in your current directory. (That is, it creates /stand/build/system.) The -v provides verbose explanation as the script executes.

```
cd /stand/build
/usr/lbin/sysadm/system_prep -v -s system
```

- b. Edit the /stand/build/system file to add the absent driver(s).
- c. Build the kernel by invoking the mk_kernel command, which compiles the kernel and loads it. mk_kernel creates /stand/build/vmunix_test, a kernel ready for testing.

```
/usr/sbin/mk_kernel -s system
```

d. Save the old system file and kernel by moving them. Thus, if anything goes wrong, you still have a bootable kernel.

```
mv /stand/system /stand/system.prev
mv /stand/vmunix /stand/vmunix.prev
```

e. Move the new system file and new kernel into place, ready to be used when you reboot the system.

```
mv /stand/build/system /stand/system
mv /stand/build/vmunix_test /stand/vmunix
```

- 4. Reboot the system by invoking the shutdown command with sufficient grace period to allow users to exit their files before the system goes down. See shutdown(1M) in the HP-UX Reference.
- 5. Bind the software driver used by the plotter (instr0) to the plotter's full hardware path (56/48.5) by executing /usr/sbin/ioscan with the -M and -H options. Then verify the results by executing ioscan again.

As shown in the following sequence of commands and ioscan output, the device driver (instr0) associates with a peripheral device at address 56/48.5. The instr0 driver cannot identify any more specifically what instrument is attached, but it can communicate with it.

/usr/sbin/ioscan -M instr0 -H 56/48.5/usr/sbin/ioscan -kf

Class	I	H/W Path	Driver	S/W State	H/W Type	Description
======	===	=======	=======		=======	=========
bc	0		root	CLAIMED	BUS_NEXUS	
bc	1	56	bc	CLAIMED	BUS_NEXUS	Bus Converter
ext_bus	1	56/40	hpfl1	CLAIMED	INTERFACE	HP 28615A - HP-FL Interface
lanmux	0	56/44	lanmux0	CLAIMED	INTERFACE	HP J2146A - 802.3 LAN
lan	1	56/44.1	lan3	CLAIMED	INTERFACE	
ext_bus	2	56/48	hpib1	CLAIMED	INTERFACE	HP 28650B - HP-IB Interface
instr	0	56/48.5	instr0	NO_HW	DEVICE	HP-IB Instrument

6. Create a device special file for the plotter by invoking /usr/sbin/insf with the -H (hardware path) option; for example:

```
/usr/sbin/insf -H 56/48.5
```

This installs the device special file for the hardware path and instr0. You can verify this by executing ioscan -H 56/48.5 -fn to see the file name and then lssf filename to see the device file's attributes.

Your next step will be to configure the LP spooler to enable you to send print jobs to the plotter; for procedure, see "Managing Printers and Printer Output" of the *HP-UX System Administration Tasks* manual.

Moving a Printer or Plotter

To move a printer or plotter, first remove it and then add it to your configuration. This sample procedure demonstrates attaching a printer to a different interface card.

- 1. Notify users that you are moving the printer or plotter.
- 2. If you have customized it, copy the /etc/lp/interface/printer_name to a temporary location.
 - cp /etc/lp/interface/laserjet /etc/lp/interface/laserjet_old
- 3. Remove the printer or plotter from the LP spooler by following the procedure for "Removing a Printer or Printer Class using HP-UX Commands" detailed in the chapter, "Managing Printers and Printer Output" of the HP-UX System Administration Tasks manual.
- 4. Execute /usr/sbin/ioscan to identify the printer or plotter's hardware address, which you are going to change. For example, in the following output an HP 2564B HP-IB printer was set with an HP-IB address of 7.

/usr/sbin/ioscan -fn -H 2/8

Class	I	H/W Path	Driver	S/W State	H/W Type	Description
========	===	=======		========	=======	=========
cio	1	2/8	cio_ca0	CLAIMED	INTERFACE	CIO Adapter
ext_bus	8	2/8.0	hpib0	CLAIMED	INTERFACE	
printer	1	2/8.0.7	lpr0	CLAIMED	DEVICE	HP 256x HP-IB Ciper Printer
			/dev/diag/c8t7	d0_lp /de	v/c8t7d0_l	р

- 5. Turn off, unplug, and disconnect the printer or plotter.
- 6. Reset the switches on the printer or plotter, if necessary, and attach the device to the new hardware location.
- 7. Execute ioscan again. In this example, the HP-IB address was changed from 7 to 5. ioscan reports the new address and indicates under S/W State that no hardware is present at the old printer address.

/usr/sbin/ioscan -fn

Class	I	H/W Path	Driver	S/W State	H/W Type	Description
========	===	=======		========	=======	=========
cio	1	2/8	cio_ca0	CLAIMED	INTERFACE	CIO Adapter
ext_bus	8	2/8.0	hpib0	CLAIMED	INTERFACE	
printer	1	2/8.0.5	lpr0	CLAIMED	DEVICE	HP 256x HP-IB Ciper Printer
			/dev/diag/c8t5	d0_lp /de	v/c8t5d0_1	p
printer	0	2/8.0.7	lpr0	NO_HW	DEVICE	HP 256x HP-IB Ciper Printer
			/dev/diag/c8t7	d0_lp /de	v/c8t7d0_1	p

HP-UX automatically creates a device file to access the printer *except*:

• If you are configuring a printer to a serial port: Create the device special file by following the instructions in the section "Creating a Device Special File for a Printer or Plotter Configured to a Serial Port".

• If you are configuring a plotter: Force HP-UX to recognize the plotter at the new address by following the instructions in "Configuring a Plotter or other Non-Automatically Configurable Output Devices Using HP-UX Commands".

Next, configure the LP spooler to recognize the printer or plotter at its new location by consulting the chapter, "Managing Printers and Printer Output" in the *HP-UX System Administration Tasks* manual.

For Further Information on Printer-Related Tasks

- *HP-UX System Administration Tasks*, "Managing Printers and Printer Output," to set up the LP spooler.
- SharedPrint/UX User and Administrator's Guide
- HP MPower 1.2 Installation and Configuration
- HP JetDirect Network Interface Configuration Guide
- HP OpenView OpenSpool documentation
- The following manpages in the *HP-UX Reference*:

enable, disable (1)	Enable or disable LP printers
lp(1)	Send, cancel, or alter LP requests
$\mathit{lpstat}(1)$	Print LP status information
pr(1)	Print files
slp(1)	Set printing options for non-serial printer
accept, reject(1M)	Allow or prevent LP requests
$bootpd(1\mathrm{M})$	Internet boot protocol server
$eisa_config(1M)$	EISA configuration tool
insf(1M)	Install special files
ioscan(1M)	Scan I/O system
$lpadmin(1{ m M})$	Configure the LP spooling system
lpana(1M)	Print LP spooler performance analysis information
$lpsched, lpshut (1 \rm M)$	Start or stop LP request scheduler
$mk_kernel(1M)$	Build a bootable HP-UX kernel
rcancel(1M)	Remove requests from LP queue
rlp(1M)	Send requests to a remote system
rlpdaemon(1M)	Remote spooling LP daemon
$rlpstat(1{ m M})$	Print status of remote LP spooler requests
$shutdown(1{\rm M})$	Terminate all processing
$tsm.lpadmin(1{\rm M})$	Manage printers using Terminal Session Manager
x29printd(1M)	Remote PAD printer server for LP requests
dp(4)	Dedicated ports file, used by DDFA and DTC
pcf(4)	Port configuration file, used by DDFA software

Configuring Printers and Plotters For Further Information on Printer-Related Tasks

cent(7)	Parallel (centronics) interface
ddfa(7)	DTC device file access software
lp(7)	Line printer

For Further Information on Plotter-Related Tasks

- Starbase Graphics Techniques
- SharedPrint/UX User and Administrator's Guide
- Managing SwitchOver/UX
- In addition to the manpages listed in the previous section, the following manpages may be helpful:

lpfilter(1M) (plotdvr) HP-GL plotter filter

8 Configuring Uninterruptible Power Systems

Installing a PowerTrust Uninterruptible Power System (UPS) to an HP-UX computer ensures that power is maintained to your computer system for up to fifteen minutes after an AC power failure, preventing problems such as networking timeouts and tape rewinds.

Chapter 8 175

The PowerTrust UPS can be configured to bring the system down with a graceful shutdown before its batteries deplete, thus maintaining data integrity and ensuring a clean reboot and reasonable systemwide fsck.

PowerTrust UPS is configured as a serial device. This chapter details the configuration guidelines.

Planning to Configure a UPS

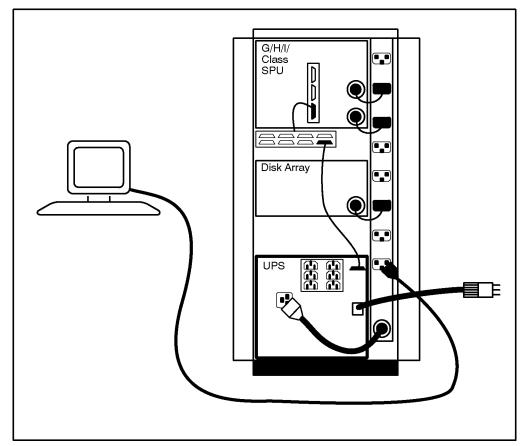
Hardware Considerations

Choose your UPS based on its rated load capabilities.

Determine which pieces of hardware besides the server require coverage by a UPS. For example,

- If users in another building rely on the server, or several servers in a building require LAN traffic to shut down cleanly, you might need to ensure that the LAN interface is protected by the UPS.
- If you need to call in to the UPS-based servers, the dialback and DTC to which it is attached may need to be on the UPS.

Calculate the voltage/amperage (VA) capacity to ensure that your UPS unit is properly rated for the expected load. Detailed instructions for calculating how many systems and/or devices can be powered by an HP PowerTrust UPS are found in the HP Configuration Guide.


When adding disks or other peripherals to any computer covered by a UPS, recalculate the voltage/amperage (VA) load to ensure that the new current draw remains within the UPS coverage.

Prepare the site before installing the UPS, following the recommendations provided in the UPS hardware installation manual and *PowerTrust System Guide* (HP part number 5961-8383) for your UPS model.

Figure 8-1 illustrates a sample UPS configuration. (Note, the RS-232-C cabling from the console to SPU is not shown.) All protected components derive their electrical power through the UPS, which is plugged into the power source.

Chapter 8 177

Figure 8-1 Sample Configuration of an Uninterruptible Power System (UPS)

Cabling Guidelines

To communicate with the host, each PowerTrust UPS comes with an RS-232-C serial connector, HP part number 5061-2569 (pinouts shown in Table 8-1). The cable has a male DB-9 connector on the UPS end and a male DB-25 connector on the MUX end, and is 2 meters (6.5 feet) long. If this length is insufficient, you can extend it by using a straight-through 25-wire RS-232-C extender cable (3062C, 25 feet long) from the MUX port to the DB-25 connector end of the cable supplied with the UPS, and then the UPS cable to the DB-9 connector of the UPS. Total RS-232-C cable length should be no more than ten meters maximum.

NOTE

Do *not* use a standard terminal cable to connect a UPS to the serial port. The pinouts are different.

Table 8-1 UPS Cable Pin-Outs

	UPS	MUX
	9 pins(M)	25 pins(M)
Receive	1	3
Transmit	2	2
Gnd	9	7

The computer should have one *dedicated* MUX port for UPS communication for each UPS configured. Additional UPS units must be connected to additional dedicated MUX ports.

Hewlett Packard supports only 25-pin MUX ports for UPS operation. The modem port on the MFIO (Console LAN pca), RJ45, 3-pin RS-232 and 5-pin RS-422 MUX ports are not supported for UPS operation.

For each UPS on the system, you are connecting the supplied RS-232-C cable from the UPS to a port on a Modem Distribution Panel (MDP). The computer console must be configured to **port 0**. You can connect the UPS to **port 1** on the MDP.

Software Considerations

Be sure that you have loaded the PowerTrust UPS fileset, UPS-TOOLS. You can do this using the swinstall command. Consult the *HP OpenView Software Distributor Administrator's Guide* for procedures on loading filesets.

Note, since the connections to the UPS are through power cords and MUX ports, ioscan will not explicitly display a UPS in its configuration; only the MUX port is displayed.

Chapter 8 179

Selecting Drivers for a UPS

Uninterruptable power systems use a serial interface and multiplexer drivers. Table 8-2 shows the interfaces, device drivers, and device special files used for each supported architecture.

Table 8-2 UPS Configuration Requirements

Architecture	Interface Card	Driver	Default Device Special Files
Series 800 HP-PB ^a	40299B J2092A J2093A J2094A J2096A A1703-60022	mux2 ^b	/dev/mux# /dev/tty#p# ^c

- a. HP-UX supports the following HP PowerTrust UPS models: A2941A, A2994A, A2996A, A2997A, A2998A. The following third-party UPS models can be used with HP computers, but do not provide the software capabilities of HP PowerTrust models: APPCC-600UX, APPCC-1250UX, DELT-2326/C2, DELT-2336/C2. Not all supported models are appropriate for all computer systems.
- b. Specifying $\max 2$ causes \sin , pfail, and pa to be included in the kernel.
- c. tty#p# derives from ioscan output: The numeral after tty is the card instance for the tty class of interface card to which the device is attached; the numeral after p is the port number of the serial interface.

Configuring a PowerTrust UPS

The simplest way to configure a uninterruptable power system is to use SAM (/usr/sbin/sam). If SAM is not loaded on your system or if you prefer to use the command-line interface, the following procedure will guide you through the task. Familiarize yourself with the instructions before getting started.

- 1. Examine Table 8-2 to identify the driver and interface card associated with the specific platform to which you are configuring the UPS. Under virtually all circumstances, the interface driver used by the UPS is already present in the kernel.
- 2. Invoke ioscan for the tty class to display the hardware path, driver, and device special file(s) available for the UPS. Your output might resemble the following:

/usr/sbin/ioscan -fun -C tty

```
Class I H/W Path Driver S/W State H/W Type Description

tty 0 56.0 mux4 CLAIMED INTERFACE

/dev/tty0p0 /dev/tty0p1
```

In this (simplified) example from a Model 887, the multiplexer card is installed in slot 14 (H/W Path divided by 4) and bound with the mux4 device driver. Device special files /dev/tty0p0 and /dev/tty0p1 are available. If an MDP or DDP is installed at the MUX port, ioscan will show device special files for all the ports available.

As shipped, the console is configured to be plugged in at port 0. The /dev/console file is equivalent to /dev/tty0p0. Thus, in this example, Port 1 (represented by /dev/tty0p1) can be used for the UPS.

- 3. Edit the /etc/inittab file to activate the UPS monitoring daemon when the system boots up. To do so,
 - a. Remove the comment sign (#) from the UPS entry. Be sure the ups entry appears after the /sbin/rc entry, so that the ups_mond is started after the system logging daemon (syslogd). Note, the UPS is started with real-time priority so that it does not get "starved" on a busy system.

```
ups :respawn:rtprio 0 /usr/lbin/ups_mond -f /etc/ups_conf
```

b. Add a comment sign (#) in front of the getty entry corresponding to the port used by the UPS. For example,

```
#ttp1:2:respawn:/usr/sbin/getty -h tty0p1 9600
```

4. Edit the /etc/ups_conf file to customize the UPS configuration for your system. The etc/ups_conf file informs the monitoring daemon (/usr/lbin/ups_mond) which ports to monitor and how to react to UPS status. The ups_conf(4) manpage documents the required format and available options. Also, read carefully the guidelines for setting shutdown options just ahead.

```
shutdown_delay_mins:1
shutdown_timeout_mins:5
upstty:/dev/tty0p1
upstty:/dev/tty0p2:MSG_ONLY
```

Chapter 8 181

Configuring a PowerTrust UPS

- a. To ensure that the UPS operates appropriately to your system, review carefully the guidelines listed below concerning how to set shutdown_delay_mins and shutdown_timeout_mins in the /etc/ups_conf file:
- shutdown_delay_mins (one minute, by default) is the number of minutes after
 loss of AC power is detected before HP-UX invokes shutdown -h. Increase this
 value if the site commonly experiences momentary power interruptions greater
 than one minute for which recovery of power is expected.
- On a large system, do not set the shutdown_delay_mins to a value larger than nine minutes. HP guarantees the UPS to provide output power for up to fifteen minutes. Large systems may take as long as five minutes to complete shutdown plux one minute for the shutdown grace period. Thus, to ensure that the UPS provides power for the entire operation, figure maximum shutdown_delay_mins as fifteen minus six, or a difference of nine minutes.
- shutdown_timeout_mins (five minutes, by default) is the number of minutes shutdown -h is expected to take. UPS terminates power supply one minute after this value elapses. If shutdown does not complete in the time specified, the UPS monitor initiates a reboot -h to halt the system.
- Increase shutdown_timeout_mins if shutdown takes longer than five minutes, including the one minute grace period.
- Decrease shutdown_timeout_mins if shutdown takes less than five minutes. Small systems can take advantage of this.

CAUTION

You *must wait* the full duration of shutdown_timeout_mins before cycling power to the SPU, regardless of whether AC power has been restored. Once activated, the UPS will turn off after that period of time.

- b. If you are configuring more than one UPS, list their device special files on separate lines in priority order. Make sure the most important UPS (that is, for the SPUs) is the first one listed.
- c. If a UPS governs peripheral devices and external bus extenders, it should be configured to send and log messages, but not to initiate a system shutdown. To use this option, set upstty for that UPS to MSG_ONLY. (If you are using SAM, MSG_ONLY is referred to as noncritical operation.)
- d. Print a copy of your /etc/ups_conf file so that you can refer to it when cabling the UPS hardware. You will want to verify that the device special file associated with upstty matches that used by the UPS. For example, upstty:/dev/tty0pl specifies that the UPS is plugged into the second port (p1) of an RS-232 MDP connected to an interface card at card instance 0.
- 5. Bring the system down to a halt (shutdown -h), then turn power off. Install the UPS hardware, following instructions provided in the hardware documentation. Also see the cabling information provided in "Cabling Guidelines", earlier in this chapter.
- 6. Power up the peripherals, PowerTrust, then SPU. On rebooting, HP-UX will configure all connected components. Everything connected to the UPS will be protected against sudden power failure.

182 Chapter 8

Configuring UPS to Cycle Power During Non-Work Hours

In work environments where energy savings is crucial, you can use your UPS to cycle power on and off according to a specified schedule. You can set this up with two commands: Instruct cron to implement the power_onoff command, unattended, as part of a routine schedule. Consult the cron(1M) and $power_onoff(1M)$ manpages for information on using this feature.

The following procedure causes the system to shut down at 5:30pm and start up at 7:30am each weekday. Saturday and Sunday, the system remains powered off.

1. Create a crontab file containing the following entries. The first entry applies to Monday through Thursday and the second entry applies to Friday.

```
30 17 * * 1-4 power_onoff 7:30 tomorrow
30 17 * * 5 power_onoff 7:30 Monday
```

This tells cron to execute power_onoff at 5:30pm Monday through Friday. power_onoff executes shutdown -h 60 immediately. The arguments to power_onoff tell ups_mond when to cycle power back on.

You can specify an increment to power_onoff of up to four days (99.9 hours) in advance.

2. Once running, ups_mond logs status messages using syslogd, the system logging daemon. You can configure syslogd to redirect these messages where appropriate. Refer to the syslogd(1M) manpage for details.

For example, you can add these lines to /etc/syslog.conf:

```
# Log/report messages from the ups_mond
daemon.info    /usr/adm/daemon_log
daemon.err     /usr/adm/daemon_log
daemon.emerg    /dev/console
daemon.emerg    hostname
# Log messages from power_onoff
user.err    /usr/adm/user_log
```

Once these lines are added to /etc/syslog.conf, syslogd must be set to accept the changes. Execute kill -HUP `cat /etc/syslog.pid` and restart ups_mond.

- 3. Verify that HP-UX has been properly configured for the PowerTrust UPS as follows:
 - Check to make sure the UPS monitor daemon, ups_mond is running, by executing ps -ef | grep ups. This process is started at bootup by /etc/inittab and can be manually started by executing /usr/lbin/ups_mond -f /etc/ups_conf.
 - Make sure that the UPS messages are displayed on the console.
 - Check for UPS messages in /usr/adm/syslog or the files to which they are redirected.

Chapter 8 183

Configuring UPS to Cycle Power During Non-Work Hours

Although the PowerTrust UPS is hardware, it displays in ioscan output only as a terminal port. Its monitoring daemon, ups_mond, is a program that reads and writes through that port.

184 Chapter 8

After Configuring the PowerTrust UPS

If adding any card or peripheral to a unit monitored by a UPS, you need to recalculate the voltage/amperage (VA) draw.

Regardless of how many PowerTrust UPS devices are installed, only one instance of the ups_mond daemon should be running at any time.

If you are running SupportWatch, you should include /usr/adm/syslog among those files it monitors, in addition to /usr/bin/dmesg and /usr/adm/diag.

A special circumstance should be noted for systems with external bus extenders covered by a PowerTrust UPS. If for any reason, a disk in an external bus extender loses power but the SPU to which it is configured does not, you must wait the length of time for shutdown_timeout_mins before cycling power to the SPU.

Troubleshooting the UPS

Error messages generated by the UPS are documented on the *ups_mond*(1M) manpage.

Chapter 8 185

Configuring Uninterruptible Power Systems

After Configuring the PowerTrust UPS

186 Chapter 8

A EISA Board Configuration

Before you can make use of EISA and ISA I/O boards on Hewlett-Packard workstations, you must configure them using the <code>/sbin/eisa_config</code> program. <code>eisa_config</code> allocates resources (such as interrrupt lines, memory, and DMA channels) to all the boards on the E/ISA backplane, by reading the boards' corresponding CFG files.

Depending on the type of board, you run eisa_config in one of two modes:

- **automatic mode**, which executes automatically each time you reboot the system. EISA boards can usually be configured automatically.
- **interactive mode**, which you can execute from the command line. ISA boards require that you run eisa_config in interactive mode.

This appendix covers

- A sample eisa_config session to add an E/ISA board.
- Procedures for moving and removing an E/ISA board, as well as changing choices for board functions.
- Troubleshooting E/ISA board configuration problems.

For further discussion of E/ISA specifications, see $eisa_config(1M)$ in the HP-UX Reference. If you are configuring a custom driver or writing your own device driver, refer to HP-UX Driver Development Guide (part number 98577-90001) and HP-UX Driver Development Reference (part number 98577-90602).

E/ISA Boards and CFG Files

ISA boards have physical **switches** or **jumpers** for setting the board's characteristics. Set the switches and jumpers using documentation provided by the board manufacturer, and alter the settings if eisa_config reports conflict.

EISA boards lack physical switches or jumpers but instead use a configuration (CFG) file provided by the manufacturer to specify board resources.

The eisa_config program requires a CFG file for *every* ISA and EISA board, to allocate resources throughout the E/ISA bus. The CFG file enables eisa_config to assess all E/ISA resources, and in the case of an EISA board, configure it automatically. Although it cannot configure an ISA board automatically, eisa_config can report likely switch or jumper settings for conflict-free configuration. (Note, however, that some configurations are simply not possible, as when two boards from different manufacturers require the same resource. If this happens, only one of the boards can be used.)

Each board connected to the workstation on the E/ISA bus must have a CFG file present in the /sbin/lib/eisa directory. These files are read by /sbin/bcheckrc each time you reboot the system.

CFG files are named with the following syntax:

rxxxnnnN.CFG

where:

r is either! or a hexadecimal digit.

abbreviates the board manufacturer's name.

nnn represents the product ID.

N represents the revision level.

The following example shows an excerpted EISA configuration file named !HWPOC80.CFG, which contains blocks of board-specific information, functions, and choices within the functions. The eisa_config program selects a choice for each function. If the first (default) choice conflicts with that of another board on the bus, eisa_config selects another choice, or suggests switch settings to resolve the conflict.

```
BOARD
    ID = "HWP0C80"
    NAME = "HP EISA SCSI host adapter 25525A"
    MFR = "Hewlett-Packard Co."
    . . .
    IOCHECK = INVALID
    DISABLE = SUPPORTED
    COMMENTS = " This init file performs the following
        - Sets the ABRT to 1 in 0zC85.
        - Sets the RIEN to 0 in 0zC85.
FUNCTION = "BOOT ROM ENABLE/RELOCATION"
    CHOICE = "ENABLED"
        T.TNK
          MEMORY = 32K
     ADDRESS = 0D8000h | 0C8000h | 0D0000h
       MEMTYPE = OTH
       WRITABLE = NO
```

E/ISA Boards and CFG Files

```
INIT = IOPORT(6)LOC(7-6) 00 | 10 | 01

CHOICE = "DISABLED"

FREE

INIT = IOPORT(6)LOC(7-6) 11FUNCTION = "Host Adapter SCSI ID

Selection"

CHOICE = "SCSI ID = 7"

FREE

INIT = IOPORT(7) 10000000

CHOICE = "SCSI ID = 6"

FREE

INIT = IOPORT(7) 01000000
```

If the default function must be changed, refer to "Changing Choices for Board Functions" later in this appendix for selecting a board function.

/sbin/eisa_config writes its configuration to non-volatile memory (NVM) and to a system.sci file, which can be used to create identical configurations. For the procedure, see "Creating Identical E/ISA Configurations on Other Workstations", later in this appendix.

Configuring the Software Required by the E/ISA Board

You install an E/ISA interface board much like installing any other board, by following the procedures detailed in Chapter 3, "Configuring Interface Cards."

However, several additional software elements need to be present for proper configuration:

- A CFG file must reside in the /sbin/lib/eisa directory for every EISA board.
- The eisa interface driver must be part of the kernel before you can run eisa_config for all (HP and other) E/ISA boards.

If you are configuring a board by a different manufacturer, the manufacturer must provide a device driver for the board, information for a CFG file, and any additional information required to create valid device files.

In addition to the eisa driver, the interface driver used by the specific card (such as SCSI, HP-IB, or LAN) must also be part of the kernel. If you are connecting a peripheral device (such as a printer or tape drive) to the card, the peripheral's device driver must be part of the kernel. The interface and device drivers can be added at the same time, thus enabling you to regenerate the kernel and reboot your system only once.

In the simplest case, when you reboot, eisa_config runs and automatically configures your E/ISA cards, based on the switch settings or information it finds in the CFG files.

In more complex cases, <code>eisa_config</code> runs and discovers configuration conflicts, requiring you to set switches and jumpers on the board, or to run the command in interactive mode to resolve the conflicts. (See sections further in this chapter and <code>eisa_config(1M)</code> in the <code>HP-UX Reference</code>, and the on-line help within the <code>eisa_config</code> program.)

Configuring E/ISA Boards Using Interactive Mode

You might need to run eisa_config interactively for the following reasons:

- You need to add, remove, or move an ISA board, which do not have readable ID registers and thus are not automatically recognized by eisa_config.
- eisa_config exited from automatic mode with an error message requiring you to change the choice for a function. See "Changing Choices for Board Functions" shortly.
- You want to change the choice that eisa_config automatically selected for a function.
- eisa_config exited from automatic mode with an error message requiring you to add a board interactively.
- You might want to view your E/ISA configuration for planning purposes.

NOTE

Always run eisa_config interactively before physically changing the configuration.

Sample Interactive Session to Add an E/ISA Card

Starting eisa_config

Invoke eisa_config, which begins by displaying the current board configuration.

/sbin/eisa_config

```
HP-UX E/ISA CONFIGURATION UTILITY
```

Type q or quit to leave eisa_config.

Type ? or help for help on eisa_config commands.

Slot	CFG File	Contents
0	!HWPC010	HP Series 700 EISA System Board
1	!XYZ1401	XYZ SCSI Controller
2		** EMPTY **
3	!XYZ1702	XYZ Centronics Interface
4		** EMPTY **

On-Line Help

Note that eisa_config has self-explanatory on-line help. Type? or help at an EISA prompt and read the entries to acquaint yourself with the program.

Displaying CFG Files

Type the cfgfiles command to display the CFG files currently in the /sbin/lib/eisa directory. The cfgtypes command lists and explains each board type. For example, NET is a network board.

EISA: cfgfi	les	
Filename	Board Type	Board Name
!HWPC010	SYS	HP Series 700 EISA System Board
!XYZ1401	MSD	XYZ SCSI Controller
!XYZ1702	PAR	XYZ Centronics Interface
!XYZ1802	NET	XYZ Networking Board
!XYZ2276	VID	XYZ Video Board

Adding a Board

Make sure the CFG file is present in the /sbin/lib/eisa directory. If it is absent, check the documentation supplied with the card. (CFG files are required for EISA cards, but advisory only for ISA cards.)

Type a show slot command to see in which slots the !XYZ1802 board can be installed. Then type the add command to add the board to slot 2. eisa_config displays the new configuration.

```
EISA: show slot !XYZ1802

Valid slots for this board: 2 4

EISA: add !XYZ1802 2

Added board: XYZ Networking Board

Comments: The XYZ Networking board is an IEEE 802.3 local area networking board for use with twisted-pair cabling.

Slot CFG File Contents
```

Slot	CFG File	Contents
0	!HWPC010 !XYZ1401	HP Series 700 EISA System Board XYZ SCSI Controller
2	!XYZ1802 !XYZ1702	XYZ Networking Board XYZ Centronics Interface
4	:X1Z17UZ	** EMPTY **

You can use the comment command to display help or comments provided by the manufacturer about the board and its switches, the interface functions and choices.

Correcting a Mistake While Using eisa_config

If you have made changes in the configuration that you want to undo, you can return to the current session's initial configuration by using the init command.

Type the following command:

```
[init [system.sci ] ]
```

If you specify system.sci, eisa_config retrieves the configuration from that file; otherwise, it retrieves it from non-volatile memory (NVM).

Displaying Board Information

Type a show command to ask for information on the board in slot 2. eisa_config displays the board's basic attributes and indicates the currently selected choice for each function.

```
EISA: show board 2
XYZ Networking Board
CFG file: !XYZ1802.CFG
Slot 2
  The XYZ Networking board is an IEEE 802.3 local area networking board for
  use with twisted-pair cabling.
   Manufacturer ..... XYZ Computer Corp.
  ID ..... XYZ1802
  Board type ..... NET (Network Board)
  Board slot type ..... ISA 8 Bit
  Readable ID ..... No
  Skirt ..... No
  Length ..... 330 millimeters
   Function names and possible choices:
    StarLAN 10 PC LAN Adapter
      F1: I/O Base Address
         CH1: 300h [** current **]
         CH2: 340h
         CH3: 240h
      F2: Loopback Mode
         CH1: Normal operation [** current **]
         CH2: Test mode
      F3: Interrupt Channel (IRQ)
         CH1: 3
         CH2: 4
         CH3: 5 [** current **]
         CH4: 7
```

Changing Choices for Board Functions

If eisa_config cannot automatically generate a new configuration with the choices currently selected, you can use the change command to specify an alternative choice for a particular function on a board. A board must *already* be part of the configuration before you can use the change command on it.

Use the change command cautiously, because it overrides any choice eisa_config might make, even to resolve a conflict.

To change a choice for a given function, issue the change command, specifying the slot number, function number (F#), and the new choice number (CH#), as shown by the show board <code>slot#command</code>.

EISA: change slot# function# choice#

After making all desired changes within eisa_config, exit the program, as explained in the next section.

Exiting eisa_config

Once you have changed the configuration, eisa_config prompts you to

- save the changes and exit,
- exit without saving changes, or
- abort the exit.

When you save the changes, eisa_config displays a list of subsequent steps.

EISA: quit

A description of the configuration was saved in /var/adm/eisa/config.log. If eisa_config was run per the instructions of a specific product installation manual, refer to that manual for specifics on device file creation and I/O drivers.

Step 4 may apply if other cards were affected.

Otherwise, the following is a list of generally required steps:

- (1) Make any necessary device files. If you have moved a board you may also need to make new device files.
- (2) Ensure that all appropriate software I/O drivers are present in the kernel.
- (3) Shut down the system with the "/usr/sbin/shutdown -h" command.
- (4) Once the system is shut down, turn the power off. Then set any physical switches and jumpers correctly. The switches and jumpers that have changed since eisa_config was invoked are listed below. The file /var/adm/eisa/config.log contains a summary of the new configuration, including required switch and jumper settings.
- (5) Physically add, move, or remove boards as needed.
- (6) Turn the power on and boot the system.

Displaying Switch and Jumper Settings

Once you exit, eisa_config displays the switch and jumper settings that have changed since the program was invoked. For example,

```
Slot 2

XYZ Networking Board

Switch Name: I/O Base Address

Switches 1 through 3 select the I/O Base Address,
switch 4 is not applicable.

NOTE: 'off' in the diagram below corresponds to 'OPEN' on board switches.

Default setting

1 0 0 1

Required setting

1 0 0 1

+-x-+--+x-+on

| | | | | |

+---+x-+-x-+---+off

1 2 3 4
```

Slot 2 XYZ Networking Board Switch Name: Loopback Mode

Default	Required	on off	
		++	
0	0	x	4
		++	
0	0	x	3
		++	
0	0	x	2
		++	
0	0	x	1
		++	

Exiting eisa_config.

\$

Saving the Configuration and Exiting eisa_config

You can save the current configuration without exiting eisa_config by using the save system.sci command.

If the current configuration is not conflict-free, eisa_config notifies you and does not save the configuration.

By default, save records the new configuration in non-volatile memory (NVM). If you use system.sci, save does not record the new configuration in NVM, but instead, records it in the system.sci file. This file can be used to configure subsequent workstations. See "Creating Identical E/ISA Configurations on Other Workstations" later in this chapter.

When you quit eisa_config, it creates the /etc/eisa/config.log file, which contains information on all currently configured boards and their attributes.

Your next task will be to bring down the system, set the physical switches and jumpers to match the new eisa config specifications, and reboot.

Setting Switches and Jumpers on an E/ISA Interface Board

When you exit eisa_config or use the show switch changed command, you see a graphical representation of the switch and jumper settings that have changed during the eisa_config session. The /etc/eisa/config.log file also contains all required switch and jumper settings for each board in your working configuration. To set the switch and jumper settings,

- 1. Print the /etc/eisa/config.log file as a record of all switch and jumper settings that have changed during the eisa_config session.
- 2. Warn all users that you will be shutting down the system to configure the E/ISA board. Then shut down the system and turn the power off.
- 3. Set the switches and jumpers to their required settings, as determined by eisa_config. If you are installing a new board, add it at this time. If you are installing a peripheral device with this board, connect the device.
- 4. Turn on all peripheral devices, *then* the SPU, and reboot the system.

When the system boots, the E/ISA board settings are written to non-volatile memory (NVM), making the boards fully accessible by HP-UX.

Moving an E/ISA Board

To move a currently configured E/ISA board,

1. Invoke /sbin/eisa_config and at the EISA: prompt, issue the move command, specifying the board's current and new slot numbers.

EISA: move current slot# new slot#

- 2. After moving all desired boards within eisa_config, exit the program.
 - eisa_config will display any switch and jumper settings that may have changed during the session. Refer to the /etc/eisa/config.log file for a record of the new configuration, including the required settings.
- 3. Remove the old device file for the board with the rmsf command.
- 4. Warn all users that the system will be brought down. Halt the system with the shutdown command and turn off the power.
- 5. Set any physical switches and jumpers according to eisa_config requirements. Refer to "Setting Switches and Jumpers on an E/ISA Interface Board".
- 6. Physically move the boards.
- 7. Turn the power on and reboot the system. As the system boots, the new configuration is written to NVM and /etc/eisa/system.sci.

If the devices attached to the board use drivers known to insf (for example, SCSI devices), insf creates device special files for them at their new location. If the driver is not known to insf (for example, if you are installing a custom board), use mknod to create any required device special files. Consult the documentation accompanying the board and/or device for guidance.

NOTE

If you are moving a network board, you need to boot the computer a second time. Use shutdown -r.

Removing an E/ISA Board

To remove a currently configured E/ISA board,

1. Invoke /sbin/eisa_config and at the EISA: prompt, issue the remove command, specifying the slot number from which you are removing a board.

EISA: remove slot#

- 2. After removing all boards desired within eisa_config, exit the program.
- 3. Remove the old device file for the board with the rmsf command.
- 4. Warn all users that the system will be brought down. Halt the system with the shutdown command and turn off the power.
- 5. Physically remove the boards.
- 6. Turn the power on and reboot the system. As the system boots, the new configuration is recorded in NVM.

Creating Identical E/ISA Configurations on Other Workstations

If you have several workstations with identical E/ISA boards, you can streamline the configuration task as follows:

- 1. Invoke /sbin/eisa_config on the first system and configure the E/ISA boards to your satisfaction.
- 2. Save the configuration in a system.sci file instead of to NVM.

```
EISA: save system.sci
```

- 3. Complete the configuration task for the first workstation, by exiting eisa_config, making any necessary physical changes to the boards, and rebooting the system.
- 4. When you are ready to configure other workstations, copy the CFG and system.sci files from the first workstation to those systems. (Note, if the workstations share a file system, you might not need to copy the files at all.)
- 5. On each of the other workstations, invoke eisa_config using the -n option, which initializes the E/ISA configuration from system.sci.

```
eisa_config -n system.sci
```

6. Save the new E/ISA configuration using the save command.

By default, eisa_config records the configuration in the NVM and to /etc/eisa/system.sci. Optionally, if you specify a file (for example, tmp.sci) as an argument to the save command, eisa_config records the configuration to the specified file.

```
EISA: save [tmp.sci]
Successfully saved configuration in tmp.sci.
```

You can copy the tmp.sci file to the systems for which you are duplicating the original configuration. Then, from eisa_config on the new system, use the init command to write the configuration to NVM and /etc/eisa/system.sci of the new system.

7. Complete the configuration task by exiting eisa_config, making any necessary physical changes to the boards, and rebooting the system.

Troubleshooting E/ISA Board Configuration

Begin by reading the system messages displayed by the dmesg command. Then consult this section and "E/ISA Board Power-Up Messages" shortly for possible causes and recommended actions.

Verifying the Syntax of a CFG File

If an E/ISA board is not configuring properly, check the CFG file syntax, using the -c option.

Note, the eisa_config -c option is useful *only* for diagnosing errors in a particular CFG file, *not* for changing the configuration.

```
# eisa_config -c HWPC051
```

Checking this CFG File for correctness: /sbin/lib/eisa/HWPC051.CFG

Successful syntax verification

Board Stops Working or No Non-Volatile Memory (NVM) Driver

If a board that was working suddenly stops working or the system reports that the NVM driver cannot be used, the kernel might have been altered and now lacks the required device drivers. If so, you will need to relink the E/ISA board drivers to the kernel.

See "Configuring the Software Required by the E/ISA Board" or board documentation supplied by the manufacturer.

Added or Moved Board Does Not Work

If you added or moved an E/ISA board that is not working, check the following:

- 1. If you added the board using automatic mode, check /etc/eisa/config.err for error messages.
- 2. Did you add the required drivers to the HP-UX kernel? If not, see "Configuring the Software Required by the E/ISA Board".
- 3. If you added the board interactively, did you save the new configuration before exiting eisa_config? If not, run eisa_config again, add the board again, and then save the configuration. See "Saving the Configuration and Exiting eisa_config."
- 4. Did you change any switch and jumper settings to match the settings specified in /etc/eisa/config.log? If so, verify that you did so accurately.
- 5. Did you reboot the system after changing the configuration interactively? If not, reboot the system, taking care to warn users first.
- 6. Did you create the necessary device special files correctly? For HP-supplied boards, insf will have created the necessary device special files for any attached devices on rebooting. For boards supplied by a different manufacturer, refer to the documentation shipped with your board. If the driver is not known to insf, use mknod to create any required device special files.

Board Configuration Conflicts

E/ISA boards use four types of resources: interrupt lines, DMA channels, register addresses, and memory. If the automatic mode of eisa_config cannot configure a board due to resource conflicts, you may still be able to use eisa_config interactively to add a board that had a conflict or to change choices for a new board. Refer to "Changing Choices for Board Functions".

If your desired board configuration still causes conflicts, you may not be able to use certain boards together. Some configurations are simply not possible; for example, two boards from different manufacturers may both require the same resource. If this happens, only one of the boards can be used.

Two CFG Files Have the Same Name

If you want to load a CFG file into the /sbin/lib/eisa directory that has the same name as a file already in that directory, follow these steps:

- 1. Load the new CFG file from media into a temporary directory.
- 2. Rename the CFG file, using the same syntax as described in "E/ISA Boards and CFG Files", at the beginning of this appendix. In the temporary directory, type the following command:

mv oldname newname

3. Move the renamed CFG file to the /sbin/lib/eisa directory. Type the following command:

mv -i newname /sbin/lib/eisa

Boards that have duplicate CFG file names must be added using eisa_config interactively (see "Configuring E/ISA Boards Using Interactive Mode") earlier.

E/ISA Board Power-Up Messages

This section contains a listing of E/ISA board power up messages, their potential cause, and action you can take to correct the problem.

Several messages displayed are informational only. They indicate that configuration completed successfully.

Message: No EEPROM Data -> EISA Card ID: eisa_id

Cause: An EISA card identified itself, but non-volatile memory (NVM) has no

configuration data for the slot.

Action: Run eisa_config to update NVM.

Message: Cannot read EISA card ID

Cause: NVM recognizes that the card exists, but cannot read its ID.

Action: If a card is present, there is a hardware problem. Replace the card. If a

card is not present, ignore the message.

Message: Board ID: eisa id inconsistent with NVM ID: eisa id

Cause: The ID read from the card does not match the card ID information

stored in NVM.

Action: If board has been moved, run eisa config in automatic mode. If this

message persists after running eisa_config and updating NVM, replace the board. If board has been removed, ignore the message.

Message: Bad eeprom data for board eisa_id

Cause: An attempt to read the NVM configuration information failed. This

represents a system problem.

Action: Call your HP representative.

Message: Error initializing board eisa_id

Cause: An attempt to initialize the card with the stored NVM initialization

data failed.

Action: Check CFG file for inaccuracies. Suspect a hardware problem.

Message: EISA Board ID: eisa_id ignored

Board not present or driver not configured into kernel

Cause: The ID displayed was obtained from NVM, not the card. Either an ISA

card is present, but not its driver or the driver is present, but not the card. (Since ISA cards do not identify themselves, only the card's driver

can verify its existence.)

Action: Ensure the card in installed and verify that the driver is configured

into the kernel.

Message: EISA Board ID: eisa_id ignoredDriver not configured into

kernel

Cause: The system found the EISA card, but not its driver.

E/ISA Board Power-Up Messages

Action: Verify that the driver is configured into the kernel.

Message: EISA Board ID: eisa_id ignored, error initializing board

Cause: A driver accepted this card, but failed to initialize it.

Action: This is probably a defective card.

Message: EISA: eisa_last_attach not called, bad driver in kernel

Cause: If a driver does return correctly from its attach routine, this will panic

the kernel. Assuming that the drivers installed are working, this

message should never appear.

Action: If you are using a non-HP card and driver, remove both the card and

driver and try again. If error does not recur, the non-HP driver is bad.

If the error recurs, call your HP representative.

Messages: EISA WARNING: mapping in system board failed

EISA WARNING: mapping in I/O map entries failed

Causes: System encountered problems either in creating virtual-to-physical

mappings of the EISA system board registers or in attempting to

initialize a system board resource.

If either of these messages appear while booting from EISA SCSI, the

system will fail to boot. If booting from other than EISA SCSI, the

EISA cards will not be recognized.

Action: Call your HP representative.

Message: slot_num Slot EISA Expander Initialized: eisa_id

Cause: This informational message indicates that the bus adapter located

between the EISA bus and the host system bus initialized properly. It also indicates how many slots the kernel is configured to recognize.

Action: None.

Message: EISA SLOT slot_num

Cause: This informational message indicates which slot is currently being

initialized. When successful, each driver displays its own initialization

message. For example:

EISA SLOT 1: driver_specific_message

Action: None.

Message: Successfully Initialized EISA Boot Device

Cause: The system recognized a special case. If the system boots from EISA

SCSI before EISA SCSI configuration information is stored in NVM, the processor-dependent code uses default configuration data that might conflict with other EISA cards in the system. To handle this, the system ignores all cards except the boot EISA SCSI during the first

power-up and continues a limited boot.

If eisa_config (run in /sbin/bcheckrc) can create a valid

configuration, it records it in NVM and the system.sci file, and the system is automatically rebooted. If a valid configuration cannot be

created, eisa_configissues an error message, the system comes up with the other cards unusable. In this case, you can run eisa_configinteractively to fix the configuration and to reboot manually.

Action: None.

Message: Skipping

Cause: Either the slot is empty, or NVM reports the slot is empty, or the slot

has an ISA card but no EEPROM data, or the slot was skipped because

of an already cited circumstance.

Action: None.

Message: EISA card id eisa_id in slot slot_num had fatal error

Cause: An EISA card asserted the IOCHK line indicating a fatal error. An

expansion card might do this if there was a parity error on a memory

card. (Not all cards assert IOCHK.)

Action: Replace the card.

Messages: EISA_WARNING: unable to allocate eeprom_geninfo

EISA_WARNING: unable to allocate eeprom_slot_info for slot 0

EISA_WARNING: unable to allocate eeprom_slot_info

EISA WARNING: unable to allocate: func_data

EISA_WARNING: unable to allocate eeprom_cfg_header

EISA WARNING: unable to allocate eeprom WARNING: unable to map eeprom registers EISA WARNING: unable to map eeprom

Cause: These warnings indicate system problems when attempting to allocate

resources necessary for EISA initialization. If booting from an EISA device, the system will not boot up. If not booting from an EISA device,

the system will boot up but EISA will not be initialized.

Action: Call your HP representative.

Message: EISA_WARNING: NVM checksum invalid, clearing eeprom

Cause: A checksum failed when performed on NVM at power-up, causing the

system to erase the contents of non-volatile memory. As EISA comes up, it will complain that NVM data is missing for cards that identify

themselves. eisa_config running from /etc/bcheckrc will

automatically generate data for and reconfigure the EISA cards that are present. You will need to reconfigure ISA cards, by running

eisa_config interactively.

Action: Follow instructions in "Configuring E/ISA Boards Using Interactive

Mode".

EISA Board Configuration

E/ISA Board Power-Up Messages

B Bus Architectures

This Appendix contains a sampling of HP bus architecture diagrams. In some cases, ioscan output is provided to help you associate the hardware configuration and the software display.

Addressing on a typical multi-function (personality) card is also explained.

Series 700 Bus Architecture

Since its initial introduction, the Series 700 has grown enormously in breadth and configurability. The figures shown illustrate the Series 700 configured as a workstation, although Model 735 can be configured to support additional 735 or 755 workstations as a cluster server. The Model 770 features multiple GSC+ buses, for versatility and I/O efficiency.

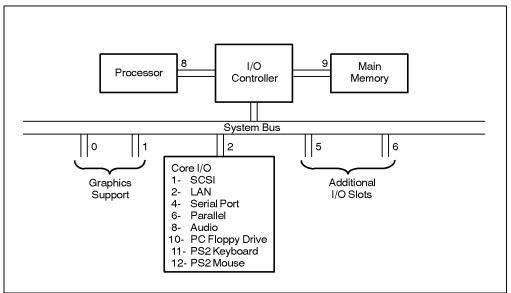

Model 712

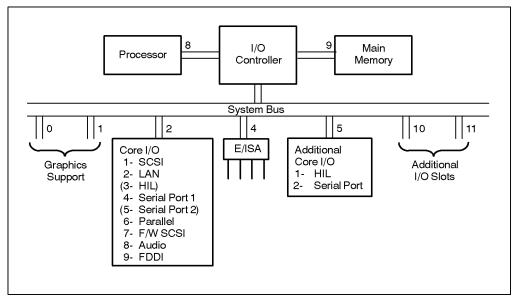
Figure B-1 shows the Model 712 bus diagram, which has capability for up to 2 graphics cards and 2 graphics monitors (which show up on ioscan as 0 and 1). Core I/O descends from slot 2 off the system bus, and optional cards show up as slots 5 or 6. Optional cards include support for IBM TokenRing, LAN, X.25, serial, and telephony. A third-party card is also configurable for video and multimedia capabilities.

Sample Addresses

A parallel printer is likely to have a hardware address of 2/0/6.0. A disk might have an address of 2/0/1.5.0, if the SCSI address on the device itself were set to 5.

Figure B-1 Model 712 Bus Relationships

Model 725/100

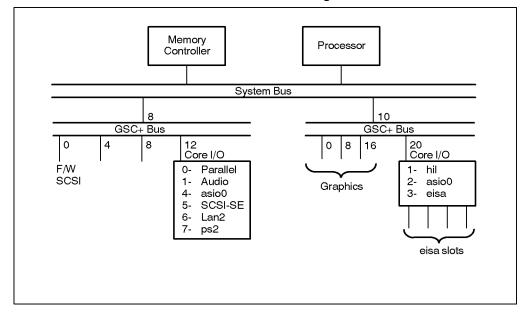

Figure B-2 shows a sample layout for a Model 725/100, and the example that follows it shows its ioscan -fn output.

The 725 has capability for up to 4 graphics monitors. Core I/O descends from slot 2 off the system bus, and optionally at slot 5. E/ISA interface cards configure at slot 4, and additional I/O cards (such as multiple fast/wide SCSI interfaces and graphics accelerators) can be installed at slots which show up in ioscan as 10 and 11.

Sample Addresses

Audio capabilities are accessed through hardware address 2/0/8. Access to the FDDI network would be addressed through 2/0/9. If a Fast/Wide SCSI interface were plugged into slot 10 and a disk whose SCSI address is set to 6 were attached to that interface, the disk would be addressed through 10/0/0.6.

Figure B-2 Model 725/100 Bus Relationships

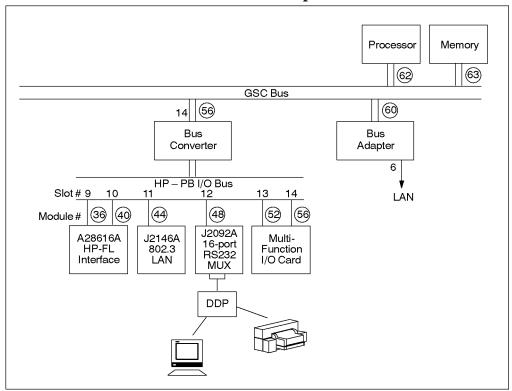

Series 700 Bus Architecture

Class	Ι	H/W Path	Driver	S/W State		Description
bc	0	=======	======== root	======= CLAIMED	BUS_NEXUS	=========
graphics	0	0	graph3	CLAIMED	- INTERFACE	Graphics
ba	0	2	bus_adapter		BUS_NEXUS	Core I/O Adapter
ext_bus	0	2/0.1	c700	CLAIMED	INTERFACE	Built-in SCSI
target	0	2/0.1.3	target	CLAIMED	DEVICE	
tape	0	2/0.1.3.0	_	CLAIMED	DEVICE	НР НР35480А
-			/dev/rmt/c0t	t3d0BEST	/dev/rmt/	c0t3d0NOMODn
			/dev/rmt/c0t	t3d0BESTb	/dev/rmt/	c0t3d0NOMODnb
			/dev/rmt/c0t	t3d0BESTn	/dev/rmt/	c0t3d0NOMOD
			/dev/rmt/c0t	:3d0BESTnb	/dev/rmt/	c0t3d0NOMOD
btarget	1	2/0.1.4	target	CLAIMED	DEVICE	
disk	0	2/0.1.4.0	sdisk	CLAIMED	DEVICE	HP 97560
			/dev/dsk/c0t	t4d0 /dev	/rdsk/c0t4d	0
target	2	2/0.1.5	target	CLAIMED	DEVICE	
disk	1	2/0.1.5.0	sdisk	CLAIMED	DEVICE	SEAGATE ST3600N
			/dev/dsk/c0t	t5d0 /dev	/rdsk/c0t5d	0
target	3	2/0.1.6	target	CLAIMED	DEVICE	
disk	2	2/0.1.6.0	sdisk	CLAIMED	DEVICE	SEAGATE ST3600N
			/dev/dsk/c0t	t6d0 /dev	/rdsk/c0t6d	0
lan	0	2/0.2	lan2	CLAIMED	INTERFACE	Built-in LAN
			/dev/ether0	/dev/l	lan0	
hil	0	2/0.3	hil	CLAIMED	INTERFACE	Built-in HIL
			/dev/hill	/dev/h		v/hil_0.6
			/dev/hil2	/dev/h		v/hil_0.7
			/dev/hil3	/dev/h	il_0.2 /de	v/hilkbd
tty	0	2/0.4	asio0	CLAIMED	INTERFACE	Built-in RS-232C
	Ū	2, 0.1	/dev/diag/mu	-		dev/tty0p0
			, 45 , 41 45 ,	, 457,	, ,	acv, 557 5F5
ext_bus	1	2/0.6	CentIf (CLAIMED]	INTERFACE (Centronics Interface
audio	0	2/0.8	audio	CLAIMED	INTERFACE	
			/dev/audioBA	A /dev/	/audioEL_0	/dev/audioLL
			/dev/audioBA		_ /audioEU	/dev/audioLL_0
						_
ba	1	4	eisa	CLAIMED	BUS_NEXUS	EISA Adapter
processor	0	62	processor	CLAIMED	PROCESSOR	Processor
memory	0	63	memory	CLAIMED	MEMORY	Memory

Model 770 (J Series)

The Model 770 features increased expandability on dual GSC buses. ioscan output for this system is found in several examples in Chapter 1, "Getting Started."

Figure B-3 Model 770 J Series Bus Relationships



Series 800 Bus Architecture

Model E Systems

Model E computers report 806 when queried with uname -a. Slots 9 through 12 (addresses 56/36.x to 56/48.x) support HP-PB cards, as shown in Figure B-4.

Figure B-4 HP 9000 Model E Bus Relationships

Addressing on Multi-Function Cards (Model E Example)

Slots 13 and 14 (addresses 56/52.x to 56/56.x) of Model E systems are reserved for one of two multi-function (personality) cards.

- MUX-based multi-function I/O card, containing single-ended SCSI, parallel port, and 8 or 16 RS-232-C ports for console, access port for remote console, and other serial devices.
- LAN-based multi-function I/O card containing 802.3 LAN, serial connection for PowerTrust UPS, and remote modem access port with security option to defeat inadvertent system resets (control-B MUX defeat switch).

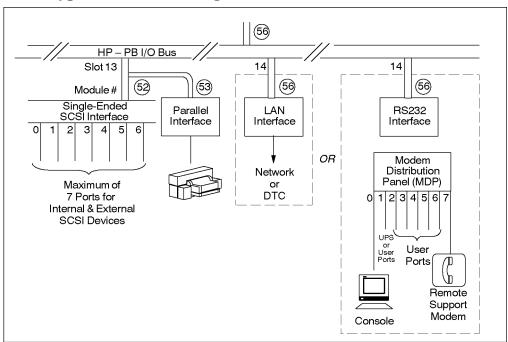

Table B-1 shows the hardware addresses for a sample Model E multi-function card.

Figure B-5 shows how multiple functions on Model E map to the bus architecture. (Note, this figure shows a detail of Figure B-4.)

Table B-1 Hardware Addresses of Multi-Function I/O Cards

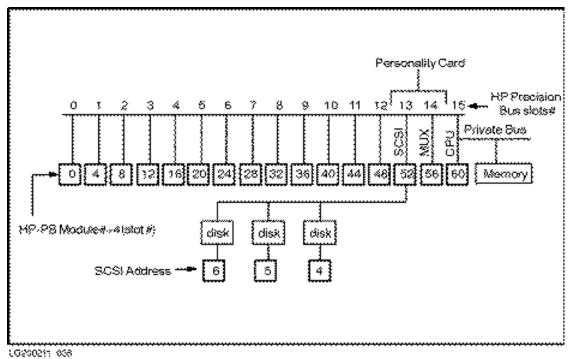
Slot Number	Hardware Path	Peripheral Device
13	56/52.SCSI_ID	SCSI device
13	$56/53.0.device_address$	Parallel printer
14	56/56.0	Console
14	56/56 port 7	Remote console
14	56/56 port 1	UPS PowerTrust
14	60.6	LAN

Figure B-5 Typical I/O Addressing for a MUX/SCSI Multi-Function Card

The following excerpted terse ioscan output shows only the entries for the interfaces represented by a sample multifunction card.

H/W Path	Class	Description
=========	=========	=========
 56/52	ext_bus	HP 28655A - SCSI Interface
 56/53 56/56	ext_bus	HP 28655A - Parallel Interface
	ССУ	MUA

Models F/G/H/I and 8x7 Systems


All I/O occurs through the HP Precision Bus (HP-PB) on Models F/G/H/I and 8x7. Figure B-6 illustrates the bus relationships in simplified form, for addressing purposes. Two multi-function (personality) cards can be configured on HP-PB:

- LAN-based multi-function I/O card (standard) containing an 802.3 Thin LAN interface, two serial interfaces (RS-232-C console port via circular DIN connector and access port for remote console), and a single-ended SCSI interface.
- MUX-based multi-function I/O card (optional) containing 8 modem (or 8 modem and 8 direct-connect) RS-232-C ports, a single-ended SCSI interface, and a parallel port.

Sample Addresses

The three SCSI disks shown would have addresses of 52.6, 52.5, and 52.4. A 802.3 LAN card plugged into slot 4, has LAN access through address 16.1.

Figure B-6 Basic Addressing on Models F/G/H/I and 8x7 Systems

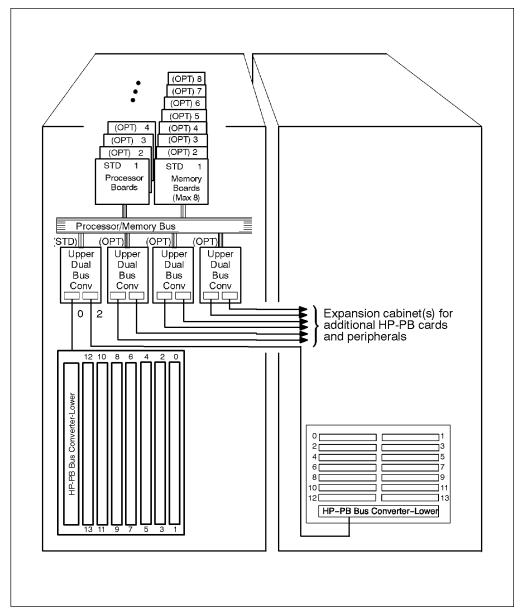

Models 890 and T500 Systems

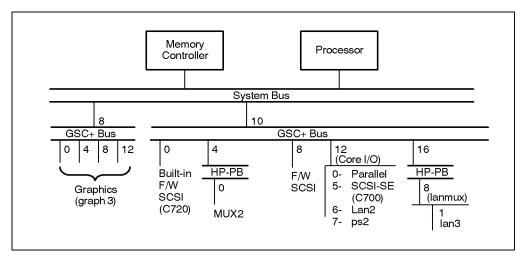
Figure B-7 shows the configuration of a T500 system, a large system with enormous expandability; also included is excerpted ioscan output

Sample Addresses

The console is likely to have an address of 0/44.0. A disk array containing four disks might show several addresses (for example, 2/52.2.0, 2/52.3.0, 2/52.4.0, and 2/52.5.0) if attached to a SCSI card at slot 13 in an expansion cabinet (bus converter 2/) and configured in RAID Independent mode, which treats each spindle separately.

Figure B-7 HP 9000 T500 Configuration and Bus Relationships

Series 800 Bus Architecture


Class	I			S/W State	H/W Type Description	
bc	1	0	bc	CLAIMED	BUS NEXUS Bus Converter	
tty	0	0/16	mux2	CLAIMED	INTERFACE HP J2092A - 16 RS-232) MITY
ext_bus	2	0/28	scsi3		NTERFACE HP Fast/Wide SCSI Inter	
disk	12	0/28.0.0	disc3	CLAIMED	DEVICE HP C2430D - SCSI Disk	
disk	13	0/28.1.0	disc3	CLAIMED	DEVICE HP C2430D - SCSI Disk	
ext_bus	3		hpfl1		INTERFACE HP 28615A - HP-FL Inter	
disk	0	0/36.0.0	disc4	CLAIMED	DEVICE HP-FL Disk	
disk	1	0/36.1.0	disc4	CLAIMED	DEVICE HP 2251 - HP-FL Disk	
disk	2	0/36.1.1		CLAIMED	DEVICE HP 2251 - HP-FL Disk	
disk	3	0/36.1.4	disc4	CLAIMED	DEVICE HP 2251 - HP-FL Disk	
lanmux	0	0/44	lanmux0	CLAIMED	INTERFACE LAN/Console	
tty	2	0/44.0	mux4	CLAIMED	INTERFACE	
lan	0	0/44.1	lan3	CLAIMED	INTERFACE	
lantty	0	0/44.2	lantty0	CLAIMED	INTERFACE	
ext_bus	5	0/52	scsi1	CLAIMED	INTERFACE HP 28655A - SCSI Inter	face
disk	14	0/52.0.0	disc3	CLAIMED	DEVICE HP C1716C - SCSI Disk	
disk	5	0/52.1.0	disc3	CLAIMED	DEVICE HP C2247 - SCSI Disk	2
disk	6	0/52.2.0	disc3	CLAIMED	DEVICE HP C2247 - SCSI Disk	2
disk	7	0/52.3.0	disc3	CLAIMED	DEVICE TOSHIBA CD-ROM	
tape	0	0/52.4.0	tape2	CLAIMED	DEVICE SCSI Tape	
disk	15	0/52.5.0	disc3	CLAIMED	DEVICE HP C2247 - SCSI Disk	5
disk	16	0/52.6.0	disc3	CLAIMED	DEVICE HP C2247 - SCSI Disk	5
ext_bus	8	0/53	lpr2	CLAIMED	INTERFACE HP 28655A - Parallel	
Interface						
bc	2	2	bc	CLAIMED	BUS_NEXUS Bus Converter	
lanmux	1	2/36	lanmux0	CLAIMED	INTERFACE HP J2146A - 802.3 LAN	1
lan	1	2/36.1	lan3	CLAIMED	INTERFACE	
ext_bus	6	2/52	scsi3	CLAIMED	NTERFACE HP Fast/Wide SCSI Inter	face
disk	19	2/52.2.0	disc3	CLAIMED	DEVICE HP C2247WD - SCSI Dis	sk
disk	20	2/52.3.0	disc3	CLAIMED	DEVICE HP C2247WD - SCSI Dis	sk
disk	21	2/52.4.0	disc3	CLAIMED	DEVICE HP C2247WD - SCSI Dis	sk
disk	22	2/52.5.0	disc3	CLAIMED	DEVICE HP C2247WD - SCSI Dis	sk
memory	0	16	memory	CLAIMED	MEMORY Memory	
console	0	18	boot_consol	e CLAIMED	BUS_NEXUS Console	
memory	1	24	memory	CLAIMED	MEMORY Memory	
memory	2	32	memory	CLAIMED	MEMORY Memory	
memory	3	36	memory	CLAIMED	MEMORY Memory	
processor	0	48	processor	CLAIMED	PROCESSOR Processor	
processor	1	49	processor	CLAIMED	PROCESSOR Processor	
processor	2	52	processor	CLAIMED	PROCESSOR Processor	
processor	3	53	processor	CLAIMED	PROCESSOR Processor	
processor	4	56	processor	CLAIMED	PROCESSOR Processor	
processor	5	57	processor	CLAIMED	PROCESSOR Processor	

Models 8x9 (K Series)

Models 8x9 share features in common with the Model 770 (J Series) — dual GSC+ buses and multiple graphics capability. In addition, the K Series systems also provide HP-PB buses. This allows for both WSIO and SIO functionality on the same computer.

Figure B-8 illustrates the bus relationships; also included is excerpted ioscan output.

Figure B-8 Model 8x9 K Series Bus Relationships

H/W Path	Class	Description
	:==========	=======================================
8	bc	I/O Adapter
10	bc	I/O Adapter
10/0	ext_bus	GSC built-in Fast/Wide SCSI Interface
10/0.6	target	
10/0.6.0	disk	HP C2247WD
10/4	bc	Bus Converter
10/4/0	tty	MUX
10/8	ext_bus	GSC add-on Fast/Wide SCSI Interface
10/12	ba	Core I/O Adapter
10/12/0	ext_bus	Built-in Parallel Interface
10/12/5	ext_bus	Built-in SCSI
10/12/6	lan	Built-in LAN
10/12/7	ps2	Built-in Keyboard/Mouse
10/16	bc	Bus Converter
32	processor	Processor
38	processor	Processor
49	memory	Memory

C Major and Minor Numbers

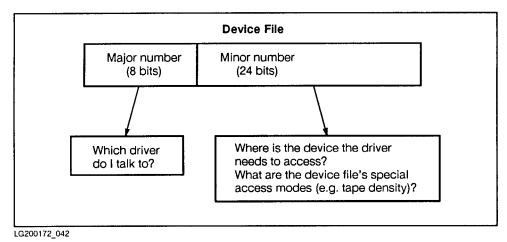
This appendix addresses special situations in which HP-UX does not configure a driver automatically or create the required device special files. For example, you might need to configure a custom driver for black-box or instrumentation applications.

If the proper code is present in the driver, insf can create device special files automatically and HP-UX can recognize the device, but you might still have to create a customized device special file for the instrument to work properly.

To configure HP-UX for non-standard device drivers or devices, you may need to:

- 1. Configure the custom driver into the kernel.
- 2. Create device special files for the device using either mksf or mknod commands.

Tables in this Appendix provide you with the information to construct a minor number for any HP device driver. You should also consult the manpages in Section 7 of the *HP-UX Reference* for the type of device driver you are configuring. For non-HP drivers, consult the documentation provided with the device.


Understanding how the Kernel Associates Drivers to Device

The kernel communicates with the hardware by associating the driver name with a hardware address. The kernel identifies the drivers it needs from the /stand/system file and finds them using the files in the /usr/conf/master.d directory.

All standard HP-UX interface and device drivers shipped are located in the library /usr/conf/lib/libhp-ux.a.

The kernel recognizes interface and device drivers (and by extension, peripheral devices) by major and minor numbers encoded into the device special files.

Figure C-1 Device Special Files Contain Major and Minor Numbers

Each device driver in the system is assigned a major number, which the kernel uses to locate the driver routine to service an I/O request.

The driver uses the minor number to locate the specific device and for information regarding how to handle data.

Major Numbers

The major number is an index for the device driver into one of two kernel tables — bdevsw, the block device switch table and cdevsw, the character device switch table.

Drivers that support both block and character I/O (such as SCSI disk driver and optical autochanger) have both a block major number and a character major number. Devices that support only character-mode access have only a character major number.

The core-hpux file in /usr/conf/master.d contains a Driver install table, which lists major numbers for reference only.

To identify valid major numbers for devices configured on your system, you can execute the lsdev command.

lsdev reads the driver headers and lists the drivers configured into the kernel with their block and character major numbers. If the driver is designed to use a dynamically assigned major number, lsdev displays the assigned major number.

Major numbers are displayed in decimal form. The -1 designation in either character or block major number field of 1sdev output can mean:

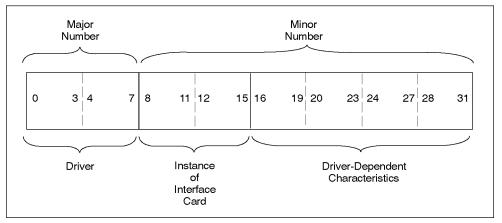
- The device might be a module that is not a driver.
- No driver is configured.
- Driver is not supported in that block or character mode.

Minor Numbers

Minor numbers represent two kinds of information: the location of the interface to which a device is attached and driver-dependent characteristics. This information is organized by specific bit assignments.

The tables later in this Appendix show the bit assignments for many HP-UX device drivers. You can also consult the device driver manpage in section 7 of the *HP-UX Reference*. For non-HP drivers, consult the documentation provided with the driver.

Understanding the Construction of Device Special Files


A long listing (1s -1 of a typical device special file might look like this:

```
crw- 2 bin bin 193 0x010200 Jul 12 02:19 tty1p2
```

The two shaded fields are the major (193, decimal) and minor (0x010200, hexadecimal) numbers.

Both major and minor number are encoded into a numerical designation of the device driver, called the dev_t format. This is shown in Figure C-2. (Note, PA-RISC uses "Big-Endian" byte ordering; that is, the bit labelled 0 is the most significant (high-order) bit.)

Figure C-2 Driver Number (dev_t) Format

Bits 0 through 7 of an HP-UX device special file are used to encode the major number.

Bits 8 through 31 are used to encode the minor number. The hexadecimal notation for the minor number follows the format <code>0xnnnnn</code>, in which each four bits (shown as <code>N</code> or "nibble") is represented by a hexadecimal digit (0 through <code>F</code>, in which 0 means no bits are set, <code>F</code> means all bits are set).

Bits 8 through 15 encode the card instance of the interface card, that is, the number representing the order that HP-UX encounters the specific class of the interface card when binding it into the system. This number is displayed (in decimal notation) in the I column of ioscan output.

Bits 16 through 31 encode driver-dependent characteristics, which are documented in Table C-2, Table C-3, Table C-4, and Table C-5. You can use these tables to construct custom minor numbers, when you require a driver to recognize or use specific or non-standard features of a device.

Table C-1 may be useful for translating bit assignments into hexadecimal digits.

Table C-1 Decimal, Binary, and Hexadecimal Equivalents

Decimal	Binary	Hex
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	A
11	1011	В
12	1100	C
13	1101	D
14	1110	E
15	1111	F

Examples of Minor Number Creation

A Minor Number for a MUX Driver

The minor number 0x010200 shown earlier for the mux2 driver can be represented as follows:

bits	8-11	12-15	16-19	20-23	24-27	28-31
binary	0000	0001	0000	0010	0000	0000
hex (0x)	0	1	0	2	0	0

0000 000	1	The eight bits of the card instance number is 1 (tty1 in the device special file name).
0000 001	0	The port address is 2 (p2 in the device special file name).
0000 000	0	The remaining bits are set to zero.

A Minor Number for a SCSI Disk Device

The minor number 0x023000 represents a SCSI disk device set with a SCSI address of 3, connected to a SCSI interface at card instance 2, and might be shown as follows:

bits	8-11	12-15	16-19	20-23	24-27	28-31
binary	0000	0010	0011	0000	0000	0000
hex (0x)	0	2	3	0	0	0

0000 0010	The eight bits of the card instance number is 2 (c2 in a device special file name).
0011	The SCSI address (target) set on the device is 3 (t3 in a device special file name).
0000 0000 0000	The remaining bits are set to zero. (d0 in a device special file name).

Adjusting Bits to Read a Floppy Disk

Media used by tape drives and floppy disk drives have different densities. There might be times when you need to read a floppy disk that was written on older technology.

For example, a Series 800 Model E computer has a built-in SCSI floppy disk drive whose typical minor number is 0×005000 . However, when attempting to read a floppy disk originally created on a 2.88MB drive, you might want to create minor numbers 0×005004 and 0×005005 . As shown in Table C-3, both minor numbers adjust bits in the range 28-31 to accommodate the 2.88MB drive, and allow you to try to read the diskette with or without a set geometry determined.

Minor Number Bit Assignments

The tables on the following pages show the bit assignments for bits 16 through 31 for the principal HP device drivers. In all cases, bits 8 through 15 (that is NN in hexadecimal 0xNN0000) encode the card instance of the interface card through which the device communicates.

Table C-2 Bit Assignments for Tape Devices

	bits 16-19	20-23	24-27	28-31
stape	SCSI target	SCSI LUN	24 - BSD beha	vior at close
tape2			25 - No rewind	l
			26 - Configura	tion method ^a
			27-31 - Index/l	Density ^b
tape1	HP-IB	HP-IB unit	24 - BSD beha	vior at close
	device		25 - No rewind	l
			26 - Configuration method ^a	
			27-31 - Index/l	Density ^b

- a. If 1, bits 27-31 mean Index. If 0, bits 27-31 mean Density.
- b. Index and Density are generated as needed by *mksf*(1M). Density is encoded as a field in the minor number, using a constant of the form DEN_M_*, as defined in /usr/include/sys/mtio.h. Index refers to an index into the property table used to specify extended configuration options (using the mt_property_type data structure defined in /usr/include/sys/mtio.h.) For further discussion, see *mt*(7) in the *HP-UX Reference*.

Table C-3 Bit Assignments for Disk and agneto-Optical Devices

	bits 16-19	20-23	24-27	28-31
discl	16 - Reserved (0) 17-19 - HP-IB address	CS80 unit	24 - Diagnostic access 25 - Cartridge tape 26-27 - Reserved	Section number (0=whole disk)
disc2	16 - Reserved 17-19 - HP-FL device	HP-FL unit (always 0)	24 - Diagnostic access 25-26 - Reserved	Section number
disc3	SCSI target	SCSI LUN	Reserved	Section number
disc4	SCSI target or HP-FL device	SCSI LUN or HP-FL unit (always 0)	Reserved	Section number
sdisk	SCSI target	SCSI LUN	Reserved	Disk partition number
sflop	SCSI target	SCSI LUN	Reserved	0=3.5in 1.44MB drive, geom determined (default)
				1=3.5in 1.44MB drive, no geom determined (SoftPC)
				2=3.5in 720KB drive, geom determined
				3=3.5in 720KB drive, no geom determined
				4=3.5in 2.88MB drive, geom determined
				5=3.5in 2.88MB drive, no geom determined
				6=not supported
				7=not supported 8=5.25in 1.2MB drive, geom determined
				8=5.25in 360KB drive, geom determined 9=5.25in 1.2MB drive, no geom determined
				9=5.25in 360KB drive, no geom determined
schgr autox0	SCSI target	20-22 - SCSI I	LUN 23-31 - Surface	

Table C-4 Bit Assignments for Serial, Network, and Line Printer Devices

	bits 16-19	20-23	24-27	28-31		
asio0	16-17 - Receive	Reserved	24 - Card diagnostic bit	28 - Reserved		
	fifo trigger level		25 - Reserved	29 - Protocol		
	18-19 - Transmit fifo limit		26 - Reserved	0=Bell, 1=CCITT		
			27 - Hardware flow	30-31 - Access mode		
			control enable	00=Direct		
				01=Dial-out modem		
				10=Dial-in modem		
mux0	16-23 - Port number	r	24 - Card diagnostic bit	28 - Reserved		
mux2 mux4			25 - Port diagnostic bit	29 - Protocol 0=Bell, 1=CCITT		
1110211			26 - Reserved	30-31 - Access mode		
			27 - Hardware flow	00=Direct		
			control enable	01=Dial-out modem		
				10=Dial-in modem		
lan0	16-23 - Reserved		24 - Diagnostic access			
lan1 lan2			25-30 - Reserved			
lan3			31 - Protocol 1=IEEE, 2=Ethernet			
osi0	16-31 - Reserved					
CentIf	16-27 - Reserved			Handshake mode:		
				1=Automatic, using ACK, BUSY		
				2=Automatic, using BUSY only		
				3=Bidirectional read/write (for ScanJet)		
				4=Stream mode		
				5=Pulsed mode, using ACK, BUSY		
				6=Pulsed mode, using BUSY only		
lpr0	HP-IB device or	HP-IB unit	24 - Diagnostic access	28 - Raw mode		
lpr1 lpr2	SCSI target	or SCSI LUN	25 - Reserved	29 - No wait		
lpr3		SOSTILON	26 - Auto form feed	30 - Old paper-out behavior		
			27 - Case fold	31 - Eject page during paper-out recovery		
hpib	HP-IB device	Unused	Unused	Unused		

Table C-5 Bit Assignments for Miscellaneous Devices

	bits 16-19	20-23	24-27	28-31
sctl	SCSI target	SCSI LUN	Reserved	0=Select with ATN enabled (default)
				1=Select with ATN controlled
				by scsi_cmd_parms ^a
				2=Inhibit inquiry at open
				>2 - Not supported
instr0	16-20 - Instrument	address	24 - Diagnostic access	
	21-23 - Reserved		25-31 - Reserved	
pty0 pty1	Bits 8-31 - Unique hex value for 1		pty	
pdn0	Bits 16-23=2 (type)		24 - Diagnostic bit	
			25-31 - unused	
psi0			24 - diagnostic	
psi1			25-31(psi0) - Reserved	
			25-31(psi1) - PDA Index	
graph3	3 16-23 - Bus specifier		Unused	0=Image planes
				1=Overlay planes
ps2	b (hexadecimal) b	Reserved	Port number	28 - Autosearch 0=Off, 1=On.
				If 28 is On, 29 used as follows:
				0=Mouse 1=Keyboard
				30-31=0
audio	Instance Number	0=Read/wr	Output destination	Output format (Ignored if
	ite device 1=control only device	(Ignored if bits 28-31=0.) 0=Headphone, internal speaker, line out for	bits 20-23=1)	
			0=No change 1=Mu-law	
			2=A-law	
			Audio II 1=Headphone only	3=16-bit linear
		2=Int. speaker only 3=No output 4=Line output only		
			(Audio II)	

a. See /usr/include/sys/scsi.h.

b. Corresponds to bits 1011, for the function number of the PS2 device.

Associating a Custom Driver with a Peripheral

If you are configuring HP peripherals and standard HP drivers, HP-UX configures the elements automatically, provided the drivers have been included in the kernel input file.

Consider, however, the scenario of having a peripheral device for which you need to use a custom driver. Perhaps you have received the driver on a tape, which you have loaded onto your system. If you want to associate a driver with only a specific hardware path, you must include the driver and the peripheral address in a "driver statement" of the /stand/system file. You must make sure the driver can be found by the kernel-build utility, and you must rebuild the kernel.

NOTE

You can use this technique to load any sio-style driver or wsio-style device driver. You cannot force-configure wsio-style interface drivers at a specific address using this technique. However, you can configure wsio-style interface drivers as long as the driver is included in the system file and no other interface driver in the /stand/system file can claim the card in question. For further information, refer to the *Driver Development Guide*.

- 1. Rebuild the kernel to include the added device driver, by following these steps:
 - a. Change directory to the build environment (/stand/build). There, execute a system preparation script, system_prep. system_prep writes a system file based on your current kernel in the current directory. (That is, it creates /stand/build/system.) The -v provides verbose explanation as the script executes.

```
cd /stand/build
/usr/lbin/sysadm/system_prep -v -s system
```

- b. Edit the /stand/build/system file in two places to add the custom driver:
 - List the driver in the upper portion of the system file, with other similar drivers. For example, the following figure shows the upper portion of a system file with a custom SCSI driver, disco added.

2. Add a driver statement at the end of the file, if you intend to force-load the driver at only a certain hardware path.

The driver statement tells HP-UX to associate the driver at a specified hardware address and has the following format:

```
driver <hardware_path> <driver_name>
```

For example, a driver statement to associate a custom driver named disco with an interface card at address 2/0/7.6.0 on a Model 755 resembles this:

```
driver 2/0/7.6.0 disco
```

Note, although an HP-UX disk device driver (such as sdisk) may be present in the kernel, this driver statement instructs HP-UX to use disco for the disk at address 2/0/7.6.0, only. HP-UX continues to use its standard disk device drivers for any other disks. If disco should replace all instances of sdisk in the kernel, you could simply remove sdisk from the system file and replace it with disco. You only need to add a driver statement if you want to force-configure the driver to a specific path(s).

c. Create a small file in the /usr/conf/master.d directory to be cross-referenced by the /stand/system file entry when the kernel is rebuilt. The file can be given any name, but should have the following format (which resembles that of the Driver_Install portion of /usr/conf/master.d/core-hpux):

```
$Driver_Install
<driver_name> -1 -1
$$$
```

For example, here is a file for the disco driver.

```
$Driver_Install
disco -1 -1
$$$
```

d. Verify that the driver you are installing has been built into a library that can be found by the mk_kernel utility.

If you have been provided this driver from a third-party company, their engineers are likely to have compiled the driver into a library which you will have loaded into /usr/conf/lib when you loaded their tape onto your system.

To examine an archive, run the ar command with the -t option, giving the library as an argument. Hopefully, you will see the file (such as disco.o, or whatever file name the driver is stored in) among the files included in the output from the command.

```
/usr/ccs/bin/ar -t /usr/conf/lib/libdisco.a
```

If you do not find the file, you will need to add the driver into a library in /usr/conf/lib. Do this with the -r option of the ar command. For example, to add disco.o to /usr/conf/lib/libhp-ux.a, execute the following:

```
/usr/ccs/bin/ar -r /usr/conf/lib/libhp-ux.a disco.o
```

Once you have verified that the .o file is present in a library accessible to mk_kernel, you are ready to build your kernel to include the new driver.

e. Make sure you returned to the /stand/build directory. Build the kernel by invoking the mk_kernel command. This creates /stand/build/vmunix_test, a kernel ready for testing.

```
/usr/sbin/mk_kernel -s system
```

f. Verify that everything built correctly by executing the nm command and greping for the driver name. The command string should return at least one entry, such as that shown below.

```
/usr/ccs/bin/nm vmunix_test | grep disco
disco_install | 524264|extern|entry | $CODE$
```

g. Save the old system file and kernel by moving them. Thus, if anything goes wrong, you still have a bootable kernel.

```
mv /stand/system /stand/system.prev
mv /stand/vmunix /stand/vmunix.prev
```

h. Move the new system file and new kernel into place, ready to be used when you reboot the system.

```
mv /stand/build/system /stand/system
mv /stand/build/vmunix_test /stand/vmunix
```

- 2. Notify users that the system must be rebooted.
- 3. Shut down and halt the system using the /usr/sbin/shutdown -h command.
- 4. Turn off power to the SPU.
- 5. Install the peripheral device. Make sure the peripheral's hardware address is set to the hardware path specified in the driver statement of the /stand/system file.
- 6. Power up the peripheral device and then the SPU.

When the kernel reboots, you can verify that the custom driver was configured into the kernel by executing /usr/sbin/ioscan -f. You should see the driver associated with its intended device at the hardware path you specified in step 2.

For further information on driver statements and other customizations of the / stand/system file, consult the config(1M) manpage. The config program is used by mk kernel when you build a kernel.

Under most circumstances, insf creates useful device special files when the system boots up. However, for some special circumstances, it may be necessary to create these files using mknod.

Creating Device Special Files using mknod

To create device special files for any driver other than those listed on the insf and mksf manpages, use mknod.

- 1. Change directory to /dev.
- 2. Determine the major number by invoking the 1sdev command.
- 3. Construct a minor number for the device by using the bit assignments for the device driver. For HP devices, the bit assignments are found in tables earlier in this Appendix. For custom device drivers, consult documentation supplied with the driver.
- 4. Create the device special files for the device using the following syntax:

```
/usr/sbin/mknod <file_name> b|c <major#> <minor#>
```

- Name the file something easily associated with the device.
- Use b for block device special file or c for character device special file.
- Make files for both block and character if driver supports both.
- Use the block or character major number reported by 1sdev.
- Use the minor number constructed from the bit assignment tables.

For example, the scope device driver has block and character major numbers of 65 and 234 respectively. Its minor number of 0x026000 is constructed like instr0 (see Table C-5). Bits 8 through 15 encode 2 as the card instance of the interface card and bits 16 through 19 encode 6 as the instrument address.

```
/usr/sbin/mknod /dev/scope b 65 0x026000
/usr/sbin/mknod /dev/c_scope c 234 0x026000
```

5. Verify the configuration by invoking ioscan with the -fun or fkn option. If created properly, the new device special files will be displayed with the configured device.

D Worksheets

Copy these worksheets as many times as you need for the devices on your system.

Keep a current copy of $/usr/sbin/ioscan\ -fk$ output as an aid in configuring and troubleshooting your system.

Interface Cards

Part name and number:	
Version and date:	
Serial number:	
Firmware revision:	
Station address (LANIC ID) $^{\rm a}$:	
Hardware address:	
Dip switch settings:	

a. Use /usr/sbin/lanscan or /usr/sbin/lanadmin to identify the station address.

Part name and number:	
Version and date:	
Serial number:	
Firmware revision:	
Station address (LANIC ID):	
Hardware address:	
Dip switch settings:	

Terminals and Modems

Part name and number:	
Serial number:	
Cabling:	
Interface card, port number ^a :	
Hardware address:	
Dip switch settings ^b :	
Driver, device file, minor number:	
Modem use, baud rate, protocol:	

- a. Note if configured via DTC or distribution panel.b. Note if configured as console or serial terminal.

Part name and number:	
Serial number:	
Cabling:	
Interface card, port number:	
Hardware address:	
Dip switch settings:	
Driver, device file, minor number:	
Modem use, baud rate, protocol:	

Disk Drives

Part name and number:	
Serial number:	
Firmware Revision:	
Number of disks, capacity:	
Interface card, port number:	
Hardware address:	
Dip switch settings:	
Drivers, device special files, minor numbers:	
LVM physical volume, volume group:	
RAID level, use ^a :	

a. For example, file system, boot, dump, swap, raw data.

Part name and number:	
Serial number:	
Firmware Revision:	
Number of disks, capacity:	
Interface card, port number:	
Hardware address:	
Dip switch settings:	
Drivers, device special files, minor numbers:	
LVM physical volume, volume group:	
RAID level, use:	

Disk Drives

Part name and number:	
Serial number:	
Firmware Revision:	
Number of disks, capacity:	
Interface card, port number:	
Hardware address:	
Dip switch settings:	
Drivers, device special files, minor numbers:	
LVM physical volume, volume group:	
RAID level, use ^a :	

a. For example, file system, boot, dump, swap, raw data.

Part name and number:	
Serial number:	
Firmware Revision:	
Number of disks, capacity:	
Interface card, port number:	
Hardware address:	
Dip switch settings:	
Drivers, device special files, minor numbers:	
LVM physical volume, volume group:	
RAID level, use:	

Tape Drives

Part name, number, type of tape drive:	
Serial number:	
Firmware Revision:	
Capacity:	
Interface card, port number:	
Hardware address:	
Cabling:	
Dip switch settings:	
Drivers, device special files, minor numbers:	
Use	
Part name, number, type of tape drive:	
Serial number:	
Firmware Revision:	
Capacity:	
Interface card, port number:	
Hardware address:	
Cabling:	
Dip switch settings:	
Drivers, device special files, minor numbers:	
Use	

Printers and Plotters

Part name, number:	
Serial number:	
Firmware Revision:	
Capacity:	
Interface card, port number:	
Hardware address:	
Cabling:	
Dip switch settings:	
Drivers, device special files, minor numbers:	
Means of access:	
Part name, number:	
Serial number:	
Firmware Revision:	
Capacity:	
Interface card, port number:	
Hardware address:	
Cabling:	
Dip switch settings:	
Drivers, device special files, minor numbers:	
Means of access:	

Uninterruptible Power Systems (UPS)

Part name, number:	
Serial number:	
Firmware Revision:	
Rated load capability:	
Interface card, port number:	
Hardware address:	
Cabling:	
Dip switch settings:	
Drivers, device special files, minor numbers:	
Hardware coverage:	
Part name, number:	
Serial number:	
Firmware Revision:	
Rated load capability:	
Interface card, port number:	
Hardware address:	
Cabling:	
Dip switch settings:	
Drivers, device special files, minor numbers:	
Hardware coverage:	

Symbols	5061-2569 (serial connector), 178
/dev/cua#p#, 81	5961-8383, 177
/dev/cul#p#, 81	700/60, 64
/dev/mux#, 64	700/96, 64
	700/98, 64
/dev/tty#p#, 64, 65	7596A Draftmaster II plotter, 168
/dev/ttyd#p#, 81	• ,
/etc/checklist, 109	A
/etc/eisa/config.log file, 200	
/etc/exports, 114	A1439A CRX-24 graphics display interface
/etc/fstab, 109, 118	card, 40
/etc/gettydefs, 89	A2269A Dual CRX graphics display interface
/etc/inittab, 87, 155	card, 40
/etc/ioconfig, 22	A2941A, 180
/etc/lp/interface, 170	A2994A, 180
/etc/lvmtab, 111, 112	A2996A, 180
/etc/syslog.conf	A2997A, 180
redirecting log messages, 183	A2998A, 180
/etc/ups_conf, 181	AC power failure and UPS, 175
/sbin/dasetup, 88	accelerator card
/sbin/lib/eisa directory, 189	HP A1454A, 40
/sbin/rc, 181	access mode bits, 232
/stand/build, 25, 55, 66, 102, 107, 109, 111,	Access port MUX16, 70
116, 130, 140, 162, 168, 235	access to printers and plotters, 149
/stand/build/system, 25, 55, 66, 107, 109, 130,	adding drivers, 140
140, 162, 168, 235	adding peripherals
/stand/build/vmunix_test, 25, 55, 66, 102,	summary, 25
107, 109, 111, 116, 130, 140, 162, 168, 236	addressing, 225
/stand/ioconfig, 22	by decreasing priority, 138
/stand/system, 102, 161, 225	device drivers 225
driver statement, 235	device drivers, 225
kernel configuration file, 237	adjusting minor number bits to read other densities, 230
/stand/vmunix, 25, 55, 66, 102, 107, 110, 112,	adjusting minor-number bits, 225
116, 130, 140, 162, 169, 237	anti-static workstation, 29
/usr/conf/lib, 225	APPCC-1250UX, 180
/usr/conf/lib/libhp-ux.a, 225, 236	APPCC-600UX, 180
/usr/conf/master.d, 225, 226	ar(1), 236
/usr/include/sys/mtio.h, 231	ar(1M), 225
/usr/lbin/sysadm/system_prep, 162	asio0, 32, 64, 65, 155, 156, 164, 232
/usr/lbin/ups_mond, 181	associating driver and peripheral manually,
/usr/sbin/sam, 61, 62, 69, 102, 130, 140, 181	237
MSG_ONLY	asynchronous data communication, 32
noncritical operation, 182	ATT V.4 file-system layout, 105
printers and plotters, 148	attached line printer bit, 232
r · · · · · · · · · · · · · · · · · · ·	ATT-style tape positioning, 135
Numaries	audio, 232
Numerics	AUI LAN, 46
28615A HP-PB fiber-optic link adapter, 42	AUTO file, 115
28643A, 51	auto form feed bit, 232
28643A SCSI Fiber-Optical Extender, 50	autoch

class in sample ioscan output, 131	used for INTR and baud switching, 83
automatic mode, 188	BSD behavior bit, 231
autox0, 231	build environment, 25, 55, 66, 102, 107, 109,
,	111, 116, 130, 140, 162, 168, 235
В	bus architecture
	multi-processing system, 220
backplane slot priority, 29	bus relationships
backward compatibility	Model 712, 213
/etc/checklist, 109	Model 725, 214
/etc/disktab, 92	Model 770 (J Series), 216
configuring disks with hard partitions, 106	Model E, 217
configuring LVM disks, 106	Model T500, 220
configuring SDS disks, 106	Models 8x9 (K Series), 222
configuring whole disks, 106	
disktab(4), 110	Models $F/G/I/I$, $8x7$, 219
magneto-optical disks, 128	~
s2, 110	\mathbf{C}
section numbers, 96, 97, 98	C1006A/G/W, 64
Series 700 SDS disks, 104	C1007A/G/W, 64
Series 700 whole disks, 104	C1017A/G/W, 64
Series 800 hard partitions, 104	C1064A/G/GX/W/WX, 64
baud rate for modem, 62	C1065A/G/W, 64
baud switching, 83	C1080A/G/W, 64
baud-rate mismatch, 88	C1083W, 64
bdevsw, 226	C1084W, 64
bdf(1), 109	C1085W, 64
Bell/CCITT, 232	C2400-UTIL fileset
Berkeley-style tape positioning, 135	for disk array tools, 94
bit assignments, 231	c700, 49, 98, 127
disk drivers, 231	c720, 49, 98
line printer devices, 232	cable length, SCSI, 52
magneto-optical devices, 231	cables
miscellaneous devices, 232	10833A/B/C/D, 45
network devices, 232	92222A/B/C/D, 50
serial devices, 232	C2900A, 50
	C2901A, 50
tape drivers, 231	C2902A, 50
black-boxes, 223	C2903A, 50
block I/O, 225	C2906A, 50
block major number, 226 book	C2907A, 50
overview, 11	C2908A, 50
	C2911A, 50
references, 12	for SwitchOver configurations, 51
boot administration	HP-FL, 43
boot ROM menus, 116	K2296, 50
LVM maintenance mode, 117	K2297, 50
mode, 116	PBus, 43
booting in LVM maintenance mode, 117	
BREAK signal	cabling guidelines

HP-FL, 43	and instance number, 22
HP-IB, 45	of interface, 16, 22, 227
RS-232-C devices, 35	command
SCSI, 50	cat, 87
capacities, magneto-optical disk, 126	comment, eisa_config, 195
capacity	init, 86, 195
magneto-optical disk libraries, 125	lifcp(1M), 115
card instance, 227	mkboot(1M), 115
and class, 16	move, 201
and interface card, 16	remove, eisa_config, 202
correlating device files, 23	save, eisa_config, 200
defined, 16	
cartridge tape bit, 231	set (shell command), 89
case fold bit, 232	stty, 89
CCITT, 232	who, 86
CCITT protocol for modem, 62	commands
control signals, 83	mknod(1M), 166
cdevsw, 226	comment command, eisa_config, 195
CD-ROM configuration	compatibility pseudo-driver (cpd), 104
planning, 94	compression, data, 134, 138, 143
cent(7), 167	config(1M), 237
CentIf, 37, 158, 167, 232	configuration
handshake modes, 167	initializing, 195
centronics configuration requirements	configuration guidelines
for plotters, 158	black-boxes, 223
for printers, 158	graphics devices, 40
centronics interface, 37	HP-IB, 44
CFG files, 189	instruments, 223
checking for correctness, 204	SCSI, 48
format, 189	third-party device drivers, 223
changing choices for E/ISA board functions,	configuration strategy
197	tape drives, 134
ChannelSpan card (A1749A), 42	configuring strategy
character I/O, 225	overview, 11
character major number, 226	console
CharDrv, 158	compared to terminal configuration, 69
ChrDrv, 37	configuring a non-HP terminal, 70
CIO	connectivity for, 32
SCSI tape drives, 138	HP 700/60 configured in non-HP modes, 70
Series 800 HP-FL disk drives, 97	planning to configure, 61
Series 800 HP-IB disk drives, 96	VT100-compatible, 70
Series 800 HP-IB tape drivers, 135	VT320, 70
Series 800 magneto-optical disk drives, 127	Wyse 60, 70
Series 800 RS-232-C plotters, 156	console, remote, 32
Series 800 RS-232-C printers, 155	consoles, 68
Series 800 SCSI disk drives, 98	core, 44, 49, 136
Series 800 SCSI printers, 159	core-hpux, 226
Series 800 SCSI tape drivers, 138	correcting an error while using eisa_config,
cio_ca0, 32, 42, 44, 46, 49, 64, 96, 97, 98, 127,	195
	correlating components and device special
class	files, 19

cpd, 104	device drivers, 225
creating an LVM mapfile, 111	28615A HP-FL adapter, 43
creating new sci files, 200	addressing, 225
cron(1M), 183	and disk drives, 96
crontab file and UPS, 183	and magneto-optical devices, 125
CS80	and major numbers, 226
unit bits, 231	associating custom driver with a
cs80, 136, 153, 154	peripheral, 235
ct(7), 136 CTS/RTS (hardware flow control) for	bit assignments, 231
modems, 83	dev_t format, 227
cue(1), 79	for HP-FL disk, 97
cuegetty(1M), 79	for HP-IB disk drives, 96
custom device drivers, 235	for HP-IB tape drives, 135
custom drivers, 28	for parallel (centronics) plotters, 158
customized graphics configurations,	for parallel (centronics) printers, 158
maintaining accuracy of, 41	for printers and plotters, 152
• ,	for SCSI disk, 98
D	for SCSI printers, 159
daemons	for SCSI tape drives, 138
syslogd, 183	for serial (RS-232-C) plotters, 156
system logging, 181	for serial (RS-232-C) printers, 155
UPS monitoring, 181	
	for terminals and modems, 64
ups_mond, 183	instr0, 44
data bits, terminal vs console, 69 data communication and terminal controllers	kernel association, 225
(DTC), 34	location, 225
16TN/MX, 34	major number, 226
72MX, 34	device installation
J2060A/J2063A, 34	requirements, 13
J2070A, 34	device number
data compression	defined, 16
avoiding its use on tape drives, 143	device special files
dealing with, 134, 138, 143	and hardware path, 23
DEC terminals, 62	associated with a peripheral device, 24
DEC VT terminals, 71, 74	bit assignments, 227
emulation limitations, 79	correlating with hardware components, 19
decimal, binary, and hexadecimal	creating customized for tape drives, 142
equivalents, 228	creating for modems, 81
DELT-2326/C2, 180	creating for serial printer or plotter, 164
DELT-2336/C2, 180	creation, 104
determining available addresses using	disk drives, 97, 98
ioscan, 19	exhaustive mode for tape drives, 143
dev_t format, 227	floppy disk drives, 101
device adapter	for printers and plotters, 164
installing, 28	for tape drives, 141
device configuration using SAM, 14	magneto-optical disk drives, 127 major and minor numbers, 225

plotters, 156, 158	C2212A, 98
printers, 155, 158, 159	C2213A, 98
tape drives, 135, 136, 138	C2214B, 98
diagnostic bit, 231, 232	C2216T, 98
disc1, 96, 136, 231	C2217T, 98
disc2, 42, 97, 231	C2252B/BZ/HA/HZ, 97
disc3, 42, 98, 101, 127, 231	C2254B/BZ/HA/HZ, 97
disc4, 42, 97, 231	C2258B/HA, 97
disk	C2259B/HA, 97
class in sample ioscan output, 131	C2281A, 98
disk array configuration	C2282A, 98
planning, 94	C2290A, 98
RAID levels, 94	C2291A, 98
disk drives	C2293A/T/U, 98
7907A, 96	C2295B, 98
7914CT/P/R/ST, 96	C2425JK, 98
7933H, 96	*
7935H, 96	C2427JK, 98 C2460F/R, 98
7936FL, 97	C2460F/R, 98
7936H, 96	•
7937FL, 97	C2462F/R, 98
7937H, 96	C2470S, 98
7957A/B, 96	C2471S, 98
7957B, 98	C2472F/R/S, 98
7958A/B, 96	C2473F/R/S, 98
7958B, 98	C2473T, 98
7959B, 96, 98	C2474F/R/S, 98
7962B, 96	C2474J, 98
7963B, 96	C2476F/R, 98
9127A, 96	C2481A, 98
9153C, 96	C2482A, 98
9262B, 96	C2491A, 98
9263B, 96	C2492A, 98
97902B, 96	C3020T, 98
97903B, 96	C3021T, 98
97962B, 96	C3022R/T, 98
A1999A, 98	C3023R/RZ/T, 98
A2655A, 98	C3023T, 98
A2657A, 98	C3024R/RZ/T, 98
A3058A, 98	C3024T, 98
A3182A, 98	C3027U, 98
A3231A, 94, 98	C3028U, 98
A3232A, 94, 98	C3032T, 98
and device drivers, 96	C3033T, 98
C1707A, 96	C3034T, 98
C2200A, 96	C3035T, 98
C2201A, 97	C3036T, 98
C2203A, 96	C3037U, 98
C2204A, 97	C3038U, 98
,	C3040R/T, 98

C3041R/T, 98	changing choices for board functions, 197
C3044U, 98	choices, 190
C3560U, 98	moving, 201
device special files created, 97, 98	removing, 202
moving using HP-UX commands, 114	resources, 189
planning to configure, 93	setting switches and jumpers, 200
disk model number	troubleshooting configuration, 204
finding out, 121	eeprom, 44, 49, 136
diskinfo(1M), 92, 103, 121, 126	EISA
disks drives	boards, 187, 189
further tasks, 122	defined, 38
disktab(4), 92, 95, 110	incompatibility of most HP-IB tape drives,
distribution panels	135
0950-2431, 33	SCSI disk drives, 98
28659-60005, 33	SCSI tape drives, 138
5062-3054, 33	eisa, 44, 49, 98, 136, 153
5062-3070, 33	EISA device
5062-3085, 33	swapping to, 38
5181-2085, 33	eisa_config
ADP 5062-3070, 32	automatic mode, 188
ADP422 5062-3085, 32	changing choices for board functions, 197
characterized, 33	correcting an error, 195
DDP 5062-3066, 32	example session, 193
DDP 5181-2085, 32	exiting, 200
MDP 5062-3054, 32	initializing configuration, 195
purpose of, 33 RJ45 0950-2431, 32	interactive mode, 192
	log file, 200
serial connectivity, 33	moving boards, 201
driver behavior, controlling, 225 Driver Development Guide	removing boards, 202
Series 700 resource, 96	saving configuration, 200
driver install table, 226	troubleshooting, 204
driver library, location of, 236	eisa_config(1M), 161
driver statement, 235	Ethernet bit, 232 EtherTwist, 46
DTC Manager software, 34	examples
DTCs	/etc/syslog.conf entry for redirecting UPS
purpose of, 33	log messages, 183
serial connectivity, 33	/usr/conf/master.d sample file entry, 236
dump	calculating SCSI cable length, 52
managing when moving a root LVM disk,	checking syntax of EISA CFG file, 204
managing when removing a disk, 120	configuration of a UPS, 177
dynamically assigned major numbers, 226	configuring UPS to cycle power during non-work hours, 183
E	correlating card instance and device files, 23
E/ISA boards	

creating device special files for modem, 81,	sample display of EISA CFG files, 194
82	sample display of eisa_config switch/jumper
determining available addresses using	settings, 199
ioscan, 19	sample eisa_config exit, showing
diskinfo output for disks, 121	subsequent steps, 198
diskinfo output for magneto-optical disk,	sample eisa_config start-up screen, 193
126	setting hardware flow control (RTS/CTS)
displaying EISA board information, 196	for serial printer, 164
editing /etc/uucp/Devices for modem, 83	tar test to verify tape driver configuration,
entries in /etc/ttytype, 68	141
force configuration of device drivers, 235	using eisa_config show slot command, 195
getty entry for a UPS port, 181	using ioscan -C (class) option, 24
getty entry in /etc/inittab for modem, 82	exhaustive mode for tape-device special files,
identifying device special files with a tape	143
device, 24	exports(4), 114, 119
interacting with the ISL, 116	ext_bus and instance number, 22
ioscan -fn output showing tape device	extracting the system file, 25, 55, 66, 102,
special files, 24	107, 109, 111, 116, 130, 140, 162, 168, 235
ioscan output for a Model 725, 214	
ioscan output for a Series 800 multipluxer	F
card, 181	fddi, 46
ioscan output for HP-IB instrument, 169	fiber-optic extender cable for SCSI, 51
ioscan output for HP-IB plotter, 168	field separators, 20
ioscan output for magneto-optical disk	fifo bits, 232
	file
library, 131	/etc/eisa/config.log, 200
ioscan output for mux interface, 164	CFG, 189
ioscan output for serial printer, 164	file type, 225
ioscan output of a LAN card, 56	fileset for disk array configuration, 94
ioscan output of a Model 8x9 (K Series), 222	file-system layout, 104
ioscan output of a multi-function card, 218	floppy disk drives
ioscan output of a T500 system, 221	adjusting minor number bits, 230
ioscan output of tape driver, 141	configuration guidelines, 101
lssf output for serial printer, 165	configuration planning, 95
lssf output for serial printer with hardware	device special files created, 101
flow control (RTS/CTS) enabled, 165	floppy disks and HP-UX
lvlnboot output, 114	capability for mounted file system, 95
minor number for printer, 164	differences from PC floppies, 95
mksf command for reading non-default tape	intended use and limitations, 95
format, 142	floppy(7), 95
mksf command for tape driver exhaustive	force configuration, 235
mode, 143	force configuration of device drivers, 235 formats
mksf command to prevent tape data	handling differences on tape media, 142
compression, 143	framebuf, 39
moving a disk, 114	fstab(4), 109, 118
moving a printer or plotter, 170	full ioscan listing, 23
output from lssf for modem files, 82	further tasks
output of ps -ef, 87	disk drives, 122
portion of /stand/system file, 235	magneto-optical devices, 132
sample CFG file used by eisa_config, 189	tape drives, 144

fuser(1M), 86	device drivers for terminals and modems,
G	64 EISA configuration, 38
	floppy disk configuration, 101
garbage data	graphics card configuration, 39
on terminals, 86, 88	HP-IB printer and plotter configuration,
geometry determined, 231	152
getty, 155	
modem entry in /etc/inittab described, 82	HP-IB tape-drive configuration, 135
getty(1M), 60, 69, 82, 87	magneto-optical disk configuration, 127
key options for terminals, 67	magneto-optical disk library configuration,
gettydefs(4), 67, 69, 89 H setting for hard-wired terminals, 69	129
glitches	networking configuration, 46
preventing tape data loss due to, 138	parallel printer and plotter configuration,
graph3, 39, 232	158
graphics cable extensions, 41	SCSI disk configuration, 98
graphics card configuration guidelines, 39	SCSI printer and plotter configuration, 159
graphics cards and subsystems	SCSI tape-drive configuration, 138
98768A, 39	serial printer and plotter configuration, 155
A1439, 39	
A2269A, 39	Н
A2270A, 39	H/W Path
A2271A, 39	defined, 20
A2272A, 39	handshake bits, 232
A2666A, 39	handshake modes for parallel interface, 167
A2667A, 39	hardware
A2673A, 39	terminals, 88
A2674A, 39	hardware addresses, 225
A2675A, 39	decoding, 20
A4070A, 39	defined, 20
A4071A, 39	determining, 25
A4072A, 39	field separators, 20
A4073A, 39	general, 25
Z1100A, 39	Models F/G/I/I, 8x7, 219
graphics configurations, maintaining	on multi-function cards, 217
accuracy of, 41	hardware considerations for UPS, 177
graphics devices	hardware flow control (CTS/RTS), 64 for modems, 83
configuration information, 40	hardware flow control(CTS/RTS)
installing, 40	minor number bit, 232
group	hardware path, 20
volume group file, 112	associating with driver, 237
guidelines	hard-wired terminals in /etc/gettydefs, 69
centronics (parallel) interface, 37	hexadecimal equivalents to binary and
configuring a disk with existing data, 104	decimal, 228
configuring a non-HP printer to a parallel	hexadecimal notation, 227
port, 167	hierarchy of I/O, 20

hippi, 46	Series 800 HP-IB tape drivers, 135
HP 700/60 configured in non-HP console	Series 800 magneto-optical disk drives, 127
modes, 70	Series 800 parallel plotters, 158
HP JetDirect Network Interface, 149	Series 800 parallel printers, 158
HP JetDirect Network Interface	Series 800 RS-232-C plotters, 156
Configuration Guide, 172	Series 800 RS-232-C printers, 155
HP MPower 1.2 Installation and	Series 800 SCSI disk drives, 98
Configuration, 172	Series 800 SCSI printers, 159
HP terminals in non-HP modes, 62	
HP VUE 3.0 User's Guide, 60	Series 800 SCSI tape drivers, 138
HP-FL	HP-UX runstate, 86 hshpib, 44, 136, 153
28615A adapter, 42	11811p10, 44, 150, 155
accessories, 43	I
cables, 43	1
device bits, 231	I/O hierarchy, 20
disk device drivers, 97	identifying device special files with a
installation guidelines, 42	peripheral device, 24
limitations, 97	identifying run-level, 86
unit bits, 231	init command, 195
hpfl0, 42, 97	init(1M), 67, 87
hpfl1, 42, 97	initializing configuration, 195
HP-IB	inittab(4), 67, 69, 85, 87
address bits, 231	inquiry response, 121 insf(1M), 134, 135, 141, 169
addressing range, 135	and data compression, 138
and parallel polling, 135	creating additional device files for disk
cable length, 45	library, 131
cabling, 45	
changing address switch settings, 45	installation guidelines HP-FL, 42
configuration guidelines, 44	installing device adapter, 28
device bits, 232	installing graphics devices, 40
disk device drivers, 96	installing interface card, 28
disk limitations, 96	instance number, 22, 227
instrumentation access, 44	and class, 22
interface limitations, 93	and interface card, 16, 22
tape device drivers, 135	defined, 16
hpib, 153	location of, 22
HP-IB device	significance of, 22
bits, 231	instr0, 44, 232
HP-IB unit	configuring devices, 168
bits, 231	instrument address, 232
hpib(7), 44	instrumentation access, 44
hpib0, 44, 96, 135, 136, 153	instruments, 223
hpib1, 44, 96, 135, 136	interactive mode, 188
HP-PB	interface card
28615A HP-FL adapter, 42	installing, 28
A1749A ChannelSpan card, 42	interface card instance number
backplane slot priority, 29	significance of, 22
F/W SCSI disk drives, 98	interface cards
SCSI tape drives, 138	25525A/B, 49
Series 800 HP-FL disk drives, 97	25560A, 44
Series 800 HP-IB disk drives, 96	25567B, 46

27110B, 44	J2159A, 46
27147-60002, 159	J2165A, 46
27147A, 49	J2166A, 46
28615A, 42	J2220A, 46
28639-50001, 32	J2226A, 46
28639-60001, 64, 180	LAN/9000, 46
28650A/B, 44	LANLink, 46
28655A, 37, 49, 158, 159	maximum configurations, 31
28696A, 49	networking, 46
36960A, 46	planning to configure, 29
36967A, 46	selecting drivers, 32
40299B, 32, 64, 155, 156, 180	SNAplus Link, 46
98190A, 32, 64, 155, 156	TokenRing 9000, 46
98196A, 64, 155, 156	X.25/9000, 46
A1703-60003, 32, 64, 180	X.25/3000, 40 X.25Link, 46
A1703-60022, 32, 64, 70, 180	interface driver, 225
A1749A (ChannelSpan), 42	interface drivers
A2544A, 46	selecting for interface card, 32
	ioinit(1M), 22
Apollo TokenRing, 46	ioscan(1M), 19, 61, 65, 66, 92, 102, 161
E2070A, 44	and kernel structures, 19
E2071B, 44 FDDI/9000, 46	comparing hardware path and device file,
	110
HIPPI Link, 46 HP 25525B, 98	full listing, 23
	identifying usable devices, 19
HP 25560A, 136	manually associating driver and
HP 27110B, 96, 135, 136 HP 27111A, 97	peripheral, 237
	terse listing, 19
HP 27113B, 96	using to determine available addresses, 19
HP 27147A, 98, 127 HP 28615A, 97	ISA boards, 187, 189
	configuration guidelines, 38
HP 28650B, 96, 135, 136	configuring, 192
HP 28655A, 98, 127	moving, 201
ISDN Link, 46	removing, 202
J2069A, 46	setting switches and jumpers, 200
J2092A, 32, 180	switches and jumpers, 189
J2093A, 32, 180	isdn, 46
J2094A, 32, 180	isdnnetd, 46
J2096A, 32, 180	isdnsn, 46
J209x, 155, 156	isdnx25, 46
J209xA, 64	
J2104A, 46	K
J2109A, 46	kernel (/stand/vmunix), 25, 55, 66, 102, 107,
J2146A, 46	110, 112, 116, 130, 140, 162, 169, 237
J2156A, 46	associating drivers, 225
J2157A, 46	configuration file (/stand/system), 237

rebuilding to add drivers, 25, 140, 162, 168	lvrmboot(1M), 117
kernel (stand/vmunix)	
rebuilding to add drivers, 65	M
kernel structures and ioscan(1M), 19	magneto-optical disk drives
keyboard bits, 232	C1701A, 127
kill(1), 87	C1701C, 127
killing processes, 87	
	C1716C, 131
L	C2550B, 127
LAN/9000 interface cards, 46	device special files created, 127
lan0, 46, 232	further tasks, 132
lan1, 232	product ID strings, 127
lan2, 46, 232	magneto-optical disk libraries
lan3, 46, 155, 156	C1708C, 131
lanadmin(1M), 29	capacity, 125
LAN-based multi-function cards, 217	device drivers, 129
lanmux0, 32, 64, 155, 156, 180	further tasks, 132
lantty0, 32, 64, 155, 156, 180	I/O limitations, 125
library, driver	installation, 124
location of, 236	installation planning, 125
lifcp(1M), 115	SCSI addresses, 49
limitations to non-HP terminal emulation, 79	SCSI addressing guidelines, 130
limited support	surfaces bits, 231
STK 3480 tape drive, 138, 143	magneto-optical disks
location of device drivers, 225	access, 125
location of libraries, 236	device drivers, 125, 127
Logical Volume Manager (LVM), 94	powerfail support, 125
need to import LVM information, 104	
to apportion disk space, 104	surfaces, 125
lpr0, 37, 153, 232	use as mountable file system, 125
lpr1, 153, 232	uses and limitations, 123
lpr2, 158, 232	writing to, 123
lpr3, 159, 232	magneto-optical media
lpsched(1M), 167	capacity, 126
lsdev(1M), 226	ratings, 126
lssf(1M), 65, 164	major and minor numbers
LU number replaced, 23	in device special files, 225
LU number, compared to instance number,	major numbers
23	and device drivers, 226
lvlnboot(1M), 114, 117	defined, 226
LVM commands	dynamic assignment and ranges, 226
lvdisplay(1M), 114	Managing SwitchOver/UX, 174
lvlnboot(1M), 114, 117	mapfile, creating an LVM, 111
lvreduce(1M), 114	master files, 226
lvremove(1M), 114	maximum device connections
lvrmboot(1M), 117	by interface card, 31
vgchange(1M), 111, 112, 114, 117	maximum disk space, 94
vgexport(1M), 111, 114	mediainit(1), 103, 128
vgimport(1M), 112	minor numbers
vgscan(1M), 112, 114	bit assignments, 231
LVM maintenance mode, booting in, 117	bit setting for tape drives, 136
, ,	creating, 227

defined, 226	troubleshooting approach, 83
examples, 229	using mksf(1M), 81
mk_kernel(1M), 25, 55, 66, 102, 107, 109, 111,	UUCP, 62
116, 130, 140, 162, 168, 235, 237	modifying the printer address, 171
mkboot(1M)	mouse device bits, 232
example, 115	moving
mknod(1M), 166, 238	E/ISA boards, 201
mksf(1M), 110, 134, 142, 164	ISA boards, 201
and data compression, 138, 143	Moving HP-UX 9.x Code and Scripts to 10.x,
for modem configuration, 62	105
used for creating device files for modems, 81	moving peripherals
Model 712, 213	disk drive, 114
Model 712 floppy disk configuration, 101	printers and plotters, 170
Model 725, 214	terminal or modem, 85
Model 770 (J Series), 216	MSG_ONLY
Model E, 217	example, 181
Models 890 and T500, 220	noncritical operation, 182
Models 8x7, 219	mt(7), 231
Models 8x9 (K Series), 222	mt_property_type, 231
Models F/G/H/I, 219	multi-function (personality) cards
modem type bit, 232	28639-60001, 64
modems	A1703-60003, 64
access mode, 81	A1703-60022, 64
AT command, 83	and networking configuration, 46
autoanswer, 83	hardware addresses on, 217
baud rate, 62	SCSI/Parallel/MUX, 218
bit assignments, 232	multi-function cards, 217
BREAK, 83	multiplexers
CCITT control signals, 83	reset using /sbin/dasetup, 88
CCITT protocol, 62	multi-processing system
configuring, 65	bus architecture, 220
creating device special files, 81	multi-user mode, 86
device file for dial-in port, 81	MUX connectivity, 32
device file for dial-out port, 81	MUX interface for non-HP console, 70
device file for direct connect, 81	mux0, 32, 64, 155, 156, 164, 232
DTR, 83	mux2, 32, 64, 155, 156, 164, 180, 232
duplex control, 33	mux4, 32, 64, 155, 156, 164, 180, 232
editing /etc/uucp/Devices, 83	MUX-based multi-function cards, 217
hardware flow control (CTS/RTS), 83	
Hayes modem protocol, 83	N
moving using HP-UX commands, 85	naming device special files for printers and
planning to configure, 62	plotters, 164
removing using HP-UX commands, 85	network interfaces, 46
removing using SAM, 85	NFS
	installing and administering, 114
requirements specific to HP-UX, 83 system-side configuration, 65	special considerations, 114
testing call-out ability 83	nm(1), 237
Lesung Can-Out Additiv. 85	· · · · · · · · · · · · · · · · · · ·

no rewind bit, 135, 231	planning
non-HP terminal emulation, limitations to,	CD-ROM configuration, 94
79	disk array configuration, 94
	disk drive configuration, 93
0	floppy disk-drive configuration, 95
dowlart* 20	interface card configuration, 29
dev/crt*, 39	magneto-optical disk libraries
obsolete products	
disk drives, 96, 97, 98	configuration, 125
printers, 152, 155, 158	modem configuration, 62
tape drives, 135, 136, 138	printer and plotter configuration, 149
on-line help, eisa_config, 193	tape-drive configuration, 135
OpenView DTC Manager software, 34	terminal configuration, 61
OpenView Software Distributor	plotters
Administrator's Guide, 179	7440A, 156, 158
OSF/1 file-system layout, 105	7475A, 156
osi0, 232	
,	7550A, 156
P	7550B, 158
	7558, 156
pa, 32, 42, 44, 49, 64, 96, 97, 98, 127, 135, 136,	7570A, 156
153, 155, 158, 159, 180	7576A, 156
parallel configuration requirements	7586B, 156
for plotters, 158	7595A/B, 156
for printers, 158	7596A, 168
parallel interface, 37	
parallel polling and HP tape drives, 135	7596A/B, 156
parity, terminal vs console, 69	7596C, 156
path, hardware, 20	7599A, 156
PC floppy disk configuration guidelines, 101	C1600A, 158
pcfdc, 101	C1601A, 158
pcfloppy, 101	C1620A, 156, 158
pdn0, 46, 232	C1625A, 156, 158
performance	C1627A, 156, 158
disk drives, 93	
distribution of data, 93	C1629A, 156, 158
	C1631A, 158
magneto-optical disk devices, 125	C1633A, 158
root disk drive, 135	C2847A, 156, 158
tape drives, 135	C2848A, 156, 158
peripheral, adding	C2858A, 156, 158
overview, 25	C2859A, 156, 158
peripherals	C3170A, 156, 158
removing using HP-UX commands, 120	
third party, 54	C3171A, 156, 158
personality (multi-functional) card, 218	C3180A, 156
personality cards, 217	C3181A, 156, 158
28639-60001, 64	parallel (centronics) configuration
· ·	requirements, 158
A1703-60003, 64	serial (RS-232-C) configuration
A1703-60022, 64	requirements, 156
and networking configuration, 46	port number bits, 232
connectivity for, 32	ports, terminal, 65
pfail, 32, 42, 44, 49, 64, 96, 97, 98, 127, 135,	PostScript, 167
136, 153, 155, 156, 158, 159, 180	1 obtocript, 101

	G0110 A 155 150
power	C2113A, 155, 158
order for turning on/off, 102, 131, 141	C2114A, 158, 159
power_onoff(1M), 183	C2121A, 158
PowerTrust System Guide, 177	C2225C/P, 158
PowerTrust Uninterruptible Power System	C2225D, 155
(UPS), 175, 185 PowerTrust UPS	C2227A, 155, 158
configuring, 181	C2228A, 155, 158
primary boot path	C2235A, 158
setting, 117	C2235A/B/C/D, 155
printer and plotter configuration	C2276A, 155, 158
planning, 149	C2277A, 155, 158
printers	C2354A, 155
2562C, 155, 158	C2356A, 155, 158
2563C, 155, 158	C2562A/C, 155
2564B, 170	C2562C, 158
2566B/C, 155	C2563A/B/C, 155, 158
2566C, 158	C2564B/C, 155, 158
2567B/C, 155	C2565A, 155, 158
2567C, 158	C2566A/B/C, 155
2684A, 155	C2566B/C, 158
2684A/P, 158	C2567B/C, 158
2686A/D, 155, 158	C2753A, 159
2932A, 155, 158	C2754A, 159
2934A, 155, 158	C2755A, 159
33438P, 158	C2756A, 159
33440A, 155, 158	C2772A, 159
33447A, 155, 158	C2773A, 159
33449A, 155, 158	C2776A, 159
33459A, 155, 158	C2777A, 159
33471A, 155, 158	F100, 161
	LaserJet 4si, 161
3630A, 155, 158	minor number example, 164
41063A, 155	parallel (centronics) configuration
C1200A, 155	requirements, 158
C1202A, 158	SCSI configuration requirements, 159
C1602A, 155, 158	serial (RS-232-C) configuration
C1645A, 155, 158	requirements, 155
C1656A, 158	printers and plotters
C1676A, 155	choosing means of access, 149
C1686A, 158	configuring, 147, 174
C2001A, 155, 159	hardware concerns, 151
C2010A, 155, 158	local and remote access, 149
C2011A, 158	
C2021A, 158	moving, 170 network access, 149
C2040A, 158	
C2106A, 155, 158, 159	selecting device drivers, 152
	software concerns, 151

TSM access, 150	raw mode bit, 232
via DTCs, 155	real-time priority and UPS, 181
priority of backplane slots, 29	reboot(1M), 66
problems	rebuilding the kernel to add drivers, 140
with terminals, 86, 88	recommendation
procedures	backing up existing data, 107
configuring a DEC420 to emulate VT100	redirecting log messages, 183
mode, 71, 74	reference manuals, 12
configuring a disk device, 102	regenerating kernel (/stand/vmunix), 237
configuring a magneto-optical disk, 128	remote console, connectivity for, 32
	remove command, eisa_config, 202
configuring a magneto-optical disk library,	removing
130	boards, 202
configuring a partitioned disk with existing	removing peripherals
data, 109	disk drive, 119
configuring a port for a modem connection,	terminal or modem, 85
65	root disk
configuring a port for a terminal	special considerations, 114, 115
connection, 65	root privileges, 12
configuring a tape drive, 140	RS-232-C, 64, 65
configuring a Wyse 60 terminal as HP	cabling, 35
console, 76	configuration requirements for plotters, 156
configuring an unpartitioned disk with	configuration requirements for printers,
	155
existing data, 107	
configuring LVM disk, 111	interface cards, 32
configuring UPS to cycle power during	total cable length for UPS, 178
non-work hours, 183	RS-422
force configuration of device drivers, 235	availability for plotter configuration, 156
manually associating driver and	RS-422,423, 32
peripheral, 237	rtprio, 181
moving disk drive to a different address,	run-level, 86
114	
removing a disk drive, 119	\mathbf{S}
processes	s0, 110
associated w/terminals, 86	s2, 110
	sample addresses, 213, 214, 219, 220
terminating, 87	schgr, 231
ps(1), 86	in sample ioscan output, 131
ps2, 232	sci files
autosearch bits, 232	creating new, 200
psi0, 46	screen-oriented applications, running on a
psi1, 46	non-console terminal, 69
pty0, 232	SCSI
pty1, 232	addressing, 49
	addressing range for single-ended SCSI,
Q	
QIC tape drives, 142	138
/	bus support, 48
R	bus width, 48
	cable length, 52
RAID independent mode, 220	cables, 52
RAID levels, 94	cabling, 50

cabling limits, 98	in sample ioscan output, 131
configuration guidelines, 48	section number bits, 231
device address priority, 98	selecting device drivers for disk drives, 96
device installation, 54	selecting device drivers for magneto-optical
device maximum, 49	devices, 125
differential, 48	selecting device drivers for tape drives, 135
disk array powerfail, 98	selecting driver for interface card, 32
disk configuration guidelines, 98	serial connectivity (RS-232-C), 32
disk device drivers, 98	serial ports
fast/wide, 48	cabling, 35
fast/wide/differential limitations, 98	configuring for a modem, 65
fiber-optic extender cable, 51	configuring for a printer, 161
floppy disk device drivers, 101	configuring for a terminal, 65
	creating device files for printers and
grounding, 52	plotters, 164
inquiry response, 121	Series 700
limitations, 49	bus architecture, 212
line out, 48	configuring SDS disks, 106
LUN bits, 232	configuring whole disks, 106
parity checking, 54	EISA SCSI, 98
power status, 30	HP-FL unsupported, 97
priorities of addresses, 49	HP-IB limitations, 96
signal termination, 53	Models 735, 755, 98
single-ended, 48	RS-232-C plotters, 156
single-ended limitations, 98	RS-232-C printers, 155
tape device drivers, 138	SCSI, 98
target bits, 231, 232	SCSI tape drives, 138
termination, 53, 141	SDS disks, 104
third party peripherals, 54	used as cluster server, 212
types and characteristics, 48	Series 800
SCSI addressing	/sbin/dasetup, 88
determining availability, 19	bus architecture, 217
SCSI ATN bits, 232 SCSI configuration requirements for	CIO HP-FL disk drives, 97
printers, 159	CIO HP-IB disk drives, 96
SCSI Fiber-Optical Extender (28643A), 50	CIO RS-232-C plotters, 156
SCSI LUN	CIO RS-232-C printers, 155
bits, 232	CIO SCSI disk drives, 98
SCSI pass-through driver, 232	CIO SCSI printers, 159
SCSI target	CIO SCSI tape drives, 138
bits, 232	configuring a modem, 81
SCSI/Parallel/MUX multi-functional card,	configuring disks with hard partitions, 106
218	configuring LVM disks, 106
scsi1, 49, 127, 159	ensuring the modem port is not locked, 81
scsi2, 49, 98, 127, 159	floppy disk configuration, 101
scsi3, 49	hard partitions/sections, 104
sctl, 49, 127, 232	HP-PB HP-FL disk drives, 97

HP-PB HP-IB disk drives, 96	managing when moving a root LVM disk,
HP-PB parallel plotters, 158	114
HP-PB parallel printers, 158	managing when removing a disk, 120
HP-PB RS-232-C plotters, 156	swapinfo(1M), 109
HP-PB RS-232-C printers, 155	swapping to EISA devices, 38
HP-PB SCSI disk drives, 98	swinstall, 179
	swinstall(1M), 69
HP-PB SCSI printers, 159	SwitchOver and cabling, 51
HP-PB SCSI tape drives, 138	syslogd, 181
Model E, 19, 217	syslogd(1M), 183
multi-function card, 81	System Administration Manager (SAM), 61,
setting primary boot path, 117	62, 69
setting switches and jumpers, E/ISA boards,	system file, extracting the, 25, 55, 66, 102,
200	107, 109, 111, 116, 130, 140, 162, 168, 235
sflop, 101, 231	system runstate, 86
SharedPrint/UX User and Administrator's	system_prep script, 25, 55, 66, 102, 107, 109,
Guide, 172, 174	111, 116, 130, 140, 162, 168, 235
shutdown(1M), 66	, , , , ,
shutdown_delay_mins	T
example, 181	
shutdown_timeout_mins	tape drives
example, 181	7890S/SX, 138
signal termination	7914CT/P/R, 136
SCSI, 53	7946, 136
signal(5), 87	7980A/XC, 135
single-user mode, 86	7980S/SX, 138
sio, 32, 42, 44, 49, 64, 96, 97, 98, 127, 135, 136,	A2311A, 138
153, 155, 156, 158, 159, 180	A2656A, 138
SIO drivers, 28	A2944A, 138
sna_access, 46	A3024A, 138
sna_LAN, 46	allowing for trial and error, 143
sna_NODE, 46	avoiding data compression, 143
sna_QLLC, 46	C1502A, 138
sna_router, 46	C1503A/B/C, 138
sna_SDLC, 46	
sna_trace, 46	C1504A/B/C, 138
Soft PC bits, 231	C1511A, 135
software applications, 118	C1512A, 138
speed, default for terminals and console, 69 stand/build/system, 102	C1520A/B, 138
	C1521A/B, 138
Standard Instrument Control Library (SICL), 44	C1530B, 138
stape, 231	C1533A, 138
Starbase Graphics Techniques, 174	C1534A, 138
station address, obtaining, 29	C1535A, 138
STK 3480 tape drive	C1553A, 138
limited support, 138, 143	C2292A, 138
stty(1), 75, 87	C2297T/U, 138
superuser privileges, 12	C2298A, 138
SupportWatch, 185	C2463F/R, 138
surfaces in magneto-optical disk libraries,	
231	C2464F/R, 138
swap	C2465F/R, 138
-··r	C2466F/R, 138

C2467F/R, 138	maintaining accuracy of customized
C2477F/R/S/U, 138	graphics configurations, 41
C2478U, 138	moving a printer or plotter, 170
configuration bits, 231	plotters, 168
configuration strategy, 134	tape drives, 144
creating customized device special files, 142	terminals, 65
device special files created, 135, 136, 138,	telnet, 155
141	terminal configuration, 87
incompatibility of QIC and older cartridge	terminal, resetting, 87
media, 142	terminals, 88
index/density bits, 231	as consoles, 61, 65, 68
minor number bit setting, 136	compared to console, 69
parallel polling, 135	configuring, 65
planning to configure, 135	configuring a DEC420 to emulate VT100
STK 3480, 138	mode, 71, 74
STK 4220, 138	configuring a non-HP, 70
STK 4280, 138	configuring Wyse 60 as HP console, 76
tape positioning, 135	data bits, 69
tasks, 144	DEC VT terminals, 71, 74
types, 133	default speed, 69
working with different formats, 142	device files, 87
tape positioning, 135	differences between console and terminal
tape1, 135, 231	configuration, 69
tape2, 231	ensuring correct configuration for
tar(1), 141	hard-wired, 69
target, 42, 97, 98, 127, 159	hard-wired vs. accessed by modem, 69
target address	limitations to non-HP terminal emulation,
defined, 16	79
tasks	moving using HP-UX commands, 85
configuring a DEC420 to emulate VT100	parity, 69
mode, 71, 74	planning to configure, 61
configuring a non-HP terminal as a console,	ports, 65
70	removing using HP-UX commands, 85
configuring a port for a modem connection,	removing using SAM, 85
65	running screen-oriented applications on, 69
configuring a port for a terminal	setting default modes, 67
connection, 65	system-side configuration, 65
configuring a Wyse 60 terminal as HP	terminal-side configuration, 67
console, 76	unique definitions of VT100 keys, 74
configuring PowerTrust UPS, 181	using HP 700/60 in DEC mode, 75
configuring printers, 161	terminals and modems
configuring UPS to cycle power during	configuring, 59, 90
non-work hours, 183	device drivers, 64
force configuration of device drivers, 235	terminating processes, 87
instr0 devices, 168	termination
	HP-FL PBus, 43

SCSI, 53	MUX requirements, 179
SCSI devices, 141	networking considerations, 177
termio(7), 64	planning, 177
for modem configuration, 62	prioritizing protected devices, 182
termiox(7), 64	real-time priority, 181
ThinLAN, 46	required for disk array powerfail, 98
third party peripherals, 54	selecting drivers and interface, 180
third-party device drivers, 223	shutdown_delay_mins
token1, 46	example, 181
tools	shutdown_timeout_mins
Upgrade.UPG-ANALYSIS fileset, 105	example, 181
Upgrade.UPG-MAN fileset, 105	
trial and error in using tape devices, 143	software considerations, 179
troubleshooting, eisa_config, 204	troubleshooting, 185
TSM access to printers and plotters, 150	tty class, 181
tty class, 65	UPS-TOOLS, 179
tty class and UPS, 181	upstty
ttytype(4), 68	example, 181
TT	using crontab file, 183
U	verifying configuration, 183
unresponsive terminals, 86	voltage/amperage (VA) load considerations,
Upgrade.UPG-ANALYSIS fileset, 105	177
Upgrade.UPG-MAN fileset, 105	UPS serial connector 5061-2569, 178
UPS	ups_conf(4), 181
A2941A, 180	ups_mond(1M), 183
A2994A, 180	documenation of UPS error messages, 185
A2996A, 180	UPS-TOOLS fileset, 179
A2997A, 180	upstty
A2998A, 180	example, 181
AC power failure, 175	usable devices, displayed with ioscan, 19 Using HP OpenView DTC Manager, 60
and external bus extenders, 185	Using the HP DTC Manager/UX, 60
APPCC-1250UX, 180	UUCP for modem, 62
APPCC-600UX, 180	uucp(1), 61
cable pin-outs, 178	
cabling guidelines, 178	V
configuration requirements, 180	
configuring, 181	verifying tape-drive configuration, 141
configuring more than one, 182	vgchange(1M), 111, 112, 117
DELT-2326/C2, 180	vgexport(1M), 111 vgimport(1M), 112
DELT-2336/C2, 180	vgscan(1M), 112
destination of log messages, 183	volume group management, 111, 112, 114
error messages, 185	VT100, 64
getty entries, 181	VT100 mode, 74
hardware considerations, 177	VT320, 64
introduction, 175	•
ioscan output, 179	W
monitoring daemon, 181	white papers
MSG_ONLY	HP-UX 10.0 Device File Naming
example, 181	Convention, 22
noncritical operation, 182	HP-UX 10.0 File System Layout, 105
,,	111 OIL 10.0 I He Dyblein Dayout, 100

whole disk designation, 110
work sheets
disk drives, 242
interface cards, 240
printers and plotters, 245
tape drives, 244
terminals and modems, 241
uninterruptible power systems (UPS), 246
writing tape data in uncompressed form, 143
wsio, 32, 44, 49, 127, 136, 153
Wyse 60 default configuration values, 76
Wyse 60 terminal as HP console, 76
emulation limitations, 79
Wyse terminals, 62
WYSE60, 64

\mathbf{X}

x25ip, 46 x25pa, 46