
FINAL TRIM SIZE : 7.5 in x 9.0 in

HP 9000 Computer Systems

HP Pascal/HP-UX Release Notes

Version A.10.06

HP 9000 Series Workstations and Servers

ABCDE

HP Part No. 5965-0719

Printed in U.S.A. June 1996

E0696

FINAL TRIM SIZE : 7.5 in x 9.0 in

The information contained in this document is subject to change without
notice.

Hewlett-Packard makes no warranty of any kind with regard to this
material, including, but not limited to, the implied warranties of
merchantability and �tness for a particular purpose.

Hewlett-Packard shall not be liable for errors contained herein or for
incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its
software on equipment that is not furnished by Hewlett-Packard.

This document contains information which is protected by copyright.
Reproduction, adaptation, or translation without prior written permission
is prohibited, except as allowed under the copyright laws.

Restricted Rights Legend

Use, duplication, or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in
Technical Data and Computer Software clause in DFARS 252.227-7013.

Rights for non-DOD U.S. Government Departments and Agencies are set
forth in FAR 52.227-19(c)(1,2).

HEWLETT-PACKARD COMPANY
3000 Hanover Street
Palo Alto, California 94304
U.S.A.

Copyright c
 1994 - 1996 Hewlett-Packard Company. All rights reserved.

UNIX is a registered trademark in the United States and other countries,
licensed exclusively through X/Open Company Limited.

FINAL TRIM SIZE : 7.5 in x 9.0 in

Summary of Technical Changes

The new features available with HP Pascal/HP-UX Release 10.20 include:

New architecture options for optimization and portability

New scheduling option for PA-RISC 2.0

New architecture and scheduling defaults

New or changed optimization options to enhance performance:

+Odataprefetch

+Oentrysched

+Ofltacc

+Oloop_unroll

New +help option for ld.

These release notes also describe the changes that were made in Release 10.01,
10.0, and Release 9.0 Version A.09.12.

iii

FINAL TRIM SIZE : 7.5 in x 9.0 in

FINAL TRIM SIZE : 7.5 in x 9.0 in

Contents

1. New and Changed Features

Release 10.20 Changes 1-1
Optimization Levels . 1-2
Optimization Parameters 1-4
Combining Optimization Options 1-10
Obsolete Optimizer Options 1-11

Memory Consumption When Compiling at Optimization Level 4 1-12
Pro�le-Based Optimization (PBO) 1-13
Invoking PBO . 1-13
Instrumenting the Program 1-13
Collecting Execution Pro�le Statistics 1-14
Optimizing the Program 1-14

Maintaining Multiple Pro�le Data Files 1-15
+DA Command-Line Option 1-16
For More Information: 1-17
model Parameter 1-17
Compiling for Di�erent Versions of the PA-RISC

Architecture . 1-17
+DS Command-Line Option 1-19
The model Parameter 1-19
Using +DS to Specify Instruction Scheduling 1-20

HP Pascal/HP-UX Built-In Functions 1-21
roundlong . 1-21
Syntax . 1-21

trunclong . 1-21
Syntax . 1-21

Debugging Optimized Code (DOC) 1-22
Making Thread-Safe HP Pascal/HP-UX Routines 1-23
Outer Block Limitations 1-23
Input/Output . 1-24

Contents-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

File Control Block List 1-24
File Control Blocks 1-25

Heap Management 1-25
Other Libraries (Trap and Unwind Libraries) 1-25

Referencing Shared-Library Data (+k Option) 1-27
Four-Byte Extended UNIX Code (EUC) 1-27
System V Release 4 (SVR4) File Layout 1-27
Environment Variables Used by HP Pascal/HP-UX 1-29
LPATH . 1-29
MANPATH . 1-29
NLSPATH . 1-29
PATH . 1-30
PASRUNOPTS . 1-30
Description . 1-30
Exponent Values 1-30
Example . 1-31

Distributed Debugging Environment (DDE) 1-31
New Warning Messages 1-31
Porting HP Pascal/HP-UX Programs 1-33
Porting Between Series 300/400 and Series 700/800 1-33
Data Type Sizes and Alignments 1-33
Control Constructs 1-35
Input/Output . 1-35
Modules . 1-35
Assignment to Procedure Variables 1-36
Maximum String Size 1-36
ANYVAR Parameters 1-36
Structured Constants 1-36
longreal Precision 1-36
anyptr, globalanyptr, and localanyptr 1-36
Other Features . 1-37
Features Supported only on Series 300/400 1-37
Features Supported only on Series 700/800 1-37

Command-Line Options 1-38
Compiler Options . 1-40

Contents-2

FINAL TRIM SIZE : 7.5 in x 9.0 in

2. Installation Information

3. Relevant Documentation

HP Pascal/HP-UX Language Manuals 3-1
Other Manuals . 3-1
Additional Documentation 3-2

4. Problem Descriptions and Fixes

Problems Encountered with Combining Options +DA2.0 and
+O2 . 4-1

Operating System and Compiler Information 4-2

Contents-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

Tables

1-1. Optimization Levels 1-3
1-2. General Optimization Options 1-5
1-3. Advanced Optimization Options 1-7
1-4. Location of Files . 1-28
1-5. Exponent Values . 1-30
1-6. HP Pascal/HP-UX Data Types 1-34
1-7. Command-Line Options Speci�c to Series 300/400 1-38
1-8. Command-Line Options Speci�c to Series 700/800 1-39
1-9. Compiler Options Speci�c to Series 300/400 1-40
1-10. Compiler Options Speci�c to Series 700/800 1-42

Contents-4

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

New and Changed Features

This chapter describes the new and changed features for HP Pascal/HP-UX
in Release 10.0, 10.01, and 10.20. Because the HP Pascal/HP-UX Reference
Manual and HP Pascal/HP-UX Programmer's Guide are not being updated at
this time, this chapter also reviews the changes that were made in Release 9.0
Version A.09.12. The Release 10.20 changes are marked with change bars in the
outside margins.

Release 10.20 Changes

The Release 10.20 changes are described here:

New +DA designations for PA-RISC 2.0 model and processor numbers to
generate code for the PA-RISC 2.0 systems. Also a +DAportable option
to generate code compatible across PA-RISC 1.1 and 2.0 workstations and
servers. Default architecture object code generation is now determined
automatically for all systems as that of the machine on which you compile.

New +DS designations for PA-RISC 2.0 model and processor numbers to
perform instruction scheduling tuned for PA-RISC 2.0 systems. Default
instruction scheduling is now determined automatically for all systems as
that of the machine on which you compile.

New or changed optimization options to enhance performance:

+Odataprefetch|to generate data prefetch instructions for data
structures referenced within innermost loops.
+Oentrysched|changing to make save and restore operations more
e�cient.
+Ofltacc|to provide better performance for PA-RISC 2.0 targets.
+Oloop_unroll|to enable loop unrolling.

New and Changed Features 1-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

New +help option for ld|to invoke online help for the HP linker and
libraries.

Optimization Levels

HP Pascal/HP-UX supports �ve levels of optimization. The corresponding
command-line options are summarized in Table 1-1.

Note HP Pascal/HP-UX does not support some of the +O3 and +O4

optimization features that are available in other compilers.

1-2 New and Changed Features

FINAL TRIM SIZE : 7.5 in x 9.0 in

Table 1-1. Optimization Levels

Option Meaning

+O0 Minimal optimization, including constant folding and simple register
assignment. This is the default.

+O1 Branch optimizations, instruction re-scheduling, faster register allocation,
and other block-level optimizations.

At this level of optimization, programs compile quickly and still realize some
execution speed-up.

+O2 Full optimization within each subprogram in a �le, including store and copy
optimization, software pipelining, and register reassociation.

Compiling at this level of optimization may take longer, but can greatly
improve run-time performance.

The -O command-line option also invokes this level of optimization.

+O3 Full optimization of all subprograms within a compilation unit, including
data-
ow analysis and subprogram inlining.

Compiling at this level takes longer than at the previous levels but can result
in faster executable code.

Note that you can achieve the pre-Release 10.0 behavior of +O3 by optimizing
with +O2 +Ofastaccess.

+O4 Full optimization across all �les in the program that were compiled with +O4.
Performed at link time. By postponing optimization until link time, the
optimizer can make the best use of execution pro�ling information and can
perform inlining across multiple source �les.

Postponing optimization until link time reduces the time spent in the
compile phase, but it can increase the time and memory required to link the
program, especially if it is large. However, it can result in the most e�cient
executable code.

New and Changed Features 1-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

Optimization Parameters

Additional general and speci�c/advanced parameters allow you to enable or
disable certain types of optimization techniques according to their e�ect on
code size, compilation time, run-time performance, and other user-visible
e�ects.

In addition to the general parameters that control types of optimizations, there
are speci�c parameters that control optimizations within those types. These
speci�c parameters are advanced in that they may require an analysis of the
program to determine if the speci�c optimization is appropriate.

The general optimization parameters are described in Table 1-2.

The speci�c/advanced optimization parameters are described in Table 1-3.
The tables list the optimization levels where each parameter can be used. The
optional no disables the particular optimization.

These parameters do not override a speci�ed level of optimization, nor do they
imply a particular level. To use any of these parameters, you must include
the +On option on the command line, where n speci�es the level at which the
type of optimization is e�ective, as described in Table 1-1. For example, to
compile your program with the +Osize parameter at level 2, you would use the
command:

pc +O2 +Osize my_prog.p

If an parameter is mistakenly used with a level for which the corresponding
optimization is not performed, a warning message is issued.

Table 1-2 describes the general optimization parameters and lists the levels at
which they are permitted.

1-4 New and Changed Features

FINAL TRIM SIZE : 7.5 in x 9.0 in

Table 1-2. General Optimization Options

General Option Optimization Performed

+O[no]aggressive
Levels 2, 3, 4

+Oaggressive enables optimizations that can result in
signi�cant performance improvement, but can change a
program's behavior. These optimizations include newly released
optimizations and the optimizations invoked by the following
advanced optimization parameters (see Table 1-3):

+Oentrysched

+Onofltacc

+Olibcalls

+Onoinitcheck

+Oregionsched

The default is +Onoaggressive.

+O[no]all
Level 4

+Oall performs maximum optimization, including aggressive
optimizations and optimizations that can signi�cantly increase
compile time and memory usage.

The default is +Onoall.

+O[no]conservative
Levels 2, 3, 4

+Oconservative causes the optimizer to make conservative
assumptions about the code when optimizing. Use
+Oconservative when conservative assumptions are necessary
due to the coding style, as with non-standard programs.

The default is +Onoconservative.

+O[no]dataprefetch

Levels 2, 3, 4
When +Odataprefetch is enabled, the optimizer will insert
instructions within innermost loops to explicitly prefetch data
from memory into the data cache. Data prefetch instructions
will be inserted only for data structures referenced within
innermost loops using simple loop varying addresses (that is, in
a simple arithmetic progression). It is only available for
PA-RISC 2.0 targets.

Use this option for applications that have high data cache miss
overhead.

The default is +Onodataprefetch.

New and Changed Features 1-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

Table 1-2. General Optimization Options (continued)

General Option Optimization Performed

+O[no]entrysched

Levels 2, 3, 4
The +Oentrysched option optimizes instruction scheduling on a
procedure's entry and exit sequences. Enabling this option can
speed up an application. The option has unde�ned behavior for
applications which handle asynchronous interrupts. The option
a�ects unwinding in the entry and exit regions.

At optimization level +02 and higher (using data
ow
information), save and restore operations become more e�cient.

This option can change the behavior of programs that perform
error handling or that handle asynchronous interrupts. The
behavior of setjmp() and longjmp() is not a�ected.

The default is +Onoentrysched.

+O[no]limit

Levels 2, 3, 4

+Olimit suppresses optimizations that signi�cantly increase
compilation time or that can consume a lot of memory.

The +Onolimit parameter allows optimizations to be performed
regardless of their e�ect on compilation time or memory usage.

The default is +Olimit.

+O[no]size
Levels 2, 3, 4

+Osize suppresses optimizations that signi�cantly increase code
size.

The +Onosize parameter allows optimizations that can increase
code size.

The default is +Onosize.

1-6 New and Changed Features

FINAL TRIM SIZE : 7.5 in x 9.0 in

Table 1-3. Advanced Optimization Options

Advanced Option Optimization Performed

+O[no]fastaccess
Levels 0, 1, 2, 3, 4

+Ofastaccess optimizes for fast access to global data items.

Use +Ofastaccess to improve execution speed at the expense
of longer compile and link times.

At all optimization levels, except level 4, the default is
+Onofastaccess. At optimization level 4, the default is
+Ofastaccess.

+O[no]fltacc Levels
2, 3, 4

The +Onofltacc option allows the compiler to perform

oating-point optimizations that are algebraically correct but
that may result in numerical di�erences. In general, these
di�erences will be insigni�cant.

The +Onofltacc option also enables the optimizer to generate
fused multiply-add (FMA) instructions. This optimization is
enabled by default at optimization level 2 or higher.

Specifying +Ofltacc disables the generation of FMA
instructions as well as other
oating-point optimizations. Use
+Ofltacc if it is important that the compiler evaluate

oating-point expression according to the order speci�ed by the
language standard.

Use the +Onofltacc option at optimization level 2 or higher. If
you are optimizing code at level 2 or higher and do not specify
+Onofltacc or +Ofltacc, the optimizer will use FMA
instructions, but will not perform
oating-point optimizations
that involve expression reordering.

At optimization level 2 or higher, the optimizer fuses adjacent
multiply and add operations. Fused Multiply-Add (FMA) is
implemented by the FMPYFADD and FMPYNFADD instructions and
improves performance but occasionally produces results that
may di�er in accuracy from results produced by code without
FMA. In general, the di�erences are slight.

FMA instructions are only available on PA-RISC 2.0 systems.

The +Ofltacc option disables fusing.

New and Changed Features 1-7

FINAL TRIM SIZE : 7.5 in x 9.0 in

Table 1-3. Advanced Optimization Options (continued)

Advanced Option Optimization Performed

+O[no]initcheck
Levels 2, 3, 4

The initialization checking feature of the optimizer has three
possible states: on, o�, or unspeci�ed.

When on (+Oinitcheck), the optimizer initializes to zero any
local, scalar, non-static variables that are uninitialized with
respect to at least one path leading to a use of the variable.

When o� (+Onoinitcheck), the optimizer issues warning
messages when it discovers uninitialized variables, but does not
initialize them.

When unspeci�ed , the optimizer initializes to zero any local,
scalar, non-static variables that are uninitialized with respect to
all paths leading to a use of the variable.

Use +Oinitcheck to look for uninitialized variables in a
program.

+O[no]libcalls
Levels 0, 1, 2, 3, 4

+Olibcalls invokes faster versions of a number of frequently
called intrinsic functions. It also moves invariant function
expressions out of loops.

The sqrt function is executed as a hardware instruction. If the
code is compiled for the PA-RISC 1.0 architecture (e.g., with
+DA1.1), the following functions are executed in millicode:

arctan cos exp ln sin

The millicode versions have very low call overhead. However,
since they do not set errno, no error handling is available in the
event of an exception. Regardless of architecture, error codes
627 (sqrt) and 628 (ln) will not occur. An IEEE exception is
raised instead.

Use this parameter only when your program is not dependent
on exception-handling. The default is +Onolibcalls.

1-8 New and Changed Features

FINAL TRIM SIZE : 7.5 in x 9.0 in

Table 1-3. Advanced Optimization Options (continued)

Advanced Option Optimization Performed

+O[no]loop_unroll

[=unroll factor]

Levels 2, 3, 4

The +Oloopunroll option turns on loop unrolling. When you
use +Oloopunroll, you can also use the unroll factor to control
the code expansion. The default unroll factor is 4, that is, four
copies of the loop body. By experimenting with di�erent
factors, you may improve the performance of your program.

The default is +Oloopunroll.

+O[no]moveflops
Levels 2, 3, 4

+Omoveflops moves conditional
oating point instructions out
of loops. The behavior of
oating-point exception handling may
be altered by this parameter.

Use +Onomoveflops if
oating-point traps are enabled and you
do not want the behavior of
oating-point exceptions to be
altered by the relocation of
oating-point instructions. This is
the same as $ASSUME 'FLOAT_TRAPS_ON'$.

The default is +Omoveflops.

+O[no]pipeline
Levels 2, 3, 4

+Opipeline enables software pipelining.

Use +Onopipeline (disable software pipelining) to conserve
code space.

The default is +Opipeline.

+O[no]procelim
Levels 0, 1, 2, 3, 4

+Oprocelim removes routines from the executable �le that are
not referenced by the application.

Use +Oprocelim to reduce the size of the executable �le,
especially when optimizing at levels 3 and 4 when inlining may
have removed calls to some routines.

The default is +Onoprocelim at optimization levels 0 through 3
and +Oprocelim at level 4.

+O[no]regionsched
Levels 2, 3, 4

+Oregionsched applies aggressive scheduling techniques to
move instructions across branches.

Note that it is not recommended that you use +Oregionsched
with the -z command-line option, which is the pc default. If
you use the parameter with -z, it may cause a SIGSEGV error at
run-time.

Use +Oregionsched to improve application run-time speed.

The default is +Onoregionsched.
New and Changed Features 1-9

FINAL TRIM SIZE : 7.5 in x 9.0 in

Table 1-3. Advanced Optimization Options (continued)

Advanced Option Optimization Performed

+O[no]regreassoc
Levels 2, 3, 4

+Onoregreassoc turns o� register reassociation.

Use +Onoregreassoc to disable register reassociation if this
optimization hinders the optimized application performance.

The default is +Oregreassoc.

Combining Optimization Options

One use of the optimization parameters is to turn o� a speci�c optimization
that may not be appropriate for your program. For example, if you want
aggressive optimizations applied to your program but do not want any
optimizations that depend upon entry scheduling, you would combine the
+Oaggressive and +Onoentrysched parameters on the same command line, as
follows:

pc +O4 +Oaggressive +Onoentrysched prog.p

The +Oconservative parameter is useful when optimizing programs that do
not conform to the Pascal ANSI standard. Specifying this parameter disables
any optimizations that assume standard-conforming code. For example, if you
are importing a Pascal program and wish to optimize it at level 3, you could
use the following command line:

pc +O3 +Oconservative prog.p

Note that the +Oaggressive and +Oconservative parameters are incompatible
and cannot be used on the same command line.

1-10 New and Changed Features

FINAL TRIM SIZE : 7.5 in x 9.0 in

Obsolete Optimizer Options

The following optimizer options are no longer supported by the HP
Pascal/HP-UX compiler:

+Obb (replaced by +Onosize)

+Os (replaced by +Onopipeline)

$OPTIMIZE 'BASIC_BLOCKS num'$

$OPTIMIZE 'BASIC_BLOCK_FENCE num'$

If you use these options, the compiler issues a warning stating that the options
are unrecognized.

New and Changed Features 1-11

FINAL TRIM SIZE : 7.5 in x 9.0 in

Memory Consumption
When Compiling at Optimization Level 4

When you link a program, the compiler brings all modules that were compiled
at optimization level 4 into virtual memory at the same time. Depending
on the size and number of the modules, compiling at +O4 can consume a
large amount of virtual memory. If you are linking a large program that was
compiled with the +O4 option, you may notice a system slow down. In the
worst case, you can get an error indicating that you have run out of memory.
There are several things you can do.

1. Compile at level +O4 only those modules that need to be compiled at
optimization level 4 and compile the remaining modules at a lower level.

2. If you are still running out of memory, increase the per-process data size
limit. Run the System Administration Manager (sam) to increase the
maxdsiz process parameter from 64 MB to 128 MB. This procedure will
provide the process with the additional data space.

Refer to HP-UX System Administration Tasks, Chapter 1, \Recon�guring
the Kernel". The sam help system fully describes the di�erent process
parameters, including maxdsiz.

3. If increasing the per-process data size limit does not solve the problem,
increase the system swap space. Refer to HP-UX System Administration
Tasks, Chapter 6, \Managing Swap Space and Dump Areas". Adding
�le system swap is easier than increasing the amount of device swap,
which requires re-con�guring your disk. However, if you �nd that you are
consistently compiling beyond the available amount of device swap, you may
not have a choice.

1-12 New and Changed Features

FINAL TRIM SIZE : 7.5 in x 9.0 in

Profile-Based Optimization (PBO)

Pro�le-based optimization (PBO) is a set of code-improving transformations
that are based on feedback concerning the run-time characteristics of an
application. Run-time pro�le data is collected during program execution.
This information is fed back to the optimizer, which performs a variety of
optimizations based upon how frequently certain code is executed and how
frequently calls are made between di�erent code segments. In general, each
higher level of optimization takes increasing advantage of the PBO-generated
information.

One of the goals of PBO is to improve the e�ciency of memory access by
increasing the hit rates for the instruction cache, memory pages, and the
Translation Lookaside Bu�er (TLB). PBO can also improve the compiler's
inlining decisions. One basis for the decision is call frequency, which, without
PBO, the compiler can only estimate. With PBO, however, the compiler uses
actual frequencies as the basis for its decision.

For complete details on PBO, see HP-UX Linker and Libraries Online User
Guide.

Note HP Pascal/HP-UX is limited to procedure repositioning, not
basic block repositioning.

Invoking PBO

You must perform the following steps to invoke PBO:

1. Compile and link with the +I option to produce the instrumented program.
2. Collect execution pro�le statistics by running the instrumented program.
3. Optimize the program with the +P option.

Instrumenting the Program

To instrument the program, use the +I compile-line option when compiling and
linking the object �les of an application. Instrumenting the program inserts
code into the program to collect execution pro�le statistics. Execution pro�le
statistics include a count of the calls between procedures. Also, note that when

New and Changed Features 1-13

FINAL TRIM SIZE : 7.5 in x 9.0 in

you use the +I compile-line option to compile source �les, instrumentation can
be added within the code for each subroutine in that �le.

In the following example, the source �le sample.p is compiled, instrumented,
and linked into sample.inst:

pc -o sample.inst -O +I sample.p

Collecting Execution Profile Statistics

To collect execution pro�le statistics, run your program using reasonably
representative data. The pro�le database �le, flow.data, is created the �rst
time the program is run, and is updated for each subsequent execution of the
program.

The following example collects execution pro�le statistics by running the
sample.inst program with representative data from two input �les:

sample.inst < input.file1

sample.inst < input.file2

This step, by default, logs the pro�le statistics in a �le called flow.data. See
\Maintaining Multiple Pro�le Data Files" to change this default.

Optimizing the Program

To perform PBO, re-link the program with the +P compile-line option to
specify that you wish to use the collected pro�le data:

pc -o sample.opt -O +P +pgm sample.inst sample.o

The +pgm compile-line option allows you to specify an executable name that
is di�erent from the current output �le name. In the preceding command
line, the +pgm option indicates that the name of the instrumented executable
(sample.inst) di�ers from the name of the optimized executable (sample.opt)
that is speci�ed with the -o option.

Source �les compiled with the +I option do not need to be recompiled after
collecting the pro�le data. Simply relink the application with the same options
that you used in the �rst step to instrument the program, but replace +I with
+P. For more information about how the compiler and linker work together
to perform pro�le based-optimizations, refer to HP-UX Linker and Libraries
Online User Guide.

1-14 New and Changed Features

FINAL TRIM SIZE : 7.5 in x 9.0 in

Maintaining Multiple Profile Data Files

By default, PBO logs the pro�le statistics in a �le called flow.data. You can
specify another name with the +df compile-line option.

The name of the executable �le used during pro�ling is the name under
which the pro�le data is stored in the database �le. If you specify a di�erent
executable output �le name during the optimization phase, you need to use the
+pgm option to specify the program name used during pro�ling. The following
steps and example demonstrate the use of +df and +pgm.

1. Rename flow.data after performing the data collection step described
previously:

mv flow.data sample.data

2. Perform PBO on this application by re-linking the program as follows:

pc -o sample.opt -O +P +pgm sample.inst +df sample.data sample.o

The default value for the +df compile-line option is flow.data. The +df
option is used because the pro�le data �le for the program has been moved
from flow.data to sample.data.

The +pgm option is used because the instrumented program �le is
sample.inst, and the optimized program �le is sample.opt.

You can also use the FLOW_DATA environment variable to specify a di�erent
path name for the pro�le database �le. Note, however, that the +df
compile-line option takes precedence over the FLOW_DATA environment
variable. For more information about the pro�le database and the
FLOW_DATA environment variable, see HP-UX Linker and Libraries Online
User Guide.

New and Changed Features 1-15

FINAL TRIM SIZE : 7.5 in x 9.0 in

+DA Command-Line Option

+DAmodel

Generates object code for a particular version of the PA-RISC architecture.
Also speci�es which version of the HP-UX math library to link in when you
have speci�ed -lm. (See the HP-UX Floating-Point Guide for more information
about using math libraries.)

Note Object code generated for PA-RISC 2.0 will not execute on
PA-RISC 1.1 systems.

To generate code compatible across PA-RISC 1.1 and 2.0
workstations and servers, use the +DAportable option.

For best performance use +DA with the model number or
architecture where you plan to execute the program.

Beginning with the HP-UX 10.20 release, the default object code generated by
HP compilers is determined automatically as that of the machine on which
you compile. (Previously, the default code generation was PA-RISC 1.0 on all
Series 800 servers and PA-RISC 1.1 on Series 700 workstations. With this
release, 800 systems 8x7, D, E, F, G, H, I, K, T500, and T520 will now have
PA-RISC 1.1 default code generation.)

For example:

+DA1.1
+DA867

+DA2.0

+DAportable

The �rst two examples generate code for the PA-RISC 1.1 architecture. The
third example generates code for the PA-RISC 2.0 architecture. The fourth
example generates code compatible across 1.1 and 2.0 workstations and servers.

1-16 New and Changed Features

FINAL TRIM SIZE : 7.5 in x 9.0 in

For More Information:

See \Compiling for Di�erent Versions of the PA-RISC Architecture" below.
See the �le /usr/lib/sched.models for model numbers and their
architectures. Use the command uname -m to determine the model number of
your system.

model Parameter

model can be either a model number of an HP 9000 system (such as
730, 877, F20, or I50); PA-RISC architecture designations 2.0 or 1.1;
or the term portable. Use the +DAportable compiler option to generate
code compatible across 1.1 and 2.0 workstations and servers. See the �le
/usr/lib/sched.models for a list of model numbers and their PA-RISC
architecture designations.

Compiling for Different Versions of the PA-RISC Architecture

The instruction set on PA-RISC 2.0 is a superset of the instruction set on
PA-RISC 1.1. Code generated for HP 9000 PA-RISC 1.1 systems will run on
HP 9000 PA-RISC 2.0 systems, though possibly less e�ciently than if it were
speci�cally generated for PA-RISC 2.0.

Code generated for PA-RISC 2.0 will not run on PA-RISC 1.1 systems.

Using +DA to Generate Code for a Speci�c Version of PA-RISC

When you use the +DA option depends on your particular circumstances.

If you plan to run your program on the same system where you are
compiling, you don't need to use +DA.

If you plan to run your program on one particular model of the HP 9000 and
that model is di�erent from the one where you compile your program, use
+DAarchitecture with the model number of the target system.

For example, if you are compiling on a 720 and your program will run on an
855, use +DA855.

If you plan to run your program on PA-RISC 2.0 and 1.1 models of the HP
9000, use +DAportable.

New and Changed Features 1-17

FINAL TRIM SIZE : 7.5 in x 9.0 in

Compiling in Networked Environments

When compiles are performed using diskless workstations or NFS-mounted
�le systems, it is important to note that the default code generation and
scheduling are based on the local host processor. The system model numbers of
the hosts where the source or object �les reside do not a�ect the default code
generation and scheduling.

1-18 New and Changed Features

FINAL TRIM SIZE : 7.5 in x 9.0 in

+DS Command-Line Option

+DSmodel

Performs instruction scheduling tuned for a particular implementation of the
PA-RISC architecture.

Object code with scheduling tuned for a particular model will execute on other
HP 9000 systems, although possibly less e�ciently.

If you do not specify this option, the default instruction scheduling is for the
system you are compiling on.

If you plan to run your program on both PA-RISC 1.1 and 2.0 systems, use the
+DS2.0 designation.

Examples:

+DS720 Performs instruction scheduling tuned for one implementation
of PA-RISC 1.1.

+DS745 Performs instruction scheduling for another implementation of
PA-RISC 1.1.

+DSPA8000 Performs instruction scheduling for systems based on the
PA-RISC 8000 processor.

For more information, see:

\Using +DS to Specify Instruction Scheduling" below.
See the �le /opt/langtools/lib/sched.models for model numbers and
their processor names. Use the command uname -m to determine the model
number of your system.

The model Parameter

model can be either a model number of an HP 9000 system (such as 725, 890,
or G40), PA-RISC architecture designation 1.1 or 2.0, or one of the PA-RISC
processor names such as PA7000, PA7100, PA7100LC, or PA8000. See the �le
/opt/langtools/lib/sched.models for model numbers and processor names.

New and Changed Features 1-19

FINAL TRIM SIZE : 7.5 in x 9.0 in

Using +DS to Specify Instruction Scheduling

Instruction scheduling is di�erent on di�erent implementations of PA-RISC
architectures. You can improve performance on a particular model or processor
of the HP 9000 by requesting that the compiler use instruction scheduling
tuned to that particular model or processor. Using scheduling for one model or
processor does not prevent your program from executing on another model or
processor.

By default, the compiler performs scheduling tuned for the system on which
you are compiling. Use the +DS option to change this default behavior and
to specify instruction scheduling tuned to a particular implementation of
PA-RISC. For example, to specify instruction scheduling for the model 867, use
+DS867. To specify instruction scheduling for the PA-RISC 8000 processor,
use +DSPA8000. See the �le /opt/langtools/lib/sched.models for model
numbers and processor names.

When you use the +DS option depends on your particular circumstances.

If you plan to run your program on the same system where you are
compiling, you don't need to use the +DS option. The compiler generates
code tuned for your system.

If you plan to run your program on one particular model of the HP 9000 and
that model is di�erent from the one where you compile your program, use
+DSmodel with either the model number of the target system or the processor
name of the target system.

For example, if you are compiling on a system with a PA7100 processor and
your program will run on a system with a PA7100LC processor, you can use
+DSPA7100LC. This will give you the best performance on the PA7100LC
system.

1-20 New and Changed Features

FINAL TRIM SIZE : 7.5 in x 9.0 in

HP Pascal/HP-UX Built-In Functions

Two built-in functions are available in HP Pascal/HP-UX.

roundlong

The roundlong function returns the longint value of the argument,
rounded to the nearest integer. If x is positive or zero, roundlong(x) is
equivalent to trunclong(x+0.50); otherwise, roundlong(x) is equivalent to
trunclong(x-0.50). It is an error if the result is greater than 263-1 or less
than -263.

Syntax

roundlong (x)

where x is any real or longreal expression.

trunclong

The trunclong function returns the longint value of the argument, with any
fraction truncated. The absolute value of the result is not greater than the
absolute value of x . It is an error if the result is greater than 263-1 or less than
-263.

Syntax

trunclong (x)

where x any real or longreal expression.

New and Changed Features 1-21

FINAL TRIM SIZE : 7.5 in x 9.0 in

Debugging Optimized Code (DOC)

In conjunction with the HP Distributed Debugging Environment (DDE), the
HP Pascal/HP-UX compiler now provides support for debugging optimized
code. This support includes:

Tracebacks with line-number annotation.

Setting breakpoints and single-stepping at the source statement level.

Mapping between source statements and machine instructions.

Viewing and modifying global variables at procedure call boundaries.

Viewing and modifying parameters on procedure entry.

To enable debugging of optimized code, specify the -g command-line option
together with the -O, +O1, or +O2 option. Currently, debugging is supported
at optimization levels 2 and below. If you use -g with the +O3 or +O4 option,
the compiler issues a warning stating that the options are incompatible, and
ignores the -g option.

1-22 New and Changed Features

FINAL TRIM SIZE : 7.5 in x 9.0 in

Making Thread-Safe HP Pascal/HP-UX Routines

There are four major areas of concern when using HP Pascal/HP-UX
multithreaded applications. These concerns are:

Outer block limitations

Input/output

Heap management

Other libraries (Trap and Unwind libraries)

Not all Pascal routines and constructs that use these features are thread-safe.
For example, Pascal I/O procedures such as APPEND, CLOSE, READLN, and
WRITELN are not thread-safe. Additionally, some string manipulation code uses
the heap for temporary storage.

Outer Block Limitations

HP Pascal/HP-UX multithreaded applications require a non-Pascal (such as a
C or C++) outer block.

To convert an existing HP Pascal/HP-UX outer block to C, see Chapter 2 of
HP Pascal/HP-UX Programmer's Guide. In particular, the $SUBPROGRAM$
compiler option must be changed to $EXTERNAL$, and one module must have
the $SUBPROGRAM; GLOBAL$ compiler options. Otherwise, Pascal modules must
be used.

After the outer block is converted, the C outer block must call the routine
documented in the example in Chapter 9, \How To Do Pascal I/O with a
Non-Pascal Outer Block" in HP Pascal/HP-UX.

Note Failure to initialize the Pascal Runtime Library with the
routine in the example will probably cause runtime aborts with
a NIL pointer.

New and Changed Features 1-23

FINAL TRIM SIZE : 7.5 in x 9.0 in

Input/Output

Because of the language de�nition of various Pascal I/O statements, it is
impossible to make them completely thread-safe. For example,

WRITELN(f,a,b,c);

is replaced by

WRITE(f,a); WRITE(f,b); WRITE(f,c); WRITELN(f);

and

READDIR(f,k,x);

is replaced by

SEEK(f,k); READ(f,x);

In a threaded application, the input or output could be interspersed.

Because of the language design limitation, you must do your own locking for
each �le or use a separate �le for each thread.

Note The Pascal Runtime Library assumes that you are coordinating
your I/O to �les. It does NO locking whatsoever. If you fail to
do this, the result could be interspersed output, or worse.

There is another class of routines that are inherently unsafe, since the values
that they return may be invalid as soon as they are returned. This class
includes EOF, EOLN, LASTPOS, LINEPOS, and MAXPOS. These routines and the GET
and PUT routines may require locking around multiple I/O statements or where
the bu�er variable f ^ is referenced.

File Control Block List

The only limited locking that the library does is to protect the global
linked-list of Pascal �le control blocks. Opening or closing a �le adds to or
deletes from this list. The Pascal I/O module maintains this list so that
�les can be closed on routine exit, heap deallocation, or nonlocal GOTO and
ESCAPE. Because the compiler does this implicitly, these operations were made
thread-safe.

1-24 New and Changed Features

FINAL TRIM SIZE : 7.5 in x 9.0 in

File Control Blocks

The �le control blocks themselves are not protected.

There is a control block for each opened �le. Reading, writing, and other
operations on a �le search the list and update the �le's control block or return
information from the control block. Each control block contains its own bu�er
for �le reading and writing.

The �le control blocks must reside in a shared data area. Because �le control
blocks are accessed when the �le list is traversed, the control blocks must be
accessible to all threads in the task.

Without synchronization, a control block can become corrupt. You must
synchronize threaded applications by using mutexes and condition variables to
protect �les that are shared among threads. Otherwise, a �le must be accessed
by only one thread. This includes the built-in �les INPUT and OUTPUT.

Refer to HP-UX Linker and Libraries Online User Guide for guidelines.

Heap Management

The heap routines NEW, DISPOSE, MARK, RELEASE, p_getheap, and p_rtnheap

(described in Chapter 6 of HP Pascal/HP-UX Programmer's Guide) are all
thread-safe. The only important consideration is that the e�ects of MARK and
RELEASE are shared by all threads. If one thread does a MARK and RELEASE, it
a�ects all threads.

Other Libraries (Trap and Unwind Libraries)

Certain Pascal constructs depend on libraries other than the Pascal Runtime
Library, in particular, the routines documented in Chapter 11 of HP
Pascal/HP-UX Programmer's Guide. These include ESCAPE, ESCAPECODE,
XARITRAP, ARITRAP, HPENBLTRAP, and XLIBTRAP.

Support for a per-thread ESCAPECODE is provided.

The four trap routines only provide the various masks and plabels on a global
basis. It is expected that these routines are called before any user threads are
created.

New and Changed Features 1-25

FINAL TRIM SIZE : 7.5 in x 9.0 in

The only other construct that is important to note is that certain string
manipulation operators and functions use the heap for temporary storage.
This is thread-safe but may cause a performance problem. You can use the
$STRINGTEMPLIMIT$ compiler option to allocate space in the stack.

1-26 New and Changed Features

FINAL TRIM SIZE : 7.5 in x 9.0 in

Referencing Shared-Library Data (+k Option)

The HP Pascal/HP-UX compiler now can generate long-displacement code
sequences for referencing global data. This behavior is triggered by the +k
command-line option and con
icts with generating Position Independent Code
(PIC).

Compiling with +k becomes necessary in the rare case when a program
references a very large number of distinct variables that are de�ned in shared
libraries. If this occurs, the linker issues a diagnostic message, stating that the
program should be re-compiled with the +k option.

Note that nearly all programs can reference shared-library data without
needing to be compiled with the +k option.

Four-Byte Extended UNIX Code (EUC)

The following information supplements Chapter 3, \Data Types", of the HP
Pascal/HP-UX Reference Manual .

HP Pascal/HP-UX supports four-byte Extended UNIX Code (EUC) characters
in �le names, comments, and string literals.

System V Release 4 (SVR4) File Layout

In Release 10.0, 10.01, and 10.20, the �le system layout has been changed to
correspond with the System V Release 4 (SVR4) format.

The new standard directory location for Pascal is /opt/pascal.

For common �les that span multiple products, such as debuggers and HP
PAK, the new standard directory is /opt/langtools. This common directory
eliminates duplicate �les in di�erent directories.

Table 1-4 shows the new locations of Pascal �les and other system �les.

New and Changed Features 1-27

FINAL TRIM SIZE : 7.5 in x 9.0 in

Table 1-4. Location of Files

File or Library Location

Driver /opt/pascal/bin/pc

Compiler /opt/pascal/lbin/pascom

Linker /usr/ccs/bin/ld

Instrumented
startup

/opt/langtools/lib/icrt0.o

Normal startup /opt/langtools/lib/crt0.o

gprof startup /opt/langtools/lib/gcrt0.o

prof startup /opt/langtools/lib/mcrt0.o

Debugger end info /opt/langtools/lib/end.o

C library /usr/lib/libc.a /usr/lib/libc.sl

Pro�led C library /usr/lib/libp/libc.a

Math library /usr/lib/libcl.a (Pascal runtime PA-RISC 1.0)
/usr/lib/libcl.sl (Pascal runtime PA-RISC 1.0)
/usr/lib/libM.a (POSIX, PA-RISC 1.0, archive)
/usr/lib/libm.a (SVID, PA-RISC 1.0, archive)
/usr/lib/libM.sl (POSIX, PA-RISC 1.0, shared)
/usr/lib/libm.sl (SVID, PA-RISC 1.0, shared)
/usr/lib/libp/libM.a (POSIX, archive)
/usr/lib/libp/libm.a (SVID, archive)
/usr/lib/pa1.1/libcl.a (Pascal runtime PA-RISC 1.1)
/usr/lib/pa1.1/libcl.sl (Pascal runtime PA-RISC 1.1)
/usr/lib/pa1.1/libM.a (POSIX, PA-RISC 1.1)
/usr/lib/pa1.1/libm.a (SVID, PA-RISC 1.1)

Common �les that
span multiple
products

/opt/langtools

1-28 New and Changed Features

FINAL TRIM SIZE : 7.5 in x 9.0 in

Environment Variables Used by HP Pascal/HP-UX

HP Pascal/HP-UX Release 10.0 uses the following environment variables
somewhat di�erently than it previously did:

LPATH MANPATH NLSPATH PATH

HP Pascal/HP-UX Release 10.01 uses a new environment variable to determine
how the runtime library processes
oating-point number string format:

PASRUNOPTS

The following sections describe how HP Pascal/HP-UX uses each variable.
Some of these variables may be set appropriately by the system login routines.

LPATH

ld uses the LPATH variable to locate directories containing libraries. When
invoked, pc looks to see if LPATH is set. If it is set, ld reads without modifying
LPATH for the list of directories to search. If LPATH is not set, pc sets it
according to the +DA1.1 compile-line options that were speci�ed on the
command line.

As of Release 10.0, LPATH is set to more directories than previously. If you use
LPATH, you should specify the -v compile-line option to get a list of the path
names to which LPATH is set.

MANPATH

To access the manual entry, include the path name /opt/pascal/share/man in
the value of MANPATH.

NLSPATH

If your application reads or sets NLSPATH, be aware that the message
catalogs for the HP Pascal/HP-UX compiler and tools have moved
from /usr/lib/nls/$LANG to /opt/pascal/lib/nls/msg/$LANG.
The default message catalogs have moved from /usr/lib/nls/C to
/opt/pascal/lib/nls/msg/C.

New and Changed Features 1-29

FINAL TRIM SIZE : 7.5 in x 9.0 in

PATH

To invoke pc, set PATH to include /opt/pascal/bin.

PASRUNOPTS

PASRUNOPTS is a new Pascal runtime variable that determines how the
runtime library processes
oating-point number string format. This variable
can be used to increase the portability of PASCAL to other languages and
vendors.

Description

The table for this variable (see Table 1-5)is divided into three columns;
currently only column 1 is supported. The value speci�ed in column 1
determines what exponent is printed for LONGREAL output. It also selects
what exponent is valid for LONGREAL and REAL input.

Exponent Values

Table 1-5. Exponent Values

Value Exponent Output Allowable
Exponent Input

E

The value in column 1 of
PASRUNOPTS is E.

E

Example of output is
1.23E+12.

E or D

Example of valid input
is 1.23E+12 or
1.23D+12

Default

The default situation
pertains when
PASRUNOPTS is either
not de�ned or is de�ned
with any value other
than E.

L

Example of exponent
output is 1.23L+12.

E or L

Example of valid input
is 1.23E+12 or
1.23L+12.

1-30 New and Changed Features

FINAL TRIM SIZE : 7.5 in x 9.0 in

Note The way the compiler recognizes its constants is not a�ected
(i.e., only \L" is valid for LONGREAL).

Example

PASRUNOPTS="E"; export PASRUNOPTS

program prog(output);

begin

writeln(1.0L+200)

end.

The output from this example is 1.0E+200.

The variable is only fetched from the environment once, the �rst time that it
is needed. Changing the environment will not have an e�ect on the runtime
library.

Distributed Debugging Environment (DDE)

For information on the Distributed Debugging Environment (DDE), refer to
HP-UX Programming Tools Release Notes .

New Warning Messages

The following warning messages for the +Oinitcheck optimization parameter
have been added to HP Pascal/HP-UX.

New and Changed Features 1-31

FINAL TRIM SIZE : 7.5 in x 9.0 in

585 MESSAGE CONDITIONAL USE OF UNINITIALIZED VARIABLE '!'

(585)

W CAUSE The local variable mentioned in the message may be
uninitialized when used in this procedure or function.

It may be initialized in a THEN clause and not the ELSE
clause. Or it may not appear in all statements of a CASE. Or
it may be in a FOR or WHILE loop that might never execute.

ACTION Ensure that the variable is initialized before use.

589 MESSAGE CONDITIONAL USE OF UNINITIALIZED FIELD '!' of '!'

(589)

W CAUSE The �eld of the local variable mentioned in the message
may be uninitialized when used in this procedure or
function.

It may be initialized in a THEN clause and not the ELSE
clause. Or it may not appear in all statements of a CASE. Or
it may be in a FOR or WHILE loop that might never execute.

ACTION Ensure that the �eld is initialized before use.

1-32 New and Changed Features

FINAL TRIM SIZE : 7.5 in x 9.0 in

Porting HP Pascal/HP-UX Programs

If you plan to run your programs only on HP computers, the e�ort to port your
programs between HP computers is minimal and the extra features that HP
Pascal/HP-UX provides will make your programming much easier. However,
if you plan to port your programs to another vendor's computer, the e�ort
to do so will be proportional to your use of nonstandard HP Pascal/HP-UX
extensions. Even if the system you are porting to has extensions, it is doubtful
that the extensions on that system have the same form as extensions on HP
Pascal/HP-UX.

To determine which features are nonstandard in an HP Pascal/HP-UX source
�le, include the $ANSI ON$ compiler option at the start of your source �le or
use the -A command-line option.

When you compile the source �le using the -L command-line option, the
compiler generates a listing �le that shows where nonstandard features are
used. Combined, the ANSI compiler option and the -L command-line option
assure you that you are using only ANSI Standard Pascal features or that you
are aware of where you are using nonstandard features.

Porting Between Series 300/400 and Series 700/800

This section summarizes some of the HP Pascal/HP-UX language features,
both standard and nonstandard, that may cause problems when porting Pascal
programs between Series 300/400 and Series 700/800 as well as to or from
other systems.

Data Type Sizes and Alignments

Table 1-6 shows the sizes and alignments of the Pascal data types on HP-UX
architectures. Packing signi�cantly a�ects data type alignments and sizes. For
more speci�c information, refer to HP Pascal/HP-UX Reference Manual ; and
HP Pascal/HP-UX Programmer's Guide.

On the Series 300/400, if the +A command-line option is speci�ed, any data
types larger than two bytes are aligned on a 2-byte boundary.

New and Changed Features 1-33

FINAL TRIM SIZE : 7.5 in x 9.0 in

Table 1-6. HP Pascal/HP-UX Data Types

Type
Size

(bytes)
Alignment
(300/400)

Alignment
(700/800)

bit16 2 Not supported 2

bit32 4 Not supported 4

bit52 8 Not supported 4

boolean 1 1-byte 1-byte

char 1 1-byte 1-byte

enumeration 21 2-byte 1-, 2-, or 4-byte, based
on declared range

subrange of enumeration 21 same as host
enumeration type

2-byte or 4-byte, based
on declared range

$extnaddr$ pointer 8 Not supported 4

integer 4 4-byte 4-byte

subrange of integer
� �32768 AND � 32767

21 2-byte 2-byte

subrange of integer
< �32768 OR > 32767

4 4-byte 4-byte

longint 8 Not supported 4-byte

longreal 8 4-byte 8-byte

pointer 4 4-byte 4-byte

real 4 4-byte 4-byte

set Varies Varies Varies

shortint 2 Not supported 2-byte

1 On Series 700/800, 1, 2, or 4 bytes can be allocated, depending on the declared range.

1-34 New and Changed Features

FINAL TRIM SIZE : 7.5 in x 9.0 in

Control Constructs

The TRY/RECOVER construct is supported on all HP-UX implementations.
Escape codes for errors di�er signi�cantly between the implementations.

The mark and release procedures are supported on all HP-UX
implementations. There are minor di�erences in behavior but code is
essentially portable.

Input/Output

Series 300/400 and 700/800 di�er in the way each allows association with an
HP-UX �le descriptor in the reset procedure. The association is not similar
in the associate procedure.

Series 700/800 uses an option string parameter on reset, rewrite, open,
and append procedures. Series 300/400 ignores this parameter.

On the Series 700/800, if stdout is a terminal, the output is unbu�ered. If
stdout is a �le, the output is line-bu�ered.

Series 300/400 requires the declaration of stderr after declaring it as a
program parameter; Series 700/800 does not.

Series 700/800 implements the fnum function; Series 300/400 does not.

Series 300/400 and 700/800 di�er in how each handles eof, get, and put

with direct access �les.

The close procedure has di�erent default behavior on each system.

Modules

Modules are supported on all HP-UX implementations but some syntactic
and semantic di�erences exist. For example, Series 700/800 requires that
CONST, TYPE, and VAR declarations precede routine declarations within the
EXPORT section, whereas Series 300/400 permits them to be intermixed.

Series 300/400 permits separate compilation only within modules. Series
700/800 can compile outside modules by using the SUBPROGRAM, GLOBAL, and
EXTERNAL compiler options.

New and Changed Features 1-35

FINAL TRIM SIZE : 7.5 in x 9.0 in

Assignment to Procedure Variables

Assignment to a procedure variable has a di�erent syntax on each of the two
architectures.

Maximum String Size

On the Series 300/400, the maximum string size is 255 characters. By
specifying the LONGSTRINGS compiler option, maximum string size is virtually
unlimited. The string size on Series 700/800 is unlimited.

ANYVAR Parameters

ANYVAR is supported on all HP-UX implementations. Series 300/400 does not
perform checks to see if ANYVAR values are legitimate. Series 700/800 passes
size information with ANYVAR parameters.

On the Series 300/400, elements of packed arrays can be passed as ANYVAR
parameters if you use the ALLOW_PACKED compiler option.

Structured Constants

All HP-UX implementations support structured constants but di�erent
restrictions may apply. Series 300/400 restricts their use to the CONST section
and it does not do full type checking on variant-record structured constants.

longreal Precision

There is a small di�erence in precision between the implementations of
longreal because di�erent bit-patterns are used.

anyptr, globalanyptr, and localanyptr

All HP-UX implementations have anyptr, although minor di�erences exist.
On Series 700/800, anyptr is only assignment compatible, it is not type
compatible with pointer types. anyptr is also a di�erent size on Series
700/800: it is 64 bits.

globalanyptr and localanyptr are implemented only on Series 700/800.

1-36 New and Changed Features

FINAL TRIM SIZE : 7.5 in x 9.0 in

Other Features

Program parameters have slight semantic di�erences between Series 300/400
and Series 700/800.

Arguments for the + operator with strings di�er between Series 300/400 and
Series 700/800. For example, chr cannot be used with + on Series 700/800.

Series 300/400 and Series 700/800 each generate di�erent listings.

Features Supported only on Series 300/400

You can use the addr function to get the address of a constant.

A procedure alias is evaluated before addr(alias) is performed.

packed array of char does not require a lower bound of one for some
operations.

Features Supported only on Series 700/800

waddress accepts NIL or a NIL-valued pointer.

A label is not allowed on the statement following a recover statement.

readonly parameters are allowed.

crunched arrays and records are allowed.

The following built-in functions are available:

haveextension

haveoptvarparam

statement_number
susizeof

The assert procedure is de�ned.

lobound subrange expressions that start with \(" are allowed.

Source is scanned that has been conditionally compiled out. This allows NLS
characters in conditionally compiled sections of the source.

$STANDARD_LEVEL 'HP_MODCAL'$ must be used before importing an
argument.

New and Changed Features 1-37

FINAL TRIM SIZE : 7.5 in x 9.0 in

You must compile with $STANDARD_LEVEL 'EXT_MODCAL'$ to convert a
pointer to an integer with ord(pointer type),

packed array of char requires a lower bound of one.

Command-Line Options

Table 1-7 summarizes the command-line options that are available only on the
Series 300/400 or that behave di�erently on the Series 700/800.

Table 1-7. Command-Line Options Specific to Series 300/400

Command
Option

E�ect

+A Use 2-byte alignment rules.

+bfpa A�ect
oating-point operations.

+ffpa A�ect
oating-point operations.

+l Allow production of dynamically loaded libraries.

-L Produce a program listing in a �le speci�ed by $LIST

�lename$.

+M Use library calls for
oating point.

+S Use 4-byte alignment rules.

-T Same as $TABLES ON$.

+U Same as $ALLOW_PACKED ON$.

1-38 New and Changed Features

FINAL TRIM SIZE : 7.5 in x 9.0 in

Table 1-8 summarizes the command line compiler options that are available
only on the Series 700/800 or that behave di�erently on the Series 300/400.

Table 1-8. Command-Line Options Specific to Series 700/800

Command Option E�ect

+C Convert MPE �le names to HP-UX names.

+DAmodel Generate object code for a particular version of the
PA-RISC architecture.

+DSmodel Perform instruction scheduling tuned for a particular
implementation of the PA-RISC architecture.

-L Produce a program listing to stdout.

+N Turn o� generation of notes.

+O0, +O1, +O2, +O3, +O4 Set optimization level.

+O[no]aggressive,
+O[no]all,
+O[no]conservative,
+O[no]limit,
+O[no]size,
+O[no]entrysched,
+O[no]fastaccess,
+O[no]fltacc,
+O[no]initcheck,
+O[no]libcalls,
+O[no]moveflops,
+O[no]pipeline,
+O[no]procelim,
+O[no]regionsched,
+O[no]regreassoc

Modify optimization.

-S Produce assembly output.

+k Generate long-displacement code sequences for referencing
global data.

-y Generate additional information needed by static analysis
tools.

+z and +Z Produce PIC object for shared libraries.

New and Changed Features 1-39

FINAL TRIM SIZE : 7.5 in x 9.0 in

Compiler Options

The HP Pascal/HP-UX compilers support a wide range of compiler options.
Some options are identical on all systems. Some options are unique to a
particular system. Some options have di�erent semantics and slightly di�erent
syntax from one system to the other. For portable code, keep compiler options
to a minimum and avoid options that a�ect the semantics of the language or
enable system level programming extensions. For example, avoid using the
$SYSPROG$ option on the Series 300/400.

Table 1-9 lists options that are speci�c to Series 300/400 as well as options that
have the same name on Series 700/800 but di�erent semantics.

Table 1-9. Compiler Options Specific to Series 300/400

Compiler Option E�ect

ALLOW_PACKED Allows ANYVAR parameter passing of �elds in packed records and
arrays, and SIZEOF using packed �elds and arrays.

ANSI1 The compiler issues an error message when it encounters a
feature in the source code that is illegal in ANSI/ISO Standard
Pascal. It must be placed at the top of the �le.

CODE1 Selects whether a code �le is generated. This option is not
allowed within a procedure body.

CODE_OFFSETS1 Causes PC o�sets to be included in the listing. This option is
not allowed within a procedure body.

DEBUG Causes line number debugging information to be included in the
object code.

FLOAT_HDW Controls generation of code for
oating-point hardware.

IF/ELSE/ENDIF1 Controls conditional compilation. Refer to the HP
Pascal/HP-UX Reference Manual; for the Series 300/400 for
details.

LINENUM Sets listing line number.

1 Available with semantic di�erences on all HP-UX implementations.

1-40 New and Changed Features

FINAL TRIM SIZE : 7.5 in x 9.0 in

Table 1-9.

Compiler Options Specific to Series 300/400 (continued)

Compiler Option E�ect

LINES1 Speci�es number of lines per page on a listing. Default value is
60.

LITERAL_ALIAS1 Determines the case-sensitivity of an alias name.

LONGSTRINGS Extends the maximum length of strings from 255 characters to
virtually any length.

RANGE1 Does run-time checks for range errors.

SAVE_CONST Controls scope of structured constants.

SEARCH1 Speci�es �les to be used to satisfy IMPORT declarations. This
option must be the last option on an option list.

SEARCH_SIZE Changes number of external �les that can be searched. The
default is 9.

STANDARD_LEVEL1 De�nes the compatibility level with various versions of Pascal.

TABLES1 Turns on the listing of symbol tables. TABLES cannot be used
within a procedure body.

UNDERSCORE Causes ALIAS parameters to have an underscore added as a
pre�x.

XREF1 Used with LIST ON, the listing includes a cross reference for
each function, procedure, and outer block.

1 Available with semantic di�erences on all HP-UX implementations.

New and Changed Features 1-41

FINAL TRIM SIZE : 7.5 in x 9.0 in

Table 1-10 lists options that are speci�c to Series 700/800 as well as options
that have the same name on Series 300/400 but di�erent semantics.

Table 1-10. Compiler Options Specific to Series 700/800

Compiler Option E�ect

ALIGNMENT Changes storage alignment for types other than strings and �le
types.

ANSI1 The compiler issues an error message when it encounters a
feature in the source code that is illegal in ANSI Standard
Pascal.

$ANSI ON$ is equivalent to $STANDARD_LEVEL 'ANSI'$.

ASSERT_HALT Causes the program to halt if the assert function fails.

ASSUME Sets optimizer assumptions.

BUILDINT Causes the compiler to build an intrinsic �le rather than an
object code �le.

CHECK_ACTUAL_PARM Sets level of type checking of actual parameters for separately
compiled functions or procedures.

CHECK_FORMAL_PARM Sets level of type checking of formal parameters for separately
compiled functions or procedures.

CODE1 Generates object code after parsing a compilation block.

CODE_OFFSETS1 When $LIST ON$ is used, the compiler prints a table that
contains the statement number and o�set of each executable
statement that it lists.

CONVERT_MPE_NAME Converts �le names in the BUILDINT, INCLUDE, LISTINTR, and
SYSINTR compiler options from MPE format to HP-UX format.

COPYRIGHT Causes a copyright string to be placed into object code.

COPYRIGHT_DATE Sets the date that appears in the copyright notice. This option
must be used with the COPYRIGHT compiler option.

1 Available with semantic di�erences on all HP-UX implementations.

1-42 New and Changed Features

FINAL TRIM SIZE : 7.5 in x 9.0 in

Table 1-10.

Compiler Options Specific to Series 700/800 (continued)

Compiler Option E�ect

EXTERNAL Used in conjunction with the GLOBAL option, EXTERNAL enables
you to compile one program as two or more compilation units.

EXTNADDR Speci�es long pointer accessing.

GLOBAL Used in conjunction with the EXTERNAL option, GLOBAL enables
you to compile one program as two or more compilation units.

GPROF Generates code for pro�ling.

HEAP_COMPACT When used with HEAP_DISPOSE ON, free space in the heap is
concatenated.

HEAP_DISPOSE The prede�ned procedure dispose frees space in the heap so
that the prede�ned procedure new can reallocate it.

HP_DESTINATION HP_DESTINATION 'ARCHITECTURE' generates object code for a
particular version of of the PA-RISC architecture.

HP_DESTINATION 'SCHEDULER' performs instruction scheduling
tuned for a particular implementation of the PA-RISC
architecture.

IF/ELSE/ENDIF1 Controls conditional compilation. Refer to the HP
Pascal/HP-UX Reference Manual ; for the Series 700/800 for
details.

INLINE Causes a procedure call to be replaced by inline code.

KEEPASMB1 Causes the compiler to preserve an assembly �le for the source
�le.

LINES Speci�es number of lines per page on a listing. Default value is
59.

LIST_CODE When used with LIST ON, a mnemonic listing of object code is
produced.

LISTINTR List an intrinsic �le to a speci�ed �le.

1 Available with semantic di�erences on all HP-UX implementations.

New and Changed Features 1-43

FINAL TRIM SIZE : 7.5 in x 9.0 in

Table 1-10.

Compiler Options Specific to Series 700/800 (continued)

Compiler Option E�ect

LITERAL_ALIAS1 $LITERAL_ALIAS ON$ causes the compiler to di�erentiate
between uppercase and lowercase letters for aliases.

$LITERAL_ALIAS OFF$ causes the compiler to downshift aliases.

LOCALITY Causes a locality name to be written to the object �le for
performance.

MLIBRARY Speci�es an alternate �le into which the module export text is
to be written.

NOTES Causes helpful compiler notes to be printed on the program
listing.

OPTIMIZE Sets the level of optimization.

OS Speci�es the operating system under which a program is to be
run.

RANGE1 The compiler generates range-checking code.

S300_EXTNAMES Changes external names to a form consistent with Series
300/400 conventions.

SEARCH1 Speci�es one or more �les for the compiler to search for module
de�nitions.

SHLIB_CODE Generates PIC object code that you can use to create libraries.

SKIP_TEXT Causes the compiler to ignore source code.

STANDARD_LEVEL1 De�nes the compatibility level with various versions of Pascal.

STATEMENT_NUMBER When enabled, the compiler generates a special instruction to
identify a code sequence with its corresponding Pascal
statement.

1 Available with semantic di�erences on all HP-UX implementations.

1-44 New and Changed Features

FINAL TRIM SIZE : 7.5 in x 9.0 in

Table 1-10.

Compiler Options Specific to Series 700/800 (continued)

Compiler Option E�ect

SUBPROGRAM Causes the compiler to emit code for speci�ed level-one routines
only. This option enables you to compile selected routines of a
program.

SYMDEBUG Emits debugger information for xdb.

SYSINTR Speci�es the intrinsic �le to be searched for information on
intrinsic routines.

TABLES1 When used with LIST ON, the listing includes an identi�er map
for each compilation block.

TITLE Speci�es the title to appear on subsequent pages of the program
listing.

UPPERCASE All external names, including aliases, are shifted to uppercase.

VERSION Speci�es a version stamp to be placed in the object �le.

XREF1 When used with LIST ON, the listing includes a cross reference
for each function, procedure, and outer block.

1 Available with semantic di�erences on all HP-UX implementations.

New and Changed Features 1-45

FINAL TRIM SIZE : 7.5 in x 9.0 in

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

Installation Information

Read this entire document, and any other Release Notes or READMEs you
may have before you begin an installation.

After loading the HP-UX 10.20 or later operating system, you can install HP
Pascal/HP-UX. To install your software, run the SD-UX swinstall command.
It will invoke a user interface that will lead you through the installation.

For more information about installation procedures and related issues, refer to
Managing HP-UX Software with SD-UX and other README, installation, and
upgrade documentation provided or described in your HP-UX operating system
package.

Installation Information 2-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Relevant Documentation

HP Pascal/HP-UX Language Manuals

HP Pascal/HP-UX Reference Manual (92431-90005)

HP Pascal/HP-UX Programmer's Guide (92431-90006).

pc(1) online manual entry

Other Manuals

HP-UX Floating-Point Guide (B3906-90004)

HP-UX System Administration Tasks (B2355-90079)

Programming With Threads on HP-UX (B2355-90060)

Procedure Calling Conventions Reference Manual (09740-90015)

PA-RISC 1.1 Architecture and Instruction Set Reference Manual
(09740-90039)

Relevant Documentation 3-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

Additional Documentation

ALLBASE/SQL Pascal Application Programming Guide (36217-90007)

HP C Programmer's Guide (92434-90002)

HP-DDE Debugger Online Help

Refer to the discussion on basic-style (not advanced-style) debugging of
optimized code in the HP/DDE debugger online help.

HP-UX Linker and Libraries Online User Guide

To access the HP Linker and Libraries Online User Guide use the command:

ld +help

The HP Linker and Libraries Online User Guide online guide replaces the
manual Programming on HP-UX . To order a copy of Programming on
HP-UX see manuals(5).

Note Users with character-based terminals or terminal emulators
can use the charhelp program to view or print the online help
provided for the linker.

To start charhelp enter the full pathname (or just charhelp
if /opt/langtools/bin is in your $PATH environment variable),
and you will get a usage statement:

$ /opt/langtools/bin/charhelp

charhelp: Usage: charhelp {cc | CC | f77 | ld | -helpVolume file}

For help with the linker, for example, enter charhelp
ld and follow the menus for further direction. For
more information, see the man page for charhelp(1)
(/opt/langtools/share/man/man1.Z must be in your
$MANPATH environment variable).

3-2 Relevant Documentation

FINAL TRIM SIZE : 7.5 in x 9.0 in

The +help option may not work on systems running HP CDE. If it does not
work, ensure the environment variable DTHELPSEARCHPATH is set. (It
may not be set if you rlogin to a system, for example.) If it is not set, use the
following command to set it:

eval $(dtsearchpath)

Ensure the LANG environment variable is set, typically LANG=C.

As a workaround, you can view the linker online help using the ? icon on the
HP CDE front panel or by using one of the following commands:

/usr/dt/bin/dthelpview -helpVolume linker

or

/usr/dt/bin/dthelpview -helpVolume /opt/langtools/lib/help/C/linker.hv

Relevant Documentation 3-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Problem Descriptions and Fixes

Problems Encountered with Combining Options +DA2.0
and +O2

The following problems relate to the use of +DA2.0 with the optimization
option +O2. (This problem does not a�ect the use of +DS2.0.)

It is recommended that you use +DA1.1 if any of the following errors occur.
They are all related to speci�c optimizations made for PA-RISC 2.0 systems
dealing with 64-bit register support.

The error messages are:

**** INTERNAL ERROR # 1 Utils: Sanity Check: Inconsistent

internal data structures. (6933)

**** INTERNAL ERROR # 1 inst: Illegal displacement, low

order bits must be zero. (7828)

Error 7828 occurs if LONGINT or BIT52 items are misaligned, on word
boundaries. It is also possible for it to abort at runtime if pointers are used.

Error 6933 occurs in association with 64-bit items for the following reasons:

Range and over
ow checking for LONGINT or BIT52. This can be
suppressed by using $RANGE OFF$ and $OVFLCHECK OFF$.

Using BUILDPOINTER to create $EXTNADDR$, 64-bit addresses.

Using ADDR to create pointers to procedures/functions.

Using ROUND on LONGREAL.

Set expressions dealing with 64-bit sets.

Problem Descriptions and Fixes 4-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

Incorrect results occur when using MOD by a non-power of 2 constant for
LONGINT or BIT52.

Incorrect aliasing will degrade performance of LONGINT or BIT52 and
probably negate any bene�t of +DA2.0 for Pascal.

Operating System and Compiler Information

For information on HP Pascal/HP-UX product problems and �xes, refer to the
Software Status Bulletin or the Software Release Bulletin . The product number
to assist you in �nding SSB and SRB reports for HP Pascal/HP-UX on the
Series 700 and 800 is 92431A.

To verify the product number for your Pascal compiler, execute these HP-UX
commands:

what /opt/pascal/bin/pc

what /opt/pascal/lbin/pascomp

The product number and a release number will be displayed as well as other
information.

Note Since HP-UX 10.10 is the last supported OS for PA-RISC 1.0
architecture machines, the 10.20 compilers no longer support
the compiling of code for PA-RISC 1.0.

4-2 Problem Descriptions and Fixes

