
FINAL TRIM SIZE : 7.5 in x 9.0 in

HP 9000 Computer Systems

HP C++ Programmer's Guide

HP 9000 Series Workstations and Servers

ABCDE

HP Part No. 92501-90005

Printed in U.S.A. June 1996

Fourth Edition

E0696

FINAL TRIM SIZE : 7.5 in x 9.0 in

Notice

Copyright c
 Hewlett-Packard Company 1990-1996. All Rights Reserved.
Reproduction, adaptation, or translation without prior written permission is
prohibited, except as allowed under the copyright laws. Printed in USA.

UNIX is a registered trademark in the United States and other countries,
licensed exclusively through X/Open Company Limited.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED
TO BE ACCURATE, HEWLETT-PACKARD MAKES NO WARRANTY
OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
Hewlett-Packard shall not be liable for errors contained herein or for incidental
or consequential damages in connection with the furnishing, performance or use
of this material. Information in this publication is subject to change without
notice.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to restrictions
as set forth in sub-paragraph (c)(1)(ii) of the Rights in Technical Data and
Computer Software clause in DFARS 252.227-7013.

Hewlett-Packard Company
3000 Hanover Street
Palo Alto, CA 94304 U.S.A.

Rights for non-DoD U.S. Government Departments and Agencies are as set
forth in FAR 52.227-19 (c)(1,2).

FINAL TRIM SIZE : 7.5 in x 9.0 in

Printing History

New editions are complete revisions of the manual. Update packages may be
issued between editions.

The software code printed alongside the date indicates the version level of the
software product at the time the manual was issued. Many product updates
and �xes do not require manual changes and, conversely, manual corrections
may be done without accompanying product changes. Therefore, do not expect
a one-to-one correspondence between product updates and manual updates.

First Edition March 1990 B1691A.02.00 (Series 300)
92501A.02.00 (Series 800)

Second Edition December 1990 B2400A.02.10 (Series 300/400)
B2404A.02.10 (Series 600/800)

Third Edition August 1992 B2400A.03.00 (Series 300/400, HP-UX 8.0)
B2402A.03.00 (Series 700, HP-UX 8.0)
B2404A.03.00 (Series 800, HP-UX 8.0)
B2400A.03.05 (Series 300/400, HP-UX 9.0)
B2402A.03.05 (Series 700, HP-UX 9.0)
B2404A.03.05 (Series 800, HP-UX 9.0)

Fourth Edition June 1996 HP-UX HP C++ A.03.72 and A.10.22

You may send any suggestions for improvements in this manual to:

Languages Information Engineering Manager
Hewlett-Packard Company
Mailstop 42UD
11000 Wolfe Road
Cupertino CA 95014-9804

iii

FINAL TRIM SIZE : 7.5 in x 9.0 in

Preface

The HP C++ Programmer's Guide was written to assist C and C++
programmers execute and debug C++ programs on HP 9000 Series
workstations and servers. Although it is not intended as a reference source on
the C++ language, you will �nd a brief overview of the language in Chapter 1.
The HP C++ implementation is based on version 3.0 of the C++ translator as
developed by USL.

If you are relatively new to C, C++, HP-UX, or the HP Symbolic Debugger,
you should become familiar with these languages, systems, and products before
using this Guide.

This manual contains the following chapters:

Chapter 1 | Overview of HP C++ introduces you to HP C++, providing
background information on object-oriented programming and previous releases
of C++.

Chapter 2 | The HP C++ Preprocessor presents information about HP C++
preprocessor operation.

Chapter 3 | Compiling and Executing HP C++ Programs describes HP
C++ compiler options, system library and header �les, and a comprehensive
programming example.

Chapter 4 | Optimizing HP C++ Programs describes how your program can
be optimized for improved e�ciency.

Chapter 5 | Inter-Language Communication describes guidelines for linking
HP C++ modules with modules written in HP C, HP Pascal, and HP
FORTRAN 77.

Chapter 6 | HP Speci�c Features of lex and yacc provides a list of HP speci�c
features of the lex and yacc utilities.

Online Help. The HP C++ Programmer's Guide is also available in an online
help format. Currently, it is accessible with the helpprint command on X and
non-X displays, and may also be accessed be selecting the ? icon on the HP
Vue front panel of X displays.

Users with Version A.10.22 or later may also use the command

CC +help

iv

FINAL TRIM SIZE : 7.5 in x 9.0 in

to access the HP C++ Online Programmer's Guide.

The online documentation provides the most comprehensive and current
documentation and also provides information on getting help with error
messages.

v

FINAL TRIM SIZE : 7.5 in x 9.0 in

Conventions

NOTATION DESCRIPTION

text Represents literals; they are to be entered exactly as shown.

italics Within syntax statements, a word in italics represents a formal
parameter or argument that you must replace with an actual
value. In the following example, you must replace �lename
with the name of the �le you want to compile:

CC �lename

punctuation Within syntax statements, punctuation characters (other than
brackets, braces, vertical parallel lines, and ellipses) must be
entered exactly as shown.

f g Within syntax statements, braces indicate that you must
choose one of the listed items. In the following example, you
must specify either ON or OFF:

#pragma OPTIMIZE

�
ON

OFF

�

[] Within syntax statements, brackets enclose optional elements.
In the following example, brackets around optionarg indicate
that the argument is optional:

-optionname[optionarg]

[j] A vertical bar within brackets indicates that you can choose
either or both of the items separated by the vertical bar. In
the following example, you can specify either options or �les or
both:

CC [options | �les]

[. . .] Within syntax statements, a horizontal ellipsis enclosed in
brackets indicates that you can repeatedly select elements that
appear within the immediately preceding pair of brackets or
braces. In the following example, you can select itemname and
its delimiter zero or more times. Each instance of itemname
must be preceded by a comma:

vi

FINAL TRIM SIZE : 7.5 in x 9.0 in

[,itemname[...]]

If a punctuation character precedes the ellipsis, you must use
that character as a delimiter to separate repeated elements.
However, if you select only one element, the delimiter is not
required. In the following example, the comma cannot precede
the �rst instance of itemname:

[itemname][,...]

. . .
... Within examples, horizontal or vertical ellipses indicate where

portions of the example are omitted.

base pre�xes The pre�xes %, #, and $ specify the numerical base of the
value that follows:

%num speci�es an octal number.
#num speci�es a decimal number.
$num speci�es a hexadecimal number.

When no base is speci�ed, decimal is assumed.

Bit (bit:length) When a parameter contains more than one piece of data within
its bit �eld, the di�erent data �elds are described in the format
Bit (bit:length), where bit is the �rst bit in the �eld and length
is the number of consecutive bits in the �eld. For example,
Bits (13:3) indicates bits 13, 14, and 15:

vii

FINAL TRIM SIZE : 7.5 in x 9.0 in

FINAL TRIM SIZE : 7.5 in x 9.0 in

Contents

1. Overview of HP C++

History of C++ . 1-2
Getting Started with HP C++ 1-3
Using the CC Command 1-3
Compiling and Executing a Simple Program 1-4
Debugging C++ Programs 1-4
Using the Online Sample Programs 1-4

How C++ Di�ers from C 1-5
Compatibility with C 1-5
Reliability Improvements 1-6
Type Checking Features in Functions 1-6
Constant Data Types 1-7
Variable Declarations 1-7

Other Extensions to C 1-7
Comments . 1-7
Default Arguments 1-8
Variable Number of Arguments 1-8
Overloaded Functions 1-9

Changing Your C Programs to C++ 1-10
New Keywords . 1-11
Function Declarations 1-11
Structures . 1-12
External Names 1-12
Constants . 1-13
Assignment of Void Pointers 1-14
Character Array Initialization 1-14

Support for Object-Oriented Programming 1-14
What Is Object-Oriented Programming? 1-14
Object-Oriented Programming: The Bank Example 1-15
How Does C++ Support Object-Oriented Programming? . . 1-20

Contents-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

Encapsulation . 1-20
Data Abstraction . 1-23
Inheritance . 1-24
Type Polymorphism 1-26
Inline Functions . 1-28
The new and delete Operators 1-28
Constructors and Destructors 1-29
Overloaded Operators 1-30
Conversion Operators 1-31

Templates . 1-32
Class Templates . 1-32
Function Templates 1-33
Template Code is Stored in a Repository 1-34
CC Options for Templates 1-34

Exception Handling . 1-35
You Must Use the +eh Option 1-35
The throw, catch, and try Statements 1-35
Examples . 1-36

2. The HP C++ Preprocessor

Preprocessing Directives 2-1
Overview . 2-1
Syntax . 2-2
Using Preprocessor Directives 2-3

Source File Inclusion 2-4
Syntax . 2-4
Description . 2-4
Examples . 2-5

Macro Replacement . 2-5
Syntax . 2-5
Description . 2-5
Macros with Parameters 2-6
Specifying String Literals with the # Operator 2-7
Concatenating Tokens with the ## Operator 2-7
Example 1 . 2-8
Example 2 . 2-8

Using Macros to De�ne Constants 2-9
Other Macros . 2-10

Contents-2

FINAL TRIM SIZE : 7.5 in x 9.0 in

Examples . 2-11
Using Constants and Inline Functions instead of Macros . . . 2-11
Example . 2-12

Prede�ned Macros 2-13
Conditional Compilation 2-14
Syntax . 2-14
Description . 2-14
Using the de�ned Operator 2-15
Using the #if Directive 2-16
The #endif Directive 2-16
Using the #ifdef and #ifndef Directives 2-16
Nesting Conditional Compilation Directives 2-16
Using the #else Directive 2-17
Using the #elif Directive 2-17

Examples . 2-17
Line Control . 2-19
Syntax . 2-19
Description . 2-19
Example . 2-19

Pragma Directive . 2-20
Syntax . 2-20
Description . 2-20
Example . 2-20

Error Directive . 2-21
Syntax . 2-21
Description . 2-21
Examples . 2-21

Trigraph Sequences . 2-22
Description . 2-22
Example . 2-22

3. Compiling and Executing HP C++ Programs

Phases of the Compiling System 3-2
What Happens in Compiler Mode 3-4
Preprocessing . 3-4
Compiling C++ Source Code 3-4
Compile-Time Template Processing 3-4
Link-Time Template Processing 3-5

Contents-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

Linking . 3-5
Linking Constructors and Destructors 3-5

What Happens in Translator Mode 3-5
Preprocessing . 3-7
Translating C++ Source Code to C 3-7
Compile-Time Template Processing 3-7
Compiling the Translated C Source Code 3-7
Adding Debug Information 3-7
Link-Time Template Processing 3-8
Linking . 3-8
Linking Constructors and Destructors 3-8

Compiling with the CC Command 3-9
Setting Your Path to the CC Command 3-9
Syntax . 3-9
Specifying Files to the CC Command 3-10
Specifying Options to the CC Command 3-11
An Example of Using a Compiler Option 3-11
Concatenating Options 3-12

HP C++ Compiler Options 3-13
Environment Variables 3-31
The CXXOPTS Environment Variable 3-31
The TMPDIR Environment Variable 3-33
The CCLIBDIR and CCROOTDIR Environment Variables . 3-33

Pragma Directives 3-34
Optimization Pragmas 3-34
Pragmas for Shared Libraries 3-34
Pragma HP SHLIB VERSION 3-34
Pragma COPYRIGHT 3-34
Pragma COPYRIGHT DATE 3-36
Pragma LOCALITY 3-36
Pragma VERSIONID 3-36

System Library and Header Files 3-37
Standard HP-UX Libraries 3-37
Location of Standard HP-UX Header Files 3-37
Example of Using a Standard Header File 3-38

C++ Run-Time Libraries 3-38
Stream Library . 3-38
Ostream Library 3-38

Contents-4

FINAL TRIM SIZE : 7.5 in x 9.0 in

Task Library . 3-38
Complex Library 3-39
HP Codelibs Library 3-39
Standard Components Library 3-40
Locations of Library Files 3-40
Support for Multi-Threaded Applications 3-41

C++ Library Header Files 3-42
Location of C++ Header Files 3-43
Example of Using a C++ Header File 3-43

Linking to C++ Libraries 3-44
Creating and Using Shared Libraries 3-45
Compiling for Shared Libraries 3-45
Creating a Shared Library 3-45
Using a Shared Library 3-45
Example . 3-46
Linking Archive or Shared Libraries 3-46
Updating a Shared Library 3-47
Forcing the Export of Symbols in main 3-47
Binding Times . 3-48
Forcing Immediate Binding 3-48

Side E�ects of C++ Shared Libraries 3-48
Routines You Can Use to Manage C++ Shared Libraries . . 3-48
Shared Library Header �les 3-49
Version Control in Shared Libraries 3-50
Adding New Versions to a Shared Library 3-50

Distributing HP C++ Libraries, Object Files, and Executable
Files . 3-51

Executing HP C++ Programs 3-51
Redirecting stdin and stdout 3-52

An Extensive Example 3-53
Data Hiding Using Files as Modules 3-53
Linking . 3-54
The Lending Library 3-56

Contents-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

4. Optimizing HP C++ Programs

5. Inter-Language Communication

Introduction . 5-1
Data Compatibility between C and C++ 5-2
Calling HP C from HP C++ 5-3
Using the extern \C" Linkage Speci�cation 5-3
Di�erences in Argument Passing Conventions 5-5
The main() Function 5-5

Calling HP C++ from HP C 5-8
Calling HP Pascal and HP FORTRAN 77 from HP C++ . . . 5-11
The main() Function 5-12
Function Naming Conventions 5-12
Using Reference Variables to Pass Arguments 5-12
Using extern \C" Linkage 5-13
Strings . 5-14
Arrays . 5-14
De�nition of TRUE and FALSE 5-14
Files . 5-14
Linking HP FORTRAN 77 and HP Pascal Routines on HP-UX 5-16

6. HP Speci�c Features of lex and yacc

Notes on Using lex and yacc 6-2

Index

Contents-6

FINAL TRIM SIZE : 7.5 in x 9.0 in

Figures

1-1. Encapsulation in a C++ Class: The account class Example . 1-22
1-2. Concept of Single Inheritance: The account Example 1-24
1-3. Concept of Multiple Inheritance: The savings account Example 1-25
3-1. Phases of the HP C++ Compiling System in Compiler Mode . 3-3
3-2. Phases of the HP C++ Compiling System in Translator Mode 3-6

Tables

2-1. Prede�ned Macros 2-13
2-2. Trigraph Sequences and Replacement Characters 2-22
3-1. The CC Command Options 3-13
3-2. HP C++ Library Files 3-41

Contents-7

FINAL TRIM SIZE : 7.5 in x 9.0 in

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

1

Overview of HP C++

C++ is rapidly emerging as a popular successor to C. The C++ language
retains the advantages of C for systems programming, while adding features
and extensions that make it easier and safer to use. Moreover, C++ supports
object-oriented programming. You can use object-oriented programming
techniques to write applications that are typically easier to maintain and
extend than non-object-oriented applications.

This manual describes HP C++, which is Hewlett-Packard's implementation
of the C++ programming language for systems running HP-UX. HP C++ is
derived from version 3.0 of the USL product.

C++ translator, which translates C++ source code into C code. However, with
HP C++ you can compile C++ source code directly to object code, as well as
translate C++ code into C code.

HP C++ is a compiling system that enables you to develop executable �les
from C++ source code. The components of the compiling system are driven
by the CC command line interface. The various components preprocess and
compile the C++ source �les, add information needed for debugging, and link
the resulting object �les.

This chapter

provides a brief history of C++

tells you the di�erence between C and C++

explains how to compile and execute a simple C++ program

describes object-oriented programming with C++

highlights the incompatibilities and di�erences between HP C++ and
previous releases of C++

Overview of HP C++ 1-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

Overview of HP C++

History of C++

C++ is a general-purpose programming language designed at AT&T Bell
Laboratories and licensed through USL.

Based on the C programming language, C++ was designed to be used in a
C programming environment on a UNIX system. C++ retains most of C's
e�ciency and
exibility, incorporates all the features of C, and also supports
features that are unavailable in the C language. Many of the added features
were designed to support object-oriented programming.

Dr. Bjarne Stroustrup, author of The C++ Programming Language, designed
most of the new language, with additional contributions from Brian Kernighan
and other Bell Labs sta�. In undertaking the project, Stroustrup borrowed
successful features from other older languages. As a result, C++ incorporates
the concepts of classes and virtual functions from Simula67. C++ borrows the
idea of operator overloading from Algol 68. These features are an important
part of the support that C++ provides for object-oriented programming.

Early versions of the language were collectively known as \C with Classes" and
lacked many details that were added later. According to Stroustrup, the name
C++ was coined by Rick Mascitti. The name is a play on words since \++"
is the C increment operator and can also be taken to signify the evolution of
changes from C. Stroustrup also points out that the language is not called D
because it does not remove any features of C, but rather it is an extension of C.

The USL translator has evolved through several releases. Version 1.0, the
original release, re
ects the language as de�ned in Bjarne Stroustrup's The
C++ Programming Language. Version 1.1 added two features: pointers to
member functions and the keyword protected. Version 1.2 added support for
the overloading of unsigned integers and unsigned longs.

Version 2.0 added several major features, including support for multiple
inheritance, additional operator overloading, and type-safe linkage. Version 2.0
also �xed a number of problems in the C++ language. As a result, version 2.0
is not backward compatible with previous releases.

Version 2.1 primarily repaired defects and more rigorously enforced the
de�nition of the language. In addition, HP C++ added compiler mode to
version 2.1, which compiles C++ source directly to object code instead of

1-2 Overview of HP C++

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

Overview of HP C++

translating it to C. This reduces compilation time signi�cantly. Version 2.1 is
both source compatible and link compatible with version 2.0.

The C++ Programming Language, written by Bjarne Stroustrup, contains
the de�nition of the C++ language supported by the current version, 3.0.
(Language features that are not implemented in version 3.0 are listed in
appendix C, \Not Implemented Messages," of the C++ Language System
Release Notes .) Version 3.0 adds signi�cant new functionality in templates,
true nested classes, protected derivation, and a number of other new features.

HP C++ implements version

3.0 of the USL translator and adds an exception handling mechanism that
conforms to the de�nition in The C++ Programming Language.

HP C++ also supports shared libraries on HP-UX by allowing you to create
position-independent code (PIC).

Getting Started with HP C++

This section brie
y describes the use of the CC command to invoke HP C++,
tells you how to compile and execute a simple C++ program, and explains how
to access online sample programs.

Using the CC Command

To invoke the HP C++ compiling system, use the CC (uppercase) command at
the shell prompt. The CC command invokes a driver program that runs the
compiling system according to the �lenames and command line options that
you specify. See Chapter 3 for more details about the compiling system and the
CC command.

Overview of HP C++ 1-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

Overview of HP C++

Compiling and Executing a Simple Program

The best way to get started with HP C++ is to write, compile, and execute a
simple program. The following is a simple program to get you started:

#include <iostream.h>
void main()

{

int x,y;

cout << "Enter an integer: ";

cin >> x;

y = x * 2;

cout << "\n" << y <<" is twice " << x <<".\n";

}

Compiling this example with CC produces an executable �le named a.out.
To run this executable �le, just enter the name of the �le. The following
summarizes this process with the �le named getting_started.C:

$ CC getting_started.C

$ a.out

Enter an integer: 7

14 is twice 7.

Debugging C++ Programs

You can debug your C++ programs with the HP Symbolic Debugger. You
need to compile your program with the -g option �rst. For more information
about the HP Symbolic Debugger, see the HP-UX Symbolic Debugger User's
Guide.

Using the Online Sample Programs

Many of the C++ programs from this and other manuals are stored
online for you to use and experiment with. The source �les for
these programs reside in the directory /usr/contrib/CC/Examples

(/opt/CC/contrib/Examples/bank_ex for HP-UX 10.x C++ versions).

1-4 Overview of HP C++

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

Overview of HP C++

How C++ Differs from C

C++ is often described as a superset of C because C++ has many of the
features of C, plus some additional features. There are, however, some
di�erences between the two languages aside from the additional features of
C++. This section brie
y describes the following:

Compatibility with C

Reliability Improvements

Other Extensions to C

Changing Your C Programs to C++

C++ also di�ers from C in its support of object-oriented programming. Refer
to \Support for Object-Oriented Programming" for a discussion of C++ as
an object-oriented programming language. For more details about the C++
language, refer to the The C++ Programming Language.

Compatibility with C

Retaining compatibility with C served as a major design criterion for C++.
The basic syntax and semantics of the two languages are the same. If you are
familiar with C, you can program in C++ immediately.

For instance, C++ preserves C's e�cient interface to computer hardware.
That is, C++ has the same types, operators, and other facilities de�ned in C
that usually correspond directly to computer architecture. You can use these
facilities to write code that makes optimal use of the hardware at run time (for
example, code that manipulates bits and uses register variables).

C++ also preserves and enhances the C facilities for designing interfaces among
program modules. These facilities are extremely useful when you develop any
size application, but particularly a large or complex one.

Finally, C++ modules can usually be linked with already existing C modules
with few if any modi�cations to the C �les. This means that you can probably
use many C libraries with your C++ programs.

Refer to \Changing Your C Programs to C++," in this chapter, for a
description of speci�c things you might want to change in order to convert

Overview of HP C++ 1-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

Overview of HP C++

existing C programs to C++ programs. Refer to Chapter 5, \Inter-Language
Communication," for details about linking C programs with C++ programs.

Reliability Improvements

C++ provides several features to help you create more reliable programs.
These features include type checking, constant data types, and
exibly located
variable declarations. The following sections brie
y describe these features.

Type Checking Features in Functions

You declare functions in C++ just as you do in C, except that C++ supports
type checking of arguments. Type checking means that the compiling system
detects many errors at compile time rather than at run time, so you can correct
them earlier in the development process.

Unlike pre-ANSI C functions, C++ functions must specify types for function
arguments. Furthermore, the compiling system performs type checking and
type conversion. This means that it compares the argument types with the
parameter types in a function de�nition each time the function is called. If
the types are not compatible, the compiling system generates an error. For
example, suppose you de�ne a function max and then make the function calls
shown in the following code fragment:

float max(float x,float y) // Define a function, max.

{ return (x>y) ? x : y; }...
max (4.0, 9.0); // This function call will compile since

// both arguments are floats.

max(4,9); // This function call will compile since

// the function arguments are integers,

// which can be converted to floats.

max("Four",9.0); // WRONG!
// First argument is a character string, which

// is an incorrect type, and conversion is not

// possible.

C++ provides function argument checking that is compatible with ANSI C.
C++ also provides type-safe linkage with checking done at run time, unlike C.

1-6 Overview of HP C++

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

Overview of HP C++

Constant Data Types

C++ provides a new keyword, const, that declares an identi�er to be a
constant. A similar feature is also part of ANSI C. For example, the following
line creates a variable days, which behaves exactly like any other int variable
except that its value cannot be changed:

const int days = 7; // Days is an integer constant.

You can also use const with pointers, either to declare an object pointed to as
a constant or to declare the pointer itself as a constant.

You can use a const declaration in a C++ program in many places where you
would have used a #define macro in a C program. Unlike constants created by
#define macros, which are purely textual substitutions, const values can have
type and scope like variables.

Variable Declarations

C++ allows you to declare variables and statements in any order, as long as
you declare variables before you use them. You can declare variables almost
anywhere in a block, not just at the beginning. As a result, you can locate
variables with the statements that use them. For example, the following
fragment is legal in C++:

for (int j = 0; j < 100; j++)

The example shows how C++ allows you to declare and initialize the variable j
in the for loop statement instead of at the start of the function.

Other Extensions to C

The previous sections describe how C++ can improve reliability. Other
features of C++ distinguish it from C. Many of these additional features add
to its support for object-oriented programming as well as to its stronger type
checking. This section describes these additional features very brie
y. Refer to
\Support for Object-Oriented Programming" for details about object-oriented
programming.

Comments

C++ has the following two notations for comments:

Overview of HP C++ 1-7

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

Overview of HP C++

Comments can begin with the characters /* and end with */, as they
do in C.

Any line that begins with // is a comment, and any text following // until
the end of the line is a comment.

You can use both styles of notation in the same �le.

For example,

/* This is a C-style comment that extends

over more than one line; it is also a

legal comment in C++ */

// This is a C++-only comment that

// extends over more than one line

Here's another example of a C++ comment:

int i; // counter variable

Default Arguments

To account for missing arguments in a function call, function declarations and
de�nitions can specify default expressions for the arguments. You declare these
default expressions simply by initializing the arguments. The initialized values
are called default values. For instance, the following code fragment shows two
default arguments:

// default values are 0 and "none"

void add_items (int i=0, char *str = "none");

When a call to add_items is missing an argument, the default value is
substituted in its place. If a call to add_items has two arguments, then
the default values are ignored. You can provide default values for trailing
arguments only. Trailing arguments are the last arguments in the argument
list.

Variable Number of Arguments

In addition to specifying argument types, a C++ function declaration can
specify that a variable number of arguments is accepted. This is also a feature
of ANSI C.

1-8 Overview of HP C++

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

Overview of HP C++

You declare a function with variable arguments by adding ellipsis points (. . .)
to the end of the declaration of the function's argument list. The ellipsis
instructs the compiler to accept any number of actual arguments of any type
from that point on in the argument list of a function call. For example, the
following function can be called with a variable number of arguments:

int file_print(FILE*, char*, ...);

The preceding code fragment declares that file_print is a function that
returns an integer and can be called with a variable number of arguments, the
�rst two of which must be of the types FILE* and char*, respectively.

Overloaded Functions

C++ supports function name overloading , which allows you to give the
same name to di�erent functions. You typically use function overloading for
functions that perform the same operations on objects of di�erent types. The
compiling system determines which function to use based on the number and
type of arguments that are passed.

For example, you might want to de�ne two functions named print. One can
be used for printing integers and the other for printing character strings. Or
you might want to be able to handle information about dates as integers (when
you want to do calculations) or as characters (when you want to display them).
The following code fragment illustrates a function, handle_date, that handles
dates as either integers or characters.

// This function takes three arguments that must be integers.

void handle_date(int day, int month, int year);

// This function takes one argument that must be a pointer

// to a character.

void handle_date(char* date);

Note Releases of the translator before version 2.0 required the use of
the keyword overload to specify that a name could be used
for more than one function. As of version 2.1, the keyword
overload is obsolete.

Overview of HP C++ 1-9

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

Overview of HP C++

Changing Your C Programs to C++

This section contains information about changes you might want to incorporate
into C programs and header �les that you intend to use with HP C++. These
changes are in the following categories:

new keywords

function declarations

structures

external names

constants

assignment of void pointers

When you start to use C++ after using C, you might also want to change
to an object-oriented approach to programming. Refer to \Support for
Object-Oriented Programming" for details about object-oriented programming
with C++.

1-10 Overview of HP C++

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

Overview of HP C++

New Keywords

C++ reserves as keywords the following identi�ers that are not keywords in
HP C:

C++ Keywords

catch new this

class operator throw

const1 private try

delete protected virtual

friend public volatile1

inline template

1 The keywords const and volatile

are also keywords in ANSI C.

If your C code contains any variables with these names, you must change them
when you convert your program to a C++ program.

Note Although it is reserved as a keyword, volatile is not
implemented in HP C++. However, the +Ovolatile
optimization option makes all global variables volatile, and
performs level 2 optimization.

Function Declarations

You should make the following changes involving functions:

Explicitly declare all functions. (You cannot use implicit declarations in
C++.)

Add argument types to function declarations.

Use ellipsis points (. . .) for functions that take varying numbers of
arguments.

One important di�erence between C and C++ is that a C++ function declared
as f() takes no arguments, whereas a C function declared as f() can take any
number of arguments of any type. This means that you do not need to use

Overview of HP C++ 1-11

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

Overview of HP C++

void to declare that a C++ function takes no arguments, as you might have
done in an ANSI C program.

Unlike ANSI C, C++ does not require a comma separating the ellipsis points
from the rest of the argument list when you specify a variable number of
arguments.

Structures

Since a C++ struct is a particular form of the class data type, you may need
to change your C code to avoid name con
icts.

External Names

In C you can de�ne a variable in an external �le more than once. The last
initializer read by the linker is the variable's initial value at run time. In C++
you can de�ne a variable declared in an external �le exactly once. For example,
the following code is legal in C but not in C++:

/* this is a C program but not a C++ program */

#include "file1.c"

#include "file2.c"

extern int foo();

main()
{ ...

}

/* file1.c */

int i ; /* i is also defined in file2 */

int foo () { return i; }

/* file2.c */

int i; /* i is also defined in file1 */

int fum() { return foo(); }

If you try to compile this program with CC, you get the following error message:

CC: "file2.c", line 2: error: two definitions of ::i (1034)

1-12 Overview of HP C++

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

Overview of HP C++

In this example, you can eliminate the error generated by CC by specifying the
second de�nition of int i to be extern, as follows:

/* file2 */

extern int i; /* i is also defined in file1 */

int fum() { return foo(); }

Constants

ANSI C constants are stored as extern, whereas C++ constants are, by
default, static, although they can be declared extern. In other words, if
you de�ne a �le scope const in ANSI C with no storage class (that is, neither
static nor extern), the linkage defaults to extern. This is an important
di�erence between types in ANSI C and C++. Hence, the following compiles
and links using ANSI C:

/* fileA.c */

const int x = 100;

/* fileB.c */

#include <stdio.h>

main()

{

extern const int x;
printf("%d\n", x);

}

These �les also compile using HP C++, but fail to link, with the following
error:

/bin/ld: unsatisfied symbols

x (data)

The constant x de�ned in fileA.c has no \linkage." To make x externally
visible, you must explicitly give it the storage class extern, as shown below:

extern const int x = 100;

Overview of HP C++ 1-13

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

Overview of HP C++

Assignment of Void Pointers

C++ does not allow you to assign a void pointer to another pointer variable.
For instance, the following code is legal in C, but illegal in C++:

char* cp;

void* vp;

cp = vp; // WRONG!

You must use a cast, as shown below:

cp = (char *) vp;

Character Array Initialization

Character array initialization is handled di�erently in C++ and ANSI C. For
more information refer to The C++ Programming Language.

Support for Object-Oriented Programming

C++ supports object-oriented programming; C does not. This section
describes object-oriented programming, gives a brief example of an
object-oriented approach to a programming problem, and gives an overview
of the language enhancements that C++ provides for object-oriented
programming.

What Is Object-Oriented Programming?

The traditional approach to programming is often summarized by the equation:

PROGRAM = DATA STRUCTURES + ALGORITHMS

According to this approach, a program is a blend of data (information) and
algorithms (procedures). The data is the information given in a problem that
may be useful in obtaining a solution. Procedures are the steps you take
in manipulating the data to obtain a solution to the problem. Procedural
programming, or non-object-oriented programming, typically focuses initially
on the procedures. The key to a clever procedural program is often a clever
algorithm.

1-14 Overview of HP C++

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

Overview of HP C++

Object-oriented programming shifts the emphasis from algorithms, or how
things get done, to object declarations, or what needs to be manipulated. The
object-oriented programmer typically starts by developing a concept of an
object or collection of objects whose state and functionality are independent of
a particular program.

Moreover, in an object-oriented program, the concept of procedure and
data is replaced by the concept of objects and messages. An object is a
package containing two components: information and a description of how
to manipulate the information. A message speci�es one of an object's
manipulations. To send a message is to tell an object what do. The object
determines exactly what methods to use. For example, a message to a circle

object in an object-oriented graphics program might say \draw yourself."

In other words, object-oriented programming rejects the dichotomy between
data and procedures and substitutes the concepts of objects (which contain
both data and procedures) and messages:

PROGRAM = OBJECTS + MESSAGES

Object-Oriented Programming: The Bank Example

For example, suppose you want to develop a program that a bank can use to
keep track of its transactions. Most of its transactions have to do with money
and customers. Customers can borrow, save, invest, or write checks on their
money, and most of the bank's money is kept in accounts.

A programmer using a non-object-oriented approach might develop a solution
to the bank's needs by analyzing the bank's various transactions and turning
these transactions into program routines. For example, there might be routines
with names such as calculate_interest and add_deposit that pass and
return arguments containing data about money, customers, and accounts.

A programmer using an object-oriented approach, in contrast, would
probably begin by thinking of the objects in the bank rather than the bank's
transactions. An object-oriented language would allow an object such as an
account or a customer to contain both the information needed to de�ne
the object and the functions that de�ne operations that can manipulate the
object. Thus, an account object might contain an amount of money and also a
function to calculate and add interest to its amount of money.

Overview of HP C++ 1-15

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

Overview of HP C++

In the banking example, this concept of an account object allows you to send a
message to an account object telling the object to update its balance. Upon
receiving this message, the account object manipulates its data according to
its own de�nitions of how to carry out the operations requested in the message.

Furthermore, the programmer using an object-oriented approach might design
the bank program to include a hierarchy of account objects. All account
objects could be derived from account and therefore contain whatever
data and operations are part of an account. Moreover, the derived objects
might also have additional or slightly di�erent data or operations. Thus, a
checking_account might contain a function that sets the interest for the
account at a rate lower than the interest for a savings_account.

The bank_example program in example 1-1 is intended to illustrate these
object-oriented programming concepts. It is not intended to represent a
realistic application. The next several sections refer to the bank_example
program. The source �le for this program resides in the directory
/usr/contrib/CC/Examples (/opt/CC/contrib/Examples for HP-UX 10.x
C++ versions).

1-16 Overview of HP C++

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

Overview of HP C++

//***

//program name is "bank_example"

//***

#include <iostream.h> // needed for C++-style I/O

#include <string.h> // needed for C-style string manipulation

class account

{

private:

char* name; // owner of the account

protected:

double balance; // amount of money in the account

double rate; // rate of interest for the account

public:

account(char* c) // constructor

{

name = new char [strlen(c) +1]; strcpy(name,c);

balance = rate = 0;

}

~account() // destructor

{ delete name; }

// add an amount to the balance

void deposit(double amount) { balance += amount; }

// subtract an amount from the balance
void withdraw (double amount) { balance -= amount; }

// show owner's name and balance

void display()

{ cout << name << " " << balance << "\n"; }

// this function is redefined for

// checking_account, which is a derived class

virtual void update_balance()

{ balance += (rate * balance); }

};

Example 1-1. Object-Oriented Programming with C++: bank example

Overview of HP C++ 1-17

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

Overview of HP C++

// define a class derived from account

class checking_account : public account

{

private:

double fee; // checking accounts have a fee in

// addition to name, balance, and rate

public:

// constructor; note that checking accounts

// pay 5% interest but charge $2.00 fee

checking_account(char* name) : account(name)

{ rate = .05; fee = 2.00; }

// redefined to deduct fee for this

// type of account

void update_balance()

{ balance += (rate * balance) - fee; }

};

// define a class derived from account

class savings_account : public account

{

public:

// constructor; note that savings accounts

// pay 10% interest and charge no fee
savings_account(char* name) : account(name)

{ rate = .10; }

};

main()

{

checking_account* my_checking_acct =

new checking_account ("checking");

savings_account* my_savings_acct =

new savings_account ("savings");

// send a message to my_checking_acct

// to display itself

Example 1-1. Object-Oriented Programming with C++: bank example (continued)

1-18 Overview of HP C++

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

Overview of HP C++

my_checking_acct->display();

// send a message to my_savings_acct to

// display itself

my_savings_acct->display();

// send a message to my_checking_acct

// to deposit $100 to itself

my_checking_acct->deposit(100);

// send a message to my_savings_acct

// to deposit $1000 to itself

my_savings_acct->deposit(1000);

// send a message to my_checking_acct

// to update its balance

my_checking_acct->update_balance();

// send a message to my_savings_acc

// to update its balance

my_savings_acct->update_balance();

// send a message to my_checking_acct

// to display itself

my_checking_acct->display();

// send a message to my_savings_acct

// to display itself

my_savings_acct->display();

}
//***

Example 1-1. Object-Oriented Programming with C++: bank example (continued)

When you compile and run the bank_example program, you get the following
results:

checking 0

savings 0

checking 103

savings 1100

Overview of HP C++ 1-19

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

Overview of HP C++

How Does C++ Support Object-Oriented Programming?

To support object-oriented programming, a language must support the
following:

Encapsulation | All the functions that can access an object are in one place
and data and functions can be de�ned that can only be accessed from within
that speci�c class.

Data abstraction | You can de�ne data types that can be used without
knowledge of how they are represented in storage.

Inheritance | You can develop hierarchies of objects that inherit data and
functionality from their parent objects.

Type polymorphism | A pointer to an object can point to a variety of
di�erent types, and you can use a process called dynamic binding to select
and execute an appropriate function at run time based on the type of the
object that is actually referenced.

C++ has all of these characteristics, which are described in more detail in the
following sections.

Encapsulation

Encapsulation means that all the functions that can access an object are in one
place. C++ supports the class data type, which allows you to declare all the
functions that can access its data within the body of its declaration. A class

is a lot like a structure in C and it is the basis for much of the support that
C++ provides for object-oriented programming.

1-20 Overview of HP C++

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

Overview of HP C++

For example, suppose you are using C++ to develop the banking application
described brie
y in the preceding section. You could de�ne a class to
represent an account object. Its data members could represent the customer
who owns the account, the balance of the account, and the rate of interest for
the account. Its member functions could specify operations to be used with the
data members. Your code, nearly identical to that in example 1-1, might look
something like the following fragment:

class account

{

private:

char* name; // owner of the account

double balance; // amount of money in the account

double rate; // rate of interest for the account

public: // add an amount to the balance

void deposit(double amount) { balance += amount; }

// subtract an amount from the balance

void withdraw (double amount) { balance -= amount; }

// show owner's name and balance

void display() { cout << name << " " << balance << "\n"; }

// add interest to the balance

void update_balance() { balance += (rate * balance); }

};

In this example, account is a class. The keywords private and public divide
the class into two parts. The members in the �rst part | the private part |
are data members. The members in the second part | the public part | are
member functions. Because they are de�ned to be private, the data members,
speci�cally name, balance, and rate, can only be used by member functions
of the account class. In other words, the only functions that can access name,
balance, and rate are deposit, withdraw, display, and update_balance.

Figure 1-1 illustrates this de�nition of an account class. The arrow in the
�gure indicates that the functions in the public part of the account class have
access to the data in the private part of the class.

Overview of HP C++ 1-21

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

Overview of HP C++

Figure 1-1.

Encapsulation in a C++ Class: The account class Example

Note that some or all of the data members could have been public and some
or all of the member functions could have been private or protected in the
account class. Refer to \Inheritance" for more information on the keyword
protected. The design shown in Figure 1-1 is only one of many ways to use
encapsulation in de�ning classes.

1-22 Overview of HP C++

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

Overview of HP C++

Data Abstraction

C++ classes allow you to hide the representation of data in storage as well as
restrict access to data. In other words, classes allow you to de�ne data types
that can be used without knowledge of their representation in storage.

You can use C++ classes in the same way that you use built-in types. For
example, float is a built-in type. To use a float object you do not need to
know how the object is represented in storage. All you need to know is the
name of the type and the operations that you are allowed to perform on that
type. When you use
oating-point objects, you can add or assign values to
them without concern for their representation. The representation of the
objects is hidden.

Similarly, C++ lets you use a class like account while ignoring the details of
how an account object is represented. All you need to know is that accounts
have owners, balances, and interest rates, that you can make deposits and
withdrawals, that you can display the name of the account's owner and
balance, and that you can update the balance.

Furthermore, you can use data abstraction to design large or complex
applications with many pieces that use objects of a class in di�erent ways. If
you need to change the representation of a class, you only need to do so in one
place. Also, you can add modules that use objects of the class in entirely new
ways.

Finally, data abstraction means that access to the representation of data
objects is restricted. Restricting access to data makes debugging easier and
assists you in protecting the integrity of class objects. For instance, C++
allows you to trace an error involving the private members of a class to the
limited number of functions that have access to that data. Thus, an error
involving the name data in the private part of an account object probably
arises from one of the account member functions (deposit, withdraw,
display, and update_balance), since they are the only functions allowed to
access name data. Similarly, the representation of name data is consistent for
all applications using account objects, since it is only accessible to account

member functions.

Overview of HP C++ 1-23

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

Overview of HP C++

Inheritance

C++ supports inheritance, allowing you to derive a class from one or more
base classes. For example, using the class account as a base class, you can
de�ne derived classes named checking_account and savings_account as
shown in the following fragment taken from Example 1-1:

// define a class derived from account

class checking_account : public account

{ . . .

};

// define a class derived from account

class savings_account : public account

{ . . .

};

Figure 1-2 illustrates the concept of single inheritance: checking and savings
accounts are each derived from a base class.

Figure 1-2. Concept of Single Inheritance: The account Example

Multiple inheritance means that a class can have more than one base class.
For instance, you could de�ne a savings_account object as derived from
an investment object as well as from account. Other objects derived from
investment might represent stocks and real estate. This concept of multiple
inheritance is shown in Figure 1-3.

1-24 Overview of HP C++

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

Overview of HP C++

Figure 1-3. Concept of Multiple Inheritance: The savings account Example

Deriving classes allows you to de�ne details common to many potential
derived classes in a base class. Derived classes inherit all members|both
data and functions|of the base class. Thus all checking_account and
savings_account objects inherit name, balance, and rate data members
from the base class account, as well as the public member functions deposit,
withdraw, display, and update_balance. In order for the derived class to
access inherited members, however, the members must be declared public

or protected. The keyword protected allows the derived class to access a
member of the base class, while blocking access to the rest of the program.

Inheritance allows you to write the source code for a base class, store the
declarations in a header �le, and then use the base class to derive new classes
with additional data or functions. This means that you can write separate
modules that extend a large application without a�ecting the header �le. For
instance, in the modi�ed bank_example program, in addition to inheriting
name, balance, and rate data from the base class, checking_account objects
have a new data member, fee.

Furthermore, C++ allows you to rede�ne a base class's member functions in
each class derived from it. For instance, suppose in the bank_example program
you had de�ned the update_balance() function in account as follows:

void update_balance() { balance += (rate * balance); }

Overview of HP C++ 1-25

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

Overview of HP C++

Since checking accounts charge fees, the checking_account version of
update_balance() was rede�ned to deduct a fee as well as add interest as
follows:

void update_balance() { balance += (rate * balance) - fee; }

Type Polymorphism

As was mentioned previously, type polymorphism means that a pointer to an
object can point to a variety of di�erent types, and you can select and execute
an appropriate function at run time based on the type of the object actually
referenced. The rest of this section discusses how C++ implements the concept
of type polymorphism using dynamic binding, inheritance, and type checking.

In C++, a pointer to a derived class is type-compatible with a pointer to its
base class. As a result, it is possible for a pointer declared as the address of
one class type to be assigned the address of another type.

For instance, as was mentioned previously, if checking_account and
savings_account are both derived from account, the following is legal:

// account_ptr points to an account object

account* account_ptr;

// checking_ptr points to a checking_account object

checking_account* checking_ptr;

// savings_ptr points to a savings_account object

savings_account* savings_ptr;

// now account_ptr points to a savings_account object

account_ptr = savings_ptr;

// now account_ptr points to a checking_account object

account_ptr = checking_ptr;

In other words, a variable declared as a pointer to a particular class might
actually point to an object of a di�erent class at run time. In this example,
account_ptr points to a checking_account rather than an account.

While this type compatibility can be convenient, it can also result in ambiguity
as to which class member function should be called. For instance, after making
the preceding declarations and assignments, suppose you make the following
function call:

1-26 Overview of HP C++

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

Overview of HP C++

// Does this call the account member function

// or the checking_account member function?

account_ptr->update_balance();

C++ handles this ambiguity by allowing you to specify a base class member
function as virtual. When you declare a function to be virtual, you tell the
compiling system to select and execute the appropriate function at run time
depending on an object's actual type, rather than its declared type. This is
called dynamic binding .

For example, consider the update_balance function, which is de�ned as
virtual in the following code fragment taken from bank_example:

class account

{ . . .

// this function is redefined for checking_account,

// which is a derived class

virtual void update_balance()

{ balance += (rate * balance); }

};

// define a class derived from account

class checking_account : public account

{ . . .

void update_balance()

{ balance += (rate * balance) - fee; } };

Declaring update_balance as virtual means that the compiling system uses
dynamic binding. Here's how it works in the bank_example:

Suppose you declare account_ptr as a pointer to an account object, and
you assign it the address of a checking_account object. Then you make a
function call: account_ptr->update_balance().

C++ uses the checking_account de�nition of update_balance. This means
that the fee is deducted from the account balance.

If you do not declare update_balance as virtual, C++ would use the
account version of update_balance, ignoring the fact that account_ptr
actually points to a checking_account object.

Overview of HP C++ 1-27

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

Overview of HP C++

Inline Functions

Calling small functions frequently can slow a program's execution speed.
Therefore, C++ allows you to declare inline expanded functions using the
keyword inline. This means that the compiling system attempts to generate
the code for the function at the place where it is called. When used with small
functions, inline can increase execution speed.

If a function is not a class member, you can make it inline by declaring it with
the inline speci�er as shown in the following example:

inline int max (int a, int b) {return a > b ? a : b;}

Inline expansion is especially useful for de�ning small member functions. A
member function becomes inline when it is de�ned within the de�nition of its
class. For example, the show_radius function in the following code is inline
expanded whenever possible:

class circle // declare a class

{

double radius;

public:

void show_radius()

{ cout << "radius is " << radius ;} // an inline function

};

The new and delete Operators

You can declare a named object in C++ to be static or auto just as you can
in C. A static object is created once at the start of the program and destroyed
once at the termination of the program. Its scope is the block in which it is
declared; if it is declared outside of a block, it has �le scope. An automatic
object is created each time its declaration is encountered in the execution of
the program and destroyed each time the block in which it occurs is exited.
Its scope is from the point of declaration to the end of the block in which it is
declared.

You can also control the life span of an object and allocate storage just for the
time the object is needed. The operator new creates objects and the operator
delete destroys them. Using these operators, new and delete, allows you to

1-28 Overview of HP C++

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

Overview of HP C++

use an object created by a function after leaving the function. The objects
created by new are allocated from free storage.

Because they are built into the language, new and delete are easier to use
than malloc and free, which are not built into the C language. (The functions
malloc and free are UNIX library calls.) C++ also allows you to overload new

and delete, which means that you can create your own memory management
operators on a class by class basis. Moreover, the new and delete operators for
class objects invoke constructors and destructors, which are described brie
y in
the next section.

Constructors and Destructors

Constructors guarantee initialization of class objects; they are member
functions designed explicitly to initialize objects. A constructor sets up and
assigns a value in storage when a class object is declared.

Many classes also have destructors. A destructor ensures that storage is
released, that counters are reset, and that other maintenance takes place when
class objects are destroyed (for example, when a variable goes out of scope).

A constructor has the same name as its class, whereas a destructor for a class
is the class name preceded by a tilde (~). Thus for class account, a constructor
is named account and its destructor is named ~account. These are shown in
the following code fragment:

account(char* c) //constructor

{

name = new char [strlen(c) +1]; strcpy(name,c);

balance = rate = 0;

}

~account() // destructor

{ delete name; }

Note that destructors can also be declared as virtual functions, thus ensuring
that the appropriate destructor is always called regardless of its apparent type.
(Refer to \Type Polymorphism" above.)

Overview of HP C++ 1-29

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

Overview of HP C++

Overloaded Operators

Classes can have functions that assign special user-de�ned meanings to most
of the standard C++ operators when they are applied to class objects. These
functions are called overloaded operator functions. For example, if you are
designing an application using complex numbers, you could overload the
plus (+) operator to handle complex addition. The following code fragment
illustrates such an application:

class complex

{

// the real and imaginary parts of the number

double real, imag;

public:

complex(double r,double i) // constructor

{ real = r; imag = i; }

// declare overloaded "+" operator

// as a member function

complex operator+(complex addend);

};

The name of an operator function is the keyword operator followed by the
operator itself, such as operator+. You can declare and call an operator
function in the same way you call any other function, by using its full name, or
by using just the operator. When you use just the operator, C++ selects the
correct overloaded operator function to perform the task. An operator function
can be a member function.

1-30 Overview of HP C++

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

Overview of HP C++

Conversion Operators

Conversion operators are member functions that have the same name as a
type. The type can be either user-de�ned or built-in. You can use conversion
operators to de�ne your own type conversions. Declare a conversion operator
as an overloaded operator function with the keyword operator.

For example, the following code fragment de�nes a conversion operator for a
conversion from circle (a user-de�ned type) to int (a built-in type):

class circle

{

private:

int radius;

public:...
operator int() // conversion operator defines a

// conversion from a circle to integer

{ return radius; }

};

Given the preceding de�nition, you could make the following declaration and
assignment:

circle A(1); // create a circle A with a radius of 1

int i = A; // initialize an integer variable, i,

// by converting A to an int and

// assigning the result to i

Overview of HP C++ 1-31

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

Overview of HP C++

Templates

Version 3.0 of HP C++ adds templates, or parameterized types as they are
also called. This section brie
y describes templates. For a detailed description,
see the \Template Instantiation" sections in the C++ Language System
Selected Readings and the \Templates" chapter in the The C++ Programming
Language. For additional information on templates, see the HP C++ Online
Programmer's Guide.

You can create class templates and function templates. A template de�nes
a group of classes or functions. The template has one or more types as
parameters. To use a template you provide the particular types or constant
expressions as actual parameters thereby automatically creating a particular
object or function.

Class Templates

A class template de�nes a family of classes. To declare a class template, you
use the keyword template followed by the template's formal parameters. Class
templates can take parameters that are either types or expressions. You de�ne
a template class in terms of those parameters. For example, the following is
a class template for a simple stack class. The template has two parameters,
the type speci�er T and the int parameter size. The keyword class in the
< > brackets is required to declare a template's type parameter. The �rst
parameter T is used for the stack element type. The second parameter is used
for the maximum size of the stack.

template<class T, int size>

class Stack

{

public:

Stack(){top=-1;}

void push(const T& item){thestack[++top]=item;}

T& pop(){return thestack[top--];}

private:

T thestack[size];

int top;

};

1-32 Overview of HP C++

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

Overview of HP C++

The member functions and the member data use the formal parameter type T
and the formal parameter size. When you declare an instance of the class
Stack, you provide an actual type and a constant expression. The object
created uses that type and value in place of T and size, respectively. For
example, the following program uses the Stack class template to create a
stack of 20 integers by providing the type int and the value 20 in the object
declaration:

void main()

{ Stack<int,20> myintstack;

int i;

myintstack.push(5);

myintstack.push(56);

myintstack.push(980);

myintstack.push(1234);

i = myintstack.pop();

}

The compiler automatically substitutes the parameters you speci�ed, in
this case int and 20, in place of the template formal parameters. You can
create other instances of this template using other built-in types as well as
user-de�ned types.

Function Templates

A function template de�nes a family of functions. To declare a function
template, use the keyword template to de�ne the formal parameters, which
are types, then de�ne the function in terms of those types. For example, the
following is a function template for a swap function. It simply swaps the values
of its two arguments:

template<class T>

void swap(T& val1, T& val2)
{

T temp=val1;

val1=val2;

val2=temp;

}

Overview of HP C++ 1-33

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

Overview of HP C++

The argument types to the function template swap are not speci�ed. Instead,
the formal parameter, T, is a placeholder for the types. To use the function
template to create an actual function instance (a template function), you
simply call the function de�ned by the template and provide actual parameters.
A version of the function with those parameter types is automatically created.

For example, the following main program calls the function swap twice, passing
int parameters in the �rst case and float parameters in the second case.
The compiler uses the swap template to automatically create two versions, or
instances, of swap, one that takes int parameters and one that takes float
parameters.

void main()

{ int i=2, j=9;

swap(i,j);

float f=2.2, g=9.9;

swap(f,g);

}

Other versions of swap can be created with other types that exchange the
values of the given type.

Template Code is Stored in a Repository

When you declare a template, the compiler stores information about the
template in a repository. The compiler creates a directory, ptrepository for
\parameterized type repository," and stores information about your template
there. When you use the template, the compiler automatically instantiates the
template using the repository.

CC Options for Templates

You can change the default compiler behavior by using the -pt options. For
a complete description of these options see Table 3-1 in Chapter 3 of this
manual and the section \Template Instantiation User Guide" in the C++
Language System Selected Readings . Note that the PTOPTS environment
variable described in this article is not supported by HP C++. Use CXXOPTS
instead. CXXOPTS is described in Chapter 3.

1-34 Overview of HP C++

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

Overview of HP C++

Exception Handling

HP C++ version 3.0 added a mechanism to respond to error conditions in
a controlled way. This mechanism is called exception handling. Exception
conditions are error situations that occur while your program is running.

For more information about exception handling, see the The C++
Programming Language and the HP C++ Release Notes .

You Must Use the +eh Option

To use exception handling, you must use the +eh option. If your program
consists of multiple source �les, you must compile all the �les in the program
with the +eh option. If some �les were compiled with +eh and some without,
when you link with the CC command, c++patch will give an error and the �les
will not link.

The throw, catch, and try Statements

To signal an error condition, you \raise an exception" with the throw
statement. To respond to the error condition, you \handle the exception" with
the catch statement. The throw statement must appear either within a try

block, which is de�ned by the keyword try, or in functions called from the try
block. The catch statement must appear immediately after the try block.

Overview of HP C++ 1-35

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

Overview of HP C++

Examples

For example, the following declares a class Stack, which is an integer stack
of a maximum of 5 elements. The class Stack declares two public nested
classes Overflow and Underflow which will be used for handling those error
conditions. When the stack over
ows or under
ows, the appropriate exceptions
are thrown:

#include <iostream.h>

const STACKMAX=5; // Maximum size of the stack.

class Stack

{

public:

class Overflow // An exception class.

{ public:

int overflowval;

Overflow(int i) : overflowval(i) {}

};

class Underflow // An exception class.

{ public:

Underflow () {}

}

Stack(){top=-1;}

void push(int item)

{if (top<(STACKMAX-1)) thestack[++top]=item;

else throw Overflow(item);}

int pop()

{if (top>-1) return thestack[top--];

else throw Underflow();}

private:
int thestack[STACKMAX];

int top;

};

1-36 Overview of HP C++

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

Overview of HP C++

The following main program declares a stack and exception handlers for the
over
ow and under
ow stack conditions. The program forces the stack to
over
ow causing the exception handler to be invoked.

#include <iostream.h>

void main()

{

Stack mystack;

int i=5, j=25;

// Here is the try block where

// exception handlers are available.

try

{ mystack.push(i);

mystack.push(j);

mystack.push(1);

mystack.push(1234);

mystack.push(999);

// Stack is now full. Force an exception:

mystack.push(50); // This will throw Stack::Overflow.

}

// Here are the exception handlers.

catch (Stack::Overflow& s)

{

cout << "Stack has overflowed trying to push: "

<< s.overflowval << endl;

}

catch (Stack::Underflow& s)

{ cout << "Stack underflow has occurred." << endl; }

}

The above program displays the following message:

Stack has overflowed trying to push: 50

Overview of HP C++ 1-37

FINAL TRIM SIZE : 7.5 in x 9.0 in

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

2

The HP C++ Preprocessor

Preprocessing Directives

This chapter presents information about the HP C++ preprocessor. If you are
familiar with the HP C preprocessor described in the HP C/HP-UX Reference
Manual , you may already be acquainted with some of this chapter's contents.

Overview

A preprocessor is a text processing program that manipulates the text within
your source �le. You enter preprocessing directives into your source �le to
direct the preprocessor to perform certain actions on the source �le. For
example, the preprocessor can replace tokens in the text, insert the contents of
other �les into the source �le, or suppress the compilation of part of the �le by
conditionally removing sections of text. It also expands preprocessor macros
and conditionally strips out comments.

The preprocessor program, Cpp.ansi, is invoked automatically when you
compile your C++ source code. (You can use the -Ac option to invoke the
compatibility mode preprocessor, Cpp.)

When the preprocessor is �nished, your preprocessed C++ code is passed to
the HP C++ compiler. For more information on the phases of the compiler see
Chapter 3, \Compiling and Executing HP C++ Programs."

HP C++ provides two modes of preprocessor operation: ANSI C mode
and compatibility mode. ANSI C mode is the default. If you want the
compatibility mode preprocessor, use the -Ac option of the CC command. Refer
to \Compiling HP C Programs" in the HP C/HP-UX Reference Manual for
further information on compatibility and ANSI C modes. Refer to \Compiling
and Executing HP C++ Programs" in Chapter 3 of this manual for further
information on CC options.

The HP C++ Preprocessor 2-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
The HP C++ Preprocessor

Syntax

preprocessor-directive ::=

include-directive newline

macro-directive newline

conditional-directive newline

line-directive newline

pragma-directive newline

error-directive newline

Preprocessing directives control the following general functions, each of which is
discussed in subsequent sections:

source �le inclusion

You can direct HP C++ to include other source �les at a given point. This is
normally used to centralize declarations or to access standard system headers
such as iostream.h.

macro replacement

You can direct HP C++ to replace token sequences with other token
sequences. In C, this is frequently used to de�ne names for constants rather
than explicitly putting the constant value into the source �le. In C++ you
can also use the keyword const to de�ne constants.

conditional compilation

You can direct HP C++ to check values and
ags and to compile or skip
source code based on the outcome of a comparison. This feature is useful in
writing a single source that will be used for several di�erent con�gurations.

line control

You can direct HP C++ to set the line number and �le name of the next
line.

pragma directives

You can direct HP C++ to give implementation-dependent instructions,
called pragmas, to the compiler. Because they are system-dependent,
pragmas are not portable.

error directives

2-2 The HP C++ Preprocessor

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
The HP C++ Preprocessor

You can create diagnostic messages that will be produced by HP C++.

Using Preprocessor Directives

The following lists rules and guidelines for using preprocessor directives:

All preprocessing directives must begin with a pound sign (#) as the �rst
character on a line of your source �le. (However, if you are in ANSI C mode
only, white-space characters may precede the # character.)
The # character is followed by any number of spaces and horizontal tab
characters and the preprocessing directive.
The preprocessing directive is terminated by a newline character.
Preprocessing directives, as well as normal source lines, can be continued over
several lines. End the lines that are to be continued with a backslash (n).
Some directives can take actual arguments or values.
Comments in the source �le that are not passed through the preprocessor
are replaced with a single white space character (ASCII character number
decimal 32).

The following are examples of preprocessing directives:

include-directive: #include <iostream.h>

macro-directive: #define MAC x+y

conditional-directive: #ifdef MAC

define x 25

endif

line-directive: #line 5 "myfile"

pragma-directive: #pragma OPTIMIZE ON

error-directive: #error "FLAG not defined!"

The HP C++ Preprocessor 2-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
The #include Directive

Source File Inclusion

You can include the contents of other �les within the source �le prior to
compilation by using the #include directive.

Syntax

include-directive ::=

#include <�lename>

#include "�lename"

#include identi�er

Description

The #include preprocessing directive causes HP C++ to read source input
from the �le named in the #include directive. Usually, include �les are named:

�lename.h

If the �le name is enclosed in angle brackets (< >), the system directory is
searched to �nd the named �le. If the �le name is enclosed in double quotation
marks (" "), HP C++ searches your current directory for the speci�ed �le.
Refer to \System Library and Header Files" in Chapter 3 for a detailed
description of how an #include �le is found.

Files that are included may contain #include directives themselves. HP C++
supports a nesting level of at least 35 #include �les.

The arguments to the #include directive are subject to macro replacement
before the directive processes them. Thus, if you use an #include directive
of the form #include identi�er, identi�er must be a previously de�ned
macro that when expanded produces one of the above de�ned forms of the
#include directive. Refer to the next section, \Macro Replacement," for more
information on macros.

Error messages produced by HP C++ indicate the name of the #include �le
where the error occurred, as well as the line number within the �le.

2-4 The HP C++ Preprocessor

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
The #define Directive

Examples

#include <iostream.h>

#include "myheader.h"

#ifdef MINE

define �lename "file1.h"

#else

define �lename "file2.h"

#endif

#include �lename

Macro Replacement

You can de�ne C++ macros to substitute text in your source �le.

Syntax

macro-directive ::=

#define identi�er [replacement-list]

#define identi�er([identi�er-list]) [replacement-list]

#undef identi�er

replacement-list ::=

token

replacement-list token

Description

A #define preprocessing directive of the form:

#define identi�er [replacement-list]

de�nes the identi�er as a macro name that represents the replacement-list .
The macro name is then replaced by the list of tokens wherever it appears in
the source �le (except inside of a string, character constant, or comment). A

The HP C++ Preprocessor 2-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
The #define Directive

macro de�nition remains in force until it is unde�ned through the use of the
#undef directive or until the end of the compilation unit.

Note The replacement-list must �t on one line. If the line becomes
too long, it can be broken up into several lines provided that
all lines but the last are terminated by a \n" character. The
following is an example.

#define mac very very long\

replacement string

The \n" must be the last character on the line. You cannot add
any spaces or comments after it.

Macros can be rede�ned without an intervening #undef directive. Any
parameter used must agree in number and spelling with the original de�nition,
and the replacement lists must be identical. All white space within the
replacement-list is treated as a single blank space regardless of the number of
white-space characters you use. For example, the following #define directives
are equivalent:

#define foo x + y

#define foo x + y

The replacement-list may be empty. If the token list is not provided, the macro
name is replaced with no characters.

Macros with Parameters

You can create macros that have parameters. The syntax of the #define
directive that includes formal parameters is as follows:

#define identi�er([identi�er-list]) [replacement-list]

The macro name is the identi�er . The formal parameters are provided by the
identi�er-list enclosed in parentheses. The open parenthesis must immediately
follow the identi�er with no intervening white space. If there is a space
between the identi�er and the parenthesis, the macro is de�ned as if it were the
�rst form and the replacement-list begins with the \(" character.

2-6 The HP C++ Preprocessor

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
The #define Directive

The formal parameters to the macro are separated with commas. They may
or may not appear in the replacement-list . When the macro is invoked, the
actual arguments are placed in a parenthesized list following the macro name.
Commas enclosed in additional matching pairs of parentheses do not separate
arguments but are themselves components of arguments.

The actual arguments replace the formal parameters in the token string when
the macro is invoked.

Specifying String Literals with the # Operator

If a formal parameter in the macro de�nition directive's replacement string
is preceded by a # operator, it is replaced by the corresponding argument
from the macro invocation, preceded and followed by a double-quote character
(") to create a string literal. This feature, available only with the ANSI C
preprocessor, may be used to turn macro arguments into strings. This feature
is often used with the fact that HP C++ concatenates adjacent strings.

For example,

#include <iostream.h>

#define display(arg) cout << #arg << "\n" //define the macro

main()

{

display(any string you want to use); //use the macro
}

After HP C++ expands the macro de�nition in the preceding program, the
following code results:

...
main ()

{

cout << "any string you want to use" << "\n";

}

Concatenating Tokens with the ## Operator

Use the special ## operator to form other tokens by concatenating tokens
used as actual arguments. Each instance of the ## operator is deleted and the
tokens preceding and following the ## are concatenated into a single token. If
either of these names is a formal parameter of the macro, the corresponding

The HP C++ Preprocessor 2-7

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
The #define Directive

argument at invocation is used. This is useful in forming unique variable names
within macros.

Example 1. The following illustrates the ## operator:

// define the macro; the ## operator

// concatenates arg1 with arg2

#define concat(arg1,arg2) arg1 ## arg2

main()

{

int concat(fire,fly);

concat(fire,fly) = 1;

printf("%d \n",concat(fire,fly));

}

Preprocessing the preceding program yields the following:

main()

{

int firefly ;

firefly = 1;

printf("%d \n",firefly);

}

Example 2. You can use the # and ## operators together:

#include <iostream.h>

#define show_me(arg) int var##arg=arg;\

cout << "var" << #arg << " is " << var##arg << "\n";

main()

{

show_me(1);

}

Preprocessing this example yields the following code for the main procedure:

main()

{

int var1=1; cout << "var" << "1" << " is " << var1 << "\n";

}

2-8 The HP C++ Preprocessor

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
The #define Directive

After compiling the code with CC and running the resulting executable �le, you
get the following results:

var1 is 1

Spaces around the # and ## are optional.

Note The # and ## operators are only valid when using the ANSI C
mode preprocessor, which is the default preprocessor. They are
not supported when using the compatibility mode preprocessor.

In both the # and ## operations, the arguments are substituted as is, without
any intermediate expansion. After these operations are completed, the entire
replacement text is re-scanned for further macro expansions.

Using Macros to Define Constants

The most common use of the macro replacement is in de�ning a constant. In
C++ you can also declare constants using the keyword const. See \Constants"
in Chapter 1 for more information. Rather than explicitly putting constant
values in a program, you can name the constants using macros, then use the
names in place of the constants. By changing the de�nition of the macro, you
can more easily change the program:

#define ARRAY_SIZE 1000

float x[ARRAY_SIZE];

In this example, the array x is dimensioned using the macro ARRAY_SIZE rather
than the constant 1000. Note that expressions that may use the array can also
use the macro instead of the actual constant:

for (i=0; i<<ARRAY_SIZE; ++i) f+=x[i];

Changing the dimension of x means only changing the macro for ARRAY_SIZE.
The dimension changes and so do all of the expressions that make use of the
dimension.

The HP C++ Preprocessor 2-9

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
The #define Directive

Other Macros

Two other macros include:

#define FALSE 0

#define TRUE 1

The following macro is more complex. It has two parameters and produces an
inline expression which is equal to the maximum of its two parameters:

#define MAX(x,y) ((x) > (y) ? (x) : (y))

Note Parentheses surrounding each argument and the resulting
expression ensure that the precedences of the arguments and
the result interact properly with any other operators that might
be used with the MAX macro.

Because each argument to the MAX macro appears in the token
string more than once, the actual arguments to the MAX macro
may have undesirable side e�ects. The following example might
not work as expected because the argument a is incremented
two times when a is the maximum:

i = MAX(a++, b);

which is expanded to

i = ((a++) > (b) ? (a++) : (b))

Given the above macro de�nition, the statement

i = MAX(a, b+2);

is expanded to:

i = ((a) > (b+2) ? (a) : (b+2));

2-10 The HP C++ Preprocessor

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
The #define Directive

Examples

Following are additional macro examples.

// This macro tests a number and returns TRUE if

// the number is odd. It returns FALSE otherwise.

#define isodd(n) (((n % 2) == 1) ? (TRUE) : (FALSE))

// This macro skips white spaces.

#define eatspace()while((c=getc(input))==''||c=='\n'||c\

== '\t')

Using Constants and Inline Functions instead of Macros

In C++ you can use named constants and inline functions to achieve results
similar to using macros.

You can use const variables in place of macros. Refer to \Constant Data
Types" in Chapter 1, \Overview of HP C++," for details.

You can also use inline functions in many C++ programs where you would
have used a function-like macro in a C program. Using inline functions reduces
the likelihood of unintended side e�ects, since they have return types and
generate their own temporary variables where necessary.

The HP C++ Preprocessor 2-11

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
The #define Directive

Example

The following program illustrates the replacement of a macro with an inline
function:

#include <stream.h>

#define distance1(rate,time) (rate * time)

// replaced by :

inline int distance2 (int rate, int time)

{

return (rate * time);

}

int main()

{

int i1 = 3, i2 = 3;

printf("Distance from macro : %d\n",

distance1(i1,i2));

printf("Distance from inline function : %d\n",

distance2(i1,i2));

}

2-12 The HP C++ Preprocessor

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
Predefined Macros

Predefined Macros

In addition to __LINE__ and __FILE__ (refer to \Line Control" below), HP
C++ provides the __DATE__, __TIME__, __STDCPP__, __cplusplus and
c_plusplus prede�ned macros. Table 2-1 describes the complete set of
macros that are prede�ned to produce special information. They may not be
unde�ned.

Table 2-1. Predefined Macros

Macro Name Description

__cplusplus

c_plusplus

Produces the decimal constant 1, indicating that the
implementation supports C++ features. You should use
__cplusplus because c_plusplus will be phased out in a
future release.

__DATE__ Produces the date of compilation in the form Mmm dd yyyy.

__FILE__ Produces the name of the �le being compiled.

__LINE__ Produces the current source line number.

__STDCPP__ Produces the decimal constant 1, indicating that the
preprocessor is in the ANSI C mode.

__TIME__ Produces the time of compilation in the form hh:mm:ss.

Note __DATE__, __TIME__, and __STDCPP__ are not de�ned in the
compatibility mode preprocessor.

The HP C++ Preprocessor 2-13

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
Conditional Compilation

Conditional Compilation

Conditional compilation directives allow you to delimit portions of code that
are compiled only if a condition is true.

Syntax

conditional-directive ::=

#if constant-expression newline

#ifdef identi�er newline [group]

#ifndef identi�er newline [group]

#else newline [group]

#elif constant-expression newline [group]

#endif

Note #elif is available only with the ANSI C preprocessor.

Here, constant-expression may also contain the defined operator:

defined identi�er

defined (identi�er)

Description

You can use #if, #ifdef, or #ifndef to mark the beginning of the block of
code that will only be compiled conditionally. An #else directive optionally
sets aside an alternative group of statements. You mark the end of the block
using an #endif directive.

2-14 The HP C++ Preprocessor

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
Conditional Compilation

The following #if directive illustrates the structure of conditional compilation:

#if constant-expression
...

(Code that compiles if the expression evaluates to a nonzero value.)
...

#else...

(Code that compiles if the expression evaluates to zero.)
...

#endif

The constant-expression is like other C++ integral constant expressions except
that all arithmetic is carried out in long int precision. Also, the expressions
cannot use the sizeof operator, a cast, an enumeration constant, or a const

object.

Using the defined Operator

You can use the defined operator in the #if directive to use expressions that
evaluate to 0 or 1 within a preprocessor line. This saves you from using nested
preprocessing directives.

The parentheses around the identi�er are optional. Below is an example:

#if defined (MAX) & ! defined (MIN)...

Without using the defined operator, you would have to include the following
two directives to perform the above example:

#ifdef max

#ifndef min

The HP C++ Preprocessor 2-15

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
Conditional Compilation

Using the #if Directive

The #if preprocessing directive has the form:

#if constant-expression

Use #if to test an expression. HP C++ evaluates the expression in the
directive. If the expression evaluates to a nonzero value (TRUE), the code
following the directive is included. Otherwise, the expression evaluates to
FALSE and HP C++ ignores the code up to the next #else, #endif, or #elif
directive.

All macro identi�ers that appear in the constant-expression are replaced by
their current replacement lists before the expression is evaluated. All defined
expressions are replaced with either 1 or 0 depending on their operands.

The #endif Directive

Whichever directive you use to begin the condition (#if, #ifdef, or #ifndef),
you must use #endif to end the if section.

Using the #ifdef and #ifndef Directives

The following preprocessing directives test for a de�nition:

#ifdef identi�er

#ifndef identi�er

They behave like the #if directive, but #ifdef is considered true if the
identi�er was previously de�ned using a #define directive or the -D option.
#ifndef is considered true if the identi�er is not yet de�ned.

Nesting Conditional Compilation Directives

You can nest conditional compilation constructs. Delimit portions of the source
program using conditional directives at the same level of nesting, or with a -D

option on the command line.

2-16 The HP C++ Preprocessor

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
Conditional Compilation

Using the #else Directive

Use the #else directive to specify an alternative section of code to be compiled
if the #if, #ifdef, or #ifndef conditions fail. The code after the #else
directive is included if the code following any of the #if directives is not
included.

Using the #elif Directive

The #elif constant-expression directive, available only with the ANSI C
preprocessor, tests whether a condition of the previous #if, #ifdef, or
#ifndef was false. #elif has the same syntax as the #if directive and can be
used in place of an #else directive to specify an alternative set of conditions.

Examples

The following examples show valid combinations of these conditional
compilation directives:

#ifdef SWITCH // compiled if SWITCH is defined

#else // compiled if SWITCH is undefined

#endif // end of if

#if defined(THING) // compiled if THING is defined

#endif // end of if

#if A>47 // compiled if A is greater than 47

#else

#if A < 20 // compiled if A is less than 20

#else // compiled if A is greater than or equal

// to 20 and less than or equal to 47

#endif // end of if, A is less than 20

#endif // end of if, A is greater than 47

The HP C++ Preprocessor 2-17

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
Conditional Compilation

The following are more examples showing conditional compilation directives:

#if (LARGE_MODEL)

#define INT_SIZE 32 // Defined to be 32 bits.

#elif defined (PC) & defined (SMALL_MODEL)

#define INT_SIZE 16 // Otherwise, if PC and SMALL_MODEL

// are defined, INT_SIZE is defined

// to be 16 bits.

#endif

#ifdef DEBUG // If DEBUG is defined, display

cout << "table element : \n"; // the table elements.

for (i=0; i << MAX_TABLE_SIZE; ++i)

cout << i << " " << table[i] << '\n';

#endif

2-18 The HP C++ Preprocessor

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
Line Control

Line Control

You can cause HP C++ to set line numbers during compilation from a number
speci�ed in a line control directive. (The resulting line numbers appear in
error message references, but do not alter the line numbers of the actual source
code.)

Syntax

line-directive ::=

#line digit-sequence [�lename]

Description

The #line preprocessing directive causes HP C++ to treat lines following it
in the program as if the name of the source �le were �lename and the current
line number were digit-sequence. This serves to control the �le name and line
number that are given in diagnostic messages. This feature is used primarily
by preprocessor programs that generate C++ code. It enables them to force
HP C++ to produce diagnostic messages with respect to the source code that
is input to the preprocessor rather than the C++ source code that is output.

HP C++ de�nes two macros that you can use for error diagnostics. The �rst is
__LINE__, an integer constant equal to the value of the current line number.
The second is __FILE__, a quoted string literal equal to the name of the input
source �le. You can change __FILE__ and __LINE__ using #include or #line
directives.

Example

#line 5 "myfile"

The HP C++ Preprocessor 2-19

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
Pragma Directive

Pragma Directive

A #pragma directive is an instruction to the compiler. You typically use a
#pragma directive to control the actions of the compiler in a particular portion
of a program without a�ecting the program as a whole.

Syntax

pragma-directive ::=

#pragma [token-list]

Description

The #pragma directive is ignored by the preprocessor, and instead is passed on
to the C++ compiler. It provides implementation-dependent information to
HP C++. Refer to Chapter 3, \Compiling and Executing HP C++ Programs,"
for descriptions of pragmas recognized by HP C++. Any pragma that is
not recognized by HP C++ will generate a warning from the compiler. The
following is an example of a #pragma directive.

Example

#pragma OPTIMIZE ON

2-20 The HP C++ Preprocessor

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
Error Directive

Error Directive

Syntax

error-directive ::=

#error [preprocessor tokens]

Description

The #error directive causes a diagnostic message, along with any included
token arguments, to be produced by HP C++.

Examples

// This directive will produce the diagnostic

// message "FLAG not defined!".

#ifndef FLAG

#error "FLAG not defined!"

#endif

// This directive will produce the diagnostic

// message "TABLE_SIZE must be a multiple of 256!".

#if TABLE_SIZE % 256 != 0

#error "TABLE_SIZE must be a multiple of 256!"

#endif

Note The #error directive is not supported when using the
compatibility mode preprocessor.

The HP C++ Preprocessor 2-21

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
Trigraph Sequences

Trigraph Sequences

Description

The C++ source code character set is a superset of the ISO 646-1983 Invariant
Code Set. To enable you to use only the reduced set, you can use trigraph
sequences to represent those characters not in the reduced set. A trigraph
sequence is a set of three characters that is replaced by a corresponding
single character. The preprocessor replaces all trigraph sequences with the
corresponding character. Table 2-2 gives the complete list of trigraph sequences
and their replacement characters.

Example

The line below contains the trigraph sequence ??=:

??=line 5 "myfile"

When this line is compiled it becomes:

#line 5 "myfile"

Table 2-2. Trigraph Sequences and Replacement Characters

Trigraph Sequence Replacement

??= #

??/ n

??' ^

??([

??)]

??! j

??< f

??> g

??- ~

2-22 The HP C++ Preprocessor

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

3

Compiling and Executing HP C++ Programs

This chapter describes how to compile and execute HP C++ programs on the
HP-UX operating system. It presents the CC command and its options, which
allow you to access the compiling system. You can compile HP C++ programs
into C, assembly, object, or executable �les. Optionally, you can optimize the
code.

The chapter is organized into the following topics:

phases of the compiling system

compiling with CC

system library and header �les

creating and using shared libraries

a complete example C++ program

executing HP C++ programs

The chapter concludes with a programming example illustrating the concept of
object-oriented program development.

Compiling and Executing HP C++ Programs 3-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Phases of the Compiling System

Phases of the Compiling System

When you compile an HP C++ program it passes through one or more
phases or subprocesses controlled by a component of the compiling system.
The CC command invokes the components of the HP C++ compiling system
automatically when you use the CC command. You do not have to invoke each
component yourself.

Use the -v and -ptv options to see detailed information about each component
as it executes. The following sections describe these phases and components.

3-2 Compiling and Executing HP C++ Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Phases of the Compiling System

Figure 3-1. Phases of the HP C++ Compiling System in Compiler Mode

Compiling and Executing HP C++ Programs 3-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Phases of the Compiling System

What Happens in Compiler Mode

This section describes the compiler phases or subprocesses that execute when
you compile a C++ program in compiler mode, the default mode. In compiler
mode your C++ source code is compiled directly to object code. Refer to
Figure 3-1.

In translator mode, your C++ code is translated to C code, then compiled by
the C compiler. See Figure 3-2 for more information on translator mode.

Preprocessing

When you compile a C++ source program using either compiler mode or
translator mode, HP C++ invokes the preprocessor Cpp.ansi on your
programs that have the �le name su�x .c or .C. The preprocessor examines
all lines beginning with a #, performs the corresponding actions and macro
replacements, and produces a preprocessed version of your program with
the �le name su�x .i. The .i �le is created in a directory used to store
temporary �les.

If the next phase, compiling with cfront, is successful, the .i �le in the
temporary directory is deleted by default. Use the -P option to save the .i
�les.

For more information on the preprocessor, see Chapter 2, \The HP C++
Preprocessor."

Compiling C++ Source Code

When you use the default compiler mode, the compilation phase runs cfront
in compiler mode. cfront compiles the preprocessed C++ code and generates
object code in the .o �le.

cfront also creates a map �le, a temporary �le containing information about
the data types in your code.

In compiler mode the C++ code is not translated to C code.

Compile-Time Template Processing

The compile-time template processing phase runs c++ptcomp which merges the
map �le into the repository.

3-4 Compiling and Executing HP C++ Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Phases of the Compiling System

Link-Time Template Processing

The link-time template processing phase runs c++ptlink and retrieves
information about templates from the repository to automatically instantiate
templates. c++ptlink may create additional object �les in the repository. This
phase is entered only if templates need to be instantiated.

Linking

In the link phase, the CC command invokes the linker, /bin/ld, using the
cc interface. The linker produces an executable program that includes the
start-up routines from /lib/crt0.o (/opt/langtools/lib/*crt0.o for
Versions A.10.01 and later) and any needed library routines from the archive
libraries /lib/libc.a, /usr/lib/libC.a, and /usr/lib/libC.ansi.a,
or references to library routines from the shared libraries /lib/libc.sl,
/usr/lib/libC.sl, and /usr/lib/libC.ansi.sl. If you are using exception
handling, the libraries in /usr/lib/CC/eh are used.

External references are resolved, libraries are searched to resolve references to
library routines, and the object �les are combined into an executable program
�le, a.out by default.

Linking Constructors and Destructors

The patch phase runs c++patch. c++patch links or chains constructors and
destructors of nonlocal static objects in the executable �le or shared library.

By default, the name of the executable �le is a.out.

What Happens in Translator Mode

This section describes the compiler phases or subprocesses that execute when
you compile a C++ program in translator mode. In translator mode, your
C++ code is translated to C code, then compiled by the C compiler. Refer to
Figure 3-2.

Translator mode is used only when you use the +T option to CC. By default,
C++ uses compiler mode. See Figure 3-1 for more information on compiler
mode.

Compiling and Executing HP C++ Programs 3-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Phases of the Compiling System

Figure 3-2. Phases of the HP C++ Compiling System in Translator Mode

3-6 Compiling and Executing HP C++ Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Phases of the Compiling System

Preprocessing

When you compile a C++ source program using translator mode, HP C++
invokes the preprocessor Cpp.ansi on your programs the same as it does in
compiler mode and produces a preprocessed version of your program with the
�le name su�x .i.

For more information on the preprocessor, see Chapter 2, \The HP C++
Preprocessor."

Translating C++ Source Code to C

The translation phase runs cfront in translator mode. cfront takes the
output of the preprocessor (the .i �les containing C++ source code), performs
syntax and type checking, and translates HP C++ source programs to C source
programs. The temporary C �les created by cfront are exact translations of
the C++ code ready for the HP C compiler to compile.

In addition, cfront creates a map �le, a temporary �le containing information
about the data types in your code.

If you speci�ed the -g or -g1 option, cfront also creates a temporary �le
containing information for the symbolic debugger.

Compile-Time Template Processing

The compile-time template processing phase runs c++ptcomp which merges the
map �le into the repository.

Compiling the Translated C Source Code

In translator mode the compilation phase runs the C compiler, cc, which
compiles the translated C source code and generates object code in the .o �le.

Adding Debug Information

When you use translator mode and you compile with either the -g or -g1
option, your �les go through the merge phase. This phase runs c++merge and
merges the debug information from the temporary �le into the object �le so
you can use the symbolic debugger.

When you use compiler mode and specify either -g or -g1 the HP C++
compiler adds the debug information directly to the object �le.

Compiling and Executing HP C++ Programs 3-7

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Phases of the Compiling System

Link-Time Template Processing

The link-time template processing phase runs c++ptlink and retrieves
information about templates from the repository to automatically instantiate
templates. c++ptlink may create additional object �les in the repository. This
phase is entered only if templates need to be instantiated.

Linking

In the link phase, the CC command invokes the linker, /bin/ld, using the
cc interface. The linker produces an executable program that includes the
start-up routines from /lib/crt0.o (/opt/langtools/lib/*crt0.o for
Versions A.10.01 and later) and any needed library routines from the archive
libraries /lib/libc.a, /usr/lib/libC.a, and /usr/lib/libC.ansi.a,
or references to library routines from the shared libraries /lib/libc.sl,
/usr/lib/libC.sl, and /usr/lib/libC.ansi.sl. If you are using exception
handling, the libraries in /usr/lib/CC/eh are used.

External references are resolved, libraries are searched to resolve references to
library routines, and the object �les are combined into an executable program
�le, a.out by default.

Linking Constructors and Destructors

The patch phase runs c++patch. c++patch links or chains constructors and
destructors of nonlocal static objects in the executable �le or shared library.

By default, the name of the executable �le is a.out.

3-8 Compiling and Executing HP C++ Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Compiling with the CC Command

Compiling with the CC Command

Use the CC command to invoke the HP C++ compiling system. The CC
command invokes a driver program that runs the phases of the compiling
system according to the �le names and command line options that you specify.

Setting Your Path to the CC Command

The CC command is normally installed in the directory /usr/bin (/opt/CC/bin
for HP-UX 10.x C++ versions). So that you can use the CC command, you
should ensure that your PATH environment variable includes this directory. You
can do this with the following Bourne or Korn shell commands:

PATH=/usr/bin:$PATH

export PATH

You should modify the command that sets the PATH variable in the appropriate
shell script �le, either .profile or .login, in your home directory.

Syntax

The CC command has the following format:

CC [options | �les]

where:

options is zero or more compiler options and their arguments, if
any. Single-character options that do not accept additional
arguments can be grouped under either a single minus or plus
sign.

�les is one or more path names, separated by blanks. Each �le is
either a source �le, a preprocessed source �le, an assembly
language source �le, an object �le, or a library �le.

Compiling and Executing HP C++ Programs 3-9

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Compiling with the CC Command

Specifying Files to the CC Command

HP C++ source �les must be named with extensions beginning with either .c
or .C, possibly followed by additional characters. If you compile only, each HP
C++ source �le produces an object �le with the same name as the source �le,
except that the extension beginning with .c or .C is changed to a .o extension.
However, if you compile and link a single source �le into an HP C++ program
in one step, the .o �le is automatically deleted.

Caution While �le extensions other than .c or .C are permitted
for portability from other systems, it is recommended that
your source �les have extensions of .c and .C only, without
additional characters. Other endings may not be supported by
HP tools and environments.

Files with names ending in .i are assumed to be preprocessor output �les
(refer to the -P compiler option). Files ending in .i are processed the same as
.c or .C �les, except that the preprocessor is not run on the .i �le before the
�le is compiled.

Files with names ending in .s are assumed to be assembly source �les. The
compiler invokes the assembler to produce .o �les from these.

Files with .o extensions are assumed to be relocatable object �les that are to
be included in the linking. All other �les are passed directly to the linker by
the compiler.

Unless you use the -o option to specify otherwise, all �les that the CC
compiling system generates are put in the working directory, even if the source
�les came from other directories.

3-10 Compiling and Executing HP C++ Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Compiling with the CC Command

Specifying Options to the CC Command

The CC interface supports several options that you can use to control the
operation of the compiling system. You can specify these options on the CC
command line before, after, or interspersed with �le arguments.

The CC options have one of the two pre�xes, - or +.

Each compiler option has the following format:

-optionname [optionarg]

or

+optionname [optionarg]

where:

optionname is the name of a compiler option

and

optionarg is the argument to optionname.

See also \The CXXOPTS Environment Variable" in this chapter for another
way of specifying options to the CC command.

An Example of Using a Compiler Option

By default, the CC command names the executable �le a.out. For example,
given the following command line,

CC demo.C

the executable �le is named a.out, just as is the case in compiling a C program
with the cc command.

You can use the -o option to override the default name of the executable �le
produced by CC. For example, suppose my_source.C contains C++ source code
and you want to create an executable �le named my_executable. Then you
would use the following command line:

CC -o my_executable my_source.C

Compiling and Executing HP C++ Programs 3-11

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Compiling with the CC Command

Concatenating Options

You can concatenate some options to the CC command under a single pre�x.
The longest substring that matches an option is used. Only the last option can
take an argument. You can concatenate option arguments with their options if
the resulting string does not match a longer option.

For example, suppose you want to compile my_file.C using the options -v,
-g1, and -DPROG=sub. Following are a few examples of command lines you
could use:

CC my_file.C -v -g1 -DPROG=sub

CC my_file.C -vg1 -D PROG=sub

CC my_file.C -vg1DPROG=sub

CC -vg1DPROG=sub my_file.C

3-12 Compiling and Executing HP C++ Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Compiling with the CC Command

HP C++ Compiler Options

Table 3-1 lists the options HP C++ supports. Also refer to the HP C++
Online Programmer's Guide for the most detailed and current information.

Table 3-1. The CC Command Options

Option E�ect of Specifying the Option

-Alevel Allows you to select the mode of preprocessor operation. Level can
be either a or c:

a requests the ANSI mode HP C++ preprocessor,

Cpp.ansi. This is the default.

c requests the compatibility mode HP C++ preprocessor, Cpp.

-b Creates a shared library rather than an executable �le. The object
�les must have been created with the +z or +Z option to generate
position-independent code (PIC). For more information on shared
libraries, see \Creating and Using Shared Libraries" in this chapter,
and the manual HP-UX Linker and Libraries Online User Guide.

-c Compiles one or more source �les but does not enter the linking
phase. The compiler produces an object �le (a �le ending with .o)
for each source �le (a �le ending with .c, .C, .s, or .i). Note that
you must eventually link object �les before they can be executed.

-C Prevents the preprocessor from stripping comments from your
source �le; comments are retained. Refer to the description of Cpp
in the HP-UX Reference Manual for details.

-Dname=def
-Dname

De�nes name to the preprocessor Cpp, as if de�ned by the
preprocessing directive #define. If no =def is given, the name is
de�ned as \1". Refer to the Cpp description in the HP-UX Reference
Manual for details.

Compiling and Executing HP C++ Programs 3-13

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Compiling with the CC Command

Table 3-1. The CC Command Options (continued)

Option E�ect of Specifying the Option

-depth Instructs the runtime system to traverse the shared library list in a
depth-�rst manner when calling static constructors. The default is
to traverse the shared libraries in a left-to-right order when calling
static constructors. Use -depth when linking your program with the
CC command.

The order of execution of static constructors within each shared
library is not a�ected by this option.

The routine to load a shared library, cxxsh_load(), also traverses
dependent libraries in depth-�rst order when the program is linked
with -depth.

For example:

CC -depth prog.C lib1.sl lib2.sl lib3.sl

compiles prog.C, links to the shared libraries lib1.sl, lib2.sl,
and lib3.sl, and instructs the runtime startup code to execute the
static constructors in lib3.sl �rst, lib2.sl next, and lib1.sl last.
(The default order would be lib1.sl, then lib2.sl, then lib3.sl.)

-E Runs preprocessor only on the named HP C++ or assembly
programs and sends the result to standard output (stdout). See
also the -.su�x option.

-F Runs only Cpp and the HP C++ translator (see the +T option) on
the C++ source �les and sends the resulting C source code to
standard output (stdout). See also the -.su�x option.

-Fc Same as the -F option, but the output is C source code suitable to
be redirected to a .c �le that can later be compiled using cc. This
option is equivalent to using the -F and the +L options together. See
also the -.su�x option.

-.su�x Causes the HP C++ translator to direct output from either the -E,
-F, or -Fc option into a �le with the corresponding .su�x instead of
into a corresponding .c �le. Note that .su�x may not be the same
as the original source �le .su�x .

3-14 Compiling and Executing HP C++ Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Compiling with the CC Command

Table 3-1. The CC Command Options (continued)

Option E�ect of Specifying the Option

-g Causes the compiler to generate additional information needed by
the symbolic debugger. Note, for 10.x and later releases you can use
this option for limited debugging of optimized code with the
HP/DDE debugger.

To suppress expansion of inline functions use the +d option. See also
the -g1 option. For more information about HP Symbolic
Debugger, see the HP-UX Symbolic Debugger User's Guide.

-g1 This option is the same as the -g option, except the compiler
generates less information about your program for the symbolic
debugger, thereby decreasing the size of your object �le.

Speci�cally, the -g option emits full debug information about every
class referenced in a �le, which can result in much redundant
information. The -g1 option, on the other hand, emits only a subset
of this debug information. If you compile your entire application
with -g1 no debugger functionality is lost. Use -g1 when

You are compiling your entire application with debug on and your
application is large, for example, greater than 1 megabyte.

Use -g when either of the following is true:

You are compiling only a portion of your application with debug
on.
You are compiling you entire application with debug on and your
application is not very large, for example, less than 1 megabyte.

If you compile part of an application with -g1 and part with debug
o�, the resulting executable may not contain complete debug
information. You will still be able to run the executable, but in the
debugger some classes may appear to have no members. For more
information about HP Symbolic Debugger, see the HP-UX Symbolic
Debugger User's Guide.

-G Prepares the object �le for pro�ling with gprof++. Refer to the
online man page of gprof++ and to the gprof description in the
HP-UX Reference Manual for details.

Compiling and Executing HP C++ Programs 3-15

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Compiling with the CC Command

Table 3-1. The CC Command Options (continued)

Option E�ect of Specifying the Option

-Idir Adds dir to the directories to be searched for #include �les by the
preprocessor. For #include �les that are enclosed in double quotes
(" ") and do not begin with a /, the preprocessor �rst searches the
directory of the �le containing the #include, then the directory
named in the -I option, and �nally the standard include directories
/usr/include/CC and /usr/include.

For #include �les that are enclosed in angle brackets (< >), the
search path begins with the directory named in the -I option and is
completed in the standard include directories /usr/include/CC and
/usr/include. The current directory is not searched.

-lx Causes the linker to search the libraries /lib/libx.sl or
/lib/libx.a, then /usr/lib/libx.sl or /usr/lib/libx.a (just
/usr/lib/libx.sl or /usr/lib/libx.a for Versions 10.x and
later) in an attempt to resolve unresolved external references. The
-a linker option determines whether the archive (.a) or shared
(.sl) version of a library is searched. The linker searches the shared
version of a library by default.

Because a library is searched when its name is encountered,
placement of a -l is signi�cant. If a �le contains an unresolved
external reference, the library containing the de�nition must be
placed after the �le on the command line. Refer to the description
of ld in the HP-UX Reference Manual for details.

-Ldir Causes the linker to search for libraries in the directory dir before
using the default search path. This option is passed directly to the
linker. The -L option must precede any -lx option entry on the
command line; otherwise -L is ignored.

-n Causes the program �le produced by the linker to be marked as
sharable. For details and system defaults, refer to the description of
ld in the HP-UX Reference Manual .

-N Causes the program �le produced by the linker to be marked as
unsharable. For details and system defaults, refer to the ld
description in the HP-UX Reference Manual .

3-16 Compiling and Executing HP C++ Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Compiling with the CC Command

Table 3-1. The CC Command Options (continued)

Option E�ect of Specifying the Option

-o out�le Causes the output of the compilation sequence to be placed in
out�le. Without this option the default name is a.out. When
compiling a single source �le with the -c option, you may use the -o
option to specify the name and location of the object �le.

-O Invokes the optimizer to perform level 2 optimizations. You can set
other optimization levels by using the +O option. Refer to
Chapter 4, \Optimizing HP C++ Programs", for more information
about optimization.

-P Preprocess only on �les named on the command line without
invoking further phases, leaving the result in the corresponding �les
with the su�x .i.

-pta Instantiates an entire template, rather than only those members that
are needed. For more information, see the \Template Instantiation
User Guide" in the C++ Language System Selected Readings.

-ptb Direct the template instantiation system to invoke ld instead of nm
to do simulated linking. Using this option may slow the
instantiation process considerably.

You must use this option when building shared libraries that depend
on other shared libraries that contain templates. It can be used for
any case.

-pth Speci�es that template instantiation �les should be created using
short �le names. (Template instantiation �les are object �les
created in the template repository by c++ptlink.) Use this option if
your version of HP-UX has not been upgraded to support long �le
names. HP C++ creates template instantiation �les using long �le
names by default. See convertfs(1M) for more information about
long �le names.

-ptH"list" Speci�es a list of �le name extensions that template declaration �les
(header �les) can have. When compiling or instantiating templates,
the compiler searches for header �les with these extensions in the
order the extensions are listed. For example, -ptH".h .H" speci�es
that template declaration header �les can have extensions of .h or
.H. By default, HP C++ uses the following list of extensions: ".h
.H .hxx .HXX .hh .HH .hpp".

Compiling and Executing HP C++ Programs 3-17

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Compiling with the CC Command

Table 3-1. The CC Command Options (continued)

Option E�ect of Specifying the Option

-ptn Performs template instantiation at link time rather than at compile
time. This option only a�ects programs consisting of one �le, which
have instantiation performed at compile time by default.
Instantiation is done at link time for programs consisting of multiple
�les. For more information, see the \Template Instantiation User
Guide" in the C++ Language System Selected Readings.

-ptrpathname Speci�es a repository to hold information about your templates.
The information in the repository is used whenever a template is
instantiated. The default repository is ./ptrepository. If several
repositories are given, only the �rst is writable. For more
information, see the \Template Instantiation User Guide" in the
C++ Language System Selected Readings.

-pts Causes instantiations to be split into separate object �les, with one
function per object �le. Also causes all class static data and virtual
functions to be grouped into a single object �le. For more
information, see the \Template Instantiation User Guide" in the
C++ Language System Selected Readings.

-ptS"list" Speci�es a list of �le name extensions that template de�nition �les
(source �les) can have. When compiling or instantiating templates,
the compiler searches for source �les with these extensions in the
order the extensions are listed. For example, -ptS".c .C" speci�es
that template de�nition �les can have extensions of .c or .C. By
default, HP C++ uses the following list of extensions: ".c .C .cxx

.CXX .cc .CC .cpp".

-ptv Gives verbose progress reports on the instantiation process. This
option is useful for understanding how templates are instantiated.
For more information, see the \Template Instantiation User Guide"
in the C++ Language System Selected Readings.

-q Causes the output �le from the linker to be marked as
demand-loadable. For details and system defaults, see the
description of ld in the HP-UX Reference Manual.

3-18 Compiling and Executing HP C++ Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Compiling with the CC Command

Table 3-1. The CC Command Options (continued)

Option E�ect of Specifying the Option

-Q Causes the program �le from the linker to be marked as
demand-loadable. For details and system defaults, see the
description of ld in the HP-UX Reference Manual.

-s Causes the executable program �le created by the linker to be
stripped of symbol table information. Specifying this option
prevents using a symbolic debugger on the resulting program. Refer
to the description of ld in the HP-UX Reference Manual for more
details.

-S Compiles the named HP C++ program and leaves the assembly
language output in a corresponding �le with an .s su�x.

-tx, name Substitutes or inserts subprocess x using name, where x is one or
more identi�ers indicating the subprocess or subprocesses. This
option works in two modes: 1) if x is a single identi�er, name
represents the full path name of the new subprocess; 2) if x is a set
of identi�ers, name represents a pre�x to which the standard
su�xes are concatenated to construct the full path names of the
new subprocesses.

The value of x can be one or more of the following:

Value Description

a Assembler (standard su�x is as).
b The C compiler driver (cc) used to compile the

translated C++ code and invoke the assembler and
the linker.

c The C compiler (translator mode only; standard su�x
is ccom.)

C C++ compiler (standard su�x is cfront).
f Filter tool (c++filt).
l Linker (standard su�x is ld).
m Merge tool (c++merge; translator mode only).
0 (zero) Same as c. See also Table 3-2.
p Preprocessor (standard su�x is Cpp).
P Patch tool (c++patch).
x All subprocesses.

Compiling and Executing HP C++ Programs 3-19

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Compiling with the CC Command

Table 3-1. The CC Command Options (continued)

Option E�ect of Specifying the Option

-U name Removes (unde�nes) any initial de�nition of name in the
preprocessor. Refer to the Cpp description in the HP-UX Reference
Manual for details.

-v Enables the verbose mode, sending a step-by-step description of the
compilation process to stderr. This is especially useful for
debugging or for learning the appropriate commands for processing
a C++ �le.

-w Suppresses warning messages.

-Wx,arg1
[,arg2,..,argn]

Passes the arguments arg1 through argn to the subprocess x of the
compilation; x can be one of the values described under the -tx,
name option with the addition of d, to pass an option to the CC
command.

-Y Enables Native Language Support (NLS) of 8-bit and 16-bit, (also
4-byte EUC for HP-UX 10.x C++ versions) characters in
comments, string literals, and character constants. Refer to hpnls,
lang, and environ in the HP-UX Reference Manual for a
description of the NLS model.

The language value (refer to environ for the LANG environment
variable) is used to initialize the correct tables for interpreting
comments, string literals, and character constants. The language
value is also used to build the path name to the proper message
catalog.

-y Enable the storage of static analysis information in the generated
object �les. This information can be used by the static analysis tool
which is part of the HP SoftBench software development
environment.

-Z Allows dereferencing of null pointers at run time. The value
returned from a dereferenced null pointer is zero.

-z Disallows dereferencing of null pointers at run time. Fatal errors
result if null pointers are dereferenced.

3-20 Compiling and Executing HP C++ Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Compiling with the CC Command

Table 3-1. The CC Command Options (continued)

Option E�ect of Specifying the Option

+af0|1g Speci�es which style of declarations to produce. In translator mode,
the compiler can generate either ANSI C or \Classic C" (also known
as K&R C, for Kernighan and Ritchie, authors of a book on the C
language) style declarations. The +a0 option, the default, causes the
translator to produce \Classic C" style declarations. The +a1 option
causes the translator to produce ANSI C style declarations.

When you use the +a0 option in compiler mode, value parameters of
type float are promoted to type double. When you use +a1, float
parameters are not promoted, but are passed as type float. This
maintains compatibility with translator mode.

+d Prevents the expansion of inline functions. This option is useful
when you are debugging your code because you cannot set
breakpoints at inline functions. This option defeats inlining thereby
allowing you to set breakpoints at functions speci�ed as inline.

Compiling and Executing HP C++ Programs 3-21

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Compiling with the CC Command

Table 3-1. The CC Command Options (continued)

Option E�ect of Specifying the Option

+DAarchitecture Generates object code for a particular version of the PA-RISC
architecture. Also speci�es which version of the HP-UX math
library to link in when you have speci�ed -lm (-lm or -lM for
HP-UX 9.x only). See the HP-UX Floating-Point Guide for more
information about using math libraries.

architecture can be either a model number of an HP 9000 system
(such as 730 or 877), or one of the PA-RISC architecture
designations 1.0, 1.1, or 2.0 (2.0 is available for versions 10.22 and
later). For example, specifying +DA1.1 or +DA867 generates code for
the PA-RISC 1.1 architecture.

See the �le /usr/lib/sched.models for model numbers and their
architectures. (Refer to the �le
/opt/langtools/lib/sched.models for Versions A.10.01 and
later.) Use the command uname -m to determine the model number
of your system.

Object code generated for PA-RISC 1.1 will not execute on
PA-RISC 1.0 systems.

For versions 10.22 and later note that object code generated for
PA-RISC 2.0 will not execute on PA-RISC 1.1 systems: To generate
code compatible across PA-RISC 1.1 and 2.0 workstations and
servers, use the +DAportable option. If you are using version
A.10.22 or later, do not use the +DA1.0 option.

For best performance use +DA with the model number or
architecture where you plan to execute the program.

Beginning with the HP-UX 10.20 release, the default object code
generated by HP compilers is determined automatically as that of
the machine on which you compile. (Previously, the default code
generation was PA-RISC 1.0 on all Series 800 servers and PA-RISC
1.1 on Series 700 workstations.)

3-22 Compiling and Executing HP C++ Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Compiling with the CC Command

Table 3-1. The CC Command Options (continued)

Option E�ect of Specifying the Option

+DSmodel Performs instruction scheduling tuned for a particular
implementation of the PA-RISC architecture.

model can be either a model number of an HP 9000 system (such as
730 or 877), or one of the PA-RISC implementation designations
1.0, 1.1. or 2.0 (2.0 is available for versions 10.22 and later) For
example, specifying +DS720 performs instruction scheduling tuned
for one implementation of PA-RISC 1.1. Specifying +DS745

performs instruction scheduling for another implementation of
PA-RISC 1.1. Specifying +DS1.0, +DS1.1, or +DS2.0 performs
scheduling for a representative PA-RISC 1.0, 1.1, or 2.0 system,
respectively. To improve performance on a particular model of the
HP 9000, use +DS with that model number.

See the �le /usr/lib/sched.models for model numbers and their
architectures. (Refer to the �le
/opt/langtools/lib/sched.models for Versions A.10.01 and
later.) Use the command uname -m to determine the model number
of your system.

Object code with scheduling tuned for a particular model will
execute on other HP 9000 systems, although possibly less e�ciently.

If you do not specify this option, the default instruction scheduling
is for the system you are compiling on.

Compiling and Executing HP C++ Programs 3-23

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Compiling with the CC Command

Table 3-1. The CC Command Options (continued)

Option E�ect of Specifying the Option

+[no]dup_

static_

removal

(Versions 10.22 and later.) Removes duplicate inline member
functions that were dropped out of line because they were too
complex or too large. The removal will reduce the size of
executables and enhance performance.

The default, +nodup_static_removal, does not remove duplicate
static member functions.

Note: Use of the option +dup_static_removal may give you the
linker error: Common block requests for functionname have

different lengths.

You will get this error in one of two cases. One, your code violates
the C++ requirement that \all inline member functions with the
same name must also have the same body." Two, you use di�erent
compiler options to compile the duplicate inline member functions
of di�erent compilation units.

Library providers who ship header �les may not want to use
+dup_static_removal because they may not know if their users
compile with the same options as they do.

For example:

CC +dup_static_removal prog.C

removes duplicate static member functions.

+ef0|1g Optimizes a program to use less space by ensuring that only one
virtual table is generated per class. The +e0 option causes virtual
tables to be external and de�ned elsewhere, that is, uninitialized.
The +e1 option causes virtual tables to be declared externally and
de�ned in this module, that is initialized. When neither option is
used, virtual tables are static, that is, there is one per �le. Usually,
+e1 is used to compile one �le that includes class de�nitions, while
+e0 is used on all the other �les including these class de�nitions.

Refer to the note on the next page for more information.

3-24 Compiling and Executing HP C++ Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Compiling with the CC Command

Table 3-1. The CC Command Options (continued)

Option E�ect of Specifying the Option

+eh Enables exception handling. To use exception handling, you must
use this option on all of the �les in your program. If some �les have
been compiled with this option and some have not, when you link
with the CC command, c++patch will give an error and the �les will
not link.

+ESfic (Versions 10.22 and later) Replaces millicode calls with inline fast
indirect calls. The +ESfic compiler option a�ects how function
pointers are dereferenced in generated code. The default is to
generate low-level millicode calls for function pointer calls.

The +ESfic option generates code that calls function pointers
directly, by branching through them.

Note: The +ESfic option should only be used in an environment
where there are no dependencies on shared libraries. The
application must be linked with archive libraries only. Using this
option can improve run-time performance.

+help (Versions 10.22 and later) Invokes the initial menu window of the
HP C++ Online Programmer's Guide.

If +help is used on any command line, the compiler invokes the
online reference and then processes any other arguments.

If $DISPLAY is set, +help invokes the helpview command. If the
display variable is not set, a message so indicates.

For example:

CC +help

invokes the online programmer's guide.

Compiling and Executing HP C++ Programs 3-25

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Compiling with the CC Command

Table 3-1. The CC Command Options (continued)

Option E�ect of Specifying the Option

+I Instructs the compiler to instrument the object code for collecting
run-time pro�le data. The pro�ling information can then be used by
the linker to perform pro�le-based optimization. Code generation
and optimization phases are delayed until link time by this option.

After compiling and linking with +I, run the resultant program
using representative input data to collect execution pro�le data.
Finally, relink with the +P option to perform pro�le-based
optimization.

Pro�le data is stored in flow.data by default. See the +dfname
option for information on controlling the name and location of this
data �le.

This option is incompatible with +eh, -g, -g1, -G, +P, -s, -S, and
-y.

For example:

CC +I -O -c prog.C

CC +I -O -o prog.pbo prog.o

compiles prog.C with optimization, prepares the object code for
data collection, and creates the executable �le prog.pbo. Running
prog.pbo collects run-time information in the �le flow.data in
preparation for optimization with +P.

+i Causes an intermediate C language source �le with the su�x ..c to
be produced in the current directory. This option is only valid with
the +T option.

3-26 Compiling and Executing HP C++ Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Compiling with the CC Command

Table 3-1. The CC Command Options (continued)

Option E�ect of Specifying the Option

+k (For HP-UX 10.x C++ versions.) By default, the HP C++
compiler generates short-displacement code sequences for programs
that reference global data in shared libraries. For nearly all
programs this is su�cient.

If your program references a large amount of global data in shared
libraries, the default code generation for referencing that global data
may not be su�cient. If this is the case, when you link your
program the linker gives an error message indicating that you need
to recompile with the +k option. The +k option generates
long-displacement code sequences so a program can reference large
amounts of global data in shared libraries. Use +k only when the
linker generates a message indicating you need to do so.

For example:

CC +k prog.C mylib.sl

Compiles prog.C, generates code for accessing a large number of
global data items in the shared library mylib.sl, and links with
mylib.sl.

+L Generates source line number information using the format #line
%d instead of #%d. See also the -Fc option.

+m Provides maximum compatibility with the USL C++
implementation. (HP C++ provides optimizations and additional
functionality that may not be compatible with other C++
implementations.)

+Ooptions Refer to the HP C++ Online Programmer's Guide for a discussion
of all current optimization options.

+p Disallows all anachronistic constructs. Ordinarily, the compiler gives
warnings about anachronistic constructs. Using the +p option, the
compiler does not compile code containing anachronistic constructs.
Refer to The C++ Programming Language for a list of
anachronisms.

Compiling and Executing HP C++ Programs 3-27

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Compiling with the CC Command

Table 3-1. The CC Command Options (continued)

Option E�ect of Specifying the Option

+Rnum Allows only the �rst num register variables to actually be
promoted to the register class. Use this option when the register
allocator issues an \out of general registers" message. (The default
value is 10.) This option is only used in translator mode (that is,
with the +T option). It is ignored in compiler mode.

+T Requests translator mode. In translator mode your HP C++ source
code is translated to C code, then compiled by the HP C compiler,
linked and patched.

+w Warns about all questionable constructs, as well as constructs that
are almost certainly problems. The HP C++ default is to warn only
about constructs that are almost certainly problems. This option
also warns you when calls to inline functions cannot be expanded
inline.

+x�le This option is only valid in translator mode. This option reads a �le
of sizes and alignments. Each line contains three �elds: a type
name, the size (in bytes), and the alignment (in bytes). This option
can be useful for cross-compilations and for porting the translator.

+Xd (Versions 10.22 and later.) Prevents the default elimination of of
duplicate symbolic debug information.

The compiler now eliminates duplicate symbolic debug information
to reduce the size of object �les and executables and to enhance
performance. To prevent the elimination of duplicate symbolic
debug information, use the +Xd option. This option may only be
needed if you have pxdb or xdb problems.

For example:

CC +Xd prog.C -g

prevents the the elimination of duplicate symbolic debug
information.

3-28 Compiling and Executing HP C++ Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Compiling with the CC Command

Table 3-1. The CC Command Options (continued)

Option E�ect of Specifying the Option

+Xehdtcount (Versions A.10.09 and later.) Use +Xehdtcount with the +eh option
to generate instrumentation that can locate potential run-time
exception handling problems.

Use this option when the application exhibits run-time range errors
or aborts. You may also use this option during development, in case
problems arise.

+z Causes the compiler to generate position-independent code (PIC),
necessary for building shared libraries. The options -g, -g1, -G, and
-p are ignored if either +z or +Z is used. See also the -b and +Z

options. For more information on shared libraries, see \Creating and
Using Shared Libraries" in this chapter, and the manual HP-UX
Linker and Libraries Online User Guide.

+Z This option is the same as the +z option except it allows for more
imported symbols than +z does. In general, use the +z option unless
you get a linker error message indicating that you should use +Z.

Note The +e0/e1 options were used in earlier versions of cfront to
determine when to emit the virtual table for a class. These
options are still available but they have no e�ect in most
cases. Currently cfront emits the de�nitions of the virtual
table in the compilation unit that contains the de�nition (not
declaration) of the �rst function in the class that is virtual and
not inline. If there is no such function, multiple virtual tables
de�nitions might still be emitted. For example, if you have a
class in which all of the virtual functions are inline, then, by
default, cfront emits a virtual table in every compilation unit
that uses this class. In such cases, the +e0/+e1 options can
be used to control when to emit the virtual function table. In
other words, the +e0/+e1 options are useful only when cfront

cannot determine a unique place to emit the virtual table.

Compiling and Executing HP C++ Programs 3-29

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Compiling with the CC Command

Note On the HP 9000 Series 700/800, the default is to allow
null-pointer dereferencing, so using -Z has no e�ect.

Unsharable executable �les generated with the -N option
cannot be executed with exec. For details and system defaults,
refer to the description of ld in the HP-UX Reference Manual .

Any other options not recognizable by CC generate a warning to
stderr. (Options not recognized by CC are not passed to ld.
Use the -Wl, arg option to pass options to ld.)

3-30 Compiling and Executing HP C++ Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Environment Variables: CXXOPTS

Environment Variables

This section describes the following environment variables you can use to
control the C++ compiler:

CXXOPTS

TMPDIR

CCLIBDIR

CCROOTDIR

The CXXOPTS Environment Variable

The compiler divides CXXOPTS options into two sets; those which appear
before a vertical bar (j), and those options which appear after the vertical bar.
Note that the vertical bar must be delimited by whitespace. The �rst set of
options is placed before the command-line parameters to CC; the second set of
options is placed after the command-line parameters to CC. If the vertical bar
is not present, all options are placed before the command-line parameters.

Note For C++ versions prior to HP-UX 10.x , the vertical bar is
n t supported and all options assigned to the CXXOPTS
environment variable are placed before the command-line
parameters.

CXXOPTS provides a convenient way to include frequently used command line
options automatically. Just set the environment variable with the options you
want and the command line options are automatically included each time you
execute the CC command.

Caution Using the CCOPTS environment variable in translator mode can
cause unexpected side e�ects because HP C (cc) uses CCOPTS.

For example:

CXXOPTS ="-v | -lm" sh(1) notation

export CXXOPTS

CC -g prog.C

Compiling and Executing HP C++ Programs 3-31

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Environment Variables: CXXOPTS

is equivalent to:

CC -v -g prog.C -lm

The following example:

export CXXOPTS=-v ksh notation

setenv CXXOPTS -v csh notation

Causes the option -v to be passed to the CC command each time you execute
the CC command.

When CXXOPTS is set as above, the following two commands are equivalent:

CC -g prog.C

CC -v -g prog.C

3-32 Compiling and Executing HP C++ Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Environment Variables: TMPDIR, CCLIBDIR, CCROOTDIR

The TMPDIR Environment Variable

Another environment variable, TMPDIR, allows you to change the location of
temporary �les that the compiler creates. The directory speci�ed in TMPDIR

replaces /tmp and /usr/tmp (/var/tmp for HP-UX 10.x C++ versions) as the
default directory for temporary �les. The syntax for TMPDIR in csh notation is

setenv TMPDIR altdir

where altdir is the name of the alternative directory for temporary �les.

The CCLIBDIR and CCROOTDIR Environment Variables

Two additional environment variables that allow HP C++ to reside in
alternate directories are provided. CCLIBDIR causes the CC command to
search for libraries in the alternate directory indicated, rather than in their
default directories. The CCROOTDIR environment variable causes CC to invoke
all subprocesses from an alternate directory indicated, rather than from their
default directories.

The syntax in csh notation is:

setenv CCLIBDIR altlibdir

setenv CCROOTDIR altdir

Compiling and Executing HP C++ Programs 3-33

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Pragmas: HP SHLIB VERSION, COPYRIGHT

Pragma Directives

This section describes the pragmas you can use within an HP C++ source
�le. A pragma has e�ect from the point where it is included to the end of
the compilation unit or until another pragma changes its status. For more
information about pragmas, see \Pragma Directive" in Chapter 2.

Optimization Pragmas

For information on optimization pragmas, see \Pragma Directives" in the HP
C++ Online Programmer's Guide.

Pragmas for Shared Libraries

This section describes a pragma you can use with shared libraries.

Pragma HP SHLIB VERSION.

#pragma HP_SHLIB_VERSION
�
"
�
date

�
"
�

With the HP_SHLIB_VERSION pragma you can create di�erent versions of a
routine in a shared library. HP_SHLIB_VERSION assigns a version number to a
module in a shared library. The version number applies to all global symbols
de�ned in the module's source �le.

The date argument is of the form month/year . The month must be 1 through
12, corresponding to January through December. The year can be speci�ed as
either the last two digits of the year (92 for 1992) or a full year speci�cation
(1992). Two-digit year codes from 00 through 40 represent the years 2000
through 2040.

This pragma should only be used if incompatible changes are made to a source
�le. If a version number pragma is not present in a source �le, the version
number of all symbols de�ned in the object module defaults to 1/90. For
more information on shared libraries, see the section \Creating and Using
Shared Libraries" later in this chapter. Also see the manual HP-UX Linker and
Libraries Online User Guide.

Pragma COPYRIGHT.

#pragma COPYRIGHT "string"

3-34 Compiling and Executing HP C++ Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Pragmas: HP SHLIB VERSION, COPYRIGHT

COPYRIGHT speci�es the name to use in the copyright message, and causes the
compiler to put the copyright message in the object �le. If no date is speci�ed
(using #pragma COPYRIGHT_DATE "string" as shown below), the current year is
used.

Compiling and Executing HP C++ Programs 3-35

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Pragmas: COPYRIGHT DATE, LOCALITY, VERSIONID

For example, assuming the year is 1990, the directive #pragma COPYRIGHT

"Acme Software" places the following string in the object code:

(C) Copyright Acme Software, 1990. All rights reserved. No part of

this program may be photocopied, reproduced, or transmitted without

prior written consent of Acme Software.

Pragma COPYRIGHT DATE.

#pragma COPYRIGHT_DATE "string"

COPYRIGHT_DATE speci�es a date string to be used in a copyright notice
appearing in an object module.

Pragma LOCALITY.

#pragma LOCALITY "string"

LOCALITY speci�es a name to be associated with the code written to a
relocatable object module. All code following the LOCALITY pragma is
associated with the name speci�ed in string. The smallest scope of a unique
LOCALITY pragma is a function. For example, #pragma locality "mine" builds
the name $CODE$MINE$.

Code that is not headed by a LOCALITY pragma is associated with the name
$CODE$.

Pragma VERSIONID.

#pragma VERSIONID "string"

This pragma speci�es a version string to be associated with a particular piece
of code. The string is placed into the object �le produced when the code is
compiled.

3-36 Compiling and Executing HP C++ Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

System Library and Header Files

System Library and Header Files

This section discusses the two types of libraries provided with HP C++:

standard HP-UX libraries

HP C++ run-time libraries

Standard HP-UX Libraries

There are several libraries providing system services that are included with
HP-UX. You can access HP-UX standard libraries by using header �les that
declare interfaces to those libraries. These library routines are documented in
the HP-UX Reference Manual .

Location of Standard HP-UX Header Files

The standard HP-UX header �les are located in /usr/include.

To use a system library function, your HP C++ source code must include the
preprocessor directive #include. For example,

#include <filename.h>

where filename.h is the name of the C++ header �le for the library function
you want to use. By enclosing filename.h in angle brackets, the HP C++
preprocessor looks for that particular header �le in a standard location
on the system. The HP C++ preprocessor �rst looks for header �les in
/usr/include/CC (in /opt/CC/include for HP-UX 10.x C++ versions); if any
are not found, it then searches /usr/include.

You can use -Idir options to modify the search path. If the -Idir option
is speci�ed, the HP C++ preprocessor �rst looks for #include �les in the
directories speci�ed in dir before looking into the standard include directories.

Compiling and Executing HP C++ Programs 3-37

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

System Library and Header Files

Example of Using a Standard Header File

If you want to use the getenv function that is in the standard library �les
/lib/libc.sl and /lib/libc.a (or /usr/lib/libc.sl and /usr/lib/libc.a

for HP-UX 10.x C++ versions), you should specify

#include <stdlib.h>

because the external declaration of getenv is found in the header �le
/usr/include/stdlib.h.

C++ Run-Time Libraries

In addition to standard HP-UX system libraries, HP C++ provides the
following C++ run-time libraries:

Stream Library

The stream library includes class libraries for bu�ering and formatting I/O
operations. It consists of several main I/O classes providing the fundamental
facility for I/O conversion and bu�ering. The stream library also provides
classes derived from main classes o�ering extended I/O functionality such as
in-memory formatting and �le I/O. For more detailed documentation of this
library, refer to the C++ Language System Library Manual .

Ostream Library

The Ostream library is no longer provided with HP C++. It was provided with
version 2.1 for backward compatibility with the AT&T C++ version 1.2 stream
I/O library. The newer C++ stream library (available since version 2.0) is
mostly upward compatible with the older stream library, but there are a few
places where di�erences may a�ect programs. These di�erences are discussed
in chapter 3 of the C++ Language System Library Manual , under \Converting
from Streams to Iostreams."

Task Library

The task library is a multiple threaded, co-routine class library that
enables users to simulate, control, and model UNIX system processes in an
object-oriented paradigm. This library also encapsulates reusable tasking
primitives such as the scheduler, task queue, timer, and interrupt handler. The

3-38 Compiling and Executing HP C++ Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

System Library and Header Files

task library is useful for simulations or pseudo parallel-processing algorithms.
For more detailed documentation of this library, refer to the C++ Language
System Library Manual .

Complex Library

The complex library implements the data type of complex numbers as a class
complex. It overloads the standard input, output, arithmetic, assignment, and
comparison operations. It also de�nes the standard exponential, logarithm,
power, and square-root functions, as well as the trigonometric functions
of sine, cosine, hyperbolic sine, and hyperbolic cosine. For more detailed
documentation of this library, refer to the C++ Language System Library
Manual .

HP Codelibs Library

The HP Codelibs library contains many general-purpose classes you can use in
your applications, including:

strings
dynamic arrays
sets
hash tables
shared memory management routines
memory allocation
lists

The header �les for the HP Codelibs library are in the directory
/usr/include/codelibs (/opt/CC/include/codelibs for HP-UX 10.x C++
versions). Use -I/usr/include/codelibs to direct the compiler to search
these header �les. For more information about this library, refer to the Codelibs
Library Reference - Version 2.100 .

Compiling and Executing HP C++ Programs 3-39

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

System Library and Header Files

Standard Components Library

The USL C++ Standard Components library contains many general-purpose
classes you can use in your applications, including:

dynamic arrays
graphs
lists
memory allocation
sets
bags
strings

The header �les for the Standard Components library are in the directory
/usr/include/SC (/opt/CC/include/SC for HP-UX 10.x C++ versions). Use
-I/usr/include/SC to direct the compiler to search these header �les.

A collection of program development tools for use with the Standard
Components library are in /usr/bin. These include hier, incl, publik, dem,
and g2++comp.

For more information about the Standard Components, refer to the USL
C++ Standard Components Manual . To see the online manual pages, �rst
add the directory /usr/CC/man/SC (/opt/CC/share/man for HP-UX 10.x
C++ versions) to your MANPATH environment variable. Then type man name
where name is a particular manual page. For an introduction to Standard
Components, type man SC_intro and man SC_tools_intro.

Locations of Library Files

Table 3-2 lists the �les containing the HP C++ run-time libraries.

Di�erent libraries are used depending on whether or not you use exception
handling.

3-40 Compiling and Executing HP C++ Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

System Library and Header Files

Table 3-2. HP C++ Library Files

Library Default File Exception Handling File

Stream library /usr/lib/libC.a

/usr/lib/libC.sl

/usr/lib/libC.ansi.a

/usr/lib/libC.ansi.sl

/usr/lib/CC/eh/libC.a

/usr/lib/CC/eh/libC.ansi.a

Task library /usr/lib/libtask.a

/usr/lib/libtask.sl

Not available.

Complex
library

/usr/lib/libcomplex.a /usr/lib/CC/eh/libcomplex.a

Demangling
library

/usr/lib/libdemangle.a Not available.

Codelibs library /usr/lib/libcodelibs.a

/usr/lib/libcodelibs.sl

/usr/lib/CC/eh/libcodelibs.a

Standard
Components
library

/usr/lib/lib++.a

/usr/lib/libGA.a

/usr/lib/libGraph.a

/usr/lib/libfs.a

/usr/lib/libg2++.a

/usr/lib/incl2

/usr/lib/hier2

/usr/lib/publik2

/usr/lib/CC/eh/lib++.a

/usr/lib/CC/eh/libGA.a

/usr/lib/CC/eh/libGraph.a

/usr/lib/CC/eh/libfs.a

/usr/lib/CC/eh/libg2++.a

/usr/lib/CC/eh/incl2

/usr/lib/CC/eh/hier2

/usr/lib/CC/eh/publik2

Note HP-UX 10.x C++ versions store library �les in /opt/CC/lib.

Support for Multi-Threaded Applications

For HP-UX 10.x C++ versions, the HP C++ run-time environment supports
multi-threaded applications. The following HP C++ libraries are thread-safe:

libC.ansi.sl and libC.ansi.a

libC.sl and libC.a

libcxx.a

Compiling and Executing HP C++ Programs 3-41

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

System Library and Header Files

libcomplex.a

There are no interface changes to the functions in these libraries nor in the
standard include �les in /usr/include and /opt/CC/include/CC. However,
there are new reentrant versions of the functions chr r, str r, form r, hex r,
dec r, and oct r. In order to link with these functions, you must include the
stream.h header �le in your source �le and add the -D THREAD SAFE
compile time
ag to your compilation line.

Also, in order to pick the thread safe version of the I/O routines, cout,
cin, and cerr, you must include iostream.h in your source �les and add the
-D THREAD SAFE compile time
ag to your compilation line. To guarantee
that your I/O results from one thread are not intermingled with I/O results
from other threads, you should protect your I/O statement with locks. For
example:

// create a mutex and initialize it

pthread_mutex_t the_mutex;

pthread_mutex_init(&the_mutex, pthread_mutexattr_default);

pthread_mutex_lock(&the_mutex);

cout << "something" ... ;

pthread_mutex_unlock(&_the_mutex);

There are no new compiler options for compiling multi-threaded programs.

C++ Library Header Files

HP C++ includes the following header �les for interface to C++ run-time
libraries:

complex.h | implementation of complex numbers class

generic.h | error handling and string concatenation macros

iostream.h | I/O streams classes ios, istream, ostream, and streambuf

fstream.h | I/O streams specialized for �les

strstream.h | Streambuf specialized to arrays

iomanip.h | prede�ned manipulators and macros

3-42 Compiling and Executing HP C++ Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

System Library and Header Files

stdiostream.h | specialized streams and streambufs for interaction with
stdio

stream.h | includes iostream.h, fstream.h, stdiostream.h and
iomanip.h for compatibility with AT&T USL C++ version 1.2

vector.h | macros for class declaration and constructor de�nition for
vectors

task.h | implementation of task class

dem.h | routines for demangling encoded C++ names (not compatible with
previous version)

eh.h | exception handling routines

new.h | dynamic memory routines new and set_new_handler

For more detailed documentation on these headers, refer to C++ Language
System Library Manual . For information on the header �les for the
HP Codelibs library, refer to the Codelibs Library Reference - Version 2.100 .

For information on the header �les for the Standard Components library, refer
to the USL C++ Standard Components Manual .

Location of C++ Header Files

The above header �les are located in the directory /usr/include/CC.
The header �les for the HP Codelibs library are in the directory
/usr/include/codelibs. (In /opt/CC/include/codelibs for HP-UX 10.x
C++ versions.)

Use -I/usr/include/codelibs to direct the compiler to search these header
�les. The header �les for the Standard Components library are in the directory
/usr/include/SC. (In /opt/CC/include/SC for HP-UX 10.x C++ versions.)
Use -I/usr/include/SC to direct the compiler to search these header �les.

Example of Using a C++ Header File

If, for example, you want to use complex numbers in your application, you
must specify the following:

#include <complex.h>

Compiling and Executing HP C++ Programs 3-43

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

System Library and Header Files

Linking to C++ Libraries

You can compile and link any C++ modules to one or more libraries. HP C++
automatically links

/usr/lib/libC.sl

(the HP C++ run-time library, including the stream library) and

/lib/libc.sl

(the HP-UX system library) with a C++ program.

The ANSI C versions of the C++ run-time library are also included,
libC.ansi.sl and libC.ansi.a. If you have compiled with the +a1 option,
you must also pass +a1 to the CC command when linking to make sure the
linker uses these libraries.

If you want archive libraries instead of shared libraries, use the -a,archive
linker option. (See the section \Linking Archive or Shared Libraries" later in
this chapter for more information.)

You can specify other libraries using the -l option. For example, in order to
use the complex library, you must specify -lcomplex:

CC complex_appl.C -lcomplex

Your C++ run-time library may require that additional HP-UX standard
libraries be speci�ed. For example, the complex library uses the HP-UX math
library for mathematical functions. So, for example, you might need to specify
-lm for the math library:

CC complex_appl.C -lcomplex -lm

3-44 Compiling and Executing HP C++ Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Creating and Using Shared Libraries

Creating and Using Shared Libraries

This section provides information about shared libraries that is speci�c
to HP C++. For additional information about creating and using shared
libraries, see the manual HP-UX Linker and Libraries Online User Guide. For
information on using the options to the CC command, see Table 3-1 in this
chapter.

Compiling for Shared Libraries

To create a C++ shared library, you must �rst compile your C++ source
with either the +z or +Z option. These options create object �les containing
position-independent code (PIC).

Creating a Shared Library

To create a shared library from one or more object �les, use the -b option at
link time. (The object �les must have been compiled with +z or +Z.) The -b
option creates a shared library rather than an executable �le.

Note You must use the CC command to create a C++ shared library.
This is because the CC command ensures that any static
constructors and destructors in the shared library are executed
at the appropriate times.

Using a Shared Library

To use a shared library, you simply include the name of the library on the CC
command line as you would with an archive library, or use the -l option, as
with other libraries. The linker links the shared library to the executable �le it
creates. Once you create an executable �le that uses a shared library, you must
not move the shared library or the dynamic loader (dld.sl(5)) will not be able
to �nd it.

Note You must use the CC command to link any program that uses a
C++ shared library. This is because the CC command ensures

Compiling and Executing HP C++ Programs 3-45

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Creating and Using Shared Libraries

that any static constructors and destructors in the shared
library are executed at the appropriate times.

Example

The following command compiles the two �les Strings.C and Arrays.C

and creates the two object �les Strings.o and Arrays.o. These object �les
contain position-independent code (PIC):

CC -c +z Strings.C Arrays.C

The following command builds a shared library named libshape.sl from the
object �les Strings.o and Arrays.o:

CC -b -o libshape.sl Strings.o Arrays.o

The following command compiles a program, draw_shapes.C, that uses the
shared library, libshape.sl:

CC draw_shapes.C libshape.sl

Linking Archive or Shared Libraries

If both an archive and shared version of a particular library reside in the same
directory, the linker links in the shared version by default. You can override
this behavior with the -a linker option. This option tells the linker which type
of library to use. The -a option is positional and applies to all subsequent
libraries speci�ed with the -l option until the end of the command line or until
the next -a option is encountered.

The syntax of this option when used with CC is:

-Wl,-a,

8<
:

archive

shared

default

9=
;

The di�erent meanings of this option are:

-Wl,-a,archive Select archive libraries. If the archive library does not
exist, the linker generates a warning message and does not
create the output �le.

3-46 Compiling and Executing HP C++ Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Creating and Using Shared Libraries

-Wl,-a,shared Select shared libraries. If the shared library does not exist,
the linker generates a warning message and does not create
the output �le.

-Wl,-a,default Select the shared library if it exists; otherwise, select the
archive library.

The following example directs the linker to use the archive version of the
library libshape, followed by standard shared libraries if they exist; otherwise
select archive versions.

CC box.o sphere.o -Wl,-a,archive -lshape -Wl,-a,default

Updating a Shared Library

The CC command cannot replace or delete object modules in a shared library.
To update a C++ shared library, you must recreate the library with all the
object �les you want the library to include. If, for example, a module in an
existing shared library requires a �x, simply recompile the �xed module with
the +z or +Z option, then recreate the shared library with the -b option.
Any programs that use this library will now be using the new versions of the
routines. That is, you do not have to relink any programs that use this shared
library because they are attached at run time.

Forcing the Export of Symbols in main

By default, the linker exports from a program only those symbols that were
imported by a shared library. For example, if an executable's shared libraries
do not reference the program's main routine, the linker does not include
the main symbol in the a.out �le's export list. Normally, this is a problem
only when a program explicitly calls shared library management routines.
(See \Routines You Can Use to Manage C++ Shared Libraries" later in this
chapter.) To make the linker export all symbols from a program, use the
-Wl,-E option which passes the -E option to the linker.

Compiling and Executing HP C++ Programs 3-47

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Creating and Using Shared Libraries

Binding Times

Because shared library routines and data are not actually contained in the
a.out �le, the dynamic loader must attach the routines and data to the
program at run time. To accelerate program startup time, routines in a shared
library are not bound until referenced. (Data items are always bound at
program startup.) This deferred binding distributes the overhead of binding

across the total execution time of the program and is especially helpful for
programs that contain many references that are not likely to be executed.

Forcing Immediate Binding

You can force immediate binding, which forces all routines and data to be
bound at startup time. With immediate binding, the overhead of binding
occurs only at program startup time, rather than across the program's
execution. Immediate binding also detects unresolved symbols at startup time,
rather than during program execution. Another use of immediate binding is to
get better interactive performance, if you don't mind program startup taking
longer. To force immediate binding, use the option -Wl,-B,immediate. For
example,

CC -Wl,-B,immediate draw_shapes.o -lshape

To get the default binding, use -Wl,B,deferred. For more information, see
HP-UX Linker and Libraries Online User Guide.

Side Effects of C++ Shared Libraries

When you use C++ shared libraries, all constructors and destructors of
nonlocal static objects in the library execute. This is di�erent from C++
archive libraries where only the constructors and destructors in object �les you
actually use are executed.

Routines You Can Use to Manage C++ Shared Libraries

You can call any of several routines to explicitly load and unload shared
libraries, and get information about shared libraries. Refer to HP-UX Linker
and Libraries Online User Guide for information about these routines.

3-48 Compiling and Executing HP C++ Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Creating and Using Shared Libraries

HP C++ provides the following additional routines for managing C++ shared
libraries:

cxxshl_load() Explicitly loads a shared library and executes any
constructors for nonlocal static objects if they exist.
This routine is identical to the general shl_load()
routine except that it also executes appropriate
constructors. See HP-UX Linker and Libraries Online
User Guide for information about shl_load(),
including syntax.

cxxshl_load() can be used on non-C++ shared
libraries and can be called from other languages.

cxxshl_unload() Executes the destructors for any constructed nonlocal
static objects and unloads the shared library. This
routine is identical to the general shl_load() routine
except that it also executes appropriate destructors.
See HP-UX Linker and Libraries Online User Guide
for information about shl_load(), including syntax.
cxxshl_unload() can be used on non-C++ shared
libraries and can be called from other languages.

When you use either of these routines, be sure to compile with the -ldld
option to link them in.

Shared Library Header files

The C++ shared library management routines (cxxshl_load() and
cxxshl_unload()) use special data types and constants de�ned in the header
�le /usr/include/CC/cxxdl.h (/opt/CC/include/cxxdl.h for HP-UX 10.x
C++ versions). When using these functions from a C++ program be sure to
include cxxdl.h:

#include <cxxdl.h>

If an error occurs when calling shared library management routines, the system
error variable, errno, is set to an appropriate error value. Constants are
de�ned for these error values in /usr/include/errno.h (see errno(2)). Thus,
if a program checks for these values, it must include errno.h:

#include <errno.h>

Compiling and Executing HP C++ Programs 3-49

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Creating and Using Shared Libraries

Version Control in Shared Libraries

You can create di�erent versions of a routine in a shared library with the
HP_SHLIB_VERSION pragma. HP_SHLIB_VERSION assigns a version number to a
module in a shared library. The version number applies to all global symbols
de�ned in the module's source �le. The syntax of this pragma is:

#pragma HP_SHLIB_VERSION
�
"
�
date

�
"
�

The date argument is of the form month/year . The month must be 1 through
12, corresponding to January through December. The year can be speci�ed as
either the last two digits of the year (92 for 1992) or a full year speci�cation
(1992). Two-digit year codes from 00 through 40 represent the years 2000
through 2040.

This pragma should only be used if incompatible changes are made to a source
�le. If a version number pragma is not present in a source �le, the version
number of all symbols de�ned in the object module defaults to 1/90. For more
information about version control in shared libraries, see HP-UX Linker and
Libraries Online User Guide.

Adding New Versions to a Shared Library

To rebuild a shared library with new versions of some of the object �les, use
the CC command and the -b option with the old object �les and the newly
compiled object �les. The new source �les should use the HP_SHLIB_VERSION
pragma.

For example, suppose the source �le box.C has been compiled into the shared
library libshape.sl. Further suppose you want to add new functionality to
functions in box.C, making them incompatible with existing programs that call
libshape.sl. Before making the changes, make a copy of the existing box.C

and name it oldbox.C. Then change the routines in box.C, using the version
pragma specifying the current month and year. The following illustrates these
steps:

cp box.C oldbox.C Save the old source.

mv box.o oldbox.o Save the old object �le.
... Change box.C to create the new version.

#pragma HP_SHLIB_VERSION "9/92" // Date is September 1992.

3-50 Compiling and Executing HP C++ Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Executing HP C++ Programs

// This is a new version of the box class, in box.C.

box::box() {...}

To update the shared library, libshape.sl, to include the new box.C routines,
compile box.C and rebuild the library with the new box.o and oldbox.o:

CC -c +z box.C

CC -b -o libshape.sl oldbox.o sphere.o box.o

Thereafter, any programs linked with libshape.sl use the new versions of the
box.C routines. Programs linked with the old version still use the old versions.

Distributing HP C++ Libraries, Object Files, and
Executable Files

If you write applications in HP C++ and distribute them to your customers,
see \Distributing Your C++ Application" in \Compiling and Executing HP
C++ Programs" in the HP C++ Online Programmer's Guide.

Executing HP C++ Programs

After a program is successfully linked, it is in executable form.

To execute a program, enter the executable �le name (either a.out or the �le
name you used following the -o option). For example, to execute an object �le
named my_executable, enter:

my_executable

The operating system searches for a �le named my_executable according to its
usual search rules, calls the loader utility, and then executes the program.

Compiling and Executing HP C++ Programs 3-51

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Executing HP C++ Programs

Redirecting stdin and stdout

By default, standard input (stdin) and output (stdout) for the program are
assigned to the keyboard and display, respectively. You can direct standard
input and output by using the shell's redirection notation. For example, to
redirect standard input when you invoke my_executable, enter:

my_executable < input_data

The < character reassigns standard input to the �le input_data. You can
redirect standard output in a similar fashion. For example,

my_executable > results

This command uses the character > to redirect standard output for
my_executable to the �le named results.

3-52 Compiling and Executing HP C++ Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

The Library Example

An Extensive Example

This section describes one model for designing a typical kind of C++ program.
There are many ways to design a program. The method described here
illustrates an object-oriented approach that uses data hiding.

The discussion is organized according to the following topics:

data hiding using �les as modules
linking
an example based on a lending library

Data Hiding Using Files as Modules

Most programs are made up of several separately compiled units, usually �les.
The term module refers to a �le containing a variable or function declaration,
a function de�nition, or several of these or similar items logically grouped
together. Thus, a program usually consists of several modules.

A C++ service consists of the following:

The declaration of all the objects the service provides. This is called the
interface.

The operations that the service performs with its objects. This is called the
implementation of those objects.

The interface is usually in one or more header �les, or .h �les. The
implementation is usually in one or more .C or .c �les associated with the
corresponding .h �les. Code in an application using the service is sometimes
called a client of the service. Client source code is usually in a .C or a .c �le.

Suppose, for example, a simple lending library service is organized into two
modules, library_ex.h and library_ex.C.

The source �le for this program resides in the directory
/usr/contrib/CC/Examples (or /opt/CC/contrib/Examples/library_ex
for HP-UX 10.x C++ versions.) The interface module, library_ex.h,
contains the declarations of the objects in the service. Perhaps these would
be class types named library, book, borrower, and transaction. The
implementation module, library.C, contains the function de�nitions for the
objects in the interface. Examples of these might be function de�nitions for

Compiling and Executing HP C++ Programs 3-53

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

The Library Example

library::display_books () and library::add_book(book*). A client of the
library service could then consist of code in a .C �le such as use_library.C.
The sample program at the end of this chapter (example 3-1) is organized in
just this way.

This type of organization uses data hiding , since it allows you to make available
to clients of the service only the names they need to know. You can hide
information that a client need not know in the .C �les, or, if necessary, keep
the implementation in object �le format (.o �les) only.

This type of service also provides considerable
exibility. An implementation
can consist of one or more .C �les, and you can provide several di�erent
interfaces in the form of .h �les.

The next section describes how the separate modules of the service can be
linked together.

Linking

Just like a program consisting of a single source �le, a program consisting of
many separately compiled parts must be consistent in its use of names and
types.

For instance, a name that is not local to a function or a class must refer to
the same type, value, function, or object in every separately compiled part of
a program. That is, there can only be one nonlocal type, value, function, or
object in a program with that name.

An object may be declared many times, but it must be de�ned exactly once.
Also, the types must agree exactly in all the declarations of the object.
Constants, inline functions, and type de�nitions can be de�ned as many times
as necessary, but they must be de�ned identically everywhere in the program.

The best way to ensure that the declarations in separate modules are consistent
is to follow these steps:

1. Use a #include in each of your .C implementation �les and .C client �les.

2. Compile each .C or .c �le with CC using the -c option. This step creates an
object �le with an .o su�x.

3. Link the object �les created in step 2 using CC. This step creates an
executable �le.

3-54 Compiling and Executing HP C++ Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

The Library Example

In example 3-1 of a library service, the use_library.C and library_ex.C �les
each contain the following line:

#include "library_ex.h"

You could generate an object �le from library_ex.C using the following
command:

CC -c library_ex.C

Similarly, you generate an object �le from use_library.C using the following
command line:

CC -c use_library.C

Finally, you link the object �les to create an executable �le named a.out, using
the following command:

CC use_library.o library_ex.o

Compiling and Executing HP C++ Programs 3-55

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

The Library Example

The Lending Library

This section presents a simple example of a C++ service. The example is not
intended to be a realistic application, but it illustrates the organization and
concepts that have been discussed in this section.

The service example is a lending library. Its principal objects correspond to the
books in the library's collection (book) and people who are enrolled to borrow
books (borrower). The service includes an interaction object (transaction),
which associates a particular book with a particular borrower, and an object
that contains book, borrower, and transaction objects (library). There
is an abstract data type (list) from which all the other classes are derived,
making it easier to handle lists of the various types of objects.

The interface for the service is in the �le library_ex.h, which lists the
declarations for the book, borrower, transaction, library, and list

classes. The implementation for the service is in the �le library_ex.C, which
lists the de�nitions for the book, borrower, transaction, library, and list

classes. A client application program is listed in use_library.C.

The source �le for this program resides in the directory
/usr/contrib/CC/Examples (or /opt/CC/contrib/Examples/library_ex for
for HP-UX 10.x C++ versions.)

To use the lending library service, put your source �les in the same directory
and follow the steps described above.

To run the executable �le, enter:

a.out

The rest of this chapter consists of Example 3-1, which shows the three �les
discussed above: library_ex.h, library_ex.C, and use_library.C.

3-56 Compiling and Executing HP C++ Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

The Library Example

//---

// library_ex.h -- the interface for the lending library service

//---

// This module is included in the library_ex.C module.

// Some functions declared in this file are defined in the

// library_ex.C module. You must link the library_ex.C and

// use_library.C modules to create an executable file.

// The main() function is in the use_library.C module.

//---

#include <stream.h>

//---

class list // list is an abstract class

{

private:

list* link ; // the only data member is a

// pointer to a list object

public:

list()

{ link = 0; } // constructor

list* add(list* p)

{ p->link = this; return p; }

// this inline function adds a new

// item as the first one on the list

list* next()

{ return this->link; } // this inline function returns the

// next link on the list

virtual void display_item()

{ cout << "none yet"; } // this virtual function is redefined for

// book, borrower, and transaction classes

void display(); // this function calls display_item()

};

//---

class book:public list // book is derived from list

{

private:

char* title; // data members are strings for

char* author; // the book's title and author

public:

book(char* t,char* a); // constructor for a book

book* add_book(book* b) // adds a book to the list

{ return (book*)(this->add(b)); }

void display_item() // shows a book's title and author

{ cout << " " << title << " by " << author;}

};

//---

Example 3-1. A C++ Service: library ex.h, library ex.C, and

use library.C

Compiling and Executing HP C++ Programs 3-57

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

The Library Example

//---

class borrower:public list // borrower is derived from list

{

private:

char* last_name; // data members are strings for

char* first_name; // name and address of borrower

char* address;

public:

borrower(char* l, char* f, char* a); // constructor for borrower

borrower* add_borrower(borrower* b)

{ return (borrower*)(this->add(b)); }

// adds a borrower to the list

void display_item() // shows a borrower's name and address

{cout << " " << first_name << " " << last_name

<< " of " << address;}

};

//---

class transaction:public list // transaction is derived from list; it

// is an interaction object that creates

// an association between two objects

{

private:

borrower* person; // person who borrowed the book

book* a_book; // book that was borrowed public:

public:

transaction(borrower* p, book* b); //constructor

transaction* add_transaction(transaction* t)

{ return (transaction*)(this->add(t)); }

// adds a transaction to the list

void display_item() // shows the book on loan to a borrower

{ person->display_item(); cout << " borrowed" ;

a_book->display_item(); }

};

//---

Example 3-1. A C++ Service: library ex.h, library ex.C, and

use library.C (continued)

3-58 Compiling and Executing HP C++ Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

The Library Example

//---

class library // a library object contains linked lists of book,

// borrower, and transaction objects

{

private:

book* books; // these are pointers to the first

borrower* borrowers; // object of each type on the list

transaction* transactions;

public:

library()

{ books = 0; borrowers = 0; transactions =0; }

// initialize the lists to null pointers

void add_book (book* b)

{ if (books == 0) books = b; else books=books->add_book(b);}

// adds a book to the library's collection

void add_borrower(borrower* b)

{ if (borrowers == 0) borrowers = b;

else borrowers=borrowers->add_borrower(b); }

// enrolls a borrower as a library patron

void add_transaction (transaction* t)

{ if (transactions == 0) transactions = t;

else transactions=transactions->add_transaction(t); }

// records a book borrowed by a borrower

void display_books()

{ books->display(); }

// show all books in the library

void display_borrowers()

{ borrowers->display(); }

// show all borrowers currently enrolled

void display_transactions()

{ transactions->display(); }

// show all books currently borrowed

};

//---

Example 3-1. A C++ Service: library ex.h, library ex.C, and

use library.C (continued)

Compiling and Executing HP C++ Programs 3-59

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

The Library Example

//---

// library_ex.C -- the implementation for the interface in

// the library_ex.h header file

//---

// This module can be linked with a client file, for example, the

// use_library.C module, to create an executable file. The

// main() function should be in the client file.

//---

#include "library_ex.h"

#include <string.h>

//-----------------display a list ----------------------------------

void list::display()

{

list* root = this; // start at the beginning of the list

if (root == 0)

cout << "\nnone right now "; // check for empty list

else

while (root!=0) // walk through list

{

root->display_item(); // calls a virtual function to display

// each item using the member

// function that corresponds to the

// type of this object

cout << "\n";

root=root->next();

}

}

//-----------------construct a book ---------------------------------

book::book(char* t,char* a)

{

title = new char [strlen(t) +1]; //allocate memory for title

strcpy(title,t); //copy title

author = new char [strlen(a) +1]; //allocate memory for author

strcpy(author,a); //copy author

}

//---

Example 3-1. A C++ Service: library ex.h, library ex.C, and

use library.C (continued)

3-60 Compiling and Executing HP C++ Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

The Library Example

//-----------------construct a borrower---------------------------

borrower::borrower(char* f, char* l, char* a)

{

first_name = new char [strlen(f) +1];

//allocate memory for first name

strcpy(first_name,f); //copy first name

last_name = new char [strlen(l) +1];

//allocate memory for last name

strcpy(last_name,l); //copy last name

address = new char [strlen(a) +1]; //allocate memory for address

strcpy(address,a); //copy address

}

//---------------construct a transaction ----------------------------

transaction::transaction(borrower* p,book* b)

{

person = p;

a_book=b;

}

//---

// use_library.C --things you can do with the library service

//---

// This program demonstrates the use of a library service. It must

// be linked with library_ex.C to create an executable file.

//---

#include "library_ex.h"

main()

{

// Create a library object named the_library

library* the_library = new library();

// Create some borrowers and add them to the_library

borrower* me = new borrower ("Tech","Writer","HP");

borrower* mary = new borrower ("Mary","Hartman","TVLand");

borrower* mickey = new borrower ("Mickey","Mouse","DisneyLand");

the_library->add_borrower(me);

the_library->add_borrower(mary);

the_library->add_borrower(mickey);

Example 3-1. A C++ Service: library ex.h, library ex.C, and

use library.C (continued)

Compiling and Executing HP C++ Programs 3-61

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

The Library Example

// Create a few books for the_library

book* one = new book ("The C Programming Language", "Kernighan and Ritchie");

book* two = new book ("The French Chef","Julia Child");

book* three = new book ("HP C++","Tech Writer");

the_library->add_book(one);

the_library->add_book(two);

the_library->add_book(three);

// Create a few transactions for the_library

transaction* first = new transaction (me,two);

transaction* second = new transaction (mary,one);

the_library->add_transaction(first);

the_library->add_transaction(second);

// Interact with a user

cout << "\n\nWelcome to the library! ";

char answer = 'Y';

while ((answer != 'Q') && (answer != 'q'))

{

cout << "\n\nYou can do the following: \n";

cout << "\nA Display the Library Collection ";

cout << "\nB Display a List of Borrowers in the Library";

cout << "\nC Display the Books on Loan ";

cout << "\nD Add a Book to the Library Collection";

cout << "\nE Enroll a Borrower ";

cout << "\nF Borrow a Book ";

cout << "\n\nWhat would you like to do?";

cout << "\nPress A, B, C, D, E, F, or Q to quit.";

cin >> answer;

char c;

cin.get(c); // read newline

char string1[80], string2[80], name1[80], name2[80], name3[80];

switch (answer)

{

case 'A': case 'a': // display the library collection

{cout << "\nHere's a list of the books in the library :\n";

the_library->display_books();

break;}

case 'B': case 'b': // display a list of borrowers in the library

{cout << "\nHere's a list of the borrowers:\n";

the_library->display_borrowers();

break;}

case 'C': case 'c': // display the books on loan

{cout << "\nHere's a list of the books that are out:\n";

the_library->display_transactions();

break;}

Example 3-1. A C++ Service: library ex.h, library ex.C, and

use library.C (continued)

3-62 Compiling and Executing HP C++ Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

The Library Example

case 'D': case 'd': // Add a book to the library collection

{cout << "\nWhat is the title of the book to be added ? ";

cin.get(string1,80); // read characters up to newline

cin.get(c); // read newline character

cout << "\nAnd what is the author's name? ";

cin.get(string2,80);

cin.get(c);

book* newbook = new book (string1,string2);

the_library->add_book(newbook);

break;}

case 'E': case 'e': // Enroll a borrower

{cout << "\nPlease enter the first name of the borrower-- ";

cin >> name1;

cout << "And the last name? ";

cin >> name2;

cout << "And where is " << name1 << " "

<< name2 << " from? ";

cin >> name3;

borrower* newborrower = new borrower (name1,name2,name3);

the_library->add_borrower(newborrower);

break;}

case 'F': case 'f': // Borrow a book

{cout << "\nBorrowing a book";

cout << "\nWhat is the title of the book? ";

cin.get(string1,80);

cin.get(c);

cout << "\nAnd what is the author's name? ";

cin.get(string2,80);

cin.get(c);

book* B = new book (string1,string2);

cout << "\nPlease enter the first name of the borrower-- ";

cin >> name1;

cout << "\nAnd the last name? ";

cin >> name2;

cout << "\nAnd where is " << name1 << " "

<< name2 << " from? ";

cin >> name3;

borrower* C = new borrower (name1,name2,name3);

transaction* D = new transaction (C,B);

the_library->add_transaction(D);

break;}

}

}

}

//--

Example 3-1. A C++ Service: library ex.h, library ex.C, and

use library.C (continued)

Compiling and Executing HP C++ Programs 3-63

FINAL TRIM SIZE : 7.5 in x 9.0 in

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

4

Optimizing HP C++ Programs

HP C++ programs can be optimized for improved e�ciency. The HP C++
compiler provides levels of optimization options to the CC command, and
pragmas to control optimization. For detailed information on optimization,
refer to the HP C++ Online Programmer's Guide.

Optimizing HP C++ Programs 4-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

5

Inter-Language Communication

This chapter provides guidelines for linking HP C++ modules with modules
written in HP C, HP Pascal, and HP FORTRAN 77 on HP 9000 Series
700/800 systems.

Introduction

A module is a �le containing one or more variable or function declarations,
one or more function de�nitions, or similar items logically grouped together.
Mixing modules written in C++ with modules written in C is relatively
straightforward since C++ is essentially a superset of C. Mixing C++ modules
with modules in languages other than C is more complicated.

When creating an executable �le from a group of programs of mixed languages,
one of them being C++, you need to be aware of the following:

In general, the overall control of the program must be written in C++. In
other words, the main() function should appear in a C++ module.

You must pay attention to case-sensitivity conventions for function names in
the di�erent languages.

You must make sure that the data types in the di�erent languages
correspond. Do not mismatch data types for parameters and return values.

Storage layouts for aggregates di�er between languages.

You must use the extern "C" linkage speci�cation to declare any modules
that are not written in C++; this is true whether or not the module is
written in C.

Inter-Language Communication 5-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Calling HP C from HP C++

You must use the extern "C" linkage speci�cation to declare any modules
that are written in C++ and called from other languages.

Note HP C++ classes are not accessible to non-C++ routines.

Data Compatibility between C and C++

Since C++ is a superset of C, many of the data types are identical. Both
languages have the identical primitive types char, short, int, long, float,
and double. ANSI C and C++ also support a long double type (and include
a language extension for a long long type for versions 10.22 and later.)

Pointers, structs, and unions that can be declared in C are also compatible.
Arrays composed of any of the above types are compatible.

C++ classes are generally incompatible with C structs. The following features
of the C++ class facility may cause the compiler to generate extra code, extra
�elds, or data tables:

multiple visibility of members (that is, having both private and public

data members in a class)

inheritance, either single or multiple

virtual functions

It is the use of these features, as opposed to whether the class keyword is used
rather than struct, that introduces incompatibilities with C structs.

5-2 Inter-Language Communication

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Calling HP C from HP C++

Calling HP C from HP C++

Since C++ is essentially a superset of C, calling between C and C++ is a
normal operation. You should, however, be aware of the following:

You must use the extern "C" linkage speci�cation to declare the C functions.

Because of function prototypes, C++ has argument-widening rules that are
di�erent from C's rules.

The overall control of the program should be written in C++.

The following sections discuss these issues.

Using the extern \C" Linkage Specification

To handle overloaded function names the HP C++ compiler generates new,
unique names for all functions declared in a C++ program. To do so, the
compiler uses a function-name encoding scheme that is implementation
dependent. A linkage directive tells the compiler to inhibit this default
encoding of a function name for a particular function.

If you want to call a C function from a C++ program, you must tell the
compiler not to use its usual encoding scheme when you declare the C function.
In other words, you must tell the compiler not to generate a new name for
the function. If you don't turn o� the usual encoding scheme, the function
name declared in your C++ program won't match the function name in your
C module de�ning the function. If the names don't match, the linker cannot
resolve them. To avoid these linkage problems, use a linkage directive when you
declare the C function in the C++ program.

Inter-Language Communication 5-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Calling HP C from HP C++

All HP C++ linkage directives must have either of the following formats:

extern "C" function declaration

extern "C"

{

function declaration1

function declaration2
...

function declarationN

}

For instance, the following declarations are equivalent:

extern "C" char* get_name(); // declare the external C module

and

extern "C"

{

char* get_name(); // declare the external C module

}

You can also use a linkage directive with all the functions in a �le, as shown in
the following example. This is useful if you wish to use C library functions in a
C++ program.

extern "C"

{

#include <string.h>

}

Although the string literal following the extern keyword in a linkage directive
is implementation dependent, all implementations must support C and C++
string literals. Refer to \Linkage Speci�cations" in The C++ Programming
Language, and to \Type-Safe Linkage for C++" in the C++ Language System
Selected Readings for more details about linkage speci�cations.

5-4 Inter-Language Communication

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Calling HP C from HP C++

Differences in Argument Passing Conventions

By default, the HP C++ compiler in translator mode does not generate
function prototypes in the C code it creates. As a result HP C applies the
argument widening rules of C without prototyping. This means that char and
short types are promoted to int, and float is promoted to double.

In programs written entirely in C++ this does not cause any problem, since
the arguments are consistently handled within the program. However, if your
C++ code calls functions written in C, you should make sure that the called C
functions do not use function prototypes that suppress argument widening. If
they do, your C++ code will be passing \wider" arguments than your C code
is expecting.

In translator mode you can use the +a1 option with CC to tell the translator to
emit function prototypes in the C code it generates. When you use +a1, the
linker links in the ANSI version of libC.a

(or libC.sl), which is named libC.ansi.a (or libC.ansi.sl).

Compiler mode is compatible with translator mode even though no C code
is generated. In compiler mode, when you use +a0, the default, parameters
of type float are promoted to type double. When you use +a1, float
parameters are not promoted, but are passed as type float.

The main() Function

When mixing C++ modules with C modules, the overall control of the
program must be written in C++, with two exceptions. In other words,
the main() function should appear in some C++ module, rather than in
a C module. The exceptions are programs without any global class objects
containing constructors or destructors and programs without static objects.

Example 5-1 shows a C++ program, calling_c.C, that contains a main()

function. In this example the C++ program calls a C function, get_name().
Example 5-2 shows the C function.

Inter-Language Communication 5-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Calling HP C from HP C++: An Example

//**

// This is a C++ program that illustrates calling a function *

// written in C. It calls the get_name() function, which is *

// in the "get_name.c" module. The object modules generated *

// by compiling the "calling_c.C" module and by compiling *

// the "get_name.c" module must be linked to create an *

// executable file. *

//**

#include <iostream.h>

#include "string.h"

//**

// declare the external C module

extern "C" char* get_name();

class account

{

private:

char* name; // owner of the account

protected:

double balance; // amount of money in the account

public:

account(char* c) // constructor

{ name = new char [strlen(c) +1];

strcpy(name,c);
balance = 0; }

void display()

{ cout << name << " has a balance of "

<< balance << "\n"; }

};

main()

{

account* my_checking_acct = new account (get_name());

// send a message to my_checking_account to display itself

my_checking_acct->display();

}

Example 5-1. A C++ Program Calling a C Function

5-6 Inter-Language Communication

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Calling HP C from HP C++: An Example

The following is example 5-2 showing the module get_name.c. This function is
called by the C++ program in example 5-1.

/**/

/* This is a C function that is called by main() in */

/* a C++ module, "calling_c.C". The object */

/* modules generated by compiling this module and */

/* by compiling the "calling_c.C" module must be */

/* linked to create an executable file. */

/**/

#include <stdio.h>

#include "string.h"

char* get_name()

{

static char name[80];
printf("Enter the name: ");

scanf("%s",name);

return name;

}

/**/

Example 5-2. A C Function Called by a C++ Program

Here's a sample run of the executable �le that results when you link the object
modules generated by compiling calling_c.C and get_name.c:

Enter the name: Janice

Janice has a balance of 0

Inter-Language Communication 5-7

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Calling HP C++ from HP C

Calling HP C++ from HP C

Examples 5-3 and 5-4 show an example of calling HP C++ from HP C.
Example 5-3 is the C++ module and example 5-4 is the C program. These
examples illustrate the following points:

To prevent a function name from being mangled, the function de�nition and
all declarations used by the C++ code must use extern "C".

The C programmer must generate a call to function _main as the �rst
executable statement in main(). Object libraries require this as _main calls
the static constructors to initialize the libraries' static data items.

Member functions of classes in C++ are not callable from C. If a member
function routine is needed, a non-member function in C++ can be called
from C which in turn calls the member function.

Since the C program cannot directly create or destroy C++ objects, it is
the responsibility of the writer of the C++ class library to de�ne interface
routines that call constructors and destructors, and it is the responsibility of
the C user to call these interface routines to create such objects before using
them and to destroy them afterwards.

The C user should not try to de�ne an equivalent struct de�nition for the
class de�nition in C++. The class de�nition may contain bookkeeping
information that is not guaranteed to work on every architecture. All access
to members should be done in the C++ module.

This example also illustrates reference parameters in the interface routine to
the constructor.

5-8 Inter-Language Communication

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Calling HP C++ from HP C: An Example

//**

// C++ module that manipulates object obj. *

//**

#include <iostream.h>

typedef class obj* obj_ptr;

extern "C" void initialize_obj (obj_ptr& p);

extern "C" void delete_obj (obj_ptr p);

extern "C" void print_obj (obj_ptr p);

struct obj {

private:

int x;

public:

obj() {x = 7;}

friend void print_obj(obj_ptr p);

};

// C interface routine to initialize an

// object by calling the constructor.

void initialize_obj(obj_ptr& p) {

p = new obj;
}

// C interface routine to destroy an

// object by calling the destructor.

void delete_obj(obj_ptr p) {

delete p;

}

// C interface routine to display

// manipulating the object.

void print_obj(obj_ptr p) {

cout << "the value of object->x is " << p->x << "\n";

}

Example 5-3. A C++ Module Called by a C Program

Inter-Language Communication 5-9

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Calling HP C++ from HP C: An Example

Example 5-4 is a C program that calls the C++ module in example 5-3 to
manipulate the object:

/***/

/* C program to demonstrate an interface to the */

/* C++ module. Note that the application needs */

/* to be linked with the CC driver. */

/***/

typedef struct obj* obj_ptr;

main () {

/* C++ object. Notice that none of the

routines should try to manipulate the fields.

*/

obj_ptr f;

/* The first executable statement needs to be a call

to _main so that static objects will be created in

libraries that have constructors defined. In this

application, the stream library contains data

elements that match the conditions.

*/

_main();

/* Initialize the data object. Notice taking

the address of f is compatible with the

C++ reference construct.

*/

initialize_obj(&f);

/* Call the routine to manipulate the fields */

print_obj(f);

/* Destroy the data object */

delete_obj(f);

}

Example 5-4. A C Program Calling a C++ Module

5-10 Inter-Language Communication

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Calling HP Pascal and HP FORTRAN from HP C++

To compile the programs in examples 5-3 and 5-4, enter the following
commands:

cc -c c�lename.c

CC -c C++�lename.C

CC -o executable c�lename.o C++�lename.o

Caution During the linking phase, the CC driver program performs
several functions to support the C++ class mechanism. Linking
programs that use classes with the C compiler driver cc leads
to unpredictable results at run time.

Calling HP Pascal and HP FORTRAN 77 from HP C++

This section covers the following topics related to calling HP Pascal and HP
FORTRAN 77 from HP C++:

the main() function

function naming conventions

using reference variables to pass arguments

using extern "C" linkage

strings

arrays

de�nition of TRUE and FALSE

�les

As is the case with calling HP C from HP C++, you must link your application
using the C++ driver, CC.

Inter-Language Communication 5-11

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Calling HP Pascal and HP FORTRAN from HP C++

The main() Function

In general, when mixing C++ modules with modules in HP Pascal and HP
FORTRAN 77, the overall control of the program must be written in C++. In
other words, the main() function must appear in some C++ module.

Note If you wish to have a main() function in a module other than
a C++ module, you can add a call to _main() as the �rst
non-declarative statement in the module. However, if you use
this method, your code is not portable.

Function Naming Conventions

When calling a HP Pascal or HP FORTRAN 77 function from C++, you
must keep in mind the di�erences between the way the languages handle case
sensitivity. HP FORTRAN 77 and HP Pascal are not case sensitive, while
the C++ compiling system and the underlying C compiler are case sensitive.
Therefore, all C++ global names accessed by FORTRAN 77 or Pascal
routines must be lowercase. All FORTRAN 77 and Pascal external names are
downshifted by default.

Using Reference Variables to Pass Arguments

There are two methods of passing arguments, by reference or by value. Passing
by reference means that the routine passes the address of the argument rather
than the value of the argument.

When calling HP Pascal or HP FORTRAN 77 functions from HP C++, you
need to ensure that the caller and called functions use the same method of
argument passing for each individual argument. Furthermore, when calling
external functions in HP Pascal or HP FORTRAN 77, you must know the
calling convention for the order of arguments.

It is not recommended that you pass structures or classes to HP FORTRAN 77
or HP Pascal. For maximum compatibility and portability, only simple data
types should be passed to routines. All HP C++ parameters are passed by
value, as in HP C, except arrays and functions which are passed as pointers.

5-12 Inter-Language Communication

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Calling HP Pascal and HP FORTRAN from HP C++

HP FORTRAN 77 passes all arguments by reference. This means that all
actual parameters in an HP C++ call to a FORTRAN routine must be
pointers, or variables pre�xed with the unary address operator &.

HP Pascal passes arguments by value, unless speci�ed as var parameters.
There are two ways to pass variables to Pascal var parameters. One way is
to use the address operator &. The other way is to declare the variable as a
pointer to the appropriate type, assign the address to the pointer, and pass the
pointer.

So, the simplest way to reconcile these di�erences in argument-passing
conventions is to use reference variables in your C++ code. Declaring a
parameter as a reference variable in a prototype causes the compiler to pass the
argument by reference when the function is invoked. The following example
illustrates a reference variable.

int main(void)

{

// declare a reference variable

extern void pas_func(short &);

short x;...
pas_func(x); // pas_func should accept... // its parameters by reference

}

Refer to \References" in The C++ Programming Language for details about
using reference variables.

Using extern \C" Linkage

If you want to mix C++ modules with HP FORTRAN 77 or HP Pascal
modules, make sure that you use the extern "C" linkage to declare any
C++ functions that are called from a non-C++ module and to declare the
FORTRAN or Pascal routines.

Inter-Language Communication 5-13

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Calling HP Pascal and HP FORTRAN from HP C++

Strings

HP C++ strings are not the same as HP FORTRAN 77 strings. In
FORTRAN 77 the strings are not null terminated. Also, strings are passed
as string descriptors in FORTRAN 77. This means that the address of the
character item is passed and a length by value follows.

Note On the HP 9000 Series 700/800, the length follows immediately
after the character pointer in the parameter list.

HP Pascal strings and HP C++ strings are not compatible. See your HP
Pascal manual for details.

Arrays

HP C++ stores arrays in row-major order, whereas HP FORTRAN 77 stores
arrays in column-major order. The lower bound for HP C++ is 0. The default
lower bound for HP FORTRAN 77 is 1. For HP Pascal, the lower bound may
be any user-de�ned scalar value.

Definition of TRUE and FALSE

On the HP 9000 Series 700/800, HP C++, HP FORTRAN 77, and HP Pascal
do not share a common de�nition of TRUE or FALSE. HP C++ does not have
a FORTRAN LOGICAL type. Instead C++ uses integers. In HP C++, any
nonzero value is used to represent TRUE and 0 is used to represent FALSE.

HP C++ does not have a Pascal boolean type. On the HP 9000 Series
700/800, HP Pascal allocates 1 byte for boolean variables and only accesses the
rightmost bit to determine its value, 1 to represent TRUE and 0 for FALSE.

Files

HP FORTRAN I/O routines require a logical unit number to access a �le,
whereas HP C++ accesses �les using HP-UX I/O subroutines and intrinsics
and requires a stream pointer.

A FORTRAN logical unit cannot be passed to a C++ routine to perform I/O
on the associated �le. Nor can a C++ �le pointer be used by a FORTRAN

5-14 Inter-Language Communication

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Calling HP Pascal and HP FORTRAN from HP C++

routine. However, a �le created by a program written in either language can
be used by a program of the other language if the �le is declared opened
within the latter program. HP-UX I/O (stream I/O) can also be used from
FORTRAN instead of FORTRAN I/O.

Refer to your system FORTRAN manual on inter-language calls for details.

A C++ �le pointer cannot be passed to a Pascal routine for performing
input/output. A Pascal �le variable cannot be used by a C++ program.
However, a �le created by a program written in either language can be used by
a program of the other language if the �le is declared opened within the latter
program.

If I/O from Pascal is required, it is recommended that you use HP-UX
input/output routines and intrinsics. This allows C++ and Pascal to use the
same I/O mechanism.

See the HP Pascal manual for your system for more details.

Inter-Language Communication 5-15

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Calling HP Pascal and HP FORTRAN from HP C++

Linking HP FORTRAN 77 and HP Pascal Routines on HP-UX

When calling HP FORTRAN 77 or HP Pascal routines on the HP 9000 Series
700/800, you must include the appropriate run-time libraries by adding the
following argument to the CC command:

-lcl -lisamstub

5-16 Inter-Language Communication

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

6

HP Specific Features of lex and yacc

Following is a list of HP speci�c features of lex and yacc. For more
information on these tools, see the lex and yacc man pages or the HP-UX
Reference. Another general source of information is lex and yacc by John R.
Levine, Tony Mason, and Doug Brown.

LC_CTYPE and LC_MESSAGES environment variable support in lex -
Determines the size of the characters and language in which messages are
displayed while you use lex.

-m command line option for lex - Speci�es that multibyte characters may be
used anywhere single byte characters are allowed. You can intermix both
8-bit and 16-bit multibyte characters in regular expressions if you enable the
-m command line option.

-w command line option for lex - Includes all features in -m and returns data
in the form of the wchar_t data type.

%l <locale> directive for lex - Speci�es the locale at the beginning of the
de�nitions section. Any valid locale recognized by the setlocale function
can be used. This directive is similar to using the LC_CTYPE environment
variable. To receive wchar_t support with %l, use the -w command line
option.

LC_CTYPE environment variable support in yacc - Determines the native
language set used by yacc and enables multibyte character sets. Multibyte
characters can appear in token names, on terminal symbols, strings,
comments, or anywhere ASCII characters can appear, except as separators or
special characters.

HP Specific Features of lex and yacc 6-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

HP Specific Features of lex and yacc

Notes on Using lex and yacc

When using lex and yacc, please note the following:

Programs generated by yacc or lex can have many unreachable break
statements, causing multiple C++ warnings.

If you want to call the yacc generated routines, yyerror, yylex and yyparse,
your program must include the yacc.h header �le.

#include <yacc.h>

6-2 HP Specific Features of lex and yacc

Index

Index

A

address operator (&), 5-12
ANSI C, 1-7, 1-8, 1-12, 1-13
ANSI C mode preprocessor, 2-1, 2-3,

3-13
a.out �le, 3-5, 3-8, 3-11, 3-51
archive library
linking, 3-44, 3-46
searching, 3-16

argument
checking, 1-6
default, 1-8
passing, 5-5, 5-12
variable number of, 1-8
widening, 5-3, 5-5

arrays, 1-14, 5-14
assembler, 3-10
substituting for, 3-19

assignment of void pointer, 1-14
AT&T. See USL (UNIX System

Laboratories)
auto keyword, 1-28
automatic instantiation of templates,

1-32, 1-34, 3-5, 3-8
automatic object, 1-28

B

bank example program, 1-15
base class, 1-24
binding
dynamic, 1-27
run-time, 1-27

built-in types, 1-23

C

C, 5-2, 5-8{11
compiler (cc), 3-7, 3-19
converting to C++, 1-10
language, 1-1{14

C++
advantages over C, 1-1{9
compatibility with C, 1-5, 5-2
compiling system, 3-2{8
converting from C, 1-10
history, 1-2
overview, 1-1�
release notes, 1-35
service, 3-53, 3-56{63
versions, 1-2{3

calling
HP C++ from HP C, 5-8{11
HP C from HP C++, 5-3{7
HP FORTRAN 77 from HP C++,

5-11{16
HP Pascal from HP C++, 5-11{16

case sensitivity
with FORTRAN and Pascal, 5-12

catching exceptions, 1-35{37
catch keyword, 1-11. See also exception

handling
cc command, 3-7. See also C
CC command. See C++
example use, 1-3
how it works, 3-2{8

Index-1

options, 3-11{30. See also CXXOPTS
path, 3-9
syntax, 3-9{10

CCLIBDIR environment variable, 3-33
CCOPTS, 3-31
CCROOTDIR environment variable,

3-33
.c �le, 3-4, 3-7, 3-53
.C �le, 3-4, 3-7, 3-53
c++�lt. See name demangling
substituting for, 3-19

cfront, 3-4, 3-7
substituting for, 3-19

cfront2, 3-4
changing C program to C++, 1-10
class
base, 1-24
data type, 1-20, 1-23
derived, 1-24
keyword, 1-11, 5-2
member. See member data, member

function
template, 1-32

client, 3-53
c++merge, 3-7
substituting for, 3-19

codelibs library, 3-39, 3-41
comments, 1-7
compatibility
between versions of HP C++, 1-2{3
with C data, 5-2

compatibility mode, preprocessor
operation, 2-1, 3-13

compiler
cfront, 3-4, 3-7
instruction. See #pragma preprocessor

directive
mode, 1-2, 3-4{5, 3-21, 5-5
options, 3-9{30. See also CXXOPTS
options, series 700/800, 3-30

compiling

HP C++ programs, 1-3, 3-9{12
system, 3-2{8

complex.h, 3-42
complex library, 3-39
concatenating
compiler options, 3-12
strings, 2-7

conditional compilation, 2-2, 2-14{18
constants, 1-7, 1-13, 2-9
const keyword, 1-7, 1-11, 1-13
constructor, 1-29, 5-5
constructor linker, 3-5, 3-8
conversion operators, 1-31
COPYRIGHT, 3-34
COPYRIGHT DATE, 3-36
COPYRIGHT Pragma, 3-34
c++patch, 3-5, 3-8
substituting for, 3-19
cplusplus, 2-13

c plusplus, 2-13
cpp. See preprocessor
c++ptcomp, 3-4, 3-7
c++ptlink, 3-5, 3-8
cxxdl.h, 3-49
CXXOPTS environment variable, 3-31
cxxshl load, 3-49
cxxshl unload, 3-49

D

data
abstraction, 1-20, 1-23
compatibility with C, 5-2
hiding, 3-53{54
long double type, 5-2
member, 1-21
primitive types, 5-2
DATE , 2-13

debugger compiler options -g, -g1, 1-4,
3-15

debugging C++ programs, 1-4
declaring

Index-2

Index

functions, 1-6{11
variables, 1-7

default function arguments, 1-8
de�ned preprocessor operator, 2-15
#de�ne preprocessor directive, 1-7,

2-5{13
de�ning constants, 1-7, 2-9
de�nition of TRUE and FALSE, 5-14
delete keyword, 1-11
delete operator, 1-28
dem.h, 3-43
dereferencing null pointers, 3-20, 3-29
derived class, 1-24
destructor, 1-29, 5-5
di�erences
between C and C++, 1-5{14

directive, preprocessor
#de�ne, 1-7, 2-5{13
#elif, 2-14
#else, 2-14
#endif, 2-14
#error, 2-21
#if, 2-14
#ifdef, 2-14
#ifndef, 2-14
#include, 2-4{5
#line, 2-19
#pragma, 2-20
#undef, 2-5, 2-6

distributing �les, 3-51
dynamic binding, 1-27

E

eh.h, 3-43
#elif preprocessor directive, 2-14
ellipsis points, 1-8, 1-11
#else preprocessor directive, 2-14
encapsulation, 1-20{22
#endif preprocessor directive, 2-14
environment variables, 3-31{33
#error preprocessor directive, 2-21

example programs
bank example, 1-15{19
C++ calling C, 5-6{7
C calling C++, 5-9{11
class template of a stack, 1-32
exception handling in a stack, 1-36
function template, 1-33
library example, 3-53{63
online source �les, 1-4

exception handling, 1-35{37
example program, 1-36
required command line option +eh,

1-35
executable �le, 3-5, 3-8, 3-51, 3-55
executing HP C++ programs, 1-3,

3-51{56
expanded functions, 1-28
external �le, 1-12{13
extern \C" declaration, 5-1
C example, 5-8
with C, 5-3{4
with FORTRAN and Pascal, 5-13

extern keyword, 1-13

F

FALSE, de�nition of, 5-14
�le
accessing from C++ and other

languages, 5-14
a.out, 3-5, 3-8, 3-11, 3-51
executable, 3-5, 3-8, 3-51, 3-55
external, 1-12{13
header, 3-37{44
source �le name, 3-10
FILE , 2-13, 2-19

FORTRAN 77, 5-11{16
free function, 1-29
free storage, 1-29
friend keyword, 1-11
fstream.h, 3-42
function

Index-3

declaring, 1-6{11
default arguments, 1-8
expanded, 1-28
free, 1-29
inline, 1-28, 2-11
malloc, 1-29
member, 1-21
overloaded, 1-9, 5-3
prototypes, 5-5
virtual, 1-27, 1-29

function template, 1-33

G

generic.h, 3-42
getting started with HP C++, 1-3
gprof, 3-15

H

header �le, 3-37{44
.h �le. See header �le
history of C++, 1-2
HP C. See C
HP C++. See C++
HP FORTRAN. See FORTRAN 77
HP Pascal. See Pascal
HP Symbolic Debugger. See debugging

C++ programs
HP-UX libraries, 3-37

I

#ifdef preprocessor directive, 2-14
.i �le, 3-4, 3-7, 3-10
#ifndef preprocessor directive, 2-14
#if preprocessor directive, 2-14
implementation, 3-53
#include preprocessor directive, 2-4{5,

3-37, 3-54
inheritance, 1-20, 1-24{26
multiple, 1-24
single, 1-24

inline

function, 1-28, 2-11
keyword, 1-11, 1-28

instantiation of templates, 1-32, 1-34,
3-5, 3-8

interface, 3-53
inter-language calling, 5-1{16
iomanip.h, 3-42
iostream.h, 3-42

K

keywords, 1-11

L

ld. See link editor (ld)
libraries
codelibs, 3-39, 3-41
complex, 3-39
HP-UX, 3-37
libc.a, libc.sl, 3-5, 3-8, 3-44
libC.a, libC.sl, 3-5, 3-8, 3-42, 3-44,

5-5
libC.ansi.a, libC.ansi.sl, 3-5, 3-8, 5-5
ostream, 3-38, 3-42
run-time, 3-38{42
shared. See shared library
standard components, 3-40, 3-41
stream, 3-38{42
task, 3-38, 3-41
LINE , 2-13, 2-19

line control, 2-3, 2-19
#line preprocessor directive, 2-19
linkage directive. See extern \C"

declaration
link editor (ld)
libraries searched by, 3-16, 3-44
link phase, 3-5, 3-8
substituting for, 3-19

linking
example, 3-54{55
overview, 3-5, 3-8
to libraries, 3-44

Index-4

Index

with mixed language modules, 5-1,
5-16

LOCALITY, 3-36
long double type, 5-2

M

macro, 1-7, 2-2, 2-5{13. See also
constants, inline function

de�ning, 2-5
FALSE, 2-10
parameters, 2-6
prede�ned, 2-13
TRUE, 2-10
main, 5-8, 5-11
main(), 5-1, 5-5, 5-8, 5-12
malloc function, 1-29
mangling names, 5-8
member
data, 1-21
function, 1-21

merging debug information, 3-7
messages
sending to objects, 1-15

mixed language modules, 5-1
mode
ANSI C mode preprocessor, 2-1, 2-3,

3-13
compatibility mode preprocessor, 2-1,

3-13
compiler, 1-2, 3-4{5, 3-21, 5-5
translator, 3-5{8, 3-21, 5-5

module, 3-53{54, 5-1
multiple inheritance, 1-24
multi-thread support, 3-41

N

name
mangling, 5-8

new
keyword, 1-11
operator, 1-28

new.h, 3-43
null pointer dereferencing, 3-20, 3-29

O

object, 1-15
object-oriented programming, 1-1{3,

1-14{27
.o �le, 3-4, 3-7, 3-10, 3-13, 3-54
online source �les for example programs,

1-4
operator
#, 2-7{9
##, 2-7{9
&, 5-12
conversion, 1-31
delete, 1-28
keyword, 1-11, 1-30
new, 1-28
overloaded, 1-30

optimization
-O option, 3-17
pragmas, 3-34

OPTIMIZE pragma, 3-34
options. See compiler options
ostream.h, 3-38
ostream library, 3-38, 3-42
overloaded
function, 1-9, 5-3
operator, 1-30

overload keyword, 1-9

P

parameterized type. See template
Pascal, 5-11{16
patch phase of C++ compiler, 3-5, 3-8
pointer
and polymorphism, 1-26
void, 1-14

polymorphism, 1-20, 1-26{27
pound sign (#) in preprocessor directives,

2-3

Index-5

#pragma preprocessor directive, 2-20,
3-34{36

series 700/800, 3-36
prede�ned macros, 2-13
preprocessor, 3-4, 3-7
ANSI C mode, 2-1, 2-3, 3-13
compatibility mode, 2-1, 3-13
directive. See directive
substituting for, 3-19

primitive data types, 5-2
private keyword, 1-11, 1-21
program design, 3-53
protected keyword, 1-11
ptcomp. See c++ptcomp
ptlink. See c++ptlink
PTOPTS not supported, 1-34
-pt template options to CC, 3-17
public keyword, 1-11, 1-21

R

redirecting stdin and stdout, 3-52
reference variable, 5-8, 5-12{13
release notes, 1-35
releases of C++, 1-2{3
reliability improvements of C++, 1-6{7
repository. See template
run-time binding, 1-27
run-time libraries, 3-38{42

S

sample C++ programs. See example
programs

.s assembly source �le, 3-10
series 700/800
compiler options, 3-30
pragmas, 3-36

shared library
binding time, 3-48
creating, 3-13, 3-45
cxxdl.h, 3-49
cxxshl load, 3-49

cxxshl unload, 3-49
generating position-independent code

for, 3-29, 3-45
linking, 3-44, 3-46
managing, 3-48
pragma, 3-34
restriction on creating C++, 3-45
restriction on linking C++, 3-46
restriction on moving, 3-45
searching, 3-16
updating, 3-47
version control, 3-34

simulated linking option -ptb, 3-17
single inheritance, 1-24
source �le
allowable names, 3-10
example programs, 1-4
inclusion of, 2-2, 2-4{5

standard components library, 3-40, 3-41
static
keyword, 1-13, 1-28
object, 1-28

static analysis information option -y,
3-20

STDCPP , 2-13
stdiostream.h, 3-43
stream.h, 3-43
stream library, 3-38{42
string
concatenating, 2-7
FORTRAN, 5-14
Pascal, 5-14

Stroustrup, Bjarne, 1-2{3
strstream.h, 3-42
struct keyword, 1-12, 5-2
structures, 1-12
symbolic debugger. See debugging C++

programs

T

task.h, 3-43

Index-6

Index

task library, 3-38, 3-41
template, 1-32{34
CC command line options, 1-34,

3-17{18

class, 1-32
function, 1-33
instantiation, 1-32, 1-34
keyword, 1-11
processing with c++ptcomp, 3-4, 3-7
processing with c++ptlink, 3-5, 3-8
repository, 1-34, 3-4, 3-5, 3-7, 3-8

text substitution. See macro
this keyword, 1-11
throwing exceptions, 1-35{37
throw keyword, 1-11. See also exception

handling
tilde (~) in destructor name, 1-29
TIME , 2-13

TMPDIR environment variable, 3-33
trailing arguments, 1-8
translator
mode, 3-5{8, 3-21, 5-5
USL, 1-1, 1-2

trigraph sequences, 2-22
TRUE, de�nition of, 5-14
try block, 1-35{37. See also exception

handling
try keyword, 1-11
type
built-in, 1-23
checking, 1-6
conversion, 1-6, 1-31
polymorphism, 1-20, 1-26{27

U

#undef preprocessor directive, 2-5, 2-6

UNIX System Laboratories. See USL
USL
translator, 1-1, 1-2
version 2.0, 1-2
version 2.1, 1-2
version 3.0, 1-1

V

variable declarations, 1-7
vector.h, 3-43
VERSIONID, 3-36
versions of C++, 1-2{3
virtual
function, 1-27, 1-29
keyword, 1-11, 1-27
table, 3-29

void keyword, 1-11
void pointer, 1-14
volatile keyword, 1-11. See also

optimization, +O option

W

warnings
generated by lex programs, 6-2
generated by yacc programs, 6-2

X

xdb symbolic debugger. See debugging
C++ programs

Y

yacc.h
required when calling yacc routines,

6-2
yacc routines

requiring yacc.h, 6-2

Index-7

