
HP C++ Version A.11.01 Release Notes

HP 9000 Computers

5965-4444

May 1997

Printed in: U.S.A.

© Copyright 1997

2

Notice
Copyright © Hewlett-Packard Company 1997. All Rights Reserved.
Reproduction, adaptation, or translation without prior written
permission is prohibited, except as allowed under the copyright laws.
Printed in USA.

UNIX is a registered trademark in the United States and other
countries, licensed exclusively through X/Open Company Limited.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED
TO BE ACCURATE, HEWLETT-PACKARD MAKES NO WARRANTY
OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. Hewlett-Packard shall not be liable for errors contained
herein or for incidental or consequential damages in connection with the
furnishing, performance or use of this material. Information in this
publication is subject to change without notice.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to
restrictions as set forth in sub-paragraph (c)(1)(ii) of the Rights in
Technical Data and Computer Software clause in DFARS 252.227-7013.

Hewlett-Packard Company
3000 Hanover Street
Palo Alto, CA 94304 U.S.A.

Rights for non-DoD U.S. Government Departments and Agencies are as
set forth in FAR 52.227-19 (c)(1,2).

Contents

3

1. New and Changed Features

Overview of This Release of HP C++ .7
New and Changed Features. .7

2. Installation Information

Migrating to the UNIX System V Release 4 (V.4) File System9

3. Related Documentation

Online Documentation .11

Online Example Source Files .13

Printed Documentation .13

Other Printed Documentation .14

Information on Exception Handling Features .15
Detecting Link Incompatibilities when Using Exception Handling . .15
Detecting Link Incompatibilities in Shared Libraries16
Exception Handling Language Clarifications.17

4. Problem Descriptions and Fixes and Known Limitations

Known Problems .23

Known Limitations .23
The setjmp/longjmp and +eh option .24
Kernel threads unsupported .24

4

Contents

5

Preface
This document provides the following information:

• new and changed features

• installation information

• related documentation

• problem descriptions and fixes

NOTE The software code printed in the release notes title indicates the software
product version at the time of release. Some product and operating
system changes do not require changes to documentation; therefore, do
not expect a one-to-one correspondence between these changes and
release notes updates.

Latest printing: May 1997

This document resides online in the file
/opt/CC/newconfig/RelNotes/CXX.release.notes . You can print
the online copy by using an lp command like the following:

lp −dprinter_name /opt/CC/newconfig/RelNotes/CXX.release.notes

6

7

1 New and Changed Features

This chapter summarizes the new and changed features included in the
A.11.01 HP C++ release.

Overview of This Release of HP C++
New and changed features in this HP C++ release include compiler
enhancements and problem fixes, and revised online help
documentation.

New and Changed Features
The new and changed features for A.11.00 are listed below. These items
are fully documented in the HP C++ Online Programmer's Guide (see
Chapter 3 for access instructions.)

• New Compiler Options +ESlit and +ESsfc .

• Compiler option +a1 changed to be default behavior. This option
causes translator mode to produce ANSI C style declarations.

• +p option identifies more source code constructs that may be issues
when migrating to HP aC++, which supports ANSI C++ syntax.

• The +DA option changed so that if you specify +DA and not +DS, the
default instruction scheduling is based the +DA option, not the type of
system on which you are compiling. Refer to the online help for
details about these two options.

• Any programs that use +eh and also use Setjmp/Longjmp must
change the #include from <setjmp.h> to <Setjmp.h> .

• Header files for the HP Codelibs library moved from
/opt/CC/include/codelibs/ to
/usr/contrib/include/codelibs . You may see errors that the
compiler cannot find certain files.

The instructions for building the HP Codelibs library are in
/usr/contrib/codelibs/README .

• For task library users, libV3 is no longer required.

8 Chapter 1

New and Changed Features

• Changes to the following in HP UX 10.30 may cause incompatibilities
with programs created with previous versions of HP C++:

• The underlying type corresponding to the typedef size_t
changes from unsigned int to unsigned long. Similarly,
ptrdiff_t changes from int to long.

These changes cause compatibility problems when size_t is used
in a non-extern C interface because the mangled signature is
different.

Because of these changes, if any object files are recompiled or
linked, then you must recompile all C++ files. This means that
third-party libraries in archive form may also need to be
recompiled or updated.

• In HP UX 10.30, time_t changes to type long. This change may
cause source files that compile without error using HP C++ for
HP-UX 10.10 or 10.20 might not compile with the 10.30 release.
The example below shows one example of what may occur.

1: #include <time.h>
2: time_t ff (time_t t) { return t; }
3: time_t ff (long t) { return t; }
4: int main () { long tt = ff (1L); return 0; }

In the example, ff is overloaded to take either a time_t or a long
parameter. On a 10.10 or 10.20 system, where time_t is an int,
the code compiles. On a 10.30 system, however, where time_t is a
long, the code fails to compile:

CC: “tm.c”, line 4: error: two definitions of ff() (1034)

9

2 Installation Information

Read this entire document and any other release notes or readme files
you may have before you begin an installation.

To install your software, run the SD-UX swinstall command. It will
invoke a user interface that will lead you through the installation. For
more information about installation procedures and related issues, refer
to “Managing HP-UX Software with SD-UX” and other README,
installation, and upgrade documentation provided or described in your
HP-UX 10.x operating system package.

HP C++ requires approximately 46 MB of disk space: 16 MB for the files
in /opt/CC and 30 MB for DDE, Blink Link, and HP/PAK. Depending
on your environment, you may also need documentation for other parts
of your system, such as networking, system security, and windowing.

NOTE During the installation, the WARNING and ERROR messages shown
below may appear in the files /var/adm/sw/swmodify.log and
/var/adm/sw/swagent.log .

You should ignore these messages, they are not valid.

WARNING: Cannot delete the definition for
 "//opt/langtools/lbin/ucomp.tmp" from the fileset
 "Auxiliary-Opt.LANG-AUX". The file does not exist in
 this fileset.

ERROR: The selected software was not modified. All of the
 specified file modifications are invalid. See the ERROR
 and/or WARNING messages above.

Migrating to the UNIX System V Release
4 (V.4) File System
Two migration tools are provided for users. Either the system Upgrade
Tools or the tlink_install script can be used to migrate from an HP-UX
9.x system to an HP-UX 10.x system.

10 Chapter 2

Installation Information
Migrating to the UNIX System V Release 4 (V.4) File System

If your system has Upgrade Tools installed (/usr/sbin/upgrade
exists), transition links are created automatically upon product
installation. A method of removing these links is also provided. For more
information on automatic transition links refer to your operating system
upgrade documentation.

If there are no Upgrade Tools on your system, you can use the C++
tlink_install script as a migration aid to create symbolic links for HP
C++ product executables and include files when migrating from HP-UX
9.x locations to HP-UX 10.x locations. The script is located in
/opt/CC/newconfig/tlink_install . Should you want to remove
these links, use the script located in
/opt/CC/newconfig/unlink_install . These scripts must be
executed by a super user.

Note that to reverse your migration process, you must use the
appropriate uninstall tool. That is, if links were installed using the
system Upgrade Tools, they must be uninstalled using the system
Upgrade Tools. If links were installed using the tlink_install script,
they must be uninstalled with the unlink_install script.

11

3 Related Documentation

Documentation for HP C++ is described in the following sections.

Online Documentation
Xwindow users can invoke the HP C++ Online Programmer's Guide in
any of the following ways:

• Use the +help option on the CC command line.

• Click the ``?’’ icon on the HP CDE front panel. Then select the HP
C++ icon.

• Execute the dthelpview command in located in /usr/dt/bin :

 /usr/dt/bin/dthelpview -h /opt/CC/dt/appconfig/help/C/CXX.sdl

If your HP compiler is installed on another system or your system is
not running HP CDE, this command may be useful.

The following online documentation is included with the HP C++
product:

• HP-DDE Debugger Online Help

Refer to the discussion on basic-style (not advanced-style) debugging
of optimized code in the HP/DDE debugger online help.

• To access the HP C++ Online Programmer's Guide, use the command:

CC +help

To access the HP Linker and Libraries Online User Guide use the
command:

ld +help

The HP Linker and Libraries Online User Guide online guide replaces
the manual Programming on HP-UX.

NOTE Users with character-based terminals or terminal emulators can use the
charhelp program to view or print the online help provided for C++ and
the linker.

12 Chapter 3

Related Documentation
Online Documentation

To start charhelp enter the full pathname (or just charhelp if
/opt/langtools/bin is in your $PATH environment variable), and
you will get a usage statement:

$ /opt/langtools/bin/charhelp
charhelp: Usage: charhelp {cc | CC | aCC | f77 | ld | -helpVolume file}

For help with C++, for example, enter charhelp CC and follow the
menus for further direction. For more information, see the man page for
charhelp(1) (/opt/langtools/share/man/man1.Z must be in your
$MANPATH environment variable).

If the +help option does not work, ensure the environment variable
DTHELPSEARCHPATH is set. (It may not be set if you rlogin to a
system, for example.) If it is not set, use the following command to set
it:

eval $(dtsearchpath)

Ensure the LANG environment variable is set, typically LANG=C.

As a workaround, you can view the linker online help using the ? icon
on the HP CDE front panel or by using one of the following
commands:

/usr/dt/bin/dthelpview -helpVolume linker

or

/usr/dt/bin/dthelpview -h /opt/langtools/lib/linker/dt/appconfig/help/C/linker.sdl

• HP C++ Templates Technical Addendum describes template
implementation in HP C++. You can access the addendum from
within the HP C++ Online Programmer's Guide. It is also available in
the postscript file, /opt/CC/newconfig/TecDocs/templates.ps
and in the ASCII file,
/opt/CC/newconfig/TecDocs/templates.ascii .

• HP C++ Troubleshooting Notes focuses on methods of diagnosing and
solving problems you may encounter. It contains a “troubleshooting
matrix” and a list of tools available online in the
/opt/CC/contrib/Tools directory.

The document is available online in the postscript file,
/opt/CC/newconfig/TecDocs/tools.ps , and in the ASCII file,
/opt/CC/newconfig/TecDocs/tools.ascii . You can access the
ASCII file from within the HP C++ Online Programmer's Guide.

• HP C++ Release Notes is this document. The online ASCII file can be
found in /opt/CC/newconfig/RelNotes/CXX.release.notes .

Chapter 3 13

Related Documentation
Online Example Source Files

• The HP PA-RISC Compiler Optimization Technology White Paper
describes the benefits of using optimization. It is available in the
postscript file,
/opt/langtools/newconfig/white_papers/optimize.ps .

• Online manual pages for CC, c++filt , nm++, gprof++ , and the
standard libraries (stream, task, complex, codelibs, and standard
components) are provided under /opt/CC/share/man .

Online Example Source Files
The HP C++product comes with the source files of examples from the HP
C++ Programmer's Guide. The example source files reside in the
/opt/CC/contrib/Examples directory.

Printed Documentation
• HP C++ Release Notes is this document. Release notes are also

provided online, as noted above.

• HP C++ Programmer's Guide (92501-90005) contains similar, but in
some cases less current, information to that of the HP C++ Online
Programmer's Guide.

• Quick Reference Card (B1637-90001)

• HP/DDE Debugger User's Guide contains information on debugging
programs with the HP Distributed Debugging Environment on the
HP 9000. (B3476-90015)

To order printed versions of Hewlett-Packard documents, refer to
manuals(5).

14 Chapter 3

Related Documentation
Other Printed Documentation

Other Printed Documentation
Some of the many available C++ publications are listed here:

• Codelibs Library Reference (B2617-90000) complete information on
the HP Codelibs class library. This book can be ordered by contacting
your local HP sales office or Hewlett-Packard's Support Materials
Organization (SMO) at 1-800-227-8164 and providing the above part
number. Also see the codelibs(3X) man page. (If you see the message
"Man page could not be formatted" or "No manual entry
for codelibs" ensure that the man page is installed and your
MANPATH variable includes /opt/CC/share/man .)

• The C++ Programming Language, second edition, by Bjarne
Stroustrup (ISBN 0-201-53992-6) is a tutorial on C++ including a
complete language reference manual and information about
object-oriented design and software development. This book is
available at technical bookstores.

• C++ Primer, second edition, by Stanley Lippman (ISBN
0-201-54848-8) provides a complete tutorial introduction to C++. This
book is available at technical bookstores.

• The Annotated C++ Reference Manual, by Margaret Ellis and Bjarne
Stroustrup (ISBN 0-201-51459-1) is a complete C++ language
reference manual plus annotations and commentary that describe in
detail why features are defined as they are. This book is available at
technical bookstores.

• The HP PA-RISC Compiler Optimization Technology White Paper
(5963-7250E) describes the benefits of using optimization. To order a
printed copy, contact your local HP sales office or HP DIRECT at
1-800-637-7740. The white paper is also provided online as noted
above.

• USL/Novell manuals contain valuable information about C++, some
of which is specific to the cfront compiler upon which HP C++ is
based.

To inquire about the latest versions of these manuals, you can contact
the following:

• U.S. customers--phone 1-800-336-5989

Chapter 3 15

Related Documentation
Information on Exception Handling Features

• International customers--FAX 1-801-431-4045

• You can also use http://www.stream.com/ to get more information
about available documentation.

You need to request the Basic SDK Documentation Set, which
includes:

• Software Development Tools

• Programming in Standard C and C++

• Debugging and Analyzing C and C++ Programs

• Programming with System Calls and Libraries

• Porting and Integration Guide

• C++ Standard Components Programmer’s Guide

• Programming with the C++ Standard Libraries

Information on Exception Handling
Features
Below is some valuable information on exception handling features
published in previous release notes.

Exception handling is supported in both compiler mode and translator
mode, and such object files can be intermixed. Use the +eh option to
enable exception handling for both compiling and linking. There is some
performance degradation when using the +eh option in translator mode.

Detecting Link Incompatibilities when Using
Exception Handling
This release of HP C++ supports exception handling when the +eh option
is specified. Note that code compiled with +eh is not link compatible with
code that has not been compiled with +eh. There are three reasons for
this:

16 Chapter 3

Related Documentation
Information on Exception Handling Features

1. When +eh is enabled, constructors no longer allocate memory for
heap objects; such memory is allocated before the constructor is
called. For example, if non +eh code calls a +eh constructor to
construct a heap object, memory for the heap object is not allocated.

2. When +eh is enabled, all constructors perform a certain amount of
bookkeeping to indicate how far object construction has progressed;
this is needed because in the event of an exception, partially
constructed objects need to be cleaned up. If +eh code calls a non +eh
constructor, this bookkeeping does not take place; thus, in the event of
an exception, there is incorrect information about the state of objects
in procedures which called non +eh constructors.

3. All +eh procedures perform a certain amount of bookkeeping to save
information about the list of objects constructed within each
procedure. Since non +eh procedures do not perform this
bookkeeping, such procedures do not undergo any object cleanups in
the event of an exception.

Detecting Link Incompatibilities in Shared
Libraries
When the CC driver is used to produce a shared library (using −b), link
incompatibilities are detected by c++patch using the same rules
described above. When performing a link which involves shared
libraries, HP C++ waits until run time to establish that each shared
library linked in or explicitly loaded is compatible with the main
executable. If any incompatibilities are detected, the default behavior is
to print a warning message to stderr. If this default behavior is
unacceptable, you can override it by linking in your own version of the
routine __link_incompatibility .

For example, if you do not wish to have any warning of this kind at all,
the following routine can be linked in:

extern "C" void __link_incompatibility
 (const char* libname, int lib_mode) {
 //libname is the name of the library
 //lib_mode == 0 for a non +eh library
 //lib_mode == 1 for a +eh library

 //You can provide your own version to override the
 //default behavior
 //This is an empty body which does nothing
}

Chapter 3 17

Related Documentation
Information on Exception Handling Features

Exception Handling Language Clarifications
This section lists various exception handling language issues which
should be considered clarifications of The Annotated C++ Reference
Manual. These clarifications represent the behavior of HP's
implementation of exception handling.

Issues in this section are organized as follows:

• Throwing an Exception

• Handling an Exception

• Throw Specifications

• terminate() and unexpected()

• Other Issues

Throwing an Exception

1. Can a class with an ambiguous base class be thrown? That is,
should the following be legal?

struct A { ... };
struct B1 : A { ... };
struct B2 : A { ... };
struct C : B1, B2 { ... };
void f()
{
C c;
throw c; // legal?
}

No, throwing a class with an ambiguous base class is not legal.

2. Can a class with multiple instances of the same base class be
thrown if only one of the base class instances is accessible?

No, a class with multiple instances of the same base class cannot be
thrown even if only one of the base class instances is accessible.

3. What happens when a reference is thrown?

A temporary is allocated, the object referenced by the throw
argument is copied into the temp, and the search for the appropriate
handler is begun.

When the handler is found, if its argument is not a reference type, the
local is initialized from the temp. If the handler's local variable is of a
reference type, the reference is made to refer to the temp.

18 Chapter 3

Related Documentation
Information on Exception Handling Features

The possibly surprising effect of this is that if a reference to a global is
thrown, and the handler’s local is a reference type, the handler gets a
reference to the temporary, not a reference to the global.

4. Can the name of an overloaded function be thrown?

No, the name of an overloaded function (really, its address) cannot be
thrown.

5. What is the precedence of throw?

A throw-expression is an assignment-expression.

6. Can a throw appear in a conditional expression? For example,
is the following legal?

void f()
{
int x;
x ? throw : 12;
}

void g()
{
int x;
x ? 12 : throw;
}

Yes, a throw can appear in a conditional expression.

7. Are nested throws allowed?

Yes. When a nested throw occurs, processing of the previous exception
is abandoned and the new exception is processed.

8. What happens if a rethrow occurs outside the dynamic
context of a handler?

The behavior of a rethrow outside the dynamic context of a handler is
undefined.

9. What happens if an exception is thrown in a signal handler?

Throwing an exception in a signal handler is not supported. There is
no way to predict when a signal handler will execute, consequently
the signal handler could be called when the exception handling
structures are in an inconsistent state.

10.What happens if a longjmp is issued in a signal handler?

Chapter 3 19

Related Documentation
Information on Exception Handling Features

This is not recommended for the same reason that throwing an
exception in a signal handler is not supported. The signal handler
interrupts processing of the code resulting in undefined data
structures with unpredictable results.

Handling an Exception

1. Should the implementation warn or generate a hard error for
the appearance of a masked catch clause?

The appearance of a masked catch clause is an error.

2. Does the presence of a linkage specification affect the
handlers that can catch (the address of) a function?

No, the type of a function is not affected by a linkage specification.

For example, this throw:

extern "C" {
void f(int);
};

void g()
{
throw f;
}

is catchable by:

catch (void (*)())

3. Can an incomplete type appear in a catch clause?

No, an incomplete type cannot appear in a catch clause.

4. When is an exception considered handled?

An exception is considered handled when one of the following occurs:

• a handler for the exception is invoked

• terminate is invoked

• unexpected is invoked

Throw Specifications

1. Must all throw specifications on the definition and
declarations for a given function agree?

Yes, all throw specifications on the definition and declarations for a
given function must agree.

20 Chapter 3

Related Documentation
Information on Exception Handling Features

2. Can a class with ambiguous base classes be on a specification
list? That is, is the following throw specification on bar legal?

struct A { ... };
struct B1 : A { ... };
struct B2 : A { ... };
struct C : B1, B2 { ... };

void foo (C* cp)
{
w *cp; //error according to ANSI
}

void bar () throw(C); // legal?

No, a class with an ambiguous base class cannot appear in a throw
specification.

3. Can a derived class of a class on a throw specification list also
appear in that same throw specification list?

Yes, a derived class of a class on a throw specification list can also
appear in that same throw specification list.

4. Can a function that lists a pointer to a base class in its throw
specification list also throw a pointer to a derived class of that
class?

Yes, a function that lists a pointer to a base class in its throw
specification list can throw a pointer to a derived class of that class.

5. Can a reference appear in a throw specification list?

Yes, a reference can appear in a throw specification list.

6. Can a type appear more than once in a throw specification
list?

That is, is the following declaration legal?

void baz() throw(A,A,A); // legal?

Yes, duplicate types are allowed in throw specification type lists.

7. Can an incomplete type appear in a throw specification list?
For example, should the following be legal?

struct A;
void f() throw(A) { }

Yes, an incomplete type can appear in a throw specification list.

8. Where can a throw specification appear?

Chapter 3 21

Related Documentation
Information on Exception Handling Features

A throw specification can appear only in a function declaration or a
function definition and only for the function being declared or defined.
In particular, it can not appear within an argument list nor in a
typedef.

terminate() and unexpected()

1. What should be done when a thrown exception is not
handled?

No cleanups should take place; terminate should be called.

If an unhandled exception occurs while constructing static objects,
call terminate. If terminate then calls exit, any fully constructed or
partially constructed statics should be destroyed.

If an unhandled exception occurs while destroying static objects, call
terminate. If terminate then calls exit, try to destroy any remaining
static objects. Do not try again to destroy the object that caused the
exception.

2. Can terminate() call exit()?

Yes, terminate() can call exit().

3. Can unexpected() return?

No, unexpected() cannot return.

4. Can unexpected() throw or rethrow?

Yes, unexpected() can throw or rethrow.

5. What does unexpected() rethrow?

A rethrow in unexpected() rethrows the exception that caused
unexpected() to be called.

Other Issues

1. Are transfers of control into try blocks and handlers legal?

No, transfers of control into try blocks and handlers are not legal.

2. Is it correct to consider an object constructed when its last
statement is reached, while a destructor is considered
complete just before its first statement is reached?

22 Chapter 3

Related Documentation
Information on Exception Handling Features

An object is not considered fully constructed until everything in the
constructor is finished. An object is considered partially destroyed
before anything happens in the destructor.

3. Should the EH run-time delete memory allocated by a
new-with-placement?

No, the EH run-time should not delete memory allocated by a
new-with-placement.

4. Should locals and globals be cleaned up when an
unhandleable exception is thrown?

No, locals and globals are not to be cleaned up when an unhandleable
exception is thrown.

5. Should an object for which a destructor has been called still
be cleaned up by the EH run-time?

A destructor should not be called explicitly on an object for which a
destructor is called implicitly. Thus the EH run-time should not have
to worry about whether an explicit destructor call has been issued for
an object.

6. Should exit() throw a standard exception to ensure that
automatics are cleaned up?

No, exit() should not throw an exception.

7. What should happen when an exception is thrown from a
function registered with atexit()?

When an exception is thrown from a function registered with atexit(),
terminate() should be called.

8. What should happen if the user program calls alloca()?

You can only use alloca() in translator mode. However, it is
recommended that you avoid this function.

23

4 Problem Descriptions and Fixes
and Known Limitations

This chapter summarizes the known problems and limitations of the
current version of HP C++, except as otherwise noted.

HP-UX 10.10 is the last supported OS for PA-RISC 1.0 architecture
machines. HP-UX 10.30 no longer supports execution of PA-RISC 1.0
code, and 10.30 compilers no longer support the compilation of PA-RISC
1.0 code.

For system level binary compatibility information, see the Release Notes
for HP-UX 10.30.

Known Problems
Customers on support can use the product number to assist them in
finding SSB and SRB reports for HP C++. The product number you can
search for is HPCPLUSPLUSA.

To verify the product number and version for your HP C++ compiler,
execute the following HP-UX commands:

what /opt/CC/lbin/cfront

what /opt/CC/bin/CC

Known Limitations
Some of these limitations with possible workarounds are discussed in
detail elsewhere in this document. Please be aware that some of these
limitations are platform-specific.

24 Chapter 4

Problem Descriptions and Fixes and Known Limitations
Known Limitations

The setjmp/longjmp and +eh option
Code compiled in compiler mode with the +eh option should not use
setjmp/longjmp. To use setjump/longjmp with +eh in translator mode,
replace all setjmp/longjmp calls with Setjmp/Longjmp. You must also
must change the #include from <setjmp.h> to <Setjmp.h> .

Kernel threads unsupported
The thread-safe level of the code generated by HP C++ depends on which
libC routines are called with the possible exception of static constructors
for function scope statics or +eh code.

Thread-safe levels depends on which particular interface and the type of
threads.

Table 4-1 Thread-safe Levels

Kernel Threads User Threads

Generated Code:

Function-scope
statics

Thread-Restricted C. User owns
local variable.

Thread-Restricted C. User owns
the local variable.

File-scope static
and globals

Thread-Restricted C for dynamic
loading of shared libraries.
Ordering of initialization may be
more of a problem.

Thread-Restricted C for dynamic
loading of shared libraries.
Ordering of initialization may be
more of a problem.

+eh code Thread-Restricted A.
Thread-Unusable unless other
threads are just C.

Thread-Safe Performance
Constrained.

libC interfaces:

+eh ([re]throw) Thread-Restricted A. Thread-
Restricted B if only one thread is
written in C++.

Thread-Safe Performance
Constrained.

I/O (iostreams ,
strstream , etc.)

Thread-Restricted C. Thread-Safe Performance
Constrained. Tuned if using
predefined streams: cin , cout ,
cerr , clog . Otherwise Thread-
Restricted C.

Chapter 4 25

Problem Descriptions and Fixes and Known Limitations
Known Limitations

vec new/delete Thread-Restricted C. Thread-Safe
Performance Constrained.

cxxshl_load
and
cxxshl_unload

Thread-Restricted C. Thread-Restricted C.

Others Probably references no statics/
globals so completely safe. libC
is not fork-safe. It assumes no
cancellations are possible.

Probably references no statics/
globals so completely safe. libC is
not fork-safe. It assumes no
cancellations are possible.

Kernel Threads User Threads

