
FINAL TRIM SIZE : 7.5 in x 9.0 in

Starbase Technical Addendum

for the July, 1997 Workstation

ACE for 10.20 HP-UX

HP 9000 Series 700 and 800 Computers

ABCDE

HP Part No. B2355-90143

Printed in USA July 1997

Edition 1

FINAL TRIM SIZE : 7.5 in x 9.0 in

Notices

The information contained in this document is subject to change without notice.

Hewlett-Packard makes no warranty of any kind with regard to this manual,
including, but not limited to, the implied warranties of merchantability and
�tness for a particular purpose. Hewlett-Packard shall not be liable for errors
contained herein or direct, indirect, special, incidental or consequential damages
in connection with the furnishing, performance, or use of this material.

Warranty. A copy of the speci�c warranty terms applicable to your Hewlett-
Packard product and replacement parts can be obtained from your local Sales
and Service O�ce.

Copyright c
 1989 - 1997 Hewlett-Packard Company

This document contains information which is protected by copyright. All rights
are reserved. Reproduction, adaptation, or translation without prior written
permission is prohibited, except as allowed under the copyright laws.

Restricted Rights Legend. Use, duplication or disclosure by the U.S. Government
is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in
Technical Data and Computer Software clause in DFARS 252.227-7013. Rights
for non-DOD U.S. Government Departments and Agencies are as set forth in
FAR 52.227-19(c)(1,2).

Use of this manual and
exible disc(s) or tape cartridge(s) supplied for this pack
is restricted to this product only. Additional copies of the programs can be made
for security and back-up purposes only. Resale of the programs in their present
form or with alterations, is expressly prohibited.

Copyright c
 Novell, Inc. 1980, 1984

Copyright c
 1979, 1980, 1985-1993 The Regents of the University of California

This software and documentation is based in part on the Fourth Berkeley Software
Distribution under license from the Regents of the University of California.

FINAL TRIM SIZE : 7.5 in x 9.0 in

Printing History

New editions of this manual will incorporate all material updated since the
previous edition. This manual's printing date and part number change when
a new edition is printed.

July 1997 . . . Edition 1. This manual is valid for the HP-UX 10.20 release on all
HP 9000 Series 700 and 800 Computers, plus the July, 1997 Workstation ACE for
10.20 HP-UX on all HP 9000 Series 700 Computers. This edition of the manual
includes device information for the HP Visualize-EG, HP Visualize-8,
HP Visualize-24, HP Visualize-48, HP Visualize-48XP, the
HP Visualize-FX family of devices, and HP VMX. Note that Starbase reference
pages for new and updated features are also part of this addendum.

iii

FINAL TRIM SIZE : 7.5 in x 9.0 in

FINAL TRIM SIZE : 7.5 in x 9.0 in

Contents

1. Introduction
Conventions . 1-2
Document Conventions 1-2
Environment Variable Conventions 1-2
Setting and Unsetting Environment Variables 1-3

Setting PATH and MANPATH 1-3
HP CDE and HP VUE 1-4
Gamma Correction . 1-4
Texture Mapping . 1-4

2. The HCRX Family of Devices
hphcrx Devices . 2-2
PowerShade . 2-3
For More Information 2-4
Device Descriptions . 2-4
HP VISUALIZE-EG Card 2-4
Dual HP VISUALIZE-EG Card and Multi-Display Support . 2-5
Add-on HP VISUALIZE-EG Memory 2-5
HCRX-8 . 2-5
HCRX-8Z . 2-6
HP VISUALIZE-8 2-7
HCRX-24 . 2-7
HCRX-24Z . 2-8
HP VISUALIZE-24 2-9
Overlay Plane Rendering 2-9
Geometry Accelerator (only HP VISUALIZE-8 and

HP VISUALIZE-24) 2-10
PowerShade, 3D Surfaces Software 2-12
HP Color Recovery Technology 2-12
Gescapes . 2-14

Contents-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

The Frame Bu�er . 2-15
Physical Address Space 2-15
To Access the Frame Bu�er Directly 2-16
Frame Bu�er Address Mapping 2-16
Frame Bu�er Con�gurations 2-19

Device Support for the TrueColor Visual 2-20
TrueColor Visual Description 2-20
Example . 2-21

Device Speci�c Visuals Information 2-21
Using Starbase in X Windows 2-23
Per-Window Double-Bu�ering 2-23
Available Color Map Entries 2-24
Starbase Color Maps and X11 Read/Write Restrictions . . . 2-24
Accessing HP Color Recovery with X Windows 2-24
Backing Store . 2-27
Backing Store Exceptions 2-27

X11 Cursor . 2-28
Supported Visuals 2-28

Overlay Plane Transparency and the X Windows System 2-30
The HP VISUALIZE-EG with add-on memory, HCRX-8,

HCRX-8Z, and HP VISUALIZE-8 Frame Bu�er
Con�guration . 2-31

The HCRX-24, HCRX-24Z, and HP VISUALIZE-24 Frame
Bu�er Con�guration 2-33

HCRX Con�guration Hints 2-35
HP VISUALIZE-EG with add-on memory, HCRX-8,

HCRX-8Z, and HP VISUALIZE-8 Visuals and
Double-Bu�er Support 2-36

Moving the Default Visual to the Image Planes 2-38
The Overlay Plane Color Map Management Scheme 2-39
Starbase Echoes . 2-40
To Open and Initialize the Device for Output 2-40
Syntax Examples . 2-40
Parameters for gopen 2-41

Special Device Characteristics 2-43
Device Coordinate Addressing 2-43

Starbase Functionality 2-44

Contents-2

FINAL TRIM SIZE : 7.5 in x 9.0 in

Calls Not Supported on the HCRX-8Z and HP VISUALIZE-8,
or on the HP VISUALIZE-EG and HCRX-8 with
PowerShade . 2-44

Calls Not Supported on the HCRX-24Z and
HP VISUALIZE-24, or on the HCRX-24 with PowerShade 2-45

Calls not Supported on the HP VISUALIZE-EG, HCRX-8, and
HCRX-24 . 2-46

Conditional Support of Starbase Calls on the
HP VISUALIZE-EG and HCRX-8 2-47

Conditional Support of Starbase Calls on the HCRX-24,
HCRX-24Z, or HP VISUALIZE-24 2-48

Supported Gescapes 2-53
Exceptions to Gescape Support 2-55

Porting from HCRX-8 or HP VISUALIZE-EG to HCRX-24 or
HP VISUALIZE-24 2-56
CMAP FULL Mode 2-56
Number of Color Planes 2-56

Porting from HCRX-24 to an HCRX-24Z or HP VISUALIZE-24 2-57
Source Incompatibilities 2-57
Backing Store . 2-57
Image Di�erences . 2-58

screenpr for the HCRX Family of Graphics Devices 2-59

3. The HP VISUALIZE-48 and HP VISUALIZE-48XP Devices
Graphics Device Con�guration 3-2
PowerShade . 3-3
For More Information 3-3
Device Description . 3-3
Geometry Accelerator 3-5
Texture Mapping Accelerator 3-7
Overlay Plane Rendering 3-7
HP Color Recovery Technology 3-8
Gescapes . 3-10

The Frame Bu�er . 3-11
Physical Address Space 3-11
To Access the Frame Bu�er Directly 3-12
Frame Bu�er Address Mapping 3-12
Frame Bu�er Con�gurations 3-15

Contents-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

Using Starbase in X Windows 3-15
Per-Window Double-Bu�ering 3-16
Available Color Map Entries 3-16
Starbase Color Maps and X11 Read/Write Restrictions . . . 3-16
Accessing HP Color Recovery with X Windows 3-17
Backing Store . 3-19
Backing Store Exceptions 3-20

X11 Cursor . 3-20
Supported Visuals 3-20

Moving the Default Visual to the Image Planes 3-22
Device Support for the TrueColor Visual 3-23
TrueColor Visual Description 3-23
Example . 3-24

Device Speci�c Visuals Information 3-24
The Overlay Plane Color Map Management Scheme 3-25
Overlay Plane Transparency and the X Windows System 3-26
The Default Frame Bu�er Con�guration for the

HP VISUALIZE-48 and HP VISUALIZE-48XP 3-28
To Open and Initialize the Device for Output 3-30
Syntax Examples . 3-30
Parameters for gopen 3-30

Special Device Characteristics 3-33
Device Coordinate Addressing 3-33

Starbase Echoes . 3-34
Starbase Functionality 3-35
Calls Not Supported on the HP VISUALIZE-48 and

HP VISUALIZE-48XP 3-35
Conditional Support of Starbase Calls on the

HP VISUALIZE-48 and HP VISUALIZE-48XP 3-35
Supported Gescapes 3-40
Exceptions to Gescape Support 3-41
Modi�ed Gescapes 3-41

Comparison Between the CRX-48Z/HCRX-24Z and the
HP VISUALIZE-48/HP VISUALIZE-48XP 3-42
Backing Store . 3-42
Image Di�erences . 3-43

screenpr for the HP VISUALIZE-48 and HP VISUALIZE-48XP 3-44

Contents-4

FINAL TRIM SIZE : 7.5 in x 9.0 in

4. The HP Visualize-FX Family of Devices
Graphics Device Con�guration 4-2
PowerShade . 4-3
For More Information 4-3
Device Descriptions . 4-3
HP Visualize-FX2 Device Description 4-5
HP Visualize-FX4 and HP Visualize-FX6 Device Descriptions . 4-5
Performance Information 4-5
Geometry Accelerator 4-6
Texture Mapping Accelerator 4-8
Overlay Plane Rendering 4-9
HP Color Recovery Technology 4-9
Gescapes . 4-11

The Frame Bu�er . 4-12
Physical Address Space 4-12
To Access the Frame Bu�er Directly 4-13
Frame Bu�er Address Mapping 4-13
Frame Bu�er Con�gurations 4-16

Using Starbase in X Windows 4-17
Per-Window Double-Bu�ering 4-17
Available Color Map Entries 4-17
Starbase Color Maps and X11 Read/Write Restrictions . . . 4-18
Accessing HP Color Recovery with X Windows 4-18
Backing Store . 4-20
X11 Cursor . 4-21
Supported Visuals 4-21

Moving the Default Visual to the Image Planes 4-23
Device Support for the TrueColor Visual 4-24
TrueColor Visual Description 4-24
Example . 4-25

Device Speci�c Visuals Information 4-26
The Overlay Plane Color Map Management Scheme 4-27
Overlay Plane Transparency and the X Windows System 4-28
The Default Frame Bu�er Con�gurations for the

HP Visualize-FX Devices 4-30
To Open and Initialize the Device for Output 4-33
Syntax Examples . 4-33
Parameters for gopen 4-33

Contents-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

Special Device Characteristics 4-35
Device Coordinate Addressing 4-35

Starbase Echoes . 4-36
Starbase Functionality 4-37
Calls Not Supported on the HP Visualize-FX Devices 4-37
Conditional Support of Starbase Calls on the HP Visualize-FX

Devices . 4-37
Supported Gescapes 4-42
Exceptions to Gescape Support 4-43
Modi�ed Gescapes 4-43

Comparison Between the HP Visualize-FX Family and Other
Devices . 4-44
Comparing the HP Visualize-FX2 and HP VISUALIZE-24

Devices . 4-44
Comparing the HP Visualize-FX4/HP Visualize-FX6 and

HP VISUALIZE-48/HP VISUALIZE-48XP Devices . . . 4-45
Image Di�erences . 4-46
screenpr for the HP Visualize-FX Devices 4-47

5. HP Virtual Memory and X
Introduction . 5-1
Supported Visuals 5-2

HP VMX and PowerShade 5-2
HP VMX Support . 5-2
HP VMX Server Support 5-2
HP VMX Client Support 5-3
HP VMX API Support 5-3

For More Information 5-3
Device Description . 5-4
What is HP VMX? 5-4
How Do You Use HP VMX? 5-5
HP VMX Usage Example 5-5

How Does HP VMX Work? 5-6
Overview . 5-6

HP VMX Con�gurations 5-7
HP VMX Device Driver, VM Rendering Utilities, and Overlay

Planes . 5-8
VM Rendering Utilities 5-8

Contents-6

FINAL TRIM SIZE : 7.5 in x 9.0 in

Overlay Planes . 5-9
HP VMX Performance 5-9
X Windows . 5-10
Compiling Your Application with the HP VMX Graphics Driver 5-10
To Open and Initialize the Device for Output 5-10
X11 Environment . 5-10
DISPLAY Environment Variable 5-10
xhost Client . 5-11

Syntax Examples . 5-11
Syntax Examples 5-12

Parameters for gopen 5-12
Special Device Characteristics 5-14
Device Coordinate Addressing 5-14
Device Defaults . 5-14
Raster Echo Default 5-14
Semaphore Default 5-14
Line Type Defaults 5-15

Color . 5-15
Default Color Map 5-15

Starbase Functionality 5-17
Calls Not Supported 5-17
Using PowerShade with HP VMX 5-17

Conditional Support of Starbase Calls with HP VMX 5-18
Supported Gescapes 5-21
Additional Gescapes Supported if PowerShade is Enabled . 5-22

Exceptions to Gescape Support 5-22
Di�erences From Other Starbase Device Drivers 5-23
Synchronization . 5-23
Resource Considerations 5-23
Restricted gopens . 5-25

VM Rendering Utilities 5-25
VM Double-Bu�ering on 8-plane devices 5-26
Virtual Memory Double-Bu�ering 5-26
VM Backing Store 5-27

HP VMX: The Overlay Plane Driver 5-28
SOX11 vs. HP VMX 5-30
Functionality . 5-30
Performance . 5-30

Contents-7

FINAL TRIM SIZE : 7.5 in x 9.0 in

Changing from HP VMX to SOX11 5-30
The Environment Variables HP VM RENDER METHOD and

HP VM XLIB DITHER 5-31
HP VM RENDER METHOD 5-31
HP VM XLIB DITHER 5-31

6. Gescapes
Introduction . 6-1
R READ FB . 6-1
Supported Devices 6-1
Description . 6-1

R WRITE FB . 6-3
Supported Devices 6-3
Description . 6-3

SET POLYGON OFFSET 6-6
Supported Devices 6-6
Description . 6-6
Improving Rendering of Edged Polygons 6-9
Reducing Rendering Artifacts 6-12

WIDELINE CONTROL 6-13
Supported Devices 6-13
Description . 6-13

A. Starbase Reference Pages

Index

Contents-8

FINAL TRIM SIZE : 7.5 in x 9.0 in

Figures

2-1. Physical Address Space 2-15
2-2. Frame Bu�er Mapping in Memory 2-17
2-3. Hardware Z-Bu�er Data Alignment 2-18
2-4. Pixel Representation for the 8-, 12-, and 24-Plane TrueColor

Visuals . 2-20
2-5. Device Coordinates 2-43
3-1. Physical Address Space 3-11
3-2. Frame Bu�er Mapping in Memory 3-13
3-3. Hardware Z-Bu�er Data Alignment 3-14
3-4. Pixel Representation for the 8- and 24-Plane TrueColor Visuals 3-23
3-5. Device Coordinates 3-33
4-1. Physical Address Space 4-12
4-2. Frame Bu�er Mapping in Memory 4-14
4-3. Hardware Z-Bu�er Data Alignment 4-15
4-4. Pixel Representation for the Depth 8, 12, and 24 TrueColor

Visuals . 4-25
4-5. Device Coordinates 4-35
6-1. \French-Cut" Widelines 6-14

Contents-9

FINAL TRIM SIZE : 7.5 in x 9.0 in

Tables

1-1. Shell Commands for Setting and Unsetting Environment
Variables . 1-3

2-1. hphcrx Device Driver Support 2-2
2-2. Supported Frame Bu�er Con�gurations 2-19
2-3. Examples of Pixel Color Values 2-21
2-4. Supported Visuals 2-29
2-5. The Default HP VISUALIZE-EG with add-on memory,

HCRX-8, HCRX-8Z, and HP VISUALIZE-8 Frame Bu�er
Con�guration . 2-31

2-6. HP VISUALIZE-EG with add-on memory, HCRX-8,
HCRX-8Z, and HP VISUALIZE-8 Frame Bu�er
Con�guration in Overlay Transparent Mode 2-32

2-7. The Default HCRX-24, HCRX-24Z, and HP VISUALIZE-24
Frame Bu�er Con�guration 2-33

3-1. Supported Depth of Image Plane Windows 3-2
3-2. Supported Frame Bu�er Con�gurations 3-15
3-3. Supported Visuals 3-21
3-4. Examples of Pixel Color Values 3-24
3-5. The Default Frame Bu�er Con�guration for the

HP Visualize-48 and HP Visualize-48XP 3-28
4-1. Supported Depth of Image Plane Windows 4-2
4-2. Supported Frame Bu�er Con�gurations 4-16
4-3. Supported Visuals 4-22
4-4. Examples of Pixel Color Values 4-26
4-5. The Default Frame Bu�er Con�guration for HP Visualize-FX2 4-30
4-6. The Default Frame Bu�er Con�guration for HP Visualize-FX4

and HP Visualize-FX6 4-31
5-1. Line Type Defaults 5-15
5-2. Starbase Default Color Table 5-16
5-3. Driver Selection at gopen 5-29

Contents-10

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

1

Introduction

The Starbase Technical Addendum for HP-UX 10.X are addenda to the 10.0
versions of the HP-UX Starbase Device Drivers Manual and the Starbase
Reference. This addendum contains the following chapters and appendix:

Chapter 1 \Introduction" is a brief introduction to this addendum. It pro-
vides information on chapter contents and manual conventions.

Chapter 2 \The HCRX Family of Devices" | This chapter describes the
HCRX family of graphics devices, and the addition of the
HP Visualize-8, HP Visualize-24, HP Visualize-EG, and
Dual HP Visualize-EG cards.

Chapter 3 \The HP Visualize-48 and HP Visualize-48XP Devices" |
This chapter describes the functionality of these graphics devices.

Chapter 4 \The HP Visualize-FX Family of Devices" | This chap-
ter describes the functionality of the HP Visualize-FX2,
HP Visualize-FX4, and HP Visualize-FX6 devices.

Chapter 5 \HP Virtual Memory and X (VMX)" | This chapter describes
how the hpvmx device driver works.

Chapter 6 \Gescapes" | This chapter describes new gescapes for the
HP-UX 10.X releases of Starbase.

Appendix A \Starbase Reference Pages" | This appendix contains new and
updated reference pages for the HP-UX 10.X releases of Starbase.

Introduction 1-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

Conventions

This section covers documentation conventions and the conventions used to set
environment variables.

Document Conventions

hitalicsi Italic type enclosed in angle brackets indicates parameters
that you will supply. This same convention also applies
to the actual path names of directories. Note that the
path names given in angle brackets depend on the �le
system structure. See the Graphics Administration Guide
for details.

... The vertical ellipsis indicates that irrelevant parts of a
program example or illustration have been omitted.

computer font This constant-width, computer-type font indicates verba-
tim entries that you make on the command line or as pro-
gram text including routine names, parameters, and �le or
directory names.

Environment Variable Conventions

In this document, you will be given examples that set various environment
variables using the Korn shell.

An environment variable can be set using any one of three shell environments:
Korn shell, POSIX shell, and C shell. The Korn and POSIX shells set
environment variables in the same manner; however, the C shell uses a di�erent
command.

1-2 Introduction

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

Setting and Unsetting Environment Variables

To set an environment variable (env var) to a particular value (value), or to unset
an environment variable (env var), use the information provided in Table 1-1.

Table 1-1.

Shell Commands for Setting and Unsetting Environment Variables

Korn and POSIX Shells C Shell

To set:
export henv vari=hvaluei

To set:
setenv henv vari hvaluei

To unset:
unset henv vari

To unset:
unsetenv henv vari

Setting PATH and MANPATH

In this document, you will be given examples that refer to various executables
and on-line reference pages. To conveniently access these executables and online
reference pages, your PATH and MANPATH environment variables must include the
appropriate Starbase and graphics directories. The following commands will add
the necessary directories. (The actual path name of the directory given in angle
brackets depends on the �le system structure; see the Graphics Administration
Guide for details.)

PATH=$PATH:hstarbasei/bin:hcommoni/bin

MANPATH=$MANPATH:hstarbasei/share/man

export PATH MANPATH

Introduction 1-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

HP CDE and HP VUE

Hewlett-Packard is in the process of transitioning to a standard user environment.
Two user environments are shipped with HP-UX 10.20: HP VUE and HP CDE
(Common Desktop Environment). Starting with HP-UX 10.20, HP CDE will be
the default user environment. HP VUE will still be available with HP-UX 10.20,
but will not be available in future HP-UX releases. See the Common Desktop
Environment User's Guide for more information on HP CDE.

From a 3D graphics point of view, the change in user environments should have
no e�ect.

Gamma Correction

A new gamma correction tool is available with July, 1997 Workstation ACE for
10.20 HP-UX. See the Graphics Administration Guide for more information.

Texture Mapping

HP-UX releases 10.10 and later support Starbase texture mapping. Here is a list
of Starbase texture mapping routines:

tm_activate_texture(3G)
tm_activate_bf_texture(3G)
tm_close_texture(3G)
tm_edit_texture(3G)
tm_filter_texels(3G)
tm_load_texels(3G)
tm_open_texture(3G)
tm_resource_hints(3G)
tm_unload_texels(3G)
tm_view_orientation(3G)
tmc_partial_polygon_with_data3d(3G)
tmc_polygon_with_data3d(3G)
tmc_polyhedron_with_data(3G)

1-4 Introduction

FINAL TRIM SIZE : 7.5 in x 9.0 in

1

tmc_quadrilateral_mesh_with_data(3G)
tmc_triangular_strip_with_data(3G)

See the reference pages in Appendix A for more information on these routines.

Introduction 1-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

2

The HCRX Family of Devices

This chapter describes the HCRX family of graphics devices, and the addition
of the HP Visualize-8, HP Visualize-24, HP Visualize-EG, and Dual
HP Visualize-EG cards.

The hphcrx driver supports the HCRX family of graphics devices. These devices
are all similar, and have di�erent levels of hardware support for the following
operations:

Generating vectors
Write-enabling planes
Writing pixels to the frame bu�er with a given replacement rule
Moving a block of pixels from one place in the frame bu�er to another
Using bank-select and double-bu�ering per window
Flat shaded rectangles
Dithering and HP Color Recovery
Overlay plane transparency (X Windows)
Geometry transformations (with PowerShade)
Lighting calculations (with PowerShade)
Interpolated shading (with PowerShade).

The hphcrx device driver supports the graphics devices described in the
subsequent section.

HP HCRX 2-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

hphcrx Devices

Note Raw-mode graphics support is not available on any HCRX
graphics device. You must display your Starbase applications in
an X11 window or windows. For information on using Starbase
with X11, read the chapter \Using Starbase with the X Window
System" in the Starbase Graphics Techniques manual.

The hphcrx device driver supports the con�gurations shown in Table 2-1.

Table 2-1. hphcrx Device Driver Support

Graphics

Device

Number of

Image Planes

Number of

Overlay

Planes1

Hardware

Accelerator

Resolution

HP Visualize-EG 8 0 No 1280�1024

HP Visualize-EG

with add-on memory
8 or 8/8 8 No 1280�1024

HCRX-8 8 or 8/8 8 No 1280�1024

HCRX-8Z 8 or 8/8 8 Yes 1280�1024

HP Visualize-8 8 or 8/8 8 Yes2 1280�1024

HCRX-24 24, 12/12, or
8/8

8 No 1280�1024

HCRX-24Z 24, 12/12, or
8/8

8 Yes 1280�1024

HP Visualize-24 24, 12/12, or
8/8

8 Yes2 1280�1024

1 All Starbase graphics rendering to the overlay planes is done by the VMX or SOX11 device drivers.

2 This graphics device includes a geometry accelerator.

2-2 HP HCRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
The HCRX-8, HCRX-8Z, HP Visualize-EG with add-on memory, and
HP Visualize-8 support 8 planes single-bu�ered or 8/8 planes double-bu�ered.
The HCRX-24, HCRX-24Z, and HP Visualize-24 support 8 planes single-
bu�ered, 8/8 planes double-bu�ered, 12 planes single-bu�ered, 12/12 planes
double-bu�ered, or 24 planes single-bu�ered. The HP Visualize-EG with no
add-on memory supports 8 planes single-bu�ered. You must install the add-
on HP Visualize-EG memory to add support for 8/8 double-bu�ering and 8
overlay planes.

In order to reduce
ickering, these graphics devices refresh the attached CRT
displays at a minimum rate of 72 Hz.

All con�gurations support 1280�1024 pixel color displays, two hardware color
maps in the image planes, and two hardware color maps in the overlay planes
when overlay planes are available.

PowerShade

The 3D surfaces software, PowerShade, works with all of the hphcrx devices.
Note that PowerShade only works with the hphcrx driver in the image planes.
PowerShade support in the overlay planes is provided by the VMX driver. For
information on this driver, see the \Virtual Memory and X" chapter in this
Addendum.

In order to use VMX with PowerShade on any graphics system, you must install
the PowerShade software. See the Graphics Administration Guide for more
details.

HP HCRX 2-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

For More Information

Information in this section is device-speci�c. For more detailed information on
graphics programming and X windows, please refer to the noted documents:

See the Starbase Graphics Techniques manual for general Starbase program-
ming information.

Refer to the Graphics Administration Guide to read about linking shared or
archive libraries, path naming conventions, X windows, completing installation,
and setting up graphics devices.

Device Descriptions

HP VISUALIZE-EG Card

The HP Visualize-EG card without the add-on HP Visualize-EG memory
has two hardware color maps in the image planes. With the add-on
HP Visualize-EGmemory, HP Visualize-EG has two hardware color maps in
the image planes and two hardware color maps in the overlay planes. It supports
HP Color Recovery, as explained in the section \HP Color Recovery Technology"
in this chapter.

This graphics card provides a display that is 1280�1024 pixels. There is no
o�screen memory in the frame bu�er. Note that the 1600�1200 resolution mode
is not supported.

The HP Visualize-EG supports 8 planes single-bu�ered without the add-on
HP Visualize-EG memory. Or, if you have the add-on HP Visualize-EG

memory, 8/8 double-bu�ered is supported. After you add the add-on
HP Visualize-EG memory, you must con�gure the memory the �rst time you
reboot your system.

The PowerShade software adds support for lighting, shading, and Z-bu�ering in
all windows.

The only X server mode supported is combined mode. For information on
supported X server modes, read the section \Supported X Server Modes" in
the Graphics Administration Guide .

2-4 HP HCRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
HP Visualize-EG supports all Starbase color map modes (CMAP_MONOTONIC,
CMAP_FULL, and CMAP_NORMAL).

Dual HP VISUALIZE-EG Card and Multi-Display Support

The Dual HP Visualize-EG card has two HP Visualize-EG devices on
the same card and each device provides a separate but identical set of
HP Visualize-EG features.

The DualHP Visualize-EG card has two video output connections that provide
multi-display support. Multi-display support allows you to con�gure two or more
heterogeneous or homogeneous displays to the same workstation. You can have
a maximum of four displays connected to your workstation.

For information on multi-display support and how to con�gure multiple displays,
read the Graphics Administration Guide.

Add-on HP VISUALIZE-EG Memory

The add-on HP Visualize-EG memory is a card that provides an extra two
megabytes of memory to the HP Visualize-EG to which it is connected. This
added memory provides 8/8 double-bu�ering in the image planes and 8 overlay
planes when used with Starbase.

This graphics card provides a display that is 1280�1024 pixels. There is no
o�screen memory in the frame bu�er. Note that the 1600�1200 resolution mode
is not supported.

For information on connecting the add-on HP Visualize-EGmemory card(s) to
your HP Visualize-EG card or Dual HP Visualize-EG card, read the User's
Guide that comes with your graphics device.

HCRX-8

The HCRX-8 graphics device has two hardware color maps in the image planes
and two hardware color maps in the overlay planes. It supports HP Color
Recovery, as explained in the section \HP Color Recovery Technology" in this
chapter.

This display is 1280x1024 pixels with two banks of eight image planes and eight
overlay planes. There is no o�screen memory in the frame bu�er.

HP HCRX 2-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
The HCRX-8 device supports 8 planes single-bu�ered or 8/8 double-bu�ered.

The PowerShade software adds support for lighting, shading, and Z-bu�ering in
all windows.

The only X server mode supported is combined mode. For information on
supported X server modes, read the section \Supported X Server Modes" in
the Graphics Administration Guide .

The HCRX-8 device supports all Starbase color map modes (CMAP_NORMAL,
CMAP_MONOTONIC, and CMAP_FULL).

There are two hardware color maps available for use with the image planes. At
most, one of the two color maps will be dedicated for use by DirectColor or
TrueColor visuals. The other one will be shared by all indexed color graphics
windows.

In addition to the two hardware color maps in the image planes, there are two
hardware color maps in the overlay planes. One of the hardware color maps has
the default X11 color map permanently installed in it. This is done to avoid
technicoloring your X11 and HP CDE backgrounds and applications.

HCRX-8Z

This device is a superset of the HCRX-8 graphics device.

The HCRX-8Z graphics device includes an accelerator that attaches to the
HCRX-8 device to accelerate rendering into the frame bu�er. The HCRX-8Z
accelerator has a dedicated 24-bit Z-bu�er. The hphcrx driver automatically
uses the HCRX-8Z accelerator if it is present. The primary use of the HCRX-8Z
accelerator is for 3D solids modeling, including drawing Starbase polygons,
rectangles, triangle strips, quadrilateral meshes, and spline surfaces.

The HCRX-8Z device supports all Starbase color map modes (CMAP_NORMAL,
CMAP_MONOTONIC, and CMAP_FULL). Note that the HCRX-8Z does not dither when
shading in CMAP_MONOTONIC mode.

2-6 HP HCRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

HP VISUALIZE-8

This device is a superset of the HCRX-8 graphics device.

The HP Visualize-8 graphics device includes a geometry accelerator that
attaches to the HCRX-8 device to provide high performance 3D solids modeling
and high performance 3D wireframe. Note that this accelerator replaces
the HCRX Z-bu�er/Accelerator. The HP Visualize-8 geometry accelerator
has a dedicated 24-bit Z-bu�er. The hphcrx driver automatically uses the
HP Visualize-8 geometry accelerator if it is present. The primary use of
the HP Visualize-8 accelerator is for 3D solids modeling, including drawing
Starbase polygons, rectangles, triangle strips, quadrilateral meshes, and spline
surfaces.

This device supports all Starbase color map modes (CMAP_FULL, CMAP_NORMAL,
and CMAP_MONOTONIC). Note that the HP Visualize-8 does not dither when
shading in CMAP_MONOTONIC mode.

For more information on the geometry accelerator, read the section \Geometry
Accelerator" in this chapter.

HCRX-24

The HCRX-24 graphics device has two hardware color maps in the image planes
and two hardware color maps in the overlay planes. It supports HP Color
Recovery in all 8 plane visuals, as explained in the section \HP Color Recovery
Technology" in this chapter.

The HCRX-24 graphics device has 24 image planes and 8 overlay planes. The
screen resolution is 1280x1024 pixels. There is no o�screen memory in the frame
bu�er.

You can render to the image planes in three ways:

8-bit indexed color (CMAP_NORMAL, CMAP_MONOTONIC, CMAP_FULL)
12-bit direct color (CMAP_FULL)
24-bit direct color (CMAP_FULL)

The three rendering modes are selected on a per-window basis. The mode selected
is a function of the depth of the window created and the double-bu�er mode.

HP HCRX 2-7

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
The PowerShade software adds support for lighting, shading, and Z-bu�ering in
all windows.

In 8-bit indexed mode, each pixel is used as an index into a 256-entry color map.
Each entry in the color map provides eight bits per color for each of the red,
green and blue components, providing a color palette of over 16 million colors.
Double-bu�ering is achieved by switching between two banks of 8-bit indexes.
You can perform 3:3:2 direct color emulation in this mode.

In 12-bit direct color mode, each pixel is represented by four bits per color channel
to allow for double-bu�ering. One bu�er resides in the upper 4 bits and the other
bu�er resides in the lower 4 bits of each color channel. Dithering improves the
color resolution.

In 24-bit direct color mode, a pixel is represented by eight bits each for red, green,
and blue. Double-bu�ering is not supported in this mode.

There are two hardware color maps available for use with the image planes. At
most, one of the two color maps will be dedicated for use by direct color graphics
windows. The other one will be shared by all indexed color graphics windows.

In addition to the two hardware color maps in image planes, there are two
hardware color maps in overlay planes. One of the hardware color maps has
the default X11 color map permanently installed in it. This is done to avoid
technicoloring your X11 and HP CDE backgrounds and applications.

The X server works only in combined mode. For information on supported X
server modes, read the section \Supported X Server Modes" in the Graphics
Administration Guide.

HCRX-24Z

This device is a superset of the HCRX-24 graphics device.

The HCRX-24Z includes an accelerator that attaches to the HCRX-24 device
to accelerate rendering into the frame bu�er. The HCRX-24Z accelerator has a
dedicated 24-bit Z-bu�er. The hphcrx driver automatically uses the HCRX-24Z
accelerator if it is present. The primary use of the HCRX-24Z accelerator is
for 3D solids modeling, including drawing Starbase polygons, rectangles, triangle
strips, quadrilateral meshes, and spline surfaces.

2-8 HP HCRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
The HCRX-24Z accelerator can render to the image planes on the HCRX-24 in
depth 8, depth 12, and depth 24 visuals.

Note that the HCRX-24Z does not dither when shading in CMAP_MONOTONIC

mode.

HP VISUALIZE-24

This device is a superset of the HCRX-24 graphics device.

The HP Visualize-24 graphics device includes a geometry accelerator that
attaches to the HCRX-24 device to provide high performance 3D solids modeling
and high performance 3D wireframe. Note that this accelerator replaces
the HCRX Z-bu�er/Accelerator. The HP Visualize-24 geometry accelerator
has a dedicated 24-bit Z-bu�er. The hphcrx driver automatically uses the
HP Visualize-24 geometry accelerator if it is present. The primary use of
the HP Visualize-24 accelerator is for 3D solids modeling, including drawing
Starbase polygons, polyhedrons, rectangles, triangle strips, quadrilateral meshes,
and spline surfaces.

This device supports all Starbase color map modes (CMAP_NORMAL,
CMAP_MONOTONIC, and CMAP_FULL). Note that the HP Visualize-24 does not
dither when shading in CMAP_MONOTONIC mode.

For more information on the geometry accelerator, read the section \Geometry
Accelerator" in this chapter.

Overlay Plane Rendering

Either the hpvmx or the sox11 device driver is used for Starbase rendering to
the overlay planes. For more information on Starbase rendering to the overlay
planes, read the chapters \HP Virtual Memory and X" in this Addendum and
\The Starbase-on-X11 Device Driver" in the Starbase Device Drivers Manual .

8/8 VM (Virtual Memory) double-bu�ering is also supported in the overlay planes
using the hpvmx driver. If an overlay plane window is gopened with a driver name
of NULL, the hpvmx driver will be used. See the table, \Driver Selection at gopen"
in the chapter \HP Virtual Memory and X" in this Addendum for details.

HP HCRX 2-9

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

Geometry Accelerator (only HP VISUALIZE-8 and HP VISUALIZE-24)

The HP Visualize-8 and HP Visualize-24 graphics devices include an accel-
erator for geometry transformation, lighting, and shading of primitives.

The following lists provide information to help you maximize your application
performance. The �rst list describes operations that yield the best performance
when using the new accelerators.

Isotropic modeling transformations
Lighting, with up to 8 lights of any type
View clipping
Perspective and orthographic (parallel) transformations
Depth cueing
3- and 4-sided �lled primitives, with or without RGB, alpha, and normal per
vertex
Triangle strips, with or without RGB, alpha, and normal per vertex
2D and 3D polylines

The following operations are less e�cient because Starbase must perform extra
calculations before using the geometry accelerator:

Non-convex polygons with more than 4 vertices
Polyhedrons with move/draw
ags
Edged primitives (but not edging with move/draw
ags)
Facet normal lighting
Facet color

2-10 HP HCRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
For the following features, PowerShade bypasses the geometry accelerator and
partially calculates the results using software:

Self-intersecting polygons
Model clipping/capping
Deformation
Wide lines
Backface distinguishing (but not back-face culling)
Starbase INT_OUTLINE interior style
Circles, ellipses, arcs
CMAP_NORMAL or CMAP_MONOTONIC modes
Picking
move3d()/draw3d()
Polymarkers
Rectangles
Text

Note that since the geometry accelerator only directly handles polygons with 3
or 4 vertices, more complicated polygons are decomposed into triangles. Convex
polygons will be decomposed with the most e�ciency. Non-convex polygons or �ll
area sets with only one set will be decomposed with less e�ciency. Polyhedrons
with move/draw
ags will be decomposed, but with a great penalty in execution
time. Self-intersecting polygons cannot be decomposed for the geometry
accelerator; instead, they are lighted, shaded, and transformed by PowerShade,
with only the �nal rendering steps performed by the HP Visualize-8 and
HP Visualize-24 hardware. Since polygons are decomposed into triangles
before transformations occur, visual results may di�er slightly from previous
devices. Non-planar polygons or polygons with greatly di�ering colors or normals
at the vertices will di�er more than planar polygons or polygons with more
homogeneous vertex data.

Also, note that compound primitives (triangle strips, quadrilateral meshes,
polyhedrons, etc.) will perform better than the equivalent discrete polygon calls,
since the there is less procedure call overhead.

For more information about speci�c primitives and their relative speed, read the
Graphics Administration Guide.

HP HCRX 2-11

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

PowerShade, 3D Surfaces Software

PowerShade is an optional software package that supports lighting and shading
in graphics applications. It has capabilities for both surface rendering and
volumetric rendering, the latter on the HCRX-24, HCRX-24Z, HP Visualize-8,
and HP Visualize-24 only.

In order to use PowerShade on these devices, you must �rst install the Power-
Shade software. See the Graphics Administration Guide for more information.

HP Color Recovery Technology

Starbase automatically uses HP Color Recovery for shaded �ll areas (for example,
polygons and spline surfaces) in depth 8 image-plane visuals. On HCRX devices,
color recovery will generate a better picture by attempting to eliminate the
graininess caused by dithering. HP Color Recovery is available on all HCRX
graphics devices with depth 8 windows.

There are two components of HP Color Recovery: a di�erent dither cell size
(16�2) is used when rendering shaded polygons, and a digital �lter is used when
displaying the contents of the frame bu�er on the screen.

HP Color Recovery is available on the HCRX family of graphics devices whenever
you are in CMAP_FULL mode and you have used the INIT
ag in the gopen,
shade_mode, or the double_buffer function to initialize color maps. Keep in
mind that the default color map mode is CMAP_NORMAL for PseudoColor visuals.
Therefore, the HP Color Recovery color map will not be downloaded until you
call shade_mode to set the mode to CMAP_FULL and use INIT.

HP Color Recovery is available when using either PseudoColor or TrueColor
visuals.

HP Color Recovery is enabled in conjunction with a particular X color map that
is associated with your window. If that X color map is not currently installed in
hardware by your window manager, you will not see the e�ect of the HP Color
Recovery �lter.

The HP Color Recovery color map is a READ-ONLY color map. Any attempts
to change it will be ignored and no error will be reported.

2-12 HP HCRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
Note that vectors are almost always dithered, even in an HP Color Recovery
window. The only exceptions to this are that Z-bu�ered and depth-cued vectors
are not dithered on the HCRX-8, HCRX-8Z, HCRX-24, and HCRX-24Z.

Under some conditions HP Color Recovery can produce undesirable artifacts
in the image. This can also happen with 4�4 dithering, but the artifacts are
di�erent. However, images rendered with HP Color Recovery are seldom worse
than what dithering produces, and in most cases, HP Color Recovery produces
signi�cantly better pictures than dithering. Note that 4�4 dithering, like HP
Color Recovery, is available in the CMAP_FULL color map mode, but not in the
CMAP_NORMAL color map mode.

HP Color Recovery is available by default. If you wish to disable HP Color
Recovery, you can do it in one of three ways:

Add the screen option DisableColorRecovery to your X*screens �le. Setting
this screen option prior to starting up the X server disables HP Color Recovery
for all applications and any attempts to enable HP Color Recovery will be
ignored. Remember, if you set this screen option prior to starting up the X
server, you cannot re-enable HP Color Recovery from within an application.
To set this screen option before starting the X server, add the following lines
to your hx11-admini1/X0screens �le:

ScreenOptions

HP_DISABLE_COLOR_RECOVERY

or the preferred entry is:

ScreenOptions

DisableColorRecovery

and restart HP CDE or X11.

Export the environment variable HP_DISABLE_COLOR_RECOVERY before running
your application. Setting this environment variable to any value disables HP
Color Recovery for subsequently executed applications. To set this environment
variable in your current X11 window, execute this command on the command
line before running your application (assuming you are using the Korn shell):

export HP_DISABLE_COLOR_RECOVERY=TRUE

1 The actual path names of directories in angle brackets depend on the �le system
structure. See the Graphics Administration Guide for details.

HP HCRX 2-13

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

Disable HP Color Recovery programmatically by using the Starbase gescape

COLOR_RECOVERY_CONTROL. For details on this gescape, read the subsequent
section \Gescapes."

In CMAP_FULL shade mode, disabling HP Color Recovery will result in normal
dithering of shaded �ll areas. HP Color Recovery is not available in any other
shade mode.

Gescapes

The COLOR_RECOVERY_CONTROL gescape can be used to disable HP Color
Recovery. Passing it a 0 value in arg1 will disable HP Color Recovery, a 1 value
will enable it (HP Color Recovery is enabled by default). The arg2 parameter is
ignored. The e�ect of this gescape will not take place until the next time you
call shade_mode or double_buffer with the INIT
ag. For example:

gescape_arg arg1;

/* Disable HP Color Recovery */

arg1.i[0] = 0;

gescape(�ldes, COLOR_RECOVERY_CONTROL, &arg1, NULL);

shade_mode(�ldes, CMAP_FULL|INIT,0);

2-14 HP HCRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

The Frame Buffer

Physical Address Space

The physical frame bu�er is addressed as 2048�1024 bytes. The last 768 bytes of
each line of the address space (those to the right of the screen) are not displayed
and no memory exists in those areas.

Figure 2-1. Physical Address Space

HP HCRX 2-15

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

To Access the Frame Buffer Directly

When using the R_GET_FRAME_BUFFER gescape for direct user access to the frame
bu�er, correct access can only be assured by using the R_LOCK_DEVICE and
R_UNLOCK_DEVICE gescapes.

1. Use R_LOCK_DEVICE just prior to direct frame bu�er access.

2. Use R_UNLOCK_DEVICE directly after the frame bu�er access and before any
other Starbase commands.

Caution Do not read from or write to the o�screen addresses. Such
operations will cause unde�ned behavior.

Frame Buffer Address Mapping

The frame bu�er is organized as a single one-dimensional array of pixel values.
The �rst byte (byte 0) of the frame bu�er represents the upper left corner pixel of
the screen. Byte 1 is immediately to its right. Byte 1279 is the last (right-most)
displayable pixel on the top line. The next 768 bytes are not displayable. Byte
2048 is the �rst (left-most) pixel on the second line from the top. The last (lower
right corner) pixel on the screen is byte number 2,096,383 (1023�2048+1279).

2-16 HP HCRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

Figure 2-2. Frame Buffer Mapping in Memory

HP HCRX 2-17

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
The frame bu�er organization is essentially the same for all of the HCRX family
of graphics devices, except for the number of banks. The HP Visualize-EG has
one bank of 8 planes. The HP Visualize-EG with add-on memory, HCRX-8,
HCRX-8Z, and HP Visualize-8 have two banks of 8 image planes (one for each
bu�er), and the HCRX-24, HCRX-24Z, and HP Visualize-24 have three banks
of 8 image planes (one for each color). Only one bank can be accessed at a time.

For block_read and block_write operations to the image planes, the data is
in all eight bits of each byte. The default for reading the Z-bu�er is always 24-
bits per pixel in a 32-bit word. The Z-bu�ers for the HCRX-8Z HCRX-24Z,
HP Visualize-8, and HP Visualize-24 are 23 bits deep, and their Z-bu�er
data is left justi�ed in the lower 24 bits of the 32-bit word (that is, the 23-bit
Z-bu�er data is shifted left one bit from the least-signi�cant bit), as shown in the
following �gure.

Figure 2-3. Hardware Z-Buffer Data Alignment

For the HP Visualize-EG, HCRX-8 and HCRX-24 with PowerShade, the Z-
bu�er is 16-bits deep, and their Z-bu�er data is left justi�ed in the 32-bit word.
The raw parameter to block_read and block_write must be set to true in
order to read from or write to the Z-bu�er. Using wbank=3 in the bank_switch
command on the HCRX-24, HCRX-24Z, and HP Visualize-24, or wbank=2 on
the HP Visualize-EG, HCRX-8, HCRX-8Z, and HP Visualize-8 selects the
Z-bu�er for reads or writes.

Unlike the frame bu�er, the Z-bu�er data is contiguous. TheHP Visualize-EG,
HCRX-8, and HCRX-24 have software Z-bu�ers, which are the size of the window.
For example, if the window is 400x400, word 400 is the leftmost Z-bu�er value
for the second scan line. The HCRX-8Z, HCRX-24Z, HP Visualize-8, and
HP Visualize-24 have hardware Z-bu�ers, which are always 1280x1024 where
word 1280 is the leftmost word of the second scanline.

2-18 HP HCRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

Frame Buffer Configurations

The following table shows which color map modes are supported for di�erent
frame bu�er con�gurations. No entry (i.e. blank) indicates no support.

Table 2-2. Supported Frame Buffer Configurations

Number of Planes HP Visualize-EG,

HCRX-8, HCRX-8Z,

and HP Visualize-8

HCRX-24, HCRX-24Z,

and HP Visualize-24

8, 8/8 CMAP_NORMAL

CMAP_FULL

CMAP_MONOTONIC

CMAP_NORMAL

CMAP_FULL

CMAP_MONOTONIC

12, 12/12 CMAP_FULL

24 CMAP_FULL

Since Starbase supports double-bu�ering per window, it is better to request
double-bu�ering with a depth of eight on an HP Visualize-EG, HCRX-8,
HCRX-8Z, or HP Visualize-8, or a depth of 12 when in CMAP_FULL mode on
an HCRX-24, HCRX-24Z, or HP Visualize-24.

Double-bu�ering with less than 8 planes (4/4, 3/3, 2/2, 1/1) is supported
in depth 8 windows for compatibility with previous devices, however, it is
not recommended. The write_enable and display_enable masks are used
to accomplish double-bu�ering with less than 8 planes. Flashing may occur;
however, as this kind of double-bu�ering is not performed on a per window basis.

HP HCRX 2-19

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

Device Support for the TrueColor Visual

TrueColor Visual Description

A TrueColor visual can be thought of as having a read-only color map where, for
any given pixel value, about one third of the bits are used to describe each of
the red, green, and blue colors, respectively. For an 8-plane TrueColor visual, 3
bits describe the red component, 3 bits describe the green component, and 2 bits
describe the blue component. A 12-plane TrueColor visual uses 4 bits each to
describe the red, green, and blue components. A 24-plane TrueColor visual uses
8 bits each to describe the red, green, and blue components. This is illustrated
as follows:

Figure 2-4. Pixel Representation for the 8-, 12-, and 24-Plane TrueColor Visuals

The following example refers to an 8-plane TrueColor visual; however, the
example can be expanded to apply to 12-plane or 24-plane TrueColor visuals.

2-20 HP HCRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
Example

Since the red and green components consist of 3 bits each, there are 8 di�erent
shades of red and 8 di�erent shades of green available. Also, there are 4 di�erent
shades of blue represented by 2 bits. As the component increases, the intensity
of that color increases. For example, a red component of 000 represents no red,
and a red component of 111 represents full red. Therefore, pixel value 0 is 000
red, 000 green, and 00 blue, which results in black. Pixel value 255 is 111 red,
111 green, and 11 blue, which results in white. These and other examples are
shown in Table 2-3.

Table 2-3. Examples of Pixel Color Values

Pixel Value Binary Red Green Blue

0 000 000 00 shade 0 shade 0 shade 0

53 001 101 01 shade 1 shade 5 shade 1

139 100 010 11 shade 4 shade 2 shade 3

218 110 110 10 shade 6 shade 6 shade 2

255 111 111 11 shade 7 shade 7 shade 3

Note that the red, green and blue intensities for the color shades ramp uniformly
between 0 and 255.

Device Specific Visuals Information

Note that the TrueColor Visual always uses a shade_mode of CMAP_FULL. When
the TrueColor visual window is gopened, your application will automatically be
in CMAP_FULL mode and the shade_mode call will ignore any attempts to go into
another mode.

With the addition of the TrueColor visual (beginning with the 9.03 release of
HP-UX), you need to consider the following information:

HP HCRX 2-21

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

If you originally created your windows using command lines similar to the
following:

xwcreate -g 600x500+300+200 -depth 8 window

xwcreate -g 600x500+300+200 -depth 24 window

you will have to change how you create your windows by using command lines
similar to these:

xwcreate -g 600x500+300+200 -depth 8 -visual TrueColor window

xwcreate -g 600x500+300+200 -depth 24 -visual TrueColor window

Note the addition of the command line option -visual for declaring TrueColor
and DirectColor visuals.

The TrueColor color map is a read-only color map and cannot be modi�ed.
You should note that any attempt to modify the TrueColor color map will not
cause an error.

One class of applications that could be a�ected by this color map description
are those that perform their own gamma correction. This is because the color
map is read-only, thus preventing Starbase from adjusting the color ramp to
perform gamma correction.

If your application searches for a visual by traversing the visual list that is
returned by the X server, you will �nd that the order of visuals in this list may
change from device to device and release to release. Therefore, your application
code should always explicitly search for a particular visual rather than assuming
that it occurs in a �xed position within the list of visuals returned by X11.

2-22 HP HCRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

Using Starbase in X Windows

This section contains device speci�c information needed to run Starbase programs
in X11 windows. If you need a general, device-independent explanation of using
Starbase in X11 windows, refer to the \Using Starbase with the X Window
System" chapter of Starbase Graphics Techniques.

To reduce the complexity of having multiple X server modes, the hphcrx drivers
for X and Starbase only support one X server mode for each device. Several other
key features have been designed to improve the overall usability of the devices in
the X11 windows environment, and to reduce interaction issues between the X11
user interface and graphics library APIs (such as Starbase) that provide direct
hardware access (DHA).

Per-Window Double-Buffering

The HCRX family of graphics devices support double-bu�ering in the im-
ages planes on a per-window basis. Note that the HP Visualize-EG sup-
ports double-bu�ering in the images planes on a per-window basis only if it
has the add-on memory card installed, or if you use VM double-bu�ering.
The HP Visualize-EG with add-on memory, HCRX-8, HCRX-8Z, and
HP Visualize-8 graphics devices support 8/8 double-bu�ering for each of
the Starbase color map modes (CMAP_NORMAL, CMAP_FULL, CMAP_MONOTONIC)
in the image planes. In the image planes, the HCRX-24, HCRX-24Z, and
HP Visualize-24 support the above mentioned modes, plus 12/12 double-
bu�ered and 24 planes single-bu�ered in the CMAP_FULL color map mode. Any
X11 library drawing routines will render to the currently visible bu�er of a win-
dow that has double-bu�ering enabled.

Note that Starbase uses the hpvmx device driver to perform double-bu�ering in
software in the overlay planes. This double-bu�ering method is slower than the
hardware double-bu�ering used in the image planes. Any X11 library drawing
routines will render to the currently visible bu�er of a window that has double-
bu�ering enabled.

HP HCRX 2-23

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

Available Color Map Entries

The HCRX family of graphics devices has two hardware color maps in the overlay
planes (where overlay planes are supported) and at least two hardware color maps
in the image planes.

Using the default X server mode of the HP Visualize-EG, HCRX-8, HCRX-8Z,
and HP Visualize-8, if you query the X server for the number of entries in the
default overlay visual's color map, the server will reply that there are 256 entries
available.

Starbase Color Maps and X11 Read/Write Restrictions

The X color model de�nes read/write restrictions both on color maps and on
individual entries in color maps. As of HP-UX 9.05, Starbase no longer overwrites
read-only color maps or color map entries as de�ned in the X color model.
Attempts to write to color map entries in read-only color maps (color maps in
StaticGray, StaticColor or TrueColor visuals) are silently ignored.

Accessing HP Color Recovery with X Windows

The HCRX family of graphics devices support HP Color Recovery for shaded
areas. When a depth 8 image window is used, HP Color Recovery will generate a
better picture by attempting to eliminate the graininess caused by dithering. HP
Color Recovery is available on all depth 8 windows on the HP Visualize-EG,
HP Visualize-8, HP Visualize-24, HCRX-8, HCRX-8Z, HCRX-24, and
HCRX-24Z. For more information about HP Color Recovery, read the section
\HP Color Recovery Technology" found in this chapter.

The Starbase, HP PEX, and HP-PHIGS graphics libraries provide programmers
who use these APIs with transparent access to the HP Color Recovery capability
of the HCRX family of graphics devices. If you are producing graphics using
Xlib calls, then your application must perform some of the necessary processing.
At server start-up, there is one property that is de�ned and placed on the root
window if the HP_DISABLE_COLOR_RECOVERY environment variable has not been
exported. This property is:

_HP_RGB_SMOOTH_MAP_LIST

2-24 HP HCRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
The above property is of type RGB_COLOR_MAP and carries pointers to structures
of type XStandardColormap. It may be interrogated with calls to XGetRGBCol-

ormaps. The property _HP_RGB_SMOOTH_MAP_LIST is a list of color maps that are
associated with window visual IDs that support HP Color Recovery. When the
XGetRGBColormaps routine searches throughout this list for a color map with a
visual ID that matches your window's visual ID and it �nds such a visual, your
application knows that your visual supports HP Color Recovery, and uses that
color map for any HP Color Recovery window.

HP Color Recovery uses all 256 entries of one of the available color maps. The
color visual used by HP Color Recovery emulates the depth 24 TrueColor visual,
thus, the colors red, green, and blue are typically declared as integers in the range
from 0 to 255. Note that each window that uses HP Color Recovery will use the
same color map.

For HP Color Recovery to produce the best results, the emulated depth 24
TrueColor data is dithered as explained below.

A pixel to be dithered is sent to the routine provided in this example. Note that
the values of the variables RedValue, GreenValue and BlueValue are generated
by an application. In this example, the color values are assumed to be in the
range [0..255].

The given routine receives the color values and the X and Y window address (Xp
and Yp) of the pixel. The X and Y address is used to access the dither tables.
The values from the dither tables are added to the color values. After the dither
addition, the resultant color values are quantized to 3 bits of red and green and 2
bits of blue. The quantized results are packed into an 8-bit unsigned char and
then stored in the frame bu�er. As the contents of the frame bu�er are scanned
to the CRT, a special section in the HCRX hardware then converts the 8-bit data
stored in the frame bu�er into a 24-bit TrueColor image for display.

Here is a routine that can be used to dither the 24-bit TrueColor data.

unsigned char dither_pixel_for_CR(RedValue,GreenValue,BlueValue,Xp,Yp)

int RedValue,GreenValueBlueValue,Xp,Yp;

{

static short dither_red[2][16] = {

{-16, 4, -1, 11,-14, 6, -3, 9,-15, 5, -2, 10,-13, 7, -4, 8},

{ 15, -5, 0,-12, 13, -7, 2,-10, 14, -6, 1,-11, 12, -8, 3, -9} };

static short dither_green[2][16] = {

{ 11,-15, 7, -3, 8,-14, 4, -2, 10,-16, 6, -4, 9,-13, 5, -1},

HP HCRX 2-25

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
{-12, 14, -8, 2, -9, 13, -5, 1,-11, 15, -7, 3,-10, 12, -6, 0} };

static short dither_blue[2][16] = {

{ -3, 9,-13, 7, -1, 11,-15, 5, -4, 8,-14, 6, -2, 10,-16, 4},

{ 2,-10, 12, -8, 0,-12, 14, -6, 3, -9, 13, -7, 1,-11, 15, -5} };

int red, green, blue;

int x_dither_table, y_dither_table;

unsigned char pixel;

x_dither_table = Xp % 16; /* X Pixel Address MOD 16 */

y_dither_table = Yp % 2; /* Y Pixel Address MOD 2 */

red = RedValue;

green = GreenValue;

blue = BlueValue;

if (red >= 48) /* 48 is a constant required by this routine */

red=red-16;

else

red=red/2+8;

red += dither_red[y_dither_table][x_dither_table];

if (red > 0xff) red = 0xff;

if (red < 0x00) red = 0x00;

if (green >= 48) /* 48 is a constant required by this routine */

green=green-16;

else

green=green/2+8;

green += dither_green[y_dither_table][x_dither_table];

if (green > 0xff) green = 0xff;

if (green < 0x00) green = 0x00;

if (blue >= 112) /* 112 is a constant required by this routine */

blue=blue-32;

else

blue=blue/2+24;

blue += (dither_blue[y_dither_table][x_dither_table]<<1);

if (blue > 0xff) blue = 0xff;

if (blue < 0x00) blue = 0x00;

pixel = ((red & 0xE0) | ((green & 0xE0) >> 3) | ((blue & 0xC0) >> 6));

return(pixel);

}

2-26 HP HCRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

Backing Store

The HP Visualize-EG, HCRX-8 and HCRX-24 support backing store (also
known as \retained raster"). The backing store feature allows a window being
rendered to by a direct hardware access (DHA) client to be \backed-up" to a
virtual frame bu�er whenever any portion of the window is obscured by another
window. In this case, the application is not required to catch \expose events"
from X11 and redraw the picture when occlusion occurs. In fact, no expose events
will be generated if backing store is enabled.

Thus, when a window is placed on top of another window containing a complete
image, the window system will save the contents of the latter window before
displaying the obscuring window. Then, when the obscuring window is removed,
the earlier contents of the occluded area plus any new rendering that has occurred
in the occluded area during the cover-up will be restored. Since rendering to the
virtual frame bu�er is not as fast as rendering to the actual frame bu�er in the
occluded area, the performance will su�er, but only while the window is occluded.

Backing Store Exceptions

In general, those Starbase operations that draw to the display are also supported
when drawing to backing store. The exceptions to this are:

Backing store with 24-plane visuals is not supported.
Backing store cannot be enabled for the HCRX-8Z, HCRX-24Z,
HP Visualize-8, or HP Visualize-24 accelerator.
Backing store will not work with certain gescape operations that access device-
dependent features.
Backing store contents may be incorrect if you mix Xlib rendering with Starbase
rendering to an 8/8 double-bu�ered window.

If these limitations on support of backing store prove to be troublesome in your
application, do not use backing store. Instead, detect window exposure events
and repaint the window when a previously obscured portion of a window is made
visible.

HP HCRX 2-27

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

X11 Cursor

The X11 cursor (often called the sprite) never interferes with the frame bu�er
contents in either the image or overlay planes.

Supported Visuals

The following table of Supported Visuals contains information for programmers
using either Xlib graphics or Starbase. The table lists the image plane depths
of windows and color map access modes that are supported for a given graphics
device. It also indicates whether or not backing store (retained raster) is available
for a given visual, and lists the double-bu�er con�gurations supported by Starbase
for this device driver.

2-28 HP HCRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
Table 2-4. Supported Visuals

Device Depth Visual Class Backing Store Starbase

Double-

Bu�er1Xlib Starbase2

HP Visualize-EG 8 PseudoColor Yes Yes 8/83

TrueColor Yes Yes 8/83

HCRX-8,
HP Visualize-EG

with add-on
memory

8 PseudoColor Yes4 Yes 8/8

TrueColor Yes4 Yes 8/8

HCRX-8Z,
HP Visualize-8

8 PseudoColor Yes4 No 8/8

TrueColor Yes4 No 8/8

HCRX-24 8 PseudoColor Yes4 Yes 8/8

TrueColor Yes4 Yes 8/8

12 DirectColor Yes No 12/12

TrueColor Yes No 12/12

24 DirectColor Yes No 12/12

TrueColor Yes No 12/12

1 Double-bu�ering with less than 8 planes (4/4, 3/3, 2/2, 1/1) is supported for compatibility
with previous devices, however, it is not recommended. The write_enable and display_enable

masks are used to accomplish double-bu�ering with less than 8 planes. Flashing may occur,
however, as this kind of double-bu�ering cannot be done on a per window basis. Note that
double-bu�ering with less than 8-planes is only supported in CMAP_NORMAL.

2 The hphcrx device driver does not support backing store with the ACCELERATED mode of gopen.

3 8-bit double-bu�ering is done via Virtual Memory (VM) double-bu�ering. For information on
VM double-bu�ering, read the section \VM Rendering Utilities" found in the chapter \HP
Virtual Memory and X" of this manual.

4 Full support for single-bu�ered windows. The X11 server will not maintain backing store for
an obscured Starbase window if double-bu�ering is turned on and Xlib calls are made to that
window. Whenever backing store is not maintained, normal expose events are generated. Also,
rendering using an attached accelerator (for example, the HCRX-24Z) does not support backing
store.

HP HCRX 2-29

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
Table 2-4. Supported Visuals (continued)

Device Depth Visual Class Backing Store Starbase

Double-

Bu�er1Xlib Starbase2

HCRX-24Z,
HP Visualize-24

8 PseudoColor Yes1 No 8/8

TrueColor Yes1 No 8/8

12 DirectColor Yes No 12/12

TrueColor Yes No 12/12

24 DirectColor Yes No 12/12

TrueColor Yes No 12/12

1 Full support for single-bu�ered windows. The X11 server will not maintain backing store for
an obscured Starbase window if double-bu�ering is turned on and Xlib calls are made to that
window. Whenever backing store is not maintained, normal expose events are generated. Also,
rendering using an attached accelerator (for example, the HCRX-24Z) does not support backing
store.

Overlay Plane Transparency and the X Windows System

An overlay visual's transparency feature enables you to render opaque objects
(for example, menus and text) to a transparent overlay window and at the same
time view rendered objects in an image window. For example, you may want to
show a map of a country without all of its internal borders, and then add the
internal borders as you need them. This can be done by creating two X windows:
one in the overlay planes and one in the images planes. The country's terrain and
boundaries would be drawn in the image planes window and the internal borders
in a transparent overlay window.

The default X11 mode on theHP Visualize-EG with add-on memory, HCRX-8,
HCRX-8Z, and HP Visualize-8 does not provide an overlay visual with a
transparent property. There is a special mode that provides overlay transparency
on the HP Visualize-EG with add-on memory, HCRX-8, HCRX-8Z, and
HP Visualize-8 graphics devices. But, by choosing to use overlay planes
transparency on the HP Visualize-EG with add-on memory, HCRX-8,

2-30 HP HCRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
HCRX-8Z, and HP Visualize-8, you will limit the number of hardware color
maps available.

Note that the HP Visualize-EG with add-on memory only supports overlay
transparency in this special mode when it is con�gured in 8/8 mode. You must
con�gure your system to recognize the add-on HP Visualize-EG memory. This
can be set during a system reboot.

The HP VISUALIZE-EG with add-on memory, HCRX-8, HCRX-8Z,
and HP VISUALIZE-8 Frame Buffer Configuration

Table 2-5 shows the default HP Visualize-EG with add-on memory, HCRX-8,
HCRX-8Z, and HP Visualize-8 frame bu�er con�guration.

Table 2-5.

The Default HP VISUALIZE-EG with add-on memory, HCRX-8,

HCRX-8Z, and HP VISUALIZE-8 Frame Buffer Configuration

Frame Bu�er

Layer

Window

Depth

Hardware

Bu�ering

Hardware

Color Maps

Overlay

Transparency

Visual

overlay 8 single 2 no PseudoColor

image 8 single or double 2 N.A. PseudoColor
TrueColor

To enable transparency, add the following lines to your hx11-admini2/X*screens
�le before starting HP CDE, HP VUE, or the X11 server.

ScreenOptions

HP_ENABLE_OVERLAY_TRANSPARENCY

or the preferred entry:

ScreenOptions

EnableOverlayTransparency

2 The actual path names of directories in angle brackets depend on the �le system
structure. See the Graphics Administration Guide for details.

HP HCRX 2-31

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
This screen option can be disabled by removing it from your X*screens �le and
restarting HP CDE, HP VUE, or the X11 server.

Note The screen option EnableOverlayTransparency only has mean-
ing when used with the HP Visualize-EG with add-on memory,
HCRX-8, HCRX-8Z, and HP Visualize-8 graphics devices. It
is ignored by all other graphics devices.

Table 2-6.

HP VISUALIZE-EG with add-on memory, HCRX-8, HCRX-8Z, and

HP VISUALIZE-8 Frame Buffer Configuration in Overlay

Transparent Mode

Frame Bu�er

Layer

Window

Depth

Hardware

Bu�ering

Hardware

Color Maps

Overlay

Transparency

Visual

overlay 8 single 1 yes PseudoColor

image 8 single or double 1 N.A. PseudoColor
TrueColor

Note that on the HP Visualize-EG with add-on memory, HCRX-8, HCRX-8Z,
and HP Visualize-8 graphics devices, the use of overlay transparency limits
your system to one hardware color map in the overlay planes and one in the
image planes.

Using the overlay visual (by default or explicitly) will provide access to a
transparent color map entry. However, because the number of hardware color
maps is halved in this mode, there is a higher likelihood that you will experience
the technicolor e�ect , especially in overlay windows, which typically make up the
user interface.

2-32 HP HCRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
The number of overlay color map entries is now 255 because the last entry is the
transparent color map value. If your application requires a report of 256 entries
in your color map, you can enable the screen option:

ScreenOptions

CountTransparentInOverlayVisual

in the hx11-admini3/X*screens �le before starting HP CDE, HP VUE, or the
X11 server.

The HCRX-24, HCRX-24Z, and HP VISUALIZE-24
Frame Buffer Configuration

Table 2-7 shows the default HCRX-24, HCRX-24Z, and HP Visualize-24

frame bu�er con�guration. This con�guration is not changed by using overlay
transparency.

Table 2-7.

The Default HCRX-24, HCRX-24Z, and HP VISUALIZE-24 Frame

Buffer Configuration

Frame Bu�er

Layer

Window

Depth

Hardware

Bu�ering

Hardware

Color Maps

Overlay

Transparency

Visual

overlay 8 single 2 no PseudoColor1

overlay 8 single 2 yes PseudoColor

image 8 single or double 2 N.A. PseudoColor2

TrueColor

image 12 single or double 2 N.A. DirectColor
TrueColor

image 24 single 2 N.A. DirectColor
TrueColor

1 This is the default color map mode.

2 This is the �rst visual returned by xdpyinfo.

3 The actual path names of directories in angle brackets depend on the �le system
structure. See the Graphics Administration Guide for details.

HP HCRX 2-33

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
If you need an overlay color map that supports transparency, create the color
map using the visual that has transparency in its SERVER_OVERLAY_VISUALS

property. To look at the contents of this property, you would use code similar to
the following:

/* First, get the list of visuals for this screen. */

.

.

*pVisuals = XGetVisualInfo(display, mask, &getVisInfo, numVisuals);

.

.

/* Now, get the overlay visual information for this screen. To obtain

* this information, get the SERVER_OVERLAY_VISUALS property. */

overlayVisualsAtom = XInternAtom(display, "SERVER_OVERLAY_VISUALS", True);

if (overlayVisualsAtom != None)

{

/* Since the Atom exists, we can request the property's contents. */

bytesAfter = 0;

numLongs = sizeof(OverlayVisualPropertyRec) / 4;

do

{

numLongs += bytesAfter * 4;

XGetWindowProperty(display, RootWindow(display, screen),

overlayVisualsAtom, 0, numLongs, False,

overlayVisualsAtom, &actualType, &actualFormat,

&numLongs, &bytesAfter, pOverlayVisuals);

} while (bytesAfter > 0);

}

.

.

/* Process the pOverlayVisuals array. */

while (--nVisuals >= 0) {

nOVisuals = *numOverlayVisuals;

pOVis = *pOverlayVisuals;

imageVisual = True;

while (--nOVisuals >= 0) {

pOOldVis = (OverlayVisualPropertyRec *) pOVis;

if (pVis->visualid == pOOldVis->visualID)

{

imageVisual = False;

pOVis->pOverlayVisualInfo = pVis;

/* Found the transparent visual */

if (pOVis->transparentType == TransparentPixel);

}

pOVis++;

}

}

2-34 HP HCRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
This program segment is not complete; however, its main purpose is to give you
an idea of how a visual is checked for overlay transparency. The source for the
above code can be found in the �le4:

hsb-utilsi/wsutils.c

HCRX Configuration Hints

This section discusses:

Visuals and double-bu�er support forHP Visualize-EG with add-on memory,
HCRX-8, HCRX-8Z, and HP Visualize-8.
Moving the default visual to the image planes.

4 The actual path names of directories in angle brackets depend on the �le system
structure. See the Graphics Administration Guide for details.

HP HCRX 2-35

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

HP VISUALIZE-EG with add-on memory, HCRX-8, HCRX-8Z, and
HP VISUALIZE-8 Visuals and Double-Buffer Support

The HP Visualize-EG with add-on memory, HCRX-8, HCRX-8Z, and
HP Visualize-8 have 8 overlay and 16 image planes. Note that the 16
image planes can be used for 8/8 double-bu�ered or 8-planes single-bu�ered
con�gurations; 16 planes single-bu�ered is not supported. The following list
contains information about the HP Visualize-EG with add-on memory,
HCRX-8, HCRX-8Z, and HP Visualize-8, the default visual, and support for
double-bu�ering:

There are two depth 8 PseudoColor visuals: one in the overlay planes and one
in the image planes, as well as a depth 8 TrueColor visual in the image planes.

The default visual (where the root window and default color map reside) is in
the overlay planes. The default visual can be moved to the image planes by
making a change in the X*screens �le as explained in the subsequent section
\Moving the Default Visual to the Image Planes."

Fast 8/8 double-bu�ering (two hardware bu�ers) is supported in the depth 8
image planes but not in the depth 8 overlay planes. The overlay planes support
the slower memory-based double-bu�ering.

2-36 HP HCRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
Programming Recommendations for the Default Visual

Here are some programming suggestions that will help you when working with
the default visual.

The default visual's color map cannot be used with a window in the non-default
visual, even one of the same depth.

Programming Recommendation: Before creating a depth 8 window, �rst check
that the window is in the default visual before trying to use the default color
map. If the window is not in the default visual, you must create a color map
in that visual. This is exactly the same process that you must follow to create
windows in a depth 12 or depth 24 visual.

Workaround: If you have an application that assumes the default color map
can be used with any depth 8 window, even one in the image planes, move
the default visual to the image planes as described in the subsequent section
\Moving the Default Visual to the Image Planes."

Unlike the CRX's default visual, the HP Visualize-EG with add-on memory,
HP Visualize-8's, HCRX-8's, and HCRX-8Z's default visuals do not have
fast hardware double-bu�ering, but the image planes do.

Programming Recommendation: To obtain hardware double-bu�ering, �nd a
visual in the image planes. The best way to do this is to �nd all the depth
8 PseudoColor visuals returned by XGetVisualInfo, then subtract the visuals
that are reported in the SERVER_OVERLAY_VISUALS property.

Workaround: If you have an application that assumes the default visual has
fast double-bu�ering, move the default visual to the image planes as explained
in the subsequent section \Moving the Default Visual to the Image Planes."

HP HCRX 2-37

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

Moving the Default Visual to the Image Planes

Note By default, overlay planes have the default X11 color map
permanently locked into one hardware color map, and the second
hardware color map is available for applications to use. Moving
the default visual into the image planes will limit the number of
hardware color maps available to you.

In this mode, the HCRX family of graphics devices provide a
single hardware color map in the overlay planes. This hardware
color map will be shared by X11 and the applications currently
being executed. The application (or X11) whose color map is
currently downloaded into hardware will look correct; the other
applications or X11 may experience the technicolor e�ect .

X Windows provides a method for changing the default visual from a depth 8
overlay PseudoColor visual to a depth 8 image PseudoColor visual. To do this,
use SAM. Or, you can manually edit the �le5:

hx11-admini/X*screens

and add the following lines:

Screen hdevi/crt

DefaultVisual

Class PseudoColor

Depth 8

Layer Image

The * in the X*screens �le name speci�es the display number . To determine
the display number, execute this shell command:

echo $DISPLAY

Your results will have the following syntax:

hhost namei:hdisplay numberi.hscreen numberi

5 The actual path names of directories in angle brackets depend on the �le system
structure. See the Graphics Administration Guide for details.

2-38 HP HCRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
Here is an example of what your display name might look like after executing the
echo $DISPLAY shell command:

mysystem:0.0

where host name is mysystem, display number is 0, and screen number is 0. In
the above example, you would edit the �le:

hx11-admini/X0screens

Note that the syntax of this speci�cation has changed. For more information, see
the �le:

hx11i/Xserver/info/screens/hp

The Overlay Plane Color Map Management Scheme

Many applications use the default X11 color map. A technicolor (color
ashing)
e�ect in the windows using the default color map occurs when a non-default color
map is downloaded into the hardware color map that had previously contained
the default X11 color map.

Because so many applications use the default X11 color map, and because the
HCRX family of graphics devices have two hardware color maps in the overlay
planes, the behavior on these devices is to dedicate (that is, lock) one overlay
hardware color map to always hold the default X11 color map. This means
that the assigned default overlay hardware color map cannot have another color
map downloaded to it. The other overlay hardware color map is available to
applications that use color maps other than the default.

HP HCRX 2-39

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

Starbase Echoes

This section provides information about the echo implementation for Starbase.
The HCRX family of graphics devices and all future graphics device drivers will
use this implementation of Starbase echoes.

Starbase echoes use Xlib functionality to draw echoes in the same planes as the
visual that is active for the window. All previously supported Starbase echo
functions are implemented except for those listed below:

There is no support for the following gescapes:

R_DEF_ECHO_TRANS

R_ECHO_FG_BG_COLORS

R_OV_ECHO_COLORS

R_OVERLAY_ECHO

In addition, the R_ECHO_MASK is only supported for a maximum of two colors
within the raster de�nition.
More than one Starbase echo per window is not supported.
Rendering with both Xlib and Starbase in the same window while Starbase
echoes are active may produce some random pixel \noise".

To Open and Initialize the Device for Output

Syntax Examples

The following examples show how to open the graphics devices for output6:

C programs:

fildes = gopen("hscreeni/window", OUTDEV, NULL, INIT);

FORTRAN77 programs:

fildes = gopen('hscreeni/window'//char(0), OUTDEV,

+ char(0), INIT)

6 The actual path names of directories in angle brackets depend on the �le system
structure. See the Graphics Administration Guide for details.

2-40 HP HCRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
Pascal programs:

fildes := gopen('hscreeni/window', OUTDEV, '', INIT);

Parameters for gopen

The gopen procedure has four parameters:path, kind , driver , and mode.

path | This is the name of the device �le created by xwcreate(1) or created
with XCreateWindow(3X) and returned from make_X11_gopen_string(3G).
kind |This parameter should be OUTDEV if the window will be used for output,
INDEV if the window will be be used for Starbase input, or OUTINDEV if the
window will be used for both output and Starbase input.
driver | The character representation of the driver type. If this parameter is
set to NULL, then gopen will inquire the device and use the appropriate driver.
Where there are both accelerated and unaccelerated versions of the driver, the
default is to load the accelerated version.

For example:

NULL for C.

char(0) for FORTRAN 77.

'' for Pascal.

Or, a character string may be used to specify a driver. For example:

"hphcrx" for C.

'hphcrx'//char(0) for FORTRAN 77.

'hphcrx' for Pascal.

HP HCRX 2-41

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

mode | The mode control word consists of several
ag bits OR ed together.
Listed below are
ag bits that have device-dependent actions. Those
ags not
discussed below operate as de�ned by the gopen procedure. See the Starbase
Graphics Techniques manual for a description of gopen actions when accessing
an X11 Window.
0 (zero) | Open the device, but do nothing else. The software color table
is initialized from the current state of the hardware color map.
INIT | Open and initialize the device as follows:
1. Window is cleared to 0s.
2. The color map is reset to its default values.
3. The display is enabled for reading and writing.
4. Clear the Z-bu�er (on the HP Visualize-EG, HCRX-8 or HCRX-24

with PowerShade or on the HCRX-8Z, HCRX-24Z, HP Visualize-8, or
HP Visualize-24)

RESET_DEVICE | Same as INIT.
SPOOLED | Not supported; raster devices cannot be spooled.
MODEL_XFORM | Opening in MODEL_XFORM mode will a�ect how matrix stack
and transformation routines are performed.
INT_XFORM | Perform only integer and common operations. All
oating
point operations will cause an error.
INT_XFORM_32 | Perform only integer and common operations, with
extended precision. All
oating point operations will cause an error.

This mode is provided for compatibility of integer precision with previous
devices. INT_XFORM might use a faster transformation pipeline with slightly
less precision. It is recommended to use INT_XFORM unless maximum
precision is required. If maximum precision is required, even at the expense
of performance, use INT_XFORM_32.
FLOAT_XFORM | Perform only
oating point and common operations. All
integer operations will cause an error.
UNACCELERATED | Tells the hphcrx driver to not use the HCRX-8Z,
HCRX-24Z, HP Visualize-8, or HP Visualize-24 accelerator. This
ag
only applies when NULL is speci�ed for the driver name.
ACCELERATED | Tells the hphcrx driver to use the HCRX-8Z, HCRX-24Z,
HP Visualize-8, orHP Visualize-24 accelerator if present (default). This

ag only applies when NULL is speci�ed for the driver name.

2-42 HP HCRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

Special Device Characteristics

Device Coordinate Addressing

For device coordinate operations, location (0, 0) is the upper-left corner of the
window with X-axis values increasing to the right and Y-axis values increasing
down.

Use this form of pixel addressing when calling high-level Starbase operations in
terms of (X,Y) device coordinates.

Figure 2-5. Device Coordinates

HP HCRX 2-43

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

Starbase Functionality

This section contains information on Starbase calls that are not supported by
the HCRX family of graphics devices and on gescapes that are supported by the
HCRX family of graphics devices.

Note that for texture mapping, the older, texture *, calls are not supported on
these devices. But, the new, tm *, calls are supported on all HCRX devices.

Calls Not Supported on the HCRX-8Z and HP VISUALIZE-8, or on
the HP VISUALIZE-EG and HCRX-8 with PowerShade

The following calls are not supported when using the HP Visualize-8 and
HCRX-8Z graphics devices, or when using an HP Visualize-EG or HCRX-8
graphics device with PowerShade 3D Surfaces Software.

alpha_transparency

bf_alpha_transparency

bf_texture_index

contour_enable

define_contour_table

define_texture

line_filter

perimeter_filter

texture_index
texture_viewport

texture_window

2-44 HP HCRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

Calls Not Supported on the HCRX-24Z and HP VISUALIZE-24,
or on the HCRX-24 with PowerShade

The following calls are not supported when using PowerShade 3D Surfaces
Software with the HCRX-24 graphics device, or when using the HCRX-24Z and
HP Visualize-24 graphics devices:

bf_texture_index

contour_enable

define_contour_table
define_texture

texture_index

texture_viewport

texture_window

In addition, alpha_transparency, line_filter, and perimeter_filter are not
supported on the HCRX-24, with or without PowerShade.

HP HCRX 2-45

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

Calls not Supported on the HP VISUALIZE-EG, HCRX-8,
and HCRX-24

The hphcrx driver does not support the following Starbase calls on the
HP Visualize-EG, HCRX-8, and HCRX-24 graphics devices if you are using
Starbase without the PowerShade software. When executed, these calls will
produce no result (that is, they are ignored).

alpha_transparency hidden_surface

backface_control light_ambient
bf_alpha_transparency light_attenuation

bf_control light_model

bf_fill_color light_switch

bf_interior_style line_filter

bf_perimeter_color perimeter_filter

bf_perimeter_repeat_length set_capping_planes

bf_perimeter_type set_model_clip_indicator

bf_surface_coefficients set_model_clip_volume

bf_surface_model surface_coefficients

bf_texture_index surface_model

contour_enable texture_index

define_contour_table texture_viewport

define_texture texture_window

define_trimming_curve viewpoint

deformation_mode zbuffer_switch

2-46 HP HCRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

Conditional Support of Starbase Calls on the
HP VISUALIZE-EG and HCRX-8

The following call is supported with the listed exceptions:

block_read,
block_write

The raw parameter for the block_read and
block_write commands is used by this driver to do
plane-major reads and writes. It is enabled by the
gescape R_BIT_MODE.

The storage destination supplied by the user as the
source or destination must be organized as follows.

The data from each plane is packed with eight pixels
per byte.

Each row must begin on a byte boundary. Thus the
size of the rectangle as speci�ed by the hlength xi and
hlength yi parameters must correspond to an integral
number of bytes.

The data for the next plane begins on the following
byte boundary.

Clip to the window limits.

The �rst pixel in the source rectangle is placed in the
high-order bit of the �rst byte in each plane region.

When clipping, part of each plane region will not be
read (block_read) or altered (block_write).

A bit mask selects the planes to read or write. The initial
value of this mask is 1 (one) indicating that only plane 0
is to be accessed. The value of the mask may be changed
using the R_BIT_MASK or GR2D_PLANE_MASK gescapes.
GR2D_PLANE_MASK is discussed in the appendix of the
Starbase Device Drivers Manual . The planes selected
by the mask are expected to reside in consecutive plane
locations in the user storage area. This reduces the
storage requirements to exactly what is needed but
also presents the potential for addressing violations or
undesirable results.

HP HCRX 2-47

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
For example, if the plane mask is changed to specify
more planes between a block_read and a following
block_write from the same location, the block_write
will attempt to access storage for planes that were
not read (and perhaps not allocated). The application
program must ensure consistency in these operations.

Conditional Support of Starbase Calls on the
HCRX-24, HCRX-24Z, or HP VISUALIZE-24

The following calls are supported with the listed exceptions:

alpha_transparency The HCRX-24Z and HP Visualize-24 graphics devices
support alpha transparency. Alpha only applies to
�lled areas such as polygons, quadrilateral meshes,
triangular strips, and spline surfaces. Vector primitives
are not rendered with alpha transparency. The alpha
transparency feature is limited to CMAP_FULL in the
12/12 or 24-plane con�gurations. Only the
oating point
version of these primitives will be rendered with alpha
transparency; device coordinate primitives do NOT use
alpha. The HCRX-24Z and HP Visualize-24 do not
support alpha transparency with attenuation. (See
alpha_transparency(3G) Starbase Reference Manual
for a list of parameters).

block_read,
block_write

The raw parameter for the block_read and
block_write commands is used by this driver to do
plane-major reads and writes. It is enabled by the
gescape R_BIT_MODE.

The storage destination supplied by the user as the
source or destination must be organized as follows.

The data from each plane is packed with eight pixels
per byte.

Each row must begin on a byte boundary. Thus the
size of the rectangle as speci�ed by the hlength xi and
hlength yi parameters must correspond to an integral
number of bytes.

2-48 HP HCRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

The data for the next plane begins on the following
byte boundary.

Clip to the window limits.

The �rst pixel in the source rectangle is placed in the
high-order bit of the �rst byte in each plane region.

When clipping, part of each plane region will not be
read (block_read) or altered (block_write).

A bit mask selects the planes to read or write. The
initial value of this mask is 1 (one) indicating that only
plane 0 is to be accessed. The value of the mask may
be changed using the R_BIT_MASK or GR2D_PLANE_MASK
gescapes. GR2D_PLANE_MASK is discussed in the appendix
of this manual. The planes selected by the mask are
expected to reside in consecutive plane locations in the
user storage area. This reduces the storage requirements
to exactly what is needed but also presents the potential
for addressing violations or undesirable results.

For example, if the plane mask is changed to specify
more planes between a block_read and a following
block_write from the same location, the block_write

will attempt to access storage for planes that were
not read (and perhaps not allocated). The application
program must ensure consistency in these operations.

fill_dither The ability to dither is disabled if the number of
colors speci�ed by fill_dither is one. However, if
the number of colors speci�ed is greater than 1, the
default dither cell size of 16 is used. Dithering is
only used in depth 8 windows while in either the
CMAP_FULL or CMAP_MONOTONIC color map mode. Note
that the HCRX-8Z, HCRX-24Z, HP Visualize-8, and
HP Visualize-24 devices do not dither when shading
in CMAP_MONOTONIC mode.

HP HCRX 2-49

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

interior_style The styles INT_PATTERN and INT_HATCH are not sup-
ported by the HCRX-8Z, HCRX-24Z, HP Visualize-8,
and HP Visualize-24 con�gurations when the acceler-
ator is being used.

light_source Up to 15 directional light sources are available with
the hphcrx device driver. The HP Visualize-8 and
HP Visualize-24 hardware accelerates up to eight di-
rectional light sources. Using nine to �fteen directional
light sources will cause a noticeable performance degra-
dation.

line_filter,
perimeter_filter

Anti-aliasing is supported only on the HCRX-24Z and
HP Visualize-24. Anti-aliasing for this device applies
only to
oating point vectors. Device coordinate primi-
tives do not use anti-aliasing. The anti-aliasing features
are also limited to the CMAP_FULL color map mode in the
12/12 or 24-plane con�gurations.

The procedures line_filter and perimeter_filter

can be use to specify the two anti-aliasing modes pro-
vided by the HCRX-24Z andHP Visualize-24 graphics
devices. The index values are assigned as follows:

0 Anti-aliasing disabled, all vectors have one pixel
wide output.

1 Anti-aliasing enabled, all vectors have two-pixel-
wide output. Pixel values are multiplied by the al-
pha value and blended with the background accord-
ing the the formula:

pixel color = (new pixel � �) +

(old pixel � (1 - �));

2 Anti-aliasing enabled, all vectors have two-pixel-
wide output. Pixel values are multiplied by the al-
pha value and blended with the background accord-
ing to the formula:

pixel color = (new pixel � �) + old pixel

2-50 HP HCRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

pattern_define For the HCRX family of graphics devices, the maxi-
mum pattern size is 4�4. If a pattern larger than 4�4
is speci�ed, an error message is printed and the previ-
ous pattern is retained. The HCRX-8Z, HCRX-24Z,
HP Visualize-8, and HP Visualize-24 graphics de-
vices do not render pattern �ll areas.

shade_mode The color map mode may be selected. Shading can
be turned on only if using PowerShade. Shading is
not supported on device coordinate primitives even
with PowerShade. Note that HCRX-8Z, HCRX-24Z,
HP Visualize-8, and HP Visualize-24 con�gurations
automatically use PowerShade. Also note that the
HCRX-8Z, HCRX-24Z, HP Visualize-8, and
HP Visualize-24 devices do not dither when shading
in CMAP_MONOTONIC mode.

text_precision Only STROKE_TEXT precision is supported.

vertex_format Without PowerShade, the husei parameter must be zero.
Any extra coordinate information will be ignored.

If using PowerShade software, vertex_format is fully
functional. Note that the HCRX-8Z, HCRX-24Z,
HP Visualize-8, and HP Visualize-24 con�gurations
automatically use PowerShade.

*_with_data The following routines are called with_data routines
because they allow you to send extra vertex data. These
with_data routines are supported by the HCRX family
of graphics devices.

partial_polygon_with_data3d

polygon_with_data3d

polyhedron_with_data

polyline_with_data3d

polymarker_with_data3d

polyquad_with_data3d

polytriangle_with_data3d
quadrilateral_mesh_with_data

triangle_strip_with_data

HP HCRX 2-51

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
Note that the TEXTURE_MAP
ag applies to the TurboVRX
devices via the texture_* routines. This extra data per
vertex is not used in the tm_* routines.

For detailed information on these routines, read the
Starbase Reference and \Appendix A" of this document.
In some cases, you will be able to �nd the routines under
their own name, but in other cases, you will need to use
the �rst part of the routine name to locate these routines
(e.g., polyline_with_data3d is described on the man
page for polyline(3G)).

2-52 HP HCRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

Supported Gescapes

The hphcrx device driver supports the following gescape operations on all HCRX
con�gurations.

BLOCK_WRITE_SKIPCOUNT|Specify byte skip count during block write.
COLOR_RECOVERY_CONTROL|Disable HP Color Recovery.
GCRX_PIXEL_REPLICATE|Pan and zoom a raster image.
IGNORE_RELEASE|Trigger only when button pressed.
R_BIT_MASK|Bit mask.
R_BIT_MODE|Bit mode.
R_GET_FRAME_BUFFER|Read frame bu�er address.
R_LINE_TYPE|User de�ned line style and repeat length.
R_LOCK_DEVICE|Lock device.
R_READ_FB|Write an image to a window whose shade mode is set to
CMAP_FULL.
R_WRITE_FB|Read the image out of a window created with the shade mode
set to CMAP_FULL.
R_UNLOCK_DEVICE|Unlock device.
READ_COLOR_MAP|Read Color Map.
SWITCH_SEMAPHORE|Semaphore Control.
TRIGGER_ON_RELEASE|Trigger only when button is released.
STEREO|Activate stereo output mode.

Additional Gescapes for the HCRX-24, HCRX-24Z, and HP VISUALIZE-24

CUBIC_POLYPOINT|Specify voxels to be rendered in a cubic volume speci�ed
in modeling coordinates.
DC_PIXEL_WRITE|Specify voxels to be rendered along a horizontal scan line.
GAMMA_CORRECTION|Enable/disable gamma correction.
LINEAR_POLYPOINT|Specify voxels to be rendered along a line speci�ed in
modeling coordinates.

Additional Gescapes for the HCRX-8Z,
HCRX-24Z, HP VISUALIZE-8, and HP VISUALIZE-24

DRAW_POINTS|Select di�erent modes of rounding for rendered points.
SET_POLYGON_OFFSET|Enable Z-bu�er biasing of �lled primitives (such as
polygons and triangular_strips).

HP HCRX 2-53

FINAL TRIM SIZE : 7.5 in x 9.0 in

2
Additional Gescapes Supported with PowerShade on HCRX-8 and HCRX-24,
and on HCRX-8Z, HCRX-24Z, HP VISUALIZE-8, and HP VISUALIZE-24
Devices

ILLUMINATION_ENABLE|Turn on/o� illumination bits.
LS_OVERFLOW_CONTROL|Set light source over
ow handling.
POLYGON_TRANSPARENCY|Segment control over front/back face screen.
TRANSPARENCY|Set screen door transparency mask (front face and back face).
WIDELINE_CONTROL|Turn on/o� and set attributes of widelines.
ZBANK_ACCESS|Enable/disable Z-bu�er block operations.
ZWRITE_ENABLE|Enable/disable replacement of Z value.

2-54 HP HCRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

Exceptions to Gescape Support

Note Because the gescape operations are device-dependent, the excep-
tions discussed below may be removed in future drivers.

GAMMA_CORRECTION Gamma correction is implemented by modifying the color
map. It is available only in 12-bit or 24-bit DirectColor vi-
suals. For information on the gescape GAMMA_CORRECTION,
refer to Appendix A in the Starbase Device Drivers Man-
ual . If a global gamma correction value has been set via the
X server or the gamma correction tool, that global gamma
correction value will be used and the color map will not be
modi�ed. See the Graphics Administration Guide for more
information about the gamma correction tool.

When the gescape operations listed below are used with a backing store graphics
window, they will have the desired e�ect for the visible portion of the window, but
may cause the backing store for obscured parts to be altered in inconsistent ways.
The features involved (along with the names of the a�ected gescape operations)
are listed below. For more details on the gescape operations, refer to Appendix
A in the HP-UX Starbase Device Drivers Manual .

R_BIT_MASK The gescape operation R_BIT_MASK de�nes a plane mask to
the driver that is used for bit/pixel access to a single plane in
the frame bu�er. As with other device drivers, only the plane
corresponding to the highest bit set in the mask is transferred.

R_BIT_MODE When block_read or block_write are used with the raw
parameter set to TRUE, the driver supports bit/pixel frame
bu�er access to single planes.

HP HCRX 2-55

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

Porting from HCRX-8 or HP VISUALIZE-EG to HCRX-24 or
HP VISUALIZE-24

This section discusses CMAP_FULLmode and color plane considerations for porting
from an HCRX-8 or HP Visualize-EG to an HCRX-24 or HP Visualize-24.

CMAP FULL Mode

On an HP Visualize-EG, HCRX-8, HCRX-8Z, and HP Visualize-8, 8 planes
will be used in 3:3:2 mode when rendering in the CMAP_FULLmode. In 3:3:2 mode,
the 8 planes are divided into three planes of red, three planes of green, and two
planes of blue. On an HCRX-24, HCRX-24Z, and HP Visualize-24, there are 8
planes for each of the three colors. These di�erences should not a�ect your code
unless your application needs to perform block operations. The number of colors
available will a�ect your output (the more colors, the better the picture quality).
The picture quality looks better on the 24-plane devices.

Although it is possible to do CMAP_FULL rendering into 8 planes on an HCRX-24,
HCRX-24Z, and HP Visualize-24 the performance will be lower than when
using all 24 planes. For higher performance and better image quality, HP
recommends using 24 planes.

Number of Color Planes

The HP Visualize-EG, HCRX-8, HCRX-8Z, and HP Visualize-8 have two
banks of 8 color planes each. The Starbase bank_switch function is used to
select bank 0 or 1 for block operations such as block_read, block_write, and
block_move. The HCRX-24 and HP Visualize-24 have 24 image planes and
8 overlay planes. The 24 image planes on these devices are organized as three
banks of 8 planes each. If an 8-bit window is opened in the image planes, then
the HCRX-24, HCRX-24Z, and HP Visualize-24 planes are accessed just like
the HCRX-8. If a depth 24 window is opened, then the bank_switch function is
used to select bank 0, 1, or 2 for block operations. If double bu�ering is enabled
for the depth 24 window, care must be taken to properly format data written
to or read from each bank. See the \Block Operations" section earlier in this
chapter for information about how to do this.

2-56 HP HCRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

Porting from HCRX-24 to an HCRX-24Z or
HP VISUALIZE-24

The HCRX-24Z and HP Visualize-24 provide accelerators for the HCRX-24
device. The HCRX-24, HCRX-24Z, andHP Visualize-24 use the hphcrx device
driver.

The HCRX-24Z and HP Visualize-24 accelerated Starbase graphics devices are
highly compatible with the HCRX-8 and HCRX-24 graphics devices. This can
allow applications written and delivered for HCRX-24 to use the HCRX-24Z and
HP Visualize-24 accelerators without requiring di�erent executable code.

Source Incompatibilities

The gescapes available for the HCRX-24Z and HP Visualize-24 are a superset
of those available on HCRX-8, HCRX-24, and HP Visualize-8.

Possible behavioral di�erences between the HCRX-8 and HCRX-24 and
HCRX-24Z or HP Visualize-24 should not a�ect the operation of the appli-
cation and may only be observed when directly comparing the images between
the accelerated and unaccelerated driver. Some of these di�erences are discussed
below.

Backing Store

Backing store is an X11 feature that allocates main memory for obscured regions
of a window. Graphics operations are written to this memory as well as the screen.
When the window is unobscured, the screen is updated from this memory. This
feature is supported by the HCRX-8, HP Visualize-EG, and HCRX-24, but
not by the HCRX-24Z and HP Visualize-24. Therefore, applications in the X
environment should capture and act on expose events and redraw the image when
one is received. X events are documented in the Programming with Xlib manual.

\Save under" is a feature of X11 that saves and restores the obscured region of
a window when covered by a transient window, such as a menu. If any graphics
activity occurs to the obscured window, the save under is voided. This feature
is not supported when the transient window is opened with the HCRX-24Z or
HP Visualize-24 accelerator.

HP HCRX 2-57

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

Note Support for both backing store and save under may change in
future releases of the Starbase graphics library.

Image Differences

Because of the di�erent mechanisms used to generate the image when using the
HCRX-24Z and HP Visualize-24 accelerator, there may be minor visual dif-
ferences between accelerated and unaccelerated images. These minor di�erences
are listed below.

Di�erent visibility properties. Very small primitives may be invisible, that is,
where the rendering starts and stops on the same pixel, such as the dot on the
letter i. If every pixel is required, see the DRAW_POINTS gescape.

Slight shifts in the image location on the display.

Minor di�erences in color interpolation.

Minor di�erences in pattern alignment or line type segment alignment.

Smooth-shaded images in CMAP_MONOTONIC colormap mode are never dithered
and may appear banded.

Note These di�erences should be minor. They may change in future
releases of the Starbase graphics library.

2-58 HP HCRX

FINAL TRIM SIZE : 7.5 in x 9.0 in

2

screenpr for the HCRX Family of Graphics Devices

The implementation of screenpr(1G) on the HCRX family of graphics devices
uses X11 and the HP imaging library, rather than Starbase, to read the screen.
This implementation correctly processes image and overlay planes, multiple color
maps, and overlay transparency.

Note that command line options are still the same; however, if screenpr detects
it is running on an HCRX graphics device, it will use the DISPLAY environment
variable to determine the screen to read, rather than using the device �le path
given by the -F option.

The -p option to print a single plane (and consequently the -f and -b options) is
not supported on the HCRX version of screenpr. These options will be ignored
by screenpr.

This version of screenpr uses X11, image library calls, and executes pcltrans(1G)
to produce PCL output. Therefore, screenpr may produce error messages from
X, the HP Image API library, or pcltrans.

The HCRX screenpr implementation always expands the data to 24 bits.
Therefore, the PCL output of an 8-bit only device like the HCRX family of
graphics devices will be approximately three times larger than might be expected.

HP HCRX 2-59

FINAL TRIM SIZE : 7.5 in x 9.0 in

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

3
The HP VISUALIZE-48 and
HP VISUALIZE-48XP Devices

The hphcrx48z driver supports theHP Visualize-48 andHP Visualize-48XP

graphics devices. These devices provide hardware support for the following op-
erations:

Generating vectors
Write-enabling planes and selecting individual banks in the frame bu�er
Writing pixels to the frame bu�er with a given replacement rule
Moving a block of pixels within the frame bu�er
Double-bu�ering per window
Flat shaded rectangles
Dithering and HP Color Recovery technology
Overlay plane transparency (X Windows)
Gouraud Shading
Positional and directional lighting calculations
Anti-aliased lines
Alpha transparency
Hidden surface removal with Z-bu�er
Z-bu�ering of voxels
Model geometry transformations
Optional hardware acceleration of texture mapping

The hphcrx48z device driver supports the high performance graphics device
described in subsequent sections.

HP VISUALIZE-48 and HP VISUALIZE-48XP 3-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Graphics Device Configuration

Note The HP Visualize-48 and HP Visualize-48XP graphics de-
vices do not provide raw-mode graphics support. You must dis-
play your Starbase applications in an X11 window or windows.
For information using Starbase with X11, read the chapter \Using
Starbase with the X Window System" in the Starbase Graphics
Techniques manual.

The HP Visualize-48 and HP Visualize-48XP support the con�guration
shown in Table 3-1.

Table 3-1. Supported Depth of Image Plane Windows

Graphics

Devices

Number of

Image Planes

Number of

Overlay Planes

Hardware

Accelerator

Resolution

HP Visualize-48,
HP Visualize-48XP

8/8, 24/24 81 Yes 1280�1024

1 All Starbase graphics rendering to the overlay planes is done by the VMX or SOX11 device driver.

In order to reduce
ickering, this graphics device refreshes the attached CRT
displays at least at a 72 Hz rate.

The HP Visualize-48 and HP Visualize-48XP each have a 1280�1024 pixel
screen resolution, four hardware color maps in the image planes, and two
hardware color maps in the overlay planes.

The HP Visualize-48's and HP Visualize-48XP's device drivers dither all
vectors.

3-2 HP VISUALIZE-48 and HP VISUALIZE-48XP

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

PowerShade

TheHP Visualize-48 andHP Visualize-48XP graphics devices work with the
3D surface rendering software, PowerShade. Note that PowerShade only works
in the image planes using the hphcrx48z device driver. Rendering support in
the overlay planes is provided by the HP VMX driver. For information on this
driver, see the \HP Virtual Memory and X" chapter in this Addendum.

PowerShade capabilities are automatically available in the image planes on these
devices. In order to use VMX with PowerShade on any graphics system, you
must install the PowerShade software.

For More Information

Information provided on the HP Visualize-48 and HP Visualize-48XP is
device-speci�c. For more detailed information on graphics programming and
X windows, please refer to the noted documents:

See the Starbase Graphics Techniques manual for general Starbase program-
ming information.

Refer to the Graphics Administration Guide to read about linking shared or
archive libraries, path naming conventions, X windows, completing installation,
and setting up graphics devices.

Device Description

The HP Visualize-48 and HP Visualize-48XP graphics devices have four
hardware color maps in the image planes and two hardware color maps in the
overlay planes. They support HP Color Recovery in all depth 8 image visuals, as
explained in the section \HP Color Recovery Technology" in this chapter.

The HP Visualize-48 and HP Visualize-48XP frame bu�ers include 48 image
planes and 8 overlay planes. Visuals that are supported by theHP Visualize-48

andHP Visualize-48XP are 8/8 double-bu�ered, 8-plane single-bu�ered, 24/24
double-bu�ered, and 24-plane single-bu�ered. Visuals that are not supported

HP VISUALIZE-48 and HP VISUALIZE-48XP 3-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

by the HP Visualize-48 and HP Visualize-48XP are 12/12 double-bu�ered,
12-plane single-bu�ered, and 48-plane single-bu�ered. The screen resolution is
1280x1024 pixels. There is no o�screen memory in the frame bu�er.

You can render to the image planes in two ways:

8-bit color (CMAP_NORMAL, CMAP_MONOTONIC, CMAP_FULL)

24-bit color (CMAP_FULL)

The two rendering modes are selected on a per-window basis. The mode selected
is a function of the depth of the window created and double-bu�er mode.

In 8-bit mode, each pixel is used as an index into a 256-entry color map. Each
entry in the color map provides eight bits per color for each of the red, green,
and blue components, providing a color palette of over 16 million colors. Double-
bu�ering is achieved by switching between two banks of 8-bit indexes. You can
perform 3:3:2 direct color emulation in this mode.

In 24-bit mode, a pixel is represented by eight bits each for red, green, and blue.

There are four hardware color maps available for use with the image planes. All
four color maps are shared by all graphics processes.

In addition to the four hardware color maps in image planes, there are two
hardware color maps for the overlay planes. One of the hardware color maps
has the default X11 color map permanently installed in it. This is done to avoid
technicolor in X11 and HP CDE windows and backgrounds.

The X server works only in combined mode. For information on supported X
server modes, read the section \Supported X Server Modes" in the Graphics
Administration Guide.

3-4 HP VISUALIZE-48 and HP VISUALIZE-48XP

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Geometry Accelerator

The HP Visualize-48 and HP Visualize-48XP include, by default, a ge-
ometry accelerator to provide high performance 3D solids modeling and high
performance 3D wireframe with anti-aliasing. The HP Visualize-48 and
HP Visualize-48XP geometry accelerators have a dedicated 24-bit hardware
Z-bu�er. The primary use of the HP Visualize-48 and HP Visualize-48XP

geometry accelerators is for 3D solids modeling, including drawing Starbase poly-
gons, polyhedrons, rectangles, triangle strips, quadrilateral meshes, spline sur-
faces, geometry transform, and lighting and shading of primitives. They have
capabilities for both surface rendering and volumetric rendering.

Note that the geometry accelerator is not used for rendering in the overlay planes.

The following lists provide information to help you maximize your application
performance. The �rst list describes operations that are most e�cient on the
HP Visualize-48 and HP Visualize-48XP.

Isotropic modeling transformations
Lighting, with no more than 8 lights of any type
View clipping
Perspective and orthographic (parallel) transformations
Depth cueing
3- and 4-sided �lled primitives, with or without RGB, alpha, and normal data
per vertex
Triangle strips, with or without RGB, alpha, and normal data per vertex
2D and 3D polylines

The following features use the geometry accelerator, but yield somewhat lower
performance than the base features listed above.

Non-convex polygons with more than 4 vertices
Polyhedrons with move/draw
ags
Facet normal lighting
Facet color

HP VISUALIZE-48 and HP VISUALIZE-48XP 3-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

The following features bypass the hardware geometry accelerator and use the
PowerShade software renderer instead:

Self-intersecting polygons
Model clipping/capping
Deformation
Wide lines
Backface distinguishing (but not back-face culling)
Starbase INT_OUTLINE interior style
Circles, ellipses, arcs
CMAP_NORMAL or CMAP_MONOTONIC modes
Picking
move3d()/draw3d()
Polymarkers
Rectangles
Text

Note that the geometry accelerator directly handles polygons with 3 or 4 vertices
only; more complicated polygons are decomposed into triangles. Convex polygons
will be decomposed most easily. Non-convex polygons or �ll area sets with only
one set will be decomposed less easily. Polyhedrons with move/draw
ags will be
decomposed, but with a signi�cant penalty in execution time. Self-intersecting
polygons can not be decomposed for the geometry accelerator. Instead, they
are lighted, shaded, and transformed by PowerShade, with only the �nal
rendering steps performed by the HP Visualize-48 and HP Visualize-48XP

scan conversion hardware. Since polygons are decomposed into triangles before
transformations occur, visual results may di�er slightly from previous devices.
Non planar polygons or polygons with greatly di�ering colors or normals at the
vertices will di�er more than planar polygons or polygons with more homogeneous
vertex data.

Also, note that compound primitives (triangle strips, quadrilateral meshes, and
polyhedrons) will perform better than the equivalent multiple discrete polygon
calls, since the shared library call overhead is less.

For more information about speci�c primitives and their relative speeds, read the
Graphics Administration Guide.

3-6 HP VISUALIZE-48 and HP VISUALIZE-48XP

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Texture Mapping Accelerator

An optional accelerator for texture mapped primitives may be purchased for
use with the HP Visualize-48 and HP Visualize-48XP hardware. Use
the graphinfo program to determine whether your system has this optional
accelerator. The line:

texture accelerator: yes

will be present if and only if the texture accelerator hardware is installed.

This hardware accelerates the following texture mapping features:

Single texture map per primitive
Full MIP mapping with all MIP interpolation �lters
All post-lighting texturing and pre-light replace and modulate texturing

The accelerator has memory built into it to hold up to 16 megabytes of texture
data (with 8-bits red, green, blue, and alpha data per texel). This is enough
memory for three 1024�1024 fully MIP-mapped textures, or a single 2048�2048
point sampled texture map. However, through a caching scheme for the hardware
texture memory, textures as large as 32768�32768 may be accelerated. Note that
up to 4096 textures of size 64�64 or smaller, or 256 textures of size 256�256 or
larger can be supported at one time.

To support the HP Visualize-48 and HP Visualize-48XP texture cache, a
texture interrupt management daemon runs continuously. This daemon, named
timd, is responsible for ensuring that the appropriate sections of texture maps
reside in the hardware texture memory. Just like other system processes, under
no circumstances should you attempt to kill timd, as this may cause the hardware
to enter a \hung" state from which it is di�cult to recover.

Overlay Plane Rendering

Either the hpvmx or sox11 device driver is used for Starbase rendering to the
overlay planes. For more information on these device drivers, see the chapters
\HP Virtual Memory and X" in this Addendum and \The Starbase-on-X11
Device Driver" in the HP-UX Starbase Device Drivers Manual .

If an overlay plane window is gopened with a driver name of NULL, the hpvmx

driver will be used. See the table, \Driver Selection at gopen" in the chapter
\HP Virtual Memory and X" in this Addendum for details.

HP VISUALIZE-48 and HP VISUALIZE-48XP 3-7

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

8/8 VM double-bu�ering is supported in the overlay planes using the hpvmx

driver.

HP Color Recovery Technology

The HP Visualize-48 and HP Visualize-48XP use HP Color Recovery for
shaded �ll areas in depth 8 image-plane visuals (for example, polygons and
spline surfaces). Color Recovery will generate a better picture by attempting
to eliminate the graininess caused by dithering. HP Color Recovery is available
in all depth 8 visuals on the HP Visualize-48 and HP Visualize-48XP.

There are two components to HP Color Recovery. A di�erent dither cell size
(16�2) is used when rendering shaded polygons, and a digital �lter is used when
displaying the contents of the frame bu�er to the screen.

The HP Visualize-48 and HP Visualize-48XP provide HP Color Recovery
whenever you are in CMAP_FULL mode and you have used the INIT
ag in the
gopen, shade_mode, or the double_buffer function to initialize color maps.
Keep in mind that the default color map mode is CMAP_NORMAL for PseudoColor
visuals. Therefore, the HP Color Recovery color map will not be downloaded
until you call shade_mode to set the mode to CMAP_FULL and use INIT.

HP Color Recovery is available when using either PseudoColor or TrueColor
visuals. The HP Color Recovery color map is a read-only color map. Any
attempts to change it will be ignored and no error will be reported.

In CMAP_FULL shade mode, disabling HP Color Recovery results in normal
dithering of shaded �ll areas. HP Color Recovery is not available with any other
shade mode.

HP Color Recovery is enabled in conjunction with a particular X color map that
is associated with your window. If that X color map is not currently installed in
hardware by your window manager, you will not see the e�ect of the HP Color
Recovery �lter.

Note that vectors are always dithered, even in an HP Color Recovery window.

Under some conditions HP Color Recovery can produce undesirable artifacts in
the image. This also happens with 4�4 dithering, but the artifacts are di�erent.
However, images rendered with HP Color Recovery are seldom worse than what
dithering produces, and in most cases, HP Color Recovery produces signi�cantly
better pictures than dithering. Note that 4�4 dithering, like HP Color Recovery,

3-8 HP VISUALIZE-48 and HP VISUALIZE-48XP

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

is available in the CMAP_FULL color map mode, but not in the CMAP_NORMAL color
map mode.

HP Color Recovery is available by default. If you wish to disable HP Color
Recovery, you can do it in one of three ways:

Add the screen option DisableColorRecovery to your X*screens �le. Setting
this screen option prior to starting up the X server disables HP Color Recovery
for all applications and any attempts to enable HP Color Recovery will be
ignored. Remember, if you set this screen option prior to starting up the X
server, you cannot re-enable HP Color Recovery from the command line or
from within an application. To set this screen option, add the following lines
to your hx11-admini1/X0screens �le:

ScreenOptions

DisableColorRecovery

and restart HP CDE or X11.

Export the environment variable HP_DISABLE_COLOR_RECOVERY before running
your application. Setting this environment variable to any value disables HP
Color Recovery for subsequently executed applications. To set this environment
variable in your current X11 window, execute this command on the command
line before running your application (assuming you are using the Korn shell):

export HP_DISABLE_COLOR_RECOVERY=TRUE

Disable HP Color Recovery programmatically by using the Starbase gescape

COLOR_RECOVERY_CONTROL. For details on this gescape, read the subsequent
section \Gescapes."

1 The actual path names of directories in angle brackets depend on the �le system
structure. See the Graphics Administration Guide for details.

HP VISUALIZE-48 and HP VISUALIZE-48XP 3-9

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Gescapes

The COLOR_RECOVERY_CONTROL gescape can be used to disable HP Color
Recovery. Passing it a 0 value in arg1 will disable HP Color Recovery, a 1 value
will enable it (HP Color Recovery is enabled by default). The arg2 parameter is
ignored. The e�ect of this gescape will not take place until the next time you
call shade_mode or double_buffer with the INIT
ag. For example:

gescape_arg arg1;

/* Disable HP Color Recovery */

arg1.i[0] = 0;

gescape(�ldes, COLOR_RECOVERY_CONTROL, &arg1, NULL);

shade_mode(�ldes, CMAP_FULL|INIT,0);

3-10 HP VISUALIZE-48 and HP VISUALIZE-48XP

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

The Frame Buffer

Physical Address Space

The physical frame bu�er is addressed as 2048�1024 bytes. The last 768 bytes of
each line of the address space (those to the right of the screen) are not displayed
and no memory exists in those areas.

Figure 3-1. Physical Address Space

HP VISUALIZE-48 and HP VISUALIZE-48XP 3-11

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

To Access the Frame Buffer Directly

When using the R_GET_FRAME_BUFFER gescape for direct user access to the frame
bu�er, correct access can only be assured by using the R_LOCK_DEVICE and
R_UNLOCK_DEVICE gescapes.

1. Use R_LOCK_DEVICE just prior to direct frame bu�er access.

2. Use R_UNLOCK_DEVICE directly after the frame bu�er access and before any
other Starbase commands.

Caution Do not read from or write to the o�screen addresses. Such
operations will cause errors.

Frame Buffer Address Mapping

The frame bu�er is organized as a single one-dimensional array of pixel values.
The �rst byte (byte 0) of the frame bu�er represents the upper left corner pixel of
the screen. Byte 1 is immediately to its right. Byte 1279 is the last (right-most)
displayable pixel on the top line. The next 768 bytes are not displayable. Byte
2048 is the �rst (left-most) pixel on the second line from the top. The last (lower
right corner) pixel on the screen is byte number 2,096,383 (1023�2048+1279).

3-12 HP VISUALIZE-48 and HP VISUALIZE-48XP

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Figure 3-2. Frame Buffer Mapping in Memory

HP VISUALIZE-48 and HP VISUALIZE-48XP 3-13

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

The HP Visualize-48 and HP Visualize-48XP frame bu�ers have six banks
of 8 planes (two for each color). Only one bank can be accessed at a time. Use
the bank_switch call to select a bank to read or write data directly from the
frame bu�er. For block_read and block_write operations to the image planes,
the data is in all eight bits of each byte.

The default for reading the Z-bu�er is always 24 bits per pixel in a 32-bit word.
The raw parameter to block_read and block_write must be set to true in
order to read from or write to the Z-bu�er. Using wbank=6 in the bank_switch
command on the HP Visualize-48 and HP Visualize-48XP selects the Z-
bu�er for reads or writes.

The Z-bu�ers for the HP Visualize-48 and HP Visualize-48XP are 24-bits
deep, but only 23 bits are available for depth information. When applications
read the Z-bu�er data, the depth information is returned left-justi�ed in the lower
24 bits of a 32-bit word (that is, the 23-bit Z-bu�er data is shifted left one bit
from the least-signi�cant bit), as shown in the following �gure. This di�ers from
the behaviour of the CRX-48Z.

Figure 3-3. Hardware Z-Buffer Data Alignment

Unlike the frame bu�er, the Z-bu�er data is contiguous. TheHP Visualize-48's
and HP Visualize-48XP's Z-bu�ers are always 1280�1024 where word 1280
is the leftmost word of the second scanline. For the HP Visualize-48 and
HP Visualize-48XP, the Z-bu�er is the size of the window. For example, if the
window is 400�400, word 400 is the leftmost Z-bu�er value for the second scan
line.

3-14 HP VISUALIZE-48 and HP VISUALIZE-48XP

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Frame Buffer Configurations

The following table shows which color map modes are supported for di�erent
frame bu�er con�gurations.

Table 3-2. Supported Frame Buffer Configurations

Number of Planes HP Visualize-48 and HP Visualize-48XP

8/8 CMAP_NORMAL,
CMAP_FULL,
CMAP_MONOTONIC

24/24 CMAP_FULL

Since Starbase supports double-bu�ering per window, it is better to re-
quest double-bu�ering with a depth of 24 when in CMAP_FULL mode on an
HP Visualize-48 and HP Visualize-48XP. Double-bu�ering with less than
8 planes (4/4, 3/3, 2/2, 1/1) is supported in depth 8 windows for compatibility
with previous devices, however, it is not recommended. The write_enable and
display_enable masks are used to accomplish double-bu�ering with less than
8 planes. Flashing may occur, however, as this kind of double-bu�ering is not
coordinated with the X server.

Using Starbase in X Windows

This section contains device speci�c information needed to run Starbase programs
in X11 windows. If you need a general, device-independent explanation of using
Starbase in X11 windows, refer to the \Using Starbase with the X Window
System" chapter of Starbase Graphics Techniques.

To reduce the complexity of having multiple X server modes, the hphcrx48z

drivers for X and Starbase only support one X server mode. Several other key
features have been designed to improve the overall usability of the devices in
the X11 windows environment, and to reduce interaction issues between the X11
user interface and graphics library APIs (such as Starbase), that provide direct
hardware access (DHA).

HP VISUALIZE-48 and HP VISUALIZE-48XP 3-15

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Per-Window Double-Buffering

The HP Visualize-48 and HP Visualize-48XP support double-bu�ering in
the images planes on a per-window basis. The HP Visualize-48 and
HP Visualize-48XP graphics devices support 8/8 and 24/24 planes double-
bu�ered for each of the Starbase color map modes (CMAP_NORMAL, CMAP_FULL,
CMAP_MONOTONIC) in the image and overlay planes. Any X11 library drawing
routines will render to the currently visible bu�er of a window that has double-
bu�ering enabled.

Note that Starbase uses the hpvmx device driver to perform double-bu�ering in
software in the overlay planes. This double-bu�ering method is slower than the
hardware double-bu�ering used in the image planes. Any X11 library drawing
routines will render to the currently visible bu�er of a window that has double-
bu�ering enabled.

Available Color Map Entries

The HP Visualize-48 and HP Visualize-48XP have two hardware color maps
in the overlay planes and four hardware color maps in the image planes.

If you query the X server for the number of entries in the default overlay
visual's color map while you are using the default X server mode of the
HP Visualize-48 and HP Visualize-48XP, the server will reply that there
are 256 entries available. Although all 256 entries are available for use by an
application, the last entry (index 255) is not writable because it is allocated by
the X server.

Starbase Color Maps and X11 Read/Write Restrictions

The X color model de�nes read/write restrictions both on color maps and on
individual entries in color maps. As of HP-UX 9.05, Starbase no longer overwrites
read-only color maps or color map entries as de�ned in the X color model.
Attempts to write to color map entries in read-only color maps (that is, for
TrueColor, StaticColor, or StaticGray visuals) are silently ignored.

3-16 HP VISUALIZE-48 and HP VISUALIZE-48XP

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Accessing HP Color Recovery with X Windows

The HP Visualize-48 and HP Visualize-48XP support HP Color Recovery
for shaded areas. When a depth 8 window is used, HP Color Recovery will
generate a better picture by attempting to eliminate the graininess caused
by dithering. Color Recovery is available on all depth 8 windows on the
HP Visualize-48 and HP Visualize-48XP. For more information about HP
Color Recovery, read the section \HP Color Recovery" found in this chapter.

The Starbase, HP PEX, and HP-PHIGS graphics libraries provide programmers
who use these APIs with transparent access to the HP Color Recovery capability
of the HP Visualize-48 and HP Visualize-48XP. If you are producing
graphics using Xlib calls, then your application must perform some of the
necessary processing. At server start-up, there is one property that is de�ned
and placed on the root window if the HP_DISABLE_COLOR_RECOVERY environment
variable has not been exported. This property is:

_HP_RGB_SMOOTH_MAP_LIST

The above property is of type RGB_COLOR_MAP and carries pointers to structures
of type XStandardColormap. It may be interrogated with calls to XGetRGBCol-

ormaps. The property _HP_RGB_SMOOTH_MAP_LIST is a list of color maps that are
associated with window visual IDs that support HP Color Recovery. When the
XGetRGBColormaps routine searches throughout this list for a color map with a
visual ID that matches your window's visual ID and it �nds one, your application
knows that your visual supports HP Color Recovery, and uses that color map for
any HP Color Recovery window.

HP Color Recovery uses all 256 entries of one of the available color maps. The
color visual used by HP Color Recovery emulates the 24-bit TrueColor visual.
Thus, the colors red, green, and blue are typically declared as integers in the
range from 0 to 255. Note that each window that uses HP Color Recovery will
use the same color map.

For HP Color Recovery to produce the best results, the emulated 24-bit TrueColor
data is dithered as explained below.

A pixel to be dithered is sent to the routine provided in this example. Note that
the values of the variables RedValue, GreenValue and BlueValue are generated
by an application. In this example, the color values are assumed to be in the
range [0..255].

HP VISUALIZE-48 and HP VISUALIZE-48XP 3-17

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

The given routine receives the color values and the X and Y window address (Xp
and Yp) of the pixel. The X and Y address is used to access the dither tables.
The values from the dither tables are added to the color values. After the dither
addition, the resultant color values are quantized to 3 bits of red and green and 2
bits of blue. The quantized results are packed into an 8-bit unsigned char and
then stored in the frame bu�er. As the contents of the frame bu�er are scanned to
the CRT, a special section in the HP Visualize-48 and HP Visualize-48XP

hardware then converts the 8-bit data stored in the frame bu�er into a 24-bit
TrueColor image for display.

Here is a routine that can be used to dither the 24-bit TrueColor data.

unsigned char dither_pixel_for_CR(RedValue,GreenValue,BlueValue,Xp,Yp)

int RedValue,GreenValueBlueValue,Xp,Yp;

{

static short dither_red[2][16] = {

{-16, 4, -1, 11,-14, 6, -3, 9,-15, 5, -2, 10,-13, 7, -4, 8},

{ 15, -5, 0,-12, 13, -7, 2,-10, 14, -6, 1,-11, 12, -8, 3, -9} };

static short dither_green[2][16] = {

{ 11,-15, 7, -3, 8,-14, 4, -2, 10,-16, 6, -4, 9,-13, 5, -1},

{-12, 14, -8, 2, -9, 13, -5, 1,-11, 15, -7, 3,-10, 12, -6, 0} };

static short dither_blue[2][16] = {

{ -3, 9,-13, 7, -1, 11,-15, 5, -4, 8,-14, 6, -2, 10,-16, 4},

{ 2,-10, 12, -8, 0,-12, 14, -6, 3, -9, 13, -7, 1,-11, 15, -5} };

int red, green, blue;

int x_dither_table, y_dither_table;

unsigned char pixel;

x_dither_table = Xp % 16; /* X Pixel Address MOD 16 */

y_dither_table = Yp % 2; /* Y Pixel Address MOD 2 */

red = RedValue;

green = GreenValue;

blue = BlueValue;

if (red >= 48) /* 48 is a constant required by this routine */

red=red-16;

else

red=red/2+8;

red += dither_red[y_dither_table][x_dither_table];

if (red > 0xff) red = 0xff;

if (red < 0x00) red = 0x00;

if (green >= 48) /* 48 is a constant required by this routine */

3-18 HP VISUALIZE-48 and HP VISUALIZE-48XP

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

green=green-16;

else

green=green/2+8;

green += dither_green[y_dither_table][x_dither_table];

if (green > 0xff) green = 0xff;

if (green < 0x00) green = 0x00;

if (blue >= 112) /* 112 is a constant required by this routine */

blue=blue-32;

else

blue=blue/2+24;

blue += (dither_blue[y_dither_table][x_dither_table]<<1);

if (blue > 0xff) blue = 0xff;

if (blue < 0x00) blue = 0x00;

pixel = ((red & 0xE0) | ((green & 0xE0) >> 3) | ((blue & 0xC0) >> 6));

return(pixel);

}

Backing Store

Backing store is only supported when rendering to overlay planes with the hpvmx
driver. For image plane windows, you need to detect window exposure events
and repaint the window when a previously obscured portion of a window is made
visible.

The HP Visualize-48 and HP Visualize-48XP support backing store (also
known as \retained raster") if acceleration is disabled. The backing store feature
allows a window being rendered to by a direct hardware access (DHA) client to
be \backed-up" to a virtual frame bu�er whenever any portion of the window
is obscured by another window. In this case, the application is not required to
catch \expose events" from X11 and redraw the picture when occlusion occurs.
In fact, no \expose events" will be generated if backing store is enabled.

Thus, when a window is placed on top of another window containing a complete
image, the window system will save the contents of the latter window before
displaying the obscuring window. Then, when the obscuring window is removed,
the earlier contents of the occluded area plus any new rendering that has occurred
in the occluded area during the cover-up will be restored. Since rendering to the
virtual frame bu�er is not as fast as rendering to the actual frame bu�er in the
occluded area, the performance will su�er, but only while the window is occluded.

HP VISUALIZE-48 and HP VISUALIZE-48XP 3-19

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Backing Store Exceptions

In general, those Starbase operations that draw to the display are also supported
when drawing to backing store. The exceptions to this are:

Backing store with 24-plane visuals is not supported.
Backing store for the HP Visualize-48 and HP Visualize-48XP accelera-
tors cannot be enabled.
Backing store will not work with certain gescape operations that access device-
dependent features.
Backing store contents may be incorrect if you mix Xlib rendering with Starbase
rendering to an 8/8 double-bu�ered window.

If these limitations on backing store support prove troublesome in your appli-
cation, do not use backing store. Instead, detect window exposure events and
repaint the window when a previously obscured portion of a window is made
visible.

X11 Cursor

The X11 cursor (often called the sprite) is maintained by the display hardware
and never interferes with the frame bu�er contents in either the image or overlay
planes.

Supported Visuals

The following table of Supported Visuals contains information for programmers
using either Xlib graphics or Starbase. The table lists the image plane depths
of windows and color map access modes that are supported for a given graphics
device. It also indicates whether or not backing store (also known as \retained
raster") is available for a given visual, and lists the double-bu�er con�gurations
supported by Starbase for this device driver.

3-20 HP VISUALIZE-48 and HP VISUALIZE-48XP

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Table 3-3. Supported Visuals

Device Depth Visual Class Backing Store Starbase

Double-

Bu�er1Xlib Starbase

HP Visualize-48,
HP Visualize-48XP

8

24

PseudoColor
TrueColor
DirectColor
TrueColor

Yes2

Yes2

Yes
Yes

No3

No3

No
No

8/8
8/8
24/24
24/24

1 Double-bu�ering with less than 8 planes (4/4, 3/3, 2/2, 1/1) is supported for compatibility with
previous devices, however, it is not recommended. The write_enable and display_enable masks
are used to accomplish double-bu�ering with less than 8 planes in a depth 8 visual. Flashing may
occur, however, as this kind of double-bu�ering cannot be done on a per window basis. Note that
double-bu�ering with less than 8-planes is only supported in CMAP_NORMAL.

2 Xlib primitives are supported by backing store. Whenever backing store is not maintained, normal
expose events are generated.

3 Backing store is only supported when rendering with the hpvmx driver.

HP VISUALIZE-48 and HP VISUALIZE-48XP 3-21

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Moving the Default Visual to the Image Planes

Note By default the overlay planes have the default X11 color map
permanently locked into one hardware color map, and any other
hardware color maps used by the overlay planes are available
for applications to use. Moving the default visual into the
image planes will limit the number of hardware color maps
available to you. In this mode, the HP Visualize-48 and
HP Visualize-48XP provide a single hardware color map in
the overlay planes.

Since HP-UX 9.05, X Windows have provided a method for changing the
default visual from a depth 8 overlay PseudoColor visual to a depth 8 image
PseudoColor visual. This is done by moving the default visual to the depth 8
image PseudoColor visual. To do this, use SAM. Or, manually edit the �le2:

hx11-admini/X*screens

and add the following lines:

Screen hdevi/crt

DefaultVisual

Class PseudoColor

Depth 8

Layer Image

The * in the X*screens �le name speci�es the display number . To determine
the display number, execute this shell command:

echo $DISPLAY

Your results will have the following syntax:

hhost namei:hdisplay numberi.hscreen numberi

2 The actual path names of directories in angle brackets depend on the �le system
structure. See the Graphics Administration Guide for details.

3-22 HP VISUALIZE-48 and HP VISUALIZE-48XP

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Here is an example of what your display name might look like after executing the
echo $DISPLAY shell command:

mysystem:0.0

where host name is mysystem, display number is 0, and screen number is 0. In
the above example, you would edit the �le:

hx11-admini/X0screens

Note that the syntax of this speci�cation has changed. For more information, see
the �le:

hx11i/Xserver/info/screens/hp

Device Support for the TrueColor Visual

TrueColor Visual Description

A TrueColor visual can be thought of as having a read-only color map where,
for any given pixel value, about one third of the bits are used to describe each
of the red, green, and blue colors, respectively. For an 8-plane TrueColor visual,
3 bits describe the red component, 3 bits describe the green component, and 2
bits describe the blue component. A 24-plane TrueColor visual uses 8 bits each
to describe the red, green, and blue components. This is illustrated as follows:

Figure 3-4. Pixel Representation for the 8- and 24-Plane TrueColor Visuals

HP VISUALIZE-48 and HP VISUALIZE-48XP 3-23

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

The following example refers to an depth 8 TrueColor visual; however, the
example can be expanded to apply to depth 24 plane TrueColor visuals.

Example

Since the red and green components consist of 3 bits each, there are 8 di�erent
shades of red and 8 di�erent shades of green available. There are 4 di�erent
shades of blue represented by 2 bits. As the component value increases, the
intensity of that color increases. For example, a red component of 000 represents
no red and a red component of 111 represents full red. Therefore, pixel value 0
is 000 red, 000 green, and 00 blue, which results in black. Pixel value 255 is 111
red, 111 green, and 11 blue, which results in white. These and other examples
are shown in Table 3-4.

Table 3-4. Examples of Pixel Color Values

Pixel Value Binary Red Green Blue

0 000 000 00 shade 0 shade 0 shade 0

53 001 101 01 shade 1 shade 5 shade 1

139 100 010 11 shade 4 shade 2 shade 3

218 110 110 10 shade 6 shade 6 shade 2

255 111 111 11 shade 7 shade 7 shade 3

Note that the red, green and blue intensities for the color shades increase
uniformly between 0 and 255.

Device Specific Visuals Information

Note that the TrueColor Visual always uses a shade_mode of CMAP_FULL. When
the TrueColor visual window is gopened, your application will automatically be
in CMAP_FULL mode and the shade_mode call will ignore any attempts to go into
another mode.

With the addition of the TrueColor visual at the 9.03 release of HP-UX, you need
to consider the following information:

3-24 HP VISUALIZE-48 and HP VISUALIZE-48XP

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

If you originally created your windows using a command line similar to the
following:

xwcreate -g 600x500 -depth 24 window

you will have to change how you create your windows by using command lines
similar to this:

xwcreate -g 600x500 -depth 24 -visual TrueColor window

xwcreate -g 600x500 -depth 24 -visual DirectColor window

Note the addition of the command line option -visual for declaring TrueColor
and DirectColor visuals. The HP Visualize-48 and HP Visualize-48XP

devices default to PseudoColor if the visual is not speci�ed.

The TrueColor color map is read-only, so it cannot be modi�ed. Note that any
attempt to modify the TrueColor color map will not produce an error message.

One class of applications that could be e�ected by this are those that perform
their own gamma correction.

If your application searches for a visual by traversing the visual list returned
by the X server, you will �nd that the order of visuals in this list has changed
because of the addition of the TrueColor visuals. Therefore, your application
code should always explicitly search for a particular visual rather than assuming
that it occurs in a �xed position within the list of visuals returned by X11.

The Overlay Plane Color Map Management Scheme

Many applications use the default X11 color map. A technicolor e�ect (color

ashing) in the windows using the default color map occurs when a non-default
color map is downloaded into the hardware color map that had previously
contained the default X11 color map.

Because so many applications use the default X11 color map, and because the
HP Visualize-48 and HP Visualize-48XP have two hardware color maps in
the overlay planes, the behavior on these devices is to dedicate (that is, lock)
one overlay hardware color map to always hold the default X11 color map. This
means that the assigned default overlay hardware color map cannot have another

HP VISUALIZE-48 and HP VISUALIZE-48XP 3-25

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

color map downloaded to it. The other overlay hardware color map is available
to applications that use color maps other than the default.

Overlay Plane Transparency and the X Windows System

The default X11 mode on the HP Visualize-48 and HP Visualize-48XP do
not provide an overlay visual with a transparent property. If you need an overlay
color map that supports transparency, create the color map using the visual that
has transparency in its SERVER_OVERLAY_VISUALS property (see the next section).

An overlay visual's transparency feature enables you to render opaque objects
(for example, menus and text) to a transparent overlay window and at the same
time view rendered objects in an image window. For example, you may want to
show a map of a country without all of its internal borders, and then add the
internal borders as you need them. This can be done by creating two X windows
with the same geometry: one in the overlay planes and one in the images planes.
The country's terrain and boundaries would be drawn in the image planes window
and the internal borders in a transparent overlay window.

The following section describes the default frame bu�er con�guration for the
HP Visualize-48 and HP Visualize-48XP.

The default visual con�guration is:
overlay planes
depth 8
PseudoColor
opaque (no transparency)

with 256 color map entries. Note that when using the default X server mode of
the HP Visualize-48 and HP Visualize-48XP, if you query the X server for
the number of entries in the default color map, the server will reply that there
are 256 entries available. Although these entries are available, the X server
reserves the last entry (index 255). So, that entry is not writable and should
not be used.
The default X11 color map is locked into one of the hardware color maps in the
overlay planes. For a description of how to move the default visual to images
planes, read the subsequent section \Moving the Default Visual to the Images
Planes" in this chapter.

3-26 HP VISUALIZE-48 and HP VISUALIZE-48XP

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

In the default overlay visual, the number of overlay color map entries is 255
because the last entry is the transparent color map value. If your application
requires that you have 256 entries in your color map, you need to set the
environment variable CountTransparentInOverlayVisual. To do this, use
SAM. Or you can manually edit the hx11-admini3/X*screens �le to add the
following option:

ScreenOptions

CountTransparentInOverlayVisual

before starting the X11 server. Any attempts to modify entry 255 will silently
ignored, and will have no e�ect on the color map.

3 The actual path names of directories in angle brackets depend on the �le system
structure. See the Graphics Administration Guide for details.

HP VISUALIZE-48 and HP VISUALIZE-48XP 3-27

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

The Default Frame Buffer Configuration for the HP VISUALIZE-48
and HP VISUALIZE-48XP

Table 3-5 shows the default HP Visualize-48 and HP Visualize-48XP frame
bu�er con�gurations. These con�gurations are not changed by using overlay
transparency.

Table 3-5.

The Default Frame Buffer Configuration for the HP Visualize-48

and HP Visualize-48XP

Frame Bu�er

Layer

Window

Depth

Hardware

Bu�ering

Hardware

Color Maps

Overlay

Transparency

Visual

overlay 8 single 2 no PseudoColor1

overlay 8 single 2 yes PseudoColor

image 8 single or double 4 N/A PseudoColor2

TrueColor

image 24 single or double 4 N/A DirectColor
TrueColor

1 This is the default overlay visual.

2 This is the �rst visual returned by xdpyinfo.

If you need an overlay color map that supports transparency, create the color
map using the visual that has transparency in its SERVER_OVERLAY_VISUALS

property. To look at the contents of this property, you would use code similar to
the following:

/* First, get the list of visuals for this screen. */

.

.

*pVisuals = XGetVisualInfo(display, mask, &getVisInfo, numVisuals);

.

.

/* Now, get the overlay visual information for this screen. To obtain

* this information, get the SERVER_OVERLAY_VISUALS property. */

overlayVisualsAtom = XInternAtom(display, "SERVER_OVERLAY_VISUALS", True);

if (overlayVisualsAtom != None)

{

3-28 HP VISUALIZE-48 and HP VISUALIZE-48XP

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

/* Since the Atom exists, we can request the property's contents. */

bytesAfter = 0;

numLongs = sizeof(OverlayVisualPropertyRec) / 4;

do

{

numLongs += bytesAfter * 4;

XGetWindowProperty(display, RootWindow(display, screen),

overlayVisualsAtom, 0, numLongs, False,

overlayVisualsAtom, &actualType, &actualFormat,

&numLongs, &bytesAfter, pOverlayVisuals);

} while (bytesAfter > 0);

}

.

.

/* Process the pOverlayVisuals array. */

while (--nVisuals >= 0) {

nOVisuals = *numOverlayVisuals;

pOVis = *pOverlayVisuals;

imageVisual = True;

while (--nOVisuals >= 0) {

pOOldVis = (OverlayVisualPropertyRec *) pOVis;

if (pVis->visualid == pOOldVis->visualID)

{

imageVisual = False;

pOVis->pOverlayVisualInfo = pVis;

/* Found the transparent visual */

if (pOVis->transparentType == TransparentPixel);

}

pOVis++;

}

}

This program segment is not complete; however, its main purpose is to give you
an idea of how a visual is checked for overlay transparency. The source for the
above code can be found in the �le4:

hsb-utilsi/wsutils.c

4 The actual path names of directories in angle brackets depend on the �le system
structure. See the Graphics Administration Guide for details.

HP VISUALIZE-48 and HP VISUALIZE-48XP 3-29

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

To Open and Initialize the Device for Output

Syntax Examples

C programs5:

fildes = gopen("hscreeni/window", OUTDEV, NULL, INIT);

FORTRAN77 programs:

fildes = gopen('hscreeni/window'//char(0), OUTDEV,

+ char(0), INIT)

Pascal programs:

fildes := gopen('hscreeni/window', OUTDEV, '', INIT);

Parameters for gopen

The gopen procedure has four parameters:path, kind , driver , and mode.

path | This is the name of the device �le created by xwcreate(1) or created
with XCreateWindow(3X) and returned from make_X11_gopen_string(3G).
kind |This parameter should be OUTDEV if the window will be used for output,
INDEV if the window will be be used for Starbase input, or OUTINDEV if the
window will be used for both output and Starbase input.
driver | The character representation of the driver type. If this parameter is
set to NULL, then gopen will inquire the device and use the appropriate driver.
Where there are both accelerated and unaccelerated versions of the driver, the
default is to load the accelerated version.

For example:

NULL for C.

char(0) for FORTRAN 77.

'' for Pascal.

5 The actual path names of directories in angle brackets depend on the �le system
structure. See the Graphics Administration Guide for details.

3-30 HP VISUALIZE-48 and HP VISUALIZE-48XP

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Or, a character string may be used to specify a driver. For example:

"hphcrx48z" for C.

'hphcrx48z'//char(0) for FORTRAN 77.

'hphcrx48z' for Pascal.

mode | The mode control word consists of several
ag bits OR ed together.
Listed below are
ag bits that have device-dependent actions. Those
ags not
discussed below operate as de�ned by the gopen procedure. See the Starbase
Graphics Techniques manual for a description of gopen actions when accessing
an X11 Window.
0 (zero) | Open the device, but do nothing else. The software color table
is initialized from the current state of the hardware color map.
INIT | Open and initialize the device as follows:
1. The frame bu�er is cleared to zeros.
2. The color map is reset to its default values.
3. The display is enabled for reading and writing.
4. The Z-bu�er is cleared.
RESET_DEVICE | Same as INIT.
SPOOLED | Not supported; raster devices cannot be spooled.
MODEL_XFORM | Opening in MODEL_XFORM mode will a�ect how matrix stack
and transformation routines are performed.
INT_XFORM | Perform only integer and common operations. All
oating
point operations will cause an error.
INT_XFORM_32 | Perform only integer and common operations, with
extended precision. All
oating point operations will cause an error.

This mode is provided for compatibility of integer precision with previous
devices. INT_XFORM might use a faster transformation pipeline with slightly
less precision. It is recommended to use INT_XFORM unless maximum
precision is required. If maximum precision is required, even at the expense
of performance, use INT_XFORM_32.
FLOAT_XFORM | Perform only
oating point and common operations. All
integer operations will cause an error.

HP VISUALIZE-48 and HP VISUALIZE-48XP 3-31

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

UNACCELERATED | Tells the hphcrx48z driver to not use the
HP Visualize-48 and HP Visualize-48XP accelerators. This
ag only
applies when NULL is speci�ed for the driver name.
ACCELERATED | Tells the hphcrx48z driver to use the HP Visualize-48

andHP Visualize-48XP accelerators (default). This
ag only applies when
NULL is speci�ed for the driver name.

3-32 HP VISUALIZE-48 and HP VISUALIZE-48XP

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Special Device Characteristics

Device Coordinate Addressing

For device coordinate operations, location (0, 0) is the upper-left corner of the
window with X-axis values increasing to the right and Y-axis values increasing
down.

Use this form of pixel addressing when calling high-level Starbase operations in
terms of (x,y) device coordinates.

Figure 3-5. Device Coordinates

HP VISUALIZE-48 and HP VISUALIZE-48XP 3-33

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Starbase Echoes

This section provides information about the echo implementation for Starbase.
The HP Visualize-48, HP Visualize-48XP, and all future graphics device
drivers will use this implementation of Starbase echoes.

Starbase echoes use Xlib functionality to draw echoes in the same planes as the
visual that is active for the window. All previously supported Starbase echo
functions are implemented except for those listed below:

There is no support for the following gescapes:

R_DEF_ECHO_TRANS

R_ECHO_FG_BG_COLORS

R_OV_ECHO_COLORS

R_OVERLAY_ECHO

In addition, the R_ECHO_MASK is only supported for a maximum of two colors
within the raster de�nition.
More than one Starbase echo per window is not supported.
Rendering with both Xlib and Starbase in the same window while Starbase
echoes are active may produce some random pixel \noise".

3-34 HP VISUALIZE-48 and HP VISUALIZE-48XP

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Starbase Functionality

This section contains information on Starbase calls that are not supported by
the HP Visualize-48 and HP Visualize-48XP. This section also contains
information on gescapes that are supported by the HP Visualize-48 and
HP Visualize-48XP.

Calls Not Supported on the HP VISUALIZE-48 and
HP VISUALIZE-48XP

The following calls are not supported when using the HP Visualize-48 and
HP Visualize-48XP:

bf_texture_index

contour_enable

define_contour_table

define_texture

texture_index

texture_viewport

texture_window

Conditional Support of Starbase Calls on the
HP VISUALIZE-48 and HP VISUALIZE-48XP

The following calls are supported with the listed exceptions:

alpha_transparency TheHP Visualize-48 and HP Visualize-48XP sup-
port alpha transparency. Alpha only applies to �lled
areas such as polygons, quadrilateral meshes, triangu-
lar strips, and spline surfaces. Vector primitives are not
rendered with alpha_transparency. The alpha trans-
parency feature is limited to CMAP_FULL in a depth 24
visual. Only the
oating point version of these prim-
itives will be rendered with alpha transparency; de-
vice coordinate primitives do NOT use alpha. The
HP Visualize-48 and HP Visualize-48XP do not
support alpha transparency with attenuation. (See al-
pha_transparency(3G) in the Starbase Reference man-
ual for the list of parameters).

HP VISUALIZE-48 and HP VISUALIZE-48XP 3-35

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

block_read,
block_write

The raw parameter for the block_read and
block_write commands is used by this driver to do
plane-major reads and writes. It is enabled by the
gescape R_BIT_MODE.

The storage destination supplied by the user as the
source or destination must be organized as follows.

The data from each plane is packed with eight pixels
per byte.

Each row must begin on a byte boundary. Thus, the
size of the rectangle as speci�ed by the hlength xi and
hlength yi parameters must correspond to an integral
number of bytes.

The data for the next plane begins on the following
byte boundary.

Clip to the screen limits.

The �rst pixel in the source rectangle is placed in the
high-order bit of the �rst byte in each plane region.

When clipping, part of each plane region will not be
read (block_read) or altered (block_write).

A bit mask selects the planes to read or write. The
initial value of this mask is 1 (one) indicating that only
plane 0 is to be accessed. The value of the mask may
be changed using the R_BIT_MASK or GR2D_PLANE_MASK
gescapes. GR2D_PLANE_MASK is discussed in the ap-
pendix of this manual. The planes selected by the mask
are expected to reside in consecutive plane locations
in the user storage area. This reduces the storage re-
quirements to exactly what is needed but also presents
the potential for addressing violations or undesirable
results.

For example, if the plane mask is changed to specify
more planes between a block_read and a following
block_write from the same location, the block_write
will attempt to access storage for planes that were

3-36 HP VISUALIZE-48 and HP VISUALIZE-48XP

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

not read (and perhaps not allocated). The application
program must ensure consistency in these operations.

fill_dither The ability to dither is disabled if the number of colors
speci�ed by fill_dither is one. However, if the
number of colors speci�ed is greater than 1, the default
dither cell size of 16 is used. Dithering is only used
in depth 8 windows while in either the CMAP_FULL or
CMAP_MONOTONIC color map mode.

interior_style The styles INT_PATTERN and INT_HATCH are not sup-
ported by the HP Visualize-48 and
HP Visualize-48XP graphics devices.

light_source Up to 15 directional light sources are available on the
HP Visualize-48 and HP Visualize-48XP. These
devices' hardware accelerates up to eight directional
light sources. Using nine to �fteen directional light
sources will cause a noticeable performance degrada-
tion.

line_filter,
perimeter_filter

Anti-aliasing is supported on the HP Visualize-48

andHP Visualize-48XP. Anti-aliasing for this device
applies only to
oating point vectors. Device coordinate
primitives do not use anti-aliasing. The anti-aliasing
features are also limited to the CMAP_FULL color map
mode in a depth 24 visual.

TheHP Visualize-48 andHP Visualize-48XP have
two anti-aliasing modes that may be speci�ed with the
line_filter and perimeter_filter procedures. The
index values are assigned as follows:

0 Anti-aliasing disabled, all vectors have one pixel
wide output.

HP VISUALIZE-48 and HP VISUALIZE-48XP 3-37

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

1 Anti-aliasing enabled, all vectors have two pixel
wide output. Pixel values are multiplied by the
alpha value and blended with the background
according the the formula:

pixel color = (new pixel � �) +

(old pixel � (1 - �));

2 Anti-aliasing enabled, all vectors have two pixel
wide output. Pixel values are multiplied by the
alpha value and blended with the background
according to the formula:

pixel color= (new pixel � �) + old pixel

Note that this implementation of 2 pixel wide anti-
aliasing di�ers from the CRX-48Z (with 3-wide anti-
aliasing).

shade_mode The color map mode may be selected. Shading can be
turned on only if using PowerShade. Shading is not
supported on device coordinate primitives even with
PowerShade. Note that the HP Visualize-48 and
HP Visualize-48XP automatically use PowerShade.

text_precision Only STROKE_TEXT precision is supported.

vertex_format If using PowerShade software, vertex_format is fully
functional. Note that the HP Visualize-48 and
HP Visualize-48XP automatically use PowerShade.

3-38 HP VISUALIZE-48 and HP VISUALIZE-48XP

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

*_with_data The following routines are called with_data routines
because they allow you to send extra vertex data.
These with_data routines are supported by the
HP Visualize-48 and HP Visualize-48XP.

partial_polygon_with_data3d

polygon_with_data3d

polyhedron_with_data

polyline_with_data3d

polymarker_with_data3d

polyquad_with_data3d

polytriangle_with_data3d

quadrilateral_mesh_with_data

triangle_strip_with_data

Note that the TEXTURE_MAP
ag applies to the
TurboVRX devices via the texture_* routines. This
extra data per vertex is not used in the tm_* routines.

For detailed information on these routines, read the
Starbase Reference and \Appendix A" of this docu-
ment. In some cases, you will be able to �nd the rou-
tines under their own name, but in other cases, you
will need to use the �rst part of the routine name to
locate these routines (e.g., polyline_with_data3d is
described on the man page for polyline(3G)).

HP VISUALIZE-48 and HP VISUALIZE-48XP 3-39

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Supported Gescapes

The hphcrx48z device driver supports the following gescape operations on the
HP Visualize-48 and HP Visualize-48XP con�gurations. Refer to Appendix
A of the HP-UX Starbase Device Drivers Manual for details on gescapes.

BLOCK_WRITE_SKIPCOUNT|Specify byte skip count during block write.
COLOR_RECOVERY_CONTROL|Disable HP Color Recovery.
CUBIC_POLYPOINT|Specify points to be rendered in a cubic volume speci�ed
in modeling coordinates.
DC_PIXEL_WRITE|Specify points to be rendered along a horizontal scan line.
DRAW_POINTS|Select di�erent modes of rounding for rendered points.
GAMMA_CORRECTION|Enable/disable gamma correction.
GCRX_PIXEL_REPLICATE|Pan and zoom a raster image.
IGNORE_RELEASE|Trigger only when button pressed.
ILLUMINATION_ENABLE|Turn on/o� illumination bits.
LINEAR_POLYPOINT|Specify points to be rendered along a line speci�ed in
modeling coordinates.
LS_OVERFLOW_CONTROL|Set light source over
ow handling.
POLYGON_TRANSPARENCY|Segment control over front/back face screen.
READ_COLOR_MAP|Read Color Map.
R_BIT_MASK|Bit mask.
R_BIT_MODE|Bit mode.
R_GET_FRAME_BUFFER|Read frame bu�er address.
R_LINE_TYPE|User de�ned line style and repeat length.
R_LOCK_DEVICE|Lock device.
R_UNLOCK_DEVICE|Unlock device.
TRIGGER_ON_RELEASE|Trigger only when button is released.
SET_POLYGON_OFFSET|Enable Z-bu�er biasing of �ll pixels.
STEREO|Activate stereo output mode.
SWITCH_SEMAPHORE|Semaphore Control.
TRANSPARENCY|Set screen door transparency mask (front face and back face).
WIDELINE_CONTROL|Turn on/o� and set attributes of widelines.
ZBANK_ACCESS|Enable/disable Z-bu�er block operations.
ZWRITE_ENABLE|Enable/disable replacement of Z value.

3-40 HP VISUALIZE-48 and HP VISUALIZE-48XP

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Exceptions to Gescape Support

Note Because gescape operations are device-dependent, the exceptions
discussed below may be removed in future drivers.

GAMMA_CORRECTION Gamma correction is implemented by modifying the color
map. It is available only in 24-bit DirectColor visuals on
the HP Visualize-48 and HP Visualize-48XP. For in-
formation on the gescape GAMMA_CORRECTION, refer to Ap-
pendix A in the HP-UX Starbase Device Drivers Manual .
If a global gamma correction value has been set via the X
server or the gamma correction tool, that global gamma
correction value will be used and the color map will not be
modi�ed. See the Graphics Administration Guide for more
information about the gamma correction tool.

When the gescape operations listed below are used with a backing store graphics
window, they will have the desired e�ect for the visible portion of the window, but
may cause the backing store for obscured parts to be altered in inconsistent ways.
The features involved (along with the names of the a�ected gescape operations)
are listed below. For more details on the gescape operations, refer to Appendix
A in the HP-UX Starbase Device Drivers Manual .

R_BIT_MASK The gescape operation R_BIT_MASK de�nes a plane mask to
the driver that is used for bit/pixel access to a single plane in
the frame bu�er. As with other device drivers, only the plane
corresponding to the highest bit set in the mask is transferred.

R_BIT_MODE When calling block_read or block_write with the raw
parameter set to TRUE, the driver supports bit/pixel frame
bu�er access to single planes.

Modified Gescapes

The HP Visualize-48 and HP Visualize-48XP support the Z_CLIP_VOXEL

ag for the CUBIC_POLYPOINT and LINEAR_POLYPOINT gescapes. This
ag enables
read-only Z-clipping of the point primitives against the existing contents of the
Z-bu�er. The Z-bu�er is not modi�ed.

HP VISUALIZE-48 and HP VISUALIZE-48XP 3-41

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

For CUBIC_POLYPOINT, the Z_CLIP_VOXEL
ag is one of several in the vertex
format argument, arg1.i[8]. For LINEAR_POLYPOINT, the Z_CLIP_VOXEL
ag is
one of several in arg1.i[8]. Consult the gescape chapter for more information
about LINEAR_POLYPOINT and CUBIC_POLYPOINT.

Comparison Between the CRX-48Z/HCRX-24Z and the
HP VISUALIZE-48/HP VISUALIZE-48XP

HP Visualize-48 and HP Visualize-48XP use the hphcrx48z device driver
instead of the hpcrx48z and hphcrx device drivers used by the CRX-48Z and
HCRX-24Z graphics devices.

The HP Visualize-48 and HP Visualize-48XP are highly compatible with
the CRX-48Z and HCRX-24Z graphics devices. This allows applications written
and delivered for the CRX-48Z and HCRX-24Z to use the HP Visualize-48 and
HP Visualize-48XP accelerators without requiring di�erent executable code.

The gescapes available for the CRX-48Z and HCRX-24Z are supported by the
HP Visualize-48 and HP Visualize-48XP.

Possible behavioral di�erences between the CRX-48Z and HCRX-24Z and the
HP Visualize-48 and HP Visualize-48XP are mostly because of hardware
di�erences. These behavioral di�erences should not a�ect the operation of
the application and may only be observed when directly comparing the images
between the accelerated and unaccelerated driver. Some of these di�erences are
discussed below.

Backing Store

Backing store is an X11 feature that allocates main memory for obscured regions
of a window. Graphics operations are written to this memory as well as the
screen. When the window is unobscured, the screen is updated from this memory.
This feature is not supported by the HP Visualize-48, HP Visualize-48XP,
CRX-48Z, and HCRX-24Z, unless rendering to the overlay planes. Therefore,
applications in the X environment should capture and act on expose events
and redraw the image when one is received. X events are documented in the
Programming with Xlib manual.

3-42 HP VISUALIZE-48 and HP VISUALIZE-48XP

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

Note Support for both backing store and save under may change in
future releases of the Starbase graphics library.

Image Differences

Because of the di�erent mechanisms used to generate the image when using the
HP Visualize-48 and HP Visualize-48XP accelerators, there may be minor
visual di�erences between accelerated and unaccelerated images. These minor
di�erences are listed below.

Di�erent visibility properties - very small primitives may be invisible, that is,
where the rendering starts and stops on the same pixel, such as the dot on the
letter i. If every pixel is required, see the DRAW_POINTS gescape.

Slight shifts in the image location on the display.

Minor di�erences in color interpolation.

Minor di�erences in pattern alignment or line type segment alignment.

Note These di�erences should be minor. They may change in future
releases of the Starbase graphics library.

HP VISUALIZE-48 and HP VISUALIZE-48XP 3-43

FINAL TRIM SIZE : 7.5 in x 9.0 in

3

screenpr for the HP VISUALIZE-48 and
HP VISUALIZE-48XP

The screenpr(1G) command has been designed to use the X11 and the HP
imaging library, rather than Starbase, to read to the screen that is displayed
by an HP Visualize-48 or HP Visualize-48XP. This implementation of
screenpr(1G) correctly processes image and overlay planes, multiple color maps,
and overlay transparency.

Note that command line options are still the same; however, if screenpr detects
it is running on a HP Visualize-48 or HP Visualize-48XP, it will use the
DISPLAY environment variable to determine the screen to read, rather than using
the device �le path given by the -F option.

The -p option to print a single plane (and consequently the -f and -b options)
is not supported on the HP Visualize-48 and HP Visualize-48XP versions of
screenpr. These options will be ignored by screenpr.

This new version of screenpr uses X11 image library calls and executes
pcltrans(1G) to produce PCL output. Therefore, screenpr may produce error
messages from X, the HP imaging library, or pcltrans.

The HP Visualize-48 and HP Visualize-48XP screenpr implementations
always expands the data to 24 bits. Therefore, the PCL output of an 8-bit
only device will be approximately 3 times larger than might be expected.

3-44 HP VISUALIZE-48 and HP VISUALIZE-48XP

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

4

The HP Visualize-FX Family of Devices

The hpvisx driver supports the HP Visualize-FX family of graphics devices.
This family includes the following devices:

HP Visualize-FX2

HP Visualize-FX4

HP Visualize-FX6

Anywhere \HP Visualize-FX" or \the HP Visualize-FX family" is used in this
documentation, it refers to all the graphics devices in the above list.

The HP Visualize-FX devices provide hardware support for the following
operations:

Generating vectors
Wide lines
Write-enabling planes and selecting individual banks in the frame bu�er
Writing pixels to the frame bu�er with a given replacement rule
Moving a block of pixels within the frame bu�er
Double-bu�ering per window
Flat shaded rectangles
Dithering and HP Color Recovery technology
Overlay plane transparency (X Windows)
Gouraud Shading
Positional and directional lighting calculations
Anti-aliased lines
Alpha transparency
Hidden surface removal with Z-bu�er
Z-bu�ering of voxels
Model geometry transformations
Optional hardware acceleration of texture mapping
Polygon o�set

HP Visualize-FX Family 4-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

The hpvisx device driver supports the high performance graphics devices
described in subsequent sections.

Graphics Device Configuration

Note The HP Visualize-FX graphics devices do not provide raw-
mode graphics support. You must display your Starbase appli-
cations in an X11 window or windows. For information on using
Starbase with X11, read the chapter \Using Starbase with the X
Window System" in the Starbase Graphics Techniques manual.

The HP Visualize-FX devices support the con�gurations shown in Table 4-1.

Table 4-1. Supported Depth of Image Plane Windows

Graphics

Devices

Number of

Image Planes

Number of

Overlay Planes

Hardware

Accelerator

Resolution

HP Visualize-FX2 8/8, 12/12, or
24

81 Yes 1280�1024

HP Visualize-FX4,
HP Visualize-FX6

8/8 or 24/24 81 Yes 1280�1024

1 All Starbase graphics rendering to the overlay planes is done by the VMX or SOX11 device driver.

In order to reduce
ickering, this graphics device refreshes the attached CRT
displays at a 72 Hz rate.

The HP Visualize-FX devices each have a 1280�1024 pixel color display, four
hardware color maps in the image planes, and two hardware color maps in the
overlay planes.

Note Starbase supports only a 1280�1024 resolution display that
refreshes at 72 Hz for the HP Visualize-FX devices. No other
con�gurations are supported by Starbase.

4-2 HP Visualize-FX Family

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

PowerShade

The HP Visualize-FX graphics devices work with the 3D surface rendering
software, PowerShade. Note that PowerShade only works in the image planes
using the hpvisx device driver. Rendering support in the overlay planes is
provided by the HP VMX driver. For information on this driver, see the \HP
Virtual Memory and X" chapter in this Addendum.

PowerShade capabilities are automatically available in the image planes on these
devices. In order to use VMX with PowerShade on any graphics system, the
PowerShade software must be installed.

For More Information

Information provided on the HP Visualize-FX family of graphics devices is
device-speci�c. For more detailed information on graphics programming and
X windows, please refer to the noted documents:

See the Starbase Graphics Techniques manual for general Starbase program-
ming information.

Refer to the Graphics Administration Guide to read about linking shared or
archive libraries, path naming conventions, X windows, completing installation,
and setting up graphics devices.

Device Descriptions

The information contained in this section is true for all HP Visualize-FX
devices. See the sections \HP Visualize-FX2 Device Description" and
\HP Visualize-FX4 and HP Visualize-FX6 Device Descriptions" for device-
speci�c information.

Each graphics device in the HP Visualize-FX family has four hardware color
maps in the image planes and two hardware color maps in the overlay planes.
They support HP Color Recovery in all depth 8 image visuals, as explained in
the section \HP Color Recovery Technology" in this chapter.

HP Visualize-FX Family 4-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

You can render to the image planes in three ways:

8-bit color (CMAP_NORMAL, CMAP_MONOTONIC, CMAP_FULL) on all
HP Visualize-FX devices (HP Visualize-FX2, HP Visualize-FX4, and
HP Visualize-FX6)

12-bit color (CMAP_FULL) on HP Visualize-FX2 only

24-bit color (CMAP_FULL) on all HP Visualize-FX devices (24-plane single-
bu�ered on HP Visualize-FX2 and 24/24 double-bu�ered on
HP Visualize-FX4 and HP Visualize-FX6)

The rendering mode is selected on a per-window basis. The mode selected is a
function of the depth of the window created and double-bu�er mode.

In 8-bit mode, each pixel is used as an index into a 256-entry color map. Each
entry in the color map provides eight bits per color for each of the red, green,
and blue components, providing a color palette of over 16 million colors. Double-
bu�ering is achieved by switching between two banks of 8-bit indexes. You can
perform 3:3:2 direct color emulation in this mode.

In 12-bit mode, each pixel is represented by four bits each for red, green, and
blue.

In 24-bit mode, a pixel is represented by eight bits each for red, green, and blue.

There are four hardware color maps available for use with the image planes. All
four color maps are shared by all graphics processes. The information in this
chapter provides more speci�c details on using these color maps.

In addition to the four hardware color maps in image planes, there are two
hardware color maps for the overlay planes. One of the hardware color maps
has the default X11 color map permanently installed in it. This is done to avoid
technicolor in X11 and HP CDE windows and backgrounds.

The X server works only in combined mode. For information on supported X
server modes, read the section \Supported X Server Modes" in the Graphics
Administration Guide.

The HP Visualize-FX family's device driver dithers all vectors, when dithering
is enabled. This is true even when Color Recovery is enabled.

4-4 HP Visualize-FX Family

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

HP Visualize-FX2 Device Description

The HP Visualize-FX2 frame bu�er includes 24 image planes and 8 overlay
planes. The image-plane visuals that are supported by the HP Visualize-FX2

are 8/8 double-bu�ered, 8-plane single-bu�ered, 12/12 double-bu�ered, 12-plane
single-bu�ered, and 24-plane single-bu�ered. Note that Starbase does not support
the following visuals on any device:

depth 4 PseudoColor visual, single- or double-bu�ered
depth 12 PseudoColor visual

The screen resolution is 1280x1024 pixels. There is no o�screen memory in the
frame bu�er.

HP Visualize-FX4 and HP Visualize-FX6 Device Descriptions

From an application developer's or user's point of view, the only di�erence
between the HP Visualize-FX4 and the HP Visualize-FX6 is that the
HP Visualize-FX6 has higher performance.

The HP Visualize-FX4 and HP Visualize-FX6 frame bu�ers include 48 image
planes and 8 overlay planes. Visuals supported by the HP Visualize-FX4

and HP Visualize-FX6 are 8/8 double-bu�ered, 8-plane single-bu�ered, 24/24
double-bu�ered, and 24-plane single-bu�ered. Visuals that are not supported by
the HP Visualize-FX4 and HP Visualize-FX6 are 12/12 double-bu�ered, 12-
plane single-bu�ered, and 48-plane single-bu�ered. Note that Starbase does not
support the following visuals on any device:

depth 4 PseudoColor, single- or double-bu�ered
depth 12 PseudoColor visual

The screen resolution is 1280x1024 pixels. There is no o�screen memory in the
frame bu�er.

Performance Information

The following performance information is speci�c to the HP Visualize-FX fam-
ily of graphics devices. See the Graphics Administration Guide for device-general
performance information. In cases where this performance information con
icts
with the device-general information in the Graphics Administration Guide, this

HP Visualize-FX Family 4-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

device-speci�c information should be considered correct for HP Visualize-FX
devices.

Performance is fastest for unobscured windows, or windows obscured by overlay
windows only. There is a slight performance degradation for obscured windows.

The number of vertices in a polygon does not cause HP Visualize-FX devices
to leave the performance-optimized path.

Z-bu�ering enabled or disabled does not impact performance on
HP Visualize-FX devices.

Geometry Accelerator

Each HP Visualize-FX device includes, by default, at least one geometry
accelerator to provide high performance 3D solids modeling and high performance
3D wireframe with anti-aliasing. The HP Visualize-FX geometry accelerators
have a dedicated 24-bit Z-bu�er. The primary use of the HP Visualize-FX
geometry accelerators is for 3D solids modeling, including drawing Starbase
polygons, polyhedrons, rectangles, triangle strips, quadrilateral meshes, spline
surfaces, geometry transform, and lighting and shading of primitives. The
geometry accelerators have capabilities for both surface rendering and volumetric
rendering.

Note that the geometry accelerators are not used for rendering in the overlay
planes.

The following lists provide information to help you maximize your application
performance. The �rst list describes operations that yield the best performance
on the HP Visualize-FX devices:

Isotropic modeling transformations
Lighting, with no more than 8 lights of any type
View clipping
Perspective and orthographic (parallel) transformations
Depth cueing
3- and 4-sided �lled primitives, with or without RGB, alpha, and normal data
per vertex
Triangle strips, with or without RGB, alpha, and normal data per vertex
2D and 3D polylines
Wide lines

4-6 HP Visualize-FX Family

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

The following features use the HP Visualize-FX geometry accelerators, but yield
somewhat lower performance than the base features listed above.

Non-convex polygons with more than 4 vertices
Polyhedrons with move/draw
ags
Facet normal lighting
Facet color

The following features bypass the HP Visualize-FX geometry accelerators and
use PowerShade instead:

Self-intersecting polygons
Model clipping/capping
Deformation
Backface distinguishing (but not back-face culling)
Starbase INT_OUTLINE interior style
Circles, ellipses, arcs
Picking
move3d()/draw3d()
Polymarkers
Rectangles
Text

Note that the geometry accelerator directly handles polygons with 3 or 4 vertices
only; more complicated polygons are decomposed into triangles. Convex polygons
will be decomposed most easily. Non-convex polygons set will be decomposed
less easily. Polyhedrons with move/draw
ags will be decomposed, but with
a signi�cant penalty in execution time. Self-intersecting polygons can not be
decomposed by the geometry accelerator. Instead, they are lit, shaded, and
transformed by PowerShade, with only the �nal rendering steps performed
by the HP Visualize-FX scan conversion hardware. Nonplanar polygons or
polygons with greatly di�ering colors or normals at the vertices will vary more
than planar polygons or polygons with more homogeneous vertex data. For
example, a quadrilateral with vertices that are slightly di�erent shades of green
is decomposed more easily than the same quadrilateral with one green, one blue,
one red, and one black vertex.

Also, note that compound primitives (triangle strips, quadrilateral meshes, and
polyhedrons) will perform better than the equivalent multiple discrete polygon
calls, since the shared library call overhead is less.

HP Visualize-FX Family 4-7

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

For more information about speci�c primitives and their relative speeds, see the
Graphics Administration Guide.

Texture Mapping Accelerator

An optional accelerator for texture mapped primitives may be purchased for
use with the HP Visualize-FX4 and HP Visualize-FX6 hardware. From an
application developer's or user's point of view, the only di�erence between
these texture mapping accelerators is that HP Visualize-FX6 has better texture
mapping performance than HP Visualize-FX4. HP Visualize-FX2 does not
support a texture mapping accelerator. Use the graphinfo program to determine
whether your system has this optional accelerator. The line:

texture accelerator: yes

will be present if and only if the texture accelerator hardware is installed. If the
texture accelerator hardware is not installed, the line will read:

texture accelerator: no

On supported devices, this hardware accelerates the following texture mapping
features:

Single texture map per primitive
Full MIP mapping with all MIP interpolation �lters
All post-lighting texturing and pre-light replace and modulate texturing

The accelerator has memory built into it to hold up to 16 megabytes of texture
data (with 8-bits red, green, blue, and alpha data per texel). This is enough
memory for three 1024�1024 fully MIP-mapped textures, or a single 2048�2048
point-sampled texture map. However, through a caching scheme for the hardware
texture memory, textures as large as 32768�32768 may be accelerated. Note that
up to 4096 textures of size 64�64 or smaller, or 256 textures of size 256�256 or
larger can be supported at one time.

To support the HP Visualize-FX4 and HP Visualize-FX6 texture cache, a
texture interrupt management daemon runs continuously. This daemon, named
timd, is responsible for ensuring that the appropriate sections of texture maps
reside in the hardware texture memory. As with other system processes, do not
attempt to kill timd, as this may cause the hardware to enter a \hung" state
from which it is di�cult to recover.

4-8 HP Visualize-FX Family

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Overlay Plane Rendering

Either the hpvmx or sox11 device driver is used for Starbase rendering to the
overlay planes. For more information on these device drivers, see the chapters
\HP Virtual Memory and X" in this Addendum and \The Starbase-on-X11
Device Driver" in the HP-UX Starbase Device Drivers Manual .

If an overlay plane window is gopened with a driver name of NULL, the hpvmx

driver will be used. See the table, \Driver Selection at gopen" in the chapter
\HP Virtual Memory and X" in this Addendum for details.

8/8 VM double-bu�ering is supported in the overlay planes using the hpvmx

driver.

HP Color Recovery Technology

The HP Visualize-FX devices use HP Color Recovery for shaded �ll areas in
depth 8 image-plane visuals (for example, polygons and spline surfaces). Color
Recovery will generate a better picture by attempting to eliminate the graininess
caused by dithering. HP Color Recovery is available in all depth 8 visuals on the
HP Visualize-FX graphics devices.

There are two components to HP Color Recovery. A di�erent dither cell size
(16�2) is used when rendering shaded polygons, and a digital �lter is used when
displaying the contents of the frame bu�er to the screen.

The HP Visualize-FX devices provide HP Color Recovery whenever you are in
CMAP_FULL mode and you have used the INIT
ag in the gopen, shade_mode,
or the double_buffer function to initialize color maps. Keep in mind that the
default color map mode is CMAP_NORMAL for PseudoColor visuals. Therefore, the
HP Color Recovery color map will not be downloaded until you call shade_mode
to set the mode to CMAP_FULL and use INIT.

HP Color Recovery is available when using either PseudoColor or TrueColor
visuals. The HP Color Recovery color map is a read-only color map. Any
attempts to change it will be ignored and no error will be reported.

In CMAP_FULL shade mode, disabling HP Color Recovery results in normal
dithering of shaded �ll areas. HP Color Recovery is not available with any other
shade mode.

HP Visualize-FX Family 4-9

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

HP Color Recovery is enabled in conjunction with a particular X color map that
is associated with your window. If that X color map is not currently installed in
hardware by your window manager, you will not see the e�ect of the HP Color
Recovery �lter.

Note that vectors are always dithered, even in an HP Color Recovery window.

Under some conditions HP Color Recovery can produce undesirable artifacts in
the image. This also happens with 4�4 dithering, but the artifacts are di�erent.
However, images rendered with HP Color Recovery are seldom worse than what
dithering produces, and in most cases, HP Color Recovery produces signi�cantly
better pictures than dithering. Note that 4�4 dithering, like HP Color Recovery,
is available in the CMAP_FULL color map mode, but not in the CMAP_NORMAL color
map mode.

HP Color Recovery is available by default. If you wish to disable HP Color
Recovery, you can do it in one of three ways:

Add the screen option DisableColorRecovery to your X*screens �le. Setting
this screen option prior to starting up the X server disables HP Color Recovery
for all applications and any attempts to enable HP Color Recovery will be
ignored. Remember, if you set this screen option prior to starting up the X
server, you cannot re-enable HP Color Recovery from the command line or
from within an application. To set this screen option, add the following lines
to your hx11-admini1/X*screens �le:

ScreenOptions

DisableColorRecovery

and restart HP CDE or X11. To restart HP CDE, log out, then select \Reset
Login Screen" from the \Options" pull-down on the HP CDE log-in window.

Export the environment variable HP_DISABLE_COLOR_RECOVERY before running
your application. Setting this environment variable to any value disables HP
Color Recovery for subsequently executed applications. To set this environment
variable in your current X11 window, execute this command on the command
line before running your application (assuming you are using the Korn shell):

export HP_DISABLE_COLOR_RECOVERY=TRUE

1 The actual path names of directories in angle brackets depend on the �le system
structure. See the Graphics Administration Guide for details.

4-10 HP Visualize-FX Family

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Disable HP Color Recovery programmatically by using the Starbase gescape

COLOR_RECOVERY_CONTROL. For details on this gescape, read the subsequent
section \Gescapes."

Gescapes

The COLOR_RECOVERY_CONTROL gescape can be used to disable HP Color
Recovery. Passing it a 0 value in arg1 will disable HP Color Recovery, a 1 value
will enable it (HP Color Recovery is enabled by default). The arg2 parameter is
ignored. The e�ect of this gescape will not take place until the next time you
call shade_mode or double_buffer with the INIT
ag. For example:

gescape_arg arg1;

/* Disable HP Color Recovery */

arg1.i[0] = 0;

gescape(�ldes, COLOR_RECOVERY_CONTROL, &arg1, NULL);

shade_mode(�ldes, CMAP_FULL|INIT,0);

HP Visualize-FX Family 4-11

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

The Frame Buffer

Physical Address Space

The physical frame bu�er is addressed as 2048�1024 bytes. The last 768 bytes of
each line of the address space (those to the right of the screen) are not displayed
and no memory exists in those areas.

Figure 4-1. Physical Address Space

4-12 HP Visualize-FX Family

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

To Access the Frame Buffer Directly

When using the R_GET_FRAME_BUFFER gescape for direct user access to the frame
bu�er, correct access can only be assured by using the R_LOCK_DEVICE and
R_UNLOCK_DEVICE gescapes.

1. Use R_LOCK_DEVICE just prior to direct frame bu�er access.

2. Use R_UNLOCK_DEVICE directly after the frame bu�er access and before any
other Starbase commands.

Caution Do not read from or write to the o�screen addresses. Such
operations will cause errors.

Frame Buffer Address Mapping

The frame bu�er is organized as a single one-dimensional array of pixel values.
The �rst byte (byte 0) of the frame bu�er represents the upper left corner pixel of
the screen. Byte 1 is immediately to its right. Byte 1279 is the last (right-most)
displayable pixel on the top line. The next 768 bytes are not displayable. Byte
2048 is the �rst (left-most) pixel on the second line from the top. The last (lower
right corner) pixel on the screen is byte number 2,096,383 (1023�2048+1279).

HP Visualize-FX Family 4-13

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Figure 4-2. Frame Buffer Mapping in Memory

4-14 HP Visualize-FX Family

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

The HP Visualize-FX2 frame bu�er has three banks of 8 planes each. The
HP Visualize-FX4 and HP Visualize-FX6 frame bu�ers have six banks of 8
planes (two for each color). Only one bank can be accessed at a time. Use the
bank_switch call to select a bank to read or write data directly from the frame
bu�er. For block_read and block_write operations to the image planes, the
data is in all eight bits of each byte.

The default for reading the Z-bu�er is always 24 bits per pixel in a 32-bit word.
The Z-bu�ers for the HP Visualize-FX devices are 23 bits deep, and their Z-
bu�er data is left justi�ed in the lower 24 bits of the 32-bit word (that is, the
23-bit Z-bu�er data is shifted left one bit from the least-signi�cant bit), as shown
in the following �gure.

Figure 4-3. Hardware Z-Buffer Data Alignment

The raw parameter to block_read and block_write must be set to true in
order to read from or write to the Z-bu�er. Using wbank=3 in the bank_switch
command on the HP Visualize-FX2 selects the Z-bu�er for reads or writes.
Using wbank=6 in the bank_switch command on the HP Visualize-FX4 and
HP Visualize-FX6 selects the Z-bu�er for reads or writes.

The 24 bits of the Z-bu�er reside in the lower 24 bits of the word that is used by
block_read and block_write.

Unlike the frame bu�er, the Z-bu�er data is contiguous. The HP Visualize-FX
device's Z-bu�ers are always 1280�1024 where word 1280 is the leftmost word of
the second scanline. For the HP Visualize-FX family of devices, the Z-bu�er is
the size of the window. For example, if the window is 400�400, word 400 is the
leftmost Z-bu�er value for the second scan line.

HP Visualize-FX Family 4-15

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Frame Buffer Configurations

The following table shows which color map modes are supported for di�erent
frame bu�er con�gurations.

Table 4-2. Supported Frame Buffer Configurations

Device Number of Planes Supported Con�gurations

HP Visualize-FX2,
HP Visualize-FX4,
HP Visualize-FX6

8, 8/8 CMAP_NORMAL,
CMAP_FULL,
CMAP_MONOTONIC

HP Visualize-FX2 12, 12/12,
24

CMAP_FULL

HP Visualize-FX4,
HP Visualize-FX6

24, 24/24 CMAP_FULL

Since Starbase supports double-bu�ering per window, it is better to re-
quest double-bu�ering with a depth of 24 when in CMAP_FULL mode on
HP Visualize-FX4 and HP Visualize-FX6 devices, or with a depth of 12 when
in CMAP_FULL mode on a HP Visualize-FX2. Double-bu�ering with less than
8 planes (4/4, 3/3, 2/2, 1/1) is supported in depth 8 windows for compatibility
with previous devices, however, it is not recommended. Note that the 4/4 double-
bu�ering mentioned here does not use a depth 4 visual. The write_enable and
display_enable masks are used to accomplish double-bu�ering with less than 8
planes. Video tearing may occur, however, as this kind of double-bu�ering is not
synchronized to the video refresh.

4-16 HP Visualize-FX Family

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Using Starbase in X Windows

This section contains device speci�c information needed to run Starbase programs
in X11 windows. If you need a general, device-independent explanation of using
Starbase in X11 windows, refer to the \Using Starbase with the X Window
System" chapter of Starbase Graphics Techniques.

To reduce the complexity of having multiple X server modes, the
HP Visualize-FX devices only support one X server mode. Several other key
features have been designed to improve the overall usability of the devices in
the X11 windows environment, and to reduce interaction issues between the X11
user interface and graphics library APIs (such as Starbase), that provide direct
hardware access (DHA).

Per-Window Double-Buffering

The HP Visualize-FX devices support double-bu�ering in the images planes on
a per-window basis. See the table in the \Frame Bu�er Con�gurations" section
for information on con�gurations that support double-bu�ering in the image
planes. All HP Visualize-FX devices support 8/8 double-bu�ering in the overlay
planes for each of the Starbase color map modes (CMAP_FULL, CMAP_NORMAL, and
CMAP_MONOTONIC) in software. Remember that hardware double-bu�ering is not
supported in the overlay planes.

Note that Starbase uses the hpvmx device driver to perform double-bu�ering in
software in the overlay planes. This double-bu�ering method is slower than the
hardware double-bu�ering used in the image planes.

Available Color Map Entries

The HP Visualize-FX graphics devices have two hardware color maps in the
overlay planes and four hardware color maps in the image planes.

If you query the X server for the number of entries in the default overlay visual's
color map while you are using the default X server mode of the HP Visualize-FX
devices, the server will reply that there are 256 entries available. Although all
256 entries are available for use by an application, the last entry (index 255) is
not writable because it is allocated by the X server.

HP Visualize-FX Family 4-17

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Starbase Color Maps and X11 Read/Write Restrictions

The X color model de�nes read/write restrictions both on color maps and on
individual entries in color maps. Starbase does not overwrite read-only color
maps or color map entries as de�ned in the X color model. Attempts to write to
color map entries in read-only color maps (that is, for TrueColor, StaticColor, or
StaticGray visuals) are silently ignored.

Accessing HP Color Recovery with X Windows

The HP Visualize-FX devices support HP Color Recovery for shaded areas.
When a depth 8 window is used, HP Color Recovery will generate a better picture
by attempting to eliminate the graininess caused by dithering. Color Recovery
is available on all depth 8 windows on HP Visualize-FX devices. For more
information about HP Color Recovery, read the section \HP Color Recovery"
found in this chapter.

The Starbase, HP PEX, and HP-PHIGS graphics libraries provide programmers
who use these APIs with transparent access to the HP Color Recovery capability
of the HP Visualize-FX devices. If you are producing graphics using Xlib calls,
then your application must perform some of the necessary processing. At server
start-up, there is one property that is de�ned and placed on the root window if
the HP_DISABLE_COLOR_RECOVERY environment variable has not been exported.
This property is:

_HP_RGB_SMOOTH_MAP_LIST

The above property is of type RGB_COLOR_MAP and carries pointers to structures
of type XStandardColormap. It may be interrogated with calls to XGetRGB-

Colormaps. The property _HP_RGB_SMOOTH_MAP_LIST is a list of color maps
that are associated with visual IDs that support HP Color Recovery. When the
XGetRGBColormaps routine searches throughout this list for a color map with a
visual ID that matches your window's visual ID and it �nds one, your application
knows that your visual supports HP Color Recovery, and uses that color map for
any HP Color Recovery window.

HP Color Recovery uses all 256 entries of one of the available color maps. The
color visual used by HP Color Recovery emulates the 24-bit TrueColor visual.
Thus, the colors red, green, and blue are typically declared as integers in the

4-18 HP Visualize-FX Family

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

range from 0 to 255. Note that each window that uses HP Color Recovery will
use the same color map.

For HP Color Recovery to produce the best results, the emulated 24-bit TrueColor
data is dithered as explained below.

A pixel to be dithered is sent to the routine provided in this example. Note that
the values of the variables RedValue, GreenValue and BlueValue are generated
by an application. In this example, the color values are assumed to be in the
range [0..255].

The given routine receives the color values and the X and Y window address (Xp
and Yp) of the pixel. The X and Y address is used to access the dither tables.
The values from the dither tables are added to the color values. After the dither
addition, the resultant color values are quantized to 3 bits of red and green and 2
bits of blue. The quantized results are packed into an 8-bit unsigned char and
then stored in the frame bu�er. As the contents of the frame bu�er are scanned
to the CRT, a special section in the HP Visualize-FX device hardware then
converts the 8-bit data stored in the frame bu�er into a 24-bit TrueColor image
for display.

Here is a routine that can be used to dither the 24-bit TrueColor data.

unsigned char dither_pixel_for_CR(RedValue,GreenValue,BlueValue,Xp,Yp)

int RedValue,GreenValueBlueValue,Xp,Yp;

{

static short dither_red[2][16] = {

{-16, 4, -1, 11,-14, 6, -3, 9,-15, 5, -2, 10,-13, 7, -4, 8},

{ 15, -5, 0,-12, 13, -7, 2,-10, 14, -6, 1,-11, 12, -8, 3, -9} };

static short dither_green[2][16] = {

{ 11,-15, 7, -3, 8,-14, 4, -2, 10,-16, 6, -4, 9,-13, 5, -1},

{-12, 14, -8, 2, -9, 13, -5, 1,-11, 15, -7, 3,-10, 12, -6, 0} };

static short dither_blue[2][16] = {

{ -3, 9,-13, 7, -1, 11,-15, 5, -4, 8,-14, 6, -2, 10,-16, 4},

{ 2,-10, 12, -8, 0,-12, 14, -6, 3, -9, 13, -7, 1,-11, 15, -5} };

int red, green, blue;

int x_dither_table, y_dither_table;

unsigned char pixel;

x_dither_table = Xp % 16; /* X Pixel Address MOD 16 */

y_dither_table = Yp % 2; /* Y Pixel Address MOD 2 */

red = RedValue;

HP Visualize-FX Family 4-19

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

green = GreenValue;

blue = BlueValue;

if (red >= 48) /* 48 is a constant required by this routine */

red=red-16;

else

red=red/2+8;

red += dither_red[y_dither_table][x_dither_table];

if (red > 0xff) red = 0xff;

if (red < 0x00) red = 0x00;

if (green >= 48) /* 48 is a constant required by this routine */

green=green-16;

else

green=green/2+8;

green += dither_green[y_dither_table][x_dither_table];

if (green > 0xff) green = 0xff;

if (green < 0x00) green = 0x00;

if (blue >= 112) /* 112 is a constant required by this routine */

blue=blue-32;

else

blue=blue/2+24;

blue += (dither_blue[y_dither_table][x_dither_table]<<1);

if (blue > 0xff) blue = 0xff;

if (blue < 0x00) blue = 0x00;

pixel = ((red & 0xE0) | ((green & 0xE0) >> 3) | ((blue & 0xC0) >> 6));

return(pixel);

}

Backing Store

Backing store is not supported by the hpvisx device driver. To use backing
store on HP Visualize-FX devices, you must use the hpvmx device driver. For
image plane windows, you need to detect window exposure events and repaint
the window when a previously obscured portion of a window is made visible.

4-20 HP Visualize-FX Family

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

X11 Cursor

The X11 cursor (also called the sprite) is maintained by the display hardware
and never interferes with the frame bu�er contents in either the image or overlay
planes.

Supported Visuals

The following table of supported visuals contains information for programmers
using either Xlib graphics or Starbase. The table lists the image plane depths
of windows and color map access modes that are supported for a given graphics
device. It also indicates whether or not backing store (also known as \retained
raster") is available for a given visual, and lists the double-bu�er con�gurations
supported by Starbase for this device driver.

HP Visualize-FX Family 4-21

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Table 4-3. Supported Visuals

Device Depth Visual Class Backing Store Starbase

Double-

Bu�er1Xlib Starbase

HP Visualize-FX2,
HP Visualize-FX4,
HP Visualize-FX6

8 PseudoColor
TrueColor

Yes2

Yes2
No3

No3
8, 8/8
8, 8/8

HP Visualize-FX2 12 DirectColor
TrueColor

Yes
Yes

No
No

12, 12/12
12, 12/12

HP Visualize-FX2 24 DirectColor
TrueColor

Yes
Yes

No
No

24
24

HP Visualize-FX4,
HP Visualize-FX6

24 DirectColor
TrueColor

Yes
Yes

No
No

24, 24/24
24, 24/24

1 Double-bu�ering with less than 8 planes (4/4, 3/3, 2/2, 1/1) is supported for compatibility with
previous devices, however, it is not recommended. The write_enable and display_enable masks
are used to accomplish double-bu�ering with less than 8 planes in a depth 8 visual. Flashing may
occur, however, as this kind of double-bu�ering cannot be done on a per window basis. Note that
double-bu�ering with less than 8-planes is only supported in CMAP_NORMAL.

2 Xlib primitives are supported by backing store. Whenever backing store is not maintained, normal
expose events are generated.

3 Backing store is only supported when rendering with the hpvmx driver.

4-22 HP Visualize-FX Family

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Moving the Default Visual to the Image Planes

Note By default the overlay planes have the default X11 color map
permanently locked into one hardware color map, and any other
hardware color maps used by the overlay planes are available for
applications to use. Moving the default visual into the image
planes will limit the number of hardware color maps available
to you. In this mode, the HP Visualize-FX devices provide a
single hardware color map in the overlay planes.

X Windows provides a method for changing the default visual from a depth 8
overlay PseudoColor visual to a depth 8 image PseudoColor visual. This is done
by moving the default visual to the depth 8 image PseudoColor visual. To do
this, use SAM. Or to manually change the location of the default visual, edit the
�le2:

hx11-admini/X*screens

and add the following lines:

Screen hdevi/crt

DefaultVisual

Class PseudoColor

Depth 8

Layer Image

The * in the X*screens �le name speci�es the display number . To determine
the display number, execute this shell command:

echo $DISPLAY

Your results will have the following syntax:

hhost namei:hdisplay numberi.hscreen numberi

2 The actual path names of directories in angle brackets depend on the �le system
structure. See the Graphics Administration Guide for details.

HP Visualize-FX Family 4-23

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Here is an example of what your display name might look like after executing the
echo $DISPLAY shell command:

mysystem:0.0

where host name is mysystem, display number is 0, and screen number is 0. In
the above example, you would edit the �le:

hx11-admini/X*screens

Note that the syntax of this speci�cation has changed. For more information, see
the �le:

hx11i/Xserver/info/screens/hp

Device Support for the TrueColor Visual

TrueColor Visual Description

A TrueColor visual can be thought of as having a read-only color map where, for
any given pixel value, about one third of the bits are used to describe each of
the red, green, and blue colors, respectively. For an 8-plane TrueColor visual, 3
bits describe the red component, 3 bits describe the green component, and 2 bits
describe the blue component. A 12-plane TrueColor visual uses 4 bits each to
describe the red, green, and blue components. A 24-plane TrueColor visual uses
8 bits each to describe the red, green, and blue components. This is illustrated
as follows:

4-24 HP Visualize-FX Family

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Figure 4-4. Pixel Representation for the Depth 8, 12, and 24 TrueColor Visuals

The following example refers to a depth 8 TrueColor visual; however, the example
can be expanded to apply to depth 12 and 24 plane TrueColor visuals.

Example

Since the red and green components consist of 3 bits each, there are 8 di�erent
shades of red and 8 di�erent shades of green available. There are 4 di�erent
shades of blue represented by 2 bits. As the component value increases, the
intensity of that color increases. For example, a red component of 000 represents
no red and a red component of 111 represents full red. Therefore, pixel value 0
is 000 red, 000 green, and 00 blue, which results in black. Pixel value 255 is 111
red, 111 green, and 11 blue, which results in white. These and other examples
are shown in Table 4-4.

HP Visualize-FX Family 4-25

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Table 4-4. Examples of Pixel Color Values

Pixel Value Binary Red Green Blue

0 000 000 00 shade 0 shade 0 shade 0

53 001 101 01 shade 1 shade 5 shade 1

139 100 010 11 shade 4 shade 2 shade 3

218 110 110 10 shade 6 shade 6 shade 2

255 111 111 11 shade 7 shade 7 shade 3

Note that the red, green and blue intensities for the color shades increase
uniformly between 0 and 255.

Device Specific Visuals Information

The TrueColor Visual always uses a shade_mode of CMAP_FULL. When the
TrueColor visual window is gopened, your application will automatically be in
CMAP_FULL mode and the shade_mode call will ignore any attempts to go into
another mode.

With the addition of the TrueColor visual at the 9.03 release of HP-UX, you need
to consider the following information:

If you originally created your windows using a command line similar to the
following:

xwcreate -g 600x500 -depth 24 window

you will have to change how you create your windows by using command lines
similar to this:

xwcreate -g 600x500 -depth 24 -visual TrueColor window

xwcreate -g 600x500 -depth 24 -visual DirectColor window

Note the addition of the command line option -visual for declaring TrueColor
and DirectColor visuals. For HP Visualize-FX devices, Starbase uses a
default color map of PseudoColor for depth 8 windows, DirectColor for depth
12 windows, and DirectColor for depth 24 windows if the visual is not speci�ed.

4-26 HP Visualize-FX Family

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

The TrueColor color map is read-only, so it cannot be modi�ed. Note that any
attempt to modify the TrueColor color map will not produce an error message.

One class of applications that could be a�ected by this are those that perform
their own gamma correction.

If your application searches for a visual by traversing the visual list returned
by the X server, you will �nd that the order of visuals in this list has changed
compared to pre-HP-UX 9.03 systems because of the addition of new visuals.
Therefore, your application code should always explicitly search for a particular
visual rather than assuming that it occurs in a �xed position within the list of
visuals returned by X11.

The Overlay Plane Color Map Management Scheme

Many applications use the default X11 color map. A technicolor e�ect (color

ashing) in the windows using the default color map occurs when a non-default
color map is downloaded into the hardware color map that had previously
contained the default X11 color map.

Because so many applications use the default X11 color map, and because the
HP Visualize-FX devices have two hardware color maps in the overlay planes,
the behavior on these devices is to dedicate (that is, lock) one overlay hardware
color map to always hold the default X11 color map. This means that the assigned
default overlay hardware color map cannot have another color map downloaded
to it. The other overlay hardware color map is available to applications that use
color maps other than the default.

The following section describes the default frame bu�er con�guration for the
HP Visualize-FX devices.

The default visual con�guration is:
overlay planes
depth 8
PseudoColor
opaque (no transparency)

with 256 color map entries. Note that when using the default X server mode
of the HP Visualize-FX devices, if you query the X server for the number of

HP Visualize-FX Family 4-27

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

entries in the default color map, the server will reply that there are 256 entries
available. Although these entries are available, the X server reserves the last
entry (index 255). So, that entry is not writable and should not be used.
The default X11 color map is locked into one of the hardware color maps in the
overlay planes. For a description of how to move the default visual to images
planes, read the section \Moving the Default Visual to the Images Planes" in
this chapter.

Overlay Plane Transparency and the X Windows System

The default X11 mode on the HP Visualize-FX devices does not provide an
overlay visual with a transparent property. If you need an overlay color map
that supports transparency, create the color map using the visual that has
transparency in its SERVER_OVERLAY_VISUALS property (see the next section).

An overlay visual's transparency feature enables you to render opaque objects
(for example, menus and text) to a transparent overlay window and at the same
time view rendered objects in an image window. For example, you may want to
show a map of a country without all of its internal borders, and then add the
internal borders as you need them. This can be done by creating two X windows
with the same geometry: one in the overlay planes and one in the images planes.
The country's terrain and boundaries would be drawn in the image planes window
and the internal borders in a transparent overlay window. For the best-looking
application, either the image or overlay window should be created without a
border in this example.

4-28 HP Visualize-FX Family

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

In the overlay visual that supports transparency, the number of overlay color
map entries is always 255 because the last entry is the transparent color map
value. If your application requires a count of 256 entries in your color map, you
need to set the environment variable CountTransparentInOverlayVisual. To
do this, use SAM. Or you can manually edit hx11-admini3/X*screens �le to add
the following option:

ScreenOptions

CountTransparentInOverlayVisual

before starting the X11 server. Any attempts to modify entry 255 will have no
e�ect on the color map. Note that this example applies to the overlay transparent
visual, which is not the default visual for the HP Visualize-FX devices.

3 The actual path names of directories in angle brackets depend on the �le system
structure. See the Graphics Administration Guide for details.

HP Visualize-FX Family 4-29

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

The Default Frame Buffer Configurations for the HP Visualize-FX
Devices

Table 4-5 shows the X visuals that are supported by Starbase on the
HP Visualize-FX2. This con�guration is not changed by using overlay
transparency.

Table 4-5.

The Default Frame Buffer Configuration for HP Visualize-FX2

Frame Bu�er

Layer

Window

Depth

Hardware

Bu�ering

Hardware

Color Maps

Overlay

Transparency

Visual

overlay 8 single 2 no PseudoColor1

overlay 8 single 2 yes PseudoColor

image 8 single or double 4 N/A PseudoColor2

TrueColor

image 12 single or double 4 N/A DirectColor
TrueColor

image 24 single 4 N/A DirectColor
TrueColor

1 This is the default overlay visual.

2 This is the �rst visual returned by xdpyinfo.

4-30 HP Visualize-FX Family

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Table 4-6 shows the X visuals that are supported by Starbase on the
HP Visualize-FX4 and HP Visualize-FX6. These con�gurations are not
changed by using overlay transparency.

Table 4-6.

The Default Frame Buffer Configuration for HP Visualize-FX4 and

HP Visualize-FX6

Frame Bu�er

Layer

Window

Depth

Hardware

Bu�ering

Hardware

Color Maps

Overlay

Transparency

Visual

overlay 8 single 2 no PseudoColor1

overlay 8 single 2 yes PseudoColor

image 8 single or double 4 N/A PseudoColor2

TrueColor

image 24 single or double 4 N/A DirectColor
TrueColor

1 This is the default overlay visual.

2 This is the �rst visual returned by xdpyinfo.

If you need an overlay color map that supports transparency, create the color
map using the visual that has transparency in its SERVER_OVERLAY_VISUALS

property. To look at the contents of this property, you would use code similar to
the following:

/* First, get the list of visuals for this screen. */

.

.

*pVisuals = XGetVisualInfo(display, mask, &getVisInfo, numVisuals);

.

.

/* Now, get the overlay visual information for this screen. To obtain

* this information, get the SERVER_OVERLAY_VISUALS property. */

overlayVisualsAtom = XInternAtom(display, "SERVER_OVERLAY_VISUALS", True);

if (overlayVisualsAtom != None)

{

/* Since the Atom exists, we can request the property's contents. */

bytesAfter = 0;

numLongs = sizeof(OverlayVisualPropertyRec) / 4;

do

HP Visualize-FX Family 4-31

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

{

numLongs += bytesAfter * 4;

XGetWindowProperty(display, RootWindow(display, screen),

overlayVisualsAtom, 0, numLongs, False,

overlayVisualsAtom, &actualType, &actualFormat,

&numLongs, &bytesAfter, pOverlayVisuals);

} while (bytesAfter > 0);

}

.

.

/* Process the pOverlayVisuals array. */

while (--nVisuals >= 0) {

nOVisuals = *numOverlayVisuals;

pOVis = *pOverlayVisuals;

imageVisual = True;

while (--nOVisuals >= 0) {

pOOldVis = (OverlayVisualPropertyRec *) pOVis;

if (pVis->visualid == pOOldVis->visualID)

{

imageVisual = False;

pOVis->pOverlayVisualInfo = pVis;

/* Found the transparent visual */

if (pOVis->transparentType == TransparentPixel);

}

pOVis++;

}

}

This program segment is not complete; however, its main purpose is to give
you an idea of how a visual is checked for overlay transparency. The source
for the above code can be found in the example source code for the Starbase
Programming Environment4:

hsb-utilsi/wsutils.c

4 The actual path names of directories in angle brackets depend on the �le system
structure. See the Graphics Administration Guide for details.

4-32 HP Visualize-FX Family

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

To Open and Initialize the Device for Output

Syntax Examples

C programs5:

fildes = gopen("hscreeni/window", OUTDEV, NULL, INIT);

FORTRAN77 programs:

fildes = gopen('hscreeni/window'//char(0), OUTDEV,

+ char(0), INIT)

Pascal programs:

fildes := gopen('hscreeni/window', OUTDEV, '', INIT);

Parameters for gopen

The gopen procedure has four parameters: path, kind , driver , and mode.

path | This is the name of the device �le created by xwcreate(1) or created
with XCreateWindow(3X) and returned from make_X11_gopen_string(3G).
kind |This parameter should be OUTDEV if the window will be used for output,
INDEV if the window will be be used for Starbase input, or OUTINDEV if the
window will be used for both output and Starbase input.
driver | The character representation of the driver type. If this parameter is
set to NULL, then gopen will inquire the device and use the appropriate driver.

For example:

NULL for C.

char(0) for FORTRAN 77.

'' for Pascal.

5 The actual path names of directories in angle brackets depend on the �le system
structure. See the Graphics Administration Guide for details.

HP Visualize-FX Family 4-33

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Or, a character string may be used to specify a driver. For example:

"hpvisx" for C.

'hpvisx'//char(0) for FORTRAN 77.

'hpvisx' for Pascal.

mode | The mode control word consists of several
ag bits OR ed together.
Listed below are
ag bits that have device-dependent actions. Those
ags not
discussed below operate as de�ned by the gopen procedure. See the Starbase
Graphics Techniques manual for a description of gopen actions when accessing
an X11 Window.
0 (zero) | Open the device, but do nothing else. The software color table
is initialized from the current state of the hardware color map.
INIT | Open and initialize the device as follows:
1. The frame bu�er is cleared to zeros.
2. The color map is reset to its default values.
3. The display is enabled for reading and writing.
4. The Z-bu�er is cleared.
RESET_DEVICE | Same as INIT.
SPOOLED | Not supported; raster devices cannot be spooled.
MODEL_XFORM | Opening in MODEL_XFORM mode will a�ect how matrix stack
and transformation routines are performed.
INT_XFORM | Perform only integer and common operations. All
oating
point operations will cause an error.
INT_XFORM_32 | Perform only integer and common operations, with
extended precision. All
oating point operations will cause an error.

This mode is provided for compatibility of integer precision with previous
devices. INT_XFORM might use a faster transformation pipeline with slightly
less precision. It is recommended to use INT_XFORM unless maximum
precision is required. If maximum precision is required, even at the expense
of performance, use INT_XFORM_32.
FLOAT_XFORM | Perform only
oating point and common operations. All
integer operations will cause an error.
ACCELERATED and UNACCELERATED | These
ags are ignored by the
HP Visualize-FX devices. The hpvisx device driver is always accelerated,
whether or not one of these
ags is used.

4-34 HP Visualize-FX Family

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Special Device Characteristics

Device Coordinate Addressing

For device coordinate operations, location (0, 0) is the upper-left corner of the
window with X-axis values increasing to the right and Y-axis values increasing
down.

Use this form of pixel addressing when calling high-level Starbase operations in
terms of (x,y) device coordinates.

Figure 4-5. Device Coordinates

HP Visualize-FX Family 4-35

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Starbase Echoes

This section provides information about the echo implementation for Starbase.
The HP Visualize-FX devices, and all future graphics device drivers will use
this implementation of Starbase echoes.

Starbase echoes use Xlib functionality to draw echoes in the same planes as the
visual that is active for the window. All previously supported Starbase echo
functions are implemented except for those listed below:

There is no support for the following gescapes:

R_DEF_ECHO_TRANS

R_ECHO_FG_BG_COLORS

R_OV_ECHO_COLORS

R_OVERLAY_ECHO

In addition, the R_ECHO_MASK is only supported for a maximum of two colors
within the raster de�nition.
More than one Starbase echo per window is not supported.
Rendering with both Xlib and Starbase in the same window while Starbase
echoes are active may produce some random pixel \noise".

4-36 HP Visualize-FX Family

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Starbase Functionality

This section contains information on Starbase calls that are not supported by the
HP Visualize-FX devices. This section also contains information on gescapes
that are supported by the HP Visualize-FX devices.

Calls Not Supported on the HP Visualize-FX Devices

The following calls are not supported when using the HP Visualize-FX devices:

bf_texture_index

contour_enable

define_contour_table

define_texture

texture_index

texture_viewport

texture_window

Conditional Support of Starbase Calls on the
HP Visualize-FX Devices

The following calls are supported with the listed exceptions:

alpha_transparency The HP Visualize-FX devices support alpha trans-
parency. Alpha only applies to �lled areas such as poly-
gons, quadrilateral meshes, triangular strips, and spline
surfaces. Vector primitives are not rendered with al-

pha_transparency. The alpha transparency feature is
limited to CMAP_FULL in a depth 12 or 24 visual. Only
the
oating point version of these primitives will be
rendered with alpha transparency; device coordinate
primitives do NOT use alpha. The HP Visualize-FX
devices do not support alpha transparency with atten-
uation. (See alpha_transparency(3G) in the Starbase
Reference manual for the list of parameters). Note that
Starbase does not utilize a hardware alpha bu�er to im-
plement alpha transparency.

HP Visualize-FX Family 4-37

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

block_read,
block_write

The raw parameter for the block_read and
block_write commands is used by this driver to do
plane-major reads and writes. It is enabled by the
gescape R_BIT_MODE.

The storage destination supplied by the user as the
source or destination must be organized as follows.

The data from each plane is packed with eight pixels
per byte.

Each row must begin on a byte boundary. Thus, the
size of the rectangle as speci�ed by the hlength xi and
hlength yi parameters must correspond to an integral
number of bytes.

The data for the next plane begins on the following
byte boundary.

Clip to the screen limits.

The �rst pixel in the source rectangle is placed in the
high-order bit of the �rst byte in each plane region.

When clipping, part of each plane region will not be
read (block_read) or altered (block_write).

A bit mask selects the planes to read or write. The
initial value of this mask is 1 (one) indicating that only
plane 0 is to be accessed. The value of the mask may
be changed using the R_BIT_MASK or GR2D_PLANE_MASK
gescapes. GR2D_PLANE_MASK is discussed in the ap-
pendix of the HP-UX Starbase Device Drivers Manual .
The planes selected by the mask are expected to reside
in consecutive plane locations in the user storage area.
This reduces the storage requirements to exactly what
is needed but also presents the potential for addressing
violations or undesirable results.

For example, if the plane mask is changed to specify
more planes between a block_read and a following
block_write from the same location, the block_write
will attempt to access storage for planes that were

4-38 HP Visualize-FX Family

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

not read (and perhaps not allocated). The application
program must ensure consistency in these operations.

fill_dither The ability to dither is disabled if the number of
colors speci�ed by fill_dither is one. However, if
the number of colors speci�ed is greater than 1, the
default dither cell size of 16 is used. Dithering is only
used in depth 8 visuals while in either the CMAP_FULL

or CMAP_MONOTONIC color map mode, and in depth 12
visuals while in CMAP_FULL color map mode.

interior_style The styles INT_PATTERN and INT_HATCH are not sup-
ported by the HP Visualize-FX devices.

light_source Up to 15 directional light sources are available on
HP Visualize-FX devices. The HP Visualize-FX de-
vices' hardware accelerates up to eight directional light
sources. Using nine to �fteen directional light sources
will cause a noticeable performance degradation.

line_filter,
perimeter_filter

Anti-aliasing is supported on the HP Visualize-FX
devices. Anti-aliasing for this device applies only
to
oating point vectors. Device coordinate and
integer (primitives that use gopen's INT_XFORM mode)
primitives do not use anti-aliasing. The anti-aliasing
features are also limited to the CMAP_FULL color map
mode in a depth 12 or 24 visual.

The HP Visualize-FX devices have three anti-aliasing
modes that may be speci�ed with the line_filter and
perimeter_filter procedures. The index values are
assigned as follows:

0 Anti-aliasing disabled, all vectors have one pixel
wide output.

HP Visualize-FX Family 4-39

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

1 Anti-aliasing enabled, all vectors have two pixel
wide output. Pixel values are multiplied by the
alpha value and blended with the background
according the the formula:

pixel color = (new pixel � �) +

(old pixel � (1 - �));

2 Anti-aliasing enabled, all vectors have two pixel
wide output. Pixel values are multiplied by the
alpha value and blended with the background
according to the formula:

pixel color= (new pixel � �) + old pixel

3 Anti-aliasing enabled, but with no alpha blending.

pixel color=new pixel

Note that this implementation of 2 pixel wide anti-
aliasing di�ers from the CRX-48Z (with 3-wide anti-
aliasing). It is also slightly di�erent than the anti-
aliasing implementation on the HP Visualize-48 and
HP Visualize-48XP.

shade_mode The color map mode may be selected. Shading can be
turned on only if using PowerShade. Shading is not
supported on device coordinate primitives even with
PowerShade. Note that the HP Visualize-FX devices
automatically use PowerShade.

text_precision Only STROKE_TEXT precision is supported.

vertex_format If using PowerShade software, vertex_format is fully
functional. Note that the HP Visualize-FX devices
automatically use PowerShade.

4-40 HP Visualize-FX Family

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

*_with_data The following routines are called with_data routines
because they allow you to send extra vertex data.
These with_data routines are supported by the
HP Visualize-FX devices.

partial_polygon_with_data3d

polygon_with_data3d

polyhedron_with_data

polyline_with_data3d

polymarker_with_data3d

polyquad_with_data3d

polytriangle_with_data3d

quadrilateral_mesh_with_data

triangle_strip_with_data

Note that the TEXTURE_MAP
ag applies only to the
TurboVRX devices via the texture_* routines. This
extra data per vertex is not used in the tm_* routines.

For detailed information on these routines, read the
Starbase Reference and \Appendix A" of this docu-
ment. In some cases, you will be able to �nd the rou-
tines under their own name, but in other cases, you
will need to use the �rst part of the routine name to
locate these routines (e.g., polyline_with_data3d is
described on the man page for polyline(3G)).

HP Visualize-FX Family 4-41

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Supported Gescapes

The hpvisx device driver supports the following gescape operations on the
HP Visualize-FX con�gurations. Refer to Appendix A of the HP-UX Starbase
Device Drivers Manual and Appendix A of this addenda for details on gescapes.

BLOCK_WRITE_SKIPCOUNT|Specify byte skip count during block write.
COLOR_RECOVERY_CONTROL|Disable HP Color Recovery.
CUBIC_POLYPOINT|Specify points to be rendered in a cubic volume speci�ed
in modeling coordinates.
DC_PIXEL_WRITE|Specify points to be rendered along a horizontal scan line.
DRAW_POINTS|Select di�erent modes of rounding for rendered points.
GAMMA_CORRECTION|Enable/disable gamma correction.
GCRX_PIXEL_REPLICATE|Pan and zoom a raster image.
IGNORE_RELEASE|Trigger only when button pressed.
ILLUMINATION_ENABLE|Turn on/o� illumination bits.
LINEAR_POLYPOINT|Specify points to be rendered along a line speci�ed in
modeling coordinates.
LS_OVERFLOW_CONTROL|Set light source over
ow handling.
POLYGON_TRANSPARENCY|Segment control over front/back face screen.
READ_COLOR_MAP|Read Color Map.
R_BIT_MASK|Bit mask.
R_BIT_MODE|Bit mode.
R_GET_FRAME_BUFFER|Read frame bu�er address.
R_LINE_TYPE|User de�ned line style and repeat length.
R_LOCK_DEVICE|Lock device.
R_READ_FB|Write an image to a window whose shade mode is set to
CMAP_FULL.
R_WRITE_FB|Read the image out of a window created with the shade mode
set to CMAP_FULL.
R_UNLOCK_DEVICE|Unlock device.
SET_POLYGON_OFFSET|Enable Z-bu�er biasing of �ll pixels.
STEREO|Activate stereo output mode.
SWITCH_SEMAPHORE|Semaphore Control.
TRANSPARENCY|Set screen door transparency mask (front face and back face).
TRIGGER_ON_RELEASE|Trigger only when button is released.
WIDELINE_CONTROL|Turn on/o� and set attributes of widelines.
ZBANK_ACCESS|Enable/disable Z-bu�er block operations.
ZWRITE_ENABLE|Enable/disable replacement of Z value.

4-42 HP Visualize-FX Family

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Exceptions to Gescape Support

Note Because gescape operations are device-dependent, the exceptions
discussed below may be removed in future drivers.

GAMMA_CORRECTION Gamma correction is implemented by modifying the color
map. It is available only in 12-bit visuals and 24-
bit DirectColor visuals on the HP Visualize-FX devices.
For information on the gescape GAMMA_CORRECTION, refer
to Appendix A in the HP-UX Starbase Device Drivers
Manual . If a global gamma correction value has been set
via the X server or the gamma correction tool, that global
gamma correction value will be used and the color map will
not be modi�ed. See the Graphics Administration Guide
for more information about the gamma correction tool.

The features involved (along with the names of the a�ected gescape operations)
are listed below. For more details in the gescape operations, refer to Appendix
A in the HP-UX Starbase Device Drivers Manual .

R_BIT_MASK The gescape operation R_BIT_MASK de�nes a plane mask to
the driver that is used for bit/pixel access to a single plane in
the frame bu�er. As with other device drivers, only the plane
corresponding to the highest bit set in the mask is transferred.

R_BIT_MODE When calling block_read or block_write with the raw
parameter set to TRUE, the driver supports bit/pixel frame
bu�er access to single planes.

Modified Gescapes

The HP Visualize-FX devices support the Z_CLIP_VOXEL
ag for the CU-

BIC_POLYPOINT and LINEAR_POLYPOINT gescapes. This
ag enables read-only
Z-clipping of the point primitives against the existing contents of the Z-bu�er.
The Z-bu�er is not modi�ed.

For CUBIC_POLYPOINT, the Z_CLIP_VOXEL
ag is one of several in the vertex
format argument, arg1.i[8]. For LINEAR_POLYPOINT, the Z_CLIP_VOXEL
ag is

HP Visualize-FX Family 4-43

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

one of several in arg1.i[8]. Consult the gescape chapter for more information
about LINEAR_POLYPOINT and CUBIC_POLYPOINT.

Comparison Between the HP Visualize-FX Family and
Other Devices

Comparing the HP Visualize-FX2 and HP VISUALIZE-24 Devices

HP Visualize-FX2 uses the hpvisx device driver instead of the hphcrx device
drivers used by the HP Visualize-24 graphics device.

The HP Visualize-FX2 graphics device is very similar to the HP Visualize-24

graphics device. This allows applications written and delivered for the
HP Visualize-24 to use the HP Visualize-FX2 accelerator without requiring
di�erent executable code.

All the gescapes available for the HP Visualize-24 are supported by the
HP Visualize-FX2. Additionally, the Z_BUFFER_COMPARE_RULE gescape is
supported on the HP Visualize-FX2 (but not the HP Visualize-24).

HP Visualize-FX2 uses a di�erent dithering algorithm than HP Visualize-24.
The HP Visualize-FX devices implement a di�erent dither matrix for each
color channel, while the HP Visualize-24 uses the same matrix for all three
color channels. Patterns produced by dithering should be less noticeable on the
HP Visualize-FX2 than the HP Visualize-24.

HP Visualize-FX2 uses a new anti-aliasing �lter, which will result in slightly
di�erent pixel colors than the HP Visualize-24.

Possible behavioral di�erences between the HP Visualize-FX2 and
HP Visualize-24 devices are mostly because of hardware di�erences. These
behavioral di�erences should not a�ect the operation of the application and may
only be observed when directly comparing the images between the two devices.
Some of these di�erences are discussed in the \Image Di�erences" section below.

4-44 HP Visualize-FX Family

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Comparing the HP Visualize-FX4/HP Visualize-FX6 and
HP VISUALIZE-48/HP VISUALIZE-48XP Devices

HP Visualize-FX4 and HP Visualize-FX6 use the hpvisx device driver in-
stead of the hphcrx48z device driver used by the HP Visualize-48 and
HP Visualize-48XP graphics devices.

HP Visualize-FX4 and HP Visualize-FX6 are very similar to the
HP Visualize-48 and HP Visualize-48XP graphics devices. This allows
applications written and delivered for the HP Visualize-48 and
HP Visualize-48XP to use the HP Visualize-FX4 and HP Visualize-FX6

accelerators without requiring di�erent executable code.

All the gescapes supported on the HP Visualize-48 and HP Visualize-48XP

are supported by the HP Visualize-FX4 and HP Visualize-FX6. Additionally,
the Z_BUFFER_COMPARE_RULE gescape is supported on the
HP Visualize-FX4 and HP Visualize-FX6 (but is not supported on the
HP Visualize-48 and HP Visualize-48XP).

HP Visualize-FX4 and HP Visualize-FX6 use a di�erent dithering algorithm
than the HP Visualize-48 and HP Visualize-48XP. The HP Visualize-FX
devices implement a di�erent dither matrix for each color channel, while the
HP Visualize-48/HP Visualize-48XP use the same matrix for all three
color channels. Patterns produced by dithering should be less noticeable on
the HP Visualize-FX4/HP Visualize-FX6 than on the HP Visualize-48/
HP Visualize-48XP.

HP Visualize-FX4 and HP Visualize-FX6 use a new anti-aliasing �lter, which
will result in slightly di�erent pixel colors than the HP Visualize-48 and
HP Visualize-48XP.

Possible behavioral di�erences between the HP Visualize-48/
HP Visualize-48XP and the HP Visualize-FX4/HP Visualize-FX6 are main-
ly the result of hardware di�erences. These behavioral di�erences should not
a�ect the operation of the application and may only be observed when directly
comparing the images between the di�erent devices. Some of these di�erences
are discussed below.

HP Visualize-FX Family 4-45

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

Image Differences

Because of the di�erent mechanisms used to generate the image, the images
generated by the hpvisx and hpvmx device drivers will be di�erent. The ACCEL-
ERATED and UNACCELERATED
ags in gopen are ignored by the HP Visualize-FX
devices, which means Starbase will always use the hpvisx device driver in the im-
age planes. The only exception to this is if the hpvmx device driver is speci�cally
requested by gopen.

These minor image di�erences may also exist when comparing images between
two di�erent devices. For example, when comparing the HP Visualize-FX2 and
HP Visualize-24 devices.

These minor di�erences are listed below:

Slight shifts in the image location on the display.

Minor di�erences in color interpolation.

Minor di�erences in pattern alignment or line type segment alignment.

Specular highlights generated by lighting may di�er slightly between the
HP Visualize-FX2 and the HP Visualize-24.

Note These di�erences should be minor. They may change in future
releases of the Starbase graphics library.

4-46 HP Visualize-FX Family

FINAL TRIM SIZE : 7.5 in x 9.0 in

4

screenpr for the HP Visualize-FX Devices

The screenpr(1G) command has been designed to use the X11 and the
HP imaging library, rather than Starbase, to read to the screen that is
displayed by a HP Visualize-FX device. This implementation of screenpr(1G)
correctly processes image and overlay planes, multiple color maps, and overlay
transparency.

Note that command line options are still the same; however, if screenpr detects
it is running on a HP Visualize-FX device, it will use the DISPLAY environment
variable to determine the screen to read, rather than using the device �le path
given by the -F option.

The -p option to print a single plane (and consequently the -f and -b options)
is not supported on the HP Visualize-FX versions of screenpr. These options
will be ignored by screenpr.

This new version of screenpr uses X11 image library calls and executes
pcltrans(1G) to produce PCL output. Therefore, screenpr may produce error
messages from X, the HP imaging library, or pcltrans.

The HP Visualize-FX screenpr implementation always expands the data to 24
bits. Therefore, the PCL output of an 8-bit only device will be approximately 3
times larger than might be expected.

HP Visualize-FX Family 4-47

FINAL TRIM SIZE : 7.5 in x 9.0 in

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

5

HP Virtual Memory and X

Introduction

The hpvmx Starbase device driver, or HP VMX, o�ers application developers and
end users an exciting and powerful tool for enhancing their Starbase graphics
system usage. HP VMX allows you to use any1 X11 graphics window (local or
remote) as a \virtual device" for output of Starbase graphics.

In other words, HP VMX extends the X11 client/server model to include the
3D graphics functionality found in the Starbase graphics library. The HP VMX
driver o�ers you the ability to run Starbase applications to all X11 servers to
which you are able to run other X applications. Furthermore, most applications
can take advantage of this extended capability with little or no modi�cation.

This chapter covers information on HP VMX support, con�guration, compil-
ing/linking, and device characteristics. For a description of the HP VMX device
driver and information on how to use it, read the section \Using the HP VMX
Device Driver" in the chapter \Using Starbase with the XWindow System" found
in the Starbase Graphics Techniques manual. With this information, you will be
able to determine how to utilize the capabilities of HP VMX.

Note HP VMX is supported on the Starbase, HP-PHIGS, and HP
PEXlib graphics APIs.

1 Refer to the \HP VMX Support" and \HP VMX Con�gurations" sections for
details on o�cial HP support of HP VMX.

HP VMX 5-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Supported Visuals

HP-UX releases 10.20 and later o�er support for both depth 8 and depth 24
visuals. The depth 24 visual support is new for HP-UX 10.20.

HP VMX and PowerShade

The 3D surfaces software, PowerShade, is fully supported on HP VMX. By
combining PowerShade with HP VMX, you have the capability of rendering high
performance 3D graphics including these features:

Lighting and shading

Hidden surface removal via 16-bit software Z-bu�ering

Virtual memory double-bu�ering

These functions fully support the X11 client/server model.

HP VMX Support

There are two sides to the HP VMX support that must be separately addressed:
HP VMX server support and HP VMX client support. The HP VMX server refers
to the machine on which the Starbase application is executing (not necessarily
being displayed) and the HP VMX client refers to the X server on which the
Starbase images are being displayed.

For example, one supported con�guration is to run a Starbase application using
HP VMX on an HP 735 workstation across the network for display on an
HP700/RX X Station. In this example, the HP 735 is the HP VMX server,
and the HP700/RX X Station is the HP VMX client.

HP VMX Server Support

On the server side, HP VMX is supported on all HP Series 700 workstations
running HP-UX 9.0 or later.

5-2 HP VMX

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

HP VMX Client Support

On the client side, HP VMX output may be directed to any depth 8 or depth 24
X11 window on your network, and is supported on all HP X11 servers, including:

HP Series 700 Workstations running X11
HP700/RX X Stations (X terminals)
Other computers that can display a depth 8 or depth 24 X11 window.

HP VMX API Support

HP VMX is supported on the following graphics APIs:

Starbase
HP-PHIGS
HP PEXlib.

For More Information

Information in this chapter is speci�c to HP VMX. For more information on
backing store in X windows and linking shared or archived libraries, read the
following manuals:

See the Starbase Graphics Techniques manual for general Starbase program-
ming information.

Refer to the Graphics Administration Guide to read about linking shared or
archive libraries, path naming conventions, X windows, completing installation,
and setting up graphics devices.

HP VMX 5-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Device Description

What is HP VMX?

In order to answer the question \What is HP VMX?" let us �rst examine its
name. HP VMX is a shorthand name for the HP Virtual Memory X driver,
and is derived from its implementation and usage. Brie
y, HP VMX o�ers the
capability to render 3D graphics images into Virtual Memory for display in the
X Window System client/server environment.

While HP VMX is technically a Starbase \device driver" it di�ers somewhat from
the traditional de�nition. A traditional Starbase device driver implements device-
speci�c code necessary to support the device-independent Starbase graphics
library on a particular graphics device (or family of graphics devices). HP
VMX, on the other hand, implements the code to support the device-independent
Starbase graphics library in an X11 graphics window | independent of the
underlying hardware on which the X window resides.

Because HP VMX uses the X11 protocol to display the images, the targeted
window may be local or remote, on HP or non-HP hardware, a workstation, an
X terminal, or a Personal Computer2. The only requirement is that you output
to an X11 graphics window. Note, too, that the application is not responsible for
displaying the images via X11 protocol; this is handled by the HP VMX driver.

You may recognize similarities between HP VMX and the \Starbase-on-X11"
(SOX11) device driver. While the X11-based client/server models are similar,
di�erences do exist in both functionality (HP VMX has a richer set) and
performance (di�ers per functionality). Please see the section \SOX11 vs. HP
VMX" for an overview comparing and contrasting the two drivers.

2 Refer to the \HP VMX Support" section for details on o�cial HP support of HP
VMX.

5-4 HP VMX

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

How Do You Use HP VMX?

The following example shows the steps necessary to run an application using HP
VMX. This example is intended to give you a feel for the kinds of steps necessary
to use HP VMX, rather than provide a detailed tutorial on all the steps necessary
to explain each step. Refer to the sections throughout this chapter, including
\Compiling Your Application with the HP-VMXGraphics Driver," and \To Open
and Initialize the Device for Output" for details on these steps.

HP VMX Usage Example

In order to use HP VMX to run a PowerShade application to an HP700/RX X
Station across the network from an HP 735 (running 9.0 HP-UX or later), you
need to:

1. Purchase the \PowerShade for HP700/RX X Stations" license to allow you to
run HP VMX to a remote X11 server.

2. Make sure PowerShade is installed on your server (the HP 735).

3. Execute an xhost command from your X Station to give the HP 735 (named
dspsvr in this example) permission to access your X Station's local display
server. For example,

xhost +dspsvr

4. Create an hpterm window and rlogin to the HP 735 from your X Station.

5. Set the DISPLAY environment variable to the X Station's DISPLAY in this HP
735 hpterm window. Note that in the following example the X station is
named myxterm. For example, in ksh:

export DISPLAY=myxterm:0.0

6. Run your application from this window.

The application is now executing on the HP 735 (dspsvr), and displaying X and
Starbase output on the X Station (myxterm:0.0).

HP VMX 5-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Note The application in this example did not need to be re-linked,
nor were any code changes necessary. This assumes that the
application is linked with shared libraries, and the application
uses NULL as the driver parameter to gopen.

How Does HP VMX Work?

Now that you have some understanding of what HP VMX is, and how you can
use HP VMX, let us take a look at how HP VMX works.

Overview

Instead of rendering Starbase 3D graphics images to a dedicated graphics display
subsystem, HP VMX is designed to display images in an X11 window using X11
protocol. It does this by automatically using one of the following methods, which
are dependent on the attributes of the primitives it is rendering:

Method one Simple graphics, such as lines and �lled areas that do
not require per-pixel computation (no depth bu�ering or
shading, etc.), are rendered directly using X11 protocol.
Note that this method will not be selected with dithering
turned on. To ignore dithering or have it disabled, use the
environment variable HP_VM_XLIB_DITHER. For information
on the environment variable HP_VM_XLIB_DITHER, read the
section \The Environment Variables HP_VM_RENDER_METHOD

and HP_VM_XLIB_DITHER" in this chapter.

Method two Primitives that require per-pixel computation are rendered
into a virtual memory frame bu�er and then copied to the
window as a complete image with X11 protocol.

If the X11 window is local to a workstation, as it is when the HP VMX driver
is rendering to a window in the overlay planes of the workstation, the HP VMX
driver will always render into virtual memory and copy the �nished image.

Here are the basic steps HP VMX performs to render into a virtual memory
frame bu�er and copy the image to a window:

1. VM (Virtual Memory) frame bu�er allocation | At gopen time, the HP
VMX driver allocates virtual memory for use as a frame bu�er. This VM

5-6 HP VMX

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

frame bu�er is allocated using calloc and its size is based upon the size of
the X11 window being gopened.

2. Rendering to the VM frame bu�er | After a successful gopen, HP
VMX renders Starbase output primitives in the allocated VM frame bu�er.
The appropriate primitive attributes and device control are applied during
rendering.

3. Display of the VM frame bu�er | Upon application request, HP VMX
displays the contents of the VM frame bu�er. Application requests come
in the form of one of the following Starbase calls:

make_picture_current

flush_buffer

dbuffer_switch

See the section \Synchronization" for more details.

Because HP VMX is always operating in the X11 windows environment, the
display of the VM frame bu�er to the gopened window is handled through the
use of standard X11 protocol.

These basic HP VMX steps are applicable to both single- and double-bu�ering.

HP VMX Configurations

The HP VMX driver supports depth 8 or depth 24 X11 windows. Attempts to
gopen windows with a depth other than 8 or 24 will result in a Starbase error.

The HP VMX driver supports the following con�gurations:

8-bit indexed color (CMAP_NORMAL, CMAP_MONOTONIC), single-bu�ered, or 8/8
double-bu�ered

8-bit direct color (CMAP_FULL), single-bu�ered or 8/8 double-bu�ered

24-bit direct color (CMAP_FULL), single-bu�ered or 24/24 double-bu�ered

HP VMX 5-7

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

HP VMX Device Driver, VM Rendering Utilities, and
Overlay Planes

Before going further, you need to understand the two basic functions that HP
VMX provides:

Rendering of Starbase graphics into a virtual memory frame bu�er.

Displaying of this virtual memory (VM) frame bu�er in the targeted X11
window.

Together, these two functions create what we call \HP VMX".

VM Rendering Utilities

There exists, as a matter of implementation, a set of internal graphics system
functions which rely on VM rendering, but not on the display of the VM bu�er
in a window. This set of functions is called the VM Rendering Utilities and
includes:

VM Backing Store Retain graphics data rendered to obscured por-
tions of a window.

VM Double-Bu�ering Allow low end systems to take advantage of
double-bu�ering.

Again, these utilities are not included in the de�nition of HP VMX but do rely
on some of the same internal implementation.

The majority of this chapter will discuss HP VMX as a \device driver" and is
organized in a manner similar to the other device driver chapters.

The \VM Rendering Utilities" section near the end of the chapter discusses
in more detail each of the VM rendering utilities and explains some of the
implementation details.

5-8 HP VMX

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Overlay Planes

HP VMX serves as the Starbase driver for all CRX-family and HCRX-family
\overlay plane" device opens. Note, that the \hardware device driver" (for
example, hpgcrx or hpcrx48z) is not supported in the overlay planes on these
devices. HP VMX is used as the exclusive Starbase driver for the overlay planes
on these devices.

Please see the section \HP VMX: The Overlay Plane Driver" for details on how
HP VMX is used in this capacity.

HP VMX Performance

HP VMX performance is quite good. While HP VMX is generally slower than
a hardware device driver, it provides 3D client/server graphics at an interactive
performance level.

Rather than attempt a full performance characterization of HP VMX, this section
contains some qualitative guidelines to use when assessing the performance of HP
VMX. Performance on HP VMX as a whole is determined by the performance of
the two key portions of HP VMX:

VM (Virtual Memory) rendering | High performance VM rendering is
achieved by taking advantage of HP's high performance SPUs and PowerShade
graphics software.
Display of the VM frame bu�er | Display performance is di�cult to
characterize because it is in
uenced by the performance of the X11 servers
and the network throughput.

VM rendering and display performance are both in
uenced by the size of the
graphics window. The larger the window, the more data there is to write to
the VM frame bu�er, and the more data there is to display via X11 protocol.
HP VMX is optimized to display only the portions of the VM frame bu�er that
have changed since the last display.

HP VMX 5-9

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

X Windows

The HP VMX driver is supported only in the X11 window environment.

Compiling Your Application with
the HP VMX Graphics Driver

You can �nd information for compiling your Starbase application with HP VMX
shared and archived libraries in the Graphics Administration Guide.

To Open and Initialize the Device for Output

X11 Environment

The VMX usage example in the section \How Do You Use HP VMX?" gives
an example of how you might run an application with HP VMX in the X11
environment. This section describes in more detail the X11 environment setup
necessary to run HP VMX remotely.

DISPLAY Environment Variable

The DISPLAY environment variable must be set on the HP VMX server side. The
value of the environment variable is the host, display, and screen of the targeted
VMX client on which the Starbase application is to be displayed. By setting this
environment variable, the application will direct X11 protocol to the HP VMX
client.

For more information on setting the DISPLAY environment variable, read
the section \Setting the DISPLAY Variable" in the chapter \Preliminary
Con�guration" of the Using the X Window System manual.

5-10 HP VMX

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

xhost Client

The xhost client is used to add or delete a remote host's permission to access
the local display server. This client must be run on the HP VMX client side to
allow the HP VMX server access to the HP VMX client's display server.

For more information on adding and deleting hosts with xhost, read the section
\Adding and Deleting Hosts with xhost" in the chapter \Using the X Clients"
in the Using the X Window System manual.

Syntax Examples

Two methods exist to gopen a window using HP VMX. The recommended
method is to set the driver parameter to NULL and let Starbase choose the
appropriate device driver. The second method for gopening HP VMX is to
specify hpvmx as the driver parameter to gopen(). See the gopen(3G) and
inquire_device_driver(3g) man pages for details on device driver selection.

If you specify NULL as the driver parameter, Starbase will choose HP VMX if:

The window is displayed on a remote X11 server, or

The window is displayed in the overlay planes on one of the CRX, HCRX, or
HP Visualize family of devices (for example, CRX-24Z, CRX-48Z, HCRX-8,
HP Visualize-24, and HCRX-24Z)

In each of the examples below, assume that the depth 8 or 24 window3:

hscreeni/remote_window

has been created on a remote X11 server with the following xwcreate command:

xwcreate -display hremote hosti -geometry 500�500 remote_window

3 The actual path names of directories in angle brackets depend on the �le system
structure. See the Graphics Administration Guide for details.

HP VMX 5-11

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Syntax Examples

The following examples show how to open the grapics devices for output4:

C programs

fildes=gopen("hscreeni/remote_window", OUTDEV, NULL, INIT | THREE_D);

FORTRAN 77 programs

fildes = gopen('hscreeni/remote_window'//char(0), OUTDEV,

+ char(0), INIT | THREE_D)

Pascal programs

fildes:=gopen('hscreeni/remote_window', OUTDEV, '', INIT | THREE_D);

Parameters for gopen

The gopen procedure has four parameters: path, kind , driver , and mode.

path | This is the name of the device �le created by xwcreate(1) or created
with XCreateWindow(3X11) and returned from:

make_X11_gopen_string(3G)

kind |This parameter should be OUTDEV if the window will be used for output,
INDEV if the window will be be used for Starbase input, or OUTINDEV if the
window will be used for both output and Starbase input.

driver |The character representation of the driver type. For portability across
the HP graphics device family, use the NULL parameter. In this case, Starbase
will automatically choose the appropriate driver.

For example,

NULL for C

char(0) for FORTRAN 77

'' for Pascal

4 The actual path names of directories in angle brackets depend on the �le system
structure. See the Graphics Administration Guide for details.

5-12 HP VMX

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

A character string may be used to specify the driver. For example,

"hpvmx" for C

'hpvmx'//(0) for FORTRAN 77

'hpvmx' for Pascal

mode | The mode control word consists of several
ags bits ORed together.
Listed below are
ag bits that have device-dependent actions. Those
ags not
discussed below operate as de�ned by the gopen procedure. See the Starbase
Graphics Techniques manual for more details of gopen actions when in an X
Window.

0 (zero) | Open the window, but do not perform the operations associated
with INIT below. The following actions are:

1. The software color table is initialized from the X color map already
associated with the window.

2. The VM bu�er is initialized by reading the contents of the window.

INIT | Open and initialize as follows:

1. The window is cleared to zeros.
2. A new X color map is created and associated with this window. The color

map is initialized as CMAP_NORMAL.

RESET_DEVICE | This
ag is equivalent to INIT.

SPOOLED | Not supported.

MODEL_XFORM | Opening in MODEL_XFORM mode will a�ect how matrix
stack and transformation routines are performed. See gopen(3G) for more
information.

INT_XFORM | Only integer and common operations will be performed. All

oating point operations will cause an error.

INT_XFORM_32 | Only integer and common operations will be performed.
All
oating point operations will cause an error.

ACCELERATED | This
ag is ignored.

UNACCELERATED | This
ag is ignored.

THREE_D | Three-dimensional graphics.

HP VMX 5-13

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Special Device Characteristics

Device Coordinate Addressing

For device coordinate operations, location (0, 0) is the upper-left corner of the
window with X-axis values increasing to the right and Y-axis values increasing
down.

Use this form of pixel addressing when calling high-level Starbase operations in
terms of (x,y) device coordinates.

The maximum x and y coordinates are determined by the size of the window.

Device Defaults

Raster Echo Default

The default raster echo is the following 8x8 array:

255 255 255 255 0 0 0 0

255 255 0 0 0 0 0 0

255 0 255 0 0 0 0 0

255 0 0 255 0 0 0 0

0 0 0 0 255 0 0 0

0 0 0 0 0 255 0 0

0 0 0 0 0 0 255 0

0 0 0 0 0 0 0 255

The maximum size for a raster echo is 64x64 pixels.

Semaphore Default

Semaphore operations have no e�ect on HP VMX.

5-14 HP VMX

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Line Type Defaults

The default line types are created with the bit patterns shown below:

Table 5-1. Line Type Defaults

Line Type Pattern

0 1111111111111111

1 1111111100000000

2 1010101010101010

3 1111111111111010

4 1111111111101010

5 1111111111100000

6 1111111111110100

7 1111111110100110

Color

Default Color Map

To initialize the current color map to the default values shown below, set themode
parameter of gopen to INIT when opening a depth 8 window. This is the Starbase
CMAP_NORMAL mode. (To see the rest of the colors, use the inquire_color_map

call to read the Starbase color table).

HP VMX 5-15

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Table 5-2. Starbase Default Color Table

Index Color Red Green Blue

0 black 0.0 0.0 0.0

1 white 1.0 1.0 1.0

2 red 1.0 0.0 0.0

3 yellow 1.0 1.0 0.0

4 green 0.0 1.0 0.0

5 cyan 0.0 1.0 1.0

6 blue 0.0 0.0 1.0

7 magenta 1.0 0.0 1.0

8 10% gray 0.1 0.1 0.1

9 20% gray 0.2 0.2 0.2

10 30% gray 0.3 0.3 0.3

11 40% gray 0.4 0.4 0.4

12 50% gray 0.5 0.5 0.5

13 60% gray 0.6 0.6 0.6

14 70% gray 0.7 0.7 0.7

15 80% gray 0.8 0.8 0.8

16 90% gray 0.9 0.9 0.9

17 white 1.0 1.0 1.0
...

...
...

...
...

255 white 1.0 1.0 1.0

5-16 HP VMX

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Starbase Functionality

Calls Not Supported

The hpvmx driver does not support the following Starbase calls if you are using
Starbase without the PowerShade software. When executed, these calls will
produce no result (that is, they are ignored).

alpha_transparency hidden_surface

backface_control light_ambient

bf_alpha_transparency light_attenuation

bf_control light_model

bf_fill_color light_switch

bf_interior_style line_filter

bf_perimeter_color perimeter_filter

bf_perimeter_repeat_length set_capping_planes

bf_perimeter_type set_model_clip_indicator

bf_surface_coefficients set_model_clip_volume

bf_surface_model surface_coefficients

bf_texture_index surface_model

contour_enable texture_index

define_contour_table texture_viewport

define_texture texture_window

define_trimming_curve viewpoint

deformation_mode zbuffer_switch

Using PowerShade with HP VMX

By adding PowerShade's capabilities to HP VMX, a much wider set of
functionality is supported. The following calls are not supported when using
PowerShade with HP VMX:

alpha_transparency line_filter

bf_alpha_transparency perimeter_filter

bf_texture_index texture_index

contour_enable texture_viewport

define_contour_table texture_window

define_texture

HP VMX 5-17

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Conditional Support of Starbase Calls with HP VMX

The following Starbase calls are supported with the listed exceptions:

block_read,
block_write

The raw parameter for the block_read and block_write

commands is used by this driver to do plane-major reads
and writes. It is enabled by the gescape R_BIT_MODE.

The storage destination supplied by the user as the source
or destination must be organized as follows.

The data from each plane is packed with eight pixels per
byte.

Each row must begin on a byte boundary. Thus the
size of the rectangle as speci�ed by the hlength xi and
hlength yi parameters must correspond to an integral
number of bytes.

The data for the next plane begins on the following byte
boundary.

Clip to the screen limits.

The �rst pixel in the source rectangle is placed in the
high-order bit of the �rst byte in each plane region.

When clipping, part of each plane region will not be read
(block_read) or altered (block_write).

A bit mask selects the planes to read or write. The
initial value of this mask is 1 (one) indicating that only
plane 0 is to be accessed. The value of the mask may
be changed using the R_BIT_MASK or GR2D_PLANE_MASK

gescapes. GR2D_PLANE_MASK is discussed in Appendix A of
this manual. The planes selected by the mask are expected
to reside in consecutive plane locations in the user storage
area. This reduces the storage requirements to exactly
what is needed but also presents the potential for address
violations or undesirable results.

For example, if the plane mask is changed to specify more
planes between a block_read and a following block_write
from the same location, the block_write will attempt to

5-18 HP VMX

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

access storage for planes that were not read (and perhaps
not allocated). The application program must ensure
consistency in these operations.

double_buffer HP VMX supports only 8/8 double-bu�ering in a depth
8 window, and only 24/24 double-bu�ering in a depth 24
window.

fill_dither The ability to dither is disabled if the number of colors
speci�ed by fill_dither is one. However, if the number of
colors speci�ed is greater than 1, the default dither cell size
of 16 is used. Dithering is only used in depth 8 windows
while in either the CMAP_FULL or CMAP_MONOTONIC color
map mode.

pattern_define For HP VMX, the maximum pattern size is 4x4. If a
pattern larger than 4x4 is speci�ed, an error message is
printed and the previous pattern is retained.

shade_mode The color map mode may be selected. Shading can
be turned on only if using PowerShade. Shading is
not supported on device coordinate primitives even with
PowerShade.

text_precision Only STROKE_TEXT precision is supported.

vertex_format If not using PowerShade software, vertex_format's use
parameter must be set to zero. Any extra coordinates will
be ignored. If using PowerShade software, vertex_format
is fully functional.

HP VMX 5-19

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

*_with_data The following routines are called with_data routines
because they contain with_data in their routine names.
These with_data routines are supported by HP VMX:

partial_polygon_with_data3d

polygon_with_data3d

polyhedron_with_data

polyline_with_data3d

polymarker_with_data3d

polyquad_with_data3d

polytriangle_with_data3d

quadrilateral_mesh_with_data

triangle_strip_with_data

Note that the TEXTURE_MAP
ag applies to the TurboVRX
devices via the texture_* routines. This extra data per
vertex is not used in the tm_* routines.

For detailed information on these routines, read the Star-
base Reference and \Appendix A" of this document. In
some cases, you will be able to �nd the routines under
their own name, but in other cases, you will need to use
the �rst part of the routine name to locate these routines
(e.g., polyline_with_data3d is described on the man page
for polyline(3G)).

5-20 HP VMX

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Supported Gescapes

The hpvmx driver supports the following gescape operations. Refer to Appendix
A found in the HP-UX Starbase Device Drivers Manual for details on gescapes.

BAD_SAMPLE_ON_DIFF_SCREEN Restore the locator and choice sampling of the
X11 pointer device.

BLOCK_WRITE_SKIP_COUNT Specify byte skip count during block write.

DRAW_POINTS Select di�erent modes of rounding for rendered
points.

IGNORE_RELEASE Trigger only when button is pressed.

OLD_SAMPLE_ON_DIFF_SCREEN Inquire the locator and choice sampling of the X11
pointer device.

R_BIT_MASK De�ne bit mask for bit mode block operations.

R_BIT_MODE Enable/disable bit mode block operations.

R_GET_FRAME_BUFFER Read the address of the device frame bu�er and
control space.

R_LINE_TYPE User-de�ned line style and repeat length.

READ_COLOR_MAP Copy the hardware color map into the software
color map.

TRIGGER_ON RELEASE Trigger only when button is released.

HP VMX 5-21

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Additional Gescapes Supported if PowerShade is Enabled

ILLUMINATION_ENABLE Turn on/o� illumination bits.

LS_OVERFLOW_CONTROL Set light source over
ow handling.

POLYGON_TRANSPARENCY Segment control over front/back face \screen
door."

TRANSPARENCY Set screen door transparency mask (front face and
back face).

WIDELINE_CONTROL Turn on/o� and set attributes of widelines.

ZBANK_ACCESS Enable/disable Z-bu�er block operations.

ZWRITE_ENABLE Enable/disable replacement of Z value.

Exceptions to Gescape Support

Note Because the gescape operations are device-dependent, the excep-
tions discussed below may be removed in future drivers.

R_GET_FRAME_BUFFER This gescape is used to return the addresses of both
the frame bu�er and the control space. A zero is
returned for the control space address since HP VMX
has no control space. The frame bu�er address is
returned correctly.

R_LOCK_DEVICE,
R_UNLOCK_DEVICE,
SWITCH_SEMAPHORE

Because HP VMX renders to a virtual memory frame
bu�er, device locking is not necessary. Therefore,
these gescapes have no e�ect on HP VMX.

5-22 HP VMX

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Differences From Other Starbase Device Drivers

Synchronization

Because of the way HP VMX works (rendering to a VM bu�er and then displaying
these images through X11 protocol), the HP VMX driver has some unique
synchronization requirements.

The following Starbase calls copy the contents of the VM frame bu�er to the
window:

dbuffer_switch (if double-bu�ering is enabled)
flush_buffer

make_picture_current

Until one of these calls is made, HP VMX will continue to render graphics to
the VM frame bu�er. Changes are not re
ected in the X11 window until this
synchronization occurs.

You may use buffer_mode(3G) to disable bu�ering of graphics primitives, and
therefore avoid synchronization problems. Disabling bu�ering with buffer_mode

will degrade performance.

Note that there is no command bu�er associated with the HP VMX driver.
When buffer_mode is turned o�, there is an implicit make_picture_current

which causes an update of the virtual memory bu�er to the destination window.
It is the frequency of these updates (that is, synchronization) that can degrade
rendering performance signi�cantly.

The Starbase Reference and the Starbase Graphics Techniques manuals discuss
buffer_mode for bit-map device drivers.

Resource Considerations

Some resource usage implications need to be considered when using the HP VMX
driver. Because no dedicated frame bu�er hardware exists, and therefore the
frame bu�er memory is allocated at gopen time, the use of the HP VMX driver
will consume virtual memory resource.

HP VMX will allocate a virtual memory frame bu�er at gopen time. The VM
frame bu�er is allocated based upon the size of the X11 window being gopened.

HP VMX 5-23

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Since HP VMX supports only depth 8 or depth 24 X11 windows, the frame bu�er
is allocated on a byte-per-pixel or word-per-pixel basis.

For example, consider a depth 8 window which is 750 pixels wide and 600 pixels
high. The size of the VM frame bu�er is:

750 pixels � 600 pixels = 450,000 pixels

450,000 pixels � 1 byte/pixel = 450,000 bytes

So the VM frame bu�er for this window consumes approximately .45 Mbytes of
virtual memory.

A depth 24 window uses 32 bits/pixel, so will consume approximately four times
as much virtual memory as an 8-bit window of the same size.

This resource is returned to the system at gclose() time.

This resource usage is typically not a problem, but should be considered if you
are using the HP VMX driver and one of the following conditions exists:

Several windows (especially large windows) are gopen'd simultaneously.

Your system has a small amount of physical memory.

These resource conditions could cause:

System errors
Application termination
Performance degradation.

In order to alleviate these resource conditions, you should:

Use the hardware device driver whenever possible. For example, if your display
is an HCRX graphics device, specify hphcrx as the driver parameter to gopen

when running to a local window. Specify hpvmx only when running to a remote
system, or when running to the overlay planes. (If your driver parameter is
NULL, this happens automatically.)

Reduce the number of simultaneous gopens (gclose some windows before
gopening more of them).

5-24 HP VMX

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Use smaller windows (the size of the window determines the amount of memory
allocated at gopen time).

Add more memory to your system.

Increase the size of the kernel's maximum data size parameter (maxdsiz).

Restricted gopens

As with Virtual Memory (VM) double-bu�ering, multiple gopens of HP VMX to
the same window by di�erent processes should not be attempted. The VM frame
bu�er allocated by HP VMX is associated with each process rather than with
a window. Therefore, multiple gopens to the same window will each allocate a
new VM bu�er, rather than \share" one VM bu�er. This will produce results
potentially di�erent from other hardware devices or expectations.

VM Rendering Utilities

Note that this section covers VM Rendering Utilities, not the HP VMX driver
functionality. Also note that the VM Rendering Utilities are only used with depth
24 windows.

As mentioned in the section \HP VMX Device Driver, VM Rendering Utilities,
and Overlay Planes" Starbase implements a set of VM Rendering Utilities which
rely on a portion of the HP VMX functionality.

Recall that HP VMX performs two basic functions:

Renders Starbase graphics into a virtual memory frame bu�er.
Displays this VM frame bu�er in the targeted X11 window.

The set of VM rendering utilities exercises only the �rst of these two HP VMX
functions { the rendering of Starbase graphics into a virtual memory frame bu�er.
The method of display is not handled by HP VMX, but by the methods described
in the subsequent sections. This section takes a look at the VM rendering utilities
and brie
y explains their implementation.

Note, while these actions are largely internal implementation details, they
are worth discussion here so that you recognize the similarities between their
implementation and the use of HP VMX as a device driver.

HP VMX 5-25

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

VM Double-Buffering on 8-plane devices

Virtual Memory Double-Buffering

4/4 double-bu�ering limitations

Where double-bu�ering on Series 700 models with integrated and internal color
graphics is possible, it is limited. As 8-plane devices, these models only allow 4/4
double-bu�ering. You are limited to 16 colors as rendering in this mode uses four
planes per bu�er. Also, X11 does not support 4/4 double-bu�ering, so where
your graphics window double-bu�ers as expected, the rest of your windows may

ash (known as the technicolor e�ect). Note that 4/4 double-bu�ering is not
supported with CMAP_FULL mode.

8/8 double-bu�ering enhanced performance

Virtual memory (VM) 8/8 double-bu�ering is supported by setting the
HP_VM_DOUBLE_BUFFER environment variable to TRUE. This functionality allows
you to double-bu�er in 8 planes per bu�er, giving you access to 256 colors. It is
also supported by X11 so technicolor is not a problem.

Here's how it works:

The virtual memory bu�er is allocated by the Starbase graphics library to mirror
the window. The VM rendering capabilities of HP VMX are used to render the
Starbase graphics images into the allocated virtual memory bu�er. The Starbase
graphics library then copies the VM bu�er (containing the Starbase graphics
output) to the display frame bu�er at dbuffer_switch time.

Be aware of tradeo�s

VM double-bu�ering is not appropriate for all applications. You should �rst
evaluate the performance of your application against the following tradeo�s:

1. Speed { VM rendering uses only software rendering. As a result, rendering to
the VM bu�er is somewhat slower for many operations and signi�cantly slower
for a few operations such as drawing non-Z-bu�ered, non-shaded vectors.

2. More memory { A VM double-bu�ering application uses more virtual memory
in order to allocate the VM bu�er. The size of this bu�er is proportional to the
size of the window when it was gopened for rendering. The bu�er size is one
byte for each pixel in the window. If the SUPPRESS_CLEAR double-bu�ering

ag is set, then the VM bu�er will be double the size of the window. Note

5-26 HP VMX

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

that the bu�er memory is returned to the system when the application process
terminates; it does not stay allocated with the window. (Most applications
do not need to change the kernel con�guration to use this capability. If your
application has problems, you can increase the kernel's maxdsiz parameter
using SAM(1)).

3. SUPPRESS_CLEAR { As of HP-UX 9.05, Starbase VM (virtual memory)
double-bu�ering supports SUPPRESS_CLEAR. If the mode parameter of the
double_buffer command is ORed with the SUPPRESS_CLEAR
ag, then the
bu�er that is enabled for writing will not be cleared by subsequent calls to
the dbuffer_switch command. Also, multiple Starbase gopen calls in the
same process to the same VM double-bu�ered window will use the same VM
double-bu�er (rather than a new VM double-bu�er for each gopen call).

To enable VM double-bu�ering

There are two ways you can enable VM double-bu�ering on Internal Color and
Integrated Graphics Workstations (only true for these workstations).

You need to de�ne the HP_VM_DOUBLE_BUFFER variable in your environment
before starting your application. For example, using ksh syntax, execute the
following:

export HP_VM_DOUBLE_BUFFER=TRUE

The application can de�ne the environment variable itself before gopening the
window using the putenv(3c) function.

Once VM double-bu�ering is enabled as above, the Starbase double_buffer

function accepts 8 planes to be speci�ed in the planes parameter. If VM double-
bu�ering is not enabled, the double_buffer function limits you to 4 planes.

VM Backing Store

The Starbase Graphics Techniques manual gives a good explanation of backing
store (also known as \retained raster"). Backing store is memory used to retain
graphics data rendered to obscured portions of a window. This memory is
allocated by the X server. The VM rendering capabilities of HP VMX are used
to render the Starbase graphics images into the allocated backing store memory.
The X server is then responsible for copying this backing store memory to the
window when the obscured regions are exposed.

HP VMX 5-27

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Refer to the \Backing Store Operation" section of the Starbase Graphics
Techniques manual for more information on backing store.

HP VMX: The Overlay Plane Driver

As mentioned in the section \HP VMX Device Driver, VM Rendering Utilities,
and Overlay Planes," HP VMX serves as the Starbase driver for all CRX-family
and HCRX-family overlay plane device opens. The \hardware device driver" for
these devices (e.g. hpgcrx or hpcrx48z) is not supported in the overlay planes.
HP VMX is used as the exclusive Starbase driver for the overlay planes on these
devices.

If you gopen a window in the overlay planes of a CRX-family or HCRX-
family device with a NULL driver parameter, the hpvmx driver will be selected.
Alternatively, you may explicitly ask for the HP VMX driver by specifying hpvmx
for the driver parameter to gopen.

Note that 8/8 double-bu�ering is supported in the overlay planes using HP VMX.

5-28 HP VMX

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

Table 5-3 details driver selection for the CRX-family of devices at gopen time.
Note, the driver selected is based on whether:

A window is in the image planes or overlay planes.
The hphcrx, hpgcrx, hpcrx48z, hpvmx, or NULL driver is speci�ed.

Table 5-3. Driver Selection at gopen

Type of Window Driver Speci�ed Window Depth Driver Used

Overlay NULL 8 hpvmx

Overlay hphcrx,
hphcrx48z,
hpgcrx,
hpcrx48z,
or hpvisx

8 not supported

Overlay hpvmx 8 hpvmx

Image NULL 8, 12, 24 hphcrx,
hphcrx48z,
hpgcrx, or
hpcrx48z

Image hphcrx,
hphcrx48z,
hpgcrx, or
hpcrx48z

8, 12, 24 hphcrx,
hphcrx48z,
hpgcrx,
hpcrx48z,
or hpvisx

Image hpvmx 8, 24 hpvmx

12 not supported

HP VMX 5-29

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

SOX11 vs. HP VMX

As mentioned earlier, HP VMX and the Starbase on X11 (SOX11) drivers are
similar in that both provide Starbase functionality in the X11 client/server model.
This section will brie
y compare and contrast the two drivers.

Functionality

The most signi�cant di�erence between HP VMX and SOX11 is that PowerShade
is supported on HP VMX, but is not supported on SOX11. This results in a much
richer set of Starbase functionality for HP VMX, including lighting, shading, and
hidden surface removal. These features are not supported on SOX11.

Performance

When comparing the functionality of the HP VMX driver to the SOX11 driver,
the HP VMX driver provides better performance than the SOX11 driver.
However, the HP VMX driver can be slower than the SOX11 driver if the image
being displayed is sparse and conditions force HP VMX to use virtual memory
and copy rendering.

The HP VMX driver always allocates a virtual memory frame bu�er. The SOX11
driver does not use a virtual memory frame bu�er, which can save considerable
memory, especially if an application opens multiple windows.

Changing from HP VMX to SOX11

If you prefer to use the sox11 driver instead of the HP VMX driver, there are
two ways to do this:

Set the SB_DEFAULT_SOX11 environment variable to any non-null value. This
only applies when the driver parameter of gopen is NULL.

Set the driver parameter of your gopen statement to sox11.

For more information on the HP VMX and SOX11 drivers, read the chapter \The
Starbase-on-X11 Device Driver" found in the HP-UX Starbase Device Drivers
Manual .

5-30 HP VMX

FINAL TRIM SIZE : 7.5 in x 9.0 in

5

The Environment Variables HP VM RENDER METHOD
and HP VM XLIB DITHER

The environment variables discussed in this section help you take advantage of
the new HP VMX behavior discussed in the section \How Does HP VMX Work"
in this chapter.

HP VM RENDER METHOD

In previous releases, the HP VMX driver always rendered into the virtual memory
frame bu�er for all primitives. However, in 10.01 and later releases of HP-UX,
the HP VMX driver can render simple primitives directly with X11 protocol. If
you want to disable this new behavior to guarantee pixel-for-pixel compatibility,
set the environment variable HP_VM_RENDER_METHOD to PIXMAP.

HP VM XLIB DITHER

The HP VMX driver selects virtual memory rendering instead of X11 protocol
rendering if dithering is enabled. In Starbase, this is controlled with the
fill_dither call. If you need to ignore dithering in order to allow X11
protocol rendering for better performance of simple wireframe drawings, set
the environment variable HP_VM_XLIB_DITHER to IGNORE before starting the
application. Note, however, if you ignore dithering, your color approximation
capabilities will be less accurate until you unset this variable. This environment
variable only a�ects primitives that are rendered with X11 protocol.

HP VMX 5-31

FINAL TRIM SIZE : 7.5 in x 9.0 in

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

6

Gescapes

Introduction

This chapter contains information regarding new Starbase gescapes for the
HP-UX 10.20 and the July, 1997 Workstation ACE for 10.20 HP-UX releases.

R READ FB

Supported Devices

To determine if this gescape is supported on your device, use the routine
inquire_capabilities(3g) to check that the COLOR_2_CAPABILITIES
ag has
the IC_RGB_IO bit set to 1 (one).

Description

The R_READ_FB gescape allows you to read the image out of a window created
with the shade mode set to CMAP_FULL. The range to read is speci�ed in device
coordinates similar to dcblock_read(3g). The result will be stored in 24-bit
RGB-per-pixel in the order of right to left and top to bottom, regardless of the
current visual. The resulting 24-bit image will appear as close as possible to the
contents of the frame bu�er. For example, an image read from an 12-bit full color
visual will be expanded to 24 bits of information. Since the coordinates relate to
the device and not the drawing area, the current clip rectangle will not a�ect the
results.

Gescapes 6-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

Application developers using this gescape should keep the following in mind:

The results will be the same regardless of the current clipping level or clipping
rectangle.

The current replacement rule as set by drawing_mode(3g) will a�ect the results
in the same manner as dcblock_read(3g). If you want the exact contents of
the frame bu�er, the replacement rule should be set to the default (SOURCE).

Do not set the write_enable(3g) and display_enable(3g) masks when using
this gescape.

If HP Color Recovery is enabled and you are reading from a depth 8 visual,
then operation of this gescape will be slow because of the use of a complex
digital �lter to convert 8-bit data stored in the frame bu�er into 24-bit per
pixel color data in memory.

If you specify an area to read which is larger than the window, only the part of
your bu�er which intersects the window will be changed. In other words, the
entire area will not be changed in this case; just the part of your speci�ed area
that intersects the window.

If a second window obscures the window that you are reading, the results may
be clipped. An area that is clipped in this manner will be black. To avoid this
artifact, bring the window to the front before reading.

The data parameters passed to the gescape entry point are used as follows. Note
that both arg1 and arg2 are used to pass information into the gescape() entry
point.

arg1.i[0] The starting X location, in pixels.

arg1.i[1] The starting Y location, in pixels.

arg1.i[2] The height of the area to be read, in pixels.

arg1.i[3] The width of the area to be read, in pixels.

arg1.i[4] The array into which the image should be read.

6-2 Gescapes

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

C Syntax Example

char flags[SIZE_OF_CAPABILITIES];

gescape_arg arg1;

unsigned char image[512*512*3];

inquire_capabilities (fildes, SIZE_OF_CAPABILITIES, flags);

if (flags[COLOR_2_CAPABILITIES] & IC_RGB_IO) {

arg1.i[0] = 0; /* starting x */

arg1.i[1] = 0; /* starting y */

arg1.i[2] = 512; /* width */

arg1.i[3] = 512; /* height */

arg1.i[4] = (int)image; /* RGB results */

gescape (fildes, R_READ_FB, &arg1, NULL);

}

R WRITE FB

Supported Devices

To determine if this gescape is supported on your device, use the routine
inquire_capabilities(3g) to check that the COLOR_2_CAPABILITIES
ag has
the IC_RGB_IO bit set to 1 (one).

Description

The R_WRITE_FB gescape allows you to write an image to a window with shading
mode set to CMAP_FULL. The range to write is speci�ed in device coordinates
similar to the function dcblock_write(3g). The data to write is contained in
a byte array with the �rst three bytes containing the 8 bit red, green and blue
values respectively. Pixels (to write) should be stored in the following order: left
to right along a row, with top to bottom ordering of rows. The �rst three bytes
of data in the array correspond to the RGB data for the pixel in the upper left
corner of the destination block. This gescape will convert the 24-bit image into
a form compatible with the current visual and write out the results. The image
bu�er will not be changed. The resulting 24-bit image will appear as close as

Gescapes 6-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

possible to the contents of the image bu�er. Since the coordinates relate to the
device and not the drawing area, the current clip rectangle will not a�ect the
results.

Application developers using this gescape should keep the following in mind:

The results will be the same regardless of the current clipping level or clipping
rectangle.

The current replacement rule as set by drawing_mode(3g) will a�ect the results
in the same manner as dcblock_write(3g). If you want your image to be
displayed without this modi�cation, the replacement rule should be set to the
default (SOURCE).

Do not set the write_enable(3g) and display_enable(3g) masks when using
this gescape.

Using this gescape in a visual with less than 24 bits will cause your image to
be dithered. Although this provides good performance, the resulting image
cannot be exactly as speci�ed. If you are using a device with Color Recovery
turned on, the image to write is dithered and then �ltered. The image can be
written quickly and will look similar to a 24-bit image. However, if you read
the image and then write the image you just read, the �ltering algorithm in
the hardware will have been performed on the image twice and may degrade
the image.

If you specify an area to read which is larger than the window, only the part of
your bu�er which intersects the window will be changed. In other words, the
entire area will not be changed in this case; just the part of your speci�ed area
that intersects the window.

If a second window obscures the window that you are writing, the results may
be clipped. To avoid this problem, bring the window to the front before reading.

The data parameters passed to the gescape entry point are used as follows. Note
that both arg1 and arg2 are used to pass information into the gescape() entry
point.

arg1.i[0] The starting X location, in pixels.

arg1.i[1] The starting Y location, in pixels.

arg1.i[2] The height of the area to be read, in pixels.

6-4 Gescapes

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

arg1.i[3] The width of the area to be read, in pixels.

arg1.i[4] The array from which the image should be read.

C Syntax Example

char flags[SIZE_OF_CAPABILITIES];

gescape_arg arg1;

unsigned char image[512*512*3];

inquire_capabilities (fildes, SIZE_OF_CAPABILITIES, flags);

if (flags[COLOR_2_CAPABILITIES] & IC_RGB_IO) {

arg1.i[0] = 0; /* starting x */

arg1.i[1] = 0; /* starting y */

arg1.i[2] = 512; /* width */

arg1.i[3] = 512; /* height */

arg1.i[4] = (int)image; /* Image to write */

gescape (fildes, R_WRITE_FB, &arg1, NULL);

}

Gescapes 6-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

SET POLYGON OFFSET

Supported Devices

As of this printing, the SET_POLYGON_OFFSET gescape is supported on the
following graphics devices. Since this list may change, you should use
inquire_capabilities to determine support for your device, as shown in the
example that follows the description of this gescape.

HCRX-8Z
HCRX-24Z
CRX-48Z
HP Visualize-8

HP Visualize-24

HP Visualize-48

HP Visualize-48XP

HP Visualize-FX2

HP Visualize-FX4

HP Visualize-FX6

Description

The hopi parameter is SET_POLYGON_OFFSET.

SET_POLYGON_OFFSET causes the interior pixels of front- and back-facing area
primitives (for example, polygons, triangular strips, quadrilateral meshes,
polyhedra, and other such primitives), when in interior style INT_SOLID or
INT_TEXTURE, to generate Z-bu�er values that are o�set (away from the viewer)
from what the default Z-bu�er values would normally be. This behavior allows an
application to use an algorithm that may yield signi�cantly better performance
in rendering �lled areas with edging (on those graphics devices that support
the gescape) over the default Starbase method for rendering edged areas.
Details of the algorithm are explained below. The gescape can also be used
to eliminate some rendering artifacts. (An example is also described below.)
This gescape is only useful when hidden surface rendering (HSR) is enabled (see
hidden_surface(3g));

An application can call inquire_capabilities(3g) and check the
IC_POLYGON_OFFSET bit in the PRIMITIVES_2_CAPABILITIES byte in order to

6-6 Gescapes

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

determine if this gescape opcode is implemented on a particular gopen �le
descriptor.

Note that the o�set is applied in the device coordinate (DC) Z-axis only, not
in any geometric space such as modeling coordinates or world coordinates.
Thus, it displaces the rendered pixels after all modeling, viewing, and viewport
transformations have been applied.

The o�set value is computed from two parts:

A �xed bias that is always applied. The bias is speci�ed as a device-independent

oating point value. Starbase multiplies this value by the device-speci�c Z-
bu�er increment value. Thus, a bias value of 1.0 is typical.

A factor that Starbase multiplies by each planar facet's maximum Z-gradient,
with respect to the DC X or Y axes. Areas that are orthogonal to the viewing
direction have a Z-gradient of zero, so the factor has no e�ect. Areas that slope
sharply away from the viewpoint have large Z-gradients so the factor value adds
a signi�cant additional o�set. The factor is speci�ed as a
oating point value
without units; a starting value of 1.0 is suggested, but depending on the nature
of the geometry and the viewing transformation, an adjustment to achieve the
desired rendering e�ect may be required.

The results of the bias computation and the factor computation are summed to
create the DC Z o�set that is applied to the area primitive. Positive bias and
factor values result in Z-bu�er values that are \farther away" from the viewer;
this is the normal usage. The results are unde�ned for non-planar facets, as a
single Z-gradient cannot be computed for them. O�set areas are clipped to the
device's DC Z-bu�er limits.

This gescape also requires an integer
ag value indicating whether polygon o�set
is to be enabled or disabled. The bias and factor values are only used when the
enable
ag is set; however, they should always be given valid
oating point values.

Gescapes 6-7

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

The data parameters passed to the gescape entry point are used as follows. Note
that both arg1 and arg2 are used to pass information into the gescape() entry
point.

arg1.i[0] The enable
ag: set to TRUE to enable polygon o�set; set to FALSE
to disable application of the o�set.

arg2.f[0] The bias value.

arg2.f[1] The factor value.

C Syntax Example

gescape_arg arg1, arg2;

arg1.i[0] = TRUE;

arg2.f[0] = 1.0;

arg2.f[1] = 1.0;

gescape (fildes, SET_POLYGON_OFFSET, &arg1, &arg2);

FORTRAN77 Syntax Example

integer*4 arg1(64)

real arg2(64)

arg1(1) = 1

arg2(1) = 1.0

arg2(2) = 1.0

call gescape(fildes, SET_POLYGON_OFFSET, arg1, arg2)

Pascal Syntax Example

{gescape_arg is defined in starbase.p1.h}

var

arg1, arg2: gescape_arg;

begin

arg1.i[1] = 1;

arg2.f[1] = 1.0;

arg2.f[2] = 1.0;

gescape (fildes, SET_POLYGON_OFFSET, arg1, arg2);

6-8 Gescapes

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

Improving Rendering of Edged Polygons

The following information describes how to use the SET_POLYGON_OFFSET

gescape to improve the rendering of edged polygons.

The normal way to render edged areas in Starbase (and the way that must still be
used in cases where the SET_POLYGON_OFFSET gescape is not supported) is to set
the interior style to INT_SOLID and enable edging. Starbase renders the interior
pixels in the �ll color and the edge pixels in the edge color. Special rasterization
is done to avoid \stitching" of edges. \Stitching" occurs when scattered pixels
of a primitive (in this case an edge vector) are not drawn because the Z-bu�er
values at those pixels already indicate that the primitive is \obscured" (in this
case by the interior �ll pixels).

Better performance can be achieved in rendering edged areas by �lling many
areas, and then rendering all the edges as polyline primitives in a second
pass. Improving performance also distributes the cost of modifying the graphics
pipeline state from \�ll" mode to \vector" mode over many primitives, rather
than switching modes during each area primitive. Such a grouping of operations
must be done at the application level. Note that the edging is still done via line
primitives in this algorithm, so line attributes must be set to the desired edge
values.

The typical problem with this better-performing method of rendering is that
when the edge vectors are rendered, stitching may be visible because of the values
already stored in the Z-bu�er by the �ll rendering. O�setting the �ll rendering
in the Z-bu�er can eliminate this stitching. Thus, this gescape opcode allows
for better-looking images using a faster rendering method. Note that the per-
area polygon o�set computation does slightly slow down the rendering of �lled
areas, but for applications that can render signi�cant numbers of area primitives
followed by a few polyline primitives with many vertices (hundreds, perhaps),
the grouping of area primitives and of polylines more than makes up for the
computation overhead.

When using polygon o�sets, artifacts in hidden-surface rendering can be
introduced. For example, if a solid object such as a cube is being rendered,
then depending on the angle of the view, one side might have a higher Z-gradient
than an adjoining side. Because the more sharply-angled side could be o�set
more (depending on the o�set factor), all the pixels of the adjoining side might
not be obscured. This could result in ragged joints, especially with back-facing
parts of the solid. One way to avoid this particular artifact, if the geometry to be

Gescapes 6-9

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

rendered is appropriate, is to enable back-face culling, which is a recommended
practice in any case for performance reasons. Artifacts can also occur in the
intersection of �lled areas with each other, or with other primitives.

As an example, here is a partial code skeleton that shows how an application can
make use of polygon o�set for the edging of �lled areas. Note that this sample
code is only intended to show the basic logic; it may not be the most e�cient code
design in terms of geometry management, or for avoiding unnecessary attribute
changes.

int fildes;

unsigned char capabilities[SIZE_OF_CAPABILITIES];

int actual_size;

gescape_arg arg1, arg2;

.

.

.

fildes = gopen(...) /* Gopen the graphics device. */

/* Inquire whether polygon offset is supported on this gopen context. */

actual_size = inquire_capabilities(fildes, SIZE_OF_CAPABILITIES, capabilities);

.

.

.

/* Enable hidden surface rendering (i.e., use of the Z-buffer). Also */

/* enable back-face culling for performance, and to eliminate the most */

/* common polygon-offset artifact. */

hidden_surface (fildes, TRUE, TRUE);

.

.

.

/* Set up fill attributes (other than interior style). */

.

.

.

if (capabilities[PRIMITIVES_2_CAPABILITIES] & IC_POLYGON_OFFSET) {

/* Since the gescape is supported, use the faster algorithm. */

/* Set up line attributes with desired edge attribute values. */

/* Set the interior style to solid, without edging. */

interior_style (fildes, INT_SOLID, FALSE);

/* Enable polygon offset. */

arg1.i[0] = TRUE;

arg2.f[0] = 1.0;

arg2.f[2] = 1.0;

gescape (fildes, SET_POLYGON_OFFSET, &arg1, &arg2);

/* Collect area primitive geometry for edges to be rendered into */

/* polyline geometry format. (In some cases, the same geometry */

6-10 Gescapes

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

/* arrays can be used for both filling and edging passes.) */

.

.

.

/* Fill: Render primitives with or without edge flags. (They will be */

/* ignored.) */

... /* Area primitive calls */

/* Edge: Render the edge geometry with or without move/draw flags. */

... /* Polyline calls */

}

else {

/* Since the gescape is not supported, let Starbase draw the edges. */

/* Set up edge attributes. */

/* Set the interior style to solid, with edging. */

interior_style (fildes, INT_SOLID, TRUE);

/* Fill and Edge: Render primitives with or without edge flags. */

... /* Area primitive calls */

}

Gescapes 6-11

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

Reducing Rendering Artifacts

The following information describes how to use this gescape to reduce rendering
artifacts.

Stitching can occur during rendering in situations other than edging of �lled
areas. For example, perhaps surfaces are being rendered in INT_SOLID mode
and it is desirable to put Starbase text labels or annotation on those surfaces.
Drawing stroked text in the same geometric plane as the �lled surface will often
result in the text strokes being stitched. The following are common solutions for
reducing stitching:

Geometrically o�set the plane in which the text is drawn slightly from the
surface. For example, if the facets of a cube are being labeled, the text might
be drawn slightly outside of each facet of the cube (in the direction of that
facet's normal). This makes the text \
oat" over the facets of the cube.

Use SET_POLYGON_OFFSET to eliminate the stitching in the text. This might
cause labeling on areas that face away from the viewer to be visible, which may
or may not be desirable behavior in a particular application. The advantage of
this method is that no computations need to be done to o�set the text geometry
from the surface geometry.

Other similar examples may arise where this gescape may be useful.

6-12 Gescapes

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

WIDELINE CONTROL

Supported Devices

As of this printing, The WIDELINE_CONTROL gescape is supported on the
following graphics devices. Since this list may change, you should use
inquire_capabilities to determine support for your device, as shown in the
example that follows the description of this gescape.

HP VMX with PowerShade
Integrated Graphics Workstations with PowerShade
Internal Color Graphics Workstations with PowerShade
GRX with PowerShade
CRX with PowerShade
Dual CRX with PowerShade
CRX-24 with PowerShade
CRX-24Z
CRX-48Z
HP Visualize-EG with PowerShade
HCRX-8 with PowerShade
HCRX-8Z
HCRX-24 with PowerShade
HCRX-24Z
HP Visualize-48

HP Visualize-48XP

HP Visualize-FX2

HP Visualize-FX4

HP Visualize-FX6

Description

The hopi parameter is WIDELINE_CONTROL.

WIDELINE_CONTROL allows the application to use an implementation of widelines
that is now supported by many device drivers. The implementation of widelines
via line_width(3G) is restricted to 2D; however, this new implementation of
widelines also works with gopen mode
ag of THREE_D and Starbase's 3d vector
primitives (e.g., polyline3d).

Gescapes 6-13

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

Two variations of these new widelines are now supported: �lled widelines and
stroked widelines. The main di�erence between these two is that �lled widelines
allow several kinds of endpoint styles to be speci�ed, where stroked widelines
are always \french-cut", i.e., they have vertical or horizontal ends. (See diagram
below.)

Figure 6-1. \French-Cut" Widelines

The WIDELINE_CONTROL gescape is intended to improve performance. On most
graphics devices, stroked widelines will render faster than �lled widelines. Also,
both stroked and �lled widelines will render faster than the 2D-only line_width

style of widelines.

Attributes such as line_type, line_color, and modes such as depth_cue a�ect
widelines just as they would a�ect normal-width aliased or anti-aliased lines.
Anti-aliasing �lled widelines is not supported. Anti-aliasing stroked widelines is
not recommended, although the results may be satisfactory.

This gescape controls whether widelines are enabled (pixel width > 1), whether
your system uses stroked or �lled widelines, and what endpoint styles are used
with the �lled widelines.

Filled widelines are rendered by taking the single-pixel-width line segment and
performing some calculations to generate a polygonal description of the wideline
line segment. This polygonal description is then passed to the device's polygon
rasterizer for rendering. Linetyped widelines require much more computation

6-14 Gescapes

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

and are slower to render. Similarly, color per vertex and depth-cued vectors are
slower to render.

Stroked widelines are rendered by taking the single-pixel-width line segment
and replicating it horizontally or vertically, depending on its slope. Vectors
whose major axis is horizontal will be replicated vertically (stacked atop one
another); otherwise they will be replicated horizontally (stacked side-by-side). In
either case, the outermost strokes are equidistant from the single-pixel-width line
segment. Linetyped, color-per-vertex, or depth-cued modes of rendering will be
signi�cantly slower due to the complexity introduced with these modes.

Use inquire_capabilities(3g) to check the IC_WIDELINE_CONTROL bit in
the PRIMITIVES_2_CAPABILITIES byte to determine if this gescape opcode is
implemented on a particular gopen �le descriptor.

Note that the computations for widening a line are only done in device coordinate
XY space (screen space) based on the line width speci�ed (in pixels); the Z
coordinate is not changed. Thus, it displaces the rendered pixels after all
modeling, viewing, and viewport transformations have been applied. A �lled
wideline's polygonal description will be clipped against the view frustrum; a
stroked wideline's strokes are not re-clipped against the view frustrum but will
be clipped to the current window.

This gescape requires that all of the data parameters described below are
speci�ed in the call.

The data parameters passed to the gescape entry point are used as follows (note
that both arg1 and arg2 are used to pass information into the gescape):

arg1.i[0] The integer control
ag:

Set to �1 to not a�ect current wideline control setting
Set to 1 to enable �lled widelines
Set to 2 to enable stroked widelines

arg1.i[1] The integer join style: (applies to �lled widelines)

Set to �1 to not a�ect current join style setting
Set to 0 for butt join style
Set to 2 for miter join style

Gescapes 6-15

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

arg1.i[2] The integer cap style: (applies to �lled widelines)

Set to �1 to not a�ect current cap style setting
Set to 0 for a butt cap style

arg2.f[0] The
oating point linewidth value. This is speci�ed in pixels.
Fractional values are legal but they are truncated to an integral
value internally. Values are currently clamped to the range [1..16]
for stroked widelines.

Note that cap styles may be extended in the future. Cap style is applied to the
ends of a polyline; join style controls the appearance of the ends of segments
within a polyline.

C Syntax Example

gescape_arg arg1, arg2;

arg1.i[0] = 1;

arg1.i[1] = 0;

arg1.i[2] = 0;

arg2.f[0] = 6.0;

gescape (fildes, WIDELINE_CONTROL, &arg1, &arg2);

FORTRAN77 Syntax Example

integer*4 arg1(64)

real arg2(64)

arg1(1) = 1

arg1(2) = 0

arg1(3) = 0
arg2(1) = 6.0

call gescape(fildes, WIDELINE_CONTROL, arg1, arg2)

6-16 Gescapes

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

Pascal Syntax Example

{gescape_arg is defined in starbase.p1.h}

var

arg1, arg2: gescape_arg;

begin

arg1.i[1] = 1;

arg1.i[2] = 0;

arg1.i[3] = 0;

arg2.f[1] = 6.0;

gescape (fildes, WIDELINE_CONTROL, arg1, arg2);

Wideline vector performance and performance in general can be degraded by
ine�cient use of this gescape. The ability to specify �1 for the arguments allow
some of the features of this gescape to be used without forcing the state associated
with the rest of the gescape to be unnecessarily reset. However, the ideal usage
of any modal or attribute setting is to set it sparingly around a batch of like-
attribute, like-mode primitives.

Gescapes 6-17

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

The following is an example using this gescape.

int fildes;

unsigned char capabilities[SIZE_OF_CAPABILITIES];

int actual_size;

gescape_arg arg1, arg2;

.

.

.

/* Gopen the graphics device. */

fildes = gopen(...,THREE_D | MODEL_XFORM | INIT);

/* Inquire whether widelines are supported on this gopen context. */

actual_size = inquire_capabilities(fildes, SIZE_OF_CAPABILITIES, capabilities);

.

.

.

/* Set line color (magenta), line type, hidden surface, ... */

hidden_surface (fildes, FALSE, FALSE);

line_color (fildes, 1.0, 0.0, 1.0);

line_type (fildes, SOLID);

.

.

.

if (capabilities[PRIMITIVES_2_CAPABILITIES] & IC_WIDELINE_CONTROL)

{

printf("WIDELINE_CONTROL supported by this device\n");

/* Try to enable stroked widelines with width of 5 pixels. */

arg1.i[0] = 2;

arg1.i[1] = �1;

arg1.i[2] = �1;

arg2.f[0] = 5.0;

gescape (fildes, WIDELINE_CONTROL, &arg1, &arg2);

}

/* Render polylines with or without move/draw flags. */

.

.

.

/* Change line_color to green */

line_color(fildes, 0.0, 1.0, 0.0);

/* Render polylines with or without move/draw flags. */

.

.

.

/* Change width to 8 pixels. */

arg1.i[0] = �1;

6-18 Gescapes

FINAL TRIM SIZE : 7.5 in x 9.0 in

6

arg2.f[0] = 8.0;

gescape (fildes, WIDELINE_CONTROL, &arg1, &arg2);

/* Render polylines with or without move/draw flags. */

.

.

.

/* Change width to 1 pixel. */

arg1.i[0] = �1;

arg2.f[0] = 1.0;

gescape (fildes, WIDELINE_CONTROL, &arg1, &arg2);

/* Render polylines with or without move/draw flags. */

.

.

.

/* Change to filled widelines, butt for join and cap, width 7 */

arg1.i[0] = 1;

arg1.i[1] = 0;

arg1.i[2] = 0;

arg2.f[0] = 7.0;

gescape (fildes, WIDELINE_CONTROL, &arg1, &arg2);

/* Render polylines with or without move/draw flags. */.
.
.

Gescapes 6-19

FINAL TRIM SIZE : 7.5 in x 9.0 in

FINAL TRIM SIZE : 7.5 in x 9.0 in

A

A

Starbase Reference Pages

This appendix contains both new and updated reference pages for the HP-UX
10.X releases of Starbase.

Starbase Reference Pages A-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

FINAL TRIM SIZE : 7.0 in x 8.5 in

Index

Index

A

add-on HP Visualize-EG memory,
2-5

alpha_transparency, 2-48, 3-35, 4-37

B

Backing store, 2-27, 2-57, 3-19, 3-42,
4-20

Backing store exceptions, 2-27, 3-19
Backing store, virtual memory, 5-8,

5-27
block_read, 2-47, 2-48, 3-35, 4-37, 5-18
block_write, 2-47, 2-48, 3-35, 4-37,

5-18

C

CDE, 1-3
Client support, HP VMX, 5-3
CMAP_FULL, 2-12, 2-13, 3-8, 4-9, 4-10
CMAP_NORMAL, 2-13, 3-8, 4-10
Color map management scheme, 2-39,

3-25, 4-27
Color maps, 2-23, 3-16, 4-17
hphcrx, 2-19
hphcrx48z, 3-15
hpvisx, 4-16

COLOR_RECOVERY_CONTROL, 2-13, 2-14,
3-9, 3-10, 4-10, 4-11

Con�gurations, HP VMX, 5-7
Conventions, document, 1-2
CRX Family
Features, 2-1

D

Default visual, moving to the image
planes, 2-38

Device coordinate addressing, 2-43,
3-33, 4-35

Device description
Dual HP Visualize-EG card, 2-4
HCRX-24Z, 2-4
HCRX-8, 2-4
HCRX-8Z, 2-4
HP Visualize-24, 2-4
HP Visualize-8, 2-4
HP Visualize-EG, 2-4

Device driver, HP VMX, 5-1
DisableColorRecovery screen

option, 2-13, 3-9, 4-10
DISPLAY, 2-59, 3-44, 4-47
DISPLAY environment variable, HP VMX,

5-10
Document conventions, 1-2
double_buffer, 5-19
Double-bu�ering, virtual memory, 5-8
Dual HP Visualize-EG card, 2-5

E

EnableOverlayTransparency Screen

Option, 2-31
Environment variable
Setting, 1-3
Unsetting, 1-3

Environment variable conventions, 1-2

Index-1

FINAL TRIM SIZE : 7.0 in x 8.5 in

Index

Environment variable, DISPLAY for HP
VMX, 5-10

F

fill_dither, 2-49, 3-37, 4-39, 5-19
Frame bu�er, 2-15
Frame bu�er con�guration, 2-31, 2-33
Frame bu�er con�gurations, 3-26, 4-27

G

Gamma Correction, 1-4
Geometry accelerator, 2-10, 3-5, 4-6
Gescapes, 2-14, 3-10, 4-11, 6-1
HCRX-24, 2-53
HCRX-24Z, 2-53
HCRX-8, 2-53
hphcrx, 2-53
hphcrx48z, 3-40
HP Visualize-24, 2-53
HP Visualize-48, 3-40
HP Visualize-48XP, 3-40
HP Visualize-8, 2-53
HP Visualize-EG, 2-53
HP Visualize-FX, 4-42
HP Visualize-FX2, 4-42
HP Visualize-FX4, 4-42
HP Visualize-FX6, 4-42
hpvisx, 4-42
PowerShade, 2-54
R_READ_FB, 6-1
R_WRITE_FB, 6-3
SET_POLYGON_OFFSET, 6-6
WIDELINE_CONTROL, 6-13

Gescape support, exceptions, 2-55, 3-41,
4-43

gopen
hphcrx, 2-40
hphcrx48z, 3-30
hpvisx, 4-33

gopen parameters, 2-41

H

HCRX-24, 2-7
Gescapes, 2-53

HCRX-24A;
Calls not supported, 2-45

HCRX-24Z, 2-8
Calls not supported, 2-45
Gescapes, 2-53

HCRX-8, 2-5
Gescapes, 2-53

HCRX-8Z, 2-6
HCRX con�guration hints, 2-35
HCRX family of graphics devices
hpvmx driver, 2-9
Overlay plane rendering, 2-9

HCRX graphics Devices, 2-1
HP700/RX X station, 5-2
HP CDE, 1-3
HP Color Recovery, accessing, 2-24
HP Color Recovery Technology, 2-12,

3-8, 4-9
HP_DISABLE_COLOR_RECOVERY, 2-13,

2-24, 3-9, 3-17, 4-10, 4-18
HP_ENABLE_OVERLAY_TRANSPARENCY,

2-31
hphcrx

Address mapping, 2-16
Address space, 2-15
Calls not supported, 2-46
Color map modes, 2-19
Double-bu�ering, 2-23
Features, 2-1
Frame bu�er, 2-15
Gescapes, 2-53
gopen, 2-40
Initialization, 2-40
PowerShade, 2-3, 2-12
R_GET_FRAME_BUFFER, 2-16
R_LOCK_DEVICE, 2-16
R_UNLOCK_DEVICE, 2-16
X Windows, 2-23

Index-2

FINAL TRIM SIZE : 7.0 in x 8.5 in

Index

Z-bu�er, 2-18
hphcrx48z

Address mapping, 3-12
Address space, 3-11
Color map modes, 3-15
Double-bu�ering, 3-16
Features, 3-1
Frame bu�er, 3-11
Gescapes, 3-40
gopen, 3-30
HP Visualize-48, 3-3
HP Visualize-48XP, 3-3
Initialization, 3-30
PowerShade, 3-3
R_GET_FRAME_BUFFER, 3-12
R_LOCK_DEVICE, 3-12
R_UNLOCK_DEVICE, 3-12
X Windows, 3-15
Z-bu�er, 3-14

hphcrx devices, 2-2
_HP_RGB_SMOOTH_MAP_LIST, 2-24, 3-17,

4-18
HP Visualize-24, 2-9
HP Visualize-48, 3-1
Calls not supported, 3-35
Gescapes, 3-40
hpvmx driver, 3-7
Overlay plane rendering, 3-7

HP Visualize-48 con�guration support,
3-2

HP Visualize-48 device description,
3-3

HP Visualize-48 frame bu�er
con�guration, 3-28

HP Visualize-48XP, 3-1
Calls not supported, 3-35
Gescapes, 3-40
hpvmx driver, 3-7
Overlay plane rendering, 3-7

HP Visualize-48XP con�guration
support, 3-2

HP Visualize-48XP device description,
3-3

HP Visualize-48XP frame bu�er
con�guration, 3-28

HP Visualize-8, 2-7
HP Visualize-EG card, 2-4
HP Visualize-FX, 4-1
Calls not supported, 4-37
Features, 4-1
Gescapes, 4-42
hpvmx driver, 4-9
Overlay plane rendering, 4-9

HP Visualize-FX2, 4-1
Calls not supported, 4-37
Gescapes, 4-42
hpvmx driver, 4-9
Overlay plane rendering, 4-9

HP Visualize-FX2 con�guration
support, 4-2

HP Visualize-FX2 device description,
4-3, 4-5

HP Visualize-FX2 frame bu�er
con�guration, 4-30

HP Visualize-FX4, 4-1
Calls not supported, 4-37
Gescapes, 4-42
hpvmx driver, 4-9
Overlay plane rendering, 4-9

HP Visualize-FX4 con�guration
support, 4-2

HP Visualize-FX4 device description,
4-3, 4-5

HP Visualize-FX4 frame bu�er
con�guration, 4-30

HP Visualize-FX6, 4-1
Calls not supported, 4-37
Gescapes, 4-42
hpvmx driver, 4-9
Overlay plane rendering, 4-9

HP Visualize-FX6 con�guration
support, 4-2

Index-3

FINAL TRIM SIZE : 7.0 in x 8.5 in

Index

HP Visualize-FX6 device description,
4-3, 4-5

HP Visualize-FX6 frame bu�er
con�guration, 4-30

HPVisualize-FX con�guration support,
4-2

HP Visualize-FX device description,
4-3

HP Visualize-FX frame bu�er
con�guration, 4-30

hpvisx

Address mapping, 4-13
Address space, 4-12
Color map modes, 4-16
Double-bu�ering, 4-17
Features, 4-1
Frame bu�er, 4-12
Gescapes, 4-42
gopen, 4-33
HP Visualize-FX2, 4-3
HP Visualize-FX4, 4-3
HP Visualize-FX6, 4-3
Initialization, 4-33
PowerShade, 4-3
R_GET_FRAME_BUFFER, 4-13
R_LOCK_DEVICE, 4-13
R_UNLOCK_DEVICE, 4-13
X Windows, 4-17
Z-bu�er, 4-15

HP_VM_RENDER_METHOD, 5-31
hpvmx, 5-1
HP VMX, 5-30
API support, 5-3
Client support, 5-3
Con�gurations, 5-7
Default color map, 5-15
Description, 5-4
Device coordinate addressing, 5-14
Device driver, 5-1, 5-8
DISPLAY environment variable, 5-10
Example, 5-5

Exceptions to gescape support, 5-22
How it works, 5-6
How to use it, 5-5
Line type defaults, 5-15
Open and initialize device for output,

5-10
Performance, 5-9
Raster echo default, 5-14
Resource considerations, 5-23
Restricted gopens, 5-25
Semaphore default, 5-14
Server support, 5-2
Special device characteristics, 5-14
Starbase functionality, 5-17
Support, 5-2
Supported gescapes, 5-21
Synchronization, 5-23
Versus SOX11, 5-30
X11 environment, 5-10
xhost client, 5-11
X windows, 5-10

hpvmx driver, 2-9, 3-7, 4-9
HP_VM_XLIB_DITHER, 5-6, 5-31
HP VMX overlay plane driver, 5-28
HP VUE, 1-3

I

Image Di�erences, 2-58
Initialization
hphcrx, 2-40
hphcrx48z, 3-30
hpvisx, 4-33

interior_style, 2-49, 3-37, 4-39

L

light_source, 2-50, 3-37, 4-39
line_filter, 2-50, 3-37, 4-39

O

Overlay plane driver, HP VMX, 5-28
Overlay plane rendering

Index-4

FINAL TRIM SIZE : 7.0 in x 8.5 in

Index

HCRX family of graphics devices, 2-9
HP Visualize-48, 3-7
HP Visualize-48XP, 3-7
HP Visualize-FX, 4-9
HP Visualize-FX2, 4-9
HP Visualize-FX4, 4-9
HP Visualize-FX6, 4-9

Overlay planes, 5-8, 5-9
Overlay plane transparency, 2-30, 3-26,

4-28

P

Path names, setting, 1-3
pattern_define, 2-50, 5-19
pcltrans(1G), 2-59, 3-44, 4-47
perimeter_filter, 2-50, 3-37, 4-39
Pixel color values, 2-21, 3-24, 4-25
Porting from HCRX-24 to an HCRX-24Z

or HP Visualize-24, 2-57
Porting from HCRX-8 or

HP Visualize-EG to HCRX-24
or HP Visualize-24, 2-56

PowerShade, 2-3, 2-12, 3-3, 4-3, 5-2
Calls not supported, 2-45, 3-35, 4-37
Gescapes, 2-54
HCRX-8, 2-44
HCRX-8Z, 2-44
hphcrx, 2-3
hphcrx48z, 3-3
HP Visualize-8, 2-44
HP Visualize-EG, 2-44
hpvisx, 4-3

PseudoColor, 2-12, 3-8, 4-9
PseudoColor visual, 2-12, 3-8, 4-9

R

R_DEF_ECHO_TRANS, 2-40, 3-34, 4-36
R_ECHO_FG_BG_COLORS, 2-40, 3-34, 4-36
Rendering utilities, virtual memory, 5-8
Rendering utilities, virtual memory

(VM), 5-25

RGB_COLOR_MAP, 2-24, 3-17, 4-18
R_OV_ECHO_COLORS, 2-40, 3-34, 4-36
R_OVERLAY_ECHO, 2-40, 3-34, 4-36
R_READ_FB gescape, 6-1
R_WRITE_FB gescape, 6-3

S

SB_DEFAULT_SOX11, 5-30
screenpr, 2-59, 3-44, 4-47
SERVER_OVERLAY_VISUALS, 2-33, 3-28,

4-31
Server support, HP VMX, 5-2
SET_POLYGON_OFFSET gescape, 6-6
Setting an environment variable, 1-3
shade_mode, 2-51, 3-38, 4-40, 5-19
sox11, 5-30
SOX11 versus HP VMX, 5-30
Special device characteristics, 2-43,

3-33, 4-35
Starbase echoes, 2-39, 3-34, 4-36
Starbase functionality, 3-35, 4-37
Supported visuals
HCRX-24Z, 2-28
HCRX-8, 2-28
HCRX-8Z, 2-28
HP Visualize-24, 2-28
HP Visualize-48, 3-20
HP Visualize-48XP, 3-20
HP Visualize-8, 2-28
HP Visualize-EG, 2-28
HP Visualize-FX, 4-21
HP Visualize-FX2, 4-21
HP Visualize-FX4, 4-21
HP Visualize-FX6, 4-21

Support, HP VMX, 5-2

T

text_precision, 2-51, 3-38, 4-40, 5-19
Texture Mapping, 1-4
Texture mapping accelerator, 3-7, 4-8
Texture mapping features, 3-7, 4-8

Index-5

FINAL TRIM SIZE : 7.0 in x 8.5 in

Index

TrueColor, 2-12, 3-8, 4-9
TrueColor visual, 2-12, 3-8, 4-9
TrueColor visual description, 2-20, 3-23,

4-24

U

Unsetting an environment variable, 1-3
User Environment, 1-3

V

vertex_format, 2-51, 3-38, 4-40, 5-19
Virtual memory backing store, 5-27
Virtual memory double-bu�ering, 5-26
Virtual memory rendering utilities, 5-8
Virtual memory (VM) rendering utilities,

5-25
Visuals, supported, 2-28, 3-20, 4-21
VM backing store, 5-8
VM double-bu�ering, 5-8
VM rendering utilities, 5-8

VUE, 1-3

W

WIDELINE_CONTROL gescape, 6-13
with_data, 2-51, 3-39, 4-41, 5-19

X

X11 cursor, 2-27, 3-20, 4-20
XGetRGBColormaps, 2-24, 3-17, 4-18
XStandardColormap, 2-24, 3-17, 4-18
X Windows
hphcrx, 2-23
hphcrx48z, 3-15
hpvisx, 4-17

Z

Z-bu�er
hphcrx, 2-18
hphcrx48z, 3-14

hpvisx, 4-15

Index-6

