
HP 3000 and HP 9000 Computer Systems

Up and Running with

ALLBASE/SQL

ABCDE

Printed in U.S.A. 19901201

First E1290

Customer Order Number 36389-90011

DRAFT 9/12/97 20:40



The information contained in this document is subject to change
without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY
KIND WITH REGARD TO THIS MATERIAL, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages
in connection with the furnishing, performance, or use of this
material.

Hewlett-Packard assumes no responsibility for the use or
reliability of its software on equipment that is not furnished by
Hewlett-Packard.

This document contains proprietary information which is
protected by copyright. All rights are reserved. No part of
this document may be photocopied, reproduced, or translated
to another language without the prior written consent of
Hewlett-Packard Company.

Copyright c
 1990 by Hewlett-Packard Company



Print History The following table lists the printings of this document, together
with the respective release dates for each edition. The software
version indicates the version of the software product at the time
this document was issued. Many product releases do not require
changes to the document. Therefore, do not expect a one-to-one
correspondence between product releases and document editions.

Edition Date Software Version

First December 1990 36217-02A.E0.00 (Series 800 HP-UX
7.08)
36217-02A.E1.00 (Series 800 HP-UX
8.0)
HP79725A.E1.00 (Series 300 HP-UX
8.0)
HP79725A.E1.00 (Series 400 HP-UX
8.0)
36216-02A.E1.00 (Series 900 MPE
XL 3.0)

Note The E releases of ALLBASE/SQL for use with HP-UX (36217-
02A.E0.00, 36217-02A.E1.00, and HP79725A.E1.00) are compatible
with both the 7.08 and the 8.0 releases of the HP-UX operating
system. All references in this document to the 8.0 HP-UX release
also apply to the 7.08 release. The E release of ALLBASE/SQL for
use with MPE XL (36216-02A.E1.00) is compatible with the 3.0
release of the MPE XL operating system.

DRAFT

9/12/97 20:40

iii



iv DRAFT

9/12/97 20:40



DRAFT

9/12/97 20:40

v



Preface This book describes how to get an ALLBASE/SQL DBEnvironment
up and running in the shortest possible time. ALLBASE/SQL is
Hewlett-Packard's relational database management system, which is
o�ered on HP 3000 computers using the MPE XL operating system
and on HP 9000 computers using the HP-UX operating system.

This manual contains basic information about ALLBASE/SQL
database design, creation, and administration. It is intended for new
users of ALLBASE/SQL. Topics are discussed in separate chapters,
as follows:

Chapter 1, \Very Basic . . . ," presents basic ideas, tasks, and
concepts.
Chapter 2, \Looking at Data," shows how to create an
elementary database design before you create an ALLBASE/SQL
DBEnvironment.
Chapter 3, \Setting Up a Database with ISQL," takes you step by
step through the process of con�guring a DBEnvironment, then
creating and loading tables.
Chapter 4, \Practice with ALLBASE/SQL Using PartsDBE,"
details the steps for setting up PartsDBE, the ALLBASE/SQL
sample DBEnvironment, which is used for most of the examples in
the ALLBASE/SQL documentation.
Chapter 5, \Comparing ALLBASE/SQL with TurboIMAGE,"
describes ALLBASE/SQL from the perspective
of the TurboIMAGE user, maps ALLBASE/SQL
concepts to TurboIMAGE concepts, and describes
ALLBASE/TurboCONNECT.
Chapter 6, \Glossary," gives basic de�nitions of terms used in
ALLBASE/SQL.

vi DRAFT

9/12/97 20:40



Contents

1. Very Basic . . .
What Is a Database? . . . . . . . . . . . . . . 1-1
What Is a Relational Database? . . . . . . . . . 1-2
Rows and Columns . . . . . . . . . . . . . . 1-3
Sample Database Table . . . . . . . . . . . . 1-3
Data Types and Sizes . . . . . . . . . . . . . 1-4
Using Several Tables . . . . . . . . . . . . . 1-4

What Is SQL? . . . . . . . . . . . . . . . . . 1-5
What Is ALLBASE/SQL? . . . . . . . . . . . . 1-5
SQLCore and DBCore . . . . . . . . . . . . 1-5
ISQL . . . . . . . . . . . . . . . . . . . . 1-6
ALLBASE/Query . . . . . . . . . . . . . . 1-6
SQLUtil . . . . . . . . . . . . . . . . . . . 1-6
SQLGEN . . . . . . . . . . . . . . . . . . 1-6
ALLBASE/4GL . . . . . . . . . . . . . . . 1-6
Preprocessors . . . . . . . . . . . . . . . . 1-6
ALLBASE/Net . . . . . . . . . . . . . . . 1-7
ALLBASE/Turbo CONNECT . . . . . . . . . 1-7
Other Products . . . . . . . . . . . . . . . 1-7

What Is a DBEnvironment? . . . . . . . . . . . 1-8
The DBECon File . . . . . . . . . . . . . . 1-9
DBEFiles . . . . . . . . . . . . . . . . . . 1-10
DBEFileSets . . . . . . . . . . . . . . . . . 1-10
Databases . . . . . . . . . . . . . . . . . . 1-10
Tables and Indexes . . . . . . . . . . . . . . 1-11
System Catalog . . . . . . . . . . . . . . . 1-11
Log Files . . . . . . . . . . . . . . . . . . 1-12

How Do I Create a DBEnvironment? . . . . . . . 1-12
How Do I Create a Database? . . . . . . . . . . 1-13
Commands to Create Databases . . . . . . . . 1-13

How Do I Access a Database? . . . . . . . . . . 1-13
Queries and Other Data Manipulation . . . . . 1-14

How Do I Control Database Access? . . . . . . . 1-14
Where Can I Get Help with ALLBASE/SQL? . . . 1-15

DRAFT

9/12/97 20:40

Contents-1



2. Looking at Data
Understanding the Process . . . . . . . . . . . 2-2
A Small Sample Database . . . . . . . . . . . 2-2
How Will the Data Be Used? . . . . . . . . . 2-3

Distinguishing Entities and Attributes . . . . . . 2-3
Listing Entities . . . . . . . . . . . . . . . . 2-3
Listing Attributes . . . . . . . . . . . . . . 2-4

Identifying Relationships between Entities . . . . . 2-4
Locating Distinguishing Key Items . . . . . . . . 2-5
From Entities to Tables . . . . . . . . . . . . . 2-5
Creating the Table Design . . . . . . . . . . . . 2-6
Data Type and Size . . . . . . . . . . . . . . 2-6
Character Data . . . . . . . . . . . . . . . 2-6
NULL Values . . . . . . . . . . . . . . . . 2-6
Modifying the Table Design . . . . . . . . . . 2-7
Table Descriptions . . . . . . . . . . . . . . 2-7

De�ning Indexes . . . . . . . . . . . . . . . . 2-8
Designing Database Security Schemes . . . . . . . 2-9
Estimating Table and Index Size . . . . . . . . . 2-10
Designing Applications . . . . . . . . . . . . . 2-10
Further Information . . . . . . . . . . . . . . . 2-10

3. Setting Up a Database with ISQL
Running ISQL . . . . . . . . . . . . . . . . . 3-1
Creating a DBEnvironment . . . . . . . . . . . 3-2
DBECon File . . . . . . . . . . . . . . . . 3-3
DBEFile0 . . . . . . . . . . . . . . . . . . 3-3
Log File . . . . . . . . . . . . . . . . . . . 3-3

Creating DBEFileSets . . . . . . . . . . . . . . 3-3
Creating DBEFiles for Table and Index Data . . . 3-4
Committing Work . . . . . . . . . . . . . . 3-5

Adding DBEFiles to DBEFileSets . . . . . . . . 3-6
Creating Tables . . . . . . . . . . . . . . . . 3-6
Creating the Albums Table . . . . . . . . . . 3-7
Creating the Titles Table . . . . . . . . . . . 3-7

Entering Data into Tables . . . . . . . . . . . . 3-8
Entering Data with the SQL INSERT Command . 3-8
Entering Data with the ISQL LOAD Command . 3-9
LOADing from an INTERNAL File . . . . . . 3-9
LOADing from an EXTERNAL File . . . . . 3-10

Performing Queries . . . . . . . . . . . . . . . 3-11
Creating Views . . . . . . . . . . . . . . . . . 3-12
Granting Authorities . . . . . . . . . . . . . . 3-12
Creating an Index . . . . . . . . . . . . . . . 3-13
Location of Tables and Indexes . . . . . . . . . 3-14

Examining the System Catalog . . . . . . . . . . 3-16
Updating Statistics in the System Catalog . . . . 3-17

In Review . . . . . . . . . . . . . . . . . . . . 3-18

Contents-2 DRAFT

9/12/97 20:40



4. Practice with ALLBASE/SQL Using PartsDBE
Setting up PartsDBE . . . . . . . . . . . . . . 4-2
Using SQLSetup . . . . . . . . . . . . . . . 4-2
Creating PartsDBE . . . . . . . . . . . . . 4-3

Using Setup Scripts . . . . . . . . . . . . . . 4-4
HP-UX Systems . . . . . . . . . . . . . . 4-4
MPE XL Systems . . . . . . . . . . . . . 4-4

Looking at the Files Created for PartsDBE . . . 4-4
HP-UX Systems . . . . . . . . . . . . . . 4-4
MPE XL Systems . . . . . . . . . . . . . 4-6

Examining PartsDBE . . . . . . . . . . . . . . 4-7
Examining the Tables and Views . . . . . . . . 4-8
View De�nitions . . . . . . . . . . . . . . . 4-9
Using the INFO Command . . . . . . . . . . 4-10
Examining Indexes . . . . . . . . . . . . . . 4-11
Examining the Authority Structure . . . . . . . 4-12
Groups . . . . . . . . . . . . . . . . . . 4-12
Table Authorities . . . . . . . . . . . . . . 4-13

Column Authorizations . . . . . . . . . . . . 4-13
Using the Preprocessors . . . . . . . . . . . . . 4-15
Sample Application Programs . . . . . . . . . 4-15
For HP-UX: . . . . . . . . . . . . . . . . . 4-16
For MPE XL: . . . . . . . . . . . . . . . . 4-17

Examining Startup Parameters with SQLUtil . . . 4-17
Creating a Schema File with SQLGEN . . . . . . 4-20
Purging PartsDBE . . . . . . . . . . . . . . . 4-21

5. Comparing ALLBASE/SQL with TurboIMAGE
Basic Structures . . . . . . . . . . . . . . . . 5-2
Procedures for Starting Up . . . . . . . . . . . 5-3
Use of a Schema . . . . . . . . . . . . . . . 5-4
Root File versus DBECon File and System Catalog 5-4
Data Files for Data sets versus DBEFiles for Tables 5-4
Naming Conventions . . . . . . . . . . . . . 5-5

Tables and Indexes versus Data Sets . . . . . . . 5-5
Automatic Masters versus Indexes . . . . . . . 5-5
Manual Masters versus Hash Structures . . . . . 5-6
Master/Detail versus Referential Integrity . . . . 5-6
Sort Items versus Indexes . . . . . . . . . . . 5-6

Mapping of Data Types . . . . . . . . . . . . . 5-7
Basic Mapping . . . . . . . . . . . . . . . . 5-7
Compound Items . . . . . . . . . . . . . . . 5-7
Null Handling . . . . . . . . . . . . . . . . 5-7

Di�erences in Security . . . . . . . . . . . . . 5-8
TurboIMAGE Security . . . . . . . . . . . . 5-8
Granting and Revoking Authorities . . . . . . . 5-8
De�ning ALLBASE/SQL Groups . . . . . . . . 5-8
De�ning Views in ALLBASE/SQL . . . . . . . 5-8

Di�erences in Accessing Databases . . . . . . . . 5-9
Interactive Access . . . . . . . . . . . . . . 5-9
Programmatic Access . . . . . . . . . . . . . 5-9

DRAFT

9/12/97 20:40

Contents-3



4GL . . . . . . . . . . . . . . . . . . . . 5-9
Di�erences in Concurrency Control . . . . . . . 5-9
Locking Mechanisms . . . . . . . . . . . . . 5-10

Sample Mapping of a TurboIMAGE Database to an
ALLBASE/SQL DBEnvironment . . . . . . . 5-11

Using ALLBASE/Turbo CONNECT . . . . . . . 5-13

6. Glossary of Terms in ALLBASE/SQL
Ad Hoc Query . . . . . . . . . . . . . . . . 6-1
Archive Logging . . . . . . . . . . . . . . . 6-1
Attribute . . . . . . . . . . . . . . . . . . 6-1
Authority . . . . . . . . . . . . . . . . . . 6-2
Authorization Group . . . . . . . . . . . . . 6-2
Base Table . . . . . . . . . . . . . . . . . 6-2
Class . . . . . . . . . . . . . . . . . . . . 6-2
Clustering Index . . . . . . . . . . . . . . . 6-2
Column . . . . . . . . . . . . . . . . . . . 6-2
Column Authorization . . . . . . . . . . . . 6-2
Column List . . . . . . . . . . . . . . . . . 6-2
Concurrency . . . . . . . . . . . . . . . . . 6-2
Constraint . . . . . . . . . . . . . . . . . . 6-2
Cursor Stability (CS) . . . . . . . . . . . . . 6-2
Data Analysis . . . . . . . . . . . . . . . . 6-3
Database . . . . . . . . . . . . . . . . . . 6-3
Database Administrator (DBA) . . . . . . . . 6-3
Database Design . . . . . . . . . . . . . . . 6-3
Data Control Language . . . . . . . . . . . . 6-3
Data De�nition . . . . . . . . . . . . . . . 6-3
Data De�nition Language . . . . . . . . . . . 6-3
Data Manipulation . . . . . . . . . . . . . . 6-3
Data Manipulation Language . . . . . . . . . 6-3
Data Type . . . . . . . . . . . . . . . . . . 6-3
DBA Authority . . . . . . . . . . . . . . . 6-4
DBCore . . . . . . . . . . . . . . . . . . . 6-4
DBECon File . . . . . . . . . . . . . . . . 6-4
DBECreator . . . . . . . . . . . . . . . . . 6-4
DBEFile . . . . . . . . . . . . . . . . . . 6-4
DBEFileSet . . . . . . . . . . . . . . . . . 6-4
DBEnvironment . . . . . . . . . . . . . . . 6-4
DBEUserID . . . . . . . . . . . . . . . . . 6-4
Embedded SQL Program . . . . . . . . . . . 6-5
Entity . . . . . . . . . . . . . . . . . . . 6-5
Explicit Locking . . . . . . . . . . . . . . . 6-5
Expression . . . . . . . . . . . . . . . . . . 6-5
Foreign Key . . . . . . . . . . . . . . . . . 6-5
Group . . . . . . . . . . . . . . . . . . . 6-5
Hash Structure . . . . . . . . . . . . . . . . 6-5
Host Variable . . . . . . . . . . . . . . . . 6-5
Implicit Locking . . . . . . . . . . . . . . . 6-6
Index . . . . . . . . . . . . . . . . . . . . 6-6
Index Scan . . . . . . . . . . . . . . . . . 6-6

Contents-4 DRAFT

9/12/97 20:40



Integrity Constraint . . . . . . . . . . . . . 6-6
ISQL . . . . . . . . . . . . . . . . . . . . 6-6
Isolation Level . . . . . . . . . . . . . . . . 6-6
Join . . . . . . . . . . . . . . . . . . . . 6-6
Key . . . . . . . . . . . . . . . . . . . . . 6-6
Key Column . . . . . . . . . . . . . . . . . 6-6
Key Value . . . . . . . . . . . . . . . . . . 6-7
Locking . . . . . . . . . . . . . . . . . . . 6-7
Logging . . . . . . . . . . . . . . . . . . . 6-7
Message Catalog . . . . . . . . . . . . . . . 6-7
Message File . . . . . . . . . . . . . . . . . 6-7
Modi�ed Source File . . . . . . . . . . . . . 6-7
Module . . . . . . . . . . . . . . . . . . . 6-7
Native Language . . . . . . . . . . . . . . . 6-7
Nonarchive Logging . . . . . . . . . . . . . . 6-8
Normalization . . . . . . . . . . . . . . . . 6-8
Object . . . . . . . . . . . . . . . . . . . 6-8
Optimizer . . . . . . . . . . . . . . . . . . 6-8
Owner . . . . . . . . . . . . . . . . . . . 6-8
Predicate . . . . . . . . . . . . . . . . . . 6-8
Preprocessor . . . . . . . . . . . . . . . . . 6-8
Primary Key . . . . . . . . . . . . . . . . . 6-8
Projection . . . . . . . . . . . . . . . . . . 6-9
Query . . . . . . . . . . . . . . . . . . . . 6-9
Query Language . . . . . . . . . . . . . . . 6-9
Query Result . . . . . . . . . . . . . . . . 6-9
Read Committed (RC) . . . . . . . . . . . . 6-9
Read Uncommitted (RU) . . . . . . . . . . . 6-9
Referential Constraint . . . . . . . . . . . . . 6-9
Relation . . . . . . . . . . . . . . . . . . . 6-9
Relational Operations . . . . . . . . . . . . . 6-9
Relationship . . . . . . . . . . . . . . . . . 6-9
Repeatable Read (RR) . . . . . . . . . . . . 6-9
Result Table . . . . . . . . . . . . . . . . . 6-10
Rollback Recovery . . . . . . . . . . . . . . 6-10
Rollforward Recovery . . . . . . . . . . . . . 6-10
Row . . . . . . . . . . . . . . . . . . . . 6-10
Run Authority . . . . . . . . . . . . . . . . 6-10
Schema . . . . . . . . . . . . . . . . . . . 6-10
Section . . . . . . . . . . . . . . . . . . . 6-10
Serial Scan . . . . . . . . . . . . . . . . . 6-10
Special Authority . . . . . . . . . . . . . . . 6-10
SQL . . . . . . . . . . . . . . . . . . . . 6-11
SQLCore . . . . . . . . . . . . . . . . . . 6-11
SQLGEN . . . . . . . . . . . . . . . . . . 6-11
SQLMigrate . . . . . . . . . . . . . . . . . 6-11
SQLUtil . . . . . . . . . . . . . . . . . . . 6-11
Structured Query Language . . . . . . . . . . 6-11
Subquery . . . . . . . . . . . . . . . . . . 6-11
SYSTEM . . . . . . . . . . . . . . . . . . 6-11
System Catalog . . . . . . . . . . . . . . . 6-11

DRAFT

9/12/97 20:40

Contents-5



System Table . . . . . . . . . . . . . . . . 6-12
System View . . . . . . . . . . . . . . . . . 6-12
Table . . . . . . . . . . . . . . . . . . . . 6-12
Table Authority . . . . . . . . . . . . . . . 6-12
Transaction . . . . . . . . . . . . . . . . . 6-12
Unique Constraint . . . . . . . . . . . . . . 6-12
Unique Index . . . . . . . . . . . . . . . . 6-12
Validation . . . . . . . . . . . . . . . . . . 6-12
View . . . . . . . . . . . . . . . . . . . . 6-12

Contents-6 DRAFT

9/12/97 20:40



Figures

1-1. Relational Operations . . . . . . . . . . . . . 1-3
1-2. ALLBASE/SQL DBEnvironment . . . . . . . . 1-8
3-1. ISQL Banner . . . . . . . . . . . . . . . . 3-2
3-2. System.Table Display . . . . . . . . . . . . . 3-17
4-1. SQLSetup Menu . . . . . . . . . . . . . . . 4-3
4-2. Information on Tables and Views . . . . . . . . 4-8
4-3. View De�nitions in the System Catalog . . . . . 4-9
4-4. Output of the INFO Command . . . . . . . . 4-10
4-5. System Catalog Information on Indexes . . . . . 4-11
4-6. Groups in the System Catalog . . . . . . . . . 4-12
4-7. Table Authorities in the System Catalog . . . . 4-13
4-8. Column Authorities in the System Catalog . . . 4-14
4-9. SQLUtil Banner . . . . . . . . . . . . . . . 4-17
4-10. SQLGEN Banner . . . . . . . . . . . . . . . 4-20
5-1. TurboIMAGE Architecture . . . . . . . . . . 5-2
5-2. ALLBASE/SQL Architecture . . . . . . . . . 5-3
5-3. Using ALLBASE/Turbo CONNECT . . . . . . 5-13

Tables

5-1. Mapping of TurboIMAGE and ALLBASE/SQL Data
Types . . . . . . . . . . . . . . . . . . 5-7

DRAFT

9/12/97 20:40

Contents-7





1

Very Basic . . .

Before venturing into the tasks you want to accomplish with
ALLBASE/SQL, we give a bit of thought to some basic ideas, tasks,
and concepts:

What is a database?
What is a relational database?
What is SQL?
What is ALLBASE/SQL?
What is a DBEnvironment?
How do I create a DBEnvironment?
How do I create a database?
How do I access a database?
How do I control database access?
Where can I get help with ALLBASE/SQL?

SQL stands for Structured Query Language, which is de�ned by
ANSI standards in the United States and by X/OPEN standards in
Europe. In addition to standard SQL, ALLBASE/SQL uses some
terminology of its own. A prime goal in this chapter is to provide
you with a \working vocabulary" in both standard SQL terminology
and the additions used by ALLBASE/SQL. If you already have
this working vocabulary, skip ahead to the next chapter, \Looking
at Data." Then come back here whenever you want to review the
basics. You can also refer to the glossary in chapter 6 for de�nitions
of basic terms.

What Is a
Database?

A database is a structured arrangement of data elements designed
for the easy selection of information. Unlike a collection of 
at �les,
a database contains both data and structural information used in
extracting data from the �les in which data resides.

In ALLBASE/SQL, databases are located inside a DBEnvironment , a
structure that is fully de�ned later in this chapter.

DRAFT

9/12/97 20:40

Very Basic . . . 1-1



What Is a Relational
Database?

A relational database is a collection of data arranged in tables, also
known as relations. Tables are subject to the following relational
operations, each of which lets you retrieve data in a speci�c way:

Selection, which lets you extract a subset of rows.
Projection, which lets you extract a subset of columns.
Joining, which lets you extract from more than one table at a time.

In practice, these operations frequently appear together. SQL
statements that use these operations are known as queries. Three
queries that use the SQL SELECT command to illustrate selection,
projection, and joining are shown in Figure 1-1.

1-2 Very Basic . . . DRAFT

9/12/97 20:40



Figure 1-1. Relational Operations

Rows and Columns When you look at data in relational terms, you can assume several
things:

Tables are arranged in rows and columns, which are like records
and �elds in an ordinary �le.
Each column has a speci�c data type and size.
Each row contains one element for every column.
A column can contain NULL values if you allow it to.

Sample Database Table The following is a portion of a database table consisting of names
and account balances for an employee credit union:

Employee Accounts

Last Name First Name Telephone Employee Number Balance

Harrison Gerald 7233 2432099 142.59

Abelson Annette 4312 3510044 2345.09

Stanley Peter NULL 3540011 321.98

Walters Georgia 2554 9124772 1230.10

Notice that the third row contains a NULL value in the third column
instead of a value for Telephone.

DRAFT

9/12/97 20:40

Very Basic . . . 1-3



Data Types and Sizes Each column can accept data of a speci�c type and size. Here is the
breakdown for the sample table above:

Column Name Data Type
Last Name VARCHAR(15)
First Name VARCHAR(15)
Telephone SMALLINT
Employee Number INTEGER
Balance DECIMAL(10,2)

Data types are described further in chapter 2.

Using Several Tables You can put the same data into several di�erent tables such as the
following:

Table 1. Employees Table

Last Name First Name Employee Number

Harrison Gerald 2432099

Abelson Annette 3510044

Stanley Peter 3540011

Walters Georgia 9124772

Table 2. Telephone Table

Last Name First Name Telephone

Harrison Gerald 7233

Abelson Annette 4312

Stanley Peter NULL

Walters Georgia 2554

Table 3. Accounts Table

Employee Number Account Balance

2432099 142.59

3510044 2345.09

3540011 321.98

9124772 1230.10

You decide which arrangements of data work best for you by using
the processes of data analysis and database design.

1-4 Very Basic . . . DRAFT

9/12/97 20:40



In data analysis, you investigate the various ways your data can
be used. In database design, you create speci�c table structures
based on your analysis. The design phase results in a set of table
descriptions, sometimes known as a schema, for your database.

Chapter 2 presents an introduction to data analysis and database
design.

What Is SQL? The way into a relational database is through a query language|
which is a set of operators, expressions, and commands that let you
manipulate the database in various ways. You create queries as
well as other kinds of commands in ALLBASE/SQL by using SQL
(Structured Query Language); and you issue the commands directly,
through an interactive command processor, or indirectly, through an
application program.

SQL includes commands that let you do the following:

Create databases.
Access databases.
Provide security.
Promote data integrity.
Regulate concurrent access.

SQL commands are printed in capitals (for example, SELECT) in
this book and throughout the ALLBASE/SQL document set.

What Is
ALLBASE/SQL?

ALLBASE/SQL is Hewlett-Packard's proprietary relational
database management system. Closely tuned to the architecture of
HP computers, ALLBASE/SQL gives you enormous 
exibility in
designing and using SQL database applications on a small or large
scale.

ALLBASE is a family of relational database products that includes
the components of ALLBASE/SQL and several related tools de�ned
in the following paragraphs.

SQLCore and DBCore Two components which together form the back end of
ALLBASE/SQL. SQLCore accepts SQL commands and processes
them; DBCore performs �le access operations at the operating
system level and also controls concurrent access to data, guaranteeing
consistency. To use SQLCore and DBCore, you employ a front-end
process, such as ISQL, ALLBASE/Query, or one of your own
application programs.

DRAFT

9/12/97 20:40

Very Basic . . . 1-5



ISQL An interactive command processor which lets you enter SQL
commands at the keyboard and observe query results, messages,
and other information on a video display. Remember that SQL is a
language|not a software system. So you need an interactive way to
submit SQL commands to SQLCore and DBCore for processing.

ISQL is the main tool used by ALLBASE/SQL programmers and
database administrators to create and modify the schema of an
ALLBASE/SQL DBEnvironment. It is also used by anyone who
needs to submit queries using the SQL language. ISQL is especially
useful for loading and unloading data.

ALLBASE/Query A screen-oriented, menu-driven approach to designing queries and
producing quick reports from data in ALLBASE/SQL databases.
ALLBASE/Query contains extensive online help, so it is especially
appropriate for occasional users.

SQLUtil A database administrator's tool for displaying and setting the basic
parameters of a DBEnvironment (explained further in the next
section); storing and restoring DBEnvironments; setting the size
of system bu�ers; and purging DBEnvironments. The database
administrator (DBA) is the individual who creates and maintains
objects in a DBEnvironment. SQLUtil is seldom needed by the
ordinary user.

SQLGEN A database administrator's tool that examines the structure of a
DBEnvironment and creates �les of SQL and ISQL commands for
unloading it, re-creating it, and reloading it with data. The �le for
re-creating a DBEnvironment is sometimes known as a schema. The
schema shows you all the CREATE commands that went into the
original development of the DBEnvironment.

ALLBASE/4GL A fourth-generation programming tool. ALLBASE/4GL is a
screen-oriented, menu-driven environment that lets you design and
build complete ALLBASE/SQL applications without conventional
programming.

Preprocessors Tools that convert source programs containing SQL commands into
source code that can be compiled in a programming language of
your choice. Di�erent preprocessors let you code applications in C,
COBOL, FORTRAN, and Pascal.

1-6 Very Basic . . . DRAFT

9/12/97 20:40



ALLBASE/Net Software that permits you to set up and maintain DBEnvironments
in networks. Through the NETUtil program, you make
DBEnvironments on host systems available to local users.

ALLBASE/Turbo
CONNECT

Software on MPE XL systems that lets you attach a TurboIMAGE
database to a DBEnvironment and then use SQL to query the
TurboIMAGE database as if it were a set of ALLBASE/SQL tables.

Other Products Software that makes use of ALLBASE/SQL to meet specialized
needs. Information Access/PC lets you access ALLBASE/SQL
tables from your PC and integrate data from them into PC-based
applications. Business Report Writer lets you develop complex
reports using ALLBASE/SQL data as well as data from other
sources.

DRAFT

9/12/97 20:40

Very Basic . . . 1-7



What Is a
DBEnvironment?

In ALLBASE/SQL, you create one or more databases in a structure
called a DBEnvironment. The structure of a DBEnvironment is
shown in Figure 1-2.

Figure 1-2. ALLBASE/SQL DBEnvironment

The following objects are the most important parts of the
DBEnvironment:

The DBECon �le.
DBEFiles.
DBEFileSets.
Databases.
Tables and indexes.
Authorities.
System catalog.
Log �les.

Objects are structures created and stored in an ALLBASE/SQL
DBEnvironment. SQLCore and DBCore connect the user interface,
such as ISQL or an application program, with the objects of the
DBEnvironment.

1-8 Very Basic . . . DRAFT

9/12/97 20:40



To better understand the DBEnvironment and its objects, imagine
that it is like a library, which is used to store books, periodicals, or
other information. Like a library, the DBEnvironment is a physical
location for information, so you need to set aside physical space for
it. Also like a library, the DBEnvironment uses a logical method for
storing and retrieving information.

The DBECon File When you create a DBEnvironment, ALLBASE/SQL creates a
physical �le known as the DBEnvironment Con�guration File or
DBECon �le. This �le contains basic information that is used every
time the DBEnvironment is opened. The DBECon �le has the same
name as the DBEnvironment itself. If the DBEnvironment is like a
library, the DBECon �le is like a building directory that points to the
other DBEnvironment components.

DRAFT

9/12/97 20:40

Very Basic . . . 1-9



DBEFiles You must allocate physical storage space by creating DBEFiles|
operating system �les that hold table data, index data, or both. Like
the individual bookcases in the library, they have a speci�c capacity.
DBEFiles have both physical names|operating system names|
and logical names, by which the �les are known internally to the
ALLBASE/SQL system catalog, to be explained shortly.

DBEFileSets DBEFiles are grouped together in logical groupings known as
DBEFileSets. These are something like the di�erent subject
categories in a library. You create a DBEFileSet with a logical name
(this corresponds to the subject category name). Then you add
DBEFiles to the DBEFileSet as needed, as you would add bookcases
to the category to add more space. For example, a section may be
labeled \Computer Periodicals" and hold many bookcases with
di�erent magazines in them. DBEFileSets do not have a speci�c
capacity; you can always add more DBEFiles to create more space in
them.

Databases The data in a DBEnvironment is stored in databases, which
are groups of tables having the same owner. The database in a
DBEnvironment is a bit like division ownership of certain books or
periodicals in a library. In a university, some of the periodicals may
belong to a computer science library, others may belong to a medical
library, though these may be housed inside the same building and use
the same card catalog. In such a subdivision of the library, certain
books and periodicals could only be checked out by people belonging
to the appropriate division or having special permission.

1-10 Very Basic . . . DRAFT

9/12/97 20:40



When you create an object in the DBEnvironment, you are its owner
by default, and therefore it belongs to your database.

Tables and Indexes The most important objects you create are tables. The table is like
a periodical stored in the library, and the rows in the table are like
individual articles in the periodical. The index on a table is like the
index to the content of a group of periodicals in the bookcase. The
index may appear on the same shelf as the periodical or it may be
located along with other indexes in a di�erent bookcase.

Tables and indexes have only logical names; a table name is like
the title of the periodical. When you create a table, you only
need to de�ne its name and characteristics and associate it with
a DBEFileSet. This is like adding a new periodical to a subject
category in the library.

More detailed information about the organization of data in tables is
presented in chapter 2, \Looking at Data."

System Catalog To enable readers to �nd issues of ComputerWorld , the librarian puts
an entry in a card catalog that shows where the issues are stored. In
the DBEnvironment, SQLCore inserts an entry in the system catalog
for each database object you create. The system catalog is created at
the time you create a DBEnvironment.

The system catalog is physically located in a DBEFile known as
DBEFILE0. This �le contains extra space for the additional entries
that are made by SQLCore each time you create a new object. Like a
good librarian, ALLBASE/SQL keeps the system catalog up-to-date
for you, without your being aware of it.

The system catalog is a set of tables for internal use by SQLCore.
These tables are associated with a DBEFileSet known as SYSTEM.
SQLCore uses the system catalog to look up database objects

DRAFT

9/12/97 20:40

Very Basic . . . 1-11



much as you would use the card catalog in a library to look up the
bookcase and shelf number for a book or periodical.

Log Files ALLBASE/SQL provides logging of all transactions that take place
in the DBEnvironment. Like the library's record of items checked out
and returned, the log �le is a record of the rows in database tables
that are added, deleted, or changed. The log makes it possible to
keep data consistent when multiple users are accessing the system,
and it makes recovery possible in the event of a system failure.
Information about the system log is stored in the DBECon �le.

Because logging is essentially automatic, it will not be discussed any
further in this book. For more information, you can refer to the
chapter entitled \Backup and Recovery" in the ALLBASE/SQL
Database Administration Guide.

How Do I Create a
DBEnvironment?

You use the SQL START DBE NEW command to create a
DBEnvironment:

START DBE 'DBEName' NEW

Once the DBEnvironment exists, you can create databases within it.

The START DBE NEW command lets you supply options to specify
many of the run-time characteristics of the DBEnvironment. The
simple form of the command shown above uses default values
for these options. The defaults are described in detail in the
ALLBASE/SQL Database Administration Guide chapter entitled
\DBEnvironment Con�guration and Security."

When you create a DBEnvironment, you are granted the
broadest kind of authority|permission in an ALLBASE/SQL
DBEnvironment|to create and remove objects. This authority is
known as DBA (database administrator) authority.

1-12 Very Basic . . . DRAFT

9/12/97 20:40



How Do I Create a
Database?

To create a database, you need to perform at least some of the
following tasks:

Create tables.
Create views.
Create indexes.

These tasks are part of the data de�nition process, which also
includes placing the tables in speci�c DBEFilesets, and using the
SQL DROP command to remove tables or views that are no longer
needed.

Most data de�nition tasks are carried out when you are setting
up the database for the �rst time. But you may need to do some
data de�nition tasks later, when, for example, you need additional
database capacity.

Commands to Create
Databases

You use SQL CREATE commands to create database tables and
all the other components of a database. Each of these commands
is shown in more detail later in this book; the following is only one
example:

CREATE PUBLICREAD TABLE Employees

(LastName VARCHAR(15) NOT NULL,
FirstName VARCHAR(15) NOT NULL,

EmpNumber INTEGER NOT NULL)

After creating a table, you use the ISQL INPUT and LOAD
commands or an application program to put data into it. You can
also add single rows to a table by using the SQL INSERT command.
(These tasks are explained and illustrated in chapter 3.)

How Do I Access a
Database?

You use the SQL CONNECT command to establish a connection to
the DBEnvironment. You can then access a particular database as
follows:

Through ISQL.
Through application programs you create yourself.

During database access, you perform queries or other operations that
manipulate data by inserting, deleting, or modifying rows in tables.
This process is called data manipulation.

DRAFT

9/12/97 20:40

Very Basic . . . 1-13



Queries and Other Data
Manipulation

Data manipulation commands access the data in databases. An
example is a query using the SQL SELECT command, which displays
a selection of data from database tables. Here is a simple query for
information from the Employees table. The asterisk means all rows
and columns:

SELECT * FROM Employees;

Below is the query result:

select * from employees;

--------------+-----------+-----------

LASTNAME |FIRSTNAME |EMPNUMBER

--------------+-----------+-----------

Harrison |Gerald | 2432099

Abelson |Annette | 3510044

Stanley |Peter | 3540011

Walters |Georgia | 9124772

The query result is also known as a result table.

Other data manipulation commands include the SQL INSERT,
UPDATE, and DELETE commands. These let you add rows to a
table, update speci�c column values in existing rows, or delete rows.
Many examples of data manipulation are shown in later chapters.

How Do I Control
Database Access?

You use data control language to determine who has access to the
information in a database. This is very important for security. Data
control language confers authorities on speci�c users to perform
speci�c tasks. The most powerful authority is known as DBA
authority (database administrator authority). The DBECreator, that
is, the person who creates a new DBEnvironment, automatically
has DBA authority in that DBEnvironment. Someone with DBA
authority can then use the GRANT command to give authorities to
other users. The following example grants permission to update the
Employees table to a user known as Henry:

GRANT UPDATE ON Employees to Henry

The controls you de�ne for database security can be as simple or as
elaborate as you wish.

1-14 Very Basic . . . DRAFT

9/12/97 20:40



Where Can I Get
Help with
ALLBASE/SQL?

Because ALLBASE/SQL has so many components and tasks, it is
helpful to know where to �nd information about each one. Here is a
list of the documents in the ALLBASE/SQL document set, preceded
by a short title:

DBA ALLBASE/SQL Database Administration Guide
SQL ALLBASE/SQL Reference Manual
ISQL ALLBASE/ISQL Reference Manual
APG Four application programming guides, which explain the use

of the preprocessors:
ALLBASE/SQL C Application Programming Guide
ALLBASE/SQL COBOL Application Programming Guide
ALLBASE/SQL Pascal Application Programming Guide
ALLBASE/SQL FORTRAN Application Programming
Guide

MSG ALLBASE/SQL Message Manual
QRG ALLBASE/SQL Quick Reference Guide
4GL ALLBASE/4GL Documentation
ABQ ALLBASE/Query Documentation
NET ALLBASE/NET User's Guide
ATC ALLBASE/TurboCONNECT User's Guide

The following table shows which manuals contain information
about each task. Part numbers for each manual appear in the
documentation map in the front of this book.

DRAFT

9/12/97 20:40

Very Basic . . . 1-15



Information about ALLBASE/SQL Tasks

Task Title Section Reference

Creating a DBEnvironment DBA \DBEnvironment Con�guration and Security"

Creating, Dropping Tables DBA \Database Creation and Security"

SQL \SQL Commands"|CREATE TABLE and DROP TABLE.

Accessing Databases ISQL \Using ISQL" section on Queries

SQL \SQL Queries"

ABQ All sections

APG \Simple Data Manipulation"

Granting Authorities SQL \SQL Commands"|GRANT and REVOKE.

Loading, Unloading Data ISQL \Using ISQL" and \ISQL Commands"|LOAD and UNLOAD

DBA \Maintenance"

DBA \SQLGEN" appendix

Maintaining DBEnvironments DBA \Maintenance"

DBA \SQLUtil" appendix

Migrating DBEnvironments DBA \Tasks and Tools"

DBA \SQLMigrate" appendix

Creating ALLBASE
applications

APG,
4GL

All sections

Setting up and Using
ALLBASE/SQL Networks

NET All sections

Setting up and Using
TurboIMAGE Access

ATC All sections

Checking Syntax QRG All sections

Understanding Warnings and
Errors

MSG All sections

1-16 Very Basic . . . DRAFT

9/12/97 20:40



2

Looking at Data

This chapter presents the basic steps in data analysis and database
design:

Understanding the process.
Distinguishing entities and attributes.
Identifying relationships between entities.
Locating distinguishing key items.
Creating the table design.
De�ning indexes.
De�ning views.
Estimating table and index size.
Designing applications.

These terms are explained as each step is discussed in the following
sections. If you already have a table design in mind and you want to
set it up at once, skip this chapter; come back later if you wish. But
if you don't know what data to put into which tables, then read on!

DRAFT

9/12/97 20:40

Looking at Data 2-1



Understanding the
Process

Designing a database to be built with ALLBASE/SQL means
examining the data you wish to store and then putting it into a
form that ALLBASE/SQL can understand. In other words, you
look at the logical relationships that exist within the data and then
create a relational design (tables, views, indexes, etc.). The process
can be complex, and you could use a number of formal design
methodologies. However, you can get a good �rst approximation by
using an intuitive approach, which is sketched very brie
y in this
chapter.

Database design is the subject of much theoretical discussion
and debate, but everyone agrees that good design results in good
performance. Good database design also gives you the greatest

exibility in formulating your queries and in restructuring your
databases when that becomes necessary. For these reasons, time
spent on analysis and design \up front" results in time and money
saved in developing a production system.

A reading list at the end of this chapter provides references to
additional information. If you are about to embark on a complex
design, be sure to consult this material.

A Small Sample
Database

To examine some data modeling techniques, let's imagine a small
sample database. Suppose a radio station wants to create a database
of classical music recordings for use by program directors and
announcers. The station needs this information to plan a schedule
of broadcasts, to maintain a log of what is played, and to publish a
monthly listener's guide. Here are some speci�c data items that will
be needed:

Recording company and date recorded.
Album title.
Album price.
Medium.
List of selections and timings.
Total timing of each album.
Names of orchestra, conductor, singers, accompanists.
Composer's name, birthplace, and dates of birth and death.
Comments on composers, albums, and selections.
Date, time, and announcer for each selection played.

You can probably think of other items of information that might be
useful (for example, the date the album was acquired), but let's use
these for now. How should this data be organized?

2-2 Looking at Data DRAFT

9/12/97 20:40



How Will the Data Be
Used?

A typical user of the database would be the program director, who
might ask questions like the following:

What selections do I have by Beethoven that are less than 20
minutes long?

What did we broadcast last year on Beethoven's birthday?

How many di�erent versions of Beethoven's Fifth Symphony do we
have, who are the conductors, and what are the timings?

What composers represented in our library were born in March?

What selections did George play last Tuesday morning on his
chamber music show?

Distinguishing
Entities and
Attributes

As you begin to design the music database, you are either creating
a new system or you are transferring data from a non-relational
system to ALLBASE/SQL. Regardless of where you're coming from,
you need to take a comprehensive look at all the information needs
that will be served by the database system. This means identifying
the elements for which you need to store and retrieve information.
These elements are known as entities. A list of entities grows out of
studying how the data is used by its owners.

Listing Entities By approaching the problem intuitively, you can probably identify
four di�erent categories of information required by the radio station:

Album information.
Selection information.
Composer information.
Station log information.

These are the entities in the data.

DRAFT

9/12/97 20:40

Looking at Data 2-3



Listing Attributes Next, you need to de�ne the attributes of each entity, which are
the useful pieces of information to be stored in tables. In addition
to supplying informational detail, some attributes are used to
distinguish one entity from another. As you subdivide your data,
make sure that for each entity you de�ne, at least one attribute can
uniquely identify an instance of the entity. This attribute or group of
attributes is known as a key.

Attributes for Four Entities

Album
Entity

Selection
Entity

Composer
Entity

Station Log
Entity

Album Name Selection Title Name Selection Title

Medium Composer Name Date of Birth Start Time

Album Cost Timing Birthplace End Time

Recording Company Performers Comment Announcer

Date Recorded Comment Comment

Manufacturer's Code

Comment

As the design evolves, entities eventually become database tables,
and attributes eventually become columns. Note, however, that at
this stage you have not yet identi�ed the form of the database tables.
Before you can do that, you need to identify relationships.

Identifying
Relationships
between Entities

After subdividing the data by entities, the next step of design is
to identify meaningful relationships between the entities described
so far. For each relationship you identify, an attribute or group of
attributes must support the relationship.

What are the relationships among the entities in the sample data?
For the Album and Selection entities, there is a relationship of
Content , that is, each album contains a speci�c group of selections.
For the Composer and Selection entities, the relationship is one of
Authorship; each composer has created one or more selections.

Another kind of relationship exists between Selection and Composer ,
namely, Period . The attributes that de�ne Period are the composer's
\Name" and \Birth Date."

2-4 Looking at Data DRAFT

9/12/97 20:40



Locating
Distinguishing Key
Items

Each entity should have one or more attributes which can uniquely
distinguish a particular occurrence of that entity. Each distinguishing
attribute or group of attributes is known as a key value. Also,
for each relationship you have de�ned, an attribute or group of
attributes should specify the relationship by forming a link between
the entities. In the case of Station Log and Selection, the links are
\Selection Name" and \Selection Title." In the case of Selection and
Composer , the link is \Composer Name," which is an attribute of
Composer , but would need to be added to the list of attributes for
Selection. In the case of Album and Selection, there is a possible
link in \Album Code," which would have to be added to the list of
attributes for Selection.

From Entities to
Tables

Once you have added the necessary key attributes that support
relationships, you have arrived at a set of relational tables: the
attributes are now columns, and the key values are now key columns.
From what has been done so far, you can see a set of relational tables
emerging, as follows ( * indicates a key column):

Columns and Keys for Four Tables

Albums Table Selections Table Composers Table Log Table

*AlbumCode *AlbumCode *ComposerName *AlbumCode

AlbumTitle *SelectionName Birth *SelectionName

Medium ComposerName Death StartTime

AlbumCost Timing Birthplace EndTime

RecordingCo Performers Comment Announcer

DateRecorded

MfgCode

Comment

Note that the Selections and Log tables each have two key columns,
whereas the other tables have only one apiece. Remember that a key
must uniquely identify each entry in the table.

DRAFT

9/12/97 20:40

Looking at Data 2-5



Creating the Table
Design

The next step is to de�ne the characteristics of each column you have
de�ned. For each potential column value, you need to answer the
following questions:

What is the data type and size?
For character data, should values be �xed or variable length?
Are null values allowed?

Data Type and Size Some possible data types in ALLBASE/SQL are:

CHAR Fixed length character string.
VARCHAR Variable length character string.
INTEGER Four-byte integer values.
SMALLINT Two-byte integer values.
DECIMAL Fixed-point packed decimal values.
FLOAT Floating point numbers.
DATE Date values.
TIME Clock time values.
DATE-
TIME

Timestamp values (date and time combined).

INTERVAL Elapsed time values.

Decide whether you wish to use numeric or alphanumeric (character)
data types. If a column value needs to participate in arithmetic
operations, it should be either a numeric or date/time data type.

Make sure that your data types are consistent from table to table
where columns are to be joined. For example, when you want to
look up all the selections for a speci�c album title, the AlbumCode
column in the Albums table must be consistent with the AlbumCode
column in the Selections table. If it is not, you may not get all the
data you expect.

Character Data In the case of character data, decide whether the type should be �xed
length (CHAR) or variable length (VARCHAR). When a character
column will contain values of uniform size, such as two-character
alphabetic codes, use CHAR. If the size of values is not expected
to be uniform, use a VARCHAR type, and specify the expected
maximum size.

NULL Values Consider whether or not information will be available when deciding
whether to permit NULL values. A NULL value is the absence of
data for a speci�c column. For example, you might permit NULL
values in the ComposerName column of the Selections table, because
a selection may be anonymous; but you should not permit the
ComposerName column in the Composers table to be NULL.

Note Key columns should never be NULL.

2-6 Looking at Data DRAFT

9/12/97 20:40



Modifying the Table
Design

One further consideration: Is all the data within a particular entity
accessed at the same time? If not, it may be wise to consider
subdividing as you convert the entity into a table description. You
might move some of the information in the Albums table to a
di�erent table if it is not used very often.

A related consideration: Is some of the data from two or more tables
always accessed together? In this case, consider combining two
tables into one. For example, you might include AlbumCode and
AlbumTitle in the Selections table if these data items are always
included with other data about selections.

The formal term for modifying the table design by examining the
relationships among columns is called normalization, which is
described in the \Logical Design" chapter of the ALLBASE/SQL
Database Administration Guide. Also, refer to the list of references at
the end of this chapter.

Table Descriptions When you have made decisions on these issues, you can create a
description of each table, as follows:

Albums Table

Table Name Column Name Data Type NOT NULL Size

Albums AlbumCode INTEGER NOT NULL 4 bytes

AlbumTitle VARCHAR(40) 40 bytes

Medium CHAR(2) 2 bytes

AlbumCost DECIMAL(6,2) 4 bytes

RecordingCo CHAR(10) NOT NULL 10 bytes

DateRecorded DATE 16 bytes

MfgCode VARCHAR(40) 40 bytes

Comment VARCHAR(80) 80 bytes

Titles Table

Table Name Column Name Data Type NOT NULL Size

Selections AlbumCode INTEGER NOT NULL 4 bytes

Selection VARCHAR(40) NOT NULL 40 bytes

ComposerName VARCHAR(16) 16 bytes

Timing INTERVAL 16 bytes

Performers VARCHAR(40) 40 bytes

Comment VARCHAR(80) 80 bytes

DRAFT

9/12/97 20:40

Looking at Data 2-7



Composers Table

Table Name Column Name Data Type NOT NULL Size

Composers ComposerName VARCHAR(16) NOT NULL 16 bytes

Birth DATE 16 bytes

Death DATE 16 bytes

Birthplace VARCHAR(40) 40 bytes

Comment VARCHAR(80) 80 bytes

Log Table

Table Name Column Name Data Type NOT NULL Size

Log AlbumCode INTEGER NOT NULL 4 bytes

SelectionName VARCHAR(40) NOT NULL 40 bytes

StartTime DATETIME NOT NULL 16 bytes

EndTime DATETIME NOT NULL 16 bytes

Announcer VARCHAR(40) NOT NULL 40 bytes

The sizes shown here are taken from the ALLBASE/SQL Database
Administration Guide chapter on \Physical Design."

Defining Indexes After you have designed the structure of the tables in the database,
consider which columns are good candidates for the creation of
indexes. An index is an object which you create after creating the
table. It is not absolutely necessary to create an index on a table,
but doing so can help ALLBASE/SQL point more quickly to the
row you need. For example, in the Albums table, you might consider
creating a unique index on the AlbumCode column, because using a
unique index may allow SQLCore to arrive at the required row more
quickly than by doing a scan of every row in the table. Also, the
unique index guarantees that the AlbumCode is a unique number.

Suppose your application prints the album titles of all the albums
containing selections by a speci�c composer. This requires a join
between the Albums table and the Titles table. The join might be
slow to execute because, �rst, ALLBASE/SQL would have to search
every row of the Titles table to �nd the entries for the composer.
Then it would have to search every row of the Albums table to �nd
every match with the album code found in the Titles table along
with the composer's name. The join column in this query is the
AlbumCode column; if you create an index on the AlbumCode
column of each table, the query might execute faster.

Furthermore, the AlbumCode column in the Albums table would be
a good candidate for creation of a unique index, because the value in
this column should not be duplicated. In the case of the Titles table,
the index should not be unique, because the table can have many

2-8 Looking at Data DRAFT

9/12/97 20:40



rows with the same album code. That is, an album can contain many
selections.

Some tables may also be good candidates for creation as
hash structures, which are essentially self-indexed. For more
information on this topic, refer to the chapter \Using SQL" in the
ALLBASE/SQL Reference Manual .

Designing Database
Security Schemes

You can provide security for data at the level of the DBEnvironment
itself, or at the level of individual tables. At the DBEnvironment
level, you can provide CONNECT authorization to just those users
who need access.

ALLBASE/SQL also has several kinds of TABLE authorities, so that
you can control the kind of access that is possible for di�erent users
of each column in each table. For each table, you should ask the
following questions:

Which users need to SELECT?

Which users need to add new rows or delete existing rows?

Which users need to modify existing rows?

You can classify the users with similar needs by creating a group
and then adding those users to it. Make a list of the user groups you
need to accomodate in the security design. For example, the Music
database might have the following groups and authorities:

Group Name Type of Authority

Managers group ALL authorities on all tables

Announcers group INSERT authority on Log table, SELECT on others

Librarians group ALL authorities on Albums, Titles, and Composers tables

After creating groups, you can grant and revoke authorities to
individual users or groups for each table.

Do some tables require general access for most columns but restricted
access for some? For these, you can create views, which can be made
available to all users while the base table is restricted to those with a
need to manipulate all columns.

DRAFT

9/12/97 20:40

Looking at Data 2-9



Estimating Table
and Index Size

In order to implement your table design, you need to estimate the
amount of disk space required for your tables and any indexes you
plan to create. Then, when you create DBEFiles to contain the data,
specify a size that is big enough to hold the rows you want to store
plus some room for growth.

The tutorial in chapter 3 uses �le sizes that are more than adequate
for the sample database you are creating. Before creating a large
database, calculate your space requirements carefully. Complete
information about size calculation for tables and indexes is given
in the \Physical Design" chapter of the ALLBASE/SQL Database
Administration Guide.

Designing
Applications

Once your table design is complete, you can begin to design your
applications in detail. At this point, you may need to modify the
table design to improve performance. Keep in mind, however, that
later applications may need to use the same data in very di�erent
ways. Therefore, table design should remain somewhat independent
of application design.

Further
Information . . .

Database design is complex. The foregoing discussion oversimpli�es
many aspects of good design in the interest of getting you started.
For a major production system, you need to study your data
carefully and plan your tables accordingly.

Here are the titles of some recommended readings for additional help
in designing your databases:

Atre, Shaku. Database: Structured Techniques for Design,
Performance, and Management. New York: John Wiley & Sons
Inc., 1988.

Date, Chris. \A Practical Approach to Database Design,"
in Relational Database: Selected Writings . Menlo Park, CA:
Addison-Wesley Publishing Co., Inc., 1986.

Loomis, Mary E. S. The Database Book . New York: Macmillan
Publishing Company, 1987.

Turk, Thomas A. \Using Data Normalization Techniques for
E�ective Data Base Design," Journal of Information Systems
Management , Winter 1985.

Also, refer to the \Logical Design" and \Physical Design" chapters in
the ALLBASE/SQL Database Administration Guide.

2-10 Looking at Data DRAFT

9/12/97 20:40



3

Setting Up a Database with ISQL

This chapter is a tutorial on setting up your own database using
ISQL, the interactive component of ALLBASE/SQL. The tutorial
takes you through the steps you need to follow in creating any
ALLBASE/SQL database, large or small.

Here are the steps:

Running ISQL.
Creating a DBEnvironment.
Creating DBEFileSets.
Creating DBEFiles for table and index data.
Adding DBEFiles to DBEFileSets.
Creating tables.
Entering data into tables.
Performing queries.
Creating views.
Granting authorities.
Creating an index.
Examining the system catalog.

The example chosen to illustrate these steps is a database of
information about record albums. This database uses the tables
described in chapter 2, \Looking at Data." Follow the steps yourself
on a system in an empty group (MPE XL) or directory (HP-UX).

Running ISQL Before you can create a new DBEnvironment, you must run ISQL by
simply entering

isql �Return�

at your operating system prompt. ALLBASE/SQL then displays the
ISQL banner as in Figure 3-1 (some details may be slightly di�erent
on your system):

DRAFT

9/12/97 20:40

Setting Up a Database with ISQL 3-1



d a

c b

IIIIIIII SSSSSSSS QQQQQQQ LL

II SS QQ QQ LL

II SS QQ QQ LL

II SSSSSS QQ QQ LL

II SS QQ Q QQ LL

II SS QQ QQ LL

IIIIIIII SSSSSSS QQQQQQ QQ LLLLLLLLL

WED, AUG 08, 1990, 4:14 PM

HP36217-02A.07.00.17 Interactive SQL/9000 HP SQL/HP-UX

(C)COPYRIGHT HEWLETT-PACKARD CO. 1982,1983,1984,1985,1986,1987,1988,

1989. ALL RIGHTS RESERVED.

isql=>

Figure 3-1. ISQL Banner

You should make a note of two things before going any further:

You must always use a semicolon and press �Return� to terminate a
command in ISQL.

You leave ISQL by typing

isql=> exit; �Return�

If ISQL asks whether or not you want to commit work, you must
reply either Y or N and press �Return�. A Y makes the work you
have done permanent.

Creating a
DBEnvironment

If you exited from ISQL, you must run ISQL again. Then, to create a
new DBEnvironment, use the START DBE NEW command at the
ISQL prompt, as follows:

isql=> START DBE 'MUSICDBE' NEW; �Return�

If you forget to use the semicolon, a continuation prompt appears:

>

Simply type a semicolon and press �Return�. After a brief interval, you
will see the ISQL prompt return. That's it! You have created a new
DBEnvironment named MUSICDBE.

Exit from ISQL as explained in the previous section. Use an
operating system command to display the �les in your current group
or directory. Notice three newly created �les:

MUSICDBE.

3-2 Setting Up a Database with ISQL DRAFT

9/12/97 20:40



DBEFILE0.
DBELOG1.

DBECon File The �rst of these is the DBECon �le or DBEnvironment
con�guration �le. This has the same name you assigned to the
DBEnvironment in the START DBE command. The DBECon �le
contains startup parameters for the DBEnvironment. For complete
information about startup parameters, refer to the \DBEnvironment
Con�guration and Security" chapter of the ALLBASE/SQL Database
Administration Guide.

DBEFile0 DBEFILE0 is a �le containing the data for the SYSTEM
DBEFileSet, which contains the system catalog. (You'll examine the
system catalog later.)

Log File DBELOG1 is the log �le, which records operations that modify the
database in any way. The log �le is not discussed further here. For
more information, refer to the \Backup and Recovery" chapter in the
ALLBASE/SQL Database Administration Guide.

For more information on con�guring a DBEnvironment, refer to the
entry for START DBE NEW in the \SQL Commands" chapter of
the ALLBASE/SQL Reference Manual . This entry describes all the
default con�guration values used in creating MUSICDBE.

Creating
DBEFileSets

Before you can create tables and load data into a database, you
need to provide physical �le space. Physical �les are known as
DBEFiles, and they are grouped together in logical groupings called
DBEFileSets.

After the last step, you exited from ISQL, so you must run
ISQL again and connect to the newly created DBEnvironment
MUSICDBE. From the ISQL prompt, issue the following commands:

isql=> CONNECT TO 'MUSICDBE'; �Return�

Then use the following command to create a new DBEFileSet|
ALBUMFS:

isql=> CREATE DBEFILESET AlbumFS; �Return�

Do not forget the semicolon.

Note ALLBASE/SQL upshifts the logical names of objects like ALBUMFS
in the previous example. Thus, even though you enter them in mixed
case (as shown above), they will appear in the system catalog as all
uppercase. (We'll see an example later.)

MPE XL also upshifts all physical �le names. Thus, the names of
DBEFiles, log �les, and DBECon �les (including MUSICDBE in the

DRAFT

9/12/97 20:40

Setting Up a Database with ISQL 3-3



previous example), all appear as uppercase in directory displays in
MPE XL, regardless of whether you entered these names in upper,
lower, or mixed case. HP-UX does not upshift �le names, so they
appear in directory displays exactly as you enter them. Rembember
that in the CONNECT statement, the name of the DBEnvironment
is case-sensitive in HP-UX, but it is not case-sensitive in MPE XL.

Creating DBEFiles
for Table and Index
Data

Next, you can create DBEFiles of three di�erent types|TABLE,
INDEX, and MIXED. In most cases, it is wise to prepare separate
DBEFiles for table data and for indexes, so you will create two
DBEFiles|AlbumTables and AlbumIndex. (In a later step, you will
associate these DBEFiles with the DBEFileSet ALBUMFS.) First,
type the following command:

isql=> CREATE DBEFILE AlbumTables �Return�
> WITH PAGES=50, �Return�
> NAME='ALBUMD1', TYPE=TABLE; �Return�

This command creates a new DBEFile known internally to
ALLBASE/SQL as AlbumTables and to the operating system as
ALBUMD1. The �le contains �fty 4096-byte pages, and is available
for storage of table data only.

3-4 Setting Up a Database with ISQL DRAFT

9/12/97 20:40



Now issue the next command:

isql=> CREATE DBEFILE AlbumIndex �Return�
> WITH PAGES=30, �Return�
> NAME='ALBUMI1', TYPE=INDEX; �Return�

This command creates a new DBEFile known internally to
ALLBASE/SQL as AlbumIndex and to the operating system as
ALBUMI1. This �le contains thirty 4096-byte pages, and is available
for storage of indexes only.

Notes The third DBEFile type|MIXED|can store both tables and
indexes. DBEFILE0 is an example of a MIXED DBEFile.
DBEFILE0, which belongs to the DBEFileSet known as SYSTEM,
was created at the time you issued the START DBE NEW command.
You can create new DBEFiles and add them to SYSTEM.

If you do not specify a DBEFileSet when you create a table, it is
stored in the SYSTEM DBEFileSet by default. However, since
SYSTEM is already in use with system information, it is better to
use separate DBEFileSets and DBEFiles for your data. You'll be
creating a table in AlbumFS in the next few sections.

Committing Work Did all three commands complete without any error messages? If so,
issue the following command:

isql=> COMMIT WORK; �Return�

Committing work is necessary because ALLBASE/SQL processes
commands in units known as transactions. When you issue the
�rst SQL command in a sequence, a transaction begins, and
that transaction continues until you do a COMMIT WORK or
ROLLBACK WORK. The use of transactions guarantees the
consistency of data within the DBEnvironment.

Note If you received an error message saying that your transaction was
rolled back, you should review what you have done, to see if you
can spot the error. When you are ready, go back to the CREATE
DBEFILESET command above and try again. If the �les ALBUMD1
or ALBUMI1 exist, use an operating system command to erase them
from the current working directory or group before attempting to
issue the CREATE DBEFILE commands again.

DRAFT

9/12/97 20:40

Setting Up a Database with ISQL 3-5



Adding DBEFiles to
DBEFileSets

After creating DBEFiles, you must add them to a DBEFileSet before
they can be used. In MUSICDBE, two choices are available:

SYSTEM, already created when you issued the START DBE
command.
ALBUMFS, which you created in an earlier step.

Use the following commands to add your DBEFiles to DBEFileSet
ALBUMFS:

isql=> ADD DBEFILE AlbumTables �Return�
> TO DBEFILESET ALBUMFS; �Return�
isql=> ADD DBEFILE AlbumIndex �Return�
> TO DBEFILESET ALBUMFS; �Return�
isql=> COMMIT WORK; �Return�

Don't forget to COMMIT WORK!

Creating Tables Now get ready to create some tables for MUSICDBE. Before doing
this step, you need to analyze the data that is to be stored. In the
next paragraphs, assume that, using the suggestions in chapter 2, you
have already arrived at the following table design:

Albums Table

AlbumCode INTEGER NOT NULL
AlbumTitle VARCHAR(40)
Medium CHAR(2)
AlbumCost DECIMAL(6,2)
RecordingCo CHAR(10) NOT NULL
DateRecorded DATE
MfgCode VARCHAR(40)
Comment VARCHAR(80)

Titles Table

AlbumCode INTEGER NOT NULL
Selection VARCHAR(40) NOT NULL
Timing INTERVAL
Composer VARCHAR(40)
Performers VARCHAR(40)
Comment VARCHAR(80)

Now, you need to create each of these tables.

3-6 Setting Up a Database with ISQL DRAFT

9/12/97 20:40



Creating the Albums
Table

Use the following command to create the Albums table:

isql=> CREATE PUBLIC TABLE Albums �Return�
> (AlbumCode INTEGER NOT NULL, �Return�
> AlbumTitle VARCHAR(40) NOT NULL, �Return�
> Medium CHAR(2), �Return�
> AlbumCost DECIMAL(6,2), �Return�
> RecordingCo CHAR(10) NOT NULL, �Return�
> DateRecorded DATE, �Return�
> MfgCode VARCHAR(40), �Return�
> Comment VARCHAR(80)) �Return�
> IN ALBUMFS; �Return�

Did the command complete without errors? If not, did you do the
following:

Use a semicolon at the end?
Include a �nal close parenthesis?
Use valid data types and sizes?

Use the ISQL REDO command to examine and correct your
command, then issue it again. (For help with REDO, type HELP
REDO at the isql=> prompt.

When the command completes without errors, use the COMMIT
WORK command to make it permanent.

Note You created the Albums table as a PUBLIC table, which means that
other users of the DBEnvironment need no special authorization to
access the table.

Creating the Titles
Table

Now, create the second table:

isql=> CREATE PUBLIC TABLE Titles �Return�
> (AlbumCode INTEGER NOT NULL, �Return�
> Selection VARCHAR(40) NOT NULL, �Return�
> Composer CHAR(40), �Return�
> Timing INTERVAL, �Return�
> Performers VARCHAR(40), �Return�
> Comment VARCHAR(80)) �Return�
> IN ALBUMFS; �Return�

If the command completes without errors, use the COMMIT WORK
command.

DRAFT

9/12/97 20:40

Setting Up a Database with ISQL 3-7



Entering Data into
Tables

Once you have created tables, you can get data into them in several
ways. Try the following two methods:

The SQL INSERT command.
The ISQL LOAD command.

Entering Data with the
SQL INSERT Command

Use the SQL INSERT command to add rows to the tables you have
created. Try the following entry for the Albums table:

isql=> INSERT INTO Albums �Return�
> VALUES (2001, �Return�
> 'Serenades from the 17th Century', �Return�
> 'ca', 30.82, �Return�
> 'philips', '1988-12-18', �Return�
> '3456-AB-0998LS', �Return�
> 'Authentic original instruments'); �Return�

If the command does not complete successfully, check all your
punctuation carefully, and try again. When �nished, COMMIT
WORK.

Next, use the INSERT command to add the following row to the
Titles table (you need to build the INSERT command yourself):

AlbumCode: 2001

Selection: 'La Bella Musica'

Composer: 'Palestrina'

Timing: '0 00:21:12.000'

Performers: 'Ancient Music Group'

3-8 Setting Up a Database with ISQL DRAFT

9/12/97 20:40



Comment: 'Lute improvisations'

Note that INSERT is an SQL command that processes a single row
of data at a time. If you want to insert many rows at a time, use an
application program of your own design, or else try the ISQL LOAD
command, explained below.

Entering Data with the
ISQL LOAD Command

Use the ISQL LOAD command to insert data from an ordinary �le
into your tables. Two kinds of LOAD operation are possible:

LOAD INTERNAL.
LOAD EXTERNAL.

The next sections show an example of each.

Note The sample external and internal �les described in the next few
paragraphs are available on MPE XL 3.0 or later systems and on
HP-UX 8.0 or later systems. If you are using an earlier version
of ALLBASE/SQL, you should skip ahead to the section entitled
\Performing Queries."

LOADing from an INTERNAL File

You use the LOAD command with the INTERNAL option to
load data from a �le in INTERNAL format previously created
by ISQL's UNLOAD command. Your system contains an
INTERNAL �le with data for the Titles table. In MPE XL,
it is called TITLE.SAMPLEDB.SYS; in HP-UX, it is called
/usr/lib/allbase/hpsql/sampledb/title. From ISQL, issue the
apppriate command for your system:

On MPE XL:

isql=> LOAD FROM INTERNAL �Return�
> TITLE.SAMPLEDB.SYS �Return�
> TO Titles; �Return�

On HP-UX:

isql=> LOAD FROM INTERNAL �Return�
> /usr/lib/allbase/hpsql/sampledb/Title �Return�
> TO Titles; �Return�

As loading progresses, messages tell you how many rows have been
processed.

Note If you are loading a large �le, be sure to set ISQL's AUTOCOMMIT
function to ON. For information, type HELP SET AUTOCOMMIT
at the ISQL prompt. For the present examples, AUTOCOMMIT is
not needed.

DRAFT

9/12/97 20:40

Setting Up a Database with ISQL 3-9



LOADing from an EXTERNAL File

Use the LOAD command with the EXTERNAL option to load data
from plain ASCII �les into a table. You must enter the names of the
columns in the table you are loading into and the starting location
in the �le where each data item starts, together with the data item's
length. If the column permits null values, the data �le must contain
null indicator characters for any entry that is null. In the following
example, the question mark (?) is used as a null indicator.

From ISQL, issue one of the following commands, as appropriate for
your system. Be sure to type exactly.

On MPE XL:

isql=> LOAD FROM EXTERNAL �Return�
> ALBUM.SAMPLEDB.SYS to Albums �Return�
> AlbumCode 1 4 �Return�
> AlbumTitle 13 40 �Return�
> Medium 53 2 ? �Return�
> AlbumCost 55 6 ? �Return�
> RecordingCo 61 10 �Return�
> DateRecorded 71 10 ? �Return�
> MfgCode 89 40 ? �Return�
> Comment 137 80 ? �Return�
> END; �Return�

On HP-UX:

isql=> LOAD FROM EXTERNAL �Return�
> /usr/lib/allbase/hpsql/sampledb/Album �Return�
> to Albums �Return�
> AlbumCode 1 4 �Return�
> AlbumTitle 13 40 �Return�
> Medium 53 2 ? �Return�
> AlbumCost 55 6 ? �Return�
> RecordingCo 61 10 �Return�
> DateRecorded 71 10 ? �Return�
> MfgCode 89 40 ? �Return�
> Comment 137 80 ? �Return�
> END; �Return�

After you have entered the column descriptions, ISQL prompts you
as follows:

Load depending on value in input record (Y/N)>

Reply N to load all the values in the �le. When the command
completes, issue a COMMIT WORK command:

isql=> commit work; �Return�

Note that the starting columns for each �eld of data are determined
by the actual position of the data in the �le itself. Thus, using
EXTERNAL �les, it is possible to load selected parts of each record.

3-10 Setting Up a Database with ISQL DRAFT

9/12/97 20:40



For complete information about loading tables from INTERNAL and
EXTERNAL �les, refer to the ALLBASE/ISQL Reference Manual.

Performing Queries After loading your tables, you are ready to perform some queries to
see the result of your e�orts at data de�nition and data entry. Use
the SELECT command to display the information you need.

The simplest form of SELECT uses the asterisk (*) to indicate that
you want to retrieve all the rows and columns in the table:

isql=> SELECT * FROM Titles; �Return�

This command retrieves all columns for all rows in the Titles table.

You can add a predicate (a WHERE clause) to narrow the range
of rows selected to a speci�c subgroup. In the following example,
the predicate evaluates a column in the table (Composer) against a
constant value ('Palestrina'):

isql=> SELECT * FROM Titles �Return�
> WHERE Composer = 'Palestrina'; �Return�

This retrieves all rows in the Titles table whose composer is
Palestrina.

You can use a column list to narrow the range of columns selected to
a speci�c group:

isql=> SELECT AlbumTitle, �Return�
> AlbumCost from Albums �Return�
> WHERE Medium = 'cd'; �Return�

A query that retrieves information from more than one table is
known as a join. In a two-table join, at least one predicate evaluates
a column in the �rst table against a column in the second. For
example, the following join query displays all album titles and
selections that have the same album code, drawing on the rows in
both the Albums and the Titles tables:

isql=> SELECT AlbumTitle, Selection �Return�
> FROM Albums, Titles WHERE �Return�
> Albums.AlbumCode = Titles.AlbumCode; �Return�

Notice that the AlbumCode column has to be quali�ed by its
table name because it appears in both tables. For additional
information about queries, refer to the \SQL Queries" chapter of the
ALLBASE/SQL Reference Manual .

DRAFT

9/12/97 20:40

Setting Up a Database with ISQL 3-11



Creating Views When you need to perform a query frequently, you can de�ne a view
that incorporates the column list and the predicate; then you can
select from the view with a simpler command.

As an example, create a view of the Albums and Titles tables that
includes all selections:

isql=> CREATE VIEW Selections AS �Return�
> SELECT AlbumTitle, Selection, �Return�
> Composer FROM Albums, Titles �Return�
> WHERE Albums.AlbumCode = �Return�
> Titles.AlbumCode; �Return�

Now use the following simple SELECT statement to display all
selections by Palestrina:

SELECT * FROM Selections �Return�
> WHERE Composer = 'Palestrina'; �Return�

Views are useful when you want to de�ne speci�c subsets of data
that are frequently used or when you want to restrict access to
particular subsets. You can create views and grant access to them,
then revoke access to the underlying base tables.

Did you remember to COMMIT WORK? This makes the view
de�nition permanent in the DBEnvironment.

For more information about views, see the CREATE VIEW
command in the \SQL Queries" chapter of the ALLBASE/SQL
Reference Manual .

Granting Authorities Because you created MUSICDBE, you have DBA (database
administrator authority), which lets you grant authorities to other
users. In a simple authorization scheme, you �rst grant CONNECT
authorization to permit access to the DBEnvironment itself. Then
you grant table authorities to speci�c users or groups of users. You
can also include the special user PUBLIC, which includes anyone
who has the authorization to CONNECT to the DBEnvironment.
Use the following commands to create an authority scheme for two
groups of users, announcers and librarians, while excluding all others
(PUBLIC).

3-12 Setting Up a Database with ISQL DRAFT

9/12/97 20:40



isql=> CREATE GROUP Librarians; �Return�
isql=> ADD Ann, Peter TO �Return�
> GROUP Librarians; �Return�
isql=> CREATE GROUP Announcers; �Return�
isql=> ADD Fred, Julia TO �Return�
> GROUP Announcers; �Return�
isql=> GRANT CONNECT TO �Return�
> Announcers, Librarians; �Return�
isql=> GRANT ALL ON Albums �Return�
> TO Librarians; �Return�
isql=> GRANT ALL ON Titles �Return�
> TO Librarians; �Return�
isql=> GRANT SELECT ON Albums �Return�
> TO Announcers; �Return�
isql=> GRANT SELECT ON Titles �Return�
> TO Announcers; �Return�
isql=> REVOKE ALL ON Albums �Return�
> FROM PUBLIC; �Return�
isql=> REVOKE ALL ON Titles �Return�
> FROM PUBLIC; �Return�

Because you created these tables as PUBLIC (shareable by everyone)
in an earlier step, you need to remove authorities from PUBLIC. This
is the normal procedure for tables that will have restricted but still
multi-user access in the DBEnvironment.

You can also use views to provide restricted access to portions of
tables. After creating the view, you can grant access on it to a
speci�c user or group:

isql=> GRANT SELECT ON Selections TO PUBLIC; �Return�

Creating an Index You can speed up access to data by providing indexes on speci�c
columns in your tables. Assuming your tables are large enough, an
index scan will arrive at a speci�c row more quickly than a serial
scan. When an index is used, ALLBASE/SQL looks for an entry
in the index �rst, then goes to the row. When a serial scan is used,
ALLBASE/SQL reads from the beginning of the table until the
desired row is reached. Naturally, the use of the index is faster if you
only need a small subset of rows.

You can also use an index to guarantee the uniqueness of speci�c
column values. In the Albums table, for example, the AlbumCode
column should be unique; in the Titles table, it should not be unique,
because a single album may contain several selections.

Create a unique index on the AlbumCode column of the Albums
table with the following command:

DRAFT

9/12/97 20:40

Setting Up a Database with ISQL 3-13



isql=> CREATE UNIQUE INDEX AlbCodeIndex �Return�
> ON ALBUMS (AlbumCode); �Return�

Use the following command to create a non-unique index on the
AlbumCode column of the Titles table:

isql=> CREATE INDEX TitleCodeIndex �Return�
> ON TITLES (AlbumCode); �Return�

Location of Tables and
Indexes

Each index is created in the same DBEFileSet as the table it
is indexing. These two indexes are created in the DBEFileSet
ALBUMFS, and they are physically located in the INDEX DBEFile
created for that DBEFileSet in an earlier step.

3-14 Setting Up a Database with ISQL DRAFT

9/12/97 20:40



As shown in the illustration, indexes and tables always appear in the
same DBEFileSet (shelf area). They may be in di�erent DBEFiles,
however.

Note When you issue a query, you do not tell ALLBASE/SQL to use an
index. Instead, the SQLCore optimizer decides when the use of an
existing index is the best way to access a speci�c set of data.

For more information about indexes, refer to the discussion
of \Providing Data Access Paths" in the chapter \Using
ALLBASE/SQL" of the ALLBASE/SQL Reference Manual . Also,
see the CREATE INDEX command in the \SQL Commands"
chapter of the ALLBASE/SQL Reference Manual .

DRAFT

9/12/97 20:40

Setting Up a Database with ISQL 3-15



Examining the
System Catalog

Whenever you create objects in ALLBASE/SQL, their characteristics
are stored in the system catalog, which is a special system-created
database. The system catalog is like a listing of the contents of a
DBEnvironment. (See the illustration below.)

You can look at the system catalog by performing queries on system
tables. Issue the following query to see entries for the tables and
views you have just created:

isql=> SELECT * FROM SYSTEM.TABLE �Return�
> WHERE OWNER = USER; �Return�

The next �gure shows the �rst display you see.

3-16 Setting Up a Database with ISQL DRAFT

9/12/97 20:40



d a

c b

select * from system.table where owner = USER;

--------------------+--------------------+--------------------+------+-----

NAME |OWNER |DBEFILESET |TYPE |RTYPE

--------------------+--------------------+--------------------+------+-----

ALBUMS |PETERW |ALBUMFS | 0|

SELECTIONS |PETERW |SYSTEM | 1|

TITLES |PETERW |ALBUMFS | 0|

---------------------------------------------------------------------------

Number of rows selected is 3

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>, or e[nd] > e

isql=>

Figure 3-2. System.Table Display

Enter \r" to scroll right to see all the columns. A complete
description of each column appears in chapter 9 of the
ALLBASE/SQL Database Administration Guide. For now, notice the
value in the TYPE column. A zero (0) indicates a table, a one (1)
indicates a view.

Updating Statistics in
the System Catalog

Use the UPDATE STATISTICS command for each table as follows:

isql=> UPDATE STATISTICS FOR TABLE ALBUMS;

isql=> UPDATE STATISTICS FOR TABLE TITLES;

This ensures that the current number of rows in each table and
other statistical information are updated in the system catalog. The
statistical information is used by SQLCore when it decides whether
to use an index or not. Statistics also provide information about
ongoing processes within the DBEnvironment.

DRAFT

9/12/97 20:40

Setting Up a Database with ISQL 3-17



In Review . . .

In this tutorial chapter, you created a default DBEnvironment
structure consisting of a DBECon �le, a log, and a DBEFILE0
associated with DBEFileSet SYSTEM to contain system catalog
data. You created the ALBUMFS DBEFileSet, and two DBEFiles
associated with it|AlbumData, for the Albums and Titles table
data, and AlbumIndex, for the Albums and Titles indexes. You also
created and loaded the tables themselves, created groups and granted
authorities, and de�ned a unique and a non-unique index. You have
also done several queries and examined the system catalog.

As a further exercise, create the Composers and Log tables from
the descriptions in chapter 2. Consider whether to create indexes
on them. Add some rows to them, using values consistent with the
entries in the Albums and Titles tables. Then perform some queries.
What sort of security structure would be appropriate?

There's plenty more! But you're o� to a good start. As you
continue with your own DBEnvironments, use the examples in
the ALLBASE/ISQL Reference Manual and the ALLBASE/SQL
Reference Manual as models. You can also refer to the chapter in
this guide entitled \Practice with ALLBASE/SQL Using PartsDBE"
for information about a comprehensive sample DBEnvironment that
is supplied as a part of ALLBASE/SQL.

3-18 Setting Up a Database with ISQL DRAFT

9/12/97 20:40



4

Practice with ALLBASE/SQL Using PartsDBE

The ALLBASE/SQL software includes a sample DBEnvironment
known as PartsDBE and a set of sample application programs which
illustrate much of the functionality of ALLBASE/SQL. Most of the
examples in the ALLBASE/SQL documentation use PartsDBE. This
chapter shows you how to get practice using the components of
ALLBASE/SQL by creating a version of PartsDBE which you can
use to try out the examples on your own system.

DRAFT

9/12/97 20:40

Practice with ALLBASE/SQL Using PartsDBE 4-1



Here are the topics covered:

Setting up PartsDBE.
Examining PartsDBE.
Using the preprocessors.
Examining startup parameters with SQLUtil.
Creating a schema �le with SQLGEN.
Purging PartsDBE.

Setting up PartsDBE Before beginning, change into the group and account or directory
where you want to create PartsDBE. Use an empty group or
directory if possible. Then choose one of the following two methods
for setting up PartsDBE:

Using SQLSetup.
Using setup scripts.

SQLSetup is a sample database setup tool which simpli�es the
process of installing PartsDBE in your work space. It is available
on MPE XL 3.0 and later systems, and on HP-UX 7.08 and later
systems. If you are using a system prior to HP-UX 7.08 or MPE XL
3.0, use the setup procedure described under \Using Setup Scripts."

Using SQLSetup Run SQLSetup by issuing the proper command for your system:

HP-UX:

$ csh /usr/lib/allbase/hpsql/sqlsetup �Return�

MPE XL:

: SQLSETUP.SAMPLEDB.SYS �Return�

A menu like the one in Figure 3-1 appears on your screen (some
details may di�er on your system).

4-2 Practice with ALLBASE/SQL Using PartsDBE DRAFT

9/12/97 20:40



d a

c b

Options for Setting Up ALLBASE/SQL Sample DBEnvironments

===============================================================

Choose one:

1. Create PartsDBE without sample programs

2. Create PartsDBE, copy, preprocess and compile sample programs

3. Copy, preprocess and compile sample programs only

4. Generate a schema for PartsDBE

5. Display schema for PartsDBE

6. Purge PartsDBE and sample programs

7. Help

0. Exit

===============================================================

Enter your choice=>

Figure 4-1. SQLSetup Menu

From this menu, you select an option to create a copy of PartsDBE
in your directory (HP-UX) or group and account (MPE XL). Before
choosing an option, examine each line on the menu. The �rst option
simply creates a copy of PartsDBE. The second option, in addition
to creating PartsDBE, copies a set of application programs into the
current directory or group, then preprocesses and compiles them.
(This is time-consuming.)

Option 3 creates just the sample program set. Option 4 creates a
schema with SQLGEN. Option 5 displays the schema once it has
been created. Option 6 lets you purge the sample DBEnvironment
and programs.

Choose the Help option to see more information about SQLSetup, or
choose 0 to exit.

Creating PartsDBE

Choose option 1 from the SQLSetup menu. This option runs a set of
ISQL command �les that create the DBEnvironment, de�ne all its
tables, views, indexes and security structure, and then load it with
data.

As the system creates PartsDBE, you see several messages displayed.
At the end of the creation process, you see the following message:

Creation and Loading of PartsDBE is now complete!

When you return to the menu, choose 0 to exit.

DRAFT

9/12/97 20:40

Practice with ALLBASE/SQL Using PartsDBE 4-3



Using Setup Scripts The following paragraphs describe an alternate method for setting up
PartsDBE using setup scripts that are available on all systems.

HP-UX Systems

Use the following command to set up PartsDBE:

$ /usr/lib/allbase/hpsql/setup 2 �Return�

You will see a display of messages showing the progress of the
setup script. A listing of setup appears in Appendix C of the
ALLBASE/SQL Reference Manual .

MPE XL Systems

Use the command �le CREASQL to stream a job that sets up
PartsDBE. First, copy the CREASQL stream �le to your group and
account with the following command:

: FCOPY FROM=CREASQL.SAMPLEDB.SYS;TO=CREASQL;NEW �Return�

Using an editor, modify CREASQL to include your password(s),
user name, account name, and group name. Lines that need to be
modi�ed are shown in inverse display. Keep the edited �le, then type
the following command to create and load PartsDBE and copy the
sample programs into your group and account:

: STREAM CREASQL �Return�

You will see messages showing the progress of the setup script. A
listing of CREASQL appears in Appendix C of the ALLBASE/SQL
Reference Manual .

Looking at the Files
Created for PartsDBE HP-UX Systems

Use the ls -l command to list the �les in the current directory. You
should see the following (owner and group entries will be for your
system, and permissions will be those of your directories):

drwxrwxr-x 3 peter dbusers 1024 Dec 27 11:23 hpsql/

The setup script created this directory for you. Next change into the
hpsql directory, and do another listing:

-rw-rw-rw- 1 peter dbusers 19297 Dec 27 11:25 isqlout

drwxrwxrwx 2 peter dbusers 1024 Dec 27 11:24 sampledb/

The setup script also created the sampledb directory. The �le isqlout
contains the messages generated when PartsDBE was created. Use
the more command to examine isqlout.

Finally, change into the sampledb directory, then examine the �le
listing. You see some �les with your user name as owner and others

4-4 Practice with ALLBASE/SQL Using PartsDBE DRAFT

9/12/97 20:40



with hpdb as owner. To see the database �les alone, issue the
following command:

$ ls -l | grep hpdb �Return�

You should see the following list of �les:

-rw------- 1 hpdb dbusers 204800 Dec 27 11:25 OrderDF1

-rw------- 1 hpdb dbusers 204800 Dec 27 11:25 OrderXF1

-rw------- 1 hpdb dbusers 512 Dec 27 11:25 PartsDBE

-rw------- 1 hpdb dbusers 614400 Dec 27 11:25 PartsF0

-rw------- 1 hpdb dbusers 131072 Dec 27 11:25 PartsLG1

-rw------- 1 hpdb dbusers 131072 Dec 27 11:25 PartsLG2

-rw------- 1 hpdb dbusers 204800 Dec 27 11:25 PurchDF1

-rw------- 1 hpdb dbusers 204800 Dec 27 11:25 PurchXF1

-rw------- 1 hpdb dbusers 204800 Dec 27 11:25 RecDF1

-rw------- 1 hpdb dbusers 204800 Dec 27 11:25 WarehDF1

-rw------- 1 hpdb dbusers 204800 Dec 27 11:25 WarehXF1

These �les, all owned by hpdb, are the �les for the PartsDBE
DBEnvironment. The other �les in the directory are command �les
and load �les containing data that was loaded into PartsDBE.

For security reasons, database �les are owned by hpdb, and the
sampledb directory also belongs to hpdb. This means that you
cannot remove the database �les with the rm command unless you
are the superuser. (You can use SQLUtil, however, as shown later in
this chapter.)

The programs directory is for use when you decide to copy,
preprocess and compile sample application programs.

DRAFT

9/12/97 20:40

Practice with ALLBASE/SQL Using PartsDBE 4-5



MPE XL Systems

List the �les in the current group and account. You should see the
following:

ORDERDF1 PRIV 2048W FB 50 50 1 800 1 26

ORDERXF1 PRIV 2048W FB 50 50 1 800 1 26

PARTSDBE PRIV 256W FB 1161 1161 1 1920 30 *

PARTSF0 PRIV 2048W FB 150 150 1 2400 1 31

PARTSLG1 PRIV 256W FB 256 256 1 512 1 29

PARTSLG2 PRIV 256W FB 256 256 1 512 1 29

PURCHDF1 PRIV 2048W FB 50 50 1 800 1 26

PURCHXF1 PRIV 2048W FB 50 50 1 800 1 26

RECDF1 PRIV 2048W FB 50 50 1 800 1 26

WAREHDF1 PRIV 2048W FB 50 50 1 800 1 26

WAREHXF1 PRIV 2048W FB 50 50 1 800 1 26

These are all PRIV �les, which means that you cannot purge them
without special system authority. (However, you can use SQLUtil, as
shown later in this chapter.)

Additional �les used for loading the sample database tables are found
in SAMPLEDB.SYS.

4-6 Practice with ALLBASE/SQL Using PartsDBE DRAFT

9/12/97 20:40



Examining PartsDBE In this section, you will examine the objects that were created
within PartsDBE|tables, views, indexes, and authority structure.
Information about all these objects is in the system catalog, which is
automatically created by ALLBASE/SQL as the DBEnvironment is
con�gured.

Run ISQL, then CONNECT to PartsDBE. (If you are using HP-UX,
�rst change back to the directory from which you ran the script to
create PartsDBE. You must have write permission in the directory
from which you CONNECT.) Use one of the following CONNECT
commands:

For HP-UX:

isql=> CONNECT TO 'hpsql/sampledb/PartsDBE'; �Return�

MPE XL:

isql=> CONNECT TO 'PartsDBE'; �Return�

Now examine the system catalog by creating queries on the system
views.

DRAFT

9/12/97 20:40

Practice with ALLBASE/SQL Using PartsDBE 4-7



Examining the Tables
and Views

Use the following query exactly as shown to look at all the tables and
views created by the setup script:

isql=> SELECT NAME, OWNER, �Return�
> DBEFILESET, TYPE �Return�
> FROM SYSTEM.TABLE �Return�
> WHERE OWNER <> 'SYSTEM'; �Return�

The result table is shown below.

d a

c b

select name, owner, dbefileset, type from system.table where owner 'SYST

--------------------+--------------------+--------------------+------

NAME |OWNER |DBEFILESET |TYPE

--------------------+--------------------+--------------------+------

SUPPLYBATCHES |MANUFDB |WAREHFS | 0

TESTDATA |MANUFDB |WAREHFS | 0

PARTS |PURCHDB |WAREHFS | 0

INVENTORY |PURCHDB |WAREHFS | 0

SUPPLYPRICE |PURCHDB |PURCHFS | 0

VENDORS |PURCHDB |PURCHFS | 0

ORDERS |PURCHDB |ORDERFS | 0

ORDERITEMS |PURCHDB |ORDERFS | 0

PARTINFO |PURCHDB |SYSTEM | 1

VENDORSTATISTICS |PURCHDB |SYSTEM | 1

MEMBERS |RECDB |RECFS | 0

CLUBS |RECDB |RECFS | 0

EVENTS |RECDB |RECFS | 0

---------------------------------------------------------------------------

Number of rows selected is 13

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>, or e[nd] > e

Figure 4-2. Information on Tables and Views

Each table is identi�ed by the NAME column. The OWNER column
speci�es the database to which the table belongs. If a table does not
belong to you (that is, if you are not the database owner), you must
pre�x the table name with its owner name whenever you refer to it.

The DBEFILESET column contains the name of the DBEFileSet
an entry has been associated with, and the TYPE column indicates
whether the entry is a table or a view. Entries with type 0 are
tables, and entries with type 1 are views. Note that all views are
automatically associated with the SYSTEM DBEFileSet.

4-8 Practice with ALLBASE/SQL Using PartsDBE DRAFT

9/12/97 20:40



View Definitions You can see the view de�nitions by issuing the following query
exactly as shown:

isql=> SELECT VIEWNAME, SELECTSTRING �Return�
> FROM SYSTEM.VIEWDEF WHERE �Return�
> OWNER = 'PURCHDB'; �Return�

The query result is shown in the next �gure.

d a

c b

select viewname,selectstring from system.viewdef where owner = 'PURCHDB';

--------------------+------------------------------------------------------

VIEWNAME |SELECTSTRING

--------------------+------------------------------------------------------

PARTINFO | SELECT PurchDB.SupplyPrice.PartNumber, PurchDB.Parts.

PARTINFO |PurchDB.SupplyPrice.VendorNumber, PurchDB.Vendors.Vend

PARTINFO |PurchDB.Supplyprice.VendPartNumber,

PARTINFO |PurchDB.SupplyPrice.UnitPrice, PurchDB.SupplyPrice.Dis

PARTINFO |FROM PurchDB.Parts, PurchDB.SupplyPrice, PurchDB.Vendo

PARTINFO |PurchDB.SupplyPrice.PartNumber = PurchDB.Parts.PartNum

PARTINFO |PurchDB.SupplyPrice.VendorNumber = PurchDB.Vendors.Ven

VENDORSTATISTICS | SELECT PurchDB.Vendors.VendorNumber, PurchDB.Vendors.

VENDORSTATISTICS |, OrderDate, OrderQty, OrderQty * PurchasePrice FROM

VENDORSTATISTICS |PurchDB.Vendors, PurchDB.Orders, PurchDB.OrderItems WH

VENDORSTATISTICS |PurchDB.Vendors.VendorNumber = PurchDB.Orders.VendorNu

VENDORSTATISTICS |PurchDB.Orders.OrderNumber = PurchDB.OrderItems.OrderN

---------------------------------------------------------------------------

Number of rows selected is 12

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>, or e[nd] > e

Figure 4-3. View Definitions in the System Catalog

Scroll to the right to examine the complete select string for each view
de�nition.

DRAFT

9/12/97 20:40

Practice with ALLBASE/SQL Using PartsDBE 4-9



Using the INFO
Command

You can see individual table descriptions by using the INFO
command, which returns the column de�nition of a table. Use the
following command for the Vendors table:

isql=> INFO PURCHDB.VENDORS; �Return�

The output from this ISQL command is shown below:

d a

c b

isql=> info purchdb.vendors;

Column Name Data Type (length) Nulls Allowed Language

----------------------------------------------------------------------------

VENDORNUMBER Integer NO

VENDORNAME Char ( 30) NO n-computer

CONTACTNAME Char ( 30) YES n-computer

PHONENUMBER Char ( 15) YES n-computer

VENDORSTREET Char ( 30) NO n-computer

VENDORCITY Char ( 20) NO n-computer

VENDORSTATE Char ( 2) NO n-computer

VENDORZIPCODE Char ( 10) NO n-computer

VENDORREMARKS VarChar ( 60) YES n-computer

Figure 4-4. Output of the INFO Command

The Column Name column lists the names of all the columns in
the table. The Data Type column shows the speci�c data type for
each column and its size (in parentheses). The third column, Nulls
Allowed, indicates whether or not NULL values are permitted in
the column, and the Language column indicates which language is
applicable for the column if it is a character type.

4-10 Practice with ALLBASE/SQL Using PartsDBE DRAFT

9/12/97 20:40



Examining Indexes The following query shows the indexes on tables in PartsDBE:

isql=> SELECT INDEXNAME, TABLENAME, �Return�
> UNIQUE, CLUSTER FROM SYSTEM.INDEX; �Return�

The query result is shown in the next �gure:

d a

c b

select indexname,tablename,unique,cluster from system.index;

--------------------+--------------------+------+-------

INDEXNAME |TABLENAME |UNIQUE|CLUSTER

--------------------+--------------------+------+-------

PARTNUMINDEX |PARTS | 1| 0

PARTTONUMINDEX |SUPPLYPRICE | 0| 1

PARTTOVENDINDEX |SUPPLYPRICE | 0| 0

VENDPARTINDEX |SUPPLYPRICE | 1| 0

VENDORNUMINDEX |VENDORS | 1| 0

ORDERNUMINDEX |ORDERS | 1| 1

ORDERVENDINDEX |ORDERS | 0| 0

ORDERITEMINDEX |ORDERITEMS | 0| 1

INVPARTNUMINDEX |INVENTORY | 1| 0

---------------------------------------------------------------------------

Number of rows selected is 9

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>, or e[nd] > e

Figure 4-5. System Catalog Information on Indexes

The UNIQUE and CLUSTER columns show what kind of index was
created: PartNumIndex is a unique index; PartToNumIndex is a
clustering index; OrderNumIndex is both unique and clustering; and
OrderVendIndex is neither unique nor clustering.

DRAFT

9/12/97 20:40

Practice with ALLBASE/SQL Using PartsDBE 4-11



Examining the Authority
Structure

An authority structure consists of many elements. Some of these
elements are shown below:

Group de�nitions.
Table authorizations for select, insert, update, and delete
operations on tables.
Column authorizations for permission to update speci�c columns.

Groups

Use the following query to examine the authorization groups in
PartsDBE and their members:

isql=> SELECT * FROM SYSTEM.GROUP; �Return�

The query result is shown below:

d a

c b

select * from system.group;

--------------------+--------------------+--------------------+-----------

USERID |GROUPID |OWNER |NMEMBERS

--------------------+--------------------+--------------------+-----------

PURCHMANAGERS |PURCHMANAGERS |PETER | 3

MARGY |PURCHMANAGERS |PETER | 0

RON |PURCHMANAGERS |PETER | 0

SHARON |PURCHMANAGERS |PETER | 0

PURCHDBMAINT |PURCHDBMAINT |PETER | 3

ANNIE |PURCHDBMAINT |PETER | 0

DOUG |PURCHDBMAINT |PETER | 0
DAVID |PURCHDBMAINT |PETER | 0

PURCHASING |PURCHASING |PETER | 5

AJ |PURCHASING |PETER | 0

JORGE |PURCHASING |PETER | 0

RAGAA |PURCHASING |PETER | 0

GREG |PURCHASING |PETER | 0

KAREN |PURCHASING |PETER | 0

RECEIVING |RECEIVING |PETER | 3

AL |RECEIVING |PETER | 0

---------------------------------------------------------------------------

First 16 rows have been selected.

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>, or e[nd] > e

Figure 4-6. Groups in the System Catalog

For each group, the members are listed. Note that the group and the
member names are listed in the USERID column, and the number of
members appears in each row where the group name appears as a
USERID. The OWNER column shows the owner of the authorization
group.

4-12 Practice with ALLBASE/SQL Using PartsDBE DRAFT

9/12/97 20:40



Table Authorities

Use the following query exactly as shown to examine the
authorizations on the PurchDB.Inventory table:

isql=> SELECT USERID, SELECT, INSERT, �Return�
> UPDATE, DELETE, ALTER, INDEX �Return�
> FROM SYSTEM.TABAUTH WHERE �Return�
> NAME = 'INVENTORY'; �Return�

The query result is shown below:

d a

c b

select userid, select, insert, update,delete, alter, index from system.taba

--------------------+------+------+------+------+-----+-----

USERID |SELECT|INSERT|UPDATE|DELETE|ALTER|INDEX

--------------------+------+------+------+------+-----+-----

PURCHMANAGERS |Y |N |N |N |N |N

PURCHDBMAINT |Y |Y |Y |Y |Y |Y

PURCHASING |Y |Y |Y |Y |N |N

WAREHOUSE |Y |Y |Y |Y |N |N

KELLY |N |N |C |N |N |N

PETER |N |N |C |N |N |N

DBEUSERS |Y |Y |Y |Y |N |N

---------------------------------------------------------------------------

Number of rows selected is 7
U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>, or e[nd] > e

Figure 4-7. Table Authorities in the System Catalog

Each row contains a USERID, which is the name of a user or group,
and an entry for each type of authority. A Y in a column indicates
that the USERID has that authority, an N indicates the USERID
does not have that authority.

Column Authorizations A special kind of authorization is the permission to update
speci�c columns in a table. These permissions are shown in the
SYSTEM.COLAUTH view in the system catalog.

Use the following query exactly as shown to display the column
authorizations de�ned for the PurchDB.Inventory table:

isql=> SELECT USERID, TABLENAME, �Return�
> OWNER, COLNAME FROM �Return�
> SYSTEM.COLAUTH WHERE �Return�
> TABLENAME = 'INVENTORY'; �Return�

The query result is shown in the next �gure:

DRAFT

9/12/97 20:40

Practice with ALLBASE/SQL Using PartsDBE 4-13



d a

c b

select userid, tablename, owner, colname from system.colauth where tablenam

--------------------+--------------------+--------------------+------------

USERID |TABLENAME |OWNER |COLNAME

--------------------+--------------------+--------------------+------------

KELLY |INVENTORY |PURCHDB |BINNUMBER

KELLY |INVENTORY |PURCHDB |QTYONHAND

KELLY |INVENTORY |PURCHDB |LASTCOUNTDAT

PETER |INVENTORY |PURCHDB |BINNUMBER

PETER |INVENTORY |PURCHDB |QTYONHAND

PETER |INVENTORY |PURCHDB |LASTCOUNTDAT

---------------------------------------------------------------------------

Number of rows selected is 6

U[p], d[own], l[eft], r[ight], t[op], b[ottom], pr[int] <n>, or e[nd] > e

Figure 4-8. Column Authorities in the System Catalog

4-14 Practice with ALLBASE/SQL Using PartsDBE DRAFT

9/12/97 20:40



Using the
Preprocessors

For large-scale database access or for batch operation,
ALLBASE/SQL includes a set of preprocessors, which let you embed
SQL commands into the source code for your own applications.
Before compiling your program, you use the preprocessor to prepare
the program for runtime database accesses. Separate preprocessors
are available for C, COBOL, FORTRAN, and Pascal.

Sample Application
Programs

In addition to the �les for creating PartsDBE, your system includes
a set of sample application programs that use embedded SQL.
You can use option 3 from the SQLSetup menu to preprocess and
compile all of the examples for a given programming language,
or you can examine a single program at a time as shown in the
next section. The sample application programs for MPE XL are
located in SAMPLEDB.SYS, and in HP-UX, they are found in
/usr/lib/allbase/hpsql/programs.

Using the sample DBEnvironment PartsDBE installed on your
system as described earlier in this chapter, you can step through
the process with the following commands. This example uses the C
preprocessor; follow the steps shown here for your operating system.

DRAFT

9/12/97 20:40

Practice with ALLBASE/SQL Using PartsDBE 4-15



For HP-UX: First, change into the hpsql directory created when you set up the
sample DBEnvironment PartsDBE, as shown in an earlier step. Then
change into the programs directory if it exists. If it does not exist,
create it, then change into it as follows:

mkdir programs

cd programs

Issue the following commands, one at a time (some will take a few
moments to execute):

$ rm cex2.sql �Return� Only needed if this �le exists already.

$ cp /usr/lib/allbase/hpsql/programs/cex2 cex2.sql �Return�

$ psqlc ../sampledb/PartsDBE -i cex2.sql -d �Return�

Series 800:

$ cc cex2.c -o cex2.r -lsql -lcl -lportnls �Return�

Series 300:

$ cc cex2.c -o cex2.r -lsql -lheap2 -lportnls -lpc �Return�

$ more cex2.sql �Return�

$ more cex2.c �Return�

This sequence copies the source �le from the sample database
directory to the local directory, then preprocesses and compiles
the program. The more commands let you examine the di�erences
between the embedded SQL source �le and the preprocessor output
�le.

Use the following command to execute the program:

$ ./cex2.r �Return�

When prompted for part numbers, enter the following, and observe
the results:

1123-P-01

1323-D-01

9999-X-01

4-16 Practice with ALLBASE/SQL Using PartsDBE DRAFT

9/12/97 20:40



For MPE XL: First, make sure you are in the group and account where PartsDBE
exists. Then issue the following commands, one at a time (some take
a few moments to execute):

: PURGE CEX2 �Return� Only needed if this �le exists already.

: FCOPY FROM=CEX2.SAMPLEDB.SYS;TO=CEX2;NEW �Return�

: PPC CEX2,PARTSDBE,CEX2P �Return�

: SAVE SQLOUT �Return�

: PRINT CEX2 �Return�

: PRINT SQLOUT �Return�

This sequence copies the source �le from the sample database group
and account to your local group, then preprocesses and compiles the
program. The SAVE command keeps a copy of the preprocessor
output �le SQLOUT in your local group. The PRINT commands let
you examine the di�erences between the embedded SQL source �le
and the preprocessor output �le.

Use the following command to execute the program:

: CEX2P �Return�

When prompted for part numbers, enter the following, and observe
the results:

1123-P-01

1323-D-01

9999-X-01

Examining Startup
Parameters with
SQLUtil

Use the SQLUtil program to examine the startup parameters of
PartsDBE or any other DBEnvironment. Run the program as follows
(if you are using HP-UX, �rst make sure you are in the same working
directory from which you created PartsDBE):

sqlutil �Return�

SQLUtil displays a banner like the following (some details can be
di�erent on your system):

d a

c b

WED, AUG 08, 1990, 11:30 AM

HP36217-02A.07.00.17 DBE Utility/9000 HP SQL/HP-UX

(C)COPYRIGHT HEWLETT-PACKARD CO. 1982,1983,1984,1985,1986,1987,1988,

1989. ALL RIGHTS RESERVED.

>>

Figure 4-9. SQLUtil Banner

DRAFT

9/12/97 20:40

Practice with ALLBASE/SQL Using PartsDBE 4-17



Respond to the prompts as in the following dialog. For DBEName,
enter hpsql/sampledb/PartsDBE in HP-UX, or PartsDBE in MPE
XL.

>> SHOWDBE �Return�
DBEnvironment Name: DBEName

Maintenance Word: �Return�
Output File Name (opt): �Return�
-> ALL �Return�

4-18 Practice with ALLBASE/SQL Using PartsDBE DRAFT

9/12/97 20:40



The following display should appear (some details can vary on your
system):

Maintenance word:
DBEnvironment Language: n-computer

AutoStart: ON

User Mode: MULTI

DBEFile0 Name: PartsF0

DDL Enabled: YES

No. of Runtime Control Block Pages: 37

No. of Data Buffer Pages: 100

No. of Log Buffer Pages: 24

Max. Transactions: 5

>> E �Return�

Use the E command to exit from SQLUtil and return to your
operating system.

The parameters shown above describe the con�guration of the sample
DBEnvironment immediately after setting it up with SQLSetup. All
of them are described in the \DBEnvironment Con�guration and
Security" chapter of the ALLBASE/SQL Database Administration
Guide , so they are not described further here. Many of them can
be adjusted by the database administrator to meet the needs of a
particular system.

DRAFT

9/12/97 20:40

Practice with ALLBASE/SQL Using PartsDBE 4-19



Creating a Schema
File with SQLGEN

Use option 4 from the SQLSetup menu to create a �le that shows all
the data de�nition commands that were used to build PartsDBE. As
an alternative, run the SQLGEN program, as follows:

sqlgen �Return�

SQLGEN displays its banner (some details can be di�erent on your
system):

d a

c b

WED, AUG 08, 1990, 11:30 AM

HP36217-02A.07.00.04 SQL Command Generator HP SQL/UX

(C) COPYRIGHT HEWLETT-PACKARD CO. 1986,1987,1988,1989

>>

Figure 4-10. SQLGEN Banner

Respond to the prompts as in the following dialog. For DBEName,
enter hpsql/sampledb/PartsDBE in HP-UX, or PartsDBE in MPE
XL.

>> startdbe �Return�
DBEnvironment Name >> DBEName �Return�

DBEnvironment successfully started.

>> gen all �Return�

HP SQL Command Generator for ALL

Schema File Name or '//' to STOP command >> PartsSch �Return�

Messages are displayed for each of the commands SQLGEN is
inserting into the �le PartsSch. Below are some of the messages:

Generating command to START DBE PartsDBE

Generating command to CREATE DBEFILESET ORDERFS

Generating command(s) for DBEFILE ORDERDATAF1

Generating command(s) for DBEFILE ORDERINDXF1

Generating CREATE TABLE PURCHDB.INVENTORY

Generating CREATE TABLE PURCHDB.ORDERITEMS

.

.

.

If you created the schema �le with SQLSetup, use option 5 to view
the �le. Otherwise, use an operating system command to examine �le
PartsSch.

4-20 Practice with ALLBASE/SQL Using PartsDBE DRAFT

9/12/97 20:40



Purging PartsDBE Use SQLUtil to purge PartsDBE when you no longer need it. Within
SQLUtil, you use the PURGEALL command:

>> purgeall �Return�
DBEnvironment Name: PartsDBE �Return�
Purge DBEnvironment and Log Files (y/n)? y �Return�

DBEnvironment and Log Files purged.

>> exit �Return�

You can also use SQLSetup option 6 to purge PartsDBE.

DRAFT

9/12/97 20:40

Practice with ALLBASE/SQL Using PartsDBE 4-21





5

Comparing ALLBASE/SQL with TurboIMAGE

If you are coming to ALLBASE/SQL from the world of
TurboIMAGE, this chapter should help you make the necessary
translations from the terminology of a network DBMS to the
terminology of a relational DBMS.

The following topics are covered:

Basic structures.
Procedures for starting up.
Tables and indexes versus data sets.
Mapping of data types.
Di�erences in security.
Di�erences in accessing databases.
Sample mapping of a TurboIMAGE database to an
ALLBASE/SQL DBEnvironment.
Using ALLBASE/Turbo CONNECT.

The goal in discussing these topics is not to present a complete
picture of either system, but rather to suggest some points of
correspondence in order to make learning ALLBASE/SQL easier.
The discussion is deliberately oversimpli�ed. For de�nitions of
ALLBASE/SQL terms, refer to chapter 1, \Very Basic . . . ," and
to chapter 6, \Glossary of Terms in ALLBASE/SQL." Complete
information about TurboIMAGE is in the TurboIMAGE/XL
Database Management System Reference Manual.

DRAFT

9/12/97 20:40

Comparing ALLBASE/SQL with TurboIMAGE 5-1



Basic Structures Figure 5-1 shows the basic architecture of the TurboIMAGE system.

Figure 5-1. TurboIMAGE Architecture

The TurboIMAGE database manager accesses data in each data set
as needed, based on information given in the root �le.

5-2 Comparing ALLBASE/SQL with TurboIMAGE DRAFT

9/12/97 20:40



Figure 5-2 shows the ALLBASE/SQL architecture.

Figure 5-2. ALLBASE/SQL Architecture

ALLBASE/SQL has two components which manage access to
databases, SQLCore and DBCore. The data is stored in tables which
reside physically in DBEFiles and logically in DBEFileSets, as shown
in Figure 5-2. These elements are described further in the next
paragraphs.

Procedures for
Starting Up

In TurboIMAGE, you start up a database with the following steps:

1. Create a schema. A common way of doing this is to enter the
schema into a text �le created with an editor.

2. Run DBSCHEMA to generate a root �le from the schema.
3. Run DBUtil to create data sets based on the root �le.

The schema contains de�nitions of all the data items in your
database, and it describes all the data sets in the database. It also
speci�es the required security for the database by de�ning passwords
for speci�c users.

In ALLBASE/SQL, you start up a DBEnvironment with a simple
SQL command. The command may be issued interactively (through
ISQL), or through an application program. The START DBE NEW
command is as follows:

START DBE ' DBEnvironmentName' NEW

The START DBE NEW command creates a �le known as a
DBECon �le, which is similar to the root �le in TurboIMAGE.

DRAFT

9/12/97 20:40

Comparing ALLBASE/SQL with TurboIMAGE 5-3



The DBECon �le contains information about startup parameters
for the DBEnvironment and its logs. START DBE NEW also
creates a structure within the DBEnvironment known as a system
catalog, which is a set of information about all the databases in the
DBEnvironment.

Use of a Schema In TurboIMAGE, a schema is required to de�ne a database. Most
users create the schema in an ASCII �le. Once the database exists,
the schema can serve as a record of its contents. The schema can also
be used to create the same database structure in di�erent groups and
accounts or on di�erent systems.

You can also create a schema for ALLBASE/SQL by entering
into an ASCII �le all the SQL commands needed to con�gure the
DBEnvironment and create all the objects in it. You can use this
�le as input to ISQL. However, in ALLBASE/SQL, no schema is
required; all that is necessary to con�gure a DBEnvironment is a
START DBE NEW command issued through ISQL or an application
program.

Root File versus
DBECon File and
System Catalog

In TurboIMAGE, the root �le, which is generated by DBSCHEMA
from the schema, contains security information and de�nitions of all
the data sets in the database, together with the name of the database
creator.

The DBECon �le in ALLBASE/SQL is created when you issue the
START DBE NEW command. The DBECon �le, which has the same
name as the DBEnvironment, contains the name of the DBECreator
and the names of the logs associated with the DBEnvironment. It
also indicates startup parameters, such as SINGLE or MULTI user
mode, and others (examples are shown in the section \Examining
Startup Parameters with SQLUtil" in chapter 4).

In ALLBASE/SQL, structural information is also stored internally
in a set of system tables known as the system catalog. This is like
an internal schema. The DBECon �le does not contain the names
of tables or other database objects; these are stored in the system
catalog.

Data Files for Data sets
versus DBEFiles for

Tables

Each data set in a TurboIMAGE database occupies a separate MPE
XL �le, created by TurboIMAGE as a PRIV �le. The �le size is
determined from the capacity you indicate for the data set in the
schema.

In ALLBASE/SQL, you create a table inside a DBEFileSet, to which
you have added one or more DBEFiles. These DBEFiles need to
be large enough for the amount of data you need to store. Instead
of specifying a capacity, you create DBEFiles of whatever size is
needed. DBEFiles can hold data and/or indexes for more than one
table at a time; no simple correspondence between tables and data
�les exists. You do not specify the size of a table when you create
it; the table size is limited only by the capacity of your system. As

5-4 Comparing ALLBASE/SQL with TurboIMAGE DRAFT

9/12/97 20:40



you need additional space for a growing table, you add DBEFiles to
the DBEFileSet in which the table was created. This increases the
capacity of the table. (An exception to this is tables created as hash
structures, described in a later section.)

Naming Conventions The names of data items and data sets within a TurboIMAGE
schema may contain some characters which are not allowed in
ALLBASE/SQL. For example, the hyphen is not allowed in
ALLBASE/SQL names; so hyphens need to be represented in some
other way in ALLBASE/SQL, for example, by an underscore ( ).

Tables and Indexes
versus Data Sets

The basic unit of storage for data items in TurboIMAGE is the data
set, which consists of a set of records containing an ordered series of
data items. A data set is either a detail or a master, and, if it is a
master, it is either manual or automatic.

In ALLBASE/SQL, the basic unit of storage is the table, which is an
unordered set of rows containing data items. Tables are not labeled
manual or automatic, master or detail; but the same relationships
are possible through the creation of di�erent types of indexes or
index-like structures.

Automatic Masters
versus Indexes

Each TurboIMAGE automatic master data set has a unique key
item, which provides calculated access to the data in the master,
and chained access to the data in one or more detail data sets. Like
an ALLBASE/SQL index, an automatic master is maintained by
the system; that is, when the table or detail data set is updated,
the index or automatic master is updated automatically. Also,
you cannot have an index without a table, and you cannot have
an automatic master without a detail data set. Both indexes and
automatic masters contain only key data values.

One di�erence between the automatic master and the index is
that an automatic master may serve up to 16 detail data sets,
whereas an index serves only one key within one table. However,
separate indexes can be created on similar keys in other tables,
and many indexes may exist on the same table. Another di�erence
is that ALLBASE/SQL indexes use a B-tree structure, whereas
TurboIMAGE master data sets use calculated (hash) access to key
values.

DRAFT

9/12/97 20:40

Comparing ALLBASE/SQL with TurboIMAGE 5-5



Manual Masters versus
Hash Structures

Each TurboIMAGE manual master data set has a unique primary
key item, which provides calculated access to the data in the master,
and chained access to the data in the detail data set (if one exists).
A manual master may contain data items other than just the key
item; therefore, it cannot be automatically updated when detail data
changes.

When you create an ALLBASE/SQL table as a hash structure,
it behaves like a manual master data set, in that it has a unique
primary key with calculated access to the key value. Like manual
masters, hash structures have the advantage of speed when the key
value is known exactly, but are less e�cient than normal indexes
when a range of values is required.

Master/Detail versus
Referential Integrity

The TurboIMAGE manual master provides the following methods for
enforcing data integrity:

Insisting that key values entered into the detail data set already
exist in the manual master.
Preventing deletions of key values in the manual master without
prior deletion of the same key values in the detail data set.

In ALLBASE/SQL, you can achieve the same end by creating a table
with a referential constraint and specifying the following clause:

HASH ON CONSTRAINT

This causes a unique hash key in the table (that is, the referenced or
master table) to be related to a foreign key in another table (that is,
the referencing or detail table).

Sort Items versus
Indexes

In TurboIMAGE, you can specify sort items that become the basis
for the sorted order of the output in queries to the database. You
cannot use the search item as a sort item, however, because the
search item points to a chain of entries whose order is �xed, and this
order is not necessarily the same as the sort order.

In ALLBASE/SQL, you can use the ORDER BY clause in the
SELECT command to sort by any column you wish. ALLBASE/SQL
tables are essentially unordered sets of rows, so they can be accessed
in any order. Sorting is improved markedly, however, by the use of
an index on the sort key. Note that the sort key can be and often is
the same as the primary key in the table.

5-6 Comparing ALLBASE/SQL with TurboIMAGE DRAFT

9/12/97 20:40



Mapping of Data
Types

Both TurboIMAGE and ALLBASE/SQL have data types that do
not map exactly to a type in the other system. But a satisfactory
mapping with appropriate conversions can easily be done for most
TurboIMAGE data types.

Basic Mapping Table 5-1 shows the mapping of the most common data types from
TurboIMAGE to ALLBASE/SQL:

Table 5-1. Mapping of TurboIMAGE and ALLBASE/SQL Data Types

TurboIMAGE
Data Type

ALLBASE/SQL
Data Type

Description

I,J SMALLINT 16-bit integer

I2,J2 INTEGER 32-bit integer

K1,K2 INTEGER Requires conversion from binary to integer

P n DECIMAL( n-1,0) Packed decimal

R4 FLOAT Conversion from HP 3000 real to IEEE real

U( n), X( n) CHAR( n) Byte character string

Z n DECIMAL( n,0) Requires conversion from zoned decimal to packed decimal

Compound Items TurboIMAGE compound items are not compatible with
ALLBASE/SQL data types, because ALLBASE/SQL does not
accomodate arrays. In ALLBASE/SQL, you need to create a
separate column description for each member of the compound.

Null Handling TurboIMAGE does not support null values. Thus, a null value is
often represented as an empty string or as zero (for numeric values).

In ALLBASE/SQL, a special data type NULL can be used to
indicate the absence of a value; NULL is distinct from 0 or from an
empty string, which are like any other values. If columns are not
permitted to contain nulls in ALLBASE/SQL, you must de�ne the
column as NOT NULL when you create the table.

DRAFT

9/12/97 20:40

Comparing ALLBASE/SQL with TurboIMAGE 5-7



Differences in
Security

TurboIMAGE and ALLBASE/SQL di�er markedly in their
implementation of security systems.

TurboIMAGE Security The security of TurboIMAGE databases is determined partly by
passing MPE �le system security and partly by the assignment of
user classes and passwords within the schema. Externally, database
users must be valid users in the account where the root �le resides.
For internal security, you de�ne a numbered set of classes and assign
passwords to them, then you add the classes that have read and/or
write access to each data item and data set description in the
schema. When accessing the database, you must specify a password,
which assigns you to a user class with particular permissions in the
database.

Granting and Revoking
Authorities

In ALLBASE/SQL, the DBA (database administrator) GRANTs
and REVOKEs authorities that relate to the DBEnvironment as a
whole or to speci�c tables within it. If you are the DBEnvironment's
creator, you have DBA authority. Users can CONNECT to a
DBEnvironment if the DBA grants CONNECT authority to their
DBEUserIDs, which are related to login name. It is possible to
CONNECT to a DBEnvironment from any account.

If you are the creator of a table, you have OWNER authority over
it, which lets you perform any operation on it, including granting
authorities to other users. Table authorities include the ability to
SELECT, DELETE, INSERT, and INDEX. UPDATE authority can
be granted for individual columns in a table or for the table as a
whole.

Defining ALLBASE/SQL
Groups

In ALLBASE/SQL, you can de�ne authorization groups and then
grant authorities to them; then you can add users to the groups,
at which point they immediately receive the authorities the group
possesses. This makes it possible to create an authorization scheme
that is independent of any list of particular users and passwords.
An authorization group may be a member of another authorization
group.

Defining Views in
ALLBASE/SQL

A di�erent approach to security is possible in ALLBASE/SQL
through the use of views. For a table that contains some sensitive
information and some widely used information, you can create a view
that contains only the widely-used information, grant appropriate
access on the view to a wide range of users, then restrict the access
on the base table to only a few users.

5-8 Comparing ALLBASE/SQL with TurboIMAGE DRAFT

9/12/97 20:40



Differences in
Accessing
Databases

TurboIMAGE and ALLBASE/SQL both o�er a variety of tools for
accessing databases, and both provide techniques for concurrency
control, to regulate access by more than one user at a time.

Interactive Access TurboIMAGE interactive access is through Query/V, which lets you
�nd database entries and report on them using the Query command
language. In ALLBASE/SQL, the interactive interface is known as
ISQL, which uses Structured Query Language (SQL) to access the
database and display query results.

For sophisticated reporting, Business Report Writer supports both
TurboIMAGE and ALLBASE/SQL databases.

Programmatic Access A major di�erence between TurboIMAGE and ALLBASE/SQL is in
the programmatic interface. TurboIMAGE uses a set of intrinsics
which you use in application programs to open databases, obtain
locks, retrieve data, unlock data items and data sets, and close a
database.

ALLBASE/SQL uses embedded SQL programming. You insert
standard SQL statements in an application program, then you
preprocess the program to convert the SQL statements into valid
procedure calls in the language you are using. The converted code is
compiled and linked with a library of ALLBASE/SQL routines. The
use of embedded SQL means that you can prototype and test your
queries in ISQL before running them in an application, thus saving
development time. Embedded SQL also includes a set of dynamic
commands which let your end users perform ad hoc queries through
your applications.

4GL You can use ALLBASE/4GL as a programming tool to create
applications that can access both TurboIMAGE and ALLBASE/SQL
databases|even at the same time. Simply de�ne the appropriate
data sets and/or tables in ALLBASE/4GL's dictionary, then create
screens and menus. As a fourth-generation tool, ALLBASE/4GL lets
you avoid tedious and repetitive coding.

Differences in
Concurrency Control

Concurrency control is needed to protect the consistency of a
database when it is in multiuser operation. TurboIMAGE permits
concurrent access through a mechanism known as access mode. You
choose one of the eight modes of access as you open the database.
These modes o�er a wide range from very restrictive single user
exclusive access to multiuser access with updates permitted by
di�erent users. Some access modes enforce the application's locking
of data sets; others do not.

ALLBASE/SQL uses two DBEnvironment access modes: SINGLE
and MULTI user mode, which you set when you create the
DBEnvironment. (You can also change modes using SQLUtil.) In

DRAFT

9/12/97 20:40

Comparing ALLBASE/SQL with TurboIMAGE 5-9



addition, tables have an access mode, which you specify when you
create them. Tables may be PUBLIC, PUBLICREAD, or PRIVATE,
as follows:

PUBLIC may be read or updated by anyone who has
authority to CONNECT to the DBEnvironment.

PUBLICREAD may be read by anyone but only updated by one
user at a time.

PRIVATE may only be read or updated by a single user at a
time.

Locking Mechanisms In TurboIMAGE, you use the DBLOCK intrinsic in certain access
modes to provide locking at the database level, the data set level,
or the data item level. Locking must be explicitly requested by the
user; it is required for concurrent updates. You can request locks
conditionally in TurboIMAGE, which means that the call returns if
the lock request fails.

ALLBASE/SQL provides automatic locking for all data manipulation
commands|reads and writes. Locking is unconditional, and it
applies at the level of the table or the data page; row level locking
is not supported. You can also use the explicit LOCK TABLE
command. Further, you can specify an isolation level, which
determines the kinds of locks obtained by ALLBASE/SQL. Isolation
level applies to transactions, which are bounded by the SQL BEGIN
WORK and COMMIT WORK commands. Four isolation levels are
possible:

RR Repeatable Read. The strongest locks are used to assure
continuity of data from one read to another within the same
transaction.

CS Cursor Stability. Weaker locks are obtained and released as
needed during the scan of a particular database table.

RC Read Committed. Weaker locks are obtained but released
even sooner during the scan of a particular database table.

RU Read Uncommitted. No locks are obtained.

For complete information about these isolation levels, refer to the
chapter \Concurrency Control Through Locks and Isolation Levels"
in the ALLBASE/SQL Reference Manual .

Concurrency control is complex, and no exact mapping between the
two systems is possible.

5-10 Comparing ALLBASE/SQL with TurboIMAGE DRAFT

9/12/97 20:40



Sample Mapping of
a TurboIMAGE
Database to an
ALLBASE/SQL
DBEnvironment

Consider the following TurboIMAGE schema:

BEGIN DATABASE TIPART;

PASSWORDS:

12 BUYER;

14 CLERK;

18 DO-ALL;

ITEMS:

BINNUMBER , K (12,14/18);

COUNTCYCLE , 3I (12/18);

ITEMCOUNT , I2 (/14,18);

LASTCOUNTDATE , X8 (12/18);

PARTNAME , X32 (14/12,18);

PARTNUMBER , X16 (14/12,18);

SALESPRICE , P12 (/12,18);

WAREHOUSE , X32 (/12,18);

SETS:

NAME: PARTS, MANUAL;
ENTRY:

PARTNUMBER(1),

PARTNAME,

SALESPRICE;

CAPACITY: 301;

NAME: INVENTORY, DETAIL;

ENTRY:

PARTNUMBER(PARTS),

BINNUMBER,

ITEMCOUNT,

WAREHOUSE,

LASTCOUNTDATE,

COUNTCYCLE;

CAPACITY: 200;

END.

You might implement this design using a set of SQL commands such
as the following:

START DBE 'TIPARTS' NEW;

CREATE GROUP BUYER;

CREATE GROUP CLERK;

CREATE GROUP DO_ALL;

COMMIT WORK;

CREATE DBEFILESET DATAFS;
CREATE DBEFILE DATAF1 WITH

DRAFT

9/12/97 20:40

Comparing ALLBASE/SQL with TurboIMAGE 5-11



PAGES=200, NAME='DATAF1', TYPE=MIXED;

ADD DBEFILE DATAF1 TO DBEFILESET DATAFS;

CREATE PUBLIC TABLE INVENTORY
(PARTNUMBER CHAR(16) NOT NULL

REFERENCES PARTS (PARTNUMBER),

BINNUMBER INTEGER NOT NULL,

ITEMCOUNT INTEGER NOT NULL,

WAREHOUSE CHAR(32) NOT NULL,

LASTCOUNTDATE CHAR(8) NOT NULL,

COUNTCYCLE_1 SMALLINT NOT NULL,

COUNTCYCLE_2 SMALLINT NOT NULL,

COUNTCYCLE_3 SMALLINT NOT NULL)

IN DATAFS;

COMMIT WORK;

CREATE DBEFILESET HASHFS;

CREATE DBEFILE HASHF1 WITH

PAGES=350, NAME= 'HASHF1';

ADD DBEFILE HASHF1 TO DBEFILESET HASHFS;

CREATE PUBLIC TABLE PARTS

(PARTNUMBER CHAR(16) NOT NULL,

PARTNAME CHAR(32) NOT NULL,

SALESPRICE DECIMAL(11,0) NOT NULL)

HASH ON (PARTNUMBER) PAGES=301

IN HASHFS;

COMMIT WORK;

REVOKE ALL ON INVENTORY FROM PUBLIC;

REVOKE ALL ON PARTS FROM PUBLIC;

GRANT SELECT ON INVENTORY, PARTS TO
BUYER, CLERK, DO_ALL;

GRANT INSERT, UPDATE, DELETE ON

INVENTORY, PARTS TO DO_ALL;

GRANT UPDATE ON INVENTORY

(PARTNUMBER, ITEMCOUNT) TO CLERK;

GRANT UPDATE ON PARTS (PARTNUMBER, PARTNAME,

SALESPRICE, WAREHOUSE) TO BUYER;

COMMIT WORK;

This mapping is intended as illustrative only, not an exact migration
of the database. To create an exact mapping, you would create views
to de�ne speci�c subsets of the tables, grant authorities on the views
to appropriate users, then revoke access to the base tables.

5-12 Comparing ALLBASE/SQL with TurboIMAGE DRAFT

9/12/97 20:40



Using
ALLBASE/Turbo
CONNECT

ALLBASE/Turbo CONNECT allows you to select TurboIMAGE/XL
data using ALLBASE/SQL. Using the utility program ATCUtil,
you attach the TurboIMAGE database to an ALLBASE/SQL
DBEnvironment as shown in Figure 5-3. The attachment process
creates a mapping of data sets to tables like the one shown previously
in this chapter.

Figure 5-3. Using ALLBASE/Turbo CONNECT

After attaching, you can use ALLBASE/Turbo CONNECT for
read-only access of TurboIMAGE data from an ALLBASE/SQL
DBEnvironment|interactively or in application programs.

For complete information about ALLBASE/Turbo CONNECT, refer
to the ALLBASE/Turbo CONNECT Administrator's Guide.

DRAFT

9/12/97 20:40

Comparing ALLBASE/SQL with TurboIMAGE 5-13





6

Glossary of Terms in ALLBASE/SQL

Ad Hoc Query Type of query that is issued for the needs of a particular moment. It
is usually not stored for later use or built into an application. Ad hoc
queries are important in the use of relational databases for decision
support.

Archive Logging Logging method that uses log �les to roll back incomplete
transactions after a system failure and to roll forward from an earlier
DBEnvironment backup. Uses a relatively large �le or set of �les to
record all activity that modi�es databases from the point at which
you do a backup of the entire DBEvironment. If the logs are intact
following a hard crash, you can recover a DBEnvironment from an
earlier saved version.

Attribute A characteristic of a data element considered during database design.
As you organize your data, you arrange it into categories that possess
similar attributes. The categories are known as entities.

DRAFT

9/12/97 20:40

Glossary of Terms in ALLBASE/SQL 6-1



Authority Permission to access speci�c objects for speci�c purposes within an
ALLBASE/SQL DBEnvironment. Three major types are SPECIAL
authority, TABLE authority, and RUN authority.

Authorization Group See Group.

Base Table Table upon which a view is based.

Class Special category of ALLBASE/SQL owner that is neither a particular
DBEUserID nor a group. You do not explicitly create a class; you
create it implicitly by creating objects owned by it. A class does not
have members like a group. Objects owned by classes can be dropped
or modi�ed only by a DBA. A class does not have a password
associated with it.

Clustering Index An index which attempts to locate new rows in physical proximity to
other rows with similar key values. Valuable when a large number of
inserts follows a similar large number of delete operations.

Column Vertical division within a database table. Analogous to a �eld in a
�le.

Column Authorization Permission to update a speci�c column within a table.

Column List One or more columns speci�ed as part of a query result.

Concurrency The ability of multiple users to access the same database �les
simultaneously. Concurrency is regulated by locking, which controls
the degree of concurrent access permitted|from exclusive read or
write access to shared read with concurrent updates.

Constraint A condition placed upon a column or table that requires values in
the column or table to meet certain conditions before a row can be
inserted or deleted. Two types supported by ALLBASE/SQL are
unique constraints and referential constraints.

Cursor Stability (CS) An isolation level that guarantees that any data on the page you
are currently accessing cannot be updated by other users until you
move o� that page. This o�ers a greater degree of concurrency than
Repeatable Read, which is the default isolation level.

6-2 Glossary of Terms in ALLBASE/SQL DRAFT

9/12/97 20:40



Data Analysis Study of raw data before building a database. Concerns the kind of
data that is to be stored and how the data is to be used.

Database A structured arrangement of data elements designed for the easy
selection of information. In ALLBASE/SQL, a database is a
collection of tables, views, and indexes having the same ownership
in a DBEnvironment. A DBEnvironment may contain several
databases.

Database Administrator
(DBA)

The individual with DBA authority who creates and maintains
objects in a DBEnvironment. DBA authority permits the use of
certain restricted SQL and SQLUtil commands or options, and also
confers co-ownership of all the objects in a DBEnvironment.

Database Design The creation of a speci�c arrangement of data in tables or data sets
with an appropriate security structure.

Data Control Language The set of SQL commands that control access to data. This includes
the ADD, REMOVE, GRANT, and REVOKE commands, as well as
the commands to create, manage, and drop authorization groups.
Also known as DCL.

Data Definition The process of creating and dropping database objects.

Data Definition
Language

The set of SQL commands that create and drop database objects.
This includes the commands to create and remove DBEFileSets,
DBEFiles, tables, views, and indexes. Also known as DDL.

Data Manipulation The process of access data within a database.

Data Manipulation
Language

The set of SQL commands that access data. This includes the
actions of selecting data, inserting rows, updating columns, and
deleting rows. Also known as DML.

Data Type A kind of data that can be stored in database tables. Valid
types are CHARACTER, VARCHAR, INTEGER, DECIMAL,
FLOAT, DATE, TIME, DATETIME, INTERVAL, BINARY, and
VARBINARY. LONG varieties of BINARY and VARBINARY are
also available.

DRAFT

9/12/97 20:40

Glossary of Terms in ALLBASE/SQL 6-3



DBA Authority The most powerful authority within an ALLBASE/SQL
DBEnvironment. Includes the authority to create new objects, drop
all existing objects, and grant or revoke all authorities for other
users. DBA authority implies co-ownership of all objects within the
DBEnvironment.

DBCore A central component of ALLBASE/SQL that performs physical
�le access and logging. DBCore also provides concurrency control
through the use of isolation levels and locking.

DBECon File DBEnvironment Con�guration File. This contains startup
parameters for the DBEnvironment. The contents of this �le are
initially determined at the time you issue the START DBE NEW
command. You can modify some of these parameters using SQLUtil,
and you can override some of them with the START DBE command.

DBECreator The individual who issues the START DBE NEW command. Some
maintenance operations require you to be the DBECreator.

DBEFile File containing data or indexes or both. A DBEFile of type TABLE
can only contain table data; a DBEFile of type INDEX can only
contain index data; a DBEFile of type MIXED can contain both
table and index data. DBEFiles are operating system �les and are
named according to the conventions of the operating system.

DBEFileSet Logical grouping of DBEFiles. You associate newly created DBEFiles
with a DBEFileSet, and you specify a DBEFileSet when you create a
table.

DBEnvironment A collection of �les containing one or more databases. Files include
the DBECon �le (which holds startup parameters and log �le
names); DBEFile0, which contains the system catalog; and log �les.
A DBenvironment may also contain additional DBEFiles for table
and index data. The DBEnvironment is the maximum scope of a
transaction within ALLBASE/SQL.

DBEUserID In HP-UX, a login name. In MPE XL, a login name and account
name joined with the character '@'. One type of owner of database
objects.

6-4 Glossary of Terms in ALLBASE/SQL DRAFT

9/12/97 20:40



Embedded SQL
Program

An application program incorporating SQL statements for
programmatic access to ALLBASE/SQL databases. Each embedded
SQL statement begins with the keywords EXEC SQL. Embedded
SQL programs are preprocessed, then compiled before execution. For
most SQL commands, the preprocessor stores a section, or runtime
version of the command, in the DBEnvironment.

Entity Basic subdivision of data elements in database design. Each entity is
a thing or event about which information is kept in the database. For
each entity, there is at least one attribute that uniquely identi�es a
data element as belonging to the entity.

Explicit Locking Locking of tables in transactions by the use of the LOCK TABLE
command.

Expression speci�es a value. The most common sources of values are columns in
a table or host variables in an application program. Expressions are
used to identify columns or rows or to de�ne new values for columns.

Foreign Key A column or columns in a table which have a relationship to a
primary column or columns in a di�erent table such that the value
must exist in the primary key column before it can be inserted into
the foreign key column, and it must be deleted from all foreign key
columns before it can be deleted from the primary key column.

Group Authorization group. Membership in a group is used to confer
common ownership or common authorization for other objects
in the DBE. You create a group explicitly, using the CREATE
GROUP command, then you add users to it. You can then grant
authorizations to the group or revoke authorizations from the group.
You can also use the group name for the ownership of database
objects.

Hash Structure ALLBASE/SQL table containing rows that are stored in such a
way as to permit fast access to speci�c tuples by means of a hash
function. A hash structure provides a method for quickly �nding a
row by calculating its location based on the value of the hash key,
which you specify when you create the table.

Host Variable A variable in an application program that receives data from an
ALLBASE/SQL database (output host variable) or passes data to
the database from the program (input host variable).

DRAFT

9/12/97 20:40

Glossary of Terms in ALLBASE/SQL 6-5



Implicit Locking Locking of tables in transactions according to table type and
isolation level. For example, PRIVATE tables are locked exclusively
for all access; PUBLIC tables are locked exclusively only for write
operations.

Index A data structure that potentially speeds access to table data through
the use of an index scan. The four types of index are: unique,
clustering, unique and clustering, and non-unique and non-clustering.
An index is created for one or more key columns in the table.

Index Scan A methoe of looking up each row in an index to �nd its location in
the data �le, then accessing the row in the table. This kind of access
requires the existence of a B-tree index, which you must create. You
do not explicitly request an index scan. Instead, SQLCore makes this
choice if the query optimizer decides that the use of an index is the
best way to access the data.

Integrity Constraint A device that ensures that a database contains only valid data. Two
types are the referential constraint and the unique constraint.

ISQL The interactive interface to ALLBASE/SQL. ISQL is the tool you
use for ad hoc queries as well as for loading and unloading data and
other database administration tasks.

Isolation Level The degree of separation enforced between the transactions of
di�erent users. There are four levels: Repeatable Read (RR), Cursor
Stability (CS), Read Committed (RC), and Read Uncommitted
(RU). You specify an isolation level in the BEGIN WORK command.

Join A query that accesses data from two or more ALLBASE/SQL tables
at a time. A join column is a column that occurs in both tables of
a join (often it is a key column) and contains similar values in both
tables.

Key One or more columns on which an index, hash structure, or integrity
constraint are based.

Key Column A column which is indexed, or a column which participates in
integrity constraints as all or part of a PRIMARY or FOREIGN key.

6-6 Glossary of Terms in ALLBASE/SQL DRAFT

9/12/97 20:40



Key Value The value contained in the columns of a key. Key values are stored in
index pages along with pointers to the location of rows in data pages.

Locking A technique for concurrency control through which ALLBASE/SQL
restricts access to data by one individual when the data is being used
by another. Locks are of three types: shared, exclusive, or shared
with intent to become exclusive. Lock type is determined by the
type of table being accessed and by the kind of operation the user
is performing. Locks are released when a transaction ends with a
COMMIT WORK command.

Logging The use of log �les to record operations that modify database �les.
Logging is of two kinds: nonarchive logging, and archive logging.
Both kinds permit you to roll back incomplete transactions following
a system failure. This maintains data integrity by backing out
changes to the database that were not committed. Only archive
logging allows you to roll forward from an earlier version of a
DBEnvironment by reapplying all committed transactions up to a
speci�c recovery time.

Message Catalog A �le containing ALLBASE/SQL error and warning messages. When
a message is displayed, its text comes from this �le. You can look up
the meaning of the message in the ALLBASE/SQL Message Manual .

Message File An error and warning �le known as SQLMSG generated by a
preprocessor session. It contains any errors generated during the
preprocessing of an embedded SQL program.

Modified Source File The �le that results from using the preprocessor on an embedded
SQL source �le. The modi�ed source �le can then be compiled into
an executable program.

Module A group of sections stored in the DBEnvironment when an embedded
SQL program is preprocessed or when you use the PREPARE
command in ISQL. The sections are activated when the program is
run or when the EXECUTE command is issued in ISQL.

Native Language The language of the DBEnvironment or of speci�c CHAR and
VARCHAR columns in a table. You specify the DBEnvironment's
language in the START DBE NEW command using the LANG=
clause. In table creation, you can use the LANG= clause as part of
a character column description. The default language is known in
HP-UX as n-computer; in MPE XL, it is NATIVE-3000.

DRAFT

9/12/97 20:40

Glossary of Terms in ALLBASE/SQL 6-7



Nonarchive Logging The default logging method. Uses log �les to roll back (that is, undo)
incomplete transactions that were not committed at the time of a
system failure.

Normalization A formal process of adjusting table design in relational databases by
examining and adjusting the relationships among columns.

Object A structure created and stored in an ALLBASE/SQL
DBEnvironment. The most common objects are tables, views,
indexes, and groups.

Optimizer Component of SQLCore which chooses the access path in processing
a query. In optimization, ALLBASE/SQL chooses whether to
use serial access to the data, or whether to use an index or hash
structure if they exist. If there is a choice among indexes, the
optimizer calculates the best access path.

Owner A DBEUserID, a group name, or a class name. Ownership applies to
database objects such as tables, views, indexes, and authorization
groups. The owner may drop the object or transfer it to some other
owner.

Predicate Part of query syntax that speci�es a subset of rows to be returned in
the query result. Predicates are introduced by the keyword WHERE,
so they are sometimes called WHERE clauses.

Predicates let you specify a range of values. The comparison
predicate lets you compare a column value with a constant or host
variable; the LIKE predicate lets you compare a column value with
a portion of a character string; the BETWEEN predicate speci�es a
range of values for a comparison. Special predicates of various kinds
let you search for rows in more complex ways, including the use of
subqueries.

Preprocessor A component of ALLBASE/SQL that converts an embedded SQL
program into a modi�ed source �le for input to a compiler in one of
several programming languages: C, COBOL, FORTRAN, and Pascal.

Primary Key A column in a table de�ned so as to permit reference by foreign keys
in other tables. A primary key also enforces uniqueness within the
column.

6-8 Glossary of Terms in ALLBASE/SQL DRAFT

9/12/97 20:40



Projection Relational operation that extracts a subset of columns from a table.

Query Request for information from database tables. A typical example is a
SELECT statement.

Query Language A set of operators, expressions, and commands that let you
manipulate a database. The query language of ALLBASE/SQL is
SQL.

Query Result The rows retrieved by a SELECT statement. Query results are also
known as result tables.

Read Committed (RC) An isolation level that guarantees only that data you read in a
transaction has been committed by some earlier transaction; that is,
it is not currently in the process of update by some other transaction
at the time you are reading it. In practical terms, this means that
another transaction can update or delete the same row before your
transaction is over. However, concurrency is greatly improved.

Read Uncommitted (RU) An isolation level that enforces no separation between your
transaction and those of others, because no locks are obtained for
reads. This level permits dirty reads, that is, reading data from the
data bu�ers that has not and may never be written to the database
at all.

Referential Constraint An integrity constraint that enforces a relationship between the rows
of two tables. Any value you attempt to insert into a table that has a
referential constraint must either be NULL or be the same as a value
in the referenced table.

Relation See Table.

Relational Operations Ways of extracting data from relational tables. The three primary
relational operations are selection, projection, and joining.

Relationship The meaningful interaction of entities in database design.
Relationships may be one-to-one, one-to-many, or many-to-many.

Repeatable Read (RR) An isolation level that enforces the highest level of separation
between the transactions of di�erent users. This level guarantees
that when you re-read any data you have read previously in the same
transaction, the value seen in the second read will be the same as the
value seen in the �rst read. In practical terms, this means that other
users may not update any data you have read at this isolation level
until you COMMIT WORK.

DRAFT

9/12/97 20:40

Glossary of Terms in ALLBASE/SQL 6-9



Result Table See Query Result.

Rollback Recovery A process by which ALLBASE/SQL backs out of incomplete
transactions using a log �le. If a DBEnvironment stops while some
transactions are still in progress, they must be undone the next time
the DBEnvironment starts up.

Rollforward Recovery A process by which ALLBASE/SQL reapplies transactions to a
DBEnvironment from a log �le. Rollforward recovery requires the use
of archive logging.

Row Horizontal division within a database table. Analogous to a record in
a �le.

Run Authority Permission to execute stored sections that perform ALLBASE/SQL
queries or other operations from an application program. Required in
addition to permission at the operating system level to execute the
application itself.

Schema An ISQL command �le containing commands to create a
DBEnvironment and the objects within it, such as DBEFileSets,
DBEFiles, tables, views, indexes, and authorities. You can create a
schema �le with an editor, or you can generate one from an existing
DBEnvironment by using SQLGEN.

Also, a TurboIMAGE database de�nition which is the input to the
TurboIMAGE DBSCHEMA program.

Section An SQL command stored in the DBEnvironment for use at run time
by an application program. When sections are valid, they can be
executed immediately by ALLBASE/SQL. When they are invalid,
they must be revalidated at run time before execution.

Serial Scan A method of reading sequentially from the start of a table until the
row is found. Also called table or relation scan. This is the default
scan method used to access rows in a table when indexes do not
exist. If indexes do exist on a table, the optimizer chooses whether to
perform an index scan or a serial scan.

Special Authority Permission to use the DBEnvironment in particular ways.
CONNECT authority lets you establish a user session. RESOURCE
authority lets you create and drop objects such as tables, views,
DBEFiles, etc. DBA authority gives you permission to perform
all SQL and SQLUtil commands, and it grants co-ownership of all
objects in a DBEnvironment.

6-10 Glossary of Terms in ALLBASE/SQL DRAFT

9/12/97 20:40



SQL See Structured Query Language.

SQLCore A central component of ALLBASE/SQL. SQLCore checks the syntax
of commands and prepares them for processing. SQLCore also
optimizes queries, that is, chooses the best access path to the data.

SQLGEN A utility program for database administrators that generates
the SQL commands necessary to re-create all or part of a
DBEnvironment. The output from SQLGEN is a command �le
(sometimes called a schema) that can be used as input to ISQL in
re-creating database objects.

SQLMigrate A utility program for database administrators that assists in
migrating a DBEnvironment from one version of ALLBASE/SQL to
another without unloading and reloading data.

SQLUtil A utility program for database administrators that assists with
DBEnvironment maintenance, backup, and recovery. SQLUtil also
lets you modify the startup parameters for a DBEnvironment.

Structured Query
Language

A standard query language syntax de�ned by ANSI standards in the
United States nad X/OPEN standards in Europe. The relational
database query language used by ALLBASE/SQL.

Subquery A query within another query. An example is a subquery embedded
in the predicate of another query. The result of the inner query is
used to evaluate the outer query.

SYSTEM A DBEFileSet created by ALLBASE/SQL when you issue the
START DBE NEW command. The DBEFile known as DBEFile0 is
associated with SYSTEM, which is the DBEFileSet containing the
system catalog. You can add DBEFiles to SYSTEM as you would to
any other DBEFileSet.

Also, a special user associated with the system views in the system
catalog.

System Catalog A system-maintained database of tables and views owned by the
special user SYSTEM and containing information about all the
objects in the DBEnvironment. Contains data about all the objects
created in the DBEnvironment. Di�ers from the DBECon �le, which
contains startup parameters, not object de�nitions.

DRAFT

9/12/97 20:40

Glossary of Terms in ALLBASE/SQL 6-11



System Table See System View.

System View A component view within the system catalog. You can issue queries
on the views in the system catalog just as you would on ordinary
database tables to display information about the DBEnvironment.

Table Basic unit of data storage in a relational database. Also known as
a relation. Tables consist of rows and columns. A result table is a
query result displayed in tabular form.

Table Authority Permission to use speci�c SQL commands on particular tables. There
are several kinds of TABLE authority: SELECT, INSERT, DELETE,
UPDATE, and INDEX. SELECT, INSERT, and DELETE let you
operate on rows or sets of rows in a table; UPDATE lets you modify
speci�c rows or columns in a table; and INDEX lets you create
indexes on a table.

Transaction A unit of work in ALLBASE/SQL. Also, a unit of DBEnvironment
logging and recovery. A transaction is started with a BEGIN
WORK command and is ended by a COMMIT WORK command.
The BEGIN WORK statement may be implicitly issued by
ALLBASE/SQL if no other transaction is current.

Unique Constraint An integrity constraint which requires that no two rows in a table
have the same values in a speci�ed column or columns.

Unique Index An index which requires that no two rows in a table have the same
key value.

Validation The process by which ALLBASE/SQL marks a section valid in the
system catalog. A section is marked valid if all the objects it refers to
exist, and if it has been optimized. A valid section can be executed
immediately at run time with no further preparation.

View a table derived by placing a \window" over one or more tables.
The derivation of a view is a SELECT command. View names are
governed by the same rules as table names.

6-12 Glossary of Terms in ALLBASE/SQL DRAFT

9/12/97 20:40


