HP aC++ Version A.01.07 Release Notes HP Series 9000

5966-9854 December 1997

© Copyright 1997 Hewlett-Packard Company

Legal Notices

Copyright © Hewlett-Packard Company 1997. All rights are reserved. Reproduction, adaptation, or translation without prior written permission is prohibited, except as allowed under the copyright laws.

Hewlett-Packard makes no warranty of any kind with regard to this document, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Hewlett-Packard shall not be liable for errors contained herein nor direct, indirect, special, incidental or consequential damages in connection with the furnishing, performance, or use of this material. Information in this publication is subject to change without notice.

Corporate Offices: Hewlett-Packard Co., 3000 Hanover St., Palo Alto, CA 94304

Use, duplication or disclosure by the U.S. Government Department of Defense is subject to restrictions as set forth in paragraph (b)(3)(ii) of the Rights in Technical Data and Software clause in FAR 52.227-7013.

Rights for non-DOD U.S. Government Departments and Agencies are as set forth in FAR 52.227-19(c)(1,2).

Use of this document and flexible disc(s), compact disc(s), or tape cartridge(s) supplied for this pack is restricted to this product only. Additional copies of the programs may be made for security and back-up purposes only. Resale of the programs in their present form or with alterations, is expressly prohibited.

A copy of the specific warranty terms applicable to your Hewlett-Packard product and replacement parts can be obtained from your local Sales and Service Office.

© Copyright 1980, 1984, 1986 AT&T Technologies, Inc. UNIX and System V are registered trademarks of AT&T in the USA and other countries.

UNIX is a registered trademark in the United States and other countries, licensed exclusively through X/Open Company Limited.

PostScript is a trademark of Adobe Systems, Inc.

© Copyright 1985-1986, 1988 Massachussetts Institute of Technology. X Window System is a trademark of the Massachussetts Institute of Technology.

Contents

1.	Features
	New and Changed Features
	Version A.01.04 Features
	Version A.01.00 Features
	Migrating from HP C++ (cfront) to HP aC++11
2.	Installation Information
	Current Run-time Support Library Required
	Attention Softbench Users14
3.	Related Documentation
	Online Documentation
	Printed Documentation
	Other Documentation19Content of .o Files may Change19The Named Return Value (NRV) Optimization19Linker Compatibility Warnings20
1	Droblam Descriptions and Fives and Known Limitations

Contents

Known Problems
Unsatisfied Symbols if Using Non-current Support Library 24
Syntax Errors when Using /usr/include/sys/time.h 24
Syntax Problems when Using /usr/include/math.h 25
Warnings when using /usr/include/rpc/xdr.h26
Known Limitations

Preface

This document provides the following information:

- features
- installation information
- · related documentation
- problem descriptions and fixes and known limitations

Note: The software code printed in the release notes title indicates the software product version at the time of release. Some product and operating system changes do not require changes to documentation; therefore, do not expect a one-to-one correspondence between these changes and release notes updates.

Latest printing: December 1997

This document resides online in the file /opt/aCC/newconfig/RelNotes/ACXX.release.notes. You can print the online copy by using an lp command like the following:

 $\verb|lp -d| printer_name / \verb|opt/aCC/newconfig/RelNotes/ACXX.release.notes| \\$

Problem Reporting

If you have any problems with the software or documentation, please contact your local Hewlett-Packard Sales Office or Customer Service Center.

1 Features

This chapter summarizes the features included in this version of the HP aC++ compiler. Features introduced in prior release versions are also listed and grouped by the compiler version number.

The compiler supports much of the evolving *Working Paper for Draft Proposed International Standard for Information Systems* — *Programming Language C++*.

New and Changed Features

New features in HP aC++ version A.01.07 are listed below. They apply to HP-UX 10.10 and 10.20 operating systems.

The *HP aC++ Online Programmer's Guide* contains full documentation. (See Chapter 3 of these release notes for access instructions.).

 The aC++ default template instantiation mechanism has changed to compile-time instantiation (CTTI). For source code containing templates, the new default may result in faster compile-time processing.

The previous default behavior remains available by specifying the +inst_auto command-line option when compiling and linking. If you provide archive or shared libraries for distribution, you may want to use +inst_auto to insure consistent behavior between each distribution of your libraries.

Also, if you provide either archive or shared library products, and your customers need to use the prior template instantiation default in their builds, you must compile your libraries by using the +inst_auto option.

Refer to the HP *aC++ Online Programmer's Guide* and to the online technical paper, *Using Templates in HP aC++*, for details about template instantiation and migration. For access instructions, see Chapter 3 of these release notes under *Online Documentation*.

Chapter 1 7

Features

Version A.01.04 Features

- Member templates are supported, including those in pre-compiled headers.
- Updated versions of the Rogue Wave Standard C++ Library (version 1.2.1) and the Tools.h++ Foundation Class Library (version 7.0.6) are provided. HTML documentation for these libraries is also updated; see Chapter 3 of these release notes under *Online Documentation*.
- The *HP aC++ Online Programmer's Guide* has been updated, including additional migration and template information. For access instructions, see Chapter 3 of these release notes under *Online Documentation*.
- The technical paper, *Using Templates in HP aC++*, has been updated to describe the new default, compile-time template mechanism and additional information about template libraries. For access instructions, see Chapter 3 of these release notes under *Online Documentation*.

Version A.01.04 Features

Features introduced in the prior release, HP aC++ version A.01.04 are listed below. They apply to HP-UX 10.10 and 10.20 operating systems.

The *HP aC++ Online Programmer's Guide* contains full documentation. (See Chapter 3 of these release notes for access instructions.)

- +ESsfc option to replace millicode calls with inline code when performing simple function pointer comparisons.
- +inline_level option to control how C++ inlining hints influence HP aC++.
- +u option to allow pointers to access non-natively aligned data.
 This option alters the way that the compiler accesses dereferenced data. Use of this option may reduce the efficiency of generated code.
- +W option to selectively suppress warning messages.
- Support for new style casts as defined in the proposed C++ standard. The keywords const_cast, reinterpret_cast, and static_cast are supported.

- Partial support for the namespace and using keywords. User namespaces are supported. Standard C++ Library components not in namespace std:: are not supported. Koenig lookup is not supported.
- Support for class template partial specializations.
- Extensive online documentation is provided, including the first edition of the technical document, *Using Templates in HP aC++*. Refer to Chapter 3 of these release notes for details.
- HP aC++ now supports level 4 optimization. The +04 compile-line option is supported.
- HP aC++ now supports profile-based optimization. The compile-line options +dfname, +I, +P and +pgmname are supported.

Version A.01.00 Features

Features introduced in the prior release, HP aC++ version A.01.00, are listed below. They apply to HP-UX 10.10 and 10.20 operating systems.

The *HP aC++ Online Programmer's Guide* contains full documentation. (See Chapter 3 of these release notes for access instructions.)

- Improved error messages allow you to quickly isolate problems in your code.
- Pre-compiled header files help you speed development substantially. Use them to reduce compilation time and object file size.
- An automatic template instantiation mechanism is provided. (Note, as of HP aC++ version A.01.05, this mechanism is no longer the default, although it is available by specifying the +inst_auto command-line option.)
- Explicit template instantiation (defined by the draft standard) is supported.
- Application thread-safe exception handling in shared libraries is supported.
- · Inline functions are aggressively inlined.
- Standards based features include the following:

Chapter 1 9

Features

Version A.01.00 Features

- keywords: bool, dynamic_cast, explicit, mutable, typeid, typename, volatile, wchar_t
- class: type_info
- · explicit template instantiation
- · overloading new and delete for arrays
- standard exception classes
- The following libraries are provided:
 - Rogue Wave Standard C++ Library Version 1.2.0, includes STL (updated at HP aC++ Version A.01.07 to library version 1.2.1)
 - Rogue Wave Tools.h++ Version 7.0.2 Foundation Class Library (updated at HP aC++ Version A.01.07 to library version 7.0.6)
 - · cfront compatible Iostream Library
 - Standard Components Library (obsolete)
- Extensive online documentation is provided. Refer to Chapter 3 of these release notes.
- +DA designations for PA-RISC 2.0 model and processor numbers to generate code for the PA-RISC 2.0 systems. The +DAportable option will generate code compatible across PA-RISC 1.1 and 2.0 workstations and servers.
 - Default architecture object code generation is now determined automatically for all systems as that of the machine on which you compile.
- +DS designations for PA-RISC 2.0 model and processor numbers -- to perform instruction scheduling tuned for PA-RISC 2.0 systems.
 - Default instruction scheduling is now determined automatically for all systems as that of the machine on which you compile, or on the setting of +DA, if it is specified.
- option -l:library> to support the ld feature.
- +ESfic option -- to replace millicode calls with inline code for fast indirect calls.
- 64-bit integral data types (long long and unsigned long long) are supported for HP aC++ applications needing large integers, such as large file system databases. Use the -ext command line option to specify.

- HP aC++ features are supported by the HP Distributed Debugging Environment (DDE).
- The +help option invokes online help for the HP aC++ compiler and linker and libraries.

Migrating from HP C++ (cfront) to HP aC++

The compiler lists Errors, Future Errors and Warnings. Expect to see more warnings, errors and future errors reported in your code, many related to standards based syntax. Some migration issues are listed below; for more complete information, refer to the *Migrating from HP C++(cfront) to HP aC++* section in the *HP aC++ Online Programmer's Guide*.

- The overload resolution for operators has been updated to reflect the latest version of the evolving draft standard. You may see some additional "ambiguous" function error messages displayed.
- Most frequently reported migration issue: enum $x \{ x1, \}$; The trailing comma is an error.
- Changes to temporary creation for rvalues used to initialize return values which are const references now causes:

```
Error 652: Exact position unknown; near file, line#. Initialization of the result <some const &> requires creating a temporary, yet the temporary's lifetime ends with the return from the function.
```

• You can bracket your HP aC++ changes with the macro defined by the draft standard. For example:

```
#if __cplusplus >= 199707L
// HP aC++ Code
#endif // __cplusplus >= 199707L
```

• If you are using directed mode instantiation with the cfront based compiler, an awk script can be used to convert your file to an instantiation file that uses the explicit instantiation syntax. Note that explicit instantiation syntax can be used to instantiate a

Chapter 1 11

Features

Migrating from HP C++ (cfront) to HP aC++

template and all of its member functions, an individual template function, or a template class's member function. The $HP\ aC++\ Online\ Programmer's\ Guide\ contains\ an\ example\ script.$

2 Installation Information

Read this entire document and any other release notes or readme files you may have before you begin an installation.

To install your software, run the SD-UX swinstall command. It will invoke a user interface that will lead you through the installation. For more information about installation procedures and related issues, refer to *Managing HP-UX Software with SD-UX* and other README, installation, and upgrade documentation provided or described in your HP-UX 10.x operating system package.

Depending on your environment, you may also need documentation for other parts of your system, such as networking, system security, and windowing.

HP aC++ requires approximately 80 MB of disk space: 25 MB for the files in /opt/aCC and 30 MB for DDE, Blink Link, and HP/PAK.

Current Run-time Support Library Required

To work correctly, an application must be linked to or run with an HP aC++ run-time support library (libCsup.a or libCsup.sl) that comes with this version of HP aC++ or a subsequent version. Linking with an older version of libCsup.a or running your application with an older version of libCsup.sl (the default) may cause spurious failures.

Chapter 2 13

Attention Softbench Users

You should install Softbench (DDE and PAK) before installing HP aC++. This is because HP aC++ is packaged with DDE and a DDE specific patch. Not installing in this order results in an unsupported configuration.

3 Related Documentation

Documentation for HP aC++ is described in the following sections.

Online Documentation

The following online documentation is included with the HP aC++ product.

HP aC++ Online Programmer's Guide

Access the guide in any of the following ways:

• Use the +help command-line option. (Be sure /opt/aCC/bin/ is in your path.)

```
aCC +help
```

- Select the ? icon on the HP Vue or HP CDE front panel.
- Use one of the following commands:

HP VUE users, enter the helpview command which is in either /usr/vue/bin or /usr/vhelp/bin.

HP CDE users, enter the following command:

/usr/dt/bin/dthelpview -helpVolume /opt/aCC/help/C/ACXX.hv

Using Templates in HP aC++

This technical document summarizes template features defined in the proposed C++ standard and describes template instantiation as implemented in HP aC++. It is provided with HP aC++ in both postscript and HTML format in the following locations:

/opt/aCC/newconfig/TecDocs/templates.ps

/opt/aCC/newconfig/TecDocs/templates.htm

Chapter 3 15

Related Documentation

Online Documentation

NOTE

NOTE: The +help option may not work on systems running HP CDE. If it does not work, ensure the environment variable DTHELPSEARCHPATH is set. (It may not be set if you rlogin to a system, for example.) If it is not set, use the following command to set it (for ksh):

eval \$(/usr/dt/bin/dtsearchpath)

Ensure the LANG environment variable is set, typically LANG=C.

HP-UX Linker and Libraries Online User Guide

This Guide may not be installed on pre-HP-UX 10.20 systems. In this case, refer to the later section in this chapter, *Linker Compatibility Warnings*, for valuable information.

To access, use the linker command with the +help option. (Be sure usr/ccs/bin/ is in your path.)

ld +help

HP DDE Debugger Online Help

Select help from the DDE Menu Bar.:

NOTE

NOTE: Users with character-based terminals or terminal emulators can invoke the charhelp program to view or print the online help provided for C++ and the linker. To start charhelp enter the full pathname (or just charhelp if /opt/langtools/bin is in your \$PATH environment variable), and you will see a usage statement:

For help with HP aC++ for example, enter charhelp ACXX and follow the menus for further direction. For more information, see the man page for <charhelp>(1). (/opt/langtools/share/man/man1.Z must be in your \$MANPATH environment variable).

On HP-UX 10.10 systems, charhelp may not be available..

Rogue Wave Software Standard C++ Library 1.2.1 Class Reference

This reference provides an alphabetical listing of all of the classes, algorithms, and function objects in the Rogue Wave implementation of the Standard C++ Library. It is provided as HTML formatted files. You can view these files if you have access to an HTML viewer such as Netscape. To do so, open the file /opt/aCC/html/libstd/ref.htm

Rogue Wave Software Tools.h++ 7.0.6 Class Reference

This reference describes all of the classes and functions in the Tools.h++ Library. It is provided as HTML formatted files. You can view these files if you have access to an HTML viewer such as Netscape. To do so, open the file /opt/aCC/html/librwtool/ref.htm

NOTE

Refer to the Information Map in the *HP aC++ Online Programmer's Guide* for how to obtain additional Rogue Wave documentation and information.

HP aC++ Release Notes

This is the document you are reading. The online ASCII file can be found in /opt/aCC/newconfig/RelNotes/ACXX.release.notes

HP PA-RISC Compiler Optimization Technology White Paper

This paper describes the benefits of using optimization. It is available in the postscript file /opt/langtools/newconfig/white_papers/optimize.ps

Online Manual Pages

Online manual pages for aCC and c++filt are at /opt/aCC/share/man/man1.Z.

Manual pages for the Standard C++ Library and the cfront compatibility libraries (IOStream and Standard Components) are provided under /opt/aCC/share/man/man3.Z. (Note for Standard Components only,

Chapter 3 17

Related Documentation

Printed Documentation

invoke a man page by entering 3s after the man command and before the man page name. For example, to invoke the man page for Args: man 3s Args)

Japanese man pages are located at:

```
/opt/aCC/share/man/ja_JP.eucJP/man1.z and
/opt/aCC/share/man/ja_JP.eucJP/man3.z (euc character set)
/opt/aCC/share/man/ja_JP.SJIS/man1.z and
/opt/aCC/share/man/ja_JP.SJIS/man3.z (SJIS character set)
```

Online C++ Example Source Files

Online C++ example source files are located in the directory, /opt/aCC/contrib/Examples/RogueWave. These include examples for the Standard C++ Library and for the Tools.h++ Library.

Printed Documentation

• *HP aC++ Release Notes* is this document. A printed copy of the release notes is provided with the HP aC++ product.

Release notes are also provided online, as noted above.

The following documentation is available for use with HP aC++. To order printed versions of Hewlett-Packard documents, refer to manuals(5).

- HP/DDE Debugger User's Guide contains information on debugging C++ programs with the HP Distributed Debugging Environment on the HP 9000.
- *Getting Started with SoftBench on HP-UX 10.x* contains SoftBench tutorials for C, C++, and COBOL.
- *C* and *C++* SoftBench User's Guide for HP-UX 10.x contains information on using C and C++ SoftBench.
- Installing and Customizing SoftBench Products contains installation and customization information for SoftBench Products on HP-UX 9.x, HP-UX 10.x and Solaris.

Other Documentation

Refer to the *HP aC++ Online Programmer's Guide* Information Map for documentation listings, URL's, and course information related to the C++ language. Also, see below.

Content of .o Files may Change

The following applies when you use an aCC command-line option that invokes the assigner.

The content of a given .o file can potentially change when it is used in a closure (with the +inst_close option) or link operation. The change may occur in either of the following cases:

You change the order of .o file's on the link line. For example, if you
compile and link A.c and B.c multiple times as follows, the contents of
A.o and B.o may not be the same following the second link as they
were following the first link:

```
aCC -c A.c B.c aCC A.o B.o aCC -c A.c B.c aCC B.o A.o
```

 You link a .o file with different objects. In the following example, the content of A.o may not be the same following the second link as it was following the first link:

```
aCC A.o B.o aCC A.o C.o
```

The Named Return Value (NRV) Optimization

```
Syntax: -Wc,-nrv_optimization,[off|on]
```

The above syntax disables (default) or enables the named return value (NRV) optimization. For this optimization to work correctly in conjunction with exception handling, the application must be linked to an aC++ run-time support library that comes with HP aC++ A.01.04 or a subsequent version. Linking with a prior library may cause spurious failures. If the shared version of this library is selected (default), the platform on which the application is run must also have that release of the HP aC++ run-time support library (libCsup.sl).

Chapter 3 19

Other Documentation

The NRV optimization eliminates a copy-constructor call by allocating a local object of a function directly in the caller's context if that object is always returned by the function. For example:

```
struct A {
    A(A const&); // copy-constructor
};

A f(A const& x) {
    A a(x);
    return a; // Will not call the copy constructor if the
}    // optimization is enabled.
```

This optimization will not be performed if the copy-constructor was not declared by the programmer. Note that although this optimization is allowed by the ISO/ANSI C++ working paper, it may have noticeable side-effects.

```
Example: aCC -Wc,-nrv_optimization,on app.C
```

Linker Compatibility Warnings

Beginning with the HP-UX 10.20 release, the linker generates compatibility warnings. These warnings include HP 9000 architecture issues, as well as linker features that may change over time. Compatibility warnings can be turned off with the +v[no]compatwarnings linker option. Also, detailed warnings can be turned on with the +vallcompatwarnings linker option.

Link time compatibility warnings include the following:

- Linking PA-RISC 2.0 object files on any system PA-RISC 1.0 programs will run on 1.1 and 2.0 systems. PA-RISC 2.0 programs will not run on 1.1 or 1.0 systems.
- Dynamic linking with -A If you do dynamic linking with -A, you should migrate to using the Shared Library Management Routines. These routines are also described in the sh_load(3X) man page.
- Procedure call parameter and return type checking (which can be specified with -C) — The current linker checks the number of symbols, parameters, and procedure calls across object files. In a future release, you should expect HP compilers to perform cross-module type checking, instead of the linker. This impacts HP Pascal and HP Fortran programs.

- Duplicate names found for code and data symbols The current linker can create a program that has a code and data symbol with the same name. In a future HP-UX release, the linker will adopt a single name space for all symbols. This means that code and data symbols cannot share the same name. Renaming the conflicting symbols solves this problem.
- Unsatisfied symbols found when linking to archive libraries If you specify the -v option with the +vallcompatwarnings option and link to archive libraries, you may see new warnings.
- Versioning within a shared library If you do versioning within a shared library with the HP_SHLIB_VERSION (C and C++) or the SHLIB_VERSION (Fortran and Pascal) compiler directive, you should migrate to the industry standard and faster performing library-level versioning.

Chapter 3 21

Related Documentation **Other Documentation**

4 Problem Descriptions and Fixes and Known Limitations

This chapter summarizes the known problems and limitations of the current version of HP aC++ except as otherwise noted.

NOTE

HP-UX 10.10 is the last supported OS for PA-RISC 1.0 architecture machines. HP-UX 10.20 no longer supports execution of PA-RISC 1.0 code, and 10.20 compilers no longer support the compilation of PA-RISC 1.0 code.

See the latest *HP-UX Software Status Bulletin* support document for other known problems.

Known Problems

Customers on support can use the product number to assist them in finding SSB and SRB reports for HP aC++. The product number you can search for is B3910BA.

To verify the product number and version for your HP aC++ compiler, execute the following HP-UX commands:

what /opt/aCC/lbin/ctcom what /opt/aCC/bin/aCC

To verify the product number and version for the linker:

what /opt/aCC/bin/ld

To verify the product number and version for the shared library initializer:

what /usr/lib/aCC/dld.sl

Following are known problems and workarounds.

Chapter 4 23

Unsatisfied Symbols if Using Non-current Support Library

If you see a message like the following, you may be using a non-current version of the HP aC++ run-time support library.

```
/opt/aCC/lbin/ld: Unsatisfied symbols:
   Class tables [Vtable] dependent on key function:
   "__versioned_type_info::~__versioned_type_info()" (data)
```

For example, if you are a library distributor, you must ensure that your customers use the same or a newer version of the libCsup run-time library as you. If necessary, you should install the most current HP aC++ library support patch and distribute this patch to your customers.

As of the date of these release notes, the most current library support patch number is: PHSS_12609

Syntax Errors when Using /usr/include/sys/time.h

If you see the following error message, it means that CLOCKS PER SEC is not defined:

```
Error 171: "7198.C", line 2 # Undeclared variable
'CLOCKS_PER_SEC'. int i = CLOCKS_PER_SEC;
```

The workaround is to modify the /usr/include/sys/time.h file as follows:

1. Find the first occurence of:

```
#endif /* _INCLUDE__STDC__ */
```

2. Immediately before the first occurence of the above line, add the following code, replacing SomeValue with the value you need (1000000 would be the system default):

```
#else
#ifdef __cplusplus
#define CLOCKS.PER_SEC SomeValue
#condine
```

The /usr/include/sys/time.h file contains a K & R style function declaration for which HP aC++ generates an error like the following:

```
Error 43: "/usr/include/sys/time.h", line 487 \# C++ does not allow Old-style (non-prototype) function definitions.
```

To workaround, whenever time.h is included by a source program, you can define the __STDC__ macro on your command-line, as in the following example:

```
aCC -D__STDC__
```

Or you can install the appropriate patch listed below:

```
PHKL_8691 series 700 HP-UX 10.10
PHKL_8692 series 800
PHKL_8693 series 700 HP-UX 10.20
PHKL_8694 series 800
```

HP aC++ generatres an error like the following stating that structs or any types cannot be declared extern.

```
Error 608: "/usr/include/sys/time.h", line ??? # Types may not be
declared static, auto, register, extern or mutable.
    extern struct sigevent;
    ^^^^^^^^^^^^^^^^<</pre>
```

The error is caused by a problem in the /usr/include/sys/time.h file. To workaround, you can change the line extern struct sigevent; in the time.h file to:

```
struct sigevent;
```

Or you can install the appropriate patch listed below:

```
PHKL_7962 series 700 HP-UX 10.20
PHKL_7963 series 800
```

Syntax Problems when Using /usr/include/math.h

To resolve a conflict between the exception struct in /usr/include/sys/math.h and the aC++ exception struct, the workaround is to modify the /usr/include/math.h file as follows:

1. Find the line:

```
#define _MATH_INCLUDED
```

2. Immediately following the above line, add the next line:

```
#define exception math_exception
```

3. Find the line:

```
#endif /* _MATH_INCLUDED */
```

4. Immediately before the above line, add this line:

```
#undef exception
```

Chapter 4 25

Problem Descriptions and Fixes and Known Limitations **Known Limitations**

Alternatively, you can install the PHCO_9261 patch.

Warnings when using /usr/include/rpc/xdr.h

Compile-time warnings like the following should be ignored. They are caused by an incorrect prototype in the /usr/include/rpc/xdr.h file.

```
Warning 301: "/YourFileName/usr/include/rpc/xdr.h", line 276 # The
(...) parameter list is a non-portable feature.
extern bool_t xdrrec_eof(__o); /* true iff no more input */
```

Known Limitations

Some of these limitations will be removed in future releases of HP aC++. Please be aware that some of these limitations are platform-specific.

- HP aC++ does not support the xdb debugger. Instead, use the HP DDE debugger supplied with the product.
- HP aC++ does not and will not in the future support installation and/or execution on HP-UX 9.x systems.
- HP aC++ does not support large files (i.e., greater than 2 GB) with <iostream.h>.
- Note that although the compiler will run on the PA RISC 1.0
 architecture, an HP aC++ executable will run only on the PA RISC
 1.1 or later architecture.
- · Known limitations of exception handling features:
 - Interoperability with setjmp/longjmp (undefined by the C++ draft proposed international standard) is unimplemented. Executing longjmp does not cause any destructors to be run.
 - If an unhandled exception is thrown during program initialization phase (that is, before the main program begins execution) destructors for some constructed objects may not be run.
 - Symbolic debugging information is not always emitted for objects which are not directly referenced. For instance, if a pointer to an object is used but no fields are ever referenced, then HP aC++ only emits symbolic debug information for the pointer type and not for

the type of object that the pointer points to. For instance, use of Widget * only emits debug information for the pointer type Widget * and not for Widget. If you wish such information, you can create an extra source file which defines a dummy function that has a parameter of that type (Widget) and link it into the executable program.

- · Known limitations of signal handling features:
 - Throwing an exception in a signal handler is not supported, since
 a signal can occur anyplace, including optimized regions of code
 in which the values of destructable objects are temporarily held in
 registers. Exception handling depends on destructable objects
 being up-to-date in memory, but this condition is only guaranteed
 at call sites.
 - Issuing a longjmp in a signal handler is not recommended for the same reason that throwing an exception is not supported. The signal handler interrupts processing of the code resulting in undefined data structures with unpredictable results.
- Source-level debugging of C++ shared libraries is supported.
 However, there are limitations related to debugging C++ shared libraries, generally associated with classes whose member functions are declared in a shared library, and that have objects declared outside the shared library where the class is defined. Refer to the appropriate release notes and manuals for the operating system and debugger you are using.

Refer also to the Software Status Bulletin for additional details.

- · Instantiation of shared objects in shared memory is not supported.
- When you call the <shl_load>(3) routines in libdld.sl either directly or indirectly (as when your application calls use the +A option, you will get an "unresolved externals" error.

If you want to link archive libraries and libdld.sl, use the -Wl,-a, archive option. The following example directs the linker to use the archive version of standard libraries and (by default) libdld.sl.

```
aCC prog.o -Wl,-a,archive
```

Using shl_load(3X) with Library-Level Versioning

Chapter 4 27

Problem Descriptions and Fixes and Known Limitations

Known Limitations

Once library-level versioning is used, calls to shl_load() (see shl_load(3X)) should specify the actual version of the library that is to be loaded. For example, if libA.sl is now a symbolic link to libA.1, then calls to dynamically load this library should specify the latest version available when the application is compiled, such as:

```
shl_load("libA.1", BIND_DEFERRED, 0);
```

This will insure that, when the application is migrated to a system that has a later version of libA available, the actual version desired is the one that is dynamically loaded.

• Memory Allocation Routine alloca()

The compiler supports the built in function, alloca, defined in the /usr/include/alloca.h header file. The implementation of the alloca() routine is system dependent, and its use is not encouraged.

alloca() is a memory allocation routine similar to malloc() (see malloc(3C)). The syntax is:

```
void *alloca(size_t <size>);
```

alloca() allocates space from the stack of the caller for a block of at least <size> bytes, but does not initialize the space. The space is automatically freed when the calling routine exits.

NOTE

Memory returned by alloca() is not related to memory allocated by other memory allocation functions. Behavior of addresses returned by alloca() as parameters to other memory functions is undefined. alloca() can only be called from a non-inline function.

To use this function, you can use the <alloca.h> header file or you can specify your own prototype and use the +Olibcalls option.