
Native Language Support
HP-UX Concepts and Tutorials

HP 9000 Series 300/800 Computers

HP Part Number 97089-90058

Flin- HEWLETT
a:~ PACKARD

Hewlett-Packard Company
3404 East Harmony Road, Fort Collins, Colorado 80525

Legal Notices
The information contained in this document is subject to change without
notice.

Hewlett-Packard makes no warranty of any kind with regard to this manual,
including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose. Hewlett-Packard shall not be liable for
errors contained herein or direct, indirect, special, incidental or consequential
damages in connection with the furnishing, performance, or use of this
material.

Warranty. A copy of the specific warranty terms applicable to your
Hewlett-Packard product and replacement parts can be obtained from your
local Sales and Service Office.

Copyright © Hewlett-Packard Company 1989

This document contains information which is protected by copyright. All rights
are reserved. Reproduction, adaptation, or translation without prior written
permission is prohibited, except as allowed under the copyright laws.

Restricted Rights Legend. Use, duplication or disclosure by the U.S.
Government Department of Defense is subject to restrictions as set forth in
paragraph (b) (3) (ii) of the Rights in Technical Data and Software clause in
FAR 52.227-7013.

Use of this manual and flexible disc(s) or tape cartridge(s} supplied for this
pack is restricted to this product only. Additional copies of the programs can
be made for security and back-up purposes only. Resale of the programs in
their present form or with alterations, is expressly prohibited.

Copyright © AT&T, Inc. 1980, 1984, 1986

Copyright © The Regents of the University of California 1979, 1980, 1983,
1.985

This software and documentation is based in part on the Fourth Berkeley
Software Distribution under license from the Regents of the University of
California.

Printing History

The manual printing date and part number indicate its current edition. The
printing date will change when a new edition is printed. However, minor
changes may be made at reprint without changing the printing date. The
manual part number will also change when extensive changes are made.

Manual updates may be issued between editions to correct errors or to
document product changes. To ensure that you receive updates or new
editions, you may subscribe to the appropriate product support service,
available from your HP sales representative.

September 1989. First Edition

iv

Contents

1. Using this Manual
Typographical Conventions in This Manual
Related HP-UX Manuals

2. Introduction to NLS
Overview of Software Internationalization
What is Native Language Support (NLS)?

Aspects of NLS Support
Character and Text Handling. . . .

Comparing Strings and Comparing Characters
Regular Expressions
Local Customs and Conventions
Messages

3. U sing International Software
NLS Environment Variables
Setting Your Environment .
Setting Your Terminal . . .
Reference Information for Internationalized Commands

Internationalized Messages
U sing Internationalized Commands

4. Developing International Software
General Programming Issues .
Initializing NLS.

Recommended Initialization
Data Integrity

Programming with Multi-byte Characters
Programming with Wid~-Characters .
Conversion of Existing Programs

1-3
1-4

2-1
2-3
2-4
2-4
2-6
2-8
2-9

2-11

3-2
3-3
3-4
3-4
3-5
3-5

4-1
4-2
4-2
4-3
4-4
4-6
4-7

Contents-1

Character and String Processing
Conversion of Existing Programs

Creating and Using a Message Catalog System
Programming for Messages

Opening a Message Catalog
Search Path and Naming Conventions
Retrieving Messages . . .
Closing a Message Catalog
Default Messages
Com piling and Linking

Creating aNew Message Catalog
The Message Text Source File
Compiling a Message Catalog. .
An Example of Programming with Message Catalogs

Special Considerations
Libraries with Messages
Conversion of Existing Programs for NLS Messaging
Testing a Message Catalog .
Installing a Message Catalog
Source Code Management

Keeping nLprog.c Files
Multi-file Programs . .
Adding a Message to a Messaging Program .
Using "make" Files

Guidelines for Using Messaging

5. Administering International Software
Finding NLS Files
The Default User Environment
Terminal Configuration
Installing Message Catalogs
Installing Optional Locales .
Peripheral Configuration . .

European Character Sets
Katakana Character Sets .
Other 8-bit HP Character Sets
16-bit HP Character Sets
Non-HP 7-Bit Character Sets.

Contents-2

4-8
4-10
4-10
4-11
4-11
4-12
4-13
4-13
4-14
4-14
4-14
4-15
4-16
4-17
4-18
4-20
4-22
4-25
4-26
4-26
4-26
4-26
4-26
4-28
4-28

5-1
5-3
5-3
5-3
5-4
5-4
5-4
5-5
5-5
5-5
5-5

6. Localizing International Software
Localizing the User Environment
Localizing Message Catalogs . .

The C Locale Messages
Preparing for Translating Messages
Installing Localized Messages

Creating a Locale

7. Advanced NLS Topics
Codeset Conversion
Processing Right-to-Left Languages
Locale Information
Initialization

Special Locales
Special Message Catalogs
Default Message Catalogs
Programs That Call Exec

Messaging: printf/scanf Data Formatting

A. Examples of Internationalized Software
Example 1: Rtlcat
Example 2: Makefile

B. NLS References

C. Previous Usage

D. Languages and Codesets

Glossary

Index

6-1
6-2
6-2
6-2
6-3
6-4

7-1
7-2
7-4
7-4
7-4
7-5
7-5
7-6
7-6

A-1
A-16

Contents-3

Using this Manual

This manual is for people who are using, writing, or translating programs in
a multi-lingual environment and who will need to make use of the various
elements of Native Language Support (NLS).

1

You will find specific sections of this manual to be written at a technical level
appropriate to general users, system administrators, NLS coordinators, and
applications programmers.

• General Users should read Chapters 2 and 3.

• System Administrators and NLS Coordinators should read Chapter 5 and 6.

• Applications Programmers should read Chapter 4, 6, and 7.

For further details, refer to the Appendices. For example, Appendix A provides
examples of internationalized programming. All of the NLS commands and
subroutines discussed in this manual are referenced in Appendix B and in the
Index.

Using this Manual 1-1

To find this information ...

Using this Manual: This chapter explains the
typographical conventions used in this manual and
identifies other manuals referenced in the contents.

Introduction to NLS (for the general user): This
.chapter presents a basic description of the scope
of Native Language Support, localization, and
internationalization, including general aspects of
character set handling, local conventions, messages,
and internationalization.

Using International Software (for the general user):
This chapter shows how to run a localized application
including terminal configuration, environment setup,
and selection of the language.

Developing International Software (for the
programmer): This chapter describes the
initialization process, character and string processing,
and gives a brief introduction to setting up the
message interface.

Administering International Software (for the system
administrator and the NLS coordinator): This chapter
identifies the HP -UX directories and files, how to set
up the user environment, installing message catalogs
and optional locales, and configuring terminals and
peripherals.

Localizing International Software (for the system
administrator and the NLS coordinator): This chapter
explains the details of localization for special user
requirements, localizing message catalogs, and creating
specialized locales.

Advanced NLS Features (for the programmer:).
This chapter explains the NLS character- and
string-processing tools, processing non-Latin character
input/output, and special treatment of locales and
message catalogs.

1-2 Using this Manual

Please see ...

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

To find this infarmation ...

Examples of Internationalized Software:: Character
processing, collation, monetary formatting, messaging,
and date/time.

NLS References: An alphabetic listing of Hp:.UX
Reference locations for all NLS commands and
routines.

Previous Usage: Tables of current and obsolete NLS
commands and routines.

Languages and Codesets: A listing of the native
languages that are supported by HP codesets.

Definitions: Major words and concepts used in this
manual.

Please see ...

Appendix A

Appendix B

Appendix C

Appendix D

Glossary

Typographical Conventions in This Manual

Italics

New Terms

This typography indicates manual names and references
to manual pages in the HP- UX Reference. Italics are
also used for symbolic items either typed by the user or
displayed by the system, as discussed below under Variable
name.

This typography is used when an important new term is
introduced.

Computer literal This typography indicates literal input to, or output from,
the computer. Type the characters in this font exactly as
they appear on the page. For example:

Variable name

findstr prog.c > prog.str

This typography indicates that you need to "fill in the
blank" in a command line with your own word or data.
This font is used for names of variables and symbolic
names. For example:

Using this Manual 1-3

cat file_name

means you type cat and substitute the appropriate
file- name to complete the command line.

This typography indicates a key on your keyboard. For
example, (Return) means to press the "Return" key. When
prefixed by (Shift), (CTRL), or (Extend char), press both keys
simultaneously. For example:

(CTRL)-CD
means you press the (CTRL) key and continue to hold it
while you press the CD key.

Related HP-UX Manuals
This manual may be used in conjunction with other HP-UX documentation.
References to these manuals are included, where appropriate, in the text.

• The HP- UX Reference contains the syntactic and semantic details of all
commands and application programs, system calls, subroutines, special files,
file formats, miscellaneous facilities, and maintenance procedures available on
the HP 9000 HP-UX Operating System.

• The HP-UX Portability Guide documents the guidelines and techniques for
maximizing the portability of programs written on and for HP 9000 Series
200, 300, and 500 computers running the HP-UX operating system. It
covers the portability of high-level source code (C, Pascal, FORTRAN) and
transportability of data and source files between commonly used formats.

• HP- UX System Administration Tasks provides step-by-step instructions
for installing and updating the HP-UX Operating System software and for
installing the NLS languages, if they are optional for your system. It also
explains procedures for system boot and login, and contains guidance for
implementing administrative tasks.

1-4 Using this Manual

• HP- UX Concepts and Tutorials: Facilities for Series 200, 300, and 500
contains valuable guidance for setting up your terminal and configuring the
soft key definitions.

• The NLIO System Administrator's Guide provides installation and
configuration procedures for NLIO, which is the set of servers and filters used
to input and output 16-bit characters efficiently on 16-bit hardware. It also
contains fileset and font descriptions for the supported languages.

• The Native Language I/O Access User's Guide describes how to use the
NLIO system.

• The NLIO Code Books and the NLIO Input Method Guides describe the
language-specific codes and the input methods used for the supported
languages.

• Finding HP- UX Information (2 vols.) provides a cross-index, detailed
descriptions, and part numbers for the Series 300 and 800 HP-UX manuals.

• Unless otherwise stated, all references in this manual such as "see
langinfo{3C) for more details", refer to entries in the HP-UX Reference
manual.

Using this Manual 1-5

2
Introd,uction to N:LS

Overview of Software Internationalization
The users of HP-UX speak many different languages and observe many
different cultural practices. Local language-processing capability is becoming a
high priority with the kinds of software products which are increasingly in use
throughout the world. For this reason, we have found that users need software
which will easily accommodate local conventions.

To do so effectively, software products are required to preserve the integrity of
data, correctly handle the written conventions of a variety of languages, and
provide a message interface in the user's language. In addition, they must be
versatile in handling a variety of local data-formatting conventions.

There are two processes involved in the NLS approach to enhancing software
for international use:

• The process of internationalizing software includes supporting the letters and
symbols required to read and write the user's language, processing characters
and text according to the rules of the user's language, providing for
translated messages and prompts, and changing functions and conventions to
comply with local requirements. For a number of reasons, it is also desirable
that such internationalization be accomplished with a minimum of change to
the program code itself .

• The process of localizing adapts the software to a particular locale, including
the translation of messages and the use of appropriate language tables on the
local system.

Introduction to NLS 2-1

In general, then, the main requirements which Hewlett-Packard has addressed
to facilitate the international use of software are:

• Preserving the integrity of the data

• Proper handling of characters

• Appropriate message interfacing in the local language

• Proper representation of local customs in the software ,"
HP Native Language Support provides an extensive set of tools and routines
for implementing language-independent software. Software can, with relatively
minor modifications, use language-dependent processing information which is
stored externally to the program code. At run time, the application accesses
the processing information appropriate for the language then specified. There
are some unique advantages to this NLS strategy:

/ ,

• Software is noCduplicated in different versions for different languages. This
makes it easier to update and maintain the program.

• Because all language-dependent processing information is kept external to
the program source, programmers need not modify the program source
when modifying messages. The chance of "bugs" being introduced into the
software as a result of this process is eliminated.

• Since software can be localized more easily, the time and expense required by
localization is relatively low.

• Many users could simultaneously share the same copy of a program,
with each one potentially using a different language or set of language
conventions.

Hewlett-Packard's Native Language Support has been adopted as the basis for
the X/Open Portability Guide (XPG) Issue 3. HP has an ongoing test process
to ensure compliance with applicable standards of POSIX and ANSI-C

2-2 Introduction to NLS

What is Native Language Support (NLS)?
NLS provides a number of features to aid the international user:

• It permits users to specify the desired language at run time.

• It allows different users to use different languages on the same system.

• It provides the programmer with the ability to internationalize software.

NLS supports these features by providing language-dependent tables for various
locales and by the processes of program internationalization and localization.
Internationalization involves:

• The replacement of the original HP-UX routines in an application with NLS
versions of the routines. For example, the routine ctime would be replaced
with the NLS-enhanced version strftime.

• The provision of tools for copying all hard-coded messages into external
message catalogs and for updating the message catalogs.

Localization then adapts the internationalized software application or system
for use in a specific linguistic environment. This includes translating the text in
the message catalogs into the local language.

Message catalogs and language tables can be specified at run time, rather than
having the messages compiled into the programs. For a given piece of software,
this message cataloging process only needs to be done once.

Introduction to NLS 2-3

Taipei
Tokyo
Seoul

Amsterdam
Athens
B'oblingen
Brussels
Copenhagen
Geneva
Grenoble
Helsinki

Figure 2-1. Hewlett-Packard Localization Centers

Madrid
Milan
Oslo
Reykjavik
Stockholm
Vienna

Localization and internationalization can often he facilitated by Localization
Centers operated by various Hewlett-Packard 'Country Product Organizations,
some of which are shown above.

Aspects ofNLSSupport

There are three aspects of Native Language Support included in HP-UX
software:

• Character and text handling
• Local customs and conventions
• Messages

Character and Text Handling

NLS provides the ability to identify and manipulate characters in a variety of
ways and to handle language-:specific processing of text:

• Character Sets. In an HP-UX environment, the default local language
character set is 7-bit ASCII (or USASCII). All programs which are not
internationalized, or those that are internationalized but in which the user

2-4 IntroductiontoNLS

has not enabled NLS, use this character set. Note, however, that 7-bit
ASCII is not even sufficient to span the Latin based alphabet used in many
European languages. And yet, for many Asian languages, character sets can
contain several thousand members. This is more than can be encoded in
the single 8-bit number which is the conventional value used to represent
character data. For this and other reasons, NLS character~ handling has the
following characteristics:

D The 8th bit of a character byte is never stripped or modified.

D The extra bit is used to support languages that have additional characters,
accented vowels, consonants with special forms, and special symbols.

D Multi-byte characters may be used for charactercodesets which are
exceptionally large.

There are many implementations of non-ASCII character sets currently in
use. NLS permits users to define their own character sets and character
properties. However, HP has already defined character sets which permit the
processing of several European, Middle Eastern,and Asian languages.

For European and Middle Eastern languages, HP has defined a series of
8-bit character sets. EveryHP 8-bit character set is a superset of ASCII.
The HP~supported 8-bit character set for Western European languages is
ROMAN8. Other 8-bit character sets are defined for other locales. For a
listing, please refer to Appendix D, "Languages and Codesets".

For alphabets of more than 256 characters, such as Kanji (a Japanese
ideographic character set), multi-byte character codes are required. HP has
defined a multi-byte character encoding scheme, HP-15, which uses two bytes
(16-bits) to represent a character. Four sets are defined under this scheme,
which are used to represent Traditional Chinese, Simplified Chinese,Korean,
and Japanese. In addition, HP provides support for the Japanese UJIS
character set. These are used for data processing and storage. For input
and output, HP uses a multi-byte character encoding scheme called HP-16.
Appendix D lists both single- and multi-byte codesets available from HP.

Users can also define their own languages using buildlang with non-HP
definedcodesets. For more information on buildlang, see Chapter 6,
"Localizing International Software" , in this manual.

Introduction to NLS 2-5

• Character type and Conversion. All sorting, case shifting, and type analysis
of characters is done according to the local conventions for the native
language selected. While the ROMAN8 character set has uppercase and
lowercase for most alphabetic characters, some languages discard accents
when characters are shifted to uppercase. European French commonly
discards accents in uppercase, while Canadian-French does not. If there is
no representation of case in the user's language, as is the case in ideographic
languages such as Japanese, characters are not shifted at all.

• Collation. Each languages may use its own distinct "collating sequence"
the sequence in which characters or words are ordered by the computer.
Some language may even have more than one set of collation rules. The
ASCII collation order, which is the default setting for HP-UX, while it is
fast, is inadequate even for the accuracy requirements of American dictionary
sorting. Each language may order the characters in its character set
differently, and certain character sets have multiple acceptable orderings.

Chinese is an example in which the ideographic characters can be sorted in
order of:

D The numeric value of the character as represented in a computer character
set

o The number of strokes required to represent the character

D The radical (root) of the character

D The number of strokes added to the radical

Comparing Strings and Comparing Characters

The order into which character strings are sorted is language-dependent.
Traditionally, most comparative ordering is based on ASCII values. But, with
the extension of the ASCII character set to ROMAN8 for support of other
languages, the ordering of a character within a character set no longer coincides
with the character's traditional alphabetical order.

For example, "a" ';!ollows "b" in the character set ordering but is sorted before
"b" in many cases. This situation makes sorting based on the code of each
character inappropriate when internationalizing software.

2-6 Introduction to NLS

In addition, sorting based on character code does not provide true dictionary
sorting even in the case of the ASCII character set. Dictionary order sorts "a"
after "A" and before "B", whereas ASCII based order sorts "a" after both "A"
and "B". The following is an example of sorting the same list based on the C
sorting method, and based on a German sorting method.

Table 2-1. Sorting Example: C vs. German

Sorted by Sorted by
C rules German rules

Airplane Airplane

Zebra apfel

bird bird

car car

apfel Zebra

Beyond the ordering of individual characters, some languages_designate that
certain characters be treated in a special way. For example, in some languages
groups of characters are clustered and treated as a single character. In Spanish
"11" is treated as a single character, and it is sorted after "1" and before "m".
Similarly, the "ch" in Spanish is treated as a single character, and it is sorted
after "c" but before "d":

Table 2-2. Sorting Example: C vs. Spanish

Sorted by Sorted by
C rules Spanish rules

chaleco cuna

cuna chaleco

dfa dfa

llava loro

loro llava

mafz mafz

Introduction to NLS 2-7

When sorting strings in some languages, a single character is expanded and
treated as if it were really two characters. For example, when sorting strings in
German, £ (the "sharp s"}, is treated as if it were ss .

Table 2-3. Sorting Example: C vs German

Sorted by Sorted by
C rules German rules

Rosselenker Rosselenker

Rost bratwurst RoBhaar

RoBhaar Rost bratwurst

In some languages, certain characters such as "-" are ignored when collating
strings, and these also need to be taken into account.

• Data directionality. This is the spatial order in which data is displayed vs.
the order in which it is entered. Data directionality is not the same for all
languages. For example, some Middle Eastern languages are read from right
to left and may be mixed with insertions in left-to-right European languages.
NLS allows for processing of this type of character data. Currently, no
special provisions are made for top-to-bottom languages, such as Chinese,
which are handled in a left-to-right orientation .

• Multi-byte characters. Finally, character handling also involves the correct
parsing of multi-byte character streams and the interpretation of multi-byte
characters. Multi-byte character streams may contain both single-byte and
multi-byte characters. To process this data, each byte must be identified
as either a single-byte character or as part of a multi-byte character. The
details of these and other aspects of character handling are discussed in the
chapter "Developing International Software", in this manual.

Regular Expressions

HP-UX allows the specification of arbitrary character strings through the use of
regular expressions. For further details on their use, see the section, "Regular
Expressions" , in Text Editors and Processors, HP- UX Concepts and Tutorials.
The syntax of regular expressions has been extended in HP-UX to allow use
with other character sets.

2-8 Introduction to NLS

Here is one example of an internationalized regular expression:

h[[=e=]] Ip

This matches the word "help" spelled with any variation of the letter"e" (e, e,
e, e, etc.).

The existing syntax of a range expression (e.g., "[a-z]") is not changed.
However, its meaning has been extended to mean "match any collating element
which falls between the two given collating elements based on the current
locale's LC_COLLATE collation sequence."

For multi-byte languages, the support in regular expressions is not so extensive.
For example, multi-byte characters are allowed as single character elements
in these expressions, and they can be used in character ranges. However, the
inverse of a range ("[~a .. z]") is not allowed with multi-byte characters in
general. This is due to restrictions in the way the codesets are implemented.
Moreover, some new features are not allowed with multi-byte codesets simply
because they have no application to Asian languages.

Local Customs and Conventions

Some aspects of NLS relate also to the local customs or conventions of a
particular geographic area. These aspects, even when supported by a common
character set, change from region to region. Consequently, number format,
currency information, date and time, case shifting, and collation are presented
according to the user's local conventions. In NLS, all these environmental
characteristics are called the "locale".

For instance, although Great Britain, the United States, Canada, Australia,
and New Zealand share the English language, aspects of data representation
differ according to local customs. Variations are encountered in the following
everyday matters:

• Representation of numbers (numeric formatting)
• Representation of currency units (monetary formatting)
• Display of time
• Display of days, weeks, months

• Numeric For.matting. In the representation of numbers, all the following
depend on local customs:

Introduction to NLS 2-9

o The "radix" symbol which performs the decimal-indicating function (the
period in the U. s.)

o The digit grouping symbol (the comma in the U.S.) which serves to
separate groups of integers

o The convention for grouping integer digits (by three's in the U.S.)

In the U.S., a number is represented as follows:

2.345.678

But when representing the same number in France, the decimal point and
the digit-grouping symbol are reversed:

2.345.678

• Monetary Formatting. Currency units and how they are subdivided vary
with region and country. The symbol for a currency unit can change as well
as the placement of the symbol. It can precede the numeric value, follow it,
or appear within It.

Between the currency conventions used by the U.S. and France, the symbols
are transposed.

$2.345.77

versus

2.345.77 FF

• Display of Time. Computation and proper display of time, including 24-hour
vs. 12-hour clocks, must be considered. The HP-UX system clock runs on
Coordinated Universal Time. Corrections to local time zones consist of
adding or subtracting whole or fractional hours from UTC. Some regions,
instead of using the Western Gregorian calendar system, designate the
years by seasonal, astronomical, or historical events. One system which HP
supports is the Imperial system used in Japan for numbering years based on
the reign of the ruling emperor.

2-10 Introduction to NLS

• Display of Days, Weeks, Months.

Names for days of the week and months of the year may vary with language.
Rules for abbreviating these also differ. The order of the year, month, and
day, as well as the separating delimiters, are not universally defined. For
example, October 7, 1986 would be represented in the U.S. as:

10/7/86

in Germany, it would be represented as:

7.10.1986

and in the U.K. as:

7/10/86

• The chapter "Advanced NLS Features" in this manual, describes the library
routines used to handle these local customs.

Messages

The ability to customize messages for different countries is an important aspect
of using NLS. NLS enables you to choose the language to be used for prompts,
responses to prompts, and error messages. All of this can be done at run time.
And, since messages are kept in catalogs separate from the program code, it is
not necessary to recompile the source code when you are using the program in
another language.

It is, however, necessary to work closely with your translator to ensure that
the semantics of system or program messages is correctly conveyed in the
translation. In practice, the syntax of another language may'force a change in
the sentence structure of a translated message.

For example, an English message for a given command might be interpreted
two ways in German.

The original in English is:

cannot read at directory

("at" is an HP-UX command)

In German, this message could be interpreted as:

Kann das Verzeichnis nicht lesen.

Introduction to NLS 2-11

(Literally: "cannot read the directory", with "at" misinterpreted as an
untranslatable preposition)

If the meaning of "at" is pointed out to the translator in a "cookbook"
accompanying the message catalog, the message would be correctly translated
as:

at Verzeichnis nicht lesbar.

(Literally: '" at' directory not readable." -the intended meaning)

Handling messages in message catalogs helps ensure that the messages are
accessible for editing, updating,. and translating into other languages, as
required.

For details on the use of message catalogs, see the section "Localizing Message
Catalogs" in the chapter "Localizing International Software" , in this manual.

2-12 Introduction to NlS·

3
Using International Software

Read this chapter if you are:

• A general user of internationalized commands and software

This chapter covers information and tasks you will need to deal with in order
to use NLScommands successfully. The information and the tasks are minimal
because, in most situations, you will be receiving help from two people on your
staff:

• Your local NLS Coordinator, whose tasks are:

o Advising on optimal use of NLS features
o Ordering NLS software
o Communicating special configuration needs to your System Administrator
o Installing message catalogs
o Coordinating translation activities

• Your System Administrator, whose tasks are:

o Installing and updating the operating system
o Configuring the system
o Installing and initializing additional software
o Maintaining system software

Your System Administrator should have already provided the appropriate
configuration and initialization.

Using International Software 3-1

NLS Environment Variables

Internationalized commands adapt their behavior to that specified by a set
of NLS environment variables. These variables indicate user requirements for
various aspects of NLS capabilities:

LANG

LC_COLLATE

LC_CTYPE

LC_MONETARY

LC_NUMERIC

LC_TIME

NLSPATH

LANGOPTS

Specifies native language, local customs, and coded
character set and messages.

Specifies string collation.

Specifies character classification and case conversion.

Specifies currency symbol and monetary value format.

Specifies decimal number format.

Specifies date and time format and the names of days
and months.

Specifies search path for message catalogs.

Specifies data directionality for right-to-Ieft languages.

By setting these variables, you can cause internationalized software to perform
in a manner appropriate to your particular needs. For additional information
on the NLS environment variables and their use, see environ(5) in the HP-UX
Reference.

3-2 Using International Software

Setting Your Environment

Local system default values for the NLS environment variables are ordinarily
determined by your local NLS Coordinator and set by your System
Administrator. These system default values are what you get when you log in
unless you make provisions for something different.

You can determine the setting of your NLS environment variables by typing:

env

If none of the NLS environment variables is set, as indicated by env, or if
you are not sure what NLS environment you need, consult with your NLS
Coordinator to determine the appropriate settings for your locale.

If the local system default values are not satisfactory, you can get the NLS
environment you need by setting the environment variables appropriately.

For example, if you need a French locale, run the Bourne or Korn shell
commands:

LANG=french ; export LANG

This is equivalent to the C shell command:

setenv LANG french

It is generally convenient to add these commands to your . profile or .login
file so that your preferred environment will be set when you login.

If you will be running applications that need an NLS environment different
from the system default and different from your individual environment, it is
convenient to create a shell script that sets the environment variables as needed
for the application.

For example, to run the command prog in a special NLS environment, the
following sh script could be used:

: # run prog
set special NLS environment for prog
LANG=english ; export LANG
LC_TIME=italian ; export LC_TIME
LC_MONETARY=german ; export LC_MONETARY
LC_NUMERIC=french ; export LC_NUMERIC
run prog
prog file! file2

Using International Software 3-3

Such a script could be installed by your System Administrator in /usr /bin
and used to invoke your program as well as saving time in setting a special
NLS environment.

Setting Your Terminal
First, check your terminal to ensure that it is configured for transmitting and
receiving 8-bit data. For further information on terminal configuration, see
Facilities for 200/300/500: HP- UX Concepts and Tutorials.

To use international software, your terminal should also be set so that
single-byte data is not corrupted by system software that might otherwise
attempt to interpret the eighth bit of a byte. This bit is needed as part of the
character code. To disable 'such interpretation, run:

stty -istrip -parity

It is generally convenient to add this command to your. profile or .login
file.

Reference Information for Internationalized Commands
For any command you intend to use, consult the online man pages or the
appropriate page in the HP- UX Reference to determine the extent to which
it has been internationalized. The section "EXTERNAL INFLUENCES,
Environment Variables" indicates NLS environment variables that affect the
behavior of a command. For example, to see how LC_ TIME affects the date
command, run:

man date

3-4 Using International Software

InternationaUzedMessages

A command that has been internationalized for messages will have, in the
HP-UX Reference section "EXTERNAL INFLUENCES, Environment
Variables," a comment such as "LANG determines the language in which
messages are displayed." Such a command, however, will not necessarily have
message catalogs for all languages or even for any language other than for a
default locale.

When such a command is rUll,current locale messages will be displayed if
they are available. Otherwise, default locale messages will be displayed.. The
command will, however, perform correctly for the current locale.

For example, sort will correctly sort data in all supported locales. Messages
issued by sort will be in the C locale (the default locale for HP-UXcommands)
unless localized message catalogs have been created.

See the chapter "Localizing International Software", in this manual, for more
information on localizing message catalogs.

Using Internationalized Commands

To see what locales are installed on your system run:

nlsinf·o

Set LANG to one of the installed locales and run:

date

You should get a result with the format and naming conventions of the locale
specified by LANG.

To test this further, try:

cat file

where file is non-existent. If there is a localized message catalog for cat you
should get the cannot open message in the locale specified by LANG. If not, you
will get the message in theC locale.

If you do not get the expected results, check with your System Administrator
to verify that the required language-specific files are properly installed on the

UsinglnternationalSoftware 3-5

system. Otherwise, you should now be able to use internationalized commands
without further special action.

3-6 Using International Software

4
Developing International Software

Read this chapter if you are:

• A programmer for the local system

This chapter covers the standard programming issues for:

• Developing international software
• Internationalizing existing software

For a discussion of special cases see the chapter "Advanced NLS Topics" .

General Programming Issues
The programming issues your software must accommodate are:

• Initialization

• Preservation of data integrity

• Character and string processing

• Messaging

Developing International Software 4-1

Initializing NLS

When you work with internationalized software, it is always necessary to
provide the appropriate NLS initialization, and, in some cases, it is also
necessary to use NLS library routines rather than conventional library routines.
More extensive programming changes may be needed in special cases.

There are two elements of NLS that must be initialized to activate the NLS
behavior of a program:

• The program locale

• The program messages _

The locale for a program is initialized by calling setlocale to make locale
information accessible to the program. The messages for a program are
initialized by calling catopen to locate the appropriate messages and make
them accessible to the program.

The two initialization routines are independent. The program's locale does not
affect messaging, and messaging does not affect the program's locale.

Recommended Initialization

For most applications, the following "standard" initialization is recommended:

#include <nl_types.h>

if (!s.etlocale(LC_ALL, 1111)) {

else

fputs("setlocale failed, continuing with \"C\" locale. II , stderr);
putenv(IILANG=II);
catd = (nl_catd)-1;
}

catd = catopen(nname" , 0);

With this initialization, all LC_categories will be set to the value of LANG,
except for those categories in which the corresponding environment variable is
set to another valid locale. For environment variables that are set to a valid
locale, the value of the environment variable will override the value of LANG for

4-2 Developing International Software

that category. If the value of LANG is not set or is set to the empty string, then
the C locale is used.

With this initialization, LANG and NLSPATH specify a series of paths to search
for a message catalog. If a catalog is found on one of these paths, messages
issued by the program will be messages from the selected message catalog. If a
message catalog is not found, messages issued by the program will be C locale
messages.

Note that even if setlocale is successful, it is possible for catopenO to fail.

This "standard" initialization assumes that messaging uses the "standard"
default messages described in the section "Programming for Messages" below.
For special cases, a non-standard initialization may be required. See the
chapter "Advanced NLS Topics" in this manual for more information.

Data Integrity

Data integrity means that in processing codeset data, the data must not be
corrupted. For single-byte codesets, the 8th bit must be preserved; it must
not be stripped nor used by the program. For multi-byte codesets, single'-byte
characters must be correctly distinguished from multi-byte characters.

HP's multi-byte codesets utilize a coding scheme in which the single-byte
character codes for ASCII can be intermixed with the two-byte character codes
used to represent ideograms. In these codesets, it is possible for the second
byte of a two-byte character to have the same value as an ASCII character.
For an arbitrary byte, it is not possible to know if the byte is a single-byte
character or the second byte of a multi-byte character. This is the "byte
redefinition" problem in which the second byte of a multi-byte character may
be incorrectly interpreted as a one-byte character.

To aid in processing multi-byte codesets and avoid the byte redefinition
problem, there are two sets of routines available to the programmer.

Developing International Software 4-3

Programming with Multi-byte Characters

For dealing with HP's multi-byte codesets, see nLtools_16(3C) in HP- UX
Reference which describes a set of byte-status macros: FIRSTof2, SECof2, and
BYTE_STATUS. These macros can be used to determine whether a byte value
represents an single-byte character or part of a multi-byte character.

Probably more useful, are character pointer macros that are analogous to byte
pointer operations:

Macro Call Byte Pointer Analog

CHARAT(p) (*p)

ADVANCE(p) (p++)

CHARADV(p) (*p++)

WCHAR(c, p) (*p = c)

WCHARADV(c, p) (*p++ = c)

These macros operate on byte pointers, but they make the appropriate calls to
FIRSTof2, etc., and advance the pointer one or two bytes as needed.

These macros are not always needed. For example, the following program will
correctly copy single-byte as well as multi-byte character strings.

char *f, *t;

while (*t++ = *f++);

However, to copy only the printable characters of a character string requires
special treatment. The following program will work for single-byte codesets
but not for multi-byte codesets because of the byte redefinition problem: it
is possible for the second byte of multi-byte character to be a non-printable
ASCII character. Such a byte would not be copied to the destination string.

#include <ctype.h>

char *f, *t;
int c;

while (c = *f++)

4-4 Developing International Software

if (isprint(c)
*t++ = c;

*t++ = c;

Using CHARAT macros, the preceding program can be made to operate correctly
on single- and multi-byte data:

#include <ctype.h>
#include <nl_ctype.h>

char *f, *t;
int c;

while (c = CHARADV(f))
if (c > 255 II isprint (c)

WCHARADV(c, t);
WCHARADV(c, t);

Note that isprint 0 is defined for single-byte codesets only and that all
multi-byte characters (c > 255) are considered printable.

Note Although these macros seem transparent, there are some
cautions that must be observed when using them.

• First, they cannot determine byte status for an arbitrary
byte within a string. In general, multi-byte strings must be
examined sequentially from the beginning.

• Second, the macros are not perfect analogs of the byte
pointer versions. In particular, the program sequence:

*t++ = *f++;

cannot be done as:

WCHARADV(CHARADV(f) , t);

It must be done as:

int c;

c = CHARADV(f) , WCHARADV(c, t);

• Using the macros will increase program size and reduce
performance. For example, when *t++ = *f++ is converted
to CHARAT macros, it generates about 350 bytes of additional

Developing International Software 4-5

code. Where size is a problem, the function versions of the
macros can be used at some reduction in performance.

• The extent of size and performance impact is application
dependent. To reduce this impact, a common strategy for
processing multi-byte character data is to use byte pointer
operations where character interpretation is not an issue, and
to use multi-byte routines only where needed.

See NL_ TOOLS_16(3C) in the HP- UX Reference for more information on
programming with multi-byte characters.

Programming with Wide-Characters

For some applications, character processing may be more convenient if
multi-byte characters are represented as constant width characters-so-called
wide-characters.

For such situations, a set of routines is available to convert between multi-byte
characters and wide-characters. The wide-character representation is more
convenient for some things, for example, pointer manipulation works without
the need for the FIRSTof2 type of macros.

However, it is less convenient for others. For example, multi-byte string
manipulation routines such as strcollO and printf () do not work for
wide-character strings.

The "copy printable characters" example, written to use wide-characters, would
appear as the following:

4.;6 Developing International Software

#include <ctype.h>
#include <stdlib.h>

char fm [NM]. tm [NM1 ;
wchar_t fw[NW]. tw[NW];
wchar_t *f = fw. *t = tw;
int c;

mbstowcs(fw. fm. NW); !* convert multi-byte to wide-character!
while (c = *f++)

if (c > 255 II isprint (c))
*t++ = c;

*t++ = c;
wcstombs(tm. two NM); !* convert wide-character to multi-byte!

Note • The issue of printable characters is handled as above.

• Error-checking the conversion between multi-byte and
wide-character data is omitted.

• NM and NW are assumed to be appropriately defined.

Conversion of Existing Programs

When internationalizing an existing program, conversion to preserve data
integrity is conveniently done in two steps:

1. Conversion to single-byte data.
2. Conversion to multi-byte data.

Conversion to single-byte data can be subtle. Some programs use the 8th bit as
a flag to indicate special treatment of the 7-bit character. In general, it may
not be easy to determine whether a program does this. In any event, programs
that use or remove the 8th bit must be changed. If the 8th bit is used for data,
it will be necessary to put the 8th bit data in a new data structure and it may
be necessary to design a new algorithm to access the new data structure.

Once a program is correct for single-byte data, the conversion to multi-byte
data is straightforward. No structural changes are needed, but proper handling
of multi-byte characters is needed.

Developing International Software 4-7

As we saw above, for example, multi-byte data cannot be tested with
isprint O. In general, it is necessary to examine each instance of byte
processing to determine whether special handling of multi-byte data is needed.

Character and String Processing
Character and string processing for international software must ensure that
local customs are observed regarding such things as

• Treatment of accented characters
• Formatting of date and time
• Formatting of numeric and rnonetary quantities
• Comparison of string data

Most character and string processing is provided by internationalized
library routines that give correct results for the currently active locale.
Note that there may be restrictions in the use of some library routines and
minor program changes may be needed. You can find more information in
NL_ TOOLS_16(3C) in the HP-UX Reference.

The ctype(3C) routines isalpha 0, isupper 0, etc. and the conv(3C) routines
toupper (), etc., are internationalized and give locale-sensitive results.
However, they are defined only for single-byte data and cannot be used for
multi-byte data.

The numeric formatting routines ecvt, gcvt, strtod, atof, printf,
fprintf, etc., have been internationalized and give locale-sensitive results for
single-byte and multi-byte data. For information about restrictions on the
use of multi-byte data, see ecvt(3C), strod(3C), and printf(3C) in the HP- UX
Reference, Section 3e.

The ctime(3C) date and time routines ctimeO and asctimeO always give C
locale results. To get locale-sensitive results use nl_cxtime 0, nl_ascxtime 0,
or strftimeO.

Generalized monetary formatting is more involved than numeric formatting
since in some countries the currency symbol is placed before the amount. In
other countries the currency symbol is placed after the amount. There are no

4-8 Developing International Software

library routines that provide monetary formatting; you will have to provide
your own.

The currency symbol and position information is available in the structure
returned by localeconv and can be used as:

#include <locale.h>

struct lconv *lcs;
float number;
char *cs_p, *cs_f;

lcs = localeconv();

number = ...

if (number >= 0 && lcs->p_cs_precedes == '1' I I
number < 0 && lcs->n_cs_precedes == '1') {
cs_p = lcs->currency_symbol;
cs_f = 1111;

}

else {
1111. ,

cs_f = lcs->currency_symbol;
}

printf("%s %6.2f %s\n", cs_p, number, cs_f);

Other information in the lconv structure describes decimal point, thousands
separator, spaces used with the currency symbol, etc.

The string{3C) string comparison routines strcmp 0 and strncmp 0 always
give C locale results. To get locale-sensitive results use strcollO or
nl_strncmp 0 .

For some applications, a performance improvement may be obtained by using
strxfrm 0 to convert strings to a form that can be compared using strcmp 0 .
The following program illustrates this application:

Developing International Software 4-9

char *s1. *s2. *tt. *t2;
int n1. n2;

strxfrm{s1. t1. n1);
strxfrm(s2. t2. n2) ;

if (strcmp(tt. t2) > 0) { 1* == strcoll(s1. s2) *1

Note that error checking the conversion by strxfrm is omitted.

Conversion of Existing Programs

Conversion of existing programs is necessarily an ad hoc process. The grep
command can be used on existing source code to find calls to routines, such as
ctime 0 and strcmp 0, which may require changes.

Creating and Using a Message Catalog System
The HP-UX message catalog system allows program messages to be stored
separately from the logic of the program, to be translated into different
languages, and to be retrieved at run-time, according to the language
requirements of each user.

Program messages might be:

• Information to the user, e.g. file not found

• Responses from the user, e.g. tomorrow as used by the at command

• Strings used to format other messages, e.g. %l$d %2$s\n

These messages would ordinarily appear in the source program as quoted
strings, such as:

printf (llfile not found\n II);

if .(strcmp(s. IItomorrow ll) == 0)

To produce a program that is internationalized for messages, do the following:

4-10 Developing International Software

• Separate the program logic from program messages by using message routine
calls in place of quoted messages in the source program. The message
routines will retrieve message text at run-time~

• Create a message text source file for localization. This file contains messages
that would ordinarily appear as quoted strings in the source program.

• Generate a message catalog from the message text source file. This file
contains messages that are retrieved by the message routines.

Localized messages can then be provided by translating the strings in the
message text source file into another native language and then generating the
native language message catalog.

Programming for Messages

The programming tools for messaging are:

• The gencat command, which produces a message catalog from message text
source files.

• The catopen function, which locates a named message catalog and prepares
it for use by catgets 0 and catclose O.

• The catgets function, which retrieves messages from a message catalog
opened by a call to catopenO.

• The catclose function, which closes a message catalog opened by
catopenO.

Opening a Message Catalog

Message catalogs are opened by the catopenO routine:

#include <nl_types.h>

catd = catopen (II name II • 0);

where the name argument identifies the catalog to be opened. If catopenO
can successfully open the identified catalog, it returns a message catalog
descriptor. Otherwise it returns (nl_catd) -1. The program can test this

Developing International Software' 4-11

return value and take an appropriate action if the requested catalog cannot be
opened.

Note • The catalog descriptor catd is used by catgets 0 and
consequently it must be accessible to every catgets 0 call.

• It is recommended that the program name be used as the
name argument.

Search Path and Naming Conventions

The names of message catalogs and their location in the file system can vary
from one system to another. Individual applications may choose to name or
locate message catalogs according to their own special needs.

The flexibility to allow general location and naming of message catalogs is
provided via the NLS environment variable NLSPATH which gives both the
location of message catalogs and the naming conventions. Message catalog
naming conventions can be defined by means of substitution field descriptors
that permit the use of run-time information. For example:

NLSPATH=/usr/local/lib/%L/%N.cat: ./%N

This specifies two paths, separated by :, to be searched for a message catalog.
The meta character, %, in a search path introduces a substitution field
descriptor, where %N is replaced by the name parameter passed to cat open 0 ,
and %L is replaced by $LANG.

Thus, for the above value of NLSPATH, the call catopen (prog, 0) will first
attempt to open /usr/local/lib/$LANG/prog. cat. Failing this, it will
attempt to open. /prog. Note that if LANG is not set, the first path would be
/usr/local/lib/ /prog. cat and would probably result in a failure to find a
catalog.

If catopen 0 can't find a message catalog with the path names specified in
NLSPATH, it searches the default path:

/usr/lib/nls/%l/%t/%c/%N.cat

where: %1 is replaced by the language element of LANG, %t is replaced by the
territory element of LANG, and %c is replaced by the codeset element of LANG.
This is summarized in the following table:

4-12 Developing International Software

Table 4-1. Summary of NLSPATH Replacement Specifiers

Replacement
Specifiers Expansion by NLS

%L

%N

%1

%t

%c

replaced by the value of LANG

replaced by the name of the application

replaced by the language element of LANG

replaced by the territory element of LANG

replaced by the codeset element of LAN G

For further details on LANG and NLSPATH, see environ{5} in the HP-UX
Reference.

Retrieving Messages

Once the message catalog is open, the program can retrieve messages from the
catalog using:

catgets(catd, seLnum, msg_num, def_str) ;

where catd is the catalog descriptor returned by catopenO, seLnum and
msg_ num identify the message to be retrieved, and def_str ("default string") is
a string that is returned if the call fails.

Ordinarily def_str is the C locale message.

To retrieve messages, catgets 0 uses an internal buffer that is overwritten
on each call. This is rarely a problem since a message is ordinarily used
immediately by being printed or tested. However, see "Special Considerations
for Messaging" below.

Closing a Message Catalog

When the program no longer needs access to the message catalog, the
catalog file should be closed. This can be done with the catclose 0 call but
it is generally simpler to let exit close the catalog file when the program
terminates.

Developing international Software 4-13

Default Messages

A program should make provision for the case when the message catalog is not
available. This could happen, for example, if the file system containing the
catalog is not mounted or if there is no catalog for the current language. Note
that cat open 0 does not take a default action if a catalog cannot be opened.
Provisions for default messages must be arranged by the program. There are
two general strategies for handling this situation:

• The "standard" method is to include the default message as the del_str in
the catgets 0 call. If thecatopen 0 call fails, it will return (nl_catd) -1,
an invalid file descriptor. This will subsequently cause catgetsO to fail, and
it will return del_sir, the default message. This is the recommended method
of handling default messages.

• Alternatively, you can use a default message catalog. Note that even
the default message catalog may not be available {e.g., if the file system
containing it were not mounted). Commands using this method should
consider the probability of this situation for their application and plan
accordingly. Applications that use this method often use error message
numbers as the default string in catgets 0 calls.

If a message catalog is missing, it is seldom useful to issue a message unless
it is reasonable to expect the catalog to be available. If a message catalog is
missing and the catalog is critical to the successful execution of the program, it
may be best to issue a message and terminate the program.

Compiling and Linking

There aTe no special requirements for compiling and linking. All messaging
routines are in standard libraries and will be linked with the usual compile/link
commands.

Creating a New Message Catalog

Creating a message catalog is a two step process:

1. Create the message text source file.

2. Use gencat to generate a message catalog from the message text source file.

4-14 Developing International Software

The Message Text Source File

A message text source file contains the messages from the source program.
Each message is numbered with the message number used in the corresponding
catgets () call.

A simple message catalog text file might be:

$ Comment: a simple message text source file
1 text for message 1
2 text for message 2

A message consists of a message number followed by a single space or tab
followed by the message text and terminated by a new-line. The message text
is a C string, including spaces, tabs and \ (backslash) escapes, but without
surrounding quotes. Message numbers are unsigned integers and must be in
ascending order but need not be consecutive. A line beginning with $ followed
by a single space or tab is treated as a comment. Note that comments in
the message text source file are not saved in the message catalog created by
gencat.

For a large or complex group of messages it may be useful to arrange the
messages into groups called sets. Message sets allow the programmer to
group similar messages together within a catalog .. For example, one set might
contain all prompts, and another set might contain all error messages. A
set is introduced by a $set directive. Messages belong to the set specified
by the most recently appearing $set directive. Like message numbers, set
numbers are unsigned integers and must be in ascending order but need not be
consecutive. Message numbers in different sets are independent.

A default set, NL_SETD is defined in <nl_types.h> for use in source programs.
If a $set directive does not appear in the message text source file, messages
will be assigned to set NL_SETD . Using the default set and directives in the
same message text source file is not recommended.

A message text source file with sets· might look like the following:

Developing International Software 4-15

$ user prompts
$set 100
1 Text of message number 1
4 Text of message number 4
9 Text of message number 9

$ error messages
$set 200
1 Text of message number 1
3 Text of message number 3

To make leading or trailing blanks visible, the $quote directive can specify a
quote symbol. For example:

$ show blanks
$quote II

1 II leading blanks"
2 "trailing blanks II

For more details on the format of the message text source file see gencat(l}.

Compiling a Message Catalog

Once the message text source file is correct, a message catalog can be
generated. For example, if prog . msg contains the messages for prog. c, then
you would type the following:

gencat prog.cat prog.msg

This generates prog. cat, a message catalog for prog. c . This step is
analogous to compiling the source program: the message text source file is
"compiled" into a binary message catalog for use by the program at run-time.

4-16 Developing International Software

An Example of Programming with Message Catalogs

To see how this all fits together, suppose prog. c is the standard sample
program:

maine)
{

printf("hello world\n") ;
}

When converted to use message catalogs, prog. c would look like this:

#include <nl_types.h>
mainO
{

nl_catd catd;
catd = catopen("hello", 0);
printf(catgets(catd, NL_SETD, 1, "hello world\n"»;
}

The message text source file would be:

$ message catalog for hello world
1 hello world\n

The program would be compiled as:

cc -0 prog prog.c

and the message catalog would be generated as:

gencat prog.cat prog.msg

For this example,

• We have used "standard" default message handling: default messages are the
default strings in catgets 0 calls, and these will be returned as messages if
catopenO fails.

• The program name is also the message catalog name so that catopenO will
search the standard places when looking for a message catalog.

• The default set, NL_SETD, is used in the source program and the use of a set
directive in the message text source file is omitted.

Developing International Software 4-17

Special Considera,tions

• Messages in variables require special treatment. For example, the message in:

char *msg = "message";

printf(msg) ;

would, given a "direct" conversion, result in:

char *msg =catgets(catd, seLnum, msg_num. "message");

printf(msg) ;

This would generate a compile error. The required conversion is:

char *msg = "message";

printf(catgets (catd, seL num, msg_ num. msg));

• Messages in arrays require somewhat more elaborate treatment. Before
conversion, an original source might contain the following:

static char*msg_tbl [] = {
"message 1".
"message 2".

"message N"
};

printf(msg_tblU]);

This would need conversion to:

printf'(catgets(catd, seLnum, msg_num. msg_tbl[iJ));

and seLnum, msg_num and message index i must be synchronized. In
particular, note that msg_tbl [OJ is message 1 and that 0 is not a valid
message number .

• Multiple messages in a printf call might appear as:

printf("message 1". "message 2") ;

But, because catgetsO overwrites its message string on each call, these
cannot he translated as:

printf(catgets(catd, seLnum_l, msg_num_l. "message" ru).

4-18 D.eveloping International Software

.catgets(catd, seLnum_2, msg_num_2, IImessage 2"»;

For this situation it is necessary to copy one of the messages:

.char *mi[N];

str.cpy (mi, .catgets(catd, seLnum_l, msg_num_l, "message 1"»;
printf (mi, .catgets(catd, seLnum_2, msg_num_2, "message 2"»;

• Both catgets 0 and gencat 0 impose limits on the length of messages
they can handle. These limits may make it necessary to compose a .large
message, such as a help screen, from several smaller messages. For further
information, see catgets{3C) and other references in HP-UX Reference.

• The message system makes no provision to ensure that the correct catalog
is used with a program. If an incorrect version of a message catalog is
inadvertently installed, your program will issue messages but they will
probably not make sense. You may wish to add validation messages that
contains the program revision code and the locale so the program can
validate the message catalog it uses. This could be done as the following:

.char *p_rev =
"$Revision: 1.4 $";

.char *.c_rev;

.char *p_lo.c =
"C" ;

.char *.c_lo.c;

/* program revision */
/* .catgets 1*1
/* .catalog revision */
/* prQgramlo.cale */
/* .catgets 2 *!
/* .catalog lo.cale */

.c_rev = .catgets(.catd, NL_SETN, t, p_rev);
if (str.cmp(.c_rev, p_rev) !=O) {

printf(nprogram/message .catalog revision mis-mat.ch\n") ;
.catd= (nl_.catd) -1;
}

p_lo.c =getenv(ILANG");
.c_lo.c = .catgets (.catd ,NL_SETN ,2, p_lo.c);
if (str.cmp(.c_lo.c,p_lo.c) != 0) {

printf("program/message .catalog lo.cale mis~mat.ch\n") ;
.catd = (nl_.catd)-t;
}

This example uses an rcs{l)$Revision$ line (see discussion in co{l)) so
that the revision code can be updated automatically. The special comments
1* c-atgets 1 *1 and I*catgets 2 *1 enable findmsg to find the validation

Developing International Software 4-19

messages. See the discussion in the "Source Program Management" section of
this chapter.

The message text source file for this program would contain:

1 $Revision: 1.4 $
2 C

Note that both of these messages are potential problems for someone
attempting to localize the program. Message 1, the revision line must not
be localized. Message 2, specifying the locale, must be localized but the
translation is not obvious to someone unfamiliar with the program. Comments
in the message text source file won't help since they are not saved in the
message catalog. See "Guidelines for Using Messaging" below for a description
of a "cookbook" to help the translator avoid errors.

Libraries with Messages

Library routines as well as programs, can use message catalogs. For example,
the C library routine perror(3C) uses a message catalog and can be used by a
program that also uses a message catalog. All the considerations for programs
apply to libraries. There are also some special considerations.

In general, the scope of variables of a library routine are restricted to the
routine so they do not conflict with variables of the main program. The catalog
descriptor must be declared so that there can be no conflict with the main
program since the main program may also use a message catalog.

Since a library routine might be called several times by a program, some
consideration should be given to the way the message catalog file is opened.
There are two general strategies:

• The easy strategy is to open the catalog when it is needed and close it after
use. This uses a file descriptor only when it is needed .

• For cases in which the library routine is called frequently, it may be desirable
to avoid multiple opens/closes of the catalog. This can be done with the
following:

static nl_catd catd;
static int oflg = FALSE;

4-20 Developing International Software

if (! oflg) {
oflg = TRUE;
catd = catopen(...);
}

catgets(catd, seLnum, msg_num, def_str);

Once open, the file descriptor remains in use for the remainder of the program.
The catalog will be closed by exit at program termination. Note, however,
that this method cannot be used if LANG can change between calls to the
routine.

edit to add

other NLS routines

14--- messages

edit to remove

non-message strings

edit

messages

Figure 4-1. Converting a Non-Internationalized Program

Developing International Software 4-21

Conversion of Existing Programs for NLS Messaging

The conversion of an existing program to use messages can be automated to a
substantial degree. Consequently, even when writing a new program you may
find it easier to write the program without messages and, when it is working,
convert it to use messages.

The conversion process is:

1. Find all quoted strings in the source program. Such strings may be
messages.

2. Review the list of quoted strings and remove any that are not messages.

3. Assign a message number to each message string and replace the string in
the source program by an appropriate call to catgets O.

4. Generate a message catalog from the numbered message strings.

HP-UX commands are available that make this process fairly easy.

1. Finding Strings in a Program

The command f indstr will examine a C source program and find all string
constants (other than those that appear in comments). These strings, along
with their quotes, are written to standard output along with information
indicating the position of the string in the source file. A typical use would be:

findstr prog.c > prog.str

The string file prog. str would now contain a copy of each string found in
prog.c.

The findstr command expects the strings of your program to be syntactically
correct with the quotes properly matched. To ensure that this is the case, it is
a good policy to use f indstr only on tested programs.

2. Removing Non-Messages from the Strings

Most of these strings in the string file are messages and would need to be
localized. Some of the strings, however, would never be localized. For example,
the type specifier for fopenO is a string such as "r" or "w+". These strings
are not messages and would not he localized. Some format strings would he

4-22 Developing International Software

localized but some would not. The string file must be reviewed and any entries
for non-message strings should be removed.

When editing the string file, take care not to modify the location information
for strings that are left in the file. Also, note that if the source file is changed,
the string file may be invalidated and should be re-generated.

3. Inserting Catgets Calls

Once the string file contains only the strings that will need localization, you are
ready to create a messaging version of your program.

This is done using the insertmsg command which takes care of a few
administrative details:

• It assigns a message number to each string in the string file and writes the
numbered messages to standard out in a format suitable for use by gencat.
This is the message text source file for the program.

• It creates a copy of the source program in which each string identified in the
string file is replaced by acatgets 0 call with the assigned message number.
The name of the new source program file is the name of the original source
file with the prefix nl_.

A typical use would be:

insertmsg prog.str > prog.msg

If the prog. str file were created from the source file prog .c, the new source
file would then be nl_prog. c.

Note The findstr or the insertmsg command will not recognize
the problem cases identified in the "Special Considerations"
section in this chapter, and they will convert them without
comment. Some of these conversions will draw a syntax error
from the compiler; others will give incorrect results with no
indication. The recommended strategy is to let the compiler
find the syntax errors and to review the remaining conversions.

Developing International Software 4-23

4. Editing the Modified Source Program

Your new source program will need some minor editing before it can be used.
A string such as:

... "string" ...

in the original source file, would have been changed to:

... catgets(catd, NL_SETN, msg_num, "string") ...

The msg_num was assigned by insertmsg. You must provide definitions for
catd and NL_SETN. This can be done by adding the following lines near the
beginning of the program:

#include <nl_types.h>
#define NL_SETN 1

catd = catopen("name", 0);

The catopen 0 call would ordinarily be part of the "standard" initialization.
See the section "Initializing NLS" in this chapter for additional information.

After these modifications, the new source program can be compiled and linked.

5. Editing the Message Text Source File

For many cases, the message text source file, prog. msg in the above example,
will need no modification. However, if you are using sets, appropriate $set
directives must be inserted.

6. Creating a Message Catalog

After any changes to the message text source file, the message catalog can be
created using gencat. As in the earlier example:

gencat prog.cat prog.msg

4-24 Developing International Software

Testing a Message Catalog

Once you have an executable program and a message catalog, you can test the
program to be sure that it retrieves messages from the correct message catalog.

If you used the "standard" message initialization, the use of NLSPATH makes
testing easy. For the following example, we assume:

• The executable program is named prog.

• The catalog is opened by catopen("prog" ,0).

• The original messages are in prog . msg.

• The default value for LANG is null, i.e., unset.

The following script prepares test directories and catalogs:

make a directory
mkdir ./french
make a copy of the message text source file
cp prog.msg french.msg
modify the messages to distinguish
default messages from catalog messages
vi french.msg

generate a message catalog with the modified messages
gencat french/prog.cat french.msg

The catalog in directory. /french is now ready for testing.

The following script tests the program for default messages and "french"
messages.

set NLSPATH
NLSPATH=./%L/%N.cat ; export NLSPATH
echo $NLSPATH
test the default messages
echo LANG = $LANG
prog
test the catalog messages
LANG=french ; export LANG
echo LANG = $LANG
prog

Developing International Software 4-25

Installing a Message Catalog

When you are satisfied that your messaging program correctly accesses
its. message catalog, it can be installed. See "Administering International
Software" for more details.

Source Code Management

Following are some suggestions and comments on the management of messaging.
source programs.

Keeping nl_prog.c Files

There are two approaches regarding the modified source files:

• You can rename the nl_ * files to the original names and keep the modified
version as the source program. This is the more commonly used approach.
It eliminates need for reconversion but means the source files have the
catgets 0 calls in them and are more awkward to read .

• Or you can keep the original source files and convert them whenever they
are modified. This eliminates the need to read the messaging statements
but means the source files must be converted whenever a change is needed.
This approach may be feasible only if editing of the string file and converted
source files is minimal or can be automated.

Multi-file Programs

If your program consists of a number of files, the conversion process is only
slightly more complex than for a single file. The findstr, insertmsg, and
gencat commands all take multiple file input and perform appropriately. For
more information, please see the appropriate pages in HP- UX Reference,
Section 3C.

Adding a Message to a Messaging Program

Once your program provides message catalog support, you may need to add a
message to the program. If you keep the original version of the source program
(without the message catalog calls), adding a new message is done simply by
adding the message to the source program and converting the program as
above.

4-26 Developing International Software

If you keep the nl_ * version of the source program (with the message catalog
calls), adding a message means that you must assign a message number to the
new message and this new number must not conflict with those already used in
the message catalog. To assign new message numbers, you will need a list of
existing message numbers. These are available from two places: in the message
catalog and in the source program.

The dumpmsg command will list the messages in a message catalog:

dumpmsg prog.cat >prog.msg

If there are multiple versions of the program, be sure that the message catalog
and the source program are for the same version.

The f indmsg command will list the messages in a source program:

findmsg prog.c >prog.msg

This method is generally preferred since it ensures that the message text
source file agrees with the source program. The messages found are the quoted
strings in catgets 0 calls in the source program. If a program uses messages
in variables, you must add special comments to the source program so that
findmsg can find these messages. For example, a message in a variable and its
corresponding catgets () call would look like the following:

char *msg = IImessage ll
; 1* catgets msge-num *1

printf (catgets(catd, seLnum, msg_num, IImessage ll
));

Both of the message listing commands produce as output, a message text
source file in a form suitable for input to gencat.

Once a message list is available, message numbers can be assigned to new
messages and the source program appropriately modified with new catgets 0
calls that have the newly assigned message numbers. The new messages can
then be added to the message text source file and a new message catalog
generated.

Although gencat can merge new messages into an existing message catalog, it
is just as easy and less error prone to re-create the complete message catalog.
Once the new catgets 0 calls have been added to the source program, this can
be done as the following:

Developing International Software 4-27

remove previous message catalog to preclude update
rm -f prog.cat
generate a message text source file with the new messages
findmsg prog.c >prog.msg
generate the new catalog
gencat prog.cat prog.msg
list the new messages for review
dumpmsg prog.cat

Using "make" Files

With the . msg and . cat file suffix conventions, it is possible to use make to
automate message catalog creation. The following make file illustrates the
procedure:

SOURCE = prog.c sub.c

all: prog prog.cat

prog.msg $(SOURCE)
findmsg $(SOURCE) >$~

.msg.cat:
gencat $*.cat $*.msg

The command:

make prog.msg

will generate the message text source file prog. msg. The command:

make prog. cat

will generate the message catalog prog. cat from the message text source file
prog. msg. Also see "Example 2", in "Appendix A" of this manual for more
illustration of this procedure.

Guidelines for Using Messaging

Here are some overall guidelines which you should keep in mind when
programming for messages.

• Provide a "cookbook" for the translator which contains the numbered
messages and, carefully separated (e.g, by brackets), any additional

4-28 Developing International Software

explanatory information or paraphrase they may need. A message that is
obvious to you may be a mystery to a translator. You should assume that
the translator:

1. Has a different native language from yours.
2. Is hundreds or thousands of kilometers away from you.
3. Is doing the translation months or years after you finish the program.

• All text that needs to be localized should be put in the message catalog.
This includes: prompts, help text, error messages, format strings, soft key
definitions, and command names.

• Any text that will not be localized should not be put in the message catalog.
Including unnecessary text will not affect the program behavior but it may
be confusing to a translator.

• Provide a unique, unambiguous message for each situation. A single message
in your own language may appear to cover several different situations.
However, when the message is translated into another language, each
different situation may require a different local language translation.

• Allow at least 60% extra space in text buffers and screen layouts to allow for
text expansion when messages are translated. It may take more space to
convey information in another language.

• Decide what to do if a message catalog cannot be found by your program. If
the local language is vital to the operation of the program, you may want the
program to issue a default error message and exit. If the local language is
not vital to this part of your program, you might allow the the program to
continue to operate with a default language (such as C).

Developing International Software 4-29

Administering International Software

Read this chapter if you are:

• A Systems Administrator who supports the use or development of NLS
software.

5

This chapter covers information you will need to know and tasks you will need
to perform in order to ensure that users on your systems are able to use NLS
features successfully.

Both the information and the tasks are minimal since your local NLS
Coordinator should have already determined the required configuration and
initialization of the system with respect to NLS.

Finding NLS Files

The NLS information used by HP-UX commands and libraries is located in the
following directories and files:

Administering International Software 5-1

Directory /Files

/usr/lib/nls

/usr/lib/nls/config

/usr /lib/nls/ locale

/usr /lib/nls/ locale /locale. de!

/usr /lib/nls/ locale / *. cat

Type of NLS Information

This is the directory under which NLS
information is located.

This readable ASCII file identifies currently
installed locales, including user-defined locales
created by buildlang. It contains locale
names and their corresponding locale-ID
numbers.

This directory is present for each installed
locale.

These files contain locale-dependent
processing information.

These are the localized message catalog files.

In the most general case, locale can be of the form: language_territory.codeset.
Either of the extensions _ territory or . codeset may be omitted if not applicable,
and in general, both are omitted. If a locale has _ territory or . codeset
extensions, there is a corresponding subdirectory for each extension. For
example, if /usr/lib/nls/config has entries:

german. 8859
german_swiss
german_swiss.8859

japanese
japanese. uj is

Then, you should expect to find the following directories:

/usr/lib/nls/german/8859
/usr/lib/nls/german/swiss
/usr/lib/nls/german/swiss/8859
/usr/lib/nls/japanese
/usr/lib/nls/japanese/ujis

5-2 Administering International Software

The Default User Environment
The NLS environlnent variables should have system default values appropriate
to the local user community. These values would ordinarily be determined by
the local NLS Coordinator. You should include commands in / etc/profile
and / etc/ csh . login that will set the user's environment variables to these
default values. Note that HP-UX does not set these variables.

Terminal Configuration
Users running internationalized commands will be using the following setting:

stty -istrip -parity

The / etc/ gettydef s file for these users should be set properly for their
terminal.

Installing Message Catalogs
Localized message catalogs would ordinarily be delivered to you by the local
NLS Coordinator. You should install these catalogs in the appropriate location.

Message catalogs for HP-UX commands and libraries are located in
/usr/lib/nls/ locale. If your system has territory or codeset specific locales
you will need to check additional directories. See discussion in "Finding NLS
Files" above.

Message catalogs for other applications can be put in any location that can
be referenced by the conventions of catopen and NLSPATH. The location and
naming of local message catalogs will generally be made by you in consultation
with the local NLS Coordinator. This location and naming may require a
change to the system default value of NLSPATH. If it does, the NLS Coordinator
will determine the new value. You will need to make the required change to the
NLSPATH setting in /etc/profile and /etc/csh.login and you will want to
notify users of this change.

Administering Internation(JJ Software 5-3

Installing Optional Locales

The procedure for installing additional software such as an NLS locale is
explained in detail in the section "Updating HP-UX" of UP-UX System
Administration Tasks.

HP-UX is shipped with the default locale, C. For specific locations, other
locales may also be shipped. If you install other products, however, you must
order the specific locales for them as an additional option. Not all character
sets are supported on all peripherals, so peripherals which support the desired
character set must also be obtained. After a locale is installed, the NLS
locale-specific information can be used by any application program requesting
it.

Peripheral Configuration

When you purchase peripherals for use in a non-ASCII or multiple language
environment, you should consider the character sets that your peripheral(s) will
need to support. Hewlett-Packard provides printers, plotters and terminals
which support HP single- and multi-byte character sets, as well as non-HP
standards (such as the IS08859-1 character set for Europe). In some cases, you
may need special software in order to operate these peripherals, such as the
NLIO system for Asian peripherals.

Because of these considerations, the information below is provided to help in
understanding the special characteristics of non-ASCII peripherals. For further
information, you can contact your local HP sales representative for assistance.

European Character Sets

For European languages, many HP peripherals support the ROMAN8 character
set. ROMAN8 is a full superset of ASCII and offers 88 additional local
language symbols. Older HP peripherals may use the HP Roman Extension
set, which is a subset of ROMAN8. Roman Extension is missing ROMAN8
characters A through I, U, -0, Q, ¥, §, j, and A through ±.

ROMAN8 terminals can simultaneously display any characters in the set. The
keyboards have keycaps only for the specified local language, but, in the 8-bit

5-4 Administering International Software

mode, you can enter any ROMAN8 character by use of the (Extend char) key. You
can also use most 8-bit terminals in IS07 mode.

Katakana Character Sets

Many HP peripherals support a base 8-bit character set known as KANA8.
The first 128 codes in the KANA8 set are JASCII (the same as ASCII except
that the set substitutes "¥" for "\"), and the last 128 codes are available for
Katakana.

Other 8-bit HP Character Sets

As with KANA8, the other 8-bit character sets supported by HP have ASCII
as the first 128 codes, with the last 128 codes used by other characters. Some
Arabic printers are capable of context-sensitive letters, so some character
shapes may vary on these devices.

16-bit HP Character Sets

For Asian languages, many HP peripherals support one of five HP-16 character
sets. These character sets are compatible with the five HP-15 character sets
(PRC15, ROC15, JAPAN15, UJIS, and KOREA15). NLIO is required for
converting between HP-15 and HP-16 during input and output. NLIO is also
necessary with some Asian terminals to provide the "input method" by which
a user can input multibyte characters using a conventional keyboard. Certain
peripherals, such as PC's used as terminals, can generate and display HP-15
multibyte characters directly and need no additional software.

Non-HP 7 -Bit Character Sets

The IS07 (International Standards Organization 7-bit character substitution)
and similar character sets have certain infrequently-used ASCII codes, such as
those for "I" and "{", designated to generate local-language symbols. Examples
are the ¢ or CB in Danish. Unfortunately, the designated ASCII codes also
represent special characters often used in HP-UX (and all other UNIX and
UNIX-like systems). For this reason, the use of ISO 7-bit, and similar non-HP
international character sets is neither recommended nor supported.

Administering International Software 5-5

Limited support for non-HP 8-bit character sets may be provided through
appropriate language definitions. Currently this definition must be provided
by the user. The buildlang utility described in the chapter "Localizing
Internationalized Software", in this manual, provides help in defining your own
language and locale characteristics.

5-6 Administering International Software

Localizing International Software

Read this chapter if you are:

• A local NLS Coordinator.

6

The chapter covers information and tasks for localizing commands that have
been internationalized. It will also help you in determining local NLS needs
which you may need to communicate to your System Administrator.

Localizing the User Environment

HP-UX does not automatically set NLS environment variables. HP-UX
commands, when run with NLS environment variables not set, default to the
C locale. If this is the desired system default locale, no changes for the user
environment are needed.

To provide a different system default locale, you will need to specify the desired
default values for the NLS environment variables:

• LANG
• LC_ categories
• NLSPATH
• LANGOPTS

The chosen values should be those most commonly used. The default values
should be set in / etc/profile and / etc/ csh . login . You should arrange with
your system administrator to do this and advise users of any change to the
system default.

Users who need an environment different from the system default can set their
own environment as needed in their. profile or . login file.

Localizing International Software 6-1

Localizing Message Catalogs
For applications that have message catalog support, you can provide a local
language interface. This involves:

• Obtaining a copy of the C locale messages.

• Arranging for translation of the messages into a local language.

• Installing a message catalog containing the translated messages.

The C Locale Messages

To determine what HP-UX commands have message catalogs, run:

Is /usr/lib/nls/C/*.cat

For each HP-UX command that has message catalog support, there will be a
file /usr/lib/nls/C/ command.cat listed.

To localize a message catalog, you need to first get a readable version of the C
locale messages. This is done with the dumpmsg command.

For example, to get a message text source file of the C locale messages for date
run:

dumprnsg /usr/lib/nls/C/date.cat >date.msg

The file date. msg is a copy of the messages and is ready for translation to a
native language.

Preparing for Translating Messages

You are now ready to translate the messages to the target language:

vi date.msg

Note that date. msg is a message text source file in a format suitable for input
to gencat. You must preserve the format and you must leave the message
numbers and the set numbers unchanged.

The developer should have provided a translator's "cookbook". Lacking this,
here are some possible translation problems you might encounter:

6-2 Localizing International Software

• The meaning of a message may be unclear or ambiguous so that the desired
translation is not apparent.

• There may be unspecified size constraints on the message. For example, it
may be displayed in a space with a fixed length.

• There may be parts of a message that should not be translated. For
example, messages for a command may contain the command name.

Some possible solutions you might try:

• Experiment with the program to see if you can determine the intended
behavior.

• Communicate with the developer of the program.

• Communicate with someone who has localized the program.

Installing Localized Messages

Once the message text source file has been translated to the target language
you can generate a message catalog containing the newly translated messages.
To create a message catalog from the translated date. msg message text source
file, run:

gencat date. cat date .msg

The new message catalog date. cat can now be delivered to your System
Administrator for installation in the appropriate locale.

Note that a message catalog contains no information to indicate the locale for
which it is intended. To help ensure that the message catalog is installed in
the proper directory, we recommend you deliver the catalog with a script that
will install the catalog in the correct locale. Once the new message catalog is
installed, be sure to verify the correct installation.

Localizing International Software 6-3

Creating a Locale
The standard locales cover most languages. In the event that none of the
existing locales is appropriate, it is possible to create a locale that meets your
specific requirements. This is most easily done if there is an existing locale
that is similar to the one you need. If there is, you can get a copy of the locale
description in buildlang format, modify the description so that it conforms to
your needs, then install it as a new locale.

For example, suppose you need a locale that is the same as american except
that it is to have a different date format.

For the american locale, date produces output of the form:

Fri. May 5. 1989 04:37:33 PM

Suppose the desired format is:

Fri. 5 May 1989. 04:37:33 PM

The format for date is controlled by the d_t_fmt and d_fmt items of the
LC_TIME category. You can change these to give the desired format.

To create the new locale, get a buildlang script of the american locale by
executing:

buildlang -d american > new_locale

You can now modify the buildlang script new_locale to define the desired
locale:

6-4 Localizing International Software

The script will contain the following entries:

langnarne
langid 1

lIamerican li

LC_TIME
d_t_frnt lI%a, %b %.ld, %Y %I:%M:%S %pll

"%a, %b %.ld, %Y"
n%I:%M:%S %p"
"Sunday"

To get the desired formatting, you need to change: d_ t_fmt and d_fmt in the
script to:

langname "locale_ name ll

langid locale id

LC_TIME
d_t_frnt "%a, %.ld %b %Y %I:%M:%S %p"
d_frnt "%a, %.ld %b %ylI
t_frnt "%I:%M:%S %p"

You also need to determine locale_ name and locale_ id. If you want to create a
new locale, these must not conflict with existing locales and the locale_ id must
be in the range 901-999. If you want to replace an existing locale with a new
definition, these must be the locale_name and locale_id of the locale that is to
be replaced.

After you have changed new_locale, the locale_name locale can be installed in
the system by executing:

buildlang new_locale

You rnay need to be root to do this or you can deliver new_locale to your
System Administrator for installation.

To verify correct installation of the new locale:

Localizing International Software 6-5

• Run nlsinfo to see that the new locale is displayed.

• Examine /usr/lib/nls/ config to see that locale_name is listed with
locale_id.

• Verify that a directory /usr/lib/nlsllocale_name exists.

• Verify that a file /usr/lib/nls/locale~name/locale.def exists.

• Set LANG to the locale_name locale and verify that date formats the date as
desired.

6-6 Localizing International Software

7
Advanced NLS Topics

Read this chapter if you are:

• A programmer or software developer who has special requirements
• Anyone in need of additional background information on NLS

This chapter covers the following:

• Character and string processing in more detail
• Special requirements for localizing
• Special situations for messaging

Codeset Conversion
If you need to transport data between systems that use different codesets, you
will probably need to convert codesets. To assist this conversion, two codeset
conversion tools are available.

The iconv command operates on files and converts characters from one codeset
to another. Conversion can be performed between HP codesets and a number
of widely-used non-HP codesets. See iconv(l) in the HP- UX Reference for
~~. .

The iconv routines are intended for special situations not covered by the
conversion command. Using these routines, it is possible to provide special
conversion tables and special treatment that may be needed in the conversion.
See iconv(3C) in the HP- UX Reference for details.

Advanced NLS Topics 7-1

Processing Right-to-Left Languages
Processing right-to-Ieft languages requires the programmer to deal with issues
of data directionality that are not ordinarily a concern.

Directionality refers to two properties of the text:

• The direction the language is naturally read.
• The order of characters in a file.

Mode can be

• Latin: left-to-right.
• Non-Latin: right-to-Ieft.

Order can be:

• Keyboard: the order in which keystrokes the user enters keystrokes.
• Screen: the order in which characters are displayed.

Some codesets contain Latin and non-Latin characters so that it is possible
to mix left-to-right and right-to-Ieft text. If we use Li to indicate a Latin
character, N i to indicate a non-Latin character, and i to indicate the order in
which the character is typed, the mixed text:

N1 N2 L3 L4 N5 N6 L7 L8

entered on a terminal configured for right-to-Ieft display would appear as:

L7 L8 N6 N5 L3 L4 N2 N1

For additional information on directionality, see hpnls(5) in the HP-UX
Reference.

Two commands are available to manage data directionality. The command
forder allows users with screen data to use programs that do not support
screen order data. It converts the order of characters in a file from screen
order to keyboard order, or from keyboard to screen order. For example, sort
cannot sort screen order data. However, such data could be sorted by:

forder file1 I
sort I
forder > file2

put in keyboard order for sort
sort it
put back in screen order

Order and mode information is specified by the LANGOPTS environment
variable. To set LANGOPTS using Bourne Shell or Korn Shell:

7 -2 Advanced NLS Topics

LANGOPTS=modc order
export LANGOPTS

For further details on the LANGoPTS environment variable, see environ(5).

Since most printers are designed for printing left-to-right languages, printing
right-to-Ieft data requires special formatting. The command nlj ust provides
this special formatting. It aligns such data with the right margin and composes
the data in right-to-Ieft print order. For example, nljust would typically be
used as a filter with the Ip and pr commands, such as in:

pr file I nljust - I lp

As with forder, nljust also gets mode and order information from the
LANG OPTS variable.

For special situations that cannot be handled by data ordering commands, the
routine strord converts between screen order and keyboard order and can be
used to provide any special processing that may be needed. As a simplified
example, consider a program that reads data in either keyboard or screen
order, and writes it to a terminal in screen order. The relevant portions of the
program are:

#include <nl_types.h>

char *lopts;

lopts = getenv("LANGOPTS");

fscanf (... , src, ...);
if (lopts[2] == 'k')

strord(dst, src, lopts[O]);
fprintf(... , dst, ...);

/* "m_o" m = mode, 0 = order */

/* read in current mode/order */
/* if order is keyboard order */
/* re-order before write */
/* write data */

For an extended example of right-to-Ieft processing see Appendix A, "Examples
of Internationalized Software", in this manual.

Advanced NLS Topics 7-3

Locale Information
Locale information is available in various ways. The nlsinfo command
provides selected portions of information for a specified locale. Information is
displayed in tabular form convenient for reference. The buildlang command
-d option provides all information for a specified locale. This information is
displayed in buildlang input format and may be used to define a new locale.

Programmatic access to information about the currently active locale is
provided by three library routines. The langinf 00 routine provides access to
all locale information. The localeconv() routine provides access to the locale
information that pertains to numeric formatting. The getlocaleO routine
provides access to setlocale 0 status information. See setlocale{3C).

Initialization

The following sections provide more detailed information on:

• Special locales
• Special Message Catalogs
• Default Message Catalogs
• Programs That Call Exec

Special Locales

The setlocaleO routine can set individual categories to specific locale values.
For example, to have a program run with French date and time conventions
and with Spanish sorting conventions, the following calls would establish the
desired locale:

#include <locale.h>

setlocale(LC_TIME. "french") ;
setlocale(LC_COLLATE."spanish") ;

This use, however, defeats the adaptive nature of the NLS routines and is not
recommended. A preferred way to get the desired effect would be to use the
"standard" initialization and to set the NLS environment variables when the
program is run:

7 -4 Advanced NLS Topics

LC_TIME=french ; export LC_TIME
LC_COLLATE=spanish ; export LC_COLLATE

Special Message Catalogs

The catopen () routine can specify a path for the message catalog, as in:

catd = catopen(1I /usr/special. cat II • 0);

This use, however, defeats the generality of catopen () and is not
recommended. A preferred way to get the desired effect would be use the
"standard" initialization:

catd = catopen(lIspecial n • 0);

Then set the NLS environment variable when the program is run:

NLSPATH=II/usr/%N.cat ll
; export NLSPATH

Default Message Catalogs

The "standard" default message handling is to use the C locale messages as the
default string in catgets 0 calls. This ensures that the program will be able to
issue messages even if there is no message catalog available.

If your application must access a C message catalog for the default messages,
the following is suggested:

Advanced NLS Topi.cs 7-5

if (!setlocale(LC_ALL). "H»~ {

else

fputs("Warning! call to setlocale failed\n". stderr);
fputs("Continuing processing using the \"C\" locale\n". stderr);
catd = (nl_catd)-l;
}

catd = catopen("name". 0);
if (catd == (nl_catd)-l) {

/* if necessary. user may save LANG at this point */
putenv("LANG=C") ;
/* try NLSPATH */
catd = catopen(" name" . 0);
/* if necessary. user may restore LANG at this point */
if (catd == (nl_catd)-l)

/* try hard-coded path */
catd = catopen("/usr/lib/nls/C/name.cat". 0);

}

Programs That Call Exec

For commands that exec 0 other commands, we recommend that the first
command call setlocale O. If the call is unsuccessful, use putenv 0 to reset
all the NLS environment variables to ensure that the other commands don't
repeat the unsuccessful setlocale 0 call and issue additional error messages.

Messaging: printf/scanf Data Formatting
Messages that contain run-time data will often need to be rearranged for
display in different locales. For example, the following statement displays the
date in C locale format:

printf("%d/%d/%d\n". mo. dy. yr);

and would give the following result:

10/31/87

7 -6 Advanced NLS Topics

If this date were displayed in the U.K., the english locale, it would need to
appear as:

31/10/87

which could be done with a statement such as:

printf(lI%d/%d/%d\n ll
, dy, mo, yr);

This solution, however, requires a change to the source program: the order of
the printf arguments must be changed.

To provide flexible formatting of data, the printf(3C) family of routines permits
a conversion specification of the form % n$ to indicate that conversion should be
applied to the nth argument. For the C locale, we can use:

printf(II%1$d/%2$d/%3$d\n ll
, mo, dy, yr);

and for the english locale, we can use:

printf(II%2$d/%1$d/%3$d\n", mo, dy, yr);

This solution leaves the order of the printf arguments unchanged. It does
require a change to the format string but the format string can be treated as a
message and modified as needed for each locale. So our solution becomes:

printf«catgets(catd,NL_SETN,17,1%1$d/%2$d/%3$d\n")), mo, dy, yr);

Then, the C locale message catalog would contain:

17 %1$d/%2$d/%3$d\n

And the english locale message catalog would contain:

17 %2$d/%1$d/3d\n

The %n$ conversion specification is also available in the scanf(3C) family of
routines.

Advanced NLS Topics 7-7

A
Examples of Internationalized Software

Example 1: Rtlcat
The following is the first of two example programs given to illustrate the usage
of NLS routines.

Program Description and Comments:

1*
** This program is used to illustrate several Internationalization
** features including:
** - message catalogs
** - setlocale(3c)
** - right-to-left processing
** - some multi-byte in get_basename()
** Syntax:
** rtlcat [options] [files ...]
** Options:
** -1: force file mode to Latin
** -n: force file mode to Non-Latin
** -k: force file order to keyboard
** -s: force file order to screen
** Description:
** Do a right-to-left cat.
**
** Rtlcat reads the concatenation of input files (or standard
** input if none are given) and displays the input on standard
** output. If II_II appears as an input file name, rtlcat reads
** standard input at that pOint. You can use 11 __ 11 to delimit
** the end of options.
**
** The text orientation (mode) of a file can be right-to-left
** (non-Latin) or left-to-right (Latin). This text orientation
** can affect the way data is arranged in the file. The data
** arrangements that result are called screen order and
** keyboard order.

Examples of Internationalized Software A-1

**
** Rtlcat determines the mode and order of the input files and
** the terminal. The file mode/order is gotten from the LANGOPTS
** environment variable (environ(5». The terminal mode/order
** is obtained from the primary and secondary status bytes
** that result when the terminal is asked about its alpha-numeric
** capabilities. This inquiry is done only on hp150 and hp2392
** terminals. Rtlcat assumes the terminal is the stdout device.
**
** If the input file mode/order and the terminal mode/order are
** the same, then a simple copy is done. If the input file order
** and the terminal order are different but their modes are the same,
** then the input file data is rearranged by strord(3c) so it displays
** properly on the terminal screen. If the input file mode and the
** terminal mode are different, rtlcat simply stops with an error
** message. It is not defined what a Non-Latin file should look like
** when it is displayed on a terminal configured for Latin mode
** (or vice versa).
*/

Include Files:

#include <stdio.h> /* input - output */
#include <string.h> /* string function declarations */
#include <varargs.h> /* variable arguments */
#include <termio.h> /* for ioctl call */
#include <nl_types.h> /* for nl_catd */
#include <nl_ctype.h> /* for ADVANCE */
#include <locale.h> /* for setlocale */
#include <langinfo.h> /* for nl_langinfo */

External Declarations:

extern nl_catd catopen(); /* open message catalog */
extern char *catgets(); /* get message from catalog */
extern int catopen(); /* close message catalog */
extern char *_errlocale(); /* get bad locale settings */
extern void perror(); /* system error messages */
extern void exit(); /* leave */
extern int optind;
extern int opterr;
extern int errno;

/* argv index of next arg */
/* error message indicator */

/* error number */
extern int sys_nerr; /* max error number */
extern char *getenv(); /* get environment variable */

A-2 Examples of Internationalized Software

extern char *strord(); /* change data order */

Forward References:

extern void PerrorO; !* local system print error message */
extern void errore); /* local system error message */
extern char *get_basename(); /* get basename of command name */
extern int copy(); /* copy file */
extern int reorder(); /* rearrange input file data */

General Constants:

#define WARNING 0 /* warning error message */
#define FATAL 1 /* fatal error message */
#define GOOD 0 /* successful return value */
#define BAD -1 /* unsuccessful return value */
#define TRUE 1 /* boolean true */
#define FALSE 0 /* boolean false */

Limits:

#define MAX_ERR 256 /* max Perror message length */
#define MAX_TBUF 128 /* max tbuf length */
#define MAX_LINE 1024 /* max input line length */

Right-to-Left Terminal Constants:

#define an_cap "\033*s-1-" /* request alpha-numeric capabilities */
#define sec_status "\033-" /* secondary status */
#define on_straps "\033&s1g1H" /* strap G & H on -- no handshake */
#define off_straps 1\033&sOgOH" /* strap G & Hoff -- D1 */

#define DISPLAY 2
#define ORDER Ox10
#define RTL_SEC 8
#define MODE Ox08

/* alpha-num display byte */
/* alpha-num display ordering bit */

/* 2nd status byte 13 */
/* 2nd status mode bit */

Examples of Internationalized Software A-3

Error Message Numbers:

#define NL_SETN 1 /* message catalog set number */
#define BAD_USAGE 1 /* usage error message */
#define NOT_RTL_LANG 2 /* not a right-to-Ieft language *1
#define NOT_RTL_TERM 3 /* not a right-to-Ieft terminal */
#define BAD_MODE 4 /* terminal/file mode disagreement */

Error Message Strings:

static char *Message[] = {
"usage: %s [-Inks] [files ...]\n", /*
"\"%8\" not a right-to-left language\n",
"\"%8\11 not a right-to-Ieft terminal\n",

catgets 1 */
/* catgets 2 */
/* catgets 3 */

"mode of terminal and mode of file do not agree\n", /* catgets 4 */
};

Types:

typedef int (*PFI) 0; /* ptr to function returning int type */

Global Variables:

static char *Progname; /* program name */
static char **Filename; /* ptr to ptr to current file name */
static FILE *Input = stdin; /* input file pointer (assume stdin) */
static PFI Process; /* routine to do the process */
static nl_catd Catd; /* message catalog descriptor */
static nl_mode File_mode; /* mode of file (Latin or Non-Latin) */

Main Program:

**
** mainO
**
** description:
** driver routine for program
**
** assumptions:
** all input come from stdin or named files

A-4 Examples of Internationalized Software

** all output goes to stdout
** all errors go to stderr
** the terminal screen is the stdout device
** mode and order of the input files is given in LANGOPTS
**
** global variables:
** Input: FILE pointer to the current input file
** Filename: ptr to ptr to current file name
**
** return value:
** 0: everything went ok
** -1: had some trouble
**
*/

main(argc, argv)
int argc; /* initial argument count */
char **argv; /* ptr to ptr to first program argument */
{

/* assume a sucessful return value*/
register int retval = 'GOOD;

/* initialize, parse cmd line options, get input files, etc. */
if (start(argc, argv) == BAD) {

retval = BAD;
}

/* open and process input files one at a time */

for (; *Filename ; Filename++) {

/* open input file and get next if can't open *1
if (! strcmp(*Filename,"_"» {

Input =stdin;
}

else if (! (Input = fopen (*Filename, "r"») {
Perror("fopenll

);

retval = BAD;
continue;

}

/* process the file */
if ((*Process)() == BAD) {

retval = BAD;
}

Examples of Internationalized Software A-5

/* close input file unless it's stdin */
if (Input != stdin) {

if (fclose(Input) == EOF) {
Perror("fclose");
retval = BAD;

}

}

}

}

/* end the program */
if (finish() == BAD) {

retval = BAD;
}

return retval;

/*
**
** start ()
**
** description:
** set up language tables
** open message catalogs
** parse command line
** set up global variables
**
** global variables:
** Catd: nl_catd message catalog descriptor
** Progname: char pointer to the program name
** Filename: pointer to pOinter to current file name
** File_mode: mode (Latin or Non-Latin) of the current input file
**
** return value:
** 0: everything went ok
** -1: had some trouble
**
*/

static int
start(argc. argv)
int argc;
char **argv;
{

/* current argument count */
/* ptr to ptr to current argument */

/* mode of terminal (Latin-Non-Latin */

A-6 Examples of Internationalized Software

nl_order term_order;
nl_order file_order;
char *termname;

/* order terminal (Key-Screen) */
/* order of file (Key-Screen) */
/* terminal name from TERM */

char *lopts; /* language options from LANGOPTS */
/* option character for getopts(3c) */ int optchar;

static char *deffiles[] { II_II. (char*) NULL };
/* default input file name */

/* get the program base name in case it is renamed via In(1) */
Progname = get_basename(*argv);

/* get locale & initialize environment table */
if (!setlocale(LC_ALL. 1111») {

}

else {

}

/* bad initialization */
(void) fputs(_errlocale(). stderr);
Catd = (nl_catd) -1;
(void) putenv("LANG="); /* for perror */

/* good initialization: open message catalog .
... use hardcoded name for first parameter .
... keep on going if it isn't there */

Catd = catopen("rtlcat". 0);

/* get file mode and order from LANGOPTS */
if(*(lopts = getenv("LANGOPTS"» == '\0') {

}

/* if not set assume Non-Latin mode. keyboard order */
lopts = "n_k";

/* and do a lazy parse */
File_mode = lopts[O] == '1' ? NL_LATIN : NL_NONLATIN;
file_order = lopts[2] == 'k' ? NL_KEY : NL_SCREEN;

/* parse command line options
. .. and possibly override file mode and order */

opterr = 0; /* disable getopt error message */
while «optchar = getopt(argc. argv. "lnks") != EOF) {

switch (optchar) {
case '1': /* force latin mode */

File_mode = NL_LATIN;
break;

case 'n': /* force non-latin mode */
File_mode = NL_NONLATIN;
break;

Examples of Internationalized Software A-7

}

case 'k': /* force keyboard order */
file order = NL_KEY;
break;

case's' : 1* force screen order */
file_order = Nt_SCREEN;
break;

case '?': /* unrecognized option */
error(FATAL, BAD_USAGE, Progname);

}

/* initialize process routine */

if (strclllp(nl_langinfo(DIRECTION) , "1"» {
/* do not have a right-to-left language:

... print a warning and do a copy */
char *langname;

}

if(*(langname = getenv("LANG"» == '\0') {
/* if not set assume C language */
langname = "C";

}

error(WARNING, NOT_RTL_LANG, langname);
Process = copy;

else if (! rtl_term(&term_mode, &term_order, &termname» {
/* do not have a right-to-left terminal:

. .. print a warning and do a copy */
error(WARNING, NOT_RTL_TERM, termname);
Process = copy;

}

else if ((File_mode == term_mode) && (file_order == term_order)) {
/* mode the same, order the same: a regular copy */
Process = copy;

}

else if ((File_mode == term_mode) && (file_order != term_order)) {
/* mode the same, order different: must change the order */
Process = reorder;

}

else {

}

/* Currently it is undefined what should happen when
the file mode and the terminal mode are different. */

error(FATAL, BAD_MODE);

/* set up input file arguments */

A-8 Examples of Internationalized Software

Filename = «argc - optind) < 1) ? deffiles argv + optind

return GOOD;
}

/*
**
** finishO
**
** description:
** get ready to leave: close message catalogs
**
** global variables:
** Catd: nl_catd message catalog descriptor
**
** return value:
** 0: everything went ok
** -1: had some trouble
**

static int
finishO
{

/* close the message catalog
. .. and do not complain about a missing catalog */

(void) catclose(Catd);

return GOOD;
}

/*
**
** copyO
**
** description:
** Input file and terminal have the same mode and the same order.
** Just copy it to stdout.
**
** global variables:
** Input: FILE pOinter to the current input file
**
** return value:
** 0: everything went ok
** -1: had some trouble
**
*/

Examples of Internationalized Software A-9

static int
copyO
{

}

char line [MAX_LINE] ;

while ((fgets(line, MAX_LINE, Input» != NULL) {
if (fputs(line, stdout) == EOF) {

Perror("fputs");
return BAD;

}

}

return GOOD;

1*
**
** reorder 0
**
** description:
** Input file and terminal have the same mode but the order is different.
** Rearrange the input file line with strord(3c) and copy it to stdout.
**
** global variables:
** Input: FILE pointer to the current input file
** File_mode: mode (Latin or Non-Latin) of the current input file
**
** return value:
** 0: everything went ok
** -1: had some trouble
**
*1
static int
reorder 0
{

char line [MAX_LINE] ;
char new_line [MAX_LINE] ;

while((fgets(line, MAX_LINE, Input» != NULL) {

}

if (fputs(strord(new_line, line, File_mode), stdout)
Perror(IIfputsll);
return BAD;

}

return GOOD;

A-10 Examples of Internationalized Software

EOF) {

}

**
** PerrorO
**
** description:
** set up string with program name and the failed routine name
** display system error message on stderr using perror(3)
**
** assumption:
** perror string before the colon will not exceed MAX_ERR
**
** global variables:
** Progname: char pointer to the program name
**
** return value:
** no return value
**
*/

/* VARARGS 1 */

static void
Perror(rname)
char *rname; /* bad routine name */
{

}

char pstr[MAX_ERR] ; /* perror string before the colon */

/* set up perror string */
(void) sprintf(pstr, "%s (%s)", Progname, rname);

/* print the system message or errno */
if (errno > 0 && errno < sys_nerr) {

perror(pstr);
}

else {
(void) fprintf(stderr, "%s: errno

}
%d\n", pstr, errno);

/*
**
** errorO
**

Examples of Internationalized Software A-11

** description:
** display error message on stderr and leave if fatal
** get message from a message catalog (catgets(3c))
**
** assumptions:
** all errors go to stderr
**
** global variables:
** Progname: char pointer to the program name
** Message: array of char pointers to format string messages
** Catd: message catalog descriptor
**
** return value:
** no return value
**

/* VARARGS 2 */

static void
errore fatal, num, va_alist)
int fatal;
int num;
va_dcl
{

/*
/*
/*

/*

Warning or Fatal error */
message number */
optional arguments */

points to format string */ register char *fmt;
va_list args; /* pOints to optional argument

/* set up the optional argument list */
va_start(args);

/* sync stdout with stderr */
if (fflush(stdout) == EOF) {

Perror("fflush");
}

/* get the message format string */
fmt = catgets(Catd. NL_SETN, num, Message[num-l]);

/* print the program name on stderr */
if (fprintf(stderr, "%s: ", Progname) < 0) {

Perror("fprintf");
}

/* print the error message on stderr */

A-12 Examples of Internationalized Software

list */

}

if (vfprintf(stderr. fmt. args) < 0) {
Perror("vfprintf tl);

}

1* close down the optional argument li.st *1
va_end(args);

1* leave if a fatal error *1
if (fatal) {

}

(void) finish();
if (fclose(Input) == EOF) {

Perror(tlfclose tl);
}

exit(BAD);

**
** get_basename()
**
** description:
** get the basename of the command
**
** assumptions:
** the command name may have multi-byte characters
**
** return value:
** ptr to start of base name
**
*1

static char *
get_basename(p)
char *p;
{

char *slash;

1* ptr to start of command name *1

1* pointer to char after slash *1

for (slash p; *p ; ADVANCE(p» {
if (CHARAT(p) == 'I') {

slash = p + 1;
}

}

return slash;
}

Examples of Internationalized Software A-13

/*
**
** rtl_termO
**
** description:
** right-to-Ieft terminal
** If right-to-Ieft terminal get primary and secondary status
** and see what the mode of order to the terminal is.
**
** assumptions:
** only a hp150 or hp2392 can be a right-to-Ieft terminal
** TERM set to reflect the terminal type.
**
** return value:
** TRUE if right-to-Ieft terminal
** FALSE if not right-to-left terminal
**

static int
rtl_term(term_mode, term_order, term)
nl_mode *term_mode; /* mode of terminal */
nl_order *term_order; /* order of terminal */
char **term; /* terminal name */
{

char buf[MAX_TBUF];
struct termio tbuf;
struct termio tbufsave;

/* buffer for terminal information */
/* buffer for termio structure */
/* save old info */

1* assume right-to-Ieft terminal is hp150 or hp2392 */
*term = getenv("TERM");
if (strncmp (*term, Ihp150", 5) && strncmp (*term, "hp2392 II , 6» {

return FALSE;
}

1* fetch & save current status of terminal driver */
if (ioctl(1, TCGETA, &tbuf) == -1) {

Perror("ioctl");
return FALSE;

}

tbufsave = tbuf;

1* turn off echo to prevent status bytes from appearing on screen *1
tbuf.c_Iflag &= -ECHO;

A-14 Examples of Internationalized Software

/* set status of terminal driver with echo off */
if (ioctl(1, TCSETAF, &tbuf) == -1) {

Perror("ioctl");
return FALSE;

}

/* turn off handshaking (G & H straps on) */
if (fputs(on_straps, stdout) == EOF) {

Perror("fputs");
return FALSE;

}

/* get alpha-numeric capabilities: ordering is byte 2, bit 4 */
if (fputs(an_cap, stdout) == EOF) {

Perror("fputs");
return FALSE;

}

if (! fgets(buf, MAX_TBUF, stdin» {
Perror("fgets");
return FALSE;

}

*term_order = (buf[DISPLAY] & ORDER) ? NL_KEY NL_SCREEN;

/* get secondary status: mode is byte 13, bit 3 */
if (fputs(sec_status, stdout) == EOF) {

Perror("fputs");
return FALSE;

}

if (! fgets(buf, MAX_TBUF, stdin» {
Perror("fgets");
return FALSE;

}

*term_mode = (buf[RTL_SEC] & MODE) ? NL_NONLATIN NL_LATIN;

/* turn on Dl handshaking (G & H straps off) */
if (fputs(off_straps, stdout) == EOF) {

Perror("fputs");
return FALSE;

}

/* restore status of terminal driver */
if (ioctl(1, TCSETAF, &tbufsave) -1) {

Perror("ioctl");
return FALSE;

Examples of Internationalized Software A-15

}

return TRUE;
}

Example 2: MakefUe

FINDMSG
GENCAT
LINT
RM

CFLAGS
LDFLAGS
IFLAGS
LIBS

SOURCE
OBJECT

all:

rtlcat:

rtlcat.cat:

= /usr/bin/findmsg
/usr/bin/gencat

= /usr/bin/lint
/bin/rm

-D_HPUX_SOURCE -0
-s

= rtlcat.c
= rtlcat.o

rtlcat rtlcat.cat

$ (OBJECT)
$(CC) -0 $@ $(OBJECT) $(LDFLAGS) $(LIBS)

rtlcat.msg

NL_SETN defined once in the first source file or
NL_SETN defined with different values for each source file

rtlcat.msg: $ (SOURCE)
$(FINDMSG) $(SOURCE) > $@

.msg. cat:
$(GENCAT) $*.cat $*.msg

.c .0:
$(CC) -c $(CFLAGS) $(IFLAGS) $<

lint: $ (SOURCE)

A-16 Examples of Internationalized Software

$ (LINT) -u $(CFLAGS) $(IFLAGS) $(SOURCE) > lint

clean:
$ (RM) -f *.0 * .msg lint

clobber: clean
$ (RM) -f· rtlcat *. cat

.SUFFIXES: .cat .msg

Examples of Internationalized Software A-17

B
NLS References

Following is a list of current NLS documentation in the HP- UX Reference.

BUILDLANG(lM)

CATGETS(3C)

CATOPEN(3C)

ENVIRON(5)

FINDMSG(l)

FINDSTR(l)

FORDER(l)

GENCAT(l)

HPNLS(5)

ICONV(l)

ICONV(3C)

INSERTMSG(l)

buildlang - generate and display locale.def file

catgets - get a program message

catopen, catclose - open and close a message catalog
for reading

environ - user environment

findmsg, dumpmsg - create message catalog file for
modification

findstr - find strings for inclusion in message catalogs

forder - convert file data order

gencat - generate a formatted message catalog file

hpnls - HP Native Language Support (NLS) Model

iconv - code set conversion

iconvsize, iconvopen, iconvclose, iconvlock, ICONV,
ICONVl, ICONV2 - code set conversion routines

insertmsg - use findstr(1) output to insert calls to
catgets(3C)

NLS References B-1

LANG(5)

LANGINFO(5)

LOCALECONV (3C)

NL_LANGINFO(3C)

NLJUST(l)

NLSINFO(l)

SETLOCALE(3C)

STRORD(3C)

FINDMSG(l)

B-2 NLS References

lang - description of supported languages

langinfo - language information constants

localeconv - query the numeric formatting conventions
of the current locale

nLlanginfo - language information

nljust - justify lines, left or right, for printing

nlsinfo - display native language support information

setlocale, getlocale - set and get the locale of a
program

strord - convert string data order

findmsg,dumpmsg - create message catalog file for
modification

c
Previous Usage

The items identified under PREVIOUS have been superseded by the
corresponding item under CURRENT. They are supported but will be
withdrawn at some time. Continued use is not recommended.

Previous Current Reference Notes

BYTE_STATUS mbtowc multibyte(3C) Use of multi-byte routines
recommended for portability

byte_status mbtowc multibyte(3C) Use of multi-byte routines
recommended for portability

catgetmsg cat gets catgets(3C) Withdrawn by X/Open

catread catgets catgets(3C)

CHARAT mbtowc multibyte(3C) Use of multi-byte routines
recommended for portability

FIRSTOF2 mbtowc multibyte(3C) Use of multi-byte routines
recommended for portability

firstof2 mbtowc multibyte(3C) Use of multi-byte routines
recommended for portability

fprintmsg fprintf printf(3C)

idtolang (none)

langid(5) (none)

langinfo nLlanginfo nLlanginfo(3C)

Previous Usage C-1

Previous Current Reference Notes

langinit setlocale setlocale(3C)

n-computer C lang(5) See discussion in lang (5)

nLasctime nLascxtime ctime(3C)

nLasctime strftime strftime(3C)

nLatof atof strtod(3C)

nLctime nLcxtime ctime(3C)

nLfprintf fprintf string(3C)

nLfscanf fscanf string(3C)

nLgcvt gcvt ecvt(3C)

nLisalpha isalpha ctype(3C)

nLisctrl isctrl ctype(3C)

nLisgraph isgraph ctype(3C)

nLisprint isprint ctype(3C)

nLisspace isspace ctype(3C)

nLisupper isupper ctype(3C)

nLsprintf sprintf string(3C)

nLsscanf sscanf string(3C)

nLstrcmp strcoll string(3C)

nLstrtod strtod strtod(3C)

PCHARADV mbtowc multibyte(3C) Use of multi-byte routines
recommended for portability

PCHARADV WCHARADV nLtools_16(3C) Use of multi-byte routines
recommended for portability

PCHAR WCHAR nLtools_16(3C) Use of multi-byte routines
recommended for portability

C-2 Previous Usage

Previous Current Reference Notes

printmsg printf printf(3C)

SECOF2 mbtowc multibyte(3C) Use of multi-byte routines
recommended for portability

secof2 mbtowc multibyte(3C) Use of multi-byte routines
recommended for portability

sprintmsg sprintf printf(3C)

strcmp[8116] strcoll string(3C)

strncmp[8116] nLstrncmp string(3C)

WCHARADV mbtowc multibyte(3C)

Previous Usage C-3

D
Languages and Codesets

Following are native languages and the HP codesets that support them.

Language Codeset

American ROMAN8
Arabic ARABIC8
Canadian French) ROMAN8
Chinese-s PRC15
Chinese-t ROC15
Danish ROMAN8
Dutch ROMAN8
English ROMAN8
Finnish ROMAN8
French ROMAN8
German ROMAN8
Greek GREEK8
Icelandic ROMAN8
Italian ROMAN8
Japanese JAPAN15
Japanese.ujis UJIS
Katakana KANA8
Korean KOREA15
Norwegian ROMAN8
Portuguese ROMAN8
Spanish ROMAN8
Swedish ROMAN8
Turkish TURKISH8
Western Arabic "- ARABIC8

Languages and Codesets 0-1

Glossary

Note For additional information on terms used with HP-UX, please
see the Glossary section of HP- UX Reference, vol. 1.

adaptation
As used in this document, adaptation is the process of making a product
and all that goes with it (including documentation, training, distribution,
support, etc.) suitable for, and available to, markets outside the country of
its origin. Adaptation includes, but is not limited to, internationalization
and localization.

alternate character set
A codeset used to represent special, ancillary characters.

application program
A program which performs a specific task for the end-user.

ARABIC8
The Hewlett-Packard supported 8-bit codeset for the Arabic language.

bit
A contraction of BInary digiT. A bit can have a value of 0 or 1.

byte
A unit of data storage consisting of 8 bits. A byte can represent one
ASCII, KANA8, GREEK8, TURKISH8, ARABIC8, or ROMAN8
character.

byte redefinition
Corruption of a multi-byte character when anyone of its bytes is treated as
a 1-byte character.

Glossary-1

C (locale)
An invented, artificial computer locale which specifies the minimal
environment for C translation. C locale is the default when natural
languages/locales are not installed or are not called by a program.

character set
A set of symbols required to write a language. Different languages often
have different character sets.

coded character set
See codeset.

codeset
A set of unambiguous rules that establishes a one-to-one relationship
between each character of a character set and the numeric representation
for that character.

7-bit: A codeset that uses seven bits to represent a collection of
characters, control codes, and the space character. A 7-bit codeset allows
a maximum of 128 characters which does not accomodate international
languages. ASCII is an example of a 7-bit codeset.

8-bit: A codeset that uses all eight bits of a single byte to encode each
character in the codeset. These codesets are designed so the range 0
through 127 are ASCII including the control codes and space character.
Non-ASCII characters appear in the range 128 through 255. (Note,
the KANA8 character set substitutes the yen symbol for-the backslash
symbol, so it is not a superset of ASCII).

multi-byte: A codeset that uses two or more bytes to encode characters.
Languages such as Chinese, Japanese, and Korean require more than 256
characters, which is the maximum provided by 8-bit character sets. A
full 16 bits (2-bytes) per character allows definition of 65,536 unique
character codes. The HP-15 encoding scheme limits practical use of all
16 bits, thus limiting the size of the codeset to 49,284 characters. The
HP-16 encoding scheme limits the size to 35,344 characters. Under
different circumstances, 2 bytes can be interpreted as one multi-byte
value or two single-byte values.

single-byte: a 7-bit or 8-bit codeset.

Glossary-2

context analysis
The process of determining the proper shape of a character based on its
position in the word. For some languages, a character can have a different
shape if it is at the start of a word, in the middle of a word, at the end of
a word, or standing alone. Currently, context analysis is defined for the
Middle Eastern and North African Arabic languages.

control character or control code
A nonprinting member of a character set that produces action in a device.
In ASCII, control characters are those in the code range 0 through 31,
and 127. These values and the space character, with code value 32, are
not v-sed for any other purpose. Code values 128 through 160 and 255 are
also 'treated as control codes in some cases. Most control characters can
be glenerated by simultaneously pressing a displayable character key and
(CTRL 1.

data directionality
Refers to the direction text will appear on the screen; left-to-right or
right-to-left.

data ordering
Refers to the arrangement of data within a file, internal buffer, or during a
transfer to or from peripherals. The modes of data ordering are "keyboard
(phonetic) order" and "screen order" .

default search path
The sequence of directory prefixes that sh, csh, and other HP-UX
comm)ands apply when searching for a file known by an incomplete
path hame. It is defined by PATH in environ. Log in sets PATH =
. : bin: lusr/bin, which means that your working directory is the first
directory searched, followed by Ibin, followed by lusr Ibin.

directionality
See data directionality

downshifting
The provision for producing lowercase letters by using the (Shift 1 key.

Glossary-3

ECMA
The European Computer Manufacturers Association standards
organization.

GREEKS
The Hewlett-Packard supported 8-bit codeset for the Greek language.

Hindi digits
An alternate representation of numbers used in some Arabic countries.
Other Arabic countries use the Latin representation of numbers.

HP-8
The HP implementation of the ISO (International Standard· Organization)
8-bit character codeset.

HP-15
The HP encoding scheme for internal operating system representation of
16-bit data that uses only 15 bits for characters.

HP-16
The HP encoding scheme for 16-bit codesets used for communicating 8-
and 16-bit data between a peripheral and a computer. This is derived
from the ISO (International Standards Organization) multi-byte character
processing standard. By using 16-bit data 35,344 characters can be
represented.

ideogram or ideograph
A pictographic symbol used to represent whole words or syllables.

internationalization
Design and modification of products to make them localizable. For
example, modification of application programs before compilation to make
use of locale-independent library routines and to ensure that single-byte
and multi-byte data can be handled in a locale-sensitive way by hardware
and software.

IS07
International Standards Organization 7-bit character substitution, in which
the character graphics associated with some less-used ASCII codes are
changed to other characters needed for a particular language.

Glossary-4

JAPAN15
The HP-supported 16-bit codeset for the Japanese language.

KANA8
The HP-supported 8-bit codeset for support of phonetic Japanese
(Katakana) .

Kanji
The Japanese ideographic codeset based on Chinese characters. The set
consists of roughly 50,000 characters.

Katakana
The Japanese phonetic codeset typically used in formal writing. The set
consists of 64 characters, including punctuation.

keyboard order
Characters arranged the way they are entered from the keyboard.

KOREA15
The HP-supported 16-bit codeset for the Korean (Hangul) language.

LANG
The HP-UX environment variable (LANGuage) that should be set to the
name of the locale corresponding to the native language to be used.

LANGOPTS
The HP-UX environment variable that defines the options for mode (Latin
or non-Latin) and data order (keyboard or screen).

language:

computer: An artificial language consisting of a set of characters and
rules, with specific functions for computer programming. The C language
is an example of a computer language.

native: The first language of the user. Alternatives are "national" or
"local" language.

natural: The spoken or written language used by humans.

programming: Alternative to "computer language".

Glossary-5

supported: The computer-implemented version of a written or spoken
language. See /usr/lib/nls/ config for a list of NLS-supported
languages.

Latin mode
The mode where the terminal is configured so that the text display order is
from left to right.

library
A set of subroutines contained in a file that can be accessed by a user
program.

library routine
A subroutine contained in a library file used to perform a task.

literal
Computer code, displayed as it would appear in the output, or as it would
be typed in.

local customs
The standard way dates, times, currency, numeric quantities, and collation
are written in a particular region or country. Also known as country or
local conventions.

locale
That part of the environment of a process which contains international
data.

local environment files
Files external to the code of a software product containing locale-dependent
information such as messages, prompts, commands, icons, etc. Localization
centers are responsible for the construction and/or translation of these files.

localizability
The attribute of a hardware or software product which allows it to be
localized through predefined steps (normally without redesign or recoding).
The outcome of the internationalization effort.

Glossary-6

localization
The adaptation of an internationalized hardware/software system for use in
different countries or local environments.

localization center
An organization in a country or region that provides software or hardware
products specifically tailored for use in that country or region.

message catalog
The external file containing prompts, responses to prompts, and error
messages in the user's native language.

message catalog system
A set of tools developed by Hewlett-Packard to extract print statements
from C programs and place them in, or retrieve them from, the message
catalog.

mode
The order in which text is displayed: Latin (left-to-right), or non-Latin
(right-to-Ieft) .

n-computer (native-computer)
An invented, artificial computer locale which specifies the minimal
environment for C translation. Now replaced by the C locale.

Native Language Support (NLS)
The HP set of software facilities within the HP-UX system which supports
proper handling of native language data, including character data, country
formatting conventions, and other local customs.

non-Latin mode
The mode where the terminal is configured so that the text display order is
from right to left.

NLS Coordinator
This person handles the responsibility for localization of software and may
also participate in installing and administering NLS aspects of a system.

Glossary-7

opposite language
When the terminal is in non-Latin mode, Latin characters are the
"opposite language" and when the terminal is in Latin, non-Latin
characters are the "opposite language". NLS allows both Latin and
non-Latin characters to appear on the same line. Opposite language
characters are inserted on the screen in the opposite direction by using an
opposite language key.

order
The temporal order in which data is used: screen order (the order in which
characters are displayed) or keyboard order (the order in which the user
enters keystrokes.

path name
A 'sequence of directory names separated by slashes U), and ending in any
type of file name.

phonetic order
The ordering of characters by the way they are read or spoken.

PRC1S
The HP-supported 16-bit codeset for Simplified Chinese, the language of
the People's Republic of China.

prelocalize; prelocalization
See internationalization

programming language
See language.

radix character
The actual or implied character that separates the integer portion of a
number from the fractional portion.

ROC
The HP-supported 16-bit codeset for Traditional Chinese, the language of
the Republic of China.

Glossary-8

ROMAN8
The HP-supported 8-bit codeset for Europe.

routine
See library routine.

screen order
The order in which characters appear on the screen.

syntax
The rules governing sentence structure in a spoken language, or statement
structure in a computer language such as that of a compiler program.

TURKISH8
The HP-supported 8-bit codeset for the Turkish language.

upshifting
The means by which the peripheral produces uppercase letters by using the
(Shift) key.

USAseII
A less common name for ASCII, the American Standard Code for
Information Interchange.

X/Open
An international standards group dedicated to creating a free and open
market. The group is concerned with standards selection and adoption,
using International Standards where they exist.

Glossary-9

Index

A

ADVANCE macro, 4-4
american locale, 6-3
applications designer, 2-1, 2-3
ASCII, 2-4
asctime library routine, 4-8
atof library routine, 4-8

B
buildlang, 5-1

example, 6-3
buildlang -d, 7-3
buildlang, using,6-4
"byte redefinition" , 4-3
byte_status library routine, 4-4
BYTE_STATUS macro, 4-4

c
case, 2-5
catclose command, 4-11, 4-13
catgetmsg command, 4-11
catgets, 4-13, 4-16, 7-5

default message, 4-14
catgets command, 4-11
catopen, 4-1, 4-16, 7-5
catopen command, 4-11
character

16-bit, 2-4
8-bit, 2-4
clustered, 2-6
comparison, 2-6
expanded, 2-6

identify traits, 4-8
multi-byte, 2-4, 2-8

character handling, 2-4
character pointer manipulation, 4-4
character sets

ASCII, 5-4
European, 5-4
KANA8, 5-4
Katakana, 5-4
multi-byte, 2-5, 5-4
non-HP, 5-5
peripherals for, 5-4
Roman8, 5-4
single-byte, 5-4

character set (see also 7-bit, 8-bit, 16-bit)
ideographic, 2-5

CHARADV macro, 4-4
CHARAT macro, 4-4
Chinese collating sequence, 2-5
C locale as default, 7-5
C locale messages, 6-2
clustered characters, 2-6
. codeset, 5-2
codeset

conversion, 7-1
multi-byte, 4-3

codesets
HP, D-1
multi-byte, programming with, 4-3
support, D-1

collating sequence, 2-5
comparing characters, 2-6

Index-1

comparing strings, 2-6
compiling message catalogs, 4-16
concatenation

right-to-Ieft, A-I
conventions

manual, 1-4
conversion of existing programs, 4-10
conversion specification %n$, 7-6
creating a message catalog, 4-10
C Shell, 5-3
etime, 4-10
etime library routine, 4-8
etype(3C) library routine, 4-8
currency, 2-10

o
data directionality, 2-6, 2-8, 7-1
data formatting, 7-6
data integrity, 4-3
data order, 7-1
date, 6-3
date. eat, 6-2
date display, 7-6
days, display, 2-10
default message

alternatives, 4-14
in eatgets call, 4-14
in default message catalog, 4-14

default native language, 5-3
default string, 4-13
directionali ty

data, 7-1
documentation, NLS, B-1
dumpmsg, 6-2
dumpmsg command, 4-27

E

eevt library routine, 4-8
end-user, 2-3
environment changes, 3-3
environment variable

Index-2

LANGOPTS, 5-3
NLSPATH, 5-3

environment variables
description, 3-1
example, 3-3
LANG, 4-11, 6-1
LANGOPTS, 6-1
LC_categories, 6-1
NLSPATH, 4-11, 6-1
NLSPATH , 4-11
setting, 3-1, 6-1

error messages, A-4
/ete/esh.login, 5-3
jete/profile, 5-3
exee

calls to, 7-6
expanded characters, 2-6

F
file hierarchy, 5-1
file system

finding, 5-1
organization, 5-1

findmsg, 4-19
findmsg command, 4-27
findstr, 4-23
findstr command, 4-22
firstof2 library routine, 4-4
FIRSTof2 macro, 4-4
fopen, 4-22
forder, 7-3
format of source message files, 4-15
formatting

date and time, 4-8
monetary, 4-8
numeric, 4-8

fprintf, 7-3
fprint library routine, 4-8
fseanf, 7-3

G
gcvt library routine, 4-8
gencat, 4-14, 4-16, 4-24

example, 6-3
gencat command, 4-16, 4-27
generating message catalogs, 4-16
getlocale, 7-3
Gregorian calendar, 2-10
grep, 4-10
guidelines for message catalogs, 4-28

H
HP-UX commands

message catalogs, 6-2

iconv, 7-1
identifying character size, 4-4
identifying character traits, 4-8
initialization, 7-4
initializing

a program, 4-1
program messages, 4-1
standard program, 4-1

ins ertmsg, 4-23
example, 4-23

insertmsg command, 4-23
installing optional locales, 5-4
internationalization, 2-1, 2-3
Internationalization, Glossary-4
isalpb.a library routine, 4-8
1S07, 5-4
isupper library routine, 4-8

K
KANA8, 5-4
Kanji, 2-5
Katakana, 5-4
keyboard order, 7-1
Korn Shell, 5-3

L
LANG, 3-1, 4-2, 4-24
LAN G environment variable, 4-11
LANGOPTS, 3-1, 7-1, 7-3
language

name, 5-1
number (1D), 5-1
supported, 5-4

Latin mode, 7-1
LC_categories, 4-2
LC_COLLATE, 3-1
LC_CTYPE, 3-1
LC_MONETARY, 3-1
LC_NUMERIC, 3-1
lconv, 4-9
LC_TIME, 3-1
libraries with messages, 4-20
local customs

character processing, 4-8
string processing, 4-8

local customs (conventions), 2-1, 2-4, 2-9
locale

directories for, 5-2
form of, 5-2

locale
buildlang, 6-3
creating new, 6-3
default, 5-4
displaying, 3-5
testing, 3-5
verifying installation, 6-5

localeconv, 7-3
example, 4-9

locale information, 7-3
localization, 2-1, 2-3
. login, 3-4, 5-3

M
make, A-16
make files, 4-28
manual conventions, 1-3

Index-3

message catalog
cookbook, 2-11
new, 4-14
overview, 2-3, 2-11
using gencat, 4-14

message catalogs, 4-10
automated creation of, 4-28
C locale, 7-7
closing, 4-13
compiling, 6-3
compiling, 4-16
conversion of existing programs for, 4-

21
"cookbook", 4-28,.6-2
creating, 4-10
default, 4-14, 7-5
default error messages, 4-28
for HP-UX commands, 6-2
generating, 4-16
guidelines, 4-28
HP-UX, 3-4
installation, 5-3
installing, 4-25, 6-3
location, 5-3
message numbers, 4-28
opening, 4-11
opening and closing, 4-20
programming example, 4-16, A-I
test directories, 4-24
testing, 4-24
translating, 6-2
updating, 4-10, 4-26
using correct, 4-19
using revision code, 4-19

message numbers, 4-27
, messages, 2-4, 2-11

conversion of existing programs for, 4-
21

in arrays, 4-18
in variables, 4-17
printf/scani, 7-6

Index-4

retrieving, 4-13
mode, 7-1
months, display, 2-10
multi-byte, A-I

macros, 4-4
processing, 4-3
program conversion, 4-7
programming with, 4-3

multi-byte character codes, 2-5
multi-byte routines, usage reference, C-l

N
native language, 2-1
native languages

supported, D-l
nl_asctime library routine, 4-8
nLctype(3C) library routine, 4-11
nl_cxtime library routine, 4-8
nl_iprintf library routine, 4-8
NLIO, 5-5
NLIO system, 5-4
nljust, 7-3
nl_printf library routine, 4-8
NLS

aspects of, 2-4
definition, 2-1
support, 2-1

NLS Coordinator, 3-1, 5-3, 6-1
tasks, 3-1
translation activities, 3-1

NLS documentation, B-1
NL_SETD, 4-15
nlsinio, 7-3
NLSPATH, 3-1, 4-2, 4-24, 7-5
NLSPATH environment variable, 4-11
NLS routines

status, C-l
nl_strncmp, 4-9
non-ASCII string collation, 2-6
non-Latin mode, 7-1
number representation, 2-9

numeric' formatting, 2-9

o
obsolete, NLS routines, C-l
obsolete routines, X/Open, C-l
opening message catalogs, 4-11
order

data, 7-1

p

parity, 3-4
PCHARADV, replaced by WCHARADV, 4-4
PCHAR, replaced by WCHAR, 4-4
peripheral configuration, 5-4
peripherals, 5-4
phonetic order ~ 7-1
pointer manipulation, character, 4-4
printf, 4-17

conversion specification, 7-6
order of arguments, 7-6

printf library routine, 4-8, 4-10
processing order, A-I
profile, 3-4, 5-3

program initialization
standard, 7-5

programmer, 2-1, 2-3
programming

example, A-I, A-4
programs

conversion of existing, 4-10
putenv, 7-6

a
$quote directive, 4-16

R
regular expressions, 2-8
retrieving messages, 4-11
revision code, 4-19
right-to-left order, A-I
right-to-left terminal, A-3

ROMAN8 character set, 2-4
routines, NLS, C-l

s
screen order, 7-1
secof2 library routine, 4-4
SECof2 macro, 4-4
$set, 4-27
$set directive, 4-15
setlocale, 4-1--2, 7-5--6, A-I
setlocale, 7-4
shifting, 2-5
single-byte

program conversion, 4-7
software developer, 7-1
sorting, 2-5
source file

editing, 4-24
management, 4-26
multi-file management, 4-26

source message file format, 4-15
source program

editing, 4-23
special locales, 7-4
status, NLS routines, C-l
strcmp, 4-10

example, 4-9
strcoll, 4-9
strftime library routine, 4-8
string comparison, 2-6
string files

removing non-messages from, 4-22
strncmp, 4-9
strod(3C) library routine, 4-8
strord

example, 7-3
strtod library routine, 4-8
strxfrm

example, 4-9
support

aspects of, 2-4

Index-5

systClll adllliuistrator, ~-J, 0-1
Systelll Administrator, 3-1, 6-3

tasks, 3-1

T
terminal

setting, 3-4
stty, 3-4

terminal constants
right-to-left, A-3

terminals
8-bit mode, 5-4

_ territory, 5-2
time, display, 2-10
toupper library routine, 4-8
translating

problems alld solutions, 6-2

Index-6

u
usage, prcvious, C-1
USASCII character set, 2-4
/usr/lib/nls/config directory, 5-1, 5-3
/usr/lib/nls/ language_name, 5-1

W

WCHARADV macro, 4-4
WCHAR macro, 4-4
weeks, display, 2-10
wide-characters, conversion with multi

byte, 4-6
wide-characters, programming example,

4-6
wide-characters, programming with, 4-6

HP Part Number
97089-90058
Microfiche No. 97089-99058
Printed in U.S.A. E0989

r/i~ HEWLETT
~I!II PACKARD

97089-90661
For Internal Use Only

