BUSINESS

PROCEEDINGS
Do HP 3000/SERIES 100
rOCU) | VOLUME |
rUtU?:
iNTEIEX

9 3 6§}

ZC30ic|

DETROIT CONFERENCE

SEPTEMBER 28 - OCTOBER 3, 1986



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

INTEREX

the International Association of
Hewlett—Packard Computer Users

Proceedings
of the

1986 Conference

at
Detroit, Michigan
Hosted by the
Southeastern Michigan Users Group

Papers for the
HP3000
and
Series 100

Tom Leger, Editor



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

HOST COMMITTEE
Thomas Leéer
Steve Gauss
Barb Gauche
Gib Spaman
Ed Witkow
Jim Leblanc
Terry Grover
Gary Dancy
Gary Latzman
Joe McGarry

Florence Moore



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

INTRODUCTION

It is with great pleasure and satisfaction that the Southeastern
Michigan Users Group (SMUG), the host committee for the 1986
North American Interex Conference, presents the proceedings for
this conference.

We wish primarily to thank all the authors who have labored long
to share their expertise with us.

| want to thank the paper selection committee:

Jim Leblanc
Gary Dancy
Sharon Brevoort
Ed Witkow

who were assisted in reviewing over 200 submitted abstracts by:
Jeff Hansen and the
Lake Michigan Regional User Group and
Judy Cree and the
Toledo Users Group.

We are also grateful to Pam Tower and Barton Coddington of H.P.
for their assistance with Hewlett Packard authors.

These proceedings are organized alphabetically by author within
functional classification, systems specialists, application
specialists and executive.

It is our sincere wish and primary objective that these proceed-
ings help you to

FOCUS ON THE FUTURE!

Sincerely,

Conference and Business Program Chairman
Thomas Leger



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86



SOUTHEASTERN MICHIGAN USERS GROUP

Detroit Interex Conference

Business Proceedings By Classification

(HP3000/100)

1.1 SYSTEMS SPECIALISTS

1.1.1 Performance
APPLICATION PERFORMANCE TUNING - APS/3000
DISC PERFORMANCE - WHAT IS IT ?
IDENTIFYING OPPORTUNITIES FOR PERFORMANCE IMPROVEMENT
IMPACTS OF TECHNOLOGY ON HIGH PERFORMANCE MASS STORAGE
IMPROVING YOUR PERFORMANCE
PROCESS HANDLING WITH BUSINESS BASIC
STRATEGIES FOR EXTENDING THE LIFE OF THE HP 3000
1.1.2 Mvanced Systeas Management
HPE FILE SYSTEM OVERVIEW
HPE VOLUME MANAGEMENT OVERVIEW
THE SYSTEM MANAGERS' TOOLBOX
1.1.3 Communications-Directions & Linits
COMMUNICATING BETWEEN HP'S AND POREIGN SYSTEMS
INTERPROCESS COMMUNICATION USING MPE MESSAGE FILES
1.1.5 Focus on Your Future
EYPERT SYSTEM MANAGER FOR THE HP3000
THE ROLE OF THE OPERATOR IN THE DATA CENTER OF THE FUTURE
1.1.6 Production Processing Control
PROTECTING YOUR SOFTWARE INVESTHENT: AN AUTOMATED APPROACH
1.1.7 Disaster/Backup/Recovery
AUTOCHANGER EXTENDS CARTRIDGE TAPE DRIVE CAPACITY
BACKUP SYSTEMS, PRESENT AND FUTURE
INSURING THE FUTURE OF YOUR DATA BY CONTINGENCY PLANNING

1S ONLINE BACKUP POSSIBLE OUTSIDE SPECTRUM ?
1.1.8 Networking and Connectivity

HEWLETT PACKARD ON COMMUNICATIONS PREMISES WIRING

HP ADVANCENET - INTEGRATING NEW PROCESSORS

ISDN NETWORKING FOR THE OFFICE

MAP (MANUFACTURING AUTOMATION PROTOCOL)

WIDE AREA NETWORKING - A CASE STUDY

X.25: WHAT TO DO AFTER THE NETWORK IS IN PLACE
1.1.9 Spectrua/RISC

A COMPARISON OF C COMPILERS FOR THE HP3000

COMMERCIAL SPECTRUM PROGRESS REPORT

MEETING THE CHALLENGE: AN INSIDE LOOK AT SPECTRUM TESTING

HIGRATING TO THE SERIES 900'S - VARIABLES AFFECT. SYS. PERF.
MIGRATION SOLUTIONS FOR MPE/XL

MPE XL ORGANIZATION AND DIRECTION
PROGRAMMING THE NEW GENERATION OF HP COMPS.: A RISC TUTORIAL

JORDAN ,ARTHUR
ALDINGER,RICK
SCOTT,GEORGE B.
JAMES,DAVID

VAN VALKENBURGH,R.E.
CRAIG, JACK

DOWLING, JAMES

KONDOEF ,AL
EHRHART ,RICK
BLAKE, ISAAC

ATKINSON, TERRY
BORRESEN,LARS

HOPHANS ,ROSS G.
DRAKE , RONALD

LEVY LEIGHT,BETSY

ESCUDER, MANUEL
HUFFMAN, JACK
KAMINSKI , THOMAS J.
VIRGILIO,LESLIE A.
GROESSLER, JOERG

DUDLEY ,KAREN
RICHARDSON,STEVE
SHAFER, TIN
ESTES,ROBERTA
HELLEBOID,OLIVIER
COYA,STEPHEN J.

SIELER,STAN
SIMON,RICK

BARNETT, DONALD

HOLT ,WAYNE E.
FRIEDRICH,RICHARD
McBRIDE,BECKY
CARGNONI ,LAWRENCE J.
GARCIA,I. JANET
COURTNEY ,LEE
HECKER , JEFFREY

INTEREX 86

HEWLETT PACKARD
HEWLETT PACKARD
ELDEC CORP
HEWLETT PACKARD
AMPEX CORPORATION
BRIDGEWARE

BOSE CORPORATION

HEWLETT PACKARD
HEVLETT PACKARD
HEWLETT PACKARD

HEWLETT PACKARD

BRANT COMPUTER SERVICES LTD.
OPERATIONS CONTROL SYSTEMS

OPERATIONS CONTROL SYSTEMS

HEVLETT PACKARD

HEWLETT PACKARD

SINGER EDUCATION DIVISION
SINGER EDUCATION DIVISION
JOERG GROESSLER GMBH

HEWLETT PACKARD
HEWLETT PACKARD
HEWLETT PACKARD
HEWLETT PACKARD
HEWLETT PACKARD
MCI DISC

ALLEGRO CONSULTANTS, INC.
HEWLETT PACKARD

HEWLETT PACKARD

SOFTWARE RESEARCH NORTHWEST
HEWLETT PACKARD

HEWLETT PACKARD

HEWLETT PACKARD

HEWLETT PACKARD

HEWLETT PACKARD

3101
3102
3103
3104
3105
3106
3107

3108
3109
3110

3
3112

3113
3114

3115

3116
37
3118

3119

3120
3121
3122
3123
3124
3125

3126
3127
3128
3129
3130

3131

ARENS APPLIED ELECTROMAGNETICS 3132



SOUTHEASTERN MICHIGAN USERS GROUP

Detroit Interex Conference
Business Proceedings By Classification

1.2 APPLICATIONS SPECIALISTS
1.2.1 Information Center
4CL - THE CONTROVERSY RAGES ON
INFORMATION CENTERS AROUND 4GL'S
1.2.2 File Transfer

(HP3000/100)

LETS SCOPE IT OUT - FILE TRANSFER BEYOND THE SNEAKER-NET

1.2.3 4th Generation Performance Issues
ADVANCED TRANSACT PROGRAMMING TECHNIQUES

ENRICHING YOUR POVERHOUSE ENVIRONMENT

PEOPLE & MACHINE PERFORMANCE W/SPEEDWARE,POWERHOUSE,RAPID

PERSONAL COMPUTERS SOLVE 4GL PROBLEMS

THE FUTURE OF SYSTEM DEVELOPMENT

THE KEY 70 UNLOCKING PEAK PERFORMANCE

THE SYSTEM LIFE CYCLE IN THE 4GL ENVIRONMENT
1.2.4 Graphics

GRAPHICS IN AN ORGANIZATION

HP2680A. THE MYSTICAL PRINTER, HOW IT WORKS
1.2.5 Pocus on Your Future

4GL & THE CHANGING ROLE OF THE PROGRAMMER

A WINDOW INTO THE FUTURE

AN EXPERT FINANCIAL PLANNING SYSTEM

HOW TO DEVELOP NEW APPLICATIONS - A STRATEGY

THE MINI & THE MICRO-DISTRIBUTED APPLICATION DEVELOPMENT

1.2.6 Mter IMAGE
IS THERE LIFE BESIDES IMAGE ?
PERFORMANCE PROGRAMMING WITH HPSQL/V

RELATIONAL DATABASE : HOW DO VE KNOW WE ONE ?
RELATIONAL DATABASES VS. IMAGE: WHAT THE FUSS IS ALL ABOUT

THE FUTURE OF DATABASE TECHNOLOGY
TRENDS IN IMAGE
1.2.7 Tools

HEATER  KAREN
REMILLARD,ROBERT

POSTER, BIRKET

BUTLER, STEPHEN H.
McINTOSH, JC
ROBINSON,DAVID 6.
BRAYMAN, CHRISTOPHER
WARZECHA ,CHARLES E.
FROST,RICHARD A.
CASEY-DAVIS KIMBERLEE
SOLLAND, LEIGH

TEMPLE, YVONNE
OXFORD,RICHARD

PARQUHARSON , IAN
KOHON MICHEL
HOPMANS ,ROSS G.
MACKENZIE, DON
WALLACE, MARK
FIORAVANTI ,PATRICK

KOVALICK, MAY

DEHBRY ,PAUL
LARSON,ORLAND

VOLOKH , EUGENE

TRASKO MARK S.
TASHENBERG,C. BRADLEY

COMPUTER ASSISTED QUALITY ASSURANCE FOR SOFTWARE DEVELOPMENT ROSENBERG,JONATHAN

LINKING T0 HP SYSTEM DICTIONARY
PROTOTYPING AND SYSTEMS DEVELOPMENT USING 4CL
RINs, RINs, RINs : WHY, WHEN, AND HOW

SOFTWARE DESIGN FOR LONG-TERM RELIABILITY & MAINTAINABILITY

THE POURTH BEAR OF IMAGE

THE SPIRIT OF A NEWER SOFTWARE : LL'SPIRIT

THE TOOLS OF STRUCTURED ANALYSIS - A TUTORIAL
1.2.8 Office Automation

CREATIVE SYSTEM INTEGRATION TO ENHANCE PRODUCTIVITY
ONLINE INFORMATION SERVICES FOR HP PERSONAL COMPUTER USERS

PLANNING INTEGRATED OFFICE SYSTEMS
UTILIZING TELEPHONE USAGE DATA - AUTOMATICALLY
1.2.9 Spectrum/RISC

HARNAR ,RON
QUELLETTE ,RAYMOND
BRUNO, BENEDICT G.
TOBACK , BRUCE
WHITE,FRED
LIAT,LI¥

WALLACE, MARK

RUTHERFORD, JILL C.
CROW,BILL
SCHRAM,¥.P.
BURCHETT ,RICHARD L.

MIGRATING COBOL PROGRAMS TO SPECTRUM:A BATTLE OR A BREEZE ? SPENCE,STEVEN J.
MIGRATING POWERHOUSE APPLICATIONS TO NEW MACHINE ENVIRONMENT SINCLAIR,JIM

THE HPIMAGE INTERFACE COMPONENT OF ALLBASE
USING THE MPE/XL LINK EDITOR

CHENG ,SARA
COUTANT,CARY A.

INTEREX 86

INFOCENTRE LTD.
COGNOS INCORPORATED

M.B.FOSTER & ASSOCIATES

PROBUS INTERNATIONAL INC.
PROBUS INTERNATIONAL INC.
ROBINSON, WALLACE & COMPANY
BRANT COMPUTER SERVICES LTD.
GATEWAY SYSTEMS CORPORATION
FUTURE IDEAS, INC.

KAISER

COGNOS INCORPORATED

HEWLETT PACKARD
MCI DISC

INFOCENTRE LTD.

TYMLABS CORPORATION

BRANT COMPUTER SERVICES LTD.
BRANT COMPUTER SERVICES LTD.
ROBINSON, WALLACE & COMPANY
INFOCENTRE LTD.

HEWLETT PACKARD

HEWLETT PACKARD

HEWLETT PACKARD

VESOFT, INC.

DYNAMIC INFORMATION SYSTEMS
BRADMARK COMPUTER SYSTEMS

OPERATIONS CONTROL SYSTEMS
HEWLETT PACKARD
INFOCENTRE LTD.

STR SOFTWARE COMPANY

OPT, INC.

ADAGER

3201
3202

3203

3204

3205
3206
3207
3208
3209
3210

3211
3212

3213
3214
325

3216
3217

3218
3219
3220
3221
3222
3223

3224
3225
3226
3227
3228
3229

SINGAPORE COMPUTER SYSTEMS PTE 3230

ROBINSON, WALLACE & COMPANY

BOEING AEROSPACE CO.
HEWLETT PACKARD

INFOFLOW INTERNATIONAL, INC.

HEWLETT PACKARD
COGNOS INCORPORATED
HEWLETT PACKARD
HEWLETT PACKARD

3231

3232
3233
3234
3235

3236
3237
3238
3239



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Detroit Interex Conference
Business Proceedings By Classification
(HP3000/100)
1.3 EXECUTIVES

1.3.1 Corporate Culture

ADOLESCENCE AT THE AGE OF 137:STUDY CHANGE CORPORATE CULTURE INDERMILL,MARK

ARCHAEOLOGY OF THE HP3000 COMPUTER
HOW TO DESIGN A CHINESE STYLE NETWORK SYSTEM
POWER TO THE PEOPLE, EXPERIENCES OF A START-UP DP MANAGER
THE SECOND MARKET : BUYING AND SELLING USED HP EQUIPMENT
WHAT HP DIDN'T TELL YOU WHEN YOU BOUGHT YOUR HP3000
1.3.2 M.1.S.
DATABASE DESIGN IN AN IMPERFECT WORLD
MANAGEMENT - THE FORGOTTEN PART OF M.I.S.
METHODS AND PRACTICES OF MIS MANAGEMENT
STRATEGIC PLANNING IN SHALL MIS SHOPS
THE FUTURE OF DATA PROCESSING MANAGEMENT
THE FUTURE OF STEP BY STEP
1.3.3 H.P. Philosophy
RESPONSE CENTER FROM THE OTHER END OF THE PHONE
1.3.4 System Security
*:HELLO" AN UNFRIENDLY GREETING OR AN OFFER OF SEDUCTION ?
COMPUTER SECURITY AND LEGAL ISSUES
SECURITY CONCERNS AND SOLUTIONS
1.3.5 Focus on Future Technologies
4GL APPLICATION DEVELOPMENT GUIDELINES
ARTIFICIAL INTELLIGENCE - NO LONGER A RESEARCH PROJECT

COMPUTER INTEGRATED MANUFACTURING FOR EXECUTIVES
FOCUS ON THE FUTURE-THE SEARCH FOR THE SOFTWARE TRANSISTOR

LOGIC PROGRAMMING & EYPERT SYSTEMS

GREEN,ROBERT M.
HUANG  HEN-JEY
LAZAR,CLIFFORD ¥.
BUCHANAN , BUCK
WISEMAN,D.B.

SHONNARD CLARKSON,MARCIA

EDWARDS ,BRUCE
KLEIMAN MITCHELL
SIMPKINS TERRY W.
FROST ,RICHARD A.
KOHON , HICHEL

SCHOONOVER, CHERIE

HILL,PETER R.
BLAKE, ISAAC
FIRPO,JANINE

PRALY, MARC

McEVOY JR.,J. CHASE
SPITZER,SUZANNE M.
FLOYD, TERRY H.
BOSKEY ,DAVID
CHASE,TIM

BRAYMAN, SHAWN M.

AMFAC DISTRIBUTION CORPORATION 3301

ROBELLE CONSULTING LTD.

SYSTEMS EXPRESS
FIDELITY SYSTEMS
SYSTEM SOFTWARE LIMITED

THE UNIVERSITY OF THE SOUTH
BRIDGE OIL LIMITED

3302
3303
3304
3305
3306

3307
3308

CONSOLIDATED CAPITAL COMPANIES 3309

SPECTRA-PHYSICS
FUTURE IDEAS, INC.
TYMLABS CORPORATION

HEWLETT PACKARD

MEGATEC PTY. LTD.
HEWLETT PACKARD
OPERATIONS CONTROL SYSTEMS

COGNOS INCORPORATED

McEVOY, COOPER & CO.
McEVOY, COOPER & CO.
BLANKET SOLUTIONS

CORPORATE COMPUTER SYSTEMS
CORPORATE COMPUTER SYSTEMS
BRANT COMPUTER SERVICES LTD.

3310
i1
3312

3313
3314
315
3316

3317
3318

3319
3320

3321



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86



SOUTHEASTERN MICHIGAN USERS GROUP

ALDINGER,RICK
ATKINSON, TERRY
BARNETT , DONALD
BLAKE, ISAAC
BLAKE, ISAMC
BORRESEN ,LARS
BOSKEY ,DAVID
BRAYMAN ,CHRISTOPHER
BRAYMAN,SHAWN M.
BRUNO,BENEDICT G.
BUCHANAN , BUCK
BURCHETT ,RICHARD L.
BUTLER,STEPHEN M.
CARGNONI ,LAVRENCE J.
CASEY-DAVIS,KIMBERLEE
CHASE,TIN

CHENG ,SARA
COURTNEY ,LEE
COUTANT,CARY A.
COYA,STEPHEN J.
CRAIG,JACK
CROW,BILL
DEMBRY , PAUL
DOWLING, JAMES
DRAKE ,RONALD
DUDLEY ,KAREN
EDWARDS , BRUCE
EHRHART ,RICK
ESCUDER, MANUEL
ESTES ,ROBERTA
PARQUHARSON, IAN
FIORAVANTI ,PATRICK
FIRPO,JANINE
FLOYD, TERRY H.
FOSTER, BIRKET
FRIEDRICH,RICHARD
FROST,RICHARD A.
FROST,RICHARD A.
GARCIA,I. JANET
GREEN ,ROBERT M.
GROESSLER, JOERG
HARNAR,RON
HEATER, KAREN
HECKER, JEFFREY
HELLEBOID,OLIVIER
HILL,PETER R.
HOLT,WAYNE E.
HOPHANS ,ROSS G.
HOPMANS ,ROSS G.
HUFFMAN, JACK
HWANG, HEN-JEY
INDERMILL ,MARK
JAMES,DAVID
JORDAN , ARTHUR
KAMINSKI, THOMAS J.
KLEIMAN  MITCHELL
KOHON , MICHEL
KOHON ,MICHEL
KONDOFF ,AL
KOVALICK ,MAY
LARSON ,ORLAND

Detroit Interex Conference

Business Proceedings By Author

(HP3000/100)
DISC PERFORMANCE - WHAT IS IT ?
COMMUNICATING BETWEEN HP'S AND FOREIGN SYSTEMS
MEETING THE CHALLENGE: AN INSIDE LOOK AT SPECTRUM TESTING
THE SYSTEM MANAGERS' TOOLBOX
COMPUTER SECURITY AND LEGAL ISSUES
INTERPROCESS COMMUNICATION USING MPE MESSAGE FILES
FOCUS ON THE FUTURE-THE SEARCH FOR THE SOFTWARE TRANSISTOR
PEOPLE & MACHINE PERFORMANCE W/SPEEDWARE,POWERHOUSE,RAPID
LOGIC PROGRAMMING & EXPERT SYSTEMS
RINs, RINs, RINs : WHY, WHEN, AND HOW
THE SECOND MARKET : BUYING AND SELLING USED HP EQUIPHENT
UTILIZING TELEPHONE USAGE DATA - AUTOMATICALLY
ADVANCED TRANSACT PROGRAMMING TECHNIQUES
MIGRATION SOLUTIONS FOR MPE/XL
THE KEY TO UNLOCKING PEAK PERFORMANCE
FOCUS ON THE FUTURE-THE SEARCH FOR THE SOFTWARE TRANSISTOR
THE HPIMAGE INTERFACE COMPONENT OF ALLBASE
MPE XL ORGANIZATION AND DIRECTION
USING THE MPE/XL LINK EDITOR
X.25: WHAT TO DO AFTER THE NETWORK IS IN PLACE
PROCESS HANDLING WITH BUSINESS BASIC
ONLINE INFORMATION SERVICES FOR HP PERSONAL COMPUTER USERS
PERFORMANCE PROGRAMMING WITH HPSQL/V
STRATEGIES FOR EXTENDING THE LIFE OF THE HP 3000
THE ROLE OF THE OPERATOR IN THE DATA CENTER OF THE FUTURE
HEWLETT PACKARD ON COMMUNICATIONS PREMISES WIRING
MANAGEMENT - THE FORGOTTEN PART OF M.I.S.
HPE VOLUME MANAGEMENT OVERVIEW
AUTOCHANGER EXTENDS CARTRIDGE TAPE DRIVE CAPACITY
MAP (MANUFACTURING AUTOMATION PROTOCOL)
4GL & THE CHANGING ROLE OF THE PROGRAMMER
THE MINI & THE MICRO-DISTRIBUTED APPLICATION DEVELOPMENT
SECURITY CONCERNS AND SOLUTIONS
COMPUTER INTEGRATED MANUFACTURING FOR EXECUTIVES
LETS SCOPE IT OUT - FILE TRANSFER BEYOND THE SNEAKER-NET
MIGRATING TO THE SERIES 900'S - VARIABLES AFFECT. SYS. PERF.
THE FUTURE OF SYSTEM DEVELOPMENT
THE FUTURE OF DATA PROCESSING MANAGEMENT
MIGRATION SOLUTIONS FOR MPE/XL
ARCHAEOLOGY OF THE HP3000 COMPUTER
1S ONLINE BACKUP POSSIBLE OUTSIDE SPECTRUM ?
LINKING TO HP SYSTEM DICTIONARY
4GL - THE CONTROVERSY RAGES ON

PROGRAMMING THE NEW GENERATION OF HP COMPS.: A RISC TUTORIAL ARENS APPLIED ELECTROMAGNETICS 3132

WIDE AREA NETWORKING - A CASE STUDY

*:HELLO" AN UNERIENDLY GREETING OR AN OFFER OF SEDUCTION ?
MEETING THE CHALLENGE: AN INSIDE LOOK AT SPECTRUM TESTING
EYPERT SYSTEM MANAGER FOR THE HP3000

AN EXPERT FINANCIAL PLANNING SYSTEM

BACKUP SYSTEMS, PRESENT AND FUTURE

HOW T0 DESIGN A CHINESE STYLE NETWORK SYSTEM

ADOLESCENCE AT THE AGE OF 137:STUDY CHANGE CORPORATE CULTURE AMFAC DISTRIBUTION CORPORATION 3301

IHPACTS OF TECHNOLOGY ON HIGH PERFORMANCE MASS STORAGE
APPLICATION PERFORMANCE TUNING - APS/3000

INSURING THE FUTURE OF YOUR DATA BY CONTINGENCY PLANNING
METHODS AND PRACTICES OF MIS MANAGEMENT

A WINDOW INTO THE FUTURE

THE FUTURE OF STEP BY STEP

HPE FILE SYSTEM OVERVIEW

IS THERE LIFE BESIDES IMAGE ?

RELATIONAL DATABASE : HOW DO WE KNOW WE ONE ?

INTEREX 86
HEWLETT PACKARD 3102

3
HEWLETT PACKARD 3128
HEWLETT PACKARD 3110
HEWLETT PACKARD 3315
HERLETT PACKARD 3112
CORPORATE COMPUTER SYSTEMS 3320
BRANT COMPUTER SERVICES LTD. 3206
BRANT COMPUTER SERVICES LTD. 3321
STR SOFTWARE COMPANY 3227
FIDELITY SYSTEHS 3305
INFOFLOW INTERNATIONAL, INC. 3235
PROBUS INTERNATIONAL INC. 3204
HEWLETT PACKARD 3130
KAISER 3209
CORPORATE COMPUTER SYSTEMS 3320
HEWLETT PACKARD 3238
HENWLETT PACKARD 3131
HEWLETT PACKARD 3239
KCI DISC 3125
BRIDGEWARE 3106
HEWLETT PACKARD 3233
HEWLETT PACKARD 3219
BOSE CORPORATION 3107
OPERATIONS CONTROL SYSTEMS 3114
HEWLETT PACKARD 3120
BRIDGE OIL LIMITED 3308
HEWLETT PACKARD 3109
HEWLETT PACKARD 3116
HEWLETT PACKARD 3123
INFOCENTRE LTD. 3213
INFOCENTRE LTD. 3217
OPERATIONS CONTROL SYSTEMS 3316
BLANKET SOLUTIONS 3319
M.B.FOSTER & ASSOCIATES 3203
HEWLETT PACKARD 3129
FUTURE IDEAS, INC. 3208
FUTURE IDEAS, INC. 3311
HEWLETT PACKARD 3130
ROBELLE CONSULTING LTD. 3302
JOERG GROESSLER GHBH 3119
HEWLETT PACKARD 3225
INFOCENTRE LTD. 3201
HEWLETT PACKARD 3124
MEGATEC PTY. LTD. 3314
SOPTVARE RESEARCH NORTHWEST 3128
BRANT COMPUTER SERVICES LTD. 3113
BRANT COMPUTER SERVICES LTD. 3215
HEWLETT PACKARD 317

3303
HEWLETT PACKARD 3104
HEWLETT PACKARD 3101
SINGER EDUCATION DIVISION 3118
CONSOLIDATED CAPITAL COMPANIES 3309
TYMLABS CORPORATION 3214
TYMLABS CORPORATION 3312
HEWLETT PACKARD 3108
HEWLETT PACKARD 3218
HEWLETT PACKARD 3220



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Detroit Interex Conference
Business Proceedings By Author

(HP3000/100)
LAZAR,CLIFFORD W. POWER TO THE PEOPLE, EXPERIENCES OF A START-UP DP MANAGER  SYSTEMS EXPRESS 3304
LEVY LEIGHT,BETSY PROTECTING YOUR SOFTWARE INVESTHENT: AN AUTOMATED APPROACH  OPERATIONS CONTROL SYSTEMS 3115
LIAT,LIN THE SPIRIT OF A NEWER SOFTWARE : LL'SPIRIT SINGAPORE COMPUTER SYSTEMS PTE 3230
MACKENZIE ,DON AN EYPERT FINANCIAL PLANNING SYSTEM BRANT COMPUTER SERVICES LTD. 3215
McBRIDE, BECKY MIGRATING TO THE SERIES 900°S - VARIABLES AFFECT. SYS. PERF. HEWLETT PACKARD 3129
McEVOY JR.,J. CHASE ARTIFICIAL INTELLIGENCE - NO LONGER A RESEARCH PROJECT McEVOY, COOPER & CO. 3318
McINTOSH,JC ADVANCED TRANSACT PROGRAMMING TECHNIQUES PROBUS INTERNATIONAL INC. 3204
QUELLETTE , RAYMOND PROTOTYPING AND SYSTEMS DEVELOPHENT USING 4GL INFOCENTRE LTD. 3226
OXFORD,RICHARD HP2680A. THE MYSTICAL PRINTER, HOW IT WORKS MCI DISC 3212
PRALY ,MARC 4GL APPLICATION DEVELOPMENT GUIDELINES COGNOS INCORPORATED 3317
REMILLARD ,ROBERT INFORMATION CENTERS AROUND 4GL'S COGNOS INCORPORATED 3202
RICHARDSON ,STEVE HP ADVANCENET - INTEGRATING NEW PROCESSORS HEWLETT PACKARD 3121
ROBINSON,DAVID G. ENRICHING YOUR POWERHOUSE ENVIRONMENT ROBINSON, WALLACE & COMPANY 3205
ROSENBERG , JONATHAN COMPUTER ASSISTED QUALITY ASSURANCE FOR SOFTWARE DEVELOPMENT OPERATIONS CONTROL SYSTEMS 3224
RUTHERFORD,JILL C. CREATIVE SYSTEM INTEGRATION TO ENHANCE PRODUCTIVITY BOEING AEROSPACE CO. 3232
SCHOONOVER ,CHERIE RESPONSE CENTER FROM THE OTHER END OF THE PHONE HEWLETT PACKARD 3313
SCHRAM,W.P. PLANNING INTEGRATED OFFICE SYSTEMS 3234
SCOTT,GEORGE B. IDENTIFYING OPPORTUNITIES FOR PERFORMANCE INPROVEMENT ELDEC CORP 3103
SHAFER,TIM ISDN NETWORKING FOR THE OFFICE HEWLETT PACKARD 3122
SHONNARD CLARKSON MARCIA DATABASE DESIGN IN AN IMPERFECT WORLD THE UNIVERSITY OF THE SOUTH 3307
SIELER,STAN A COMPARISON OF C COMPILERS FOR THE HP3000 ALLEGRO CONSULTANTS, INC. 3126
SIMON,RICK COMMERCIAL SPECTRUM PROGRESS REPORT HEWLETT PACKARD 3127
SIMPKINS, TERRY W. STRATEGIC PLANNING IN SMALL MIS SHOPS SPECTRA-PHYSICS 3310
SINCLAIR,JIM MIGRATING POWERHOUSE APPLICATIONS TO NEW MACHINE ENVIRONMENT COGNOS INCORPORATED 3237
SOLLAND,LEIGH THE SYSTEM LIFE CYCLE IN THE 4GL ENVIRONMENT COGNOS INCORPORATED 3210
SPENCE ,STEVEN J. MIGRATING COBOL PROGRAMS TO SPECTRUM:A BATTLE OR A BREEZE ? HEWLETT PACKARD 3236
SPITZER,SUZANNE M. ARTIFICIAL INTELLIGENCE - NO LONGER A RESEARCH PROJECT McEVOY, COOPER & CO. 3318
TASHENBERG,C. BRADLEY TRENDS IN IMAGE BRADMARK COMPUTER SYSTEMS 3223
TEMPLE, YVONNE GRAPHICS IN AN ORGANIZATION HEWLETT PACKARD 211
TOBACK ,BRUCE SOFTWARE DESIGN FOR LONG-TERM RELIABILITY & MAINTAINABILITY OPT, INC. 3228
TRASKO, MARK S. THE FUTURE OF DATABASE TECHNOLOGY DYNAMIC INFORMATION SYSTEMS 3222
VAN VALKENBURGH,R.E. THPROVING YOUR PERFORMANCE AMPEX CORPORATION 3105
VIRGILIO,LESLIE A. INSURING THE FUTURE OF YOUR DATA BY CONTINGENCY PLANNING SINGER EDUCATION DIVISION 3118
VOLOKH ,EUGENE RELATIONAL DATABASES VS. IMAGE: WHAT THE FUSS IS ALL ABOUT  VESOFT, INC. 3221
WALLACE, MARK THE TOOLS OF STRUCTURED ANALYSIS - A TUTORIAL ROBINSON, WALLACE & COMPANY 3231
WVALLACE , MARK HOW TO DEVELOP NEW APPLICATIONS - A STRATEGY ROBINSON, WALLACE & COMPANY 3216
VARZECHA ,CHARLES E. PERSONAL COMPUTERS SOLVE 4GL PROBLEMS GATEWAY SYSTEMS CORPORATION 3207
WHITE,FRED THE POURTH BEAR OF IMAGE ADAGER 3229

WISEMAN,D.B. WHAT HP DIDN'T TELL YOU WHEN YOU BOUGHT YOUR HP3000 SYSTEM SOFTWARE LIMITED 3306



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

APPLICATION PERFORMANCE TUNING - APS/3000

Arthur Jordan
Hewlett-Packard Company
Computer Systems Division

I. INTRODUCTION

1. Overview

Application Program Sampler/3000 (APS/3000) is an interactive performance tool that
allows you to "fine tune" HP3000 programs. APS/3000 monitors the execution of a user
specified program and produces histograms that depict the relative amount of time spent
executing program statements. After examining the histograms, you can optimize
time-consuming program statements and then repeat the procedure until you achieve the
level of efficiency you desire.

2. APS/3000 Features
APS/3000 allows you to:
0 Measure performance without having to modify your source code.

o Monitor the execution of a single program or multiple executions of one or more shared
programs.

o Distinguish between direct CPU utilization (i.e., CPU time spent executing user program
statements) and indirect CPU utilization (i.e., CPU time executing user SL code or system SL
code on behalf of the user program).

o Estimate the rate of transfer of control between segments (for segmentation purposes).

o Determine wait times (i.e., time when the process is not active - either waiting for a
system function or user think time) of program statements in order to estimate turnaround
time.

o Analyze the log file created during the data collection process on another system without
any loss of functionality.

3. APS/3000 Requirements

APS/3000 can analyze programs written in COBOLIIL SPL, FORTRAN, PASCAL, or BASIC.
A PB-location listing is needed to correlate the APS/3000 histograms with the statements in

a program. Either a PMAP listing is needed, or the program must be PREPped using the
FPMAP option.

Paper 3101 1 DETROIT, Ml



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86
4. APS/3000 Modules

APS/3000 consists of three modules. The user interacts with each module through a
hierarchical series of menus. The modules are: SAMPLER, DISPLAY, and ANALYZER.

SAMPLER is the data collection module. It monitors the execution of one or more programs
and stores the samples in a log file.

DISPLAY provides real time histograms during the data collection process of the
measurement as it progresses.

ANALYZER reduces the data gathered by SAMPLER. The ANALYZER menus allow you
to analyze the data in increasingly finer steps. You can examine: CPU time for all sampled

programs and processes, CPU time for segments within a given program, and, procedure and
address ranges within a given segment.

5. When to use APS/3000

The information produced by APS/3000 is useful throughout a program’s lifecycle:

o Before you release the program to the user for the first time.

o After you have added enhancements to the program.

o When you need to improve poor response times.

o When contention for shared resources is degrading system performance

After briefly describing the MPE architectural features that underlie the operation of
APS/3000, the procedures for "tuning" a program are described. The paper concludes with a

case study which shows how to use APS/3000 to collect data and analyze a COBOLII
program step-by-step.

Il. MPE AND APS/3000 RELATED TOPICS

1. Process ldentification Number - PIN

A process is the unique execution of a program by one user. MPE identifies each process by
a unique number called a process identification number (or PIN). During process creation, a
free PIN is allocated to the process. The PIN is associated with the process until it
terminates. Upon process termination, the PIN is freed for use by another process.

Paper 3101 2 DETROIT, Mi



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

2. Programs and Segmented Libraries

A program can reference procedures from three different sources: the group SL, the pub SL,
or the system SL. A program performs a unique function (e.g. a marketing software
application). Group and pub SLs are managed by the user and contain procedures that
performs a specific function for a program. The system SL contains procedures (termed
intrinsics) that are called by programs or by user SL procedures.

3. Segments

Programs and SLs are made up of segments. A process can have up to 255 segments (in any
combination of program segments and user/system SL segments). Program files can contain
up to 63 segments.

The COBOLII reserved word SECTION defines the segment in which the code following it
will reside. The syntax is "seg-name SECTION #", where seg-name is a user-defined name
for the segment. The # defines the COBOLII internal segment number where the code will
reside.

The COBOLII source statement "MAIN-LINE-SECTION SECTION O0." is translated to
"MAINLINESECTO00™. The COBOLII internal segment name is "MAINLINESECT" and the
internal segment number is "00™. The programs actual segment numbers produced by the
Segmenter (via the PREP command) do not match the COBOLII internal segment numbers.

4. Shared Clock Interface

The Shared Clock Interface is a set of system procedures that allows APS/3000 to interrupt
the operating system at a given fixed interval. The user can select a sampling interval from 5
to 1000 milliseconds. The interrupt is a high-priority event that can preempt most non-1/0O
drivers and active programs.

5. Stack Markers

When a subprogram or SL procedure is called, MPE uses a stack marker to save the origin of
the call. The stack marker contains the segment number and PB-location of the caller.
Stack markers are chained together to reflect the history of procedure calls up to the
present.

6. Collecting Direct, Indirect, and Wait Samples

Typically, you specify the program or programs you want to study and instruct the
SAMPLER module to perform a new measurement. SAMPLER interrupts processing at each
occurrence of the sampling interval. First, SAMPLER determines if the interrupted program
is the program (or one of the programs) you specified. If so, SAMPLER reads the chain of
stack markers. If the last stack marker describes a segment in the program, SAMPLER
records it in the log file as a direct sample.

If the last stack marker is for a SL segment (i.e. group SL, pub SL, or system SL), SAMPLER
records its segment number and PB-location. Then, SAMPLER begins tracing back through

Paper 3101 3 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

successive stack markers until it finds a program segment. The data is then recorded to the
log file as an indirect sample.

SAMPLER records Direct CPU Cost, Indirect CPU Cost, and Wait time samples. Direct CPU
Cost represents execution time of your program. Indirect CPU Cost represents execution of
SL procedures on behalf of a program. Wait time represents I/O delays due to hardware
limitations, processing delays due to system load factors, and user think times. For example, a
program initiates a read to a terminal and the user has to wait some time, say a minute,
before they respond. This minute is accumulated as wait time. Technically, Wait Time is the
accumulated total number of sampler interrupts during which the program being studied
was not active. The example below clarifies the distinction between the three measurement
types.

MOVE "ENTER YOUR NAME:" TO WRITE-LINE.
DISPLAY WRITE-LINE.
ACCEPT NAME.

Direct CPU Cost is incurred when "ENTER YOUR NAME:" is moved to WRITE-LINE.
Indirect Cost is incurred when the system executes the DISPLAY WRITE-LINE. Wait time
will be accumulated if the user waits some amount of time before entering their name.

ANALYZER constructs histograms that depict these costs. ANALYZER reports Direct Cost
histograms, Direct + Indirect Cost histograms, and Turnaround time (Direct + Indirect +
Wait Time) histograms. Turnaround histograms depict the sum of the direct, indirect, and
the wait time for a given execution of the program being studied.

7. VERBS map

ANALYZER’s histograms depict PB-locations within a segment. The COBOLII compiler
reads each statement in your source file and then generates the machine instructions needed
to accomplish the statement.

The VERBS map (produced by the COBOLII compiler’s VERBS directive), lists the beginning
PB-location of each VERB in the program. The example below is a portion of a compiler
listing and the matching listing for the VERBS map.

LINE #

00045 005000 C100-READ-DATA-FILE.

00046 005100 READ DATA-FILE AT END MOVE "Y" TO EOF.
00047 005200 MOVE DATA-FILE-REC TO TERM-LINE.
00048 005300 MOVE SPACES TO WRITE-LINE.

00043 005400 C100-EXIT.

LINE # PB-LOC  # PROCEDURE NAME/VERB

00045 000036 C100-READ-DATA-FILE

00046 000036 READ

00046 000054 MOVE

00047 000057 MOVE

00048 000065 MOVE

00049 000076 C100-EXIT

The "LINE #" in the VERBS map corresponds to the "LINE #" in the compiler listing. The
"PB-LOC" is the starting PB-location for each VERB.

Paper 3101 4 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

In the VERBS map the first PB-location for the verb READ is %36 and the compile listing
line number is 46. At 46 in the compile listing we find the statement "READ DATA-FILE
AT END MOVE "Y" TO EOF.". How many machine instructions did it take to translate the
statement at line number 46? Subtract the PB-LOC at line number 46 (which is %36) from
the PB-LOC at line number 47 (which is %57) to get %21 (decimal 17) machine instructions.
This is a trick question because two COBOLII VERBS occur in the compiler listing line
number 46. First, the READ and then the MOVE. The VERBS map splits this statement into
two starting PB-locations.

8. PMAP and FPMAP

The PMAP is a list of all segments being PREPped into a program. It lists the name of each
segment, the name and starting address of each procedure within the segment, plus any
external references (e.g., FOPEN, FREAD). If you specify the PMAP option when PREPping
a program, a PMAP hard copy listing is generated for you. The FPMAP option
automatically appends the PMAP information to the program file. The FPMAP option
should be used because:

o Procedure histograms cannot be produced (this does not affect COBOLII users).

o Histograms will display segment names instead of an octal segment number.

o Correlating histogram results to statements in the compile listing requires only one step
(instead of two).

9. Histogram Format

Histograms are used to represent direct, indirect, and wait CPU times. Each histogram begins
with a title, number of samples, and the histogram.

Program Name(s):TESTPROG. JUR! - Segment: }
Distribution of Di t Indir. U Time Over g. s
( 381 Samples = 7.57% Direct & 88.63% Indirect )

S [ |mommmmmee | +--CNT---%--%CUM
%000030 000033 ]
%000040 000043
%000050 000053
%000060 000063
%000064 000067

o}
~
~NOoOMN~NDMON

%000070 000073 BHHDH 6.8 95
%000100 000103 18 4.7 99
%000144 000147 1 .3 100.
F [ [==mmmmmee [mmmmmm e e | +--CNT---%--%CUM

<label> <bar-field>

Title:Contains the program name and a description of the type of histogram (e.g., Direct,
Indirect, Segment).

Samples:Identifies the total number of samples for the histogram.

Paper 3101 5 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

<label>: Defines the entity the histogram is describing. This could be a PIN, program name,
segment name, or an address range.

<bar-field>: Describes the relative costs for the entities. The <bar-field> can be described
using a "D" for direct, an "I" for indirect, and a "W" for wait times.

CNT: Contains the number of samples described in the bar-field. The CNT field is only
available on the hardcopy listings of histograms.

%: Field represents the percentage of samples for the entity to the total number of samples
for the histogram.

%CUM: Defines the cumulative percent.

ANALYZER displays three different types of histograms. They are:

1. Direct Histogram: Displays the relative CPU cost for the program statements.

2. Indirect Histograms: Combines the Direct CPU cost with the Indirect CPU cost.

3. Wait Histograms: Combines Direct CPU cost, Indirect CPU cost, with the Wait time.
Histograms at the "Procedure and Address Level" for different segments cannot be compared

with one another to understand which segment consumed the most CPU time. Segment
histograms are displayed in decreasing CPU utilization.

Paper 3101 6 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

. HOW TO TUNE A PROGRAM

Tuning a program requires that a series of steps be followed. They are:
1. Define a program test procedure

2. State current performance and objectives

3. Generate new listings and program file

4. Collect the data

5. Analyze log file

6. Make source code modifications

7. Repeat steps 3 through 6 until desired performance objectives have been reached

STEP 1. Define a program test procedure

You must control the environment to ensure that the improved performance is the result of
modifying the source code and not random variation. The ability to duplicate the exact
same test is critical in tuning a program. Four important points to follow in defining a
reproducible test are:

1. Use a method of measuring the CPU time that is consistent for each test. For an
interactive program, this might be the duration between a carriage return and when the
screen is repainted with the requested data. This could be measured by a stop watch. Better
results would be obtained by displaying time stamps after the carriage return and before the
requested data is displayed.

For batch programs, the measurement would be the time it takes the program to execute.

2. If the program modifies data in data file(s), those files must be restored to their original
state prior to the re-execution of the test.

3. The test must be executed in a standalone environment (i.e., nothing else is running on the
system). Otherwise, another program could execute during the test and thus spuriously
inflate execution time for the test.

4. If the program is interactive, the same screen data must be entered for each re-execution
of the test.

Once a test has been defined it should be run several times to insure it reproduces the same
execution times for each test.

Paper 3101 7 DETROIT, Mi



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

STEP 2: State current performance and objectives

Before any performance enhancements are made to the program, a base set of performance
statistics must be documented. After each execution of the test, the performance statistics
should be documented and compared with the last test.  Sometimes "performance
enhancements" actually degrade performance rather than improve it.

Step 1 should provide the necessary information to state the current performance statistics
(i.e. what is the measured response time of the program?). Any variance between successive
runs of the test should be documented.

The desired performance objectives should also be understood. The objectives are statements
that describe what the performance of the program should be. For example:

o The interactive program must have a response time of under 15 seconds.
o The batch program must complete in under 4 hours.

It is important to document these objectives so you know when they have been reached.
Otherwise, performance tuning can go on forever.

STEP 3: Generate new listings and program file

In order to correlate the profiles produced by the ANALYZER module, two listings must be
available: the compiled code and the VERBS map (this assumes that the FPMAP option was
used when the program was PREPped).

Before tuning, generate a compile listing with the VERBS map and a new program file.
Don’t assume that the listings available match the program file being analyzed (Only a small
change was made. To save paper, no new listings were generated). It is very important that
the listings exactly match the program being studied. The profiles from the ANALYZER
might be 10 to 100 PB-locations different depending upon modifications made. If the code
locations do not match, the wrong source code will be modified when making performance
enhancements!

STEP 4: Collect the data

The SAMPLER module is used to collect data. It is entered by selecting "NM" (New
Measurement) on the main screen in APS/3000. This will display the Measurement Option
Commands. Three different types of measurement options are available. They are:

1. RM: This type of measurement is used when only one program is to be analyzed. Data is
collected for one program executed by one process. If it is an online program, interaction
with the program will occur on the terminal. This type of measurement allows the user to
display the Program/Process Level histograms through the Procedure/Address Level
histograms.

2. AM: Is used when analyzing one or more programs. Data will be collected for all
processes executing the program(s) the user selects. Up to ten programs can be monitored.
This type of measurement allows the user to display the Program/Process Level histograms
through the Procedure/Address Level histograms.

Paper 3101 8 DETROIT, Mi



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

3. AL: When the entire system is to be measured, this option should be used. Data is
collected from all programs executed by all users. Using this measurement option, only the
Program/Process Level through Segment Level histograms are available.

If only one program is to be analyzed, the RM measurement option should be used. If a
program has several sub-programs executing and communicating together, the AM
measurement option should be used. To analyze one program executed by several users, AM
mode should be used. AL measurement option is used to review which system segments are
being used (not for tuning programs).

STEP 5: Analyze log file

The ANALYZER module is used to analyze a log file. ANALYZER can be entered through
the main screen of APS/3000 using the "RE" (Replay and Analysis of log file) command.

Two general rules exist that help in analyzing a log file. They are:

1. Eighty percent of the CPU time is spent in 20 percent of the program. If this is true, the
strategy behind analyzing a log file is to find where the program is spending 80 percent of
its time and enhance that portion.

2. Eighty percent of the time, a program is executing system code (e.g., calling intrinsics).

Again, these are general rules which are fairly accurate. They help establish a direction and
confirm where performance enhancements could be made.

Analyzing a program is accomplished by repeating a series of steps over and over again, until
all of the high CPU utilized areas have been analyzed. The process is:

1. Review the segment level histograms. Locate the segment that consumed the most CPU
time.

2. Go to the procedure / address level histograms (reviewing the segment found in step 1).
Find the address range that consumed the most CPU time.

3. Trace that to the compiled code listing.

4. Find possible solutions to enhance that portion of code so it will be more efficient. This
usually means taking out that section of code, rewriting it, or leaving it in because it cannot
be changed.

5. Go to step 2, find the next highest CPU utilized address range. Repeat until all of the
high CPU utilized address ranges have been exhausted for that segment.

6. Go to step 1 and find the segment that consumed the next highest CPU utilization.

This process is performed for all of the direct CPU histograms and the indirect CPU
histograms.

Direct histograms show which code should be revised to make the program more efficient.
The indirect histograms point to calls made to SL procedures that needs to be reviewed for
performance enhancements. If the SL is user-managed (group SL or pub SL), the call can be
taken out of the program, the procedure in the SL can be enhanced, or it can be left

Paper 3101 9 DETROIT, Mi



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

unchanged. If the SL procedure is an intrinsic, ask yourself, "can the intrinsic call be deleted?
If the intrinsic is file-system related, can the file structure be changed for faster
turn-around time on the call?"

STEP 6: Make source code modifications

Two strategies exist for modifying the source code with the changes found in step 5. All of
the changes can be done at once or they can be done one at a time. Performing one change
at a time offers the satisfaction of knowing if the change increased performance, had little
effect, or degraded performance. The source is modified and recompiled, new listings are
generated, and the test is re-run again. Although this is time consuming, it is the best way
to install performance enhancements.

Summary

Tuning a program can be a never-ending process. There is always one more area of code in
the program that is devouring CPU cycles. At some point, the increase in performance does
not warrant the analysis and code changes. Hopefully, you have met the performance
objectives before that point is reached.

This process not only improves the performance of existing programs, but also shows you
what consumes CPU time on the HP3000. This will assist you in designing new programs
that are more efficient.

APS/3000 not only points out where in the program CPU time is being spent (which is a
small part of the overall execution time), but also what calls to SL procedures (i.e., calls to
intrinsics) consume CPU time. This is also valuable information. It can assist in pointing out
which file structures are consuming a lot of CPU time. Hopefully, this will lead to tuning
those file structures.

After analyzing a program, you may decide that no performance enhancements can be made
because all of the code is performing necessary functions. In this case, there is the
satisfaction of knowing that the program is running as efficiently as possible.

All performance problems can be solved by purchasing more hardware. An intelligent
decision will be based on whether a software or hardware solution is most cost effective.

Before purchasing more hardware, evaluate the possibility and cost of tuning the programs
that consume the most CPU time. Then, evaluate the system performance (Maybe you only
need to purchase more memory). Finally, consider an upgrade or an additional CPU.

APS/3000 does not have to be used only in a reactive mode. In a proactive mode it can

ensure that a program is using system resources efficiently and that the user is getting the
fastest response time possible.

Paper 3101 10 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

IV. CASE STUDY

1. Introduction

The case study will walk through the data collection and analysis phase of tuning a program.
The program analyzed is a short COBOLII program called TESTPROG. It was designed to
show the three main functions of APS/3000. These are: To determine where the most
amount of CPU time was spent executing program code (direct). To determine where in the
program the most amount of CPU time was spent executing called procedures in SLs
(indirect). How to interpret wait times.

The following sections contain the compile listing, VERBS map listing, and a menu-by-menu
walk through of data collection and data reduction. User input will be in bold upper case
letters. A is a carriage return and implies a YES response in APS/3000.

2. The compile and VERBS map listings

The TESTPROG compiler listing and VERBS map listing is provided on the following pages.
The PMAP listing is not needed because the FPMAP option was used when PREPping
TESTPROG.

Browse through the compiler listing to understand what the program does. Two points about
the compiler listing, they are:

1. The VERBS map compiler directive is found in the compiler listing line number 4 (these
are the numbers to the far left of the listing).

2. The program is segmented only to show how the COBOLII compiler translates the source
code segment names to the COBOLII internal segment names. APS/3000 refers to the
segments by the COBOLII internal segment names. To see how they get translated, review
the SECTION verb in the compile listing and then find the corresponding line number in the
VERBS map listing to find the COBOLII compilers internal name.

TESTPROG contains one main loop. Within this loop it:

o Opens a data file

o Reads 100 records from the data file

o Closes the data file

o Moves spaces to a buffer

o Prompts the user to re-execute the loop

Paper 3101 11 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

00004
00006
00007
00008
00009
00010
00011

00012
00013
00014
00015
00016
00017
00018
00019
00020
00021

00022
00023
00024
00025
00026
00027
00028
00029
00030
00031

00032
00033
00034
00035
00036
00037
00038
00039
00041

00042
00043
00045
00046
00047
00048
00049
00051

00052
00053
00055
00056
00057
00058

Paper 3101

001000$CONTROL USLINIT,VERBS <- Point 1

001100
001200
001300
001400
001500
001600
001700
001800
001900
002000
002100
002200
002300
002400
002500
002600
002700
002800
002900
003000
003100
003200
003300
003400
003500
003600
003700
003800
003800
004000
004100
004200
004300
004400
004600
004700
004800
005000
005100
005200
005300
005400
005600
005700
005800
006000
006100
006200
006300

IDENTIFICATION DIVISION.
PROGRAM-ID. APS3000-TEST.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT DATA-FILE ASSIGN TO "DATAFILE".
DATA DIVISION.
FILE SECTION.

FD DATA-FILE
RECORD CONTAINS 80 CHARACTERS.

01 DATA-FILE-REC PIC X(80).
WORKING-STORAGE SECTION.
77  Y-N PIC X.
77 EOF PIC X.
01 WRITE-LINE.
05  TERM-LINE PIC X(80).
05  TERM-LINE1 PIC X(1920).

PROCEDURE DIVISION.

MAIN-LINE-SECTION SECTION O. <- Point 2

A100-MAIN-LINE.
PERFORM B100-OPEN-DATA-FILE THRU B100-EXIT.
PERFORM C100-READ-DATA-FILE 100 TIMES.
PERFORM D100-CLOSE-DATA-FILE THRU D100-EXIT.
PERFORM E100-CLEAR-SMALL-BUF THRU E100-EXIT.
MOVE SPACES TO WRITE-LINE.
DISPLAY "PROCESS A100-MAIN-LINE AGAIN".
ACCEPT Y-N. IF Y-N = "Y" GO TO A100-MAIN-LINE.
STOP RUN.

A100-EXIT.

WORKING-SECTION SECTION 1, <- Point 2
B100-OPEN-DATA-FILE.
OPEN INPUT DATA-FILE.
B100-EXIT.
C100-READ-DATA-FILE.
READ DATA-FILE AT END MOVE "Y" TO EOF.
MOVE DATA-FILE-REC TO TERM-LINE.
MOVE SPACES TO WRITE-LINE.
C100-EXIT.
D100-CLOSE-DATA-FILE.
CLOSE DATA-FILE.
D100-EXIT.
E100-CLEAR-SMALL-BUF.
MOVE SPACES TO WRITE-LINE.
MOVE SPACES TO WRITE-LINE.
E100-EXIT.

12 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP

INTEREX 86

The VERBS map listing shows the starting PB-location of each VERB in the program. The
"LINE #" is the compiler listing line number. The "PB-LOC" is the starting PB-location of
each verb. The "PROCEDURE NAME" is the name of each segment defined in the program.
The "INTERNAL NAME" is the COBOL translated segment name in the SECTION verb.

LINE # PB-LOC #

00027 000003
00028 000003
00029 000003
00030 000007
00031 000021
00032 000026
00033 000032
00034 000041
00035 000100
00035 000100
00035 000110
00036 000116
00037 000123
00039 000003
00041 000003
00042 000003
00043 000034
00045 000036
00046 000036
00046 000054
00047 000057
00048 000065
00048 000076
00051 000076
00052 000076
00053 000103
00055 000105
00056 000105
00057 000117
00058 000126

Paper 3101

0 MAIN-LINE-SECTION

10

WORKING-SECTION

PROCEDURE NAME/VERB INTERNAL NAME

A100-MAIN-LINE
PERFORM
PERFORM
PERFORM
PERFORM
MOVE
DISPLAY
ACCEPT
IF
GO TO
STOP

A100-EXIT

B100-OPEN-DATA-FILE
OPEN
B100-EXIT
C100-READ-DATA-FILE
READ
MOVE
MOVE
MOVE
C100-EXIT
D100-CLOSE-DATA-FILE
CLOSE
D100-EXIT
E100-CLEAR-SMALL-BUF
MOVE
MOVE
E100-EXIT

13

MAINLINESECT00'<- Point 2

WORKINGSECTIO1'<~- Point 2

DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86
3. Collecting the data

To execute APS/3000, run SAMPLER. PUB.SYS. The main menu of the SAMPLER module
will be displayed.

This is a software tool for tuning application and system programs.
The SAMPLER module can invoke, monitor, and log measurements of one
or more programs. The DISPLAY module offers a real-time view of the
data currently being observed by SAMPLER. ANALYZER reads logged
data and produces histograms that break down the relative CPU cost
of program file names, process names, segment names, procedure
names, or address ranges relative to the beginning of a segment or
procedure. The programmer then decides which program areas to
optimize.

SAMPLER’s Function Selection Commands (Enter H for Help):

: New Measurement (SAMPLER)
Replay and Analysis of Log File (ANALYZER)

A: Automatic” M: Menu CL: Clear Screen##

E: End QU: Quiet RL: Roll Up

EX: Exit VQ: Very Quiet HC: Hard Copy only

H: Help VB: Verbose#*#% TD: Terminal Display only

Top TH: Terminal & Hard Cop

T: Y
QMPLERﬁ NM j

An "NM" is entered to initiate a new measurement. The Measurement Option menu will be
displayed next.

Paper 3101 14 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

SAMPLER has the capability to a) invoke and monitor the execution
of a specific program, b) allocate and monitor the shared execution

of one or more programs or c) monitor all active programs including
operating system functions.

Select one of these options to continue. Enter H for HELP.
Measurement Option Commands:
“&M: Run and Monitor an Application Program

Allocate and Monitor a Shared Program(s)
: Monitor All Active Programs Including MPE

A: Automatic” M: Menu CL: Clear Screen%#

E: End QU: Quiet RL: Roll Up

EX: Exit VQ: Very Quiet HC: Hard Copy only

H: Help VB: Verbose#*# TD: Terminal Display only

T: Top TH

: : Terminal & Hard Copy
SAMPLER-> RM /
N—

he measurement option "RM" is selected because the execution of TESTPROG by one user
ill give the controlled environment needed.

~

Enter a program name and other optional parameters to execute it. m
the normal execution of your program requires any special :FILE
equations, break from SAMPLER and define them (if not already done)
and then resume SAMPLER.

Program Name: TESTPROG
Primary Entry Point?
Libsearch S? <G |P|S| YES|[RET] for S >
End of Parameters? _/

N

ogram Name: The name of the program to be analyzed should be entered. TESTPROG is
: name of the COBOLII program that will be analyzed.

imary Entry Point?: Programs can contain alternate entry points. The default is the
mary entry point. See the CREATE intrinsic for more information.

bsearch S?: If a group SL is used enter "G". For programs that reference a pub SL,
er a "P". Otherwise enter a "carriage return".

1 of Parameters?: If no other parameters exist enter a "carriage return". If other

ameters are required enter a "yes". This will initiate a series of questions to the user (e.g.,
XDATA, INFO string, etc).

Paper 3101 15 DETROIT, Mi



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

@MPLER is now set up to run and monitor the specified program
Enter command BL to begin measurement and log samples. Measurement
parameters can be changed in the dialogue that follows.

Measurement Activation Commands:

Begin and Log Measurement

Begin Measurement (No logging)

Stop Measurement (& Close Log File if Any)
Pause Sampling

Resume Sampling

Set Auto Update Delay to n Seconds (e.g. SU 20)

Verify Measurement Parameters
Show Statistics
Activate On-Line DISPLAY

A: Automatic” M: Menu CL: Clear Screen%#%

E: End QU: Quiet RL: Roll Up

EX: Exit VQ: Very Quiet HC: Hard Copy only

H: Help VB: Verbose*#* TD: Terminal Display only
T: Top TH: Terminal & Hard Copy##*

k SAMPLER-> BL /

Selection "BL" starts the measurement process and writes the samples to a log file.

First, to start the measurement, SAMPLER prompts for a series of questions. Once answered,
SAMPLER invokes TESTPROG as a son process. It executes on the same terminal as
APS/3000 is executing. When TESTPROG has completed, SAMPLER displays some
measurement statistics and prompts to go on to analyze the log file. At this point data
collection is complete.

Paper 3101 16 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

ﬁr the following prompts enter YES or Carriage Return [RET] to
confirm the default values. Enter NO (or a new value) in order to
override defaults.

Sampling Interval Milliseconds? 5

For Direct CPU Time Measurement
All program segments and
Pin %235 will be monitored.

Do You Want Indirect CPU Time (and Wait) Measurement Too?

"Measurement Title" -> "Collection - PASS 1"
Log File SAMPLOG?

You Will Need No More Than of

Sampling.

Records of Log File

Records [RET]= YES ?

Log File Size

Measurement Parameters:
Title: APS/3000 DEMO - PASS 1
Measurement Begin: WED, JUN 11, 1986, 7:22 PM
Measurement End:
Program(s): TESTPROG
Measurement Option: RUN & MONITOR A PROGRAM (RM Command)
Current Activity: SAMPLING & LOGGING
Sampling Interval: 5 MILLISECONDS
Process (PINs): %235
Measurement Type: DIRECT AND INDIRECT CPU TIME

Log File: SAMPLOG. JORDAN.SS
\AlL Right? /

Sampling Interval: SAMPLER automatically determines the correct sampling interval
based on HP3000 series. Because the program is very short, a sample interval of § was used.

Do You Want Indirect CPU Time Measurement Too?: We want to study the indirect
cost and wait times.

Measurement Title: Measurement titles should indicate which pass of a test is being run.

Log File SAMPLOG: Previous log files should be saved to allow comparisons. If no name is
entered when prompted for "Log file SAMPLOG" SAMPLER defaults to a log file named
SAMPLOG. If you enter "NO", SAMPLER will prompt for a new log file name.

Log File Size 1023 Records: SAMPLER estimates how large to make the log file and
uses a worst case of 66 records per minute. This is very high. Such a test would execute for
one minute and use only 3 records of the log file. When in doubt, make the log file larger
than needed. Once the log file is full, SAMPLER will continue measuring but samples will
not be recorded to the log file.

Paper 3101 17 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

—

PROCESS A100-MAIN-LINE AGAIN
gROCESS A100-MAIN-LINE AGAIN
:’lROCESS A100-MAIN-LINE AGAIN
\gROCESS A100-MAIN-LINE AGAIN
XROCESS A100-MAIN-LINE AGAIN
EROCESS A100-MAIN-LINE AGAIN

Samples Interrupts WED, JUN 11, 1986, T7:23 PM

3 Records in Log File

QYou Want to Analyze Log File Now?

Data collection is finished!

The main loop of the TESTPROG executed 6 times before an "N" was entered to termif
the program. At each TESTPROG prompt (i.e., PROCESS A100-MAIN-LINE AGAIN‘
delay of 3 seconds for user wait time was used before entering a response. i

The log file SAMPLOG contains 403 samples. This is a combination of direct and indi
samples. Wait times are part of the indirect samples.

Paper 3101 18 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

4. Data Reduction

The ANALYZER module has three levels of histograms: Program and Process Level, Segment
Level, and Procedure and Address Level. We will display histograms at all three levels to
diagnose where the Direct CPU Cost, Indirect CPU Cost, and wait time were consumed.

First, ANALYZER prompts for the log file name and a subtitle. The characteristics of the
log file are reported and then the Program and Process Level menu is displayed.

~ ™

ANALYZER processes the log file generated by SAMPLER and produces
CPU time profiles of sampled program(s). Now specify the log file
name:

Log File SAMPLOG ? (Yes/No)
Enter "Subtitle" [RET] if none ->"PASS 1 ANALYSIS”

Measurement Title: APS/3000 DEMO - PASS 1

Begin: WED, JUN 11, 1986, 7:22 PM

End: WED, JUN 11, 1986, 7:23 PM
Analysis Subtitle: PASS 1 ANALYSIS OF APS/3000 DEMO
Program(s): TESTPROG. JORDAN.SS
Log File: SAMPLOG Version: A.01.07
Measurement Option: RUN & MONITOR A PROGRAM (RM Command)
Logfile obtained from system with mapping microcode
Measurement Type: DIRECT AND INDIRECT CPU TIME
Sampling Interval: 5 MILLISECONDS
Number of Samples: 403

OnICS Samples: 7
Machine: SERIES 64

Memory Size: 4096 Kilo Words
\MPE Version: MPE: G.01.05 BASE: G.01.05 /

Log File SAMPLOG?: If the name of the log file is different than the logfile you want to
analyze, enter a "no". ANALYZER will then prompt for the correct log file name.

Enter Subtitle: Data reduction might require several passes through the log file. The
subtitle should describe the pass level.

Paper 3101 19 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

g ™

CPU time distribution can be obtained at three levels of detail: 1)
program file or process, 2) segment, and 3) procedure or address
level. At each ANALYZER menu, select a profile and/or move to
another level.

CPU Utilization by PIN’s

: Direct and Indirect CPU Utilization by PIN’s
CPU Utilization by Programs
Direct and Indirect CPU Utiliz. by Programs

N: Next - Move to Segment Level
LM >= n: Set Bar Threshold >= n%
LM > n: Set Bar Threshold > n% (LM > 0% is default)
A: Automatic” M: Menu CL: Clear Screen#*#*
E: End QU: Quiet RL: Roll Up
EX: Exit VQ: Very Quiet HC: Hard Copy only
H: Help VB: Verbose##* TD: Terminal Display only
T: Top TH: Terminal & Hard Copy##
ANALYZER-> IF <4;//

Because the measurement involved one program executed by one process, the Direct and
Indirect CPU utilization histogram (command "IF") will be reviewed. The direct and indirect
CPU utilization histogram shows more information than just the direct CPU utilization
(selections "DN" and "DF"). If several users were executing the same program, the PINs could
be broken out to display the amount of total CPU time consumed by each PIN.

Direct and Indirect CPU Utilization by Program(s) (403 Samples)

P |==mnmee [ Pt P e |+
| Dispatch § | 1.7
TESTPROG.JORDA | 98.3

ANALYZER-> N

Review this histogram to get an idea of the Direct CPU Cost and the Indirect CPU Cost. As
you can see, the Indirect CPU Cost is about nine times greater than the Direct CPU Cost
(This is an estimate from the relative number of "D’s" and "I's" in the histogram). This is a
fairly normal distribution.

Now, we will display the Segment Level menu to review what segments were the most
active. We get to the Segment Level menu by entering a "N" for "NEXT" level.

Paper 3101 20 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

~

> will be analyzed.

DA: Direct CPU Utilization by All Segments

DS: Direct CPU Utilization by System Segments

: Direct CPU Utilization by User Segments

Direct & Indirect Utilization by User Segments

: Segment Transition Statistics

Indirect Cost of Individual User Segments

SL Segment Transitions (AM measurement mode only)
Segment Transition by Procedures

Next - Move to Procedure and Address Level

LM >= n: Set Bar Threshold >= n%
LM > n: Set Bar Threshold > n% (LM > 0% is default)

A: Automatic” M: Menu CL: Clear Screen#*#

E: End QU: Quiet RL: Roll Up

EX: Exit VQ: Very Quiet HC: Hard Copy only

H: Help VB: Verbose#*#* TD: Terminal Display only
T: Top TH: Terminal & Hard Copy#*#*

QALYZERﬁ DA

To get an overall picture of the CPU cost attributed to user and system segments, enter the
"DA" command (Direct CPU Utilization by All Segments).

+
I
I
I
|
I
|
|
I

I

ﬁ”ogram Name(s):

Distribution of Direct CPU Utilization Over All Segments
(403 Samples - Including OnICS Samples)

MAINLINESECTOO

.0
FILESYS4 DD | 1.2
ALLOCUTIL | .2
- | 52
| 5.0
| 4.2
| 34.2
CACHESEG 1 | 33.0
HIOMDSC2 D | .7
WORKINGSECTIO1 | 7.4
| .5

I

+

~

ANALYZER-> DU /

Paper 3101 21 DETROIT, Mi



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

The last two histograms to review at the Segment Level are the Direct CPU Utilization by
User Segments and Direct & Indirect Utilization by User Segments. These two histograms
show which user segments were active and what the direct and indirect CPU costs were.

mogram Name(s): ﬁ

Distribution of CPU Utilization Over User Segments (32 Samples)
|- -~h-

WORKINGSECTIO1
MAINLINESECTOO

93. 8§

ANALYZER-> 1U

Program Name(s):

Distribution of Direct and Indirect CPU Utilization by User Segments
( 396 Samples )

|+--~%-

@LYZER» N /

What can we say about TESTPROG so far:

o There are two segments in TESTPROG that consumed CPU time. They are
"WORKINGSECTIO!™ AND "MAINLINESECT00™.

o Most of the time was spent in SL code. There were 32 direct samples and 364 indirect
samples (subtract the number of direct samples from the number of direct + indirect samples,
or 396 - 32 = 364).

o Segment "WORKINGSECTIO!™ consumed more CPU time than segment
"MAINLINESECTO0™.

SUMMARY: The largest improvement to TESTPROG would be to cut down the indirect
CPU cost in the segment "WORKINGSECTIOI™. Because the system segments FILESYS1A
and CACHESEG had a high amount of CPU cost attributed to them, we can assume that
many file system intrinsics were called. This is confirmed when we go to the Procedure and
Address Level histograms.

The remainder of the case study locates and identifies the statement(s) that consumed the

most direct and indirect CPU cost the statements that accrued wait times. Finally, an
example shows how to translate sample counts into seconds.

Paper 3101 22 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

5. Direct CPU Cost

Direct CPU cost represents executing statements in the program. At the Procedure and
Address level of ANALYZER, histograms show what PB-locations consumed CPU cost. The
VERBS map is used to correlate a specific range of PB-locations in the histograms to
statements in TESTPROG.

“\\

At this level of presentation detailed CPU execution profiles of the
code within each segment can be obtained. Enter a profile command to
get segment prompts. Parentheses indicate alternative commands.

Procedure and Address Level Commands:

Direct (& Indirect) CPU Time by Procedures

Direct (& Indir.) by Procedure-Relative Addresses
Direct (& Indirect) by Segment-Relative Addresses
Dir+Indir+Wait by Segment (Procedure) Rel. Addr.

LM >= n: Set Bar Threshold >= n%
LM > n: Set Bar Threshold > n% (LM > 0% is default)

A: Automatic” M: Menu CL: Clear Screen%#

E: End QU: Quiet RL: Roll Up

EX: Exit VQ: Very Quiet HC: Hard Copy only

H: Help VB: Verbose*# TD: Terminal Display only
T: Top TH: Terminal & Hard Copy##*

ANALYZER-> D

Segment prompts are displayed in the order of decreasing CPU
utilization. To each prompt respond with one of the following:

: To Produce Profile With Default Resolution
Profile With Resolution Equal to <num> Words
Skip This Segment

Terminate Prompts

User Segments:

and logically mapped SL segments:

Segment WORKINGSECTIO1’ ( %000) ( 30 Samples = 7.44% Direct ) ?4
Segment MAINLINESECTO00” ( %001) ( 2 Samples = .49% Direct ) 74
Segment COBLIB18 ( %003) ( 6 Samples = 1.48% Direct ) ?E

System Segments: B
System Segment FILESYS1A (

) (138 Samples = 34.24% Direct) ?E

J

Paper 3101 23 DETROIT, Ml



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Program Name(s):
Distribution of Direct CPU Time Over Segment-Relative Addresses

( 30 Segment Samples = 7.44% Direct - Including OnICS samples)
foanne- Jemn T e bt |- nmmeee [ +---
%000040 000043 DD | 3.3

| 3.3
%000064 000067 6.7

%000070 000073

- Segment :MAIN
Distribution of Direct CPU Time Over Segment-Relative Addresses

( 2 Segment Samples = .49% Direct - Including OnICS samples)
_.__|+__-%_
DDDDD| 100.
-_.-I+......%..

Minimum bar threshold is .0%

@ALYZER—)

The above  histograms are for segments "WORKINGSECTIO!™ and
"MAINLINESECTO00™. Those segments are the only user segments that consumed CPU
time in the program TESTPROG.

The two histograms cannot be compared with each other to determine which segment
consumed the most CPU time relative to the other. ANALYZER displays each
histogram in decreasing CPU utilization. This is based on the number of samples
collected for each segment.

In general, you must keep in mind the total number of samples described in each
histogram compared to the total number of samples for the entire measurement.

When a program contains a significant portion of time spent within a small range of
PB-locations, it is called a "hot spot".

To locate a hot spot in the compiler listing the following steps must be performed:

1. Review a histogram and pick an address range that you want to find in the compile
listing.

2. Find in the VERBS map listing the segment name that matches the segment name in
the histogram.

3. Searching down from the start of the correct segment in the VERBS map, find the
PB-locations that match the hot spot in the histogram. These addresses do not always
match up. The example will clarify how to match a histograms PB-locations with the
VERBS map PB-locations.

Paper 3101 24 DETROIT, Ml



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

4. Once the PB-locations have been found, look to the left for the compiler listing line
number.

S. Now, go to the compiler listing and search down the listing until the matching line
number has been found.

Example: Find the hot spot for the segment WORKINGSECTIO!’.

1. The most CPU intensive hot spot occurs between PB-locations %70 and %73 in
segment WORKINGSECTIO!’.

2. Finding the segment WORKINGSECTIO!’ and PB-locations %70 in the VERBS map
listing, we get:

LINE # PB-LOC PROCEDURE NAME/VERB INTERNAL NAME

00048 000065 MOVE
00049 000076 C100-EXIT

The PB-locations %70 through %73 fall between %65 and %76. So, PB-locations %70
through %73 are part of the MOVE statement. The actual number of machine
instructions to accomplish the MOVE is PB-locations %65 through PB-locations %75 or
%11 machine instructions.

3. Search down the compiler listing line numbers for line number 48. The statement is:

00048 005300 MOVE SPACES TO WRITE-LINE.

This makes sense because moving 2000 spaces to the array WRITE-LINE does require a
fair amount of CPU time.

Paper 3101 25 : DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

6. Indirect CPU Cost

Indirect CPU cost represents the execution time of called procedures residing in SLs. The
histograms produced combine the Direct and Indirect CPU utilization together. The same
steps are required to locate indirect hot spots as direct hot spots. This section covers how to
produce indirect histograms and a walk through one example.

\

At this level of presentation detailed CPU execution profiles of the
code within each segment can be obtained. Enter a profile command to
get segment prompts. Parentheses indicate alternative commands.

Procedure and Address Level Commands:

Direct (& Indirect) CPU Time by Procedures

Direct (& Indir.) by Procedure-Relative Addresses
Direct (& Indirect) by Segment-Relative Addresses
Dir+Indir+Wait by Segment (Procedure) Rel. Addr.

LM >= n: Set Bar Threshold >= n%

LM > n: Set Bar Threshold > n% {LM > 0% is default)

A: Automatic” M: Menu CL: Clear Screen#%#%

E: End QU: Quiet RL: Roll Up

EX: Exit VQ: Very Quiet HC: Hard Copy only

H: Help VB: Verbose## TD: Terminal Display only
T: Top TH: Terminal & Hard Copy#*#*

ANALYZER-> |

Segment prompts are displayed in the order of decreasing CPU
utilization. To each prompt respond with one of the following:

: To Produce Profile With Default Resolution
Profile With Resolution Equal to <num> Words
Skip This Segment

: Terminate Prompts

User Segments:
Seg. WORKINGSECTIO1” (%000) [381 Samples=(7.57% D & 88.63% I1)] ?4
Seg. MAINLINESECT00” ( %001) [ 15 Samples=(.50% D & 3.28% I)] ?4

_/

Application Performance Tuning Page 26

Paper 3101 26 DETROIT, Mi



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

@gram Name (s) : TESTPRC

Distribution of Direct & Indlr CPU Time Over Seg Relatlve Addresses
( 381 Samples = 7.57% Direct & 88.63% Indirect )

%000030 000033 1
%000040 000043

%000050 000053 ITITITIITIITITITITIIIIININLI
%000060 000063
%000064 000067
%000070 000073
%000100 000103
%000144 000147

Distribution of‘ Dlrect & Indir. CPU Time OverJSeg Relative Addresses

( 15 Samples = .50% Direct & 3.28% Indirect )

s [-------- |--=-=--- J==mmmm-- [==mmmme- | -==mm==- | +---%-
%000020 000023 | 13.3
%000074 000077 | 40.0

%000100 000103

ANALYZER-> <,//

Finding the hot spot requires the following steps:

1. Determine the address range pair that consumed the most amount of CPU utilization. It
is in segment WORKINGSECTIO1’ at PB-locations %50 through %53.

2. Search down the VERBS map listing to find the segment WORKINGSECIO!”. Find the
PB-location in which PB-locations %50 through %53 fall between. This is line number 46 (a
READ). The READ begins at %36 and ends at %53.

3: Search down the compiler listing for line number 46. The statement is:

READ DATA-FILE AT END MOVE "Y" TO EOF.

It seems reasonable that this is a hot spot because it is performed 100 times each time
through the main loop.

Paper 3101 27 DETROIT, Mi



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

7. Wait Time

Wait time is the accumulated total number of SAMPLER interrupts during which the
program being studied was not active. This non-active period can occur for I/O delays, user
think time, and delays due to system load factors. The histograms produced combine the
Direct, Indirect, and Wait Times together. This section shows how to calculate Wait Times
in terms of seconds.

~

At this level of presentation detailed CPU execution profiles of the
code within each segment can be obtained. Enter a profile command to
get segment prompts. Parentheses indicate alternative commands.

P'rocedure and Address Level Commands:

Direct (& Indirect) CPU Time by Procedures

Direct (& Indir.) by Procedure-Relative Addresses
Direct (& Indirect) by Segment-Relative Addresses
Dir+Indir+Wait by Segment (Procedure) Rel. Addr.

LM >= n: Set Bar Threshold >= n%
LM > n: Set Bar Threshold > n% (LM > 0% is default)

A: Automatic” M: Menu CL: Clear Screen##

E: End QU: Quiet RL: Roll Up

EX: Exit VQ: Very Quiet HC: Hard Copy only

H: Help VB: Verbose%# TD: Terminal Display only
T: Top TH: Terminal & Hard Copy##

ANALYZER-> W

Segment prompts are displayed in the order of decreasing
Direct+Indirect+Wait times. To each prompt respond with one of the
following:

To Produce Profile With Default Resolution
Profile With Resolution Equal to <num> Words
Skip This Segment

Terminate Prompts

Note that D stands for Direct, I for Indirect and W for Wait
percentages.

User Segments:
Seg MAINLINESECTO00’ (%001)[3158 Intrpts=(.04% D,.27% I & 65.68% W)] ?4

Seg WORKINGSECTIO1” (%000) [1634 Intrpts=(.62% D,7.33% I,26.18% W)] 24

J

Paper 3101 28 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

m)g ram Name:TE \

Direct, Indirect and Walt: Times Over Segment-Relative Addresses
(3158 Seg. Intrpts=.04% Dir,.27% Indir & 65.68% Wait of Turnaround)

R bt f-====--- [--==-==- f---==--- [-=-==--- [=====--- | +--~%-
%000020 000023 | A
%000074 000077 | .4
%000100 000103 WWWWWWWWWWWWWWWIWWWWIWWWWWIWWHWWWWWWWWWWWIWWWWWWIW ]| 99.6
Rttt |===m==-- [-------- [==mmmee- f---==- R [+---%-
Minimum bar threshold is .0%

Program Name - Segment:
Direct, Indirec imes Over Segment-Relative resses
(1634 Seg. Intrpts=. 62% Dir,7.33% Indir & 26.18% Wait of Turnaround)
il |-------- [-==------ f-=--=--- [-===----- |---=---- [+---%-
%000030 WWWIWWIWWWIWWWWIWWWWIWWW W W W W W W W W W W W W W W W WWWW |
%000040 000043 |
%000050 000053 | 1 '
%000060 000063
%000064 000067
%000070 000073
%000100 000103
%000144 000147

~
[©)]

e}
i 2 BN e « B (o}

N -

Minimum bar threshold is . 0%

@\LYZERﬁ j

The following summarizes the wait time that occured in segment MAINLINESECTOO at
PB-location %100 through %103:

o The source code statement is "ACCEPT Y~-N.". This is a terminal read.

o From the hardcopy listing of the histogram, 3144 samples were taken at PB-locations
%100 through %103. To calculate the wait time that occurred for the ACCEPT statement
use the formula:

total wait time in sec = number of samples * (sampling interval rate / 1000)

In this specific case, 3144 * (5/1000) = 15.72 seconds

This calculation can be used to calculate the number of seconds spent at any range of

PB-locations in any histogram. A hard copy listing is required to get the actual number of
samples collected for a PB-location range.

Paper 3101 29 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86
DISC PERFORMANCE - WHAT IS IT?

RICK ALDINGER
HEWLETT-PACKARD COMPANY
11413 CHINDEN BLVD.
BOISE, IDAHO 83709

A typical HP 3000 environment measures disc performance and
system throughput in transactions per hour or disc I/O's per
second. Many MIS directors are interested in ways to get more
out of their disc drives and CPU's. The purpose of this paper
is to provide the audience with an overview of the factors
involved in disc performance and some features available to
you for maximizing performance.

The paper is divided into two separate segments. The first is
a general discussion of the basics of disc performance as they
relate solely to the disc drive. It explains the components
of a disc transaction and the performance implications of
each.

Segment Two discusses ways in which performance can be
improved. This includes a discussion of cache and an
explanation of RPS. It addresses ways your hardware
configuration can affect performance as well as the role file
management plays.

Any discussion of disc drives should begin with an
understanding of the disc and its operation. In discussing
disc performance it 1is necessary to first understand how a
disc drive operates. Specifically, how transactions occur.

Disc Transaction

A disc transaction is comprised of four components: disc
controller overhead, physical seek, physical latency, and
lastly, the actual transfer of information. Transfer time is
the smallest component of the transaction, with controller
overhead being next. The mechanical seek and latency comprise
the largest part of the transaction time.

Paper 3102 1 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

The following chart compares the transaction components of
Hewlett Packard disc drives:

controller seek latency transfer
7912 4.0 27.1 8.3 1.2 ns
7914 4.0 28.1 8.3 1.2 ns
7933 4.5 24.0 11.1 1.0 nms
7945 10.1 30.0 8.3 2.0 ms

Disc Controller

The disc controller provides the intelligence of a transaction
electronically. It begins processing the transaction by:

o Decoding the disc command sent by the host computer,
o executing that command,

o and finally, reporting the execution status back
to the host.

The intelligence of the controller comes at the price of
overhead in the disc transaction. However, experience has
allowed us to make our controllers efficient in doing the
greatest amount of work in the smallest amount of time.

Seek Time

Once the controller has decoded the command, the disc must
perform some mechancial functions to prepare for its
execution. The drive must first find the desired disc
location by moving its heads to the correct media track. The
mechancial movement of the head to the desired track is
defined as the seek.

The time to find the desired track varies depending upon its
location on the media and the current position of the head. A
more accurate estimate of seek time is the AVERAGE SEEK, or
the time to do all possible seeks divided by the total number
of seeks possible.

Latency or Rotational Delay
Now that the drive has found the correct track it must now
find the desired sector on that track. The media continues to

rotate beneath the head as the track is searched. The time
required for one rotation of the disc is defined as the

Paper 3102 2 DETROIT, Ml



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

LATENCY time. While the media is rotating, the track is
searched for the target sector. The rotation, like the seek,
is mechanical.

This definition of 1latency is certainly a "worst case" time
since the head may be considerably closer to the desired
sector than one full rotation. A more accurate measure of
rotational delay is the AVERAGE LATENCY. It is defined as the
time to complete one half of a rotation.

Transfer

Once the head is positioned over the correct sector, it is
time to transfer the data. TRANSFER is defined as the actual
movement of data from the CPU to the disc (or vice versa).

HP defines AVERAGE TRANSFER as the average rate that data
comes off the disc when reading an entire sector. Multiples
of full sectors are always transfered in order to optimize
performance. Partial sector transfers would require more
bookkeeping and overhead.

Transaction Time

Each of the components of a disc transaction contribute to the
total time involved in completing that transaction. The
summation of the average time it takes +to complete each
component is a good measure of the total average time to
perform a disc transaction.

The total AVERAGE TRANSACTION TIME for a particular disc
product is defined as the sum of the average controller
overhead for the product, plus the product's average seek time
and rotational delay, plus the average time to transfer one
kbyte of data to the product. The total average transaction
time 1is specific to the product in question and, as we have
defined it, does not take into account individual host system
attributes.

The following figures are the various transaction times for
Hewlett Packard disc drives:

HP 7912 40.6ms
HP 7914 41.6ms
HP 7933 39.6ms
HP 7945 50.4ms

Paper 3102 3 DETROIT, Ml



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Performance Metric

Hewlett-Packard uses the metric of I/0O PER SECOND to measure
disc performance. I/O per second is defined as the maximum
number of disc transactions per second that a specific drive
can perform at a transfer size of 1 kbyte. This measure is
calculated by taking the inverse of the total average
transaction time Jjust described. It measures raw disc
performance and does not take into account any system
specifics. Actual performance will vary with system and
application. I/0 per second is a Hewlett Packard measurement
and not an industry standard.

Let's go ahead and convert the transaction time of an HP 7912
into the measure of I/Os per second. We already learned that
it takes the 7912 40.6 ms to transfer 1 kbyte of data. If we
inverse our measure we can learn how many 1 Kbyte data chunks
can be transfered per unit of time. By converting
milliseconds to seconds we have a measure of the number of
kilobytes, or I/Os we can transfer in one second.

EXAMPLE: 1kbyte/40.6ms*1000 = 1kbyte/.0406 = 24.5 I/O per sec

The following figures are the I/O per second measurement for
some other Hewlett Packard disc products. Again, this measure
is for relative disc performance only and does not take into
account system overhead. Actual performance will vary with
system and application.

7914 24.0 I/O per second
7933 25.3 I/O0 per second
7945 20.0 TI/O per second

Well that wasn't so bad, was it? Now that we are aware of the
drive's performance, let's focus on the options you have to
improve disc drive efficiency. Please keep in mind the items
in the following paragraphs are very system and application
dependent. These are guidelines for you to use to help in
performance tuning your systemn.

Disc Controller Cache

Disc controller cache is a method for improving performance.
It is a RAM based storage area resident in the disc controller
that provides high speed access to data. Frequently used data
(directories, for example) are stored in the cache area,
rather than on the disc media. For every cache access, a seek
and latency are eliminated. The greater the "hit ratio" to

Paper 3102 4 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86
the cache, the greater the performance improvement!

Cache is currently implemented only on the HP 7933 and HP 7935
disc drives. We do plan to implement it on future high end
disc products. It 1is supported on both the HP 3000 and HP
1000. Support for the HP 9000 is under investigation.

If we refer to our original transaction, we see that actual
disc performance can be improved by decreasing the time it
takes to perform even one component of the transaction.
Little benefit is seen from improving transfer rates since
they are only a very small component of the overall
transaction. Controller efficiency has been fine tuned to a
degree that shaves away most excess overhead. What about
seek and latency, the largest components of the transaction?
Better than reducing seek and latency times, controller cache
can often times eliminate the need to perform either
operation! MPE CACHE, resident in the CPU, eliminates disc
controller overhead when the desired information can be
accessed from the cache. The only component is the transfer
of data out of CPU memory.

When 1is Disc controller cache better than MPE disc cache? A
lightly 1loaded, non-cached system (less than 75% CPU
utilization) will benefit from either MPE disc cache or
controller cache. This type of environment is 1likely to be
more I/O bound than CPU bound. Both caching schemes greatly
reduce the I/O bottleneck. MPE disc cache will have a slight
advantage over controller cache because there is no controller
overhead involved when reading directly from main memory.

As the CPU load increases to a moderate 1level (75% to 90%
utilization), the throughput of a system with MPE disc cache
is impacted. The management of MPE disc cache must now
compete for fewer available CPU cycles. MPE disc cache will
continue to be faster than a non-cached system at this stage,
but the potential for controller cache to become more
effective greatly increases. Controller cache begins to
provide the capability of leveling out CPU peaks.

When a system reaches the stage where CPU load is heavy (90%
and above), the impact of MPE disc cache on system throughput
can become negative. In extreme situations, the system may
actually perform more efficiently with MPE disc cache turned
off. In this environment controller cache provides a
noticeable benefit, especially when MPE disc cache 1logical
read/write ratios and read hit percentages are high. This
indicates that a good deal of I/O is being eliminated and that
CPU cycles and memory used for managing cache can be freed for
other activities.

Paper 3102 5 DETROIT, Ml



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Controller cache will continue to significantly outperform a
non-cached system until the CPU load is increased to the point
where the system is so CPU bound that I/O is no longer a
factor.

Rotation Position Sensing

Use of Rotation Postition Sensing(RPS) is another means by
which performance may be improved. RPS is a disc feature
designed to minimize non-productive use of the channel while
waiting for the disc to locate the area at which a transfer
will begin. There is a window of time after the drive
receives a command and before it finds its target sector that
is generally wasted. RPS allows the channel to accept another
command during that window, thus utilizing the channel better.

As might be expected, RPS provides little benefit to single
drive configurations, since the channel is not the bottleneck
here. But, in multiple drive, multiple process
configurations, RPS can help to relieve channel contention.
RPS 1is supported on HP 791X and HP 793X disc drives and only
on the HP 3000 systems.

For instance, when a request 1is generated(like a read or
write) that requires a disec T/0, the CPU sends a command
across the channel to the disc drive. There is a window of
time, after the drive receives the command and before it finds
the target address on the media, that the channel is not
released and cannot be used for another request. No other

drives on the channel can be accessed during this window.

RPS allows the channel to be wused during this window for
access to the other drives on the same channel. As soon as a
drive receives the command, it disconnects from the channel.
During this time, other channel activity can occur. When the
target address in our original transaction is found, the drive
reconnects to the channel. If the channel is busy at the time,
the data is buffered until the channel is free.

System Configuration

The prysical location and configuration of the disc drives has
a big impact on performance. Questions like, "Where do I put
my system disc?", "Do each of the discs need separate
interfaces?", and "When should I use multiple drives over a
single, larger one?" can all be answered to optimize
performance.

Paper 3102 6 DETROIT, Mi



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Please keep in mind, the optimal solution depends on the CPU
in use, the number of users on the system, the application,
etc. The following guidelines are conceptual and may not
apply to all systems.

The 1location of your system disc has a big impact on
performance. The optimum configuration places your system
disc on a dedicated interface. With your system disc here it
won't have to compete with other drives for channel activity.
Since the system accesses this disc most often, a performance
improvement can be realized.

As implied, channel contention can have a very negative impact
on performance. Systems with many users and multiple
processes accessing multiple drives can generally get relief
by putting their drives on separate, dedicated interfaces.
For systems with many drives this may not be economically
feasible or it may excede the maximum number of interfaces the
system will permit. 1In these cases RPS or cache may be viable
alternatives.

With the multitude of disc drive capacities to select from, it
often becomes unclear which combination of drives optimizes
performance. Of specific interest 1is the question of two
smaller drives versus one larger one. The answer is very
application dependent. For a system that can keep both drives
busy, two drives on separate interfaces is generally the best
answer. The system can then access both concurrently,
increasing overall performance. On the other hand, a single
faster drive is the better solution for a very localized
'system with little multiple processing occuring.

For instance, 1let's say you have a Series 68 currently
configured with one IMB (inter modual bus) and two high speed
GICs (general interface channels). On one GIC you have four
HP 7933s, and on the other you have an HP 7978B. You would
like to add an HP 7933 and an HP 2680 printer. What can you
do to help increase performance?

A heavily used HP 7978 tape drive and a HP 2680 printer should
have dedicated GICs. In order to do this another IMB must be
added. The new IMB can then accomodate two new GICS, one each
for the tape drive and printer. The HP 7933 disc drives can
then be spread over the two remaining GICs on the first IMB.
You could put two HP 7933 disc drives on one GIC and three
HP 7933 disc drives on the remaining one.

If the tape drive is not heavily used it could share a GIC

with the printer. This would free up a GIC and allow you to
spread the discs out even more. This configuration would

Paper 3102 7 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

allow your system disc to reside on a dedicated interface, and
two drives on each of the remaining two GICS.

File Management

Where you physically locate your files on the discs also
impacts performance. A good general rule is to spread your
system files, virtual memory and other user files (including
databases and spooling operations) evenly among your discs.
Keeping your system files and your virtual memory on separate
discs is most beneficial. By spreading your files around, the
system will experience 1less contention in accessing the
desired areas.

The biggest gain will be seen by spreading data sets and other
MPE files among the various disc drives. It is also helpful
in performing a reload every quarter. This helps eliminate
much fragmentation that usually occurs on a heavily 1loaded
system. When you perform the reload it is best to do an
accounts reload and then restore the most heavily used files
at the front of the disc. The least used files should be
loaded last. This provides some benefit because the heavily
used files are closer to the system directory. This helps
reduce some of the disc's mechanical functions.

Overall, there are several options the performance conscious
user has beyond raw disc performance. They include:

o DISC CONTROLLER CACHE as a means of reducing mechanical
seeks and latencies,

o ROTATION POSITION SENSING to relieve channel contention,

O SYSTEM CONFIGURATION for the most efficient use of
resources, and

o FILE MANAGEMENT to optimize throughput.

Keep in mind it may take one or all of the many items
discussed to improve your performance. Each option can affect
a system differently because of the applications being run and
the amount of users on the system.

Do not become disenchanted if one of the options does not
work. Take time to experiment with your system and the items
we discussed and ask your SE and CE for help. They are an
excellent resource. HP OPT/3000, HP SNAPSHOT and HP TREND are
good tools in helping determine file placement, usage etc.
When you take a look at your system the results may . be

Paper 3102 8 DETROIT, Ml



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

different each time. What might have worked one time may not
produce the same high benefit the next time. However,
remember that you are trying to 1level out the '"peaks" and
"valleys" on your system, providing your user with a much more
balanced systenmn.

Last but not least, use good COMMON SENSE.

Paper 3102 9 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86
IDENTIFYING OPPORTUNITIES FOR PERFORMANCE IMPROVEMENT
George B. Scott
EIDEC CORPORATION
16700 13th Avenue West
Lynnwood, WA 98046-0100

I. INTRODUCTION

So, the users glare at you when you walk down the hall, your phone
rings with people asking if the computer is down because they've
been waiting for 3 minutes for a response and your boss is telling
you to fix "it". The only problem is you aren't quite sure what the
"it" is. Hopefully, this paper will give you the courage to jump
into the black morass of system performance problems and lead you to
a situation where people greet you with smiles when you walk down
the hall.

Following is a outline for the remainder of the paper.

Section Title

II What Is Performance Optimization

III Identifying the Generic Problem

v Isolating the Specific Problem & Suggested Solutions
A% Synergism

Vi Performance Monitoring

VII Recommendations

VIII Sunmmary

A Appendix -- Selected Tools & Reports

B Appendix -- A Brief Discussion on DB Elongation

Paper 3103 1 DETROIT, Ml



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

II. WHAT IS PERFORMANCE OPTIMIZATION

Performance is not optimum whenever a process is (1) waiting on a
resource or (2) using more of a resource than necessary. Thus,
performance can be improved by either reducing contention for the
resource or eliminating altogether the quantity of the resource
being used.

The most common resources insufficient to satisfy demand are CPU
availability and disc I-O capacity. To a lesser extent, the
availability of memory, SIR's, RIN's or inter-CPU communication
capacity/speed can be the culprit. Queuing problems usually do
little to affect overall throughput; however, they may cause extreme
variances in response time. To further muddy the waters, resources
are commonly affected from four different origins: application code
developed by programmers (or purchased from vendors), the operating
system supplied by Hewlett-Packard (HP), operators who manage the
system configuration and environment and, users who have an infinite
variety of ways to misuse the tools available to them. Optimizing
performance requires that one achieve the best overall balance among
all these factors.

Having wused the HP3000 since the days of the CX (1974), I have come
to appreciate a certain similarity between system management and
gardening. First, beyond a certain point, extra attention will do
little to increase your yield. Second, if a well managed garden is
left wunattended, the weeds will soon take over. Hopefully, this
paper will present some ideas for improving your system's
performance so that you will have enough time to go home and weed
your garden. To help us take care of our garden, we need some tools
and the knowledge of when to use what tool. Figure 1 shows some of
the commonly used tools. This list in not exhaustive and many fine
alternatives are available today from a wide variety of vendors.
Remember that becoming familiar with a tool and your system is more
important than the particular tool you choose.

Paper 3103 2 DETROIT, Mi



SOUTHEASTERN MICHIGAN USERS GROUP

INTEREX 86

Class Name Performance Problem Source Cost

Program OPT CPU, I-O, Memory, System HP $6.4K
Tables, RIN's, SIR's, etc.

Program SAMPLER CPU HP $2K

Program FREE Disc Fragmentation HP Free

Program DBLOADNG Data Base Elongation HP/CSL Free

Program PROFILER  Data Base I-O, CPU, Locks, HP $3.5K
Buffers

Program TUNER System Tables HP/CSL Free

Program  SURVEYOR CrU, I-O HP Free

Program  LOGUTIL System Iogfiles CSL Free

Program SYSIG System Logfiles (CPU, I-O) Swaptape Free

Utility System I-0, CPU HP Free

Logging

Command SHOWCACHE I-O HP Free

Command  SHOWQ Dispatch Q, Queue Overlap HP Free

Intrinsic TIMER Useful in user logging for HP Free
elapsed time traps.

Intrinsic PROCTIME Useful in user logging for HP Free
CPU time traps.

Intrinsic JOBINFO Useful in user logging for HP Free
job information.

Intrinsic PROCTIME Useful in user logging for HP Free
process information.

Figure 1 -- Performance Tools
Paper 3103 3 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

III. IDENTIFYING THE GENERIC PROBLEM

A computer is typically doing on of the following five things:
1. Actively Using the CPU «-=----- CPU BUSY

2. Waitingon I-0 = = = ————ee PAUSED FOR DISC

3. Swapping Memory ==———= PAUSED FOR SWAP

4. Waiting on a Lock --—=--=- SIR's, RIN's, IOCK's
5. Overhead Management = --———- OVERHEAD

Of these, the wuser can directly influence and control the first
four. To determine what your system is doing, run a program such as
OPT, SURVEYOR, or RADAR. If you have any significant quantity (>5%)
of PAUSE FOR DISC, then you can probably improve your performance by
eliminating I-O.

If you observe any significant quantity of PAUSE FOR SWAP, then you
have memory pressure and need to reduce memory use. Using OPT or a
similar tool, memory pressure is also indicated by the "CLOCK CYCLE
RATE" in the memory management display of the CPU-memory manager
context (#C,M for OPT users).

Using OPT or a similar tool, you can observe whether processes are
consistently waiting on SIR's or RIN's.

If you aren't experiencing memory pressure, waiting on a SIR or RIN,
or waiting on I-O, then if you want to improve performance, you must
reduce CPU use.

Typically causes of each of the above classes of problems are
detailed in Figure 2 and are discussed in detail in Section IV.

Paper 3103 4 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Problem Cause(s)

Excessive I-O Blocking Factor
Data Base (DB) Elongation
DB Master Too Full (Synonym Chains)
DB Long Sorted Chains
DB Serial vs. Keyed Access
Disc Fragmentation (including Virtual)
Sorts -- External rather than Internal
Cachecontrol -- Random/Sequential

Excessive CPU Excessive I-O (file reads and writes,
DB gets, puts and deletes)
Opens/Closes (Files, DB's, Terminals)
Launches (Runs, Creating Processes)

Memory Pressure Excessive Stack Space
Unnecessary Open Files/DB's

Lock Contention FIOCK, DBLOCK, LOCKLOCRIN, ILOCKGLORIN
Queuing Quantum

Overlap

Range

DS/3000

FIGURE 2 -- PERFORMANCE PROBLEMS / CAUSES

Paper 3103 5 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86
IV. ISOLATING THE SPECIFIC PROBLEM AND SUGGESTED SOLUTIONS

This section contains a brief explanation of common problems and
some ways to identify the specific cause of the problem. The fix or
solution, which is wusually simple, is recommended for common
problens.

I-0 Problems -- Blocking Factor

Solutions to I-O problems can be made by reducing I-O. To find who
is causing the I-O, turn on system logging and analyze the log files
using one of the many tools available. Figure 3 shows a few lines
from the contributed tool SYSIG. By sorting this file by blocks,
one can readily see which files are receiving the greatest amount of
I-0. If the block factor is not large, (some experts suggest 4K
block size), then increase the blocking factor. This has a
secondary effect which will be discussed in the section on reducing
CPU.

For example, in the case shown in Figure 4, the following files are
candidates for reblocking: PA520D,PA521D,PA510D,WO700D, PA530D and
PDEMPX. The files SORTSCR and SL cannot be reblocked because MPE
requires them to have a blocking factor of 1.

ACCOUNT GROUP FNAME CIASS IDEV #RECS #BLKS #OPENS
EIDEC .DATATR .SORTSCR DISC 46 302143 302143 21
ELDEC .DATATR .PA520D DISC 25 17876 17876 12
EIDEC .DATACEN .SORTSCR DISC 20 15369 15369 8
EIDEC  .DATAMCD .SORTSCR DISC 2 7629 7629 32
EIDEC .PUB .SL DISC 14 5826 5826 54
SYs .DATADP .DP002C DISC 38 65633 4285 109
EIDEC .DATATR .PMO30D DISC 36 70210 4134 5
EIDEC .DATAIR .PAl0l1D DISC 66 69618 4098 3
EIDEC .DATATR .PA10OD DISC 01 66327 3903 3
EIDEC .DATAIR .PA521D DISC 36 7744 3872 2
EIDEC .DATAIR .PA510D DISC 25 3250 3250 2
EIDEC .DPP .SL DISC 55 2816 2816 54
ELDEC  .DATAMCD .WO700D DISC 96 2384 2384 3
ELDEC .DATAIR .PA530D DISC 25 1625 1625 1
ELDEC .DATATR .PDEMPX DISC 66 2730 1366 1l
EIDEC .DATAIR .PMPAl2 DISC 66 23206 1366 2
EIDEC .DPP .z DISC 59 20257 1269 16
EIDEC .DATADP .DP0O25IM DISC 0 32008 1120 4

FIGURE 3 -- FCIOSE Statistics from System Iogfile Analysis
(One summary record for each unique filename)

Paper 3103 6 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Another report which can be generated from analysis of the system
logfiles is shown in Figure 4. Each FCLOSE is shown along with the
job/session which produced the I-0. Thus one can readily discern
who is responsible for the I-O and fix the appropriate job or
rebuild the file or educate the user.

In the previous case where the file PA520D was of interest, the
report from SYSLG which shows individual file closes shows that the
only access to the file was by PAS01lJ, PA502J and PA595IRJ. Thus in
this case, the file could be reblocked and the job streams checked
to determine what programs may have accessed the file.

J/S# JOBNAME LDEV CLASS #BLKS  #RECS

ACCOUNT  GROUP FNAME YYMMDD

J0933 PAS01J 3 DISC 1625 1625
J0933 PAS01d

ELDEC ~ .DATAIR .PA520D 860609 22:10

ELDEC  .DATAIR .PA520D 860609 22:10 3
ELDEC  .DATAIR .PAS20D 860609 22:12 J0933 PA501J 3
ELDEC  .DATAIR .PA520D 860609 22:12 J0933 PAS01J 2
ELDEC  .DATAIR .PAS20D 860609 22:14 J0933 PAS01J 2
ELDEC  .DATAIR .PA520D 860609 22:18 J0933 PAS01J 2
ELDEC  .DATAIR .PAS20D 860609 22:19 J0934 PA502J 2 DISC
ELDEC  .DATAIR .PA520D 860609 22:22 J0934 PAS02J 2
ELDEC  .DATAIR .PA520D 860609 22:40 J0934 PAS024 2
ELDEC  .DATAIR .PA520D 860609 22:41 J0934 PAS02J 2
ELDEC  .DATAIR .PA520D 860609 22:56 J0935 PAS03J 2
ELDEC  .DATAIR .PA520D 860609 23:02 J0936 PAS95IRJ 2

FIGURE 4 -- FCLOSE Statistics from System Logfile Analysis
(One record for each unique FCLOSE)

Paper 3103 7 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

I-O Problems -- DB Elongation

Data base elongation occurs when the next record for a chain is
expected to be in the current block, but is in a different block.
This requires IMAGE to have to do another FREADDIR and transfer the
block to the data base control block. The only fix is to repack the
dataset sorted by key value. This can be accomplished by unloading
the set, sorting the data by the key value and reloading the set. A
variety of tools are available to assist in this effort. For small
data bases, (less than 100,000 records), the entire database can
usually be unloaded, sorted and reloaded within a few hours. For
large data bases or sets, consider using one of the commercially
available packages, or Jjust unloading, sorting and reloading a
single set. It is not uncommon to experience a 25% to 40% decrease
in wall and CPU time for accessing a data base after a repacking.
Data base elongation is reported using DBLOADNG.PRV.TELESUP. A
sample report from DBLOADNG is shown in Appendix A. Appendix B
contains a more detailed description of DB Elongation for those
newcomers to the subject.

I-O Problems -- DB Master Too Full (Synonym Chains)

Typically, if master sets become too full, the number of secondary
entries increase and the number of contiguous full blocks increase.
Either of these events, which can be determined using DBLOADNG,
cange IMAGE to do many more FREADDIR's to find the entrv for which
it is searching or for an available slot to put an entry. This
problem can be easily cured by expanding the capacity of the master
set. In some cases, a different key value structure may be required
to prevent clustering in the master set. Figure 5 shows the effect
of master loading on the time for a DBPUT. Note that for small
masters, the impact is trivial (so is the extra space!). However for
larger masters, the effect is dramatic as the set exceeds 95% full.
For master sets with capacities in the 100,000 entries or greater
range, the effect of a too full master is disastrous to performance.

Paper 3103 8 DETROIT, M



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

DBPUT TIME vs. ¥ FILL OF MASTER SET

. FILL--BOX FILL--70% FILL--80X FILL--80% FILL--88%
g — - — ——me— mememem=  seceseses
=z
8 200 T T v T
w
o
=1
-l
=]
= o} -
w
x
Il .
[
. 100 B
=
Q.
m
a
] of .
o aton W Ao U.I‘.-'-'-\-' .‘-:L-'_‘ '-'-'-;.:-'_‘ ;_-.:.‘-_'-..-—-—_— _-:-.—_ _____ : " —————
. 1&*01 . meﬁ .40E+08 . 1&&404 . 40E+08 .ﬁﬁ)ﬁ

MASTER CAPACITY

FIGURE 5 -- DBPUT Time vs. % Ioading for DB Master Sets

Paper 3103 9 DETROIT, Ml



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

I-0 Problems -- ILong Sorted Chains

Excessive I-O can be caused if you have sorted chains and a
particular key value has many entries. When a DBPUT is done to a
sorted chain, IMAGE starts reading records at the end of the chain
and reads backward until a key value is found less than the value of
the record being added or until it comes to the beginning of the
chain. In the case of very long chains, the DBPUT may require
several thousand disc reads prior to finding the record to which to
link the new entry. This can take several seconds, or even several
minutes! There is no cure for this problem; however, it is
recommended that you seriously consider not using key values which
might propagate long sorted chains. See Figure 6 for the effect of
sorted chain length on DBPUT time.

DBPUT TIME vs. CHAIN LENGTH

CPU IN SECONDS ELAPSED SECONDS

———— ———-

(=]

Te] T T T

(=]
8 < | s
z
g ]
23l A
a s
w o e
&N A
- JRe

e
o
- b
1 10 100 1000 10000
CHAIN LENGTH

FIGURE 6 -- DBPUT Time vs. Sorted Chain Iength

Paper 3103 10 DETROIT, Mi



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

I-0 Problems -- Serial Read vs. Key Access vs. Chain Iength

Users using a utility such as QUIZ or QUERY may access data using
serial reads rather than keyed reads. Rather than making a lot of
snide comments about users, just identify who they are (analyze the
system logfiles for I-O0) and show them how they can get their
reports faster. They'll love you for it.

Another trap which is easy to fall into is to not consider the
frequency which short chains may be searched for a specific entry.
For example, consider a parts list which has a chain on the parent
part. Such a chain may be read many times looking for a specific
component. If the average chain length is 20, then a average of 10
reads are required to find a specific parent-component relationship.
The fix is to add a path on a concatenated field of parent-component
such that the desired entry can be found in one detail read. The
overhead of maintaining the extra chain is minimal compared to the
cost of repeated searching of short chains, especially in situations
where the DBGET to DBPUT/DBDELETE ratio is large.

As an example, last year at our site, a situation was discovered in
a DB data set in which a number of our on-line transactions were
reading an order number chain looking for a specific part number. A
new field was added which was a concatenated order number, part
number. A path was added to this field. As a result, the I-O for
the affected transactions was reduced to 68% of the original, the
CPU to 60% of the original and the elapsed transaction time to 57%
of the original. Another phenomenon was also observed and will be
discussed in the section on SYNERGISM.

I-0 Problems -- Disc Fragmentation

Disc fragmentation causes excessive I-O by the operating system
(MPE). Having to search for a space large enough to build the file
or next extent causes extra overhead. It also increases the
probability that the various extents of a file will be widely spread
across the disc(s), thereby increasing the probability of disc head
movement. If I-O0 is not a bottleneck, then this is probably not a
serious problem, except when you can't build the file at all because
no contiguous space on disc is big enough.

The same phenomenon occurs in virtual memory, except there is no way
to cure it. Virtual fragmentation problems can be lessened by not
running over a 70% use of virtual.

Disc fragmentation is shown using FREEn.PUB.SYS. The fragmentation
problem can be fixed with disc condenses or system reloads. Virtual
use is shown by such tools as OPT or TUNER. Figure 8 shows a sample
report from FREE5.PUB.SYS. In our system, fragments less than 1000
in size are wusually wasted space since our spooler is set with a
1280 minimm extent size. Thus at the time this report was run, 25%
of the available space was wasted and only 295,108 sectors were
actually really available for normal system use.

Paper 3103 11 DETROIT, Ml



SOUTHEASTERN MICHIGAN USERS GROUP

INTEREX 86

FREE5 G.02.A0 (C) HEWLETT-PACKARD CO., 1983

VOLUME MH7933D0

IDEV 1

LARGEST FREE AREA= 77121

SIZE COUNT SPACE

>100000 O 0
>10000 2 108858
>1000 7 17850
>100 36 12336
>10 133 4012
>1 1314 3755

AVERAGE
0

54429
2550
342

30

2

TOTAL FREE SPACE=146811
dedededededededededededodededededededdodede ko dek gk dek ko ek

VOLUME MH7933D1

IDEV 2

LARGEST FREE AREA= 3394

SIZE COUNT SPACE

>100000 O 0
>10000 © 0
>1000 2 5803
>100 67 25361
>10 120 2892
>1 1254 3785

TOTAL FREE SPACE=37841

AVERAGE
0

0

2901
378

24

3

e de e e de e de e Jo e e e e o de de e de e e e e e e de e ke e de Ko e e Ko de ke

VOLUME MH7933D2

IDEV 3

LARGEST FREE AREA= 67634

SIZE COUNT SPACE

>100000 O 0
>10000 4 118603
>1000 26 43994
>100 82 31005
>10 441 12257
>1 1015 3175

AVERAGE
o]

29650
1692
378

27

3

TOTAL FREE SPACE=209034
dekkhhhkkhhkkhhhhhhkhhhkhhhkkhhhkhhikk

SYSTEM TOTAL FREE SPACE=393686

FIGURE 7 -- Disc Fragmentation as Reported by FREES5

12

DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

I-O0 Problems -- Sorts: External vs. Internal

Still hanging over from the early days of computing are programmers
and programs which sort file A to B, then read B and write a report.
This technique wastes all the I-O required to write the file B and
then read the file B. Do internal sorts using SORTINPUT and
SORTOUTPUT, not SORT "A" GIVING "B".

I-O Problems =- CACHECONTROL, Random & Sequential

In some systems (at least in our system), the number of users varies
dramatically between daytime hours (7AM-7PM) and the nighttime. 1In
the daytime with lots of users, memory is used by the many process
stacks, user data segment and file control blocks. During the
evening or weekend, only a few processes are typically running at
any one time. Consider increasing the cache block size during the
night/weekend time to take advantage of the increase in memory
availability.

Paper 3103 13 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

EXCESSIVE CPU

Books could be written on this subject. It seems as though the more
you learn about the consumption of CPU by the system, the more
questions that arise; however, the following points should provide
some insight into what is a usually a black box in the HP3000 world.

Excessive CPU -- Excessive I-O

For those of you who thought we were through talking about I-O, let
me merely say "Not yet". In many systems running typical business
or manufacturing applications, the biggest single user of CPU is the
I-O system.

One tool which dramatically demonstrates where CPU is used by the
system is SAMPLER (APS/3000) marketed by HP. Figure 8 shows a large
on-line accounting and manufacturing system and how the CPU is
consumed among all system segments. Note that only 4% of the total
time consumed is within the application code itself. The other 96%
is within the system SL and is mostly related to the I-O system.

Percent Function

26.0 Morgue'Abort, KernalC,KernalD,Miscseqg, etc.
12.5 FILESYS segments

25.5 CACHESEG, HARDRES, Terminal monitors, etc
10.0 IMAGE

10.0 Communication and DS segments

6.5 V/3000 segments

96.5 *SUBTOTAL

3.5 User Segments

FIGURE 8 -- Distribution of CPU Utilization, All Segments

Paper 3103 14 DETROIT, Ml



SOUTHEASTERN MICHIGAN USERS GROUP

INTEREX 86

Another report from SAMPLER shows the segment relative addresses for

the distribution of Indirect CPU utilization by a segment.

By

looking at a compile 1listing for the listed addresses, one can
determine what routines are indirectly consuming the CPU. Thus if
you look at how the main driver in our system, which accounts for
53% of all indirect CPU usage, indirectly consumes CPU, you will
find that it is mostly spent within the I-O system as shown in

Figure 9.
Percent Function
37.2 Displays screen, reads it, reads a DB record
15.2 Reads a terminal screen
6.2 Displays messages to user screen
5.5 Gets field number from V/3000
10.8 Logs a transaction
6.4 Opens a DB
2.9 Opens a message catalog
2.3 Opens a file for diagnostic messages
1.7 Opens 2 logfiles
1.1 Opens 3 IPC files
3.4 Opens a V/3000 formfile
1.2 Reads an EDS
0.2 Activates father process
94.1 *SUBTOTAL
6.9 Miscellaneous routines

FIGURE 9 -- Distribution of Indirect CPU over Program Segments

Paper 3103

15

DETROIT, Ml



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Another view of how the CPU spends it's time can be obtained by
looking at the CPU time required for various intrinsics. Shown in
Figures 10, 11 and 12 are CPU times and elapsed times in
milliseconds for commonly executed intrinsics. For those especially
interested, Figure 11 shows commonly executed DB intrinsics with
various combinations of logging and caching. Shown in Figure 12
are a comparison of three different CPU's using the same bench mark
program and data for intrinsic execution time measurements.

From these figures, it can readily be seen that I-O plays a major
role in CPU utilization.

To improve performance, you must determine where the leverage is and
be realistic about how much improvement can be achieved. Using our
example of a system which spends 90% to 95% of its time in the
system SL, if a 20% improvement were made in the logic of a program,
only a 2% improvement in system throughput would be achieved;
however, if a 20% reduction in I-O were achieved, one might realize
an 18% improvement in throughput. In short, put your energy where
the action is.

Paper 3103 16 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP

ELAPSED
70 42XP
106 152
21 17
1 2
18 10
48 62
1 2
21 17
31 28
1 2
20 17
389 587
48 54
489 1151
679 654
90 74
18 58
na na
0 1
38 65
453 594
283 424
1 1

2 7

0 1

0 1

1 3

1 2
X X
1 1l

1 1

0 1

0 1

0 2

1 1

1 0

1 0

70

|

N HFHEDDWHWD &Y

OCOHHHOOKHNKHKHKHONKA

CPU

42XP Intrinsic

INTEREX 86

Comment

3

DO WONIWNDIO

OOHFNMNHHHFEFNMNMMNMNWHKFWHW

FOPEN

FGETINFO

FCLOSE

VOPENTERM

VOPENFORMFILE
VGETNEXTFORM

VSHOWFORM

VREADFIELDS

VERRMSG

VCLOSEFORMF

VCLOSETERM

CREATEPROCESS

ACTIVATE
SENDMATL
MATL

RECEIVEMAIL

FWRITE
FREAD
GETDSEG
DMOVOUT
DMOVIN
GETLOCRIN
LOCKLOCRIN
PUTICW
FINDICW
PROCTIME
TIMER

old,ascii, for update
first record

same blk

different blk
different blk & buffer

file with 20 forms

23 lines, 1400 char
Elapsed depends on User

80 char

to IPC file
from IPC file
1600 WORDS

40 words

40 words

one rin

FIGURE 10 -- Commonly Executed Intrinsics (Milliseconds)

Paper 3103

17

DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP

ELAPSED TIME
LOGGING STATUS
NONE IIR RECV

1475 1905 1627
783 808 833
129 124 114
21 20 20
161 159 176
2 2 2
leé 18 18
33 33 33
1l 1 0
176 175
672 567
221 144
15 16 16
3 3 3
1l 1 1
0 2 1
0 1 2
1l 36 64
0 1 1
90 112 112
668 626

FIGURE

Paper 3103

CPU TIME
IOGGING STATUS

INTEREX 86

NONE IIR RECV Intrinsic Comment
112 164 122 DBOPEN mode 1, first user
88 98 94 " mode 1, second user
21 22 22 DBFIND first on detail
4 3 4 " second on detail
19 22 23 DBGET chain, first read
2 2 2 " chain, same block
2 3 4 " chain, different blk
4 4 4 " directed different blk
1 1 0 DBIOCK DB unconditional
31 35 32 DBUPDATE current record
88 109 92 DBDELETE current record
20 32 21 DBPUT current record, 2 paths
14 13 14 DBEXPIAIN
4 3 3 DBERROR
1 1 1 DBINFO mode 202, set info
1 2 2 DBBEGIN
0 1 2 DEMEMO
1 4 4 DBEND
0 1 1 DBUNLOCK
11 18 18 DBCLOSE not last user of DB
84 104 91 " last user of DB

11 -- Wall & CPU Times (milliseconds) for DB Intrinsics

(Caching is turned off in all cases)

18

DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

* ELAPSED * &% CPU k&%

70  42XP 70 68 42XP Intrinsic Comment
1475 1833 112 205 278 DBOPEN mode 1, first user
783 963 88 131 195 " mode 1, second user
129 159 21 34 50 DBFIND first on detail
21 19 4 x 12 " second on detail
161 175 19 36 46 DBGET chain, first read
6 S 2 3 5 " chain, same block
16 62 2 x 11 " chain, different blk
33 31 4 8 12 " directed different blk
1 3 1 1 2 DBLOCK DB unconditional
175 304 31 43 70 DBUPDATE current record
545 787 88 140 205 DBDELETE current record
144 232 20 32 50 DBRUT current record, 2 paths
15 40 14 12 38 DBEXPIAIN
3 7 4 4 7 DBERROR
1 7 1 2 3 DBINFO mode 202, set info
0 1 1 0 1 DBBEGIN
0 1 0 0 0 DBMEMO
0 2 1 0 1 DBEND
1 6 0 1 2 DBUNLOCK
90 97 11 16 29 DBCLOSE not last user of DB
556 792 84 119 187 " last user of DB

FIGURE 12 -- CPU & Wall Times (milliseconds) for DB Intrinsics

Paper 3103 19 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Memory Pressure -- Excessive Stack Space

Although it is more rare on larger HP systems, many of the smaller
HP systems experience memory pressure. Users can do little to
influence the use of memory. Programmers, however, can have a
dramatic effect. Take for example the case of the programmer who
once had a program abort because of insufficient stack space. Since
that time, the programmer has always prepped programs with a maxdata
of 30000 (even if only 2000 was needed). Multiply 30000 by 33
different programs and you quickly get to one megabyte of
essentially wasted memory. Of course, this same programmer opens
all files at the beginning of his program and closes all files at
the exit from the program. The fact that the program has no use for
some of these files after the initial part of the program doesn't
mean the system can forget about them. Instead, it may swap some
things to virtual so that at the end of the program when the files
are closed, they have to be swapped in again so the file can be
closed. Considering that IMAGE data bases use a variety of global,
buffer and lock control blocks and certainly consume a large portion
of memory, the same concept is true for programs which open data
bases at the beginning of the programs and don't close them when
access is no longer needed, but wait until the end of the program.
In short, if you aren't going to use it anymore, close it
immediately.

IOCK CONTENTION

Perhaps the most difficult of all types of performance problems to
identify and isolate are those involving contention for a locked
resource. A common problem of this type occurs when multiple
processes request DB 1locks. Even using item locking, large
integrated systems may occasionally attempt to lock on the same data
set on different items, which causes IMAGE to treat the item lock as
a data set lock.

Tools such as DBUTIL reveal locks which are held at the point the
display is generated, but do not give any indication of how long the
locks are being held. Opt also will show locks as a SIR wait.
Neither of these is particularly helpful in understanding whether a
real problem exists with your locking strategy.

Four alternatives exist. You can write a trap for the DBLOCK
intrinsic and log all locks, where they came from and how long they
were held (trap also DBUNLOCK, DBCIOSE). This isn't going to help
your performance while you are monitoring the situation, but it will
give you some good insight into whether you have a problem.

The second alternative is a report from SAMPLER which shows wait
times in segments. If lock delays are being experienced, then you
can determine to what extent and even backtrack to the specific
lines of code. This doesn't give you any insight to particular data
values being locked. In many cases, the lock problem occurs because

Paper 3103 20 DETROIT, Mi



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

the process is reading a particularly long chain and the value of
the data would give you some insight to this problem.

The third alternative is the tool PROFILER from HP. This has a
display which shows statistics on locks and also provides a
formatted display which can be used to get a very clear picture of
locking activity.

Finally, the first recognition that a problem exists often comes
from a user who is complaining that the transaction that normally
takes a few seconds now takes a minute on occasion. If you are
doing some type of user transaction logging, you can trace back and
see what other transactions were being processed concurrent to the
lock problem. This is a less direct approach, but usually will lead
you to the conflict causing the problem. Now all you have to do is
develop another strategy which will eliminate the conflict.
Obviously, your original strategy hasn't worked.

Paper 3103 21 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

QUEUING PROBLEMS

Again, we come to a subject on which an entire paper could be
presented. Following is a very simplistic view of queuing.
Hopefully it will at least spark some thought as to whether queuing
could be a problem at your site.

Typically, most shops use the CS queue for on line processing and
the DS and ES queues for batch or low priority processing. Queuing
is set by the TUNE command which controls four factors: the minimum
clock cycle, the range of the queue, the overlap between queues and
the time quantum for a queue. Range and overlap will be discussed
here.

Queuing Problems -- Range

The range of a queue controls how much shorter transactions are
favored compared to longer transactions. Range is specified by the
"BASEPRT" and "LIMITPRI" parameters of the TUNE command. When the
difference between the two levels is very small, then all processes
in the queue will essentially be in a single line in which after
they use their quantum, they go to the back of the line and wait
their turn again. If the range is large, e.g, 152-220, then shorter
transactions will receive attention more readily than long
transactions. Consider what would happen in a hamburger palace at
noon time if orders where taken based on the size of the order and
you have a baseball team to feed. You place your order for 20
burgers and get your first burger. Then, every customer who has a
order for less than two burgers will be served before you. Finally,
you get your second burger. Now every customer who has an order for
less than three burgers will be served before you. You can quickly
see that your baseball team would never go out to lunch with you
again.

Queuing Problems -- Overlap

Overlap controls how much time will be consumed by the lower queue
in relationship to the higher queue. Note that the CS queue and the
DS queue are not equivalent in all respects. In fact, if identical
processes are run in the CS queue and the DS queue and the MAXPRI
and MINIMUMPRI are set identical for both queues, the DS queue
process can consume twice as much of the CPU as the CS process.
This is because of the "Average Short Transaction" time which is
internally calculated by MPE for the CS queue.

If on the other hand, you totally separate the queues, then whenever
any process in the higher queue wants the CPU, the lower queue
process is interrupted and gets no attention until the higher queue
process is completed. Separated dqueues is an extreme situation
which should not be implemented except under the most extreme
conditions. Note also, that MPE has historically had problems with
lockouts in situations such as this (The lower queue owns a resource
which the higher queue needs, but the process in the lower queue

Paper 3103 22 DETROIT, Mi



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

cannot launched by the DISPATCHER for further process because a
higher priority process is scheduled and ready.

A variety of papers and articles have been written on queuing. You
should peruse these and experiment with queuing at your site to find
what settings seem to give the best response to all needs.

Another phenomenon that can greatly influence performance because of
queuing problems is using DS/3000 for inter-CPU communication.
DSMON runs in the top of the BS queue because it must respond to
requests from the INP board within a specified time limit. Now for
the problem.

Consider the case where a very lightly loaded system "L" is linked
to a very heavily loaded system "H". If "L" requests a transfer from
"H", then "H" responds immediately (after all it is running at a
priority of 100). Of course, system "L" can immediately request
more data since it has no contention. Thus you have the situation
where the requestor is totally dominating the server, even though
the server has many processes which need attention. This situation
can easily lead to system "L" consuming as much as 80% of the
available CPU on the remote system. Obviously, users on an already
slow system are thrilled when the response stops altogether.

For those of you lucky enough to 1live with this condition there is
very little you can do about it other that discourage large amounts
of DS traffic during peak load periods. Of course, you could have
the requesting process pause with some degree of frequency; however,
you have then created a situation in which the DS throughput has
been drastically lowered, even if it is not necessary.

Paper 3103 23 DETROIT, Ml



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

V. SYNERGISM

One of the more delightful events which can happen in performance
enhancement activities is to achieve a improvement much greater than
anticipated. During the discussion on repeated reading of DB chains
looking for a specific item, a case was describe in which a new item
and path were added to eliminate I-O and improve response times for
those transactions looking for that particular data. When this was
implemented, all the non-modified transactions has a net improvement
in execution time reducing them to 85% of their original. Consider
for example a supermarket with a cash only checkout line for people
with a 1limited number of items. By eliminating the large time
consumers from the queue, the remaining customers are serviced more
quickly.

Paper 3103 24 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

VI. PERFORMANCE MONITORING

Two things occur when you monitor performance on a routine and
constant basis. First, you separate myth from fact. Users who say
the response time is a half a minute are less likely to be so vocal
when the precise 7 second response time was logged and you can
demonstrate with a stopwatch that the 1logged time is correct.
Furthermore, you can get an early warning from the 1log of
degradation which might be unapparent to the user.

The second product of routine performance monitoring is learning how
your system normally behaves. Thus if you make a change to the
system such as adding new hardware, a new operating systen,
additional wusers or new software subsystems, you have a point of
reference based on fact to determine in a quantitative manner how
the change has affected your system.

Several tools exist for global performance monitoring such as OPT,
RADAR, SURVEYOR, etc. Shown in APPENDIX A are several reports of
interest which can be generated from these tools, either directly or
indirectly.

Another approach which should be considered is user logging,
especially if your system is a transaction oriented system. Shown
in APPENDIX A 1is a report which is generated from our on-line
transaction log. This summary report shows information about
CPU's, divisions, transaction command-id's, users and terminals.
Analysis of this report, which is generated daily, helps us
determine where the greatest leverage is in improving system
throughput.

A third approach to determine how seriously your system is degrading
during periods of heavy loads is to create a utility which simply
launches a very short transaction every 5 or 10 minutes. Run this
process continuously. By observing the elapsed time for the
transaction during peak load conditions, you can get a feel to the
total demand being placed on your system and the variance between
peak load--no load conditions.

Paper 3103 25 DETROIT, Mi



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

VII. RECOMMENDATIONS

Start some type of performance monitoring now. Note that for
system wide monitoring, it might be wise to create a group in
the SYS account with system manager capability.

Become familiar with the tool you choose. Use it often. Take
classes if they are available. Read the manual. Use it until
you understand (or at least think you do) the displays/output.
At that point, you should be able to correlate information from
the tool with response time and throughput.

If at all possible, build some type of transaction logging
function. If you can't do that, consider some type of IMAGE

logging.

Turn on system logging. Get a system logfile analysis tool and
find out where the I-O are going and who is consuming the CPU.
Note that most all the system logfile tools are free.

Establish some type of performance monitoring which runs
continuously. Analyze the output from this and determine where
your leverage is for performance improvement. Tackle problems
that represent more than five percent of the total load.

Become familiar with the tool DBLOADNG and consider repacking
sets or data bases when they have significant elongation.

Avoid long sorted chains in IMAGE.

Provide a direct path for access to DB information with a high
access frequency.

Go to your 1local user group meetings. Read Interact,
Supergroup, The Chronicle and other articles.

10. Submit a paper so we can all profit from your experiences.

Paper 3103 26 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

VIII. SUMMARY

Performance on the HP3000 is a function of load, capacity and
critical resources. To better understand how performance degrades
as load is added, a benchmark was run on a series 42XP in a
standalone condition. The benchmark consisted of a father process
which created a number of son processes. Each son process did ten
I-0 and then paused for one second. By varying the number of
processes, the rate of degradation of performance was cbserved.
Figure 13 shows response time vs. number of processes. Note that
response time was defined as the time required to post a single I-O.
Each posted record contained the CPU and elapsed time of the
previous I-O.

In a similar fashion, the benchmark was repeated with a process tree
in which the son consumed .9CPU, posted an I-O of the transaction
time and then paused for one second.

The important observation is not the particular data, but the shape
of the curve as load increases and response decreases. By building
a standard transaction for your system and running a similar test,
you could then determine how overloaded your system is under peak
load conditions by simply running the standard and determining the
percent degradation.

Now that I've finished this paper, I can go home and watch my garden
grow.

Paper 3103 27 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP

MILLISECONDS PER I -0

SECONDS PER TRANSACTION

Paper 3103

INTEREX 86

LOAD vs RESPONSE TIME for I-0 INTENSIVE LOAD

MILLISECONDS/I-0

i i i n A

N

2 A l -
7 8 [} 10 44 412 43 44
NUMBER OF PROCESSES ACTIVE

o}
N
ol
o)

LOAD vs RESPONSE TIME for CPU INTENSIVE LOAD

SECONDS / TRANS

N . " L PR
[ 8 7 8 8 40 44 42 483 44
NUMBER OF PROCESSES ACTIVE

28 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

APPENDIX A -- SAMPLE REPORTS FROM VARIOUS PERFORMANCE TOOLS

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Al
A2 --
A3
A4 --
A5 —-
A6 --

A7 -
A8 —-

A9
Al0--

Paper 3103

Report
Report
Report
Report
Report
Report
Report
Report
Report

from DBLOADNG

from OPT/3000

derived from OPT/3000 data

from SAMPLER, (Direct CPU all Segments)
from SAMPIER, (CPU by Segment Rel. Addr.)
from TUNER

from SURVEYOR

from PROFILER (DB locks )

from SYSIG10 (Job Info - Proprietary)

User Transaction Log Analysis (Proprietary)

29 DETROIT, Mi



€01€ Joded

oe

IN ‘Liod13a

Data Base Loading Analysis

for IMAGE/3000

DBLOADNG v2.3

Data Base: DBTBL

Run on: THU, JUN 12, 1986,

3:34 AM

Page:

1

Type Load Secon- Max Blk Max Avg Std Expd Avg Ineff Elong-
Data Set Capacity Entries Factor daries Blks Fact Search Item Chain Chain Dev Blocks Blocks Ptrs ation
TBL-ORG-MSTR Man 101 48 47.5% 18.8% 0 55 TBL-ORG 3 1.2 .5 1.0 1.0 .0% 1.00
TBL-MSTR Ato 7507 5658 75.4% 29.4% 1 51 TBL-CODE-ORG 5 1.4 .7 1.0 1.0 .8% 1.01
OR-NUM-MSTR Man 120011 75511 62.9% 28.1% T 89 OR-NUM 7 1.4 7 1.0 1.0 % 1.00
P-E-CODE-MSTR Man 4001 1858 46.4% 21.2% 1 33 P-E-CODE 4 1.3 .5 1.0 1.0 .0% 1.00
P-E-RULE-MSTR Ato 151 101 66.9% 18.8% 0 53 P-E-COL-CODE 3 1.2 5 1.0 1.0 .0% 1.00
TERMS-CODE-MSTR Ato 251 79 31.5% 6.3% 0 92 TERMS-CODE 2 1.1 3 1.0 1.0 .0% 1.00
DOC-DIST-MSTR Man 101 1 1.0% .0% 0 101 DOC-DIST-CODE 1 1.0 .0 1.0 1.0 .0% 1.00
DOC-STATUS-MSTR _Man 23 10 43.5% 30.0% 0 23  DOC-STATUS 2 1.4 .5 1.0 1.0 .0% 1.00
PLAN-RATES-MSTR Man 101 16 15.8% .0% 0 57T ORG-NUM 1 1.0 .0 1.0 1.0 0% T.00
ORG-MSTR Man 499 5 1.0% .0% 0 8 ORG-ID 1 1.0 .0 1.0 1.0 .0% 1.00
TBL-DATA Dtl 7502 5928 79.0% 11 S TBL-ORG 3275  123.5 474.9 12.2 16.8 12.4% 1.38
1 TBL-CODE-ORG 17 1.0 .5 1.0 1.0 8.9% 1.00

LOCK-DATA Dtl 1 0 .0% 1
P-E-TITLE-RULES Dtl 264 101 38.3% 44 1P-E-COL-CODE 1 1.0 .0 1.0 1.0 .0% 1.00
TERMS-DATA Dtl 210 79 37.6% 35 ITERMS-CODE 1 1.0 .0 1.0 1.0 .0% 1.00
PLANNER-DATA Dtl 576 35  6.1% 72 SIORG-1D 13 7.0 5.7 1.0 1.0 .0% 1.00

Elabsed Time:
CPU Time:

169.600 Seconds
120.147 Seconds

dNOYH SHIASN NVOIHOIN NH3ILSVIHLNOS

98 X343LNI



€01€ Jaded

1€

IN ‘ll0413a

SUMMARY REPORT

(C) HEWLETT-PACKARD COMPANY 1979, 1980
60.608 SECONDS ¢

INTERVAL LENGTH:

CPU ACTIVITY SUMMARY

CPU STATE MEAN  MAX

HP32238A.00.26 OPT/3000
1.0 MINUTES)

CPU BUSY 22% 50%

PAUSE DISC & SWAP 0% 0%

PAUSE DISC 10% 12%

PAUSE SWAP 0% 0%

PAUSE IDLE 6% 7%

GARBAGE COLLECTION 0% 0%

MEMORY ALLOCATION 22%  25%
ICS/CACHE OVERHEAD 40%

LAUNCH ACTIVITY AND ADDITIONAL MEMORY MANAGEMENT ACTIVITY SUMMARY

PROCESS PROCESS

LENGTH COUNT  TOTAL TIME
.021 635 13.038

0 .000

022 272 6.117

0 .000

.033 103 3.39%

0 .000

.015 896 13.335
24.724

PROCESS MEMORY SPECIAL
PREEMPTS ALLOCS  REQUESTS

MM 1/0
READS

MM 1/0 RELEASE

WED, JUN 11, 1986, 6:25 PM

SUMMARY REPORT EXAMPLE FROM OPT.PUB.SYS

MEMORY ALLOCATION SUMMARY
RESULT MEAN COUNT
RECOVERY 0% 0

FREE SPACE  71% 630
OVERLAY CAND  28% 255
GIVE UP 1% 1"

HARD REQUEST 0% 0

RELEASE CLoCcK
WRITES DATA SEG CODE SEG CYCLES

LAUNCHES ~ SWAP-INS
COUNT 635 885
RATE 10.5 14.6
MAX RATE 28 15

SUMMARY OF DISC ACTIVITY

CONTROL OPS

ALL 1/0
ALL DISC 1276/ 21.
DISC 1 (LDEV 1) 155/ 2.
DISC 2 (LDEV 2) 198/ 3.
DISC 3 (LDEV 3) 923/ 15.

SUMMARY OF LP  ACTIVITY

6/ 1
0/ 0
17 .0
5/ A

ALL 1/0
ALL LP 1/
LP 2 (LDEV  6) 1"

SUMMARY OF TAPE ACTIVITY
ALL 1/0

ALL TAPE 0/

54 885 0
9 14.6 .0
2 15 0
COUNT/RATE

READS WRITES

235/ 3.9 1035/ 17.1
29/ .5 126/ 2.1
102/ 1.7 95/ 1.6
104/ 1.7 814/ 13.4
COUNT/RATE
WRITES
11/ 2
1"/ 2
COUNT/RATE

READS WRITES

0/ 0 0/ 0

0 0 4
.0 ) 1
0 0 0

MAXIMUM RATE(USER/MM AND CACHE)
READS WRITES  CONTROL OP

0/11 0/23 6
0/ 1 0/11 0
0/ 8 0/ 2 6
072 0/14 0

MAXIMUM RATE
WRITES  CONTROL OP

MAXIMUM RATE
READS WRITES

REPORT

1

dNOHHD SHISN NVOIHOIN NH3LSYIHLNOS

98 X3H3LNI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

G

CPU—-BUSY

b 7SS SISEREEEEIKELSS N
X R R X R R RARY
AVATAVATAVA 0009529220221, V‘

CRISHRRENI? (I ITCIHIRS ee
000000400000000000000000000000’0000

e e aY0%0 0 e 0o 0 e "o 0
f XX 0NE RN

L0 0.0 0. 90.0.9.6.0.0.9.0.9.0.0.0.0.0.90.0\
R

0Y0%07%07%07%07%0%0 70707070 %%

TIME

SWAP OVERHEAD
L B2 (0207070
_‘ -

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

06/09/86 —— SYSTEM D

HP3000 SYSTEM USAGE

PAUSE--DISC

ST S BRI R RIS

E
%
4
2 3 4 5 68 7 8 9

IDLE
L1
0 1

N AN
g 8§ 8 & €& & § ® & ¢ °

-

1N30¥3d

Paper 3103 32 DETROIT, MI



€01€ Jeded

€e

IN ‘Liod13a

Program SAMPLER/3000 (ANALYZER) TODAY: WED, JUN 11, 1986, 8:05 PM  REPORT #2
Measurement Title: UTO30P 9:00AM--9:59AM JUNE 6, 1986 SYSTEM B, SERIES 68
Sub-Title: EXAMPLE OF REPORT FROM SAMPLER
Measurement Date: FRI, JUN 6, 1986, 9:06 AM
Program Name(s): UT030P.DPP.ELDEC

Distribution of Direct CPU Utilization Over All Segments
(77462 Samples - Including OnICS samples)

------------- [ B B LT B B B B Lt ELETE LTS EEPTPERRPY PYRY o ) CERS 28% 7ol /1Y
l MORGUE ' ABORT ! DDDDDDDDDD 11048 1.4 2.1
! KERNELC! DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDODDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD ! 8884 11.5 15.2
1 KERNELD ! DDDDDDDDD 11010 1.3 16.5
MISCSEGC' CHECK!DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDODDDDDD 1 7331 9.5 26.0
! FILESYS1A!DDDDDDDDDDDDODDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD ! 6750 8.7 34.7
! HARDRES ! DDDDDDDDDDDDDDDDDDDDDDDDDDODDDDDODDODDDDDODDDDDDDDDDDDDDDDDDDODDDDDDDDDODDDODDDDDDD 18602 11.1 49.6
! TERMONITOR!DDDDDDDDDDDDDDD ! 1568 2.0 51.7
! TERMANAGER!DDDDDDDDDD 11042 1.3 53.1
! TERMDRIVER!DDDDDDDDDD ! 1126 1.5 54.6
! CACHESEG! DDDDDDDDDDDDDDDDDDDDDDDDDDDDODDDDDDDDDODDDDDDDODDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDODODDDDDDDDDDDDDDDDDDD! 10397 13.4 68.1
! TIMAGEO1!DDDDDDDDDDDDDDDODDDDDODDDDDDDDDODDDD ! 3804 4.9 73.0
! TIMAGEQ2!DDDDDDDD I 848 1.1 74.1
! TIMAGEO4 ! DDDDDDDDDDDDDDDDDDD 1 2063 2.7 76.8
1 DSIOM!DDDDDDDDDDDDDBDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD 1 4663 6.0 84.9
! HIOMDSC2!DDDDDDDDDDDDD 11434 1.9 86.7
! 10INPQ!DDDDDDDDDDDDD ! 1368 1.8 88.7
! 10DSX!DDDDDDD ! 800 1.0 89.8
! SEG'* {DDDDDDDDD 11016 1.3 93.4
! v3000'41DDDDDDDD 1839 1.195.0
! V3000 6!DDDDDDDDDDDDDD 1 1542 2.0 97.0
! V3000'7IDDDDDDDDDDDDDDDDDDD 12021 2.6 99.6
Hemeeeaeeaann [t EERCRE RS EEPEEE Tommnennnn [T, | s Jomemennnn Pomemmannn [ R PP Poeonnnnns 14--CNT- - -%- - %CUM-
Minimum bar threshold 1s 1.0%

(C) HEWLETT-PACKARD 32180A.01.03  Application

Program SAMPLER/3000 (ANALYZER) TODAY: WED, JUN 11, 1986, 8:05 PM  REPORT #3

Measurement Title: UTO30P 9:00AM--9:59AM JUNE 6, 1986 SYSTEM B, SERIES 68
Sub-Title: EXAMPLE OF REPORT FROM SAMPLER
Measurement Date: FRI, JUN 6, 1986 9:06 AM

------------- e B B P LR T el B
! ALL SYSTEM&DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDl 771¥7 9% 6%28M6
L i ¢ CE R [P LR R Rl L R I R R Ll EEE T I+--CNT---%-- -

Minimum bar threshold is 1.0%

dNOYD SHASN NVHDIHOIN NHILSYIHLINOS

98 X3H3LNI



€01g laded

ve

IN ‘Lio".13a

(C) HEWLETT-PACKARD 32180A.01.03 Application )
Program SAMPLER/3000 (ANALYZER) TODAY: WED, JUN 11, 1986, 8:09 PM  REPORT #8

Measurement Title: UTO30P 9:00AM--9:59AM JUNE 6, 1986 SYSTEM B, SERIES 68
Sub-Title: EXAMPLE OF REPORT FROM SAMPLER
Measurement Date: FRI, JUN 6, 1986, 9:06 AM

Program Name: UTO030P.DPP.ELDEC

Segment:SEG' ( %106)- Direct & Indir. Time Over

Procedures(37394 Seg. Samples=  .09% Dir. & 53.51% lndlr of Prog. Time)

L Q-ccvenenn [EREEEEEEES Joeooeon-- foooomooaafonennnann fooocece--- IR RS EEEET TR [ EEEEEE T EETT RPN 14--CNT---%- - %CUM

! B‘!llllllllllllllHlllIlllllllllllllllllllllll!HHIIIIIIIIXIIIlllllllIlll!lIIlIIlHlllllllllllllllllll! 37394 100. 100
doceeccooonaen [ R R Rl R R Al EELEELLEES EEEEE R [ B T+ -CNT---%- -%CUM-
Minimum bar threshold is 1.0%

(C) HEWLETT-PACKARD 32180A.01.03 Application

Program SAMPLER/3000 (ANALYZER) TODAY: WED, JUN 11, 1986, 8:11 PM  REPORT #9

Measurement Title: UTO30P 9:00AM--9:59AM JUNE 6, 1986 SYSTEM B, SERIES 68
Sub-Title: EXAMPLE OF REPORT FROM SAMPLER

Measurement Date: FRI, JUN 6, 1986, 9:06 AM

Program Name(s): UTO030P.DPP.ELDEC

Segment SEG' ( %106)- Direct & Indirect CPU Utiliz. by

Seg. Relative Addresses (37394 Samples = .09% Dir. & 53.51% Ind1r )

------------- [ Rt AR R R R e R R R dd EELEEETTEY EETTEETREY P« ') SRR SR 7o 1 1
X000074 0001121 ITTIIL 1 85 2.3 3.3
%000113 000131!IIIIIII 11069 2.9 6.2
%000170 000206 ITIIITITIIITININLII 1 2401 6.4 12.6
%000226 00024411111 I 640 1.7 14.5
%000322 000340!IIIIII 't 878 2.3 18.0
%000416 000434111 380 1.0 19.0
%000435 000453 ITTITITIITINIIIIIITIINITIIIIINNININNNILIL 1 5689 15.2 34.2
%000454 000472! ITIITITITIIINL v 2075 5.5 39.8
%000550 000566 I IIIITIIIIINEIIIIIIIIIII R I IR IR RE IR T I RIT I IR IRI IR IIIIIRIQRICIRITOTINITNIIIRINININTINNIINIY 14024 37.5 77.9
%000644 000662! ITITIITITIIIIIII 1 2310 6.2 84.2
%001111 0011271111111 1912 2.4 87.2
%001147 001165 ITIIIII 1 1062 2.8 90.0
%001375 001413 ITTTTIIITITIININIINNII ! 2986 8.0 98.5
1001565 0016031111 1 436 1.2 99.9

---------------------- R LLRT LT Y PEPPTRY PEPPTEPTEY PEPEPPTEEY PEPEPTTEPY PP sy [y sy POyt s v v T

0
Mlnlnnln bar threshold is 1.0%

NOTE: The above addresses can be compared to the compile listing which has a map.
From these addresses, one can then determine the lines of code in the source
which are causing the indirect expenditure of CPU time.

dNOYHO SHASN NVOHIHOIN NH3ILSVYIHLNOS

98 X3H3LNI



€01€ Jaded

Ge

IN ‘llod13a

TABLE CONFG. VALUE MAX IN USE  CUR. IN USE
DST * 1024 7 630
CsT * 448 409 389
XCST  * 640 640 618
PCB * 130 100 79
10Q * 600 (594) 89 53
DSKIO * 383 (368) 370 6553 ov 9
ATPTBUF* 317 (317) 51 28
SBUF  * 100 (98) 1 0

TRL * 96 64 61
SPREQ * 657 (525) 7 4

1Cs * 4096 1065

CSTBK * 108 73 68
SWAPT * 1028 580 385
JPCNT  * 92 17 17
VMEM  * 112640 77632 60352
SPOOL 384000 47424 47424
MEMORY 4096 2790 2790

79
IN MEMORY: SYSCODE=422368 USERCODE=722552 SYSDATA=15
CURRENT # SESSIONS=14 # JOBS=3
TIME (IN SECONDS) SINCE START=31

=
>
x

-

EREERAIR GRS

LrourroLNoLhomoo e

SECTORS
SECTORS
K WORDS

A
3376 USERDATA=1558916
MAX # OF SESSIONS=14 # JOBS=3
START: 19:10:22 CURRENT: 19:10:53

dNOYH SHISN NVHDIHOIN NHILSVIHLNOS

98 X3H3LNI



€0l¢ Joded

9€

IN ‘LiI0d13d

B T T T e

System Surveyor B.00.00 (JAK) WED, JUN 11, 1986, 6:51 PM Elapsed 00:00:30

#kkkkkk C P | **kkkk  *%* paysed for Disc 10 ****  Memory Garbage Collection
1dle Busy Cache Mam User@Mam User Cache alloc. Global Local

1.3%  2.0% 0.7% 0.6% 0.3% 0.0% 0.0% 1.0% 0.0% 0.1%
Drive- 1 2 3 4 5
R/sec- 0.0 0.0 0.0 0.0 .0
W/sec- 0.0 0.0 0.0 0.7 0.0
CPU: Avg CPU Busy- Oms; Avg Shrt Trns Time-  88ms; %Preempts- 0
MEM: Launches/Sec- 0; ‘'Swapins'/launch- 0.0; Mem Clck Rate 47
10: 10s/Term read- 0; CPU msecs/I10- 27164;
Q& %Tot *WAIT STATES* Disc IOs
Program Name J/S# Pin Cpu Abs Dsc Bio Imp Pre /Resp Tot
ucop 0 L8 0% 0% 0% 0% 0% 0% 1 0
SP 0 L12 1% 0% 0% 0% 0% 0% 0 0
UTO30P  .DPP .ELDEC S1113 €23 14% 0% 0% 0% 0% 0% 0 0
UTO30P  .DPP .ELDEC $1113 €25 0% 0% 0% 0% 0% 0% 0 0
DSMONX  .PUB .SYS 0 L26 19% 0% 0% 0% 0% 0% 0 0
uto30P  .DPP .ELDEC $1113 €31 0% 0% 0% 0% 0% 0% 0 0
uTO30P  .DPP .ELDEC $1113 €36 0% 0% 0% 0% 0% 0% 0 0
CI S1111 €39 22% 0% 0% 0% 0% 24% 0 0
uto3oP  .DPP .ELDEC S$1113 €43 0% 0% 0% 0% 0% 0% 0 0
UTO30P  .DPP .ELDEC $1113 €52 0% 0% 0% 0% 0% 0% 0 0
uTo80P  .DPP .ELDEC S$1113 ¢53 0% 0% 0% 0% 0% 0% 0 0
UTO30P  .DPP .ELDEC $1113 C54 0% 0% 0% 0% 0% 0% 0 0
uTo30P  .DPP .ELDEC $1113 €55 0% 0% 0% 0% 0% 0% 0 0
UTO50P  .DPP .ELDEC $1113 €56 0% 0% 0% 0% 0% 0% 0 0
UTO80P  .DPP .ELDEC §1113 €58 0% 0% 0% 0% 0% 0% 0 0
UT030P  .DPP .ELDEC $1113 €59 0% 0% 0% 0% 0% 0% 0 0
uTto30P  .DPP .ELDEC $1113 c66 0% 0% 0% 0% 0% 0% 0 0
uto30P  .DPP .ELDEC $1113 €68 0% 0% 0% 0% 0% 0% 0 0
UTO30P  .DPP .ELDEC $1113 €70 0% 0% 0% 0% 0% 0% 0 0
DSMONX  .PUB .SYS 0 L71 1% 0% 0% 0% 0% 0% 0 0
uto30P  .DPP .ELDEC $1113 €85 0% 0% 0% 0% 0% 0% 0 0
UTO30P  .DPP .ELDEC $1113 c87 0% 0% 0% 0% 0% 4% 0 0
SURVEYOR .PRV .TELESUP S1141 88 1% 0% 0% 0% 97% 0% 0 0
uTO30P  .DPP .ELDEC $1113 ¢91 0% 0% 0% 0% 0% 0% 0 0
uto3op  .DPP .ELDEC s1113 €103 0% 0% 0% 0% 0% 0% 0 0
uto3op  .DPP .ELDEC s1113 ¢c105 0% 0% 0% 0% 0% 0% 0 0
utos0P  .DPP .ELDEC $1113 €106 0% 0% 0% 0% 0% 0% 0 0
UTO30P  .DPP .ELDEC s1113 ¢c112 0% 0% 0% 0% 0% 0% 0 0
uTo30P  .DPP .ELDEC s1113 c116 0% 0% 0% 0% 0% 4% 0 0
uT030P .DPP .ELDEC S1113 ¢c120 0% 0% 0% 0% 0% 0% 0 0
uto30P  .DPP .ELDEC s1113 c121 0% 0% 0% 0% 0% 0% 0 0
cl S1115¢125 1% 0% 0% 0% 0% 0% 0 0
uTtosoP  .DPP .ELDEC S1113 €126 0% 0% 0% 99% 0% 0% 0 0
OPT .PUB .SYS J1171 0127 0% 0% 0% 0% 0% 0% 0 0
uto3op  .DPP .ELDEC s1113 c128 0% 0% 0% 0% 0% 0% 0 0

dNOYHD SH3ISN NVOIHOIW NH3ILSVIHLINOS

98 X3Y3LNI



€01€ Jaded

A

IN ‘LI0d13d

TURBOIMAGE PROFILER STATISTICS REPORT

TRACE INTERVAL FI
BUFFER ACTIVITY

LE : DETROIT

AGGREGATE BY DATABASE

Database
Name

Dataset
Number

04
All DataSets

Buffer Read
Hit Ratio

Buffer Write
Post Ratio
%)
14
14

Modification
Percentage

Avai

lable

1/0 Buffers

TURBOIMAGE PROFILER STATISTICS REPORT

TRACE INTERVAL FILE : DETROIT

LOCK ACTIVITY

AGGREGATE BY DATABASE

Database
Name

Locking Level

(UnCond Locks/Cond Locks)

Lock Held
Time (msec)

Unconditional
lomotrg | rim o pcqire ok |
Frequency (msec)
] e [ | o
of ol ol o

dNOYH SHISN NVOIHOIN NH3ILSVIHLINOS

98 X3H3LNI



€01 Joded

8¢

IN ‘L10413ad

REPORT OF

JOBS/SESSIONS GENERATED FROM SYSTEM LOGFILE ANALYSIS
SORTED BY CPU

1-0
BLOCKS

118737
42461
1210
14248
97211
65326
12524
17555
2192
67469
2559
738
3542
15294

LDEV
ACCOUNT JOBNAME USER GROUP YYMMDD HH:MM J/S Q IN OUT
ELDEC  .PA501J .MGR .DATAIR 860609 22:04 J0933 E 10 12
ELDEC  .PA503J .MGR .DATAIR 860609 22:41 J0935 E 10 12
ELDEC  .OES00MCJ.MGR .DATAMCD 860609 20:55 J0895 D 10 12
ELDEC  .SF550CEJ.MGR .DATACEN 860609 21:35 40927 D 10 12
ELDEC  .PA100J .MGR .DATAIR 860609 21:42 J0929 E 10 12
ELDEC  .PA430IRJ.MGR .DATAIR 860609 23:28 J0943 E 10 12
ELDEC  .NO-INIT .NO-INIT .DATAMCD 860609 20:33 J0846 0 0
ELDEC  .PA110IRJ.MGR .DATAIR 860609 21:50 J0930 E 10 12
ELDEC  .PA595IRJ.MGR .DATAIR 860609 22:56 J0936 E 10 12
ELDEC  .PA502J .MGR .DATAIR 860609 22:18 J0934 E 10 12
SYS -NO-INIT .NO-INIT .PUB 860609 20:32 J0862 0 0
ELDEC  .WO670MCJ.MGR .DATAMCD 860609 20:55 J0900 D 10 12
ELDEC  .PA130IRJ.MGR .DATAIR 860609 21:11 J0917 E 10 12
ELDEC  .PA435J .MGR .DATAIR 860609 23:36 J0945 E 10 12
ELDEC  .AR310SSJ.MGR .bpPP 860609 20:33 $0728 C504 504
ELDEC  .WO750MCJ.MGR .DATAMCD 860609 20:40 J0878 D 10 12
ELDEC  .WP870MCJ.MGR .DATAMCD 860609 21:06 J0914 D 10 12
ELDEC  .AR310PCJ.MGR .DPP 860609 20:33 s0729 €505 505
ELDEC  .WO560CNJ.MGR .DATACEN 860609 20:31 J0868 D 10 12
ELDEC  .PA120IRJ.MGR .DATAIR 860609 23:05 J0942 E 10 12
ELDEC  .EM240IRJ.MGR .DATAIR 860609 23:00 J0939 D 10 12
ELDEC  .SCO80MCJ.MGR .DATAMCD 860609 20:46 J0884 D 10 12
ELDEC  .PAO30IRJ.MGR .DATAIR 860609 21:31 J0922 E 10 12
ELDEC  .EM290IRJ.MGR .DATAIR 860609 23:04 J0941 D 10 12
ELDEC  .EM230IRJ.MGR .DATAIR 860609 22:56 40937 D 10 12
ELDEC  .PA371IRJ.MGR .DATAIR 860609 21:35 J0924 D 10 12
ELDEC  .SF591CEJ.MGR .DATACEN 860609 21:37 40928 D 10 12
ELDEC  .WO560MCJ.MGR .DATAMCD 860609 20:54 J0905 D 10 12
ELDEC  .WO560MCJ.MGR .DATAMCD 860609 20:46 J0885 D 10 12
ELDEC  .PAO20IRJ.MGR .DATAIR 860609 21:02 J0911 E 10 12
ELDEC  .SC200SSJ.MGR .DPP 860609 21:29 S0739 C504 504
ELDEC  .ENO8OMCJ.MGR .DATAMCD 860609 20:50 J0899 D 10 12
ELDEC  .WO700MCJ.MGR .DATAMCD 860609 20:38 J0876 D 10 12
ELDEC  .RO200MCJ.MGR .DATAMCD 860609 20:43 J0886 D 10 12
ELDEC  .ENO70MCJ.MGR .DATAMCD 860609 20:47 J0887 D 10 12
ELDEC  .PA010J .MGR .DATAIR 860609 21:01 J0910 E 10 12
ELDEC  .AR310MCJ.MGR .DATAMCD 860609 20:43 J0889 D 10 12
ELDEC  .AP200MCJ.MGR .DATAMCD 860609 20:52 J0897 D 10 12
ELDEC  .IREMSTJ .MGR .DATAIR 860609 21:35 40926 E 10 12
ELDEC  .AP180J .MGR .DATACEN 860609 20:34 J0871 D 10 12
ELDEC  .SPOOCOPY.MGR .DPP 860609 21:07 S0734 C505 505

CcPU

MINUTES TERM
LL

N

~nN
ONNNNNWWNDARNVIVIVITDWUVINS S S WS

0

N
3
oo

1143

&~
W

POO0OO0CO0COO0CO0OO0OOO

wWoooooocooo

dNOYH SH3IASN NVOIHOIN NH31SVIHLINOS

98 X3H3LNI



€01¢ laded

6€

IW ‘110d13ad

TYP
COMD
COMD
COMD
COMD
ORG
ORG
ORG
ORG
ST-%
ST-%
ST-%
ST-%
ST-%
ST-%
ST-%
ST-%
ST-%
ST-%
sYs
sYs
sYs
SYS
sYs
sYs
sYS
TERM
TERM
TERM
TERM
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
USER
USER
USER

<< The above listing contains sample entries for each type logged >>

COMMAND
APAHDD
APAITD
APATRD
APCCKD

CEN
CORP
MCD

A033
8606100618
8606100700
8606100800
8606100900
8606101000
8606101100
8606101213
8606101300
8606101400
8606101500

*TOTAL*
A1049
A3850
A4064

Tenth's of a Sec

WALL
1259
10554
245
50
83422
4282
33989
12027}

48633
376343
6222
341
341

CPU
179
586

COUNT
47
324
79

MEAN

MEDIAN

MEDIAN

Tenth's of a Second

WALL

WALL

CPU

N O EN N

dNOHHD SHISN NVODIHOIN NH3ILSVIHLINOS

98 X3H3LNI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86
APPENDIX B -- CHAIN ELONGATION DESCRIPTION & DISCUSSION

The term "chain elongation" is used to describe a condition which
occurs when accessing information in a data base using a key value
chain requires more disc I-O than is theoretically required if all
entries on that chain were packed such that reading the chain
resulted in a minimum number of disc blocks being read. To best
understand how elongation occurs, following are several examples
demonstrating how elongation might occur for a chain with the key
value of "X". The following symbols are used to facilitate
understanding:

= unused record

= Record of the chain being studied

b,c,d,e,f = records containing chains of keyvalue a,b,c,d,e
and f values respectively

| = block separator

*
X
a,

Case 1 -- Elongation = 1.00 (Optimum )
BIK1 BIK2 BILK 3 BIK 4 BKLKS BIK 6 BLK7 BIK 8

| aaxeoi* | *kkkkk I ******I Fekkdkk | ******I khkkkk | ******l dkkkkk I

The three records in the chain X are all in the same block (BLK
1) and therefore the elongation is 1.00 since the expected number
of blocks is 1 (# records/block factor).

Case 2 -- Elongation = 1.00 (Optimum )

BIK1 BIK2 BLK3 BIK4 BIK5 BIK6 BLK/ BIK 8

| aablbbX | XXXKKX | COCkkk | kkkkdkk | kkkkkk | dkkokdok | dekkokkok | kokdkdeksk |

The expected number of blocks is 2 (7 records divided by 6
records/block). Since all records of the chain X are contained
within two Dblocks, then the elongation is 1.00 (actual

blocks/expected blocks) .

Paper 3103 40 ' DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

APPENDIX B —- CHAIN ELONGATION DESCRIPTION & DISCUSSION (CONTINUED)

Case 3 -- Elongation = 1.50

BIK1 BIK2 BLK3 BIK4 BLK5 BIK 6 BIK/ BIK 8

| aabbXX | XCCCXX | XXAAAk | * ddedkdk | dkkdedede | dededdkdkok | kkkkkk | dkddkkk |

The expected blocks is two (7 records divided 6 records/block).
the actual number of blocks to contain the chain is three. Thus
the elongation for chain X is 1.5 (3 actual blocks/ 2 expected
blocks) .

Case 4 -- Elongation = 6.00

BLK1 BIK2 BIK3 BIK4 BIK5 BIK 6 BIK/ BIK 8

|aaXaaa | bbbbXb | ccccXe | dddXdd | eeeeXe | XELLEE | kkkkkk | kkkkkk |

The elongation for chain X is 6.00 since the expected number of
blocks for this chain is 1.00 (6 records divided by 6
records/block) .

Note that elongation is a function of reading more blocks than is
required based upon the expected number of blocks being equal to the
number of records divided by the blocking factor. Case 5 shows that
the actual number of blocks read is based upon the chain linkage.
Case 5 -- Elongation = 3.50

BLK1 BLK2 BIK3 BIK4 BIK5 BIK 6 BIK/7 BIK 8

| QaaXKK | 30T K% | *ddkdedkd | dddddd | dekdeddedk | ks | dedededdd | dededdds |

Paper 3103 41 DETROIT, Ml



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86
APPENDIX B -- CHAIN ELONGATION DESCRIPTION & DISCUSSION (CONTINUED)

In this case, the actual chain linkage for key X is from record
10 to record 4 to record 9 to record 5 to record 8 to record 6 to
record 7. Since records 7,8,9 & 10 are in block 2 and records
4,5 & 6 are in block 1, this means that to read all records in
the chain X, the actual blocks read were #2, #1, #2, #1, #2, #1 &
#2. Thus 7 blocks reads were required to access all the seven
records in the chain. Since the expected number of blocks was 2,
then the elongation in Case 5 is 3.5 .

The type of distribution in Case 1 and Case 2 is typical of a
system in which a user locks a data set, adds several records on a
key item and then unlocks the set. Such distribution is also common
when a user adds records to a set for which little contention
exists.

The type of distribution in Case 3 and Case 4 is typical of
situations where a user add records to a set with high activity or
over extended time periods. For example, Case 4 shows a situation
where chain "a" had two records added, then chain "X" had one record
added, then chain "a" had three more records added, then chain "b"
had four records added, then chain "X" had a second record added,
then chain "b" had a fifth record added , etc.

Case 1 through Case 4 are all typical of sets without a delete
chain. Case 5 is typical of a set where records have been deleted
or where the chain is sorted on another item in the record which
doesn't correspond to the order in which the records were added.
Suppose the following situation had existed prior to the adding of
chain "X" to Case 5:

BIK1 BILK2 BLK3 BIK4 BLK5 BIK 6 BIK/ BIK 8

|aaabod | @fghks | %k | dekdkdded | deddddedk | dedddeded | dedddded | dkkkdk |

Now suppose that records were deleted in the following sequence:
e, d,f,c,9,b,h. When the "X" records were added, they would be added
in the following sequence: h,b,g,c,f,d,e. Thus if one were to read
the "X" chain, one would read record 4 of block 2(h), then record 4
of block 1(b), then record 3 of of block 2(g), record 5 of block
1(c), etc.

The order of reading a chain which is sorted is the order of the
value of the sort field. If the sort field for two or more records
is equal, then any field(s) following the sort field will be used in
an extended sort to order the records. Thus one can see that
reading a sorted chain could easily result in records being read in
a non-sequential order and in fact could cause the re-reading of
blocks of information as shown in Case 5.

Paper 3103 42 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86
IMPACTS OF TECHNOLOGY ON HIGH-PERFORMANCE MASS STORAGE

David R. James
Hewlett-Packard
P.0. Box 39
Boise, ID U.S.A. 83707

Ten years ago, few of us could have envisioned holding 50
Megabytes of disc storage in the palm of our hand. Even
fewer could have imagined picking up the phone and buying
those 50 Megabytes with a Visa card. Such a disc drive
weighed several hundred pounds and cost the equivalent of
several cars. Some of us still have a 50 Megabyte HP 7920
around; they still work fine, their performance is good, and
they remind us where we came from.

Correspondingly, few of us envisioned so many people with
direct access to computers. Now nearly everyone seems up on
the latest computer development, and they want more of what
the machines hold--information. Bulging computer rooms also
show the result of the demand for this information. Many
data centers seem to swim in a sea of disc drives. Advance-
ents in technology give back some of that space, but often
not rapidly enough to save the office next to the computer
room. The following chart shows the growth in demand for
on-line information storage.

Information Storage Growth
HP 3000 Systems

Average Megabytes per System
8000

6000

4000

2000

O I A | 1 | L
1978 1980 1982 1984 1986 1988 1990

Paper 3104 1 DETROIT, Ml



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Hewlett-Packard, as a disc drive manufacturer, has simply to
follow the rule of thumb: make disc drives with higher
capacity, better performance, smaller size, better reliabi-
lity and lower cost. To do this contributions from several
engineering disciplines are required. It is the purpose of
this paper to examine those technologies and how they impact
high performance mass storage.

Heads, Media and More

Heads and media are the heart of a disc drive. The
interface between them is "where the rubber meets the road."
The race is to increase the areal density fast enough to
keep up with rapidly growing demand and still stay within a
not so rapidly growing data processing budget. Hand in hand
with the demand for a larger quantity of data is the demand
for that data to be available at all times. Reliability has
moved to the "top of the charts" of computer owners' expec-
tations.

To increase areal density, bits per inch (bpi) and tracks
per inch (tpi) must be increased. This is done by decreas-
ing the gap of the head, flying the head closer to the
surface and improving the physical and magnetic properties
of the media. Along with these fundamental changes in heads
and media, better servo techniques are used, the mechanical
structures are refined and the electronics that convert ana-
log to digital signals must be improved. As design trade-
offs are made to develop these new devices, reliability is
the foundation for decision making. New technologies are
not employed until they are proven. Testing is a major part
of the design cycle and the manufacturing process is
developed in unison with the drive. The result is a high
quality, high capacity disc drive.

Thin Film Media

Higher areal densities are accomplished through shorter flux
transitions. This requires a reduced read/write head gap
and a smaller distance between the head and media. Addi-
tional increases in density are possible as the magnetic
properties of the media are improved. Oxide media has been
a standard since the beginning of the disc drive industry.
In recent years, however, thin-film media has become a
viable choice.

Conventional particulate coatings are based on gamma ferric
oxide particles. These particles are suspended in a non-
magnetic binder that is spin coated onto a polished aluminum

Impacts Of Technology On High-Performance Mass Storage

Paper 3104 2 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

substrate. The resulting coat is 20 to 40 microinches thick
and is capable of allowing bit densities of 10,000 to 15,000
bpi.

Thin film media offers higher density, improved signal to
noise ratios and a hard, smooth surface. The coatings are
either sputtered or plated onto the substrate. The media
produced from this process has a coat that is two to five
microinches thick and is capable of supporting bit densities
well above 15,000 bpi. The following graph illustrates
advancements seen in areal density.

Growth in Areal Density

Bits Per Square Inch (millions)

40

20t

1970 1975 1980 1985 1990

As mentioned before, an advantage of thin-film media is the
extremely smooth surface. Conventional media allows head
flying heights from 14 to 19 microinches. Thin film media
allows flying heights as low as six to eight microinches.
Thin-film media also offers a signal-to-noise ratio of 2:1
times better than conventional media. The result is a
stable base to substantially increase areal density.

The hardness of the media surface makes thin film media less
prone to damage during shipment and resistant to head
crashes during operation. When a head bounces on oxide
media, particles are jarred loose. Significantly greater
shock must occur with thin film media before similar
problems arise.

Paper 3104 3 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

HP has invested heavily in sputtered thin film media
research and development. Sputtered technology allows
greater control of the magnetics. The sputtered coat also
eliminates the use of lubricants, reducing the chance that
heads will stick to the landing zone.

Thin Film Heads

Over time, areal density has increased from 2000 bits per
square inch to over 22 million bits per square inch. Head
technology has accounted for much of this gain. Recording
head gaps decreased from 1000 microinches to 25 microinches.
Flying heights plunged from 800 microinches to less than 10
microinches.

Magnetic read/write heads consist of three major parts: the
actual head, a slider to hold the head and give it aero-
dynamic properties and a flexture to extend the head out
from the arm assembly. Our primary focus will be the head.

Ferrite heads are manufactured from extruded magnetic poles
with hand wound coils. The size of the poles, the width of
the gap and the number of windings in the coils determine
the magnetic properties. These heads require machining to
bring them into specific dimensions. Ferrite heads can
offer track densities of 1000 tracks per inch.

The machining process proves to be a major limiting factor
in ferrite head manufacturing. One approach to overcoming
this limitation is to bond the ferrite core in glass before
machining. This is referred to as a composite head. This
results in heads capable of 1500 tracks per inch. While
this technique is an improvement, ferrite heads are still
limited.

Thin film heads first made their appearance in the market in
1979. These heads are manufactured using production methods
taken from the semiconductor industry. A semiconductor
wafer is used in the manufacturing process with thin layers
(or films) of material deposited on it. These layers create
the equivalent of a ferrite head's pole, gap and winding.
One semiconductor wafer can produce as many as 500 thin film
heads. The manufacturing cost of a thin film head is less
than the manufacturing cost of a conventional head. How-
ever, to implement this technology requires large start-up
funds. Until these initial manufacturing costs are
depreciated or volumes increase significantly, the price
vendors charge for a thin film head remains high.

Paper 3104 4 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

A thin film head has significantly smaller mass, improving
its aerodynamic qualities. The manufacturing process allows
greater control of the magnetic characteristics of the head.
This allows the head to fly closer to the surface and again,
improve areal density. Thin film heads offer track den-
sities of 2000 tracks per inch.

Disc Drive Mechanisms

As the technology for heads and media improves, corre-
sponding improvements are required in the disc drive
mechanism. These improvements fall into two categories:
servo and disc drive mechanical assemblies.

Servo systems were incorporated into disc drives as track
densities increased beyond the capabilities for the mech-
anism alone to accurately position the head over the track.
These systems provide control feedback during head movement
and track following feedback after the head has settled on
track. Beyond providing feedback, the servo system ad-
dresses two problems that may appear in the mechanism:
register alignment and track runout. Register alignment
problems can occur when temperature changes or thermal
gradients shift the relationship between the spindle and the
actuator. Track runout occurs when the data track on a
particular surface is no longer centered relative to the
axis of rotation. 1In disc drives with high track density,
minute changes in the alignment of the mechanism have poten-
tially severe consequences. Advanced servo systems effec-
tively compensate for these changes and assure reliable
operation.

Fundamental design of the mechanical system in the disc
drive greatly impacts the capacity, performance and reli-
ability. Optimizing performance and cost in a high preci-
sion environment requires substantial skill. Hewlett-
Packard is currently in the design phase of its eighth
generation of disc drives. A substantial skill base has
been built in design, manufacturing and management. This
skill base provides products on the leading edge in reli-
ability, performance and cost.

Optical Discs

In the past few years, a great fervor has arisen in the
industry over optical discs. Optical discs come in several
different varieties, but always carry a common charac-
teristic--the capability of significantly improving areal
density. Three classes of optical discs currently exist:

Paper 3104 5 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Optical Read Only Memory (OROM); Write-Once, Read-Many
(WORM) and Erasable Optical disc.

The OROM has recently come out of the lab and appeared on
the market. With this product, the media is written or
stamped at a factory. The OROM is useful for storing and
distributing large quantities of stagnant information. A
unique feature of an OROM is that the media can be produced
in a stamping process. Large quantities of data can be
written on a disc nearly instantaneously. This is in con-
trast with other types of magnetic memory currently being
used where the data is written serially.

WORM drives permanently change the surface of the media
during the write process. The fundamental approach to
recording with this drive is to change the media in such a
way that it will in turn consistently alter a laser beam
directed at the media. Three approaches are typically used:

Pit forming or ablative - in this approach, a pit is
formed in the active layer by a short laser burst that
imparts sufficient energy to melt a pit in the ma-
terial. The pit has a diameter of about one micron.

Bubble forming - in this technique, the heat from a
laser partially vaporizes the layer of material
directly beneath the active material. The active
material deforms into the shape of a bubble from the
gaseous pressure beneath.

Phase change - here, the active layer can exist with
stability in two different states with differing
reflectivity. With the application of a very rapid
laser pulse, the material is heated just above melting
point. As the material cools it changes states with a
corresponding change in reflectivity.

The U.S. government has determined that media recorded with
WORM devices is one of the few acceptable types of infor-
mation storage usable in a court of law. For this reason,
write-once drives are viewed as a valuable peripheral for
archiving data.

The final type of optical disc currently being researched is
an erasable optical disc. These discs also use a laser but
they write on magnetic media. The laser raises the temper-
ature of the media in a limited area and decreases the
coercivity at that point. A weak magnetic field is present
which changes the orientation of the magnetic domain.

Impacts Of Technology On High-Performance Mass Storage

Paper 3104 6 DETROIT, M



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Erasing is accomplished by reversing the orientation of the
magnetic domain.

All three of these optical discs currently exhibit rela-
tively low performance. Most OROM and WORM optical disc
vendors have devices with 200 Megabytes to several gigabytes
and floppy disc-type performance. Erasable optical disc
offers the potential of higher performance but with the
penalty of a separate erase cycle. This results in a
requirement for an additional rotational latency, thus
slowing performance.

In an optical disc, the distance between the head and the
media is several orders of magnitude greater than in a
conventional magnetic disc. This distance greatly reduces
the susceptibility to dust and the possibility of head
crashes. These greater distances also make it easier to
retract the heads and free the media for removal from the
drive. Removability is important to many applications,
particularly archiving.

Error rates are currently a concern with optical disc. The
high bit density has come at the expense of raw error rates.
Sophisticated error correction codes must be developed and
employed in these devices. These codes are beginning to be
available, but it will take further improvement to bring
error rates into acceptable levels.

So the question remains, "When will I see an optical disc
and will optical discs replace my magnetic discs?". Optical
discs are slowly appearing on the market today. Currently,
several major vendors are selling read only discs. It is
projected that in the next several years, write once optical
discs will be offered in many computer vendors' product
lines. However, these discs will act as a supplementary
mass storage medium to current magnetics as opposed to
replacement for current magnetic discs. Erasable technology
remains on the three-to-four year time horizon.

As engineers pursuing optical disc technologies close in on
their goals and solve more and more of their problems,
engineers working on magnetic discs continue to move forward
with improvements in that technology as well. We currently
project that magnetic discs will be able to maintain cost
effectiveness through the 1990's. Hewlett-Packard is
investing in both of these areas to ensure that the benefits
from each can be realized on HP computers.

Impacts Of Technology On High-Performance Mass Storage

Paper 3104 7 DETROIT, Mi



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86
Leveraged Technologies

Heads, media and optical discs are technologies being
developed specifically for mass storage products. Other
technologies are also required for successful design of mass
storage devices. They include VLSI electronics, fiber
optics, advancements in firmware technology, and advance-
ments in software technology.

VLSI electronics are extremely important in advanced disc
drive design. The capability of shrinking an entire PC board
down to the size of a single chip not only lowers the cost
of those electronics, but improves reliability and increases
performance. Often times, the performance of a disc drive
is constrained by the electronics. Higher bit densities
mean higher transfer rates, if the disc spins at the same
speed. If the controller or read/write electronics cannot
handle the higher transfer rates, disc rotation rate must be
slowed with a corresponding decrease in overall disc perfor-
mance.

Hewlett-Packard is investing heavily in very high perfor-
mance electronics. With current high speed NMOS technology
and promises for development in CMOS that will carry that
performance orders of magnitude beyond what we see today,
the future for electronics in disc drives is bright.

As data comes out of a disc subsystem faster, the required
buses to transport that data to the computer become a key
performance factor. Performance can be increased on current
interfaces; however, cable lengths are shortened and/or the
cost increases. Here the use of fiber optics holds much
promise. These cables (about the same size as the common
lamp cord) can carry data between the disc and the computer
several times faster than buses currently used. Fiber
optics do not have the types of length restrictions that
copper cables have. They are also immune to any type of
electro-magnetic interference, improving the integrity of
the data as it moves from the disc to the computer.
Hewlett-Packard has been producing high quality fiber optic
components for many years and is seen as a leader in the
industry. This leadership position is seen in terminal
connections today and will be used for disc connections as
well.

Software and firmware are key links in taking SPUs and disc
drives and creating a system. Hewlett-Packard leads the
industry with advanced protocols and extensive on-line
diagnostics in the early '80s. That leadership position

Paper 3104 8 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

continues to be advanced in development labs where software
technology will improve the reliability, performance and
functionality of mass storage subsystems.

As the demand for information storage on HP systems
increases, the investment being made by Hewlett-Packard will
continue to pay off for you with higher reliability, better
performance and lower cost.

In summary, the following table details the benefits offered
through HP's developments in mass storage technology.

Technology Benefit
Thin film media Higher capacity and lower cost
More reliable
Thin film heads Higher capacity and lower cost
Disc mechanisms Higher performance

More reliable

Optical discs Higher capacity and lower cost
Removable media

VLSI electronics Higher performance
Lower cost

Fiber optic channels Higher performance
Longer cable lengths

Firmware Higher performance
More reliable

DJ/ad

Paper 3104 9 DETROIT, M



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86
IMPROVING YOUR PERFORMANCE

R.E. VAN VALKENBURGH
AMPEX CORPORATION
P.0. BOX 190
MARVYN PKWY.
OPELIKA, AL U.S.A 36803-0190

The larger HP3000 systems in use today for standard business
and manufacturing applications are requiring a much more so-
phisticated approach in management to achieve an acceptable
level of performance. We will examine some characteristics
that relate to larger systems which tend to be I/0 intensive
with predominant use of IMAGE. We will dispell some common
myths relating to the various subsystems, and eventually pro-
ceed to developing a response curve for a particular data base
system.

INTRODUCTION

Particularly in recent times the workload capabilities of HP3000's have
been increased many-fold. The advent of the series 6X, 7X, MPE-V,
Turbo-IMAGE, improvements to I/0 hardware, and next the 'spectrum
machines" have or will be contributing to far greater capabilities and
creating far greater diversity in the workloads. For this reason we may
now need to take a closer look at the old "rules of thumb" that we've
been accustomed to using in operating our collective HP3000's.

The intent of this paper is to provide some insight into the performance
characteristics of the highly interactive real-time business and manu-
facturing workloads that are, or have been, growing along with (ahead
of) the HP3000. Frequently the major goals of MIS departments include
maximizing resource utilization and minimizing response time. This has
become a much more difficult task as our systems have grown, and as we
shall be seeing in the course of this paper, MAXIMIZING RESOURCE UTILI-
ZATION AND MINIMIZING RESPONSE TIME ARE COMPETING GOALS AND ARE FRE-
QUENTLY MUTUALLY EXCLUSIVE on interactive systems. (Take that to your
board of directors).

At times we might be somewhat liberal in our assumptions. Some such
assumptions will relate to the most extreme of situations. Often under-
standing well the extremes (which are frequently "clear cut") is suf-
ficient conceptually, and the conceptual transition to the less extreme
"real-1life" is trivial. I think you will in time agree that due to the
large amount of information being touched on here, this approach will be
most productive.

Paper 3105 1 ' DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

CONTENTS
INTRODUCTION % SOFTWARE DISC CACHING, a
1. OVERVIEW, the NETWORK SHARED RESOURCE
* The CPU, a SERIALLY REUSEABLE Costs of Disc Caching
RESOURCE Additional Caching Tips
Priority Preemption * IMAGE, a SERIALLY
Dynamic Reprioritization REUSEABLE RESOURCE
Transaction Orientation IMAGE and the Flle System
Temporary Reprioritization IMAGE and Software Disc Caching
Service Times Synonyms
Process Priorities and Actual Clustering
Scheduling Hashed Access
* MEMORY, a SHARED RESOURCE Detall Data Sets
% DISC /O and the FILE SYSTEM Data Set Control Record
Maximizing Contiguously IMAGE Block Sizes and Buffers
Located Transfers Comments on "Single Threading®
Achieving Balanced /O Across Predicting Performance of IMAGE
Disc Drives * OTHER RESOURCES
Further Concurrency of /O 2. QUEUEING THEORY and QUEUEING
Reduction of Disc Seek Time NETWORK ANALYSIS
Reduction of Disc Accesses 3. An APPLICATION UNDER THE
Buffered Disc Access MICROSCOPE
Choosing Number of Buffers 4. CACHING REVISITED
Sharing of Buffers CONCLUSION
Unbuffered Disc Access

While recognizing that the title of this paper is "IMPROVING YOUR PER-
FORMANCE", much of the material presented here is background informa-
tion. The most important part of performance improvement begins with an
adequate understanding of the characteristics of the system, without
this understanding, performance improvement is at best a haphazard task,
and the consequence of our efforts are likely to be a disappointment.

1. OVERVIEW, the NETWORK

It is useful to picture an overall system by way of a network flow
diagram. The system is composed of a network of resources, each shared
resource having its own queue. Processes enter the system, make various
transitions between (visits among) the resources, and finally exit the
system when the transaction or job is complete. For all practical
purposes here we can consider transitions and service time to be essen-
tially random.

Paper 3105 2 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

RO
OISO
> —={

THE SIMPLE NETWORK

Each resource in this diagram happens to be a shared resource, and each
contains a queue for "holding" those processes which are awaiting the
resource. Each time that a process arrives for service at a certain
resource when the resource is busy, that process will either queue for
the resource or preempt the current process (causing that process to be
re-queued). One point that becomes very clear in the network diagram
is, the rate of flow through a certain path in the network will be
restricted to that of the slowest and/or busiest resource (the "bottle-
neck").

In general, a typical process will visit the cpu, then visit another
resource, visit the cpu, visit another resource, etc. We classify
resources as:

1) Serially reuseable: only one process at a time can use the
resource;

2) Concurrent: more than one process may share the resource
concurrently; and

3) Consumable: the resource is used a limited number of times
by a limited number of processes (e.g. a semaphore between
specific processes).

It is important that we note some of the characteristics of the most
important resources in the network of queues. It is well known that the
most limiting resource is the "bottleneck'", but what is not as well
appreciated is that THE OVERALL PERFORMANCE OF THE SYSTEM WILL TAKE ON
THE CHARACTERISTICS OF THE MOST LIMITING RESOURCE (at least in single

Paper 3105 3 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

jobclass systems). When this point is understood, the nature of many
performance problems becomes very clear.

The CPU, a SERIALLY REUSEABLE RESOURCE

On the HP3000 the cpu is a serially reuseable resource, as there is
never more than one process actively using the cpu at any given instant.
If there is more than one process requiring the cpu, all except omne will
be queued.

The HP3000 schedules processes for the cpu by a prioritization scheme.
The operating system maintains a queue for the cpu. Within this queue
are several "subqueues", a master queue (which I'l1l refer to as the M
queue), a foreground queue (the C queue), and two background queues (the
D and E queues).

In general processes in the M queue have fixed priorities, while pro-
cesses in the C, D, or E queues may have dynamically changing priori-
ties. The priority range of the M queue is fixed by the operating
system, while the range of priorities of the C, D, and E queues may be
adjusted by the "tune" command. The range of available priorities to
the C, D, or E queues must lie within the range of the M queue. It is
the intention (and the default) that processes in the priority range of
the C queue are higher in priority than processes in the D subqueue, and
likewise the D subqueue over the E subqueue.

Priority Preemption

The scheduling of the cpu is done by priorities. Any process in the M
or C queues becoming ready for the cpu will preempt the current process
using the cpu if that process is of a lower priority, D or E queue
processes, however, will not preempt processes in their respective
queues when becoming ready for the cpu, even if a higher priority.

Dynamic Re-Prioritization

Priorities of processes in the C, D, and E queues may be dynamically
adjusted by the operating system. When a C, D, or E queue process is
initially launched it is given the highest priority permitted for that
particular queue. Each time the process within that queue consumes more
cpu time than the current "filter" value for that queue it will be
dropped in priority (but never lower than the limit for the particular
queue). For D and E queues the filter value is specified in the tune
command (by the "maxquantum" parameter for the D queue). For the C
queue, the filter value may be constantly changing, as it is dependent
upon the C queue "average short transaction'" time. This average short
transaction time is recomputed each time a C queue process has consumed
the filter value in cpu time and is a candidate for reprioritization;
the average short transaction time is calculated by averaging the cpu
time consumed by previous C queue processes for a single transaction,
but if that transaction time is outside of the minquantum and maxquantum

Paper 3105 4 DETROIT, Mi




SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

parameters specified in the "tune" command, the nearest of the minquan-
tum or maxquantum is used for purposes of recomputing the average. By
default, and all other things being equal, a process in the D or E
subqueues will be permitted to consume about 3 1/3 times as much cpu
than a C queue process, before the process is a candidate for repriori-
tization.

Transaction Orientation

Processes in the C, D, or E queues will be raised in priority to the
highest available in their respective queue any time a terminal read is
performed. This implements an interactive '"terminal transaction"
scheme.

Temporary Reprioritization

There are certain cases in which the scheduling is temporarily modified
by a software resource. At present, if a low priority process has
obtained a SIR or data base and a higher priority process requests the
same resource, the low priority process will temporarily be raised to
that of the higher priority (in the IMAGE case it will never exceed the
highest priority allowed to C queue processes).

Service Times

Cpu service times of processes of course are extremely variable, and
depend upon the nature of the requirements of the particular process as
well as the requirements of the currently executing process.

Process Priorities and Actual Scheduling

The priority scheme used by the scheduler is intended to favor
interactive processes and processes with small cpu requirements (short
transactions). It will be most effective when the cpu is the system
bottleneck, however, if the system's (or certain jobclass') bottleneck
is other than the cpu, THE SCHEDULER'S PRIORITIZING SCHEME IS LIKELY TO
HAVE VERY LITTLE EFFECT on the actual assignment of resources.

MEMORY, a SHARED RESOURCE

Historically the use of main memory on multiprogramming systems has been
difficult to analyze. Strictly speaking it is a shared resource, but
the nature of the resource is such that it may limit the degree of
multiprogramming, that is it may limit the number of processes that may
be requiring service by other resources at a given time.

On the HP3000, memory management is handled in part both by the micro-
code and the operating system. Memory management is handled in terms of
segments. With the exception of special "bank 0" areas maintained by
and for MPE, all other addressable areas of memory are separable seg-

Paper 3105 5 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

ments. Some segments are locked into memory for quick access, most
segments, however, are "swapped" in and out of memory dependent upon
memory demand. There are now three types of segments: data segments,
code segments, and cache domains. Many of the system tables' data
segments are locked into memory and will never be '"swapped'. Some of
the operating system code segments, defined as "core resident", will
likewise never be swapped.

Most of the segments maintained by MPE on behalf of a user process will
be swapped in and out of memory as needed (actually a code segment is
never swapped out of memory, as it contents are not modified in the
course of execution).

Any time a process addresses an absent code or data segment the micro-
code detects its absence and causes an "absence trap'. The absence trap
causes the memory manager (dispatcher) to be invoked to resolve the
memory absence as well as to dispatch another ready process, if possi-
ble. (Cache domains are not known to the micro-code. Their management
is handled entirely by the software, but in a similar manner to code and
data segments).

The strategy that the memory manager uses to determine which segments
remain in memory and which segments are swapped is based upon a very
simple '"recent use" algorithm (not a '"least recently used" algorithm).
Each time a segment (code, or data) is referenced a bit is set by the
micro-code (cacheing software sets this bit for cache domains) indica-
ting that it has been recently accessed. Each time the memory manager
is cycling through memory, it checks this bit. If the access bit is off
(not recently accessed) and it has not already been swapped it will now
be set up for swap. If the bit is set (has been recently accessed) it
will be reset by the memory manager. Therefore if the memory manager is
able to cycle twice past a particular segment before a process has a
chance to access it, it will be swapped. If the memory manager cycles a
third time past a certain segment the region will marked available.

In addition to handling the swapping of segments as needed, the memory
manager is responsible for performing housekeeping chores otherwise
known as garbage collection. There are two different sets of rules the
memory manager follows with respect to garbage collection, local and
global garbage collection. Local garbage collection is performed any
time a segment is set to be swapped out and the free space is not large
enough to contain the new segment. Local garbage collection consists of
moving all non-frozen and non-locked segments to the outer edges of
their current bank. Frozen segments are those that are flagged as
currently '"non-swappable" and not permitted to be moved, since the I/O
systems use absolute addresses, a target buffer can not be permitted to
be moved. Locking a segment in memory indicates that' it cannot be
swapped out, but allows it to be moved as determined by the memory
manager. Code segments are frequently locked into memory to ensure that
any attempt to execute that code will not need to await a swap.

Paper 3105 6 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Global garbage collection is done only when the memory manager has
determined that there is a general "memory supply crisis" and the cpu
otherwise has nothing else to do (is paused). The memory manager de-
cides that there is a "memory supply crisis" whenever the time it takes
to cycle through memory looking for free space is less than the "min-
clockeycle'" setting of the '"tune" command. Global garbage collection is
an attempt by the memory manager to increase the size of the free areas
from largest to smallest.

Locked and frozen segments (especially frozen segments) make the work of
the memory manager much more difficult. When there is a large amount of
I/0 being performed on a system there will tend to be a large number of
frozen segments, which tend to diminish the value of local garbage
collection, and consequently increase the fragmentations of main memory.

If processes are in fact permitted to process according to process
priority, the '"recent use" algorithm will tend to best support highest
priority processes in respect to code and data segments, and cached
domains. If, however, due to a system (or jobclass) "bottleneck" at a
shared resource (other than the cpu) processes that tend to take "best
advantage' of that resource will be best supported by this algorithm in
respect to code and data segments, and cached domains. It is under
these circumstances that the memory management algorithm may dramatical-
ly fail to achieve the intended results, and ALLOW VERY LITTLE MANAGE-
MENT CONTROL OVER PRIORITY OF PROCESSING! Very I/0 intensive systems
with software disc cacheing, particularly those with multiple job clas-
ses, could find that the '"recent use" algorithm causes the overall
system to perform very poorly.

Aside from this general overview I do not intend to pursue this subject
any further, except as it relates to disc cacheing. Memory management,
disc cacheing, and shared buffering share an interesting characteristic,
namely that input and output rates are dependent upon the number of
processes. Before concluding this paper, we will look at a very in-
teresting problem that can develop from this characteristic, and may
have serious overall consequences on the performance of disc cacheing
and cached systems.

DISC I/0, SERIALLY REUSEABLE and CONCURRENT

The characteristics of disc I/0 are dependent both upon the hardware and
the software. So we'll quickly summarize both.

Hardware

Disc I/0, on the HP3000, can have the characteristics of concurrency and
serially reuseable, depending upon the configuration. In all cases, all
disc I/0's to one specific drive are always serially reuseable. 1In
general, an I/0 request and transfer must travel through a channel and a
controller --only one device on a channel or controller may be active at

Paper 3105 7 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

one time. So we may classify all disc drives on one channel as serially
reusable resources. If, however, disc drives have separate channels and
controllers, the disc drives may operate concurrently.

Manufacturers of disc drives generally publish the characteristics of
the disc drives that they manufacture. Of interest to us are those
related to performance, namely:

1) Seek Time: the time required to position the access arm,
containing the heads, at the cylinder with the specified
record. This is generally an average over the whole disc.

2) Rotational Delay: The time required for the requested
record to arrive under the read/write heads. This 1is
generally published as the time for one-half rotation.

3) Transfer Time: The time required to transfer a given block
of data, after the seek and rotational delay.

4) Controller Overhead: The time the drive spends on behalf
of an I/0 operation not due to any of the three preceeding
items.

For the HP793X drives HP has published the following characteristics
[HP]:

Function Average Time
Seek 24.0 ms
Rotational Delay 11.1 ms
Transfer time (1 kbyte) 1.0 ms
Controller Overhead 3.5 ms
Total Average Time 39.6 ms

As can thus be determined from the above averages, the maximum number of
disc I/0's per second to a 793X drive of truly random requests is about
25 (not considering the cost of system overhead). Although we have been
frequently told that we may expect as many as 30 I/0's per second from
this drive, on a '"busy'" machine with a high level of multiprogramming it
is far more likely that we will average closer to the 25 I/0's due to
the greater 'randomness' induced by I/0 requests being interleaved among
processes accessing many different files.

Channel Latency

Frequently rotational delay is referred to as "latency". I avoided
using this term as improvements to disc drive technology might make use
of this term somewhat ambiguous. Sometimes our biggest concern is the
"channel latency", the time a channel is held by a disc drive. Under

Paper 3105 8 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

past technology channel latency was roughly equivalent to rotatiomal
delay (actually it was equal to rotational delay plus transfer time).
Newer technology has made it likely that channel latency (on behalf of
one drive) has no correlation to rotational delay.

When multiple disc drives are on the same controller or on the same
channel it is obviously necessary to prevent simultaneous transfer of
data from/to several drives. For this reason it is necessary to employ
some kind of "lockout" strategy on any shared channels and or control-
lers. With past technology a drive would perform a seek if necessary,
obtain the channel and controller, await the data to arrive under the
read/write heads (rotational delay), proceed with the data transfer, and
finally release the channel and controller. That is in part why rota-
tional delay is an important characteristic of a given disc drive.
While seek time is far larger than rotational delay, it is only a factor
to those disc I/0's on that particular drive. However, rotational delay
(and transfer time) affects any devices (usually only discs) on the same
controller and/or the same channel.

More recent technology has attempted to reduce this channel latency most
notably by '"rotational positional sensing' (RPS).

Rotational Positional Sensing and Buffer Prefill

The HP793X disc drives have a feature called RPS for rotational po-
sitional sensing. The primary goal of this feature is to reduce the
channel latency by waiting as long as possible in the disc platter
rotation before trying to obtain exclusive access to the channel (this
requires some intelligence on the part of the disc drive and of course
would contribute to "controller overhead"). In theory this strategy
should be able to come close to reducing the channel latency to the
transfer time. In practice, this strategy has contributed to very
substantial reductions in contention between disc drives for a control-
ler or channel by substantially reducing the likelihood that the con-
troller or channel is busy. The actual benefit, of course, is very
environment dependent.

One of the problems with RPS is that if the channel or controller is
busy when the drive tries to obtain it, the drive will not be ready to
try again until another full rotation of the disc platter has occurred.:
With enough activity from several disc drives on one controller or
channel it is very possible that RPS WILL DEGRADE PERFORMANCE! Without
RPS a drive may be able to try several times to obtain the channel and
controller before the data is under the read/write heads; without RPS
since it has waited until the last possible moment it must wait an
additional rotation before it can try again. The additional rotation
that an RPS drive must wait is a full rotation which of course is double
the average rotational delay. So just one miss at least triples the
average rotational delay. In short RPS reduces channel/controller con-
tention thereby increasing throughput on the channel/controller, RPS,
alone, is most effective when used on very busy channels/controllers

Paper 3105 9 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

with multiple disc drives that are not approaching their point of sat-
uration.

In order to reduce the potential for degradation with RPS, HP has also
implemented an internal buffer on the 793X drives. When a disc transfer
is 4096 bytes or less the data can be transferred into this internal
buffer which will eliminate the need to wait another rotation if the
channel/controller is busy. The drive may attempt to obtain the
channel/controller more frequently. It may be worth keeping in mind
here that large transfer requests either due to large file block sizes,
large multi-record transfers, and/or large fetch quantums set with
software disc cacheing that exceed the internal buffer size are trans-
ferred without use of this buffer. A very busy system with such large
transfers may (or may not) benefit from disabling RPS if the disc drives
are approaching their saturation point.

Controller Cache

One of the latest enhancements available to 793X disc drive is that of
"controller cache'. The controller cache is a megabyte of memory used
for '"buffering'" disc transfers. The intention of the controller cache
is to reduce the number of seeks and rotational delays for process' read
requests by transferring pages (4096 bytes) of requested disc regions to
memory contained in the disc drive. Each time a block of data less than
or equal to 4096 bytes is requested from the drive it will search its
pages of cache for the requested block. The value of this strategy is
very dependent upon the nature of I/0 transfer requests, but is very
likely to improve performance in most environments that are not cur-
rently benefiting from disc cacheing.

Software

Since MPE-IV, the HP3000 operating system has begun to use an I/0 pri-
oritizing scheme. In general when a process posts an I/0 request it is
given a priority equivalent to its process' priority, which of course
should favor the I/0's of higher priority processes. Any resource other
than the CPU, which happens to be the limiting system (jobclass) re-
source and makes adjustment to process priorities (SIRS, and IMAGE data
bases) MAY EFFECTIVELY ELIMINATE ANY BENEFIT FROM THIS I/0 PRIORITIZING
SCHEME! For example, a low priority job accesses a data base heavily
used by high priority processes, in all likelihood each time the low
priority job obtains the data base a high priority process will attempt
to obtain it, be impeded, and temporarily raise the priority of the job
to the impeded process' (high) priority, ensuring that any disc I/0's
posted on behalf of the job are placed at the higher priority. (See the
"Temporary Reprioritization' paragraph in the CPU section).

Although typically small in comparison to the service times due to
hardware, the operating system consumes some overhead in setting up the
I/0 (which usually requires process dispatching also, when the current
process is blocked) as well as processing the interrupt that occurs when

Paper 3105 10 DETROIT, Ml



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

the I/0 has completed (which also may require process dispatching, to
reawaken a blocked process).

DISC I/0 and the FILE SYSTEM

The MPE file system is a process' interface to performing input, output,
and control operations to peripheral devices. We will not concern
ourselves here with devices other than discs, but much of what is con-
tained here could apply equally as well to other devices.

Now that we have some knowledge of the characteristics of the 793X disc
drives we can examine various ways in which we might affect the per-
formance of disc I/0. From what we have seen we can conclude that it is
desirable to maximize the likelihood that sequential data transfers
reside at physically 'mear" locations on the disc drive, achieve a good
balance (spread) of the total I/0 across available drives, and/or reduce
the number of data transfers.

Maximizing Contiguously Located Data Transfers

The MPE file system allows disc operations only on files. A file is
composed of from 1 to 32 contiguous areas of disc space called extents.
The maximum number of extents that a file is permitted is determined
(specified) at file creation time.

The fewer extents a file has, the more likely that the data will be
located more contiguously on the disc platter (with large extents,
however, it may be much more difficult, or impossible, to find enough
contiguous space). Assuming no competition with other I/0 requests to a
particular drive, a sequential read of a one extent file should require
fewer "seeks" than a sequential read of a 32 extent file. But this is
not as important as we may have heretofore been led to believe because
at worst it will save 31 "seeks'", and of course with a '"busy system" and
'"high level of multiprogramming',the likelihood of exclusive access to
the particular drive becomes very remote.

Achieving Balance of I/0 Across Disc Drives

Much has been said about the value of spreading (balancing) disc I/0
requirements across disc drives, and there are two very good reasons for
doing this: 1) further concurrency (parallelism) of various I/0, and 2)
reduction of competing and interleaving I/0 seeks.

Further Concurrency of I/0

It is very obvious that when there are several outstanding I/0 requests
that those which happen to be on different drives can be processed in
parallel (concurrent). What is not so obvious is that if there exists a
bottleneck in the path to (and including) a particular disc drive (or
set of disc drives), no amount of effort spent trying to move files

Paper 3105 11 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

around will result in improvement in performance to the processes affec-
ted by that bottleneck (unless of course, the other bottleneck is some-
how related to activity on the disc drive).

Reduction of Disc Seek Time

A good balance of I/0 spread across available drives can also help to
reduce seek time. For example, if several processes are performing
serial reads concurrently on one particular drive, their requests will
tend to interleave each other increasing the likelihood of a seek being
required upon each access.

On a high volume system, no amount of file movement is likely to prevent
these interleaved seeks(although we may be able to reduce them); on a
system that is highly variable in demand, such efforts will likely
result in larger variations in system performance.

Reduction of Disc Accesses

It is also quite obvious that reduction of disc accesses will provide a
corresponding improvement in I/0 performance. Unfortunately the most
obvious way of accomplishing that is to stop processing as much data,
but this solution does not seem to be very popular.

Fortunately there are several more popular ways of reducing disc ac-
cesses, one of which is relatively easy to implement, and several others
somewhat more difficult to implement (and somewhat more dubious in
value).

Buffered Disc Access

Under default conditions a process' access to files are buffered by the
file system, which simply means that the file system utilizes an area of
memory (frequently an extra data segment, but sometimes an appendage of
the process' stack) to stage record transfer to and/or from the disc
drive.

With buffered access to a file, the file system transfers data one block
(physical record) at a time between the disc and the file system buffer.
Each extent of a file is composed of one or more blocks (physical
records), and each block is composed of one or more logical records (set
of data items). At file creation time the logical record size and block
size (actually the blocking factor) are set (specified). Using buffered
access, the file system will handle blocking and deblocking of logical
to physical records for the requesting process.

Frequently to the detriment of performance, the default blocking factor
(logical records to physical records) assigned by the file system at
file creation time can be very inefficient both in terms of I/0 per-
formance and disc space usage. Since buffered file access is performed
on block at a time, the specification of blocking factor can have a very

Paper 3105 12 DETROIT, Mi



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

large impact on performance as it will determine the number of disc
accesses. In fact with a sequential read, simply doubling the blocking
factor can be expected to reduce disc I/O wait times by about half
(assuming no large queueing delays). Since disc I/0 wait times are
frequently the largest component of processing time, APPROPRIATE BLOCK-
ING FACTORS MAY CONTRIBUTE MORE TO IMPROVING PERFORMANCE THAN ANY OTHER
FACTOR.

So shall we proceed to double all blocking factors? As you might have
expected, there are some consequences to be considered. Doubling of
block sizes will also double the requirement for file system buffers.
If this is going to pose a dramatic impact on memory requirements then a
compromise may be in order, or we may wish to evaluate the number of
buffers assigned to the open files.

Choosing the Number of Buffers

At file open time the file system allows a process to specify the number
of file system buffers that will be used during the course of that
processes' activity against the file. No discussion of blocking factors
should be complete without some discussion of a closely associated
factor, namely the number of buffers to be used.

Since the file system cannot possibly predict the pattern of access to a
file that a process will be using, by default (with a few exceptions)
the file system will assign two buffers for each file open by a unique
process. In general this is likely to provide good performance for
sequential access to files.

With buffered access, the file system will attempt to minimize the disc
I/0 delay by performing "anticipatory reads" and '"no-wait' writes to a
file. Every attempt will be made by the file system to keep buffers
filled with "fresh'" data. The default case of two buffers allows one to
be processed while the other is either being filled or emptied. This
works very well for sequential access, as no special knowledge is re-
quired by the file system to determine the next record to access, or
whether or not a process is finished processing a block.

In many types of '"direct'" or "random" access to a file, however, the
efficiency of the file system's strategy to reduce I/0 waits is at best
reduced because it cannot possibly know the future pattern of access to
the file. In such cases, relying upon the default number of buffers
assigned by the file system may not be the best approach. For truly
random or largely variable access to a file, an increase in the number
of buffers is probably in order. The larger the number of buffers, the
greater the likelihood that a requested record may already be in a file
system buffer (a "buffer hit"). The more frequent '"buffer hits" occur,
the fewer disc accesses required.

Paper 3105 13 DETROIT, Mi



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

(The file system provides the "FREADSEEK" intrinsic to allow random
accessors, using buffered access, to perform their own "anticipatory
reads").

As a general rule we may decide that files that are sequentially ac-
cessed should have large blocking factors and few buffers (but not less
than two), and files that are to be "randomly" accessed should have
smaller blocking factors but many buffers.

Frequently there is a special case to consider relating to temporary
scratch files. In order to circumvent the limitations of the small
stack size on the "pre-spectrum' HP3000's, or to allow for processing of
infinite (or more properly indefinite but potentially very large amounts
of information), it is often a good strategy to use a scratch file to
temporarily stage this information. Often it is possible to specify a
block size (blocking factor) large enough such that no disc accesses
will be required (except for initialization and swapping) in the usual
case no matter how many reads or writes the process is performing
against the file. In this case, for constant access to the same block
more than one buffer is not helpful and will only waste memory.

Sharing of Buffers

Contrary to popular belief simple shared access to a file does not imply
the use of shared buffers. When using file system buffering the only
time buffers are shared is when they are opened with "multi" or "gmulti"
access (message files and spooled device files always use "gmulti"
access and "multi" access respectively).

Using shared buffers can further improve performance. In the sequential
access case, by using shared buffers, we can frequently greatly increase
the blocking factors without increasing (in fact usually decreasing) the
memory required by file system buffers (of course with more than one
accessor it is likely to be desirable to request more than the default
of two buffers). In the random access case, shared buffers can allow
one to increase the number of buffers that one process may access with-
out increasing (or again frequently decreasing) the memory require-
ments, and also increase the number of "buffer hits", as each process'
view of the buffers will contain the other processes' view as well.

Now before you rush off to start changing file commands or file opens to
force the sharing of file system buffers, be aware of several things.
When any updating is being done to a file with shared buffering, inade-
quate locking strategies are far more likely to cause problems than with
the non-shared buffer case (even though the locking is just as inade-
quate in either case). Also, shared buffer access causes the file
system to treat the file as a '"multi-access'" file, and as such requiring
a special table entry. Up until recent operating system releases there
may have been a very finite limit (if I recall correctly it was 50 at
one time) to the number of "multi-access" files that could be opened;
and worse yet, at one time even when such files were closed, 'room" was

Paper 3105 14 DETROIT, Ml



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

not made for other "multi-access" files (I assume this is not currently
the case as $stdin and $stdlist, when spooled, are also "multi-access'
disc files).

Unbuffered Disc Access

In addition to the default method of buffered access to files, the file
system allows "unbuffered" access to disc files. What this means is
that all transfer will be made by the file system directly between the
process specified area and the disc. There are several reasons why one
might choose to use unbuffered access, and (as you no doubt have come to
expect, there are implications associated with each of them).

The first reason one might choose to request unbuffered access might be
to eliminate the additional overhead inherent in the intermediate
staging of the data. This additional overhead always includes the
additional cpu time for the extra memory to memory moves. If the file
system buffer is not in the same data segment as the process' stack
(which is frequently the case), the extra data segment that contains the
file system buffers may be temporarily absent from memory (which will
require an additional I/0 to retrieve it) before any logical or physical
I/0 can occur.

Many past discussions on this topic have concluded that unbufferd access
to a file is always superior, but this is not so! Without building a
large amount of '"scaffolding'" to implement it, unbuffered file access
does not permit sharing of buffers between processes. While the argu-
ment regarding swapping of extra data segments containing file system
buffers is not untrue, it doesn't tell the whole story either. When the
file system chooses to use an extra data segment for file system buf-
fers, it will attempt to £fill any and all of these data segments with
file control blocks for this and other processes' files. Where there is
a large amount of control blocks for various files, there will be more
likelihood that this data segment is present in memory (even more likely
than a particular process' stack) due to the amount of sharing. And a
(potentially serious) problem with unbuffered access is that, when a
physical disc I/0 is posted the source or target data segment is '"fro-
zen" in memory until the transfer is complete. Data segments which are
"frozen" in memory create two types of problems for memory management.
A "frozen'" data segment cannot be "swapped" out of memory if the space
is needed for something of higher priority, and a "frozen'" data segment
cannot be moved by the memory manager during the process of local or
global "garbage collection" (housekeeping or cleanup). In general it is
preferable that data segments which are '"frozen" be those that are
shared (as it is reasonble that this data segment will shortly be needed
by another process), and a shared data segment containing file system
buffers can reduce the overall number of data segments that need to be
"frozen" (as there could be many I/0O's pending against the one data
segment).

Paper 3105 15 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

When looking at buffered access to files previously, we discussed the
"anticipatory reads" and '"no-wait writes" performed by the file system.
With unbuffered access to files, the file system does not perform them
on the process behalf unless specifically requested to do so. In order
to specifically request "no-wait'" I/0 when using unbuffered access, a
process must be privileged, and it would be necessary to set up its own
"anticipatory reads'.

Unbuffered access allows a process to request transfers to and from the
disc in sizes not necessarily equal to the block size of the file
(multi-record I1/0). This feature has been indicated, in the past, to
always be an advantage when used to transfer multiple blocks per re-
quest. This statement, likewise, while not untrue, also does not tell
the whole story. With respect to I/O performance what matters most is
the number of transfers (which of course depends on the size). It is
far easier to reduce the number of transfers by adjusting the blocking
factor than setting up the appropriate "scaffolding" to handle mutiple
block transfers and the associated blocking and deblocking of records.
(A very valid use of mutiple block transfers might be the way it allows
for varying transfer sizes, i.e., on line processing accesses the file
randomly, so block transfers should probably be small, but batch proces-
sing accesses the file sequentially, thus transfers on its behalf should
be large). We could set small blocks and use buffered access for in-
teractive use, and set up batch processing against the file to use
"multi-record I/0" to achieve the benefits of larger block sizes.

One additional point to make regarding 'multi-record' I/0, is that its
full advantage is not achieved unless the block size of the file is
equal to or an even multiple of the size of one disc sector. Any time
"multi-record" I/0 requests are made against a disc file whose blocks do
not begin and end on sector boundaries, the actual number of transfers
will not be less than the number that would occur with single block
transfers (each of the tranfers set up by the file system in this case
would be quickly one right after the other, so there is not a large
window for other requests to interleave this one). However, if the
blocksize is an even multiple of the sector size of the disc, the file
system is able to retrieve multiple blocks with only one actual trans-
fer.

(The latest versions of MPE-V allow for buffers up to 32k in size,
previously the limit was 1l4k. At the 14k limit, multi-record I/0 could
be utilized to advantage by allowing one to exceed the 14k limit. But
with the new 32k limit, it is more likely that a file system buffer
would have room for more data than would be left within a process' own
stack).

SOFTWARE DISC CACHING, a SHARED RESOURCE

MPE Disc Caching is an optional feature available on some of the HP3000
systems to help to improve the disc I/0 performance of the system.

Paper 3105 16 DETROIT, M



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

I will not provide much detail here on the operation of disc caching as
there is much in the literature about it. For more information I might
suggest [CARROLL] as a good reference.

In very general terms, disc caching's goal is to reduce the '"disc I/0
waits'" that processes would otherwise encounter by:

1) transferring larger amounts of data from the disc drives
into available main memory, to reduce the number of transfers;

2) increasing the likelihood that frequently accessed files,
or portions of files, will generally be available in main
memory; and

3) minimizing the likelihood that processes be forced to wait
on a disc write by allowing '"posts' to occur and be processed
at a "background priority'".

In very simple terms, disc caching, at its best, tries to make all disc
I1/0 act as if it were performed with "multi-record", '"no-wait", and
"anticipatory" I/0's. In fact, a system that is enjoying a large amount
of benefit from disc caching is not likely to benefit much from ex-
plicit use of "multi-record", "no-wait", and/or "anticipatory I/0's"
(except. in terms of CPU time). This does not mean to suggest that these
features should no longer be used, as explicit use of these features
will allow sustaining far more growth on the system than could be
achieved with caching alone (as currently implemented).

Costs of Disc Caching

Disc caching uses available regions of main memory, which are handled
the same as code or data segments by the memory manager. So disc
caching works in competition for other main memory needs, as well as
increasing the workload of the "memory manager'.

Besides the increased work of the memory manager, additional effort must
be spent for each file system I/0 request to search for the requested
data in the existing cache domains, as well as additional cpu time in
memory-to-memory moves from cache domains to file system (or user 'no-
buf") buffers.

Additional Caching Tips

In the literature that I have seen to date, a very important consequence
of disc caching's implementation is, at best, not clear; and since it
has very important implications we will take the time to emphasize it

here.

Under the usual circumstances cache domains created on behalf of a read
request will be far larger than those of a write request (the "fetch

Paper 3105 17 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

quantums" help determine the '"read domain" size, and in general the
block size of a file will usually determine the size of a write domain
to be posted upon behalf of a process). Caching, however, makes no
distinction between '"read domains" and 'write domains" (as I have domne
here).

Since caching will '"map" any blocks to be posted to an existing domain
that has the proper "disc image'" (not to be confused with HP's use of
the term "mapped domain'"), and "flag" that domain as '"dirty'"; any subse-
quent records that are to be posted to that same domain will be
"blocked" ("write hit") until the previous posting(s) has completed.

The consequence of this is that any process which performs reads before
writes (e.g. IMAGE) is very likely to be subject to a large proportion
of "write hits".

IMAGE, a SERIALLY REUSEABLE RESOURCE

All IMAGE data bases prior to TURBO-IMAGE are serially reuseable re-
sources, that is there is no concurrency permitted between processes
accessing a particular IMAGE data base. This characteristic of IMAGE
data bases has been frequently been referred to as '"single threading".

With TURBO-IMAGE comes some possibility of concurrency. Although, at
the time of this writing, I have not yet had the opportunity to work
with TURBO-IMAGE, as I understand it TURBO-IMAGE will allow concurrency
only during serial reads and non-structural updates. Any other type of
read, write, or delete will not permit concurrency. In general I expect
this to be a very small window for concurrency during heavy interactive
data entry. We certainly could envision some environments that could
see a large improvement, however.

An IMAGE data base is composed of a set of logically related files. As
IMAGE is implemented, it is actually a layer of structure and protocol
imposed upon the file system. Since a large part of IMAGE processing
relates to file I/0 we should examine the details of its operation.

In order to limit the length of this paper, we will be presuming a
certain level of background in the internals of the IMAGE data base
management system. If this is not the case, or possibly for purposes of
review before proceeding, I would suggest reading the IMAGE/3000 HAND-
BOOK [GREEN] which is an excellent reference source for details of
HP3000 IMAGE data bases.

In addition to the "single-threading" of IMAGE data bases, there are
several other characteristics, most notably master "synonyms" and detail
"sort fields" and "delete chains" which can substantially affect per-
formance.

Paper 3105 18 DETROIT, Ml



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86
IMAGE and the File System

As I indicated, IMAGE may be thought of as an imposition of structure
and protocol on the existing file system. From what we have seen about
the file system we can immediately see several points worth noting where
IMAGE performance cannot quite achieve the performance that could be
attained with standard file access.

IMAGE accesses the data set files in an unbuffered manner (from the
point of view of the file system). From our knowledge of the file
system we know that we forgo the file system's ability to perform
"anticipatory reads" and "no-wait" writes (TURBO-IMAGE will allow 'no-
wait" writes when a "deferred output" option in selected). There is
currently no way of implementing "anticipatory reads'" within IMAGE.

Additionally (with IMAGE versions prior to TURBO-IMAGE) the number of
and size of buffers can be very limiting. Pre-TURBO implementations
contain all information on data set and item names, security, locking
and buffers in one extra data segment. Since this is all placed into an
extra data segment no larger than 32k, we may be very '"buffer con-
strained". TURBO-IMAGE places the buffers into a separate data segment,
so this alleviates the buffer constraint somewhat (it should be possi-
ble, and helpful, under TURBO, to either increase the size of IMAGE
buffers, the number of IMAGE buffers, or both). This single enhancement
of TURBO-IMAGE, while not especially emphasized to date, is probably the
MOST IMPORTANT performance enhancement (and possibly the only) that
large and heavy IMAGE processing shops will enjoy.

IMAGE and Software Disc Caching

Unfortunately IMAGE and disc caching are frequently not an optimal fit
for each other. Depending upon the setting of the random fetch quantum
(default is 16 sectors or 4096 bytes) and the block size of the data
set, we can expect that since IMAGE always performs a read of a block
before a write to that block, that a large fetch quantumwill favor a
large number of "read hits" (good) but also favor a large number of
"write hits" (bad). If we try to improve the "write hit" ratio (reduce
it) by reducing the fetch quantum, we will be making a corresponding
decrease in the "read hit" ratio. Since different data sets and dif-
ferent data bases will have different characteristics of access, it is
very difficult (maybe impossible) to know exactly how to achieve optimum
read and writes (certainly to attempt to properly do so would require a
very large amount of data collection and analysis).

Additionally, the user label which is used to hold control information
in each data set, is very likely in a busy data set to continually cause
a'write hit" as each "put' and "delete'" for all users are continually
re-posting it.

Regardless of the mode of read access to a data set, IMAGE performs a
file system "direct read" of the file; the consequences of this are that

Paper 3105 19 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

even in sequential reads of large data sets the caching "random fetch
quantum" will be used (as opposed to the caching "sequential fetch
quantum").

And finally, IMAGE (as does KSAM) uses the serial write queue (if no
deferred output option is selected). This can be a very serious conse-
quence, as its effect is to serialize all writes to any and all IMAGE
data bases. In other words, under standard shared access environments
while disc caching is in effect, ALL writes to ALL data bases are
"single threaded". If using disc caching, any efforts to reduce the
single threading by "splitting'" the number of data bases, is at best
reduced in write intensive environments.

Synonyms
Assuming a good "hashing algorithm" and/or a valid random distribution
of search item values in a master data set, there is a relationship

between the ratio of free space in the data set to the ratio of synonyms
to be expected ([VOLOKH a]):

S =100 % (1 = ==-=---=-u- )

Where S is the percentage of synonyms
F is the ration of the number of entries to the capacity
e is the base of the natural logarithm

NUMBER of SYNONYMS
as a Function of Data Set Percent Filled

Percent of Records that are Synonyms

40

32r

24r

0 1 A ! le
0 20 40 60 80 100

Percent Full

Paper 3105 20 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

The primary effect of synonyms that is of concern to us is the effect
that synonyms have on I/0 performance. In fact there are two ways in
which synonyms impact I/0 performance: 1) when performing a calculated
read by search item value (e.g DBGET mode 7) a synonym chain may need to
be traversed to find the appropriate entry; and 2) when adding a new
entry (i.e. DBPUT) a synonym may well require one or more '"probes"
(forward sequential reads) to find an empty record to use.

EFFECT of CAPACITY on NUMBER of SYNONYMS
For CONTROL-MASTER of MANUF.DATA.SYSTEMS

2000}
1500}
1000}
soo}
€L 50 3600 %50 3760 3750 3800

Capacity

This figure is a plot of the total number of synonyms in a given data
set, with a character type search item value, for various capacities
(the capacity, of course, being a parameter to the "hashing algorithm").
We have encountered quite a bit of discussion over the last several
years regarding the choice of capacity for reducing master data set
synonyms. Suggestions have been made that prime numbers do not ensure
the best distribution of synonyms. By trial and error I'm sure that you
will find that there are other capacities (non-prime) which improve
synonym distribution, however, there is no known sequence which can be
guaranteed to work as well as prime numbers typically do. Therefore, at
present, if one is not satisfied to use prime capacities, trial and
error will be the only way of choosing an acceptable alternate.

Clustering

It appears, in practice, that "clustering" of (contiguously located)
records seems to be far more dependent upon capacity than the absolute
number of synonyms. Clustering problems can be expected to have a much
larger impact on performance than synonyms alone. The following figures
represent a pictoral view of an actual data set, with actual data, and
the clustering for two selected capacities:

Paper 3105 21 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86
RECORD DISTRIBUTION at a CAPACITY of 3584
For CONTROL-MSTR of MANUF.DATA.SYSTEMS

Number of Records
1 4 pr— —

12}

Kainintninininisiiiinianans

0 50 100 150 200 250 300 350

Block Number
CLUSTERING PROBLEM

RECORD DISTRIBUTION at a CAPACITY of 35384
For CONTROL-MSTR of MANUF.DATA.SYSTEMS

Number of Records
BTl ML L

0 50 100 150 200 250 300 350

Block Number
. REASONABLE DISTRIBUTION i
Note how radically different the spread of records is, even though the

tested capacities are very near in value. The first one represents a
very serious clustering problem, which will have a very dramatic impact
on the addition or deletion of records as many physical I1/0's will
frequently be required to find an empty location for a synonym or to
"migrate" an existing synonym.

One of the frequent "rules of thumb' widely circulated, is that a master
data set should not be permitted to exceed 80% of its capacity. The
object of this rule is to minimize synonyms. As we have indicated, by
far the most significant problem relating to synonyms is 'clustering" or

Paper 3105 22 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

contiguously filled blocks. For this reason wouldn't the rule be better
replaced by a rule that suggested we allow the ratio of free space to be
proportional to the reciprocal of the blocking factor? If this rule
were followed we could (assuming a good spread of records) always have
one empty record per block. For example, with a blocking factor of 7 we
might want 1/7th of the records to be empty, or with a blocking factor
of two our goal might be to leave half of the records empty. With this
rule in place, the cost of logical "probes" would be very negligible.

Hashed Access

All of the IMAGE intrinsics that access or manipulate records in a
master data set must be capable of performing a calculated read, which
is performed by "hashing'" the value of the given search item to an
address and comparing it to the search item value in the record at that
address. If a record exists at that location but its search item value
does not match that of the given search item then the synonym chain (if
any) must be traversed in like manner until either the record is found
or the end of the synonym chain is encountered. There are two possible
circumstances that may be encountered with respect to a calculated read
with synonym entries: 1) the whole synonym chain must be "traversed"
(read) in order to determine that the given search item value definitely
does not exist; or 2) on average half of the synonym chain must be
traversed (read) in order to determine that a given search item value
definitely does exist.

Again assuming either good "hashing" and/or a valid random distribution
of search item values in a data set, from the ratio of free entries in
the data set we can expect the logical reads for an 'unsuccessful'" find
of a given search item value to be [KNUTH a]:

IR = (e)F+F

Where LR is the number of logical reads expected
F 1is the ratio of the number of entries to the capacity
e 1is the base of the natural logarithm

Further assuming good "hashing" and/or a valid random distribution of
search item values in a data set, the ratio of free entries in the data
set can also be used to predict the number of logical reads for a
"successful'" search of a given search item value to be [KNUTH b] and
[VOLOKH b]:

LR =1+ ---

Where LR is the number of logical reads expected, and
F 1is the ratio of the number of entries to the capacity

Paper 3105 23 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Of far more potential consequence than the logical reads required in a
successful or unsuccessful traversal of a synonym chain, is the number
of logical "probes'" (records read while looking for an empty entry)
necessary to locate a free entry when trying to add a new synonym entry
or "migrate'" an existing synonym. As you might expect, we can also
predict this” making the same random assumptions [KNUTH c]:

Where LP is the expected number of logical probes
C 1is the capacity of the master data set, and
E 1is the number of entries in the data set

The following figures represent the expected logical I/0's (reads or

""probes") to handle the successful search, unsuccessful search, and
""probes'" for synonym entry or migration:

LOGICAL READS for a SUCCESSFUL ACCESS
Over Data Set Percent Full

Logical Reads

1.6}

L L L L
0'00 20 40 60 80 100

Percent Full

Paper 3105 24 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

LOGICAL READS for an UNSUCCESSFUL ACCESS
Over Data Set Percent Full

“s_ogical Reads

1.4}

1.2}

1

.8}

s}

.4}t

.2

1 A I — 1

0-95 20 40 60 80 100

Percent Full
LOGICAL PROBES OVER DATA SET PERCENT FULL

25Logxcal Probes

20F

10F

0 L " " L
0 20 40 60 80 100

Percent Full
Once again, as you can see, the performance cost of synonyms is largest
in the logical "probes'" case (related to clustering). For randomly
distributed data sets the successful and unsuccessful "logical reads"
can be expected to be a very negligible cost.

A "DBFIND" or "DBGET mode 7" must perform the logical read steps (which
will either be successful or unsuccessful). A "DBPUT" must start by
performing the logical read steps (which could be successful or unsuc-
cessful) and if unsuccessful will need to perform the logical 'probes'
steps each time the new entry is a synonym to an existing entry, or a

Paper 3105 25 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

primary to another entry exists at the primary hashed address for the
new search item value.

Detail Data Sets

As we know (or are assuming we know) the use of a sort field on a detail
chain can impact the I/0 performance of a detail data set. We will not
go into much depth here (again I'll refer you to the IMAGE 3000 HANDBOOK
[GREEN a]). If a sort field is used on a detail chain we might look at
the results in three ways: 1) the records are added in already sorted
order, 2) the records are added in a non-sorted and truly random order,
and 3) the records are added in reverse sorted order.

If records are added in already sorted order no additional logical (or
physical) 1/0's are ever required to add the entry. If records are
added in a truly random order, each additional entry will require the
additional physical reads of, on average, half of the chain length
existing at the time of each entry. If records are added in reverse
sorted order, each addition will require physical reads of all records
on the chain existing at the time of entry for each entry.

The "delete chain' maintained in a detail data set when entries are
deleted can also impact the I/0 performance of an IMAGE data base. The
ultimate effect of the delete chain is that entries placed into these
deleted locations will tend to be widely distributed, increasing the
likelihood that each logical I/0 will require a physical I/0.

The Data Set Control Record

It seems that very little attention has been paid, in other discussions,
to the IMAGE data set control record (located in the ''user label" area
of the file). There is an important consequence to this record that
should not be overlooked, namely that when a data base is accessed in
any "non-deferred output'" mode, each "PUT" or "DELETE" to the data set
will cost an additional physical I/0, just to update the control record.
And what may be of even more consequence is that, for large data sets,
the fact that this record is constantly being updated along with the
standard records, a large data set may always require two (slow) disc
"seeks" within the course of one "PUT" or "DELETE" even if no other
processing is occurring on the same disc drive.

IMAGE Block Sizes and Buffers

When a data base is created, IMAGE permits some (limited) control over
block sizes with the schema '"$Control Blockmax'. Maximum block sizes
may be set from 128 to 1024 words per block. In general, the same
considerations of I/0 performance relating to the file system would
apply equally as well here, so we will not pursue that aspect again.

As we would expect, typically a large number of buffers (obtainable
through small block sizes) favor interactive use in a multi-user

Paper 3105 26 DETROIT, Ml



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

environment, and large blocks favor batch-type processing (where there
is little concurrency against the data base). Unfortunately, as with
standard file system access, IMAGE is not flexible enough to allow both,
so we must either compromise or lean in one direction or the other.

Depending upon the linkages involved, a potentially large number of
buffers may be required within the course of a single intrinsic. For
example a '"worst case' DBPUT to a detail set could require:

(4 * auto masters) + (1 * manual masters) + (2 * paths) + 1.

The point that this emphasizes is that, particularly during interactive
use, we need to ensure a large supply of buffers. A shortage of buffers
can cause serious performance degradation. The performance degradation
due to a "buffer supply crisis" is very seriously compounded when ILR is
used, as it significantly increases the I/0 requirements of ILR (only
with a "put" or "delete'").

Even with the control afforded by IMAGE over the definition of block
sizes, IMAGE frequently does a very poor job of taking advantage of the
block sizes of which it may be capable for some of the data sets. For
this reason, performance of an IMAGE data base can be improved by using
up some of this wasted space that IMAGE may leave at the end of a block.
This can be accomplished by a modification of the "root file'" before
DBUTIL is used to create the data base, or optionally can be performed
more easily with third party software.

Comments on "Single Threading'

Much has been said about the effect of "single threading" of IMAGE data
bases in the past. And much disappointment has been indicated in regard
to little alleviation of this problem with TURBO-IMAGE.

We should not ever be alluded into thinking that there can ever be full
concurrency when structural elements of a data base are being updated in
a shared environment while ensuring integrity. Certainly others have
succeeded in increasing the 'threads of control" by reducing the '"amount
of structure'" that must be held exclusively.

If the "single threading" were wrapped around maybe a few hundred
thousand instructions on a one MIP machine, the consequence would be
relatively small. In fact the "single threading" is wrapped around
possibly a very large number of disc I/0's, which due to the slow disc
I/0 transfer rates, can cause very serious performance consequences. If
IMAGE were structured to allow concurrent 'no-wait" I/0's to be occur-
ring in the course of a "PUT", the time the data base is held exclusive-
ly could be reduced to very near the time of two I/0's regardless of the
structure involved (assuming data sets were located on different disc
drives). This would not only require a change to IMAGE to implement the
concurrent I/0's, but could also require a change to the file system to

Paper 3105 27 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

allow several '"no-wait" I/0's against the same file. The greatest
benefit of such a strategy would be that the larger systems performance
with IMAGE (in terms of I/0) would not differ significantly from the
smaller systems.

Predicting the Performance of IMAGE

The formulae we have looked at, are in terms of "logical I/0's". Of
concern ig the "physical I/0's" actually required. '"DBLOADNG" and
"HOWMESSY"? can provide us the information necessary to convert the
"logical I/0's" to "physical I/0's" by way of the "inefficient pointers'
values for each data set.

The first effort at trying to predict and/or improve IMAGE performance
should be to ensure that master data sets characteristics are in fact
reasonably near the expected characteristics (from the preceding formu-
lae), and if not, to make the appropriate corrective action.

When satisfied with the actual data set characteristics, the formulae we
have looked at, adjusted by "inefficient pointers" and/or 'block fact-
ors", should give us a very reasonable estimate of the number of I/0's
required for various IMAGE operations (remember that the I/0's are the
greatest elapsed cost of IMAGE, and all shared logical writes are equal
to one physical write). At first it might seem that the calculations
might become a bit tedious, but I might suggest that an average program-
mer should be capable of creating a program within an hour to make the
appropriate calculations, and which could even determine (by 'DBINFO")
existing linkages.

OTHER RESOURCES

There are potentially several other resources that may be of concern
whether they be hardware, software, or a combination of both. We should
be aware that others exist, but we will not concern ourselves with any
others at this time.

2. QUEUING THEORY and QUEUING NETWORK ANALYSIS

Queuing theory is a branch of applied mathematics which studies waiting
line processes through the use of mathematical and/or simulation models
to aid in determining the effect of queues, to help understand fluctu-
ating demand, and potentially enable one to better control provision of
services.

Queuing network analysis, on the other hand, is a close relative or
subset of queuing theory; its advantage is that it restricts itself to
networks of queues such as we find in computer systems, but does not
require a detailed understanding of queuing theory to successfully

Paper 3105 28 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

apply. When the appropriate queuing networks from a computer system are
chosen, queuing network analysis allows for surprisingly accurate and
efficient evaluation. For more information on the subject of queuing
network analysis, I would recommend [LAZOWSKA].

Considerable progress has been made in queuing network analysis in
recent years toward a method of developing very accurate performance
models of multiprogramming systems. In general a validated model can be
very useful in calculating or gaining insight into performance metrics
that have not been or cannot be accurately measured. And of course,
perhaps more importantly, a validated model can be extremely useful for
purposes of prediction. Such models can frequently be capable of pre-
dicting throughput and utilization to within 5% of the_actual, and mean
lengths and response times to within 25% of the actual-”.

The mathematics of queuing theory/queuing network analysis are well
developed and understood, the difficulty lies in the proper application
to the system under study. This may require a very deep appreciation of
the internal characteristics of each of the components of the system
under study (although frequently many details of the system can be
ignored while still successfully creating an accurate model) along with
techniques that are best polished through experience.

While it may be unfortunate that such an analysis would far exceed the
scope of this paper, that fact will not prevent us from using concepts
from the theory to provide some valuable insights into the performance
of our collective systems.

Almost regardless of our frame of reference today we find ourselves
being concerned with various forms of queues or simply waiting lines.
The population explosion has brought us congestion, and congestion
brings us queues. As we have all experienced, queues form any time
customers arrive at a facility at a rate that is faster than the facil-
ity is capable of servicing them. Let's examine a hypothetical one.

Imagine the post office. Let's assume we are observing a local post
office over a fifteen minute period. At this particular post office the
service time is always exactly one minute. What would happen if the
post office was experiencing a "worst case'" arrival scenario, namely
that all customers were arriving at the very same instant at the begin-
ning of our observation period?

If only one customer arrived at that instant his wait time would be one
minute, as he need only to wait the service interval. If two customers
arrived at the first instant of our observation, the first would wait
one minute, as before, but the second would wait not only one minute for
his service but also one minute in line waiting for the first to be
serviced; this would place the average wait time for both of them at 1.5
minutes, a 50% increase in average wait time due to just one additiomal
customer.

Paper 3105 29 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

The following chart shows the average waits for the given number of
"worst case' (simultaneous) arrivals at the beginning of the observation
period.

CUSTOMERS AVERAGE WAIT

1 1.00

2 1.50

3 2.00

4 2.50

5 3.00

6 3.50

7 4.00

8 4.50

9 5.00

10 5.50

1 6.00

12 6.50
13 7.00
14 7.50
15 (saturation)

THE WORST WAIT

As is clear in this "worst case" scenario the average wait time grows
steadily larger as the number of customers arriving simultaneously in
the observation period grows larger.

On the other hand, though, if we assumed a "best case'" arrival rate,
namely that each customer arrived after the previous one had completed
service (the arrival rate less than or equal to the service rate), there
would never be any waiting time in the queue, so the average wait time
would be equal to the service time or one minute.

Now that we know the extremes, what can we expect in reality? As we can
see, the interarrival times can have a very dramatic effect upon queue
lengths and wait times. Intuitively we would expect reality to fall
somewhere between the extremes, and that the mean queue length would
depend not only upon the arrival to completion rate (arrival rate and
service times), but also the distribution of interarrival times.
Queuing theory/ queuing network analysis concern themselves with the
random probabilities of customers arriving for service and/or varying
service times, and are powerful tools to aid in our understanding of the
effect of queues.

Understanding the effect of queues is a very important foundation to
understanding performance issues, as frequently, response times or
turnaround times are more directly dependent upon queue lengths than
resource service times. In fact, where a high level of multiprogramming
exists, wait times for critical resources are typically more directly
queue dependent than resource service time dependent.

Paper 3105 30 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

In a typical random environment with one or more highly utilized re-
sources, wait times WILL be far more dependent upon queues that the
resource's service time!

Now, in our post office example, if we were instead to assume random
(poisson) arrival times, queuing theory provides us with the following
formula to determine the expected mean number of customers in the system
per unit of time:

where U is the utilization of the device and
L is the mean number of customers in the system

Queuing network analysis provides us the following formula to determine
the wait time (response time) per unit of time:

L
R=--- -(2)
0

where R is the mean residence time (frequently considered
response time, wait time, or turnaround time)
L is the mean number of customers in the system
0 is the mean output rate
Z represents the mean "think" time of interactive
processes (zero in this example)

Given the post office scenario and these formulae and our specified time
interval, we could then expect the following:

CUSTOMERS AVERAGE WAIT
12 1.07
115
2 1.25
1.36
5 1.50
6 1.66
7 1.88
8 2.14
9 250
1? 3.00
3.75
12 5.00
13 7.50
14 15.00
15 (saturation)

EXPECTED WAIT

Paper 3105 31 DETROIT, Mi



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

As you can well see, although the l4th customer feels sure that the
attendee at the post office is particularly slow today (and is certain
to inform his congressman of that fact), the wait of the 14th customer
is due almost entirely to the queue!

'POST OFFICE' QUEUEING

AVERAGE
*BEST’ *EXPECTED® "WORST*

;sACcival Rate (per observation period)

12f

Average Wait Time

Since there is a direct relationship between resource utilization and
both the mean queue length of the number of customers (processes) in the
system, it is interesting to look at that relationship.

RESOURCE UTILIZATION to QUEUE LENGTHS

and Number in System

GQueue Number in
Length System

10t\ver‘age Number of Customers (processes)

8t
EL
a}
2F
00 100
Percent of Utilization
Paper 3105 32

DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

This chart represents the average number of processes in the system
(waiting and/or being serviced) and the mean queue length as a function
of utilization. Note that the mean queue lengths grow to infinity (yes,
the mean lengths not just the absolute lengths). If the system were to
operate at this rate the mean response times would grow to infinity as
well.

Obviously queue lengths in practice do not approach infinity because
they are not permitted to (customers leave, and computer systems have
very finite limits to the number of processes). But the graph is still
very disappointing. If we desire to limit the mean queue length to 5,
utilization cannot exceed 85%. An average queue length of 5 implies
that sometimes it may be quite a bit longer, and with the very large
slope at that point on the curve, the queue length is very very sensi-
tive to changes in utilization in this range.

An average queue length of 5 at either a slow resource or a resource
with long mean service times (e.g. a disc drive or data base) will lead
to intolerably long response times. So, for interactive processing, WE
CANNOT TOLERATE UTILIZATION RATES EVEN APPROACHING 85%, at these re-
sources, AND ACHIEVE GOOD RESPONSE TIME.

3. An INTERACTIVE APPLICATION UNDER the MICROSCOPE

Let us now take a more specific look at an on-line order entry applica-
tion which solely uses IMAGE. The order entry application is probably
rather standard.

Order Entry
Data Flow Diagram

Paper 3105 33 DETROIT, Ml



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

1) when an order is placed a CUSTOMER record is read;

2) an ORDER record is created;

3) multiple LINE-ITEMS are created;

4) each line-item is edited against an ITEM record;

5) for each line-item the PRICE is read;

6) for each LINE-ITEM an INVENTORY record is read;

7) the INVENTORY record and ORDER record is updated;

8) for each customer record multiple OPEN ORDERS are read

9) for each open orders record an ORDER record is read;

10) for each ORDER record multiple LINE-ITEMS are read; and
11) if the total of all outstanding orders exceeds the credit
limit the ORDER record is updated and a CREDIT HOLD record is
added (about 33% of the time).

Given this information, the formulae from the IMAGE discussion, the
knowledge that the involved sets are well maintained, and the "inef-
ficient pointers" on structural chains, we can estimate the I/O require-
ments to enter a typical order. We know that each order has an average
of 3.82 items on the order, and that each customer has an average of
17.23 outstanding orders. We will be assuming a "busy data base" (few
"buffer hits") and either no disc caching or a system "too busy to
benefit significantly from disc caching'.

IMAGE CALL I/0's per Times Total I/0's
DBGET 7 from CUSTOMER master 1.1559 x 1 1.1559
DBPUT to ORDER master 2.8938 x 1 2.8938 +
DBPUTs to LINE-ITEM detail 6.5459 x 3.82 25.0053 +
DBGET from ITEM master 1.0959 x 3.82 4.1863
DBGET from PRICE master 1.0282 x 3.82 3.9277
DBGET from INVENTORY master 1.1308 x 3.82 4,.3196
DBUPDATE to INVENTORY master 1.0000 x 3.82 3.8200
DBUPDATE to ORDER master 1.0000 x 1 1.0000
DBFIND on OPEN-ORDERS (customer) 1.1559 x 1 1.1559
DBGET 5 on OPEN-ORDERS detail 0.0430 x 17.23 0.7408
DBFIND on LINE-ITEMS (order) 1.0880 x 17.23 18.7462
DBGET 5 on LINE-ITEMS detail 0.9360 x 65.81 61.5981
DBPUT to CREDIT-HOLD master (30%) 3.4820 x 0.33 1.1491 +
DBUPDATE to ORDER master (30%) 1.0000 x 0.33 0.3333
+ I/0's for ILR (3 per, TURBO 2 per): 15.4500
TOTAL I/0's: 145.4280
TOTAL IMAGE Intrinsic Calls: 124.0300

Whew! Until we look at something in this amount of detail, it is very
difficult to envision the actual costs associated with an operation.
Who would have thought that the simple order entry program was this I/0
intensive?

Paper 3105 34 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Based upon a '"busy system" and "busy data base" (few IMAGE "buffer
hits") assumption (and no help from any form of caching) if we are
achieving a rate of 25 I/0's per second this average order entry will
take about 5.82 seconds (not including I/0's for user logging).

This is already outside of, or at the outer extreme of what is generally
considered acceptable response time.

It is not hard to see how such a program can almost single-handedly
bring the data base to full "busy data base'" form. The number of I/0's
it needs in the course of it is probably about ten times the average
total number of buffers available.

Likewise, the large number of "unrelated" I/0's this program entails
could probably a involve a substantial percentage of the cache domains
on a "busy" system with software disc caching.

Somewhat less obvious, but possibly more important in the end, is the
degree of vulnerability that this program has to other processing on the
system. We can get an idea of this vulnerability by both the number of
I/0's and the number of IMAGE intrinsic calls.

Each time a physical I/0 is requested the process is blocked, and if
available another process is dispatched. This provides ample opportun-
ity for low-priority "resource hogs'" to be dispatched. Likewise each
IMAGE intrinsic call creates some vulnerability, as the '"single
threading" of the data base will cause a "process block" if any other
process is using the data base. As such, with both the large number of
I/0's and the large number of IMAGE intrinsic calls, this particular
process is extremely vulnerable to the load on the system. This extreme
vulnerability frequently shows itself as widely varying response times.
(Frequently it is this variation, rather than slowness, that is most
disturbing to users).

Now that we have collected this information for a typical run of a
single order entry process, let us use this information in light of
queuing theory to see what response curves would look like for this data
base assuming the only activity was order entry .

Paper 3105 35 DETROIT, Ml



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

AVERAGE ARRIVAL RATE to DATA BASE UTILIZATION

Utilization (in percent)

100

L
2.8 4.8 6.4 8.2 10

0 )
Arrival Rate (per one minute window)

Since we can process slightly more than 10 of our average transactions
(or equivalent workloads) within a one minute window, that is the point
at. which the resource utilization reaches 100%, otherwise known as the
point of '"saturation'". More particularly, saturation of a resource is
the point at which queuing absolutely must occur. As we would expect
the relationship between average arrivals and average data base utiliza-
tion is a linear relationship. Unfortunately, it is frequently (and
erroneously) assumed that the relationship between average arrivals and
response time of interactive applications is a linear relationship.

AVERAGE ARRIVAL RATE to RESPONSE TIME

Response Time (in seconds)

80
48
36}
2a}
12}

0 L L L n
2.8 4.6 6.4 8.2 10

Arrival Rate (per one minute window)

Paper 3105 36 DETROIT, Mi



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

As you can see, interactive response time grows at an accelerating rate
for increasing average interarrival rates. The response time in this
scenario rapidly exceeds acceptable limits. The nature of this accel-
erating relationship is not as important as the relation between the
"number of active processes" (i.e., those processes that are either
executing, or queued at this resource) and the response time.

ACTIVE PROCESSES to RESPONSE TIME

60 Response Time (in_seconds)

48}

36}

24}

12

0 78 r; 5a 5.2 10

Average Active Processes (per one minute window)

This plot probably paints the most dismal picture of the order entry
workload. In order to maintain (on our "busy system" and "busy data-
base'") only one process active, on the average, at all times, the re-
sponse time will average about 12.0 seconds per transaction.

4. CACHING REVISITED

We have been looking at a "busy system'" scenario. Part of the "busy
system" assumption includes the assumption that if disc caching is
available, that the system is so "busy" that the current workload is not
benefiting (or is degraded) by it.

I would like to take the opportunity here, as I had promised in the
background discussion on memory management, to take a look at an inter-
esting characteristic that is shared by memory management, caching, and
buffering (the point here relates to software disc caching). This
discussion will hopefully provide some insight into a scenario that
causes software disc caching to become very degrading and predatory
beginning at a time in which demand for cached I/0 is rather heavy, but
surprisingly continuing well into a period of modest I/0 demand. For an
excellent reference on this subject I would suggest [COURTOIS].

Paper 3105 37 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

It is well agreed that if we were to plot a curve characteristic of the
output function of memory, caching, or buffering it would look some-
thing like the following:

INSTABILITY and THRASHING
with Disc Caching

Output Rate

Input Rate (requests per unit of time)

c4 LIMIT g

Concurrency Level (processes)

This curve is characteristic of a resource with an input rate that is
both load dependent and output rate dependent. The rightmost 'tail" of
the curve is well into the "thrashing area'. The term "thrashing" while
frequently applied erroneously to other types of problems, is generally
used to refer specifically to a problem that may occur in memory manage-
ment, namely the point at which processing efficiency seriously degrades
during an attempt to overcommit main memory. This same problem can
occur as well with buffering, and caching, so I will apply the term in
this discussion as well.

Before proceeding, let's take the time to define the general concept of
some of the terms we will be using here:

INPUT RATE: the number of requests made to the subsystem.
OUTPUT RATE: the number of requests satisifed by the subsys-
tem.

SERVICE RATE: the rate at which requests are satisfied per
unit of time.

LEVEL of CONCURRENCY: the number of processes which are being
concurrently satisfied (multiprogramming level in memory case)

The horizontal line represents a limit that is imposed upon the system

often to prevent the system from degrading any further. Memory manage-
ment systems generally have such a limit built in, or tuneable, to

Paper 3105 38 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

prevent "thrashing" (such as the MPE ":TUNE" command). Potentially,
there are many other ways of limiting overcommitment (a job limit, a
disc bottleneck, etc.).

Given such a characteristic curve here, there are at most three points
at which the input rate is equal to the output rate (sometimes there
would be only one or two). We have labeled these critical points "A",
llBll, and "C"-

Points "A" and "C" are stable points on the curve (existing at locatioms
on the curve which have positive slopes). They are stable from the
standpoint that an increase in the input rate will be met by an larger
increase in the service rate causing the input rate to tend to decline
back to the stable point (equilibrium). Likewise a decrease in the
input rate will be met by a larger decrease in the service rate which
will tend to cause the input rate to increase back to the point of
stability (equilibrium).

Point "B", however, is a point of instability (exists at a location on
the curve which has a negative slope). An increase in the input rate at
this point will be met by a decrease in the service rate which will
cause a still further increase in the input rate. Likewise, a decrease
in the input rate at this point will be met by an increase in the
service rate which will tend to cause a further decrease in the input
rate. Point "B" is a point at which the system will resist almost as if
repelled, and the closer it approaches the stronger the repulsion.

What is very interesting about this point of instability (and the whole
point of this discussion) is that in order for the system to cross it,
the system needs a very large or sudden increase in the input rate, a
"kick'". Once it has been "kicked" past this point it will frequently be
in a less productive region at a point of stability ("C" on our curve).
After it has been "kicked" past the point of instability to a new point
of stability, frequently even when processing demand starts diminishing,
there will be no event that will "kick" it back past the point of
instability, so the system will tend to stay in the often less produc-
tive area of point "C".

I have found situations where, with software disc caching, this seems to
happen with some regularity (if we allow it). To avoid it, we program-
matically monitor the system load and make adjustments to caching prima-
rily to prevent entry into the "thrashing area", but more importantly
(at least in terms of this discussion) provide the "kick" necessary to
bring the system back to a stable area well outside of the "thrashing
area".

CONCLUSION
We have covered quite a bit of ground here, while only skimming the

surface. In our travels, we may have been able to dispel some of the
common myths to relating to various subsystems, and replace some 'old

Paper 3105 39 DETROIT, Ml



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

rules of thumb" with "good common sense'" based upon a better understan-
ding of the underlying characteristics of the particular subsystem.

We have seen here throughout course of the paper, that the scheduling of
the workload on the HP3000's ultimately becomes far more dependent upon
the limiting resource(s) (the "bottleneck"). If we imagine a data base
bottleneck, with batch jobs and interactive processing both accessing
the data base, the batch job (because of zero "think time") will gain an
unfair processing advantage over the interactive processes. The memory
management algorithm will then tend to reinforce this unfair advantage
by its "recent use" algorithm. The unfair advantage will be further
reinforced by disc caching. The temporary reprioritization scheme uti-
lized by IMAGE will prevent the I/O prioritizing scheme from supporting
the high priority processes' I/0, further reinforcing the unfair advan-
tage gained by the batch job. WHEN A BOTTLENECK EXISTS, EVERYTHING YOU
EVER LEARNED ABOUT PRIORITY SCHEDULING MAY VERY WELL BECOME "INOPER-
ABLE".

Bottlenecks have very important implications, not just from the slower
response of those processes waiting for service at the bottleneck, but
very often from the side effects that the bottleneck introduces.

Many countless hours of effort are spent trying to improve performance,
but, if I may quote Alfredo Rego, 'the path to expectation is paved with
disappointment'". Before we invest a single second in efforts to improve
performance, we need to understand the system we are trying to improve,
and we need to be able to determine specifically where to place our
efforts in order to achieve the best 'return on investment'.

I have presented a very specific method for tracking the requirements
for a very specific (and common) problem, that related to IMAGE data
base processing. If we desire, we can limit our use of this information
solely to that problem, but better yet, we'll recognize the need to
develop specific methods for understanding various performance
problems/consequences.

It is my hope that, with what has been presented here, others will be

inspired to a higher level of sophistication in developing the methods
necessary to best address HP3000 performance issues.

Paper 3105 40 DETROIT, M



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

FOOTNOTES

lgnuth [KNUTH d] provides a proof for a formula that arrives at a much

better approximation, but as he points out, "[the formula] becomes
useless when [the ratio of entries to the capacity] approaches one'.
To be safe we chose the less accurate approximation in [KNUTH c] which
does not degrade as the file becomes full. 1In addition we might be
cautioned that the standard deviation tends to be rather large over
many occurrences of this particular problem, and it very definitely
does not account for any special "clustering' problems. The formula is
at best an approximation.

N

"DBLOADNG" was written by Rick Berquist of American Management Systems
and is contained in the INTEREX contributed library. "HOWMESSY" was
written by David Greer of Robelle Consulting, Ltd., and is provided to
their customers. Both programs report performance related structural
information as found in an existing IMAGE data base. [GREEN b]
explains the use of either program.

31 have that statement both orally from Peter J. Denning and (for those
of you skeptics) in [DENNING].

“We are "bending the rules'" somewhat on this one. To begin with we are
treating processes working within this data base scenario as completely
separate from the rest of the system. The most significant exception
would be other I/0's to the disc drive(s) which the data base reside
on; there certainly would be some queuing for other non-database I/0.
But, if anything, that should make our results somewhat optimistic,
under our assumptions.

Additionally, although it is usually appropriate to place "think time"
into the calculation of response time (16 seconds), we did not do so
here as the requirements for each transaction against the data base are
so large that saturation is so quickly achieved and the system will

start acting as if it were batch (no "think time"). The 300

milliseconds of cpu time was not considered either as it is so small in

comparison to the overall transaction time that its effect becomes
negligible, and it helps us to more successfully isolate it from other

(non order entry) processing on the system. This would possibly make

our estimates of response time a bit pessimistic, if ever so slightly,

but only for few transactions per observation window.

The end results, I trust, will not be misleading in the insight that
they make possible.

Paper 3105 41 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP . INTEREX 86

REFERENCES

CARROLL: Carroll, Bryan, "MPE Disc Caching', INTEREX Proceedings of
the 1985 Conference, INTEREX, Washington, D.C., 1985, pp 1-
15.

COURTOIS: Courtois, P.J., 'Decomposability, Instabilities, and Satura-
tion in Multiprogrammed Systems', COMMUNICATIONS of the ACM
18, 7 (July 1975), pp 371-377.

DENNING: Denning, Peter, J., '"Queuing Network Models'", Encyclopedia of
Computer Science and Engineering, 2nd ed., Van Nostrand Rein-
hold Company, New York, N.Y., 1983, p 1253.

GREEN a: Green, Robert M.; Rego, F. Alfredo; White, Fred; Greer, David
J.; Heidner, Dennis L., "The IMAGE/3000 HANDBOOK', Wordware,
Seattle, Wash., 1984.

GREEN b: Green, Robert M.; Rego, F. Alfredo; White, Fred; Greer, David
J.; Heidner, Dennis L., '"The IMAGE/3000 HANDBOOK'", Wordware,
Seattle, Wash., 1984, pp 257-265.

HP: Hewlett-Packard Company, ''Site Environmental Requirements for
Disc/Tape drives'", part no. 5955-3456, Hewlett-Packard Compa-
ny, Boise, Idaho, 1984, p A-17.

KNUTH a: Knuth, Donald E., "The Art of Computer Programming', Addison-
Wesley Publishing Company, Reading, Mass., 1973, v 3, p 518.

KNUTH b: Knuth, Donald E., "The Art of Computer Programming', Addison-
Wesley Publishing Company, Reading, Mass., 1973, v 3, p 518.

KNUTH c: Knuth, Donald E., "The Art of Computer Programming', Addison-
Wesley Publishing Company, Reading, Mass., 1973, v 3, p 528.

KNUTH d: Knuth, Donald E., "The Art of Computer Programming', Addison-
Wesley Publishing Company, Reading, Mass., 1973, v 3, p 530.

LAZOWSKA: Lazowska, Edward D.; Zajorjan, John; Graham, G. Scott;
Sevcik, Kenneth C.; '"Quantitative System Performance'",

Prentice-Hall, Inc., Englewood Cliffs, NJ, 1984,

VOLOKH a: Volokh, Eugene, "Thoughts and Discourses on HP 3000
Software", Vesoft, Inc., Los Angeles, CA, 1984, p 162.

VOLOKH b: Volokh, Eugene, "Thoughts and Discourses on HP 3000
Software", Vesoft, Inc., Los Angeles, CA, 1984, p 168.

Paper 3105 42 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86
Process Handling With Business BASIC
by
Jack Craig
BRIDGEWARE
501 McDonald Rd.
Aptos, CA. 95003
TABLE OF CONTENTS
1.0 INTRODUCTION

2.0 Business BASIC IMPROVES APPLICATION ACCESS TO PROCESS
HANDLING

2.1 THE SYSTEM COMMAND

2.2 THE SYSTEMRUN COMMAND

3.0 INTERPROCESS COMMUNICATION

3.1 INTERPROCESS COMMUNICATION OPTIONS
3.11 MESSAGE FILES

3.12 CIRCULAR FILES

3.13 MPE FILES

3.14  JOB CONTROL WORDS

2 PROCESS IDENTIFICATION

.0 PROCESS TREE MANIPULATION

CREATING A PROCESS WITH THE INTERPRETER

&= = = w
=

2 TERMINATING A PROCESS

.0 APPLICATION SAMPLE

.1 SAMPLE DESCRIPTION

.11 SAMPLE LISTING - THE TESTSIZE UTILITY

.12  SAMPLE PROGRAM OUTPUT

(o)A Y Y Y|

.0 CONCLUSION

7.0 REFERENCES

Paper 3106 1 DETROIT, Ml



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86
1.0 INTRODUCTION

The HP3000 is a multiprocessing computer. This means that it is able to
handle many processes at once. The operating system manages processes at
many levels. These levels range from the highest priority processes of
the memory manager to the lowest level user process. The operating
system has responsibility to keep track of what processes are beginning,
what resources must be located and moved to memory, which processes are
executing, and which are finishing. When a user runs a program, the
system creates a process. This process is activated, begins to execute,
and if there is not an infinite loop, finishes.

Process handling is managed by the system in a parent-child
relationship. The primary or controlling process is the parent process.
New processes are considered to be children of that parent process. This
parent and one or more children processes are referred to as a process
tree. There are two categories of process handling. The first is in-line
process handling: a parent process begins a child, then goes to sleep
until that child completes, then continues execution. The second is
parallel process handling: a parent sets up one or more children
processes, a child possibly sets up another child process, and they all
are executing at the same time. This category of process handling uses
some interprocess communication to control the state and function of the
different processes.

In the past, process handling has only been used by experienced system
programmers. This was due in great measure to the tedious nature of
developing process handling programs. There are several aspects of
process handling to be considered by the programmer. They are: creation,
activation, termination, and interprocess communication. The creation
and activation steps are accomplished via direct calls to intrinsics.
The interprocess communication aspect is up to the creativity of the
programmer and the specific application requirements.

It was the intrinsic calling aspect that posed a barrier for BASIC/3000
users. BASIC/3000 could not call most intrinsics. This required writing
an SPL subrountine to call the intrinsic and a convoluted parameter
passing operation to communicate with the calling BASIC program. This
tended to limit the use of process handling to only the most demanding
requirements. This paper presents HP Business BASIC and its capabilities
to provide access to process handling as well as many options for
interprocess communication.

Paper 3106 2 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86
2.0 Business BASIC IMPROVES APPLICATION ACCESS TO PROCESS HANDLING

Business BASIC provides several major features for application access to
process handling. The first of these is provided by a built-in command
to access the operating system. The second is provided by a built-in
command to execute a child process. The parameters of this command
provide for both in-line processes as well as parallel process handling.

2.1 THE SYSTEM COMMAND

The SYSTEM statement is a command to allow communication with the
operating system. Its function is to send a string literal or quoted
string to MPE. It also provides a ;STATUS=Mpe err num parameter to
return the operating system’s error or warning to the calling program.
A sample of its use is:

10 SYSTEM “showjob";STATUS=Mpe err
20 SYSTEM 'file t;dev=tape"

30 My_command$="showme"

40 SYSTEM My command$

2.2 THE SYSTEMRUN COMMAND

The SYSTEMRUN command allows the programmer to run a program as a child
process. The program with the SYSTEMRUN is considered to be the parent
process. Any subsequent SYSTEMRUN statements will create child processes
related to the parent. The SYSTEMRUN command will accept either a string
literal or a quoted string. It also has the ;STATUS=Mpe err num
parameter that returns the job control word of the called process. This
may then be tested for success or failure. The values returned in this
parameter are defined in the system intrinsics manual. It has a NOSUSP
parameter as well. When a SYSTEMRUN command is executed, the named
program file is loaded and begins execution. If the NOSUSP parameter is
not present the parent process is suspended until the child process is
complete. If the NOSUSP parameter is specified, the child process is
launched, but the execution of the parent process continues without
further regard for the child processes’ status. It is this scheme that
allows for the parallel processing. This may require communication
between the parent and its children or between the children.

3.0 INTERPROCESS COMMUNICATION

Interprocess communication is the most flexible and potentially the most
vulnerable aspect of process handling. In-line process handling is the
simplest to manage. There are no timing considerations for interprocess
communication as the parent process launches the child and waits for the
child to complete before the parent continues to execute. Parallel
process handling requires a more elaborate communication scheme.

Paper 3106 3 DETROIT, Ml



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Messages sent that are not received, sent too late or too early, can
cause a programmer to swear off process handling permanently. This can
be especially frustrating in a system environment with fluxuating work
loads. An interprocess communication scheme that works fine in a lightly
loaded system could fail miserably in the heavy batch processing time
frame. This requires the analyst to thoroughly consider all aspects of
the intended communication method for the possibility of child process
aborts, heavily loaded processors, and other environmental variables.

Interprocess communications may be sent in several directions: a parent
process may send a message to a child process, a child process may send
a message to its parent process. A child may also send messages to other
children on the process tree. One process tree may communicate with
another process tree. This requires the process identification

number (PIN) of the target process. This intertree communication is
subject to the MPE system security matrix.

3.1 INTERPROCESS COMMUNICATION OPTIONS

Methods of interprocess communication have changed over recent years.
There are intrinsics provided to send and receive messages. SENDMAIL and
RECEIVEMAIL have been available for some time. They, however, require
the target’s process identification number, and the programmer must
provide a storage area for the messages sent. There are problems with
this implementation in that the PIN was sometimes not easily available
and the mailbox was not able to handle many messages at once. There are
several methods now available that provide much greater flexibility,
greater storage capacity, and in the case of message files, better
performance.

3.11 MESSAGE FILES

The fastest method of interprocess communication is based on message
files. Message files are faster primarily because they are memory
resident. The message file stores records as the sender writes them into
the file, and deletes them as the receiver reads them. Memory storage
space is dynamically allocated as it is needed and released as messages
are collected by the receiving process. This is good from a performance
and resource usage point of view, but this method is very vulnerable to
power failure and system halts. The Business BASIC function
NUMREC(file_num) is useful to tell the calling program if there are
records in the file to be read.

3.12 CIRCULAR FILES

Circular files provide an interesting twist in files usage. A circular
file will never return an EOF condition. If you write enough records to
fill the file, it will simply wrap around and begin writing records at

the beginning of the file. This is a useful method if your application
needs to be able to go back a few records once in a while. It is up to
the programmer to track what record is being written on via a date/time

Paper 3106 4 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

stamp or some other marking scheme. This is a method that will appeal to
applications that want to recycle their disc space. This is also a good
scheme if crash recovery is necessary.

3.13 MPE FILES

MPE files are sometimes useful for interprocess communication. The
programmer may open the same file several times. This allows a process
to write a record on a specific location with one process and
concurrently read it in with another process. The caution here is that
if the application adds records to the MPE file, and the file is filled,
the process on attempting to add another record has no choice but to
abort. With this possibility in mind the programmer may provide
safeguards against this. Failure to do so may topple the entire process
tree.

3.14 JOB CONTROL WORDS

Job control words(JCW) may sometimes provide an easy method of
communicating numeric values from one process to another. JCW are common
to a job or session. This means that if Process A sets My JCW = 100,
Process B may immediately use My JCW with the certainty that its value
is 100 as far as Process B is concerned. There are constraints with JCW
usage. JCWs are implemented with a 16 bit word where the system uses the
zeroeth or leftmost bit. This allows only numeric values that may be
represented with 15 bits. Another consideration is that there is a
limitation to the number of JCWs that may exist at once. The system
intrinsics manual is a good reference for the correct procedure to setup
a JCW, load it with some value, change that value, and deallocate that
JCW.

3.2 PROCESS IDENTIFICATION

Interprocess communication via SENDMAIL and RECEIVEMAIL require a PIN.
This may be obtained several ways. The intrinsic GETPROCID has been
available for some time. Business BASIC provides an easier method with
the built-in function called TASKID. This allows any process to be
quickly identified and that PIN may be sent to any other process that
requires it.

4.0 PROCESS TREE MANIPULATION

Process trees may be found in many application areas. Some of the most
common are those used to circumvent the users’ direct access to MPE. The
parent process creates processes for users’ sessions and subsequently
controls all access via program control. This provides a very tight
security scenario while tasking the programmer to recreate many of the
functions of MPE. An excellent example of process tree manipulation may
be found in the Business BASIC compiler. The compiler has a big job to
do in that it must generate machine code to cope with all the
eventualities that the resulting program will encounter at run-time,

Paper 3106 5 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

without the luxury of knowing the run-time environment as the
interpreter does. To spread out this task the compiler makes use of a
background process. It communicates with this background process via
message files. When the compile process is done, it checks that its
child process has terminated and then gracefully terminates the parent
process.

4.1 CREATING A PROCESS WITH THE INTERPRETER

Business BASIC has an interpreter as well as a compiler. The
interpreter, being a program itself, can be called as a child process
just as any other program. Several samples of this may be found in the
Business BASIC sample program. The interpreter may call the interpreter,
or another object code program. The interpreter uses several external
files that may be redirected by the user. They are the BASCOM file, the
BASIN file, and the BASOUT file. The BASCOM file is used to input
commands or program lines to the interpreter. The BASIN file is used to
accept data from input statements such as LINPUT, INPUT, etc. This file
is handled differently if a JOINFORM or VPLUS form is active. The BASOUT
file is used for program output such as PRINT. These files may be
redirected with MPE file equations and passing a j;parm=x at run-time or
systemrun-time. The parameter values required are:

file to be redirected parameter value
BASCOM 1
BASIN 2
BASCOM + BASIN 3
BASOUT Y
BASCOM + BASOUT 5
BASIN + BASOUT 6
BASCOM + BASIN + BASOUT T

Another built-in convenience is the INFO$ function. Its use is to return
the contents of the run-time parameter ;info="something". The
following is an example of the INFO$ function:
10 DIM Catch_info$[80]
20 Catch_info$=INFO$
30 PRINT Catch_info$
When compiled and run as:
:run demo;info="* this is the info string *"
* this is the info string *

end of program

Note that this is relative to object code programs only as ;info= is a

Paper 3106 6 DETROIT, Mi



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

run-time parameter. This remains useful to the interpreter. For example:

:file basout=¥*1p
:run hpbb.pub.sys;parm=U4;info="run myprog"

In this sample, the output of myprog is redirected to the line printer
while j;info= is passed to the BASCOM file and the interpreter runs
myprog. An interesting option is found in the sample program when the
utility creates program remark lines, adds them to a file, merges them
with the sample to be tested, and saves the original program plus new
lines to a file for compiling. I have used this technique to create and
save a new program file as well as modify an existent file.

4.2 TERMINATING A PROCESS

The most desirable method to terminate a process is to have it execute
an END or STOP command. This provides the programmer with a good warm
feeling that all went well in the child process and ended as it should.
Many programmers use the QUIT(Quit_var) command to terminate the process
in the event of an unexpected error. The Quit _var will appear in the
process abort message. This allows the programmer to put a

QUIT(Quit _var) in several places in the program with different Quit var
values in each place. This provides a quick reference to the location
of the error.

The system intrinsic KILL(PIN) is provided to flush processes existing
on a process tree. The parent process may not be terminated until all
the children are terminated. The programmer may design the parent
process to keep a list of the PINs for each new child so that in the
event that the parent has a hard abort, kill commands for each child may
be generated prior to ending the process.

5.0 APPLICATION SAMPLE

The following sample was selected because of the variety of process
handling options used. This sample makes use of in-line process
handling. The program and resulting sample output are just that -
samples. The program logic is valid and compilable. The sample output
represents valid relationships with respect to object code generated,
but does not reflect the actual amount of code generated with a
production compiler.

5.1 SAMPLE DESCRIPTION

The sample program is simple to operate. It prompts the user for a
source code program filename. This may be either a BSAVE file or an
ASCII file. The user is then prompted for display of analysis by line
number, by segment, and would they like a copy on the system printer. At
this point, the program takes over and does its thing. The first step is
to call the interpreter to convert the user program to an ASCII format.
The INDENT command is used to align the program source code. This ASCII

Paper 3106 7 DETROIT, Mi



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

file is then read to determine where the MAIN stops and the subunits
begin. In Business BASIC a program is made up of one MAIN unit and
possibly some subunits. Multi-line defined functions are treated as
subunits for the purpose of this analysis. The TESTSIZE program locates
the beginning of each subunit and creates a new remark line to be added
Jjust before each subunit and at the end of the program. The next step is
to merge these new program lines and some compiler options and save the
resulting new program in a file. The compiler is then called to compile
this program. If there are compiler errors, the program reports this and
cleans up files created. If it compiles, the segmenter is called to
review the resulting user subprogram library(USL) file. The program
reads the resulting USL file for segments and procedures and their
respective code sizes. The USL file lists code sizes in octal, so a
decimal conversion is performed. The program has now performed five
different process handling steps with an in-line method. The results are
now printed out based on the user directives and the program cleans up
its files.

5.11 SAMPLE LISTING - THE TESTSIZE UTILITY
This listing is a sample of Business BASIC using process handling.

100 ! TESTSIZE - a Business BASIC/3000 development tool

110 ! utility to measure object code sizes - by jack craig 3/13/86

120 ! last updated - 5/12/86

130 !

140 COPTION SEGMENT="mainseg"

150 OPTION BASE 1

160 DIM Command$[80],Input_buf$[80],Work buf$(5)[14],Dashed line$[40

170 DIM Line_detail$[1],Segment_detail$[1],Line printer$[1]

180 DIM Proc llst$(150)[22] Segment _ name$[8] Full file name$[36]

190 INTEGER Data_array (600, h) Da_index,0ff set,Cum off set,Total cod

200 INTEGER Usl code_proc(150), Prog code_proc(lSO) For d15p1ay(150)

210 INTEGER Outer block code

220 Dashed llne$—RPT$(" - ,40)

230 ! 1nput filename to be tested

240 LINPUT "source file to measure: "3;Full_file name$[1]

250 IF LEN(TRIM$(Full_file_name$))=0 THEN GOTO 300

260 ! does it exist ?? use interpreter to convert it

270 ASSIGN #1 TO Full file name$,STATUS=Open err

280 IF Open_err THEN

290 PRINT " unable to open filename: ";Full file name$;" error# "
Open_err

300 STOP

Paper 3106 8 DETROIT, Mi



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

310 ENDIF

320 ASSIGN * TO #1

330 ! offer user options

340 LINPUT "analy51s by line number ? ";Line detail$[1]

350 IF POS("Yy ,Line_detail$) THEN L1ne detall$ "y" ELSE Line detail

360 LINPUT "analysis by segment ? ";Segment detail$[1]

370 IF POS("Yy",Segment_detail$) THEN Segment_ detail$="y" ELSE &
Segment deta11$—" "

380 LINPUT "copy options to printer ? ";Line printer$[1]

390 IF POS("Yy",Line_printer$) THEN Line_printer$="y" ELSE Line prin
n

400 IF Line printer$="y" THEN

410 SYSTEM "file testlist;dev=pp;env=elite.env2680a.sys"

420 ENDIF

430 CALL Cleanup ! cleanup from previous failed runs

440 CREATE ASCII "script”

450 ! need to instrument user program so i can see offsets to end/su

460 ASSIGN #1 TO "script",STATUS=Open err

470 PRINT #1;"get "+Full file name$

480 PRINT #1;"indent"

490 PRINT #1;"save list putprobe"

500 PRINT #1;"exit"

510 ASSIGN * TO #1

520 SYSTEM "file bascom=script"

530 Command$="hptb.pub.sys;lib=g;parm=1;stdlist=$null”

540 Home_clear: PRINT ’27"h"’27"J"

550 PRINT "inserting test probes in source code"

560 PRINT "dont worry, i’1ll use my own copy."

570 SYSTEMRUN Command$;STATUS=Mpe_err

580 ! open putprobfile and read it

590 ASSIGN #1 TO "putprobe",STATUS=Open_err

600 ON END #1 GOTO 750

610 Period=POS(Full file name$,".")

620 IF Period THEN Full file_name$=Full file name$[1,Period-1]

630 Da_index=1;Record num=1; Num_subs=0

640 MAT Data array=ZER

650 LINPUT #1,Record num;Input_buf$[1]

660 ! test input

670 CALL Decide_to_probe(Input_buf$,Yes_or no)

680 IF Yes or no THEN

690 ! break out line# and save line # plus sub level

700 Data_array(Da_index,1)=VAL(Input_buf$[1,7])

T10 Da_index=Da_index+1;Num . subs*Num subs+1

720 ENDIF

730 Record num=Record_num+1l

740 GOTO 650

750 ! now you know whats where, probe it

760 Da_index=Da_index-1

770 CALL Reset script

T80 ASSIGN #1 TO "script",STATUS=Open_ err

790 PRINT #1;'"get putprobe"

Paper 3106 9 DETROIT, Mi



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

800 ! if some subs, probe ahead of sub statement
810 IF Num_subs>0 THEN
820 FOR I=1 TO Da_index

830 PRINT #1;VAL$(Data_array(I,1)-1)+" ! test probe ***"
840 NEXT I
850 ENDIF

860 PRINT #1;"999999 ! test probe ¥¥¥*"

870 PRINT #1;"resave"

880 PRINT #1;"exit"

890 ASSIGN * TO #1

900 ! now do it

010 SYSTEMRUN Command$;STATUS=Mpe_err

920 ! probe insertion complete/ reset

930 MAT Data_array=ZER

940 Da_index=1;Num_subs=0

950 CALL Reset_script

960 ASSIGN #1 TO "script",STATUS=Open_err

970 PRINT #1;"get putprobe”

980 PRINT #1;"1 global coption label tables,uslinit”
990 PRINT #1;"save sourcef"
1000 PRINT #1;"save list copyf"
1010 PRINT #1;"exit "
1020 ASSIGN * TO #1
1030 Home_clear: PRINT ’27"h"’27"J"
1040 PRINT “"converting format to BSAVE"
1050 SYSTEMRUN Command$;STATUS=Mpe_err
1060 SYSTEM "reset bascom"
1070 ! set up files for compiler, input output
1080 SYSTEM "file bbcin=sourcef"

1090 ! set up a usl file for some good numbers
1100 SYSTEM "build myusl;code=usl;disc=2000,1"
1110 CREATE ASCII "savecomp" ,FILESIZE=2000

1120 CREATE ASCII "saveusl",FILESIZE=2000

1130 SYSTEM "file bbclist=savecomp"

1140 SYSTEM "file bbcusl=myusl"

1150 ! call compiler

1160 Command$="hpbbemp.pub.sys;lib=g;parm=-1;stdlist=$null”
1170 Home_clear: PRINT ’27"h"’27"J"

1180 PRINT "compiling source file: ";Full_file name$
1190 SYSTEMRUN Command$;STATUS=Mpe_err
1200 ! test for compiler problems
1210 IF Mpe err THEN

1220 CALL Handle compiler error(Mpe err,Command$)
1230 PRINT Command$

1240  WAIT (2)

1250 IF Mpe_err>32767 THEN Cleanup

1260 ENDIF

1270 ! read back the code offsets/ trace by line#
1280 ASSIGN #1 TO "savecomp",STATUS=Open_err
1290 ON END #1 GOTO 1500

1300 LINPUT #1;Input buf$[1]

Paper 3106 10 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

1310 CALL Decide_to_probe(Input_buf$,Yes or no)
1320 IF Yes_or_no THEN Num_subs=Num_ subs+1

1330 IF Input buf$[7;1]<>"=" THEN 1300

1340 ! extract offsets data_array

1350 Index=1

1360 FOR I=1 TO 65 STEP 16

1370 Work buf$(Index)=Input_buf$[I;14];Index=Index+1
1380 NEXT I

1390 FOR I=1 TO 5

1400 IF LEN(TRIM$(Work_buf$(I)))=0 THEN 1480
1410 Data_array(Da_index,1)=Num_subs

1420 Off_set= VAL(Work buf$(I)[8 1&])

1430 Data _array(Da_index,2)=0ff_set

1440 ! change base from octal to decimal

1450 CALL Octal_to_decimal(Off set)

1460 Data_array(Da_index,3)=0ff_set

1470 Da_index=Da_index+1

1480 NEXT I

1490 GOTO 1300

1500 ASSIGN * TO #1

1510 ! read usl file for content

1520 CALL Reset_script

1530 ASSIGN #1 TO "script"

1540 PRINT #1;'usl myusl"

1550 PRINT #1;"listusl”

1560 PRINT #1;"exit"

1570 ASSIGN * TO #1

1580 ! process the segmenter

1590 Home_clear: PRINT ’27"h"’27"J"

1600 PRINT “reviewing results with segmenter"
1610 Command$="segdvr.pub.sys;stdin=script;stdlist=saveusl"
1620 SYSTEMRUN Command$;STATUS=Mpe_err

1630 ASSIGN #1 TO "saveusl",STATUS=Open_err
1640 ON END #1 GOTO 1900

1650 POSITION #1:7

1660 Num_proc=1

1670 LINPUT #1;Input buf$[1]

1680 ! header/segmentname/procedure ??

1690 IF LEN(TRIM$(Input_buf$))=0 THEN 1670
1700 IF Input buf$[1,9]="FILE SIZE" THEN 1900
1710 IF Input buf$[4,6]="OB’" THEN

1720 Outer block _code=VAL(Input_buf$[20;5])
1730 CALL Octal _to de01mal(0uter block code)
1740 GOTO 1670

1750 ENDIF

1760 IF Input buf$[1,3]=" " THEN

1770 Prime prime=POS(Input_buf$[1,14],"”")
1780 IF Prime prime AND POS(Input buf$,” FN") THEN
1790 Input buf$[4,14]="**"+Input buf$[4,Prime prime-1]
1800 ENDIF

1810 Proc_list$(Num_proc)[1,1L4]=Input_buf$[4;1L]

Paper 3106 11 DETROIT, Ml



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100

2110
2120
2130
21ko
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310

Proc_list$(Num_proc)[15,22]=Segment_name$
Usl _code_proc(Num_proc)=VAL(Input_buf$[20;5])
Num_proc=Num_proc+l
GOTO 1670
ENDIF
Segment_name$=Input buf$[1,8]
IF Segment_name$[1, ﬂ]-"SEG’" THEN Segment_name$="MAINSEG"
GOTO 1670
ASSIGN * TO #1
Num_proc=Num_proc-1;Cum_off set=Outer_ block code
! lets cleanup for the segmenter
Proc_list$(Num_proc)[1,14]=UPC$(Full file name$)
! convert segmenter code to decimal
FOR J=1 TO Num_proc
CALL Octal to_decimal(Usl_code_proc(J))
Cum_off_ set=Cum_off_set+Usl_code_proc(J)
NEXT J
! calculate code space by line
Da_index=Da_index-1
FOR J=1 TO Da_index-1
IF Data_array(J,1)<>Data_array(J+1,1) THEN
Data_array(J,4)=0
GOTO 2070
ENDIF
Data_array(J,4)=Data_array(J+1,3)-Data_array(J,3)
NEXT J
! now lines/code per subunit
FOR J=1 TO Da index
Prog code_proc(Data array(J,1)+1)=Prog_code_proc(Data_array(J
1)+1)+Data_array(J,4)
NEXT J
! now move for_display() for single line def functions
Index prog=1;Index_usl=Num proc
IF Index_prog>Num subs+1l THEN 2230
! is this a single line function ??
IF Proc_list$(Index_usl)[1,2]="**" THEN
Index_usl=Index usl-1
GOTO 2160
ENDIF
For_display(Index_usl)=Prog_code_proc(Index_prog)
Index usl=Index usl -1 Index_prog =Index_prog+l
GOTO 21k0
! on to display
Home clear: PRINT ’27"h"’27"J"
IF Line_printer$="y" THEN COPY ALL OUTPUT TO "*testlist"
! list output by line with detail
IF Line detail$="n" THEN 2530
ASSIGN #1 TO "copyf",STATUS=Open_err
IF Open_err THEN
PRINT "unable to open copyf, error: ";Open err
GOTO 2810

Paper 3106 12 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

2320 ENDIF

2330 ON END #1 GOTO 2520

2340 IMAGE L40A/40A/40A

2350 PRINT USING 2340;Dashed_line$,"code size analysis by line number
Dashed line$

2360 IMAGE "words"2X"offset'2X'program logic"

2370 PRINT USING 2360

2380 Record num=1;Index=1

2390 LINPUT #1,Record num;Input_buf$[1]

2400 IF Input buf$[11 20]-"test “probe" OR VAL(Input _buf$[1,7])=1 THEN

2410 IMAGE 4D, ,X"%"5D,684A

2420 PRINT USING 2410;Data_array(Index,k4),Data_array(Index,2),Input_b
68]

2430 Record num=Record num+l

2440 IF Input buf$[LEN(RTRIM$(Input buf$));1]="&" THEN

2450 LINPUT #1,Record num;Input_ buf$[1]

2460 IMAGE 11X,68A

2470 PRINT USING 2&60;Input_buf$[1,68]

2480 GOTO 2430

2490 ENDIF

2500 Index=Index+l

2510 GOTO 2390

2520 ASSIGN * TO #1

2530 ! list procedures by size

2540 IF Segment_detail$="n" THEN 2810

2550 PRINT USING 2340; Dashed_line$,"code size analysis by procedure/&
subunit",Dashed_line$

2560 IMAGE '"segment name'17X"total code"7X"logic code"liX"overhead cod
procedure name"12X"generated'8X'generated"5X"generated"

2570 PRINT USING 2560

2580 IMAGE 3X"OUTER BLOCK",15X5D,2X"words"/

2590 PRINT USING 2580;0uter block code

2600 PRINT Proc_list$(Num proc)[lS 22] ! output the first segment

2610 Total_code=0

2620 FOR J= =Num_proc TO 2 STEP -1

2630  IMAGE 3X144,12X5D,2X"words",X9D2X"words" ,X9D2X"words"

2640 Dif=Usl_code_proc(J)-For_display(J)

2650 PRINT USING 2630;Proc llst$(J) Usl _code proc(J),For_display(J

2660 Total_code=Total code+Us1 code_proc(J)

2670 IMAGE 29X5D,2X"words/segment" /8A

2680 IF Proc 1list$(J)[15,22]<>Proc 1list$(J-1)[15,22] THEN

2690 PRINT USING 2670;Total_codE,Proc_list$(J-1)[15,22]
2700 Total code=0

2710 ENDIF

2720 NEXT J

2730 Total_code=Total code+Usl code_proc(l)

2740 Dif=Usl code proc(l) -For dlsplay(l)

2750 IMAGE 3X1hA 12X5D, 2%’ Words",X9D2X"W0rds ,X9D2X"words"

2760 PRINT USING 2630;Proc_list$(1),Usl_code_proc(l),For display(l),D
2770 IMAGE 29X5D,2X"words/segment”

2780 PRINT USING 2770;Total_code

Paper 3106 13 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

2790
2800
2810
2820
2830
2840
2850
2860
2870
2880
2890
2900
2910
2920
2930
2940
2950
2960
2970
2980
2990
3000
3010
3020
3030
3040
3050
3060
3070
3080
3090
3100
3110
3120
3130
3140
3150
3160
3170
3180

3190
3200
3210

3220
3230
3240
3250
3260

IMAGE /4X"Total code generated: ",8D,2X"words plus stt code"”
PRINT USING 2790;Cum_off set
Cleanup: CALL Cleanup
IF Line printer$="y" THEN COPY ALL OUTPUT TO DISPLAY
END
SUB Octal_to_decimal(INTEGER Parameter)
COPTION SEGMENT="subseg"
INTEGER Final decimal
Final decimal=0;Local_string$=VAL$(Parameter)
Len_ of _string= LEN(TRIM$(Local _string$))
FOR I=1 TO Len_of string
F1nal_dec1mal F1nal_decimal*8+VAL(Local_string$[I;l])—VAL(
NEXT I
Parameter=Final decimal
SUBEND
SUB Reset_script
SYSTEM "file scr=script;save"
SYSTEM "purge *scr"
SUBEND
SUB Cleanup
PURGE "sourcef";STATUS=Purge err
PURGE "savecomp" ;STATUS=Purge err
PURGE "saveusl";STATUS=Purge err
PURGE "copyf" ;STATUS=Purge err
PURGE "myusl";STATUS=Purge err
PURGE "script";STATUS=Purge_err
PURGE "putprobe";STATUS=Purge err
SUBEND
SUB Handle_compiler_error(Err_from mpe,Return_comment$)
IF Err_from mpe>32767 THEN
Return comment$ 'fatal error during compile occurred..."
GOTO 3130
ENDIF
Return_comment$="compiler warnings occurred during compile...
SUBEND
SUB Decide_to_probe(Input_buf$,Yes or no)
! is it a sub ??
Array_index=POS(Input_buf$," SUB ")
IF Array index=0 THEN 3230
IF POS(Input _buf$[Array index-33;10],"GET SUB") OR POS(Input_b
Array_index-3; 10],"DEL SUB") THEN 3230
Num_value=NUM(Input buf$[Array index+5;1])
IF Num value<65 OR Num value>90 THEN 3270
IF LEN(TRIM$(Input buf$[9, Array index])) AND NOT POS(Input_bu
Array_index],":") THEN 3270
GOTO 3290
! is it a defined multiline function ??
Array index=POS(Input buf$,"FN")+2
Num_value=NUM(Input_buf$[Array index+2;1])
IF POS(Input_buf$," DEF ") AND POS(Input_buf$,"” FN") AND NOT
Input_buf$,”=") AND (Num_value>64 AND Num value<91) THEN 3290

Paper 3106 14 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

3270 Yes_or _no=0
3280 GOTO 3300
3290 Yes_or_no=1
3300 SUBEND

5.12 SAMPLE PROGRAM OUTPUT

This output is a sample generated by running the preceding utility on
itself. The first part is a display of code generated by line number.
This is based on the octal code offsets generated by the compiler. Note
that remarks do not generate any code. Note that subunit declarations do
not generate any code. They do generate addresses to which program
control may be transferred. The first column is the amount of code
generated by line in words decimal. The second column is the octal
offsets generated by the compiler. The last column is part of the actual
program logic. This is truncated to fit on the page. The last part of
the output is a summary by segment and procedure. The segments in the
program are listed with the procedures present within those segments.
The program logic generates a certain amount of code. The difference
between that and the resulting code total found in the USL is called the
overhead. The overhead is a small amount of code space used at run time.

words offset program logic

0 %375 100 | TESTSIZE - a Business BASIC/3000 development tool

0 %375 110 ! utility to measure code segments - by jack craig

0 %375 120 !} last updated -
0 %375 130 !

0 %375 140 COPTION SEGMENT="mainseg"

0 %375 150 COPTION NO RANGE CHECKING,NO SET ERRL,NO REDIM,NO ERR
0 %375 160 OPTION BASE 1

0 %375 170 DIM Command$[80],Input buf$[80],Work buf$(5)[14],Dash
0 %375 180 DIM Line_detail$[1],Segment deta11$[1] Line printer$|
0 %375 190 DIM Proc llst$(150)[22] Segment name$[8],Full file na
0 %375 200 INTEGER Data_array(600, h) Da_index,Off set,Cum off se
0 %375 210 INTEGER Usl_code proc(150), Prog code proc(lSO) For di
0 %375 220 INTEGER Outer block code

56 %375 230 Dashed line$=RPT$("=",40)

0 %465 240 ! input filename to be tested

20 %465 250 LINPUT "source file to measure: ";Full file name$[1
50 %511 260 IF LEN(TRIM$(Full_file_name$))=0 THEN GOTO 310

0 %573 270 | does it exist ?? use interpreter to convert it
18 %573 280 ASSIGN #1 TO Full file name$,STATUS=Open_err

6 %615 290 IF Open_err THEN

70 %623 300 PRINT " unable to open filename: ";Full _file name$

Open_err
2 %731 310 STOP

0 %733 320 ENDIF
18 %733 330 ASSIGN * TO #1

Paper 3106 15 DETROIT, Ml



SOUTHEASTERN MICHIGAN USERS GROUP

0
20
64
20
68

20
68

47
18

%755
%755
%1001
%1101
%1125

%1231
%1255

%1361
%1440
%1462
%1462
%1472
%1533
%1533
%1566
%1675
%1735
%1776
%2036
%2054
%20TY
%2120
%2153
%2200
%2227
%2255
%2255
%2305
%2311
%2340
%2522
%2534
%2557
%2640
%2640
%2652
%2660
%2660
%3041
%3060
%3060
%3073
%30Tk
%307k
%3100
%3110
%3140
%3215
%3215

Paper 3106

340
350
360
370
380

390
Loo

410
420
430
y40
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820

INTEREX 86

! offer user options

LINPUT "analysis by line number ? ";Line detail$[1]

IF POS("Yy",Line detail$) THEN Line detail$="y" ELSE

LINPUT "analysis by segment ? ";Segment_detail$[1l

IF POS("Yy",Segment_detail$) THEN Segment detail$="y"

Segment_detail$="n"

LINPUT "copy options to printer ? ";Line printer$[1]

IF POS("Yy",Line_printer$) THEN Line printer$="y" ELS

n

IF Line printer$="y" THEN
SYSTEM “file testlist;dev=pp;env=elite.env2680a.sy

ENDIF

CALL Cleanup ! cleanup from previous failed runs

CREATE ASCII "script”

! need to instrument user program so i can see offset

ASSIGN #1 TO "script",STATUS=Open_err

PRINT #1;"get "+Full file name$

PRINT #1;"indent"

PRINT #1;"save list putprobe"

PRINT #1;"exit"

ASSIGN * TO #1

SYSTEM "file bascom=script"

Command$="hpbb.pub.sys;1lib=g;parm=1;stdlist=$null”

Home clear: PRINT ’27"h"’27"J"

PRINT "inserting test probes in source code"

PRINT "dont worry, i’ll use my own copy."

SYSTEMRUN Command$,STATUS=Mpe_err

! open putprobfile and read it

ASSIGN #1 TO "putprobe",STATUS=Open_err

ON END #1 GOTO 760

Period=POS(Full file name$,".")

IF Period THEN Full file name$=Full file name$[1,Peri

Da_index=1;Record_num=1;Num_subs=0

MAT Data_array=ZER

LINPUT #1,Record_num;Input_buf$[1]

! test input

CALL Decide_to_probe(Input_buf$,Yes_or no)

IF Yes_or_no THEN

! break out line# and save line # plus sub level
Data_array(Da_index,1)=VAL(Input buf$[1,7])
Da_index=Da_index+1;Num_subs=Num_subs+1l

ENDIF

Record num=Record num+l

GOTO 660

! now you know whats where, probe it

Da_index=Da_index-1

CALL Reset_script

ASSIGN #1 TO "script",STATUS=Open_err

PRINT #1;"get putprobe"

! if some subs, probe ahead of sub statement

IF Num_subs>0 THEN

16 DETROIT, Ml



SOUTHEASTERN MICHIGAN USERS GROUP

19
119
L3
0
35
32
28
14
0
20
0
19
6
8
24
L5
37
42
36
33
1k
23
21
17
21
0
16
0
16
31
35
18
24
0
20
20
Ly
17
0
6
10
1y
11
7
0
0
24
y
27
10
20

%3223
%3246
%3435
%3510
%3510
%3553
%3613
%3647
%3665
%3665
%3711
%3711
%3734
%37U2
%3752
%4002
%L057
%L12h
%4176
%4242
%4303
%4321
%4350
W4375
%4416
%lkY3
%4443
%4463
%4463
%4503
%L542
%4605
%L627
WU657
%U657
%4703
%uT27
%5003
%5024
%5024
%5032
%504y
%5062
%5075
%5104
%510k
%510L
%5134
%5140
%5173
%5205

Paper 3106

830
840
850
860
870
880
890
900
910
920
930
940
950
960
970
980
990
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330

FOR I=1 TO Da_index
PRINT #1;VAL$(Data array(I,1)-1)+"
NEXT I
ENDIF
PRINT #1;"999999 ! test probe ***"
PRINT #1;'resave"
PRINT #1;"exit"
ASSIGN * TO #1
! now do it
SYSTEMRUN Command$,STATUS=Mpe err
! probe insertion complete/ reset
MAT Data_array=ZER
Da_index=1;Num_subs=0
CALL Reset_script
ASSIGN #1 TO "script",STATUS=Open_err
PRINT #1;"get putprobe"

INTEREX 86

! test probe

PRINT #1;"1 global coption label tables,uslinit”

PRINT #1;"save sourcef"

PRINT #1;"save list copyf"

PRINT #1;"exit "

ASSIGN * TO #1

Home clear: PRINT ’27"h"’27"J"
PRINT "converting format to BSAVE"
SYSTEMRUN Command$,STATUS=Mpe err
SYSTEM "reset bascom"

! set up files for compiler, input output

SYSTEM "file bbcin=sourcef"

! set up a usl file for some good numbers
SYSTEM "build myusl;code=usl;disc=2000,1"

CREATE ASCII "savecomp',FILESIZE=2000
CREATE ASCII "saveusl",FILESIZE=2000
SYSTEM "file bbclist=savecomp"

SYSTEM "file bbcusl=myusl"

! call compiler

Command$="hpbbcmp.pub.sys;lib=g;parm=-1;stdlist=$null

Home clear: PRINT ’27"h"’27"J"

PRINT "compiling source file: ";Full file name$

SYSTEMRUN Command$,STATUS=Mpe_err
! test for compiler problems
IF Mpe_err THEN

CALL Handle compiler error(Mpe err,Command$)

PRINT Command$

WAIT (2)

IF Mpe_err>32767 THEN Cleanup
ENDIF

! read back the code offsets/ trace by line#

ASSIGN #1 TO "savecomp",STATUS=Open_err
ON END #1 GOTO 1510
LINPUT #1;Input buf$[1]

CALL Decide_to_probe(Input_buf$,Yes_or no)

IF Yes_or_ng THEN Num_subs=Num_subs+1

17

DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

118
0

4
18
149
29
23
L7
33
113
13
0

9
13
Y
29
15
1Y
0

8
26
30
3k
32
1k
0
20
21
26
17
30
l

9

Y
19
0
37
127
125
95

9
1

0
119
99
29
155
0
113
54
112

%5231
%5417
%5u17
%5423
%5uU4S
%5672
%5727
%5756
%6035
%6076
%6257
%6274
%6274
%6305
%6322
%6326
%6363
%6402
%6420
%6420
%6430
%6462
%6520
%6562
%6622
%6640
%6640
%6664
%6711
%6743
%6TOU
%7022
%7026
%7037
%7043
%7066
%7066
%7133
%7332
%7527
%7666
BT6TT
%7700
%7700
%10067
%10232
%10267
%10522
%10522
%10703
%10771

Paper 3106

1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840

IF Input_buf$[7;1]<>"=" THEN 1310

! extract offsets data_array

Index=1

FOR I=1 TO 65 STEP 16
Work_buf$(Index)=Input_buf$[I;1k4];Index=Index+1

NEXT I

FOR I=1 TO 5
IF LEN(TRIM$(Work buf$(I)))=0 THEN 1490
Data_array(Da_index,1)=Num_subs
Off set=VAL(Work buf$(I)[8,14])
Data _array(Da_index,2)=0ff_set

! change base from octal to decqmal
CALL Octal to_decimal(Off set)
Data_array(Da_index,3)=0ff_set
Da_index=Da_index+l

NEXT I

GOTO 1310

ASSIGN * TO #1

! read usl file for content

CALL Reset_script

ASSIGN #1 TO "script"

PRINT #1;"usl myusl"

PRINT #1;"listusl”

PRINT #1;"exit"

ASSIGN * TO #1

! process the segmenter

Home clear: PRINT ’27"h"’27"J"

PRINT "reviewing results with segmenter"

Command$="segdvr.pub.sys;stdin=script;stdlist=saveusl

SYSTEMRUN Command$,STATUS=Mpe err

ASSIGN #1 TO "saveusl",STATUS=Open_err

ON END #1 GOTO 1910

POSITION #1;7

Num_proc=1

LINPUT #1;Input buf$[1]

! header/segmentname/procedure ??

IF LEN(TRIM$(Input_buf$))=0 THEN 1680

IF Input buf$[1,9]="FILE SIZE" THEN 1910

IF Input buf$[4,6]="0B’" THEN
Outer_block code=VAL(Input_ buf$[20;5])
CALL Octal to dec1ma1(0uter block code)
GOTO 1680

ENDIF

IF Input_buf$[1,3]=" " THEN
Prime_prime=POS(Input_buf$[1,14],"”")
IF Prime_prime AND POS (Input _buf$,” FN") THEN

Input buf$[4, 1h]-'**“+Input _buf$[Y4,Prime_prime-

ENDIF
Proc_list$(Num_proc)[1,14]=Input buf$[4;1L]
Proc_list$(Num_proc)[15,22]=Segment name$
Usl _code_proc(Num_proc)=VAL(Input buf$[20;5])

18 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP

11 %11151
1 %1116k
0 %11165

83 %11165

154 %11310
1 %115k2

21 %11543

13 %11570
0 %11605

69 %11605
0 %11712

18 %11712

24 %11734

42 %1176k

29 %12036
0 %12073
T %12073

21 %12102

62 %12127

24 %12225
8 %12255
0 %12265

75 %12265

29 %12400
0 %12435

27 %12435

8Y %12470

29 %1261Y4
0 %12651
11 %12651
11 %12664
0 %12677
148 %12677
11 %13123
1 %13136
0 %13137
36 %13137
22 %13203
1 %13231
0 %13232
20 %13232
76 %13256
0 %13372
52 %13372
26 %13L56
10 %13510
37 %13522
1 %13567
0 %13570
4 %13570

Paper 3106

1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110

2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340

Num_proc=Num_proc+l
GOTO 1680
ENDIF
Segment name$=Input buf$[1,8]
IF Segment_name$[1, ﬂ]—"SEG’" THEN Segment name$="MAIN
GOTO 1680
ASSIGN * TO #1
Num_proc=Num_proc-1;Cum_off set=Outer_block code
! lets cleanup for the segmenter
Proc_list$(Num proc)[1,1L4]=UPC$(Full file name$)
! convert segmenter code to decimal
FOR J=1 TO Num_proc
CALL Octal to_decimal(Usl_code proc(J))
Cum_off_ set=Cum_off set+Usl code proc(J)
NEXT J
! calculate code space by line
Da_index=Da_index-1
FOR J=1 TO Da index-1
IF Data_array(J 1)<>Data_array(J+1,1) THEN
Data_array(J,k4)=0
GOTO 2080
ENDIF
Data_array(J,4)=Data_array(J+1,3)-Data_array(J,3)
NEXT J
! now lines/code per subunit
FOR J=1 TO Da index
Prog code_proc(Data array(J,1)+1)=Prog_code proc(D
1)+1)+Data _array(J,h4)
NEXT J
! now move for display() for single line def function
Index prog=1;Index_usl=Num proc
IF Index_prog>Num_subs+l THEN 2240
! is this a single line function ??
IF Proc_list$(Index_usl)[1,2]="#**" THEN
Index _usl=Index_usl-1
GOTO 2170
ENDIF
For_display(Index_usl)=Prog_code proc(Index_prog)
Index_usl=Index_usl-1l;Index_prog=Index prog+l
GOTO 2150
! on to display
Home clear: PRINT *27"h"’27"J"
IF Line printer$="y" THEN COPY ALL OUTPUT TO "*testli
! list output by line with detail
IF Line_detail$="n" THEN 2540
ASSIGN #1 TO "copyf",STATUS=Open err
IF Open_err THEN

PRINT "unable to open copyf, error: ";Open_err
GOTO 2820
ENDIF

ON END #1 GOTO 2530

19 DETROIT, MI

INTEREX 86



SOUTHEASTERN MICHIGAN USERS GROUP

0 %1357k
104 %1357k

0 %1374k
46 %1374k
8 %1ku022
33 %14032
231 %1L0T73
0 %1Lkhh2
214 %ahhh2

11 %1kL770
144 %15003
43 415223
0 %15276
132 %15276
1 %15502
0 %15503
11 %15503
4 %15516
14 %15522
0 %15540
47 %155L0
102 %15617

0 %15765

48 %15765
0 %16045
59 %16045
LYy %16140
2 %16214
18 %16216
0 %16240
57 %16240
160 %16331
25 %16571
0 %16622
243 %16622
178 %17205
2 %1TU6T

0 %17L471
33 %17471
5 %17532
11 %17537
0 %17552
112 %17552
0 %17732
61 %$17732
0 %20027
59 %20027

Paper 3106

2350
2360

2370
2380
2390
2400
2410
2420
2430

2440
2450
2460
2470
2480
2490
2500
2510
2520
2530
2540
2550
2560

2570

2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690
2700
2710
2720
2730
2740
2750
2760
2770
2780
2790
2800
2810

INTEREX 86

IMAGE Loa/4oA/kOA
PRINT USING 2350;Dashed line$,"code size analysis by
Dashed line$
IMAGE "words"2X"offset"2X"program logic"
PRINT USING 2370
Record num=1;Index=1
LINPUT #1, Record num;Input_buf$[1]
IF Input_ buf$ 11, 20]-"test “probe” OR VAL(Input _buf$[1
IMAGE 4D, ,X"%"5D,68A
PRINT USING 2420;Data_array(Index,4),Data_array(Index
68]
Record_num=Record num+1l
IF Input_buf$[LEN(RTRIM$(Input_buf$));1]="&" THEN
LINPUT #1,Record num;Input buf$[1]
IMAGE 11X,68A
PRINT USING 2“70;Input_buf$[1,68]
GOTO 24L40
ENDIF
Index=Index+1
GOTO 2400
ASSIGN * TO #1
! list procedures by size
IF Segment_detail$="n" THEN 2820
PRINT USING 2350; Dashed_line$,"code size analysis by
subunit" ,Dashed_line$
IMAGE "segment name"l17X"total code"7X"logic code"k4X"o
procedure name'12X'"generated"8X"generated"5X"generate
PRINT USING 2570
IMAGE 3X"OUTER BLOCK",15X5D,2X"words"/
PRINT USING 2590;0uter_block code
PRINT Proc_list$(Num_proc)([15,22]
Total code=0
FOR J=Num_proc TO 2 STEP -1
IMAGE 3X14A,12X5D,2X"words",X9D2X "words" ,X9D2X "wor
Dif=Usl _code proc(J)-For_display(J)
PRINT USING 2640;Proc llst$(J) Usl_code_proc(J),Fo
Total_code=Total code+Usl code proc(J)
IMAGE 29X5D,2X"words/segment" /8A
IF Proc_list$(J)[15,22]<>Proc_list$(J-1)[15,22] TH
PRINT USING 2680; ;Total code,Proc - list$(J-1)[15,
Total code=0
ENDIF
NEXT J
Total code=Total code+Usl code proc{1l)
Dif=Usl code_proc(l)-For display(1)
IMAGE 3X144,12X5D, 2K "words",X9D2X " "words" ,X9D2X"words"
PRINT USING 2640;Proc_list$(1),Usl_code proc(l),For_d
IMAGE 29X5D,2X' words/segment"
PRINT USING 2780;Total_code
IMAGE /4X"Total code generated:
PRINT USING 2800;Cum_off set

! output the fir

",8D,2X"words plus st

20 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

8 %20122 2820 Cleanup: CALL Cleanup
67 %20132 2830 IF Line printer$="y" THEN COPY ALL OUTPUT TO DISPLAY
1 %20235 2840 END
0 %120 2850 SUB Octal to_decimal(INTEGER Parameter)
0 %120 2860 COPTION SEGMENT="subseg"
0 %120 2870 INTEGER Final decimal
30 %120 2880 Final decimal=0;Local_string$=VAL$(Parameter)
41 %156 2890 Len of string= LEN(TRIM$(Loca1 _string$))
23 %227 2900 FOR I=1 TO Len of strlng
155 %256 2910 Flnal_de01mal F1na1_decima1*8+VAL(Local_string$
42 %511 2920  NEXT I
7 %563 2930 Parameter=Final decimal
1 %572 2940 SUBEND
0 %105 2950 SUB Reset_script
19 %105 2960 SYSTEM "file scr=script;save"
19 %130 2970 SYSTEM "purge ¥*scr"
5 %153 2980 SUBEND
0 %107 2990 SUB Cleanup
30 %107 3000 PURGE "sourcef",STATUS=Purge err
33 %145 3010 PURGE "savecomp",STATUS=Purge_err
30 %206 3020 PURGE "saveusl",STATUS=Purge err
34 %244 3030 PURGE "copyf",STATUS=Purge err
30 %306 3040 PURGE "myusl",STATUS=Purge err
32 %344 3050 PURGE "script",STATUS=Purge err
28  %L4ohk 3060 PURGE "putprobe",STATUS=Purge err
1 %440 3070 SUBEND
0 %105 3080 SUB Handle_compiler_error(Err_from mpe,Return_comment
12 %105 3090 IF Err from mpe>32767 THEN

22 %121 3100 Return_comment$ 'fatal error during compile occ
10 %147 3110 GOTO 3140

0 %161 3120 ENDIF

22 %161 3130 Return_comment$="compiler warnings occurred during

1 %207 3140 SUBEND
0 %111 3150 SUB Decide_to_probe(Input buf$,Yes or no)
0 %111 3160 ! is it a sub ??
24 %111 3170 Array_index=POS(Input_buf$," SUB ")
11 %141 3180 IF Array_index=0 THEN 3240
239 %154 3190 IF POS(Input _buf$[Array_index-3;10],"GET SUB") OR
Array_index-3; 10],"DEL SUB") THEN 3240
115 %533 3200 Num_value‘NUM(Input_buf$[Array_index+5;1])
27 %716 3210 IF Num value<65 OR Num_value>90 THEN 3280
222 %751 3220 IF LEN(TRIM$(Input buf$[9 Array_index])) AND NOT P
Array index],":") THEN 3280
1 %1307 3230 GOTO 3300
0 %1310 3240 ! is it a defined multiline function ?7?
23 %1310 3250 Array index=POS(Input buf$,"FN")+2
113 %1337 3260 Num value—NUM(Input buf$[Array index+2;1])
106 %1520 3270 IF POS(Input buf$,” DEF ") AND POS(Input buf$," FN
Input_buf$,"=") AND (Num_value>64 AND Num value<9l) T
9 %1672 3280 Yes_or_no=0
1 %1703 3290 GOTO 3310

Paper 3106 21 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86
9 %1704 3300 Yes_or_no=1
10 %1715 3310 SUBEND

segment name total code logic code overhead code
procedure name generated generated generated
OUTER BLOCK 61 words
MAINSEG
NTEST 9333 words 8097 words 1236 words
9333 words/segment
SUBSEG
OCTAL_TO_DECIM 404 words 299 words 105 words
RESET_SCRIPT 151 words 43 words 108 words
CLEANUP 350 words 218 words 132 words
HANDLE_COMPILE 203 words 67 words 136 words
DECIDE_TO PROB 1038 words 910 words 128 words
2146 words/segment
Total code generated: 11540 words plus stt code

Paper 3106 22 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86
6.0 CONCLUSION

HP Business BASIC provides the easiest and most flexible access to
process handling. Its features provide a wealth of options for the use
of process handling in user applications. This new set of options must
be accompanied by a note of caution. Business BASIC is the epitome of
user friendliness. The joke in the lab is that if you want to hang
yourself, Business BASIC will hand you the rope! The point is that the
use of process handling, just as any other feature on the HP3000, must
be well planned to avoid unnecessary hanging.

I have observed very lethargic response in a process tree scenario used
in a well known manufacturing application after installation on a shared
processor. The reason for this poor response was that the driving
process was a session logged on in the CS queue. It was competing with
an equal number of accounting sessions also logged on in the CS queue.
The problem was that each manufacturing user was a child process for the
driving session and as such was assigned a much lower priority in the
processor queue than the accounting sessions. That resulted in the
accounting sessions receiving good response times while the
manufacturing users received very poor response times. This was resolved
by moving the manufacturing application to a dedicated system.

The same caution is in effect for Business BASIC. It is a many
featured, powerful application language. Applied properly it can compete
with or outperform any of the other HP based languages. Used improperly,
it could execute slowly or generate much unneeded code.

7.0 REFERENCES

HP Business BASIC Programmers Guide Part Number 32115-90007

This manual provides a new HPBB programmer with a structured approach to
the use of HP Business BASIC.

HP Business BASIC Language Reference Manual Part Number 32115-90006

This manual describes all the HP Business BASIC features with a
description of their function, syntax, and options.

HP3000 System Intrinsics Manual Part Number 30000-90010

This manual lists all the system intrinsics available, complete with
the parameters, data types, functional description, and syntax.

ACKNOWLEDGEMENTS :

Interpreter - Stewart Hill
Compiler - Jim Preston
Library - John Kwan

Paper 3106 23 DETROIT, Ml



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86



SOUTHEASTERN MICHIGAN USERS GROUP

System Performance Tuning
and
Memory Availability

HP 3000 Systems

Paper 3107 1

INTEREX 86

DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

An Investigation Into the Effects of Memory Availability
on Performance for HP3000 Series 48 and 68 Systems

Performed By:

James F. Dowling
For:
Bose Corporation, Framingham, Massachusetts

In cooperation With and
Supported By:

Volz Associates
Winthrop, Massachusetts

and

EMC Corporation
Natick, Massachusetts

November 1, 1985

Abstract

A study was conducted to determine the perceived and measurable effects
of main memory availability on HP 3000 Series 48 and 68 computer
systems. The objective of the study was to determine the parameters
that can be measured using performance monitoring tools that will help
to establish the need for and effects of increasing main memory. This
objective was tightly coupled to the definition of the term "need" and
therefore included a study of "response time" and "throughput"
parameters both measurable and perceived. Results and recommendations
are presented for system tuning and configuration.

Paper 3107 2 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86
Phase I: Survey Study Overview

Bose Corporation operates two HP3000 computer systems: a Series-68
and a Series-48. When the need for additional session handling
capability was being addressed, several options were included in
the study. The Series-48 system could be upgraded to a Series-58
or Series-68. Additional memory could be added to either or both
systems. Disc I/0 capacity could be improved, or a third machine
could be added. This precipitated a need for a global performance
analysis. That is: a view into the operation of the current
maching hardware and Operating System software to determine where
the resource limitation was located. Following describes the
process for the Series 68 system. The machine was configured with
3.0 MB of main memory.

To begin the study it was necessary to document the outward
symptoms of the problem. Terminal response time was an obvious
starting point. By using first-hand observations of various types
of programs ranging from graphics preparation to inventory control
to on-line inquiries, it was determined that some programs were
generally slow, some were slow at times and yet others were
seemingly unaffected at all. This is of course the case for most
any system and was no surprise. By using several performance
monitoring programs system activities were monitored to obtain a
quantitative analysis of current activities (Refer to Appendix B
for details of the measurable parameters). Overall performance
could be described as "sometimes poor but generally good".

The benchmark data indicated that several factors could be
contributing to the undesireable performance that was being
experienced. CPU utilization was greater than 90% most of the
time: ICS (Interrupt Control Stack CPU consumption was in excess of
10% most of the time and MAM (Memory Access Manager) disc 1/0 was
apparently high. The memory manager Clock Cycle rate averaged 0.5
per second with peaks at 1.2 per second. The first three
indicators could be interpreted as resulting from inadequate main
memory for the system to work with while the fourth indicated a
definite problem locating memory. A Tlook at the disc management
systems showed that more than 55% of the user disc I/0 requests
were being satisfied from caching domains and that the average
physical disc access rate was less than 30 per second.

Since the program mix on the Series 68 system was fairly consistent
from one day to the next, it was assumed that recording relative
CPU consumption activity for various processes would be useful to
determine how performance problems move around as various resource
parameters were altered. To do this several commonly used programs
were selected and classified as Transaction Processors, Report
Generators, Number Crunchers or Batch Updates. Note that these
definitions were for convenience and in some cases (See Appendix B)
a reclassification was done later. In general, the system made
more CPU available to the Report Generators and the Number
Crunchers while the Transaction Processors demonstrated erratic
response characteristics and the Batch Updates were rarely serviced.

Paper 3107 3 DETROIT, MI



PHIUWOG a2 U LU R )

SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

To determine how much of the apparent CPU shortages were resulting
from Disc Caching activity we shut down the caching subsystem and
took another set of measurements. CPU utilization was reduced to
75% with some periods at 85%, ICS consumption was reduced to less
than 8%, and MAM disc I/0 was cut in half. The disc management
system overall I/0 rate rose from 30 per second to 55.

Under these conditions, the perceived performance of the system was
altered dramatically. The most obvious change was a significant
reduction in run time for batch processes that were run during
heavy on-line activity periods. Most transaction oriented
processes suffered increased response time while CPU-intensive
operation such as graphics preparation seemed to be uneffected by
the change. Report Generation programs demonstrated erratic
response characteristics similar to those that the Transaction
sof tware suffered in the previous configuration. Overall
performance: was "erratic and unacceptable, with Disc Caching
disabled. It was obvious that some amount of Disc Caching was
desirable and that the CPU/Memory issues would have to be dealt
with to compensate.

Several attempts were made to use Scheduling Queues and Quantum to
effect the desired performance distribution. Results ranged from
losing control of the system altogether to processes that were only
serviced during lunch breaks. The effects were unpredictable when
making radical changes and were insignificant when altered only
slightly. We settled on a rather long CS priority queue size and a
relatively short and overlapping DS queue. The DS queue overlap
was necessary to ensure that Batch processes could have a chance at
the processor. It was necessary to limit the number of Batch
processes to two during on-line processing periods to avoid batch
domination. The CS quantum was set to 100 ms and the DS quantum
was set to 300 ms.

Phase III: Memory Availability Testing

EMC Corporation provided us with sufficient memory boards to bring
our systems up to eight Megabytes so that we could step the system
through various memory size configurations from 2.0 MB to 8.0 MB
measuring performance characteristics and resource consumption as
we proceeded. For the following tests the general procedure as
described above was used. For each test the only parameter that
was altered was memory size and data was averaged over fifteen
minute periods from 06:00 to 18:00 daily.

At 2.0 mb performance was unacceptable. CPU utilization was at
100%, ICS Overhead at 15-20%, Memory Free Space was located
20-30% of the time, Garbage Collection at 8-11%, MAM I/0 at
60-80 per second, and Clock Cycles at 1.2-1.4 per second. Disc
caching eliminated 30-40% of user requests.

Paper 3107 4 DETROIT, Mi



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

At 3.0 MB performance was "sometimes poor but generally good",
CPU utilization was at 85-92%, ICS at 8-11%, Free Space was
located 40-70% of the time, Garbage collection at 3-4%, MAM I/0
at 35-42 per second, and Clock Cycles at 0.4-0.8 per second.
Disc caching eliminated 45-56% of user requests.

At 4.0 MB: performance was "sometimes same but generally quite
good", CPU utilization was at 85-100%, ICS at 4-8%, Memory Free
Space was located 70-80% of the time, Garbage Collection at
1-3%, MAM I/0 at 30-40 per second, and Clock Cycles at 0.0 to
0.1 per second. Disc caching eliminated 45-60% of user
requests.

At 5.0 MB, performance was "sometimes same but generally
superior", CPU utilization was at 85-100%, ICS at 4-8%, Memory
Free Space found at 85-90%, Garbage Collection at 0-1%, MAM I/0
at 30-40 per second, and Clock Cycles at 0.0 to 0.1 per

second. Disc caching eliminated 46-60% of user requests.

Conclusions

The primary indicators of efficient performance are "Clock Cycles",
"ICS Overhead" and "User Disc I/0 Requests Eliminated". These
indicators can be interpreted as follows:

Clock Cycles in excess of 0.4 indicate that the Memory Manager
is having difficulty locating regions of memory that can be
offered up to satisfy a more urgent demand. This results in
excessive use of CPU cycles for memory housekeeping functions.
More memory will increase the probability of locating an
available region without searching. It is important to
consider that one clock cycle on an 8.0 MB takes much more work
than on a 1.0 MB machine. At the same time, the effort
required is proportional to the number of segments in memory
rather than memory size. Suggested values are 0.2-0.4 for
5.0-8.0 MB systems and 0.3-0.5 for 2.0-4.0 MB systems.

ICS Overhead is not a particularly good indicator of memory
shortage situations unless other indicators are available to
support it. Such activities as terminal handling and
non-specific activities can cause this number to vary
unexplainably. A value in excess of 8% appears to be a
breakpoint after which perceived performance degredation occurs.

User Disc Requests that can be eliminated by Disc Caching will
convert I/0 limitations into Memory/CPU limitations. Increased
physical I/0 elimination will proportionally increased
perceived performance. Caching performance is directly related
to the amount of available memory and CPU.

Paper 3107 5 DETROIT, Ml



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

A secondary indicator of memory manager performance is the
amount of time spent performing Garbage Collection. When the
CPU allocates more than 3-4% of its resource to this operation:
the memory manager is having problems finding large enough
regions in memory. Increased memory size will help this also.

The HP3000 systems investigated are essentially CPU bound even
though they perform I/0 intensive tasks. The erratic
performance characteristics are attributable to CPU
availability. Disc caching has moved the disc I/0 bottleneck
to the CPU/Memory domain. Anything that can be done to make
more CPU available to user processes and Disc Caching will
reduce the limitations of two of the system's most precious
resources.

Based on these measurements the performance improvement paths that
should be considered must include memory additions as a first step
before looking into Series 48 to Series 58 or Series 68 CPU swaps.
Depending on other constraints such as I/0 capacity, significant
performance improvements can be obtained by merely increasing main
memory to free more CPU for useful work. A thorough analysis of
CPU consumption will indicate the potential improvements of
increasing main memory.

Additional Observations

During the measurements at 4.0 through 8.0 MB a symptom of
sluggishness or intermittent poor response was observed. By making
measurements of various processes to determine CPU distribution it
could be seen that the priority of seldom active processes was
significantly higher (high priority processes are dispatched after
those at a lower priority) than those that operated frequently.
Moreover, the priority of these processes rose rapidly while some
few processes always managed to work their way back to low priority
after being rescheduled.

An investigation of these processes showed that the
Dispatcher/Scheduler prioritization scheme was working perfectly
albeit against our desires. Of particular distress was the urgency
with which graphics output programs were put at the head of the
list only to drop to the end a moment later then get pushed back
again and again. The result is a bizarre effect where the process
consumes a disproportionate share of CPU yet takes more elapsed
time to complete.

Another manifestation of this sluggishness is experienced when many
interactive processes quiece (user think time) and a few
CPU-intensive processes are running. The effect is to have a set
of processes that do not fall in priority rapidly enough to get the
interactive processes running quickly. The symptom at the user
terminal is that of a dead system for a few seconds.

Paper 3107 6 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

One effect that was looked for but not found was that of a system
that might squander main memory if it were available using memory
scanning programs it was found that when large memory
configurations were being used by small numbers of users there were
large areas of unused memory in the higher banks. As the user
count increased these banks became populated then released as the
user count dropped off. This is a good sign that Disc Caching does
not complicate the Memory Manager's problem by overpopulating
memory with cache domains that would later require removal.

MPE changes can move performance constraints from one resource to
another, making it difficult to provide a lasting solution. MPE
V-E appears to require more CPU resource for its own purposes as
well as that consumed by user processes than did MPE V-P. It also
requires more memory just to get going. From one release to the
next we have seen a consistent increase in the amount of stack
space required by the file system intrinsics. Disc Caching takes
advantage of reduced memory costs to improve the disc I/0 situation
as will TurboIMAGE. A1l of these performance and feature
enhancements have relied on sufficient memory and CPU availability
for best results. At best, inadequate memory will cancel the
positive effects of a software improvement. At worst, it can cause
a performance degradation.

Paper 3107 7 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Reference Material

D.Beasley: "How Dispatching Queues Really Work": Proceedings of the
INTEREX Conference: Washington, September, 8, 1985.

D. P. Beauchemin, "Things that Go Bump in The HP3000," Proceedings
of the INTEREX Conference, Washington, September 8, 1985.

J.R. Busch, "The MPE IV Kernal: History, Structure, and Strategies:
Proceedings of the HP3000 International Users Group Conference,
Orlando, April 27, 1982.

J.R. Busch and A.J. Kondoff, "MPE Disc Cache: In Perspective,"
Proceedings of the HP3000 Unternation Users Group Conference,
Edingburgh, October 1, 1983.

B.Carroll, "MPE Disc Caching, "Proceedings of the INTEREX
Conference, Washington, September 8, 1985,

B. Duncomb, "Performance Self-Analysis," Proceedings of the INTEREX
Conference, Washington, September 8, 1985.

E.Volokh, "The Secrets of System Tables...Revealed!" Proceedings of
the INTEREX Conference, Washington, September 8, 1985.

APS/3000 Users Manual, Hewlett Packard Co.
MPE V-E System Tables Manual, Hewlett Packard Co.
OPT/3000 Users Manual, Hewlett Packard Co.

SYSVIEW Manual, Second Edition, Carolian Systems, Inc, September,
1984.

Paper 3107 8 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Appendix A

Performance Measurement Parameters

Paper 3107 9 DETROIT, Mi



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Following are descriptions and interpretations of many MPE and

hardware
the data

operation parameters. They are described here to help use
presented in this paper as well as when using the various

performance measurement software tools. The descriptions are
therefore not necessarily classical definitions, but rather, they
are useful interpretations.

Background Garbage Collection: When the memory manager

determines that is under memory pressure it will perform
some memory housekeeping to make larger regions

available. This is done when the system would otherwise
be idle. Excessive CPU activity here indicates a shortage
of main memory. See also Garbage Collection and Memory
Pressure.

Clock Cycle: The memory access manager maintains a pointer

Code

Data

into main memory as a reminder of where to start looking
next time it needs a region of memory. As it proceeds
through memory, it pushes the pointer along ahead of it.
When the pointer passes the start of main memory one clock
cycle is said to have passed. The number of clock cycles
per second indicates the current level of Memory Pressure.

Segments: These are a special case of Data Segments
that are used to store executable machine instruction
sequences. Code segments can be shared by many processes.

Segment: The MPE operating environment consists of Code
Segments and Data Segments. The distinction is semantic
as far as memory is concerned but convenient when
discussing system operation. Data segments generally
contain only process operation data or control tables.
With rare exception, Data Segments are not shared by
multiple processes.

DEVREC: When an Interrupt is received from an unexpected source

Disc

such as a magnetic tap coming on line or a terminal
character, this process determines how to handle it.

Caching: To help the HP3000 systems overcome a severe
shortage of I/0 throughput a mechanism for storing disc
images in main memory was introduced. This enables the
file system to resolve some percentage of the total disc
requests from memory thereby improving performance. This
use of CPU and Main Memory to enhance disc performance is
called Disc Caching.

Extra Data Segments: Each process is associated with one data

Paper 3107

segment, called its stack. It may obtain additional
memory areas for data called Extra Data Segments.

10 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Garbage Collection: When the memory manager finds two adjacent
regions in memory that are both available, it will combine
the two into a single region. This activity is generally
called Garbage Collection. A certain amount of garbage
collection will always occur. Therefore, this is not a
good memory pressure indicator. See also Background
Garbage Collection.

Global Performance Analysis: This refers to the process of
pressuring the performance of the system as a whole by
determining how the system resources are being allocated
among the various potential consumers. See also Local and
Specific Performance Analysis.

Interrupt Control Stack: MPE is an interrupt driven Operating
System. A device or process that requires attention
places a request onto the Interrupt €ontrol Stack. The
Dispatcher/Scheduler and many Interrupt Handlers such as
DEVREC use the ICS as their Stack. CPU time spent on the
ICS operations is done as a result of user process
requests but is not considered useful work.

Local Performance Analysis: This refers to the process of
determining which of the contending resource consumers is
obtaining or not obtaining its share of the available
resources. The Process Context of OPT/3000 or SYSVIEW
would be used for this. See also Global and Specific
Performance Analysis.

Memory Pressure: When the memory access manager cannot locate
an available region in memory for a data or code segment,
it must perform some housekeeping work to alleviate the
situation. The amount of work required is called the
level of memory pressure.

Memory Access Manager: (also known as MAM, MM and Memory
Manager.) This process manages all memory allocations and
deallocations for MPE. MAM uses two forms of Virtual
Memory to handle memory shortage situations and memory
region changes. See also Virtual Memory. Time spent on
memory allocations is to be expected and should be
somewhat related to user count. If little time is spent
here, ample memory must be available.

When MAM alters a data stack size or reorganizes memory it
will swap the affected data segments to virtual memory.
When additional code segments are required for a process
or swapped data segments are required, they will be read
from disc. Excessive MAM disc I/0 can indicate a memory
shortage.

MPE: The MultiProgramming Executive is the HP3000 Operating
System. It comes in various capability sets and release
levels. ‘

Paper 3107 11 DETROIT, Ml



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Process: The unique execution of a program by or in behalf of
a system user. Each process is identified by a unique
Process ldentification Number (PIN).

Quantum: This is an archaic term for the maximum amount of CPU
that any process will receive before it is rescheduled.
Actually a more sophisticated mechanism is used by the
MPE-V Operating System to manage maximum CPU utilization
and rescheduling.

Response Time: For the purposes of this study Response time is
defined as the interval between pressing the Return/Enter
key and the ability to either modify the retreived data or
to request another retrieval. This therefore includes
screen painting and fill as well as the time necessary to
obtain access to the processor. This is not measurable by
any available software.

SYSVIEW defines this (for its purposes) as the time from
pressing Return/Enter to the delivery of the first
character of the retieval to the terminal handler. This
is a measurable entity.

Scheduling Queues: MPE supports five queues for scheduling
processes. The AS and BS queues are reserved for system
processes. The CS, DS and ES queues are for user
processes. Processes within each queue are given access
to the CPU in prioritzed order A - E and by priority
within each queue. See the Reference Material list for
more on this.

SL Files: Operating System as well as user process code can be
stored in disc files which are loaded into memory when
needed for execution. The SL files are used to store
codes that many processes can share rather than
duplicating it for each process.

Specific Performance Analysis: This refers to the process of
determining why a specific program is either consuming or
not getting its share of system resource. This generally
requires specific knowledge of the intent and structure of
the program. APS/3000 and TINGLER provide the necessary
run-time analysis tools but a source code/data base walk
through is usually required.

Stack: When any MPE process is active it operates on data that is
located in a memory segment called a Data Stack. This
stack is managed by the user and operating system code.
An alternate location for process data is an Extra Data
Segment.

System Tables: A special set of data segments are set up for use
by MPE. These areas are formatted and managed only be
: MPE.
Paper 3107 12 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Virtual Memory: MPE can handle more processes and data areas than

Paper 3107

main memory would allow by utilizing two types of disc
base memory alternatives. Data Segments are written to
reserved disc areas called Virtual Memory Domains. These
may be spread over several disc drives. Code segments
come from SL files of PROG files. These files themselves
provide the Virtual memory space.

13 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86
Appendix B

Classification of Processes

Paper 3107 14 DETROIT, Ml



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

The classification process was used to categorize several processes
according to their balance of resource consumption. Disc I/0 and
CPU intensity determined the classification as follows:

Transaction Processors impose relatively small 1/0 and CPU
loads on the machine at random but widely spaced intervals.
The typical inventory transaction processing application is in
this class.

Report Generators impose heavy I/0 then CPU then I/0 loads on
the machine at widely spread random intervals but the load
duration is quite long. Utility report writers are in this
class.

Number Crunchers impose heavy CPU loads for long durations with
relatively little I1/0 required. Graphics and Spreadsheet
processors are in this class.

Batch Updates impose a peculiar load on the system. They can
be looked at as transaction processors with no wait time

between transaction. The more serious difficulty is that they
seize resources such as files and data bases but are scheduled
as very low priorities. This causes them to put a continuous
load on the machine as well as tying up other potential
accessors to the file or data base.

Some processes were reclassified after the initial review to better
accommodate their characteristics as displayed with Disc Caching
disabled. The reclassification was useful so that Scheduling
Queue, Quantum and Disc Caching experiments could be compared
directly.

Paper 3107 15 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86
Appendix C

System Tuning

Paper 3107 16 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

CPU, Memory and Disc I/0 make up the primary resources that the
System Manager must provide and apportion to the system users. The
degree to which they are available and fairly distributed
determines the level of perceived system performance. In most
cases tuning is not an attempt to optimize the use of these
resources, rather it is an effort to cause them to be made
available uniformly across a large user population. A clear
understanding of how MPE manages these resources is essential if
one is to successfully establish a set of operating parameters for
MPE to work with. Following are the resources and user-alterable
parameters that are available in a Global context:

Resources:

CPU- From the Series 37 through the Series 68, many levels of
central processor capability are available. For any given
processor level, the system manager should attempt to minimize
overhead activities such as memory management and
communications software so that more of the CPU will be
available for user processes. RJE/3000, MTS/3000, IML/3000 and
DS/3000 all consume significant CPU but no alternative other
than elimination exists for controlling their consumption
rates. Disc Caching consumes CPU in exchange for reducing user
process wait time for Disc I/0. This is a good area for
controlling CPU consumption by trading caching advantages for
CPU availability. Another, less obvious CPU consumer is the
process loader program. It can only load one process at a time
and when in action it operates at a high priority.

MEMORY - System Tables and Disc Cache domains are the only
manageable parameters. Use particular caution when attempting
to keep System Table Sizes small because several can only be
changed at a Reload and lack of available space in others will
cause a system failure. Data presented above indicates that
disc caching will surrender memory if user processes need it.
Therefore the system manager should ensure that sufficient
memory is available for all contenders then let MPE handle this
resource.

Paper 3107 17 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Disc I/0 - Even with disc caching this is a precious resource
on any HP3000 system. At the global level the primary
consumers of disc transfers are the memory manager, disc
caching and the process loader. Memory management requires
disc activity for virtually (pun intended) every memory
allocation. Each data segment that is allocated in memory also
has an area of disc set up to handle the eventuality that the
memory space may be needed for another purpose. If so, the
memory image is copied to disc then brought back later when
needed. By keeping memory availability high, these swaps will
be minimized. Disc caching performs disc 1/0 in excess of that
requested by the process in the hope that subsequent accesses
will be satisfied without requiring another physical disc
access. Several parameters control this activity and will be
presented in detail below. It suffices to say that the more
memory that is available the better the caching advantage.
Control should be exercised to get the most out of the
additional data that is transferred. Code from PROG and SL
files is loaded from disc whenever needed. It will be removed
from memory only if necessary to fulfill a higher urgency
need. By "allocating" programs and SL segments, much of this
high prioirty dis¢ activity can be eliminated.

Paper 3107 18 DETROIT, Ml



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86
Tuning Parameters:

CPU activity can be controlled both directly and indirectly by
using two sets of tuning parameters. The scheduling parameters
available through the TUNE command directly effect the process
dispatch/scheduling algorithm while the disc caching parameters
available through the CACHECONTROL commands effect the extent to
which disc caching converts I/0 limitations into CPU consumption.
When a system is supporting large user populations the balance of
these two parameters seems to have the most profound effect on
perceived system performance as follows:

It appears that there are two types of transactions that evoke
different expectations. One type, such as a simple Customer
Inquiry should occur quickly all of the time whereas a Customer
listing or converting a vector drawing to a raster image need not
complete so quickly. Essentially, the user imposes a subjective
performance expectation based on his perceived level of

difficulty. When the memory and disc I/0 limitations are reduced
through disc caching and providing sufficient memory, the
schedule/dispatcher determines the actual performance of both
transaction types. The irony is that when there is significant CPU
demand, just the opposite effect is produced. The multiple data
set search for a small amount of data gets snarled by the
CPU-intensive calculation and the ever-ready on-line data retrieval
from a single file. This is an explanation of the term "Sluggish"
as used above.

The solution to this involves several coordinated steps which are
intended to more fairly distribute the CPU:

Set the CS and DS scheduling queues so that there is no overlap
and to provide a broad distribution of CS (interactive)
processes. The default parameters for MPE-V are CS = 152 to
200 and DS = 202 to 238. Using CS = 152 to 200 and DS = 222 to
238 will provide the additional spread and maintain the
necessary overlap to prevent Batch Job encroachment on
interactive processes.

Set the limits for the Average Short Transaction Time to
compensate for the minute transaction length of such processes
as listing data to terminals and plotting. In both cases, the
"are you ready for more" inquiries to the terminal, printer or
plotter dominate the AST calculation causing all other
processes to be considered CPU jogs and therefore penalizing
them. If this is the case on your system, try setting CS MIN
and MAX to 50 and 350 respectively. For the DS queue no
variations from standard settings will generally be necessary.

Use the ALLOCATE command to set up the external references,
Code Segment Table references and Extended Code Segment Table
reference for your most often executed programs. Caution must
be used to avoid overflowing the CST, DST and XCST tables. To
allocate a program that uses SL segments, you can RUN it on one
terminal then ALLOCATE it from another.

Paper 3107 19 DETROIT, Mi



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Once the system is running with a typically heavy user load,

the parameters of disc caching system can be monitored and
adjusted. The method will be to optimize the performance gains-
fo the caching system by adjusting Sequential and Random fetch
quantum then to adjust the caching activities to reduce CPU

load if necessary. The SHOWCACHE command will give you all of
the information that you need to determine the effect of
parameter changes. The key value is % of user I/0s

eliminated.

Our first objective will be to maximize caching effectiveness.
With sufficient CPU and memory numbers from 50 to 70% should be
achievable for % user I/0s eliminated. The sequential fetch
quantum default is 96 sectors or 24 Kbytes per disc request.
Adjusting this number downward will increase the number of
physical disc accesses if the majority of the processes are
actually processing the files from one end to the cther
contiguously. Conversely, increasing the quantum should reduce
the number for such processes. By altering this setting from
the default and monitoring the effect, an optimum setting can
be located. Bold changes on the order of 25% can be used to
quickly locate the thresholds both minimum and maximum.

The random fetch quantum on the other hand should be dealt with
a bit more precisely. The default of 16 sectors is tuned to
the buffer size of the CS80 disc drives. A larger quantum will
require additional disc wait time and therefore may degrade
performance if only a small increase is attempted but a larger
change may then show improved performance. Note that all
IMAGE/3000 disc I/0 is random as is most KSAM/3000. Note that
caching parameters can take several minutes to take full effect.

Having established desirable settings for fetch quantums, the next
global parameter to work with is Block on Write. This will effect
process scheduling as well as determining the urgency of some disc
activity. If your system is typical, it will perform significantly
more reads than writes. SHOWCACHE will give you a good handle on
your systems read/write ratio. A Read % figure of 80% indicates a
4 to 1 read/write ratio and therefore implies that if you want to
free up some CPU by penalizing processes that perform a lot of disc
write activity, you can simply set blockonwrite to YES. This is a
good idea for several other reasons including file system
integrity.

Paper 3107 20 DETROIT, Mi



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

If the system is still demonstrating erratic response
characteristics or if CPU appears to be unavailable (excessively
long logons or batch jobs that run forever), you can trade some of
your disc caching advantage for more available CPU. Again, using
the SHOWCACHE command, locate a disc that demonstrates the least
caching performance as indicated by the total number of cache
requests that were satisfied from cache domains.

Read Hits = Cache Requests * (100% - Read¥) * (100% - Read Hit X)

By applying the above formula to each disc, you will compute
the effectiveness of caching. Stopping caching on the drive
with the lowest number of read hits will return some CPU with
the least global reduction of caching advantage. Note that
specific programs will be affected more than others if their
file complement happened to reside on the chosen disc.

A memory shortage will not generally be amplified by disc caching
to any great extent but, in extreme cases it may be worth a try to
suspend disc caching on the drive that demonstrates the least
caching performance with respect to the amount of memory that s’
being used. By dividing the Read Hits calculated above for each
drive by the number of K-BYTES of memory used, the disc with the
least performance can be located. Suspending caching on this drive
will give memory back to the system but not necessarily at the
lowest global reduction in caching advantage.

The steps outlined above have produced positive results in various
environments. Since performance tuning merely moves the resource
shortage from one area to another, the cycle should be repeated to
determine if a new symptom arises. The scheduling parameter and
caching adjustments are particularly sensitive to CPU and memory
loading. Therefore user count and process activity will effect the
benefits that are gained. It is highly recommended that you keep a
good set of notes and after a period of several days to two weeks a
median set of operational parameters be selected.

Paper 3107 21 DETROIT, Mi



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

The Hewlett-Packard Executive (HPE) Data Management System
Hosting the MPE~-XI. File System Environment
for HP’s Next Generation Commercial Computer Systems

by Alan J. Kondoff

HPE FILE SYSTEM

Three primary objectives needed to be satisfied through the implementation of a new, high-level data
management subsystem in HPE. These were:

e Exploit performance advantages available through HPE on the HP Precision architecture.

e Provide a subsystem architecture that efficiently supports the semantic and programmatic
requirements of multiple host environments.

e Provide an extensible base that can track the functional and availability evolutionary directions of
HPE.

PERFORMANCE ADVANTAGES
Single Level Store

The most significant advantage of the HP Precision architecture, exploited by the data management
subsystem, is its extremely large virtual address space and main memories. All accesses to secondary store
(disc) is performed via machine load and store instructions to regions (disc files) mapped into the
machine’s virtual address space. This eliminates the need for explicit disc file buffer management and
location. Buffer location is performed by HP Precision hardware, while management functions are
handled by standard HPE memory management facilities.

By providing a byte-array abstraction of secondary store to the disc access methods, a simple, deliberate

code algorithm can be designed to access each type of disc file. To an access method, a disc file appears as
a four gigabyte array of bytes onto which it can impose its specific organizational and semantic rules.

Paper 3108 1 DETROIT, Mi



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

User Mapped File

Flie System Control Blocks
Executing Code
o
( FOPEN (FILE "A") ——-)/
0
o
©@ FFILEINFO (Get Virtual Addn
o]
)
@ LOAD (VA of A) Mapped Flie
g Virtua! Space
0 RIS
) STORE VA of A/ 5577
o] Vs,
0 sy
o sy ”
/sy /o)
93 /) 4
() User opens file via HPFOPEN intrinsic. [/ // S
(2) Intrinsic returns mapped file virtual addr {7/ ///// //
7/
(3} Reads are replaced by indirect, ///// // //
indexed LOAD machine instructions /// ; ;/
7
(4) Writes are replaced by indirect, s

indexed STORE machine instructions
Figure 1 : User Mapped File

A fallout of the single level store nature of disc file access on HPE is the notion of a user mapped file.
Certain access methods allow users to directly modify the contents of a disc file without going through
the access methods. A virtual address can be passed back to the application (user) through which accesses
to the disc file can be performed through a simple, dereferenced pointer. The application now has access
to a disc file at HP Precision load/store machine instruction speed without incurring the additional
overhead of file system access methods.

Since user mapped files are under control of the HPE File System, all security, protection, and
rendezvous mechanisms are defined and enforced as would conventionally accessed files. This allows
applications to make use of user mapped files as shared, named common storage between programs, as a
basis for their own specific disc access method, or as retained working storage. Mapped files offer
applications the opportunity to achieve high levels of performance through conventional programming
practices.

Integrated Mechanisms
Key secondary storage management mechanisms have been strategically integrated with disc data

management to effect the most optimal syste:n resource utilization possible under varying load
conditions.

Paper 3108 2 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

The behavior and reference pattern of disc accesses has been extensively measured and modeled for a
wide range of application mixes on commercial HP systems. Through these analysis and experiences with
internal disc caching on MPE-V based computer system, a set of relevant metrics and mechanisms
emerged. Disc prefetch, posting, extent allocation, and placement were among the mechanisms selected
for integration.

When a page fault against a disc file is detected or projected to occur on HPE, a strategy routine is
invoked to determine how much data should actually be brought in, or prefetched, from disc. The goal of
this strategy routine is to provide enough data to keep the application running without unnecessarily over
committing disc or main memory resources. The strategy routine consults and adjusts a set of metrics,
against which it makes its decision.

The prefetch strategy routine views the essence of both global and local references against a disc file,
and makes a heuristic determination of how much data should be prefetched from disc. The algorithm
used is deliberately simple. Disc file metrics consulted indicate file consumption rate, access pattern
(sequential or random), fault rate, access method hints, and global main memory availability. Through
this localized file view and global feedback metrics from the prefetch mechanism, the file system can
adjust to varying application demand, CPU availability, and main memory availability to provide the best
global result in a dynamic environment.

The posting (modified data write-through to disc) strategy routine uses the same set of metrics as does
the prefetch routine, but to a slightly different set of goals. The posting routines attempt to judiciously
manage main memory occupancy, file consistency windows, and disc utilization.

Main memory occupancy of file pages is primarily the responsibility of the memory manager. The file
system posting routines assist the memory manager’s job in several ways. When sequential access is
performed to a file, the posting strategy routine explicitly requests the memory manager to post large,
consecutive virtual address ranges. In addition, memory manager is also informed that there is a low
probability that these pages will be referenced in the short term, which makes them readily available for
replacement if main memory is needed. This input to memory manager eases its ability to claim needed
main memory pages on demand while minimizing the number of visits to disc in order to post modified
pages (minimizing disc utilization).

The posting strategy routines are also concerned with file consistency. The notion of dependency
queues have been implemented in the memory manager to satisfy atomic post and asynchronous post
order constraints. File posts (or writes from the user perspective) can be piggybacked on one another
without waiting for physical completion to disc. Applications can now post any number of files without
waiting and be guaranteed that the order of the posts are maintained. By merely waiting for the last post
to physically complete on a dependency queue, the entire chain of requests are guaranteed to be durable
on disc. This allows the greatest possible disc throughput while minimizing process stops required for
transaction consistency checkpoints.

Disc utilization is optimized through the previously mentioned prefetch and post strategies, along with
extent management. When a page fault occurs on a portion of a disc file that does not have disc space
allocated, a strategy routine is invoked which will determine the size and placement of the file extent to
be created. File extent sizes on HPE are variable, with no practical limit on the number of extents in a
file. The metrics consulted when determining the new extent characteristics are dominant access mode
(sequential or random), file capacity, access method hints, and extent fault frequency.

Sequentially accessed files will tend to have large extents consecutively located on a disc drive. This
allows the prefetch and post strategy routines to minimize visits to the disc, increasing effective disc
utilization. Random access files will tend to have smaller extents spread across disc drives, allowing
highly parallel access to data for both prefetching and posting. Extent allocation size may also be

Paper 3108 3 DETROIT, Mi



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

modified due to actual remaining disc space on a drive, allowing full (100%) utilization of the media by
the file system.

Specialized Mechanisms

The throughput of the data management subsystem has been enhanced through the implementation of
specialized mechanisms in HPE. These mechanisms address systematic problems in commercial computing
systems. The areas can be loosely categorized into increased data concurrency and repetitive disc file
reference.

HPE has integrated a full functioned transaction management facility within its disc data management
subsystem. This facility allows all users of HPE data management services to optionally make use of the
integrated lock, log, and recovery facilities in transaction management.

All permanent data structures managed by the HPE File System have the transaction management
property enabled. This allows highly concurrent access to system directories and disc file labels through
shared or exclusive page level locks. HPE transaction management will be discussed later in this article.

Granular use of shared and exclusive semaphores in data management services has virtually eliminated
artificial points of serialization in data management. Concurrent file opens, closes, page faults, disc file
map-ins to virtual space, and name space resolution can occur. If contention does arise, automatic
process priority elevation mechanisms alleviate convoy effects. In many instances, like exclusive file
access, all locks are avoided by access methods to give optimal performance.

Repeated reference to disc files are enhanced due to a closed file LRU (least recently used) list. All
files that are closed (no users) on HPE are placed on LRU and remain mapped into virtual space with file
pages remaining in main memory. When an initial file open operation locates a file on the LRU, it is
merely removed from the LRU and reactivated. The file open operation and subsequent accesses can
potentially occur with no disc accesses. This is especially significant for operating system functions like
directory scans, or job steps in user applications where the output of one program feeds the next.

Temporary or new files are also treated specially in HPE. By virtue of their transient nature, the HPE
file system will avoid posting data to disc unless main memory is required. It is possible for a temporary
file in HPE to be created, accessed, and deleted without a single disc file access.

Accessing new portions of new disc files, or extending the end-of-file on existing files, also has special
optimizations. When a page fault is detected on one of these previously untouched or virgin pages while
accessing a file, a disc transfer to read the page is avoided. Memory manager merely claims available
page(s) in memory and initializes it to the file’s fill character (usually blanks or zeros).

Paper 3108 4 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86
FILE SYSTEM ARCHITECTURE
Overview
The organization of the HPE File System has been optimized to efficiently support multiple external
operating system environments via a common set of file system services. Three levels constitute the

primary access method path in the file system, and are called the storage management, type management,
and intrinsic interface layers.

Structure

Applications

1 MPE Interface HPE Interface 'Future' Interface

e N Voo Voo

Fixed Disc

Variable Tape
etc

- Variable Disc

E —{remaining) Disc

1-Intrinsic Interface Layer (Environment Dependent)
2-Type Manager Layer (HPE basic services)
3-Storage Management Layer (HPE basic services)

STRUCTUR

Figure 2 : File System ! ‘- ucture

Paper 3108 5 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

The highest level of the file system hierarchy is the intrinsic interface. Each intrinsic interface module
can efficiently support the procedural interface, semantics, and error conventions documented for a
specific host interface. For the first release of HPE on HP Precision, the MPE Intrinsic Interface module
will be included in the file system. Future releases of HPE may include additional intrinsic interfaces
which may coexist with other intrinsic interfaces in the HPE File System. Host environments can also be
interchangeably invoked from user applications.

Type managers occupy the middle level of the file access hierarchy. They define a consistent set of
interfaces and operators which may be applied to a file through the intrinsic interface. All intrinsic
environments access a specific file type through the same type manager, insuring integrity of the file.
Access to a particular type manager, or type manager operator, may be restricted by an intrinsic
interface, but is not enforced by the type manager. Internally, type managers provide a logical
abstraction (fixed, variable, byte stream, keyed, etc) of the specific storage management module being
accessed.

Storage management is the lowest layer of the three abstract layers of the HPE File System. It defines
the set of basic operators that can be performed against a specific class of devices (discs, tapes, terminals,
etc). Within the disc storage management module, additional subsystems such as transaction and disc
volume management are also included.

Binding between the three levels is performed at file open time. The file open module determines the
proper storage management and type management module from the file label, and performs a one-time
binding between the levels for all subsequent accesses. Establishing the access path up front, through
specific type and storage management levels, permits HPE data management to execute short, deliberate
code sequences.

Namespace Resolution

The HPE File System maintains an internal file name, called a UFID (unique file identifier), for every
file in the system. The identifier is a combination of the unique media identification and a timestamp.
This UFID provides a unique file handle satisfying both network and transaction management
requirements. HPE File System services use this handle as the rendezvous mechanism between users and
files.

Intrinsic environments define differing naming conventions, accounting, and security semantics. To
support these requirements, the intrinsic interface is responsible to provide a name server module which
will convert the external, environment specific name to an internal HPE File System name (UFID).
Differing security and accounting semantic support, beyond the base HPE facilities, may also be required.
This support is included as part of the namespace module for an intrinsic environment. Any additional
security or accounting on a file is thus a function of the namespace that a file resides. For first release of
HPE on HP Precision, the MPE namespace module is provided.

Paper 3108 6 DETROIT, Ml



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

TRANSACTION MANAGEMENT

In order to satisfy the HPE goals of extremely high transaction throughput rates, high data availability,
and future functional evolution, an integrated transaction manager has been incorporated into the disc
storage management subsystem. Through the integration of the transaction manager into HPE and the
HP Precision architecture, the most efficient, extensible implementation possible is realized.

The classic approach to providing transaction management functionality in a commercial computing
system has been ad-hoc, at best. Concurrency control mechanisms were either provided by file system
access methods or database management. Recovery, auditing, and backup/recovery mechanisms were
provided by file system, database, and application facilities. To further complicate issues, different file
system access methods, databases, and applications tended to manage each mechanism differently. The
result was a complex solution, requiring duplication of effort, high administrative and support overhead,
and compromised performance for a customer installation.

By consolidating all these functions into a single module, common to all disc access methods, HPE has
achieved a consistent and efficient facility that all applications can utilize. Performance and efficiency
gains are also realized over implementations of these facilities at higher levels of the system due to tight
coupling with memory management, I/O, and HP Precision protection hardware.

The following sections describe the three basic facilities provided by the HPE transaction management
facility. These are the recovery manager, log manager, and lock manager.

Lock Manager

The concurrency control mechanism in a system can be viewed as a scheduler. It accepts begin, data
access, and commit requests from transactions, and decides whether to allow, postpone, or reject these
requests. In order to control concurrent transactions accessing shared data, a concurrency controller has
been implemented in the HPE File System.

The unit of locking in HPE is HP Precision page (2048 bytes). Implicit locking (load/store access) locks
single pages, while explicit locks by virtual address range may accumulate multiple page locks. When a
transaction is granted access to a HP Precision page, a HP Precision protection identifier (PID) is placed on
that page which allows only those processes participating in that process to read or read/write that page.
Any other process attempting access to that page is trapped by hardware to the lock manager.

The user is provided with two intrinsics to define the boundaries of a transaction. They are:
Begintran and EndTran intrinsics. Locks are claimed for file system operations as they are executed.
Sometimes, it is referred to as locking on-the-fly. Under this scheme, it is possible for deadlock to
occur. A simple example of deadlock involving two transactions is shown in figure 3.

Paper 3108 7 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Transaction 1 Transaction 2

Request lock on object A (Inactive)
Lock granted

(Inactive) Request lock on object B
.... Lock granted

Request lock on object B (Inactive)
... Lock not granted,
wait until free

waiting Request lock on object A
Lock not granted,
wait until free

Wait Wait

Figure 3 : Deadlock Sequence

Each transaction is waiting for the other to finish and release its locks. The HPE lock manager will
detect the deadlock and resolve it by backing out one of the transactions, releasing its locks (thereby
allowing the other transaction to proceed), and then notifying the program so that it may perform
clean up and optionally restart the transaction. Extensive analysis has shown that deadlock probability is
low, and that throughput advantages over classic predicate locking schemes is substantial.

Log Manager

Logging and recovery provide both physical and logical disc file consistency. Physical consistency is
srovided in order to preserve structures within the files in case of system crash. Logical consistency is
provided in case of a user transaction abort, user process abort, system crash, or hard crash.

Logging maintains enough information to preserve consistency at the transaction level and guarantee
that the recovery manager to be able to perform soft or hard crash recovery. In order to implement
transaction abort, logging records contain enough information about each user operation against a set
of files to undo the actions. This information, which includes the content of the before and after
image of the modified virtual address range, is written in the recovery log.

The recovery log also contains enough information to handle hard crash. An older version of the file
system can be restored, and subsequent logs are used to bring it up to date. During recovery, if a
transaction is incomplete or aborted, sufficient data is available in the log to undo the transaction. In
other words, a transaction that is incomplete or has been aborted will appear in the recovery log as a
NIL transaction.

Paper 3108 8 DETROIT, Mi



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Application specific information can also be placed in the log for auditing or journaling requirements.

Recovery Manager

The HPE File System provides optional logical and physical disc file recovery, relieving the burden of
applications providing their own recovery. Application updates to files that have a recovery property are
recorded in a recovery log. A file is said to have a recovery property if it is attached to a recovery log.
The recovery log is recorded on disc, and may be duplicated. Typically, there is one recovery log for a set
of logically related files or application.

Recovery handles three types of failures:

1. Program transaction aborts occurring at run time. An implicit abort transaction (through program
terminations without logical transaction conclusion), or via explicit abort transaction issued by a
program.

2. Soft crash failure (hardware or operating system failures). It is assumed that all disc hardware and
media is in a good state.

3. Hard crash failure (disc head crash or unrecoverable media).

The HPE file system provides the AbortTran primitive in order to handle program aborts and user
transaction aborts.

If a soft crash failure occurs, recovery reads the log in order to restore the work of all committed
transactions that are not reflected on disc and the user has seen as committed. It will also abort all
uncommitted transactions.

Recovery from media failures requires an archive copy and the recovery log. In order to do recovery
from disc head crashes, the file store/restore facility restores the archive copy to disc, followed by the
Recovery Manager which reads the recovery log to redo all committed transactions. In order to provide
high data availability, the HPE File System supports mirrored disc logs and facilities to extract the logs
off marginal media.

Paper 3108 9 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

BACKUP/RECOVERY

The HPE backup/recovery subsystem supports an enhanced version of the MPE store/restore interface.
It implements a number of new options which provide the user with the ability to save files dynamically,
utilize multiple backup devices and increase backup throughput using file interleaving techniques.

System downtime is signifcantly reduced by using the dynamic backup capability in HPE. The
integrated transaction management system allows any set of files attached to a log to be backed up while
applications are concurrently accessing and modifying the files. Log files are stored along with associated
data files allowing recovery to a logically consistent state when the files are restored.

File not under control of transaction management, i.e., not attached to a log, are attached to a log
created for the backup. Logging remains in effect until the backup is completed. Again, the files are
recovered to a logically consistent state during restore. The limitation for files not under transaction
management control is that any file opened for write access at the time of the backup cannot be stored
dynamically because recovery to a consistent state cannot be guaranteed.

HPE backup also allows the user to specify a number of performance options which each increase
backup throughput to a different degree. Multiple backup devices may be used for a single backup
providing concurrent access to the backup media. Multiple file extents may be gathered into a single
block and stored in a Single I/O request (file interleaving) allowing a higher input rate from secondary
storage.

The backup subsystem was constructed around a core module which supports the basic input and
output operations. This native mode module is integrated with the virtual main and secondary storage
systems to support the the rates of backup throughput.

A higher level set of modules provide the user interface to the backup subsystem. These routines
support an MPE compatible command set as well as the enhanced functions.

Paper 3108 10 DETROIT, Ml



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

COUPLED ENVIRONMENT

The term coupled environment describes the HPE File System’s usage of the MPE-V file system code
for low frequency functions thereby providing full MPE-V file system compatibility at first release.
This dual (coupled) file system environment was developed to:

1. provide 100% MPE-V filé system compatibility (at initial release).
2. provide a migration path for future HPE File System functionality. Migration of additional
functionality can be easily performed in subsequent releases by assuming responsibility from the MPE

file system.

3. provide full HPE File System performance for paths not relying on the coupled environment. No
performance penalty is incurred due to the presence of the coupled environment.

All MPE file system calls are intercepted by the HPE File System’s MPE Intrinsic Interface. The
appropriate type manager is called, and if it the ported MPE file system type manager, the ported MPE
code will be invoked.

Figure 4 describes the flow of an MPE intrinsic in the coupled environment.

Paper 3108 11 DETROIT, Ml



SOUTHEASTERN MICHIGAN USERS GROUP

CM programs
File System calls

NM programs
File System calls

MPE intrinsic STUBS

I
.

HPE File

System

Intrinsic

Level

File open/close| |File read/write/control

Any type files MPE type files|HPE type files

]
¥
. . MPE/HPE [—{Type Mgr
v ) table
convert .,C,F,VI.
MPE File System service JIlI)Al.
File open/close/read |IRIX|R]|.
write/control ICIE|I].
|UID|A].
r T Label Ll I8,
. . e—1 > [manager LAl L.
service IRl |E].
[
Dirc MPE/SM 3
service interface
S -_1—> Storage management

1/0 system/DISC

: Indicates the environment switch.

# : For circular disc file only.

Figure 4 : Coupled Environment

Paper 3108

12

INTEREX 86

DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

HPE VOLUME MANAGEMENT

Rick Ehrhart
Hewlett-Packard
19447 Pruneridge Ave.
Building 47UE
Cupertino, CA. USA 95014

1.0 Introduction

This paper discusses the new Volume Management facility of the HPE operating system.
HPE Volume Management handles disc volume sets, volume classes, and volumes. It creates
volumes, mounts volumes, and informs the operating system about volume related data.
This paper will cover the specifications and the design overview of Volume Management.
2.0 Design Objectives

HPE Volume Management design objectives are:

e Interface that is consistent with usage

e Natural, no performance penalty

e Programmatic compatibility with MPE V/E

e Increased data availability

e [Extensible to future data sharing and peripheral technology

To implement the above objectives, Volume Management has changed keywords for some
of the command interpreter commands. New operation commands have been added and
some commands were deleted. Also MPE V/E’s VINIT was replaced by a new utility called
VOLUTIL.

3.0 Specifications

3.1 Media versus Devices

In HPE there is a distinction between the media and the device. For example, the device is

the disc drive and the media is the disc pack. Volume management controls the disc media
known as volumes.

Paper 3109 1 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Data structures pertaining to files, like the file label and extent information reside on the
media. Access to files on the media is controlled through directories which also reside on
the media. Volume set configuration, like the volumes within the volume set, the volume
classes within the volume set, and the volumes within the volume classes, reside on the
volume set media and NOT in the system configuration in the disguise of device classes.

Since volume sets are defined as a media concept and not a device concept, Volume
Management views all volume sets the same whether the volume set is the system volume
set or a non-system volume set. A media definition gives us a consistent view of volumes,
volume classes, and volume sets. Another advantage of media definition is that the volume
set definition moves with the volume set. This is unlike than MPE V/E which forces the
volume set definition to be on each system using the volume set.

For MPE V/E user of FOPEN, device classes for discs will be transformed to volume
classes. Also, LDEVs for discs will be transformed to a volume name. In the new intrinsic
HPFOPEN, volume, volume class, or volume set may be specified for a file residing on a
disc.

3.2 Volume Set Components

An example of the relationships i}t a four member volume set is shown in the following
figure. The details are explained below.

Paper 3109 2 DETROIT, Ml



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Volume Set Relationships

Volume MEMT1 is the master volume.

Volumes MEM1 & MEM2 are in volume class FOO.
Volumes MEM3 & MEM4 are in volume class FIE.

Volumes MEM2 & MEM3 are in volume class FOE.

3.2.1 Volumes

Volumes are currently one disc pack in HPE. They are members of a volume set. They
may be members of volume classes. Each volume has a Free Space Map and a File Label
Table. The Free Space Map controls the allocation of free space on the volume. The File
Label Table contains file labels and file extent information. When a volume is created, it
is given a volume ID which is a unique identifier.

Volume names are 16 characters long. The first character must be an alpha followed by
alpha/numeric characters. The underbar,’_’, is also allowed after the first character. All
alpha characters are upshifted.

3.2.2 Volume Sets

A volume set in HPE can contain 1 to 255 members or volumes in its life time. Volume
sets may contain 1 to 255 volume classes. A volume set must contain a master volume.
The master volume contains the volume set configuration in the Volume Set Information
Table, and the root directory in addition to the Free Space Map and the File Label Table.
When the volume set is created, it is given a unique volume set ID.

Paper 3109 3 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Volume set names are 32 characters in length. The first character must be an alpha
followed by alpha/numeric characters. The underbar, ’_’, and the period, ’.’, are also
allowed after the first character. All alpha characters are upshifted. Some examples

follow:
GONDKWANALAND
ACCTS_PAYABLE
THE_3rd_example
PV.PUB.SYS

The HPE volume set name syntax supports the MPE V/E volume set name syntax. The
MPE V/E volume set name is now a flat name and NOT a hierarchical directory name.

3.2.3 Volume Classes

Volume classes can contain 1 to 255 volumes. They are logical entities that control the
allocation of disc storage to certain volumes. Volume classes do not need to exist within a
volume set; but for compatibility purposes, the volume class DISC should be configured.
Volumes may be in one volume class or in several.

Volume class names are 32 characters in length. The first character must be an alpha
followed by alpha/numeric characters. The underbar, ’_’, and the period, ’.’, are also
allowed after the first character. All alpha characters are upshifted. As with volume sets,
the MPE V/E volume class syntax is supported in the HPE volume class syntax.

3.2.4 Master Volumes
The master volume is the only volume needed to define a volume set. As stated before, it
contains the volume set configuration in the Volume Set Information Table for the volume

set of which it is a member. It also contains the root directory for the volume set. See the
figure below.

Paper 3109 4 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP

INTEREX 86

Master Volume Data Structures

Volume Label

, —>{ Directory
File Label Table Root
—>| Volume Set
N\ Info Table
Free Space Map

When the master volume is mounted, the volume set is considered mounted.

Infact the

master volume must be mounted before any file access can be made to other volume set

members.

The master volume for the system volume set is special. It contains all the disc bootable
images and system configuration. It must be mounted for the system to boot or run.

Paper 3109

DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86
3.3 Data Availability

HPE Volume Management attempts to keep as much data as possible available to the
system. This implies that if all the volumes in the volume set are not mounted, the user
will be able to access the data from the available volumes in the volume set. HPE Volume
Management easily allows the user to partition the data so that if a volume goes down,
most of the files are still available.

Data partitioning is achieved by restricting where the files are built. There are three
levels of data partitioning They are:

e Volume Set restriction
e Volume Class restriction

e Volume restriction

The default volume restriction is the volume set of the group that the file is in. This
means that the file extents are place on any volume within the volume set. Note that a
file cannot span a volume set. When a volume goes down, this restriction has the highest
probability of stopping access to files. If the master volume goes down, then access to the
entire volume set is denied for disc space allocation.

The next level of volume restriction is the volume class. The volume class restriction has
to be specified at file creation time. Thus the file is placed only on the volumes within the
volume class. If the volume class is a subset of the volume set, then the probability of a
disc going down and preventing access to your data has been reduced. If the master
volume goes down, then access to the entire volume set is denied for disc space allocation.

The most granular level of volume restriction is the volume. Again the volume restriction
has to be specified at file creation time. The file extents are placed only on that volume.
With this restriction, the probability of a disc going down and affecting access to data has
been reduced further. The master volume must be up for space allocation.

Another type of restriction is to have non-system volume sets. It also allows the volume
class and volume restrictions mentioned above. Multiple volume sets partition data very
well. Non-system volume sets can easily be moved from HPE system to HPE system.
Another advantage is that disc drives may be shared; for example, your development
volume set is placed in the disc drives during the day, and your accounting volume set is
placed in at night. Finally back-ups will be able to be done by volume sets. Having
multiple small membered volume sets is like having multiple volume classes on one volume
set, except that volume sets can be moved and backed-up separately.

Paper 3109 6 DETROIT, Mi



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86
4.0 User Interface
The user interface has been made consistent for both the system volume set and the
non-system volume sets. Defaults for commands and intrinsics are the system volume set.
Keywords have been added to commands to invoke a straight-forward meaning and to be
consistent across commands. At this time, the MPE V/E keyword 'VS’ has been deleted
from all commands.
4.1 Directory Related Commands
The keyword ’'ONVS’ has been added to the following commands:

NEWACCT, ALTACCT, PURGEACCT

NEWGROUP, ALTGROUP, PURGEGROUP

REPORT, STORE
The 'ONVS’ keyword specifies the name of the volume set where the action of the
command is to occur. If the keyword is not specified, the system volume set
HPE__SYSTEM__ VOLUME _ SET is assumed.
The keyword "HOMEVS’ has been added to the following commands:

NEWGROUP, ALTGROUP

The " HOMEVS’ keyword specifies the name of the volume set where the files within that
group are to be built. The system volume set is assumed if the keyword is not specified.

Here are some examples:

Building an account on a non-system volume set.

: NEWACCT doctor, who; CAP= ia,ba,sf,nd,gl.,am,al
: NEWACCT doctor, who; ONVS= known_universe

The above example builds the account doctor on the system volume set and on the volume
set known__universe. Note that the account must be built twice, once on the system
volume set that you will access it from, and on the volume set where the account exists.

Paper 3109 7 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Building a group on a non-system volume set.

: NEWGROUP leela; CAP= ia,ba,sf,nd; &
HOMEVS= known_universe
: NEWGROUP leela; ONVS= known_universe

The above example builds the group leela on the system volume set and on the volume set
known__universe. Note that the group must be built twice, once on the system volume set
that you will access it from, and on the volume set where the group exists.

Altering a group on a non-system volume set.

: ALTGROUP leela; ONVS= known_universe; FILES= 10000

The above example alters the file limit of the group on the non-system volume set. The
file limit is only valid on the the non-system volume set. All other options like 'PASS=" are
invalid when using the 'ONVS’ keyword, because those options are currently set only in the
system directory.

Storing off files from a non-system volume set.

: STORE @.@.@; *T; ONVS= known_universe

The above store command would store off all the files on the volume set known__universe.
This makes volume set back-ups easy.

The following commands have been deleted:
NEWVSET, ALTVSET, PURGEVSET

LISTVS

Paper 3109 8 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

This commands have been deleted because volume sets are not related to the directory.
Their functions have been placed in the new utility VOLUTIL. NEWVSET has been
replaced by VOLUTIL’s NEWSET. ALTVSET is now ALTVOL in VOLUTIL.
PURGEVSET is replaced by scratching the volume set master. LISTVS has been replaced
by VOLUTIL’s SHOWSET.

Currently in MPE V/E, a user is able to logon to the system even if the user’s home group
resides on the private volume. However in HPE, if the user’s home group resides on a
non-system volume, the user will not be able to logon until that volume set is mounted.

4.2 Operations Related Commands
The following MPE V/E commands are supported:

MOUNT, DISMOUNT, LMOUNT, LDISMOUNT

VSUSER, DSTAT, VMOUNT
The MOUNT, DISMOUNT, LMOUNT, and LDISMOUNT commands will support the MPE
V/E volume set name syntax. However, volume class mounts will not be supported. The
VSUSER, DSTAT, and VMOUNT commands will be supported exactly as they are on MPE
V/E except that VYolume names are now 16 characters long instead of 8, and volume set
names are 32 characters long instead of 27.
The following new commands have been added:

VSRESERVE, VSRELEASE, VSRESERVESYS, VSRELEASESYS

VSCLOSE, VSOPEN
The VSRESERVE command requests the console operator to put a volume set on line, if
not spun up, and designates that volume set is in use. The VSRESERVE commands
reserves the volume set between file opens for the user. VSRESERVE supports the HPE
volume set name syntax, while MOUNT only supports the MPE V/E volume set name
syntax.
The syntax is:

VSRESERVE [HPE volset name] [;GEN=num] [;WAIT=numsecs]

If no volume set is specified, then the request is for the home volume set of the user’s logon
group and account. Otherwise the user must specify the full volume set name. The
generation number is the same as MPE V/E’s. The WAIT parameter is used to specify the
number of seconds to wait for the completion of the request before giving up and

returning to the user. For example, it takes five minutes for a 7935 disc pack to spin up.

A VSRESERVE will not take place if the volume set is closed or is in a close pending state.

Paper 3109 9 DETROIT, Mi



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86
The VSRELEASE negates a previous VSRESERVE command. The syntax is:
VSRELEASE [HPE volset name]

If the volume set is not specified, then the home volume set of the user’s logon group and
account is used.

The VSRESERVESYS command reserves the volume set for the entire system. The syntax
is:

VSRESERVESYS [HPE volset name] [3GEN=num]

The volume set name must be specified. There is no wait parameter since this is an
operator command.

The VSRELEASESYS commands negates the previous VSRESERVESYS command. It does
not negate a VSRESERVE command. The syntax is:

VSRELEASESYS [HPE volset name]
The volume set name must be specified.

The VSCLOSE command designates to the operating system that the volume set is going to
be removed. This command replaces the MPE V/E DOWN command. This command will
restrict access to the volume set. Any job/session that 1) has NOT done an explicit
VSRESERVE/MOUNT on the volume set and 2) currently has NO files open on the
volume set will be denied access to the volume set. The syntax is:

VSCLOSE [HPE volset name] [;NOW]
The volume set name must be specified. The VSCLOSE commands patiently waits until all
the files have been closed on the volume set unless the 'NOW’ keyword is specified. If the
"NOW’ keyword is specified, all the users of the volume set will be aborted. A message will
be printed out on the console when the volume set is closed and ready for removal.
The VSOPEN command opens a previously closed volume set. Itssyntax is:

VSOPEN [HPE volset name]

The volume set name must be specified. After the VSOPEN command is issued, the
volume set is ready for use.

4.3 VOLUTIL
The HPE Volume Utility Subsystem (VOLUTIL) provides maintenance and inquiry

commands for managing system and non-system volume sets, volume classes, and volumes.
Commands are provided for both individual volumes and volumes within volume sets and

Paper 3109 10 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

volume classes. VOLUTIL enables volumes and volume sets to be initialized. Information
about volumes, like free space, or creation date, can be displayed. Relationships of volume
sets and volume classes can also be displayed.

The NEWSET command creates volume sets. The syntax is:

> NEWSET [SNAME=]sname [MASTER=]vname [LDEV=]ldev
[PERM=]percentPerm [TRANS=]percentTrans
[GEN=]genNumber

SNAME is the volume set name. MASTER is the volume name of the master volume.
LDEV is the logical device where the volume is mounted. PERM is the percentage of total
disc space of permanent disc space to be allowed of that disc. TRANS is the same except
for transient space, or virtual space. GEN is the generation number. PERM, TRANS, and
GEN can be defaulted. The defaults are zero.

The SHOWSET command displays information about the volume set. The command
obtains information like creation date of the volume set, the volumes in the volume set, the
volume class, the free map, and the HPE volume label.

To add a new class, VOLUTIL has the NEWCLASS command. The syntax is:
> NEWCLASS [CNAME=] [sname:] cname [MEMBERS=]vname [[,vname], ...]

CNAME is the volume class name, is can be made up from a volume set and a volume class
name. VNAME is the name of the volumes that are a part of the volume class.

The SHOWCLASS command displays information about the volume class. The command
obtains the same information as SHOWSET, except that it is class relative.

To add a volume to any volume set, try the NEWVOL command. The NEWVOL command
syntax looks like this:

> NEWVOL [VNAME=][sname: ]Jvname [LDEV=]ldev
[PERM=]percentPerm [TRANS=]percentTrans
[[cLASSES=]cname[[ ,cname]...]]

The NEWVOL command creates a new volume. If the LDEV is not specified, an entry is
placed in the Volume Set Information Table, and the volume is not initialized. Classes may
be attached to the volume at this time.

The SHOWVOL command displays information about the volume in the same fashion as
the SHOWSET command.

The above mentioned commands are not all the commands of VOLUTIL. There are
commands to scratch volumes, unscratch them, alter classes, purge volumes, and condense

Paper 3109 11 DETROIT, Ml



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

volumes. HPE commands may be executed from VOLUTIL. VOLUTIL has a logging
feature, a redo facility like HPE’s command interpreter, and has a script file facility.

Creating a non-system volume set with classes and volumes

NEWSET SNAME=hpe fs MASTER=gary LDEV=20
NEWVOL VNAME=rick LDEV=21 PERM=100 TRANS=100
NEWVOL VNAME=kendall LDEV=22

NEWCLASS CNAME=vol _mgt VNAME=rick,kendall

Vv VvV v v

The above example creates a volume set named hpe fs. It contains three member
volumes: gary, rick, and kendall. The volumes rick and kendall are in the volume class
vol__mgt. Note that the volume gary is not in a volume class.

5.0 Summary

HPE Volume Management has made volume management consistent for both system and
non-system volume sets. The user sees that the only difference between system and
non-system volume sets is the fact that the system volume set is needed to run the system.
The operator now has control over the right granularity, the volume set. Finally, HPE
Volume Management is more robust than its predecessor. Not all the volumes in the
volume set have to be mounted before the user is able to access files.

Acknowledgments

I would like to acknowledge Dean Coggins for coding volume recognition, Gary O’'Neall for
HPFOPEN code relating to volume management, Walt McCullough for wading through
directory code, Dave Schoen for start-up code, Mark Diekhans for virtual space
management code, Kendall Sutton for sorting through the new commands, and Howard
Burrows for coding VOLUTIL. I would like to thank Al Kondoff and Sue Kimura for
their support.

Paper 3109 12 DETROIT, Ml



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

The System Manager’s Toolbox
by: Blake, Isaac

We regret that this paper
was not received for
inclusion in these proceedings.

Paper 3110 1 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86
COMMUNICATING BETWREEN HPS AND FOREIGN SYSTEMS

Terry Atkinson,

M/A-COM Telecommunications, Inc.,
11717 Exploration Lane,
Germantown,

Md., 20874.

Introduction

For several years, our company had been using HP3000s for its business
users, and computers from a different manufacturer for the engineering
users. For the purposes of this paper, I shall refer to the two
families of computers as the Montagu and Capulet families. The
computers of one type were each linked together in a network, with mail
communication between all the users, but with no communication between
the two families. When we wanted to integrate our West Coast office
into the system, it was no longer acceptable for the two families not to
talk to each other. The East Coast officers were on one mail system,
end the West Coast officers were on the other, with no means of
communicating. Yet rapid communication facilities were essential.
Telephone conversations were not an answer. Rith the time difference
between the two coasts, and the hectic schedules of the officers, it
turned out that the executives’ secretaries spent more time talking to
each other than did their manegers. A computer connection was
imperative.

A fully-automated, two-way link, connected to the mail systems of both
computer systems, was set up. This paper gives detailed information on
how the HP side of the link works. The informetion on the communication
link between different families of computers is given separately from
how this was linked to HPMAIL. Appendices give detailed descriptions
of the file formats necessary to communicate with HPMAIL.

Initial Decisions

Before we started on the communication project, we made several basic

decisions. Some of these were right and proved to be very useful.
Others were not. I shall describe which decisions should have been
made and why. Where our decisions could be improved on, I shall

explain what factors would cause a different choice.

The two most fundamental decisions we made were that we would have only
one computer of each type communicating with the other family, and that
they would communicate in a standard format that would be easy to
transmit and which was not specific to the mail systems of either end.
The two computers we selected to communicate were Romeo from the Montagu
family, and Juliet from the Capulet family. These were the only
members of their families to talk to each other. The other computers

Paper 3111 1 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

would transmit and receive via these two. Figure 1 shows this
arrangement
Montagu family Capulet family

Romeo | — Z___ Juliet

Foreign systems HP3000s
Figure 1
Initially we communicated via magnetic tape. Capulet computers would
send messages to Juliet. There they would be transcribed into the

standard format, and written to tape. The tape would be trensferred to
Romeo, the messages reformatted to Montegu stendards, and then
transmitted to the appropriate nodes. This worked, but with tremendous
problens. The two families used different stendards for just about
everything, and certainly could not read tape labels from each other.
This meant we could not magnetically protect our tapes, but relied on
paper labels written by the operators. As any operator will realize,
in the hectic atmosphere of a large DP shop, tapes got misplaced or were
overwritten before they could be transferred. It was a daily routine
to retransmit lost messages. An automated link was essential.

Neither of the computer families would talk directly to the other, but
interestingly both were prepared to talk to an IBM computer via
2780/3780 protocol. In theory, if we had an IBM computer in the
middle, both Romeo and Juliet would happily talk to it and allow it to
pass on their messages. The question was, could they be persuaded to
talk to each other without an IBM in the middle?

Paper 3111 2 DETROIT, Ml



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

The answer was yes, and we set up a two-way fully-automated link using
the 3780 RJE emulator of both computers. At this point we found out
that we had made a wrong choice when we had defined the standard format.
The idea of a standard format was a very wise one. The mail systems on
both sides have been upgraded at least twice without affecting the link.
In each case, the appropriate programmer has amended the interface,
tested it on their side, and then the new version has been brought into
production with few problems. However, when we defined the format we
decided to make the records fixed length. Re included three header
records which defined the message (sender, recipient, subject, time and
date stamp), and followed that with records containing 80 characters of
text. CR LF markers occurred anywhere in the record. This was a
mistake. When we switched to an automated link, we found that HP’s
DSN/RJE changed CR LF into an end-of-record marker, and split the record
at that point. HWe had to write a subprogram on the HP to capture these
broken records and put them back together again. Had the text
originally been variable length, with a meximum length of 80 characters,
ending with a CR LF, then it would have been much easier for everyone.
As it is, the HP end of the link now has a special program to put the
records back together, while the other end has a special program to
break them up!

Preliminaries

Before getting into a detailed discussion of the communication 1link,
there are a few things to explain first. RJE and HPDESK were never
intended to operate together. Each system has its own account, end
certain functions must work in particular groups of those accounts.
The RJE transmission takes place in MSG.RJE, while the mail transport
uses HPMAIL.HPOFFICE and MAILDB.HPOFFICE. For the link to work, each
software system must be able to read files created by the other.
Therefore the two accounts must have ACCESS set to allow "READ=ANY", and
these groups must have the same ACCESS setting. For security reasons,
it is worth ensuring that other groups in these accounts have read
access restricted to the account only.

The communication 1link described in this paper uses only the mail
functions of HPDESK. For consistency and clarity, when I am referring
generally to the mail systems I shall use the term HPMAIL. Where I
refer to a specific version of a package, I shall use whatever name is
given to the particular version.

The mail 1link uses a large number of files to operate. There are many
different processes necessary for the system to run, and it is necessary
to pass control information between them. Therefore the link makes
very heavy use of IPC files. The distinguishing features of these
files are: a file can be read by one process at the same time as it is
written to by another; records are read from the top of the file and
written to the end; when a record is read, it is automatically deleted;
it is possible for a program to issue a read instruction, and then hang

Paper 3111 3 DETROIT, Ml



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

until there is a record written to the file for the program to read;
and, it is possible to get around this hanging read by using the
FFILEINFO intrinsic, with the EOF option, so as to find out whether or
not there are any records in the file before issuing a read.

When the HP mail system creates messages for transmission to other
systems, it uses a special naming convention for the files containing
messages. The format is Edddhhmm, where ddd is the day of the year
when the file was created, hh is the hour, and mm the minute of
creation. These are refered to as E-files. This convention is
heavily used by the link system so as to ensure there are no duplicate
file names. This system uses C-files, R-files, and V-files, all with
the same format as the E-files. There are also M-files with a similar
format, but with the difference that the second of creation had to be
included. The format of the name of an M-file is Mdhhmmss.

RIE

The automated transfer uses the standard IBM-compatible 3780 RJE
package, transmitting in EBCDIC. (The reason for using EBCDIC is that
the RJE for the Montagu family did not support ASCII). Interface
programs are used to arrange messages for processing by the RJE system,
and particular options have been selected with the packages, but nothing
non-standard has been done to the packages.

A sample RJE job stream is shown in Figure 2. Since the HP RJE package
believes it is being controlled by an IBM computer, it uses the command
RJOUT to read (take information OUT of the IBM), and the command RJIN to
send (to take IN to the IBM).

|JOB RJELINK,MGR/.RJE/;HIPRI;OUTCLASS=LP

|FILE RIJLFILE=Rdddhhmm.MSG.RJE;DEV=DISC;DISC=64000,32,1
|BUILD *RJLFILE;REC=-82,,F,ASCII

|FILE RJLIPCIN=RJLIPCIN.MSG.RJE

|CONTINUE

|RJE

#RJLINE 3780; LINECODE=EBCDIC;MSGFILE=RJLIPCIN

#RJOUT @RJLTRAN(P);WAIT=480;REPEAT=YES;INTERRUPT=YES
#RJEND

|RUN RJLTOHP.PROG

|EOJ

Figure 2

The link is two way, yet uses one wire. Like the Eagles in "Hotel
California", the RJE links can say '"We are programmed to receive".
Each end is hanging on a read from the other end. On the HP side it is
necessary to interrupt the system in order to send a message. The
RJOUT command has to have the parameter "INTERRUPT=YES" set. This
means that the RILINE command allows an IPC file to be defined (which

Paper 3111 4 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

must be in MSG.RJE) which RJE will read. This file is to contain the
names of files which contain commands which RJE is to process.
Unfortunately this parameter only works if the parameter "REPEAT=YES" is
also used. This allows automatic continuation of the 1link, but it
makes it impossible to do anything else with the link. Since the RJOUT
receive command is automatically repeated, it is not possible to process
any messages that are received. It is also impossible to terminate the
link except by aborting it, which is not desirable since it might be in
the middle of transmitting or receiving a message.

The solution to this is to write a procedure program (RJLTRAN in this
example) and to define it on the RJOUT line. This procedure does any
necessary processing on the received message and writes it to an R-file,
and then initiates a command to terminate the RJE system. An important
feature of our link is that there is a file in MSG.RJE which has one
record in it. This record is an RJOUT command for RJE, which has the
parameters WAIT=0,1;REPEAT=NO; INTERRUPT=NO. This commands RJE not to
be interrupted, not to repeat, and to wait only one second before
terminating. RJLTRAN writes the name of this file to the RJLIPCIN IPC
file defined on the RJLINE command, and causes RJE to terminate. The
problem with this method is that the timeout is considered an error.
For this reason, we have to put a CONTINUE statement before the RJE
command. Otherwise the timeout causes the rest of the job stream to be
ignored. The timeout also ceuses an error report to be printed on the
RJE standard 1list. Operators get so used to seeing an error, and
ignoring it, that this tends to mask cases which are genuinely errors.

This method is also programatically repeated in the MAILOFF routine, so
as to bring down RJE when HPMAIL is brought down. Since we have this
method of bringing down RJE when necessary, we are able to put an 8 hour
timeout (almost the maximum value) on the normal RJOUT command.

When RJE has terminated, the job stream initiates a program which checks
the status of the link. It checks the EOF on the R-file to see if any
records have been written to it. If so, then it knows a message has
been received and it streams the job to process the message. If not,
then it knows no message has been received, and it purges the R-file.
Then the job reads in the RJE job stream, changes the name of the R-file
in the FILE statement so as to avoid duplicate file names, and rewrites
the job streem. It then checks to see if RJE is being brought down.
Another IPC file (RJLIPCON) is used as a switch for this. When HPMAIL
and RJE are first started, a record is written to the RJLIPCON switch
file. When RJE is to be brought down, the record is read from the IPC
file, thus deleting it. RJILTOHP, in the RJE job stream, checks EOF on
RILIPCON to see if there are records in it. If so, then RJE is to stay
up, so the program restreams the RJE Jjob stream. If there are no
records in RJLIPCON, then the program allows the RJE job stream to
terminate. Figure 3 shows this arrangement.

Paper 3111 5 DETROIT, MI



L1L1E 18ded

IN ‘LI0413a

Romeo

Y

Juliet

RULTRAN — %8,

RJE
\ wrl'(e
read
\YRJUPCIN )

y/) RJEJCL )

RILTOHP £
]

—EOF 3
chack ) RJLIPCON )

Figure 3

Files containing
recelved messages

Command file
to interrupt
RJE

Switch file to
control whether
RJE should
continue

dNOYD SHASN NVOIHOIN NH3LSVIHLNOS

98 X3H3LNI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Connecting to Mail

The detailed description of how RJE and Mail are connected is given in
two parts - first sending from HPMAIL across RJE to Romeo, second
receiving from RJE and importing the messages into HPMAIL. Figure 4
gives a simplified picture of how the link works in total.

Mail FSC

The communication system uses the FSC ARPA format to export mail to the
other computers. This 1is one option of HP’s standard format for
sending messages to non-HP computers. FSC stands for Foreign Service

Connection. Although HP uses a published standard for this format, it
is insufficiently detailed to write decoding programs. Details of the
FSC ARPA format are given in Appendix A. This Appendix also contains a
photocopy of an HPMAIL message converted to ARPA format.

HPMAIL creates E-files (in HPMAIL.HPOFFICE) containing the mail
messages, and writes the names of the files to an IPC file defined in
the EFT/FSC screen of MAILCONFIG (our file is FSCIPC.HPMAIL). Once an
hour, our system initiates an interface program which checks EOF on the
IPC file. If there are no records, the program ends. If there are
records, then the program processes all the E-files.

The program reads the E-files in sequence and converts the mail messages
to the standard format. The messages are written to a V-file, which
has the same date and time stamp in its neme as the first E-file
processed. This was accidental, and done solely to guarantee a unique
file name. However, it has proved very useful in tracing messages when
this has been necessary. The program then creates en RJIN command
containing the name of this V-file, and writes this record to a C-file
with the same date and time stamp. The name of this C-file is then
written to the RJILIPCIN message file defined to RJE to be used for
interrupting the system. For this reason, the program must run in
MSG.RJE, although it reads from HPMAIL.HPOFFICE. Figure 5 illustrates
this.

Mail EFT

The communication link was first written before FSC was available, and
EFT format was used in both directions. When FSC format came out, it
was our intention to use that in both directions. However, FSC does
not support the REPLY option in HPMAIL. Our users had got used to
REPLYing to messages from the Montagu computers, and we could not take
this away. So we had to continue to use EFT format for importing
messages.

EFT (External File Transfer) format is intended to be used for
communications only between two HP computers, both of which have HPMAIL.

Paper 3111 7 DETROIT, Mi



INTEREX 86

SOUTHEASTERN MICHIGAN USERS GROUP

TIVAdH

¥ @inb|4

dHOLTIVIN

/A saly-3 _N\

S40LTIVA

3ard
winp

oswoy

DETROIT, Mi

Paper 3111



LL1E Joded

IN ‘liod13a

MSG.RJE

RJE

/ RILPCIN |\ oo

o}

Command to
send V-file

Messages to
be transmitted

Name of

MAILTOFS

Read names
of E-files

e

Figure 5

Rea l
ssages

HPMAIL HPOFFICE

o )

Name of
E-files

HPMAIL

Mail messages

dNOYHD SHISN NVOIHOIN NHILSVIHLNOS

98 X3H3LNI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

For this reason, HP has not published descriptions of this format (a
useable description of EFT format is given in Appendix B, together with
the EFT version of the same message used as an example for the FSC
format), and do not guarantee to keep it constant. However, since it
must be used to communicate between HP computers running different
versions of HPMAIL, it is safe to assume that it will not change. KHe
have already gone from HPDESK 1 to HPDESK 3.1 with no problems.

When the RJE job stream finds there is a received message to send to the
HP, e mail job stream is streamed in the HPOFFICE account. Before
starting the job, the RILTOHP program changes the mail Jjob stream so
that it contains the name of the R-file to process. Thus the job
stream has to be in the RJE account, although it runs in the HPOFFICE
account. Figure 6 contains an example of the job stream.

|JOB MAIL2HP ,MGR/.HPOFFICE/,MAILDB;HIPRI;OUTCLASS=LP;PRI=CS
IFILE EFTMAIL=Rdddhhmm.MSG.RJE

IFILE MAILWORK=MAILWORK;DISC=6400,32,1

|FILE MAILFILE=Mdhhmmss ; DISC=32000,32,1

IRUN MAIL2HP.MAILPROG

IRUN DSSEFT.HPMAIL.SYS;LIB=G

|EOJ

Figure 6

The MAIL2HP program converts messages to EFT format. This is a very
complex format. In several places there are counts of the records that
follow. So it is necessary to write records to a work file while
counting them. Once all records of that type have been processed, the
count can be placed in the earlier record, which is then written out to
disc. The subsequent records are then read from the work file, and
written out in their turn.

The Mail messages are written to an M-file. Since messages can be
received in quick succession, it was necessary to include seconds in the
name of the file so as to avoid duplicate file names. The name of the
M-file is then written to an IPC file (EFTIPCIN.MAILDB.HPOFFICE), which
is defined by HPMAIL. The job stream then runs DSSEFT to import the
messages into HPMAIL. Figure 7 illustrates this.

Adventages and Disadvantages

The communication system is very stable. Hundreds of messages are sent
in each direction every week, with very few problems. Some of the
problems that do exist are procedural, although one was a problem with
the HPMAIL software. The early version of the FSC option would
occasionally fail to include recipients’ names in a message. It tends
to be sort of difficult to deliver mail if you do not know to whom it is
supposed to go. This was corrected in HPDESK version A.03.01, which is

Paper 3111 10 DETROIT, MI



L11E Joded

L

IN ‘Llod13d

MAILDB.HPOFFICE

FTIPCIN

MSG.RJE
|
Juliet I
Mail messages |
RIE > R-file >R‘Iaad MAILTOHP
| N
Y
I
| Work files
I
Figure 7

Name of M—file

HPMAIL

Messages In
EFT format

dNOYHD SHISN NVOIHOIN NH3ILSYIHLNOS

98 X3H3LNI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

available with T-delta-4 and some delta version of UMIT. It would be
worthwhile installing this version of HPDESK before attempting to export
messages in FSC ARPA format.

Some procedural items to be aware of are:

- It is not possible to designate a message as ''private" if it is
being sent to an FSC recipient. This can cause the message to be
lost until the next MAILMAINT run, when it will suddenly be flagged
as an error.

- Be careful if users start sending binary files across the link.
The special control characters in Wordstar succeeded in crashing the
HP RJE system.

- If the HP receives a very large volume of messages all at once, it
will cause the programs to run literally for hours, and for HPMAIL
to become so slow that users complain. If the processing of the
messages can just be allowed to run its course, the system will
return to normal.

The communications link has become an essentiel part of the way our
company does business. It has proved itself so important to the
company that when we moved the computers to a new computer room,
bringing up the mail 1link was the top priority. The East Coast
managers read their mail when they arrive at work in the morning, and
send any messages to the West Coast. Three hours later, the West Coast
managers arrive, read their mail, and send replies to the East. Before
they go home, the East Coast managers read their meil and reply to
messages from the HWest. Three hours later, the Hest Coast people do
the same back. Their messages are ready and waiting when the East
Coast starts work again the next day.

Paper 3111 12 DETROIT, Mi



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86
APPENDIX A

Rules for ARPANET Format Files

Some explanation of ARPA format files is given in the HP manual,
"Programmatic Access to HPDESKMANAGER" (Part No. 36570-90040). This
information is insufficient for writing programs to process the files.
Also, the example of an ARPA file given in the manual (on page 5-12) is
of ARPA Compressed format. The rules below are for basic ARPA format,
and are intended to be read in conjunction with the HP manual.
Information that is in the manual is not repeated here.

1. Keywords in the header are:

Date

Sender

To

cc

BCC

From

Subject
X-HPDESK-ID
X-HPDESK-PRIORITY

These are the only keywords that appear in the ARPA file header, and
these keywords will always be EXACTLY as listed above, including upper
and lower case as written above. The keywords, if present, will also
appear in the order given.

2. All keywords in the header are preceded by CRLF.

3. Keywords in the header are followed by an indefinite number of blank
spaces. After this, there is always a colon, one space, and then the
data.

4. The deate is in the format dd Mmm yy, where dd and yy are numeric,
and Mmm is alphabetic (e.g., 16 Jan 86). If the date is earlier than
the tenth of the month, the leading zero is replaced with a blank (e.g.,
5 Jun 86).

5. Mailbox names and nodes in the Sender, To, CC, BCC, and From modules
of the header are in a standard format. For the actual name, a
firstname and middle name are optional, and the length of the name
varies. For the mailbox node, sublocation is optional. With these
provisos, the nemes will always be in the format:

"Firstname Middlename LASTNAME"@[Location/sublocation]

where punctuation, case, etec., will always be EXACTLY as shown.

Paper 3111 13 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

While the manual '"Programmatic Access to HPDESKMANAGER" states that
sublocations are optional, it is in fact impossible to define a remote
connection that does not have a sublocation. Therefore sublocation is,
in reality, mendatory on meil going out from the HP.

6. One E-file will contain mail messages for only one foreign node.
If one message is to go to users on several different nodes, one E-file
will be created for each node.

7. Some header modules, as defined by the keywords, are optional. All
messages will contain Date, Sender, Subject, and the X-HPDESK- keywords,
although there might not actually be a subject (sender replies with a
carriage return to the prompt for Subject). The recipient keywords and
modules are optional, and will be present only if there is a recipient
in that class on the receiving machine. For example, if the sender
enters the name of a remote user in reply to the prompt for From, and if
that user is the only recipient on that remote system, then a record
will be created with no recipients, but with a From module included.

An example of a file in FSC format follows. To ellow the largest
possible type face for the 1listing, the first page shows the octal
representation of the file, and the next page gives the character
interpretation. The file was created on node DCC to be sent to node
LUKE.

Paper 3111 14 DETROIT, MI



LLLE Jaded

Sl

IN ‘llod13a

E1561615.HPMAIL RECORD O (%0, #0)

00000: 106015 005104 060564 062440
00014: 033040 030466 035060 031440
00030: 035040 021124 062562 071171
00044: 030061 056415 005124 067440

E1561615.HPMAIL RECORD 1 (%1, #1)

00000: 020040 020040 020040 020040
00014: 047042 040133 046125 045505
00030: 020072 020105 074141 066560
00044: 052040 063157 071155 060564

E1561615 HPMAIL RECORD 2 (%2, #2)

00000: 071440 020040 020040 020040
00014: 020040 020040 020040 020015
00030: 032064 030062 030467 020060
00044: 005130 026510 050104 042523

E1561615 HPMAIL RECORD 3 (%3, #3)

00000: 045455 050122 044517 051111
00014: 060547 062456 020040 020040
00030: 020040 020040 020040 020040
00044: 032457 034066 020141 072040

E1561615.HPMAIL RECORD 4 (%4, #4)

00000: 030466 030063 027015 005123
00014: 067546 020106 051503 020141
00030: 051545 067144 062562 035040
00044: 027440 042103 041457 030061

E1561615 .HPMAIL RECORD S5 (%5, #5)

00000: 020040 020040 020040 020040
00014: 035040 031056 006412 020015
00030: 047472 020124 062562 071171
00044: 027460 030415 005040 006412

E1561615.HPMAIL RECORD 6 (%6, #6)

00000: 050141 071164 020062 027015
00014: 074141 066560 066145 020164
00030: 050115 040511 046040 066545
00044: 020151 067040 043123 041440

E1561615 .HPMAIL RECORD 7 (%7, #7)

00000: 040522 050101 006412 063157
00014: 020111 067164 062562 067141
00030: 061154 060556 065440 066151
00044: 020151 067163 062562 072145

E1561615.HPMAIL RECORD 8 (%10, #8)
00000: 062054 020141 067144 020164
00014: 063040 072150 062440 066545
00030: SAME: TO 000050-1

020040
043515
020101

035040
027460
066145

020040
005130
020060

052131
020040
020040

072542
067144
020124

020040
005120
020101

005040
067440
071563

071155
066040
067145

064151
071563

020040
052015
052113

020040
026510
020060

035040
020040
020040

065145
020105
062562

020040
060562
052113

006412
071550
060547

060564
043157
020150

071440
060547

020040
005123
044516

062562
006412
063040

020040
050104
020042

031415
020040
020104

061564
043124
071171

020040
072040
044516

052150
067567
062440

026040
071155
060563

064563
062456

035040
062556
051517

071171
051565
043123

020040
042523
046125

005015
020040
060564

035040
020146
020101

020040
030456
051517

064563
020167
066157

060556
060564
020152

020164
020040

020065
062145
047042

020101
061152
041440

020040
045455
045505

005040
020040
062544

042570
067562
052113

041557
006412
047040

062040
027015
072563

064145
020040

020112
071040
040133

052113
062543
060556

020040
044504
020040

006412
020040
035040

060555
066541
044516

067164
020015
027440

071440
072040
071440

064556
005040
072040

020145
020040

072556
020040
042103

044516
072040
062040

020040
035040
030061

046545
020040
030066

070154
072163
051517

062556
005040
046125

060556
060556
066151

020105
006412
061145

067144
020040

020070
020040
041457

051517
020040
042506

020040
030460
021015

071563
020040
027460

062440
006412
047040

072163
020124
045505

020145
020110
065545

043124
040440
062556

020157
020040

dNOYO SH3ISN NVOIHOIN NH3LSVYIHLNOS

98 X3H3LNI



LLLg Jaded

9l

IN ‘liod13a

E1561615.HPMAIL RECORD 0 (%0, #0)

00000: ...Date 5 Jun 86 16:03 GMT..Sender : "Terry ATKINSON"@[DCC/01]..To

E1561615 .HPMAIL RECORD 1 (%1, #1)

00000: : "Terry ATKINSON"@[LUKE/O1]..Subject : Example of FSC and EFT format
E1561615 .HPMAIL RECORD 2 (%2, #2)

00000: s . .X-HPDESK-ID: 10440217 0 O O "LUKE 01"..X-HPDES
E1561615.HPMAIL RECORD 3 (%3, #3)

00000: K-PRIORITY: 3.... ..Message. Dated: 06/05/86 at

E1561615 .HPMAIL RECORD 4 (%4, #4)
00000: 1603...Subject: Example of FSC and EFT formats..Sender: Terry ATKINSON / DCC/01
E1561615 .HPMAIL RECORD 5 (%5, #5)

00000: Contents: 2... ..Part 1... .. TO: Terry ATKINSON / LUKE/O1.
ElSSlSlS.hPMAIL RECORD 6 (%6, #6)

00000: Part 2... ..This is an example to show what an HPMAIL message looks like in FSC
E1561615 .HPMAIL RECORD 7 (%7, #7)

00000: ARPA..format, and in EFT Internal Format... ..A blank line has just been inserte

E1561615 .HPMAIL RECORD 8 (%10, #8)
00000: d, and this is the end of the message.

dNOYH SHASN NVOIHOIW NHILSYIHLNOS

98 X343 LNI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86
APPENDIX B

HPMAIL EFT Internal Format

HPMAIL EFT Internal Format uses 10 different record types. These are
identified as record types O - 9. Record types O - 2 are file headers
that appear once at the beginning of an internal format file. Record
types 3 - 8 are headers for each individual mail message. Record types
3, 4, and 7 are similar, although not identical. Record type 9 contains
the text of the message. The records are 256 character fixed length
records.

Record types 0 - 8 contain codes. The meanings of many of these codes
have been identified and are described in this appendix. However, many
other meanings have not been identified. It is quite possible that,
for some of these, they have no meaning but contain whatever was in the
buffer when the records were created. In some cases the transport
system will not work if the codes are changed in any way, while other
codes appear to have no effect on the operation of the HPMAIl system.

The HPMAIL heading records contain many counts of items that follow the
header records. Therefore, when creating a file in EFT internal
format, it is necessary to store information on work files until all the
counts have been made. Then the header records can be created, and
following detail records written after the headers

As far as can be ascertained, the purposes of the 10 record types are:

Information to identify the communicating computers
Starting position of mail messages

Continuation of record type 1

Sender information

Sender information

Recipient header information

Recipient 1list

Sender information

Text header information

Text

WO WDDEHO

Record Formats

The formats for the record types are given with byte counts being used
for offsets, beginning with O for a record. The terms '"word" or
"Dword" (doubleword) are used to identify items of 2 or 4 bytes in
length respectively, and beginning on a word or doubleword boundary.
The symbol % means the number is an octal number. The symbol b means a
blank space 1is required. The formats below give deteils for
communicating from a foreign computer called ROMEO, to accounts in
location JULIET/O01.

Paper 3111 17 DETROIT, Mi



_SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Record 0
Starting Position Length Value Meaning

0 1 word %1 file type - required

2 6 JULIET Location of receiving
mail node

8 2 0l Sub-location of
receiving mail node

10 8 ROMEObbb Name of sending

computer (node)
The rest of the record is blank filled.

Records 1 and 2 combine to provide 128 doublewords (64 on each record)
that are used to record the starting record number of each mail message
on the file. The starting record number of the first record is always
3, and this value is stored in the doubleword beginning at position 0 in
record 1. The last doubleword on record 2 is always O. This leaves
space for 127 message identifiers. This is the reason that a file in
HPMAIL EFT internal format cannot contain more than 127 messages.

Record 3

The first 4 words of record type 3 contain codes whose meanings are
unknown. Words 1, 3, eand 4 are always the same on all occurences of
record type 3. Word 2 starts off with different values on files
created on different occasions, but increases by %23 with each occurence
of record type 3, or its related record types 4 and 7. The doubleword
from 68 - 71 always contains the same value on one file, but this value
changes for different files.

Starting Position Length Value Meaning
0 1 word 0
2 1 word Varies, increases by %23 for each

occurrence of record type 3, 4, or 7.
Meaning not known.

4 1 word %177634 not known - required
6 1 word %1 not known
8 60 Title of message
68 Dword varies not known
72 Dword %0
76 Dword Number of seconds since
1/1/61
80 2 Dwords %0
88 36 Sender’s account name
124 6 Name of sender’s
location (node)
130 2 Sender’s sub-location

Paper 3111 18 DETROIT, Mi



SOUTHEASTERN MICHIGAN USERS GROUP

132
146
148
152

7 words
1 word
Dword

2 words

%0
%2
%0
%2 ,%2

The rest of the record is filled with %0.

Record 4

Starting Position

[+~ NP 8\ N

20
68
146
148
154

Length

1 word
1 word
1 word
1 word
12

48

78

1 word
3 words
1 word

Value

%0

INTEREX 86

not known

not known

Meaning

%23 more than record 3 - not known

%2216
%0

DISTRIBUTION
Blank spaces

not known

Seme as record type 3

%0

Seme as record type 3

%0

The rest of the record is filled with %0.

Record 5
Starting Position

o]
14
16
18
20
22
26
28
30
32
34
36

46
48
50

58

Paper 3111

Length

~

word
word
word
word
words
word
word
word
word
word
Dwords

L T e e e N e N T N

word
word
word
word
words
word

(RN S Sy

Value

$OLDPASSOFFICE

%421
%60

%177720
%2216

%176400
%1

%0

%20

%0

%6

19

Meaning

not known
not known

not known

not known
not known
not known
not known
not known
Count of number of
recipients of message.
(Count is stored twice,
in consecutive Dwords.)
not known
not known

not known

not known

DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86
The rest of the record is filled with %0.

Record 6 contains the names and locations of the recipients of the
message. The information is stored in segments that are 48 characters
long. If there are more recipients than .will fit on one record, the
segments are continued onto another record without regard for record
boundaries. For example, if there are 7 recipients, then the first 5
segments, and the first 16 characters of the 6th segment, are on the
first record. The 1last 32 characters of the 6th segment are in
positions 0 - 31 of the second record. The 7th segment begins in
position 32 of the second record. 11 recipients require three records,
and so on.

The format of the segments is given below:

Starting Position Length Value Meaning
0 1 word %300 1st segment
%100 2nd or subsequent
segment
2 1 word %1 Primary recipient
%2 CC recipient
BCC recipient
4 36 LASTNAME ,OTHER NAMES recipient’s name
40 6 Recipient’s location
46 2 Sub-location
Record 7
Starting Position Length Value Meaning
(o} 1 word %0
2 1 word %23 more than record 4 - not known
4 1 word %2217 not known
6° 1 word %0
8 60 Title of message
68 84 Same as record type 4
152 1 word Number of record types 8 and 9 in this

message

The rest of the record is filled with %O0.

Record 8
Starting Position Length Value Meaning
0 8 $OLDPASS
8 20 %0
28 1 word %34 not known
30 1 word %400 not known

Paper 3111 20 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

32 1 word %177660 not known
34 1 word %2217 not known
36 1 word %0

38 1 word Number of 80-character 1lines in

message

40 1 word %0

42 1 word %1777 not known
44, 1 word %175400 not known
46 1 word %10 not known
48 1 word %0

50 1 word %20 not known
52 3 words %0

58 1 word %12 not known

The rest of the record is filled with %0.

Record 9 contains the text of the message. It is stored in the records
as continuous strings of 80 characters in length. There are no control
characters such as carriage returns or line feeds. Short lines are
padded to 80 characters with blank spaces. When the end of a record is
reached, the 80 character line runs over onto the next record without
regard for record boundaries. Once all text has been included, the
last 256 character record is filled with blank spaces.

An example follows of a file in EFT format. This is the same message
that was used in Appendix A as ean example of the FSC format. Again, to
allow the largest possible type face for the example, the octel
representation is given first, and then the character interpretation.

Paper 3111 21 DETROIT, MI



LL1E 1oded

44

IN ‘liod13a

M7084804 MAILDB RECORD O (%0. #0)
00000: 000001 042103 041440 020040
00014: SAME: TO 000200-1

M7084804 MAILDB RECORD 1 (%1, #1)
00000: 000000 000003 000000 000000
00014: SAME: TO 000200-1

M7084804 .MAILDB RECORD 2 (%2, #2)
00000: 000000_000000 000000 000000
00014: SAME: TO 000200-1

M7084804 . MAILDB RECORD 3 (%3 #3)
00000: 00000 02350 00

00014:
00030:
00044
00060:
00074:
00110:

041440
020040
000000
020040
020040

000000 _0000

080558
020040
000000
020040
020040
02

062040
020040
027723
020040
046125
000000

0001
042506
020040
034210
020040
045505
000000

00124: SAME: TO 000200-1

M7084804 .MAILDB RECORD 4 [%4, #4)
00000: 000000 002373 002218 000000
00014: SAME: TO 000030-

00030: 020040 020040 020040 020040
00044: 000000 000000 027723 034210
00060: 020040 020040 020040 020040
00074: 020040 020040 046125 045505
00110: 000000 000000 000000 000000
00124: SAME: TO 000200-1

M7084804 MAILDB RECORD 5 (%5, #5)
00000: 022117 046104 050101 051523

00014:
00044

00014:
00044
M7084804 .MAILDB RECORD 7 (%7
00000: 000000 002416 002

00014:
00030:
00044 :
00060:
00074:

00110:
00124:

000000 000001 000034 000400
00030: 000000 _000020 000000 000000
TO 000200-1

M7084804 .MAILDB RECORD 6 (%6, #6)

00000: 000300 000001 040524 045511
020040 020040 020040 020040
00030: 020040 020040 020040 020040
TO 000200-1

SAME :

SAME :

041440
020040
000000
020040
020040
000000
SAME :

060556
020040
000000
020040
020040
000000

217
062040
020040
027723
020040
046125
000000

TO 000200-1

#7)

000000
042506
020040
034210
020040
045505
000000

030061

000000

000000

020040
052040
020040
000000
020040
020040
000002

042111

020040
000000
020040
020040
000002

047506
177720
000000

047123
020040
020040

020040
052040
020040
000000
020040
020040
000007

046125

000000

000000

020105
063157
020040
000000
020040
030061
000002

051524

020040
000000
020040
030061
000000

043111
002216
000006

047516
020040
020040

020105
063157
020040
000000
020040
030061
000000

045505

000000

000000

074141
071155
020040
000000
020040
000000
000000

051111

020040
000000
020040
000000
000000

041505
000000
000000

026124
020040
020040

074141
071155
020040
000000
020040
000000
000000

020040

000000

000000

066560
060564
020040
000000
020040
000000
000000

041125

020040
000000
020040
000000
000000

000421
000001
000000

042522
020040
020040

066560
060564
020040
000000
020040
000000
000000

020040

000000

000000

066145
071440
020040
040524
020040
000000
000000

052111

020040
040524
020040
000000
000000

000060
000000
000000

051131
042103
020040

066145
071440
020040
040524
020040
000000
000000

020040

000000

000000

020157
020040
020040
045511
020040
000000
000000

047516

020040
045511
020040
000000
000000

000000
000001
000000

020040
041440
020040

020157
020040
020040
045511
020040
000000
000000

020040

000000

000000

063040
020040
000000
047123
020040
000000
000000

020040

000000
047123
020040
000000
000000

000006
176400
000000

020040
020040
020040

063040
020040
000000
047123
020040
000000
000000

020040

000000

000000

043123
020040
000001
047516
020040
000000
000000

020040

000001
047516
020040
000000
000000

000000
000001
000000

020040
030061
020040

043123
020040
000001
047516
020040
000000
000000

dNOYHD SH3ISN NVOIHOIN NH3ILSVIHLNOS

98 X3H3LNI



L11g Jeded

€c

IN ‘liodl3a

M7084804 MAILDB RECORD 8 (%10, #8)
00000: 022117 046104 050101 051523 000000

00014:

000000 000000 000034

000400 177660

00030: 000000 _000020 000000 000000 000000

00044

SAME: TO 000200-1

M7084804 MAILDB RECORD 9 (%11, #9)

00000
00044
00060:
00074
00110:
00124:
00140:

SAME : TO 000044-1
020040 020040 020040
032060 031061 033440
SAME: TO 000110-1
020040 020040 020040
026520 051111 047522
SAME: TO 000200-1

020040 054055
030040 030040

020040 020040
044524 054472

M7084804 MAILDB RECORD 10 (%12, #A)

00000:
00110:
00124:
00140:
00154:
00170:

SAME: TO 000110-1

046545 071563 060547
020040 020040 020040
030066 027460 032457
020040 020040 020040
020157 063040 043123

062456 020040
020040 020040
034066 020141
020040 051565
041440 060556

M7084804 .MAILDB RECORD 11 (%13, #B

00000:
00014:
00030:
00044 :
00060 :
00074:
00140:
00154 :
00170:

063157 071155 060564
SAME: TO 000030-1
051545 067144 062562
027440 042103 041457
041557 067164 062556
SAME: TO 000140-1
020040 020040 020040
020040 020040 020040
SAME: TO 000200-1

)
071440 020040

035040 020124
030061 020040
072163 035040

020040 020040
020040 020040

M7084804 MAILDB RECORD 12 (%14, #C)

00000:

SAME: TO 000060-1

00060: 020040 020040 020040 020040 020040
00074: 071162 074440 040524 045511 047123

00110:

SAME: TO 000200-1

M7084804 MAILDB RECORD 13 (%15, #D)

000

00014:
00030:
00124:
00140:
00154:
00170:

020040 020040 020040
020040 020040 020040
SAME: TO 000124-1

020040 020040 020040
066145 020164 067440
046040 066545 071563
043123 041440 040522

020040 020040
020040 020040

020040 052150
071550 067567
060547 062440
050101 020040

000000
002217
000012

044120
030040

020040
020063

020040
020040
072040
061152
062040

020040

062562
020040
031056

020040
020040

020040
047516

020040
020040

064563
020167
066157
020040

000000
000000
000000

042105
021114

020040
020040

020040
020040
030466
062543
042506

020040

071171
020040
020040

020040
020040

020040
020057

020040
020040

020151
064141
067553
020040

000000
000023
000000

051513
052513

020040
020040

020040
020040
030063
072072
052040

020040

020101
020040
020040

020040
020040

020040
020114

020040
020040

071440
072040
071440
020040

000000
000000
000000

026511
042440

054055
020040

020040
020104
027040
020105

020040

052113
020040
020040

050141
020040

050141
020040

060556
060556
066151

000000
001777
000000

042072
020060

044120
020040

020040
060564
020040
074141

020040

044516
020040
020040

071164
020040

052117
042457

071164
020040

020145
020110
065545

00C000
175400
000000

020061
030442

042105
020040

020040
062544
020040
066560

020040

051517
020040
020040

020061
020040

035040
030061

020062
020040

074141
050115
020151

000100
000010
000600

030064
020040

051513
020040

020040
035040
020040
066145

020040

047040
020040
020040

027040
020040

052145
020040

027040
020040

066560
040511
067040

dNOYH SH3ISN NVYOIHOIN NH3ILSVIHLNOS

98 X343 LINI



L11g Jaded

ve

M7084804 MAILDE RECORD 14 (%16, #%E)

00000: 063157 071155 060564 026040 060556 062040 064556 020105 043124 020111 067164 062562
00014: 067141 066040 043157 071155 060564 027040 020040 020040 020040 020040 020040 020040
00030: SAME: TO 000110-1

00110: 020040 020040 020040 020040 020040 020040 020040 020040 040440 061154 060556 065440
00124: 066151 067145 020150 060563 020152 072563 072040 061145 062556 020151 067163 062562
00140: 072145 062054 020141 067144 020164 064151 071440 064563 020164 064145 020145 067144
00154: 020157 063040 072150 062440 066545 071563 060547 062456 020040 020040 020040 020040
00170: SAME: TO 000200-1

M7084804 MAILDB RECORD 0 (%0, #0)

00000. .

00074: SAME: TO 000200-1

M7084804 MAILDB RECORD 1 (%1, #1)

D G AME L T TO BO0BO0CE T
Msgla&bd .MAILDB RECORD 2 (%2, #2)

0
00074: SAME: TO 000200 1

M7084804 MAILDB RECORD 3 (%3, #3)
DO ........ Example of FSC and EFT formats .. ... /.8, .. ... ATKINSON

UKE 01.
00170 SAME: TO 000200-1
M7084804 MAILDB RECORD 4 (%4, #4)
00000: ........ DISTRIBUTION e 8 ATKINSON
00074: LUKE 0. e e
00170: SAME: TO 000200-1
M7084804 MAILDB RECORD S (X5, #S5)

00000: SOLDPASSOFFICE ... 0. .. .. ...ttt it e e e e e e
00074: SAME: TO 000200-1

M7081304 MAILDB RECORD 6 (XS. 46)
... .ATKINSON, TERRY bcC 01
00074: SAME: TO 000200-1

M7084804 MAILDB RECORD 7 (X7, #7)
000 00 ........ Example of FSC and EFT formats R /.8........ ATKINSON

dNOYH SHIASN NYHDIHOIN NH3LSVYIHLNOS

IN ‘lLi04d13a

0007
00170 SAME

UKE 01.
TO 000200-1

98 X3H3LNI



L11E Joded

Se

IN ‘llod13a

M7084804 MAILDB RECORD 8 (%10, #8)

00000: SOLDPASS........
00074 SAME: TO 000200-1

M7084804 MAILDB RECORD 8 (%11, #9)
00000:

00074 "
00170: SAME: TO 000200-1

M7084804 MAILDB RECORD 10 (%12, #A)
00000: SAME: TO 000074-1
00074 :

00170: of FSC and EFT
M7084804 .MAILDB RECORD 11 (%13, #B)
80090: formats

00170 SAME: TO 000200-1

Message.

M7084804 MAILDB RECORD 12 (%14, #C)
00000

00074: rry ATKINSON / LUKE/O1
00170: SAME: TO 000200-1

M7084804 MAILDB RECORD 13 (%15, #D)
00000 Part 2.
00074 :

00170: FSC ARPA

M7084804 MAILDB RECORD 14 (%16, #E)

00090: format, and in EFT Internal Format.

00074:
00170: SAME: TO 000200-1

X-HPDESK-ID: 10440217 0 0 O "LUKE 01"

X-HPDESK-PRIORITY: 3

Dated: 06/05/86 at 1603. Subject: Example

Sender: Terry ATKINSON / DCC/01 Part 1 Contents: 2.
ar .

TO: Te

This is an example to show what an HPMAIL message looks like in

A blank line has just been inserted., and this is the end of the message.

dNOYHD SHISN NVOIHOIN NHILSVYIHLINOS

98 X3H3LNI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Interprocess Communication Using MPE Message Files

Lars Borresen
Hewlett-Packard Company
Computer Systems Division

19111 Pruneridge Avenue
Cupertino, CA 95014

I. What is IPC?

Interprocess Communication (IPC) is a facility which permits multiple processes to pass
information between one another. This allows large tasks that have been broken into
independent processes, to synchronize their actions and exchange data. IPC can be useful
in solving a variety of problems.

Large processes can be constrained by MPE’s 32KB maximum stack size. One possible
solution is to divide them into several smaller processes. These processes can be specialized
to perform one specific function or a group of functions. Then each process fits into its
own 32KB stack.

Some programs must handle conflicting requirements. These requirements may include
performing lengthy calculations as well as dealing with transactions that require frequent
service. If these programs are broken up into several processes, one process can be
dedicated to monitoring the transactions, ensuring they get the constant attention they
require. Other processes can perform other CPU-consuming functions. These processes
can coordinate their efforts with the use of the IPC facility.

Some tasks require more processor time than is available on a single machine. These tasks
can be divided into several processes and spread across multiple machines in a network.
IPC can be used to pass data to different processes on remote machines. This division of
processes across machines also allows the other benefits of distributed data processing.

Reliability is improved because the processes must interface through well-defined IPC
records. Large data structures become resources that are managed by specialized processes.
Other processes request or update the data with a set of special commands passed through
IPC. Unauthorized access or unintentional corruption can be closely controlled.

When tasks are divided into independent processes, testing them becomes easier. Inputs
and outputs to the various processes become IPC records, and tend to become well-defined
commands and responses. The processes can be tested individually because editors can be
used to build the input records. The output can be easily checked or redirected to a
terminal or printer.

Finally, large programs may be implemented more quickly. The overall task can be
divided into small pieces. Each programmer can work on a separate piece, and run it as an
independent process. The development of the pieces can occur in parallel. The pieces are
modular, and fit together through well-defined interfaces using IPC.

Il. How does MPE implement IPC?

There are several ways processes can communicate under MPE. The most powerful is the
facility provided by the file system, which uses a FIFO queue structure. Sending processes

Paper 3112 1 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP : INTEREX 86

can queue multiple messages that are stored until a receiver reads them, even across system
SHUTDOWNSs. Receiving processes are allowed to wait for messages on one or more empty
queues. Messages are deleted from the queue when they are read.

The cooperating processes using IPC do not need to be related. They can even be running
on different machines in a network.

IPC has several advantages because it is part of the file system. Most functions can be
performed with standard file system intrinsics that programmers are already familiar with.
The cooperating processes find each other through a known file name rather than having
to determine each other’s process ID. There are several different ways to perform I/0.
The :FILE command can be used to redirect the I/O to another device, or change the way
in which the message file is accessed. The existing file system security features can also be
used.

The heart of IPC is the "message file". Message files reside partly in memory and partly on
disc. MPE uses the memory-resident part as much as possible, to achieve the best
performance. The disc-resident part of the message file is used only as secondary storage
when the memory-resident part overflows. For many users of IPC, MPE never accesses the
disc-resident message file.

lll. What about MPE/XL?

The interface a user of IPC would see is identical for MPE/V and MPE/XL. In fact, they
both use the same code. The only changes that are visible are concerned with the way
extents are managed on disc. Using IPC does not hinder any efforts to move software to an
MPE/XL machine.

IV. How do you use it? - A simple case.

IPC can be relatively easy to set up. Let us say that there is a large programming task.
For one or more of the reasons above, it is to be divided into two processes. One process
will interface with the user. This process will be referred to as the "supervisor" process. It
does some processing tasks itself, and offloads others to another process. This other process,
the "server" process, only handles requests from the supervisor and returns the results. The
following is a description of how to set up the communications between these two
processes. The terminology used is from SPL, but other programming languages can be
used for most of the features discussed here.

Program Structure

Like most other files, the message files need to be opened explicitly with the FOPEN
intrinsic. Two-way communication is needed, so each process opens two files, one for
supervisor-to-server commands, and the other for server-to-supervisor responses. The
supervisor opens the command file with Write-Only access and the response file with
Read-Only access. The server opens the command file with Read-Only access and the
response file with Write-Only access. The FOPEN parameters are similar to any other
FOPEN these processes would perform on another file. The processes make contact by
using file names known to both of them. Assume the file names are always fixed and
determined before the code is written.

Paper 3112 2 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

In addition to FOPEN, these processes use three other file system intrinsics to perform IPC:
FREAD, FWRITE, and FCLOSE. These intrinsics are used exactly as they would for any
other type of file.

When the server starts executing, it performs an FREAD on the command file. The
command file is empty, so the process suspends in FREAD instead of getting an
End-Of-File condition. As part of the supervisor’s processing, it eventually does an
FWRITE to the command file. There is nothing to stop this FWRITE, so it completes
almost immediately. The supervisor then does an FREAD on the response file, which, since
it is empty, causes the process to suspend.

MPE notices that data has been written to the command file, and that the server process is
waiting in FREAD for data from that file. MPE moves the data to the address that the
server passed in the FREAD intrinsic, deletes the record from the message file, and restarts
that process. The server picks up from the FREAD and processes the command. When it
has finished processing the command, the server FWRITEs its answer to the response file.
At this point the server is done. It can terminate or issue another FREAD on the
command file and start the sequence over again. MPE moves the response data to the
supervisor’s buffer, deletes it from the file, and restarts the supervisor at the FREAD. The
supervisor continues processing, possibly repeating the cycle. Eventually both processes
FCLOSE each of their files as part of terminating.

SUPERVISOR SERVER
FOPEN "command" file FOPEN "command" file
FOPEN "response' file FOPEN "response" file
FREAD "command" file
(processing) !
! (waiting)
T IPC ¢ (fread
I FWRITE "command" file ----—-—----- » Y completes)
M
E FREAD "response" file
: (processing)
! (waiting)
! (fread IPC
Y completes) <-—-———mcmmmm- FWRITE "response" file
FCLOSE "command" file FCLOSE "command" file
FCLOSE "response" file FCLOSE "response" file

v

"Simple Case" Example

Paper 3112 3 DETROIT, Mi



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86
Boundary Conditions

Parts of this example merit some additional attention. One area is the "boundary
conditions" which may prevent an I/O from completing: an FREAD from an empty file, or
an FWRITE to a full file. The 1/O intrinsic may return an End-Of-File indication, or it
may wait until the condition is resolved (a record becomes available for the FREAD, or
space in the file becomes available for the FWRITE).

The intrinsic waits if any of the following three conditions are true: there is an "opposite
accessor” with the file open, this is the first I/O on this file this accessor has done since the
file was opened, or this accessor is in "extended wait" mode. The reasoning is as follows: If
there is an opposite accessor (if this process is doing FREADs and there is at least one
process doing FWRITEs to the file), then it is possible that the I/O request will be satisfied
eventually. If there were no "opposite accessors", then the process might wait forever.

When processes start up, there may be a race condition in which it is difficult to predict
whether one process’s I/O request will be made before another process’s FOPEN. For this
reason, the first I/O waits to give the "opposite accessor" time to open the file.

Finally, a process may always want to wait rather than receive an EOF. It can do this by
requesting "extended wait". This will be discussed in more detail later.

In the example, the server can open the the command file and issue the FREAD before the
supervisor opens the command file. The FREAD waits because it is the first I/O after the
open. But, if after the first command is processed the server issues another FREAD, and
the supervisor has terminated unexpectedly, this FREAD will receive an EOF, signaling
that something is wrong. This FREAD receives an EOF because the FREAD is not the
first I/0, and there are now no writers accessing this file.

An FCLOSE by another process can cause an intrinsic that is waiting on a boundary
condition to stop waiting and receive an EOF. If the process that is waiting is not using
"extended wait", and the last process that can resolve that boundary condition does an
FCLOSE on the file, MPE will wake up the waiting intrinsic and return an EOF condition.

Message File Names

In order to use IPC, processes must find each other through a known file name. This
means that the file must be in a directory that is visible to all accessors. In the example,
either a :BUILD is done previously, or one process must first FOPEN the file as new and
FCLOSE it as permanent, to put the file in the directory. The file can be created as
temporary if all accessors are running under the same job or session. If security is an issue,
the file can be created with a lockword.

Recovery From Abnormal Terminations

In the event of an abnormal termination of the processes involved in IPC, some unread
records may be left in the message file. Some applications are concerned only with current
data and do not want to see unprocessed data from a previous run. The simplest solution is
always to programmatically :PURGE and :BUILD all message files as part of the
initialization processing. Another possibility requires the writer always to open the file
first. If the writer’s FOPEN has an Access Type (AOPTION 12:4) of Write-Only (=1) then
the records will be automatically purged. If that FOPEN has an Access Type of Append
(=3) then the old records will be kept and the new records will be added to the end. Note
that if the reader opens the file first, then regardless of the writer’s Access Type, the
records will be kept. To cleanly recover the data in an application in which the reader

Paper 3112 4 DETROIT, Ml



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

opens the file first, FLOCK the file so that the writer will not alter it, then FREAD all the
records and process or discard them.

Message File FOPEN Parameters

Some things are different about message file FOPEN parameters. To open a new message
file, the message file type must be specified. Either the FOPEN File Type field (FOPTION
2:3) must have the value for message files (=6), or the FOPEN must reference a :FILE
command containing the keyword MSG. In the Exclusive Access field (AOPTION 8:2), the
values 0 and 1 mean that only one reader and one writer are allowed to access this file
concurrently (EXC in the :FILE command). The value 2 means that one reader and
multiple writers can access this file concurrently (SEMI in :FILE), and the value 3 means
that multiple readers and multiple writers can access this file concurrently (SHR in :FILE).
The Access Type field (AOPTION 12:4) can have only the values Read-Only (=0),
Write-Only (=1), and Append (=3). Execute, Read/Write, and Update access are not
supported. If Read/Write access is needed to allow a process to queue a message to itself,
this process should open the file twice, once Read-Only and once Write-Only.

Overriding FOPEN Parameters

Some values for FOPEN. parameters are inconsistent with message files. When these values
are used, MPE changes the value to one more in line with message files, rather than
returning an error. An example is the No-Buffers option (AOPTION 7:1). Message files
reside primarily in the buffers. Disallowing the file to be buffered would defeat many of
the features of IPC. The bit is therefore changed so that message files are always
Buffered. Related to this is the Number-Of-Buffers field. IPC needs to have at least two
buffers. If less than two are specified, the field is changed to two. Also, IPC will never use
more buffers than there are blocks in the file. If more are specified, the lower number is
used. Since IPC is record oriented, the Multi-Record option (AOPTION 11:1) is always
turned off. Finally, message files always use the Variable length record format internally.
If Fixed length records are requested (FOPTION 8:2), IPC makes the records "look" Fixed,
but a :LISTF will show that they are Variable internally.

To summarize, in the example four standard file system intrinsics are used to perform IPC:
FOPEN, FCLOSE, FREAD, and FWRITE. FREADs wait for records, and FWRITEs wait
for space, rather than returning an EOF, if a process exists which can satisfy the requests.
FOPENSs of message files are similar to FOPENSs for other files. There are some parameters
however, that are handled differently. Because the processes make contact using the
message file name, the file must be in a directory that its accessors can use. Finally,
applications may want to perform some recovery if they find a message file containing
unread data from a previous run.

V. How do you use it? - Some variations.

Many users of IPC require more sophisticated functions than were described above. For
these users, IPC provides several optional features that can be requested as needed.

Multiple Concurrent Readers or Writers

An application may need to use multiple concurrent readers or writers. In the example
above, there may be multiple supervisors that need the services of the same server. The
server may not be able to keep up with the requests, and so multiple copies of it may be
needed to handle the command queue. Having a message file which is accessed by multiple
concurrent readers or multiple concurrent writers sounds easy enough, but there are some

Paper 3112 5 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

subtleties the user should be aware of. Each reader receives its own record when it does an
FREAD. There is no "broadcast" facility in IPC, and hence no way in which all readers
can receive copies of the same record. If either readers or writers are waiting on a
boundary condition, they will be awakened in the order in which they called their I/O
intrinsics. If both multiple readers and multiple writers exist, while a common command
queue works well, perhaps individual response queues are needed. That way each
supervisor only "sees" the responses to its commands. Often applications with this situation
pass the name of the response message file along with the command, so that the file can be
FOPENed and the response sent to the correct destination.

Preventing Deadlocks

It is possible, when multiple writers access a message file having a small FILE LIMIT, to
cause a deadlock. MPE Kkeeps track of when writers open and close the message file, by
adding some extra records that are normally invisible. To leave room for these records,
MPE increases the FILE LIMIT by 2 when the file is first created. This leaves enough
room for one open and one close record per file. As writers open the file and begin
writing, they each use one record for an "open" record and reserve another for their "close"
record. One record is used and the space for another is reserved per writer. If the file has
a very small FILE LIMIT, or there is a large number of writers, it is possible to get into a
state in which all the space in the file is reserved. Writers are not able to write, because
the file "looks" full (no available space). Readers are not able to read, because the file
"looks" empty (no real records to be read). A deadlock has occurred. The best solution is to
make the FILE LIMIT large enough that there is room for more records than there will be
writers. There is another way to recover from a deadlock, which is discussed later.

Writer Identification

Sometimes it is useful for a reader to know when a new writer opens the file, which
records this writer writes, and when the writer closes the file and hence no longer adds
records. This allows the reader to keep track of who is sending records. It also may help
the reader manage its resources, perhaps allocating a data segment when a new writer
opens, and releasing it when the writer closes the file.

IPC provides this feature through the use of FCONTROL(file-number,46,parameter)
(referred to as FCONTROL 46). Readers who call FCONTROL 46 receive two additional
words at the beginning of each record returned by FREAD. The first word contains the
record type (0 = data, 1 = open, 2 = close). The second word contains a writer’s ID. The ID
is only a way to associate the open, close, and data writes done by a specific writer. If
additional information is needed (such as process ID number or program name), it can be
passed by the writer in the first record, and saved by the reader in a table indexed
according to the writer’s ID. The writer’s ID is always written when a writer does an
FWRITE. FCONTROL 46 only makes it visible to the reader. Writers who call
FCONTROL 46 will receive an error.

Extended Wait

If a process calls an intrinsic to perform an I/0O, and it is blocked because of a boundary
condition, then an EOF condition code is returned if there are no processes with this file
open that can resolve the boundary condition. There are applications where it is useful for
the process always to wait instead of receiving an EOF. It may be known that another
process will eventually open the file and satisfy the blocked I/0 request.

MPE lets the process request this "extended wait" mode through FCONTROL 45.
"Extended wait" always starts out disabled, but both readers and writers can enable or

Paper 3112 6 DETROIT, M|



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

disable it. The rule is that the intrinsic waits on a boundary condition if any of the
following are true: this is the first I/O, an accessor who can resolve the boundary condition
has the file open, or the I/O is requested when "extended wait" mode is enabled. Calling
FCONTROL 45 to disable "extended wait" does not mean that this process now never waits
on a boundary condition, only that it will not always wait.

Timeouts

Suppose one process is using "extended wait", and, while it is waiting, the only process that
could resolve the condition terminates unexpectedly. The waiting process will never wake
up and must be ABORTed. It would be helpful if the waiting process could detect the
situation and terminate gracefully. MPE allows the process to set a "timeout", so that if
after the specified time the I/O still has not completed, the 1/O intrinsic returns to the
process. If there is a complex set of processes and message files, and they get into a state
where all the processes are waiting on FREADs and none of them can do an FWRITE,
timeouts can help detect this deadlock. Timeouts can be useful when a process must
perform some time-sensitive processing (such as updating a table every N seconds), and
therefore cannot wait for long periods of time. Some tasks are both command and time
driven (display status every N seconds or when asked) and therefore could use timeouts.

Timeouts are set (in seconds) with the FCONTROL 4 intrinsic, and are valid for both
readers and writers. Note that timeouts come into play only on boundary conditions. If
an FREAD or FWRITE times out, a CCL condition code will be returned and FCHECK
will return FSERR 22, "Software Time-Out". Currently timeouts on terminals are valid
only for the next I/0O, while timeouts on message files stay in effect on every I/O until
explicitly turned off. We have had several requests to change message files to work like
terminals, and are currently investigating it.

Non-Destructive Reads

Another problem occurs when a server is not able to honor a request (contained in a
message file record) immediately because of a lack of resources. The requests must be
handled in order, so the server tries to free the resources it requires. Eventually the server
comes back and tries again to process the request. In this case it would be useful to have a
"non-destructive" read, to look at the request record in the message file without deleting
it. A test is made to see if the request can be satisfied. If it can, then a regular destructive
read is done and the request is processed. If the request cannot be satisfied, it stays on the
top of the queue, where it can be read and tested at a later time. This feature is provided
by FCONTROL 47. It is valid for readers only, and is in effect only for the following
FREAD. Note that repeated "non-destructive" FREADs always read the same record.

Forcing Records To Disc

As stated before, message files reside primarily in buffers. This means that they will
probably lose data in the event of a system crash. For applications that must use message
files and must be "crash proof", MPE provides a way to force the data to disc. This is done
by using FCONTROL 6. Either readers or writers can call this intrinsic. It forces all
buffers to be written to disc and the disc file label to be updated. This causes several disc
1/0s and therefore takes a relatively long time. It must be done after each FWRITE to be
most effective, and even then there is a "window" between the FWRITE and the
FCONTROL 6 during which a crash would cause the record to be lost.

Remember that IPC is designed to be a fast, efficient means to pass messages between
processes. If the task the application is performing is really event logging, and it must be

Paper 3112 7 DETROIT, Ml



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

highly crash resistant, perhaps "circular files" or other files that can be used with
FSETMODE would be a better vehicle.

Release G.01.04 (T delta 4) of MPE (and subsequent releases) contained several
improvements that make message files more resilient to system crashes.

In summary, IPC provides some special features for those applications that can use them.
These features include handling multiple concurrent readers and writers to a message file,
and identifying the writer of a record. IPC also allows processes to always wait rather
than receive an EOF on a boundary condition. It allows timeouts to be set on I/O requests,
allows non-destructive reads, and permits the user to force all the buffers to be written to
disc.

VI. How do you use it? - No Wait 1I/0.

Sometimes a programmer wants an application to read or write a record but does not want
it to wait for an I/O to complete. For this application, waiting is "wasting" time when it
could be doing other processing. Timeouts do not adequately address this problem. The
programmer wants this application to start an 1/O, continue processing immediately, and
check periodically to see if the I/O has finished.

MPE provides a way to solve this problem with No Wait I/O. This feature is requested by
setting the No Wait I/O flag (AOPTION 4:1) in FOPEN. When using No Wait I/0, the
process must make at least two intrinsic calls to perform the 1/O, one to start it and one to
finish it. MPE still handles the file in the same way, but instead of waiting for the I/0 to
complete, MPE returns control to the application so that the application can do some
useful processing.

No Wait I/O has been available to users of standard files for a long time. But to use it on
standard files requires privileged mode, because on standard files the mechanics of No Wait
1/0 prevent MPE from protecting a process from corrupting its own stack. However,
because message files work differently, No Wait I/O on message files does not require
privileged mode.

No Wait 1/0 Intrinsics

To perform a No Wait I/O, the FREAD or FWRITE intrinsic must be called to initiate the
transfer. These intrinsics return immediately, and no data is transferred yet. The return
value for FREAD is set to zero, and is not needed. To complete the transfer, either
IODONTWAIT or IOWAIT must be called. IODONTWAIT tests whether the I/O has
finished. If it has, the intrinsic returns a condition code of CCE and the file number as the
return value. If the I/O has not completed, CCE and a zero return value are passed back.
If IOWAIT is called, it waits until the I/0 has finished, like a normal Wait I/O FREAD or
FWRITE.

Only one No Wait I/O may be outstanding against a file by a particular accessor at a time.
However, accessors may have No Wait I/Os outstanding against several files at the same
time. These I/Os may be completed by a "generalized" IODONTWAIT or IOWAIT (the file
number parameter is zero or is omitted). In this case, these intrinsics report on the first
I/0 to complete, returning the file number for that file. If the call to one of these
intrinsics is in a loop, then that one call can be used to complete all the No Wait 1/Os.

Prior to MPE version G.02.00, the Target parameter was required in IODONTWAIT and
IOWAIT when completing FREADs on message files. This was because the actual data

Paper 3112 8 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

transfer to the process’s stack takes place during these intrinsics, and there was a problem
"remembering" the Target passed to FREAD. Starting with G.02.00 the Target parameter
is optional, as it is for standard files, however not specifying it requires privileged mode for
the same reasons as standard files.

Aborting No Wait 1/0

There are cases in which, after a No Wait I/O has been started, something happens causing
it not to be needed. MPE lets the process abort No Wait 1/Os that have not yet completed
by using FCONTROL 43. A condition code of CCE is returned if the I/O was aborted.
CCG is returned if the I/O has already completed, and IODONTWAIT or IOWAIT must be
called to clear it. CCL and FSERR 79 "No No-Wait 1/O pending for special file" are
returned if there was nothing to abort.

Currently, MPE does not support No Wait I/O to message files across a network. In many
cases this is not an important limitation, because it is rare that both readers and writers to
the same message file need to use No Wait 1/O. If the file is made local to the accessor
that needs No Wait I/0, the other accessor can then do Wait 1/O across the network.

Vil. How do you use it? - Software Interrupts.

No Wait I/O requires the application to "poll" to see if the requested I/O has completed.
Each time the check is made, there is a certain amount of overhead, whether the I/O has
completed or not. The application is faced with a hard trade-off. The more often it polls,
the greater the overhead, and the poorer its overall performance becomes. If it polls less
frequently, then the longer the delay between when the I/O can complete and when the
application completes it, and so the poorer its performance when handling that message.
One solution is to use software interrupts.

Software interrupts are most often used to handle messages from a high priority input
queue, while time-consuming processing is done in the background. Perhaps a process is
copying a large file across a network. The process posts an FREAD against its command
message file. It then devotes all its time to performing the copy. If a high priority
command is issued (requesting the number of records copied so far, or to stop the copy
immediately), MPE causes the application to interrupt the copy, and forces execution of the
application’s interrupt handling procedure. There the FREAD is completed and the
command is processed. When the interrupt handling procedure is exited, the copy is
resumed automatically at the statement where it left off.

Software interrupts are really just a special case of No Wait I/O. The difference is that
instead of the process polling to see whether the I/O can be completed, MPE interrupts the
process when the 1/O can be completed. Most of the discussion about No Wait I/0O also
applies to software interrupts. Like No Wait I/0, a call to IOWAIT or IODONTWAIT is
needed to complete an I/O request.

Three intrinsics are specific to software interrupts: FCONTROL 48 FINTSTATE, and
FINTEXIT. FCONTROL 48 arms software interrupts for a particular file. It is also the
way the application tells MPE the address of the application’s interrupt handler.
FINTSTATE is used by the application to enable or disable software interrupts for all files
with interrupts armed by this process. It returns an indication whether software
interrupts were enabled or disabled before this intrinsic was invoked. FINTEXIT is used to
return from the interrupt handler and leave software interrupts enabled or disabled.

Paper 3112 9 DETROIT, Mi



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

There seems to be some confusion on how to use software interrupts. The following
describes exactly how they are set up and used.

Software Interrupt Initialization

As with most other files, the message file must be explicitly FOPENed. Software
interrupts are usually used when reading from the file, but there is nothing to stop a
process from using them when writing. At this point the application can perform normal
Wait or No Wait I/O on the file. When it decides to begin software interrupt operation, it
calls FCONTROL 48, passing the PLABEL of its interrupt handler. The PLABEL is the
address of the procedure and can be found by the SPL construct "plabel :=
@procedure-name". FCONTROL 48 returns the previous value of the PLABEL. Zero
means that software interrupts were not armed.

At this point, the process can start the I/O (in this example, assume it is an FREAD). If
the FREAD intrinsic was called before the FCONTROL 48, it would have been handled as
a normal, non-software interrupt FREAD. FCONTROL 48 overrides the FOPEN No Wait
1/0 flag (AOPTION 4:1). Regardless of the setting of this bit, an IODONTWAIT or
IOWAIT is needed after a software interrupt to complete any I/O started after the
FCONTROL 48. A call to IODONTWAIT or IOWAIT before the interrupt occurs does not
complete the 1I/O. MPE starts out with software interrupts disabled. If the FREAD is
satisfied, the software interrupt is postponed until interrupts are explicitly enabled. The
process uses FINTSTATE at this point to enable software interrupts for all "armed" files
opened by this process. The call to FINTSTATE can occur anywhere in this sequence, but
the other intrinsic calls should be made in the order given.

Interrupt Handler

The interrupt handler is a special procedure of the process, devoted to completing the 1/0O
request after an interrupt occurs. This procedure is never called explicitly. Instead, MPE
forces the process there when a software interrupt occurs, possibly from the middle of a
statement. The procedure declaration can be either parameter-less, or have a single
INTEGER parameter to contain the file number. This can be useful if there are several
files using software interrupts, and some require special handling. Perhaps each file has a
different buffer address passed to IOWAIT.

MPE automatically disables software interrupts and control-Y traps when it jumps to the
interrupt handler. A call to IODONTWAIT or IOWAIT is needed to finish the I/O
request. The I/O request can be completed immediately, so IOWAIT and IODONTWAIT
will work the same way (IOWAIT will not wait). Check the condition code (a good idea
after any intrinsic call). @A CCG means the interrupt occurred because there is an
End-Of -File condition. If a CCE is returned, the process has a record. It can be processed
here, or a flag can be set to indicate that the record has been received and should be
handled during the normal non-interrupt processing. Often, at this point, the next
software interrupt is set up by performing another FREAD. The FREAD does not have to
be done here, and could be performed elsewhere during normal processing. The last
statement in the interrupt handler should be a call to FINTEXIT. This allows the process
to pick up where it left off when the interrupt occurred, enable control-Y traps, and
optionally leave software interrupts enabled or disabled. Exiting with software interrupts
enabled is usual, but the process may leave them disabled if the record needs special
processing and it does not want any additional interrupts until it is completed. At that
time it needs to call FINTSTATE to enable interrupts.

Paper 3112 10 DETROIT, Mi



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Main Line Code

For the most part, the "main line" code of a process does not need to be concerned with the
I/0 to message files using software interrupts. As long as interrupts are enabled, they can
occur anywhere in user code. If one occurs during an MPE intrinsic, it is usually
postponed until user code is re-entered. There are some exceptions. Interrupts can occur
during a "generalized" IOWAIT, during an IOWAIT on another message file not using
software interrupts, or during PAUSE and PAUSEX. PAUSEX is an alternate entry point
into PAUSE. If PAUSE is interrupted part way through, when it is restarted it starts from
the beginning of its timeout. PAUSEX, however, resumes where it left off, and only waits
the remaining time.

The use of software interrupts introduces the possibility of a problem that applications
normally do not have to think about. Some code is sensitive to interrupts. It usually
involves data that is altered by both the interrupt handler and the "main line" code. For
example, suppose the "main line" code decrements a counter and the interrupt handler
increments the same counter. The "main line" code loads the old value and subtracts one
from it. Before it is stored back, an interrupt occurs. The interrupt handler loads the old
value, increments it, and stores the new value back. The "main line" code resumes, storing
its new value on top of the interrupt handler’s new value, and the increment is lost. One
solution is to protect sensitive code by using FINTSTATE(FALSE) to disable interrupts
before the operations, and FINTSTATE(TRUE) to enable interrupts afterwards.

Disarming Software Interrupts

It is possible to shutdown software interrupt operation and resume normal Wait or No
Wait I/O on the message file. If there was an I/O posted against the file, you need to use
FCONTROL 43 to abort it, just as in No Wait I/0. If software interrupts were disabled
with FINTSTATE, the I/O completed, and the interrupt postponed, FCONTROL 43
returns a CCG. Interrupts need to be enabled to let the interrupt handler finish the
request. Using FCONTROL 48, but passing a zero instead of the PLABEL, disarms the
interrupt routines for the file.

There are some additional limitations. Currently, software interrupts are not available in
COBOL, or on remote files. If the process contains privileged code, the interrupt handler
must be privileged to handle interrupts from it, or else an ABORT 22, "Invalid stack
marker" will occur.

To summarize, software interrupts are a way for MPE to notify a process that its No Wait
I/0 is ready to be completed. Software interrupts, however, require some special set up
and a user written interrupt handler to complete the I/O. The 1/0 to a file can be hidden
from the rest of the process. When not needed, software interrupts can be disarmed, and
normal Wait or No Wait I/O can resume on the file.

VIlIl. Have there been any recent changes to IPC?
Many changes have been added recently to the G.01.XX (T-MIT) and G.02.XX (U-MIT;

releases of MPE/V. If you are having problems with IPC, it is strongly recommended that
you upgrade to a recent version.

Paper 3112 11 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86
IX. Summary

Interprocess Communication (IPC) can be used to solve a variety of problems that an
application may encounter. The IPC provided by the File System is powerful and has
many features that can be used by applications. If the task to be performed is simple,
there is a simple way to use IPC to coordinate multiple processes. Four well known file
system intrinsics are all that are needed. The use of Wait I/O further simplifies the
programming. If the task has some special needs, IPC has several features that can help.
These include writer’s IDs, extended wait, timeouts, and non-destructive reads. If waiting
for an I/O to complete is a problem for an application, No Wait I/O can be used to start
the I/0, and periodically poll to see if it can be completed. Software interrupts provide a
way for a process to start an I/0, and continue processing until the 1/O is ready to be
completed. At that time, MPE interrupts the process, forcing it to execute its interrupt
handler, where the 1/0O is completed. Once done, execution resumes where it had left off.
Finally, many improvements have been added to IPC in recent releases.

Paper 3112 12 DETROIT, Mi



SOUTHEASTERN MICHIGAN USERS GROUP

— e e —
7y — T ——
& 1T 4 & 1 o 1T
Hl ENEE B — 1 1
] -—

INTEREX 86

Brant Computer Services Ltd.

EXPERT SYSTEM MANAGER

Ross G.

Brant Computer Services Limited
Burlington, Ontario

BURLINGTON

615 Brant Street
Burlington, Ontario
L7R 2G6

(416) 6321386

TORONTO

6303 Anport Road

Suite 201

Mississauga, Ontario
S2

(416) 673-9417
CAMBRIDGE

26 Colborne Street
Cambridge, Ontario

NIR 559

(519} 621-3233
EDMONTON

9637A-45 Avenue
Edmonton. Alberta

T6E 528

(403) 438-9123
CALGARY

402-9203 Macleod Trail S
Calgary. Alberta

T2H OM2

(403) 259-2482
VICTORIA

209-1095 McKenzie Ave
Victoria, Briish Columbia
V8P 2L5

(604} 7276113

Toll Free 1 800 387-6704

Paper 3113

Hopmans

DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP

INTEREX 86

.

EXPERT SYSTEM MANAGER

1

~

ABSTRACT

We report here on the development of a new, rule based
product which complements Hewlett-Packard's statement that an
in-house data processing staff need not accompany an in-house
computer. The product, an Expert System Manager, has been
designed to run on a Hewlett-Packard HP3000 mini-computer and
any PC compatible micro-computer and is meant to embody the
knowledge of an experienced system manager to help an
inexperienced user react when problems occur in the computer
system and peripherals.

This paper explores the product definition, development
and knowledge engineering.

INTRODUCTION

Brant is a supplier of computer software, services and
support. The Expert System Manager was conceived for two
reasons - to supplement our Facilities Management and Support

offerings and as a documentation and educational tool to help
us capture the knowledge of our in-house experts and to help
train others.

The Expert System Manager was designed with an
unsophisticated end-user in mind. The product must run on the
micro-computer in case the HP3000 goes down and must converse
with the user in a question and answer fashion. The system
should 1lead to specific recommendations to remedy the problem
with a minimum number of questions and should help the user
restore the computer to an operational state as quickly as
possible. The system should, in addition, explain its
reasoning, address preventative maintenance and allow users to
add to the base of knowledge in the system.

Rather than a strictly academic exercise, this product
was conceived not only as saleable, but was seen as required
in many situations. The Expert System Manager will be quite
useful to new users of smaller systems who do not wish to hire
specific data processing staff.

Large shops can benefit from the Expert System Manager to
overcome problems which occur when the system manager is
unavailable. Multiple site shops can use the Expert System
Manager to maintain consistency across machines and sites.
Since the base of knowledge is expandable, it can be tailored
to the specific requirements and methodology where it is
installed.

Paper 3113 2 DETROIT, Ml



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

e A

EXPERT SYSTEM MANAGER 2

EXPERT SYSTEMS

"Expert" or "knowledge-based" systems are among the most
exciting developments in the field of artificial intelligence.
These programs embody the knowledge of a particular
application area combined with inference mechanisms which
enable the program to use this knowledge in problem~-solving
situations. Simply put, expert systems are machines that
think and reason as an expert would in a particular domain.

The development of an expert system revolves around the
ability to represent the knowledge and skill of an expert.
Knowledge or facts are easy to represent. Conventional data
bases are nothing but collections of facts and pointers.
Building "skill" into expert systems presents more problems.
Skill consists of a list of heuristics, the rules of thumb,
that provide the "how-to" in problem solving. These rules free
the computer from searching its entire data base for an answer
to a problen.

An expert system must also contain the formulas and
methods of reasoning that experts use in solving their
problems. The task is to program the workings of an expert's
mind and that falls to the knowledge engineers.

Expertise consists of knowledge about a particular
domain, understanding of domain problems, and skill at solving
some of these problems. Expertise usually involves more than
definitions and facts, but includes rules of thumb called
heuristics. Heuristics enable human experts to make educated
guesses to recognize promising approaches to problems and to
deal with erroneous or incomplete data. The central task of
expert systems 1is to extract, record and reproduce such
knowledge.

The emphasis is on knowledge rather than formal reasoning
methods because most of the difficult and interesting problems
resist precise description and rigorous analysis. In
addition, human experts achieve outstanding performance
because they are knowledgeable. If computer programs can
embody and use this knowledge then they too should attain high
levels of performance.

Expert systems are distinguished from conventional data
processing by symbolic representation, symbolic inference and
heuristic search. They differ from broad classes of AI in
that they perform difficult tasks at expert 1levels of
performance, they emphasize domain-specific, problem-solving
stategies and they employ self-knowledge to reason, providing
explanations or justifications for conclusions reached.

Paper 3113 3 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

~

EXPERT SYSTEM MANAGER 3

Knowledge engineering involves extraction, articulation
and computerization of the expert's knowledge. Knowledge
consists of descriptions, relationships and procedures in some
domain of interest, and the engineer must first extract the
expert's knowledge and then organize it in an effective
implementation.

PROLOG

The two major development languages for implementation of
expert systems are Lisp and Prolog. From the outset, this
project was to be undertaken using MProlog, Logicware Inc.'s
version of Prolog as the development language. The use of
MProlog allows us to develop the system on the HP3000 and port
it to the micro-computer or, as in this case develop the
system on the micro and port it to the HP3000.

Selected as the basis for the Japanese Fifth Generation
Computer System Project, Prolog enables designers to describe
their applications in logical terms for interpretation by the
computer. MProlog gives you a powerful inference engine
surpassing the capabilities of most expert system shells. It
provides automatic, system-driven reasoning with the rules and
facts in the program knowledge base.

The substance of an MProlog program is a collection of
facts and rules that the programmer creates. The facts and
rules relate to a problem that the programmer wants to solve
and MProlog provides a built-in inference mechanism that acts
on the facts and rules.

The use of MProlog was confirmed by the fact that the
data was reliable, well structured and that the decision
process involved feedback and parallel decisions.

PRODUCT DEFINITION

It is important in any expert system to restrict the
scope of expertise to a manageable size. System managers are
responsible for solving numerous and varied problems, as we
learned in the observation of our expert.

We decided to 1limit the scope of the "Expert System
Manager to the class of problems associated with returning a
machine which has gone down to an operational state. This is
a critical function of the system manager and one in which
success and failure are easily determined.

The knowledge engineer conversed with the expert to

| e

Paper 3113 4 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

EXPERT SYSTEM MANAGER 4 \}

informally charactize the class of problems to solve. The
major domains of expertise and the basic concepts, primitive
relations and definitions were established before determining
the domain of the Expert System Manager.

RESOURCES

To obtain the knowledge base necessary to our Expert
System Manager, we used one of our own system managers as the
expert.

A parodox of knowledge engineering is that the more
competent domain experts become, the less they are able to
describe the knowledge they use to solve problems. Domain
experts need outside help to clarify their thinking. Hence,
our expert was not also our knowledge engineer.

our knowledge engineer was chosen as an articulate
employee with a well rounded knowledge of the computer
industry and the system manager's environment, but was not an
expert in the field.

KNOWLEDGE ENGINEERING

our goal in the knowledge acquisition was to transfer the
problem solving expertise from our system manager to a
computer program.

The knowledge engineer was not himself an expert in
operations and so was Kkeen to note the organizational
mechanisms used by the expert to classify the type of problem.
The organizational constructs form the basis for certain types
of inferences the expert makes during problem-solving and
constitutes the structural expertise about the domain.

On another level, the knowledge engineer listened for the
basic strategies the expert used when performing the task.
What facts did the expert try to establish first? What kinds
of questions did the expert ask first? Did the expert make
initial guesses about anything based on tentative information?
How did the expert try to refine the guess? In what order did
the expert pursue each of the subtasks and how did this order
vary in case studies?

The strategies and structures couple to constitute the
expert system's inference structure. 1In other words, we have
established what tasks and terms to determine and how and when
to apply them. For documentation purposes, the knowledge
engineer must also listen for justifications the expert uses

Paper 3113 5 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

EXPERT SYSTEM MANAGER SA\W

when solving a problem.

Problem indentification was undertaken by defining each
problem identified, its aspects, characteristics and
sub-problenms. The objective was to characterize the
supporting knowledge structure for each problem to begin
building the knowledge base. Several iterations were required
for each problen. Some problems were split into multiple
problems if considered too large. The following points were
considered important:

what class of problems does the expert solve
how are the problems defined

how are the problems partitioned

what are the important data

what situations are likely to impede solutions
what does a solution look like

e e e s e

our knowledge engineer and expert, after several cycles
of restatement, isolated the knowledge relevant to solving the
problem and identified the key elements of the problem
description.

It was important to us not to ask our expert directly
about his rules or methods for solving a problem. In general,
domain experts have great difficulty in expressing such rules.
Experts have a tendency to state their conclusions and
reasoning in general terms, too broadly for effective machine
analysis. The expert makes complex judgements rapidly whereas
the machine will operate at a more basic level.

We did not believe anything our expert said outright.
Working hypotheses were developed based on information from
the expert which were tested for validity and consistency
before being accepted. The tests involved having the expert
solve new problems using the hypotheses - the expert had to
demonstrate the use of his rules during actual problem
solving.

We found in undertaking our knowledge engineering that
our expert used patterns to serve as his index to his store of
information rather than simply a list of facts. The use of
patterns is what is known as intuition.

Within his area of expertise, our expert quickly
recognized new situations as instances of things with which he
was already familiar. However, when he was faced with new
situations, he applied general principles and deductive steps.
It was more insightful to us to present the expert with novel
problems to decompile his knowledge and view the actual
problem-solving activity.

Paper 3113 6

DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

—

EXPERT SYSTEM MANAGER 6
Several methods were employed in the knowledge
acquisition. The first was observation. We simply 1listened

and observed the expert in his problem=-solving, without
interfering or interrupting. It became necessary to record
our observations and analyse the transcript afterward. These
recordings were done at times by a knowledge engineer and at
other times by an assistant to the expert during their problem
solving sessions.

A second method was an attempt to have our expert record
what he thought were the rules and processes he went through
in his problem solving activity.

our most successful method was a combination of the two -
observation of the expert with his own analysis of what he was
doing along with intervention by the knowledge engineer to
clarify fuzzy points.

IMPLEMENTATION

We chose to have all questions answered simply as Yes or
No. Further courses of action were contingent on the previous
answer. The first question encountered by the user was

"Is there a problem with the computer system?"

An answer of No would cause the program to terminate
whereas a Yes causes the program to go on to the next 1level
and establish the thrust of the questioning.

"Does an error message appear on the console?"

If an error message appears on the console, the system
will pursue questioning on the nature of the error and can
establish the type of fault. For some problems, corrective
action is recommended; for example, putting a drive back
on-line if indicated. 1In most cases, however, the system will
recommend that the Hewlett-Packard SE be called.

If no corrective action has been recommended to this
point, the system will try to establish if the console is
accessable.

"Does the colon prompt (:) appear on the console?"

This question establishes whether or not the operator can
use the console at all. If the answer is No then the program
pursues the avenue of establishing why the console may not be
responding.

Paper 3113 7 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

EXPERT SYSTEM MANAGER 7 ‘w

"Can any other terminals access the computer?"

The program tries to localize the problem. If other
terminals can access the computer then the system is obviously
up and the operator will be led through a series of questions
regarding configuration, cabling and connections.

If, however, no terminals are accessible then the program
leads the user through checks of the activity lights and power
supplies.

Our expert system manager may reach the point of
suggesting that the wuser take the system down and will go
through the steps of halting the system and bringing it back
up.

In the worst case that nothing can be established by the
program to cause the problem, the user will be directed to his
or her SE and the program will suggest that the eventual
knowledge be added to the knowledge base.

At any point the user can ask WHY for an explanation of
the cause and effect relationship behind the question.

TESTING AND VALIDATION

For validation, the knowledge engineer picked a set of
representative problems for discussion with the expert. The
purpose was to determine how the expert organizes each
problem, represents the concepts and handles inconsistent or
inaccurate data.

The process of acquiring, implementing and testing the
system involved our case studies, textbooks, operations
manuals and other specialists to supplement the knowledge of
the expert. As the knowledge base grew and was refined, it
became an executable program.

Testing of the Expert System Manager involved evaluation
of the system both in ease-of-use, completeness and
correctness. A variety of examples were run through the
system first with the case studies collected over a period of
time and finally in conjunction with the expert in solving
problems as they occured.

Problems were chosen to fully challenge the system. The
input/output system was continually refined as was the
knowledge base. In some cases, the wrong questions were being
asked and in others, insufficient information was being

-

Il
llp
il

]
¢

Paper 3113 8 DETROIT, Mi



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

\ EXPERT SYSTEM MANAGER 8 \]

gathered.

Used by someone with an intermediate level of experience,
the Expert System Manager proved to be illustrative and
educational. The trace facility of MProlog displays the rules
fired to the user to show the reasoning process used to arrive
at the final conclusion. This was invaluable in refining the
system to determine not only where the rules were wrong or
inconsistent, but why.

CONCLUSIONS

The prototype developed to this point has shown to wus
that we can indeed capture the knowledge of our experts in a
tractable form. The knowledge is then available for use by
the inexperienced and expert as well.

This will allow the knowledge of other experts to be
added to the knowledge base so it can continually be enhanced
and expanded.

It is in our plans to expand the domain of the expert
system to more fully represent the expertise of the system
manager.

Paper 3113 9 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP . INTEREX 86



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86
THE ROLE OF THE OPERATOR IN THE DATA CENTER OF THE FUTURE

RONALD DRAKE
OPERATIONS CONTROL SYSTEMS
560 San Antonio Road
Palo Alto, California 94306

INTRODUCTION

The role of the operator in the modern data processing environment is an important one. The
operator is the person in closest contact with the machine itself. The operator is often the source of
first resort in the resolution of user problems. The operator is critical to the effectiveness of any dis-
aster recovery program. In addition to all this, the operator is responsible for the timely completion
of all scheduled data processing tasks. A productive data processing center depends on a productive
operator. As computers have become more important in the modern world, so, the operator has be-
come more important in keeping these tools functioning effectively and efficiently.

However, as advances are made in computers--advances in hardware, operating systems and
software-- we are faced with the question of the role of the operator in the data center of the future.
What will an operator do? What will an operator be? Perhaps, most importantly, will there be
operators at all? This paper will address these questions.

BACKGROUND

Before the advent of modern multi-tasking, multi-processing machines, computer operations was
largely the province of the engineers and programmers who developed them. A fairly large body of
specialized knowledge was necessary to understand and operate older computers. Advances in
microprocessor technology and the attendant development of the video display terminal, mass
storage devices, and improvements in operating systems changed that.

PREVIOUS ' CURRENT
Engineers and Programmers Computer Operators
Single Function Multiple tasks and

and processes
Monitors Operating Systems
Mainframes Minicomputer and PC
Developer Overseer

Figure 1: Operator Characteristics

Paper 3114 1 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Microprocessors made computers accessible to business. They were faster, easier and cheaper to run.
Mass storage devices like tape and disk drives allowed information to be stored compactly and
cheaply. Microprocessor-driven access routines could fetch vast amounts of information and instruc-
tions and route them to various destinations with a high degree of accuracy making possible operat-
ing systems capable of accommodating hundreds of users.

Advances in programming languages made "user-friendly” applications possible. And the data these
newly-empowered users generated could be propagated across an office or around the world. Because
the second-generation computer allowed so many people to generate so much output and because it
could operate on multiple sets of data and generate the results in batch mode, a human intermediary
was needed to oversee the flood of information spawned by the computer. Someone was needed to
tell the computer what to do and when to do it. That someone was the computer operator.

THE OPERATOR IN THE PRESENT

As we speak, billions of dollars are dependent on the diligence and expertise of computer operators.
Ciritical facets of American business--financial transactions, sales orders, billing-- are under the con-
trol of the operator. The operator launches the batch jobs which process these transactions. A good
operator is capable of performing job recovery in the event a batch job terminates abnormally. In
addition to this important task, operators are responsible for the archiving of data. Operators main-
tain peripheral devices and replenish paper and tape when needed. The operator is the first on the
scene when operation of the machine is interrupted for reasons other than regularly scheduled shut-
downs and is often the person responsible for bringing an errant computer back on-line. Because
operators are in attendance as long as the machine is running, they are depended on by users to
answer questions about individual applications or the system itself.

These functions are of the utmost importance. The present-day operator must possess certain basic
qualities if she or he is to be effective.

An operator must, first of all, understand the whys and wherefores of the job. While some
knowledge of the principles of operation of the computer itself is helpful, an operator MUST know
the full range of system commands. The operator must know how to interpret job-control language.
Most of us have been faced with the prospect of re-running production because a critical early job
ended abnormally, unbeknownst to the operator.

Because users turn to them for assistance and advice, an operator has to be a "people person"; that
is, an operator should be able to intervene on behalf of the user in a courteous, cordial manner. An
operator should be able to tell the user what is being done and why. The public relations garnered
for the data processing department in this way can prove invaluable.

An operator must be trustworthy and conscientious. While this smacks of a "Boy Scout" mentality, it
is, nonetheless, true. Operators are privy to the most sensitive aspects of corporate life. They run
payroll checks. They know where personnel and medical records are stored. Because of their
familiarity with account structure, they have a direct line to administrative data, manufacturing and
production data, and other sensitive or classified information. Just as important, operators have cus-
tody of the machines themselves. The manager of a data center must be confident that the operator
will do nothing to jeopardize this critical trust.

Paper 3114 2 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86
THE OPERATOR IN THE FUTURE

Given the importance of the present-day operator, what are the prospects for the future?

To answer this question we must, again, look to the prospective technical advances in data processing.

The most important changes we can anticipate are those in the machines themselves.

Microprocessor technology is what took the computer from the warehouse to the desk-top and, if the
last twenty-five years are any indication, it will take us further. The ability to store vaster amounts of
information on ever smaller media--the ability to retrieve that information at speeds unhindered by
the need for a read/write head to find and fetch information--will change the way way we relate to the
computer. The need for disk and tape drives will decrease as chips with greater storage capacities are
pressed into service.

These new machines will possess the capacity for processing greater amounts of information than
ever. This new power will become important as the relatively new discipline of Artificial Intelligence
pushes back the barrier between the computer and the human mind. Expert systems are already in
service which can accept a range of information and posit a diagnosis based on rules supplied by
humans. But humans learned these rules by trial and error combined with a capacity for intuition
and reasoning. Humans learn by practical experience in real time in the real world. The great chal-
lenge of Artificial Intelligence is the translation of this power to the computer. Once the greatest
hurdle is passed--that of enabling the computer to assimilate and act on ambiguous, symbolic infor-
mation (i.e. speech and pictures)--the barrier between the computer and the human mind will be-
come much less imposing and, thus, easier for the average person to cross.

Artificial Intelligence will also expand the ability that some computers now have to diagnose
hardware problems. A machine hardened against hardware failures and natural disaster would free
the operator from tasks related to preserving the machine’s state at the time of the failure and bring-
ing it back into operation once the problem has been solved.

The hallmark of data processing in the future will be greater processing power distributed to greater
numbers of people. The intelligent workstation will become more prevalent. The ability of users new
to the computer to tell the computer what is required; the ability of that computer to accept, inter-
pret and execute those instructions (and even make suggestions, based on its "knowledge" of the
user); will de-centralize the computing environment. Modern data communications technology will
transfer information that must be shared with other users.

The ability to verbally command the computer’s power is not a speculation: it is here today. As this
capability is refined, we can anticipate a day when users with no programming experience at all will be
able to develop in minutes applications that take programmers months to code and test.

These developments will, of necessity, generate more independent, autonomous users. These users
will have control of their own machines and peripherals. Archiving of data, now dependent on large
electro-mechanical devices, bulky storage media and human intervention will be automated and in-
ternal to these individualized machines. Printing of documents may also be accomplished through the
use of small, on-board printers or by transmission to a common printer.

There will be little or no need for the operator in this environment. The user, in conjunction with the

intelligent processor, will be able to perform all the functions necessary for proper operation of the
machine.

Paper 3114 3 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

We see these inroads being made even in the infancy of Artificial Intelligence. As a programmer and
former operator, my specific interest has been the automation of operations tasks on the HP3000.
OCS/3000, the pre-eminent operations control application in the Hewlett-Packard processing en-
vironment, has optimized job-scheduling and monitoring by removing the necessity for an operator’s
intervention in the streaming of batch jobs. OCS/3000 obviates the slack time caused by a busy or in-
attentive operator thus making full use of the machine’s resources. Complex time, date, run-book and
pre-job dependencies are also considered automatically. It is easy to foresee the time, given the
course of Artificial Intelligence research, when job recovery as well as job initiation can be
automated. An expert system supplied with the nature of the error, the files involved and a prescribed
course of action could effect such a recovery.

Computer manufacturers are increasing the ability of their machines to diagnose and report extraor-
dinary conditions. Newer machines are able to carry out the system initiation dialogue with no
operator intervention other than the resetting of the system’s time-of-day clock.

In the final analysis, machines will become easier to use. Users will be free to perform for themselves
a wide range of what are now operations tasks. The HP3000, in particular, lends itself to this
development due to its powerful yet easy-to-understand commands and the ability to distill multiple
commands into User-Defined Commands. A thorough system manager, an educated user population,
a well organized system, and the installation of appropriate applications minimize the need for
operator intervention. This is a desirable goal; one that can be accomplished in the present.

CONCLUSION

Operators are a critical and much undervalued asset in today’s data processing environment.
However, the need for the operator will decrease over time as machines, peripherals, and users be-
come more sophisticated. Indeed, once the need to attend to printers and tape drives has been sup-
planted by advances in technology, operators may not be necessary at all.

Until that time, the operator will continue to be an indispensable member of the data processing
community. Operators will play an important part in effecting the changes that are to come. They
are the experts whose knowledge will drive the expert systems in the future. Operators will be crucial
resources for users in the effort to understand and use the new machines to be developed between
now and the end of the century. Operators should welcome rather than dread change. An attitude
of resistance to advances like Artificial Intelligence and productivity tools like OCS/3000 is expected
of those whose perspective is limited to the short-term. Those whose vision extends to the future can
and will take advantage of the time gained to broaden their knowledge of the machine. Data center
managers, analysts, and programmers have a vested interest in affording operators every opportunity
to learn and grow. Operators with drive, intelligence and foresight will thrive in such an environ-
ment. More importantly, the users, the data center and the organization at large will benefit from the
investment in time, training, and material support.

Paper 3114 4 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86
PROTECTING YOUR SOFTWARE INVESTMENT

BETSY LEIGHT
OPERATIONS CONTROL SYSTEMS
560 San Antonio Road
Palo Alto, California 94306

INTRODUCTION

Current software development and maintenance practices are expensive, difficult to manage and of-
ten lead to products of inconsistent quality. Recognizing these problems, we instituted a set of stand-
ards and procedures that go beyond ordinary measures to bring organization and control to the as-
sortment of files and activities in our HP 3000 installation.

Before implementation of our current standards and automated tools, file management was a time
consuming and often error prone activity. Informal procedures relied on the good intentions and
sharp memories of either system users or overworked data center personnel acting as librarians. This
paper will describe the selection and implementation of an approach to managing the organization of
our files, users, and data processing procedures. The approach discussed is a complete system that
standardizes operations and protects software and data investments.

NEEDS ANALYSIS

Initially, we performed a brief situation audit to determine the level and type of file management
needed within our shop. First, we considered the value of our internally developed software. As a
software development firm, we maintain years of development work. Furthermore, like most installa-
tions our system maintains several outside vendor purchased packages which add significantly to our
software investment. Despite backup procedures, inadvertent changes to master or production files
could cause production delays and errors. In some cases, these changes could even wipe out original
copies of irreplaceable software. Second, we assessed the costs related to users working on the incor-
rect files. Generally, these costs appeared in the form of transferring the wrong software into produc-
tion, reruns, faulty decisions based on faulty data, personnel overtime, poor response time and lower
system throughput.

With these problems in mind, we identified several goals for our shop. We needed a file integrity ap-
proach that supported and enhanced existing operating system security. Additionally, our security
approach had to maintain an orderly set of rules for all file transfers and include a logging capability
on all violations. Our users needed to maintain convenient access to files, while at the same time,
management wanted the valuable software data assets and production environment to remain secure.
Finally, we needed a set of reporting capabilities that could tell our users where their files were, who
had accessed or changed them, and what steps were necessary prior to placing each file into produc-
tion.

SOFTWARE IDENTIFICATION

Initially we found that our software was scattered throughout several accounts. Our first step was to
categorize files into different groupings such as source, object, libraries, jobstreams, UDC files and
documentation. Second, a set of naming conventions was developed which considered the file, group,
account and system, as well as the previously chosen file type. The operating system facilitated the
organization of our software with standard account structures.

Paper 3115 1 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

As in most shops, our programmers had adopted different conventions to identifying versions or
releases. Our next step was to institute a standard approach to account for versions within our
naming conventions. In some cases, releases consisted of collections of files that were made up of
several more files, each with a variety of version numbers.

For example: Release 1.0 of Product A may consist of 75 files. The first 40 files are Version
1.0 and the remaining 35 files are Version 1.1.

Additional information was incorporated into file names to account for identification of the file’s
original name, its new name, family name and file set name, in addition to the version/release codes.

Our naming conventions allowed us to easily define how many generations of changes to retain for
each file. Furthermore, we could quickly retrieve previous versions of a file and compare them to the
most recent version on the system.

FILE MOVEMENT RULES

Here again, our first step was one of simply categorizing. In this case, we categorized system users
into distinct groups such as creator, programmer, analyst, librarian, operator, quality assurance,
production user and auditor. We then identified the most common types of file movements for each
of these users as well as those moves which would be permissible.

The sequence of transfers was usually a series of moves, and required that the first move be com-
pleted successfully before the second could begin. To define the appropriate sequences, we created
applications and defined the hierarchies and logical relationships of files within each application.
These applications included groups of files that were logically or physically associated. Allowable file
movements were defined in terms of steps that corresponded to standard procedures. The steps were
then combined into routes that defined sequences of file movements for a set of files.

A simplified route appears in Figure 1. A file is checked out of its master location and moved into a
development account for changes. The programmer then submits the file(s) to the Q.A. function.
Management approval must be received prior to the check in step where the file goes back into
production.

MASTER I—Check Out> DEVELOPMENT |— Submit —>| ASQéJL?I% X‘;\I:E T
MANAGEMENT
APPROVAL
Check In

Figure 1: A Simplified File Route

Paper 3115 2 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

At this point, we developed an automated tool called OCS/LIBRARIAN to facilitate the modifica-
tion and definition of file organization. Initially the system aids in defining each sequence of file
transfers. Once installed, OCS/LIBRARIAN ensures that every step is accounted for in the estab-
lished development process. Code reviews, approvals, signoffs and controls are all enforced and
tracked. As each transfer occurs, OCS/LIBRARIAN tracks the move and provides detailed audit
records. Any attempts to transfer out of sequence are noted and attempted access by unauthorized
users is also recorded. In the event of an emergency or exceptional situation, authorized users can
move files out of sequence subject to the same tracking and reporting visibility as normal file move-
ments. Users need only the seven simple commands outlined in Figure 2 to perform their file move-
ment functions.

FUNCTION DESCRIPTION
COPY Duplicate a named file
PURGE Delete a named file
MOVE Duplicate a named file;
Delete original file
APPROVE Manual activity
requirement
PERFORM Online batch request to
copy, move or APPROVE
RENAME Change name of file
RELEASE Modifies file access
security

Figure 2: OCS/LIBRARIAN FUNCTIONS

FILE ACCESS CONTROL
OCS/LIBRARIAN was designed using a file integrity approach that supports and enhances existing

operating system security. All existing operating system access restrictions still apply, yet users main-
tain convenient access to needed files.

Paper 3115 3 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

As do most shops, we utilized user logon identification and a set of user capabilities and file access
matrices as part of our standard security. However, we needed clearer definition of WHO could
access a particular piece of software. To achieve this, OCS/LIBRARIAN provides a global lock of
the software investment and a single interface to all files. This file protection allows the system to in-
tercept the multiple logon identifiers before any of the users (authorized or not) access any file.
User logons can be grouped into a USER SET and then become part of the authorized group to
access any particular software.

This approach allowed us to define rules for each file or group of files and to customize the level of
security required for each one. Additionally, we restricted file moves and copies at each level to
those specific individuals responsible for a particular set. Documenting which users were responsible
for specific file movements and increasing accountability drastically reduced the amount of super-
visory time required to manage files.

USING THE SYSTEM

Once the automated OCS/LIBRARIAN system had been developed, several reports were written to
provide a management tool to track the progress of enhancements, problem corrections, new
programs and other factors. The system tracks all defined file movement rules and file movements to
create a history of all changes as well as a complete audit trail.

As a result, management can review changes as they take place and verify that they are properly
authorized. Users and managers can determine where a given file is in its defined route as well as
what has happened to a file in the past. This automatic file tracking allows users to determine who
has which files. Thus, programmers always have an accurate record of which files they are currently
working on.

Initial start up is simplified by an audit mode feature that can be loaded in an OBSERVE ONLY
state. This provides a shop with a listing of system activities which give a clear picture of a particular
installation’s environment. Once this has been completed, an automated loading utility steps users
through the process of defining applications and file organization.

CONCLUSION

System managers have long observed the rate at which hardware improvement has outpaced gains in
personnel productivity. Unfortunately, implementing standards and controls to reduce errors and in-
crease productivity has often forced the delay of critical development schedules. However, through a
clear definition of one’s software environment combined with the use of automated tools such as
OCS/LIBRARIAN, a shop can automate its file management and file tracking process relatively
easily. Today’s data centers need the optimum environment for software development, testing, main-
tenance, and production. After all, isn’t it about time to bring the power of mainframe EDP stand-
ards and a proven Library Control philosophy to the HP 3000?

Paper 3115 4 DETROIT, Mi



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86
AUTOCHANGER EXTENDS CARTRIDGE TAPE DRIVE CAPACITY
Manuel Escuder

Hewlett-Packard
Computer Peripherals Bristol Division
Bristol, ENGLAND

Summarg

As the amount of on-line storage increases in mid-range systems
with larger, non-removable discs, the issue of automatic backup
becomes more significant. The 9144A, with its compact 1/4"
cartridge, can provide system backup at very low cost provided
the system can be dedicated to this task (eg overnight or at

weekends). For systems whose total capacity exceed a single
cartridge (67 Mbytes), operator intervention is required to
perform media changes. The 35401A autochanger eliminates this
operation by providing automated media changes, allowing

unattended system backup to be scheduled during system off-time
without operator intervention. This new type of CS-80 drive
offers a large capacity increase while maintaining full media
compatibility with earlier drives.

Introduction

A constant goal in the computer industry is to satisfy existing
and future customers with products that offer competitive price
and performance characteristics. Adding to this challenge, is the
need to maintain compatibility with earlier devices and media in
the case of mass storage peripherals.

For backup devices, there are two major performance parameters,
transfer rate and media capacity. The traditional system backup
method requires a dedicated operator to be present to manually
load and unload tapes. This operation 1is wusually performed
outside normal system operating hours and operators have to be
assigned to system backup after normal working hours, or the
system has to shut-down early on pre-arranged dates.

The introduction of 1/4" cartridges provided a very compact and
easy to use media. A cartridge which is simply pushed into a
"slot" is a far simpler proposition than threading tape in a 1/2"
reel tape drive. Ease of use and low-cost has made these devices
a very attractive alternative for small & mid-range multiuser
systems where trained operators are not necessarily available.
System backup in these conditions becomes even more of a chore.
The transfer rate for 1/4" drives is considerably lower than that
of a reel-to-reel tape drive and operator intervention outside
system up-time is even more of a necessity because of the longer
time needed to backup and the unacceptability of system down-time
during working hours. Eliminating the need for operator
intervention during system backup is clearly a very desirable
benefit for these systems. An autochanger device can automate
cartridge tape changes, providing a large increase in effective

Paper 3116 1 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86
capacity while maintaining media -and device- compatibility.

The 35401A autochanger combines the 9144A 1/4" cartridge tape
drive with an autochanger mechanism. The device eliminates manual
loading and unloading of tapes, allowing unattended system backup
to be scheduled without operator intervention. The drive allows
up to 8 standard 1/4" cartridges to be used in a purpose-built
carrier or magazine. The magazine can be considered as a "new"
single media consisting of up to 8 individually addressable
cartridges and giving a maximum total capacity of 536 Mbytes. The
drive is 100% media compatible with existing 1/4" cartridges and
its operation is plug-compatible with the 9144A

354012 Device Description

One of the key objectives in the design of the autochanger drive,
was to maintain compatibility with the 9144A drive. This would
ensure existing systems support could be leveraged, thus
minimizing the amount of system integration effort while allowing
a wide range of system users to start using the device as a
natural extension of the 9144A drive. This goal was achieved due
to the adoption of the "black box" design philosophy. This is
shown in Fig 1 where the broken 1lines represent "normal"
input/output as to a standard 9144A drive. In the autochanger
environment, these paths are "broken" and re-routed via unique
hardware and firmware. The operation of the 9144A within the
35401A is identical to its stand-alone version. Hardware and
firmware input/output signals to the 9144A modules, are routed
via the autochanger controls which coordinate activation and
sequencing correctly in the modified environment.

FRONT PANEL C$-80
& CONTROL <
SENSORS FIRMWARE
/[ 9144A ]i
______ > TAPE JRC
DRIVE
USER/ HOST

OPERATOR COMPUTER

FIG 1. BLACK BOX DESIGN PHILOSPHY

Paper 3116 2 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Hardware and Mechanical Implementation

Figure 2 is a simplified block diagram showing the 35401A drive
implementation. Broken line components represent unique
autochanger modules added to the 9144A modules which are
represented in solid lines.

e | oEpevoENT | TN CER :
roe zg CONTROLLER) DAIVE MECHANISM
£8
& o | rower ////////”

SUPPLY \\\\\\

I
Bgy

g r———=="
EE3 | | ==
BOH L Gumoutn [®loe
I__l L_M | T

FIG 2. 35401A BLOCK DIAGRAM

The Host Dependent Controller (HDC) is a standard board used by
several mass storage peripherals, including the 9144A. No
hardware modifications have been made to it, but the resident
microprocessor 1is time-shared with existing tasks and runs
additional device firmware. This module provides the mechanism
control and all high-level host interface tasks as well as the
overall control and sequencing.

The Device Dependent Controller (DDC) is a standard 9144A module.
It has not been modified in any way so as to allow direct use of
the current production standard hardware and firmware. The
HDC-resident control firmware is responsible for sequencing tape
drive and autochanger mechanism operation.

The tape drive mechanism and electronics are also a standard
9144A module. It has been subjected to mnminor mechanical
modifications which can be performed in the field and consist of
replacing some springs and fasteners. Sensor inputs normally
received directly by this module have been re-routed through the
mechanism controller to allow correct sequencing of its
operation.

The Mechanism Dependent Controller (MDC) is unique to the 35401A.
It interfaces to the HDC board using the same internal bus
utilized to interconnect the HDC and DDC in a standard 9144A. The
MDC performs all the sequencing and control tasks needed to move
cartridges between the magazine and the 9144A tape deck. It
requires no dedicated microprocessor as it 1is possible to
time-share that of the HDC .

Paper 3116 3 DETROIT, Mi



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

The autochanger mechanism provides the physical means to move
cartridges between magazine and tape deck. It contains a number
of sensors and actuators required to provide operation and
position feedback to the controlling firmware and hardware.
Essentially, the magazine and tape deck remain fixed. An
elevator platform is capable of vertical motion. A horizontal
pick arm assembly fixed to the elevator is capable of motion in
the horizontal plane and can transfer cartridges between the
platform and the magazine or between the 9144A tape deck and the
platform. The mechanical design poses no restrictions on the
order in which the cartridges are loaded into the tape deck,
allowing "random" access to individual cartridges as directed by
the user via the front panel or through the host computer.

Firmware Implementation

The standard 9144A firmware structure is shown in a simplified
form in Figure 3. There is a hierarchy of tasks which directly
relate to separate microprocessors. The highest level tasks (EXEC
and UNIT) are resident in the Host Dependent Controller (HDC)
processor. This 1is essentially a ‘'"round-robin" time-sliced
operating system which performs the host computer interface
control and the higher-level device control functions. Inter-task
communication is performed by dedicated memory buffers (memos)
which are controlled by the device operating system.

HOST Q144A
COMPUTER EXECUTIVE UNIT COOE HOC MCROPROGESSOR

<

DEVICE DEPENDENT oo
LOCAL CONTROL 3
OPERATOR “ I
TAPE DRIVE AVO-
CONTROL FIRMWARE TROL
SSOR

FIG 3. 91444 FIRMWARE STRUCTURE

In the 35401A environment, all the 9144A tasks are treated as
"black boxes". The EXEC has been modified and two new tasks
introduced within the HDC firmware, as shown in figure 4. The
combined effect of these 2 changes is to intercept EXEC memos
-corresponding to host computer commands- and to sequence their
execution, passing them onto the 9144A UNIT code for further
action at the correct time for coordinated operation with the
autochanger mechanism. For example, a host computer command to
UNLOAD the current cartridge from the tape deck would be executed
as follows

- The EXEC decodes the request and generates a memo to the 35401A
unit code.

- The memo is immediately passed on to the 9144A unit code. This

Paper 3116 4 DETROIT, Mi



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

firmware now generates the same sequence of operations normally
executed by the stand-alone 9144A when unloading cartridges. It
involves a tape rewind and use log information updates.

- Upon completion of the 9144A unload, the mechanism control task
is informed. This code now generates the autochanger control
sequences needed to retrieve the cartridge from the 9144A tape
deck and replace it into the cartridge magazine.

- The mechanism control task informs the 35401A unit code task of
Unload operation completion.

- The 35401A Unit code task then generates a command complete
memo which is passed to the EXEC indicating completion.

DT

MICROPROCES$OR
wosT __| 3540
CoMPUTER | [EXECUTMVE | <=—>| unir cooe

7
I
LOCAL S144n MECHANISM
‘CONTROL

OPERATOR L _ uwrcooe
TASK
(|
v
ooc DEVICE DEPENDENT
MICROPROCESSOR  [CONTROL FIRMWARE
VA
SERVO CONTROL TAPE DRIVE
MICROPROCESSOR ICONTROL FIRMWARE

FIG 4. 35401\ FIRMWARE STRUCTURE

This approach is conceptually the same as the hardware re-routing
of sensor inputs. It allowed using the standard 9144A firmware
not only at the lower hierarchical levels but also within the HDC
as the 9144A dedicated code has remained totally unmodified.

Host Computer Operation

Any new peripheral design must consider very carefully how the
host computer will be able to access its unique features. The
35401A introduces the concept of several independent cartridges
which can be accessed one at a time. To ensure that full
operational use is made of the device, two distinct operating
modes are provided

Sequential Mode

The autochanger will automatically load into the tape deck the
lowest-numbered cartridge present in a newly inserted magazine. A
local operator can override this selection and force any other
cartridge to be loaded by using the front panel controls. Once
the cartridge is loaded in the tape deck, the host can transfer
data to and from it in exactly the same manner as for a 9144A
drive.

Upon completion of data transfers to and from this cartridge, the
host computer driver issues a CS-80 UNLOAD command to the drive
and (usually) a console message requesting the operator to
extract the cartridge from the drive and insert the next one. In

Paper 3116 5 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

this mode of operation, the 35401A unloads the current cartridge
back to the magazine and automatically loads the next one. This
allows the host computer to continue data transfers onto this
next cartridge, in exactly the same manner as it would do if an
operator had performed the cartridge change. The device will thus
allow the host to access all present cartridges sequentially,
with knowledge only of the currently loaded one. This operating
mode is well suited to the unattended backup operation where
system and user files are simply being dumped to tape. The
autochanger automates media changes as each cartridge is used and
its operation continues until all present cartridges have been
used or no more data is being sent/received to the device. The
. autochanger is plug-compatible with the 9144A operation and no
new commands are required. ‘

Selective

In this mode of operation, the host specifies which cartridge is
to be loaded next. The autochanger will NOT load cartridges until
told to do so by the host. There 1is no 1local operator
intervention via front panel commands to override a host
requested cartridge. Once the cartridge is loaded in the tape
deck, the host can transfer data to and from it in exactly the
same manner as for a 9144A drive. A new CS-80 "LOAD" command has
been implemented in the drive to allow the selection of a
specified cartridge. The generic form of the command is

<01001011> <Number of parameters> <Parameter 1>...<Parameter n>

For the 35401A, the number of parameters is one, and the
parameter must be in the range 1 to 8 indicating the desired
cartridge. The command is only supported in selective mode.
Operation in this mode would allow not only the same applications
as sequential mode but some rather more sophisticated ones where
cartridge selection is necessary. One such application can be to
perform a "structured" backup/storage of user files where each
group of users (eg a Department) is assigned one or more
specific cartridges, or alternatively, one or more calendar dates
are assigned to a set of cartridges within a magazine.

Conclusion

This paper 1is a very brief and simplified overview of the
autochanger device. The peripheral offers many user advantages
from a compatibility point of view as well as providing access to
a large amount of storage for a modest price increase over the
single media drive. The concept is clearly not restricted to 1/4"
cartridges but a similarly suitable media is a necessity to allow
mechanical handling (eg optical discs). The device opens up new
areas of applications where operator intervention can be reduced
or eliminated altogether, these would include the obvious ones of
system backup, structured data storage, software duplication, etc
but would also open up other possibilities where -for example-
access time is not critical but large capacity at low cost is
required.

Paper 3116 6 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

HP 3000 SERIES BACKUP SYSTEMS PRESENT AND FUTURE

JACK HUFFMAN
HEWLETT PACKARD
GREELEY TAPE OPERATION
700 71ST AVENUE
GREELEY CO U.S.A. 80634

OBJECTIVE

The objective of this paper is to present a general understanding of the
backup function on the HP 3000 Series computers by:

1. Examining each element of the current system and the part it plays in
the total backup solution. We will discuss both the positive and the
negative features of each element in a fair and objective manner.

2. And by using the Timiting features of each element of the system as
targets for improvement in future development.

Finally, this paper discusses some ideas and options for future
improvement to each of the elemental areas of the backup system.

New ideas, re-thinking of old ideas, and investigation of various options
happen daily at HP. There is also a flow of new ideas from the general
mass storage industry. These ideas are not intended to describe current or
planned projects at Hewlett Packard divisional labs and those that are
will not be identified in the following pages.

INTRODUCTION

The discourse on each element of the backup system will be at the
practical user level and NOT from the laboratory or design Tevel. Also,
it is very important to note that the element will only be discussed in

its relationship to the BACKUP FUNCTION and NOT to its general computing
function.

Let's begin with a quick description of the major elements of the HP 3000
backup system. The major elements are:

1. The operating system and file structure in the area of the store
utility.

2. Disc storage.
3. The interface system.

4. Tape drives and alternate types of backup media.

Paper 3117 1 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

A11 elements of the backup system EXCEPT the tape drive were designed
primarily for user oriented computing, like on-line interaction, file
management, number crunching, sorting, and report generation. The backup
function is secondary for these elements.

Conversely, the tape drive's primary function is backing up the system.
Secondary functions are booting the system, restoring files, reloading and
enabling the exchange of data between other computing systems (all
off-1line functions).

Most elements of the backup system work better when they can transfer data
continuously at a constant speed rather than discontinuously, or at faster
and slower speeds. A long trip by car is a good analogy. If the trip is
taken on the expressway you will go farther, faster, and with less energy
if you cruise at a constant speed, not to mention the fact that there will
be less wear and tear on the car. This car also does not require high
acceleration capability. Contrast that with the car that takes the local
route. It races from town to town and through the town the average trip
speed is degraded far below the expressway speed. There is more wear and
tear on the car during braking and acceleration; a more expensive,

higher performance vehicle would be neccessary to approach the same
average speed as the expressway car.

The above analogy pertains more closely to tape drives since they have the
highest mechanical inertia of any element of the backup system. The
analogy also pertains to some aspects of disc drive operation Tike head
seeks and finding file extents.

RECOGNIZING LIMITATIONS

Computer systems, and therefore backup systems are, by design, imperfect
simply because they represent trade-offs in architecture, cost, speed, and
time to market. Furthermore, as soon as a newer technology is implemented
the older technology can be looked upon as less perfect. In the following
critique of the elements of the backup system we should remember that no
system is truly perfect and we can only move forward by recognizing the
current limitations and planning to strengthen or eliminate them through
new technology.

Paper 3117 2 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86
EXAMINING THE CURRENT HP 3000 BACKUP SYSTEM
MPE FILE SYSTEM AND STORE UTILITY

The first element in the backup system is the HP 3000 MPE file system and
Store utility. This is an elegant and flexible system allowing files to
overlap many volumes and for file extents to be variable in both size and
number. This flexibility is provided transparently to the user and
includes highly flexible account management as well as file protection.
The limitations to this system in terms of system backup are:

1. A11 files require time (system overhead) to be opened and closed
during a zero dump. This slows down the average data transfer rate
from the disc since data does not flow during the time of opening and
closing. Perhaps this time could be shared with other activities.

2. File extents are spread over many discs. This is good for a flexible
file management system and for on-line system performance, but for
backup it causes the system to stop reading from one disc unit and
begin with another. This can cause discontinuous data flow and that is
undesirable for the backup function.

3. The current MPE Store utility requests data from one disc at a time.
Files and extents are read in order and sent to tape in an exact file
sequence. This generally limits the data transfer rate of the Store
utility to the transfer rate of one channel.

4. The Store utility requires users to leave the system during backup.
This is inconvenient for those systems that are required to run 24
hours a day. HP 3000 systems people want the fastest backup possible
in order to minimize this delay.

5. Currently there is no provision to switch between two HP7974A/7978 tape
drives and rewind one while the other stores data and vice versa.

DISC DRIVES

Disc drives need high transfer rates to enable them to supply data rapidly
to the backup system, thereby decreasing backup time. HP has a strong
line of current disc products as well as plans for faster, higher
capacity, smaller and more cost effective drives for the future.

Disc cacheing has enhanced the overall disc performance by intelligently
and selectively cacheing data that will be used repeatedly. The file
directory is also cached and this saves many disc accesses during Store.

Rotational position sensing improves data flow during backup by allowing

alternate discs to use the channel while another disc is waiting for data
to move under its head.

Paper 3117 3 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

The following items are performance limiters that are continually being
challenged. As with all disc drives, faster track seeks and faster spindle
speeds would increase access times and transfer rates. Higher linear
densities would increase capacity and, at the same spindle speed, increase
the burst transfer rate.

HP-IB INTERFACE

The interface transports all of the data to and from the discs and to and
from the tape drives. The current band width on the HP-IB interface is
roughly 1 MB per second. A faster interface transfer rate would bring a
slight improvement to the backup system. In the future, faster peripherals
will require a faster interface to balance the backup system.

TAPE DRIVE

The tape drive is the most unusual element of the backup system. It is a
serial device in terms of access to data on its medium. It has the highest
inertial dynamics and yet must be at rest when data is not flowing to or
from it. 1/2-inch reel to reel tape is also constrained the most by world
standards largely outside the control of Hewlett-Packard.

1/2" reel tape media are rugged, transportable, archivable, and
interchangeable with other computers. It has reasonable capacity and is
quite reliable. There are, however, severe limitations on magnetic tape as
follows:

1. A major constraint on the tape drive has been its dual role as backup
medium and primary medium for exchanging data between different
computing systems. The world standard data exchange requirement has put
constraints in two primary areas, physical and format.

The physical constraints have made it impractical to design a system
for automatically changing reels of tape which would help facilitate
unattended backup. Reel changes require an operator.

The world standard format also limits the data density. This density in
turn constrains both the data capacity of the medium and the data
transfer rate which is a function of tape speed times data density.
This indirectly dictates the frequency of medium changes.

2. Like discs, there is a never ending need for increased capacity. This,
in the case of tape drives, would diminish the frequency of media
changes.

3. Tape media requires a considerable amount of storage space in a well
maintained environment.

Paper 3117 4 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

4. Tape drives have historically been very complex electro-mechanical
devices. Sophisticated vacuum column systems or tension arms, with
their corresponding servo and control systems, were neccessary to
synchronize the rapid starting and stopping of the tape (using a
capstan motor) with the much slower acceleration of the high inertia
tape reels. All of this was neccessary to start and stop the media as
fast as electronic data could start and stop coming from the computer.

These drives were expensive, needed regular maintenance, and had a high
cost of ownership. Streaming drives have eased this problem by
providing electronic start/stop capability via intelligent cache
buffering. This buffer receives the intermittent data flow from the
host while the tape reels are gently ramping up to speed or down to
rest.

CURRENT HP 3000 BACKUP SYSTEM.

The backup function is equally important on small, medium, and large HP
3000 systems and it is our goal to offer the best price/performance match
in each area.

A consistent input from HP 3000 users has been to make the backup function
"transparent”" to the users as well as "unattended" for the operator. These
are worthy goals.

Transparent backup (sometimes called Dynamic backup) is a function that
occurs while users are on-line. Users would probably be unaware that the
backup is happening. This would require major changes in the MPE operating
system. The need for "fast" backup would be diminished.

Unattended backup, after being initiated, would take place without the
need for human intervention. On high-end 3000 systems disc capacities of
several GB are common place. The use of high capacity backup devices
and/or the automatic handling of media (cartridge changers for example)
will be required to meet this need.

The HP35401A 1/4-inch Cartridge Tape Drive was recently introduced by HP
with an auto-changing magazine that provides for the unattended backup of
up to 536 MB of data. This is an excellent solution for small and
mid-range systems especially if they are idle overnight.

At the present time, backup using a GCR drive is the fastest solution for

high-end systems. Fast backup minimizes the lack of system availability
for users on systems that run 24 hours a day.

Paper 3117 5 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86
FUTURE ENHANCEMENTS AND SOLUTIONS.
GENERAL

We are on the cutting edge of a new era in Hewlett-Packard computer
technology. The first HP Precision Architecture machines are soon to be
delivered to customers, bringing new strength and growth to an extremely
successful product 1ine. These new computers, the HP 3000 models 930 and
950, are only the first entries into this broad product program. These
systems will not only offer increased power and performance, they will
also offer much larger disc storage capacities and will require much
better backup systems than we currently have. At the same time, there are
thousands of HP 3000 MPE V systems in the world and we will be improving
and supporting these machines for many years. It is our goal to continue
improving the vital backup function on MPE V and MPE XL machines as
technology allows us to do so.

The remaining portion of this paper will discuss some of the ideas for
improvement in all elements of the HP 3000 backup solution.

The ideas presented below come from many people from all HP divisions who
are involved in creating solutions for HP 3000 backup systems. In many
cases, these improvements are the result of multi-divisional team efforts.
Many ideas also flow from the mass storage industry. The message to you,
as HP 3000 system users, is that we believe the backup function is
important and that there are many areas for improvement. We will continue
to examine this area from all sides, optimizing here, making small changes
there, and designing newer backup devices as technology allows.

These possibilities for future improvements to the HP 3000 backup system
will generally fall into two classes, either FASTER, SMARTER, or BOTH.

"Faster" means speeding up all elements (disc, CPU, interface, and back-up
device) of the backup system in various ways.

"Smarter" relates to any improvement where raw speed is not the
determinant of success but rather getting the job done "transparently".

Transparent backup would require improvements in the MPE V store utility
and to be unattended, would require improvements in backup medium storage
capacity as well.

MPE V STORE UTILITY

REEL REWIND TIME SHARING

This technique was used successfully in the past with the 7970E tape
drives. The technique is simply to store to a second tape drive while the
first one is rewinding and vice-versa.

Paper 3117 6 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

MULTIPLE DEVICE BACKUP

The logic behind this idea is that if one disc can supply information for
a store at rate X, then two discs should be able to supply data at rate
2X, and 3 discs at 3X and so on. (In reality some system overhead
performance would be lost and there would be a 1imit on the CPU.) This
would also require multiple (concurrent) tape drives to "balance" the
"faster" system unless an extremely fast backup device is also invented.

TRANSPARENT BACKUP (DYNAMIC)

This backup system would be transparent to users of the system, allowing
them to continue on-line processing as usual, unaware that the backup is
happening.

This idea does not neccessarily require any new tape drive or peripheral
technology to be created, but would require major changes in MPE. A higher
capacity storage device would help the system operator towards an
unattended type of operation. The method here would be similar to any
other store operation except that before each file is stored, the system
would Tog the exact time and condition. As the file is being stored, the
system logs each transaction. When the file is stored the transactions are
then appended to it. If a restore of that file is neccessary, the system
has enough information to read back the file and the changes that occurred
during backup and recreate the file.

DISC STORAGE

Rotational Position Sensing has increased the average data rate coming
from each disc channel by allowing disc "A" to transfer data on the
channel while disc "B" is waiting for data to rotate under its head, and
vice-versa. This increases the average disc transfer rate on that channel.

The HP COPYCAT program (currently available) provides for faster backup by
breaking the process into two stages. The first stage quickly copies from
disc to disc, which allows the system to be returned to the users. The
second stage dumps the first stage disc off to tape more leisurely while
users are back on the system. Although this does not decrease the total
backup time, it significantly decreases the time that users cannot use the
system.

Disc cacheing has improved data flow between the disc and CPU for general

operation by identifying the more active disc file data and keeping it in
cache memory.

Paper 3117 7 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

HP discs are already quite "smart" with cacheing and Rotational Position
Sensing. The following goals are somewhat infinite in nature. The goals

are really technical barriers that are continually being pushed back by

new technology. They are:

1. Faster seek time.

2. Faster spindle speed and/or higher linear density for a faster burst
rate.

3. Smaller volume or footprint to save space.

4. Larger, smarter, and faster cache buffering.

INTERFACE TECHNOLOGY

The following ideas, although general in nature, would also help the
backup function by making it more flexible as well as allowing faster
transfer rates.

CONCURRENT MULTIPLE DEVICE DATA TRANSFER

This was mentioned in the operating system section. I reiterate it here
because the solution is also a function of the interface. The objective is
to double or triple the data transfer rate during backup by allowing more
than one disc to send file data concurrently.

FASTER TRANSFER RATE

HP-IB has long provided excellent functionality and performance for HP
systems but, in the future, both SPU's and peripherals will exceed the
HP-IB's current performance range.

FUTURE BACKUP DEVICES (TAPE DRIVES AND OTHERS)
GENERAL BACKGROUND

The transfer rate on tape drives is a function of both the tape speed and
the density of the format. At the same tape speed a higher density results
in a correspondingly higher transfer rate. The higher density also gives a
bonus in the form of higher capacity. In contrast, at the same density, a
higher tape speed will increase the transfer rate but does not increase
the tape capacity. Higher tape speeds are also mechanically difficult to
deal with. Higher density seems to be more advantageous if the product is
not constrained by a world standard format/density for data exchange. The
past progression of higher tape densities supports this fact.

Backup devices of the future may very well forsake their data interchange
capability for some impressive gains in very high capacity or very high
transfer rates, or both. 1/4-inch cartridges were developed, despite lack
of standardization, because of economy and convenience. Exchanging data
may be delegated to telecommunications or networking systems, new 1/2-inch
cartridges or even left to the current technologies. As alternatives for
gata exchange grow, the constraints of standards on backup devices will
ecrease.

Paper 3117 8 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

1/2-inch tape drive transfer rates have increased by using higher
densities in the following progression: 200, 556, 800, 1600, 3200 6250
and, more recently, 22000 bits per inch net data densities. ATl drive
manufacturers have used different tape speeds with these densities to
satisfy various performance needs. These tape speeds have ranged from 12.5
inches per second up to 200 ips.

The pressure to develop lower cost, high performance tape drives resulted
in the development of the streaming tape drive. With streaming drives tape
motion is provided ONLY by the reel drive motors. There is no capstan and
consequently no vacuum columns or tension arms to physically buffer tape
movement. Streaming drives ramp up to speed more slowly and then flow tape
continuously as data is supplied continuously from the computer. Block
gaps and file gaps are written "on the fly". The only problem is that
computers do not always provide a continuous stream of data to the tape
drive. When the computer stops sending data the drive must also stop to
avoid Targe spaces of blank tape. Since the streaming drive ramps down
slowly when data stops coming from the CPU, blank tape flows past the head
anyway, requiring a time-consuming reversing or repositioning of the high
inertia tape reels.

The next improvement in streamers provided large intelligent electronic
cache buffers to manage the intermittent data coming from the computer.
This allows the computer to continue sending data to the tape drive even
though the drive may be in a time-consuming reposition cycle. Then the
data are written from the buffer to the tape when the tape is up to the
correct forward speed. These intelligently buffered streamers have proven
that they perform as fast, or faster, than their much more expensive
start/stop predecessors.

Cartridge technology has been applied to every computing device from
terminals and desktop computers, to minis and mainframes. Cartridges come
in many sizes and shapes and provide convenience in terms of
transportability and reliability because the medium is well protected. In
addition, cartridges allow for the handling of media to be automated with
changers. The 1/4-inch cartridge is the only one that currently has
relevance to the HP 3000 backup system.

The 1/4-inch tape cartridge was successfully implemented for the backup
function on small HP 3000 systems 6 years ago. The cartridge was also used
to boot up and restore the system as well as for exchanging information
between HP 3000 systems. It is worth noting that the 1/4-inch cartridge is
not a world standard interchange medium despite the development of the so
called QIC standard. Yet it has provided a very economical backup

solution for small systems.

This year the power of the 1/4-inch cartridge was increased by the

addition of an 8 cartridge auto-changing mechanism providing for the
unattended backup of up to 504 MB of disc storage on the HP 3000.

Paper 3117 ’ 9 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

1/2-INCH CARTRIDGES
1/2-inch cartridges will be described in three groups, General purpose,
IBM 3480, and Helical Scan.

GENERAL 1/2-INCH CARTRIDGES: Several sizes and shapes of 1/2-inch tape
cartridges have been marketed in the computer industry providing more
convenience and higher capacity than reel to reel technology. 1/2-inch
cartridges generally store less than 500 MB of information. Also, because
they typically store information on one or two tracks at a time in a
serpentine fashion, the data transfer rate is typically less than 400 K
per second. Currently, the capacity on these cartridges is not high
enough to offset the lack of industry compatibility and the slow transfer
rate.

THE IBM 3480: This drive uses a small 5" by 4" cartridge that will store
roughly 200 Mb of data at an average NET data density of roughly 22000
bits per inch. The drive writes 18 parallel tracks that allow data
transfers in the 3 Mb per second range. The drive is 4 to 5 times as
expensive as a low cost GCR streamer and is, cost wise, more suitable for
backup on mainframe and super computers. This "fast" solution would
currently not help the HP 3000 backup system because other elements of the
system cannot currently support this speed. GCR streaming drives are
currently an excellent, low cost match for the HP 3000 backup system.

It is generally believed that the IBM 3480 will evolve into the next world
standard format for data exchange. This may not be as important now as it
has been in the past because other technologies Tike data communications
and networking are streamlining and simplifying the transfer of
information between computing systems with higher speeds and greater
reliability. Fiber optics and other technologies will also continue to
improve this function. Auto-changers will increase the usefulness of this
drive by providing increased unattended backup capability. This technology
and many others will be watched carefully for their future feasability in
both cost, and function for HP 3000 systems.

HELICAL SCAN

This paper, for simplicity, will be limited to the VHS video cartridge.
The VHS cartridge uses 1/2" wide tape and helical scan technology. Data
are written to the tape in parallel Tines that go diagonally across the
1/2" media width. Helical Scan has the highest areal density of any type
of storage device. It has the capability of being one of the highest
capacity backup devices for the future (several Gigabytes).

Current VHS mechanisms have playing times of 2 hours per tape which
provide a barrier to raw transfer rate of a few hundredkB/sec.

This drive would be very useful in a "smart" transparent and unattended
backup system. Transfer rate is not a problem in a "smart" system. The
medium is reasonably priced and readily available. This drive holds some
promise as a good economical match for the HP 3000 system in the future.

Paper 3117 10 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Data compression, described soon, could help remove the low transfer rate
problem of the VHS (helical scan) device and create a very high capacity,
"fast" backup solution for the HP 3000.

OPTICAL DISCS

Optical discs are currently available in the market that store up to 4 Gb
of data. The only problem is that the media are currently not eraseable,
and they are quite expensive. Every time you fill up a disc for backup it
can never be written to again. The MPE file system would have to be
changed radically to be able to deal with write-once devices. Another
limiter is that the transfer rate is currently limited to roughly 300 KB
per second. This would be too slow for the HP 3000 unless it were used in
a "smart", transparent, and probably unattended, backup solution.

Eraseable optical discs are not expected for several more years. When they
become available they will also have a higher transfer rate than
non-eraseable drives which is desireable for "fast" backup. Imagine having
4 GB of "fast" storage for unattended backup. A "smart", transparent, MPE
backup program would make this a very powerful solution.

DATA COMPRESSION

Several companies in the industry have introduced products that compress
data in a variety of ways. The result of this compression is that the
capacity of each medium is effectively increased. An additional bonus,
depending on the implementation, is that the transfer rate can also be
increased. This technique could improve the transfer rates of video
cartridges, the optical disc, GCR, or any other backup technology, and
enhance their performance for use in either the "fast" backup solution or
the "smart" solution.

FUTURE SOLUTIONS

There are many combinations of options for future backup devices. The
correct options depend upon other elements of the backup system. Two
general solution areas will be discussed:

1. Future options that are possible with transparent backup capability in
MPE.

2. Future options that are possible without transparent backup capability
in MPE.

FUTURE BACKUP OPTIONS (WITH TRANSPARENT BACKUP CAPABILITY)
Transparent backup is a "smart" solution that would require significant
changes in the Store utility of the MPE operating system.

This solution would diminish the need for higher speed in the backup
system. The need for higher speed would yield to the need for higher
capacity to facilitate unattended backup.

HP 3000 SERIES BACKUP SYSTEMS PRESENT AND FUTURE

Paper 3117 1 DETROIT, Mi



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

HIGH CAPACITY FOR UNATTENDED BACKUP: A consumer video (helical scan)
device would be ideal for this solution. Speed would be no problem. Data
exchange, however, must be provided for in other ways.

An optical disc will work if it is eraseable, or the cost of the medium is
decreased. Data exchange must be provided for in other ways.

IBM 3480 technology is currently too expensive for most HP 3000
configurations. The speed is not currently neccessary and it would require
an auto changer to attain higher capacity

A GCR drive would not have high enough capacity. Data compression would
help somewhat, but would not compare with the capacity of helical scan, or
optical disc technologies.

FUTURE BACKUP OPTIONS (NO TRANSPARENT BACKUP CAPABILITY)

With no transparent (dynamic) backup users are required to leave the
system while the backup is taking place. "Fast" backup is essential to
minimize the time that users are off the system during the backup.

If the backup is fast the requirement to be unattended is diminished.

For fast backup to occur, all elements of the system must have roughly
the same transfer rate. The following possibilities assume that the disc,
operating system, and interface are as fast as the backup device.

For mid-range systems that are currently using a 1600 cpi tape drive the
best solution for increasing speed is to change to a GCR tape drive. A
GCR drive can increase the transfer rate by roughly 300%.

FASTER TAPE SPEED: The 7978B 75 ips GCR tape drive is currently an
excellent match for the current Store transfer rate. In the future, when
other elements of the backup system increase in performance, a higher tape
speed can be used.

DATA COMPRESSION: Data compression would increase the effective storage
density of the current GCR drives and effectively increase the transfer
rate. This would be an excellent solution because it would also retain the
alternate standard GCR density for data interchange.

HIGHER TAPE SPEED AND DATA COMPRESSION: These techniques combined, could
easily double or triple the current GCR transfer rate.

CONCURRENT MULTIPLE BACKUP DEVICES: This was mentioned in the disc section
and it pertains to backup devices as well. Storing concurrently to more
than one backup device can multiply the total Store transfer rate. This
would require changes in the MPE operating system.

Paper 3117 12 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

HELICAL SCAN WITH DATA COMPRESSION. With data compression

this technology could have a faster transfer rate than the current GCR
solution. Data interchange capability would be sacrificed, however,
unattended capacity would be increased to several GB.

Another possibility would be the IBM 3480 technology. The price would
have to be decreased by roughly 70% to be a viable solution for the HP
3000.

SUMMARY

As you can see, it is recognized that system backup is a vital function
for HP 3000 systems. Also, the total solution is a multi-faceted one.
The current system is balanced quite well with each element carrying its
expected Tload.

There is a wide variety of options availabie in both the "fast" and
“smart" areas. HP is investigating many combinations of these.

We certainly do not have all of the answers to system backup but we are
continually working to improve it. If you have comments or suggestions
please tell your local sytems engineer or HP sales rep to pass the
information along. We'll be glad to hear from you!

Paper 3117 13 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Insuring the
Future of Your Data

by
Contingency Planning

Leslie Anne Virgilio Thomas J. Kaminski
Advisory Systems Engineer Director, Data Processing
Computer Task Group SINGER Education Division

Paper 3118 1 DETROIT, Mi



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Section
Section
Section
Section
Section
Section
Section
Section
Section

Section 10.
Section 11.

Paper 3118

ORONOONLWN -

CONTENTS
Introduction............. et tieitaeatiiieceite ittt aaeas 1
System Backup Methods......oivuiiiiininrinnrnnesnnsnonesnscnnnns 2
Media Storage - On Site, Off Site......ciiiiiiiiiiiiiiniinnnenns 5
Critical Application Identification.............ciivuiiiiinnnnn. 7
Recovery Systems.......ceeiiiereeinnessestesnnsocrosssasensnnas 10
Hardware Replacement..........ciiiiitiiiiiiiiiinnenannennnnnnans 12
Disaster Recovery Procedures........c.coveiiiiiinrnnncennansnnnns 13
Rebuilding Your System on Another Computer..................... 15
Licensed Software Concerns.......voiuiieiiiiennnaneicineeseacnenns 17
Supplies and Auxilliary Equipment........... ..ot 18
Concluding Thoughts. ... oiiiiiiiiiiiiieiiiieiiieiieenanennnnnnns 20

2 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Sect i 1. Int i

According to Webster's New Students Dictionary, disaster "is an unforseen,

ruinous, and often sudden misfortune that happens either through lack of fore-
sight or through some hostile external agency". To a data processing profes-
sional, disaster means the loss of data from a disc-head crash, utility
failure, faulty air conditioning, fire, flood, earthquake, hurricane, thun-
derstorm, tornado, vandalism, sabotage or other occurances. Most data
processing professionals will never see a disaster in their careers and many
of them are relying on pure luck to insure the safety of their centers. Any
DP center is vulnerable and it will be the unprepared that will panic if dis-
aster strikes. An organized, detailed plan is the key to a successful
recovery.

Contingency planning is preparing for disaster (of any kind). A contingency
plan should include establishing alternative processing facilities, procedures
for restoring critical processing applications on the alternate hardware and
establishment of operational procedures, user procedures, and data communica-
tions to allow for uninterupted operation while the original or future site is
prepared. A carefully laid contingency plan can significantly improve the
ability of a business to survive outages and greatly reduce the length of the
outage as well as the cost of recovery.

This paper will not dwell on why a contingency plan is needed. Rather, it
will give you enough information to develop your own contingency plan.

Paper 3118 3 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP . INTEREX 86

Section 2. System Backup Methods.

HP-3000 System Backup

The main method of system backup on the HP-3000 computer is through the MPE
commands :SYSDUMP, :FULLBACKUP, and :PARTBACKUP. However, there are other
methods including:

~ Copycat - The HP utility to backup files using removable disc
packs

~ Backpack - A utility from Tymlabs that is a high speed replacement
for the MPE SYSDUMP commands

Whichever you use is up to the needs of the individual organization. The ap-
plication is the same.

There are two types of backups that can be performed:
~ Complete backup - ‘A1l files are stored

~ Relative backup - Only files that have been updated since the last
complete backup are stored

The MPE commands :FULLBACKUP and :PARTBACKUP can be used for performing a com-
plete backup and relative backup, respectively. The :SYSDUMP command can be
used for both and is sometimes preferred. In the :SYSDUMP command, the sys-
tems manager can specify a dump list showing what order the files can be put
on your backup media. The default for the :FULLBACKUP and :PARTBACKUP com-
mands is:

e.e.e

It may be desirable to have certain file groups on the front of the backup
media by using a list like this:

@.@.5vs5,e.0.@

This 1ist puts the files in the SYS account at the front of the backup media
for quick access in case information must be reloaded.

The schedule you set up for your organization depends on how vital the infor-
mation on your system is, how often it is updated, and how much time there is
to perform system backups. Generally, you should backup up your files on a
daily basis. Figure 2-1 shows a typical backup schedule. Note that:

~ On Monday through Thursday, a relative dump is performed backing
up files that have been updated from the last complete backup

~ On Friday, complete system backups are performed. Since this is

the most important backup, two are done. Without a good complete
backup, the relative backups following it are useless in most

Paper 3118 4 DETROIT, Mi



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

cases. One system backup is stored off site for further
protection.

~ Backups are performed at the end of the user's day to reduce the
exposure to a loss of data overnight.

Before performing a backup, excess files should be cleared off the system.
This includes system log files and editor work files (K-files). To find these
files, enter the following file equations:

tLISTF LOG####.PUB.SYS,2
CLISTF K#####4#.0.0,2

This will cut down on the amount of space needed to store your files and the
amount of time it takes the backup to complete.

A1l jobs and sessions should be logged off before the start of the backup.
During a partial backup, some users can be logged on in certain instances, but
they may find that they cannot keep an editor file, run certain programs, or
may have very slow response time.

After the backup is complete, check the dump Tisting. Normally, some files
will not be backed up and a message such as this will appear:

NOT STORED: FILE IN USE FOR WRITING
LOADLIST.PUB.SYS
LOG .PUB.SYS
MEMLOG.PUB.SYS
SL.PUB.SYS

This is normal, these files are being used by the system. Other files may in-
dicate that a session or job was logged on during the backup. If you do not
use the standard file list (@.@.8), your statistics will be off at the end
(number of files stored, not stored). This is because files that are redun-
dant in the 1list will be counted as not stored and stored.

Rotate your backup tapes by using a number of cycles. Four or five cycles are
usually good and gives you a month worth of data. Replace your tapes oc-
casionally - ask your tape manufacturer how often.

PC Backup

A primary form of PC backup is using the backup & restore commands to save
your data on floppy disk or tape. However, if you have ample room on your
HP-3000 disc drives, there is an alternative.

Walker, Richer, and Quinn's series of microcomputer programs (list PC2622) for
interfacing to the HP-3000 allow you to transfer groups of files from your
microcomputer to the HP-3000. The new reflection software series (Reflection
1, Reflection 3) have a new "plus" option available for using your HP-3000
disc as backup for your microcomputers.

Paper 3118 5 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Figure 2-1 Typical Bockup Schedule

OO0

FRIDAY
Partial Partial Partial Partial Complete
Orr-SiL& ﬂ’r‘SiLt?e On-Site D‘\“S:m On-site
Storoge Storage Storage Storage Storage
Completa

Backup

Offeite

Storage

Paper 3118 6 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Section 3. Media Storage - On Site, Off Site

Every organization should have good on site and off site storage of materials
and information that would be needed in case of a disaster. These include:

~ Your contingency plan
~ System backup media (tapes, disc packs, etc.)

~ Corresponding system backup listings - useful for finding
particular files or systems that you would like to selectively
load when recovering from a disaster

~ User and System Documentation - instructions for operation of the
computer and software

~ Software Installation Guides - for any software that would have to
be reinstalled on another system

~ Special Forms - stock paper can be obtained fairly quickly from
local vendors, but special forms may take a long time to obtain

A storage rotation plan should be devised and implemented to insure that
material in the storage area is rotated on a regular basis. For tapes, it is
a good idea to "cycle" your system backups. For example, you can have four
sets of tapes - each week, use a different set (1, 2, 3, 4, 1, 2, 3, etc.).
This allows you to always have a set of backup tapes in your storage area,
even when current backups are being transported and allows you to reload files
that you purged some weeks ago and just noticed missing.

Forms should also be rotated. Many forms, especially multi-part forms, can
fade or their carbon can dry out making the forms useless. Some vendors will
hold back forms for you. This way, the forms are rotated whenever you place
an order (the forms held back are shipped and the last set of new forms are
held).

On-Site Storage

Storage of backup media and documentation needs to also be done on-site in
case something happens to your off-site files and for those emergencies where
files need to be reloaded quickly (processing failures, unwanted file purges).
Make sure the on-site storage area that you select is quickly available at all
times.

Data Safes are desirable and many sizes are available. Some safes are made
for storing paper only. These safes generally keep temperatures below 350
degrees F which is below the flash point of paper, but it is above the melting
point of most computer media. A data safe will keep temperatures below 150
degress F. Safes are rated for number of hours that they will last in a fire.

No matter how good your on-site storage facility, you still must have an
off-site facility. A major disaster can wipe out an entire building.

Paper 3118 7 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

0ff-Site Storage

Your off-site storage area should be in another building, away from yours.
Some possible locations for an offsite storage facility are:

~ Another company - you can set up a reciprocal agreement with
another company. They will store your off-site media while you
store theirs.

~ Banks - banks are sometimes set up to store backup media for
other companies. Safety deposit boxes can be used.

~ Records Retention Facility - Record Retention Facilities are set
up to store both backup media and documentation.

Keep in mind that your backup facility has to be trusted, especially if you
are storing crucial data on those files.

Records Retention Facilities can store your media and documentation at a very
reasonable cost. For example, prices obtained from a typical facility were as
follows:

Storage of Tapes: .60/tape/month
Accessions: .60/item

Document Storage: .30/box/month (12" x 10" x 15")
Accessions: .60/item

For example, your full backup takes eight tapes, and you want to
store your tapes off-site weekly using four cycles of tapes. You
have two boxes with all of your documentation in them and four
boxes of special forms. The boxes would be rotated monthly. Here
is what your approximate costs per year would be:

8 tapes x 4 cycles = 32 tapes

for 12 months @ .60 = § 230.40
16 accessions per week (8 in, 8 out)

for 52 weeks @ .60 = 499.20
6 boxes

for 12 months @ .30 = 21.60
12 accessions per month (6 in, 6 out)

for 12 months @ .60 = 86.40

Total Yearly Cost $ 837.60

Check the hours that the retention facility is open. Make sure you can access
your information whenever needed.

Paper 3118 8 DETROIT, M



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Section 4. Critical A i ion Jdentification

An important part of your Contingency Plan is Critical Application
Identification. During a recovery from a disaster, this process serves the
following purposes:

~ Aids in making decisions as to which applications need to be
brought up first. This is not a simple priority decision. Some
applications are more important than others on certain days and
therefore "Peak Processing Periods" must be specified to help
with these decisions.

~ Instructs you on loading the applications onto the computer being
used for recovery. Also gives you an idea of what resources the
system will take up.

~ Gives you an indication of special devices needed for certain
applications such as printers, tape, special terminals, and other
needs. Also, what supplies will be needed.

~ Allows you to set priorities as to what order systems need to be
brought up.

Peak Processing Periods are designated for each system and/or subsystem. This
information indicates how long an application can be unavailable before it is
needed again. Since this information varies from day to day, it is more or
less represented in calendar form. Special processing periods (end of month,
quarter, etc.) are also specified. A1l this is taken into consideration when
making judgements about data recovery.

On the next couple of pages are two forms that could be used for Critical
Application Identification and Priorities/Peak Processing Periods.

Paper 3118 9 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Figure 4-1 Critical Application Identification

Instructions: Enter the name of the system and check if any special
terminal types are needed and other equipment such as tapes, printers,
plotters, etc. For each task that can be run separately within the
system, specify hardware requirements (disk space, terminals, printers,
other equipment), restore file sets (@.@.PAYROLL for example), system
software needed (i.e. POWERHOUSE, COBOL), and any special forms that
may be required including their location and vendor name for reordering.

System:
Block Mode [ 1 YES Graphics [ 1 YES Personal [ 1 YES
Terminals ([ 1 NO Terminals [ 1 NO Computer [ 1 NO

Other Equipment:

Disk Number
Space of Printer Other
(Sectors) Terminals Usage Equip.
Task:
Restore File Sets:
System Software: File Sets:
Special Forms:
Location: Vendor:
Task:
Restore File Sets:
System Software: File Sets:
Special Forms:
Location: Vendor:
Task:
Restore File Sets:
System Software: File Sets:
Special Forms:
Location: Vendor:

Paper 3118 10 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Fiqure 4-2 Priorities/Peak Processing Periods

Instructions: List systems in order of priority. If the computer becomes un-
vailable on a certain day, at what point must an alternate processing site be
obtained? For each system and day, enter the number of hours, name of the day
or "NEXT WEEK" that you would need to be recovered by in order for deadlines
to be met. Under special processing, list special processing schedules such
as end of month, quarter, etc.

System Mon Tue Wed Thu Fri Sat Sun

Special Processing:

Special Processing:

Special Processing:

Special Processing:

Special Processing:

Special Processing:

Special Processing:

Special Processing:

Special Processing:

Paper 3118 11 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Section 5. Recovery Systems.

The following types of disaster recovery systems are available to businesses
in the event the existing computer system is no longer accessable.

Private Backup Site

Private backup sites are owned by the business involved. To be of full
benefit in the case of a disaster, this site should be in a different location
than the original. There are two types of backup sites; "cold" and "hot". A
"cold" site is a fully equipped computer facility, without the computer. Only
electrical power, air conditioning, and telecommunications equipment exist.
When disaster strikes, the computer and required peripherals must be obtained,
installed and tested. Although relatively low in cost, the "cold" site has
the disadvantage of a lengthy implementation. A "hot" site is a fully
equipped computer facility with an identical or very similar computer system
to the original, already installed. Obviously, the most desirable system from
an operations standpoint, this alternative is extremely expensive. Another
drawback to this alternative is the easy justification using the sys-
tem/facility for other uses. This eliminates the 100% availability for dis-
aster recovery.

utual Backup Agreements

A mutual backup agreement can be between two businesses, or between two dif-
ferent computer sites within the same business, with similar system configura-
tions. They agree to back up one another should a disaster occur. The
businesses are usually located near each other. To eliminate competition, the
companies are usually in different industries. Although there is little or no
cost to the agreement, there are some drawbacks. It is possible, due to the
close location of the two sites, that a disaster, such as tornado or
earthquake, could occur at both sites. Other problems can arise if one com-
pany drastically changes the configuration of their system and the other com-
pany does not. Agreements of this type also disturbs the normal processing of
the company not affected by the disaster since they will literally have to
give their system up to the disastered company for a period of time each day.

Finding potential sites for mutual backup agreements can be done through your
local users group. Set up a strong agreement and make sure that you communi-
cate often with your backup site. When the agreement is with an internal or-
ganization, control over the computer environment is often easier.

“"Cold" Backup Site
The cold backup site is similar to the privately owned cold backup site. It
is an "empty shell" facility owned and operated by a company in the business

of data disaster recovery. Unlike the privately owned cold site, this site is
available to many companies which could cause competition for its use.

Paper 3118 12 DETROIT, MI*



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

"Warm" Backup Site

Computer service bureaus may offer a warm backup site. Arrangements are
usually made in advance to allow the business the use of the service bureau in
the event of a disaster. Service bureaus tend to be expensive, and ignore
special computer requirements.

“Hot" Backup Site

The hot backup site is often the most acceptable solution to disaster
recovery. Similar to the private hot backup site, it is owned and operated by
a company in the business of disaster recovery. Although there can be com-
petition for its use, disaster recovery companies can often compensate by
having several hot sites strategically located. UPTIME, based in California,
has a mobile standalone unit that can be placed wherever needed.

Whatever recovery system you decide on, be sure all your computer needs,
printer needs, phone needs, etc. are all taken care of. Also, make sure test-
ing of your plan, at the minimum of once a year, can be accomodated.

Paper 3118 13 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Section 6. Hardware Replacement.

Hewlett-Packard does not have a written policy for the replacement of
hardware. HP sources suggest having a standing purchase order with your local
Hewlett-Packard office and in the case of a disaster, they would commit to the
shipment of the next available unit. Third party vendors might also be help-
ful with the availability of used computers and peripherals.

Paper 3118 14 DETROIT, MI



SOUTH

EASTERN MICHIGAN USERS GROUP INTEREX 86

Section 7. Disaster Recovery Procedures.

Disaster Recovery Procedures should include all of the tasks that need to be
performed when recovering from a disaster and who is responsible for those

tasks.

There
those

1.

Depend
way.

N
1

X

Information in this section includes:

Phone Notification List - Use a pyramid chain calling list. An
example of this is: Caller A calls 2 people and each of those
2 people call 4 people.

Task Assignment List - A list of tasks that need to be performed
in conjunction with disaster recovery. This includes: ordering
new hardware and software, insurance notification, and ordering

new supplies.

Transportation Plan - Method of transportation of materials and
personnel to the recovery site. If transportation includes using
automobiles, please be careful not to put any magnetic media near
any of the car speaker magnets. When transporting media, try not
to expose it to any severe environmental conditions (i.e. cold)
as the media will then have to adjust to recovery site conditions
before it can then be used.

are many types of disasters that can occur to a computer center. Here,
types are broken down into three categories:

Building Inaccessable - Fire, flood, earthquake, hurricane,
tornado, riots, war

Computer Area Inaccessable - Vandalism, sabotage, above reasons

Computer Inaccessable - processor failure, disk head crash,
utility failure, faulty air conditioning

ing on the category of disaster, you will need to react in a certain
Here is an example of what a disaster recovery plan might look like:
everity
2 3 Procedure
X X 1. Pyramid Chain Calling - Every contingency plan
should have a phone 1ist such as the one described
above.
X X 2. Have everyone meet together at the office to plan
the recovery.
3. If the building is inaccessable, meet at the place
designated in the systems plan to plan the recovery.
X X 4. Notify your backup processing site at this time if

it looks like it will be needed.

Paper 3118 15 DETROIT, Mi



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Paper 3118

X

X

5.

Obtain latest backup media and documentation from
on-site storage area.

Obtain latest backup media and documentation from
off-site storage area.

Hold disaster recovery meeting. Make decisions on
which systems to recover first based on information
contained in the Contingency Plan and assign tasks
as designated.

Transport materials using the transportation
specified in the contingency plan.

Recover systems.

16 DETROIT, Mi



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Section ildin r stem on Another Computer.

There are a lot of factors that need to be considered when rebuilding your
system on another computer:

~ Devices - The computer that you are using to recover your data
must have the devices required for the systems you need to run.

~ Operating System - There may be problems if the software you have
uses a different operating system than is on the recovery machine
(unless you can reload your entire system on an empty machine)

~ Machine Models - Smaller or busier models of the computer may not
be able to handle the volume of data in the same amount of time
as your computer did.

~ System Software - Obtaining Agreements - reference Section 10.

~ Data Security - You must insure the security of your data. Make
sure you clean up all your files after you are done with the
recovery system.

~ Compilers and System Libraries - If your application requires the
existence of compilers or SL routines, make sure they are
available on your recovery system.

~ Communication Equipment - Modems, multiplexors, and phone lines
are also considerations.

Make sure you know what kind of time is available on the system. With some
backup agreements, you may need to set up during odd hours ("C" shift for
example).

Make sure you let your backup media adjust to the environment before reloading
files on the system. You should probably bring the media into the center as
soon as it arrives to facilitate this.

There are two ways to reload files on a system that already has data on it (as
in the case of a mutual backup agreement):

~ Storing off existing files, reloading your files: This takes a
Tot of time and it is desirable to have fast backup media (such
as a removable pack)

~ Reloading among accounts: To do this, you must have dissimilar
account names.

If you are reloading your files on an existing system, there are some helpful
programs contained in the Contributed Library:

~ Account Restructuring Jobs - BULDACCT is a program that builds a

stream file that will recreate your account structure on another
system. A good idea is to have this run daily. In your plan,

Paper 3118 17 DETROIT, M|



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

document where this file is located (if you put it in PUB.SYS,
make sure you put security on it.

~ UDC Recovery Jobs - There are various programs in the contributed
library that will rebuild UDC (User Defined Command) files on
your system.

Recovering PC Information

To recover PC information from the HP-3000, make sure your PC transfer program
is loaded onto PUB.SYS. With programs such as PC2622, Reflection 1, and
Reflection 3, files must be transferred back one at a time. With the "Plus"
series from Walker, Richer, and Quinn, you can restore all your files from the
disc.

Paper 3118 18 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Section 9. Licensed Software Concerns.

Purchased software, whether Hewlett-Packard's or third party, creates another
concern in the disaster recovery plan. Licensing agreements prohibit use of
the purchased software on any computer other than the one originally purchased
for. Disaster has claimed the original computer, now what?

Sources at Hewlett-Packard say that in the case of a disaster, licensed soft-
ware would be allowed to be used on another system. They warned that software
is not compatible between different "MITs" of an operating system. Procedures
should be worked out with your local office ahead of time. HP sources did say
they would help out in getting the correct version of the licensed software on
the recovery system chosen. HP offices keep all versions of licensed software
in their local offices.

Sources at COGNOS Corporation said they would be willing to allow movement of
their software, including POWERHOUSE products, to a recovery system in the
case of disaster. They asked to be contacted before the move is made, if pos-
sible. If not possible, they should be contacted the next working day.
COGNOS' software is dependent on the series of HP-3000. If you plan to use a
different series as a recovery system, prior arrangements should be made with
COGNOS.

The assumption might be made that other software vendors have similar

policies. The safest thing to do would be to contact any software vendors you
deal with when you are developing your disaster recovery plan.

Paper 3118 19 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Section 10. Supplies and Auxilliary Equipment.

Also important is all of the computer supplies and other equipment needed to
run your systems. If your supplies and equipment have been destroyed, you
need to order these items. Your Contingency Plan should contain a list of
vendors, purchase order numbers, inventory lists, and other information that
would facilitate such a replacement.

A suggested vendor identification form can be found in Figure 10-1. This form
shows the name, address, and phone number of the vendor; associated purchase
order or account numbers; and items provided by that vendor including standard
quantities, prices, and delivery times.

Paper 3118 20 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Figure 10-1 Vendor Identification Form

Vendor: PO#/Acct#
Address: Descript
PO#/Acct#
Descript
Contact: Phone:
Standard Delivery
Part No Desription Quantity Cost Time

Paper 3118 21 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

Section 11. Concluding Thoughts.
Contingency plans should be well though out. Thoroughness in testing will
save much time and reduce panic in the event of a disaster. Periodic updating

of your plan will preserve its integrity.

Remember, a contingency plan is your only key to insuring the future of your
data.

Paper 3118 22 DETROIT, Mi



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86
IS ONLINE BACKUP POSSIBLE OUTSIDE SPECTRUM ?

Joerg Groessler
Joerg Groessler GmbH
Rheinstrasse 24

1000 Berlin 41 West Germany

Overview

Until today users of the HP3000 are requested to stop their daily wor
whenever a partial or full backup is performed. With the Spectrum program HP
has announced an online backup facility which probably will reduce the
downtime caused by backup to almost zero. This facility, however, will not be
available to the current HP3000 customers. This presentation will explain two
basic approaches to an online backup system in MPE.

What is ONLINE BACKUP 2
Using the existing STORE facilities (HP's STORE or IJG's BACKUP/3000) the

users are required to close files which have been previously opened for write
access.

Reason:

- Files cannot be stored in 'zero time'.

- Data which will be written to files will be stored if the file or this part of the file
has not yet been stored.

- Some parts of the STORE tape contain more actual data than other parts.

Result:

- Files which are marked as being 'opened for writing' will not be stored.
- A 'STORE bit' is set in the file label to prevent files which are candidates for
STORE from being opened for writing.

Paper 3119 1 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86

WRITE access STORE bit

bit
|o|1| | File 1

o] | Fie2 |

application program [or] | Fies STORE program
[of] |  Fies
o |  Fies

file label data part

A 4

9]
O| FILEZ .PUB Jd6 NOT STORED: FILE IN USE FOR WRITI 8
o FILES .PUB 106 NOT STORED: FILE IN USE FOR WRITI o
O| FILENAME.CROUP  .ACCOUNT LDN RDDRESS REEL SECTORS CODE | O)|
8 FILEL P8 .16 pouszr 1 wreec |9

FILE3 .PUB 16 1701007105 1 1800 PROG | O]
8 FILEY .PUB 106 1201012818 1 773 PROG  |O
ol T 3 ;
0 ' (o]
(o] Of
o o]
(o] O
0 3
(6] [o]

In an ONLINE BACKUP users have to close their files only once at the
beginning of the STORE process to put the file system into a defined status.
During backup these files can be opened again, even for write access.

To ensure the integrity of the file system the write requests performed during the

backup have to be handled differently than usual. This is done with a special
logging routine which is called before the actual file write is performed.

Paper 3119 2 DETROIT, MI



SOUTHEASTERN MICHIGAN USERS GROUP INTEREX 86
First Approach: Actual File I/0 Logging

The next picture illustrates the principle of online backup using actual file I/O
logging:

appl. program

logging routine

l log file |

- all write requests are performed only into the log file rather than the actual
user file.

- read requests by the user program have to check the log file whether this
part of the file has already been logged (in that c<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>